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Summary 

Tropical low-land rainforests are one of the most diverse ecosystems in the world and provide 

valuable ecosystem services such as climate change mitigation. They are immensely threatened by 

expanding human land-use. Especially in South-East Asia, deforestation and replacement with cash 

crop monoculture plantations such as rubber (Hevea brasiliensis) and oil palm (Elaeis guineensis) 

have led to drastic losses in biodiversity and to ecosystem degradation. Recently, the research focus 

has increasingly extended to belowground demonstrating strong structuring effects of human land-

use on soil microbial communities. Fungi fulfill various ecological functions and their interaction with 

plants include efficient degradation of dead plant material (saprotrophs), mutualistic mycorrhizal 

interactions with roots, essential for the nutrient uptake in a majority of land plants, and structuring 

effects on plant communities (pathogens). Thereby, fungi are often tightly associated with the plant 

community as a key group of organisms facilitating the flow of nutrients between the below- and 

aboveground biome. Conversion of tropical lowland rainforests plantations leads to drastic changes 

in fungal community structures. The magnitude of structuring effects by changes in root or soil 

properties on the composition of trophic groups (mycorrhiza, saprotrophs and pathogens) remains 

unknown. The present thesis, conducted on Sumatra (Indonesia), analyses the structuring effects of 

human land-use in tropical ecosystems on this important group of microorganisms using next 

generation sequencing methods and root and soil properties. The work is structured into three major 

research chapters.  

In the first research chapter, I analyzed the effect of land-use intensity on root associated arbuscular 

mycorrhizal fungi (AM). Anthropogenic land-use severely affects the AM communities in grasslands 

but tropical forest transformation systems have rarely been studied. I hypothesized that increased 

land-use intensities negatively affect AM abundance and diversity because of impaired plant fungus 

interactions at the roots. I further hypothesized that increases in land-use intensity drive the 

composition of the AM community, causing decline in naturally occurring AM fungi. A land-use 

intensity index (LUI) based on yield, chemical input and plant richness across four major land-use 

systems (forest, jungle rubber, rubber and oil palm plantations) was developed and the effect of LUI 

on AM molecular richness and abundance as well as AM spore abundance and root colonization was 

tested. Indicator species analysis was used to investigate significant associations between AM species 

and land-use types. LUI structured the root associated AM community and negatively affected AM 

diversity and abundance but positively affected AM spore abundance in soil. Distinct land-use types 

harbored distinct AM communities; however, forest harbored a higher number of indicator species. 

In conclusion, land-use intensity strongly altered AM communities across land-use systems reducing 
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specialized OTUs. Extensive management practices may help sustain a diverse and abundant AM 

community. 

Local soil and root associated fungal communities often differ considerably. Likely, this is caused by 

varying magnitude of structuring effects by the plant root community (biotic environmental filter) 

and edaphic conditions (abiotic environmental filter). However, few studies analyzed the effects of 

those environmental drivers on root versus soil associated fungal communities across different land-

use types. In chapter 2, I tested the hypothesis that root associated fungi respond to changes in root 

properties more strongly than to changes in soil properties, due to their strong dependence on the 

root community. In turn, the soil fungal community provides a species pool from which the root 

community is recruited and this pool is structured mainly by changes in soil properties and stochastic 

fluctuations. Shifts of different ecological groups of soil and root inhabiting fungi in response to 

spatial distance as well as changes in soil and root chemistry across different land-use systems (as 

above, including riparian sites) were investigated. Overall, environmental filters had a stronger effect 

on the fungal community composition than geographic distance. Unexpectedly, high turnover and 

low nestedness between local root and soil communities was found. Additionally to a strong 

structuring effect of soil pH, root chemistry, especially root C/N strongly affected the composition of 

the root-associated fungal assemblages, while root vitality also affected shifts in soil-residing fungal 

communities. Root and soil chemistry changes drove divergent turnover of different functional 

groups (saprotroph, mycorrhiza and plant pathoges) in soil and roots. An important novel result was 

that assemblages root associated fungal communities were promoted by changes of root chemistry 

largely independent of the surrounding soil community. Therefore, recovering chemical root traits in 

intensively managed systems may stabilize the fungal communities against human land-use. 

The results of the previous chapters raised the question, whether enrichment of oil palm plantations 

with other tree species can help to reverse the strong structuring effects of human land-use and 

partly recover the mycorrhizal community. To address this question, I analyzed the effect of tree 

species enrichment islands in an intensively managed oil palm plantation on the soil fungal 

community composition. Islands of native tree species (Parkia speciosa, Archidendron pauciflorum, 

Durio zibethinus, Peronema canescens, Shorea leprosula, Dyera polyphylla) were planted in an oil 

palm monoculture and further management was stopped within the islands to allow for natural 

undergrowth succession. After three years of enrichment cultivation, I tested the hypothesis that 

tree enrichment alters the taxonomic and functional soil fungal community composition in 

comparison with that in the soil of intensely managed oil palm plantations. However, no significant 

effects of tree species richness, or presence of individual tree species on the fungal community 

composition were found. A small proportion of community variation (< 10 %) was explained by soil 
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abiotic conditions (N, C/N and P) and the majority of variation remained unexplained. These results 

suggest that abiotic filters as the result of intensively managed land-use constitute a legacy to fungal 

communities, overruling structuring effects of the vegetation on soil fungal communities within the 

first years after stopping management. 

This thesis demonstrated a severe structuring impact of anthropogenic land-use on the fungal 

community structures. Soil abiotic properties were a main driver of fungal community composition in 

roots and soil. For the first time, changes in root chemical traits were linked to changes in the root 

and soil fungal communities. The results of this thesis underpin that the observed community shifts 

may result in loss of ecosystem services such as tree nutrient provision and tree health because of 

impaired AM root colonization. Links between shifts in the fungal community and plant root vitality 

suggest negative plant soil feedbacks driven by fungal community shifts. Strong bottom-up 

regulatory effects by root chemical traits especially on the root associated fungal community was 

demonstrated. However, no structuring effects of three years of plant succession on soil fungal 

communities in a biodiversity enriched oil palm plantations was found. Time series are required to 

investigate long term structuring effects of plant top-down regulation of soil fungal communities and 

the spatial scale at which root traits can affect local soil fungal communities. In summary, this thesis 

provides valuable new insights in the fungal community assembly processes under human land-use 

and highlights important areas of future research. 
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1 General Introduction 

1.1 Land conversion of tropical rainforests in South East Asia 

Tropical evergreen rain forests are the naturally occurring vegetation in regions near the equator 

with monthly mean temperatures from 24 to 30 °C, high annual precipitation (2000 – 4000 mm) and 

very short or absent dry periods (Whitmore, 1998). Large regions of tropical rain forest are located in 

the Amazon Basin of South America, the Congo Basin of Central Africa and the Indo-Malayan 

Archipelago (Olson et al., 2001). Together they make up less than five percent of the earth surface, 

however, harbor nearly two thirds of the world’s flora and fauna diversity with a large proportion 

endemic species (Bierregaard, Lovejoy, Kapos, Santos, & Hutchings, 1992; DeFries, Hansen, Newton, 

& Hansen, 2005; DeFries et al., 2005; Kier et al., 2009). Tropical forest growth makes up roughly 33 % 

of the world’s terrestrial net primary productivity (Field, Behrenfeld, Randerson, & Falkowski, 1998). 

Thereby, tropical forests significantly contribute to the world’s carbon balance and thus, are critical 

for the mitigation of global climate change (Baccini et al., 2012; Bebber & Butt, 2017; Bonan, 2008; 

Mitchard, 2018). Further, the forest’s evapotranspiration can account for up to 50 % of the regional 

rainfall and even actively initiate cloud and wind formation (Wright et al., 2017). Because of their 

enormous biodiversity, high species endemism, and significant contribution to the climate, tropical 

rain forests are of highest nature conservation interest (Brooks et al., 2006; Brooks et al., 2002; 

Freudenberger et al., 2013). Myers et al. (2000) located 9 of the 25 outstanding biodiversity hotspots 

– ecosystems with the worldwide highest proportion of endemic plant and vertebrate species, 

highest species to area ratios and large proportions of habitat loss – in tropical forest ecosystems. 

Human land-use caused these unique and valuable forests to rapidly disappear in the past decades 

(Achard et al., 2002; Gibbs et al., 2010; Laurance, 1999) and due to the world’s population growth 

and increasing demand for resources, deforestation rates are likely to continue (Barlow et al., 2018; 

Taubert et al., 2018; Vieilledent, Grinand, & Vaudry, 2013). This deforestation led to mass species 

extinctions (Alroy, 2017; Barlow et al., 2018; Haddad et al., 2015; Whitmore, 1998), can be linked to 

severe droughts and wildfires (Cochrane, 2003; Zhang et al., 2007), and contributes approximately 10 

% of the man-made climate gas emissions (Achard et al., 2014; Baccini et al., 2012; Csillik, Kumar, 

Mascaro, O’Shea, & Asner, 2019).  

The rain forest of South East Asia makes up roughly 15% of the world’s tropical forests (Estoque et 

al., 2019; Stibig, Achard, Carboni, Raši, & Miettinen, 2014) and includes four of the above noted 

biodiversity hotspots (Myers et al., 2000). In the past decade these South East Asian forests 

experienced the highest deforestation rates, habitat loss, and decline of biodiversity among all 
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tropical rain forest ecosystems (Miettinen, Shi, & Liew, 2011; Sodhi, Koh, Brook, & Ng, 2004; Stibig et 

al., 2014). In particular, Indonesia experienced unprecedented deforestation until today (Estoque et 

al., 2019; Margono, Potapov, Turubanova, Stolle, & Hansen, 2014). Intensive logging of Indonesia’s 

forests started in the mid 20th century and was usually followed by conversion into profitable 

permanent monoculture plantations such as rubber (Hevea brasiliensis) and oil palm (Elaeis 

guineensis) (Drescher et al., 2016; Koh, 2007; Tsujino, Yumoto, Kitamura, Djamaluddin, & Darnaedi, 

2016). Rubber is native to Brazil and was introduced to Indonesia around 1910. The product - natural 

rubber - is harvested from the tree latex, dried and further refined into its elastic form. The material 

found application in wide range of products, particularly in the production of car tires (Priyadarshan, 

2017). Synthetitical alternatives were developed during rubber shortages in World War II, but most 

rubber based products still contain 50 – 100 % natural rubber today (Priyadarshan, 2017). In 

Indonesia, rubber trees were initially planted within natural tree vegetation (“jungle rubber”), 

comprising low-input agroforestry systems (Figure 1.1.1 B). Soon after however, these cultivation 

forms were largely replaced by more productive and less labor intensive rubber monocultures 

(Priyadarshan, 2017, Figure 1.1.1 C). Today Indonesia is the second biggest rubber exporter in the 

world according to data from the Observatory of Economic Complexity (OEC: 

https://oec.world/en/profile/hs92/4001/, April 2020; Simones & Hidalgo, 2011). 

The oil palm (Elaeis guineensis), native to West Africa, is the main species grown for the commercial 

production of palm oil (Corley & Tinker, 2015). The oil content of the fruit’s fleshy mesocarp and 

hardened endocarp is exceptionally high (approximately 85 % and 50 % of dry mass, respectively) 

compared to other oil producing crops (Corley & Tinker, 2015; Dussert et al., 2013). While oil from 

the mesocarp is mainly used in the food industry, the palm kernel oil finds applications in the 

technical industry, cosmetics, and soap (Corley & Tinker, 2015). With an average of 3 (and potentially 

more than 8) tons of fruits per hectar and year, oil palm is the most efficient crop in terms of oil 

productivity per land area and year compared to other crops such as soy, oil seed rape or sunflower 

(Euler, Krishna, Schwarze, Siregar, & Qaim, 2017; Woittiez, van Wijk, Slingerland, van Noordwijk, & 

Giller, 2017). Oil palms were first introduced to Indonesia as early as 1848 and first cultivation efforts 

were made around 1910. However, with interruptions during World War II, South East Asia’s oil palm 

industry only grew slowly until the early 80’s when it experienced a massive boom particularly in 

Malaysia and Indonesia (Corley & Tinker, 2015). In the beginning of the new millennia oil palm 

cultivation was one of the world’s most rapidly expanding agricultural industries (Carrasco, Larrosa, 

Milner-Gulland, & Edwards, 2014; Koh, 2007). Currently, Indonesia is the biggest exporter of palm oil, 

satisfying 55% of the worldwide demand (OEC: https://oec.world/en/profile/hs92/1511/, April 2020, 

Simones & Hidalgo, 2011). Due to the high economic yields in relation to labor input, a significant 

proportion of Indonesia’s arable land was converted to oil palm plantations and has lead to 
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economical upraise of many smallholder farmers (Euler et al., 2017; Euler, Schwarze, Siregar, & Qaim, 

2016; Kubitza, Krishna, Alamsyah, & Qaim, 2018). At the same time, the increasing demand on oil led 

to ongoing conversion of pristine forest into plantations. In fact, palm oil cultivation was one of the 

main drivers of deforestation during the past two decades (Stibig et al., 2014; Vijay, Pimm, Jenkins, & 

Smith, 2016). As a consequence vast areas of Indonesia’s landscape are now dominated by 

intensively managed oil palm monocultures (Figure 1.1.1 D). The clash of environmental destruction 

on the one hand and high yield efficiency, strong demand and economic benefits on the other hand, 

urgently require scientifically advised strategies to guide a sustainable, ecosystem-friendly palm oil 

industry with minimized economic losses. For example, plant diversity enriched agroforestry systems 

could help to mediate the negative ecological effects of oil palm cultivation on the ecosystem (Zemp, 

Ehbrecht, et al., 2019; Zemp, Gérard, et al., 2019). The project for Ecological and Socioeconomic 

Functions of Tropical Lowland Rainforest Transformation Systems (EFForTS) is a German-Indoneasian 

research project with the goal to identify major ecological as well as social and economic 

consequences of palm oil cultivation (https://www.uni-goettingen.de/en/310995.html, April 2020). 

The project includes over 160 researchers from a wide range of disciplines including ecology, 

agriculture, forestry, economics, human geography and cultural anthropology. Research plots 

covering natural rainforest sites as well as common land-use systems (jungle - rubber, rubber and oil 

palm monocultures) were established in 2012 in central Sumatra (Figure 1.1.2). Further, empirical 

field studies are complemented by a large scale field experiment, to test the effect of tree diversity 

enrichment in oil palm plantations on stand structural complexity, multitrophic diversity and 

ecosystem functions (Figure 1.1.2). The study presented here was carried out within the broader 

framework of the EFForTS project. I specifically investigated diversity and composition of fungal 

communities in soil and associated with roots in land-transformation systems and in the tree species 

enrichment experiment. 
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Figure 1.1.1 Impressions from the research sites in October 2016 representing important land-use 
systems on Sumatra (Indonesia): Diverse and structurally rich tropical rain forest (A), extensively 
managed jungle rubber (B), monoculture rubber plantation (C) and monoculture oil palm 
plantation (D). 
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Figure 1.1.2 Location of the research plots of the EFForTS project in Sumatra (a, b), Jambi province 
(c, d) - adapted from Drescher et al. (2016). 

1.2 The root-fungal continuum  

Fungi are heterotrophic, eukaryotic microorganisms. They are present in all soils and play a key role 

in nutrient and carbon flow of terrestrial ecosystems (Frąc, Hannula, Bełka, & Jędryczka, 2018; 

Johnson, Angelard, Sanders, & Kiers, 2013; Rillig, 2004; Tedersoo, Bahram, & Dickie, 2014; van der 

Heijden, Bardgett, & van Straalen, 2008). They exist either as unicellular organisms (yeasts) or as 

microscopic cell filaments (hyphae), which in some species form complex macroscopic structures 

such as fruiting bodies (sporocarp) or large sclerotia (Webster & Weber, 2007). Many species can 

also switch between growth forms and are capable of asexual (anamorph) as well as sexual 

(teleomorph) reproduction (Webster & Weber, 2007). The global fungal species richness remains 

under debate but estimates range from 1.5 to as high as 10 million species (Blackwell, 2011; 

Hawksworth, 1991; Hawksworth & Lücking, 2017; O’Brien, Parrent, Jackson, Moncalvo, & Vilgalys, 

2005). The biology and life style of many species, especially from tropical regions, remains unknown 
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(Fierer, 2017; Nguyen et al., 2016). However, a large proportion of fungal species is interacting with 

plants (Philippot, Raaijmakers, Lemanceau, & van der Putten, 2013; van der Heijden, Dombrowski, & 

Schlaeppi, 2017). Vegetation and fungal communities, including those associated with plant roots are 

often tightly linked (Peay, Baraloto, & Fine, 2013; Rodríguez-Echeverría et al., 2017; Šmilauer, Košnar, 

Kotilínek, & Šmilauerová, 2020; Yang et al., 2019; Yang, Dou, Huang, & An, 2017). Interactions 

between plants and fungi can be classified into broad functional groups (symbiotroph, saprothroph, 

pathotroph) according to their feeding strategy (Nguyen et al., 2016). A majority of soil fungi has a 

saprotrophic live style and can efficiently degrade a vast range of substrates including complex 

organic macromolecules such as lignin or cellulose (Webster & Weber, 2007). Thus, they are a key 

component in degradation of litter and plant roots, regulating carbon flow between atmosphere and 

biosphere and distribute nutrients across the soil biome (Prescott & Grayston, 2013; Six, Frey, Thiet, 

& Batten, 2006; Treseder & Lennon, 2015). Many other fungi are plant pathogens that can cause 

severe diseases and pests. Fungal plant pathogens occur in a multitude of taxonomic clades. They 

range from obligate biotroph to nectrotroph and can be highly host specific or opportunistically 

colonize a wide range of plant species (Fisher et al., 2012; James et al., 2006; Lo Presti et al., 2015; 

Möller & Stukenbrock, 2017). Plant pathogenic fungi can strongly alter the plant community and in 

agricultural systems, including oil palm plantations, they cause severe economic losses (Hushiarian, 

Yusof, & Dutse, 2013; Paterson, 2019; Pilotti, 2005). A third group of important fungi are mycorrhiza. 

Approximately 80 – 90 % of all plant species form a mutualistic symbiosis with mycorrhizal fungi 

(Smith & Read, 2008). These fungi colonize the plant roots and provide their host with mineral 

nutrients, mainly nitrogen and phosphorous, in exchange for carbon. Further they can mitigate 

drought stress and protect the plant roots from pathogens (Egerton-Warburton, Querejeta, & Allen, 

2007; Jung, Martinez-Medina, Lopez-Raez, & Pozo, 2012; Peña, Echeverría, Putten, Freitas, & Moens, 

2006; Smith & Read, 2008). Mycorrhiza can be divided into several groups according to their ecology, 

taxonomy and plant hosts but the two most common ones are ectomycorrhiza and arbuscular 

mycorrhiza (Smith & Read, 2008). While these groups have functional similarities they widely differ in 

their evolutionary origin as well as interaction strategies and morphology (Smith & Read, 2008). 

Ectomycorrhizal fungi (EM) are dominant in boreal and temperate forests commonly associated with 

Fagaceae, Pinaceae and Salicaceae. However, they also occur in tropical forests of South East Asia 

mainly associated with trees specie from Fabaceae and Dipterocarpaceae (Soudzilovskaia et al., 

2019; Steidinger et al., 2019). They grow dense hyphal structures around the roots of their plant 

hosts (mantle) and surround the root cortex cells with an extracellular hyphal network (Hartig net), 

where resource exchange takes place (Smith & Read, 2008). Typically, EM form big mycelial networks 

(extraradical mycelia) in the surrounding soil and litter layer (Agerer, 2001; Smith & Read, 2008). 

Some EM species are host specific while EM plants typically interact with multiple EM fungal species. 
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The interaction most likely evolved multiple times in various saprotrophic clades of Asco- and 

Basidiomycota (Hibbett, Gilbert, & Donoghue, 2000; Tedersoo, May, & Smith, 2010) and a large 

number of EM species exists, compared to the relatively small number of EM forming plant hosts 

(van der Heijden, Martin, Selosse, & Sanders, 2015; Werner & Kiers, 2015). In contrast, arbuscular 

mycorrhizal fungi (AM) are a monophyletic group in the clade of Glomeromycota (Smith & Read, 

2008). All species within this basal group of fungi form an obligate symbiosis with plants. They most 

likely evolved together with the first land plants and a majority of plant species today still form AM 

(Bonfante & Genre, 2008; Selosse, Strullu‐Derrien, Martin, Kamoun, & Kenrick, 2015; Strullu‐Derrien 

et al., 2014). Thus, AM fungi are dominant in all grassland ecosystems, many tropical forests as well 

as in agricultural crop plantations (Smith & Read, 2008; Steidinger et al., 2019). Typically, AM grow as 

extracellular hyphae between the plants cortex cells. At location of interaction they benetrate the 

cortex cell walls and cause invagination of the plasma membrane, forming prominent, multiple 

branched interaction structures (arbuscle) (Smith & Read, 2008). The extraradical mycelia are 

typically restricted to short, single hyphal filament. Many AM species form prominent, thick walled, 

multinucleate spores in the soil (Smith & Read, 2008). Those are frequently used to estimate 

abundance and morphological diversity of AM in soil (Guadarrama & Álvarez-Sánchez, 1999; Johnson 

et al., 2013; Oehl et al., 2010, 2003). Global AM species richness is small compared to the number of 

host plant species and AM show little host specificity as well as low global endemism (Davison, Öpik, 

Daniell, Moora, & Zobel, 2011; Engelmoer & Kiers, 2015). 

The fungal community strongly contributes to plant health and drives plant soil feedbacks 

(Clemmensen et al., 2013; Frąc et al., 2018; García‐Guzmán & Heil, 2014; Lance, Carrino-Kyker, 

Burke, & Burns, 2020; Martin, Selosse, & Sanders, 2015; van der Heijden et al., 2017). Therefore, it is 

important to understand the structuring effects that influence the fungal community assembly. 

Anthropogenic land-use, especially deforestation and conversion to plantations, represents one of 

the strongest ecological gradients worldwide (Newbold et al., 2015) and strongly affects soil 

microbial community composition and functionality (Bachelot et al., 2016; Lauber, Strickland, 

Bradford, & Fierer, 2008; Sepp, Jairus, Vasar, Zobel, & Öpik, 2018; Tian et al., 2017; Vályi, Rillig, & 

Hempel, 2015). In oil palm plantations those changes were associated with reduced AM abundance 

and impaired chemical root traits (Brinkmann et al., 2019, cf. Appendix 1; Sahner et al., 2015). 

Changes in the plant community, increased land-use intensity, and edaphic conditions likely govern 

the shifts of fungal communities between tropical land-use systems; however their relative 

importance in structuring fungal community composition and functionality in tropical land-use 

systems is poorly understood. Furthermore, root associated and soil fungal communities have not 

been studied independently in those systems.  
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1.3 Goals of this thesis 

The present study aims to advance our understanding how tropical land transformation and land-use 

intensity affect the fungal diversity, community composition, and functionality and which 

environmental drivers facilitate these processes. Thereby, this research can help to develop 

sustainable management strategies to boost plant beneficial functions of the soil fungal community. 

This study is divided into three research chapters. 

In the first chapter, the effects of land-use intensity across important land-use systems (rainforest, 

jungle rubber, rubber plantations and oil palm plantations) on the root-associated AM community 

were analyzed. A land-use intensity index (LUI) was calculated for all studied plots and used to test 

the following hypotheses:  

 LUI negatively affects AM diversity and abundance across different land-use systems 

 AM community shifts are driven by LUI and intensive land-use favors generalist AM fungi 

The second chapter compares the relative importance of biotic plant-related and abiotic soil-related 

filters on the assembly of fungal communities in soil and associated with plant roots. Changes of soil 

chemical properties and chemical plant root traits across different land use systems were studied 

and their effects on changes in the soil- and root-associated fungal saprotrophic, pathotrophic and 

mycorrhizal communities were analyzed. The following hypotheses were tested: 

 The root fungal community (RFC) is depending on plant root traits and, therefore, the turn-

over of RFC responds to changes in root properties more strongly than to changes to soil 

properties 

 The soil fungal community (SFC) provides the pool from which the root fungi are recruited; 

the turnover of the SFC is mainly determined by changes in soil properties and stochastic 

fluctuations 

 Assembly processes of all fungal groups are driven by soil chemistry but the community 

structure of saprotrophs, pathogens and mycorrhizal fungi on roots underlie additional, 

divergent controls by root traits. 

Finally, the third chapter addresses the effect of enrichment of an oil palm monoculture with 

indigenous tree species as a management strategy to counteract changes in the soil fungal 

community composition.  

 Tree diversity enrichment and natural plant succession alter soil fungal communities and 

promote the abundance of mycorrhizal fungi in soil 
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 Individual tree host species contribute differently to the taxonomic and functional 

composition of the soil fungal community 
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2 Research Chapters 

2.1 Land-use intensity drives diversity, abundance and 

community composition of arbuscular mycorrhizal fungi 

across tropical land-use systems 

Introduction 

Arbuscular mycorrhizal fungi (Glomeromycota, AM) are the most common mutualistic plant 

symbionts in a majority of terrestrial ecosystems (Smith & Read, 2008). They significantly improve 

plant access to soil nutrients in exchange for carbon and can further elevate plant drought and 

pathogen resistance (Egerton-Warburton, Querejeta, & Allen, 2007; Jung, Martinez-Medina, Lopez-

Raez, & Pozo, 2012; Peña, Echeverría, Putten, Freitas, & Moens, 2006; Smith & Read, 2008). Thus, 

they can promote plant productivity and structure the plant community (Begum et al., 2019; 

Klironomos et al., 2011). Further, they improve the soil structure (Wilson, Rice, Rillig, Springer, & 

Hartnett, 2009) and facilitate a range of fundamental ecosystem processes such as nitrogen, carbon  

and phosphorous cycling (Hodge & Storer, 2015; Treseder, 2016; van der Heijden, Martin, Selosse, & 

Sanders, 2015). Therefore, identifying the processes that drive AM diversity and community 

composition is important to understand changes in plant health and ecosystem nutrient cycling. 

While early studies on the AM community were mostly based on their macrospores in soil 

(Guadarrama & Álvarez-Sánchez, 1999; Johnson, 1993; Oehl et al., 2010, 2003), advancement of next 

generation sequencing methods has enabled a much finer taxonomic resolution of the communities 

and the possibility to investigate basic ecologic concepts (Peay, Kennedy, & Bruns, 2008; van der 

Heijden et al., 2015). Most AM show low global endemism (Davison et al., 2015) and can inhabit a 

wide range of host plants (Engelmoer & Kiers, 2015). However, considerable differences in AM 

communities were found between grassland and forest AM communities on a global scale (Kivlin et 

al. 2011). Because AM inhabit two belowground habitats - plant roots and soil – their communities 

can be structured by soil abiotic drivers (Hazard et al., 2013) as well as vegetation structure and host 

plant identity (Rodríguez-Echeverría et al., 2017; Zobel & Öpik, 2014).  

Human land-use is an important driver of local biodiversity and community composition and can lead 

to biotic homogenization in a wide range of taxa, including the belowground microbiome (Epp 

Schmidt et al., 2017; Gossner et al., 2016; Newbold et al., 2015; Rodrigues et al., 2013, cf. chapter 

2.2). Strong structuring effects of land-use on the AM community composition were frequently 
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demonstrated for crop fields, pastures as well as temperate and savanna grasslands in soil and root 

associated communities (de León, Davison, et al., 2018; Moora et al., 2014; Sepp, Jairus, Vasar, Zobel, 

& Öpik, 2018; Soka & Ritchie, 2018; Tchabi et al., 2008; Vályi, Rillig, & Hempel, 2015a). Molecular AM 

diversity is often reduced in intensively managed sites (Lumini, Orgiazzi, Borriello, Bonfante, & 

Bianciotto, 2010; Moora et al., 2014; Verbruggen, van der Heijden, Weedon, Kowalchuk, & Röling, 

2012; Xiang et al., 2014). However, other studies showed no effects or even elevated AM diversity 

under management (Dai, Bainard, Hamel, Gan, & Lynch, 2013; de León, Davison, et al., 2018; Sepp et 

al., 2018; Vályi et al., 2015). Compositional changes of the AM community were linked with 

management practices like fertilizer input (Borriello, Lumini, Girlanda, Bonfante, & Bianciotto, 2012), 

usage of herbicides (Druille, Omacini, Golluscio, & Cabello, 2013) and mechanical disturbance (de 

Pontes et al., 2017) in agricultural soils.  AM fungi are usually dominant in tropical ecosystems 

(Steidinger et al., 2019) but studies investigating the effect of land transformation on the AM 

community in tropical forest systems are less frequent and the effects of land transformation remain 

understudied. Studies based on soil borne AM spores demonstrated significant compositional AM 

community changes between tropical old growth forests and agroforestry systems as well as 

pastures (Leal, Siqueira, & Stürmer, 2013; Stürmer & Siqueira, 2011). In contrast to those results,  

high resilience against forest slash and burn and conversion to pastures has recently been 

demonstrated for the spore and molecular AM community in soil (Carrillo-Saucedo, Gavito, & 

Siddique, 2018; de León, Neuenkamp, et al., 2018). Thus, further research is required to characterize 

the effects of intensified tropical land-use on AM communities.  

In South East Asia low-land rainforest has often been converted into mixed, disturbed agroforestry 

systems such as jungle rubber or replaced by long rotation monocultures such as oil palm (Elaeis 

guineensis) and rubber (Hevea brasiliensis). This land-use conversion in tropical forest ecosystems is 

responsible for a major proportion of forest loss (Vijay, Pimm, Jenkins, & Smith, 2016). As a 

consequence, the vegetation structure is drastically altered since plantations only harbor a small 

fraction of the natural occurring plant and animal biodiversity (Barnes et al., 2017; Grass et al., 2020; 

Rembold, Mangopo, Tjitrosoedirdjo, & Kreft, 2017). Land transformation also causes severe 

compositional changes in the soil fungal communities with reduced AM abundance (Brinkmann et al., 

2019; Kerfahi, Tripathi, Dong, Go, & Adams, 2016; McGuire et al., 2015). However, responses of soil 

borne and root associated AM communities to ecological drivers can differ because their recource 

allocation to intra- and extraradical structures (such as spores) may change between the soil an root 

habitat compartment (Stevens et al., 2020). For example, in oil palm plantations elevated spore 

abundance but reduced mycorrhizal colonization rates of roots were observed (Sahner et al., 2015). 

Studies investigating the effects of tropical land transformation on the root associated AM 

community are currently lacking. 



 

17 
 

In the present study we used DNA sequencing, AM spore counts and mycorrhizal colonization of 

plant roots to access the root-associated AM diversity, abundance and community composition in 

jungle rubber, rubber and oil palm monocultures in comparison to low-land rainforest in Sumatra 

(Indonesia). We sampled these four land-use systems in two landscapes and in two sampling years 

(2013, 2016). For each land use system per landscape, we calculated a land-use intensity (LUI) index 

following the approach of Blüthgen et al. (2012). LUI incorporates fertilization, herbicide application, 

weeding, and plant diversity. Further, we used indicator species analysis to investigate the habitat 

specificity of AM. We hypothesized that (i) intensively managed sites show lower AM diversity and 

abundance because of a negative influence of LUI on root colonization. (ii) Land-use systems have a 

stronger structuring effect on the AM community than sampling year and landscape. (iii)  The 

number of indicator species is higher in rain forest and jungle rubber than in rubber or oil palm 

plantations because of homogenization effects due to high LUI. 

Material and Methods 

Study area 

The study area was located in the Indonesian province Jambi with a humid tropical climate (mean 

annual temperature 26.7 °C, mean annual precipitation 2235 mm, short dry period usually from July 

to August). Large areas of naturally occurring rain forests in this region were subject to severe logging 

and replaced by rubber (Hevea brasiliensis) and oil palm (Elaeis guineensis) (Margono, Potapov, 

Turubanova, Stolle, & Hansen, 2014; Rembold et al., 2017). Eight research plots (50x50 m) were 

established in each of four land-use systems: Protected rain forest (F), rubber, planted in disturbed 

secondary forest referred to as jungle rubber (J), monocultures of rubber (R) or oil palm (O). Four 

plots of each land-use type were located in each of two landscapes: Sarolangun Regency west of 

Jambi City, here referred to as “Bukit Landscape (B)” and Muaro Jambi Regency, south of Jambi City, 

here referred to as “Harapan Landscape (H)”. Forest plots were located in the “PT Restorasi 

Ekosistem Indonesia” forest restoration project (Muaro Jambi Regency, Harapan landscape) and 

National Park Bukit Duabelas (Sarolangun Regency, Bukit landscape). All plots are located on tropical 

Acrisol soil but Bukit landscape is dominated by clay Acrisol, while Harapan is dominated by loamy 

Acrisol with lower organic carbon and total nitrogen content (Allen, Corre, Tjoa, & Veldkamp, 2015). 

The plots were established in 2012 as part of the long term research project “Ecological and 

Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems” (EFForTS, 

www.uni-goettingen.de/EFForTS). For more detailed descriptions of the investigated sites, including 

geographic locations, climatic variation and vegetation see for example Drescher et al. (2016) and 

Rembold et al. (2017).  
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Root sampling 

Sampling took place in October to November in the years 2013 and 2016 preceding the yearly rainfall 

peaks in central Sumatra (Drescher et al., 2016). Because the plots BJ1, BJ2, and BO1 were replaced 

between the two sampling campaigns, those data were excluded from this study. In each plot three 

5x5 m subplots with a minimum distance of 15 m apart from each other were installed. Within each 

subplot five soil cores (15 cm depth and 4cm diameter) were extracted after removing the surface 

litter. The five cores were pooled, resulting in a total of three samples per plot. Samples were sieved 

(50 x 50 mm mesh), roots were separated from soil and washed. Coarse roots were separated from 

fine roots (<2 mm diameter) and fine roots were immediately freeze dried (VirTis Bench Top K, SP 

Industries, Warminster, USA) and exported to University of Göttingen (Germany) for molecular 

analysis. 

Land-use intensity 

For each land-use system plot a land-use intensity index (LUI) was calculated following the approach 

of (Blüthgen et al., 2012; Sahner, 2016). The index represents the sum of several standardized 

components of LUI. Here we adapted the index originally designed for grasslands to account for four 

components: yield (Y) in tons per ha and year, applied fertilizer (F) in kg per ha and year, applied 

herbicides (H), applied mechanical weeding (W) and plant species richness (S). Vascular plant species 

richness, recorded between 2013 and 2014, for each plot was obtained from Rembold et al. (2017). 

More recent data were not available at the time of this study but we did not assume significant plant 

community change within the plots over the course of two years. Management data (Y, F, H, and W) 

were derived from monthly farmer inquiries between the years 2013 – 2016 provided by the Central 

Scientific Service Group (Z02) of the EFForTS project (www.uni-goettingen.de/en/412114.html) and 

summed for each year. Estimated components can be found in Supplementary Table S 2.1.1. The 

equation for calculating the LUI is provided in Table 2.1.1 and LUI values for each plot for the years 

2013 - 2016 can be found in Supplementary Table S 2.1.2. All components were standardized by 

dividing with its maximum value in each year (y) and landscape (l), thus giving each component a 

value between zero and one (Herzog et al., 2006). For yield, the maximum value of the respective 

crop (c) (rubber or oil palm) was used. Farmers applied a variety of different fertilizers and 

herbicides. Therefore, components F and H were divided into several subcomponents (F1 – F6 and 

H1 – H3), classified according to substance groups. A definition of all components is given in Table 

2.1.1. The sum of applied subcomponents was devided by the number of subcomponents to avoid 

giving higher weight to components with more subcomponents. While farmers stated the 

concentration of applied pesticide [ml / l] in the questionnaires, total amount of applied pesticide 

was oftentimes unknown. Therefore, we counted the yearly number of pesticide applications and 

weighted each count with the given concentration. We also counted the number of occasions when 

http://www.uni-goettingen.de/en/412114.html
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mechanical weeding was applied. LUI components, in particular application of chemicals, are strongly 

depending on the individual financial situation of smallholder farmers as well as current market 

price. Thus, they vary strongly between years (Supplementary Table S 2.1.2). Mean LUI of the years 

2013 and 2014 as well as 2015 and 2016 were therefore used, to better represent overall 

management intensity. Zero management was assumed for all forest plots and therefore, their LUI is 

only defined by plant diversity (Supplementary Table S 2.1.2) 

Table 2.1.1 Equation to calculate land use intensity (LUI) for each plot and specification of 
measured LUI components 

𝐿𝑈𝐼𝑖

=
𝑌𝑖

max  𝑌𝑦,𝑙,𝑐  

+  

 
𝐹1𝑖

max  𝐹1𝑦,𝑙  
+

𝐹2𝑖
max  𝐹2𝑦,𝑙  

+
𝐹3𝑖

max  𝐹3𝑦,𝑙  
+

𝐹4𝑖
max  𝐹4𝑦,𝑙  

+
𝐹5𝑖

max  𝐹5𝑦,𝑙  
+

𝐹6𝑖
max  𝐹6𝑦,𝑙  

 

6

+

 
𝐻1𝑖

max  𝐻1𝑦,𝑙  
+

𝐻2𝑖
max  𝐻2𝑦,𝑙  

+
𝐻3𝑖

max  𝐻3𝑦,𝑙  
 

3
+

𝑊𝑖

max  𝑊𝑦,𝑙  
+  1 −

𝑆𝑖

max  𝑆𝑦,𝑙  
  

    

 Type Unit Specification or Product 

Y Yield kg ha
-1

 y
-1

 Fruit bunches or rubber latex  

F1 Cow manure kg ha
-1

 y
-1

 - 

F2 Urea kg ha
-1

 y
-1

 - 

F3 NPK kg ha
-1

 y
-1

 16 – 16 – 16 or ratio unknown 

F4 Phosphate kg ha
-1

 y
-1

 
Rock phosphate; Triple Super Phosphate (TSP); Super 
phosphate (SP-36) or product specification unknown 

F5 KCl kg ha
-1

 y
-1

 - 

F6 Dolomite kg ha
-1

 y
-1

 CaCO3 (50 – 60 %), MgCO3 (35 – 40 %) 

H1 Gramoxone n applications * conc y
-1

 
Active ingredient: Paraquat, Dichlorid; Company: 
Syngenta (Basel, Switzerland) 

H2 Gylphosate n applications * conc y
-1

 

Active ingredient: Glyphosate;  

Products: Roundup (Bayer, Leverkusen, Germany), 
Babalss 490 SL (Sari Kersna Kimia, Jakarta, Indonsia) or 
unspecified 

H3 Ally n applications * conc y
-1

 
Active ingredient: Methsulfuron – Methyl ; Company: 
DuoPont (Wilmington, USA) 

W weeding n applications y
-1

 mechanical 

S Plant richness per Plot Data from Rembold et al. (2017) 

c = crop, l = landscape, y = year 
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Arbuscular mycorrhizal spores 

Soil samples from each subplot were send to the Institute Pertanian Bogor (Java, Indonesia) to 

analyze the arbuscular mycorrhizal spore abundance. Spores were isolated following the method of 

Gerdemann & Nicolson (1963). In short, 20 g of soil was suspended in 500 ml tap water and stirred 

for 10 minutes. Subsequently, the suspension was passed to three sieves (250 µm, 125 µm and 63 

µm). Sieved material was centrifuged in a 50% water-sucrose solution at 900 x g for 2 minutes. The 

supernatant was rinsed on a 63 µm sieve for 3 minutes and the filtrate was placed on gridded filter 

paper in a 90 mm Petri dish. AM spores were identified by morphologic features and counted under 

a binocular stereomicroscope (Olympus SZ61, Osaka, Japan). Spore counts per plot and sampling year 

are given in Supplementary Table S 2.1.2. 

Arbuscular mycorrhizal colonization rate 

About 25 fine root fragments (length of 1 – 2 cm) were placed in 70 % ethanol (Eppendorf micro tube 

2 ml, Sarstedt, Nümbrecht, Germany) and exported to the University of Göttingen (Germany). The 

root segments were stained following the method of Vierheilig et al. (1998): Washed roots were 

briefly surface dried with tissue paper and subsequently bleached in 2 ml 10 % potassium hydroxide 

solution for 90 min at 90 °C. This step was repeated for very dark pigmented roots, if they were not 

sufficiently bleached after the first step. Subsequently roots were washed and stained in a vinegar-

ink solution (10 % acetic acid, black ink (Sheaffer Skrip, Shelton, USA) and deionized water, 1 : 1 : 8) 

for approximately 45 minutes at room temperature. Superfluous ink solution was washed off with 

deionized water and root fragments of 10 mm length were stored in lacto glycerol (86 % glycerol 

(Carl Roth, Karlsruhe, Germany), 80 % lactic acid (Carl Roth, Karlsruhe, Germany) and deionized 

water, 1 : 1 : 1) up to several weeks. For microscopic analysis, fragments were placed on slides with a 

drop of lacto glycerol and gently pressed with cover slides. Cover slides were sealed with colorless 

nail polish. Three slides containig a total of 10 – 20 root fragments were prepared per sample. To 

determine mycorrhizal colonization of the roots the gridline intersection method was used 

(McGonigle et al. 1990). Slides were placed under a compound microscope (Axio Observer Z.1, Zeiss, 

Jena, Germany) at 400 x magnification and a 100 µm grid was created using the software AxioVision 

LE (Zeiss, Jena, Germany). Presence or absence of AM hyphae, arbuscules and vesicles was recorded 

for 120 - 200 grids per sample. The AM colonization was calculated as: 

𝐴𝑀 𝑐𝑜𝑙𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 [%] =  
𝑐𝑜𝑙𝑜𝑛𝑖𝑧𝑒𝑑 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠
∗ 100 

The AM root colonization data for 2013 were obtained from Sahner et al., (2015). Data for each plot 

and both years are given in Supplementary Table S 2.1.2. 
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Arbuscular mycorrhizal community 

The molecular fungal community was accessed by amplification and sequencing if the fungal internal 

transcript spacer gene region 1 (ITS1). DNA was extracted from freeze dried root material and the 

ITS1 region was amplified using the primers ITS1f-KYO2 (Toju, Tanabe, Yamamoto, & Sato, 2012) and 

ITS2 (White, Bruns, Lee, & Taylor, 1990) with specific overhang adapters for Illumina sequencing 

(Nextera Transposase Adapter sequences, document number 1000000002694 v01, Illumina Inc., San 

Diego, USA). Identical procedures were performed for the 2013 and 2016 samples and the detailed 

reaction protocols are presented in the methods part of chapter 2.2 in this study as well as in Sahner 

(2016).  

MiSeq Illumina sequencing with the MiSeq Reagent Kit v3 (Illumina Inc., San Diego, USA) was 

performed in the Göttingen Genomics Laboratory. Raw sequence reads from the sampling years 

2013 and 2016 were combinded for the bioinformatic processing. The bioinformatic processing 

pipline resulting in the full OTU community matrix is explained in detail in the methods part of 

chapter 2.2. 

The number of reads per OTU of the three subplots was aggregated to represent the plot community 

and only OTUs classified as fungi were retained in the dataset. The OTU table was normalized using 

the gmpr() function of the package GMPR (Chen et al., 2018) in the statistical software R v. 3.6.1 (R 

Core Team, 2019) prior to further analysis.  The normalized community matrix resulted in a total of 

approximately 4.8 million reads with 7003 OTUs (Supplementary Table S 2.1.3). A total of 190,080 

reads (3.96 %) with 550 OTUs (7.85 %) were assigned to Glomeromycota and resulted in the final 

community matrix (Supplementary Table S 2.1.4). For comparative analysis of OTU richness the non-

normalized data were rarified instead, as recommended by Chen et al., (2018). The minimum read 

number of 6099 was chosen and rarefaction was applied using the rrarfy() of the R package vegan 

v.2.5.6 (Oksanen et al., 2019). Approximatley 372,000 reads and 4470 fungal OTUs remained in the 

rarfied dataset (Supplementary Table S 2.1.5). In this data set, 16,702 reads (4.49 %) with 436 OTUs 

(9.75 %) were assigned to Glomeromycota. OTU richness of Glomermycota was calculated from this 

data for each plot (Supplementary Table S 2.1.2). 

Statistical analysis 

All statistical analyses were performed using the statistic software R v.3.6.1 (R Core Team, 2019). 

Effects of land-use systems (forest, junglerubber, rubber, oil palm) on AM richness (OTUs) was tested 

using a generalized linear model (GLM), assuming a negative binomial distribution, as implemented 

by the function glm.nb() from the package MASS (Venables & Ripley, 2002). Landscape (Bukit, 

Harapan) was included as fixed effect. Two separate models were constructed for the years 2013 and 

2016 to avoid pseudo replication. In each model we tested the effect of landscape and land-use on 
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the AM diversity using the Anova() function of the package car (Fox & Weisberg, 2019). P-values < 

0.05 were considered significant. The same models were applied for AM molecular abundance (read 

counts) and AM spore abundance (counts). The effect of land use system on AM mycorrhization in 

roots (colonized vs. non-colonized grid cells) was tested using a GLM with a binomial distribution as 

implemented in the glm() function of the stats package (R Core Team, 2019). Individual effects of 

each land-use system for all models were compared using post-hoc pair wise comparisons as 

implemented in the glht() function of the multcomp package (Hothorn et al. 2008). 

GLMs were constructed to analyze the relation between LUI and AM diversity, abundance, spores as 

well as root mycorrhization. Again, separate models were constructed for the years 2013 and 2016 

and landscape was included as fixed effect in all models. 

Effects of land-use system on the AM community composition was analyzed by calculating pair wise 

Bray-Curtis community dissimilarity and applying non-metric multidimensional scaling (NMDS) as 

implemented in the function metaMDS() of the vegan package (Oksanen et al. 2019). Vegan’s envfit() 

function with 999 permutations was used to test the correlation of LUI with NMDS axis. Permutation 

was restricted to sampling year. Significant effect of land-use system on the community composition 

was tested for both years seperately using PERMANOVA with 999 permutations as implemented in 

vegan’s adonis() function. Permutation was restricted to landscape using the strata argument. 

Association of individual glomeromycete OTUs with land-use systems was visualized using a bipartite 

networks as implemented in the function plotweb() of the bipartite package (Dormann, Fründ, 

Blüthgen, & Gruber, 2009). Networks were plotted for each sampling year separately. Numbers of 

reads per OTU in each land-use system were considered as abundance and only OTUs with a total 

relative abundance > 0.1 % of all AM reads were used. To identify OTUs significantly associated with 

one of the land-use systems, indicator species analysis (Dufrene & Legendre, 1997) was performed, 

using function multipatt() with 9999 permutations as implemented in indicspecies (de Cáceres & 

Legendre, 2009). All p-values were corrected for multiple comparisons using False Discovery Rate 

(Benjamini & Hochberg, 1995). 
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Results 

Rarfied OTU richness ranged from 0 – 99 across all research plots and both sampling times (Table 

2.1.2). We found a roughly tenfold higher abundance of AM reads as well as AM spores in sampling 

year 2016 than in 2013 (Table 2.1.2). However, the effects of land-use systems on OTU richness, 

abundance, AM spore abundance and AM root colonization were similar in both years (Table 2.1.2, 

Figure 2.1.1). AM richness in jungle rubber was similar to that in forest roots (Figure 2.1.1 A, B). The 

roots in rubber plantations showed reduced species richness compared to forest roots in 2013 but no 

significant difference was observed in 2016 (Figure 2.1.1 A, B). AM richness was lower in oil palm 

roots compared to forest roots in both years (Figure 2.1.1 A, B). Similarly, AM abundance was higher 

in forest and jungle rubber roots than in monocultures. Notably, AM abundance was lower in roots of 

oil palm than in roots of rubber plantations (Figure 2.1.1 C, D), a reversed trend was observed in AM 

spore abundances, which were higher in the plantations than in forest soils (Figure 2.1.1 E, F). Fine 

root AM mycorrhization was reduced in oil palm plantations compared to all other land use systems 

(Figure 2.1.1 G, H).  

 

Table 2.1.2 Generalized linear model (GLM) fits for AM richness, abundance (reads), spore counts 
and root colonization (%) in relation to landscape and land-use system using χ² - test. Range of 
measured variables in the sampling years 2013 and 2016 is given. N = sample size, df = degrees of 
freedom, χ² = Chi-square statistic, p = p-value  

  2013  2016 

Response  Predictor N df χ² p range  N df χ² p range 

OTU 

richness 

Landscape 29 1 1.01 0.316 
0 - 67 

 32 1 3.56 0.059 
29 - 99 

land-use 29 3 11.58 0.009  32 3 27.25 <0.001 

OTU 

abundance 

Landscape 29 1 0.02 0.898 0 - 

1616 

 32 1 9.00 0.003 605 - 

13371 land-use 29 3 9.65 0.022  32 3 39.03 <0.001 

AM spores 
Landscape 27 1 0.17 0.685 

3 - 108 
 32 1 0.46 0.498 88 - 

1220 land-use 27 3 54.04 <0.001  32 3 23.16 <0.001 

AM 

colonization 

Landscape 27 1 13.68 <0.001 40 - 93 

% 

 29 1 3.54 0.059 32 – 80 

% land-use 27 3 68.41 <0.001  29 3 437.8 <0.001 
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Figure 2.1.1 OTU richness (A, B), number of reads (C, D), spore numbers (E, F) and mycorrhizal root 
colonization (G, H) of arbuscular mycorrhizal fungi (AM) in the years 2013 (left) and 2016 (right). 
The effect of land-use systems was tested using generalized linear models and significant Tukey 
contrasts of multiple comparisons at p< 0.05 are denoted by letters a - c. 
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Generalized linear models (GLM) were constructed to estimate the effect of LUI on AM richness, 

abundance, spore abundance and root colonization (Table 2.1.3, Figure 2.1.2). GLMs revealed a 

strong negative effect of LUI on AM richness and abundance in both sampling years (Figure 2.1.2 A -

D). Spore abundance was increased with higher LUI (Figure 2.1.2 E, F), while root mycorrhiza 

colonization decreased (Figure 2.1.2 G, H). 

Table 2.1.3 Generalized linear models (GLM) showing the effect of land-use intensity (LUI) and 
plant diversity on arbuscular mycorrhizal fungi OTU richness, abundance, spore abundance and 
root mycorrhization rate. Landscape was included as fixed effect. Coefficient estimates (Est.) 
significantly differing from zero are highlighted. SE = standart error of the estimate, Z = z-score, p = 
p-value  

  2013  2016 

Response  Predictor Est. SE Z p  Est. SE Z p 

OTU 

Richness 

landscape -0.187 0.288 -0.65 0.516  0.109 0.099 1.11 0.268 

LUI -0.337 0.132 -2.85 0.011  -0.203 0.060 -3.37 <0.001 

OTU 

Reads 

landscape 0.059 0.348 0.17 0.865  0.314 0.234 1.34 0.180 

LUI -0.346 0.158 -2.19 0.029  -0.550 0.141 -3.89 <0.001 

Spores Landscape -0.237 0.204 -1.16 0.246  0.222 0.090 1.49 0.135 

LUI 0.392 0.090 4.33 <0.001  0.435 0.435 4.85 <0.001 

Myc. Rate Landscape -0.275 0.091 -3.02 0.003  -0.217 0.041 -5.21 <0.001 

LUI -0.196 0.039 -4.99 < 0.001  -0.365 0.025 -14.48 <0.001 
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Figure 2.1.2 OTU richness (A, B), read abundance (C, D), spore numbers (E, F) and mycorrhizal root 
colonization (G, H) of arbuscular mycorrhizal fungi (AM) in the years 2013 (A,C, E,G) and 2016 
(B,D,F,H) in relation to land-use intensity (LUI). Black lines represent generalized linear model fits 
with 95 % confidence intervals (grey area). 
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We found considerable compositional differences between the AM communities sampled in 2013 

and 2016 (PERMANOVA: pseudo-F1, 58 = 7.85, p < 0.001, R2 = 0.12). However, in both years we found 

strong structuring effects by land-use system on the AM community composition (PERMANOVA – 

2013: pseudo-F3, 23 = 2.804, p < 0.001, R2 = 0.257; 2016: pseudo-F3, 27 = 3.261, p < 0.001, R2 = 0.297). 

The effects were confirmed by ordination of the community data matrix using non-metric 

multidimensional scaling (NMDS). Ordination axes were significantly correlated with LUI (Figure 

2.1.3).  

 

Figure 2.1.3 Non-metric multidimensional scaling (NMDS) of the arbuscular mycorrhizal fungal 
community based on Bray-Curtis dissimilarity. Ellipses represent standard errors from the centroid 
of each land-use system and year. Red arrow denotes the correlation between land-use intensity 
(LUI) and ordination axes. 
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We further investigated the association of individual OTUs with land-use systems to analyze the 

specificity of AM towards undisturbed forests versus intensively managed plantations. Only OTUs 

with a minimum abundance of > 0.1 % of all AM reads per sampling year were included, resulting in 

154 OTUs in 2013 and 133 OTUs in 2016 accounting for 93.1 % and 91.2 % of AM reads, respectively. 

The majority of OTUs were present in all land-use systems (Figure 2.1.4 A, B). However, bipartite 

networks show that the decline in the abundance of AM in plantations and the community 

compositional shift were linked to a decline of OTUs frequently present in forest or extensively 

managed jungle rubber (Figure 2.1.4 C, D). Few OTUs showed increased abundance in plantation 

sites (Figure 2.1.4 C, D).  To test the association of OTUs with a land-use system, we used indicator 

species analysis (Dufrene & Legendre, 1997). Despite the strong overlap of OTU occurrences across 

land-use systems (Figure 2.1.4 A, B) we dected a total of 13 and 36 indicator species in the years 

2013 and 2016, respectively (Table 2.1.4). Seven of those indicators were occurring in both sampling 

years. Notably, we found a higher number of indicators in forest and jungle rubber plots than in 

monoculture plantations (Table 2.1.4, Figure 2.1.4 B, C).  
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Figure 2.1.4 A, B: Number of shared and unique arbuscular mycorrhizal (AM) fungi OTUs in four 
land-use systems forest (F), jungle rubber (J), rubber (R), oil palm (O) in the years 2013 and 2016. C, 
D: Association of individual OTUs with land-use systems. Boxes on the top represent OTUs, while 
boxes on the bottom represent the land-use systems. Box and line width represents the relative 
abundance of OTUs, derived from counts of molecular DNA reads. OTUs significantly associated 
with an individual land-use system according to indicator species analysis are highlighted in the 
respective color sceme. 
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Table 2.1.4 Indicator species found in sampling years 2013 and 2016, associated to respective land-
use systems 

Land-use System ID Year Taxonomy 

forest OTU_000450 2013 Septoglomus 

forest OTU_000842 2013 Glomeraceae 

forest, jungle rubber OTU_001217 2013, 2016 Glomeraceae 

forest OTU_001229 2013 Glomeraceae 

forest OTU_001429 2013, 2016 Glomeromycota 

forest OTU_001672 2013 Glomeraceae 

forest OTU_002914 2013, 2016 Glomeraceae 

forest OTU_003371 2013 Glomeraceae 

forest OTU_007556 2013, 2016 Glomeromycota 

forest OTU_010807 2013 Glomeraceae 

forest OTU_002250 2016 Glomeraceae 

forest OTU_003518 2016 Glomeromycota 

forest OTU_003596 2016 Glomeromycota 

forest OTU_004075 2016 Glomeraceae 

forest OTU_004653 2016 Glomeromycota 

forest OTU_005122 2016 Glomeraceae 

forest OTU_006290 2016 Glomeromycota 

forest OTU_006909 2016 Gigasporaceae 

jungle rubber OTU_000082 2016 Glomeraceae 

jungle rubber OTU_000116 2016 Glomeraceae 

jungle rubber OTU_000257 2016 Glomeraceae 

jungle rubber OTU_000553 2016 Glomeraceae 

jungle rubber OTU_000686 2016 Glomeraceae 

jungle rubber OTU_001398 2016 Glomeraceae 

jungle rubber OTU_001428 2016 Glomeromycota 

jungle rubber OTU_001604 2016 Glomeraceae 

jungle rubber OTU_002242 2016 Glomeromycota 

jungle rubber OTU_002361 2016 Glomeromycota 

jungle rubber OTU_003108 2016 Glomeraceae 

jungle rubber OTU_003415 2016 Glomeraceae 

rubber OTU_000424 2013, 2016 Glomerales 

rubber OTU_000489 2016 Glomeraceae 

rubber OTU_000757 2016 Glomeraceae 

rubber OTU_000784 2016 Glomeraceae 

rubber OTU_000978 2013, 2016 Glomeraceae 

rubber OTU_001629 2016 Glomeraceae 

rubber OTU_002967 2016 Glomeraceae 

rubber OTU_003683 2016 Rhizophagus 

rubber OTU_005332 2016 Acaulospora 

oil palm OTU_001182 2013, 2016 Glomerales 

oil palm OTU_000684 2016 Glomerales 

oil palm OTU_005031 2016 Glomeraceae 

oil palm OTU_007303 2016 Acaulospora 
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Discussion 

In this study for the first time, we comprehensively assess AM diversity and community composition 

in roots across multiple plantation systems and tropical rainforests in Southeast Asia. We show a 

reduction of AM diversity and abundance in monoculture plantations compared to forest and 

extensively managed jungle rubber. In line with studies analyzing the overall soil fungal community 

including Basidio- and Ascomycetes (Brinkmann et al., 2019; Kerfahi et al., 2016; McGuire et al., 

2015), we found distinct community assemblies of root associated AM fungi in all four land use-

systems. We present evidence that the diversity loss and AM community shift is driven by increased 

LUI and show a decline of AM associated with forest habitats, suggesting a favorable selection of few 

generalist species under elevated LUI.  

To analyze the AM community in the present study we used general fungal primers to amplify the 

fungal internal transcript spacer (ITS) marker gene (Schoch et al., 2012). Most studies addressing AM 

communities, use specifically designed primers to amplify the small subunit (SSU) rRNA gene of 

Glomeromycota (Öpik et al. 2010; Kivlin et al. 2011; Öpik et al. 2013). Primers targeting the ITS have 

been critizezed to distorted the true proportional abundance between fungal phyla (Asco-, 

Basidiomycota versus ‘non-dicarya’ such as Glomeromycota; Bellemain et al., 2010; Lindahl et al., 

2013) and a primer bias in our study can thus not be ruled out. However, recent studies, comparing 

primer bias of AM specific and general fungal primers, demonstrate that both were capable in 

detecting general ecological responses of AM communities (Berruti, Desirò, Visentin, Zecca, & 

Bonfante, 2017; Lekberg et al., 2018). In this study we did not address phylogenetic or taxonomic 

aspects of the AM community, for which the used primers are not suited. 

Supporting our initial hypothesis we found reduced AM richness and reduced AM abundance with 

increasing LUI. Oil palm as well as rubber monocultures have a strongly reduced plant richness 

compared to forest or junglerubber (Rembold et al., 2017). However, the decrease in AM richness 

and abundance was stronger in oil palm roots than in the roots of other systems. This finding might 

indicate that management practices, not plant diversity are the main driver for AM richness and 

colonization. In support, no change in AM diversity after clear cutting or slash-and-burn of tropical 

forest was recently demonstrated (de León, Neuenkamp, et al., 2018), suggesting no direct link 

between AM and plant diversiy. Besides plant richness, LUI was linked to fertilizer and herbicide 

inputs in our study. We speculate that elevated fertilizer inputs in the oil plam plots compared to 

other plots in particular drove the AM community. Sheldrake et al. (2018) showed that organic and 

non-organic nutrient addition resulted in reduced richness and abundance of AM in tropical forests. 

Readily available nutrient input by fertilization may cause reduced plant investment in their 
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mycorrhizal partners (Bennett & Bever, 2009; Treseder, 2004) and hence, contribute the observed 

reduction of the AM abundance and diversity in plots with high LUI.   

In line with previous results (Sahner et al., 2015) we observed increased number of spores with 

increased LUI. Fungal spores are not only propagules in soil but in many species additionally serve as 

a resting stage to survive unfavorable conditions (Wyatt, Wösten, & Dijksterhuis, 2013). For example, 

strong correlation between increased pH and AM spore abundance has been observed in temperate 

agricultural soils (Oehl, Laczko, Oberholzer, Jansa, & Egli, 2017). In our study soil pH was increased in 

monoculture plots, especially oil palm (Allen et al., 2015; Brinkmann et al., 2019). Thus, intensive 

land-use and changes in soil chemistry may cause increased AM resting spore production as a 

response to environmental stress. Furthermore, antagonistic fluctuation of AM spore abundance and 

AM root colonization rates have previously been observed in tropical forests (Louis & Lim, 1987), 

thus elevated spore abundance in intensively managed plots might be related to reduced 

colonization. Our findings agree with previous results from tropical regions in the Brazilian 

Amazonas, where higher AM spore abundancse were observed in pastures, crops and agroforestry 

systems compared to pristine forests (Stürmer & Siqueira, 2011). At variance with those results, 

decline of AM spore abundance with intensified land-use was observed in temperate grasslands 

(Oehl et al., 2010; Zhang, Yang, Guo, & Guo, 2016) as well as sub-tropical savannas (Soka & Ritchie, 

2018; Tchabi et al., 2008). Increased spore abundance could also indicate selection of life history 

traits by land-use systems (Sahner et al., 2015) but due to the limited knowledge on taxonomy and 

functional traits of AM OTUs found in this study, answering this question is beyond our scope. 

Experimental studies altering the land-use intensity by e.g. changing amounts of fertilizer input are 

required to identify the drivers of AM spore abundance under land-use conditions. 

To supplement our molecular data we analyzed the mycorrhization rates of the plant root 

community. Our results are in line with previous studies observing negative impact of land-use on 

mycorrhization rates (Li et al. 2007; Sonnemann et al. 2016). However, reduction of AM root 

colonization was not as strong as loss of molecular AM diversity and abundance in our study. Thus, 

we speculate that loss of AM diversity benefits those AM species that are able to successfully 

colonize plant roots under high LUI.  

Regardless of the landscape we found distinct AM community assemblies within all four land-use 

systems. This is in agreement with a multitude of other studies, mainly from grassland habitats, that 

confirm significant differences in the AM community composition between land-use types (Borriello 

et al., 2012; Moora et al., 2014; Oehl et al., 2017; Sepp et al., 2018; Xiang et al., 2014). Furthermore, 

our results show that compositional changes were associated with increased LUI. Community shift 

driven by LUI often causes biotic homogenization due to the loss of specialist species with a narrow 
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ecological niche and replacement by generalists able to successfully colonize disturbed ecosystems 

(Gossner et al., 2016). An alternative possibility is that monocultures could lead to a specialist AM 

community adapted to the available host plant (Vályi et al. 2015). In our study, most OTUs were 

present in all land-use systems and none was exclusively associated with one of the monocultures, 

thus, supporting our hypothesis that LUI, not host specific selection drives AM community 

composition. In line with our observations, host specific selection of AM species was neiter 

demonstrated in roots of various forest trees nor in roots of oil palm and rubber (Edy, 2015). 

Nevertheless, bipartite association networks showed strong abundance shifts of individual OTUs 

across land-use systems. We demonstrated decreasing abundances of multiple OTUs occurring in 

forest and junglerubber plots towards plantation sites, while few OTUs were favored in 

monocultures. Indicator species analysis was used to explore significant associations between land-

use types and AM OTUs (de Cáceres & Legendre, 2009). The analysis predicts the strength of the link 

between a species and a certain habitat and thus, an indicator species can been viewed as a habitat 

specialist (Chai et al., 2019). We found the lowest number of indicator species for intensively 

managed oil palm plantations while a higher number was associated with either junglerubber or 

forest sites. Together these results indicate that LUI impairs the interaction between plants and a 

majority of naturally occurring AM, favouring few ‘generalist’ species and driving homogenization. In 

support, high nutrient input had a strong structuring effect on grassland and crop AM communities, 

overruling plant specific selection mechanisims, detected at low LUI (Gosling et al. 2013; Vályi et al. 

2015). To our knowledge no studies so far addressed the selection of generalist and specialist AM 

fungi in tropical land-use systems, however, a preferred selection of generalist Basidio- and 

Ascomycota in pastures compared to forest was demonstrated in the Amazonas region (Mueller, 

Rodrigues, Nüsslein, & Bohannan, 2016). 

Reduction of diversity and abundance as well as loss of natural occurring AM fungal community can 

significantly affect overall soil health and may cause negative plant soil feedbacks reducing the 

overall plant performance (Frąc, Hannula, Bełka, & Jędryczka, 2018).We show that land use intensity 

is an important driver for land-transformation induced changes in the AM community. Extensive and 

sustainable management therefore is likely to counteract negative effects on the AM community and 

improve overall ecosystem performance in tropical land-use systems. Our research provides valuable 

new knowledge on the assembly and driving mechanisms of AM root communities from currently 

understudied land-use systems.  Experimental manipulation of LUI within the land-use systems by 

e.g. altering fertilizer and pesticide inputs are needed to identify recommendable management 

practices. 
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Supplementary Information 

Supplementary Table S 2.1.1  Components used to estimate the land-use intensity in each plot for 
the years 2013 – 2016. Y = yield [kg ha-1 y-1], W = weeding events, F = fertilizer components [kg ha-1 
y-1], H = herbicide application weighted by applied concentration, S = plant species richness. 
Detailed information on the applied chemicals is given in Table 2.1.1. 

See digital supplement supplTable_S211.xlxs 
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Supplementary Table S 2.1.2 Land-use intensity (LUI) and richness (OTUs), abundance (reads), 
spore abundance and root colonization (%) of arbuscular mycorrhizal fungi (AM) in all plots 

 
LUI  

Mean  
LUI 

 AM richness  
AM 

 abundance 
 

AM  
spores 

 AM colon. 

ID 2013 2014 2015 2016  13-14 15-16  13 16  13 16  13 16  13 16 

BF1 0.067 0.067 0.067 0.067  0.067 0.067  63 77  1562 5371  3 137  83 65 

BF2 0.000 0.000 0.000 0.000  0.000 0.000  44 27  575 643  8 216  88 59 

BF3 0.431 0.431 0.431 0.431  0.431 0.431  32 37  607 1911  6 264  73 54 

BF4 0.360 0.360 0.360 0.360  0.360 0.360  45 30  502 1373  NA 329  NA 53 

BJ3 0.449 0.611 0.878 0.846  0.530 0.862  26 79  359 13070  37 374  78 NA 

BJ4 0.335 0.304 0.297 0.285  0.319 0.291  36 87  579 6632  33 88  58 69 

BJ5 NA NA 0.562 0.460  NA 0.511  NA 69  NA 13224  NA 361  NA 80 

BJ6 NA NA 0.419 0.419  NA 0.419  NA 73  NA 9948  NA 294  NA 71 

BO2 1.245 1.315 1.781 2.733  1.280 2.257  1 30  6 847  85 493  71 43 

BO3 1.892 2.541 3.105 2.268  2.216 2.686  3 38  36 1424  108 627  87 37 

BO4 1.575 1.986 1.506 2.036  1.781 1.771  19 43  378 1221  97 479  71 37 

BO5 NA NA 3.031 2.655  NA 2.843  NA 21  NA 682  NA 379  NA 59 

BR1 2.879 1.723 1.787 0.996  2.301 1.391  21 37  716 5283  96 181  86 53 

BR2 2.835 1.835 1.796 1.835  2.335 1.816  27 68  415 4874  81 337  87 62 

BR3 2.191 2.334 2.156 1.726  2.262 1.941  13 45  477 3723  102 823  77 56 

BR4 0.949 1.084 1.429 1.564  1.017 1.496  8 58  132 3377  105 326  71 71 

HF1 0.010 0.010 0.010 0.010  0.010 0.010  49 88  734 13568  34 366  74 65 

HF2 0.058 0.058 0.058 0.058  0.058 0.058  24 81  642 13585  34 132  70 64 

HF3 0.000 0.000 0.000 0.000  0.000 0.000  15 62  928 10299  32 258  87 58 

HF4 0.144 0.144 0.144 0.144  0.144 0.144  32 60  1401 4488  24 266  78 63 

HJ1 1.059 0.998 0.939 0.888  1.028 0.913  16 68  344 6804  50 518  93 61 

HJ2 1.998 0.925 0.790 0.603  1.462 0.696  37 61  578 4498  NA 274  NA 62 

HJ3 0.945 0.938 0.807 0.568  0.942 0.688  40 70  735 6471  42 231  67 57 

HJ4 1.644 0.705 0.414 0.414  1.174 0.414  0 74  0 8725  39 233  69 54 

HO1 3.671 3.613 1.685 1.993  3.642 1.839  4 43  90 3024  72 835  58 39 

HO2 3.639 2.276 1.700 1.795  2.957 1.747  11 47  178 2073  77 390  58 34 

HO3 3.894 3.318 1.769 1.818  3.606 1.794  20 67  430 2881  68 558  40 33 

HO4 3.216 1.482 1.674 1.637  2.349 1.656  32 45  517 1655  60 1220  51 44 

HR1 2.513 1.245 1.263 1.275  1.879 1.269  15 61  130 2517  73 447  90 72 

HR2 3.053 2.585 1.499 2.414  2.819 1.956  7 71  217 8225  43 351  80 69 

HR3 2.360 1.860 1.860 1.860  2.110 1.860  11 72  382 5696  60 408  72 NA 

HR4 0.977 0.951 1.192 1.034  0.964 1.113  8 101  292 11265  56 139  75 NA 

B = bukit, H = harapan, F = forest, J = jungle rubber, R = rubber, O = oil palm 
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Supplementary Table S 2.1.3 Normalized read counts of fungal operational taxonomic units (OTU; 
clustered at 97 % similarity threshold) for all plots in sampling years 2013 and 2016 (coluns 1 – 62) 
as well as their taxonomic affiliation (columns 63 – 70); P1 = sampling year 2013; P2 = sampling 
year 2016; H = harapan landscape; B = bukit landscape; F = forest; J = jungle rubber; R = rubber 
plantation; O = oil palm plantation 

See digital supplement supplTable_S213.xlxs 

 

Supplementary Table S 2.1.4 Normalized read counts of arbuscular mycorrhizal fungi 
(Glomeromycota) operational taxonomic units (OTU; clustered at 97 % similarity threshold) for all 
plots in sampling years 2013 and 2016); P1 = sampling year 2013; P2 = sampling year 2016; H = 
harapan landscape; B = bukit landscape; F = forest; J = jungle rubber; R = rubber plantation; O = oil 
palm plantation 

See digital supplement supplTable_S214.xlxs 

 

Supplementary Table S 2.1.5 Rarefied read counts of fungal operational taxonomic units (OTU; 
clustered at 97 % similarity threshold) for all plots in sampling years 2013 and 2016); P1 = sampling 
year 2013; P2 = sampling year 2016; H = harapan landscape; B = bukit landscape; F = forest; J = 
jungle rubber; R = rubber plantation; O = oil palm plantation 

See digital supplement supplTable_S215.xlxs 
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2.2 Bottom-up effects of roots on belowground fungal 

communities in tropical land-use systems 

Introduction 

Fungi have successfully colonized all terrestrial ecosystems (Frąc, Hannula, Bełka, & Jędryczka, 2018; 

Tedersoo et al., 2014). In soil, fungi are key actors in biogeochemical cycles (Johnson, Angelard, 

Sanders, & Kiers, 2013; Rillig, 2004), contributing to ecosystem processes, such as litter 

decomposition, carbon sequestration, nutrient mobilization, and nutrient transformation (Prescott & 

Grayston, 2013; Six, Frey, Thiet, & Batten, 2006; Treseder & Lennon, 2015). According to their 

lifestyle, fungi have been grouped into three broad trophic categories: saprotrophs, symbiotrophs, 

and pathotrophs (Nguyen et al., 2016), each of which fulfills different ecological functions. While the 

majority of saprotrophic fungi are free-living, thriving on dead plant material, symbionts associate 

with living host roots, regulating nutrient exchange between above- and belowground, and plant 

pathogens colonize their host, thus structuring plant communities by negatively affecting on plant 

health (Clemmensen et al., 2013; García‐Guzmán & Heil, 2014; van der Heijden, Martin, Selosse, & 

Sanders, 2015). Consequently, soil and roots are divergent habitats of belowground fungi, with 

distinct colonization patterns for different fungal lifestyles (Philippot, Raaijmakers, Lemanceau, & van 

der Putten, 2013; van der Heijden, Dombrowski, & Schlaeppi, 2017). Since small changes in fungal 

community structures can lead to big consequences for ecosystem matter fluxes (Orwin, Kirschbaum, 

John, & Dickie, 2011), it is important to understand the factors that drive the turnover of fungal 

assemblages.  

The assembly mechanisms of soil fungal communities (SFCs) have often been studied to gain insight 

into niche-neutral processes, such as dispersal limitation, stochastic events (Adams, Miletto, Taylor, 

& Bruns, 2013; Barnes, Maldonado, Frøslev, Antonelli, & Rønsted, 2016; Powell et al., 2015), and 

environmental filtering (Bahram et al., 2018; Tedersoo et al., 2014). Inconsistent results have been 

obtained for the influence of vegetation structure on soil microbes (Barberán et al., 2015; Leff et al., 

2018; Rodríguez-Echeverría et al., 2017; Yang et al., 2019). In contrast to SFCs, less is known 

concerning the drivers of root-associated fungal communities (RFCs), and whether root properties 

have feedback effects on SFCs is unclear. This knowledge gap is particularly evident in the tropics, 

where massive land transformation has led to drastic losses in vegetation diversity and impacted root 

community traits (Rembold, Mangopo, Tjitrosoedirdjo, & Kreft, 2017; Sahner et al., 2015). 

Tropical lowland rainforests are among the most diverse ecosystems in the world (Gaston, 2000; 

Myers, Mittermeier, Mittermeier, Da Fonseca, & Kent, 2000), but large areas have been lost because 
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of conversion into farmland or plantations. In Indonesia, a hotspot of biodiversity and land 

conversion (Margono, Potapov, Turubanova, Stolle, & Hansen, 2014), lowland rainforests were 

initially used as agroforestry systems, where rubber trees were planted into rainforests (“jungle 

rubber”) and then converted into rubber (Hevea brasiliensis) plantations. Since the 2000s, rainforests 

have mainly been transformed into oil palm (Elaeis guineensis) plantations (Miettinen, Shi, & Liew, 

2011; Wilcove & Koh, 2010). Vegetation in oil palm and rubber plantations is controlled by chemical 

or mechanical weeding, thereby, further reducing plant diversity. Despite the massive loss in plant 

diversity for plantations compared to rainforests (Grass et al., 2020; Koh, Levang, & Ghazoul, 2009; 

Rembold et al., 2017; Stibig, Achard, Carboni, Raši, & Miettinen, 2014), the richness of soil microbiota 

is not strongly affected, while a drastic turnover of these communities can be found (Brinkmann et 

al., 2019; Schneider et al., 2015). A strong turnover of fungal communities has also been reported for 

other tropical land transformation systems (Kerfahi, Tripathi, Dong, Go, & Adams, 2016; Kerfahi, 

Tripathi, Lee, Edwards, & Adams, 2014; McGuire et al., 2015; Mueller et al., 2014; Mueller, 

Rodrigues, Nüsslein, & Bohannan, 2016). On the one hand, plants selectively recruit microorganisms 

from the soil biome (Broeckling, Broz, Bergelson, Manter, & Vivanco, 2008; Danielsen et al., 2012; 

Goldmann et al., 2016; Moll et al., 2016; Urbina et al., 2018), while on the other hand, vegetation, 

especially dominant tree species, influence the soil microbiome (Berkelmann, Schneider, Meryandini, 

& Daniel, 2020; Gao et al., 2017; Peay, Baraloto, & Fine, 2013; Yang et al., 2019).Therefore, variation 

in host properties may be expected to influence both RFCs and SFCs in land transformation systems. 

However, holistic approaches that dissect environmental and plant impacts on different fungal guilds 

in soils and roots are currently lacking.  

The primary aim of this study was to investigate spatial distance, soil chemistry, and root traits as 

drivers of symbiotrophic, saprotrophic, and pathotrophic fungi in soils and roots. For this 

investigation, we used well-established plots from a large-scale research program (CRC990, EFForTs) 

in the humid tropical lowlands on Sumatra (Indonesia) (Drescher et al., 2016). The plots were in four 

different land-use systems (forest, jungle rubber, rubber plantation, and oil plantation) and 

replicated in areas with different soil types (acrisol on loam and acrisol on clay; Allen, Corre, Tjoa, & 

Veldkamp, 2015) and in riparian areas, where annual flooding leads to strongly altered soil redox 

potentials (Paoletti et al., 2018). We tested the following hypotheses: (i) The RFC is dependent upon 

plant root traits and, therefore, responds to changes in root properties more strongly than to 

changes in soil properties. (ii) The SFC provides the pool from which the RFC is recruited, and the 

pool of soil fungi is mainly determined by changes in soil properties and stochastic fluctuations. (iii) 

Assembly processes of all fungal groups are driven by soil chemistry, while the community structures 

of saprotrophs, mycorrhizal fungi, and plant pathogens on roots underlie additional divergent 

controls by root traits. 
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Materials and Methods 

Study area 

The study was conducted in the Jambi Province (Sumatra, Indonesia). The region has a humid tropical 

climate (mean annual temperature and precipitation of 26.7 ℃ and 2235 mm, respectively), with a 

dry season from July to August and a wet season with two rainfall peaks around March and 

December (Drescher et al., 2016). Beginning in the 1970’s, naturally occurring dipterocarp-

dominated rainforests in the lowlands where severely logged and transformed into agricultural 

farmland (Rembold et al., 2017), with a strong focus on plantation crops of high economic value, such 

as rubber (Hevea brasiliensis) and oil palm (Elaeis guineensis) (Drescher et al., 2016). 

Since 2012, a total of 44 research plots (50 x 50 m) have been installed as part of a long-term project: 

“Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems 

(Sumatra, Indonesia)” (CRC 990, EFForts, https://www.uni-goettingen.de/en/310995.html). The plots 

encompass four different land-use systems: “Forest (F)”: lowland rainforests with little selective 

logging in the past, located in the National reservations PT Restorasi Ekosistem Indonesia Forest 

Restoration project (Muaro Jambi Regency) and National Park Bukit Duabelas (Sarolangun Regency); 

“Jungle Rubber (J)”: extensively managed rubber, planted in disturbed secondary forest; ”Rubber 

(R)”: monocultures of Hevea brasiliensis; and “Oil Palm (O)”: monocultures of Elaeis guineensis. Oil 

palm plantations are intensively managed by the application of fertilizer (approximately 48 to 88 kg 

N, 21 to 38 kg P, and 40 to 157 kg K ha−1 yr−1), while rubber plantations are usually not fertilized. Both 

oil palm and rubber plantations are weeded, manually or by the application of herbicides (Kurniawan 

et al., 2018).  

Four plots of each land-use system were established in two landscapes, which are mainly 

distinguished by soil types. The landscape “Bukit (B)” is located approximately 110 km west of Jambi 

City (Sarolangun Regency) and dominated by clay Acrisols (Allen et al., 2015). The landscape 

“Harapan (H)” is located 60 km south of Jambi City (Muaro Jambi Regency). The Haparan landscape is 

characterized by loam Acrisol soils, which contain higher fractions of sand and silt and have a lower 

base saturation, soil organic carbon content, total soil nitrogen, and stocks of exchangeable base (Ca, 

Mg, K, and N) and acid (Al, Fe, and Mn) cations compared to Bukit (Allen et al., 2015). In addition, we 

included riparian sites in the Harapan landscape with the land-use systems F, R, and O. Riparian sites 

are a link between aquatic and terrestrial ecosystems, with heavily altered habitat conditions 

compared to upland sites (Gregory, Swanson, McKee, & Cummins, 1991). They represent one of the 

broad vegetation zones within tropical forests. The riparian plots were located close to rivers or 

streams and repeatedly flooded during the rainy season. In contrast to the well-drained Harapan 

plots, they display a stagnic color pattern to a depth of 0.3 m from the surface, which indicates 
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longer periods of stagnating water causing alternated redox potentials (Paoletti et al., 2018). The 

geographic coordinates of the plots (Supplementary Table S 2.2.1) were used to calculate a pairwise 

spatial distance matrix between all plots. 

Sampling 

Sampling took place in October and November 2016. In each plot, three 5 x 5 m subplots were 

installed at a distance of 15 m apart. Surface leaf litter was removed before soil collection. In each 

subplot, five soil cores (15 cm depth, 4 cm diameter) were extracted evenly across the area. These 

five soil cores were pooled, resulting in a total of three samples per plot. Samples were stored in zip-

lock bags at 4 ℃ until further processing. The soil was sieved through a 50 x 50 mm mesh, and roots 

were separated from the soil. Roots were washed, separated into coarse and fine roots, and 

weighed. Aliquots of fine roots and soil samples were immediately freeze-dried (VirTis Bench Top K, 

SP Industries, Warminster, USA) and exported to the University of Göttingen (Germany) for 

molecular analysis. Further aliquots of soil and roots were dried at 60 ℃ for two days. Root biomass 

was calculated as:  

𝑅𝑜𝑜𝑡 𝑏𝑖𝑜𝑚𝑎𝑠𝑠  𝑔 𝑚−2 =  𝐹𝑟𝑒𝑠𝑕 𝑏𝑖𝑜𝑚𝑎𝑠𝑠  𝑔 ∗  
𝐷𝑟𝑦 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑎𝑙𝑖𝑞𝑢𝑜𝑡  𝑔 

𝐹𝑟𝑒𝑠𝑕 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑎𝑙𝑖𝑞𝑢𝑜𝑡  𝑔 
∗

1

5 ∗ 𝐴𝑟𝑒𝑎 𝑠𝑜𝑖𝑙 𝑐𝑜𝑟𝑒𝑟 [𝑚2]
 

Dry soil was suspended in a 0.1 M KCl solution (according to ISO 10390 standard), which was used to 

measure the soil pH. 

Determination of root vitality 

Fresh fine roots (approximately 250 root tips per sample) were examined under a stereomicroscope 

(Leica EZ4HD, Wetzlar, Germany) by counting vital and dead root tips. Black or brown tarnished and 

visibly distorted root tips were recorded as dead (Comas, Eissenstat, & Lakso, 2000). Root vitality was 

determined as: 

𝑅𝑜𝑜𝑡 𝑣𝑖𝑡𝑎𝑙𝑖𝑡𝑦  % =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑙𝑖𝑣𝑖𝑛𝑔 𝑟𝑜𝑜𝑡 𝑡𝑖𝑝𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑟𝑜𝑜𝑡 𝑡𝑖𝑝𝑠
∗ 100 

Determination of nutrient elements in soil and roots 

Aliquots of oven-dried root and soil samples were ground for one minute in a ball-mill (MM 2000, 

Retsch, Haan, Germany) and used for elemental analyses. Samples of each subplot were analyzed 

separately (n = 3 per plot and sample type). The total carbon (C) and nitrogen (N) contents were 

measured by combustion in a CN analyzer (Vario MICRO analyzer, Elementar, Langensbold, 

Germany). For analyses of the main nutrient elements, including calcium (Ca), magnesium (Mg), iron 

(Fe), manganese (Mn), potassium (K), and phosphorus (P), soil and root samples were digested in 

65% HNO3 in a digestion microwave (Ethos Start, Milestone, Sorisole, Italy) for 30 min at 210 ℃. The 
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extracts were filtered through an MN 640 WE filter (Macherey und Nagel, Düren, Germany) and 

measured using inductively coupled plasma mass spectrometry (ICP-OES, iCap 7000, Thermo Fisher 

Scientific, Waltham, USA). 

Preparation data matrices for root and soil chemistry 

Plot means (n = 3) were calculated for each variable (nutrient elements, root vitality, root biomass, 

and soil pH). The plot data are provided in Supplementary Table S 2.2.1. To avoid multicollinearity in 

the environmental dataset, correlation coefficients and regression plots between all variables were 

reviewed (Supplementary Figure S 2.2.1). Variables with a Pearson r value of ≥0.8 (root biomass and 

total N) with soil carbon were excluded from further analysis. Resource indices (RI) for cations (Ca, 

Mg, K, Fe, and Mn) were determined according to Schröter et al. (2019), for soil and roots separately:  

𝑅𝐼𝑖 =
𝐶𝑎𝑖

𝐶𝑎
+
𝑀𝑔𝑖

𝑀𝑔
+
𝐾𝑖

𝐾
+
𝐹𝑒𝑖

𝐹𝑒
+
𝑀𝑛𝑖

𝑀𝑛
 

All subsequent analyses were performed with a subset of the explanatory variables, including root 

vitality, soil pH, C, CN, P, and RI. The matrices for root and soil variables were scaled by z-scoring. 

Principle component analyses were performed for root and soil matrices separately. The first two 

principal components explained 77.9% and 79.9% of the variation in the root and soil chemistry, 

respectively (Supplementary Figure S 2.2.2). The resulting values were defined as root trait and soil 

property indices (Supplementary Table S 2.2.1). Pairwise Euclidean distances of the root trait indices 

were calculated between all plots and used as a distance measure for root trait turnover. Soil 

property turnover was determined correspondingly. 

DNA extraction and Polymerase Chain Reaction (PCR) 

DNA was extracted from freeze-dried, ground, and homogenized soil and root samples from each 

subplot separately. Root DNA was extracted from 100 mg samples using the innuPREP Plant DNA kit 

(Analytik Jena AG, Jena, Germany). DNA from soil was extracted from 200 mg samples using the 

DNeasy PowerSoil Kit (Qiagen, Venlo, Netherlands), following the manufacturer´s instructions. The 

root and soil extractions showed a yellow stain, and direct PCR was unsuccessful. Therefore, the 

DNeasy PowerClean Cleanup Kit (Qiagen, Venlo, Netherlands) was used, following the 

manufacturer’s instructions, to remove any PCR inhibiting substances, such as phenols, 

polysaccharides, or humic acids. For the amplification of the fungal ITS1 marker region, the ITS1f-

KYO2 (Toju, Tanabe, Yamamoto, & Sato, 2012) and ITS2 (White, Bruns, Lee, & Taylor, 1990) primer 

pair with specific overhang adapters for Illumina sequencing were used. PCR was conducted using 

using 2 µl DNA (concentrations roots: mean 5 ng µ µl-1, range 0.30 – 14.2 ng µl-1; soil mean 1.22 ng µl-

1 range:  0.35 – 2.97 ng µ µl-1), 0.25 µl Phusion High-Fidelity DNA Polymerase (2 U µl-1), 5 µl Phusion 

HF reaction Buffer (Thermo Fisher Scientific, Waltham, USA), 0.5 µl of the forward and reverse primer 
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each (10µM), 0.075 µl MgCl2 (50 mM), and 0.5 µl of dNTPs (10 mM). Regarding root samples, 1.25 µl 

bovine serum albumin (8 mg ml-1) and 1.25 µl dimethyl sulfoxide (5%) was added to obtain the 

maximum amplicon yield, and the reaction mix was adjusted to a total volume of 25 µl with dNTP 

free water. Reactions were performed with an initial heating step of 98 ℃ for 30 s, followed by 30 

cycles with a 10 s denaturation phase (98 ℃), 20 s annealing phase (47 ℃), and 20 s elongation phase 

(72 ℃) (Labcycler, Sensoquest, Göttingen, Germany). Three technical replicates of each sample were 

performed and pooled after the PCR, to make a final volume of 75 µl. The product was purified using 

MagSi-NGSPreb Plus Magnetic Beads (MagnaMedics GmbH, Aachen, Germany), following the 

manufacturer’s instructions, with a ratio of the PCR product and beads solution of 1:1, to select for 

the expected fragment size of 300 to 450 base pairs. Fragment size and amount were checked by gel 

electrophoresis (110V, 20 min) on a 2% agarose gel stained with GelRed (Biotium, Fremont, USA). 

GeneRuler 100 bp Plus DNA Ladder (Thermo Fisher Scientific, Waltham, USA) was used as a 

reference. The concentration of the product was measured using a Qubit 3.0 Fluorometer (Thermo 

Fisher Scientific, Waltham, USA) and adjusted to a final concentration of 3 ng µl-1. 

Illumina sequencing and bioinformatic processing 

Amplicon sequencing and OTU assembly were conducted on the MiSeq platform using the MiSeq 

Reagent Kit v3 (Illumina Inc., San Diego, USA). Raw paired-end reads were merged using PEAR 

v.0.9.10 (Zhang, Kobert, Flouri, & Stamatakis, 2014). Subsequently, reads were quality filtered using 

Trimmomatic v.0.36 (Bolger, Lohse, & Usadel, 2014). Primer sequences were clipped with cutadapt 

v.1.16 (Martin, 2014). Reads were cut by a sliding window of 4 if the average quality score dropped 

below 19, and only sequences with a minimum length of 140 bp were kept. VSEARCH v.2.7.2 

(Rognes, Flouri, Nichols, Quince, & Mahé, 2016) was used for dereplication, denoising (removal of 

reads with less than 8 occurrences), chimera detection (de-novo followed by reference based), and 

de-novo OTU clustering at a 97% similarity threshold. Reads were mapped to the OTU library and 

used to generate a count table.  

OTUs were taxonomically classified using the BLAST algorithm against the UNITE v.7.2 public 

database (Kõljalg et al., 2013). Unclassified and non-blast hit OTUs were aligned against the GenBank 

(nt) database (Geer et al., 2010). Only OTUs with a fungal classification were kept in the OTU table. 

Applying this pipeline, we obtained a total of 5 million sequence reads with 9,279 OTUs in root 

samples and 4.2 million reads with 13,728 OTUs in soil samples. The counts per OTU of the three 

subplots were added, resulting in counts per OTU and plot, keeping soil and root counts separate. 

The root data for plot BF3 are the sum of two subplots, because one subplot yielded insufficient 

DNA. Subsequently, counts per plot were rarified to 38,021 (the minimum number of counts in a 

plot) using the rrarefy() function of the package vegan v2.5.6 (Oksanen et al., 2019) implemented in R 
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v.3.6.1 (R Core Team, 2019) (Supplementary Table S 2.2.2). Rarefaction resulted in a total of 7,825 

and 13,585 OTUs for roots and soil, respectively. Different OTUs were considered as virtual species.  

OTUs were functionally annotated as symbiotroph, pathotroph, and saprotroph using the FUNGuild 

database (Nguyen et al., 2016) as the initial classification. Then the virtual species were manually 

curated through literature research (Supplementary Table S 2.2.2). 

Statistical analysis 

All statistical analyses were performed using R v.3.6.1 (R Core Team, 2019). OTU richness was 

compared using the Welch test accounting for unequal variances (Welch, 1947), which was 

implemented using the t.test() function. A linear model for the OTU richness of root and soil fungi in 

response to the land-use system was built across all plots, as well as for each landscape, and riparian 

sites individually using the function lm(). The effects of riparian vs. lowland plots, including an 

interaction term with land-use systems, were also investigated. The significance of the main effects 

and interactions was tested using anova(). For pairwise comparisons between land-use systems, the 

Tukey Test in the glht() function of the package multcomp (Hothorn, Bretz, & Westfall, 2008) was 

used. The R package vegan v2.5.6 (Oksanen et al., 2019) was used for Hellinger transformation of the 

community matrices, to lower the weight of OTUs with low counts and many zeros (Legendre & 

Gallagher, 2001), using the function decostand(). Differences in community composition were 

measured by calculating pairwise Bray-Curtis dissimilarity between all plots with the function 

vegdist(). The RFC and SFC structure were investigated by two dimensional non-metric 

multidimensional scaling (NMDS) (Clarke, 1993) using the function metaMDS(). Pairwise 

dissimilarities of landscape, land-use system, and riparian sites were tested using PERMANOVA with 

999 permutations, as implemented in the adonis() function. As riparian plots were only available in 

the Harapan landscape, the permutations were restricted to the landscape using the strata 

argument. 

The overlap between overall soil and root fungal communities was investigated by a Venn Diagram 

using the draw.pairwise.venn() function of the VennDiagram package (Chen & Boutros, 2011). To 

compare the RFC and SFC, the beta diversity (measured as Sorensen Dissimilarity) between the RFC 

and SFC of each plot was compartmentalized into a “turnover” component, representing the 

replacement of OTUs, and a “nestedness” component, representing the loss of OTUs. A high degree 

of nestedness is to be expected if one community represents a subset of a larger one (Baselga, 2010). 

For these calculations, the function beta.pair() of the package betapart v.1.5.1 (Baselga, Orme, 

Villeger, De Bortoli, & Leprieur, 2018) was used.  

Mantel tests were used to investigate the relationships between changes in the fungal community 

composition and changes in root traits, soil properties, and spatial distances using the mantel() 
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function of the ecodist package (Goslee & Urban, 2007). All combinations were tested using the 

distance matrices for Bray-Curtis dissimilarities of soil and root fungi and the matrices for root traits, 

soil properties, and spatial distances. The correlation coefficients of the Mantel statistics were used 

to compare the responses of the RFC and SFC to changes in root traits, soil properties, and spatial 

distances. To test whether the SFC responses were different from those of the RFC, a null model 

approach was used following the suggestions of Anderson et al. (2011) and Wetzel et al. (2012). 

Fungal community distance matrices were permutated, while keeping the environmental and spatial 

distance constant, i.e., pairwise Bray-Curtis indices of both communities for a given environmental 

distance were reassigned to a random community at that given environmental distance. Afterwards, 

the new absolute distance between the correlation coefficients of the mantel matrix was calculated. 

This process was repeated with 10,000 iteration steps. The observed absolute difference of the 

correlation coefficients was considered significant if equal or higher values occurred in less than 5% 

of the iteration steps (Supplementary Figure S 2.2.3). We investigated the turnover of complete 

fungal communities (RFC and SFC) and sub-communities consisting of either saprotrophic, 

mycorrhizal, or plant pathogenic fungi (Supplementary Table S 2.2.2). 

The relative contributions of individual filters (root traits and soil properties) and spatial distance 

were further investigated using Multiple Regression Models on Distance Matrices (MRM) (Lichstein, 

2007). For this, the MRM() function of the ecodist package was used. Pairwise Euclidean distances of 

all environmental variables and spatial distances were calculated and subsequently centered and 

scaled by column means using the functions dist() and scale(), respectively. For each community and 

community subset, a full MRM including all environmental variables was calculated. Non-significant 

variables were removed stepwise from the model. The explained variation in community 

composition was partitioned between spatial distance, soil properties, and root trait variables 

(Krasnov, Mouillot, Shenbrot, Khokhlova, & Poulin, 2010; Li et al., 2011; Tuomisto, Ruokolainen, & 

Ruokolainen, 2012). The coefficient of determination (R²) was calculated for the full model, including 

all significant distance matrices. Subsequently, partial models were calculated by excluding either the 

spatial matrix or all matrices belonging to soil or root traits. The fraction of the overall explained 

variation (reported in percentage) was calculated following Borcard et al. (1992). 

  



 

52 
 

Results 

Habitat and land-use type affect fungal OTU richness and community composition 

Fungal species richness (OTU-based) in the RFC was approximately three times lower than that in the 

SFC (Welch Two Sample t(73.8) = -28.7, p < 0.001; Table 2.2.1). Land transformation from rainforest 

into oil palm monocultures had negative effects on the fungal species richness (SFC: F3, 40 = 5.811, p = 

0.002; RFC: F3, 40 = 4.683, p = 0.007; Table 2.2.1). However, this decrease was moderate since fungal 

species richness in both habitats, soil and roots, was approximately 10-20% lower in oil palm 

monocultures than in rainforests or jungle rubber (Table 2.2.1). We also found differences in the 

fungal species richness between the landscapes and among soil types, but these differences were 

even smaller or similar to those found in response to land transformation (Supplementary Table S 

2.2.3).  

Table 2.2.1 Effects of land-use on the OTU richness of the soil fungal community (SFC) and root-
associated fungal community (RFC). Different letters denote significant differences between land-
use systems revealed by the Tukey Test 

Land-use system Mean OTU richness (SFC) Mean OTU richness (RFC) 

Forest 2166 ±261 (ab) 962 ±188 (b) 

Jungle Rubber 2309 ±161 (b) 875 ±66 (ab) 

Rubber 2033 ±193 (a) 811 ±146 (ab) 

Oil palm 1940 ±192 (a) 759 ±109 (a) 

 

Strong differences were observed between the species compositions of root and soil fungal 

communities (R2 = 0.142, p = 0.001). Both the RFC and SFC were mainly structured by land-use 

systems, while other factors, such as landscape or riparian sites, had minor effects on the 

compositions (Table 2.2.2, Supplementary Figure S 2.2.4).  
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Table 2.2.2 Effects of landscape with differing soil types, riparian sites, and land-use systems on the 
soil fungal community (SFC) and root-associated fungal community (RFC) compositions. 
Significance was tested with a Permutational Multivariate Analysis of Variance (999 permutations) 
using Bray-Curtis dissimilarity matrices for the two communities. *** p < 0.001; ** p < 0.01; df, 
degrees of freedom; SS, sum of squares;  F, pseudo-F value; and R², total explained variation   

 RFC  SFC 

 df SS F R2  df SS F R2 

Landscape 1 0.604 3.042 0.051 ***  1 0.587 2.548 0.044 *** 

Riparian 1 0.556 2.798 0.047 **  1 0.528 2.293 0.040 ** 

Land-use 3 3.112 5.224 0.263 ***  3 3.397 4.918 0.256 *** 

Residual 38 7.547  0.644  38 8.751  0.661 

 

Recruitment patterns of root fungi from soil are stable  

Across all plots, we found 44% of the OTUs (6,215) exclusively in soil, 56% (7,370) shared between 

roots and soil, and only a small portion (3%) of OTUs (455) exclusively in roots (Figure 2.2.1 A). We 

expected that RFCs in a given plot were recruited from the surrounding soil of the same plot, which 

would result in high nestedness. To examine this expectation, we partitioned the beta diversity into a 

nestedness and turnover component (Baselga, 2010). Regardless of the land-use system, the total 

beta diversity between the soil and root compartments within a plot was stable (mean 0.664; 

ANOVA, F3, 40 = 2.683, p = 0.060; Figure 2.2.1 B). Between the SFC and RFC, approximately one third 

of the beta diversity was associated with nestedness (mean = 0.252; ANOVA, F3, 40 = 1.515, p = 0.225) 

and two thirds were explained by turnover (mean = 0.410; Figure 2.2.1 B), indicating that the 

structures of fungal assemblages were more strongly determined by replacement than by species 

loss.  
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Figure 2.2.1 A: A: Number of fungal OTUs found in the soil (SFC), roots (RFC), and within both 
habitats across all plots. B: Mean beta diversity (measured as Sorensen Dissimilarity) between the 
root and soil fungal communities within a plot (n = 12 for forest, rubber, and oil palm; n = 8 for 
jungle rubber). Beta diversity was split into a nestedness component, driven by the loss of species 
between the root and soil communities, and a turnover component, driven by the replacement of 
species with others between the root and soil communities. F = forest, J = jungle rubber, R = 
rubber, and O = oil palm 

 

Changes in root and soil chemistry have divergent effects on fungal turnover in roots and soil 

We anticipated that changes in soil chemistry, root chemistry, and geographic distance influenced 

the turnover of fungal community structures in soils and roots. To assess the impacts of these 

potential drivers on the turnover of RFCs, SFCs, and functional groups (mycorrhiza, saprotrophs, and 

plant pathogens) in the RFCs and SFCs, we conducted Mantel tests. The turnover of RFCs, SFCs, and 

the functional groups (mycorrhiza, saprotrophs, and plant pathogens) in the soil and roots were 

significantly related to changes in the root and soil chemistry and to spatial distance (Figure 2.2.2). 

Overall, we found higher dissimilarity in the RFC than the SFC (Figure 2.2.2). Moreover, we detected 

significant differences for the spatial distance, root chemistry, and soil chemistry between the RFC 

and SFC, and distinct responses of functional groups (Figure 2.2.2). Firstly, geographic distance had a 

stronger impact on the SFC than the RFC, regardless of whether the whole communities or functional 

groups were inspected (Figure 2.2.2 A, D, G, and J). The strongest difference between the soil and 

root fungal turnover was found for mycorrhizal fungi (Δr = 0.169***, Figure 2.2.2 D). Secondly, 

changes in soil properties drove the turnover of whole fungal communities and functional groups in 

the soil to an extent that was similar to that in roots (Figure 2.2.2 B, E, and K). However, only 

saprotrophs in the soil showed a stronger response to changes in soil chemistry than saprotrophs on 

roots (Figure 2.2.2 H). Thirdly, changes in root traits caused a stronger turnover in the RFC than the 
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SFC. Thereby, the dissimilarities between the SFC and RFC diverged with increasing root trait distance 

(Figure 2.2.2 C). These effects were more prominent in the mycorrhizal fungal community than in 

whole RFCs and SFCs (Figure 2.2.2 F). In contrast, changes in root traits caused converging effects in 

the plant pathogens (Figure 2.2.2 I), suggesting the homogenization of the soil and root-associated 

communities when the trait distance of roots was large.  

To evaluate our findings from simple matrix regressions and dissect the influence of individual 

drivers, we used a multiple distance matrix regression model (MRM). After the stepwise removal of 

non-significant variables, we found that the spatial distance, soil pH, and root vitality were significant 

factors influencing SFCs, RFCs, and each of the fungal sub-communities (Figure 2.2.3 A). In agreement 

with our Mantel tests (Figure 2.2.2), mycorrhizal community structures in soil showed a strong spatial 

effect, almost twice as high as in saprotrophs, whereas distance effects were smallest in the root-

associated mycorrhizal community (Figure 2.2.3 B). However, the fraction of variance explained by 

spatial distance was small compared to that explained by root and soil factors or shared effects 

(Figure 2.2.3 B). The soil pH was the strongest driver for the composition of all fungal communities 

studied here (Figure 2.2.3 A). The soil resource index, representing the nutrient cations in the soil, 

affected saprotrophic fungi on roots and plant pathogens in the soil and roots (Figure 2.2.3 A). 

Mycorrhizal assemblages were driven by soil phosphorus, at the roots more strongly than in soil 

(Figure 2.2.3 A). Among the tested root traits, the RFC was strongly filtered by root C/N, whereas the 

SFC was neither affected by soil C/N nor by root C/N (Figure 2.2.3 A). Furthermore, we found 

significant effects of root vitality on all tested fungal assemblages, which highlights that root traits 

did not only affect root-associated fungal assemblages but also soil fungi (Figure 2.2.3 A). Root 

phosphorus and the root resource index also affected the assemblage of the saprotrophic fungi in 

the soil (Figure 2.2.3 A). Overall, variance partitioning showed that changes in soil chemistry had a 

stronger effect on the SFC than the RFC, and that the RFC was more strongly affected by changes in 

root traits (Figure 2.2.3 B).  
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Figure 2.2.2 Pairwise community dissimilarity between fungal community composition and the 
spatial (A, D, G, and J), soil property (B, E, H, and K), and root trait distances (C, F, I, and L). Blue: 
soil fungal community (SFC) and green: root-associated fungal community (RFC). Models were 
calculated for the whole fungal community (A - C), mycorrhiza fungi (D - F), saprotrophs (G – I), and 
plant pathogens (J – K). Regression coefficients (r) and mantel test significance are shown for both 
communities. Delta represents the differences in the correlation coefficients between the two 
communities. Significance was tested using a null model approach with 10000 iteration steps (* p < 
0.05; ** p < 0.01; *** p < 0.001) 
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Figure 2.2.3 Multiple regression models on distance matrices (MRM) showing the effects of 
changes in the spatial distance, soil properties, and root traits on the fungal community 
composition. Models for the soil (SFC) and root-associated fungi (RFC) were calculated for the 
whole community as well as mycorrhizas, saprotrophs, and plant pathogens. Non-significant 
environmental drivers were step-wise excluded from models. A: Regression coefficients of all 
distance matrices retained in the models. Grey fields indicate no significant contribution to the 
model. B: Variation partitioning of models showing the percentage of explained variation in 
community change, explained by changes in spatial, soil property, and root trait distances. R² 
indicates the total explained variation by the models 
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Discussion 

High turnover between local root and soil fungal communities underpins structuring effect of root 

chemistry on fungal assemblages 

In this study, we investigated the fungal turnover (beta-diversity) of root- and soil-residing fungi 

across tropical land-use systems. In agreement with previous microbiome studies in tropical land-use 

systems (Berkelmann et al., 2020; Brinkmann et al., 2019; Grass et al., 2020; Kerfahi et al., 2016; 

McGuire et al., 2015) we found only moderate or no species loss for soil fungal communities in 

response to land-use changes. At first glance, this observation may be surprising because vegetation 

is a driver of fungal communities (de Vries et al., 2012; Peay et al., 2013) and the overall decline in 

plant species richness across our land-use systems was approximately 60% (Rembold et al., 2017). 

Tree species richness decreased even from approximately 80 species per plot in rainforests to only 

one species in plantations (Rembold et al., 2017). Therefore, we expected a strong loss of root-

associated fungal species, providing that plant species identity was a major driver for fungal host 

colonization. In contrast to this expectation, the turnover of root fungal communities, instead of 

species loss, was the main response to the intensification of land-use. Our results support that 

changes in environmental conditions create new niches that can be occupied by the propagules 

present in an ecosystem.  

It is currently under discussion whether host chemistry or host phylogenetic diversity drive microbial 

community structures (Anacker, Klironomos, Maherali, Reinhart, & Strauss, 2014; de Vries et al., 

2012; Leff et al., 2018; Mehrabi & Tuck, 2015; Münzbergová & Šurinová, 2015; Wilschut et al., 2019). 

On the one hand, mycorrhizal community structure is linked to the vegetation type (Geml, Morgado, 

Semenova‐Nelsen, & Schilthuizen, 2017; Rodríguez-Echeverría et al., 2017). On the other hand, in 

tropical regions mycorrhizal community shows low host specificity and is strongly impacted by abiotic 

factors (Peay et al., 2015; Schappe et al., 2017). Therefore, Peay et al. (2015) suggested that plant 

and mycorrhizal community compositions might not be directly related, but are driven by the same 

abiotic gradient. Our study supports a different mechanism involving host chemistry. We 

demonstrated a strong relationship between the root chemistry and RFC turnover. Therefore, we 

conclude that root traits represent an important ecological driver. 

Roots have a lower fungal species richness than local soil (this study, Danielsen et al., 2012; 

Goldmann et al., 2016; Zheng, Hu, Guo, Anderson, & Powell, 2017), which is likely due to the 

selecting effects of roots on the associated microbiome (Danielsen et al., 2012; Edwards et al., 2015; 

Gottel et al., 2011). Over the whole geographic scale of our study, root-associated fungi were a 

subgroup of soil-residing fungi, supporting that soil is a reservoir for the root fungal assemblage 

("fungal seed bank", Lennon and Jones 2011). However, at the plot-level we observed a low 
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nestedness and high turnover proportion. These results contradict our initial hypothesis that the 

fungi colonizing roots are sampled from the local soil community. Instead, the structuring effects of 

plant roots on their fungal communities were partially independent of neighboring soil fungal 

communities. This finding highlights the need to investigate the turnover of soil and root fungal 

communities separately. Moreover, our results imply that far-distance dispersal of fungal species 

present in the wider landscape can significantly contribute to the assembly of the local RFC. This 

result is highly relevant for biodiversity conservation because it suggests that forest remnants in the 

landscape may serve as a source for naturally occurring fungal species and could contribute towards 

re-colonizing recovering ecosystems after anthropogenic land-use. 

Root chemistry has divergent effects on different trophic fungal groups 

A major goal of this study was to evaluate the drivers of three ecologically important fungal groups: 

mycorrhizas, saprotrophs, and plant pathogens. In line with other studies (Goldmann et al., 2016; 

Green et al., 2004; Zhao et al., 2019), increasing geographic distance resulted in a reduction in the 

similarities between fungal communities. Distance decay involves intrinsic factors of spreading 

species, like niche occupation and neutral processes, such as natural dispersal limitations or 

stochastic events (Rosindell, Hubbell, & Etienne, 2011; Zinger et al., 2019). Previous studies have 

highlighted the strong stochasticity of fungal community assemblies (Powell et al., 2015; Zhao et al., 

2019) and selective effects of roots (Deveautour, Donn, Power, Bennett, & Powell, 2018; Goldmann 

et al., 2016; Gottel et al., 2011; Wilschut et al., 2019). For example, across a biogeographic gradient 

in temperate ecosystems, the distance decay of the ectomycorrhizal community structures on beech 

(Fagus sylvatica) roots was lower compared to that found in soil (Goldmann et al., 2016). The 

“stabilization” of fungal communities was ascribed to the host selectivity of ectomycorrhizal fungi in 

temperate forests (Goldmann et al., 2016; van der Linde et al., 2018). However, in tropical 

ecosystems, where arbuscular mycorrhizal fungi dominate, host selectivity is generally low (Peay et 

al., 2015). In our study, host plant identities were obviously not involved in mediating the RFC 

turnover, which was lower than that of the SCF, because we included samples from widely differing 

ecosystems, where the vegetation ranged from tree monocultures to tropical rainforests. This result 

implies that certain root properties, and not their phylogenetic diversity, drives fungal turnover. 

Another important result was that the distance decay of the RFC was lessened because of 

mycorrhizal fungi in these assemblages, highlighting selective plant effects. Notably, pathogens and 

saprotrophs showed similar behavior, indicating that those fungal groups might also be subject to 

selective plant effects. Thus, our findings highlight that the features of plant root communities 

structure fungal communities.   
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Although our study demonstrates the significant effects of spatial scales on fungal community 

structures, geographic distance explained only a minor fraction of the variance. The relative 

contribution of ecological factors was by far stronger. Fungal community shifts in tropical habitats 

have been linked to variation in edaphic properties, such as pH, carbon, nitrogen, and phosphorus 

(Barnes et al., 2016; Camenzind, Hättenschwiler, Treseder, Lehmann, & Rillig, 2018; McGee, Eaton, 

Shokralla, & Hajibabaei, 2018; Tedersoo et al., 2014). We found a strong structuring effect of soil pH 

on the SFC and RFC, which is in line with current studies suggesting that soil pH is a unifying driver for 

belowground microbiomes (Fierer, 2017; Glassman, Wang, & Bruns, 2017; Tedersoo et al., 2014). In 

addition, the mycorrhizal community structures in both the soil and roots were affected by soil 

phosphorus, which corresponds well to their role in improvement in the host phosphorus supply 

(Smith, Jakobsen, Grønlund, & Smith, 2011). Withered soils in many tropical ecosystems are strongly 

phosphorus-limited (Turner et al. 2018), and so the effects of soil phosphorus on mycorrhizal 

community structures are not surprising. Overall, we demonstrated that increasing distance of soil 

chemistry drives a similar turnover of soil and root fungal communities, including mycorrhizal fungi 

and plant pathogens. Thereby, our results confirm the strong regulatory effects of edaphic properties 

for a large fraction of belowground fungal communities, regardless of whether they colonize soils or 

roots. However, there was one notable exception, i.e., the turnover of saprotrophic fungi, which 

showed divergent turnover in the soil and roots. The reason for this unexpected behavior is perhaps 

because root chemistry had feedback effects on the turnover of soil-residing fungi. All fungal groups 

were significantly structured by root vitality. This effect was probably further augmented by the 

additional effects of root resources (cations and phosphorus) on the turnover of saprotrophs in soil. 

It is plausible that fine roots with high turnover rates in tropical systems are an important source of 

nutrients (Finér, Ohashi, Noguchi, & Hirano, 2011; Kotowska, Leuschner, Triadiati, Meriem, & Hertel, 

2015), which may foster saprotrophs more specifically than other fungal communities.  

An important result was that all root-associated fungal groups, but not soil-residing fungi, were 

strongly structured by the root C/N. The allocation of primary production towards roots is substantial 

in tropical forest ecosystems (Clark et al., 2001; Malhi, Doughty, & Galbraith, 2011), and plantation 

management involves the significant input of fertilizers (Darras et al., 2019; Kurniawan et al., 2018). 

Therefore, root C/N ratios differ significantly among different land-use systems (Edy, Yelianti, Irawan, 

Polle, & Pena, 2020; Sahner et al., 2015). Our results show that changes in the quality of this trait 

were directly linked to changes in the community structures of all groups of root-associated fungi. 

Obviously, altered root traits drive root-associated fungal community structures – at least partly – 

independent of edaphic properties. This result supports our initial hypothesis that RFCs undergo a 

double filter process, initially driven by edaphic properties and secondly by plant root community 
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traits. Our study highlights the need to independently investigate the assembly processes of 

microbial communities from different belowground habitats.  

Conclusion 

Our study provides important insights into the mechanisms of fungal community assembly under 

tropical land-use conditions, emphasizing the bottom-up regulatory effects of plant community traits 

on fungal turnover. We showed that root- and soil-associated fungal communities are distinct and 

that environmental filters differ in their relative importance of driving the assembly of those 

communities. Soil fungal communities present in the landscape may serve as a pool for colonizing 

plant roots via long distance dispersal. Root traits can stabilize the associated fungal community 

against stochastic community shifts and changes in edaphic conditions. The recovery of degraded 

root traits in intensively managed landscapes by managing the root C/N ratio and root health may 

help to moderate the land-use induced loss of naturally occurring communities and improve 

resilience against changes in soil properties.  
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Supplementary Table S 2.2.1 Landscape, land-use type and coordinates of all research plots as well 
as all measured soil chemical properties and root community traits. RI = Resource Index (sum of 
standardized calcium, magnesium, potassium, iron and manganese concentrations), PC = principle 
component axis scores from the principle component analysis used to measure soil and root trait 
indices 

See digital supplement supplTable_S221.xlxs 

 

Supplementary Table S 2.2.2 Read counts of all fungal operational taxonomic units (OTU; clustered 
at 97 % similarity threshold) in soil and root samples of each plot (columns 1 – 89) as well as 
taxonomic (columns 90 – 92) and functional (column 93 – 98) affiliations; H = harapan landscape; B 
= bukit landscape; F = forest; J = jungle rubber; R = rubber plantation; O = oil palm plantation; c = 
upland site; r = riparian site 

See digital supplement supplTable_S222.xlxs 

 

Supplementary Table S 2.2.3 Mean fungal OTU richness of soil fungal community (SFC) and root 
associated fungal communities (RFC) for different land-use systems, landscapes (Bukit, Harapan) 
and drained uplandas well as riparian sites. Letters denote differences between land-use systems 
according to pair wise comparisons with Tukey Test; SD = standart devaition 

Landscape Land-use system SFC 

Mean OTU richness (±SD) 

RFC 

Mean OTU richness (±SD) 

Bukit  Forest 2122 (±164) ab 791(±106) ab 

Jungle Rubber 2318(±103) b 869 (±84) b 

Rubber 1901(±128) a 658 (±45) a 

Oil palm 1909 (±160) a 710(±87) ab 

Harapan 

upland sites 

Forest 2363 (±131) a 1146 (±149) b 

Jungle Rubber 2300 (±223) a 880 (±56) a 

Rubber 2204 (±161) a 970 (±82) ab 

Oil Palm 2074 (±134) a 865 (±84) a 

Harapan 

riparian sites 

Forest 2014 (±348) a 950 (±108) b 

Rubber 1994 (±172) a 804 (±63) ab 

Oil Palm 1838 (±228) a 700 (±78) a 
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Supplementary Figure S 2.2.1 Pearson correlations coefficients between all environmental 
variables. Root biomass and soil nitrogen were strongly correlated with soil carbon (r > 0.8) and 
excluded from the analysis to avoid multicollinearity. N = total nitrogen concentration [mg g-1], C = 
total carbon concentration [mg g-1], CN = carbon to nitrogen ratio, K = potassium concentration 
[mg g-1], Ca = calcium concentration [mg g-1], Mg = magnesium concentration [mg g-1], Mn = 
manganese concentration [mg g-1], Fe = iron concentration [mg g-1], P = phosphorus concentration 
[mg g-1], froot = fine roots (<= 2mm diameter), biom = dry weight biomass [g m-2], vitality [% vital 
fine root tips] 
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Supplementary Figure S 2.2.2 Principle component analysis (PC) for spoil and root chemical 
variables. Scores for all plots are shown. First two PCs were used as unifying measure for soil 
properties and root traits. C = total carbon concentration [mg g-1], CN = carbon to nitrogen ratio, P 
= phosphorus concentration [mg g-1], RI = Cation Resource Index (sum of standardized calcium, 
magnesium, potassium, iron and manganese concentrations), froot = fine roots (<= 2mm 
diameter), vita = vitality [% vital fine root tips] 
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Supplementary Figure S 2.2.3 Null model distribution of the absolute difference between 
correlation coefficients of soil and root associated communities with spatial, soil property and root 
trait distance. Random permutation with 10000 iterations was applied. After each step community 
matrices were permuted while corresponding environmental and geographical distance was kept 
constant. The correlation coefficient was calculated for both permuted communities to estimate 
the absolute difference. Red dot mark the originally observed value and dashed line denotes the 
upper 5 % quantile. Null models were calculated for the full fungal community as well as 
mycorrhiza, saprotrophs and plant pathogens only. 
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Supplementary Figure S 2.2.4 Non-metric multidimensional scaling (NMDS) soil fungal community 
(SFC) and root associated fungal community (RFC) dissimilarity (Bray-Curtis). Ellipses denote 
standard errors from the centroid of each land-use system. 
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2.3 Soil conditions and stochasticity, not tree diversity drive 

the soil fungal community in a newly-established 

biodiversity enriched oil palm plantation 

Introduction 

There is a world-wide increasing demand for vegetable oil and oil palm has a superior yield potential 

compared to any alternative crops (Carrasco, Larrosa, Milner-Gulland, & Edwards, 2014; Sayer, 

Ghazoul, Nelson, & Klintuni Boedhihartono, 2012). Especially in Indonesia, the world’s biggest 

exporters of palm oil, this industry has lead to a tremendous economic uprising (Euler, Krishna, 

Schwarze, Siregar, & Qaim, 2017; Euler, Schwarze, Siregar, & Qaim, 2016; Kubitza, Krishna, Alamsyah, 

& Qaim, 2018). Oil palm cultivation provides strong improvement of the financial status, social 

situation and labor conditions for a significant proportion of the country’s population (Euler, Krishna, 

Schwarze, Siregar, & Qaim, 2017; Kubitza, Krishna, Alamsyah, & Qaim, 2018). On the downside of 

these positive effects,  the conversion of hyper diverse tropical rain forest to profitable oil palm 

plantations is one of the major drivers for forest cover loss in South East Asia in the last decades 

(Wilcove and Koh 2010; Gibbs et al. 2010; Miettinen et al. 2011; Abood et al. 2015; Vijay et al. 2016). 

The heavily managed oil palm monocultures only harbor a small proportion of the natural occurring 

biodiversity (Drescher et al., 2016; Fitzherbert et al., 2008; Obidzinski, Andriani, Komarudin, & 

Andrianto, 2012; Rembold, Mangopo, Tjitrosoedirdjo, & Kreft, 2017). A wide range of ecosystem 

services are massively impaired (Barnes et al., 2017; Dislich et al., 2017; Grass et al. 2020). It is 

therefore crucial, not only to call for strict protection of remaining low-land forest, but also to find 

alternative management strategies suitable to maintain high productivity while at the same time 

sustain larger proportions of local biodiversity and ecosystem functions (Koh et al. 2009; Foster et al. 

2011). Agroforestry systems with intermixed tree and crop species are a promising approach to find a 

balance between economical productivity and sustainable management by promoting biodiversity 

(Bhagwat, Willis, Birks, & Whittaker, 2008; Schroth et al., 2004; Tscharntke et al., 2011) and 

ecosystem functions of tropical systems (de Carvalho, Vasconcelos, Kato, Capela, & Castellani, 2014; 

Ramos, Vasconcelos, Kato, & Castellani, 2018).  

Soil-borne fungi are a key component of all terrestrial ecosystems facilitating nutrient flow and 

massively contributing to soil health (Frąc, Hannula, Bełka, & Jędryczka, 2018; Rillig, 2004; van der 

Heijden, Bardgett, & van Straalen, 2008). Diversity and composition of those communities are driven 

by abiotic soil variables, especially pH and soil nutrients (Barnes, Maldonado, Frøslev, Antonelli & 
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Rønsted, 2016; Glassman, Wang & Bruns, 2017; Rodríguez-Echeverría et al., 2017; Tedersoo, Bahram, 

& Dickie, 2014; cf. Chapter 2.2). However, the plant and belowground fungal communities form 

numerous interactions and are thus, strongly depend on each other (Philippot, Raaijmakers, 

Lemanceau, & van der Putten, 2013; Smith, Jakobsen, Grønlund, & Smith, 2011; van der Heijden, 

Dombrowski, & Schlaeppi, 2017). Thus, changes in edaphic properties as well as plant community can 

alter the fungal communities across tropical agroforestry systems (Buyer, Baligar, He, & Arévalo-

Gardini, 2017; Zhang et al., 2019). Transformation of forests to oil palm plantations strongly alters 

the soil fungal community (Kerfahi, Tripathi, Lee, Edwards, & Adams, 2014; McGuire et al., 2015; 

Brinkmann et al. 2019), negatively affecting abundance of mycorrhizas while promoting plant 

pathogenic fungi (Brinkmann et al., 2019, cf. chapter 2.1). Management strategies counteracting 

those shifts may promote overall soil functions and contribute to ecosystem restoration (Kardol & 

Wardle, 2010). Enrichment planting of native multipurpose tree species is an innovative approach to 

recover functions and diversity in a conventionally managed oil palm plantation while maintaining 

high productivity (Teuscher et al., 2016). So far the effect of tree enrichment on the soil fungal 

community has not been studied. 

In a novel experimental approach, following suggestions by Corbin & Holl (2012), native 

multipurpose tree species were planted within “tree diversity islands” across a large-scale 

commercial oil palm plantation promote the local diversity. Within the tree islands oil palm density 

was reduced and varying numbers and combinations of tree species were planted. No further 

management was applied after tree establishment to allow for natural plant undergrowth succession 

(Teuscher et al., 2016). First results, after two years of enrichment planting, show elevated yields of 

palm trees within and adjacand to the island compensating for reduced oil palm density (Gérard et 

al., 2017) as well as improved tree performance (Zemp, Gérard, et al., 2019) and stand structural 

complexity (Zemp, Ehbrecht, et al., 2019) associated with tree diversity. Here, we used this 

enrichment experiment to study soil fungal communities by next generation sequencing across all 

diversity islands as well as reference plantation plots after three years of tree planting. We measured 

soil pH, carbon, nitrogen and available phosphorous concentration to control for their structuring 

effect on the fungal community. We tested the effects of tree diversity, presence of individual tree 

species and edaphic conditions on the soil fungal community composition, to test the following 

hypothesis:  (i) Tree diversity enrichment and natural plant succession alter soil fungal communities 

and promote the abundance of plant beneficial mycorrhizal fungi. (ii) Effects of tree enrichment will 

be strongest in larger tree islands due to reduced edge effect. (iii) Individual tree host species 

contribute differently to the taxonomic and functional composition of the soil fungal community. 
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Material and Methods 

Research site and experimental design 

This study was conducted in the frame work of the biodiversity enrichment experiment of the 

Collaborative Research Center 990 (Teuscher et al., 2016; Zemp, Gérard, et al., 2019). The research 

site is located in the mid-sized oil palm plantation PT Humusindo Makmur Sejati (01.95_S and 103.25 

E, 47 ± 11 m a.s.l.), Jambi Province, Sumatra (Indonesia) with a humid tropical climate (mean 

temperature 26.7 ± 1.0 °C, annual precipitation 2235 ± 285 mm) (Drescher et al., 2016) on loamy 

Acrisol (Allen, Corre, Tjoa, & Veldkamp, 2015). Dipterocarp dominated low-land rainforests were the 

primary natural vegetation before transformation (Miettinen et al. 2011). The plantation was 

established between 2001 and 2007. The oil palms were planted in a 9 m x 9 m triangular grid (ca. 

143 palms per hectar). Conventional management comprises the application of 230 kg N (Urea), 196 

kg P (Triple Superphosphate, rock phosphate), 142 kg K (KCl), 54 kg Mg (Kiserite, Dolomite), 0.79 kg B 

(Borax) all in ha-1 and year-1 as well as occasional addition of S ((NH4)2SO4), Si (Zeolite) and Ca 

(Teuscher et al., 2016). Furthermore, regular manual weeding of epiphytes and understory was 

applied (Teuscher et al., 2016). In the plantation, 56 tree diversity islands with varying size and tree 

diversity were established in 2013. For a detailed description of the experimental design as well as 

plantation management practices see Teuscher et al. (2016). In short, tree diversity islands comprise 

six native multi-purpose tree species (Parkia speciosa, Archidendron pauciflorum, Durio zibethinus, 

Peronema canescens, Shorea leprosula, Dyera polyphylla) assembled in one of five diversity levels 

(0,1,2,3 and 6 species per island) and with a size of 5 m x 5 m, 10 m x 10 m, 20 m x 20 m and 40 m x 

40 m. All tree compositions were drawn at random with the restriction, that no repetition across 

plots is allowed and each species is selected exactly once at each diversity level. Islands were 

distributed randomly on the plantation with a minimum distance of 85 m between them. 

Approximately 40% of the oil palms were removed in the island areas and trees were planted in a 2 

m grid according to diversity level and composition. Newly planted trees were initially fertilized to 

promote growth (inorganic: 19 kg N, 8 kg P, 6 kg Mg; organic: 11 kg N, 7 kg P, 10 kg K, 4 kg Mg, 20 kg 

Ca; all in ha -1), and mechanical weeding around the base was conducted during the initial phase to 

prevent overgrowth by understory vegetation. However, after several months management of the 

Islands was stopped entirely to allow for natural succession. Four additional plots with management 

as usual (no removal of oil palm, usual fertilization, weeding and harvesting) were included in the 

study as reference summing to a total of 56 research plots. Diversity levels and size of all tree islands 

as well as planted tree species combination can be found in Supplementary Table S 2.3.1. 
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Sampling 

Sampling was conducted in December 2016, at the beginning of the regional rainy season. In each 

diversity island and the 4 reference plots three soil cores (10 cm depth, 4 cm diameter) were 

extracted from a 5 x 5 m area regardless of diversity Island size to avoid effects of spatial distance. 

The minimum distance to the edge in all islands, larger than 5 m x 5 m, was 2 m. Samples were sieved 

(50 x 50 mm mesh) roots and larger litter was removed. Samping resulted in a total of 168 soil cores 

(three replicates in each of: 4 reference plots, 4 islands with only reduced oil plam density, 24 islands 

with one additional tree species, 24 islands with multiple additional tree species). Aliquots of oil 

samples were immediately freeze dried (VirTis Bench Top K, SP Industries, Warminster, USA) and 

exported to University of Göttingen (Germany).  

Soil nutrient elements and pH 

Dry soil samples were ground for one minute in a ball-mill (MM 2000, Retsch, Haan, Germany).  Soil 

samples were weighed into tin cartouches and used to determine total carbon (C) and nitrogen (N) 

by the combustion method in a CN analyzer (Vario MICRO analyzer, Elementar, Langensbold, 

Germany). Plant available phosphorous (P) was extracted following the method by Bray and Kurtz 

(1945). Soil (100 mg) was mixed with 15 ml of Bray-I Extraction Solution (0.03 N NH4F and 0.025 N 

HCl). The suspension was placed on a shaker for 60 minutes and subsequently filtered through 

phosphate free filters (MN 280 1/4 125 mm, Macherey – Nagel, Düren, Germany). Phosphate 

concentration of the filtrates was measured by inductively coupled plasma mass spectrometry (iCap 

7000, Thermo Fisher Scientific, Waltham, USA). Soil pH was measured in a 0.1 M KCl suspension 

according to ISO 10390 standard. The pH analysis was conducted in the Department of soil Sciences 

of Temperate Ecosystems, Georg-August-University (Goettingen, Germany). 

Fungal community 

Freeze dried soil samples were used for DNA extraction. The fungal community was analyzed based 

on the internal transcript spacer region 2 (ITS2). The marker was amplified by polymerase chain 

reaction (PCR) using ITS3_KYO1 (Toju, Tanabe, Yamamoto, & Sato, 2012) and ITS4 (White, Bruns, Lee, 

& Taylor, 1990). The protocol followed the steps in detail presented in the methods section of 

chapter 2.2. Amplicon sequencing was conducted at the Göttingen Genomics Laboratory with the 

MiSeq Reagent Kit v3 (Illumina Inc., San Diego, USA) for next generation sequencing. Subsequnt 

processing of the raw paired-end reads, assembly of the OTU community matrix as well as taxonomic 

annotation followed the procedure described in the methods section of chapter 2.2. Fungal OTUs 

were assigned to trophic guilds according to their taxonomy, based on the FunGuild database 

(Nguyen et al., 2016; Supplementary Table S 2.3.2). 
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Statistical analysis 

Statistical analyses were performed using R v.3.6.1 (R Core Team 2019). Mean values of C, N and P 

measurements from the three samples per island were used for subsequent analysis Supplementary 

Table S 2.3.1). Carbon and nitrogen content were highly correlated (r > 0.9). Therefore, the C to N 

ratio was calculated (Supplementary Table S 2.3.1) and included as explanatory variable, while total 

carbon was excluded from further analysis to avoid multicollinearity. 

The number of fungal OTU reads in each sample was rarefied to the minimum read count of 18000 

using the rrarefy() function of the package vegan v2.5.6 (Oksanen et al. 2019). Subsequently, counts 

of the three samples per island were added to obtain the island community (Supplementary Table S 

2.3.2). The effect of tree enrichment on the fungal OTU richness was compared with control 

plantation plots by analysis of variance (ANOVA). A multivariate linear model was used to test the 

effect of tree species richness (0 to 6 planted tree species) on OTU richness. Simple regression 

models were used to test the effect of soil variables (pH, N, CN, P) on OTU richness. Further, a 

multivariate linear regression model, including tree species richness, tree island size and soil 

variables, was constructed and the importance of the explanatory variables was assessed by stepwise 

backwards model selection. The model with the smallest Akaike Information Criterion (AIC) was 

selected. The pH gradient across plots was relatively small (3.75 to 4.56 units) but in four plots 

extreme outliers (range: 5.14 to 6.32, > 3x Inter Quartile Range) strongly determining the model 

parameters were present. Thus, models were recalculated excluding those plots. Exclusion increased 

p-values of simple regression models but did not change overall observed trends.  

Effect of tree richness on the community composition of fungal taxa (order level) and trophic groups 

(saprotroph, pathotroph, symbiotroph) were tested using Analysis of Similarity (ANOSIM) as 

implemented in the anosim() function of the vegan package. To estimate p-values, 999 permutations 

were calculated. To analyze the potential effect of tree identitys on the fungal community 

composition, a subset of the community data only containing the tree islands with a single additional 

tree species was created. The community composition (relative abundances of fungal orders) was 

compared among islands containing only a single of the planted tree species (P. speciosa, A. 

pauciflorum, D. zibethinus, P. canescens, S. leprosula, D. polyphylla) or no additional tree species 

using the anosim() function wit 999 permutations. The OTU community matrix was Hellinger 

transformed to lower the weight of low count OTUs (Legendre & Gallagher, 2001) using the function 

decostand() of the vegan package. The effect of tree diversity on the fungal OTU community 

composition was tested using the anosim() function with 999 permutations. To further analyze the 

community composition, non-metric multidimensional scaling (NMDS) was applied using the function 

metaMDS() of the vegan package. Structuring effects of tree diversity level, tree species and island 
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size, as well as soil abiotic variables (excluding extreme pH values) were tested using the envfit() 

function. Further, structuring effects were tested using Distance-based Redundancy Analysis (dbRDA) 

as implemented in the capscale() function. A full model containing tree diversity, tree species, island 

size and soil variables was constructed. Backwards stepwise model selection using the function 

ordistep() was performed to obtain the model with lowest AIC value. Significance of the overall 

model as well as marginal effects of environmental variables were tested using permutation tests as 

implemented in vegans’ anova.cca() function with 999 permutations.  
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Results 

We obtained a total number of 8283 OTUs in the rarefied OTU community data (total number 

sequence counts: ~3.1 million) with a mean species richness of 1501 (±220) per tree island. Fungal 

richness in tree islands did not differ from the control plantation sites regardless of tree diversity 

level (F5, 50 = 0.950, p = 0.457) or island size (F1, 54 = 0.127, p = 0.723) and there was no relation 

between OTU richness and tree species richness (F1, 50 = 0.286, p = 0.595, Figure 2.3.1). Edaphic 

conditions between tree islands were relatively homogenous and only marginally significant positive 

relationships between soil pH (F1, 50 = 3.494, p = 0.067), soil nitrogen (F1, 50 = 3.687, p = 0.061) and 

fungal richness were observed while soil CN (F1, 50 = 1.411, p = 0.241) and available phosphorus (F1, 50 

= 0.706, p = 0.405) did not affect fungal richness (Supplementary Figure S 2.3.1). Stepwise backwards 

model selection was applied on a full multivariate linear model including tree diversity level and 

island size as well as soil nitrogen, CN, pH and available phosphorus. The best model retained soil pH 

and nitrogen as explanatory variables, however the explained variation was low (R² = 0.101, F2, 49 = 

3.859, p = 0.028, Table 2.3.1). 

 

Figure 2.3.1 Fungal OTU richness as a function of tree species richness across all enrichment islands 
(n = 52). The number of Tree Enrichment corresponds to the number of additionally planted tree 
species. Oil palm density was reduced and management was stopped in all islands allowing for 
natural undergrowth succession. 
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Table 2.3.1 Multivariate linear regression model showing the effect of environmental variables on 
fungal OTU richness. The initial model included tree species richness, tree island size, soil pH, CN, N 
and P concentrations. Backwards variable selection was performed. The model with lowest Aikaike 
Information Criterion (AIC) was selected; β = regression coefficient, SE = standard error 

Variables β SE t-value p-value 

(intercept) 5.905 643.05 0.993 0.993 

pH 300.07 153.47 1.955 0.056 

N 147.698 73.72 2.003 0.051 

 

 

The most abundant fungal phyla were Ascomycota (45.4 %) followed by Basidiomycota (20.9 %). 

Approximately 72.0 % of all reads were taxonomically identified at the order level (Supplementary 

Table S 2.3.2, Figure 2.3.2 A). The most abundant orders were Hypocreales (Ascomycota), 

Pleosporales (Ascomycota) and Agaricales (Basidiomycota). However, no compositional change 

among fungal orders was observed between different tree diversity levels and conventionally 

managed sites (ANOSIM: R = 0.078; p = 0.146; Figure 2.3.2 A). Similarly we did not find differences in 

taxonomic composition between islands harboring different tree species (ANOSIM: R = 0.005; p = 

0.466; Supplementary Figure S 2.3.2). Approximately 44 % of the fungal reads could be assigned to a 

trophic mode (Supplementary Table S 2.3.2, Figure 2.3.1 B). We did not observe changes in the 

composition of trophic modes in the fungal communities between tree island diversity levels 

(ANOSIM: R = -0.06; p = 0.862, Figure 2.3.2 B) 
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Figure 2.3.2 Mean relative abundance of fungal orders (A) and trophic groups (B) in tree islands 
with 0 to 6 additional planted tree species. Oil palm density was reduced and management was 
stopped in all islands allowing for natural undergrowth succession; c = control sites under 
conventional management. 
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No structuring effect by tree diversity on the fungal OTU community was observed (ANOSIM: R = -

0.024; p = 0.655). Composition of the fungal community across tree islands was analyzed using NMDS 

and the environmental variables tree island size, tree diversity level, presence of individual tree 

species as well as edaphic variables (pH, N, CN, P) were fit to the ordination. Despite low variability, 

soil nitrogen, CN ratio and phosphorus concentration were significantly associated with the fungal 

community structure (Figure 2.3.3). Constrained ordination (distance-based Redundancy Analysis) 

was used to further explore the structuring effect of the environmental variables on the soil fungal 

community composition. Stepwise backwards model selection was applied on the full ordination 

model including tree diversity level, tree species, island size, soil nitrogen, CN, pH and phosphorus. In 

agreement with the results from the variable fit on the community ordination, the final model 

included soil nitrogen, CN and phosphorus; however only a low proportion of variation in the fungal 

community composition was explained by the model (Constrained Variation = 0.093; F3, 48 = 1.648, p = 

0.001 (999 permutations); Table 2.3.2). 

 

Figure 2.3.3 Non-metric multidimensional scaling (NMDS) of the soil fungal community dissimilarity 
measured as Bray-Curtis dissimilarity between all tree islands. In tree islands 0 to 6 additional tree 
species were planted. Oil palm density was reduced and management was stopped in all islands 
allowing for natural undergrowth succession; c = control sites under conventionalmanagement. 
Ellipses represent standard errors from the centroid of each tree diversity level; red arrows show 
the linear effect of significant soil variables 
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Table 2.3.2 Constrained ordination model showing the effect of environmental variables on fungal 
community composition. The initial model included tree diversity, tree island size, tree species 
identity, soil pH, crabon to nitrogen (CN), nitrogen (N) and available phosphorpous (P) 
concentrations. Backwards variable selection was performed and only significant variables were 
retained in the model. p-values were estimated using permutation test with 999 permutations; df 
= Degrees of Freedom, SS = Sum of Squares 

Variables Df SS F-value p-value 

N 1 0.321 1.667 0.002 

CN 1 0.252 1.310 0.015 

P 1 0.307 1.592 0.001 

Residual 48 9.242   

 

Discussion 

Soil fungi play a crucial role in the recovery of ecosystems (Kardol & Wardle, 2010) but only few 

studies addressed fungal communities in tropical forest restoration systems (Bachelot et al., 2016; 

Holste, Holl, Zahawi, & Kobe, 2016; Reyes et al., 2019). To our knowledge, this study is the first to 

explore possibilities to restore fungal communities in intensively managed oil palm plantations. Tree 

diversity islands did not alter the soil fungal diversity or community composition compared to the 

surrounding plantation three years after tree planting and undergrowth succession. Soil nitrogen and 

phosphorous concentrations affected the fungal community composition but variation of measured 

edaphic variables among the study plotswas low. Therefore, a large proportion of variance in the 

fungal community remained unexplained. Our results highlight the strong legacy effect of intensive 

land-use on soil fungal communities and emphasize the potentially slow recovery of these systems. 

Soil fungal species richness was neither affected by stopping the management nor increasing tree 

species richness. Transformation of tropical forest to oil palm and rubber monoculture had little 

effect on fungal species richness compared to the massive loss of plant diversity (Kerfahi, Tripathi, 

Dong, Go, & Adams, 2016, cf. chapter 2.2). Therefore, we did not expect to observe an increase in 

fungal richness driven by tree diversity enrichment. However, in contrast to our results, the fungal 

community composition and functionality were altered in tropical land-transformation systems 

(Brinkmann et al., 2019; Kerfahi et al., 2014; McGuire et al., 2015, cf chapter 2.2). Since neither the 

taxonomic nor functional composition of the fungal community wasaffected by tree enrichment 

compared to regular management or increased tree diversity, our first hypothesis has to be rejected. 

Likewise, tree island size did not affect compositional turnover in the fungal community composition, 

thus our second hypothesis was rejected. We further did not find any structuring effect of tree 
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identity. These results were surprising, because links between the vegetation structure and fungal 

community have frequently been observed and causal plant fungus relationships are generally 

assumed due to their numerous interactions (de Vries et al., 2012; Leff et al., 2018; Rodríguez-

Echeverría et al., 2017; Yang et al., 2019). Our results suggest that there is a strong legacy effect on 

the fungal community, still overruling the structuring effects by the plant community. Supporting this 

explanation, long lasting land-use effects on the soil fungal community composition were 

demonstrated even after 80 years of natural succession from farming and logging in tropical forests 

of Puerto Rico (Bachelot et al., 2016). Furthermore, Chai et al., (2019) demonstrated that significant 

compositional differences of the fungal community between managed and recovering sites were only 

present after more than a decade of natural succession from farmland to secondary forest while no 

differences were found in early establishment phases (1-15 years after management stop). 

Agroforestry systems were demonstrated to promote compositional shifts in the fungal community 

and abundance of mycorrhizal fungi compared to monocultures for a variety of tropical crops, 

including coffee (Moreira, Celestino, Sobrinho, Cardoso, & Elliot, 2019), cacao (Buyer et al., 2017) and 

rubber (Brinkmann et al., 2019). Therefore, despite our first results, we hypothesize that long term 

establishement of enriched tree islands could have similar beneifitial results in oil palm plantations.It 

is obvious that long term time series studies in enrichment systems are necessary to better 

understand how succession after intensive land-use affects the fungal community.  

Soil abiotic drivers are heavily structuring the fungal communities in soil and can overrule potential 

plant regulatory effects (Peay et al., 2015; Schappe et al., 2017). In our study, homogenous 

conditions were found for soil variables typically driving soil fungal community composition (Bardgett 

& van der Putten, 2014; Tedersoo et al., 2014, cf. Chapter 2.2). Therefore, it was not surprising that 

only a low proportion of community variation was explained by our models. Microbial communities 

are shaped by deterministic (e.g. environmental filtering) and niche-neutral processes such as 

dispersal limitation and stochastic community variation (Adams, Miletto, Taylor, & Bruns, 2013; 

Brinkmann et al., 2019; Dumbrell, Nelson, Helgason, Dytham, & Fitter, 2010; Powell et al., 2015). 

Ecologic drift (i.e. random population fluctuations) can dominate community assembly under 

homogenous environmental conditions (Bahram et al., 2016). Similar mechanisms may have strongly 

contributed to community variation in our study. Nevertheless, soil nutrients (nitrogen and available 

phosphorous) as well as carbon to nitrogen ratio partially determined soil fungal community 

composition in our study, despite the flat environmental gradient. Low nutrient and particularly low 

phosphorous concentrations are common in highly weathered tropical soils (Allen, Corre, Kurniawan, 

Utami, & Veldkamp, 2016; Dalling, Heineman, Lopez, Wright, & Turner, 2016; Turner, Brenes-

Arguedas, & Condit, 2018). Therefore, P and N availability are likely limiting factors for soil 

microorganisms; consequently, tight associations between soil nutrients and community composition 
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are frequently occurring (Barnes, Maldonado, Frøslev, Antonelli, & Rønsted, 2016; McGee, Eaton, 

Shokralla, & Hajibabaei, 2018; Rodríguez-Echeverría et al., 2017; Tedersoo et al., 2014). 

We did not observe a structuring effect by soil pH in our study. Soil pH influences the availability of 

nutrient elements as well as toxic cations (Glassman et al., 2017; Kluber et al., 2012; Sylvia, 2005). It 

is therefore postulated that soil pH is an important unifying driver of the belowground microbiome 

(Fierer & Jackson, 2006; Fierer, 2017) and structuring effects of pH on the fungal community were 

demonstrated across steep gradients from acidic to basic soils (Rousk et al., 2010; Tedersoo et al., 

2014) as well as smaller regional variations by one or two units (Glassman et al., 2017; Lauber, 

Strickland, Bradford, & Fierer, 2008; Vasco-Palacios, Bahram, Boekhout, & Tedersoo, 2019; cf. 

chapter 2.2). However, our results suggest that in relative homogenous habitats, dominated by 

anthropogenic land-use, the soil pH may not a major driver for the fungal community composition. 

We assume that the selective effect of pH is overruled by the strong legacy effect of land-use, 

resulting biotic homogenization (Gossner et al., 2016; Mueller, Rodrigues, Nüsslein, & Bohannan, 

2016). 

In conclusion, we showed that short-term (three years) manipulation of the tree diversity and 

vegetation structure was not sufficient for the recovery of soil fungal communities from the effects 

of intensive management. However, this does not imply that effects of enrichment tree planting will 

have no long term positive effects on the soil microbiome. The root associated microbiome often 

differs significantly from the surrounding soil communities, which is likely linked to structuring plant 

effect (Danielsen et al. 2012; Zheng et al. 2017; Moll et al. 2016, cf. chapter 2.2). Agroforestry 

systems can promote the diversity, alter composition and improve resilience of root associated 

fungal communities (Bainard, Koch, Gordon, & Klironomos, 2012; Chifflot, Rivest, Olivier, Cogliastro, 

& Khasa, 2009; Furze et al., 2017) and those effects may feedback on surrounding soil after long-term 

establishment of tree islands. Studying further succession as well as analysis of the root associated 

communities of planted tree species could help to predict future effects of tree diversity enrichment 

on the soil microbiome in monoculture plantations.  
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Supplementary Information 

Supplementary Table S 2.3.1 Tree enrichment island size (edge length), tree pecies richness levels, 
planted tree species and soil chemical measurements. DZ = Durio zibethinus; DP = Dyera 
polyphylla; AP = Archidendron pauciflorum; SL = Shorea leprosula; PS = Parkia speciosa; PC = 
Peronema canescens 

No. edge len. [m] Tree 
richness 

DZ DP AP SL PS PC soil C 
[mg g

-1
] 

soil N 
[mg g

-1
] 

soil CN soil avail. P 
[mg g

-1
] 

soil pH 

1 40 1 0 0 0 0 1 0 16.05 1.57 10.20 0.033 4.09 

2 20 3 1 0 0 1 1 0 17.82 1.51 11.79 0.680 5.14 

3 20 2 1 1 0 0 0 0 17.07 1.81 9.42 0.040 3.94 

4 10 1 0 0 0 1 0 0 18.69 1.83 10.22 0.391 3.98 

5 40 1 0 0 1 0 0 0 13.80 1.19 11.40 0.023 3.98 

6 5 1 0 0 0 0 0 1 14.26 1.26 11.32 0.069 3.96 

7 40 3 0 0 0 1 1 1 25.51 2.37 10.69 0.073 4.06 

8 5 1 0 0 0 1 0 0 17.54 1.60 10.96 0.039 3.84 

9 10 3 0 1 1 0 1 0 21.60 1.85 11.64 0.262 4.21 

10 20 0 0 0 0 0 0 0 21.59 2.07 10.45 0.045 3.94 

11 10 1 0 1 0 0 0 0 14.73 1.58 9.27 0.058 3.95 

12 20 1 1 0 0 0 0 0 13.25 1.18 11.23 0.174 4.24 

13 10 1 0 0 0 0 0 1 22.03 1.98 11.14 0.053 4.08 

14 10 1 1 0 0 0 0 0 16.40 1.59 10.29 0.062 4.14 

15 20 1 0 0 1 0 0 0 21.78 2.05 10.60 0.037 3.78 

16 5 3 1 1 0 0 1 0 18.04 1.72 10.55 0.029 4.1 

17 20 1 0 0 0 1 0 0 21.90 2.13 10.39 0.240 4.17 

18 5 2 0 1 0 0 0 1 18.29 1.79 10.25 0.050 3.83 

19 20 6 1 1 1 1 1 1 20.59 2.08 9.90 0.038 3.94 

20 10 1 0 0 1 0 0 0 22.89 2.17 10.57 0.068 3.86 

21 10 6 1 1 1 1 1 1 10.52 1.03 10.23 0.493 4.1 

22 5 2 0 0 1 1 0 0 13.34 1.24 10.80 0.076 3.97 

23 40 6 1 1 1 1 1 1 16.26 1.54 10.45 0.033 3.85 

24 40 2 1 0 0 0 0 1 15.08 1.50 10.02 0.383 5.96 

25 5 1 0 0 0 0 1 0 25.15 2.16 11.68 0.057 4.2 

26 40 2 0 1 0 1 0 0 14.43 1.38 10.51 0.069 4.06 

27 10 2 0 0 0 0 1 1 19.26 2.06 9.40 0.413 4.24 

28 5 1 0 0 1 0 0 0 22.93 2.04 11.26 0.199 4.19 

29 40 3 1 1 1 0 0 0 19.39 1.73 11.16 0.045 4.26 

30 20 1 0 0 0 0 0 1 11.98 1.15 10.40 0.038 4.22 

31 5 1 1 0 0 0 0 0 16.42 1.62 10.10 0.384 5.35 

32 10 2 1 0 0 1 0 0 18.84 1.78 10.52 0.069 3.85 

33 20 3 0 1 1 0 0 1 19.25 1.54 12.46 0.124 4.06 

34 10 2 0 1 1 0 0 0 15.18 1.59 9.58 0.053 4.29 

35 40 0 0 0 0 0 0 0 19.97 2.21 9.05 0.150 4.33 

36 20 2 0 0 0 1 1 0 23.10 2.21 10.46 0.060 4.21 

37 10 0 0 0 0 0 0 0 19.88 2.10 9.41 0.324 4.45 

38 20 1 0 1 0 0 0 0 25.03 2.57 9.72 0.071 3.75 

39 5 2 1 0 0 0 1 0 15.61 1.63 9.59 0.171 3.9 
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Supplementray Table S 2.3.1 continued 

No. edge len. [m] Tree 
richness 

DZ DP AP SL PS PC soil C 
[mg g

-1
] 

soil N 
[mg g

-1
] 

soil CN soil avail. P 
[mg g

-1
] 

soil pH 

40 5 0 0 0 0 0 0 0 19.23 1.87 10.24 0.050 3.98 

41 10 1 0 0 0 0 1 0 13.74 1.26 10.91 0.063 3.97 

42 5 1 0 1 0 0 0 0 15.30 1.37 11.26 0.037 3.97 

43 40 1 1 0 0 0 0 0 21.41 1.79 12.09 0.089 4.25 

44 5 3 0 0 1 1 0 1 14.95 1.61 9.27 0.052 4.09 

45 40 1 0 0 0 0 0 1 27.11 2.89 9.37 0.068 4.1 

46 40 2 0 0 1 0 1 0 34.66 3.62 9.54 0.084 6.32 

47 20 2 0 0 1 0 0 1 18.56 2.15 8.64 0.053 4.5 

48 10 3 1 0 0 1 0 1 14.43 1.46 10.02 0.274 4.56 

49 40 1 0 0 0 1 0 0 13.52 1.32 10.21 0.058 4.36 

50 5 6 1 1 1 1 1 1 22.45 2.16 10.46 0.064 4.1 

51 20 1 0 0 0 0 1 0 18.54 1.57 11.55 0.038 3.77 

52 40 1 0 1 0 0 0 0 16.31 1.43 11.39 0.526 4.38 

53 10 c 0 0 0 0 0 0 15.41 1.26 11.92 0.272 3.94 

54 10 c 0 0 0 0 0 0 13.98 1.18 11.83 0.034 4.16 

55 10 c 0 0 0 0 0 0 20.30 1.69 12.12 0.040 4.29 

56 10 c 0 0 0 0 0 0 15.52 1.48 10.53 0.030 4.2 

 

Supplementary Table S 2.3.2 Rarefied read counts of fungal operational taxonomic units (OTU; 
clustered at 97 % similarity threshold) for all tree islands and reference plots. (coluns 1 – 57) as 
well as their taxonomic affiliation (columns 58 - 68) 

 

See digital supplement supplTable_S232.xlxs 
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Supplementary Figure S 2.3.1 Fungal OTU richness as a function of soil pH (A), soil nitrogen (B), soil 
carbon to nitrogen ratio (C) and soil available phosphorous (D); n = 52; colors denote tree island 
diversity; c = conventionally managed sites 
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Supplementary Figure S 2.3.2 Mean relative abundance of fungal orders in tree islands with one 
additional tree species planted. Density of oil plam (E. guineensis) was reduced and management 
was stopped in all islands allowing for natural undergrowth succession. The first lefthand bar 
represents the tree islands were no additional treespecies was planted. 
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3 Synthesis 

In this thesis, I analyzed the effects of anthropogenic land-transformation in tropical ecosystems on 

the diversity, abundance, and composition of the belowground fungal microbiome. I demonstrated 

severe land-use induced compositional shifts in the soil as well as in the root-associated fungal 

biomes. These results are in line with studies from other transformations systems also reporting 

differences in soil fungal community structures (Kerfahi, Tripathi, Dong, Go, & Adams, 2016; Kerfahi, 

Tripathi, Lee, Edwards, & Adams, 2014; McGuire et al., 2015; Mueller et al., 2014; Mueller, 

Rodrigues, Nüsslein, & Bohannan, 2016). Moreover, the present study is one of the few comparing 

fungal communities in natural rainforests with several major tropical transformation systems (jungle 

rubber, rubber and oil palm plantations) (Berkelmann, Schneider, Meryandini, & Daniel, 2020; 

Brinkmann et al., 2019). Thereby, this thesis extends current knowledge on the assembly of fungal 

communities under human land-use. In-depth analysis on the effect of land-use intensity on root 

associated mycorrhizal fungi across land-use systems is provided (chapter 2.1). The effects of 

changes in edaphic properties and plant root community traits on the composition of root and soil 

associated fungal communities were disentangled (chapter 2.2). Finally, short-term effects after 

three years of vegetation diversity enrichment in a formerly intensively managed oil palm plantation 

on the soil fungal community structure were investigated (chapter 2.3). Empirical findings and 

detailed discussions of these aspects are presented in the respective research chapters. In the 

following, the main findings are put into context to develop a conceptual framework on how 

anthropogenic land-use drives the assembly and function of the belowground fungal microbiome and 

to discuss the implications of these findings for future research. 

Different land-use systems harbor distinct fungal communities associated with roots and soil (chapter 

2.2) and a characteristic composition of AM communities (chapter 2.1), overruling a structuring 

effect by landscape. I demonstrated that the spatial effect on fungal community dissimilarity 

(“distance decay”) was small compared to the effect of environmental filters (chapter 2.2). The 

hypothesis “everything is everywhere, but environment selects” was originally proposed by Baas 

Becking (1934) to characterize the high dispersal ability and niche based assembly of microbial 

communities, and as has been under critical evaluation ever since (Fuhrman, 2009). A number of 

recent studies utilizing next generation sequencing also challenged this view by demonstrating that 

niche neutral processes (e.g. dispersal limitation) indeed contribute to the assembly of microbial 

communities (Davison et al., 2015; Peay, Bidartondo, & Arnold, 2010; Taylor, Turner, Townsend, 

Dettman, & Jacobson, 2006; Tedersoo et al., 2014). Therefore, the “everything-everwhere” paradigm 

cannot be kept. Nevertheless, in this thesis, I observed only a minor effect of spatial distance on 
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fungal community structures, thus, suggesting that on the regional scale (approximately 120 km) of 

this work the fungal community is mainly determined by environmental conditions (chapter 2.2). In 

agreement with this result, other studies found low impact of spatial distance on the assembly of 

fungal communities across scales of several hundred kilometers (Beng & Corlett, 2019; Kivlin, 

Winston, Goulden, & Treseder, 2014). The local fungal communities were, therefore, likely recruited 

from a larger species pool present in our study region, which I consider further-on as the regional 

species pool (Figure 3.1). A regional species pool implicates that, e.g., protected habitats such as the 

Natural Forest Reservations “PT Restorasi Ekosistem Indonesia” (Harapan landscape) or “Bukit 

Duabelas” (Bukit landscape) could serve as a reservoir for naturally occurring fungal species 

contributing to the succession of local fungal communities after recovery from human land-use. 

However, it remains unclear at which spatial and temporal scale this species pool may contribute to 

the assembly of local communities. Up-scaling the assessment of fungal communities across land-use 

systems including larger environmental gradients and reduced oil palm management practices 

(Darras et al., 2019), will be required to further disentangle the effects of environmental filters and 

niche neutral processes on the assembly of local fungal communities. 

Land use intensity (LUI) has a strong negative on the diversity and abundance of root associated AM 

fungi (Chapter 2.1). In contrast, the effect of land-use systems on the diversity of the overall fungal 

community did not reveal a clearly declining pattern (Brinkmann et al., 2019, chapter 2.2), 

underpinning the specific susceptibility of AM. AM fungi, all belonging to the phylum of the 

Glomeromycota, are key mutualists for the majority of land plants although their overall diversity 

and abundance is very low compared to the hyperdiverse phyla of the Asco- and Basidiomycota 

(Stürmer, Bever, & Morton, 2018; Tedersoo et al., 2014). In agreement with this notion, we classified 

only 550 of a total 7003 OTUs, i.e., 7.85 % of the putative fungal species in the root-associated fungal 

community (RFC) as Glomeromycota (chapter 2.1). They only accounted for 3.96 % of the molecular 

read abundance in the RFC (chapter 2.1), while most fungi belonged to Asco- and Basisdiomycota 

(chapter 2.2).Other studies report even lower diversity of AM taxa on similar spatial scales ranging 

from 140 taxa to numbers as low as 39 (Edy, 2015; Lumini, Orgiazzi, Borriello, Bonfante, & Bianciotto, 

2010; Rodríguez-Echeverría et al., 2017). However, it should be kept in mind that primer choice and 

the methodology of bioinformatic processing have a strong impact on the results of high throughput 

sequencing data (Lindahl et al., 2013; Peay, Kennedy, & Bruns, 2008; Toju, Tanabe, Yamamoto, & 

Sato, 2012). The short Illumina sequence reads currently used in most studies, including this thesis, 

likely overestimate the true diversity of AM fungi. Therefore, direct comparison of microbial diversity 

between different studies is problematic. However, the results of chapter 2.1. demonstrate drastic 

effects on low-abundance groups such as AM, which are sensitive to anthropogenic disturbances. 

This effect remained undetected when analyzing the whole fungal microbiome (chapter 2.2, 
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Brinkmann et al., 2019; Grass et al., 2020). Selective negative effects of anthropogenic land-use on 

the diversity of essential groups such as AM therefore are likely to drive functional turnover of fungal 

communities.  

Strong links between LUI and shifts in the root-associated AM community were demonstrated in 

chapter 2.1. Those shifts were probably caused by elevated fertilizer inputs in intensively managed 

plantation sites. Studies with agricultural crops have often shown that nitrogen and phosporus 

fertilization causes reduction in AM (Liu et al., 2012; Mäder, Edenhofer, Boller, Wiemken, & Niggli, 

2000; Williams, Manoharan, Rosenstock, Olsson, & Hedlund, 2017; Zhu et al., 2016). AM fungi 

generally show low host specificity (Davison et al., 2015; Engelmoer & Kiers, 2015). Here, AM 

communities in roots of phylogenetically unrelated tree species such as oil palm and rubber showed 

a stronger overlap than with any forest tree host (Edy, 2015). This result provides circumstantial 

evidence that LUI and not tree taxonomic diversity loss is a main driver for the AM community 

composition and abundance. AM fungi contribute significantly to the plants’ uptake of phosphorus 

and nitrogen in soil (Smith & Read, 2008). Addition of readily available nutrients may lead to the loss 

of the benefits provided by AM to the host and consequently, impair the mutualistic interaction 

(Bennett & Bever, 2009; Treseder, 2004). The results of this thesis are agreement with this concept 

because structuring effects of soil phosphorus were demonstrated for the mycorrhizal community 

composition but not for other fungal functional groups (chapter 2.2). First results from a 

management experiment also support a link between AM levels and fertilizer input because higher 

AM abundances were detected in plots with reduced fertilizer inputs than in those with conventional 

management already after one year (Ryadin, personal communication). Reducing fertilizer inputs as a 

management strategy to moderate LUI may, thus, positively affect the AM community. A diverse AM 

community benefits plant health and performance (van der Heijden, Bardgett, & van Straalen, 2008; 

van der Heijden, Martin, Selosse, & Sanders, 2015).  

High turnover was found between the local root associated fungal community (RFC) and the soil 

fungal community (SFC) (chapter 2.2). Therefore, one may assume that the assembly of root-

associated fungal communities from the regional species pool occurs largely independently from the 

local soil fungal pool (Figure 3.1). While the SFC is filtered by edaphic properties, the RFC is subject to 

a double filtering process, firstly by edaphic conditions and secondly by root traits (Figure 3.1, Vályi, 

Mardhiah, Rillig, & Hempel, 2016). A novel result of this thesis was that changes in root traits drove 

changes in the SFC, though to a lesser degree than abiotic filters (chapter 2.2). Thus, bottom up 

regulatory effects of root traits, mainly root vitality, may indirectly affect the local SFC via the RFC 

(Figure 3.1). My study, in agreement with a few previous investigations underpins diverging effects of 

environmental drivers on fungal communities associated with these two compartments (Goldmann 
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et al., 2016; Stevens et al., 2020; Zhao et al., 2019). Moreover, the present results emphasize the 

need to carefully distinguish between root and soil associated fungal communities, when 

investigating the relative contribution of structuring drivers because the importance of these drivers 

differ profoundly in soil and roots and in different ecological groups of fungi. 

 

Figure 2.3.1 Conceptual model showing controlling mechanisms of the soil and root associated 
fungal community assembly under human land-use. Local fungal community assemblies are 
recruited from the regional species pool (grey arrows) and primarily filtered by edaphic properties. 
The root fungal community is further structured by root community traits. Both local communities 
are recruited independently. Spillover effects between them are expected. 

Since we found a decline in AM and a strong turnover of soil fungi in different land-use systems 

(chapter 2.1, 2.2), an important question was whether these patterns can be – at least partly – 

reverted by tree enrichment in islands in conventionally managed oil palm plantations. Structuring 

effects of tropical agroforestry management on the composition of soil fungal communities have 

often been demonstrated (Brinkmann et al., 2019; Buyer, Baligar, He, & Arévalo-Gardini, 2017; 

Moreira, Celestino, Sobrinho, Cardoso, & Elliot, 2019). Therefore, I expected that tree enrichment 

and natural succession might result in diverging fungal community structures and benefit the 

abundance of mycorrhizal fungi. Disappointingly, no effect of tree diversity, nor the presence of 

individual tree species or undergrowth plant succession had an effect on the SFC composition. In 

combination with results from chapter 2.2 that revealed a high turnover for local soil and root 

communities, I speculate that bottom-up regulatory plant effects could be initiated at the RFC (Figure 

3.1). Subsequently, the SFC might be influenced by “spillover effects” of the RFC, however, with a 

long temporal delay (Figure 3.1). This mechanism could explain the long lasting legacy effect of land-

use on soil fungal communities (Bachelot et al., 2016; Chai et al., 2019). It is unclear, at which spatial 

scale the fungal “spillover” could affect the surrounding SFC. It is conceivable that that the intensive 

land-use history in oil palm plantations causes massive biotic homogenization of the soil fungal 

community and strongly favors generalist fungi with a broad ecological niche (Gossner et al., 2016; 

Mueller et al., 2016). Based on these considerations, time series studies of the turnover of fungal 
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communities associated with roots, with the rhizosphere, and the bulk soil are suggested. These 

studies may contribute to uncover temporal and spatial effects that may hinder or facilitate fungal 

ecological functions in mixed restoration-cash crop plantation.  
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Appendix 1: Sampling and export Permission 

Sampling 2013 

Research permit (Kartu Izin Peneliti Asing, permission number: 333/ SIP/ FRP/ SM/ IX/ 2012) was 

issued by the Ministry of Research and Technology RISTEK (Kementrian Ristek dan Teknologi, Jakarta, 

Indonesia). The Research Center for Biology of the Indonesian Institute of Science LIPI (Lembaga Ilmu 

Pengetahuan Indonesia, Jakarta, Indonesia) recommended issuing a sample collection permit 

(Rekomendasi Ijin Pengambilan dan Angkut (SAT– DN) Sampel Tanah dan Akar,number: 2696/ IPH.1/ 

KS:02/ XI/ 2012). Collection permit (number: S.16/KKH– 2/ 2013) and export permit (reference 

number: 48/KKH– 5/ TRP/ 2014) were issued by the Directorate General of Forest Protection and 

Nature Conservation PHKA (Perlindungan Hutan dan Konservasi Alam, Jakarta, Indonesia) under the 

Ministry of Forestry of the Republic of Indonesia. The Chamber of Agriculture of Lower Saxony (Plant 

Protection Office, Hannover, Germany) issued the import permits (Letter of Authority, numbers: DE – 

DE-NI-17-03 2008 -61-EC). 

Sampling 2016 

Research permit (Surat Izin Penelitian, reference number: 328/ SIP/FRP/E5/Dit.KI/IX/2016) was 

issued by the Ministry of Research Technology and Higher Education (Kementrian Riset, Teknologi 

dan Pendidikan Tinggi, Jakarta, Indonesia). The permit recommendations for sample collection, 

domestic sample transport, sample export and access to the genetic material were issued by the 

Research Center for Biology of the Indonesian Institute of Science (Lembaga Ilmu Pengetahuan 

Indonesia, Jakarta, Indonesia) number: 2781/ IPH.1/ KS.02.04/IX/2016 and B-

1345/IPH.1/KS.02.04/III/2019.  

The permit for sample collection, domestic sample transport, sample export and access to the 

genetic material was issuedby the Ministry of Environment and Forestry, Directorate General of 

Conservation of Natural Resources and Ecosystems of the Republic of Indonesia (Izin akses sumber 

daya genetik untuk kepentingan penelitian oleh Kementerian Lingkungan Hidup dan Kehutanan, 

Direktorat Jenderal Konservasi Sumber Daya Alam dan Ekosistem) number 

S.1068/KKH/SDG/KSA.2/11/2016 and SK.335/KSDAE/SET/KSA.2/7/2019. 

The Chamber of Agriculture of Lower Saxony (Plant Protection Office, Hannover, Germany) issued the 

import permits (Letter of Authority, numbers: DE-NI-17-03 2008 -61-EC). 
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Abstract  

Soil fungi are key players in nutrient cycles as decomposers, mutualists and pathogens, but 

the impact of tropical rain forest transformation into rubber or oil palm plantations on 

fungal community structures and their ecological functions are unknown. We hypothesized 

that increasing land use intensity and habitat loss due to the replacement of the 

hyperdiverse forest flora by nonendemic cash crops drives a drastic loss of diversity of soil 

fungal taxa and impairs the ecological soil functions. Unexpectedly, rain forest conversion 

was not associated with strong diversity loss but with massive shifts in soil fungal community 

composition. Fungal communities clustered according to land use system and loss of plant 

species. Network analysis revealed characteristic fungal genera significantly associated with 

different land use systems. Shifts in soil fungal community structure were particularly 

distinct among different trophic groups, with substantial decreases in symbiotrophic fungi 

and increases in saprotrophic and pathotrophic fungi in oil palm and rubber plantations in 

comparison with rain forests. In conclusion, conversion of rain forests and current land use 

systems restructure soil fungal communities towards enhanced pathogen pressure and, 

thus, threaten ecosystem health functions. 
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Introduction 

Tropical rain forests are the planet’s most species-rich biomes 1. In the past two decades, 

tropical rain forests in many parts of the world have been rapidly converted to monospecific 

plantations 2. As a result, deforestation and human land use have irretrievably destroyed 

large areas of unique rain forests and enforced biodiversity loss 3,4. High plant diversities are 

associated with active, abundant and diverse fungal communities 5–7. Plant diversity was, 

therefore, predicted to be a strong driver of fungal species richness in soils of tropical rain 

forests 7–9. However, the consequences of rain forest transformation into agricultural land 

for soil fungal diversity and the ecological functions of these fungi are not well understood. 

Soil fungi are integral components of ecosystems, driving nutrient cycling as decomposers 10–

13, regulating species composition as pathogens 14 and providing mutualistic benefits as 

symbiotrophs, thereby playing a key role in biogeochemical processes 15,16 and in soil health 

17,18. Because of their important functions, the impact of deforestation and land use 

intensification on soil fungal communities in the tropics is receiving increasing attention. To 

date, only a few studies have used next-generation sequencing methods to characterize soil 

fungal communities after the conversion of rain forests into agricultural land 19–22. Those 

studies focused mainly on distinct fungal groups such as mycorrhizae and the turnover of 

their community structure in response to distinct land use systems such as the conversion of 

rain forest into pasture or cash crop plantations with oil palms or rubber trees 19–22. 

However, approaches linking land use systems or aboveground vegetation diversity with soil 

fungal richness and diversity are rare 23. To better understand the consequences of forest 

conversion for the taxonomic and functional composition of soil fungi, studies across 

different landscapes in relation to land use systems and plant diversity loss are required. 

Such approaches are urgently needed for recommendations for sustainable land use 24. 
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Here, we investigated the impact of land use systems and loss of plant richness on soil fungal 

diversity in southeast Asia, where natural forests are transformed into cash crop plantations 

at unprecedented rates 25,26. Loss of natural forest resources is particularly strong in 

Indonesia, which is currently the world´s largest palm oil producer 27 and is second in rubber 

production 28. We conducted our study in two regions in Sumatra (Indonesia), selecting 

unmanaged lowland rain forests, moderately managed jungle rubber agroforests and 

intensively managed plantations, where oil palm (Elaeis guineensis Jacq.) or rubber (Hevea 

brasiliensis Kunth. Muell.) were the only tree species. Oil palm and rubber plantations are 

fertilized with 300 to 600 kg ha-1 yr-1 and 100 to 300 kg ha-1 yr-1 inorganic NPK fertilizer, 

respectively. Other inputs are cow dung and lime, in addition to herbicide treatments twice a 

year 29. We used these inputs and planting intensities to calculate indices for land use 

intensity.  Previous investigations in our study regions showed that plant species richness 

and above- and belowground plant biomass are reduced in oil palm and rubber plantations 

compared with rain forests 4,30. We expected that the replacement of the hyperdiverse 

forest flora by nonendemic oil palm and rubber trees resulted in drastic diversity losses of 

soil fungal taxa because plant communities structure soil habitats 31–33. We used vegetation 

richness and indicators of land use to test the hypothesis that soil fungal species richness is 

driven by land use intensity 34 and by loss of plant species richness. We further tested the 

hypothesis that intensive land use in monospecific plantations leads to changes in the 

ecological functions of soil fungi. To investigate this proposition, we categorized soil fungi 

according to their trophic mode into guilds (symbiotrophic, pathotrophic and saprotrophic), 

studied shifts in the composition of the ecological fungal groups and employed network 

analyses to uncover indicator fungi for different land use systems. 
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Materials and methods  

Study sites and sampling design 

The study sites were located in two different landscapes (Harapan Rain Forest, National Park 

Bukit 12) in the Jambi Province of Sumatra, Indonesia. Both landscapes have been previously 

described based on latitude and longitude, soil type, climate, rainfall, annual precipitation, 

temperature and vegetation 33,35–37. Details of our sampling design have been described by 

Sahner et al. 33. In brief, in each landscape, four land use systems (secondary rain forest, 

rubber agroforest (jungle rubber), rubber plantations and oil palm plantations) were 

selected. In each land use system, four plots (50 m x 50 m) were installed, resulting in a total 

of 32 sampling plots. In each plot, three subplots of 5m x 5m were selected. To account for 

heterogeneity, in each subplot five soil cores (0.04 m diameter and 0.20 m depth) were 

extracted (one close to each corner and one in the center of the subplot). Soil cores were 

stored individually in plastic bags that were then stored in cool bags and transported to the 

University of Jambi, where they were stored at 4°C until further processing. Each soil core 

was weighed and consecutively sieved through two sieves with 10 and 5 mm mesh size, and 

bulk soil was separated from roots. The five samples from the same subplot were pooled 

and well mixed, yielding one bulk soil sample per subplot 33. To freeze dry the bulk soil 

samples, the reaction tubes (50 ml, Sarstedt, Nümbrecht, Germany) containing bulk soil 

were opened, and gauze was put into the aperture of each tube to avoid loss of bulk soil 

during freeze drying. Reaction tubes containing bulk soil were put on a rack and placed in a -

80 °C freezer for at least 3 hours before freeze drying to make sure that the bulk soil had a 

sufficiently low temperature. Freeze drying was performed using a VirTis Benchtop K Freeze 

Dryer (SP Industries, Warminster, USA) with a dual stage rotary vane vacuum pump (Trivac 

E2, Leybold Vakuum GmbH, Köln, Germany) for approximately 32 hours. Afterwards, three 

perforated Eppendorf tubes filled with 5 g of silica gel (desiccant bag of silica gel orange (10 
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g (40 x 90 mm)), Carl Roth, Karlsruhe, Germany) were put into the reaction tubes to keep the 

soil samples dry. The freeze-dried bulk soil samples were shipped to the University of 

Göttingen. A research permit (Kartu Izin Peneliti Asing, permission number: 

333/SIP/FRP/SM/IX/2012) was issued by the Ministry of Research and Technology RISTEK 

(Kementrian Ristek dan Teknologi, Jakarta, Indonesia). The Research Center for Biology of 

the Indonesian Institute of Science LIPI (Lembaga Ilmu Pengetahuan Indonesia, Jakarta, 

Indonesia) recommended issuing a sample collection permit (Rekomendasi Ijin Pengambilan 

dan Angkut (SAT-DN) Sampel Tanah dan Akar, number: 2696/IPH.1/KS:02/XI/2012). The 

collection permit (number: S.16/KKH-2/2013) and export permit (reference number: 

48/KKH-5/TRP/2014) were issued by the Directorate General of Forest Protection and 

Nature Conservation PHKA (Perlindungan Hutan dan Konservasi Alam, Jakarta, Indonesia) 

under the Ministry of Forestry of the Republic of Indonesia. The Chamber of Agriculture of 

Lower Saxony (Plant Protection Office, Hannover, Germany) issued the import permits 

(Letter of Authority, numbers: DE-NI-12-69 -2008-61-EC, DE-NI-14-08-2008-61-EC). 

 

Fungal community analysis 

The freeze-dried soil samples were stored at -20°C. They were homogenized in a Type 

MM400 ball mill (Retsch GmbH, Haan, Germany) in liquid nitrogen. DNA isolations were 

conducted using 250 mg soil, which was further homogenized with glass beads (MO BIO 

Laboratories Inc., Carlsbad, USA) and used for DNA extraction with a PowerSoil® DNA 

Isolation Kit (MO BIO Laboratories Inc.), following the manufacturer’s recommendations. 

DNA yields were estimated by using a NanoDrop ND-1000 spectrophotometer (PEQLAB 

Biotechnologie GmbH, Erlangen, Germany). For each DNA extraction, polymerase chain 

reaction (PCR) was performed in a 50 µl reaction using 0.5 μl of Phusion High-Fidelity DNA 

Polymerase (2 U/μl, New England Biolabs (NEB), Frankfurt, Germany), 10 μl of 5x Phusion GC 
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buffer (NEB), 0.15 μl of MgCl2 (50 mM, NEB), 2.5 µl of DMSO (5 %, NEB), 2.5 µl of bovine 

serum albumin (8 mg/ml, Merck KGaA, Darmstadt, Germany), 1 μl of dNTP mix (10 mM each, 

Thermo Fisher Scientific, Osterode am Harz, Germany), 1 μl of each primer (10 mmol/l, 

Microsynth, Wolfurt, Austria) and 5 μl of template DNA. PCR reactions were performed in a 

Labcycler (SensoQuest, Göttingen, Germany). The cycling parameters were 1 cycle of 98°C 

for 3 min; 25 cycles of 98°C for 10 s, 47°C for 20 s and 72°C for 20 s; and a final extension at 

72°C for 5 min. The primers ITS1-F_KYO1 38 and ITS4 39 including the Roche 454 

pyrosequencing adaptors (Roche, Mannheim, Germany), a key (TCAG), and a variable 

multiplex identifier (MID) consisting of ten bases were used for amplification of the ITS 1 and 

2 regions. PCR products were subjected to electrophoresis in 1.2 % agarose gels (Biozym LE 

Agarose, Biozym Scientific GmbH, Hessisch Oldendorf, Germany) using GelRed (10 000 x) to 

stain (VWR, Darmstadt, Germany) a 1 kb DNA ladder (NEB) for estimation of the product 

size. PCR products were visualized with an FLA-5100 Fluorescence Laser Scanner (Raytest 

GmbH, Straubenhardt, Germany) and Aida Image Analyser v. 4.27 (Raytest GmbH). All PCR 

reactions were performed in triplicate, pooled and purified using an innuPREP PCRpure Kit 

(Analytik Jena, Jena, Germany). Purified, pooled PCR products were run on an agarose gel 

and cut in the range of 700-800 base pairs on a UV table (INTAS UV System type N80M, 

Göttingen, Germany). A QIAquick Gel extraction kit (Qiagen GmbH, Hilden, Germany) was 

used for DNA extraction following the manufacturer’s recommendations; each sample was 

eluted in 20 µl of nuclease-free water (AppliChem, Darmstadt, Germany). Quantification of 

purified PCR products was performed using a Quant-iT dsDNA HS assay kit (Life Technologies 

GmbH, Darmstadt, Germany) in a Qubit fluorometer (Life Technologies GmbH, Darmstadt, 

Germany) following the manufacturer’s recommendations. The Göttingen Genomics 

Laboratory (G2L) determined the sequences of ITS amplicons by using a 454 GS-FLX 
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sequencer (Roche, Mannheim, Germany) and Titanium chemistry following the instructions 

of the manufacturer for amplicon sequencing.  

 

Sequence processing 

The resulting ITS sequence datasets were quality filtered and primer clipped by employing 

split_libraries.py from the QIIME 1.9.1 software package 40. In brief, sequences with lengths 

below 300 and over 1000 bp, quality scores below 25 and homopolymer stretches of more 

than 8 bp were removed. An additional primer clipping was performed with cutadapt v1.6 41. 

Pyrosequencing noise was removed by employing Acacia v1.53 42 with default settings. High-

quality reads were further processed with USEARCH (version 8.0.1623_i86linux64) 43, which 

included steps in the following order: reference-based removal of chimeric sequences 

against the unite database (v7.0, sh_refs_qiime_ver7_99_s_01.08.2015.fasta) 44, sequence 

sorting by length and singleton removal, OTU determination at 97 % sequence identity 

(pick_open_reference_otus.py) employing the unite database. Taxonomic classification of 

OTU sequences was inferred with parallel_assign_taxonomy_blast.py against the UNITE 

database (v7, sh_refs_qiime_ver7_99_s_01.08.2015.fasta) 44,45. Taxonomic information was 

added to the OTU table with make_otu_table.py (QIIME) 46. Unclassified OTUs and extrinsic 

domain OTUs (Protista, Plantae) were removed from the table by employing 

filter_otu_table.py in QIIME. Raw sequences for the resulting fungal OTUs were deposited in 

the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) 

under accession number SRP134264 (Bioproject number PRJNA437389). Sampling effort was 

controlled by rarefaction analysis (Supplementary data S1) by employing 

alpha_rarefaction.py. Fungal OTUs were assigned to ecological guilds with the annotation 

tool FUNGuild 47, located at https://github.com/UMNFuN/FUNGuild. Here, fungi were 
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grouped according to trophic modes: saprotrophic, pathotrophic and symbiotrophic fungi, 

while fungal sequences without assignment were labeled ‘unknown’ in further analyses 40. 

 

Statistical analysis 

Sample comparisons were performed for the same surveying effort using rarefied data sets 

of 1229 sequences representing the lowest number of reads in a sample. Diversity estimates 

(OTU richness, Michaelis Menten fit, Chao1, Shannon, Simpson) and rarefaction curves were 

generated by employing the alpha_rarefaction.py. script in QIIME 40. Differences among land 

use systems were analyzed by linear mixed effect models with the lmer function of the 

multcomp package 48 in R (R Core Team, 2015), because the data follow a Gaussian 

distribution. Generalized mixed effect models with landscape as a random effect were used 

with the glmer function of the multcomp package to investigate differences in fungal α-

diversity among land use systems. For displaying the most abundant fungal species all 

unidentified fungal OTUs were removed and a heatmap was created with ampvis2 49, color 

scale of abundance was square rooted to better visualize low abundant species. Nonmetric 

multidimensional scaling (NMDS) of fungal communities was conducted in R using the vegan 

package 50, based on weighted UniFrac 51 distance matrices, and used envfit (vegan) to 

correlate the following explanatory variables: root performance traits (biomass of fine roots, 

distorted root tips)33, plant properties (plant biomass, plant species)4, soil properties (soil pH 

value; soil moisture; and concentrations of magnesium, potassium, carbon, nitrogen, 

calcium, and available phosphorous 32,34, litter properties (concentration of carbon and 

nitrogen) 33, diversity index (number of OTUs), and land use (land use intensity, LUI) 33 with 

the fungal community. The index for tropical land use intensity was developed according to 

the method of Blüthgen et al. 52. The land use index (LUI) was calculated separately for each 

landscape, where each component of land treatment was standardized relative to its mean: 
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with FL, HL, SL, AL and PL being the treatment means. The quantities (kg year-1, L year-1) of 

fertilizers (F1: urea, F2: potassium chloride, F3: borate, F4: nitrogen-phosphorus-potassium, 

F5: triple superphosphate, F6: 36 % superphosphate (SP 36), F7: kieserite), herbicides (H1: 

Gramaxon, H2: Noxone, H3: Roundup, H4: Ally), animal manure (A1: cow compost), and 

liming (S1: CaCO3) applied to the study plots were obtained on the basis of interviews of 

farmers 34,53. Planting intensity (P1: rubber, P2: oil palm) was quantified as the number of 

planted trees hectare-1. Data for numbers of plant taxa and individuals were obtained from 

Rembold et al. 37.  

The package “indicspecies” in R was used to identify fungal genera, which are significantly 

associated with different land use systems 54. These fungal genera are defined as “indicator 

species” for a given land use system. The point biserial correlation coefficient was calculated 

for all identified genera and all taxa with significant (p ≤ 0.05) associations were visualized in 

the network.  Networks  were  generated  using  the land use systems  as  source nodes  and  

the  associated fungal taxa  as  nodes,  with  edges corresponding  to positive  associations  

of  particular  taxa with  specific land use systems. Networks were generated  using  the 

edge-weighted spring-embedded layout algorithm in Cytoscape 3.5.1 with edges weighted 

according    to    the    association strength 55.  The network permits visual inspection of the 

strength of the connection of a fungal taxon (thickness of edges) with and its abundance 

(size of nodes) in a given land use type. Fungal taxa, which occur across different land use 

types, are connected by edges, illustrating the extent of overlap. Detailed information how 

to visually interpret biological data using networks is given by Merico et al. 56.  
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Results  

Changes in land use shift soil fungal communities 

Soil fungi were represented by 293240 high-quality sequences obtained after 454 

sequencing and quality filtering. After the removal of singletons and rarefying, 4553 

operational taxonomic units (OTUs) at 97 % similarity represented soil fungi in this study 

(Supplementary data S2a, S2b). Based on the quality-filtered sequences, the observed fungal 

OTU richness, calculated richness (Michaelis-Menten Fit) and Shannon diversity were highest 

in the jungle rubber and lowest in the rain forest (Table 1). Fungal OTU richness was driven 

neither by LUI nor by any other of the tested potential explanatory variables (Supplementary 

data S3). Chao1 and the Simpson index showed no differences among the land use systems 

(Table 1). 

Land use (goodness of fit R2 = 0.8191, p = 0.001, using landscape as an additional factor; or 

goodness of fit R2 = 0.6503, p = 0.001, ignoring landscape) had a significant influence on soil 

fungal community composition, while landscape alone had no significant influence 

(goodness of fit R2 = 0.0555, p = 0.236). Nonmetric multidimensional scaling (NMDS, Figure 

1) clearly separated fungal communities according to taxonomic dissimilarities. We detected 

four fungal clusters distributed along a gradient from unmanaged rain forest and less 

managed jungle rubber soils to highly managed soils of oil palm and rubber plantations 

(nonmetric fit, R2 = 0.977; linear fit, R2 = 0.909). To elucidate the drivers of the gradient in 

fungal dissimilarities, we fitted sixteen environmental variables (Supplementary data S3), of 

which six were significantly related to fungal dissimilarities: land use intensity (R2 = 0.4707, p 

= 0.001), plant biomass (R2 = 0.8181, p = 0.001), plant species richness (R2 = 0.8218, p = 

0.001), biomass of fine roots (R2 = 0.4014, p = 0.003), litter carbon concentration (R2 = 

0.3978, p = 0.006), and soil pH (R2 = 0.2968, p = 0.012) (Figure 1).  
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Fungal trophic modes significantly differ among land use systems  

FUNGuild classified approximately 60 % of the fungal OTUs according to their trophic mode. 

The majority of classified fungi were assigned to the group of saprotrophs (70 %); 24 %, to 

pathotrophs; and 6 %, to symbiotrophs. Trophic modes differed among the land use 

systems: symbiotrophic fungi (p ≤ 2.2e-16) showed a maximum relative abundance in rain 

forests and a minimum in rubber plantations, pathotrophic fungi (p = 8.214e-14) showed the 

highest abundance in jungle rubber and lowest in the rain forest, and saprotrophs (p ≤ 2.2e-

16) exhibited the highest abundance in oil palm plantations and lowest in the jungle rubber 

(Figure 2).  

 

Different land use systems are characterized by shifts in fungal taxonomy 

Five fungal phyla were detected across all samples. The phylum Ascomycota showed the 

highest relative abundance across all land use systems, with a maximum in oil palm 

plantations and a minimum in jungle rubber plantations (p < 2.2e-16) (Table 2). This phylum 

harbored most of the abundant fungal taxa and showed increases in abundance in the order 

of Pleosporales and Sordariales and decreases in the order of Eurotiales (Supplementary 

data S4, Figure 3). The phylum Basidiomycota had the second highest relative abundance 

across all land use systems, and their abundances differed among all land use systems (p = 

3.96e-4), with a minimum in oil palm plantations and a maximum in rain forests (Table 2). 

Decreases were prevalent in the orders of Tremellales and Trichosporonales in oil palm 

plantations compared with rain forest (Figure 3). Furthermore, the abundance of Agaricales, 

which harbor many ectomycorrhizal fungi, also declined between rainforest and oil palm 

plantations (Figure 3). The Glomeromycota (p = 0.0072) were significantly enriched in jungle 

rubber systems compared to other land use systems (Table 2). Chytridiomycota and 

Zygomycota were scarce (Table 2).  
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Different land use systems harbor distinct indicator fungi  

An association network analysis demonstrated that, of the 590 fungal genera detected in 

this study, 74 exhibited characteristic associations (p < 0.05) with distinct land use systems 

(Figure 4, Supplementary data S5). In accordance with other studies using this approach, the 

identified fungal genera were defined as indicator species 57,58. Among those genera, only 13 

% were associated with two or three land use systems, and not one was shared between 

rain forests and the managed monospecies plantations (Supplementary data S5). Rain 

forests were characterized by members of the order Hypocreales (p = 0.002) and the family 

Cordycipitaceae (p = 0.003). Jungle rubber and rubber plantations were characterized by an 

enhanced abundance of members of the genus Trichoderma (p = 0.02). Rubber plantations 

were distinguished by an increased abundance of members of the genus Penicillium (p = 

0.003), and oil palm plantations, by an enrichment of members of the genus Fusarium (p = 

0.001).  

 

Discussion  

In contrast to our initial hypothesis, rain forest transformation into intensely managed oil 

palm and rubber monocultures did not result in a drastic loss of soil fungal species. Only 

marginal differences between land use systems were detected. Here, jungle rubber 

agroforests, representing moderately disturbed secondary rain forests due to the 

introduction of rubber trees, exhibited the highest OTU richness. This finding is in agreement 

with the intermediate disturbance hypothesis, which proposes that the highest diversities 

will occur in ecological systems with moderate disturbances 59. Furthermore, earlier studies 

60 found that the same jungle rubber plots studied here also contained the highest amounts 

of fungal-derived fatty acids thereby supporting enhanced fungal abundance in those 

systems. Despite drastic decreases in plant species richness and biomass on our study sites 
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4,30, bacterial diversity was not significantly decreased in oil palm and rubber plantations 

compared to rain forests 60,61. However, the composition of bacterial communities was 

changed in response to land use changes 60. For example, nitrogen-fixing Burkholderia 

(Betaproteobacteria) species as well as ammonia-oxidizing bacteria increased in plantations, 

most likely due to the use of fertilizers 60. Furthermore, members of the Bacteroidetes, i.e., 

uncultured Chitinophagaceae, known as chitin degraders, were also slightly more abundant 

in managed systems than in rain forests 60. Here, we found that the taxonomic structures of 

fungal communities were also massively affected by land use systems. Compositional shifts 

in fungal communities with a decrease of Basidiomycota and an increase of Ascomycota in 

agricultural transformation systems in comparison to rain forests were also detected in 

other studies 19–21. In our study, the decline in Basidiomycota was underpinned by decreased 

abundances of Tremellales and Agaricales on the one hand and increases of Pleosporales 

and Sordariales in the phylum of Ascomycota. Apparently, human interference created new 

habitats 62 that were colonized by fungal communities divergent from those in rain forest 

soil. The main drivers of these changes were the loss of plant diversity, plant biomass, 

increasing soil pH and increasing land use intensity. Notably, other factors tested here such 

as soil nutrient availability and the enrichment of potentially toxic elements in roots such as 

aluminum 63 or iron 33 had no effect on soil fungal community composition. At variance with 

our findings, fungal richness declined in tropical forests in Panama, probably as the result of 

long-term N fertilization 64. Herbicide application also caused significant decreases in root 

colonization and spore biomass of arbuscular mycorrhizal fungi in tropical agriculture 65. 

Here, the managerial practices in oil palm and rubber plantations did not result in decreased 

mycorrhizal spore densities but resulted in lower mycorrhizal colonization and enhanced 

root mortality in oil palm plantations compared to other systems 33. High spore abundances 
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may indicate stress responses because of unsuitable environmental conditions for 

mycorrhizal host colonization 33.  

A striking result, which is in contrast to the occurrence of mycorrhizal species in temperate 

and boreal forest soils 66–68, was an apparently low richness and abundance of mycorrhizal 

fungi. In temperate forests approximately 30 to 40 % of the OTUs belong to mycorrhizal 

fungi 66,69, whereas here only 6 % could assigned to mycorrhizas. Land transformation 

further resulted in decreased species richness of symbiotrophic fungi in soil and, thus, 

obviously depleted the reservoir from which the vegetation is being colonized 70. Because 

carbon, nitrogen, sulfur, manganese, and base cation concentrations showed a decline in the 

roots of rubber and oil palm trees compared to those from rain forests 33, our results suggest 

that the impoverishment of mutualistic fungi has acute consequences for ecological 

functions such as plant nutrient provisioning. These findings further pinpoint the trade-off 

between multiple ecosystem functions and services (climate regulation, carbon storage, 

habitat loss) and the production of marketable goods by land transformation 71.  

Different tropical land use systems were clearly characterized by the presence of distinct 

fungal assemblages, in which significantly enriched taxa were denoted as indicator species. 

The concept of indicator species is useful to predict biodiversity-based ecosystem services, 

which is essential for sustainable agriculture 72. An increase in pathogens, as observed here 

in managed systems, is a well-known phenomenon in monocultures composed of genetically 

uniform host species planted at high densities 73. In oil palm plantations, we identified 

Fusarium oxysporum as the most abundant pathogen, supporting the idea that oil palm 

monoculture management fosters the proliferation of these species 74. Fungi of the genus 

Fusarium have been described as the most destructive cause of oil palm diseases such as 

common spear rot in oil palms in Sumatra 75, crown diseases 76 and vascular wilt 77, but in our 
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study, no obvious disease symptoms were observed on the trees (Edy Nur, personal 

observation). An explanation could be the presence of Paraconiothyrium variabile, an 

antagonist of Fusarium oxysporum 78–80. An additional common pest in oil palm plantations is 

Ganoderma sp., which is able to cause devastating diseases leading to great economic losses 

81,82. Ganoderma sp. are abundant in tropical rain forests 83,84. Here, they were enriched in 

rain forests and jungle rubber systems but not in the intensively managed plantations. 

Although monocropping systems such as oil palm plantations show decreased leaf litter 

input 33,85, saprotrophic fungi increased. Nutrient input by fertilization, especially manure 

application 33, may have created new ecological habitats, possibly fostering increased 

abundance of saprotrophic fungi. 86. Furthermore, the introduction of new species such as 

rubber can also foster new fungal associates. For example, in rubber plantations, 

saprotrophic species of Leptodiscella were enriched, for which a function in degradation of 

rubber litter has been described 87. Saprotrophic Trichoderma species were also abundant. 

They are known to prevent rubber trees from fungal pathogen attack and have been 

successfully used as pest control organisms against Rigidoporus microporus and Ganoderma 

pseudoferreum, two of the most important pests of rubber trees, causing white and red root 

rot 88. Furthermore, Penicillium sp. were identified as indicator taxa in the soil of rubber 

plantations. Penicillium species are antagonists of plant pathogens, inducing resistance 89, for 

example, by the production of antibiotic compounds 90 or establishment of mycoparasitic 

interactions 91. Antagonistic relationships between beneficial Penicillium species and 

pathogenic Fusarium species have been demonstrated in numerous studies, including in oil 

palms 92–94. Penicillium species are also present as endophytes in the foliage and sapwood of 

rubber trees 95 and, thereby, can contribute to limiting pathogen damage in tropical trees. 

Our fungal indicator network for rubber and oil palm plantations was linked to saprotrophic 
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Myrothecium. Endophytic Myrothecium species, isolated from rubber, exhibit inhibitory 

activity against South American Leaf Blight, a disease responsible for the poor development 

of rubber plantations in Latin America 96. Overall, these findings demonstrate that land 

transformation triggered shifts in fungal communities towards pathogens and antagonists.   

In contrast to saprotrophic and pathogenic fungi, the presence of symbiotrophic fungi in soil 

was strongly decreased in all types of managed systems, most likely as the result of loss of 

host trees and establishment of nonendemic monocultures 19,20,37. This decrease was 

particularly evident for ectomycorrhizal species, which were absent on roots in rubber and 

oil plantations 33 and did not appear here as indicator species in plantations. In rain forests, 

Scleroderma, which forms ectomycorrhizae 97, was identified as an indicator taxon. Members 

of the genus Archaeospora, known to form arbuscular mycorrhizae 98, were also identified 

here as indicator fungi in rain forests. Notably, fungi of the genus Oidiodendron, which form 

typical ericoid mycorrhizae 99,100, were enriched in the rain forests and jungle rubber systems. 

Ericoid fungi can access organic nitrogen and thereby improve plant nitrogen nutrition under 

nitrogen limitation 101. We suspect that this function may be important for the higher 

nitrogen retention observed in rain forests compared with oil palm plantations 102.  

 

Conclusions 

Overall, this study demonstrates that even moderate disturbance imposed by extensive 

rubber cultivation in secondary rain forest resulted in changes in soil fungal community 

structure compared to unmanaged forests in protected areas. The most drastic changes 

occurred in oil palm plantations. It is clear that our analysis is limited to some extent because 

the functional interactions of most soil fungi in situ are still unknown and present 

classifications of fungal guilds are far from complete. Nevertheless, our network analysis and 

the identified indicator taxa reveal that land transformation causes functional shifts in fungal 
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assemblages, which put the health of these systems at risk by promoting pathogenic fungi. 

We found corresponding changes in the abundance of antagonistic fungi, which may point 

towards a control of pathogenic fungi across all land use types. Here we focused on soil 

inhabiting fungi. It is likely that biodiversity of plant species will also result in changes of 

rhizosphere and root biota, which represent primary interaction sites for microbiome 

members 103–105. In future studies, it will important to analyze the extent of microbial 

turnover in different niches. For sustainable land use, future studies should elucidate the 

factors that drive the system across the tipping point and should develop countermeasures.   

Because high rates of ecosystem disturbance are known to lead to extinction of all but the 

most disturbance-adapted species 59, we had expected that land transformation would result 

in a drastic loss of fungal species richness. However, a general loss of fungal taxa was not 

observed, despite the massive biodiversity loss in plantations 4,106. Instead, a massive 

reduction in symbiotrophic fungal species occurred, implying a loss of ecosystem 

provisioning functions. For example, in our oil palm plantations nitrogen losses in the run-off 

were higher than in the rain forests 35. As the consequence, nutrient losses have to be 

compensated by fertilization107. Our study thus demonstrates critical links between 

biodiversity and ecosystem services. Increased knowledge of the impact of land use systems 

on fungal biodiversity is needed to use the existing agricultural land more efficiently and to 

balance ecological and economic goals. 
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Tables 

 

Table 1. OTU richness and diversity indices of fungal taxa in rain forests and jungle rubber, 

monospecific rubber and oil palm plantations. Rarefied samples (1229 sequences) were used 

for the analyses. Significant differences between means of groups at p ≤ 0.05 are indicated by 

different letters (n = 30). OTU richness = calculation for observed species at a sequence 

depth of 1229 sequence reads. To test for significant differences between land use systems, 

linear mixed effect models and post hoc (Tukey’s) tests were applied, and differences at p ≤ 

0.05 are indicated by different letters in columns. Michaelis-Menten fit and Chao1 were used 

to estimate the maximum species richness.  

 

 

Table 2. Comparison of relative abundances (%) of fungal phyla. The number of sequence 

reads of a taxonomic group was expressed as a proportion of the total number of sequence 

reads (1229) of each plot. For statistical analyses, generalized linear mixed effect models with 

landscape as a random effect were performed. Significant differences at p ≤ 0.05 between 

means of groups are indicated by letters (n = 30). 

 

Land use system Observed 
OTU richness 

Michaelis 
Menten Fit 

Chao1 Shannon Simpson 

Rainforest 344 ± 90a 581 ± 192a 539 ± 194a 7.20 ± 0.79a 0.980 ± 0.015a 
Jungle Rubber 441 ± 18b 804 ± 40b 702 ± 57a 7.93 ± 0.14b 0.992 ± 0.002a 
Rubber  394 ± 45ab 698 ± 118ab 621 ± 101a 7.59 ± 0.24a 0.988 ± 0.003a 
Oil palm 375 ± 46ab 664 ± 135ab 590 ± 123a 7.44 ± 0.35ab 0.985 ± 0.008a 

Phylum Rainforest Jungle rubber Rubber plantation Oil palm plantation 

Ascomycota 74.5 ±  5.2a 73.9 ± 12.9a 83.3 ± 8.7b 88.8 ± 1.9c 

Basidiomycota 14.0 ± 5.2d 12.5 ± 7.2c 5.0 ± 2.4b 4.2 ± 1.2a 

Glomeromycota 0.4 ± 0.5a 0.7 ± 0.8b 0.3 ± 0.2a 0.2 ± 0.2a 

Chytridiomycota 0.2 ± 0.2a 0.2 ± 0.2a 0.3 ± 0.2a 0.2 ± 0.2a 

Zygomycota 1.5 ± 0.8b 3.0 ± 3.4c 1.4 ± 2.0b 0.7 ± 0.6a 

Unidentified fungi 9.5 ± 1.7b 9.6 ± 3.9b 9.7 ± 5.6b 6.0 ± 1.7a 
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Figures 

 

Figure 1. Nonmetric multidimensional scaling (NMDS) of fungal OTU communities. Three 

samples per plot were rarified to 1229 sequences and pooled. Significant correlations of 

biotic and abiotic variables with fungal communities are shown by black arrows (p ≤ 0.05). 

Sizes of symbols (squares and circles) correspond to the number of OTUs found in each plot, 

with a minimum of 172 OTUs and a maximum of 468 OTUs. Data for plant species and plant 

biomass were taken from Drescher et al., 2015. 
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Figure 2. Relative abundance of symbiotrophic, pathotrophic, saprotrophic and unknown 

fungi in four land use systems. Box-and-whisker plots indicate the range of the data; the 

horizontal lines, the median; and the dots, outliers. Generalized linear mixed effect models 

were fit, and post hoc (Tukey’s) tests revealed significant differences at p ≤ 0.05. Significant 

differences are indicated by different letters (p ≤ 0.05, n = 30). 
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Figure 3. Fungal community composition on order level based on relative abundances 

separated by landscape and land use system. Orders with lower abundance than 1% in any 

land use system were summarized as artificial group "Rare taxa". 
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Figure 4. Association network of significantly abundant soil fungi in different land use 

systems (multipatt function in indicspecies package in R, de Cáceres et al., 2010). Node sizes 

represent the average relative abundance of OTUs in the data sets. Edges represent the 

association patterns of individual OTUs with the land use systems, and their lengths show the 

weight of the associations (edge-weighted, spring-embedded layout). The association 

strength of significant genera is indicated by different edge lengths varying between 0.09 and 

0.79.   

  


