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Summary

The solar magnetic field is mostly axisymmetric at the largest scale. Latitudinal dynamo
waves propagate from mid-latitudes towards the equator, as can be seen, for example,
from sunspot observations. Reproducing this pattern is one of the main demands that a
numerical model of the solar dynamo has to satisfy.

One of the most common theories to explain the solar cycle is the ↵⌦ dynamo mech-
anism, that depicts dynamo action in the Sun as an interplay of di↵erential rotation (⌦
e↵ect) and helical turbulence (↵ e↵ect). As the rotation rate increases, the turbulence ef-
fects increase, hence the ↵�e↵ect increases. As a consequence, the dynamo moves from
the ↵⌦� regime to the ↵2�regime, where the inductive e↵ects from turbulence are the
dominant source for the toroidal and poloidal components of the magnetic field. This is
postulated to lead to the emergence of non-axisymmetric solutions, but the details on how
this transition occurs are not yet clear. The aim of this project is to quantitatively study
how and why the types of the dynamo solutions and their cyclicity change as a function
of rotation rate, together with some other important governing system parameters.

In Section 5.1, we first compare semi-global models at increasing rotation rates: mod-
els covering 1/4 of the full longitudinal extent and models covering the full longitude.
We find that only when the longitudinal wedge assumption is relaxed, non-axisymmetric
modes can develop and produce azimuthal dynamo waves. However, due to numerical
constraints, our models lack the polar caps. We therefore expect that full-sphere models
will show features more close to stellar observations, such as more dipolar magnetic fields
at higher rotation, that cannot develop now because of the missing poles. We also find out
that high enough resolution is necessary to reach the non-axisymmetric regime.

In the axisymmetric regime, we find two di↵erent kind of solutions: one oscillatory in
the presence of a solar-like di↵erential rotation, where the equator rotates faster than the
poles, and the other one still oscillatory, but in combination with an anti-solar di↵erential
rotation profile, with the equator slower than the poles. The main di↵erence between the
two solutions is the migration direction of the magnetic field, equatorward in the first case
and poleward in the second one. The solar-like solutions were already analyzed with the
test-field method, hence, here we concentrate on the oscillating solution in the anti-solar
di↵erential rotation regime. In Section 5.2 we study the turbulent transport coe�cients in
the axisymmetric models with the test-field module and analyze the dynamo operating in
this regime.

An important aspect of the model is the description of heat conduction in the convec-
tion zone, and the aim in this study was to make it as realistic as possible. The common
approach is to prescribe it according to mixing-length theory, so that the depth of the con-
vection zone is fixed. Recent local models have shown that, in a more realistic non-linear
setup, where heat conduction is a function of temperature and density, the depth of the
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Summary

convection zone can considerably vary, and the bottom of the domain can become sub-
adiabatic. Thus, the actual extent of the convective layer cannot be determined a priori,
but is an output result of the simulations. We therefore also investigate the nature of dy-
namo solutions using such a non-linear model in Section 5.3 by adopting Kramers opacity
law and compare with the results of Section 5.1. The di↵erent form of heat transport af-
fects the azimuthal dynamo wave propagation direction. Also, the transition point to the
non-axisymmetric regime is shifted towards a higher rotation rate, moving the simulations
transition closer to the observed one.
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1 Introduction

Quinci rivolse inver’ lo cielo il viso.
Dante Alighieri, Paradiso, I, 142, Divina Commedia

1.1 Sun and solar-like stars
The Sun is just one among the many magnetically active stars in the Universe. It has
a special place only in our perspective, because its magnetic activity can directly influ-
ence life on our planet through what is called space weather: the solar magnetic activity
can a↵ect satellite communications and cause power grid failures through e.g., flares and
coronal mass ejections (CME), but is also the source of stunning aurorae. The magnetic
field of the Sun manifests itself on the solar surface in the form of dark spots, called
sunspots, bright features, like faculae, and more explosive phenomena, such as flares and
CME. Tracing the location of appearance of the sunspots in latitude and time (Figure 1.1),
a cyclic pattern can be recognized. The spots appear first at mid-latitudes (±30�). Then,

Figure 1.1: Sunspot area, averaged over each solar rotation, in latitude and time (top
panel) and average daily sunspot area in the visible hemisphere (bottom panel). Courtesy
of David Hathaway. http://solarcyclescience.com/solarcycle.html.
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1 Introduction

Figure 1.2: Longitudinally averaged radial magnetic field plotted in latitude and time at
the solar surface. Courtesy of David Hathaway.

as the number of spots per day increases, they emerge progressively nearer to the equator,
where their daily emergence rate reaches a minimum. This traces what is generally called
the butterfly diagram, given the resemblance of the sunspots emergence pattern with but-
terfly wings (see, top panel in Figure 1.1), each wing pattern having a time span of 11
years. Figure 1.2 shows the longitudinally averaged radial magnetic field at the surface of
the Sun over time. Comparing it with Figure 1.1, we see now that each consecutive wing
carries the opposite polarity of magnetic field, forming a magnetic cycle with a period of
roughly 22 years. These cycles thus constitute the Schwabe’s (activity) and Hale’s (mag-
netic) cycle, respectively, being the manifestations of the cyclic dynamo operating inside
the solar convection zone.

1.1.1 Origin of the solar magnetic field
The present-day large-scale magnetic field of the Sun could be the relic of the nebula from
which the Sun contracted. To verify it, we can estimate the magnetic field resulting from
the contraction and evaluate the loss due just to resistive dissipation. The magnetic flux
of the nebula is � = BR2, where B is the average magnetic field and R the characteristic
length. If we suppose the magnetic field to be “frozen” in the plasma, as in the ideal
plasma approximation, then the flux is conserved. Also the mass of the contracting nebula
has to be conserved, M = ⇢V ⇡ ⇢R3. Then, following Mo↵att (1978), we have B ⇡
� (⇢/M)2/3 and, using the average values for the magnetic field in the Sun (⇠ 10�4 T) and
the galactic field (⇠ 10�10 T), 106 ⇡ B�/Bneb ⇡ (⇢�/⇢neb)2/3. A compression factor of
1015 is necessary to justify the observed magnetic field ratio. The ratio ⇢�/⇢neb is actually
enough to support this explanation. If we now consider the characteristic dissipation time,
⌧D = L2/⌘, where L is the characteristic length scale and ⌘ is the molecular magnetic
resistivity, we can estimate the time that it would take the Sun to di↵use away its original
magnetic field. We consider as L the solar radius, R� ⇡ 7 · 108 m, and ⌘ ⇡ 1 m2s�1 for
a gas constituted of hydrogen (Stix 2002). Then ⌧D ⇡ 4.9 · 1017 s ⇡ 1010 yr, which is
consistent with the the relic field hypothesis.

The solar convection zone, however, is in a highly turbulent regime, and we should
account for the enhanced dissipation due to turbulence in the calculation. Thus, we con-
sider the characteristic scale and velocity of granulation, l ⇡ 103 km and u ⇡ 1 km s�1,
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1.1 Sun and solar-like stars

Figure 1.3: Left panel: internal structure of the Sun. Source: NASA. Right panel: solar
di↵erential rotation measured by GONG. Credits: GONG/NSO/AURA/NSF.

respectively. We can derive a typical viscosity ⌫ ⇠ lu ⇡ 103 km2 s�1 = 109 m2 s�1 (see,
e.g., Stix 2002), finally arriving at a characteristic time of about ⌧⌫ ⇡ 4.9 · 108 s ⇡ 15 yr.
This estimate is consistent with the solar activity cycle, in which timescale the field has
to be regenerated inside the Sun.

Even though the present large-scale magnetic field of the Sun could be the result of
a fossil magnetic field, the almost regular polarity reversals cannot be explained by the
fossil field hypothesis. The existence of a dynamo e↵ect in the Sun is therefore necessary
to explain the reorganization of the large-scale magnetic field and its cyclic nature.

1.1.2 Structure, convection zone and di↵erential rotation in the Sun
The internal structure of the Sun is shown in the left panel of Figure 1.3. In the core,
nuclear fusion burns hydrogen and produces helium and, in the radiative zone, energy is
transported mainly through radiation. The convective zone constitutes the outer 30% of
the solar radius and is the place where dynamo action occurs. In this region, the plasma
is opaque to radiation and convection is transporting most of the energy. As a result of
rotation and density stratification, the plasma in the convection zone is rotating di↵eren-
tially, as shown in Figure 1.3, right panel, from helioseismic measurements: the rotation
is faster at the equator, with a period of 25 days, and slower at the poles, where it has a
30-days rotation period. Di↵erential rotation (DR) constitutes one of the main ingredi-
ents of the solar dynamo. The convection zone is enclosed in between two layers of strong
shear: the tachocline at the base and the near-surface shear layer at the top. Solar (and
stellar) convection has many length and time scales: from the small scales of granulation
near the surface (1 Mm and 10 min), to the larger scales of supergranulation deeper down
(30 Mm and 1 day). Moreover, Bumba (1970) and Hathaway et al. (2013) reported also
on the presence of giant cells (200 Mm and 1 month); the first using synoptic maps, the
latter through supergranulation tracking. However, the analysis of Bogart et al. (2015)
attributed such supergranular motions to the e↵ect of magnetic fields or torsional oscilla-
tions. Moreover, the results of Hanasoge et al. (2012) show a lack of power at the length
scales corresponding to giant cells’ motions.
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1 Introduction

Moving up, the first visible layer of the solar atmosphere is the photosphere. From the
photosphere, we can track the granulation and observe the sunspots. Some spectral lines,
such as Ca II H & K, transition to an optically thin state higher up in the atmosphere.
This region is called chromosphere. The emission in Ca II H & K is closely related to
magnetic activity (Skumanich 1972, Stix 2002). The temperature increases with height
in the chromosphere, and the chromospheric network, related to the granulation in the
photosphere below, gradually disappears, until, in the transition region, the temperature
sharply increases from 104 K to 106 K. Above the transition region, the solar corona
starts. Stars emit X-ray radiation from the corona and also this emission is associated to
magnetic activity (Wright et al. 2011, and references therein).

1.1.3 Solar-like stars
When talking about solar-like stars, we mean main-sequence stars with convective en-
velopes (F, G, K stars). Solar-like stars with convective envelopes also show latitudinal
DR at the surface. The dependence on rotation rate has been reported to be slightly in-
creasing (Reinhold and Gizon 2015) or slightly decreasing (Lehtinen et al. 2016) with
rotation in photometric studies, while models (e.g., Kitchatinov and Rüdiger 1999) show
a very weak dependence on rotation. On the other hand, asteroseismology studies (Beno-
mar et al. 2018), inferred a much higher DR (⇡ 60% equator-mid-latitudes di↵erence) in
solar-like stars observed by Kepler.

Observations of other stars reveal that they also have activity cycles (see, e.g., Baliu-
nas et al. 1995, Saar and Brandenburg 1999, Boro Saikia et al. 2018, Olspert et al. 2018)
and that the cycle period can be related to their age and their rotation period (Skumanich
1972, Noyes et al. 1984b), with young, fast rotating stars having shorter activity cycles.
Brandenburg et al. (1998) plotted the ratio between cycle and rotation frequency (!cyc/⌦)
against magnetic activity, a proxy of which is the emission in Ca II H & K. It was shown
that stars were clustering in “branches”: one for old stars, called Inactive branch, one
for younger stars, called Active branch. For both of them !cyc/⌦ increases with activity.
Later on, Saar and Brandenburg (1999) identified the Superactive branch for more active
stars, in which !cyc/⌦ decreases with increasing activity. However, when put in the stel-
lar context, the Sun was more of an outlier, occupying the space between the Inactive and
Active branches (Vaughan and Preston 1980, Noyes et al. 1984a). More recent observa-
tions, taking into account much longer time series, show that the Sun is now fitting among
the other stars, and even question the existence of the Active branch, while the Inactive
branch seems robust against di↵erent time series analysis method and extent of the data
(see, e.g., Distefano et al. 2017, Boro Saikia et al. 2018, Olspert et al. 2018).

As mentioned in Section 1.1.2, another index to measure stellar magnetic activity
is the X-ray fraction of stellar luminosity, quantified by the ratio Lx/Lbol, where Lbol is
the integrated luminosity. Like for the emission in Ca II H & K, the emission in X-ray
depends on the rotation rate of the star. This is visible in Figure 1.4, where the rota-
tion is represented by the Rossby number, Ro = Prot/⌧, with ⌧, the convective turnover
time, determined through empirical relations and stellar evolution models, as an estimate
of convective turbulence. For over one order of magnitude in Ro, the activity increases
with decreasing rotation period, until it reaches the so-called “saturation regime” around
Ro = 0.1, where the emission in X-rays remains roughly constant with rotation. The
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1.1 Sun and solar-like stars

Figure 1.4: Ratio between luminosity in X-rays (Lx) and bolometric luminosity (Lbol)
as a function of the Rossby number (Ro = Prot/⌧), for solar-like stars (gray dots) and
fully convective stars (red and orange dots). The red and blue boxes indicate the range in
Rossby number explored in Strugarek et al. (2017) and Viviani et al. (2018), respectively.
Reprinted and adapted by permission from Springer Nature: c�Wright and Drake (2016).

term “saturation” refers to the saturation as a function of rotation period and, therefore,
to the flat slope in the diagram. The Lx/Lbol � Ro relation is valid for stars with con-
vective envelopes, represented in the figure by grey dots, but also for fully convective
stars (Wright and Drake 2016), displayed with red and orange dots, suggesting a common
mechanism for magnetic field generation in a wide range of spectral types. The red box in
Figure 1.4 displays the range of Rossby numbers explored in the numerical simulations of
Strugarek et al. (2017), as a representation of the state-of-the-art of numerical studies. In
Section 5.1, we probed a larger parameters’ regime and extended the examined range to
cover the blue box in Figure 1.4. Even though some simulations are located in the region
of large rotation periods corresponding to the Inactive (and Active) branch, the models in
these studies do not show a positive slope in the!cyc/⌦�Ro�1 diagram. Their results lie in
the region of the merged Active-Superactive population, called Transitional branch (Saar
and Brandenburg 1999, Lehtinen et al. 2016, Distefano et al. 2017) and show a decreas-
ing trend as a function of decreasing Rossby number. The only exception to the general
trend in numerical results is the work of Guerrero et al. (2019) on partially convective
stars with a convectively stable layer at the bottom. In these simulations, a positive trend
is present for the cases in which the dynamo originates in the convection zone, while, for
dynamos generating in the stable layer, their results are consistent with the other models.
Their positive trend, though, is still located at too low Ro, far from the observed inactive
population. The discrepancy between simulations and observations could depend on the
convective turnover time and, hence, on the Rossby number, indicating that the models
are still too laminar to reproduce stellar behaviours.

A thorough analysis and comparison between observations and simulations was per-
formed in Olspert et al. (2018). In their analysis, only the Inactive branch appears robust
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against all time series analysis method and length of the data set used, while stars that
belonged to the Active and Superactive populations now form an indistinct cloud in the
diagram. They also tried to explain the positive slope of the Inactive branch using scal-
ing laws derived from the most common dynamo models, flux-transport (see, also, Jouve
et al. 2010) and ↵⌦ dynamo (see, for example, Brandenburg and Subramanian 2005).
For flux-transport dynamos, the cycle period is determined by the meridional circulation
(Jouve et al. 2010). Numerical models show that the amplitude of meridional circulation
decreases with increasing rotation, hence !cyc / ⌦�k and k > 0. This means that the
ratio !cyc/⌦ will acquire a scaling proportional to ⌦�k�1. Hence, the slope predicted by
flux-transport dynamos in the !cyc/⌦ � Ro�1 is negative, which is opposite to the trend
observed for the Inactive branch. For an ↵⌦ dynamo, the dependence of the cycle fre-
quency is / |↵�⌦|1/2 (Brandenburg and Subramanian 2005). Then, applying the scaling
laws ↵ / ⌦a and �⌦ / ⌦b (Olspert et al. 2018), we obtain that the observed slope, ⌫,
is given by ⌫ = +a/2 + b/2 � 1. We can constrain b using observations (e.g., Reinhold
and Gizon 2015, Lehtinen et al. 2016) or numerical models (e.g. Kitchatinov and Rüdi-
ger 1999). In order to obtain ⌫ > 0, the dependence of the ↵ e↵ect on rotation must be
unrealistically strong: a ⇡ 3.3 � 4.3. Therefore none of the two main paradigms is able
to predict the positive slope of the Inactive population. In the case of an ↵⌦ model, one
way to obtain a positive slope would be to admit a varying depth of the convective layer
with rotation. This could be obtained with the development of a sub-adiabatic layer at
the bottom of the convection zone, a result that has been reported on in recent numerical
studies (e.g., Käpylä et al. 2017, Karak et al. 2018).

Figure 1.5: Left panel: sunspots on the solar surface in a continuum image from
SDO/HMI. Image credit: NASA. Right panel: Doppler Imaging of an active star, II Peg,
with a rotational period of roughly 6 days. Data from Lindborg et al. (2011).

Younger, faster rotating stars than the Sun show a higher level of surface magnetic
activity and also a di↵erent magnetic field topology. For the Sun, spot emergence is
restricted to middle to low latitudes and is rather axisymmetric with respect to the rotation
axis (Figure 1.5, left panel), meaning that the spots do not show a preferential longitude
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1.2 Numerical modeling

for their appearance (Pelt et al. 2006). On more active stars, the spots tend to appear
at higher latitudes, or even in the polar regions, and form non-axisymmetric structures
(with two main polarities in longitude) that migrate on the stellar surface at a di↵erent
speed than the plasma (see, e.g., Berdyugina and Tuominen 1998, Lehtinen et al. 2016),
constituting azimuthal dynamo waves (ADW). In their photometric study, Lehtinen et al.
(2016) found that ADWs appear beyond a certain threshold in activity and detected mainly
prograde waves, that is waves which are moving in the same direction as the rotation.
However, also cases for retrograde waves (progressively lagging behind the rotating flow)
or standing waves (non-migrating active longitudes) have been found (e.g., Berdyugina
and Tuominen 1998). The magnetic field configuration on the surface of an active star,
reconstructed using the Doppler imaging technique, is shown in Figure 1.5, right panel.
The two darker (cooler) spots are close to the pole and separated by roughly 180o degrees.

1.2 Numerical modeling
The variety and complexity of stellar behaviors calls for adequate numerical models which
are able to reproduce solar and stellar observational results. A model capturing all the
spatial and temporal scales present in the Sun, from the giant cells to the very small scales
of granulation, is not feasible at the moment. Two types of modelling strategies are being
used. The first one models local surface regions using radiative magnetohydrodynamics
(RMHD, for a review, see Nordlund et al. 2009). The second one uses semi-global or
global models neglecting RMHD and focusing on the deeper parts. In this thesis, we use
a model belonging to the second category and, therefore, we review in more details these
types of models.

Early models applied the mean-field concept (Steenbeck et al. 1966, Mo↵att 1978,
Krause and Rädler 1980, and also Section 2.2), where only the equation for the large-scale
magnetic field or velocity field was solved for. The range of scales that can be resolved
is much smaller than in a setup solving for the full magnetohydrodynamic (MHD) equa-
tions and, with suitable simplifications, some problems can be solved semi-analytically.
As we discuss in Section 2.2.2.2, mean-field theory is the toolbox employed to discover
Parker’s oscillatory ↵⌦ dynamo mechanism, and it is still a widely used and applicable
framework in modern astrophysics (see, e.g., Warnecke et al. 2018, and, also, Section 4.1
and Section 5.2). Mean-field theory relies on the parametrization of turbulent e↵ects.

Another way to address the problem is to employ direct numerical simulations (DNS),
where the MHD equations are solved employing explicit di↵usivity and viscosity, albeit
with much higher values than the ones for real objects, without any turbulence parametriza-
tion. The equations are solved in 2 or 3 dimensions, in Cartesian or spherical geometry.
Especially in the 3D case, solving a system of non-linear equations is computationally ex-
pensive, therefore simplifications are often made, such as taking into account just a box in
Cartesian geometry or a fraction of a sphere (wedge geometry), or stabilizing the numer-
ical scheme by means of sub-grid scale (SGS) models that take care of the dissipation at
small scales. If this is done at the grid scales, then these models are called implicit large-
eddy simulations (ILES). SGS schemes can also parametrize some unresolved physical
processes, such as heat flux (see, also, Chapter 4, Equation (4.5)). Even with the best
supercomputers available at the moment we are not close to simulate the Sun realistically,
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1 Introduction

but have to resort to models using enhanced viscosity and di↵usivity.
Simplifications can also be applied to the equations and not just to the extent of the

simulation domain. One of the most stringent constraints on the timestep for numerical
convection calculations is due to sound waves, which are pressure waves propagating with
the speed of sound, cs. The sound speed is increasing as a function of depth, while the
convective velocity decreases. Hence, in the deeper parts, the timestep is constrained by
cs. Near the surface, however, the convective velocity increases and the Mach number,
the ratio between the velocity and cs, becomes close to one, indicating that the flow is
transonic. Here, the convective velocity puts a restriction on the timestep. Capturing both
these e↵ects is very challenging for numerical schemes.

The simplest way to circumvent these restrictions consists in not allowing the den-
sity to vary. In this approximation, the fluid is incompressible (r · U = 0), and, if the
variations of density are considered just in the buoyancy term, we talk about Boussinesq
approximation. Boussinesq flows are very common in nature and industrial applications
but this approximation is not very suitable to stellar conditions. We note, however, that it
is used for benchmarking di↵erent geo- and astrophysical codes (e.g., Christensen et al.
2001, Jackson et al. 2014).

A more widely used approximation in stellar convection is the anelastic approxima-
tion. In this case, temporal density variations are neglected, while density can vary spa-
tially. The continuity equation, hence, becomes

r · (⇢U) = 0. (1.1)

In the anelastic approximation, the thermodynamic variables are linearised around the
adiabatic state. An infinite speed of sound is assumed, resulting in an instantaneous bal-
ancing of pressure perturbations. The expression (1.1) allows to simulate mildly stratified
domains through variations of the reference density ⇢, while still neglecting the sound
waves, and is one of the most used approximations for simulating planetary and stellar
convection and dynamos (e.g., Brun et al. 2004, Jones et al. 2011, Smolarkiewicz and
Charbonneau 2013, Duarte et al. 2016). The approximation breaks down near the surface,
where the departures from the adiabatic state become large (Stix 2002).

Keeping sound waves could be useful to compare simulation results with observations
or to put constraints on and compare results from di↵erent helioseismology (or asteroseis-
mology) models. Then, the full continuity equation (@t⇢ + r · (⇢U) = 0) has to be solved
for. Di↵erent approaches can be used for keeping a reasonable timestep. For example,
a much higher luminosity than the solar value can be used (Käpylä et al. 2013, Mabuchi
et al. 2015). This leads to an increased, but still less than unity, Mach number and, there-
fore, to higher velocities. The rotational e↵ects are then enhanced and it is necessary to
neglect the centrifugal force, that would be much larger than in real stars. Unfortunately,
this approach results in solar rotation profiles being still anti-solar with the solar rotation
rate. Another technique to have high stratification is the reduced sound speed technique
(Rempel 2005, Hotta et al. 2012), which consists in modifying the continuity equation by
means of a parameter, ⇠:

@⇢

@t
= � 1
⇠2r · (⇢U) . (1.2)

Using values of ⇠ between 0 and 1, the Mach number scales by a factor of ⇠ but is still
subsonic.
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1.2 Numerical modeling

All these restrictions in modeling lead to discrepancies when comparing to observa-
tions. DNS of convective envelopes in solar-like stars can obtain anti-solar DR profiles,
with faster poles and slower equator, for the solar rotation rate (e.g., Gastine et al. 2014,
Käpylä et al. 2014, Karak et al. 2015). These results may also indicate that the Sun it-
self is in transition between these two DR regimes (Käpylä et al. 2014, Metcalfe et al.
2016). On the other hand, the numerical models of Guerrero et al. (2016, 2019), which
include also a stable tachocline and SGS viscosity model, always show solar-like DR,
although with, in general, lower values for the convective velocities. Also, as an e↵ect of
the SGS viscosity, the actual convective layer in the latter models is somewhat shallower
than the real depth of the domain. In addition, the isocontours of DR in DNS are more
aligned with the tangent cylinder than the isocontours actually observed through helio-
seismology (Schou et al. 1998), indicating that the flow is close to the Taylor-Proudman
balance (Chandrasekhar 1961). Moreover, velocity spectra measurements from simula-
tions reports far higher power at large scales (indicating the presence of giant cells) than
the values inferred through helioseismic inversions (Hanasoge et al. 2012). The failure in
reproducing solar-like DR, the almost cylindrical isocontours and the too high convective
velocities in simulations constitute the elements of the convective conundrum.

It is currently not completely clear how to crack this conundrum. Even more, it is
not yet fully observationally established how big the discrepancy between the models and
the observations really is. Greer et al. (2015), using a di↵erent data analysis method than
Hanasoge et al. (2012), arrived at a significantly higher upper limit for convective ve-
locities at the giant cells scale. Also, numerical models have identified some pathways
to reduce convective velocities. For example, Featherstone and Hindman (2016a,b) used
the rotational influence on deep convection, while O’Mara et al. (2016) employed a de-
creased thermal conductivity. Finally, Hotta et al. (2015b) utilized high enough resolution
to capture small-scale dynamo action.

One of the most used approaches to describe stellar convection is the mixing length
theory (MLT, see also Section 3.1). In MLT, all the quantities are calculated using a
characteristic length, that is the distance that a convective blob can travel in the convection
zone before dissolving in its surroundings. MLT predicts the existence of giant cells, with
a diameter of the order of the convection zone itself. Their existence, however, has not
been observationally confirmed, especially in view of the results of Hanasoge et al. (2012),
showing low power at the corresponding length scales in the horizontal velocity spectra.
Non-local e↵ects in MLT have been considered by e.g., Spruit (1997), and the relative
MLT extension has been calculated by Brandenburg (2016), including a non-gradient
term in the enthalpy flux (Deardor↵ 1966), proportional to entropy fluctuations. This
term would drive upward flux even in a stably stratified medium. Moreover, the depth of
the convectively unstable layer is reduced, meaning that giant cells might not be excited
in such setups. Such subadiabatic layers have indeed been found by e.g., Käpylä et al.
(2017) and Karak et al. (2018), the former through the use of Kramers-like opacity laws
instead than MLT-motivated setups. In spherical geometry, both in the hydrodynamic and
in the magnetohydrodynamic runs, Käpylä et al. (2019b) obtained reduced velocities at
large length scales and isocontours for the DR less aligned with the tangent cylinder, but
the di↵erences were not su�cient to solve the conundrum.

Even with all the discrepancies with observations mentioned above, numerical mod-
els are our best chance to understand solar and stellar dynamos. New supercomputers
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allow for more and more complex numerical simulations that, if not yet realistic, are in-
creasingly reliable. The equatorward migration of the solar magnetic field (as shown in
Figure 1.2) has been reproduced by many numerical models (Ghizaru et al. 2010, Käpylä
et al. 2012b, Augustson et al. 2015), as well as the long-term variations in the solar cy-
cle (e.g., Passos and Charbonneau 2014, Käpylä et al. 2016). These solar-like solutions,
though, seem to emerge from imperfections in the rotation profiles (as discussed in Sec-
tion 2.2.2.2). However, a broad agreement between di↵erent numerical codes using var-
ious approximations, was found in Augustson et al. (2019). They also pointed out the
importance of keeping the same level of supercriticality of convection in simulations.

A proper stellar dynamo theory should be able to explain stellar magnetic fields in
general and the Sun as a particular case. However, until recently, the Sun was considered
as a “special” case in the context of stellar observations and, for long time, it was the only
star for which we could have such detailed observations. Now that long-term observations
are finally becoming available, they show increasing evidence of the Sun not being so
special. Comparisons of modelling e↵orts versus observations are now emerging, and it
is evident that the match to other solar-like stars’ magnetic cycles is rather poor (see, e.g.,
Section 5.1). Even those mean-field models that provide a perfect fit to the Sun fail these
tests (Olspert et al. 2018, and discussion therein).

1.3 Outline of the thesis
The aim of this thesis is to investigate the nature of the dynamo solutions and their varia-
tions as a function of rotation rate and heat conduction. We introduce dynamo theory in
Chapter 2 and the theory of turbulent convection in Chapter 3. In Chapter 4 we examine
the employed numerical methods. We discuss the dependence of the surface magnetic
field configuration on rotation in Section 5.1, and the need of more realistic mechanisms
for heat conduction in the convection zone in Section 3.2 and Section 5.3. In Section 5.2,
we analyze in detail an axisymmetric simulation by means of the test-field method, intro-
duced in Section 4.1.
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2 Dynamo theory

Facesti come quei che va di notte,
che porta il lume dietro e sé non giova,

ma dopo sé fa le persone dotte.
Dante Alighieri, Purgatorio, XXII, 67-69, Divina Commedia

A more complete description of dynamo theory can be found, e.g., in Brandenburg
and Subramanian (2005) and Charbonneau (2013). Here, we will only present a brief
overview of the topics relevant to this thesis.

Most of the ordinary matter in the Universe is in the state of plasma, hot gas composed
of ions and free electrons. If the collision rate between particles of the same species in the
plasma is high enough so that it can be considered to be in thermal equilibrium (the par-
ticles’ distribution function is well described by a Maxwell-Boltzmann distribution at all
times), then we can use the fluid approximation to describe the plasma. This means that if
the mean-free-path of particles in a fluid element is shorter than the extent of the fluid el-
ement itself, we can consider the collective behaviour of the particles as a fluid. In princi-
ple, we should write the fluid equations separately for electrons and ions, but if the charge
separation is negligible, we can consider a one fluid model. This is established by com-
paring the length scale we are considering with the Debye length, �D =

⇣
✏0kBT/nq2

⌘1/2
,

i.e., the distance at which a charged particle is electrically screened by the other particles,
where ✏0 is the permittivity of free space, kB the Boltzmann constant, n the particle den-
sity and q the electric charge. Using the values of temperature (T ⇡ 5000 K) and particle
density (n ⇡ 1015 m�3) at the base of the photosphere, the Debye length for particles in
the Sun is approximately �D ⇠ 10�14 m, while the granulation scale is l ⇡ 103 km. At the
bottom of the convection zone, the convection scales become larger, while �D gets shorter
because of the increase in density n.

We can use the following set of MHD equations:

@⇢

@t
+ r · (⇢U) = 0, (2.1)

DU
Dt
= �rp

⇢
+ g +

J ⇥ B
⇢
+

1
⇢
r · 2⌫⇢S + F, (2.2)

T
Ds
Dt
= �1
⇢
r · Frad +

µ0⌘

⇢
J2 + 2⌫S2, (2.3)

@B
@t
= r ⇥ (U ⇥ B � µ0⌘J) , (2.4)
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2 Dynamo theory

together with r · B = 0 and an equation of state that relates the pressure p, the density
⇢ and the temperature T . Equation (2.1) is the continuity equation and describes the
conservation of mass, where U is the velocity. Equation (2.2) is the equation for the
conservation of momentum, where g = �GMr/r3 is the gravitational acceleration, with
G and M as the gravitational constant and the mass of the star, respectively. It includes
also the Lorentz force J ⇥B, where J is the current density and B the magnetic field. The
advective time derivative is:

D f
Dt
=
@ f
@t
+ (U · r) f , (2.5)

where f is a generic function. ⌫ is the constant viscosity. S is the traceless rate-of strain
tensor, that can be expressed as:

Si j =
1
2

⇣
Ui; j + U j;i

⌘
� 1

3
�i jr · U, (2.6)

where �i j is the Kronecker delta and the semicolon expresses covariant derivative (Mitra
et al. 2009). F includes other forces, such as the centrifugal or the Coriolis forces. In
Equation (2.3) (conservation of internal energy), written in terms of the specific entropy
s, Frad = �KrT is the radiative flux, and K the radiative heat conductivity, which will be
examined in more detail in Section 4.2. Equation (2.4) is the induction equation for the
magnetic field B, in which µ0 and ⌘ are the magnetic permeability in vacuum and constant
magnetic di↵usivity. The equation is obtained using Maxwell’s equations and Ohm’s law
ignoring the displacement currents, and assuming that motions are non-relativistic:

J =
r ⇥ B
µ0
. (2.7)

2.1 Non-dimensional parameters
Non-dimensionalization of the set of Equations (2.1) to (2.4) results in a series of pa-
rameters that are useful to characterize the system under study. To this end, we define
a characteristic velocity, U, and a characteristic length, L, in the system. A compari-
son in between advective ((U · r) U) and dissipative (⌫r2U, resulting from S) terms in
Equation (2.2) leads to the Reynolds number:

Re =
LU
⌫
. (2.8)

A high Reynolds number, as in the case of astrophysical objects (for the Sun, Re ⇡ 1013),
indicates a highly turbulent regime. In Equation (2.4), the ratio of the term r ⇥ (U ⇥ B)
and the dissipative term, ⌘r2B, coming from r ⇥ ⌘µ0 J (considering constant magnetic
di↵usivity and Equation (2.7)), analogously gives the magnetic Reynolds number:

Rm =
LU
⌘
. (2.9)

Also here, a high magnetic Reynolds number is characteristic of (magnetized) astrophys-
ical flows (for the convection zone of the Sun, Rm ⇡ 106 � 109) and indicates that, if a
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2.2 Mean-field theory

mechanism capable of producing magnetic field exists, the plasma can sustain this mag-
netic field against di↵usion. The ratio of the two Reynolds numbers can tell us about
the relative importance of viscosity and magnetic di↵usion, defining, thus, the magnetic
Prandtl number:

PrM =
Rm
Re
=
⌫

⌘
. (2.10)

Another important non-dimensional parameter is the thermal Prandtl number, that quan-
tifies the relative importance of viscosity and thermal di↵usivity:

Pr =
⌫


(2.11)

In the Sun Pr ranges from 10�10 at the surface to 10�3 at the bottom of the CZ. Finally,
in a rotating fluid, the ratio of the Coriolis force (2⌦ ⇥ U) and the advective term in
Equation (2.2) defines the Coriolis number, or inverse Rossby number:

Co =
1

Ro
=

2⌦L
U
. (2.12)

A Coriolis number larger than unity tells us that rotational e↵ects are more relevant to the
dynamics of the system than convection; for the Sun Co ⇡ 10�3 � 1, (surface – bottom of
CZ, e.g., Stix 2002).

2.2 Mean-field theory
Mean-field theory (Steenbeck et al. 1966, Mo↵att 1978, Krause and Rädler 1980) is one
of the most successful and widely used theories to explain stellar magnetism. It is based
on the definition of suitable averages to determine the mean fields that will be used to
describe the large-scale fields. Sometimes a further simplification is made by assuming
the mean velocity field given - this is called the kinematic approach. The problem then
reduces to solving the system for the mean magnetic field.

We can define an ensemble average so that all the quantities, f , can be written as the
sum of a mean and a fluctuating component:

f = f + f 0 (2.13)

where f 0 = 0. It is usually required that the Reynolds averaging rules apply for the
averaging operator. The ensemble average is an averaging operation defined over many
realizations of the same macrosystem, that is a number of microsystems sharing the same
thermodynamic properties, such as temperature, density and pressure. In the case of the
Sun, we have only one single realization and we witness just a brief instant of its life but,
thanks to the ergodic theorem, we can substitute the ensemble average with a time or a
spatial average. This is legitimate if also the time or length scales of the fluctuations (⌧
and �, respectively) are smaller than the ones of the mean fields (t and l): � ⌧ l and ⌧ ⌧ t.

In the case of the Sun, considering the symmetry of its magnetic activity along the
rotation axis, it makes sense to use the average in the longitudinal direction, �, to define
the mean fields: f = h f i�. This average is meaningful as long as we are dealing with
axisymmetric quantities, that is fields for which @� = 0. We will encounter examples
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when this averaging is not suitable anymore in Section 2.3 and Section 5.1. For the time
being we will stick with this definition of mean fields and have a look at how these were
used to explain dynamo action in the Sun. A much more detailed discussion on mean-field
theory can be found, for example, in the books of Mo↵att (1978) or Krause and Rädler
(1980).

Applying the definition (2.13) to magnetic and velocity fields (B = B + b0 and U =
U + u0) in the induction equation (2.4), we obtain the evolution equation for the mean
magnetic field, B:

@B
@t
= r ⇥

⇣
U ⇥ B + u0 ⇥ b0

⌘
� r ⇥ ⌘r ⇥ B (2.14)

The equation describes the dynamics of the mean magnetic field through U, u0 and b0. In
the kinematic case there is no back-reaction of the magnetic field on the velocity field. In
this case, the velocity (Equation (2.2)) and magnetic field (Equation (2.4)) evolution equa-
tions are decoupled. The fluctuating magnetic field is the only other unknown and, in prin-
ciple, we should solve the corresponding equation, obtained subtracting Equation (2.14)
from the equation for B = B + b0 in Equation (2.4):

@b0

@t
= r ⇥

⇣
u0 ⇥ B + U ⇥ b0

⌘
+ r ⇥

⇣
u0 ⇥ b0 � u0 ⇥ b0

⌘
� r ⇥ ⌘r ⇥ b0 (2.15)

An additional simplification is assuming locality in space and time, and write the term
involving the fluctuating magnetic and velocity fields, the turbulent electromotive force
(EMF), E = u0 ⇥ b0, as a function of B and its spatial derivatives:

Ei = ai jBj + bi jk
@Bj

@xk
+ ... (2.16)

The tensors ai j and bi jk are functions of U and u0. It is convenient to separate the tensors
a and b in their symmetric and anti-symmetric parts and obtain the following expression
for the turbulent EMF:

E = ↵ · B + � ⇥ B � � ·
⇣
r ⇥ B

⌘
� � ⇥

⇣
r ⇥ B

⌘
�  ·

⇣
rB

⌘(s)
+ ... (2.17)

where ↵ is the symmetric part of a and can generate magnetic field (↵ e↵ect), � is the
anti-symmetric part of a and represents turbulent transport (turbulent pumping). � is a
turbulent di↵usion, while �, in combination with other generating e↵ects, can also gener-
ate magnetic field through, for example, ⌦⇥ J (or Rädler) e↵ect (Rädler 1969), where ⌦
is the angular velocity. The physical interpretation of  is still unclear, but it is generally
treated as a di↵usion term. The term (rB)(s) indicates the symmetric part of the tensor
rB.

Now, all we have to do is to solve the system for the 27 unknown tensorial components
in Equation (2.17). The most often used approached employs analytic or semi-analytic
calculations of the coe�cients using closure methods. An example of which is the second
order correlation approximation (SOCA) or, equivalently, first order smoothing approxi-
mation (FOSA): it involves neglecting all the moments higher than the second order, like
the second term on the right hand side of Equation (2.15). In order for this assumption to
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be valid, the term r⇥
⇣
u0 ⇥ b0 � u0 ⇥ b0

⌘
must be smaller than the time derivative, @tb0, or

the di↵usive term contained in r⇥ ⌘r⇥ b0. These translate in a condition on the Strouhal
number, defined as St = ⌧cUk f (where ⌧c is the correlation time of turbulence and k f the
convection scale) or on Rm: min {St,Rm} ⌧ 1. Although none of the two conditions is
valid in astrophysical systems (for which Rm � 1 and St ⇡ 1), the results derived with
FOSA seem to be accurate enough and have been confirmed in DNS (see, e.g., Käpylä
et al. 2006, and references therein).

Another way of determining the turbulent transport coe�cients is provided by DNS
simulations, that solve for the mean fields and fluctuations, the electromotive force itself
being an output, combined with data analysis tools to infer the coe�cients (e.g., Bran-
denburg and Sokolo↵ 2002, Racine et al. 2011, Simard et al. 2013, Schrinner et al. 2005,
2007, Warnecke et al. 2018).

2.2.1 Toroidal and poloidal fields
The following representation will turn out to be useful for the description of FOSA results
and possible mechanisms to sustain stellar magnetic fields.

Under the assumption of axisymmetry, a vector field, F, can be decomposed in a
poloidal, Fp, and a toroidal, Ft, field (Chandrasekhar 1961, Krause and Rädler 1980), so
that:

F = Ft + Fp, Ft = F�ê� = r ⇥ rU, Fp = Frêr + F✓ê✓ = rV + rW. (2.18)

The rightmost expression for Ft and Fp is valid also without the axisymmetric assumption.
U,V andW are scalar superpotentials and can be expanded in spherical harmonics as:

F =
X

l,m

F̃ m
l (r)⌥m

l (✓, �) , ⌥m
l (✓, �) = P|m|l (cos✓) eim�, (2.19)

with ⌥m
l (✓, �) being the spherical harmonic of degree (l,m), P|m|l the Legendre polynomial

of degree l, and F̃ m
l (r) the coe�cients of the expansion that can be computed if we know

the scalar superpotential F at a specific radius r:

F̃ m
l (r) =

Z 2⇡

0

Z ⇡

0
F (r, ✓, �)⌥m

l (✓, �) sin✓ d✓d�. (2.20)

2.2.2 Mean-field dynamos
Under the FOSA assumption, and in the case of homogeneous and isotropic turbulence,
the EMF can be written as

E = ↵B � �r ⇥ B (2.21)

where ↵ and � are now scalars and, in the case of no mean flow (U = 0), depend only on
the fluctuating velocity u0. Their form in the kinematic case is:

↵ = �⌧c

3
! · u0, ! = r ⇥ u0

� =
⌧c

3
u02.

(2.22)
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↵ is proportional to the kinetic helicity and, therefore, related to the cyclonic turbulence
described by Parker (Parker 1955a,b), while � is a turbulent di↵usivity and can be regarded
as a significant enhancement to the molecular di↵usivity:

⌘T = ⌘ + �. (2.23)

2.2.2.1 ↵2 dynamo

Introducing ↵ and � in Equation (2.14) and separating the magnetic field in toroidal and
poloidal fields as described in Section 2.2.1 and considering the axisymmetric case, still
considering U = 0, we obtain a system of two equations:

@Bt

@t
= ↵

⇣
r ⇥ B

⌘
p
� ⌘Tr2Bt

@Bp

@t
= ↵

⇣
r ⇥ B

⌘
t
� ⌘Tr2Bp

(2.24)

in which the poloidal field acts as a source term for the toroidal field and the toroidal field
is the source term in the poloidal field equation. This system allows for exponentially
growing solutions and shows that, even in the absence of a mean flow, an isotropic ho-
mogenous turbulent flow with kinetic helicity can generate and uphold dynamo action. As
only the ↵ e↵ect is responsible for generating the toroidal magnetic field from the poloidal
one and viceversa, the set of equations Equation (2.24) is called as an ↵2 dynamo.

Magnetic fields in fast rotating stars, for which helical turbulence is thought to play
a dominant role over di↵erential rotation (gradient of a mean flow), are believed to be
generated by an ↵2 dynamo or, in the case when the DR is not totally negligible, by an
↵2⌦ dynamo. Next, we turn to discuss the role of the di↵erential rotation.

2.2.2.2 ↵⌦ dynamo

To include the DR, we define U = Ut = (0, 0,⌦rsin✓). Then, we insert the expression in
the induction equation for Bt and Bp:

@Bt

@t
= r ⇥

⇣
Ut ⇥ Bp

⌘
+ ↵

⇣
r ⇥ B

⌘
p
� ⌘Tr2Bt

@Bp

@t
= ↵

⇣
r ⇥ B

⌘
t
� ⌘Tr2Bp

(2.25)

This time, there is an additional source term in the equation for Bt that describes the
conversion of the poloidal field into toroidal one through DR, a process that is referred to
as ⌦-e↵ect. If this term dominates over the ↵ e↵ect in generating the toroidal field, the
model is called ↵⌦ dynamo (Parker 1955a,b).

Figure 2.1 depicts a sketch of the model. The poloidal magnetic field is sheared by dif-
ferential rotation, generating thus toroidal magnetic field. Cyclonic turbulent convection
pushes the blobs of gas, and the magnetic field with it, up and down in the stratified CZ.
The rising blobs expand and the toroidal magnetic field lines are twisted by the Coriolis
force, generating poloidal magnetic field. The process of generating poloidal field from
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Figure 2.1: Schematic representation of ↵⌦ dynamo model.

the toroidal one takes the name of ↵-e↵ect. The sign of the ↵-e↵ect is the same in each
hemisphere, so that the poloidal loops merge as a result of turbulent reconnection and
add up, creating poloidal magnetic field. The generated poloidal field has the opposite
sign with respect to the original one, hence, two such cycles are needed to obtain again a
poloidal field in the original configuration, completing the dynamo cycle.

As for the ↵2 dynamo in Section 2.2.2.1, the helical nature of the ↵-e↵ect is able
to overcome Cowling’s anti-dynamo theorem (Cowling 1933). The ↵-e↵ect breaks the
axisymmetry on short time and length scales, creating an electromotive force with an
azimuthal component.

The appearance of spots at progressively lower latitudes in the course of the solar
cycle can also be explained by ↵⌦ dynamo as a latitudinal dynamo wave. The direction
of propagation of the wave (poleward or equatorward) is given by the Parker-Yoshimura
sign rule (Yoshimura 1975):

⇠(r, ✓) = �↵ê� ⇥ r⌦, (2.26)

where the relevant component of the shear is the radial one (rr⌦). However, helioseis-
mology results (e.g., Schou et al. (1998) and also, Fig 1.3, right panel) have shown that
the solar DR does not vary as much in radius as it does in latitude, and it decreases slightly
from the surface to the bottom of the CZ. To have an equatorward dynamo wave with a
positive radial shear, the ↵-e↵ect must be negative in the northern hemisphere and positive
in the southern hemishpere. In simulations, however, the sign of the ↵-e↵ect is positive
(negative) in the northern (southern) hemisphere (see, e.g., Warnecke et al. 2018), which
would lead to a poleward wave. Nonetheless, numerical models reproduce the equa-
torward propagation. A reversal in the sign of ↵ in radius could invert the propagation
direction. Such reversals have been found by Duarte et al. (2016), as a consequence of
weaker density stratification in the interior and faster rotation. Alternative explanations

23



2 Dynamo theory

for the equatorward propagation in simulations, in spite of the wrong sign of ↵, are lo-
calized regions of negative shear at mid-latitudes (e.g., Warnecke et al. 2014), non-linear
feedback of the magnetic field on the velocity field (e.g., Augustson et al. 2015), or a
return meridional flow (e.g., Choudhuri et al. 1995). The latter possibility is explored
further in the Section 2.2.2.3.

2.2.2.3 Babcock-Leighton models

An alternative and more empirical scenario to the turbulent dynamo theory presented in
Sections 2.2.2.1 and 2.2.2.2 are the “Babcock-Leighton dynamos”, developed from the
works of Babcock (1961) and Leighton (1969). These models gained popularity after
helioseismology uncovered the internal DR of the Sun: the theory of Parker waves to
explain the equatorial propagation of sunspots was shaken by the weak radial gradient
of ⌦ and its wrong sign in the bulk of the CZ. Moreover, the results of Vainshtein and
Cattaneo (1992) and Cattaneo and Hughes (1996) indicated a catastrophic quenching of
the ↵-e↵ect (/ Rm�1) in the nonlinear regime. Because of the ↵-quenching, the large-
scale magnetic field would not be able to reach dynamically significant values in high-Rm
objects, leading to the “death” of the dynamo.

In these models (see, e.g., Dikpati and Charbonneau 1999), the toroidal field is stored
below the base of the convection zone, where a strong shear layer, the tachocline, is known
to reside, and rises buoyantly in the form of thin flux tubes, once it has reached a certain
threshold in strength. During their rise or when they appear at the surface, the Coriolis
force imposes a tilt in the north-south direction and thus generates poloidal field. The thin
flux tubes appear as sunspot pairs, in which leading and following spots have the opposite
polarity. Meridional circulation advects the magnetic field of the following spot polarity
towards the poles, while turbulent magnetic di↵usivity leads to polarity cancellation of
the leading spots towards the equator. Magnetic field of the opposite sign with respect to
the already existing poloidal field accumulates at the poles until the poloidal field changes
its sign. The field at the poles is then pushed down to the tachocline by meridional cir-
culation. In the tachocline it is amplified again by shear. An equatorward meridional
circulation at the bottom of the CZ is responsible for the equatorward migration of the
emerging flux tubes at the surface. The origin of this explanation lies in the systematic tilt
observed in sunspots emergence: when a spot pair appears at the surface, the following
spot emerges with a certain angle with respect to the leading spot, this angle depending
on the latitude of emergence of the leading spot (Joy’s law, Hale et al. 1919). This e↵ect
is not related to turbulence at all, and is working at a much larger scale of the expanded
flux tubes. The e↵ect of Joy’s law in the model is parametrized similarly to its turbulent
counterpart in mean-field models. In this sense, Babcock-Leighton dynamos are a sub-
class of mean-field models, where the ↵-e↵ect occurs only near the surface and for which
the cycle period is set by the meridional circulation (Jouve et al. 2010).

Early models relying on the Babcock-Leighton mechanism prescribed a single cell
meridional circulation (see e.g., Choudhuri et al. 1995, Dikpati and Charbonneau 1999)
and relied on the helioseismic measures of it just below the surface, enclosing it in the
interval of 6 � 20 m/s (Duvall 1979, Hathaway 1996, Zhi-Chao et al. 2018). DNS re-
sults, however, show multiple cells and also helioseismology inferences suggest that the
return flow may be less deep than what was expected (Hathaway 2011). Therefore, recent
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models (see, e.g., Jouve and Brun 2007) include multi-cellular pattern for the meridional
circulation and obtain shorter activity periods.

A recent update on this model from Cameron and Schüssler (2017) considers the radial
magnetic field at the surface and the integrated toroidal flux in the CZ. Hence, the location
and the structure of the toroidal field do not need to be specified. Moreover, this model
includes a parametrization of turbulent di↵usion and of convective pumping pointing in
the negative radial direction.

2.3 Azimuthal dynamo waves in observations and simu-
lations

We already mentioned in Section 1.1 that spots tend to appear on the same location in
longitude in active stars, in what are called active longitudes. These active longitudes also
migrate with respect to the surface, constituting azimuthal dynamo waves (ADW).

ADWs are predicted by mean-field theory in the rapid rotation regime (Krause and
Rädler 1980). To to demonstrate what ADWs formally are, we decompose the mean
magnetic field B in complex modes:

B =
X

m

B̂, B̂ = Cmeim�+(��i⌦)t (2.27)

where Cm is a time-independent axisymmetric complex vector field. We can rewrite the
exponential to highlight the di↵erent contributions:

eim�+(��i⌦)t = cos (m� �⌦t) e�t + i sin (m� �⌦t) e�t (2.28)

Employing this decomposition in the evolution equation for B, only one mode will grow.
The case m = 0 is the axisymmetric mode, and oscillations are either damped (if the
growth rate � < 0) or amplified (� > 0). The cases for which m , 0 correspond to
ADWs rigidly rotating with velocity ⌦/m, where ⌦ is the angular velocity of the wave.
The direction of propagation can be prograde (⌦ < 0) or retrograde (⌦ > 0), and it is
also possible to find a reference frame in which ⌦ = 0. In the latter case, we will have a
standing wave.

Dynamo solutions that show migrating pattern with respect to the rotation of the fluid
that can be related to an ADW have been detected in the numerical studies of Käpylä et al.
(2013) and Cole et al. (2014). In Section 5.1, we identified a transition from axisymmetric
dynamo modes at moderate rotation to non-axisymmetric ones at faster rotation, similar to
the observed transition, albeit the values are o↵, with the simulation transition happening
at a lower rotation rate than the observed one.

For these models, a mean-field averaging procedure as described in 2.2 is not appropri-
ate anymore to describe the large-scale magnetic field, as an average over longitude would
cancel the contribution from the non-axisymmetric field. A decomposition in spherical
harmonics, as shown in Section 2.2.1, is more convenient. In this case, the contribution to
the axisymmetric field will be contained in the coe�cients of ⌥0

l , while the contribution
of the non-axisymmetric field will result from the coe�cients of ⌥m

l , m � 1.
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Poca favilla gran fiamma seconda.
Dante Alighieri, Paradiso I, 34, Divina Commedia

Figure 3.1: Schematic representation of the convective instability.

Heat can be transmitted by conduction, convection and radiation. In the high collision-
ality limit, ions and electrons will statistically have the same temperature and conduction
is a very ine�cient mechanisms for heat transfer. Stellar convection zones are opaque to
radiation and the stratification is close to the adiabatic one (see, e.g. Stix 2002), hence
radiation is also not e�cient. Therefore, the most e↵ective way to transport energy is
by convection. However, a complete description of fully developed turbulence, which is
ubiquitous in convection zones of cosmic objects, is not possible, because of their high
Re.

The criterion for convective instability was derived first by Schwarzschild (1906) in
a simplified system. Here, we follow the derivation of Stix (2002). A simple model of
convection is sketched in Figure 3.1. Suppose we have a fluid subject to gravity in the
negative z direction: g = �gêz. A parcel of fluid at position z, initially at equilibrium
with its surroundings at pressure p and density ⇢, is perturbed and displaced by a distance
�z. We assume that the rise is fast enough so that there is no exchange of heat during
the process (adiabatic displacement), but also slow enough that the pressure inside and
outside the blob is the same at every instant (the blob will expand during the rise). To
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3 Theory of turbulent convection

have an instability, the density of the fluid element at z + �z, ⇢ f , must be less than the
density outside, ⇢o, so that the blob continues to rise. In the case ⇢o < ⇢ f the parcel sinks
again and the instability is damped. If the displacement �z is infinitesimal, we can expand:

0 > ⇢ f � ⇢o �
" 

d⇢
dz

!

a
� d⇢

dz

#
�z, (3.1)

where the subscript a stands for adiabatic. We assume the fluid being a perfect gas,
p = ⇢TR/µ, where p is the pressure, T the temperature, R the gas constant and µ is the
mean molecular weight. The pressure is the same inside and outside the fluid element,
and in the CZ, µ is a function of p and T . However, we will neglect the variations of
molecular weight, because the timescales we are considering are short in comparison to
the time the star spends on the main sequence, during which it is mainly burning hydrogen
and enriching in helium. Then, we can substitute the perfect gas law in Equation (3.1) and
obtain:

dT
dz
<

 
dT
dz

!

a
(3.2)

The expression above is the Schwarzschild’s criterion for convective instability and states
that for convection to set in, the temperature gradient must be steeper than the adiabatic
temperature gradient. Other forms of the Schwarzschild’s criterion are:

@s
@z
< 0 (unstable), or

r > rad (unstable)

where r = @lnT
@lnp

(3.3)

and rad = 1� 1/� is the adiabatic gradient. A convectively unstable layer is one in which
the specific entropy decreases with height or, equivalently, one in which r is steeper than
the adiabatic gradient. When considering also the variations in the molecular weight,
µ, Equation (3.3) becomes the Ledoux criterion (Ledoux 1947): r > rad + rµ, where
rµ = @lnµ/@lnp. The e↵ect of the gradient in µ is stabilizing, as the heavier elements will
move towards the center.

An evaluation of Equation (3.3) using solar values leads to r�rad ⇠ 0.1� 10�8 (from
the top to the bottom of the CZ, Stix 2002), which means that the temperature gradient
can be only slightly higher than the adiabatic one for convection to carry most of the flux.
Therefore, the stratification in the convection zone can be considered nearly adiabatic and
simplified theories can be used to handle the problem.

3.1 Mixing length theory (MLT)
A simplified theory describing convection is the mixing length theory (MLT), developed
in the context of stellar convection by Vitense (1953) and Böhm-Vitense (1958). MLT
considers stellar convection zones in hydrostatic equilibrium and defines all the relevant
quantities, such as convective velocities and temperature gradients, through the mixing
length. The mixing length is the distance that a parcel of fluid can travel before it mingles
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3.1 Mixing length theory (MLT)

with its surroundings, releasing its heat or absorbing heat from the medium. In Vitense
(1953), this characteristic length, l, is assumed to be proportional to the pressure scale
height, Hp = � (@r p/p)�1:

l = ↵MLTHp, (3.4)

where ↵MLT is the mixing length parameter, that has to be calibrated through observations.
Values of the order of 1 have been proposed for ↵MLT (see e.g., Stix 2002). The goal now
is to calculate the amount of flux carried by convection:

Fconv = 3c⇢cp�T. (3.5)

3c is the convective velocity, hence 3c⇢ is the mass flux, and cp is the specific heat at
constant pressure. The temperature gradient can be obtained considering small displace-
ments, �r (Stix 2002):

�T =
" 

dT
dr

!0
� dT

dr

#
�r =

T
Hp

�r � r0� �r, (3.6)

where the primes denote the gradients of quantities related to the parcel rise. The convec-
tive velocity can be obtained considering the acceleration of the parcel due to buoyancy
and, by substituting the perfect gas equation, we have:

32c ⇡
g�
Hp

�r � r0� �r2, (3.7)

where � = 1 � @ (lnµ) /@ (lnT ) considers the variations in mean molecular weight. We
recall, however, that variations in µ are considered negligible in our case. We can ap-
proximate �r by half a mixing length, l/2, and consider another 1/2 factor to account for
losses during the process. Hence, the convective flux is:

Fconv ⇡ ⇢cp

 
g�Hp

8

!1/2 �r � r0�3/2 T↵2
MLT

2
. (3.8)

MLT has been very successful in predicting the existence of convective cells of dif-
ferent sizes in the CZ, namely granulation and supergranulation. Its construction, though,
assumes that convection is driven at all scales. Therefore, it also predicts the existence
of convective cells of the size of the entire CZ (giant cells). Helioseismic inferences
(Hanasoge et al. 2012), however, show only very little power at such large length scales,
marking the incompleteness of this simple theory. But exactly because of its simplicity,
people have been reluctant to completely abandon MLT and rather tried to extend and im-
prove it to include more e↵ects. Canuto (1989) extended MLT to include anisotropies in
the largest eddies and found that MLT overestimates convective velocities by a factor of
2 and underestimates the superadiabaticity by almost two orders of magnitudes. Standard
MLT does not allow for overshooting or convective penetration: the boundaries of the CZ
are rigid and the motion of the convective elements cannot extend to subadiabatic layers.
Zahn (1991) included convective penetration in a simple model by means of a new free
parameter, ⇣, also of the order of unity as ↵MLT. He estimated the extent of the subadia-
batic region to be of the order of Hp. Helioseismology results, tracking the variations of
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3 Theory of turbulent convection

the speed of sound inside the Sun, put an upper limit for the overshoot extent of 0.1 Hp

(e.g., Monteiro et al. 1994, Christensen-Dalsgaard et al. 1995).
Evidences for non-localities were found in laboratory experiments of convection be-

tween two plates (see, e.g, Tilgner et al. 1993, Spruit 1997, and references therein). In
these experiments, the state of “hard turbulence” is characterized by scaling laws for sta-
tistical properties, such as heat flux and velocities, as a function of the Rayleigh number.
The Rayleigh number, Ra = g↵�Td3/⌫�, where g is the gravitational acceleration and
↵ the thermal expansion coe�cient, is a measure of the turbulence of the system. For
convection to set in, a critical value of Ra must be exceeded and, in rotating systems, this
value is an increasing function of rotation (Chandrasekhar 1961), if all the other param-
eters are kept fixed. At large Ra, the flow between the plates is non-local, with narrow
downdraft and upflows from the upper and lower boundaries and nearly no flow from the
core of the cell. We will discuss a similar phenomenon that could be relevant for stellar
convection and the corresponding extension of MLT (Brandenburg 2016) in Section 3.2.

3.2 MLT extension through non-gradient flux
The derivation of MLT in Section 3.1 does not consider fluctuations in density or entropy.
It is precisely the entropy fluctuations that can introduce a new term contributing to the
energy flux. The existence of this contribution to the heat flux originated in the context
of metereology (see, e.g., Deardor↵ 1966) and was first calculated by Deardor↵ (1972),
using measurements of temperature fluctuations. In the stellar context, an expression for
the Deardor↵ flux and the corresponding MLT extension was derived in Brandenburg
(2016).

The vertical heat flux can be expressed in terms of the horizontally averaged enthalpy
flux:

Fenth = ⇢UzcpT (3.9)

In standard MLT, the enthalpy flux corresponds to the convective flux, Fconv, because the
kinetic energy flux, Fkin, that would also be part of Fconv, is zero due to balance of up-
and down-flows. We can rewrite Fenth using the entropy s and the pressure P, taking
advantage of the fact that pressure perturbations will disappear because sound waves will
counter balance them quickly. Moreover, we use FOSA, so that the only relevant term
will be proportional to s0u0z. Then, we can rewrite cpT 0 = T s0 and the expression for the
enthalpy flux will be (Brandenburg 2016):

Fenth = ⇢T u0zs0. (3.10)

Now we can look at the term u0zs0: in the case of marginal stability (@zs ⇡ 0), a positive
entropy perturbation (s0 > 0) is associated with a positive temperature perturbation and,
accordingly, to a negative perturbation in density. The parcel of fluid will be less dense
than its surroundings and it will move upward (u0z > 0), for which Fenth > 0. If the entropy
perturbation is negative (s0 < 0), the density of the parcel will increase and the parcel will
sink (u0z < 0), and this leads to Fenth > 0. In any case, an entropy perturbation will produce
instability and convection, even if the Schwarzschild’s criterion would not be satisfied. In
the case of the Sun, cool down-flows can be driven by radiative cooling in the upper layer.
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3.2 MLT extension through non-gradient flux

The resulting plumes, or “threads” (Spruit 1997), will extend the depth of the convective
layer, but their correlated length scales will correspond to the upper layers, therefore to
granulation or supergranulation (Cossette and Rast 2016), thus capable of explaining the
lack of power at large scales in horizontal velocity in helioseismic results. As a conse-
quence, convection will be non-locally driven only in a layer much more shallow than the
measured depth of the convection zone, (0.713 ± 0.001)R� (Christensen-Dalsgaard et al.
1985, Basu and Antia 1997). The mechanism illustrated above is di↵erent from over-
shooting, that describes the penetration of fluid particles in the stable layer due to their
inertia.
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4 Numerical Methods

Noi veggiam, come quei c’ha mala luce.
Dante Alighieri, Inferno, X, 100, Divina Commedia.

To model the dynamics of the convection zone (CZ) of solar-like stars, we use the
Pencil Code1, that uses a 6th order finite-di↵erence scheme for spatial discretization and
3rd order Runge-Kutta method for time integration. This model has been extensively used
to study stars with convective envelopes (e.g., Käpylä et al. 2010, 2012a, 2013, Cole et al.
2014, Warnecke et al. 2014, Cole et al. 2016, Warnecke 2018).

We model a spherical shell without polar caps, where 0.7R  r  R is the radial extent,
R being the stellar radius, and ✓0  ✓  ⇡ � ✓0, with ✓0 = 15o, is the latitudinal extent. For
the azimuthal extent, in most of the models we cover the full longitude, 0  �  2⇡, but we
also perform some wedge simulations (0  �  ⇡/2) for comparison. The domain is filled

1https://github.com/pencil-code/

Figure 4.1: Magnetic field lines in a simulation rotating 7 times faster than the Sun,
colour-coded with the magnitude of the azimuthal field, B�. Data from Viviani et al.
(2018).
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with a stratified fluid, heated at the bottom and cooled at the top. We apply an initially
uniform rotation to a random weak flow and convection sets in, generating di↵erential
rotation and meridional circulation. In the right parameter regime, a seed magnetic field
is able to excite a dynamo instability, and the magnetic field will grow until saturation.
An example of the magnetic field configuration inside the shell in the saturation regime is
shown in Fig 4.1.

In order to obtain such kind of solutions, we solve the compressible MHD equations:

Dln⇢
Dt
+ r · U = 0, (4.1)

DU
Dt
= g � 2⌦0 ⇥ U +

1
⇢

(J ⇥ B � rp + r · 2⌫⇢S) , (4.2)

T
Ds
Dt
=

1
⇢

h
�r ·

⇣
Frad + FSGS

⌘
+ µ0⌘J2

i
+ 2⌫S2, (4.3)

@A
@t
= U ⇥ B � µ0⌘J, (4.4)

D/Dt = @/@t + (U · r) is the advective time derivative, ⌦0 = ⌦0 (cos ✓,� sin ✓, 0) is
the bulk rotation vector and the magnetic field is expressed through the magnetic vec-
tor potential, B = r ⇥ A, The expression of the rate-of-strain tensor is the same as in
Equation 2.6. s is the specific entropy. Frad and FSGS are the radiative and sub-grid-scale
fluxes:

Frad = �KrT, FSGS = ��SGS⇢Trs (4.5)

K is the radiative heat conductivity and �SGS is the sub-grid-scale heat di↵usivity. FSGS

takes care of the dissipation of energy at the finest scale, that cannot be captured by the
finite resolution of the grid. It represents, therefore, the unresolved convective heat flux
of the simulation. �SGS is a radial function, piece-wise constant and smoothly connecting
the boundaries: �SGS (0.7R) = 0 and �SGS (R) = 12.5�m

SGS, where �m
SGS = �SGS (0.85R).

The much higher value of �SGS at the surface is chosen so that the input luminosity carries
all the flux at the beginning of the simulation.

To close the system of equations, we choose an ideal gas equation of state for the
pressure, p = (� � 1)⇢e, where � = cP/cV = 5/3 is the ratio of specific heat at constant
pressure and volume, and e = cVT is the internal energy.

The initial condition for the magnetic and velocity fields is a weak random seed field.
Stratification is initially isentropic and the value of the hydrostatic temperature gradient
at the bottom is fixed, while it follows a profile in the CZ:

@T
@r
= � GM/r2

cV (� � 1) (nad + 1)
(4.6)

nad = 1.5 being the adiabatic index. The density profile is defined by the hydrostatic
equilibrium state.

The input parameters defining the simulations are the bulk rotation in the frame of
reference, ⌦0, ⌫, ⌘, �, �SGS and the energy flux at the bottom, Fbot = � (K@T/@r)r=r0 .
From them we can derive the following non-dimensional input parameters:

Ta =
 
2⌦0�R2

⌫

!
, Pr =

⌫

�m , PrM =
⌫

⌘
, PrSGS =

⌫

�m
SGS

(4.7)
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4.1 The test-field method

where Ta is the Taylor number and �R is the thickness of the shell. Pr, PrM and PrSGS are
the fluid, magnetic and sub-grid-scale Prandtl numbers, and �m = K/

⇣
cp⇢m

⌘
is the heat

di↵usivity evaluated at r = 0.85R. ⇢m is the value of the density at the same depth. Output
parameters are the Coriolis and Reynolds numbers

Co =
2⌦0

urmsk f
, Re =

urms

⌫k f
, Rm =

urms

⌘k f
, (4.8)

with urms =
q

3/2
D
U2

r + U2
✓

E
r✓�t

the rms velocity, where we omitted the U��term because
it is dominated by the di↵erential rotation, and accounted for it using the factor 3/2. k f =

2⇡/�R ⇡ 21R�1 is the wavenumber of the largest eddy. The physical units are given by
the solar values for angular velocity (⌦� = 2.7 ·10�6 s�1), radius (R = R� = 7 ·108 m), and
density at the bottom of the CZ (⇢ (0.7R�) = 200 kg/m3), and by the vacuum permeability,
µ0 = 4⇡ · 10�7 Hm�1.

All the quantities are periodic in �. For the velocity field we choose impenetrable
and stress free boundary conditions (BC). At the bottom of the domain, we apply perfect-
conductor BC for the magnetic field and the same condition is applied at the latitudinal
boundaries, while at the top of the domain the field is radial. The BC for the magnetic
field are enforced on the vector potential, so that the divergence-free condition is always
satisfied. A constant heat flux supplies the energy from the bottom of the CZ, while a
zero heat flux is prescribed at the latitudinal boundaries. A black body condition for the
temperature is applied at the top boundary:

�SBT 4 = �K
@T
@r
� �SGS⇢T

@s
@r
. (4.9)

�SB is the modified Stefan-Boltzmann constant, that takes into account that the luminosity
in our simulations is much larger than in the Sun. This modification is necessary because
of our modelling strategy: since we are solving the compressible set of MHD equations,
sound waves are not filtered and the advective timestep would be severely constrained
by the speed of sound, cs. We choose �SB so that, in the initial non-convective state, the
surface flux carries the total luminosity.

4.1 The test-field method
In Section 5.2 we analyzed in more detail one of the simulations presented in Section 5.1.
For the analysis we used the test-field method (Schrinner et al. 2005, 2007). The method
is used to calculate the turbulent transport coe�cients, ↵, �, �, � and  in Equation (2.17).

Mean-field dynamo theory, introduced in Section 2.2.2, relied on FOSA approxima-
tion, which consists in neglecting terms higher than second order in the fluctuations in
the equation for the fluctuating magnetic field, Equation (2.15). The test-field method, in
its most general form, is an attempt to go beyond the FOSA assumption, by retaining the
higher-order terms and numerically solving the equation for the fluctuating magnetic field
using test problems for B. In this thesis, we employed the currently existing form of the
test-field method for spherical coordinates, truncating the series expansion of the EMF
at second order, but solving for the full Equation (2.15), that is, not neglecting the term
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r ⇥
⇣
u0 ⇥ b0 � u0 ⇥ b0

⌘
, as is usually done when employing FOSA. Hence, our approach

here is more general than FOSA, but not yet including the high-order terms in the series
expansion. This would require to account for k- and time dependent test fields, but was
out of the scope of the present thesis.

The general form for the EMF, taking into account non-localities in space and memory
e↵ects, is:

E = E0 +K � B, (4.10)

where E0 is the part of the EMF that does not depend on the mean magnetic field. Usually,
one assumes that the EMF is homogeneous in B, therefore justifying E0 = 0. The term
K � B is a convolution integral, where K is a kernel that represents a spatial and temporal
neighborhood of B:

⇣
K � B

⌘
i
=

Z
Ki j

�
x, x0, t, t0

�
Bj

�
x0, t0

�
d3x0dt0 (4.11)

Brandenburg et al. (2008) considered the e↵ects of non-locality in space on homogeneous
and isotropic turbulence in Cartesian geometry, and found that the shape of the kernels
for the tensors a and b are Lorentzian in spectral space and decaying exponentially in
real space. Memory e↵ects were addressed in Hubbard and Brandenburg (2009) and
Rheinhardt and Brandenburg (2012), also in Cartesian geometry, considering statistically
steady and homogeneous turbulence.

In the case of spherical coordinates, non-locality and memory e↵ects have not been
implemented yet, therefore we need to make some assumptions on the dependence of the
EMF on B. We consider the dependency of E from B to be restricted to a narrow space
interval (locality) and instantaneous (no memory e↵ects). Moreover, we assume B to vary
slowly in time. Then, we can expand the EMF in terms of the mean magnetic field and
its first order spatial derivatives, as in Equation (2.17). To calculate the coe�cients, we
introduce test fields in the equation for the fluctuating magnetic field (see, also Schrinner
et al. 2007, Warnecke et al. 2018):

@b0T
@t
= r ⇥

⇣
u0 ⇥ BT + U ⇥ b0T

⌘
+ r ⇥

⇣
u0 ⇥ b0T � u0 ⇥ b0T

⌘
� r ⇥ ⌘r ⇥ b0T . (4.12)

Here, b0T is the fluctuating magnetic field calculated for each test field BT . These test fields
do not back-react on the flow. The number of test fields needed is set by the number of free
parameters in Equation (2.17). In the axisymmetric case, we have 3 linear equations, each
one containing 9 free parameters, therefore 9 test fields are needed. U and u0 are taken
from the simulation for which we want to calculate the turbulent transport coe�cients.
The b0T are used to calculate the EMF, ET = u0 ⇥ b0T . To obtain the coe�cients, we then
invert the relation:

ET = ai jBT j + bi jk
@BT j

@xk
(4.13)

for all the test fields.
The BT s must be axisymmetric, linearly independent, with derivatives not higher than

first order in space and slowly varying in time. The constraint on the coordinate deriva-
tives can be relaxed, if the values of the test-fields do not exceed unity. Since the BT s do
not obey an evolution equation, they do not have to satisfy any boundary condition.
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4.2 Heat conduction

Equation (2.16) is valid in Cartesian coordinates. The corresponding form in spherical
geometry is:

Ei = ãi jB j + b̃i jr
@Bj

@r
+ b̃i j✓

1
r
@Bj

@✓
(4.14)

where ãi j, b̃i jr and b̃i j✓ are now not in covariant form, that is they are not coordinate
independent. Once the coe�cients are rewritten in covariant form, we obtain again the
expression (2.17), which is still local and instantaneous.

In relating the expressions (4.14) and (2.17) to each other we have some degrees of
freedom because of axisymmetry: the coe�cients bi j� are not determined. Since they do
not a↵ect the EMF, we can choose them arbitrarily. In Schrinner et al. (2005, 2007) and
Warnecke et al. (2018), the choice bi j� = 0 was made, while we chose bi j� = �bi� j. The
resulting expressions for the coe�cients ↵i j, �i j, �i, �i and i jk are shown in Appendix
A.2 of Section 5.2. One of the advantages of choosing this decomposition is that in the
isotropic case the diagonal components of � become equal.

4.2 Heat conduction

In models based on MLT, the radiative heat conductivity K in Equation (4.5) has a fixed
profile, so that the whole bulk of the simulated domain is made convectively unstable.
Such a configuration, motivated by mixing-length arguments, will excite convection at the
largest scales possible and, therefore, the wavenumber of the largest eddy will correspond
to the depth of the CZ, k f = 2⇡/ (0.3R).

In Sections 5.1 and 5.2, we used a prescribed profile for K, as described in Käpylä et al.
(2013): at the bottom of the CZ, we impose an energy flux Fbot = �K@rT |r=0.7R, where
the temperature gradient is given by Equation (4.6), with the polytropic index nad = 1.5.
n varies from the adiabatic value to the value n = 1 at the surface. The radiative heat
conductivity is responsible for delivering energy flux into the domain and towards the
surface. Its profile decreases strongly in radius, in order for convection to carry most of
the flux through the bulk of the domain. Such a profile is described by

n = 2.5
✓ r
0.7R

◆�15
� 1

K = (n + 1) K0

K0 =
L
4⇡

cv (� � 1) (nad + 1) ⇢0
p

GMR

L = L0

⇢0 (GM)3/2 R1/2
,

(4.15)

where ⇢0 is a reference value for the density, andL is the non-dimensional luminosity and
L0 is the input luminosity.

To identify the contributions to the energy transport, we define the longitudinally av-
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Figure 4.2: Total (black), radiative (green), enthalpy (red), kinetic (yellow) and cooling
(blue) normalized luminosities, averaged over latitude and longitude, as a function of ra-
dius for a semi-spherical run with prescribed heat conductivity (Run C3 of Section 5.1, left
panel) and its counterpart using Kramers opacity law (right panel, see, also, Section 5.3).
In the left panel Lcool = 0.

eraged vertical fluxes:
Fenth = cp (⇢ur)0 T

Frad = �K@rT

Fkin =
1
2
⇢U2Ur

F tot =
X

i

Fi.

(4.16)

From the fluxes, we define the corresponding luminosities as Li = 4⇡r2Fi. Typical energy
transport for a simulation using MLT-based heat conduction profile is shown in Figure 4.2,
left panel. The radiative flux, in green, supplies the energy at the bottom and then strongly
decreases throughout the CZ. In the major part of the CZ, all the luminosity is carried by
convection, while, since in MLT approximation upflows and downflows are balanced, the
kinetic flux is almost zero.

Right panel of Figure 4.2 depicts energy transport in a simulation with the same initial
parameters as Run C3, but with a di↵erent treatment for heat conduction, which is now a
function of density and temperature, K (⇢,T ). In this case:

K =
16�SBT 3

3⇢
,

with  = 0

 
⇢

⇢0

!a  
T
T0

!b

,

(4.17)

where �SB is the modified Stefan-Boltzmann constant and  is the opacity, with 0, ⇢0

and T0 reference values for opacity, density and temperature, respectively. Inserting the
expression for the opacity in K (Barekat and Brandenburg 2014), we obtain:

K = K0

 
⇢

⇢0

!(a+1)  T
T0

!3�b

, (4.18)
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4.2 Heat conduction

where K0 subsumes all the constants. The choice a = 1 and b = �7/2 corresponds
to Kramers opacity law for bound-free and free-free transitions. With this description,
Equation (4.3) needs a cooling term depending only on radius (see, e.g., Käpylä et al.
2019b), �cool, to prevent a subadiabatic layer to develop near the surface:

T
Ds
Dt
=

1
⇢

h
�r ·

⇣
Frad + FSGS

⌘
+ µ0⌘J2 � �cool

i
+ 2⌫S2. (4.19)

The corresponding flux is:

Fcool =

Z R

0.7R
�cooldr (4.20)

and the associated luminosity is shown in blue in the right panel of Figure 4.2. Numerical
setups using this heat conduction description have been used is Cartesian coordinates
(Brandenburg et al. 2000, Brandenburg 2016, Käpylä et al. 2017, Käpylä 2018) as well as
in spherical wedge simulations (Käpylä et al. 2019a,b). In Section 5.3 we used this same
setup in a semi-spherical domain, spanning the full longitudinal extent.

In the right panel of Figure 4.2, convection is suppressed at the bottom of the domain
and the kinetic flux is no longer negligible. The structure of the CZ is completely changed
with respect to the MLT picture. Therefore, we need to redefine the total convective flux
as the sum of enthalpy and kinetic fluxes (Cattaneo et al. 1991, Käpylä 2018):

Fconv = Fenth + Fkin (4.21)

where the enthalpy flux was defined in Equation (3.10).
Using the values of Fenth and the superadiabaticity r � rad, Käpylä et al. (2017) re-

defined the CZ. The classical convective layer according to MLT is defined by Fenth > 0
and r � rad > 0: this zone was renamed buoyancy zone (BZ). The Kramers opacity law
generates a layer in which Fenth > 0 but r � rad < 0: here, the medium is subadiabatic
but still convecting. This is the e↵ect of the Deardor↵ term, including the entropy fluctua-
tions, that we discussed in Section 3.2, and that contributes positively to the flux whatever
the sign of the entropy fluctuations. This layer is named as Deardor↵ zone (DZ). The
new redefined convection zone is the union of BZ and DZ. The overshoot zone is defined
by Fenth < 0 and r � rad < 0: here, the fluid parcels descending from above, but with
enough entropy content, can penetrate and generate weak upflows. Lastly, the layer in
which Fenth ⇡ 0 and r � rad < 0 is the radiative zone (RZ). In this new scenario, convec-
tion is driven by the cool downflows from the convectively unstable layer at the surface,
a phenomenon known as entropy rain (see, Stein and Nordlund 1989, Brandenburg 2016,
for the theoretical description), whose numerical evidence was found for the first time in
the study of Käpylä et al. (2017).
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5 Results

Di lor cagion m’accesero un disio
mai non sentito di cotanto acume.

Dante Alighieri, Paradiso, I, 82-84, Divina Commedia

In this chapter we present two already published manuscript (Section 5.1 and 5.2) and
a third one (Section 5.3) that will be submitted for publication in the near future. The aim
of these studies was to understand how the dynamo solutions in global simulations change
as a function of di↵erent parameters. We used a setup covering the full longitudinal
extent, but still missing the poles. We examine the role of rotation rate on the dynamo
solutions (Section 5.1), and later we focus on the origin of the oscillating magnetic field
in a particular case (Section 5.2). We also consider the importance of heat conduction and
its numerical implementation (Section 5.3) and how this a↵ects the results of Section 5.1.

Section 5.1 reports on an extensive study on rotation rate that allowed us to mark the
transition from axisymmetric to non-axisymmetric dynamos in numerical simulations.
This transition was observed also in photometric studies (Lehtinen et al. 2016) and was
related to drifting dynamo waves in the azimuthal direction, which we also find in our
study. We also describe the necessity of maintaining the supercriticality of convection
in numerical models in order for the results to be representative of the turbulent fluids
present in stellar convection zones.

Section 5.2 is a more in-depth study of a simulation from Section 5.1, by means of
the test-field method. We were interested in finding the origin of the oscillating mag-
netic field of the solution and tested it against the two main dynamo paradigms: Parker
waves or advection-dominated flux-transport models. We found that neither of the two
gives a satisfactory explanation, but rather turbulent e↵ects, such as the ↵ or � e↵ect, are
responsible for the generation of the magnetic field in this simulation.

Section 5.3 presents the results of models using Kramers opacity law. We found that
the new prescription in heat transfer a↵ects the rotational profiles and the propagation
direction of the azimuthal waves found in Section 5.1. Lehtinen et al. (2016) reported
on a preference for prograde azimuthal waves, which we found in this Section, while
mostly retrograde waves were found in Section 5.1. The results of this Section are, there-
fore, more compatible with magnetic field proxies in active stars. On the other hand, the
convective velocities in the Kramers cases are higher than with a fixed profile for heat
conduction and, hence, the Coriolis numbers are reduced, which accentuates the discrep-
ancies between observations and simulations regarding the velocity field.
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5 Results

5.1 Transition from axi- to nonaxisymmetric dynamo modes
in spherical convection models of solar-like stars

Credit: Viviani et al., A&A, Vol. 616, A160, 2018, reproduced with permission c� ESO.

Contribution to the paper: I run complementary simulations, in particular at high res-
olution. I performed all the data analysis and participated in the development of the
spherical harmonics decomposition routine. I wrote the Results section in the manuscript
and participated in the writing of the manuscript.

42



Astronomy
&Astrophysics

A&A 616, A160 (2018)
https://doi.org/10.1051/0004-6361/201732191
© ESO 2018

Transition from axi- to nonaxisymmetric dynamo modes in
spherical convection models of solar-like stars

M. Viviani1, J. Warnecke1,2, M. J. Käpylä1,2, P. J. Käpylä3,2,1,4, N. Olspert2, E. M. Cole-Kodikara5,
J. J. Lehtinen1,2, and A. Brandenburg4,6,7,8

1 Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
e-mail: viviani@mps.mpg.de

2 ReSoLVE Centre of Excellence, Department of Computer Science, Aalto University, PO Box 15400, 00076 Aalto, Finland
3 Leibniz Institute for Astrophysics Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany
4 NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, 10691 Stockholm, Sweden
5 Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a, PO Box 64, 00014 Helsinki, Finland
6 Department of Astronomy, AlbaNova University Center, Stockholm University, 10691 Stockholm, Sweden
7 JILA and Department of Astrophysical and Planetary Sciences, University of Colorado Box 440, Boulder, CO 80303, USA
8 Laboratory for Atmospheric and Space Physics, 3665 Discovery Drive, Boulder, CO 80303, USA

Received 27 October 2017 / Accepted 23 April 2018

ABSTRACT

Context. Both dynamo theory and observations of stellar large-scale magnetic fields suggest a change from nearly axisymmetric con-
figurations at solar rotation rates to nonaxisymmetric configurations for rapid rotation.
Aims. We seek to understand this transition using numerical simulations.
Methods. We use three-dimensional simulations of turbulent magnetohydrodynamic convection in spherical shell wedges and consid-
ered rotation rates between 1 and 31 times the solar value.
Results. We find a transition from axi- to nonaxisymmetric solutions at around 1.8 times the solar rotation rate. This transition coin-
cides with a change in the rotation profile from antisolar- to solar-like differential rotation with a faster equator and slow poles. In the
solar-like rotation regime, the field configuration consists of an axisymmetric oscillatory field accompanied by an m = 1 azimuthal
mode (two active longitudes), which also shows temporal variability. At slow (rapid) rotation, the axisymmetric (nonaxisymmetric)
mode dominates. The axisymmetric mode produces latitudinal dynamo waves with polarity reversals, while the nonaxisymmetric
mode often exhibits a slow drift in the rotating reference frame and the strength of the active longitudes changes cyclically over time
between the different hemispheres. In the majority of cases we find retrograde waves, while prograde waves are more often found
from observations. Most of the obtained dynamo solutions exhibit cyclic variability either caused by latitudinal or azimuthal dynamo
waves. In an activity-period diagram, the cycle lengths normalized by the rotation period form two different populations as a function
of rotation rate or magnetic activity level. The slowly rotating axisymmetric population lies close to what in observations is called the
inactive branch, where the stars are believed to have solar-like differential rotation, while the rapidly rotating models are close to the
superactive branch with a declining cycle to rotation frequency ratio and an increasing rotation rate.
Conclusions. We can successfully reproduce the transition from axi- to nonaxisymmetric dynamo solutions for high rotation rates,
but high-resolution simulations are required to limit the effect of rotational quenching of convection at rotation rates above 20 times
the solar value.

Key words. convection – Sun: activity – magnetohydrodynamics (MHD) – dynamo – turbulence – Sun: rotation

1. Introduction

Large-scale magnetic fields in late-type stars are thought to be
maintained by a dynamo process within or just below the con-
vection zone (e.g., Ossendrijver 2003; Charbonneau 2013). In
the relatively slowly rotating and magnetically inactive Sun, the
dynamo process is often described by a classical ↵⌦ dynamo,
where shearing due to differential rotation produces a toroidal
magnetic field from a poloidal magnetic field (⌦ effect), and
cyclonic convection (↵ effect) is responsible for regenerat-
ing the poloidal field (Parker 1955). Younger late-type stars
rotate much faster than the Sun and they also exhibit more
vigorous magnetic activity. Theoretical models have long indi-
cated that the differential rotation stays roughly constant as a
function of rotation (e.g., Kitchatinov & Rüdiger 1999). The
interpretation of observational data is much more challenging.
Recent studies show either a mild decrease (e.g., Lehtinen et al.

2016) or a mild increase (Reinhold et al. 2013; Reinhold &
Gizon 2015; Distefano et al. 2017) of the relative latitudinal
differential rotation, indicating a broad agreement with the the-
oretical expectation. Therefore, the main effect of increased
rotation is a relative dominance of the ↵ effect compared with
differential rotation in maintaining the toroidal field. Hence,
in view of dynamo theory (e.g., Krause & Rädler 1980),
dynamos in rapidly rotating stars operate in a regime in which
dynamo action is nearly fully maintained by cyclonic convection
(↵2 dynamo). Since the early theoretical work it has been
known that in the rapid rotation regime the ↵ effect becomes
increasingly anisotropic (Rüdiger 1978). An indication of this
has been seen at moderate rotation rates (Warnecke et al.
2018). Such an anisotropic ↵ effect can promote nonaxisym-
metric large-scale magnetic field configurations (e.g., Rädler
et al. 1990; Moss & Brandenburg 1995; Moss et al. 1995; Pipin
2017).
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Solar and stellar dynamos tend to manifest themselves very
differently in observations. The solar magnetic field exhibits
cyclic behavior, in which the activity indicators vary over an
approximate 11 yr cycle; during each activity cycle the polarity
of the field reverses, resulting in a magnetic cycle of roughly
22 yr. During one activity cycle, the location in which sunspots
appear migrates from mid-latitudes toward the equator. This is
commonly thought to trace the latitudinal dynamo wave, that is,
a predominantly toroidal component of the large-scale magnetic
field that migrates toward the equator. In the Sun, the longitu-
dinal distribution of sunspots indicates that the solar large-scale
magnetic field is mostly axisymmetric (e.g., Pelt et al. 2006).
In late-type stars with rapid rotation, by contrast, much larger
spots located at high latitudes or even polar regions have been
observed using Doppler imaging (DI), Zeeman Doppler imaging
(ZDI), and interferometry (e.g., Järvinen et al. 2008; Hackman
et al. 2016; Roettenbacher et al. 2016). Many studies have
reported on highly nonaxisymmetric spot configurations (e.g.,
Jetsu 1996; Berdyugina & Tuominen 1998), referred to as active
longitudes, while especially the indirect imaging of the surface
magnetic field using ZDI tends to yield more axisymmetric
configurations (Rosén et al. 2016; See et al. 2016).

Especially interesting are the recent results by Lehtinen
et al. (2016) regarding a sample of solar-like stars obtained by
analyzing photometric light curves. They show a rather sharp
transition from stars with magnetic cycles and no active lon-
gitudes to stars with both cycles and active longitudes, as
the activity level or rotation rate of the stars increases. This
result can be interpreted in terms of rapid rotators hosting
nonaxisymmetric dynamos and moderate rotators axisymmetric
ones. Furthermore, some studies have reported cyclic behav-
ior related to the active longitudes in the form of the activity
periodically switching from one longitude to the other on the
same hemisphere (Berdyugina et al. 2002) in an abrupt flip-
flop event (Jetsu et al. 1993). Other studies report irregular
polarity changes between the two longitudes; these are not nec-
essarily connected to the overall cyclic variability of the star
(Hackman et al. 2013; Olspert et al. 2015).

The stellar cycles remain poorly characterized, however.
Nevertheless, it is clear that many late-type stars exhibit time
variability that appears cyclic. This is especially well manifested
by studies of stellar samples, such as the intensively investigated
Mount Wilson chromospheric activity data base (Baliunas et al.
1995; Oláh et al. 2016; Boro Saikia et al. 2018; Olspert et al.
2018). Even if the range of periods that can be studied is severely
limited by the nature of the data because it is too short to study
long cycles while the rotational and seasonal timescales limit the
periods at the short end, it is clear that stellar cycles are common
and even multiple superimposed cycles can occur in one and the
same object (Oláh et al. 2009; Lehtinen et al. 2016). There are
also indications that the stars tend to cluster into distinct activity
branches in a diagram in which the ratio of the cycle period over
rotation period is plotted against the rotation rate or activity level
(Saar & Brandenburg 1999; Lehtinen et al. 2016; Brandenburg
et al. 2017), but the existence of these branches continues to raise
debate (Reinhold et al. 2017; Distefano et al. 2017; Boro Saikia
et al. 2018; Olspert et al. 2018).

The steadily increasing computational resources have
enabled large-scale use of self-consistent three-dimensional
(3D) convection simulations to study the mechanisms that
drive dynamo action in stars. Recent 3D numerical simula-
tions have been successful in reproducing many aspects of the
solar dynamo, such as cyclic magnetic activity and equatorward

migration (e.g., Ghizaru et al. 2010; Käpylä et al. 2012;
Augustson et al. 2015), the existence of multiple dynamo modes
(Käpylä et al. 2016; Beaudoin et al. 2016), and irregular behav-
ior (Augustson et al. 2015; Käpylä et al. 2016, 2017). There are
also studies that investigate the dependence of the dynamo solu-
tions on rotation rate, but these have so far either been limited
to wedges with limited longitudinal extent (Käpylä et al. 2013,
2017; Warnecke et al. 2016; Warnecke 2018) or the range of rota-
tion rates investigated have been restricted to narrow regions in
the vicinity of the solar rotation rate (Strugarek et al. 2017) or
three times the solar rotation rate (Nelson et al. 2013). The first
indications of stellar dynamos changing from axisymmetric to
nonaxisymmetric were reported by Käpylä et al. (2013), Cole
et al. (2014), and Yadav et al. (2015b), occurring in the regime
of moderate rotation. However, the parameter ranges were rather
limited in these studies.

Planetary dynamo simulations (e.g., Ishihara & Kida 2000;
Schrinner et al. 2012; Gastine et al. 2012), which typically
have much lower density stratification than their stellar counter-
parts, show that a transition from multipolar to dipolar magnetic
field configurations exists at sufficiently rapid rotation. Dipolar
solutions have also been found in models with high density strati-
fication and low Prandtl number (Jones 2014; Yadav et al. 2015a;
Duarte et al. 2018). Simulations of fully convective stars also
favored the occurrence of dipolar solutions (Dobler et al. 2006),
but with a transition to multipolar solutions at slower rotation
(Browning 2008).

Intriguingly, some ZDI studies suggest that both weak multi-
polar and strong dipolar magnetic field configurations can occur
with very similar stellar parameters in rapidly rotating low-
mass (spectral type M) stars (e.g., Morin et al. 2010; Stassun
et al. 2011). These observations challenge the simple picture
that the M-star dynamos are classical ↵2 type. Namely, in this
case the theoretical expectation is that because the Coriolis
number is large owing to long convective turnover times, the
↵ effect becomes strongly anisotropic and results in nonax-
isymmetric (multipolar) fields (e.g., Rädler et al. 1990; Moss &
Brandenburg 1995; Moss et al. 1995; Pipin 2017). Numeri-
cal simulations have revealed bistable dynamo solutions in the
rapid rotation regime in which both configurations can be found
with the same system parameters but different initial condi-
tions (e.g., Schrinner et al. 2012; Gastine et al. 2012). However,
the dipolar solution is typically realized only with a strong
initial field.

The goal of the present paper is to carry out a system-
atic survey of convective dynamo simulations in an attempt
to understand the change of magnetic field generation from a
young rapidly rotating Sun to its present rotation rate. We are
specifically studying the transition of the dynamo solutions from
axisymmetric to nonaxisymmetric solutions.

2. Model and setup

We used spherical polar coordinates (r, ✓, �) to model the mag-
netohydrodynamics (MHD) in convective envelopes of solar-like
stars. The general model and setup are detailed in Käpylä et al.
(2013). For most of the runs we used the full azimuthal extent
(0  �  2⇡). However, for some runs we considered only a quar-
ter of the full range (0  �  ⇡/2), which we call ⇡/2 wedges for
short. We omitted the poles and thus modeled the star between
±75� latitude (✓0  ✓  ⇡ � ✓0, with ✓0 = 15�) and modeled only
the convection zone of the star in radius (0.7R  r  R, where R
is the radius of the star).
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2.1. Basic equations

We solve the compressible MHD equations

@A
@t
= u ⇥ B � µ0⌘J, (1)

D ln ⇢
Dt

= �r · u, (2)

Du
Dt
= g � 2⌦0 ⇥ u +

1
⇢

(J ⇥ B � rp + r · 2⌫⇢S) , (3)

T
Ds
Dt
=

1
⇢

h
�r ·

⇣
Frad + FSGS

⌘
+ µ0⌘J2

i
+ 2⌫S2, (4)

where A is the magnetic vector potential, u is the veloc-
ity, D/Dt = @/@t + u · r is the Lagrangian time derivative,
B = r ⇥ A is the magnetic field, J = µ�1

0 r ⇥ B is the current
density, µ0 and ⇢ are the vacuum permeability and plasma den-
sity, respectively, ⌫ and ⌘ are the constant kinematic viscosity and
magnetic diffusivity, respectively, g = �GMr/r3 is the gravita-
tional acceleration where G is the gravitational constant and M
is the mass of the star, ⌦0 = ⌦0(cos ✓,� sin ✓, 0) is the rotation
vector, where ⌦0 is the rotation rate of the frame of reference,
S is the rate-of-strain tensor, s is the specific entropy; the equa-
tions above are solved together with an equation of state for the
pressure p, assuming an ideal gas p = (� � 1)⇢e, where e = cVT
is the internal energy, T is the temperature, and � = cP/cV is the
ratio of specific heats at constant pressure and volume, respec-
tively. The radiative and subgrid-scale (SGS) heat fluxes are
given by Frad = �KrT and FSGS = ��SGS⇢Trs, respectively,
where K is the radiative heat conductivity and �SGS is the SGS
heat diffusivity.

2.2. Setup characteristics

The initial stratification is isentropic, where the hydrostatic tem-
perature gradient is defined via an adiabatic polytropic index of
nad = 1.5. We initialize the magnetic field with a weak white-
noise Gaussian seed field. More details about our initial setup
can be found in Käpylä et al. (2013).

Most of our runs use a grid covering the full azimuthal
extent, but we perform some comparison runs, labelled with
superscript “W” for ⇡/2 wedges with reduced longitudinal
extent. In all cases, we assume periodicity in the azimuthal
direction for all quantities. For the magnetic field, we apply
perfect conductor boundary conditions at the bottom and both
latitudinal boundaries, and at the top boundary we use a radial
field condition. Stress-free, impenetrable boundaries are used
for the velocity on all radial and latitudinal boundaries. The
boundary condition of entropy is set by assuming a constant
radiative heat flux at the bottom of the computational domain.
The thermodynamic quantities have zero first derivatives on both
latitudinal boundaries, leading to zero energy fluxes there. At the
top boundary, the temperature follows a black body condition.
The exact equations for these conditions are described in Käpylä
et al. (2013, 2017).

Our simulations are defined by the following nondimensional
parameters. As input parameters we quote the Taylor number

Ta =
h
2⌦0(0.3R)2/⌫

i2
, (5)

the fluid, SGS, and magnetic Prandtl numbers

Pr =
⌫

�m
, PrSGS =

⌫

�m
SGS
, PrM =

⌫

⌘
, (6)

where �m = K(rm)/cP⇢(rm) and �m
SGS = �SGS(rm) are evaluated

at rm = 0.85R. The Rayleigh number is obtained from the hydro-
static stratification, evolving a one-dimensional (1D) model, and
is given by

Ra=
GM(0.3R)4

⌫�m
SGSR2

✓
� 1

cP

dshs

dr

◆

(r=0.85R)
, (7)

where shs is the hydrostatic entropy.
Useful diagnostic parameters are the density contrast

�⇢ ⌘ ⇢(r = 0.7R)/⇢(R), (8)

fluid and magnetic Reynolds numbers and the Péclet number,

Re =
urms

⌫kf
, ReM =

urms

⌘kf
, Pe =

urms

�m
SGSkf

, (9)

where kf = 2⇡/0.3R ⇡ 21/R is an estimate of the wavenumber of
the largest eddies. The Coriolis number is defined as

Co =
2⌦0

urmskf
, (10)

where urms =
q

(3/2)hu2
r + u2

✓ir✓�t is the rms velocity and the
subscripts indicate averaging over r, ✓, �, and a time interval
during which the run is thermally relaxed and typically covers at
least one magnetic diffusion time.

We define mean quantities as averages over the �-coordinate
and denote these by an overbar, for example hBi� = B. The dif-
ference between the total and the mean, for example B0 = B� B,
are the fluctuations. Furthermore, we indicate volume averages
using h·iV .

For the purpose of this paper, it is convenient to normalize
the rotation rate by the solar value, so we define

⌦̃ ⌘ ⌦0/⌦�, (11)

where ⌦� is the solar rotation rate. Moreover, we use
⌦� = 2.7 ⇥ 10�6 s�1, the solar radius R = 7 ⇥ 108 m,
⇢(0.7R) = 200 kg m�3, and µ0 = 4⇡ ⇥ 10�7 H m�1 to normalize
our quantities to physical units.

The simulations were performed using the PENCIL CODE1.
The code employs a high-order finite difference method for
solving the compressible equations of MHD.

3. Results

We consider a number of runs that probe the rotational depen-
dence in the range ⌦̃ = 1–31, corresponding to Co = 1.6–126.5;
see Table 1. The range in Co is larger than that in ⌦̃ because
faster rotation leads to lower supercriticality of convection,
resulting in a decreased urms and increased Co; see Eq. (10).
For some rotation rates we consider different values of the SGS
Prandtl number, resulting in different Rayleigh and Péclet num-
bers and different levels of supercriticality. Runs E, F1, and H are
direct continuations of Runs A, B, and C of Cole et al. (2014) and
Run F1 was already discussed as Run E4 (Käpylä et al. 2013).
Run GW has been analyzed as Run I in Warnecke et al. (2014),
as Run A1 in Warnecke et al. (2016), as Run D3 in Käpylä et al.
(2016) and in Warnecke et al. (2018). Furthermore, Runs A1 and
A2 correspond to 2⇡ extensions of the ⇡/2 wedges of Set F in
1 https://github.com/pencil-code/
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Table 1. Summary of the runs.

Run Grid ⌦̃ Pr PrSGS PrM Ta Ra Re Pe ReM Co �⇢ �t �
(r)
⌦

�
(✓)
⌦

|�⌦r | |�⌦✓ |

A1 144 ⇥ 288 ⇥ 576 1.0 58 2.50 1.00 6.32 ⇥ 106 6.54 ⇥ 107 40 100 40 1.6 22 22 –0.26 –0.37 0.26 0.37
A2 144 ⇥ 288⇥ 576 1.0 69 0.30 1.00 4.39 ⇥ 106 8.00 ⇥ 105 36 10 36 1.4 21 23 –0.22 –0.24 0.22 0.24
B 144 ⇥ 288 ⇥ 576 1.5 58 2.50 1.00 1.42 ⇥ 107 6.54 ⇥ 107 40 100 40 2.4 22 32 –0.11 –0.17 0.22 0.24

C1 144 ⇥ 288 ⇥ 576 1.8 58 2.50 1.00 2.03 ⇥ 107 6.54 ⇥ 107 41 102 41 2.8 22 26 –0.08 –0.11 0.14 0.20
C2 144 ⇥ 288 ⇥ 576 1.8 58 1.00 1.00 2.03 ⇥ 107 1.29 ⇥ 107 43 43 43 2.6 22 45 0.78 –0.35 0.13 0.17

C3 144 ⇥ 288 ⇥ 576 1.8 77 0.33 1.00 1.14 ⇥ 107 7.00 ⇥ 105 28 9 28 3.0 20 88 0.07 0.17 0.12 0.30
D 128 ⇥ 256 ⇥ 512 2.1 67 3.00 1.00 2.03 ⇥ 107 4.55 ⇥ 107 32 98 32 3.5 26 29 0.003 0.007 0.008 0.01
E 128 ⇥ 256 ⇥ 512 2.9 78 3.50 1.00 2.64 ⇥ 107 3.11 ⇥ 107 25 90 25 5.0 24 87 0.06 0.06 0.18 0.17
F1 128 ⇥ 256 ⇥ 512 4.3 66 3.00 1.00 8.10 ⇥ 107 3.31 ⇥ 107 28 86 28 7.9 23 33 0.01 0.04 0.06 0.15
F2 144 ⇥ 288 ⇥ 576 4.3 57 1.00 1.00 1.17 ⇥ 108 1.29 ⇥ 107 33 33 33 8.3 19 37 0.03 0.06 0.13 0.24
F3 144 ⇥ 288 ⇥ 576 4.3 58 0.25 1.00 1.17 ⇥ 108 9.00 ⇥ 105 27 6 27 9.8 18 49 0.02 0.07 0.10 0.28
Ga 256 ⇥ 512 ⇥ 1024 4.9 43 1.20 1.00 3.47 ⇥ 108 4.55 ⇥ 107 50 61 50 9.3 21 37 0.03 0.04 0.03 0.10
GW 180 ⇥ 256 ⇥ 128 4.8 67 2.00 1.00 1.25 ⇥ 108 4.00 ⇥ 107 34 68 34 8.3 31 22 0.05 0.07 0.21 0.29
H 128 ⇥256 ⇥ 512 7.1 69 3.00 1.00 2.25 ⇥ 108 2.04 ⇥ 107 24 72 24 15.6 21 200 0.01 0.03 0.10 0.20
Ha 256 ⇥ 512 ⇥ 1024 7.8 51 1.40 1.00 6.61 ⇥ 108 5.21 ⇥ 107 40 56 40 16.1 18 36 0.004 0.014 0.03 0.10
I 128 ⇥ 256 ⇥ 512 9.6 71 2.08 1.04 4.63 ⇥ 108 3.93 ⇥ 107 26 55 27 20.4 28 52 0.01 0.03 0.11 0.23

IW 128 ⇥ 256 ⇥ 128 9.6 71 2.08 1.04 4.63 ⇥ 108 3.83 ⇥ 107 27 56 28 19.9 28 20 0.01 0.02 0.11 0.20
J 128 ⇥ 256 ⇥ 512 14.5 62 2.50 1.00 1.30 ⇥ 109 1.12 ⇥ 107 25 63 25 36.1 18 62 –0.001 0.01 0.01 0.14

JW 180 ⇥ 256 ⇥ 128 15.5 69 2.00 1.00 1.30 ⇥ 109 3.93 ⇥ 107 21 43 21 41.7 26 53 0.004 0.009 0.05 0.13
K1 128 ⇥ 256 ⇥ 512 21.4 74 3.00 1.00 2.03 ⇥ 109 1.00 ⇥ 107 16 50 16 67.5 13 18 –0.001 0.007 0.03 0.15
K2 128 ⇥ 256 ⇥ 512 21.4 55 2.25 1.00 3.60 ⇥ 109 1.56 ⇥ 107 21 48 21 71.2 13 18 –0.001 0.005 0.03 0.11
La 256 ⇥ 512 ⇥ 1024 23.3 60 1.60 1.00 4.6 ⇥ 109 4.58 ⇥ 107 21 32 21 83.4 15 51 1 ⇥ 10�4 0.002 0.003 0.04
LW 180 ⇥ 256 ⇥ 128 23.3 70 2.00 1.00 2.92 ⇥ 109 4.00 ⇥ 107 16 33 16 82.4 24 53 �1 ⇥ 10�4 0.003 0.002 0.07
M 128 ⇥256 ⇥ 512 28.5 61 2.50 1.00 5.18 ⇥ 109 6.00 ⇥ 106 18 46 18 98.7 9 24 –0.001 0.003 0.02 0.10
Ma 256 ⇥ 512 ⇥ 1024 28.5 31 2.50 1.00 2.07 ⇥ 1010 1.48 ⇥ 105 33 82 33 109.9 15 33 �7 ⇥ 10�5 9 ⇥ 10�4 0.002 0.03
MW 180 ⇥256 ⇥ 128 31.0 71 2.00 1.00 5.18 ⇥ 109 1.03 ⇥ 108 14 28 14 126.5 21 49 �1 ⇥ 10�4 0.002 0.003 0.07

Notes. The quantities in the Cols. (2) to (8) are input parameters of the runs whereas the quantities from Cols. (9) to (18) are outcomes of the
simulations. Superscripts a denote high-resolution runs and superscripts W denote ⇡/2 wedges. The horizontal line denotes the transition from
axisymmetric (antisolar) magnetic field (rotation profile) to a nonaxisymmetric (solar) field (rotation profile). The �t value indicates the time span
of the saturated stage in years. The �(r)

⌦
and �(✓)

⌦
values indicate the relative radial and latitudinal differential rotation, see Eq. (16), whereas |�⌦r |

and |�⌦✓ | are the absolute radial and latitudinal differential rotation; see Eq. (17).

Käpylä et al. (2017), whereas Run E corresponds to Set E in
Käpylä et al. (2017) and Run B1 in Warnecke et al. (2016). We
also include a selection of models (Runs A2, C3, F3) with a
lower PrSGS to compare with other studies in which such param-
eter regimes are explored (e.g., Brown et al. 2010; Nelson et al.
2013; Fan & Fang 2014; Hotta et al. 2016). The numerical studies
were carried out over an extended period of time, during which
the setups have been continuously refined. This, and the aim to
compare to other studies, explains the heterogeneity in the choice
of parameters. The physical run time of the saturated stage is
denoted by �t.

3.1. Overview of convective states

All our models have a density stratification that is much smaller
than in the Sun. Therefore, the effects of small-scale convection
near the surface and the resulting low local Coriolis numbers in
those layers are not captured. This can be achieved only at very
high resolution (e.g., Hotta et al. 2014) and is not feasible for
parameter studies, such as those carried out in this work. Thus,
the effects of rotation are more strongly imprinted in the velocity
field near the surfaces of our models than what is expected in
actual stars. This is manifested in Fig. 1 where the radial veloc-
ity ur is shown for several runs with increasing rotation rate.
The size of the convection cells at high latitudes decreases as
the rotation rate is increased. Also, we observe the appearance
of elongated in latitude columnar structures near the equator
at about twice the solar rotation rate. These structures, often
referred to as banana cells, persist for all higher rotation rates

investigated, their azimuthal and radial extents reducing as a
function of rotation, while the latitudinal extent remains roughly
constant. The reason for their emergence is the strong rotational
influence on the flow and the geometry of the system. Strong
rotation tries to force convection into Taylor–Proudman balance
resulting in columnar cells that are aligned with the rotation
vector. Such cells are connected over the equator only outside
the tangent cylinder in a spherical shell, manifesting them-
selves as elongated structures at low latitudes. Such convective
modes can also lead to equatorial acceleration as observed in the
simulations and in the Sun (Busse 1970). In the Sun, the small-
scale granulation near the surface masks direct observation of
larger scale convective modes. However, helioseismic results
also suggest that large-scale convective structures exceeding the
supergranular scale of 20–30 Mm are weak (e.g., Hanasoge et al.
2012).

To quantify the size of convective structures as a function of
rotation we compute the power spectra of the radial velocity near
the surface; see Fig. 2. We use a spherical harmonics decompo-
sition to calculate the coefficients û`mr , where `,m are the order
of the spherical harmonics and the azimuthal number, respec-
tively. The details on the decomposition can be found in
Appendix A. The power at each ` is

P =
E(`)

kinP
`

E(`)
kin

, E(`)
kin =

X̀

m=0

Cm|û`mr |2, (12)

where Cm = 2 � �m0. We find that for more rapid rotation the
radial kinetic energy peaks at smaller scales (higher `, close
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Fig. 1. Mollweide projection of radial velocity ur at r = 0.98 R for Runs A2, C3, Ga, H, Ha, and La.

to ` = 100 for Run La) and the kinetic energy at large scales
(lower `) becomes smaller; see Fig. 2a. The increasing rotational
influence is clearly seen in Fig. 2b, where we plot the value of
` at the maximum of the radial velocity spectra as a function
of the Coriolis number for all runs. The dependence is consis-
tent with a power law with Co0.26, which is relatively close to
the theoretically expected 1/3 scaling for rotating hydrodynamic
convection near onset (Chandrasekhar 1961). This is shallower
than the slope of about 1/2 found for the horizontal velocity spec-
tra in the simulations of Featherstone & Hindman (2016a). When
we only consider the high-resolution runs (blue line in Fig. 2b),
we observe a steeper trend (Co0.46). Especially at rapid rota-
tion, the high-resolution runs start deviating significantly from
their low-resolution counterparts, and the scale of convection is
reduced much more strongly in the former class of runs.

To look at the energy of the radial velocity field at differ-
ent values of m, we decompose it at the surface, as described in
Appendix A. In Fig. 3 we plot the kinetic energy for 0  `  10.

The total kinetic energy at the surface is decreasing with rotation
(panel a), and most of the kinetic energy is contained in the small
scales (panel b, orange line). While the fifth nonaxisymmetric
mode is mostly constant with increasing rotation (red line), the
axisymmetric mode (m = 0) varies strongly and sometimes has
comparable or even higher energy than m = 5.

Nonaxisymmetric structures in the velocity field are also vis-
ible in Fig. 1 around the equator, in particular for Run La. This
is in agreement with previous studies (e.g., Brown et al. 2008),
which reported the presence of clear nonaxisymmetric large-
scale flows for hydrodynamic simulations in parameter regimes
near the onset of convection. These localized nonaxisymmetric
structures are similar to the relaxation oscillations, first seen
in planetary simulations. Those are explained by realizing that,
at intermediate Rayleigh numbers, differential rotation tends to
suppress the convective cells and, as a result, they localize in
groups across longitude, leaving the rest of the azimuthal domain
dominated by the axisymmetric differential rotation.
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Fig. 2. Panel a: normalized power spectra P of the radial velocity as
function of degree ` for Runs A2, C3, Ga, H, La, and Ma with increasing
rotational influence. Panel b: degree of peak power `peak estimated from
the power spectra plotted over Coriolis number Co. The runs are indi-
cated with their run names. The red dashed line represents a power law
fit including all the runs; the blue dashed line represents the fit for the
high-resolution runs, while the black dashed line indicates the expected
slope from theoretical estimates (Chandrasekhar 1961).

3.2. Mean flows

To estimate the rotational influence on the convection we also
calculated the volume averaged total kinetic energy density and
its contributions; see Table 2. The total kinetic energy density is
given by

Ekin =
D

1
2⇢u

2
E

V
, (13)

and the contributions contained in differential rotation and
meridional circulation are, respectively,

EDR
kin =

D
1
2⇢u

2
�

E
V
, EMC

kin =
D

1
2⇢
⇣
u2

r + u2
✓

⌘E
V
. (14)

The contribution from the nonaxisymmetric flows is

Efluc
kin = Ekin �

⇣
EDR

kin + EMC
kin

⌘
. (15)

Fig. 3. Kinetic energy of the decomposition as a function of Coriolis
number Co for all 2⇡ runs showing the total energy (panel a), axisym-
metric (m = 0, blue), fifth nonaxisymmetric mode (m = 5, red), and
small-scale (l,m > 5, orange) contribution (panel b). All the energies
in panel b are normalized to the total energy (panel a). Filled circles
connected by a continuous line indicate high-resolution runs.

The total kinetic energy decreases nearly monotonically as a
function of rotation. This clearly shows the rotational quenching
of convection, which is related to an increasing critical Rayleigh
number in rapidly rotating systems. As a result, the system
becomes less supercritical for convection the higher the rota-
tion rate, which is also reflected in the monotonous decrease of
the nonaxisymmetric energy that also contains the fluctuations
due to convective turbulence. The energy contained in differ-
ential rotation and meridional circulation shows a decreasing
overall trend as a function of rotation. In general, the capability
of the flow to extract energy from thermal energy is decreased by
rotation. Comparison to ⇡/2 wedge simulations indicates some
differences in the dynamics of the flow, but it is hard to discern
any systematic behavior. For a moderate rotation Run G, the ⇡/2
wedge (Run GW) has an excess of every type of kinetic energy,
while in the rapid rotation regime (Runs I, J, L, M) the flow ener-
gies have a tendency to be lower than in the corresponding runs
with full azimuthal extent.

3.3. Differential rotation

The rotation also influences the generation of mean flows as for
example the differential rotation. To illustrate this, we plot the
profiles of angular velocity, ⌦(r, ✓) = u�(r, ✓)/r sin ✓ + ⌦0, for
six representative runs (Runs A2, C3, Ga, H, Ha, and La) in
Fig. 4. We find antisolar differential rotation for the solar rota-
tion rate (Runs A1 and A2), which is consistent with previous
numerical studies (e.g., Gastine et al. 2014; Käpylä et al. 2014).
This might be due to the overall convective velocities that are
too high or the concentration of power that is too high at large
spatial scales (Featherstone & Hindman 2016b) in the simula-
tions in comparison to the Sun. The antisolar rotation switches
to solar-like at slightly more rapid rotation corresponding to
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Table 2. Volume averaged kinetic and magnetic energy densities in units
of 105J m�3.

Run Ekin EDR
kin EMC

kin Efluc
kin Emag Etor

mag Epol
mag Efluc

mag

A1 4.428 1.152 0.015 3.261 0.876 0.050 0.055 0.771
A2 5.055 0.858 0.015 4.182 0.995 0.047 0.055 0.893
B 3.263 0.358 0.005 2.901 0.715 0.055 0.037 0.623

C1 3.153 0.164 0.003 2.986 0.504 0.035 0.026 0.442
C2 3.631 0.128 0.003 3.500 0.488 0.028 0.023 0.438
C3 6.572 3.941 0.003 2.628 0.891 0.177 0.023 0.692
D 3.181 0.873 0.003 2.305 0.671 0.042 0.012 0.617
E 4.189 2.317 0.001 1.871 0.579 0.073 0.023 0.483
F1 2.485 0.842 0.002 1.642 1.363 0.166 0.017 1.181
F2 2.898 1.101 0.002 1.794 1.082 0.088 0.023 0.971
F3 2.700 1.263 0.001 1.437 0.767 0.208 0.018 0.541
Ga 2.748 0.820 0.001 1.926 0.754 0.076 0.014 0.664
GW 3.506 1.653 0.003 1.851 0.986 0.193 0.132 0.661
H 2.153 0.845 0.001 1.306 1.049 0.058 0.028 0.963
Ha 1.704 0.354 0.001 1.349 1.449 0.111 0.029 1.309
I 1.706 0.570 0.001 1.135 1.361 0.065 0.036 1.260

IW 1.625 0.483 0.001 1.141 1.197 0.247 0.230 0.720
J 0.580 0.346 0.000 0.234 0.113 0.024 0.006 0.083

JW 0.786 0.101 0.000 0.685 0.900 0.102 0.230 0.568
K1 2.325 1.624 0.000 0.701 0.426 0.216 0.025 0.185
K2 1.549 0.934 0.000 0.615 1.029 0.358 0.153 0.518
La 0.708 0.155 0.000 0.552 1.928 0.031 0.018 1.878
LW 0.415 0.023 0.000 0.391 1.102 0.129 0.393 0.580
M 2.053 1.433 0.000 0.620 0.967 0.337 0.152 0.477
Ma 0.393 0.008 0.000 0.385 2.793 0.057 0.062 2.674
MW 0.328 0.025 0.000 0.303 1.024 0.138 0.407 0.479

Co = 3.0. For higher rotation rates the differential rotation devel-
ops a minimum at mid-latitudes. Such a configuration has been
shown to be important in producing equatorward migrating mag-
netic activity (Warnecke et al. 2014). We also find such minima
at moderate rotation, up to roughly seven times solar rotation
rate (Run H). At higher rotation rates very little differential rota-
tion is generated overall and the mid-latitude minimum becomes
progressively weaker.

We quantify the relative radial and latitudinal differential
rotation using

�(r)
⌦
=
⌦eq �⌦bot

⌦eq
and �(✓)

⌦
=
⌦eq �⌦pole

⌦eq
, (16)

where ⌦eq = ⌦(R, ⇡/2) and ⌦bot = ⌦(0.7R, ⇡/2) are the angular
velocities at the top and bottom of the convection zone at the
equator, respectively, and ⌦pole = [⌦(R, ✓0) + ⌦(R, ⇡ � ✓0)]/2 is
the time averaged angular velocity at the latitudinal boundaries.
Negative or positive values of �(✓)

⌦
indicate antisolar (fast poles,

slow equator) or solar-like (fast equator, slow poles) differen-
tial rotation, respectively. In Table 1 we list these numbers from
our simulations and notice that a transition from strong antiso-
lar to significantly weaker solar-like differential rotation occurs
at about ⌦̃ ⇡ 1.8 (Co ⇡ 3; Run C3). We also plot �(r)

⌦
and �(✓)

⌦
as functions of Co for all the 2⇡ runs in Fig. 5. There, we indi-
cate the transition point with a vertical dashed line. As we later
discuss in detail, this point also marks the change of the dynamo
modes from axisymmetric to nonaxisymmetric. From this plot it
is evident that, as the rotation increases, both relative differential
rotation measures approach zero. From Tables 1 and 2 we also

aFig. 4. Normalized angular velocity ⌦(r, ✓) of Runs A2, C3, Ga, H, Ha,
and La. The dashed lines denote the radius r = 0.98 R, which is used for
the further analysis.

see that near the transition, the rotation profile is sensitive to
changes in the convective efficiency, as indicated by the Rayleigh
number. In Run C3 with a low PrSGS and lower Rayleigh and
Reynolds numbers than in the more turbulent Runs C1 and C2,
the rotation profile is solar-like, while in the others it is antisolar.
This transition and its sensitivity to the efficiency of convection
has been studied in detail by, for example, Gastine et al. (2014)
and Käpylä et al. (2014).

We note that �(r)
⌦

and �(✓)
⌦

measure only the difference
between certain points and neglect the actual latitudinal vari-
ation, which can be more complicated. In the case of wedge
geometry the flows near the latitudinal boundaries may not be
representative of what takes place at high latitudes in real stars.
This can lead to unrepresentative results, in particular for the lat-
itudinal differential rotation in cases where the latitudinal profile
is non-monotonic (cf. Karak et al. 2015).

The antisolar regime typically shows strong negative radial
and latitudinal shear (Gastine et al. 2014), whereas magnetic
fields tend to quench the differential rotation (e.g., Fan & Fang
2014; Karak et al. 2015). Our results are in agreement with
those aforementioned studies. Another important aspect is the
dependence of absolute differential rotation, defined as

�⌦r = �
(r)
⌦
⌦̃, �⌦✓ = �

(✓)
⌦
⌦̃, (17)
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Fig. 5. Relative latitudinal differential rotation �(✓)
⌦

(upper panel) and
relative radial differential rotation �(r)

⌦
(lower panel) for all 2⇡ runs. The

shape of the plotted symbols indicates the degree of nonaxisymmetry
of the magnetic field (sphere – axisymmetric; triangle – mixed; star –
nonaxisymmetric), while the color indicates the ratio of poloidal energy
Epol

mag to toroidal energy Etor
mag; see Table 2. The dashed line (Co = 3)

indicates the transition from antisolar to solar-like latitudinal differential
rotation and the dotted lines indicate the zero. The high-resolution runs
Ga, Ha, La, and Ma are indicated for better visibility.

Fig. 6. Modulus of the absolute latitudinal differential rotation,
�⌦✓ = �

(✓)
⌦
⌦0, normalized by the solar rotation rate, as a function of

rotation rate. The red lines result from fitting. The black dashed line
indicates the break in the slope. Red and black circles stand for high-
and low-resolution 2⇡ runs, respectively, while blue triangles show the
⇡/2 wedges. We note that for the fit for moderate rotation, we do not
take into account Run D with very low values. The dotted line indicates
the transition from antisolar to solar-like latitudinal differential rotation.

on the rotation rate itself. The broad range of probed rotation
rates allows us to search for a power-law behavior of the form

|�⌦✓| / ⌦q. (18)

In Fig. 6, we do not find, however, a single power law that would
describe the behavior at all rotation rates. For slow and moderate
rotation, up to ⌦̃ ⇡ 5, we fit a slope of q ⇡ �0.08, while for the
highest rotation rates investigated, ⌦̃ ⇡ 5�31, we find a steeper
power law with q ⇡ �0.96.

In Table 3, we compare our results with those of some obser-
vational studies (Reinhold & Gizon 2015; Lehtinen et al. 2016)
and a mean-field model (Kitchatinov & Rüdiger 1999). Our
results for the low to intermediate rotation rates agree with these
studies, but the power law we find for the rapid rotation regime

Table 3. Scaling of absolute differential rotation with rotation of
some recent observational studies, models, and our work using the
exponent q; see Eq. (18).

q Reference

�0.08 This work (slow rotation)
�0.96 This work (rapid rotation)
�0.36 Lehtinen et al. (2016)
+0.29 Reinhold & Gizon (2015)
�0.15 (G2, mean) Kitchatinov & Rüdiger (1999)
�0.04 (K5, mean) Kitchatinov & Rüdiger (1999)

is much steeper and therefore in disagreement with them. This
disagreement cannot be explained by the lack of supercriticality
as the high-resolution runs show even weaker latitudinal differ-
ential rotation than their low-resolution counterparts. However,
the magnetic fields in the rapidly rotating high-resolution runs
(Ha, La, and especially in Ma) are generally stronger than in the
lower resolution runs, possibly also contributing to the reduced
differential rotation (cf. Käpylä et al. 2017).

3.4. Overview of magnetic states

All the runs discussed in this work produce large-scale magnetic
fields. Similar runs were recently analyzed by Warnecke et al.
(2018) using the test-field method, which measured significant
turbulent effects contributing to the magnetic field generation.
Therefore, we attribute the magnetic fields seen in the current
runs to the turbulent dynamo mechanism. To describe the mag-
netic solutions, we first look at the volume-averaged magnetic
energy densities. We define these densities analogously to their
kinetic counterparts. We use

Emag =
D
B2
E

V
/2µ0, (19)

for the total magnetic energy density,

Etor
mag =

⌧
B

2
�

�

V
/2µ0, Epol

mag =
⌧
B

2
r + B

2
✓

�

V
/2µ0, (20)

for the contribution of mean toroidal and mean poloidal fields,
and

Efluc
mag = Emag � (Etor

mag + Epol
mag), (21)

for the contribution of fluctuating magnetic fields. These quan-
tities are listed in Table 2. We find that for all the runs, the
contributions from fluctuating magnetic fields dominate the
magnetic energy. The axisymmetric contributions contain on the
order of 5% to 10% of the total magnetic energy in the major-
ity of the runs, and exceeds 15% only in Runs C3, F3, K1,
and K2. These runs are characterized either by a low PrSGS (C3
and F3) or rapid rotation (K1 and K2), both leading to reduced
supercriticality of convection.

In contrast to the kinetic energy, we do not find a clear trend
for magnetic energies as a function of rotation rate. In the rapid
rotation regime, the high-resolution runs La and Ma exhibit mag-
netic fields with an energy that significantly exceeds the kinetic
energy by factors of roughly 3 and 8, respectively. If we look at
the radial profile of the magnetic energy density for a selection
of runs (Fig. 7), we find that the magnetic field in the upper half
of the convection zone increases with rotation. As discussed
earlier, we observe a simultaneous, nearly monotonic, decrease
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Fig. 7. Radial profiles of the total magnetic energy density Emag
averaged over time, latitude, and azimuth for Runs A2, C3, Ga, Ha,
La, and Ma.

Fig. 8. Ratio of total magnetic to kinetic energies Emag/Ekin as a func-
tion of Coriolis number Co. The red filled symbols (connected by a line)
denote high-resolution runs. Blue triangles refer to ⇡/2 wedge runs.

of the kinetic energy as a function of rotation rate. Therefore,
the ratio of the magnetic to kinetic energies, which is a measure
of the dynamo efficiency, is actually steeply increasing as a
function of rotation, as can be seen from Fig. 8. We find that in
the low-resolution cases the dynamo is clearly less efficient in
the rapid rotation regime in comparison to the high-resolution
cases. We also observe that the ⇡/2 wedge runs produce a far
more efficient dynamo in the rapid rotation regime than the
corresponding low-resolution runs with full azimuthal extent.
This is possibly explained by the somewhat higher stratification
and Rayleigh numbers in the ⇡/2 wedge runs in comparison to
those in the low-resolution full 2⇡ models. We can conclude
that the convective efficiency directly influences the dynamo
efficiency and therefore, the magnetic energy production.

In Fig. 5 we studied the dependence of the overall mag-
netic topology on the amount of differential rotation generated in
the system. The ratio of poloidal to toroidal magnetic energies,
shown with the color of the symbols, changes systematically
from mostly poloidal field configurations at very low rotation

rates to toroidal field configurations at moderate and rapid rota-
tion. The energy ratio gradually decreases, and with rotation
rates exceeding the antisolar to solar transition point, domi-
nantly toroidal fields are seen. The strongest toroidal fields are
generated for moderate rotation. At the highest rotation rates,
the ratio of toroidal and poloidal becomes again lower in the
high-resolution runs, while the low-resolution counterparts fail
to show systematic behavior. In the run with the highest rotation
rate, Ma, the poloidal component again dominates. By inspect-
ing Table 2, we notice that the models with reduced � extent
tend to produce a larger poloidal to toroidal energy ratio than the
corresponding runs covering the full azimuthal extent.

To investigate the spatial structure of the magnetic field, we
show in Fig. 9 snapshots of Br for six representative runs. At
low rotation rates, most of the magnetic field is concentrated
in the downflows between the convective cells, while at high
rotation rates, the scale of convection, still clearly affecting the
magnetic field, thereby leaving a small-scale imprint on it, is
significantly reduced. Nevertheless, global-scale magnetic field
configurations clearly emerge in the high-latitude regions. It is
immediately apparent that a nonaxisymmetric large-scale pat-
tern is visible in all cases. In the slowly rotating cases, the
nonaxisymmetric component is subdominant and the equato-
rial symmetry of the field is clearly dipolar (antisymmetric with
respect to the equator). In all the runs with solar-like differen-
tial rotation, however, the field configuration is observed to be
symmetric (or quadrupolar) with respect to the equator, even
though a more detailed analysis revealed that the parity of the
solutions is not pure. A weaker antisymmetric (dipolar) compo-
nent is present at all times and the global parity undergoes some
fluctuations. The quadrupolar component remains most signifi-
cant at all times, however. This result is in agreement with some
ZDI measurements of solar-like stars (e.g., Hackman et al. 2016;
Rosén et al. 2016). However, we should point out that our results
can be influenced by the wedge assumption in latitude and need
to be verified in full spherical geometry.

We also depict the overall nonaxisymmetry of the large-scale
magnetic field solutions with the shape of the symbol in Fig. 5.
Again, on the lower rotation side of the break point identified, the
magnetic fields are mostly axisymmetric (circular symbol). On
the rapid rotation side, the fields exhibit a significant nonaxisym-
metric component (triangles) and finally turn into completely
nonaxisymmetric components (stars). The resolution also plays
a significant role in the nonaxisymmetry measure. The higher
resolution runs show preferentially nonaxisymmetric configura-
tions, while the lower resolution runs turn back to axisymmetry
at the highest rotation rates investigated.

3.5. Degree of nonaxisymmetry

Large-scale nonaxisymmetric magnetic fields, as seen in Fig. 9,
are included in the definition of Efluc

mag in Table 2, as this quan-
tity is the difference between total and azimuthally averaged
(mean) magnetic energies. This term, therefore, contains both
small-scale fluctuations and large-scale nonaxisymmetric con-
tributions. Thus, the diagnostics introduced so far only roughly
describe the large-scale fields in the system.

To obtain a more complete picture, we perform a spherical
harmonics decomposition of the radial components of the vector
fields at r = 0.98 R with the method described in Appendix A.
The m = 0 mode contains the axisymmetric (mean) part of
the radial magnetic field, the m = 1 is the first nonaxisymmet-
ric mode, m = 2 is the second mode, and so on. For the ⇡/2
wedges, the first nonaxisymmetric mode is m = 4. The energies
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Fig. 9. Radial magnetic field Br at r = 0.98 R from the same runs as in Fig. 1.

of the modes resulting from the decomposition are listed in
Table 4. Depending on the dominant large-scale component,
we call the magnetic fields nonaxisymmetric or axisymmetric
even though their small-scale contributions, which are always
nonaxisymmetric, might be more energetic.

The distribution of the radial magnetic energy density near
the surface of the star is presented in Fig. 10a as a func-
tion of Co. We show the axisymmetric and magnetic energy
in the large-scale nonaxisymmetric field (1  `  5) normal-
ized by the total magnetic energy. We find an inversion between
the energies in the axisymmetric and nonaxisymmetric compo-
nents, which also coincides with the transition from antisolar-
to solar-like differential rotation at Co ⇡ 3. The runs show a
nonaxisymmetric magnetic field until Co ⇡ 70, but at higher
Co the high-resolution runs remain nonaxisymmetric, while the
low-resolution runs return to an axisymmetric configuration,
indicating that high resolution is needed at such high rotation
rates to capture the small scales. This could explain the lack of

nonaxisymmetric solutions in the study of Brown et al. (2010).
This conjecture is supported by the fact that in the higher res-
olution simulations of Nelson et al. (2013) significantly clearer
nonaxisymmetric features are seen (their Figs. 4–6), although
they are confined to low latitudes. Those simulations were
made with ⌦̃ = 3, albeit with a lower thermal Prandtl number
and different viscosity and diffusivity profiles than in the cur-
rent simulations (cf. Appendix A of Käpylä et al. 2017, for a
comparison of different setups). Our Runs C3 and F3 also pro-
duce strong nonaxisymmetric large-scale fields at high latitudes
despite their lower values of PrSGS. This could be an indica-
tion of the influence of the latitudinal boundaries in the current
simulations.

The simulations of Fan & Fang (2014) and Hotta et al.
(2016), on the other hand, used the solar rotation rate and a fur-
ther decreased thermal Prandtl number resulting in a laminar
heat transport to force a solar-like rotation profile. The large-
scale magnetic fields in those simulations are characterized by
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Table 4. Energy densities of the radial magnetic field and dynamo cycle properties.

Run Esurf
mag Edec

mag,tot Edec
0 Edec

1 Edec
2 Edec

3 Edec
4 Edec

5 Edec
l,m>5 PADW PADW PADW D ⌧cyc

[yr] [P0] [PDR] [yr]

A1 0.211 2.1(–2) 5.8(–3) 2.1(–3) 1.9(–3) 1.7(–3) 1.7(–3) 1.5(–3) 6.1(–3) 3.72(m0)
A2 0.188 2.4(–2) 4.3(–3) 3.0(–3) 2.5(–3) 2.4(–3) 2.2(–3) 2.0(–3) 7.9(–3) 4.13(m0)
B 0.183 2.3(–2) 7.3(–3) 3.0(–3) 1.6(–3) 1.6(–3) 1.5(–3) 1.3(–3) 6.8(–3) 2.45(m0)
C1 0.137 1.7(–2) 5.7(–3) 3.9(–3) 1.3(–3) 1.2(–3) 1.1(–3) 9.2(–4) 3.5(–3) 3.53(m0)
C2 0.128 1.6(–2) 4.7(–3) 3.2(–3) 1.5(–3) 1.2(–3) 1.0(–3) 8.4(–4) 3.2(–3) 4.37(m0)

C3 0.142 2.4(–2) 3.5(–3) 1.2(–2) 2.3(–3) 1.7(–3) 1.3(–3) 1.0(–3) 2.8(–3) 19.53 474 44.83 R 3.13(m0)
D 0.180 5.1(–2) 3.1(–3) 3.9(–2) 3.4(–3) 1.9(–3) 1.2(–3) 8.3(–4) 1.7(–3) 14.14 410 24.67 R 18.25(m0)
E 0.147 3.1(–2) 2.9(–3) 2.1(–2) 2.4(–3) 1.4(–3) 9.4(–4) 6.0(–4) 9.9(–4) 39.87 1542 82.53 R 10.31(m1)
F1 0.290 0.111 1.5(–3) 9.7(–2) 4.8(–3) 2.4(–3) 1.5(–3) 1.1(–3) 3.1(–3) 4.22 245 5.92 R 6.68(m0)
F2 0.220 4.9(–2) 3.3(–3) 3.1(–2) 4.3(–3) 2.5(–3) 1.7(–3) 1.4(–3) 4.2(–3) 5.94 346 6.55 R 8.05(m1)
F3 0.086 1.6(–2) 2.9(–3) 5.2(–3) 1.5(–3) 1.1(–3) 8.3(–4) 6.6(–4) 3.6(–3) 10.49 611 8.20 R 5.74(m0)
Ga 0.254 5.5(–2) 4.0(–3) 3.4(–2) 5.4(–3) 2.9(–3) 2.0(–3) 1.4(–3) 5.0(–3) 8.93 583 8.60 R 7.43(m1)
GW 0.286 3.9(–2) 2.9(–2) 0.0 0.0 0.0 6.9(–3) 0.0 2.7(–3) 2.37(m0)
H 0.053 2.2(–2) 1.1(–3) 1.8(–2) 1.1(–3) 5.5(–4) 3.9(–4) 2.9(–4) 7.2(–4) 42.69 1.9(+3) 12.15 R 27.34(m1)
Ha 0.274 7.7(–2) 4.0(–3) 5.3(–2) 6.6(–3) 3.4(–3) 2.4(–3) 1.7(–3) 6.5(–3) 24.36 2.6(+3) 15.84 R 7.17(m1)
I 0.274 0.107 8.9(–3) 8.2(–2) 6.0(–3) 3.2(–3) 2.1(–3) 1.5(–3) 3.7(–3) 11.66 1.5(+3) 7.07 R 7.75(m1)
IW 0.220 4.0(–2) 3.0(–2) 0.0 0.0 0.0 7.6(–3) 0.0 2.6(–3) 4.44(m0)
J 0.014 2.0(–3) 2.0(–4) 4.9(–4) 4.3(–4) 2.7(–4) 1.6(–4) 1.1(–4) 3.8(–4) 6.0(+3) 5.4(+5) 382.59 SW, P 8.25(m0)
JW 0.421 0.129 7.2(–2) 0.0 0.0 0.0 4.6(–2) 0.0 1.1(–2) 4.05(m0)
K1 0.025 3.7(–3) 5.7(–4) 6.8(–4) 1 .0(–3) 6.2(–4) 2.2(–4) 1.3(–4) 4.3(–4) 4.89 1.4(+3) 0.01 P 1.24(m0)
K2 0.193 5.9(–2) 3.7(–2) 9.8(–3) 3.7(–3) 2.(–3) 1.7(–3) 1.5(–3) 3.3(–3) 5.10(m0)
La 0.475 0.292 2.4(–3) 0.246 1.3(–2) 1.2(–2) 5.7(–3) 4.5(–3) 8.3(–3) 56.53 1.78(+4) 14.66 SW, R 3.13(m1)
LW 0.509 0.218 0.123 0.0 0.0 0.0 8.1(–2) 0.0 1.3(–2) 5.68(m0)
M 0.133 4.9(–2) 3.0(–2) 9.3(–3) 3.5(–3) 1.9(–3) 1.1(–3) 8.0(–4) 1.3(–3) 6.64(m0)
Ma 0.907 0.514 1.3(–2) 0.297 4.5(–2) 4.0(–2) 2.9(–2) 2.1(–2) 6.8(–2) 151.41 2.9(+4) 12.3 SW, P 16.45(m1)
MW 0.462 0.197 0.135 0.0 0.0 0.0 5.1(–2) 0.0 1.1(–2) 4.10(m0)

Notes. The data for the energy densities is quoted near the surface (r = 0.98 R) in units of 105 J m�3. Here Esurf
mag is the total energy density,

Edec
mag,tot = h(Bdec

tot )2i✓�t/2µ0 is the magnetic energy density obtained from the decomposition over the first 10 harmonics, while Edec
m denote the

magnetic energy densities for the corresponding azimuthal wavenumbers with m = 0, ..., 5, and Edec
l,m>5 the magnetic energy density in scales that are

considered to be small scale (m > 5). The rotation period PADW of the ADW is computed as the latitudinal and temporal average of the derivative
of the maximum phase of the dynamo mode (PADW = 2⇡/ < dxmax,m1/dt >t,✓). The column PADW[P0] indicates the average period of the ADW
compared to the bulk rotation (P0 = 2⇡/⌦0). The column PADW[PDR] indicates the average period of the ADW compared to the period of the
differential rotation. The value D indicates if the ADW is moving in the retrograde (R) or prograde (P) direction. SW indicates a standing wave.
Furthermore, ⌧cyc is the characteristic timescale of the change of the dynamo solution. That coincides with the time evolution of the dominating
dynamo mode, indicated in the parenthesis. If the solution exhibits oscillatory behavior, the run label is underlined. The numbers in parentheses
indicate the exponent of 10.

dominant low-latitude axisymmetric fields, which show appar-
ently random polarity reversals. The results of these studies are
most closely related to our slowly rotating Runs A1, A2, and
B, which also produce predominantly axisymmetric large-scale
fields, although with antisolar differential rotation. This seems
to suggest that axisymmetric fields are preferred at slow rotation
irrespective of the differential rotation profile.

From Table 4 we notice that m = 1 is the first large-scale
nonaxisymmetric mode excited as the rotation increases. Some
higher m modes get excited, too, but they remain, on average,
subdominant compared to the m = 1 mode. Therefore, the runs
are well described by the m = 0 and m = 1 modes, shown in
Fig. 10b. The axisymmetric energy is dominant at slow rotation,
Co  3, while in the range 3  Co  72 the first nonaxisym-
metric mode is dominant, but its strength decreases for the
low-resolution runs for Co > 20, and eventually there is a return
to an axisymmetric configuration at the highest values of Co.
For the high-resolution runs, however, the m = 1 mode energy
keeps increasing until the highest rotation rates investigated.

3.6. Magnetic cycles

The time evolution of the magnetic field is not cyclic in the
sense that there are not necessarily polarity reversals in all the

runs. Yet, we see cyclic variations around the mean magnetic
energy level, albeit with a poorly defined cycle length. This
would match with an observer’s viewpoint, as most often only
light curve variability is observable while the surface magnetic
evolution is hidden. Therefore, it makes sense to try to determine
the timescale of this variability for all the runs – not only those
for which we can identify cyclic polarity reversals from the but-
terfly diagram (the runs underlined in Table 4). By counting how
many times the mean magnetic energy level is crossed, some-
times referred to as the syntactic method (Chen 1988, Chap. 9.4),
we can assign a characteristic time scale of change, ⌧cyc. For
some of the runs, the time-latitude variability would provide
another, more straightforward, way to determine the cycle length.
For consistency, this approach is used to determine the cycle
periods for all the runs. A comparison with cycle determination
using all magnetic field components at all latitudes shows good
agreement between these two methods for these kinds of simu-
lations (Warnecke 2018). The last column in Table 4 shows ⌧cyc.
We use the syntactic method on the dominant modes (m = 0 and
m = 1) and indicate those by a subscript. The syntactic method,
however, has a limitation in that counting the fluctuations around
a mean value means that we always count at least one oscillation.
This makes the ⌧cyc values for Runs D, K2, and Ma questionable,
as they are roughly half of the run time of the simulations. This
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Fig. 10. Axisymmetric mean (m = 0, blue) energy vs. nonaxisymmet-
ric large-scale (m = 1, 5; red) energy fraction at the surface (panel a).
Axisymmetric mean (m = 0; blue) energy fraction vs. the first nonax-
isymmetric mode (m = 1; red) energy fraction (panel b). The dotted
black line denotes the axisymmetric to nonaxisymmetric transition at
region Co ⇡ 3. In both plots, the dashed red and blue lines con-
nect 2⇡ runs; filled symbols, connected with solid lines, denote the
high-resolution runs.

time is denoted by �t and is listed in Table 1. One could instead
determine the characteristic time by running the aforementioned
runs for a longer time. Retrieving cycle periods of the same order
as the data set lengths, however, is not uncommon in observa-
tional studies (see e.g., Baliunas et al. 1995), so we have decided
to retain these values with the other, more trustworthy values, in
our analysis.

In the Runs A1, A2, and B, all with antisolar differential
rotation profiles, we do not see much time dependence in the
time–latitude (butterfly) diagrams of the mean toroidal magnetic
fields; see the upper left panel of Fig. 11 for an example from
Run A2. Starting from Runs C1, C2, and C3 onward to higher
rotation rates (other panels of Fig. 11), however, more systematic
patterns are discerned in the time series and butterfly diagrams.
Runs C1 and C2 present two interesting cases, as it is very rare to
obtain cyclic dynamo solutions in the regime of antisolar rotation
profiles (e.g., Karak et al. 2015; Warnecke 2018), which these
runs clearly possess. Furthermore, it is clear that simulations
with a 2⇡ azimuthal extent are capable of producing oscillating
dynamo solutions at lower rotation rates than the correspond-
ing ⇡/2 wedges (see comparison in Warnecke 2018). In the
rapid rotation regime, the time variability is always linked to the
nonaxisymmetric component, especially in the high-resolution
runs.

After estimating the characteristic time, we can determine
the activity cycle period as Pcyc = ⌧cyc , see how it varies with
rotation, and compare these values with observational results
(Saar & Brandenburg 1999; Lehtinen et al. 2016). We show the
results in Fig. 12a, in which we plot the ratio of rotation to activ-
ity period against the Coriolis number. We see that the transition
line Co = 3 divides the runs into two populations: one in which
the antisolar axisymmetric runs cluster and another in which the
solar-like nonaxisymmetric runs cluster. The former population
is located in the upper left corner of the plot showing a nega-
tive slope. At this location, Noyes et al. (1984) found, however,
a population of stars with a positive slope. Brandenburg et al.
(1998) denoted this the inactive (I) branch – to distinguish it
from another active (A) one. At even higher rotation rate, Saar
& Brandenburg (1999) found yet another superactive (S) branch.
This branch has a negative slope, which coincides with our solar-
like nonaxisymmetric population (shown in red in Fig. 12a). The
rapidly rotating runs yield Co�0.50, which agrees with the slope
Co�0.43 determined by Saar & Brandenburg (1999) for the S
branch. However, we cannot clearly identify an A branch nor
a transition between the A and S branches, which are clearly
present in Saar & Brandenburg (1999). The dashed vertical line
denotes the observational transition of stars without active lon-
gitudes to those with active longitudes in a sample of solar-like
rapid rotators (Lehtinen et al. 2016). We note that in our simu-
lations, active longitudes occur for considerably lower Coriolis
numbers (Co > 3, corresponding to the leftmost dotted line).

The best available measure of the magnetic activity from our
simulations is the ratio of magnetic to kinetic energy, which
can be directly thought of as a measure of the efficiency of
the dynamo; see Fig. 8. Figure 12b shows the rotation–activity
period ratio as a function of this quantity. In this plot, our runs
again cluster near the I branch and a well separated A–S branch.
In contrast to Fig. 12a, the correlation on the I branch now
appears positive, but there are not enough points to reliably con-
clude whether either of the correlations seen on this branch are
significant. The S branch still remains inseparable, but the pop-
ulation of runs falling onto this branch shows a distinct negative
slope.

In Fig. 12c we show a comparison between observational
results and the models of Strugarek et al. (2017) using again the
Coriolis number on the x axis. In this representation, although
the I branch still clearly exists, none of the modeled points coin-
cide with the observed I branch. Instead, the slowly rotating
models cluster at lower Coriolis numbers than the observed stars
on the inactive branch, although their cycle ratios would rather
well match with those of the observed population. The Sun is not
reproduced in any of those runs.

The moderate and rapid rotation runs are consistent with the
S branch behavior. Strugarek et al. (2017) and the ⇡/2 wedges of
this study have a slope most closely matching the observed points
of Lehtinen et al. (2016). The runs covering the full longitudinal
extent have significantly shallower slope than the data points
for the observed stars. The fact that the Strugarek et al. (2017)
results coincide so well with those from our ⇡/2 wedges, where
the large-scale nonaxisymmetric modes are absent, suggests that
also the former models tend to become axisymmetric. It needs
to be seen to what extent this can be explained by those runs
not being sufficiently supercritical; see again Appendix A of
Käpylä et al. (2017) for a comparison of different setups. This
is clearly seen in our low-resolution models, in which the mag-
netic field becomes axisymmetric at rapid rotation, while in their
high-resolution counterparts the magnetic field remains nonax-
isymmetric. We note that our first run with solar-like differential
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Fig. 11. Mean toroidal magnetic field B� for nine representative runs near the surface r = 0.98 R.

rotation, C3, is also the first showing nonaxisymmetric mag-
netic field. This is in disagreement with observations, as the
Sun has a mostly axisymmetric field. Therefore, we conclude
that the model of Strugarek et al. (2017) with lower convective
velocities, and thereby less supercritical convection, can better
reproduce the behavior in the proximity of the solar rotation
rate. At rapid rotation regime, however, their convective veloc-
ities are too low for the models to capture the transition at all,
while ours are too large and push it to Coriolis numbers that are
too low.

3.7. Azimuthal dynamo waves

In stars that rotate more rapidly than the Sun, spots tend to
emerge at high latitudes and are unevenly distributed in lon-
gitude. These preferred locations for starspot appearance are
called active longitudes (Jetsu 1996; Berdyugina & Tuominen
1998). A phenomenon that has recently been related to active
longitudes from models (Cole et al. 2014) and also observations
(see e.g., Lindborg et al. 2013) is what is now called azimuthal
dynamo wave (ADW). This term refers to active longitude sys-
tems that migrate in the orbital reference frame of the star. A
useful comparison is the latitudinal dynamo wave visible in the
Sun. This dynamo wave shows a dependence in latitude, which
is visible as the appearance of sunspots at lower latitudes as
the solar cycle progresses, but the spots do not appear with a
preferential location in longitude. Instead of its latitude depend-
ing on time, in the ADW the longitude of the nonaxisymmetric
spot-generating mechanism changes periodically in time, thereby
migrating in the rotational frame of reference. Such migration
was already predicted from early linear dynamo models (e.g.,

Krause & Rädler 1980) and the special case of nonmigratory
nonaxisymmetric structure could also be interpreted as a stand-
ing ADW. The crucial difference between latitudinal and ADWs
is that the polarity reversal is always associated with the for-
mer, while not necessarily with the latter. The migration direc-
tion has been observed to be preferentially prograde (see e.g.,
Berdyugina & Tuominen 1998; Lindborg et al. 2013; Lehtinen
et al. 2016), but also a standing wave for � Gem and a retrograde
wave for EI Eri have been reported (Berdyugina & Tuominen
1998).

We inspect all our runs with a significant m = 1 mode for
the existence of ADW. The results for the reconstruction of the
first nonaxisymmetric mode of the radial magnetic field as func-
tions of time and longitude for Runs C3, Ga, Ha, and La are
shown in Fig. 13 for 60� northern latitude. In all the runs pre-
sented here, the m = 1 mode is rigidly rotating and has a different
pattern speed than the gas. To verify that the magnetic field
is detached from the flow, we overplot the expected advection
due to differential rotation with black–white lines at the same
latitude. If the magnetic field was advected by the mean flow,
its maxima and minima would fall on this line. In the range
3  Co  68, the magnetic field follows a pattern that is differ-
ent from the differential rotation at the surface of the star at all
latitudes.

The parameters related to the ADW are listed in columns
11–14 of Table 4. The period of the ADW, PADW, is calculated
using the first derivative with respect to time of the maximum
of the phase of the m = 1 mode, averaged over time and lat-
itude. We compare it with the bulk rotation, PADW/P0, and
the differential rotation, PADW/PDR, where P0 = 2⇡/⌦0 and
PDR = 2⇡/h[⌦ � ⌦0](r = 0.98 R)i✓, respectively, and indicate
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Fig. 12. Ratio of the rotation period to the cycle period as a function
of Coriolis number (panel a). The two black lines indicate the fit to the
axisymmetric and rapid rotation runs, respectively. The vertical lines
denote the nonaxisymmetric transition found in our simulations (dot-
ted; Co � 3) and from the observational study of Lehtinen et al. (2016)
(dashed), respectively. Runs are plotted after their labels. The color indi-
cates the mode chosen for calculating ⌧cyc: blue for m = 0, red for m = 1.
Prot/Pcyc as function of activity, represented by Emag/Ekin is shown in
panel b. Panel c: comparison between the results presented in this paper,
Lehtinen et al. (2016), and Strugarek et al. (2017). Black circles and tri-
angles denote high resolution and ⇡/2 wedges in our set, respectively.
The gray dots indicate M dwarfs and F and G stars from Brandenburg
et al. (2017).

the direction of the wave, retrograde (R, westward) or prograde
(P, eastward), in the column marked D. A retrograde wave is
moving in the opposite direction with respect to the bulk rota-
tion. Therefore, its period is longer than the rotation period. On
the other hand, a wave moving in the prograde direction has a
shorter period. In most of our cases, we find retrograde ADWs,

Fig. 13. Reconstruction of the m = 1 mode of the magnetic field at the
surface of the star for Runs C3, Ga, Ha, and La at ✓ = +60�. The black
and white line indicates the path due to differential rotation alone.

but there are some cases (Runs J, K1, La, Ma) in which the
behavior is different. Runs J and K1 are characterized by rapid
rotation and a low value of magnetic energy and the ADW has a
smaller amplitude than in the other cases. In Runs Ma, La, and J
the dynamo wave is drifting very slowly2. During the saturated

2 A video of the surface radial magnetic field evolution of
Run La can be found from https://www.youtube.com/watch?v=
2g4r1uanrj4.
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stage, these represent standing waves rather than migratory phe-
nomena (therefore the identifier SW in Table 4). Their almost
insignificant migrations occur in opposite directions with Runs J
and Ma showing prograde migration and Run La exhibiting ret-
rograde migration. In the parameter range included in this study,
the retrograde migration is clearly the dominant regime. The
magnetic cycle does not seem to be related in any way to the
migration period of the ADW.

3.8. Time variation and flip-flop phenomenon

In some cases we find an equatorward migrating oscillatory
magnetic field in the initial stages of the simulation (e.g.,
Runs G and H), see Fig. 11. Later, however, the dominant
dynamo mode changes to a nonaxisymmetric mode soon after
the large-scale field reaches dynamically significant strengths.
This behavior has been found in Käpylä et al. (2013), where
the ⇡/2 and 2⇡ versions of Run F1 have been compared. Thus,
we conclude that a reduced � extent significantly changes the
behavior of the dynamo by suppressing the large-scale nonax-
isymmetric modes (m = 1, 2, 3). Also, we observe that for cyclic
solutions to emerge in ⇡/2 wedges, we require a generally higher
Coriolis number than in runs with full azimuthal extents.

Time variations are also seen in the cases of nearly purely
nonaxisymmetric solutions; one such example is the high-
resolution Run La. The magnetic field in this run forms two
active longitudes that remain fixed on the stellar surface, hav-
ing opposite polarities in each hemisphere, but exhibiting a
quadrupolar symmetry with respect to the equator. The weak
axisymmetric component also exhibits time variability, as can
be seen from the butterfly diagram plotted in Fig. 11. Both the
axi- and nonaxisymmetric components develop time variabil-
ity over a similar timescale of roughly three years. The strength
of the active longitudes is modulated on this timescale in such
a way that those in the same hemisphere grow simultaneously
(see Figs. 13 and 14) while those on the opposite hemisphere
decay, followed by a reversed behavior (see Fig. 14). However,
there are no clear polarity reversals that could be related to this
time variation. In other words, we observe that maximum and
minimum on the same hemisphere never switch in intensity, as
happens in the flip-flop phenomenon (Berdyugina & Tuominen
1998; Hackman et al. 2013). It has been postulated that a polarity
reversal of the active longitudes would happen during a flip-flop
event and would be observable through ZDI (e.g., Carroll et al.
2009; Kochukhov et al. 2013), but the effect of ADWs has never
been considered, making these conclusions uncertain.

To see whether flip-flops can occur in systems in which there
is a competition between the m = 0 and m = 1 modes, we now
analyze Run Ga in detail. As discussed in Sect. 3.7, this run
exhibits an ADW that is migrating in the retrograde direction.
To better see the time evolution of the active longitudes, this
migration has to be removed, as carried out in Fig. 15, lower
panel. After this systematic motion is removed, however, as in
the case of La, the active longitudes are not switching in inten-
sity between maxima and minima, but grow and decay together
on the same hemisphere, while out of phase in the opposite hemi-
sphere. In Run J, producing only a very weak dynamo solution
with almost a standing ADW, a polarity change can, however,
be detected, as is depicted in Fig. 15, upper panel. The active
longitudes are seen to stay nearly fixed in the orbital frame of
reference, and after quasi-regular time points, the polarity of
both reverses quite abruptly. In this case the magnetic field is
clearly subdominant with respect to the velocity field, but never-
theless the advection by the differential rotation explains the time

aFig. 14. Standing dynamo wave of Run La. Lower panel: time variation
of the four regions indicated in the upper panel.

evolution of the active longitudes very poorly. Distinguishing
between such a polarity reversal and the mere migration of the
active longitude poses a challenge to the observations. According
to our models, the migration speeds are always very distinct from
the rotation periods, so any behavior caused by such systematic
movement would appear smooth to a real flip-flop.

4. Conclusions

In this paper, we have performed an extensive study of the effect
of rotation rate on convection-driven spherical dynamos, cover-
ing a range from 1 to 31 times the solar value,⌦�, corresponding
to Co = 1.6 to 127. The dependence of stellar dynamos on rota-
tion speed has been assessed over a range that is much wider
than what has been studied previously. For example, Strugarek
et al. (2017) studied the change of cycle frequency while chang-
ing the rotation rate by a factor of two, resulting in a change
in Co of about a factor of three. We found that, for ⌦ & 1.8⌦�
(Co & 3), nonaxisymmetric modes are excited and ADWs are
present; see Table 5. The most commonly excited configuration
in our models is the m = 1 mode accompanied with an m = 0
mode comparable (for moderate rotation) or subdominant (for
rapid rotation) in strength. The magnetic field near the surface
is symmetric (quadrupolar) with respect to the equator in all
cases with an antisolar differential rotation profile. The axisym-
metric part of the magnetic field is more toroidal at moderate
rotation, while preferentially more poloidal configurations are
indicated from the highest rotation rates studied. In the slow rota-
tion regime with antisolar differential rotation, the solutions are
preferentially axisymmetric and poloidal.

The same pattern over the azimuthal direction can be seen
observationally in the distribution of active longitudes or the
magnetic field geometries of stars with different rotation rates.
Lehtinen et al. (2016) found from time series photometry of
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Fig. 15. Upper panel: flip-flop for Run J. The dashed line is the differen-
tial rotation at ✓ = +45�. Lower panel: same as Fig. 13, but at ✓ = +45�,
for Run Ga. The ADW has been de-migrated to better show the active
longitudes.

Table 5. Summary of the transitions from antisolar-like to solar-like
differential rotation and between predominantly axisymmetric and non-
axisymmetric large-scale fields from observations and our simulations
as a function of increasing Coriolis number.

Transition Observations Simulations
⌦̃ Co ⌦̃ Co

Antisolar/solar-like DR ⇡1 ⇡6 1.8 3
Axi/nonaxisymmetric 3–5 13–25 1.8 3
Return to axisymmetry
(low-res, high Co) 15–22 37–83

Notes. Observations refer to Lehtinen et al. (2016) for the nonaxisym-
metric to axisymmetric transition and to Brandenburg & Giampapa
(2018) for the antisolar-like to solar-like transition using the semi-
empirical ⌧c values from Noyes et al. (1984).

active solar-type stars that there is an onset of active longitudes
at around Co ⇡ 25, corresponding to ⌦̃ ⇡ 4�5. Similarly,
surface magnetic field mapping using ZDI has shown that solar-
type stars have a transition between axisymmetric poloidal and
nonaxisymmetric toroidal field geometries at around Co ⇡ 13
(or Ro = Prot/⌧c ⇡ 1; Donati & Landstreet 2009; See et al.
2016), where ⌧c is the convective turnover time. This split is not
absolute and the rapidly rotating stars can still alternate between
toroidal and poloidal fields (Kochukhov et al. 2013). Moreover,
Rosén et al. (2016) observed that for rapid rotators the degree
of nonaxisymmetry tends to increase toward more poloidal
field geometries. This may indicate a similar behavior as in

the high-resolution models, which develop nonaxisymmetric
poloidal fields at the highest rotation rates. We note here that we
calculate the toroidal and poloidal fields from the axisymmetric
mean field in the whole convection zone, while in observations
the total surface field is used.

The differences in the rotation rates and Coriolis numbers of
the axisymmetric to nonaxisymmetric transition between obser-
vations and simulations may be due to several factors. First,
the criteria for detecting nonaxisymmetric structures may not
be fully comparable between the various studies. Second, the
observational studies use semiempirical values of the convec-
tive turnover time ⌧c while in this study we used the definition
⌧c = 2⇡urms/0.3 R. Lastly, it is worth noting that the simula-
tions do not occupy the same parameter space as real stars.
Furthermore, a different value of Co could just be explained by
a different depth in the star where the dynamo is mainly driven,
as urms has a strong radial dependency. The observations do not
show any indication that the most rapidly rotating stars would
again have axisymmetric fields, as is the case with the low-
resolution runs in this study. The difference in behavior between
high- and low-resolution runs, for which low-resolution runs
turn back to axisymmetric fields and high-resolution runs remain
nonaxisymmetric may simply be a symptom of the inability of
the low-resolution runs to capture sufficiently small scales.

In our set of runs, we found mostly retrograde ADWs in
contrast with observations of solar-like stars that show a prefer-
ence for prograde direction (Lehtinen et al. 2016). The prograde
pattern speeds may be analogous to those seen in the Sun. Its
supergranulation pattern is found to rotate a few percent faster
than the gas at the surface (Gizon et al. 2003). Similarly, mag-
netic tracers including sunspots are seen to rotate faster than the
gas (Pulkkinen & Tuominen 1998). The occurrence of prograde
pattern speeds is theoretically associated with the near-surface
shear layer of the Sun (Green & Kosovichev 2006; Busse 2007;
Brandenburg 2007). Thus, a reason for this discrepancy could be
the fact that we simulate only the stellar convection zone and do
not include the near-surface shear layer, which should lead to a
prograde directed wave.

In the interval 1–1.8⌦�, corresponding to Co = 1.6–2.8, we
find antisolar differential rotation, which is in agreement with
previous studies such as Käpylä et al. (2014) and Gastine et al.
(2014). We do not see any oscillatory behavior of the magnetic
field in the interval Co = 1.6–2.4, whereas close to the transition
from antisolar to solar rotation profiles, at Co = 2.6–2.8, even
systems with antisolar rotation profiles produce clear cycles in
their axisymmetric fields. This seems to be quite a robust finding,
as this behavior persists even when the efficiency of convection
is varied. Cyclic magnetic activity has been seen in giants and
subgiants that are believed to have antisolar differential rotation
profiles (Weber et al. 2005; Kővári et al. 2007; Harutyunyan et al.
2016), which, according to our results, would be possible in a
narrow region near the break point from antisolar (and axisym-
metric) to solar (and nonaxisymmetric) behavior (see Table 5). In
dwarfs, antisolar differential rotation is indicated only indirectly
through the occurrence of enhanced activity at slow rotation for
⌦̃ <⇠ 1 (Brandenburg & Giampapa 2018).

In the rapid rotation regime, both dominantly axisymmetric
and nonaxisymmetric solutions produce time variability of very
different nature, which, however, occurs over similar timescales
and produces similar magnitudes of variations, at least in terms
of the surface magnetic field strength. In the axisymmetric case,
these relate to the latitudinal dynamo wave and are accompanied
by a polarity change. In the majority of the nonaxisymmetric
cases, the time variability relates to the changing activity levels
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of active longitudes on different hemispheres with no associated
polarity change. In one low-resolution case that produces only
a very weak dynamo, we found a solution that also shows flip-
flop type polarity reversals, but this particular parameter regime
needs to be studied with high-resolution runs. The drift period
of the active longitude system in the orbital frame of reference
identified in almost every simulation seem to be decoupled from
the magnetic activity cycle, but together with the variations in the
active longitude strengths can be thought to give rise to an ADW.
Also observationally the occurrence of cycles is not related to
the axisymmetry of the stellar magnetic fields. Activity cycles
are observed on slow and fast rotating stars alike, regardless of
whether they have active longitudes or not (Lehtinen et al. 2016).

Our extensive study of the dependence on rotation rates
allowed us to investigate the existence of activity branches (see
e.g., Saar & Brandenburg 1999; Distefano et al. 2017; Reinhold
et al. 2017). In our Prot/Pcyc versus Co plot, the runs are sep-
arated into two populations: one for the axisymmetric runs at
low Coriolis numbers, whose slope of Co�0.73 seems to be sim-
ilar to that found in the ⇡/2 wedges of Warnecke (2018), the
other at higher Co representing the nonaxisymmetric population,
whose slope of Co�0.50 is close to the superactive branch reported
in Saar & Brandenburg (1999) and whose behavior resembles
that of the transitional branch of Distefano et al. (2017). How-
ever, when comparing to observations, our inactive population
does not match the inactive branch seen in observational studies
(e.g., Noyes et al. 1984; Brandenburg et al. 1998, 2017). A possi-
ble explanation for this discrepancy could reside in the different
ways of calculating ⌧c in observations and simulations. Also, we
do not find any clear separation between active and superactive
branches. Moreover, we studied the behavior of Prot/Pcyc as a
function of magnetic activity (represented, in our case, by the
ratio Emag/Ekin). In this case, the axisymmetric population seems
to have a positive slope, as seen in observations. Anyway, our
sparse sample at low rotation and the inability to reliably com-
pute the chromospheric activity index R0HK from the models do
not allow us to draw any significant conclusion. We also compare
our results with the numerical study of Strugarek et al. (2017). In
contrast with our simulations, their solutions show only axisym-
metric behavior. This, and the fact that in the rotation-activity
plot their results lay close to our models with reduced � extent,
make us believe that the resolution used in this study was not
enough to allow for nonaxisymmetric solutions. We consider this
as a further proof of the importance of using high resolution
when investigating high rotation regimes.

Our results confirm that the scale at which the power spec-
trum of the velocity field peaks shifts to higher values of ` with
increasing rotation speed, indicating the presence of smaller con-
vective cells at rapid rotation (Chandrasekhar 1961). Our results
have also demonstrated that sufficiently high numerical reso-
lution is important for allowing the m = 1 nonaxisymmetric
structure to develop. The wedge assumption in the azimuthal
direction was not found to be a a good assumption for rapidly
rotating stars. First, this assumption suppresses the nonaxisym-
metric modes that emerge close to the solar rotation rate. Second,
there were only indications of oscillatory solutions in earlier
⇡/2 wedges with antisolar rotation profiles (Karak et al. 2015;
Warnecke 2018), while in this study we find clear oscillatory
solutions with many polarity reversals in the runs with full
azimuthal extents. The magnetic structures appearing prefer-
entially at high-latitude regions with more rapid rotation also
put the latitudinal wedge assumption into a question. A bet-
ter modeling strategy for the future are full spherical grids in

which the parameters are chosen so that the models are equally
supercritical in terms of the Rayleigh number.
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Appendix A: Decomposition of the magnetic and velocity field in spherical harmonics
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Fig. A.1. Spherical harmonic reconstruction, using 1  `  10 harmonics (left panel) and 1  `  100 harmonics (middle panel), and original data
of the radial magnetic field (right panel) near the surface (r = 0.98 R) of Run La.

Fig. A.2. Time series of the total radial magnetic energy from decom-
position (in black) and three of the m modes for Run Ha. Blue: m = 0;
red: m = 1; and yellow: small-scale magnetic field.

To investigate the scale dependence of the velocity and magnetic
fields, it is instructive to decompose the solutions into spherical
harmonics. For this purpose, we only use the radial components
of the magnetic and velocity fields, Br and ur, respectively. Those
are related to the respective superpotentials via

Br = L2B, ur = L2U, (A.1)

where L2(·) = � sin�1@✓(sin ✓@✓ ·) � sin�2@2
� is the angular

momentum operator and B and U are the poloidal superpo-
tentials that can be expanded in terms of spherical harmonics
Ym
` (✓, �) as (Krause & Rädler 1980)

U(✓, �) =
`maxX

`=0

X̀

m=�`
Ũm
` Ym
` (✓, �), (A.2)

where Ũm
` are computed as

Ũm
` =

Z 2⇡

0

Z ⇡�✓0

✓0

U(✓, �) Ym ⇤
` (✓, �) sin ✓ d✓ d�, (A.3)

and likewise for B̃m
` . Owing to the absence of magnetic

monopoles, however, there is no contribution to the magnetic
field for ` = 0. In practice, we work directly with the radial
components of velocity and magnetic field, whose transforms are
related to B andU via B̂m

`,r = `(` + 1)B̂m
` and ûm

`,r = `(` + 1)Ûm
` ,

respectively.
While testing the decomposition, we noticed that the large-

scale field features were fairly well described by the first few
modes (0  `  5). Therefore, in order to obtain a complete pic-
ture, we decompose the magnetic and velocity field in the first
eleven spherical harmonics (0  `  10) and consider 0  `  5
and 0  m  5 as the large-scale fields and the rest as small-
scale fields. Throughout this work we use the decomposition for
the radial velocity and magnetic field on a slice at a fixed radial
position of r = 0.98 R.

We illustrate the quality of the reconstruction in Fig. A.1
showing the radial magnetic field from Run La using different
numbers of spherical harmonics. In the left panel, the recon-
struction was obtained using 1  `  10, while in the central
panel, the reconstruction is obtained summing over the first
100 spherical harmonics. The right panel shows the original
data slice. It is clear from Fig. A.1 that lmax = 10 allows us to
capture the main features of the magnetic field and a reasonable
amount of the surface total energy (see, Table 4). We show a
typical time series of various m-mode energies from the surface
radial magnetic field reconstruction of Run Ha in Fig. A.2.
This run is dominated by the m = 1 mode, which shows cyclic
variations over time, and also long-term changes, during which
the axisymmetric modes become comparable to the dominant
mode for a short period of time.
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5 Results

5.2 Stellar dynamos in the transition regime: multiple
dynamo modes and anti-solar di↵erential rotation
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Abstract

Global and semi-global convective dynamo simulations of solar-like stars are known to show a transition from an
antisolar (fast poles, slow equator) to solar-like (fast equator, slow poles) differential rotation (DR) for increasing
rotation rate. The dynamo solutions in the latter regime can exhibit regular cyclic modes, whereas in the former
one, only stationary or temporally irregular solutions have been obtained so far. In this paper we present a semi-
global dynamo simulation in the transition region, exhibiting two coexisting dynamo modes, a cyclic and a
stationary one, both being dynamically significant. We seek to understand how such a dynamo is driven by
analyzing the large-scale flow properties (DR and meridional circulation) together with the turbulent transport
coefficients obtained with the test-field method. Neither an αΩdynamo wave nor an advection-dominated dynamo
are able to explain the cycle period and the propagation direction of the mean magnetic field. Furthermore, we find
that the α effect is comparable or even larger than the Ω effect in generating the toroidal magnetic field, and
therefore, the dynamo seems to be of α2Ω or α2 type. We further find that the effective large-scale flows are
significantly altered by turbulent pumping.

Key words: dynamo – magnetohydrodynamics (MHD)

1. Introduction

Recently, Brandenburg & Giampapa (2018) reported on an
abrupt increase of the magnetic activity level of solar-like stars
with decreasing values of the Coriolis number in the vicinity of
its solar value, with the Coriolis number quantifying the
rotational influence on convection. Another observational study
(Olspert et al. 2018) found that the degree of magnetic
variability abruptly decreases, indicative of the disappearance
of magnetic cycles, at slightly lower than solar chromospheric
activity index values. Moreover, Metcalfe et al. (2016)
interpreted Kepler data to indicate that the Sun is rotationally
and magnetically in a transitional state, where the global
magnetic dynamo is shutting down. Brandenburg & Giampapa
(2018) proposed a transition in the differential rotation (DR)
from solar-like (for younger stars) to antisolar (at a later age) to
be responsible for some of these phenomena.

This transition (henceforth AS–S transition) has already been
the subject of many numerical studies (see, e.g., Gastine et al.
2014; Käpylä et al. 2014; Featherstone & Miesch 2015;
Mabuchi et al. 2015; Viviani et al. 2018), and they all pinpoint
it in a narrow Coriolis number interval around its solar value.
The latter can be estimated, for example, from mixing-length
models to be around two (e.g., Käpylä et al. 2014). However,
none of these works considered dynamo solutions near the
transition point. They either studied the cyclic modes in the
solar-like rotation regime, or the stationary and temporally
irregular ones (Karak et al. 2015; Warnecke 2018) obtained in
the antisolar regime.

In a previous paper (Viviani et al. 2018), we reported on
dynamo simulations of solar-like stars with varying rotation
rate, two of which showed oscillatory behavior in the AS-S
transition. In these simulations, the poleward migration of the
magnetic field is accompanied by a rotation profile exhibiting a
decelerated equator and faster polar regions (antisolar DR). The

aim of the present paper is to study how such transitional–
regime dynamos operate.
In the regime of solar-like DR, cyclic dynamo solutions

with equatorward dynamo waves are often obtained from
global magneto-convection models (e.g., Käpylä et al. 2012;
Augustson et al. 2015; Strugarek et al. 2017). Most of them can
be explained in terms of Parker waves (see, e.g., Warnecke
et al. 2014, 2016, 2018; Käpylä et al. 2016, 2017; Warnecke
2018). The migration direction and cycle period of such waves
is determined by the product of the α effect and the radial
gradient of the local rotation rate Ω (Parker 1955; Yoshimura
1975). For an equatorward-migrating field in the northern
hemisphere (as observed on the Sun), one needs, for example, a
negative radial gradient of Ω and a positive α effect. However,
simplified dynamo models often invoke an advection-
dominated concept (e.g., Choudhuri et al. 1995; Dikpati &
Charbonneau 1999; Küker et al. 2001) to explain the migration
and cyclic behavior of large-scale stellar magnetic fields. In this
case, the meridional flow speed and direction at the location of
the toroidal field generation determine the cycle period and
latitudinal dynamo wave direction.
Another possible mechanism generating cyclic dynamo

solutions is an α2 dynamo (Baryshnikova & Shukurov 1987;
Rädler & Bräuer 1987; Brandenburg 2017). In this case,
magnetic field generation is due to the α effect alone, and DR is
not needed. Such a dynamo was reproduced in forced
turbulence in a spherical shell (Mitra et al. 2010) and
convection simulations in a box (Masada & Sano 2014), but
global convective dynamo models have not yet yielded a
similar solution.
In this work, we will investigate the properties of one

particular transitional–regime dynamo solution, and test which
mechanisms can explain the seen cyclic behavior. To achieve
this goal we will use the test-field method (Schrinner et al.
2005, 2007) for extracting the turbulent transport coefficients.
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This is possible due to the dominance of the axisymmetric
magnetic field allowing us to try a description in terms of
mean-field theory. The test-field method has been successfully
used in previous studies to explain planetary dynamos (e.g.,
Schrinner 2011; Schrinner et al. 2011, 2012), cyclic dynamo
solutions of solar-type stars (Warnecke et al. 2018; Warnecke
2018), and the long-term variations of these solutions (Gent
et al. 2017).

2. Setup and Methods

We use the PENCIL CODE4 to solve the fully compressible
magnetohydrodynamic equations for the velocityU , the density
ρ, the specific entropy s, and the magnetic vector potential A
with the magnetic field �� qB A in a spherical shell
without polar cap, defined in spherical coordinates (r, θ, f) by
0.7R�r�R for the radial extent, with θ0�θ�π−θ0 and
0�f�2π for the extents in colatitude and longitude,
respectively, where θ0=15°. The setup is the same as the
one used in Käpylä et al. (2013) and Viviani et al. (2018). We
impose impenetrable and stress-free boundary conditions at all
radial and latitudinal boundaries for the velocity field U , and a
perfect-conductor boundary condition at the bottom and the
latitudinal boundaries for B, while at the top, the field is forced
to be radial. The temperature follows a blackbody condition at
the top, whereas a constant heat flux is prescribed at the
bottom. At the latitudinal boundaries, zero heat flux is
enforced. We start with an isentropic atmosphere for density
and entropy, see Käpylä et al. (2013) for details. The initial
conditions for the magnetic field and the velocity are weak
Gaussian seeds.

Nondimensional input parameters for the examined run are
the Taylor number, or correspondingly the Ekman number,
defined as

( ( ) ) · ( )O� 8 % � ��rTa 2 Ek 2.03 10 , 10
2 2 2 7

where Ω0 is the overall rotation rate with Ω0/Ωe=1.8 for the
considered run,Δr=0.3R is the thickness of the shell, and ν is
the constant viscosity. Further, we have the thermal, sub-grid
scale (SGS) thermal and magnetic Prandtl numbers, the latter
two describing the unresolved turbulent effects:

( )O
D

O
D

O
I

� � � � � �Pr 58, Pr 2.5, Pr 1. 2
m SGS

SGS
m M

Here, χm is the heat diffusivity calculated in the middle of the
convective zone at rm=0.85R as ( ) ( )D S� K r c rP

m m m , cP
being the specific heat at constant pressure. The radiative heat
conductivity K follows an r−15 dependency to mimic the actual
heat flux profile in the Sun. DSGS

m is the turbulent heat
diffusivity at r=rm (see Käpylä et al. 2013, for details) and η
is the constant magnetic diffusivity.

The nondimensional quantities are scaled to physical units
using the solar radius R=7·108m, solar rotation rate
Ωe= 2.7·10−6s−1, the density at the bottom of the
solar convection zone ρ(0.7R)=ρ0=200kg m−3, and
μ0=4π·10−7Hm−1. The initial density contrast in the
simulation is roughly 30, and the dimensionless luminosity

[ ( ) ] ·S� x �$ L GM R 3.8 100 0
3 2 1 2 5, where L0 is the

luminosity in the simulation, G is the gravitational constant,
and M the mass of the star. This corresponds to an

approximately 106 times higher luminosity than the solar one,
Le, to avoid the acoustic timestep constraint. The rotation rate
is increased correspondingly in proportion to ( ):L L0

1 3, to
obtain a realistic rotational influence on the flow (for further
details see Appendix A of Käpylä et al. 2019).
We indicate by B and U the mean (longitudinally averaged)

fields, and by ab , au the corresponding fluctuating fields, so that,
for example, � � aB B b .
The need to compute turbulent transport coefficients can be

seen from the induction equation for the mean magnetic field, B :

( ) ( )I� � �s
s

� q q � a q a � q q
B

U B u b B
t

. 3

The term � a q a� u b is the turbulent electromotive force
(EMF); it can be expanded in terms of B and its derivatives.
Further, the tensorial coefficients of the individual contribu-
tions can be divided into symmetric and antisymmetric parts
(see, e.g., Krause & Rädler 1980) such that

· ·
· ( ) ( )( )

B H C E
L

� �
�

� � q � q � q q
�

� B B B B
B , 4s

where B and C are symmetric tensors of rank two, H and Eare
vectors, while L is a tensor of rank three with ( )( )�B s being the
symmetric part of the derivative tensor of B . Each of these
coefficients can be related to a physical effect, e.g., B covers
cyclonic generation (α effect), C describes turbulent diffusion, H
represents turbulent pumping. The pumping enters the effective
mean flow, U eff=U +H , (e.g., Kichatinov 1991; Ossendrijver
et al. 2002; Käpylä et al. 2006; Warnecke et al. 2018) and may
thus be crucial in determining the nature of the dynamo.
To determine the turbulent transport coefficients, we

continued one of the transitional–regime dynamo runs from
Viviani et al. (2018), showing a cyclic dynamo solution
(Run C1), with the test-field module of the PENCIL CODE
activated (for its theory, see Schrinner et al. 2005, 2007).

3. Results

The run considered is characterized by the following
nondimensional output parameters: the fluid and magnetic
Reynolds numbers

( )
O I

� � � �
u

k
u

k
Re 41, Re 41, 5

u u

rms
M

rms

and the Coriolis number

( )�
8

�
u k

Co
2

2.8. 6
u

0

rms

Here, ku=2π/Δr≈21/R is an estimate of the wavenumber
of the largest eddies, and the averaged rms velocity is defined
as ( )� � � §R RGu U U3 2 r r trms

2 2 (see Käpylä et al. 2013).
Angle brackets indicate averaging over the coordinate(s) in the
subscript.

3.1. Mean Magnetic Field

The mean magnetic field is prevailingly symmetric about the
equator (quadrupolar) and shows cyclic behavior with pole-
ward-migrating B f, and polarity reversals at mid to high
latitudes (Figure 1(a)). Detailed inspection of the solution
reveals the presence of a cyclic and a stationary constituent, the4 https://github.com/pencil-code/
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latter being 2–2.5 times stronger (in rms values) than
the former. We interpret these as two different, coexisting
dynamo modes, � §B t and � � � §B B B t

cyc , respectively; see
Figures 1(b)–(d) for the toroidal component of B cyc at two
depths, along with its dependence on radius and time at latitude
+50° where it is strongest in rms value. Its topology is similar
throughout the convection zone, and the poleward migration is
present at all depths.

3.2. Mean Flows

We start our analysis by investigating meridional circula-
tion and DR as shown in Figures 2(a)–(c). The former has a
dominant, large, counterclockwise cell, producing a rela-
tively strong (20 m s−1) poleward flow near the surface at
almost all latitudes. There is a slow equatorward return flow
widely distributed in the bulk of the convection zone at mid
to high latitudes. In the slow rotation regime, antisolar DRis
often accompanied by a single cell counterclockwise
meridional circulation. In contrast, in the regime of fast
rotation, solar-like DRdrives multicellular meridional circu-
lation aligned with the rotation axis. The cell pattern in this
run represents a transitional state between these two regimes
(e.g., Käpylä et al. 2014; Featherstone & Miesch 2015; Karak
et al. 2015).

The DR profile shows a decelerated equator and accelerated
polar regions at the surface; hence, it is broadly speaking
antisolar, despite some regions of weakly solar-like DRat the
bottom of the CZ. The pole-equator difference at the surface is

comparable to runs with similar rotational influence (e.g.,
Karak et al. 2015; Warnecke 2018). However, the energy in the
DR compared to the total kinetic energy, neglecting the rigid
rotation, is smaller than in runs with slightly slower and faster
rotation (Viviani et al. 2018). This is most likely because our
run is very close to the actual AS–S transition. In the DR
profile, we find two distinct features: at midlatitudes, there is a
local minimum of Ω, which has also been found in simulations
with about three times faster rotation. In these, the resulting
shear drives a dynamo wave obeying the Parker–Yoshimura
rule (e.g., Warnecke et al. 2014). Furthermore, we find strong
negative shear in a layer near the surface at low latitudes.

3.3. Turbulent Transport Coefficients

Next, we look at the turbulent transport coefficients, for
which we have used a slightly different definition than in
previous work (Schrinner et al. 2007; Warnecke et al. 2018),
see Appendix A for motivation and details. We begin by
discussing B and H , and compare them with their counterparts
from a more rapidly rotating dynamo run with solar-like DR of
Warnecke et al. (2018) in terms of the ratio of their extremal
values. Regarding B(see Figure 3), both αrr and αff are 20%
smaller than in Warnecke et al. (2018), while the meridional
profiles are similar. Furthermore, αθθ is nearly 30% larger and
shows an opposite sign near the surface close to the equator.
The corresponding ratios for the off-diagonal components αrθ,
αθf, and αrf are 1.9, 1.1, and 0.7, respectively. Moreover, αrθ
and αrf show opposite signs at the equator near the surface. We
associate these differences from Warnecke et al. (2018) with
the milder rotational influence on convection, characterized by
the Coriolis number, being roughly three times smaller in our
run. The usage of the new definition of the turbulent transport
coefficients could also have caused some of these differences,
but this influence was checked to be very small by re-
computing the coefficients for Warnecke et al. (2018) using the
new convention. A detailed comparison is shown in Table 1 of
Appendix A.
Concerning the turbulent pumping (see Figure 3), γr has a

similar magnitude, γθ is 40% weaker and γf is 40% stronger
than in Warnecke et al. (2018). Here, too, the new definition
has no significant effect. Note also the different normalization
we used for H . γr is upward everywhere except in the bulk of
the convection zone at mid and high latitudes. γθ is
equatorward (poleward) in the upper (lower) half of the
convection zone. γf is prograde near the surface and at
midlatitudes near the bottom, and negative everywhere else.
The magnitudes of all three components are around 0.3 aurms,
where ( )Ra � � a §Guu r, trms

2 1 2 is the local turbulent rms velocity
in the meridional plane. The effective mean velocity resulting
from H is shown by its time average in Figures 2(e)–(g). The
radial component,Ur

eff , is completely dominated by γr, leaving
nearly no trace of the actual flow. γθ changes the sign of U θ

only slightly below the surface and reduces its magnitude by
around 30%. However, the meridional flow cells are com-
pletely destroyed, as shown by the flow lines in Figure 2(f). γf
is accelerating the equator and decelerating the polar region.
The larger change in Ωeff compared to Warnecke et al.
(2018)is because γf increases with decreasingΩ0.
The reconstruction of the turbulent EMF � based on

Equation (4) shows reasonable agreement with a q au b , see
Appendix C. Therefore, we can confidently use the set of

Figure 1. (a): time–latitude diagram for B f near the surface (r=0.98 R).
(b): analogously for � � � §G G GB B B t

cyc . (c): same as in (b), but at r=0.8R.
(d): time–radius diagram for GB cyc at latitude 50°.
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turbulent transport coefficients to describe the dynamo
processes in this run.

3.4. Dynamo Cycles and Migration

As a first step in determining the possible dynamo
mechanism, we compare the period of the magnetic field cycle
with theoretical expectations. We compute the magnetic cycle
period by Fourier transforming B f at r=0.98R and then
averaging the spectra over latitude. As a result, we get Pcyc=
(3.2±0.3)yr, where the error is obtained from the width at
half maximum.

The two main dynamo scenarios both make predictions for
the dynamo cycle length Pcyc. The Parker–Yoshimura dynamo
period is locally defined as (Parker 1955; Yoshimura 1975)

( )Q
B

R� s 8GG R
�

P
k

r2
2

cos , 7rPY

1 2

where kθ=2π/(rΔθ) is the latitudinal wavenumber of the
dynamo wave with Δθ=π/2−θ0. The justification of using
only αff in Equation (7) is that the other contributions to the
poloidal field generation are smaller.

The cycle period of an advection-dominated dynamo is
related to the travel time of the meridional circulation from the
equator to the pole, τMC, such that PMC≈2 τMC (Küker et al.
2001, 2019). Hence, in our notations, the expected cycle period
can be written as

( ) ( )R
R

�
%

P
r

U r
2

,
8MC

MC

where UMC is the temporal rms5 of the meridional flow at the
location of the dynamo wave. Traditionally, advection-
dominated dynamo models assume the meridional flow and
the resulting migration to be significant near the bottom of the
convection zone, which would correspond to setting r=0.7R,
but in the present case it is not so straightforward to determine
the location of the dynamo wave.
We start by using the measured radial DR in Equation (7), and

meridional flow in Equation (8), and obtain for the averages over
the convection zone � § �RP 2.2 yrrPY and � § �RP 8.2 yrrMC .
Using the meridional circulation in the lower quarter of the
convection zone only, we obtain, instead, � § �E RP 63.8 yr,rMC
where δr goes from 0.7R to R/4. Considering the relevant role of
the turbulent pumping, especially in U r, we also calculated the
periods using the effective velocity, that is adding the
contributions of turbulent pumping to the measured large-scale
flows, obtaining � § �RP 2.0 yrrPY

eff , � § �RP 5.6 yrrMC
eff , and

� § �E RP 22.0 yr.rMC
eff The Parker–Yoshimura periods are less

affected than those from meridional circulation, as the H
contribution is more significant for the meridional circulation
than for the DR. In conclusion, the Parker–Yoshimura periods
are consistent with the measured magnetic cycle, while
advection by meridional flow cannot explain it.
If the mean magnetic field was advected by the meridional

flow or its effective counterpart, one would not be able to
explain poleward migration virtually everywhere within the
convection zone. This becomes evident from Figures 2(b) and

Figure 2. Time-averaged radial (a) and latitudinal (b) components of the meridional circulation (U r,U θ, 0), (c) mean angular velocity Ω=U f/r sin θ+Ω0 and (d)
temporal rms value of the azimuthal component of the cyclic magnetic field B f

cyc. (e)–(h): same as (a)–(d), but using the effective mean velocity. Flow lines in (b), (f):
meridional and effective meridional circulation, respectively. Black lines in (c) and (g): Ω/Ω0=1 and Ωeff/Ω0=1, respectively. Arrows in (d), (h): direction of the
Parker–Yoshimura dynamo wave propagation, see Equation (10).

5 We define the temporal rms for a quantity f as � §f t
2 .
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(f), where equatorward flows are present. Whether the
meridional circulation is able to overcome diffusion, can be
assessed by help of the corresponding dynamo number (or
turbulent magnetic Reynolds number)

{ } ( )C� % � § � §R RC r U Tr , 9U r rMC

where Tr {·} indicates the trace. The time-averaged value for
the measured mean and the effective mean flow are 0.2 and 0.6,
respectively. Values below unity imply that the (effective) flow
cannot overcome diffusion, not even with H included; there-
fore, the advection-dominated dynamo scenario is not applic-
able here. However, the obtained values indicate that the
meridional circulation may not be completely negligible in the
magnetic evolution.

The prediction for the Parker–Yoshimura wave propagation
direction given by (Yoshimura 1975)

( ) ˆ ( )Y R B �� � q 8GG Ger, , 10

is depicted in Figures 2(d) and (h) for the shear from Ω and
Ωeff, respectively. Near the bottom of the convection zone,
where also the cyclic field is strongest, Y is poleward at almost
all latitudes, which would agree with the actual field
propagation. In the bulk of the convection zone, however, the
predicted direction is equatorward, failing to explain the actual
migration. Hence, neither the Parker–Yoshimura dynamo wave

nor the advection-dominated dynamo alone can be responsible
for the oscillating poleward-migrating magnetic field through-
out the convection zone.

3.5. Dynamo Drivers

To understand the failure of the simple dynamo scenarios in
explaining cycles and migration of the field, we finally turn to
computing the terms contributing to the magnetic field
generation in detail. We present the contributions of the Ω
and α effects, that is, of B ·�Ω and �×(B·B ), in terms of
their temporal rms values in Figure 4 employing the total
magnetic field (upper row), and show the corresponding
temporal rms magnetic fields in the lower row. The two
leftmost (rightmost) columns show the generators for the
poloidal (toroidal) magnetic field. From the magnitudes of the
toroidal generators, it is evident that the α effect is equally
important, or even dominant over the Ω effect. Hence, the
generation of the toroidal field by the α effect is more efficient
than by the Ω effect, suggesting an α2Ω or even an α2 dynamo
mechanism for the observed dynamo.
The Ω effect generates toroidal field efficiently at low

latitudes near the surface and at midlatitudes in the bulk of the
convection zone, coinciding with the surroundings of the local
minimum of Ω. The α effect is strongest near the surface, but
shows also toroidal field generation around the local minimum
of Ω. The patches of strong rms toroidal field, however, overlap
only partially with its generators, and its profile is clearly offset
deeper into the convection zone. One reason might be the
radial-field boundary condition, which suppresses any toroidal
field near the surface. The α effect generates poloidal field
mostly at high latitudes at all depths of the convection zone,
although there are also regions of strong field generation close
to the surface near the equator. The high-latitude field generator
profiles match qualitatively better to the rms poloidal field
distribution than to that of the toroidal field, but still the match
is very incomplete.
The mismatch between the generators and the actual field

distribution indicates that our conclusion of the generating
mechanism being a simple α2Ω or α2 dynamo is not a very
solid one, and that other dynamo effects might be at play. For
example, we find that the δ (Rädler) effect may also redound to
the driving of the dynamo. Its contribution, shown in Figure 6
in Appendix A, is significant at midlatitudes near the surface
for the poloidal field (panels a–b) and at the surface at all
latitudes for the toroidal field (panel c). Particularly in the latter
case, the contribution of Eis strong in the same regions as the
α and Ω effects and with roughly the same magnitude.
However, this effect, in its simplest form in a shear flow, is
known to lead to stationary solutions (Brandenburg &
Subramanian 2005). Hence, its role for the oscillatory dynamo
mode is likely to be negligible. How the δ effect contributes to
the magnetic field generation needs to be analyzed in detail
using mean-field simulations.
The study of Warnecke (2018) covers parameter regimes

very close to the one explored here, but all of these solutions
appear to exhibit only stationary or temporally irregular modes.
This draws attention to the role of the wedge assumption used
in that study. There, the computational domain covers only π/2
in azimuth, instead of the full 2πinterval here, being virtually
the only difference between these two studies. Our interpreta-
tion is that there are various dynamo modes excited with very
similar critical dynamo numbers. In terms of dynamo theory,

Figure 3. Independent components of time-averaged B, normalized by
α0= au 3rms , and H , normalized by aurms.
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the coexistence of a steady and an oscillating field constituent
can be understood as follows: sufficiently overcritical flows
enable the growth of more than one dynamo mode. Under the
assumption of steady mean flows and statistically stationary
turbulence, the time dependence of these eigenmodes is
exponential with an, in general, complex increment. It is well
conceivable that a nonoscillating and an oscillating mode are
both excited and even continue to coexist in their nonlinear
stage, although their kinematic growth rates were different.

4. Conclusions

We presented and analyzed a spherical convective dynamo
simulation located in the transitional regime between S and AS
rotation profiles. Unlike the oscillatory or stationary/irregular
dynamos, of the S and AS regimes, the dynamo consists of
coexisting cyclic and stationary modes. Metcalfe et al. (2016)
suggested that the drop in the variability level of stars slightly
less active than the Sun could be the result of a shutdown of the
dynamo. Motivated by our finding of coexisting cyclic and
stationary modes, we rather interpret this drop to be due to a
change in the dynamo type. We tried to explain the oscillating
magnetic field as a Parker–Yoshimura-rule-obeying dynamo
wave or within the advection-dominated framework. Neither of
the two approaches alone can explain the results in terms of
cycle period and migration direction, even if we take the
turbulent contributions to the effective mean flow into account.
One reason might be that the α effect plays here a more
dominant role than in a simple αΩdynamo. Our claim is

validated by the analysis of the field generators shown in
Figure 4: the mean field is generated by cyclonic convection
and DR together, suggestive of an α2Ω or α2 dynamo.
However, the spatial distributions of the generators do not
match very well with those of the mean fields. This likely
indicates that other dynamo effects may also play important
roles, and we find evidence of a significant contribution from
the δ effect. However, mean-field models that take into account
all turbulent effects are needed to address this issue.
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Figure 4. (a)–(d): temporal rms of the components of the α and Ω effect terms. (a), (b): poloidal field generators; (c), (d): toroidal field generators. (e)–(g): temporal
rms values of the components of B .
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Appendix A
Redefinition of the Turbulent Transport Coefficients

A.1. Motivation

As mentioned in Schrinner et al. (2007) and Warnecke et al.
(2018), there is some arbitrariness in deriving the transport
coefficients (see Equation (4)) from the (noncovariant) tensors
ã and b̃ defined by

˜ ˜ ˜ ( )L M R G� � s � s �L LM M LM M LMR R M� a B b B b B r, , , , , 11r r

which form the immediate outcome of the test-field method.
Here, we specify a choice, different from the one employed
earlier (see Schrinner et al. 2007; Warnecke et al. 2018;
Warnecke 2018), and characterized by a maximum of
vanishing components in L. As a consequence, the role of L
in the turbulent EMF � is reduced, while mainly that of C is
enhanced. This is motivated by the difficulty to interpret L
physically, whereas C clearly stands for turbulent dissipation.
As a meaningful side effect, the diagonal elements of the latter
become equal for isotropic turbulence. Furthermore, localized
appearances of negative definite C, which are destructive to
mean-field modeling, become more visible as less of the
diffusive contributions (ideally none) are “hidden” in L. Thus,
removing the negative definiteness in the redefined C has better
prospects to render the mean-field model feasible.

A.2. Decomposition

In Equation (11), the components L̃MGb do not appear as all f
derivatives vanish. They show up in the definitions ofB, C, etc.
though, but setting them arbitrarily cannot change � . Here, we
choose ˜ ˜� �LMG LGMb b , in contrast to Schrinner et al. (2007)
who set ˜ �LMGb 0. Then we arrive at the following expressions
for the transport coefficients, where underlines indicate new or
altered terms in comparison to Schrinner et al. (2007):

˜ ˜ ( )B � � RRa b r 12rr rr r

( ˜ ˜ ( ˜ ˜ ) ) ( )B B� � � � �R R R R R RRRa a b b r
1
2

13r r r r rr

( ˜ ˜ ( ˜ ˜ ˜ ) )
( )

B B R� � � � � �G G G G G GR GRRa a b b b r
1
2

cot

14

r r r r r r r

˜ ˜ ( )B � �RR RR R Ra b r 15r

( ˜ ˜ ( ˜ ˜ ˜ ) )
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2
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2 28rr r r

( ˜ ˜ ) ( )E � � �G G RGRb b
1
2

29r r

˜ ( )L � �b 30irr irr

( ˜ ˜ ) ( )L L� � � �R R R Rb b
1
2

31ir i r ir i r

( )L L� �G G 0 32ir i r

˜ ( )L � �RR RRb 33i i

( )L L� �RG GR 0 34i i

( )L �GG 0. 35i

The results from the new definition are shown in Figure 3 for
B and H and in Figure 5 for the six independent components of
C, the vector E(first three columns), and for the nine
independent nonzero components of L(last three columns).
C, E, and L are normalized by ηt0= aurmsαMLTHp/3, where
αMLT=5/3 is the mixing-length parameter and Hp=−1/∂r
ln p is the pressure scale height. The terms contributing to the
magnetic field evolution from the δ (Rädler) effect, using the
new definition, are shown in Figure 6.
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Appendix B
Comparison of the Turbulent Transport Coefficients to

Warnecke et al. (2018)

We summarize the ratios of the turbulent transport
coefficients from this study and their corresponding values
from Warnecke et al. (2018)in Table 1. Note that all

coefficients except βff and the nonvanishing components of
L are affected by the redefinition explained in Appendix A, and
βrr and βθθ are now twice as large as with the old definition.
The extrema of the βij are between 2.4 and 5 times larger than
the ones in Warnecke et al. (2018), with only βff having the
same order of magnitude, while all the components of Eare

Figure 5. Independent components of time-averaged C and E(first three columns), and the nine independent nonzero components of time-averaged L (last three
columns), normalized by ηt0= aurmsαMLTHp/3.

Figure 6. Temporal rms of the components of the δ (Rädler) effect, �×E×�×B , see Equation (4).
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between 2.4 and 4 times larger. The diagonal components of C
all show positive values throughout the domain, except for a
thin layer near the surface for βθθ. βrθ is positive at high
latitudes and shows a sign reversal at the bottom of the
convection zone at low latitudes. βθf is symmetric about the
equator and changes sign in depth. βrf has a positive layer
outside the tangent cylinder and is near zero everywhere else.

δr changes sign at high latitudes and, with respect to δr in
Warnecke et al. (2018), has the opposite sign at low latitudes
near the surface. Like βrf, δθ has also a positive layer outside
the tangent cylinder, and two negative patches are present,
roughly at the same location as the minimum in Ω. δf is 1.5
times larger than by the old definition.

The L components look, in general, smoother than in
Warnecke et al. (2018). Most of the κijk are now zero, leaving
just nine independent nonzero components. κrrr, κrrθ, κθrθ, and
κrθθ are roughly three times larger, κfθθ and κfrθ have similar
magnitudes, while κθrr and κθθθ are 7 and 6.5 times larger in
the current study, respectively. κrrθ shows sign reversal near the
surface, and κrθθ does not show any particular structure in the
bulk of the convection zone, as was the case in Warnecke et al.
(2018), too. κθrr has strong positive values near the equator in
the upper part of the convection zone, extending to mid-
latitudes, while κθrθ is antisymmetric with respect to the
equator, and has the opposite sign near the surface with respect
to Warnecke et al. (2018). Two sign reversals in depth are
visible in κfrr, and also κfrθ shows three layers in depth: two
narrow negative ones at the top and bottom of the convection
zone and a weakly positive one in the bulk.

WhileB and H do not differ markedly between the compared
runs, the other tensors show variations by up to a factor of
seven compared to Warnecke et al. (2018). Given that the

roughly three-times-higher Coriolis number of their run is
virtually the only relevant difference to our present run, we
have to assign these changes to the effect of rotational
quenching (see, e.g., Kitchatinov et al. 1994). This is supported
by the findings of Brandenburg et al. (2012) for rotating
homogeneous turbulence who report on a reduction of C and E
by a factor of approximately three when Co is increased from
two to eight, with an even stronger reduction in L.

Appendix C
Reconstruction of the Turbulent Electromotive Force

We show in Figure 7 the turbulent EMF, computed directly
via a q au b and its reconstruction using Equation (4) with the
time-averaged transport coefficients and the full B during
roughly five typical dynamo cycles. In the reconstructed and
directly computed EMFs, we have filtered out the time average
and all time-scales shorter than one year to highlight the
oscillating pattern. The spatial and temporal structures of all
components of the reconstructed EMF match the measured
ones reasonably well. In Warnecke et al. (2018), a good match
was found in the mid and high latitudes, while the near-equator
behavior was captured less accurately. However, the time
average was not removed there. Now we find good
correspondence also at the equatorial regions. As in Warnecke
et al. (2018), the magnitudes of the reconstructed EMF
components tend to be overestimated. Here, this effect is most
pronounced for the azimuthal component of the EMF, which is
by a factor of 2.5 larger than the measured one. This can be
interpreted as a consequence of nonlocalities in turbulent
convection, and calls for the application of scale dependent test
fields to the problem.

Table 1
Comparison with Warnecke et al. (2018)

Coeff q Comments Coeff q Comments Coeff q Comments

αrr 0.8 βrr 2.4 κrrr 2.9
αrθ 1.9 opposite sign βrθ 2.5 opposite sign κrrθ 2.3

below surface in deep CZ
αrf 0.7 opposite sign near βrf 2.9 κrθθ 3.5 negative near

equator in upper CZ surface
αθθ 1.2 opposite sign βθθ 4.5 weakly negative layer κθrr 7.0

at surface
αθf 1.1 βθf 5.0 opposite sign κθrθ 3.7 opposite sign

near surface near surface
αff 0.8 βff 1.1 κθθθ 6.5
γr 1.0 δr 4 opposite sign κfrr 1.1 opposite sign

at surface
γθ 0.6 δθ 2.4 κfrθ 1.0 negative layer

at surface
γf 1.4 δf 3.3 κfθθ 1.4

Note. q is the ratio of the respective extremal value from the present study to that of Warnecke et al. (2018).
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5.3 Physically motivated heat conduction treatment in sim-
ulations of solar-like stars: e↵ects on dynamo transi-
tions

This Chapter has been used as a first draft for a paper submitted to A&A in June 2020.

Results from simulations of solar-like stars are at odds with observations in many re-
spects: numerical models show an excess of power at large scales, anti-solar di↵erential
rotation profiles, with accelerated poles, for the solar rotation rate, and a transition to non-
axisymmetric dynamos at a much lower rotation rate than the observed one. Even though
the simulations reproduce the presence of active longitudes in fast rotators, the preferred
migration direction for them is retrograde, instead of the mainly prograde migration direc-
tion seen in observations. The purpose of this study is to try to alleviate the discrepancies
between observations and simulations. We used Kramers opacity law on a semi-global
spherical setup describing convective envelopes of solar-like stars. We detected a shift of
the axi- to non-axisymmetric transition at higher rotation rates and a change in the propa-
gation direction of azimuthal dynamo waves. Also the transition to a solar-like rotational
profile is shifted at higher rotation rate, in contrast to observations.

5.3.1 Introduction

The solar surface di↵erential rotation has been known for a long time (Scheiner 1630,
Carrington 1863): the equator completes a turn in around 25 days, while the poles take
roughly 30 days. Helioseismology inferences have allowed also to uncover the subsur-
face rotation (Schou et al. 1998), and the actual radial di↵erential rotation is weaker than
expected: isorotation contours are inclined in the radial direction, showing that the Sun is
able to break the Taylor-Proudman balance (Chandrasekhar 1961). Simulations of stellar
convection in spherical or semi-spherical shells, though, show cylindrical isocontours for
the di↵erential rotation (e.g., Guerrero et al. 2013, Gastine et al. 2014, Käpylä et al. 2014,
Augustson et al. 2015), implying a strong rotational influence. Latitudinal temperature
variations can break the Taylor-Proudman balance and even a slight di↵erence in temper-
ature between the equator and the poles, of the order of few Kelvin, would be enough
(Rüdiger 1989). This temperature di↵erence is of the same order of magnitude as the
error of current instruments, although Rast et al. (2008) reported on an enhancement of
⇠ 2.5 K at the Sun’s poles. The presence of a weakly subadiabatic layer at the base of
the convection zone has been shown to generate a thermal wind and sustain the neces-
sary temperature gradient in a mean-field hydrodynamic model (Rempel 2005). Another
reason for the inclined contours could be an anisotropic convective heat transport, as in-
vestigated in Kitchatinov and Rüdiger (1995), that would lead to a temperature di↵erence
of ⇠ 4 K. Simulations also show high power at large-scales, while time-distance helio-
seismology (Hanasoge et al. 2012) surprisingly revealed a lack of power at large scales,
where the peak for giant cells should be located. Moreover, simulations are unable to
reproduce an accelerated equator when using the solar rotation rate (Gastine et al. 2014,
Käpylä et al. 2014, Karak et al. 2015). All the above mentioned discrepancies between ob-
servations and numerical models are collectively known as “convective conundrum” (see,
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e.g., O’Mara et al. 2016) and solving it is one of the major challenges of contemporary
solar physics.

Most of nowadays numerical setups are using fixed heat conduction profiles and con-
vection zone (e.g., Brun et al. 2011, Käpylä et al. 2013), based on MLT, developed by
Vitense (1953) and Böhm-Vitense (1958). In its original formulation, MLT predicts con-
vection at the largest possible scale, which would correspond to cells of the diameter of
the entire convective layer. Although MLT-designed setups have been successful in re-
producing the pattern of granulation and supergranulation in surface convection, deeper
convection simulations produce far more power at large scales than observations (Gizon
and Birch 2012).

One proposed explanation is that the actual convectively unstable layer in the Sun, ac-
cording to the Schwarzschild criterion (Chandrasekhar 1961), is shallower than expected.
Scenarios along this line of thought have already been considered: Spruit (1997) de-
scribed cool threads descending from the surface into deeper layers. Such a phenomenon
is known as entropy rain (Brandenburg 2016) and describes surface driven convection,
that would excite only small to mid-scales. By extending MLT to include entropy fluc-
tuations, Brandenburg (2016) identified the presence of a Schwarzschild stable layer in
which the convective flux is still positive. Such a layer was identified first in the Earth’s
atmosphere (Deardor↵ 1961, 1966). Models using Kramers opacity law, as an MLT in-
dependent description for heat flux, have demonstrated such non-local surface driving
of convection in Cartesian (Käpylä et al. 2017, Käpylä 2018) and also spherical geome-
try (Käpylä et al. 2019a,b) both in hydrodynamic setups and including magnetic fields.
Käpylä et al. (2017) found the numerical evidence of this sub-adiabatic, but still convec-
tive, layer (Deardor↵ zone) and consequently redefined the convection zone as the sum of
the convection zone in the traditional sense, now called buoyancy zone, plus the Deardor↵
layer. The simulations in this work also included the presence of an overshoot zone and a
radiative layer at the bottom. The depth of the layers is not determined a priori, but rather
is an outcome of the simulation. The e↵ect of subadiabatic layers in MHD simulations
has been investigated in Käpylä et al. (2019b). The formation of a stably stratified layer
at the bottom of the domain allows for the storage of magnetic field beneath it (see, also,
Browning et al. 2006), but these strong fields may suppress the oscillating magnetic field
at the surface. They also considered the e↵ect of subadiabatic layers on the convective
velocity spectra, but found that the decrease in power at large scales was not enough to
solve the conundrum.

Another solution to the problem of higher convective velocities in simulations, pro-
posed first in a Cartesian domain by Hotta et al. (2015a) and then in full spheres by Karak
et al. (2018), is the feedback e↵ect of the magnetic field on the velocity field through the
Lorentz force. Small-scale dynamo could generate magnetic fields that would suppress
the velocity field, acting, therefore, as an e↵ective viscosity. To mimic this e↵ect, Karak
et al. (2018) increased the e↵ective Prandtl number. Their simulations develop an over-
shoot zone at the base of the domain, and also show a decrease in the convective power
at large scales, due to downward directed plumes. These results, although arising for a
di↵erent reason, are consistent with the results of Käpylä et al. (2017) and Käpylä et al.
(2019b). Another finding of Karak et al. (2018) is that the plumes, carrying their angular
momentum inward, cause the rotation profile to switch to anti-solar.

Observations of fast rotating stars, younger and more active than the Sun, indicate con-

74



5.3 Physically motivated heat conduction treatment in simulations of solar-like stars:
e↵ects on dynamo transitions

centrations of magnetic activity at high latitudes persisting for a long time (e.g., Berdyug-
ina and Tuominen 1998). Such structures are constituted by two activity patches, one
stronger than the other, and are identified as active longitudes (e.g., Jetsu 1996). Active
longitudes usually migrate, forming azimuthal dynamo waves (ADW). The direction of
migration of these structures can follow the plasma rotation, and in this case we will talk
about prograde ADWs; they can also drift in the opposite direction (retrograde ADWs),
or they can stand still with respect to the observer’s point of view (standing ADW). These
ADWs can persist for long periods of time (e.g., Lindborg et al. 2011), or their appear-
ance can be more chaotic (e.g., Olspert et al. 2015), with a short-lived ADW reappearing
after some time. ADW have been detected on many active stars (e.g., Berdyugina and
Tuominen 1998). Lehtinen et al. (2016) and See et al. (2016) reported on a threshold in
activity, above which stars show active longitudes. In the study of Lehtinen et al. (2016),
the active longitudes are mostly migrating in the prograde direction. The appearance of
active longitudes has been attributed to non-axisymmetric dynamo modes operating in
these stars (Tuominen et al. 2002), in contrast to the axisymmetric dynamo operating in
less active stars. The transition from non-axisymmetric to axisymmetric dynamos has also
been studied numerically (Cole et al. 2014, Viviani et al. 2018), but these studies reported
a majority of retrograde ADWs. Both studies were using prescribed and MLT-motivated
profiles for heat conduction, resulting in a priori fixed depth of the convection zone.

The aim of this paper is to extend the study of Viviani et al. (2018) to include a
dynamically adaptable heat conduction. In order to do this, we use a Kramers opacity
law, as was done in Käpylä et al. (2019b) for semi-spherical wedge simulations. While
wedge simulations exclusively allow to study axisymmetric solutions, our setup will allow
us to study the e↵ect of subadiabatic layers on non-axisymmetric dynamos.

5.3.2 Setup and Model
We apply a similar setup as in Käpylä et al. (2013) and Käpylä et al. (2019b), representing
the outer envelope of solar-like stars, 0.7R  r  R (with R the radius of the star), in a
semi-spherical domain, 0  �  2⇡ and ✓0  ✓  ⇡ � ✓0 (✓0 = 15o). We solve numerically
the system of MHD equations:

Dln⇢
Dt
+ r · U = 0,

DU
Dt
= g � 2⌦0 ⇥ U +

1
⇢

(J ⇥ B � rp + r · 2⌫⇢S) ,

T
Ds
Dt
=

1
⇢

h
�r ·

⇣
Frad + FSGS

⌘
+ µ0⌘J2 � �cool

i
+ 2⌫S2,

@A
@t
= U ⇥ B � µ0⌘J,

(5.1)

where ⇢ and U are the density and the velocity field, g = �GM/r3 is the gravitational ac-
celeration, with G the gravitational constant and M the mass of the star. ⌦0 = ⌦0 (cos ✓,� sin ✓, 0)
is the bulk rotation. J, B and A are the current density, the magnetic field and the vector
potential, respectively, p, ⌫ and µ0 are the pressure, the viscosity, and the magnetic per-
meability in vacuum, while S is the rate-of-strain tensor. Frad and FSGS are the radiative
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and sub-grid scale (SGS) fluxes, expressed by:

Frad = �KrT FSGS = ��SGS⇢Trs0 . (5.2)

K is the radiative heat conductivity and �SGS is the SGS heat di↵usivity, assumed to be
constant. s0 is the fluctuating entropy, s0 = s�hsi✓, where the overbar denotes longitudinal
average and the brackets express averaging over the variable in the subscript. Finally,
�cool is a term acting near the surface and cooling to a reference temperature. Its flux is
expressed as:

Fcool =

Z R

0.7R
�cooldr. (5.3)

The initial velocity and magnetic fields are gaussian seeds. The initial stratification is
isoentropic. The radiative heat conductivity, K, follows Kramers opacity law for free-free
and bound-free transitions (used, also, in Barekat and Brandenburg 2014, Käpylä et al.
2017, Käpylä 2018, Käpylä et al. 2019a,b):

K = K0

 
⇢

⇢0

!2  
T
T0

!13/2

. (5.4)

where ⇢0 and T0 are reference values for density and temperature. The constant K0 is
defined via:

K0 =
L
4⇡

cv (� � 1) (nad + 1) ⇢0
p

GMR,

L = L0

⇢0 (GM)3/2 R1/2
.

(5.5)

L is the normalized luminosity, cV is the specific heat at constant volume, � = cP/cV is the
ratio between the specific heat at constant pressure and cV, and nad = 1.5 is the adiabatic
index.

The velocity field is impenetrable and stress free at all boundaries, while entropy
derivatives are set to zero at ✓ = ✓0 and ✓ = ⇡ � ✓0. The magnetic field is radial at r = R
and a perfect conductor boundary condition is applied at the bottom boundary. At the
latitudinal boundaries, B is tangential, which means:

Ar = A� =
@A✓
@✓
= 0 at ✓ = ✓0 and ✓ = ⇡ � ✓0 (5.6)

Käpylä et al. (2019a) showed that this latitudinal boundary condition does not generate
major di↵erences with respect to the perfect conductor boundary condition used in pre-
vious works (e.g., in Käpylä et al. 2013, Cole et al. 2014, Warnecke et al. 2014, Viviani
et al. 2018).

The simulations are defined by the parameters⌦0, ⌫, µ, �SGS, K0, ⇢0, T0 and the energy
flux at the bottom, Fbot = �K@rT .

Moreover, important non-dimensional input parameters are the magnetic and SGS
Prandtl numbers:

PrM =
⌫

µ
, PrSGS =

⌫

�SGS
, (5.7)

with � = K/cP⇢. Output parameters of the simulations are the Reynolds numbers:

Re =
urms

⌫k f
, Rm =

urms

⌘k f
(5.8)
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with urms =
q

3/2
D
U2

r + U2
✓

E
r✓�t

rms velocity and k f = 2⇡/0.3R the wavenumber of the
largest eddy, corresponding to the radial extent, and the Coriolis number:

Co =
2⌦0

urmsk f
, (5.9)

quantifying the relative importance of rotation and convection.
Physical units are chosen using the solar radius R = 7 · 108 m, the solar angular

velocity ⌦� = 2.7 · 10�6 s�1, the density at the bottom of the solar convection zone ⇢bot =

200 Kg m�3, and the magnetic permeability µ0 = 4⇡ · 10�7 H m�1. We performed our
simulations using the Pencil Code1, a high-order, finite-di↵erence, open source code.

5.3.3 Results
The simulations and their defining parameters are summarized in Table 5.1. Run R1 cor-
responds to Run C3 of Viviani et al. (2018), where we changed the heat conductivity
description. We wanted to check the e↵ect of more physical treatment for heat con-
duction on the anti-solar to solar-like di↵erential rotation transition and the transition to
non-axisymmetric magnetic fields. Run C3 was the slowest simulation showing both ac-
celerated equator and non-axisymmetric magnetic field. We investigate the e↵ect of the
Kramers opacity law on this same setup in Run R1. Run R2 is the extension to 2⇡ of
Run MHD2 of Käpylä et al. (2019b). Wedge simulations covering 1/4 of the full lon-
gitude do not allow for non-axisymmetric solutions to develop, therefore, we extend the
longitudinal domain of Run MHD2 and check whether the topology of the magnetic field
is a↵ected. Run R3 has the same setup as Run R2, but twice the rotation rate. Simulations
in the same rotation range, but with fixed heat conduction profiles (e.g., Viviani et al.
2018), show a clear predominance of the non-axisymmetric mode over the axisymmetric
one.

Run ⌦[⌦�] PrSGS PrM Re Rm Co rBZ rDZ rOZ
R1 1.8 0.33 1.0 32 32 2.7(2.1) 0.769 0.767 0.710
R2 3.0 1.0 1.0 29 29 4.2(3.7) 0.773 0.738 0.706
R3 6.0 1.0 1.0 24 24 10.2(8.8) 0.778 0.740 0.710

Table 5.1: Summary of the runs. The values in parenthesis for Co indicate its value
considering the wavenumber of the revised convection zone k f rev = 2⇡/ (R � rDZ) (see,
also, Käpylä et al. 2019b). Last three columns indicate the latitudinally and longitudinally
averaged values for the depths of BZ, DZ and OZ.

We use the revised convection zone structure from Käpylä et al. (2019b), and indicate
the bottom of the di↵erent layers in Figure 5.1 and Figure 5.2. The radial enthalpy flux
is defined as Fenth

r = cp (⇢ur)0 T . The bottom of the buoyancy zone (BZ), in which the
radial enthalpy flux is greater than zero, Fenth

r > 0, and the radial entropy gradient is
negative, @r s < 0, is indicated with a continuous white line. We denote the bottom of
the Deardor↵ layer (DZ), in which Fenth

r > 0 and @r s > 0, by a dashed line, and the
1https://github.com/pencil-code/

77



5 Results

Figure 5.1: Di↵erential rotation profiles. The continuous, dashed and dash-dotted lines
represents, respectively, the bottom boundaries of BZ, DZ and OZ.

bottom of the overshoot zone (OZ), for which Fenth
r < 0 and @r s > 0, with a dash-dotted

line. In the radiative zone (RZ), Fenth
r ⇡ 0 and @r s > 0. The values averaged over

latitude for the depth of the layers are also shown in Table 5.1. We quote two Coriolis
numbers for each simulation. The first one is obtained from Equation (5.9); the second
one, listed in parenthesis in Table 5.1, takes into consideration the wavenumber of the
revised convection zone (buoyancy zone and Deardor↵ zone), therefore we use k f rev =

2⇡/ (R � rDZ), where rDZ is the latitudinally averaged radius of the Deardor↵ layer.

5.3.3.1 Convective states

We show the di↵erential rotation profiles in Figure 5.1. Run R1 corresponds to the simu-
lation with the lowest rotation rate showing an accelerated equator in Viviani et al. (2018),
the rotation profile in that case being quite solar-like. With an adaptable heat conduction
profile the rotation profile is less solar-like (see, Figure 5.1, left panel): the equatorial ac-
celeration becomes less pronounced, the angular velocity contours are more cylindrical,
and additional regions of negative shear appear at mid-latitudes and near the equatorial
region close to the surface. The region of negative shear at mid-latitudes, in many simula-
tions (e.g., Käpylä et al. 2012b, Warnecke et al. 2014), is responsible for the equatorward
propagation of the magnetic field at the surface. In this case, though, the absolute dif-
ferential rotation is smaller, placing this run even closer to the anti-solar to solar-like
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Figure 5.2: Radial Lenth normalized by L0. The arrows show the direction of Lenth. Con-
tinuous, dashed and dash-dotted lines as in Figure 5.1.

di↵erential rotation transition. Hence, the contribution of the di↵erential rotation to the
large scale dynamo generation should be negligible. To assert this, though, a more thor-
ough analysis needs to be performed. In this solution, the layers are rather isotropic in
latitude, with a very thin DZ and a considerable OZ. A thin RZ develops at the bottom.

The rotation profile of Run R2 (Figure 5.1) is solar-like, showing an accelerated equa-
tor. The minimum at mid-latitudes is present, and its location corresponds to a suba-
diabatic region at the surface. A shear layer is present from mid to low latitudes at the
surface. The layers vary more in latitude than in Run R1, with the BZ becoming shallower
close to the tangent cylinder.

The rotation rate of Run R3 corresponds to Run H in Viviani et al. (2018), while
its Coriolis number would correspond to Run Ga in the same setup. It seems to be a
characteristic of the Kramers opacity law to produce higher convective velocities and,
therefore, smaller Co. The rotation profile, shown in Figure 5.1, rightmost panel, closely
resembles that of Run H, with a deep minimum at mid-latitudes, again, as for Run R2,
corresponding to a subadiabatic surface region. A hemispheric asymmetry is present in
the depth of the layers. The DZ is thicker at low latitudes and less isotropic next to the
tangent cylinder.

We also inspect the radial enthalpy flux, Fenth
r , by representing the enthalpy luminosity,

Lenth = 4⇡r2Fenth
r , in Figure 5.2. The enthalpy flux in run R1 is isotropic in latitude and

rather radial everywhere in the BZ, while a weak negative flux in the equatorial region
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(a) R1 (b) R2

Figure 5.3: Azimuthal magnetic field at r = 0.98R for Run R1 and Run R2.

is present in the OZ. A di↵erent situation arises for the two fast rotating runs, where the
convective transport of energy is stronger at low latitudes. A clear equatorial asymmetry
is present in Lenth

r for Run R3. This asymmetry is also reflected in the depth of the BZ,
which becomes shallower just below the equator.

5.3.3.2 Axisymmetric magnetic field

We show the averaged longitudinal magnetic field near the surface, as a function of time,
in Figure 5.3 and upper-left panel of Figure 5.4. Run R1 is characterized by equatori-
ally symmetric magnetic field, with non-migrating negative polarities at low latitudes and
slightly poleward migrating positive field at higher latitudes. A stationary negative field is
present at all times close to the latitudinal boundary. This oscillating magnetic field was
reported also in Viviani et al. (2019) and seems to be characteristic of models transitioning
from solar-like to anti-solar di↵erential rotation.

The equatorial propagation of the oscillating magnetic field in Run R2 is very similar
to that of Run MHD2 in Käpylä et al. (2019b), also showing a similar periodicity of ⇠ 2 yr.
In contrast to Run MHD2, the solution shows a pronounced hemispheric asymmetry, with
a regular cycle in the northern hemisphere and an irregular periodicity in the southern
hemisphere. The latter cycle seems to be longer than the one in the Northern hemisphere.

Run R3 presents two dynamo modes: a high frequency one in the southern hemisphere
and a lower frequency one, with a periodicity similar to Run R2, in the northern hemi-
sphere. By inspecting the magnetic field at di↵erent depths in Figure 5.4, we infer that
the low frequency mode is generated in the OZ, while the high frequency one develops
at a depth 0.80  r  0.85, therefore at the bottom of the BZ. The existence of di↵er-
ent dynamo modes at di↵erent depths has been reported already in other studies (such as
Käpylä et al. 2016, 2019b).

5.3.3.3 Non-axisymmetric magnetic field

We present the results of the decomposition in the first 11 spherical harmonics (0  l,m 
10) in Table 5.2. The decomposition was performed on the radial magnetic field near the
surface of the simulation (r = 0.98R). Run R1 has a dominant axisymmetric large-scale
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(a) R3[0.98R] (b) R3[0.86R]

(c) R3[0.75R]

Figure 5.4: Azimuthal magnetic field for Run R3 at di↵erent depths.

Run Edec
mag,tot Edec

0 Edec
1 Edec

2 Edec
3 Edec

4 Edec
5 Edec

l,m>5

R1 1.4(-2) 4.9(-3) 1.6(-3) 8.2(-4) 7.5(-4) 8.0(-4) 8.5(-4) 4.5(-3)
R2 1.8(-2) 5.4(-3) 8.2(-3) 1.2(-3) 7.5(-4) 5.2(-4) 4.4(-4) 1.0(-3)
R3 5.0(-2) 1.2(-2) 2.6(-2) 3.4(-3) 1.7(-3) 1.2(-3) 1.0(-3) 4.2(-3)

Table 5.2: Magnetic energy from the decomposition in the first 11 spherical harmonics
(0  l,m  10) of the near-surface (r = 0.98R) radial magnetic field. The labels Edec

m
indicate the energy in the corresponding m mode, in units of 105 J m�3. We define 0 
l,m  5 the large scale field. The numbers in parenthesis represent the power of ten.

magnetic field, but also a significant contribution from the small-scale field (l,m > 5).
The strength in the first non-axisymmetric large-scale mode is weak. This is opposite
to the case in Viviani et al. (2018), where the same model with a fixed heat conduction
profile was the slowest rotating one showing a substantial m = 1 component.

Run R2 is in a regime where the axisymmetric and the first non-axisymmetric mode
have comparable strength, and this is reflected in the weak azimuthal dynamo wave in
Figure 5.5, left panel, where we plot the reconstructed m = 1 mode at 45o above the
equator close to the surface as a function of time and longitude. The black-white dashed
line represents the pattern of di↵erential rotation at the same latitude. In the absence
of a dynamo wave, the magnetic field would follow the propagation speed. Instead, in
Figure 5.5, the magnetic field does not fall on the line for most of the time, hence, it has

81



5 Results

Figure 5.5: Azimuthal dynamo wave for Runs R2 and R3 as a function of longitude
and time, at latitude ✓ = +45o and depth r = 0.98R. The black and white dashed line
represents the di↵erential rotation at the same latitude.

its own motion as a wave, travelling in the prograde direction. The weak ADW in the
case of Run R2 is a characteristic of simulations close to the axi- to non-axisymmetric
transition (see, also Viviani et al. 2018). When the energy in the modes m = 0 and m = 1
is comparable, the wave can be a↵ected by the di↵erential rotation and it is advected for
some time intervals (see Figure 5.5, left panel, 0 yr  t  15 yr). ADWs were already
found in other numerical studies (Käpylä et al. 2013, Cole et al. 2014, Viviani et al. 2018),
but their direction was mostly retrograde, in contrast with observational results (see, e.g.,
Lehtinen et al. 2016).

A stronger prograde ADW is also present in Run R3. The wave does not persist at all
times, but there are periods when it disappears. The same behaviour was also observed,
for example, in the temperature maps of the active star II Peg in Lindborg et al. (2011).
We attribute the change in the ADW direction to the di↵erent heat conduction prescription
in these runs.

5.3.4 Conclusions
In this paper we studied the e↵ect of a dynamically adapting heat conduction prescrip-
tion, based on Kramers opacity law, on semi-global MHD simulations. The main aim
was to determine its e↵ect on the two main transitions reported in numerical studies (e.g.,
Gastine et al. 2014, Viviani et al. 2018): the transition from accelerated poles and de-
celerated equator to a solar-like profile, with faster equator, and the transition from an
axisymmetric magnetic field, as in the Sun, to a non-axisymmetric one, found in more
rapid rotators. Previous studies (Viviani et al. 2018) reported these transitions occurring
at the same rotation rate, in contrast with the current interpretation of observations. The
fact that simulations usually produce anti-solar di↵erential rotation for the solar rotation
rate could indicate that the Sun is in a transitional regime (e.g., Käpylä et al. 2014, Met-
calfe et al. 2016), or it could also mean that simulations still cannot fully capture the right
rotational influence of the Sun. The study of Lehtinen et al. (2016) reported on strong
non-axisymmetric fields and, therefore, places an upper limit for the transition to non-
axisymmetric magnetic fields, that could actually happen at lower rotation rates but be
out of range of the current detection methods. The fact that we do not see active longi-
tudes on the Sun (Pelt et al. 2006), though, indicates that these two transitions should not
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be located at the same rotation rate.
In low rotation runs, the rotation profile is significantly a↵ected by the Kramers opac-

ity law and, as a result, solutions with less solar-like characteristics, like an almost rigid
body rotation and a minimum at mid-latitudes, develop. The di↵erent heat conduction
prescription also promotes the formation of a stably stratified layer, rather isotropic in
latitude, in the lower quarter of the domain. For faster rotating runs, the rotation profile is
solar-like, but still maintains the minimum at mid-latitudes, and a latitudinally changing
subadiabatic region is formed near the equator and the surface. Also, the Coriolis number
is lower than in the corresponding cases using fixed profiles for heat conduction.

The convective transport is e�cient, isotropic and almost radial everywhere in the
convective region of Run R1, while is concentrated near the equator for Runs R2 and
R3. Also, the BZ becomes shallower close to the tangent cylinder in the latter two cases.
Run R3 presents a visibly equatorially asymmetric BZ profile.

The large-scale magnetic field is axisymmetric in Run R1, while for Run R2 and
Run R3 the first non-axisymetric mode is dynamically important. Both the fast rotating
runs have a hemispherically asymmetric oscillating magnetic field, with a periodicity of
⇠ 2 years. The strong magnetic field in all the runs originates in the subadiabatic layer.
In Run R3 a high-frequency mode is present in the southern hemisphere. This component
is generated at the bottom boundary of the BZ. This is consistent with previous studies
(e.g., Käpylä et al. 2016), using prescribed profiles for heat conduction. In the latter case,
the high-frequency mode was generated near the surface, while the low-frequency one in
the middle of the CZ.

In the non-axisymmetric runs, ADWs are present: a weak one for Run R2 and a
stronger one for Run R3. In both cases, the direction is prograde, in agreement with
photometric observations (Lehtinen et al. 2016). We remark here that in the previous
numerical study using a prescribed heat conduction profile (Viviani et al. 2018), we found
a preference for retrograde ADWs. The ADWs also show time variations. For Run R2,
the ADW is rather weak and the di↵erential rotation can advect it for some time, changing
the direction of the wave. This could be caused by the comparable relative energies in the
m = 0 and m = 1 modes. In Run R3 the stronger ADW disappears at certain times.
This is also what is observed for active stars (e.g., Lindborg et al. 2011), where the active
longitudes disappear or have the same velocity as the surface rotation.

In the presence of a Kramers opacity law, the flow and the magnetic field are both
a↵ected. The velocity field is more a↵ected near the anti-solar to solar-like di↵eren-
tial rotation transition, but all the runs are still in Taylor-Proudman balance, with almost
cylindrical isocontours. For the same rotation rates, the Coriolis numbers are lowered,
resulting in an anticipated transition to anti-solar di↵erential rotation, in contrast with ob-
servations. The transition to non-axisymmetric magnetic fields is shifted at higher rotation
rates. The direction of the ADW is reverted with respect to previous studies, producing a
better agreement with observations.
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E quindi uscimmo a riveder le stelle.
Dante Alighieri, Inferno, XXXIV, 139, Divina Commedia

In this thesis, we investigated how the dynamo solutions in solar-like stars change
as a function of di↵erent stellar parameters. In Section 5.1, we examined the e↵ect of
rotation. When the rotation rate is increased, the large-scale magnetic field shifts from
an axisymmetric to a non-axisymmetric configuration. The transition is also accompa-
nied by the appearance of azimuthal dynamo waves. This transition had already been
observed for stars more active than the Sun (e.g., Lehtinen et al. 2016), but the numerical
threshold in Co is lower than the one from observations. It has to be said that Lehtinen
et al. (2016) detected highly non-axisymmetric magnetic fields, therefore, their transition
point should be considered as an upper limit. Non-axisymmetric magnetic fields could
be present also in less active stars than reported in Lehtinen et al. (2016), but they may
be more di�cult to detect with the current instrumentation. In our study, however, we
detected non-axisymmetric fields at a too low rotation rate, the first non-axisymmetric
solution being also the first one showing a solar-like rotation profile. This contrasts with
solar observations not showing active longitudes (Pelt et al. 2006). An important aspect
that emerged from Section 5.1 is that su�ciently high resolution is needed in order to
maintain the same degree of supercriticality of convection: at fast rotation, runs with
lower resolution revert to an axisymmetric configuration. Such a transition has not been
observed and, therefore, could be a numerical artifact. Although the non-axisymmetric
solutions fall on the superactive or transitional branch (Saar and Brandenburg 1999, Dis-
tefano et al. 2017) in the rotation-to-cycle-period-ratio versus rotation rate, the behaviour
of the inactive branch is not captured. This seems to be a failure of many numerical mod-
els (for a more complete discussion, see Olspert et al. 2018), thus hinting towards a need
for a revision of the current dynamo paradigms.

In Section 5.2, we analysed, by means of the test-field method, a simulation of the set
of runs in Section 5.1, presenting an unusual combination of oscillating magnetic field
and anti-solar di↵erential rotation. By analysing the turbulent transport coe�cients, we
ruled out the possibility of an ↵⌦ dynamo as the cause of the oscillating field. Instead, the
↵-e↵ect seems to be important in the regeneration of the toroidal field in this case, but also
the �-e↵ect could be relevant. We reported on poleward migrating oscillating magnetic
field for anti-solar di↵erential rotation also in Section 5.3 (Run R1). This combination
of rotational profile and magnetic field configuration, which we found for the first time,
seems to be characteristic of solutions close to the di↵erential rotation transition. Our
results are important in the light of numerical (Gastine et al. 2014, Käpylä et al. 2014)
and observational (Metcalfe et al. 2016) studies suggesting that the Sun could be close
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to switching its rotation profile, and could also hint to a change in the operating dynamo
mode accompanying the change in di↵erential rotation.

As another defining parameter for simulations, we discussed the e↵ect of a heat con-
duction profile depending on density and temperature in Section 5.3. The purpose of this
study was to check if a Kramers opacity law, according to which the heat conductivity
depends on temperature and density, instead of a fixed MLT-motivated profile could help
in alleviating the discrepancies between observations and simulations known as convec-
tive conundrum. We expected an influence on the rotation profile and a more radially
aligned countours of di↵erential rotation profile, but the main di↵erence in the flow was
the more rigid rotation for a simulation close to the transition in di↵erential rotation. Re-
garding the magnetic field, we found that the storage of strong field in the stably stratified
layer leads to a high-latitude, poleward migrating, oscillating magnetic field for the slow
rotating run. For the two runs rotating 3 and 6 times faster than the Sun, we detected
equatorward propagating oscillating fields, found also in previous studies (e.g., Käpylä
et al. 2012b, Warnecke et al. 2014). The dynamo periods do not seem to depend on the
rotation rate, being similar (⇠ 2 yr) in both cases. In the fastest rotating run, a hemispher-
ical high-frequency dynamo mode is present, and its origin seems to be at the bottom of
the buoyancy zone. Also the presence of di↵erent dynamo modes at di↵erent depths is in
agreement with previous studies (e.g., Käpylä et al. 2016, 2019b). We also considered the
e↵ect of Kramers opacity law on the transition to non-axisymmetric magnetic fields. The
transition is moved to a higher rotation rate. The azimuthal dynamo waves move in the
prograde direction, in agreement with the photometric study of Lehtinen et al. (2016).

The transition to non-axisymmetric magnetic fields needs to be studied further in full
spherical models. Our setup without polar caps does not allow for polar concentrations
of magnetic field to develop. These structures are characteristic of active, rapidly rotating
stars, that present a dominant poloidal magnetic field component (see, e.g., See et al.
2016).

In order to better understand the results, additional analysis is required, for example,
through the use of the test-field method. Since this method is based on axisymmetric
averaging procedure, a complete re-design of the method to utilize non-Reynolds rules is
necessary. Such kind of additional analysis of DNS should become customary, so to be
able to interpret and clarify complex simulations.

The existence and the behaviour of stellar activity branches is still enigmatic: if at
the beginning it looked like there were three of them (Inactive, Active and Superactive,
see, Saar and Brandenburg 1999), more recent studies, considering longer time-series,
question the existence of the Active branch (Distefano et al. 2017, Boro Saikia et al.
2018, Olspert et al. 2018). In particular, Olspert et al. (2018) focus their attention on the
persistence of the Inactive branch and its inexplicable (using present theories) positive in-
clination. Indeed, according to mean-field estimates and if the ↵ and the⌦ e↵ects increase
with rotation, the slope of the Inactive branch should be negative, instead of the observed
positive slope. The incapability of numerical models to capture the Inactive branch could
be a consequence of low supercriticality of convection or the lack of shear layers, the
tachocline and also the near surface shear layer. As stated in Chapter 3, the onset of con-
vective instability increases as a function of rotation. This leads to more laminar solutions
at fast rotation, a consequence of which could be the axisymmetric configuration for the
large-scale magnetic field seen in Section 5.1. A better modeling strategy would involve
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keeping the supercriticality fixed by scaling the other parameters, such as viscosity, as
a function of increasing rotation. For less laminar models, the dependence of the cycle
period on rotation could change, moving numerical results closer to observations.

Another issue for which an explanation is lacking is the predicted existence of giant
cells from MLT, while only weak energy at their length scales is observed in heliosiesmic
measurements. An explanation in the form of part of the solar convection zone being sub-
adiabatic, which is not allowed by standard MLT, has been proposed. This could imply
that convection is “driven from above” (Spruit 1997), and there is increasing evidence
that this is the case (e.g., Brandenburg 2016, Käpylä et al. 2017). These studies extended
MLT to include fluctuations in entropy. Recent models used Kramers opacity law (e.g.,
Käpylä et al. 2017), and reproduced the phenomenon of entropy rain described in Bran-
denburg (2016). The velocity spectra in Käpylä et al. (2019b) show less power at large
length scales, but the decrease is not enough to solve the conundrum. Moreover, the shift
to higher rotation rates of the axi- to non-axisymmetric transition found in Section 5.3,
using Kramers law for opacity, is also accompanied by the shift to faster rotation of the
transition in di↵erential rotation, therefore to less realistic scenarios. Hence, prescribing
a heat conduction dynamically adapting to the changes in temperature and density, is not
su�cient to reduce the inconsistencies between numerical models and observational re-
sults. One more extension would be an even more realistic treatment of radiative transfer.

However, we stress again that the simulations are not in the same parameter regime as
stellar convection, using enhanced values for viscosity and di↵usivity, nor will they be in
any foreseeable future. Still, we expect that next generation computers and new comput-
ing paradigms, such as accelerator platforms, allowing for computations with larger mesh
sizes, will bring to a more relevant parameter regime. Thus, hopefully, also asymptotic
behavior, in which the obtained results no longer depend on the mesh size used, will be
reached. In the meantime, extensions (or revisions) of the classical theories of convection
and dynamo seem to be necessary, in order for the next generation of numerical models
to bring about an enhanced understanding of stellar interiors.
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