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Abstract 

Zebrafish germline is specified early during embryogenesis by inherited maternal RNAs and proteins 

called germ plasm. Only those cells containing germ plasm will become part of the germline, whereas 

other cells will commit to somatic cell fates. Therefore, proper localization of germ plasm is crucial 

for germ cell specification. In our lab we discovered the bucky ball (buc) gene. Buc is the first protein 

in vertebrates required for germ plasm aggregation and induction of primordial germ cells. 

Fascinatingly, Buc mirrors germ plasm localization during all stages of zebrafish embryogenesis and 

oogenesis. Hence, to investigate germ plasm localization, I used Buc as a molecular proxy. 

Previously, we mapped the localization signal of Buc and identified non-muscle myosin II (NMII) as 

one of the Buc interactors involved in germ plasm localization. However, the fundamental 

mechanisms responsible for germ plasm localization remain largely unexplored.  

In this study, we analyzed various NMII-associated cellular structures for their role in germ plasm 

localization, using immunohistochemistry. Moreover, we did a fine-mapping and mutagenesis of the 

localization domain of Buc to understand the requirement of predicted protein aggregation domains 

in germ plasm localization. After the refined mapping, we utilized the identified Buc localization 

sequence to isolate proteins involved in germ plasm localization. Finally, we investigated whether 

the function of Buc in germ plasm localization is conserved in vertebrates and invertebrates by a 

combination of protein overexpression in vivo and immunohistochemistry. 

We found that the cytoplasmic tight junction component Zonula occludens 1 isoform A (ZO1-A) co-

localizes with Buc during oogenesis and embryogenesis. Furthermore, we demonstrated that ZO1 

phosphorylation is required for Buc degradation. We also showed that Buc localization is mediated 

independently of the predicted aggregation domains. Additionally, we isolated 23 potential interactors 

with the Buc localization signal. In the end, we showed that the germ plasm organizer Xenopus Velo1 

but not Drosophila short Oskar co-localizes with zebrafish germ plasm. 

Previously, it was shown that germ plasm interacts with actin. However, how exactly germ plasm is 

anchored to cleavage furrow remained unknown. Our data indicate for the first time that germ plasm 

is anchored by tight junction, as early as at the 8-cell stage. However, it remains to be addressed if 

mature tight junctions are present during the first embryonic cleavages in zebrafish. We demonstrated 

a role of ZO1 phosphorylation in Buc degradation. Our results indicate that Protein Kinase C (PKC)-

mediated phosphorylation of ZO1 is required for the tight regulation of Buc levels during early 

embryogenesis. Our results also show that the predicted aggregation domains within the Buc 

localization signal are not required for germ plasm localization during early embryogenesis. This 

result is in line with a more liquid-like behavior of germ plasm during embryogenesis than during the 

oogenesis. Among the 23 potential interactors with the Buc localization signal, we identified 

Intracellular hyaluronan-binding protein 4 (Ihabp4) as the most promising candidate for anchoring 

germ plasm to cytoskeleton. Future study will focus on co-localization analysis of Buc and Ihabp4. 

In the end, our data shows that the molecular mechanism of germ plasm localization is conserved in 

vertebrates. We hypothesize, that Velo1 targets to zebrafish germ plasm also via its N-terminal 

localization signal. Further understanding of molecular mechanisms of germ plasm localization might 

lead to a better understanding of germ cell formation and to the establish new drug targets and 

therapies against infertility.  
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1. Introduction 

A biological process resulting in creation of a unique organism is called reproduction. Sexual 

reproduction requires a specific subtype of cells called germ cells. In metazoa, germ cells are specified 

early during embryonic development (Irie & Kuratani, 2014; Kumano, 2015). This early germ cells 

specification enables segregation of germ line from soma. With development of an organism, germ 

cells differentiate into primordial germ cells (PGCs), migrate to gonad region and establish the 

germline (Strome & Updike, 2015). Therefore, development of germ cells is a multistep and complex 

process. This process ensures the propagation and survival of a species. However, the molecular 

mechanisms responsible for this important process remain poorly investigated. 

A better understanding of the process of germ cell formation will help to identify causes for infertility 

and might lead the way to the identification of new drug targets for future therapies of such diseases. 

Furthermore, understanding of how germ cells are specified will help to understand specification of 

other cell types, not related to the germline. 

1.1 Mechanisms of germ cell specification 

 

There are two mechanisms by which the segregation of germline from soma is achieved: preformation 

and induction. The induction mechanism involves germ cells specification through external signals 

from surrounding somatic cells. This mode of germ cell specification is characteristic for mice and 

axolotl.  

Preformation mechanism involves the inheritance of germ plasm, a localized egg cytoplasm 

containing cytoplasmic determinants (Figure 1) (Extavour & Akam, 2003). Cytoplasmic determinants 

are maternal factors which are synthesized during oogenesis and localized to a specific compartment 

in oocytes. In the early embryo, cytoplasmic determinants asymmetrically segregate between 

blastomeres. The blastomeres with localized cytoplasmic determinants acquire a specific cell fate. 

Germ plasm acts like a cytoplasmic determinant and induces germ cells formation.  

Despite the difference in germline specification mechanism between the induction and preformation, 

both germ cell specification mechanisms result in similar germ cell developmental programs (Ewen-

Campen et. al., 2010; Extavour & Akam, 2003; Juliano et. al, 2010). Therefore, preformation is an 

important and interesting process for research in vertebrates. 
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Figure 1: Germline is specified by cytoplasmic determinants. Cytoplasmic determinants reside in the cytoplasm of 

cells during early embryonic development. Upon cell division, a subset of cytoplasmic determinants (germ plasm) is 

asymmetrically localized to cells which will become germ cells. In contrast, the cells which will not get the germ plasm 

localized will develop into somatic cells.   

1.2 Germ plasm and its role in germ cell specification 

In vertebrates germ plasm consists of maternally inherited factors (Pelegri 2003). As these factors act 

like a cytoplasmic determinant, they are crucial for germ cells specification during early 

embryogenesis. Therefore, the process of germ cell specification can be separated in two phases. The 

first phase starts already during oogenesis, when the maternal factors are produced. The second starts 

during embryogenesis when germ cells specification starts. 

1.2.1 Germ plasm localizes to the Balbiani body during early oogenesis 

Balbiani body (Bb) is an RNA granulum containing cytoplasmic determinants, which is localized in 

early oocytes (Kloc et al., 2004). The Bb consists of various RNAs and proteins, electron-dense 

granular/fibrous material, golgi, endoplasmic reticulum and a large number of mitochondria (Boke et 

al., 2016; Heasman et al., 1984; Huang et al., 1999; Lei & Spradling, 2016). Hence, the Bb is also 

called mitochondrial cloud in Xenopus (Kloc et al., 2004). The Bb was first identified in oocytes of 

spiders in 1845 by von Wittich. Remarkably, it is present in almost all animal oocytes of invertebrates 

(e.g. spiders, insects and mollusks) and vertebrates (e.g. frogs, birds, teleosts and mammals) (von 

Wittich, 1845; Guraya, 1979; Kloc et al., 2004). The Bb is found even in the early oocytes of 

mammals such as mice and humans (Albamonte et al., 2013; Pepling et al.,  2007). However, there 

is no explanation for the presence of Bb in mammals, as the latter specify germline by induction. In 

Xenopus Bb is believed to store and protect RNAs and healthy mitochondria during development in 

order to pass into the PGCs (Cox, 2003; Kloc et al., 2004; Kogo et al., 2011; Marinos & Billett, 
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1981). In Xenopus, Bb consists of protein aggregates. These aggregates form amyloid-like matrix, 

responsible for entrapping mitochondria and RNAs (Boke et al., 2016). However, it remains to be 

addressed if other organisms could also assemble Bb by the formation of amyloid-like matrix. 

In zebrafish, Bb together with nucleus are the first markers of animal-vegetal (AV) polarity that will 

determine the anterior-posterior axis later on during embryogenesis (Escobar-Aguirre et al., 2017). 

Once the AV polarity of oocytes is established, it will be crucial for a proper distribution of germ 

plasm in an embryo and formation of germ cells. In zebrafish, the Bb aggregates at the vegetal cortex, 

adjacent to the nucleus of stage Ib oocytes. The Bb is linked with the oocyte cortex, where the Bb 

unpacks its mRNPs to specify the vegetal pole of the oocyte. The formation of the Bb precursor is 

initiated when telomeres of chromosomal bouquet associate with the centrosome (Elkouby et al., 

2016). Furthermore, the formation of the Bb precursor involves microtubule dependent transport of 

mRNPs towards the telomere cluster cytoplasm (Elkouby et al., 2016). Then the Bb precursor 

components aggregate in a specialized nuclear cleft around the centrosome (Elkouby et al., 2016). 

During the stage II of oogenesis, the Bb disassembles into islands (Escobar-Aguirre et al., 2017). 

These islands move towards and are anchored at the vegetal cortex. During the stage I oogenesis, 

germ plasm components such as RNA are accumulated at the region of the Bb called the messenger 

transport organizer (METRO). This RNA localization is microtubule independent. Many of germ 

plasm RNAs like nanos, dazl and vasa localize to the Bb via the METRO pathway during the stage 

Ib oogenesis. Later during embryogenesis, these RNAs become enriched in germ plasm. In contrast, 

RNAs which localize after the Bb disassembly, move towards the vegetal pole via a microtubule 

dependent pathway (King et al., 1999). For instance, germ plasm RNA such as bruno-like localizes 

via the microtubule independent pathway.  

Thus, the aggregation of Bb during oogenesis precedes the localization of germ plasm components to 

the specific subset of cells during embryogenesis.  

1.2.2 The role of phase-separation in the Balbiani body and germ plasm assembly 

Functional protein aggregates, like amyloids, play a crucial role in germ cells development in mouse 

and frog (Berchowitz et al., 2015; Boke et al., 2016). The Bb in Xenopus is an amyloid-like aggregate, 

which is characterized by a cross-β structure (Boke et al., 2016). Zebrafish Bb is most likely also an 

amyloid-like structure (Kloc et al., 2004). However, the amyloid state of the Bb was not addressed in 

zebrafish. In contrast to the Bb, zebrafish germ plasm during embryogenesis behaves like liquid 

droplets (Riemer et al., 2015). Hence, there is a difference in a biohphysical state of germ plasm 

during embryogenesis and oogenesis. A formation of the amyloid-like or liquid-like aggregates is 

often driven by proteins which undergo phase-separation (Brangwynne et al., 2009, 2011; 

Kroschwald et al., 2015).  

During a phase separation a protein ‘de-mixes’ into a dilute and dense phase (Alberti et al., 2019). 

For instance, it is assumed that the dense phase creates the liquid-like compartment. The liquid-like 

assemblies can further convert into amyloid-like assemblies. A subset of proteins which undergos the 

phase separation often consists of intrinsically disordered regions (IDRs) and contains prion-like 

domains (PrDs) (Kato et al., 2012; Kroschwald et al., 2015). The IDRs are characterized by a low 

amino acid complexity. For instance prion-like proteins are enriched in glutamine, asparagine and 
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serine (Alberti et al., 2019). Proteins containing IDRs are considered intrinsically disordered proteins 

(IDPs) when they contain a disordered stretch of at least 30 residues (Tompa, 2012). The PrDs also 

contain low complexety regions, which are similar to yeast prion proteins (Hennig et al., 2015).  

The ability of IDPs to phase-separate is an important feature for the formation of membrane-less 

organeless like the Bb (Brangwynne et al., 2009; Boke et al., 2016). However, the role of IDPs in the 

assembly of zebrafish Bb or germ plasm remains unclear. 

1.3 Germline development in zebrafish 

1.3.1 Germline development in zebrafish 

Aggregation of Bb and subsequent localization of germ plasm components during oogenesis is crucial 

for their correct localization to germ plasm during embryogenesis (Escobar-Aguirre et al., 2017). 

Localization of germ plasm components during the stage Ib oogenesis into Bb (Figure 2 A1), is 

followed up by Bb disassembly (Figure 2 A2). Localization of germ plasm shortly before and during 

first embryonic cleavages is best described for RNAs (Knaut et al. 2000, Theusch et al. 2006; Yoon 

et al, 1997). Upon egg fertilization, germ plasm RNAs translocate to the animal pole (Figure 2 B) 

and become localized within a wide band at the periphery of the blastodisc (Theusch et al., 2006). 

During the first embryonic cleavages, germ plasm becomes enriched at distal ends of the first two 

cleavage furrows (Figure 2 C, D). Next, at the 32-cell stage (1.75 hpf) germ plasm aggregates ingress 

into four cells (Yoon et al., 1997) and at the 512-cell stage (2.75 hpf) germ plasm still localizes to the 

four cells (Figure 2 E) (Knaut et al., 2000; Yoon et al., 1997). This asymmetric distribution of germ 

plasm to the four cells induces formation of PGCs. Furthermore, it allows development of “germ 

plasm free” blastomeres into various cell types between 5 and 10 hpf when cell lineages are formed 

(Kimmel et al., 1995). Then at the sphere stage (4 hpf), germ plasm spreads out through cytoplasm 

and is symmetrically distributed to both daughter cells (Figure 2 F) (Knaut et al., 2000; Yoon et al., 

1997). This symmetric germ plasm distribution results in four clusters of PGCs. The symmetric 

distribution of germ plasm also overlaps with the midblastula transition, which begins at the 512-cell 

stage (2.75 hpf) and ends at the sphere stage (4 hpf). During the midblastula transition genomic DNA 

transcription is activated and some maternal RNAs are degraded by miRNA mediated decay and cells 

start to divide asynchronously (Kane et al., 1992, Giraldez et al., 2006). At the shield stage (6 hpf), 

PGCs clusters start migrating dorsally towards the shield, which is the zebrafish Spemann organizer 

(Figure 2 G). Furthermore, the cytoplasmic germ plasm localization changes to perinuclear (Braat et 

al., 2000; Voronina et al., 2011) During blastula period, from dome to epiboly stages (4.3 hpf and 5.3 

hpf), the number of germ cells increases up to 30 per embryo (Yoon et al., 1997). Then as epiboly 

progresses, the four groups of vasa expressing cells migrate towards the dorsal side of the embryo 

and cluster in two groups on either side of the midline, maintaining the same distance to the right and 

left of the notochord. During the segmentation period (10-24 hpf) somites form, primary organs and 

the tail develop, and the embryo elongates (Kimmel et al., 1995). Then by 24 hpf, PGCs migrate 

towards the location where the yolk ball is connected to the yolk extension (Figure 2 H). Around this 

stage, the future gonad is populated by PGCs and somatic precursor cells (Braat et al., 2000; Raz, 

2003). 

After 24 hpf, the embryo has formed all important organs and matures within the next two days into 

a larva, ready to hatch (Kimmel et al., 1995). The larva reaches its juvenile stage at 30 dpf and the 
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fertile adult fish develops by 90 dpf. During the growth from juvenile to adult, PGCs differentiate 

into sperm or oocytes and the sex of the fish is specified. The next cycle of germ cell development 

will start when the fertile fish will mate and give rise to the next generation. 

Thus, during early zebrafish embryogenesis germ plasm is asymmetrically localized to the four cells, 

which will define the germline. However, the molecular mechanism of germ plasm localization to the 

four cells remains unknown. 

 

Figure 2: Germ plasm localization in zebrafish. Drawings represent different embryonic stages of zebrafish (A) 

development from early stage Ib oocytes (A1) until prim-16 stage (H) with the localized germ plasm (red). The yolk is 

drawn in yellow; orientation is indicated for each stage. Figure modified from (Dosch, 2015).  
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1.4 Molecular mechanisms of germ plasm localization during zebrafish 

embryogenesis 

Localization of germ plasm during first hours of zebrafish development is well described for germ 

plasm RNA components. However, the molecular mechanism required for localization of the four 

germ plasm aggregates remains highly unexplored. 

1.4.1 Role of cytoskeleton in early germ plasm aggregation 

Shortly after egg fertilization germ plasm RNAs, like vasa, localize in a wide cortical band at the 

animal pole, where they are associated with randomly oriented cortical f-actin (Figure 3 A, C) 

(Theusch et al., 2006). Then before the furrow formation, circumferential alignment of actin takes 

place and actin together with germ plasm RNAs are transported to periphery of an embryo (Figure 3 

B, D). Germ plasm movement to the periphery is mediated by astral microtubules. Aggregation and 

movement of germ plasm particles at the periphery can be prevented by treatment of embryos with 

microtubule destabilizing drugs (Theusch et al., 2006). Similarly, actin destabilizing drugs lead to 

reduction of germ plasm aggregates number (Theusch et al., 2006). Motley/birc5a mutants also show 

similar germ plasm aggregation defects as treatment of embryos with cytoskeletal drugs (Nair et al., 

2013). Birc5a is a homolog of the mammalian Chromosomal Passenger Complex (CPC) and plays a 

role in various cellular processes (van der Waal et al., 2012). Birc5a co-localizes with germ plasm at 

the tips of astral microtubules (Figure 3 D) (Nair et al., 2013). Therefore it is hypothesized that Birc5a 

mediates microtubule-microfilament interaction and by this facilitates germ plasm aggregation and 

possibly recruitment to furrows (Nair et al., 2013). Mutants of another CPC component Aurora B 

Kinase also show that cytoskeleton is important for the recruitment of germ plasm to the furrow (Yabe 

et al., 2009). Furthermore, maternal mutants of the cytoskeletal regulator Mid1ip1L (MID1 

interacting protein 1 like) show defects in germ plasm localization to early cleavage furrows (Eno et 

al., 2018b). Mid1ip1L is found as single puncta on cortical F actin (Figure 3 C, D). It is required for 

reorganization of cortical F-actin in an early embryo, including the formation of circumferential arcs 

(Eno, 2016). Therefore it is hypothesized that cortical F-actin dynamics are not only responsible for 

germ plasm aggregation at the periphery of an embryo, but also for its recruitment to the furrow (Eno 

et al., 2018b). Also, localization of germ plasm to the cleavage furrow depends on proper cell 

division. Centriolar protein Sas-6 mutants have defects in second cell division, hence germ plasm 

does not localize any more in these mutants (Yabe et al., 2007). 

1.4.2 Kinesin-1 recruits germ plasm to cleavage furrows 

It has been shown that the maternally expressed Kinesin-1 (Mkif5Ba) is a binding partner of Buc 

(Campbell et al., 2015). Furthermore, Mkif5Ba is required to enrich Buc at cleavage furrows. 

However, how exactly Kinesin-1 transports and anchors Buc at cleavage furrows is unclear. 
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Figure 3: Role of cytoskeleton in early germ plasm localization. Germ plasm components (red) are initially bound in 

complexes to cortical filamentous actin (blue) (A-D). Astral microtubules (green) move these complexes to the periphery 

of blastomeres. This leads to germ plasm aggregation and recruitment to the forming furrow. (D) Birc5a co-localizes with 

germ plasm at the tips of astral microtubules (orange) and by this facilitates germ plasm aggregation. Mid1ip1L is found 

as single puncta on cortical F actin (black) and is believed to play a role in germ plasm aggregation and recruitment of 

germ plasm to the furrow. Black arrows indicate the movement of germ plasm to the cortex, whereas orange arrows – 

germ plasm aggregation. Modified from: (Eno et al., 2018b; Nair et al., 2013; Theusch et al., 2006). 

1.4.3 Germ plasm compaction requires furrow microtubule array 

As soon as germ plasm is recruited to forming furrows, it undergoes a movement to distal ends of the 

cleavage furrows in a process called germ plasm compaction. At the 2-cell stage rod-like germ plasm 

aggregates are fully compacted into two symmetrical aggregates (Figure 4 A). Upon furrow 

formation, the astral microtubules emanating from the spindle poles are substituted by an array or 

microtubules, parallel to each other and perpendicular to the furrow flanking the maturing furrow 

(Figure 4 A) (Jesuthasan, 1998; Danilchik et al., 1998). These latter microtubules are termed the 

furrow microtubule array (FMA). During furrow maturation, FMA is enriched at the distal ends of 

the cleavage furrow where it co-localizes with vasa RNA (Pelegri et al., 1999).  

Maternal nebel mutants display defects in formation FMA and distal aggregation of vasa RNA 

(Pelegri et al., 1999). Furthermore, experiments with microtubule depolymerization drugs show 

similar defects as nebel mutants. Therefore, it is proposed that FMA is required for distal compaction 

of germ plasm. 

An inhibition of calcium release or downstream mediators as Calmodulin also results in defective 

distal compaction of germ plasm (Eno et al., 2018a). Additionally, Nebel mutants show defects in 
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enrichment of calcium stores and by this also in slow calcium waves (SCWs). Therefore, the proper 

germ plasm compaction by the FMA requires furrow associated SCWs (Figure 4). 

FMA remodeling and disassembly has been also shown to require non-muscle myosin II (NMII) 

activity (Urven et al., 2006). NMII is a motor protein which co-localizes with germ plasm at the distal 

ends of cleavage furrows in zebrafish (Nair et al., 2013) (Figure 4 C). NMII structure includes two 

heavy chains, two essential light chains and two regulatory light chains (RLCs) (Figure 4 D). NMII 

becomes activated upon phosphorylation of the RLCs by various kinases including Rho-associated 

protein kinase (ROCK). This activation of NMII by the RLC phosphorylation induces NMII 

dependent assembly of myosin filaments and contractility. Pharmacological inhibition of the catalytic 

activity and downregulation of active NMII results in FMA defects. This supports the role of active 

NMII in germ plasm compaction. Pharmacological inhibitors of Rhoa and ROCK, applied during 

early zebrafish embryogenesis, induce similar germ plasm localization defects as in cei and nebel 

mutants or microtubule depolymerizing drugs (Miranda-Rodríguez et al., 2017; Pelegri et al., 1999; 

Yabe et al., 2009). Therefore, Rhoa/ROCK/NMII pathway is involved in germ plasm compaction. 

 

 

Figure 4: Germ plasm and FMA reorganization. (A) At the early two cell stage germ plasm forms rod-like aggregates 

along the cleavage furrow, whereas furrow microtubules (furrow microtubule array (FMA)) are arranged perpendicularly 

to the furrow. (A-B) During furrow maturation intracellular calcium (slow calcium waves (SCW)) travels in a medial to 

distal orientation (orange – weak SCW, red – strong SCW). (B-C) Upon the furrow maturation the germ plasm and FMA 

become enriched at the distal ends of the cleavage furrows. (C) At the distal ends of the cleavage furrows germ plasm 

(red) co-localizes with phosphorylated non-muscle myosin II (NMII) (yellow). (D) Structure and regulation of the NMII. 

NMII consists from two heavy chains (black), regulatory light chains (RLC, light blue), essential light chains (brown) 

and globular head domains (dark blue). RLC becomes phosphorylated by RhoA kinase (ROCK), activating ability of 

NMII to rearrange cytoskeleton. Subsequently, active NMII activates FMA and germ plasm compaction takes place. 

Modified from: (Eno et al., 2018a; Miranda-Rodríguez et al., 2017; Urven et al., 2006). 
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1.4.4 Asymmetric distribution of germ plasm is mediated by the spindle 

Following localization of the four germ plasm aggregates at the cleavage furrows, germ plasm is 

symmetrically segregated to the four cells (Knaut et al., 2000). Since the segregated germ plasm co-

localizes with microtubules and one of the two centrioles, it is hypothesized that germ plasm 

segregation is mediated by the spindle apparatus (Knaut et al., 2000). This asymmetric segregation 

of germ plasm results in four primordial germ cells at the 1000-cell stage. Interestingly, nebel mutant 

embryos display germ plasm segregation defects, indicating that similar molecular process plays a 

role in translocation of germ plasm to the cleavage furrow and in germ plasm segregation or these 

both processes are interdependent. At the sphere stage, germ plasm starts to be symmetrically 

inherited by both daughter cells. However, the molecular mechanism underlying this change in 

localization is yet unknown.  

1.4.5 Localization of protein components of germ plasm 

One of the few proteins localizing to the germ plasm is Brul. Brul is localized to germ plasm until the 

16-cell stage (Hashimoto et al., 2006). After this stage, Brul protein is distributed evenly through the 

cytoplasm. Ziwi is another germ plasm protein which localizes to the cleavage furrows of early stage 

embryos and to the perinuclear region in primordial germ cells at 24 hpf (Houwing et al., 2007). 

Tudor domain-containing protein 6 a (Tdrd6a) localizes also to the germ plasm at the 4-cell stage and 

at 24 hpf to germ cells (Roovers et al., 2018). Vasa protein localizes to the perinuclear region in 

primordial germ cells from 6 hpf on (Braat et al., 2000). However, the localization mechanism of 

these proteins to germ plasm is yet unknown. 

 

In conclusion, aggregation of germ plasm shortly before and during first embryonic cleavages 

depends on the interaction of cortical f-actin with germ plasm particles and translocation of these 

particles by microtubules to the cytokinetic ring at the base of the forming blastodisc (Theusch et al., 

2006). This process requires proteins such as Birc5a and Mid1ip1L (Eno 2018b; Nair et al., 2013). 

Less is known about mechanisms of germ plasm proteins localization during early embryogenesis: 

how germ plasm is anchored to the furrows remains elusive (Theusch et al., 2006). When germ plasm 

is recruited to the furrow, it undergoes FMA dependent compaction to the distal ends of the cleavage 

furrows. This compaction depends on the action of NMII and Rhoa/ROCK pathway (Miranda-

Rodríguez et al., 2017; Pelegri et al., 1999; Urven et al., 2006). The asymmetric inheritance of germ 

plasm to future PGCs is probably mediated by spindle microtubules (Knaut et al., 2000). 

Nevertheless, how germ plasm is symmetrically distributed to the daughter cells remains unknown. 

1.5 Bucky ball protein is a novel germ plasm component  

Protein composition of germ plasm remains largely unexplored. Therefore, there is a need for 

screening for proteins required for germ plasm related processes. A novel germ plasm gene bucky 

ball (buc) was discovered in the mutagenesis screen for maternal-effect mutations that control early 

vertebrate development (Dosch et al., 2004). Buc mutants (further referred as buc) show radial 

segregation of cytoplasm and do not develop beyond 1-cell stage (Figure 5). Therefore, non-polarized 

buc embryos resemble Buckminsterfullerene and hence are called bucky ball. 
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Figure 5: buc mutants show a defect in the embryonic animal-vegetal polarity. (A) The blastodisc is formed at the 

animal pole of WT embryo, whereas buc mutant embryo (B) shows a halo of cytoplasm surrounding the central yolk. 

Embryos at 30 mpf are shown with animal pole to the top. Modified from (Dosch et al., 2004). 

1.5.1 Buc protein is required for germ plasm assembly and localization  

 

The localization of germ plasm components to the Bb during oogenesis precedes their inheritance by 

germ cells during embryogenesis (Escobar-Aguirre et al., 2017). Germ plasm RNAs such as vasa, 

nanos and dazl do not localize to the Bb in buc oocytes (Bontems et al., 2009). It was furthermore 

shown that Buc protein and not RNA is required for organization of germ plasm RNAs such as dazl 

during oogenesis (Bontems et al., 2009).  

The germ plasm localization defects precede the loss of polarity in buc oocytes and embryos. 

Previously it was shown that the symmetry breaking events in oocyte are upstream of the Bb assembly 

by Buc (Elkouby et al., 2016). Hence, the Bb aggregation defects in buc oocytes are downstream of 

the Bb precursor formation via the microtubule-dependent mechanism (Chapter 1.2.1) (Elkouby et 

al., 2016).  

During embryogenesis Buc localizes to germ plasm, mimicking the pattern of vasa RNA localization 

(Bontems et al., 2009; Yoon et al., 1997). In contrast to the Buc protein localization, buc RNA is 

distributed ubiquitously in early embryos. Hence, Buc protein is required for the Bb assembly, 

polarity maintenance and germ plasm localization in zebrafish (Bontems et al., 2009). 

Positional cloning identified a gene responsible for buc phenotype. This gene encodes a novel protein 

with homologs among vertebrates: fish, amphibians, bird and mammals. Based on cDNA analysis 

from buc oocytes, Buc mutants were predicted to have a deletion of 277 (Bucp43) and 37 (Bucp106) C-

terminal amino acids respectively (Bontems et al., 2009).  

Studies on Buc homologs give a further understanding of its molecular mechanism of localization to 

germ plasm and the Bb assembly (Boke et al., 2016; Claußen & Pieler, 2004; Škugor et al., 2016). 

Xenopus homolog of Buc, named Velo1, is described in a screen for vegetally localized RNAs in 

oocytes (Claußen & Pieler, 2004). Velo1 protein localizes to Bb of Xenopus oocytes and is required 

for Bb assembly (Boke et al., 2016). Additionally, Atlantic Salmon homolog of Buc localizes during 
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oogenesis and embryogenesis similarly to zebrafish Buc (Škugor et al., 2016). Hence, the function of 

Buc protein in germ plasm assembly and localization seem to be conserved in other species.  

Thus, Buc is the first protein in vertebrates required for the Bb formation and localization of germ 

plasm components. Hence, Buc provides us a molecular proxy which can be used to study molecular 

mechanisms of germ plasm localization. 

1.5.2. 77 N-terminal amino acids are necessary and sufficient for Buc localization 

 

In order to find out presence of conserved protein domains in Buc, multiple sequence alignment of 

15 Buc related proteins was performed (Bontems et al., 2009). This analysis revealed two highly 

conserved motifs (aa 24-84, 114-128), located within the so called BUVE-motif (Buc-Velo) (Figure 

6) (Bontems et al., 2009). Structure to function analysis of Buc identified 77 N-terminal aa within the 

BUVE-motif (Buc11-88) which are necessary and sufficient for germ plasm localization (Riemer  

2014, Doctoral dissertation).  

Next to the conserved N-terminal domain of Buc, a highly conserved C-terminal domain (aa 372-

394) was identified (Figure 6) (Bontems et al., 2009). However, the function of this domain is not yet 

clear.  

Thus, the localization signal of Buc is the first protein domain that targets to germ plasm in 

vertebrates. However, the molecular mechanism of Buc localization via the BUVE-motif remains 

unclear. 

 

Figure 6: Conserved domains and functional protein interaction motifs of Buc. Schematic representation of Buc 

protein sequence including conserved domains (blue) and studied protein interaction motifs (orange). Figure is modified 

from: Riemer 2014, Doctoral dissertation and Roovers et al., 2018. 
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1.5.3 The localization signal of Buc might contain prion-like domains 

Previously, it was shown that Buc targets to and aggregates in Xenopus Bb. It was hypothesized that 

this aggregation behavior of Buc is driven via PrDs, located within the BUVE motif (Boke et al., 

2016). Buc homolog in Xenopus Velo1 carries two PrDs in its BUVE motif (Boke et al., 2016). These 

PrDs are necessary for Velo1 aggregation to the Bb. However, exact locations and sequences of 

potential PrDs in Buc were not identified, as well as their requirement for Buc aggregation. The 

presence of the aggregation-prone PrDs in the BUVE-containing localization signal of Buc challenges 

our view on that germ plasm localization is mediated via direct protein-protein interactions. 

1.5.3 Buc localization might involve IDRs 

Previously it was shown that Velo1 is an IDP, which is in line with its ability to form amyloid-like, 

membraneless compartments like the Bb (Chapter 1.2.2) (Boke et al., 2016). Moreover, the BUVE 

motif of Velo1 is intrinsically disordered (Boke et al., 2016). Previously, Buc was proposed also to 

encode an IDP (Jeske et al., 2015). However, it remains unclear whether Buc contains IDRs in its 

localization domain and whether IDRs contribute to germ plasm localization. 

1.5.3 A role of Non-muscle myosin II in anchoring germ plasm 

To understand which proteins interact with Buc and by this could anchor germ plasm to cytoskeleton, 

a biochemical screen was performed using the localization signal of Buc (Riemer 2014, Doctoral 

dissertation). Remarkably, the biochemical screen identified a subset of non-muscle myosin (NMII) 

proteins, including multiple regulatory light chains (RLCs). Furthermore, we showed for the first time 

that Buc and phosphorylated NMII (p-NMII) at RLC co-localized during zebrafish oogenesis and 

embryogenesis (Riemer 2014, Doctoral dissertation). P-NMII plays a role in germ plasm compaction 

(Miranda-Rodríguez et al., 2017; Pelegri et al., 1999; Urven et al., 2006). Next to this function, our 

data suggests a role of p-NMII in anchoring germ plasm to cytoskeleton. However, how exactly p-

NMII anchors Buc is unclear. 

1.5.5 Buc is sufficient for primordial germ cell formation in embryos 

Next to the role of Buc in germ plasm assembly and localization, Buc is required for induction of 

PGCs formation (Bontems et al., 2009). Upon overexpression of Buc in somatic cells, these cells 

acquired identity of PGCs. Interestingly, it seems like some functions of Buc are shared between other 

vertebrates. Velo1 and Buc share the ability to target to and assemble Bb in Xenopus (Boke et al., 

2016). However, whether the PGC-inducing and germ plasm localization activities of Buc are shared 

between other vertebrates or invertebrates remains unknown.   

Thus, Buc is the first protein in vertebrates required for germ plasm assembly and localization. 

Additionally, overexpression of Buc alone is sufficient to induce formation of ectopic PGCs. Buc 

homologs are present in other species and their functional studies point on the conserved role of Buc 

in the germ plasm organizing activities. The BUVE-containing N-terminal domain of Buc is required 

for germ plasm localization. However, the molecular mechanism of localization of Buc via the 

BUVE-containing motif remains unknown. Possibly it involves an interaction with p-NMII. 
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1.7 Aims 

Since the discovery of the four germ plasm aggregates in zebrafish, the molecular mechanism of germ 

plasm localization remains unexplored (Yoon et al., 1997). With the discovery of Buc, we have the 

first protein in vertebrates which alone targets to germ plasm (Yoon et al., 1997; Riemer et al., 2015). 

Hence, we use Buc as a molecular proxy to study the molecular mechanisms of germ plasm 

localization. In my doctoral dissertation I aimed to focus on following tasks: 

I. Identification of cellular structure that anchors Buc to cytoskeleton  

Previously, we isolated protein interactors of Buc. By this we have identified p-NMII as one of the 

promising candidates for anchoring germ plasm to cytoskeleton (Riemer 2014, Doctoral dissertation). 

P-NMII is known for its interaction with various cellular structures (Vicente-Manzanares et al., 

2009). Hence, I am planning to identify a cellular structure which anchors Buc to cytoskeleton. 

II. Studying the regulation of Buc localization 

Understanding how Buc is anchored to cytoskeleton will give me a clue about signaling molecules 

acting upstream of germ plasm localization. Hence, I am planning to identify how germ plasm 

localization is regulated at the level of the cellular structure which anchors Buc to cytoskeleton. 

III. Refined mapping of Buc localization signal  

The isolation of Buc localization signal gives us a tool to study molecular mechanisms of germ plasm 

localization. However, it remains unclear which protein domains, residues or post-translational 

modifications are required for germ plasm localization. Especially, it remains unclear whether PrDs 

and IDRs are involved in germ plasm localization. Hence, I am planning to perform a refined mapping 

and mutagenesis of Buc localization signal to address these questions. 

IV. Performing a refined biochemical screen to isolate proteins involved in germ plasm 

localization  

 

Despite the isolation of some Buc interactors with a promising function in germ plasm localization, 

a relatively long candidate list makes the selection and investigation of the candidate proteins time 

laborious (Riemer 2014, Doctoral dissertation). Hence, there is a requirement of a refined biochemical 

screen. Ideally, this refined screen will result in a lesser number of candidate proteins. Such 

sophisticated biochemical screen can be achieved by using a smaller Buc localization signal and/or 

different experimental conditions and controls. Therefore, I aim to perform the refined biochemical 

screen to isolate the most important proteins involved in germ plasm localization. 

 

V. Understanding evolutionary conservation of germ plasm localization 

 

We previously demonstrated that the BUVE motif of Buc is conserved among a broad range of 

organisms (Bontems et al., 2009). This result raises a question whether germ plasm localization via 

a specific protein domain is a common feature of organisms which specify their germ cells by 
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preformation. In order to answer this question, we plan to investigate localization of germ plasm 

organizers Drosophila Oskar and Xenopus Velo1 in zebrafish. 

2. Results 

2.1 The role of tight junction proteins in Buc localization and degradation 

Since the discovery of the four spots to which germ plasm localizes, the molecular mechanism of 

germ plasm localization to these spots remains largely unknown (Yoon et al., 1997). So far it has 

been shown that actin and microtubules are important for aggregation and translocation of germ plasm 

RNAs to the cleavage furrow during first embryonic cleavages. Furthermore, the translocation of 

germ plasm RNAs to the cleavage furrow involves proteins such as Birc5a and Mid1ip1L (Eno et al., 

2018b; Nair et al., 2013). At the cleavage furrow, germ plasm co-localizes with microtubules which 

are part of the FMA, required for germ plasm compaction (Pelegri et al., 1999). However, how germ 

plasm is anchored only at the first two cleavage furrows remains elusive (Theusch et al., 2006). 

2.1.1 Tight junction components co-localize with germ plasm during oogenesis and 
embryogenesis 

Previously, it was also demonstrated that p-NMII co-localizes with Buc through oogenesis and 

embryogenesis (Riemer 2014, Doctoral dissertation). It is known that p-NMII is a part of 

circumferential actin belt associated with tight- and adherens junctions (Liu et al., 2012). 

Furthermore, NMII can act via actin to bring adherens junction and hemidesmosome components in 

close proximity and by this facilitate their function (Vicente-Manzanares et al., 2009). Also, p-NMII 

is a midbody component and is required for generation of constriction sites for subsequent abscission 

(Wang et al., 2019). Therefore, co-localization of p-NMII with germ plasm implies on a role of these 

cellular structures in anchoring germ plasm to cytoskeleton. 

To address this hypothesis, we studied co-localization of Buc with selected markers for each of the 

cellular structures by immunohistochemistry. We expected to find a cellular structure marker co-

localizing with Buc at the 8-cell stage. At this stage, germ plasm is only present at distal ends of first 

two cleavage furrows, while 3rd and 4th cleavage furrows do not get germ plasm localized. To 

investigate whether a cellular structure continuously co-localizes with germ plasm, we investigated 

stage Ib oocytes and 512-cell stage embryos for co-localization with Buc. 

For tight junction we selected Zonula occludens (ZO) proteins 1 and 2 as markers for the co-

localization analysis. ZO is a scaffold protein that links various tight junction and adherens junction 

components to cytoskeleton (Anderson et al., 1993). Interestingly, ZO1 co-localized with Buc during 

stage IB oogenesis (Figure 7 A). At the 4 cell stage, we found ZO1 and Buc co-localized along the 

entire length of furrows (Figure 8 C, D). In contrast, at the 8-cell stage, one fraction of ZO1 co-

localized with Buc, while the other fraction remained localized along the entire length of the furrow 

(Figure 8 A, B). Interestingly, we also found that Buc granules still contain ZO1 at the 512-cell stage 

(Figure 12 A, B). In contrast to ZO1, ZO2 did not co-localize with Buc during oogenesis or 

embryogenesis (Figure 7 B, Figure 12 C, D). Thus, ZO1 is a promising candidate for anchoring germ 

plasm to cytoskeleton. 

Next to the tight junction markers, we tested adherens junction markers E-cadherin and afadin for co-

localization with Buc. Interestingly, we also found E-cadherin and afadin co-localized with Buc in 
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the Bb (Figure 7 D, E). In contrast to oogenesis, at the 8-cell stage Buc and E-cadherin localized to 

the two separate domains at the furrow (Figure 9). E-cadherin localized along the proximal ends of 

the 1st and 2nd furrows, whereas Buc localized to the distal part of these furrows. Furthermore, at the 

512-cell stage we found E-cadherin localization exclusively at cell-cell junctions (Figure 13 E, F). 

This result is similar to E-cadherin localization pattern at the sphere stage (Tay et al., 2010). 

Furthermore, opposing to ZO1, neither E-cadherin nor afadin localized to Buc granules (Figure 13 A, 

B, E, F). Thus, adherens junction is unlikely to play a role in anchoring germ plasm to cytoskeleton 

during early embryogenesis.  

We also tested midbody marker Kif23 for co-localization with Buc. In contrast, to E-cadherin or ZO1, 

Kif23 did not localize in Bb (Figure 7 G). Furthermore, the largest fraction of Kif23 localized to 

cytoplasm of dividing blastomeres at the 8-cell stage and did not co-localize with Buc (Figure 10). 

The pattern of cytoplasmic Kif23 localization resembles that of spindle microtubules at late telophase 

and is consistent with Kif23 function during cytokinesis (Lee et al., 2012). Kif23 also weakly 

localized along all cleavage furrows (Figure 10 A’, B’), which is consistent with the previous result 

of Ki23 localization at the 8-cell stage in zebrafish (Chen et al., 2002). Hence, we assumed that at the 

8-cell stage Kif23 localization partially overlaps with the germ plasm localization. However, as the 

majority of Ki23 is localized to cytoplasm, we concluded that midbody does not play a role in 

anchoring germ plasm to cytoskeleton. 

Next we checked the hemidesmosomal marker Interginα5 (Intα5) for co-localization with Buc. Intα5 

forms a heterodimer with Integrinβ1 to form a primary receptor for the extracellular matrix protein 

fibronectin (Jülich et al., 2005). Intα5 co-localized with Buc in the Bb, similarly to ZO1 and E-

cadherin (Figure 7 E). However, Intα5 did not localize with Buc at the 8-cell stage, but showed 

ubiquitous distribution among blastomeres (Figure 11). Later, during 512-cell stage we found integrin 

localized as single puncta (Figure 13 C, D). This result is consistent with previous data of Intα5 

localization during early zebrafish embryogenesis (Fitzpatrick et al., 2014). Therefore, we concluded 

that Intα5 also does not play a role in germ plasm localization. 

Taken all results together, we concluded that Bb stores cellular structure components, followed by 

their release during embryogenesis. Fascinatingly, only the tight junction marker ZO1 co-localized 

with germ plasm during early embryogenesis. Therefore, tight junction might anchor germ plasm to 

cytoskeleton, while the other cellular structure markers play a role in development of somatic cells. 
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Figure 7: Cellular structure markers co-localize with Buc during oogenesis: Co-localization of Buc with different 

cellular structure markers during stage IB oogenesis was determined by immunohistochemistry: 1st column - Buc 

(magenta), 2nd column – cellular structure markers (green) and 3rd column – merge. Buc co-localizes with tight junction 

markers ZO1 (A-A’’), but not with ZO2 (B-B’’). Furthermore, Buc co-localizes with adherens junction markers E-

cadherin (C-C’’) and afadin (D-D’’). Additionally, hemidesmosomal marker integrin alfa 5 co-localizes with Buc (E-E’’). 

In contrast, midbody marker Kif23 does not co-localize with Buc (F-F’’). Scalebars: 5µm. 
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Figure 8: Tight junction protein ZO1 co-localizes with Buc during embryogenesis. Co-localization of Buc with 

different cellular structure markers during embryogenesis was determined by immunohistochemistry: 1st column - Buc 

(magenta), 2nd column – cellular structure markers (green) and 3rd column – merge (including DAPI). Animal view of 

embryos at the 8-cell stage is shown in (A) and the 4-cell stage in (C), including schematic representation of the 8-cell 

embryo (Buc in magenta, cellular structure markers in green). Dotted rectangles represent magnification shown in panel 

below (B). Buc co-localizes with tight junction marker ZO1 at the most distal ends of the cleavage furrows (A-A’’, B-

B’’, empty white arrowhead). Furthermore, ZO1 localizes along the first 2 cleavage furrows (A’, B’, filled white 

arrowhead). (C-D) At the 4-cell stage Buc and ZO-1 co-localize at the furrows. Scalebars: (A, C): 100 µm; (B, D): 10 µm 
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Figure 9: Buc does not co-localize with adherens junctions. Co-localization of Buc with different cellular structure 

markers during embryogenesis was determined by immunohistochemistry: 1st column - Buc (magenta), 2nd column – 

cellular structure markers (green) and 3rd column – merge (including DAPI). Animal view of embryos at the 8-cell stage 

is shown in (A), including schematic representation of the 8-cell embryo (Buc in magenta, cellular structure markers in 

green). Dotted rectangles represent magnification shown in panel below (B). E-cadherin localizes along the first 2 

cleavage furrows and does not co-localize with Buc at the distal ends of cleavage furrows (A-A’’, B-B’’). Scalebars: 

(A): 100 µm; (B): 10 µm   
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Figure 10: Midbody does not co-localize with Buc during embryogenesis. Co-localization of Buc with different 

cellular structure markers during embryogenesis was determined by immunohistochemistry: 1st column - Buc 

(magenta), 2nd column – cellular structure markers (green) and 3rd column – merge (including DAPI). Animal view of 

embryos at the 8-cell stage is shown in (A), including schematic representation of the 8-cell embryo (Buc in magenta, 

cellular structure markers in green). Dotted rectangles represent magnification shown in panels below (B, C). Kif23 

does not co-localize with Buc (A-A’’, B-B’’). Instead, Kif23 localizes to cytoplasm (C-C’’) (yellow dotted rectangle 

magnified in C-C’’). Scalebars: (A): 100 µm; (B, C): 10 µm   

 

Figure 11: Hemidesmosomes do not co-localize with Buc during embryogenesis. Co-localization of Buc with 

different cellular structure markers during embryogenesis was determined by immunohistochemistry: 1st column - Buc 

(magenta), 2nd column – cellular structure markers (green) and 3rd column – merge (including DAPI). Animal view of 

embryos at the 8-cell stage is shown in (A), including schematic representation of the 8-cell embryo (Buc in magenta, 

cellular structure markers in green). Dotted rectangles represent magnification shown in panels below (B). 

Hemidesmosomal marker integrin α-5 does not co-localize with Buc, showing ubiquitous cytoplasmic localization (A-

A’’, B-B’’). Scalebars: (A): 100 µm; (B): 10 µm  
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Figure 12: Tight junction protein ZO1 co-localizes with Buc during embryogenesis. Co-localization of Buc with tight 

junction markers was determined by immunohistochemistry: 1st column - Buc (magenta), 2nd column – cellular structure 

markers (green) and 3rd column –nucleus (DAPI - blue) and 4th column – merge. Animal view of embryos at the 512-cell 

stage (A, C). Dotted rectangles represent magnification shown in panel below. Buc co-localizes with tight junction 

markers ZO1 (A-B), whereas ZO2 does not co-localize with Buc (C-D). Scalebars: (A, C): 50 µm; (B, D): 2 µm  
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Figure 13: Adherens junctions and hemidesmosomal markers do not co-localize with Buc. Co-localization of Buc 

with tight junction markers was determined by immunohistochemistry: 1st column - Buc (magenta), 2nd column – cellular 

structure markers (green) and 3rd column –nucleus (DAPI - blue) and 4th column – merge. Animal view of embryos at 

the 512-cell stage is shown. Dotted rectangles represent magnification shown in panel below. Buc does not co-localize 

with adherens junction markers afadin (A-B) which shows cytoplasmic localization; Buc also does not co-localize with 

E-cadherin (E-F), which localizes at cell-cell junctions. Furthermore, Buc and Intergin alfa 5 do not co-localize (C, D). 

Integrin alfa 5 localizes in single points (D, D’’’, white arrowheads). Scalebars: (A, C, E): 50 µm; (B): 2 µm; (D, F): 5 

µm  
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2.1.2 Early embryo contains germ plasm specific and somatic ZO1 

Previously we found that Buc co-localizes with ZO1 at the distal ends of the first two cleavage 

furrows at the 8-cell stage (Figure 8). We also found the majority of ZO1 localized along the entire 

length of the first two cleavage furrows in the same immunostaining. These results suggested the 

presence of at least two different ZO1 isoforms: one is responsible for germ plasm localization and 

one - for establishment of somatic tight junctions. 

In order to investigate presence of different ZO1 isoforms in early embryos, we performed 

immunostaining with a different ZO1 antibody (anti-rat). We dubbed the detected ZO1 by this 

antibody as ZO1-R and the previously detected ZO1 (anti-mouse) as ZO1-M (Figure 8). Buc and 

ZO1-R co-localized at the distal ends of the first two cleavage furrows at the 8-cell stage (Figure 14 

D, E). Also, we found ZO1-R in Buc granules at the 512-cell stage and in cytoplasm (Figure 14 F, 

G). In contrast, ZO-1-M co-localized with Buc and to the entire length of the first two cleavage 

furrows at the 8-cell stage (Figure 14 A, B) and to all cleavage furrows at the 16-cell stage (Figure 

14 A, B). Thus, ZO1-R probably represents a germ line specific ZO1 isoform, while ZO1-M - a 

somatic isoform. Recently, we obtained the same result for immunostaining of ZO1 with antibodies 

against ZO1-A isoform as with the anti-rat ZO1 antibody (Rostam, unpublished). Thus, we assume 

that ZO1-A co-localized with germ plasm. Hence, ZO1-A might be responsible for anchoring germ 

plasm to cytoskeleton.  

In summary, we show for the first time the presence of two different maternal ZO1 isoforms. We 

assume that the germline specific ZO1-A defines which cells will become germ cells by anchoring 

and stabilizing germ plasm early during development. In contrast, the somatic ZO1 might function as 

part of regular tight junctions.  
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Figure 14: Early embryo contains germline specific and somatic ZO1. Immunostaining of embryos for ZO1 was 

performed with two different antibodies. (A-C) detected ZO1 with anti-mouse antibody (dubbed as ZO1-M); (D-G) 

detected ZO1 with anti-rat antibody (dubbed as ZO1-R). Animal view of the 16-cell stage (A), the 8-cell stage (D) and 

the 512-cell stage (F) embryos. Dotted rectangles represent magnification shown in panel below. (A) white rectangle – 

germ cell specific ZO1 (magnified in B) and yellow rectangle – somatic ZO1 magnified in (C). Co-localization of ZO1 

with germ plasm was determined by immunohistochemistry: 1st column - Buc (magenta), 2nd column – cellular structure 

markers (green) and 3th column – merge (including DAPI only for F-G). (A-C) ZO1-M co-localizes with Buc at the distal 

ends of the first two cleavage furrows and is also present along entire length of all cleavage furrows at the 16-cell stage. 

(D-E) ZO1-R co-localizes with Buc at the distal ends of the first two cleavage furrows and is not localized along the entire 

length of cleavage furrows at the 8-cell stage. (F-G) Buc and ZO1-R co-localize at the 512-cell stage. Scalebars: (A, D, 

F): 50 µm; (B, C, E, G): 5 µm; (D, E performed by Rostam). 
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2.1.3 Phosphorylation of ZO1 is required for degradation of Buc 

We demonstrated that Buc and ZO1 co-localize during early embryogenesis (Figure 8). To address 

the function of ZO1 in germ plasm, we used a specific inhibitor of protein kinase C (PKC) – 

Calphostin C (CC) (Stuart and Nigam, 1995). CC reduces phosphorylation of ZO1 and inhibits tight 

junction biogenesis in-vitro (Stuart and Nigam, 1995). We expected that ZO1 dephosphorylation has 

a negative effect on Buc localization. For this, we treated embryos containing Buc-GFP transgene 

with CC, keeping drug concentration the same as it was described for treatment of the cell cultures – 

500 nM (Stuart and Nigam, 1995). We treated embryos at the 1-cell stage and scored embryos for 

presence of localized or unlocalized Buc-GFP at 3-4 hpf by live-imaging. We found elevated levels 

of unlocalized Buc-GFP in CC treated embryos (Figure 15 A-C, F). Besides, we found the number of 

Buc-GFP granules was the same in both CC treated or untreated condition (Figure 15 E), while the 

intensity of localized Buc-GFP was higher in CC treated embryos (Figure 15 B). Remarkably, upon 

a higher CC concentration (5 µM), we found a much higher increase in background GFP fluorescence 

in buc-gfp embryos already at the 16-cell stage (Figure 16). Furthermore, to demonstrate the effect of 

the PKC inhibitor on Buc-GFP levels, we performed a western blot with CC treated and untreated 

embryonic lysates. We also found elevated Buc-GFP protein in CC treated embryos (Figure 15 D). 

Thus, we concluded that altering ZO1 phosphorylation status causes a decline of Buc degradation. 

Previously it was demonstrated that zebrafish germ plasm granules significantly decrease in size 

during the first 24 hours of development (Strasser et al., 2008). This implies on presence of a 

mechanism that removes excess germ plasm as an embryo develops (Strasser et al., 2008). Also, we 

observed that unlocalized Buc is degraded between 1 and 32-cell stages, while the localized Buc 

granules also reduce in size during the first hours of embryonic development (Riemer et al., 2015). 

Hence, we hypothesized that levels of Buc should increase already at the 8-cell stage upon CC 

treatment. To address this, we performed immunohistochemistry to visualize Buc and ZO1 at the 8-

cell stage. Treatment of embryos with 500 nM CC did not result in any increase of localized or 

unlocalized fraction of Buc (data not shown). In contrast, treatment of embryos with 3 µM CC 

resulted in elevated levels both Buc fractions (Figure 17). Firstly, the elevated levels of Buc are 

observed at the cortex, where unlocalized Buc forms granules (Figure 17 A, B). Secondly, higher 

levels of Buc are found at all cleavage furrows. Thus the elevated Buc-GFP levels observed in the 

live-imaged embryos (Figure 15 A-C) and the western blot with embryo lysates (Figure 15 D) are 

probably a consequence of an early decline of Buc degradation upon CC treatment. 

Upon 3 µM CC treatment, embryos also displayed increased ZO1 levels at the cleavage furrows 

(Figure 17). It seems like CC induced accumulation of cytoplasmic ZO1 pool to the cleavage furrows. 

This is in contrast to Buc, which still shows high levels of cytoplasmic accumulation in CC treated 

embryos (Figure 17).  

Taken all results together, we conclude that ZO1 phosphorylation is required for degradation of the 

unlocalized and some part of localized Buc during early embryogenesis. 
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Figure 15: ZO1 phosphorylation is required for Buc degradation. The role of ZO1 in Buc localization was 

investigated using a ZO1 specific phosphorylation inhibitor Calphostin C (CC). (A-B) Animal view of living 3 hours post 

fertilization embryos transgenic for Buc-GFP. Embryos were treated with DMSO (control) or CC at the 1-cell stage. 

Dotted circle outlines the embryo. The plot in (C) shows levels of fluorescent intensity along the line indicated by white 

dashes in (A-B). Asterisks in (C) indicate Buc-GFP spots highlighted by white arrowheads in (A-B). CC treated embryos 

show higher background fluorescence compared to the control embryos. (D) Western blot with lysates of CC treated and 

control embryos. Upper blot shows endogenous Buc (magenta), whereas the lower blot shows loading control alfa-tubulin 

(green). CC treated embryos show higher levels of endogenous Buc compared to control embryos. (E) Quantification of 

transgenic Buc-GFP spots in (A-B). How is done. No significant difference was found in number of Buc-GFP spots 

between CC treated (4.0 spots ± 0.2) and control embryos (3.7 spots ± 0.8). (F) Quantification of embryos showing 

background GFP fluorescence in (A-B). The percentage of CC treated embryos showing background fluorescence (73.8 

± 7.1%) is significantly higher than among the control embryos (0%). Scalebars: (A-B): 50 µm   
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Figure 16: ZO1 phosphorylation is required for Buc degradation. The role of ZO1 in Buc localization was 

investigated using a ZO1 specific phosphorylation inhibitor Calphostin C (CC). (A-B) Animal view of living 16-cell stage 

buc-gfp line embryos. Embryos were treated with DMSO (control) or CC (5 µM) at the 1-cell stage and scored for 

presence of GFP granules at the 16-cell stage. Dotted circle outlines the embryo. Arrowheads in (A, B) indicate Buc-GFP 

spots. (A, B) CC treated embryos show higher background fluorescence compared to the control embryos. (C) 

Quantification of transgenic Buc-GFP spots in (A-B) shows no difference in number of GFP granules (n=5, N=1). 

Scalebars: (A, B): 50 µm   
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Figure 17: ZO1 phosphorylation is required for Buc degradation. The role of ZO1 in Buc localization was 

investigated using a ZO1 specific phosphorylation inhibitor Calphostin C (CC). Embryos were treated with 3 uM CC (A), 

including untreated control (B). Localization of Buc and ZO1 was determined by immunohistochemistry (A-B): 1st 

column: endogenous Buc (magenta), 2nd column – endogenous ZO1 (green) and 3rd column – merge. Nucleus was 

visualized by DAPI (C-D). Animal view of 8-cell stage embryos is shown. (A) Treatment of embryos with 3 µM CC 

results in more enrichment of Buc and ZO1 at cleavage furrows compared to control (B). (E) shows result from scoring 

embryos from (A) and (B) for Buc and ZO1 localization. There is no difference in Buc localization between CC treated 

(95±5%) and untreated embryos (97.2±2.8%), whereas ZO1 is found less frequently localized in untreated (19.5±10.5%) 

vs CC treated embryos (67.2±22.8%) (N=2, n=10). Scalebars: 100 µm 
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2.2 Bucky ball plays a role in germ plasm aggregation and localization 

We showed that germ plasm co-localizes with tight junction proteins, which might link germ plasm 

to cytoskeleton. However, the identification of PrDs in the N-terminal domain of Buc challenged our 

view on how germ plasm localization might work (Boke et al., 2016). Also, previous assumption that 

Buc is an IDP (Jeske et al., 2015) raises a question whether PrDs within the Buc IDRs are required 

for germ plasm localization. Therefore, it is important to distinguish between aggregation and 

localization behavior of Buc during early embryogenesis. 

2.2.1 Buc is an intrinsically disorder protein and aggregates in-vitro 

Presence of IDRs in Buc is likely to explain the dynamic liquid droplet behavior of germ plasm during 

zebrafish embryogenesis (Riemer et al., 2015). However, we did not expect that IDRs contribute to 

germ plasm localization. Therefore, we first investigated Buc for presence of IDRs. Additionally, we 

investigate germ plasm organizer Drosophila short Oskar (sOsk) for the presence of IDRs. To 

investigate Buc and sOsk for presence of IDRs we used the PONDR-VSL2 algorithm (Peng et al., 

2006). PONDR-VSL2 is a metapredictor, which conservatively combines the results of prediction 

algorithms. Interestingly, we found that the first 100 residues containing the BUVE motif of Buc have 

an ordered structure (Figure 18 A). This result indicates that germ plasm localization is independent 

of IDRs. We also found that both Buc and sOsk contain large IDRs (Figure 18 A, B). As a positive 

control for IDP prediction, we used Vasa which contains the known IDR of about 200 residues at its 

N-terminus (Nott et al., 2015; Yoon et al., 1997), whereas Ziwi was largely unstructured (Figure 18 

C, D). Unlike Buc or Velo1, sOsk does not contain any predicted PrDs. However, it is demonstrated 

that sOsk aggregates in S2-cells, supporting its prediction as an IDP (Boke et al., 2016). To check if 

Buc and sOsk form similar aggregates, we transfected HEK293 cells with GFP fusions of both 

proteins. We found that GFP fusions of Buc and sOsk form aggregates (Figure 18 E, F), whereas GFP 

alone shows uniform distribution in cells (Figure 18 G). When we transfected Buc lacking the most 

of the predicted ordered region (DeltaBuc aa 11-88) we still observed formation of GFP granules 

(Figure 21 D-D’’). Therefore, similarly to sOsk, Buc can form aggregates independently of the 

presence of PrDs. Furthermore, upon Buc-GFP and sOsk-GFP co-transfection we found protein 

aggregates containing both germ plasm organizers (Figure 18 H-J). This result indicates that IDRs of 

Buc and sOsk form aggregates with similar biophysical properties. Thus, the presence of IDRs in Buc 

accounts for its aggregation behavior. 

2.2.2 Dynamic nature of Bucky ball aggregation in vivo  

Previously, it was shown that Buc and Velo1 form stable aggregates during Xenopus oogenesis (Boke 

et al., 2016). In contrast to oogenesis, during zebrafish embryogenesis the transgenic Buc-GFP 

behaves like liquid droplets (Riemer et al., 2015). Therefore, we hypothesized that Buc forms less 

stable aggregates during embryogenesis than during oogenesis. To address the solubility of Buc 

aggregates, we used the aliphatic drug 1,6-hexanediol (1,6-HD). 1,6-HD dissolves hydrogels like 

C.elegans P-granules, but not amyloid-like aggregates like the Bb in Xenopus oocytes (Updike et al., 

2011; Kroschwald et al., 2015; Boke et al., 2016). We found that treatment of transgenic Buc-GFP 

ovaries with 1,6-HD does not dissolve Bb (Figure 19 A, B). When we doubled 1,6-HD concentration, 

the Bb still was not dissolved (Figure 20 A-D). Nevertheless, HD treatment depleted a fraction of 
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Buc-GFP granules from the Bb (Figure 19 B-B’, Figure 20 B, D). However, the most of Buc-GFP 

remained stable in the Bb upon 1,6-HD treatment. This result indicates that majority of Buc protein 

in oocytes forms a stable matrix in Bb, as it was shown for Velo1 during Xenopus oogenesis (Boke 

et al., 2016). Furthermore, we find that there is a fraction of Buc-GFP which forms less stable 

aggregates in Bb and therefore is more prone to 1,6-HD wash out.  

In contrast to the 1,6-HD treatment of transgenic Buc-GFP oocytes, we found that 1,6-HD treatment 

of embryos results in germ plasm fragmentation (Figure 19 D-F, I-J). The germ plasm fragmentation 

is observed 30 min after 1,6-HD treatment (Figure 19 D-F) and remained evident at 3hpf (Figure 19 

I-J). In contrast to 1,6-HD treatment of oocytes, after HD washout in embryos some germ plasm 

granules were no longer localized to cleavage furrows (Figure 19 G-H). These results can explain an 

increased number of Buc-GFP granules found in 3 hpf embryos (Figure 19 D-F). We furthermore 

demonstrated that 1,6-HD does not disrupt cytoskeleton in embryos (Figure 20 M-T). Therefore, the 

observed germ plasm fragmentation is dependent solely on disruption of hydrogels. However, the 

embryonic germ plasm never completely dissolved like shown for the C. elegans ovarian P-granules 

(Figure 19 D-F). As a control for 1,6-HD specificity, we used a similar chemical 1,2,3-hexanetriol 

(HT). We found that a more polar structure of HT disrupted Buc-GFP aggregates less efficiently than 

1,6-HD (Figure 19 I-J). We concluded that zebrafish germ plasm forms an intracellular hydrogel 

during embryogenesis.  
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Figure 18: Buc and Osk contain intrinsically disordered regions and aggregate in HEK cells. Predicted protein 

disorder in (A) Buc, (B) Osk, (C), Vasa, and (D) Ziwi. Disorder disposition (y-axis) plotted against the amino acid residue 

index (x-axis). Values above the 0.5 threshold (grey bar) show the propensity for disordered regions (bold line). The red 

line at aa 139 in Osk indicates the alternative translation initiation site for short Oskar. Protein aggregates upon 

transfection of HEK cells with monomeric GFP (mGFP) fused to (E) Buc, (F) sOsk or (G) unfused. The profiles below 

the pictures show levels of fluorescent intensity along the line indicated by white dashes. Buc-mGFP (green; H) and Osk-

Cherry aggregates (red, I) overlap (J, yellow, white arrowhead). Scale bar (E-J): 10 μm. (A-D: done by P. Krishnakumar) 

(Figure is taken from Krishnakumar et al., 2018) 
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Figure 19: Dynamic nature of Bucky ball aggregation in vivo. (A-C) Balbiani body of living Buc-GFP transgenic 

oocytes, either before (A), after a 30 min treatment with 5% 1,6-hexanediol (HD) (B), or 30 min after washout of the drug 

(lateral view, animal to the top). Arrowheads in B and B' indicate Buc-GFP granule outside the Balbiani body. Scale bar 

(A-C): 20 μm (A'-C'): 2 μm. (D-K) Germ plasm of transgenic Buc-GFP embryos after hexanediol treatment (HD). (D, E) 

lateral view of living 2-cell embryo as shown in boxed area of icon. Control embryos show unfragmented Buc-GFP 

aggregates (green) (D arrowhead), whereas 5% hexanediol for 30 min leads to fragmentation(arrowheads). (F) 

Quantification of embryos with unfragmented Buc-GFP in control (Co; 100±0%; n = 20) and embryos treated for 30 min 

with hexanediol (HD; 35.0±0.8%; n = 20; p = 0.0065). Student's t-test; P-value: **<0.01. (G, H) lateral view of living 4-

cell embryos. Control embryo with unfragmented BucGFP (green, arrowhead), whereas Buc-GFP stays fragmented 30 

min after washout of hexanediol (green; arrowheads). Scale bar (D-H): 100 μm. (I-K) Buc-GFP aggregates in 3 hpf 

embryos transgenic for Buc-eGFP. (I) The morphology of control (Co) and hexanediol-treated embryos (HD). Lateral 

view, animal to the top. (I', I'') Fragmented Buc-GFP aggregates (white arrowheads) persist until 3 hpf (I') lateral view, 

(I'') animal view. (J) Treatment with hexanetriol (HT) also leads to fragmented germ plasm (right embryo in J; animal 

view). Scale bar (I-J): 500 μm. (I-D: done by P.Krishnakumar) (Figure is taken from Krishnakumar et al., 2018) 

 

 

 

 

 



44 

 

 

Figure 20: Dynamic nature of Bucky ball aggregation in vivo. Buc-GFP (green) in the Balbiani body of stage Ib 

oocytes before hexanediol treatment (A, C; 0 min) or after 30 min treatment with double conc. (10%; B, D). Stippled 

squares indicate the magnified area shown in panel C and D. Note the BucGFP fragments draining off the Balbiani body 

after HD treatment (D). Scale bar (A, B): 20 μm; (C, D): 1 μm. Cytoskeleton after Hexanediol treatment. Oocytes (E-L) 

or embryos (M-T) were treated for 30 min with hexanediol and stained for microtubules (β-tubulin) or microfilaments 

(filamentous Actin). Stippled boxes (E-H, M-P) indicate magnified area (I-L, Q-T). 2-cell embryos (M-T) are shown in 

animal view. Scale bars (E-H, Q-T): 20 μm. (I-L): 1μm. (M-P): 100 μm. (Figure is taken from Krishnakumar et al., 2018) 
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2.2.3 48 N-terminal amino acids are sufficient for germ plasm localization 

Previously, it was shown that Buc11-88 is necessary and sufficient for germ plasm localization. 

Furthermore, further mapping of Buc11-88, by continuous splitting this domain in half, did not result 

in any fluorescent granule formation. However, mapping Buc11-88 in this way did not provide 

enough resolution on amino acid level to understand if Buc11-88 represents a minimal localization 

domain. Identifying a minimal localization sequence can simplify searching for protein domains and 

single amino acids critical for germ plasm localization. Furthermore, a smaller localization motif can 

be used as bait for a more precise co-immunoprecipitation of Buc interactors. This allows performing 

a mass spectrometry analysis to find a core interactome of the localization domain. 

Studying germ plasm localization in zebrafish is more time laborious than investigating it using an 

in-vitro cell culture. Therefore, first we exploited HEK293 to study germ plasm localization. We 

transfected GFP fusions of buc, buc11-88, bucdelta11-88 and gfp alone into HEK293 cells and 

investigated cell for presence of GFP granules after 48 hours (Figure 21 A). We found that that Buc11-

88 formed GFP granules (Figure 21 C-C’’), similarly to full length Buc (Figure 21 B-B’’). In contrast, 

GFP alone showed ubiquitous protein distribution (Figure 21 E-E’’). Unfortunately, BucDelta11-88 

showed fluorescent granule formation in HEK293 cells (Figure 21 D-D’’). In contrast, BucDelta11-

88 has been shown not to form granules in 3-4 hpf embryos (Riemer, 2014, Doctoral dissertation). 

Therefore, we concluded that in HEK293 cells, Buc11-88GFP granules could also represent protein 

aggregates. Therefore, the HEK293 cells system is not a suitable system to distinguish germ plasm 

aggregation and localization.   

In order to find the minimal localization signal, we did a refined structure to function analysis of 

Buc11-88 in zebrafish. In this analysis we cloned and fused buc constructs of different length to gfp, 

injected them into 1-cell stage embryos and scored for presence of GFP granules at 3-4 hpf (Figure 

22 A). We found that removing 10 C-terminal residues from buc11-88 did not affect the formation of 

GFP granules (Figure 22 A, Buc31-88 and Buc31-78), whereas removing 25 N-terminal residues 

resulted in a significant reduction of the GFP granule formation. Furthermore, removing 15 C-

terminal residues also significantly reduced the formation granules (Figure 22 A, Buc36-88 and 

Buc31-71). Hence, we selected the minimal sequence that forms GFP granules to be Buc31-78 

(dubbed as BucLoc). 
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Figure 21: Buc aggregates in HEK293 cells (A) Scheme of HEK293 cells transfection assay. Expression plasmids were 

transfected at timepoint 0, incubated for 48 hours at 37 degrees °C and investigated for presence of fluorescent granules 

by confocal microscopy. (B-E) Live images of single cells showing: 1st column - GFP (green), 2nd column – nucleus (blue) 

and 3rd column – merge. GFP fusions of Buc (B-B’’), Buc11-88 (C-C’’) or BucDelta11-88 (D-D’’) form aggregates, 

whereas GFP alone (E-E’’) shows ubiquitous fluorescence. Scalebars: 10 µm. 
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2.2.4 Prion domains are not required for germ plasm localization 

Previously, it was shown that Buc targets to and aggregates in Xenopus Bb. It was hypothesized that 

this aggregation behavior of Buc is driven via PrDs, located within the BUVE motif (Boke et al., 

2016). Buc homolog in Xenopus Velo1 carries two PrDs in its BUVE motif (Boke et al., 2016). These 

PrDs are necessary for Velo1 aggregation. However, exact locations and sequences of potential PrDs 

in Buc were not identified, as well as their requirement for Buc aggregation. We showed that Buc 

forms insoluble structures in zebrafish Bb (Figure 19 A-C, Figure 20 A-D) (Krishnakumar et al., 

2018). Thus, PrDs within the BUVE motif of Buc might be responsible for the Bb aggregation. 

However, we also found that zebrafish germ plasm is more soluble during embryogenesis, when germ 

plasm localization becomes important to specify the germline (Figure 19 D-J). Therefore, we 

hypothesized that PrDs do not aggregate during embryogenesis and that germ plasm localization does 

not depend on aggregation. 

Since Velo1 contains two functional PrDs, we first checked whether these two domains are conserved 

in Buc (Boke et al., 2016). For this we performed a computational analysis of Buc and Velo1 with 

five web-based aggregation prediction algorithms. We found that Buc contains two prion-like 

domains which are similar to the prion-like domains in Velo1 (Figure 23 A). Mapping of the Buc11-

88 domain has already shown that the N-terminal PrD is not required for germ plasm localization 

(Figure 22). In order to investigate the role of the C-terminal PrD in germ plasm localization, we 

made a mutant of this domain BucLoc Y66D, F68D, Y71D (dubbed as BucLoc 3D), similarly as it 

was done with Velo1 (Boke et al., 2016). 

BucLoc 3D mutant was expected to be defective in aggregation, because mutating aromatic residues 

like phenylalanine or tyrosine into charged residues like aspartic acids results in disruption of protein 

aggregates (Boke et al., 2016). A computational analysis of Buc 3D with the PLAAC (Prion-Like 

Amino Acid Composition) web application showed a reduced propensity of BucLoc 3D to behave 

like a prion-like protein compared to the WT Buc (Figure 23 B, C). PLAAC scores PrDs in a protein 

based on its enrichment in asparagine and glutamine residues (Lancaster et al., 2014). This results is 

similar to what was found for Velo1 4D or 7D mutants in a similar computation analysis (Boke et al., 

2016). Then, we investigated the localization of BucLoc 3D mutant to the endogenous germ plasm. 

For this, we injected RNA of BucLoc mCherry fusion into 1-cell stage embryos of transgenic buc-

gfp line (Figure 24 A). This approach to study co-localization of a protein with germ plasm we called 

germ plasm co-localization assay. We found that BucLoc 3D mutant was expressed at low levels, 

compared to the WT BucLoc (Figure 24 A B, C, D, E). At this low level of expression, BucLoc 3D 

weakly co-localized with endogenous germ plasm. Hence, we concluded that the 3D mutation affects 

the BucLoc expression levels but does not result in a complete loss of localization.  

To further investigate the role of the C-terminal PrD in germ plasm localization, we created a mutant 

BucLoc Δ64-71, representing a full deletion of this domain. BucLoc Δ64-71 was expressed at low 

levels and did not localize to endogenous germ plasm compared to the WT BucLoc (Figure 24 A B, 

C, F, G). Therefore, we concluded that both removing the C-terminal PrD completely and introducing 

the triple D mutation, either alters BucLoc on the structural level or removes an important regulatory 

sequence resulting in BucLoc degradation. 

To further address the role of the C-terminal PrD in germ plasm localization, we did the systematic 

mapping of BucLoc domain. We found that the Δ62-66 and Δ67-71 BucLoc mutants, lacking both 

parts of the C-terminal PrD, localized similarly to the WT BucLoc (Figure 24 A; Figure 27 E-H). 
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In the end, by the systematic mapping of the BucLoc domain, we found that residues 36-51 of Buc 

were required, whereas residues 52-71 were dispensable for localization to endogenous germ plasm 

(Figure 25, Figure 26, Figure 27). 

Taken together, we concluded that PrDs are not required for germ plasm localization. Additionally, 

the residues of the C-terminal PrD might be responsible for BucLoc degradation via a post-

translational modification or contain a structural element important for e.g. protein folding. Thus, Buc 

requires different domains to mediate germ plasm aggregation during oogenesis and localization 

during embryogenesis. 

  



49 

 

 

Figure 22: Refined mapping of Buc11-88 localization domain. (A) Summary and quantification of Buc11-88 mapping. 

Black bar represents size of Buc11-88 deletion constructs in amino acids. “+” stands for localization and “-“- for no 

localization. Vertical blue lines highlight N-and C-terminal borders after which further reduction of Buc11-88 results in 

loss of localization. (+) or (–) stands for localization or no localization. Amyloid domains are shown is red. The minimal 

localization signal is highlighted in red and termed BucLoc. Buc21-88 (67±4.0%), Buc31-88 (60.1±7.9%), Buc36-88 

(52.2±13.3%) and Buc31-71 (21.1±6.4%) show significantly less embryos with fluorescent granules than Buc11-88 

(91.4±6.8%). Buc31-78 (86.2±4.6%) form fluorescent granules in embryos similarly to Buc11-88. Two tailed student’s 

T-test, Buc11-88 vs the deletion constructs (Buc 21-88 p=0.01; Buc 31-88 p=0.01; Buc36-88 p=0.02; Buc31-78 p=0.41; 

Buc31-71 p=0.0004); *P < 0.05; **P < 0.01; ***P < 0.001 and n.s: not significant. Mean ± standard deviation is shown. 

(B-E) Dotted shape outlines embryos at 3-4 hpf in lateral view. Embryos injected with Buc11-88, 21-88, 31-88, 36-88 

and 31-78 show localization into a granule (white arrow), whereas Buc31-71 does not localize and show distribution 

through entire cytoplasm of cells. Scale bar: 50 µm 
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Figure 23: Bucky ball contains predicted prion-like domains. (A) Alignment of Buc11-88 with N-terminus of 

Velo shows similar predicted aggregation domains (red) (B-C) Visualization PLAAC (Prion-like amino acid 

composition) outputs: Upper graph in both panels represents a predicted prion like domains (PrDs) (PrD, red line) 

compared to control (background, black line). Squares with color gradient represent different amino acids in letter 

code. A second lower graph in both panels represents a propensity of a protein to be prion-like protein vs its disorder. 

FoldIndex (gray) and –PLAAC (red) represent different ways to visualize regions with prion-like composition 

predicted as disordered. PAPA is a predicted value for amyloid propensity. PAPA multiplied by -4 (-4*PAPA) (green 

line) is an amyloid prediction value based on a random mutagenesis screen of prion-like proteins. The most negative 

values of -4*PAPA predicting best the amyloid propensity (threshold is indicated by the green dotted line). Protein 

sequence is outlined below, amino acids in red represent the predicted prion-like region. Amino acids in black 

represent non-prion-like regions. (B) Buc contains 74 N-terminal amino acids which are predicted to form aggregates 

(PAPA 0.04). In contrast, Buc lacking first N-terminal amino acids (dubbed as Buc -20 N) and containing Y66D, 

F68D, Y71D mutations (dubbed as 3D), has a shorted predicted prion-like domain of 22 amino acids. Furthermore, 

Buc -20N + 3D is predicted to have overall lower PAPA value (0.01) than WT Buc (0.04).   
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Figure 24: Second prion-like domain in BucLoc is not required for germ plasm localization. (A) A scheme of co-

localization assay. BucLoc mCheery fusions were injected into 1-cell stage embryos of the transgenic buc-gfp line. Then 

at 3-4 hours post fertilization (hpf) embryos were scored for co-localization of injected constructs with Buc-GFP. (B-G) 

Lateral view of embryos at 3-4 hpf. Dotted half-circle outlines the embryo. White arrowheads show magnified germ 

plasm in the panel below. Co-localization of BucLoc with transgenic Buc-GFP was determined by live imaging: 1st 

column – transgenic Buc-GFP (magenta), 2nd column – injected BucLoc mCherry fusion (green) and 3rd column – 

merge. WT BucLoc mCherry fusion co-localizes with transgenic Buc-GFP (B-B’’, C-C’’). Both mCherry fusions of 

BucLoc 3D and BucLoc Δ64-71 are expressed at lower levels then WT BucLoc. Only weak co-localization is observed 

for BucLoc 3D after increasing signal in GFP channel (D-D’’, E-E’’). Co-localization of BucLoc Δ64-71 with transgenic 

Buc-GFP is not observed, after increasing the fluorescence in GFP channel (F-F’’, G-G’’). Scale bars (B, D, F): 50µm 

(C, E, G): 2µm. 



52 

 

 

Figure 25: Mapping of BucLoc domain reveals residues important for localization (Part 1). (A) Summary and 

quantification of BucLoc mapping. Black bar represents size of BucLoc constructs in amino acids. “+” stands for 

localization and “-“- for no localization. mCherry fusions of BucLoc Δ52-56 (76.6%, p=0.4), Δ57-61 (76.0%, p=0.4), 

Δ62-66 (73.0%, p=0.5) and Δ67-71 (75.0%, p=0.5) co-localize with Buc-GFP similarly to WT BucLoc (80.7%). In 

contrast, mCherry fusions of BucLoc Δ31-35 (30.0%, p=0.009), Δ36-41 (13.3%, p=0.003), Δ42-46 (17.5%, p=0.005), 

Δ47-51 (16.6%, p=0.005) and Δ72-78 (10.0%, p=0.003) co-localize significantly less with Buc-GFP than WT BucLoc. 

N=3, n=10. Two tailed student’s T-test, BucLoc mutants vs WT BucLoc. Mean ± standard deviation is shown. *P < 0.05; 

**P < 0.01; ***P < 0.001 and n.s: not significant. (B-E) Lateral view of embryos at 3-4 hpf. Dotted half-circle outlines 

the embryo. White arrowheads show magnified germ plasm in the panel below. Co-localization of BucLoc with transgenic 

Buc-GFP was determined by live imaging: 1st column – transgenic Buc-GFP (magenta), 2nd column – injected BucLoc 

mCherry fusion (green) and 3rd column – merge. WT BucLoc mCherry fusion co-localizes with transgenic Buc-GFP (B-

B’’, C-C’’) whereas Δ72-78 BucLoc mCherry fusion does not co-localize (D-D’’, E-E’’). Scale bars (B, D): 50 µm (C, 

E): 2 µm.  
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Figure 26: Mapping of BucLoc domain reveals residues important for localization (Part 2). Mapping of BucLoc 

domain was done by live-imaging of injected mCherry fusions of BucLoc mutants in the Buc-GFP transgenic background. 

(A, C, E, G) Lateral view of embryos at 3-4 hpf. Dotted half-circle outlines the embryo. Magnified germ plasm indicated 

by white arrowheads is shown in the panel below (B, D, F, H). Co-localization of BucLoc with transgenic Buc-GFP was 

determined by live imaging: 1st column – transgenic Buc-GFP (magenta), 2nd column – injected BucLoc mCherry fusion 

(green) and 3rd column – merge. Injected mCherry fusions of BucLoc Δ31-35, Δ36-41, Δ42-46 and Δ47-51 do not co-

localize with transgenic Buc-GFP. Scale bars (A, C, E, G): 50 µm (B, D, F, H): 2 µm. 
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Figure 27: Mapping of BucLoc domain reveals residues important for localization (Part 3). Mapping of BucLoc 

domain was done by live-imaging of injected mCherry fusions of BucLoc mutants in the Buc-GFP transgenic 

background. (A, C, E, G) Lateral view of embryos at 3-4 hpf. Dotted half-circle outlines the embryo. Magnified germ 

plasm indicated by white arrowheads is shown in the panel below (B, D, F, H). Co-localization of BucLoc with 

transgenic Buc-GFP was determined by live imaging: 1st column – transgenic Buc-GFP (magenta), 2nd column – injected 

BucLoc mCherry fusion (green) and 3rd column – merge. Injected mCherry fusions of BucLoc Δ52-56, Δ57-61, Δ62-

66 and Δ67-71 co-localize with transgenic Buc-GFP similarly to WT BucLoc (Figure 20). Scale bars (A, C, E, G): 50 

µm (B, D, F, H): 2 µm 
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 2.2.5 BucLoc phosphorylation is not required for germ plasm localization  

We demonstrated that the PrDs are not required for germ plasm localization during zebrafish 

embryogenesis (Figure 22, Figure 25 A). However, we showed that the C-terminal PrD mutant 

(BucLoc 3D) and the full PrD deletion (BucLoc Δ64-71) are expressed at low levels (Figure 24 D, E, 

F, G), while they still localized weakly to germ plasm. Therefore, we hypothesized that BucLoc 

contains elements which regulate Buc localization or degradation. Since BucLoc contains one serine 

and eight tyrosine residues, we hypothesized that phosphorylation could be one of such regulatory 

mechanism (Figure 28 A). 

We first investigated the role of tyrosine phosphorylation in Buc localization. For this we generated 

BucLoc phosphomimetic (All Y to E) and non-phosphorylatable (All Y to F) mutants, fused them to 

mCherry and studied their co-localization with the endogenous germ plasm using the co-localization 

assay (Figure 24 A). BucLoc All Y to E did not co-localize with the endogenous germ plasm (Figure 

28 D). However, BucLoc All Y to E mutant was expressed at low levels and we had to increase signal 

with Adobe Photoshop (Figure 28 D). Previously, we found that BucLoc 3D mutant was also weakly 

expressed, therefore we used BucLoc 3D mutant as a negative control in this experiment (Figure 28 

A, F). The low expression levels could be the reason why no co-localization with endogenous germ 

plasm was observed for the BucLoc All Y to E mutant (Figure 28 A, D). In contrast, BucLoc all Y to 

F mutant localized to germ plasm similarly to the WT BucLoc (Figure 28 A, B, C). Thus, we assume 

that tyrosine phosphorylation does not play a role in germ plasm localization, but in BucLoc 

degradation.  

To investigate the role of the single serine in Buc localization, we generated BucLoc phosphomimetic 

(S33E) and non-phosphorylatable (S33A) mutants. We found that both mutants localized to germ 

plasm similarly to the WT BucLoc. Taken together, these results indicate that tyrosine or serine 

phosphorylation of BucLoc domain is not required for germ plasm localization.  

To further address the role of phosphorylation in Buc localization, we used λ phosphatase to 

investigate phosphorylation status of BucLoc. λ phosphatase is a broadly used enzyme which removes 

phosphate groups from phosphorylated serine, thereonine and tyrosine (Cohen and Cohen, 1989; 

Zhuo et al., 1993) To check the status of BucLoc phosphorylation, we injected BucLoc GFP fusion 

RNA into 1-cell stage embryos. Subsequently we lysed embryos at 3-4 hpf when GFP granules were 

observed. Then we treated lysates with λ phosphatase or only with λ phosphatase buffer (control). 

Subsequently, we performed a western blot to detect BucLoc-GFP. We found that BucLoc-GFP is 

expressed at similar levels in both the λ phosphatase treated and control samples (Figure 30 Lanes 3 

and 4). Furthermore, we did not observe any shifts in protein bands upon the λ phosphatase treatment. 

Thus, we confirmed our previous result that BucLoc is not phosphorylated during embryogenesis. 

Therefore, BucLoc phosphorylation is not required for germ plasm localization. 

We further addressed the role of Buc phosphorylation in germ plasm localization by investigating 

endogenous germ plasm for the presence of phosphotyrosines (Ptyr). For this we performed 

immunohistochemistry analysis of oocytes and embryos to investigate co-localization of Buc and 

Ptyr. We found that Buc and Ptyr co-localized during the early and late IB stages of oogenesis in Bb 

(Figure 31 A-C). In contrast to oogenesis, during embryogenesis we found that the most Ptyr is 

enriched at cell junctions (Figure 31 D, E). 

 

In summary, we found that BucLoc phosphorylation is not required for localization to germ plasm 

during embryogenesis. Furthermore, our data suggest the role of tyrosine phosphorylation in Buc 
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degradation. This is the first evidence showing the importance of post-translational modifications for 

the regulation of germ plasm localization in zebrafish. 

 
 

Figure 28: BucLoc phosphorylation is not required for germ plasm localization. (A) Summary and quantification of 

mapping potential phosphorylation residues in BucLoc. Amino acid sequence of BucLoc is shown in black, mutated 

residues are shown in red. In order to study BucLoc phosphomutants co-localization with endogenous germ plasm, we 

injected RNA of BucLoc mCherry fusion into1-cell stage embryos of transgenic Buc-GFP line and scored embryos for 

co-localization at 3-4 hpf. mCherry fusions of BucLoc all Y>F (36.7 ±12.5 %), S33A (80±0%) and S33E (60±16.3%) 

mutants co-localize with endogenous germ plasm similarly to WT BucLoc (63.3±18.9%). In contrast, mCherry fusions 

of BucLoc all Y>E (3.3±4.7%, p=0.01) and 3D (0%, p=0.009) mutants co-localize significantly less frequent with 

endogenous germ plasm than BucLoc WT. N=3, n=10. Two tailed student’s T-test, BucLoc mutants vs WT BucLoc. 

Mean ± standard deviation is shown. *P < 0.05; **P < 0.01; ***P < 0.001 and n.s: not significant.  
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Figure 29: BucLoc phosphorylation is not required for germ plasm localization. In order to study BucLoc 

phosphomutants co-localization with endogenous germ plasm, we injected RNA of these mutants fused to mCherry into1-

cell stage embryos of transgenic buc-gfp line. Co-localization of BucLoc WT and mutants with transgenic Buc-GFP was 

determined by live imaging at 3-4 hpf: 1st column – transgenic Buc-GFP (magenta), 2nd column – injected BucLoc 

mCherry fusion (green) and 3rd column – merge. Each panel represents an embryo in a lateral view. Dotted half-circle 

outlines the embryo. White arrowheads point on endogenous germ plasm and BucLoc phosphomutants (when there is a 

fluorescent granule present). MCherry fusions of BucLoc all Y>F (B-B’’), S33A (D-D’’) and S33E (E-E’’) mutants co-

localize with transgenic Buc-GFP similarly to WT BucLoc (A-A’’). In contrast, mCherry fusions of BucLoc all Y>E (C-

C’’) and 3D (F-F’’) mutants do not co-localize with BucLoc WT. Scale bars: 50 µm (F. Mainz, A. Goloborodko) 
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Figure 30: BucLoc phosphorylation is not required for germ plasm localization. To address the role of 

phosphorylation in germ plasm localization, GFP fusion of BucLoc was injected into 1-cell stage embryos. Then 3-4 

hpf embryos were lysed and treated with λ phosphatase. Subsequently, a Western blot was performed with the λ 

phosphatase treated embryonic lysates. Untreated BucLoc-GFP lysates were taken as a negative control for the λ 

phosphatase treatment. Uninjected embryos were used as a negative control for the primary anti-GFP antibody 

specificity. Uninjected sample shows no GFP signal (lane 2), whereas BucLoc-GFP injected samples show multiple 

bands around 40 kDa (Lane 3 and 4). No difference in protein bands size or number is observed between the λ 

phosphatase treated (lane 4) or the control sample (Lane 3)  
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Figure 31: BucLoc phosphorylation is not required for germ plasm localization. Phosphorylation of germ plasm 

proteins at Tyrosines, was investigated at different stages of Zebrafish development. (A) Early stage IB and (C) late stage 

IB oocytes. Dotted rectangle in (A) represents magnified Bb in (B). (D) Animal view of embryos at 3-4 hpf. Dotted circle 

outlines the embryo. Dotted rectangle outlines magnified germ plasm in (E). Presence of proteins containing pTyr in germ 

plasm was determined by immunohistochemistry: 1st column – endogenous Bucky ball (Buc) (magenta), 2nd column – 

phosphotyrosine (pTyr) (green) and 3rd column (merge). Ptyr is enriched in the nucleus and in the outer layer of Bb in the 

early sage IB oocytes (A-A’’, B-B’’). Furthermore, Ptyr enriched in Bb co-localizes with Buc (B-B’’). (C-C’’) In the late 

stage IB oocytes, there is more Ptyr signal present in Bb than during the early IB stage oogenesis (A-A’’). Furthermore, 

Buc fully co-localizes with Ptyr during the late stage IB oogenesis (C-C’’). In the 3-4 hpf embryos, Ptyr is enriched at the 

cell junctions, but not in germ plasm (D-D’’, E-E’’). Scalebars: (A, C) 5 µm; (B, E) 2 µm; (D) 50 µm.  
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2.3 Identification of the core BucLoc interactome 

Buc protein provides us a molecular proxy which can be used to study the molecular mechanisms of 

germ plasm localization. Recently, isolation of the Buc localization signal allowed a biochemical 

screen which identified proteins directly involved in germ plasm localization (Riemer 2014, Doctoral 

dissertation). The biochemical screen revealed 213 potential interactors of the Buc localization 

domain. Based on such long candidate list, the selection and investigation of novel proteins involved 

in Buc localization is time laborious and inefficient. Therefore, it is important to repeat the 

biochemical screen and to find the core interactors of Buc which play a role in germ plasm 

localization. 

2.3.1 Identification of the core BucLoc interactome 

Previously we mapped the localization signal of Buc (aa 11-88) to identify the smallest localization 

motif possible (Figure 22). The mapping resulted in identification of the 47 N-terminal Buc residues 

which are sufficient for germ plasm localization. We dubbed this N-terminal motif as BucLoc. We 

used BucLoc as a bait for a biochemical screen to identify interactors involved in germ plasm 

localization. 

In order to perform the biochemical screen, we injected bucloc-fgp RNA into 1-cell stage embryos 

and investigated embryos for presence of fluorescent granules at 3 hpf (Figure 32 A). Then, embryos 

were lysed and BucLoc-GFP co-immunoprecipitation (co-IP) was accomplished with GFP-binding 

nanobodies. Subsequently, mass spectrometry (MS) analysis was performed. Two negative controls 

were used in this analysis to exclude irrelevant BucLoc interactors. Firstly, co-IP was performed with 

transgenic gfp embryos. Secondly, co-IP was performed with injected bucloc Δ72-78 fgp, which 

localizes less efficiently to germ plasm than the WT BucLoc-GFP (Figure 25). As a positive control, 

co-IP was done with transgenic buc-gfp embryos. Transgenic Buc-GFP is expressed at endogenous 

levels and therefore contains all endogenous Buc interactors (Riemer et al., 2015). Prior to the MS 

analysis, western blot was performed to check Buc co-IP samples for presence of Vasa. Previously, 

we demonstrated that Vasa protein interacts with Buc (Krishnakumar et al., 2018). 

The western blot with input and co-IP samples showed that all samples contained intact proteins prior 

to the co-IP (Figure 32 B). After the co-IP we also detected all GFP (fusion) proteins (Figure 32 B). 

Hence, the pull-down with the GFP-binding nanobodies worked. Furthermore, we detected Vasa 

protein only in the Buc-GFP sample, but not in the other samples, as expected. This result is in line 

with Vasa interaction exclusively with the C-terminal part of Buc (Perera, unpublished). We also 

attempted to validate BucLoc-GFP interaction with ZO1, ZO2 and p-NMII proteins, which were 

enriched in the previous MS analysis (Riemer 2014, Doctoral dissertation). However, we were unable 

to detect these proteins by a western blot in the input or co-IP samples (data not shown). After 

performing the control experiments, we proceeded with the MS analysis of the co-IP samples. 

The MS analysis identified 291 proteins and after the bioinformatics we obtained 23 proteins (Figure 

32 C; Table 1). These candidate proteins were assigned to their most relevant function and cellular 

compartment based on the data available at the UniProt database (Figure 33) (Bateman, 2019). 

Among all candidates we found two well studied germ plasm specific proteins: Piwi-like protein 1 

(Piwil1) and tudor domain-containing protein 6 (Tdrd6). Piwil1 maintains germline integrity during 

gametogenesis by repressing transposable elements (Houwing et al., 2007), whereas tudor domain-

containing proteins are involved in regulation of Buc aggregation (Roovers et al., 2018). Both Tdrd6 
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and Piwil1 homologs in zebrafish: Ziwi and Zili localize to germ granules (Roovers et al., 2018; Tan 

et al., 2002). Hence, this result shows the specificity of the biochemical screen to isolate germ plasm 

proteins. Furthermore, we found DEAD (Asp-Glu-Ala-Asp) box helicase (Ddx5), which is different 

from Vasa protein (Ddx4) used as our positive control for the Buc-GFP co-IP. Since Piwil1 and Ddx5 

are the most enriched proteins compared to GFP (Figure 33, Table 1), we think that Ddx5 is also part 

of zebrafish germ plasm. Among the most enriched proteins compared to GFP control we also found 

insulin-like growth factor 2 mRNA-binding protein 3 (Igf2bp3) (Figure 33, Table 1). However, it is 

unlikely that the most enriched proteins: Ddx5, Piwil1 or Igf2bp3 play a role in germ plasm 

localization, because these proteins are not known to interact with cytoskeleton. 

In the next step, we focused on the candidate proteins enriched most in BucLoc-GFP compared to the 

BucLoc Δ72-78 GFP control. We found nuclease-sensitive element-binding protein 1 isoform 2 

(Nsebp1), Bucky ball 2-like (Buc2l) and si:rp71-45k5.4. Nsebp1 and si:rp71-45k5.4 are proteasome 

components and are unlikely to play a role in germ plasm localization (Bateman, 2019). Interestingly, 

Buc and Buc2l have only 28% similarity. However, the function of Buc2l in germ plasm is unknown 

and we cannot exclude a role of Buc2l in germ plasm localization. 

The largest group (Figure 33, n=6, green) of the identified proteins are mainly involved in RNA 

binding, transport and storage. Interestingly, from these candidate proteins, Intracellular hyaluronan-

binding protein 4 (Ihabp4) is able to both bind RNA and intracellular receptor hyaluronan in chick 

and mouse (Huang et al., 1999). Hyaluronan is a unique glycosaminoglycan, which links hyaluronan-

binding proteins to plasma membrane. However, the function of Ihabp4 remains unexplored. 

Therefore, Ihabp4 is a promising candidate for anchoring germ plasm to cytoskeleton. 

We also identified a group of uncharacterized proteins (Figure 33, n=3, blue) including a possible 

component of germplasm - Buc2l protein and two other proteins: Ras-GTPase activating protein SH3 

domain-binding protein 2-like (a homolog of human G3bp2) and RNA binding motif protein 4.3 

(Rbm4.3.). G3bp2 is a conserved component of stress granules and is important for post-translation 

modifications of subset of RNAs (Irvine et al., 2004). However, the function of G3bp2 is not yet 

entirely clear, especially in zebrafish. Rbm4.3. is predicted to be an RNA binding protein. 

Furthermore, we found two subsets of proteins which play a role in mRNA translation (Figure 33, 

n=4, orange) and in proteasomal degradation (Figure 33, n=4, brown). Finally, we also identified one 

protein, responsible for protein transport in endoplasmic reticulum (Figure 33, gray) and one chaperon 

protein, responsible for protein folding in mitochondria (Figure 33, yellow). 

 

In conclusion, from the identified BucLoc core interactors, Ihabp4 is the most promising candidate 

for anchoring germ plasm to cytoskeleton. Furthermore, G3bp2, Rbm4.3. and Buc2l are less likely to 

play a role in germ plasm localization, because they have no known domains or data on interaction 

with cytoskeleton.  
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Figure 32: BucLoc interactome analysis. (A) A scheme of a method to screen for BucLoc interactors. GFP 

fusion of BucLoc was injected into 1-cell stage embryos. Then, embryos were lysed and co-immunoprecipitation 

of injected protein was performed. Subsequently, mass spectrometry (MS) analysis was done. Two negative 

controls were used in this analysis: GFP from transgenic embryos and injected Buc31-73-GFP, which localizes 

less efficiently to germ plasm then BucLoc-GFP. As a positive control, transgenic Buc-GFP was co-

immunoprecipitated and included in the MS analysis. (A-B) Prior to the MS analysis, Western blot (WB) was 

performed to validate the samples for presence of the overexpressed or transgenic proteins and to check if the co-

immunoprecipitation was successful. (B) GFP fusions were visualized by anti-GFP antibody (green) and 

endogenous Vasa was visualized by anti-Vasa antibody (red). M stands for size marker, IP – for co-

immunoprecipitation. WB with input samples show presence of Buc-GFP (lane 2, ~130 kDa), GFP (lane 3, 27 

kDa), Buc31-73GFP (lane 4, ~40kDa) and BucLoc-GFP (lane 5, ~40kDa). Furthermore, input samples show 

presence of Vasa (83 kDa, lanes 2-5). Vasa interacts with C-terminus of Buc and therefore is used as a positive 

control for IP in this analysis. After IP, Vasa is found in BucGFP sample IP (Lane 6), but not in GFP, Buc31-

73GFP or BucLoc-GFP IPs (Lanes 7-9). (C) A scheme showing pipeline of raw MS data analysis to select the 

most potential BucLoc interactors. The MS candidates were selected which were at least two-fold more enriched 

in BucLoc-GFP compared to GFP or Buc31-73GFP. Furthermore, the proteins were selected which were 

enriched within ±4 fold in BucLoc compared to Buc-GFP. 
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Figure 33: Results of BucLoc interactome analysis. After applying bioinformatics, the most promising 23 candidates 

are shown. Y-axis represent Log2 of BucLocGFP/GFP fold change, whereas X-axis represents Log2 of BucLoc/Buc31-

73GFP fold change. Candidates are assigned to different function or compartment based on the data available at the 

UniProt database (figure legend). HABP2, G3BP ortholog and Buc 2-like were selected for further analysis (encircled in 

blue).  
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Table 1: The core BucLoc interactome. Fold enrichment to GFP, Buc-GFP and Buc31-73GFP in 

comparison to BucLoc-GFP is given for each candidate. Different colors correspond to protein function 

and compartment illustrated in Figure 26. 

  

   Fold enrichment 

Name Gene Human 

homolog 

GFP Buc-

GFP 

Buc

31-

73- 

GFP 

piwi-like protein 1 piwil1 

 

PIWIL1 

 13.37 2.3 3.2 

DEAD (Asp-Glu-Ala-Asp) box 

helicase 3b isoform X5 

ddx6 

 

DDX6 

10.53 3.0 3.5 

insulin-like growth factor 2 

mRNA-binding protein 3 

isoform X1 

igf2bp3 

 

IGF2BP3 

10.48 3.3 2.9 

60S ribosomal protein L12  rpl12 

 

RPL12 

9.68 3.2 2.5 

polyadenylate-binding protein 

1-like 

pabpc1l 

 

PABPC1 

8.56 2.6 2.2 

poly(A) binding protein, 

cytoplasmic 1a isoform X1 

pabpn1l 

 

PABPN 

8.34 2.6 2.7 

60S acidic ribosomal protein 

P0 

rplp0 

 

 RPLP0  
 

8.31 2.9 2.3 

nuclease-sensitive element-

binding protein 1 isoform 2 

Ybx1 YBX1 

 8.28 2.6 7.0 

tudor domain-containing 

protein 6 isoform X3 

tdrd6 

 

TDRD6 

 8.11 2.3 2.6 

26S protease regulatory subunit 

7 

psmd9 

 

PSMD9 

6.73 3.1 2.4 

eukaryotic translation initiation 

factor 3 subunit L 

eif3l 

 

EIF3L 

6.67 2.8 2.3 

si:rp71-45k5.4 si:rp71-

45k5.4 

 

PSMA2 

 

6.59 3.0 3.6 

26S proteasome non-ATPase 

regulatory subunit 2 

Psmd2 PSMD2 

 6.02 3.9 2.6 
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Ras-GTPase activating protein 

SH3 domain-binding protein 2-

like 

 

 

Zgc:56304 

 

 

G3BP2 

 

 

5.49 

 

 

3.1 

 

 

2.1 

intracellular hyaluronan-

binding protein 4 isoform X1 

Zgc:103482 HABP4 

 5.07 1.8 2.1 

60S ribosomal protein L38 Rpl38 RPL38 4.81 2.8 2.7 

stress-70 protein Hspa9 HSPA9 

 4.79 2.6 2.4 

RNA binding motif protein 4.3 

 

rbm4.3 

 

RBM4 

4.36 3.6 2.1 

26S protease regulatory subunit 

10B 

Psmc6 PSMC6 

 4.20 2.5 2.9 

protein transport protein 

Sec16A isoform X3 

Sec16a SEC16A 

 3.37 1.8 2.5 

KH domain-containing, RNA-

binding, signal transduction-

associated protein 1 

khdrbs1a 

 

KHDRBS1 

3.35 2.0 2.2 

uncharacterized protein buc2l 

[Danio rerio] 

Buc2l KDM3A 

2.98 2.4 4.2 
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2.4 Conserved functions of Bucky ball 

We showed that molecular mechanism of germ plasm localization involves tight junction proteins 

like ZO1 (Chapter 2.1). However, it is unknown whether the mechanisms of PGC induction and germ 

plasm localization are conserved between vertebrates and invertebrates. 

2.4.1 Mechanism of primordial germ cells induction is conserved in vertebrates and 
invertebrates 

Previously, we demonstrated that Buc is required for germ plasm assembly and formation of ectopic 

PGCs (Bontems et al., 2009). Likewise, it was shown that sOsk is required for germ plasm assembly 

and its mislocalization induces ectopic PGCs (Ephrussi & Lehmann, 1992; Smith et al., 1992). To 

understand if the mechanism of PGCs induction of Buc and sOsk is conserved between vertebrates 

and invertebrates, we overexpressed both germ plasm organizers in the 16-cell assay. In this assay, 

buc or sOsk RNA together with germ line reporter gfp-nos3’UTR were injected into a corner 

blastomere of the 16-cell stage embryo (Figure 34 A). The corner cell normally does not contain germ 

plasm and does not acquire PGC fate. However, surprisingly buc RNA injection in the corner 

blastomere results in formation of ectopic germ cells (Bontems et al., 2009). As a negative control 

for germ cell induction, a buc mutant (Buc 1-361) was injected, which is unable to assemble germ 

plasm (Bontems et al., 2009). To confirm the germ cell identity of induced PGCs, injected embryos 

were checked for presence of Vasa and GFP positive cells at the 15-somite stage. In the 16-cell assay, 

Vasa highlights the endogenous PGCs, while GFP shows the induced PGCs. Surprisingly we found 

that sOsk induces formation of ectopic PGCs in zebrafish, similarly to Buc (Figure 34 B-B’’, D-D’’), 

whereas Buc mutant lacked its PGC inducing ability and only showed weak GFP signal in Vasa 

positive cells (Figure 34 C). Furthermore, some PGCs showed presence of Vasa, but absence of GFP 

signal (Figure 34 B-B’’, D-D’’, white arrowheads). Therefore next to the induced PGCs, we could 

also detect endogenous PGCs in the 16-cell assay. Thus, the cells specified by Buc and sOsk 

differentiate into PGCs.  
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Figure 34: Mechanism of primordial germ cells induction is conserved in vertebrates and invertebrates. (A) 

Scheme of germ cell induction assay. Left panel: Animal view of a 16-cell embryo injected with PGC-reporter into a 

middle blastomere (blue arrowhead) containing endogenous germ plasm (red dots) or into a somatic cell (corner 

blastomere; green arrowhead). Right panel: Oblique, dorsal view of a 15-somite stage embryo (18 hours post fertilization, 

hpf), anterior to the left. Fluorescent germ cells (white arrowhead) emerge by targeting the reporter to a PGC or 

transforming a somatic cell into a PGC. Lateral view, anterior to the left of area indicated in icon of 18-somite stage 

embryo after 16-cell assay with WT Buc(1–639) (B-B’’), mutant Buc(1–361) (C-C’’) or sOsk (D-D’’). Embryos were 

analyzed for GFP (green) and Vasa (red) protein expression. Arrowheads indicate endogenous PGCs (Vasa positive and 

GFP negative). Scale bar: 20 μm. (Perera (16-cell injection), A. Goloborodko (immunohistochemistry and microscopy) 

(Figure is taken from Krishnakumar et al., 2018) 
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2.4.2 Germ plasm localization is conserved in vertebrates 

We previously demonstrated the unique shared ability of Buc and sOsk to specify germ cells in 

zebrafish (Figure 34) (Krishnakumar et al., 2018). To understand if the mechanism of localization is 

also conserved, we generated gfp fusions of buc, sOsk and velo and injected RNAs of these fusions 

into 1-cell stage embryos. Subsequently, we performed immunostaining at 3-4 hpf to find out the co-

localization of the GFP fusions with endogenous germ plasm (Figure 35 A). To distinguish between 

the injected GFP fusions and endogenous germ plasm, we used previously described anti-Buc 

antibody (Riemer et al., 2015). We found that this antibody specifically recognized Buc and not Velo, 

sOsk or GFP in a western blot with in-vitro translated proteins (Figure 37). Therefore we concluded 

that it would be possible to distinguish endogenous Buc from injected Velo, sOsk or GFP alone in 

the co-localization assay. 

To outline the architecture of germ cells we labeled membrane (beta-catenin) and the nucleus (DAPI). 

Buc-GFP co-localized with endogenous germ plasm (Figure 35 C-D) and showed similar localization 

as vasa and nanos RNAs (Eno et. al., 2019; Knaut et al., 2000; Köprunner et al., 2001). Therefore, 

we could use the co-localization assay to study germ plasm localization in vivo. To test whether 

localization mechanism is conserved in vertebrates we overexpressed Velo and indeed it also 

localized to endogenous germ plasm (Figure 35 E-F). By contrast, injected sOsk formed speckles in 

the nucleus (Figure 36 A-B), as it was shown in tissue culture cells and Drosophila PGCs (Jeske et 

al., 2017; Kistler et al., 2018). In contrast, GFP alone localized to membrane and nucleus, but still 

not to endogenous germ plasm (Figure 36 C-D). We concluded that Buc and Velo share the 

localization mechanism to zebrafish germ plasm, whereas sOsk does not. 

In summary, the PGC induction ability of Buc, sOsk and Velo is shared in vertebrates. Furthermore, 

only Velo and Buc share the germ plasm localization mechanism in vertebrates, whereas sOsk 

localization is mediated in a different way. 
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Figure 35 : Germ plasm localization is conserved in vertebrates. (A) Scheme of co-localization assay. RNA encoding 

GFP fusions of germ plasm organizers Bucky ball (Buc), Velo and short Oskar (sOsk) were injected into 1-cell stage 

embryos and scored for localization with endogenous Buc (green dots) by immunohistochemistry. (B) Quantification of 

co-localization assay. GFP fusions of Buc (71 ± 10.1%, n=33 (13, 13, 7)) and Velo1 (79.7 ± 19.5% n=41 (15, 14, 5, 4, 3) 

p=0.6), but not sOsk (0%, n=25(5, 7, 13) or GFP alone (0%, n=32 (18, 9, 5) show co-localization with endogenous Buc. 

Two tailed student’s T-test, Velo-GFP vs Buc-GFP. Mean ± standard deviation is shown. n.s: not significant. (C-K) 

Animal view of embryos at 3-4 hours post fertilization (hpf). Dotted circle outlines the embryo. Dotted rectangle shows 

magnified cell in the panel below. Co-localization of GFP with endogenous Buc was determined by 

immunohistochemistry: 1st column – injected GFP fusion (green), 2nd column – endogenous germ plasm (GP, magenta) 

and membrane (MB, magenta), 3rd column – DAPI (blue) and 4th column – merge. Buc-GFP (C-C‘‘‘, D-D‘‘‘) or Xenopus 

Velo (E-E’’’, F-F’’’) co-localize with endogenous germ plasm. Scale bars (C, E): 50 µm (D, F): 5 µm. 
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Figure 36: Germ plasm localization is conserved in vertebrates. (A-D) Animal view of embryos at 3-4 hours post 

fertilization (hpf). Dotted circle outlines the embryo. Dotted rectangle shows magnified cell in the panel below. Co-

localization of GFP with endogenous Buc was determined by immunohistochemistry: 1st column – injected GFP fusion 

(green), 2nd column – endogenous germ plasm (GP, magenta) and membrane (MB, magenta), 3rd column – DAPI (blue) 

and 4th column – merge. Drosophila sOsk (A-A’’’, B-B’’’) shows nuclear localization. The GFP control (C-C‘‘‘, D-D‘‘‘) 

shows ubiquitous low level fluorescence, after increasing brightness with Adobe Photoshop. Scale bars (A, C): 50 µm (B, 

D): 5 µm. 
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Figure 37: Germ plasm localization is conserved in vertebrates. Western blot showing anti-Buc (red in upper panel 

and black in lower panel) and anti-GFP (green in upper panel, absent in lower panel) antibody staining of in vitro 

translated proteins: Buc-GFP (lane 6), Velo-GFP (lane 5), sOsk-GFP (lane 4), GFP (lane 3). Unprogrammed lysate (lane 

2) was used as a negative control for protein translation. Buc-GFP is visualized by both anti-Buc and anti-GFP antibodies 

(yellow in merged panel and black in lower panel), whereas Velo-GFP, sOsk-GFP and GFP alone are only recognized by 

anti-GFP antibody and not by anti-Buc antibody. 
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3. Discussion 

Buc was identified as the first vertebrate protein necessary for germ plasm formation and sufficient 

for induction of PGCs (Bontems et al., 2009).  Furthermore, localization of Buc during early 

embryogenesis is critical event in PGC development (Hashimoto et al., 2004). Therefore, the aim of 

this study is to understand the molecular mechanism of germ plasm localization. 

In this study, we identified tight junction responsible for anchoring of Buc to cytoskeleton. 

Furthermore, we showed that phosphorylation of ZO1 is necessary for Buc degradation. Also, we 

showed that Buc IDRs and PrDs are not required for germ plasm localization. Our results also 

demonstrate that BucLoc might be hyperphosphorylated at tyrosines and this leads to degradation of 

Buc during embryogenesis. We used BucLoc as a bait in a biochemical screen to identify Buc 

interactors involved in germ plasm localization. This analysis revealed Intracellular hyaluronan-

binding protein 4 - a promising candidate for linking germ plasm to cytoskeleton. Finally, we showed 

that the localization and PGC inducing abilities of Buc in zebrafish are conserved among vertebrates 

such as Xenopus but not among invertebrates such as Drosophila. 

3.1 Functional relevance of Buc co-localization with cellular structure markers 

The discovery of the four germ plasm spots has not lead so far to identification of the cellular structure 

that anchors Buc to cytoskeleton (Yoon et al. 1997). We showed that Buc co-localizes with various 

cellular structure markers during oogenesis. In contrast, Buc only co-localizes with tight junction 

proteins like ZO1 during embryogenesis. 

3.1.1 The Balbiani body as a storage compartment for maternally provided cellular structure 
markers 

We found that Bb contains maternally provided proteins of tight and adherens junctions and 

hemidesmosomes (Figure 7). Previously, it was shown that cadherins and catenins are enriched at the 

cortex of zebrafish oocytes, at the sites of oocyte-follicle cell contacts, indicating that unknown 

heterotypic tight junctions might be present between these cells (Cerdà et al., 1999). Also in Xenopus, 

overexpressed tight junction markers like clauding localize to the membrane of oocytes, where they 

probably play a role in oocyte adhesion (Vitzthum et al., 2019), whereas other tight junction 

components like symplekin localize to “Cajal bodies” during Xenopus oogenesis (Hofmann et al., 

2002). Therefore, our finding of cellular structure markers localization to the Bb is unique. 

Interestingly, immunostaining of ZO1 and E-cadherin in the Bucp106 mutant background, where the 

Bb is not assembled, showed distribution of these cellular structure markers over the entire cytoplasm 

of oocytes (data not shown). This result suggests that ZO1 and E-cadherin do not act upstream by 

localizing Buc to Bb during oogenesis. Therefore, we assumed that none of the detected cellular 

structure markers is functional in Bb. This is in line with previous views of Bb as a storage hub for 

RNAs and healthy mitochondria during development in order to pass them into the PGCs (Cox, 2003; 

Kloc et al., 2004; Kogo et al., 2011; Marinos & Billett, 1981). Therefore, we think that zebrafish Bb 

stores and protects cellular structure markers in order to pass them on to the embryo. 

Previously, it was shown that Buc homologue in Xenopus Velo1 creates amyloid-like matrix in Bb, 

entrapping organelles like mitochondria (Boke et al., 2016). We also demonstrated that Buc forms 

preferentially stable aggregates in Bb during oogenesis (Figure 19, Figure 20). Hence, we think that 
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Buc also could form similar protein networks, which can entrap organelles and proteins such as 

different cellular structure markers. However, it still needs to be addressed whether the localization 

of cellular structure markers is mediated by direct protein-protein interactions with Buc or by their 

entrapment in a protein matrix formed by Buc. 

3.1.2 Buc co-localizes with tight junction proteins during early embryogenesis. 

During late stage oogenesis Bb disassembles and during early embryogenesis we no longer found co-

localization of adherens junctions and hemidesmosomes with germ plasm. Fascinatingly, tight 

junction markers remained co-localized with germ plasm during early embryogenesis (Figure 8). 

Interestingly, at the 4-cell stage, ZO1 and Buc co-localize to one domain at the cleavage furrow 

(Figure 8 C, D). In contrast, at the 8-cell stage ZO1 localizes to the two separate domains: along the 

entire length of the first two cleavage furrows and to the germ plasm (Figure 8 A, B). Our result also 

show that germ plasm co-localizes with ZO1-A, whereas most likely ZO1-B localizes to the entire 

length of the furrows. Hence, we assume that a segregation of ZO1-A from ZO-B takes place at the 

4- to 8-cell transition during germ plasm compaction (Lindeman & Pelegri, 2010). The segregation 

of both ZO1 isoforms might be crucial for germ plasm localization. We hypothesize that the 

localization of ZO1-A at the distal ends of the cleavage furrow contributes to formation of a tight 

junction which anchors germ plasm to cytoskeleton. The presence of tight junction in zebrafish was 

confirmed as late as at the onset of epiboly by transmission electron microscopy. At this stage tight 

junctions are visible in the enveloping layer as typical electron dense plaques at the luminal end of 

the lateral membrane of adjoining cells (Kimmel et al., 1995). However, it remains to be addressed 

if maturated tight junctions are present within germ plasm at the 8-cell stage and whether there is a 

difference between the germline and somatic tight junctions. Addressing these questions will help to 

further understand the molecular mechanisms of germ plasm localization. 

Different ZO1 isoforms were also studied in mouse tight junction assembly (Furuse et al., 1993, 

1994). It was demonstrated that the final step in tight junction formation is mediated by the ZO1α+ 

isoform. The interaction of ZO1α+ with occludin is crucial for the assembly of both proteins at the 

membrane and finalizing the tight junction formation. In analogy to the mouse ZO1α+, the germline 

ZO1 isoform in zebrafish might also require another tight junction component like occludin to 

localize and form a distinct type of tight junction in germ cells. However, we could not detect presence 

of occludin in the Bb using an anti-mouse claudin antibody (data not shown). Using different 

antibodies or immunohistochemistry approaches for occludin detection will be a focus of future 

research. 

Other tight junction components which can contribute to understanding of germ plasm localization 

mechanism are claudins. Claudins have important function in formation of tight junction permeability 

barrier and the role in linking of claudins to the underlying cytoskeleton (Anderson et al., 2004; 

Tsukita & Furuse, 2000). Also it was shown that Xenopus claudin (Xcla) is critical for ZO1 

localization (Brizuela et al., 2001). Interestingly, previously claudin D was identified in the 

biochemical screen for Buc localization signal interactors (Riemer 2014, Doctoral dissertation). 

However, studying this or other claudin genes are difficult due to lack of antibodies and a high number 

of claudin genes present in teleosts (Loh et. al., 2004). Interestingly, Buc and ZO2 did not co-localize 

(Figure 12 C, D). Therefore, we assume that ZO2 does not play a role in germ plasm localization.  

Next to the co-localization of Buc with ZO1 at the 8-cell stage, we found similar results at the 512-

cell stage. Also ZO1 co-localizes with Buc in PGCs at 1 dpf (Rostam, unpublished). Possibly, at 1 
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dpf we observe ZO1 made after the genome transcription activation. However, the function of the 

continuous co-localization of Buc with ZO1 is unclear.  

3.1.3 The role of E-cadherin in germ plasm compaction 

At the 8-cell stage, Buc and E-cadherin localize to the two separate domains at the furrow (Figure 9). 

E-cadherin localized along the proximal ends of the 1st and 2nd furrows (Figure 9 B’), whereas Buc 

localized to the distal ends (Figure 9 A’). It has been shown that in Xenopus, maternal cadherins are 

active from the onset of embryogenesis and are involved in intercellular adhesion (Fleming et al., 

2000). Also, it was shown that intracellular calcium regulates cell-cell adhesion in fibroblast through 

remodeling of cortical actin and recruitment of cadherins into intercellular junctions (Ko et al., 2001). 

Furthermore, it was shown that inhibition of calcium release or downstream mediators like 

calmodulin during first embryonic cleavages in zebrafish inhibits germ plasm compaction (Eno et al., 

2018a). Remarkably the levels of p-NMII remain normal upon defects in germ plasm compaction in 

nebel mutants or inhibition of calcium release in WT embryos (Nair et al., 2013). Since the p-NMII 

is involved in germ plasm compaction (Urven et al., 2006), it is tempting to speculate that the 

depletion of intracellular calcium affects some of the upstream signaling that acts on NMII. It was 

shown that E-cadherin can activate RhoA, which in its turn activates NMII by phosphorylation 

(Watanabe et al., 2009). It is also believed that germ plasm compaction is mediated via 

RhoA/ROCK/p-NMII pathway (Miranda-Rodríguez et al., 2017). Therefore, we think that maternal 

cadherins can be one of these upstream proteins which induce germ plasm compaction via p-NMII. 

However, we do not exclude a possibility that NMII itself contributes to activation of adherens 

junctions assembly via the cadherins. It was shown that NMII can act via actin to bring adherens 

junction components in close proximity and by this facilitate their function (Vicente-Manzanares et 

al., 2009). Overall, this leads to a hypothesis that activation of intracellular calcium signaling leads 

to E-cadherin localization and expansion along the cleavage furrows (Figure 38). Then, E-cadherin 

activates RhoA, which induces germ plasm compaction via phosphorylation of NMII by ROCK.  



75 

 

 

Figure 38: A hypothetical model for involvement of adherens junctions in germ plasm compaction. Schematic 

drawings of cleavage furrows before (left) and after germ plasm compaction (right). (Before germ plasm compaction) 

Adherens junction component E-cadherin and tight junction component ZO1 localize to the same domain at the cleavage 

furrow as germ plasm. Intracellular calcium (1) activates assembly of E-cadherin at the membrane, whereas activated E-

cadherins induces activation of the RhoA/ROCK signaling. Subsequently, ROCK activates non-muscle myosin II (NMII) 

by phosphorylation of the regulatory light chain (2). (During germ plasm compaction) Then p-NMII moves germ plasm, 

together with ZO1 to the distal ends of the cleavage furrows. By this, the localization domains of E-cadherin and germ 

plasm/ZO1/p-NMII are separated at the cleavage furrow. 

3.1.4 Functionality of Buc and ZO1 co-localization 

To address the role of ZO1 in germ plasm localization, we induces ZO1 dephosphorylation using the 

PKC inhibitor CC. Surprisingly, we found that CC inhibits Buc degradation (Figure 15, Figure 16, 

Figure 17). However, CC did not disrupt Buc localization to the four spots.  

We found that Buc levels were elevated upon CC treatment already at the 8-cell stage (Figure 17 A, 

B). Recently it was proved that ZO1 undergoes phase separation to form membrane attached 

compartments. By this, ZO1 enriches and localizes ZO1-interacting proteins to a membrane (Beutel 

et al., 2019). Furthermore, previously it was demonstrated that dephosphorylated ZO1 efficiently 

undergoes phase separation into liquid droplets (Beutel et al., 2019). Hence, the elevated Buc levels 

at the cleavage furrows can be due to an enhanced phase separation behavior of ZO1. Our data also 

suggests that the enhanced phase separation behavior of ZO1 stabilized and protected unlocalized 

cortical Buc granules from degradation (Figure 17 A, B). This is in line with recent publication that 

shows a decline of PGL granule proteins degradation in C.elegans upon their accelerated phase 

separation behavior (Zhang et al., 2018). 

We also observed much higher induction of unlocalized Buc-GFP levels with 5 µM CC. Interestingly, 

5 µM CC inhibits myosin light chain kinase (MLCK) and myosin reorganization in vitro (Strassheim 

et al., 1999). Nevertheless, even the 5 µM CC treatment did not affect the number of localized Buc-

GFP spots (Figure 16 C). Previously, it was shown that inhibition of MLCK by the drug h1152 results 

in germ plasm compaction defects at the 4-cell stage in zebrafish (Miranda-Rodríguez et al., 2017). 

Previously, it was also shown that MLCK inhibition stabilizes ZO1 at tight junctions in mice (Yu et 
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al., 2010). Our results also show that inhibition of PKC and MLCK by the 5 µM CC stabilizes ZO1 

at the cleavage furrows in zebrafish. However, we did not observe any germ plasm compaction 

defects, as it is the case with the h1152 MLCK inhibitor. Thus, our data suggests the phosphorylation 

of ZO1 by the PKC is upstream of the MLCK activation. 

It was demonstrated that CC inhibits de novo tight junction biogenesis (Stuart and Nigam, 1995). In 

contrast, to the de novo tight junction biogenesis, Buc and ZO1 already co-localize during oogenesis 

and therefore probably assemble into a protein complex before the onset of embryogenesis. Therefore, 

there is no de novo assembly of Buc at the tight junctions which can be inhibited by CC. An alternative 

approach to show that tight junction anchors Buc to cytoskeleton might be to inhibit phase separation 

behavior of ZO1. We expect that this will lead to a decrease in Buc and ZO1 localization to the 

cleavage furrows. Hence, a further study will focus on applying chemical compounds which activate 

PKC such as Okadaic Acid, PMA or Bryostatin 1. 

The results of the ZO1 dephosphorylation on germ plasm localization lead to a hypothetical model 

where PKC phosphorylation of ZO1 is required for the tight regulation of localized and unlocalized 

Buc levels (Figure 39). Possibly, a dephosphorylated ZO1 scaffolds Buc more efficiently. 

Subsequently, this leads to the observed enhanced accumulation Buc and ZO1 at cleavage furrows. 

To sum up, Bb stores cellular structure components, followed by their deposition at the forming cell 

membranes during embryogenesis. Fascinatingly, only tight junction marker ZO1 remains co-

localized with germ plasm during early embryogenesis. This is the first evidence that ZO1 co-

localizes with germ plasm. We also show for the first time the presence of two different maternal 

ZO1 isoforms. The germline specific ZO1 probably defines which cells will become germ cells by 

anchoring and stabilizing germ plasm early during development. In contrast, the somatic ZO1 might 

function as part of regular tight junctions in the most apical embryonic cells. So far, we think ZO1 

interacts with Buc and by this regulates Buc degradation. Future research will focus on using PKC 

activators to show whether ZO1 also anchors Buc to cytoskeleton. 

https://www.scbt.com/scbt/de/product/okadaic-acid-78111-17-8/;jsessionid=tsVsEr8tklgcD0-GdO_cDATYxMe_FzjfJA1N1ZkasftPU6WEKqTH!1724665585
https://www.scbt.com/scbt/de/product/pma-16561-29-8/;jsessionid=tsVsEr8tklgcD0-GdO_cDATYxMe_FzjfJA1N1ZkasftPU6WEKqTH!1724665585
https://www.scbt.com/scbt/de/product/bryostatin-1-83314-01-6/;jsessionid=tsVsEr8tklgcD0-GdO_cDATYxMe_FzjfJA1N1ZkasftPU6WEKqTH!1724665585
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Figure 39: A hypothetical model: ZO1 phosphorylation is required for Buc degradation. (Upper drawing) Protein 

Kinase C (PKC) phosphorylates ZO1 at the furrows, leading to degradation of some fraction of the localized ZO1 and 

Buc. (Lower drawing) Calphostin C inhibits PKC leading to reduced phosphorylation of ZO1. This leads to elevated 

levels of Buc and ZO1 at the cleavage furrows and in cytoplasm. This leads also to the recruitment of more cytoplasmic 

ZO1 and Buc to the cleavage furrows. 

3.2 Bucky ball plays a role in germ plasm aggregation and localization 

Buc is the first protein in vertebrates required for germ plasm assembly and localization (Bontems et 

al., 2009). However, prior to this study it was unclear whether Buc IDRs and PrDs play a role in germ 

plasm localization. Furthermore, it was unclear which protein domains in Buc play a role in germ 

plasm localization vs aggregation. 

3.2.1 PrDs in the BUVE motif of Buc might be responsible for germ plasm aggregation during 
oogenesis 

It was demonstrated that the N-terminal domain of Velo1 forms insoluble amyloids during Xenopus 

oogenesis via PrDs (Boke et al., 2016). We demonstrated that PrDs in Buc are not required for germ 

plasm localization (Figure 22, Figure 25). Hence, PrDs in the BUVE motif of Buc might also be 
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responsible for aggregation of the zebrafish Bb. However, using the PLAAC software to predict the 

protein aggregation propensity, we found 8 times lower aggregation propensity values (PAPA values) 

for Buc than for Velo1 (0.04 vs 0.33). Moreover, sOsk which does not contain predicted PrDs has a 

higher predicted PAPA value than Buc (0.06 vs 0.04). Hence, based on the PLAAC software 

prediction, the PrDs in Buc are not so potent to form amyloid aggregates compared to Velo1. 

However, despite the poor amyloid propensity prediction, solid aggregates of Buc are present in the 

Bb (Figure 19, Figure 20). The poor prediction of Buc to form amyloids is probably equalized by a 

tight regulation of Buc aggregation at post-translational or protein-protein interaction levels. 

Previously it was demonstrated that intracellular condensate formation is mediated by 

phosphorylation, methylation or ADP ribosylation (Alberti, 2017) Recent experimental evidences 

show indeed that regulation of Buc aggregation behavior by interaction of Buc dimethylated arginines 

(DiMeArgs) (aa 630, 629) with Tdrd6 (Roovers et al., 2018).  

To investigate other possible post translation modifications involved in Buc aggregation, we checked 

phosphorylation status of Bb. We found strong enrichment of phosphotyrosines in Bb of the late stage 

IB oocytes (Figure 31). Hence, it is possible that Buc aggregation is regulated via phosphorylation. 

This is in line with recent findings of IDPs clearance induced by multi-site phosphorylation 

(Carpenter et al., 2018). Since we found a solid and a less solid Buc fractions in Bb, it is tempting to 

speculate that phosphorylation of the solid fraction of Buc during late stage embryogenesis induces 

its clearance and releases the less solid Buc fraction to form germ plasm during embryogenesis. 

However, firstly it needs to be addressed whether Buc is phosphorylated. Therefore, it remains 

unclear whether post-translational modifications of Buc play a role in zebrafish Bb formation. 

 

To sum up, the PrDs within the localization signal of Buc are not required for germ plasm localization. 

We assume that these PrDs might be involved in Bb aggregation during oogenesis, as it was shown 

for Velo1 (Boke et al., 2016).  

3.2.2 Buc aggregates via its IDRs during embryogenesis 

We discovered that the most of Buc protein sequence carries intrinsic disorder (Figure 18 A). 

However, the first 100 aa of Buc do not contain IDRs. Hence, IDRs do not play a role in germ plasm 

localization. We also showed that IDRs alone are able to aggregate in vitro (Figure 21 D-D’’). 

Therefore, we assume that IDRs are involved in aggregation of germ plasm. This assumption is in 

line with hypothesis that IDRs drive phase separation of proteins and by this can form liquid-like or 

more solid aggregates (Kato et al., 2012; Kroschwald et al., 2015). However, Buc IDRs alone do not 

drive germ plasm aggregation in-vivo. The construct lacking the N-terminal region (DeltaBuc11-88-

GFP) shows ubiquitous level of fluorescence upon overexpression in zebrafish embryos (Riemer 

2014, Doctoral dissertation). Hence, it can be hypothesized that the IDRs of Buc need to be first 

localized in order to become aggregated and form a hydrogel. Probably, the presence of RNA or other 

proteins within germ plasm granules is required for the localized formation of Buc hydrogels. This is 

in agreement with studies showing that low-complexity regions of IDPs can accommodate 

heterotypic polymerization (Han et al., 2012; Kato et al., 2012). 

In summary, we think that Buc localization is required to aggregate germ plasm during embryogenesis 

via IDRs of Buc. 
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3.2.3 The prion-like domains of Buc are not required for germ plasm localization  

We demonstrated that PrDs in Buc are not required for germ plasm localization (Figure 22, Figure 

25). However, our results regarding the requirement of the C-terminal PrD for germ plasm 

localization carry a degree of contradiction. On the one hand we found that both BucLoc deletions of 

the half of the C-terminal PrD (Δ62-66 and Δ67-71) localize as the WT BucLoc (Figure 27). On the 

other hand, we found decreased levels of expression for the full deletion (Δ64-71) or mutant (3D) of 

the C-terminal PrD of BucLoc, while the BucLoc 3D mutant still weakly localized to endogenous 

germ plasm (Figure 24). The reduced expression levels of these BucLoc constructs can be caused 

either by induced defects at the protein structural level or by removal of a regulatory sequence within 

the predicted PrD sequence.  

Remarkably, both the Δ62-66 and Δ67-71 BucLoc constructs have a deletion of one out of 2 tyrosines 

present in the C-terminal PrD, whereas the full deletion of the second prion domain (Δ64-71) 

represents a deletion of two tyrosines. Therefore, we hypothesized that the phosphorylation of both 

tyrosines might be an important regulatory mechanism in localizing Buc or regulating its degradation. 

Our hypothesis, is in line with previous results of phosphorylation-mediated degradation of the germ 

plasm organizer Oskar during Drosophila embryogenesis (Morais-de-Sá et al., 2013). This 

hypothesis, is further confirmed by our biochemical and immunohistochemistry experiments showing 

that germ plasm and BucLoc domain are not phosphorylated during embryogenesis (Figure 30, Figure 

31). Therefore, our data implies that a function of the PrD within BucLoc might be to regulate germ 

plasm localization and/or degradation via tyrosine phosphorylation. 

To sum up, our results can be summarized in the following model (Figure 40). BucLoc (aa 31-78) is 

required for germ plasm localization, whereas the IDR is required for germ plasm aggregation. 

Moreover, we think that Buc localization is the primary event in the establishment of germ plasm, 

followed by germ plasm aggregation via Buc IDRs. Additionally, germ plasm localization and/or 

degradation might be regulated by tyrosine hyperphosphorylation of the BucLoc domain.   
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Figure 40: A hypothetical two step model of germ plasm establishment in zebrafish. Buc protein sequence (middle 

scheme) consists from the ordered N-terminal region (residues 1-100) and the intrinsically disordered C-terminus (100-

639). The ordered N-terminal region of Buc contains BucLoc domain (31-78) which is sufficient for germ plasm 

localization. BucLoc contains multiple tyrosines which might be phosphorylated and involved in the regulation of Buc 

localization and/or degradation (Upper scheme). The prion-like domain (PRD) also contains two tyrosines (Y66, Y71) 

which might be also important regulatory sites for Buc localization and (or degradation. (Lower scheme) We think that 

germ plasm localization via BucLoc interaction with ZO1 is the first event before the germ plasm aggregation takes place 

via IDRs of Buc (Plasma membrane – yellow, tight junction - blue).   
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3.3 The core BucLoc interactome 

We identified 23 proteins interacting with Buc in the MS analysis (Figure 33, Table 1). Most of the 

identified proteins have a function in RNA processing, protein translation and degradation. Previous 

studies identified motor proteins, RNA helicases, RNA regulatory proteins and glycolytic enzymes 

as major constituents of germ granules in Drosophila (Zheng et al., 2016; DeHaan et al., 2017). We 

also found RNA helicases and RNA regulatory proteins as part of the BucLoc interactome. However, 

we did not find any motor proteins or glycolytic enzymes in our analysis. The reason for this 

difference might be due to protein sample preparation for the MS analysis or a difference in germ 

granule composition between Drosophila and zebrafish. 

Furthermore, we only identified one protein (Ihabp4) which binds to cytoskeleton and hence can play 

a role in anchoring germ plasm (Huang et al., 2000). Surprisingly, we did not identify any tight 

junction components in the main 23 BucLoc interactors. Although, ZO2 peptides were present in our 

raw data of 291 candidate proteins, the peptide counts were very low. Currently, we hypothesize that 

BucLoc interacts with ZO proteins via SH3-binding domains. SH3 domains interact weak and 

transient with other proteins (Okada et al., 2011). Hence, an effective pull-down of ZO proteins 

requires use of photoreactive amino acid cross-linkers (Okada et al., 2011). 

We also identified two well characterized germ plasm proteins: Piwil1 and Tdrd6. In zebrafish, Tdrd6 

is also identified in MS analysis with a pull-down of full length Buc (Roovers et al., 2018). The 

presence of Tdrd6 in the core BucLoc interactome, is probably due to BucLoc interaction with 

endogenous Buc. Previously we identified endogenous Buc in the pull-down and MS analysis of Buc 

localization signal (Riemer 2014, Doctoral dissertation). Also, MS analysis of the Bb in Xenopus 

shows that Velo1 is the most abundant protein there (Boke et al., 2016). However, we did not identify 

endogenous Buc in our MS analysis. We only identified Buc2l, a protein carrying 28% similarity on 

a sequence level with Buc. Therefore, there might a mistake have occurred in annotation of Buc 

peptides. 

 

Thus, the profile of the identified BucLoc interactome is similar to the main germ granule proteins 

found in other studies. However, our analysis lacks some of the most promising candidates involved 

in germ plasm localization like ZO proteins. Future studies will focus on using photoreactive amino 

acid cross-linkers to identify proteins which interact weakly or only transiently with BucLoc, like 

ZO. 

3.4 Conserved functions of Buc 

We showed that both Buc and sOsk induce PGCs in the 16-cell assay (Figure 34). However, only 

Velo and Buc localize to zebrafish germ plasm, whereas sOsk is localized to the nucleus (Figure 36, 

Figure 35). It was shown that sOsk activates Vasa helicase activity and by this might lead to activation 

of germline specification programs (Jeske et al., 2017). Hence, the PGC-inducing ability of Buc and 

sOsk in the 16-cell assay might also depend on the activation of zebrafish Vasa helicase activity. It is 

remarkable, that despite the nuclear sOsk localization, it still induces formation of PGCs. Hence, 

probably upon sOsk overexpression in a corner blastomere, some fraction of sOsk localizes to germ 

plasm and induces PGC formation later on during development via activation of Vasa helicase 

activity. 
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Our current model of germ plasm localization in zebrafish involves ZO1 mediated anchoring of Buc 

to cytoskeleton. Our result that Velo1 localized to zebrafish germ plasm suggests that Velo1 carries 

a localization sequence, which is similar to BucLoc. This result also suggests that germ plasm is also 

anchored via ZO1 in Xenopus. This is in line with the formation of tight junctions early during 

Xenopus embryogenesis (Fleming et al., 2000). In contrast to this hypothesis, we cannot exclude a 

possibility that endogenous Buc and Velo1 co-aggregate and this results in Buc and Velo1 co-

localization in our experiment. 

Our result suggests that sOsk protein does not carry a germ plasm localization signal. This hypothesis 

is in line with a model stating that localization of sOsk RNA is required for sOsk protein localization 

(Rongo et al., 1995; Ephrussi et al., 1991; Kim-Ha et al., 1991). However, it was shown that actin 

cytoskeleton is required to maintain localized sOsk protein during Drosophila oogenesis (Jankovics 

et al., 2002; Polosello et al., 2002). The septate junctions (SJ) in invertebrates are considered be 

analogous to tight junctions in vertebrates (Matter & Balda, 2003). Hence, we do not exclude a 

possibility that SJ in Drosophila are associated with the pole plasm. Interestingly, the ZO1 homolog 

in Drosophila the Lethal(1)discs-large-1 (Dlg) localizes to the germline-contacting follicle cells at 

the posterior domain of Stage 8 and 9 egg chambers (Ng et al., 2016, Willott et al., 1993). At the 

same stage of development sOsk protein is translated at the posterior pole of oocytes (Markussen et 

al., 1995). Hence, a possibility exists for sOsk interaction with Dlg protein. Dlg contains similar SH3 

domains as ZO1, but lacks its C-terminal domain compared to ZO1 (Willott et al., 1993). Thus, it is 

tempting to speculate that the reason sOsk does not localize to zebrafish germ plasm is its preference 

to interact with the invertebrate ZO1 isoform which is structurally different from the zebrafish ZO1. 

To sum up, vertebrates and invertebrates share ability to induce PGC formation from somatic cells. 

However, the molecular mechanism of germ plasm localization is only conserved in vertebrates but 

not in invertebrates. 

4. Conclusion 

Buc is the first protein in vertebrates required for germ plasm assembly and localization (Bontems et 

al., 2009). Furthermore, Buc is an important factor in germ cells specification. Since the discovery of 

the four germ plasm localization spots, the molecular mechanism of germ plasm localization 

remained unknown.  

Our results demonstrate that Bb stores various maternal cellular structure markers in their inactive 

state during early oogenesis. In contrast, during early embryogenesis only the tight junction 

component ZO1-A co-localizes with Buc. Hence, we assume that ZO1-A becomes functional during 

early embryogenesis and forms a tight junction to which germ plasm is anchored. Thus, the four germ 

plasm localization spots are formed due to the segregation of the germline specific ZO1-A isoform 

from the rest of the inherited maternal components during the compaction of germ plasm to the distal 

ends of cleavage furrows. To further understand how germ plasm is anchored to tight junction, the 

presence of mature tight junctions during early embryogenesis in zebrafish need to be addressed by 

electron microscopy.  

We demonstrated a role of ZO1 phosphorylation in Buc degradation. Based on this result we assume 

that PKC-mediated phosphorylation of ZO1 is required for the tight regulation of Buc levels during 

early embryogenesis. Our data also supports a model where phosphorylation status of ZO1 determines 

its ability to anchor Buc at the furrow. So far, inhibiting ZO1 phosphorylation resulted in an enhanced 
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Buc localization at the furrow. Future research will focus on inducing ZO1 phosphorylation (e.g. by 

a PKC activator) to create a loss of function phenotype, where Buc is not localized to the furrow. 

Also, the nature of Buc and ZO1 interaction need to be investigated as well. These experiments are 

essential in further understanding how Buc is anchored by ZO1 at the furrow.  

Mapping of BucLoc domain showed that Buc PrDs are not required for germ plasm localization 

during embryogenesis. Furthermore, we showed that BucLoc domain does not contain predicted 

IDRs. Hence, we assume that IDRs are not involved in germ plasm localization. In contrast, our data 

suggests that the aggregation of germ plasm during embryogenesis depends on Buc IDRs. Since, 

IDRs alone lack the ability to form aggregates in vivo, we assume that the localization of Buc is the 

critical step in inducing germ plasm aggregation via the IDRs during embryogenesis. The results that 

the predicted aggregation domains in the localization signal of Buc are not required for germ plasm 

localization are in line with a more liquid-like behavior of germ plasm during embryogenesis, 

compared to oogenesis. The more solid Buc aggregates during oogenesis are probably required for 

the storage of maternally provided components, which is in line with our data and previous studies 

(Boke et al., 2016). In contrast, the function of the more liquid-like Buc aggregates can be to localize 

germ plasm and to release the maternally provided cellular structures into the embryo.  

We demonstrated that germ plasm is not phosphorylated during embryogenesis. Moreover, BucLoc 

tyrosine phosphomimic does not localize to endogenous germ plasm and is expressed at lower levels 

than WT BucLoc. Hence, we assume that dephosphorylation of BucLoc at tyrosines might be required 

for germ plasm localization. Furthermore, we hypothesize that the tyrosine phosphorylation in 

BucLoc might be required for Buc degradation. Identifying the exact tyrosine residues which are 

differentially phosphorylated in BucLoc between oogenesis and embryogenesis will be the crucial 

step in understanding the role of phosphorylation in Buc localization or degradation. 

Using the BucLoc domain we identified 23 proteins in the MS analysis. From the identified BucLoc 

interactors, Ihabp4 is the most promising candidate for anchoring germ plasm to cytoskeleton. 

Furthermore, G3bp2, Rbm4.3. and Buc2l are less likely to play a role in germ plasm localization, 

because they have no known domains or data on interaction with cytoskeleton. Future study will focus 

on co-localization analysis of Buc and Ihabp4. 

In this study, we established an assay to study co-localization of overexpressed germ plasm organizers 

like Velo1, Oskar and Buc with the endogenous zebrafish germ plasm. Our results show the 

conservation of the germ plasm localization mechanism in vertebrates. Hence, we hypothesize that in 

other vertebrates like Xenopus, tight junction also plays a role in germ plasm localization. Studying 

the co-localization of Xenopus germ plasm and ZO1 will be an essential step in further understanding 

of the evolutionary conservation of the germ plasm localization mechanism in vertebrates. 

Identification of ZO1-A as a potential candidate for anchoring germ plasm, addressing the role of 

PrDs and IDRs in germ plasm localization, isolation of the core Buc interactome and studying the 

conservation of the germ plasm localization mechanism among vertebrates and invertebrates 

contribute to understanding of the fundamental principles of germ plasm localization.  
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5. Methods 

5.1 Zebrafish Handling & Maintenance 

Zebrafish (Danio rerio) was used as a model organism and maintained due to the standard protocol 

(Westerfield, 2000). 

5.1.2 Microinjection 

Before injection, microneedles were pulled using a P-97 Micropipette Puller (Sutter Instrument 

Flaming, Novato, USA) with the following settings: heat (515 °C), pull (218), velocity (80) and time 

(250 ms). A purified sense RNA was diluted as described in Table 2 (final RNA concentration: 120 

ng/μl). Then, microneedles were mounted in the needle holder connected to a PV820 Pneumatic Pico 

Pump (World Precision Instruments, Sarasota, USA) and loaded with the capped sense RNA. The tip 

of the microneedle was clipped with a forceps and injection volume was adjusted to 4 nl by 

manipulating the injection pressure and time. After injection, embryos were transferred back to E3 (5 

mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM MgSO4, 0.00001 % methylene blue) medium 

and incubated at RT or at 28 °C. 

 

Table 2: RNA dilution for microinjection 

Volume (μl) 

x μl                         purified RNA 

1 μl                         1M KCl 

1 μl                         0.5% Phenolred  

Up to 10 ul            RNAse-free H2O  

5.1.3 Dechorionation 

Embryos were chemically dechorionated with pronase enzyme (30 mg/ml; Roche, Mannheim). 

Embryos were treated for 3-5 min with pronase solution in glass beakers (≈50 μl E3 medium + 50 μl 

of the pronase solution) and afterwards washed three times with 1x E3 medium. 

5.1.4 Deyolking 

Up to 200 embryos were deyolked to remove most of the yolk granules before lysis (Link et al., 

2006). For deyolking 1/2 Ginzburg Fish Ringer with Calcium was used (55 mM NaCl, 2.7 mM CaCl2, 

1.8 mM KCl, 1.25 mM NaHCO3). After deyolking the cell pellet was washed two times with wash 

buffer (110 mM NaCl, 3.5 mM KCl, 2.7 mM CaCl2, 10 mM Tris (pH 8.5)). The cell pellet was 

directly used for further experiments. 
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5.1.5 Preparation of embryo lysates 

To prepare embryo lysates for analysis by SDS-polyacrylamide gel electrophoresis (Chapter 5.4.1), 

deyolked embryo were resuspended in 2x SDS loading buffer (4% SDS, 20% glycerol, 10% 2-

mercaptoethanol, 0.004% bromophenol blue and 0.125 M Tris HCl, pH approx. 6.8., Merck, 

Kenilworth, New Jersey, USA) and incubated at 95 °C for 5 min. After cooling of the sample on ice, 

it was loaded directly on a SDS-polyacrylamide gel or stored at -20°C. 

5.1.6 Live imaging 

Embryos were incubated until 512-cell stage (2.5 hpf), dechorionated (Chapter 5.1.3), transferred to 

a 35 mm FluoroDish (World Precision Instruments Inc., Sarasota, USA) and analyzed with a LSM780 

confocal microscope using the Zen acquisition software (Zeiss AG, Jena, Germany).  

5.1.7 Drug treatments 

The treatment of oocytes and embryos with hexanediol and hexanetriol was performed as described 

in Krishnakumar et al., 2018. For the Calphostin C treatment, embryos were placed at the 1-cell stage 

in either 500 nM or 3 µM drug dissolved in the E3 medium. Then embryos were processed for the 

live-imaging (Chapter 5.1.6) at the 512-cell stage. 

5.2 Plasmid vectors and constructs 

5.2.1 Plasmid vectors 

PCs2+ vector contains the simian cytomegalovirus IE94 enhancer/promoter that functions in vivo 

(e.g. frog and zebrafish) as well as tissue culture cells (Rupp et al., 1994). In vitro transcription of 

sense RNA is possible using the SP6 promoter in 5'-untranslated region of the IE94 driven transcript 

in pCS2+ (Rupp et al., 1994). The plasmid carries ampicillin resistance and the vector backbone 

originates from the pBluescript II KS+ vector. pDONR221 (Life Technologies, Carlsbad, USA) 

contains recombination sites for bacteriophage lambda in E.coli. These recombination sites are used 

in the Gateway ® cloning (Chapter 5.3.5). pDONR221 contains a kanamycin resistance gene for 

selection in E.coli. pCSDest2 is a Gateway-adapted expression vector, based on the pCS-backbone 

(Villefranc et al., 2007). To generate C-terminal GFP or mCherry tags, pCSDest2 can be combined 

with p3EeGFP and p3EmCherry gateway-adapted entry vectors in a multisite gateway recombination 

reaction (Villefranc et al., 2007). 

 

 

5.2.2 Cloned vector and expression constructs 

Expression constructs to study Buc and sOsk aggregation in vitro were cloned with the In-Fusion® 

cloning (Chapter 5.3.6). The constructs used for the identification, mapping and mutagenesis of the 

BucLoc domain were cloned by the Gateway® cloning (Chapter 5.3.5). 

 

https://www.google.com/search?client=firefox-b-d&channel=trow&q=Kenilworth+(New+Jersey)&stick=H4sIAAAAAAAAAOPgE-LUz9U3MEkzqChU4gIxjQzMStIstbSyk63084vSE_MyqxJLMvPzUDhWGamJKYWliUUlqUXFi1jFvVPzMnPK84tKMhQ0_FLLFbyAwqmVmgBZElOJXwAAAA&sa=X&ved=2ahUKEwiLpfT185DkAhVLIlAKHV6ODjUQmxMoATASegQICxAS
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Table 3: Cloned expression plasmids used for in vitro transcription of Buc deletion constructs or 

transfection into cell culture cells. 

 

Name Vector Insert Cloning strategy 

pCS2+ buc-

pmEGFP 

 

 

pCS2+ pmEGFP (1) Buc was amplified using the primers 

pCS2+_Buc_fl_fw_BamhI, 

pCS2+_Buc_fl_rev_BamhI from pCSdest2-Buc-

GFP plasmid and inserted in the BamhI digested 

pCS2+ plasmid by In-Fusion® cloning. (2) pmEGFP 

was amplified from pmEGFP-C1 (Addgene, plasmid 

#36412, Watertown, Massachusetts, USA) using the 

primers pmGFP_in-fusion_fw, pmGFP_in-

fusion_rev and inseted in the pCS2+ Buc digested 

with XbaI by In-Fusion® cloning. 

pCS2+ 

sOsk-

pmEGFP 

 

pCS2+ pmEGFP (1) sOsk was amplified using primers 

Osk_fw_in_fusion_pCS2+ BamHI, 

Osk_rev_in_fusion_pCS2+ BamHI primers and 

inserted in the BamhI digested pCS2+ plasmid by In-

Fusion® cloning. (2) pmEGFP was amplified using 

the primers pmGFP_in-fusion_fw, pmGFP_in-

fusion_rev and inserted in the pCS2+ sOsk digested 

with XbaI by In-Fusion® cloning. 

pENTR221-

sOsk 

pDONR

221 

sOsk sOsk sequence was amplified from pCS2+ sOsk-

eGFP, using the primers Osk_gateway_fw, 

Osk_gateway_rev. The PCR product was recombined 

into pDONR221.  

 

pEXPpCSD

est2  

sOsk-

mCherry 

pCSdest

2 

sOsk-

mCherry 

pENTR221-sOsk was recombined with pCSDest2 

and p3EmCherry 

pENTR221- 

Buc21-88 

pDONR

221 

buc21-88 buc21-88 was amplified using the primers Buc11-

88_-10_N_fw_gateway, Buc11-

88_WT_rev_gateway from the pCSdest2-Buc11-88-

eGFP. The PCR product was recombined into 

pDONR221. 

pENTR221- 

Buc31-88 

pDONR

221 

buc31-88 buc31-88 was amplified using the primers Buc11-

88_-20_N_fw_gateway, Buc11-

88_WT_rev_gateway from the pCSdest2-Buc11-88-

eGFP. The PCR product was recombined into 

pDONR221. 

pENTR221-

Buc36-88 

pDONR

221 

buc36-88 buc36-88 was amplified using the primers Buc11-

88_-25_N_fw_gateway, Buc11-

88_WT_rev_gateway from the pCSdest2-Buc11-88-

eGFP. The PCR product was recombined into 

pDONR221. 

https://www.google.com/search?client=firefox-b-d&channel=trow&q=Watertown&stick=H4sIAAAAAAAAAONgVuLQz9U3KIm3KF_EyhmeWJJaVJJfngcAXBgGHxgAAAA&sa=X&ved=2ahUKEwjAsIjL9pDkAhULYVAKHbcKD8UQmxMoATATegQICxAK
https://www.google.com/search?client=firefox-b-d&channel=trow&q=Massachusetts&stick=H4sIAAAAAAAAAONgVuLUz9U3MM02L05axMrrm1hcnJicUVqcWlJSDABCWenIHQAAAA&sa=X&ved=2ahUKEwjAsIjL9pDkAhULYVAKHbcKD8UQmxMoAjATegQICxAL
https://www.google.com/search?client=firefox-b-d&channel=trow&q=USA&stick=H4sIAAAAAAAAAONgVuLUz9U3sEw2LzdYxMocGuwIAEVWbCATAAAA&sa=X&ved=2ahUKEwjAsIjL9pDkAhULYVAKHbcKD8UQmxMoAzATegQICxAM
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pENTR221-

Buc31-78 

pDONR

221 

buc31-78 Buc11-78 was amplified using the primers Buc11-

88_-10_C_fw_gateway, Buc11-88_-

20_N_fw_gateway from the pCSdest2-Buc11-88-

eGFP. The PCR product was recombined into 

pDONR221. 

pENTR221-

Buc31-73 

pDONR

221 

buc31-73 buc11-73 was amplified using the primers Buc11-

88_-15_C_fw_gateway, Buc11-88_-

20_N_fw_gateway from the pCSdest2-Buc11-88-

eGFP. The PCR product was recombined into 

pDONR221. 

pEXPpCSD

est2 

buc21-88-

eGFP  

 

pCSdest

2 

buc21-88-

eGFP 

pENTR221 buc21-88 was recombined with 

pCSDest2 and p3EeGFP 

pEXPpCSD

est2 

buc31-88-

eGFP  

 

pCSdest

2 

Buc31-88-

eGFP 

pENTR221 buc31-88 was recombined with 

pCSDest2 and p3EeGFP 

pEXPpCSD

est2 

buc36-88-

eGFP  

 

pCSdest

2 

buc36-88-

eGFP 

pENTR221 buc36-88 was recombined with 

pCSDest2 and p3EeGFP 

pEXPpCSD

est2 

buc31-78-

eGFP  

 

pCSdest

2 

buc31-78-

eGFP 

pENTR221 buc11-78 was recombined with 

pCSDest2 and p3EeGFP 

pEXPpCSD

est2 

buc31-73-

eGFP  

 

pCSdest

2 

buc31-73-

eGFP 

pENTR221 buc11-73 was recombined with 

pCSDest2 and p3EeGFP 

pEXPpCSD

est2 

buc31-78-

mCherry 

pCSdest

2 

buc31-78-

mCherry 

pENTR221-buc31-78-mCherry was recombined with 

pCSDest2 and p3EmCherry 
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pEXPpCSD

est2 

buc31-73-

mCherry 

 

pCSdest

2 

buc31-73-

mCherry 

pENTR221-buc31-73-mCherry was recombined with 

pCSDest2 and p3EmCherry 

pENTR221 

Buc31-78-

Δ31-35 

pDONR

221 

buc31-78-

Δ31-35 

buc31-78-Δ31-35 was amplified using the primers 

Buc31-78_Δ31-35_fw_gateway, Buc31-

78_rev_gateway from the extended overlapping 

oligos: Buc31-78_Δ31-35_fw and Buc_57-78_rev. 

The PCR product was recombined into pDONR221 

pENTR221 

Buc31-78-

Δ36-41 

pDONR

221 

buc31-78-

Δ36-41 

buc31-78-Δ36-41 was amplified using the primers 

Buc31-78 _fw_gateway, Buc31-78_rev_gateway 

from the extended overlapping oligos: Buc31-

78_Δ36-41_fw and Buc_57-78_rev. The PCR 

product was recombined into pDONR221 

pENTR221 

Buc31-78-

Δ42-46 

pDONR

221 

buc31-78-

Δ42-46 

buc31-78-Δ42-46 was amplified using the primers 

Buc31-78 _fw_gateway, Buc31-78_rev_gateway 

from the extended overlapping oligos: Buc31-

78_Δ42-46_fw and Buc_57-78_rev. The PCR 

product was recombined into pDONR221 

pENTR221 

Buc31-78-

Δ47-51 

pDONR

221 

buc31-78-

Δ47-51 

buc31-78-Δ47-51 was amplified using the primers 

Buc31-78 _fw_gateway, Buc31-78_rev_gateway 

from the extended overlapping oligos: Buc31-

78_Δ47-51_fw and Buc_57-78_rev. The PCR 

product was recombined into pDONR221 

pENTR221 

Buc31-78-

Δ52-56 

pDONR

221 

buc31-78-

Δ52-56 

buc31-78-Δ52-56 was amplified using the primers 

Buc31-78 _fw_gateway, Buc31-78_rev_gateway 

from the extended overlapping oligos: Buc31-

78_Δ52-56_fw and Buc_57-78_rev. The PCR 

product was recombined into pDONR221 

pENTR221 

Buc31-78-

Δ57-61 

pDONR

221 

buc31-78-

Δ57-61 

buc31-78-Δ57-61 was amplified using the primers 

Buc31-78 _fw_gateway, Buc31-78_rev_gateway 

from the extended overlapping oligos: BucLoc_Δ57-

61_rev, Buc_31-51_fw. The PCR product was 

recombined into pDONR221 

pENTR221 

Buc31-

78_Δ62-66 

pDONR

221 

buc31-78-

Δ62-66  

buc31-78-Δ62-66 was amplified using the primers 

Buc31-78 _fw_gateway, Buc31-78_rev_gateway 

from the extended overlapping oligos: BucLoc_Δ62-

66_rev, Buc_31-51_fw. The PCR product was 

recombined into pDONR221 

pENTR221 

Buc31-78-

Δ67-71 

pDONR

221 

buc31-78-

Δ67-71 

buc31-78-Δ67-71 was amplified using the primers 

Buc31-78 _fw_gateway, Buc31-78_rev_gateway 

from the extended overlapping oligos: BucLoc_Δ67-

71_rev, Buc_31-51_fw. The PCR product was 

recombined into pDONR221 
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pEXPpCSD

est2 

Buc31-78-

Δ31-35-

mCherry 

pCSdest

2 

buc31-78-

Δ31-35-

Cherry 

pENTR221-buc31-78-Δ31-35 was recombined with 

pCSDest2 and p3EmCherry 

pEXPpCSD

est2 

Buc31-78-

Δ36-41-

mCherry 

pCSdest

2 

buc31-78-

Δ36-41-

Cherry 

pENTR221-buc31-78-Δ36-41 was recombined with 

pCSDest2 and p3EmCherry 

pEXPpCSD

est2 

Buc31-78-

Δ42-46-

mCherry 

pCSdest

2 

buc31-78-

Δ42-46-

Cherry 

pENTR221-buc31-78-Δ42-46 was recombined with 

pCSDest2 and p3EmCherry 

pEXPpCSD

est2 

Buc31-78-

Δ47-51-

mCherry 

pCSdest

2 

buc31-78-

Δ47-51-

Cherry 

pENTR221-buc31-78-Δ47-51was recombined with 

pCSDest2 and p3EmCherry 

pEXPpCSD

est2 

Buc31-78-

Δ52-56-

mCherry 

pCSdest

2 

buc31-78-

Δ52-56-

Cherry 

pENTR221-buc31-78-Δ52-56was recombined with 

pCSDest2 and p3EmCherry 

pEXPpCSD

est2 

Buc31-78-

Δ57-61-

mCherry 

pCSdest

2  

buc31-78-

Δ57-61-

Cherry 

pENTR221-buc31-78-Δ57-61was recombined with 

pCSDest2 and p3EmCherry 

pEXPpCSD

est2 

Buc31-78-

Δ62-66-

mCherry 

pCSdest

2 

buc31-78-

Δ62-66-

Cherry 

pENTR221-buc31-78-Δ62-66was recombined with 

pCSDest2 and p3EmCherry 

pEXPpCSD

est2 

Buc31-78-

Δ67-71-

mCherry 

pCSdest

2 

buc31-78-

Δ67-71-

Cherry 

pENTR221-buc31-78-Δ67-71 

was  recombined with pCSDest2 and p3EmCherry 

pENTR221 pDONR

221 

buc31-78-

S33E 

buc31-78-S33E was amplified using the primers 

Buc31-78_S33E_fw_gateway, Buc31-
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Buc31-78-

S33E 

78_rev_gateway from the extended overlapping 

oligos Buc_S33E_fw and Buc_57-78_rev.The PCR 

product was recombined into pDONR221 

pENTR221 

Buc31-78-

S33A 

pDONR

221 

buc31-78-

S33A 

buc31-78-S33A was amplified using the primers 

Buc31-78_S33A_fw_gateway, Buc31-

78_rev_gateway from the extended overlapping 

oligos Buc_S33A_fw and Buc_57-78_rev. The PCR 

product was recombined into pDONR221 

pENTR221 

Buc31-78- 

allYtoE 

pDONR

221 

buc31-78- 

allYtoE 

buc31-78- allYtoE was amplified using the primers 

Buc31-78_ allYtoE _fw_gateway, Buc31-78_ 

allYtoE _rev_gateway from the extended overlapping 

oligos Buc_allYtoE_fw and Buc_AllYtoE_rev. The 

PCR product was recombined into pDONR221 

pENTR221 

Buc31-78- 

allYtoF 

pDONR

221 

buc31-78- 

allYtoF 

buc31-78- allYtoF was amplified using the primers 

Buc31-78_ allYtoF _fw_gateway, Buc31-78_ 

allYtoF _rev_gateway from the extended overlapping 

oligos: Buc_AllYtoF_fw and Buc_AllYtoF_rev. The 

PCR product was recombined into pDONR221 

pEXPpCSD

est2 

Buc31-78-

S33E-

mCherry 

pCSdest

2 

buc31-78-

S33E-

mCherry 

pENTR221-buc31-78-S33E 

was  recombined with pCSDest2 and p3EmCherry 

pEXPpCSD

est2 

Buc31-78-

S33A-

mCherry 

pCSdest

2 

buc31-78-

S33A-

mCherry 

pENTR221-buc31-78-S33A 

was  recombined with pCSDest2 and p3EmCherry 

pEXPpCSD

est2 

Buc31-78-

AllYtoE-

mCherry 

pCSdest

2 

buc31-78-

AllYtoE-

mCherry 

pENTR221-buc31-78-AllYtoE 

was  recombined with pCSDest2 and p3EmCherry 

pEXPpCSD

est2 

Buc31-78-

AllYtoF-

mCherry 

pCSdest

2 

buc31-78-

AllYtoF-

mCherry 

pENTR221-buc31-78-AllYtoF 

was  recombined with pCSDest2 and p3EmCherry 

pENTR221 

Buc31-78-

66,68,71YF

Y > DDD 

pDONR

221 

buc31-78-

66,68,71YFY 

> DDD 

buc31-78-66,68,71YFY > DDD was amplified by a 

standard high-fidelity PCR from pDONR221-buc31-

78 using the primers Buc_66_68_71_YFY > 

DDD_fw_5’phosphorylated and 

Buc_66_68_71_YFY > 

DDD_rev_5’phosphorylated. Then the amplified 

DNA was ligated (Chapter 5.3.4) and correct 

plasmids were selected by colony PCR. 
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            Table 4: Primers used for the in-fusion and gateway cloning 

Nam

e  

  

 

Sequence (5’ to 3’ direction) Cloning 

purpose 

pCS2+_Buc_fl_fw_BamhI TCTTTTTGCAGGATCATGGAAGG

AATAAATAACAATTCACAACCAA

TGGGAGT 

 

Buc into 

pCS2+ 

 

pCS2+_Buc_fl_rev_BamhI 

 

CGAATCGATGGGATCGTATCTTG

AGCCTCTTTTCTTCATAGAACCTC 

 

Buc into 

pCS2+ 

 

Osk_fw_in_fusion_pCS2+ BamHI TTGTTCTTTTTGCAGGATC 

ATGACCATCATCGAGAGCAAC 

sOsk into 

pCS2+ 

 

Osk_rev_in_fusion_pCS2+ BamHI TCGAATCGATGGGATC 

GTGGTATGTTCTCCAGGGACGG 

sOsk into 

pCS2+ 

 

mGFP_in-fusion_fw AGGCCTCTCGAGCCTCTAGATGG

TGAGCAAGGGCGAGGA 

C-term. 

Fusion f 

pmEGFP 

with Buc / 

sOsk 

mGFP_in-fusion_rev CGACTCACTATAGTTCTAGTTACT

TGTACAGCTCGTCCAT 

C-term. 

Fusion f 

pmEGFP 

with Buc / 

sOsk 

Osk_gateway_fw GGGGACAAGTTTGTACAAAAAAG

CAGGCTATATGACCATCATCGAG

AGCAAC 

sOsk 

mCherry C-

term. fusion 

Osk_gateway_rev GGGGACCACTTTGTACAAGAAAG

CTGGGTA 

GTGGTATGTTCTCCAGGGACGG 

sOsk 

mCherry C-

term. fusion 

Buc11-88_-10_N_fw_gateway GGGGACAAGTTTGTACAAAAAAG

CAGGCTATATGAACCACACAAGA

CCATTTTTC 

Buc 

deletion 

Buc11-88_-20_N_fw_ gateway GGGGACAAGTTTGTACAAAAAAG

CAGGCTAT 

ATGCCACCATCTCAGCCTTATTT 

Buc 

deletion 
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Buc11-88_-25_N_fw_ gateway 

 

GGGGACAAGTTTGTACAAAAAAG

CAGGCTATATGTATTTCATGTATC

AGTGGCC 

Buc 

deletion 

Buc11-88_-10_C_rev_ gateway GGGGACCACTTTGTACAAGAAAG

CTGGGTA 

ATGTGGAATCACATAGCCAGG 

Buc 

deletion 

Buc11-88_-15_C_rev_ gateway GGGGACCACTTTGTACAAGAAAG

CTGGGTA 

GCCAGGATACTGCATAAACTGAT

AAGGGGC 

Buc 

deletion 

Buc11-88_WT_fw_gateway GGGGACAAGTTTGTACAAAAAAG

CAGGCTAT ATG 

GGAGTTGGGCAACCTCA 

Buc 

deletion 

Buc11-88_WT_rev_gateway GGGGACCACTTTGTACAAGAAAG

CTGGGTA  

TCTTCTGTAATCAATTGGCTG 

Buc 

deletion 

Buc31-78_Δ31-35_fw_gateway GGGGACAAGTTTGTACAAAAAAG

CAGGCTATATGTATTTCATGTATC

AGTGG 

BucLoc 

mapping 

Buc31-78_fw_gateway GGGGACAAGTTTGTACAAAAAAG

CAGGCTATATGCCACCATCTCAG

CCT 

BucLoc 

mapping 

buc31-78_rev_gateway GGGGACCACTTTGTACAAGAAAG

CTGGGTA 

ATGTGGAATCACATAGCC 

BucLoc 

mapping 

Buc31-78_S33E_fw_gateway GGGGACAAGTTTGTACAAAAAAG

CAGGCTATATGCCACCAGAGCAG

CCTTAT 

BucLoc 

mutagenesis 

Buc31-78_S33A_fw_gateway GGGACAAGTTTGTACAAAAAAGC

AGGCTATATGCCACCAGCTCAGC

CTTATTTC 

BucLoc 

mutagenesis 

Buc31-78_allYtoE_fw_gateway GGGGACAAGTTTGTACAAAAAAG

CAGGCTATATGCCACCATCTCAG

CCTGAA 

BucLoc 

mutagenesis 

Buc31-78_allYtoE_rev_gateway GGGGACCACTTTGTACAAGAAAG

CTGGGTAATGTGGAATCACTTCG

CCAGG 

BucLoc 

mutagenesis 

Buc31-78_allYtoF_fw_gateway GGGGACAAGTTTGTACAAAAAAG

CAGGCTATATGCCACCATCTCAG

CCTTTT 

BucLoc 

mutagenesis 

Buc31-78_allYtoF_rev_gateway GGGGACCACTTTGTACAAGAAAG

CTGGGTAATGTGGAATCACAAAG

CCAGG 

BucLoc 

mutagenesis 
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Buc_66_68_71_YFY > 

DDD_fw_5’phosphorylated 

CCCTATATGGCCCCTGATCAGGAT

ATGCAG 

GATCCTGGCTATGTGATT 

BucLoc 

mutagenesis 

Buc_66_68_71_YFY > 

DDD_rev_5’phosphorylated 

AATCACATAGCCAGGATCCTGCA

TATCCTGATCAGGGGCCATATAG

GG 

BucLoc 

mutagenesis 

 

 

Table 5: Oligonucleotides used for BucLoc mapping and mutagenesis 

 

Name Sequence (5’ to 3’ direction) Cloning purpose 

BucLoc_Δ31-

35_fw 

ATGTATTTCATGTATCAGTGGCCCATGAATCCA

TATGGCCATTACGGTTTTCCCGGGCCGGCTTTG

CACTTTGGCCGTCCCTAT 

BucLoc 

mapping 

BucLoc_Δ36-

41_fw 

ATGCCACCATCTCAGCCTCCCATGAATCCATAT

GGCCAT TAC GGT TTT CCC GGG CCG GCT TTG 

CAC TTT GGC CGT CCC TAT ATG 

BucLoc 

mapping 

BucLoc_Δ42-

46_fw 

ATG CCA CCA TCT CAG CCT  TAT TTC ATG TAT 

CAG TGG GGC CAT TAC GGT TTT CCC GGG CCG 

GCT TTG CAC TTT GGC CGT CCC TAT ATG 

BucLoc 

mapping 

BucLoc_Δ47-

51_fw 

ATG CCA CCA TCT CAG CCT TAT TTC ATG TAT 

CAG TGG CCC ATG AAT CCA TAT CCC GGG CCG 

GCT TTG CAC TTT GGC CGT CCC TAT ATG 

BucLoc 

mapping 

BucLoc_Δ52-

56_fw 

ATG CCA CCA TCT CAG CCT TAT TTC ATG TAT 

CAG TGG CCC ATG AAT CCA TAT GGC CAT TAC 

GGT TTT CAC TTT GGC CGT CCC TAT ATG 

BucLoc 

mapping 

BucLoc_Δ57-

61_rev 

ATGTGGAATCACATAGCCAGGATACTGCATAAA

CTGATAAGGGGCCATATACAAAGCCGGCCCGG

GAAAACCGTAATGGCCATATGG 

BucLoc 

mapping 

BucLoc_Δ62-

66_rev 

ATGTGGAATCACATAGCCAGGATACTGCATAAA

CTGGGGACGGCCAAAGTGCAAAGCCGGCCCGG

GAAAACCGTAATGGCCATATGG 

BucLoc 

mapping 

BucLoc_Δ67-

71_rev 

ATGTGGAATCACATAGCCAGGATAAGGGGCCA

TATAGGGACGGCCAAAGTGCAAAGCCGGCCCG

GGAAAACCGTAATGGCCATATGG 

BucLoc 

mapping 

Buc_57-78_rev ATGTGGAATCACATAGCCAGGATACTGCATAAA

CTGATAAGGGGCCATATAGGGACGGCCAAAGT

G 

BucLoc 

mapping 
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Buc_31-51_fw ATG CCA CCA TCT CAG CCT TAT TTC ATG TAT 

CAG TGG CCC ATG AAT CCA TAT GGC CAT TAC 

GGT TTT 

BucLoc 

mapping 

Buc_S33E_fw ATGCCA CCA GAG CAGCCTTATTTCAT GTAT 

CAGTGGC 

CCATGAATCCATATGGCCATTACGGTTTTCCCG

GGCCGGCTTTGCACTTTGGCCGTCCCTAT 

BucLoc 

mutagenesis 

Buc31-

78_S33A_fw 

ATGCCA CCA GCT 

CAGCCTTATTTCATGTATCAG TGGCC 

CATGAATCCATATGGCCATTACGGTTTTCCCGG

GCCGGCTTTGCACTTTGGCCGTCCCTAT 

BucLoc 

mutagenesis 

Buc31-

78_allYtoE_fw 

ATGCCACCATCTCAGCCTGAATTCATGGAACAG

TGGCCCATGAATCCAGAAGGCCATGAAGGTTTT

CCCGGGCCG GCTTTGCACTTTGGCCGTCCCGAA 

BucLoc 

mutagenesis 

Buc31-

78_allYtoE_rev 

ATGTGGAATCACTTCGCCAGGTTCCTGCATAAA

CTGTTCAGGGGCCATTTCG 

GGACGGCCAAAGTGCAA 

BucLoc 

mutagenesis 

Buc31-

78_allYtoF_fw 

ATGCCACCATCTCAGCCTTTTTTCATGTTTCAGT

GGCCCATGAATCCATTTGGCCATTTTGGTTTTCC

CGGGCCGG CTTTGCACTTTGGCCGTCCCTTT 

BucLoc 

mutagenesis 

Buc31-

78_allYtoF_rev 

ATGTGGAATCACAAAGCCAGGAAACTGCATAA

ACTGAAAAGGGGCCATAAAGGGACGGCCAAAG

TGCAA 

BucLoc 

mutagenesis 
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5.2 Zebrafish transgenic lines 

5.2.1 Transgenic buc-gfp line 

To be able to isolate Buc interactors in vivo, a transgenic line was generated in the mutant Bucp106 

background (Riemer et al., 2015). For this, a copy of buc genomic locus was isolated and then a gfp 

was inserted in frame at the 3’end of the buc ORF. Then the buc-gfp construct was integrated into 

zebrafish genome using the Tol2 transposon system. The integration rescued buc phenotype by 

expression of Buc-GFP fusion protein. Buc-GFP is visible starting from stage I oocytes. Furthermore, 

the localization of Buc-GFP can be followed through embryogenesis and at 2 dpf the protein is still 

detected in living germ cells. The germ cell identity at 2 dpf is confirmed by presence of Vasa protein. 

Transgenic Buc-GFP is expressed at endogenous levels, as it was shown by comparison to 

endogenous Buc levels by immunohistochemistry experiments. Therefore, the transgenic Buc-GFP 

is expected to preserve the same protein interactors as endogenous Buc. 

 

5.3 Molecular biology methods 

5.3.1 High-fidelity PCR 

A standard PCR reaction was performed to amplify DNA fragments (Mullis et al., 1986). 100 ng DNA was 

used as template in a 50 μl reaction containing 5x Phusion High Fidelity buffer (New England BioLabs, 

Ipswich, USA), 0.4 μM of each primer ( 

 

 

 

 

 

Table 6: Setting for a standard PCR) (Eurofins, Ebersberg, Germany), 0.2 mM of each dNTP (Thermo 

Scientific, Wilmington, USA) and 1 μl Phusion polymerase (5 U/μl, homemade). TPersonal or 

TProfessional TRIO thermocycler (Biometra, Göttingen) were used to run the PCR.  
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Table 6: Setting for a standard PCR 

 
 

5.3.2 Colony PCR 

Colonies were picked with a 10 ul pipette tip and briefly dipped into 100 ul LB medium containing an 

antibiotic. 1 ul of the bacterial suspension were added to 10ul reaction containing 5x Phusion High Fidelity 

buffer (New England BioLabs, Ipswich, USA), 0.08 μM of each primer ( 

 

 

 

 

 

Table 6: Setting for a standard PCR), 0.04 mM of each dNTP (Thermo Scientific, Wilmington, USA) and 

0.2 U of Phusion polymerase (5 U/μl, homemade). TPersonal or TProfessional TRIO thermocycler 

(Biometra, Göttingen) were used to run the PCR. The number of amplification cycles did not exceed the 

number of 30. 

Step  Temperature  Time Number 

of cycles 

Initial denaturation  

Denaturation  

Primer annealing  

Elongation  

Final elongation  

 

98 

98 

Primer specific 

72 

72 

30s 

10s 

15s 

40 s / kb 

5 min 

 

 

 

30-35x 
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5.3.3 Agarose gel electrophoresis 

Agarose ((% w/v) final concentration) was dissolved in 1x TBE buffer (0.1 M Tris–HCl, 0.1 M boric 

acid, 5.1 mm EDTA, pH 8.4) and cooked in a microwave for two minutes. 0.5 μg/ml ethidium 

bromide was added to a cooled down agarose-TBE solution to visualize nucleic acids. Gel Loading 

Buffer II (Thermo Fisher Scientific, Waltham, USA) was added to a DNA sample in ratio 1:10, prior 

to loading on an agarose gel. 1 μl of 1 kb Plus DNA Ladder (ThermoFisher, Carlsbad, USA) was 

loaded and run on gel in parallel with a DNA sample of interest to determine the size of DNA/RNA 

fragments. The electrophoresis was performed at 80-100 V for 30 minutes in 1x TBE buffer. After 

electrophoresis, the gels were examined using a Chemidoc gel documentation system (BioRad, 

Hercules, USA). 

5.3.4 Purification of DNA  

DNA was purified from agarose gel with the NucleoSpin R Gel and PCR Clean-up Kit (Macherey-

Nagel, Düren, Deutschland). Depart from manufacturer’s protocol, the column (open lid) was 

incubated at 44°C for 3 min after the second wash to remove residual ethanol. Then, 15 μl dH2O were 

applied to the column and again incubated at 44°C for 3 min. Finally, the column was centrifuged at 

120.000 rpm for 1 min. Purified PCR products were stored at - 20°C. 

5.3.5 Restriction enzyme digestion 

DNA was digested with restriction endonucleases according to the manufacturer’s instructions 

(Thermo Scientific, Wilmington, USA). For this, 5 µg of the plasmid were diluted in 17 uL dH2O 

and 1 μl of the restriction enzyme was added along with 2 uL of 10x FastDigest buffer (supplied with 

the enzyme). This was followed up by the incubation at 37°C for 3 hours. Then the linearized plasmid 

was purified (Chapter 5.3.3).1 μl of the purified linearized plasmid was loaded on a 0.5% agarose gel 

along with an undigested plasmid to check for a successful linearization. 

5.3.6 Ligation of DNA 

For site-directed mutagenesis, amplified vectors were ligated using the T4 ligase. 1 μl of T4 DNA 

ligase, 1 μl of T4 DNA ligase buffer and 1 μl of 100 mM dATP (Thermo fisher, Wilmington, USA) 

were added to a 10 μl ligation reaction. 2 different ligation reactions were performed with vector 

DNA and insert DNA ratios of 1:3 and 1:5, using total amount of 50 ng DNA for each reaction. The 

reaction was incubated 1 hour at 37°C and after 1 μl of the reaction was transformed into bacteria 

(Chapter 5.3.7).  

5.3.7 Gateway cloning 

We first inserted PCR products of interest into the pDONR221 (Entry clones) via the BP clonase 

induced recombination. For this, the DNA was amplified with primers containing the the attB sites 

(Table 4), which become attL sites after the recombination reaction. During the same recombination 

reaction, the lethal ccdB gene is replaced by the gene of interest and is cut out of the target vector. As 

a result, only bacteria cells transformed with the recombined vector are viable (negative selection). 

Subsequently, the entry clones were used for subcloning to create eGFP or mCherry fusion of a 
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protein of interest. The subcloning step requires the LR clonase, which will recombine the insert 

flanking attL sites with the the attR sites of a destination vector. In order to create fusion proteins, 

p3eEGFP or p3emCherry vector are used in combination with the donor vector of interest (Table 3) 

in a multisite LR reaction to create an expression clone. This expression clone can be used for in-

vitro transcription from the SP6 promoter (Chapter 5.3.10) 

For the BP or LR reaction following reagents (Table 7, Table 8) were mixed in a 1.5 ml reaction tube 

and incubated overnight at 25 °C. Then, 2 ml of Proteinase K solution (2 mg/ml) were added to the 

BP reaction mix and then incubated at 37 °C for 10 minutes. Subsequently, 1 μl of the BP or LR 

reaction mix was used for transformation. 

 

 

 

 

  

Table 7: Gateway BP reaction setup 

 Volume (μl) 

attB-PCR product (70 - 110 ng/ml) 

pDONRTM221 vector (100 ng/ml) 

5x BP ClonaseTM reaction buffer 

TE buffer 

3 

1.5 

2.0 

3.5 

Total volume 10 

 

Table 8: Gateway LR reaction setup 

 Volume (μl) Final concentration (fm) 

pDONR221-insert 

 

destination vector (pCS2+; 50 ng/ml) 

p3E EGFP or mCherry (50 ng/ml) 

5x LR ClonaseTM reaction buffer 

TE buffer (pH 8.0) 

 

0.50  

0.50 

0.25 

1.00 

up to 5 

 

10 

20 

10 

 - 
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Total volume 10  

5.3.8 In-fusion cloning 

The In-fusion® enzyme fuses PCR-generated sequences with a linearized vector by homologous 

recombination. The primers used in the PCR amplification (Table 3) have a 15-bp overlapping region 

with the DNA flanking the linearized vector. A digested vector was mixed with the insert in a 1:3 

ratio along with 2 μl of the 5X In-Fusion HD Enzyme Premix (Clonetech, Kusatsu, Japan) and 4 μl 

of a nuclease-free water. The reaction was incubated for 15 mins at 50°C using a Thermomixer 

Compact (Eppendorf, Hamburg, Germany). Subsequently, 1 μl of the reaction was transformed in 

competent E.coli cells. 

5.3.9 Chemical transformation 

After thawing the chemical competent E.coli dH5α cells (50ul, homemade) on ice for approximately 

30 min, 1 ul of a cloning reaction was added to cells. This was followed up by an incubation of the 

cells on ice for 30 min. After incubation, the cells were heatshocked at 42 °C for 40 s and incubated 

on ice for 5 min. Then, 250 ul S.O.C. medium (Thermo Scientific, Wilmington, USA) was added and 

the cells were incubated at 180 rpm (horizontal shaking) at 37 °C for 45 min. The entire cell-medium 

solution was spread out on LB medium (0.5 % (w/v) NaCl, 0.5 % (w/v) Yeast–Extract, 0.1 % (w/v) 

Glucose; pH 7.0) agar plates containing the respective antibiotics. The plates were incubated 

overnight at 37 °C. 

5.3.10 Plasmid DNA preparation 

To amplify DNA for a midiprep culture, 100 ml LB medium were mixed with respective antibiotics 

and inoculated with 100 uL of a miniprep culture or a pippett tip dipped into a bacterial colony. The 

midi culture was incubated overnight at 37°C and 180 rpm. The next day, 50 ml midi culture were 

transferred into a 50 ml plastic tube and centrifuged at 4000 rpm and 4°C for 20 min. The supernatant 

was discarded and the plasmid was purified from the pellet according to the manufacturer’s 

instructions of the NucleoBond R Xtra Midi Kit (Macherey-Nagel, Düren, Germany). The DNA was 

quantified with the NanoDrop 2000c spectrophotometer (Thermo Scientific, Wilmington, USA). 

Purified plasmid DNA was stored at - 20°C. 

5.3.11 DNA sequencing analysis 

1200 ng plasmid DNA were dissolved in 12 uL nuclease-free water in a micro tube 1.5 mL (Sarstedt, 

Nümbrecht, Germany). Subsequently, 5 uL of 8 mM sequencing primer (Table 9) was added to the 

sequencing tube. Sanger sequencing was performed by Microsynth SeqLab (Göttingen) and 

sequences were analyzed with the online Basic Local Alignment Search Tool (National Center for 

Biotechnology Information, Rockville, USA). 

 

Table 9: Primers used for sequencing 

 Sequence (5’ to 3’)  
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Name 

SP6  

eGFP-end_fw  

GFP_begin_rv  

GFPfor  

GFPrev  

ATTTAGGTGACACTATAGAA  

ACATGGTCCTGCTGGAGTTC  

CTTCATGTGGTCGGGGTAGC  

CACAAGTTCAGCGTGTCCGG  

CAAAGACCCCAACGAGAAGC  

5.3.12 In vitro transcription 

In order to prepare a DNA plasmid for transcription, it was linearized (Section 5.3.4) by NotI enzyme 

(Thermo Fisher Scientific, Waltham, USA). Next, in-vitro transcription was performed using the 

mMESSAGE mMACHINETM SP6 Transcription Kit (Thermo Scientific, Waltham, USA). Next, the 

sense RNA was purified by spin-column chromatography (Illustra ProbeQuant G-50 Micro Columns, 

GE Healthcare Life Sciences, Chicago, USA). The concentration of the purified RNA was measured 

at the NanoDrop 2000c spectrophotometer (Thermo Scientific, Wilmington, USA) and verification 

of fragment length was performed by agarose gel electrophoresis. RNA was aliquoted and stored at - 

20°C. 

5.4 Biochemical methods 

5.4.1 SDS-polyacrylamide gel electrophoresis 

SDS-PAGE is used to separate proteins corresponding to their mass/charge ratio (Laemli, 1970). 

Input and Co-IP samples from embryo lysates or in-vitro translated proteins were boiled in the 2X 

SDS loading buffer (Merck, Kenilworth, New Jersey, USA) at 95 °C for 5 mins before loading onto 

a 10% Acrylamide gel. 2 ul of the PageRuler™ Plus Prestained protein ladder marker (Thermo 

Scientific, Waltham, USA) was loaded onto a gel as a protein standard to determine the molecular 

weight of protein bands. The gel was run vertically in 1X SDS Running buffer (25 mM Tris, 250 mM 

glycine, 0.01% SDS) at a constant voltage of 80 V. Then after the dye font reached the resolving gel, 

the voltage was raised to 120 V. 

5.4.2 Colloidal Coomassie staining 

Gels were stained with a self-made colloidal coomassie (0.08% (w/v) Coomassie Brilliant Blue G-

250 solution, 1.6% (v/v) ortho-Phosphoric acid, 8% (w/v) ammonium sulfate, 20% methanol) 

(Neuhoff, 1988)for 6 hours or overnight and then destained using a destaining solution (40% 

methanol, 10% glacial acetic acid) overnight at room temperature. Gels were imaged using a standard 

scanner (EPSON). 

https://www.google.com/search?client=firefox-b-d&channel=trow&q=Kenilworth+(New+Jersey)&stick=H4sIAAAAAAAAAOPgE-LUz9U3MEkzqChU4gIxjQzMStIstbSyk63084vSE_MyqxJLMvPzUDhWGamJKYWliUUlqUXFi1jFvVPzMnPK84tKMhQ0_FLLFbyAwqmVmgBZElOJXwAAAA&sa=X&ved=2ahUKEwiLpfT185DkAhVLIlAKHV6ODjUQmxMoATASegQICxAS
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5.4.3 Western blot 

To detect proteins from embryo lysates or in-vitro translation, proteins were subjected to wet transfer 

and transferred to a nitrocellulose membrane (Burnette, 1981). The transfer was performed at 4 °C, 

at 80 V for 90 mins, using Trans-Blot® (Bio-rad, Hercules, USA) cell filled with wet transfer buffer 

(25 mM Tris, 190 mM glycine, 30% methanol).  After the transfer, the membrane was incubated with 

a primary antibody dilution (Table 10) overnight at 4 °C, in 5% milk powder in 1x Tris-buffered 

saline (TBS) withTween20, TBST (20 mM Tris, 150 mM NaCl, 0.05% Tween20, pH 7.4-7.6). Then, 

the membrane was washed 3x 10 min with TBST and incubated 1.5 hours with a dilution of the 

secondary antibody (Table 10) at RT in dark. Then, the membrane was washed again 3x 10 min with 

TBST. Finally, the membrane was imaged using the Odyssey® CLx Infrared Imaging system (Li-

Cor) and processed using the Image Studio™ software (Li-Cor). 

5.4.4 Co-immunoprecipitation 

For protein Co-IP from zebrafish, 200-1000 embryos were dechorionated (Chapter 5.1.3) and 

deyolked (Chapter 5.1.4). Then embryos were lysed (100 ul lysis buffer (Table 10) / 200 embryos) 

using a pestle on ice and the lysates were incubated on ice for 30 min. Each 10 min the lysates were 

pipetted extensively using a 200 ul pipette tip. In parallel, GFP-Trap Magnetic Agarose (MA) beads 

(Chromotek, Planegg, Germany) (10 ul / 200 embryos) were equilibrated with the dilution buffer 

(Table 11 Co-ip and lysis buffers), as stated by manufacturer. Then the lysates were added to the beads in 

the dilution buffer, to the final volume of 500 ul. This was followed by 30 min incubation at 4°C on 

rotation wheel. Afterward, the incubated beads were washed 3 times with dilution buffer, as stated by 

manufacturer. In the end, proteins were eluted by mixing 20 ul of the dilution buffer with 20 µl of the 

2X SDS loading buffer and boiled 10 min at 95°C (Merck, Kenilworth, USA).  

 

Table 10: Antibodies used for western blotting 

 

Antibody Dilution 

guinea pig-α-Buc (BioGenes, Berlin)  

Mouse- α-GFP (Merck, Kenilworth, USA) 

Mouse-α- α-Tubulin (Merck, Kenilworth, USA) 

Anti-Vasa (gifted by Prof. Dr. Knaut; (Knaut et al., 2000)) 

goat-α-guinea pig 800CW (IRDye, Li-Cor)  

goat-α-mouse 680CW(IRDye, Li-Cor)  

 

1:5000  

1:2500 

1:20000 

1:2500 

1:20000  

1:20000  

 

http://www.bio-rad.com/de-de/product/trans-blot-cell?ID=a9900af6-f596-45c8-859e-9985048a418e
https://www.google.com/search?client=firefox-b-d&channel=trow&q=Kenilworth+(New+Jersey)&stick=H4sIAAAAAAAAAOPgE-LUz9U3MEkzqChU4gIxjQzMStIstbSyk63084vSE_MyqxJLMvPzUDhWGamJKYWliUUlqUXFi1jFvVPzMnPK84tKMhQ0_FLLFbyAwqmVmgBZElOJXwAAAA&sa=X&ved=2ahUKEwi7muP6wY7kAhUCbVAKHbp1CwoQmxMoATASegQIDhAS
https://www.google.com/search?client=firefox-b-d&channel=trow&q=Kenilworth+(New+Jersey)&stick=H4sIAAAAAAAAAOPgE-LUz9U3MEkzqChU4gIxjQzMStIstbSyk63084vSE_MyqxJLMvPzUDhWGamJKYWliUUlqUXFi1jFvVPzMnPK84tKMhQ0_FLLFbyAwqmVmgBZElOJXwAAAA&sa=X&ved=2ahUKEwitsLDv-IzkAhWHblAKHSc3A2sQmxMoATASegQIDhAS
https://www.google.com/search?client=firefox-b-d&channel=trow&q=Kenilworth+(New+Jersey)&stick=H4sIAAAAAAAAAOPgE-LUz9U3MEkzqChU4gIxjQzMStIstbSyk63084vSE_MyqxJLMvPzUDhWGamJKYWliUUlqUXFi1jFvVPzMnPK84tKMhQ0_FLLFbyAwqmVmgBZElOJXwAAAA&sa=X&ved=2ahUKEwitsLDv-IzkAhWHblAKHSc3A2sQmxMoATASegQIDhAS
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Table 11 Co-ip and lysis buffers 

 

 
5.4.5 Fixation of zebrafish oocytes 

Zebrafish oocytes were fixated for subsequent immunostaining. A female fish was sacrificed to 

collect the oocytes. The ovaries were dissected and placed in a Petri dish containing 1x Phosphate-

buffered Saline (PBS, NaCl 137 mM, KCl 2.7 mM, Na2HPO4 10 mM, KH2PO4 1.8 mM). Ovaries 

were dissociated for 3 min at room temperature in Proteinase K solution (0.1 M Tris (pH 7.5), 10 mM 

EDTA, 50 μg/ml Proteinase K) (Merck, Darmstadt, Germany). Afterwards, the oocytes were washed 

twice with PBS and subsequently fixated overnight in 4% paraformaldehyde (PFA). Ovaries were 

directly used for immunostaining. To visualize actin and microtubule cytoskeleton, embryos were 

fixated in glyoxal solution (pH 5, as described in Richter et al., 2018) overnight at 4 °C. Subsequently, 

embryos were quenched with 100 mM NH4Cl solution at RT and directly used for 

immunohistochemistry.  

5.4.6 Fixation of zebrafish embryos 

Embryos of a required stage were collected, dechorionated (Section 5.1.3) and fixated overnight at 4 

°C with 4% PFA. Then, embryos were washed 3 times 10 min in PBS and directly used for 

immunohistochemistry. 

Reagent Lysis buffer Dilution buffer 

Tris-HCl (pH7.5) 

NaCl 

EDTA  

NP40 100% 

EDTA-free Protease 

Inhibitor Cocktail (1 tablet 

dissolved in 1 ml H20) 

(Roche, Basel, Switzerland)   

Phenylmethylsulfonylfluorid 

(Merck, Kenilworth, USA). 

Soybean Trypsin Inhibitor 

(Merck, Kenilworth, USA) 

 

Phosphatase inhibitor 

cocktail I (Abcam, 

Cambridge, UK) 

10 mM 

150 mM 

1 mM 

0.5% 

 

1/25 

 

 

1 mM 

 

0.1 mg / 1 ml 

 

 

1/50 

10mM 

150mM 

- 

- 

 

- 

 

- 

 

- 

 

 

- 

https://en.wikipedia.org/wiki/Disodium_phosphate
https://en.wikipedia.org/wiki/Monopotassium_phosphate
https://www.google.com/search?client=firefox-b-d&channel=trow&q=Kenilworth+(New+Jersey)&stick=H4sIAAAAAAAAAOPgE-LUz9U3MEkzqChU4gIxjQzMStIstbSyk63084vSE_MyqxJLMvPzUDhWGamJKYWliUUlqUXFi1jFvVPzMnPK84tKMhQ0_FLLFbyAwqmVmgBZElOJXwAAAA&sa=X&ved=2ahUKEwi7muP6wY7kAhUCbVAKHbp1CwoQmxMoATASegQIDhAS
https://www.google.com/search?client=firefox-b-d&channel=trow&q=Kenilworth+(New+Jersey)&stick=H4sIAAAAAAAAAOPgE-LUz9U3MEkzqChU4gIxjQzMStIstbSyk63084vSE_MyqxJLMvPzUDhWGamJKYWliUUlqUXFi1jFvVPzMnPK84tKMhQ0_FLLFbyAwqmVmgBZElOJXwAAAA&sa=X&ved=2ahUKEwi7muP6wY7kAhUCbVAKHbp1CwoQmxMoATASegQIDhAS
https://www.google.com/search?client=firefox-b-d&channel=trow&q=Cambridge&stick=H4sIAAAAAAAAAOPgE-LSz9U3ME0ySC43VOIAsS3NLYq0tLKTrfTzi9IT8zKrEksy8_NQOFYZqYkphaWJRSWpRcWLWDmdE3OTijJT0lMBPI_o5lAAAAA&sa=X&ved=2ahUKEwi5oaHWxI7kAhVSLFAKHX5cBJgQmxMoATAPegQIDhAH
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5.4.7 Immunostaining of PFA fixated embryos and oocytes 

 To visualize endogenous proteins after the fixation with PFA, oocytes and embryos were 

immunostained. For reasons of legibility only embryos will be named in the following. Embryos were 

distributed in a 24-well plate and PBS 0.5% Triton X-100 solution was added to permeabilize 

embryos for 30 min at RT while rocking. Then, this solution was replaced by a blocking solution 

(PBS 0.1% Triton X-100, 0.1% Tween20, 5% Bovine Serum Albumin (BSA), 10% Goat serum) and 

rocked 2 hrs at RT. Then, dilution of a primary antibody in the blocking solution was added to 

embryos and incubated overnight at 4 °C. Then, the primary antibody ( 

Table 12) solution was replaced a washing solution (PBS 0.1% Tween20 (PBT)) to rinse embryos 3 

times for 30 min. Then, dilution of a secondary fluorescently labelled antibody in PBT ( 

Table 12) was added to embryos and incubated overnight at 4 °C. Afterwards, embryos were washed 

3 times with the wash solution for 30 mins and incubated with DAPI (0.8 ug/ml) diluted in PBT. 

Then, embryos were washed again 3 times with the wash solution for 30 min. After, the PBT was 

replaced by 30:70 PBT:glycerol solution and incubated 1 hour at RT. Then the 30:70 glycerol:PBT 

solution was replaced by the 20:80 PBT:glycerol solution and incubated 1 hour at RT. Afterwards, a 

plastic grid was placed into a fluorodish (Fluorodish 35 mm; WPI, Sarasota, USA) and embryos were 

positioned in the animal orientation. Then, the excess glycerol:PBT was removed from the fluorodish 

by a Pasteur pipette and embryos were analyzed by confocal microscope (Carl Zeiss Microscopy, 

Jena). Subsequently, images were analyzed using the ZEN 2011 software (Carl Zeiss Microscopy, 

Jena).   

5.4.8 Immunostaining of glyoxal fixated embryos and oocytes 

To visualize endogenous actin and microtubules after the fixation with glyoxal, oocytes and embryos 

were immunostained. For reasons of legibility only embryos will be named in the following. To 

visualize actin, quenched embryos were washed 3 times with PBS 0.1 % Tween20 for 15 mins and 

permeabilized with PBS 0.2% Triton-X 100 for 2 hrs at RT. Then embryos were incubated with the 

working solution of Phalloidin 488 (Table 12) diluted 1:20 in PBS Triton-X 100 overnight at 4 °C. 

Then embryos were dehydrated with PBS:glycerol series (70:30, 60:40, 80:20) and proceeded for 

imaging with confocal microscopy (5.4.7).  

To visualize microtubules, quenched embryos were blocked with PBS, 0.1 % Triton X-100, 1% BSA 

solution 4 hrs at RT. Then the blocking solution was replaced by the primary antibody solution of α-

α-tubulin (Table 12: Antibodies and other reagents used for immunostaining) and incubated overnight at 4 °C. 

Then, the primary antibody was recognized using an Alexa 488-conjugated rabbit anti-mouse 

antibody (Table 12: Antibodies and other reagents used for immunostaining) in PBS, 1% BSA, 0.1% Triton X-

100. Then embryos were dehydrated with PBS:glycerol series (70:30, 60:40, 80:20) and proceeded 

for imaging with confocal microscopy (5.4.7). 
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Table 12: Antibodies and other reagents used for immunostaining 

 

Antibodies and other reagents  Dilution 

guinea pig-α-Buc (Biogenes, Berlin)  

rabbit-α-p-NMII (Cell Signaling Technology, Danvers, USA)  

GFP-booster Atto 488 (ChromoTek, Planegg-Martinsried)  

Rat-α-ZO1 (Santa Cruz, Dallas, Texas, USA) 

Mouse-α-ZO1 (Thermo Scientific, Waltham, Massachusetts, USA) 

Mouse-α-ZO2 (Thermo Scientific, Waltham, Massachusetts, USA) 

Mouse-α-E-cadherin (BD Transduction Laboratories, Franklin Lakes, New Jersey,  

U.S.A) 

Mouse-α-afadin (Thermo Scientific, Waltham, Massachusetts, USA) 

Mouse-α-integrin-α-v5 (Abcam, Cambridge, UK) 

Mouse-α-Kif23 (GeneTex, Irvine, California, USA) 

Mouse-α-JAM-A (Santa Cruz, Dallas, Texas, USA) 

Mouse-α- α-Tubulin (Merck, Kenilworth, USA) 

Phalloidin 488 (Cambrex, East Rutherford, New Jersey, USA) 

Mouse-α- pTyr (Cell signalling, Danvers, Massachusetts, USA) 

rabbit-α-Vasa (gifted by Prof. Dr. Knaut; (Knaut et al., 2000))  

Mouse-α-β-Catenin (Merck, Kenilworth, USA) 

goat-α-guinea pig Alexa Fluor 488 (Life Technologies, Carlsbad, USA) 

goat-α-rabbit, mouse or rat Alexa Fluor 594 (Life Technologies, Carlsbad, USA) 

1:5000  

1:50  

1:500  

1:25 

1:1000 

1:50 

1:50 

 

1:50 

1:50 

1:50 

1:50 

1:2500 

6.6 µM 

1:50 

1:500 

1:1000 

1:500  

1:500  

 

https://www.google.com/search?client=firefox-b-d&channel=trow&q=Waltham&stick=H4sIAAAAAAAAAOPgE-LSz9U3MCooMTBJU-IAsTOqjE21tLKTrfTzi9IT8zKrEksy8_NQOFYZqYkphaWJRSWpRcWLWNnDE3NKMhJzASq74qtOAAAA&sa=X&ved=2ahUKEwiq8JWb0Y7kAhURUlAKHRadCTYQmxMoATAQegQIDBAH
https://www.google.com/search?client=firefox-b-d&channel=trow&q=Waltham&stick=H4sIAAAAAAAAAOPgE-LSz9U3MCooMTBJU-IAsTOqjE21tLKTrfTzi9IT8zKrEksy8_NQOFYZqYkphaWJRSWpRcWLWNnDE3NKMhJzASq74qtOAAAA&sa=X&ved=2ahUKEwiq8JWb0Y7kAhURUlAKHRadCTYQmxMoATAQegQIDBAH
https://en.wikipedia.org/wiki/Franklin_Lakes,_New_Jersey
https://www.google.com/search?client=firefox-b-d&channel=trow&q=Waltham&stick=H4sIAAAAAAAAAOPgE-LSz9U3MCooMTBJU-IAsTOqjE21tLKTrfTzi9IT8zKrEksy8_NQOFYZqYkphaWJRSWpRcWLWNnDE3NKMhJzASq74qtOAAAA&sa=X&ved=2ahUKEwiq8JWb0Y7kAhURUlAKHRadCTYQmxMoATAQegQIDBAH
https://www.google.com/search?client=firefox-b-d&channel=trow&q=Cambridge&stick=H4sIAAAAAAAAAOPgE-LSz9U3ME0ySC43VOIAsS3NLYq0tLKTrfTzi9IT8zKrEksy8_NQOFYZqYkphaWJRSWpRcWLWDmdE3OTijJT0lMBPI_o5lAAAAA&sa=X&ved=2ahUKEwjj782D047kAhWGZVAKHRKzD0YQmxMoATAPegQIDRAH
https://www.google.com/search?client=firefox-b-d&channel=trow&q=Irvine&stick=H4sIAAAAAAAAAOPgE-LVT9c3NEzPyjbMtjA0VeLUz9U3SDHPNqzS0sgot9JPzs_JSU0uyczP088vSk_My6xKBHGKrdITi4oyi4HCGYWLWNk8i8oy81IBbFX7e08AAAA&sa=X&ved=2ahUKEwj5n_yu047kAhXHJlAKHSsZCyoQmxMoATAQegQIDBAN
https://www.google.com/search?client=firefox-b-d&channel=trow&q=Kenilworth+(New+Jersey)&stick=H4sIAAAAAAAAAOPgE-LUz9U3MEkzqChU4gIxjQzMStIstbSyk63084vSE_MyqxJLMvPzUDhWGamJKYWliUUlqUXFi1jFvVPzMnPK84tKMhQ0_FLLFbyAwqmVmgBZElOJXwAAAA&sa=X&ved=2ahUKEwitsLDv-IzkAhWHblAKHSc3A2sQmxMoATASegQIDhAS
https://www.google.com/search?client=firefox-b-d&channel=trow&q=East+Rutherford&stick=H4sIAAAAAAAAAOPgE-LUz9U3SKsoN8tS4gIxjQzMcsuLtLSyk63084vSE_MyqxJLMvPzUDhWGamJKYWliUUlqUXFi1j5XROLSxSCSksyUovS8otSAI3OWMdXAAAA&sa=X&ved=2ahUKEwj-_ubt1I7kAhVHLFAKHQCECy8QmxMoATAUegQIChAR
https://www.google.com/search?client=firefox-b-d&channel=trow&q=danvers&stick=H4sIAAAAAAAAAOPgE-LSz9U3MCu3KKlIUeIEsQ1zKsrztDQyyq30k_NzclKTSzLz8_Tzi9IT8zKrEkGcYqv0xKKizGKgcEbhIlb2lMS8stSiYgCLCr_sTQAAAA&sa=X&ved=2ahUKEwig2LO85I7kAhUDIVAKHfP6C_kQmxMoATAOegQIDRAH
https://www.google.com/search?client=firefox-b-d&channel=trow&q=Kenilworth+(New+Jersey)&stick=H4sIAAAAAAAAAOPgE-LUz9U3MEkzqChU4gIxjQzMStIstbSyk63084vSE_MyqxJLMvPzUDhWGamJKYWliUUlqUXFi1jFvVPzMnPK84tKMhQ0_FLLFbyAwqmVmgBZElOJXwAAAA&sa=X&ved=2ahUKEwitsLDv-IzkAhWHblAKHSc3A2sQmxMoATASegQIDhAS


105 

 

5.4.9 Protein in-vitro translation 

Proteins were synthesized with the TnT SP6 Quick Coupled Transcription/Translation System 

(Promega, Madison, Wisconsin, USA). 

5.6.10 Protein aggregation assay 

HEK cells were seeded 104 cells /per well in an eight-chambered slide (Sarstedt) and transfected with 

100 ng of a plasmid combined with the ScreenFectA reagent. Cells were imaged after 48 hours using 

10X objective with a 10X digital zoom with an LSM780 confocal microscope and cell profiles were 

analyzed with ZEN2011 software (Carl Zeiss Microscopy, Göttingen). 

5.6.11 Phosphatase treatment 

Embryo lysates were incubated with Lambda Protein Phosphatase (NEB, Ipswich, Massachusetts, 

USA) as stated by the manufacturer. 

5.5 Bioinformatics methods  

5.5.1 Pairwise sequence alignment 

Protein sequences were pairwise aligned by the Needleman-Wunsch algorithm with the EMBL-EBI 

alignment software EMBOSS Needle (McWilliam et al., 2013). Standard settings were applied. 

Zebrafish Bucky ball (H0WFA5), Buc2l (R4GEN3) and Velo1 (F6VL84) sequences have been used 

for the alignments.  

5.5.2 Aggregation propensity prediction 

Bucky ball protein sequence (H0WFA5) was analyzed using the web-based aggregation prediction 

program PLAAC (Lancaster et al., 2014, http://plaac.wi.mit.edu/) 

5.5.3 Prediction of prion-like domains  

The following web-based algorhytms (Table 13) were used to predict the exact position of prion-like 

domains within the localization signal of Bucky ball (H0WFA5)(residues 11-88). 

Table 13: The algorithms used for the prion-like domains prediction in Bucky ball 

 

Program Reference 

Fold amyloid (http://bioinfo.protres.ru/fold-amyloid/) 

APPNN (https://omictools.com/appnn-tool) 

FISH amyloid (https://omictools.com/fish-amyloid-tool) 

Aggrescan (http://bioinf.uab.es/aggrescan/) 

(Fernandez-Escamilla, Rousseau, 

Schymkowitz, & Serrano, 2004) 

(Família, Dennison, Quintas, & Phoenix, 

2015) 

(Gasior & Kotulska, 2014) 

(Conchillo-Solé et al., 2007) 

https://www.google.com/search?client=firefox-b-d&channel=trow&q=Madison+(Wisconsin)&stick=H4sIAAAAAAAAAOPgE-LUz9U3MKswKilR4gAx08qNKrW0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxYtYhX0TUzKL8_MUNMIzi5Pz84oz8zQBDkGmaFkAAAA&sa=X&ved=2ahUKEwidpMqg-o7kAhWxtHEKHVluB2QQmxMoATATegQIDRAH
https://www.google.com/search?client=firefox-b-d&channel=trow&q=Ipswich+(Massachusetts)&stick=H4sIAAAAAAAAAOPgE-LSz9U3MDKvyMoyV-IEsQ1zzQsqtbSyk63084vSE_MyqxJLMvPzUDhWGamJKYWliUUlqUXFi1jFPQuKyzOTMxQ0fBOLixOTM0qLU0tKijUB8cuapl8AAAA&sa=X&ved=2ahUKEwi01orR_o7kAhVLUxUIHXLBDLMQmxMoATAQegQIDBAK
https://www.uniprot.org/uniprot/F6VL84
http://plaac.wi.mit.edu/
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5.5.4 Prediction of intrinsic protein disorder 

The prediction of the intrinsically disordered regions was performed as described in Krishnakumar et 

al., 2018. 

5.4.5 Fluorescence quantification 

FIJI (Schindelin et al., 2012) was used for the quantification of relative fluorescence in live-imaged 

embryos. 

5.4.6 Processing of mass spectrometry data  

Raw mass spectrometry data was processed using Microsoft Excel. 

5.7 Statistical methods  

All statistical analysis of experimental data was performed in Microsoft Excel as indicated in figure 

legends.  
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▪ Developed research projects for bachelor and master students 
▪ Supervised and mentored bachelor, master and PhD students 
▪ Actively participated in institutional and lab seminars, national and international research 

meetings 

11/14 – 08/15 Undergraduate research 
University Medical Center, Laboratory of Genetics and functional genomics of Usher syndrome, Nijmegen, 
Netherlands 
Supervisor: Prof. Hannie Kremer 

▪ Developed a novel transgenic system to test a therapy for Usher syndrome and understand 
underlying neurodegenerative mechanisms. 

▪ Developed, optimized and successfully applied a novel genome editing method based on 
homologous recombination using the CRISPR/Cas9 system. 

▪ Successfully produced antisense oligonucleotides aimed to target genetic defects in Usher 
syndrome patients. 

11/13 – 07/14 Undergraduate research 

Radboud Institute of Molecular Life Sciences, Laboratory of Tumor Immunology, Nijmegen, Netherlands 

Supervisor: Dr. Jonas Søndergaard 

▪ Investigated the role of cell cycle inhibitor p15, the cytoskine TGF-β and the transcriptional 

modulator DC-SCRIPT in the MCF-7 breast cancer cells 
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Education 
 

4/2016 – 10/2019 PhD in Developmental Biochemistry at Georg August University of Göttingen, Germany 

9/2013 – 2/2015 Master of Molecular Life Sciences at Radboud University Nijmegen, Netherlands 

9/2009 – 8/2013 Bachelor of Molecular Life Sciences at Radboud University, Netherlands, B.Sc.  

9/2006 – 8/2009 Secondary school Petrus Canisius College, Alkmaar, Netherlands 

 

Scientific and Methodological expertise 

 

▪ Animal model (zebrafish): protein complex immunoprecipitation, protein analysis by SDS-PAGE, 

microinjection, immunohistochemistry, live imaging, genotyping. 

▪ CRISPR/Cas9 system: from gRNA design to the detection of genomic modifications 

▪ Molecular cloning techniques: In Fusion, Gateway, T4 Ligase, TOPO cloning  

▪ Molecular techniques: Western blot, Fluorescent cell sorting, (q)PCR 

▪ Tissue culture: HEK293 and MCF7 cells 

▪ Microscopy: confocal laser scanning microscopy and fluorescent digital stereoscopy  

 

IT skills 
 

▪ Basic programming in MATLAB 

▪ Processing and analyzing images in ZEN, ImageJ and Adobe Photoshop  

▪ Composing figures with Adobe Illustrator 

▪ Analyzing sequencing results with Seqman and Snapgene  

▪ Analyzing genes in BLAST and Ensemble genome browser 

 

Teaching 
 

▪ Developed lab rotation and master thesis projects on annual basis 

▪ Supervised ten laboratory rotations (2 month each) and one master thesis (6 month) 

▪ Supervised Biochemistry practical course for medical students (6 weeks in total) 

▪ Lead a tutorial for Molecular Biology students (2 hours in total) 

▪ Supervised newcomer PhD students (2 students) 

Grants 

 
▪ Travel grant for the Meeting of German and Japanese Society of Developmental Biologists, Kiel (15-18 

March 2017), provided by the Göttingen Graduate School for Neurosciences, Biophysics, and Molecular 

Biosciences 

▪ PhD grant for duration of 6 months (14.04  – 14.10.2019) from Göttingen Graduate Center for 

Neurosciences, Biophysics, and Molecular Biosciences 

Conferences and workshops 
▪ 4/18 Oral presentation “Molecular mechanisms of germ plasm localization during early zebrafish 

development”, Regional Fishmeeting, Heidelberg, Germany 

▪ 5/17 Workshop “Genome Engineering in Zebrafish“, Frankfurt, Germany 
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▪ 3/17 Poster presentation “Molecular mechanisms of germ plasm localization during early zebrafish 

development”, GfE Meeting of the German and Japanese Society of Developmental Biologists, Kiel, 

Germany 

▪ 9/16 Poster presentation “Molecular mechanisms of germ plasm localization during early zebrafish 

development”, 11th GfE School: Cell Dynamics in Development & Evolution, Günzburg, Germany 

Languages 

 

▪ English (fluent), Dutch (fluent), German (moderate), Russian (fluent), Ukrainian (fluent)  

 

Publications 

Krishnakumar P., Riemer S., Perera R., Lingner T., Goloborodko A., Khalifa H., Bontems F., Kaufholz  

F., El-Brolosy M.A., Dosch R. Functional equivalence of germ plasm organizers. (2018) PLoS Genet.  

Slijkerman R.W.N., Goloborodko A., Hetterschijt L., Peters T.A., Gerits M., Kremer H., Van Wijk 

E. Poor splice site recognition in a humanized zebrafish knock-in model for the recurrent deep-intronic  

c.7595-2144A>G mutation in USH2A. (2018) Zebrafish. 
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