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Abstract 

The intracellular distribution of proteins and ribonucleoproteins is a fundamental process in all 

eukaryotes that is critically vital for the normal functionality of the eukaryotic cell. In the last 

decades, it has been discovered that cancer cells utilize the transport machinery to stimulate 

tumor growth and to effectively evade apoptotic mechanisms. Chromosome region maintenance 

1 (CRM1) is a major nuclear export receptor that was found to mediate the mislocalization of 

several tumor suppressor proteins such as Rb, APC, p53, p21 and p27 as well as cancer drug 

targets like topoisomerase II α. In addition, elevated CRM1 expression has been observed in 

several cancers and was correlated with poor patient prognosis. This renders CRM1 a particularly 

interesting target for therapeutic intervention in diverse cancer diseases. In the recent years, 

structural characterization of CRM1 inhibitor complexes has been performed exclusively using 

CRM1 from the yeast Saccharomyces cerevisiae. The yeast protein was genetically modified to 

mimic its human homolog by the incorporation of a cysteine residue that is required for inhibitor 

binding. This approach has been used as a model system for the structural characterization of 

several natural and synthetic inhibitors bound to yeast CRM1. The performed studies defined a 

typical mechanism of CRM1 inhibition by the covalent modification of a reactive cysteine residue 

that is located in the nuclear export signal (NES)-binding cleft (Cys528 in human). The aim of this 

work was to gain structural and biochemical insight into the Inhibition of human CRM1, the actual 

protein targeted for anti-tumor drug development. This study focused on the biochemical and 

structural characterization of four novel CRM1 inhibitor candidates: the compounds C3, C6, C10 

and DP2392-E10. In addition, during this work Leptomycin B (LMB), a well-studied CRM1 

inhibitor, was implemented for the development of a successful crystallization approach of 

human CRM1 – inhibitor complexes. Genetic modifications coupled with intensive screening for 

potential crystallization conditions succeeded to gain the crystal structure of LMB bound to 

human CRM1-RanGTP complex. The obtained structure revealed that LMB interactions with 

human CRM1 are rather similar but not identical to those with the yeast variant. Moreover, 

binding assays showed that some of the tested novel compounds as well as a NES peptide exhibit 

no binding or lower binding affinity towards yeast CRM1 when compared to the human protein.  

Introducing the reactive cysteine to yeast CRM1 did not lead to the binding of some of the tested 

compounds, indicating that the used model system is limited to a certain class of human CRM1 

inhibitors. Furthermore, during this work several experimental and computational methods were 

applied using human CRM1 to elucidate the inhibitory mechanisms of C3, C6, C10 and DP2392-

E10. Quantitative binding assays revealed that all four compounds bind directly to CRM1 in a 
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concentration dependent manner. Further analysis unveiled that CRM1 inhibition by C3, C6 and 

C10 is mediated by the reactive cysteine (Cys528), which indicated they act by the direct blocking 

of the NES-binding cleft. In contrast, DP2392-E10 exhibited unique binding properties that are 

not dependent on Cys528. Computational docking, using ‘ligand free’ human CRM1-LMB complex 

structure as a template, defined the binding of DP2392-E10 outside the NES-binding cleft, at the 

base of the acidic loop. The identified binding mode suggests a novel mechanism of CRM1 

inhibition by the allosteric modulation of the NES-binding cleft. Moreover, computational 

analysis on human CRM1 identified several potential ligand binding sites outside the NES-binding 

cleft, which indicates for potential alternative mechanisms for the inhibition of CRM1-mediated 

nuclear export.  

The work presented here provides new insights into human CRM1 inhibition and it emphasizes 

the importance of using the human protein for inhibitor studies. Furthermore, the crystal 

structure of CRM1-RanGTP-LMB complex obtained during this study represents a valuable 

framework for different experimental and computational methods that can be applied for CRM1-

targeting drug design.  
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Chapter 1: General introduction 

A hallmark of eukaryotes is the development of an endomembrane system which resulted in the 

compartmentalization of the cell and the formation of several organelles such as the 

mitochondria, Golgi apparatus, the endoplasmic reticulum, and a main central compartment, the 

nucleus. In the eukaryotic cell the nucleus encloses the genetic material by a double membrane 

(nuclear envelope) resulting in the spatial separation of several molecular processes mainly 

transcription and translation. The physical separation allows the tight control and the high 

regulation of multiple cellular process and provide the suitable biochemical environment 

required for their optimal activity. However, the spatial separation of these biological events 

created the need to exchange a variety of molecules between both compartments, like for 

example the nuclear export of RNAs and ribosomal subunits as well as the nuclear import of 

polymerases, histones, and transcription factors. Transport events between the nucleus and the 

cytoplasm take place through nuclear portals known as nuclear pore complexes (NPCs) in a 

process referred to as the nucleocytoplasmic transport. The trafficking of molecules between 

both compartments is a fundamental process in all eukaryotes and crucial for maintaining the 

proper intracellular distribution of proteins and ribonucleoprotein (RNP) complexes. This in turn 

is essential for the proper functionality of the eukaryotic cells and therefore affect every aspect 

of human health and disease. (Chook et al. 1999; Conti and Izaurralde 2001; Dickmanns, 

Monecke, and Ficner 2015; Peters 2006; Sun et al. 2016) 

1.1 Nucleocytoplasmic transport  

1.1.1 The nuclear pore complex 

The NPCs are aqueous channels that are embedded within the nuclear envelop.  They are among 

the largest macromolecular complexes in the cell (over 120 MDa in size in human) and formed 

by the assembly of multiple copies of around 30 different proteins named nucleoporins (NUPs) 

(Cronshaw et al. 2002; Hoelz, Debler, and Blobel 2011). The general structure of the NPC 

demonstrates a central channel with a characteristic eight-fold rotational symmetry (Yang, Rout, 

and Akey 1998). The central channel of the NPC is composed by three inner rings stacked into 

the nuclear envelope and bordered by an outer cytoplasmic ring and an outer nuclear ring (Figure 

1). The cytoplasmic ring is characterized by a series of flexible filaments protruding to the 

cytoplasmic side of the NPC (cytoplasmic filaments), while the nuclear ring serves as an 

attachment site of a basket like structure comprised of eight filaments joined with a distal ring 
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(Figure 1) (nuclear basket) (Lin et al. 2018). The nuclear and the cytoplasmic rings are structurally 

connected to the inner ring by bridging Nup155 molecules. Whereas, the assembly of the 

symmetric core is mediated via the interactions of the flexible linker sequences in Nup98, Nup53, 

and Nup93 (Fischer et al. 2015; Lin et al. 2016; Stuwe et al. 2015).  NUPs forming the inner central 

channel of the pore contain intrinsically disordered domains rich in phenylalanine-glycine (FG 

repeats) and therefore called FG-nucleoporins (FG-NUPs). FG repeats within the central channel 

were shown to form an efficient selective barrier that allows only proteins of a certain size to 

freely diffuse across the NPC in a reasonable amount of time (Görlich and Mattaj 1996; Schmidt 

and Görlich 2016).  

 

Figure 1: Simplified schematic representation of different structural elements of the nuclear pore 

complex.  The inner ring coat, composed mainly of Nup155, connects the outer nuclear and 

cytoplasmic rings with the inner ring. The pore is anchored to the nuclear envelope by a layer of 

pore membrane proteins that surrounds the inner ring. The diffusion barrier within the central 

channel is formed by the FG-repeats meshwork. The figure is modified from (Lin and Hoelz 2019).  

1.1.2 Nuclear transport receptors 

The selectivity barrier created by the complex arrangement of FG-repeats allows only for most 

molecules that are smaller than 40 kDa in size or less than 5 nm in diameter to freely transverse 

the NPC (Bonner 1975; Mohr et al. 2009; Schmidt and Görlich 2016). The transport of larger 

molecules which include a multitudinous amount of proteins and ribonucleoprotein complexes  

is mediated by transport receptors (karyopherins) (Cook et al. 2007; Görlich and Kutay 1999). 

Transport receptors are members of the importin β superfamily and are relatively large proteins 
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that exhibit a molecular weight of about 90-150 kDa. In human there are more than 20 transport 

receptors of importin β superfamily identified. While some of these receptors can mediate 

bidirectional transport from and into the nucleus, most of them demonstrate a unidirectional 

transport and are classified into import receptors (importins) or export receptors (exportins) 

according to the direction of transport with respect to the nucleus (Harel and Forbes 2004). 

Importins and exportins share several common structural and functional properties. Besides their 

cargo proteins, they bind a small GTPase Ras-related antigen (Ran), which plays an essential role 

in regulating the directionality of transport (Görlich et al. 1996; Rexach and Blobel 1995). 

Furthermore, at a structural level karyopherins consist of a tandem of repetitive elements named 

HEAT repeats.  A HEAT repeat is a structural motif that consists of 40 - 50 residues that are 

arranged as two antiparallel helices (named A-helix and B-helix) connected by a short linker loop. 

The name HEAT was given after the 4 proteins where this motif was first identified: Huntingtin, 

elongation factor 3 (EF3), protein phosphatase 2A (PP2A), and the P3 kinase TOR1 (Andrade and 

Bork 1995; Andrade, Perez-Iratxeta, and Ponting 2001).  

Transport receptors recognizes their cargo proteins via a sequence specific signal peptide known 

as Nuclear Localization Signal (NLS) for importins and Nuclear Export Signal (NES) for exportins 

(Kutay, Guttinger, and Gorlich 2005; Lange et al. 2007). The cargo proteins can directly bind the 

transport receptor or alternatively the interaction is mediated via adapter molecules. The most 

studied import receptor is the Importinα/Importinβ heterodimer, which bind cargo proteins 

bearing a classical NLS (cNLS) peptide that consists of a series of basic residues (Soniat and Chook 

2015; Tran, King, and Corbett 2014). The most well understood and thus most described export 

receptor is exportin 1, known also as Chromosome region maintenance 1 (CRM1). CRM1 

mediates the nuclear export of cargos bearing a leucine-rich NES that contains a set of 

hydrophobic residues with characteristic spacing (Will be described in more detail in following 

sections) (Güttler et al. 2010; Monecke, Dickmanns, and Ficner 2014).  

1.1.3 The Ran cycle 

The directionality of transport between the nucleus and the cytoplasm is highly regulated by the  

small GTPase Ras-related antigen Ran, depending on its bound nucleotide either GDP (RanGDP) 

or GTP (RanGTP) (Görlich et al. 1996; Rexach and Blobel 1995). The nuclear export of a certain 

cargo is dependent on the cooperative binding of RanGTP and the cargo protein to the exportin 

for the formation of a stable ternary export complex. Once the export complex is formed, it 

transverses the NPC to the cytoplasm where the conversion of RanGTP to RanGDP lead to 
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complex dissociation and the termination of the export process (Figure 2) (Fornerod, Ohno, et al. 

1997; Kehlenbach et al. 1999; Monecke et al. 2014). On the other hand, importins recruit their 

cargos in the cytoplasm and cross through the NPC as binary complexes. In contrast to exportins, 

the binding of RanGTP to importins in the nucleus induces cargo release and import termination 

(Görlich et al. 1996; Rexach and Blobel 1995).  

 

Figure 2: Schematic representation of nuclear export cycle by Importin β type nuclear export 

receptors across the nuclear pore complexes (NPCs). In the nucleus the cargo protein and RanGTP 

bind cooperatively to the exportin (gradient colored marine blue - white) and form a stable ternary 

export complex. The ternary complex crosses the NPC to the cytoplasm, where the conversion of 

RanGTP to RanGDP mediated by RanGAP1 leads to complex dissociation and export termination. 

RanGDP is actively transported back to the nucleus by NTF2. In the nucleus the constant high 

concentration of RanGTP is maintained by the activity of RanGEF. The figure is modified from 

(Monecke et al. 2014). 

A gradient of RanGDP/RanGTP is maintained across the nuclear envelope with a 200-1000 folds 

higher RanGTP concentration in the nucleus. This gradient is achieved and sustained by the 

asymmetric distribution of Ran regulatory factors, Ran GTPase activating protein (RanGAP1) in 
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the cytoplasm and Ran guanine nucleotide exchange factor (RanGEF) in the nucleus (Güttler and 

Görlich 2011; Kalab, Weis, and Heald 2002; Smith et al. 2002). In the cytoplasm RanGAP1 

accelerate Ran GTPase activity by a factor of 10000. In the presence of the Ran binding protein 1 

(RanBP1) the GTPase activity was observed to be further increased (Bischoff et al. 1995). RanGDP 

is actively imported to the nucleus by nuclear transport factor 2 (NTF2) (Smith, Brownawell, and 

Macara 1998). In the nucleus the conversion of RanGDP to RanGTP is mediated by RanGEF  

(Figure 2) which is also known as RCC1 (regulator of chromosome condensation 1) as it was found 

to associate to chromatin (Bischoff and Ponstingl 1991; Makde et al. 2010) . Thereby the gradient 

of RanGTP/RanGDP across the nuclear envelope determine the directionality of transport by 

regulating receptor-cargo interactions. 

1.2 The nuclear export receptor CRM1 

CRM1 is an export receptor with a molecular weight of ~ 120 kDa (1071 residues in human, 123.4 

kDa) and it mediates the nuclear export of a wide range of structurally and functionally unrelated 

proteins and RNP complexes. CRM1 was originally identified as a mutated gene in a cold sensitive 

strain of the yeast Schizosaccharomyces pombe, where mutations in the gene led to deformed 

nuclear chromosome domains (Adachi and Yanagida 1989). Further investigations revealed that 

CRM1 mutations lead to the deregulation of a transcription factor called pap1 (Toda et al. 1992). 

The first clue on CRM1 activity in the process of nucleocytoplasmic transport was indicated by its 

binding to the nucleoporin Nup214 (also known as CAN), which is localized at the cytoplasmic 

side of the NPC (Fornerod, Van Deursen, et al. 1997). Later experiments performed in vivo and in 

vitro confirmed CRM1 function as a nuclear export receptor and identified several CRM1 cargos 

by their NES sequences (Fukuda et al. 1997; Kehlenbach, Dickmanns, and Gerace 1998; Ossareh-

Nazari, Bachelerie, and Dargemont 1997; Stade et al. 1997). Moreover, CRM1 was found to be 

an essential protein in all tested organisms. Besides its role as a nuclear exporter receptor, several 

studies showed CRM1 is involved in other non-transport cellular functions. For example, CRM1 

was shown to be implicated in various steps during mitosis; it is localized at the kinetochores 

from the end of prophase to late anaphase, where it binds RanGAP and the nucleoporin Nup358 

(also called Ran binding protein 2 (RanBP2)) (Arnaoutov et al. 2005; Di Fiore, Ciciarello, and Lavia 

2004). In addition, CRM1 is also localized at the centrosome and it was shown to play an 

important role in the tight regulation of centrosomal duplication (Wang et al. 2005). 

Nevertheless, apart from its cellular functions, CRM1 was found to be co-opted by viruses from 

several viral families during different stages of the of viral replication cycle. Moreover, in several 

cancers CRM1 was identified for the cytoplasmic mislocalization of various oncoproteins and 

tumor suppressor proteins. This rendered CRM1 an appreciated target for the development of 
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anti-tumor and anti-viral drugs (Dickmanns et al. 2015; Hill et al. 2014; Mathew and Ghildyal 

2017).   

Proteomic studies on CRM1-mediated export identified over a 1000 potential CRM1 cargoes in 

human and around 700 potential cargoes in the yeast Saccharomyces cerevisiae (Kırlı et al. 2015). 

The complexity of CRM1 cargo ranges from a single protein to a multimeric RNP complexes. The 

export of a simple cargo protein can be achieved by the direct binding of the cargo to CRM1 like 

the export of the import adapter Snurportin 1 (SPN1) (Monecke et al. 2009; Paraskeva et al. 

2000). On the other hand, more complicated export events require additional factors and 

adaptor proteins. For example, the nuclear export of m7G-capped small nuclear RNAs (snRNAs) 

requires additionally PHAX (phosphorylated adapter of RNA export) as well as the cap binding 

proteins (CBP20 and CPB80) (Ohno et al. 2000; Segref, Mattaj, and Ohno 2001). Another example 

is the export of pre-60S ribosomal subunits (rSUs), which requires the export adapter Nmd3 (Ho, 

Kallstrom, and Johnson 2000). 

1.2.1 The nuclear export signal  

CRM1 recognizes the cargoes and the adapter proteins by their leucine - rich NES peptide.  The 

NES peptide comprises 4-5 hydrophobic residues (Φ0 - Φ4) with characteristic spacing following 

the consensus Φ1-(X)2–3-Φ2-(X)2–3-Φ3-X-Φ4, where X is any amino acid and Φ-residues are 

basically leucines but can also be isoleucine, valine, phenylalanine or methionine (Kutay et al. 

2005). NESes were first identified in the human immunodeficiency virus type 1 (HIV-1)-Rev 

protein and in protein kinase A inhibitor (PKI) (Fischer et al. 1995; Wen et al. 1995). Afterwards, 

NESes were identified in several cargoes and were classified based on the spacing pattern of the 

critical hydrophobic residues into the classes: 1a, 1b, 1c, 1d, 2, 3, and 4 (Figure 3) (Kosugi et al. 

2008; Lee et al. 2019).  

 
Figure 3: Composition of nuclear export signal consensus sequences. Φ is Leu, Val, Ile, Phe or Met; 

X is any amino acid. 
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Crystals structures of several NESes bound to CRM1 demonstrated that the hydrophobic residues 

of the NES bind CRM1 specifically in 5 corresponding hydrophobic pockets (Φ0 - Φ4). The 

structural studies revealed the pocket Φ0 is less restricted to hydrophobic residues compared to 

the other pockets (Fung et al. 2015; Fung, Fu, and Chook 2017). 

1.2.2 The overall structural arrangement of CRM1 – cargo interactions 

The crystal structure of the part composed of the amino acids 707 – 1027 of human CRM1 was 

published in 2004 (PDB ID: 1W9C) and revealed the HEAT repeats – helices architecture of CRM1 

(Figure 4) (Petosa et al. 2004). In 2009 two crystals structures of full length CRM1 were published 

in complex with SPN1 (CRM1-SPN1, PDB ID: 3GB8) as well as in complex with SPN1 and RanGTP 

(CRM1-RanGTP-SPN1, PDB ID: 3GJX) (Dong et al. 2009; Monecke et al. 2009). The crystals 

structures present CRM1 as a ring-shaped protein consisting of 21 tandem HEAT repeats, where 

an outer convex surface is formed by A-helices and an inner concave surface is formed by B-

helices (Figure 4). Besides the helical structural elements of CRM1, HEAT9 loop is extended into 

a stretch of acidic residues that from a β-hairpin termed the acidic loop (Figure 4) (Monecke et 

al. 2009). RanGTP is bound to CRM1 with the first 3 HEAT repeats of the N-terminal region which 

has been termed as the CRIME domain (CRM1, importin β, etc.) (Petosa et al. 2004). This region 

demonstrates the highest degree of sequence conservation between CRM1 and other receptors 

in the importin β superfamily which further indicates for its functional importance (Görlich et al. 

1997; Monecke et al. 2014). Whereas, the NES peptide binds in the hydrophobic cleft formed 

between the HEAT helices 11A and 12A (NES-binding cleft) (Figure 4). The NES-binding cleft 

contains 5 fixed hydrophobic pockets that represent a docking station for the critical hydrophobic 

residues of the NES peptide. The type, size, and the position of the key hydrophobic residues are 

crucial determinants of NES – CRM1 binding affinity. It has been shown that changing a singly key 

residue to a polar residue leads to a significantly weaker NES-binding (Dong et al. 2009). 

Furthermore, it was observed that the removal of a hydrophobic residue, for example the first 

methionine of SPN1 (Φ0), abolishes SPN1 binding to CRM1 (Monecke et al. 2009). This further 

reflect the importance of the specific docking of the key hydrophobic residues in the 

corresponding pockets for cargo binding. Structural analysis of several NESes bound to CRM1 

showed that the different spacings in individual NESes are compensated by different structural 

arrangements of the NES peptide, which enables the proper alignment of the hydrophobic 

resides and their corresponding binding pockets (Fung et al. 2015, 2017; Güttler et al. 2010).  
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Figure 4: Overall architecture and structural arrangement of CRM1. (A) a general structure of a HEAT 

repeat demonstrates two antiparallel helices (helix A and helix B) connected by a short linker loop. 

The HEAT repeat is stabilized by pronounced hydrophobic interactions (depicted as sticks) between 

helices A and B.  (B) an overall CRM1 structure depicted in cartoon representation. CRM1 has an 

overall superhelical conformation that is composed by the stacking of 21 tandem HEAT repeats (H1-

H21). A-helices (marine) form the outer convex surface, while B-helices (lightblue) form the inner 

hydrophobic core of CRM1. The NES-binding cleft is located between HEAT repeats 11 and 12. The 

acidic loop (red) is a β-hairpin formed by a stretch of acidic residues at HEAT9 loop. 

CRM1 structures in complex with SPN1 unveiled it as unique CRM1 cargo with an exceptional 

binding mode. SPN1 is an import adaptor for uridine-rich small nuclear RNP (UsnRNP); it interacts 

with m3G-cap of the UsnRNP and thereby enhances their m3G-cap dependent nuclear import 

(Huber et al. 1998). Once the import is achieved, SPN1 is re-localized by CRM1-mediated nuclear 

export into the cytoplasm (Paraskeva et al. 2000). SPN1 has an N-terminal NES that contains 5 

hydrophobic binding residues (Monecke et al. 2009). Unlike most nuclear export cargos SPN1 can 

form a complex with RanGTP in the absence of RanGTP which indicates exceptional binding 

properties (Dong et al. 2009).  Crystal structures revealed that SPN1 - CRM1 interactions are not 

only mediated by the NES, it rather involves several regions in both proteins.  The cap binding 

domain (CBD) of SPN1 comprising the residues 97-300 interacts with HEAT repeats 12-14’ A 

helices. In addition, the C-terminal residues 349-360 of SPN1 interacts with A helices of HEAT 

repeats 14-16 (Dong et al. 2009; Monecke et al. 2009). The multipartite binding mode of SPN1 

results in an exceptionally stable binary export complex even in the absence of RanGTP.  
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Another unique feature of CRM1 that was unveiled by the SPN1 complex structures in the 

presence and the absence of RanGTP is the orientation of the HEAT repeat helix 21B. In the 

presence of RanGTP the helix 21B (C-terminal helix) arranges in a parallel orientation to helix 21A, 

while in the absence of RanGTP the helix 21B is bridging the central opening of CRM1 and interact 

with the lower part of HEAT repeats forming the NES-binding cleft (Dong et al. 2009; Monecke et 

al. 2009). The different conformations of the C-terminal helix indicated the high structural 

flexibility of CRM1 and presented the first clue towards the understanding of the allosteric 

interaction between RanGTP and the cargo protein (Monecke et al. 2014).  

1.2.3 Structural and conformational flexibility of CRM1  

CRM1 transport cycle follows the general cycle of nuclear export as described in Figure 2. Unlike 

SPN1, most cargoes need to bind CRM1 cooperatively in the presence of RanGTP to form a stable 

export complex. After the complex is assembled, it passes through the central channel of the NPC 

to the cytoplasm, where RanBP1 and RanBP2 together with the activity of RanGAP lead to the 

hydrolysis of Ran nucleotide and the dissociation of the export complex (reviewed in (Monecke 

et al. 2014)).  Structural analysis of CRM1 during different stages of the export cycle revealed that 

CRM1 demonstrates high structural flexibility.  Furthermore, the detailed structural investigation 

of unliganded CRM1 (PDB ID: 4FGV), the export complex CRM1-RanGTP-SPN1 (PDB ID: 3GJX), and 

the disassembly complex CRM1-RanGTP-RanBP1 (PDB ID: 3M1I) determined the acidic loop, C-

terminal helix, and the NES-binding cleft as the key structural elements of CRM1 functionality 

and structural flexibility (Koyama and Matsuura 2010; Monecke et al. 2009, 2013). CRM1 is 

represented in two main conformations in crystal structures: an extended and pitched 

superhelical conformation as well as a more compact toroidal conformation (Figure 5). The 

extended conformation is displayed by the crystal structure of unliganded CRM1 from 

Chaetomium thermophilum (PDB ID: 4FGV). This conformation lacks the interaction between the 

N- and the C- terminal regions. Furthermore, in this conformation the acidic loop adopts a so 

called “flipped back” position where it interacts with the backside of the NES-binding cleft, 

whereas the C-terminal helix demonstrates a crossing position as it spans the core of CRM1 and 

interact with the base of helix B of HEAT repeat 12 (Figure 5). These structural arrangements lead 

to a narrowed (closed) NES-binding cleft that is not accessible by the NES peptide (Monecke et 

al. 2013). On the other hand, the compact conformation is stabilized upon the formation of the 

ternary export complex and characterized by the tight interactions between the N- and C- 

terminal regions (Figure 5). In this conformation the RanGTP binding triggers the rearrangement 

of the C-terminal helix in a parallel position to helix 21A. Whereas the acidic loop re-arranges to 
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a “seat belt” like conformation as it detaches from the back of the NES and wrap around Ran 

providing further stability for Ran binding (Monecke et al. 2009, 2014). The overall structural 

rearrangement from the extended to the compact conformation leads to the opening of the NES 

binding cleft and allows that cargo NES to bind to CRM1 (Figure 5).  Taken together, performed 

structural analysis indicates that the cooperativity of RanGTP and cargo interactions is achieved 

by the structural arrangement of the acidic loop and the C-terminal helix and its coupling to the 

NES-binding cleft (Dölker et al. 2013; Koyama and Matsuura 2010; Monecke et al. 2014). 

 
 Figure 5: Structural and conformational flexibility of CRM1 during the export cycle. Left, surface 

representation of CRM1 gradient colored from N-terminus (marine) to the C terminus (white) in the 

unliganded state and in the export complex CRM1-RanGTP-SPN1. Unliganded CRM1 exhibits an 

extended superhelical conformation that lacks the interactions between the N- and C- termini. In 

the export complex CRM1 adopts a more compact-toroidal conformation that involves tight 

interactions between the N- and C- terminal regions. Middle, CRM1 in cartoon representations 

show the structural arrangement of the acidic loop (red) and the C-terminal helix (green) in the 

corresponding conformation.  Right, a surface representation of the NES-binding cleft topography 

in different conformations (hydrophobic resides are shown in grey).  The structural arrangements 

of the extended conformations lead to a constricted and a closed cleft. The overall conformational 

transition into the compact conformation leads to an open cleft that can bind the NES peptide 

(SPN1-NES depicted as cartoon).  
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Further structural analysis of Chaetomium thermophilum CRM1 (CtCRM1) by single particle 

electron microscopy (EM) revealed that free CRM1 (in the absence of cargo and RanGTP) samples 

at equilibrium in both conformations that are displayed in different crystal structure. Two third 

of CtCRM1 particles classified by single particle EM adopted the extended superhelical 

conformation, while the remaining third depicted the more compact conformation that is 

observed in export complex structure (Monecke et al. 2013). Furthermore, integrative structural 

analysis of human CRM1 (HsCRM1) by single particle EM together with small-angle X-ray 

scattering (SAXS) and molecular dynamics (MD) simulations revealed an even more pronounced 

conformational flexibility in mammalian CRM1 (Dölker et al. 2013). Interestingly, in contrast to 
CtCRM1, single particle EM showed that half of HsCRM1 particles adopt the extended 

conformation. Whereas, the remaining particles resemble several intermediate conformers of 

more compact conformations that were classified into several subpopulations (Dölker et al. 

2013). This indicates the high degree of HsCRM1 conformational flexibility in solution. Further 

investigations by MD simulations on both CtCRM1 and HsCRM1 wild type proteins and in silico 

acidic loop and C-terminal helix truncated variant indicated for the crucial effect of both elements 

on CRM1 conformational flexibility and its relation to cargo and Ran binding (Dölker et al. 2013; 

Monecke et al. 2013). 

1.2.4 CRM1 interaction with the nuclear pore complex 

The FG-repeat barrier in the central channel of the NPC prevents most proteins to pass through 

the NPC. However, the unique composition and structural architecture of importin β superfamily 

transport receptors permit their transfer through the FG-repeats barrier across the NPC. In order 

to understand the interactions of nuclear transport receptor with the FG-repeats at an atomic 

level, several receptors were crystallized with NUP fragments containing FG-repeat motifs 

(Bayliss et al. 2002; Bayliss, Littlewood, and Stewart 2000; Grant, Neuhaus, and Stewart 2003; 

Koyama and Matsuura 2010; Liu and Stewart 2005; Matsuura and Stewart 2005; Pumroy et al. 

2012). FG repeats are classified into four major motifs: FxFG, GLFG, SxFG and PxFG, where x is 

any amino acids. Within the FG-NUPs, these motifs are usually separated by a linker of variable 

length with a typical spacing of around 20 amino acids (Aramburu and Lemke 2017; Denning et 

al. 2003; Dölker, Zachariae, and Grubmüller 2010). Importin β is one of the best studies transport 

receptors with respect to interaction with FG-NUPs. Human importin β (residues 1-442) was 

successfully crystalized with FG-repeats of different motifs including GLFG and FXFG. Crystal 

structures showed the FG motifs bind importin β by the hydrophobic interactions at the outer 

surface of the N-terminal region (Bayliss et al. 2002, 2000; Liu and Stewart 2005). Another 
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structure identified a different binding site at the C-terminal half of importin β. Further analysis 

by MD simulations predicted Importin β (and most likely other transport receptors) contains 

several addition FG-NUPs binding site (Isgro and Schulten 2005). This indicated that surface of 

transport receptors retains multiple FG binding sites that facilitate the passage of the transport 

receptors through the central channel of the NPC by binding to FG motifs of different FG-NUPs.  

Recently, the crystal structure of an FG-repeat-containing fragment of Nup214, in complex with 

human CRM1, Snurportin1, and RanGTP unveiled CRM1 has multiple FG-repeat’ interacting 

regions with several FG-binding sites (Figure 6) (PDB ID: 5DIS) (Port et al. 2015). The 117 amino 

acids-fragment contained seven characteristic FG motifs and a similar FS motif (F1-F8). The 

structure showed the FG motifs are the prominent anchor points of the FG-repeats containing 

fragment that wraps around the outer convex surface of CRM1 (Figure 6). Unlike the FG-motifs, 

the spacing sequences were loosely attached to CRM1 and therefore were not entirely modeled 

in the structure. Three different FG-binding patches were identified for the binding of 8 FG motifs 

in corresponding binding pockets (P1–P8).  The first binding region was identified at the surface 

of HEAT repeats 14-19 and it contains the FG motifs F1-F4. The second binding region, located at 

the C-terminal end of CRM1 involves HEAT repeats 17-20 and contains 2 FG-motifs F5 and F6, 

while the third region was located at the N-terminal HEAT repeats 2-4 and contains the remaining 

FG-motifs F7 and F8 (Figure 6). The observed binding mode of the FG-repeats-containing 

fragment connecting the N- and C- terminal regions renders Nup214 a molecular clamp that 

stabilizes the compact conformation of CRM1 export complex. The multiple binding sites for FG-

motifs distributed at the outer surface of CRM1 contribute to higher avidity interaction between 

CRM1 and FG-repeats. On the other hand, the flexible and loose binding of the linker regions 

between FG-motifs contribute to weak interaction avidity (Port et al. 2015). Such a binding mode 

is important to maintain interactions that are strong enough to achieve the association of the 

transport receptors to the NPC, yet not too strong so that it allows the translocation of the 

receptor through the NPC. 

In 2017, another structure of the yeast Saccharomyces cerevisiae CRM1 (ScCRM1) was published 

in complex with SxFG/PxFG repeat peptide of the yeast Nup42 (PDB ID: 5XOJ) (Koyama et al. 

2017). The structure unveiled three binding regions for FGxF/PxFG motifs at the outer surface of 

the C-terminal third of CRM1 including the HEAT repeats 14-20. The identified binding regions 

retained a total of five hydrophobic pockets for the binding of phenylalanine side chains. Four of 

the identified pockets were identical to binding pockets of FG-repeat motifs in the binding regions 

1 and 2 of nup214 FG-repeat fragment. Similar to Nup214 interactions, the multiple binding site 
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of Nup42 FG-repeats was observed to increase the binding affinity to CRM1. On the other hand, 

it was shown that the binding of yeast RanBP1 weakens CRM1 interaction with Nup42 FGxF/PxFG 

motifs, which suggested the initiation of the export complex dissociation at the cytoplasmic side 

of the NPC. Furthermore, unliganded CRM1 demonstrated a much weaker binding to Nup42 

FGxF/PxFG motifs. This led to the conclusion that transient binding of the SxFG/Px FG‐Nups to 

unliganded CRM1 would facilitate its rapid recycling back to the nucleus (Koyama et al. 2017).  

 
Figure 6: Overall structure of Nup214 FG-repeat fragment bound to CRM1-RanGTP-SPN1 complex 

(PDB ID: 5DIS). CRM1 and Ran are depicted in surface representation. CRM1 is gradient colored 

from the N-terminus (marine) to the C- terminus (white), while Ran is colored lightorange. Nup214 

FG-repeat fragment, shown in cartoon representation (red), wraps around the outer surface of 

CRM1 via the FG motifs (depicted in spheres) as the main anchor points. FG motifs bind CRM1 in 

specific corresponding pockets (P1-P8) in 3 identified regions. The first and the second regions are 

located at the C-terminal part of CRM1 and contain the binding pockets (P1-P4) and (P5-P6) 

respectively. The third binding region is located at the N-terminal side of CRM1 and it contains the 

binding pockets P7 and P8. SPN1 is not shown in the figure.  

1.3 Altered nucleocytoplasmic distribution of proteins in cancer 

The appropriate nucleocytoplasmic distribution of proteins and RNP complexes is crucial for 

maintaining the normal functionality of mammalian cells. Mislocalization of proteins have 

pathological consequences as it disturbs the physiological nucleus/cytoplasmic homeostasis and 

interferes with critical regulatory pathways. In different cancer cells, a large variety of 

oncoproteins and tumor suppressor proteins including the nuclear factor of activated T-cells 

(NFAT), adenomatous polyposis coli protein (APC), Survivin, p53, retinoblastoma protein (Rb), 

and Bcr-Abl are aberrantly mislocalized (Figure 7) (Faustino et al. 2007; Hill et al. 2014; Turner, 
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Dawson, and Sullivan 2012). The mislocalization of these proteins results in the 

inactivation/activation of critical regulatory pathways and interferes with cell cycle regulators, 

cellular proliferation, and apoptosis which leads to caner initiation and progression. For example, 

in normal cells the transcription factor p53, which is well known for its vital role in genome 

protection, is localized in the nucleus (Levine and Greenbaum 2012). In cancer cells, p53 is 

deactivated by blocking its ability to bind to DNA which is achieved either by several mutations 

or by the abnormal cytoplasmic localization of the wild type protein (Hollstein et al. 1991; Lu et 

al. 2000; Tweddle et al. 2001). Cytoplasmic localization of p53 has been observed in several 

cancer types (including, colon, breast, retinoblastoma, and ovaria cancer) and its usually 

mediated by the unmasking of an NES coupled with its active nuclear export (Foo et al. 2007; 

Stommel et al. 1999).  Another similar example is Rb (Retinoblastoma susceptibility gene product) 

which is a tumor suppressor protein that plays a crucial role in regulating the cell cycle G1-S phase 

transition (Burkhart and Sage 2008). Normally, Rb is localized in the nucleus, while its cytoplasmic 

mislocalization has been observed in specific cancers (Jiao et al. 2006; Kowalik et al. 2013; Storke 

et al. 1993). Inactivation of Rb mediated by aberrant nucleocytoplasmic transport alters normal 

cell proliferation and thereby accelerates cancer initiation. It furthermore leads to mitotic fidelity 

and genome instability which renders Rb a vital factor in several cancer diseases (Burkhart and 

Sage 2008; Mittnacht 1998; Zamanian and La Thangue 1993).  

Other groups of tumor suppressor proteins like the APC protein are distributed in both 

compartments in normal cells but shifted towards either the nucleus or the cytoplasm in several 

cancer diseases (Figure 7). APC protein contain an NES and an NLS that allow it to  shuttle 

between both compartments as it regulates several cellular functions (Kristi L. Neufeld et al. 

2000; Neufeld and White 1997). One of the crucial functions of APC is the degradation of β-

catenin which is a key component of the Wnt signaling pathway (K L Neufeld et al. 2000). In the 

absence of Wnt signaling low levels of β-catenin are maintained by the activity of APC together 

with glycogen synthase kinase 3 beta (GSK-3β) and Axin (Cong and Varmus 2004; Zeng et al. 

2008). In cancer cells the inactivation of APC results in the nuclear accumulation of β-catenin, 

which was highly correlated to colon cancer initiation. In this sense, a C-terminally truncated 

version of APC was identified in 60% of tested colon cancer patients (Powell et al. 1992). The 

truncated version of the protein accumulates in the nucleus leading to the deregulation of β-

catenin degradation. The consequent accumulation of β-catenin in the nucleus leads to cancer 

initiation by interfering with gene expression and initiating gene transactivation (Henderson and 

Fagotto 2002; Jamieson, Sharma, and Henderson 2014).  
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Figure 7: Altered subcellular localization of tumor suppressor proteins and oncoproteins in cancer 

cells compared to normal cells. In cancer cells several nuclear proteins are mislocalized in the 

cytoplasm (highlighted in blue), whereas several cytoplasmic proteins are mislocalized in the 

nucleus (highlighted in yellow). Other proteins are distributed in both compartments in normal cells, 

but shifter toward either the nucleus (highlighted in white) or the cytoplasm (highlighted in grey) in 

cancer cell.  The direction of shift in cancer cells is indicated by arrows. The figure is modified from 

(Dickmanns et al. 2015). 

Similar to APC, the transcription factor family NFAT can be localized in both the nucleus and the 

cytoplasm in normal cells (Beals et al. 1997; Kehlenbach et al. 1998). The NFAT transcription 

factors act as calcium sensors and regulate the expression of a multitude of genes that are 

essential for vertebrate development as well as several cellular functions including cell 

proliferation, migration, invasion, and angiogenesis (Crabtree and Olson 2002; Müller and Rao 

2010). Upon stimulation NFAT is activated by dephosphorylation, which is attained by calcium 

activated calcineurin (serine/threonine phosphatase). Following the dephosphorylation lysine-

rich NLS is exposed enabling the nuclear import of the transcription factors (Rao, Luo, and Hogan 

1997). In the resting state, the phosphorylation of NFAT by GSK-3β exposes an NES shuttling the 

proteins back to the cytoplasm (Gwack et al. 2006; Kehlenbach et al. 1998). In several tumors and 

hematological malignancies, the overexpression and/or constitutive activation of NFAT isoforms 

has been reported. This leads to the nuclear accumulation of the transcription factors resulting 

in the downstream activation of their target genes (Mancini and Toker 2009; Pan, Xiong, and 

Chen 2013; Qin et al. 2014). 
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The mislocalization of the above-mentioned examples as well as several other critical tumor 

related factors is dependent on the nucleocytoplasmic transport machinery of the cell. Meaning 

that the prerequisite mislocalization of the oncoproteins and tumor suppressors leading to 

cancer initiation and progression requires the importin β transport receptors, among which 

CRM1 demonstrates the highest versatility (Dickmanns et al. 2015; Faustino et al. 2007; Sun et 

al. 2016).  

1.3.1 CRM1 in cancer  

CRM1 was identified as the nuclear export receptor that mediates the mislocalization of the 

previously mentioned examples: p53 (Foo et al. 2007), Rb (Jiao et al. 2008), and APC (Henderson 

2000) as well as other several proto-oncoproteins and tumor suppressor proteins including p21CIP 

(Hwang, Kim, and Kwon 2007), cyclin D1 (Benzeno and Diehl 2004), BRCA1 (Rodríguez and 

Henderson 2000), Bok (Bartholomeusz et al. 2006), forkhead box (FoxO) proteins (Howell and 

Stoffel 2009; De Laté et al. 2010), N-WASP (Suetsugu and Takenawa 2003), nucleophosmin (Wang 

et al. 2005), and p27 KIP (Ishida et al. 2002) (Figure 7). The aberrant localization of such proteins 

can be caused by  mutations or modifications that interfere with their transport activities such as 

the unmasking of a normally hidden NES (e.g. p53 , BRCA2/RAD51, NFAT, INI1) (Craig et al. 2002; 

Jeyasekharan et al. 2013; Stommel et al. 1999; Zhu and McKeon 1999), phosphorylation (e.g. p27, 

Rb, p53) (Ishida et al. 2002; Jiao et al. 2006; Zhang and Xiong 2001), ubiquitination (e.g. p53) 

(Lohrum et al. 2001), or SUMOylation (e.g. p53) (Santiago et al. 2013). Another main factor that 

contributes to the aberrant localization of these proteins is the change of CRM1 cellular levels 

(Watt and Leaner 2010). Elevated CRM1 expression has been reported in several cancers and is 

correlated with poor patient prognosis in patients with ovarian- (Noske et al. 2008), cervical- (Van 

Der Watt et al. 2009),   pancreatic- (Huang et al. 2009),   kidney- (Inoue et al. 2013), and   breast 

cancers (Yue et al. 2018) as well as osteosarcoma (Yao et al. 2009), glioma (Shen et al. 2009), 

gastric carcinomas (Zhou et al. 2013), and leukemia (Kojima et al. 2013). Furthermore, CRM1 

elevated expression has been accompanied with mantle cell lymphoma (Zhang et al. 2013), 

multiple myeloma (Schmidt et al. 2013), and melanoma (Pathria, Wagner, and Wagner 2012). 

A prominent example of tumor suppressors mislocalized by CRM1 is the cyclin-dependent kinase 

inhibitor p27KIP. In normal cells p27KIP is localized in the nucleus, where it blocks cell cycle 

progression at the G1 phase by binding and inhibiting cyclin/cyclin-dependent kinase (CDK) 

complexes (Sherr and Roberts 1999). The interaction of p27KIP with CDK complexes inhibits their 

kinase activity and by that prevents the phosphorylation and subsequent inactivation of the 
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critical transcriptional repressor Rb (Alexander and Hinds 2001).  The cytoplasmic mislocalization 

of p27KIP mediated by CRM1 is dependent on the phosphorylation of its serine 10 (Ishida et al. 

2002). Following this modification p27KIP is exported by CRM1 to the cytoplasm, where it is 

subjected to proteasomal degradation or functions as an oncogene by promoting cell migration 

(Connor et al. 2003; Wander, Zhao, and Slingerland 2011). The aberrant cytoplasmic 

mislocalization of p27KIP leads to the phosphorylation and inactivation of Rb, resulting in the 

abnormal expression of multiple factors and subsequent promotion of uncontrolled cell cycle 

progression (Besson, Assoian, and Roberts 2004; Sherr and Roberts 1999; Wang et al. 2014). High 

levels of serine 10 - phosphorylated p27KIP have been reported in breast cancer patients and 

correlated with high tumor grade and poor clinical prognosis (Fagan-Solis et al. 2014; Song et al. 

2015). 

Subcellular mislocalization of other oncoproteins can be initiated by the masking/unmasking of 

their NES/NLS signal peptides.  For example, the breast cancer susceptibility protein 1 (BRCA1) is 

actively imported to the nucleus as it retains an NLS (Thakur et al. 1997). In the nucleus BRCA1 

forms a stable heterodimer with BRCA1-associated RING domain protein 1 (BARD1) (Baer and 

Ludwig 2002). The formed heterodimer is involved in several cellular functions like DNA repair 

and interact with cell cycle regulators (Schüchner et al. 2005; Scully et al. 1997). It turned out that 

both BRCA1 and BARD1 are subjected to CRM1-mediated nuclear export as they bear NESes 

(Rodriguez et al. 2004; Rodríguez and Henderson 2000). However, both proteins NESes are 

present at the dimerization surface and therefore they are masked when both proteins form a 

dimer (Jeyasekharan et al. 2013; Rodriguez et al. 2004). On the other hand, in cancer cells, the 

disruption of BARD1/BRCA1 dimerization exposes their NESes which triggers their nuclear export 

in CRM1-dependent fashion. The nuclear export of both proteins coupled with an impaired 

nuclear import in cancer cells results in their cytoplasmic accumulation which promotes breast 

cancer metastasis and cancer development (Mahmoud et al. 2017; Santivasi et al. 2015).  

Besides its critical role in cancer initiation and progression, CRM1-dependent export was found 

to interfere with cancer treatment as it mediates the cytoplasmic mislocalization of well-

established drug targets like Topoisomerase IIα (Turner et al. 2012).  Topoisomerase IIα is a 

nuclear protein that plays an essential role in DNA replication and involved in transcription, 

chromatid separation, and chromatin condensation (Nitiss 2009a; Wang 2002).  In multiple 

myeloma topoisomerase IIα is specifically targeted by doxorubicin and etoposide that act on 

DNA-bound nuclear topoisomerase IIα (Nitiss 2009b). However, in myeloma and at an increased 

cell densities, topoisomerase IIα was observed to be exported to the cytoplasm in CRM1-
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dependent manner, which rendered the cells resistant to topoisomerase IIα-targeting drugs 

(Engel et al. 2004; Valkov and Sullivan 1997). CRM1 interference with cancer treatment has been 

reported for other drug targets like Galectin-3 and BCR-ABL (reviewed in (Turner et al. 2012)).  

1.4 CRM1 in viral diseases 

Besides its significant contribution in cancer diseases, CRM1 is utilized by viruses from different 

families including coronaviruses, orthomyxoviruses, paramyxoviruses, flaviviruses, retroviruses, 

rhabdoviruses, and herpesviruses for the establishment of viral infections. Several viruses 

belonging to these families have been shown to utilize CRM1-mediated export during different 

stages of the virus replication cycle, mainly for the nuclear export of the viral RNAs and RNP 

complexes (Cao et al. 2012; Cao and Liu 2007; Elton et al. 2001; Ghildyal et al. 2009; Nakano and 

Watanabe 2016; Pasdeloup et al. 2005; Sanchez et al. 2007). The key role of CRM1 in several viral 

infections has been indicated by the early discovery of an NES in the HIV-1-Rev protein (Fischer 

et al. 1995). The viral protein HIV-1-Rev is a phosphoprotein with a molecular weight of 19 kDa. 

In the infected cells, HIV-1-Rev is localized in the nucleus by an NLS, where it mediates the 

controlled expression of retroviral mRNAs. In addition, the HIV-1-Rev contains an RNA binding 

domain known as Rev response element (RRE)-binding domain as well as an activation domain 

that harbors a leucin-rich NES. It was shown that HIV1-Rev utilizes the CRM1-depedent export 

for the shuttling of unspliced viral RNA into the cytoplasm (Fontoura, Faria, and Nussenzveig 

2005; Mathew and Ghildyal 2017; Najera, Krieg, and Karn 1999). The disruption of CRM1-Rev 

interaction by CRM1 inhibitors was observed to arrest the transcription of HIV-1 and thereby 

inhibits the production of new virions resulting in the reduction of HIV-1 levels (Daelemans et al. 

2002; Fleta-Soriano et al. 2014; Perwitasari et al. 2014).  

CRM1 has also been shown to have a key role in influenza viruses’ replication cycle. Influenza are 

single stranded and segmented RNA viruses with a prototypical replication cycle that consists of 

viral attachment, endocytosis, and the release of viral RNP in the cytoplasm followed by its 

nuclear import, where it undergoes transcription and replication. Afterwards, newly formed viral 

RNPs are exported to the cytoplasm for the assembly of new viral particles (Dou et al. 2018). 

Several studies revealed that the nuclear export of influenza’s viral RNPs is accomplished by an 

NES-containing nuclear export viral protein (NEP) that utilizes CRM1-depedent pathway. CRM1-

depedent export of viral RNP to the assembly site is a very critical step in the viral replication 

cycle and therefore is conserved in influenza strains A, B, and C (Elton et al. 2001; Paragas et al. 

2001). The blockage of CRM1 mediated export of viral RNP results in their nuclear retention 
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which lead to reduced viral replication (Chutiwitoonchai et al. 2017; Perwitasari et al. 2014; 

Watanabe et al. 2001).  

In addition to HIV and influenza, CRM1 is a critical factor in several other viral infections including 

human T-cell leukemia virus type-1, respiratory syncytial virus, dengue virus, rabies virus, and 

human cytomegalovirus. Inhibiting CRM1-mediated export has been correlated with improved 

antiviral host immune responses, reduced infectivity, and incomplete viral assembly (reviewed in  

(Mathew and Ghildyal 2017)). 

1.5 Inhibition of CRM1-mediated nuclear export 

The significant role of CRM1 in the development of cancer and viral diseases as well as its 

interference with cancer treatment rendered it a particularly interesting target for therapeutic 

intervention in diverse cancer types and viral diseases. Initial investigations in several cancer 

researchers revealed that inhibiting CRM1 counteracts the subcellular mislocalization of several 

(including previously mentioned) oncoproteins and tumor suppressor proteins, suggesting that 

CRM1 inhibition can represent a valid strategy for cancer treatment (Dickmanns et al. 2015; Hill 

et al. 2014; Sun et al. 2016). For example, in several cancers CRM1 inhibition was shown to 

significantly increase p27KIP levels and decreases the cytoplasmic levels of its oncogenic variant 

(serine 10- phosphorylated p27KIP); this was correlated with reduced tumor size and reduced 

tumor cell proliferation (Azmi et al. 2013; Zheng et al. 2014). Furthermore, subsequent 

experiments revealed that blocking CRM1-mediated export of topoisomerase IIα sensitizes 

multiple myeloma cells to doxorubicin and etoposide, suggesting CRM1 is a valid and significant 

target in combination therapy (Turner et al. 2009, 2013).  Over the last two decades several 

natural and synthetic compounds were discovered or developed for the inhibition of CRM1-

mediated nuclear export. While most of these compounds were only tested in vitro or in mice, 

some have undergone further development as potential anti-tumor drugs and are already being 

evaluated in clinical trials (Mathew and Ghildyal 2017; Sendino, Omaetxebarria, and Rodríguez 

2018). The underlying mechanism of nuclear export inhibition by all known compounds is based 

on the interference of CRM1-cargo interaction by the direct blockage of the NES-binding cleft 

(Sun et al. 2016). This section summarizes the most characterized and studied CRM1 inhibitors. 

A structural perspective on CRM1 inhibition will be described in the next chapter.  
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Table 1: CRM1-targeting nuclear export inhibitors. 

Inhibitor Source Structure References 

 

Leptomycin B 

 

Streptomyces 

 

(Kudo et al. 

1999; Sun et 

al. 2013) 

Anguinomycin A Streptomyces 

 

(Bonazzi et 

al. 2010; Sun 

et al. 2013) 

 

Ratjadone A 

 

Sorangium 

cellulosum 

 

(Köster et al. 

2003; Sun et 

al. 2013) 

 

KOS 2464 

 

Semi 

synthetic 

 

(Mutka et al. 

2009; Turner 

et al. 2012) 

 

Valtrate 

 

Valeriana 

fauriei  

 

(Tamura et 

al. 2010) 

Curcumin Curcuma 

longa 

  

(Niu et al. 

2013) 
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Table 1: continued  

Inhibitor Source Structure References 

Piperlongumine Piper longum 

 

(Niu et al. 

2015) 

 

CBS9106 

 

Synthetic  

 

(Sakakibara 

et al. 2011) 

 

PKF050-638 

 

Synthetic 

 

(Daelemans 

et al. 2002) 

 

 

KPT185 

 

 

Synthetic 

 

(Azmi et al. 

2013; Zhang 

et al. 2013) 

 

 

KPT251 

 

 

Synthetic 

 

(J. Etchin et 

al. 2013; 

Inoue et al. 

2013) 
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Table 1: continued  

Inhibitor Source Structure References 

 

 

 

KPT276 

 

 

 

Synthetic 

 

(Schmidt et 

al. 2013; 

Zhang et al. 

2013) 

 

 

KPT330 

(Selinexor) 

 

 

Synthetic 

 

(Conforti et 

al. 2015; 

Julia Etchin 

et al. 2013; 

Syed 2019; 

Zheng et al. 

2014) 

 

 

KPT8602 

 

 

Synthetic 

 

(Hing et al. 

2016) 
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Leptomycin B 

Leptomycin B (LMB; also known as elactocin, mantuamycin, and NSC 364372) is a naturally 

produced compound by Streptomyces bacteria species and it is the first identified specific 

inhibitor of nuclear export (Hamamoto et al. 1983; Hamamoto, Uozumi, and Beppu 1985). It 

consists of an unsaturated, branched polyketide chain with a terminal α, β-unsaturated d-lactone 

ring (Table 1). Initially LMB was discovered as an antifungal agent (Hamamoto et al. 1985). 

Nevertheless, it was found that it possesses an anti-tumor activity with a high potency against 

several experimental tumors including leukemia and lung carcinoma (Leopold et al. 1984; Roberts 

et al. 1986). A decade later, CRM1 was identified as the cellular target of LMB (Kudo et al. 1998; 

Nishi et al. 1994). Subsequent investigation in the Schizosaccharomyces pombe revealed that 

LMB covalently binds CRM1 at a specific cysteine residue (Cys529; equivalent to Cys528 in 

human) that is localized in the NES-binding cleft (Kudo et al. 1999). Recent structural analysis of 

LMB bound to genetically modified (Thr539Cys) CRM1 from Saccharomyces cerevisiae elucidated 

its conjunction mechanism by Michael-type addition (Sun et al. 2013). The reactivity of CRM1 

towards LMB results in the hydrolysis of its lactone ring and its covalent bonding with the sulfur 

atom of the reactive cysteine. The stabilization of the hydrolyzed lactone ring by surrounding 

positively charged residues (mainly lysin and arginine) renders the binding irreversible (Sun et al. 

2013).  

 

Figure 8: Covalent conjugation of Leptomycin B lactone ring with CRM1 reactive cysteine residue. 

The conjugation is mediated by Michael addition reaction and followed by the subsequent 

hydrolysis of the lactone ring. The positions of α-protons of the Michael reaction sites are indicated 

by asterisks. 

LMB demonstrated high potency an effective cell death against multiple cancer cell types in vitro. 

However, when it was tested clinically in a phase I trial it exhibited severe dose-limiting toxicities, 

including anorexia and malaise (Newlands, Rustin, and Brampton 1996). The toxicity of LMB 

triggered a persistent search and development for alternative CRM1-targeting compounds that 

could bind CRM1 in a similar fashion to LMB but display less toxicity and higher efficacy. To date, 

most CRM1 inhibitors function either by the permanent or the reversible modification of the 
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reactive cysteine and thereby prevent the binding of the cargo’s NES and subsequent formation 

of a stable export complex (Sun et al. 2016).  

LMB analogs: Ratjadone and Anguinomycins 

Ratjadones A, B, C, and D are natural compounds with antifungal properties that are isolated 

from multiple strains of myxobacterium Sorangium cellulosum (Kalesse et al. 2001). Treatments 

with Ratjadone compounds at very low concentrations were shown to inhibit cell growth and 

proliferation in yeast, HeLa cells, and in different tumor cell lines (Burzlaff et al. 2003). 

Subsequent cell cycle analysis showed that Ratjadone compounds induce cell cycle arrest in the 

G1 phase (Burzlaff et al. 2003). Soon later it was revealed that Ratjadone A and the analogs B, C, 

and D inhibit nuclear export by binding to CRM1 in the picomolar range, which was also 

correlated with an increased size of cells nuclei (Köster et al. 2003). Recent studies demonstrated 

that Ratjadone treatment in human multiple myeloma cells rendered them more sensitive to 

topoisomerase IIα inhibitors like doxorubicin and etoposide (Turner et al. 2009, 2012). 

Furthermore, Ratjadone was shown to inhibit HIV infection in vitro in a concentration dependent 

fashion with an EC50 in the nanomolar range (Fleta-Soriano et al. 2014).  

Anguinomycins are natural compounds that demonstrate an anti-tumor activity with high 

potency. Similar to LMB, they are isolated from Streptomyces species (Hayakawa et al. 1995). 

These compounds were shown to possess a selective cytotoxicity against transformed cells, 

which is thought to be based on the interference with the tumor suppressor Rb (Hayakawa et al. 

1995). Anguinomycins block nuclear export by inhibiting CRM1 in the nanomolar range. It was 

shown that an Anguinomycin analog with a truncated polyketide chain can maintain an inhibitory 

activity at concentrations above 25 nM. This inhibitory activity of the shortened Anguinomycin 

led to the identification Goniothalamin (a related natural compound) as another inhibitor of 

nuclear export (Bonazzi et al. 2010).  

Ratjadones and Anguinomycins demonstrate high structural similarity to LMB (Table 1) as these 

compounds have polyketide chain with a terminal lactone ring. Structural characterization of 

Ratjadone A and Anguinomycin A bound to CRM1 showed that both compounds covalently bind 

CRM1 through the reactive cysteine in an identical mechanism to LMB (Sun et al. 2013). Due to 

their high toxicity these compounds were not tested in vivo (Turner et al. 2012).  
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Other natural CRM1 inhibitors 

Over the last decade several compound from plant origin were identified as nuclear export 

inhibitors. This includes the compounds Valtrate and Acetoxychavicol acetate isolated 

from Valeriana fauriei and Alpinia galangal respectively (Tamura et al. 2010; Ye and Li 2006). 

These compounds were shown to inhibit CRM1 mediated nuclear export of HIV-Rev protein and 

influenza viral RNP. Both Valtrate and Acetoxychavicol acetate bind human CRM1 covalently 

through Cys528 (Murakami et al. 2002; Tamura et al. 2009). Curcumin is another natural 

compound that demonstrated inhibitory activity of nuclear export. It is an ancient spice that is 

isolated from the plant Curcuma longa and widely used in traditional medicine (Aggarwal et al. 

2007). CRM1 was identified as a cellular target that directly interact with Curcumin. It was shown 

that Curcumin treatment triggers the nuclear retention of FOXO1 and induce the upregulation of 

p73 and p27 expression in HeLa cells (Niu et al. 2013). Another example is piperlongumine, which 

is a natural alkaloid isolated from Piper longum.  Piperlongumine exhibited anti-tumor activities 

and it was shown to covalently bind CRM1 through the Cys528 in a similar fashion to LMB 

(Bezerra et al. 2013; Niu et al. 2015). In general, CRM1 inhibitors from plant origin demonstrate 

a weak binding and display mild anti-tumor activity (Sun et al. 2016).  

Synthetic analog of LMB: KOS 2464  

KOS 2464 is a semi-synthetic LMB derivative (Table 1); it is the best studies compound in a series 

that was designed to sustain improved therapeutic windows with reduced toxicity compared to 

LMB. Several experiments in vitro and in vivo showed that KOS 2464 treatment demonstrate less 

off-target toxicity, yet it retains a comparable potency to LMB (Mutka et al. 2009). It was shown 

that KOS 2464 induces apoptosis in several p53 wild type cancer models, while in normal lung 

fibroblasts it causes cell cycle arrest but does not trigger apoptosis. In vivo experiments in mice 

showed that KOS 2464 can be tolerated at concentration 16-folds higher than LMB, which further 

confirmed its reduced toxicity (Mutka et al. 2009). Further studies showed that KOS 2464 

treatment increased the sensitivity of drug-resistant high-density myeloma cells to 

topoisomerase inhibitor doxorubicin (Turner et al. 2012). Experimental observations on LMB 

derivatives provided a proof of concept that CRM1-mediated nuclear export can be inhibited with 

manageable toxicities in vivo (Hill et al. 2014).  

CBS9106 

CBS9106 (SL-801) is an orally active synthetic small molecule that exhibits a reversible inhibition 

of CRM1-mediated nuclear export (Sakakibara et al. 2011). CBS9106 was demonstrated to 
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induced cell cycle arrest and apoptosis in vivo and in vitro models of several cancers including 

bladder, colon, breast, prostate, lung, pancreatic, kidney and skin cancer. CBS9106 treatment 

was associated with decreased levels of cellular CRM1. Further analysis revealed that CBS9106 

binding to CRM1 triggers its proteasomal degradation. Oral administration of CBS9106 resulted 

in a significant decrease in tumor growth as well as a prolonged survival in tumor-bearing mice. 

This rendered CBS9106 a promising clinical candidate (Chen, Brooks, McDonald, Schwartz, 

Schneider, et al. 2015; Saito et al. 2014; Sakakibara et al. 2011). CBS9106 was already tested in 

preclinical trials and currently is being tested in a phase 1 clinical trials (Chen, Brooks, McDonald, 

Schwartz, Sakakibara, et al. 2015) (clinicaltrials.gov Anon n.d.). Experimental analysis by pulldown 

assays revealed that CBS9106 binds directly to wild type CRM1 but cannot bind to a Cys528 

(Cys528Ser) mutant which confirmed its binding is mediated by the reactive cysteine residue 

(Sakakibara et al. 2011). Nevertheless, the exact mechanism of its reversible binding remains to 

be elucidated.   

N-azolylacrylates analogs  

PKF050-638, an analog of N-azolylacrylate (Table 1), was developed in a study by Daelemans et 

al (Daelemans et al. 2002). PKF050-638 was shown to inhibit CRM1-depedent nuclear export of 

HIV-Rev protein (Daelemans et al. 2002). Its interaction with CRM1 was reported to be reversible 

and highly specific. Similar to LMB, PKF050-638 inhibitory mechanism is dependent on the 

blocking of the NES-binding cleft by the covalent modification of the reactive cysteine. 

Interestingly, a trans-enantiomer of PKF050-638 (PKF050-637) was observed to be completely 

inactive, which indicates that PKF050-638 exhibit strict molecular structural requirements 

(Daelemans et al. 2002). 

Selective inhibitors of nuclear export (SINEs)  

Selective inhibitors of nuclear export (SINEs) are a novel class of nuclear export inhibitors that 

were developed based on a structure-assisted computational methodology known as consensus 

Induced Fit Docking (cFID) (Kalid et al. 2012). SINEs series comprise several compounds that 

exhibit slowly reversible binding towards CRM1 including the compounds: KPT127, KPT185, 

KPT205, KPT227, KPT249, KPT251, KPT330 (Selinexor) KPT335 (Verdinexor), and KPT8602 ( a 

second generation SINE compound) reviewed in (Sendino et al. 2018).  At a structural level, SINE 

compounds are small molecules with an average molecular weight around 350 Da. They generally 

share a trifluoromethyl phenyl triazole scaffold with different Michael addition acceptor side 

chains that enables their covalent binding to the reactive cysteine (G. Gravina et al. 2014; Inoue 
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et al. 2013; Lapalombella et al. 2012; Sendino et al. 2018; Sun et al. 2016; Zhang et al. 2013). Four 

of SINE compounds (KPT185, KPT251, KPT276, and KPT8602) (Table 1) were crystalized with 

T539C variant of ScCRM1. The crystal structures revealed that, unlike the lactone ring of LMB, the 

Michael addition acceptor side chains of SINE compounds are not hydrolyzed upon reactivity 

which rendered their binding reversable (J. Etchin et al. 2013; Haines et al. 2015; Hing et al. 2016; 

Lapalombella et al. 2012). 

Several SINEs have been intensively evaluated in preclinical models of several hematological 

malignancies and solid tumors. The in vivo and in vitro preformed studies revealed that CRM1 

inhibition by SINEs result in the nuclear retention and activation of several tumor suppressor 

proteins including IκB, Survivin, p53, NPMc mutant, p27, and FOXO proteins. This was correlated 

with cell cycle arrest induction, significant reduction of tumor growth and increased apoptosis in 

several cancer cells with only minor toxicity in normal cells (reviewed in (Sendino et al. 2018; 

Wang and Liu 2019)). Furthermore, several SINE compounds and most prominently Selinexor 

were observed to increase cells sensitivity towards multiple drugs used in cancer treatment such 

as bortezomib and carfilzomib (proteasome inhibitors) as well as doxorubicin (Conforti et al. 

2015; Gandhi et al. 2018; G. L. Gravina et al. 2014; Senapedis, Baloglu, and Landesman 2014; Tan 

et al. 2014) . SINE compounds, in particular Selinexor and Verdinexor, have been evaluated in 

over 60 clinical trials in phases I and II. Early phase clinical trials revealed that although SINE 

compounds can be well tolerated, they don’t exhibit adequate potency when used as single agent 

during clinical evaluation. On the other hand, SINE compounds when used in combination with 

existing drugs have shown a synergetic effect in several malignancies (summarized in (Sendino et 

al. 2018; Syed 2019; Wang and Liu 2019)). Currently Selinexor is being evaluated in mid and late 

phase clinical trials in combination with approved therapies like bortezomib and dexamethasone 

and in several cancers including multiple myeloma, liposarcoma, and in endometrial cancer 

(Wang and Liu 2019). Very recently, Selinexor received an accelerated approval in the USA for 

the treatment of adult patients with relapsed or refractory multiple myeloma when taken in a 

combination with dexamethasone (Syed 2019).  

The approval of Selinexor for the treatment of multiple myeloma further demonstrates the 

importance of CRM1 as a clinical target. It furthermore indicates the significant progress in the 

development of CRM1 targeting anti-tumor drugs. However, despite its accelerated approval, 

Selinexor still exhibit dose-limiting gastrointestinal toxicities (Garzon et al. 2017; Wang and Liu 

2019). In addition, Selinexor has been only approved for heavily treated patients who have 

received at least four prior multiple myeloma therapies and whose disease is refractory to at 
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least two proteasome inhibitors, at least two immunomodulatory agents, and an antiCD38 

monoclonal antibody (Syed 2019). Which altogether indicate that further developments of anti-

tumor drugs as well as a better understanding of CRM1-inhibitors interactions are still necessarily 

required to obtain CRM1 targeting drugs with higher efficacy and lower toxicity.  

1.6 Aim of this work  

Over the past two decades, several natural and synthetic compounds were discovered or 

designed for targeting CRM1 as potential anti-tumor and anti-viral drugs. Structural 

characterization of CRM1-inhibitor complexes has been a fundamental platform that defined the 

molecular bases of CRM1 inhibition. Furthermore, computational and experimental structural 

methods have been used as a powerful tool for the development and optimization of CRM1 

targeting compounds. The preformed biochemical and structural analysis of previously studied 

CRM1-targeting compounds revealed their common mechanism of action of by the covalent 

modification of a reactive cysteine residue that is located in the NES-binding cleft. To this date, 

all structures available of CRM1-inihibtor complexes retain yeast CRM1 from Saccharomyces 

cerevisiae that was genetically modified to incorporate the reactive cysteine (J. Etchin et al. 2013; 

Haines et al. 2015; Hing et al. 2016; Kalid et al. 2012; Lapalombella et al. 2012; Sun et al. 2013). 

Therefore, this work aim is to obtain structural information on inhibitors bound to human CRM1, 

the actual target for drug development. Furthermore, this study focusses on the biochemical and 

structural characterization of four novel nuclear export inhibitor candidates: compounds C3, C6, 

C10, and the compound DP2392-E10 (Table 2) (will be introduced in detail in following chapters). 

The compounds C3, C6 and C10 were chosen for this study due to their variable chemical 

composition and complexity (Table 2) which suggest they possess different mechanisms of action 

(Fetz et al. 2009). While DP2392E10 was chosen as it was predicted to bind outside the NES-

binding cleft in the region around HEAT repeats 9 and 10, which may introduce a novel alternative 

mechanism of CRM1 inhibition (Chutiwitoonchai et al. 2017; Kakisaka, Mano, and Aida 2016).  

Here we apply biochemical methods and combine integrative experimental and computational 

structural approaches to elucidate the mechanism of action of these compounds towards human 

CRM1. The outcome of this study would provide a better understanding of human CRM1 

inhibition at a molecular level and would provide a new aspect on CRM1 inhibition by alternative 

mechanisms of action.  
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Table 2: Novel nuclear export inhibitors examined in this study. 

Inhibitor Structure Chemical 

Formula 

Molecular 

Weight (Da) 

References 

 

C3 

 

 

C19H16F7N3O2S 

 

483.40 

(Fetz et al. 2009) 

 

C6 

 

 

C20H21ClN2O6S 

 

453 

(Fetz et al. 2009) 

C10 

 

C6H5NOS2 171.2 (Fetz et al. 2009) 

 

 

 

DP2392-

E10 
 

 

C14H10N4O6 

 

330.3 

(Chutiwitoonchai 

et al. 2017; 

Kakisaka et al. 

2016) 

 

 

 

 

 

 

 



 Characterization of inhibition reveals distinctive properties for human and Saccharomyces cerevisiae 
CRM1 

32 
  

 

This manuscript was submitted to the Journal of Medicinal Chemistry and is 
currently under review 

 

Chapter 2: Characterization of inhibition reveals 

distinctive properties for human and Saccharomyces 

cerevisiae CRM1 

 

Alaa Shaikhqasem, Achim Dickmanns, Piotr Neumann and Ralf Ficner* 

Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, 
Georg-August-University Göttingen, 37077 Göttingen, Germany 

Keywords: Nuclear transport, exportin 1, cancer, drugs, inhibitor, viral diseases  

Abstract  

CRM1 (chromosome region maintenance 1) is a major nuclear export receptor that has been 

identified as nuclear export factor for many tumor suppressor proteins as well as viral RNA and 

ribonucleoproteins (RNPs). This renders CRM1 a particularly interesting target for therapeutic 

intervention in diverse cancer types and viral diseases. Structural studies of Saccharomyces 

cerevisiae CRM1 (ScCRM1) bound to different inhibitors defined the molecular basis for CRM1 

inhibition. Nevertheless, to date there is no structural information available for inhibitors bound 

to human CRM1 (HsCRM1), the actual target for drug development. Here, we present the crystal 

structure of the natural nuclear export inhibitor Leptomycin B (LMB) bound to human CRM1- 

RanGTP complex. Moreover, we demonstrate the differences in binding affinities between 

ScCRM1 and HsCRM1 towards the Nuclear Export Signal peptide from Protein Kinase A Inhibitor 

(PKI-NES) as well as several potential CRM1 inhibitors. Our data show that despite the high 

sequence conservation and structural similarity in the NES-binding cleft region, ScCRM1 exhibits 

16-fold lower binding affinity than HsCRM1 towards PKI-NES. Furthermore, in contrast to HsCRM1, 

our competition assay revealed that changing Thr539 to cysteine in ScCRM1 did not result in 

binding of some of the inhibitors. Taken together, our data indicate the importance of using 

HsCRM1 for molecular analysis and development of novel anti-tumor and anti-viral drugs.  
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2.1 Introduction 

Nucleocytoplasmic transport is a fundamental process in all eukaryotes and its essential for 

maintaining the intracellular distribution of various signaling molecules, transcription factors and 

cell cycle regulators [1]–[4]. The transport of molecules between the cytoplasm and the nucleus 

takes place through the nuclear pore complexes (NPCs). While small molecules can passively 

transverse the NPCs, the transport of molecules larger than 40 kDa is mediated via transport 

receptors belonging to the importin-β super family termed importins and exportins [5]–[7]. CRM1 

(chromosome region maintenance 1) is the major export receptor that mediates the nuclear 

export of a wide range of proteins and ribonucleoprotein complexes in conjunction with a small 

GTPase in its GTP bound form (RanGTP) [8], [9]. Interestingly, CRM1 has been identified as 

nuclear export factor for many tumor suppressor proteins such as Rb, APC, p53, p21 and p27 as 

well as established cancer drug targets like topoisomerase II α and BCR-ABL [10]–[12]. In addition, 

elevated CRM1 expression has been observed in ovarian and cervical cancer cells and it is 

correlated with poor overall survival in several cancer types [13]. Furthermore, CRM1 mediates 

the nuclear export of a wide range of viral RNA and ribonucleoproteins (vRNP) and therefore has 

a key role in multiple viral diseases including influenza, HIV-1, and human T-cell leukemia virus 

type-1 [14]–[16]. This renders CRM1 a particularly interesting target for therapeutic intervention 

in diverse cancer types and viral diseases [17], [18]. 

On a structural level CRM1 consists of 21 HEAT repeats and thus retains a common structural 

feature of transport receptors belonging to the importin-β super family [8]. CRM1 mechanism of 

transport relies on the recognition of the cargo proteins through their leucin-rich nuclear export 

signals (NESs), which are consensus sequences that comprise 4-5 key hydrophobic residues (Φ0- 

Φ4) with characteristic spacings. The NES binds CRM1 in a hydrophobic cleft located at the outer 

convex surface of CRM1 between HEAT repeats 11 and 12 (NES-binding cleft). The cleft contains 

5 hydrophobic pockets responsible for the specific binding of the hydrophobic side chains of the 

NES key residues [19]–[22]. Leptomycin B (LMB), a classical and well-studied CRM1 inhibitor, 

interferes with the NES binding by blocking the NES-binding cleft through an irreversible covalent 

conjugation with the reactive cysteine residue Cys528 in human CRM1 (HsCRM1) (corresponds to 

Cys529 in Schizosaccharomyces pombe CRM1) [23]–[25]. Clinical tests revealed a dose-limiting 

toxicity of LMB and severe side effects [26]. This induced a continuous search and development 

of alternative compounds lacking those side effects with the focus of finding CRM1 inhibitors 

which could be used as anti-tumor and anti-viral drug candidates [27]–[34]. A prominent example 

is the development of a class of CRM1 inhibitors referred to as selective inhibitors of nuclear 
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export (SINEs), which were designed to bind CRM1 in the NES-binding cleft through the reactive 

cysteine [35], [36]. Unlike LMB the SINE compounds exhibited slowly reversible covalent binding, 

which rendered them significantly less toxic and more promising than LMB [37]. Recently, the 

SINE compound KPT330 (Selinexor) was approved in the USA for the treatment of adult patients 

with relapsed or refractory multiple myeloma when taken in a combination with dexamethasone 

[38]. This pronounced progress in the development of CRM1 inhibitors further emphasizes its 

significance as a clinical target.   

Structural analysis of several inhibitors bound to CRM1 defined the molecular basis of CRM1 

inhibition and it became an essential platform for designing and optimizing potential CRM1-

targeting drugs [36], [39]–[43][44]. These crystallographic studies on CRM1-inhibitor complexes 

were carried out using Saccharomyces cerevisiae CRM1 (ScCRM1) in a complex with Ran and 

RanBP1, despite its 47% sequence identity with HsCRM1 [45]. Utilization of ScCRM1 for structural 

analysis required an exchange of Thr539 to cysteine, which is the corresponding residue Cys528 

in HsCRM1 known to be necessary for binding of the studied inhibitors [36], [39]–[42]. 

Consequently, there is no structural information available for inhibitors bound to HsCRM1 to date. 

In order to fill this gap data and to structurally explain differences in inhibitors binding between 

HsCRM1 and ScCRM1, we have determined the crystal structure of LMB bound to HsCRM1-RanGTP 

complex. We have also performed a biochemical characterization of potential CRM1 inhibitors: 

compounds C3, C6 and C10 [46] as well as the compound DP2392-E10 [47]. Using fluorescence 

polarization (FP) binding/competition assay we could show differences in binding affinities of NES 

from protein kinase A inhibitor (PKI) as well as the compounds C3 and C6 when bound to HsCRM1 

and ScCRM1. Our data show that despite the high structural similarity of HsCRM1 and ScCRM1 NES-

binding clefts, they exhibit different binding properties towards PKI-NES and the compounds C3 

and C6. 

Our study demonstrates the importance of using HsCRM1 for structural characterization of drug 

candidates as well as the accurate determination of their binding potency.  

2.2 Materials and Methods 

2.2.1 Plasmid construction 

The sequence encoding the full-length human CRM11-1071 was codon optimized and synthesized 

for expression in Escherichia coli (E. coli) using the GeneArt platform (ThermoFisher). The codon 

optimized sequence was cloned into pET21a vector (Novagen) as an N-terminal T7-tagged and C-
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terminal His6-tagged fusion protein using BamHI and XhoI restriction sites. Truncated versions of 

CRM1 with the C-terminal Helix (Δ1037-1071), the acidic loop mutations (430VLV432 to AAA), and 

C528S mutant were obtained via site directed mutagenesis and verified by sequencing. The CRM1 

gene from Saccharomyces cerevisiae was amplified by polymerase chain reaction from a total 

DNA preparation. The amplified DNA product was cloned into pET21a vector (Novagen) using the 

restriction sites BamHI and XhoI. T539C mutation was introduced via site directed mutagenesis 

on the wild type plasmid and confirmed by sequencing. 

2.2.2 Protein expression and purification 

Wild type and CRM1 mutants from human and yeast were expressed in E. coli BL21- (DE3) cells 

in 2YT medium supplemented with ampicillin. Expression cultures were incubated at 37°C until 

the optical density (OD600) reached 0.3. The cultures were then further incubated at 18°C. Protein 

expression was induced by adding Isopropyl β-D1-thiogalactopyranoside (IPTG) to 0.1 mM when 

the OD600 reached 0.6. After 18 hours the cells were harvested, and the pellets were frozen in 

liquid nitrogen and stored at -80 °C until further use. For lysis, cells were resuspended in HisTrap 

loading buffer (50 mM HEPES pH 7.5, 500 mM NaCl, 30 mM imidazole, 2 mM MgCl2, 10% glycerol, 

4 mM 2-mercaptoethanol) supplemented with protease inhibitor cOmplete ULTRA Tablets (1 

tablet / 50 ml) (Roche). Cells were lysed by running the suspension for 7 cycles in a microfluidizer 

(Microfluidics). The resulting lysate was cleared by centrifugation for 30 min at 50,000 xg at 4 °C. 

Ni2+-chelate affinity chromatography was performed by applying the cleared lysate to a HisTrap 

FF column (GE Healthcare) pre-equilibrated in HisTrap loading buffer. Immobilized protein was 

eluted in HisTrap loading buffer containing 400 mM imidazole. Remaining impurities were 

removed via anion exchange chromatography after desalting the sample by dialysis in dialysis 

buffer (50 mM HEPES pH 7.5, 50 mM NaCl, 2 mM MgCl2, 5% glycerol, 4 mM 2-mercaptoethanol). 

The sample was loaded on a Source 30Q anion exchange chromatography column (GE 

Healthcare) pre-equilibrated in Source 30Q low salt buffer (50 mM HEPES pH 7.8, 50 mM NaCl, 2 

mM MgCl2, 6 mM 2-mercaptoethanol). Elution was performed in 0 – 70% gradient of Source 30Q 

high salt buffer (50 mM HEPES pH 7.8, 400 mM NaCl, 2 mM MgCl2, 6 mM 2-mercaptoethanol) 

over 30 column volumes. Fractions containing CRM1 were pooled, concentrated using 50000 

MWCO centrifugal concentrator (Merck Millipore) and used for crystallization and biochemical 

assays.   

For pull down assay full length human CRM1_MBP fusion protein was expressed from the plasmid 

pQE60 as C-terminal His6-tagged. The MBP fusion protein was recombinantly expressed in E. coli 
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SG13009 cells grown in 2YT medium supplemented with ampicillin and kanamycin. Protein 

expression was induced by adding 0.1 mM IPTG when the OD600 reached 1.2 at 18 °C. Cells were 

harvested 18 hours after induction and the pellets were frozen in liquid nitrogen and stored at -

80 °C. CRM1_MBP was purified by Ni2+-chelate affinity chromatography and anion exchange 

chromatography using the same protocol as described above except for the buffers content of 

12 mM 2-mercaptoethanol. On top of that CRM1_MBP-containing eluate from Source 30Q 

column was further purified by gel filtration on a Superdex 200 column (GE Healthcare) pre-

equilibrated in gel filtration buffer (50 mM HEPES pH 7.5, 50 mM NaCl, 2 mM MgCl2, 12 mM 2-

mercaptoethanol, 10% Glycerol).  

Human SPN11-360 was expressed as previously described [48] and purified as described in [49]. 

Expression and purification of human RanGTP1-180, Q69L [49] was performed as described in [50]. 

2.2.3 Preparation and crystallization of HsCRM1-HsRanGTP-LMB complex 

For crystallization purpose a HEAT 9 loop mutant (430VLV432 to AAA) of the C-terminally truncated 

(α-helix; Δ1037-1071) HsCRM1 was used. The complex was prepared by mixing HsCRM1Δ1037-1071, 

430VLV432 to AAA with HsRanGTP1-180, Q69L at a 1:1 molar ratio, LMB was then added to the protein 

mixture at a 1:2 molar ratio and the mixture was incubated on ice for an hour. Subsequently, the 

mixture was dialyzed at 4 °C in a buffer containing 50 mM HEPES pH 7.8, 50 mM NaCl, 2 mM 

MgCl2, and 6 mM 2- mercaptoethanol. After dialysis LMB was re-supplemented in a 1:1 molar 

ratio and the sample was further incubated for 1 hour on ice. Before crystallization the sample 

was cleared by centrifugation for 10 min at 20,000 xg and at 4 °C to remove any formed 

precipitate.  

Crystallization trials of the prepared complex were set up using a wide range of sparse matrix 

screens. The screening was carried out using sitting drop vapor diffusion in 96-well 3-drop MRC 

SWISSCI crystallization plates (Molecular Dimensions). The trials yielded crystal clusters or micro 

crystals in multiple conditions. Nonetheless, reasonable size single crystals (110 × 90 × 140 

microns) grew within 3 days at 4°C in the condition Morpheus H10 [51] (10% w/v polyethylene 

glycol 8000, 0.1 M M-buffer pH 8.5, 20% w/v ethylene glycol, 0.02 M M-Amino Acids) mixed in 

equal volume with the complex concentrated to 3 mg/ml. Crystals were cryo-protected by 

soaking them in a reservoir solution supplemented with 5% ethylene glycol, 5% PEG8000, 10% 

glycerol.  

Diffraction images were collected at PETRA III EMBL beamline P14 (DESY, Hamburg, Germany) 

and processed with the XDS package [52]. Data collection and processing statistics are 
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summarized in Table 1. An orthorhombic lattice with unit cell parameters of a = 122.29 Å, b = 

151.33 Å, c = 234.84 Å was determined for the crystals containing HsCRM1-HsRanGTP-LMB 

complex. The cell content analysis indicated the presence of one molecule in the asymmetric unit 

(Vm = 3.7 Å3/Da, corresponding solvent content of 66.7%). 

Table 1: Crystallographic data collection and refinement statistics. 

 HsCRM1-HsRanGTP-LMB 

Crystallographic data  
Beamline Petra III-P14 
Wavelength (Å) 0.9763 
Resolution range (Å)* 127.20 - 3.20 (3.39-3.20) 
Unique reflections 36131  
Redundancy  4.8 (4.9) 
Completeness (%) 99.5 (98.8) 
Space group I 2 2 2 
a, b, c (Å) 122.29, 151.33, 234.84 
α, β, γ (°) 90, 90, 90 
Rmeas (%) 6.5 (101.4) 
I/𝝈 (I) 17.63 (1.96) 
CC1/2 99.9 (74.9) 

Refinement statistics   
Rwork/Rfree  0.21 / 0.24 
No. of atoms 9678 
Average B factor (Å2) 114 

Root mean square deviation  
Bonds (Å) 0.006 
Angles (degree) 0.24 

Ramachandran plot  
Favoured (%) 97.29 
Allowed (%) 2.63 
Outlier (%) 0.08 

PDB code  

 6TVO 
* Values for the data in highest resolution shell are shown in parentheses 

2.2.4 Structure determination and refinement 

The structure was solved by means of molecular replacement using PHASER [53] with the crystal 

structures of the CRM1-RanGTP complex (PDB-ID 3NC1) [22] as the search model. LMB was 

modeled manually in COOT [54]. The structure was improved by iterative cycles of refinement 

and manual rebuilding in PHENIX [55] and COOT respectively. The presence of LMB was verified 

using a Polder omit map [56]. Ramachandran statistics were calculated in COOT. Analysis of the 

protein-ligand interactions including hydrophobic and hydrogen bonding interactions was 
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performed by LigPlot+ [57]. Figures were generated with PyMol (The PyMOL Molecular Graphics 

System, Version 1.8 Schrödinger, LLC). 

2.2.5 Pull-down assay  

0.5 nmol CRM1_MBP fusion protein were immobilized on 50 µL amylose resin (NEB) equilibrated 

in pull-down buffer (20 mM Tris pH 7.5, 150 mM NaCl, 2 mM MgCl2, and 1 mM DTT). The beads 

were incubated with proteins of interest (4 nmol each) and inhibitors of interest (100 nmol each 

except for LMB 20 nmol) in a total volume of 150 µL for 20 min at 22 °C. Afterwards the beads 

were washed three times with 1 ml pull-down buffer each. Bound proteins were eluted in 20 µL 

pull down buffer supplemented with 15 mM maltose. After elution samples were centrifuged for 

10 min at 20,000 xg and at 4 °C. Supernatant was then carefully transferred into clean tube, mixed 

with 2X SDS-PAGE loading dye, and analyzed by SDS-PAGE followed by Coomassie staining. The 

intensity of CRM1 and SPN1 bands were quantified by ImageJ software [58].  

2.2.6 Fluorescence polarization binding assay  

Fluorescence polarization binding assays were applied to measure the binding affinity of CRM1 

wild type and mutants to PKI Φ0Leu NES (LNELALKLAGLDIK) labeled with carboxyfluorescein via 

its C-terminal lysine. PKI Φ0Leu NES is a modified PKI-NES with an additional leucine in the Φ0 

position which results in higher binding affinity to CRM1 compared to the classical PKI NES that 

contains four critical hydrophobic residues (Φ1–Φ4) [22]. Increasing concentrations of CRM1 

were mixed with 40 nM NES in the absence or presence of HsRanGTP1-180, Q69L in molar excess to 

CRM1. The assay was followed in a buffer containing 20 mM Tris-HCl, pH 7.5, 130 mM NaCl, 2 

mM MgCl2, 1 mM DTT, and 0.005% (w/v) digitonin (Sigma-Aldrich). All reactions were performed 

in 150 µL and measured as a set of triplicates. For all measurements an excitation wavelength of 

480 nm was set, and the emission was detected at 530 nm for 500 ms. Measurements were 

performed using VICTOR Nivo Multimode Microplate Reader (PerkinElmer). Dissociation 

constants (Kd) were determined by nonlinear regression using the analysis software OriginPro 

9.1 [59].  

2.2.7 Fluorescence polarization competition assay 

The potency of inhibitors binding to CRM1 wild type and mutants was evaluated using 

fluorescence polarization competition assay. Inhibitors - prepared in a dilution series or added to 

a specific concentration - were mixed with 40 nM fluorescently labeled PKI Φ0Leu NES and 100 

nM CRM1 in a total volume of 150 µL under the same buffer conditions used for fluorescence 
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polarization binding assay. For inhibitor 10, as it exhibited autofluorescence, FP measurements 

of the inhibitor alone were performed in the same buffer conditions and were subtracted from 

the binding measurements. Measurements and data evaluation were performed under the same 

conditions for the fluorescence polarization binding assay. 

2.2.8 PKI Φ0Leu NES and CRM1 inhibitors 

Fluorescently labeled PKI Φ0Leu NES was synthesized by EMC microcollections (Germany). 

DP2392-E10 was synthesized by Ambinter (France). Leptomycin B was supplied by Iris-Biotech 

(Germany). Compound C3 was supplied by ChemDiv (USA). Compound C6 (synthesized by 

ChemBridge Corporation, USA) and compound C10 (synthesized by Chemical Block, Russia) were 

ordered via MolPort.  

2.3 Results and Discussion  

2.3.1 Structure determination of human CRM1-LMB complex 

To get an insight into inhibitor bound-HsCRM1 structure, LMB was chosen as the representative 

compound due to its high binding affinity and stability in aqueous solutions. However, in spite of 

extensive screening, crystallization of the HsCRM1-LMB complex in the absence or presence of 

RanGTP failed to yield crystals, most likely due to conformational flexibility of wild type HsCRM1 

[60]. Previous studies have shown that CRM1 samples in solution between two extreme 

conformations: a superhelical extended and pitched conformation as well as a compact toroid-

like conformation [8], [61]. The compact conformation is characterized by the opening of the 

NES-binding cleft and therefore displays enhanced NES/inhibitor binding affinity. The observed 

conformational transition of CRM1 as well as the state of the NES-binding cleft are mainly 

regulated by two structural elements: the C-terminal Helix and the HEAT9 loop (acidic loop). The 

extended conformation is stabilized by the C-terminal helix bridging the central opening of CRM1 

and interacting with HEAT repeats forming the NES-binding cleft. Moreover, in this CRM1 

conformation the acidic loop (specifically residues Val441, Leu442, and Val443 of ScCRM1 which 

correspond to Val430, Leu431, and Val432 of HsCRM1) is found in the so-called “flipped back” 

position causing it to pack against the back of the NES-binding cleft which adopts a closed 

conformation that is not accessible by NES or inhibitors [60]–[62]. In order to shift the HsCRM1 

conformational equilibrium towards the compact conformation facilitating binding of LMB, we 

truncated the C-terminal helix (Δ1037-1071) and changed the hydrophobic residues 430VLV432 in 

the acidic loop to alanine (AAA). A combination of these mutations has been described to 
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significantly increase Mus musculus CRM1 (MmCRM1) affinity to PKI-NES, indicating for a 

significant shift towards the compact conformation [63]. Using FP binding assays, we could 

observe that synergistic effect of both mutations resulted in an increase of HsCRM1 affinity to PKI 

Φ0Leu NES in the absence of RanGTP (supplementary figure 1). This confirms a similar effect of 

the acidic loop and the C-terminal helix on NES binding in HsCRM1 as in MmCRM1. Consequently, 
HsCRM1Δ1037-1071, 430VLV432 (HsCRM1Δ) was used to set up crystallization screens which succeeded to 

yield reasonably diffracting single crystals of HsCRM1-HsRanGTP-LMB complex. Although multiple 

mutations were introduced to CRM1, in the presence of RanGTP the HsCRM1Δ mutant and the 

wild type CRM1 demonstrate the same binding affinity (Kd = 35-37 nM) towards PKI-NES 

(supplementary figure 1). This indicates that the obtained complex structure containing RanGTP 

is a representative model for the wild type HsCRM1.  

The complex HsCRM1Δ -HsRanGTP-LMB crystalized in the space group I222. The phase problem 

was solved by means of Molecular Replacement using the MmCRM1-HsRanGTP complex structure 

(PDB code 3NC1) as a search model. The resulting crystal structure of HsCRM1-HsRanGTP-LMB was 

refined at 3.2 Å resolution (Table 1). The complex structure reveals CRM1 adapting the ring-like 

compact conformation (supplementary figure 2A), which is stabilized by the numerous 

interactions between the N- and C- terminal regions. The acidic loop, detached from the back of 

the NES-binding cleft, adopts “seatbelt”-like conformation that secures RanGTP interaction with 

CRM1. The NES-binding cleft located in the hydrophobic cleft between HEAT repeats 11A and 

12A is in an open state that exhibits similar dimensions to the cleft occupied with Snurportin1 

(SPN1) NES (CRM1-SPN1-RanGTP complex, PDB ID: 3GJX). An excess electron density located in 

the cleft clearly resembles the LMB molecule (supplementary figure 2B), a polyketide that 

consists of an unsaturated, branched fatty acid chain with a terminal α, β-unsaturated d-lactone 

ring (Figure 1A). LMB binds to Cys528 via Michael addition reaction, which results in its 

irreversible covalent conjunction of the reactive cysteine and the hydrolysis of its terminal 

lactone ring [42]. While the hydrolyzed lactone ring is anchored by Cys528, the rest of the 

polyketide chain extend towards the lower part of the NES-binding cleft blocking approximately 

70% of its accessible surface (supplementary figure 2B, Figure 1B). A more detailed analysis of 

LMB interactions shows that the hydrolyzed (open) lactone ring is stabilized via polar interactions 

by surrounding positively charged residues including hydrogen bonding with Lys537 and Lys568 

(Figures 1B and 1C). The terminal carboxyl group at the other end of the polyketide chain is 

favored by electrostatic interactions with the amino group of Lys514. Except for the β-hydroxy-

ketone group, the rest of the polyketide chain binds to HsCRM1 via hydrophobic interactions with 
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the surrounding residues Ile521, Lys522, Leu525, and Glu529 of HEAT repeat 11A and residues 

His558, Phe561, Thr564, and Phe572 of HEAT repeat 12A. Furthermore, LMB reaches deeper into 

the NES-binding cleft making hydrophobic contacts with Met545 and Ala541 of HEAT repeat 11B.  

The stabilization of the hydrolyzed α, β-unsaturated lactone in addition to the tight hydrophobic 

interaction along the NES-binding cleft results in a persistent irreversible blockage of CRM1 

mediated nuclear export, which could explain its significant toxicity during its clinical trials [26]. 

 

 

Figure 1: LMB binding in the NES-binding cleft of human CRM1. (A) A chemical drawing of LMB. (B) 

A detailed view of the NES-binding cleft (cartoon representation) showing HEAT repeat helices 11A 

and 12A as well as the amino acids (depicted as sticks) that are involved in LMB binding. The bound 

LMB is shown as a stick model (carbon in yellow, oxygen in red and nitrogen in blue). Hydrogen 

bonds are shown as black dashed lines. (C) Schematic representation of interactions between LMB 

and the NES-binding cleft generated using LigPlot+ [57]. Interatomic distances of presented 

hydrogen bonds are given in Å.  
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2.3.2 Comparison of LMB binding in human CRM1 and Saccharomyces cerevisiae 

CRM1 

Previous structural analysis of LMB-CRM1 interactions was performed using ScCRM1. The yeast 

CRM1 orthologue has been chosen not only because of its high structural similarity to HsCRM1 

and high sequence similarity in the NES-binding cleft region, but also due to known crystallization 

conditions [42]. Comparison of LMB binding in HsCRM1 and ScCRM1 unveils a very similar mode 

of ligand-receptor interaction mediated mainly via 14 amino acids (Figures 2A and 2B). 

Superposition of both CRM1 structures reveals that 12 of these 14 residues exhibit a similar or 

almost identical conformation and mode of interaction with the bound ligand (Figure 2C). 

 

Figure 2: Comparison of LMB binding to HsCRM1 and ScCRM1. LMB interactions with the HsCRM1 

NES-binding cleft are shown in (A) and with the ScCRM1 NES-binding cleft (PDB ID: 4HAT) are shown 

in (B). Binding interactions were examined using LigPlot+. LMB and interacting residues are shown 

as sticks. Hydrogen bonds are presented as black dashed lines. (C) Superposition of HsCRM1-LMB 

and ScCRM1-LMB complexes. Distinctive interacting residues are shaded (light marine in HsCRM1 and 

violet in ScCRM1) and marked with asterisks in (D). (D) Sequence alignment of wild type HsCRM1 and 

T539C ScCRM1 NES-binding clefts. Identical residues are shaded in red. Common LMB interacting 

residues are highlighted in black boxes.  
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In spite of these similarities, the conformation of LMB observed in both proteins is not identical, 

as in HsCRM1 the ligand adopts more extended (by 1.5 Å) conformation than in ScCRM1. In 

addition, the β-hydroxy-ketone moiety exhibits a more twisted conformation when compared to 

ScCRM1-bound LMB (Figure 2C). The observed differences in the LMB conformation are 

associated with slight alterations of the LMB interaction profile in both structures. HsCRM1-bound 

LMB shows two distinct hydrophobic interactions with residues Leu525 and Met545, whereas 

ScCRM1-bound LMB shows hydrophobic interactions with the residues Val529 and Ile555 (Figure 

2C). Sequence alignment of both receptors reveals that these 4 residues are strictly conserved 

(Figure 2D).Recently, the effect of sequence differences of the residues near the reactive cysteine 

has been investigated by mutating the segment 537DLTVK541 of ScCRM1 to GLCEQ to mimic the 

HsCRM1 sequence. The structural analysis revealed that the binding mode of LMB in this modified 

receptor was virtually identical to ScCRM1T539C [42]. This suggests that the observed 

conformational differences of bound LMB between human and yeast CRM1 are most likely 

caused by the lack of sequence conservation either in the remaining part of NES-binding cleft 

and/or surrounding HEAT repeats. Hence, residues which are not involved in direct interactions 

with LMB (Figure 2D) could through allosteric effects alter the biochemical properties of the NES-

binding cleft and in that way influence LMB conformation.  

2.3.3 Human and Saccharomyces cerevisiae CRM1-inhibitor interaction patterns reveal 

high structural and sequence similarities 

Besides LMB, several inhibitors have been structurally characterized in the recent years using the 
ScCRM1T539C-Ran-RanBP1 complex, including the natural inhibitors Anguinomycin A and 

Ratjadone A as well as the synthetic SINE inhibitors KPT185, KPT251, KPT276 and KPT8602. 

Anguinomycin A and Ratjadone A share α, β-unsaturated lactone ring that bind to CRM1 via 

covalent conjunction to Cys539 variant of ScCRM1 (Cys528 in HsCRM1) in a similar mechanism to 

LMB [42]. On the other hand, KPT compounds share a trifluoromethyl phenyl triazole scaffold 

with different Michael addition acceptor side chains that allows their covalent conjugation to the 

reactive cysteine in the NES-binding cleft [36], [39]–[41]. Unlike the LMB-lactone ring the natural 

compounds, the Michael addition acceptor group of SINE-KPT compounds were shown not to 

hydrolyze upon binding to CRM1, which renders these compounds as better candidates for anti-

tumor drug development [37], [64]. In order to get an insight into potential interactions of these 

inhibitors with HsCRM1 we performed a superposition of these complex structures based on NES 

clefts using HsCRM1 as reference (Figures 3A-C). 
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Figure 3:  Structural and sequence comparison of CRM1-inhibitor interactions in human and yeast 

CRM1. Only the helices involved in NES binding are depicted. (A) An alignment of residues 

interacting with inhibitor against sequence alignment of wild type HsCRM1 and T539C ScCRM1 NES-

binding clefs. Inhibitor-CRM1 interactions were analyzed using LigPlot+. Interacting residues with 

each compound were annotated with an asterisk along the sequence alignment of ScCRM1T539C and 

were highlighted according to the mode of interaction (covalent: yellow, hydrogen bonding: cyan, 

hydrophobic: grey). (B) Natural inhibitors binding to CRM1. Detailed view on LMB binding to HsCRM1 

(Hs LMB) and ScCRM1 (Sc LMB) (PDB ID 4HAT). Superpositions of Anguinomycin (PDB ID 4HAV) A and 

Ratjadone A (PDB ID 4HAU) in LMB bound HsCRM1 NES-binding cleft with LMB removed. (C) 

Superposition of synthetic KPT-SINE compounds KPT185 (PDB ID 4GMX), KPT251 (PDB ID 4GPT), 
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KPT8602 (PDB ID 5JLJ), and KPT276 (PDB ID 4WVF) in LMB bound HsCRM1 NES-binding cleft with 

LMB removed. Inhibitors, their interacting residues, and the corresponding residues in human NES-

binding cleft are shown as sticks (light marine in HsCRM1 and violet in ScCRM1) in (B) and (C). (D). 

Blocking of the NES-binding cleft by natural and synthetic KPT-SINE compounds. Surface 

representation of LMB bound human CRM1 NES-binding cleft. (upper) LMB was removed to show 

the respective Φ pockets (Φ0- Φ4) in which NESs are recognized. (middle) LMB is depicted in a 

sphere mode. (lower) KPT251 superpositioned in the in LMB bound HsCRM1 NES-binding cleft with 

LMB removed. Cys528 is colored yellow. 

Comparison of the NES-binding cleft of HsCRM1 with these of ScCRM1 complexes unveiled 

identical or similar positioning of the amino acids directly involved in binding of inhibitor 

molecules. Conserved in sequence (Figure 3A), residues interacting with Anguinomycin A and 

Ratjadone A (Figure 3B) as well as these interacting with SINE-KPT compounds (Figure 3C) 

exhibited high similarity or were identical in terms of side chain position and conformation with 

respect to their corresponding residues in HsCRM1. The only exception with respect to sequence 

conservation is Val540 of ScCRM1 (equivalent to Glu529 in HsCRM1), which is involved in 

hydrophobic interactions with LMB, Anguinomycin A and KPT8602. 

Presented here, alignment of residues interacting with CRM1 inhibitors (Figure 3A) reveals that, 

in addition to Cys539, residues Lys579 (equivalent to Lys568 in HsCRM1), and Phe583 (equivalent 

to Phe572 in HsCRM1) are involved in binding of all structurally characterized inhibitors (Figure 

3A). Lys579 was shown to play a major role in stabilizing the hydrolyzed lactone ring of LMB, 

Anguinomycin A and Ratjadone A upon covalent binding to Cys539 by Michael addition [42]. 

Moreover, its interaction with all structurally characterized KPT-SINE compounds indicates its 

important role in coordinating the compounds upon binding or stabilizing the non-hydrolyzed 

compounds after binding to the reactive cysteine [36], [39]. In contrast, the role of Phe583 in 

inhibitor binding was not investigated up to now by structural studies. Yet, its interaction with all 

structurally characterized inhibitors demonstrates a major role in inhibitor coordination in CRM1. 

Furthermore, the sequence alignment of inhibitor coordinating residues demonstrates the 

differences in CRM1 binding between the natural inhibitors and the SINE-KPT compounds. LMB, 

Anguinomycin A and Ratjadone A molecules interact with HEAT repeats 11A and 12A, and 

partially with HEAT repeat 11B as these compounds are able to deeply penetrate the NES-binding 

cleft. Binding of these inhibitors blocks 60-70% of surface of the NES-binding cleft (Figure 3B) and 

occupies 4 out of 5 hydrophobic pockets (Φ0 - Φ3) in which PKI-NES is known to bind (Figure 3D). 

In contrast, SINE-KPT compounds lack the interaction with the lower part of HEAT repeats 11A 

and HEAT repeat 12A except for KPT185 (Figures 3A and 3C) as their binding is centered around 
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the reactive cysteine. The superposition of KPT251 in the NES-binding cleft of HsCRM1 shows that 

the binding of SINE-KPT compounds blocks 3 hydrophobic pockets (Φ2 – Φ4) leaving Φ0 and Φ1 

as not occupied (Figure 3D).  

2.3.4 Compounds C3, C6 and C10 inhibit CRM1 by direct binding in the NES-binding 

cleft in a Cys528 dependent manner 

In this study we were also aiming to biochemically characterize novel nuclear export inhibiting 

compounds that have potential to be developed into anti-tumor or anti-viral drugs. Previously, a 

biosensor based high-throughput screen using the 17K ChemBioNet library resulted in the 

identification of 11 compounds (C1 - C11) as efficient inducers of nuclear export inhibition [46]. 

Preliminary studies demonstrated these compounds to cause the nuclear accumulation of HIV-1 

Rev-NES when tested in several epithelial cancer cell lines. It was also found that the tested 

compounds act at different rates with an irreversible or reversible mode of inhibition. However, 

the exact molecular mechanisms of the identified inhibitors remained to be elucidated [46].  

Here, we investigated the molecular mechanism of inhibition of three of these by their ability to 

bind to HsCRM1. The ability of the compounds C3, C6, and C10 to dissociate fluorescently labeled 

PKI Φ0Leu NES binding to HsCRM1 was investigated by FP competition assay. All three compounds 

tested were capable to dissociate CRM1 PKI Φ0Leu NES binding in a concentration dependent 

manner (Figure 4A). Compound C6 exhibited the highest binding affinity of the three compounds 

at a half-maximal inhibitory concentration (IC50) of 4.2 µM compared to C10 (IC50 = 40 µM) and 

C3 (IC50 = 59 µM). However, all compounds showed weaker binding than LMB, which exhibits 

strong binding in the nM range (IC50 = 151 nM) (Figure 4A). The obtained data confirm the nuclear 

export inhibition caused by C3, C6, and C10 is by direct binding to CRM1. 

To investigate the impact of Cys528 on binding affinity to the NES-binding cleft of HsCRM1, the FP 

competition assay was performed by adding these three compounds at concentrations around 

their IC50 to a reaction mixture containing wt or HsCRM1 C528S mutant. The ability of C6, C3, and 

C10 to dissociate binding was significantly reduced when Cys528 was changed to serine (Figure 

4B). This does not only confirm their binding in the NES-binding cleft, but additionally proves their 

interaction to be mediated through Cys528. LMB exhibited a weaker binding to HsCRM1 C528S 

variant that is comparable to the binding of C3 and C6 to the wild type protein. This indicates the 

cysteine is not strictly required for LMB binding in the human NES-binding cleft, which is in line 

with similar observation obtained by structural study on LMB binding to T539S ScCRM1 [42].  
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Figure 4:  Biochemical analysis of HsCRM1 inhibitors. (A) Fluorescence polarization competition assay 

was used to test the inhibition of HsCRM1-NES interaction by leptomycin B (LMB), compounds C6, 

C10, C3, and DP2392-E10. Chemical drawings of the tested compounds are illustrated in the 

individual graphs. All tested compounds could dissociate fluorescently labeled PKI Φ0Leu NES 

binding to the NES binding-cleft of HsCRM1 at the indicated binding affinities. (B) FP competition 

assay of wild type (wt) vs C528S HsCRM1. Fluorescence polarization (mP) was measured for each 

compound (200 nM LMB, 6 µM C6, 62 µM C10, 62 µM C3, and 62 µM DP2392-E10) added to assay 

mixture containing wt or C528S HsCRM1. Competitive binding of LMB, C3, C6, and C10 was 

significantly reduced when C528S mutant was used, while the inhibitory activity of DP2392-E10 was 

not significantly affected. Error bars in (A) and (B) illustrate s.d. for three independent 

measurements. (C) The effect of the tested inhibitors on the stability of HsSPN1-CRM1-RanGTP 

export complex by pull-down assays with immobilized HsCRM1-MBP. HsSPN1 binding to immobilized 
HsCRM1-MBP was inhibited by the addition of LMB and weakened by the addition of C6 and DP2392-

E10, but not influenced by the addition of C10 or C3. The band intensities of HsSPN1 and HsCRM1-

MBP were quantified using the ImageJ software [58]. The ratio of HsSPN1 band intensity to HsCRM1-

MBP band intensity at each reaction is displayed as histogram in (D). 
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In addition, we have investigated the capability of these three compounds to dissociate the stable 

Snurportin1 (SPN1) cargo complex (HsCRM1-HsRanGTP-HsSPN1) by pull-down assays. SPN1 has 

been shown to interact with the outer surface of CRM1 via the cap binding domain and the C-

terminal part of the protein, besides its NES, which renders SPN1 exceptionally stable CRM1 cargo 

[8], [49], [65]. The pull-down in the presence of C6 exhibited noticeable decrease in SPN1 binding 

to CRM1 compared to no inhibitor present, but less than LMB that completely abolished SPN1 

binding. Compounds C3 and C10 used at the same concentrations as compound C6 did not show 

a noticeable effect on SPN1 complex stability (Figures 4C and 4D). Increasing concentrations of 

compounds C3 and C10 to the level corresponding to a molar excess assessed based on their 

binding affinities could not be performed as it resulted in precipitation of CRM1. 

The observed competitive inhibition of the tested compounds against PKI Φ0Leu NES and SPN1 

is dependent on the binding properties of both molecules. As a single peptide, PKI Φ0Leu NES 

interaction is mediated only by direct binding in the NES binding cleft while NES-mediated SPN1-

CRM1 complex formation is supported by additional interactions distant to the NES-binding cleft 

which further strengthen the stability of the formed complex. Compounds C3 and C10, which 

exhibited low binding affinities, were able to displace PKI Φ0Leu NES by direct competition when 

added at higher concentrations (Figure 4A). However, the dissociation of a more stable CRM1-

SPN1 complex seems only to be possible with compounds of higher binding affinity like LMB and 

compound C6 (Figures 4C and 4D).   

2.3.5 DP2392-E10 exhibits a unique binding mode that is not dependent on Cys528 

Another compound that we had chosen to study is DP2392-E10. It was identified by a high-

throughput CELAVIEW screening system as a potential inhibitor for the nuclear export of the viral 

nucleoprotein (NP)-NES3 [66]. A later study revealed that DP2392-E10 reduces the replication of 

influenza A virus by interfering with CRM1 mediated transport of the vRNP. Further analysis 

confirmed that this compound binds directly to CRM1 [47]. In addition, DP2392-E10 was 

predicted by in silico studies to interact with CRM1 in a region outside of the NES-binding cleft 

near the HEAT9 and HEAT10 repeats. A total of 45 potential small molecule binding pockets were 

predicted in unliganded CRM1 by molecular modeling and docking simulations. A pocket near 

HEAT repeats 9 and 10 exhibited the highest docking score and therefore was predicted as the 

binding location of DP2392-E10 [47]. Here we investigated the molecular basis of DP2392-E10 

inhibition of HsCRM1 by the FP competition and pull-down assays. The results showed that 

DP2392-E10 can dissociate PKI Φ0Leu NES bound to HsCRM1 in a concentration dependent 
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manner with an IC50 = 63 µM, which is very close to the binding affinity of C3 (IC50 = 59 µM) (Figure 

4A). Further analysis using C528S HsCRM1 revealed that the inhibition potency of DP2392-E10 

was not reduced when Cys528 was changed to serine (Figure 4B). This confirms that binding of 

DP2392-E10 to CRM1 is not mediated via Cys528 and might lie outside of the NES binding cleft 

as predicted in docking studies. 

To strengthen this prediction the ability of DP2392-E10 to dissociate the cargo complex CRM1-

RanGTP-SPN1 was also examined in a pull-down assay as it has been performed for the 

compounds C3, C6, and C10. Although C3 and DP2392-E10 have a similar binding affinity, as 

determined by FP competition assays, only DP2392-E10 was able to reduce SPN1 binding to 

CRM1 to a level comparable to that observed for C6 (Figure 4C and D). This indicates that these 

two compounds (C3 and DP2392-E10) differ in their mechanism of inhibition as binding of 

compound C3 is Cys528 dependent and, despite the similar binding affinity, could not dissociate 

SPN1 binding when added at the same concentration as DP2392-E10. This additionally supports 

the prediction that binding of DP2392-E10 occurs outside of the NES binding cleft. Furthermore, 

predicted binding of DP2392-E10 in the close vicinity of HEAT9 and HEAT10 repeats could 

influence CRM1 cargo affinity and the opening of the NES-binding cleft by modulating the impact 

of acidic loop (supplementary figure 2) for which an auto inhibitory effect on NES binding has 

been reported [62]. In addition, the acidic loop is a key regulator for the conformational transition 

of CRM1 between the extended and the compact conformation which is directly correlated to 

cargo binding affinity [60], [61]. This mechanism renders DP2392-E10 a promising compound for 

developing new classes of CRM1 inhibitors exhibiting different binding mechanism from that of 

LMB and SINE-compounds. Nevertheless, the obtained data can only confirm the unique binding 

properties of DP2392-E10 that is not mediated through Cys528. Still, the exact binding location 

and the chemical mechanism of binding remains to be resolved by future experiments.    

2.3.6 Human and yeast CRM1 reveal different binding affinities towards PKI Φ0Leu 

NES  

The comparison of HsCRM1 and ScCRM1 reveals their high sequence and structural similarity in 

the NES-binding cleft region. This however does not guarantee similar binding affinities of NES or 

inhibitors. Hence, we decided to assess the difference in binding kinetics between HsCRM1 and 

ScCRM1 using fluorescently labeled PKI Φ0Leu NES by FP binding assay (Figure 5A). Wild type 

HsCRM1 exhibited high binding affinity (Kd = 37 nM) towards PKI Φ0Leu NES, while under the 

same conditions wild type ScCRM1 exhibited 16-fold lower binding affinity (Kd = 585 nM). The 
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genetic modification of Thr539 to cysteine lead to a minor increase of the affinity, still 12-fold 

lower than that of HsCRM1 (Figure 5A). Cys528 (Cys539 in modified ScCRM1) is located in the 

vicinity of Φ3 PKI NES binding pocket (Figure 3D) and was shown to be involved in hydrogen-

bonding in NES-CRM1 interaction [22]. Nevertheless, the affinity of ScCRM1T539C mutant, is still 

much lower than that of wild type HsCRM1.  

 

Figure 5: Wild type and T539C ScCRM1 interaction with PKI Φ0Leu NES and CRM1 inhibitors LMB, C6, 

C3, and DP2392-E10 measured by fluorescence polarization assay. (A) Comparison of fluorescently 

labeled PKI Φ0Leu NES binding to wt HsCRM1, wt ScCRM1, and T539C ScCRM1 in the presence of 
HsRanGTP1-180, Q69L via fluorescence polarization binding assay. Wild type HsCRM1 binds tightly to PKI 

Φ0Leu NES in the low nM range, while wild type ScCRM1 exhibited weaker binding of around 16-

folds. Introducing the T539C mutation increased the affinity slightly to be 12-fold less compared to 

that of HsCRM1 (B) Fluorescence polarization competition assay for inhibition of ScCRM1 NES 

interaction by LMB, C6, C3, and DP2392-E10. DP2392-E10 could dissociate PKI Φ0Leu NES 

interaction when added to high concertation to the wt ScCRM1 and T539C mutant. Introducing the 

T539C mutation resulted in the binding of LMB but not C6 and C3. Error bars illustrate s.d. for three 

independent measurements. 

Interestingly, despite distal binding affinities, the residues coordinating PKI NES in HsCRM1 and 

ScCRM1 are identical (Figure 6A). Furthermore, the NES binding cleft seems to be evolutionary 

conserved from yeast to human (Figure 6B) [8]. This indicates that the difference in binding 

affinity arises from differences in regions that are not directly involved in NES binding. CRM1 

cargo affinity has been shown to be strongly influenced by the overall conformational transition 
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of CRM1 between the extended and the compact conformations, which is regulated by structural 

elements outside the NES binding cleft. In addition, the compact conformation in which the NES 

cleft is open, is further stabilized by massive interactions between the N- and the C- terminal 

regions [60], [61]. In fact, HsCRM1 and ScCRM1 share low sequence identity in the regions outside 

the NES-binding cleft, especially the C- terminal domain (Figure 6A). The lack of sequence 

conservation outside the NES-binding cleft seems to have the major influence on CRM1 flexibility 

and its overall conformation. Previous single particle cryo EM studies revealed that HsCRM1 

exhibit higher structural flexibility than Chaetomium thermophilum CRM1 (CtCRM1, 50.3% 

sequence identity to HsCRM1) [60]. It also showed that 2/3 of ScCRM1 particles accommodate the 

extended conformation in solution, while only half of the human particles retained this 

conformation [60], [61]. Taken together, sequence differences in regions outside the NES-binding 

cleft seem to have a significant influence on CRM1 conformation which in turn is reflected by the 

variation in CRM1-NES binding affinity.  

2.3.7 Thr539Cys ScCRM1 mutant binds strongly LMB but not compounds C3 and C6. 

After observing the different PKI-NES binding kinetics of HsCRM1 and ScCRM1T539C we addressed 

the question on how the Thr539Cys mutation affects ScCRM1 interaction with LMB, C3, C6, and 

DP2392-E10 by FP competition assay (Figure 5B). In the absence of Cys539 neither LMB nor C3 

or C6 could bind to ScCRM1. Conversely, DP2392-E10, as its binding is not dependent on the 

reactive cysteine (Figure 4B), was able to bind to the ScCRM1 at higher concentrations. As 

expected, modification of Thr539 to cysteine could restore LMB binding to a similar level as 

observed for wild type HsCRM1. However, C6 and C3 did not show any significant change in 

binding affinity even when the cysteine was introduced into the ScCRM1T539C NES-binding cleft, 

although their binding to HsCRM1was shown to be Cys528 dependent. Only a very low tendency 

of binding was observed when both compounds were added at a very high concentration (Figure 

5B). Taken together, the obtained data permit the conclusion that despite the structural similarity 

of ScCRM1 and HsCRM1 and the high sequence conservation of their NES-binding cleft, both 

transport receptors demonstrate different binding kinetics towards identical inhibitors. This 

proves that both cargo and inhibitor binding are significantly influenced by the overall structural 

arrangement of CRM1, which in turn varies in correlation to the amino acids sequence of regions 

outside the NES binding cleft.   
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Figure 6: CRM1 sequence alignment and conservation from yeast to human. (A) Schematic 

representation of amino acid sequence alignments between human and Saccharomyces cerevisiae 

CRM1. Regions of homology were determined using SIM alignment tool 

(https://web.expasy.org/sim/) and illustrated using LalnView [67]. Both proteins have in total 47% 

sequence identity. The region spans from approximately amino acids 450 – 640, which include the 

NES-binding cleft, exhibit high sequence identity (75-80%). Residues contacting PKI-NES are marked 

with black boxes. (B) Sequence conservation of CRM1 in the structural context of LMB-bound 

human CRM1. CRM1 is depicted in a surface mode and colored according to sequence conservation 

from invariant (deep purple) to variable (deep teal). PKI NES (PDB ID 3NBY) was aligned in the NES-

binding cleft and depicted as cartoon (right). CRM1 shows the conservation of NES-binding cleft 

from yeast to human. PKI-NES bind in the highly conserved region of the NES-binding cleft. 

Conservation coloring is based on a multiple sequence alignment of CRM1 from H. sapiens, M. 

musculus, R. norvegicus, S. pombe, S. cerevisiae, and C. thermophilum. 

 

 

https://web.expasy.org/sim/
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2.4 Conclusion  

Cellular mislocalization of tumor suppressor proteins and oncoproteins mediated by CRM1 leads 

to cancer initiation, progression, and interferes with cancer treatment. In addition, CRM1 

dependent export is co-opted by viruses for the nuclear export of their RNAs and RNPs at 

different stages of replication which mediate and establish viral infection. Since the identification 

of LMB as a toxic CRM1 inhibitor, several inhibitors targeting CRM1 have been developed utilizing 

structure-based drug design. This approach turned out to be an essential tool for defining the 

molecular basis of CRM1 inhibition and design of less toxic drugs. The structural analysis of CRM1-

inhibitor complexes was performed using CRM1 from the yeast Saccharomyces cerevisiae as it 

crystallized more easily than the human orthologue and because of the high sequence similarity 

in the NES-binding cleft of both organisms. Previous analysis revealed that LMB as well as other 

synthetic SINE-KPT compounds bind to CRM1 via the reactive Cys528 by Michael addition. In this 

study we used HsCRM1 for the biochemical characterization of potential CRM1 inhibitors: C3, C6, 

C10, and DP2392-E10. C3, C6, and C10 demonstrated Cys528 dependent binding to CRM1 with 

different binding affinities and most likely a different mode of inhibition than LMB and SINE-

compounds. We were also able to show that DP2392-E10 binding is not mediated through the 

reactive cystine. Moreover, the capability of DP2392-E10 to dissociate the stable SPN1 export 

complex, despite its low binding affinity, strongly support the previously predicted binding 

outside the NES-binding cleft. Our biochemical analysis renders these compounds, in particular 

DP2392-E10, as potential candidates for the development of a new class of CRM1- inhibitors.  

Despite the structural and sequence similarity of the NES-binding cleft region in HsCRM1 and 
ScCRM1, they exhibited different binding properties towards PKI Φ0Leu NES as well as to the 

compounds C3 and C6. We found that both wild type and Thr539Cys variant of ScCRM1 exhibit 

weaker binding towards PKI Φ0Leu NES and no or extremely low binding towards the compounds 

C3 and C6. This indicates that the amino acid differences outside the NES-binding cleft have a 

strong influence of CRM1-cargo/inhibitor affinity, which is strongly dependent on CRM1 

conformational transition regulated by structural elements outside the NES-binding cleft. Our 

data indicate that ScCRM1 - based molecular and potentially structural analysis of CRM1 inhibitors 

is limited to certain class of inhibitors exhibiting high binding affinity and/or irreversible binding. 

Hence, HsCRM1 should be used for structure-based development of novel drugs. Our findings 

further indicate for the importance of HsCRM1 for the accurate determination of inhibitors 

potency which is a very important and defining value for their efficacy. 
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2.5 Associated Content 

Supporting Information 

Additional figure illustrating the binding of PKI Φ0Leu NES to HsCRM1 variants as well as a figure 

demonstrating the overall structure of HsCRM1-HsRanGTP-LMB complex. 

Accession Codes 

PDB code for Human CRM1-RanGTP in complex with Leptomycin B is 6TVO 
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2.8 Abbreviations 

NPCs, nuclear pore complexes; CRM1, chromosome region maintenance 1; vRNP, viral 

ribonucleoproteins; NES, nuclear export signals; LMB, Leptomycin B; PKI, protein kinase A 

inhibitor; FP, fluorescence polarization; SINE, selective inhibitors of nuclear export; IPTG, 

Isopropyl β-D1-thiogalactopyranoside; OD, optical density; MBP, maltose-binding protein; His6, 

hexa histidine-tag 
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2.9 Supplementary Information 

Characterization of inhibition reveals distinctive 
properties for human and Saccharomyces cerevisiae 

CRM1 
 

Alaa Shaikhqasem, Achim Dickmanns, Piotr Neumann and Ralf Ficner* 

Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, 
Georg-August-University Göttingen, 37077 Göttingen, Germany 

Additional figure illustrating the binding of PKI Φ0Leu NES to HsCRM1 variants as well as a figure 

demonstrating the overall structure of HsCRM1-HsRanGTP-LMB complex. 

 

Supplementary Figure 1: Fluorescently labeled PKI Φ0Leu NES binding to HsCRM1 variants and full-

length wild type in the presence or absence of HsRanGTP1-180, Q69L by fluorescence polarization 

binding assay. Wild type HsCRM1 as well as the C-terminal helix-acidic loop mutant reveal a very 

strong binding to the PKI Φ0Leu NES in the presence of RanGTP. Truncating the C-terminal helix of 
HsCRM1 (Δ1037-1071) increased the affinity to the PKI Φ0Leu NES in the absence of RanGTP. 

Furthermore, a combination of C-terminal helix truncation and HEAT9 loop variant (430VLV432 

mutated to AAA) resulted in a higher increase of HsCRM1 affinity to PKI NES in the absence of 

RanGTP. Error bars illustrate s.d. for three independent measurements.  
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Supplementary Figure 2: (A) Crystal structure of HsCRM1-HsRanGTP-LMB complex illustrated in 

cartoon representation. CRM1 is gradient colored from the N-terminus (marine) to the C terminus 

(white), while Ran is shown in light orange color. The acidic loop adopting the seatbelt conformation 

is shown in pale green. LMB bound in the nuclear export signal (NES)-binding cleft, formed by HEAT 

helices 11A and 12A, is shown in stick mode. (B) LMB is defined by a Polder mFo-DFc omit map (blue 

mesh) contoured at a sigma level 3.0. 
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Abstract  

Cellular mislocalization of oncoproteins and tumor suppressor proteins mediated by 

Chromosome Region Maintenance 1 (CRM1) leads to cancer initiation and progression. In 

addition, CRM1 is utilized in several viral diseases like HIV and influenza for the nuclear export of 

viral RNAs and ribonucleoproteins. This renders CRM1 a particularly interesting target for anti-

tumor and anti-viral drug development. Recently we have investigated the molecular basis of 

CRM1 inhibition by four novel nuclear export inhibitors: C3, C6, C10, and DP2392-E10. Our results 

revealed that C3, C6, and C10 demonstrate Cys528 dependent binding which leads to the 

dissociation of CRM1 interaction with the nuclear export signal (NES). Whereas, DP2392-E10 

exhibited a unique binding behavior that is not dependent on the reactive cysteine. Here we 

performed molecular docking calculations using the crystal structure of Leptomycin B (LMB)-

bound human CRM1 as a template to gain structural insight into the novel compounds’ 

interactions with human CRM1 at an atomic level. Our results revealed that the binding of the 

compounds C3 and C6 is predicted to be centered around Cys528 which results in the blockage 

of 3 out of 5 hydrophobic pockets in which the NES peptides bind. Whereas, the compound C10 

binding was predicted to be positioned below the reactive cysteine blocking 2 out of 5 

hydrophobic pockets. In addition, the performed computational analysis identified several 

potential ligand binding sites outside the NES-binding cleft. Furthermore, docking calculations 

using different scoring functions and settings predicted the binding of DP2392-E10 at the top of 

HEAT9 loop, directly at the base of the acidic loop. Docking interactions of DP2392-E10 exhibited 

a non-covalent binding that involves several residues at the base of the acidic loop. The results 

of our study present new insight into CRM1 inhibition, in particular the allosteric mechanism 

mediated by the binding of DP2392-E10 outside the NES-binding cleft.  

3.1 Introduction  

CRM1 is an essential nucleocytoplasmic transport receptor that mediates the nuclear export of a 

wide range of proteins and ribonucleoprotein complexes [1], [2]. CRM1 mediated transport is 

dependent on the cooperative binding of a small GTPase Ran in its GTP bound form (RanGTP) 

and the cargo protein to the export receptor, forming a trimeric complex that transverse the 

nuclear pore complex.  The overall architecture of CRM1 demonstrates a ring like structure that 

is composed of 21 HEAT repeats, each consisting of 2 antiparallel α-helices A and B connected via 

a short linker loop [3], [4].  CRM1 recognizes the cargo proteins by their leucin-rich nuclear export 

signal (NES) peptide. The NES peptide contains 4 to 5 hydrophobic residues that bind specifically 
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in 5 hydrophobic pockets (Φ0- Φ4) located in the cleft between HEAT repeats 11A and 12A 

(referred to as the NES-binding cleft) [5], [6]. Overexpression of CRM1 was observed in several 

cancer diseases and it was identified as the major nuclear exporter for several oncoproteins, 

growth regulators, and suppressor protein like p53, p21, BRCA1/2, Rb, FOXO, which leads to 

cancer initiation and progression [7]–[10]. Furthermore, CRM1 plays a key role in several viral 

diseases as it is coopted by viruses like influenza, rabies virus P, and HIV for the nuclear export of 

their RNA and ribonucleoprotein (RNP) complexes. This renders CRM1 an interesting drug target 

for therapeutic intervention in several cancer and viral diseases [11], [12].  

Leptomycin B (LMB), a natural compound made by Streptomyces bacteria, was the first CRM1 

inhibitor to be discovered [13], [14].  Its clinical tests revealed severe side effects and high toxicity 

[15], which induced a continuous search and development of alternative natural and synthetic 

compounds that could be used for CRM1 inhibition [11], [16]–[21]. A particular class of synthetic 

compounds known as selective inhibitors of nuclear export (SINE) were developed based on 

virtual screening using molecular modeling and simulations, physicochemical filters, and high-

throughput molecular docking [22]. After several evaluations in pre-clinical and clinical studies, 

the SINE compound KPT330 (Selinexor) was the first CRM1-targeting compound to be approved 

for the treatment of relapsed or refractory multiple myeloma when taken in a combination with 

dexamethasone [23]. Structural analysis by means of X-ray crystallography in conjunction with 

computational analysis based on homology modeling and docking simulations defined the 

molecular basis of CRM1 inhibition. Furthermore, It has been used as a reliable approach for the 

development of novel CRM1 inhibitor [22], [24]. Earlier biochemical investigations revealed that 

LMB binding is dependent on a reactive cysteine residue (Cys528 in human) located at HEAT helix 

11A in the NES-binding cleft [25]. However, as the human protein failed to crystalize in complex 

with inhibitors, CMR1 from the yeast Saccharomyces cerevisiae (ScCRM1) was genetically 

modified to incorporate the reactive cysteine (T539C) and was used to crystallize CRM1-LMB 

complex. The crystal structures of LMB bound to ScCRM1 revealed its covalent binding to Cys528 

by Michael addition and defined its mechanism of action by blocking the 5 hydrophobic pockets 

in which the NES peptide binds [24]. Afterwards, the same approach was employed to solve the 

crystal structures of several KPT sine compounds and revealed their covalent junction to the 

reactive cysteine by the same mechanism as for LMB [26]–[29]. 

Recently we presented the crystal structure of LMB bound to human CRM1 (HsCRM1) in complex 

with RanGTP (Chapter 2). We furthermore investigated the molecular mechanism of the novel 

CRM1 inhibitors compounds C3, C6, and C10 [30] as well as the compound DP2392-E10 [31]. We 
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tested their ability to interfere NES peptide-CRM1 binding and their dissociation of Snurportin1 

(SPN1) export complex (CRM1-RanGTP-SPN1). In addition, we compared the compound 

interaction as well the binding of the NES peptide from protein kinase A inhibitor (PKI Φ0Leu NES) 

in HsCRM1 and ScCRM1. Our data showed that the compounds C3, C6, and C10 dissociate CRM1-

NES interactions by binding HsCRM1 at different rates in a Cys528 dependent manner (section 

2.3.4). Whereas, the compound DP2392-E10 exhibited a unique binding behavior that is not 

dependent on the reactive cysteine (section 2.3.5). Furthermore, our recent study revealed that 

T539C variant of ScCRM1 is unable to bind the compounds C3 and C6, although their binding in 

human is Cys528 dependent (section 2.3.7). This proved that the crystallization approach using 

genetically modified ScCRM1 is limited and not applicable to all classes of CRM1 inhibitors, which 

further declare the importance of using human CRM1 for inhibitors’ structural and biochemical 

characterization. Here we present our attempts to develop a crystallization approach for the 

structural characterization of HsCRM1-inhibitor complexes, by which we succeeded to solve the 

crystal structure of LMB bound to HsCRM1. We furthermore expanded our study by combining 

crystallographic and computational methods to gain structural insights into CRM1 inhibition by 

C3, C6, C10 and DP2392-E10. The performed crystallographic analysis unveiled an unexpected 

modification at the reactive cysteine during the crystallization trials of C6 in complex with human 

CRM1. Moreover, in silico docking calculations revealed the binding of DP2392-E10 outside the 

NES-binding cleft implicating a possible allosteric mechanism of CRM1 inhibition.  

Our study provides a new path for the development of new classes of CRM1 inhibitors which 

might occupy different binding sites when compared with the LMB and SINEs compounds.   

3.2 Materials and Methods 

3.2.1 Protein preparation and CRM1-inihibitor complexes crystallization  

HEAT 9 loop mutant (430VLV432 to AAA) of the C-terminally truncated (α-helix; Δ1037-1071) 

HsCRM1 (HsCRM1Δ) was expressed and purified as previously described (section 2.2.2). Human 

RanGTP1-180, Q69L [3] was prepared as described in [32].  For crystallization, HsCRM1Δ-inhibitor 

complexes were prepared following the same protocol we used for preparing HsCRM1Δ-RanGTP-

LMB complex (section 2.2.3) with the exception of adding C6 (synthesized by ChemBridge 

Corporation, USA) in 10 molar excess to CRM1 to counter its lower binding affinity in comparison 

with LMB (supplied by Iris-Biotech, Germany).  HsCRM1Δ-inhibitor complexes prepared with or 

without the addition of RanGTP1-180, Q69L were used to setup crystallization trials at different 

concentrations using a wide range of sparse matrix screens. The screening was carried out using 
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sitting drop vapor diffusion in 96-well 3-drop MRC crystallization plates (Molecular Dimensions) 

at 20 °C or 4 °C. Single diffracting crystals of the complexes HsCRM1Δ-RanGTP-LMB and HsCRM1Δ-

RanGTP-C6 grew within 3-6 days in the commercial crystallization buffer Morpheus H10 [33] (10 

% w/v PEG 8000, 20 % v/v ethylene glycol, 100 mM bicine /Trizma base pH 8.5 20 mM sodium L-

glutamate, 20 mM DL-alanine, 20 mM glycine, 20 mM DL-lysine HCl, 20 mM DL-serine) when 

mixed in a ratio of 1:1 with the complex concentrated to 3 mg/ml.  

3.2.2 HsCRM1Δ-RanGTP-C6 complex crystals dehydration and preparation  

Dehydration with PEG8000 was employed to improve the diffraction quality of HsCRM1Δ-RanGTP-

C6 complex crystals. Crystals were transferred to a 2 μL crystallization buffer containing 20 % w/v 

PEG8000. PEG8000 concentration was stepwise increased (5 % steps) by slowly adding 

crystallization buffer containing 60 % PEG8000. The drop was sealed and allowed to equilibrate 

for 45 min after each addition. Crystals treated with 25 %, 30 %, and 40 % PEG8000 were flashed 

cooled in liquid nitrogen and used for X-ray diffraction experiment.  

3.2.3 Data collection, processing, and structure refinement  

X-ray diffraction data were collected at PETRA III EMBL beamline P13 (DESY, Hamburg, Germany), 

equipped with PILATUS 6M detector. A total of 35 datasets were collected from 28 HsCRM1Δ-

RanGTP-C6 complex crystals including non-dehydrated and crystals treated with different 

concentrations of PEG8000. Data sets were indexed, processed and scaled using XDS package 

[34]. All datasets exhibited an orthorhombic lattice with the unit cell parameters a = 122.29 Å, b 

= 151.33 Å, c = 234.84 Å and belonging to the space group I222. Structures were solved by means 

of molecular replacement using PHASER [35] with the crystal structure of the HsCRM1Δ-RanGTP-

LMB complex (PDB-ID 6TVO; hold until publication (HUPB)) (section 2.3.1) as the search model. 

Structures were refined to reasonable R factors by iterative cycles of refinement and manual 

rebuilding in Refmac [36] and COOT [37] respectively. After refinement - in all datasets - a 

pronounced peak of positive electron density in mFo-dFC map was observed near the Cys528. 

The excess density was much smaller than expected for the compound C6 and could not be 

explained by the compound. Further investigations by protein mass spectrometry analysis 

revealed the covalent modification of Cys528 by 2-Mercaptoethanol (BME) used during 

purification and crystallization as reducing agent. Subsequently, BME was modeled manually in 

COOT and its presence was verified using a Polder omit map [38]. Figures were generated with 

PyMol (The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC). 
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3.2.4 Identification of cysteine modification by liquid chromatography-mass 

spectrometry analysis 

Four samples were prepared for liquid chromatography-mass spectrometry (LC-MS) using 

HsCRM1Δ, HsCRM1Δ mixed with crystallization buffer (Morpheus H10) and incubated overnight at 

4 °C degree to mimic the crystallization environment, crystals grown using the complex HsCRM1Δ-

RanGTP-C6, and crystals used for diffraction experiments. Cysteine reactive chemicals, reducing 

agents, and cysteine modifying steps were avoided throughout the entire procedure. Equal 

volumes of protein solutions were mixed with 2X SDS sample buffer (62.5 mM Tris-HCl pH 6.8, 

2.5 % SDS, 0.002 % bromophenol blue, 10 % glycerol). Crystals not exposed to X-ray radiation 

were transferred and dissolved in a drop containing 1X SDS sample buffer, while crystals used for 

diffraction experiments were carefully thawed in a drop of water and then were mixed in equal 

volume of 2X SDS sample buffer. Afterwards, samples were boiled at 95°C for 5 min and applied 

for a brief separation in an SDS-PAGE gel. Protein-containing bands were cut and subjected to a 

trypsin (SERVA Electrophoresis, 37283.01) digestion according to Shevchenko et al [39]. Desalting 

of tryptic peptides prior to LC-MS was performed via StageTips according to the protocol 

described in [40]. 2 µL of each sample were subjected to reverse phase liquid chromatography 

for peptide separation using an RSLCnano Ultimate 3000 system (Thermo Fisher Scientific). 

Peptides were loaded on an Acclaim PepMap 100 pre-column (100 µm x 2 cm, C18, 3 µm, 100 Å; 

Thermo Fisher Scientific) with 0.07 % trifluoroacetic acid at a flow rate of 20 µL/min for 3 min. 

Analytical separation of peptides was done on an Acclaim PepMap RSLC column (75 µm x 50 cm, 

C18, 3 µm, 100 Å; Thermo Fisher Scientific) at a flow rate of 300 nL/min. The solvent composition 

was gradually changed within 94 min from 96 % solvent A (0.1 % formic acid) and 4 % solvent B 

(80 % acetonitrile, 0.1 % formic acid) to 10 % solvent B within 2 minutes, to 30 % solvent B within 

the next 58 min, to 45% solvent B within the following 22 min, and to 90 % solvent B within the 

last 12 min of the gradient. All solvents and acids had Optima grade for LC-MS (Thermo Fisher 

Scientific). Eluting peptides were on-line ionized by nano-electrospray (nESI) using the Nanospray 

Flex Ion Source (Thermo Scientific) at 1.5 kV (liquid junction) and transferred into a Q Exactive HF 

mass spectrometer (Thermo Fisher Scientific). Full scans in a mass range of 300 to 1650 m/z were 

recorded at a resolution of 30,000 followed by data-dependent top 10 HCD fragmentation at a 

resolution of 15,000 (dynamic exclusion enabled). LC-MS method programming and data 

acquisition was performed with the XCalibur 4.0 software (Thermo Fisher Scientific). 

MS/MS2 data were searched against an E. coli-specific protein database (UniProt Proteome ID 

UP000000625) that additionally contained the CRM1 sequence using the software MaxQuant 
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1.6.0.16 [41]. The digestion mode was trypsin/P, and the maximum number of missed cleavage 

sites was set to two. Oxidation at methionine and N-terminal protein acetylation were set as 

variable modifications. A search for dependent peptides was performed to identify additional 

peptide modifications. The mass tolerances of precursors and fragment ions were 4.5 ppm and 

20 ppm (HCD), respectively. False discovery rates were calculated using the revert decoy mode, 

and the threshold for peptide sequence matches as well as protein identifications was 0.01. 

MaxQuant output data were further evaluated using the Perseus software 1.6.0.7 [42]. The 

dependent peptide search provided evidence for the presence of a DeStreak (2-

mercaptoethanol, BME) modification (∆mass of 75.9983) at the cysteine residue of the CRM1 

peptide DLLGLCEQK (D523-K531). Based on this result the data were searched against the same 

database as before using the Proteome DiscovererTM 2.2.0.388 software with the SequestHT 

search algorithm and the DeStreak modification at cysteines as a variable modification. Precursor 

mass tolerance and fragment mass tolerances were 10 ppm and 0.02 Da, respectively. The 

digestion mode and false discovery rate were the same as for the MaxQuant analysis.  

3.2.5 Determination of potential ligand binding sites 

Potential ligand binding sites within human CRM1 were detected by using the Alpha Site Finder 

function of the MOE program (Chemical Computing Group Inc., Montreal, Canada)  [43]. The 

score function of this program is used in combination with a geometry search method and based 

on generating hydrophobic or hydrophilic alpha spheres which serve as probes indicating for 

zones of tight atom packing [44]. Each determined binding pocket is defined by the number of 

contributing spheres, the number of hydrophilic points, residues at local surface and the number 

of sidechain contact atoms. For binding sites determination, human CRM1 from the complex 

structure HsCRM1Δ-RanGTP-LMB was used (PDB-ID 6TVO; HUPB). LMB and Ran GTP were 

removed from the model. RanGTP removal was important to avoid transiently formed pockets at 

the interaction surface between both proteins. For proper determination of the potential binding 

sites the missing Loop connecting the lower side of HEAT repeat helices 8B and 9A (Thr389-

Val401) was manually modeled in coot using the loop structure from the mouse CRM1 (PDB-ID 

3NBZ, identical sequence in the modeled region) as a reference.   

3.2.6 In silico structure-based docking 

Molecular docking of DP2392-E10 within human CRM1 was performed using the Dock function 

of the MOE software suite (Chemical Computing Group Inc., Montreal, Canada). CRM1 structure 

prepared for potential ligand binding sites determination was used also for molecular docking. 
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The model was further prepared in MOE software by adding hydrogen atoms, assigning partial 

charges, and removal of the non-polar hydrogens. The docking was performed against the entire 

CRM1 protein structure covering all determined potential binding sites. Docking simulations were 

performed using both the “Rigid Receptor” and “Induced Fit” docking protocols. The parameters 

used to calculate the score and interaction of the DP2392-E10 with CRM1 were selected as 

follows: Scoring function: London dG; Placement: Triangle matcher; Refinement: induced fit or 

rigid receptor; rescoring function: GBVI/WSA dG. The build in scoring function of MOE, S-score, 

was used to predict the highest binding affinity (kcal/mol) of DP2392-E10 within the docking sites. 

The best binding pocket and docking orientation were selected based on the binding affinity 

score.  

Site-specific molecular docking of the compounds C3, C6, and C10 within the NES-binding cleft 

of human CRM1 was conducted using AutoDock Vina [45]. Human CRM1 from the complex 

structure HsCRM1Δ-RanGTP-LMB was used (PDB-ID 6TVO; HUPB) upon removal of RanGTP and 

LMB. Receptor was prepared in AutoDockTools [46]; (hydrogen atoms were added, Gasteiger 

charges were computed, and non-polar hydrogens were then merged). Grid box accommodating 

the NES-binding cleft was defined in AutoDockTools with the center points: X = -49.432, Y = -

28.086, Z = -49.015, and the size points: X = 28, Y = 30, Z =22. In order to gain a more 

realistic ligand-protein interaction environment, the side chains of the residues exposed to the 

potential binding site  (Ile521, Leu525, Cys528, Glu529, Arg532, Lys534, Ala541, Ile544, Met545, 

Val548, Phe561, Thr564, Lys568, Leu569, Glu571, Phe572, Glu575, and Val580) were selected to 

be flexible during docking calculations. Furthermore, the flexibility of the ligands was applied at 

their torsional angles. After model and ligands preparation the docking calculations for all 

compounds were performed using AutoDock Vina. Each docking calculation resulted in 9 binding 

poses scored based on calculated binding free energy (kcal/mol). The best pose was selected 

based on the binding free energy value in combination with manual inspection of the binding 

orientation with respect to the Cys528.  

3.3 Results 

3.3.1 Crystallization of human CRM1-inhibitor complexes  

In the last decade several natural and synthetic compounds were discovered or designed for the 

inhibition of CRM1 in order to develop anti-viral and anti-tumor drugs. Structural analysis by 

means of X-ray crystallography has been a powerful and a fundamental tool for understanding 

and optimizing protein-inhibitor interactions. Nevertheless, concerning CRM1 protein 
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crystallization, the human export receptor has been the most challenging to study due to its high 

conformational flexibility [47]. In fact, out of 58 CRM1 structures deposited in the Protein Data 

Bank (PDB; https://www.rcsb.org/; [48]), only 5 structures are available for human protein (Figure 

1). Two of these structure (PDB-IDs 4BSM and 4BSN) describe unliganded CRM1 lacking the C-

terminal helical extension at resolutions of 4.5 Å and 4.1 Å [49] and one structure describes the 

C-terminal part (HEAT repeat helices 15A–21A) at a resolution of 2.3 Å (PDB-ID 1W9C) [50].  On 

the other hand, there are 46 structures deposited in the PDB for CRM1 from the yeast 

Saccharomyces cerevisiae, in complexes representing different states of CRM1 export cycle or in 

complexes with inhibitors or NES peptides (Figure 1).  

The first structure of ScCRM1 was solved in complex with RanGTP and RanBP1 (PDB-ID 3M1I) [51]. 

This complex structure in particular gained more interest due to the stability of the crystalized 

complex in the absence of a cargo protein, the well-defined crystallization conditions, 

reproducibility of well diffracting crystals, and more importantly because in this complex the NES-

binding cleft is unliganded. Soon after, this approach was employed to crystalize ScCRM1-

inhibotor complexes by introducing the genetic mutation in ScCRM1 Thr539Cys (equivalent to 

Cys528 in HsCRM1)-which allowed the binding of cysteine-dependent classical CRM1 inhibitors 

(LMB and SINEs) [24], [26]–[29]. Moreover, further genetic modifications on ScCRM1 allowed the 

binding and the structural characterization of several NES peptides [6], [52]. This rendered the 

complex ScCRM1-RanGTP-RanBP1 a pragmatic model for characterizing CRM1 interactions with 

inhibitors and NES peptides. but on the other hand, it limited inhibitors characterization to the 

yeast ScCRM1. In our recent studies we compared the binding properties of human and yeast 

CRM1 towards several potential inhibitor as well as the NES from Protein Kinase A Inhibitor (PKI 

Φ0Leu NES). Our data revealed that despite their overall structural similarity, the yeast CRM1 

reveals a 16 folds less binding affinity than the human protein towards the NES peptide used. In 

addition, our data show that the T539C variant of yeast demonstrates very weak or no binding 

towards three of the characterized inhibitors, although their binding towards HsCRM1 is 

dependent on the reactive cysteine (section 2.3.7). Hence, these results prove that ScCRM1 is not 

a universal model and is certainly limited to a specific class of inhibitors. Moreover, it further 

indicates for the importance of using HsCRM1 for studying inhibitors interactions. Therefore, our 

main goal was to obtain a crystallization approach that enables the structural characterization of 

human CRM1 inhibition.  

https://www.rcsb.org/
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Figure 1: Numbers of CRM1 containing structures deposited in the Protein Data Bank and 

distributed by source organism. Different colors indicate for the sate represented by the crystal 

structure. Export complex: CRM1 in complex with Ran and/or cargo protein. Disassembly complex: 

CRM1 in complex with Ran and RanBP1 or RanBP2. 

Initials crystallization screens of wild type HsCRM1-inihibtor complexes failed to yield crystals in 

the presence and in the absence of RanGTP. Consequently, we constructed a more stabilized 

variant of HsCRM1 by truncating the C-terminal helix (Δ1037-1071) and mutating the acidic loop 

(HEAT9 loop) residues that interact with the back side of the NES-binding cleft (430VLV432 to AAA). 

The effect of the introduced mutation on the conformational stability of HsCRM1 is described in 

detail in our study (section 2.3.1). In brief, the modified CRM1 variant (HsCRM1Δ) demonstrated a 

significantly increased NES binding affinity in the absence of RanGTP, indicating that the 

introduced mutations stabilize the protein towards the state in which the NES binding cleft is 

open and accessible by NES peptides or ligands (section 2.9 - supplementary figure 1). 

Crystallization screening of HsCRM1Δ-LMB complexes in the presence or absence of RanGTP 

yielded crystals in several conditions. Few conditions containing variants of polyethylene glycol 

(PEG) or polyacrylic acid (PAA) as precipitants provided single crystals (Table 1). Relatively large 

single crystals of the complex HsCRM1Δ-RanGTP-LMB grew within 3 days in the condition 

Morpheus H10 (Table 1) which contains a mixture of PEG8000 and ethylene glycol as a precipitant 

and several amino acids as additives.  
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Table 1: Crystallization conditions that yielded single crystals of HsCRM1Δ -LMB complexes in the 

presence and absence of RanGTP. PAA: polyacrylic acid. PEG: polyethylene glycol.  

Protein-inhibitor complex Crystallization conditions Observed crystals 
 

HsCRM1Δ1037-1071, 430VLV432 to 

AAA _LMB  

 

Mixing ratio: 

 (1 mol : 2 mol) 

Reservoir solution: 22% PAA 5100, 20 

mM MgCl2, 100 mM HEPES pH 6.5 

Mixing ratio (protein: reservoir): 2:1. 

Protein concentration: 5 mg/ml  

Crystals growth time: 17-24 h 

Incubation temperature: 20 °C 

 

 

HsCRM1Δ1037-1071, 430VLV432 to 

AAA _LMB  

 

Mixing ratio: 

 (1 mol : 2 mol) 

Reservoir solution: 22% w/v PAA 

5100, 20 mM MgCl2, 100 mM HEPES 

pH 7.5, 4% 2,5-Hexanediol 

Mixing ratio (protein: reservoir): 1:1. 

Protein concentration: 5 mg/ml  

Crystals growth time: 1-3 h 

Incubation temperature: 20 °C 

 

 

HsCRM1Δ1037-1071, 430VLV432 to 

AAA _HsRanGTP1-180, 

Q69L_LMB  

 

Mixing ratio:  

(1 mol : 1mol : 2 mol) 

Reservoir solution: 20% w/v PEG- 

monomethyl ether 2000, 100 mM Tris 

base pH 8.5, 200 mM Trimethylamine 

N-oxide 

Mixing ratio (protein: reservoir): 1:1. 

Protein concentration: 3 mg/ml  

Crystals growth time: 7-10 days 

Incubation temperature: 4 °C 

 

 

 

HsCRM1Δ1037-1071, 430VLV432 to 

AAA _HsRanGTP1-180, 

Q69L_LMB  

 

Mixing ratio: (1 mol : 1mol 

: 2 mol) 

Reservoir solution: 10% w/v PEG 

8000, 20% v/v ethylene glycol, 100 

mM bicine /Trizma base pH 8.5 20 

mM sodium L-glutamate, 20 mM DL-

alanine, 20 mM glycine, 20 mM DL-

lysine HCl, 20 mM DL-serine. 

(Morpheus H10) 

Mixing ratio (protein: reservoir): 1:1. 

Protein concentration: 3 mg/ml  

Crystals growth time: 3-6 days 

Incubation temperature: 4 °C 

 

Blue color indicates 

for UV absorption 
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The observed crystals could not be produced using the wild type protein or in the absence of 

RanGTP. X-ray diffraction experiments using synchrotron radiation revealed that only crystals 

growing in this condition could diffract to a reasonable atomic resolution ranging from 3.2 to 4 

Å. In contrast, crystals grown in PAA-containing conditions could only diffract to a resolution of 8 

Å and crystals grown in other conditions did not show detectable diffraction pattern. Hence, our 

crystallization experiments were focused on the condition Morpheus H10.     

With the obtained crystallization approach, we were able to solve the crystal structure HsCRM1Δ-

RanGTP-LMB complex to a resolution of 3.2 Å and get an insight into inhibitor interaction with 

human CRM1. Nevertheless, we were further interested to employ the same approach to gain 

structural knowledge about the compound C6. This compound exhibited a Cys528 dependent 

binding in HsCRM1 at a low micromolar range, while it did not bind show binding towards to yeast 

CRM1 variant T539C (sections 2.3.4, and 2.3.7). Following the same protocol were able to gain 

crystals that were very similar in appearance to LMB complex crystals (Figure 2A). To improve 

the diffraction quality of these crystals, they were dehydrated by stepwise increasing PEG8000 

concentration. Non-dehydrated crystals could diffract to a resolution of 3.2 Å, while dehydrated 

crystals showed improved diffraction properties. Crystals treated with 30% PEG8000 exhibited 

the most significantly improved diffraction pattern up to 2.7 Å resolution (Figure 2B).  

 
Figure 2: Optimization of crystals grown using the complex HsCRM1Δ -HsRanGTP-C6 by dehydration. 

(A) Images of the obtained complex crystals. (B) A typical diffraction pattern of a non-dehydrated 

crystal. (C) a diffraction pattern of a crystal treated with 30% PEG8000-containing crystallization 

buffer.  
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Taken together, the genetic modifications introduced to human CRM1 enabled the protein to 

crystalize in a complex with RanGTP and the inhibitors in the crystallization condition Morpheus 

H10 (Table 1), which represents a crystallization strategy for studying inhibitors interactions with 

human CRM1. Nevertheless, the structures within the crystals grown using HsCRM1Δ -HsRanGTP-

C6 complex revealed an unexpected modification at the reactive cysteine residue (Cys528).  

3.3.2 Modification of Cys528 by 2-Mercaptoethanol  

Structure refinement of all datasets obtained from crystals grown using the complex HsCRM1Δ -

HsRanGTP-C6 displayed an excess difference electron density at the Cys528 (Figure 3A). The 

positive density in the mFo-DFc could not be explained by the compound C6.  

 

Figure 3: The modification of Cys528 by 2-mercaptoethanol (BME). Difference electron density 

maps 2mFo-dFc (contoured at 1.0 sigma, in blue) and mFo-DFc (contoured at 3.0 sigma in green and 

-3.0 sigma in red) around the Cys528, generated after model refinement with unmodified cysteine 

in (A and B) and after the refinement of covalently modified model -Cys528-BME conjugate- in (C). 

Non modified cysteine demonstrates an excess density representing a pronounced positive peak in 

the mFo-DFc map (A). The sulfur atom of the modeled BME occupies the center of the excess density 

observed around the Cys528 (B). (C) Crystallographic refinement of the atomic model comprising 

Cys528-MBE conjugate. Neither positive nor negative peaks of mFo-DFc map could be observed. 

The methyl hydroxy (indicated by arrow) group was not visible in the electron density map due to 

its free rotation. (D) A polder omit map of Cys528-BME conjugate (contoured at 6.0 sigma, in blue) 

confirms that Cys528 modification by BME explains the excess density.  
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The center of the mFo-DFc electron density peak was located within 2 Å from the sulfur atom of 

Cys528 indicating a possible covalently bound modification (Figure 3A). In order to confirm the 

type of modification and to elucidate whether it was introduced prior to crystallization or by 

synchrotron radiation, LC-MS analysis was performed for samples prepared from: purified 

HsCRM1Δ, HsCRM1Δ-RanGTP-C6 complex mixed with crystallization buffer (Morpheus H10), 

complex crystals not used for diffraction experiment, and from crystals exposed to synchrotron 

radiation.  

 

 
Figure 4: Determination of the Cys528 DeStreak modification of human CRM1 with 2-

mercaptoethanol (BME) using mass spectrometry analysis. (A) List of possible fragment ions of the 

Cys528-BME containing peptide (DLLGLC(+75.99)EQK) with detected y ions in blue and b ions in red.  

(B) Representative fragmentation spectrum (1 of 15) of the respective precursor ion with m/z of 

547.765. RT, retention time. 
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The results of the LC-MS analysis revealed a mass difference of 75.9983 at the cysteine residue 

within the tryptic peptide DLLGLCEQK (the reactive cysteine-Cys528). The observed shift 

corresponds to Cys-BME conjugate unveiling the covalent modification of Cys528 by BME, known 

as a DeStreak modification [53]. Although BME was introduced to CRM1 buffer during protein 

purification as a reducing agent, the covalent modification of Cys528 by BME was observed only 

when the purified protein was mixed with the crystallization buffer and in the complex crystals 

before and after exposure to synchrotron radiation. This further confirms that BME reactivity 

towards the cystine is induced by crystallization buffer conditions and that the observed density 

is not related to synchrotron radiation exposure.  

Crystallographic refinement of the atomic model comprising Cys528-MBE conjugate explained 

the excess electron density (Figure 4B and C), which was also further supported by polder omit 

map as calculated with PHENIX (Figure 4D). While the disulfide bond fits electron density map, 

the freely rotatable methyl hydroxy group was not visible in the density what indicates its 

disorder. Nevertheless, the unexpected modification seems to interfere with the binding of the 

compound C6, which demonstrates that our crystallization approach needs to be further 

optimized either by screening for alternative crystallization buffer conditions or using a different 

reducing agent during proteins purification.   

3.3.3 Predicted binding conformations of the compounds C3, C6, and C10 in the NES-

binding cleft  

Compounds C3, C6 and C10 (Figure 5A) were identified as efficient inducers of nuclear export 

inhibition. Preliminary studies demonstrated these compounds to cause the nuclear 

accumulation of HIV-1 Rev-NES when tested in different cancer cell lines [30]. Recently, we 

investigated the molecular mechanism of these 3 compounds by their ability to dissociate 

fluorescently labeled PKI Φ0Leu NES binding to HsCRM1 (section 2.3.4). The results confirmed 

their inhibitory activity by concentration dependent binding to HsCRM1. The compound C6 

exhibited the highest binding affinity (IC50 = 4.2 μM) when compared to C10 (IC50 = 40 μM) and 

C3 (IC50 = 59 μM). Furthermore, the inhibitory activity of these compounds was strongly reduced 

upon changing cysteine to serine which confirmed their binding to be dependent on the reactive 

cysteine (Cys528) located in the NES-binding cleft of human CRM1 (section 2.3.4). In order to 

obtain structural information on these inhibitors’ interactions with human CRM1, crystallization 

experiments in complex with HsCRM1Δ-RanGTP in the buffer condition Morpheus H10 were 

performed following the same approach employed to solve the crystal structure of HsCRM1Δ-



 Molecular docking of novel nuclear export inhibitors reveals an allosteric mechanism of human CRM1 
inhibition 

78 
  

RanGTP-LMB complex. Most crystallographic experiments were carried out using C6 as it 

demonstrated the highest binding affinity among the three compounds. However, the 

modification of Cys528 by BME (explained in the previous section) interfered with C6 binding and 

therefore structural information could not be obtained by the applied crystallographic approach. 

Alternatively, molecular docking – supported by the experimental findings – was performed to 

gain structural insights about possible binding orientations of these three compounds within the 

NES-binding cleft. Structure based - site specific docking was performed for each compound in 

the NES-binding cleft of human CRM1 model from the complex structure HsCRM1Δ-RanGTP-LMB. 

Docking was performed with AutoDock Vina [45]. For more realistic docking environment 

residues with side chains exposed to the binding site were set as flexible during the simulation 

[46]. The best binding pose for each compound was selected based on the on the binding free 

energy value and the binding orientation with respect to Cys528.  

The predicted binding of the compound C3 demonstrates an orientation centered around the 

Cys528 (Figure 5B);  C3 is oriented with its tetrahydro-1-benzothiophene-3-carboxamide group 

pointing toward the top of the NES-binding cleft, whereas its 2-fluorobenzoyl group heads in the 

opposite direction toward the bottom of the NES-binding cleft. The hexafluoropropane-2,2-

diamine group of C3 binds deeply in the NES-binding cleft facing HEAT repeats 11A and 12A 

(Figure 5B). Similar to C3, the compound C6 docking exhibits an orientation that is also centered 

around the Cys528 (Figure 5A); while the chloro-(methylsulfonyl)benzene of C6 is pointing 

toward the top of the NES-binding cleft, the trimethoxybenzene group is oriented to the opposite 

direction pointing towards the bottom of the NES-binding cleft with 2 methoxy groups facing the 

NES-binding cleft and 1 methoxy group exposed to the solvent.The methyloxazol-amine group of 

the compound C6 is positioned in a close proximity of the reactive cysteine with the methylamine 

group exposed to the solvent (Figures 5B and 5C). Unlike the compounds C3 and C6, the 

compound C10 is predicted to be bound in the middle of the NES-binding cleft, positioned below 

the reactive cysteine and sandwiched between HEAT repeats 11A and 12A. C10 demonstrates a 

closer binding to HEAT repeat 12A than C3 and C6, while  its methoxy group pointing toward 

Cys528 (Figure 5B). 

The docking binding of compounds C3 and C6 interfere with NES peptide binding by blocking the 

hydrophobic pockets Φ2, Φ3, and Φ4, while the binding of C10 blocks the pockets Φ2 and Φ3 

(Figures 5C and 5D). Furthermore, the predicted binding mode of C3 and C10 indicates they are 

mostly stabilized by hydrophobic interactions with CRM1 especially the hexafluoropropane-2,2-

diamine of C3 and trimethoxybenzene group of C6 since they bind deeply in the hydrophobic 
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core of the NES-binding cleft. Nonetheless, their chemical groups pointing towards the upper 

part of the NES can also be stabilized by electrostatic interactions with surrounding lysins (Lys537 

and Lys568). On the other hand, the predicted binding of C10 seems to be mediated exclusively 

by hydrophobic interactions as it binds in the regions forming the NES binding pockets Φ2 and 

Φ3 (Figures 5C and 5D). Yet, the flexible docking of the compound C3 exhibits different side chain 

conformation providing a wider binding pocket compared to that for C6 and C10 (Figure 5C) 

which allows the accommodation of the compound as it displays larger size than the other two.  

 

Figure 5: Predicted binding orientation of the compounds C3, C6, and C10 in the NES-binding cleft 

by molecular docking using AutoDock Vina. (A) chemical drawings of the compounds C3, C6, and 

C10. (B) The predicted binding conformations of C3, C6 and C10 (depicted as sticks) in the NES-

binding cleft (cartoon representation). Cys528 which is involved in the binding of all three 

compounds is depicted as sticks. (C) surface representation of the putative binding pockets. Dashed 

lines indicate for the altered conformation in the side chains of C3 binding pocket residues 

compared to those in the binding pockets of C6 and C10. (D) Surface representation human CRM1 

NES-binding cleft showing the respective Φ pockets (Φ0 - Φ4) that are involved in NES peptide 

binding. Hydrophobic regions are colored grey.  
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3.3.4 Human CRM1 exhibits multiple potential ligand binding sites outside the NES-

binding cleft 

Several natural compounds (e.g. piperlongumine, goniothalamin, and anguinomycins) and 

synthetic compounds including KPT185, CBS9106, selinexor and verdinexor have been discovered 

or designed for the inhibition of CRM1. The inhibition of almost all these compounds was shown 

to be mediated via a the reactive cysteine (Cys528 in human CRM1) located in the NES-binding 

cleft [11], [20], [21], [54]–[56]. This indicated the binding of these compounds in the NES-binding 

cleft, which unveiled a common mechanism of action based on the inhibitors interfering with NES 

- CRM1 interaction by the direct blockage of the NES- binding cleft. The first possibility of 

inhibitors binding outside the NES has been reported based on the predicted binding of the 

compound DP2392-E10 near HEAT repeats 9 and 10 [57]. The binding of DP2392-E10 outside the 

NES-binding cleft was predicted by in silico study that involved molecular modelling and docking 

simulation. In that study a molecular model of human CRM1 was constructed by homology 

modelling using unliganded CRM1 from Chaetomium thermophilum (PDB ID 4FGV) as a template 

[57]. The constructed model was then recruited for the identification of potential binding sides 

using the site finder function in MOE software suite, which identified a total of 45 binding pockets 

within the prepared model. Here we followed the same approach for the identification of 

potential ligand binding sites, but alternatively using human CRM1 from the complex HsCRM1 Δ -

HsRanGTP-LMB crystal structure (PDB-ID 6TVO; HUPB), which provide an experimental model 

representing an inhibitor-bound human CRM1. A total of 47 potential ligand binding sites within 

the experimental model were defined by Site Finder module of MOE program.  

The potential binding sites are mainly distributed at the outer surface of human CRM1 toroid, 

manly in the grooves between the HEAT repeat helices (Figure 6, side view). Several potential 

binding sites were also identified at the top of the HEAT repeats in the grooves formed between 

the linker loops of neighboring HEAT repeats (Figure 6, top view). In contrast, only few binding 

sites were identified at the lower side of the protein (Figure 6, bottom view). Few pockets formed 

at the interaction surfaces between the N and the C termini and between the acidic loop and the 

nearby HEAT repeats were also identified as potential binding sites (Figure 6, bottom view). 

However, these pockets are transiently present and only formed due to the stabilization of CRM1 

in the conformation displayed by the crystal structure and therefore are less likely to be 

considerable binding sites.  
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Figure 6: Potential binding sites of CRM1 inhibitors presented on the surface of human CRM1. 

Candidate binding sites (filled with orange spheres) were detected using the Alpha Site Finder 

function of the program MOE. CRM1 is depicted in surface representation and gradient colored 

from the N-terminus (marine) to the C-terminus (white). The acidic loop is shown in pale green. 

 

3.3.5 DP2392-E10 docking demonstrates unique binding interactions at the base of the 

Acidic loop 

DP2392-E10 demonstrated potentials for anti-viral drugs as it was shown to reduce the 

replication of influenza A virus by interfering with CRM1 mediated transport of viral 

nucleoprotein (vRNP) [31]. Further experiments revealed DP2392-E10 inhibitory activity by direct 

binding to CRM1. In silico docking predicted the binding of the compound outside the NES-

binding cleft which suggested an alternative mechanism of action that is rather allosteric and 

thus different from the classical cysteine-dependent direct blockage of the NES- binding cleft 

[57]. The docking was based on homology model of human CRM1 as described in the previous 

section and in details by Chutiwitoonchai et al [57]. In our recent study we investigated DP2392-

E10 molecular mechanism of action by the dissociation of fluorescently labeled PKI Φ0Leu NES – 

CRM1 interaction as performed for the compounds C6, C3, and C10 using wild type and C528S 
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mutant of HsCRM1 (section 2.3.5). DP2392-E10 was able to dissociate NES binding to wild type 

HsCRM1 with an IC50 of 63 μM, in a similar range of C3 binding (IC50 = 59µM). Unlike C3, C6 and 

C10 the inhibitory activity of DP2392-E10 was not reduced when cysteine was changed to serine 

which strongly support its allosteric binding outside the NES-binding cleft. Furthermore, our 

experiments showed that DP2392-E10 can dissociate SPN1 binding to CRM1, unlike C3 when 

added at the same concentration, which also indicated DP2392-E10 to have alternative 

mechanism of action to that of C3.  In silico docking based on homology modeling by 

Chutiwitoonchai et al [57] provided a hint about DP2392-E10 binding to CRM1 summarized by its 

predicted binding near HEAT repeats 9 and 10.  

For better understanding of the novel binding mechanism of DP2392-E10 we aimed to obtain a 

detailed knowledge on its potential binding site and binding interactions by structure based in 

silico docking. Docking experiments were performed using human CRM1 model from the complex 

HsCRM1-HsRanGTP-LMB crystal structure (same model was used for potential binding side search). 

The missing loop connecting the helices 8B and 9A (Thr389-Val401) was constructed based on 

the loop structure of the exact sequence from mouse CRM1 (PDB-ID 3NBZ). The modeling of the 

loop was important for more accurate binding site identification and docking calculations due its 

critical location near HEAT repeats 9 and 10. Prior to docking calculations the model was prepared 

as described in materials and methods section. Docking was performed in the “rigid receptor” 

mode and the “induced fit” mode that allow for flexible interactions of the ligand with the 

docking site residues. Docking in the “rigid receptor” mode demonstrated the least binding 

energy for DP2392-E10 binding in a pocket located at the top of HEAT repeat 9 directly at the 

base of the acidic loop (HEAT9 loop) (Figure 7). The exact binding pocket and almost identical 

conformation exhibited the second lowest binding energy when docking was performed in the 

“induced fit” mode. Nevertheless, the pocket with the lowest binding energy score is a transiently 

formed pocket at the interaction surface between the acidic loop and nearby HEAT repeats and 

therefore was excluded as a true binding site. As a result, the most probable binding site of 

DP2392-E10 as suggested by rigid and induced fit docking is in is the pocket identified at the top 

of HEAT repeat 9, directly at the base of the acidic loop (Figure 7), which is also in alignment with 

previous prediction based on modeled HsCRM1. 
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Figure 7: The predicted binding of DP2392-E10 at the base of the acidic loop between HEAT repeats 

9 and 10 calculated by molecular docking in MOE software package. On the left, CRM1 is illustrated 

in cartoon representation and gradient colored from the N-terminus (marine) to the C-terminus 

(white), while the acidic loop is shown in pale green. On the right, a zoomed in view of the binding 

site depicted in surface representation. 

The docking pose shows the compound sandwiched between the first few residues of HEAT9 loop 

- that extend to form the acidic loop - and the residues of the upper part of HEAT repeat 10 

(Figures 7 and 8A). DP2392-E10 is positioned at the top of HEAT repeat 9A with its nitrobenzene 

ring pointing towards the acidic loop, whereas the methoxyethane group at the opposite side is 

embedded between HEAT helices 10A and 10B (Figure 8A). This predicted binding mode 

demonstrates a non-covalent network of mostly polar contacts and electrostatic interactions 

involving the residues Ser422, Arg423, and Lys426 at the base of HEAT9 loop, Lys479, Glu488, 

Gln483 of HEAT 10A, and Lys492, Asn493, and Thr496 of HEAT 10B (Figures 8A and 8B). 

Moreover, the predicted interaction network exhibit hydrophobic interactions with the residues 

Met424 and Ala425 at the base of HEAT9 loop, and the residue Trp499 of HEAT 10B (Figures 8A 

and 8B).  

Altogether, the predicted binding interactions that involves several residues at the base of the acidic 

loop, supported by the biochemical experiment results, proposes a novel inhibitory mechanism of 

DP2392-E10 that is based on the allosteric interference with NES - CRM1 binding  by modulating the 

conformation of the acidic loop.  
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Figure 8: Molecular docking model of binding interactions of DP2392-E10 and human CRM1 generated 

by induced fit docking using MOE software. (A) A detailed view of the DP2392-E10 putative binding 

pocket (cartoon representation) showing the amino acids (depicted as sticks) that are involved in 

the inhibitor binding. The compound DP2392-E10 is shown as a stick model (carbon in yellow, 

oxygen in red and nitrogen in blue). Polar contacts are shown as black dashed lines. (B) 2D depiction 

of DP2392-E10 docking interactions with human CRM1 generated in MOE software.  

3.4 Discussion  

In our recent study we performed a biochemical characterization of the novel CRM1 inhibitions: 

compounds C3, C6, C10, and DP2392-E10. We also compared the interaction of these compounds 

towards human CRM1 and CRM1 from the yeast Saccharomyces cerevisiae that has been used as 

a model system for characterizing CRM1-inhibitors interaction over the last decade. Our results 

revealed the Cys528 dependent binding of the compounds C3 C6 and C10, despite the high 

variation in their chemical structure and composition (section 2.3.4). The compound DP2392-

E10, on the other hand, exhibited a unique interaction that is not dependent on the reactive 
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cysteine residue which suggested it allosteric mechanism of action (section 2.3.5). In order to 

gain a better understanding of the molecular mechanism of the novel inhibitors we aimed to 

obtain structural information on C3, C6, and C10 binding conformation and on DP2392-E10 

binding site and interactions. Since the yeast model was shown not to be valid for studying the 

compounds of interest (section 2.3.7) we focused on developing a crystallization approach that 

is based on human CRM1 - inhibitor complexes. Due to its high stability and strong binding 

affinity, LMB was used for crystallization screening of wild type - full length human CRM1 and 

several truncated and\or mutated variants. The intensive screening under different conditions 

succeeded to yield reasonably diffracting crystals when C-terminally truncated (Δ1037-1071) and 

acidic loop modified (430VLV432 to AAA) HsCRM1 variant was used in combination with RanGTP. 

Using the obtained approach, we were able to gain structural insights into LMB - HsCRM1 

interactions (section 2.3.1). However, when the same method was applied using the compound 

C6, the crystal structure revealed the unexpected covalent modification of the Cys528 by BME 

which became an obstacle towards obtaining structural information on C6 – CRM1 interactions 

(Figures 3 and 4). Although, BME was used as a reducing agent during CRM1 purification, mass 

spectrometry analysis of purified protein before and after mixing with crystallization buffer 

(Morpheus H10, Table 1) confirmed the modification to be induced by the buffer conditions. The 

reactivity of both the cysteine and BME is most probably induced due to the higher pH of 

crystallization buffer [58]. The utilized crystallization condition (Morpheus screen, H10) has a pH 

8.5 maintained by a mixture of Bicine and Tris added to 100 mM, while the purification buffer 

has a pH of 7.8 maintained by 50 mM HEPES (section 2.2.2). Changing the pH can induce the 

reactivity of the cysteine by the deprotonation of its thiol moiety (R-SH) when increased above 

its pKa which is approximated for cysteine residues in proteins ≈ 8.5 [59].  Furthermore, BME 

exhibit decreased stability as the pH increases which can lead to the formation of covalent 

adducts with surface cysteines [60].  Nevertheless, the covalent junction of Cys528 by BME was 

observed when C6 was used for crystallization but not when LMB was used, that was clearly 

defined by the electron density map of the crystal structure HsCRM1Δ-RanGTP-LMB (Chapter 2 - 

supplementary figure 2). This can be explained by the tight irreversible covalent binding of LMB 

to the Cys528. The incubation of CRM1 - inhibitor complexes prior to crystallization seems to be 

sufficient for LMB, as it binds in the nM range (IC50 = 151 nM), to irreversibly react with the 

cysteine, which results in a stable complex that prohibit the possible modification by BME upon 

subsequent mixing with the crystallization buffer. Whereas for C6, as it demonstrates weaker 

binding than LMB (IC50 = 4.2 µM) and due to the possibility of its reversible binding, such a 

persistent stability could not be achieved. In summary, although with the obtained crystallization 
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approach we were able to get a structural insight in human CRM1 -LMB interactions, the 

crystallization trials of C6 compound revealed that the applied approach exhibit some limitations 

due to the observed cysteine reactivity and therefore is still preliminary and requires further 

optimization.  These limitations can be avoided by screening for alternative crystallization 

condition or the usage of more stable reducing agent during protein preparation like Tris(2-

carboxyethyl)phosphine (TCEP)  that demonstrates a higher stability than BME at a wider pH 

range [61].  

As crystallization of the HsCRM1 complexes with compounds C3, C5 and C10 demonstrated 

difficulties, molecular docking using human CRM1 from HsCRM1Δ-RanGTP-LMB complex structure 

was applied for the prediction of their binding conformations. Docking calculations predicted a 

binding mode centered around the reactive cysteine for the compounds C3 and C6 (Figure 5B), 

which results in the blockade of 3 out of the 5 hydrophobic pockets in which the NES peptide 

specifically bind (Figures 5C and 5D). In contrast, the predicted binding of compound C10 was 

positioned below the reactive cysteine and revealed blocking of 2 out of the 5 hydrophobic 

pockets. Although both C3 and C6 mediates CRM1 inhibition by blocking the pockets Φ2, Φ3, and 

Φ4, the dissociation of NES binding by C3 exhibit 15 folds less binding affinity than C6 (section 

2.3.4). Furthermore, in the same assay, C10 exhibited 5 folds higher binding affinity than C3 even 

though it is predicted to block only the hydrophobic pockets Φ2, Φ3. Our results suggest that 

although the binding of all three compound is mediated by Cys528, their binding affinity is still 

strongly influenced by their mechanism of binding (covalent or not covalent), and  whether their 

binding is reversable or permanent,  which in turn vary according to the differences in their 

chemical composition and structural flexibility (Figures 5A). Furthermore, the predicted binding 

of C6 and C3 in a very close proximity to Cys528 might indicate their binding mechanism by the 

covalent conjugation of the cysteine. However, most docking programs can only predict non-

covalent interactions. Therefore, the possible covalent binding of the compounds C3 and C6 can 

be cleared by alternative approach like mass spectrometry and X-ray crystallography.  

In this study we also focused on the characterization of the compound DP2392-E10, which was 

predicted by in silico docking to bind near HEAT repeats 9 and 10 [57]. The predicted binding of 

DP2392-E10 outside the NES-binding cleft triggered us to search for other possible potential 

binding sites. Using the site finder tool of MOE software 47 potential ligand binding sites were 

identified in human CRM1 and were distributed mainly at the outer surface and the top (Figure 

6) of the protein from the N-terminus to the C-terminus. The potential binding of CRM1 inhibitors 

at different regions of CRM1 indicates for multiple possible mechanisms by which inhibitors can 
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interfere with NES peptide recognition or the formation of the ternary export complex. For 

example the binding at the around the N-terminal region, especially helices forming the RanGTP 

binding domain (CRIME) [62], can interfere with Ran binding in prevent the formation of a stable 

export complex. Furthermore, the binding of compounds near regulatory regions like the C- 

terminal region or the acidic loop can interfere with NES binding by altering the opened and 

closed states of the NES - binding cleft. Taken together, the inhibition of CRM1 is not restricted 

on the direct blockage of the NES-binding cleft, which is the mechanism of all well studied 

inhibitors, and can be rather mediated through several possible mechanisms induced by binding 

outside the NES-biding cleft indicating  a wide possibility for developing novel alternative drugs.  

To gain structural insight into DP2392-E10 binding to human CRM1 we performed docking in the 

“rigid receptor” and “induced fit” modes in the docking function of MOE software.  Docking 

experiment performed by Chutiwitoonchai et al [57] was based on a homology model of human 

CRM1 constructed using the crystal structure of unliganded CRM1 from Chaetomium 

thermophilum (PDB ID 4FGV) that represents CRM1 in the extended pitched conformation. Due 

to the high structural dynamic of CRM1, in this conformation the spacing between HEAT repeats 

is significantly reduced from that in the compact conformation - conformation stabilized in the 

liganded state - which change the dimensions of the identified binding pockets and consequently 

influence the minimal energy score during docking calculations. In addition, in this conformation 

the NES-binding cleft is significantly narrowed which may results in the false positive prediction 

of compounds binding outside the cleft [63]. Therefore, we performed our docking calculations 

using human CRM1 from HsCRM1Δ-RanGTP-LMB complex crystal structure which, besides being 

an experimental model, represents an inhibitor-bound state of CRM1. The docking experiments 

identified the binding of DP2392-E10 at the top of HEAT repeat 9 where its directly located at the 

base of the acidic loop. The identified binding location is very critical as the acidic loop, together 

with the C-terminal helix, is considered to be a key regulator of the NES- binding  cleft opening 

and closing mediated by overall conformational change of CRM1 [47], [63]. Furthermore, several 

structural studies demonstrated the acidic loop functions as an allosteric autoinhibitor that 

stabilizes CRM1 in a conformation that is unable to bind NES peptide in the absence of RanGTP 

[51]. This autoinhibitory effect is mediated by the ‘”flipped back” position  of the acidic loop in 

the absence of RanGTP where it interacts with the back of the NES-binding cleft specifically 

residues Val430, Leu431, and Val432 of acidic loop in human, which stabilized the NES-binding 

cleft in a closed conformation [51]. Upon the formation of the ternary export complex the binding 

of RanGTP induces a conformation change of the acidic loop leading to its detachment from the 
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back of the NES cleft and consequently the opening of the cleft which makes it accessible for the 

NES peptide [62], [63]. The effect of the acidic loop on the NES opening and closing was further 

supported by our fluorescence polarization binding assay on CRM1 PKI Φ0Leu NES interaction. 

Our data showed that introducing the acidic loop mutation (430VLV432 to AAA) causes a significant 

increase in NES binding affinity in the absence of RanGTP (Chapter 2 - supplementary figure 1), 

which further demonstrates the importance of the acidic loop as a key regulator of CRM1-NES 

interactions. The detailed interactions of DP2392-E10 in the proposed binding site reveal tight 

interactions with the base of the acidic loop, mediated by polar contacts and electrostatic 

interactions with the residues Ser422, Arg423, and Lys426 and hydrophobic interactions residues 

Met424 and Ala425. The binding of DP2392-E10 at the base of the acidic loop can allosterically 

induce the closure of the NES-binding cleft by modulating the conformation of the acidic loop. 

This proposed allosteric mechanism of DP2392-E10 can explain its dissociation of SPN1 binding 

despite its relatively low binding affinity compared to LMB or C6 (section 2.3.5). It furthermore 

explains its independent binding on the Cys528 and its binding to the wild type CRM1 from 

Saccharomyces cerevisiae (Chapter 2- figure 5). This renders DP2392-E10 a unique CRM1 inhibitor 

with potentials for developing a novel CRM1 targeting drug with an allosteric mechanism of 

action different from the classical mechanism of LMB and the synthetic KPT compounds.  

3.5 Conclusion  

In this study we combined a crystallographic approach and computational methods to gain 

structural insights into human CRM1 inhibition by the compounds C3, C6, C10, and DP2392-E10. 

Here we described our attempts to develop a crystallization approach that involve human CRM1-

inihibtor complexes. Using C-terminally truncated (Δ1037-1071) and acidic loop modified 

(430VLV432 to AAA) HsCRM1 variant in the complex with RanGTP we were able to solve the 

structure of CRM1Δ -RanGTP-LMB complex (explained in detail in our recent study (Chapter 2). 

The obtained structure of inhibitor-liganded human CRM1 served as a docking model for the 

prediction of binding conformations of C3, C6 and C10, as well as the prediction of binding site 

and conformation of DP2392-E10. Site specific- flexible docking indicated the binding of C3 and 

C6 in the NES-binding cleft is centered around Cys528 which results in the blockage of the 

hydrophobic pockets Φ2, Φ3, and Φ4. Whereas the binding of C10 was predicted to be 

positioned below the reactive cysteine blocking the pockets Φ2 and Φ3. Furthermore, using the 

site finder function of MOE software, a total of 47 potential ligand binding site were identified in 

human CRM1 which were distributed mainly at the out surface of CRM1. Further investigation 
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on DP2392-E10 identified its binding site located at the top of HEAT9 and directly at the base of 

the acidic loop. Docking experiments revealed that DP2392-E10 is likely to be stabilized by several 

electrostatic and hydrophobic interactions involving several residues at the base of the acidic 

loop, which together with the reported biochemical observations permit the conclusion that 

DP2392-E10 allosterically interferes NES binding by modulating the acidic loop conformation. 

Taken together, our structural analysis reveals a new aspect of CRM1 inhibition mediated by 

novel mechanism of action, which demonstrates strong potentials for the development of novel 

classes of anti-tumor and anti-viral drugs.  
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Chapter 4: Discussion 

Structural characterization of CRM1-inhibitor complexes has been previously performed using 

CRM1 from the yeast Saccharomyces cerevisiae that was genetically modified to bind classical 

CRM1 inhibitors (Chapter 1 - table 1). This yeast CRM1 variant has been used as a model system 

for studying the exportin interaction with several natural and synthetic inhibitors, which has led 

to the definition of a typical mechanism of CRM1 inhibition requiring the covalent modification 

of the reactive cysteine residue that is located in the NES-binding cleft (J. Etchin et al. 2013; 

Haines et al. 2015; Hing et al. 2016; Kalid et al. 2012; Lapalombella et al. 2012; Sun et al. 2013). 

The overall aim of this study was to obtain structural and biochemical insights into human CRM1 

inhibition. This work focused on the biochemical characterization and structural analysis of four 

novel nuclear export inhibitor candidates; the compounds: C3, C6, C10, and DP2392-E10 

(Chutiwitoonchai et al. 2017; Fetz et al. 2009). In addition, LMB was engaged in this study for the 

development of a crystallization approach that is feasible for human CRM1. The crystal structure 

of HsCRM1-HsRanGTP-LMB reported in this study together with several binding assays (involving 

inhibitor and NES peptide) revealed significant differences between human and yeast CRM1 in 

terms of binding affinities and binding interactions at the atomic level. Furthermore, integrative 

experimental and computational analysis of novel inhibitors showed that the compound C3, C6, 

and C10 dissociate CRM1-NES interaction by binding CRM1 through the reactive cysteine 

(Cys528). Docking calculations indicated similar binding modes of C3 and C6 that are centered 

around Cys528 and are different from the binding of C10 in the NES-binding cleft. In contrast, 

DP2392-E10 exhibited unique binding properties that lead to the dissociation of CRM1- NES 

interactions independent of the reactive cysteine.  Docking simulations predicted the binding of 

DP2392-E10 outside the NES-binding cleft, at the base of the acidic loop, suggesting a novel 

mechanism of CRM1 inhibition by the allosteric modulation of the NES-binding cleft. 

Furthermore, computational analysis of inhibitor-bound human CRM1 identified several 

potential ligand binding sites outside the NES-binding cleft. This implicates several possible 

mechanisms of inhibiting the exportin.   

While most aspects concerning these results were already discussed in detail in chapters 2 and 

3, the overall outcome of both sections will be discussed here in a broader perspective, focusing 

mainly on alternative mechanisms of CRM1 inhibition and potential structure-based methods for 

CRM1-targeting drug design.  
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4.1 High conformational stability is a major determinant of human CRM1 

crystallizability 

Screening for crystallization conditions of full length-wild type human CRM1 failed to yield 

crystals in the presence or the absence of RanGTP. A major factor that obstacles human CRM1 

crystallization is its high conformational flexibility, as in solution it samples between two extreme 

conformations, an extended and a compact one (Dölker et al. 2013; Monecke et al. 2013). In 

comparison to yeast CRM1, human CRM1 demonstrates a remarkably higher conformational 

flexibility that is mainly modulated by key structural elements including the C-terminal helix and 

the acidic loop (Dölker et al. 2013) (section 1.2.3). Truncating the C-terminal helix (Δ1037-1071) 

and modifying the acidic loop (430VLV432 to AAA) resulted in shifting the CRM1 conformational 

equilibrium towards the compact conformation which is characterized by an open and accessible 

NES-binding cleft (section 2.3.1). This was indicated by the pronounced increase of PKI Φ0Leu NES 

binding affinity in the absence of RanGTP towards the modified human CRM1 (HsCRM1Δ) 

compared to the wild type protein (Chapter 2 - supplementary figure 1).  

 

Figure 9: Crystal packing of HsCRM1-HsRanGTP-LMB complex. Cartoon representation of several 

asymmetric units of HsCRM1-HsRanGTP-LMB complex crystal along a axis of the unit cell (shown in 

green). RanGTP is colored orange and CRM1 is depicted in lightblue in one asymmetric unit and in 

marine in the other asymmetric units.  
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Crystallization screening of the HsCRM1Δ-LMB complex succeeded to yield diffracting crystals 

belonging to the space group I222. Interestingly, under the same conditions the crystals did not 

grow neither in the absence of RanGTP nor with the wild type protein. While the introduced 

mutations were needed to maintain CRM1 conformational stability, RanGTP was assumed to be 

involved in crystal contacts. However, crystal packing revealed that crystal contacts are mediated 

exclusively by CRM1 (Figure 9). This indicates that both the RanGTP and the introduced mutations 

are needed to maintain a persistent conformational stability that could only be achieved by both 

factors to permit crystallization of the complex. In addition to previous studies on CRM1 

conformational flexibility (Dölker et al. 2013; Monecke et al. 2013, 2014), this further indicates 

that the exceptional flexibility of human CRM1 is a major factor that renders the human protein 

more challenging to crystallize than the yeast variants (section 3.3.1).  

4.2 Molecular docking predicts a similar binding mode of C3 and C6 to SINEs KPT 

compounds   

Compounds C3, C6 and C10 were found to inhibit CRM1-dependent nuclear export in several 

cancer cell lines. However, their molecular target and mechanism remained to be elucidated 

(Fetz et al. 2009). This study revealed that all three compounds were able to dissociate CRM1 PKI 

Φ0Leu NES interaction in a concentration dependent fashion (section 2.3.4). Furthermore, their 

binding was shown to be dependent on Cys528, which indicated their mechanism of inhibition 

by the direct blockage of the NES binding cleft. Molecular docking predicted the binding of C3 

and C6 to be centered around Cys528 (section 3.3.3), which suggested a similar binding mode to 

KPT SINE compounds (section 2.3.3). SINE compounds share a common trifluoromethyl phenyl 

triazole scaffold with a Michael addition acceptor side chain (Chapter 1 - table 1) that permits the 

covalent junction to Cys528 (G. Gravina et al. 2014; Inoue et al. 2013; Lapalombella et al. 2012; 

Sendino et al. 2018; Sun et al. 2016; Zhang et al. 2013). The structural alignment of KPT251 bound 

to ScCRM1 with the docked C3 and C6 compounds to HsCRM1 (Figure 10) reveals multiple similar 

binding properties. All three compounds C6, C3, and KPT251 occupy a similar region in the upper 

half of the NES-binding cleft. The binding region of these three ligands covers approximately 40 

% of the hydrophobic cleft surface which results in the blockage of 3 out of 5 hydrophobic pockets 

(Φ2 – Φ4) that serve as docking sites for the NES peptide critical hydrophobic residues (Figure 10 

B, C, and D). Furthermore, this alignment shows that predicted binding conformation of C6 in 
HsCRM1 is highly similar to the binding conformation of KPT521 in ScCRM1, although both 

compounds are shifted by about 1.3 A relative to each other (Figure 10 C). In contrast, C3, which 
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binds in the same region, reveals larger differences (Figure 10 B). This is most likely due to 

structural dissimilarity of C3 when compared to C6 and KPT251 (Figure 10 A). 

 

Figure 10: Structural alignment of docked C3 and C6 with KPT251 bound to ScCRM1. (A) chemical 

drawings of the compounds C3, C6, and KPT251. Superposition of KPT251 (dark green) with C3 (grey) 

and C6 (cyan) in (B) and (C) respectively. The compounds as well as the Cys528 of HsCRM1 and 

Cys539 of ScCRM1 are depicted as sticks. (D) Surface representation of the upper part of HsCRM1 

NES-binding cleft showing the respective Φ pockets (Φ2 - Φ4) that are involved in NES peptide 

binding. Hydrophobic regions are colored grey.  

Nevertheless, while the reactivity of SINE compounds is dependent on Michael type addition, the 

performed docking calculations can’t predict potential reactivity or modifications of the tested 

compounds towards Cys528 (Trott and Olson 2010). Furthermore, during docking calculation the 

sulfur of the cysteine generates an energy barrier (repulsive interaction) that restricts the 

predicted position of the compounds to a certain distance from the reactive cysteine. This might 

result in a less reliable prediction in case of compounds known to form a covalent adduct to 

Cys528 like classical NES inhibitors. Therefore, docking simulations in this context provide a 

probable insight into binding orientation and position within the hydrophobic cleft. However, the 

exact binding conformation and the atomic interactions should be verified experimentally.  
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4.3 Alternative mechanisms of CRM1 mediated nuclear export inhibition  

4.3.1 Allosteric modulation of the NES-binding cleft  

All previously studied CRM1 inhibitors share a common mechanism that is based on interfering 

CRM1-cargo interactions by the direct blockage of the NES-binding cleft (Dickmanns et al. 2015; 

Sendino et al. 2018; Sun et al. 2016). Very recently the compounds DP2392-E10 was predicted by 

in silico docking to bind in the region between HEAT repeats 9 and 10 (Chutiwitoonchai et al. 

2017). In this study, DP2392-E10 interference with CRM1 interactions was revealed to be 

independent on Cys528 (section 2.3.5), which further strengthened its predicted binding outside 

the NES-binding cleft. In addition, when tested at similar concentrations to C3 and C10, DP2392-

E10 could dissociate the binding of the exceptional CRM1 cargo SPN1 that binds CRM1 in multiple 

regions besides its NES peptide (Chapter 2 - figure 4). This further implies DP2392-E10-based 

inhibition mechanism to be of an allosteric nature and independent on direct blockage of the NES 

cleft which, in the performed assay, requires the competition with tight SPN1 interactions 

(section 2.3.5). During this study docking simulations have been performed under different 

settings and using the atomic coordinates derived from experimentally determined crystal 

structure of inhibitor-bound human CRM1 (HsCRM1-HsRanGTP-LMB complex). Docking 

calculations of DP2392-E10 with different settings defined a binding region at the upper side of 

HEAT9 and at the base of the acidic loop (section 3.3.5). Furthermore, predicted binding 

conformation suggest a unique non-covalent interaction mode that involves several residues of 

HEAT9 loop which extends to form the acidic loop (section 3.3.5). Docking calculations supported 

by the experimental findings suggest a novel mechanism of CRM1 inhibition that is based on 

interfering exportin - cargo interactions by the allosteric modulation of the NES-binding cleft. In 

the case of DP2392-E10, this can be achieved by altering the conformation of the acidic loop 

which is a key structural element in CRM1 conformational transition and cargo release (Dölker et 

al. 2013; Koyama and Matsuura 2010; Monecke et al. 2014). These findings define a new aspect 

of CRM1 inhibition that is not based on reactive compounds. The development of CRM1 targeting 

compounds with such properties outcompetes the current nuclear export inhibitors by exhibiting 

less toxicity during clinical evaluation.   

4.3.2 Interference with RanGTP interactions  

The nuclear export of a CRM1 cargo is strictly dependent on the formation of a ternary export 

complex that involves RanGTP and the cargo protein. The assembly of a stable complex is 

mediated by the cooperative binding of RanGTP and the cargo protein to CRM1. In the absence 
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of RanGTP most cargoes exhibit low affinity towards the export receptor and therefore the export 

process cannot be initiated (Monecke et al. 2014). While all known CRM1 inhibitors interfere with 

cargo binding, nuclear transport can also be inhibited by interfering transport receptor - RanGTP 

interaction (Hill et al. 2014). Computational analysis of potential ligand binding sites using human 

CRM1 from the complex HsCRM1-HsRanGTP-LMB crystal structure identified more than 40 

potential binding sites outside the NES-binding cleft (section 3.3.4). Most sites were distributed 

at the outer surface of the protein, whereas few sites were identified at the inner surface of HEAT 

repeats 2 and 3. This region is known as the CRIME domain and it represents the binding site of 

RanGTP (Petosa et al. 2004). The identified potential ligand binding site at the CRIME domain 

indicates for the possibly of developing CRM1 inhibitors that prevent or disturb RanGTP binding. 

Such an approach has been already applied for the identification of nuclear import inhibitors that 

affect the importin β - RanGTP interaction (Hintersteiner et al. 2010; Soderholm et al. 2011).  

Karyostatin 1A is a compound that inhibits importin β mediated nuclear import of GFP-NFAT in 

HeLa cells. Karyostatin 1A was initially identified in an affinity-based screening by confocal 

nanoscanning. Further analysis revealed that Karyostatin 1A acts by the selective binding to 

importin β that disrupts its interactions with RanGTP (Hintersteiner et al. 2010).  In another study, 

FRET-based high throughput screen that detects the interaction between importin β and RanGTP 

identified an inhibitor named importazole, a 2,4-diaminoquinazoline. Importazole mechanism is 

based on interfering importin β - RanGTP interaction; it also exhibits high specificity towards 

importin β and was shown to block the nuclear import in Xenopus egg extracts as well as in 

cultured cells (Soderholm et al. 2011). These examples provide an experimental evidence that 

inhibiting RanGTP interaction with the transport receptor can be a considerable approach for the 

development of anti-tumor and anti-viral drugs that target the nucleocytoplasmic transport 

machinery.   

4.3.3 Interfering CRM1 translocation through the nuclear pore complex 

Interfering the association of the export complex with the NPC represents an alternative 

mechanism that has not been yet addressed or considered for inhibiting CRM1 mediated nuclear 

export.  This is most likely due to the insufficient knowledge on CRM1 interaction with the NPC 

from a structural perspective. The crystal structure of human CRM1 in complex with a Nup214 

fragment that contains 8 FG-repeat motifs was recently published, and it is the first crystal 

structure that provided an insight into CRM1 interactions with the NPC (Port et al. 2015). Soon 

after, another structure of ScCRM1 in complex with SxFG/PxFG repeat peptide of the yeast Nup42 

was released (Koyama et al. 2017). Both structures revealed that CRM1 interactions with FG-
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repeats is mediated by the binding of FG motifs as the main anchor points of FG-repeat peptides 

(Koyama et al. 2017; Port et al. 2015). FG motifs were shown to bind CRM1 in specific pockets 

that are distributed at the outer surface of the transport receptor at the N- and C- termini (section 

1.2.4). This characteristic binding of FG-repeats is important to maintain the export complex 

stability during transportation and to allow the complex translocation through the NPC (Koyama 

et al. 2017; Port et al. 2015). During this study, human CRM1 from the complex HsCRM1-

HsRanGTP-LMB crystal structure was subjected to computational analysis for the identification of 

potential ligand binding sites. Most of the identified binding sites are distributed at the outer 

surface of CRM1 (Chapter 3 - figure 6) which strongly indicated the possibility to inhibit the export 

receptor by disrupting its translocation through the NPC.  

 

Figure 11: Structural alignment of human CRM1 showing potential ligand binding site with CRM1-

bound Nup214 FG repeat fragment in (A) and with CRM1-bound Nup42 FG repeat fragments in (B). 

binding sites (filled with orange spheres) were detected using the Alpha Site Finder function of the 

program MOE. FG repeat fragments are shown in cartoon representation (Nup214 in red, Nup42 in 

green) with FG motifs depicted as spheres. FG motif binding sites are indicated as P1-P8 for Nup214 

fragment and as S1-S5 for Nup42 fragments. Binding pockets that align with potential binding sites 

are circled with a dashed line.  
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Interestingly, the alignment of potential ligand binding sites, identified by Site Finder application 

available in MOE software package, with CRM1-NUPs FG-repeats complex structures unveiled 

overlap in case of several FG binding pockets (Figure 11) (Anon n.d.; Tøndel, Anderssen, and 

Drabløs 2006). Six out of eight binding pockets (P1-P8) of Nup214  (Figure 11 A) fragment FG 

motifs as well as two out of five binding pockets (S1-S5) of Nup42 FG motifs were identified as 

potential ligand binding sites at the outer surface of CRM1 (Figure 11 B). Most of the identified 

pockets are highly conserved among distantly related species what indicates their functional 

importance (Koyama et al. 2017; Port et al. 2015). Furthermore, the identified pockets are 

suggested to be involved in the binding of other NUPs which was experimentally proven for 

Nup62 and RanBP3, an FG-repeat containing nucleoporin-like protein (Port et al. 2015). These 

findings together with the biochemical and functional analysis performed in both studies strongly 

indicate that the blocking of FG motifs binding pockets interferes with transport receptor 

translocation through the NPC. Interfering CRM1 interaction with the NPC may reduce CRM1-

mediated export which might be a more reliable and less toxic approach to counteract its 

overexpression in several cancer diseases. This concept has been already considered for the 

inhibition of nuclear import mediated by importin β (Ambrus et al. 2010; Gasiorowski and Dean 

2003), for which several structures with FG repeats were reported over the last two decades 

(Bayliss et al. 2002, 2000; Isgro and Schulten 2005; Liu and Stewart 2005). A peptidomimetic 

inhibitor that mimics the FXFG motif was identified as an inhibitor of the importin-α/β mediated 

import. (Ambrus et al. 2010) The identified peptidomimetic compound exhibited a selective 

inhibition of importin α/β mediated transport (Ambrus et al. 2010), indicating that this approach 

has potentials for developing nuclear transport inhibitors with high specificity.  

4.4 Structure-based methods in the discovery and development of CRM1 

targeting drugs  

4.4.1 Structure-based virtual screening  

 A typical drug discovery and development process undergoes several stages including target 

selection, hit identification, lead optimization, preclinical and clinical evaluations (Hughes et al. 

2011). Mechanisms of CRM1 inhibition explained in the previous section are based on developing 

inhibitors that bind in specific sites distributed at the protein surface. Structure-based virtual 

screening, a method based on computational modeling and docking, is applied at early stages of 

drug discovery for the identification of compounds that might bind in a specific pocket within an 

enzyme or a receptor ‘hits’. Virtual screening has been used as a principle technique in drug 
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discovery over the last decade as it has proven to be more time- and cost- efficient than other 

methods applied for hits identification (Kontoyianni 2017; Lionta et al. 2014). During virtual 

screening a library of compounds is docked in a binding pocket of a protein, for example, a 

potential ligand binding site in CRM1. A scoring function is applied for evaluating the binding 

efficiency (binding free energy) for number of solutions (poses) per each compound. Top-ranked 

compounds are usually redocked and scored for extra precision and a subset is then chosen for 

experimental approval of positive hits (Kontoyianni 2017; Lionta et al. 2014). Virtual screening 

has been already applied for CRM1 in the NES-binding cleft and resulted in the development of 

SINE KPT compounds (Kalid et al. 2012), which showed a pronounced progress in the 

development of CRM1 targeting anti-tumor drugs (Wang and Liu 2019).  Consensus induced fit 

docking was performed using CRM1 crystal structure available at that time (cargo bound; PDB ID: 

3GJX). The applied docking approach was initially tested on N-azolylacrylate analogs as well as 

CBS9106 and afterwards was applied for screening a library of ~ 250000 compounds.  Based on 

the docking results a total of 402 compounds were selected for experimental evaluation. 17 of 

these compounds exhibited a binding affinity below 100 µM which conformed the efficiency of 

this approach for the identification of CRM1 promising targeting hits (Kalid et al. 2012). The 

complex HsCRM1-HsRanGTP-LMB crystal structure obtained in this study is the first structure of 

inhibitor-bound human CRM1 (section 2.3.1). The improvement and the development of several 

docking approaches over the last decade (Kontoyianni 2017) together with the obtained 

inhibitor-bound human CRM1 crystal structure provide an efficient and reliable framework for 

the development of CRM1 inhibitors that target potential sites outside the NES-binding cleft. 

Furthermore, the fluorescence polarization competition assay, presented in this study (section 

2.2.7) is an efficient tool for the experimental evaluation of identified hit that may allosterically 

inhibit cargo binding or interfere CRM1-RanGTP interaction.       

4.4.2 Crystallographic fragment screening 

Crystallographic fragment screening is a structure-guided approach that is applied at early stages 

of drug discovery for the identification of lead compounds (Rees et al. 2004). The method is based 

on co-crystallization or socking target protein crystals with high concentrations of small molecule 

compounds (typically MW 110-250 Da) that represent fragments of potential drugs. Positive hits 

are identified by the visualizing their specific binding in electron density map based on the 

analysis of X-ray diffraction data obtained from prepared crystals (Badger 2012; Thomas et al. 

2019). Although this approach is more time consuming and labor intensive than virtual screening 

or high throughput screening (HTS), it offers several unique advantages over most other 
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techniques (Badger 2012; Patel, Bauman, and Arnold 2014). First, crystallographic screening is a 

highly sensitive approach that can detect ligands with binding affinity range of sub-nanomolar to 

millimolar. Second, positive hits are identified with a three-dimensional perspective of their 

binding confirmation with respect to the target pocket which provide valuable knowledge on 

potential optimization by fragment expansion, merging, or linking (Patel et al. 2014). 

Furthermore, crystallographic fragment screening shows few false positive hits in comparison 

with HTS or virtual screening (Badger 2012).  

 
Figure 12: Crystal packing of HsCRM1-HsRanGTP-LMB showing the NES-binding cleft is exposed to 

solvent channels. Ribbon representation of several asymmetric units showing CRM1 depicted in 

lightblue in one asymmetric unit and in marine in the other asymmetric units. RanGTP is depicted 

as orange ribbons and LMB is shown as spheres. In the left panel a surface representation of two 

neighboring molecules showing that the NES cleft, occupied by the LMB, as well as most of the outer 

side surface of CRM1 are not involved in crystal contacts and exposed to the solvent channels.  

Although co-crystallization with yeast ScCRM1 has been already applied for the structural 

characterization of known CRM1 inhibitors, crystallographic fragment screening for alternative 

novel inhibitors has not been yet reported in literature. This is most likely due to the 

crystallographic requirements of this approach.  In order for a target protein to be feasible for 

crystallographic fragment screening, it has to produce crystals that diffract to beyond medium 

resolution (around 2.5 Å) and provide an unblocked access to potential target sites (Badger 2012). 

Interestingly, the crystallization approach of human CRM1 that is developed in this study (section 

3.3.1), although it requires further improvement (section 3.4), demonstrates strong potentials to 

be developed for crystallographic fragment screening. Crystal packing of HsCRM1-HsRanGTP-LMB 

complex crystal shows that the crystal contacts are mainly mediated by the bottom surfaces of 
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neighbouring CRM1 molecules and thus causing the majority of the outer surface of the protein 

to be exposed to solvent channels. This unique arrangement of molecules within the crystal 

lattice renders the NES-binding cleft as well as most identified potential ligand binding sites 

solvent exposed and hence accessible by screened compounds (Figure 12). In addition, the 

majority of crystals yielded by this approach diffracted down to 3.5 - 3 Å before further treatment 

or optimization (section 3.3.1), suggesting that applying optimizations may improve their 

diffraction potentials to acceptable levels for crystallographic based screening.  These unique 

properties of the obtained crystals render the developed approach a valuable tool not only for 

crystallographic screening but also as a complementary tool for other methods applied in drug 

discovery.   

In summary, the work presented in this thesis provide a biochemical as well as an integrative 

experimental and computational structural insights into human CRM1 inhibition. This work 

revealed significant differences in inhibitors’ binding properties towards human and yeast 

ScCRM1 and thus demonstrates the importance of applying inhibitor studies on the human 

protein. Furthermore, the work presented here provide a general perspective on potential CRM1-

inhibitory mechanisms and possible structure-based methods for the development of novel 

nuclear export inhibiting drugs. Finally, the complex HsCRM1-HsRanGTP-LMB crystal structure 

obtained during this work represents a valuable tool for future studies on CRM1-targeting anti-

tumor and anti-viral drug design.    
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Outlook 

The work described in thesis focused on the biochemical and structural characterization of CRM1 

inhibitors using the human protein, which was observed to be more challenging to crystallize 

than the yeast variants.  Using LMB together with genetically modifying human CRM1 succeeded 

to gain the crystal structure of HsCRM1-HsRanGTP-LMB complex presented in this thesis. The 

obtained structure revealed several potentials that render the developed approach promising for 

crystallographic - based drug design. However, when the same approach was applied for the 

crystallization of the compound C6, the binding of the compound was prevented by the covalent 

modification of Cys528 by BME. Alternatively, computational docking was performed to predict 

the binding conformation of C3, C6, and C10. The docking method could only provide information 

on possible binding conformation, while the exact binding mode and potential reactivity with 

Cys528 are still to be elucidated experimentally. For this purpose, BME, which was introduced 

during protein purification as a reducing agent, must be excluded throughout the entire 

purification and crystallization procedures. TCEP, a reducing agent that is stable at a broader pH 

range compared to BME (Getz et al. 1999), can be applied as an alternative to maintain protein 

stability and prevent its aggregation during preparation. Second, although the diffraction power 

of the crystals can be improved by stepwise dehydration, improving the crystallization buffer 

conditions (for example by additive screening) might be a more efficient approach for robust 

production of complex crystals with improved diffraction power. Upon optimization, co-

crystallization can be applied to gain structural information on C3, C6, and C10 binding to CRM1.  

With respect to DP2392-E10, although it is predicted to bind outside the NES-binding cleft, it did 

not crystallize in complex with CRM1 and RanGTP under the same conditions as LMB or C6. The 

complex crystallization could be hindered by possible conformational changes that might be 

induced by DP2392-E10 binding. This implies that for this compound it might be necessary to 

perform a general screening to identify conditions that permit the crystallization of the complex 

in its altered conformation. Nevertheless, the predicted binding site and interactions can be 

verified experimentally by introducing several mutations in the suggested pocket and test the 

compound binding by the established fluorescence competition assay. It is very important in this 

experiment to test the stability and functionality of CRM1 after each mutation. This can be 

assessed by following the binding of the fluorescently labeled NES peptide and observe if its 

binding affinity towards the mutant is different from the wild type protein.  
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Lastly, in this thesis several alternative mechanisms were proposed for the inhibition of CRM1-

mediated nuclear export based on the identification of multiple potential ligand binding sites. 

Virtual screening can be performed using the inhibitor - bound human CRM1 structure obtained 

in this study as template for the identification of hit compounds in a specific potential binding 

site. The binding of the identified candidates can be verified experimentally using the 

fluorescence polarization competition assay described here. Furthermore, the crystallization 

approach, once it is optimized, can be applied for crystallographic based fragment screening as 

well as for the structural characterization of hit compounds identified by virtual screening.  
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Abbreviations 

Å                                    Angstrom 

AAA                               alanine-alanine-alanine 

APC                                Adenomatous polyposis coli protein 

BME                               2-Mercaptoethanol 

BRCA1                           Breast cancer susceptibility protein 1 

BARD1                           BRCA1-associated RING domain protein 1  

C. thermophilum          Chaetomium thermophilum 

CBD                                Cap binding domain  

CBP20                            Cap binding protein 20  

CBP20                            Cap binding protein 80 

CDK                                Cyclin/cyclin-dependent kinase 

cFID                                Consensus Induced Fit Docking  

cNLS                               Classical NLS  

CRM1                             Chromosome Region Maintenance 1 

Ct                                                        Chaetomium thermophilum 

CtCRM1                           CRM1 from Chaetomium thermophilum 

C-terminal                     Carboxy-terminal 

Da                                   Dalton 

DESY                               Deutsches Elektronen-Synchrotron 

DNA                                Deoxyribonucleic acid 

EM                                  Electron microscopy  

EMBL                              European Molecular Biology Laboratory 

FG repeats                     Phenylalanine-glycine repeats  

FG-nucleoporins           Phenylalanine-glycine nucleoporins   

FOXO                              Forkhead box 

FP                                    Fluorescence polarization  
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GDP                                Guanosine-5'-diphosphate 

GSK-3β                           Glycogen synthase kinase 3 beta  

GTP                                 Guanosine-5'-triphosphate 

H. sapiens                      Homo sapiens  

His6                                  Hexa histidine-tag 

HIV                                   Human immunodeficiency virus 

HIV-1                               Human immunodeficiency virus type 1 

Hs                                                         Homo sapiens 

HsCRM1                           CRM1 from Homo sapiens   

HsCRM1Δ                          HEAT 9 loop mutant and C-terminally truncated human CRM1  

HTS                                  High throughput screening  

HUPB                               Hold until publication  

IC50                                                    Half-maximal inhibitory concentration 

IPTG                                 Isopropyl β-D1-thiogalactopyranoside 

 Kd                                    Dissociation constants  

kDa                                   Kilodalton 

LC-MS                              Liquid chromatography-mass spectrometry  

LMB                                  Leptomycin B  

M. musculus                   Mus musculus 

m7G                                 7-methylguanylate 

MBP                                 Maltose-binding protein  

MD                                   Molecular dynamics  

MDa                                 Megadalton     

MOE                                 Molecular operating environment 

mRNA                               Messenger ribonucleic acid 

MWCO                             Molecular weight cut off 

NEP                                   Nuclear export viral protein  
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NES                                    Nuclear export signal 

nESI                                   Nano-electrospray IONIZATION 

NFAT                                 Nuclear factor of activated T-cells 

NLS                                    Nuclear Localization Signal  

NPC                                   Nuclear pore complex  

N-terminal                       Amino-terminal 

NTF2                                 Nuclear transport factor 2  

NUPs                                 Nucleoporins 

OD                                     Optical density  

PAA                                   Polyacrylic acid   

PAGE                                 Polyacrylamide gel electrophoresis 

PDB                                   Protein data bank  

PDB-ID                              PDB identification code  

PEG                                   Polyethylene glycol 

PHAX                                Phosphorylated adapter of RNA export 

pKa                                    Negative base-10 logarithm of the acid dissociation constant 

PKI                                    Protein kinase A inhibitor 

Ran                                   Small GTPase Ras-related antigen 

RanBP1                            Ran binding protein 1   

RanBP2                            Ran binding protein 2   

RanGAP1                         Ran GTPase activating protein   

RanGEF                            Ran guanine nucleotide exchange factor  

Rb                                     Retinoblastoma   

RCC1                                Regulator of chromosome condensation 1  

RNA                                  Ribonucleic acid 

RNP                                  Ribonucleoprotein   

RRE                                  Rev response element  
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R-SH                                 Thiol moiety   

rSUs                                 Ribosomal subunits  

RT                                     Retention time  

S. cerevisiae                   Saccharomyces cerevisiae 

SAXS                                Small-angle X-ray scattering  

Sc                                                        Saccharomyces cerevisiae 

ScCRM1                           CRM1 from Saccharomyces cerevisiae 

SDS                                  Sodium dodecyl sulfate 

SINEs                              Selective inhibitors of nuclear export   

snRNAs                           Small nuclear RNAs   

SPN1                               Snurportin 1  

TCEP                               Tris(2-carboxyethyl)phosphine   

UsnRNP                          Uridine-rich small nuclear RNP  

VLV                                  valine-leucine-valine 

vRNP                               viral ribonucleoproteins  

w/v                                  Wight to volume ratio  

wt                                    Wild type 
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