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Abstract

Saccharomyces cerevisiae can generate energy in form of ATP either by fermenting or by

respiring nutrition. This depends on the availability of fermentable or non-fermentable

carbon sources. The respective energy metabolism of yeast cells affects protein

abundances and protein-protein interactions (PPIs). This is also observed in respective

mitochondria, organelles in eukaryotic cells that are key players in ATP production under

respiratory conditions. Proteins and their abundances can be identified by mass

spectrometry (MS). In combination with chemical protein-protein cross-linking, MS is also

capable of identifying hundreds of protein-protein cross-links in a single sample (XL-MS).

A cross-linker induces a covalent bond between reactive amino acids providing low-

resolution information about their proximity to each other under native conditions. In this

thesis, protein-protein cross-linking networks in mitochondria isolated from yeast grown

either on glucose, a fermentable carbon source, or on glycerol, a non-fermentable carbon

source, were elucidated by XL-MS. Mitochondria were treated with the non-cleavable

cross-linker BS3 and cross-linked peptides were identified by separate database searches

covering the 400 most abundant proteins for each condition. This approach resulted in 386

and 396 uniquely identified protein-protein cross-links in the glucose and the glycerol

condition, respectively. Additionally, a quantitative analysis of residue-to-residue cross-

links between both conditions was performed by using an isotopically labeled cross-linker.

However, differences in protein abundances induced by the carbon sources rather than

PPI dynamics were the main driving force for the obtained significant changes. In

mitochondria derived from yeast grown on glycerol-containing medium, the internal

NADH:ubiquinone oxidoreductase Ndi1 located in the matrix of mitochondria was shown

to participate in an Ndi1CIII2CIV2 electron transport chain supercomplex. Also, hitherto

undescribed interactions and interactions of uncharacterized proteins were identified.

Amongst them, the association of Min8 to the cytochrome c oxidase was revealed.

Biochemical experiments further corroborated this interaction and could show that Min8

might be involved in the assembly of Cox12 into an intermediate complex of cytochrome

c oxidase. The established cross-linking workflow was also applied to mitoplasts

generated from mitochondria of human HEK cells. Here, it could be demonstrated that the

use of cross-linkers with different reaction chemistries improves the results by providing

complementary protein-protein cross-links.
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1. Introduction

1.1. Saccharomyces cerevisiae and its role as model organism

The baker’s yeast Saccharomyces cerevisiae is a prime example of a eukaryotic model

organism used in scientific research. Albeit being one of the simplest eukaryotic

organisms, it shares many of the essential cellular processes with humans. This

accompanied by a fully sequenced genome and the ease of manipulation1 has made yeast

instrumental to study gene expression regulation2, metabolism3, aging4, apoptosis5 and

neurodegenerative diseases6, amongst others. Particularly in the study of human diseases

and the transfer of significant results to Homo sapiens, the use of yeast as model organism

seems reasonable as 30 % of genes involved in human diseases are estimated to have

orthologs in yeast7. S. cerevisiae, also known as budding yeast, can be cultured under

various conditions in laboratories and by its short generation time it produces sufficient

material for biochemical research in a cost- and time-efficient manner1. The fully

sequenced genome not only paved the way for genetic engineering, but also to unravel

the whole proteome, counting a total of 6049 proteins (according to the UniProt reference

proteome of Saccharomyces cerevisiae, May 2020). This, in turn, encouraged researchers

to address scientific questions that could not be answered by genetic analyses alone.

Post-translational modifications (PTMs) of proteins8, their abundances9,10 and their

interactions to other proteins11 play an important role in the investigation of biological

processes. S. cerevisiae emerged as an optimal model organism specifically for

researching the biological functions and biogenesis of mitochondria1, organelles that

perform tasks that are tremendously important for cell survival12. Dysfunctional

mitochondria are linked to diseases such as Leigh and Barth syndromes13 but also to

neurodegenerative diseases such as Parkinson’s or Alzheimer’s diseases14, giving

impetus for research on mitochondria.

1.2. Morphology and function of mitochondria

Mitochondria are commonly referred to as “powerhouses” in eukaryotic cells generating

ATP, the major energy source. Originated from α-proteobacteria15, mitochondria are

organelles consisting of two membranes, the outer membrane (OM) and the inner

membrane (IM). Consequently, this leads to the formation of two soluble compartments,

the intermembrane space (IMS) located between both membranes and the matrix,

enclosed by the IM. The IM has a much larger surface than the OM due to the formation

of cristae protruding into the matrix (Figure 1). This shape is mainly affected by the
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mitochondrial contact-site and cristae-organizing system16,17 (MICOS) and the F1F0 ATP

synthase that forms a V-shaped dimeric structure18-20. The F1F0 ATP synthase is also one

of the key players in energy production. The IM harbors all complexes of the electron

transport chain (ETC) – four in mammals and three in yeast – representing a huge redox

reaction network. The ETC together with the F1F0 ATP synthase form the oxidative

phosphorylation (OXPHOS) system covering the main ATP demand of a cell. In the early

days, it was the focus of mitochondrial research to unravel the mystery behind ATP

production. In the last two decades, it became more and more clear that mitochondria are

not only involved in bioenergetics, but also in other important cell processes such as the

metabolism of amino acids and lipids21, providing iron-sulfur (Fe/S) clusters22 or triggering

apoptosis23, amongst others (Figure 1). Mitochondria possess their own genome

(mitochondrial DNA, mtDNA) encoding two rRNAs, tRNAs and eight proteins in yeast24

and 13 proteins in mammals25, accompanied by their own mitochondrial ribosome

(mitoribosome)26-28.

Figure 1: Morphology and functions of a mitochondrion. Mitochondria are organelles with four
subcompartments: the outer membrane (OM), the intermembrane space (IMS), the inner
membrane (IM) and the matrix. The IM forms invaginations called cristae. Depicted are selected
key functions such as the oxidative phosphorylation (OXPHOS) system including complexes II-IV
(in yeast) and the F1F0 ATP synthase dimer for ATP production, the tricarboxylic acid (TCA) cycle
for generating redox equivalents, the mitochondrial DNA (mtDNA), the mitochondrial ribosome
(mitoribosome), iron-sulfur (Fe/S) cluster generation, protein import via the translocase of the outer
and inner membrane (TOM/TIM) and apoptosis (in mammals). Not drawn to scale and without
claiming completeness. Adapted by permission from Pfanner, Warscheid and Wiedemann21.
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With all the tasks mitochondria have to fulfill it immediately becomes clear that more

proteins are necessary. The mitochondrial proteome consists of approximately 1000

proteins in yeast29 and 1500 proteins in mammals30. Consequently, 99 % of mitochondrial

proteins are encoded by genes located in the nucleus. These proteins have to be imported

into and translocated by mitochondria. This is accomplished by translocases of the outer

and the inner membranes (TOM and TIM)31,32. All these functions keep a cell alive and are

achieved by plenty of mitochondria, forming a dynamic network promoted by constant

fusion and fission events33. This network underlies changes depending on cell types, the

cell’s energy demand and availability of nutritions34. Mitochondria in S. cerevisiae grown

on fermentable carbon sources show unbranched and short networks, while a non-

fermentable carbon source induces large branched networks35.

1.3. Genome maintenance in mitochondria

Mitochondrial DNA (mtDNA) is approximately 70-85 kilobase pairs long in S. cerevisiae36.

It encodes two rRNAs, all tRNAs and eight proteins in yeast and 13 proteins in mammals

comprising hydrophobic core subunits of complexes within the respiratory chain and

subunits of the F1F0 ATP synthase37,38. At least for growth in non-fermentable carbon

sources an intact mtDNA is, thus, indispensable for cell survival. Like in other

compartments of the cell that contain DNA, mitochondria harbor machineries for DNA

packaging, transcription, translation and repairing. The mtDNA is wrapped around DNA-

binding proteins to form nucleoids39. In yeast, the main protein for packaging is Abf240. The

mitochondrial RNA polymerase Rpo4141,42 transcribes the DNA to RNA in yeast, which is

finally translated into proteins by the mitochondrial ribosome26,27. In case of DNA damage,

not only general mechanisms such as base excision and mismatch repair, amongst others,

have been reported to occur, but also mitochondria-specific events43,44. Surprisingly,

maintenance and stability of mtDNA is supported by proteins with a dual role such as

proteins usually involved in energy metabolism45 or amino acid biosynthesis46. This was

investigated by the knockout of respective genes in yeast strains with subsequent

screening and testing for respiratory-deficient mutants, so-called petite mutants. These

mutants either contain severely damaged mtDNA (rho- strains) or completely lack mtDNA

(rho0 strains). Since these strains cannot synthesize core proteins of the respiratory

system, they can only grow on fermentable media47. During evolution, mtDNA has lost

most of its genes due to redundancy with nuclear genes or their transfer to the nucleus48.

Consequently, 99 % of all mitochondrial proteins are encoded by nuclear DNA, and protein

import into mitochondria is essential for their functionality and cell viability32.
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1.4. Protein import into mitochondria

More than a thousand of mitochondrial proteins are translated in the cytosol and have to

be imported into and translocated by mitochondria. Most of those proteins carry

mitochondrial targeting signals located within the protein sequence or at the N-terminus,

positively charged and forming an amphipathic helix, depending on their final

destination49,50. Regardless of their mitochondrial localization, the translocase of the outer

membrane (TOM) complex is the main entry gate for the majority of the proteins51. Small

receptor subunits protruding to the cytosol interact with still unfolded precursor proteins

and guide them through a β-barrel shaped pore52. Consecutively, distinct sorting pathways

exist that lead the proteins to their target compartment. β-barrel shaped proteins of the OM

are sorted by the sorting and assembly machinery (SAM) complex53,54 in combination with

small translocase of the inner membrane (TIM) proteins55, while α-helical proteins are

translocated by the OM protein Mim156,57. Proteins whose final destination is the IMS are

further processed by the mitochondrial intermembrane space import and assembly (MIA)

machinery consisting of the receptor Mia40 and the sulfhydryl oxidase Erv158. Soluble

proteins possessing a cysteine-rich sequence motif are oxidatively folded by a disulfide

relay system that forms disulfide bridges within these proteins. Translocation of proteins

to the IM is mediated by the TIM22 and TIM23 complexes51. Precursor proteins entering

the IMS through the TOM complex are chaperoned by small TIMs and guided to the TIM22

complex59. After docking to a receptor protein, the precursor protein is forwarded to the

TIM22 pore. In a membrane potential (ΔΨ)-dependent manner, proteins are laterally

released into the lipid bilayer60-62. Major substrates of this pathway are metabolite

carriers51,63 such as the ADP/ATP carrier protein (Pet9). Proteins with an N-terminal

mitochondrial targeting signal are mainly substrates of the TIM23 complex64,65. After

passing through the TOM pore, receptor subunits of the TIM23 complex direct the

precursor protein to its pore forming subunit. To achieve this, both the TOM and the TIM23

complexes physically interact with each other, creating a TOM-TIM23 supercomplex66,67.

Depending on the protein’s sequence it is either laterally released into the IM driven by

ΔΨ68,69 or channeled to the matrix. Matrix translocation is fueled not only by ΔΨ but can

also be supported by the presequence translocase-associated import motor (PAM)

complex70,71. This complex associates with the TIM23 complex on the matrix-side, and,

driven by ATP hydrolysis, ultimately guides proteins to the matrix. Mitochondrial targeting

signals are finally digested by the mitochondrial processing peptidase (MPP) leading to

mature proteins49. Copy numbers of proteins belonging to TOM or TIM complexes are

comparably stable amongst different growth conditions and are barely affected by the cell’s

energy demand21,72.
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1.5. Energy metabolism of S. cerevisiae and the role of mitochondria

In the presence of oxygen, Saccharomyces cerevisiae can generate ATP either by

fermentation or by respiration, strongly depending on the available nutrition, the carbon

source. The preferred carbon source of S. cerevisiae is glucose, a fermentable carbon

source. Although oxygen is present, in high concentrations of glucose the cells start to

produce energy by fermentation. This is the so-called Crabtree effect73. Here, yeast cells

process glucose via the glycolytic pathway to pyruvate. Instead of fully respirate the

pyruvate via the oxidative phosphorylation system located in the mitochondria, pyruvate is

mainly reduced to ethanol74. This is accomplished by the pyruvate decarboxylase that

catalyzes the decarboxylation of pyruvate to acetaldehyde, and the alcohol

dehydrogenase that reduces acetaldehyde to ethanol, resulting in two ATP equivalents74.

Both reactions happen in the cytosol of the cells. In addition, the resulting acetaldehyde

after decarboxylation of pyruvate can be further oxidized to acetate by the cytosolic

aldehyde dehydrogenase and ultimately processed to acetyl-coenzyme A (acetyl-CoA) by

the acetyl-CoA synthetase. Acetyl-CoA can then be transported to mitochondria for full

respiration. Glucose induces repression of genes encoding proteins involved in the

respiratory pathway, the so-called glucose or catabolite repression75-77.

In contrast to the fermentable carbon source glucose, the non-fermentable carbon

source glycerol is metabolized differently and its metabolic flux is still under debate78. In

S. cerevisiae, glycerol is mainly catabolized via the L-G3P pathway. Glycerol is

phosphorylated to L-glycerol-3-phosphate (L-G3P) by the glycerol kinase and

subsequently oxidized to dihydroxyacetone phosphate by the FAD-dependent glycerol-3-

phosphate dehydrogenase79. Dihydroxyacetone phosphate, in turn, is then channeled to

the glycolysis pathway. The resulting pyruvate is transported into mitochondria and

processed to acetyl-CoA by the pyruvate dehydrogenase complex (PDH). Acetyl-CoA

enters the tricarboxylic acid (TCA) cycle in which it gets further oxidized to oxaloacetate in

a series of ten reactions. These reactions create redox equivalents such as NADH and

FADH2 that are, in turn, shuttled to the oxidative phosphorylation system to ultimately

reduce molecular oxygen to water. The respiratory pathway results in 18 ATP equivalents

in S. cerevisiae. Mitochondria also possess an aldehyde dehydrogenase (Ald4)80,

analogous to that found in the cytosol, and uses it to by-pass the PDH, similar to the acetyl-

CoA generation in the cytosol when glucose is used as carbon source. Acetaldehyde that

is produced by the pyruvate decarboxylate can be oxidized to acetate by Ald4, while NAD+

is reduced to NADH in the matrix and can be directly channeled to the respiratory chain.

Acetate is then processed to acetyl-CoA in the cytosol, which, in turn, is again channeled

to the TCA cycle. In the absence of glucose, catabolite repression is abolished resulting in
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higher abundances of proteins that are involved in the TCA cycle and the OXPHOS

system72.

1.6. The oxidative phosphorylation system

The oxidative phosphorylation (OXPHOS) describes the synthesis of energy-rich ATP

molecules by oxidation of the redox equivalents NADH and FADH2, the reduction of

molecular oxygen to water and by phosphorylation of ADP to ATP. This is accomplished

by chemiosmosis, hypothesized by Mitchell in 196181. The catabolism of carbon sources

such as glucose and glycerol to pyruvate, and their full oxidation via acetyl-CoA to

oxaloacetate in the TCA cycle, transfer electrons to NAD+ and FAD. Shuttled by these

redox equivalents, electrons are then transferred to complexes of the ETC, embedded in

the IM of mitochondria. Complex I (CI) – known as the NADH:ubiquinone oxidoreductase

in mammals –  and complex II (CII) – the succinate:ubiquinone oxidoreductase – are the

first contact points of NADH and FADH2 for electron transfer82. Ubiquinol shuttles the

electrons from CI and CII to complex III (CIII) – the ubiquinol:cytochrome c oxidoreductase

– which, in turn, transfers electrons to cytochrome c. Ultimately, cytochrome c transfers

electrons to complex IV (CIV) – the cytochrome c oxidase – that finally reduces molecular

oxygen to water. Redox reactions within the complexes are accompanied by electron

acceptors and donors such as iron-sulfur clusters, heme groups and copper ions by which

energy is transferred. CI, CIII and CIV use this energy to pump protons from the matrix

into the IMS, creating an electrochemical gradient. Yeast, however, does not harbor CI but

internal and external NADH:ubiquinone oxidoreductases – Ndi1 located in the matrix and

Nde1 and Nde2 in the IMS – that function as electron acceptors without pumping protons83.

The electrochemical gradient is ultimately utilized by the F1F0 ATP synthase, often referred

to as complex V (CV), also embedded in the IM. The created proton gradient is released

by CV which uses the energy to phosphorylate ADP to ATP.

1.6.1. Organization of the OXPHOS complexes

Two models were initially proposed to describe the organization of the OXPHOS

complexes: the “fluid state” and the “solid state” model84,85. Back in 1986, Hackenbrock et

al.86 summarized experimental evidences supporting the “fluid state” model. This model

describes a random distribution of all OXPHOS complexes within the IM of mitochondria.

It claims that electron transfer is accomplished by freely diffusing ubiquinone and

cytochrome c pools randomly interacting with the complexes of the ETC, freely floating

through the lipid bilayer as well. This, indeed, is supported by kinetic studies84. However,
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in the last two decades, the “solid state” model gained more and more attention. High-

molecular weight supercomplexes containing CI, CIII and CIV in mammals and CIII and

CIV in yeast were verified in different stoichiometries by blue native-polyacrylamide gel

electrophoresis (BN-PAGE) after mild solubilization of mitochondria87,88. A CI1CIII2CIV1

supercomplex is present in mammals and either a CIII2CIV2 or a CIII2CIV1 supercomplex

in yeast. These supercomplexes were termed “respirasomes”. Functional studies on

respirasomes corroborated their existence89. Further evidence for supercomplexes were

provided by medium-to-high-resolution structures obtained by cryogenic-electron

microscopy (cryo-EM)90-93. The structure of the yeast CIII2CIV(2) supercomplex could be

solved with a resolution of 3.35 Å91, and that of the human CI1CIII2CIV1 with a resolution

of 3.90 Å90. In the latter study, even a CI2CIII2CIV2 megacomplex with densities for CII was

proposed. By biochemical approaches such higher-order supercomplex structures were

also shown to include the F1F0 ATP synthase94 (“respiratory string”, human), the TIM23

complex95,96 (yeast) or the ADP/ATP carrier protein97,98 (Pet9, yeast). In addition, chemical

cross-linking in combination with mass spectrometry (XL-MS) found in organello evidence

for supercomplex formation in murine99,100, human101 and yeast102 mitochondria by

identifying subunits of CI, CIII and CIV that are in close proximity to each other (up to ~45 Å

radius). Nonetheless, neither the “fluid state” nor the “solid state” model explains all

experimental evidences properly. Therefore, Acıń-Pérez and Enrıq́uez103 proposed the

“plasticity” model claiming that free and assembled complexes underlie a dynamic process

that enables the cell to adapt to special growth conditions104.

1.6.2. Biological significance for supercomplex formation

Against the background of a “plasticity” model, the biological significance for supercomplex

formation is still under debate. Three major functions have been proposed87: substrate

channeling, complex stabilization and sequestration of reaction intermediates. In a

supercomplex arrangement of CI, CIII and CIV in mammals and of CIII and CIV in yeast,

electron transport via ubiquinone and cytochrome c are not dependent on random

diffusion. The electron transporters can be channeled between the complexes that come

along with catalytic enhancement. Indeed, no pool behavior of ubiquinone and cytochrome

c could be demonstrated in yeast105. In contrast, such pool behavior was reported in

mammals106. Here, supercomplex formation contributes to the stabilization of CI. In the

absence of CIII, CI is not stable107. CI also functions as a scaffold for a supercomplex

formation with CIII and CIV108. A tight interaction between these complexes might also be

beneficial for reducing reactive oxygen species (ROS) such as superoxide109. ROS are

involved in apoptosis110, amongst other processes. ROS are generated by leaky electron
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transfer of CI and CIII, hence, a close interaction of both complexes might prevent ROS

generation87.

1.6.3. Respiratory supercomplex factors

After identifying ETC supercomplexes and debating their biological significance,

researchers also focused on deciphering which components are needed for stabilization,

assembly and regulation of supercomplexes. Especially when assuming a dynamic

(de-)assembling as proposed by the “plasticity” model, factors must be present that aid the

organization of supercomplex formation. One major player in supercomplex stability is the

mitochondrial lipid cardiolipin. The group of Professor William Dowhan carved out that

cardiolipin aids the formation and stability of a CIII-CIV supercomplex in yeast111-113,

however, Pfeiffer et al.114 proved that cardiolipin is not essential for supercomplex

formation. It could further be demonstrated that the ADP/ATP carrier protein strongly

associates with the CIII-CIV supercomplex in yeast97,98 and that the absence of the carrier

protein disturbs supercomplex formation and reduces respiratory activity. Recently,

respiratory supercomplex factors (Rcf proteins 1-3) were described to interact with CIII-

CIV supercomplexes and to affect their formation. Rcf1 is a member of the conserved Hig1

(hypoxia-induced gene 1) type 2 family present in yeast and human cells115-117. It supports

supercomplex formation and in its absence CIV’s activity is significantly reduced and the

formation of a CIII-CIV supercomplex is impaired115,116,118. Rcf2, also a member of the Hig1

type 2 family, and Rcf3, a yeast-specific protein, were shown to associate with the CIII-

CIV supercomplex115,116,119. A density as part of the yeast CIII2CIV(2) supercomplex

structure recorded by cryo-EM was recently identified as Rcf2120. Rcf proteins play a role

in supercomplex assembly and regulation, but the exact function still has to be

interrogated.

1.6.4. Assembly of the cytochrome c oxidase

The cytochrome c oxidase, CIV, plays a special role in the respiratory chain. CIV is the

terminal complex in the ETC that ultimately reduces molecular oxygen to water. CIV

deficiencies are linked to diseases such as the Leigh syndrome, cardiomyopathy or Leber

Hereditary Optic Neuropathy (LHON)121. The complex consists of twelve subunits in

yeast120 and 13 subunits in humans122. The catalytic core subunits Cox1-3 are encoded by

the mitochondrial DNA, while all other subunits (Cox4-9, Cox12, Cox13 and Cox26 in

yeast) are encoded by the nuclear genome and have to be imported into mitochondria.

These accessory subunits are required for complex assembly, stability and function123. A
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recently published near-atomic resolution structure of the yeast CIII2CIV2 supercomplex

obtained by cryo-EM covered all subunits of CIV91, including peripheral subunits Cox12

and Cox13 and also the recently identified new subunit Cox26124,125. The same group could

also publish a comparable structure containing Rcf2 in yeast cells expressing the hypoxic

isoform Cox5b120, but was not able to identify Rcf1 and Rcf3. The assembly of CIV is a

well-coordinated process that involves more than 30 auxiliary factors123,126. Cox1 is the first

component that acts as a seed in the CIV assembly line (Figure 2). Cox1 subsequently

forms an intermediate complex with Cox5a/b and Cox6 in yeast before assembling the

catalytical core of CIV by the addition of Cox2 and Cox3127,128. Next, preassembled Cox7-

Cox8-Cox9 are attached to the complex129, including Cox4. In a late stage of the assembly

line, subunits Cox12 and Cox13 are added to the periphery of the complex, finalizing the

mature CIV130.

Figure 2: Cytochrome c oxidase (complex IV, CIV) assembly in yeast mitochondria. Cox1 acts as
seed and assembles with Cox5 and Cox6 prior to forming the catalytical core with Cox2 and Cox3.
Cox7, Cox8 and Cox9 are preassembled before being attached to the complex together with Cox4.
Cox12 and Cox13 are assembled in a late stage, ultimately forming the mature CIV. Translation
and assembly factors are not included. Adapted by permission from Mick, Fox and Rehling122.
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However, Cox12 and Cox13 are not essential for the complex’s function131,132. In recent

times, an increasing number of assembly and translation factors have been identified that

aid the assembly process. Most of the so far detected auxiliary factors are supposed to be

involved in the early stage of CIV assembly133-136, in contrast to the Rcf proteins that are

attached to the periphery of CIV and support supercomplex formation with CIII. In this

context, Vukotic et al.115 could show that mature CIV displays heterogenous subunit

compositions: the more abundant fraction represents CIV without Cox13, while only a

minor fraction of CIV contains Cox13. Although being one of the most well-known

complexes of the ETC supported by more than six decades of research, there are still new

details about CIV to be unraveled. Especially the composition of intermediates, their

interactions with auxiliary factors and their role in supercomplex formation need further

evaluation.

1.7. Mass spectrometry-based proteomics

Proteins are biomolecules that execute most of the functions to keep a cell alive. They are

involved in all biological processes, e.g. in metabolism, signaling cascades, DNA

replication, transcription, translation, and the regulation of all these processes. The

proteome describes the entity of proteins that are expressed in an organism under a

specific condition at a specific time point137. The proteome can vary in protein composition,

post-translational modifications of proteins and their abundances as a response to

diseases, stress or environmental conditions. Additionally, composition and structural

arrangement of protein complexes underlie those changes. The detection of changes of

the proteome and its proteins is of utmost importance to investigate biological processes

and how they are affected by diseases. Mass spectrometry (MS)-based proteomics is a

powerful large-scale technique to analyze thousands of proteins in a sample138. The

technique was successfully applied to interrogate the proteome of yeast mitochondria139-

141, localizations of mitochondrial proteins142-144 and changes in protein abundances in

mitochondria upon a metabolic shift of S. cerevisiae from fermentative to respiratory

conditions72,145-148.

1.7.1. General setup and principle of MS-based proteomics

The duty of a mass spectrometer is to measure the mass-to-charge (m/z) ratios of

analytes. In the field of proteomics, such analytes are peptides in the “bottom-up” approach

(Figure 3), in contrast to the “top-down” approach where m/z ratios of intact proteins are

measured. Peptides are typically generated by digestion of the proteins within a sample
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by sequence-specific endoproteases such as trypsin149. To account for the complexity of

a sample it can be fractionated on protein or peptide level prior to mass spectrometric

analysis, e.g. based on size (size exclusion chromatography, gel electrophoresis) or

charge (strong cation/anion exchange), amongst others150,151. To further reduce the

number of peptides that enter the mass spectrometer at the same time, peptides are

separated based on hydrophobicity under acidic conditions by reversed-phase liquid

chromatography (LC) that is coupled to the mass spectrometer (LC-MS). During the elution

process, protonated and, hence, positively charged peptides are ionized by a soft

ionization method called electrospray ionization (ESI)152. Due to an electric field that is

applied between the spray needle and the mass spectrometer, small droplets carrying the

peptides are formed that ultimately result in charged peptides in the gas phase after

solvent evaporation in the ion source of the mass spectrometer. Besides the ion source,

mass spectrometers generally consist of a mass analyzer and a mass detector.

Contemporary instruments harbor a quadrupole as mass analyzer – or mass filter – and

an orbitrap as additional analyzer and detector, such as Q Exactive instruments by Thermo

Fisher Scientific153,154. The peptide – or ion – beam is first focused by an ion optic system

consisting of lenses in the vacuum. The beam then passes the quadrupole that is

composed of four parallelly organized metal rods. By an interplay of direct and alternating

voltages between the rods, ions with a specific m/z ratio are forced to pass through the

quadrupole on a stable trajectory while the other ions hit the metal rod and are thus sorted

out155. In a first full (also known as survey, precursor or MS1) scan, all ions are allowed to

pass through the quadrupole. They are then analyzed in the orbitrap138. The orbitrap is

composed of a barrel-shaped outer electrode and a spindle-shaped inner electrode.

Entering ions harmonically oscillate around the inner electrode with a frequency

proportional to (m/z)-1/2, generating image currents156. Image currents are finally Fourier-

transformed into a mass spectrum indicating the abundance and the m/z ratio of a specific

ion species156. In the following MS2 scans, precursor ions are selected for

fragmentation138. The commonly applied procedure for the selection of precursor ions is

the data-dependent acquisition (DDA), also referred to as shotgun proteomics. The most

intense precursor ions in an MS1 scan are allowed to pass through the quadrupole and

are then fragmented in a collision cell. In a process called collision-induced dissociation

(CID) or higher-energy collisional dissociation (HCD), ions are accelerated to collide with

an inert gas such as nitrogen157,158. Peptides tend to break at the peptide bond, forming

so-called b- and y-fragment ions where the positive charge resides at the N- or the C-

terminus of the peptide, respectively159. Fragment ions are then guided to the orbitrap that

detects their m/z ratio. MS2 scans provide another level of information. Besides the

analysis of the precursor ion that provide the mass of the peptide, the MS2 scans of the
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corresponding fragment ions provide sequence information of the peptide (LC-MS/MS).

From the sequence of the peptide, the corresponding protein that was originally in the

sample can be inferred138. Besides the data-dependent acquisition, mass spectrometers

can be used to specifically search for peptides in a targeted approach (targeted

proteomics)160. For this, prior knowledge about the respective protein(s) of interest are

required. In recent years, data-independent acquisition (DIA) has become increasingly

popular. Precursor ions are no longer selected for fragmentation based on their intensity.

Instead, all detected precursors in defined m/z windows are subjected to MS2

fragmentation161,162.

Figure 3: Classical shotgun proteomics workflow. A protein sample is tryptically digested to
peptides and measured by liquid chromatography coupled to mass spectrometry (LC-MS). The
resulting mass spectra are analyzed by database searching.

However, resulting MS2 spectra are chimeric and need to be analyzed with spectral

libraries that have to be acquired in prior DDA measurements163. At this point, it should

also be mentioned that different setups for mass spectrometers exist, mainly differing in

the combination of mass analyzers and mass detectors. For example, time-of-flight (TOF)

analyzers calculate masses of precursor ions via time that they need to pass a flight tube

and reach the detector164. Modern tribrid instruments that harbor an ion trap as additional

mass analyzer – in combination with a quadrupole and an orbitrap – are also capable of

performing multi-tier MS scans (MSn)165. Fragment ions can be further selected for another

fragmentation and can then either be detected in the orbitrap or by secondary electron

multipliers attached to the ion trap (MS3).

1.7.2. Protein identification

Peptide sequence identification and protein inference, i.e. the assignment of identified

peptide sequences to the corresponding proteins, is performed by specific software with

integrated search algorithms. The basic principle of peptide identification is based on the

comparison of acquired spectra with in silico generated spectra after computational

digestion of proteins within a dedicated database. The quality of a matched spectrum is
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expressed by a scoring model, e.g. based on a cross-correlation score applied by the

Sequest algorithm166 or a probabilistic scoring model applied by the Mascot algorithm167.

If a spectrum score is higher than a defined cut-off, the spectrum is considered as a peptide

spectrum match (PSM). To statistically control matches that were wrongly assigned by the

search algorithms amongst all PSMs, a false discovery rate (FDR) based on a target-

decoy approach is calculated168,169. The dedicated database not only contains true protein

sequences – the targets – but also reversed or shuffled sequences of the respective

proteins – the decoys. A misassigned PSM to a decoy protein is a false positive match. By

applying an FDR cut-off, usually 1 to 5 %, it is defined how many false positive matches

are tolerated amongst all PSMs. Identified peptide sequences that are unique in the

database are then assigned to the respective proteins.

1.7.3. Protein quantitation

Not only the protein composition of a sample set is important to address biological

questions but also changes of protein abundances between two different conditions of a

system provide valuable information. Various quantitation methods have been introduced

in the past, tailored to the power of mass spectrometry to analyze thousands of proteins

in a sample. In general, two different approaches can be distinguished: the label-based

and the label-free quantitation170. As part of the label-based quantitation, metabolic and

chemical labeling have to be mentioned. The most prominent example for metabolic

labeling is stable isotope labeling by amino acids in cell culture (SILAC)171. With this

approach cells incorporate heavy labeled amino acids that are provided with the cell

culture medium – 13C-/15N-labeled lysine and/or arginine amino acids – into newly

synthesized proteins and can be compared with unlabeled cells. Nowadays, this method

is also applicable to label mice172. SILAC can additionally be used to label auxotrophic (in

regard of lysine and arginine synthesis)173 and even prototrophic9 yeast strains. The

introduced mass shift can be detected by LC-MS/MS, and peptides identified in both

conditions can be relatively quantified. This is possible because the detected peak

intensities are proportional to the analyte’s concentration. The benefit of this approach is

its resistance to random errors because the labels are introduced as early as possible in

the workflow. Chemical labeling, in turn, is performed on either protein or peptide level

after their synthesis in the organism170. One example for chemical labeling are tandem

mass tags (TMT)174. With this approach, labels are introduced on peptide level after

enzymatic cleavage of the proteins. TMTs are isobaric and react with ε-amino groups of

lysine residues or with protein and peptide N-termini. They additionally support

multiplexing, i.e. the parallel analysis of up to 16 conditions, an advantage when compared
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to SILAC labeling. Another difference to SILAC is the quantitation on MS2 level. Isobaric

labeled peptides elute simultaneously from the analytical column and show identical

behavior on MS1 level, resulting in one peak that is selected for fragmentation. During

fragmentation, the tags will be cleaved and create unique non-isobaric reporter ions. By

detecting these reporter ions and their intensity, accurate relative quantitation of peptides

can be performed174. An increase of accuracy due to a decrease of precursor interferences

can be achieved by an additional MS3 fragmentation of the isobaric peptides175. TMT

labeling greatly reduces missing values across conditions176,177. Label-free quantitation is

the least expensive method of all introduced so far, but also the method that suffers the

most from random errors during the workflow. In DDA approaches, the label-free

quantitation is performed by integrating peak intensities of peptide precursor ions on MS1

level that are then compared amongst different conditions. In DIA approaches, in turn, the

quantitation is preferably carried out by integrating peak intensities of fragment ions of

corresponding peptides on MS2 level. This was shown to be less susceptible to

interferences from co-eluting peptides compared to MS1 level quantitation while

additionally reducing coefficients of variation161,163.

1.8. Cross-linking mass spectrometry

Another tier of information to a biological question can be added by the detection of

structural arrangements of proteins and protein-protein interactions (PPIs).

Immunoprecipitations and affinity purifications are commonly used low-throughput

methods for interrogating PPIs. Proximity labeling strategies like BioID178 and APEX179

where proteins are genetically fused with an enzyme that adds a detectable modification

to proteins in close proximity become increasingly popular. PPIs can also be detected by

chemical cross-linking in combination with mass spectrometry (XL-MS)180,181. Since

proteins can be cross-linked to each other in solution forming protein-protein cross-links,

XL-MS is suitable to provide low resolution structural information of proteins, their

interaction partners and their dynamics in a near-native environment. Results are,

therefore, complementary to those obtained by traditional structure-solving techniques

such as X-ray crystallography or cryo-EM that rely on rigid protein conformations182.

1.8.1. Principle of XL-MS

In a cross-linking reaction a chemical ingredient reacts with functional groups of amino

acids of proteins that are in close proximity to each other180. Commonly used

homobifunctional cross-linkers such as disuccinimidyl suberate (DSS) and its derivative
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bis(sulfosuccinimidyl) suberate (BS3) harbor two N-hydroxysuccinimide (NHS) esters

separated by six methylene groups, the spacer183. Both NHS esters are targets of

nucleophiles to whom ε-amino groups of lysine residues and protein N-termini with their

free electron pairs of the nitrogen atoms can be considered as one of the strongest in a

proteinaceous environment (Figure 4). Lysine residues and protein N-termini are, hence,

the most probable reactants to react with the NHS esters in a nucleophilic attack. Side

reactions have been reported for the reaction of NHS esters with the OH groups of serine,

threonine and tyrosine residues184-186. After reaction, the participating amino acids are

covalently linked to each other, and separated by the spacer forming a residue-to-residue

cross-link. Depending on the length of the spacer a specific distance constraint is

introduced to the protein system. In case of BS3 and DSS the spacer spans a distance of

11.4 Å, which is usually expanded to 30 Å considering the distance between Cα-atoms

and accounting for flexibility187. Different cross-linkers harboring different spacer length

and featuring different reaction chemistries are commercially available188. 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide hydrochloride (EDC), for example, cross-links lysine

residues to amino acids containing carboxy groups, such as aspartate and glutamate,

without a spacer in between, a zero-length cross-linker189. EDC contains two different

reactive groups and is therefore a heterobifunctional cross-linker. A carbodiimide group

first reacts with a carboxy group. By adding sulfo-NHS, EDC can then be stabilized by the

formation of an NHS ester that, in turn, reacts with an amino group. In addition, cross-

linkers with UV-inducible diazirines can react with essentially all amino acids in a radical

reaction190, or maleimide-containing cross-linkers connect sulfhydryl-groups of cysteine

residues with each other191. The covalent bond induced by the cross-linker between two

amino acid residues remains stable through the whole sample preparation workflow

including denaturing, prefractionation, digestion, and enrichment, finally resulting in cross-

linked peptides180. Consequently, distance information is conserved and can be detected

by mass spectrometry revealing the exact amino acid residues that were involved in the

cross-linking reaction. Cross-links can be categorized as mono-, intraprotein and

interprotein cross-links192. Mono-cross-links originate from a cross-linking reaction where

only one functional group of the cross-linker reacted with an amino acid residue while the

other one got hydrolyzed. These cross-links can provide information about solvent

accessibility of amino acid residues on the surface of proteins. Intraprotein cross-links

occur between amino acid residues of one protein and can give insights into its

conformation or conformational changes of specific regions upon stimulation. The most

informative cross-links, however, are interprotein cross-links, i.e. connections between two

different proteins. From these cross-links, spatial arrangements of proteins in protein

complexes and protein-protein interactions can be determined.
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Figure 4: Reaction schema of protein-protein cross-linking with BS3. Lysine residues of Protein A
and Protein B undergo a nucleophilic attack with the free electron pair of the nitrogen atom of the
ε-amino group on the carbonyl atom of the cross-linker. After successful reaction, Protein A and
Protein B are covalently linked to each other, separated by the spacer (11.4 Å in case of BS3). N-
hydroxysulfosuccinimide (sulfo-NHS) is the leaving group.

1.8.2. Analytical benefits of XL-MS

In the early 2000s XL-MS began its rise in the analysis of the spatial organization of single

proteins or protein complexes. As one of the first users, Young et al.193 could determine

the fold of the growth factor FGF-2. In the same year, Rappsilber et al.194 analyzed the

Nup85 complex by separating cross-linked from non-cross-linked complexes by gel

electrophoresis prior to LC-MS/MS analysis. The analysis of larger protein complexes

followed promptly, e.g. by Maiolica et al.195 who interrogated the structure of the human

NDC80 heterotetramer or by Chen et al.196 revealing the architecture of the human RNA

polymerase II-TFIIF complex. Especially the combination of XL-MS and cryo-EM

experiments proved to be fruitful in structural biology182. Here, XL-MS can aid the

positioning of protein subunits into cryo-EM densities where a low local resolution hampers

the unambiguous identification of a protein. With this approach, subunits of the human

spliceosome could be arranged correctly in its structure197,198. Also, the RNA polymerase

II-mediator core initiation complex199 and the inner ring scaffold of the nuclear pore

complex200 could be solved by cryo-EM in combination with XL-MS, amongst others.
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Distance constraints derived by XL-MS can also be used in integrative modeling

approaches gathering scientific data of different structure biology-related fields to propose

structures of macromolecular assemblies201 or by docking and modeling software such as

HADDOCK202 and Rosetta203. In recent years, XL-MS was increasingly applied to elucidate

even more complex protein networks. For example, Herzog et al.204 identified the

interaction network of human protein phosphatase 2A after affinity-purification, cross-

linking and LC-MS/MS analysis. Cross-linking of whole organisms205-207, cells208,209,

organelles99,100 and tissues210 to elucidate protein interactomes by XL-MS demonstrate the

rapid development of this technique.

1.8.3. Adapting the proteomics workflow for XL-MS

XL-MS poses several challenges. While most steps of the standard proteomics workflow

(Figure 3) can be copied, some steps have to be adapted for the successful analysis of

cross-links. First, the optimal concentration of cross-linker has to be determined. If the

concentration is too low, especially cross-links between low abundant proteins might not

be detectable211. If the concentration is too high, the cross-linker can induce local structural

disturbances within proteins212 and lead to artificial results. Especially when using NHS

ester-based cross-linkers that are targeted by lysine residues, tryptic digestion will be

hampered, since residues modified by the cross-linker will no longer be recognized as a

substrate of trypsin. This has to be considered in the search parameters, since the number

of missed cleavage sites for cross-linked peptides are higher than for linear, i.e. non-cross-

linked peptides. Furthermore, the cross-linking efficiency is calculated to be 1-5 %213,

hence, the vast majority of peptides after digestion represents linear peptides. To increase

the identification rate, several strategies have been developed to enrich cross-linked

peptides prior to LC-MS/MS analysis. Such strategies are either based on size via size

exclusion chromatography (SEC)214, since cross-linked peptides are longer and bulkier

than linear peptides, or based on charge via strong cation exchange (SCX)215

chromatography, since cross-linked peptides are supposed to carry more positively

charged amino acids. Another strategy to enrich for cross-linked peptides is the application

of trifunctional cross-linkers. These cross-linkers harbor an additional enrichment group,

such as biotin216-218 or phosphor-based tags213,219 that can be used to separate cross-linked

from linear peptides. However, the biggest challenge is the data analysis. Spectra of cross-

linked peptides are chimeric displaying fragment ions of both peptides and fragment ions

that are shifted due to the introduced mass of the cross-linker. Database searches for the

identification of cross-linked peptides have to be performed by different algorithms in

contrast to the identification of linear peptides220. To identify a cross-linked peptide pair,
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proteins within a database will also be in silico digested in a similar way to the approach

for linear peptides. However, the consideration of all peptide pair combinations sums up

to (n²+n)/2 possibilities where n is the number of peptides in the database, the so-called

n2 problem180,220. While this is still feasible for small databases after cross-linking single

proteins or protein complexes, the identification of cross-linked peptides in more complex

samples is tremendously challenging. The analysis of 50 cross-linked proteins creates a

search space as large as the one for the analysis of linear peptides of the whole human

proteome220. This search space inflates quadratically with the number of proteins in the

database for a cross-linked peptides search increasing the likelihood of identifying false

positives. Additionally, three times more decoys are included in FDR calculation, since the

combinations target-target, target-decoy, decoy-target and decoy-decoy have to be

considered220.

1.8.4. Cross-linking of complex samples

A popular strategy to overcome the n2 problem is the application of MS-cleavable cross-

linkers. These cross-linkers contain a labile bond that breaks in the gas phase during MS2

fragmentation in the mass spectrometer221. Due to the fragmentation of the labile bond

within the cross-linker, both peptides that reacted with the cross-linker can be selected

separately for another MS3 fragmentation event. In combination with resulting reporter

ions due to the unequal cleavage of the labile bond peptides can be sequenced

individually. In a subsequent search, the search space is then reduced to 2n, allowing the

possibility to search against whole proteomes. Commonly used MS-cleavable cross-

linkers are disuccinimidyl sulfoxide (DSSO)221, harboring a labile sulfoxide group and

disuccinimidyl dibutyric urea (DSBU)222, harboring a labile urea group. Both are

homobifunctional NHS esters and, thus, primarily react with lysine residues and protein N-

termini, like BS3 and DSS. Another example is the protein interaction reporter (PIR)223

developed by the laboratory of Professor James Bruce that is also an NHS ester-based,

cleavable, and also enrichable cross-linker. It additionally produces reporter ions upon

fragmentation that indicate cross-linked peptides. By using MS-cleavable cross-linkers,

studies on Drosophila melanogaster205, Escherichia coli206, HeLa209 and HEK217 cells

provided promising insights into the interactome of complex systems. MS-cleavable cross-

linkers were also used to cross-link isolated murine99,100 and yeast102 mitochondria.

However, it is more likely that abundant proteins react with the cross-linker and whose

peptides are finally identified as being cross-linked100,224. Ryl et al.101 could demonstrate

on human mitochondria that the non-cleavable cross-linker DSS and a database search
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limited to the ~1000 most abundant proteins can also provide reliable protein-protein

interactions in a crowded environment.

1.8.5. Quantitative XL-MS

To ultimately combine the power of mass spectrometry regarding the identification of

protein-protein interactions, that is, chemical cross-linking, and the quantitation of protein

abundance changes in samples originating from various conditions, quantitative cross-

linking mass spectrometry (qXL-MS) becomes increasingly popular. This enables the

quantitation of both the changes of PPI networks between two conditions and the

quantitative assessment of dynamic conformational changes within proteins or protein

complexes upon stimulation. Especially for the latter one, qXL-MS can be a valuable tool,

since traditional methods for structure elucidation such as X-ray crystallography or cryo-

EM depend on rigid and fixated protein complexes225. Quantitation approaches that were

introduced for MS-based proteomics in subsection 1.7.3 can also be applied in qXL-MS.

In addition, isotopically labeled cross-linkers can be utilized to connect proteins and protein

networks under different conditions226. For example, a 4 Da mass shift can be introduced

by BS3-d4 to proteins originating from condition A, while proteins originating from condition

B are cross-linked with unlabeled BS3. This shift can be used to relatively quantify cross-

linked peptide pairs, like the SILAC approach. By cross-linking native and

dephosphorylated F1F0 ATP synthase of chloroplasts, Schmidt et al.227 could demonstrate

the feasibility of introducing mass shifts by labeled cross-linkers for the quantitation of

protein complexes in two different conditions. This approach is now widely used to probe

conformational changes within proteins228-232. An approach for quantitation of cross-links

on MS2 level was introduced by Yu and colleagues233. They cross-linked the electron

carrier cytochrome c with the MS-cleavable cross-linker DSSO and labeled the peptides

with TMT. Also, label-free approaches were tested for cross-linked proteins with

quantitation on MS1 level by DDA234 and on MS2 level by DIA235. However, all these

approaches need further evaluation on more complex samples. Chavez et al.208, in turn,

combined XL-MS with SILAC labeling to compare treated and untreated multidrug-

resistant human carcinoma cells. This approach is especially beneficial for complex

samples since it provides not only information about conformational changes or changes

within the PPI network, but also about changes in protein abundances. Although qXL-MS

for large-scale experiments is still challenging, mainly due to the low signal intensities of

cross-linked peptides resulting in missing values amongst conditions, it can already

provide valuable information on changes of PPI networks and protein conformations236.
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1.9. Scope of the thesis

The energy production in Saccharomyces cerevisiae depends on the available carbon

source. Under fermentative conditions, ATP is produced primarily by fermentation. Under

non-fermentable conditions, the carbon source is fully oxidized via the tricarboxylic acid

(TCA) cycle and the oxidative phosphorylation (OXPHOS) system located within

mitochondria. Yeast cells regulate involved pathways by catabolite repression of genes

encoding proteins participating e.g. in the OXPHOS system. This gene regulation affects

abundances of mitochondrial proteins, their interaction with each other, and, consequently,

the ultrastructure of mitochondria in different growth conditions. Protein-protein cross-

linking in combination with mass spectrometry (XL-MS) proved to be a powerful tool to

identify large-scale protein-protein interactions (PPIs) and their dynamical changes.

Several challenges were addressed within the scope of this thesis: (i) Protein-protein

cross-linking networks within mitochondria derived from yeast grown on either glucose-

containing, a fermentable carbon source, or on glycerol-containing medium, a non-

fermentable carbon source, were interrogated by XL-MS and compared to each other

qualitatively. In general, so far undescribed PPIs were detected with the focus on

supercomplex formation in the electron transport chain. (ii) Changes of protein-protein

cross-links within mitochondria of both conditions were also tracked by a quantitative XL-

MS approach. (iii) To address interactions between low abundant proteins, protein-protein

cross-links within mitochondria were also elucidated in a rho0 yeast strain lacking

mitochondrial DNA. (iv) Cross-linkers with different reaction chemistries were used to

investigate protein-protein cross-linking networks in mitoplasts derived from human

mitochondria. In summary, this thesis provides qualitative and quantitative information

about protein-protein cross-linking networks within mitochondria derived from yeast grown

under different conditions as well as human mitoplasts acquired by XL-MS.
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2. Materials and Methods

2.1. Materials

2.1.1. Chemicals and buffers

If not otherwise stated, commonly used chemicals and ingredients were purchased from

Merck Millipore (Billerica, USA), Sigma-Aldrich (St. Louis, USA) or Thermo Fisher

Scientific (Waltham, USA).

Table 1: List of used chemicals and suppliers.

Chemical Supplier
[35S]-L-Methionine Hartmann Analytic
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
hydrochloride (EDC)

Thermo Fisher Scientific

Acetonitrile, LiChrosolv Merck Millipore
Ammonium bicarbonate (ABC) Sigma-Aldrich
Antimycin A Sigma-Aldrich
Adenosine diphosphate (ADP) Sigma-Aldrich
Adenosine triphosphate (ATP) Roche
Bis(sulfosuccinimidyl)suberate (BS3, No-Weigh
Format)

Thermo Fisher Scientific

BS3-d4 (isotopically labeled, No-Weigh Format) Thermo Fisher Scientific
Bovine serum albumin (BSA) Sigma-Aldrich
Carbonyl cyanide-4-
(trifluoromethoxy)phenylhydrazone (FCCP)

Sigma-Aldrich

Coomassie InstantBlue Merck Millipore
CuSO4 × 5H2O Merck Millipore
Cytochrome c Sigma-Aldrich
Digitonin Merck Millipore
Dimethyl sulfoxide (DMSO) Sigma-Aldrich
Disuccinimidyl suberate (DSS, No-Weigh Format) Thermo Fisher Scientific
Dithiothreitol (DTT) Merck Millipore
Ethidium bromide 0.07 % AppliChem
Formic acid (FA) Sigma-Aldrich
Iodoacetamide (IAA) Sigma-Aldrich
Methanol, LiChrosolv Merck Millipore
n-Dodecyl β-D-maltoside (DDM) Sigma Aldrich
Nicotinamide adenine dinucleotide (NADH) Roche
N-hydroxysulfosuccinimide (sulfo-NHS) Thermo Fisher Scientific
N-ethylmaleimide (NEM) Sigma-Aldrich
Oligomycin Sigma Aldrich
Protein-A sepharose GE Healthcare
Proteinase K, recombinant Roche
Sodium dodecyl sulfate (SDS) Sigma-Aldrich
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Sucrose Roth
Trehalose Sigma-Aldrich
Trifluoroacetic (TFA) Carl-Roth
Trypsin Promega, Sigma-Aldrich
Urea Sigma-Aldrich
Water, LiChrosolv Merck Millipore
Valinomycin Merck Millipore
Zymolyase-20T Seikagaku Biobusiness

Corporation (Tokyo, Japan) and
Nacalai Tesque Inc. (Kyoto,
Japan)

Table 2: List of used buffers and their compositions.

Buffer Composition
BN-PAGE loading dye 5 % Coomassie G-250, 500 mM 6-amino-hexanoic

acid and 0.1 M Bis-Tris pH 7.0
Cell culture medium HEK293T
cells

Dulbecco's modified Eagle's medium (DMEM),
10 % fetal bovine serum (FBS), 2 mM L-glutamine,
1 mM Sodium pyruvate, 50 μg/mL uridine,
100 units/mL Penicillin, 100 μg/mL Streptomycin

Cross-linking buffer 20 mM HEPES pH 7.5, 100 mM NaCl
DTT buffer 100 mM Tris/H2SO4 pH 9.4, 10 mM DTT
EM buffer 1 mM EDTA, 10 mM MOPS-KOH pH 7.2
Homogenization buffer human
mitoplasts

300 mM trehalose, 10 mM KCl, 10 mM HEPES
pH 7.4

Homogenization buffer yeast
mitochondria

10 mM Tris pH 7.4, 0.6 M sorbitol, 125 mM EDTA
pH 8, 2 g/L BSA, 50 mM PMSF

Import buffer 250 mM sucrose, 10 mM MOPS/KOH pH 7.2,
80 mM KCl, 2 mM KH2PO4, 5 mM MgCl2, 5 mM
methionine, 3 % fatty acid-free BSA

Lysis buffer human mitoplasts 50 mM Tris pH 7.4, 100 mM NH4Cl, 10 mM MgCl2,
2 % SDS and in case of EDC cross-linking 20 mM
DTT

NuPAGE LDS sample buffer 106 mM Tris, 141 mM Tris-Base, 2 % LDS, 10 %
glycerol, 0.51 mM EDTA, 0.22 mM SERVA Blue
G250, 0.175 mM Phenol Red, 50 mM DTT

Respiration buffer 225 mM sucrose, 75 mM mannitol, 10 mM Tris
pH 7.4, 10 mM KH2PO4, 5 mM MgCl2, 10 mM KCl

SEM/PMSF buffer 250 mM sucrose, 20 mM MOPS pH 7.2, 1 mM
EDTA, 1 mM PMSF

SH buffer 0.6 M sorbitol, 20 mM HEPES pH 7.5
Solubilization buffer yeast
mitochondria

20 mM Tris pH 7.4, 50 mM NaCl, 10 % glycerol,
5 mM EDTA, 1 mM PMSF, 1 % digitonin or 0.6 %
DDM

Protein SEC buffer 20 mM HEPES pH 8, 100 mM NaCl and 0.1 % SDS
TBS-T 20 mM Tris pH 7.5, 62 mM NaCl, 0.1 % Tween 20
TG buffer 35 mM Tris, 220 mM glycine, pH 8.3
Zymolyase buffer 20 mM K2HPO4/KH2PO4 pH 7.4, 1.2 M sorbitol
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2.1.2. Equipment and consumables

Table 3: List of commonly used consumables and suppliers.

Consumables Supplier
ANTI-FLAG M2 affinity gel Sigma-Aldrich
HA-antibody columns Sigma-Aldrich
Immobilon®-P PVDF membrane Merck Millipore
NuPAGE 4-12 % Bis-Tris gels Invitrogen
Pierce BCA Protein Assay Thermo Fisher Scientific
Reprosil-Pur 120 C18-AQ, 1.9 µm Dr. Maisch GmbH
Roti®-Quant Roth
SepPak C18 cartridges, 50 cc Waters

Table 4: List of regularly used equipment and suppliers.

Equipment Supplier
Agilent 1100 HPLC series Agilent
ÄKTAmicro GE Healthcare
Avanti J-26 XP (centrifuge) Beckman Coulter
Bioruptor sonication apparatus UCW-201TM Diagenode
Cooling microcentrifuge Heraeus Fresco17 Thermo Fisher Scientific
Gel chamber Novex Mini-cell Invitrogen
Homogenplus Homogenizer Schuett-Biotech
JA-20 (rotor) Beckman Coulter
Lab scale BP 211D Sartorius
Lab scale CPA 423S Sartorius
Mass Spectrometer Orbitrap Fusion Tribrid Thermo Fisher Scientific
Mass Spectrometer Orbitrap Fusion Lumos
Tribrid

Thermo Fisher Scientific

Mass Spectrometer Q Exactive HF-X Thermo Fisher Scientific
Microcentrifuge Heraeus Pico17 Thermo Fisher Scientific
Nano-LC Dionex UltiMate 3000 RSLCnano Thermo Fisher Scientific
Oxygraph 2k Oroboros
Potter S (dounce homogenizer) Sartorius
Power supply power-pac 200 Bio-Rad
Precision scale BP 4100 Sartorius
SMART system Pharmacia Biotech
Sonication bath Sonorex Bandelin
Sorvall H-12000 (rotor) Thermo Fisher Scientific
Sorvall RC 12BP (centrifuge) Thermo Fisher Scientific
Speedvac concentrator 5301 Eppendorf
SuperdexPeptide 3.2/300 SEC column GE Healthcare and Pharmacia

Biotech
Superose-6 Increase 10/300 SEC column GE Healthcare
Thermomixer C Eppendorf
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2.1.3. Software

Table 5: List of used software with indicated version and developers.

Software Developer
Cytoscape 3.7.1 Cytoscape Consortium
DisVis Bonvin group, Utrecht University
Mascot 2.3.02 Matrix Science, Boston, USA
MaxQuant 1.6.0.1 Cox group, MPI of Biochemistry, Martinsried
Perseus 1.6.0.7 Cox group, MPI of Biochemistry, Martinsried
pLink 1.23 pFind group, Institute of Computing Technology, Beijing
pLink 2.3 pFind group, Institute of Computing Technology, Beijing
Proteome Discoverer 2.1 Thermo Fisher Scientific
PyMOL 2.3.3 Schroedinger, LLC
R 3.5.0 R core team
Rstudio 1.1.477 Rstudio
Scaffold 4 Proteome Software, Inc., USA
Tune 2.9 Thermo Fisher Scientific
UCSF Chimera 1.11.2/1.14 RBVI, University of California
Xcalibur 4.1 Thermo Fisher Scientific
Xlink Analyzer 1.1.4 Kosinski group, EMBL Hamburg
xiNET Rappsilber group, TU Berlin
xVis Herzog group, LMU Munich

2.2. Microbiological and biochemical methods

2.2.1. Saccharomyces cerevisiae growth conditions

Saccharomyces cerevisiae originated from the strain YPH499 and was grown on medium

containing 1 % yeast extract, 2 % peptone, and either 3 % glycerol, 2 % glucose or 3 %

lactate. The min8Δ strain was generated via homologous recombination of a HIS3MX6

cassette, and the Min8-HA as well as the Min8FLAG strain by chromosomal integration237.

2.2.2. Generation of yeast rho0 strains

Yeast cells lacking mitochondrial DNA (rho0 strains) were generated by adding 25 µg/mL

ethidium bromide to a culture grown on medium containing 1 % yeast extract, 2 %

peptone, and 2 % glucose for three days (modified from ref238).
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2.2.3. Isolation of mitochondria from S. cerevisiae

Mitochondria were isolated from yeast cells grown at 30°C as previously described239.

Cells were harvested at OD600 1.5-3 in 2 L centrifuge beakers at 4,000 rpm (Sorvall H-

12000/ Sorvall RC 12BP) for 15 min at 18°C. The supernatant was discarded, and the

pellet was washed with 300 mL deionized water, transferred to 500 mL centrifuge beakers

and spun down at 4,000 rpm for 15 min at 18°C. The supernatant was discarded and the

cell wet weight (cww) was determined. Pellets were resuspended in dithiothreitol (DTT)

buffer (2 mL/g cww, 100 mM Tris/H2SO4 pH 9.4, 10 mM DTT) and incubated for 30 min

with 90 rpm shaking at 30°C. Cells were pelleted at 4,000 rpm for 8 min at 18°C,

supernatant was discarded and pellet was washed with 200 mL 1.2 M sorbitol. Cells were

pelleted again and resuspended in zymolyase buffer without enzyme (7 mL/g cww,

20 mM K2HPO4/KH2PO4 buffer pH 7.4, 1.2 M sorbitol). Zymolyase was resuspended in

1 mL 1.2 M sorbitol and added to the resuspension, incubated for 1 h with 90 rpm shaking

at 30°C. Cells were pelleted at 3,000 rpm for 10 min at 18°C; the supernatant was

discarded. The following steps were carried out at 4°C. The pellet was washed with cold

zymolyase buffer without enzyme. Cells were subsequently pelleted at 3,000 rpm for

10 min at 4°C and the pellet was resuspended in homogenization buffer (7 mL/g cww,

10 mM Tris-HCl pH 7.4, 0.6 M sorbitol, 125 mM EDTA pH 8, 2 g/L BSA, 50 mM PMSF).

The suspension was pottered with a dounce homogenizer on ice (15 strokes at 900 rpm),

transferred to SS34 tubes, and centrifuged at 3,000 rpm for 5 min at 4°C. The pellet was

discarded, and the supernatant was transferred to a new SS34 tube and centrifuged at

4,000 rpm for 10 min at 4°C. The pellet was again discarded, and the supernatant

transferred to new tubes and centrifuged at 12,000 rpm (Avanti J-26 XP/ JA-20) for 15 min

at 4°C. The supernatant of this centrifugation step was discarded, and the pellet consisting

of crude mitochondrial extract was washed with 5 mL of SEM/PMSF buffer (250 mM

sucrose, 20 mM MOPS pH 7.2 , 1 mM EDTA, 1 mM PMSF; 5 mL/strain) and pelleted at

12,000 rpm for 15 min at 4°C. The supernatant was discarded, and pelleted mitochondria

resuspended in 500-1000 µL SEM buffer. Protein concentration was calculated by

Bradford assay (Roti®-Quant (Roth), manufacturer’s instructions). 50 or 100 µL portions of

crude mitochondrial extract with a concentration of 10 µg/µL were snap frozen in liquid

nitrogen and stored at -80°C for further use.

2.2.4. Tandem sucrose gradient centrifugation

Isolated yeast mitochondria were further purified via tandem sucrose gradient

centrifugation according to the protocol published by Meisinger, Pfanner and Truscott239.
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Briefly, a sucrose step gradient with 1.5 mL 60 % sucrose in EM buffer (1 mM EDTA,

10 mM MOPS-KOH pH 7.2), 4 mL 32 %, 1.5 mL 23 %, and 1.5 mL 15 % sucrose in EM

buffer from bottom to top was prepared. The crude mitochondrial extract was loaded onto

the gradient and centrifuged at 134,000xg, 2°C for 1 h. Purified mitochondria collected at

the interface between 60 % and 32 % sucrose. Purified mitochondria were stored at -80°C

for further use.

2.2.5. Respirometry

The Oxygraph-2k high-resolution respirometry system (Oroboros Instruments) was used

to measure oxygen consumption of freshly prepared crude mitochondrial extracts, frozen

crude mitochondrial extracts, freshly prepared purified mitochondria, and frozen purified

mitochondria. The chambers were set to 30°C with a stirrer speed of 750 rpm and data

recording of -2 s, and were washed once with 70 % ethanol for 5 min and twice with H2O

for 2 min each. Oxygen concentration within the chambers was equilibrated with

respiration buffer (225 mM sucrose, 75 mM mannitol, 10 mM Tris-HCl pH 7.4, 10 mM

KH2PO4, 5 mM MgCl2, 10 mM KCl). Oxygen consumption recordings started with the

sequential addition of 10 mM pyruvate and 2 mM malate (substrates) and either 50 or

100 µg mitochondria. Maximum OXPHOS capacity was determined by adding 1 mM ADP

and, subsequently, 10 mM succinate. Respiration was terminated by adding 5 µM

antimycin A, 2 mM ascorbate and 500 µM TMPD (N,N,N',N'-tetramethyl-p-

phenylenediamine). 100 mM NaN3 was added and values were subtracted from these

obtained after TMPD/ascorbate incubation. For the quality control respirometry assay,

15 µM oligomycin and 0.25 µM carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone

(FCCP) were added before terminating respiration by adding 500 µM antimycin A.

2.2.6. Import assay

Protein import assays were performed as described by Ryan et al.240 Considered proteins

Atp2, Cox12 and Cox13 were translated in rabbit reticulocyte lysate (Promega) after in

vitro transcription of amplified DNA products. During translation, proteins were

radiolabeled with [35S]-methionine. Proteins and isolated mitochondria were mixed

together in import buffer (250 mM sucrose, 10 mM MOPS/KOH pH 7.2, 80 mM KCl, 2 mM

KH2PO4, 5 mM MgCl2, 5 mM methionine, and 3 % fatty acid-free BSA; import buffer for

Cox12 without BSA), with addition of 5 mM creatine phosphate and 0.1 mg/mL creatine

kinase, 2 mM ATP and 2 mM NADH. Atp2 and Cox13 imports were stopped through

interruption of the membrane potential via supplementation with 8 µM antimycin A, 1 µM
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valinomycin, and 20 µM oligomycin. 50 mM IAA supplementation was used to halt Cox12

import. Mitochondria with imported Cox12 and Cox13 were lysed in 0.6 % n-dodecyl β-D-

maltoside (DDM) buffer for BN-PAGE, mitochondria with imported Atp2 were lysed in

Laemmli buffer for SDS-PAGE.

2.2.7. Immunoprecipitation

For immunoprecipitation of Cox12 and Pam18 from wild type (WT) and HA-tagged Min8

yeast cells, antisera specific for Cox12 and Pam18 were attached to protein A-sepharose

(GE Healthcare), as described elsewhere241. Mitochondria that were untreated or cross-

linked with BS3 were lysed with 20 mM Tris pH 7.4, 80 mM NaCl, 0.5 mM EDTA, 1 %

digitonin, 10 % glycerol and 1 mM PMSF for 1 h at 4°C prior to immunoprecipitation.

Lysates were loaded onto HA-antibody columns and incubated at 4°C for 1 h. After elution

with 0.1 M glycine pH 2.8 proteins were subjected to SDS-PAGE and Western blotting.

ANTI-FLAG M2 affinity gel (Sigma-Aldrich) was used for the isolation of Min8FLAG (20 µL

per 500 µg mitochondria). 0.5 % Triton X-100 and 0.1 % SDS was used for solubilization

and washing. Elution was performed with 0.1 M glycine pH 2.5 for 5 min at room

temperature (RT).

2.2.8. Blue native-PAGE and activity staining

Blue native-PAGE (BN-PAGE)242,243 in combination with activity staining was performed to

detect the activity of complexes II, IV and V within the respiratory chain of crude

mitochondrial extract and purified mitochondria. BN-PAGE was also performed to

investigate the association of Min8 to the cytochrome c oxidase. Approximately 300 µg of

mitochondria were pelleted at 14,000 rpm for 10 min at 4°C. Pellets were resuspended in

300 µL of solubilization buffer (20 mM Tris-HCl pH 7.4, 50 mM NaCl, 10 % glycerol, 5 mM

EDTA, 1 mM PMSF, 1 % digitonin or 0.6 % DDM), and incubated for 15 min on ice. After

spinning at 14,000 rpm for 15 min at 4°C, the supernatant was incubated with loading dye

(5 % Coomassie G-250, 500 mM 6-amino-hexanoic acid and 0.1 M Bis-Tris, pH 7.0) for

3 min on ice. Again, samples were spun down at 14,000 rpm for 2 min at 4°C and the

supernatant was loaded onto a 4-10 % or 6-10 % BN gel. 600 V, 15 mA were applied for

4 h to separate protein complexes. After separation, proteins were stained with

Coomassie. For complex II activity staining, the gel was equilibrated in 30 mL of 5 mM

Tris-HCl pH 7.4 for 30 min and incubated with 75 mg nitro blue tetrazolium chloride (NBT)

in Tris-HCl and 3 mg NADH at 4°C overnight. For complex IV activity staining, the gel was

equilibrated in 30 mL of 50 mM K2HPO4/KH2PO4 pH 7.2 for 30 min and incubated with
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15 mg 3,3'-diaminobenzidine (DAB) and 3 mg reduced cytochrome c at 30°C overnight.

For complex V activity staining, the gel was equilibrated with 30 mL TG buffer (35 mM Tris-

HCl, 220 mM glycine, pH 8.3) for 30 min and incubated with 0.5 mM ATP, 1 M MgSO4 and

0.01 % Pb(NO3)2 (w/v) for 5-12 h.

2.2.9. Western blotting and immunodetection

Standard protocols were followed for Western blotting and immunodetection244. PVDF

membranes (Immobilon-P, Merck Millipore) were methanol-activated and, together with

blotting paper and the gel, wetted with transfer buffer (20 mM Tris, 150 mM glycine, 0.02 %

SDS, 20 % ethanol) for semi-dry Western blotting. Blotting was performed at 25 V and

250 mA for 2.5-3 h. Membranes were blocked with 5-10 % milk powder/TBS-T (20 mM

Tris pH 7.5, 62 mM NaCl, 0.1 % Tween 20) for 1 h at RT. Membranes were incubated for

1-2 h at RT with primary antibodies diluted in 5 % milk powder/TBS-T. After rinsing the

membranes thrice with TBS-T for 10 min, secondary antibodies diluted in 5 % milk

powder/TBS-T were incubated for 1 h at RT. Depending on the specificities of the

secondary antibodies, the readout was performed via horseradish peroxidase assay or via

fluorescent dye.

2.2.10. Proteinase K assay

Proteinase K (PK) assay was performed to check mitochondrial membrane integrity after

swelling in slightly hypotonic cross-linking buffer (20 mM HEPES pH 7.5, 100 mM NaCl).

750 µg of purified mitochondria were thawed, pelleted at 10,000xg for 10 min at 4°C and

resuspended in cross-linking buffer. One sample of mitochondria was treated with 0.2 or

1 µg PK/µg mitochondria, and a control sample without PK, both incubated for 1 h at RT.

To fully access matrix proteins, another control sample was treated with 5 % DMSO and

by sonication in a bath (10 pulses, 5 cycles) before adding PK. PMSF was added to a final

concentration of 4 mM and incubated for 10 min on ice. Samples were subjected to SDS-

PAGE. Proteins were separated with 250 V, 30 mA for 2.5 h and subsequently blotted.

Identification was performed with antibodies against Tom70, Tim44, Tim21, Cor1, Rcf2,

Rcf3, Mia40, Por1 and Cox12. All indicated antibodies are polyclonal and were raised in

rabbit (Gramsch Laboratories, Schwabhausen, Germany) against C-terminal peptides,

recombinant whole protein or recombinant protein domains.



Materials and Methods

29

2.2.11. HEK293T cell culture

Human embryonic kidney cells (HEK293-Flp-In T-Rex; HEK293T) were cultured as

described elsewhere245. Briefly, cells were grown in Dulbecco's modified Eagle's medium

(DMEM), 10 % fetal bovine serum (FBS), 2 mM L-glutamine, 1 mM sodium pyruvate,

50 μg/mL uridine, 100 units/mL penicillin, and 100 μg/mL streptomycin, at 37°C and 5 %

CO2.

2.2.12. Isolation of human mitochondria and generation of mitoplasts

Human mitochondria were isolated as described elsewhere246. Briefly, cells were

resuspended in homogenization buffer (300 mM trehalose, 10 mM KCl, 10 mM HEPES

pH 7.4) containing 1 mM PMSF and 0.2 % BSA, and subsequently homogenized with

Homogenplus Homogenizer (Schuett-Biotec, Germany). Mitochondria were isolated via

differential centrifugation and pelleted at 11,000xg for 10 min, washed with

homogenization buffer and again centrifuged. Mitoplasts were generated as described

elsewhere245. Isolated mitochondria were resuspended in homogenization buffer

containing 0.1 % digitonin for 30 min and treated with proteinase K for 15 min (0.5 µg per

100 µg of mitochondria). Proteinase K digestion was terminated by adding 2 mM PMSF

and resulting mitoplasts were washed seven times with homogenization buffer prior to

cross-linking procedure (twice with addition of 2 mM PMSF and 0.2 % BSA, twice with

2 mM PMSF and 3 times without any supplements).

2.2.13. Cross-linking of purified yeast mitochondria, lysis and protein
precipitation

Cross-linking reactions were performed as described in Linden et al.247. Aliquots of purified

mitochondria of each condition were stored in 1 mg portions at -80°C. Mitochondria were

thawed and pelleted at 10,000xg for 5 min at 4°C. Pelleted mitochondria were

resuspended in 200 µL of cross-linking buffer (20 mM HEPES pH 7.5, 100 mM NaCl) and

subsequently cross-linked with 5 mM bis(sulfosuccinimidyl)suberate (BS3, Thermo Fisher

Scientific), incubated for 1 h at RT. The reaction was quenched with a final concentration

of 50 mM Tris pH 8, incubated for 15 min at RT. Cross-linked mitochondria were lysed with

2 % SDS and boiled at 70°C for 10 min. Proteins were precipitated by incubation at -20°C

overnight with four times the sample volume of ice-cold acetone.

Cross-linking reactions for the comparison of BS3 with disuccinimidyl suberate

(DSS) were performed with the following changes: freshly prepared crude mitochondrial
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extract was cross-linked with an equimolar mixture of stable-isotopically labeled BS3-d4

(resuspended in cross-linking buffer) and DSS (resuspended in DMSO, both Thermo

Fisher Scientific). The final concentration of each cross-linker was 1 mM.

Cross-linking reactions for the quantitative experiments were performed with the

following changes: 0.5 mg of mitochondria derived from yeast grown on glycerol- or on

glucose-containing medium, respectively, were cross-linked with either 5 mM BS3 or 5 mM

stable-isotopically labeled BS3-d4 in a label-swap experiment. After quenching, samples

were equally combined based on their protein amount (see subsection 2.2.17). For lysis,

8 M urea was used in combination with sonication (diagenode Bioruptor, 3x30 s at full

power, 4°C). Proteins were not precipitated.

2.2.14. Cross-linking of human mitoplasts, lysis and protein precipitation

Human mitoplasts (see subsection 2.2.12) were aliquoted in 1 mg portions. Pellets were

resuspended in 0.5 mL cross-linking buffer (20 mM HEPES, pH 7.5, 100 mM NaCl).

Mitoplasts were cross-linked with either 5 mM BS3 or 5 mM 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide hydrochloride (EDC) in combination with 10 mM N-

hydroxysulfosuccinimide (sulfo-NHS) for 45 min at RT. Reactions were quenched, and

mitoplasts were pelleted at 12,000xg for 10 min at 4°C for subsequent lysis. Lysis was

performed by resuspending the pellet in 300 µL lysis buffer (50 mM Tris-HCl pH 7.4,

100 mM NH4Cl, 10 mM MgCl2, 2 % SDS; 20 mM DTT for EDC cross-linking), followed by

a short incubation of 10 min at RT with gentle shaking. Samples were spun down at

16,000xg for 20 min at RT, and the proteins in the supernatant were precipitated by adding

ice-cold acetone at a ratio of four times the sample volume, followed by overnight

incubation at -20°C. After precipitation, samples were spun down at 10,000xg for 5 min at

4°C. Pellets were resuspended with 1 mL of ice-cold 80 % ethanol, spun down again and

air dried.

2.2.15. CuSO4 cross-linking

Cysteine cross-linking induced by CuSO4 was performed as described by Kobashi248 with

the following changes: Mitochondria were resuspended in SH buffer (0.6 M sorbitol,

20 mM HEPES pH 7.5) and incubated with 2 mM CuSO4 for 30 min on ice. Quenching

was performed by adding 17 mM N-ethylmaleimide (NEM) and 17 mM EDTA, incubated

for 15 min on ice.
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2.2.16. Protein size exclusion chromatography

For one biological replicate of cross-linked mitochondria derived from yeast grown on

glycerol medium, proteins were prefractionated by protein size exclusion chromatography

(protein SEC) after lysis. Precipitated proteins were resuspended in 100 µL of buffer

containing 20 mM HEPES pH 8, 100 mM NaCl and 1 % SDS. Cross-linked protein

complexes were separated by loading them onto a Superose-6 Increase 3.2/300 column

coupled to an ÄKTAmicro system (both GE Healthcare). Protein SEC running buffer

consisted of 20 mM HEPES pH 8, 100 mM NaCl and 0.1 % SDS. The system was

operated with a flow rate of 40 µL/min and fractions with a volume of 100 µL were

collected. Proteins within each fraction were further subjected to in-solution digestion (see

subsection 2.3.1).

2.2.17. BCA assay

Protein concentration was estimated using the PierceTM BCA Protein Assay Kit (Thermo

Fisher Scientific). Bovine serum albumin (BSA) serial dilutions in a working range of 25-

2,000 µg/mL were used to build a standard curve. 5 µL of each sample or standards were

mixed with 100 µL of BCA working reagent (solution A and solution B freshly mixed in a

50:1 ratio) and incubated for 30 min at 37°C. Absorbance values measured at 562 nm

were used to determine protein concentration. Values in samples with unknown protein

concentration were estimated by inference from a BSA standard curve.

2.3. Mass spectrometry and proteomics methods

2.3.1. Protein digestion in-solution

Precipitated proteins were resuspended in 50 µL 8 M urea/50 mM ammonium bicarbonate

(ABC) pH 8. For proteins derived from human mitoplasts, an additional sonication step

(diagenode Bioruptor, 3x30 s, 4°C) was performed. Proteins were reduced by adding DTT

to a final concentration of 10 mM, incubated for 1 h at RT. Subsequently, proteins were

alkylated by adding iodoacetamide (IAA) to a final concentration of 40 mM, incubated for

30 min at RT in the dark. Proteins were digested by trypsin (Promega) in an enzyme-to-

protein ratio of 1:50 overnight at 37°C (see ref249 for protocol overview). The digestion was

stopped by adding trifluoroacetic acid (TFA) to a final concentration of 0.5 %. Peptides

were then subjected to desalting (see subsection 2.3.4).
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2.3.2. SDS-PAGE

After digesting proteins derived from cross-linked human mitoplasts, the resulting

precipitation after acidifying to 0.5 % TFA was resuspended in 4X NuPAGE LDS Sample

Buffer with reducing agent (106 mM Tris-HCl, 141 mM Tris-Base, 2 % LDS, 10 % glycerol,

0.51 mM EDTA,  0.22 mM SERVA Blue G250, 0.175 mM Phenol Red, 50 mM DTT;

Thermo Fisher Scientific), diluted to 1X and heated up at 70°C for 10 min. Solubilized

proteins were separated by SDS-polyacrylamide gel electrophoresis (PAGE)250 by loading

them to NuPAGE 4-12 % Bis-Tris gels (Thermo Fisher Scientific), applying 200 V for

45 min. Gels were stained with Coomassie InstantBlue (Merck) for 2 h and destained with

deionized water overnight. Proteins were then in-gel digested (see subsection 2.3.3).

2.3.3. Protein digestion in-gel

In-gel protein digestion was performed as initially described elsewhere251 with a few

changes. Briefly, SDS-PAGE lanes were cut into 23 equal-sized slices and chopped into

small pieces. Pieces were hydrated with 150 µL H2O for 5 min at RT with gentle shaking.

After removal of the liquid, gel pieces were shrunk by adding 150 µL ACN, incubated for

15 min. Proteins within the gel pieces were reduced by adding 150 µL 10 mM

DTT/100 mM ABC, incubated for 50 min at 56°C. Again, pieces were shrunk by adding

ACN. Afterwards, proteins were alkylated by adding 150 µL 55 mM IAA/100 mM ABC,

incubated for 20 min at RT in the dark. Gel pieces were washed with 150 µL 100 mM ABC

and 50 % ACN, incubated for 15 min at RT, respectively. Gel pieces were shrunk again

with ACN and air dried. 30 µL trypsin solution (1 µg trypsin (Sigma), 5 mM CaCl2, 50 mM

ABC) were added to the gel pieces and incubated for 10 min at 4°C. Gel pieces were

covered with additional 30 µL 5 mM CaCl2/50 mM ABC. Trypsin (Sigma-Aldrich) digestion

was performed at 37°C overnight. After digestion, gel pieces were shrunk by adding 80 µL

ACN, incubated for 15 min at 37°C. From this point, supernatants containing peptides were

collected. Peptides retained in the gel pieces were acidified by adding 80 µL 5 % formic

acid, incubated for 15 min at 37°C. Same volume of ACN was added before an additional

incubation round for 15 min at 37°C. Supernatants were pooled, vacuum dried and

subjected to LC-MS/MS analysis (see subsection 2.3.6).

2.3.4. Peptide desalting

SepPak cartridges (1cc, tC18, Waters) were used for peptide desalting, an upscaled and

modified version of the method described earlier252. C18 material was activated with 1 mL



Materials and Methods

33

100 % ACN followed by 1 mL 80 % ACN/0.1 % TFA and three times 1 mL 0.1 % TFA.

Peptides were loaded onto the cartridge and pushed through by gravity flow. Bound

peptides were washed twice with 1 mL 0.1 % TFA and finally eluted twice with 500 µL of

80 % ACN/0.1 % TFA. Combined eluates were vacuum dried in a vacuum concentrator.

2.3.5. Enrichment of cross-linked peptides by size exclusion
chromatography

For enrichment of cross-linked peptides, peptide size exclusion chromatography (peptide

SEC) was performed214. Dried peptides were resuspended in peptide SEC running buffer

(30 % ACN/0.1 % TFA). A SuperdexPeptide 3.2/300 column (GE Healthcare) connected

to an Agilent 1100 HPLC was used for separation. A flow rate of 50 µL/min was applied

and fractions with a volume of 50 µL were collected. Fractions between 1.1 and 1.4 mL

column volume were vacuum dried, resuspended in mass spectrometry loading buffer (2-

4 % ACN/0.05 % TFA) and analyzed by LC-MS/MS (see subsection 2.3.6).

2.3.6. LC-MS/MS data acquisition

LC-MS/MS data were acquired according to Linden et al.247 Fractions derived from peptide

SEC that contained cross-linked peptides were measured twice on an Orbitrap Fusion or

Orbitrap Fusion Lumos Tribrid Mass Spectrometer (Thermo Fisher Scientific). Mass

spectrometers were coupled online to a Dionex UltiMate 3000 UHPLC system (Thermo

Fisher Scientific) equipped with an in house-packed C18 column (ReproSil-Pur 120 C18-

AQ, 1.9 µm pore size, 75 µm inner diameter, 30 cm length, Dr. Maisch GmbH). The

following 180 min LC method with a flow rate of 300 nL/min was applied for peptide

separation: mobile phase A consisted of 0.1 % formic acid (FA, v/v), mobile phase B

consisted of 80 % ACN/0.08 % FA (v/v). The method started at 5 % B, increasing to 10-

20 % B within 3 min (depending on the peptide SEC fraction; for earlier fractions a steeper

start point was chosen), followed by an increase to 46 % B within 168 min, then keeping

B constant at 90 % for 6 min. The column was equilibrated to 5 % B for 6 min. The orbitrap

(OT) mass detector was used for MS1 and MS2 spectra acquisition with a resolution of

120,000 and 30,000, respectively. In MS1, the scan range was set from 350 to 1550 m/z,

automatic gain control (AGC) target to 5×105 and the maximum injection time (IT) to 60 ms.

The dynamic exclusion time was set to 10 s. For fragmentation, the 20 most abundant

precursors with a charge state between 3-8 were selected per duty cycle. Higher-energy

collisional dissociation (HCD) with a normalized collision energy of 30 % was applied for

precursor fragmentation. For MS2 spectra acquisition, the AGC target was set to 5×104
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and IT to 128 ms. These settings were also applied for the quantitative comparison of BS3-

d4 and DSS. Here, one technical replicate was measured on Orbitrap Fusion Lumos.

For the quantitative experiments and the analysis of peptides derived from human

mitoplasts, the following changes were applied: peptides were analyzed on a Q Exactive

HF-X mass spectrometer (Thermo Fisher Scientific). For MS1, AGC target was set to

1×106 and IT to 50 ms. Dynamic exclusion was set to 60 s and for fragmentation the 30

most abundant precursor ions were selected per duty cycle. For MS2, AGC target was set

to 1×105.

2.4. Data processing and analysis

2.4.1. Analysis of data acquired from cross-linked yeast mitochondria

2.4.1.1. Generation of the databases

Data were analyzed according to Linden et al.247 Proteome Discoverer (v. 2.1, Thermo

Fisher Scientific) was used to convert .raw files to .mgf files. For this, the signal-to-noise

ratio was set to 1.5 and the considered precursor mass to 1,000-10,000 Da. Based on

these converted data, dedicated, biological replicate-specific databases containing the

400 most abundant proteins (top400) were created. For this, proteins were identified based

on their linear, i.e. non-cross-linked, peptides by Mascot167 (v. 2.3.02) and sorted in

Scaffold253 (v. 4) by dividing total spectral counts by the molecular weight of the specific

proteins. In Mascot, the following settings were applied: precursor tolerance was set to 10

ppm, fragment tolerance to 0.02 Da. Trypsin was selected as protease, with maximum four

missed cleavage sites. Carbamidomethylation on cysteines, oxidation of methionines,

hydrolyzed BS3 (mass shift +156.077 Da) and Tris-quenched BS3 (mass shift

+259.142 Da) were set as variable modifications. False discovery rate (FDR) was set to

1 %. A reviewed yeast database (UniProt/SwissProt, 02/2016, 23481 entries) was used

for the search. Finally, proteins originated from S. cerevisiae were selected.

Databases used for the quantitative experiments were generated by using

MaxQuant254 (v. 1.6.0.1). Compared to the Mascot search described above, the following

changes were applied: for the search, .raw files were used; MaxQuant was operated in

default mode with above mentioned BS3-modifications added; trypsin was allowed to have

maximum three missed cleavage sites; the reviewed S. cerevisiae database

(UniProt/SwissProt, 12/2016, 6721 entries) was used. To rank identified proteins, iBAQ

values were taken into consideration. Generated databases were specific for one label-

swap experiment.
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2.4.1.2. Identification of cross-linked peptides

All converted .mgf files from both the qualitative and quantitative experiments were

analyzed by pLink 1255,256 (v. 1.23) with the following settings: BS3 was set as cross-linker,

BS3-d4 was additionally considered for the quantitative experiments; trypsin was selected

as protease with maximum two missed cleavage sites; carbamidomethylation on cysteines

was defined as fixed modification, oxidation of methionines was set as variable

modification; precursor mass tolerance was set to ±5 Da and was adapted to ±4 Da for

analysis of quantitative data. A mass filter of ±10 ppm was applied to every selected

isotopic peak. Fragment ion mass tolerance was set to 20 ppm. 1 % FDR was applied at

spectrum level.

2.4.1.3. Quantitation of cross-linked peptides

Cross-linked peptides identified by pLink 1 were quantified by XiQ226, operated with default

settings. Quantitation of peptides was based on areas under the curve taken from .raw

files. Areas under the curve were summed up for the first to the third isotopic peak

separately for heavy-labeled and light peptides. Signals with a drop to 10 % of intensity

were considered and monoisotopic peaks were excluded from the calculation to avoid an

overlap between labeled and unlabeled peptides. Heavy-to-light ratios of peptides were

finally calculated by dividing the summed areas of the corresponding peaks. Ratios were

then log2-transformed and median-normalized. An in-house written R script provided by

Dr. Iwan Parfentev was used to condense quantitative information to unique peptide pairs

by a weighted intensity average of differently charged precursor ions corresponding to the

same peptide (according to Chen et al.257).

2.4.2. Analysis of data acquired from cross-linked human mitoplasts

2.4.2.1. Generation of the databases

Proteins were identified based on their linear peptides by MaxQuant (v. 1.6.0.1). Same

settings as described above were applied with the following changes: for the EDC data

set, hydrolyzed and Tris-quenched BS3 modifications were exchanged by Tris-quenched

EDC modification (mass shift +91.063 Da). All identified proteins were included in the

database for the cross-linked peptide search (approximately 1500 to 1900 proteins).
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2.4.2.2. Identification of cross-linked peptides

For the identification of cross-linked peptides derived from human mitoplasts, pLink 2258

(v. 2.3) was used. The acquired .raw files were loaded into pLink 2 and the following

settings were applied: BS3 and EDC-DE was selected as cross-linker, respectively, with

the corresponding databases; trypsin was set as protease with maximum three missed

cleavage sites; peptide mass was set to 400-10,000 Da and peptide length to 4-60 amino

acids; precursor and fragment tolerances were set to 10 and 20 ppm, respectively;

carbamidomethylation of cysteines was set as fixed modification, oxidation of methionines

as variable modification. A global FDR of 1 % was applied.

2.4.3. Docking experiments

Docking experiments were performed according to Linden et al.247 For this, the Rosetta

software259-261 was used. The structure of the yeast CIII2CIV2 (PDB: 6HU991) were

downloaded from the Protein Data Bank of Transmembrane Proteins (PDBTM262). These

structures provided transformed coordinates that are appropriate for docking experiments

in the membrane bilayer. Tools such as mp_span_from_pdb, mp_dock_setup (Rosetta)

were used to generate the membrane topology files from the atomic models. According to

the cross-linking results, docking partners were preoriented manually in PyMOL prior to

actual docking to avoid global and low-resolution docking steps. Thus, docking

experiments were performed using the local docking approach (high-resolution docking).

Constraints provided by cross-linking results were applied in the form of “AtomPair”

harmonic distances (9.0 Å ± 2.5 Å) between the cross-linked atoms (NZ of lysine residues

and N of the N-terminal residue). For each docking experiment at least 5000 decoys were

generated. These decoys were ranked based on the interface score (I_sc) representing

the energy of the interactions across the interface and were subsequently clustered.

The structure of Ndi1 was taken from type-II mitochondrial NADH dehydrogenase

(PDB: 4G73263) and the structure of Pet9 from the mitochondrial ADP/ATP carrier protein

(PDB: 4C9G264). Rosetta’s ab initio protocol for de novo folding of membrane proteins265,266

was used to calculate the atomic model of Min8. OCTOPUS server267 as well as Robetta

server (www.robetta.bakerlab.org) were used to generate the topology of transmembrane

region and fragment files. Over 300,000 low-resolution centroid models were created. The

5000 most energetically favored ones were picked for clustering and converted to “full-

atom” models. Coot268 were used to manually optimize the orientations of intermembrane

space and matrix domains of the docked Min8 model.
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2.4.4. General statistics

Significance of differences between protein-protein cross-links identified in mitochondria

derived from yeast grown on glycerol- or glucose-containing medium (represented in

subsection 3.1.3, Figure 7) were calculated with a Chi-square test of independence.

Absolute numbers of unique protein-protein cross-links (including intraprotein and

interprotein cross-links) were considered. All “ambig”- and “not mt”-pairs were combined,

OM-M-pairs were combined with OM-IM-pairs, and both IMS-M-pairs and IMS-IM-pairs

were combined with IMS-IMS-pairs to increase the number of values per category ≥ 5,

suitable to conduct a Chi-square test of independence. Values for Χ² below an alpha level

of 0.05 were considered as significant. For the quantitative comparison of residue-to-

residue cross-links resulting from cross-linking of mitochondria derived from yeast grown

on glycerol- or glucose-containing medium, a one-sample t test was applied to test for

significant differences. A minimum of three valid values out of four replicates was

considered. Differences with a p value ≤ 0.05 and a fold change ≥ 2 were considered

significant (see subsection 3.1.6, Figure 11).

2.4.5. Visualization of cross-linking results

For the visualization of protein-protein cross-links, Cytoscape269, xiNET270 and xVis271 were

used. Perseus272 was used to perform and display the volcano plot and principal

component analysis (PCA). DisVis273 was used for the calculation of accessible interaction

space. Protein structures were illustrated with PyMOL (www.pymol.org, Schrödinger LLC)

and UCSF Chimera274 in combination with Xlink Analyzer275.



3.1 Cross-linking combined with mass spectrometry of mitochondria derived from yeast
grown on glycerol- or glucose-containing medium

38

3. Results

Results obtained during the course of this thesis are presented in this section. Chemical

cross-linking in combination with mass spectrometry (XL-MS) was applied to mitochondria

derived from Saccharomyces cerevisiae grown on glycerol- or glucose-containing

medium. Identified protein-protein cross-links in both conditions were compared to each

other in a qualitative and a quantitative approach (see section 3.1). Also, mitochondria

derived from a rho0 yeast strain that lacks mitochondrial DNA (mtDNA) were analyzed with

XL-MS (see section 3.2). An additional protein prefractionation step was tested with cross-

linked mitochondria derived from yeast grown on glycerol-containing medium to increase

the number of cross-links identified by XL-MS (see section 3.3). Data obtained from cross-

linked mitochondria from all strains and conditions, i.e. from yeast grown on glycerol- or

glucose-containing medium and from the rho0 yeast strain, were also analyzed with a

proteomics workflow identifying linear, i.e. non-cross-linked, peptides and compared to

each other (see section 3.4). Prior to the cross-linking experiments, mitochondria from

yeast grown on glycerol-medium were tested for membrane integrity and respiration

activity (see section 3.5). Furthermore, mitoplasts generated from human mitochondria of

HEK293T cells were cross-linked separately with two cross-linkers harboring different

reaction chemistries for the analysis of protein-protein cross-links by XL-MS (see section

3.6). All raw files that were acquired and used for data analysis are listed in

Supplementary Tables 8-15.

3.1. Cross-linking combined with mass spectrometry of mitochondria derived
from yeast grown on glycerol- or glucose-containing medium

In the following subsections, the results of the mass spectrometric analysis of cross-linked

mitochondria derived from S. cerevisiae grown on glycerol- or glucose-containing medium

will be presented and compared to each other. The major part of these results was

published in the peer-reviewed journal Molecular & Cellular Proteomics (Linden et al.247).

Yeast mitochondria from both conditions were isolated and purified by Dr. Markus Deckers

and Mirjam Wissel, Cellular Biochemistry, University Medical Center Göttingen. Cross-

linking reactions and data acquisition of mitochondria derived from yeast grown on glucose

medium and the first biological replicate of mitochondria derived from yeast grown on

glycerol medium included in the qualitative data sets were performed by Dr. Chung-Tien

Lee during his time as a postdoctoral researcher in the Bioanalytical Mass Spectrometry

Group at the Max Planck Institute for Biophysical Chemistry. Data of the second biological

replicate of cross-linked mitochondria derived from yeast grown on glycerol medium
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included in the qualitative data sets were acquired in collaboration with Dr. Iwan Parfentev,

Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry.

Dr. Parfentev also helped in analyzing the quantitative data with fruitful discussions and

with providing a self-written R script facilitating the analysis. Biochemical experiments

regarding the analysis of Min8 and its association with the cytochrome c oxidase such as

BN-PAGE experiments, CuSO4 cross-linking, immunoprecipitations, related SDS-PAGE

and Western blot experiments, respirometry experiments, and import assays were

performed and analyzed by Dr. Markus Deckers and Bettina Homberg, Cellular

Biochemistry, University Medical Center Göttingen. This is also described in more detail

in Bettina Homberg’s PhD thesis with the preliminary title ‘Regulation of mitochondrial

supercomplex formation’. Bettina Homberg is a PhD student in the GGNB program

‘Molecular Medicine’. Docking experiments including Min8 and Ndi1 were performed by

Dr. Piotr Neumann, Molecular Structural Biology, Institute for Microbiology and Genetics,

Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen. Dr.

Neumann also assisted in figure preparation related to the docking experiments. Dr. Ralf

Pflanz, Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical

Chemistry, assisted in figure preparation of ETC circles.

3.1.1. Determination of a suitable cross-linker to cross-link mitochondrial
proteins

To determine which cross-linker suits best for chemical protein-protein cross-linking within

mitochondria, two commonly used ingredients were tested. For this, disuccinimidyl

suberate (DSS), a membrane-permeable but water-insoluble cross-linker, and

bis(sulfosuccinimidyl)suberate (BS3), a membrane-impermeable but water-soluble cross-

linker were considered. An equimolar mixture of DSS and isotopically labeled BS3-d4 was

added to a freshly prepared crude extract of mitochondria isolated from yeast grown on

glycerol medium (see subsection 2.2.3). Mitochondria were lysed, and proteins were

precipitated and tryptically digested (see subsections 2.2.13 and 2.3.1). Cross-linked

peptides were enriched by peptide size exclusion chromatography214 (peptide SEC, see

subsection 2.3.5) and the first fractions containing the cross-linked peptides were analyzed

by liquid chromatography tandem mass spectrometry (LC-MS/MS, see subsection 2.3.6).

Identification of cross-linked peptides was performed by pLink 1255,256 (v. 1.23, see

subsection 2.4.1) with the 400 most abundant proteins in the database (see subsection

2.4.1.1). In total, 2028 cross-linked peptides spectrum matches (CSMs) were identified, of

which 921 could be assigned to peptides cross-linked by DSS and 1107 by BS3-d4. Next,

cross-links were quantified by XiQ226 (see subsection 2.4.1.3) and the suborganellar
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localization of cross-linked proteins within mitochondria were determined. Since most of

the ratios of quantified residue-to-residue cross-links (amino acid of peptide A cross-linked

to amino acid of peptide B) remained unchanged, the residue-to-residue cross-links with

a fold change ≥ 2 were investigated in more detail. 71-73 % of the identified protein-protein

cross-links to which the identified residue-to-residue cross-links infer localize either to the

inner membrane (IM) or to the matrix (M), regardless of the used cross-linker (Figure 5).

This indicates that also the membrane-impermeable cross-linker BS3 connects proteins

of all mitochondrial subcompartments. Based on these findings, water-soluble BS3 was

used for further experiments. This avoided organic solvents that would have been

necessary to resuspend water-insoluble DSS. Higher concentrations of organic solvents

might disturb membrane protein interactions276, introducing artefacts. All identified cross-

links are listed in Supplementary Table 1 provided on a CD-ROM attached to the hardcopy

version of this thesis.

Figure 5: Comparison of both cross-linkers DSS and BS3 regarding their ability to cross-link
proteins in all mitochondrial subcompartments. To investigate if DSS and BS3 are suitable for cross-
linking of mitochondria derived from yeast, DSS and isotopically labeled BS3-d4 were mixed in an
equimolar ratio and added to freshly isolated crude mitochondrial extract. The pie charts illustrate
the relative number of unique protein-protein cross-links in percent depending on the suborganellar
location of the proteins after quantitative cross-linking. Quantitation was performed by XiQ226 on
identifications provided by pLink 1255,256. Only these protein-protein cross-links with quantified
residue-to-residue cross-links showing a fold change ≥ 2 were considered. OM, outer membrane;
IMS, intermembrane space; IM, inner membrane; M, matrix; ambig, ambiguous; not mt, not
mitochondrial. Adapted from Linden et al.247

3.1.2. Workflow for cross-linking mitochondria

Mitochondria were isolated from S. cerevisiae and purified via tandem sucrose gradient

centrifugation239 (see subsections 2.2.3 and 2.2.4). Purified mitochondria of all conditions

were cross-linked with BS3. Proteins were extracted and digested by the endoproteinase



Results

41

trypsin. Cross-linked peptides were enriched by peptide SEC and the first fractions

containing the cross-linked peptides were subjected to LC-MS/MS. Scaffold253 was used

to generate a protein database containing the 400 most abundant proteins based on the

identification of linear peptides by Mascot167 and pLink 1 was used for cross-linked

peptides identification (Figure 6). Two biological replicates, i.e. cross-linking of different

mitochondria isolations, were carried out per condition.

Figure 6: Cross-linking workflow for the identification of cross-linked peptides in mitochondria
isolated from Saccharomyces cerevisiae. Yeast cells were grown on two different media
individually, containing glycerol or glucose as carbon source. After isolation and purification via a
sucrose gradient centrifugation, mitochondria were cross-linked with BS3 (XL; additional BS3-d4
was used for the quantitative experiments) and lysed. Proteins were tryptically digested and cross-
linked peptides were enriched by peptide size exclusion chromatography. Linear peptides were
identified by Mascot167 and Scaffold253 was used to generate a database containing the 400 most
abundant proteins (computer “1”). Cross-linked peptides were identified by pLink 1255,256 (computer
“2”) by searching against the dedicated database. Depending on the experimental design, the
workflow was adapted at steps marked with asterisks. *, a S. cerevisiae rho0 mutant was grown on
glucose-containing medium and respective mitochondria were isolated; **, proteins of one biological
replicate of mitochondria from yeast grown on glycerol-containing medium were first separated by
protein size exclusion before digestion; ***, for human mitoplasts, besides BS3 also EDC was used
as XL and all identified proteins were included in the database, performed by MaxQuant254 on
computer “1”, and analyzed with pLink 2258 on computer “2”.
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This resulted in 2999 unique residue-to-residue cross-links in the glycerol and 2595 unique

residue-to-residue cross-links in the glucose data set (1 % false discovery rate (FDR) on

spectrum level), respectively. Next, those cross-linked peptides that were only identified

by a single CSM or were below a pLink 1 spectrum score of four were excluded. This

reduced the numbers of unique residue-to-residue cross-links to 2100 in the glycerol and

1787 in the glucose data set, with 17 % (359) and 15 % (266) of them being interprotein

cross-links, i.e. cross-links between two different proteins. Cross-linking mitochondria from

the rho0 strain resulted in 1976 unique residue-to-residue cross-links (2922 before

filtering), with 15 % (298) interprotein cross-links (Table 6). With these stringent filtering

steps, it was sought to reduce false positive cross-links. Due to the filtering steps, the

overlap of unique residue-to-residue cross-links between biological replicates increased

from 39 % to 55 % in the glycerol data set and from 45 % to 62 % in the glucose data set

(Supplementary Figure 1). Cross-links were structurally validated by mapping identified

cross-links from the glycerol data set onto available structures of proteins from different

suborganellar locations (Supplementary Figure 2). 90 % or above of these cross-links

satisfied the distance constraint of 30 Å imposed by the cross-linker BS3. All identified

cross-links are listed in Supplementary Table 2 provided on a CD-ROM attached to the

hardcopy version of this thesis.

Table 6: Numbers of total identified cross-linked peptides spectrum matches (CSMs), cross-linked
proteins, unique residue-to-residue cross-links and the interprotein cross-links in percent for the
unfiltered and the filtered data set for all conditions. ‘Single CSMs’ in percent represent those unique
residue-to-residue cross-links that were identified only by a single CSM.

unfiltered filtered
glycerol glucose rho0 glycerol glucose rho0

total CSMs 25022 22007 20538 23859 20508 19237
cross-linked
proteins 315 313 331 261 260 265

unique residue-
to-residue cross-
links

2999 2595 2922 2100 1787 1976

interprotein
cross-links 22.2 % 21.3 % 21.9 % 17.1 % 14.9 % 15.1 %

single CSMs 29.7 % 30.5 % 32.0 %
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3.1.3. Cross-links reveal different protein-protein cross-linking patterns in
yeast mitochondria depending on the carbon source

To investigate whether the different carbon sources had a general effect on protein-protein

cross-linking networks in the respective mitochondria, a global overview of the proteins

that were involved in cross-linking reactions was generated. The filtered data sets revealed

a total of 261 (glycerol) and 260 (glucose) proteins with an overlap of 66 %. They account

for 396 and 386 unique protein-protein cross-links, respectively, subdivided into 42 %

(167) interprotein and 58 % (229) intraprotein cross-links in the glycerol condition and

40 % (155) interprotein and 60 % (231) intraprotein cross-links in the glucose condition.

First, the suborganellar localizations of these proteins were plotted according to Vögtle et

al.142 (Figure 7). The majority of cross-links in both data sets covered protein-protein

cross-links between IM proteins, followed by M-to-M protein-protein cross-links. Protein-

protein cross-links within the OM were less abundant. Cross-links that span one or even

two intact membranes, e.g. OM-to-M, IMS-to-M or to non-mitochondrial proteins (not mt)

are unlikely. These interactions account for less than 5 % in the glycerol and the glucose

data sets, underlining the reliability of these data.

Figure 7: Relative distribution of protein-protein cross-links after cross-linking of mitochondria
derived from yeast grown on glycerol- or glucose-containing medium according to the proteins’
subcompartmental localizations. Intraprotein and interprotein cross-links were considered.
Localization assignments are based on Vögtle et al.142 A Chi-square test of independence was
conducted to calculate the significance of differences between protein-protein cross-links of both
conditions with an assumed alpha level of 0.05 (Χ² = 0.043). OM, outer membrane; IMS,
intermembrane space; IM, inner membrane; M, matrix; ambig, ambiguous; not mt, not
mitochondrial. Adapted from Linden et al.247

When comparing data from the glycerol with the glucose condition, it was observed that

IM-to-IM protein-protein cross-links were more abundant in the glycerol data set (201

(51 %) versus 173 (45 %) in the glycerol and the glucose data set, respectively), whereas
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M-to-M protein-protein cross-links were more abundant in the glucose data set (110 (29 %)

versus 94 (24 %)).

Figure 8: Global interprotein cross-linking network identified in mitochondria derived from yeast
grown on glycerol- or glucose-containing medium. Interprotein cross-linking networks identified in
the glycerol (upper panel) and the glucose data set (lower panel). Interprotein cross-links are unique
for the respective condition, but all represented proteins were identified in both conditions.
Localizations based on Vögtle et al.142 Thickness of the edges is proportional to the number of
unique residue-to-residue cross-links. OM, outer membrane; IMS, intermembrane space; IM, inner
membrane;  ambig, ambiguous; not mt, not mitochondrial; AA biosyn., amino acid biosynthesis;
CoQ biosyn, Coenzyme Q biosynthesis; OXPHOS, oxidative phosphorylation system; TCA,
tricarboxylic acid; PDH, pyruvate dehydrogenase complex; PAM, presequence translocase-
associated motor; mitoribosome, mitochondrial ribosome. Networks visualized by Cytoscape269.
Adapted from Linden et al.247



Results

45

In contrast to that, protein-protein cross-links of the OM were almost equally present (32

(8 %) versus 38 (10 %)). Differences between protein-protein cross-links in both conditions

are significant as evaluated by a Chi-square test of independence (see subsection 2.4.4).

Next, cross-linked proteins were assigned to known complexes. 74 unique

interprotein cross-links within the electron transport chain (ETC), the tricarboxylic acid

(TCA) cycle and the mitochondrial ribosome (mitoribosome) were common in both data

sets (Supplementary Figure 3). Additionally, proteins of the presequence translocase-

associated import motor (PAM) complex, the pyruvate dehydrogenase complex (PDH),

enzymes like transferases, isomerases, desulfurases and oxidases (e.g. Cpr3, Isd11, and

Alo1) as well as carriers and pore forming proteins (e.g. Por1, Tom40, Pet9) were present

in both conditions. Proteins that could not be sorted to any category were listed as ‘others’,

e.g. prohibitin (Phb1, Phb2), DNA-binding proteins (e.g. Abf2) or translational activators

(e.g. Mss51). Besides these commonalities, interprotein cross-links were also uniquely

identified in each of the conditions. To map these proteins that were uniquely involved in

interprotein cross-linking in either of the conditions to functional pathways, the KEGG

database277 was used. Identifications from oxidative phosphorylation, metabolic and TCA

cycle pathways were enriched in the glycerol data set, whereas 2-oxocarboxylic acid

metabolism, biosynthesis of secondary metabolites as well as amino acids pathways were

enriched in the glucose data set (data not shown). This is due to glucose-repression of

genes that encode proteins involved in the OXPHOS system or the TCA cycle75,76.

Consequently, more unique residue-to-residue cross-links within the ETC and the TCA

cycle were identified in the glycerol than in the glucose data set (Figure 8, top panel). In

the glucose data set, in turn, the number of unique residue-to-residue cross-links of

proteins involved in amino acid biosynthesis (e.g. Ilv1-3, Ilv5, Lys4, Lys12) and coenzyme

Q (CoQ) biosynthesis was higher (Figure 8, bottom panel).

3.1.4. Cross-links between proteins localized to the inner membrane

According to the relative distribution of cross-linked proteins (see subsection 3.1.3, Figure
7), the majority of protein-protein cross-links was identified between proteins localized to

the IM. However, all mitochondrial subcompartments were covered with this cross-linking

approach. To highlight this, cross-links of abundant proteins such as Por1 and Om45

(OM), Nde1 (IMS) and Pet9 (IM) were analyzed in more detail (Figure 9). Cross-links

between Por1 and Om45, the most abundant outer membrane protein of so far unknown

function278, were identified in both data sets. Their interaction was already described by

Lauffer et al.279 Por1 is a voltage-dependent anion channel that is involved in ion transport

and links the IMS to the cytosol. Cross-links of Por1 to Alo1, the D-arabinono-1,4-lactone
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oxidase, and to Tom40, component of the TOM complex, were also present in both data

sets. The interaction between Por1 and Alo1 is uncharacterized so far, three unique

residue-to-residue cross-links could be identified in the glycerol data set and five unique

residue-to-residue cross-links in the glucose data set, respectively. Additionally, cross-

linked peptides from Om45 and Nde1, the external NADH:ubiquinone oxidoreductase,

could be detected. 22 unique residue-to-residue cross-links in the glycerol data set and

eight residue-to-residue cross-links in the glucose data set indicate a strong interaction

interface between Om45 and Nde1 that is also undescribed so far.

While these cross-links are common in both conditions, most of the changes in

protein-protein cross-links were observed within the IM. Pet9, the major ADP/ATP carrier

is one of the most abundant proteins in the IM97. Pet9 cross-linked to eleven proteins in

the glycerol condition, but only to two proteins in the glucose condition (Figure 9). Among

these eleven proteins that were identified in the glycerol condition, three of them belong to

the ETC, namely Sdh2 (CII), Cor1 (CIII) and Cox9 (CIV), suggesting an association of Pet9

to the ETC. An interaction between Pet9 and Cor1 was also identified in the glucose data

set. This finding is consistent with biochemical studies97,98. Pet9 also cross-linked to Ndi1

as well as Min8, an 8 kDa protein of unknown function, that will be described in subsection

3.1.10.

Figure 9: Cross-links of selected proteins as identified in mitochondria isolated from yeast grown
on glycerol- or glucose-containing medium. Por1, Om45, Nde1 and Pet9 represent proteins from
the OM, the IMS and the IM with a high number of unique residue-to-residue cross-links to
interaction partners. These networks are visualized for the glycerol (left) and the glucose (right)
condition. Proteins are colored as described in Figure 8 (red, ETC; blue, amino acid biosynthesis;
yellow, carriers and pore forming proteins; green, mitoribosome; light gray, others; dark gray,
unknown function). Dashed circles: database of the other condition did not cover these proteins.
Thickness of the edges is proportional to the number of unique residue-to-residue cross-links. OM,
outer membrane; IMS, intermembrane space, IM, inner membrane. Dr. Ralf Pflanz assisted in figure
preparation. Adapted from Linden et al.247
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3.1.5. Cross-links within the OXPHOS system

The main function of mitochondria is the generation of ATP. This is accomplished by the

oxidative phosphorylation (OXPHOS) system consisting of four highly abundant

multisubunit complexes in yeast (complexes II-V, CII-CV). CII-IV form the electron

transport chain (ETC) generating an electrochemical gradient across the inner membrane

by redox reactions and pumping protons from the matrix to the IMS. This proton gradient

can finally be utilized by the F1F0 ATP synthase, also known as complex V (CV), that

synthesizes ATP from ADP and inorganic phosphate (Pi). Yeast cells do not harbor

complex I (CI) but express Ndi1, a protein of 57 kDa. It functions as an NADH:ubiquinone

oxidoreductase on matrix-side, but does not pump protons like mammalian CI83. All these

complexes were cross-linked in both conditions (Figure 10). However, more unique

residue-to-residue cross-links were detected in the glycerol than in the glucose data set

(383 unique residue-to-residue cross-links in the glycerol data set versus 191 residue-to-

residue cross-links in the glucose data set). Also, CIV-associated proteins such as Rcf2

and Rcf3 that facilitate the complex assembly were only identified in the glycerol data set,

in addition to Min8. These proteins and their cross-links will be discussed below (see

subsections 3.1.8 and 3.1.10). These results indicate a densely packed ETC, with Ndi1

(see subsection 3.1.9) and Pet9 being part of it.

Figure 10: Interprotein cross-links within the OXPHOS system identified in mitochondria derived
from yeast grown either under glycerol (left) or glucose (right) condition. Ndi1, F1F0 ATP synthase
(CV), CIV-associated proteins and Pet9 (yellow) are included. Thickness of the edges is
proportional to the number of unique residue-to-residue cross-links. Black lines, intra-complex
cross-links; turquoise lines, inter(-complex) cross-links. Dr. Ralf Pflanz assisted in figure
preparation. Adapted from Linden et al.247
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3.1.6. Quantitative XL-MS approach reveals abundance changes of residue-
to-residue cross-links depending on the carbon source

To further elucidate the differences in residue-to-residue cross-links within mitochondria

from yeast grown on glycerol- or glucose-containing medium and to quantify them, a label-

swap experiment with isotopically labeled BS3 was performed. For that, mitochondria

isolated from yeast grown on glycerol-containing medium were cross-linked with

isotopically labeled BS3-d4 whereas mitochondria from yeast grown on glucose-

containing medium were incubated with non-labeled BS3-d0 and vice versa (see

subsection 2.2.13). Samples were mixed in a 1-to-1 ratio according to the protein amount.

The sample preparation was performed as described in subsection 3.1.2. Cross-linked

peptides identification was performed by pLink 1 against a database containing the 400

most abundant proteins based on identification of linear peptides with MaxQuant254 (see

subsection 2.4.1). The quantitation of cross-linked peptides on MS1 level was performed

by XiQ226 (see subsection 2.4.1.3). A fold change ≥ 2 and a p value ≤ 0.05 with three valid

Figure 11: Results from quantitation of unique residue-to-residue cross-links after cross-linking
mitochondria derived from yeast grown on glycerol- or glucose-containing medium with isotopically
labeled and unlabeled BS3. Volcano plot of p value, -log10-transformed, against normalized heavy
(glucose, blue) to light (glycerol, red) ratios, log2-transformed. Thresholds were set at p value ≤ 0.05
and fold change ≥ 2. Filled circles, interprotein cross-links; squares, intraprotein cross-links.
Adapted from Linden et al.247
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values out of four replicates was considered as significant (see subsection 2.4.4). 169

unique residue-to-residue cross-links (accounting for 46 proteins) had significantly higher

MS1 intensities in the glycerol condition. In the glucose condition, 145 unique residue-to-

residue cross-links (62 proteins) had significantly higher MS1 intensities (Figure 11). Of

these 169 residue-to-residue cross-links in the glycerol condition, 134 (75 %) represents

intraprotein cross-links, 135 of 145 (93 %) in the glucose condition. All identified cross-

links are listed in Supplementary Table 1 provided on a CD-ROM attached to the hardcopy

version of this thesis.

Similar to the qualitative data set, a KEGG277 pathway enrichment analysis of the

46 and 62 respective proteins was performed. Also in this quantitative data set, oxidative

phosphorylation, metabolic and TCA cycle pathways were enriched in the glycerol

condition. 2-oxocarboxylic acid metabolism, biosynthesis of secondary metabolites as well

Figure 12: Representation of intraprotein and interprotein cross-links that were quantified after
cross-linking mitochondria derived from yeast grown on glycerol- or glucose-containing medium
with isotopically labeled and unlabeled BS3. Protein-protein cross-links were clustered according
to the function of involved proteins (similar to Figure 8), depicted as sunburst diagrams. Area of a
field is proportional to the number of unique residue-to-residue cross-links. Red, depicting cross-
links with higher intensities in glycerol growth condition; blue, depicting cross-links with higher
intensities in glucose growth condition. AA biosyn., amino acid biosynthesis; OXPHOS, oxidative
phosphorylation system; TCA, tricarboxylic acid; PDH, pyruvate dehydrogenase complex; PAM,
presequence translocase-associated motor. Adapted from Linden et al.247
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as amino acids pathways were enriched in the glucose condition (data not shown),

underlining the effect of glucose-repression75,76. In the amino acid biosynthesis pathway

especially cross-links of Ilv2, Ilv3, Ilv5, Lys4 and Lys12 showed higher intensities.

Furthermore, intra- and interprotein cross-links within parts of the PAM complex, namely

Ssc1 and Mge1, were more abundant in the glucose condition. Also, intraprotein cross-

links of the outer membrane transporter Por1 were more abundant (Figure 12, right

diagram).

In the glycerol condition, the protein with the highest number of unique residue-to-

residue cross-links that were significantly more abundant was Ald4, followed by intra-

complex links of CV. However, also a higher intensity of the cross-links between Qcr6 of

CIII and Cox5a of CIV, subunits that are in close contact within an ETC supercomplex (see

subsection 3.1.9), could be observed. Moreover, the quantitative data confirmed that the

cross-links between Om45 and Nde1 are more abundant in the glycerol condition.

Additionally, a cross-link between Cox6 and Cox26, a newly identified subunit of CIV124,125,

was more abundant in the glycerol data set (Figure 12, left diagram).

To summarize, the quantitative data fit well to the qualitative data. However, most

of the quantified cross-linked proteins, especially in the glycerol data set, were found with

a higher copy number per se, depending on the growth condition. This is consistent with

the data from Morgenstern et al.72 (Figure 13) and with the performed proteomic analysis

in this thesis (see section 3.4). In this regard, increased intensities of all intraprotein cross-

links could be due to the higher copy numbers of the proteins induced by the respective

carbon source. However, differences in abundances of interprotein cross-links can provide

valuable insights into interaction dynamics, especially between proteins or subunits of

complexes that show comparable copy numbers in both growth conditions. One example

for this is the pyruvate dehydrogenase complex (PDH).

Figure 13: Ratios of copy numbers of quantified cross-linked proteins in S. cerevisiae grown under
glycerol (left) and glucose (right) condition. Red, higher copy number in glycerol; blue, higher copy
number in glucose. *, values taken from Morgenstern et al.72 Adapted from Linden et al.247
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3.1.7. Organization of the pyruvate dehydrogenase complex

To evaluate structural changes between proteins protein complexes induced by the

different carbon sources, cross-links between proteins that showed an equal copy number

in both the glycerol and the glucose condition were investigated (according to Morgenstern

et al.72). One example for this is the pyruvate dehydrogenase complex (PDH), a

multienzyme machine in the matrix of mitochondria. It synthesizes acetyl-CoA from the

substrate pyruvate, and, thus, links the glycolysis to the TCA cycle. E1, the pyruvate

dehydrogenase, is composed of two subunits, Pda1 and Pdb1, and surrounds E2, the

dihydrolipoyl transacetylase Lat1 together with E3, the dihydrolipoyl dehydrogenase Lpd1.

The assembly of E2 and E3 is facilitated by the E3-binding protein Pdx1, forming a fully

functional PDH280. While Lpd1 showed a 2.4-fold higher copy number in the glycerol

condition and Pdx1 a 1.4-fold higher copy number in the glucose condition, Pda1, Pdb1

as well as Lat1 had equal copy numbers in both conditions. 13 unique intraprotein cross-

links of Lat1, one intraprotein cross-link of each of the proteins Pda1 and Pdx1 and two

interprotein cross-links between Lat1 and Pdb1 could be quantified. All of them were

significantly more abundant in the glucose condition. These quantitative data show that

the intensities of cross-linked peptides are not only related to the copy numbers of the

respective proteins. Differences in the abundance of cross-links can also reflect structural

arrangements of protein complexes depending on the carbon source.

These quantitative results were then compared to the respective cross-links in the

qualitative data sets. Here, the number of unique residue-to-residue cross-links within the

PDH was also higher in the glucose condition (Figure 14). In the glucose data set, 107

residue-to-residue cross-links were identified versus 83 residue-to-residue cross-links in

the glycerol data set. Of these, 40 residue-to-residue cross-links were uniquely identified

in the glucose condition and 14 residue-to-residue cross-links in the glycerol condition.

Strikingly, the E3-binding protein Pdx1 formed two unique residue-to-residue cross-links

to each of E2 and E3 in the glucose data set. In contrast to that, only one unique residue-

to-residue cross-link was detected between Pdx1 and E3 in the glycerol data set. This

correlates with an increase in interprotein cross-links between E2 and E3 (four unique

residue-to-residue links in the glucose data set versus none in the glycerol data set). The

identified cross-links might support a more detailed structural evaluation of the PDH whose

structure still needs to be unraveled in yeast.
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Figure 14: Cross-links within the pyruvate dehydrogenase complex (PDH) identified in
mitochondria derived from yeast grown on glycerol- or glucose-containing medium. Intraprotein and
interprotein cross-links within PDH from the qualitative data sets. Blue lines, cross-links only
identified in glucose condition; red lines, cross-links only identified in glycerol condition; black lines,
common links. Visualized by xVis271. Adapted from Linden et al.247

3.1.8. Interactions of uncharacterized proteins

According to the Saccharomyces Genome Database29 (SGD), 726 out of 6,604 open

reading frames (ORFs) are still uncharacterized (April 2020). Characterization of the

resulting proteins will help to localize them and to describe their function. So far

uncharacterized proteins in both qualitative data sets were investigated. To prove data

validity, proteins that have been described recently but whose function is still under

discussion were also included. In the glycerol condition, ten of these proteins were

identified. Four of them, namely Min8, Nat2, Rcf3 and Ycp4 showed interprotein cross-

links. In the glucose data set, eleven proteins were identified. Aim17, Coq21, Dpi8, Fmp16

and the protein encoded by the ORF YDR061W provided interprotein cross-links

(Supplementary Figure 5). Aim17 cross-linked to cyclophilin Cpr3 (one unique residue-

to-residue cross-link), and Fmp16 to Aco1, the aconitase within the TCA cycle (one unique

residue-to-residue cross-link). Coq21 cross-linked to Coq5 (one unique residue-to-residue

cross-link). This is consistent with the study performed by Morgenstern et al.72. The authors

could localize Coq21 to the matrix and by immunoprecipitation define it as part of the

coenzyme Q biosynthesis cluster. Dpi8, also localized to the matrix in the same study but
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not further characterized, cross-linked to Kgd1 (one unique residue-to-residue cross-link).

Kgd1 is part of the α-ketoglutarate dehydrogenase of the TCA cycle. The ORF YDR061W

is uncharacterized so far. The protein encoded by this ORF shows similarity to ABC

transporter. In the glucose data set, two unique residue-to-residue cross-links to Ilv5, an

acetohydroxyacid reductoisomerase involved in amino acid biosynthesis could be

identified.

In the glycerol data set, Nat2 cross-linked to Mdh1, the malate dehydrogenase

within the TCA cycle (one unique residue-to-residue cross-link). Ycp4, a flavodoxin-like

protein, showed one unique residue-to-residue cross-link to Hsp60 and Pst2 (like Ycp4 a

protein with similarity to flavodoxin-like proteins), respectively. Furthermore, Rcf3 cross-

linked to Cox12, a subunit of CIV (one unique residue-to-residue cross-link). Rcf proteins

are respiratory supercomplex factors and interact with CIV. They assist in the assembly

process of the CIII-CIV supercomplex. This is consistent with the study performed by

Römpler et al.119 who identified Rcf3 as homolog of Rcf2 and their association with CIII

and CIV. Also, Rcf2 could be identified in the glycerol data set, showing one unique

residue-to-residue cross-link to each of Cox12 and Cox13. While the N-terminus of Rcf3

cross-linked to the N-terminus of Cox12, Rcf2 cross-linked C-terminally with both Cox12

and Cox13. Hence, all identified cross-links occurred in the IMS that is in accordance with

the proposed inner membranous localization and orientation of both Rcf proteins. Römpler

et al.119 demonstrated that Rcf2 is processed after import into a stable C-terminal part of

Rcf2 and an unstable N-terminal part. The identified cross-links confirm the association of

Rcf2 and Rcf3 with CIV and their role in late stage assembly of Cox12 and Cox13.

Furthermore, Min8 cross-linked to Cox12 as well and additionally cross-linked to Pet9.

3.1.9. Ndi1 is part of an ETC supercomplex

Previous studies have shown that CIII and CIV form functional supercomplexes in

eukaryotes87,88. It is hypothesized that formation of supercomplexes support faster electron

shuttling103. With most of the biochemical methods that were used to study the CIII-CIV

supercomplex, native conditions were altered due to the presence of detergents. XL-MS

is able to catch interactions in organello and was already applied to murine mitochondria

to prove supercomplex formation99,100. In order to confirm supercomplex formation also in

yeast, the cross-links within the ETC were analyzed in more detail. Since the number of

identified cross-links within the ETC was higher in the glycerol condition, only cross-links

identified in mitochondria from yeast grown on glycerol-containing medium were

considered for further analyses (see subsection 3.1.5, Figure 10, left panel). Genes that

encode proteins involved in OXPHOS are glucose-repressed75,76. While the majority of the
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cross-links represents intra-complex cross-links, i.e. cross-links within or between subunits

of the same ETC complex, 13 unique inter-complex cross-links were identified. Five of

those interprotein cross-links were identified between Qcr6, a subunit of CIII, and Cox5a

as well as Cox9, both subunits of CIV. In a CIII-CIV supercomplex, the subunits Qcr6 and

Cox5a are in closest proximity at the interface93, which yielded the highest number of

unique residue-to-residue cross-links (three). 90 % of these residue-to-residue cross-links

matched to the recently published CIII2CIV2 supercomplex structure91 (data not shown).

This indicates that CIII and CIV are in close proximity to each other and form a

supercomplex structure in organello.

In mammals, CI is part of a CI-CIII-CIV supercomplex87. Since CI is absent in yeast,

it was further investigated whether Ndi1 might take over this part. This hypothesis is

supported by two unique residue-to-residue cross-links to CIII, one between residues K76

of Ndi1 and K17 of Qcr7, the other one between residues K361 of Ndi1 and K198 of Qcr2.

Based on this cross-links, the theoretical interaction space between Ndi1’s dimeric

structure263 and the CIII2CIV2 supercomplex structure91 was calculated by DisVis273. It

demonstrates that there is no steric hindrance to CIV (Figure 15). Thus, the data are

compatible with a participation of Ndi1 in an ETC supercomplex in yeast.

Figure 15: CIII2CIV2 supercomplex structure with calculated accessible interaction space of Ndi1.
Accessible interaction space of Ndi1 (gray sphere) within a Ndi1CIII2CIV2 supercomplex based on
identified cross-links in mitochondria derived from yeast grown on glycerol-containing medium.
Visualized as top view from IMS (left) and as side view embedded into IM (right). Accessible
interaction space calculated by DisVis273. IMS, intermembrane space; IM, inner membrane.
Structures and spheres were illustrated by UCSF Chimera274. Adapted from Linden et al.247

Next, a structural arrangement for an Ndi1CIII2CIV2 supercomplex was proposed.

Therefore, Rosetta259-262 was used to dock the structure of dimeric Ndi1263 to the recently

published CIII2CIV2 supercomplex structure91 based on the identified cross-links and

Ndi1’s C-terminal membrane anchor (Figure 16, see subsection 2.4.3). As confirmed by

the DisVis analysis, there is no steric hindrance to CIV. Ndi1 forms a T-like shape with the



Results

55

CIII-CIV supercomplex as seen from the IMS. This shape is comparable to the mammalian

CICIII2CIV supercomplex (Supplementary Figure 4). An Ndi12CIII2CIV2 supercomplex

could also be constructed by docking Ndi1 on both sides of the dimeric CIII, forming a

propeller-like shape with Ndi1-CIII2-Ndi1 on the one axis and CIV-CIII2-CIV on the other

axis. The data provide evidence for a participation of Ndi1 in an Ndi1CIII2CIV2 or even

higher-order supercomplex arrangement.

Figure 16: Proposed structure of an Ndi1CIII2CIV2 supercomplex in yeast. Representation of the
supercomplex as top view from IMS (left) and as side view embedded into IM (bottom right). Ndi1
dimer (gray; light purple, membrane anchor; PDB: 4G73263) was docked to the CIII2CIV2
supercomplex structure (green, CIII dimer; orange, CIV monomers; PDB: 6HU991) based on the
identified cross-links between Ndi1 and CIII in mitochondria derived from yeast grown on glycerol-
containing medium. Inlet, zoomed interaction interface between CIII and Ndi1. IMS, intermembrane
space; IM, inner membrane. Docking experiments were performed by Dr. Piotr Neumann. Adapted
from Linden et al.247

3.1.10. Min8 is associated with the cytochrome c oxidase

Min8 is a small protein consisting of 72 amino acids with an uncharacterized open reading

frame (ORF) YPR010C-A and cross-linked to CIV similar to the Rcf proteins. Its C-terminus

showed two unique residue-to-residue cross-links to Cox12, a subunit of CIV. Additionally,

Min8 cross-linked to Pet9 with its N-terminus. Pet9 is the major ADP/ATP carrier protein

within the IM whose association with the ETC was discussed above. Min8 was already

assigned as a protein of the IM by Morgenstern et al.72, with its C-terminus protruding to

the IMS, its N-terminus protruding to the matrix and a transmembrane region between

amino acid positions 20 and 40 that is embedded into the inner membrane. Rosetta265-268
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was used to calculate a model of Min8 ab initio. Next, the modeled Min8 structure was

docked to CIV whose structure was extracted from the CIII2CIV2 supercomplex structure91

(see subsection 2.4.3). The structure of Pet9 and its cross-links to Min8 and to CIV were

included in the docking experiment (Figure 17). Reactive lysine residues of Min8 were

K69 on IMS and K13 on matrix-side. K69 linked to K41 as well as the N-terminus of Cox12.

K13 cross-linked to K182 of Pet9 on the matrix-side. The model and the cross-links to CIV

and Pet9 indicate an association of Min8 to CIV.

Figure 17: Proposed structural model of Min8 associated with the cytochrome c oxidase. Min8
(magenta) was modeled ab initio and docked to the cytochrome c oxidase (extracted from PDB:
6HU991) together with  Pet9 (purple; PDB: 4C9G264) based on cross-links identified in mitochondria
derived from yeast grown on glycerol-containing medium. Demonstrated are the top view from IMS
(left) and the side view embedded into IM (right). Identified residue-to-residue cross-links are
represented as blue bars, satisfying the distance constraint of 30 Å given by the cross-linker BS3.
IMS, intermembrane space; IM, inner membrane. Docking experiments were performed by Dr. Piotr
Neumann. Adapted from Linden et al.247

To further evaluate the putative association of Min8 with CIV, a Min8FLAG yeast strain was

used for oxidative cysteine cross-linking (see subsection 2.2.15). Since Min8 contains one

cysteine residue at position 36, it was sought to identify interaction partners by CuSO4

treatment. Cu(II) ions oxidize thiol groups of cysteines and trigger formation of disulfide

bonds281. After cross-linking cysteines to cysteines by CuSO4, Min8FLAG was

immunoprecipitated and Western blotted (see subsections 2.2.7 and 2.2.9). Distinct bands

that were shifted by several kDa were detected (Figure 18a). The shifts occurred most

likely due to Cys-Cys interactions with Min8FLAG. Those bands were subjected to in-gel

digestion (see subsection 2.3.3) and subsequently analyzed by LC-MS/MS. All identified

proteins are listed in Supplementary Table 4 provided on a CD-ROM attached to the

hardcopy version of this thesis. Among the identified proteins, Rcf1, Rcf2 and Cox2 as well

as Cyc1 were identified, all of them related to CIV. Co-precipitating proteins, i.e. proteins
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that were identified but not shifted together with Min8, were Cox4, Cox6 and Cox5a, all of

them subunits of CIV, as well as Pet9. Other shifted proteins that were also identified are

e.g. Tim11, a subunit of CV, and Mic26, part of the mitochondrial contact-site and cristae-

organizing system (MICOS). Combining the BS3- and Cu(II)-cross-links provide a

comprehensive Rcf-Pet9-OXPHOS interaction network in which Min8 seems to participate

(Figure 18b).

Figure 18: Association of Min8 to the cytochrome c oxidase. (a) Western blot of Min8FLAG

immunoprecipitation with anti-FLAG antibody before and after CuSO4-induced cysteine-to-cysteine
cross-linking, total input and eluted from beads. Mass shifts and a representation of identified
shifted proteins are indicated. (b) Schema of identified Min8-Rcf-Pet9-OXPHOS cross-linking
network. Black lines, BS3 cross-links; cupreous, potential CuSO4 links. Blue circles, co-
immunoprecipitated but not shifted proteins. Thickness of the lines is proportional to unique residue-
to-residue cross-links. IMS, intermembrane space; IM, inner membrane.

These results indicate that Min8 could be a novel structural subunit of CIV. To corroborate

this hypothesis, Min8 or Cox12 were immunoprecipitated after cross-linking with BS3 in

combination with Western blotting. This showed a direct interaction between Min8 and

Cox12. Next, a functional relevance of the association of Min8 to CIV was investigated by

generating a min8 strain. These cells did not show any growth defects, neither under

fermentative nor under non-fermentative conditions. With special focus on CIV it could also

be demonstrated that amount and activity of CIV were not affected in min8Δ cells.

According to the cross-links between Min8 and Cox12, it was further investigated whether

Min8 influences the late stage assembly of Cox12 and Cox13, both positioned at the

periphery of the complex. Protein import assays (see subsection 2.2.6) with radiolabeled

Cox12 and Cox13 indicated that assembly of Cox13 to CIV was slightly increased in the

absence of Min8. Assembly of Cox12, in turn, was hampered. Surprisingly, Cox12 was

detected in a yet undefined complex that was also observable in a cox4Δ mutant that
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should not contain any mature CIV. Hence, Min8 seems to support the assembly of Cox12

into an intermediate complex. This work is described in more detail in the PhD thesis with

the preliminary title ‘Regulation of mitochondrial supercomplex formation’ performed by

Bettina Homberg, Cellular Biochemistry, University Medical Center Göttingen. Bettina

Homberg is a PhD student in the GGNB program ‘Molecular Medicine’.

3.2. Cross-linking combined with mass spectrometry of mitochondria derived
from a rho0 yeast strain

The initial idea of using the rho0 strain for cross-linking experiments was to reduce sample

complexity, and, hence, to improve cross-linking results. It was anticipated to gain more

detailed insights of protein-protein cross-links between mitochondrial proteins and protein

complexes. Since the rho0 strain does not contain mitochondrial DNA (mtDNA), the core

proteins Cob and Cox1-3 of the ETC, subunits Atp6, Atp8 and Oli1 of the F1F0 ATP

synthase as well as ribosomal 15S and 21S RNAs are not translated37. Consequently,

abundant protein complexes in wild type yeast strains such as complex III and complex IV

of the ETC and the mitoribosome are not assembled correctly and should not be involved

in cross-linking reactions. In theory, this should increase identifications of intraprotein and

interprotein cross-links in other, also low abundant, protein complexes such as the

translocases of outer and inner membrane (TOM/TIM) complexes or the mitochondrial

contact-site and cristae-organizing system (MICOS), amongst others. Mitochondria from

the rho0 yeast strain were isolated and purified by Dr. Markus Deckers and Mirjam Wissel,

Cellular Biochemistry, University Medical Center Göttingen. Cross-linking reactions and

data acquisition were performed by Dr. Chung-Tien Lee during his time as a postdoctoral

researcher in the Bioanalytical Mass Spectrometry Group at the Max Planck Institute for

Biophysical Chemistry.

With respect to identified CSMs, cross-linked proteins, and unique residue-to-

residue cross-links, the analysis of cross-linked mitochondria derived from the rho0 strain

resulted in comparable numbers as the ones provided by the glycerol and glucose data

sets (see subsection 3.1.2, Table 6). In the rho0 data set, OM-to-OM protein-protein cross-

links accounted for 14 %, nearly twice the number compared to the glycerol and glucose

data sets (Figure 19). Additionally, IM-to-IM protein-protein cross-links were reduced by

almost the half to 26 % what is in line with the fact that in the rho0 strain complexes within

the ETC – an integral part of the IM – are not assembled correctly. M-to-M protein-protein

cross-links with 25 % were equally present compared to the other data sets. Surprisingly,

cross-links between proteins that were not assigned to mitochondria were relatively high

(14 %) and could be due to contaminations during the isolation process. All identified
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cross-links are listed in Supplementary Table 2 provided on a CD-ROM attached to the

hardcopy version of this thesis.

Figure 19: Relative distribution of protein-protein cross-links after cross-linking mitochondria
derived from the rho0 yeast strain according to their subcompartmental localization. Intraprotein and
interprotein cross-links were considered. Localization assignments are based on Vögtle et al.142

OM, outer membrane; IMS, intermembrane space; IM, inner membrane; M, matrix; ambig,
ambiguous; not mt, not mitochondrial.

3.2.1. Cross-links within the OXPHOS system and the PDH

Analyzing the identified cross-links within the OXPHOS system of the rho0 strain revealed

only a low number of cross-links within and between the complexes (Figure 20a)

compared to the identified cross-links in mitochondria derived from yeast grown on

glycerol- or glucose-containing medium (see subsection 3.1.5, Figure 10). Cross-links

between subunits of CII, namely Sdh1-3, were also covered in the rho0 data set, whereas

interactions within CIII-CV were significantly reduced. Cross-links between Cor1 and Qcr2

were identified within CIII, cross-links between Cox5b and Cox6 within CIV. No cross-links

between subunits of CIII and CIV were detected. Pet9 was also not part of any identifiable

cross-link to the OXPHOS system. This is in line with the lack of mtDNA in the rho0 strain

that therefore does not show a functional ETC.

Cross-links within the PDH were identified and quantified in mitochondria derived

from yeast grown on glycerol- or glucose-containing medium (see subsection 3.1.7)

indicating that fully assembled PDH complexes are more abundant when glucose is

metabolized. Accordingly, also in the rho0 data set (the rho0 strain only survives on media

containing fermentable carbon sources, like glucose) interprotein cross-links between the

E3-binding protein Pdx1 and E2 as well as E3 were identified (Figure 20b).

Simultaneously, the number of interprotein cross-links between E1 and E2 was increased

compared to the glycerol condition and comparable to the glucose condition. In
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combination with the quantitative data, these findings indicate that fully assembled PDHs,

i.e. where Pdx1 brings E3 in close proximity to E2, are more abundant when glucose is

used as carbon source.

Figure 20: Cross-links within the OXPHOS system and the pyruvate dehydrogenase complex
(PDH) identified in mitochondria derived from the rho0 yeast strain. (a) Interprotein cross-links within
the OXPHOS system. Ndi1 and F1F0 ATP synthase (CV) are included. Thickness of the edges is
proportional to the number of unique residue pairs. Black lines, intra-complex cross-links; turquoise
lines, inter(-complex) cross-links. (b) Cross-links within the PDH. Visualized by xVis271.

3.2.2. Cross-links within the TCA cycle

All proteins involved in the tricarboxylic acid (TCA) cycle could be identified in cross-linked

mitochondria from rho0 yeast cells. This comprehensiveness could not be achieved in the

glycerol and glucose data sets. The citrate synthase (Cit1), the aconitase (Aco1), the

isocitrate dehydrogenase (Idh1, Idh2), the α-ketoglutarate dehydrogenase (Kgd1, Kgd2,

Lpd1), the succinyl-CoA synthase (Lsc1, Lsc2), the succinic dehydrogenase (CII of the

ETC; Shd1, Sdh2, Sdh3), the fumarase (Fum1) and the malate dehydrogenase (Mdh1)

were cross-linked (Figure 21, red background). While most of them were only detected by

intraprotein cross-links, interactions between Aco1 and Idh2 were identified. These

proteins are involved in two consecutive reaction steps within the TCA cycle. Aconitase

catalyzes the isomerization of citrate to isocitrate that is subsequently oxidized and

carboxylated to α-ketoglutarate by isocitrate dehydrogenase. Since the decarboxylation

step is rate-limiting, a tight connection between aconitase and isocitrate dehydrogenase

could accelerate substrate channeling. Other interprotein cross-links between proteins of
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the TCA cycle could not be detected, although the existence of the ‘metabolon’, i.e. the

supercomplex of proteins involved in the TCA cycle, was already described by cross-

linking and mass spectrometry282. Multiple residue-to-residue cross-links between Aco1

and Ilv5, the mitochondrial ketol-acid reductoisomerase, were identified. Ilv5 is part of the

isoleucine/valine biosynthesis pathway. This pathway consists of four steps, including six

different proteins. Four of these six proteins were identified in the rho0 data set (Ilv6, Ilv2,

Ilv5, Ilv3), showing also interprotein cross-links within this pathway (Figure 21, blue

background). The two missing proteins, Bat1 and Bat2, are involved in a last

transamination step. Instead, a protein that has been described to regulate the

transamination step could be identified, Mmf1283. Mmf1 also provided cross-links to Aco1.

The interactions of Ilv5 to Aco1 and additionally to the isocitrate dehydrogenase as well as

Mmf1 to Aco1 link this amino acid biosynthesis pathway to the TCA cycle.

Figure 21: Identified cross-links within the TCA cycle and its connection to proteins involved in
amino acid biosynthesis in mitochondria derived from rho0 yeast cells. Circles represent proteins,
circle size is proportional to protein size. Edges indicate cross-links, thickness is proportional to
unique residue-to-residue cross-links. Edges to the same protein illustrate intraprotein cross-links,
edges between two proteins indicate interprotein cross-links. Red-colored edges represent cross-
links within one protein but to the same residue, indicating a multimeric protein structure. Red
background, proteins belonging to the TCA cycle; blue background, proteins belonging to the
isoleucine/valine biosynthesis pathway. Network visualized by xiNET270.

3.2.3. Cross-links within TOM/TIM complexes

A major rationale of using the rho0 strain was to determine interactions within the

complexes of the translocases of the outer and inner membrane (TOM/TIM). The

TOM/TIM system supports the transport of proteins into the mitochondrion and consists of
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at least 27 directly involved proteins21. Indeed, the number of CSMs supporting unique

residue-to-residue cross-links of proteins involved in the TOM/TIM complexes was almost

doubled when compared to the glucose and glycerol data sets (176 CSMs in the rho0 data

set versus 88 and 97 in the glucose and glycerol data set, respectively). However, only

Tom5 and its cross-link to Por1 could be exclusively identified in the rho0 data set as part

of the TOM system (Figure 22). Besides that, cross-links between Por1 and Tom40 could

be identified under glycerol and glucose conditions as well as in the rho0 strain. Tom40

forms the membrane pore in the OM and is a major constituent of the TOM complex284.

Furthermore, also the TIM10 complex consisting of Tim9 and Tim10 was identified in all

conditions. These two soluble proteins are an essential part in protein import and are

located in the IMS285,286. Additionally, the TIM23 complex was covered as well in all

conditions, mainly by cross-links within the PAM complex. In this study, interprotein cross-

links between Pam18, Pam16 and Tim44 as well as Ssc1 and Mge1 could be identified.

The PAM complex shows ATPase activity and supports the import of matrix proteins287. In

summary, some parts of the TOM/TIM complexes could be covered by this cross-linking

approach (for a full list see Supplementary Table 7), but the initial hypothesis that the

rho0 strain might provide a deeper insight into these complexes did not prove true.

Figure 22: Cross-linking network of TOM/TIM proteins identified in mitochondria derived from rho0

yeast cells as well as from wild type mitochondria derived from yeast grown on glycerol- or glucose-
containing medium. Turquoise lines, interprotein cross-links; black lines, intraprotein cross-links;
not mt, not mitochondrial; OM, outer membrane; IMS, intermembrane space; IM, inner membrane.
Networks visualized by xVis271.
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3.3. Protein size exclusion chromatography as additional fractionation step to
improve analysis depth of cross-linked proteins

Additional protein and peptide fractionation steps in MS-based proteomics reduce the

sample complexity and increase the analysis depth of the final LC-MS/MS analyses. A

drawback of additional sample preparation steps is the increased analysis time. Since

protein size exclusion chromatography (protein SEC) of cross-linked proteins and protein

complexes derived from cross-linked mitochondria from yeast grown on glycerol-

containing medium has been performed as a prefractionation step, the data were

annotated and evaluated in this thesis and compared with data obtained by the peptide

SEC workflow (see subsection 3.1.2). Protein SEC under denaturing conditions (0.1 %

SDS) was performed after lysis of cross-linked mitochondria (see subsection 2.2.16).

Fractions containing cross-linked proteins were digested with the endoproteinase trypsin

and then subjected to peptide SEC. Fractions containing the cross-linked peptides were

analyzed by LC-MS/MS. Mitochondria from yeast grown on glycerol-containing medium

were isolated and purified by Dr. Markus Deckers and Mirjam Wissel, Cellular

Biochemistry, University Medical Center Göttingen. Cross-linking reactions, protein SEC,

and data acquisition were performed by Dr. Chung-Tien Lee during his time as a

postdoctoral researcher in the Bioanalytical Mass Spectrometry Group at the Max Planck

Institute for Biophysical Chemistry.

Table 7 compares the results of the analyses using the protein SEC approach

versus the peptide SEC approach. Using protein SEC as additional fraction step revealed

more CSMs as compared to the peptide SEC approach, both in non-filtered and filtered

Table 7: Numbers of total identified cross-linked peptides spectrum matches (CSMs), cross-linked
proteins, unique residue-to-residue cross-links and the interprotein cross-links in percent for the
unfiltered and the filtered data set for peptide SEC and the protein SEC approach. ‘Single CSMs’
in percent represent those unique residue-to-residue cross-links that were identified only by a single
CSM.

unfiltered filtered
glycerol

peptide SEC
glycerol

protein SEC
glycerol

peptide SEC
glycerol

protein SEC
total CSMs 25022 53646 23859 52012
cross-linked
proteins 315 424 261 308

unique residue-to-
residue cross-links 2999 2789 2100 1957

interprotein cross-
links 22.2 % 29.1 % 17.1 % 19.1 %

single CSMs 29.7 % 29.2 %
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(CSMs must have a spectrum score greater than four and residue-to-residue cross-links

must be supported by more than one CSM) data sets. Also, the number of intraprotein and

interprotein cross-links increased. However, the numbers of unique residues-to-residues

cross-links did not increase but was surprisingly lower. The number of proteins that were

involved in cross-linking reactions increased from 315 to 424 (unfiltered). All identified

cross-links are listed in Supplementary Table 3 provided on a CD-ROM attached to the

hardcopy version of this thesis.

86 protein-protein cross-links were exclusively identified by the protein SEC

approach; 94 % (81) of them represented by only a single residue-to-residue cross-link.

These results indicate that the additional fractionation step did not significantly increase

the number of protein-protein cross-links when compared to the results from the peptide

SEC approach. Nonetheless, protein SEC added valuable information to protein-protein

cross-links that were already identified by the peptide SEC approach. For example,

another residue-to-residue cross-link between Min8 and Cox12 was identified. K69 of Min8

cross-linked not only to K41 and the N-terminus of Cox12 on the IMS-side but also to K53

of Cox12, thus supporting the 3D model of CIV with integrated Min8 (see subsection

3.1.10). Besides that, additional cross-links within the OXPHOS complexes were identified

(Table 8). An interprotein cross-link between CIII and CIV underlines the existence of an

ETC supercomplex (Cor1 to Cox1). Furthermore, interprotein cross-links between CIII and

CV were identified with the protein SEC approach.

Table 8: Protein-protein cross-links within the OXPHOS system of mitochondria derived from yeast
grown on glycerol-containing medium uniquely identified via the protein SEC approach. #unique,
number of unique residue-to-residue cross-links contributing to the particular protein-protein cross-
link; #CSMs, number of cross-linked peptides spectrum matches supporting the particular protein-
protein cross-link.

complex Protein 1 Protein 2 #unique #CSMs
CII Sdh1 Sdh5 3 23
CII Sdh2 Sdh9 1 2
CIII-CIV Cor1 Cox1 1 3
CIII-CV Qcr2 Atp16 1 5
CIII-CV Qcr7 Atp5 1 2
CIV Cox2 Cox12 1 12
CIV Cox6 Cox12 1 2
CV Atp2 Atp15 1 3
CV Atp4 Atp17 1 4
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Other protein-protein cross-links exclusively identified after protein SEC are shown in

Figure 23. Cross-links from proteins with so far unknown function to other proteins were

identified, such as Fmp10 to Mrx3, Fmp40 to Ald4 and Fmp41 to Hsp77. Furthermore,

cross-links between OM proteins and proteins that are not assigned to mitochondria were

detected, such as Om45 to Sss1 and Por1 to Min6. Sss1 is a subunit of the Sec61

translocation complex of the endoplasmic reticulum (ER)288. Min6 is a protein of unknown

function and is assigned to peroxisomes289. These cross-links might indicate the

connection between mitochondria and other organelles. Cross-links between Tim11, a

subunit of CV, and Mic10, component of MICOS, support the interaction of both complexes

which has been previously described19,290. Another cross-link was detected between

Cox13 and Mia40, the mitochondrial import and assembly protein58. In summary, the

prefractionation step with protein SEC resulted in more CSMs and confirmed cross-links

identified by the peptide SEC approach but also added information of hitherto not

described protein interactions. Unfortunately, protein SEC prefractionation did not reveal

additional cross-links of the TOM/TIM complexes.

Figure 23: Selected protein-protein cross-links uniquely identified in the protein SEC approach after
cross-linking mitochondria derived from yeast grown on glycerol-containing medium. Thickness of
the edges is proportional to the number of unique residue-to-residue cross-links. Turquoise lines,
interprotein cross-links; not mt, not mitochondrial; OM, outer membrane; IMS, intermembrane
space; IM, inner membrane.
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3.4. Proteomic analysis of mitochondria derived from yeast grown on glycerol-
or glucose-containing medium and from the rho0 yeast strain

Yeast cells grown on fermentable and non-fermentable carbon sources adapt their

metabolism according to the provided supply291-293. Also, the amount and morphology of

yeast’s mitochondria change depending on the carbon source35,294,295. This comes along

with differences in protein abundances72. The same holds true for the rho0 yeast strain that

lacks mitochondrial DNA296,297. In this strain the mitochondrial ribosome (mitoribosome)

and the electron transport chain (ETC) are not assembled correctly, because cells cannot

synthesize core proteins of ETC complexes and also rRNAs necessary for mitoribosome

assembly37. Based on these changes, comparison of protein abundances by MS-based

proteomics should aid distinguishing between the mitochondria from different strains and

growth conditions. In this regard, a comparative protein identification search with

MaxQuant254 of all the fractions resulting from peptide SEC replicates of all conditions was

performed (see subsection 2.4.2.1). By performing principal component analysis (PCA)

via Perseus272, replicates belonging to mitochondria isolated either from yeast grown on

glycerol, glucose or the rho0 strain could be separated (Figure 24).

Figure 24: Principal component analysis (PCA) of glycerol, glucose and rho0 condition. PCA is
based on identified linear, i.e. non-cross-linked peptides. Displayed are technical replicates, four
per condition, that could be separated depending on carbon source and strain. Red, glycerol
condition; blue, glucose condition; gray: rho0 strain. Calculated and illustrated by Perseus272.

Proteins from the mitoribosome like Mrp7, Mrpl10 and Mrp20 showed equal abundances

in mitochondria from yeast grown on glycerol and glucose in all replicates but were less

abundant in the rho0 strain (data not shown). When focusing on the comparison of

mitochondria from yeast derived from glycerol and glucose growth, proteins belonging to

the ETC like Sdh1, Qcr6 and Cox1 or the glycerol-3-phosphate dehydrogenase Gut2
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showed higher abundances in the glycerol condition whereas proteins belonging to amino

acid biosynthesis pathways such as Lys4 or Arg5,6 showed higher abundances in the

glucose condition (data not shown). These results reflect the metabolic condition of the

yeast and are in agreement with other proteomic studies dealing with mitochondria derived

from yeast grown on different carbon sources9,72,146 and are in line with the presented

cross-linking results.

3.5. Quality control of yeast mitochondria

To investigate the quality of purified yeast mitochondria prior to cross-linking, several

control experiments were performed to investigate the quality of purified yeast

mitochondria prior to cross-linking. To assess the influence of the sucrose gradient and

the subsequent freezing on the performance of mitochondria, the oxygen consumption

(see subsection 3.5.1), the import quality (see subsection 3.5.2), the activity of respiratory

chain complexes (see subsection 3.5.3) and the membrane integrity (see subsection 3.5.4)

were tested. As references, freshly isolated crude mitochondrial extract, frozen crude

mitochondrial extract and/or freshly purified mitochondria and frozen purified mitochondria

were considered. All these experiments were performed and analyzed by Dr. Markus

Deckers, Bettina Homberg, Dr. Tobias Müller and Mirjam Wissel, Cellular Biochemistry,

University Medical Center Göttingen. Bettina Homberg is a PhD student in the GGNB

program ‘Molecular Medicine’.

3.5.1. Oxygen consumption of isolated and purified yeast mitochondria

The Oroboros O2k system measures the oxygen concentration in defined chambers by an

oxygen sensor and translates it into an oxygen flux. With this system mitochondria’s ability

to perform oxidative phosphorylation (OXPHOS) can be measured, since the OXPHOS

process consumes oxygen. For that, freshly isolated crude mitochondrial extract, frozen

crude mitochondrial extract, freshly purified mitochondria and frozen purified mitochondria

in a defined amount were placed into the Oroboros O2k chamber (see subsection 2.2.5).

Pyruvate and malate were added as substrates of the TCA cycle. Within the TCA cycle,

redox equivalents are produced that are necessary for the final reduction of oxygen to

water at complex IV of the respiratory chain. With this, the basal respiration of the

mitochondria was measured. Here, a decrease of oxygen flux between the crude

mitochondrial extract and the purified mitochondria by almost two-thirds was measured

(Figure 25). Also, oxygen flux was slightly decreased between fresh and frozen material.

ADP was added as substrate for complex V, the ATP synthase, that uses ADP during the
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OXPHOS process formed proton gradient to produce ATP. In theory, this should boost

oxygen flux, since ATP synthase is saturated and OXPHOS can reach maximum

respiration capacity, termed “state 3”. This effect was observed for crude mitochondrial

extracts and very slightly for the freshly purified mitochondria. Again, oxygen flux was

decreased when comparing fresh with frozen material. In a next step, oligomycin was

added, resulting in an inhibition of ATP synthase. The measured oxygen flux was due to

leaks in the inner mitochondrial membrane, called leaky respiration. The trend continued

that higher oxygen flux was measured in crude mitochondrial extracts than in purified

mitochondria, also the discrepancy between fresh and frozen material. FCCP was added

to uncouple the respiration from the inhibited ATP synthase. This should lead to maximum

respiration but did not affect the oxygen flux in all yeast mitochondria samples. As last

step, antimycin A as CIII inhibitor was added to block respiration. Consequently, oxygen

flux in all samples dropped close to zero. Mitochondria of all preparations showed the

ability to undergo respiration. However, freshly isolated crude mitochondrial extract

outperformed mitochondria that were purified by tandem sucrose gradient centrifugation.

Furthermore, fresh material outperformed the frozen one.

Figure 25: Oxygen flux of isolated and purified yeast mitochondria measured with Oroboros. The
oxygen flux in pmol per s and mg protein is plotted for every induced state within the Oroboros O2k
respirometry assay. Basal respiration describes the state after providing pyruvate and malate as
substrates for the TCA cycle, state3 shows maximal respiration capacity after adding ADP as CV
substrate, leaky respiration the oxygen flux after inhibition of CV by oligomycin, FCCP after
uncoupling the respiration from CV and antimycin A after inhibition of CIII, completely blocking the
respiration. Plotted are the means of three measurements, error bars indicate standard deviation.
Experiments were performed by Bettina Homberg, Cellular Biochemistry, University Medical Center
Göttingen, PhD student in the GGNB program ‘Molecular Medicine’.
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3.5.2. Import assay with isolated and purified yeast mitochondria

Atp2, a subunit of the F1F0 ATP synthase was 35S-radiolabeled and selected as a precursor

([35S]F1β) for investigating the protein import in freshly isolated crude mitochondrial extract,

frozen crude mitochondrial extract, freshly purified mitochondria and frozen purified

mitochondria (see subsection 2.2.6). For this, respective mitochondria were incubated for

3, 7, and 15 min together with the precursor with functional membrane potential ([ΔΨ])

and, as a negative control, 15 min with disrupted membrane potential. Afterwards,

mitochondria were treated either with proteinase K (PK) or without. After successful import,

the targeting sequence of the precursor sequence of Atp2 is cleaved off and the mature

Atp2 was distinguishable by a lower molecular weight after Western blotting (Figure 26).

In all approaches and regardless of the isolation protocol and storage of the mitochondria

an active import could be shown except for these approaches with disrupted membrane

potential. This was expected, since the import of Atp2 is dependent on the membrane

potential. This experiment indicates that all described batches of mitochondria showed a

functional membrane potential and, consequently, inner membrane integrity.

Figure 26: Import assay. Import of 35S-radiolabeled precursor (p) Atp2 ([35S]F1β) in isolated crude
mitochondrial extract (A), fresh and frozen, and purified mitochondria (B), fresh and frozen. Time
indicates the incubation of precursor and mitochondria with intact membrane potential ([ΔΨ]). After
incubation, mitochondria were treated either with proteinase K (+PK) or without (-PK). Mature Atp2
is indicated by “m”. Experiments were performed and figure was prepared by Dr. Tobias Müller,
Cellular Biochemistry, University Medical Center Göttingen.
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3.5.3. Activity assays to investigate functional integrity of ETC complexes

Activity assays of complexes II, IV and V (F1F0 ATP synthase) were performed to

investigate the functional integrity of the ETC in frozen crude mitochondrial extracts and

frozen purified mitochondria (see subsection 2.2.8). Therefore, mitochondria were lysed

with digitonin and subjected to BN-PAGE. Substrates for the specific complexes (NADH

for CII, reduced cytochrome c for CIV and ATP for CV) were added to the buffered gel

slices and combined with a redox-reactive dye (NBT for CII, DAB for CIV and Pb(NO3)2 for

CV).  In case of an active complex the substrate reacted with the complex and, in turn,

activated the dye that was finally used as a read-out. Irrespective of the sample

preparation, all mitochondria showed active complexes II, IV and V (Figure 27), indicating

a functional ETC.

Figure 27: Activity staining of CII, CIV and CV after BN-PAGE. Frozen crude mitochondrial extract
(lanes 1, crude mitochondria) and frozen purified mitochondria (lanes 2, sucrose gradient) were
lysed with digitonin and subjected to BN-PAGE. Gel slices were treated with a combination of a
substrate for the specific complexes and a redox-reactive, detectable dye. Coomassie, gel slice
was Coomassie stained to show loading of equal protein amounts; CII, gel slice was treated with
NADH as substrate and NBT as dye; CIV, gel slice was treated with reduced cytochrome c and
DAB; CV, gel slice was treated with ATP and Pb(NO3)2; CV negative, negative image of CV staining.
II, CII; IV, CIV; V, CV; V2; CV dimer; III2IV(2), CIII-CIV supercomplexes. Experiments were
performed and figure was prepared by Bettina Homberg, Cellular Biochemistry, University Medical
Center Göttingen, PhD student in the GGNB program ‘Molecular Medicine’.
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3.5.4. Proteinase K assay to investigate mitochondrial membrane integrity

For the cross-linking experiments with yeast mitochondria, a slightly hypotonic cross-

linking buffer (20 mM HEPES pH 7.5, 100 mM NaCl) was used, causing mitochondrial

swelling. Slowly, mitochondria incorporate water, causing the outer membrane to burst,

resulting in mitoplasts. The proteinase K (PK) assay (see subsection 2.2.10) gives

information about the membrane integrity of mitochondria, in this case especially of the

inner membrane. PK is an unspecific protease digesting other proteins if it can access

them. Outer and inner membrane of mitochondria function as natural barrier that cannot

be penetrated by PK unless damaged. In this experiment, frozen purified mitochondria

were incubated with cross-linking buffer containing two different concentrations of PK for

Figure 28: Proteinase K assay of frozen purified mitochondria. Mitochondria were treated with
different concentrations of proteinase K (PK; “0.2+”: 0.2 µg PK/µg mitochondria; “1+”:
1 µg PK/µg mitochondria). After lysis, proteins were blotted. The Western blot was decorated
against specific proteins of the mitochondrial subcompartments outer membrane (OM),
intermembrane space (IMS), inner membrane (IM) and matrix. As controls, untreated mitochondria
(“-“) and mitochondria treated with 5 % DMSO and sonication (“DMSO-“ without PK, “DMSO+” with
PK) were used. Bands that differentiate from the control in molecular weight or intensity indicate
digestion products. Experiments were performed and figure was prepared by Bettina Homberg,
Cellular Biochemistry, University Medical Center Göttingen, PhD student in the GGNB program
‘Molecular Medicine’.



3.6 Cross-linking combined with mass spectrometry of mitoplasts derived from human
HEK293T cells

72

1 h. After lysis, proteins were Western blotted and the blot decorated against proteins

specific for the mitochondrial subcompartments outer membrane (OM), intermembrane

space (IMS), inner membrane (IM) and matrix. The appearance of digestion products or

vanishing signal intensities shed light on the membrane integrity of the mitochondria. As

controls, untreated and mitochondria that were treated with 5 % DMSO and by sonication

were also investigated, i.e. PK can access proteins in all compartments. Tom70 and Por1

were representatively selected for the OM. Digestion products were detected in all PK-

treated samples (Figure 28, lanes “0.2+”, “1+” and “DMSO+”). Similar results were

observed for IMS proteins Cox12 and Mia40 and for IM proteins Rcf2, Rcf3 and Tim21.

Matrix proteins Tim44 and Cor1 remain unaffected by PK treatment and showed similar

band patterns and intensities as the untreated control (lane “-“), indicating a fully intact

inner mitochondrial membrane. Matrix proteins Tim44 and Cor1 were fully digested by PK

in the control sample where mitochondria were treated with DMSO and by sonication (lane

“DMSO+”).

3.6. Cross-linking combined with mass spectrometry of mitoplasts derived from
human HEK293T cells

The workflow that was established to cross-link mitochondria derived from yeast (see

subsection 3.1.2) was applied to mitoplasts generated from mitochondria isolated from

human HEK293T cells. Mitoplasts are mitochondria with the outer membrane stripped off,

but the inner membrane being still intact. Mitoplasts instead of mitochondria were used for

cross-linking to further reduce sample complexity and to identify more, even low abundant,

interactions within the IM and the matrix. Additionally to the lysine-specific cross-linker

BS3, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) was used. EDC

is a zero-length cross-linker and connects lysine residues to amino acids containing a

carboxyl group, such as glutamate and aspartate. By using BS3 and EDC, not only lysine-

rich proteins will be addressed but also proteins with less lysine residues but more acidic

amino acid residues. Human mitochondria were isolated from HEK293T cells (see

subsection 2.2.12). Mitoplasts were generated and then cross-linked with BS3 or EDC

(see subsection 2.2.14). Proteins were digested with trypsin, cross-linked peptides were

enriched by peptide SEC (see subsection 2.3.5), and analyzed by LC-MS/MS. For data

analysis, the successor software of pLink 1 was used, pLink 2258 (see subsection 2.4.2).

This software is able to search cross-linked peptides against larger protein databases in a

reasonable period of time. Therefore, all proteins that were identified based on their linear

peptides (separately for the BS3- and the EDC-replicate) were included in the databases

(1500 proteins for the BS3-data set and 1900 proteins for the EDC-data set). The results
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obtained by pLink 2 were not score-filtered but those identifications that were only

supported by a single CSM were removed, similar to the yeast cross-linking data sets.

Culturing of HEK293T cells was maintained by Elena Lavdovskaia, Cellular

Biochemistry, University Medical Center Göttingen, PhD student in the GGNB program

‘Molecular Biology of Cells’. Isolation of human mitochondria, preparation of human

mitoplasts and the cross-linking reactions were performed in collaboration with Elena

Lavdovskaia.

3.6.1. BS3 and EDC cross-link different regions of proteins

In terms of total identified CSMs, cross-linked proteins and unique residue-to-residue

cross-links, BS3 outperformed EDC in the unfiltered data set (Table 9). However, the

relative number of interprotein cross-links in the filtered data set is higher for EDC. The

overlap of cross-linked proteins of both data sets is 37 %. All identified cross-links are

listed in Supplementary Table 5 provided on a CD-ROM attached to the hardcopy version

of this thesis.

The low overlap suggests that BS3 and EDC cross-links different proteins. To

address this question, the relative distribution of the isoelectric points (pI) of all cross-linked

proteins298 were plotted (Figure 29). Although there is no significant difference, BS3

showed a slight tendency to cross-link proteins with higher pI values (pI 10-12), whereas

EDC cross-linked proteins with slightly lower pI values (pI 8-10). The tendency is in

accordance with the pKa values of side chains of lysine (10.67), aspartate (3.71), and

glutamate (4.15), necessary for the BS3 and EDC reaction chemistries.

Table 9: Numbers of total identified cross-linked peptides spectrum matches (CSMs), cross-linked
proteins, unique residue-to-residue cross-links and the interprotein cross-links in percent for the
unfiltered and the filtered data set after BS3- or EDC-cross-linking of human mitoplasts. ‘Single
CSMs’ in percent represent those unique residue-to-residue cross-links that were identified only by
a single CSM.

unfiltered filtered
BS3 EDC BS3 EDC

total CSMs 10253 3478 9779 3069

cross-linked proteins 433 280 284 191
unique residue-to-residue
cross-links 1284 907 854 508

interprotein cross-links 12.7 % 12.5 % 7.0 % 10.8 %

single CSMs 33.0 % 43.8 %
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The differences in cross-linking is also reflected by the very low overlap of peptide-

to-peptide cross-links (taking only into account the cross-linked peptides but not the actual

cross-linked residues, because BS3 and EDC target different amino acids), which is only

2 %. These findings indicate that BS3 and EDC cross-link different regions of proteins and

different proteins. Hence, cross-linking with these two cross-linkers deliver complementary

results.

Figure 29: Relative distribution of isoelectric points (pI) of all proteins involved in cross-linking
reactions with either BS3 (black bars) or EDC (light gray bars) in percent after cross-linking human
mitoplasts.

3.6.2. Intraprotein cross-links outnumber interprotein cross-links

Irrespective of the used cross-linker, the majority of identified residue-to-residue cross-

links represented intraprotein cross-links, i.e. cross-links within one protein (93 % in the

filtered BS3- and 89 % in the filtered EDC-data set, Table 9). In both data sets, most

intraprotein cross-links were identified within the chaperonin involved in mitochondrial

protein import and macromolecular assembly (HSPD1 and HSPE1). In summary, these

intraprotein cross-links account for 19 % and 26 % of all CSMs in the BS3- and EDC-data

set, respectively (Table 10). Among the ten proteins that contributed the most to the

numbers of spectra are e.g. ATP5A1 (BS3 and EDC), a subunit of the F1F0 ATP synthase,
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SSBP1 (BS3 and EDC), a single-stranded DNA-binding protein, DLD (BS3), the

dihydrolipoyl dehydrogenase, and C1QBP (EDC), the complement component 1 Q

subcomponent-binding protein. Comparing these results to the abundance of proteins

resulting from the identification search for linear peptides, seven out of these ten proteins

per data set are among the 50 most abundant proteins per data set.

Table 10: Proteins involved in BS3- and EDC-induced cross-linking reactions ranked according to
their numbers of cross-linked peptides spectrum matches (CSMs) contributing to all identified
CSMs.

BS3 EDC
Rank Protein relative

CSMs / %
Protein relative

CSMs / %
1 HSPD1 13.22 HSPD1 19.26
2 HSPE1 5.41 HSPE1 6.58
3 DLD 2.88 C1QBP 4.37
4 ATP5A1 2.58 ATP5A1 2.77
5 DLAT 2.40 TUFM 2.61
6 SLC25A3 2.16 MDH2 2.41
7 TRAP1 2.00 LETM1 2.35
8 SSBP1 1.78 AIFM1 2.31
9 SLC25A5 1.73 SSBP1 2.22

10 HSPA9 1.65 LRPPRC 2.12

3.6.3. Interprotein cross-links confirm ETC supercomplex formation

Similar to the results of cross-linking yeast mitochondria, cross-linking of human mitoplasts

also provided the majority of interprotein cross-links within the OXPHOS system and the

mitoribosome (Figure 30). 79 unique protein-protein cross-links were identified in total.

BS3-cross-linking contributed 40 of them and EDC-cross-linking 39, with an overlap of 5.

No regularities in terms of proteins’ functions or suborganellar localizations are noticeable

when comparing BS3- and EDC-interprotein cross-links. The vast majority of interprotein

cross-links is between proteins that are located either in the IM or in the matrix, indicating

that the OM is indeed not present due to mitoplast generation. However, a few interactions

were detected between OM- and IMS-proteins involving TOMM22, component of TOM

(OM), VDAC2, the voltage-dependent anion channel (OM), GK, the glycerol kinase (OM),

and  AIFM1, the apoptosis-inducing factor 1 (IMS), and AK2, the adenylate kinase 2 (IMS).

Also, cross-links between mitochondrial and non-mitochondrial proteins, such as histones

and a DNA methyltransferase, were detected. This, in turn, might indicate impurities during
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mitochondria isolation. Since these proteins formed interactions to IM- and matrix proteins,

a small portion of damaged mitochondria cannot be negated.

Figure 30: Global protein-protein cross-linking network in mitoplasts generated from human
mitochondria. Only interprotein cross-links induced by BS3 (lines) and EDC (dashed lines) are
illustrated. Thickness of the edges is proportional to the number of unique residue-to-residue cross-
links. Names of subunits of CI, CIII, CV and the mitoribosome are abbreviated for the sake of
readability (prefix CI, NDUF; prefix CIII, UQCR (except for CYC1); prefix CV, ATP, prefix
mitoribosome, MRP). OM, outer membrane; IMS, intermembrane space; IM, inner membrane; not
mt, not mitochondrial; OXPHOS, oxidative phosphorylation system; PDH, pyruvate dehydrogenase
complex; MICOS, mitochondrial contact-site and cristae-organizing system; TIM23, proteins that
belong to the TIM23 complex; mitoribosome, mitochondrial ribosome. Networks visualized by
Cytoscape269.

Remarkably, besides the chaperonin HSPD1/HSPE1 also other heat shock proteins like

TRAP1 and HSPA9 were involved in cross-linking reactions. Especially by EDC, cross-

links within MICOS (IMMT to CHCHD3) and from MICOS to prohibitin (IMMT to PHB) were

induced, indicating a very close proximity of the involved proteins. Prohibitin also formed

cross-links to ROMO1, recently identified as constituent of the TIM23 complex299. Also, a

cross-link between prohibitin and OCIAD1 was detected. In a former study300, OCIAD1

was already described as part of the prohibitin interactome.
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Within the OXPHOS system, subunits of CI, CIII and CV showed interprotein cross-

links. Differently from the yeast cross-linking data set, CII and CIV are barely covered.

However, the cross-link between NDUFB4, subunit of CI, and UQCR10, subunit of CIII,

induced by BS3 confirms the formation of an ETC supercomplex in organello also in

human mitoplasts. Here, residue K7 of NDUFB4 cross-linked to the N-terminus of

UQCR10 (Figure 31). The Cα-atoms of these residues are 11 Å apart and fulfill the

distance constraint of BS3 (30 Å). Also, two factors that are involved in CI assembly cross-

linked to CI subunits, namely DMAC1 to NDUFB10 and TIMMDC1 to NDUFA8, both

induced by EDC. Remarkably, these two subunits of CI are located at the periphery of the

complex, underlining the validity of the identified cross-links.

Figure 31: Human CICIII2 supercomplex structure. ETC supercomplex structure including human
CI (gray), human CIII2 dimer (green) and bovine CIV (orange) (PDB: 5XTH90) visualized as top view
from IMS. NDUFA8 and NDUFB10, subunits of CI, cross-linked to assembly factors and are
highlighted in yellow. Inlet displays zoomed interface between CI and CIII with the identified BS3-
cross-link between NDUFB4 and UQCR10 as blue bar (11 Å).
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4. Discussion

In this thesis, the differential protein-protein cross-linking networks in mitochondria derived

from Saccharomyces cerevisiae grown on glycerol- or glucose-containing medium were

investigated by chemical cross-linking in combination with mass spectrometry (XL-MS).

Besides a qualitative approach, also a quantitative approach by using a stable-isotopically

labeled cross-linker was performed to address this task. Additionally, mitochondria isolated

from a rho0 yeast strain lacking mitochondrial DNA (mtDNA) were cross-linked. It was

sought to increase the analytical depth by using mitochondria from a strain that is not able

to assemble a functional electron transport chain (ETC) and a mitochondrial ribosome.

Subunits of these complexes are highly abundant in mitochondria. By reducing the

complexity, other, lower abundant, complexes should be identifiable. Unfortunately, the

obtained results from mitochondria isolated from the rho0 yeast strain did not reveal a

significant higher number of cross-links in lower abundant mitochondrial protein complexes

when compared to results obtained in mitochondria from wild type yeast grown on glycerol-

or glucose-containing medium. Therefore, the rho0 strain was mainly used as a ‘disrupted’

control system to validate the results gained from mitochondria isolated from yeast grown

on glycerol- or glucose-containing medium. The optimized cross-linking workflow for yeast

mitochondria was additionally applied to mitoplasts originating from human mitochondria

of HEK293T cells. Here, two different cross-linkers, BS3 and EDC, which react with

different amino acid residues were applied in order to identify additional protein-protein

cross-links. In the following, the qualitative and quantitative XL-MS strategies will be

discussed in detail. Furthermore, the identified protein-protein cross-links of selected

proteins and protein complexes will be described against the background of their biological

context.

4.1. Integrity of mitochondrial membranes and its impact on structural analysis

In this thesis, mitochondria were used that have been purified by tandem sucrose gradient

centrifugation after isolation. This was done to reduce impurities that co-isolate with the

mitochondria, such as mitochondria-associated membranes (MAMs) like the endoplasmic

reticulum (ER) and its proteins. Furthermore, mitochondria have been frozen at -80°C prior

to cross-linking. The purification is a well-established procedure to gain highly pure

mitochondria239 that are also functional, at least in regard to protein import301. In this thesis,

this has been confirmed by quality control experiments (see section 3.5). In general, the

isolated and purified mitochondria were functional with respect to respiration, protein

import, oxidative phosphorylation (OXPHOS) complex activities and inner membrane
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integrity. However, especially via the respirometry assay it could be demonstrated that

purification and freezing have a negative effect on mitochondrial performance (see

subsection 3.5.1). Already in 1971, Packer et al.302 have shown that high concentrations

of sucrose (above 0.4 M), an osmotically active compound, might dehydrate mitochondria

derived from rat liver, therefore inducing unspecific changes in lipid compositions of

mitochondrial membranes, unusual aggregation of protein complexes and inhibited

respiration. The tandem sucrose gradient centrifugation that purifies the mitochondria

might therefore have a negative effect also on respiration in yeast mitochondria. However,

these effects can be reversed by incubation of mitochondria in hypotonic solutions. Since

this thesis does not only rely on pure mitochondria but also on unaltered structural

arrangements of protein complexes, identified protein-protein cross-links were carefully

curated with respect to biological plausibility to avoid any artefacts. Nonetheless, a small

amount of slightly damaged mitochondria used for cross-linking cannot be negated.

4.2. BS3 and its ability to cross-link proteins of all mitochondrial
subcompartments

Two commonly used and commercially available cross-linkers are disuccinimidyl suberate

(DSS) and its sulfonated derivative bis(sulfosuccinimidyl) suberate (BS3)183. Both of them

are non-cleavable, homobifunctional N-hydroxysuccinimide (NHS) esters that preferably

react with the ε-amino group of lysine residues and protein N-termini. Both cross-linkers

possess a spacer arm that, after reaction, covers a distance of 11.4 Å. The difference

between both compounds is the charge in BS3 that is introduced by the sulfo-group.

Therefore, BS3 is charged, hydrophilic, and, hence, water-soluble. DSS is uncharged,

hydrophobic, and therefore only soluble in organic solvents. Consequently, DSS is

supposed to be membrane-permeable, while BS3 is not. When cross-linking mitochondria,

an organelle with two lipid bilayers, membrane-permeability of the cross-linking ingredient

is a key parameter. The functionality of DSS for cross-linking human mitochondria was

demonstrated recently101. However, the use of DSS comes along with a major drawback.

Since organic compounds such as DMSO are necessary for the solubilization of DSS (or,

in general, for all membrane-permeable cross-linkers), an interference of such solvents

with the membrane system has to be considered, at least when using higher

concentrations of the cross-linker. In general, DMSO tends to induce water pores in

membranes and increases their permeability303. By applying transmission electron

microscopy, Yuan et al.276 could show that mitochondria in cultured astrocytes treated with

1 % DMSO within a time period of 24 h underwent swelling. An increase to 5 % DMSO

resulted in even more severe damages such as disruption and loss of cristae. While 0.5-
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1.5 % DMSO are widely accepted especially in cell cultures addressing medical

problems304, higher concentrations seem to be problematic for membrane integrity. To

catch also low abundant proteins and their interactions, a high cross-linker concentration

is crucial211. Therefore, using a water-soluble cross-linker for sensitive membrane systems

might be the better choice. Based on this information, BS3 was tested in this study for its

suitability to cross-link mitochondria, although it is supposed to be membrane-

impermeable.

Surprisingly, BS3 showed similar cross-linking efficiency as DSS (with 1 % DMSO)

in all mitochondrial subcompartments (see subsection 3.1.1). This raises the question, how

a negatively charged 570 Da molecule can pass through two functional membrane

bilayers. The outer mitochondrial membrane might act as a sieve with free permeability for

molecules smaller than 1-2 kDa due to Por1305. Por1, also known as the voltage-

dependent anion channel (VDAC), is a highly abundant protein within the outer

mitochondrial membrane, forming a pore with a diameter of approximately 2-3 nm. In its

open form this channel is selective to anions306. More recent studies suggested a

permeability of Por1 for hydrophilic small molecules of up to 5 kDa307 (also for ATP as

modeled for murine VDAC308) and even linear DNA might use Por1 as transporter in

plants309. Therefore, Por1 might be one entry gate to pass through the outer mitochondrial

membrane. Additionally, besides the translocase of outer membrane (TOM) complex that

is responsible for protein import into mitochondria, three other outer membrane

transporters have been identified recently, namely Ayr1, Omc7 and Omc8310. Ayr1 is a

NADPH-dependent channel whereas the latter two are anion channels whose substrates

are still unknown. In theory, also these channels might aid BS3 import.

The inner mitochondrial membrane forms a closed system with specific carrier

proteins what makes it much more difficult for the charged BS3 molecule to pass through

this particular membrane. One of the most abundant carrier proteins is Pet9, the ADP/ATP

exchange carrier311. Since this protein carries ADP and ATP, which are both charged and

hydrophilic molecules, Pet9 might aid the transport of BS3 in an unspecific manner. In the

past, it was assumed that Pet9 is the pore forming unit of the mitochondrial megachannel

(MMC), also known as permeability transition pore (PTP)312,313. More recent studies

propose that rather the F1F0 ATP synthase than Pet9 is the pore forming unit314,315. The

PTP is Ca2+- and reactive oxygen species (ROS)-dependent and forms, similar to Por1, a

3 nm large pore, allowing for molecules up to 1.5 kDa to pass316-318. The PTP is also

responsible for mitochondrial swelling319 that might have been induced by the slightly

hypotonic cross-linking buffer used in this thesis. However, channels and pores might also

become inactive after reacting with the cross-linker. Therefore, it might also be possible

that mitochondrial membrane integrity was slightly altered due to sucrose purification and
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freezing. Additionally, the cross-linking reaction was performed for 1 h at room

temperature in a slightly hypotonic buffer that might have increased the damage enabling

the cross-linker to reach every mitochondrial subcompartment. The membrane integrity of

mitochondria could be tested, for example, by recording electron microscopy (EM) images

of mitochondria after incubation in cross-linking buffer with and without cross-linker.

4.3. Benefits and drawbacks of restricted databases for cross-linked peptides
searches

Cross-linked peptides were identified by database search with the software pLink 1255,256.

It identifies peptides cross-linked with a non-cleavable cross-linker such as BS3 and DSS,

i.e. the covalent bond formed between two amino acids will not be cleaved during the

fragmentation in the gas phase of the mass spectrometer (see section 4.8). This poses a

huge computational challenge, since one spectrum does not only contain information of

fragment ions of one peptide – as is the case in common proteomics – but information of

fragment ions of two peptides, linked by the cross-linker. Consequently, spectra displaying

cross-links are chimeric and, hence, more complex. A major bottleneck in cross-linking

experiments is therefore the computational analysis of cross-linked peptides spectra180. In

contrast to a conventional database search of linear peptides, the search space of possible

peptide combinations increases quadratically (in fact: (n2+n)/2, with n being the number of

tryptic peptides). This is termed the n²-problem180,220 and makes the analysis

computationally expensive. In XL-MS studies that investigate single proteins or protein

complexes containing only a few proteins, the n2-problem in database search can be

neglected180. However, the n2-problem becomes unsurmountable in the elucidation of

large-scale protein-protein interactions. The analysis of 50 cross-linked proteins inflates

the search space as much as a search for linear peptides of the whole human proteome220.

The higher the number of proteins within the database, the higher the possibility of

identifying false positives. To counteract this, in this thesis restricted databases were

generated for the identification of cross-linked peptides, reducing the search space to the

400 most abundant proteins (proteins that are included in the respective databases are

listed in Supplementary Table 6 provided on a CD-ROM attached to the hardcopy version

of this thesis). Three benefits come along with the use of restricted databases: (i) Database

searches with pLink 1 were still possible in a reasonable time frame. (ii) Smaller databases

decrease the number of false positive identifications195. (iii) Cross-linking reactions occur

mostly within and between high abundant proteins211,320 that are covered by the used

databases in this thesis. Interactions between low abundant proteins are therefore anyway

difficult to detect. A similar observation was made by Liu et al.100 who cross-linked murine
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mitochondria. Although the authors used an MS-cleavable cross-linker (DSSO) and

searched against the whole murine mitochondrial proteome (see subsection 4.8.2),

approximately 90 % of all unique residue-to-residue cross-links were identified between

the approximately 500 most abundant proteins. The main drawback of using restricted

databases is that cross-links within and between low abundant proteins or their cross-links

to high abundant proteins will not be detected because these proteins are not included in

the databases. Especially in this thesis, in which the interactomes of mitochondria derived

from yeast grown on different carbon sources have been investigated, the selection of only

the 400 most abundant proteins bears limitations. Since the metabolism of yeast cells is

affected by the carbon source294,295, different genes will be differentially expressed leading

to different abundances of proteins72. The glucose-induced repression of genes encoding

proteins participating in e.g. oxidative phosphorylation or the TCA cycle75,76,321 strongly

influences the protein abundances in the respective samples. Therefore, differences in the

cross-linking pattern of mitochondria derived from yeast grown on either glycerol- or

glucose-containing medium mainly reflect the different abundances of the translated

proteins under both conditions. Furthermore, proteins cross-linked under one condition

might not be identified under the other condition because two separate databases with the

400 most abundant proteins were used for searching. Therefore, for the comparison of the

cross-linking results of the glucose and glycerol data sets shown in subsection 3.1.3,

Figure 8, only those cross-links of proteins present in both databases were considered. In

this regard, the quantitative XL-MS approach and the subsequent database search is more

robust, because the samples are pooled and, hence, only one database with the 400 most

abundant proteins identified under both conditions was used (see section 4.6). Other

strategies for search space reduction are discussed in subsection 4.8.2.

4.4. Protein-protein cross-links in mitochondria derived from yeast grown on
either glycerol- or glucose-containing medium

The following paragraphs will discuss the cross-linking results obtained from mitochondria

derived from yeast grown on either glycerol- or glucose-containing medium in the context

of interactions, structural assemblies and functions of proteins.

4.4.1. A general comment on the filtering of the XL-MS data sets

Two biological cross-linking replicates with two technical LC-MS/MS measurement

replicates each were performed for each yeast growth condition. Results gained from each

of the replicates were condition-specifically merged. In a different strategy, only the overlap
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of cross-links in the replicates might have been considered, which increases the reliability

of the data but due to the stochastic nature of data-dependent acquisition163 in XL-MS a

lot of true positive cross-links would have been missed in this case. Therefore, the latter

strategy was not applied. To increase the reliability of the data, i.e. filtering out putative

false positive interactions or artefacts, residue-to-residue cross-links that were supported

by only a single cross-linked peptides spectrum match (CSM) and had a pLink 1-specific

spectrum score below 4 (-log10-transformed) were excluded from further analysis. The

rationale for excluding single CSMs is based on the assumption that interactions supported

by just a single CSM within 132 h of measurement time per condition are not reproducible.

The rationale for excluding CSMs with a score below 4 is based on experience gained in

studies in which purified complexes were cross-linked and subsequently mapped on

crystal structures as happened for example in Vos et al.322, where all CSMs were evaluated

manually. A CSM was rated as “good” if at least three consecutive fragment ions of both

peptides were annotated. This was frequently observed for CSMs with a score higher than

4. To avoid manual inspection of CSMs of the mitochondrial samples, the established

filtering steps were applied. However, it cannot be excluded that a minor part of false

positives is still present in the data sets and that a minor part of true positives was filtered

out. In the end, the filtering steps increased the overlap of residue-to-residue cross-links

between the biological replicates from 39 % to 55 % in the glycerol and from 45 % to 62 %

in the glucose data set (see Supplementary Figure 1). Of note, cross-linking results

obtained from pLink 1 searches are filtered according to a false discovery rate (FDR) of

1 % on spectrum level by default. The above outlined filtering steps in combination with

the application of 1 % FDR applied on all CSMs are stringent criteria. Therefore, the cross-

links in this study can be considered as reliable.

4.4.2. Majority of cross-linked proteins localized to the inner membrane or
matrix

Protein localization assignments in this thesis are based on a study performed by Vögtle

et al.142 With a comprehensive MS-based approach including SILAC they could

confidentially assign 818 mitochondrial yeast proteins to one of the four sublocalizations

outer membrane (OM), intermembrane space (IMS), inner membrane (IM) and matrix.

Most of the assigned proteins, 82 %, belong to either the IM or the matrix indicating the

most crowded sublocalizations. This was also confirmed by Morgenstern et al.72 and is

also reflected in this thesis. Above 80 % of all identified protein-protein cross-links are

between proteins belonging to either the IM or the matrix irrespective of the used carbon

source (see subsection 3.1.3). This is reasonable since the IM and the matrix harbor
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abundant protein complexes that belong to the OXPHOS system or to metabolic pathways

such as the TCA21,323. Strikingly, interactions between OM- and IMS-proteins, IM- and IMS-

proteins or OM- and IM-proteins were barely identified in both conditions (1.5 % of all

identified protein-protein cross-links per condition after filtering, see subsection 3.1.3,

Figure 7). This could have been caused using the slightly hypotonic cross-linking buffer

that might have induced mitoplast formation. Hypotonic solutions induce swelling and the

OM is stripped off324. While this increases the spatial distance between OM- and IM-

proteins, it also affects IMS-proteins. IMS-proteins will then be released and are no longer

in their natural environment, and, hence, no longer in cross-linkable distance to OM- or

IM-proteins.

In general, in this thesis 261 and 260 cross-linked proteins could be identified in

the glycerol or the glucose data set, respectively. The unfiltered data represent 315 and

313 proteins, respectively. This is less than a third of the estimated mitochondrial yeast

proteome (~1000 proteins) and less cross-link identifications than in other studies (see

subsection 4.4.8, Table 11). Besides specificities within the data analysis workflow that

are discussed in subsection 4.4.8, also biochemical factors can influence the number of

identifications. As already mentioned in section 4.3, the protein abundances and, hence,

the restricted databases used in this thesis have a major effect. Furthermore, lysine

residues of proteins must provide a certain level of solvent accessibility so that a reaction

with the cross-linker can actually occur. Transmembrane regions of proteins (e.g. in the

OM and IM) usually barely contain lysine residues325. Their identification, if at all, results

from cross-linking events within their soluble regions. In addition to that, membrane

proteins are difficult to solubilize326. Although SDS was used as a lysis detergent, it is not

guaranteed that every membrane protein was solubilized. Also, proteins were

subsequently precipitated and resuspended. In that process some proteins might also get

lost. Especially cross-linked proteins are difficult to resuspend after precipitation (data not

shown). Finally, since the cross-linker primarily reacts with lysine residues, these lysine

residues cannot be recognized by proteases such as trypsin, effecting the digestion

efficiency. Cross-linked peptides are therefore longer than linear ones and some

combinations might be unfavorable for sufficient ionization in the ion source of the mass

spectrometer. An optimized lysis protocol or the application of several proteases

(sequential digestion, see 4.4.8) in combination with other cross-linkers might increase the

identification of cross-linked peptides327.
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4.4.3. Differences in the protein-protein cross-linking patterns between
mitochondria derived from yeast grown on either glycerol- or glucose-
containing medium

The major goal of this thesis was to elucidate differences in the protein-protein cross-

linking patterns between purified mitochondria derived from yeast grown on either glycerol-

or glucose-containing medium. While 74 unique protein-protein cross-links are common

between both conditions, e.g. within the OXPHOS system, in the mitochondrial ribosome,

the PDH or the TCA cycle (see Supplementary Figure 3), indicating the assembly of

important complexes in both conditions, differences between both conditions could also

be identified. Proteins that were uniquely identified in one of the two conditions were

subjected to pathway enrichment analysis (see subsection 3.1.3). In the glycerol condition,

pathways like oxidative phosphorylation, metabolic pathways and TCA cycle were

enriched, while in the glucose condition pathways like amino acid biosynthesis and

coenzyme Q biosynthesis were enriched. This is in line with the performed proteomic

analysis in this thesis (see section 3.4) and also with other studies that performed deep

quantitative analysis of the mitochondrial yeast proteome of different conditions72,148. The

comparable results on protein level between proteomic studies and the cross-linking study

presented in this thesis indicate that the differences in protein-protein cross-linking

patterns between both conditions strongly correlate with the protein abundances per se

(see section 4.3). These differences in protein abundances can be explained by the

different energy and metabolic demands of the yeast cells. Yeast grown on non-

fermentable carbon sources such as glycerol satisfy their energy demand by producing

ATP via the OXPHOS system in mitochondria, while yeast grown on fermentable carbon

sources such as glucose mainly produce energy by fermentation74,79. Glucose is a known

repressor of several genes encoding proteins responsible for glycerol metabolism328 or

respiratory enzymes329. Approximately 15 % of all mitochondrial proteins are linked to

respiratory processes under non-fermentable conditions21. Strikingly, these 15 % sum up

to more than 50 % of the mitochondrial protein mass21. This is in compliance with

proteomic studies that focused on changes of protein abundances during the diauxic

shift10,145. The diauxic shift describes the transition of yeast cells from fermentative to

respiratory metabolism coming along with a significant increase of abundances of proteins

belonging to the OXPHOS system or the TCA cycle. These findings explain why proteins

belonging to the OXPHOS system or other metabolic pathways are more abundant under

non-fermentable conditions and, hence, are more prone to cross-linking reactions.



4.4 Protein-protein cross-links in mitochondria derived from yeast grown on either
glycerol- or glucose-containing medium

86

4.4.4. The oxidative phosphorylation system

ETC supercomplex formation
In this thesis, the formation of supercomplexes within the ETC in yeast cells could be

demonstrated by identifying cross-links between CIII and CIV. Regardless of the carbon

source, connections between Qcr6, a subunit of CIII, and both Cox5a and Cox9, subunits

of CIV, could be identified (see subsection 3.1.9). This indicates that the mentioned

subunits of both complexes must be in close proximity to each other and supports the

“solid state” model of supercomplex arrangements103. Back in the year 2000, Schägger

and Pfeiffer could already provide evidence for the existence of arrangements between

complexes of the OXPHOS system87. Previously, it was assumed that these complexes

were arranged randomly within the IM. Although interactions between CI and CIII330 and

between CII and CIII331 in mammalian mitochondria were reported decades ago, bile salts

that can induce protein aggregation were used for complex isolation in these studies.

Schägger and Pfeiffer, in turn, mildly solubilized membrane proteins derived from yeast

and mammalian mitochondria with digitonin and subjected them to blue native (BN)-PAGE.

With this approach, they could identify a CIII2CIV1 and a CIII2CIV2 supercomplex with CIV

quantitatively attached to CIII in yeast and termed it the ‘respirasome’. In the same year,

Cruciat et al.88 could confirm these results with a similar approach. The abundance of these

two supercomplexes is dependent on the used carbon source for reasons discussed in

subsection 4.4.3. Non-fermentable carbon sources shift supercomplex formation to the

CIII2CIV2 stoichiometry. However, the participation of other complexes was not detected

with this approach. Even with a mild solubilization by digitonin it cannot be excluded that

(especially weak and transient) interactions might be disturbed before analysis. Acıń-

Pérez et al.89 finally provided evidence for supercomplex formation by functional studies.

The authors isolated intact supercomplexes from murine mitochondria containing CI, CII,

CIII, and CIV after BN-PAGE separation and demonstrated oxygen consumption in a

respirometry assay.

One benefit of XL-MS is the identification of interactions between proteins in their

native environment, i.e. in organello. XL-MS studies performed by Schweppe et al.99 and

Liu et al.100 could already provide evidence for ETC supercomplex formation in murine

mitochondria in organello. Cross-links between CI and CIII (Schweppe et al.) and even

between all OXPHOS complexes CI-CV (Liu et al.) could be identified corroborating the

existence of ETC supercomplexes under native conditions. Further evidence for

supercomplexes were provided by pseudo-atomic cryo-EM structures of CIII2CIV(2)

arrangements in Saccharomyces cerevisiae91,93,332 and CI1CIII2CIV1 arrangements in

mammals, namely Sus scrofa92 and Homo sapiens90. 90 % of the cross-links identified in
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this thesis mapped onto the CIII2CIV2 supercomplex structure published by Hartley et al.91

satisfied the distance constraint given by the cross-linker BS3 (30 Å). Amongst them are

the described cross-links between the subunits of CIII and CIV validating the results

presented in this thesis. However, based on these data, a differentiation between the two

stoichiometries CIII2CIV1 and CIII2CIV2 observed by Schägger and Pfeiffer87 is not possible

due to the symmetry of the complex. While the higher number of cross-links within the ETC

in mitochondria isolated from yeast grown on glycerol-containing medium correlates with

the higher protein abundances compared to the glucose condition, the higher number of

cross-links also supports the “plasticity” model of the ETC complex organization103: under

non-fermentable conditions, respiration has to work on high capacity, leading to

supercomplex formation, while under fermentable conditions, ETC complexes might freely

diffuse through the IM since respiration is limited.

Ndi1 as part of an ETC supercomplex
Not only cross-links between CIII and CIV were observed in this study, but all complexes

of the OXPHOS system were cross-linked in both conditions (see subsection 3.1.5, Figure
10). The number of identified cross-links within these complexes was twice as high under

glycerol than under glucose condition. This is due to the higher demand of yeast cells

growing on non-fermentable carbon sources such as glycerol to produce energy via

respiration and the resulting abundance increase of proteins involved in respiratory and

metabolic pathways (see subsection 4.4.3).

Remarkably, also Ndi1, the internal NADH:ubiquinone oxidoreductase on matrix-

side, cross-linked to both Qcr2 and Qcr7, subunits of CIII, in mitochondria from yeast

grown on glycerol-containing medium. Under glucose condition, Ndi1 cross-linked to Qcr2.

Yeast mitochondria lack a proton pumping CI. Redox reactions of NADH and ubiquinone

are therefore performed by Ndi1 (and the external reductases Nde1 and Nde2 located in

the IMS). Based on the cross-links, an Ndi11CIII2CIV2 supercomplex structure was

proposed (see subsection 3.1.9, Figure 16). For this, the two unique cross-links identified

in the glycerol data set were used for docking experiments. Steric hindrance between Ndi1

and CIV was excluded by calculating the accessible interaction space (see subsection

3.1.9, Figure 15). Biochemical approaches such as BN-PAGE and clear native (cn)-PAGE

in combination with activity staining of NADH dehydrogenases and subsequent protein

identification by MS could demonstrate that Ndi1 is part of higher molecular weight

respiratory supercomplexes83,333,334. However, proofs of a direct interaction between Ndi1

and CIII and their structural arrangement were missing so far. Three arguments support

the proposed interaction between Ndi1 and CIII: (i) Assuming that the interaction between

Ndi1 and CIII is weak or at least weaker than the interaction between CIII and CIV, the
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direct interaction between Ndi1 and CIII might have escaped detection so far333.

Commonly used approaches to study protein-protein interactions like immuno- or affinity-

purifications usually use detergents such as SDS, Triton X-100, DDM or mild detergents

like digitonin for solubilization. Although tethered to the IM with its C-terminal membrane

anchor, Ndi1 is a soluble matrix protein. CIII, in turn, is a bulky transmembrane complex.

The interaction between Ndi1 and CIII can only occur on matrix-side with a very small

interaction interface, much smaller than the one between CIII and CIV (CIV is also a

transmembrane complex). (ii) The same protein-protein cross-links (Ndi1 to Qcr2 and Ndi1

to Qcr7) were identified in a recent XL-MS study on yeast mitochondria performed by

Makepeace et al.102. (iii) There is a biological advantage of supercomplex formation.

Although still under discussion, most likely it supports substrate channeling accelerating

the electron transfer cascade85,87,89,335,336. Since the participation of CI in an ETC

supercomplex is already confirmed in mammals, it is also reasonable that Ndi1 –

performing the same redox reaction as CI in mammals – participates in an ETC

supercomplex in yeast. Since CIII forms a dimer in the supercomplex structure, even an

Ndi12CIII2CIV2 higher-order supercomplex structure is conceivable by docking Ndi1 on

both sides of CIII2.

Pet9 cross-links to ETC complexes
Pet9, also known as Aac2, is the major ADP/ATP carrier within the IM337-339. With more

than 105 copies per cell it is one of the most abundant proteins in yeast72. In the glycerol

data set, cross-links of Pet9 to all ETC complexes were detected (see subsection 3.1.5,

Figure 10). This suggests that Pet9 is in close proximity to the ETC. Being in close

proximity to the ETC indeed is biologically meaningful, since Pet9’s function is to transport

ADP as substrate for CV from the cytosol to the matrix and ATP as product of CV the other

way round311,340. Dienhart et al.97 and Claypool et al.98 independently of each other could

provide biochemical evidence for an association of Pet9 to the CIII-CIV supercomplex in

yeast. Cells lacking Pet9 are not able to grow on non-fermentable carbon sources due to

an impaired OXPHOS system341. Especially, the functionality of CIV is hampered97,98.

While Claypool et al.98 claimed with caution that the physical association increases

activities of both Pet9 and CIV, a few years later, the same group could demonstrate that

Pet9’s function as transporter and, hence, its impact on a functional protein translation

from mitochondrial DNA per se is responsible for CIV’s activity342. Pet9 also cross-linked

to CII and Ndi1. Sdh2, a subunit of CII, could already be identified as potential interactor

of Pet9 by Claypool et al.98 The direct interaction between Pet9 and Ndi1 as shown by

cross-links in this thesis is undescribed so far. Pet9 participates in a local ‘structural hub’
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consisting of CII, CIII, CIV, and Ndi1, indicating even more complex supramolecular

structures in yeast mitochondria.

Min8 is associated with the cytochrome c oxidase
XL-MS is suitable to identify even weak and transient interactions due to its ability to

covalently connect proteins that are in close proximity. It also aids the identification of so

far unknown interactions (e.g. Pet9 and Ndi1, see above; further examples are described

in subsection 4.4.6). Furthermore, by identifying interactions of uncharacterized proteins,

a biological classification of them might be deduced. In this thesis, this was successfully

put into practice with Min8. Min8 cross-linked to Cox12, a subunit of CIV, supported by two

unique residue-to-residue cross-links, and to Pet9, whose association with the ETC was

discussed above. Makepeace et al.102 could also identify cross-links between Min8 and

Cox12 as well as Pet9. Min8 is a so far uncharacterized protein of 8 kDa encoded by the

open reading frame (ORF) YPR010C-A and conserved among yeast. Morgenstern et al.72

could localize Min8 to the IM and could also define its orientation (see subsection 3.1.10).

While its transmembrane region is located within the IM, its C-terminal part extends into

the IMS and its N-terminal part into the matrix. These information are reflected by Min8’s

structure that was modeled ab initio. Based on the cross-links, it is suggested that Min8 is

associated with the ETC, in fact with CIV. The calculated structure was docked to the CIV

structure based on the identified cross-links and physicochemical properties. Pet9 and its

cross-links to Min8 and Cox9, a subunit of CIV, were included to provide a second spatial

constraint for the docking of Min8. Unfortunately, all cross-links between Min8 and Cox12

occurred on IMS-side. No cross-links were identified on matrix-side between Min8 and

CIV, but between Min8 and Pet9. Since Pet9 cross-linked to CIV on matrix-side, the

triangular connection Min8-CIV-Pet9 was used in the docking experiment mainly to fix the

position of Min8 on matrix-side (see subsection 3.1.10, Figure 17).

To further consolidate the exact position of Min8 within CIV, oxidative cross-linking

was applied (see subsection 3.1.10, Figure 18). Cu(II) ions can induce disulfide bridge

formation between cysteine residues located in close distance to each other281. In contrast

to lysine residues, cysteine residues are also part of transmembrane regions as is the case

for Min8. This approach was applied to mitochondria harboring FLAG-tagged Min8 and,

hence, combined with immunoprecipitation of Min8. The analysis via Western blotting

revealed distinct shifts of Min8. These shifts were induced by oxidative cross-linking with

other proteins that were identified by LC-MS/MS (see subsection 3.1.10, Figure 18a). It

has to be noted that in all analyzed bands Min8 was identified. Strikingly, within the 30

most abundant and shifted proteins, i.e. proteins that did not show the expected migration

in SDS-PAGE but an 8 kDa shift, Cox2 as subunit of CIV as well as Rcf1 and Rcf2 could
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be identified (Rcf proteins will be discussed below). Other proteins that could be identified

by this approach were e.g. Cyc1, Cyc3 and Tim11. All mentioned proteins belong to the

OXPHOS system. Not only the shifted proteins were considered, but also those that co-

immunoprecipitated without showing an induced shift. To increase the reliability of these

data, only those proteins were considered as co-immunoprecipitated that were identified

by at least seven peptides in the respective fraction. Amongst these proteins, subunits of

CIII, CIV and CV and also Pet9 were identified (see subsection 3.1.10, Figure 18b). By

oxidative cross-linking an interaction between Min8 and Cox2 could be identified. Within

the structure that was proposed by the docking experiment (see subsection 3.1.10, Figure
17) the closest cysteine residue to Min8 is indeed C107 of Cox2. However, the distance

between the sulfur atom of Cox2’s C107 and the sulfur atom of Min8’s C36 is 20.7 Å in the

model. In the presented model, Min8 would have to be rearranged towards Cox2 to explain

a disulfide bridge induced by Cu(II) ions with a bond length of approximately 2 Å. To

support the results from the oxidative cross-linking approach, Cys-Cys-specific cross-

linkers such as BMOE or BMH that form non-cleavable covalent bonds might be applied.

With that, similar to BS3-induced cross-links, a direct connection between peptides could

be identified and a larger distance could be spanned. The proposed model of Min8 and its

association with CIV based on the cross-links indicate that results gained by XL-MS can

be successfully used for docking experiments to obtain compelling models of protein

complexes even with a limited number of distance constraints.

As recently as in 2016, Levchenko et al.124 and Strecker et al.125 identified a new

supercomplex-associated protein, Cox26, which is part of the yeast CIII2CIV2

supercomplex structure91. Interestingly, the length of Min8 (72 amino acids) and the

modeled helical structure are very similar to the ones of Cox26 (66 amino acids). This

raises the hypothesis that Min8 is not transiently associated with but is a novel integral

subunit of CIV.

Alternatively, Min8 might aid solely the assembly of CIV. In Linden et al.247, the

authors present evidence for Min8 being an assembly factor, in particular for the assembly

of Cox12 into CIV. To evaluate Min8’s biological function, a min8Δ strain was

biochemically investigated in the laboratory of Prof. Dr. Peter Rehling, Cellular

Biochemistry, University Medical Center Göttingen. A detailed description of the results

and an extensive discussion to these experiments can be found in the PhD thesis

performed by Bettina Homberg with the preliminary title ‘Regulation of mitochondrial

supercomplex formation’. Bettina Homberg, Cellular Biochemistry, University Medical

Center Göttingen is part of the GGNB program ‘Molecular Medicine’. Briefly, cells lacking

Min8 did not show any growth or respiration defect. However, it could be demonstrated

that Min8 positively affects the assembly of Cox12 and negatively affects the assembly of
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Cox13, both peripheral subunits of CIV and added to mature CIV in a late stage130. In

general, the assembly of CIV is a complex process and not yet fully understood. In yeast,

CIV consists of twelve subunits. Three of them, the catalytic core subunits Cox1-3, are

encoded by the mtDNA. The other subunits are encoded by nuclear DNA and imported

into the mitochondria. These subunits increase stability and activity of the complex as well

as reduce the production of reactive oxygen species (ROS)115,132,343. Additionally, more

than 30 translation regulators and assembly factors are necessary126,344,345. Some of them

were identified in the past, such as Coa1135, Coa2136, Coa3133,346, Cox14347,348, Shy1134,

Mss51349 and Pet309350 in regard to Cox1122, resulting in intermediate structures.

Intermediates are then also formed between CIV subunits on the path to fully assembled

CIV, such as Cox1-Cox5-Cox6 or Cox7-Cox8-Cox9, which are, in turn, also supported by

assembly factors127-129,351. More recently, also factors for the assembly of Cox13 and

supercomplex formation between CIII and CIV have been identified115,119, namely

respiratory supercomplex factors Rcf1, Rcf2 and Rcf3. Especially for Rcf1 it could be

demonstrated that the interaction to CIV is rather transient, altering its lipid composition

that, in turn, increases the complex’ activity352. Remarkably, cross-links between Rcf2 and

both Cox12 and Cox13 as well as between Rcf3 and Cox12 could also be identified in this

thesis (see subsection 3.1.5, Figure 10 and subsection 4.4.6). Therefore, it is also

conceivable that Min8 is a new member of the Rcf proteins that dynamically interacts with

CIV. The assembly of Cox12 into CIV promoted by Min8 seems to occur in a yet undefined

new intermediate that was identified in the Cox12 import assay (described in subsection

3.1.10 and in more detail in Bettina Homberg’s PhD thesis). Radiolabeled Cox12 could be

identified in a complex that migrated faster than mature CIV after full solubilization with

DDM. This behavior was detected in all tested conditions, wild type, min8Δ strain and

cox4Δ strain. Especially in the cox4Δ strain, no mature CIV can be assembled353, hence,

identified radiolabeled Cox12 is not assembled within mature CIV. The detected

intermediate could have different origins: first, it could be another yet undescribed

intermediate of CIV that exists without Cox4. This is supported by the fact that this

intermediate is enriched in the cox4Δ strain. Second, it could be an intermediate during

Cox12 import. Unlike other CIV subunits, Cox12 is not a transmembrane protein but is

localized in the IMS143. Its import is also not inhibited by interfering the membrane potential

but by inhibiting the MIA pathway. MIA, mitochondrial intermembrane space import and

assembly system, consists of the receptor Mia40 and the sulfhydryl oxidase Erv1 and is

responsible for import and folding of IMS proteins58,354. Therefore, it is conceivable that

MIA aids the import of Cox12, and the so far uncharacterized intermediate is a result of

Cox12 import. Previous studies could demonstrate that MIA substrates show a Cx3C or

Cx9C motif58,355,356, as is the case e.g. for the IMS proteins Tim9 and Tim10, and also for



4.4 Protein-protein cross-links in mitochondria derived from yeast grown on either
glycerol- or glucose-containing medium

92

Cox12. However, if the intermediate represented an import intermediate, expected

proteins within this intermediate were Mia40, Erv1, Cox12 as substrate, Min8 as assembly

promoter for Cox12 and probably cytochrome c that reoxidizes Erv158. This would end up

in a total molecular mass of approximately 95 kDa that does not correspond to the

observed intermediate (molecular mass approximately 150 kDa). Ultimately, Min8

promotes Cox12’s assembly to this newly identified intermediate. More experiments are

needed to fully clarify the origin of this intermediate. An LC-MS/MS analysis of separated

proteins after a BN-PAGE/SDS-PAGE approach could shed light on the protein

composition of this intermediate. However, the challenge here is to enrich this intermediate

in a sufficient amount. (At this point I would like to emphasize that especially the second

hypothesis was not solely my own idea but developed in a discussion with Bettina

Homberg.) While writing this thesis, another structure of the yeast CIII2CIV(2) supercomplex

was solved by cryo-EM120. In this structure obtained from yeast cells expressing the

hypoxic isoform Cox5b, Rcf2 could be identified at the periphery close to the position of

Cox13. The position of Rcf2 does not interfere with the modeled position of Min8 attached

to CIV presented in this thesis. This brings up the question, whether Rcf2 helps in the

assembly of CIV or the supercomplex or whether it is a stoichiometric subunit of CIV. Rcf1,

in contrast, has a regulatory function on CIV. Rcf1 leaves the mature complex118 and is not

present in cryo-EM 3D structures. Also, no interaction between Rcf1 and CIV has been

detected by cross-linking yet. Whether Min8 is another stoichiometric subunit of CIV similar

to Rcf2 or a regulatory protein such as Rcf1 still needs further evaluation.

4.4.5. The pyruvate dehydrogenase complex

The focus of this subsection lies on the pyruvate dehydrogenase complex (PDH). In

mitochondria from yeast grown on glucose-containing medium the number of cross-links

within the PDH were higher than in mitochondria from yeast grown on glycerol-containing

medium (see subsection 3.1.7, Figure 14). Saccharomyces cerevisiae can generate

energy in form of ATP via two essential metabolic pathways: fermentation and oxidative

phosphorylation. In the following, both pathways are discussed. Fermentation is triggered

by high sugar concentrations such as glucose. Glucose represses transcription of genes

that are involved e.g. in oxidative phosphorylation and in the TCA cycle75,76,321 and is mainly

metabolized via fermentation357,358. Here, pyruvate as product of the glycolysis is

preferably decarboxylated by the pyruvate decarboxylase (Pdc) producing acetaldehyde

that is finally oxidized by the alcohol dehydrogenase to ethanol358 resulting in 2 equivalents

of ATP359. Other reactions are via the cytosolic aldehyde dehydrogenase that oxidizes

acetaldehyde to acetate. Acetate is then further processed by acetyl-CoA synthetase to
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acetyl-CoA, the precursor of the TCA cycle, by-passing the pyruvate dehydrogenase

complex (PDH) in mitochondria74,358. Pyruvate can also immediately be transported into

mitochondria. Here, the PDH uses pyruvate as substrate to form acetyl-CoA74,358 which is

then channeled into the TCA cycle and finally ends up in the oxidative phosphorylation

system resulting in 38 equivalents of ATP359.

From a metabolic point of view, the PDH seems to be more important for yeast

cells growing on non-fermentable carbon sources like glycerol. However, cross-linking

data obtained in this thesis indicate that a fully assembled PDH (cross-links between all

three enzymes E1, E2, E3 and the E3-binding protein Pdx1) is more abundant under

glucose condition (see subsection 3.1.7, Figure 14). Competitors for pyruvate metabolism

in yeast are the pyruvate decarboxylase in the cytosol and the pyruvate dehydrogenase

complex in the mitochondrial matrix. Although showing a higher Km value for binding

pyruvate than PDH360-362, Pdc is the prime enzyme for pyruvate consumption in

fermentation358. Pdc- cells showed severe growth defects on fermentable carbon

sources363 indicating that the PDH cannot produce enough acetyl-CoA alone74. In turn,

yeast cells with mutations of genes encoding PDH subunits resulting in the loss of PDH

activity were all viable on both fermentable and non-fermentable carbon sources280,364-366.

However, a pda10 mutant that lacks the α-subunit of the E1 pyruvate dehydrogenase

enzyme showed a slightly decreased growth rate compared with the wild type366. This

defect could be rescued by the exogenous addition of the amino acid leucine. Furthermore,

the mutant showed instability of the mitochondrial genome, similar to a rho0 strain. This

indicates Pda1’s role in branched amino-acid synthesis and genome maintenance in

mitochondria. Remarkably, Ilv5 has a comparable dual role in branched amino acid

biosynthesis and genome maintenance46 (see subsection 4.5.1). In summary, the PDH is

not solely involved in pyruvate metabolism.

Glycerol catabolism is initiated by the glycerol kinase Gut1 and the FAD-dependent

glycerol 3-phosphate dehydrogenase Gut2367,368. Both proteins are repressed by glucose

but highly abundant under glycerol condition328,369. The reaction cascade performed by

these two enzymes transforms glycerol to dihydroxyacetone phosphate which can then be

channeled to the glycolysis pathway79,367,368. Since respiratory enzymes are not repressed

under glycerol condition, energy is mainly produced by oxidative phosphorylation. Acetyl-

CoA as substrate for the TCA cycle is mainly produced by the PDH that uses pyruvate

provided by glycolysis370. Another fact that has to be mentioned is that FAD-dependent

Gut2 delivers two electrons from glycerol to the ETC, by-passing the TCA cycle78. Similar

to the cytosolic aldehyde dehydrogenase that oxidizes acetaldehyde to acetate via the

PDH-by-pass pathway, also a mitochondrial aldehyde dehydrogenase exists. Via this

dehydrogenase, Ald4, the PDH can also be by-passed80. The Pdc that is also functional
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under non-fermentable conditions generates acetaldehyde from pyruvate. Acetaldehyde

is then further oxidized to acetate by mitochondrial Ald4, reducing NAD+ in the matrix.

Acetate can then be further processed to acetyl-CoA by the acetyl-CoA synthetase in the

cytosol. Yeast cells with a co-disruption of the ALD4 and PDA1 genes are not viable on

non-fermentable carbon sources371.

The comparison of both the fermentable and the non-fermentable metabolic

pathways indicate that the PDH is important for both. Accordingly, copy numbers of E1

and E2 of the PDH are equal under both conditions on cell level72. However, E3 is more

abundant under glycerol condition but is also part of other α-oxoacid dehydrogenases,

thus, is also a subunit of the α-ketoglutarate dehydrogenase in the TCA cycle372,373. It is

therefore difficult to estimate how many copies of E3 are involved in which complex. The

E3-binding protein Pdx1, in turn, has a 1.4-fold higher copy number under glucose

condition72 (see subsection 3.1.7, Figure 13). Pdx1 helps in the assembly of E2 and E3,

finally forming a functional PDH280. The higher number of cross-links found between Pdx1

and E2 as well as E3 under glucose condition is consistent with the function of Pdx1 in the

assembly of the PDH. However, one would expect the opposite picture, that is, a fully

assembled PDH as reflected by the numbers of cross-links of Pdx1 to E2 and E3 should

be higher under glycerol condition. A possible explanation for these controversial results

could be that the PDH is metabolically equally important for both growth conditions, but in

regard of its involvement also in amino acid biosynthesis and genome maintenance in

mitochondria, the PDH might play a key role for cells growing on fermentable carbon

sources. These cells grow faster than under non-fermentable conditions374-376 and

therefore might have a higher demand for e.g. amino acids. Accordingly, higher

abundances of proteins involved in amino acid biosynthesis under glucose condition were

identified in the proteomic analysis in this thesis (see section 3.4) and also the numbers of

cross-links of proteins involved in amino acid biosynthesis were higher under glucose

condition (see subsections 3.1.3, 3.1.6, 4.4.3, and 4.5.1). It can be hypothesized that the

differential expression of the E3-binding protein Pdx1 might represent a regulation step for

the assembly of the PDH. E1 and E2 are equally abundant suggesting that a fully functional

PDH is present under both conditions. Conversely, cross-links between Pdx1 and E2 as

well as E3 indicate a pronounced interaction under glucose rather than under glycerol

condition. Such discrepancy could be explained by an additional function of the PDH in

amino acid biosynthesis and genome maintenance that are more pronounced under

glucose condition.

The equal abundances of PDH subunits under glycerol and glucose conditions and

the higher number of cross-links within the PDH under glucose condition raise the question

how yeast cells grown on glycerol-containing medium produce enough energy in terms of
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ATP. One of the most abundant proteins under glycerol condition in the proteomic analysis

(see section 3.4) and also in the quantitative approach (see subsection 3.1.6) was Ald4.

In a direct comparison, the copy number of Ald4 is 17-fold higher under glycerol condition

compared to glucose condition in cells72. This suggests that yeast cells grown on glycerol-

containing medium also use the PDH-by-pass pathway for acetyl-CoA generation in

mitochondria and not only the PDH alone – similar to the yeast cells grown on glucose-

containing medium that use the PDH-by-pass pathway via the Pdc.

4.4.6. Interactions of uncharacterized proteins

Cross-links of proteins that are so far uncharacterized or have been partially characterized

in recent years as listed in the Saccharomyces Genome Database (SGD)29 have also been

identified in this thesis (see subsection 3.1.8 and Supplementary Figure 5). Cross-linking

data presented in this thesis provide evidence for interaction partners of those

uncharacterized proteins and help to put them into their biological context. Some of the

described cross-links have also been identified by Makepeace et al.102 Min8 and its

interactions to Cox12 and Pet9 (see subsection 4.4.4) provide a compelling example how

cross-links can be utilized for protein characterization. Also, the cross-links of recently

identified Rcf2 and its N-terminal homolog Rcf3 were briefly discussed in the same

subsection. While the N-terminus of Rcf3 cross-linked to the N-terminus of Cox12, Rcf2

interacted C-terminally with both Cox12 as well as Cox13. All identified interactions took

place in the IMS. Cross-linking data are in accordance with the proposed inner

membranous localization and orientation of both Rcf proteins proposed by Römpler et

al.119. The authors demonstrated that Rcf2 is processed after import into an unstable N-

terminal and a stable C-terminal part, both protruding into the IMS. The cross-links indeed

indicate an interaction of the stable C-terminal part of Rcf2 to Cox12. In summary, Rcf2’s

and Rcf3’s association with CIV could be confirmed by the cross-links illustrated in this

thesis.

Cross-links were also identified between Nat2 and Mdh1, the malate

dehydrogenase within the TCA cycle. Nat2 is a protein of so far unknown function but listed

as a putative Nα-acetyltransferase377 in the SGD. According to Vögtle et al.142, Nat2

localizes to the mitochondrial IM. Nα-acetyltransferases post-translationally modify 68 %

of all yeast proteins at their N-terminus by adding an acetyl moiety378. Although serine,

alanine and methionine residues are preferred substrates, there is no consensus

sequence in general. The cross-links suggest that both proteins are in close proximity to

each other and thereby the possibility that Nat2 acetylates Mdh1. However, after cleavage
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of the mitochondrial presequence, Mdh1’s N-terminus starts with a tyrosine residue and

an N-terminal acetylation of Mdh1 has not yet been reported.

Ycp4, another protein of unknown function, cross-linked to Pst2 and Hsp60. Hsp60

is a chaperonin that might aid folding of Ycp4; Pst2 is a flavodoxin-like protein.

Interestingly, Ycp4 is listed as a putative flavodoxin-like protein in the SGD. Ycp4 and Pst2

were both localized to the IM142. Flavoproteins are proteins containing FAD or FMN

prosthetic groups for electron transport, most of them localized in mitochondria379. The

function of Ycp4 and Pst2 still needs to be elucidated. Remarkably, cross-links between

Ycp4 and Pst2 were also identified by Makepeace et al.102.

While the aforementioned cross-links were all identified in the glycerol data set, the

following were identified in the glucose data set. Aim17, a protein of unknown function,

cross-linked to Cpr3, the mitochondrial peptidyl-prolyl cis-trans isomerase C, both

localized to the matrix142. Cpr3, also known as cyclophilin, accelerates protein folding380.

Aim17 could be a potential substrate.

Another cross-link was detected between Coq21 and Coq5. Morgenstern et al.72

could already identify Coq21 as matrix protein. By performing immunoprecipitation of

Coq21, the authors could also prove its association with the coenzyme Q biosynthesis

cluster. Coenzyme Q is a lipid with redox activity participating e.g. in the ETC381. The

identified cross-link supports Coq21’s participation in that cluster.

Dpi8 is another protein that was localized to the matrix by Morgenstern et al.72. It

was identified as interaction partner of Kgd1, a subunit of the α-ketoglutarate

dehydrogenase of the TCA cycle, through cross-links in this thesis and in the study of

Makepeace et al.102 Dpi8 is a comparably small protein with a molecular weight of 7.7 kDa.

A putative function of this protein could be in aiding the assembly of α-ketoglutarate

dehydrogenase complex.

Fmp16 is also a protein of unknown function and cross-linked to Aco1, the

aconitase of the TCA cycle. Cross-links between these proteins were also identified by

Makepeace et al.102 Aconitase transforms citrate to isocitrate in one of the first steps within

the TCA cycle. Besides that, Aco1 is also involved in genome maintenance45. Interestingly,

in the rho0 data set, Aco1 cross-linked also to Mmf1 (see subsections 3.2.2 and 4.5.1),

another protein involved in genome maintenance382. Fmp16 could therefore either be

involved in TCA regulation mechanisms or also in genome maintenance.

The ORF YDR061W encodes an uncharacterized protein. In this thesis, two unique

cross-links were identified to Ilv5, the mitochondrial keto-acyl reductoisomerase involved

in the amino acid biosynthesis pathway of isoleucine and valine and in genome

maintenance46. The protein encoded by YDR061W has a molecular weight of 61 kDa,

similarity to ABC transporters, an ATP binding site383 and is localized to the IM142.
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By applying the protein size exclusion chromatography approach to improve the

analysis depth after cross-linking of mitochondria, additional cross-links of other proteins

of unknown function could be identified (see section 3.3). Among these are cross-links of

Fmp10 to Mrx3. Mrx3 is associated with the mitochondrial ribosome and might be involved

in cristae junction formation384. Other cross-links were identified between Fmp40 to Ald4,

the aldehyde dehydrogenase and between Fmp41 and Ssc1, a heat shock protein

involved in protein folding385. Fmp41 could be a potential substrate of Ssc1.

A multitude of cross-links were identified between Om45 and Nde1 under both

growth conditions revealing a tight interaction between these proteins (22 and 11 unique

residue-to-residue cross-links in the glycerol and the glucose condition, respectively).

Although Om45 is a highly abundant protein of the outer mitochondrial membrane278, it

has been barely characterized so far. Deletion of Om45 has no significant effect on

mitochondrial function or cellular growth regardless of the carbon source278. While the

localization of Nde1, the external NADH:ubiquinone oxidoreductase, to the IM142 and its

orientation to the IMS386 is clearly defined, the orientation of Om45 is still under

debate387,388. Studies in the past reported different results supporting either Om45’s

protrusion into the cytosol278,387,389,390 or into the IMS279,391,392. Results in particular obtained

from the laboratories of Professor Nikolaus Pfanner and Professor Toshiya Endo could

demonstrate a localization of Om45 to the IMS by applying high concentrations of

proteinase K to mitochondria without a signal loss of Om45 in Western blot analyses391,392.

The cross-links identified in this thesis corroborate Om45’s IMS orientation and additionally

indicate a strong interaction with Nde1 in the IMS. Cross-links between Om45 and Nde1

were also identified by Makepeace et al.102 Biochemical studies performed by Lauffer et

al.279 could show an interaction between Om45 and Por1 proposing that Om45 might help

in Por1’s regulation. This interaction was confirmed in this thesis by cross-links between

Om45 and Por1 in both conditions (see subsection 3.1.4, Figure 9). Since Om45 cross-

linked to both Por1 and Nde1, Om45 could function as a guide for Nde1 to get into close

proximity to Por1. This might accelerate the oxidation of cytosolic NADH to NAD+ by

Nde1393 and the shuttling of these redox equivalents by Por1394 back to the cytosol. Nde1

can then feed the electrons to the respiratory system, e.g. to cytochrome c (Cyc1). One

cross-link between Cyc1 and Nde1 was identified in the glucose data set (Cyc1 was not

part of the databases for the glycerol data set and technically could not have been

identified although an interaction between Cyc1 and Nde1 might also have existed in the

glycerol condition). This would also explain the higher intensity of Om45-Nde1 interprotein

cross-links in the glycerol condition as identified in the quantitative approach (see

subsection 4.6.2). However, more biochemical experiments are needed to give a well-

grounded prediction on Om45’s function and whether this is ultimately related to Nde1.
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4.4.7. Protein size exclusion chromatography slightly improved analysis
depth

Protein size exclusion chromatography (protein SEC) was applied to cross-linked

mitochondria derived from yeast grown on glycerol-containing medium to increase the

analysis depth. Indeed, the number of CSMs drastically increased (see section 3.3, Table
9). However, the number of proteins involved in cross-linking reactions increased only

slightly and the number of unique residue-to-residue cross-links even decreased slightly.

The resolution of a protein size exclusion chromatography is comparably low. Although

the cross-linked sample was prefractionated on protein level before further analysis, the

resolution was probably not high enough to separate abundant protein complexes (such

as ETC complexes) from lower abundant complexes (such as TOM/TIM complexes).

Moreover, proteins were cross-linked prior to protein SEC which presumably makes it even

more difficult to separate cross-linked proteins or complexes from each other. For all

protein SEC fractions, a database with the 400 most abundant proteins were used for the

cross-linked peptides searches (see section 4.3). Although databases were protein SEC

fraction-specific and in total more proteins were covered compared to the peptide SEC

approach (also because more fractions resulted in increased measurement time), the

coverage of the mitochondrial proteome was not as complete as desired. This is illustrated

by an average protein overlap of 69 % between databases of consecutive fractions ranging

from 54 % in the later fractions with presumably less cross-linked proteins and 80 % in the

earlier fractions containing cross-linked proteins. To improve the analysis depth, a more

dedicated fractionation on protein level should be applied such as the separation in

membrane-bound and soluble protein fractions after cross-linking as performed by

Makepeace et al.102

Nonetheless, some protein-protein cross-links were detected only in the protein

SEC approach. For example, Cox13 cross-linked to Mia40, a subunit of the MIA import

pathway. While this was already discussed for Cox12 (see subsection 4.4.4), a transport

of Cox13 into mitochondria via MIA could biochemically not be proven. The import of

Cox13 is dependent on the membrane potential, thus, indicating a transport via the TIM

machinery68 and not via the MIA system. During the cross-inking reaction, Cox13 and

Mia40 must have been in close proximity to each other but its biological relevance is

unclear so far.

A cross-link between Mic10, component of the mitochondrial contact-site and

cristae-organizing system (MICOS), and Tim11, a subunit of the F1F0 ATP synthase (CV),

was detected. Both MICOS16,17,395,396 and CV20,397,398 due to its V-shaped399 dimer

formation18,400,401 form the shape of the IM, especially the cristae. Unfortunately, no further
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cross-links of MICOS proteins were detected. MICOS consists of six proteins in yeast402

and is supposed to interact with channels located in the OM. Yeast mutants that are

MICOS deficient show no cristae formation. The interplay between MICOS and CV and

therefore its impact on crista junction regulation have recently been described19,290.

Remarkably, both studies could identify the same interaction between both complexes

(Mic10 and Tim11) by chemical cross-linking combined with co-immunoprecipitation

experiments. It is suggested that Mic10 helps in oligomerization of CV that, in turn, is

mediated by subunits Tim11 and Atp20.

The protein SEC approach also revealed that the N-terminus of Por1 cross-linked

to the N-terminus of Min6. Min6 is supposed to be a peroxisomal protein with unknown

function289. Recently, it could be identified as a protein of the mitochondrial OM by MS-

based proteomics72. Based on the cross-link in this thesis, it is difficult to support one of

these hypotheses. While the N-terminal segment of Por1 is supposed to be involved in a

conformational process defining the open and the closed state403, it is still under discussion

if the N-terminus is localized in the IMS or in the cytosol308,404-406. Since the orientation of

Min6 is also undefined so far, both the mitochondrial OM and the peroxisomal membrane

cross-talking with mitochondria407 are putative localizations.

In addition to the abovementioned putative mitochondria-peroxisomes cross-link, a

cross-link between the mitochondrial OM protein Om45 and the endoplasmic reticulum

(ER) protein Sss1, a subunit of the Sec61 translocation complex288, was detected. The

Sec61 translocation complex is involved in ribosome binding and subsequent co-

translational translocation of proteins to the ER408,409. Since the C-terminal segment of

Om45 was cross-linked to Sss1, this would interfere with the hypothesis that Om45 is

located in the IMS and tethered to the OM with its N-terminal segment (see subsection

4.4.6). Interactions between the ER and mitochondria already have been reported in the

past. These Interactions are mainly mediated by the ER-mitochondria encounter structure

(ERMES) that might contribute to lipid transfer410.

4.4.8. A technical comparison with other studies dealing with XL-MS of
mitochondria

During the course of this thesis, four additional studies that applied XL-MS to mitochondria

have been published. Table 11 summarizes information about these studies in comparison

to this thesis, clustered in origin of the cross-linked mitochondria, the used cross-linker in

combination with analysis software suites, number of cross-links and FDR calculation.

Mitochondria isolated from mouse99,100, human101 and yeast102 (including the published

results247 of this thesis) have been investigated. In these five studies considered, five
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different cross-linkers were used, three of them MS-cleavable (see subsection 4.8.2). Also,

five different software suites were used for the identification of cross-linked peptides with

five different strategies to calculate the false discovery rate (FDR). This already

demonstrates the plethora of possible combinations in cross-linking experiments. It is

therefore not surprising that different numbers of identified protein-protein cross-links are

reported.

Schweppe and colleagues from the laboratory of Professor James Bruce were the

first ones who cross-linked murine mitochondria99. The authors used their in-house

developed protein interaction reporter (PIR) technology223 with the enrichable and MS-

cleavable cross-linker BDP-NHS206. With this approach, the authors were able to identify

459 unique protein-protein cross-links, 52 % of them interprotein cross-links.

An MS-cleavable but not enrichable cross-linker, DSSO221, was used by Liu et al.100

in combination with their in-house developed software suite XlinkX411, also to analyze

murine mitochondria. The authors almost doubled the protein-protein cross-links in

comparison to Schweppe et al. to 885 with an outstanding 69 % of them being interprotein

cross-links. Both studies used an advanced tribrid mass spectrometer to select specific

fragment ions after cleavage of the cross-linker. Cross-linked peptides were then identified

based on MS3 spectra, but different FDR cut-offs were applied.

Human mitochondria were cross-linked with the non-cleavable cross-linker DSS by

Ryl et al.101 The cross-linker used in this thesis, BS3, is a sulfonated derivative of DSS.

DSS and BS3 provide the same reaction chemistry as well as same distance constraints.

The number of identified protein-protein cross-links, 863, is comparable to the results

provided by Liu et al. in murine mitochondria, but, surprisingly, only 10 % of them

represented interprotein cross-links (see section 4.7). For identification of cross-linked

peptides, the authors used their in-house developed software Xi412. Remarkably, Ryl et al.

could identify 792 proteins involved in cross-linking reactions, almost doubled in

comparison to this thesis and the studies by Schweppe et al. and Liu et al. This could be

due to an extensive fractionation in combination with sequential digestion327. Ryl et al.

combined peptide SEC with SCX fractionation and used trypsin alone and in combination

with another protease (AspN, GluC, or chymotrypsin). This increased the number of

peptides enabling the identification of proteins that would not have been identified after

digestion with trypsin alone. However, the number of identified interprotein cross-links is

comparably low. This, in turn, could be due to the applied FDR strategy. In contrast to

Schweppe et al., Liu et al. and the FDR strategy used in this thesis, Ryl et al. calculated

the FDR on residue level, and, in addition, separately for intraprotein and interprotein

cross-links. While this approach is more accurate – FDR should be calculated on the level

of interest, in fact on PPI level413 – it reduces the number of interprotein cross-links101 (a
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biological comparison between the results of cross-linked human mitoplasts within this

thesis and the work performed by Ryl et al. will be discussed in section 4.7).

Makepeace et al.102 analyzed, similar to the work presented in this thesis,

mitochondria isolated from yeast. They presented the so far highest number of involved

proteins (811) and protein-protein cross-links (1122) with 30 % interprotein cross-links.

The authors used their in-house synthesized MS-cleavable, enrichable, and isotopically

labeled cross-linker CBDPS216 in combination with their software suite Qualis-CL and

applied a 2 % FDR cut-off on peptide-level. Makepeace et al. performed extensive

fractionation already on protein-level by separating the soluble fraction from two different

membrane fractions. This might be a reason for the high numbers of identifications. In their

study, the authors rather focused on the cross-linking workflow and the identification of

cross-linked peptides than on the biological interpretation of the data. 76 % of the protein-

protein cross-links detected in this thesis are covered by the work of Makepeace et al.

Specific results are discussed in section 4.4.

In conclusion, this comparison shows how diverse the cross-linking field is in regard

to used cross-linkers, software suites, and FDR calculation. In comparison to all other

studies, the number of identifications presented in this thesis are the lowest. This is mainly

due to different fractionation methods, cross-linked peptides enrichments and FDR

calculation strategies. However, with the lowest FDR of 1 % and the applied filtering steps

(see subsection 4.4.1) the results presented in this thesis are the most conservative ones.

Despite all the differences between the studies, the overlap of 76 % of protein-protein

cross-links compared to the study performed by Makepeace et al. demonstrates that

cross-linking results from two different laboratories can also be reproducible.
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Table 11: Comparison between so far published studies dealing with XL-MS of mitochondria. Prot, protein; FDR, false discovery rate.

glycerol247 glucose247 Schweppe et al.99 Liu et al.100 Ryl et al.101
Makepeace

et al.102

origin organism yeast yeast mouse mouse human yeast

cr
os

s-
lin

ke
r cross-linker BS3 BS3 BDP-NHP DSSO DSS CBDPS

cleavable no no yes yes no yes
enrichable no no yes no no yes
labeled no no no no no yes
MS level MS2 MS2 MS3 MS3 MS2 MS2
software pLink 1 pLink 1 Comet XlinkX2.0 Xi Qualis-CL

id
en

tif
ic

at
io

ns

involved proteins 261 260 327 359 792 811
prot-prot cross-links 396 386 459 885 863 1122
intraprot cross-links 229 (58 %) 231 (60 %) 222 (48 %) 276 (31 %) 773 (90 %) 784 (70 %)
interprot cross-links 167 (42 %) 155 (40 %) 237 (52 %) 609 (69 %) 90 (10 %) 338 (30 %)

FD
R

FDR 1 % 1 % <5 % 2 % 5 % 2 %
FDR level spectrum spectrum spectrum spectrum residue peptide
separate FDR no no no no yes no
user defined filtering yes yes no no no no
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4.5. Protein-protein cross-links in mitochondria derived from a rho0 yeast strain

The initial idea behind the use of mitochondria from a rho0 yeast strain for cross-linking

was to identify interactions between mitochondrial proteins and protein complexes that

have not been detected in mitochondria isolated from yeast grown on glycerol- or glucose-

containing medium. It was assumed to cross-link also lower abundant complexes such as

the TOM/TIM complex or MICOS. The rho0 strain is unable to grow on non-fermentable

carbon sources such as glycerol because of the strain’s inability for respiration.

Additionally, due to the lack of rRNAs the mitoribosomal proteins cannot assemble to a

functional ribosome. Accordingly, less cross-links were identified within the OXPHOS

system in comparison to the yeast wild type strains grown under glycerol- or glucose-

conditions (see subsection 3.1.5, Figure 10). Within CIII and CIV only cross-links between

subunits Cor1 and Qcr2 as well as Cox5b and Cox6 were identified, underlining their

preassembly before their integration into mature complexes122,127,128,414. Cross-links within

CII was identified between subunits Sdh1, Sdh2 and Sdh3. The high coverage of CII-

subunits can be explained by CII’s dual role, that is, to participate not only in the ETC but

also in a functional TCA cycle415. Also, less cross-links within subunits of the mitoribosome

were identified in the rho0 strain. In comparison to the glycerol and glucose data sets, in

which 33 and 31 mitoribosomal proteins were involved in cross-linking reactions,

respectively, only two of these proteins were identified in the rho0 data set (data not

shown). These data are in line with the biological context, that is, the lack of mtDNA in rho0

yeast cells and the effect on the respiratory system and the mitochondrial ribosome.

4.5.1. Energy metabolism and amino acid biosynthesis pathways – or a dual
role for mitochondrial proteins?

At a first glance, in the rho0 data set, cross-links within and between proteins that are

involved in the TCA cycle and in the pathway for the biosynthesis of the amino acids valine

and isoleucine were identified (see subsection 3.2.2, Figure 21). While the latter can be

explained by the higher copy numbers of proteins that are involved in amino acid

biosynthesis per se when yeast cells grow on glucose-containing medium, genes encoding

proteins involved in the TCA cycle should be repressed by glucose (discussed in section

4.3). The fact that cross-linked proteins of the TCA cycle were identified in mitochondria

of the rho0 strain could be explained by the lack of complexes of the ETC and the

mitoribosome, improving the identifications of proteins belonging to other complexes.

Proteins involved in the TCA cycle were shown to be organized in a supercomplex for
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efficient substrate channeling (similar to the ETC supercomplexes), termed ‘metabolon’,

that was recently identified by chemical fixation and mass spectrometry282.

However, at a second glance, a fully assembled ‘metabolon’ could not be confirmed

in this thesis under neither condition. Only cross-links between Aco1, the aconitase, and

the isocitrate dehydrogenase, Idh1 and Idh2, that catalyze consecutive steps within the

TCA cycle, might indicate the formation of a ‘metabolon’ (see subsection 3.2.2, Figure
21). Surprisingly, both the aconitase and the isocitrate dehydrogenase cross-linked to Ilv5,

the ketol-acid reductoisomerase involved in the biosynthesis of the amino acids valine and

isoleucine, indicating a crosstalk between metabolism and amino acid biosynthesis.

However, Aco1 and Ilv5 fulfill a biological dual role. They are not only involved in

metabolism or amino acid biosynthesis pathways but also in mitochondrial genome

maintenance45-47. Besides the aconitase, also other proteins of the TCA cycle are

supposed to be involved at least in DNA/RNA-binding, such as the isocitrate

dehydrogenase and the α-ketoglutarate dehydrogenase45,416. Aco1, Idh2 and Ilv5 cross-

linked to Mmf1 which is also a protein with a dual role. While on the one hand Mmf1 is

involved in the Ile/Val biosynthesis pathway such as Ilv5, on the other hand it also

participates in genome maintenance283,382. In summary, the cross-links between Aco1,

Idh1 and Idh2, Ilv5 and Mmf1 identified in the rho0 data set might rather indicate an

interplay between these proteins in their role in genome maintenance than a crosstalk

between metabolism and amino acid synthesis. These interactions were not identified in

the wild type mitochondria grown on either glycerol- or glucose-containing medium. While

proteins that are involved in genome maintenance are undoubtedly active in wild type

mitochondria such as Abf236,417, the genome maintenance function of the above described

proteins with a dual role might be triggered when mtDNA is damaged. Why the described

cross-links between proteins involved in genome maintenance were identified in a yeast

strain that should completely lack mtDNA still needs to be investigated. A possible

explanation for this might be that rho0 strains are usually generated by the addition of

ethidium bromide (see subsection 2.2.2). Damaged mtDNA or fragments of it might still be

present inducing the recruitment of proteins that are involved in genome maintenance in

mitochondria.

4.5.2. TOM/TIM complexes

One goal of cross-linking mitochondria derived from rho0 yeast cells was to gain deeper

insights into interactions of proteins belonging to the translocases of outer and inner

membrane (TOM/TIM). 99 % of the mitochondrial proteins are encoded by genes located

in the nuclear DNA32. The TOM/TIM complexes aid the import and the translocation of
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these proteins and consist of at least 27 proteins21 (see Supplementary Table 7). 19 and

21 of them were included in the databases for the cross-linked peptides search in the

glycerol and glucose data set, respectively, and 17 of them in the databases for the rho0

data set. In all data sets the number of identified cross-links within and between the

TOM/TIM complexes was equally low (see subsection 3.2.3, Figure 22). The rho0 data set

provided the highest number of CSMs in these complexes. In total, cross-links within and

between eleven proteins of the TOM/TIM complexes were identified, seven of them were

involved in interprotein cross-links. In all data sets, the highest number of cross-links was

identified in the presequence translocase-associated motor (PAM) complex, part of the

TIM23 complex that is located in the IM. The PAM complex shows ATPase motor activity

and aids import of proteins into the matrix418. The PAM complex consists of soluble matrix

proteins (Ssc1, Mge1) and proteins tethered to the IM, but which harbor large domains

reaching into the matrix (Pam16, Pam18, Tim44). Therefore, these subunits are accessible

for the cross-linker. Similarly, cross-links between Tim9 and Tim10, small TIM proteins that

form a soluble complex within the IMS419, were also identified in every data set. All other

proteins that belong to the TOM complex, the TIM23 complex and the TIM22 complex are

integral membrane proteins of the OM and IM or – in case of the TOM complex – contain

domains that protrude into the cytosol. Cross-links within some of these transmembrane

subunits could be detected, such as Tom40 and Tom20 of the TOM complex, Tim50 of

the TIM23 complex or Tim22 of the TIM22 complex, but only intraprotein cross-links within

these proteins could be identified and no expanded protein-protein cross-linking network

to other subunits of the respective complexes. Recently, the 3D structure of the yeast TOM

complex could be solved, including the channel-forming subunit Tom40, the receptor

subunit Tom22 and the regulatory subunits Tom5, Tom6 and Tom752. While Tom40 forms

a β-barrel structure, the other proteins represent α-helices attached to Tom40. Close

inspection of the putative cross-linkable and digestible lysine and arginine residues

revealed a major bottleneck of cross-linking small transmembrane proteins. In case of

Tom5, Tom6 and Tom22 putative cross-linkable lysine residues that are located close to

Tom40 are rare. Still, these residues are in cross-linkable distance to other subunits.

However, upon cross-linking, these lysine residues are no longer susceptible to trypsin

digestion. Only Tom22 harbors an arginine residue as cleavage site for trypsin, but

cleavage would generate a long cross-linked peptide which might escape detection by XL-

MS. For transmembrane proteins with a higher molecular weight such as Tom40, in turn,

especially arginine residues are favorably distributed in terms of potential tryptic cleavage

sites, even if lysine residues were cross-linked. These caveats of cross-linking and

digestion of transmembrane proteins described for the TOM complex can also be adapted

to the TIM22 and TIM23 complexes, thus, explaining the low number of identified cross-
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links in the TOM/TIM complexes. In general, due to insufficient digestion, low abundance,

and decreased solubility, the mass spectrometric analysis of membrane proteins remains

challenging326. This is in line with the cross-linking study on yeast mitochondria performed

by Makepeace et al.102 Although extracting mitochondrial proteins into a soluble and a

membrane fraction, they could only identify two unique cross-links between proteins of the

TOM complex and four unique cross-links between TIM proteins. The use of different

endoproteinases such as chymotrypsin that cleaves C-terminally of aromatic amino acids,

leucine, and methionine might improve the identification of membrane proteins.

Furthermore, cross-links between Tom40 and Por1 were identified. Por1 is

discussed in other biological context in (sub)sections 4.2, 4.4.6, and 4.4.7. Por1 and

Tom40 are functionally connected. Recently, the laboratories of Professor Nikolaus

Pfanner and Professor Toshiya Endo independently pointed out an interaction of Por1 to

Tom22, a subunit of the TOM complex420,421. They reported a dual role of Por1 and its

participation not only in transporting metabolites but also in protein import by regulating

the protein composition of the TOM complex. The TOM complex can form a dimeric or a

trimeric structure422,423. The interaction between Por1 and Tom22 regulates Tom22’s

insertion to the TOM complex inducing the formation of the trimeric structure. The cross-

links observed in this thesis between Por1 and Tom40 of the TOM complex indicate that

they are in close proximity to each other and corroborate their biologically relevant

interaction. Tom40 cross-linked with its flexible N-terminus to the N-terminus of Por1 most

likely on cytosolic side. In the rho0 strain, additionally a cross-link between Por1 and Tom5

could be identified. Here, the N-terminus of Tom5 cross-linked to the N-terminal segment

of Por1, also most likely on cytosolic side.

4.6. Quantitative XL-MS approach

The qualitative cross-linking data sets discussed above provided a general overview of

protein-protein cross-linking networks in mitochondria from yeast grown on either glycerol-

or glucose-containing medium. The comparison between both networks was mainly based

on counts of CSMs or the numbers of unique residue-to-residue cross-links. Normalization

of the qualitative data sets was performed on the experimental level by cross-linking the

same protein amount of each condition with the same amount of cross-linker. The

qualitative analysis is prone to random errors, since observed differences in the cross-

linking patterns might be a result of differences in the downstream workflow after the cross-

linking reaction. This might be different lysis efficiency, different protein and peptide

recovery after precipitation and digestion to the point of variations in the performance of

the mass spectrometer. To gain more accurate insights into the differences of these two
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protein-protein cross-linking networks, a quantitative XL-MS approach was performed by

applying a stable-isotopically labeled cross-linker. Mitochondria isolated from yeast grown

on glycerol- or glucose-containing medium were either cross-linked with non-labeled BS3

or with isotopically labeled BS3-d4 and vice versa. Samples were then equally mixed

based on the protein amount and the described workflow was applied (see subsection

3.1.2, Figure 6). Random errors then apply to both samples in equal measure. The final

quantitation of residue-to-residue cross-links occurred on MS1 level by integrating the area

of the peaks resulting from the non-labeled and the labeled peptides in the same run.

Calculating the ratios of the specific areas resulted in a relative quantitation of residue-to-

residue cross-links.

4.6.1. Challenges of quantitative XL-MS

Combining label-aided quantitation with XL-MS possesses a few challenges. One of them

is the huge number of intraprotein cross-links within the residue-to-residue cross-links that

are significantly more abundant than interprotein cross-links (see subsection 4.6.2). There

are three explanations for this: (i) The introduction of a label and the subsequent mixing of

the samples increase the sample redundancy. One example: A protein is digested into ten

peptides. The mass spectrometer is fast enough to select all ten peptides for fragmentation

in one duty cycle of a defined time period. In a labeling approach, this protein and its

peptides are present in two versions, unlabeled and labeled. Hence, more precursors are

present to be selected for fragmentation by the mass spectrometer, especially when

extrapolating this to the whole mitochondrial proteome. This might result in a selection bias

for high abundant peptides that most likely represent intraprotein cross-links. Less

abundant interprotein cross-links that might have been identified in an unlabeled approach

because the mass spectrometer can spend more time on their selection, might have been

missed in the labeling approach. (ii) Also for the quantitative approach, the obtained

spectra were searched against a database containing the 400 most abundant proteins for

cross-linked peptides identification (discussed in detail in section 4.3). The difference

compared to the qualitative data set is that the used database for the quantitative data set

contains the most abundant proteins of both the glycerol and the glucose condition, while

the number of entries (400 proteins) remained constant. The resulting database is even

more biased towards high abundant proteins than the database used for the qualitative

approach. (iii) The probability for an intraprotein cross-link to form within one protein is

higher than for an interprotein cross-link to form between two different proteins. This in

combination with a database containing high abundant proteins and the increased sample

redundancy are possible reasons for the high number of intraprotein cross-links. A similar
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bias towards intraprotein cross-links was also observed in a quantitative XL-MS study on

HeLa cells208. However, also differences in intraprotein cross-links can provide valuable

information on conformational changes of protein regions232.

Another challenge are the so-called missing values. Missing values occur if a

peptide(-pair) or its labeled counterpart is not identified among all replicates, increasing

the uncertainty of the quantitation. This is due to the stochastic nature of data-dependent

acquisition163 (see also subsection 4.4.1) combined with the low yield of cross-linked

peptides per se213 (see subsection 4.8.1). In this data set, 41 % of unique residue-to-

residue cross-links were identified in minimum three out of four replicates. With respect to

interprotein residue-to-residue cross-links, only 16 % were quantified in at least three

replicates what further shifts the bias towards intraprotein cross-links. Therefore, the

quantitative data sets were not as stringently filtered as the qualitative data sets, i.e. no

CSM- and score-filtering was applied (see subsection 4.4.1). This would have increased

the number of missing values. The significance of the data was calculated by a one-sample

t test on median-normalized data (see subsection 2.4.4). Other labeling strategies are

discussed in subsection 4.6.3.

4.6.2. Biological interpretation of the quantitative data

The obtained quantitative cross-linking data are in agreement with the qualitative data.

Also in the quantitative data set, the general trend is observable that cross-links showing

higher abundances in one or the other condition are between proteins that have a higher

copy number in one of the conditions per se. Most of the cross-links are intraprotein cross-

links (79 % and 93 % in the glycerol and glucose condition, respectively). The increased

intensity induced by the different carbon sources of many of these intraprotein cross-links

can be explained by the higher copy numbers of the involved proteins72 (see subsection

3.1.6, Figure 13). Especially in the glycerol condition, 45 out of 46 proteins whose residue-

to-residue cross-links were significantly increased showed also higher copy numbers in

that specific condition. This, in turn, can be explained in most cases by glucose repression

(see (sub)sections 4.3 and 4.4.5). For example, a high number of intraprotein cross-links

within the mitochondrial aldehyde dehydrogenase Ald4 and also within the glycerol 3-

phosphate dehydrogenase Gut2 were identified. Both these proteins are involved in

glycerol- and pyruvate-metabolism in yeast cells grown on glycerol-containing medium and

the respective genes are repressed by glucose (see subsection 4.4.5). Other intraprotein

and interprotein cross-links that showed higher intensities under glycerol condition belong

mainly to the OXPHOS system, especially CV, and the TCA cycle – complexes whose

proteins also have higher copy numbers under glycerol condition. Interestingly, also cross-
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links between Om45 and Nde1 showed higher intensities under glycerol condition (see

subsection 4.4.6).

The quantitative results reflecting the cross-links with higher abundance in the

glucose condition are more diverse. Besides the intraprotein and interprotein cross-links

within or between proteins whose copy numbers are higher in the glucose condition such

as proteins belonging to the amino acid biosynthesis pathways (e.g. Lys12, Ilv3, Lys4,

Bat1; see (sub)sections 3.4, 4.3, and 4.4.3), there are several cross-links within and

between proteins that showed similar copy numbers under both conditions. The most

prominent example, the pyruvate dehydrogenase complex (PDH) was discussed in detail

in subsection 4.4.5. Surprisingly, also Por1, the voltage-dependent anion channel (VDAC)

located in the OM, showed higher intensities of intraprotein cross-links in the glucose

condition, although the copy number of Por1 is higher in the glycerol condition72. This might

be explained by two different conformations of the channel that have been present in the

moment of cross-linking. In 2008, three structures of VDAC1 were resolved by NMR

(human VDAC1)424,425 and X-ray crystallography (murine VDAC1)403. Unfortunately, the

structure of yeast VDAC1 – Por1 – has not been resolved yet but shows a sequence

similarity of 94 % to the murine VDAC1. All these structures display a channel consisting

of 19 β-barrel sheets and an N-terminal α-helix formed by the first 20-25 amino acids. It

was proposed that the N-terminal segment is not part of the membrane-embedded ring

structure but is located in the lumen of the channel where it might be involved in the gating

mechanism. Indeed, the more abundant intraprotein cross-links identified in the glucose

condition are within the first 95 amino acids, covering the N-terminal α-helix and the first

five β-sheets. According to the structures, this might indicate a closed conformation of

VDAC1. In an open conformation, the α-helix would be outside the channel lumen or at

least move more into the direction of β-sheets 15-18403 to enable the transport of

metabolites such as ATP and ADP, and redox equivalents. Unfortunately, no cross-links

that are higher abundant in the glycerol-condition could be identified to corroborate this

hypothesis. It has been shown that a por- mutant yeast strain is viable but respiratory-

deficient426. This result emphasizes the importance of Por1 in respiration and explains its

higher copy number in yeast cells grown on glycerol-containing medium. Therefore, it

might be more likely to cross-link Por1 in an open conformation in mitochondria isolated

from yeast grown on glycerol-containing medium than in mitochondria isolated from yeast

grown on glucose-containing medium. However, Professor Marco Colombini raised doubts

about the correctness of the published structures427,428. He addressed the point that

biochemical data do not fit with a 19 β-barrel structure, but rather with a 13 β-barrel

structure with a membrane-integrated α-helix. Against this background, the interpretation

of the observed abundances of Por1’s intraprotein cross-links is even more difficult.
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4.6.3. Other labeling strategies in combination with XL-MS

Instead of using isotopically labeled cross-linkers, the laboratory of Professor James Bruce

combined metabolic SILAC labeling with XL-MS in studies of various complex samples.

They analyzed differences in protein interaction patterns of Hsp90 and the effects of small-

molecule inhibitors429, in multidrug-resistant human carcinoma cells208 and in mitotic

inhibitor-treated human cells430 while simultaneously gaining information about relative

protein abundances. Several SILAC labeling protocols exist also for yeast strains431 and

could have been used in this thesis as well. However, since this thesis deals exclusively

with mitochondria, a SILAC study would have been disproportionately expensive. In this

regard, the use of a labeled cross-linker is more straightforward and flexible, especially for

systems where SILAC labeling is not applicable. One example for this is described in the

PhD thesis of Dr. Iwan Parfentev, Max Planck Institute for Biophysical Chemistry,

Göttingen, with the title ‘Elucidation of protein interactions in complex samples by protein-

protein cross-linking of synaptosomes’ (SUB Göttingen-Zentralbibliothek, restricted

access until August 08, 2020). Dr. Iwan Parfentev used a labeled cross-linker to quantify

changes of cross-linking patterns within resting and excited synaptosomes isolated from

rat brains. SILAC experiments are also practicable with animals, e.g. labeled mice172, but

prohibitively expensive if only one part of the animal is used.

The laboratory of Professor Lan Huang combined chemical TMT labeling with

cross-linking233. They cross-linked cytochrome c with the MS-cleavable cross-linker DSSO

(see subsection 4.8.2) and subsequently labeled peptides with TMT after protein digestion.

Regardless of the used cross-linker, this approach enables accurate quantitation of cross-

linked peptides across multiple conditions. Although very beneficial, this approach still

needs to be evaluated for more complex samples and larger batches. Recently, it was

shown that TMT labeling of a large number of multiplexed samples introduces batch

effects and an inflation of missing values432. Besides that, for accurate quantitation, an

advanced tribrid mass spectrometer with MS3-capability is beneficial. TMT labeling is also

performed at a late stage in the sample preparation workflow, and, hence, does not

account for random errors occurring in previous steps170, e.g. during digestion and

desalting. Related to that, using labeled cross-linkers as in this thesis can be seen as

chemical labeling on protein level accounting for random errors, at least starting from the

lysis.

Label-free approaches to quantify cross-linked peptides were introduced by Müller

et al.234,235 By cross-linking bovine serum albumin the authors could demonstrate the

reproducibility and accuracy of quantifying cross-linked peptides on MS1 level via data-

dependent acquisition (DDA)234. The authors also set up a data-independent acquisition
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(DIA) strategy235. During DIA, precursors are not selected for fragmentation based on their

intensity but all precursors in defined m/z windows will be selected for fragmentation162,163.

Quantitation is then preferably performed on MS2 level resulting in an increase of accuracy

and therefore in decreased coefficients of variation (CV) among replicates161,163 even in

cross-linked protein complexes235. However, after spiking cross-linked proteins into a non-

cross-linked E. coli lysate, the CV values of quantified cross-linked peptides were

increased due to precursor interferences235. Since all precursors are fragmented in

combination with a cross-linker, resulting spectra are highly chimeric and need to be

evaluated very carefully. Label-free quantitation is the most error-prone strategy of the

ones introduced in this subsection.

4.7. Cross-linking of human mitoplasts with two different cross-linkers

The cross-linking workflow that was established for yeast mitochondria was also applied

to human mitoplasts with a few changes. In this section, the experimental rationale is

emphasized, and results are discussed. Furthermore, it is also highlighted how the use of

cross-linkers with different reaction chemistries provide complementary results by

addressing different regions of proteins433,434.

4.7.1. General comments on the experimental rationale

Mitoplasts are mitochondria without an outer membrane and intermembrane space but

with an intact inner membrane and matrix compartment. Human mitoplasts instead of fully

functional mitochondria were cross-linked to reduce the sample complexity, hence,

increasing the analytical depth for protein-protein cross-links within the IM and the matrix.

Accordingly, the majority of cross-links were identified between proteins localized either to

the IM or to the matrix (see section 3.6, Figure 30).

Instead of using the software pLink 1 in combination with a restricted database for

cross-linked peptides identification, searches were performed by the successor software

pLink 2258 which was published in 2018. Databases comprising all proteins that were

identified in the sample based on their linear peptides were generated and used for the

search (see subsection 2.4.2.1). pLink 2 uses an optimized algorithm for the analysis

decreasing the analysis time by the factor 40 in comparison to pLink 1258. Therefore,

searches against databases including more than 1000 proteins can be afforded in a

feasible amount of time. For Homo sapiens, a regularly updated and curated list of

mitochondrial proteins is available, the MitoCarta2.0435. This list comprises 1158 genes

encoding human mitochondrial proteins so far (April 2020). In the beginning of the project
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it was discussed to use the MitoCarta2.0 as a database for the search of cross-linked

peptides. However, so far undetected mitochondrial proteins or proteins whose exact

location is still unclear would have been excluded. By including all identified proteins

(approximately 1500 for the BS3 and 1900 for the EDC data set) also low abundant ones

were part of the databases. A drawback is that also curated non-mitochondrial proteins

such as histones were included in the database and found to be cross-linked most likely

due to impurities during mitochondria isolation.

4.7.2. Cross-linkers with different reaction chemistries

Human mitoplasts were cross-linked with BS3 or EDC. While BS3 is a lysine-to-lysine

cross-linker, EDC connects lysine residues with aspartate or glutamate residues. The two

cross-linkers differ not only in their reaction chemistry, but also in spacer length. BS3

possesses a spacer with a length of 11.4 Å resulting in a distance of approximately 30 Å

between Cα-atoms of lysine residues, accounting for flexibility as calculated by a molecular

dynamics simulation study187. EDC is a zero-length cross-linker imposing an average

distance of approximately 14 Å between Cα-atoms. The obtained cross-linking data are

complementary to each other. 40 unique protein-protein cross-links were identified after

BS3-cross-linking, 39 after EDC-cross-linking (see subsection 3.6.3, Figure 30). Only 5 of

the protein-protein cross-links could be identified in both data sets indicating that different

proteins and protein regions are addressed by these two cross-linkers. This is underlined

by the tendency that EDC favors proteins with a slightly lower isoelectric point (pI) than

BS3 that, in turn, cross-linked proteins with slightly higher pI values (see subsection 3.6.1,

Figure 29). This can be explained by the different reaction chemistries of the two cross-

linkers. EDC cross-links lysine residues to acidic residues like aspartate and glutamate

that both have lower pKa values than lysine residues. However, the low overlap might also

have been caused by the stochastic nature of data-dependent acquisition (see

subsections 4.4.1 and 4.6.1).

Although the numbers of involved proteins and unique residue-to-residue cross-

links were higher in the BS3 data set, relatively more interprotein cross-links could be

identified in the EDC data set (filtered, see subsection 3.6.1, Table 9). These findings have

also been reported by Gutierrez et al.434 who cross-linked the human COP9 signalosome

separately with three MS-cleavable cross-linkers with different reaction chemistries: DSSO

(K-K), DHSO (D/E-D/E) and BMSO (C-C). First, the authors could also observe that cross-

linkers with different chemistries increase the comprehensiveness of a protein-protein

cross-linking network and that the obtained data are complementary to each other.

Second, the authors also reported the highest number of identified cross-links for DSSO
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(K-K), but DHSO (D/E-D/E) yielded more interprotein cross-links (in this regard, BMSO

even outperformed DHSO). Similar trends were observed by Kim et al.433 who cross-linked

the yeast nuclear pore complex with DSS (K-K) and EDC (K-D/E). Salt bridges formed

between lysine residues and aspartate or glutamate residues that are well-distributed on

protein surfaces and interaction interfaces stabilize protein interactions434,436-438. Against

this background it is reasonable that, especially in case of the zero-length cross-linker

EDC, a cross-link between a lysine residue and an acidic residue such as aspartate and

glutamate occurs preferentially within interaction interfaces between two distinct proteins

resulting in the identification of an interprotein cross-link.

4.7.3. Intraprotein cross-links outnumbered interprotein cross-links

The relative number of intraprotein versus interprotein cross-links on protein level was

much higher for human mitoplasts than for yeast mitochondria. In the BS3 data set, 86 %

of the identified protein-protein cross-links represent intraprotein cross-links and 14 %

interprotein cross-links. In the EDC data set, 80 % of the identified protein-protein cross-

links represent intraprotein cross-links and 20 % interprotein cross-links. The increased

relative number of interprotein cross-links after EDC cross-linking compared with BS3

cross-linking is in line with the results discussed in subsection 4.7.2. However, in

comparison with the yeast data set in which the ratio of intraprotein to interprotein cross-

links is ~60 % to ~40 % on protein level, the human data sets provide much more

intraprotein cross-links. Other XL-MS studies dealing with murine and yeast mitochondria

also showed a higher number of interprotein cross-links (see subsection 4.4.8 , Table 11).

Surprisingly, in the XL-MS study on human mitochondria by Ryl et al.101 a similar tendency

towards intraprotein cross-links was observed, similar to this thesis. The authors reported

90 % intraprotein and 10 % interprotein cross-links on protein level after cross-linking

human mitochondria with the non-cleavable cross-linker DSS (a derivative of BS3 without

the charged sulfo-groups). Ryl et al. constituted the high number of intraprotein versus

interprotein cross-links by different FDR calculations. In their study, FDR calculation was

applied separately on intraprotein and interprotein cross-links and not globally like in all

other mitochondrial XL-MS studies. Indeed, this different strategy for FDR calculation

reduces the number of interprotein cross-links justified by the higher accuracy of FDR

calculation101. When Ryl et al. applied a global FDR calculation to their data set, they could

also increase the ratio of interprotein cross-links to 16 %. However, this number is still

lower compared to the other mitochondrial XL-MS studies, indicating that the FDR

calculation cannot be the only reason for the decreased number of interprotein cross-links.

To exclude a bias towards intraprotein cross-links induced by different software suites or
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database sizes, the data set of cross-linked mitochondria isolated from yeast grown on

glycerol-containing medium obtained in this thesis was reanalyzed with pLink 2 applying

the same settings as for the human mitoplasts data sets and with a database containing

all identified proteins. This resulted in ~70 % intraprotein and ~30 % interprotein cross-

links on protein level, similar to all other non-human mitochondrial XL-MS studies. This

indicates that biases induced by different software and database sizes can be excluded.

Keller et al.439 predicted theoretical interprotein cross-link fractions in comparison to

intraprotein cross-links by analyzing data sets of cross-linked cells and by mapping the

cross-links to available 3D structures. The authors could demonstrate that the interprotein

cross-link fraction is significantly higher for “in vivo” cross-linked HeLa cells compared to

a cross-linked lysate of the same cell line, i.e. more proteins are assembled into complexes

under native conditions than after lysis. While this result can be transferred to human

mitoplasts, where protein complexes might have been disrupted due to digitonin treatment

leading to less interprotein cross-links, cross-linking results from human mitochondria

obtained by Ryl et al. need further evaluation to explain the low number of interprotein

cross-links. A general explanation could be the higher volume of human mitochondria

(0.26 µm³ in HeLa cells440) compared to yeast mitochondria (0.14-0.16 µm³ in diploid and

haploid budding yeast, respectively441) leading to a stronger dilution of the cross-linker.

However, a potential correlation between mitochondrial volume and the number of

identified interprotein cross-links cannot be confirmed for rodent mitochondria (0.27 µm³

in rats442).

4.7.4. Biological interpretation of the identified protein-protein cross-links

Based on the successful application of BS3 to cross-link proteins located in all

subcompartments of yeast mitochondria, this cross-linker was also used to cross-link

human mitoplasts. EDC, also a water-soluble cross-linker similar to BS3, was considered

to cross-link proteins in all mitochondrial subcompartments as well. Accordingly, both

cross-linkers could pass through the IM of human mitoplasts (see subsection 3.6.3, Figure
30 and discussion about BS3’s ability to pass through mitochondrial membranes in section

4.2 that can also be applied to EDC). As discussed in subsection 4.7.3, the number of

intraprotein cross-links outnumbered interprotein cross-links for both cross-linkers. Among

the proteins that provide the most intraprotein cross-links is, for example, the chaperone

HSPD1/HSPE1. It comprises 19 % and 26 % of all CSMs in the BS3 and the EDC data

set, respectively. The chaperone is a soluble matrix protein and among the ten most

abundant proteins based on the identifications of the linear peptides (data not shown).

Additionally, 23 % of its amino acid composition comprises K, D and E which is above
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average (referring to an amino acid composition calculation of a set of globular proteins

that calculated the average sum of K, D and E within these proteins to 18 %443). The

combination of high abundance, solubility and amino acid composition makes this

chaperone a perfect candidate for BS3 and EDC cross-linking. The high number of

intraprotein cross-links to this chaperone was also confirmed by Ryl et al.101 Besides the

high number of intraprotein cross-links, 79 interprotein cross-links defining unique protein-

protein cross-links could be identified in total. Some of them will be discussed in the

following. Like in yeast mitochondria, also the OXPHOS system in human mitoplasts was

involved in cross-linking reactions. In contrast to yeast, mammalian mitochondria harbor a

proton pumping CI444. Human CI consists of 45 subunits forming an L-like structure with

one arm embedded in the IM and the other arm protruding into the matrix445. Eleven of

these subunits formed interprotein cross-links, seven of the subunits belong to the soluble

matrix-arm. The tendency to cross-link soluble protein domains is in agreement with the

so far presented results and with the fact that membrane-embedded proteins are difficult

to analyze with MS (see subsection 4.5.2). The assembly of CI is aided by assembly

factors446,447. In this thesis, two recently identified assembly factors of human CI could be

identified in the EDC data set, namely TIMMDC1 and DMAC10. TIMMDC1 cross-linked to

NDUFA8, part of the V-module of the membrane-arm of CI. In an interaction proteomics

study performed by Guarani et al.448, TIMMDC1 was shown to associate with CI and the

CI assembly factor complex MCIA. The authors could also show that depletion of

TIMMDC1 led to significantly reduced CI activity and an accumulation of CI assembly

intermediates. This was also found by Andrews et al.449 who identified NDUFA8 among

the proteins that interact with TIMMDC1 by performing co-immunoprecipitation in

combination with MS. Andrews et al. proposed a model in that NDUFA8 and TIMMDC1

are assembled into the same CI assembly intermediate. This is corroborated by the

identified cross-link in this thesis. DMAC10 cross-linked to NDUFB10, also part of the

membrane-arm of CI. In a study performed by Stroud et al.450, knockout of DMAC1 led to

CI assembly defects. In a pull-down experiment, the authors demonstrated that DMAC1

interacts with proteins of the ND4-module of CI of which NDUFB10 is part of. While the

exact function of TIMMDC1 and DMAC1 still remains elusive, the identified cross-links

corroborate the hypothesis that these proteins are involved in the assembly of CI. Another

cross-link of CI was identified in the BS3 data set. The cross-link between NDUB4, a

protein of CI, to UQCR10, a protein of CIII, provided evidence for an ETC supercomplex

formation in human mitoplasts. While ETC supercomplex formation in yeast was discussed

in detail in subsection 4.4.4, evidence for supercomplex formation also in mammals was

provided long time ago87,89,94. Recently, a structure for the human CICIII2CIV supercomplex

and even a megacomplex structure CI2CIII2CIV2 was proposed90. Since the cross-linking
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data in regard to interprotein cross-links for human mitoplasts are very sparse,

unfortunately no further evidence could be provided for one of the proposed structures but

only for the close proximity of CI and CIII. The identified cross-link between CI and CIII

induced by BS3 satisfies the distance constraint of 30 Å (see subsection 3.6.3, Figure 31).

Also Ryl et al.101 did not identify comprehensive interprotein cross-links within the

CICIII2CIV supercomplex. While no cross-links between CI and CIII were identified by the

authors, they, in turn, could identify cross-links between CIII and CIV.

Cross-links between ROMO1 and PHB (EDC) as well as PHB2 (BS3) were

identified in this thesis. Prohibitin exists in two homologs, PHB and PHB2, forming an

approximately two megadalton large complex located in the IM with proposed functions in

protein folding451 and maintenance of mitochondrial morphology452. Prohibitins are

transported into mitochondria and translocated via the TIM23 complex453. Remarkably,

ROMO1 was recently described as a novel constituent of the TIM23 complex by Richter

et al.299 Furthermore, both prohibitin homologs cross-linked to OCIAD1 (EDC: PHB; BS3:

PHB2), a protein which was found to interact with PHB2 by Richter-Dennerlein et al.300 It

was also shown recently that OCIAD1 interacts with CI and regulates energy metabolism

in human pluripotent stem cells454. However, a large-scale study on the human

mitochondrial interactome by applying BioID suggests dual localization of OCIAD1 in

mitochondria as well as peroxisomes455 (Antonicka et al., bioRxiv, April 2020).

4.8. Other cross-linking and analysis workflows

XL-MS is no longer restricted to the interrogation of interactions within purified protein

complexes but expands its capabilities to analyze more complex samples and, ultimately,

to identify large protein-protein cross-linking networks in organelles or cells. To achieve

this goal, a reliable identification of cross-links is essential. Several strategies to enrich

cross-linked peptides and to reduce the search space are becoming increasingly popular.

4.8.1. Enrichment of cross-linked peptides to increase their identification
rate

The cross-linking reaction efficiency is estimated to be 1-5 %213. Therefore, non-cross-

linked, i.e. linear, peptides greatly outnumber cross-linked peptides and it is necessary to

enrich for cross-linked species prior to LC-MS/MS analysis. An increased sensitivity for

cross-linked peptides will improve spectrum quality and, hence, the reliable identification

of these peptides. Two approaches that take advantage of peptide properties are

commonly used in the XL-MS community183, namely the enrichment by peptide size
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exclusion chromatography (peptide SEC)214 and by strong cation exchange

chromatography (SCX)196,215,456. Peptide SEC, also used in this thesis, is based on the

molecular weight. Cross-linked peptides are longer and bulkier as linear peptides, thus

having a higher mass. Most of the spectra obtained during the course of this thesis were

identified in the early fractions after peptide SEC. For example, in the first biological

replicate of cross-linked mitochondria derived from yeast grown on glycerol-containing

medium, 93 % of all spectra were identified in the first five fractions out of ten. Enrichment

by SCX is based on an increase in the peptide net charge. Cross-linked peptides possess

more positive charges than linear peptides, at least two positively charged N-termini as

well as two positively charged lysine or arginine residues due to trypsin digestion.

Accordingly, cross-linked peptide species will elute in the end of the gradient with higher

salt concentrations that is used for elution. Due to the high salt concentrations in the SCX-

fractions containing the cross-linked peptides, an additional desalting step prior to LC-

MS/MS analysis is necessary. A combination of SCX and C18 material (mixed-mode

cartridges)457 as well as two-diagonal SCX (ChaFRADIC)458 were also applied to protein

complexes and improved the identification of cross-linked peptides. These combined

approaches still need to be evaluated for more complex samples.

Another strategy to enrich for cross-linked peptides is to use trifunctional,

enrichable cross-linkers. Here, in addition to the two reactive groups, an affinity tag such

as biotin or an option for click-chemistry is synthesized to the cross-linker206,216,217,459.

Recently developed cross-linkers also take advantage of phosphor-based tags213,219,

suitable for immobilized metal affinity chromatography (IMAC) enrichment. These tags

enable targeted enrichment of cross-linked peptide species and increase the sensitivity of

their identification. However, due to the additional tag the cross-linker becomes bulkier.

This might increase steric hindrance during the cross-linking reaction. Although the

enrichment of tagged cross-linkers adds another step in the sample preparation workflow,

it could also supersede the need for subsequent strategies such as peptide SEC or SCX213.

4.8.2. Reducing the search space

A restricted database as a strategy to reduce the search space for the identification of

cross-linked peptides was discussed in section 4.3. Another strategy is becoming

increasingly popular: the application of MS-cleavable cross-linkers for the analysis of

complex samples221-223. Due to the labile bond that can be cleaved in the gas phase of the

mass spectrometer and the formation of reporter ions that can be selected for additional

MS3 fragmentation, a reliable identification of cross-linked peptides can be performed.

Ultimately, cross-linked peptides can be searched against databases covering whole
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proteomes, since the n2 search space is reduced to 2n. However, to benefit from the MS3

fragmentation, a tribrid mass spectrometer containing a quadrupole, an orbitrap, and an

ion trap is necessary. Furthermore, the MS3 scan costs time and will increase the duty

cycle of the instrument. On the one hand, this comes along with a more reliable

identification of cross-links. On the other hand, sensitivity will be sacrificed due to a

prolonged duty cycle, i.e. the total number of cross-linked peptides identifications per

sample will be reduced. Since the reporter ions are still identifiable also with higher collision

energies, an MS3 approach is not mandatory. MS-cleavable cross-linkers can also be

analyzed with an MS2 fragmentation only. Nevertheless, in some cases the labile bond

within the cross-linker does not break efficiently which renders a successful identification

challenging460. Since spectra that are generated after cross-linking with MS-cleavable

cross-linkers are either obtained on MS3 level or contain specific reporter ions, special

software suites have to be used for reliable peptide identification. Software that are

capable of analyzing these data are for example XlinkX461, MeroX462 or MetaMorpheus460.

Cross-linkers cannot only be cleaved within the mass spectrometer, but also during

the workflow beforehand. Parfentev et al.463 used a thiol-cleavable cross-linker to generate

a peptide-focused database containing only the sequences of these peptides that were

modified with a cross-linker remnant after reduction of the cross-linker. This approach led

to a significant reduction in search time. However, the generation of such a peptide-

focused database and the initial cross-linking experiment with a non-cleavable cross-linker

are two separate steps in the workflow, resulting in additional work and measurement time.

Reduction of the search space based on the knowledge about peptides’ “cross-linkability”

was already introduced by Lima and co-workers implemented in their own software suite

SIM-XL464 and by Buncherd et al.465 in combination with a two-dimensional SCX

fractionation strategy.

Another way of reducing the search space is by combining a mixture of a cross-

linker with its stable-isotopically labeled counterpart and a suitable software. This was

demonstrated by Rinner and colleagues and their software xQuest215 for large databases.

The software performs a pre-search that detects cross-linked peptide pairs indicating a

mass shift induced by the heavy label. Only these pairs are considered for the final cross-

linked peptides database search, the others are treated as linear peptides. While this

strategy represents a very reliable way for the identification of cross-linked peptides, the

introduced heavy label will have a negative effect on the total identifications. The

instrument does not only need time to fragment a single cross-linked peptide pair but also

must select the labeled counterpart for a successful identification while the duty cycle

remains constant (see also section 4.6).
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4.9. Other strategies for interrogating protein-protein interactions using mass
spectrometry

Chemical cross-linking in combination with mass spectrometry is able to characterize

protein-protein interactions in their native environment. Benefits are the localization of

interaction partners within a radius of a few Ångström and the identification of the exact

amino acid residues that participated in the cross-linking reaction. Cross-linkers with

different spacer lengths, reaction chemistries and solubilities are commercially available

and with the increasing sensitivities of mass spectrometers and the power of analysis

software XL-MS becomes more and more a routine work, even for elucidating large

protein-protein cross-linking networks in complex systems205,206,208,217.

Besides XL-MS, also other techniques exist that are capable of interrogating PPIs

in combination with mass spectrometry. Approaches such as immunoprecipitation (IP) or

affinity purification (AP) in combination with MS for protein identification are low-throughput

methods. Their success is strongly based on the availability of specific antibodies in case

of IP320. In case of AP, an introduced tag alters the molecular weight of a protein and might

influence its natural behavior, and so its interaction partners. Also, the mild isolation

conditions make it difficult to tackle membrane proteins466 and usually cause a strong

background320.

Another approach that came up in the recent years is proximity labeling. Here, the

protein of interest is fused to an enzyme that adds tags to proteins that are in close

proximity. Via these tags, proteins can be purified and identified. In BioID178, the bacterial

biotin ligase BirA transfers biotin to lysine residues. In APEX179, the monomeric ascorbate

peroxidase is used to attach biotin via a mechanism based on radical formation to tyrosine,

cysteine, histidine and tryptophan residues. While the reaction catalyzed by APEX occurs

in the range of milliseconds, biotin labeling by BioID takes up to 24 hours, one of its major

drawbacks466. APEX, in turn, needs hydroxide peroxide which can induce cellular stress

and activate pathways that would not have been activated in the natural environment. Both

approaches cover an interaction distance of 10-20 nm and, hence, provide a much lower

resolution than XL-MS. From this it can be concluded that labeled proteins do not

necessarily interact directly with the protein of interest466. Also, for both BioID and APEX

a genetic protein engineering step is necessary and are therefore low-throughput

methods320. A strong benefit of these techniques over XL-MS is its suitability in living

animals467.

Complexome profiling is especially used to analyze the composition of protein

complexes in mitochondria468-470. Here, complexes are mildly solubilized and separated by

blue native-gel electrophoresis (BN-PAGE). The gel is then cut into slices, proteins are
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extracted, and detected as well as quantified by LC-MS/MS. While this approach is very

powerful in identifying complex intermediates, it is very laborious if the workflow is not

automated. To draw reasonable conclusions from the label-free quantitative data,

extensive protein correlation profiling (PCP)471 needs to be carried out. Furthermore, in-

gel workflows are prone to sample loss and suffer from reduced reproducibility472. BN-

PAGE can be replaced by protein SEC that was successfully applied to HEK cells leading

to the characterization of 462 complexes473.

4.10. Summary and perspective

In this thesis, protein-protein cross-linking networks of mitochondria derived from

Saccharomyces cerevisiae grown on a fermentable and a non-fermentable carbon source

were elucidated by chemical cross-linking in combination with mass spectrometry (XL-

MS). For this, the non-cleavable cross-linker BS3 was applied and databases including

the 400 most abundant proteins were used for cross-linked peptides searches. Networks

were qualitatively compared to each other. In this context, it could be shown that observed

differences strongly correlate with the energy metabolism of the yeast cells affected by the

carbon source. Glycerol as non-fermentable carbon source is primarily metabolized via

the oxidative phosphorylation (OXPHOS) system located in mitochondria, while glucose is

mainly fermented for ATP production. Consequently, cross-links within the OXPHOS

system and the TCA cycle showed higher numbers in mitochondria under glycerol

condition. In this context, the participation of Ndi1 in an Ndi1CIII2CIV2 electron transport

chain supercomplex was proposed. Furthermore, interactions of so far uncharacterized

proteins could be revealed. Amongst them, cross-links between Min8 and Cox12 were

identified. Ultimately, Min8’s association with the cytochrome c oxidase was substantiated

by biochemical approaches and its localization within the complex was proposed by

docking experiments. Additionally, a quantitative cross-linking mass spectrometry

approach was successfully applied that corroborated also statistically the observed

differences in yeast mitochondria originating from yeast grown on glycerol- or glucose-

containing medium. However, the significance of this approach was limited by major

changes of protein copy numbers induced by the different carbon sources. Therefore,

significantly changed residue-to-residue cross-links were dominated by intraprotein cross-

links. Mitochondria derived from a rho0 yeast strain were cross-linked to identify

interactions within complexes such as TOM/TIM, MICOS or interactions of low abundant

proteins that were barely identified in the wild type strains. Unfortunately, respective results

did not significantly improve. A protein-protein cross-linking network in human

mitochondria derived from HEK cells was also elucidated by using two cross-linkers with
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different reaction chemistries. Similar to the quantitative approach applied to yeast

mitochondria, the majority of identified cross-links in human mitochondria were intraprotein

cross-links. Nonetheless, XL-MS emerges as a powerful tool in structural and systems

biology. Detection of conformational changes within proteins or protein complexes and the

elucidation of protein-protein interactions on a proteome-wide scale are supported by the

development of mass spectrometers with increasing sensitivity, by cleavable cross-linkers

addressing different amino acid residues, by the possibility to also track changes

quantitatively, and by improving algorithms for the identification of cross-linked peptides.

With respect to the analysis of mitochondria, the analysis depth has to be increased to

also identify low abundant proteins and complexes such as TOM/TIM and MICOS. To

achieve this, high concentrations of MS-cleavable cross-linkers can be applied to

mitochondria to both increase the number of cross-links and to search against whole

proteomes. This is important to also detect interactions between mitochondria and other

organelles, such as the endoplasmic reticulum or peroxisomes. A quantitative XL-MS

approach combining MS-cleavable cross-linkers and labeling via TMT could be used to

interrogate structural changes between mitochondria of healthy humans and humans

suffering mitochondrial diseases, e.g. induced by CIV deficiencies. In this case, changes

within protein copy numbers should be minor and therefore should not influence the

significance of the quantitative approach.
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5. Appendix

5.1. Supplementary figures

Supplementary Figure 1: Overlaps of unique residue-to-residue cross-links within biological
replicates of cross-linked mitochondria derived from yeast grown on glycerol- or glucose containing
medium. Unique residue-to-residue cross-links from the unfiltered and filtered data sets were
compared between biological replicates of the glycerol (upper panel) and glucose condition (lower
panel). Adapted from Linden et al.247
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Supplementary Figure 2: Structural validation of selected cross-links identified in mitochondria
derived from yeast grown on glycerol-containing medium. Identified cross-links were mapped onto
available 3D structures of proteins located in different mitochondrial suborganellar compartments.
Bar diagram shows the relative composition for each displayed structure. Blue bars, satisfying
distance constraint (<30 Å); red bars, violated distance constraint (>30 Å). Structures were
illustrated by UCSF Chimera274 in combination with Xlink Analyzer275.
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Supplementary Figure 3: Global interprotein cross-linking network identified in both mitochondria
derived from yeast grown on glycerol- and glucose-containing medium. Localizations based on
Vögtle et al.142 Thickness of the edges is proportional to the number of unique residue-to-residue
cross-links. OM, outer membrane; IMS, intermembrane space; IM, inner membrane; ambig,
ambiguous; not mt, not mitochondrial; AA biosyn., amino acid biosynthesis; OXPHOS, oxidative
phosphorylation system; TCA, tricarboxylic acid; PDH, pyruvate dehydrogenase complex; PAM,
presequence translocase-associated motor, mitoribosome, mitochondrial ribosome. Networks
visualized by Cytoscape269. Adapted from Linden et al.247
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Supplementary Figure 4: Comparison of yeast and mammalian ETC supercomplex structures.
Putative Ndi1CIII2CIV2 supercomplex structure of yeast (upper panel) and the mammalian
CICIII2CIV supercomplex (lower panel, Sus scrofa). Schematic T-pieces illustrate the orientation of
all three complexes. Green, complex III; orange, complex IV; gray, Ndi1 and complex I; light purple,
membrane anchor of Ndi1; yellow, subunits Cor1 and Qcr2 of CIII; IMS, intermembrane space; IM,
inner membrane. PDB CIII2CIV2 supercomplex: 6HU991; PDB Ndi1: 4G73263; PDB CICIII2CIV
supercomplex: 5GUP92. Adapted from Linden et al.247
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Supplementary Figure 5: Uncharacterized proteins identified in mitochondria derived from yeast
grown on glycerol- or glucose-containing medium. List of uncharacterized proteins that showed
interprotein cross-links to other proteins (top part of the table) or intraprotein cross-links (bottom
part of the table). Red, identified in the glycerol data set; blue, identified in the glucose data set. *,
described in Morgenstern et al.72; **, described in Römpler et al.119; ***, identified in Makepeace et
al.102; #unique, number of unique residue-to-residue cross-links; #CSMs, number of cross-linked
peptides spectrum matches. Adapted from Linden et al.247



Appendix

127

5.2. Supplementary tables

Supplementary Table 1: pLink 1 search results of the quantitative XL-MS approach for the

comparison of residue-to-residue cross-links identified in mitochondria derived from yeast grown

on glycerol- or glucose-containing medium. File provided on a CD-ROM attached to the hardcopy

version of this thesis.

Supplementary Table 2: pLink 1 search results of the qualitative XL-MS approaches. Residue-to-

residue cross-links identified in mitochondria derived from yeast grown on glycerol- or glucose-

containing medium and from the rho0 yeast strain. File provided on a CD-ROM attached to the

hardcopy version of this thesis.

Supplementary Table 3: pLink 1 search results of the qualitative XL-MS approach with protein

SEC as prefractionation. Residue-to-residue cross-links identified in mitochondria derived from

yeast grown on glycerol-containing medium. File provided on a CD-ROM attached to the hardcopy

version of this thesis.

Supplementary Table 4: Protein identifications and peptides per fraction after immunoprecipitation

of Min8FLAG in combination with oxidative cross-linking. File provided on a CD-ROM attached to the

hardcopy version of this thesis.

Supplementary Table 5: pLink 2 search results of the XL-MS approach of human mitoplasts.

Residue-to-residue cross-links identified in mitoplasts generated from human mitochondria derived

from HEK293T cells. File provided on a CD-ROM attached to the hardcopy version of this thesis.

Supplementary Table 6: Protein lists for generating databases including the 400 most abundant

proteins. Databases were used for pLink 1 searches after cross-linking yeast mitochondria. File

provided on a CD-ROM attached to the hardcopy version of this thesis.

Supplementary Table 7: Summary of so far known proteins that are part of the translocases of
outer and inner membrane (TOM/TIM) complexes in S. cerevisiae21. ‘X’ indicates that the specific
protein was identified as cross-linked in the respective data set rho0, glucose or glycerol.

cross-linked in

proteins rho0 glucose glycerol

TOM complex

Tom5 X
Tom6
Tom7
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Tom20 X X

Tom22
Tom40 X X X

Tom70
small TIMs

Tim8
Tim9 X X X

Tim10 X X X

Tim12
Tim13

TIM22 complex

Tim18
Tim22 X

Tim54
Sdh3 X X X

TIM23 complex

Tim17
Tim21
Tim23
Tim44 X X X

Tim50 X X
Pam16 X X X

Pam17
Pam18 X X X

Mgr2
Ssc1 X X X

Mge1 X X X
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Supplementary Table 8: Raw files acquired and used for cross-linked peptide database search
after cross-linking mitochondria derived from yeast grown on glycerol-containing medium.

C_Lee_011216_ymitos
_WT_Gly_BS3_XL_10_
R1.raw

C_Lee_011216_ymitos_WT
_Gly_BS3_XL_16_R1.raw

I_Parfentev_A_Linden_2606
17_180717_ymitos_WTGly_
A10b.raw

C_Lee_011216_ymitos
_WT_Gly_BS3_XL_10_
R2.raw

C_Lee_011216_ymitos_WT
_Gly_BS3_XL_16_R2.raw

I_Parfentev_A_Linden_2606
17_180717_ymitos_WTGly_
A11.raw

C_Lee_011216_ymitos
_WT_Gly_BS3_XL_11_
R1.raw

C_Lee_011216_ymitos_WT
_Gly_BS3_XL_17_R1.raw

I_Parfentev_A_Linden_2606
17_180717_ymitos_WTGly_
A11b.raw

C_Lee_011216_ymitos
_WT_Gly_BS3_XL_11_
R2.raw

C_Lee_011216_ymitos_WT
_Gly_BS3_XL_17_R2.raw

I_Parfentev_A_Linden_2606
17_180717_ymitos_WTGly_
A12.raw

C_Lee_011216_ymitos
_WT_Gly_BS3_XL_12_
R1.raw

C_Lee_011216_ymitos_WT
_Gly_BS3_XL_18_R1.raw

I_Parfentev_A_Linden_2606
17_180717_ymitos_WTGly_
A12b.raw

C_Lee_011216_ymitos
_WT_Gly_BS3_XL_12_
R2.raw

C_Lee_011216_ymitos_WT
_Gly_BS3_XL_18_R2.raw

I_Parfentev_A_Linden_2606
17_180717_ymitos_WTGly_
A13.raw

C_Lee_011216_ymitos
_WT_Gly_BS3_XL_13_
R1.raw

C_Lee_011216_ymitos_WT
_Gly_BS3_XL_19to21_R1.r
aw

I_Parfentev_A_Linden_2606
17_180717_ymitos_WTGly_
A13b.raw

C_Lee_011216_ymitos
_WT_Gly_BS3_XL_13_
R2a.raw

C_Lee_011216_ymitos_WT
_Gly_BS3_XL_19to21_R2.r
aw

I_Parfentev_A_Linden_2606
17_180717_ymitos_WTGly_
A14.raw

C_Lee_011216_ymitos
_WT_Gly_BS3_XL_14_
R1a.raw

C_Lee_011216_ymitos_WT
_Gly_BS3_XL_7to9_R1.raw

I_Parfentev_A_Linden_2606
17_180717_ymitos_WTGly_
A14b.raw

C_Lee_011216_ymitos
_WT_Gly_BS3_XL_14_
R2a.raw

C_Lee_011216_ymitos_WT
_Gly_BS3_XL_7to9_R2.raw

I_Parfentev_A_Linden_2606
17_180717_ymitos_WTGly_
A9.raw

C_Lee_011216_ymitos
_WT_Gly_BS3_XL_15_
R1.raw

I_Parfentev_A_Linden_2606
17_180717_ymitos_WTGly_
A10.raw

I_Parfentev_A_Linden_2606
17_180717_ymitos_WTGly_
A9b.raw

C_Lee_011216_ymitos_WT_Gly_BS3_XL_15_R2.raw

Supplementary Table 9: Raw files acquired and used for cross-linked peptide database search
after cross-linking mitochondria derived from yeast grown on glucose-containing medium.

C_Lee_261116_ymitos_W
T_Glu_BS3_XL_10_R1.ra
w

C_Lee_261116_ymitos_WT
_Glu_BS3_XL_17_R1.raw

C_Lee_300117_ymitos_
Glu_BS3_XL_13_R1.raw

C_Lee_261116_ymitos_W
T_Glu_BS3_XL_10_R2.ra
w

C_Lee_261116_ymitos_WT
_Glu_BS3_XL_17_R2.raw

C_Lee_300117_ymitos_
Glu_BS3_XL_13_R2.raw

C_Lee_261116_ymitos_W
T_Glu_BS3_XL_11_R1.ra
w

C_Lee_261116_ymitos_WT
_Glu_BS3_XL_18_R1.raw

C_Lee_300117_ymitos_
Glu_BS3_XL_14_R1.raw

C_Lee_261116_ymitos_W
T_Glu_BS3_XL_11_R2.ra
w

C_Lee_261116_ymitos_WT
_Glu_BS3_XL_18_R2.raw

C_Lee_300117_ymitos_
Glu_BS3_XL_14_R2.raw
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C_Lee_261116_ymitos_W
T_Glu_BS3_XL_12_R1.ra
w

C_Lee_261116_ymitos_WT
_Glu_BS3_XL_19to21_R1.r
aw

C_Lee_300117_ymitos_
Glu_BS3_XL_15_R1.raw

C_Lee_261116_ymitos_W
T_Glu_BS3_XL_12_R2.ra
w

C_Lee_261116_ymitos_WT
_Glu_BS3_XL_19to21_R2.r
aw

C_Lee_300117_ymitos_
Glu_BS3_XL_15_R2.raw

C_Lee_261116_ymitos_W
T_Glu_BS3_XL_13_R1a.ra
w

C_Lee_261116_ymitos_WT
_Glu_BS3_XL_7to9_R1.raw

C_Lee_300117_ymitos_
Glu_BS3_XL_16_R1.raw

C_Lee_261116_ymitos_W
T_Glu_BS3_XL_13_R2a.ra
w

C_Lee_261116_ymitos_WT
_Glu_BS3_XL_7to9_R2.raw

C_Lee_300117_ymitos_
Glu_BS3_XL_16_R2.raw

C_Lee_261116_ymitos_W
T_Glu_BS3_XL_14_R1.ra
w

C_Lee_300117_ymitos_Glu
_BS3_XL_10_R1.raw

C_Lee_300117_ymitos_
Glu_BS3_XL_17_R1.raw

C_Lee_261116_ymitos_W
T_Glu_BS3_XL_14_R2.ra
w

C_Lee_300117_ymitos_Glu
_BS3_XL_10_R2.raw

C_Lee_300117_ymitos_
Glu_BS3_XL_17_R2.raw

C_Lee_261116_ymitos_W
T_Glu_BS3_XL_15_R1.ra
w

C_Lee_300117_ymitos_Glu
_BS3_XL_11_R1.raw

C_Lee_300117_ymitos_
Glu_BS3_XL_18_R1.raw

C_Lee_261116_ymitos_W
T_Glu_BS3_XL_15_R2.ra
w

C_Lee_300117_ymitos_Glu
_BS3_XL_11_R2.raw

C_Lee_300117_ymitos_
Glu_BS3_XL_18_R2.raw

C_Lee_261116_ymitos_W
T_Glu_BS3_XL_16_R1a.ra
w

C_Lee_300117_ymitos_Glu
_BS3_XL_12_R1.raw

C_Lee_300117_ymitos_
Glu_BS3_XL_8to9_R1.ra
w

C_Lee_261116_ymitos_W
T_Glu_BS3_XL_16_R2.ra
w

C_Lee_300117_ymitos_Glu
_BS3_XL_12_R2.raw

C_Lee_300117_ymitos_
Glu_BS3_XL_8to9_R2.ra
w

Supplementary Table 10: Raw files acquired and used for cross-linked peptide database search
after cross-linking mitochondria derived from the rho0 yeast strain.

C_Lee_241116_ymitos_r
ho0_BS3_XL_10_R1.raw

C_Lee_241116_ymitos_rho
0_BS3_XL_17_R2.raw

C_Lee_270117_ymitos_rho
0_BS3_XL_14_R1.raw

C_Lee_241116_ymitos_r
ho0_BS3_XL_10_R2.raw

C_Lee_241116_ymitos_rho
0_BS3_XL_18_R1.raw

C_Lee_270117_ymitos_rho
0_BS3_XL_14_R2.raw

C_Lee_241116_ymitos_r
ho0_BS3_XL_11_R1.raw

C_Lee_241116_ymitos_rho
0_BS3_XL_18_R2a.raw

C_Lee_270117_ymitos_rho
0_BS3_XL_15_R1.raw

C_Lee_241116_ymitos_r
ho0_BS3_XL_11_R2.raw

C_Lee_241116_ymitos_rho
0_BS3_XL_19to21_R1a.ra
w

C_Lee_270117_ymitos_rho
0_BS3_XL_15_R2.raw

C_Lee_241116_ymitos_r
ho0_BS3_XL_12_R1.raw

C_Lee_241116_ymitos_rho
0_BS3_XL_19to21_R2.raw

C_Lee_270117_ymitos_rho
0_BS3_XL_16_R1.raw

C_Lee_241116_ymitos_r
ho0_BS3_XL_12_R2.raw

C_Lee_241116_ymitos_rho
0_BS3_XL_7to9_R1.raw

C_Lee_270117_ymitos_rho
0_BS3_XL_16_R2.raw

C_Lee_241116_ymitos_r
ho0_BS3_XL_13_R1.raw

C_Lee_241116_ymitos_rho
0_BS3_XL_7to9_R2.raw

C_Lee_270117_ymitos_rho
0_BS3_XL_17_R1.raw

C_Lee_241116_ymitos_r
ho0_BS3_XL_13_R2.raw

C_Lee_270117_ymitos_rho
0_BS3_XL_10_R1.raw

C_Lee_270117_ymitos_rho
0_BS3_XL_17_R2.raw
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C_Lee_241116_ymitos_r
ho0_BS3_XL_14_R1.raw

C_Lee_270117_ymitos_rho
0_BS3_XL_10_R2.raw

C_Lee_270117_ymitos_rho
0_BS3_XL_18_R1.raw

C_Lee_241116_ymitos_r
ho0_BS3_XL_14_R2.raw

C_Lee_270117_ymitos_rho
0_BS3_XL_11_R1.raw

C_Lee_270117_ymitos_rho
0_BS3_XL_18_R2.raw

C_Lee_241116_ymitos_r
ho0_BS3_XL_15_R1.raw

C_Lee_270117_ymitos_rho
0_BS3_XL_11_R2.raw

C_Lee_270117_ymitos_rho
0_BS3_XL_19to21_R1.raw

C_Lee_241116_ymitos_r
ho0_BS3_XL_15_R2.raw

C_Lee_270117_ymitos_rho
0_BS3_XL_12_R1.raw

C_Lee_270117_ymitos_rho
0_BS3_XL_19to21_R2.raw

C_Lee_241116_ymitos_r
ho0_BS3_XL_16_R1.raw

C_Lee_270117_ymitos_rho
0_BS3_XL_12_R2.raw

C_Lee_270117_ymitos_rho
0_BS3_XL_8to9_R1.raw

C_Lee_241116_ymitos_r
ho0_BS3_XL_16_R2.raw

C_Lee_270117_ymitos_rho
0_BS3_XL_13_R1.raw

C_Lee_270117_ymitos_rho
0_BS3_XL_8to9_R2.raw

C_Lee_241116_ymitos_r
ho0_BS3_XL_17_R1.raw

C_Lee_270117_ymitos_rho0_BS3_XL_13_R2.raw

Supplementary Table 11: Raw files acquired and used for cross-linked peptide database search
after cross-linking mitochondria derived from yeast grown on glycerol-containing medium and
prefractionation by protein size exclusion chromatography.

C_Lee_010916_ymitos_BS
3_XL_A13_A15_10_Rep1.
raw

C_Lee_010916_ymitos_BS
3_XL_B3_B4_15_Rep2.ra
w

C_Lee_090916_ymitos_B
S3_XL_B13_C1_11_Rep1
.raw

C_Lee_010916_ymitos_BS
3_XL_A13_A15_10_Rep2.
raw

C_Lee_010916_ymitos_BS
3_XL_B3_B4_16to19_Rep
1.raw

C_Lee_090916_ymitos_B
S3_XL_B13_C1_11_Rep2
.raw

C_Lee_010916_ymitos_BS
3_XL_A13_A15_11_Rep1.
raw

C_Lee_010916_ymitos_BS
3_XL_B3_B4_16to19_Rep
2.raw

C_Lee_090916_ymitos_B
S3_XL_B13_C1_12_Rep1
.raw

C_Lee_010916_ymitos_BS
3_XL_A13_A15_11_Rep2.
raw

C_Lee_010916_ymitos_BS
3_XL_B3_B4_7to9_Rep1.r
aw

C_Lee_090916_ymitos_B
S3_XL_B13_C1_12_Rep2
.raw

C_Lee_010916_ymitos_BS
3_XL_A13_A15_12_Rep1.
raw

C_Lee_010916_ymitos_BS
3_XL_B3_B4_7to9_Rep2.r
aw

C_Lee_090916_ymitos_B
S3_XL_B13_C1_13_Rep1
.raw

C_Lee_010916_ymitos_BS
3_XL_A13_A15_12_Rep2.
raw

C_Lee_010916_ymitos_BS
3_XL_B5_B6_10_Rep1.ra
w

C_Lee_090916_ymitos_B
S3_XL_B13_C1_13_Rep2
.raw

C_Lee_010916_ymitos_BS
3_XL_A13_A15_13_Rep1.
raw

C_Lee_010916_ymitos_BS
3_XL_B5_B6_10_Rep2.ra
w

C_Lee_090916_ymitos_B
S3_XL_B13_C1_14_Rep1
.raw

C_Lee_010916_ymitos_BS
3_XL_A13_A15_13_Rep2.
raw

C_Lee_010916_ymitos_BS
3_XL_B5_B6_11_Rep1.ra
w

C_Lee_090916_ymitos_B
S3_XL_B13_C1_14_Rep2
.raw

C_Lee_010916_ymitos_BS
3_XL_A13_A15_14_Rep1.
raw

C_Lee_010916_ymitos_BS
3_XL_B5_B6_11_Rep2.ra
w

C_Lee_090916_ymitos_B
S3_XL_B13_C1_15_Rep1
.raw

C_Lee_010916_ymitos_BS
3_XL_A13_A15_14_Rep2.
raw

C_Lee_010916_ymitos_BS
3_XL_B5_B6_12_Rep1.ra
w

C_Lee_090916_ymitos_B
S3_XL_B13_C1_15_Rep2
.raw

C_Lee_010916_ymitos_BS
3_XL_A13_A15_15_Rep1.
raw

C_Lee_010916_ymitos_BS
3_XL_B5_B6_12_Rep2.ra
w

C_Lee_090916_ymitos_B
S3_XL_B13_C1_16_Rep1
.raw
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C_Lee_010916_ymitos_BS
3_XL_A13_A15_15_Rep2.
raw

C_Lee_010916_ymitos_BS
3_XL_B5_B6_13_Rep1.ra
w

C_Lee_090916_ymitos_B
S3_XL_B13_C1_16_Rep2
.raw

C_Lee_010916_ymitos_BS
3_XL_A13_A15_16_Rep1.
raw

C_Lee_010916_ymitos_BS
3_XL_B5_B6_13_Rep2.ra
w

C_Lee_090916_ymitos_B
S3_XL_B13_C1_17to19_
Rep1.raw

C_Lee_010916_ymitos_BS
3_XL_A13_A15_16_Rep2.
raw

C_Lee_010916_ymitos_BS
3_XL_B5_B6_14_Rep1.ra
w

C_Lee_090916_ymitos_B
S3_XL_B13_C1_17to19_
Rep2.raw

C_Lee_010916_ymitos_BS
3_XL_A13_A15_17to19_R
ep1.raw

C_Lee_010916_ymitos_BS
3_XL_B5_B6_14_Rep2.ra
w

C_Lee_090916_ymitos_B
S3_XL_B13_C1_7to9_Re
p1.raw

C_Lee_010916_ymitos_BS
3_XL_A13_A15_17to19_R
ep2.raw

C_Lee_010916_ymitos_BS
3_XL_B5_B6_15_Rep1.ra
w

C_Lee_090916_ymitos_B
S3_XL_B13_C1_7to9_Re
p2.raw

C_Lee_010916_ymitos_BS
3_XL_A13_A15_7to9_Rep
1.raw

C_Lee_010916_ymitos_BS
3_XL_B5_B6_15_Rep2.ra
w

C_Lee_090916_ymitos_B
S3_XL_B7_B8_11_Rep1.r
aw

C_Lee_010916_ymitos_BS
3_XL_A13_A15_7to9_Rep
2.raw

C_Lee_010916_ymitos_BS
3_XL_B5_B6_16to18_Rep
1.raw

C_Lee_090916_ymitos_B
S3_XL_B7_B8_11_Rep2.r
aw

C_Lee_010916_ymitos_BS
3_XL_B1_B2_10_Rep1.ra
w

C_Lee_010916_ymitos_BS
3_XL_B5_B6_16to18_Rep
2.raw

C_Lee_090916_ymitos_B
S3_XL_B7_B8_12_Rep1.r
aw

C_Lee_010916_ymitos_BS
3_XL_B1_B2_10_Rep2.ra
w

C_Lee_010916_ymitos_BS
3_XL_B5_B6_6to8_Rep1.r
aw

C_Lee_090916_ymitos_B
S3_XL_B7_B8_12_Rep2.r
aw

C_Lee_010916_ymitos_BS
3_XL_B1_B2_11_Rep1.ra
w

C_Lee_010916_ymitos_BS
3_XL_B5_B6_6to8_Rep2.r
aw

C_Lee_090916_ymitos_B
S3_XL_B7_B8_13_Rep1.r
aw

C_Lee_010916_ymitos_BS
3_XL_B1_B2_11_Rep2.ra
w

C_Lee_010916_ymitos_BS
3_XL_B5_B6_9_Rep1.raw

C_Lee_090916_ymitos_B
S3_XL_B7_B8_13_Rep2.r
aw

C_Lee_010916_ymitos_BS
3_XL_B1_B2_12_Rep1.ra
w

C_Lee_010916_ymitos_BS
3_XL_B5_B6_9_Rep2.raw

C_Lee_090916_ymitos_B
S3_XL_B7_B8_14_Rep1.r
aw

C_Lee_010916_ymitos_BS
3_XL_B1_B2_12_Rep2.ra
w

C_Lee_070916_ymitos_BS
3_XL_B7_B8_10_Rep1.ra
w

C_Lee_090916_ymitos_B
S3_XL_B7_B8_14_Rep2.r
aw

C_Lee_010916_ymitos_BS
3_XL_B1_B2_13_Rep1.ra
w

C_Lee_070916_ymitos_BS
3_XL_B7_B8_10_Rep2.ra
w

C_Lee_090916_ymitos_B
S3_XL_B7_B8_15_Rep1.r
aw

C_Lee_010916_ymitos_BS
3_XL_B1_B2_13_Rep2.ra
w

C_Lee_070916_ymitos_BS
3_XL_B7_B8_6to8_Rep1.r
aw

C_Lee_090916_ymitos_B
S3_XL_B7_B8_15_Rep2.r
aw

C_Lee_010916_ymitos_BS
3_XL_B1_B2_14_Rep1.ra
w

C_Lee_070916_ymitos_BS
3_XL_B7_B8_6to8_Rep2.r
aw

C_Lee_090916_ymitos_B
S3_XL_B7_B8_16to18_R
ep1.raw

C_Lee_010916_ymitos_BS
3_XL_B1_B2_14_Rep2.ra
w

C_Lee_070916_ymitos_BS
3_XL_B7_B8_9_Rep1.raw

C_Lee_090916_ymitos_B
S3_XL_B7_B8_16to18_R
ep2.raw

C_Lee_010916_ymitos_BS
3_XL_B1_B2_15_Rep1.ra
w

C_Lee_070916_ymitos_BS
3_XL_B7_B8_9_Rep2.raw

C_Lee_090916_ymitos_B
S3_XL_B9_B10_10_Rep1
.raw
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C_Lee_010916_ymitos_BS
3_XL_B1_B2_15_Rep2.ra
w

C_Lee_090916_ymitos_BS
3_XL_B11_B12_10_Rep1.
raw

C_Lee_090916_ymitos_B
S3_XL_B9_B10_10_Rep2
.raw

C_Lee_010916_ymitos_BS
3_XL_B1_B2_16_Rep1.ra
w

C_Lee_090916_ymitos_BS
3_XL_B11_B12_10_Rep2.
raw

C_Lee_090916_ymitos_B
S3_XL_B9_B10_11_Rep1
.raw

C_Lee_010916_ymitos_BS
3_XL_B1_B2_16_Rep2.ra
w

C_Lee_090916_ymitos_BS
3_XL_B11_B12_11_Rep1.
raw

C_Lee_090916_ymitos_B
S3_XL_B9_B10_11_Rep2
.raw

C_Lee_010916_ymitos_BS
3_XL_B1_B2_17to19_Rep
1.raw

C_Lee_090916_ymitos_BS
3_XL_B11_B12_11_Rep2.
raw

C_Lee_090916_ymitos_B
S3_XL_B9_B10_12_Rep1
.raw

C_Lee_010916_ymitos_BS
3_XL_B1_B2_17to19_Rep
2.raw

C_Lee_090916_ymitos_BS
3_XL_B11_B12_12_Rep1.
raw

C_Lee_090916_ymitos_B
S3_XL_B9_B10_12_Rep2
.raw

C_Lee_010916_ymitos_BS
3_XL_B1_B2_7to9_Rep1.r
aw

C_Lee_090916_ymitos_BS
3_XL_B11_B12_12_Rep2.
raw

C_Lee_090916_ymitos_B
S3_XL_B9_B10_13_Rep1
.raw

C_Lee_010916_ymitos_BS
3_XL_B1_B2_7to9_Rep2.r
aw

C_Lee_090916_ymitos_BS
3_XL_B11_B12_13_Rep1.
raw

C_Lee_090916_ymitos_B
S3_XL_B9_B10_13_Rep2
.raw

C_Lee_010916_ymitos_BS
3_XL_B3_B4_10_Rep1.ra
w

C_Lee_090916_ymitos_BS
3_XL_B11_B12_13_Rep2.
raw

C_Lee_090916_ymitos_B
S3_XL_B9_B10_14_Rep1
.raw

C_Lee_010916_ymitos_BS
3_XL_B3_B4_10_Rep2.ra
w

C_Lee_090916_ymitos_BS
3_XL_B11_B12_14_Rep1.
raw

C_Lee_090916_ymitos_B
S3_XL_B9_B10_14_Rep2
.raw

C_Lee_010916_ymitos_BS
3_XL_B3_B4_11_Rep1.ra
w

C_Lee_090916_ymitos_BS
3_XL_B11_B12_14_Rep2.
raw

C_Lee_090916_ymitos_B
S3_XL_B9_B10_15_Rep1
.raw

C_Lee_010916_ymitos_BS
3_XL_B3_B4_11_Rep2.ra
w

C_Lee_090916_ymitos_BS
3_XL_B11_B12_15to17_R
ep1.raw

C_Lee_090916_ymitos_B
S3_XL_B9_B10_15_Rep2
.raw

C_Lee_010916_ymitos_BS
3_XL_B3_B4_12_Rep1.ra
w

C_Lee_090916_ymitos_BS
3_XL_B11_B12_15to17_R
ep2.raw

C_Lee_090916_ymitos_B
S3_XL_B9_B10_16_Rep1
.raw

C_Lee_010916_ymitos_BS
3_XL_B3_B4_12_Rep2.ra
w

C_Lee_090916_ymitos_BS
3_XL_B11_B12_6to8_Rep
1.raw

C_Lee_090916_ymitos_B
S3_XL_B9_B10_16_Rep2
.raw

C_Lee_010916_ymitos_BS
3_XL_B3_B4_13_Rep1.ra
w

C_Lee_090916_ymitos_BS
3_XL_B11_B12_6to8_Rep
2.raw

C_Lee_090916_ymitos_B
S3_XL_B9_B10_17to19_
Rep1.raw

C_Lee_010916_ymitos_BS
3_XL_B3_B4_13_Rep2.ra
w

C_Lee_090916_ymitos_BS
3_XL_B11_B12_9_Rep1.r
aw

C_Lee_090916_ymitos_B
S3_XL_B9_B10_17to19_
Rep2.raw

C_Lee_010916_ymitos_BS
3_XL_B3_B4_14_Rep1.ra
w

C_Lee_090916_ymitos_BS
3_XL_B11_B12_9_Rep2.r
aw

C_Lee_090916_ymitos_B
S3_XL_B9_B10_7to9_Re
p1.raw

C_Lee_010916_ymitos_BS
3_XL_B3_B4_14_Rep2.ra
w

C_Lee_090916_ymitos_BS
3_XL_B13_C1_10_Rep1.r
aw

C_Lee_090916_ymitos_B
S3_XL_B9_B10_7to9_Re
p2.raw

C_Lee_010916_ymitos_BS
3_XL_B3_B4_15_Rep1.ra
w

C_Lee_090916_ymitos_BS3_XL_B13_C1_10_Rep2.ra
w
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Supplementary Table 12: Raw files acquired and used for cross-linked peptide database search
after cross-linking crude mitochondrial extract derived from yeast grown on glycerol-containing
medium with DSS and BS3-d4.

A_Linden_131118_211118
_ymitos_crude_fresh_1to1
_10.raw

A_Linden_131118_21111
8_ymitos_crude_fresh_1to
1_12.raw

A_Linden_131118_211118
_ymitos_crude_fresh_1to1_
14.raw

A_Linden_131118_211118
_ymitos_crude_fresh_1to1
_11.raw

A_Linden_131118_21111
8_ymitos_crude_fresh_1to
1_13.raw

A_Linden_131118_211118
_ymitos_crude_fresh_1to1_
7to9.raw

Supplementary Table 13: Raw files acquired and used for cross-linked peptide database search
for the quantitation experiments of yeast mitochondria.

A_Linden_231018_24101
8_ymitos_glyd0-
glud4_10.raw

A_Linden_231018_251018
_ymitos_glud0-
glyd4_10.raw

A_Linden_261118_271118
_ymitos_quant_new_3rd_G
lud0-Glyd4_10.raw

A_Linden_231018_24101
8_ymitos_glyd0-
glud4_11.raw

A_Linden_231018_251018
_ymitos_glud0-
glyd4_11.raw

A_Linden_261118_271118
_ymitos_quant_new_3rd_G
lud0-Glyd4_11.raw

A_Linden_231018_24101
8_ymitos_glyd0-
glud4_6to8.raw

A_Linden_231018_251018
_ymitos_glud0-
glyd4_12.raw

A_Linden_261118_271118
_ymitos_quant_new_3rd_G
lud0-Glyd4_6to8.raw

A_Linden_231018_24101
8_ymitos_glyd0-
glud4_9.raw

A_Linden_231018_251018
_ymitos_glud0-glyd4_9.raw

A_Linden_261118_271118
_ymitos_quant_new_3rd_G
lud0-Glyd4_9.raw

A_Linden_231018_25101
8_ymitos_glyd0-
glud4_10b.raw

A_Linden_231018_251018
_ymitos_glud0-
glyd4_10b.raw

A_Linden_261118_271118
_ymitos_quant_new_3rd_G
lud0-Glyd4_10b.raw

A_Linden_231018_25101
8_ymitos_glyd0-
glud4_11b.raw

A_Linden_231018_251018
_ymitos_glud0-
glyd4_11b.raw

A_Linden_261118_271118
_ymitos_quant_new_3rd_G
lud0-Glyd4_11b.raw

A_Linden_231018_25101
8_ymitos_glyd0-
glud4_12.raw

A_Linden_231018_251018
_ymitos_glud0-
glyd4_6to8.raw

A_Linden_261118_271118
_ymitos_quant_new_3rd_G
lud0-Glyd4_12.raw

A_Linden_231018_25101
8_ymitos_glyd0-
glud4_12b.raw

A_Linden_231018_251018
_ymitos_glud0-
glyd4_6to8b.raw

A_Linden_261118_271118
_ymitos_quant_new_3rd_G
lud0-Glyd4_12b.raw

A_Linden_231018_25101
8_ymitos_glyd0-
glud4_13.raw

A_Linden_231018_251018
_ymitos_glud0-
glyd4_13.raw

A_Linden_261118_271118
_ymitos_quant_new_3rd_G
lud0-Glyd4_13.raw

A_Linden_231018_25101
8_ymitos_glyd0-
glud4_13b.raw

A_Linden_231018_251018
_ymitos_glud0-
glyd4_13b.raw

A_Linden_261118_271118
_ymitos_quant_new_3rd_G
lud0-Glyd4_13b.raw

A_Linden_231018_25101
8_ymitos_glyd0-
glud4_14.raw

A_Linden_231018_251018
_ymitos_glud0-
glyd4_14.raw

A_Linden_261118_271118
_ymitos_quant_new_3rd_G
lud0-Glyd4_14.raw

A_Linden_231018_25101
8_ymitos_glyd0-
glud4_14b.raw

A_Linden_231018_251018
_ymitos_glud0-
glyd4_14b.raw

A_Linden_261118_271118
_ymitos_quant_new_3rd_G
lud0-Glyd4_14c.raw

A_Linden_231018_25101
8_ymitos_glyd0-
glud4_6to8b.raw

A_Linden_231018_251018
_ymitos_glud0-
glyd4_12b.raw

A_Linden_261118_271118
_ymitos_quant_new_3rd_G
lud0-Glyd4_6to8b.raw
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A_Linden_231018_25101
8_ymitos_glyd0-
glud4_9b.raw

A_Linden_231018_251018
_ymitos_glud0-
glyd4_9b.raw

A_Linden_261118_271118
_ymitos_quant_new_3rd_G
lud0-Glyd4_9b.raw

A_Linden_261118_29111
8_ymitos_quant_new_4th
_Glyd0-Glud4_10.raw

A_Linden_261118_291118
_ymitos_quant_new_4th_G
lyd0-Glud4_11b.raw

A_Linden_261118_291118
_ymitos_quant_new_4th_G
lyd0-Glud4_14.raw

A_Linden_261118_29111
8_ymitos_quant_new_4th
_Glyd0-Glud4_11.raw

A_Linden_261118_291118
_ymitos_quant_new_4th_G
lyd0-Glud4_6to8.raw

A_Linden_261118_291118
_ymitos_quant_new_4th_G
lyd0-Glud4_14b.raw

A_Linden_261118_29111
8_ymitos_quant_new_4th
_Glyd0-Glud4_12.raw

A_Linden_261118_291118
_ymitos_quant_new_4th_G
lyd0-Glud4_6to8b.raw

A_Linden_261118_291118
_ymitos_quant_new_4th_G
lyd0-Glud4_12b.raw

A_Linden_261118_29111
8_ymitos_quant_new_4th
_Glyd0-Glud4_13.raw

A_Linden_261118_291118
_ymitos_quant_new_4th_G
lyd0-Glud4_9.raw

A_Linden_261118_291118
_ymitos_quant_new_4th_G
lyd0-Glud4_13b.raw

A_Linden_261118_29111
8_ymitos_quant_new_4th
_Glyd0-Glud4_10b.raw

A_Linden_261118_291118_ymitos_quant_new_4th_Gly
d0-Glud4_9b.raw

Supplementary Table 14: Raw files acquired and used for cross-linked peptide database search
after cross-linking human mitoplasts with BS3 and EDC.

ALinden_121119_hMP
_BS3_10.raw

ALinden_141119_hMP_BS3
_gel_19.raw

ALinden_281119_310120_h
MP_EDC_gel_21.raw

ALinden_121119_hMP
_BS3_10b.raw

ALinden_141119_hMP_BS3
_gel_2.raw

ALinden_281119_310120_h
MP_EDC_gel_22.raw

ALinden_121119_hMP
_BS3_11.raw

ALinden_141119_hMP_BS3
_gel_20.raw

ALinden_281119_310120_h
MP_EDC_gel_23.raw

ALinden_121119_hMP
_BS3_11b.raw

ALinden_141119_hMP_BS3
_gel_21.raw

ALinden_281119_310120_h
MP_EDC_gel_3.raw

ALinden_121119_hMP
_BS3_12.raw

ALinden_141119_hMP_BS3
_gel_22.raw

ALinden_281119_310120_h
MP_EDC_gel_4.raw

ALinden_121119_hMP
_BS3_13.raw

ALinden_141119_hMP_BS3
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