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Prof. Dr. Dorothea Bahns, Mathematisches Institut, Georg-August
Universität Göttingen

Prof. Dr. Thorsten Hohage, Institut für numerische und angewandte
Mathematik, Georg-August Universität Göttingen
Prof. Dr. Axel Munk, Institut für mathematische Stochastik,
Georg-August Universität Göttingen

Prof. Dr. Victor Pidstrygach, Mathematisches Institut, Georg-August
Universität Göttingen

Tag der mündlichen Prüfung
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Abstract

The aim of this dissertation is to use relative higher index theory to study
questions of existence and classification of positive scalar curvature metrics
on manifolds with boundary. First we prove a theorem relating the higher
index of a manifold with boundary endowed with a Riemannian metric which
is collared at the boundary and has positive scalar curvature there, to the
relative higher index as defined by Chang, Weinberger and Yu. Next, we
define relative higher rho-invariants associated to positive scalar curvature
metrics on manifolds with boundary, which are collared at boundary. In
order to do this, we define variants of Roe and localisation algebras for spaces
with cylindrical ends and use this to obtain an analogue of the Higson-Roe
analytic surgery sequence for manifolds with boundary. This is followed
by a comparison of our definition of the relative index with that of Chang,
Weinberger and Yu. The higher rho-invariants can be used to classify positive
scalar curvature metrics up to concordance and bordism. In order to show
the effectiveness of the machinery developed here, we use it to give a simple
proof of the aforementioned statement regarding the relationship of indices
defined in the presence of positive scalar curvature at the boundary and the
relative higher index. We also devote a few sections to address technical
issues regarding maximal Roe and structure algebras and a maximal version
of Paschke duality, whose solutions was lacking in the literature.
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Chapter 1

Introduction and Synopsis

The aim of this dissertation is to study and develop techniques which help
investigate the questions of existence and classification of positive scalar cur-
vature metrics on smooth manifolds. Concretely, given a smooth manifold
M , does it admit a metric with positive scalar curvature and what can be
said about the space of such metrics?

In the following we will mainly focus on manifolds with boundary. The
motivation for the above questions and why we are not interested, for ex-
ample, in metrics with negative scalar curvature is the following theorem of
Kazdan and Warner

Theorem 1.0.1. Let M be a closed manifold with dimM ≥ 3. Let f be a
smooth function on M with f(x0) < 0 for some x0 ∈M . Then there exists a
Riemannian metric g on M , with scal(g) = f .

There are three approaches one can use to determine whether a given
manifold “does not” admit a positive scalar curvature (psc) metric:

• The index theory approach

• The minimal hypersurface approach

• The Seiberg-Witten approach

As the title of the dissertation suggests, we are here interested in the index
theory approach. For a survey of all the above approaches see [32]. The index
theory approach relies heavily on the spin Dirac operator or its Clifford linear
version. Therefore, we will restrict our attention to spin manifolds. It is not
an exaggeration to claim that the index theory approach to positive scalar
curvature is based on the Schrödinger-Lichnerowicz formula

/D
2
g = ∇∗∇+

scal(g)

4
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and its refinements, where /Dg denotes the spin Dirac operator, ∇∗∇ denotes
the connection Laplacian on the spinor bundle and scal(g) denotes the scalar
curvature function of g. Denote by /S the spinor bundle on M . If M is even-
dimensional, the spinor bundle comes with a Z2-grading /S = /S

+ ⊕ /S
−

. The
Dirac operator can then be seen as an unbounded self-adjoint operator on
L2(/S) = L2(/S

+
) ⊕ L2(/S

−
). Here L2 denotes the square-integrable sections

of a given bundle. The Dirac operator is odd with respect to the grading
on L2(/S). Denote by /D

±
the restriction of /D to L2(/S

±
). On a compact

manifold the kernel and cokernel of /D are finite dimensional. Denote by
ind /D the Fredholm index of /D

+
. By abuse of language, we call ind /D the

index of /D. If g has positive scalar curvature, the Schrödinger-Lichnerowicz
formula implies that /D

2
is a strictly positive operator and thus has a trivial

kernel. Noting that

ind /D = dim ker /D
+ − dim coker /D

+
= dim ker /D

+ − dim ker /D
−

we get that ind /D vanishes. Combining this with the observation that the
index of the Dirac operator does not depend on the metric, we get that the
nonvanishing of the index is an obstruction to the existence of a positive scalar
curvature metric. In order to use this to produce examples of manifolds which
do not admit a psc metric one has to be able to compute the index. However,
this computation is a special case of the Atiyah-Singer index theorem and
the index of the spin Dirac operator is computed to be the Â-genus of the
manifold. There are many spin manifolds with nonvanishing Â-genus and
one obtains in this way examples of manifolds which do not admit any psc
metric. However, the observation that the index is given by the Â-genus
also shows the limitations of the index as an obstruction to the existence
of psc metrics, as the Â-genus vanishes for all manifolds whose dimension
is not divisible by 4. The index also fails to provide any information on
manifolds with a trivialisable tangent bundle such as tori. Therefore it is
natural to look for possible refinements of the classical notion of index. A
successful refinement has come about by bringing in the fundamental group
of the manifold. We first discuss this refinement in the case the fundamental
group is finite. Consider the Dirac operator /̃Dg̃ on the universal cover M̃

of a compact spin manifold M where g̃ is a metric on M̃ which is invariant

under the action of π1(M) by deck transformations. In this case ker /̃D
+

and ker /̃D
−

will be finite dimensional π1(M)-representations or equivalently

finitely generated projective Cπ1(M)-modules and [ker /̃D
+

]− [ker /̃D
−

] defines

a class inK0(Cπ1(M)). The point here is that even though ker /̃D
+

and ker /̃D
−

may have the same dimension and be isomorphic as vector spaces and thus
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represent the same class in K0(C), they need not be isomorphic as π1(M)-
representations and their difference might thus be a nontrivial element of
K0(Cπ1(M)). More generally (π1(M) not necessarily finite), the spin Dirac
operator gives rise to a so-called fundamental class in the K-homology groups
K∗(M) of the manifold and the higher index of the Dirac operator is defined
to be the image of the fundamental class under the equivariant assembly map

µπ1(M) : K∗(M)→ K∗(C
∗
r (π1(M))),

where C∗r (π1(M)) denotes the reduced group C∗-algebra of π1(M). Here one
can replace the reduced group C∗-algebra by other completions of the group
ring to obtain variants of the index map. We will discuss this later in more
detail as it turns out to be useful for our purposes. Before giving a quick
description of the index map, we will quickly discuss the relationship with
the numerical index. On C∗r (π1(M)) one can define a trace by extending the
functional

Cπ1(M)→ C∑
γ∈π1(M)

aγ · γ 7→ ae

by continuity. This induces a map K0(C∗r (π1(M))) → C, which maps the
higher index to the numerical index of the Dirac operator. This is a conse-
quence of the Atiyah L2-index theorem (see e.g. [33]).

Now we quickly describe the definition of the equivariant index map.
There are many equivalent approaches to the definition of the index map.
We will use the coarse geometric approach (see Roe for comparison of the
latter approach with the original definition of Kasparov). One of the main
applications of coarse geometry in index theory was the possibility of defin-
ing indices of Dirac operators on noncompact manifolds. On noncompact
manifolds the Dirac operator is not in general Fredholm and it is thus not
always possible to define the numerical index. Another way to see this is that
the (bounded transform of) the Dirac operator is not invertible modulo com-
pact operators. Two ways to deal with this problem are to either set some
conditions on the scalar curvature at infinity to force the Dirac operator to
be Fredholm or to consider a suitable enlargement of the algebra of compact
operators modulo which the (bounded transform of the) Dirac operator is
always invertible. In the latter case, a standard construction in K-theory
then provides an “index” in the K-theory of the aforementioned algebra.
One fruitful choice is to consider the Roe algebra. Let X be a not necessarily
compact, even-dimensional spin manifold, endowed with a free and proper
action of a discrete group Γ by spin structure preserving isometries. We will
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later define the Roe algebra for general locally compact metric spaces. One
then also gets a unitary representation of Γ on L2(/S

+
).

Definition 1.0.2. The equivariant Roe algebra of X is defined as the clo-
sure of the ∗-algebra of finite propagation and locally compact operators
on L2(/S

+
), which are further fixed by the Γ-action. It will be denoted by

C∗(X)Γ.

Roughly speaking, an operator is called a finite propagation operator if it
does not move the support of sections too much. An operator is called locally
compact, if after cutting it down to compact regions one obtains compact
operators. If the Γ-action on X is cocompact one has the following

Proposition 1.0.3. Suppose the action of Γ on X is cocompact. Then
C∗(X)Γ is Morita equivalent to C∗r (Γ). In particular K∗(C

∗(X)Γ) ∼= K∗(C
∗
r (Γ)).

Setting X to be the universal cover of a compact spin manifold, we thus
obtain the right hand side of the index map using the language of coarse
geometry. Now we discuss how to find a model for K-homology using Roe
algebras.

Definition 1.0.4. The equivariant localisation algebra of X is defined to be
the completion with respect to the supremum norm of the ∗-algebra of uni-
formly continuous functions f : [1,∞)→ C∗(X)Γ for which the propagation
of f(t) vanishes as t tends to infinity.

We will later give a more precise definition of the notion of propagation of
an operator. The important point here is that theK-theory of the localisation
algebra provides a model for K-homology.

Proposition 1.0.5. There is an isomorphism K∗(X)Γ ∼= K∗(C
∗
L(X)Γ), where

K∗(X)Γ denotes the equivariant K-homology group of X.

Now for spaces of our interest the equivariant K-homology of the space is
isomorphic to the nonequivariant K-homology of the quotient by the group
action. In particular, we have an isomorphism K∗(M) ∼= K∗(C

∗
L(M̃))π1(M).

Definition 1.0.6. The equivariant index map µπ1(M) is defined as the com-
position

K∗(M) ∼= K∗(C
∗
L(M̃)π1(M))

(ev1)∗−−−→ K∗(C
∗(M̃)π1(M)) ∼= K∗(C

∗
r (π1(M))).

Recall that the higher index of the Dirac operator was defined as the
image of the fundamental class of the Dirac operator under the index map.
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The above definitions of the index map and the higher index allow us to give
a natural and useful proof of the fact that the nonvanishing of the higher
index is an obstruction to the existence of a positive scalar curvature metric
on M . The short exact sequence

0→ C∗L,0(M̃)π1(M) → C∗L(M̃)π1(M) ev1−−→ C∗(M̃)π1(M) → 0,

where C∗L,0(M̃)π1(M) denotes the kernel of ev1 : C∗L(M̃)π1(M) → C∗(M̃)π1(M)

gives rise to a long exact sequence of K-theory groups

. . .→ K∗(C
∗
L,0(M̃)π1(M))→ K∗(M)

µπ1(M)

−−−−→ K∗(C
∗
r (π1(M)))→ . . . .

The positivity of the scalar curvature implies the existence of a gap around
0 in the spectrum of the Dirac operator on M̃ , which can be used to define
a canonical lift ρπ1(M)(g) of the fundamental class in K∗(C

∗
L,0(M̃)π1(M)). The

existence of such a lift and the exactness of the latter sequence imply the
vanishing of the index. The usefulness of this proof lies in the fact that
the “reason” ρπ1(M)(g) for the vanishing of the index can be used to classify
positive scalar curvature metrics (up to concordance, bordism, etc. ).

In order to use the higher index to detect whether a given closed manifold
does not admit a metric of positive scalar curvature, one needs to be able
to compute it or at least to figure out whether the higher index vanishes.
In [10], the authors introduced the notion of enlargeability and used it to
answer the question whether Tori admit metrics of positive scalar curvature
in the negative. Hanke and Schick showed in [13], that enlargeability implies
the nonvanishing of the (maximal) higher index; i.e. the (maximal) higher
index detects enlargeability. The maximal higher index is given as the image
of the fundamental class under the maximal equivariant index map

µπ1(M)
max : K∗(M)→ K∗(C

∗
max(π1(M))),

where C∗maxπ1(M) denotes the maximal group C∗-algebra. Using the lan-
guage of coarse geometry, the maximal equivariant index map can be defined
analogously to the usual index map by replacing the Roe algebra by the
maximal Roe algebra; i.e. the completion of the ∗-algebra of locally com-
pact, equivariant and finite propagation operators in the universal C∗-norm.
The maximal higher index is a finer invariant than the ”reduced” higher in-
dex. One can obtain the reduced higher index as the image of the maximal
higher index under the map

K∗(C
∗
max(π1(M)))→ K∗(C

∗
r (π1(M)))

9



which is induced by the canonical projection C∗max(π1(M)) → C∗r (π1(M)).
Because of the better functoriality properties of the maximal group C∗-
algebra, it is sometimes advantageous to use the maximal higher index. In the
first part of Chapter 2, we will discuss this and also the subtleties appearing
in the noncompact setting when one deals with the maximal index.

Now we turn to manifolds with boundary and pose the following ques-
tions: does a given manifold with boundary admit a psc metric which is
collared at the boundary and what can we say about the space of such met-
rics? Again, we will only discuss the index theoretic approach to these ques-
tions. Since the Dirac operator on a spin manifold with nonempty boundary
is not essentially self-adjoint one usually starts with attaching an infinite
half-cylinder at the boundary and extending the metric on the manifold thus
obtained by using the product metric on the half-cylinder and the standard
metric on R+. The question of existence and classification of psc metrics on
a manifold with boundary which are collared at the boundary then becomes
equivalent to the question of existence and classification of psc metrics on the
manifold obtained by attaching a half-cylinder at the boundary, which have
product structure on the cylindrical end. The new issue one has to deal with
is however that due to the noncompactness of the manifold with cylindrical
end, the Dirac operator is not Fredholm without further assumptions and
the numerical index is not always defined. As pointed out above, one can
always define in this case an index in the K-theory of the Roe algebra of
the manifold with cylindrical end. However, if the original manifolds with
boundary is assumed to be compact, then the K-theory of the Roe algebra
of the manifold with cylindrical end vanishes and the so called ”coarse in-
dex” does not give any information. If the metric is assumed to have positive
scalar curvature on the boundary, the metric on the manifold with cylindrical
end will then have positive scalar curvature outside a compact set. In [10],
Gromov and Lawson showed that in this case the Dirac operator is Fredholm.
The numerical index however will depend on the metric at the boundary. If
the metric has psc everywhere, the numerical index vanishes. Using the same
condition on the metric at the boundary one can use, for example, the coarse
geometric machinery to define an ”absolute” index in K∗(C

∗
r (π1(M))). This

higher index will again depend on the metric at the boundary and will vanish
if the metric has psc everywhere. All of this leaves open the question whether
one can define a higher index for the Dirac operator on a compact manifold
with boundary without any assumptions on the metric at the boundary.

Let M be a compact spin manifold with boundary N . In [2] Chang,
Weinberger and Yu define a relative index map

µπ1(M),π1(N) : K∗(M,N)→ K∗(C
∗(π1(M), π1(N))),

10



where the left hand side is the relative K-homology and C∗(π1(M), π1(N))
is a C∗-algebra measuring the difference between C∗(π1(M)) and C∗(π1(N))
and is called the relative group C∗-algebra. Here one cannot always use the
reduced group C∗-algebra and thus one has to work with other completions
of the involved group rings. For now we will not specify the chosen comple-
tion. The relative index map fits into a commutative diagram of long exact
sequences

→ K∗(N) K∗(M) K∗(M,N)→

→ K∗(C
∗(π1(N))) K∗(C

∗(π1(M))) K∗(C
∗(π1(M), π1(N)))→ .

µπ1(N) µπ1(M) µπ1(M),π1(N)

j

The relative higher index is then defined as the image of the relative fun-
damental class under the relative index map. With an eye to the above
discussion for closed manifolds, the first order of business is to establish the
vanishing of the relative higher index in the presence of a psc metric which
is collared at the boundary. Now a metric g which has psc at the bound-
ary can be extended to a metric on the manifold obtained by attaching a
half-cylinder which has positive scalar curvature outside a compact set and
as mentioned above one can define an index in K∗(C

∗(π1(M))) which we
will here denote by indπ1(M)

g (M) where the subscript g is there to remind us
that the index depends on the metric at the boundary. The main result of
Chapter 2 is that indπ1(M)

g (M) is mapped to µπ1(M),π1(N)([DM,N ]) under the
map j : K∗(C

∗(π1(M)))→ K∗(C
∗(π1(M), π1(N))). Here [DM,N ] denotes the

relative fundamental class of the Dirac operator on M . This at once implies
that the relative index vanishes if g has positive scalar curvature everywhere.
In [4], Deeley and Goffeng obtain a similar result using the language of ge-
ometric K-homology. Even though the latter result proves the vanishing
theorem and relates previously defined indices to the more recently defined
relative higher index it still leaves open the question of classification of psc
metrics on manifolds with boundary. Recall from above that one approach
of tackling these questions in the closed case is to define secondary invariants
(e.g. the higher rho-invariant). Now, the relative index map fits in a long
exact sequence

. . .→ K∗(SCψL,0)→ K∗(M,N)→ K∗(C
∗(π1(M), π1(N))) . . . ,

where the C∗-algebra SCψL,0 will be defined in the following chapters. Anal-
ogous to the closed case we would like to use the positivity of the scalar
curvature to lift the relative fundamental class to K∗(SCψL,0) in a way that

11



the lift has the invariance properties which make it useful for the classifica-
tion of psc metrics up to concordance, bordism . . .. Furthermore such a lift
would give a very natural proof of the vanishing theorem. One of the ob-
jectives of Chapter 3 is the definition of the ”relative higher rho-invariant”.
We develop machinery which we think is the right one to use for the coarse
geometric approach to index theory on manifolds with boundary and which
allows one to adapt the proofs of well-known theorems for closed manifolds
to prove their counterparts for manifolds with boundary. More precisely, we
define variants of Roe algebras for spaces with cylindrical ends and discuss
the existence and classification of psc metrics on such manifolds. We then
discuss how the results can be used in the study of psc metrics on manifolds
with boundary and relate our approach to the one of Chang, Weinberger and
Yu. Using our machinery, we can easily define higher rho-invariants for psc
metrics on manifolds with cylindrical ends. We produce the desired lift of the
relative fundamental class in K∗(SCψL,0) by pushing the higher rho-invariant
for the manifold with cylindrical end to K∗(SCψL,0) using a canonical homo-
morphism of K-theory groups. In order to demonstrate the efficiency of the
machinery developed in Chapter 3 we also give a simple proof of the main
theorem in Chapter 2.

We further note that Chapter 2 is made public in preprint form on the
arXiv (arXiv:1811.08142v1) as joint work with Thomas Schick and has been
submitted for publication. Chapter 3 is thematically connected to Chapter
2 and I plan to submit it for publication soon.

12



Chapter 2

On an index Theorem of
Chang, Weinberger and Yu1

2.1 Introduction

In [2] Chang, Weinberger and Yu define a relative index of the Dirac op-
erator on a compact spin manifold M with boundary N as an element of
K∗(C

∗(π1(M), π1(N))), where this relative K-theory group measures the dif-
ference between the two fundamental groups. The main geometric theorem
of [2] then says that the existence of a positive scalar curvature metric on M
which is collared at the boundary implies the vanishing of this index. The
argument for this vanishing theorem is rather complicated and indeed con-
tains a gap. We address this gap in this paper. After the first version of the
present article was made public, [11] was posted, which also attempts to fix
this gap.

More explicitly, the K-theory groups of the absolute and relative group
C∗-algebras of the manifold and its boundary fit in a long exact sequence

→ K∗(C
∗(π1(N)))→ K∗(C

∗(π1(M)))
j−→ K∗(C

∗(π1(M), π1(N)))→ . . . .
(2.1)

The relative index µ([M,N ]) is defined as the image of a relative fundamen-
tal class [M,N ] ∈ KdimM(M,N) under a relative index map µ : K∗(M,N)→
K∗(C

∗(π1(M), π1(N))). Here, K∗(M,N) is the relative K-homology and
[M,N ] is constructed with the help of the Dirac operator on M . Indeed,
in this paper we mainly deal with a small variant of the construction of [2]
by choosing a slightly different C∗-completion. We discuss this in more detail
below, throughout the introduction, we work with this modification.

1This paper is joint work with Thomas Schick. It can be found on arXiv (see [34]).
Furthermore, it has been submitted to a journal and is under review.
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Our main goal is to better understand the vanishing theorem of Chang,
Weinberger and Yu, and to prove a strengthening of it, at the same time
giving a new and more conceptual proof.

For our approach, recall that one has a perfectly well defined K-theoretic
index of the Dirac operator on a Riemannian manifold with boundary pro-
vided the boundary operator is invertible, for example if the metric is collared
and of positive scalar curvature near the boundary (see e.g. [24]). This index
takes values in K∗(C

∗(π1(M))) and explicitly depends on the boundary op-
erator (i.e. on the positive scalar curvature metric g of the boundary). In the
latter case we denote it by Indπ1(M)(g) ∈ K∗(C∗(π1(M))). Our main result
states that a slight variant of the relative index of Chang-Weinberger-Yu is
the image of the absolute index defined with invertible boundary operator
under the natural homomorphism j of (2.1) (whenever this absolute index is
defined):

Theorem 2.1.1.
j(Indπ1(M)(g)) = µ([M,N ]).

The absolute index Indπ1(M)(g) vanishes whenever we have positive scalar
curvature on all of M , implying immediately the corresponding vanishing
result for the relative index of Chang, Weinberger, and Yu.

Relative index theory has recently been the subject of considerable activ-
ity. In [4], Deeley and Goffeng define a relative index map using geometric
K-homology instead of coarse geometry and prove index and vanishing re-
sults similar to the main result of our paper. However, this relies and uses
the full package of higher Atiyah-Patodi-Singer index theory (like [21]), which
we consider technically very demanding and somewhat alien to the spirit of
large scale index theory. Indeed, in [4] it is not even proved in general that
the constructions coincide with the ones of [2]. Yet another approach to rel-
ative index theory and the results of [2] is given by Kubota in [19]. There,
the new concepts of relative Mishchenko bundles and Mishchenko-Fomenko
index theory are introduced, and heavy use is made of the machinery of KK-
theory. In [19], a careful identification of the different approaches is carried
out.

The main point of our paper is its very direct and rather easy approach
to the index theorems as described above. We work entirely in the realm of
large scale index theory, and just rely on the basic properties of the Dirac
operator (locality, finite propagation of the wave operator, ellipticity). We
avoid APS boundary conditions and we avoid deep KK-techniques. Such
a direct approach is relevant also because it is more likely to allow for the
construction of secondary invariants, to be used for classification rather than
obstruction purposes.
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In [2], fundamental use is made of the maximal Roe and localisation
algebras to obtain the required functoriality needed e.g. in the sequence (2.1).
The identification of its K-theory with K-homology of the space is needed for
the maximal localisation algebra and reference is given to [27] for the proof.
However, that reference only deals with the reduced setting. Working out
the details to extend the known results to the maximal setting turned out to
be rather non-trivial. The first part of the present paper is devoted to the
careful development of foundational issues of maximal Roe and localisation
algebras. For us, this complete and careful discussion of the properties of
maximal completions in the context of coarse index theory is the second
main contribution of this paper. Our results on this are used e.g. in [4].

The maximal Roe algebra is defined in a rather ad hoc and ungeometric
way: one comes up with the (somewhat arbitrary) algebraic Roe algebra, a
∗-subalgebra of bounded operators on a Hilbert space which is not closed,
and then passes to the maximal C∗-closure. This is hard to control and to
compute (there are very few cases of actual computation), and geometric
arguments are very delicate. It required the whole additional unpublished
preprint [11], which appeared after the first version of this paper was posted,
to prove the claim of [2] that the Schrödinger-Lichnerowicz vanishing theorem
applies also to in the maximal Roe algebra. This claim was unjustified in [2],
as the authors of [11] also observe.

Our approach is going in a different direction. We propose to use instead
of the ad hoc maximal completion a much more geometric completion C∗q ,
which we introduce in Section 2.3. Problems with the standard (reduced)
Roe algebra arise in the equivariant setting of the group Γ acting on the
space X due to lack of functoriality. Our completion takes all normal quo-
tients Γ/N acting on X/N into account. This restores full functoriality, but
is completely geometric. The Schrödinger-Lichnerowicz formula and other
geometric arguments apply effortless.

The precise formulation of Theorem 2.1.1 and of (2.1) requires to specify
which completion is used. In our approach, this becomes C∗q (π1(M), π1(N)),
involving the completions of the group algebras in the direct sum of the
regular representation of all its quotients. Formally, the relative index in
this K-theory group is weaker than the relative index obtained by using
the maximal completion. However, not a single case is known where extra
information on obstructions and classification has been obtained from the
difference of the K-theory of the maximal and the reduced group C∗-algebras,
and the Novikov conjecture suggests that this should not be possible. In any
event, it seems extremely hard to exploit such a difference for geometric
means. So we believe that our approach and our completion is a very good
choice: full functoriality, no extra effort for geometric arguments, in practice

15



no loss of information.

Remark 2.1.2. Our approach works for arbitrary, also non-cocompact situ-
ations. In the cocompact case, there is another way for geometric construc-
tions: one works with the compact space, and with the infinite dimensional
Mishchenko bundle. Here, one has the choice to use arbitrary group algebra
completions, including the maximal one, which is used in [4] and [19].

Remark 2.1.3. We present details of the construction and manipulation of
the relative index and the vanishing theorem only in the case that the di-
mension of the manifold is even. We chose to do this because this is the most
classical setup, and the constructions are particularly explicit and direct.
This also means that we remain close to the original treatment of [2].

We discuss in Remark 2.5.3 how one can reduce the general case to the
even dimensional situation. We also discuss there how one could use the
techniques of Zeidler [41] combined with our setup to uniformly treat all
dimensions and even the case of real C∗-algebras.

In parts of the present paper we give missing arguments for some of the
results of the master thesis of Seyedhosseini [35].

2.1.1 Structure of the paper

In Section 2.2 we present our foundational results on maximal Roe algebras.
In Section 2.3, we introduce our geometric functorial completed Roe algebra
and establish its main properties. Section 2.4 recalls the construction of
the relative index, following [2]. We try to motivate the construction, give
additional details and fix small glitches in [2]. Section 2.5 gives the proof of
Theorem 2.1.1.

Acknowledgement. We would like to thank Ralf Meyer for useful discus-
sions and the referee for comments helping to improve the presentation.

2.2 The Maximal Roe Algebra

In the following, we will only consider separable and proper metric spaces
with bounded geometry. We recall that a locally compact metric X space
has bounded geometry if one can find a discrete subset Y of X such that:

• There exists c > 0 such that every x ∈ X has distance less than c to
some y ∈ Y .

• For all r > 0 there is Nr such that ∀x ∈ X we have |Y ∩Br(x)| ≤ Nr.
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A covering of a compact Riemannian manifold with the lifted metric
obviously has bounded geometry.

2.2.1 Roe Algebras

Let X be a separable and proper metric space endowed with a free and proper
action of a discrete group Γ by isometries. In this section, we will recall the
definition of the Roe algebra associated to X. Let ρ : C0(X) → L(H) be
an ample representation of C0(X) on some separable Hilbert space H. A
representation of C0(X) is called ample if no non-zero element of C0(X) acts
as a compact operator on H. The representation ρ is called covariant for
a unitary representation π : Γ → U(H) of Γ if ρ(fγ) = Adπ(γ) ρ(f) ∀γ ∈ Γ.
Here fγ denotes the function x 7→ f(γ−1x).

From now on we will assume that ρ is an ample and covariant representa-
tion of C0(X) as above. By an abuse of notation we will denote ρ(f) simply
by f . We will later use representations of C0(X) which are an infinite direct
sum of copies of an ample representation. Such representations are called
very ample.

Definition 2.2.1. An operator T ∈ L(H) is called a finite propagation
operator if there exists an r > 0 such that fTg = 0 for all those f, g ∈ C0(X)
with the property d(supp(f), supp(g)) ≥ r. The smallest such r is called the
propagation of T and is denoted by propT . An operator T ∈ L(H) is called
locally compact if Tf and fT are compact for all f ∈ C0(X).

Definition 2.2.2. Denote by Rρ(X)Γ the ∗-algebra of finite propagation,
locally compact operators in L(H) which are furthermore invariant under
the action of the group Γ. We will call Rρ(X)Γ the algebraic Roe algebra
of X. The maximal Roe algebra associated to the space X is the maximal
C∗-completion of Rρ(X)Γ, i.e. the completion of Rρ(X)Γ with respect to the
supremum of all C∗-norms. This supremum is finite for spaces of bounded
geometry by Proposition 2.2.3. It will be denoted by C∗ρ,max(X)Γ. The re-
duced Roe algebra is the completion of the latter ∗-algebra using the norm
in L(H). We denote this algebra by C∗ρ,red(X)Γ.

Proposition 2.2.3. Suppose X has bounded geometry. For every R > 0
there is a constant CR such that for every T ∈ Rρ(X)Γ with propagation less
than R and every ∗-representation π : R(X)Γ → L(H ′) we have

||π(T )||L(H′) ≤ CR||T ||C∗ρ,red(X)Γ .

In particular, ||T ||C∗ρ,max(X)Γ ≤ CR||T ||C∗ρ,red(X)Γ and the bounded geometry

assumption on X implies that the maximal Roe algebra is well-defined.
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Proof. This follows from [9, Lemma 3.4] and [7, Theorem 2.7].

Note that Proposition 2.2.3 implies that restricted to the subset of oper-
ators of propagation bounded by R, the reduced and the maximal norms are
equivalent.

Proposition 2.2.4. The K-theory groups of the reduced and maximal Roe
algebra are independent of the chosen ample and covariant representation up
to a canonical isomorphism.

Proof. In the reduced case, this is the content of [16, Corollary 6.3.13]. For
the maximal case we just note that conjugation by the isometries of the kind
handled in [16, Section 6.3] gives rise to ∗-homomorphisms of the algebraic
Roe algebra and thus extend to morphisms of the maximal Roe algebras. Up
to stabilisation, any two such morphisms can be obtained from each other by
conjugation by a unitary making the induced map in K-theory canonical.

Remark 2.2.5. As a consequence of Proposition 2.2.4 we will drop ρ in our
notation for the Roe algebras. Later we will introduce a new completion of
R(X)Γ, which sits between the reduced and maximal completions and denote
it by C∗q (X)Γ. Moreover, if Γ is the trivial group, we will denote the Roe
algebra by C∗d(X), where d stands for the chosen completion.

Proposition 2.2.6. The K-theory of the maximal Roe algebra is functorial
for coarse maps between locally compact metric spaces.

Proof. The proof is similar to that of Proposition 2.2.4 and makes use of it.
In the reduced case, this is proved by constructing an appropriate isome-
try between the representation spaces. Conjugation with the latter isometry
gives rise to a ∗-homomorphisms of the algebraic Roe algebra and thus ex-
tends to a morphism of the reduced and maximal Roe algebra. The latter
then gives rise to homomorphisms of the K-theory groups of the Roe alge-
bra. As in the proof of Proposition 2.2.4, the induced map in K-theory is
canonical which also implies functoriality. See [16, Section 6.3] for a more
detailed discussion.

In the case where Γ acts cocompactly on X, we have the following theo-
rem.

Theorem 2.2.7. Suppose that Γ acts cocompactly on X. Then K∗(C
∗
max(X)Γ) ∼=

K∗(C
∗
max(Γ)).
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Proof. See [9, Section 3.12 & 3.14] for the isomorphism C∗max(|Γ|)Γ ∼= C∗max(Γ)⊗
K(H), where C∗max(|Γ|)Γ is the equivariant Roe algebra of Γ seen as a met-
ric space using some word metric. The action of Γ on itself is given by left
multiplication. Since the action of Γ on X is cocompact, the Γ-space X is
coarsely equivalent to Γ. This implies that K∗(C

∗
max(X)Γ) ∼= K∗(C

∗
max(Γ)Γ).

The claim then follows from the stability of K-theory.

For a Γ-invariant closed subset Y of X, we would like to define its Roe
algebra relative to X as a closure of a space of operators in C∗max(X)Γ, which
are suitably supported near Y . The next two definitions make this precise.

Definition 2.2.8. For an operator T ∈ L(H) we define the support suppT
of T as the complement of the union of all open sets U1 × U2 ⊂ X × X
with the property that fTg = 0 for all f and g with supp f ⊂ U1 and
supp g ⊂ U2. T is said to be supported near Y ⊂ X if there exists r > 0 such
that suppT ⊂ Br(Y )×Br(Y ). Here and afterwards Br(Y ) denotes the open
r-neighbourhood of Y .

Definition 2.2.9. For a Γ-invariant closed subset Y of X as above, denote
by R(Y ⊂ X)Γ the ∗-algebra of operators in R(X)Γ which are supported near
Y . The relative Roe algebra of Y in X is defined as the closure of R(Y ⊂ X)Γ

in C∗max(X)Γ and is an ideal inside the latter C∗-algebra. It is denoted by
C∗max(Y ⊂ X)Γ.

Since Y is a locally compact metric space with an action of Γ, it has its
own (absolute) equivariant Roe algebra C∗max(Y )Γ. Theorem 2.2.11 identifies
the K-theory of the relative and absolute equivariant Roe algebras in the
case, where the action of Γ on the subset is cocompact. However, for its
proof we need further conditions on the group action.

Definition 2.2.10. Let Γ act freely and properly by isometries on X. Γ
is said to act conveniently if there exists a fundamental domain F for the
action of Γ satisfying:

• For each R > 0, there exist γ1, . . . γNR ∈ Γ such that BR(F ) ⊂
⋃NR
i=1 γi ·

F

• For each γ ∈ Γ andR > 0 there exists S(R, γ) > 0 such that γ−1BR(x)∩
F ⊂ BS(R,γ)(x).

Theorem 2.2.11. Let Y and X be as above and suppose that Γ acts con-
veniently on X and cocompactly on Y . The inclusion Y → X induces an
isomorphism K∗(C

∗
max(Y )Γ) ∼= K∗(C

∗
max(Y ⊂ X)Γ).
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Remark 2.2.12. A representation ρ : C0(X)→ L(HX) gives rise to a spec-
tral measure which can be used to extend ρ to the C∗-algebra B∞(X) of
bounded Borel functions on X (see [22, Theorem 2.5.5]). Given Z ⊂ X,
we get a representation C0(Z) → L(χZHX). This is what is meant in the
following Lemma 2.2.13 by “compressing the representation space of C0(X)
in order to obtain a representation of C0(Z)”. Given Z as above we can
choose ρ such that it and its compression to Z are both ample; for exam-
ple, by choosing the ample representation of X to be given by multiplication
of functions with square summable sequences on some countable dense sub-
set of X whose intersection with Y is a dense subset of Y . We will need
Lemma 2.2.13 for the proof of Theorem 2.2.11. Indeed, the novel difficulty
in Theorem 2.2.11 is to relate the ∗-representations used in the definition
of C∗max(Y )Γ with the ∗-representations used to define C∗max(X)Γ —of which
C∗max(Y ⊂ X)Γ by definition is an ideal. Note that, at the moment, we only
manage to do this if Y is cocompact and the Γ-action is convenient. It is an
interesting challenge to generalise Theorem 2.2.11 to arbitrary pairs (X, Y )
and arbitrary free and proper actions.

Lemma 2.2.13. Let Γ act conveniently on X and Z ⊂ X be Γ-invariant
and suppose that the action of Γ on Z is cocompact. Construct R(Z)Γ by
compressing the representation space of C0(X), so that R(Z)Γ is naturally a
∗-subalgebra of R(X)Γ. Then an arbitrary non-degenerate ∗-representation of
R(Z)Γ on a Hilbert space can be extended to a non-degenerate ∗-representation
of R(X)Γ. In particular, the inclusion R(Z)Γ → R(X)Γ extends to an injec-
tion C∗max(Z)Γ → C∗max(X)Γ.

Proof. Choose an ample representation ρ : C0(X) → L(HX). By compress-
ing the Hilbert space HX and restricting the representation, we obtain a very
ample representation of C0(Z), i.e. ρ|C0(Z) : C0(Z) → L(HZ), where HZ de-
notes the space χZHX . Choose DZ ⊂ DX fundamental domains of Z and
X for the action of Γ. Similarly to the proof of [16, Lemma 12.5.3] one has
R(Z)Γ ∼= C[Γ] � K(H̃Z), where H̃Z = χDZHZ . The latter isomorphism is
obtained using the isomorphisms HZ

∼=
⊕

γ∈Γ H̃Z
∼= l2(Γ) ⊗ H̃Z . Denote by

H̃X the Hilbert space χDXHX . The isomorphism constructed in the proof
can be extended to an injective map C[Γ] � L(H̃X) → L(HX). The conve-
nience of the action implies that its image contains the algebra F(X)Γ of finite
propagation Γ-invariant operators on X. This injection makes the diagram

C[Γ]�K(H̃Z) R(Z)Γ

C[Γ]� L(H̃X) L(HX)

∼=

20



commutative. We show that an arbitrary non-degenerate ∗-representation of
C[Γ] � K(H̃Z) on a Hilbert space H0 can be extended to a non-degenerate
∗-representation of C[Γ] � L(H̃X). This implies the lemma since R(X)Γ ⊂
F(X)Γ. Suppose that π : C[Γ] � K(H̃Z) → L(H0) is a non-degenerate ∗-
representation of C[Γ] � K(H̃Z) on a Hilbert space H0. The representa-
tion π extends to a representation of C∗max(Γ) ⊗ K(H̃Z) which we denote
by π. Note that since the C∗-algebra of compact operators is nuclear, the
C∗-algebra tensor product above is unique. C∗max(Γ) ⊗ K(H̃Z) is a C∗-
subalgebra of C∗max(Γ) ⊗ K(H̃X) and π can thus be extended to a non-
degenerate representation of C∗max(Γ)⊗K(H̃X) on a possibly bigger Hilbert
space H, which we denote by π̃. From [22, Theorem 6.3.5], it follows that
there exist unique non-degenerate representations π̃1 and π̃2 of C∗max(Γ) and
K(H̃X) on H respectively, such that π̃(a⊗b) = π̃1(a)π̃2(b) = π̃2(b)π̃1(a) for all
(a, b) ∈ C∗max(Γ)×K(H̃X). The representation π̃2 can be extended to a repre-
sentation π̂2 of L(H̃X) on H by [6, Lemma 2.10.3] and from the same lemma
it follows that π̃2(K(H̃X)) is strongly dense in π̂2(L(H̃X)). From the dou-
ble commutant theorem, it follows that the commutant of a C∗-subalgebra of
L(H) is strongly closed. This in turn implies that π̃1(a)π̂2(b) = π̂2(b)π̃1(a) for
(a, b) ∈ C∗max(Γ)×L(H̃X). Now restrict π̃1 to C[Γ]. From [22, Remark 6.3.2],
it follows that there is a unique ∗-representation π̂ : C[Γ] � L(H̃X) → L(H)
with the property π̂(a⊗ b) = π̃1(a)π̂(b). It is clear that π̂ is an extension of
π.

Proof of Theorem 2.2.11. The proof is analogous to that of [17, Lemma 5.1].
As in Lemma 2.2.13, construct the algebras C∗(Bn(Y ))Γ by compressing the
representation space of C0(X). The inclusions R(Br(Y ))Γ → R(BR(Y ))Γ

for r ≤ R induce maps C∗max(Br(Y ))Γ → C∗max(BR(Y ))Γ. We will show
that lim−→C∗max(Br(Y ))Γ = C∗max(Y ⊂ X)Γ. Let A be a C∗-algebra and let

φr : C∗max(Br(Y ))Γ → A be C∗-algebra morphisms such that all the diagrams
of the form

C∗max(Br(Y ))Γ C∗max(BR(Y ))Γ

A

with r < R commute. The above compatibility condition implies the exis-
tence of a unique morphism of ∗-algebras φ : R(Y ⊂ X)Γ → A, such that all
the diagrams

R(Br(Y ))Γ R(Y ⊂ X)Γ

A
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are commutative. Lemma 2.2.13 then implies that the map φ is contin-
uous if R(Y ⊂ X)Γ is endowed with the norm of C∗(X)Γ. To see this
note that Lemma 2.2.13 implies that for a ∈ R(Br(Y )), ||a||C∗max(Br(Y ))Γ =

||a||C∗max(X)Γ . Hence, ||φ(a)|| = ||φr(a)|| ≤ ||a||C∗max(Br(Y ))Γ = ||a||C∗max(X)Γ .

Thus, φ can be extended uniquely to a morphism C∗(Y ⊂ X)Γ → A of C∗-
algebras. The universal property of the direct limit of C∗-algebras, implies
that lim−→C∗max(Br(Y ))Γ = C∗max(Y ⊂ X)Γ. The claim of the theorem then

follows from the continuity of K-theory and the coarse equivalence of Br(Y )
and BR(Y ) for arbitrary r, R ∈ N (recall that the K-theory groups of the
Roe algebras of coarsely equivalent spaces are isomorphic).

2.2.2 The Structure Algebra and Paschke Duality

Let X be as in the previous section. A representation ρ : C0(X) → L(H)
of C0(X) is called very ample if it is an infinite sum of copies of an ample
representation. Construct R(X)Γ and C∗(X)Γ using some very ample repre-
sentation. In this section we will define a C∗-algebra associated to X which
contains C∗max(X)Γ as an ideal and such that the K-theory of the quotient
provides a model for K-homology of X.

Definition 2.2.14. We recall that an operator T ∈ L(H) is called pseu-
dolocal if it commutes with the image of ρ up to compact operators; i.e.,
[f, T ] ∈ K(H) for all f ∈ C0(X).

Definition 2.2.15. Denote by Sρ(X)Γ the ∗-algebra of finite propagation,
pseudolocal operators in L(H) which are furthermore invariant under the
action of the group Γ. The maximal structure algebra associated to the
space X is the maximal C∗-completion of Sρ(X)Γ. It will be denoted by
D∗ρ,max(X)Γ. The reduced structure algebra is the completion of the latter
∗-algebra using the norm in L(H). We denote this algebra by D∗ρ,red(X)Γ.

Remark 2.2.16. From now on, we will drop ρ from our notation. Later we
will introduce a new completion of S(X)Γ, which sits between the reduced
and maximal completions and denote it by D∗q(X)Γ. If the action of Γ is
trivial, we denote the structure algebra by D∗d(X), where d stands for the
chosen completion.

In comparison to the well known D∗red(X)Γ, the definition and proper-
ties of the maximal structure algebra D∗max(X)Γ are trickier than one might
think in the first place. First of all, one has to establish its existence; i.e. an
upper bound on the C∗-norms. Secondly, we want that C∗max(X)Γ is an
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ideal in D∗max(X)Γ and for this one has to control the a priori different C∗-
representations which are used in the definitions. Only then does it make
sense to form D∗max(X)/C∗max(X). Paschke duality states that its K-theory is
canonically isomorphic to the locally finite K-homology of X. All of this will
be done in the remainder of this section. We now introduce the so-called dual
algebras, which are larger counterparts of the Roe and structure algebra.

Definition 2.2.17. Denote by C∗(X)Γ the C∗-algebra of Γ-invariant locally
compact operators in L(H). Denote by D∗(X)Γ the C∗-algebra of Γ-invariant
pseudolocal operators in L(H).

It is clear that C∗(X)Γ is an ideal of D∗(X)Γ. We have the following

Theorem 2.2.18. There is an isomorphism K∗+1(D
∗(X)

C∗(X)
) ∼= K lf

∗ (X), where
the right-hand side is the locally finite K-homology of X, given as the Kas-
parov group KK∗(C0(X),C).

Proof. This is proven in [36, Proposition 3.4.11].

Lemma 2.2.19. The map S(X)
R(X)

→ D∗(X)
C∗(X)

induced by the inclusion S(X) →
D∗(X) is an isomorphism. In particular, S(X)

R(X)
is a C∗-algebra. The corre-

sponding statement holds for the Γ-equivariant versions.

Proof. In [16, Lemma 12.3.2], the isomorphism
D∗red(X)

C∗red(X)
∼= D∗(X)

C∗(X)
is proven.

The truncation argument used in the proof shows that D∗(X) = S(X) +

C∗(X), which implies the surjectivity of the map S(X)
R(X)

→ D∗(X)
C∗(X)

. Injectivity is
clear. An analogous argument using a suitable invariant open covering and

partition of unity gives the isomorphism S(X)Γ

R(X)Γ
∼= D∗(X)Γ

C∗(X)Γ .

Proposition 2.2.20. For a ∈ S(X)Γ there exists Ca > 0 such that, for an
arbitrary non-degenerate representation π of S(X)Γ we have ||π(a)|| ≤ Ca.

We need a few lemmas before proving Proposition 2.2.20. This propo-
sition shows that the maximal structure algebra is well-defined. Since the
structure algebra depends on both the coarse and topological structure of
the space, the coarse geometric property of having bounded geometry alone
does not guarantee the existence of the maximal structure algebra. This is
where the properness of the metric is needed. More precisely, this is used in
Lemma 2.2.19, which is itself used in the proof of Proposition 2.2.20.

Lemma 2.2.21. There exists a C∗-algebra A ⊂ R(X)Γ which contains an
approximate identity for C∗max(X)Γ.
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Proof. Let D be a fundamental domain for the action of Γ on X. Choose
a discrete subset YD of D as provided by the bounded geometry condition.
Denote the set obtained by transporting YD by the action of Γ by Y . Y is
then clearly Γ-invariant. By [7, Proposition 2.7], extended straightforwardly
to the equivariant case, it suffices to show that there exists a C∗-algebra
B ⊂ R(Y )Γ which contains an approximate identity for C∗max(Y )Γ. Here, as
the representation space we choose l2(Y )⊗l2(N), where the action of C0(Y ) is
given by multiplication. By [7, Proposition 2.19], l∞(Y ;C0(N))Γ ⊂ R(Y )Γ is
a C∗-algebra which contains an approximate unit of R(Y ) endowed with the
reduced norm and, by Proposition 2.2.3, of R(Y ) endowed with the maximal
norm. The claim then follows from density of R(Y )Γ in C∗(Y )Γ.

Lemma 2.2.22. Let ρ be an arbitrary non-degenerate ∗-representation of
R(X)Γ on some Hilbert space H. It extends in a unique way to a ∗-representation
of S(X)Γ on H.

More generally, let M(X)Γ be the algebra of bounded multipliers of R(X)Γ,
i.e. all bounded operators on the defining Hilbert space which preserve R(X)Γ

by left and right multiplication. Note that M(X)Γ contains S(X)Γ. The
representation ρ extends in a unique way to a ∗-representation of M(X)Γ.

Proof. Let π : R(X)Γ → L(H) be a non-degenerate ∗-representation of R(X)Γ.
It extends to a non-degenerate representation of C∗max(X)Γ. Pick a C∗-
subalgebraA of C∗max(X)Γ which contains an approximate identity for C∗max(X)Γ

and sits inside R(X)Γ. The restriction of π to A is thus also non-degenerate.
It follows from the Cohen-Hewitt factorisation theorem ([14, Theorem 2.5])
that, for all w ∈ H, there exist T ∈ A and v ∈ H with π(T )v = w. Further-
more, π(S)v = 0 for all S ∈ R(X)Γ implies that v is in the orthogonal com-
plement of π(R(X))H; hence, v = 0 by the nondegeneracy of π. It follows
from [8, Proposition IV.3.18] that π̂(T )(π(S)v) := π(TS)v for T ∈ S(X)Γ

gives a well-defined algebraic representation π̂ : M(X)Γ → L(H). Here L(H)
denotes the vector space of linear maps on H. It is clear that π̂ is an ex-
tension of π. We show that π̂ is actually a ∗-representation of M(X)Γ. The
equalities

〈π̂(T )(π(S)v), π(S ′)v′〉 = 〈π(TS)v, π(S ′)v′〉 = 〈π((S∗T ∗)∗)v, π(S ′)v′〉

= 〈v, π(S∗T ∗S ′)v′〉 = 〈π(S)v, π(T ∗S ′)v′〉 = 〈π(S)v, π̂(T ∗)(π(S ′)v′)〉
imply that the operator π̂(T ) is formally self-adjoint if T is self-adjoint.
Furthermore, since π̂(T ) is defined everywhere on H, it follows from the
Hellinger-Toeplitz theorem that it is bounded. Since every element of a ∗-
algebra is a linear combination of self-adjoint elements, this implies that the
image of π̂ is actually contained in L(H). The previous computation then
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shows that π̂ respects the involution; thus, it is a ∗-representation. Unique-
ness of the extension follows from the fact that every extension π̂ of π has to
satisfy π̂(T )(π(S)v) = π(TS)v for T ∈ M(X)Γ and S ∈ R(X)Γ, but this de-
termines π̂ since all elements of H are of the form π(S)v for some S ∈ R(X)Γ

and v ∈ H.

Lemma 2.2.23. An arbitrary non-degenerate ∗-representation π of S(X)Γ

can be decomposed as π = π1⊕π2, where both π1 and its restriction to R(X)Γ

are non-degenerate representations on some Hilbert space H1 and π2 is a
non-degenerate representation of S(X)Γ vanishing on R(X)Γ.

Proof. This follows from Lemma 2.2.22 and the discussion prior to [1, The-
orem 1.3.4].

Proof of Proposition 2.2.20. We denote by S the set of cyclic representations
of S(X)Γ on some Hilbert space with the property that their restriction to
R(X)Γ is a non-degenerate representation of R(X)Γ on the same space. For
π ∈ S, denote by πR its restriction to R(X)Γ. The bounded geometry condi-
tion on X (see Proposition 2.2.3) implies that

⊕
π∈S πR is a well-defined non-

degenerate representation of R(X)Γ. Lemma 2.2.22 implies that Π =
⊕

π∈S π
is a well-defined Hilbert space representation of S(X)Γ. For a ∈ S(X)Γ set

Ca
1 = ||Π(a)||. It is shown in Lemma 2.2.19 that S(X)Γ

R(X)Γ is a C∗-algebra. Set

Ca
2 = ||[a]|| S(X)Γ

R(X)Γ

and Ca = max{Ca
1 , C

a
2}. Now let π be an arbitrary non-

degenerate representation of S(X)Γ with a decomposition π1⊕π2 as provided
by Lemma 2.2.23. Obviously ||π(a)|| ≤ max{||π1(a)||, ||π2(a)||}. The claim
now follows from the facts that π1 is a subrepresentation of Π and π2 factors

through S(X)Γ

R(X)Γ .

Proposition 2.2.24. As with the Roe algebra, the K-theory groups of the
structure algebra are independent of the choice of the very ample represen-
tation. Furthermore, the assignment X 7→ K∗(D

∗
max(X)Γ) is functorial for

uniform (i.e. coarse and continuous) maps.

Proof. See the discussion in [16, Chapter 12.4]

Lemma 2.2.22 immediately implies the following

Proposition 2.2.25. C∗max(X)Γ is an ideal of D∗max(X)Γ.

Proposition 2.2.26. The inclusion S(X)Γ → D∗max(X)Γ gives rise to an

isomorphism S(X)Γ

R(X)Γ
∼= D∗max(X)Γ

C∗max(X)Γ .
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Proof. Since D∗max(X)Γ is the maximal C∗-completion of S(X)Γ, the projec-

tion S(X)Γ → S(X)Γ

R(X)Γ gives rise to a morphism of C∗-algebras D∗max(X)Γ →
S(X)Γ

R(X)Γ . Continuity of this map and the fact that its kernel contains R(X)Γ

implies that it induces a morphism D∗max(X)Γ

C∗max(X)Γ → S(X)Γ

R(X)Γ . The composition
D∗max(X)Γ

C∗max(X)Γ → S(X)Γ

R(X)Γ → D∗(X)Γ

C∗(X)Γ is the identity on the set of classes of D∗max(X)Γ

C∗max(X)Γ

which have a representative from S(X)Γ. Since the latter set is dense, it
follows that the composition is injective. On the other hand, by construction

the composition S(X)Γ

R(X)Γ → D∗max(X)Γ

C∗max(X)Γ → S(X)Γ

R(X)Γ is the identity and the claim
follows.

Corollary 2.2.27. There is an isomorphism K∗+1(D
∗
max(X)

C∗max(X)
) ∼= K lf

∗ (X).

2.2.3 Yu’s Localisation Algebras and K-homology

Definition 2.2.28 ([27, Section 2]). Let A be a normed ∗-algebra. By TA
denote the normed ∗-algebra of functions f : [1,∞)→ A which are bounded
and uniformly continuous.

Clearly, if A is a C∗-algebra, so is TA. Important examples for us will
be the algebras TD∗max(X) and TC∗max(X) defined using some very ample
representation of C0(X). Now we are in the position to define the localisation
algebra associated to a locally compact metric space X.

Definition 2.2.29 ([27, Section 2]). The C∗-algebra generated by functions
f ∈ TC∗max(X)Γ with the properties

• prop f(t) <∞ for all t ∈ [1,∞)

• prop f(t)→ 0 as t→∞

is called the localisation algebra of X and is denoted by C∗L,max(X)Γ.

Remark 2.2.30. In analogy to the fact that C∗max(X)Γ is contained as an
ideal in the C∗-algebra D∗max(X)Γ, one can define a C∗-algebra denoted by
D∗L,max(X)Γ, which contains C∗L,max(X)Γ as an ideal. This is the C∗-algebra
generated by the elements in TD∗max(X)Γ with the two properties of Defini-
tion 2.2.29.

Yu’s theorem states that the K-theory groups of the localisation algebra
are isomorphic to the locally finite K-homology groups.
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Theorem 2.2.31 ([27, Theorem. 3.4]). Let X be a locally compact metric
space and suppose C∗L,max(X) is defined using a very ample representation.
Then the local index map indL : K lf

∗ (X)→ K∗(C
∗
L,max(X)) of [27, Definition

2.4] is an isomorphism. Furthermore, the diagram

K lf
∗ (X) K∗(C

∗
L,max(X))

K∗(C
∗
max(X))

indL

µ
(ev1)∗

is commutative. Here µ denotes the index map K lf
∗ (X) ∼= K∗+1(D

∗
max(X)

C∗max(X)
) →

K∗(C
∗
max(X)).

Proof. First note that the local index map as defined in [27] can be de-
fined analogously in the maximal case. In [27, Theorem. 3.4] the theo-
rem is proven for the reduced localisation algebra and uses the isomorphism

K∗+1(
D∗red(X)

C∗red(X)
) ∼= K lf

∗ (X). However, Corollary 2.2.27 states that the isomor-

phism still holds if we replace the reduced Roe and structure algebra with
the maximal ones. Thus, the argument of [27] can be used literally.

Having the above theorem in mind, we will, from now on, use the notation
KL
∗ (X) for the group K∗(C

∗
L,max(X)). Given a closed subset Y of X, we

are now going to define the relative K-homology groups using localisation
algebras and discuss the existence of a long exact sequence for pairs. Chang,
Weinberger and Yu define the relative groups by using a concrete very ample
representation, which we will now describe.

Let Y ⊂ X be as above. Choose a countable dense set ΓX of X such
that ΓY := ΓX ∩ Y is dense in Y . Define C∗L,max(X) and C∗L,max(Y ) using the
very ample representations HX = l2(ΓX) ⊗ l2(N) and HY = l2(ΓY ) ⊗ l2(N)
respectively. The constant family of isometries Vt := ι, where ι : HY → HX is
the inclusion covers the inclusion Y → X in the sense of [27, Def. 3.1]. Hence,
applying Ad(Vt) pointwise we obtain a C∗-algebra morphism C∗L,max(Y ) →
C∗L,max(X), which we will denote by ι(X, Y ). Note that on elements with
finite propagation this map for each t is just the extension by zero of an
operator on HY to an operator on HX . We get a map ι(X, Y )∗ : K

L
∗ (Y ) →

KL
∗ (X).

Now denote by KL
∗ (X, Y ) the group K∗−1(Cι(X,Y )), where S denotes the

suspension and Cι(X,Y ) the mapping cone of ι(X, Y ). The short exact se-
quence

0→ SC∗L,max(X)→ Cι(X,Y ) → C∗L,max(Y )→ 0
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gives rise to a long exact sequence

. . .→ K∗(C
∗
L,max(Y ))→ K∗−1(SC∗L,max(X))→ K∗−1(Cι(X,Y ))→ · · ·

of K-theory groups. Using the canonical isomorphism K∗−1(S(·)) = K∗(·)
this sequence becomes the desired long exact sequence of a pair

. . .→ KL
∗ (Y )→ KL

∗ (X)→ KL
∗ (X, Y )→ . . . ,

constructed solely using localisation algebras.

Relative Localisation Algebra

Let X and Y be as above. We would like to extend C∗L,max(Y )Γ ⊂ C∗L,max(X)Γ

to an ideal with the same K-theory.

Definition 2.2.32. Denote by C∗L,max(Y ⊂ X)Γ the ideal in C∗L,max(X)Γ

generated by functions f ∈ TC∗(X)Γ such that for all t ∈ [1,∞), f(t) is
supported in an S(t)-neighbourhood of Y , where S : [1,∞) → R is some
function with S(t)→ 0 as t→∞.

Lemma 2.2.33 ([40, Lemma 1.4.18]). Let Y and X be as above. The inclu-
sion Y → X induces isomorphisms K∗(C

∗
L,max(Y )Γ) ∼= K∗(C

∗
L,max(Y ⊂ X)Γ).

Proof. In [40, Lemma 1.4.18], this is proven in the reduced case. However in
light of the discussion in Section 2.2.1, the modification of the arguments for
use in the maximal setting is straightforward.

2.2.4 Relative Group C∗-algebra

Let X be a proper path-connected metric space and Y a path-connected
subset of X. The inclusion Y → X induces a map π1(Y ) → π1(X), where
we choose a point y0 ∈ Y to construct the fundamental groups and the latter
map. This map in turn induces a morphism ϕ : C∗max(π1(Y ))→ C∗max(π1(X)).
The relative group C∗-algebra is defined as

C∗max(π1(X), π1(Y )) := SCϕ.

The short exact sequence

0→ SC∗max(π1(X))→ Cϕ → C∗max(π1(Y ))→ 0

and the Bott periodicity isomorphism gives a long exact sequence

→ K∗(C
∗
max(π1(Y )))→ K∗(C

∗
max(π1(X)))→ K∗(C

∗
max(π1(X), π1(Y )))→ .
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Remark 2.2.34. Note that the above C∗-algebras are independent of the
chosen point y0 up to an isomorphism which is well defined up to conjugation
by a unitary and therefore is canonical on K-theory.

Remark 2.2.35. Recall that unless ϕ : π1(Y ) → π1(X) is injective it does
not necessarily induce a map of the reduced group C∗-algebras. Thus, the
relative group C∗-algebra does not always have a reduced counterpart.

2.2.5 The Relative Index Map

The index of Chang, Weinberger and Yu is the image of a fundamental class in
KL
∗ (X, Y ) under a mapping µ : KL

∗ (X, Y )→ K∗(C
∗
max(π1(X), π1(Y ))), which

they call the relative Baum-Connes map. In this subsection we present the
definition of this map along the lines of [2, Section 2]. There the authors
relate the K-theory groups of the localisation algebras and their equivariant
counterparts and exploit Theorem 2.2.7 to relate the latter K-theory groups
with those of the group C∗-algebras of the fundamental groups.

Let X be a locally compact, path-connected, separable metric space and
Y be a closed path-connected subset of X. We suppose that the universal
coverings p : X̃ → X and p′ : Ỹ → Y of these spaces exist (e.g. suppose X
and Y are CW -complexes) and are endowed with an invariant metric and
that the metrics on X and Y are the pushdowns of these metrics, i.e. the
projections are local isometries. In the case of smooth manifolds we can
start with Riemannian metrics on X and Y and take their pullbacks to be
the invariant Riemannian metrics on X̃ and Ỹ . Pick countable dense subsets
ΓX and ΓY of X and Y such that ΓY ⊂ ΓX as before. Denote by ΓX̃ and ΓỸ
the preimages of ΓX and ΓY , respectively. Construct the (equivariant) Roe
algebras and the (equivariant) localisation algebras using the representations
l2(Γ·)⊗ l2(N). We recall that the equivariant algebras are constructed using
the action of fundamental groups by deck transformations.

Proposition 2.2.36 ([2, Proposition 2.8]). Let X and X̃ be as above. Sup-
pose furthermore that X is compact. Then there exists an ε > 0 depend-
ing on X such that for finite propagation locally compact operators T with
prop(T ) < ε, the kernel k̃ defined in the following defines an element of
C∗max(X̃)π1(X), which we will denote by L(T ).

Observe for the definition of L(T ) that a finite propagation locally com-
pact operator T on l2(ΓX) ⊗ H with prop(T ) = r is given by a matrix

ΓX × ΓX
k−→ K(H) such that k(x, x′) is 0 for all (x, x′) ∈ ΓX × ΓX with

dX(x, x′) ≥ r. Define the lifted operator on l2(ΓX̃) ⊗ H using the matrix

(x̃, x̃′)
k̃7−→ k(p(x̃), p(x̃′)) if dX̃(x̃, x̃′) < r and 0 otherwise.
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Vice versa, every equivariant kernel T̃ ∈ C∗max(X̃)π1(X) of propagation
< ε is such a lift, and this in a unique way, defining the push-down π(T̃ ) ∈
C∗max(X) as the inverse of the lift.

For the appropriate choice of ε, the covering X̃ → X should be trivial
when restricted to balls say of radius 2ε.

Remark 2.2.37. Later we will need a slight generalisation of Proposition 2.2.36
for manifolds obtained by attaching an infinite cylinder to a compact mani-
fold with boundary. It is evident that the ε obtained for the manifold with
boundary also works for the manifold with the infinite cylinder attached, and
then the construction indeed goes through without any modification.

Definition 2.2.38. Let T : s 7→ Ts be an element of RL(X), i.e. Ts is locally
compact and has finite propagation which tends to 0 as s → ∞. Therefore
prop(Ts) < ε for all s ≥ sT with some sT ∈ [1,∞). Define the lift

L(T ) : s 7→

{
L(TsT ); s ≤ sT

L(Ts); s ≥ sT

to obtain an element in C∗L,max(X̃)π1(X).

Similarly, for T̃ : s 7→ T̃s an element of RL(X̃)π1(X) such that T̃s is locally
compact, equivariant and has finite propagation which tends to 0 as t→∞
(in particular prop(T̃s) < ε for all s ≥ sT̃ for some sT̃ ∈ [1,∞)) define its
push-down

π(T̃ ) : s 7→

{
π(T̃sT̃ ); s ≤ sT̃
π(T̃s); s ≥ sT̃ .

Proposition 2.2.39. Set C∗0(X̃)π1(X) := C0([1,∞), C∗max(X̃)π1(X)), the ideal

of C∗L,max(X̃)Γ consisting of functions whose norm tends to 0 as s→∞. The
assignments of Definition 2.2.38 give rise to continuous ∗-homomorphisms

L : RL(X)→ C∗L,max(X̃)π1(X)/C∗0(X̃)π1(X)

π : RL(X̃)π1(X) → C∗L,max(X)/C∗0(X),

where we use that the algebra of functions vanishing at∞ is an ideal of the lo-
calisation algebra. Being continuous, they extend to the C∗-completions, and
they evidently map the ideal C0([1,∞), C∗max(X)) or C0([1,∞), C∗max(X̃)π1(X))
to 0, so that we get C∗-algebra homomorphisms

L : C∗L,max(X)/C∗0(X)→ C∗L,max(X̃)π1(X)/C∗0(X̃)π1(X)

π : C∗L,max(X̃)π1(X)/C∗0(X̃)π1(X) → C∗L,max(X)/C∗0(X).
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By construction these two homomorphisms are inverse to each other.
Being cones, C0([1,∞), C∗max(X̃)π1(X)) and C0(1,∞), C∗max(X)) have van-

ishing K-theory and by the 6-term exact sequence the projections induce iso-
morphisms in K-theory

K∗(C
∗
L,max(X̃)π1(X))→ K∗(C

∗
L,max(X̃)π1(X)/C∗0(X̃)π1(X)),

K∗(C
∗
L,max(X))→ K∗(C

∗
L,max(X)/C∗0(X)).

We therefore get a well defined induced isomorphism in K-theory

L∗ : K
L
∗ (X) = K∗(C

∗
L,max(X))→ K∗(C

∗
L,max(X̃)π1(X))

with inverse π∗.

The proof of Proposition 2.2.39 is not trivial, as we have to come to grips
with the potentially different representations which enter the definition of
the maximal C∗-norms for C∗max(X) and C∗max(X̃)π1(X). To do this, we use
the following lemma.

Lemma 2.2.40. Let ε be as in Proposition 2.2.36. There exists K ∈ N, such
that for all T ∈ R(X) and T̃ ∈ R(X̃)π1(X) with propagation less than ε we
have ||L(T )||C∗max(X̃)π1(X) ≤ K||T ||C∗max(X) and ||π(T̃ )||C∗max

(X) ≤ K||T̃ ||C∗max(X̃)π1(X).

Proof. By assumption, X has bounded geometry. Consequently, we can and
do choose for some fixed c > 0 a c-dense uniformly discrete subset D of ΓX
and denote by C∗max(D) and C∗max(D̃)π1(X) the Roe algebras of D constructed
using l2(D) ⊗ H and l2(D̃) ⊗ H as before. The proof of [9, Lemma 3.4]
guarantees the existence of a K ∈ N such that for all T ∈ C∗max(D) with
prop(T ) < ε there exist operators Ti∈{1,...,K} ∈ C∗max(D) such that ||Ti|| ≤
||T ||, T ∗i Ti ∈ l∞(D;K(H)), i.e. T ∗i Ti are operators of propagation 0, and

such that
∑
Ti = T . Moreover, the lift T̃i satisfies that T̃ ∗i T̃i = T̃ ∗i Ti ∈

l∞(D̃;K(H))π1(X)
L∼= l∞(D;K(H)). Hence the norm of T̃ ∗i T̃i is exactly ||Ti||2.

We thus have ||L(T )|| ≤ K||T ||. With a completely analogous argument
we get ||π(T̃ )|| ≤ K||T̃ ||.

Note that there are isomorphisms

C∗max(X)→ C∗max(D),

C∗max(X̃)π1(X) → C∗max(D̃)π1(X)

which can be constructed explicitly (compare [9, Section 4.4]). These iso-
morphisms can be chosen so as to make the diagrams

R(X̃)
π1(X)
ε R(D̃)

π1(X)
ε

R(X)ε R(D)ε

L L

R(X̃)
π1(X)
ε R(D̃)

π1(X)
ε

R(X)ε R(D)ε

π π
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commute. Here the subscript ε means that we are only considering operators
with propagation less than ε.

The latter commutative diagrams complete the proof.

Proof of Proposition 2.2.39. Recall that for (T̃ : s → T̃s) ∈ C∗L,max(X̃)π1(X)

we use the supremum norm: ||T̃ || = sups∈[1,∞) ||T̃s||. It follows that the

norm of the image of T̃ in C∗L,max(X̃)π1(X)/C0([1,∞);C∗(X̃)π1(X)) under the

projection map is ||[T̃ ]|| = lim sups∈[1,∞) ||T̃s|| (specifically, multiplication of

T̃ with a cutoff function ρ : [1,∞) → [0, 1] which vanishes on [1, R] and is
identically 1 on [R + 1,∞) produces representative of [T̃ ] whose norm in
C∗L(X̃)π1(X) approaches lim sups∈[1,∞) ||T̃s|| as R→∞).

The assertion then follows immediately from Lemma 2.2.40.

Until the end of Section 2.5 we are going to suppose thatX is compact and
that Y is a closed subset of X. Recall that ϕ denotes the map π1(Y )→ π1(X)
induced by the inclusion. Following the notation introduced in [2, Section
2], we denote by Y ′ the set p−1(Y ) and by p′′ : Y ′′ → Y the covering of Y
associated to the subgroup kerϕ; hence, Y ′ = π1(X) ×π1(Y )/ kerϕ Y

′′. Now
construct the equivariant Roe and localisation algebras for Y ′ and Y ′′ using
the sets p−1(ΓY ) and (p′′)−1(ΓY ) similarly as before.

Theorem 2.2.41 ([2, Lemma 2.12]). There is a map

ψ′′ : C∗max(Ỹ )π1(Y ) → C∗max(Y ′′)π1(Y )/ kerϕ

with the property that there exists ε > 0 such that given an operator T ∈
C∗max(Ỹ )π1(Y ) with prop(T ) < ε and kernel k on (p′)−1(ΓY ) the pushdown
of k gives a unique well-defined kernel kY on ΓY and ψ′′(T ) is given by the
kernel (x, y) 7→ kY (p′′(x), p′′(y)) for x, y ∈ Y ′′ with dY ′′(x, y) < ε.

Remark 2.2.42. It can be observed from the proof of Theorem 2.2.41, that
the result can be generalised to obtain a map C∗max(Z)Γ → C∗max(Z/N)Γ/N ,
where Z is a bounded geometry space satisfying the properties mentioned in
the beginning of the paper, Γ is a discrete group acting freely and properly
on Z via isometries, N ⊂ Γ is a normal subgroup and there exists an ε such
that the coverings Z → Z/N ′ are trivial when restricted to ε-balls for any
normal subgroup N ′ ⊂ Γ.

Remark 2.2.43. For the proof of Theorem 2.2.41, Chang, Weinberger and
Yu use that the push-down of operators with small propagation as defined
in Definition 2.2.38 can be extended to an honest ∗-homomorphism. Doing
it partially gives a morphism of ∗-algebras ψ′′ : R(Ỹ )π1(Y ) → R(Y ′′)π1(Y )/ kerϕ
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and then maximality of the norms provides the extension to the desired C∗-
homomorphism C∗max(Ỹ )π1(Y ) → C∗max(Y ′′)π1(Y )/ kerϕ. Note that, in general,
this is not possible if we use the reduced equivariant Roe algebras.

Using Y ′ = Y ′′ ×π1(Y )/ kerϕ π1(X), we get a C∗-algebra morphism

ψ′ : C∗max(Y ′′)π1(Y )/ kerϕ → C∗max(Y ′)π1(X) ⊂ C∗max(X̃)π1(X)

where the first map repeats the operators on the different copies of Y ′′

inside Y ′. Composing ψ′ and ψ′′ we obtain the map ψ : C∗max(Ỹ )π1(Y ) →
C∗max(X̃)π1(X). Application of the maps pointwise defines the corresponding
maps for localisation algebras, which we denote with the same symbols with
subscript L.

Theorem 2.2.44. The constructions just described fit into the following com-
mutative diagram of C∗-algebras, where the composition in the third row is
the map ψL, in the forth row is ψ, and in the last row is ϕ. The projection
maps in the second row of vertical maps are K-theory isomorphism. The
last vertical maps induce the canonical isomorphism in K-theory of Theorem
2.2.7. The Roe and localisation algebras are constructed using the maximal
completion.

C∗L,max(Y ) C∗L,max(Y ) C∗L,max(Y )
ι−−−−→ C∗L,max(X)yL yL yL yL

C∗L,max(Ỹ )π1(Y )

C∗0 (Ỹ )π1(Y )

ψ′′L−−−−→ C∗L,max(Y ′′)π1(Y )/ kerϕ

C∗0 (Y ′′)π1(Y )/ kerϕ

ψ′L−−−−→ C∗L,max(Y ′)π1(x)

C∗0 (Y ′)π1(x)

⊂−−−−→ C∗L,max(X̃)π1(X)

C∗0 (X̃)π1(X)x x x x
C∗L,max(Ỹ )π1(Y ) ψ′′L−−−−→ C∗L,max(Y ′′)π1(Y )/ kerϕ ψ′L−−−−→ C∗L,max(Y ′)π1(X) ⊂−−−−→ C∗L,max(X̃)π1(X)yev1

yev1

yev1

yev1

C∗max(Ỹ )π1(Y ) ψ′′−−−−→ C∗max(Y ′′)π1(Y )/ kerϕ ψ′−−−−→ C∗max(Y ′)π1(X) ⊂−−−−→ C∗max(X̃)π1(X)x x x x
C∗max(π1(Y ))

pr∗−−−−→ C∗max(π1(Y )/ kerϕ) −−−−→ C∗max(π1(X)) C∗max(π1(X)).

Proof. If in the first row C∗L(Y ) is replaced by RL(Y ), then the definition of
L, the behaviour of the push-down map ψ′′ and the (trivial) lifting map ψ′

on operators of small propagation and the definition of ι and ⊂ imply the
commutativity of the first two rows of the diagram. The continuity of the
involved maps then implies the commutativity of the first two rows. In order
to show the commutativity of the last two rows we recall the isomorphisms
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K∗(C
∗
max(π1(·))) → K∗(C

∗
max(̃·)π1(·)). For this we need the isomorphisms

C∗max(π1(·))⊗K(H)
∼=−→ C∗max(̃·)π1(·). Here we modify the proof of [16, Lemma

12.5.3] slightly to suit our choice of the representation space. Choose a count-
able dense subset D of the fundamental domain of Ỹ such that D and gD are
disjoint for g 6= e in π1(Y ). With ΓỸ =

⊔
g∈π1(Y ) gD, we get an isomorphism

l2(ΓỸ ) ⊗ l2(N) ∼= l2(π1(Y )) ⊗ ( ⊕
n∈N

l2(D)). Using this isomorphism we then

obtain a ∗-isomorphism between C[π1(Y )]⊗K( ⊕
n∈N

l2(D)) and the algebra of

invariant, finite propagation and locally compact operators. This induces

the desired isomorphism C∗max(π1(Y ))⊗K( ⊕
n∈N

l2(D))
∼=−→ C∗max(Ỹ )π1(Y ). Fur-

thermore we note (see [31, Proposition 6.4.1 and Proposition 8.2.8]) that the
standard isomorphisms Kp(A) → Kp(A ⊗K(H)) for a C∗-algebra A and a
separable infinite dimensional Hilbert space H is induced by the morphism
a 7→ a⊗p, with p a rank one projection. Now consider the rank one projection
px0⊗p1 on ⊕

n∈N
l2(D) ∼= l2(D)⊗ l2(N) for some x0 ∈ D and p1 the operator on

l2(N) projecting to the first component. The composition gives the desired
map C∗max(π1(Y ))→ C∗max(Ỹ )π1(Y ) which induces the K-theory isomorphism
of Theorem 2.2.7. We can perform the same procedure for Y ′′ = Ỹ /(kerϕ).
Considering the above D (or rather its image under Ỹ → Y ′′) as a subset
of Y ′′ and using ΓY ′′ =

⊔
g∈π1(Y )

kerϕ

gD, we get the corresponding isomorphism

l2(ΓY ′′)⊗ l2(N) ∼= l2(π1(Y )
kerϕ

)⊗ ( ⊕
n∈N

l2(D)). Choosing the same p as above our

procedure defines the desired C∗max(π1(Y )
kerϕ

) → C∗max(Y ′′)
π1(Y )
kerϕ which is a K-

theory isomorphism and which makes the lower left corner of the diagram
of Theorem 2.2.44 commutative. Similarly we construct the corresponding
map for Y ′, which is the associated bundle to Y ′′ with fibre π1(X) (we can
consider the above D as a subset of Y ′). The construction gives rise to the
morphism C∗max(π1(X)) → C∗max(Y ′)π1(X) which is a K-theory isomorphism
and which makes the lower middle square of the diagram of Theorem 2.2.44
commutative. Finally, considering D as a subset of Y ′ and extending it to a
dense subset of a fundamental domain of X̃, we obtain, similarly as above,
a corresponding map for X̃, the morphism C∗max(π1(X)) → C∗max(X̃)π1(X)

which is a K-theory isomorphism such that also the lower right corner of the
diagram of Theorem 2.2.44 commutes. This finishes the proof of the said
Theorem.

Definition 2.2.45. The commutative diagram of Theorem 2.2.44 defines a
zig-zag of maps between the mapping cones of the compositions of the maps
from left to right. Using in addition that the two wrong way vertical maps
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induce isomorphisms in K-theory, we obtain the map

µ : K∗(SCι(X,Y ))→ K∗(SCϕ)
Def
= K∗(C

∗
max(π1(X), π1(Y ))),

which we call the relative index map. In [2] it is called the maximal relative
Baum-Connes map.

2.3 A Geometric and Functorial Completion

of the Equivariant Roe Algebra

2.3.1 Maximal Roe Algebra and Functions of the Dirac
Operator

Before describing our geometric completion of the algebraic Roe algebra, we
discuss issues arising in coarse index theory when one uses maximal com-
pletions of the relevant C∗-algebras, which lead to gaps in [2]. A crucial
role in coarse index theory is played by functions of the Dirac operator (via
functional calculus). If we work with the usual (reduced) Roe algebras, the
latter are defined as algebras of bounded operators on L2-spinors, and the
Dirac operator is an unbounded operator on the same Hilbert space. Ellip-
ticity and finite propagation of the wave operator then are used to show that
certain functions of the Dirac operator satisfy the defining conditions for the
reduced Roe algebra and of the reduced structure algebra.

However, if one uses the maximal versions this is highly non-trivial:

1. The functions f(D) which do have finite propagation are by the very
definition elements of the algebraic Roe algebra (if f vanishes at infin-
ity) or of the algebraic structure algebra (if f is a normalising function).
The wave operators eitD are bounded multipliers of the maximal Roe
algebra and by Lemma 2.2.22 act as bounded operators on the defining
representation of the maximal Roe algebra.

2. However, it is not obvious at all that the one parameter group t 7→ eitD

is strongly continuous on the defining representation of the maximal
Roe algebra, i.e. is obtained from an (unbounded) self-adjoint operator
D on that Hilbert space. This one needs to have a reasonable definition
of f(D) in the maximal Roe and structure algebra for f without a
compactly supported Fourier transform.

3. Even if one manages to construct the self-adjoint unbounded opera-
tor D on the maximal representation, it remains to show that this
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maximal Dirac operator is invertible if the underlying manifold has
uniformly positive scalar curvature: one has to make sense also of a
(geometric) Schrödinger-Lichnerowicz formula for this non-geometric
representation?

Chang, Weinberger, and Yu’s article [2] taks all these necessary construc-
tions and properties for granted, without any justification. We propose a way
around by passing to a slightly different and much more convenient comple-
tion. Later, Guo, Xie, and Yu posted the preprint [11] where they also
identify these gaps in [2] and propose positive answers the above questions.

2.3.2 The Quotient Completion

Our suggestion to overcome the problems addressed in Section 2.3.1 is to work
with another functorial completion of the equivariant Roe algebra which is
more geometric. We are studying the case that a group Γ acts freely and
properly discontinuously by isometries on a proper metric space X.

For every normal subgroup N ⊂ Γ we then can form the metric space
X/N on which the quotient group Q := Γ/N acts as before. Indeed, typically
we obtain X as a Γ-covering of a space X/Γ and the X/N are then other
normal coverings of X/Γ.

In the usual way, the purely algebraically defined algebras R(X)Γ and
S(X)Γ act via their images in R(X/N)Γ/N and S(X/N)Γ/N on all these quo-
tients (see Theorem 2.2.41), and we complete with respect to all these norms
at once. Denote the corresponding completions by C∗q (X)Γ and D∗q(X)Γ. It
is clear that the former is an ideal in the latter. It is also clear that this has
the usual functoriality properties for Γ-equivariant maps for fixed Γ, but now
in addition is functorial (this is built in) for the quotient maps X → X/N ,
giving C∗q (X)Γ → C∗q (X/N)Γ/N and D∗q(X)Γ → D∗q(X/N)Γ/N .

Finally, for inclusion of groups ι : Γ → G induces an induction map
C∗q (X)Γ → C∗q (X ×Γ G)G, because for every quotient G/N we get the as-
sociated induction

R(X/Γ ∩N)Γ/(Γ∩N) → R(X/(Γ ∩N)×Γ/Γ∩N G/N)G/N = R(X ×Γ G/N)G/N .

The corresponding construction works for D∗q and for the localisation alge-
bras.

Putting this together, we get the expected functoriality of C∗q and D∗q
and the localisation algebras for maps equivariant for any homomorphism
α : Γ1 → Γ2.

Lemma 2.3.1. Suppose Γ acts cocompactly on X. Then C∗q (X)Γ is isomor-
phic to C∗q (Γ) ⊗ K(H). Here, C∗q (Γ) is the C∗-completion of C[Γ] in the
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representation
⊕

NCΓ l
2(Γ/N), where the sum is over all normal subgroups

N of Γ.

Proof. The proof is precisely along the lines of the one of Theorem 2.2.7.

Proposition 2.3.2. Let X/Γ be a complete Riemannian spin manifold with
Γ-covering X. The Dirac operator on the different normal coverings X/N for
the normal subgroups N of Γ gives rise to a self-adjoint unbounded operator in
the defining representation of C∗q (X)Γ. If f ∈ C0(R) we get f(D) ∈ C∗q (X)Γ,
if Ψ: R→ [−1, 1] is a normalising function, we get Ψ(D) ∈ D∗q(X)Γ.

This construction is functorial for the quotient maps X → X/N for nor-
mal subgroups N C Γ.

The Schrödinger-Lichnerowicz argument applies: if X/Γ has uniformly
positive scalar curvature then the spectrum of the operator D in the defining
representation of C∗q (X)Γ does not contain 0.

Let A ⊂ X be a Γ-invariant measurable subset. Then χA, the operator of
multiplication with the characteristic function of A is an element of D∗q(X)Γ,
in particular a multiplier of C∗q (X)Γ. Under the quotient map X → X/N for
a normal subgroup N C Γ it is mapped to χA/N . Similarly, a function of the
Dirac operator on X is mapped to the same function of the Dirac operator
on X/N .

Proof. The statements about the Dirac operator are just an application of
the usual arguments to all the quotients X/N simultaneously, using Lemma
3.3.3.

The statement about χA is a direct consequence of the definitions.

Remark 2.3.3. We note that all the statements in Section 2.2 have a coun-
terpart when we use the quotient completion instead of the maximal comple-
tion of the equivariant algebras and their proofs are completely analogous to
(and often easier than) the proofs for the maximal completions. In particu-
lar, we have a relative index map in this case. Furthermore we would like to
emphasise that Theorem 2.2.11 holds for the quotient completion. Given a
map φ : Γ→ π, we get by functoriality a morphism φ : C∗q (Γ)→ C∗q (π), and
C∗q (π,Γ) will denote SCφ as before.

2.4 Higher Indices of Dirac Operators on Man-

ifolds with Boundary

2.4.1 Construction of the Relative Index

Throughout this section, we consider only even dimensional spin manifolds.
We define the relative index of the Dirac operator of a manifold M with
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boundary N in the following groups:

• in C∗max(π1(M), π1(N)),

• in C∗q (π1(M), π1(N)) and

• in C∗red(π1(M), π1(N)) if π1(N)→ π1(M) is injective.

In what follows the subscript d stands for one of the mentioned completions.
Before defining the relative index of the Dirac operator on a manifold with
boundary, we recall the explicit image of the fundamental class under the
local index map. Given a complete Riemannian spin manifold X with a free
and proper action of Γ by isometries, denote by DX the Dirac operator on
X. Let Ψt be a sup-norm continuous family of normalising functions, i.e.
each Ψt is an odd, smooth function Ψt : R→ [−1, 1] such that Ψt(s)

s→∞−−−→ 1.
Suppose furthermore that for t ≥ 1 the distributional Fourier transform
of Ψt is supported in a 1

t
-neighbourhood of 0. Choose an isometry α be-

tween L2(/S
+

) and L2(/S
−

) induced from a measurable bundle isometry, set

Ψt(DX)+ := Ψt(DX)|L2(/S
+

) and FX(t) := α∗ ◦ Ψt(DX)+. Set e11 :=

(
1 0
0 0

)
,

e22 :=

(
0 0
0 1

)
. Note that the presence of α∗ implies that FX(t) is an operator

on L2(/S
+

).

Definition 2.4.1. In the above situation, the (locally finite) fundamental
class [DX ] ∈ K0(C∗L,d(X)) = KL

0 (X) is given explicitly by [PX ]− [e11], with

PX :=

(
FF ∗ + (1− FF ∗)FF ∗ F (1− F ∗F ) + (1− FF ∗)F (1− F ∗F )

(1− F ∗F )F ∗ (1− F ∗F )2

)
.

In this formula F denotes FX(·) and PX is an idempotent in M2(C∗L,d(X)+).
Here, A+ denotes the unitalisation of A.

Remark 2.4.2. Note that since Ψt is assumed to have compactly supported
Fourier transform, Ψt(DX) has finite propagation which means that PX is a
matrix over the unitalisation of R∗L(X) ⊂ C∗L,max(X).

Now let M be a compact spin manifold with boundary N . Denote by
N∞ the cylinder N × [0,∞) and by M∞ the manifold M ∪N N∞. Given a
Riemannian metric on M which is collared at the boundary, we will equip
N∞ with the product metric. Taking the image of [DM∞ ] in KL

∗ (M∞, N∞)
and then under the excision isomorphism defines the relative fundamental
class [M,N ] ∈ KL

∗ (M,N). For the index calculations which we have to carry
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out we need an explicit representative of this class, and this in the model of
relative K-homology as the K-theory of the mapping cone algebra Cι(M,N).
Therefore, we recall the construction of [2], referring for further details to [2]
—see also [16, Proposition 4.8.2] and [16, Proposition 4.8.3].

As the relative K-homology groups are constructed as mapping cones
which come with a built-in shift of degree, we have to use Bott periodicity
to shift the fundamental class to the suspension algebra (with degree shift).
To implement this, denote by v the Bott generator of K1(C0(R)). Following
[2] define the invertible element

τD := v ⊗ PM∞ + I ⊗ (I − PM∞)

in a matrix algebra over C(S1) ⊗ C∗L,d(M∞)+ with inverse given by τ−1
D =

v−1 ⊗ PM∞ + I ⊗ (I − PM∞) (see [16, Proposition 4.8.3] for more details).
Next, we map to the relative K-homology of the pair (M,N), which requires
applying the inverse of the excision isomorphism K∗(M,N)→ K∗(M∞, N∞).
This is implemented for our K-theory cycles by multiplication with a cut-
off. For technical reasons, we observe that instead of N ⊂ M we can use
the homeomorphic NR := N × {R} ⊂ MR := M ∪ N × [0, R] for each
R ≥ 0. We use localisation algebras, and then we can use the K-theory
isomorphism C∗L,d(MR) → C∗L,d(M ⊂ M∞) and work with C∗L,d(M ⊂ M∞)
which is independent of R. Similarly, we use the K-theory isomorphism
C∗L,d(NR) → C∗L,d(N ⊂ N∞) and replace C∗L,d(NR) by the R-independent
C∗L,d(N ⊂ N∞). This causes slight differences to the construction of [2].

For the cut-off, set χR := χMR
, the characteristic function of MR. Con-

sider

τD,R :=v ⊗ (χRPM∞χR + (1− χR) e11(1− χR))

+I ⊗ (I − (χRPM∞χR + (1− χR)e11(1− χR)))

and define τ−1
D,R in the same way with v replaced by v−1. Note that these two

operators are in general not inverse to each other. Define, for s ∈ [0, 1],

wD,R(s) :=

(
I (1− s)τD,R
0 I

)(
I 0

−(1− s)(τD)−1
M I

)(
I (1− s)τD,R
0 I

)(
0 −I
I 0

)
.

Finally set
qD,R(s) := wD,R(s) e11wD,R(s)−1. (2.2)

Applying the same procedure not to τD but to v⊗e11 +I⊗e22, we obtain
a curve qp(s). Note that by construction of τD,R, all operators, in particular
qD,R(s), are diagonal for the decomposition L2(M∞) = L2(MR) ⊕ L2(N ×
[R,∞)) and are of standard form on L2(N × [R,∞)). This summand does
not appear in [2] but has to be there to construct the appropriate operators
in C∗L,d(M ⊂M∞).
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Lemma 2.4.3. Assume that the operator FM∞(t) has propagation ≤ L for
some L ∈ [0,∞). Then qD,R(s)(t) (recall that we always have an additional
t ∈ [1,∞)-dependency) has propagation ≤ 30L. It is diagonal with respect to
the decomposition L2(M∞) = L2(MR) ⊕ L2(N × [R,∞)) and coincides with
qp(s) on L2(N× [R,∞)). It is obtained via finitely many algebraic operations
(addition, composition) from Ψt(DM∞), the measurable bundle isometry α,
the Bott element v and χR.

If R > 30L then qM,R(0)(t) differs from qp(0)(t) by an operator Q sup-
ported on N × [0, R]. More precisely, for suitable operators A,B,

Q = χRA ◦ I ⊗ [χR, P∞] ◦BχR
where the commutator [χR, P∞] is supported on N × [R− 5L,R+ 5L] and Q
has propagation ≤ 30L.

Like qD,R(s)(t), the operator Q(t) is obtained via finitely many algebraic
operations from Ψt(DM∞), α, v, v−1, and χR.

Due to the local nature of all constructions and because of the support
property of the commutator [ΨR, P∞] (using Lemma 3.3.3 for Ψt(D)), the
operator Q on L2(N × [0, R]) is equal to the operator constructed corre-
spondingly, where DM∞ is replaced by DN×R and χR by χN×(−∞,R].

Proof. The explicit formulas show that qD,M(s)(t) is an algebraic combina-
tion of Ψt(DM∞), α, etc. as claimed, where all building blocks either have
propagation 0 or are Ψt(DM∞), and we compose at most 30 of the latter.
The claim about the propagation follows.

As it can be seen from the formula in the proof of [2, Claim 2.19], qD,R(0)
would be equal to qp(0) if τD,R was invertible with inverse τ−1

D,R, which would
happen if χRPM∞χR was an idempotent. To compare with this situation one
has to commute PM∞ and χR which produces the shape of Q as claimed. The
rest then follows as for qD,R(s).

Denote by ι′R the inclusion of C∗L,d(N ⊂ N∞) in C∗L,d(M ⊂ M∞), the
image consisting of those operators which act only on L2(N∞).

The relative fundamental class [M,N ] ∈ K0(CSι′R) ∼= K0(SCι′) ∼= KL
0 (M,N)

is defined as

[M,N ] := [(qD,R(0), qD,R(·))]− [(qp(0), qp(·))] . (2.3)

It is implicit in [2] that the K-theory class is independent of R and the family
of normalising functions Ψt.

Definition 2.4.4 (The Relative Index). The relative index of the Dirac
operator is defined as

µ([M,N ]) ∈ K0(C∗d(π1(M), π1(N))).
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The explicit K-theory cycle defining [M,N ] and the description of the map
µ of Definition 2.2.45 gives us an explicit cycle for the relative index:

We have to lift the operators qD,M(s) involved in the construction of

[M,N ] to equivariant operators on the π1(M)-cover M̃∞ and those involved
in qD,M(0) to equivariant operators on the π1(N)-cover Ñ∞. This is possible
here and the operators are given as the corresponding functions of the Dirac
operator on the coverings. For this, we use that by Lemma 2.4.3 the operators
qD,M(t) is obtained as an expression in functions of the Dirac operator which
lift to the corresponding functions of the Dirac operator by Lemma 3.3.3.

Similarly, by Lemma 2.4.3 and if R > 30L, where the propagation of
Ψt(D) is bounded by L for all t ∈ [1,∞), the operator qD,R(0) is obtained
as an algebraic combination of functions of DN×R and the cut-off function
χN×(−∞,R] which lift by Lemma 3.3.3 to π1(N)-equivariant operators on Ñ ×
[0,∞) defined by the same expressions. Thus if we denote by q̃D,R the element

constructed as above using the Dirac operator of M̃∞ and χM̃R
and by q̃ND,R

the element constructed using the Dirac operator on Ñ × R and χN×(−∞,R]

then we have the following

Lemma 2.4.5. The expression [(q̃ND,R(0), q̃D,R(·))]− [(qp(0), qp(·))] defines an
element of K0(SCC∗L,d(Ñ⊂Ñ∞)π1(N)→C∗L,d(M̃⊂M̃∞)π1(M)) which identifies under the

canonical isomorphism of the latter group with K0(M,N) with [M,N ].

Hence under these conditions on R and the propagation of Ψt(D), the rel-
ative index is the obtained by evaluation at t = 1, or by homotopy invariance
at any t ≥ 1:

µ([M,N ]) = [(q̃ND,R(0)(t), q̃D,R(·)(t))]− [(qp(0), qp(·))] ∈
K0(SCC∗(Ñ⊂Ñ∞)π1(N)→C∗d (M̃⊂M̃∞)π1(M)) ∼= K0(C∗d(π1(M), π1(N))).

(2.4)

As qp(·) is independent of t, we omit specifying the evaluation at t here.

2.4.2 The Localised Fundamental Class and Coarse In-
dex

Suppose X is a smooth even dimensional spin manifold with free and proper
action by Γ. Let Z be a closed Γ-invariant subset of X. Suppose that there
exists a complete Γ-invariant Riemannian metric on X which has uniformly
positive scalar curvature outside Z. In [28] and in more detail in [30], Roe
defines a localised coarse index of the Dirac operator in K∗(C

∗
red(Z ⊂ X)Γ).

In the course of the proof of [12, Theorem 3.11], the construction of the latter
localised index is generalised to the case of a Dirac operator twisted with a
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Hilbert C∗-module bundle. In [40, Chapter 2], Zeidler defines this index using
localisation algebras. There, he also shows that under certain assumptions
on a manifold X with boundary Y , the localised coarse index can be used to
define an obstruction to the extension of a uniformly positive scalar curvature
metric on the boundary to a uniformly positive scalar curvature metric on
the whole manifold. In this section we follow the approach in [40] to define
the localised fundamental class and coarse index.

Definition 2.4.6. Denote by C∗L,0,d(X)Γ the kernel of the evaluation homo-
morphism ev1 : C∗L,d(X)Γ → C∗d(X)Γ. Denote by C∗L,Z,d(X)Γ the preimage of
C∗d(Z ⊂ X)Γ under ev1. The symbol d here stands for the chosen completion
(red, max, or q).

Suppose that g is a Γ-invariant metric on X with uniformly positive
scalar curvature outside of a Γ-invariant set Z. In [40, Definition 2.2.6],
in this situation the so-called partial ρ-invariant ρΓ

Z,red(g) ∈ C∗L,Z,red(X)Γ is
constructed, which is a lift of [DX ] under the morphism K∗(C

∗
L,Z,red(X)Γ)→

K∗(C
∗
L,red(X)Γ) induced by the inclusion.

Recall the explicit representative for [DX ] ∈ K0(C∗L,d(X)Γ) of Section 2.4.
We next recall the construction of [40, Definition 2.2.6] and show that it also
works for C∗q .

Lemma 2.4.7. If f2 ∈ Cb(R) has Fourier transform with support in [−r, r]
then f2(D) is r-local and depends only on the r-local geometry in the follow-
ing sense: if A ⊂ X is a Γ-invariant measurable subset then χAf2(D)(1 −
χBr(A)) = 0 and χAf2(D) depends only on the Riemannian metric on Br(A).

Proof. This is the usual unit propagation statement in the form that f2(D)
is the integral of f̂2(t)eitD where eitD not only has propagation |t| but also
is well known to depend only on the r-local geometry. The latter fact is a
consequence of [16, Corollary 10.3.4].

Lemma 2.4.8 ([30, Lemma 2.3], [12, Proposition 3.15]). Suppose as above
that the scalar curvature of g outside Z is bounded from below by 4ε2. If
f ∈ C0(R) has support in (−ε, ε), then f(D) lies in C∗d(Z ⊂ X)Γ.

Proof. By [12, Proposition 3.15] the statement holds for all quotients X/N
and their reduced Roe algebra, which implies by definition of the quotient
completion that it holds for C∗q (X)Γ.

Because of the geometric nature of the completion of the Roe algebra we
use, Lemmas 3.3.3 and 2.4.8 allow to define the localised coarse index using
the completion C∗q as follows.
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Definition 2.4.9. Choose a sup-norm continuous family of normalising func-
tions Ψt for t ≥ 1 such that Ψ2

1− 1 has support in (−ε, ε), the Fourier trans-
form of Ψt has compact support for each t > 1 and the Fourier transform
of Ψt has support in [−1

t
, 1
t
] for t ≥ 2. Note that the support condition on

Ψ1 implies that its Fourier transform is not compactly supported. For the
existence note that we have to approximate the Fourier transform of Ψ1 by
compactly supported functions (with a singularity at 0) such that the error
is small in L1-norm. This is possible, as can be seen from the discussion in
the proof of [12, Lemma 3.6].

Define FX(t) and PX as in Section 2.4. Observe, however, that by Lemma
3.3.3 FX(1)FX(1)∗ − 1 ∈ C∗q (Z ⊂ X)Γ. It follows that now the cycle [PX ]−
[e11] defines a class

ρΓ
Z(g) ∈ K0(C∗L,Z,d(X)Γ)

which is of course a lift of [DX ].

Corollary 2.4.10. The construction shows that if we have uniform positive
scalar curvature not only on X \ Z but on all of X there is a further lift of
ρΓ
Z(g) to ρΓ(g) ∈ K0(C∗L,0,d(X)Γ), the usual rho-invariant.

Definition 2.4.11. Let Z ⊂ X and g be as above. Suppose furthermore that
the action of Γ on Z is cocompact so that Lemma 2.2.11 holds for Z. The
equivariant localised coarse index IndΓ

Z(g) of g with respect to Z is defined
as the image of ρΓ

Z(g) under the composition

K0(C∗L,Z,d(X)Γ)→ K0(C∗d(Z ⊂ X)Γ) ∼= K0(C∗d(Z)Γ),

where the first map is induced by evaluation at 1.

The long exact sequence in K-theory associated to the short exact se-
quence

0→ C∗L,0(X)Γ → C∗L,Z(X)Γ → C∗(Z ⊂ X)Γ → 0,

along with Corollary 2.4.10 imply that if g has uniformly positive scalar
curvature on all of X, then IndΓ

Z(g) vanishes.

2.4.3 Application to the Case of a Compact Manifold
with Boundary

Suppose M is compact even-dimensional spin manifold with boundary N .
In this case we cannot directly define an index for the Dirac operator on M
with value in K∗(C

∗
q (π1(M))). However given a metric g with positive scalar

curvature and product structure near the boundary, we can use the above lo-
calised coarse index to define an index in K0(C∗q (M̃)π1(M)) ∼= K0(C∗q (π1(M))).
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Note that this index does in general depend on the chosen metric of positive
scalar curvature near the boundary. Let us review the construction of the
latter index.

As in Section 2.4, denote by N∞ the cylinder N × [0,∞) and by M∞ the
manifold M ∪N N∞. Denote by [DM∞ ] the fundamental class of the Dirac
operator in K∗(C

∗
L,q(M)) associated to some metric g on M∞ (not necessarily

collared on the cylindrical end) and by [D̃M∞ ] the fundamental class of the

Dirac operator in K∗(C
∗
L,q(M̃)π1(M)) on M̃∞ associated to the pullback of g,

which we denote by g̃. As observed in Remark 2.2.37, Proposition 2.2.36
extends to M∞ and the pointwise lifting procedure of operators with small
propagation gives rise to an isomorphism KL

∗ (M∞) ∼= K∗(C
∗
L(M̃∞)π1(M)) un-

der which [DM∞ ] is mapped to [D̃M∞ ]. If g has positive scalar curvature on

N , then its pullback has uniformly positive scalar curvature on N ′∞ ⊂ M̃∞,

i.e. outside the cocompact subset M̃ of M̃∞. This allows us to the define
the localised coarse index Indπ1(M)(g) := Ind

π1(M)

M̃
(g̃) ∈ K0(C∗(M̃)π1(M)) ∼=

K0(C∗(π1(M))). The latter index is an obstruction to g̃, and thus g, having
positive scalar curvature.

2.5 Statement and Proof of the Main Theo-

rem

Finally we are in the position to state the main theorem of this paper.
Throughout this section we will assume all the manifolds and their boundary
to be path-connected.

Theorem 2.5.1. Let M be a compact spin manifold with boundary N . We
have the commutative diagram

→ KL
∗ (N) KL

∗ (M) KL
∗ (M,N)→

→ K∗(C
∗
q (π1(N))) K∗(C

∗
q (π1(M))) K∗(C

∗
q (π1(M), π1(N)))→

µN µM µ

j

where the vertical maps are the index maps and relative index maps.
Assume that M has a metric g which is collared at the boundary and has

positive scalar curvature there. Then

j(Indπ1(M)(g)) = µ([M,N ])

under the canonical map j : K∗(C
∗
q (π1(M)))→ K∗(C

∗
q (π1(M), π1(N))).
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The above theorem has as a corollary the following vanishing theorem of
Chang, Weinberger and Yu for the relative index constructed in the mapping
cone of the quotient completion of the group ring:

Theorem 2.5.2. Let M be a compact spin manifold with boundary N . Sup-
pose that M admits a metric of uniformly positive scalar curvature which is
collared at the boundary. Then µ([M,N ]) = 0.

Proof of the Theorem 2.5.1. Proposition 2.2.44 implies the commutativity of
the diagram. To see this, note that the discussion there relies only on the
functoriality properties of the maximal completions which are also satisfied by
the quotient completions. It remains to show that given a metric with positive
scalar curvature at the boundary, Indπ1(M)(g) is mapped to µ([M,N ]) under
the canonical map. Let us analyse the situation with the strategy of proof
and the difficulties involved. For the notation used we refer to Sections 2.4
and 3.3.2 on the relative index and the localised coarse index.

Both index classes are defined using explicit expressions involving func-
tions of the Dirac operator. For Indπ1(M)(g), we only use the manifold M̃
and π1(M)-equivariant constructions, which, however, are necessarily non-
local to make use of the invertibility of the Dirac operator on the boundary.
For µ([M,N ]), on the other hand, one has to use a π1(M)-equivariant oper-

ator on M̃ and a further lift to a π1(N)-equivariant operator on Ñ , which is
only possible if all the functions of the Dirac operator involved are sufficiently
local. To show that the two classes are mapped to each other, we need to
reconcile these two points.

First, observe that in the construction of the relative fundamental class
and relative index we use the explicit implementation of the Bott periodicity
map. We apply this now to our representative of the local index: with our
choice of Ψ1, PM̃∞(1) is an idempotent in C∗q (M̃ ⊂ M̃∞)π1(M) representing

Indπ1(M)(g) ∈ K0(C∗q (M̃ ⊂ M̃∞)π1(M)) ∼= K0(C∗(π1(M))). Next,

τ := v ⊗ PM̃∞(1) + I ⊗ (I − PM̃∞(1))

is the invertible element in C0(R)⊗C∗(M̃ ⊂ M̃∞)π1(M) representing the K1-
class corresponding to the localised index under the suspension isomorphism.
Finally, if we define q(s) as in Equation (2.2) with τD,R replaced by τ then

a := [q(0)(1), q(·)(1)]− [qp(0), qp(·)] ∈ K0(SC{0}→C∗(M̃⊂M̃∞)π1(M))

defines the class corresponding to Indπ1(M)(g) under the Bott periodicity
isomorphism, where we use that the cone of the inclusion of {0} into A is
the suspension of A. Of course, here q(0)(1) = qp(0).

45



We now have to show that, under the canonical map to the suspension
of the cone of C∗(Ñ ⊂ Ñ∞)π1(N) → C∗(M̃ ⊂ M̃∞)π1(M) induced by the
inclusion {0} → C∗(Ñ , Ñ∞)π1(N), the class a is mapped to the relative index
µ[M,N ]. Recall from (2.4) that the latter is represented by any cycle of the
form

[q̃ND,Rt(0)(t), q̃D,Rt(·)(t)]− [(qp(0), qp(·))]

for t > 1, such that the support of Ψ̂t is contained in [−Lt, Lt] for Lt ∈ R
and therefore Ψt(D) has propagation ≤ Lt, where we must choose Rt > 30Lt.
The construction of q̃D,Rt(·)(t) involves the same steps as the one of q(·), but
we use Ψt(D) instead of Ψ1(D) and moreover apply cut-off with χRt . Note
that now q̃ND,Rt(0)(t) − qp(0) 6= 0, but rather q̃ND,Rt(0)(t) − qp(0) ∈ C∗(Ñ ⊂
Ñ∞)π1(N), so that this is not a class in the suspension of SC∗(M̃ ⊂ M̃∞)π1(M)

but in the mapping cone.
We claim now that for each ε > 0 there is (tε, Rε) such that

||q̃ND,Rε(0)(tε)− qp(0)||+ ||q̃D,Rε(·)(tε)− q(·)(1)|| ≤ ε. (2.5)

This implies by standard properties of the K-theory of Banach algebras the
desired result (as q(0)(1) = qp(0)),

µ([M,N ]) = c(Indπ1(M)(g)).

To prove (2.5) we make use of Lemma 2.4.3 which explicitly describes the
operators involved. This implies

||q̃D,R(·)(t)− q̃D,R(·)(1)|| t→1−−→ 0 (2.6)

uniformly in R, as the two expressions are obtained via algebraic operations
involving Ψt(D), and by the sup-norm continuity of Ψt, Ψt(D) converges
to Ψ1(D) in norm (and this again uniformly, independent of the complete
Riemannian manifold for which D is considered).

Next by the uniformly positive scalar curvature on N∞ we have PM̃∞(1)−
e11 ∈ C∗(M̃ ⊂ M̃∞)π1(M). This implies (convergence in norm)

χR(PM̃∞(1)− e11)χR
R→∞−−−→ PM̃∞(1)− e11

or equivalently

χRPM̃∞(1)χR + (1− χR) e11 (1− χR)
R→∞−−−→ PM̃∞(1). (2.7)

Because of Lemma 2.4.3, (2.7) implies that

||q̃D,R(·)(1)− q(·)(1)|| R→∞−−−→ 0 (2.8)
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as these operators are obtained as a fixed algebraic expression of either

χRPM̃∞(1)χR + (1− χR) e11 (1− χR) or PM̃∞(1).

Next, (2.6) together with (2.8) imply the assertion of (2.5) for the second
summand. Here, we can and have to choose Rε depending on tε such that
Rε > Rtε (depending on the propagation of Ψtε(D)).

Then, the lift q̃ND,Rε(0)(tε) to C∗(Ñ ⊂ Ñ∞)π1(N) actually exists, is defined

in terms of the Dirac operator on Ñ × R, and we have to show that by
choosing tε sufficiently close to 1 it is close to qp(0).

This, as we already showed, it is a special case of (2.6) and (2.8), now
applied to the Dirac operator on Ñ×R. Note that because of the invertibility
of the Dirac operator on N×R and our appropriate choice of the normalising
function Ψ1, we have on the nose

q̃N(0)(1) = qp(0),

where qN is defined like q but using the Dirac operator on Ñ × R. This
finishes the proof of (2.5) and therefore of our main Theorem 2.5.1.

Remark 2.5.3. We decided to present the details of the index constructions
and proofs only for even dimensional manifolds.

The case of odd dimensional manifolds can easily be reduced to this case
via a “suspension construction”, as also done in [2]. More precisely, if we have
an odd dimensional compact manifold M , we pass to the even dimensional
manifold M × S1. Correspondingly, the covering space M̃ with action by
π1(M) is replaced by M̃ × R with action of π1(M)× Z.

It is now a standard result that we have Künneth isomorphisms for the K-
theory groups relevant to us, in particular for a group homomorphism Λ→ Γ

K0(C∗d(Γ× Z,Λ× Z))
∼=−→ K0(C∗d(Γ,Λ))⊕K1(C∗d(Γ,Λ)). (2.9)

The ad hoc definition of the relative index µ(M,N) ∈ K1(C∗d(π1(M), π1(N)),
generalizing Definition 2.4.4 to odd dimensional M , is now just the image
of µ([M × S1, N × S1]) under the Künneth map (2.9) (and indeed, the K0-
component is zero).

Because positive scalar curvature of M implies positive scalar curvature
of M ×S1, Theorem 2.5.2 for odd dimensiona M follows from its version for
the even dimensional M × S1.

In the same way, using Künneth and suspension isomorphisms for the
whole diagram of Theorem 2.5.1 (using along the way e.g. [41, Section 5]),
the statement and proof of Theorem 2.5.1 for odd dimensional M follows
from the corresponding one for the even dimensional M × S1.
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More systematically, Zeidler [41] develops a setup of Cln-linear Roe al-
gebras and localisation algebras and Cln-equivariant Dirac operators on n-
dimensional spin manifolds. Our constructions and arguments should carry
through in this setup, given a uniform treatment for all dimensions, and
working with real group C∗-algebras. As this requires a bit more notation
and additional concepts, and as we were striving for a down to earth exposi-
tion, we decided to stick to the classical setup and leave it to the interested
reader to work out the details of such an approach.
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Chapter 3

A Variant of Roe Algebras for
Spaces with Cylindrical Ends
with Applications in Relative
Higher Index Theory

3.1 Introduction

The question whether a given manifold admits a metric of positive scalar
curvature has spurred much activity in recent years. One of the main ap-
proaches to partially answer this question is index theory. On a closed spin
manifold M the Schrödinger-Lichnerowicz formula implies that the nonvan-
ishing of the Fredholm index of the Dirac operator is an obstruction to the
existence of positive scalar curvature metric. However, this does not tell the
whole story, since there exist spin manifolds with vanishing Fredholm index
of the Dirac operator, which however do not admit metrics with positive
scalar curvature. One way to obtain more refined invariants from the Dirac
operator is to not only consider the dimensions of its kernel and cokernel,
but also to consider the action of the fundamental group on them. This
gives rise to a higher index for the Dirac operator which is an element of the
K-theory of the group C∗-algebra of the fundamental group. In general, one
can associate a class in the K-homology of the manifold to the spin Dirac
operator and the higher index is obtained as the image of this class under
the index map

µπ1(M) : K∗(M)→ K∗(C
∗(π1(M))).

The nonvanishing of the higher index gives an obstruction to the existence
of positive scalar curvature metrics. In order to prove this one can use the
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fact that the index map fits in the Higson-Roe exact sequence

. . .→ Sπ1(M)
∗ (M)→ K∗(M)→ K∗(C

∗(π1(M)))→ . . .

and that the positivity of the scalar curvature allows the definition of a lift
of the fundamental class in S

π1(M)
∗ (M). Given two positive scalar curvature

metrics on M , one can also define an index difference in K∗+1(C∗(π1(M))).
These secondary invariants can then also be used for classification of positive
scalar curvature metrics up to concordance and bordism. More concretely,
in [37] and [38] the authors use these invariants to prove concrete results on
the size of the space of positive scalar metrics on closed manifolds.

In [2] Chang, Weinberger and Yu recently considered the question on
compact spin manifolds with boundary. Let M be a compact spin manifold
with boundary N . They constructed a relative index map

µπ1(M),π1(N) : K∗(M,N)→ K∗(C
∗(π1(M), π1(N))),

where K∗(M,N) and C∗(π1(M), π1(N)) denote the relative K-homology
group and the so called relative group C∗-algebra. One can define a rela-
tive class for the Dirac operator on M in the relative K-homology group.
The relative index is then the image of the latter relative class under the
relative index map. Given a positive scalar curvature metric on M which is
collared at the boundary, it was shown in [2] that the relative index vanishes.
A general Riemannian metric which is collared at the boundary and has pos-
itive scalar curvature there, also defines an index in K∗(C

∗(π1(M))), which
vanishes if the metric has positive scalar curvature everywhere. It was shown
in [4] and [34] that the latter index maps to the relative index under a certain
group homomorphism. Apart from relating previously defined indices to the
relative index, this fact also gives a conceptual proof that the relative index
is an obstruction to the existence of positive scalar curvature metrics which
are collared at the boundary.

The relative index map fits in an exact sequence

. . .→ Sπ1(M),π1(N)
∗ (M,N)→ K∗(M,N)→ K∗(C

∗(π1(M), π1(N)))→ . . . ,

where S
π1(M),π1(N)
∗ (M,N) is the relative analytic structure group and has

different realisations. The main aim of the following paper is to answer
the following natural question: given a positive scalar curvature metric,
which is collared at the boundary, can one define a secondary invariant in
S
π1(M),π1(N)
∗ (M,N) which lifts the relative fundamental class and is useful for

classification purposes? Using the machinery we develop in this paper, we
will be able to answer the latter question in the positive. Furthermore, the
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same machinery allows us to define a higher index difference associated to
positive scalar curvature metrics on manifolds with boundary. The definition
of such secondary invariants paves the way for generalisations of the known
results, such as those of [37] and [38], on the size of the space of positive
scalar curvature metrics to manifolds with boundary.

Closely related to the question of existence and classification of positive
scalar curvature metrics on manifolds with boundary which are collared at
the boundary, is the question of existence and classification of positive scalar
curvature metrics on manifolds with cylindrical ends, which are collared on
the cylindrical end. The usual coarse geometric approach to index theory
cannot be applied in this case, since the Roe algebras of spaces with cylin-
drical ends tend to have vanishing K-theory. We deal with this problem by
introducing a variant of Roe algebras for such spaces with more interesting
K-theory. The operators in the new Roe algebras are required to be asymp-
totically invariant in the cylindrical direction. Such operators can then be
evaluated at infinity in a sense to be described later. Let X be a space with
cylindrical end and denote by Y∞ its cylindrical end. Let Λ and Γ be dis-
crete groups and ϕ : Λ→ Γ a group homomorphism. ϕ then induces a map
BΛ → BΓ of the classifying spaces of the groups which we can assume to
be injective. Given a map (X, Y∞)→ (BΓ, BΛ) of pairs we construct a long
exact sequence

· · · → K∗(C
∗
L,0(X̃)Γ,R+,Λ)→ K∗(C

∗
L(X̃)Γ,R+,Λ)→ K∗(C

∗(X̃)Γ,R+,Λ)→ · · · .

In the above sequence X̃ denotes the Γ-cover of X associated to the map X →
BΓ and C∗(X̃)Γ,R+,Λ consists, roughly, of operators which are asymptotically
invariant and whose evaluation at infinity results in operators admitting Λ-
invariant lifts. For a spin manifold X we associate a fundamental class to
the Dirac operator in K∗(C

∗
L(X̃)Γ,R+,Λ). The index of the Dirac operator on

the manifolds with cylindrical end is then defined as the image of the latter
class under the map K∗(C

∗
L(X̃)Γ,R+,Λ)→ K∗(C

∗(X̃)Γ,R+,Λ). Given a positive
scalar curvature metric on X which is collared on Y∞, we define a lift of the
fundamental class in K∗(C

∗
L,0(X̃)Γ,R+,Λ), which proves that the nonvanishing

of the new index is an obstruction to the existence of positive scalar metrics
on X and paves the way for classification of such metrics. By removing Y∞
we obtain a manifold with boundary, which we denote by X. We prove that
there is a commutative diagram of exact sequences

K∗(C
∗
L,0(X̃)Γ,R+,Λ) K∗(C

∗
L(X̃)Γ,R+,Λ) K∗(C

∗(X̃)Γ,R+,Λ)

SΓ,Λ
∗ (X, ∂X) K∗(X, ∂X) K∗(C

∗(Γ,Λ)),
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where the lower sequence is the relative Higson-Roe sequence mentioned
above. Furthermore, we show that the fundamental class of X̃ maps to the
relative fundamental class under the middle vertical map. This shows that
the relative index can be obtained from the new index defined inK∗(C

∗(X̃)Γ,R+,Λ)
and allows us to define secondary invariants in SΓ,Λ

∗ (X, ∂X).
As another application of the machinery developed here we give a short

proof the main statement of [34].
The paper is organised as follows. The second section is a very short

reminder of the picture of K-theory for graded C∗-algebras due to Trout.
In the third section we recall basic notions from coarse geometry and the
coarse geometric approach to index theory on manifolds with and without
boundary. In the fourth section we introduce variants of Roe algebras for
spaces with cylindrical ends and cylinders and define the evaluation at infinity
map, which plays an important role in the rest of the paper. In the final
sections, we define indices for Dirac operators on manifolds with cylindrical
ends and discuss applications to the existence and classification problem for
metrics with positive scalar curvature on such manifolds. This is followed
by a discussion of the relationship with the relative index for manifolds with
boundary and a short proof of a statement on the relationship between the
relative index and indices defined in the presence of a positive scalar curvature
metric on the boundary.

Acknowledgement. I am grateful to Thomas Schick for many inspiring
discussions. I would also like to thank Vito Felice Zenobi for his useful
comments on an earlier draft of this paper which improved its presentation.

3.2 K-theory for Graded C∗-algebras

In this paper we will use the approach of Trout to K-theory of graded C∗-
algebras. This description of K-theory was used by Zeidler in [41], where
he proves product formulas for secondary invariants associated to positive
scalar curvature metrics. We quickly recall the basics, and refer the reader
to [41, Section 2] for more details.

Let H be a Real Z2-graded Hilbert space and denote by K the Real C∗-
algebra of compact operators on H. The Z2-grading on H induces a Z2 grad-
ing on K by declaring the even and odd parts to be the set of operators pre-
serving and exchanging the parity of vectors respectively. The Clifford alge-
bra Cln,m will be the C∗-algebra generated by {e1, . . . , en, ε1, . . . , εm} subject
to the relations eiej + ejei = −2δij, εiεj + εjεi = 2δij, eiεj + εjei = 0, e∗i = −ei
and ε∗i = εi. The Real structure and the Z2-grading of Cln,m are defined
by declaring these generators to be real and odd. Denote by S the C∗-
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algebra C0(R) endowed with a Real structure given by complex conjugation
and a Z2-grading defined by declaring the odd and even parts to be the
set of odd and even functions. Given Real, Z2-graded C∗-algebras A and
B denote by Hom(A,B) the space of C∗-algebra homomorphism between A
and B respecting the Real structures and the Z2-gradings, by [A,B] the set
π0(Hom(A,B)) and by A⊗̂B their maximal graded tensor product. The n-th
K-theory group of the Real graded C∗-algebra A is defined to be

K̂n(A) := πn(Hom(S, A⊗̂K))

and turns out to be isomorphic to [S,ΣnA⊗̂K], where ΣnA denotes the n-th
suspension of A. Any Real graded homomorphism of C∗-algebras ϕ : S → A
gives rise to a class [ϕ] := [ϕ⊗̂e11] ∈ K̂0(A) with e11 some rank one projection.

Denote by S(−ε, ε) the Real graded C∗-subalgebra of S consisting of
functions vanishing outside (−ε, ε). For our discussion of secondary invariants
we will make use of the fact that the inclusion S(−ε, ε) → S is a homotopy
equivalence.

3.3 Roe Algebras and the Relative Index Map

Throughout this section X, Y and Z will denote locally compact metric
spaces with bounded geometry.

3.3.1 Roe Algebras

Let Γ be a discrete group acting freely and properly on Z by isometries.
Pulling back functions along the action gives rise to an action α : Γ →
Aut(C0(Z)). Let (ρ, U) be an ample covariant representation of the C∗-
dynamical system(C0(Z),Γ, α) on a Hilbert space H. Here ample means
that no non-zero element of C0(Z) acts as a compact operator. The space
H will be referred to as a Z-module. We will also make use of Cln-linear Z-
modules which are defined analogously by replacing the Hilbert space H with
a Real, graded Hilbert Cln-module H and by requiring the representation ρ
to be by adjointable operators. In the following we will denote ρ(f) simply
by f .

Definition 3.3.1. An operator T ∈ L(H) is called locally compact if for all
f ∈ C0(Z) both Tf and fT are compact. T is called a finite propagation
operator if there exists R > 0 with the property that fTg = 0 for all f, g ∈
C0(Z) with dist(supp f, supp g) > R. The smallest such R is called the
propagation of T and is denoted by propT . T is called Γ-equivariant if T =

53



U∗γTUγ for all γ ∈ Γ. Similarly, one defines the notions of local compactness
and finite propagation for adjointable operators on H.

Definition 3.3.2. The equivariant algebraic Roe algebra is the ∗ − algebra
of locally compact, finite propagation, Γ-equivariant operators on H and is
denoted by R(Z)Γ

ρ . The equivariant Roe algebra is a C∗-completion of the
algebraic Roe algebra and is denoted by C∗(d)(Z)Γ

ρ . Here (d) is a placeholder
for the chosen completion. Similarly, one defines the Cln-linear equivari-
ant (algebraic) Roe algebra by using finite propagation, locally compact and
equivariant operators on H. These algebras will be denoted by R(Z; Cln)Γ

ρ

and C∗(d)(Z; Cln)Γ
ρ .

Remark 3.3.3. It follows from Proposition 3.3.9 below that the K-theory
groups of the Roe algebra are independent of the chosen ample representa-
tion. We will therefore drop ρ form the notation.

Remark 3.3.4. Examples of possible completions are

• the reduced completion C∗red(Z)Γ; i.e. the closure of R(Z)Γ in L(H),

• the maximal completion C∗max(Z)Γ obtained by taking the completion
using the universal C∗-norm and

• the quotient completion C∗q (Z)Γ introduced in [34].

In the following we will denote the Roe algebras obtained by the quotient
completion simply by C∗(Z)Γ and C∗(Z; Cln). Most of what will follow will
be valid for all of the above completions, however we will state all of our
results only for the quotient completion.

Later in the paper we will introduce variants of Roe algebras which are
suitable for spaces with cylindrical ends and show that the K-theory groups
of these algebras define functors on a certain category of spaces. Our proofs
of the functoriality of the K-theory of the new Roe algebras and their in-
dependence from the chosen ample modules makes use of the analogues of
these results for the classical Roe algebras. Hence, we quickly recall the latter
results in the following. Analogues of the results mentioned below hold for
the Cln-linear versions of the algebras introduced and we will later make use
of them.

Definition 3.3.5 (See [28, Chapter 2]). Let X and Y be locally compact
separable proper metric spaces endowed with a free and proper action of a
discrete group Γ by isometries. A map f : X → Y is called coarse if the
inverse image of each bounded set of Y under f is bounded and for each R > 0
there exists S > 0 such that dX(x, x′) < R implies dY (f(x), f(x′)) < S.
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Definition 3.3.6. Let X and Y be as in Definition 3.3.5. Let H and H ′

denote an X and Y -module respectively. The support of an operator T :
H → H ′ is the complement of the union of all sets V ×U ⊂ Y ×X with the
property that fTg = 0 for all f ∈ C0(V ) and g ∈ C0(U). It will be denoted
by Support(T ).

Definition 3.3.7. Let X and Y be as in Definition 3.3.5. Let f : X → Y be
a coarse map. Let H and H ′ denote an X and Y -module respectively. An
isometry V : H → H ′ is said to cover f if there exists an R > 0 such that
dY (f(x), y) < R for all (y, x) ∈ Support(T ).

Lemma 3.3.8 ([16, Lemma 6.3.11]). Let f,X, Y,H and H ′ be as in Defini-
tion 3.3.7. If an isometry V covers f , then T 7→ V TV ∗ defines a map from
R(X)Γ to R(Y )Γ, which extends to a map C∗(X)Γ → C∗(Y )Γ.

Proposition 3.3.9 ([16, Proposition 6.3.12]). Let f,X, Y,H and H ′ be as
in Definition 3.3.7. There exists an isometry which covers f and thus in-
duces a map K∗(C

∗(X)Γ) → K∗(C
∗(Y )Γ). The latter map is independent

of the choice of the isometry covering f . In particular, the K∗(C
∗(X)Γ) is

independent of the choice of the X-module up to a canonical isomorphism.

For the rest of the section we consider a space Z with a chosen Z-module
H. In the case the action of Γ on Z is cocompact we have the following

Proposition 3.3.10. If the action of Γ on Z is cocompact, then K∗(C
∗(Z)Γ) ∼=

K∗(C
∗
q (Γ)), where C∗q (Γ) is the quotient completion of the group ring of Γ as

introduced in [34].

Proof. In the proof of [16, Lemma 12.5.3] an isomorphism R(X)Γ ∼= C[Γ] �
K(H ′) is given. Here K(H ′) denotes the algebra of compact operators on
a suitable Hilbert space H ′. This isomorphism becomes an isometry if the
left hand side is endowed with the norm of C∗(X)Γ and the right hand
side is endowed with the norm of C∗q (Γ) ⊗ K(H ′) and thus extends to an
isomorphism of the latter two algebras. The claim then follows from the
stability of K-theory.

Given a Γ-invariant subset S ⊂ Z it will be useful to look at the ∗-algebra
of operators in R(Z)Γ which are supported near S in the sense of the following

Definition 3.3.11. Given a subset S ⊂ Z, T is said to be supported near
S if there exists an R > 0 with the property that suppT ⊂ UR(S)× UR(S).
Here UR(S) denotes the open R-neighbourhood of S.
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Definition 3.3.12. Let S be a Γ-invariant subset of Z. The equivariant
algebraic Roe algebra of S relative to Z is the subalgebra of R(Z)Γ consisting
of operators supported near S and will be denoted by R(S ⊂ Z)Γ. The
equivariant Roe algebra of S relative to Z is the closure of R(S ⊂ Z)Γ in
C∗(Z)Γ and is denoted by C∗(S ⊂ Z)Γ.

Since S is itself a Γ-space, it has its own Roe algebra. This is related to
the Roe algebra of S relative to Z by the following

Proposition 3.3.13 ([17, Section 5, Lemma 1]). K∗(C
∗(S)Γ) ∼= K∗(C

∗(S ⊂
Z)Γ).

We will also need the notion of support of a vector in H.

Definition 3.3.14. Let v ∈ H. The support of v is the complement of the
union of all open subsets U with the property that fv = 0 for all f ∈ C0(U).

3.3.2 Yu’s Localisation Algebras

Given a C∗-algebra A denote by TA the C∗-algebra of all uniformly contin-
uous functions f : [1,∞)→ A endowed with the supremum norm.

Definition 3.3.15. The equivariant localisation algebra of Z is defined to
be the C∗-subalgebra of TC∗(Z)Γ generated by elements f satisfying

• prop f(t) <∞ for all t ∈ [1,∞)

• prop f(t)
t→∞−−−→ 0.

It will be denoted by C∗L(Z)Γ.

The K-theory of the localisation algebra provides a model for the equiv-
ariant locally finite K-homology. Yu constructed an isomorphism IndL :
KΓ
∗ (Z) → K∗(C

∗
L(Z)Γ), where KΓ

∗ (Z) denotes the equivariant KK-group
KKΓ

∗ (C0(Z),C).

Definition 3.3.16. A Γ-cover Z of a locally compact metric space M is
called nice if there exists an ε > 0 such that the restriction of Z to every
ε-ball in M is trivial.

Proposition 3.3.17. Let Z → M be a nice Γ-cover. Then there is an
isomorphism K∗(C

∗
L(Z)Γ ∼= K∗(C

∗
L(M)) induced by lifting operators on M

with small propagation to equivariant operators on Z. In particular IndL
gives rise to an isomorphism K∗(M) ∼= K∗(C

∗
L(Z)Γ).
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Remark 3.3.18. In the following we will assume all covers to be nice.

Given a Γ-invariant subset S of Z it will be useful to define the localisation
algebra of S relative to Z.

Definition 3.3.19. The equivariant localisation algebra of S relative to Z
is defined as the C∗-subalgebra of C∗L(Z)Γ generated by elements f with the
property that there exists a continuous function B : [1,∞) → R vanishing
at infinity such that prop f(t) < B(t). It will be denoted by C∗L(S ⊂ Z)Γ.

Proposition 3.3.20 ([41, Lemma 3.7]). K∗(C
∗
L(S)Γ) ∼= K∗(C

∗
L(S ⊂ Z)Γ)

Definition 3.3.21. The equivariant structure algebra of Z is the C∗-subalgebra
of C∗L(Z)Γ consisting of C∗(Z)Γ-valued functions f on [1,∞) with f(1) = 0.
It is denoted by C∗L,0(Z)Γ.

Given a Γ-cover Z → M induced by a map M → BΓ, with M compact,
the index map µΓ : K∗(M)→ K∗(C

∗(Γ)) can be defined by

K∗(M) ∼= K∗(C
∗
L(Z)Γ)

(ev1)∗−−−→ K∗(C
∗(Z)Γ) ∼= K∗(C

∗
q (Γ))

. Clearly, it fits into a long exact sequence

. . .→ SΓ
∗ (M)→ K∗(M)→ K∗(C

∗(Γ))→ . . . ,

where SΓ
∗ (M) denotesK∗(C

∗
L,0(Z)Γ) and is called the analytic structure group.

This long exact sequence is called the Higson-Roe analytic surgery sequence.

Fundamental Class of Dirac Operators

Now suppose that Z is an n-dimensional spin manifold. We assume that Γ
acts by spin structure preserving isometries. Denote by /S = PSpin(Z) ×Spin

Cln the Cln-spinor bundle on Z. Recall that the Cln-linear Dirac opera-
tor on Z (acting on sections of /S) gives rise to a class in K∗(Z)Γ. Un-
der the isomorphism of 3.3.17, this class corresponds to the class [ /DZ ] ∈
K̂0(C∗L(Z; Cln)Γ) ∼= Kn(C∗L(Z)Γ) defined by ϕ /D : S → C∗L(Z; Cln)Γ sending
f ∈ S to (t 7→ f(1

t
/D)) ∈ C∗L(Z; Cln)Γ.

3.3.3 The Relative Index Map

Let Λ and Γ be discrete groups and ϕ : Λ → Γ a group homomorphism.
The homomorphism ϕ gives rise to a continuous map Bϕ : BΛ → BΓ. It
also induces a map ϕ : C∗max(Λ) → C∗max(Γ). We can and will assume that

57



Bϕ is injective. Given a compact space X, a subset Y ⊂ X and a map
f : (X, Y ) → (BΓ, BΛ) Chang, Weinberger and Yu ([2]) define a relative
index map µΓ,Λ : K∗(X, Y ) → K∗(C

∗
max(Γ,Λ)). Here C∗max(Γ,Λ) := SCϕ

denotes the suspension of the mapping cone of ϕ and is called the (maximal)
relative group C∗-algebra. If X is not compact, then their construction gives
rise to a relative index map with target the K-theory group of a relative Roe
algebra. Here, we quickly recall the construction of the relative index map.
Denote by X̃ and Ỹ the Γ and Λ coverings of X and Y associated to f and
f�Y respectively. Denote by Y ′ the restriction of X̃ to Y . Using particular
X̃, Y ′ and Ỹ -modules Chang, Weinberger and Yu construct a morphism of
C∗-algebras

ψ : C∗max(Ỹ )Λ → C∗max(Y ′)
Λ

kerφ ↪→ C∗max(X̃)Γ.

We will later discuss the morphism ψ in more detail. Applying ψ pointwise
we obtain a morphism

ψL : C∗L,max(Ỹ )Λ → C∗L,max(Y ′)
Λ

kerφ ↪→ C∗L,max(X̃)Γ.

Analogous to the absolute case, there is a map Indrel
L : K∗(X, Y )→ K∗(SCψL).

Proposition 3.3.22. Indrel
L is an isomorphism. If, furthermore, X is com-

pact, then K∗(SCψ) ∼= K∗(C
∗
max(Γ,Λ)).

Evaluation at 1 gives rise to morphisms ev1 : C∗L,max(Ỹ )Λ → C∗max(Ỹ )Λ

and ev1 : C∗L,max(X̃)Γ → C∗max(X̃)Γ. The diagram

C∗L,max(Ỹ )Λ C∗max(Ỹ )Λ

C∗L,max(X̃)Γ C∗max(X̃)Γ

ev1

ψL ψ

ev1

is commutative. Hence, the evaluation at 1 maps give rise to a morphism
SCψL → SCψ, which we also denote by ev1.

Definition 3.3.23. The relative index map µΓ,Λ is defined to be the compo-
sition

K∗(X, Y )
Indrel

L−−−→ K∗(SCψL)
(ev1)∗−−−→ K∗(SCψ).

Remark 3.3.24. IfX is compact, the isomorphismK∗(SCψ) ∼= K∗(C
∗
max(Γ,Λ))

allows us to consider µΓ,Λ as a map with values in the K-theory of the relative
group C∗-algebra.
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Remark 3.3.25. Instead of the maximal completion of the group rings and
the Roe algebras, one can consider the quotient completion introduced in
[34] and obtain a similar relative index map. If the group homomorphism
ϕ : Λ → Γ is injective, then one can also use the reduced completion of the
group rings and Roe algebras.

Analogous to the absolute case the relative index map fits into a long exact
sequence. The map ψL gives rise, by restriction, to a map ψL,0 : C∗L,0(Ỹ )Λ →
C∗L,0(X̃)Γ. We have a short exact sequence of C∗-algebras

0→ SCψL,0 → SCψL
ev1−−→ SCψ → 0,

which gives rise to a long exact sequence of K-theory groups

· · · → K∗(SCψL,0)→ K∗(X, Y )
µΓ,Λ

−−→ K∗(SCψ)→ · · · .

Remark 3.3.26. Similarly, one defines maps C∗(L)(Ỹ ; Cln)Λ → C∗(L)(X̃; Cln)Γ,
which we will also denote by ψ(L).

The Relative Index of Dirac Operators on Manifolds with Bound-
ary

Given a compact spin manifold M with boundary N with a metric on M
which is collared at the boundary, consider the manifold M∞ obtained by
attaching N∞ := N × [0,∞) to M along N . Extend the metric on M to
a metric on M∞ using the product metric on the half-cylinder (the metric
on R+ is the usual one). Denote by [ /DM∞ ] the fundamental class of the
Dirac operator on M∞ in K∗(M∞). Given a map f : (M,N) → (BΓ, BΛ),
the construction of the previous section gives rise to a relative index map
µΓ,Λ : K∗(M,N)→ K∗(C

∗(Γ,Λ)).

Definition 3.3.27. The relative index of the Dirac operator on M is defined
to be the image of [ /DM∞ ] under the composition

K∗(M∞) −→ K∗(M∞, N∞)
∼=−→ K∗(M,N)

µΓ,Λ

−−→ K∗(C
∗(Γ,Λ)).

where the isomorphism K∗(M∞, N∞)
∼=−→ K∗(M,N) is given by excision.

The nonvanishing of the relative index obstructs the existence of positive
scalar curvature metrics on M .

Proposition 3.3.28 ([2, Proposition 2.18],[34, Theorem 5.1],[4, Theorem
4.12]). If there exists a positive scalar curvature metric on M which is collared
at the boundary, then the relative index of the Dirac operator on M vanishes.
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3.4 Coarse Spaces with Cylindrical Ends

Let X be a locally compact metric space with a free and proper action of
a discrete group Γ by isometries. For a Γ-invariant subset Y of X we can
endow Y × R with a Γ-action by setting γ(y, t) = (γy, t).

Definition 3.4.1. Let X and Y be as above. The space X is said to have
a cylindrical end with base Y if there exists a Γ-equivariant isometry ι :
Y × [0,∞)→ X satisfying

• ι((y, 0)) = y

• limR→∞ dist(ι(Y × [R,∞)), X − Y∞) =∞

Here Y∞ denotes ι(Y × [0,∞)) and Y × [0,∞) is endowed with the product
metric.

Definition 3.4.2. Let (X, Y, ι) and (X ′, Y ′, ι′) be spaces with cylindrical
ends. a map f : X → X ′ is called a coarse map of spaces with cylindrical
ends if it is a coarse map and satisfies

• f(X \ Y∞) ⊂ X ′ \ Y ′∞ and

• f(ι(y, t)) = ι′(g(y), t) with g := f�Y .

3.4.1 Roe Algebras for Spaces with Cylindrical Ends

Using the isometry ι one can define an action of R+ on C0(Y∞) by setting
Ls(f)(ι((y, t))) = f(ι(y, t− s)) for s ∈ R+. We would like to define a variant
of Roe algebras for spaces with cylindrical ends. In order to do this we use
modules which are equipped with an action of R+ by partial isometries, which
is compatible with the action of R+ on C0(Y∞). Before making this precise
we introduce some notation. Let HY be a Y -module. The Hilbert space
L2(R+;HY ) can be endowed with the structure of Y∞-module in a natural
way. On L2(R+;HY ) one can define a family of partial isometries P st

s by
P st
s (f)(t) = f(t− s) for t ≥ s and P st

s (f)(t) = 0 otherwise.

Definition 3.4.3. Let (X, Y, ι) be a space with cylindrical end. A Hilbert
space is called an X-module tailored to the end if there is a tuple (ρ, U, {Ps})
satisfying the following properties:

• (ρ, U) is a covariant ample representation of C0(X) on H.

• Ps is a strongly continuous family of partial isometries on H satisfying
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– P−s = P ∗s

– P ∗s Ps = ρ̃(χι(Y×[0,∞))) for all s > 0

– PsP
∗
s = ρ̃(χι(Y×[s,∞))) for all s > 0

– ρ(f)Ps = Psρ(Ls(f)) for all f ∈ C0(Y∞).

• For some Y -module HY , there is a Γ-equivariant unitary: W : χY∞H →
L2(R+;HY ) which covers the identity and satisfies WPs = P st

s W .

Here, the tuple (ρ, U, {Ps}) is part of the structure of the X-module and ρ̃ is
the extension of the representation ρ to the bounded Borel functions.

Similarly, one can define Cln-linear modules tailored to the end. The fol-
lowing definitions generalise in an obvious manner to the Cln-linear context.
In the rest of the section (X, Y, ι) will be a space with cylindrical end (en-
dowed with a Γ-action) and H will denote an X-module tailored to the end.
We will construct a variant of Roe algebras for spaces with cylindrical ends.
Since H is in particular an X-module, it can be used to construct the usual
equivariant algebraic Roe algebra R(X)Γ.

Definition 3.4.4. An operator T ∈ L(H) is called asymptotically R+-
invariant if

lim
R→∞

sup
s>0
||(P−sTPs − T )χι(Y×[R,∞))|| = 0.

Lemma 3.4.5. The set of operators in R(X)Γ, which are asymptotically
R+-invariant is a ∗-subalgebra.

Proof. Let S, T ∈ R(X)Γ be asymptotically R+-invariant. Set R0 := propT .
In the following χR will denote χι(Y×[R,∞)). Since PsP−s = χs (for all s > 0)
and elements in the image of TPsχR are supported in ι(Y × [R−R0 + s,∞))
we have for R > R0

(P−sSTPs)χR = (P−sSPsP−sTPs)χR.

Furthermore, since elements in the image of (P−sTPs)χR are supported in
ι(Y × [R−R0,∞)) we have

(P−sSPsP−sTPs)χR = (P−sSPsχR−R0P−sTPs)χR.

From the asymptotic R+-invariance, it follows that P−sSPsχR−R0 = SχR−R0+
ER−R0,s(S) and P−sTPsχR = TχR + ER,s(T ) with

lim
R→∞

sup
s>0
||ER−R0,s(S)|| = 0 = lim

R→∞
sup
s>0
||ER,s(T )||. (∗)
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Therefore (P−sSTPs − ST )χR is equal to

SχR−R0TχR+SχR−R0ER,s(T )+ER−R0,s(S)TχR+ER−R0,s(S)ER,s(T )−STχR

= SχR−R0ER,s(T ) + ER−R0,s(S)TχR + ER−R0,s(S)ER,s(T ).

The latter equality and (∗) imply that ST is asymptotically R+-invariant.
We now show that T ∗ is also asymptotically R+-invariant. We have

(P−sT
∗Ps − T ∗)χR = (χR(P−sTPs − T ))∗.

Furthermore, since the propagation of T is R0 the right hand side is equal
to (χR(P−sTPs − T )χR−R0)∗ = (χRER−R0,s(T ))∗. This shows that T ∗ is
asymptotically R+-invariant. The fact that the set of asymptotically R+-
invariant operators is closed under addition is clear.

Definition 3.4.6. The equivariant algebraic Roe algebra of X tailored to the
end is the ∗-subalgebra of R(X)Γ consisting of asymptotically R+-invariant
operators. It will be denoted by R(X)Γ,R+ . The Roe algebra of X tailored
to the end is the closure of R(X)Γ,R+ in C∗(d)(X)Γ and will be denoted by

C∗(d)(X)Γ,R+ . Similarly, using a Cln-module tailored to the end, one defines

R(X; Cln)Γ,R+ and C∗(d)(X; Cln)Γ,R+ .

Remark 3.4.7. Note that the algebraic and C∗-algebraic Roe algebras de-
fined above depend, a priori, on the chosen modules tailored to the end.
We will see later, that the K-theory groups of the C∗-algebras defined using
different modules are canonically isomorphic.

Remark 3.4.8. The equivariant Roe algebra of X tailored to the end ob-
tained by using the quotient completion will simply be denoted by C∗(X)Γ,R+ .
In the following we will only make use of the quotient completion; however,
most of the results are also valid for the reduced and maximal completions.

Let (X ′, Y ′, ι′) be another space with a cylindrical end and H ′ an X ′-
module tailored to the end given by the data (ρ′, U ′, {P ′s}).

Definition 3.4.9. Let f : X → X ′ be a map of spaces with cylindrical ends.
An isometry V : H → H ′ is said to cover f if it covers f in the sense of
[16, Definition 6.3.9] and satisfies V Ps = P ′sV .

Lemma 3.4.10. Let f and V be as in Definition 3.3.7. Then T → V TV ∗

defines a map C∗(X)Γ,R+ → C∗(X ′)Γ,R+.
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Proof. The fact that conjugation by V gives a map C∗(X)Γ → C∗(X ′)Γ is the
content of [16, Lemma 6.3.11]. We show that if T ∈ R(X)Γ is asymptotically
R+-invariant, then so is V TV ∗. In the following ρ̃ and ρ̃′ will denote the ex-
tension of ρ and ρ′ to the bounded Borel functions on X and X ′ respectively.
Using the fact that V intertwines the families {Ps} and {P ′s} we get

(P ′−sV TV
∗P ′s − V TV ∗)ρ′(χR) = V (P−sTPs − T )V ∗ρ′(χR) =

V (P−sTPs−T )V ∗P ′sP
′
−s = V (P−sTPs−T )PsP−sV

∗ = V (P−sTPs−T )ρ̃(χR)V ∗,

which proves the claim.

Proposition 3.4.11. Let f : X → X ′ be a map of spaces with cylindrical
ends. Then there is an isometry V : H → H ′ which covers f . Conjugation
by V induces a homomorphism K∗(C

∗(X)Γ,R+) → K∗(C
∗(X ′)Γ,R+) which

does not depend on the choice of the covering isometry V . In particular,
K∗(C

∗(X)Γ,R+) does not depend on the choice of the X-module tailored to
the end up to a canonical isomorphism.

Proof. We prove the existence of an isometry covering f . The proof that
the induced map on the K-theory groups by conjugation with V does not
depend on the choice of V is the same as that of [16, Lemma 5.2.4]. We
have H ∼= χX\Y∞H ⊕ χY∞H ∼= χX\Y∞H ⊕ (HY ⊗ L2(R+)). Similarly H ′ ∼=
χX′\Y ′∞H

′ ⊕ (H ′Y ′ ⊗ L2(R+)). By Proposition 3.3.9, there are isometries V1 :
χX\Y∞H → χX\Y∞H

′ and V2 : HY → H ′Y ′ covering the restrictions of f to
X \ Y∞ and Y respectively. We use the above decompositions of H and H ′

and set V = V1⊕(V2⊗Id). Since the isomorphisms χY∞H
∼= HY⊗L2(R+) and

χY ′∞H
′ ∼= H ′Y ′ ⊗L2(R+) cover the identity maps on Y∞ and Y ′∞ respectively,

V , seen as an isometry from H to H ′, covers f in the sense of Definition
3.3.7. Furthermore, the latter isomorphisms intertwine the families {Ps} and
{P ′s} with the standard families of partial isometries {P st

s } on HY ⊗ L2(R+)
and HY ′ ⊗ L2(R+), which implies that V intertwines {Ps} and {P ′s}. Thus,
V covers f in the sense of Definition 3.4.9.

One can also define localisation and structure algebras tailored to the
end.

Definition 3.4.12. The equivariant localisation algebra of X tailored to the
end is defined to be the C∗-algebra of TC∗(X)Γ,R+ generated by elements f
satisfying

• prop f(t) <∞ for all t ∈ [1,∞)

• prop f(t)
t→∞−−−→ 0.
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It will be denoted by C∗L(X)Γ,R+ . The equivariant structure algebra of X
is defined to be the subalgebra of C∗L(X)Γ,R+ generated by f which further
satisfy f(1) = 0. It will be denoted by C∗L,0(X)Γ,R+ .

Remark 3.4.13. One can also prove the existence of families of isometries
covering a given map in a suitable sense and inducing maps between local-
isation and structure algebras tailored to the end. One can then deduce
an analogue of Proposition 3.4.11 for structure and localisation algebras tai-
lored to the end. These statements can be proved by using the approach of
the proof of Proposition 3.4.11 and slight modifications of the proofs for the
classical structure and localisation algebras.

3.4.2 Roe algebras for Cylinders

One of our main goals in the following is to evaluate asymptotically R+-
invariant operators on a space (X, Y, ι) with cylindrical end and obtain R-
invariant operators on the cylinder over Y . In this section we define a Roe
algebra for cylinders which will be the target of the aforementioned ”eval-
uation at infinity map”. In the following Y will denote a locally compact
separable metric space endowed with a free and proper action of a discrete
group Γ by isometries. Endow Y ×R with the product metric. Furthermore,
L′s(f)(y, t) = f(y, t − s) defines an action of R on C0(Y × R). Let HY be a
Y -module. The space L2(R, HY ) can then be endowed with the structure of
a Y ×R-module. There is a family {Qst

s } of unitaries on L2(R, HY ) given by
the shift of functions in the R-direction

Definition 3.4.14. A Hilbert space H is called a cylindrical Y ×R-module
if there is a tuple (ρ, U, {Qs}) satisfying the following properties:

• (ρ, U) is a covariant ample representation of C0(Y × R) on H.

• {Qs} is a strongly continuous group of unitaries commuting with the
representation U of Γ on H and satisfying ρ(f)Qs = Qsρ(L′s(f)).

• For some Y -module HY , there is a unitary isomorphism W : H →
L2(R, HY ) which covers the identity map of Y × R in the sense of
Definition 3.3.7, intertwines the families {Qs} and {Qst

s } and which
does not shift the support of vectors in the R-direction.

A cylindrical Y ×R-modules is in particular a Y ×R-module and allows
us to define the usual Roe algebras R(Y × R)Γ and C∗(Y × R)Γ
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Definition 3.4.15. An operator T ∈ R(Y × R)Γ is called R-invariant if

Q−sTQs − T = 0

for all s ∈ R. The closure of the ∗-algebra of such elements in C∗(Y × R)Γ

will be denoted by C∗(Y × R)Γ×R. Similarly, using a cylindrical Y × R-Cln-
module, one defines C∗(Y × R; Cln)Γ,R+ .

Now let Y ′ be another space. Let f : Y × R→ Y ′ × R be a coarse map,
which is the suspension of a map g : Y → Y ′. Let H and H ′ be cylindrical
Y × R and Y ′ × R-modules respectively. A slight modification of the proof
of Proposition 3.4.11, proves the following

Proposition 3.4.16. Let f,H and H ′ be as above. There exists an isometry
V : H → H ′ which covers f in the sense of Definition 3.3.7 and intertwines
the families {Qs} and {Q′s}. Conjugation by V induces a homomorphism
K∗(C

∗(Y × R)Γ×R) → K∗(C
∗(Y ′ × R)Γ×R). The latter homomorphism is

independent of the choice of the isometry V satisfying the above properties.
In particular, K∗(C

∗(Y × R)Γ×R) does not depend on the chosen cylindrical
Y × R-module.

3.4.3 The Evaluation at Infinity Map

Let (X, Y, ι) be a space with cylindrical end on which Γ acts as above. Asymp-
totically R+-invariant operators can be “evaluated at infinity” in the sense
of Propositions 3.4.19 and 3.4.20 to give R-invariant operators on Y ×R. In
order to do this we first introduce the notion of (X, Y, ι) modules, which is
given by a pair consisting of anX-module tailored to the end and a cylindrical
Y × R-module which are related in a special way.

Definition 3.4.17. Let (X, Y, ι) be a space with cylindrical end. A pair
(H,H ′) of Hilbert spaces is called a (X, Y, ι)-module, if there is a tuple
(ρ, ρ′, U, U ′, {Ps}, {Qs}, i) satisfying the following properties:

• (ρ, U, {Ps}) and (ρ′, U ′, {Qs}) endow H and H ′ with the structure of
an X-module tailored to the end and a cylindrical Y × R-module re-
spectively.

• i is a unitary χY∞H → χY×R+H
′ intertwining the Γ-representations and

the representations of C0(Y∞) and C0(Y ×R+) on χY∞H and χY×R+H
′

respectively.

• Qs ◦ i = i ◦ Ps�χY∞H for all s > 0.
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Remark 3.4.18. Note that ρ′(f)Qs = Qsρ
′(L′s(f)) in particular implies that

Qs applied to vectors in H ′ which are supported in Y × [R,∞), results in
vectors with support in Y × [R+ s,∞). This observation will be used in the
proof of Proposition 3.4.19.

In the following we will call an element v ∈ H ′ compactly supported if its
support in the sense of Definition 3.3.14 is a compact subset of Y × R. The
nondegeneracy of ρ′ implies that compactly supported vectors are dense in
H ′.

Proposition 3.4.19. For T ∈ R(X̃)Γ,R+ and a compactly supported vector
v ∈ H ′ the limit T∞v := lims→∞Q−siT i

∗Qsv exists in H ′ and the mapping
v 7→ T∞v extends to a continuous linear map T∞ on H ′. Furthermore, the
operator T∞ defined in this way is an element of R(Y × R)Γ×R.

Proof. In the following χR will denote χι(Y×[R,∞)) and will be seen as an
operator on H. χ′R will denote χY×[R,∞) and will act as on operator on H ′.

• The limit exists: for ε > 0 choose R̃ such that sups>0 ||(P−sTPs −
T )χR|| < ε for all R ≥ R̃. Let s̃ be such that Qs(v) is supported on

Y × R+ for all s ≥ s̃. Set s0 = R̃ + s̃. Then we have

||Q−1
s0+siT i

∗Qs0+sv −Q−1
s0
iT i∗Qs0v|| = ||Q−1

s0
(Q−1

s iT i∗Qs − iT i∗)Qs0v||.

Note that (Q−1
s iT i∗Qs − iT i∗)Qs0v = i(P−sTPs − T )χR̃i

∗Qs0v; hence

||Q−1
s0

(Q−1
s iT i∗Qs − iT i∗)Qs0v|| < ||(P−sTPs − T )χR̃||||v||,

where we use that Qs0 is a unitary. The latter inequality shows that
{Q−1

s iT i∗Qsv}s≥s̃ is a Cauchy net and thus has a limit.

• T∞ is a bounded operator on H ′: we clearly have ||T∞v|| ≤ ||T ||||v||
for all compactly supported v which shows that v 7→ T∞v is a bounded
operator on the dense subspace of compactly supported vectors in H ′

and thus extends to a bounded operator on H ′.

• T∞ is an R and Γ-invariant operator: for t ∈ R we have

Q−tT
∞Qtv = Q−t( lim

s→∞
Q−siT i

∗QsQtv) = lim
s→∞

Q−s−tiT i
∗Qs+tv =

lim
s→∞

Q−siT i
∗Qsv = T∞v

for all compactly supported v. Therefore Q−tT
∞Qt = T∞. A similar

computation and the fact that the R-action and the Γ-action on H ′

commute proves the Γ-invariance.
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• T∞ is locally compact: We show that for ψ ∈ Cc(Y × R) ψT∞ is
compact. The proof of the compactness of T∞ψ is similar and even
more straightforward. There exists M > 0 such that the support of
ψ is contained in Y × [−M,∞). Set R0 := propT . If v is compactly
supported with support in Y×(−∞,−M−R0), then ψQ−siT i

∗Qsv = 0.
We thus have a commutative diagram

H ′ H ′

χ′−M−R0
H ′ χ′−M−R0

H ′.

ψT∞

χ′−M−R0

ψT∞

Therefore, it suffices to show that the restriction of ψT∞ to χ′−M−R0
H ′

is compact. First we show that {χ′−M−R0
Q−siT i

∗Qsχ
′
−M−R0

}s≥M+R0 is

a norm convergent net of operators on χ′−M−R0
H ′. Set s1 := R̃+M+R0.

Then, similar to the above computation, we have

||χ′−M−R0
Q−1
s1+siT i

∗Qs1+sχ
′
−M−R0

− χ′−M−R0
Q−1
s1
iT i∗Qs1χ

′
−M−R0

|| =

||χ′−M−R0
Q−1
s1

(Q−1
s iT i∗Qs − iT i∗)Qs1χ

′
−M−R0

||.
Furthermore,

(Q−1
s iT i∗Qs − iT i∗)Qs1χ

′
−M−R0

= i(P−sTPs − T )χR̃i
∗Qs1χ

′
−M−R0

,

which implies

||χ′−M−R0
Q−1
s1

(Q−1
s iT i∗Qs − iT i∗)Qs1χ

′
−M−R0

|| < ε.

Hence, {ψχ′−M−R0
Q−siT i

∗Qsχ
′
−M−R0

}s≥M+R0 is norm convergent and
converges strongly to ψT∞ in L(χ′−M−R0

H ′). Thus ψT∞ restricted to
χ′−M−R0

H ′ is actually the norm limit of

ψχ′−M−R0
Q−siT i

∗Qsχ
′
−M−R0

= χ′−M−R0
Q−sL

′
s(ψ)iT i∗Qsχ

′
−M−R0

= χ′−M−R0
Q−siLs(ψ)Ti∗Qsχ

′
−M−R0

as s tends to infinity. The compactness of ψT∞�χ′−M−R0
H′ then follows

from that of Ls(ψ)T .

Proposition 3.4.20. The map ev∞ : R(X̃)Γ,R+ → R(Y × R)Γ×R given by
T 7→ T∞ is continuous if the domain and target space are endowed with the
norms of C∗(X̃)Γ,R+ and C∗(Y × R)Γ×R respectively. Thus it gives rise to a

morphism of C∗-algebras ev∞ : C∗(X̃)Γ,R+ → C∗(Y × R)Γ×R.
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Proof. If we endow R(X̃)Γ,R+ with the reduced norm, the continuity of the

map ev∞ : R(X̃)Γ,R+ → C∗red(Y ×R)Γ×R follows from the proof of the previous
proposition. Indeed, we already saw that this map is a contraction. The
continuity of this map for the quotient completion follows from its continuity
for the reduced completion, the commutativity of the the diagram

R(X)Γ,R+ R(Y × R)Γ×R

R(X/N)Γ/N,R+ R(Y/N × R)Γ/N×R

ev∞

ev∞

for all normal subgroups N of Γ and the definition of the quotient completion
in [34, Section 4]. It remains to show that it is a morphism of ∗-algebras.

Let S and T be in R(X̃)Γ,R+ and let v ∈ H ′ be compactly supported. We
have

(TS)∞v = lim
s
Q−1
s iTSi∗Qsv = lim

s
Q−1
s iT i∗QsQ

−1
s iSi∗Qsv =

lim
s
Q−1
s iT i∗Qs(S

∞v + E(s)) = T∞(S∞v).

The last equality follows from the fact that ||Q−1
s iT i∗Qs(E(s))|| ≤ ||T ||||E(s)||.

The rest is clear.

Thus an (X, Y, ι)-module allows us to define an evaluation at infinity map.
Next we will prove a functoriality result, which in particular shows that the
induced map on K-theory is independent of the chosen (X, Y, ι)-module. Let

(X̂, Ŷ , ι̂) be another space with cylindrical end (and a Γ-action). Let (Ĥ, Ĥ ′)

be an (X̂, Ŷ , ι̂)-module. Let f : (X, Y, ι)→ (X̂, Ŷ , ι̂) be a map of spaces with
cylindrical ends. In particular, the suspension of the restriction of f to Y
defines a map Y × R→ Ŷ × R. In this situation we have the following

Proposition 3.4.21. There are isometries V : H → Ĥ and V ′ : H ′ →
Ĥ ′ which satisfy the conditions of Definition 3.4.9 and Proposition 3.4.16
respectively and which make the diagram

C∗(X)Γ,R+ C∗(Y × R)Γ×R

C∗(X̂)Γ,R+ C∗(Ŷ × R)Γ×R

ev∞

AdV AdV ′

ev∞

commutative. In particular, the map (ev∞)∗ : K∗(C
∗(X)Γ,R+)→ K∗(C

∗(Y ×
R)Γ×R) does not depend on the choice of the (X, Y, ι)-module up to the usual
canonical isomorphisms.
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Proof. Let V ′ : H ′ → Ĥ ′ satisfy the conditions of Proposition 3.4.16 and such
that V ′ and (V ′)∗ map vectors which are supported in Y × R+ and Ŷ × R+

to vectors which are supported in Ŷ ×R+ and Y ×R+ respectively. We have
decompositions H ∼= χX\Y∞H ⊕ χY∞H and Ĥ = χX̂\Ŷ∞Ĥ ⊕ χŶ∞Ĥ. Using
these decompositions we define V to be the isometry(

V1 0

0 î∗V ′i

)
,

where V1 : χX\Y∞H ⊕ χY∞H → χX̂\Ŷ∞Ĥ is any isometry covering the re-

striction of f to X \ Y∞ and î is the unitary from the definition of an

(X̂, Ŷ , ι̂)-module identifying χŶ∞Ĥ and χŶ×R+
Ĥ ′. Now we show that for

T ∈ R(X)Γ,R+ , (AdV ′ ◦ ev∞)(T ) = (ev∞ ◦AdV )(T ). This then finishes the

proof of the proposition. Let v ∈ Ĥ ′ be compactly supported. We have

(AdV ′ ◦ ev∞)(T )v = V ′ lim
s
Q−siT i

∗QsV
′∗v = lim

s
Q̂−sV

′iT i∗V ′
∗
Q̂sv.

On the other hand (ev∞ ◦AdV )(T )v = lims Q̂−ŝiV TV
∗̂i∗Q̂sv. Set R0 =

propT . For s sufficiently large Q̂sv is supported in Y × (R0,∞). Therefore

lim
s
Q̂−ŝiV TV

∗̂i∗Q̂sv = lim
s
Q̂−ŝîi

∗V ′iT i∗V ′
∗̂
îi∗Q̂sv = lim

s
Q̂−sV

′iT i∗V ′
∗
Q̂sv.

Hence, (AdV ′ ◦ ev∞)(T ) = (ev∞ ◦AdV )(T ).

3.4.4 (Γ,Λ)-equivariant Roe Algebras

Let (X, Y, ι) be a space with cylindrical end. We do not assume the existence
of an action of Γ on X. Let Λ,Γ and ϕ be as in Section 3.3.3. Suppose there
exists a map of pairs η : (X, Y∞ := ι(Y × R+)) → (BΓ, BΛ) satisfying
η(ι((y, t))) = η(ι((y, 0))) for all t ∈ R+. This allows us to define Γ-coverings

X̃, Y ′(∞) of X, Y(∞) and a Λ-covering Ỹ(∞) of Y(∞). We obtain in this way

new spaces with cylindrical ends (X̃, Y ′, ι′) and (Ỹ∞, Ỹ , ι̃). In this section

the Roe algebras will be constructed using fixed (X̃, Y ′, ι′) and (Ỹ∞, Ỹ , ι̃)-
modules. The construction of the previous section gives rise to evaluation at
infinity maps C∗(Ỹ∞)Λ,R+ → C∗(Ỹ ×R)Λ×R and C∗(X̃)Γ,R+ → C∗(Y ′×R)Γ×R.

Chang, Weinberger and Yu constructed a map C∗(Ỹ × R)Λ → C∗(Y ′ × R)Γ

1. It is easy to see that this map respects the R-invariance and asymptotic
R+-invariance of operators. Thus we get, by restriction, a map ϕ : C∗(Ỹ ×
R)Λ×R → C∗(Y ′ × R)Γ×R.

1They constructed the map between the maximal Roe algebras. In [34] the quotient
completion was introduced and it was shown, that one has a similar map between the
quotient completions of the equivariant algebraic Roe algebras.

69



Definition 3.4.22. T ∈ C∗(X̃)Γ,R+ is called asymptotically Λ-invariant if

ev∞(T ) is contained in the image of ϕ. The pullback of C∗(X̃)Γ,R+ and

C∗(Ỹ ×R)Λ×R along ev∞ and ϕ, is called the (Γ,Λ)-equivariant Roe algebra

of X and will be denoted by C∗(X̃)Γ,R+,Λ.

Remark 3.4.23. By definition, we have a commutative diagram

C∗(X̃)Γ,R+,Λ C∗(Ỹ × R)Λ×R

C∗(X̃)Γ,R+ C∗(Y ′ × R)Γ×R

ϕ

ev∞

and elements of C∗(X̃)Γ,R+,Λ are given by pairs (S, T ) with S ∈ C∗(X̃)Γ,R+ , T ∈
C∗(Ỹ × R)Λ×R with ev∞(S) = ϕ(T ).

Definition 3.4.24. The (Γ,Λ)-equivariant localisation algebra((Γ,Λ)-equivariant
structure algebra) of X is defined to be the pullback of the following diagram

C∗L,(0)(Ỹ × R)Λ×R

C∗L,(0)(X̃)Γ,R+ C∗L,(0)(Y
′ × R)Γ×R

ϕ

ev∞

It will be denoted by C∗L,(0)(X̃)Γ,R+,Λ.

We obtain an analogue of the Higson-Roe sequence for spaces with cylin-
drical ends: the short exact sequence

0→ C∗L,0(X̃)Γ,R+,Λ → C∗L(X̃)Γ,R+,Λ → C∗(X̃)Γ,R+,Λ → 0

gives rise to a long exact sequence

· · · → K∗(C
∗
L,0(X̃)Γ,R+,Λ)→ K∗(C

∗
L(X̃)Γ,R+,Λ)→ K∗(C

∗(X̃)Γ,R+,Λ)→ · · · .

3.5 Index of Dirac Operators on Manifolds

with Cylindrical Ends

Let X be an n-dimensional spin manifold with a cylindrical end with base Y .
By this we mean that (X, Y, ι) is a space with cylindrical end, ι is smooth and
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X \ ι(Y × (0,∞)) is a smooth codimension zero submanifold with bound-
ary Y . We fix a map η : (X, Y∞ := ι(Y × R+)) → (BΓ, BΛ) satisfying
η(ι((y, t))) = η(ι((y, 0))) for all t ∈ R+ which gives rise to certain covers
of X and Y , which we will denote as in the previous section. Denote by
L2( /SX̃), L2( /SY ′×R), L2( /SỸ∞

) and L2( /SỸ×R) the square integrable sections

of the Cln-spinor bundles on X̃, Y ′ × R, Ỹ∞ and Ỹ × R respectively. The
pairs (L2( /SX̃), L2( /SY ′×R)) and (L2( /SỸ∞

), L2( /SỸ×R)) can be given the struc-

ture of an (X̃, Y ′, ι′) Cln-module and an (Ỹ∞, Ỹ , ι̃) Cln-module in the natural
way respectively. In particular, the families of unitaries on L2( /SY ′×R) and

L2( /SỸ×R) needed in the definition of cylindrical Y ′ ×R and Ỹ ×R-modules
will be given by the shift of sections in the R-direction and will be denoted
by {Q′s} and {Q̃s} respectively. We will use these modules to construct the
relevant C∗-algebras in the following section. As in Section 3.3.2, we obtain
classes [ /DX̃ ] and [ /DỸ×R] in K̂0(C∗L(X̃; Cln)Γ) and K̂0(C∗L(Ỹ × R; Cln)Λ) re-

spectively. Note that Ỹ × R is a manifold with cylindrical end with base Ỹ .
In the following we will define a fundamental class for the Dirac operators on
X and its cylindrical end in the K-theory groups of the (Γ,Λ)-equivariant
localisation algebra and discuss indices and secondary invariants obtained
from it. We will need the following

Lemma 3.5.1. The following diagrams are commutative

S C∗(X̃; Cln)Γ,R+

C∗(Y ′ × R; Cln)Γ×R

ev∞

S C∗(Ỹ × R; Cln)Λ×R

C∗(Y ′ × R; Cln)Γ×R.

ϕ

Here S → C∗(X̃; Cln)Γ,R+, S → C∗(Y ′ × R; Cln)Γ×R and S → C∗(Ỹ ×
R; Cln)Λ×R denote the functional calculi for /DX̃ , /DY ′×R and /DỸ×R respec-
tively.

Proof. First note that the isometry ι′ allows us to identify the Cln-spinor
bundles over Y ′ × R+ and Y ′∞, which in turn gives rise to the unitary
i′ : χY ′∞L

2( /SX̃) → χY×R+L
2( /SY ′×R). Let v ∈ L2( /SY ′×R) be compactly

supported. For f ∈ S whose Fourier transform is supported in (−r, r), it
is well known that f( /DX̃) and f( /DY ′×R) have propagation less than r and
depend on the r-local geometry in the sense that f( /DX̃)w and f( /DY ′×R)v
depend only on the Riemannian metric in the r-neighbourhood of the sup-
ports of w and v respectively. For v ∈ L2( /SY ′×R) with compact support pick
s0 such that Q′sv is supported in Y ′ × [2r,∞) for all s > s0. The previous
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observation then implies that if( /DX̃)i∗Q′sv = f( /DY ′×R)Q′sv for all s > s0.
Hence

lim
s
Q′−sif( /DX̃)i∗Q′sv = lim

s
Q′−sf( /DY ′×R)Q′sv.

However, because the Riemannian metric on Y ′ ×R is R-invariant, Q′s com-
mutes with the Dirac operator and its functions. This implies thatQ′−sf( /DY ′×R)Q′sv =
f( /DY ′×R)v and shows that for f with compactly supported Fourier transform
ev∞(f( /DX̃)) = f( /DY ′×R). The commutativity of the left diagram then fol-
lows from the fact that the functions in S with compactly supported Fourier
transform form a dense subset.

Now we show the commutativity of the right diagram. First we need to
recall one of the main properties of the map ϕ : C∗(Ỹ ×R; Cln)Λ → C∗(Y ′×
R; Cln)Γ. Since all the covers are assumed to be nice one has bijections

C∗(Ỹ × R; Cln)Λ×R
ε
∼= C∗(Y × R; Cln)Rε and C∗(Y ′ × R; Cln)Γ×R

ε
∼= C∗(Y ×

R; Cln)Rε , where C∗(Y ×R; Cln)R is constructed using L2( /SY×R) as the Y ×R-
module, ε is a sufficiently small positive real number, and C∗(·)·ε denotes the
set of elements in the corresponding Roe algebra which have propagation
less than ε. The bijections are given by pushdowns and lifts of operators on
different covers. Furthermore, ϕ makes the diagram

C∗(Ỹ × R; Cln)Λ×R
ε C∗(Y ′ × R; Cln)Γ×R

ε

C∗(Y × R; Cln)Rε .

∼=

ϕ

∼=

commutative. Let f ∈ S have a Fourier transform which is supported
in (−ε′, ε′), with ε′ sufficiently small. The observation that f applied to
the different Dirac operators depends only on the ε′-local geometry and
the niceness of covers imply that f( /DỸ×R), f( /DY×R) and f( /DY ′×R) cor-
respond to each other under the pushdown/lift maps. The commutativ-
ity of the latter diagram then implies that for f with the above property
ϕ(f( /DỸ×R)) = f( /DY ′×R). The commutativity of the right diagram in the
claim of the lemma then follows from the fact, that the C∗-subalgebra of
S generated by functions whose Fourier transform is supported in a fixed
interval (−C,C) is the whole of S, since it separates points.

Lemma 3.5.1 allows us to make the following

Definition 3.5.2. The (Γ,Λ)-fundamental class of theX is the class [ /DX̃,Ỹ ] ∈
K̂0(C∗L(X̃; Cln)Γ,R+,Λ) ∼= Kn(C∗L(X̃)Γ,R+,Λ) defined by

ϕ /D
X̃,Ỹ

: S → C∗L(X̃; Cln)Γ,R+,Λ, f 7→ (t 7→ (f(
1

t
/DX̃), f(

1

t
/DỸ×R)).
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The (Γ,Λ)-index of the Dirac operator associated to the map η : (X, Y∞ :=
ι(Y ×R+))→ (BΓ, BΛ) as above is defined to be the image of [ /DX̃,Ỹ ] under

the map (ev1)∗ : K∗(C
∗
L(X̃)Γ,R+,Λ)→ K∗(C

∗(X̃)Γ,R+,Λ).

3.5.1 Application to Existence and Classification of Pos-
itive Scalar Curvature Metrics

Suppose that the scalar curvature of the metric g on X is bounded from
below by ε. The same then holds for the lifts of g to various covers of X and
Y (∞). This implies that the spectra of the various Dirac operators considered

here do not intersect the interval (−
√
ε

4
,
√
ε

4
). Let ψ be a homotopy inverse to

the inclusion S(−
√
ε

4
,
√
ε

4
)→ S.

Definition 3.5.3. Let g be as above. The (Γ,Λ)-rho-invariant of g is the

class in K0(C∗L,0(X̃; Cln)Γ,R+,Λ) ∼= Kn(C∗L(X̃)Γ,R+,Λ) defined by the morphism

ϕ /D
X̃,Ỹ
◦ ψ : S → C∗L,0(X̃)Γ,R+,Λ

and will be denoted by ρΓ,Λ(g).

Clearly, ρΓ,Λ(g) lifts [DX̃,Ỹ ] and by the exactness of the sequence

· · · → K∗(C
∗
L,0(X̃)Γ,R+,Λ)→ K∗(C

∗
L(X̃)Γ,R+,Λ)→ K∗(C

∗(X̃)Γ,R+,Λ)→ · · ·

we have the following

Proposition 3.5.4. If the metric on X has positive scalar curvature then
the (Γ,Λ)-index of the Dirac operator vanishes.

One can define a notion of concordance for positive scalar curvature met-
rics on manifolds with cylindrical ends. Let g and g′ be such metrics on X.
They are called concordant if there exist a positive scalar curvature metric G
on X×R and a map j : Y ×R×R+ → Y∞×R which makes (X×R, Y ×R, j)
a manifold with cylindrical end and such that G restricted to X × (1,∞) is
g+dt2 and restricted to X×(−∞, 0) is g′+dt2. Using the strategy of Zeidler
in [41] and by replacing the usual Roe, localisation and structure algebras
by their (Γ,Λ)-invariant counterparts one can without much difficulty prove
a partitioned manifold index theorem for secondary invariants for manifolds
with cylindrical ends and prove the concordance invariance of the (Γ,Λ)-rho-
invariant. However we refrain from discussing this, since it does not entail
any novelties.
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More generally following the approach of [41] we define partial (Γ,Λ)-rho-
invariants associated to metrics having positive scalar curvature outside of
a given subset Z of X. Denote by Z ′ and and Z ′′ the preimages of Z and
(Z ∩ ι(Y × {1}))×R under the covering maps X̃ → X and Ỹ ×R→ Y ×R
respectively. Denote by C∗(Z ′ ⊂ X̃)Γ,R+,Λ the C∗-subalgebra of C∗(X̃)Γ,R+,Λ

consisting of elements (T1, T2) with T1 ∈ C∗(Z ′ ⊂ X̃)Γ and T2 ∈ C∗(Z ′′ ⊂
Ỹ ×R)Λ. Denote by C∗L,Z′(X̃)Γ,R+,Λ the preimage of C∗(Z ′ ⊂ X̃)Γ,R+,Λ under
the evaluation at 1 map. The justification for the following definition is
provided by [30, Lemma 2.3].

Definition 3.5.5. Given a metric g on X which is collared at the boundary
whose scalar curvature is bounded below by ε > 0 outside of a subset Z
define the class ρΓ,Λ

Z (g) by the morphism

ϕ /D
X̃,Ỹ
◦ ψ : S → C∗L,Z′(X̃)Γ,R+,Λ.

Another higher index theoretic notion which has been successfully used
to obtain information about the size of the space of positive scalar curvature
metrics on closed manifolds is the higher index difference, which gives rise to
a map from the space of positive scalar curvature metrics to the K-theory
of the group C∗-algebra of the manifold. We now show that one can easily
define a (Γ,Λ)-index difference of two positive scalar curvature metrics for
manifolds with cylindrical ends. This becomes particularly interesting after
we discuss the application of the above machinery to relative higher index
theory in the next section. Let g0 and g1 be two metrics on X with scalar
curvature bounded below by ε > 0 which are collared on the cylindrical end.
Define a metric G on X × R which restricts to g0 ⊕ dt2 and g1 ⊕ dt2 on
X × [0,∞) and X × (−∞,−1) respectively and which is collared on the
cylindrical end in the X-direction.

Definition 3.5.6. Let g0, g1 and G be as above. The (Γ,Λ)-index difference
of g0 and g1 is the image of ρΓ,Λ

X×[0,1](G) under the composition

Kn+1(C∗
L,X̃×[0,1]

(X̃)Γ,R+,Λ)
(ev1)∗−−−→ Kn+1(C∗(X̃ × [0, 1] ⊂ X̃ × R)Γ,R+,Λ)

→ Kn+1(C∗(X̃)Γ,R+,Λ),

where the last map is induced by projection on X̃. It will be denoted by
indΓ,Λ(g0, g1).
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3.5.2 Relationship to the Relative Index of Chang, Wein-
berger and Yu

As mentioned above, the relative index map of Chang, Weinberger and Yu for
manifolds with boundary takes values in mapping cones of equivariant Roe
algebras. Note that given a manifold (X, Y, ι) with cylindrical end, X :=
X \ ι(Y × (0,∞)) is a manifold with boundary Y . By restriction, we obtain

a map η : (X,Y ) → (BΓ, BΛ). Let ψ(L,(0)) : C∗(L,(0))(Ỹ )Λ → C∗(L,(0))(X̃)Γ

denote the map introduced in Section 3.3.3. In the following, we will see
that there exists a commutative diagram of exact sequences

K∗(C
∗
L,0(X̃)Γ,R+,Λ) K∗(C

∗
L(X̃)Γ,R+,Λ) K∗(C

∗(X̃)Γ,R+,Λ)

K∗(SCψL,0) K∗(SCψL) K∗(SCψ).

Proposition 3.5.7. The following is a commutative diagram of short exact
sequences

0 C∗(Ỹ ⊂ Ỹ∞)Λ C∗(Ỹ∞)Λ,R+ C∗(Ỹ × R)Λ×R 0

0 C∗(X̃ ⊂ X̃)Γ C∗(X̃)Γ,R+,Λ C∗(Ỹ × R)Λ×R 0.

ϕ

ev∞

(ϕ,ev∞) (ϕ,id)

Analogous diagrams exist when C∗ is replaced by C∗L and C∗L,0.

Proof. We first show that the first row is exact. It follows immediately from
the definition of ev∞ that R(Ỹ ⊂ Ỹ∞)Λ is in its kernel. By continuity we get

that C∗(Ỹ ⊂ Ỹ∞) is in the kernel of ev∞. Furthermore, [12, Lemma 3.12]

implies that the kernel of ev∞ is exactly C∗(Ỹ ⊂ Ỹ∞)Λ. It remains to show

that ev∞ is surjective. For T ∈ R(Ỹ × R)Λ×R, the operator χỸ×R+
TχỸ×R+

maps to T under ev∞. The surjectivity then follows from the fact that the
image of a homomorphism of C∗-algebras is closed. The exactness of the
second row can be proven using similar arguments. However we note that
the exactness in the middle uses the fact that limR→∞ dist(ι(Y ′×[R,∞)), X̃−
Y ′∞) =∞ (see Definition3.4.1). As for the commutativity of the diagram we
note that ϕ and ev∞ commute.

Proposition 3.5.8. The inclusion

C
C∗(Ỹ⊂Ỹ∞)Λ→C∗(X̃⊂X̃)Γ

→ CC∗(Ỹ∞)Λ,R+→C∗(X̃)Γ,R+,Λ
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gives rise to isomorphisms of K-theory groups. Analogous statements hold
when C∗ is replaced by C∗L and C∗L,0.

Proof. Note that the mapping cone of the identity map on C∗(Ỹ ×R)Λ×R is
contractible and thus has trivial K-theory. The statement then follows from
an application of the five-lemma to the long exact sequence of K-theory
groups associated to the short exact sequence of mapping cones

0→ C
C∗(Ỹ⊂Ỹ∞)Λ→C∗(X̃⊂X̃)Γ

→ C(ϕ,ev∞) → Cid → 0

.

Proposition 3.5.9. There is a commutative diagram of long exact sequences

K∗(C
∗
L,0(X̃)Γ,R+,Λ) K∗(C

∗
L(X̃)Γ,R+,Λ) K∗(C

∗(X̃)Γ,R+,Λ)

K∗(SCψL,0) K∗(SCψL) K∗(SCψ),

where the vertical maps are given by the compositions

K∗(C
∗
(L,(0))(X̃)Γ,R+,Λ)→ K∗(SCC∗

(L,(0))
(Ỹ∞)Λ,R+→C∗

(L,(0))
(X̃)Γ,R+,Λ)

∼= K∗(SCC∗
(L,(0))

(Ỹ⊂Ỹ∞)Λ→C∗
(L,(0))

(X̃⊂X̃)Γ
) ∼= K∗(SCψ(L,(0))

).

Proof. The diagram in the claim of the proposition is obtained by composing
the diagrams

K∗(C
∗
L,0(X̃)Γ,R+,Λ) K∗(C

∗
L(X̃)Γ,R+,Λ) K∗(C

∗(X̃)Γ,R+,Λ)

K∗(SC(ϕL,0,ev∞L,0)) K∗(SC(ϕL,ev∞L)) K∗(SC(ϕ,ev∞)),

and

K∗(SC(ϕL,0,ev∞L,0)) K∗(SC(ϕL,ev∞L)) K∗(SC(ϕ,ev∞))

K∗(SCψL,0) K∗(SCψL) K∗(SCψ),

∼= ∼= ∼=

where (ϕ(L,(0)), ev∞(L,(0))) denotes the map C∗(L,(0))(Ỹ∞)Λ,R+ → C∗(L,(0))(X̃)Γ,R+,Λ

of Proposition 3.5.7. The commutativity of the first diagram is due to the
naturality of the mapping cone exact sequence and the commutativity of the
second diagram is clear.
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Denote the image of the fundamental class of the Dirac operator on X̃
under the composition

K∗(C
∗
L(X̃)Γ)→ K∗(SCC∗L(Ỹ∞)Λ→C∗L(X̃)Γ) ∼= K∗(SCC∗L(Ỹ⊂Ỹ∞)Λ→C∗L(X̃⊂X̃)Γ

)

by [D
X̃,Ỹ

].

Lemma 3.5.10. The class [DX̃,Ỹ ] maps to [D
X̃,Ỹ

] under the map K∗(C
∗
L(X̃)Γ,R+,Λ)→

K∗(SCψL) of Proposition 3.5.9.

Proof. We first note that the commutativity of the diagram

K∗(C
∗
L(Ỹ∞)Λ,R+) K∗(C

∗
L(X̃)Γ,R+,Λ)

K∗(C
∗
L(Ỹ∞)Λ) K∗(C

∗
L(X̃)Γ),

where the second vertical map is given by the composition of the projection
onto the C∗L(X̃)Γ,R+ component followed by the inclusion, implies that of

K∗(C
∗
L(X̃)Γ,R+,Λ) K∗(SCC∗L(Ỹ∞)Λ,R+→C∗L(X̃)Γ,R+,Λ)

K∗(C
∗
L(X̃)Γ) K∗(SCC∗L(Ỹ∞)Λ→C∗L(X̃)Γ).

Furthermore, the diagram

K∗(SCC∗L(Ỹ⊂Ỹ∞)Λ→C∗L(X̃⊂X̃)Γ
) K∗(SCC∗L(Ỹ∞)Λ,R+→C∗L(X̃)Γ,R+,Λ)

K∗(SCC∗L(Ỹ∞)Λ→C∗L(X̃)Γ),

where all the arrows are isomorphisms, is commutative. The claim then
follows from the commutativity of the latter two diagrams and the fact that
[DX̃,Ỹ ] lifts the fundamental class of X̃

Corollary 3.5.11. The (Γ,Λ)-index of the Dirac operator associated to

(X, Y, ι) maps to the relative index of the Dirac operator onX underK∗(C
∗(X̃)Γ,R+,Λ)→

K∗(SCψ) defined in Proposition 3.5.9.

Combining Lemma 3.5.10 and Proposition 3.5.4 gives a new (and very
natural) proof of the following

Proposition 3.5.12. The nonvanishing of the relative index of the Dirac
operator on a manifold with boundary is an obstruction to the existence of a
positive scalar metric which is collared at the boundary.
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3.5.3 Localised Indices and the Relative Index

Given a metric g on X which has positive scalar curvature outside X, one

can define a localised coarse index in C∗(X̃)Γ). In [34] it was shown that this
index maps to the relative index of X. We quickly recall the construction
of the localised index and use the machinery developed previously to give a
short proof of the latter statement.

Definition 3.5.13. Denote by C∗
L,X̃

(X̃)Γ the preimage of C∗(X̃ ⊂ X̃)Γ under

ev1 : C∗L(X̃)Γ → C∗(X̃)Γ.

Suppose that the scalar curvature of the metric restricted to the comple-
ment of X is bounded from below by ε > 0. The following proposition is well-
known. As in [41] one can define a partial ρ-invariant ρΓ

X
(g) ∈ Kn(C∗

L,X̃
(X̃)Γ)

using the morphism

ϕD
X̃
◦ ψ : S → C∗

L,X̃
(X̃; Cln)Γ.

Definition 3.5.14. The localised coarse index indΓ

X̃
(g) is the image of ρΓ

X
(g)

under (ev1)∗ : Kn(C∗
L,X̃

(X̃)Γ)→ Kn(C∗(X̃ ⊂ X̃)Γ).

Remark 3.5.15. Note that in the above situation we can also define ρΓ,Λ

X
(g).

Furthermore, we note that the commutativity of the diagram

K∗(C
∗
L,X̃

(X̃)Γ,R+,Λ) K∗(C
∗
L,X̃

(X̃)Γ)

K∗(C
∗(X̃ ⊂ X̃)Γ),

(ev1)∗

and the fact that ρΓ,Λ

X
(g) is a lift of ρΓ

X
(g) under the horisontal map imply

that indΓ

X̃
(g) is the image of ρΓ,Λ

X
(g) under the map K∗(C

∗
L,X̃

(X̃)Γ,R+,Λ) →

K∗(C
∗(X̃ ⊂ X̃)Γ).

The following lemma is a simple observation

Lemma 3.5.16. The following diagram is commutative

K∗(C
∗
L,X̃

(X̃)Γ,R+,Λ) K∗(C
∗(X̃ ⊂ X̃)Γ) K∗(SCC∗(Ỹ⊂Ỹ∞)Λ→C∗(X̃⊂X̃)Γ

)

K∗(C
∗
L(X̃)Γ,R+,Λ) K∗(C

∗(X̃)Γ,R+,Λ) K∗(SCC∗(Ỹ∞)Λ,R+→C∗(X̃)Γ,R+,Λ).
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Suppose X is compact. Then K∗(C
∗(X̃ ⊂ X̃)Γ) ∼= K∗(C

∗(Γ)). Using the
previous remark and lemma we obtain the following corollary, which was one
of the main statements of [34].

Corollary 3.5.17. Suppose X is compact. Then indΓ

X̃
(g) maps to the rel-

ative index of Chang, Weinberger and Yu under the map K∗(C
∗(Γ)) →

K∗(C
∗(Γ,Λ)).
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Chapter 4

Overview and Outlook

In this final chapter we discuss some recent related works and some possible
directions for future research.

This dissertation strongly revolves around the equivariant relative index
map, which for a manifold M with boundary N takes the form

K∗(M,N)→ K∗(C
∗(π1(M), π1(N))),

with the left hand side being the relative K-homology group and the right
hand side the K-theory of the “relative group C∗-algebra”. Now the usual
“absolute” index map

K∗(M)→ K∗(C
∗(π1(M)))

and the Higson-Roe sequence

. . .→ Sπ1(M)
∗ → K∗(M)→ K∗(C

∗(π1(M)))→ . . .

have many different realisations. Indeed, there are many different models
for the K-homology groups and for each of these models one has a possible
realisation of the index map. Using the definition of K-homology as a KK-
group one has the KK-theoretic definition by Kasparov (see for example [15]
for the details). Using the language of coarse geometry and Paschke duality
one can, as Higson and Roe do in [16], use the K-theory of the quotient
of certain C∗-algebras as a model for K-homology in which case the index
map can be seen as the boundary map in K-theory of a certain short exact
sequence of C∗-algebras. In this work, we used the K-theory of the so called
localisation algebra as a model for K-homology, where the index map is the
induced map on K-theory of a morphism of C∗-algebras. The latter approach
is in spirit the same as the Higson-Roe approach. In [29], Roe showed that the
Kasparov approach and the coarse geometric approach to the assembly map
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coincide. Yet another KK-theoretic approach uses the Mischenko-Fomenko
index pairing (see [20] for a detailed description of this approach and the
comparison with the definition of Kasparov.). Another useful model for K-
homology is the geometric model of Baum and Douglas. In [3], the authors
gave another realisation of the index map, and indeed of the whole Higson-
Roe sequence in this language. Connes used the ”adiabatic groupoid“ to give
another realisation of the index map. In [42], Zenobi showed that the Higson-
Roe sequence can be identified with the long exact sequence associated to
the adiabatic deformation of a certain Lie groupoid. In view of the above
and the fact that each of these definition has certain merits, it is natural
to ask whether one has analogous definitions for the relative index map.
Recently, much work has been done to answer the latter question. In [4],
Deeley and Goffeng, gave a ”geometric“ definition of the relative index map.
In their work, they also proved a statement similar to the main Theorem of
Chapter 2, relating absolute indices defined in the presence of positive scalar
curvature at the boundary with the relative index. However, they could not
show in full generality that their relative index map coincides with that of
Chang, Weinberger and Yu. In [19], Kubota gave a definition of the relative
index map as a relative Mischenko-Fomenko index pairing and showed that
it coincides with both that of Chang, Weinberger and Yu and Deeley and
Goffeng. Using his work, one can show that the main theorem of Chapter 2 is
actually equivalent to the result of Deeley and Goffeng mentioned above. We
further note that the works [5] [25] use the language of groupoids to do index
theory in more general singular situations than manifolds with boundary.

Now we discuss some directions for future research. One of the main
contributions of Chapter 3 is the definition of a relative higher rho-invariant
for manifolds with boundary. The higher rho-invariants associated to posi-
tive scalar curvature metrics on closed manifolds have been successfully used
to distinguish and make statements about the size of the moduli space of
positive scalar curvature metrics (see for example [37] and [38]). A natural
question is then whether the higher rho-invariant for manifolds with bound-
ary defined in Chapter 3 can be used to prove concrete results about the
moduli space of positive scalar curvature metrics on manifolds with bound-
ary.

As a usual rule, results regarding positive scalar curvature and the Dirac
operator have a counterpart regarding homotopy equivalences and the signa-
ture operator. Recently, in [18] Hou and Liu defined higher rho-inavariants
associated to the above data. We believe that one can use the machinery
developed in Chapter 3 to define higher rho-invariants associated to the sig-
nature operator on the union of homotopy equivalent manifolds with a given
homotopy equivalence and we plan to address this in a future work.
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The higher rho-invariant was also used by Higson and Roe to give a
conceptual proof of a rigidity result concerning relative eta-invariants on
closed manifolds. One of the results discussed there related the validity of
the Baum-Cones conjecture with the vanishing of the relative eta-invariants
on closed manifolds with positive scalar curvature. We plan to use the higher
rho-invariant defined in this work to prove an analogous result concerning
the relative Baum-Connes map and relative eta-invariants on manifolds with
boundary.
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