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Summary 
Verticillia and their plant hosts both contribute to pathogenesis as a consequence of their 

interaction. Evolution-driven genome extension includes hybridization, resulting in 

amphidiploid species as the rapeseed pathogen Verticillium longisporum and the 

acquirement of Lineage Specific (LS) regions in haploid Verticillia. Whether a fungus-plant 

interaction results in pathogenicity or reduced susceptibility of the host depends on mutual 

exchange of secreted signals, their perception and intracellular transduction pathways.  

The genome of the haploid tomato pathogen V. dahliae JR2 includes an LS region with 

several genes for putative transcription factors, which is not required for virulence. Hybrid 

pathogenic V. longisporum isolates Vl43 or Vl145c contain the homologous Vl43LS20kb 

region, which is absent in the non-symptomatic hybrid Vl32. Deletion of this region in 

V. longisporum Vl43 led to a hypervirulent phenotype in rapeseed, suggesting a function in 

reducing virulence as well as susceptibility of the host plant.  

The Fus3/Kss1-like V. dahliae MAP kinase Vmk1 plays an essential role in regulating 

virulence in plants. Intracellular transduction pathways can be insulated by scaffold proteins 

for maintenance of specificity. The V. dahliae MAPK scaffold protein Ham5, homologous to 

Neurospora crassa HAM-5, has not yet been analyzed in plant pathogens. Deletion of 

V. dahliae HAM5 allowed wild type-like development, whereas deletion of the upstream 

MAP2K MEK2 reduced vegetative growth and microsclerotia formation as deletion of VMK1. 

MEK2 and VMK1 deletion strains were re-isolated from plant tissue, supporting their potential 

to invade tomato plants. Both displayed defects in induction of disease symptoms. HAM5 

deletion strains induced wild type-like disease symptoms in planta. Therefore, the 

Vmk1/Mek2 MAPK signaling pathway-mediated regulation of vegetative growth, 

microsclerotia formation and pathogenicity is independent from the scaffold protein Ham5 

and does not require its insulation function in V. dahliae.  

Plant invasion and immune suppression require secretion of correctly folded proteins 

monitored by the Hac1-controlled unfolded protein response (UPR) pathway. The bZIP 

transcription factor Hac1 is essential for virulence of the necrotrophic appressoria-forming 

ascomycete Alternaria brassicicola or of the basidiomycete Ustilago maydis. V. dahliae 

HAC1 mRNA appears in two splice variants HAC1u (uninduced) and HAC1i (induced), where 

only HAC1i was translated into a protein. HAC1 deletion caused significantly decreased 

vegetative growth, conidiation and impaired microsclerotia formation. ΔHAC1 could penetrate 

and initiate colonization of the root cortex of Arabidopsis thaliana, but induced only minor 

disease symptoms in tomato plants. Different to the MAPK deletion strains, ΔHAC1 could not 

be re-isolated from plant stems, corroborating deficiency in propagation within the plant. 

Constitutively active UPR led to increased microsclerotia formation and induced strong 

disease symptoms in planta. In conclusion, V. dahliae HAC1 is an important regulator of 

growth and differentiation with strong impact on virulence and susceptibility.  

Virulence is connected to fungal hormones. Fungal oxylipins control differentiation 

processes, secondary metabolite production or manipulation of plant host defense 

responses. The Ode1 oleate ∆12-fatty acid desaturase is localized to intracellular 

membranes and catalyzes the oxidation of oleic acid to linoleic acid as major oxylipin 

precursor. V. dahliae ODE1 deletion resulted in decreased vegetative growth and 

microsclerotia formation. However, the defect in ODE1 had minor impact on fungal virulence. 

In summary, the outcome of a fungus-plant interaction as result of a complex interplay of 

virulence enhancing and reducing mechanisms was analyzed: Lineage Specific insertions 

can be beneficial for the plant, single enzymes for linoleic acid production as precursor of 

oxylipins can make a minor contribution, whereas Hac1-regulated UPR or the scaffold-

independent pheromone response MAPK pathway are crucial for pathogenicity. 
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Zusammenfassung 

Sowohl Verticillien als auch ihre Wirtspflanzen tragen zur Entwicklung von 

Krankheitssymptomen als Folge ihrer Interaktion bei. In haploiden Verticillien wurden 

Hybridisierungen zur Entstehung des amphidiploiden Rapspathogens Verticillium 

longisporum, und der Erwerb von artspezifischen Regionen (LS Regionen) als Mechanismen 

evolutions-getriebener Genomerweiterung beschrieben. Ob aus einer Pilz-

Pflanzeninteraktion Pathogenität oder eine reduzierte Anfälligkeit der Wirtspflanze resultiert, 

hängt vom gegenseitigen Austausch von sekretierten Signalen und deren Wahrnehmung, 

sowie von intrazellulären Transduktionswegen ab. 

Im haploiden Genom des Tomatenpathogens V. dahliae JR2 befindet sich eine Vl43LS20kb-

Region, die für mögliche Transkriptionsfaktoren kodiert und nicht für die Virulenz benötigt 

wird. Die Genome der pathogenen, amphidiploiden V. longisporum Isolate Vl43 und Vl145c 

enthalten ebenfalls diese LS Region, die jedoch nicht im Genom des asymptomatischen 

Hybriden Vl32 zu finden ist. Die Deletion dieser Region führte in V. longisporum Vl43 zu 

verstärkten Krankheitssymptomen in Rapspflanzen, woraus eine Funktion in der 

Reduzierung der Virulenz oder der Anfälligkeit der Wirtspflanze hervorgeht. 

Die Fus3/Kss1-ähnliche MAP Kinase Vmk1 spielt eine essentielle Rolle in der Regulation der 

Virulenz in Pflanzen in V. dahliae. Intrazelluläre Signaltransduktionswege können durch 

sogenannte Scaffold-Proteine isoliert werden um die Spezifität aufrecht zu erhalten. Das 

entsprechende Homolog zum Neurospora crassa MAP Kinase Scaffold-protein HAM-5 wurde 

bisher nicht in Pflanzenpathogenen beschrieben und die Rolle der vorgeschalteten Kinase 

Mek2 ist in Verticillien bisher nicht bekannt. Die Deletion von V. dahliae HAM5 erlaubte eine 

Wildtyp-ähnliche Entwicklung, wohingegen die Deletion von MEK2, sowie die Deletion von 

VMK1, in reduziertem vegetativen Wachstum und verringerter Mikrosklerotienbildung 

resultierten. MEK2 und VMK1 Deletionsstämme konnten aus Pflanzengewebe re-isoliert 

werden, was ihr Potenzial in die Wirtspflanze einzudringen bestätigt. Jedoch zeigten beide 

Stämme Defekte in der Induktion von Krankheitssymptomen in Tomatenpflanzen. HAM5 

Deletionsstämme induzierten Wildtyp-ähnliche Krankheitssymptome in der Pflanze. Somit ist 

die Regulation von vegetativem Wachstum, Mikrosklerotienbildung und Pathogenität, die 

durch den Vmk1/Mek2 MAPK-Signalweg vermittelt wird, in V. dahliae unabhängig von dem 

Scaffold-Protein Ham5 und erfordert dessen Isolationsfunktion nicht.  

Das Eindringen in die Wirtspflanze und die Immunsuppression erfordert die Sekretion von 

korrekt gefalteten Proteinen, welche durch den Hac1-kontrollierten Signalweg als Antwort auf 

ungefaltete Proteine (UPR) überwacht wird. Der bZIP Transkriptionsfaktor Hac1 ist essentiell 

für die Virulenz des nekrotrophen Appressorien-bildenden Ascomyceten 

Alternaria  brassicicola, sowie des Basidiomyceten Ustilago maydis. Die V. dahliae HAC1 

mRNA kommt in zwei Spleißvarianten HAC1u (uninduziert) und HAC1i (induziert) vor. Jedoch 

wird nur HAC1i in ein Protein übersetzt. Die Deletion von HAC1 führte zu signifikant 

verringertem vegetativen Wachstum, verringerter Konidienbildung und zur Unfähigkeit 

Mikrosklerotien als Überdauerungsstrukturen zu bilden. ΔHAC1 konnte den Wurzelkortex 

von Arabidopsis thaliana-Pflanzen penetrieren und die Kolonisierung initialisieren, induzierte 

jedoch deutlich weniger starke Krankheitssymptome in Tomatenpflanzen. Anders als die 

MAP Kinase-Deletionsstämme konnte ΔHAC1 nicht aus dem Pflanzenmaterial re-isoliert 

werden. Dies spricht für einen Defekt in der Vermehrung des Pilzes in der Pflanze. Ein 

konstitutiv aktiver UPR Signalweg führte zu verstärkter Mikrosklerotienbildung und einer 

Induktion von starken Krankheitssymptomen in Tomatenpflanzen. Folglich spielt HAC1 eine 

entscheidende Rolle in der Regulation von Wachstum und Differenzierung, und wird für die 

Virulenz von V. dahliae und die Induktion von Krankheitssymptomen in der Pflanze benötigt.  
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Des Weiteren gibt es Verbindungen zwischen Virulenz und pilzlichen Hormonen. Diese 

sogenannten Oxylipine können Differenzierungsprozesse, die Produktion von 

Sekundärmetaboliten und die Manipulation der Immunabwehr der Wirtspflanze beeinflussen. 

Die Ode1 Oleat-∆12 Fettsäuredesaturase ist in intrazellulären Membranen lokalisiert und 

katalysiert die Oxidation von Ölsäure zu Linolsäure als Hauptvorläufer von Oxylipinen. Die 

Deletion des V. dahliae Gens ODE1 resultierte in verringertem vegetativem Wachstum und 

einer reduzierten Mikrosklerotienbildung. Allerdings zeigte der Defekt im ODE1 Gen nur 

einen geringen Einfluss auf die pilzliche Virulenz. 

Zusammenfassend wurde der Erfolg einer Pilz-Pflanzeninteraktion als Ergebnis eines 

komplexen Zusammenspiels aus Virulenz-verstärkenden und -reduzierenden Mechanismen 

untersucht: Artspezifische Insertionen im Pilzgenom können vorteilhaft für die Wirtspflanze 

sein, einzelne Enzyme für die Produktion von Linolsäure als Vorläufer von Oxylipinen haben 

einen geringen Einfluss, während der Hac1-regulierte UPR Signalweg, sowie der Scaffold-

unabhängige Pheromon-MAPK-Signalweg, eine entscheidende Rolle für die Pathogenität 

spielen. 
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1 INTRODUCTION 

1.1 Verticillium spp. – colonizers of the plant´s vascular system 

1.1.1 The ascomycete genus Verticillium 

The plant disease Verticillium wilt is caused by members of the soil-borne ascomycete 

genus Verticillium, which contains ten species: V. albo-atrum sensu stricto, V. alfalfae, 

V. nonalfalfae, V. dahliae, V. isaacii, V. klebahnii, V. longisporum, V. nubilum, 

V. tricorpus and V. zaregamisanum (Inderbitzin et al., 2011a; Inderbitzin & Subbarao, 

2014). Conidiophores carry verticillate arranged phialides as conidia producing cells, 

giving the genus the name Verticillium (Pegg & Brady, 2002). These species are 

distributed in temperate and subtropical regions world-wide and vary in their host ranges 

(Pegg, 1984; Fradin & Thomma, 2006). The induced symptoms differ between hosts as 

well as between isolates from a certain species and may comprise stunting, chlorosis, 

necrosis, early senescence, defoliation, vein clearing, brownish vascular discoloration, or 

stem striping (Fradin & Thomma, 2006; Depotter et al., 2016). 

Verticillium species produce different dormant structures as resting mycelium, 

chlamydospores, or microsclerotia, which can persist in the soil (Wilhelm, 1955; 

Inderbitzin et al., 2011a; Carroll et al., 2018). Increasing temperatures due to climate 

change are assumed to increase the regional distribution and the economic impact of 

plant pathogens (Velásquez et al., 2018), like Verticillia, allowing more successful 

overwintering, extension of the growth season, and potentially earlier infection of 

younger plants. Furthermore, severity of disease symptoms induced by several 

Verticillium species was observed to be correlated with increasing temperatures (Koike 

et al., 1994; Jabnoun-Khiareddine et al., 2006; Siebold & von Tiedemann, 2013). 

Available treatments for disease control include planting of resistant varieties, soil 

fumigation, and crop rotation with non-susceptible plants, but are costly, have 

questionable effects on the environment, or are not effective (Subbarao et al., 2007; 

Klosterman et al., 2009; Enebak et al., 2012; Carroll et al., 2018). 

V. dahliae causes vascular wilting disease in almost 200 host species, including a broad 

range of crop plants and, therefore, has a great economic impact (Pegg & Brady, 2002; 

Luo et al., 2014). Even if the species V. dahliae has a broad host range, single isolates 

of the species show altered aggressiveness on different plant hosts and can even 

colonize plants without induction of disease symptoms (Resende et al., 1994; Zeise & 

von Tiedemann, 2002; Pegg & Brady, 2002; Gibriel et al., 2019). Other members of the 

genus display narrower host ranges and distributions, however, significant economic 

losses are caused by V. albo-atrum, V. alfalfae, V. nonalfalfae, V. tricorpus, and 
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V. zaregamsianum (Inderbitzin & Subbarao, 2014). The species V. isaacii, V. klebahnii, 

and V. nubilum are pathogens with minor economic impact (Inderbitzin & Subbarao, 

2014). V. longisporum is the only interspecific hybrid of the genus with an amphidiploid 

genome (Ingram, 1968), mainly virulent on Brassicaceae (Zeise & von Tiedemann, 2002; 

Eynck et al., 2007). Recently, preliminary data from field trials in the United Kingdom 

were published, suggesting inconsistent impact on yield reductions caused by rapeseed 

infections with V. longisporum despite the presence of disease symptoms (Depotter et 

al., 2019). The two species V. dahliae and V. longisporum are in scope of this study. 

1.1.2 Life cycle of Verticillium 

Species of the genus Verticillium induce Verticillium wilt, a monocyclic disease with one 

infection cycle per growing season (Fradin & Thomma, 2006; Klosterman et al., 2011; 

Depotter et al., 2016a). V. dahliae and V. longisporum form thick-walled, black melanized 

microsclerotia from swollen, septate hyphae as a characteristic dormant structure 

(Griffiths, 1970; Pegg & Brady, 2002; Figure 1, bottom). These resting structures persist 

in the soil through the winter or, if necessary, for up to 14 years (Wilhelm, 1955). 

Recognition of root exudates or plant surface molecules of an appropriate host is the first 

step in pathogen-plant communication, inducing germination of the fungus (Berlanger & 

Powelson, 2000). The fungus initially colonizes the root surface and invades the plant via 

natural root wounds, or by development of swollen hyphal tips, which were described as 

penetration structures, named hyphopodia (Pegg & Brady, 2002; Reusche et al., 2014; 

Zhao et al., 2014, 2016; Su et al., 2018; Figure 1, left). Root tips, wounds, and lateral 

root hairs are favored entry points (Fitzell et al., 1980; Eynck et al., 2007; Vallad & 

Subbarao, 2008; Su et al., 2018).  

From cortical cells hyphae migrate towards the vascular parenchyma and xylem vessels 

by intercellular growth and some of them successfully reach the xylem (Klosterman et 

al., 2009). Asexual spores are formed and spread within the vascular system via the 

transpiration stream (Klosterman et al., 2009). The size and shape of these conidia are 

the major morphological characteristic to distinguish between V. dahliae and 

V. longisporum. V. dahliae forms conidia of ovoid shape and a length between 3.5 to 

5.5 µm, whereas the name V. longisporum hints to the formation of elongated conidia of 

7.1 to 8.8 µm (Karapapa et al., 1997; Collins et al., 2003; Tran et al., 2013; Figure 1, 

top). 

A switch from the biotrophic to the necrotrophic life style corresponds with the 

colonization of tissues neighboring the xylem (Fradin & Thomma, 2006). Disease 

symptoms induced by V. dahliae vary between fungal isolates and host plants and 
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include stunting, chlorosis, necrosis, early senescence, defoliation, vein clearing, and 

brownish vascular discoloration (Fradin & Thomma, 2006; Figure 1, right). 

 

 

Figure 1: Verticillium life cycle. V. dahliae and V. longisporum form black melanized 
microsclerotia as dormant structures. In the presence of a suitable host the fungus 
germinates and grows into direction of the plant (Berlanger & Powelson, 2000). It colonizes 
the root surface and invades root tips, lateral root hairs, or natural root wounds by 
intercellular growth or formation of hyphopodia (Fitzell et al., 1980; Eynck et al., 2007; Vallad 
& Subbarao, 2008; Reusche et al., 2014; Zhao et al., 2014, 2016). Hyphae migrate from the 
cortex to the xylem vessels (Klosterman et al., 2009). Conidia are formed and spread within 
the vascular system with the transpiration stream (Klosterman et al., 2009). The fungus starts 
to colonize tissues neighboring the xylem with or without induction of disease symptoms. 
Under laboratory conditions the most obvious disease symptoms induced by V. longisporum 
in rapeseed plants or V. dahliae in tomato plants is stunting. In the dying host or under 
nutrient-limited conditions the fungus starts microsclerotia formation. Left: electron 
microscopy picture of V. dahliae growing on Arabidopsis thaliana roots (upper, Rabea 
Schlüter, Greifswald) and confocal fluorescence microscopy pictures from V. dahliae 
expressing ectopic GFP colonizing A. thaliana root tips stained in red with propidium 
iodide/silwet solution (lower). Top: V. dahliae forms smaller conidia (3.5 to 5.5 µm) with ovoid 
shape, whereas V. longisporum forms elongated conidia (7.1 to 8.8 µm). Right: Rapeseed 
plants 35 days after root dipping into distilled water or V. longisporum Vl43 spore solution 
(top). Tomato plants 21 days after root dipping into distilled water or V. dahliae JR2 spore 
solution (lower). Bottom: Microscopy picture of microsclerotia formed by V. dahliae nine days 
after spot inoculation of 50 000 spores onto cellulose containing medium (left) and electron 
microscopy picture of microsclerotia formed by V. dahliae after four days on solid simulated 
xylem medium (Rabea Schlüter, Greifswald). 
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V. longisporum-induced symptoms in rapeseed plants in the field are stem striping due to 

necrosis of the cortical tissue, whereas no wilting can be observed (Heale & Karapapa, 

1999; Depotter et al., 2016a). In contrast, artificial infection of rapeseed plants with 

pathogenic V. longisporum isolates by root dipping of seedlings results in stunting, 

chlorosis, necrosis, and increased branching (Zeise & von Tiedemann, 2002; Eynck et 

al., 2007, 2009; Floerl et al., 2008; Depotter et al., 2016a; Figure 1, right). Verticillia are 

able to colonize plants without induction of disease symptoms. This can be observed 

either because the host is not susceptible, these plants are commonly considered as 

“non-host” or better as “asymptomatic host” plants (Malcolm et al., 2013), or because the 

Verticillium isolate is “non-pathogenic”. 

The fungus recognizes limited nutrient availability in the dying host plant or in plant 

debris, which induces the formation of resting structures (Fradin & Thomma, 2006). 

These resting structures remain in the soil until perception of a new host. A sexual 

reproduction stage has not been described for any species of the genus (Short et al., 

2014).  

During all steps of the plant colonization cycle fungi perceive signals from the host 

environment, which induce differentiated development. On the other hand, the fungus 

sends signals like effectors to invade and suppress the plant immune system, which is 

required for successful colonization. 

1.2 Niche adaptation 

The fungus-host plant interaction is based on coevolution as a process of ongoing 

adaptation of both to changing external or internal environmental conditions. Success of 

the fungus requires to overcome the host´s immune system, which evolves to limit the 

propagation of the invading fungus. Furthermore, fungi evolve to adapt to new host 

species with other defense mechanisms than previous hosts. Chromosomal 

recombination by meiosis has been seen as major evolutionary mechanism (Williams, 

1975; de Jonge et al., 2013). However, in about 20% of all fungi, including Verticillia, no 

sexual stage has been observed (Heitman et al, 2007; Seidl & Thomma, 2014). 

Evolution of clonally reproducing asexual fungi can include mechanisms as random 

mutations due to replication errors, horizontal gene or chromosome transfer, 

transposable elements, chromosomal rearrangements leading to deletions, duplications, 

inversions and translocations, and the hybridization of genomes (Brasier, 2000; Coleman 

et al., 2009; Klosterman et al., 2011; Ma et al., 2011; Mehrabi et al., 2011; Rouxel et al., 

2011; de Jonge et al., 2012; Seidl & Thomma, 2014; Faino et al., 2016). The genomes of 

some filamentous pathogens were grouped into a slowly evolving core genome, that 

maintains general physiology and a smaller, more quickly evolving pan genome with 
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higher plasticity, enriched in genes for niche adaptation (Raffaele & Kamoun, 2012; 

Faino et al., 2016). Regions representing the more flexible pan genome are also 

described as Lineage Specific (LS) regions, displaying the genomic regions of a lineage, 

that differentiates it from its relatives (Klosterman et al., 2011; Faino et al., 2016; Shi-

kunne & Faino, 2017). The impact of LS regions and genome hybridization on niche 

adaptation in Verticillia is one focus of this thesis. 

1.2.1 Verticillium dahliae Lineage Specific regions 

Lineage Specific genomic regions, unique or shared by a subset of strains, represent the 

pan genome as the part of the genome with higher plasticity (Klosterman et al., 2011; de 

Jonge et al., 2013). LS regions in V. dahliae were described to be acquired through 

horizontal gene transfer from Fusarium oxysporum (Chen et al., 2018) and plants (de 

Jonge et al., 2012), or transposons (Klosterman et al., 2011; Faino et al., 2016), and 

were observed to be correlated with synteny breakpoints arising from chromosomal 

reshuffling (de Jonge et al., 2013; Shi-kunne & Faino, 2017). In Verticillia, generally 

frequent chromosomal rearrangements were observed in pathogenic and non-

pathogenic species (Shi-kunne & Faino, 2017). A correlation of synteny breakpoints with 

LS regions has not been analyzed in other Verticillia than V. dahliae yet (Shi-kunne & 

Faino, 2017). 

Research on LS regions to date focused especially on effector genes encoded in these 

regions. Effectors are typically small, cysteine-rich proteins with secretion signals, which 

are assumed to support colonization of the host by suppression of the plant immune 

response or manipulation of the host´s cell physiology (Stergiopoulos & de Wit, 2009; 

Selin et al., 2016). Gibriel et al. defined the relative proportion of the core and LS regions 

comparing 19 V. dahliae strains with 93-97% core genome to 3-7% LS regions (Gibriel et 

al., 2019). The analyzed core genomes displayed an average gene number of 9886 

genes with 171 genes classified as effector genes by bioinformatical prediction. For the 

LS regions of these strains a total gene number ranging from 517 to 1318 was predicted, 

with an average effector gene number of 15. Similar results were previously published 

for comparison of a smaller group of V. dahliae strains (de Jonge et al., 2013), 

suggesting that the relative number of genes important for niche adaptation is enriched 

in LS regions in V. dahliae. Focusing on bioinformatically predicted effector genes in LS 

regions, virulence factors have been identified in different V. dahliae strains (de Jonge et 

al., 2013; Faino et al., 2016; Kombrink et al., 2017; Li, 2019, Dissertation, University 

Wageningen). Examples that contribute to pathogenicity are the in planta induced 

effector Ave1 from a subset of V. dahliae strains (de Jonge et al., 2012; Faino et al., 

2016; Song et al., 2018), the chitin-binding lysin motif effector LysM unique in VdLs.17 
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(Kombrink et al., 2017), the defoliating pathotype-specific D effector (Li, 2019, 

Dissertation, University Wageningen), and the effector Sun1 (sunflower 1) specifically 

required for full pathogenicity of V. dahliae strains in sunflower infection (Li, 2019, 

Dissertation, University Wageningen). The effector protein Tom1 (tomato 1) was found to 

be essential for pathogenicity on tomato plants following identification of LS regions 

present in 11 tomato-infecting V. dahliae strains in comparison to six strains, which were 

avirulent on this host (Li, 2019, Dissertation, University Wageningen). 

Even if the effector genes were found to be enriched in V. dahliae LS regions in 

comparison to the less flexible core genome, the number of effector genes relative to the 

total number of genes encoded in the LS regions is rather small (de Jonge et al., 2013; 

Gibriel et al., 2019). Different to the studies, comparing V. dahliae isolates, Klosterman et 

al. identified LS regions of V. dahliae by comparison to V. alfalfae genomes (formerly 

V. albo-atrum) and found the same relative numbers of secreted proteins in the core and 

LS regions (Klosterman et al., 2011). Besides transposable elements, the flexible regions 

contained gene duplications and genes, which were predicted to be potentially involved 

in pathotype specificity, signaling processes, transcriptional regulation, degradation of 

plant material, and iron or lipid metabolism (Klosterman et al., 2011). The role of LS 

genes in niche adaptation different to effector genes remains to be elucidated. 

1.2.2 Interspecific hybridization of Verticillium longisporum 

Genome evolution and niche adaptation through interspecific hybridization was 

described in several plant colonizing fungi, including the Brassicaceae colonizer 

V. longisporum (Clewes et al., 2008; Oberhofer & Leuchtmann, 2012; Stukenbrock et al., 

2012; Menardo et al., 2016). V. longisporum is the only interspecific hybrid of its genus 

with an amphidiploid genome (Clewes et al., 2008). The species evolved from at least 

three separate hybridization events from two haploid parental lineages (Inderbitzin et al., 

2011b; Figure 2). Hybridization occurred for all known V. longisporum lineages between 

one unknown species named A1, which is a close relative of V. alfalfae, and either one 

of two V. dahliae species named D2 and D3, or another unknown species named D1, as 

a close relative of V. dahliae (Inderbitzin et al., 2011b). The lineage A1/D2 has been 

exclusively detected in the USA, whereas the lineages A1/D1 and A1/D3 have been 

identified in Europe, Japan and the USA (Zeise & von Tiedemann, 2002; Tran et al., 

2013; Depotter et al., 2017). A1/D1 and A1/D3 lineages were found as coexisting 

species as, for example, the A1/D1 isolate Vl43 and the A1/D3 isolate Vl32 analyzed in 

this study, which were obtained from fields in the same area in Germany (Zeise & von 

Tiedemann, 2002; Tran et al., 2013). The three hybrids display differences in 

pathogenicity towards different host plants, with lineages A1/D1 as the most pathogenic 
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on rapeseed, A1/D2 as the most pathogenic on cabbage and horseradish, and lineage 

A1/D3 as the least pathogenic, but also found in rapeseed (Novakazi et al., 2015; Figure 

2). Overall, V. longisporum lineages are mainly virulent on Brassicaceae (Zeise & von 

Tiedemann, 2002; Eynck et al., 2007), whereas the haploid species V. dahliae and 

V. alfalfae cause disease in different hosts (Pegg & Brady, 2002), but are less successful 

on Brassicaceae (Zhou et al., 2006). One theory is, that the increased fitness of 

V. longisporum on Brassicaceae in comparison to the parental lineages might have 

outcompeted the unknown parental lineages A1 and D1 (Depotter et al., 2016b). 

 

 

Figure 2: Evolution of V. longisporum hybrids. The interspecific hybrids belonging to the 
species V. longisporum evolved at least three times by separate hybridization events, 
resulting in the lineages A1/D1, A1/D2, and A1/D3. The species A1 is an unknown species, 
which is phylogenetically closer to V. alfalfae. The species D1 is another unknown species 
closer related to V. dahliae. The parental lineages D2 and D3 are V. dahliae strains. The 
lineage A1/D2 has been found exclusively in the USA, whereas the lineages A1/D1 and 
A1/D3 have been identified in Europe, Japan and the USA (Depotter et al., 2017) and were 
found as coexisting species. The A1/D1 isolate Vl43 and the A1/D3 isolate Vl32 were 
obtained from fields in the same area in Germany and are studied in this work (Zeise & von 
Tiedemann, 2002; Tran et al., 2013). Arrows indicate parental species of V. longisporum 
lineages. The tree is not scaled. (Modified from Inderbitzin & Subbarao, 2014). 

 

Mechanisms leading to hybridization are either sexual mating or the fusion of hyphae. 

Even if the prerequisites for sexual mating, including mating and meiosis-specific genes, 

are given in the genomes of Verticillia, a sexual reproduction stage has not been 

described for any species of the genus (Short et al., 2014; Milgroom et al., 2014). 

Opposite idiomorphs of the MAT locus, the major regulators of sexual recombination in 

ascomycetes, are required for sexual compatibility (Metzenberg & Glass, 1990; Turgeon 

& Yoder, 2000; Debuchy & Turgeon, 2006). Most characterized V. longisporum isolates 

harbor copies of the MAT1-1 idiomorph in their genomes (Inderbitzin et al., 2011b; 

Depotter et al., 2017). Recently two isolates were described to contain two copies of the 

MAT1-1 idiomorph and one MAT1-2 idiomorph, each (Fogelqvist et al., 2018). In 
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contrast, in a collection of 1120 V. dahliae isolates the distribution of the mating type was 

skewed towards MAT1-2 among isolates with 99% (Short et al., 2014). The observation 

of extensive sequence changes in the MAT loci and the absence of intermixing between 

genetic clusters in population structure analysis suggests that sexual reproduction of 

V. longisporum is unlikely (Depotter et al., 2017).  

Another mechanism causing hybridization of genomes is parasexual reproduction by 

hyphal anastomosis followed by fusion of nuclei, which results in duplication of the 

parental genomes (Karapapa et al., 1997; Depotter et al., 2016b). Vegetative self-

anastomoses of V. longisporum hyphae have been observed on specific media 

(unpublished data Rabea Schlüter, University of Greifswald). However, the observation 

of interspecific vegetative hyphal fusions of haploid Verticillia relies on auxotrophic 

mutants and respective selection in the laboratory and does not allow conclusions about 

the field situation (Hastie, 1973, 1989). 

1.3 Mitogen-activated protein kinase signaling 

As a result of niche adaptation conserved signaling pathways were shown to be modified 

in several species. This was also shown for mitogen-activated protein kinase (MAPK) 

signaling cascades. These cascades are activated by external signals enabling 

organisms to adapt to certain environmental conditions as ,for example, the germination 

and activation of infection-related programs following perception of a host plant. The core 

module of MAPK signaling pathways consists of a MAP kinase kinase kinase (MAP3K), 

a MAP kinase kinase (MAP2K), and a MAP kinase (MAPK) that sequentially 

phosphorylate one another and regulate downstream targets by phosphorylation. This 

module is highly conserved among eukaryotes from yeast to plants and mammals 

(Widmann et al., 1999). Different MAPK pathways share several components, like the 

MAP kinases, adaptor proteins or upstream kinases. Certain MAPK cascade scaffold 

proteins are necessary to bring the components of the MAPK module in proximity and 

maintain pathway specificity (Schaeffer & Weber, 1999; Patterson et al., 2010). In 

Saccharomyces cerevisiae five MAPK cascades are described, which are defined by the 

name of the final MAPK: cell wall remodeling is mediated by the MAPK Slt2 (Suppressor 

of lytic phenotype), response to high osmolarity is achieved by Hog1 (High osmolarity 

glycerol response), Smk1 (Sporulation-specific mitogen-activated protein kinase) is 

required for sporulation, Kss1 (Kinase suppressor of Sst2 mutations) induces cell cycle 

arrest and invasive filamentous growth, and Fus3 (cell fusion 3) regulates mating as a 

response to pheromones (Herskowitz, 1995; Madhani & Fink, 1998). Within 

ascomycetes homologs of three MAPK cascades, the Fus3/Kss1, Slt2 and Hog1 

signaling pathways, can be found (Turrà et al., 2014). Most filamentous fungi have only 
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one MAPK homologous to the yeast Fus3 and Kss1 MAPK (Jiang et al., 2018a). During 

this study the role of a potential scaffold protein for the yeast Fus3/Kss1-like MAPK 

pathway, known to be essential for pathogenicity of V. dahliae, was analyzed. Further, 

the MAP2K of the corresponding MAPK pathway was characterized. The MAPK 

signaling cascade is best described in S. cerevisiae and the nomenclature often refers to 

this organism. 

1.3.1 Fus3 and Kss1 MAPK signaling in Saccharomyces cerevisiae 

The yeast pheromone response MAPK pathway is activated upon pheromone binding to 

the guanine nucleotide-binding (G)-protein coupled membrane receptors Ste2/Ste3 

(Sterile2/3), recruiting the scaffold protein Ste5 (Sterile5) to the membrane (Hamel et al., 

2012; Figure 3A). The membrane-bound βγ-subunits of the G-protein bind the kinase 

Ste20 (Sterile20) and the scaffold protein Ste5 to initiate signaling (Sabbagh et al., 

2001). Ste20 phosphorylates the first kinase of the MAPK module Ste11 (Sterile11; Van 

Drogen et al., 2001). Ste11 (MAP3K) assembles with the other pathway components 

Ste7 (Sterile7; MAP2K), and the MAPK Fus3 at the membrane by binding to the scaffold 

protein Ste5 (Choi et al., 1994; Marcus et al., 1994; Printen & Sprague, 1994; Kranz et 

al., 1994; Pryciak & Huntress, 1998), and the adaptor protein Ste50 (Sterile50; Wu et al., 

1999; Xu et al., 1996). The MAPK Fus3 as well as the partially redundant MAPK Kss1 

are phosphorylated in response to pheromones by Ste7. However, only Fus3 interacts 

with the scaffold protein Ste5 (Bardwell et al., 1998; Sabbagh et al., 2001; Good et al., 

2009). Phosphorylated Fus3 migrates to the nucleus and activates the transcription 

factor Ste12 (Sterile12), which forms homodimers and regulates mating-specific 

pheromone responsive genes (Van Drogen et al., 2001). Besides, Fus3 targets the 

transcription factor Tec1 (Transposon enhancement control) for degradation by 

phosphorylation (Chou et al., 2006). 

The invasive filamentous growth MAPK pathway is activated upon nutrient limitation by 

the transmembrane receptors Sho1 (Synthetic high osmolarity-sensitive) and Msb2 

(Multicopy suppression of a budding defect; Mösch et al., 1999; Hamel et al., 2012; 

Figure 3A). Heterodimers of Ste12 and Tec1 can be formed and activate filamentation 

specific genes (Chou et al., 2006). 

The invasive filamentous growth and the pheromone response MAPK pathways share 

several components, including the core MAPK module consisting of Ste11, Ste7, and 

Kss1, as well as the adaptor protein Ste50, and the kinase Ste20, but activate different 

responses. The yeast MAPK Kss1 phosphorylates the transcription factors Ste12, which 

interacts with Tec1 upon nutrient-rich conditions and induces invasive or pseudohyphal 

growth (Hamel et al., 2012). 
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Figure 3: The yeast Fus3 and Kss1 MAPK pathways and homologous cascades in 
filamentous ascomycetes A. nidulans and V. dahliae. (A) In S. cerevisiae the scaffold 
protein Ste5 is required for assembly and maintenance of pathway specificity in response to 
pheromones. This leads to phosphorylation of the transcription factors Ste12 and Tec1. 
Ste12 regulates mating responsive genes. Phosphorylated Tec1 is targeted for degradation. 
The invasive filamentous growth pathway shares the core MAPK module, but is independent 
from Ste5. It induces a morphological switch in response to starvation, which is regulated by 
Tec1-Ste12 heterodimers (modified from Hamel et al., 2012). (B) In A. nidulans the Ste5 
orthologous scaffold protein HamE interacts with the MAP2K MkkB and the MAPK MpkB. 
The MAP3K SteC interacts with the Ste50-like adaptor protein SteD and the MAP2K MkkB. 
The cascade results in phosphorylation of the Ste12-like transcription factor SteA and the 
velvet protein VeA in the nucleus and, thereby, regulates genes involved in asexual and 
sexual development and secondary metabolism (based on Frawley et al., 2018). (C) In plant 
pathogenic fungi the Fus3/Kss1-like MAPK is essential for pathogenicity, as Vmk1 in 
V. dahliae. Requirement of a scaffold protein in this pathway was not described in any 
pathogenic filamentous ascomycete, whereas several components of the cascade were 
described in many organisms. In V. dahliae only the MAPK Vmk1 and the Ste12-like 
transcription factor Vph1 were characterized (Sarmiento-Villamil et al., 2018; Rauyaree et al., 
2005). The other components of the MAPK core module in V. dahliae are not yet described. 
During this study the MAP2K Mek2 and the A. nidulans HamE/ N. crassa HAM-5 homolog in 
V. dahliae were characterized. (More details are given in the text). 
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1.3.2 Scaffolds in Fus3/Kss1 MAPK signaling in filamentous ascomycetes 

Whereas many components of the yeast Fus3/Kss1 MAPK homologs were studied in 

filamentous ascomycetes for years, orthologs to the scaffold protein Ste5 were identified 

only recently. 

The first ortholog to the yeast scaffold Ste5 encoding gene was identified in the 

ascomycete Neurospora crassa (Dettmann et al., 2014; Jonkers et al., 2014). During 

chemotropic growth, the N. crassa scaffold protein HAM-5 (Hyphal anastomosis mutant 

5) assembles a MAPK cascade of NRC-1 (MAP3K), MEK-2 (MAP2K) and MAK-2 

(MAPK), anchored to the membrane via the adaptor protein STE-50 (Dettmann et al., 

2014; Jonkers et al., 2014). The scaffold protein HAM-5 directly interacts with STE-50 

and the MAPK MAK-2, whereas indirect interaction was proposed with the MAP2K 

MEK-2 and the MAP3K NRC-1 (Dettmann et al., 2014). HAM-5 was described to be 

essential for oscillation of the MAPK module assembly and disassembly at opposing tips 

of germlings or hyphae leading to fusion in N. crassa (Fleissner et al., 2009; Aldabbous 

et al., 2010; Fu et al., 2011; Dettmann et al., 2014; Jonkers et al., 2014). 

A homolog to N. crassa HAM-5, named HamE, was identified in Aspergillus nidulans 

(Frawley et al., 2018). HamE was proposed as a scaffold of the pheromone pathway with 

roles in regulation of sexual and asexual development as well as in secondary metabolite 

production (Bayram et al., 2012; Frawley et al., 2018). HamE interacts with the MAP2K 

MkkB and the MAPK MpkB, but not with the MAP3K SteC (Bayram et al., 2012; Frawley 

et al., 2018). The MAPK module is anchored to the membrane via the yeast Ste50 

homolog SteD (Bayram et al., 2012; Frawley et al., 2018; Figure 3B). In A. nidulans, 

HamE is required for efficient phosphorylation of the MAPK, which regulates the yeast 

Ste12-like transcription factor SteA as well as the velvet protein VeA, both important for 

fungal development and secondary metabolite production (Bayram et al., 2012; Frawley 

et al., 2018). 

1.3.3 Fus3/Kss1 MAPK signaling in plant pathogenic fungi 

MAPK cascades of both partners are involved in the establishment of the plant-pathogen 

interaction (Hamel et al., 2012). In response to the recognition of pathogen-associated 

molecular patterns (PAMPs) the plant activates defense genes via MAPK cascades and 

calcium signaling, known as PAMP-triggered immunity (Ali & Reddy, 2008). In 

ascomycetous plant pathogens MAPK pathways corresponding to the S. cerevisiae 

Fus3/Kss1, Slt2, and Hog1 cascades can be found (Turrà et al., 2014). The MAPK 

pathways display conserved, as well as species-specific roles, as they are involved in 

chemotropic sensing of plant root exudates, regulation of adhesion, infection-related 

morphogenesis, cell wall composition, stress response, and formation of dormant 
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structures (Xu, 2000; Zhao et al., 2007; Ali & Reddy, 2008; Rispail et al., 2009; Rana et 

al., 2017). 

The best described MAPK in phytopathogens with the highest conservation in its impact 

on virulence is the Fus3/Kss1 MAPK. This pathway controls virulence in diverse fungal 

pathogenic species with different life styles, developing different infection structures, and 

colonizing plants from different infection sites, including stomata, roots, and plant 

surfaces (Hamel et al., 2012). In appressoria-forming plant pathogenic ascomycetes as 

Magnaporthe oryzae, the Fus3/Kss1-like MAPK is essential for appressorium formation 

(Xu & Hamer, 1996; Lev et al., 1999; Takano et al., 2000; Ruiz-Roldán et al., 2001; 

Hamel et al., 2012; Jiang et al., 2018a). MAPK-deficient mutants of the non-

appressorium forming multi-host pathogen F. oxysporum displayed defects in plant 

penetration as well, correlated with decreased gene expression of pectate lyases (Di 

Pietro et al., 2001). In contrast, the MAPK is dispensable for pathogenicity in mice 

(Ortoneda et al., 2004). A role of the Fus3/Kss1-like MAPK in regulation of cell wall 

degrading enzymes (CWDEs) was observed as well in other phytopathogens (Lev & 

Horwitz, 2003; Jiang et al., 2018a). The pathway displays positive regulatory effects on 

secondary metabolite and sclerotia production in some species (Chen et al., 2004; Jiang 

et al., 2018a). Upstream components of the cascade, like the MAP2K Ste7 and the 

MAP3K Ste11, as well as the adaptor protein Ste50, and homologs of the downstream 

transcription factor Ste12 display similar roles in virulence of different plant pathogenic 

fungi (Park et al., 2002, 2006; Zhao et al., 2005; Zhao & Xu, 2007; Rispail & Di Pietro, 

2009; Li et al., 2012). 

In V. dahliae only the MAPK homolog Vmk1 and the downstream Ste12-like transcription 

factor Vph1 were characterized (Figure 3C). A conserved essential role in pathogenicity 

was described for Vmk1 and MAPK-deficient mutants displayed reduced conidiation and 

microsclerotia formation (Rauyaree et al., 2005). No alterations in their ex planta 

phenotype or in conidiation, but impaired hyphopodia formation and penetration of the 

root cortex were observed for Vph1-deficient mutants (Sarmiento-Villamil et al., 2018). 

A scaffold protein of the Fus3/Kss1-like MAPK signaling pathway was not yet analyzed in 

any filamentous phytopathogen. However, homologs to N. crassa HAM-5 were described 

to be highly conserved among Pezizomycotina, the biggest subdivision of the 

Ascomycota, before its scaffold-function was described in any species (Jamet-Vierny et 

al., 2007). In this work, the role of the HAM-5 homolog was studied in V. dahliae 

combined with the characterization of the MAP2K homolog Mek2, and the MAPK Vmk1 

as control. 
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1.4 The unfolded protein response 

Perception of the plant host is transduced by intracellular fungal transduction pathways 

leading to the upregulation of several genes encoding for proteins involved in plant host 

colonization. Many of these proteins have to be secreted to facilitate their role in host-

fungus interactions. In hemibiotrophic fungi, secretion occurs in waves to induce an initial 

biotrophic interaction followed by a necrotrophic phase. During initial invasion of the host 

barriers, extracellular degradation enzymes like CWDEs, or hydrolytic enzymes are 

required. Subsequent systemic colonization relies on successful adaptation to a new 

environment by establishment of the nutrient uptake and suppression of the host immune 

system by effectors or toxic proteins. In later stages, lytic enzymes and defense 

response activating effectors are secreted (O’Connell et al., 2012; Lo Presti et al., 2015). 

These processes require increased protein processing and preparation for secretion via 

the Golgi apparatus, which is accomplished by the endoplasmic reticulum (ER).  

The ER is a branched membrane system fused with the outer membrane of the nucleus, 

which is able to adapt to developmental or environmental conditions (Schwarz & Blower, 

2016). In situations requiring increased protein folding and secretion capabilities, the ER 

senses the imbalance of incoming proteins and protein folding capacity of the cell 

organelle and triggers expression of genes involved in ER stress relief, referred to as 

unfolded protein response (UPR) (Kozutsumi et al., 1988; Kohno et al., 1993; Hetz, 

2012; Heimel, 2015). These genes encode chaperones, foldases, glycosylation 

enzymes, as well as proteins required for vesicle transport, ER-associated degradation 

(ERAD), lipid biosynthesis, and regulators for adaptation of the ER size (Cox et al., 1993; 

Kaufman, 1999; Travers et al., 2000; Conn, 2011; Hetz, 2012). Whereas in mammals 

three ER transmembrane receptors, IRE1, PERK, and ATF6 are involved in UPR 

signaling to the nucleus (Ron & Walter, 2007; Hetz, 2012), in fungi, only the signal 

transduction pathway initiated by the sensor Ire1 (Inositol requiring 1) was described 

(Mori et al., 1993; Okamura et al., 2000; Kohno, 2010). This pathway is conserved in 

eukaryotes, however, species-specific adaptations can be observed. Especially the 

function of the basic leucine zipper (bZIP) transcription factor Hac1 (Homologous to 

Atf/Creb1) varies between different organisms and will be focused during this work in 

respect to its role in fungal differentiation and virulence of V. dahliae. In the following, the 

UPR pathway of S. cerevisiae will be summarized as paradigm and UPR functions in 

pathogenic fungi will be introduced. 

1.4.1 The unfolded protein response pathway in Saccharomyces cerevisiae 

ER stress causes a developmental block in the transition from the yeast form to 

pseudohyphal growth and sporulation in S. cerevisiae (Schröder et al., 2000). The yeast 
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unfolded protein response is based on perception of un- or misfolded proteins in the ER 

lumen by the transmembrane sensor Ire1 (Mori et al., 1993; Cox et al., 1993; Figure 4).  

Ire1 possesses a three domain structure: an ER luminal N-terminal domain, as well 

as the cytoplasmic kinase, and the endoribonuclease domains. In presence of un- or 

misfolded proteins, Ire1 oligomerizes and proteins auto-phosphorylate each other via 

the cytoplasmic kinase domains and the cytoplasmic endoribonuclease domain is 

activated (Shamu & Walter, 1996; Welihinda & Kaufman, 1996; Sidrauski & Walter, 

1997; Okamura et al., 2000; Figure 4).  

 

 

Figure 4: Hac1 is the central unfolded protein response regulator in S. cerevisiae. ER 
stress is perceived by the transmembrane sensor Ire1 in the presence of un- or misfolded 
proteins in the ER lumen. Ire1 proteins oligomerize and activate autophosphorylation by its 
cytosolic kinase domain. Thereby, the endoribonuclease domain of Ire1 is activated, resulting 
in unconventional splicing of the HAC1u mRNA. The spliced HAC1 mRNA (HAC1i) is 
translated into the bZIP transcription factor Hac1. Hac1 migrates to the nucleus and 
regulates UPR target genes with unfolded protein response elements (UPRE) in their 
promotor regions, like genes encoding for chaperones, foldases, or genes involved in ER-
associated degradation (ERAD) or ER expansion, resulting in ER stress relief (based on 
Heimel, 2015). 
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The endoribonuclease activity is required for unconventional splicing of the bZIP 

transcription factor Hac1 encoding mRNA (Sidrauski & Walter, 1997; Gonzalez et al., 

1999; Figure 4). Subsequent ligation of the exons is processed by the tRNA ligase 

Trl1 (Sidrauski et al., 1996; Sidrauski & Walter, 1997). Translation of the unspliced 

mRNA variant into Hac1u
 is suppressed by base-pairing interaction between the 

unconventional intron and the 5´UTR (Chapman & Walter, 1997; Rüegsegger et al., 

2001). 

Furthermore, translation of the unspliced mRNA correlated with accelerated degradation 

of very unstable Hac1u proteins was suggested (Di Santo et al., 2016). Splicing of the 

HAC1u mRNA results in the mRNA variant HAC1i, which is translated into the stable 

Hac1 protein. Hac1 migrates into the nucleus where it regulates UPR target genes (Mori 

et al., 1996, 1998; Figure 4). Several of these genes possess a specific palindromic 

sequence, named UPR element (UPRE), in their promotor regions (Mori et al., 1996, 

1998). Expression of UPR target genes mediates ER stress relief by increasing the 

folding capacity, ER expansion and degradation of misfolded proteins via the ERAD 

pathway (Cox et al., 1993; Kaufman, 1999; Travers et al., 2000; Jonikas et al., 2009; 

Heimel, 2015). 

1.4.2 The unfolded protein response pathway in pathogenic fungi 

Ire1-dependent UPR signaling for regulation of genes involved in ER stress relief was 

observed as a conserved mechanism for ER stress relief and virulence of several 

pathogenic fungal species colonizing animal or plant hosts (Cheon et al., 2011; Joubert 

et al., 2011; Richie et al., 2011; Krishnan & Askew, 2014; Heimel, 2015). The role of 

homologs and orthologs of the UPR regulatory transcription factor Hac1 varies in human 

or plant pathogenic fungal species (Krishnan & Askew, 2014).  

The ER stress response mechanism of the opportunistic human pathogenic yeast 

Candida glabrata is regulated in an Ire1-dependent decay independently of Hac1 

(Miyazaki et al., 2013). This results in splicing of various ER-associated mRNAs by Ire1 

as primary mechanism to cope with ER stress (Miyazaki et al., 2013; Heimel, 2015). 

In yeast and filamentous ascomycetes, translation of the uninduced HAC1 mRNA variant 

into an alternative protein Hac1u was described to be blocked by different mechanisms 

(Chapman & Walter, 1997; Rüegsegger et al., 2001; Saloheimo et al., 2003; Mulder et 

al., 2004; Joubert et al., 2011; Heimel, 2015). In the basidiomycete U. maydis, translation 

of the unspliced cib1 (Clp1 interacting bZIP1) mRNA into Cib1u, possessing a UPR 

repressing function and an additional Cib1-independent function in ER stress response, 

was assumed similar to the mechanisms observed in higher eukaryotes (Yoshida et al., 

2006, 2009; Heimel et al., 2013). 



Introduction 

20 

Hac1 homologs and orthologs are required for regulation of vegetative growth under ER 

stress inducing growth conditions in most tested fungal species (Richie et al., 2009; 

Cheon et al., 2011; Joubert et al., 2011; Heimel et al., 2013; Montenegro-Montero et al., 

2015). However, the impact of the UPR on vegetative growth under non-stress 

conditions is species-specific and varies from unaltered growth in absence of ER 

stressors (Cheon et al., 2011; Heimel et al., 2013; Heimel, 2015), over impacts on 

conidia or cell morphology (Wimalasena et al., 2008; Joubert et al., 2011), to functions 

specifically important on complex substrates (Richie et al., 2009; Montenegro-Montero et 

al., 2015).  

A crosstalk between the cell wall integrity (CWI) MAPK pathway and the UPR pathway 

was suggested following the observation that UPR-deficient strains displayed increased 

sensitivity not only in response to ER stressors, but as well to cell wall perturbing agents, 

as for example in C. albicans, C. neoformans, and A. fumigatus (Richie et al., 2009, 

2011; Cheon et al., 2011; Malavazi et al., 2014). In the necrotrophic plant pathogenic 

fungus A. brassicicola, the loss of virulence of mutants deficient in the UPR pathway was 

suggested to be caused by increased susceptibility to antimicrobial plant metabolites 

inducing membrane damage (Joubert et al., 2011; Guillemette et al., 2014). In contrast, 

sensitivity to cell wall perturbing agents was unaffected in Hac1-deficient strains of the 

saprophytic fungus N. crassa (Montenegro-Montero et al., 2015). 

Besides the role in counteracting host antimicrobial compounds in A. brassicicola, the 

UPR pathway was described to be linked to infection-related morphogenesis, adaptation 

of the secretion capacity during plant invasion and colonization, and recently also to the 

regulation of ER stress independent virulence factors (Cheon et al., 2011; Joubert et al., 

2011; Richie et al., 2011; Heimel et al., 2013; Hampel et al., 2016; Pinter et al., 2019). In 

the rice blast fungus M. oryzae, homologs of the heat shock protein Bip1 and the bZIP 

transcription factor Hac1 are involved in induction of the ER stress response and are 

essential for asexual development and penetration of the plant surface (Yi et al., 2009; 

Tang et al., 2015; Jiang et al., 2018b). Appressorium formation and initial penetration of 

the plant surface was unaffected in the avirulent A. brassicicola mutant defective in the 

UPR regulator AbHacA (Joubert et al., 2011). In the dimorphic corn smut fungus 

U. maydis, a morphogenic switch from budding to filamentous growth initiates 

pathogenic development (Boyce et al., 2005). Here, a functional UPR is required for the 

mitotic growth of the fungus within the cell after formation of appressoria and penetration 

of the plant surface (Heimel et al., 2010). Regulation of virulence-specific genes, like the 

effector genes pit2 and tin1-1, were identified to be regulated by the UPR in the 

basidiomycete (Hampel et al., 2016). Recently, a UPR-regulated virulence factor, the 

signal peptide peptidase Ssp1 with specific function in interference with plant defense 
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responses and dispensable for ER stress resistance, was identified in U. maydis (Pinter 

et al., 2019). 

Overall, the UPR pathway plays important roles in developmental processes and plant 

infections in several fungi. None of the UPR components was studied in Verticillia to 

date. During this study, the homolog of the bZIP transcription factor Hac1 was 

characterized in V. dahliae. 

1.5 Oxylipins 

The fungal secretome does not only include proteins, but also lipid metabolites, as 

oxygenated polyunsaturated fatty acids, named oxylipins. These fungal hormones act as 

trans-kingdom signaling molecules as they show conserved structures in fungi and 

plants (Brodhun & Feussner, 2011). Fungal oxylipins and their polyunsaturated fatty acid 

precursors are involved in fungal development and secondary metabolite production as 

well as in environmental adaptation. The signaling molecules were described to 

manipulate plant cellular processes in favor of the survival of the invader within the plant 

and, on the other hand, plant oxylipins can modulate fungal development (Calvo et al., 

2001; Brodhagen et al., 2008; Brodhun et al., 2009; Reverberi et al., 2010; Scala et al., 

2014). Oxylipins contribute to fungal differentiation and might affect the outcome of the 

interaction of Verticillia with their hosts, which was analyzed in frame of this study. In the 

following, the role of fungal oxylipins in development and plant-fungus interactions will be 

introduced. 

1.5.1 Oxylipins in fungal development 

In fungi, fatty acid synthases produce long chain fatty acids. Unsaturated and 

polyunsaturated fatty acids are produced by introduction of double bonds by ER 

membrane-bound desaturases. These desaturases transfer electrons from the donor 

cytochrome b5 and thereby reduce molecular oxygen to two molecules of water (Uttaro, 

2006). The polyunsaturated fatty acid linoleic acid (18:2∆9,12) is synthesized by oleate 

∆12-fatty acid desaturases from oleic acid (18:1∆9) by introduction of a second double 

bond into the carbon chain at position 12 from the carboxy-terminus (Uttaro, 2006; 

Figure 5). Linoleic acid is the most abundant fatty acid in mycelia of several fungal 

species and displays an important membrane component with functions in adaptation of 

membrane fluidity and the major precursor of fungal oxylipins (Rambo & Bean, 1974; 

Evans et al., 1986; Castoria et al., 1995; Goodrich-Tanrikulu et al., 1998; Los & Murata, 

1998; Gostinčar et al., 2009; Brodhun & Feussner, 2011). 
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Figure 5: Linoleic acid biosynthesis by oleate ∆12-fatty acid desaturases. Linoleic acid 
is the most abundant fatty acid in fungal cells as an important component of the cell 
membrane and the major precursor of oxylipins (Rambo & Bean, 1974; Evans et al., 1986; 
Castoria et al., 1995; Goodrich-Tanrikulu et al., 1998; Los & Murata, 1998; Gostinčar et al., 
2009; Brodhun & Feussner, 2011). Linoleic acid is synthesized by oleate ∆12-fatty acid 
desaturases, like OdeA in Aspergilli or OdeA corresponding protein Ode1 in V. dahliae, from 
oleic acid by introduction of a second double bond into the carbon chain at position 12 from 
the carboxy-terminus (Calvo et al., 2001; Chang et al., 2004; Wilson et al., 2004; Uttaro, 
2006).  

 

In plants, lipoxygenases (LOXs) catalyze the initial step in oxylipin biosynthesis from 

polyunsaturated fatty acids whereas different enzymes catalyze oxylipin producing 

reactions from polyunsaturated fatty acid substrates in fungi (Brodhun & Feussner, 

2011). These enzymes group into monooxygenases, LOXs, and cyclooxygenases 

(Fischer & Keller, 2016). The cyclooxygenases include the linoleate diol synthases 

(LDSs), also known as precious sexual inducer (Psi) factor-producing oxygenase (Ppo) 

enzymes (Andreou & Feussner, 2009; Brodhun & Feussner, 2011). Oxylipins were found 

to play significant roles in the coordination of developmental processes like conidiation, 

sclerotia formation, production of secondary metabolites, and quorum sensing (Calvo et 

al., 2001; Brodhun et al., 2009; Reverberi et al., 2010; Brodhun & Feussner, 2011; Scala 

et al., 2014). 

In A. nidulans and Aspergillus parasiticus, mutants deficient in the conversion of oleic 

acid into linoleic acid as the major precursor of oxylipins were analyzed by the deletion of 

the oleate ∆12-fatty acid desaturases OdeA (Calvo et al., 2001; Chang et al., 2004; 

Wilson et al., 2004). Mutants of both species displayed reduced vegetative growth and 

conidiation as well as altered ascospore formation. Additionally, a complete loss of 

sclerotia development was observed in the A. parasiticus odeA-deficient mutant (Chang 

et al., 2004; Wilson et al., 2004). 

A. nidulans produces Psi factors, which promote sexual development (Champe & El-

Zayat, 1989). Aspergilli possess three to four Ppo enzymes (PpoA, PpoB, PpoC, PpoD) 
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producing a ratio of these hormones to regulate the balance of asexual to sexual spores 

(Mazur & El-zayat, 1991; Tsitsigiannis et al., 2004b, 2004a, 2005a, 2005b; Tsitsigiannis 

& Keller, 2007; Horowitz Brown et al., 2009). Whereas products from PpoA and PpoB 

induce sexual sporulation, products of PpoC induce asexual sporulation in A. nidulans 

(Champe & El-Zayat, 1989; Tsitsigiannis et al., 2004a, 2004b). Ppo enzymes also affect 

the balance between asexual and sexual spores in A. fumigatus, however, the effect of 

the different enzymes varies (Dagenais et al., 2008). Aspergillus flavus produces a fourth 

Ppo enzyme, PpoD (Horowitz Brown et al., 2009). In this organism, Ppo enzymes as well 

as a LOX, were found to regulate the density-dependent morphological transition of 

conidia to sclerotia as resting structures (Horowitz Brown et al., 2008, 2009). A negative 

regulatory impact of a LOX on sclerotia production has been observed in Aspergillus 

ochraceus (Reverberi et al., 2010). Besides their roles in regulation of sexual 

development and quorum sensing, Ppo enzymes are involved in secondary metabolite 

production in Aspergilli as they promote, for instance, the biosynthesis of the mycotoxins 

sterigmatocystin as well as aflatoxin and inhibit the production of penicillin (Tsitsigiannis 

& Keller, 2006; Horowitz Brown et al., 2009). Homologous ppo genes were identified in 

several ascomycete and basidiomycete fungal species (Tsitsigiannis et al., 2005b; 

Tsitsigiannis & Keller, 2007). 

In summary, linoleic acid and oxylipin producing enzymes play crucial roles in fungal 

growth, development, and secondary metabolite production, which are species-specific 

and, in some cases, display antagonistic effects. 

1.5.2 Oxylipins in plant-fungus interactions 

Plant oxylipins were found to modulate fungal development and mycotoxin production 

and, vice versa, fungal oxylipins can manipulate the host lipid metabolism and alter plant 

defense responses presumably by mimicking endogenous signal molecules. In several 

cases, the interplay of plant and fungal oxylipins decides on the outcome of the 

interaction. 

The plant stress and defense response to pathogens with different lifestyles is mediated 

by the hormone jasmonic acid (JA) and JA derivatives synthesized from linoleic acid 

(Thaler et al., 2004) (Figure 6). Plants deficient in JA biosynthesis display increased 

susceptibility, for instance to Verticillia and F. oxysporum (Thaler et al., 2004; Thatcher et 

al., 2009; Riemann et al., 2013; Fischer & Keller, 2016; Scholz et al., 2018). Fungal 

species were described to produce oxylipins similar to the plant hormone JA and active 

or inactive JA derivatives to manipulate host defense reactions as, for example, 

F. oxysporum and M. oryzae (Husain et al., 1993; Miersch et al., 1999; Christensen & 

Kolomiets, 2011; Brodhun & Feussner, 2011; Andolfi et al., 2014; Cole et al., 2014; 
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Patkar & Naqvi, 2017; Chini et al., 2018). Due to structural similarities, fungal oxylipins 

were suggested to be perceived by plant receptors and to mimic plant hormones for 

manipulation of the immune response (Feys, 1994; Brodhun & Feussner, 2011). The 

only known JA receptor to date is the F-box protein jasmonate receptor coronatine 

insensitive 1 (COI1) (Brodhun & Feussner, 2011). COI1 acts as a de-repressor of JA 

responsive genes by targeting the JAZ (jasmonate ZIM-domain) repressor proteins for 

degradation (Thines et al., 2007). COI1-deficient A. thaliana mutants are insensitive to 

perception of activated jasmonoyl isoleucine (JA-Ile) derivatives. F. oxysporum and 

V. longisporum were found to induce disease symptoms in Arabidopsis plants dependent 

on the presence of COI1 (Thatcher et al., 2009; Ralhan et al., 2012; Cole et al., 2014). 

However, this is restricted to isolates, which are able to produce JA derivatives in 

F. oxysporum (Cole et al., 2014). Tomato infecting F. oxysporum isolates do not produce 

detectable jasmonates and COI1 is dispensable for virulence on tomato plants (Cole et 

al., 2014). 

Maize plants deficient in LOX3 displayed increased resistance to Fusarium verticilloides 

infection associated with decreased mycotoxin production (Gao et al., 2007). 

F. verticillioides susceptible varieties were found to produce high levels of LOX3 

products and the precursor linoleic acid (Dall’Asta et al., 2012, 2015; Battilani et al., 

2018). In F. verticillioides the Linoleate Diol Synthase 1 (LDS1)-derived oxylipins act as 

negative regulators of vegetative growth, conidiation, and secondary metabolite 

production (Scala et al., 2014). The signaling molecules induce LOX3, thereby, suppress 

the JA-mediated plant defense response and promote fungal virulence (Battilani et al., 

2018). Here, oxylipins from both interaction partners are essential for susceptibility 

(Battilani et al., 2018). 

In contrast to fungal oxylipins, which are mimicking plant hormones to suppress the 

plants defense responses, there are also examples for fungal oxylipins which activate 

plant defense responses for their benefit. The grapevine pathogen Lasiodiplodia 

mediterranea produces a JA precursor named JA ester lasiojasmonate A (LasA), which 

activates JA-regulated defense responses in plants presumably after conversion into the 

active JA-Ile derivative (Chini et al., 2018). Fungal LasA was suggested to be produced 

in late stages of infection to induce cell death and facilitate fungal infection, but the mode 

of action of LasA has not been elucidated to date (Chini et al., 2018). 

Like pathogenic species, mutualistic fungi found their path to manipulate the host 

defense responses in order to establish their interaction (Patkar & Naqvi, 2017; Sanders, 

2011). Manipulation of the host via oxylipins from mutualistic fungi was not described to 

date, whereas there are examples of fungal effectors targeting the plant´s jasmonate 

signaling pathway from Trichoderma virens and mycorrhizal fungi as Laccaria bicolor 
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(Djonovic et al., 2007; López-Ráez et al., 2010; Christensen & Kolomiets, 2011; Plett et 

al., 2014; Patkar & Naqvi, 2017). 

 

 

Figure 6: Fungal and plant oxylipins in crosstalk and fungal differentiation. Fungi 
synthesize oxylipins predominantly from linoleic acid, a polyunsaturated fatty acid which is 
produced by oleate ∆12-fatty acid desaturases like OdeA in Aspergilli (Calvo et al., 2001; 
Chang et al., 2004; Wilson et al., 2004) or the corresponding V. dahliae desaturase Ode1. 
The conversion of linoleic acid into fungal oxylipins is catalyzed by different enzymes 
including precious sexual inducer (Psi) factor-producing oxygenase (Ppo) enzymes, linoleate 
diol synthases (LDS), and lipoxygenases (LOX) (Andreou & Feussner, 2009; Brodhun & 
Feussner, 2011; Patkar et al., 2015; Fischer & Keller, 2016). Fungal oxylipins display positive 
and negative regulatory effects (indicated by arrows with plus and minus) on fungal growth, 
conidiation, sclerotia formation, and mycotoxin production. Furthermore, fungal oxylipins 
manipulate the host´s defense responses either by targeting the plant´s biosynthesis of 
oxylipins or the jasmonate (JA) binding F-box protein coronatine insensitive 1 (COI1) 
(indicated by arrows with plus and minus). Binding of active JA derivatives like jasmonoyl 
isoleucine (JA-Ile) to COI1 targets the jasmonate ZIM-domain (JAZ) repressors of JA 
responsive genes to the degradation machinery and, thereby, activates defense responses. 
Binding of 12-hydroxy JA (12-OH-JA) inactivates COI1 and negatively regulates JA 
responsive defense genes. Plant oxylipins regulate their defense responses and can 
modulate fungal growth, differentiation, and mycotoxin production. 

 

In summary, the communication of fungi and plants via the production of endogenous 

and perception of exogenous oxylipins determines the susceptibility of the host plant or 
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the propagation of the fungus (Figure 6). To date, these enzymes were not analyzed in 

Verticillia and their role in fungal growth, development, and virulence is unknown. In this 

work V. dahliae ODE1 coding for the oleate ∆12-fatty acid desaturase was identified for 

further characterization of its role in differentiation and virulence (Figure 5, Figure 6). 

1.6 Aim of the study 

Plant colonizing fungi and their hosts coevolve and develop constantly new specialized 

tools like effectors, oxylipins, mycotoxins, and CWDEs to benefit from or overcome the 

interaction. To succeed in colonization, these tools have to be prudently orchestrated 

during the different steps in colonization, which requires perception and adaptation to 

environmental conditions regulated by endogenous signaling cascades. Conserved 

signaling pathways were shown to be modified in several species in frame of niche 

adaptation. 

The independently evolved V. longisporum lineages adapted to Brassicaceae as a host 

but display differences in their pathogenicity. In the course of this study, two 

V. longisporum isolates from different lineages and pathotypes but from fields in the 

same area in Germany (Zeise & von Tiedemann, 2002) were compared to investigate 

the genomic basis for the establishment of different pathotypes in related species. In the 

genomes of V. dahliae, a relative enrichment of genes with functions in niche adaptation 

was observed in LS regions (de Jonge et al., 2013; Gibriel et al., 2019). To date, LS 

regions in the genome of the hybrid V. longisporum were not analyzed. In first 

experiments, the colonization behavior of the two V. longisporum isolates in rapeseed 

plants was compared. Subsequently, LS regions present in the pathogenic and absent in 

the mutualistic colonizer were searched. In order to narrow down to interesting regions, 

an LS region originating from the V. dahliae-related parental species was focused. 

Deletion strains of this region were constructed in the pathogenic V. longisporum isolate 

and the haploid relative V. dahliae to characterize the role of LS regions in adaptation of 

the rapeseed colonizer V. longisporum.  

The pathotype of a fungus depends on both, the defense responses of the host plant and 

the orchestration of tools enabling plant colonization. Sensing of the fungal environment 

and signal transduction are important mechanisms for adaptation and colonization of 

plants. The Fus3/Kss1-like MAPK signaling pathway in V. dahliae has a conserved role 

in fungal pathogenicity and, furthermore, the MAPK Vmk1 was described to positively 

regulate differentiation processes (Rauyaree et al., 2005). Insulation of homologous 

pathways by a scaffold protein was recently elucidated in the filamentous ascomycetes 

N. crassa and A. nidulans (Dettmann et al., 2014; Jonkers et al., 2014; Frawley et al., 

2018). Homologs to these scaffold proteins have been identified bioinformatically in the 
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biggest subdivision of the Ascomycota, including Verticillia (Jamet-Vierny et al., 2007). 

However, the role of the homolog has not yet been studied in any pathogenic species. 

Here, the function of the V. dahliae homolog Ham5 on the Fus3/Kss1-like MAPK 

pathway-mediated regulation of fungal differentiation and virulence was analyzed. 

Mutants deficient in the pathway components Vmk1 (MAPK) and Mek2 (MAP2K) were 

compared to a Ham5-deficient strain and double deletion strains defective in either 

Ham5/Vmk1 or Ham5/Mek2 regarding their vegetative growth, their ability to form 

microsclerotia, and virulence on tomato plants.  

Signaling from the membrane coordinates the expression of tools involved in host 

colonization. This correlates with increased demands for processing and secretion of 

proteins in the ER, which requires a functional unfolded protein response (UPR). 

Variations of the role of the transcription factor Hac1 in development and virulence in 

different fungal species were observed (Krishnan & Askew, 2014). To date, the UPR is 

an unstudied field in Verticillia. In frame of this work, the role of the homologous bZIP 

transcription factor Hac1 in fungal differentiation, ER stress response, and virulence in 

V. dahliae was addressed. The HAC1 homolog was identified and the occurrence of 

alternatively spliced mRNA variants was verified. HAC1 deletion strains were 

constructed and complemented by ectopic integration of the alternative mRNA splice 

variants HAC1u and HAC1i with 3´-hemagluttinin tags or unspliced HAC1. It was tested if 

translation of HAC1u into a protein could be detected. The constructed strains were 

characterized regarding their vegetative growth under physiological and ER stress 

conditions, conidiation, formation of microsclerotia as resting structures, and virulence in 

tomato plants. 

Besides protein tools, fungi and plants possess lipid metabolites as signaling molecules 

with significant impact on the outcome of the interaction (Brodhun & Feussner, 2011; 

Christensen & Kolomiets, 2011; Fischer & Keller, 2016; Patkar & Naqvi, 2017). Here, the 

so far unknown role of a functional oxylipin biosynthesis in growth, development, and 

virulence of V. dahliae was investigated. Therefore, an oleate ∆12-fatty acid desaturase, 

catalyzing the oxidation of oleic acid to the major oxylipin precursor linoleic acid, was 

identified. Localization of the enzyme was tested by fluorescence microscopy of GFP 

tagged versions. Mutants deficient in this desaturase were constructed and 

phenotypically analyzed in planta and ex planta. 
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2 MATERIALS AND METHODS 

Media, buffers, and solutions used in this study were prepared with chemicals provided 

by AppliChem GmbH (Darmstadt, Germany), BD Biosciences (Heidelberg, Germany), 

Biozym Scientific GmbH (Hessisch Oldendorf, Germany), Carl Roth GmbH&Co.KG 

(Karlsruhe, Germany), Fluka (Neu-Ulm, Germany), Invitrogen (Karlsruhe, Germany), 

Merck KGaA (Darmstadt, Germany), Oxoid Deutschland GmbH (Wesel, Germany), 

Roche Diagnostics GmbH (Mannheim, Germany), Sigma-Aldrich Chemie GmbH 

(Munich, Germany), Serva Electrophoresis GmbH (Heidelberg, Germany), and VWR 

International GmbH (Darmstadt, Germany). The pH was determined with a WTW bench 

pH/mV Routine meter pH 526 (Sigma-Aldrich, Munich, Germany). 

Ampicillin (Carl Roth GmbH&Co.KG), kanamycin (AppliChem), chloramphenicol 

(AppliChem), clonNAT nourseothricin dihydrogen sulfate (Werner Bioagents GmbH, 

Jena, Germany), cefotaxime (Wako Chemicals GmbH, Neuss, Germany), and 

hygromycin B (InvivoGen, San Diego, CA, USA) were used for selection of 

microorganisms. Small-scale sterile filtration of solutions was performed with Filtropur 

filters with a pore size of 0.2 μm (Sarstedt AG&Co, Nuembrecht, Germany). Fungal 

spores were filtered using Miracloth (Calbiochem Merck, Darmstadt, Germany). The 

Coulter Particle Count and Size Analyzer Z2 and the appropriate Coulter Isoton II Diluent 

(both Beckman Coulter, Krefeld, Germany) were used for conidiospore counting. 

Restriction enzymes were obtained from Thermo Fisher Scientific (Schwerte, Germany) 

and NEB (Frankfurt am Main, Germany). The GeneArt Seamless Cloning and Assembly 

Kit and CloneJET PCR Cloning Kit were used from Thermo Fisher Scientific. RNase A 

was provided by AppliChem. Phusion High-Fidelity DNA polymerase, Taq DNA 

polymerase, corresponding polymerase buffers, and deoxynucleotides were obtained 

from Thermo Fisher Scientific (Schwerte, Germany). Q5 High-Fidelity DNA polymerase 

was purchased from New England Biolabs (Ipswich, MA, USA). Primers were obtained 

from Eurofins Genomics GmbH (Ebersberg, Germany) and Sigma-Aldrich Chemie 

GmbH (Munich, Germany). PCRs were performed in T Professional Standard 96, T 

Professional Trio 48, and T Professional Standard 96 Gradient thermocyclers (Biometra 

GmbH, Goettingen, Germany), and in Primus 96 Thermal Cyclers (MWG Biotech AG, 

Ebersberg, Germany). DNA was purified with the NucleoSpin Plasmid Kit or NucleoSpin 

Gel and PCR clean up Kit from Macherey-Nagel (Dueren, Germany). DNA and RNA 

concentrations were measured with a NanoDrop ND-1000 spectrophotometer from 

PeqLab Biotechnology GmbH (Erlangen, Germany). Protein concentrations were 

measured with an Infinite M200 microplate reader operated with Magellan software 

(both: Tecan Trading AG, Maennedorf, Switzerland). 
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RNA was extracted with the Direct-zol RNA MiniPrep Kit (Zymo Research, Freiburg im 

Breisgau, Germany). The GeneRuler 1 kb DNA ladder and GeneRuler 100 bp DNA 

ladder (Thermo Fisher Scientific) were used for DNA on-gel band size determination in 

DNA gel electrophoresis. The PageRuler Prestained Protein Ladder 10-180 kDa 

(Thermo Fisher Scientific) was used for protein on-gel band size determination. The 

following named electrophoresis equipment was obtained from BIO-RAD Laboratories 

(Hercules, CA, USA): DNA agarose gel electrophoresis was performed with Mini-Sub 

Cell GT chambers and the PowerPac 300 power supply, SDS polyacrylamide gel 

electrophoresis was conducted with the Mini-Protean Tetra Cell, Mini Trans-Blot 

Electrophoretic Cell and with the PowerPac 3000 power supply. Amersham Hybond-N 

nylon membrane for blotting of DNA from agarose gels and Amersham Protran 0.45 μm 

NC nitrocellulose blotting membrane for blotting of proteins from SDS-polyacrylamide 

gels were purchased from GE Healthcare life sciences (Munich, Germany). The 

Amersham AlkPhos Direct Labeling and Detection System was used for Southern 

hybridization analysis. The Amersham Hyperfilm-ECL (GE Healthcare life sciences, 

Munich, Germany) and the Optimax X-ray Film Processor from Protec GmbH&Co.KG 

(Oberstenfeld, Germany) were used for detection of chemiluminescence of Southern and 

western hybridization. Alternatively, chemiluminescence of western hybridization was 

visualized with the Fusion SL chemiluminescence detector (PeqLab, Erlangen, 

Germany). As primary antibodies α-GFP antibody sc-9996 (Santa Cruz Biotechnology, 

Santa Cruz, CA, USA) and α-HA (clone HA-7; Sigma-Aldrich Chemie GmbH) were used. 

As secondary antibodies horseradish peroxidase-coupled rabbit G21234 (Invitrogen) and 

mouse antibody 115-035-003 (Jackson ImmunoResearch, Newmarket, UK) were used. 

Pipet tips, reaction tubes, petri dishes, and other plastic consumables were purchased 

from Sarstedt, StarLab GmbH (Hamburg, Germany), and Nerbe Plus GmbH 

(Winsen/Luhe, Germany). Centrifugation of 1.5 ml and 2 ml reaction tubes was 

performed with Heraeus Biofuge Fresco and Heraeus Pico Microcentrifuges from 

Heraeus Instruments GmbH (Hanau, Germany). For centrifugation of 15 ml and 50 ml 

tubes, Centrifuge 5804 R from Eppendorf AG (Hamburg, Germany) was used. The GFL 

(Burgwedel, Germany) shaking water bath 1086, Orbital shaker 3005, Orbital shaker 

3020, and the Rotamax 120 (Heidolph, Schwabach, Germany) were used for incubations 

at constant agitation. 

Plates for phenotypical analysis were scanned via Epson Perfection V600 Photo 

Scanner (Epson, Suwa, Japan). The binocular microscope SZX12-ILLB2-200 (Olympus 

Deutschland GmbH, Hamburg, Germany) illuminated with the KL1500-LCD light source 

(Olympus GmbH, Hamburg, Germany) and the Axiolab light microscope (Zeiss, 

Oberkochen, Germany) equipped with SC30 cameras (Olympus GmbH) and operated 
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with the cellSens Dimension version 1.4 software (Olympus GmbH) were used for 

observation of microsclerotia and hypocotyl discolorations of tomato stems. 

The confocal Zeiss Observer Z1 microscope (Zeiss) equipped with a CSU-X1 A1 

confocal scanner unit (Yokogawa, Ratingen, Germany), QuantEM:512SC digital camera 

(Photometrics, Tucson, AZ, USA) operated with the SlideBook 6.0 digital microscopy 

software (Intelligent Imaging Innovations, Goettingen, Germany) was used for 

fluorescence microscopy. The µ-Slide 8 well (IBIDI, Martinsried, Germany) microscopy 

chambers were used for localization studies. Vacuoles were visualized in fluorescence 

microscopy with FM4-64 Dye (Thermo Fisher Scientific). 

Planting pots with 70x70x80 mm were purchased from Soparco GmbH (Saarbruecken, 

Germany). Fruhstorfer Erde Typ T Struktur 1 -fein- (Archut GmbH&Co.KG, Lauterbach, 

Germany) and 0.4-0.8 mm crystal silica sand (Dorsilit, Hirschau, Germany) were used. 

Plants were grown in a BrightBoy GroBank (CLF PlantClimatics, Emersacker, Germany).  

Materials and instrumentations, which were not listed here are indicated in the following 

chapters. 

2.1 Organisms and their cultivation 

All media and supplemental substances used in this study were prepared in deionized 

water and sterilized either by autoclaving at 121 °C for 20 min and 2 bar, or filter-

sterilized through a 0.2 µm pore size membrane filter for temperature unstable 

substances. 

2.1.1 Cultivation of bacteria 

Escherichia coli and Agrobacterium tumefaciens strains were cultivated using liquid 

lysogeny broth (LB) medium (Bertani, 1951) [1% bacto-tryptone, 0.5% yeast extract, 1% 

NaCl, pH 7.5, 2% agar for solid medium] on a rotary shaker at 37 °C for E. coli and 25 °C 

for A. tumefaciens. Liquid SOC medium (2% bacto tryptone, 0.5% yeast extract, 10 mM 

NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, supplemented with 20 mM glucose 

after autoclaving) was used for transformation of chemically competent E. coli and 

A. tumefaciens cells. Transformants were selected on solid LB medium by 

supplementation of 100 µg/ml ampicillin or 100 µg/ml kanamycin. For plasmid 

conservation equal volumes of bacterial overnight cultures and 100% glycerol were 

mixed and stored at -80 °C. 

2.2.2 Cultivation of Verticillium strains 

Conidia were cultivated in liquid simulated xylem medium (SXM; modified from Neumann 

& Dobinson, 2003 as described in (Hollensteiner et al., 2017) and in liquid potato 

dextrose medium (PDM) [2.65% Potato-Dextrose broth (Carl Roth GmbH&Co.KG)] and 
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incubated at 25 °C under constant agitation at 120 rpm. Mycelium was harvested from 

PDM liquid cultures for extraction of genomic DNA. Protein extracts were obtained from 

mycelium harvested from cultures grown in liquid PDM or modified Czapek-Dox Medium 

(CDM; Smith, 1949) [3% sucrose, 2% 50x AspA (3.5 mM NaNO3, 350 mM KCl, 550 mM 

KH2PO4, pH 5.5), 2 mM MgSO4, 0.001% FeSO4]. Mycelium from liquid SXM or PDM 

cultures was used for extraction of RNA. Conidia were harvested from SXM cultures by 

filtration through sterile Miracloth (Calbiochem Merck), washed twice with sterile water, 

and resuspended in sterile water. The concentrations of spore solutions were determined 

using the Coulter Particle Count and Size Analyzer Z2 (Beckman Coulter) with the 

appropriate diluent by counting particles with a size of 1.9-4.5 μm as V. dahliae spores or 

particles with a size of 2.0-5.9 μm for V. longisporum spores. For conservation of fungal 

strains, freshly harvested spores were resuspended in 0.96% NaCl with 0.05% 

Tween80, adjusted to 2x107 spores/ml and preserved as 30% glycerol stock aliquots at -

80 °C. 

Verticillium transformants were selected on solid potato dextrose medium (PDM, 3.9% 

potato extract glucose agar (Carl Roth GmbH&Co.KG), 0.5% agar) supplemented with 

antimycotics clonNAT nourseothricin dihydrogen sulfate (72 µg/ml, Werner Bioagents 

GmbH) or hygromycin B (50 µg/ml, InvivoGen), and the antibiotic cefotaxime (300 µg/ml; 

Wako Chemicals GmbH) after autoclaving. 

2.2 Strains, plasmids and primers 

2.2.1 Bacterial strains 

E. coli strain DH5α (Woodcock et al., 1989) was used for cloning, plasmid reproduction, 

and conservation. A. tumefaciens strain AGL-1 (Lazo et al., 1991) was used for 

A. tumefaciens-mediated transformation (ATMT) for generation of different V. dahliae 

and V. longisporum strains. 

2.2.2 Verticillium strains 

The V. longisporum strain Vl43 isolated from Brassica napus (Zeise & von Tiedemann, 

2002) was used as parental lineage for the generation of V. longisporum strains. The 

V. dahliae strain JR2 (Fradin et al., 2009) isolated from Solanum lycopersicum was used 

for the generation of V. dahliae deletion strains in this study. Fungal strains constructed 

and used in this study are listed in Table 1. 
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Table 1: Verticillium strains constructed and used in this study. 

Strain Description Reference 

V. dahliae strains 

JR2/ WT Solanum lycopersicum isolate (Fradin et al., 
2009) 

JR2-GFP pgpdA:GFP:trpCt:pgpdA:HYGR:trpCt (Bui et al., 2019) 

VGB392 pgpdA:GFP:trpCt:pgpdA:NATR:trpCt This study 

VGB279/ 
VGB280 

∆HAM5::pgpdA:NATR:trpCt This study 

VGB331/ 
VGB332 

∆ODE1::pgpdA:NATR:trpCt This study 

VGB335/ 
VGB336 

∆VMK1::pgpdA:HYGR:trpCt This study 

VGB337/ 
VGB338 

∆MEK2::pgpdA:HYGR:trpCt This study 

VGB346 ∆MEK2::pgpdA:HYGR:trpCt;  
∆HAM5::pgpdA:NATR:trpCt 

This study 

VGB358/ 
VGB359 

∆ODE1::pODE1:ODE1:GFP:pgpdA:HYGR:trpCt:ODE1t This study 

VGB360/ 
VGB361 

∆ODE1:: pODE1:GFP:ODE1:pgpdA:HYGR:trpCt:ODE1t This study 

VGB371/ 
VGB372 

∆HAC1::pgpdA:HYGR:trpCt This study 

VGB380 ∆HAC1::pgpdA:HYGR:trpCt; 
pgpdA:GFP:trpCt:pgpdA:NATR:trpCt 

This study 

VGB382 ∆HAC1::pgpdA:HYGR:trpCt; 
pHAC1:HAC1:HAC1t:pgpdA:NATR:trpCt  

This study 

VGB383/ 
VGB393 

Vd JR2∆LS:: pgpdA:NATR:trpCt This study 

VGB388/ 
VGB389 

∆MEK2::pgpdA:HYGR:trpCt; 
pMEK2:MEK2:MEK2t:pgpdA:NATR:trpCt 

This study 

VGB413 ∆VMK1::pgpdA:HYGR:trpCt; 
pVMK1:VMK1:VMK1t:pgpdA:NATR:trpCt 

This study 

VGB415 ∆HAM5::pgpdA:NATR:trpCt; 
pHAM5:HAM5:HAM5t:pgpdA:HYGR:trpCt 

This study 

VGB417 ∆VMK1::pgpdA:HYGR:trpCt;  
∆HAM5::pgpdA:NATR:trpCt 

This study 

VGB439/ 
VGB440 

∆HAC1::pgpdA:HYGR:trpCt; 
pHAC1:HAC1u:HAC1t:pgpdA:NATR:trpCt 

This study 

VGB437/ 
VGB438 

∆HAC1::pgpdA:HYGR:trpCt; 
pHAC1:HAC1i:HAC1t:pgpdA:NATR:trpCt 

This study 

V. longisporum strains 

Vl32 B. napus (oilseed rape) isolate (Zeise & von 
Tiedemann, 2002) 

Vl43 B. napus (oilseed rape) isolate (Zeise & von 
Tiedemann, 2002) 

VGB193/ 
VGB214 

Vl43∆LSII::pgpdA:NATR:trpCt 
(∆vl43ass51scaf493:534161-542607) 

This study 

VGB201/ 
VGB233 

Vl43∆LSI::pgpdA:NATR:trpCt 
(∆vl43ass51scaf493:522667-534160) 

This study 
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Strain Description Reference 

VGB232 Vl43∆LS::pgpdA:HYGR:trpCt 
(∆vl43ass51scaf493:522667-542607) 

This study 

p: promoter, t: terminator, NATR: nourseothricin resistance marker, HYGR: hygromycin B 
resistance marker, two VGB numbers for one genotype indicate two independent 

transformants. 

2.2.3 Plants 

All plants used in this study were purchased as seeds and are listed in Table 2. 

Table 2: Plants used in this study. 

Organism Description Reference 

Brassica napus  
(falcon) 

rapeseed, family: Brassicaceae, used 
as host for V. longisporum 

Norddeutsche Pflanzenzucht 
(Holtsee, Germany) 

Solanum 
lycopersicum 
(moneymaker) 

tomato, family: Solanaceae, used as 
host for V. dahliae 

Bruno Nebelung GmbH&Co. 
Kiepenkerl-Pflanzenzüchtung 
(Everswinkel, Germany) 

Arabidopsis 
thaliana  
(Col-0) 

thale cress, family: Brassicaceae, 
used for root colonization analysis by 
V. longisporum and V. dahliae 

Nottingham Arabidopsis 
Stock Centre, stock no. 
N1902 

 

2.2.4 Primers, Plasmid, and strain constructions 

All fragments were PCR amplified using the Q5 Hot Start polymerase (New England 

Biolabs) or Phusion High-Fidelity DNA polymerase (Thermo Fisher Scientific) from given 

templates. All strains, primers, and plasmids are listed in Table 1, 3, and 4. 

2.2.4.1 Primers 

Oligonucleotides used in this study are listed in Table 4. Annealing temperatures of 

primers were calculated using the NEB Tm Calculator v1.9.13 and the Eurofins 

Genomics Oligo analysis tool for qPCR primers. Primers used in this study are listed in 

Table 3. 

Table 3: Primers used and designed in this study. 

Primer 
name 

Primer sequence (5´→ 3´) Length 
(bp) 

Overhang 
to 

AO144 AAT AAT CAT CCA CTG CAC CT 20 - 

JST1 GTA TGT TGT GTG GAA GCT ACC TAC CGA CAT GCC 
CG 

35 pME4564 

JST2 ACC GGT CAC TGT ACA TGC TGT GAC CGT TCG TTT 
TCC 

36 pgpdA 

JST3 AGG TAA TCC TTC TTT CCA TAT TCT GAT GGT TTC 33 trpCt 

JST4 CAC AGT ACA CGA GGA TAC AGA TCT TAT AGA ACT 
GTA C 

37 pME4564 
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Primer 
name 

Primer sequence (5´→ 3´) Length 
(bp) 

Overhang 
to 

JST5 GTA TGT TGT GTG GAA CGG GTG CGA CAA ATG CTC 
TC 

35 pME4564 

JST6 ACC GGT CAC TGT ACA GCC TGC TGT CCG TGG CAC 33 pgpdA 

JST7 AGG TAA TCC TTC TTT GTC AGC CCG GAG ACG GTG 33 trpCt 

JST8 CAC AGT ACA CGA GGA CGC CCA GAA ACC TGA CAA 
CC 

35 pME4564 

JST9 AGA TCC CCG GGT ACC TGC TGT GAC CGT TCG TTT 
TCC 

36 pgpdA 

JST11 CCA TGG AGC ATA CAA ATA GCT 21 - 

JST13 TCC CAC TGT AGG ACC AGA G 19 - 

JST15 CGT CAG GGT AGC ATC ATT C 19 - 

JST16 GAC CTG ATC GGA TGA CAT GC 20 - 

JST17 CAC TCT CGA CTG CCG CCT G 19 - 

JST21 AGG TAA TCC TTC TTT TTC CTT ATG TTG GGA TTT 
GAG G 

37 trpCt 

JST45 TCA GAT CAT CTC GCT TTC GTG T 22 - 

JST46 TCA GAC GCC TTC CGT GTT GG 20 - 

JST50 ATG ACC TCG GAC CAC CAT TT 20 - 

JST53 ATG ACC GGC GAC GAA GTA GC 20 - 

JST58 CGG TCA CAA GAG CGT CTG GA 20 - 

JST61 ATG TCG CGC AGC AAC GC 17 - 

JST62 CTA CCG CAT AAT CTC CTG GTA GA 23 - 

JST76b GTA TGT TGT GTG GAA AGC ACG GAG CAG AGA CCA 33 pPK2 

JST77a GGT TCT GGT ACA CGA CGA GC 20 - 

JST90 GGC TAG GCG ACA TTG ACC CTG 21 - 

JST110 GTA TGT TGT GTG GAA CCG CGA GGG TTG GAG 
AGG 

33 pME4564 

JST111 ACC GGT CAC TGT ACA GAC GGG CCT GAT ATT CTT 
TCG A 

37 pgpdA 

JST112 AGG TAA TCC TTC TTT GTG GCC GTC TTT TCA CAG 
GC 

35 trpCt 

JST113 CAC AGT ACA CGA GGA TCT CGT CCG GAC TGA TCC 
AA 

35 pME4564 

JST127 CGT ATG TTG TGT GGA AGG ATG GCC AAT GTG GAT 
TTG AT 

38 pME4564 

JST128 CAC CGG TCA CTG TAC AGG TAC TGG TGG CTC TTG 
GGA 

36 pgpdA 

JST129 GAG GTA ATC CTT CTT TTC GGA TTG GAC AGT AGA 
CAA GTT TG 

41 pgpdA 

JST130 CAC AGT ACA CGA GGA CGC GCA CAG TTA CAC TTC 
ATA CTC T 

40 pME4564 

JST137 TCC ACA TTG GCC ATC CTT CCA CAC AAC ATA CGA 
GCC G 

37 pODE1 

JST138 AGT GTA ACT GTG CGC GTC CTC GTG TAC TGT GTA 
AGC 

36 ODE1t 

JST171 ATG GAG TCT TGG GAG CAC TC 20 - 

JST172 TCA GAC ACC AAC CGC AAT 18 - 

JST174 TCA GCG AAA GCG CAC TC 17 - 

JST175 ATG GCT GCG ACC ACA TC 17 - 
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Primer 
name 

Primer sequence (5´→ 3´) Length 
(bp) 

Overhang 
to 

JST176 TCA CTG CTC ATC CGT ACG 18 - 

JST177 AAA GAA GGA TTA CCT CTA AAC AAG TGT 27 - 

JST178 GGT ACC GAG CTC GAT TTA CTT GTA CAG CTC GTC 
CA 

35 pgpdA 

JST179 ACC ACC GCT ACC ACC CTG CTC ATC CGT ACG GC 32 linker C-
terminal 
GFP 

JST180 ATT CTT AAT TAA GAT GGA TGG CCA ATG TGG AT 32 pPK2 

JST181 GCC CTT GCT CAC CAT GGT ACT GGT GGC TCT TGG 33 N-terminal 
GFP 

JST184 GTA TGT TGT GTG GAA CGA GTG GAG ATG TGG AGT 33 pME4815 

JST185 ACC GGT CAC TGT ACA TGG CAT GCG GAG AGA C 31 pME4815 

JST186 ATT CTT AAT TAA GAT GAC AAG AGT CAA GCC CAC 33 pME4564 

JST187 AGA TCC CCG GGT ACC GAT GGA CGA AGC GAC TC 32 pgpdA 

JST188 AGG TAA TCC TTC TTT TTT GAT TTT TAT CAT GAT 
GAC GGC 

39 trpCt 

JST189 AGG ACT TCT AGA AGG TCC AGC TCC AAA TCA ATT 
AAC C 

37 pME4564 

JST207 TCA GTG GTT TTC GAT AGA CG 20 - 

JST208 ATG ACA ACC AAC TCA TCT GA 20 - 

JST210 GTA TGT TGT GTG GAA GCT ACC TAC CGA CAC GCC 
C 

34 pME4564 

JST211 GGT CAC TGT ACA GAT GGG ACT CGT ACC ATG TTT 
C 

34 trpCt 

JST212 TGT TGT GTG GAA GAT ACT AAG TAC TGG TTG TGG 
CTG AC 

38 pME4815 

JST213 GGT CAC TGT ACA GAT AGG CTT GGA GAT GAC GAG 33 pgpdA 

JST216 TGT TGT GTG GAA GAT GAC AAG AGT CAA GCC CAC 33 pME4564 

JST217 TCA TTT TTC CAC CTT TCT CA 20 - 

JST218 ATG TAC CCA GCA AAC TAC GA 20 - 

JST220 TGG AAG ATT AGG ACA TGA 18 - 

JST223 ATA GGA CAT TAT CAT CGC 18 - 

JST224 GCA GCA AGT TCA CTC GAG 18 - 

JST226 ATG CCC GAT CCT TTC GC 17 - 

JST228 AGG GTG CGA TGC GTT GTT 18 - 

JST229 TTA TGG CTT CGA CCA GTA TGG 21 - 

JST230 ATG CTG ACT TCG GCC CCT 18 - 

JST231 CTA CAT GTA GTC TTT ATT TTG ATG C 25 - 

JST232 ATG TCC TCC AAC ATC CC 17 - 

JST233 TCA GAC AAC TTC GCC GTG G 19 - 

JST234 ATG TCC CGC CGT CTC CTG 18 - 

JST235 CTA CCC GCA GGG GGT GC 17 - 

JST236 ATG CAC TTT CAC GAA ATG GCT C 22 - 

JST238 ACT TCG CGC AGT ACG ACT 18 - 

JST239 AGG TAC TGG TGA AGG CAT 18 - 

JST240 TCA GAG AAT GTG AAG ATG 18 - 

JST241 CTT CGT CTT CTG TTT TCG 18 - 



Materials and Methods 

37 

Primer 
name 

Primer sequence (5´→ 3´) Length 
(bp) 

Overhang 
to 

JST242 GAG ATC GAC AAC GCT GTC 18 - 

JST243 TGT TGT GTG GAA GAT AGC ACG GAG CAG AGA CCA 33 pME4815 

JST244 GGT CAC TGT ACA GAT CGA ACC GGT GAT GGA TAC 
G 

34 pgpdA 

JST245 ATT CTT AAT TAA GAT CTG CTC CTA TTC GGC TCC 33 pPK2 

JST246 GGT ACC GAG CTC GAT TCT CGT CCG GAC TGA TCC 33 pPK2 

JST266 CTA TCC GCC GCT AGC GTA ATC GGG CAC ATC GTA 
TGG GTA GCC GCC GCT GAC ACC AAC CGC AAT GC 

65 HA tag 

JST267 CTA TCC GCC GCT AGC GTA ATC GGG CAC ATC GTA 
TGG GTA GCC GCC GCT GCG AAA GCG CAC TCG T 

64 HA tag 

JST268 CTA TCC GCC GCT AGC GTA 18 - 

JST269 TGT TGT GTG GAA GAT GCT GAG GTC ATG GCT GAC 33 pME4564 

JST270 CTC CCA AGA CTC CAT TTT GGA CGG CTT TGT GTG 33 HAC1 

JST271 GCT AGC GGC GGA TAG GGG CTG TGA GAA TCG 
GGT 

33 HA 

JST272 GGT CAC TGT ACA GAT GGG ACT CGT ACC ATG TTT 
CA 

35 trpCt 

JST273 GCT AGC GGC GGA TAG TTT GAT TTT TAT CAT GAT 
GAC GG 

38 HA 

JST288 AGG TGA GAA CCG AGC AC 17 - 

JST289 AGT GCA TTC TTG TGA AGC C 19 - 

JST292 TTA ATT CGA GGA CCC ATT GTA AA 23 - 

JST293 CCG ACG TGA CAC AAC GTC 18 - 

JS-V5 CGT ATG TTG TGT GGA AAC TAA GTA CTG GTT GTG 
GCT GAC 

39 pPK2 

JS-V6 AAG ATC CCC GGG TAC CTT TGG GTG ATG TGC GTG 
G 

34 pgpdA 

JS-V7 ACA ACC AGT ACT TAG TTT CCA CAC AAC ATA CGA 
G 

34 pMEK2 

JS-V8 ACG CAC ATC ACC CAA AGG TAC CCG GGG ATC TTT 
C 

34 pMEK2 

JS-V9 TCC TTC TTT CTA GAA GTT GAA CAG GCC TGT CTG 
G 

34 pME4821 

JS-V10 ACA CAG TAC ACG AGG AAG GCT TGG AGA TGA CGA 
G 

34 pME4821 

JS-V11 CGT CAT CTC CAA GCC TTC CTC GTG TAC TGT GTA 
AG 

35 MEK2t 

JS-V12 AGA CAG GCC TGT TCA ACT TCT AGA AAG AAG GAT 
TAC CTC 

39 MEK2t 

JS-V21 GAG GTA ATC CTT CTT TGG TGG CAG TGG CAG TGG 33 pPK2 

JS-V22 ACA CGA GGA CTT CTA GCG AAC CGG TGA TGG ATA 
CGT T 

37 pPK2 

JS-V23 ATC CAT CAC CGG TTC GCT AGA AGT CCT CGT GTA 
CTG T 

37 VMK1t 

JS-V24 CAC TGC CAC TGC CAC CAA AGA AGG ATT ACC TCT 
AAA CAA GT 

41 VMK1t 

ML1 TTC CAC ACA ACA TAC GAG CC 20 - 

ML2 TCC TCG TGT ACT GTG TAA GC 20 - 

ML5 TGT ACA GTG ACC GGT GAC TCT T 22 - 
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Primer 
name 

Primer sequence (5´→ 3´) Length 
(bp) 

Overhang 
to 

ML6 TCC CGC GGT CGG CAT CTA CTT CAG GGG CAG 
GGC ATG CT 

38 trpCt  

ML8 AAA GAA GGA TTA CCT CTA AAC AA 23 - 

ML9 TGT ACA GTG ACC GGT GAC 18 - 

pKO2-
40B-for 

TGT GGA CAA AGG ATT ACG GG 20 - 

RO3 GGT ACC CGG GGA TCT TTC G 19 - 

RO4 AAA GAA GGA TTA CCT CTA AAC AA 23 - 

SAB16 GGT GGT AGC GGT GGT ATG 18 - 

SZ9 AAC ACC CAG AAC AAG ATG CGC 21 - 

SZ10 GCT TGA CCT TGA GAT CCT TG 20 - 

SZ11 TGC ATT CTT GGC AAG AGA TGT GTG 24 - 

SZ12 AGC TTG TTA TCC TTG TCC TCG GT 23 - 

SZ19 ACC TCT GGA GGC AAG GCT T 19 - 

SZ20 GCT TGG CCT TCT TCT TCT GC 20 - 

ZQY11 GCA TGG ACG AGC TGT ACA AGG GTG GTA GCG 
GTG GT 

35 fusion to N-
terminal 
GFP 

Blue: overhangs for Seamless and FastCloning, purple: overhang for fusion of linker or 

tag, p: promoter, t: terminator. 

2.2.4.2 Plasmids 

For construction of deletion and complementation cassettes, the GeneArt Seamless 

Cloning and Assembly Kit (Thermo Fisher Scientific) and the FastCloning protocol (Li et 

al., 2011) were used. Therefore, 1-2 kb flanking sequences up- and downstream of the 

corresponding gene or region were amplified from genomic V. longisporum Vl43 wild 

type DNA with 15-16 bp homologous overhangs to the desired neighboring fragments. 

The PCR products were purified with NucleoSpin Gel and PCR Clean-up Kit (Macherey-

Nagel) and used for transformation of E. coli. All plasmids were verified by Sanger 

sequencing. 

For construction of Verticillium strains, the nourseothricin resistance marker (NATR) and 

the hygromycin B resistance marker (HYGR) were used for selection of transformants. 

Both resistance markers are flanked by the A. nidulans glyceraldehyde-3-phosphate 

dehydrogenase gpdA (AN8041; A. nidulans FGSC A4) promoter (Punt et al., 1988; 

David et al., 2008) and the tryptophan biosynthesis gene trpC (AN0648; A. nidulans 

FGSC A4) terminator for constitutive heterologous gene expression and are named 

NATR and HYGR marker cassettes in the following. The same promoter and terminator 

were used for ectopic overexpression of GFP in Verticillium strains. 

Plasmids constructed and used in this study are listed in Table 4. 
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Table 4: Plasmids constructed and used in this study. 

Plasmid Description Reference 

pGreen2 pgpdA:HYGR:trpCt ; pgpdA:GFP:trpCt; KANR,  
left and right border for ATMT 

(Tran et al., 2014) 

pJet1.2 Cloning vector with AMPR Thermo Fisher 
Scientific 

pPK2 Cloning vector with KANR and HYGR,  
left and right border for ATMT 

(Covert et al., 2001)  

pME4564 Cloning vector with KANR and HYGR,  
left and right border for ATMT 

personal 
communication Van 
Tuan Tran, University 
of Goettingen 

pME4815 Cloning vector with KANR and NATR,  
left and right border for ATMT  
(pgpdA:NATR:trpCt  in pME4564)  

(Balnojan, 2016, MT, 
University of 
Goettingen) 

pME4816 pVl43-LSI:pgpdA:NATR:trpCt:LSIt in pME4564 This study 

pME4817 pVl43-LSII:pgpdA:NATR:trpCt:LSIIt in pME4564 This study 

pME4818 pVl43-LS::pgpdA:HYGR:trpCt:LSt in pPK2  This study 

pME4819 pgpdA:GFP:trpCt in pME4815 This study 

pME4820 pHAM5:pgpdA:NATR:trpCt: HAM5t in pME4564 This study 

pME4821 pMEK2 in pPK2 This study 

pME4822 pMEK2:pgpdA:HYGR:trpCt:MEK2t in pPK2 This study 

pME4824 VMK1t in pPK2 This study 

pME4825 pVMK1:pgpdA:HYGR:trpCt:VMK1t in pPK2 This study 

pME4826 pMEK2:MEK2:MEK2t in pME4815 This study 

pME4827 pVMK1:VMK1:VMK1t in pME4815 This study 

pME4828 pHAM5:HAM5:HAM5t:pgpdA:HYGR:trpCt in pPK2 This study 

pME4829 pVdJR2-LS:pgpdA:NATR:trpCt: LSt in pME4564 This study 

pME4830 pHAC1:PgpdA:HYGR:trpCt:HAC1t in pPK2 This study 

pME4831 pHAC1:HAC1:HAC1t in pME4815 This study 

pME4832 HAC1u:HA in pJet1.2 This study 

pME4833 HAC1i:HA in pJet1.2 This study 

pME4834 pHAC1:HAC1i:HAC1t in pME4564 This study 

pME4835 pHAC1:HAC1u:HAC1t in pME4564 This study 

pME4836 pODE1:pgpdA:NATR:trpCt:ODE1t in pME4564 This study 

pME4837 ODE1t in pPK2 This study 

pME4838 pODE1:ODE1:GFP:pgpdA:HYGR:trpCt:ODE1t in 
pME4837 

This study 

pME4839 pODE1:GFP:ODE1:pgpdA:HYGR:trpCt:ODE1t in 
pME4837 

This study 

AMPR; ampicillin resistance marker, ATMT: Agrobacterium tumefaciens-mediated 
transformation, HYGR: hygromycin B resistance marker, KANR: kanamycin resistance 
marker, NATR: nourseothricin resistance marker, p: promoter, t: terminator, MT: Master 
thesis. 
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2.2.4.3 Plasmid and strain construction of V. longisporum strains 

Plasmid and strain construction of Vl43 LSI deletion 

For construction of the LSI (∆vl43ass51scaf493:522667-534160) deletion cassette, the 

2005 bp upstream flanking region was amplified with primers JST1/JST2 and a 1023 bp 

downstream flanking region with primers JST3/JST4 from fungal wild type DNA. The 

2194 bp NATR marker cassette was amplified from pME4815 with primers ML8/ML9. The 

fragments were ligated to the backbone pME4564 which was PCR amplified using 

primers ML1/ML2, resulting in plasmid pME4816 used for wild type transformation. 

Correct replacement of the LSI region by the NATR marker cassette was confirmed by 

Southern hybridization using the 5´ flanking region amplified with JST1/JST2 as probe 

and restriction with SspI (Figure S1). Vl43 ∆LSI deletion transformants were conserved 

as VGB201 and VGB233. 

Plasmid and strain construction of Vl43 LSII deletion 

For construction of the LSII (∆vl43ass51scaf493:534161-542607) deletion cassette, the 

1041 bp upstream flanking region was amplified with primers JST5/JST6 and the 

2016 bp downstream flanking region with primers JST7/JST8 from fungal wild type DNA. 

The NATR marker cassette and the used backbone were amplified as described for the 

Vl43 LSI deletion strain and ligated, resulting in plasmid pME4817 used for wild type 

transformation. Correct replacement of the LSII region by the NATR marker cassette was 

confirmed by Southern hybridization using the 3´-flanking region amplified with 

JST7/JST8 as probe and restriction with NheI (Figure S1). Vl43 ∆LSII deletion 

transformants were conserved as VGB193 and VGB214. 

Plasmid and strain construction of Vl43 LS deletion 

For construction of the LS (∆vl43ass51scaf493:522667-542607) deletion cassette, the 

2005 bp upstream flanking region of the Vl43LS20kb region was amplified with primers 

JST1/JST2 and the 2016 bp downstream flanking region was amplified with primers 

JST7/JST8 from fungal wild type DNA. The HYGR marker cassette was amplified from 

pPK2 with primers RO3/RO4. The fragments were ligated to the plasmid pME4564, 

which was PCR-amplified using the primers ML1/ML2, resulting in plasmid pME4818 

used for Vl43 ∆LSI transformation. Correct replacement of the previously introduced 

NATR marker cassette and the LSII region by the HYGR marker cassette was confirmed 

by Southern hybridization using the 5´- and 3´-flanking region as probes amplified with 

JST1/JST2 (5´) and JST7/JST8 (3´) and restriction with SspI (5´) and NheI (3´; Figure 

S1). The resulting LS deletion transformant was conserved as VGB232. 
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2.2.4.4 Plasmid and strain construction of V. dahliae strains 

Plasmid and strain construction of the V. dahliae LS deletion 

For construction of the V. dahliae LS deletion cassette, 1997 bp up- and 2106 bp 

downstream of the Vl43LS20kb homologous region were amplified from V. dahliae JR2 

genomic DNA using primers JST210/JST2 (5´) and JST7/JST8 (3´). The nourseothricin 

resistance marker cassette was amplified from pME4815 with primers ML8/ML9 and 

ligated into pME4564 cut with the restriction enzymes EcoRV and StuI. The resulting 

plasmid pME4829 was used for V. dahliae JR2 transformation. Correct replacement of 

the Vl43LS20kb homologous region by the NATR marker cassette was confirmed by 

Southern hybridization using the flanking regions amplified with JST210/JST2 (5´) as 

probes and JST7/JST8 (3´) and restriction with MluI (5´, not shown) or BglI (3´; Figure 

S3). The resulting V. dahliae JR2 LS deletion transformants were conserved as VGB383 

and VGB393. 

Plasmid and strain construction of the HAM5 single and double deletion with 

VMK1 

For construction of the HAM5 (VDAG_JR2_Chr4g07170a) deletion cassette, the 1500 bp 

flanking region 333 bp upstream of the open reading frame (ORF) was amplified with 

primers JST110/JST111 and the 1000 bp downstream flanking region was amplified with 

primers JST112/JST113 from wild type fungal DNA. The 2194 bp NATR marker cassette 

was amplified with ML8/ML9 from pME4815. The fragments were ligated into the 

6728 bp backbone pME4564 amplified with primers ML1/ML2. The resulting plasmid 

pME4820 was used for wild type and ∆VMK1 (VGB335) transformation. 5´-and 3´-

flanking regions of HAM5 were amplified using primers JST110/JST111 (5´) and 

JST112/JST113 (3´), respectively and labeled as probes for Southern hybridization. 

Restriction enzymes XhoI (5´, not shown) and SacI (3´) were used to cut genomic DNA 

(Figure S5). The resulting HAM5 single deletion transformants were conserved as 

VGB279 and VGB280, the HAM5 and VMK1 double deletion transformant was 

conserved as VGB417.  

Plasmid and strain construction of the ectopic HAM5 complementation 

For construction of the ectopic HAM5 complementation cassette, a 7265 bp sequence 

including 1359 bp 5´-flanking region, 4906 bp HAM5 ORF, and 1000 bp 3´-flanking 

region was amplified using JST245/JST246 from fungal genomic DNA. The PCR product 

was ligated into pPK2 harboring the HYGR marker cassette cut with the restriction 

enzyme EcoRV. The resulting plasmid was named pME4828 and used for ∆HAM5 

transformation. Flanking regions of HAM5 were amplified using primers JST110/JST111 

(5´) and JST112/JST113 (3´) and labeled as probes for Southern hybridization. 
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Restriction enzymes PvuII (5´, not shown) and SacI (3´) were used to cut genomic DNA 

(Figure S5). The resulting HAM5-C complementation transformant was conserved as 

VGB415. 

Plasmid and strain construction of the VMK1 deletion 

For construction of the VMK1 (VDAG_JR2_Chr2g01260a) deletion cassette, the 898 bp 

3´-flanking region was amplified with primers JS-V21/JS-V22 from fungal wild type DNA 

and ligated to the 10739 bp pPK2 backbone with HYGR marker cassette amplified with 

JS-V23/JS-V24, resulting in pME4824. The 1472 bp 5´-flanking region was amplified with 

primers JST77a/JST76b from fungal wild type DNA and cloned into pME4824, amplified 

with primers ML1/JS-V23, resulting in pME4825 used for wild type transformation. 

Flanking regions of VMK1 were amplified using primers JST77a/JST76b (5´) and 

JS-V21/JS-V22 (3´) and labeled as probes for Southern hybridization. Restriction 

enzymes XhoI (5´, not shown) or BglI (3´) were used to cut genomic DNA (Figure S6). 

The resulting VMK1 deletion transformants were conserved as VGB335 and VGB336. 

Plasmid and strain construction of the ectopic VMK1 complementation 

For construction of the ectopic VMK1 complementation cassette, a 3661 bp sequence 

including 1473 bp 5´-flanking region, 1260 bp VMK1 ORF, and 928 bp 3´-flanking region, 

was amplified from fungal wild type DNA using JST243/JST244. The PCR product was 

ligated to pME4815 harboring a NATR marker cassette cut with the restriction enzyme 

EcoRV, resulting in the plasmid pME4827 used for ∆VMK1 transformation. Flanking 

regions of VMK1 were amplified using primers JST77a/JST76b (5´) and JS-V21/JS-V22 

(3´) and labeled as probes for Southern hybridization. The restriction enzymes VspI (5´, 

not shown) or BglI (3´) were used to cut genomic DNA (Figure S6). The resulting 

VMK1-C complementation transformant was conserved as VGB413. 

Plasmid and strain construction of the MEK2 single and double deletion with 

HAM5 

For construction of the MEK2 (VDAG_JR2_Chr1g13070a) deletion cassette the 1500 bp 

5´-flanking region was amplified with primers JS-V5/JS-V6 from fungal wild type DNA 

and ligated to the 10676 bp pPK2 backbone with HYGR marker cassette amplified with 

JS-V7/JS-V8, resulting in pME4821.  

The 1500 bp 3´-flanking region 385 bp downstream of the ORF was amplified with 

primers JS-V9/JS-V10 from fungal wild type DNA and ligated to pME4821 amplified with 

primers JS-V11/JS-V12, resulting in pME4822 used for wild type and ∆HAM5 (VGB279) 

transformation. Flanking regions of MEK2 were amplified using primers JS-V5/JS-V6 (5´) 

and JS-V9/JS-V10 (3´) and labeled as probes for Southern hybridization. The restriction 

enzymes HindIII (5´, not shown) or NruI (3´) were used to cut genomic DNA (Figure S7). 
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The resulting MEK2 single deletion transformants were conserved as VGB337 and 

VGB338, the MEK2 and HAM5 double deletion transformant was conserved as VGB346. 

Plasmid and strain construction of the ectopic MEK2 complementation 

For construction of the ectopic MEK2 complementation cassette, a 5176 bp sequence 

including 1500 bp 5´-flanking region, 1756 bp MEK2 ORF, and 1885 bp 3´-flanking 

region was amplified from fungal wild type DNA using JST212/JST213. The PCR product 

was ligated to pME4815 harboring a NATR marker cassette cut with the restriction 

enzyme EcoRV, resulting in the plasmid pME4826 used for ∆MEK2 transformation. 

Flanking regions of MEK2 were amplified using primers JS-V5/JS-V6 (5´) and JS-

V9/JS-V10 (3´) and labeled as probes for Southern hybridization. The restriction 

enzymes HindIII (5´, not shown) or NruI (3´; Figure S7) were used to cut genomic DNA. 

The resulting MEK2-C complementation transformant was conserved as VGB389. 

Plasmid and strain construction of the HAC1 deletion 

For construction of the HAC1 (VDAG_JR2_Chr2g09780a) deletion cassette, a 1500 bp 

flanking region 218 bp upstream from the ORF was amplified with JST186/JST187 and a 

1445 bp 3´-flanking region was amplified using JST188/JST189 from fungal wild type 

DNA. The 3942 bp HYGR marker cassette was amplified from pPK2 with primers 

ML8/RO3. The fragments were ligated to pME4564 cut with restriction enzymes EcoRV 

and StuI, resulting in pME4830 used for wild type transformation. 1500 bp up- and 

300 bp downstream flanking regions of HAC1 were amplified using primers 

JST186/JST187 (5´) and JST272/JST273 (3´) and labeled as probes for Southern 

hybridization. Restriction enzyme SalI (5´, not shown; 3´(Figure S8)) was used to cut 

genomic DNA. The resulting HAC1 deletion transformants were conserved as VGB371 

and VGB372. 

Plasmid and strain construction of the ectopic HAC1 complementation 

For construction of the ectopic HAC1 complementation cassette, a 3636 bp insert 

containing 1702 bp 5´-flanking, 1634 bp HAC1 gene, and 300 bp 3´-flanking region was 

amplified with primers JST216/JST211 and cloned into pME4815 cut with the restriction 

enzyme EcoRV, resulting in plasmid pME4831 used for transformation of the ∆HAC1 

strain. For Southern hybridization (Figure S8) the same restriction enzymes and probes 

were used as for verification of the HAC1 deletion strain. The resulting HAC1-C 

complementation transformant was conserved as VGB382. 

Plasmid and strain construction of the ectopic HAC1u-HA complementation 

For construction of a HAC1u-HA complementation construct the uninduced mRNA splice 

variant of HAC1 without stop codon was amplified with primers JST171/JST172 from 
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complementary DNA (cDNA) isolated from wild type cultures incubated in SXM for four 

days. The C-terminal HA-tag was fused to HAC1u via amplification with a 48 bp HA 

sequence as overhang using JST171/JST267. HAC1u-HA was ligated to the cloning 

vector pJet1.2, resulting in pME4832. 

The 1400 bp 5´-flanking region was amplified with primers JST269/JST270 and a 300 bp 

3´-flanking region was amplified with primers JST272/JST273 from fungal wild type DNA. 

The 1626 bp HAC1u-HA sequence was amplified from pME4832 with JST171/JST268. 

The fragments were ligated to pME4815 cut with the restriction enzyme EcoRV, resulting 

in pME4834 used for transformation of the ∆HAC1 strain. For Southern hybridization the 

same probes were used as for verification of the HAC1 deletion strain. The restriction 

enzymes PvuII (5´, not shown) and SalI (3´; Figure S8) were used to cut genomic DNA. 

The resulting HAC1u-HA transformants were conserved as VGB439 and VGB440. 

Plasmid and strain construction of the ectopic HAC1i-HA complementation 

For construction of a HAC1i-HA complementation construct, the induced splice variant of 

HAC1 without stop codon was amplified from cDNA isolated from wild type cultures 

incubated in SXM for four days with subsequent supplementation with 3 mM dithiothreitol 

(DTT) for three hours using primers JST171/JST174. The C-terminal HA-tag was fused 

to HAC1i via amplification with a 48 bp HA sequence as overhang using JST171/JST266. 

HAC1i-HA was ligated to the cloning vector pJet1.2, resulting in pME4833 used for 

transformation of the ∆HAC1 strain. The 1400 bp 5´-flanking region was amplified with 

primers JST269/JST270 and a 607 bp 3´-flanking region was amplified with primers 

JST271/JST272 from fungal wild type DNA. The 1299 bp HAC1i-HA sequence was 

amplified from pME4833 with JST171/JST268. The fragments were ligated to pME4815 

cut with the restriction enzyme EcoRV, resulting in pME4835 used for transformation of 

the ∆HAC1 strain. For Southern hybridization the same probes were used as for 

verification of the HAC1 deletion strain. The restriction enzymes PvuII (5´, not shown) 

and SalI (3´; Figure S8) were used to cut genomic DNA. The resulting HAC1i-HA 

transformants were conserved as VGB437 and VGB438. 

Plasmid and strain construction of the ectopic GFP overexpression strains JR2 

OE-GFP and ∆HAC1 OE-GFP 

For construction of the GFP overexpression vector with NATR resistance marker 

cassette, a 2378 bp fragment containing GFP under control of the gpdA promoter and 

trpC terminator was amplified from pGreen2 with primers JST184/JST185 and ligated to 

pME4815 amplified with primers ML1/ML9, resulting in pME4819 used for wild type and 

∆HAC1 strain transformation.  
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The resulting JR2 OE-GFP transformant was confirmed by fluorescence microscopy and 

phenotypic comparison to wild type and conserved as VGB392.  

The resulting ∆HAC1 OE-GFP transformant was confirmed by fluorescence microscopy, 

phenotypic comparison to the ∆HAC1 strain and Southern hybridization. The 300 bp 

downstream flanking region of HAC1 was amplified using primers JST272/JST273 and 

labeled as probe for Southern hybridization. The restriction enzyme SalI (3´; Figure S8) 

was used to cut genomic DNA. The resulting ∆HAC1 OE-GFP transformant was 

conserved as VGB380. 

Plasmid and strain construction of the ODE1 deletion 

For construction of the ODE1 (VDAG_JR2_Chr1g29610a) deletion cassette, the 1000 bp 

5´- and 1522 bp 3´-flanking regions were amplified from fungal wild type DNA with 

primers JST127/JST128 (5´) or JST129/JST130 (3´). The 2194 bp NATR marker cassette 

was amplified with ML8/ML9 from pME4815 and ligated to the 6728 bp pME4564 

backbone amplified with JST137/JST138, resulting in pME4836 used for wild type 

transformation. Amplified flanking regions of ODE1 were labeled as probes for Southern 

hybridization. The restriction enzymes BglI (5´, not shown) or ScaI (3´, Figure S9) were 

used to cut genomic DNA. The ∆ODE1 strains were conserved as VGB331 and 

VGB332. 

Plasmid and strain construction of endogenous GFP-tagged ODE1 

complementation 

For construction of the ODE1 complementation cassettes coding for either N- or C-

terminal GFP-tagged Ode1, the 1522 bp 3´-flanking region was amplified from fungal 

wild type DNA with primers JST129/JST130 and ligated to the 10744 bp pPK2 backbone 

amplified with JST138/JST177, resulting in plasmid pME4837. 

For construction of the endogenous ODE1-GFP complementation cassette, a 2501 bp 

PCR product containing the 1000 bp 5´-flanking region and 1501 bp ODE1 gene without 

stop codon was amplified from fungal wild type DNA with JST179/JST180. The 

sequence of 735 bp coding for C-terminal GFP with a 5 aa linker was amplified with 

primers SAB16/JST178 from pGreen2. Both inserts were ligated to pME4837 cut with 

the restriction enzyme EcoRV, resulting in plasmid pME4838 used for transformation of 

the ∆ODE1 strain. 

For construction of the endogenous GFP-ODE1 complementation cassette the 1000 bp 

5´-flanking region was amplified with JST180/JST181 and the 1504 bp ODE1 gene was 

amplified with JST182/JST183 from fungal wild type DNA. The 732 bp sequence coding 

for N-terminal GFP and a 5 aa linker was amplified with primers JST98/ZQY11 from 
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pGreen2. Inserts were ligated to pME4837 cut with the restriction enzyme EcoRV, 

resulting in plasmid pME4839 used for transformation of the ∆ODE1 strain. 

Amplified flanking regions of ODE1 were labeled as probes for Southern hybridization as 

described in for the plasmid and strain construction of the ODE1 deletion. The restriction 

enzymes AvaII (5´, not shown) or ScaI (3´, Figure S9) were used to cut genomic DNA.  

The expression of the fusion protein was confirmed by fluorescence microscopy and 

immunoblotting with a GFP-protein binding antibody. The strains were conserved as 

VGB358 and VGB359 (ODE1-GFP) and VGB360 and VGB361 (GFP-ODE1). 

2.3 Microbiological methods 

2.3.1 Transformation of Escherichia coli 

Chemically competent E. coli DH5α cells were transformed by the heat shock method in 

a modified protocol according to Hanahan et al., 1991. 200 µl competent E. coli cells 

were thawed on ice, mixed with the ligation mixture or plasmid solution, and incubated 

on ice for 30 min. A heat shock at 42 °C was induced for one minute. Afterwards, the 

E. coli cells were chilled on ice for two minutes. 800 μl SOC medium was added and the 

cells were incubated for 50 min at 37 °C under constant agitation. Positive transformants 

were selected on solid LB plates, supplemented with 100 µg/ml ampicillin or 100 µg/ml 

kanamycin. The plates were incubated at 37 °C overnight and the transformants were 

tested by colony PCR for plasmid uptake. 

2.3.2 Transformation of Agrobacterium tumefaciens 

A. tumefaciens cells were transformed with plasmid DNA as described in Bui 2017 

(Dissertation, University of Goettingen). The heat shock was performed for five minutes 

at 37 °C. 

2.3.3 Transformation of Verticillia 

Verticillia were transformed by A. tumefaciens-mediated transformation as described in 

Mullins et al., 2001. A. tumefaciens cultures were inoculated in 5 ml liquid LB medium 

supplemented with 100 µg/ml kanamycin and incubated overnight at 25 °C on a rotary 

shaker. 20 ml induction medium (IM) [1x MM salts (2.5x stock: 3.625 g/l KH2PO4, 

5.125 g/l K2HPO4, 0.375 g/l NaCl, 1.25 g/l MgSO4·7x H2O, 0.165 g/l CaCl2·2x H2O, 

6.2 mg/l FeSO4·7x H2O, 1.25 g/l (NH4)2SO4)], 400 ml/l, 10 mM glucose, 0.5% glycerol, 

40 mM MES monohydrate (Carl Roth GmbH&Co.KG) supplemented with 200 µM 

acetosyringone (AS) were inoculated with 0.5 ml to 1 ml of the overnight culture and 

incubated for four to five hours at 28 °C under constant agitation in a water bath. Equal 

amounts of A. tumefaciens liquid culture and Verticillium spore solutions with 
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1x106 spores/ml were mixed and 200 µl/plate of the mixture were distributed on IM solid 

medium (same as liquid IM except that it contains 5 mM glucose and 1.5% agar, 

supplementation of sterile MES and AS after autoclaving) covered with a sterile 

nitrocellulose filter (Ø = 85 mm, Sartorius, Goettingen, Germany). After three days of 

incubation at 25 °C, filters were transferred to solid PDM supplemented with respective 

antimycotica hygromycin B (50 μg/ml) and/or nourseothricin (72 μg/ml) and cefotaxime 

(300 μg/ml). Filters were removed after six to ten days and transformants were 

separated twice on solid PDM selection plates. 

2.3.4 Phenotypic analysis and stress tests 

For characterization of the ex planta phenotypes, Verticillium strains were analyzed by 

spot inoculation of 50 000 freshly harvested spores on different solid media, including 

SXM, PDM, Malt extract agar [30% malt extract (Carl Roth GmbH&Co.KG), 5% BD 

Bacto Peptone (BD Biosciences), 20% agar, pH 7.6], CDM [liquid CDM with 2% agar], 

CDM with alternative carbon sources [3% cellulose (Carboxymethylcellulose sodium salt, 

Sigma-Aldrich Chemie GmbH), 3% galactose, or 3% glucose] and incubated at 25 °C for 

9-14 days. For induction of oxidative stress, CDM was supplemented with 0.00075% 

H2O2 or 0.004% SDS. CDM supplemented with 0.5 M NaCl or 0.8 M Sorbitol was used 

for induction of osmotic stress. ER stress induction was achieved by CDM 

supplementation with 1 µg/ml tunicamycin. CDM supplementation with linoleic acid (LA, 

0.125 mg/ml) was used for induction of oxidative stress and for complementation of 

partial auxotrophy in ODE1 deletion strains. 

2.3.5 Growth quantification 

For growth quantification, 50 000 freshly harvested spores were spot inoculated on three 

30 ml plates per medium and transformant. Growth was quantified by measurement of 

two perpendicular diameters per colony at indicated growth conditions. The mean value 

of three colonies per transformant was considered as one biological replicate (n=1). 

Significances were calculated using the one-way Anova and Student´s t-test from Simple 

Interactive Statistical Analysis (SISA) online tool (http://www.quantitativeskills.com/sisa/ 

tableprocs/meanst.htm). 

2.3.6 Microsclerotia observation and quantification of melanization 

Microsclerotia formation was visualized by microscopy of colony cross sections with a 

binocular microscope (Olympus Deutschland GmbH) and microscopy of material scraped 

off with a scalpel from the colony center using an Axiolab light microscope (Zeiss). 

Calibration of pictures for magnification was done using the cellSens Dimension version 

1.4 software (Olympus GmbH). 
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For quantification of melanization, 50 000 freshly harvested spores were spot inoculated 

on three 30 ml CDM with cellulose medium plates per transformant. Pictures from 

colonies were taken nine days after spot inoculation from the top view after removal of 

aerial mycelium and the melanized area was measured from eight bit greyscale pictures 

using ImageJ software (Rasband, 1997). The means of the brightness factor were 

determined, set relative to wild type, and inverted. The mean value of three colonies per 

transformant was considered as one biological replicate (n=1). Significances were 

calculated using the one-way Anova and Student´s t-test from SISA online tool.  

2.3.7 Conidiospore quantification 

For spore quantification, freshly harvested conidia were inoculated in liquid SXM to a 

concentration of 4 000 conidiospores/ml in triplicates and incubated for five days under 

constant agitation at 135 rpm in three independent experiments. Spores were harvested 

through Miracloth (Calbiochem Merck) and diluted in equal volumes of sterile water. 

Conidiospore concentrations were measured three times per spore solution using the 

Coulter Z2 Particle Count and Size Analyzer (Beckman Coulter, Krefeld, Germany) and 

the appropriate Coulter Isoton II Diluent. The mean number of spores from a single 

transformant per experiment represents n=1. Numbers of spores were normalized to the 

mean value of three independent experiments determined for wild type. The values 

determined for two independent transformants from one genotype were summed up in 

one bar. Error bars indicate the standard deviations. Significances were calculated using 

the one-way Anova and Student´s t-test from SISA online tool. 

2.3.8 Localization assay 

Localization of Ode1 N- or C-terminally tagged to GFP was examined by fluorescence 

microscopy. 300 µl liquid PDM was inoculated with ~50 000-100 000 freshly harvested 

spores per well in an 8 well microscopy chamber (Ibidi) and incubated at 25 °C for 12-

20 hours. Hyphal morphology and subcellular localization were observed with a Plan-

Neofluar 100x/1.4 oil objective (Zeiss) with 300 ms exposure time for GFP signals and 

800 ms exposure time for RFP signals. Vacuoles were visualized by fluorescence 

microscopy after staining with 0.3 µl FM4-64 Dye (Thermo Fisher Scientific) for one hour 

in the dark.  

2.3.9 Plant infection assays 

2.3.9.1 Brassica napus infection assay with V. longisporum 

B. napus plants were used as host for infection assays with V. longisporum strains. Per 

experiment 15 seven-day-old seedlings of oilseed rape were tested by root dipping into a 
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solution of 1.5x106 conidiospores/ml and the mock control plants were treated with sterile 

demineralized water for 40 min under constant agitation at ~30 rpm. The seedlings were 

transferred to 70x70x80 mm planting pots (Soparco GmbH) containing a sand:soil (1:1) 

mixture (Dorsilit, Archut GmbH&Co.KG). The soil was inoculated with either 2.25x106 

spores or 1.5 ml sterile water for mock plants per pot. The plants were allowed to grow in 

a climate chamber BrightBoy GroBank (CLF PlantClimatics) at long day conditions with 

16 hours of light (fluorescence: 60, GroLEDs: 100, illumination: 95 μmol) at 25 °C and 

eight hours of darkness at 22 °C. The disease symptoms were scored after 35 days 

according to the disease rating criteria. The numbers of tested plants, transformants, and 

independent experiments are indicated. 

2.3.9.2 Solanum lycopersicum infection assay with V. dahliae 

S. lycopersicum (moneymaker, B17422) plants were used as host for plant infection 

assays with V. dahliae strains. Per experiment 15 ten-day-old seedlings of tomato were 

tested by root dipping into a solution of 1x107 conidiospores/ml or 3 ml sterile water for 

the mock control plants for 40 min under constant agitation at ~30 rpm. The seedlings 

were transferred to 70x70x80 mm planting pots (Soparco) containing a sand:soil (1:1) 

mixture (Dorsilit, Archut). The soil was inoculated with 3x107 V. dahliae spores or sterile 

water for mock plants per pot. The plants were allowed to grow in a climate chamber at 

long day conditions with 16 hours of light (fluorescence: 60, GroLEDs: 100, illumination: 

95 μmol) at 25 °C and eight hours of darkness at 22 °C. The disease symptoms were 

scored after 21 days according to the disease rating criteria. The numbers of tested 

plants, transformants and independent experiments are indicated. 

2.3.9.3 Disease rating criteria 

Disease symptoms induced in B. napus and S. lycopersicum infection assays with 

V. longisporum and V. dahliae were scored according to the following disease rating 

criteria: The fresh weight excluding the roots, the length of the longest leaf, and the 

height of the vegetation point per plant were determined and transformed into a score 

ranging from 1 to 5 relative to the values determined for the uninfected mock plants 

(rapeseed plants: 100-80% (mock) = 1, 79-60% (mock) = 2, 59-40% (mock) = 3, < 40% 

(mock) = 4, dead plant = 5; tomato plants: 100-70% (mock) = 1, 69-60% (mock) = 2, 59-

40% (mock) = 3, < 40% (mock) = 4, dead plant = 5). Furthermore, a leave symptom 

index per plant was calculated (leave symptoms score = [(number of healthy leaves x 1) 

+ (number of leaves with weak symptoms x 2) + (number of leaves with strong symptoms 

x 3) + (number of dead leaves x 4)] / total number of leaves) for rapeseed plants. The 

disease score per plant was calculated by the mean of the scores for each parameter 
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[height, length of the longest leaf, weight, leave symptom index (for rapeseed plants 

only)] ranging from 1 to 5 (1 = healthy, 2 = weak symptoms, 3 = strong symptoms, 4 = 

very strong symptoms, 5 = dead plant). The number of plants categorized into the 

disease scores relative to the total number of tested plants from all experiments was 

visualized in a stack diagram. One bar represents all tested plants from independent 

experiments inoculated with a single or two independent transformants of the same 

genotype as indicated. 

For tomato plants discoloration of the hypocotyl was examined by observation of cross 

sections with a binocular microscope (Olympus Deutschland GmbH). 

For rapeseed plants inoculated with V. longisporum strains, statistical analysis was 

performed to calculate significant differences regarding the number of dead plants. One-

way Anova and Student´s t-test from SISA online tool were used for calculation of 

p-values. 

2.3.9.4 Stem assay 

To test for fungal outgrowth from plants inoculated with fungal spores or water control, 

stems were harvested after 21 days for tomato plants or 35 days for rapeseed plants. 

The stems were surface sterilized by washing with 70% ethanol for eight minutes, 

followed by 6% sodium hypochlorite solution for eight minutes and subsequent washing 

with distilled sterile water, twice. The stem ends were removed and slices of the middle 

part were placed on PDM plates supplemented with chloramphenicol (100 µg/ml). Plates 

were incubated at 25 °C for seven days and fungal growth was documented.  

Fungal outgrowth from V. dahliae ∆VMK1, ∆MEK2, ∆HAM5∆VMK1 and ∆HAM5∆MEK2 

strains was confirmed by control PCR reactions using genomic DNA and primers 

AO144/JST288 (∆VMK1, ∆HAM5∆VMK1) resulting in a 3044 bp PCR product and 

AO144/JST289 (∆MEK2, ∆HAM5∆MEK2) resulting in a 3013 bp PCR product. AO144 

targets the gpdA promoter in the hygromycin resistance marker cassette, JST288 binds 

156 bp upstream of the 1473 bp 5´-flanking region of VMK1 used for homologous 

recombination, and JST289 binds 89 bp upstream of the 1500 bp 5´-flanking region of 

MEK2 used for homologous recombination. 

2.3.9.5 Arabidopsis thaliana root colonization assay 

Analysis of root colonization capabilities of Verticillium strains was performed with 

A. thaliana (Col-0) plants. The root colonization assay was modified from Tran et al. 

2014. Seeds were surface sterilized for five minutes in a solution containing 70% EtOH 

and 0.05% Tween80 and dried at 35 °C for 20 min. The sterilized seeds were placed on 

Murashige and Skoog (MS; Murashige & Skoog, 1962) plates [0.22% MS + vitamin 
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(Duchefa, Haarlem, Netherlands), 0.05% MES monohydrate (Carl Roth GmbH&Co.KG), 

1% sucrose and 1.5% plant agar (Duchefa), pH 5.7], incubated at 4 °C overnight and 

transferred to the climate chamber for incubation at long day conditions with 16 hours of 

light (fluorescence: 60, GroLEDs: 100, illumination: 95 μmol) at 25 °C and eight hours of 

darkness at 22 °C. After 21 days, plants were transferred to 1% water agarose. One day 

later, roots were inoculated in fresh conidial suspensions (1x105 spores/ml) for 35 min 

and transferred back to 1% water agarose. Two thirds of the plate were covered with 

aluminum foil to shade the roots. Afterwards, plants were incubated in a plant chamber 

at long day conditions for the indicated time. 

For microscopy, roots were cut and incubated for five minutes in the dark in a staining 

solution [0.0025% propidium iodide and 0.005% silwet]. The roots were transferred to an 

object slide with 150 µl H2O and 50 µl staining solution. Cover slips were fixed with nail 

polish. Fungal root colonization was examined by fluorescence microscopy. Overview 

pictures [20x objective (Zeiss)] as well as close up pictures [63x objective (Zeiss)] were 

taken with 300 ms exposure time for GFP signals and 800 ms exposure time for RFP 

signals. Volume view pictures shown are maximum intensity projections of a Z-stack of 

microscope images. Per experiment, fungal strain, and time point root colonization was 

analyzed for two to three independent plants.  

2.4 Nucleic acid methods 

2.4.1 Nucleic acid purification 

Purification of PCR products and linearized DNA fragments 

PCR products used for cloning or as probes for Southern hybridization analysis, as well 

as fragments cut with restriction enzymes, were separated from side products on an 

agarose gel by gel electrophoresis, excised from the gel, and purified using the 

NucleoSpin Gel and PCR Clean-up Kit (Macherey-Nagel) according to the 

manufacturer´s instructions. 

Plasmid purification from E. coli 

For isolation of a plasmid of interest, E. coli strains were inoculated in 5 ml LB medium 

supplemented with the corresponding antibiotic and incubated at 37 °C on a rotary 

shaker overnight. Plasmid DNA was purified with the NucleoSpin Plasmid Kit from 

Macherey-Nagel according to the manufacturer´s protocol. 

Genomic DNA purification from Verticillium 

The extraction method was modified from Kolar et al., 1988. For the isolation of genomic 

DNA of Verticillium, mycelium was harvested from liquid PDM four to seven days post 
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inoculation by filtration through Miracloth filters (Calbiochem Merck). The mycelium was 

rinsed with 0.96% NaCl solution, dried, frozen, and ground to fine powder in liquid 

nitrogen. The powder was mixed with 800 μl of lysis buffer [50 mM tris pH 7.5, 50 mM 

EDTA pH 8, 3% SDS and 1% ß-mercaptoethanol]. The mixture was incubated at 65 °C 

for one hour and subsequently mixed with 800 μl phenol. Phases were separated by 

centrifugation for 20 min at 13000 rpm and 4 °C. The upper phase was transferred into a 

new tube, mixed with 500 μl chloroform for denaturation of proteins and centrifuged for 

ten minutes at 13000 rpm and 4 °C. The upper phase was transferred into a new tube, 

mixed with 400 μl isopropanol and centrifuged for two minutes at 13000 rpm for 

precipitation of genomic DNA. The precipitated genomic DNA was desalted by washing 

with 300 μl 70% ethanol and centrifugation for one minute at 13000 rpm. Ethanol was 

removed and the precipitated genomic DNA was dried with open lid at 65 °C for 20 min. 

The sediment was resuspended in 50-100 μl deionized H2O and RNA was cut by RNase 

A (200 µg/ml) at 65 °C for 30 min. Quality and concentration of genomic DNA were 

tested by agarose gel electrophoresis. 

RNA purification from Verticillium 

RNA was purified from fungal mycelium harvested at indicated time points from indicated 

growth conditions using the Direct-zol RNA MiniPrep Kit from Zymo Research according 

to the manufacturer´s instructions. Mycelium was rinsed with 0.96% NaCl solution, dried, 

frozen, and ground to fine powder in liquid nitrogen. Approximately 1 ml of the powder 

was transferred to precooled 15 ml Falcon tubes, mixed with 1 ml TRIzol (Ambion and 

life technologies, Carlsbad, CA, USA), and frozen in liquid nitrogen.  

DNase I was used to cut remaining DNA on columns according to the manufacturer´s 

protocol. Purified RNA was eluted in prewarmed DNase/RNase free water. Quality and 

concentration of RNA were defined by determination of the absorption rations at 260 nm/ 

280 nm (~1.8) and 260 nm/ 230 nm (~2.0-2.2) for a 1:10 dilution using the Nanodrop ND-

1000 spectrophotometer (PeqLab Biotechnology GmbH), and by testing appearance of 

distinct bands for ribosomal RNAs at ~2.3 kb (28S) and ~1.1 kb (18S) during agarose gel 

electrophoresis of 1 μl RNA. The extracted RNA was directly used for cDNA synthesis. 

2.4.2 Polymerase chain reaction 

Polymerase chain reaction (PCR) was used for amplification of DNA fragments for 

construction of plasmids, Southern probes, confirmation of the presence of genes in 

fungal genomic DNA, verification of gene annotations on cDNA level, and for colony 

PCRs (Bergkessel & Guthrie, 2013) to identify E. coli transformants harboring a desired 

plasmid after plasmid transformation. Phusion High-Fidelity DNA Polymerase, Taq DNA 

Polymerase (both: Thermo Fisher Scientific), and Q5 High Fidelity Polymerase (New 



Materials and Methods 

53 

England Biolabs) were used for amplification of DNA. PCR programs were designed 

according to the manufacturer’s instructions. Appropriate annealing temperatures of 

primer pairs were determined by the use of the online NEB Tm calculator v 1.9.12 (New 

England Biolabs, Ipswich, MA, USA). 

2.4.3 Agarose gel electrophoresis 

Agarose gel electrophoresis was used to separate DNA or RNA according to charge and 

size for analyses of quality and concentration of purified DNA or RNA. Furthermore, it 

was used to test specificity of PCR products, to separate genomic DNA fragments cut by 

restriction enzymes in Southern hybridization analyses, and to purify DNA fragments 

from unspecific products with subsequent gel extraction. Nucleic acid samples were 

mixed with 6x loading dye [0.25% Bromophenol blue, 0.25% Xylene cyanol FF, 40% 

sucrose, pH 8.0] and loaded on a 1% agarose gel [1% agarose, 1x TAE buffer (40 mM 

tris-acetate, 20 mM sodium acetate, 2 mM EDTA, pH 8.3), 0.001 mg/ml ethidium 

bromide] in 1x TAE buffer. The GeneRuler 1 kb DNA Ladder and GeneRuler 100 bp 

DNA Ladder (Thermo Fisher Scientific) were used as size standards. Separation was 

performed with an electric field of 90 V. In-gel visualization was achieved by exposure to 

UV light (λ = 254 nm) using a Gel iX20 Imager and the Intas GDS gel documentation 

software (Intas Science Imaging Instruments GmbH, Goettingen, Germany). 

2.4.4 Abscence confirmation of the Vl43LS20kb region in V. longisporum Vl32 

Seven genes predicted for the Vl43LS20kb region were amplified using Phusion High-

Fidelity DNA polymerase (Thermo Fisher Scientific) from genomic DNA (2.4.1) of Vl43 

and Vl32 with similar concentrations. Primers are listed in Table 3. A part of the histone 

H2a encoding genes homologous to V. dahliae JR2 (VDAG_JR2_Chr4g01430a) was 

amplified with primers SZ19/SZ20 resulting in 854 bp PCR products as positive controls. 

1112 bp LSG-1 (VDAG_JR2_Chr5g10950a homolog) was amplified with primers 

JST229/JST230, 687 bp LSG-2 (VDAG_JR2_Chr2g10300a homolog) with 

JST231/JST232, 2177 bp LSG-3 (VDAG_JR2_Chr2g10290a homolog) with 

JST231/JST232, 498 bp LSG-4 (VDAG_JR2_Chr2g10280a homolog) with 

JST233/JST234, 619 bp LSG-5 (VDAG_JR2_Chr2g10270a homolog) with 

JST207/JST208, 2448 bp LSG-6 (VDAG_JR2_Chr2g10260a homolog) with 

JST46/JST50, 527 bp LSG-7 (VDAG_JR2_Chr2g10250a homolog) with 

JST235/JST236. 

2.4.5 Primer walking 

Primer walking (Sverdlov & Azhikina, 2005) is a sequencing method used for sequencing 

of DNA fragments, which extend the sequencing capacities of a single read between 
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1-1.5 kb obtained from the Sanger sequencing method. The fragment of interest is 

divided into shorter fragments and sequenced from both ends with specific primers. 

According to the sequencing result the next sequencing primers are designed in several 

steps in order to sequence the complete fragment. The method was used to verify the 

assembly of the V. longisporum Vl43LS20kb region. The region was divided into four 

overlapping fragments, which were amplified using primers JST11/JST218 (5538 bp), 

JST217/JST208 (5900 bp), JST207/JST50 (5140 bp), and JST21/JST13 (5258 bp). The 

fragments were ligated to the pJet1.2 cloning vector (Thermo Fisher Scientific) for 

sequencing with the primers pJet1.2-forward/pJet1.2-reverse sequencing primers 

(Thermo Fisher Scientific), JST15, JST16, JST17, JST220, JST223, JST224, JST228, 

JST229, JST231, JST234, pKO2-40B-for, and JST238-242. 

2.4.6 Complementary DNA amplification 

RNA was extracted and quality of RNA was determined as described in chapter 2.4.1. 

Reverse transcription of 0.8 μg RNA to cDNA was performed using the Qiagen 

QuantiTect Reverse Transcription Kit (Hilden, Germany) according to the manufacturer´s 

protocol. Absence of genomic DNA in cDNA samples was tested using H2A as a control 

gene with the primers SZ19/SZ20. 

2.4.7 Quantitative reverse transcriptase PCR 

Transcription of HAC1 was analyzed by quantitative reverse transcriptase (qRT) PCR. 

RNA was extracted and quality of RNA was determined as described in chapter 2.4.1 

from 50 ml liquid SXM cultures inoculated with 1x106 spores. Reverse transcription was 

performed as described in chapter 2.4.6. The cDNA was diluted 1:5. Primers are listed in 

Table 3 and were designed with annealing temperatures of 60 °C using the Eurofins 

Genomics Oligo analysis tool. Histone H2A (VDAG_JR2_Chr4g01430a) and EIF2B 

(VDAG_JR2_Chr4g00410a) served as reference genes. Transcription levels were 

analyzed in triplicates using a CFX Connect Real Time System cycler (Biorad) with Mesa 

Green qPCR MasterMix Plus for SYBR Assay (Eurogentec) and cycling was 2:20 min at 

95 °C followed by 40 cycles of: 95 °C for 20 s, 60 °C for 22 s, and 72 °C for 22 s. 

Specificity of PCR products was tested with the subsequent melting curve analysis from 

65 °C to 95 °C with 5 s per 0.5 °C after 10 s at 95 °C. Primers JST290/JST291 (HAC1 

variants), SZ9/SZ10 (H2A), and SZ11/SZ12 (EIF2B) were used. Expression levels were 

quantified relative to the reference genes in ΔΔCT method (Livak & Schmittgen, 2001). A 

gene study of two independent experiments was performed using CFX Manager 

Software version 3.1 (Biorad). 
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2.4.8 Verification of intron-exon structures 

ORFs and intron-exon-structures of the tested genes were analyzed by PCR 

amplification of transcripts from cDNA. Amplification of the ORF from genomic DNA 

served as control. Phusion High-Fidelity DNA polymerase was used according to the 

manufacturer’s instructions.  

Due to the size of the 4662 bp spliced HAM5 transcript, it was amplified from wild type 

JR2 cDNA prepared from a four-day-old fungal liquid SXM culture in two overlapping 

fragments with JST53/JST58 (2476 bp) and JST90/JST45 (3227 bp).  

The 1068 bp VMK1 transcript was amplified from cDNA, which was prepared from 

mycelium obtained from plating of 1x106 conidiospores on solid SXM covered with 

nitrocellulose membrane and incubation for four days. The primers JST61/JST62 were 

used.  

The 1569 bp MEK2 transcript was amplified from cDNA (prepared from a four-day-old 

fungal liquid SXM culture) using primers JST226/JST292.  

The 1446 bp ODE1 transcript was amplified from cDNA (prepared from a six-day-old 

fungal liquid PDM culture incubated in the dark) using primers JST175/JST176. 

The cDNA used for amplification of HAC1 was isolated from wild type cultures grown in 

50 ml SXM (1x107 spores) and incubated at 25 °C under constant agitation for four days 

for the un-induced HAC1 mRNA variant and with subsequent supplementation with 

3 mM DTT for three hours for the induced HAC1 mRNA variant. The 1581 bp un-induced 

HAC1 mRNA sequence was amplified with primers JST171/JST172. The 1254 bp 

induced splice variant of HAC1 was amplified using primers JST171/JST174.  

PCR fragments were analyzed by agarose gel electrophoresis, excised from gel, and 

purified using the NucleoSpin Gel and PCR Clean-up Kit (Macherey-Nagel) according to 

the manufacturer´s instructions. Transcripts were fully sequenced. The ORF and splice 

sites given were confirmed for HAM5 (VDAG_JR2_Chr4g07170a), VMK1 

(VDAG_JR2_Chr2g01260a), MEK2 (VDAG_JR2_Chr1g13070a), and ODE1 

(VDAG_JR2_Chr1g29610a). The transcript variant given for HAC1 

(VDAG_JR2_Chr2g09780a) was confirmed as the uninduced variant HAC1u. A second 

splice variant of the HAC1 mRNA named HAC1i was identified (sequence given in Figure 

S10). 

2.4.9 Southern hybridization 

All Verticillium transformants constructed in this study were confirmed by Southern 

hybridization analysis (Southern, 1975). Genomic DNA was extracted (2.4.1), cut by 

appropriate restriction enzymes overnight, and separated by agarose gel 

electrophoresis. The gel was washed under constant agitation in three steps: for ten 
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minutes in Wash buffer 1 (0.25 M HCl), 25 min in Wash buffer 2 (0.5 M NaOH, 1.5 M 

NaCl) for denaturation, and 30 min in Wash buffer 3 (0.5 M tris, 1.5 M NaCl, pH 7.4) for 

neutralization. The genomic DNA fragments were transferred by dry blotting from the gel 

onto an Amersham Hybond-Nylon membrane (GE Healthcare). The membrane was 

dried at 70 °C for ten minutes and exposed to UV-light (λ = 254 nm) for three minutes per 

side of the membrane for cross-linking of the DNA fragments. For labeling with the probe 

and subsequent detection, the Amersham Gene Images AlkPhos Direct Labeling and 

Detection System (GE Healthcare) was used according to the manufacturer’s 

instructions.  

The probes were hybridized to DNA fragments on the membrane at 60 °C rotating 

overnight. The membrane was washed twice with prewarmed first washing buffer (2 M 

urea, 50 mM SDS, 50 mM Na3PO4, 150 mM NaCl, 1 mM MgCl2, 2% blocking reagent) for 

ten minutes at 60 °C rotating, and twice with the second washing buffer (1 M tris base, 

1 M NaCl, pH 10) for five minutes at room temperature under constant agitation. 

Detection of the labeled DNA bands was performed by CDP-Star Detection Reagent (GE 

Healthcare) application to the membrane, incubation for 5 min, and exposure of an 

Amersham Hyperfilm ECL (GE Healthcare). The film was developed using an Optimax 

(Protec GmbH&Co.KG) film processor. 

2.5 Protein methods 

2.5.1 Protein extraction 

For western hybridization, proteins were extracted from mycelium harvested from liquid 

cultures through Miracloth (Calbiochem Merck) and rinsed with 0.96% NaCl solution. 

Mycelium was dried, frozen, and ground to fine powder in liquid nitrogen using mortar 

and pestle. The powder was mixed with B* buffer (300 mM NaCl, 100 mM tris-HCl 

pH 7.5, 10% glycerol, 2 mM EDTA, 0.02% NP4O), supplemented with 2 mM DTT and 

10 μl/ml Protease inhibitor cocktail mix (Roche; stock solution: one tablet in 500 µl B* 

buffer). The mixture was centrifuged for 30 min at 13000 rpm at 4 °C. The supernatant 

was transferred to a new tube and used for further analysis or stored at -20 °C. 

2.5.2 Determination of protein concentration by Bradford assay 

The concentration of proteins was determined by the Bradford assay (Bradford, 1976). 

The absorbance of the protein sample mixed with Roti-Quant solution (Carl Roth 

GmbH&Co.KG) was measured with an Infinite M200 microplate reader operated with 

Magellan software (Tecan Trading AG). A bovine serum albumin (BSA; Carl Roth 

GmbH&Co.KG) dilution series was used as standard. 
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2.5.3 SDS-PAGE 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE; Smith, 1984) 

was used for separation of protein extracts according to the proteins´ molecular masses. 

The protein extract (2.5.1) was mixed with sample buffer [250 mM tris-HCl pH 6.8, 15% 

β-mercaptoethanol, 30% glycerol, 7% SDS, 0.3% Bromophenol blue] and boiled at 95 °C 

for five minutes. Prestained Protein Ladder (Thermo Fisher Scientific) was used as 

standard. Indicated amounts of the denaturized protein extracts were loaded on 12% 

acrylamide gels [Running gel: 3.3 ml H2O, 2.5 ml tris buffer pH 8.8 (stock: 1.5 M), 100 μl 

SDS (stock: 10%), 4 ml polyacrylamide (stock: 30%), 100 μl ammonium persulfate (APS; 

stock: 10%), 10 μl N,N,N′,N′-tetramethylethane-1,2-diamine (TEMED); stacking gel: 

650 µl polyacrylamide (stock: 30%), 1.25 ml gel buffer (3 M tris, pH 8.45, 0.3% SDS), 

3 ml H2O, 15 μl Coomassie Brilliant Blue, 60 μl APS (stock: 10%), 10 μl TEMED], placed 

in running buffer (25 mM tris-base, 250 mM glycine, 0.1% SDS) and run at 120-200 V in 

Mini-Protean Tetra Cell (Bio-Rad Laboratories GmbH) for separation of proteins.  

2.5.4 Immunoblot hybridization 

During immunoblot hybridization, proteins separated by SDS-PAGE (2.5.3) were blotted 

to a nitrocellulose membrane (Amersham Protran 0.45 μm, GE Healthcare Life 

Sciences) using a Mini Trans-Blot Cell (Bio-Rad Laboratories) filled with transfer buffer 

[25 mM tris-base, 192 mM glycerol, 0.02% SDS, 20% methanol]. Wet electroblotting was 

performed either at 35 V at room temperature overnight or for one hour at 100 V with 

cool packs. PonceauS (0.2% PonceauS, 3% TCA) staining was used for visualization of 

transferred proteins as a loading control. The membrane was washed in TBST buffer [tris 

buffered saline and Tween20: 50 mM tris, 150 mM NaCl, 0.05% Tween20] and blocking 

in TBST supplemented with 5% milk powder (Sucofin TSI GmbH&Co.KG, Zeven, 

Germany) for one hour at room temperature was performed to prevent unspecific binding 

of the antibody. Membranes were incubated in primary antibody α-GFP sc-9996 (1:250; 

Santa Cruz Biotechnology) or α-HA (1:2000; Sigma-Aldrich Chemie GmbH) in TBST 

buffer with 5% milk powder at 4 °C overnight. Membranes were washed in TBST buffer 

for ten minutes at room temperature under constant agitation three times. As secondary 

antibody α-mouse 115-035-003 (1:2000; Jackson Immuno Research) in TBST buffer with 

5% milk powder was applied to the membranes and incubated at room temperature for 

one to two hours. Membranes were washed in TBST buffer for ten minutes at room 

temperature under constant agitation three times. Detection of proteins was conducted 

via horseradish peroxidase (HRP) substrate luminol based chemiluminescence. Two 

detection solutions (solution 1: 2.5 mM luminol, 400 μM paracoumarat, 100 mM tris-HCl 

pH 8.5; solution 2: 100 mM tris-HCl pH 8.5, 5.4 mM H2O2) were applied to the membrane 
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and incubated for two minutes at constant agitation in the dark. Signals were detected 

with the Fusion SL chemiluminescence detector (Peqlab Biotechnology GmbH), 

operated with the corresponding software Fusion 15.18 (Vilber Lourmat), and Amersham 

Hyperfilm ECL film (GE Healthcare Life Sciences), which was developed by the use of 

the Optimax (Protec GmbH&Co.KG) film processor. 

2.6 Sequence analyses 

The online databases National Center for Biotechnology Information (NCBI; Geer et al., 

2010), VertiBase (http://biofung.gobics.de:1555/; coordinated by Prof. Dr. Gerhard H. 

Braus, University of Goettingen), and Ensembl Fungi (Kersey et al., 2018) were used for 

BLAST searches. Verticillium gene predictions, accession numbers, and sequences 

were obtained from Ensembl Fungi and VertiBase. Seqbuilder (DNASTAR, Madison, 

USA) software was used for plasmid and primer design, prediction of restriction sites of 

enzymes, translation of DNA, and cDNA sequences into amino acid sequences and for 

calculation of molecular weights of proteins. Appropriate annealing temperatures of 

primer pairs were determined by the use of the online NEB Tm calculator v 1.9.12 (New 

England Biolabs, Ipswich, USA) or the Eurofins Genomics Oligo analysis tool for qRT-

PCR primers. Sanger sequencing of plasmid DNA or PCR products was performed by 

the Microsynth Seqlab in Goettingen. Obtained sequences were analyzed using 

Lasergene (DNA STAR INC., Madison, WI, USA) software. The web server RNAfold 

(Zuker, 2003) was used for determination of secondary structures in qRT-PCR 

amplicons and mRNAs. Specificity of qRT-PCR primers was predicted by BLAST 

searches using Ensembl Fungi.  

Prediction of protein domains was obtained using the InterPro website 

(http://www.ebi.ac.uk/Tools/pfa/iprscan; Jones et al., 2014). The presence of localization 

signals was analyzed using the online databases cNLS mapper (http://nls-

mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi; Kosugi et al., 2009) and 

DeepLoc-1.0(Almagro Armenteros et al., 2017; http://www.cbs.dtu.dk/services/DeepLoc/i

ndex.php). Multiple alignment of protein sequences was performed with ClustalW 

(Thompson et al., 1994) or Muscle (Edgar, 2004) algorithms in MEGA6.0 software 

(Tamura et al., 2013). Protein sequence identity matrices were obtained from multiple 

sequence alignments using the pairwise sequence identity and similarity calculation 

(SIAS) tool (http://imed.med.ucm.es/Tools/sias.html). Phylogenetic analysis was 

performed using Maximum likelihood tree calculations with MEGA6.0 software. 

 

http://www.ebi.ac.uk/Tools/pfa/iprscan
http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi
http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi
http://imed.med.ucm.es/Tools/sias.html


Results 

59 

3 RESULTS 

3.1 The V. longisporum Vl43LS20kb region makes the pathogenic 

isolate Vl43 more tolerable for the plant and is absent in the 

asymptomatic isolate Vl32 

3.1.1 V. longisporum strains Vl43 and Vl32 are able to colonize rapeseed plants 

with different consequences for plant growth and development 

V. longisporum species from different lineages display differences in their pathotypes. 

Isolates from the lineage A1/D1 are the most pathogenic on rapeseed whereas isolates 

from the lineage A1/D3 are the least pathogenic, but also colonize rapeseed plants 

(Novakazi et al., 2015). Two isolates of these lineages, Vl43 (A1/D1) and Vl32 (A1/D3), 

were isolated from rapeseed fields in the same area in Germany (Zeise & von 

Tiedemann, 2002). The question about the genomic basis for the establishment of 

different pathotypes in related species was addressed, focusing on a Lineage Specific 

region of the pathogenic V. longisporum isolate Vl43, which is absent in the genome of 

the asymptomatic isolate Vl32.  

In initial experiments, the colonization behavior of the two V. longisporum isolates Vl43 

and Vl32 in rapeseed plants was compared by monitoring of induced disease symptoms 

and subsequent analysis of fungal outgrowth from infected tissue. One-week-old 

rapeseed plants were inoculated by root dipping into the same numbers of spores 

obtained from Vl43, Vl32, or into the water control (mock). After 35 days only Vl43 

induced visible disease symptoms in the plants, including decreased height and leave 

length as well as chlorosis and necrosis of the leaves and reduced weight (Figure 7A). 

About 27% of the plants died from fungal infection with strain Vl43, 30% displayed strong 

symptoms, 27% weak symptoms and 17% of the tested plants did not show any disease 

symptoms. Plants infected with strain Vl32 were unaffected and did not show any 

alterations compared to uninfected mock plants. 

Previous studies revealed that symptomatic and asymptomatic V. longisporum isolates 

show only minor lineage-specific phenotypic differences on specific media ex planta. No 

differences in early plant colonization on A. thaliana roots were observed regarding their 

growth on the root surface and formation of hyphopodia as invasion structures 

(unpublished data of Rebekka Harting from the University of Goettingen and Rabea 

Schlüter from the University of Greifswald).  

Re-isolation experiments from surface sterilized stem sections of rapeseed plants 

inoculated with either one of the two V. longisporum isolates were conducted to test if 

both strains are able to further colonize the plant and show differences in the colonization 
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behavior after initial root penetration. After seven days strong fungal outgrowth was 

visible from Vl43 infected stem sections and to a smaller extend also from plants treated 

with Vl32 spores (Figure 7B). 

Both V. longisporum isolates are able to colonize the vascular system of rapeseed 

plants, but only Vl43 induces plant disease, whereas rapeseed colonization by Vl32 is 

asymptomatic. 

 

 
Figure 7: V. longisporum strains Vl43 and Vl32 colonize B. napus plants either 
pathogenically or asymptomatically. (A) Seven-day-old B. napus seedlings were 
inoculated by root dipping into distilled water as control (mock) or the same number of 
spores (1.5x106 spores/ml) obtained from Vl43 and Vl32. Disease symptoms were scored 
after 35 days. Single representative B. napus plants (top) and overview pictures of 15 
plants per strain from a single experiment (bottom) 35 days post inoculation are shown. 
Parameters fresh weight, height of vegetation point, length of longest leaf, and symptom 
index of leaves were assessed in two independent experiments and transformed into 
disease scores per plant relative to control plants. The stack diagram shows the relative 
number of plants with certain disease scores. n = total number of evaluated plants. 
V. longisporum strain Vl43 induced visible disease symptoms in B. napus plants, whereas 
no disease symptoms can be observed in plants inoculated with Vl32 spores. (B) Fungal 
outgrowth from stem sections of representative plants treated with sterile water (mock), 
Vl43, or Vl32 spores. Stems were harvested 35 days post inoculation with fungal spores, 
surface sterilized, cut, and incubated on PDM supplemented with chloramphenicol for 
seven days at 25 °C. Both fungal strains could be re-isolated from surface sterilized 
infected stem sections on plate, however, to a smaller extend from plant material 
inoculated with Vl32 spores (indicated by red arrows). 
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3.1.2 The pathogenic V. longisporum Vl43 genome harbors the Vl43LS20kb 

region, which is absent in the asymptomatic colonizer Vl32 

In order to investigate on which genomic basis the different pathotypes of the two 

V. longisporum isolates rely, the genomes of the pathogen and the asymptomatic 

colonizer were sequenced (BioFung Consortium BMBF). It was found that only very few 

genes were specific for one of the two V. longisporum genomes. Optical mapping of both 

genomes revealed differences in the chromosome numbers with 16 for Vl32 and 15 for 

Vl43, correlating with alterations in the chromosome sizes. Genome alignments allowed 

to explain the differences in the karyotypes between the two V. longisporum isolates by 

massive syntenic rearrangements as previously observed in several species of the genus 

Verticillium (Shi-kunne & Faino, 2017). A correlation between genomic rearrangements 

and the evolution of LS regions was found in haploid Verticillia (Klosterman et al., 2011; 

de Jonge et al., 2013; Faino et al., 2016; Chen et al., 2018; Gibriel et al., 2019). 

Klosterman and coworkers reported on LS regions in the genome of V. dahliae VdLs.17 

that share no synteny with the genome of V. alfalfae VaMs.102, which were suggested to 

be involved in adaptation to different host niches (Klosterman et al., 2011). 

In order to address the question if LS genes are important for the pathotype of the 

V. longisporum isolate Vl43, a bioinformatic screen was used to identify regions present 

specifically in the genome of the pathogenic V. longisporum isolate Vl43, but are absent 

in the asymptomatic plant colonizer Vl32. Thereby, a region of approximately 20 kb in 

size was identified, which is absent in the genome of the asymptomatic A1/D3 isolate. 

This region is named Vl43LS20kb in the following. The same region could be identified in 

the genome of the pathogenic V. longisporum A1/D1 isolate Vl145c.  

V. longisporum species evolved by hybridization from two parental lineages with a 

V. dahliae strain, or at least a close relative to V. dahliae, as one of them (Karapapa et 

al., 1997; Collins et al., 2003; Clewes et al., 2008; Collado-Romero et al., 2010; 

Inderbitzin et al., 2011b; Tran et al., 2013). A homologous region to the Vl43LS20kb 

region could be identified in the genome of the V. dahliae strain JR2 (Figure 8), but not in 

the genome of V. alfalfae VaMs.102. 

Correct genome assembly of the V. longisporum Vl43LS20kb region was confirmed by 

PCR amplification and sequencing by primer walking for the entire region. The absence 

of this region in the Vl32 genome, proposed by the bioinformatic screen, was confirmed 

by PCR reactions targeting seven genes, named Lineage Specific region Gene (LSG) 1 

to 7, predicted for the Vl43LS20kb region according to the gene annotations for 

V. dahliae JR2 (Ensembl Fungi, de Jonge et al., 2012; Figure 8). PCR products for all 

seven LSGs and the histone encoding gene H2A as positive control were obtained using 

Vl43 genomic DNA as a template, whereas no specific PCR products were obtained from 

genomic DNA of Vl32 for the seven LSGs, but for the positive control (Figure 8A). 
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All predicted genes of this region were only identified in single copy in the V. longisporum 

Vl43 and Vl145c genomes by BLAST search of the nucleotide sequences. In contrast, 

the V. dahliae JR2 genome harbors two copies for LSG1 identified by BLAST search of 

the genomic sequence. One copy located in the Vl43LS20kb homologous region 

between VDAG_JR2_Chr2g10300a and VDAG_JR2_Chr2g10310a was not annotated. 

A second copy is located on chromosome five (VDAG_JR2_Chr5g10950a). 

 

Vl43 
genes 

Protein 
size/Mw 

Domains Localization Vd JR2 homolog/s 
(VDAG_JR2_) 

aa sequ. ID 

LSG1 173 aa/19 kDa - Cytosol Chr5g10950a, 
2nd between 
Chr2g10300a/ 
Chr2g10310a 

100% to both 
VdJR2 
copies 

LSG2 228 aa/25 kDa - Cytosol Chr2g10300a 100% 

LSG3 258 aa/29 kDa bHLH  
DNA binding 

Nucleus Chr2g10290a 99.2% 

LSG4 131 aa/15 kDa - Nucleus Chr2g10280a 100% 

LSG5 163 aa/18 kDa Zinc finger RING-
type, TM-helix  

Plasma 
membrane 

Chr2g10270a 94.7% 

LSG6 666 aa/74 kDa bZIP Nucleus Chr2g10260a 99.7% 

LSG7 119 aa/13 kDa - Nucleus Chr2g10250a 99.2% 
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Figure 8: The symptomatic V. longisporum strain Vl43 harbors a specific Vl43LS20kb 
region in its genome, which is absent in the asymptomatic isolate Vl32. (A) Lineage 
Specific region of V. longisporum Vl43. An LS region of approximately 20 kb in size, named 
Vl43LS20kb, is present in the genome of the pathogenic V. longisporum isolate Vl43, but 
absent from the genome of the asymptomatic rapeseed colonizer Vl32. A Vl43LS20kb 
homologous region was identified in the genome of V. dahliae JR2. Seven Lineage Specific 
region Genes (LSG1-7) were predicted for this region in V. dahliae (Ensembl Fungi). The 
presence of the V. longisporum Vl43LS20kb region in Vl43 was confirmed by PCR reactions, 
giving products for LSG1-7 and the histone H2a encoding gene as a positive control (+). No 
specific PCR products were obtained from genomic DNA of Vl32 for the genes predicted in 
the Vl43LS20kb region, but for the positive control. The Vl43LS20kb region was dissected 
into two parts LSI and LSII and Vl43 deletion strains lacking either LSI, LSII, or the total 
Vl43LS20kb region (Vl43 ∆LSI, ∆LSII, ∆LS) were constructed to analyze the role of this 
region in virulence of Vl43. (B) Characteristics of Vl43 LSG1-7 deduced proteins. The 
Vl43LS20kb region encodes homologs to LSG1-7 predicted in V. dahliae JR2 (Ensembl 
Fungi). Protein sequences of the deduced Vl43 proteins Lsg1-7 were proposed according to 
the Vl43 genomic sequences (VertiBase) and the V. dahliae JR2 transcripts (Ensembl Fungi). 
Protein domains were predicted by InterProScan. A basic helix-loop-helix (bHLH) DNA 
binding domain was proposed for Lsg3 (184-255 aa, IPR011598) as well as a Zinc finger 
RING-type domain (65-148 aa, IPR013083) and a transmembrane (TM) helix (15-37 aa, 
Phobius, TM-helix; 40-163 aa cytosolic; N-terminus non-cytosolic) for Lsg5. A basic-leucine 
zipper (bZIP) domain was predicted for Lsg6 (137-200 aa, PS50217, IPR004827). Protein 
localizations were predicted using cNLS mapper and DeepLoc-1.0 tools. The amino acid 
sequence identities (ID) of the Vl43 and V. dahliae JR2 proteins were determined by 
alignment of the amino acid sequences using NCBI tools and MEGA 6.0 software. Mw: 
molecular weight. 

 

For six of the seven genes in the Vl43LS20kb region, the deduced proteins are rather 

small with 119-258 amino acids (aa) in length (Figure 8B). Only LSG6 potentially 

encodes a larger protein with 666 aa and a molecular weight of 74 kDa. Domains were 

only predicted for three of the hypothetical proteins. Two of them contain specific 

transcription factor domains with a basic helix-loop-helix (bHLH) DNA binding domain for 

Lsg3 and a basic-leucine Zipper (bZIP) domain for Lsg6. For the potential transcription 

factors Lsg3 and Lsg6, nuclear localization was proposed by the cNLS mapper and 

DeepLoc-1.0 prediction tools. 

Lsg5 contains a Zinc finger RING-type domain and a transmembrane domain. Zinc finger 

RING-type domains are involved in protein-protein interactions and in mediating ubiquitin 

transfer to substrates or the Zinc finger RING-type domain protein itself (Joazeiro & 

Weissman, 2000). DeepLoc-1.0 proposed a localization of Lsg5 to plasma membranes 

with 54%. 

As for Lsg3 and Lsg6, nuclear localization was predicted for Lsg4, whereas Lsg1 and 

Lsg2 proteins were sorted to the cytosol (Figure 8B). For none of the hypothetical 

proteins secretion signals were identified. 

In summary, bioinformatic analyses identified a Vl43LS20kb region in the genome of the 

pathogenic V. longisporum isolate Vl43, which is absent in the asymptomatic strain Vl32. 

The presence of a homologous region in the haploid V. dahliae JR2 corroborates its 

origin in the parental lineage D1. The Vl43LS20kb region encodes six small proteins 
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without secretion signals and one larger protein, where two of them have the potential to 

function as transcription factors and one protein is potentially involved in ubiquitination. 

3.1.3 The Vl43LS20kb region reduces virulence in rapeseed plants 

Vl43 deletion strains were constructed to unravel whether the Vl43LS20kb region, which 

is present in the genome of the pathogenic V. longisporum isolate but absent in the 

asymptomatic isolate Vl32, contributes to the differences in pathotypes. 

The Vl43LS20kb region was dissected into a ~11.5 kb LSI region and a ~8.5 kb LSII 

region and Vl43 deletion strains lacking either LSI, LSII, or the total LS region were 

constructed (Figure 8A). Correct replacement of the regions against the respective 

marker cassettes was verified by Southern hybridization (Figure S1). The resulting 

strains Vl43ΔLSI, Vl43ΔLSII, and Vl43ΔLS displayed unaltered ex planta phenotypes in 

comparison to wild type 14 days after spot inoculation under different growth conditions, 

including simulated xylem medium, minimal medium with different carbon sources 

(sucrose or galactose), and minimal medium supplemented with different stress inducing 

agents as Sorbitol, SDS, or H2O2 (Figure S2). Small alterations in melanization of the 

colony centers between independent experiments were not significant. 

Infection studies were performed with Vl43 ΔLSI, ΔLSII, and ΔLS strains in comparison 

to the V. longisporum isolates Vl43, Vl32, or water control (mock) to determine the role of 

the Vl43LS20kb genomic region in virulence of Vl43. Rapeseed plants treated with 

spores obtained from the isolate Vl32 were indistinguishable from uninfected plants, 

whereas plants inoculated with Vl43 ΔLSI, ΔLSII, and ΔLS spores displayed more severe 

disease symptoms compared to plants treated with spores from the pathogenic wild type 

Vl43 after 35 days (Figure 9). Whereas 27% of the plants treated with the Vl43 wild type 

died from fungal infection, 70% dead plants were scored for Vl43 ΔLSI, 83% for Vl43 

ΔLSII, and 89% for Vl43 ΔLS (Figure 9A, B). Significant differences between plants 

inoculated with spores from Vl43 and the LSI, LSII, and LS deletion strains were 

determined for the numbers of dead plants (Figure 9C). 

Reversely, the region identified upon comparison of a pathogenic and an asymptomatic 

V. longisporum isolate does not promote induction of disease symptoms by the pathogen 

Vl43, but attenuates pathogenesis in the host-fungus interaction and makes the fungus 

more tolerable for rapeseed plants. 
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Figure 9: The Vl43LS20kb region absent in the asymptomatic V. longisporum isolate 
Vl32 attenuates disease symptom induction of Vl43 in B. napus. Seven-day-old 
B. napus seedlings were inoculated by root dipping into water as control (mock) or into the 
same numbers of spores obtained from Vl32 and Vl43 wild types, Vl43 ΔLSI, ΔLSII, or ΔLS. 
Disease symptoms were assessed after 35 days. Two independent transformants were 
tested for Vl43 ΔLSI (VGB201, VGB233) and ΔLSII (VGB193, VGB214), and a single 
transformant for ΔLS (VGB232) in three independent experiments. For plants treated with 
spores obtained from Vl32 no disease symptoms were observed. LSI, LSII and LS deletion 
strains display increased severity of disease symptoms in comparison to wild type Vl43. (A) 
Overview pictures of B. napus plants after 35 days. (B) Stack diagram of the relative 
number of plants with certain disease scores per genotype. Parameters fresh weight, height 
of vegetation point, length of longest leaf, and symptom index of leaves were assessed and 
transformed into disease scores per plant relative to control plants. n = total number of 
evaluated plants. (C) The diagram shows the number of dead plants 35 days post 
inoculation with water control or fungal spores relative to the total number of evaluated 
plants. Bars represent mean values of three independent experiments with standard 
deviations. Significant differences compared to wild type Vl43 were calculated with one-way 
Anova and Student´s t-test: ***p<0.001; n(mock, Vl43, ΔLS)=3; n(Vl43 ΔLSI, ΔLSII)=6. 
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3.1.4 The homologous Vl43LS20kb region in V. dahliae is indifferent for virulence 

towards tomato plants 

The Vl43LS20kb region identified by comparison of two V. longisporum isolates is in the 

same synteny in the haploid V. dahliae strain JR2, suggesting its origin in the haploid 

parental lineage D1. To address the question if the homologous region in V. dahliae has 

a similar function in attenuation of plant disease symptoms as in V. longisporum Vl43, 

JR2 LS deletion strains were constructed (Figure S3) and tested regarding induction of 

disease symptoms in tomato plants (Figure 10). 

Prior to the investigation of the in planta phenotype, the ex planta phenotypes of 

V. dahliae JR2 ΔLS were tested in comparison to the wild type ten days after spot 

inoculation on the same media as Vl43 LS deletion strains (Figure S4). Like in 

V. longisporum Vl43, the LS region is dispensable for vegetative growth of V. dahliae 

JR2 ex planta since no significant phenotypic alterations were observed. Only slight 

reductions in melanization were visible for the JR2 LS deletion strain compared to wild 

type on CDM with galactose as carbon source (Figure S4). 

 

 

Figure 10: The Vl43LS20kb homologous region in V. dahliae is indifferent for 
virulence towards tomato plants. Ten-day-old S. lycopersicum seedlings were inoculated 
by root dipping into water control (mock), the same numbers of spores obtained from the 
V. dahliae wild type JR2, or two independent LS deletion transformants (VGB383, 
VGB393). Overview pictures of control plants and plants inoculated with wild type or JR2 
ΔLS and hypocotyl cross sections of representative plants are shown (Scale bar = 1 mm). 
Disease symptoms fresh weight, height of vegetation point, and length of longest leave 
were assessed after 21 days in two independent experiments and transformed into a 
disease score per plant. The stack diagram shows the relative number of plants with a 
certain disease score. Plants infected with wild type or JR2 ΔLS display similar severity of 
disease symptoms. n = total number of evaluated plants. 
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Tomato plant infections were performed to investigate the role of the V. dahliae 

Vl43LS20kb homologous region in pathogenicity. S. lycopersicum plants were inoculated 

with spores obtained from two independent ΔLS transformants and the disease 

symptoms were scored after 21 days. JR2 ΔLS treated tomato plants displayed unaltered 

severity of disease symptoms and hypocotyl discolorations comparable to wild type 

infected plants (Figure 10). 

Taken together, the V. longisporum A1/D1 Vl43LS20kb region absent in the 

asymptomatic V. longisporum A1/D3 isolate Vl32 is consistent in V. dahliae JR2 and 

presumably derives from the D1 parental strain. The region encodes several small 

proteins, two potential transcription factors and one protein potentially involved in protein-

protein interactions. In V. dahliae, the presence or absence of this region results in 

similar severity of disease symptoms in tomato plants. In contrast, the same region 

attenuates disease symptoms induced by the pathogenic V. longisporum A1/D1 isolate 

Vl43 in rapeseed. In conclusion, even pathogenic fungi possess specific genomic regions 

which make virulence more tolerable for the host plant. 

3.2 Vmk1/Mek2 MAPK cascade-mediated microsclerotia formation 

and pathogenicity in V. dahliae are independent from the 

scaffold protein Ham5 

3.2.1 V. dahliae Ham5 corresponds to the N. crassa scaffold protein HAM-5 

The Vmk1 MAPK signaling cascade is homologous to yeast Fus3/Kss1 MAPK pathways 

and is essential for regulation of virulence in V. dahliae (Rauyaree et al., 2005; 

Sarmiento-Villamil et al., 2018). The MAPK pathway components Vmk1 and the yeast 

Ste12-like transcription factor Vph1 of V. dahliae are essential for regulation of 

pathogenicity and differ in their impact on microsclerotia formation (Rauyaree et al., 

2005; Sarmiento-Villamil et al., 2018). The genomes of the Pezizomycotina, the biggest 

subdivision of the Ascomycota, harbor a gene encoding a highly conserved protein which 

was allocated to scaffolding functions in the Fus3/Kss1-like MAPK pathway (Jamet-

Vierny et al., 2007; Dettmann et al., 2014; Jonkers et al., 2014, 2016; Frawley et al., 

2018). A scaffold protein for this pathway has not yet been described in any filamentous 

phytopathogen. The role of the N. crassa HAM-5 homolog in differentiation and virulence 

of V. dahliae was analyzed combined with the characterization of the MAP2K homolog 

Mek2 and the MAPK Vmk1 as control. 

The V. dahliae gene VDAG_JR2_Chr4g07170a was identified as a predicted homolog to 

the N. crassa scaffold HAM-5 encoding gene using reciprocal BLAST search of the 

deduced amino acid sequences against the V. dahliae JR2 (Ensembl Fungi) and the 
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N. crassa OR74A (NCBI database) proteomes. The HAM5 pre-mRNA of 4906 bp has a 

predicted intron-exon structure with five exons, which was confirmed by PCR 

amplification of the spliced transcript from wild type cDNA (Figure 11A).  

 

 

Figure 11: Comparison of V. dahliae Ham5 and corresponding proteins in related fungi. 
(A) The intron-exon structure of V. dahliae HAM5 predicted by Ensembl Fungi 
(VDAG_JR2_Chr4g07170a) was confirmed by PCR amplification of the spliced transcript 
from wild type cDNA. The protein consists of 1553 aa and contains predicted WD40 repeats 
at the N-terminus (black; IPR015943; 10-265 aa) and a coiled-coil domain (blue; 1154-
1182 aa). Domains were predicted by InterProScan. (B) Phylogenetic tree of the Ham5 
protein. Phylogenetic analysis with aa sequences from: V. dahliae Ham5 
(VDAG_JR2_Chr4g07170a), T. reesei HAM-5 (AKN58846.1), N. crassa HAM-5 
(XP_011393509.1), P. anserina IDC1 (ABJ96338.2), A. nidulans HamE (AN2701), and 
S. cerevisiae Ste5 (NP_010388.1) was performed (ClustalW algorithm). WD40 (IPR015943; 
black box) and coiled-coil domains (blue bar) were predicted by InterProScan. Scale bar = 
average number of amino acid substitutions per site. (C) Ham5 protein sequence identity 
matrices of the Ham5 full-length protein homologs and orthologs (left) and their WD40 
domains (right) (ClustalW). Amino acid sequence identities are given in %. Pairwise 
sequence identity and similarity calculation from multiple sequence alignments were 
performed using SIAS tool.  
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The deduced Ham5 protein with a length of 1553 aa and a molecular weight of 170 kDa 

contains N-terminal WD40 repeats and a coiled-coil domain at the C-terminus. The 

corresponding HAM-5 proteins of related filamentous fungi are similar in length and show 

conserved protein domains, including C-terminal coiled-coil domains and N-terminal 

WD40 repeat domains (Figure 11A, B). WD40 repeat domains have been found in 

several fungal scaffold proteins (Pöggeler & Kück, 2004; Jain, 2019; Hicks et al., 2001). 

These domains form symmetrical disc-like Beta-propeller structures, shaped by blades 

assembled around a central channel (Chen et al., 2011) that allow the coordination of 

multi-protein complexes (Xu & Min, 2011). The WD40 domain was shown to be important 

for binding of the MAPK MAK-2 to the scaffold HAM-5 in N. crassa (Jonkers et al., 2014). 

A phylogenetic analysis of the V. dahliae Ham5 protein, its described homologs in 

ascomycetes, and the non-homologous yeast scaffold protein Ste5 indicated that 

V. dahliae Ham5 has the highest similarity to Trichoderma reesei HAM-5 with 60% aa 

sequence identity, followed by N. crassa HAM-5 with 53% and Podospora anserina IDC1 

with 52% (Figure 11B, C). V. dahliae Ham5 and A. nidulans HamE are less closely 

related, showing only 32% aa sequence identity (Figure 11B, C). The orthologous yeast 

scaffold protein Ste5 has 14% aa sequence identity with the V. dahliae protein, is much 

smaller, and does not share the domain predictions of the Ham5 homologs (Figure 11B, 

C).  

The proposed WD40 domains of the corresponding Ham5 proteins in related fungi 

displayed generally higher amino acid sequence similarities than the full-length proteins 

(Figure 11C). The deduced protein sequence of the putative HAM-5 homolog in 

V. dahliae has 87% identity to N. crassa HAM-5. V. dahliae Ham5 displays higher amino 

acid sequence conservation of the entire protein and the WD40 domain to N. crassa 

HAM-5 than A. nidulans HamE which shows 35% aa sequence identity to the entire 

protein and 65% to the WD40 repeat domain of N. crassa HAM-5 (Figure 11C). 

3.2.2 The V. dahliae MAP2K Mek2 and the MAPK Vmk1 show high similarities to 

N. crassa MEK-2 and MAK-2 

The N. crassa scaffold protein HAM-5 assembles the MAPK cascade components 

MAK-2 (MAPK), MEK-2 (MAP2K), and NRC-1 (MAP3K) (Dettmann et al., 2014; Jonkers 

et al., 2014, 2016). The V. dahliae homologs to N. crassa mek-2 and the V. dahliae 

VdLs.17 MAPK encoding gene VMK1 were identified by reciprocal BLAST search of the 

deduced amino acid sequences against the V. dahliae JR2 (Ensembl Fungi), N. crassa 

OR74A (NCBI database), or the V. dahliae VdLs.17 (Ensembl Fungi) proteome. 
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The potential MAP2K homolog in V. dahliae is encoded by the gene 

VDAG_JR2_Chr1g13070a. The V. dahliae MEK2 pre-mRNA of 1756 bp contains four 

exons (Figure 12A left).  

 

 

Figure 12: The V. dahliae MAP2K Mek2 and MAPK Vmk1 are highly conserved in fungi. 
(A) The unspliced mRNA structure and protein domain predictions of V. dahliae Mek2 and 
Vmk1. Predicted intron-exon structures of the 1756 bp MEK2 (left) and the 1260 bp VMK1 
(right) unspliced mRNAs were confirmed by PCR amplification of spliced transcripts from wild 
type cDNA. Mek2 consists of 522 aa and contains a protein kinase domain (blue; 67-332 aa; 
IPR000719), with the serine/threonine-protein kinase active site at 186-198 aa (grey bar; 
IPR008271) and an ATP binding site (red; 73-96 aa; IPR017441). Vmk1 consists of 355 aa 
and contains a protein kinase domain (blue; 23-311 aa; IPR000719), with the 
serine/threonine-protein kinase active site at 143-155 aa (grey bar; IPR008271) and an ATP 
binding site (red; 29-53 aa; IPR017441). Domains were predicted by InterProScan. (B) 
Protein sequence identity matrices of corresponding Mek2 (left) and Vmk1 (right) proteins 
from related fungi. Protein sequence identities are given in %. Identifiers of used sequences 
are given in C. ClustalW algorithm, pairwise amino acid sequence identity and similarity 
calculation were performed using the SIAS online tool. (C) Phylogenetic trees of 
corresponding Mek2 (left) and Vmk1 (right) proteins from related fungi. Left: protein 
sequences were used from: V. dahliae Mek2 (VDAG_JR2_Chr1g13070a), T. reesei 
(XP_006963390.1), P. anserina (XP_001910826.1), N. crassa Mek-2 (XP_011394665.1), 
A. nidulans MkkB (AN3422), S. cerevisiae Ste7 (NP_010122.1). Right: protein sequences 
were used from: V. dahliae Vmk1 (VDAG_JR2_Chr2g01260a), T. reesei tmk1 
(XP_006965066.1), P. anserina PaMpk1 (XP_001929742.1), N. crassa MAK-2 
(AAK25816.1), A. nidulans MpkB (AAF12815.2), S. cerevisiae Fus3 (NP_009537.1) 
(ClustalW algorithm). Scale bar = average number of amino acid substitutions per site. 
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Expression was confirmed by PCR amplification of the spliced transcript from wild type 

cDNA. The deduced protein Mek2 consists of 522 aa with a molecular weight of 57 kDa 

and contains a protein kinase domain with a serine/threonine-protein kinase active site 

and an ATP binding site (Figure 12A left). V. dahliae Mek2 possesses high conservation 

with maximum 82% aa sequence identity to N. crassa MEK-2 and only 28% to the yeast 

S. cerevisiae MAP2K Ste7 (Figure 12B, C left). 

The homologous gene to VdLs.17 VMK1 (VDAG_09461) was identified in V. dahliae JR2 

(VDAG_JR2_Chr2g01260a) with 100% aa sequence identity. The predicted VMK1 pre-

mRNA of 1260 bp contains four exons (Figure 12A, right) and expression was confirmed 

by PCR amplification of the spliced transcript from wild type cDNA. The deduced protein 

Vmk1 consists of 355 aa with a molecular weight of 41 kDa. A protein kinase domain with 

a serine/threonine-protein kinase active site and an ATP binding site was predicted by 

InterProScan (Figure 12A, right).  

The V. dahliae MAPK Vmk1 possesses even higher conservation than the MAP2K with 

98% aa sequence identity to the corresponding protein in T. reesei, followed by 96% to 

the respective MAP kinase in N. crassa and P. anserina (Figure 12B, C, right). 

Both components of the yeast Fus3-like MAPK pathway, the MAPK Vmk1 and the 

MAP2K Mek2, are highly conserved in V. dahliae JR2, with Mek2 a little less conserved 

in analyzed species than Vmk1. 

3.2.3 Vmk1- and Mek2-mediated regulation of vegetative growth and 

microsclerotia formation is independent from Ham5 

In order to analyze the role of the putative scaffold Ham5 in Vmk1 MAPK pathway-

mediated development and virulence of V. dahliae, HAM5, MEK2, and VMK1 deletion 

strains as well as HAM5/MEK2 and HAM5/VMK1 double deletion strains were 

constructed. The genes under control of their native promoters and terminators were 

ectopically reintegrated into the genomes of the single deletion strains to analyze 

whether complementation of phenotypes is possible. Prior to functional investigation, 

correct integration of deletion and complementation constructs was confirmed by 

Southern hybridization analysis (Figure S5, S6, S7).  

Analysis of the ex planta phenotype of the HAM5 deletion strain revealed wild type-like 

growth. No alterations were observed regarding colony size, melanization, or 

microsclerotia formation under several tested conditions, including complete media 

(PDM, Malt extract agar), simulated xylem medium, or minimal medium with different 

carbon sources (CDM with either sucrose, galactose, glucose, or cellulose). In Figure 

13A ∆HAM5 colonies nine days after spot inoculation on SXM and CDM with either 

sucrose or cellulose as carbon source are shown as examples.  
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Figure 13: V. dahliae VMK1- and MEK2-mediated vegetative growth and microsclerotia 
formation function independent of HAM5. The HAM5 deletion strain was compared to wild 
type JR2, VMK1, and MEK2 single deletions with respective complementation strains, as well 
as ∆HAM5∆VMK1 and ∆HAM5∆MEK2 double deletions regarding their vegetative growth and 
microsclerotia formation ex planta. 50 000 freshly harvested spores were spot inoculated on 
SXM or CDM with either sucrose or cellulose as carbon source and incubated at 25 °C for 
nine days. The ex planta phenotypes of two independent transformants per single deletion 
strain (VGB279, VGB280, VGB335, VGB336, VGB337, VGB338) or one transformant per 
double deletion (VGB346, VGB417) and complementation strain (VGB389, VGB413, 
VGB415) were tested. Black scale bar = 1 mm, blue scale bar = 20 µm. (A) Ex planta 
phenotypes nine days after spot inoculation. Cross sections of colony centers and 
microscopy of fungal material scraped from colony centers grown on CDM with cellulose as 
carbon source (indicated by red boxes and dashed lines) are shown. (B) Growth 
quantification on either CDM with sucrose (black) or cellulose (grey) as carbon source nine 
days after spot inoculation. Growth of ∆VMK1, ∆MEK2, ∆HAM5∆VMK1, and ∆HAM5∆MEK2 
strains is significantly decreased to about 90% in comparison to wild type. ∆HAM5 and the 
complementation strains show wild type-like growth. Growth was quantified by measurement 
of two perpendicular diameters per colony for three plates per transformant and medium 
(n=1). Bars represent mean values of three independent experiments with standard 
deviations relative to wild type. Significant differences to wild type determined with one-way 
Anova and Student´s t-test are shown with *p<0.05; **p<0.01; ***p<0.001, ****p=0, ns= non-
significant. n(∆HAM5; ∆VMK1; ∆MEK2)=6; n(WT; ∆HAM5∆VMK1; ∆HAM5∆MEK2; HAM5-C; 
VMK1-C; MEK2-C)=3. (C) Melanization of colonies grown on CDM with cellulose relative to 
wild type. Whereas ∆HAM5 shows wild type-like melanization, ∆MEK2, ∆VMK1, 
∆HAM5∆MEK2, and ∆HAM5∆VMK1 display a significant decrease to 38-46% of the wild type 
level. Pictures were taken from the top view of the colonies after removal of aerial mycelium. 
The brightness factor of the colony center was measured for three colonies per transformant 
(n=1) using the ImageJ software. The means of the brightness factor were determined, set 
relative to wild type, and inverted to obtain melanization values. Bars represent mean values 
with standard deviations from two independent experiments. Significant differences to wild 
type determined with one-way Anova and Student´s t-test are shown with *p<0.05; 
***p<0.001, ****p=0, ns= non-significant. n(WT; ∆HAM5∆VMK1; ∆HAM5∆MEK2; HAM5-
C;VMK1-C;MEK2-C)=2; n(∆HAM5)=3; n(∆VMK1; ∆MEK2)=4. 

 

Furthermore, vegetative growth of the ∆HAM5 strain was tested on minimal medium 

supplemented with stress inducing agents (0.5 M NaCl, 0.00075% H2O2, 0.004% SDS, or 

0.8 M Sorbitol) without observation of any phenotypical alterations. Since no self-

anastomosis of vegetative hyphae or germination tubes were observed for the V. dahliae 

wild type JR2 under any growth condition, the role of Ham5 in cell fusion was not 

characterized. 

In contrast to the HAM5 deletion strain, MEK2 and VMK1 single and double deletion 

strains show a ~10% significant decrease in growth on CDM with either sucrose or 

cellulose as carbon source nine days after spot inoculation which was not observed for 

the complementation strains MEK2-C and VMK1-C (Figure 13A, B). 

Whereas the HAM5 deletion strain shows wild type-like melanization, the colony centers 

formed by strains ∆MEK2, ∆VMK1, ∆HAM5∆MEK2, and ∆HAM5∆VMK1 on SXM and 

CDM with sucrose or cellulose as carbon source appear less melanized after nine days 

(Figure 13A). The differences in melanization become more apparent in cross sections of 

the colony centers. Microscopy of fungal material from the colony centers for all tested 

strains showed melanized microsclerotia similar to wild type, however, in qualitatively 
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reduced frequencies in ∆MEK2, ∆VMK1, ∆HAM5∆MEK2, and ∆HAM5∆VMK1 (Figure 

13A). The melanization of the colony centers of all strains grown on cellulose containing 

medium was quantified and confirmed the wild type-like melanization in the ∆HAM5 

strain. In contrast, a significant decrease in melanization to less than half was observed 

for VMK1 and MEK2 single or double deletion strains (Figure 13C). 

These data corroborate, that MAP2K MEK2 and MAPK VMK1 contribute to vegetative 

growth, microsclerotia formation, and melanization independently from the putative 

cascade scaffold protein Ham5 in V. dahliae. 

3.2.4 Mek2- and Vmk1-mediated regulation of virulence is independent from 

Ham5 in tomato plants 

The impact of the putative scaffold protein Ham5 on virulence of V. dahliae was 

investigated in tomato plant infection experiments in comparison to the MAP2K Mek2 

and the MAPK Vmk1. 

Tomato plants inoculated with spores from ∆MEK2, ∆VMK1, ∆HAM5∆MEK2, or 

∆HAM5∆VMK1 strains displayed plant heights comparable to mock plants after 21 days 

and no hypocotyl discolorations were observed (Figure 14A). None of the plants 

inoculated with spores from these strains displayed strong or heavy symptoms. The 

avirulent in planta phenotypes observed for ∆MEK2 and ∆VMK1 were complemented in 

experiments with VMK1-C and MEK2-C strains. Plants treated with VMK1-C displayed 

slightly more severe disease symptoms with only 3% healthy plants, whereas MEK2-C 

and wild type treatment resulted in about 20% healthy plants (Figure 14A). 

In contrast to MEK2 and VMK1 single or double deletion strain treated plants, tomato 

plants inoculated with ΔHAM5 displayed disease symptoms indistinguishable from wild 

type infected plants including severe stunting and discoloration of the vascular system 

(Figure 14A). 

To investigate which of the constructed strains are able to colonize plant tissues, re-

isolation from stem sections on agar plates was performed. Fungal outgrowth from stems 

was observed for all strains, even if to a smaller extend from plants treated with spores 

from ∆VMK1, ∆MEK2, ∆HAM5∆VMK1, and ∆HAM5∆MEK2 strains than from plants 

treated with wild type, ∆HAM5, or complementation strains (Figure 14B). For strains 

causing no symptoms, fungal outgrowth was confirmed by control PCR reactions 

targeting the transit region of the integrated marker cassettes (Figure 14C). Hence, 

MEK2 and VMK1 single and double deletion strains are able to invade tomato plants, but 

are impaired in induction of disease symptoms, whereas deletion of HAM5 allows wild 

type-like induction of disease symptoms.  
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Figure 14: V. dahliae Vmk1 pathway-mediated pathogenicity towards S. lycopersicum 
is independent from the scaffold protein. (A) Ten-day-old tomato plants were inoculated 
by root dipping into sterile water as control (mock) or spores obtained from wild type JR2 
(WT), HAM5, VMK1, and MEK2 deletions with the respective complementations (HAM5-C, 
VMK1-C, and MEK2-C) or double deletion strains. Representative plants and hypocotyl 
dissections after 21 days are shown. The relative number of plants with certain disease 
scores are displayed in the stack diagram. Two independent transformants of ∆HAM5 were 
tested in three (VGB280) to four (VGB279) independent experiments. Two independent 
transformants per VMK1 (transformant numbers 2 and 4 - VGB335, VGB336) and MEK2 
(transformant numbers 21 and 22 - VGB337, VGB338) deletion and a single transformant per 
double deletion (VGB346, VGB417) and complementation strain (VGB389, VGB413, 
VGB415) were tested in two independent experiments. n= the total number of evaluated 
plants; scale bar = 1 mm. (B) Stem assay shows fungal outgrowth from stem sections for all 
tested strains. Stems were surface sterilized, cut, and incubated on PDM supplemented with 
chloramphenicol for seven days at 25 °C. (C) PCR validation of fungal outgrowth from stem 
assay as VMK1 and MEK2 single and double deletion strains. PCR reactions targeting the 
regions upstream of the 5´-flanking region of VMK1 or MEK2 used for homologous 
recombination and the gpdA promoter of the introduced hygromycin resistance marker 
cassette give products with predicted fragment length about 3 kb for genomic DNA of all 
tested strains. 
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These data corroborate that the function of the MAPK cascade components Vmk1 and 

Mek2 in virulence are independent from the scaffold protein Ham5. This was also 

observed for the MAPK pathway functions in vegetative growth and microsclerotia 

formation. Therefore, the cascade either requires a yet unidentified scaffold protein or a 

direct interplay between the kinases for the tested conditions. 

3.3 The unfolded protein response pathway regulator Hac1 controls 

development and virulence of V. dahliae 

3.3.1 HAC1 and IRE1 genes of the UPR pathway in V. dahliae 

Efficient biosynthesis and secretion of proteins involved in colonization of the host plant 

are crucial for the success of plant colonizing fungi and assumed to be regulated by the 

unfolded protein response pathway (Joubert et al., 2011; Heimel et al., 2013). The UPR 

pathway senses ER stress correlated with increased protein folding demands via the 

transmembrane endoribonuclease Ire1 and regulates responsive genes via the bZIP 

transcription factor Hac1. In the course of this study, the presence of the fundamental 

components of the UPR pathway in V. dahliae was examined by BLAST search of 

deduced amino acid sequences and the function of the HAC1 homolog in development 

and virulence of V. dahliae was characterized. 

The gene VDAG_JR2_Chr1g29650a was identified as V. dahliae JR2 IRE1 homolog by 

reciprocal BLAST search with the T. reesei Ire1 protein sequence of 1243 aa 

(XP_006962552.1, isolate QM6a). Incorrect annotation of the ORF with a deduced 

protein length of only 871 aa in V. dahliae JR2 is likely. Using the annotation of the 

homologous gene in VdLs.17 (VDAG_02974), the presence of an ORF encoding a 

1236 aa protein with proposed Ire1-specific domains, including an ER luminal domain, a 

protein kinase, and a cytosolic endoribonuclease domain, was identified (Figure 15A). 

The deduced Ire1 proteins from V. dahliae and T. reesei display 56% aa sequence 

identity. 

The V. dahliae HAC1 homolog VDAG_JR2_Chr2g09780a was identified by reciprocal 

BLAST search with the deduced amino acid sequence of A. nidulans hacA (Q8TFU8.2, 

isolate FGSC A4) against the V. dahliae JR2 (Ensembl Fungi) and A. nidulans (NCBI 

database) proteomes. The gene contains an ORF of 1634 bp. The Ensembl Fungi gene 

annotation of the potential HAC1 homolog in V. dahliae predicted only one splice variant. 

The HAC1 homologs in related filamentous fungi possess two mRNA splice variants, an 

uninduced HAC1u and an unconventionally spliced HAC1i mRNA which is preferentially 

spliced in response to ER stress (Heimel, 2015). Therefore, the hypothetically deduced 

protein of 526 aa with a molecular weight of 58 kDa was named Hac1u. For Hac1u an N-

terminal basic-leucine zipper domain and an N-terminal nuclear localization signal (NLS) 

https://fungi.ensembl.org/Verticillium_dahliaejr2/Gene/Summary?db=core;g=VDAG_JR2_Chr1g29650a;r=2:3038912-3041237;t=VDAG_JR2_Chr1g29650a-00001;tl=V4Ee1bVbvgAmKTrI-19035383-717108759
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were predicted (Figure 15B). The deduced Hac1u proteins from V. dahliae and T. reesei 

display 35% aa sequence identity. 

Hence, the V. dahliae genome harbors HAC1 and IRE1 homologs with similar deduced 

protein sequences and domain predictions to the corresponding proteins in related 

filamentous fungi. 

 

 

Figure 15: Protein domains of V. dahliae Ire1 and Hac1u in comparison to 
corresponding proteins of related filamentous fungi. Domains of deduced protein 
sequences of homologous IRE1 (VDAG_02974/ VDAG_JR2_Chr1g29650a corrected) and 
HAC1 (VDAG_JR2_Chr2g09780a) genes in V. dahliae in comparison to the corresponding 
proteins in related filamentous fungi predicted by InterProScan and cNLS mapper. 
(A) Domain predictions for V. dahliae Ire1 (1236 aa protein; ER luminal Ire1 domain, 
cd09769, 170-463aa; protein kinase ATP binding site, IPR017441, 812-834 aa; cytosolic 
C-terminal endoribonuclease domain, PF06479, 1104-1231 aa) and T. reesei Ire1 (1243 aa 
protein; XP_006962552.1, isolate QM6a; cd09769, 170-463 aa; IPR017441, 812-834 aa; 
PF06479, 1104-1231 aa) are shown. (B) Domain predictions for V. dahliae Hac1u (526 aa 
protein; NLS 94-105 aa; bZIP 107-164 aa, PS50217) and A. nidulans HacAu (441 aa protein; 
CBF87535.1; FGSC A4; NLS 55-65 aa; bZIP 87-150aa, PS50217) are shown.  

 

3.3.2 The HAC1 mRNA is unconventionally spliced in V. dahliae 

The Ensembl Fungi gene annotation of the potential HAC1 homolog in V. dahliae 

predicted only one mRNA splice variant with a 53 nt intron, resulting in a spliced 1581 nt 

mRNA. Since unconventional splicing of the HAC1 mRNA was described for known 

homologs preferentially under ER stress inducing conditions, it was tested, whether 

different mRNA splice variants could be obtained for V. dahliae HAC1 from liquid cultures 

in presence or absence of dithiothreitol (DTT). DTT is a reducing agent which prevents 

the formation of disulfide bonds and thereby induces misfolding of proteins in the ER 

(Guillemette et al., 2011).The HAC1 cDNA sequence amplified from un-induced growth 

was in accordance with the database predicted splice variant, referred to as HAC1u 

(Figure 16A). Additionally, a second splice variant could be obtained from these growth 

conditions, which was also amplified from ER stress inducing growth conditions, named 

HAC1i (Sequence given in S10). The HAC1i mRNA results from splicing of a second 

intron with 20 nt in size (Figure 16A). Splicing of the 20 nt intron alters the ORF, leading 

to a shorter variant of 1254 nt. 

https://fungi.ensembl.org/Verticillium_dahliaejr2/Gene/Summary?db=core;g=VDAG_JR2_Chr1g29650a;r=2:3038912-3041237;t=VDAG_JR2_Chr1g29650a-00001;tl=V4Ee1bVbvgAmKTrI-19035383-717108759
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Figure 16: The V. dahliae HAC1 mRNA is unconventionally spliced. (A) mRNA and 
protein variants of V. dahliae HAC1. The 2634 nt HAC1 pre-mRNA contains a 53 nt 
conventional (black) and a 20 nt unconventional (blue) intron. V. dahliae produces two HAC1 
mRNA variants: splicing of the conventional intron results in HAC1u mRNA (1581 nt) for the 
potential Hac1u protein (526 aa), additional unconventional splicing results in a shorter 
induced HAC1i ORF (1254 nt) encoding the Hac1 protein (417 aa). N-termini (268 aa) of both 
proteins are identical, containing a basic leucine zipper domain (bZIP, grey, PS50217; 107-
164 aa) and a nuclear localization signal (NLS, red, 94-105 aa), whereas Hac1u and Hac1 
possess unique C-termini (dark or light green). (B) Alignment of the 5´- and 3´-splice 
sequences of the unconventionally spliced introns shows high conversation of V. dahliae  
HAC1 (VDAG_JR2_Chr2g09780a; blue), A. fumigatus hacA (XM_743634), A. nidulans hacA 
(AN9397), T. reesei QM6a hac1 (M419DRAFT_128619), A. brassicicola HacA (Joubert et al., 
2011), N. crassa hac-1 (NCU01856), U. maydis cib1 (UMAG_11782), S. cerevisiae S288C 
hac1 (NC_001138.5), H. sapiens XBP1 (NM_005080.3). The consensus sequence of Ire1 
splice sites (Hooks & Griffiths-Jones, 2011) is indicated by CNG’CNGN. Ire1 splice sites are 
indicated by arrows, intron sequences as lowercase characters, splice sequences as capital 
letters. Numbers of nucleotides for those not shown are given. (C) Twin stem-loop secondary 
structures of 5´- and 3´-splice sequences of V. dahliae and S. cerevisiae unconventional 
HAC1 introns. Ire1 splice sites are indicated by arrows, intron sequences as lowercase 
characters, splice sequences as capital letters, discontinuation of intron sequence as //. 
RNAfold was used for folding prediction (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi). 
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In yeast and filamentous ascomycetes, translation of the uninduced mRNA variant into 

Hac1u was described to be blocked (Chapman & Walter, 1997; Rüegsegger et al., 2001; 

Saloheimo et al., 2003; Mulder et al., 2004; Joubert et al., 2011; Heimel, 2015). 

Differently, translation of the uninduced protein variant, acting as negative regulator of 

the UPR, was observed in higher eukaryotes (Yoshida et al., 2006, 2009). Hints to 

protein translation were given in the basidiomycete U. maydis (Heimel et al., 2013). The 

alternative splice variant HAC1i encodes a 417 aa Hac1 protein (aa sequence shown in 

Figure S11) with a molecular weight of 44 kDa. For both hypothetical Hac1 protein 

variants the N-terminal 268 aa are identical with a nuclear localization signal (NLS) and 

bZIP domain. The bZIP protein domains are specifically found in transcription factors and 

are formed by a basic loop responsible for DNA binding and the hydrophobic leucine 

zipper required for homo- or heterodimerization of two DNA binding proteins (Hurst, 

1995). The NLS proposes protein import into the nucleus. Due to the frame shift after 

unconventional splicing, the C-terminus of the predicted Hac1u and Hac1 proteins are 

unique with 258 unique amino acids in Hac1u versus 149 in Hac1. 

The mRNA of HAC1 homologs from several fungal species up to humans was described 

to be cleaved by the cytosolic endoribonuclease domain of Ire1 by recognition of the 

conserved consensus splice sequence 5´-CNG’CNGN-3´ which is specific for 

unconventional splicing (Yoshida et al., 2001; Saloheimo et al., 2003; Mulder et al., 2004; 

Wimalasena et al., 2008; Richie et al., 2009; Cheon et al., 2011; Hooks & Griffiths-Jones, 

2011; Joubert et al., 2011; Heimel et al., 2013; Montenegro-Montero et al., 2015). 

Alignment of the 5´- and 3´-intron-exon-borders of both introns from V. dahliae HAC1 to 

the consensus sequence displayed conservation of the 20 nt intron, which was found to 

be spliced under ER stress induced growth conditions (Figure 16B). The 53 nt intron 

spliced in both, HAC1u and HAC1i, did not match the consensus sequence. 

Comparison of the 20 nt intron from V. dahliae HAC1 to homologous sequences in other 

organisms displays the same intron size in A. brassicicola, A. fumigatus, A. nidulans, and 

T. reesei. N. crassa (23 nt) and human (26 nt) homologs possess similar intron sizes. 

The unconventionally spliced intron of the homolog Cib1 in U. maydis shows 

intermediate length (65 nt), whereas the yeast S. cerevisiae homolog is much longer with 

a size of 252 nt (Figure 16B). 

The mRNA of HAC1 homologs was described to form a twin stem-loop structure in 

several organisms, which is targeted by the endonuclease domain of Ire1 homologs 

(Yoshida et al., 2001; Saloheimo et al., 2003; Mulder et al., 2004; Wimalasena et al., 

2008; Richie et al., 2009; Cheon et al., 2011; Hooks & Griffiths-Jones, 2011; Joubert et 

al., 2011; Heimel et al., 2013; Montenegro-Montero et al., 2015). In order to allow 

predictions about the splice mechanism for V. dahliae HAC1, the secondary structure of 
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the unconventionally spliced intron was analyzed. Figure 16C shows the twin stem-loop 

secondary structure of the 20 nt intron from V. dahliae HAC1 in comparison to the model 

organism S. cerevisiae, calculated by the RNAfold web server with the lowest free 

energy. The predicted Ire1 cleavage sites are located in the formed seven nucleotides 

loops. 

Similarities between the V. dahliae Hac1 protein encoded by the unconventionally spliced 

mRNA HAC1i to described UPR regulatory proteins in other fungi and human XBP1 (X-

box binding protein) were assessed (Figure 17). The highest similarity was found to 

T. reesei HACI with 55% aa sequence identity. The corresponding A. nidulans and 

A. fumigatus proteins display a higher amino acid similarity to the V. dahliae protein with 

36% than the S. cerevisiae homolog with 28%. The similarities to U. maydis cib1 and 

H. sapiens XBP1 was below 20% (Figure 17A). The proteins from V. dahliae and 

T. reesei cluster in one subclade in the phylogenetic tree (Figure 17B). Considered 

homologs from ascomycetes form one clade with lower amino acid similarities to the 

homologs of the basidiomycete U. maydis and the H. sapiens homolog XBP1. 

In summary, V. dahliae HAC1 shows high similarity to homologs in related fungi. It 

encodes an unconventionally spliced intron with a proposed twin stem-loop structure, 

which is presumably recognized by the endoribonuclease Ire1 and displays similarities in 

the deduced protein sequence and protein domain predictions to UPR regulatory proteins 

from related fungi. 

 

 

Figure 17: Similarities of Hac1 proteins from different organisms. (A) Protein sequence 
identity matrix of Hac1-like proteins (ClustalW algorithm, sequence identifiers given in B were 
used for the calculation). (B) Phylogenetic tree of Hac1-like proteins with V. dahliae Hac1 
(Figure S11), U. maydis cib1s (XP_011390112.1; isolate 521), S. cerevisiae HAC1i 
(NP_116622.1; isolate S288C), T. reesei HACIi (XP_006964054.1; isolate QM6a), 
A. nidulans HacAi (Q8TFU8.2; isolate FGSC A4), A. fumigatus HacAi (ACJ61678.1; isolate 
H237), H. sapiens XBP1 (NP_001073007.1) sequences. ClustalW algorithm in MEGA6.0 
was used with the Maximum likelihood method. The scale bar represents the average 
number of amino acid substitutions per site. 
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3.3.3 The unconventionally spliced mRNA variant HAC1i is translated into the 

Hac1 protein in V. dahliae 

In order to analyze the role of HAC1 in the development and virulence of V. dahliae, a 

deletion strain was constructed. The impact of the different splice variants was tested by 

ectopic reintegration of the HAC1 gene or either one of the two mRNA splice variants 

fused to HA at the 3´-end under control of the native promoter and terminator. Prior to 

functional investigation, correct integration of constructs was confirmed by Southern 

hybridization (Figure S8).  

The expression levels of HAC1 in the complementation strain HAC1-C and strains 

harboring the different splice variants, HAC1u-HA and HAC1i-HA, were tested by 

quantitative reverse transcriptase PCR reactions in comparison to wild type and ΔHAC1 

(Figure 18A).  

 

 
Figure 18: The V. dahliae unconventionally spliced mRNA HAC1i, but not the 
uninduced mRNA HAC1u, is translated into the Hac1 protein. V. dahliae wild type JR2 

(WT), HAC1 deletion (∆HAC1 - VGB371), complementation (HAC1-C - VGB382), as well as 
two transformants each of strains expressing ectopically integrated HAC1 mRNA splice 
variants fused to HA at the 3´-end in the ∆HAC1 strain (HAC1u-HA transformant number 2 
and 5 - VGB439, VGB440; HAC1i-HA transformant number 6 and 10 - VGB437, VGB438) 

were compared. (A) Quantification of HAC1 gene expression by primers targeting both 
HAC1 mRNA splice variants. 1x106 spores were inoculated in 50 ml SXM and incubated for 

three days at 25 °C under constant agitation. HAC1 gene expression is decreased in 
HAC1u-HA and HAC1i-HA. Mean values of two independent experiments with standard 
error of the mean normalized to wildtype and reference genes H2A and EIF2B are 
shown. Significant differences to wild type calculated with one-way Anova and Student´s 
t-test are shown with *p<0.05; **p<0.01, ns = non-significant. (B)  Detection of Hac1 
proteins in immunoblots using HA-specific antibody and 80 µg protein extracts isolated from 
mycelia grown in liquid PDM for four days at 25 °C under constant agitation. PonceauS 
staining served as a loading control. A strong signal is only visible at ~70 kDa for tagged 
Hac1 in the constitutively spliced HAC1i-HA strain instead of the predicted 46 kDA, whereas 
there was no specific band for the predicted Hac1u-HA protein (59 kDa). 
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The HAC1 expression was quantified for cultures grown in liquid simulated xylem 

medium for three days targeting both, induced and uninduced HAC1 mRNA variants, 

with the same primer pair. The HAC1-C complementation strain displayed wild type-like 

HAC1 expression levels (Figure 18A), whereas expression was reduced to less than 

40% in HAC1u-HA and to ~60% in HAC1i-HA (Figure 18A). 

Immunoblot analysis was performed to investigate whether both HAC1 mRNA variants 

were translated into Hac1u-HA and Hac1-HA fusion proteins with an HA-antibody (Figure 

18B). No bands were observed for HAC1u-HA strains containing the conventionally 

spliced mRNA variant of HAC1 (Figure 18B). The predicted band size for the Hac1u-HA 

protein of 59 kDa and the Hac1-HA protein of 46 kDa were not detected, but a band with 

~70 kDa was obtained for HAC1i-HA, expressing the unconventionally spliced HAC1 

mRNA variant (Figure 18B). These data suggest, that HAC1i-HA is translated into a 

protein in V. dahliae, whereas the translation of HAC1u-HA could not be observed. 

3.3.4 HAC1 is essential for microsclerotia formation of V. dahliae 

The impact of V. dahliae HAC1 on growth, microsclerotia formation, and fungal 

conidiation was investigated by comparison of the ex planta phenotypes of the ∆HAC1, 

HAC1-C, HAC1u-HA and HAC1i-HA strains.  

Vegetative growth of the HAC1 deletion strain was severely impaired under all tested 

growth conditions (Figure 19). Colonies formed by the deletion strain ten days after spot 

inoculation formed less aerial mycelium, appeared less dense, and more transparent in 

comparison to wild type colonies grown on complete medium (PDM), minimal medium, or 

minimal medium supplemented with tunicamycin (Figure 19). Melanization of the ∆HAC1 

colony centers was not observed under any tested growth condition. Furthermore, the 

deletion strain formed smaller colonies compared to wild type for every tested condition. 

Quantification of vegetative growth showed a significant decrease in the colony diameter 

about 12% for ∆HAC1 ten days after spot inoculation on CDM (Figure 19B). 

Vegetative growth on minimal medium supplemented with tunicamycin was tested to 

examine the ability to cope with ER stress. Tunicamycin inhibits the glycosylation of 

proteins and, thereby, prevents folding in the ER und subsequent protein secretion 

(Guillemette et al., 2011). The mean colony diameter of ∆HAC1 grown on CDM 

supplemented with tunicamycin was 11% smaller than wild type colonies ten days after 

spot inoculation (Figure 19B). The supplementation of tunicamycin induced no additional 

decrease in the colony size of ∆HAC1 relative to wild type and the relative difference was 

unaltered (Figure 19B). 
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Figure 19: V. dahliae requires the expression of HAC1 for growth with or without 
tunicamycin-induced ER stress and melanization. Spot inoculation of 50 000 spores from 
the wild type JR2 (WT) or ∆HAC1, HAC1-C, HAC1u-HA, and HAC1i-HA strains and 
incubation at 25 °C for ten days. ∆HAC1 displays reduced vegetative growth compared to 
wild type. HAC1-C and HAC1u-HA strains display wild type-like growth, whereas colony 
diameters of HAC1i-HA are decreased under non-stress conditions and relatively increased 
upon supplementation of tunicamycin. (A) Ex planta phenotypes on PDM, SXM, CDM, and 
CDM supplemented with 1 µg/ml tunicamycin (TM). ∆HAC1 forms less aerial mycelium, 
appears less dense, and more transparent on PDM, CDM, and CDM+TM. ∆HAC1 displays 
no melanization in the colony centers. (B) Quantification of vegetative growth. Growth was 
quantified by measurement of two perpendicular colony diameters for three colonies per 
transformant and medium (n=1). Two independent transformants were tested for ∆HAC1 
(VGB371, VGB372), HAC1u-HA (VGB439, VGB440), and HAC1i-HA (VGB437, VGB438), as 
well as one HAC1-C (VGB382) transformant. Bars represent mean values with standard 
deviations from three independent experiments for wild type and ∆HAC1, and two 
independent experiment for HAC1-C, HAC1u-HA and HAC1i-HA grown on CDM. Mean 
values with standard deviations are shown from three independent experiments for wild type, 
∆HAC1, and HAC1-C, and two independent experiments for HAC1u-HA and HAC1i-HA 
grown on CDM+TM. Significant differences to wild type determined with one-way Anova and 
Student´s t-test are shown with *p<0.05; **p<0.01; ***p<0.001, ****p=0, ns= non-significant. 

 

The HAC1-C and HAC1u-HA strains displayed wild type-like growth. Colony diameters of 

HAC1i-HA were decreased on all non-stress inducing media, but increased on CDM 
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supplemented with tunicamycin (Figure 19). A decrease about 14% in the colony 

diameter was determined for the HAC1i-HA strain relative to wild type on CDM, whereas 

supplementation of tunicamycin resulted in a ~15% increase of the colony diameters 

relative to wild type (Figure 19B). This observations suggests that the presence of the 

unconventionally spliced HAC1 mRNA in the HAC1i-HA strain and constitutive activation 

of the UPR enable a more efficient response to the induced ER stress. 

Comparison of the ex planta phenotypes of the HAC1 deletion and the HAC1-C, 

HAC1u-HA, and HAC1i-HA strains to wild type revealed the absence of melanized colony 

centers for ∆HAC1 on all tested media, whereas the HAC1-C and HAC1i-HA strains 

displayed increased melanization. The ability of ∆HAC1 to develop microsclerotia as 

resting structures, maybe in an unmelanized form, was further analyzed in comparison to 

the complementation strains. The differences in melanization are most apparent in the 

colony centers and in colony cross sections (Figure 20). During microscopy of fungal 

material from colony centers of ∆HAC1 no melanized or unmelanized microsclerotia were 

observed for any medium, as exemplified for CDM in Figure 20.  

 

 

Figure 20: V. dahliae HAC1 is essential for microsclerotia formation. Microsclerotia 
formation was examined in ∆HAC1, HAC1-C, HAC1u-HA, and HAC1i-HA strains by spot 
inoculation of 50 000 spores on CDM and incubation at 25 °C for ten days. Two independent 
transformants were tested for ∆HAC1 (VGB371, VGB372), HAC1u-HA (VGB439, VGB440), 
and HAC1i-HA (VGB437, VGB438) strains and a single transformant for the HAC1-C 
(VGB382) strain. Close up pictures were taken from colony centers (indicated as red boxes) 
and cross sections were cut to visualize the appearance of microsclerotia as melanized 
structures in the agar. Fungal material from colony centers was scraped off for microscopy to 
observe microsclerotia morphology. Neither melanized nor unmelanized microsclerotia were 
observed for the ∆HAC1 strain, whereas formation of wild type-like microsclerotia was 
observed for all other strains. Microsclerotia formation was qualitatively increased in the 
HAC1-C and the HAC1i-HA strains in comparison to wild type. Black scale bar = 1 mm, blue 
scale bar = 20 µm. 

HAC1-C∆HAC1WT HAC1u-HA HAC1i-HA
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For all complementation strains, wild type-like shaped and melanized microsclerotia 

could be observed, however, in qualitatively increased occurrence for the HAC1-C and 

HAC1i-HA strains and wild type-like frequencies in the HAC1u-HA strain (Figure 20). The 

absence of microsclerotia in ∆HAC1 and the increase in melanization in HAC1i-HA 

regardless of the decreased HAC1 expression levels in HAC1i-HA (Figure 18A) 

corroborate the role of HAC1 in regulation of microsclerotia formation. 

Within the plants vascular system V. dahliae forms conidiospores for spreading and 

systemic colonization of the host. The role of the UPR regulator Hac1 in conidiation was 

characterized by examination of the ability to form spores in the HAC1 deletion strain 

compared to wild type and the HAC1-C complementation strain. Therefore, the same 

number of spores was inoculated in liquid simulated xylem medium and quantified after 

five days. The HAC1 deletion strain displayed significantly reduced conidiospore 

numbers to 15% of the wild type level (Figure 21). Conidia levels of the HAC1-C strain 

were more similar to wild type with 86%. 

In summary, HAC1 is essential for microsclerotia formation and has important impacts on 

conidiation. Constant activation of the UPR in the HAC1i-HA strain is correlated with 

increased growth in response to ER stress and increased microsclerotia formation in 

V. dahliae. 

 

 

Figure 21: V. dahliae HAC1 positively regulates conidiospore formation. Quantification 
of conidiation was performed by inoculation of 4000 spores/ml in liquid SXM and incubation 
at 25 °C under constant agitation for five days in triplicates. The number of spores was 
determined for the wild type JR2, two independent transformants of ∆HAC1 (VGB371, 
VGB372), and the HAC1-C (VGB382) complementation strain in three independent 
experiments. The numbers of conidia relative to wild type are shown. The values determined 
for two independent ∆HAC1 transformants are represented in one bar. Significant differences 
to wild type determined by one-way Anova and Student´s t-test are shown with ****p=0, 
*p<0.05 with n(WT)=3, n(∆HAC1)=6, n(HAC1-C)=3. The HAC1 deletion strain shows 
reduced conidia formation. Conidia formation of HAC1-C was more similar to the wild type-
level. 
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3.3.5 V. dahliae HAC1 is dispensable for penetration of the A. thaliana root cortex 

A functional UPR was described to be essential for fungal propagation after penetration 

of plant cells in U. maydis. In both, U. maydis and A. brassicicola, the UPR regulatory 

transcription factor is essential for induction of disease symptoms in plants. Different to 

these two plant pathogenic species, which infect plants via the leaf surface by formation 

of appressoria, initial colonization of the host plant by V. dahliae occurs via the roots by 

intercellular growth or development of hyphopodia (Reusche et al., 2014; Zhao et al., 

2014, 2016). So far, the role of the UPR in initial colonization of the host and virulence 

was not described for root colonizing plant pathogens. Here, the root colonization 

behavior of the UPR defective V. dahliae HAC1 deletion strain was examined (Figure 

22). 

 

 
Figure 22: V. dahliae HAC1 is involved in initial colonization but dispensable for 
penetration of A. thaliana roots. Fluorescence microscopy pictures of three-week-old 
A. thaliana plants seven days post inoculation with the same numbers of spores from wild 
type JR2, ΔHAC1, and ΔVTA2 constitutively expressing ectopic GFP. Overview pictures (left) 
as well as close up pictures (middle) were taken. 3D volume view pictures (right) calculated 
as maximum intensity projections of a Z-stack of microscope images are displayed. Four 
plants inoculated with either JR2 OE-GFP (VGB392) or ΔHAC1 OE-GFP (VGB380) strains in 
two independent experiments and two plants inoculated with spores obtained from ΔVTA2 
OE-GFP strain were tested. Root cells were stained with 0.05% propidium iodide/0.01% 
silwet solution. ΔHAC1 OE-GFP displays reduced propagation on the root surface, but is 
able to penetrate A. thaliana roots and propagate after invasion of the outer layer. Scale bars 
= 20 µm, white arrows = root penetration sites, asterisks = changes of growth direction. 
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A HAC1 deletion strain expressing ectopically integrated GFP under control of the gpdA 

promoter was constructed in order to investigate the root colonization behavior in 

absence of HAC1. The ∆HAC1 OE-GFP strain was confirmed by fluorescence 

microscopy and Southern hybridization analysis (Figure S8). Three-week-old A. thaliana 

plants were inoculated with the same number of spores obtained from ∆HAC1 OE-GFP 

as well as from the wild type expressing free GFP and the fungal colonization behavior 

was observed after five to seven days. The Verticillium transcription activator of adhesion 

(VTA2) deletion strain served as control. ∆VTA2 penetrates plant roots like the wild type 

with less efficient proliferation inside the plant (Tran et al., 2014). 

Overall less hyphae of the ΔHAC1 OE-GFP strain were observed on the root surface in 

comparison to wild type and the ∆VTA2 control strain five to seven days after root 

dipping (Figure 22). Penetration sites, recognizable by the formation of swollen hyphal 

tips and change in the growth direction, were observed in absence of HAC1 similar to 

wild type and the ∆VTA2 strain, even if more frequently in the wild type (Figure 22). 

Furthermore, hyphal growth after invasion of the outer layer was observed for the ∆HAC1 

OE-GFP strain, as shown in the 3D volume view picture in Figure 22. 

Therefore, V. dahliae HAC1 is involved in initial colonization of the outer root surface, but 

is neither required for penetration of the A. thaliana root nor for invasion of the outer root 

cortex. 

3.3.6 V. dahliae HAC1 is required for colonization of tomato plants 

A. thaliana root colonization assays had shown that V. dahliae HAC1 is involved in 

colonization of the root surface, but is dispensable for penetration and initial propagation 

within the root cortex. To investigate the role of HAC1 in subsequent steps of plant 

colonization and induction of disease symptoms, the HAC1 deletion strain as well as 

HAC1-C and the HAC1u-HA and HAC1i-HA strains were tested in tomato infection 

experiments (Figure 23).  

∆HAC1 induced significantly less severe disease symptoms than the wild type 21 days 

after spore inoculation with about 70% of plants displaying no disease symptoms. None 

of the ∆HAC1 treated plants displayed heavy symptoms and no hypocotyl discolorations 

were observed for any of these plants. The in planta phenotype of the ∆HAC1 strain was 

partially complemented in HAC1-C, HAC1u-HA and HAC1i-HA treated plants. All of these 

plants displayed discoloration of the hypocotyl comparable to wild type infected plants 

(Figure 23A). HAC1-C treated plants showed only a slight reduction in disease 

symptoms, whereas inoculation with the HAC1u-HA or HAC1i-HA strains caused similar 

and even less severe symptoms in tomato plants in comparison to wild type. 
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Figure 23: V. dahliae HAC1 is required for induction of disease symptoms in 
S. lycopersicum. (A) Ten-day-old tomato plants were inoculated by root dipping into water 
control (mock) or spores obtained from wild type JR2 (WT), HAC1 deletion,  
complementation strain (HAC1-C), or from strains ectopically expressing either the 
uninduced (HAC1u-HA) or the induced (HAC1i-HA) mRNA variant under control of the native 
promoter and terminator. Representative plants and hypocotyl dissections 21 days post 
inoculation are shown. The relative number of plants with certain disease scores are 
displayed in the stack diagram. Two independent transformants of ∆HAC1 (VGB371, 
VGB372) were tested in three independent experiments. One transformant of HAC1-C 
(VGB382) was tested in two independent experiments. Two independent transformants of 
HAC1u-HA (VGB439, VGB440) and HAC1i-HA (VGB437, VGB438) were tested in one 
experiment. Only ΔHAC1 induced less severe disease symptoms in comparison to wild type. 
Different to plants treated with all other tested strains, the hypocotyl of ΔHAC1 inoculated 
plants appears mock-like (Scale bar = 1 mm). (B) Fungal outgrowth from stem sections. 
Stems were harvested, surface sterilized, cut, and incubated on PDM supplemented with 
chloramphenicol for seven days at 25 °C. ΔHAC1 could not be re-isolated from surface 
sterilized stem sections.Stems from plants infected with all other tested strains displayed 
fungal outgrowth after seven days. 

 

Fungal outgrowth from treated plants was tested to investigate whether the strains, 

especially ∆HAC1, were able to invade plant tissues. Therefore, stems from tomato 

plants used for determination of disease scores 21 days after inoculation were surface-

sterilized, cut into stem sections, and incubated on PDM agar supplemented with 



Results 

89 

chloramphenicol for seven days at 25 °C. Fungal outgrowth was observed for all strains 

except ∆HAC1 (Figure 23B). 

Hence, the absence of HAC1 caused severely decreased development of disease 

symptoms in tomato plants and did not allow its re-isolation from infected tissue 

suggesting that HAC1 is required to survive within the plants vascular system. 

Additionally, in an experiment with one repetition with two independent transformants 

each, a constitutively active UPR in HAC1i-HA led to the induction of unaltered disease 

symptoms in tomato plants in comparison to the strain HAC1u-HA harboring the 

uninduced mRNA splice variant of HAC1 with intermediate disease severity. This result 

suggests that virulence of V. dahliae is unaltered in presence of a constitutively active 

UPR. 

3.4 The V. dahliae oleate ∆12-fatty acid desaturase Ode1 promotes 

differentiation with only a minor impact on virulence 

3.4.1 V. dahliae Ode1 corresponds to the A. nidulans oleate ∆12-fatty acid 

desaturase OdeA 

Besides the UPR-monitored secretion of proteins, lipid molecules are involved in host-

fungus communication. Linoleic acid and the derived oxylipins from plant and fungus can 

modulate fungal differentiation and the development of disease symptoms (Calvo et al., 

2001; Brodhagen et al., 2008; Brodhun et al., 2009; Reverberi et al., 2010; Scala et al., 

2014; Fischer & Keller, 2016; Patkar & Naqvi, 2017). Oleate ∆12-fatty acid desaturases 

catalyze the oxidation of oleic acid to linoleic acid by introduction of a second double 

bond at position 12 of the carbon chain (Los & Murata, 1998). The impact of the oleate 

∆12-fatty acid desaturase OdeA on fungal differentiation was described in two Aspergilli 

(Calvo et al., 2001; Chang et al., 2004; Wilson et al., 2004), however, it was not 

characterized in plant pathogens. The impact of the corresponding desaturase Ode1 in 

V. dahliae on differentiation and virulence was analyzed. 

V. dahliae VDAG_JR2_Chr1g29610a was identified as the A. nidulans odeA 

(AAG36933.1) homolog by reciprocal BLAST search of the deduced amino acid 

sequences against the V. dahliae JR2 (Ensembl Fungi) and the A. nidulans (NCBI 

database) proteome with 66% aa sequence identity. The unspliced V. dahliae ODE1 

mRNA of 1504 bp contains two exons. The predicted intron-exon structure was 

confirmed by PCR amplification of the spliced transcript from wild type cDNA (Figure 24).  

The deduced Ode1 protein with a length of 481 aa and a predicted molecular weight of 

54 kDa contains two fatty acid desaturase (FAD) domains. The cytosolic catalytic center 

of ∆12-fatty acid desaturases is generally described to be formed by conserved N- and 

C-terminal histidine clusters described as FAD domains and iron atoms provided from 
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the membrane-bound donor cytochrome b5 (Los & Murata, 1998). The V. dahliae Ode1 

protein was predicted as a transmembrane protein with four putative hydrophobic 

transmembrane helices, two short non-cytosolic regions, and three hydrophile cytosolic 

regions, including the N- and C-termini of the protein (Figure 24). The catalytic center of 

the desaturase was proposed to be directed to the cytosol. Ode1 was suggested to be 

localized to plastid membranes with 89% and in the ER membrane with 7% probability as 

the second-best hit by the DeepLoc-1.0 prediction tool. Since fungi do not possess 

plastids, the localization in the ER is the most likely suggestion from this database. For 

other fungal ∆12- and ∆15-fatty acid desaturases, localization to the ER was described 

(Martin et al., 2007; Gostinčar et al., 2009). 

 

 

Figure 24: V. dahliae ODE1 encodes a membrane-bound oleate ∆12-fatty acid 
desaturase. (A) The V. dahliae oleate ∆12-fatty acid desaturase Ode1 is encoded by the 
gene VDAG_JR2_Chr1g29610a. The intron-exon structure of the 1504 bp ORF predicted by 
Ensembl Fungi was confirmed by PCR amplification of the spliced transcript from wild type 
cDNA. The deduced Ode1 protein consists of 481 aa. The protein contains two fatty acid 
desaturase domains (FAD; yellow; 77-112 aa, IPR021863; 138-424 aa; IPR005804) and four 
putative transmembrane helices (grey; 105-124 aa, 136-157 aa, 300-319 aa, 331-350 aa; 
Phobius). Domains were predicted by InterProScan. (B) Scheme of the predicted Ode1 
protein domain localization based on the InterProScan and DeepLoc-1.0 prediction tools. The 
N- and C-termini of the protein are directed to the cytosol. An iron atom and the FAD domains 
form the catalytic center of Ode1. Four transmembrane protein domains were proposed. 
Yellow = FAD domains, Fe = iron atom (based on Los & Murata, 1998). 

 

3.4.2 V. dahliae Ode1 localizes to plasma membranes and cell organelle 

membranes 

In order to analyze the role of Ode1 and Ode1-derived products in development and 

virulence of V. dahliae an ODE1 deletion strain was constructed. Strains harboring ODE1 

fused to GFP either at the 5´- or 3´-end at the endogenous locus under control of the 

native promoter and terminator were constructed to analyze the protein localization 

(Figure 25) and used as complementation strains. Prior to functional investigation, 

correct integration of deletion and GFP-labeled constructs was confirmed by Southern 

hybridization (Figure S9).  



Results 

91 

 

Figure 25: V. dahliae Ode1 is localized to plasma and organelle membranes different 
to vacuoles. (A) Immunoblot of complementation strains harboring ODE1-GFP or 
GFP-ODE1 at the endogenous locus under control of the native promoter and terminator. 
80 µg protein extracts isolated from ODE1-GFP transformant number 1 (VGB358) and 2 
(VGB359) or GFP-ODE1 transformant number 3 (VGB360) and 4 (VGB361) grown in liquid 
PDM for four days at 25 °C and a GFP-specific antibody were used. Ode1-GFP (81 kDa) 
and free GFP (27 kDa) were detected, as well as an additional band for ODE1-GFP 
transformants. (B) Subcellular localization of Ode1-GFP after 12 hours at 25 °C in liquid 
PDM. ODE1-GFP (VGB358) and wild type JR2 expressing ectopically integrated GFP under 
control of a constitutively active promotor were observed by fluorescence microscopy. 
Ode1-GFP localized to membranes of round cell organelles and close to hyphal tips of 
growing hyphae (indicated by white arrow). (C) Subcellular localization of Ode1-GFP and 
GFP-Ode1. Fluorescence microscopy 16 hours post inoculation of fungal spores (VGB358-
361) in liquid PDM and incubation at 25 °C in comparison to free GFP in the JR2-GFP 
control strain. Vacuoles were stained in red with FM4-64. Ode1 localized to membranes of 
round cell organelles different than vacuoles. For GFP-ODE1, diffuse GFP signals were 
observed inside vacuoles as well (indicated by white arrows). Blue scale bars = 20 µm, white 
scale bars = 10 µm. 
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The presence of the fusion proteins in fungal cells was verified for two independent 

transformants per strain in immunoblots (Figure 25A). Ode1 C-terminally fused to GFP 

displayed two bands, one with the predicted molecular weight of 81 kDa and a second 

between ~90-100 kDa, whereas only the band at 81 kDa was observed for N-terminally 

tagged Ode1 (Figure 25A). In both, GFP-ODE1 and ODE1-GFP strains, the band 

representing free GFP at ~27 kDa was relatively strong in protein extracts isolated from 

mycelium grown for four days in complete medium (PDM), but more prominent for the 

strains harboring Ode1 N-terminally fused to GFP (Figure 25A). 

For the protein sequence of the V. dahliae desaturase Ode1 four transmembrane helices 

were predicted (Figure 24). The subcellular localization of N- or C-terminal GFP fusion 

proteins under control of the native promoter was studied in the ODE1-GFP and 

GFP-ODE1 complementation strains in comparison to the wild type JR2 expressing 

ectopically integrated GFP under control of the constitutively active gpdA promotor. The 

GFP signals were observed by fluorescence microscopy 12 and 16 hours post 

inoculation of fungal spores in liquid complete medium (Figure 25B, C). 

The GFP-signals were localized to membranes of cell organelles and to a minor extend 

to plasma membranes in fungal hyphae of both, ODE1-GFP and GFP-ODE1 strains 

(Figure 25B, C). Further, a localization to plasma membranes close to tips of growing 

hyphae was observed frequently (Figure 25B). Localization of Ode1 in the membranes of 

vacuoles could be excluded by FM4-64 staining (Figure 25C). Additionally, the presence 

of a diffuse GFP signal within FM4-64 stained vacuoles was observed in the strain 

producing Ode1 proteins N-terminally fused to GFP. This observation suggests 

GFP-Ode1 to be less stable, resulting in the presence of free GFP and fusion protein 

degradation products in the vacuoles (Figure 25C). 

3.4.3 ODE1 is required for vegetative growth and microsclerotia formation in 

V. dahliae 

Oleate ∆12-fatty acid desaturases produce linoleic acid as an important membrane 

component. Membrane fluidity usually increases correlated with an increasing content of 

unsaturated fatty acids (Mansilla et al., 2004). Linoleic acid and the derived products are 

the major precursors for oxylipins with different impacts on fungal differentiation (Champe 

& El-Zayat, 1989; Brodhun & Feussner, 2011). The role of Ode1 in development of 

V. dahliae was examined testing vegetative growth and formation of microsclerotia as 

resting structures of the ODE1 deletion strain under physiological and membrane stress 

inducing conditions in comparison to wild type and complementation strains. 

Vegetative growth of the ∆ODE1 strain was tested by spot inoculation on various media 

including complete medium, simulated xylem medium, minimal medium with different 
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carbon sources (sucrose, galactose, glucose, or cellulose), and on media supplemented 

with stress inducing agents (NaCl, H2O2, SDS) to investigate, whether ODE1 is important 

for vegetative growth or to deal with membrane stress in V. dahliae. Vegetative growth of 

the ∆ODE1 strain was decreased in all tested conditions. Examples are shown in Figure 

26. 

 

 

Figure 26: V. dahliae ODE1 contributes to vegetative growth. (A) Ex planta phenotypes 
of the V. dahliae wild type JR2, ΔODE1, and the ODE1-GFP complementation strain nine 
days after spot inoculation of 50 000 spores on PDM, SXM, CDM supplemented with NaCl 
(0.5 M), CDM with either sucrose or cellulose as carbon source, and CDM with cellulose 
supplemented with linoleic acid (LA; 0.125 mg/ml) and incubation at 25 °C. (B) Growth 
quantification of the wild type JR2, ΔODE1, and the ODE1-GFP complementation strain 
three, six, and nine days after spot inoculation of 50 000 spores on CDM with cellulose as 
carbon source either without (left) or with supplementation of 0.125 mg/ml LA (right). Growth 
was quantified by measurement of two perpendicular diameters per colony for three 
independent colonies of the wild type and two independent transformants per genotype 
(VGB331, VGB332, VGB358, VGB359) in two independent experiments with similar results. 
ΔODE1 displayed ~50% decreased growth in comparison to wild type and the ODE1-GFP 
strain about nine days after spot inoculation on CDM with cellulose. Supplementation of the 
medium with LA partially complements the growth defect of ΔODE1 to ~75% of the wild type 
level. 



Results 

94 

Figure 27: V. dahliae ODE1 
is involved in microsclerotia 
formation. Microsclerotia 
formed by the V. dahliae JR2 

wild type, ∆ODE1, and the 
ODE1-GFP complementation 
strain after spot inoculation of 
50 000 spores. Two 
independent transformants per 
genotype were tested 
(VGB331, VGB332, VGB358, 
VGB359). Black scale bar = 1 
mm, blue scale bar = 20 µm, 
red boxes and dashed lines = 
cross sections from colony 
centers. (A) Pictures from 
colonies (top), cross sections 
(middle) and microscopy of 
fungal material scraped from 
colony centers (bottom) after 
nine days on CDM with 
cellulose and incubation at 
25 °C are shown. (B) Colonies 
(top) and cross sections of 
colony centers (bottom) after 
14 days on CDM with glucose 
(bottom view) and incubation 
at 25 °C in the dark are 
shown. 

Nine days after spot inoculation on complete medium ∆ODE1 showed a fluffier, whitish 

phenotype due to the production of more aerial mycelium compared to wild type and 

complementation strain ODE1-GFP. The supplementation of minimal medium with stress 

inducing agents resulted in decreased growth of all tested strains, but not especially in 

the ∆ODE1 strain as shown for sodium chloride in Figure 26A. 

The ODE1 deletion strain displayed the most severe decrease in vegetative growth on 

minimal medium containing cellulose as carbon source with a ~50% reduction of the 

colony diameter relative to wild type after nine days (Figure 26A, B). Colony diameters of 

ODE1-GFP were wild type-like (96%). The observed growth defect of ∆ODE1 could be 

partially restored by supplementation of the medium with the oleate ∆12-fatty acid 

desaturase product linoleic acid, resulting in a colony diameter about 75%. Again, 

ODE1-GFP displayed wild type-like colony diameters (95%). 

Alterations in melanization were observed for colonies formed by ∆ODE1. Colony cross 

sections of ∆ODE1 grown on minimal medium with cellulose displayed less melanized 

structures in the agar after nine days (Figure 27A).  
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During microscopy of fungal material from colony centers of ∆ODE1, wild type-like 

microsclerotia could be observed. Changing the growth conditions to 14 days incubation 

in the dark on minimal medium with glucose, a decrease in microsclerotia production in 

∆ODE1 became more apparent (Figure 27B). 

Hence, V. dahliae Ode1 is essential for wild type-like development of the fungal colony 

and shows positive impacts on microsclerotia formation. However, Ode1 is dispensable 

for stress responses under tested conditions. The C-terminal GFP fusion to Ode1 

allowed complementation phenotypes close to wild type levels. The observed growth 

defect of ∆ODE1 was partially restored in presence of extracellular linoleic acid. 

3.4.4 V. dahliae ODE1 is dispensable for induction of disease symptoms in 

tomato plants 

The ODE1 deletion strain was less impaired in growth in presence of linoleic acid ex 

planta. Also plants synthesize linoleic acid as an important precursor of defense-related 

compounds like plant oxylipins and cutin monomers and, therefore, might substitute the 

defect in fungal linoleic acid biosynthesis (Soliday & Kolattukudy, 1977; Brodhun & 

Feussner, 2011). During tomato plant infection experiments the impact of the ODE1 

deletion on virulence of V. dahliae was investigated.  

Tomato plants inoculated with spores obtained from the ∆ODE1 strain displayed overall 

similar stunting and hypocotyl discolorations to wild type-infected plants with only slightly 

reduced numbers of plants with disease symptoms after 21 days. About 70% of the 

tomato plants inoculated with ΔODE1 spores displayed disease symptoms in comparison 

to 87% of the wild type treated plants (Figure 28). 

In summary, the ODE1 deletion strain displayed generally impaired vegetative growth, 

correlated with decreased microsclerotia production and allows almost wild type-like 

induction of disease symptoms. Hardly any decrease in induced disease symptoms was 

observed in plants inoculated with spores obtained from the ODE1 deletion strain 

suggesting a minor or no role of the single gene ODE1 in virulence of V. dahliae. This 

virulent in planta phenotype of a strain with a severe growth defect might result from 

substitution of the fungal ODE1 product by linoleic acid provided in plant cells. 
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Figure 28: V. dahliae ODE1 is not required for induction of severe disease symptoms 
in S. lycopersicum. Ten-day-old tomato plants were inoculated by root dipping into water 
control (mock) or spores obtained from wild type JR2 (WT), ΔODE1 (VGB331, VGB332), or 
ODE1-GFP complementation (VGB359) strains. Representative plants and overview of 15 
plants per genotype from one experiment are shown. Disease symptoms were assessed 
after 21 days and transferred into disease scores per plant visualized in a stack diagram. 
Discoloration of hypocotyl dissections is shown. Data are shown from three independent 
experiments for wild type and ΔODE1 (VGB331), two independent experiments for a second 
ΔODE1 transformant (VGB332), and a single experiment for ODE1-GFP. Scale bar = 1 mm, 
n = total number of evaluated plants per genotype. 
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4 DISCUSSION 

The outcome of a host-fungus interaction can be fungal colonization due to plant 

susceptibility or fungal death combined with plant resistance. Between these two 

extremes several intermediate outcomes of disease severity can be observed. Several 

factors affect this relationship between a pathogen and a host, including environmental 

factors, nutritional conditions, age, and genome variations of both, plant and fungus. 

Fungal signaling genes were in the focus of this study. The aim was a better 

understanding of the complex interplay of fungal signaling cascades favoring beneficial 

or detrimental outcomes in interactions with host plants.  

It was shown, that pathogenic V. longisporum isolates possess genomic insertions which 

contribute to attenuation of disease symptoms induced in the interplay with rapeseed 

plants. These regions can be either species- or host-specific.  

Virulence of V. dahliae is mediated by MAPK signaling pathways, but the role of scaffold 

proteins in insulation of these pathways was yet unstudied in plant pathogens. Ham5 is a 

MAPK scaffold in different ascomycetes. Here it was shown, that MAPK signaling 

pathways in V. dahliae mediate differentiation, stress response, and virulence 

independent from this scaffold protein.  

Plant invasion and suppression of the plant defense responses rely on the secretion of 

certain tools which can be regulated by the UPR pathway. Therefore, the V. dahliae bZIP 

transcription factor Hac1 and its role in virulence was characterized in this study. The 

UPR regulator has conserved as well as species-specific impacts on differentiation of 

V. dahliae and is an important factor for virulence.  

Virulence can be connected to fungal differentiation. Important regulators of fungal 

differentiation are lipid metabolites which can act as signaling molecules. 

Characterization of the fungal oleate ∆12-fatty acid desaturase Ode1, catalyzing the 

synthesis of linoleic acid, revealed an important contribution to fungal growth with only a 

minor impact on the induction of disease symptoms.  

Figure 29 represents an overview about the findings of this thesis, which will be 

discussed in detail in the following. 
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Figure 29: Interactions between haploid V. dahliae and amphidiploid 
V. longisporum isolates with their plant hosts studied in this thesis. 

 The pathogenic V. longisporum isolate Vl43 possesses the genomic 

region Vl43LS20kb, which is absent in the genome of the nonpathogenic 
isolate Vl32. This region contributes to attenuation of disease symptoms 
induced in the interplay with rapeseed plants (indicated by arrow with green 
plus from fungal cell and arrow with dashed line and red minus from plant 

cell).  The V. dahliae Vmk1 MAPK pathway components Mek2 (MAP2K) 

and Vmk1 (MAPK) positively control vegetative growth and microsclerotia 
formation (indicated by arrow with green plus to “Growth and Development”) 
and are required for induction of disease symptoms in plants (indicated by 
arrow with red minus from fungal cell) independent from the scaffold homolog 
Ham5 in V. dahliae. The MAPK pathway is required for initial penetration and 
for the susceptibility of the plant (indicated by arrow with dashed lines and 

green plus from plant cell).  Upon interaction with the host, the fungal cell 

has to cope with an increased demand for secreted proteins, which leads to 
ER stress. The uninduced mRNA of the UPR regulator Hac1 (HAC1u) is 
unconventionally spliced (indicated by arrow close to ER membrane) and the 
HAC1i mRNA is translated into the bZIP transcription factor Hac1, which 
regulates UPR target genes. V. dahliae HAC1 is involved in the ER stress 
response and vegetative growth under non-stress conditions, has a strong 
impact on conidiation, and is essential for the formation of microsclerotia 
(indicated by arrow with green plus to “Growth and Development”). HAC1 is 
required for the virulence of V. dahliae (indicated by arrow with red minus 
from fungal cell) and potentially regulates expression or secretion of effector 
proteins, which enables the fungus to circumvent plant defense responses 

(indicated by arrow with dashed line and green plus from plant cell).  The 

oleate ∆12-fatty acid desaturase Ode1, which catalyzes the synthesis of 
linoleic acid, supports fungal growth and microsclerotia formation (indicated 
by arrow with green plus to “Growth and Development”). Ode1 deficiency has 
only minor effect on development of disease symptoms in planta, which might 
be due to the availability of plant linoleic acid that potentially supports fungal 
growth and differentiation (indicated by arrow with dashed line and green plus 
from plant cell). 
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4.1 The pathogenic V. longisporum isolate Vl43 possesses a 

genomic insertion contributing to disease symptom attenuation 

in rapeseed plants 

4.1.1 V. longisporum isolates colonize plants with different pathotypes 

V. longisporum is an amphidiploid interspecies hybrid, which evolved from at least three 

separate hybridization events (Inderbitzin et al., 2011b; Figure 2). All known 

V. longisporum lineages arose by hybridization of the haploid species A1 with one of 

three V. dahliae or V. dahliae related strains D1, D2, or D3 (Inderbitzin et al., 2011b). 

Isolates from the A1/D3 lineage were described overall as the least pathogenic in 

comparison to the lineages A1/D1 and A1/D2. However, not all isolates of the A1/D3 

lineage colonize rapeseed without induction of disease symptoms (Novakazi et al., 

2015). In a pathogenicity test involving seven isolates from the lineage A1/D1, four 

A1/D2, and four A1/D3, a single A1/D3 isolate was the most virulent on rapeseed 

(Novakazi et al., 2015). In this study, the tested A1/D3 strain Vl32 colonized rapeseed 

plants without induction of any disease symptoms, whereas the A1/D1 isolate Vl43 

induced severe disease symptoms under laboratory conditions (Figure 7). Both isolates 

were able to enter and propagate within the plants with different outcomes for plant 

health. Less fungal outgrowth could be observed from stem sections of the 

asymptomatic strain Vl32, hinting to reduced propagation and reduced fungal biomass 

within the plant. This might be either due to plant mechanisms reducing fungal growth or 

a less aggressive colonization behavior of Vl32. Previous experiments comparing Vl43 

and Vl32 root colonization did not show differences of the fungal behavior prior to 

entering the plant on the root surface. Accordingly, propagation of Vl32 within the plant 

following initial penetration of the roots must be affected. The comparison of the ex 

planta phenotypes of V. longisporum isolates from different lineages revealed a 

difference in the growth behavior of strains from the A1/D1 towards the A1/D3 lineage on 

malt extract agar. A1/D3 strains Vl32 and Vl19 formed bundles of single hyphae, which 

were covering the colonies. These bundles were rare in the A1/D1 strains Vl43 and 

Vl145c. Since Verticillia colonize the vascular system of the host plant and occurrence of 

disease symptoms is correlated with clogging of vessels hindering the transpiration 

stream (Yadeta & Thomma, 2013), the formation of arranged hyphal bundles might have 

a less disturbing influence on the flow of the xylem fluid in Vl32 colonized plants. An 

impact of directed hyphal growth on the pathotype of plant colonizing fungi was observed 

in the mutualistic grass colonizing Epichloë festucae. Here, hyphae show parallel growth 

aligned with elongating leaf cells (Christensen et al., 2008). A mutant deficient in the 

reactive oxygen producing membrane-bound Nox complex (nicotinamide adenine 
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dinucleotide phosphate oxidase complex), displayed pathogenic development correlated 

with hyperbranched hyphal growth which was no longer tightly connected to the leave 

cells (Brown et al., 2016; Tanaka et al., 2006, 2008; Takemoto et al., 2006, 2011). The 

formation of hyphal bundles in isolates of the V. longisporum A1/D3 lineage was 

observed only on malt extract agar, which is not very similar to the conditions of low 

nutrient availability given within the vascular system of rapeseed plants. If hyphal 

bundles are formed within the plant and influence the transpiration stream remains to be 

elucidated.  

4.1.2 The V. longisporum Vl43LS20kb region mediates virulence attenuation 

towards rapeseed plants 

Investigation of genomic differences between V. longisporum isolates with different 

pathotypes revealed a high conservation on gene level, but differences in the 

chromosome numbers and the karyotypes. The additional chromosome observed in the 

asymptomatic isolate Vl32 was not an accessory chromosome comprising genes that are 

species-specific, but a result of rearranged genomic regions. Occurrence of frequent 

synteny breakpoints caused by genomic rearrangements was observed in all Verticillia 

(Shi-kunne & Faino, 2017). Chromosomal reshuffling in eukaryotes is correlated with 

alterations in phenotypes and is assumed to confer varying fitness in different niches by 

gene gains or losses (Coghlan et al., 2005; Tang & Amon, 2013; Dong et al., 2015; 

Plissonneau et al., 2018). In the haploid species V. dahliae a correlation between 

genomic rearrangements and the evolution of Lineage Specific regions was observed 

(Klosterman et al., 2011; de Jonge et al., 2013; Chen et al., 2018; Faino et al., 2016; 

Gibriel et al., 2019). The V. dahliae VdLs.17 LS regions 1-4 were proposed to be 

involved in adaptation of V. dahliae to different host niches and in its host range 

expansion in comparison to V. alfalfae (Klosterman et al., 2011). A genomic LS region 

originating from the parental lineage related to V. dahliae is present in the pathogenic 

isolates Vl43 and Vl145c and absent in the nonpathogenic V. longisporum isolate Vl32 

(Figure 8). This finding may lead to the assumption that this region contributes to fungal 

virulence. However, characterization of the Vl43LS20kb region unraveled a negative 

impact on the severity of disease symptoms induced in V. longisporum Vl43 colonized 

rapeseed plants. The significant effect of this region was shown in three different strains 

deficient in the entire Vl43LS20kb region or in either the first or the second part of this 

region. All of the Vl43 LS deletion strains induced more severe disease symptoms in 

rapeseed plants than the wild type (Figure 9, Figure 30). 

The different LS deletions did not cause obvious alterations in their ex planta phenotypes 

in comparison to the wild type Vl43 (Figure S2). Increased fungal growth or propagation 



Discussion 

101 

with detrimental impact on the host plant cannot be considered as an explanation for the 

hypervirulent in planta phenotype. Instead, negative impacts on pathogenicity might be 

explained with the hemibiotrophic life style of pathogenic Verticillium strains, performing 

a switch from an initial biotrophic stage to a later necrotrophic stage (Fradin & Thomma, 

2006). These stages require differentiated strategies in the crosstalk with the host plant. 

Fungal tools used to modulate the interaction with the plant can be divided into two 

groups: those secreted during biotrophic interactions and those, which induce the 

necrotrophic phase (O’Connell et al., 2012; Lo Presti et al., 2015; Chini et al., 2018; 

Gibriel et al., 2019). During the biotrophic interaction, the host defense responses are, 

for example, suppressed by effectors and secondary metabolites. Induction of the 

necrotrophic stage is correlated with the secretion of lytic enzymes, oxylipins, or fungal 

effectors which are activating the plant defense responses, induce cell death, and 

facilitate fungal nutrient uptake (O’Connell et al., 2012; Lo Presti et al., 2015; Chini et al., 

2018; Gibriel et al., 2019). Mis-regulation of the tools required for induction of the 

necrotrophic phase can lead either to a lack of this phase, a premature induction, or 

rather increased secretion of the respective tools, which might result in hypervirulence. In 

our case, this means that expression or secretion of tools required to induce the 

necrotrophic phase might be decreased by certain factors encoded in the Vl43LS20kb 

region in the wild type Vl43. These pathogenicity attenuating factors would make the 

pathogenic isolate more tolerable for rapeseed plants and would not be required in the 

asymptomatic colonizer Vl32, due to the absence of the respective targeted tools for 

induction of the necrotrophic phase. 

The Vl43LS20kb region, identified in the pathogenic rapeseed colonizer Vl43, encodes 

six hypothetical small proteins and one larger protein with cytosolic, nuclear, or 

transmembrane localization, but without secretion signals (Figure 8B). For Lsg1, Lsg2, 

Lsg4, and Lsg7 no domains were predicted. The absence of a predicted signal peptide 

makes the secretion of these proteins via the ER/Golgi secretory pathway not very likely. 

Alternatively, unconventional secretion mechanisms independent from secretion signal 

sequences exist in fungi (Miura & Ueda, 2018). Unconventional secretion is described, 

for example, for fungal enzymes with effector properties, such as an isochorismatase in 

Phytophthora sojae and V. dahliae. The isochorismatase manipulates defense 

responses by suppression of salicylic acid accumulation in the host plant (Liu et al., 

2014). One should consider that examples for mutants deficient in effectors with 

hypervirulent phenotypes in fungi are rare and, therefore, the presence of effector 

encoding genes in the Vl43LS20kb region might be less likely. In U. maydis 12 effector 

gene clusters were identified, encoding genes upregulated simultaneously in infected 

plant tissue (Kämper et al., 2006). Absence of these clusters resulted in decreased 
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virulence in four cases and in unaffected virulence in seven cases. However, 

hypervirulence was observed following disruption of the Um01234-41 effector gene 

cluster (Kämper et al., 2006). The mechanism explaining this phenotype has not been 

elucidated yet. 

To date, research on LS regions correlated with synteny breakpoints in Verticillia was 

mainly restricted to identified effectors promoting fungal virulence (de Jonge et al., 2013; 

Faino et al., 2016; Kombrink et al., 2017; Li, 2019, Dissertation, University Wageningen). 

Effector gene enrichment in LS regions relative to the core genome was found by 

comparison of different V. dahliae isolates (de Jonge et al., 2013; Gibriel et al., 2019). In 

contrast, LS and core genomes from different species of the genus displayed the same 

relative numbers of genes encoding proteins with secretion signals (Klosterman et al., 

2011). The number of effector genes relative to the total number of genes encoded in the 

LS regions of V. dahliae strains was rather small (de Jonge et al., 2013; Gibriel et al., 

2019). Besides effector protein encoding genes other genes in LS regions might provide 

potential for niche adaptation. 

Lsg3 and Lsg6 encoded by the Vl43LS20kb region contain predicted transcription factor 

domains. Lsg3 is encoded in the LSI subregion, whereas Lsg6 is encoded in the LSII 

subregion. Downregulation of virulence-related genes has been observed during 

transcriptome analysis of related fungal species with different pathotypes. Recently, 

comparison of the transcriptomes of a V. dahliae strain, which causes less severe 

disease symptoms in cotton in comparison to a more virulent relative, revealed 

downregulation of pathogenicity-related genes as ,for example, genes involved in 

hydrophobin and melanin production (Jin et al., 2019). Genome comparison of the same 

V. dahliae strains displayed an enrichment of genes bioinformatically predicted as 

transcription factors. These transcription factors could downregulate pathogenicity-

related genes (Jin et al., 2019). Another example from different Colletotrichum species 

corroborates that differentiated transcriptional regulation during host colonization can 

decide about the life style of plant colonizing fungi resulting in different pathotypes, which 

are not necessarily associated with extensive remodeling of the gene repertoire 

(Hacquard et al., 2016). A limited activation of pathogenicity-related genes in planta was 

observed for the endophytic species C. tofieldiae in comparison to the pathogenic 

relative C. incanum (Hacquard et al., 2016). Transcription factors, which are negatively 

regulating virulence, have been characterized in A. brassicicola and F. oxysporum 

(Caracuel et al., 2003; Cho et al., 2012; Brown et al., 2016). In F. oxysporum the pH 

signaling transcription factor PacC negatively regulates genes expressed under low pH 

conditions and mutants deficient in this repressor display increased virulence in tomato 

plants (Caracuel et al., 2003). Further, hydrolytic enzymes are transcriptionally repressed 
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by the A. brassicicola transcription factor Amr1 (Alternaria melanin regulation 1) known 

for its role in melanin biosynthesis in other plant pathogenic fungi (Cho et al., 2012). The 

role of this transcription factor in virulence is unique for A. brassicicola and was not 

observed for homologs as V. dahliae VdCmr1 (V. dahliae Colletotrichum homologous 

melanin regulation 1; Cho et al., 2012; Brown et al., 2016; Wang et al., 2018). 

For Lsg5 encoded in the Vl43LS20kb region, a Zinc finger RING-type domain was 

predicted (Figure 8B). Zinc finger RING-type domains mediate protein-protein 

interactions or ubiquitin transfer either to substrates or the Zinc finger RING-type domain 

protein itself (Joazeiro & Weissman, 2000). The protein possesses an additional 

transmembrane domain, with a short non-cytosolic and a longer cytosolic region 

containing the RING domain. The yeast scaffold protein Ste5 of the pheromone 

response pathway contains a RING-domain required for its interaction with Ste4, a 

subunit of the G-protein coupled to the transmembrane receptors of the mating pathway 

(Inouye et al., 1997). Orthologous Ham5 scaffold proteins in ascomycete filamentous 

fungi do not possess a RING-domain (Figure 11). The regulation of signaling cascades 

assembled at the membrane following perception of external signals might involve RING-

domain transmembrane proteins, such as the protein Lsg5 encoded in the Vl43LS20kb 

region.  

Degradation of proteins located in plasma membranes, like receptors, transporters, and 

channels, by endocytosis is generally triggered by ubiquitination (Piper & Luzio, 2007; 

Nakamura, 2011). This could be also true for soluble proteins interacting with complexes 

associated to the membrane. In mammals, Membrane-Associated RING-CH (MARCH) 

proteins are a well described family of RING-domain proteins, which are located to cell 

membranes and are important for ubiquitination of cell-surface immune molecules (Goto 

et al., 2003; Nakamura, 2011; Samji et al., 2014; Zhang et al., 2019). The absence of 

ubiquitin ligases located to the fungal plasma membrane might result in increased 

occurrence of certain membrane or membrane-complex-associated proteins. An 

adaptation of the fungal membrane proteome following interaction with the host plant´s 

cell wall was described in the plant pathogen B. cinerea (Liñeiro et al., 2016). This 

adaptation might be disturbed in the absence of membrane-bound ubiquitin ligases 

responsible for degradation of membrane proteins. An increased occurrence of 

membrane-complex-associated proteins, such as co-receptors or activators of signaling 

cascades, in absence of a membrane-bound ubiquitin ligase could result in a permanent 

activation of cascades. This permanent cascade activation might promote virulence, for 

example by increased secretion of virulence factors. 

Defects in signaling cascades important for sensing of the environment, signal 

transduction, and induction of infection-related morphogenesis result in hypervirulence in 
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fungi (Brown et al., 2016). In the basidiomycete U. maydis the phosphatase Rok1 

(regulator of Kpp2) controls dephosphorylation of the partially redundant Fus3/Kss1-like 

MAP kinases Kpp2 and Kpp6 (kinase PCR-product 2/ 6), which regulate efficient 

appressorium formation and plant invasion in a negative feedback loop (Di Stasio et al., 

2009). U. maydis rok1-deficient mutants displayed a hypervirulent phenotype on maize 

plants correlated with more efficient appressorium formation. As previously mentioned, 

Nox complex-deficient mutants of E. festucae induce disease symptoms in planta 

correlated with hyperbranched hyphal growth with increased fungal biomass (Tanaka et 

al., 2006; Takemoto et al., 2006; Tanaka et al., 2008; Takemoto et al., 2011; Brown et 

al., 2016). In the same fungus, the Hog1-like MAPK signaling cascade is involved in 

downregulation of hydrolytic enzyme secretion and mutants deficient in the MAPK 

display virulence on their natural symbiotic hosts (Eaton et al., 2010; Brown et al., 2016). 

In summary, Lsg3 and Lsg6 have the potential to act as transcription factors with roles in 

downregulation of mechanisms required for induction of disease symptoms. Lsg5 could 

regulate signal transduction from the membrane via protein-protein interactions or 

ubiquitination, targeting components to proteasomal degradation. Further, proteins 

encoded in the Vl43LS20kb region might act as effector proteins, which are 

unconventionally secreted. The mechanism leading to hypervirulence following deletion 

of the Vl43LS20kb region in Vl43 still remains to be elucidated. This is the first study 

unraveling an LS region in Verticillia which attenuates virulence in a pathogenic isolate. 

The absence of this region in the asymptomatic isolate Vl32 shows that not only 

pathogenicity factors or the loss of genomic regions, but also regions involved in 

attenuation of pathogenicity, contribute to the differences in the genomes of isolates from 

different pathotypes. 

4.1.3 Host specificity of virulence and putative attenuating factors in Verticillia 

In this study, an LS region with functions in attenuation of disease symptoms in the 

interaction of V. longisporum with rapeseed plants was identified. The pathogenesis-

reducing mechanism of this region depends either on the fungal species or the host. 

The genome of the haploid V. dahliae isolate JR2 contains a Vl43LS20kb homologous 

region and Vl43LS20kb homologous subregions could be identified rearranged in the 

genome of the V. dahliae strain VdLs.17. In contrast, the Vl43LS20kb region is absent 

from the genome of V. alfalfae VaMs.102, which is more closely related to the 

V. longisporum parental lineage A1, and from the V. longisporum isolate Vl32 (A1/D3). 

These findings corroborate the origin of the Vl43LS20kb region in the genome of the 

V. longisporum lineage A1/D1 parental species D1. 
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The Vl43LS20kb homologous region encoded in the genome of V. dahliae JR2 displays 

an indifferent role in pathogenicity towards tomato plants (Figure 10, Figure 30). The 

V. dahliae JR2 wild type does not induce disease symptoms in rapeseed plants. Two 

V. dahliae isolates were able to colonize the roots of rapeseed plants, but the isolates 

remained in the lower parts of the plants without induction of disease symptoms (Zhou et 

al., 2006). Whether the homologous Vl43LS20kb region in V. dahliae affects the 

colonization behavior and pathogenicity of this species against rapeseed or other host 

plants is currently unknown. 

The genome of V. dahliae JR2 harbors an additional copy of the gene LSG1 encoded in 

the Vl43LS20kb homologous region, which was not deleted in V. dahliae JR2 ∆LS. Since 

all constructed deletion strains in V. longisporum Vl43, ∆LSI, ∆LSII, and ∆LS, resulted in 

induction of more severe disease symptoms in rapeseed plants and the phenotype was 

even stronger in ∆LSII than in ∆LSI (Figure 9), the presence of an additional copy of 

LSG1 located in the LSI subregion does not represent a sufficient explanation for the 

unaltered pathogenicity of V. dahliae JR2 in absence of the homologous Vl43LS20kb 

region. 

Even if V. dahliae species have a broad host range, the single isolates of the species 

differ in their host ranges and in virulence towards different host plants (Resende et al., 

1994; Zeise & von Tiedemann, 2002; Pegg & Brady, 2002; Gibriel et al., 2019). For 

isolates of the same V. longisporum lineage, differences in their pathogenicity on 

different host plants was observed as well (Novakazi et al., 2015). Therefore, one can 

suggest that strains of both species generally display a high degree of specialization and 

adaptation to a certain host. This specialization might not always be the result of the 

acquirement of novel genes, but also the differential regulation of existing mechanisms in 

response to certain environmental factors.  

In other plant colonizing fungi, gene losses due to chromosomal rearrangements with 

significant roles in niche adaptation were described (Sharma et al., 2014; Hartmann et 

al., 2017; Plissonneau et al., 2018), which might be a possible mechanism in Verticillia 

as well. Further, asymptomatic or less virulent isolates might contain several 

pathogenicity-related genes in their genomes, which are inactive due to certain 

regulatory mechanisms. 

Several studies investigating LS regions from subgroups of V. dahliae isolates revealed 

effector genes required for colonization of particular hosts as, for example, the effector 

NLP-2 (necrosis and ethylene-inducing peptide 1-like protein 2) which is involved in 

virulence of the strain JR2 on tomato and A. thaliana, but dispensable for tobacco 

infection (Santhanam et al, 2013). The V. dahliae effector Tom1 is essential for tomato 
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infection only and the effector Sun1 contributes to virulence specifically in sunflower 

colonization (Li, 2019, Dissertation, University Wageningen).  

 

 

Figure 30: The Vl43LS20kb region attenuates pathogenicity of V. longisporum Vl43 in 
rapeseed and the homologous region is indifferent for virulence of V. dahliae JR2 in 
tomato plants. The genomes of V. longisporum lineages evolved by hybridization from two 
haploid parental species, which are V. dahliae strains (D2, D3) or close relatives of V. alfalfae 
(A1) and V. dahliae (D1). The hybrid genomes differ in their karyotypes due to chromosomal 
rearrangements and display different chromosome numbers (15 for Vl43; 16 for Vl32). The 
species V. dahliae JR2 and V. longisporum Vl43 (A1/D1) harbor the Vl43LS20kb region in 
their genomes, which is absent in V. longisporum Vl32 (A1/D3) and V. alfalfae VaMs.102. 
V. dahliae JR2 exhibits an additional copy of the gene LSG1. Deletion of the Vl43LS20kb 
homologous region in V. dahliae JR2 region results in an unaltered virulent phenotype on 
tomato plants (indicated by the light red arrow for both, the wild type and the LS deletion 
strain), whereas deletion of the Vl43LS20kb region in V. longisporum Vl43 results in 
hypervirulence (indicated in dark red), suggesting a species- or host-specific role in 
attenuation of disease symptoms. V. longisporum isolates are unable to colonize tomato as a 
host (indicated by dashed lines), whereas V. dahliae remains in the roots without induction of 
disease symptoms and is not able to colonize the entire plant (indicated by dashed lines; 
Zhou et al., 2006). V. alfalfae colonizes alfalfa and hops and is not known as a colonizer of 
tomato or rapeseed plants (indicated by dashed lines; Bhat & Subbarao, 1999). 



Discussion 

107 

Further, seven LS genes acquired by horizontal gene transfer from F. oxysporum, 

contributed to the virulence of V. dahliae Vd991 in cotton, but were dispensable for 

virulence on tomato and lettuce (Chen et al., 2018). Integration of these genes into 

V. dahliae strains JR2 or VdLs.17 resulted in increased virulence on cotton, whereas 

there was no effect on tomato or lettuce hosts (Chen et al., 2018). The underlying 

mechanisms regulating the observed host-specific induction of disease symptoms is still 

unknown for all of these examples and remains to be elucidated. One could assume that 

fungal virulence factors, which are inducing disease symptoms in a certain host, target 

host-specific mechanisms for regulation of defense responses. The absence of the 

corresponding target in a different host would make the fungal tool dispensable. Further, 

recognition of host-specific external signals sent by the plant might be essential for 

induction of a fungal mechanism that is regulating its virulence. 

In summary, the Vl43LS20kb region makes V. longisporum Vl43 more tolerable for 

rapeseed plants. Presence of the homologous region in V. dahliae JR2 is indifferent for 

induction of disease symptoms in tomato plants. Different impacts of the genomic region 

on the host-fungus interaction might be caused either by differential gene regulation in 

the different organisms, by host dependent gene regulation, or by host-specific targets of 

virulence factors regulated by the Vl43LS20kb region. 

4.2 MAPK signaling pathways in V. dahliae mediate differentiation, 

stress response and virulence independent from the scaffold 

protein Ham5 

4.2.1 The Ham5 scaffold function for the Fus3/Kss1-like MAPK cascade is not 

conserved among filamentous ascomycetes 

The perception of environmental signals and subsequent signal transduction are 

essential to induce adaptation processes in filamentous fungi. For example, sensing of a 

suitable host has to be forwarded to activate fungal colonization-related mechanisms. 

The Vmk1 MAPK signaling pathway in V. dahliae has a conserved role in fungal 

pathogenicity (Rauyaree et al., 2005; Sarmiento-Villamil et al., 2018). In homologous 

pathways of N. crassa and A. nidulans, a scaffold protein is required for insulation 

(Dettmann et al., 2014; Jonkers et al., 2014; Frawley et al., 2018) and homologs of this 

scaffold protein have been bioinformatically predicted in a subdivision of the Ascomycota 

(Jamet-Vierny et al., 2007). In this study, the impact of the corresponding V. dahliae 

protein Ham5 on Vmk1 MAPK pathway-mediated functions was analyzed. 

Vmk1 has a conserved essential role in pathogenicity and MAPK deletion strains 

displayed reduced conidiation and microsclerotia formation (Rauyaree et al., 2005). A 
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decrease in vegetative growth on certain media was observed in this study (Figure 13). 

The MAP2K Mek2 displayed the same impact on the phenotype as Vmk1 regarding 

microsclerotia formation, vegetative growth, and virulence (Figure 13, Figure 14). In 

addition to the high conservation of V. dahliae Mek2 to characterized homologs (Figure 

12), these results provide indirect evidence that the kinase functions in the same MAPK 

pathway like Vmk1. No hints for additional targets of Mek2 have been observed. 

V. dahliae Vph1 was suggested to act downstream of the cascade as a yeast Ste12-like 

transcription factor activated upon phosphorylation by Vmk1 (Sarmiento-Villamil et al., 

2018). The Vph1-deficient mutant displayed no alterations in its ex planta phenotype, but 

did not induce plant disease symptoms, suggesting that Vph1 is not the only target of the 

Vmk1 MAPK pathway in V. dahliae (Sarmiento-Villamil et al., 2018). This study showed 

that Vmk1 cascade-mediated functions in growth, microsclerotia formation, and virulence 

are independent from the presence of Ham5 (Figure 13, Figure 14), corroborating that 

these functions do not rely on insulation by the potential scaffold protein in V. dahliae. In 

N. crassa and A. nidulans the Ham5 scaffold protein homologs display similar functions 

as the Fus3/Kss1-like MAPK (Li et al., 2005; Aldabbous et al., 2010; Frawley et al., 

2018). For example, N. crassa HAM-5 and MAK-2 are essential for hyphal and germling 

fusion, have a positive impact on vegetative growth, formation of aerial hyphae, as well 

as on sexual and asexual development (Li et al., 2005; Aldabbous et al., 2010). Similarly, 

the homolog IDC1 displays diverse impacts on fungal growth and differentiation in 

P. anserina. IDC1 is involved in the non-self-perception resulting in the reduction of 

vegetative growth and the induction of melanization in the stationary phase (Jamet-

Vierny et al., 2007). In P. anserine, IDC1 contributes to sexual and asexual development 

and aerial hyphae formation (Jamet-Vierny et al., 2007). The observed phenotypes in 

absence of IDC1 display high similarity to phenotypes observed in absence of 

components of the cell wall integrity (CWI) MAPK pathway and migration of the 

respective MAPK to the nucleus is dependent on IDC1 in this fungus. These results led 

to the positioning of P. anserina IDC1 into another signaling cascade than its homologs 

in A. nidulans and N. crassa (Jamet-Vierny et al., 2007). 

A scaffolding function of V. dahliae Ham5 in the CWI MAPK pathway, as suggested in 

P. anserina, is possible, but rather unlikely, since one would expect the observation of an 

ex planta or in planta phenotype in absence of a CWI MAPK cascade scaffold protein for 

the tested conditions. Even if homologs of the CWI MAPK pathway components in 

V. dahliae have not been characterized to date and their functions in fungal growth, 

differentiation, and virulence are still unknown, homologs of this cascade in related fungi 

possess effects on the response to cell wall stressors in many cases, and even more 

conserved, have strong impacts on virulence (Rui & Hahn, 2007; Zhao & Xu, 2007; 
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Hamel et al., 2012; Segorbe et al., 2017; Jiang et al., 2018a). The cell wall stress 

response to SDS was unaffected in the absence of Ham5 in Verticillium and no impact 

on virulence was observed in this study. Overlapping functions of the Vmk1 and CWI 

MAPK pathways regarding their function in microsclerotia production are possible. The 

V. dahliae MAP2K and the MAPK homologs of the CWI pathway could be identified by 

BLAST searches due to their high conservation and were found to be upregulated in 

later stages of microsclerotia formation similar to Vmk1 and Mek2 (Xiong et al., 2014). 

This could be a hint for an impact of the CWI MAPK pathway on microsclerotia 

production or melanization, which would be expected to be reflected in the deletion 

phenotype of a scaffold protein as well. 

Similar to the CWI MAPK pathway, a scaffold function of Ham5 for the Hog1 MAPK 

pathway is unlikely. The response to osmotic stress was not affected in absence of 

Ham5 in V. dahliae (NaCl, H2O2, Sorbitol). Besides their role in the response to osmotic 

stressors, the Hog1 MAPK pathway cytosolic osmo-sensor VdSsk1, the MAP2K VdPbs2, 

and the MAPK VdHog1 display partially overlapping functions with the Vmk1 MAPK 

pathway with positive impacts on microsclerotia formation or melanization and virulence 

(Wang et al., 2016; Tian et al., 2016; Zheng et al., 2019; Figure 31). 

Shared functions with the cascade components could be shown also for potential 

receptors of the Vmk1 and Hog1 MAPK pathway. Direct evidence for upstream 

regulators for the activation of the Vmk1 MAPK pathway has not been given to date, but 

regulatory impacts of two transmembrane receptors, VdMsb2 and VdSho1, on the Vmk1 

MAPK pathway in V. dahliae would be possible (Figure 31). Both receptors have been 

characterized regarding their functions in development and virulence in V. dahliae and 

display positive impacts on conidiation and virulence (Tian et al., 2014; Qi et al., 2016), 

similar to Vmk1 (Rauyaree et al., 2005). Microsclerotia development and melanization 

were unaffected in absence of VdSho1 (Qi et al., 2016), whereas microsclerotia 

production was reduced in a VdMsb2 deletion strain (Tian et al., 2014) similar to Vmk1 

and Mek2 deletion strains in this study. Further, the receptors are involved in oxidative 

stress responses (Tian et al., 2014; Qi et al., 2016). Hints from studies in other fungi are 

given, which support the assumption that the receptors could have regulatory roles for 

both, Vmk1 and Hog1 MAPK pathways in V. dahliae. In yeast the transmembrane 

proteins Msb2 and Sho1 are involved in the activation of both, the Kss1 and the Hog1 

MAPK pathway (Cullen et al., 2012). Physical interaction of Sho1 with the Fus3/Kss1-like 

MAPK module could be shown in F. graminearum (Gu et al., 2015). In F. oxysporum, 

impacts of the receptors on phosphorylation of the Fus3/Kss1-like MAPK homolog, 

expression of corresponding target genes, as well as on invasive growth were observed 

(Perez-Nadales & Di Pietro, 2015). However, Msb2 and Sho1 influence the MAPK-
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dependent functions only partially, corroborating the presence of additional regulatory 

components for this pathway in F. oxysporum (Perez-Nadales & Di Pietro, 2015). 

 

 

Figure 31: MAPK signaling pathways in V. dahliae. In V. dahliae components of two 
MAPK cascades, the Vmk1 and the Hog1 MAPK signaling pathways, were described to date. 
In this study, the MAP2K Mek2 and the Ham5 homolog of the Vmk1 MAPK cascade were 
characterized. Ham5 is dispensable for growth, microsclerotia formation, and virulence and 
therefore cannot be assumed to play a scaffolding role for these functions of the cascade. 
The functions of Ham5 in V. dahliae is unknown. Mek2 displays Vmk1-like positive regulatory 
roles in vegetative growth, microsclerotia production, and virulence. Indirect evidence was 
shown for Vph1 to act as a downstream transcription factor homologous to yeast Ste12. 
Vph1 functions in regulation of virulence but was dispensable for growth and microsclerotia 
production (Sarmiento-Villamil et al., 2018). Therefore, the presence of other potential targets 
of Vmk1 can be assumed. The Hog1 MAPK pathway displays similar functions in 
microsclerotia formation like the Vmk1 MAPK pathway. Both pathways are involved in 
regulation of virulence, however, the Vmk1 MAPK pathway has a greater impact. Described 
components are given with their respective names as determined in VdLs.17 (Xiong et al., 
2014), but to date unstudied components are indicated with the V. dahliae JR2 gene 
identifiers (gene identifiers abbreviated for a better overview, VDAG_JR2_Chr…). The cell 
wall integrity MAPK pathway was not yet studied. Dashed lines indicate potential interactions. 
Question marks indicate, that proteins are unknown. 

 

Structural differences between V. dahliae Ham5 to homologs in N. crassa and 

A. nidulans could be a reason for the lacking functional conservation. The characterized 

HAM5 gene in V. dahliae was the only hit during reciprocal BLAST search with known 
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homologs and the deduced protein possesses a similar domain structure and higher 

protein sequence identity to N. crassa and all other species tested in this study than the 

A. nidulans homolog (Figure 11). However, V. dahliae Ham5 contains a shorter WD40 

domain with 255 aa in comparison to 335 aa for N. crassa (Jonkers et al., 2016) and 

311 aa for A. nidulans (Frawley et al., 2018). In N. crassa the N-terminal WD40 domain 

of HAM-5 was described to be essential for its function and the interaction with the 

MAK-2 protein, whereas the C-terminal domain plays a minor role for its function 

(Jonkers et al., 2014). WD40 repeat domains generally display roles in multi-protein 

interactions (Xu & Min, 2011) and have been identified in several fungal scaffold proteins 

(Pöggeler & Kück, 2004; Jain, 2019; Hicks et al., 2001). The N-terminal truncation in 

V. dahliae might have an impact on its function in mediating protein-protein interactions. 

In conclusion, a scaffolding function of the V. dahliae Ham5 homolog for one of the 

MAPK pathways in V. dahliae is rather unlikely, but might be possible in a not yet 

identified context. Further the Ham5 protein could be required for protein-protein 

interactions in another cascade (Figure 31). To date the function of the Ham5 protein in 

V. dahliae remains unknown. Even if the tested functions of the Vmk1- and Mek2-

mediated MAPK pathway are independent from the Ham5 homolog in V. dahliae, it is 

possible that a non-homologous scaffold protein, different to Ham5, might have 

insulating function on the cascade. 

4.2.2 V. dahliae Mek2 and Vmk1 are involved in fungal propagation in planta 

In the course of this study, it could be shown that the V. dahliae MAPK pathway 

components Mek2 and Vmk1 display crucial roles in induction of disease symptoms in 

tomato plants (Figure 14A). Hypocotyl discolorations as a hint for the induction of plant 

defense responses have not been observed following treatment with MEK2 or VMK1 

deletion strains. These results were similar to findings of two V. dahliae Vmk1-deficient 

isolates from lettuce and tomato with severely reduced virulence and absence of 

vascular discolorations in tomato, cotton, egg-plant, and watermelon (Rauyaree et al., 

2005). During both studies, plant experiments were performed with wounded plant roots, 

since Verticillia colonize plants preferentially via root wounds (Pegg & Brady, 2002; Su et 

al., 2018). At this point, the role of Mek2 and Vmk1 in initial plant invasion of the root 

surface is unknown, but could be tested in root colonization assays. Plant infection 

experiments with the potential downstream Ste12-like transcription factor Vph1 

suggested an essential role of the protein in hyphopodia formation and penetration of the 

root cortex (Sarmiento-Villamil et al., 2018). Only indirect evidence was given that Vph1 

is a target of the Vmk1 MAPK pathway in V. dahliae (Sarmiento-Villamil et al., 2018).  
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This study shows that the Fus3/Kss1-like MAPK pathway components Vmk1 and Mek2 

contribute to, but are not essential for fungal propagation inside the plant tissue. ∆MEK2, 

∆VMK1, ∆HAM5∆MEK2, or ∆HAM5∆VMK1 strains were successfully re-isolated from 

stem sections of infected plants, although to a minor extend compared to wild type or 

∆HAM5 and, therefore, must be able to survive within the plant (Figure 14B, C). Unlike 

Vmk1 and Mek2 in this study, mutants deficient in Vph1 could not be re-isolated from 

asymptomatic plants (Sarmiento-Villamil et al., 2018). This might be due to different 

experimental settings in the respective plant infection experiments, since Vph1 deletion 

strain-treated plants were not wounded prior to spore inoculation different to Vmk1 and 

Mek2-treated plants in this study.  

In several phytopathogenic fungi, the Fus3/Kss1-like MAPK deletion strains were 

apathogenic and the MAPK was not only essential for penetration of plant surfaces, but 

also essential for invasive growth and propagation within wounded plants (Xu & Hamer, 

1996; Takano et al., 2000; Zheng et al., 2000; Ruiz-Roldán et al., 2001; Mey et al., 

2002). In others, the absence of the MAPK resulted in severely reduced virulence, 

invasive growth, and propagation, but not in the complete disability of fungal propagation 

within the host plant as in V. dahliae Vmk1- and Mek2-deficient strains in this study (Lev 

et al., 1999; Di Pietro et al., 2001; Cho et al., 2007). As an example, the A. brassicicola 

Fus3/Kss1-like MAPK Amk1 is essential for penetration of plant surfaces and the amk1 

mutant was avirulent on intact host tissue, whereas it was able to colonize and partially 

induce disease symptoms on damaged host surfaces (Cho et al., 2007). The 

supplementation of damaged plant leaf material was sufficient to induce disease 

symptoms even on intact leaf surfaces, leading to the assumption that biochemical 

signals from damaged tissue were required to induce infection-related development in 

the amk1 mutant (Cho et al., 2007). The inability to penetrate intact host surfaces was 

correlated with decreased hydrolytic enzyme gene expression levels in absence of 

Amk1, which was increased on wounded tissue (Cho et al., 2007). A role of the 

Fus3/Kss1-like MAPK in regulation of cell wall degrading enzymes was observed as well 

in other phytopathogens as, for example, in F. oxysporum, Fusarium graminearum, and 

Cochliobolus heterostrophus (Di Pietro et al., 2001; Lev & Horwitz, 2003; Jenczmionka & 

Schäfer, 2005; Jiang et al., 2018a). In C. heterostrophus, cellulase genes were regulated 

by the MAPK pathway (Lev & Horwitz, 2003). The F. oxysporum MAPK displayed an 

impact on gene expression of pectate lyases (Di Pietro et al., 2001), whereas the MAPK 

was dispensable for the production of pectinolytic or amylolytic enzymes in 

F. graminearum and was responsible for lipolytic activities instead (Jenczmionka & 

Schäfer, 2005). 
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In this study, the regulation of pectinolytic enzymes was not noticeably altered in 

absence of Vmk1 and Mek2 and seems to be mainly independent of the respective 

MAPK pathway in V. dahliae. The colony size of Mek2- and Vmk1-deficient strains was 

unaffected on simulated xylem medium containing pectin as carbon source (Figure 13A). 

The Vmk1- and Mek2-mediated MAPK pathway probably does not play a major role in 

the regulation of cellulase genes in V. dahliae, since colonies formed on minimal medium 

with either sucrose or cellulose as carbon source display only slight decreases in 

vegetative growth in comparison to wild type and the relative difference is the same on 

both tested media (Figure 13). 

In conclusion, it was shown that the V. dahliae Fus3/Kss1-like MAPK components Mek2 

and Vmk1 contribute to, but are not essential for survival of the fungus within wounded 

host plants, whereas both proteins are crucial for induction of disease symptoms. It can 

be assumed that the MAPK pathway has additional functions in virulence, besides 

substrate degradation, early infection-related morphogenesis, and fungal propagation in 

the host plant in V. dahliae. 

4.3 The unfolded protein response regulator Hac1 mediates 

differentiation and virulence in V. dahliae 

4.3.1 Unconventional splicing and translation of the bZIP transcription factor 

Hac1 is conserved in V. dahliae 

During the different stages of the fungal perception and colonization of a host, signaling 

cascades coordinate the expression and secretion of tools enabling the interaction. This 

requires unfolded protein response-mediated adaptation of the protein processing and 

secretion capacity to changing demands in the ER (Richie et al., 2011; Heimel et al., 

2013). In yeast, the ER transmembrane sensor Ire1 processes cytosolic unconventional 

splicing of the bZIP transcription factor Hac1 encoding mRNA (Shamu & Walter, 1996; 

Welihinda & Kaufman, 1996; Sidrauski & Walter, 1997; Gonzalez et al., 1999; Okamura 

et al., 2000; Figure 4). After splicing, the mRNA is translated into a protein that migrates 

to the nucleus and regulates transcription of UPR target genes (Mori et al., 1996, 1998). 

The impacts of the homologous transcription factor Hac1 on growth, differentiation, ER 

stress response, and virulence in V. dahliae were characterized in this study. 

The Ire1-dependent splicing of the HAC1 mRNA is conserved in V. dahliae, since the 

HAC1 mRNA contains an unconventional intron with a high sequence and structural 

similarity to Ire1 spliced introns in other organisms (Figure 16A; Yoshida et al., 2001; 

Saloheimo et al., 2003; Mulder et al., 2004; Wimalasena et al., 2008; Richie et al., 2009; 

Cheon et al., 2011; Hooks & Griffiths-Jones, 2011; Joubert et al., 2011; Heimel et al., 
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2013; Montenegro-Montero et al., 2015). The intron matches the consensus sequence of 

the Ire1 targeted splice sequence in HAC1 homologs (Hooks & Griffiths-Jones, 2011) 

and formation of the characteristic twin stem-loop structure, required for recognition of 

the cleavage sites by Ire1, was proposed (Sidrauski & Walter, 1997; Figure 16B, C). The 

unconventionally spliced mRNA variant of HAC1 could be amplified from ER stress 

inducing growth conditions but as well from growth conditions without additional 

supplementation of ER stressors, suggesting that the HAC1 mRNA is unconventionally 

spliced to a certain extend also in absence of those ER stressors. 

The Hac1 protein was shown to be translated in the HAC1i-HA strain in immunoblots 

(Figure 18), which show a shift of the distinct band. A similar band shift has been 

observed in immunoblot analysis of the homologous Cib1s protein in U. maydis, which 

was proven to be the correct protein by mass spectrometry (personal communication apl. 

Prof. Kai Heimel). A possible explanation for the band shift is the formation of SDS stable 

secondary structures, leading to a slower migration through the gel. 

In this study, a role of an uninduced protein variant Hac1u was not found in V. dahliae, 

similar to other ascomycetes. Translation of the uninduced HAC1 mRNA into a Hac1u 

protein could not be detected in immunoblots, even though the gene was expressed 

(Figure 17). This could be due to a translational block or a strong instability of the Hac1u 

protein. The HAC1i-HA strain, expressing the unconventionally spliced mRNA variant of 

HAC1 in absence of the unspliced HAC1 mRNA variant, was viable and complemented 

the observed deletion phenotypes regarding microsclerotia formation and induction of 

disease symptoms in planta. This suggests that the presence of HAC1u has no 

significant role for these functions in V. dahliae. Theoretically, both mRNAs, HAC1u and 

HAC1i, could be translated into proteins with an identical N-terminus but unique C-termini 

due to the frame shift of the ORF after unconventional splicing (Figure 16A). The bZIP 

domain and the NLS are located in the identical N-terminus. Therefore, both hypothetical 

proteins contain the bZIP transcription factor domain important for the formation of 

dimers, which can be either homo- or heterodimers, and both could be translocated into 

the nucleus. In higher eukaryotes the HAC1 homolog XBP1 is translated into both, the 

uninduced and the induced protein variants (Yoshida et al., 2006, 2009). Here, the bZIP 

domain mediates homo- as well as heterodimerization, resulting either in XBP1u-XBP1u, 

XBP1u-XBP1, or XBP1-XBP1 dimers (Tirosh et al., 2006; Yoshida et al., 2006). 

Homodimers of the XBP1 protein act as positive UPR regulators by binding to UPR 

target genes in the nucleus (Yamamoto et al., 2007). Since XBP1u contains a nuclear 

export signal, homodimers of this protein reside in the cytosol and heterodimerization 

prevents nuclear localization of the induced protein variant and thereby acts as negative 

regulator of the UPR (Tirosh et al., 2006; Yoshida et al., 2006). In the basidiomycete 
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U. maydis, regulatory roles of the unspliced mRNA of the HAC1 homolog cib1u and the 

protein Cib1u were proposed (Heimel et al., 2013). Overexpression of the induced mRNA 

variant cib1s results in hyperactivation of the UPR and lethality as long as the unspliced 

mRNA is not present in the cell. Expression of cib1u is required for attenuation of the 

transcriptional UPR regulator in U. maydis (Heimel et al., 2013).  

The length of the unconventional intron plays an important role in posttranscriptional 

regulation of the HAC1 mRNA. The similarity of the short 20 nt unconventional intron in 

V. dahliae to related filamentous ascomycetes (Figure 16B) supports the assumption that 

the translation of the HAC1u mRNA might be either blocked or the protein is very 

unstable due to similar mechanisms. In contrast to S. cerevisiae, base-pairing interaction 

between the unconventional introns and the 5´UTR for inhibition of ribosomal translation 

cannot be observed in the HAC1 mRNA of filamentous ascomycetes due to the 

shortened length (Mulder & Nikolaev, 2009). Truncation of the 5´UTR length was 

described to result in translation of the HAC1 mRNA upon ER stress in different 

Aspergilli, T. reesei, and A. brassisicola (Saloheimo et al., 2003; Mulder et al., 2004; 

Joubert et al., 2011). Initially, an impact of upstream open reading frames (uORFs) on 

translational repression was assumed (Saloheimo et al., 2003; Mulder et al., 2004). 

Studies in A. niger revealed base-pairing of the 5´UTR of the HAC1 mRNA with an 

inverted repeat sequence as attenuation mechanism (Mulder & Nikolaev, 2009; Heimel, 

2015). Additionally to the translational block of the unspliced HAC1 mRNA, accelerated 

degradation of Hac1u proteins was observed in yeast (Di Santo et al., 2016). These 

findings in related fungi might explain the absence of Hac1u in V. dahliae. 

4.3.2 The unfolded protein response regulator Hac1 mediates species-specific 

differentiation in V. dahliae 

In this study, it was shown that V. dahliae HAC1 affects growth and fungal differentiation 

even in the absence of typical UPR stress inducing agents (Figure 19-21). V. dahliae 

HAC1 is essential for the formation of microsclerotia as resting structures and has a 

positive impact on conidiation. The role of HAC1 in fungal growth and differentiation in 

V. dahliae is partially conserved to other filamentous fungi, but specific impacts of HAC1 

could be observed as well.  

The protein sequence conservation of Hac1 between homologs from V. dahliae, yeast, 

the dimorphic basidiomycete U. maydis, ascomycetes, and human is rather low with the 

highest similarity of 55% between V. dahliae and T. reesei (Figure 17). The low 

sequence conservation of Hac1 in the highly conserved pathway might be a result of its 

function in the crosstalk to developmental programs (Heimel et al., 2013). In several 

studies, it could be shown that the impact of the Hac1 homologs on fungal growth and 
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differentiation is highly adapted, since even closely related species show different 

phenotypes in absence of the UPR regulatory transcription factor (Heimel et al., 2013; 

Montenegro-Montero et al., 2015). 

V. dahliae HAC1 is involved in the response to ER stress. The HAC1 deletion strain was 

generally impaired in vegetative growth and did not show a pronounced additional 

impairment in response to tunicamycin. However, the expression of the induced splice 

variant of HAC1 improved the ability to cope with the ER stress situation in V. dahliae, 

although the expression levels of the induced splice variant in HAC1i-HA were more than 

a third lower than in the wild type (Figure 18-20). Under non-stress conditions, HAC1i-HA 

displayed reduced growth in comparison to wild type, which might be explained by 

differential regulation of genes supporting vegetative growth in correlation to a 

hyperactive UPR. Similar as in V. dahliae, genomic integration of the spliced HAC1 

mRNA variant resulted in decreased growth in Aspergillus niger correlated with a 

downregulation of mechanisms for energy generation and cell development, whereas the 

genes for the protein secretion machinery were upregulated (Carvalho et al., 2012).  

In U. maydis and C. neoformans the UPR has no impact on vegetative growth in 

absence of ER stress as in yeast (Nikawa et al., 1996; Kaufman, 1999; Cheon et al., 

2011; Heimel et al., 2013). In contrast, similar to the observed conidiation defects in 

V. dahliae, the absence of HAC1 resulted in severe reduction in conidiation in M. oryzae 

(Tang et al., 2015), A. niger (Mulder & Nikolaev, 2009), and A. brassicicola (Joubert et 

al., 2011).  

Besides the similar impact on conidiation, an important role of Hac1 in vegetative growth 

in absence of ER stress could be shown for the same fungi as in V. dahliae (Mulder & 

Nikolaev, 2009; Joubert et al., 2011; Tang et al., 2015). The impact of the UPR regulator 

on fungal growth and conidiation in the absence of ER stress in these species suggests 

a constitutive activation of the UPR leading to the regulation of certain target genes 

involved in growth and developmental processes (Heimel, 2015). This is confirmed by 

the finding that the induced mRNA variant could be amplified from cultures grown under 

non-stress inducing conditions in V. dahliae as mentioned previously. In A. fumigatus, a 

basal UPR activity under non-stress conditions has been observed as well (Feng et al., 

2011). Comparison of the transcriptomes of a HAC1 deletion strain and the wild type, 

either under non-stress or ER stress conditions, revealed very different gene expression 

profiles in A. fumigatus, corroborating the possibility to adjust the expression of UPR 

target genes to certain stress levels (Feng et al., 2011). 

Different to the ER stress-specific UPR activation or the constitutive activation of the 

UPR to a certain level, in a few examples, the UPR was activated under specific 

conditions. The Hac1 homolog is dispensable for unstressed vegetative growth, but 
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required for growth at higher temperatures and on complex substrates in A. fumigatus 

(Richie et al., 2009). A similar observation was made in N. crassa, where the UPR 

regulator is required especially for growth on crystalline cellulose substrates 

(Montenegro-Montero et al., 2015). Here, an interplay of the sterol regulatory element 

binding protein (SREBP) pathway, which regulates the secretion of lignocellulolytic 

enzymes in filamentous fungi, and the UPR was suggested (Montenegro-Montero et al., 

2015; Qin et al., 2017). The secretion of cellulases is suppressed in absence of the UPR 

regulator in N. crassa (Montenegro-Montero et al., 2015; Qin et al., 2017). An impact of 

the UPR on cellulose degradation and a correlation to secretion of cellulases has been 

observed as well in T. reesei and A. nidulans (Collén et al., 2005; Brown et al., 2013; 

Wang et al., 2014; Qin et al., 2017). A direct role in coupling of the conserved UPR to 

organism-specific developmental programs was found for the U. maydis UPR 

transcription factor Cib1 (Heimel et al., 2013). The Cib1 protein contains a C-terminal 

domain specifically required for its interaction with the developmental regulator 

Clampless 1 (Clp1) of the b mating type-dependent signaling pathway (Heimel et al., 

2010, 2013). The heterodimer formation stabilizes Clp1, is important to initiate fungal 

propagation after penetration, has a role in effector secretion, and is involved in 

regulation of virulence in the smut fungus (Heimel et al., 2013; Hampel et al., 2016). The 

b mating type-dependent signaling pathway initiates the morphological switch from yeast 

to filamentous growth and is specifically found in heterobasidiomycetes (Kothe, 1996). 

Hac1 proteins in ascomycetes might undergo completely different protein-protein 

interactions in frame of coupling the UPR to differentiation. 

In this study, it could be shown that HAC1 is essential for the formation of microsclerotia, 

the melanized resting structures of V. dahliae (Figure 19, 20). HAC1 deletion strains 

were unable to form microsclerotia under any tested condition and the expression of the 

induced HAC1 mRNA variant in HAC1i-HA resulted in increased microsclerotia 

formation, regardless of a decreased expression level in comparison to wild type. One 

suggestion to explain the essential role of HAC1 in microsclerotia formation is that the 

UPR is a crucial checkpoint to induce resting structure formation following sensing of 

unfavorable conditions. Microsclerotia formation can be observed at temperatures below 

the growth optimum (~20 °C; Soesanto & Termorshuizen, 2001), under nutrient-limited 

conditions as on complex substrates or in dense cultures, as well as in the presence of 

several stressors including ER stress inducing agents. The mechanisms activating the 

formation of microsclerotia in V. dahliae are not yet understood, even if several 

candidates were shown to influence the production. Components of the cAMP signaling 

pathway, which is stimulated by perception of high-glucose conditions, have negative 

impacts on the formation of microsclerotia such as the catalytic subunit of the cAMP-
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dependent protein kinase A (Tzima et al., 2010, 2012). As previously described in this 

work, several MAPK signaling components show positive regulatory impacts on 

microsclerotia formation as for example Vmk1 and Mek2 (Figure 13; Rauyaree et al., 

2005; Tian et al., 2014; Qi et al., 2016; Wang et al., 2016; Tian et al., 2016; Zheng et al., 

2019). Other candidates are substantial for the melanization as for example Vayg1 

(Verticillium homolog to Aspergillus yellowish green 1), which is required for 

dihydroxynaphthalene biosynthesis (Fan et al., 2017). Even if all these candidates have 

impacts on microsclerotia formation or melanization, examples for essential roles 

comparable to HAC1 are rare. One example with an essential role in microsclerotia 

formation is the transcription factor Som1 (sorting mitochondrial 1), which is additionally 

involved in growth, conidiation, adhesion, and virulence of V. dahliae (Bui et al., 2019). 

Som1 was found to be required for regulation of adhesin encoding genes, such as the 

transcription activators of adhesion Vta2 and Vta3 which are regulators of flocculin genes 

involved in adhesion and microsclerotia formation (Tran et al., 2014; Bui et al., 2019). In 

S. cerevisiae, it could be shown that Hac1 is involved in the regulation of flocculin genes 

and interacts with the general control of amino acid biosynthesis (Herzog et al., 2013) 

and that ER stressed cells display slightly increased flocculation (Scrimale et al., 2009). 

Therefore, the absence of microsclerotia in Som1- and Hac1-deficient V. dahliae strains 

hints to a crosstalk of Som1 and the UPR in the regulation of microsclerotia formation. 

In conclusion, the UPR regulator HAC1 is active to a certain extend under non-stress 

conditions. It is involved in the regulation of growth and sporulation and might be a 

checkpoint to sense and transduce the necessity of resting structure formation in 

V. dahliae (Figure 32). 

4.3.3 V. dahliae Hac1 is essential for fungal colonization of the host plant 

In this study, it could be shown that the V. dahliae UPR regulator HAC1 is involved in 

colonization of the root surface, but not required for the penetration and initial invasion of 

the root cortex (Figure 22). Further, HAC1 is involved in successful propagation within 

the host plant (Figure 23). Less fungal growth on the root surface was observed for the 

HAC1 deletion strain in comparison to wild type and the VTA2 deletion strain in root 

colonization experiments. This can be either caused by impaired growth or by an inability 

to adhere to the surface. Similar to Hac1, the transcription factor Som1 was found to be 

required for proliferation on the root surface correlated to its impact on adhesin gene 

expression (Bui et al., 2019). Therefore, not only the similar impact on microsclerotia 

formation, but also the potential role of HAC1 in adhesion could hint into direction of an 

interplay of the UPR and Som1. However, the impact of HAC1 on adhesion requires 

further investigation. Different to HAC1, SOM1 is essential for penetration of the root 
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surface (Bui et al., 2019). However, target genes of Som1 were found to control different 

steps of plant root penetration and colonization including the transcription factors Vta2 

and Vta3 (Bui et al., 2019). 

Similar to V. dahliae, the initial penetration of the plant surface was unaffected in the 

appressorium-forming fungus A. brassicicola in absence of the UPR regulator AbHacA 

(Joubert et al., 2011). In the dimorphic fungus U. maydis the Hac1 orthologue is required 

to induce biotrophic growth within the plant after formation of appressoria and 

penetration of the plant surface (Heimel et al., 2010; Heimel et al., 2013). In contrast, 

UPR components are involved in the initial penetration of the plant surface by M. oryzae 

(Yi et al., 2009; Tang et al., 2015; Jiang et al., 2018b). 

Since fungal re-isolation from stems was not possible for the V. dahliae HAC1 deletion 

strain in this study, one can assume that the fungus is hardly able to propagate in the 

vascular system and primarily remains in the roots or lower parts of the plant or does not 

survive after initial colonization of the root cortex. The absence of HAC1 resulted in 

severely reduced conidiation in simulated xylem medium (Figure 21), which might 

disable fungal spreading in the vascular system. Besides the decrease in conidiation, 

increased sensitivity to plant phytoalexins was observed in the A. brassicicola UPR 

regulator-deficient strain. An altered sensitivity to plant antimicrobial compounds remains 

to be elucidated in the V. dahliae HAC1 deletion strain, but could comprise an 

explanation for the observed in planta phenotype. Tomato plants treated with the HAC1 

deletion strain displayed severely decreased disease symptoms, however, in ~30% of 

the plants rather mild symptoms could be observed (Figure 23A). The induction of these 

symptoms could be a result from damage caused by the fungus or from the energy costs 

of successful immune defense responses in the plants. The impairment in adapting to 

increased protein secretion demands upon host colonization might also be an 

explanation for the less pathogenic outcome of the interaction of the HAC1 deletion 

strain with the host plant as previously suggested in studies with the plant and animal 

pathogens A. fumigatus, A. brassicicola, and U. maydis (Joubert et al., 2011; Richie et 

al., 2011; Heimel et al., 2013). 

It is possible that the plant is able to activate defense responses and suppress fungal 

colonization of the HAC1 deletion strain due to a lack of fungal effector gene expression 

and secretion, which are required to modulate the plants immune system. Examples for 

regulation of fungal effector genes by the corresponding UPR transcription factor in the 

maize colonizer U. maydis are given (Hampel et al., 2016). Further, it is possible that 

V. dahliae Hac1 regulates virulence factors independent of ER stress induction, similar to 

the signal peptide peptidase Ssp1 in U. maydis (Pinter et al., 2019). Here, deletion of the 
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Cib1-regulated gene ssp1 resulted in an avirulent in planta phenotype without impacts of 

ssp1 on vegetative growth or ER stress response (Pinter et al., 2019). 

 

 

Figure 32: V. dahliae HAC1 regulates differentiation and virulence. The HAC1 mRNA 
occurs in two splice variants in the cell. The HAC1u mRNA contains an unconventionally 
spliced intron, which is presumably targeted by the ER transmembrane endoribonuclease 
Ire1 (indicated by an arrow located at the ER membrane). Splicing of the unconventional 
intron results in the mRNA splice variant HAC1i, which is translated into the protein Hac1. 
The transcription factor Hac1 presumably regulates transcription of UPR target genes by 
binding to UPR elements (UPRE) in their promoters and is essential for the development of 
microsclerotia as resting structures. Hac1 regulates vegetative growth under non-stress and 
ER stress conditions. Furthermore, HAC1 or Hac1-regulated genes are important for 
sporulation, fungal propagation within host plants, and induction of disease symptoms. 

 

In this study, the impact of the constitutive presence of unconventionally spliced HAC1i 

mRNA on growth, differentiation, and virulence of V. dahliae was tested by construction 

of HAC1i-HA. Ectopic integration into the HAC1 deletion strain resulted in decreased 

gene expression in comparison to wild type similar to the strain containing an ectopic 

integration of the HAC1u mRNA, HAC1u-HA (Figure 18). The decreased expression 

levels were sufficient to complement the microsclerotia and growth phenotype of the 

HAC1 deletion strain in HAC1u-HA. For HAC1i-HA even increased microsclerotia 

formation could be observed. The decreased growth in HAC1i-HA is assumed to be 

caused by a differential gene expression of metabolic genes in response to the 

perception of ER stress similar to A. niger (Carvalho et al., 2012) and not due to an 

incomplete complementation. However, tomato plants treated with HAC1u-HA or 

HAC1i-HA strains displayed a similar induction of disease symptoms with intermediate 

severity between wild type and HAC1 deletion strain infected plants, suggesting an 

impact of the decreased expression levels of HAC1 on fungal virulence. Since the 

differences in HAC1 gene expression to wild type are similar in both strains and both 
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strains induce similar severities of disease symptoms, an impact of the constitutive 

presence of unconventionally spliced HAC1 mRNA on virulence cannot be assumed. 

In conclusion, the UPR regulator Hac1 plays a major impact on the fungal ability to 

colonize host plants, either due to decreased growth and fungal propagation on the root 

surface as well as decreased conidiation and spreading within the plant, but likely as well 

due to the inability to evade the plant immune response, since it is not required for 

penetration, but for propagation inside the host (Figure 32). 

4.4 The V. dahliae oleate ∆12-fatty acid desaturase Ode1 has 

important roles in fungal growth and is dispensable for induction 

of disease symptoms 

4.4.1 The V. dahliae oleate ∆12-fatty acid desaturase Ode1 contributes to fungal 

growth and differentiation 

Different signaling molecules contribute to the crosstalk between fungi and their host 

plants and decide about the outcome of the interaction. Besides the secretion of effector 

proteins, which can be regulated by the UPR (Hampel et al., 2016; Pinter et al., 2019), 

lipid metabolites can act as signaling molecules (Christensen & Kolomiets, 2011). Since 

linoleic acid and the derived oxylipins were described to be able to modulate fungal 

differentiation and the development of disease symptoms (Calvo et al., 2001; Brodhagen 

et al., 2008; Brodhun et al., 2009; Reverberi et al., 2010; Scala et al., 2014; Fischer & 

Keller, 2016; Patkar & Naqvi, 2017), the impact of the oleate ∆12-fatty acid desaturase 

Ode1 on differentiation and virulence of V. dahliae was analyzed.  

Due to the protein domain structure, the similarity to the corresponding desaturase in 

A. nidulans, and the positive impact of medium supplementation with linoleic acid on 

growth of the ODE1 deletion strain (Figure 24, 26), V. dahliae Ode1 can be assumed to 

catalyze the conversion of oleic acid to linoleic acid. In A. nidulans and A. parasiticus, a 

depletion of linoleic acid and the derived products as well as an increase in oleic acid 

following disruption of the homologous ODE1 gene were observed (Calvo et al., 2001; 

Chang et al., 2004). 

The construction of strains with Ode1 either N- or C-terminally fused to GFP has shown, 

that the N-terminus of the protein is important for its function. C-terminally GFP tagged 

Ode1 is more stable than N-terminally GFP tagged Ode1 since diffuse GFP signals in 

vacuoles were observed for GFP-ODE1, which were absent in ODE1-GFP (Figure 25C). 

The vacuolar localization of diffuse GFP suggest an accelerated degradation of the 

membrane protein by autophagosomes in the vacuoles (Liu et al., 2012). The presence 

of an additional larger protein version of Ode1, specifically present for ODE1-GFP in 
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immunoblots (Figure 25A), supports possible posttranslational modification of Ode1 as 

part of the mechanism controlling Ode1 activity.  

V. dahliae Ode1 localizes to membranes of cell organelles, presumably ER membranes, 

and in irregular patterns in the plasma membranes, often close to growing hyphal tips or 

branch points (Figure 25B, C). The protein sequence predicted that Ode1 is a 

transmembrane protein, which is a typical feature of desaturases (Uttaro, 2006). A signal 

peptide sequence predicting ER localization was not identified, however 

∆12-desaturases in plants, animals, and lower eukaryotes are generally described to be 

located either in plastids or in ER membranes (Uttaro, 2006). Even if few fungal 

∆12-desaturases have been described, their localization has not yet been shown 

(Passorn et al., 1999; Sakuradani et al., 1999; Calvo et al., 2001; Watanabe et al., 2004; 

Chang et al., 2004; Wilson et al., 2004; Wei et al., 2006). The detection of Ode1 at sites 

of hyphal growth and branch points suggests a directed vesicle transport. The product of 

the fatty acid desaturase is linoleic acid, which is an important component of fungal 

plasma membranes with roles in adjusting membrane rigidity (Gostinčar et al., 2009). 

The presence of the desaturase close to hyphal tips could facilitate growth by serving 

one of the products required for extension of hyphae. During growth, liquid uptake 

supports the increase of the cell volume and exocytosis expands the plasma membrane 

and cell wall (Money, 2016). In related fungi such as Aspergilli and N. crassa, growth at 

hyphal tips or branch points was dependent on a structure close to these locations, 

named the Spitzenkörper as vesicle supply center, consisting of cytoskeletal elements 

and vesicles which are distributed to extend the hyphal tips by exocytosis (Harris et al., 

2005). In N. crassa, chitin and glucan synthases localize to the Spitzenkörper to build up 

the cell wall (Su et al., 2012). Besides, linoleic acid might not only provide a building 

block for the membrane. On the other hand, it could increase the membrane fluidity and 

facilitate exocytosis. In yeast, it has been suggested that increased ergosterol contents 

in the membrane promote vesicle fusion (Munn et al., 1999). 

Even if V. dahliae contains more than one gene encoding potential oleate ∆12-fatty acid 

desaturases in its genome, this study could show that Ode1 provides an important 

contribution to fungal growth and differentiation (Figure 33). This observations suggests 

that not all encoded ∆12-fatty acid desaturases might have additive or only partially-

redundant functions. Reciprocal BLAST search has unraveled the presence of a second 

potential homolog to A. nidulans odeA with only slightly lower conservation of the 

deduced amino acid sequence than Ode1, almost the same size (479 aa), and similar 

domain structure (VDAG_JR2_Chr2g10170a; FAD domains: 75-114 aa IPR021863, 142-

427 aa IPR005804; four transmembrane helices, Phobius).  
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Besides, another gene is predicted to encode an OdeA non-homologous ∆12-fatty acid 

desaturase with 402 aa in length and different domain structure, which was clearly 

predicted to be localized to the ER membrane using DeepLoc-1.0 and with its 

N-terminus directed to the ER lumen (VDAG_JR2_Chr4g12440a; FAD domain: 85-367 

aa IPR005804; N-terminus located in ER 1-53 aa, Phobius; four transmembrane helices, 

Phobius). Deletion of ODE1 as a single of these desaturases resulted in a decrease in 

the colony diameter about 50% in comparison to wild type. This was qualitatively similar 

on every tested medium including media supplemented with osmotic or cell wall 

stressors. The only more favorable condition was caused by substitution of linoleic acid 

(Figure 26). 

 

 

Figure 33: V. dahliae Ode1 displays a strong impact on vegetative growth, but is 
dispensable for induction of disease symptoms. The oleate ∆12-fatty acid desaturase 
Ode1 catalyzes the conversion of oleic acid into linoleic acid. The ODE1 defective strain 
displays impaired vegetative growth and microsclerotia formation, which is partially restored 
on medium supplemented with linoleic acid. This corroborates a positive impact of Ode1 or 
Ode1-derived products on growth and microsclerotia formation (indicated by arrows with 
green plus). The ODE1 deficiency displays only a minor impact on fungal virulence and the 
deletion strain is able to induce severe disease symptoms in planta. The availability of plant-
derived linoleic acid might complement the observed growth defect (indicated by arrow with 
dashed line and green plus) and promote fungal propagation or enable the biosynthesis of 
linoleic acid-derived products with unknown impact on the plants defense responses. 
Additional oleate ∆12-fatty acid desaturases (∆12) in V. dahliae could compensate the defect 
in ODE1 and allow modulation of plant defense responses (indicated by arrows with dashed 
line with red minus). 
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Similarly, a general decrease in growth was observed for A. nidulans and A. parasiticus 

upon deletion of the homologous oleate ∆12-fatty acid desaturases (Calvo et al., 2001; 

Chang et al., 2004; Wilson et al., 2004). BLAST and domain searches of A. nidulans 

OdeA revealed that the genome of this organism harbors an additional gene encoding a 

non-homologous protein with predicted ∆12-fatty acid desaturase domain and cytosolic 

N-terminus (XP_664808.1) similar to the Ode1 non-homologous oleate ∆12-fatty acid 

desaturase predicted in V. dahliae, suggesting that also here other proteins with 

potentially overlapping functions exist. 

With regard to the unaltered phenotype of the V. dahliae ODE1 deletion strain on stress 

media, one can conclude that Ode1 and its products are not especially required for the 

response to stresses even if one could expect that the adaptation of the membrane 

fluidity might influence stress responses. An increased membrane content of unsaturated 

fatty acids increased the sensitivity to salt stress in yeast for example (Gostinčar et al., 

2009). It is possible that different desaturases are upregulated in response to certain 

environmental conditions or at certain developmental stages. FAD2, a single of a 

multitude of desaturases in A. thaliana, is activated upon sensing of ER stress and 

increases the ER stress tolerance by its positive impact on membrane fluidity (Nguyen et 

al., 2019). 

Additionally to the impact on growth, V. dahliae Ode1 contributes to microsclerotia 

formation (Figure 27). Whereas here only a reduced resting structure formation was 

observed, deletion of the ODE1 homolog in A. parasiticus resulted in a complete loss of 

sclerotia development (Chang et al., 2004; Wilson et al., 2004). Since the ODE1 deletion 

strain displayed no specific stress-dependent phenotype one can assume that the 

decrease in microsclerotia formation can be seen as a result from the general growth 

defect and the altered polyunsaturated fatty acid metabolism. 

4.4.2 Plant-derived unsaturated fatty acids might replace products synthesized 

by V. dahliae Ode1 during host colonization 

V. dahliae Ode1 contributes to fungal growth even if the genome possesses additional 

genes, which are hypothetically encoding oleate ∆12-fatty acid desaturases. Ode1 is not 

required for induction of severe disease symptoms in tomato plants as deletion strain 

infected plants display only a minor decrease in severity of disease symptoms (Figure 

28). Therefore, Ode1 is not required for initial colonization and penetration. Inside the 

plant, the ODE1 deletion strain might be able to use plant-derived unsaturated fatty acids 

to compensate for the growth defect. It was shown that the ODE1 deletion strain was 

able to use exogenous linoleic acid (Figure 26) and the plant provides linoleic acid which 

is used as a membrane component, precursor of plant oxylipins, and building blocks for 
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the cuticula for example (Soliday & Kolattukudy, 1977; Brodhun & Feussner, 2011). Plant 

linoleic acid and the derived oxylipins are recognized as mimics of the fungal signaling 

molecules and promote sporulation and mycotoxin production in Aspergilli (Burow et al., 

1997; Calvo et al., 1999; Wilson et al., 2004; Brodhagen et al., 2008; Gao & Kolomiets, 

2009; Horowitz Brown et al., 2009; Reverberi et al., 2010). In A. nidulans and A. flavus, 

perception of exogenous oxylipins via G-protein coupled receptors was confirmed for a 

few oxylipins (Affeldt et al., 2012, 2014; Fischer & Keller, 2016).  

Even if plants might provide substitutes for fungal linoleic acid or its derived compounds, 

it cannot be excluded that products from other oleate ∆12-fatty acid desaturases 

contribute to successful host colonization in V. dahliae. Endogenous linoleic acid 

production of the corresponding A. parasiticus oleate ∆12-fatty acid desaturase OdeA 

has positive effects on the colonization of live corn and peanut seeds, even if those 

provide linoleic acid contents (Wilson et al., 2004). The absence of odeA did not alter 

fungal growth on dead seeds. Therefore, fungal linoleic acid or linoleic acid-derived 

products were assumed to be required for suppression of defense responses in the seed 

(Wilson et al., 2004). The expression of plant LOX genes was modulated upon 

colonization by Aspergilli, resulting in altered jasmonic acid induced plant defense 

responses (Burow et al., 2000; Tsitsigiannis & Keller, 2007; Horowitz Brown et al., 2009; 

Gao et al., 2009). Similar results with essential roles of oxylipins from both interaction 

partners have been found in F. verticilloides, where fungal oxylipins produced by LDS1 

induce maize LOX3 for suppression of the plant JA-mediated defense responses and 

promote fungal virulence (Battilani et al., 2018). 

In conclusion, V. dahliae Ode1 is dispensable for induction of severe disease symptoms 

even if the respective deletion strain displays a severe growth defect ex planta. 

Therefore, linoleic acid or linoleic acid derived compounds are either dispensable for 

virulence or the fungus can compensate the loss of Ode1-derived products through the 

action of other endogenous enzymes or exogenous plant-derived polyunsaturated fatty 

acids (Figure 33). 
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Figure S1: Southern hybridization of V. longisporum Vl43 LSI, LSII, and LS deletion 
strains. (A) Vl43 ∆LSI, ∆LSII, and ∆LS strains were constructed by replacement of genomic 
regions against nourseothricin or hygromycin resistance marker cassettes under control of a 
gpdA promoter and a trpC terminator (NATR or HYGR) by homologous recombination of the 
up- and downstream flanking regions. The Vl43LS20kb region was dissected into a 11.5 bp 
LSI region and a 8.5 bp LSII region. The LSI deletion strain was used as parental strain of 
the LS deletion strain. Restriction sites of SspI and NheI used for Southern hybridization 
analysis are indicated by arrows. Expected fragment lengths labeled with the 5´- or 3´-
flanking regions as probes (indicated in red) are given. (B) Confirmation of Vl43 LSI, LSII, 
and LS deletion strains by Southern hybridization. Left: 2.0 kb 5´-flanking region was used 
as a probe and genomic DNA was cut using the restriction enzyme SspI. The predicted 
bands of 4.3 kb for Vl43 wild type, 6.3 kb for LSI deletion transformants number 10 
(VGB201) and 43 (VGB233), and 2.5 kb for the LS deletion strain (VGB232), and an 
additional unspecific band at ~ 8 kb present in all genotypes were obtained. Right: the 
2.0 kb 3´-flanking region was used as probe and genomic DNA was cut using the restriction 
enzyme NheI. The predicted bands of 5.2 kb for Vl43 wild type, 7.4 kb for LSII deletion 
transformants 11 (VGB193) and 19 (VGB214), and 6.5 kb for the LS deletion strain 
(VGB232) were obtained. 
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Figure S2: V. longisporum Vl43LS20kb region is dispensable for vegetative growth on 
standard and stress inducing media ex planta. Ex planta phenotypes of Vl43 LSI, LSII, 
and LS deletion strains compared to wild type Vl43 14 days after spot inoculation of 50 000 
spores on SXM, CDM with either sucrose or galactose as carbon source, or CDM 
supplemented with either 0.8 M sorbitol, 0.00075% H2O2, or 0.004% SDS incubated at 
25 °C. Two independent transformants were tested for Vl43 ΔLSI (VGB201, VGB233) and 
Vl43 ΔLSII (VGB193, VGB214), and a single transformant for Vl43 ΔLS (VGB232). 
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Figure S3: Southern hybridization of V. dahliae LS deletion transformants. (A) Scheme 
of restriction sites used for Southern hybridization. V. dahliae JR2 lacking the Vl43LS20kb 
homologous region was constructed by replacement of the genomic region against a 
nourseothricin resistance marker cassettes under control of a gpdA promoter and a trpC 
terminator (NATR) by homologous recombination of the up- and downstream flanking regions. 
Restriction sites of BglI are indicated by arrows and the expected fragment lengths labeled 
with the 3´-flanking region as a probe (indicated in red) are given. (B) Confirmation of two 
independent transformants of the V. dahliae JR2 LS deletion strain (VGB383, VGB393) by 
Southern hybridization using restriction enzyme BglI and 2.1 kb 3´-flanking region as a probe. 
Genomic DNA of the wild type was used as a control. The predicted bands of 5.1 kb for the 
wild type and 2.9 kb for the deletion were obtained. 
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Figure S4: The V. dahliae JR2 LS deletion strain displays no significant alterations in 
its ex planta phenotype. Ex planta phenotypes of the V. dahliae JR2 LS deletion strain 
ten days after spot inoculation of 50 000 spores on SXM, CDM with either sucrose or 
galactose as carbon source, or CDM supplemented with 0.8 M sorbitol, 0.00075 % H2O2, 
or 0.004 % SDS incubated at 25 °C. Two independent transformants were tested 
(VGB383, VGB393). 
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Figure S5: Southern hybridization of V. dahliae HAM5 single and VMK1/MEK2 double 
deletions and complementation strains. (A) Scheme of restriction sites used for Southern 
hybridization. HYGR: the hygromycin resistance cassette under control of the gpdA promoter 
and a trpC terminator; NATR: the nourseothricin resistance cassette under control of the 
gpdA promoter and a trpC terminator; restriction sites of SacI are indicated by arrows and the 
expected fragment lengths labeled with the 3´-flanking region as a probe (indicated in red) 
are given. Ectopic integration sites of complementation strains are indicated by // at the end 
of the endogenous locus and by a blue line for the ectopic locus. (B) Southern hybridization 
for confirmation of strains: ∆HAM5 transformant number 1 (VGB279) and 2 (VGB280), 
∆HAM5∆VMK1 (VGB417), ∆HAM5∆MEK2 (VGB346), HAM5-C (VGB415). Genomic DNA 
from wild type JR2 was used as a control. The 3´-flanking regions of HAM5 was used as a 
probe and genomic DNA was cut using the restriction enzyme SacI. The predicted bands of 
4.9 kb for wild type, 8.1 kb for the deletion, and 2.2 kb and 8.1 kb for the complementation 
were observed. 
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Figure S6: Southern hybridization of V. dahliae VMK1 single and HAM5/VMK1 
double deletions and complementation strains. (A) Scheme of restriction sites used for 
Southern hybridization. HYGR: the hygromycin resistance cassette under control of the 
gpdA promoter and a trpC terminator; NATR: the nourseothricin resistance cassette under 
control of the gpdA promoter and a trpC terminator; restriction sites of BglI are indicated by 
arrows and the expected fragment lengths labeled with the 3´-flanking region as a probe 
(indicated in red) are given. Ectopic integration sites of complementation strains are 
indicated by // at the end of the endogenous locus and by a blue line for the ectopic locus. 
(B) Southern hybridization for confirmation of strains: ∆VMK1 transformant number 2 
(VGB335) and 4 (VGB336), ∆HAM5∆VMK1 (VGB417), VMK1-C (VGB413). Genomic DNA 
was used from wild type JR2 as a control. The 3´-flanking region of VMK1 was used as a 
probe and genomic DNA was cut using the restriction enzyme BglI. The predicted bands of 
2.6 kb for wild type, 2.4 kb for the deletion, and 2.1 kb and 2.4 kb for the complementation 
were observed. 
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Figure S7: Southern hybridization of V. dahliae MEK2 single and HAM5/MEK2 double 
deletions and complementation strains. (A) Scheme of restriction sites used for Southern 
hybridization. HYGR: the hygromycin resistance cassette under control of the gpdA promoter 
and a trpC terminator; NATR: the nourseothricin resistance cassette under control of the 
gpdA promoter and a trpC terminator; restriction sites of NruI are indicated by arrows and the 
expected fragment length labeled with the 3´-flanking region as a probe (indicated in red) are 
given. Ectopic integration sites of complementation strains are indicated by // at the end of 
the endogenous locus and by a blue line for the ectopic locus. (B) Southern hybridization for 
confirmation of strains: ∆MEK2 transformant number 21 (VGB337) and 22 (VGB338), 
∆HAM5∆MEK2 (VGB346), and MEK2-C (VGB389). Genomic DNA was used from wild type 
JR2 as a control. The 3´-flanking region of MEK2 was used as a probe and genomic DNA 
was cut using the restriction enzyme NruI. The predicted bands of 5.2 kb for WT, 7.1 kb for 
the deletion, and 5.3 kb and 7.1 kb for the complementation were observed. 
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Figure S8: Southern hybridization of V. dahliae HAC1 deletion, HAC1 deletion with 
ectopic GFP overexpression, HAC1 complementation, as well as HAC1u-HA and 
HAC1i-HA strains. (A) Scheme of restriction sites used for Southern hybridization. HYGR: 
the hygromycin resistance cassette under control of the gpdA promoter and a trpC 
terminator; NATR: the nourseothricin resistance cassette under control of the gpdA promoter 
and a trpC terminator; restriction sites of SalI are indicated by arrows. Expected fragment 
lengths labeled with the 3´-flanking region as a probe (indicated in red) are given. Ectopic 
integration sites of complementation strains are indicated by // at the end of the endogenous 
locus and by a blue line for the ectopic locus. (B) Southern hybridization for confirmation of 
strains: ∆HAC1 transformant number 1 (VGB371) and 23 (VGB372), ∆HAC1 OE-GFP 
(VGB380), HAC1-C complementation (VGB382), HAC1u-HA transformant number 2 
(VGB439) and 5 (VGB440), and HAC1i-HA transformant number 6 (VGB437) and 10 
(VGB438). The 3´-flanking region of HAC1 was used as a probe. Genomic DNA was cut 
using the restriction enzyme SalI. The predicted bands of 2.1 kb for wild type, 3.2 kb for 
∆HAC1 and ∆HAC1 OE-GFP, and 3.2 kb and 1.8 kb for the HAC1-C, HAC1u-HA, and 
HAC1i-HA strains were obtained. 
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Figure S9: Southern hybridization of V. dahliae ODE1 deletion and complementation 
strains. (A) Scheme of restriction sites used for Southern hybridization. HYGR: the 
hygromycin resistance cassette under control of the gpdA promoter and a trpC terminator; 
NATR: the nourseothricin resistance cassette under control of the gpdA promoter and a trpC 
terminator; restriction sites of ScaI are indicated by arrows and the expected fragment 
lengths labeled with the 3´-flanking region as a probe (indicated in red) are given. (B) 
Southern hybridization for confirmation of strains: ΔODE1 transformant number 12 (VGB331) 
and 16 (VGB332), ODE1-GFP transformant number 1 (VGB358) and 2 (VGB359), and 
GFP-ODE1 transformant number 3 (VGB360) and 4 (VGB361). The 3´-flanking region of 
ODE1 was used as a probe. Genomic DNA was cut using the restriction enzyme ScaI. The 
predicted bands of 4.6 kb for wild type, 3.6 kb for the deletion, and 2.9 kb for the endogenous 
complementation strains were observed. 

 

 



Supplementary Figures 

154 

1 ATG GAG TCT TGG GAG CAC TCC ACC ACA CCA 30 
31 ATG ATC AAG TTC GAG GAC TCG CCA GCC GAG 60 
61 TCT TTC GTC TCG ACA CCA GGC GAC ATG TAC 90 
91 CCG TCA CTC TTC CCA GAG TCC GCC TCC CCC 120 

121 AAC ACC CTC GAT CCT TCC AAC ATG ATG AGC 150 
151 CCT TCC TCA CCC CAA GAC CTC ACC ATT GCC 180 
181 GAC ACG GAT ATG CCT CTC TCC GAG GCT TCC 210 
211 GCC GGC GAC AAG AAG GGG TCC AAG AAG CGC 240 
241 AAG TCC TGG GGT CAG GTC CTT CCC GAG CCC 270 
271 AAG ACC AAC TTG CCG CCC AGG AAA CGA GCC 300 
301 AAG ACT GAG GAT GAG AAG GAG CAG CGT CGT 330 
331 GTG GAA CGC GTT CTG CGC AAC CGC CGT GCT 360 
361 GCC CAG TCT TCG AGG GAG CGC AAG AGG CTC 390 
391 GAG GTT GAG GCC CTC GAG ATG AAG AAC AAG 420 
421 GAG CTC GAG ACT GCC CTG AAC CAC GCA CAA 450 
451 CAG GCG AAC GCT AGG TTG ATG GAG GAG CTT 480 
481 ACC AAG TTC CGC CGT GGT TCC GGT GCC GTC 510 
511 GCC CGT TCT TCT TCC CCC TTT GAC TCC TTC 540 
541 CAC AAC AGC AAC TCG GTC ACC CTC TCC CCC 570 
571 GAG CTG TTC GGC TCT CAA GAC GGC CGC CGG 600 
601 CCA TCA GTG GCC GAC TCC GAG TCG ACA CTC 630 
631 GTC GAC GGT TTG ATG GCG GCC TCC AAG TCC 660 
661 GCC GCG ACC GTC AAC CCC GCC TCC CTC TCG 690 
691 CCC GCC CTC ACC CCC GTC CCC GAG ACG GAT 720 
721 GAG ACC AGC GCC CAA CAA GAA GCT GCC GTG 750 
751 GCC GCC CCT TCC CCT GTC GCC CTT TCC TCC 780 
781 GAC GTG ACA CAA CGT CCT GCC GTG TCG GTC 810 
811 GGA GGA AAT GCC TCA GTC GTG GGT GGC CTC 840 
841 GCA GAC TTC CCT GCA CCC AAC ATG GAC TTT 870 
871 GTA CCT TCA GCT TCA GAT GCT CAT GAT CAC 900 
901 TTC CTC GGC GGT CAT TTC AGC GTG TCA GAG 930 
931 GCC TTT GAT GCA GAT CGC TAT GTC CTT GAG 960 
961 AGC GGG CTT CTC TCT TCC CCC AAC TCA GTC 990 
991 GAT TAT GAC AAC GAT ATT ATG GCT GGT GAC 1020 

1021 TCG TCC GCG TTC GCA TCC GCG TTC AAC TTC 1050 
1051 GAC ATG GAC GAG TTC CTC AAC GAT GAG GCC 1080 
1081 AGC GCA GCC GCC ACT GAC GCG TCA GCA GCG 1110 
1111 GAG AAC AGC GCA GCG GAC CCG GAC TAC GGC 1140 
1141 CGC CGT GCC CTT AAC CCT GAG ACT CAA GTC 1170 
1171 TCT TCA GAA AAT CCT AAC CTG CAG CCC CAA 1200 
1201 TCT GGC GCG TCC ACT TAT GGA TGC GAC GAT 1230 
1231 GGA GGC ATT GCG GTT GGT GTC TGA 1254 

 

Figure S10: The cDNA sequence of V. dahliae JR2 HAC1i. The V. dahliae JR2 HAC1i 
sequence with 1254 nucleotides was obtained by cDNA synthesis from mycelium of wild type 
cultures grown in 50 ml SXM (1x107 spores) for four days under constant agitation at 25 °C 
and subsequent supplementation with 3 mM DTT for three hours. HAC1i was amplified using 
primers JST171/JST174 and was fully sequenced. 
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1 MESWEHSTTP MIKFEDSPAE SFVSTPGDMY PSLFPESASP 40 
41 NTLDPSNMMS PSSPQDLTIA DTDMPLSEAS AGDKKGSKKR 80 
81 KSWGQVLPEP KTNLPPRKRA KTEDEKEQRR VERVLRNRRA 120 

121 AQSSRERKRL EVEALEMKNK ELETALNHAQ QANARLMEEL 160 
161 TKFRRGSGAV ARSSSPFDSF HNSNSVTLSP ELFGSQDGRR 200 
201 PSVADSESTL VDGLMAASKS AATVNPASLS PALTPVPETD 240 
241 ETSAQQEAAV AAPSPVALSS DVTQRPAVSV GGNASVVGGL 280 
281 ADFPAPNMDF VPSASDAHDH FLGGHFSVSE AFDADRYVLE 320 
321 SGLLSSPNSV DYDNDIMAGD SSAFASAFNF DMDEFLNDEA 360 
361 SAAATDASAA ENSAADPDYG RRALNPETQV SSENPNLQPQ 400 
401 SGASTYGCDD GGIAVGV    
 

Figure S11: The amino acid sequence of V. dahliae JR2 Hac1. The deduced protein 
sequence from HAC1i with 417 aa in length. Red: NLS predicted by cNLS Mapper (94-105 
aa); Blue: N-terminal basic-leucine zipper domain (bZIP, PS50217; 107-164 aa). 

 



List of Figures 

156 

List of Figures 

Figure 1: Verticillium life cycle……………………………………………………………… 7 

Figure 2: Evolution of V. longisporum hybrids….…………………………......…………. 11 

Figure 3: The yeast Fus3 and Kss1 MAPK pathways and homologous cascades in 
filamentous ascomycetes A. nidulans and V. dahliae….....…...………......... 

 

14 

Figure 4: Hac1 is the central unfolded protein response regulator in S. cerevisiae….. 18 

Figure 5: Linoleic acid biosynthesis by oleate ∆12-fatty acid desaturases……………. 22 

Figure 6: Fungal and plant oxylipins in crosstalk and fungal differentiation…………… 25 

Figure 7: V. longisporum strains Vl43 and Vl32 colonize B. napus plants either 
pathogenically or asymptomatically……………………………………............ 

 

60 

Figure 8: The symptomatic V. longisporum strain Vl43 harbors a specific 
Vl43LS20kb region in its genome, which is absent in the asymptomatic 
isolate Vl32………………………………………………………………………... 

 
 

62 

Figure 9: The Vl43LS20kb region absent in the asymptomatic V. longisporum isolate 
Vl32 attenuates disease symptom induction of Vl43 in B. napus….............. 

 

65 

Figure 10: The Vl43LS20kb homologous region in V. dahliae is indifferent for 
virulence towards tomato plants………………………………………………… 

 

66 

Figure 11: Comparison of V. dahliae Ham5 and corresponding proteins in related 
fungi………………………………………………………………………………... 

 

68 

Figure 12: The V. dahliae MAP2K Mek2 and MAPK Vmk1 are highly conserved in 
fungi………………………………………………………………........................ 

 

70 

Figure 13: V. dahliae VMK1- and MEK2-mediated vegetative growth and 
microsclerotia formation function independent of HAM5…………………...... 

 

72 

Figure 14: V. dahliae Vmk1 pathway-mediated pathogenicity towards S. lycopersicum 
is independent from the scaffold protein……………………………………….. 

 

75 

Figure 15: Protein domains of V. dahliae Ire1 and Hac1u in comparison to 
corresponding proteins of related filamentous fungi………………………….. 

 

77 

Figure 16: The V. dahliae HAC1 mRNA is unconventionally spliced…………….……… 78 

Figure 17: Similarities of Hac1 proteins from different organisms……………………….. 80 

Figure 18: The V. dahliae unconventionally spliced mRNA HAC1i, but not the 
uninduced mRNA HAC1u, is translated into the Hac1 protein……………….. 

 

81 

Figure 19: V. dahliae requires the expression of HAC1 for growth with or without 
tunicamycin-induced ER stress and melanization………………................... 

 

83 

Figure 20: V. dahliae HAC1 is essential for microsclerotia formation…………….…...... 84 

Figure 21: V. dahliae HAC1 positively regulates conidiospore formation…………..…... 85 

Figure 22: V. dahliae HAC1 is involved in initial colonization but dispensable for 
penetration of A. thaliana roots………………………….................................. 

 

86 

Figure 23: V. dahliae HAC1 is required for induction of disease symptoms in 
S. lycopersicum………………………………………………………………....... 

 

88 

Figure 24: V. dahliae ODE1 encodes a membrane-bound oleate ∆12-fatty acid 

desaturase………………………………………….……………………………... 

 

90 

Figure 25: V. dahliae Ode1 is localized to plasma and organelle membranes different 
to vacuoles…………………………………………………………..................... 

 

91 

Figure 26: V. dahliae ODE1 contributes to vegetative growth…………………………… 93 

Figure 27: V. dahliae ODE1 is involved in microsclerotia formation……...………...…… 94 



List of Figures 

157 

Figure 28: V. dahliae ODE1 is not required for induction of severe disease symptoms 
in S. lycopersicum plants……………………………………..…………………. 

 

96 

Figure 29: Interactions between haploid V. dahliae and amphidiploid V. longisporum 
isolates with their plant hosts studied in this thesis…………………………… 

 

98 

Figure 30: The Vl43LS20kb region attenuates pathogenicity of V. longisporum Vl43 in 
rapeseed and the homologousregion is indifferent for virulence of 
V. dahliae JR2 on tomato plants………………………………………………... 

 
 

106 

Figure 31: MAPK signaling pathways in V. dahliae………………………………...……... 110 

Figure 32: V. dahliae HAC1 regulates differentiation and virulence……………….......... 120 

Figure 33: V. dahliae Ode1 displays a strong impact on vegetative growth, but is 
dispensable for induction of disease symptoms………………………………. 

 

123 

 



List of Tables 

158 

List of Tables 

Table 1: Verticillium strains constructed and used in this study. ...................................... 33 

Table 2: Plants used in this study. ..................................................................................... 34 

Table 3: Primers used and designed in this study. ........................................................... 34 

Table 4: Plasmids constructed and used in this study. ..................................................... 39 

 



List of Supplementary Figures 

159 

List of Supplementary Figures 

Figure S1: Southern hybridization of V. longisporum Vl43 LSI, LSII, and LS deletion 

strains………................................................................................................. 

 

145 

Figure S2: V. longisporum Vl43LS20kb region is dispensable for vegetative growth on 

standard and stress inducing media ex planta……………............................ 

 

146 

Figure S3: Southern hybridization of V. dahliae LS deletion transformants………......... 147 

Figure S4: The V. dahliae JR2 LS deletion strain displays no significant alterations in 

its ex planta phenotype…………………….……………………………………. 

 

148 

Figure S5: Southern hybridization of V. dahliae HAM5 single and VMK1/MEK2 double 

deletions and complementation strains……….……………………………….. 

 

149 

Figure S6: Southern hybridization of V. dahliae VMK1 single and HAM5/VMK1 double 

deletions and complementation strains………………………….…………..... 

 

150 

Figure S7: Southern hybridization of V. dahliae MEK2 single and HAM5/MEK2 double 

deletions and complementation strains………………………………………... 

 

151 

Figure S8: Southern hybridization of V. dahliae HAC1 deletion, HAC1 deletion with 

ectopic GFP overexpression, HAC1 complementation, as well as 

HAC1u-HA and HAC1u-HA strains……………………………………………… 

 

 

152 

Figure S9: Southern hybridization of V. dahliae ODE1 deletion and complementation 

strains……………………………………………………………………………… 

 

153 

Figure S10: The cDNA sequence of V. dahliae JR2 HAC1i………………………..……… 154 

Figure S11: The amino acid sequence of V. dahliae JR2 Hac1…………………………… 155 

 



Abbreviations 

160 

Abbreviations 

5´   upstream flanking region 

3´   downstream flanking region 

12-OH-JA  12-hydroxy jasmonic acid 

α   antibody 

°C   degree Celsius 

∆   deletion 

λ   wavelength 

µg   microgram 

µl   microliter 

µm   micrometer 

µmol   micromol 

aa   amino acid(s) 

AMPR   ampicillin resistance marker cassette 

Amr   Alternaria melanin regulation 

APS   ammonium persulfate 

AS   acetosyringone 

ATF   activating transcription factor 

ATMT   Agrobacterium tumefaciens-mediated transformation 

bHLH   basic helix-loop-helix 

BLAST   basic local alignment search tool 

bp   base pair(s) 

bZIP   basic leucine zipper 

CDM   Czapek-Dox medium 

cDNA   complementary deoxyribonucleic acid 

Cib   Clp1 interacting bZIP1 

cl.   clone/ transformant 

cm   centimeter(s) 

COI   coronatine insensitive 

C-terminus  carboxy terminus 

CWDE(s)  cell wall degrading enzyme(s) 

CWI   cell wall integrity 

DIC   differential interference contrast 

DNA   deoxyribonucleic acid 

DTT   dithiothreitol 

ECL   enhanced chemiluminescence 

EDTA   2,2´,2´´,2´´´-(Ethane-1,2-diyldinitrilo) tetra-acetic acid 

ER   endoplasmic reticulum 

ERAD   endoplasmic reticulum associated protein degradation 

et al.   et alii (and others) 

EtOH   ethanol 

FAD   fatty acid desaturase 

FLO   flocculation 

FM4-64  N-(3-Triethylammoniumpropyl)-4-(6-(4-(Diethylamino) Phenyl)  
   Hexatrienyl) Pyridinium Dibromide 

Fus   cell fusion 

g   gram 

GFP   green fluorescent protein 

GmbH   Gesellschaft mit beschränkter Haftung 
pgpdA   A. nidulans glyceraldehyde-3-phosphate dehydrogenase   
   promoter 

G-protein  guanine nucleotide-binding protein 
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H2O2   hydrogen peroxide 

HA   hemagglutinin 

Hac   homologous to Atf/Creb (activating transcription factor/ cAMP  
   response element-binding protein) 

HAC1-C  HAC1 complementation 

HAC1i   induced messenger RNA variant of HAC1 

HAC1i-HA  induced messenger RNA variant of HAC1 with 5´    
   hemagglutinin sequence  

HAC1u   uninduced messenger RNA variant of HAC1 

HAC1u-HA  uninduced messenger RNA variant of HAC1 with 5´    
   hemagglutinin sequence 

Ham   hyphal anastomosis mutant 

HAM5-C  HAM5 complementation 

Hog   high osmolarity glycerol  

HRP   horseradish peroxidase 

Hxl   HAC1 and XBP1-like gene 

Ire   inositol requiring 

IRTG   international research training group 

JA   jasmonic acid 

JA-Ile   jasmonoyl isoleucine 

JAZ   jasmonate ZIM-domain 

KANR   kanamycin resistance marker cassette 

kb   kilobase(s) 

kDA   kilo Dalton 

KGaA    Kommanditgesellschaft auf Aktien 

Kpp   kinase PCR-product 

Kss   kinase suppressor of Sst2 (super sensitive 2) mutations 

l   liter 

LA   linoleic acid 

LasA   JA ester lasiojasmonate A 

LB   lysogeny broth 

LDS(s)   linoleate diol synthase(s) 

LOX(s)   lipoxygenase(s) 

LS   lineage specific 

LSG(s)   lineage specific region gene(s) 

M   molar 

MAK   mitogen activated kinase 

MAPK   mitogen activated protein kinase(s) 

MEK   MAPK/ERK kinase 

MEK2-C  MEK2 complementation 

MES   2-(N-Morpholino)-ethane sulphonic acid monohydrate 

Mb   mega base pair(s) 

mg   milli gram(s) 

min   minute(s) 

ml   milliliter(s) 

mm   millimeter(s) 

mM   millimolar 

mRNA   messenger RNA 

ms   millisecond(s) 

Msb    multicopy suppression of a budding defect 

Mw   molecular weight 

n   number of elements 

NATR   nourseothricin resistance marker cassette 
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NLP   necrosis and ethylene-inducing peptide 1-like protein 

NLS   nuclear localization signal 

nm   nanometer(s) 

Nox   nicotinamide adenine dinucleotide phosphate oxidase 

nt   nucleotide(s) 

N-terminus  amino terminus 

OD   optical density 

Ode   oleate desaturase  

OE   overexpression 

ORF   open reading frame 

PAMP(s)  pathogen-associated molecular pattern(s) 

PCR   polymerase chain reaction 

PDM   potato dextrose medium 

PERK   protein kinase RNA-like endoplasmic reticulum kinase 

PIM   protease inhibitor mix 

PRoTECT  Plant Responses To Eliminate Critical Threats 

Psi   precious sexual inducer 

Ppo   precious sexual inducer factor-producing oxygenase  

p-value   probability value 

qRT-PCR  quantitative reverse transcriptase PCR 

RB   right border 

RIDD   regulated Ire1-dependent decay 

RING   really interesting new gene 

rpm   revolutions per minute 

RNA   ribonucleic acid 

Rok   regulator of Kpp2 (kinase PCR-product 2) 

RT   room temperature 
s   spliced 

s   second(s) 

SDS   sodium dodecyl sulfate 

Sho   synthetic high osmolarity-sensitive  

SIAS   sequence identity and similarity 

SISA   Simple Interactive Statistical Analysis 

Slt   suppressor of lytic phenotype 

Smk   sporulation-specific mitogen-activated protein kinase 

SOB   super optimal broth 

SOC   super optimal broth supplemented with glucose 

Som   sorting mitochondrial 

SREBP   sterol regulatory element binding protein  

Ste   sterile 

Sun   sunflower 

SXM   simulated xylem medium 

TE   trace elements 

Tec   transposon enhancement control 

TEMED  N,N,N′,N′-tetramethylethane-1,2-diamine 

TM-helix  transmembrane helix 

Tom   tomato 

tris   2-Amino-2-hydroxymethyl-propane-1,3-diol 

Trl   tRNA ligase 

trpCt   A. nidulans tryptophane biosynthesis gene terminator 

uORF(s)  upstream open reading frames 

UPR   unfolded protein response 

UPRE   unfolded protein response element 
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UTR   untranslated region 

UV   ultra-violet 

V   volt 

Va   Verticillium alfalfae 

Vayg   Verticillium homolog to Aspergillus yellowish green 

Vd   Verticillium dahliae 

VdCmr   V. dahliae homolog to Colletotrichum melanin regulation 

Ve/Vel   velvet 

VGB   Verticillium strain collection Gerhard H. Braus 

Vl43LS20kb  Verticillium longisporum 43 approximately 20 kb lineage specific 

Vl   Verticillium longisporum 

Vmk   Verticillium mitogen activated protein kinase 

VMK1-C  VMK1 complementation 

WD40   tryptophan-aspartic acid dipeptide ending structural motif of   
   circa 40 amino acids 

WT   wild type 

XBP   X-box binding protein 
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