Aus der Klinik für Mund-, Kiefer- und Gesichtschirurgie (Prof. Dr. med. Dr. med. dent. H. Schliephake) im Zentrum Zahn-, Mund- und Kieferheilkunde der Medizinischen Fakultät der Universität Göttingen

Analyse der Genexpression von humanen Stro-1-positiven Zahnkeim- und Beckenkammzellen in DME-Medium und osteogenem Differenzierungsmedium

INAUGURAL – DISSERTATION

zur Erlangung des Doktorgrades für Zahnmedizin der Medizinischen Fakultät der Georg-August-Universität zu Göttingen

> vorgelegt von Charlotte Caroline Merten aus Göttingen

> > Göttingen 2019

Dekan: Prof. Dr. med. W. Brück Referent/in: Prof. Dr. med. Dr. med. dent. K. G. Wiese Ko-Referent/in: Prof. Dr. rer. nat. T. Beißbarth Drittreferent/in: Prof. Dr. med. M. Oppermann

Datum der mündlichen Prüfung: 25.08.2020

Hiermit erkläre ich, die Dissertation mit dem Titel "Analyse der Genexpression von humanen Stro-1-positiven Zahnkeim- und Beckenkammzellen in DME-Medium und osteogenem Differenzierungsmedium" eigenständig angefertigt und keine anderen als die von mir angegebenen Quellen und Hilfsmittel verwendet zu haben.

Göttingen, den

(Unterschrift)

Inhaltsverzeichnis

Abbildungsverzeichnis III						
Tabel	TabellenverzeichnisV					
Abkü	Abkürzungsverzeichnis VI					
1	Einleitung1					
1.1	Zielsetzung der Arbeit					
2	Material und Methoden5					
2.1	Entnahme der Proben und Anlegen der Zellkulturen					
2.2	Auszählung der Zellen und Sortierung mittels Magnet-Beads (MACS)					
2.3	RNA-Isolierung aus Stro-1-positiven Zahnkeim- und Beckenkammzellen					
2.4	RNA-Amplifikation und Herstellung der Microarrays 11					
2.5	Analyse der Microarray-Daten und statistische Auswertung 11					
2.5.1	Vorgehensweise zur Identifikation differentieller Genexpressionen					
3	Ergebnisse14					
3.1	Analyse der Rohdaten 16					
3.2	Der Einfluss der Medien auf die Genexpression 19					
3.2.1	Funktionelle Genanalyse der Stro-1 ^{+ZK} und Stro-1 ^{+BK}					
3.2.2	Genexpression der Stro-1 ^{+ZK} im osteogenen und DME-Medium					
3.2.3	Genexpression der Stro-1 ^{+BK} im osteogenen und DME-Medium					
3.3	Differentielle Genexpression der Stro-1 ^{+ZK} und Stro-1 ^{+BK} in den Medien					
3.3.1	Funktionelle Analyse der Gene mit einseitig signifikanten logFC-Werten					
3.3.1.1	Gene mit signifikanten logFC-Werten bei den Stro-1 ^{+BK} und nicht signifikanten logFC-					
	Werten bei den Stro-1 ^{+ZK}					
3.3.1.2	2 Gene mit signifikanten logFC-Werten bei den Stro-1 ^{+ZK} und nicht signifikanten logFC-					
	Werten bei den Stro-1 ^{+BK}					
3.3.2	Funktionelle Analyse der Gene mit beidseitig signifikanten logFC-Werten					
3.4	Funktionelle Unterschiede der Stro-1 ^{+ZK} und Stro-1 ^{+BK} im osteogenen Medium					

7	Literaturverzeichnis
6	Anhang
5	Zusammenfassung
	ihre biologisch-funktionellen Gruppen
4.2.5	Differentialexpression der Gene von Stro-1 ^{+ZK} und Stro-1 ^{+BK} im osteogenen Medium und
4.2.4	Differentielle Genexpression der Stro-1 ^{+ZK} und Stro-1 ^{+BK} in den Medien
4.2.3.1	Funktionelle Genanalyse der Stro-1 ^{+ZK} und Stro-1 ^{+BK}
4.2.3	Der Einfluss der Medien auf die Genexpression von Stro-1 ^{+BK}
4.2.2	Der Einfluss der Medien auf die Genexpression von Stro-1 ^{+ZK}
4.2.1	Analyse der Rohdaten
4.2	Ergebnisse
4.1	Methodik
4	Diskussion63
3.5	Zusammenfassung der Ergebnisse 60
3.4.2	Im ODM hochregulierte Gene der Stro-1 ^{+BK}
3.4.1	Im ODM hochregulierte Gene der Stro-1 ^{+ZK}

Abbildungsverzeichnis

Abbildung 1: Schematische Darstellung des Versuchsablaufs zur Zellkultivierung
Abbildung 2: Funktionsweise des CASY Cell Counter
Abbildung 3: Schematische Darstellung der magnetischen Zellsortierung (MACS)
Abbildung 4: Schematischer Ablauf der RNA-Isolierung 10
Abbildung 5: Schematische Darstellung der statistischen Auswertung der Array-Daten 12
Abbildung 6: Histologische Aufarbeitung der extrahierten Zahnkeime 15
Abbildung 7: Histogramme der logFC-Intensitätsverteilung der Genexpression
Abbildung 8: Korrelation der logFC-Werte identischer Gene der Stro-1 ^{+ZK} und Stro-1 ^{+BK}
Abbildung 9: Korrelation der logFC-Werte einseitig signifikanter Gene
Abbildung 10: Heatmap der für die Angiogenese erkannten Gene der funktionellen Untergruppen aus <i>cluster</i> 1
Abbildung 11: Korrelation der logFC-Werte beidseitig signifikanter Gene
Abbildung 12: Heatmap der Gene der funktionellen Untergruppen aus <i>cluster</i> 1 der gleichsinnig signifikant heraufregulierten Gene von Stro-1 ^{+ZK} und Stro-1 ^{+BK}
Abbildung 13: Heatmap der Gene der funktionellen Untergruppen aus <i>cluster</i> 2 der gleichsinnig signifikant heraufregulierten Gene von Stro-1 ^{+ZK} und Stro-1 ^{+BK}
Abbildung 14: Heatmap der Gene der funktionellen Untergruppen aus <i>cluster</i> 15 der gleichsinnig signifikant heraufregulierten Gene von Stro-1 ^{+ZK} und Stro-1 ^{+BK}
Abbildung 15: Heatmap der Gene der funktionellen Untergruppen aus <i>cluster</i> 1 der gleichsinnig signifikant herunterregulierten Gene von Stro-1 ^{+ZK} und Stro-1 ^{+BK}
Abbildung 16: Heatmap der gegensinnig exprimierten Gene mit den zugehörigen funktionellen Untergruppen
Abbildung 17: Limitierte Darstellung einiger hochregulierter Gene aus <i>cluster</i> 1 der Stro-1 ^{+ZK} im ODM
Abbildung 18: Limitierte Darstellung einiger hochregulierter Gene aus <i>cluster</i> 2 der Stro-1 ^{+ZK} im ODM
Abbildung 19: Heatmap der hochregulierten Gene aus <i>cluster</i> 3 der Stro-1 ^{+ZK} im ODM
Abbildung 20: Darstellung einiger hochregulierter Gene aus <i>cluster</i> 126 der Stro-1 ^{+ZK} im ODM. 50

Abbildung 21: Darstellung einiger hochregulierter Gene für Transkriptionsfaktoren aus <i>cluster</i> 54 der Stro-1 ^{+ZK} im ODM
Abbildung 22: Darstellung einiger hochregulierter Gene aus <i>cluster</i> 85 der Stro-1 ^{+ZK} im ODM 52
Abbildung 23: Limitierte Darstellung einiger hochregulierter Homeobox-Gene aus <i>cluster</i> 2 der Stro-1 ^{+BK} im ODM
Abbildung 24: Heatmap der hochregulierten Gene aus <i>cluster</i> 72 der Stro-1 ^{+BK} im ODM 57
Abbildung 25: Heatmap der hochregulierten Gene für Transkriptionsfaktoren aus <i>cluster</i> 163 der Stro-1 ^{+BK} im ODM
Abbildung 26: Heatmap der überexprimierten Gene des Zellzyklus aus <i>cluster</i> 174 der Stro-1 ^{+BK} im ODM

Tabellenverzeichnis

Tabelle 1: Anzahl n der auf die FDR bezogenen statistisch signifikant exprimierten Gene 16
Tabelle 2: Anzahl n der hochregulierten und herunterregulierten Gene im ODM gegenüber dem DMEM je FDR-Wert 16
Tabelle 3: Darstellung der ersten zehn im ODM gegenüber dem DMEM höchst signifikant hoch- bzw. herunterregulierten Gene der Stro-1 ^{+ZK} und Stro-1 ^{+BK}
Tabelle 4a: Die ersten zehn im ODM signifikant hochregulierten funktionellen Gruppen der Stro-1 ^{+ZK} 23
Tabelle 4b: Die ersten zehn im ODM signifikant herunterregulierten funktionellen Gruppen der Stro-1 ^{+ZK}
Tabelle 5a: Die ersten zehn im ODM signifikant hochregulierten funktionellen Gruppen der Stro-1 ^{+BK}
Tabelle 5b: Die ersten zehn im ODM signifikant herunterregulierten funktionellen Gruppen der Stro-1 ^{+BK}
Tabelle 6: Funktionelle Gruppen der Gene, die bei den Stro-1 ^{+BK} einseitig signifikant hochreguliert sind
Tabelle 7: Funktionelle Gruppen der Gene, die bei den Stro-1 ^{+BK} einseitig signifikant herunterreguliert sind
Tabelle 8: Identische Gene, die in den Stro-1 ^{+BK} signifikant herauf- und in den Stro-1 ^{+ZK} herunterreguliert sind
Tabelle 9: Identische Gene, die in den Stro-1 ^{+BK} signifikant herunter- und in den Stro-1 ^{+ZK} heraufreguliert sind
Tabelle 10: Die ersten zehn im ODM bei den Stro-1 ^{+ZK} signifikant hochregulierten funktionellen Gruppen
Tabelle 11: Homeobox-Gene, die bei den Stro-1 ^{+ZK} im ODM für den GO-term organ morphogenesis hochreguliert sind
Tabelle 12: Die ersten fünf signifikant hochregulierten Gen-Cluster der Stro-1 ^{+ZK} im ODM 46
Tabelle 13: Die ersten zehn im ODM bei den Stro-1 ^{+BK} signifikant hochregulierten funktionellen Gruppen
Tabelle 14: Homeobox-Gene, die bei den Stro-1 ^{+BK} im ODM für den GO-term skeletal system development hochreguliert sind
Tabelle 15: Die ersten drei signifikant hochregulierten Gen-Cluster der Stro-1 ^{+BK} im ODM 55

Abkürzungsverzeichnis

ALP	alkalische Phosphatase
ANOVA	analysis of variance
AOX1	aldehyde oxidase 1
BK	Stro-1-positive humane Knochenmarkstammzellen aus dem Beckenkamm
BK1	Stro-1-positive Beckenkammzellen im DME-Medium
BK2	$Stro-1-positive \ Beckenkammzellen \ im \ osteogenen \ Differenzierungsmedium$
BMD	bone mineral density
<i>BMP-1/2/4/6/7</i>	bone morphogenetic protein 1/2/4/6/7
BMSCs	bone marrow-derived mesenchymal stem cells
BP	biological process
Ca ⁺⁺	ionisiertes Calcium
cAMP	cyclisches Adenosinmonophosphat
CD	cluster of differentiation
cDNA	Copy-Desoxyribonukleinsäure
COL4-A1/2/5	Kollagen Typ IV alpha 1/2/5
COL6A2	Kollagen Typ VI alpha 2
COL10A1	Kollagen Typ X alpha 1
COL11A1	Kollagen Typ XI alpha 1
COL12A1	Kollagen Typ XII alpha 1
COL13A1	Kollagen Typ XIII alpha 1
COL18A1	Kollagen Typ XVIII alpha 1
CREB	cAMP response element-binding protein
cRNA	Copy-Ribonukleinsäure
CRP	C-reaktives Protein
Cy3	cyanine 3
DAVID	database for annotation, visualization and integrated discovery
DCN	decorin
DDIT4	DNA-damage-inducible transcript 4; syn. REDD1
DEPC	Diethylpyrocarbonat
DFPCs	dental follicle progenitor cells
DLX1	distal-less homeobox 1
DMEM	Dulbecco's Modified Eagle Medium
DNA	Desoxyribonukleinsäure
DNase	Desoxyribonuklease
DPSCs	dental pulp stem cells

E. coli	Escherichia coli
EEF1A2	eukaryotic translation elongation factor 1 alpha 2
EGFR	epidermal growth factor receptor
EMT	epithelial-mesenchymale Transition
ES	enrichment score
EZM	extrazelluläre Matrix
FACS	fluorescence-activated cell-sorting
FDR	false discovery rate
FGF-2	fibroblast growth factor 2
FK506	Tacrolimus
FKBP5	FK506 binding protein 5
FKS	fetales Kälberserum
FLG	filaggrin
FOXF-1/2	forkhead box F1 oder F2
FRZB	frizzled-related protein
FST	follistatin
G-Protein	Guanosintriphosphat-bindendes Protein
GO	Gene Ontology
GPR68	G protein-coupled receptor 68
GREM1	gremlin 1
HOX-Gen	Homeobox-Gen
HOXB2	homeobox B2
HOXB3	homeobox B3
HOXC8	homeobox C8
<i>IGF-1/2</i>	insulin-like growth factor 1/2
<i>IGFBP-2/3/5</i>	insulin-like growth factor-binding protein 2/3/5
IL-1β	interleukin-1 beta
IL-6	interleukin-6
IMPA2	inositol(myo)-1(or4)-monophosphatase 2
IR	Insulinrezeptor
IVT	In-vitro-Transkription
logFC	log_2 fold change
log ₂ (DMEM)	logarithmierte Intensitätswerte für das DME-Medium
$\log_2(I)$	logarithmierte Intensitätswerte
log ₂ (ODM)	logarithmierte Intensitätswerte für das osteogene Differenzierungsmedium
LPAR5	lysophosphatidic acid receptor 5
MACS	magnetic-activated cell-sorting

MAO	Monoaminoxidase
MAO-A/B	monoamine oxidase A/B
METTL7A	methyltransferase-like 7A
MMP-1/2/14	matrix metallopeptidase 1/2/14
mRNA	Messenger-Ribonukleinsäure
MSCs	mesenchymal stem cells
MSX1	msh homeobox 1
mTOR	mechanistic target of rapamycin
NF-κB	nuclear factor ĸB
NFKB1A	NF-ĸB inhibitor alpha
NH	nonhematopoietic
OD	optische Dichte
ODM	osteogenes Differenzierungsmedium bzw. osteogenes Medium
P. aeruginosa	Pseudomonas aeruginosa
PAR1	protease-activated receptor 1
PAX9	paired box 9
PBS	phosphate-buffered saline
PCA	principal component analysis
PDLSCs	periodontal ligament stem cells
PEG3	paternally expressed gene 3
PGE_2	Prostaglandin E ₂
РКА	Proteinkinase A
POXL	podocalyxin-like
PRRs	pattern recognition receptors
PTGER4	prostaglandin E receptor 4
PTN	pleiotrophin
РТХЗ	pentraxin 3
RNA	Ribonukleinsäure
RT-PCR	reverse transcription polymerase chain reaction
SAA1	serum amyloid A1
SCAPs	stem cells from apical papilla
SHEDs	stem cells from exfoliated deciduous teeth
SIX1	SIX homeobox 1
Stro-1 ⁺	stromal cell surface marker 1 positive
Stro-1 ^{+BK}	Stro-1-positive humane Knochenmarkstammzellen aus dem Beckenkamm
Stro-1 ^{+ZK}	Stro-1-positive humane pulpale Zahnkeimstammzellen
TGF-β	transforming growth factor beta

TIFF	tagged image file format
TIMP4	tissue inhibitor of metalloproteinase 4
TNF-α	tumor necrosis factor-α
tRNA	Transfer-Ribonukleinsäure
UMG	Universitätsmedizin Göttingen
VEGFR2	vascular endothelial growth factor receptor 2
VMO1	vitelline membrane outer layer 1
ZK	Stro-1-positive humane pulpale Zahnkeimstammzellen
ZK1	Stro-1-positive Zahnkeimzellen im DME-Medium
ZK2	Stro-1-positive Zahnkeimzellen im osteogenen Differenzierungsmedium

1 Einleitung

Der menschliche Organismus weist drei grundlegende Zelltypen auf, die in ihrer Gesamtheit für Entstehen und Fortbestehen jeglicher Lebensfunktion unerlässlich sind. Dabei handelt es sich um Keimzellen (*germ cells*), Körperzellen (*somatic cells*) sowie Stammzellen (*stem cells*). Als Stammzellen bezeichnet man eine Gruppe undifferenzierter Zellen, denen die Möglichkeit zur Differenzierung in spezialisierte Zelltypen gegeben ist (Becker et al. 1963, Siminovitch et al. 1963). In Abhängigkeit von ihrem Ursprungsort unterscheidet man embryonale Stammzellen von adulten Stammzellen. Erstere finden sich in Embryonen im Anfangsstadium in der sogenannten Blastozystenphase, letztere lassen sich in verschiedenen Gewebearten des menschlichen Organismus nach Abschluss der Embryonalentwicklung nachweisen. Während embryonale Stammzellen aufgrund ihrer Pluripotenz befähigt sind, sich in alle Keimblätter sowie deren Zelltypen differenzieren zu können, sind adulte Stammzellen nur multipotent und in ihrem Differenzierungsvermögen auf die Zellen des jeweiligen Keimblattes limitiert (Christophersen und Helin 2010, Takahashi und Yamanaka 2006, Thomson et al. 2011).

Die grundsätzliche Aufgabe von Stammzellen adulten Ursprungs besteht in der Aufrechterhaltung sowie Reparatur des Gewebetyps, in dem sie lokalisiert sind. Um diese Funktionen erfüllen zu können, reicht ein eingeschränktes Differenzierungspotential aus. Diese als Multipotenz bezeichnete Eigenschaft adulter Stammzellen ermöglicht die gezielte Erneuerung der entsprechenden Gewebearten. Eine Gruppe bilden hierbei die mesenchymalen Stammzellen (Pittenger et al. 1999, Bennett et al. 1991, Galotto et al. 1994, Kemp et al. 2005). Ihre Existenz konnte in einer Vielzahl von humanen Geweben nachgewiesen werden (Gronthos et al. 2001, Musina et al. 2006, Jiang et al. 2002), wobei der Hauptanteil auf das Knochenmark entfällt (Tuli et al. 2003). Es konnte gezeigt werden, dass mesenchymale Stammzellen nicht nur in der Lage sind, sich gewebsspezifisch zu differenzieren, sondern dass sie unter bestimmten Kultivierungsbedingungen auch Zellen anderer Gewebetypen generieren können (Pittenger et al. 1999).

Diese Eigenschaft hat adulte Stammzellen vermehrt in den Fokus der Stammzellforschung gerückt. Während außerhalb der Europäischen Union die wissenschaftliche Arbeit mit embryonalen Stammzellen vielfach zulässig ist, herrscht sowohl in Deutschland als auch anderen europäischen Ländern Uneinigkeit bezüglich der Forschung an Embryonen (Hepp et al. 2003, Dittrich et al. 2015, Faltus und Storz 2016). Als Quelle pränataler Stammzellen

dienen der Wissenschaft einerseits überzählige Embryonen aus der künstlichen Befruchtung, andererseits besteht über das sogenannte therapeutische Klonen die Möglichkeit zur *In-vitro-*Züchtung embryonaler Stammzellen (Schöne-Seifert 2009). Aufgrund des Embryonenschutzgesetzes ist die Gewinnung embryonaler Stammzellen häufig kritisch zu bewerten (Deutsch 1992), während adulte Stammzellen mit Einverständnis des Spenders körpereigen gewonnen werden können. Auf der Suche nach geeigneten Spendergeweben haben in diesem Zusammenhang Stammzellen aus der menschlichen Zahnpulpa an Bedeutung gewonnen.

Die mesenchymalen Stammzellen des Knochenmarks (BMSCs) wurden bereits 1867 erstmals durch den Pathologen Cohnheim beschrieben. Seitdem sind sie Gegenstand zahlreicher Studien gewesen und gelten im Hinblick auf ihre Multipotenz als hinreichend untersucht. Neben dem Knochenmark scheinen auch Zähne ein natürliches Reservoir für adulte mesenchymale Stammzellen darzustellen. Im Zuge der Zahnentwicklung, die pränatal im zweiten Embryonalmonat beginnt, kommt es zum Einwachsen des ektodermalen Mundhöhlenepithels in das darunterliegende Mesenchym. Sowohl aus dem ektodermalen als auch dem mesenchymalen Keimblatt differenzieren sich nachfolgend Zellen, die verschiedene Bestandteile des Zahnes generieren. Der Zahnschmelz im Bereich der Zahnkrone wird von den Ameloblasten produziert, welche dem Ektoderm entstammen. Diese gehen nach Durchbruch des Zahnes verloren und stehen für eine posteruptive Schmelzbildung nicht mehr zur Verfügung. Aus dem mesenchymalen Anteil der Zahnanlage entwickeln sich dagegen Dentin, Zahnhalteapparat und Zahnpulpa. Die Odontoblasten, welche das Dentin bilden, verbleiben im Inneren der Pulpa und können über die gesamte Lebenszeit eines Zahnes Dentin nachbilden. Im Gegensatz zur schmelzummantelten Zahnkrone wird die Zahnwurzel von Wurzelzement umhüllt. Dieser wird von den Zementoblasten gebildet und verhält sich im Hinblick auf seine Regenerationsfähigkeit wie das Dentin (Schiebler und Korf 2007).

Während der Entstehung durchläuft ein Zahn somit verschiedene Stadien und entwickelt sich maßgeblich über Stammzellen zu einem dreidimensionalen Gebilde, die nach Wachstumsabschluss in bestimmten Gewebestrukturen verbleiben. Derartige multipotente Mesenchymzellen konnten in verschiedenen Studien bereits nachgewiesen werden. Neben den innerhalb der Zahnpulpa lokalisierten *dental pulp stem cells* (DPSCs) (Gronthos et al. 2000) und den aus Milchzahnpulpen extrahierten *dental stem cells from exfoliated deciduous teeth* (SHEDs) (Miura et al. 2003, Seo et al. 2008) fanden sich drei weitere Stammzelltypen. Zu diesen gehören die *periodontal ligament stem cells* (PDLSCs) (Seo et al. 2004), die *dental stem cells from apical papilla* (SCAPs) (Sonoyama et al. 2008) sowie die *dental follicle progenitor cells* (DFPCs) (Morsczeck et al. 2005). Das Stammzellpotential dieser Zellen wurde dabei in unterschiedlichen Versuchen belegt. Einerseits erfolgte eine Detektion der unterschiedlichen Stammzellpopulationen über mesenchymale Stammzellmarker wie CD-(*cluster of differentiation*)-Moleküle und Stro-1-Antigene (Gronthos et al. 2003, Miura et al. 2004, Seo et al. 2004, Shi und Gronthos 2003). Andererseits konnte ihr Differenzierungsvermögen *in vitro* und *in vivo* verifiziert werden. Es zeigte sich, dass dentale Stammzellen die Fähigkeit besitzen, sich unabhängig von ihrem Ursprungsort in unterschiedliche Phänotypen zu differenzieren (Gronthos et al. 2000, Gronthos et al. 2002, D'Aquino et al. 2007, Morsczeck et al. 2005, Takeda et al. 2008, Gümmer 2011).

Als Ausgangsmaterial der oben aufgeführten Untersuchungen dienten hauptsächlich Zähne mit abgeschlossenem Wurzelwachstum. Die auf diese Weise isolierten Zellen dienen dem natürlichen Zahn in erster Linie als "Reservelager" für etwaige Reparaturvorgänge. Durch entsprechende Zellkultivierung sowie Aufbereitung konnten allerdings bereits zahnähnliche Gebilde bei Mäusen herangezüchtet und erfolgreich implantiert werden (Ikeda et al. 2009, Oshima et al. 2011). Diese aus Stammzellen generierten Zähne waren in ihrem Grundaufbau mit natürlichen Zähnen vergleichbar, wiesen jedoch im Hinblick auf ihre äußere Form eher primitive Strukturen auf. Für das *bioengineering* anatomisch korrekter Zähne werden demnach mehr Informationen benötigt. Alleine das Vorhandensein von multipotenten dentalen Stammzellen ist nicht ausreichend, um in Zukunft beispielsweise eine dritte Zahngeneration zu generieren. Es werden zusätzlich umfassendere Einblicke in die molekularen Abläufe während der Zahnentwicklung benötigt.

In diesem Zusammenhang wäre eine spezifische Untersuchung von Zahnkeimen besonders sinnvoll. Hierbei handelt es sich um Zähne, bei denen die Ausbildung der Zahnwurzel noch nicht abgeschlossen wurde. Die Zahnentwicklung ist somit noch nicht gänzlich durchlaufen. In einer Studie von Takeda et al. (2008) konnten bereits Stammzellen aus der Pulpa von Zahnkeimen isoliert werden. Anhand der Oberflächenmarker Stro-1, CD271 und CD133 gelang unserer Arbeitsgruppe eine nähere Charakterisierung von Zahnkeimstammzellen (Gümmer 2011). Während das Differenzierungspotential auf zellulärer Ebene in verschiedenen Versuchen anhand der oben genannten Oberflächenepitope aufgezeigt wurde, fehlte bislang eine Charakterisierung der unterschiedlichen Zelltypen auf der Ebene ihrer Genexpressionen. So können z. B. Stro-1-positive Stammzellen aus unterschiedlichen Geweben isoliert werden, die dann das in ihrer Umgebung spezifische Gewebe regenerieren. Anhand von Stro-1-positiven aus Zahnkeimen und Beckenkamm isolierten Zellen

konnten jüngst unterschiedliche Genexpressionen des gleichen Zelltyps in einer abgeschlossenen Dissertationsarbeit beschrieben werden (Oellerich 2016). Es stellt sich daher die Frage, welcher "Trigger" Stro-1-positive Zellen veranlasst, unterschiedliche Gene zu exprimieren. Als ein möglicher Trigger könnte eine unterschiedliche Zusammensetzung des extrazellulären Milieus angesehen werden. In einer Zellkultur wäre dies dann ein anderes Kulturmedium.

1.1 Zielsetzung der Arbeit

Es war daher das Ziel dieser Arbeit, das Expressionsverhalten von Stro-1-positiven aus Zahnkeimen und Beckenkamm isolierten Zellen in unterschiedlichen Kulturmedien zu charakterisieren.

Es ergeben sich daraus folgende Fragestellungen:

- Zeigen humane Stro-1-positive Stammzellen aus Zahnkeimen und dem Beckenkamm unterschiedliche Genexpressionsmuster in verschiedenen Kulturmedien (hier DME-Medium und osteogenes Differenzierungsmedium)?
- 2. Wenn ja, welche Gene werden in der Differentialexpression herauf- oder herunterreguliert?

2 Material und Methoden

Die bei der vorliegenden Untersuchung verwendeten Stammzellen aus humanen Zahnkeimen und dem Beckenkamm wurden von der Abteilung für Mund-, Kiefer- und Gesichtschirurgie der Universitätsmedizin Göttingen (UMG) bereitgestellt.

Die Gewinnung der Zahnkeimstammzellen erfolgte dabei aus den Pulpae zuvor operativ entfernter Zahnkeime, die in retinierter Form oder als überzählige Zähne aus kieferorthopädischen Gründen entnommen werden mussten. Aufgrund ihres zum Zeitpunkt der Entfernung noch nicht abgeschlossenen Wurzelwachstums waren die hierbei anfallenden Germe besonders geeignet für die anschließende Stammzellisolierung. Für die Extraktion der Knochenmarkstammzellen wurden Überreste humaner Beckenkammpräparate verwendet. Diese fielen im Rahmen von Beckenkammtransplantationen im Bereich der rekonstruktiven Gesichtschirurgie an. Da es sich in allen Fällen um menschliche Körpermaterialien handelt, wurden die Patienten bzw. Erziehungsberechtigten im Rahmen einer schriftlichen Einverständniserklärung über die weitere Verwendung für Zwecke der medizinischen Forschung aufgeklärt. Die entsprechenden Dokumente liegen vor. Die Bewilligung der Studie durch die Ethikkommission der UMG erfolgte mit einem positiven Votum am 15/10/01 sowie 31/4/11.

Die nachfolgend beschriebene Methodik in den Kapiteln 2.1 bis 2.5 folgt im Wesentlichen dem in der Dissertation von Gümmer (2011) beschriebenen Vorgehen.

2.1 Entnahme der Proben und Anlegen der Zellkulturen

Die Aufbereitung der entnommenen Zahnkeime und Beckenkammpräpate erfolgte ebenso wie die anschließende Kultivierung, Auszählung und Sortierung der Zellen in Zusammenarbeit mit dem Zelllabor der Abteilung für Mund-, Kiefer- und Gesichtschirurgie.

Um eine bakterielle und fungizide Verunreinigung der Proben auszuschließen, erfolgten regelmäßige mikroskopische Kontrollen (Mikroskop Carl Zeiss Vision GmbH, Hallbergmoos) vor jedem Wechsel der Nährmedien. Alle durchzuführenden Aufgaben im Zusammenhang mit den Zellkulturen sowie die Herstellung der genutzten Reagenzien wurden unter strikter Einhaltung der Asepsis durchgeführt (Sterilbank Biohazard Cleanair En12469, JA Woerden). Die Zellkultivierung fand unter Beobachtung bei einer konstanten Temperatur von 37 °C, einem Kohlenstoffdioxidanteil von 5 % und einer Luftfeuchtigkeit von 95 % im Brutschrank statt (Sanyo Electric Biomedical CO., Ltd, Japan). Aus den gesammelten Zahnkeimen wurde zunächst das pulpale Weichgewebe in toto extrahiert und in kleinere Gewebeproben portioniert. Das Anlegen der Zellkultur erfolgte anschließend in einer mit 15 ml Nährmedium (DMEM, 10 % FKS, 1 % Penicillin-Streptomycin) gefüllten Petrischale (58 cm², Sarstedt, Sarstedt AG & CO, Nümbrecht). Die Aufbereitung der Beckenkammpräparate verlief nach identischem Muster. Nach Einsetzen der Zellproliferation und Ausbildung eines nahezu zusammenhängenden Zellrasens wurden die Gewebeproben auf weitere Petrischalen verteilt. Die in flacher Schicht am Boden der Wells zurückbleibenden Zellen der Primärkultur wurden nach Trypsinierung, Passagierung und Zellzählung auf Zellkulturflaschen von 75 cm² Größe verteilt (Greiner, Bio-One GmbH, Solingen).

Vor jeder Passage wurde zunächst eine mikroskopische Begutachtung der Zellkulturen durchgeführt. Ein Ablösen der Zellen fand dabei stets bei Ausbildung eines nahezu konfluenten Zellrasens statt, um eine spontane Differenzierung der Zellen zu verhindern. In einem ersten Schritt wurde das alte Nährmedium unter Vakuum abgesaugt. Nach Waschung der Zellkultur mit auf 37 °C vorgewärmtem PBS-Puffer erfolgte unter Zugabe von 2 ml Trypsin (37 °C) die Ablösung der Zellen. Es folgte eine fünfminütige Inkubation im Brutschrank. Durch vorsichtiges Klopfen auf den Flaschenboden wurden verbliebene adhärente Zellen losgelöst. Eine Aufhebung der enzymatischen Wirkung des Trypsins wurde durch die Zugabe von 8 ml Nährmedium (DMEM) gewährleistet. Nachfolgend wurde die Zellsuspension in ein Zentrifugenröhrchen pipettiert und zur Zellzählung das Zellzählgerät CASY (Schärfe System/Innovatis, Reutlingen) verwendet. Nach fünfminütiger Zentrifugation bei 250 x g sowie Verwerfen des Überstandes wurde das entstandene Zellpellet in einer zur ermittelten Zellzahl proportionalen Menge Nährmedium resuspendiert. Die anschließende Verteilung der Zellen auf die Zellkulturflaschen erfolgte mit einer maximalen Zellzahl von 700.000 Zellen pro Kulturgefäß. Die weitere Kultivierung wurde unter einheitlichen Bedingungen im Brutschrank nach mikroskopischer Prüfung fortgeführt. Eine Auffrischung des Nährmediums fand jeweils nach zwei bis drei Tagen statt.

Die oben beschriebenen Arbeitsschritte zum Anlegen der Zellkulturen finden sich zusammenfassend dargestellt in Abbildung 1 wieder.

Abbildung 1: Schematische Darstellung des Versuchsablaufs zur Zellkultivierung.

2.2 Auszählung der Zellen und Sortierung mittels Magnet-Beads (MACS)

Nach jeder Passagierung der Zellen wurde eine Bestimmung der Zellzahl mithilfe des Zellzählgerätes CASY (Schärfe System/Innovatis, Reutlingen) vorgenommen. Aus den infolge der Trypsinierung entstandenen Zellsuspensionen erfolgte zu diesem Zweck eine Probenentnahme. Mithilfe einer gerätespezifischen Pufferlösung (CASYton) wurde die Probe anschließend im Verhältnis 1:100 verdünnt und zur Messung auf dem Probensockel des Zellzählgeräts positioniert.

Die Zellzählung mittels des *CASY Cell Counter* beruht dabei auf dem sogenannten Impedanzverfahren ("Widerstandsmessung"). Eine innerhalb des Geräts befindliche Messkapillare ist mit Pufferlösung gefüllt und stellt einen definierten elektrischen Widerstand dar. Bei Durchfluss der in Lösung befindlichen Zellen kommt es zu einer Verdrängung des Puffers. Die resultierende Widerstandsänderung löst einen elektrischen Impuls aus, welcher vom Gerät registriert wird. Somit lässt sich aus der Summe der auftretenden Signale letztlich die Zellzahl ermitteln (Abbildung 2). Zusätzlich kann eine Berechnung des Zellvolumens mithilfe der "Pulsflächenanalyse" erfolgen. Für jede Zelle wird dabei eine Reihe von Einzelmessungen durchgeführt, aus denen sich entsprechend mehrere Impulse ergeben. Durch Integration der Messwerte ergibt sich das jeweilige Volumen der Zelle. Auf diese Weise lassen sich neben der Größenverteilung in einer Zellkultur auch der Anteil vitaler und avitaler Zellen bestimmen.

Abbildung 2: Funktionsweise des *CASY Cell Counter* (basierend auf RJM Sales, Inc.; www.rjmsales.com).

Die Sortierung der Zellen wurde mittels *Magnetic Activated Cell Sorting* (MACS) durchgeführt. Hierbei handelt es sich um ein Verfahren zur Zellselektion, welches auf magnetischen Wechselwirkungen beruht. Durch die Kopplung von kleinsten Magnetpartikeln (*Microbeads*) an spezifische Antikörper können Zellen mit entsprechenden Oberflächenantigenen gezielt markiert werden. Auf diese Weise lassen sich nach Durchfluss der Zellsuspension durch ein Magnetfeld bestimmte Zellpopulationen herausfiltern (Abbildung 3).

Abbildung 3: Schematische Darstellung der magnetischen Zellsortierung (MACS).

In der vorliegenden Untersuchung wurden die Zellkulturen aus Zahnkeimen und Beckenkammpräparaten anhand des **spezifischen Antikörpers Stro-1** einer positiven Selektion unterzogen. Nach Waschung der Zahnkeim- und Beckenkammzellen mit 2 ml PBS-Puffer sowie Trypsinierung erfolgte die Zellzählung im CASY. Anschließend fand eine Zentrifugation der Zellsuspension bei 250 x g statt. Der Überstand wurde verworfen und die verbliebenen Zellen erneut mit 2 ml PBS-Puffer gewaschen. Es folgte eine weitere Zentrifugation mit Verwerfen des Überstandes. Unter Zugabe der Stro-1-Antikörper und Inkubation nach Herstellerprotokoll bildeten sich Zellpellets aus, die nachfolgend in MACS-Puffer resuspendiert wurden. In 500 µl MACS-Puffer wurden dabei maximal 2,5 Millionen Zellen gelöst.

Um die Zellsortierung einzuleiten, wurde die Magnetsäule (MS-Columns, Miltenyi Biotec GmbH, Bergisch Gladbach) der *Mini MACS-Separation Unit* (Miltenyi Biotec GmbH, Bergisch Gladbach) mit 500 µl MACS-Puffer gespült. Die in 500 µl MACS-Puffer gelösten Zellen wurden auf die Trennsäule pipettiert, welche nachfolgend dreimal mit jeweils 500 µl MACS-Puffer ausgewaschen wurde. Zellen, welche zuvor eine Bindung mit den magnetgekoppelten Stro-1-Antikörpern eingegangen waren, verblieben innerhalb der Trennsäule. Unmarkierte (negative) Zellen dagegen konnten nach ungehindertem Durchfluss und Spülung der Säule in einem Zentrifugenröhrchen aufgefangen werden. Nach Entfernung der Trennsäule aus dem Magnetfeld wurden die markierten (positiven) Zellen durch Ausspülen mit 1 ml MACS-Puffer in einem separaten Röhrchen gesammelt. Mittels des CASY wurde die Anzahl der positiven und negativen Zellen ermittelt.

Die isolierten Stro-1-positiven Zahnkeim- und Knochenmark-Stammzellpopulationen wurden anschließend jeweils in 6-Well-Platten zu je 50.000 Zellen pro Well in 3 ml NH-Medium (Stammzell-Expansionmedium der Fa. Miltenyi) fünf Tage lang im Brutschrank bei 7,5 % CO₂ und 37 °C kultiviert. Nach zwei Tagen erfolgte der Wechsel mit frischem Medium der gleichen Art. An Tag fünf wurde die Hälfte aller Zellen auf ein Osteoblastendifferenzierungsmedium (ebenfalls Fa. Miltenyi) umgesetzt. An Tag sieben wurden diese Zellen erneut mit frischem OD-Medium versorgt, an Tag neun geerntet und für die Microarray-Analyse präpariert. Die andere Hälfte der Zellen wurde ab Tag fünf mit DMEM in der gleichen Zeitabfolge kultiviert.

2.3 RNA-Isolierung aus Stro-1-positiven Zahnkeim- und Beckenkammzellen

Um die isolierten Stro-1-positiven Zellen aus Zahnkeimen und Beckenkammknochen auf die Microarray-Analyse vorzubereiten, wurde zunächst eine Isolierung der RNA durchgeführt. Diese erfolgte mithilfe des *QIAGEN RNeasy Mini Kits* (QIAGEN GmbH, Hilden) und ist vereinfacht in Abbildung 4 dargestellt.

Unter Beachtung des Herstellerprotokolls wurden die Zellproben zunächst lysiert und homogenisiert. Nach Zugabe von 10 μ l β -Mercaptoethanol zu je 1 ml Buffer RLT erfolgte hierzu die Vermischung der isolierten Zellen mit dem Lysispuffer. Zur Homogenisierung wurde das Lysat auf eine QIAshredder-Säule aufgetragen und für zwei Minuten bei 16.400 rpm zentrifugiert. Durch Hinzufügen von 70%igem Ethanol wurde eine Bindung der RNA an die Silicagel-Membran der RNeasy-Zentrifugationsröhrchen vorbereitet. Die Probengemische wurden nachfolgend in diese überführt und erneut zentrifugiert. Eventuelle Verunreinigungen durch DNA-Moleküle wurden mithilfe des *RNase-Free DNase Sets* (QIAGEN GmbH, Hilden) eliminiert. Die abschließende Elution der isolierten RNA erfolgte mit DEPC-behandeltem Wasser. Um Kontaminationen der Eluate mit verbliebenen Proteinen auszuschließen, wurden Messungen im Photometer bei 280 nm durchgeführt. Gleichzeitig fand eine Bestimmung der Konzentration der RNA-Lösungen bei 260 nm für Nukleinsäuren statt. Aus dem Verhältnis der optischen Dichtemessungen bei 260 nm und 280 nm lässt sich die Reinheit der entsprechenden Probe ableiten. Ein Quotient von OD₂₆₀/OD₂₈₀ = 2,0 deutet in diesem Zusammenhang auf eine reine RNA-Isolierung hin.

Abbildung 4: Schematischer Ablauf der RNA-Isolierung (basierend auf QIAGEN; www.qiagen.com).

2.4 RNA-Amplifikation und Herstellung der Microarrays

Auf Grundlage der erfolgreichen RNA-Isolierung wurde vom Transkriptom-Analyselabor der UMG die Genexpressionsanalyse mithilfe der Microarray-Technik durchgeführt. Anhand der aus beiden Zelltypen isolierten RNA-Moleküle lassen sich Rückschlüsse auf die transkribierten Gene ziehen.

Um das gesamte menschliche Genom im Rahmen der Microarray-Analyse abzudecken, wurde das Whole Human Genome Microarray Kit 4 x 44 K (G4112F) von Agilent Technologies verwendet. Mittels des Low RNA Input Linear Amplification Kit Plus, One Color (Agilent Technologies, Inc. 2007; Cat N°: 5188-5339) wurde die gewonnene Menge an RNA durch In-vitro-Transkription (IVT) vermehrt und in fluoreszierende komplementäre RNA (cRNA) umgeschrieben. Entsprechend dem Standardprotokoll des Herstellers wurden hierzu 600 ng RNA als Ausgangsmaterial verwendet. Durch Hinzufügen der im Kit enthaltenen Komponenten erfolgte über die Synthese von cDNA die Herstellung Cy3markierter cRNA. Um den Versuchsablauf validieren zu können, wurde zusätzlich das Agilent One Color RNA Spike-In Kit (Agilent Technologies, Inc. 2007; Cat N°: 5188-5282) als Positivkontrolle verwendet. Die aufgereinigte, amplifizierte cRNA wurde den Herstellerempfehlungen folgend mithilfe des NanoDrop ND-1000 UV-VIS Spectrophotometers (Version 3.2.1.) quantifiziert. Die Hybridisierung (17 h bei 10 rpm und 65 °C) im Hybridisierungsofen (Agilent) sowie das Waschen und Färben der Microarrays wurden entsprechend dem One-Color Microarray-Based Gene Expression Analysis Protocol V5.7 durchgeführt.

Anschließend wurden die fertigen Microarray-Slides in den *Agilent DNA Microarray Scanner* (G2505B) eingelesen. Bei einer Auflösung von 5 µm fand mittels *one-color scanning* eine Bestimmung der Cy3-Intensitäten statt. Die erstellten Scans wurden als TIFF-Bilddateien abgespeichert und der Analyse-Software zur weiteren Auswertung zugeführt.

2.5 Analyse der Microarray-Daten und statistische Auswertung

Die Microarray-Technologie ermöglicht einen umfassenden Blick auf die Genexpressionsprofile verschiedener Zelltypen. Ein einzelner Datenträger liefert dabei über die Messung von Fluoreszenzintensitätswerten Hinweise auf mehrere tausend Gene gleichzeitig. Zur Aufbereitung dieser umfangreichen Datenmengen empfiehlt es sich, einem standardisierten Verfahren zu folgen. Die statistische Auswertung der vorliegenden Untersuchung wurde daher nach dem in der Arbeit von Diana Oellerich (2016) beschriebenen Modell vorgenommen (Abbildung 5).

Abbildung 5: Schematische Darstellung der statistischen Auswertung der Array-Daten (nach Irizarry et al. 2003 und Opitz et al. 2010).

Die ersten vier Arbeitsschritte wurden vom Transkriptom-Analyselabor der UMG ausgeführt. Nach Umformung der detektierten Fluoreszenzintensitätswerte in log₂-Werte wurde zunächst eine Quantilnormalisierung der Rohdaten durchgeführt. Unter der Annahme, dass zwischen den einzelnen Microarrays die globale Verteilung der Genexpressionwerte ungefähr gleich bleibt, erfolgt hierbei eine Angleichung der Daten. Schwankungen in den Messwerten, die auf systematische Fehler zurückzuführen sind, werden auf diese Weise herausgerechnet (Irizarry et al. 2003). Um in den Datensätzen Gene mit ähnlichen Expressionsmustern aufdecken zu können, kam eine hierarchische Clusteranalyse zur Anwendung. Nach dem "Bottom-up-Verfahren" wurden sich ähnlich verhaltende Gene in entsprechenden Clustern zusammengefasst. Die Bildung der Cluster-Hierarchie gründete sich dabei auf den 1-Pearson's Korrelationskoeffizient als Distanzmaß sowie die Average-Linkage-Methode als Fusionierungsalgorithmus. Mittels der principal component analysis (PCA) wurden aus der Varianz aller Messdaten die wichtigsten Hauptkomponenten herausgefiltert (R Software princomp function). Es folgte die Ausarbeitung eines passenden linearen Modells, um verlässliche Aussagen über die statistische Signifikanz der Daten treffen zu können. Aus den drei parallelen Versuchsreihen für jedes Gen wurden die Mittelwerte errechnet. Als Streumaß wurde die Standardabweichung ermittelt. Basierend auf dem linearen Modell wurde die empirische Bayes-Methode angewendet, um signifikant differentielle Genexpressionen zu detektieren (Smyth 2004). Zur weiteren Absicherung der Ergebnisse wurden über einen *moderated t-Test* die p-Werte erhoben. Mithilfe der *false discovery rate* (FDR) erfolgte eine Verschärfung der Signifikanzprüfung, indem eine Korrektur der p-Werte für multiples Testen vorgenommen wurde. Dieser Vorgang wird auch als Benjamini-Hochberg-Prozedur bezeichnet. Als *cut-off* für die Ablehnung der Nullhypothese, wurde eine FDR < 0,05 verwendet. Unterhalb dieser Grenze können demnach die differentiellen Genexpressionen als statistisch signifikant bezeichnet werden. Mittels der GO-Enrichment-Analyse (R Software topGO package) wurden die Genlisten speziell nach überrepräsentierten Funktionen durchsucht. Die Einteilung der Gene in bestimmte Gruppen beruht dabei auf dem System von *Gene Ontology* (GO) (Beissbarth und Speed 2004). Eine Überprüfung der statistischen Signifikanz erfolgte durch Anwendung des Wilcoxon-Mann-Whitney-Test, wobei als *cut-off* p-Werte < 0,05 nach Bonferroni-Korrektur gewählt wurden.

2.5.1 Vorgehensweise zur Identifikation differentieller Genexpressionen

Die Rohdaten der Microarray-Analyse wurden von der Klinik für Mund-, Kiefer- und Gesichtschirurgie zur weiteren Auswertung zur Verfügung gestellt. Diese wurden anhand festgelegter cut-offs für die ermittelten logFC- und FDR-Werte verschiedenen Filterdurchläufen unterzogen. Alle Auswertungen erfolgten mit der Statistik-Software SigmaPlot, Version 11.2 (Systat Software Inc., San Jose, CA., USA). Für beide Zelltypen wurden zunächst die zehn höchst signifikant exprimierten Gene, die im ODM gegenüber dem DMEM hoch- und herunterreguliert werden, ermittelt. Um gezielt Unterschiede im Expressionsverhalten beider Zelltypen beim Medienwechsel zu detektieren, wurde ein spezielles Filterverfahren angewendet. Nach alphabetischer Sortierung aller Gene der Zahnkeim- und Beckenkammzellen und Zuordnung der entsprechenden logFC- sowie FDR-Werte, erfolgte über den *cut-off* FDR \leq 5 % ein Vergleich der gegenübergestellten Gene beider Zelltypen. Unter Berücksichtigung negativer und positiver Werte des logFC wurden hochregulierte und (positive) und herunterregulierte (negative) Genexpressionen voneinander getrennt. Abschließend wurde das differentielle Expressionsprofil beider Zelltypen im osteogenen Medium direkt miteinander verglichen. Mithilfe der Annotationsplattform DAVID wurden Gengruppen detektiert, die in biologischen Prozessen wichtige Funktionen übernehmen.

3 Ergebnisse

Die zu untersuchenden Stro-1⁺-Stammzellen wurden einerseits aus der Spongiosa humaner Beckenkammpräparate gewonnen, andererseits dienten Zahnkeime als Probenmaterial. Die Zahnkeime wurden in retinierter Form mit noch nicht abgeschlossenem Wurzelwachstum operativ entfernt. In Abbildung 6 ist die Lage der Zahnkeime der Panoramaschichtaufnahme zu entnehmen. Hierbei handelt es sich um in Entwicklung befindliche Weisheitszähne. Die Gewebegewinnung erfolgte nach Osteotomie der Zahnkeime unter sterilen Bedingungen, wobei apikal bereits makroskopisch die Zahnpapille zu erkennen war. Die Kultivierung der mittels MAC-Sortierung isolierten Stro-1⁺-Zahnkeim- und -Beckenkammzellen wurde anschließend in unterschiedlichen Nährmedien durchgeführt. Die Anzucht erfolgte im DME-Medium (DMEM) und osteogenem Differenzierungsmedium (ODM). Es konnten für beide Gewebearten zwischen 8,4 bis 11,1 % Stro-1⁺ markierte Stammzellen aus den Zellkulturen isoliert werden, die für die nachfolgende Microarray-Analyse verwendet wurden. Ziel der Zellkultivierung unter verschiedenen äußeren Bedingungen war die zentrale Fragestellung, wie die beiden Stammzelltypen auf das jeweilig angebotene Nährmedium im Hinblick auf die Genexpression reagieren.

Die zu diesem Zweck angefertigten Microarrays lieferten nachfolgend die entsprechenden Daten, um Unterschiede bzw. Gemeinsamkeiten im Expressionsprofil beider Stammzelltypen ausfindig machen zu können. Die Ergebnisse dieser Microarray-Analyse sollen in den folgenden Kapiteln systematisch dargestellt und statistisch aufbereitet werden.

Zunächst erfolgt eine kurze Zusammenfassung und Beschreibung der gesamten Rohdatenmenge. Anschließend soll mittels spezifischer Kriterien eine tiefergehende Auswertung durchgeführt werden. In Kapitel 3.2 wird hierzu in einem weiteren Arbeitsschritt untersucht, welchen Einfluss das jeweilige Nährmedium (DMEM bzw. ODM) auf die Genexpression der Stro-1⁺-Stammzellen aus Zahnkeimen (Stro-1^{+ZK}) und Beckenkammspongiosa (Stro-1^{+BK}) hat. Veränderungen in der Differentialexpression wurden dabei für beide Stammzelltypen zunächst isoliert betrachtet. Ein Vergleich der Genexpression zwischen Stro-1^{+ZK} und Stro-1^{+BK} findet dann in den Kapiteln 3.3 und 3.4 statt.

Abbildung 6: Histologische Aufarbeitung der extrahierten Zahnkeime. (A) Panoramaschichtaufnahme mit retinierten Weisheitszahnkeimen. (B) Osteotomierter Zahnkeim mit mineralisierter Krone und anhängender Zahnpapille. (C-D) Histologische Präparate eines ca. 10 mm im Durchmesser großen Weichgewebeanteils eines Zahnkeimes (Giemsa-Färbung). (C) Axialer Querschnitt durch die annähernd kugelförmige Gestalt des Keimes, nachdem die bereits mineralisierte, noch nicht vollständige Krone entfernt wurde. Das Gewebe stellt die Weiterentwicklung der Zahnpapille dar, welches in einem weiteren Entwicklungsstadium die Pulpa, den Zahnhals und die Zahnwurzel bildet. (D) Ausschnitt aus der Mitte des Zahnkeimes, der aus einer weitestgehend strukturlosen bindegewebigen Zellmasse besteht, die von Blutgefäßen durchsetzt ist. In ihr sind offensichtlich die Stro-1⁺ mesenchymalen Stamm- und Vorläuferzellen vorhanden, die angezüchtet wurden. (E) Im Randbereich findet sich ein dünner, einschichtiger Odontoblastensaum, der in dieser Form durch den Abriss vom Hartgewebe entstanden ist. In unmittelbarer Nähe verlaufen erythrozytenhaltige Gefäße.

3.1 Analyse der Rohdaten

Die Rohdaten wiesen für beide Stammzelltypen insgesamt 28.889 Gene auf, wobei sich unter den Messungen auch 6.435 bisher noch unbekannte, nicht näher bezeichnete Gene befanden (Stand 2015). Nach Abzug dieser mit "NA" gekennzeichneten Gene ergab sich sowohl für die Stro-1⁺-Zahnkeimzellen (ZK) als auch die Stro-1⁺-Beckenkammzellen (BK) eine Anzahl von 22.454 registrierten Genen. Um Unterschiede zwischen den Nährmedien detektieren zu können, wurde die Differenz der Höhe der Genexpression aus logFC gebildet und deren FDR berücksichtigt. Die Differenz "logFC = log₂(ODM) minus log₂(DMEM)" wird im Folgenden der Kürze halber jeweils ZK2-ZK1 und BK2-BK1 genannt. Die Hoch- bzw. Herunterregulation von Genen in einem Medium ist daher <u>immer</u> im Vergleich zum anderen Medium zu sehen. So ist z. B. ein im ODM hochreguliertes Gen im DMEM herunterreguliert. Durch die Festlegung des FDR-Wertes auf ≤ 1 % wurden die Messwerte für die nachfolgenden Untersuchungen auf ein geringeres Datenvolumen mit hoher Signifikanz begrenzt. Die Tabellen 1 und 2 verdeutlichen diese Abhängigkeit zwischen FDR und Anzahl der statistisch signifikant exprimierten Gene wie sie sich beim Wechsel vom DMEM in das ODM ergeben.

FDR-Wert	ZK2-ZK1 (n = 22.454)	BK2-BK1 (n = 22.454)
FDR ≤ 10 %	866	1227
FDR ≤ 5 %	696	960
FDR ≤ 1 %	437	624
FDR ≤ 0,1 %	225	382
FDR ≤ 0,01 %	129	208
FDR ≤ 0,001 %	68	116
FDR ≤ 0,0001 %	36	70

Tabelle 1: Anzahl n der auf die FDR bezogenen statistisch signifikant exprimierten Gene beim

 Wechsel vom DMEM in das ODM.

Tabelle 2: Anzahl n der hochregulierten (\uparrow) und herunterregulierten (\downarrow) Gene im ODM gegenüber dem DMEM je FDR-Wert. Die logFC-Werte können hier |< 1| sein.

FDR-Wert	ZK2-ZK1	\checkmark	1	FDR-Wert	BK2-BK1	\checkmark	1
≤ 10 %	866	480	386	≤ 10 %	1227	557	670
≤ 5 %	696	383	313	≤ 5 %	960	423	537
≤1%	437	234	203	≤1%	624	274	350
≤ 0,1 %	225	111	114	≤ 0,1 %	382	153	229
≤ 0,01 %	129	69	60	≤ 0,01 %	208	82	126
≤ 0,001 %	68	30	38	≤ 0,001 %	116	40	76
≤ 0,0001 %	36	17	19	≤ 0,0001 %	70	25	45

Wie aus Tabelle 1 ersichtlich, werden unter dem Einfluss des osteogenen Mediums bei den Stro-1^{+BK} erheblich mehr Gene gegenüber dem DMEM signifikant verändert als bei den Stro-1^{+ZK} (Verhältnis ZK : BK = 2 : 3). Bemerkenswert ist auch die Tatsache, dass die Stro-1^{+ZK} im ODM zu einem größeren Anteil herunterreguliert und die Stro-1^{+BK} dagegen hochreguliert werden (Tabelle 2).

Werden die 22.454 Gene nach dem **Kriterium FDR \leq 1 %** gefiltert, ergibt sich bei den Stro-1⁺-Zellen aus den Zahnkeimen und dem Beckenkamm eine geringere Anzahl an signifikant hoch- oder herunterregulierten Genen. Die logFC-Werte können |<1| sein. Bei den Zahnkeimzellen konnten insgesamt **437 Gene** detektiert werden, die diesem *cut-off* entsprachen. Die Beckenkammzellen wiesen **624 Gene** auf. Innerhalb beider Zellpopulationen wurde in einem weiteren Schritt eine Sortierung anhand der logFC-Werte vorgenommen. Ein positiver logFC-Wert steht dabei für eine höhere Expression des jeweiligen Gens im ODM gegenüber dem DMEM, ein negativer logFC-Wert dagegen für eine höhere Genexpression im DMEM gegenüber dem ODM. In Abbildung 7 zeigen die übereinanderliegenden Histogramme diese Werte als Überschneidungen der Säulen auch hinsichtlich der Höhe des logFC-Wertes.

Bei den Stro-1^{+ZK} werden folglich im ODM gegenüber dem DMEM **203 Gene hoch-** und **234 Gene herunterreguliert**. Bei den Stro-1^{+BK} werden **350 Gene hoch-** und **274 Gene herunterreguliert**. Unter dem oben genannten Filterkriterium wird bei den Stro-1^{+ZK} im ODM gegenüber dem DMEM die Mehrzahl der Gene <u>herunterreguliert</u>, während bei den Stro-1^{+BK} überwiegend eine <u>Hochregulation</u> erfolgt. Insgesamt werden in den Stro-1^{+ZK} weniger Gene signifikant verändert als in den Stro-1^{+BK}.

Abbildung 7: Histogramme der logFC-Intensitätsverteilung der Genexpression. Dargestellt ist die Verteilung der Stro-1⁺-Zahnkeimzellen (A) und der Stro-1⁺-Beckenkammzellen (B) im DMEM und osteogenen Medium. Die Anzahl der Verteilungsdifferenzen erstreckt sich über den gesamten logFC-Bereich. Die Histogramme bestehen aus 61 Säulen mit einer logFC-Breite von 0,2 Einheiten (n = 22.454).

Intensitätsverteilung der Gene

3.2 Der Einfluss der Medien auf die Genexpression

In Kapitel 3.1 konnten anhand des *cut-offs* der FDR ≤ 1 % für die Stro-1^{+ZK} 437 Gene und für die Stro-1^{+BK} 624 Gene als signifikant identifiziert werden. Diese zeigten in Abhängigkeit vom jeweiligen Nährmedium eine Hoch- bzw. Herunterregulation in ihrem Expressionsmuster.

Um den Einfluss der beiden Nährmedien auf den jeweiligen Stammzelltypus herausarbeiten zu können, wurden zunächst Unterschiede und Gemeinsamkeiten innerhalb der jeweiligen Zellpopulation betrachtet. Die Genexpression der Stro-1⁺-Zahnkeimzellen (ZK) wurde somit sowohl im DMEM (ZK1) als auch im ODM (ZK2) detektiert und verglichen. Gleiches erfolgte für die Stro-1⁺-Beckenkammzellen (BK) im DMEM (BK1) und ODM (BK2). Ausgehend von den noch strengeren Kriterien FDR ≤ 1 % und |logFC| > 2 wurden die gesamten Daten der Stro-1^{+ZK} und Stro-1^{+BK} statistisch gefiltert. Hierzu wurden die Rohdaten nach den FDR-Werten in aufsteigender Reihenfolge sortiert und anschließend mittels der logFC-Werte (positiv/negativ) in zwei Gruppen eingeteilt. Bei den Stro-1+ZK waren unter den oben genannten Filterkriterien 60 Gene im ODM gegenüber dem DMEM hochreguliert, wohingegen 52 Gene im DMEM stärker exprimiert wurden. Die Stro-1^{+BK} zeigten im ODM 84 hochregulierte Gene. Im DMEM waren 66 Gene hochreguliert. Umgekehrt lässt sich hier auch von einer Herunterregulation im ODM sprechen. Diese rein quantitative Auswertung wurde anschließend um eine qualitative Analyse der herausgefilterten Gene ergänzt. Die Anzahl der signifikant unterschiedlich exprimierten Gene lässt aber bereits erste Rückschlüsse auf den Einfluss der Nährmedien zu. Die größere Anzahl von hochregulierten Genen in den Stro-1^{+BK} deutet auf eine stärkere Stimulation der Beckenkammzellen durch das osteogene Differenzierungsmedium hin. Der genaue Einfluss der Nährmedien lässt sich jedoch nur feststellen, wenn bekannt ist, welche Gene signifikant unterschiedlich reagieren.

In Tabelle 3 finden sich sowohl für die Stro-1^{+ZK} als auch Stro-1^{+BK} die zehn Gene, welche aufgrund der oben gewählten *cut-offs* die höchste signifikante Hoch- bzw. Herunterregulation im ODM gegenüber dem DMEM aufweisen. Doppelt aufgeführte Gene besitzen unterschiedliche Agilent-IDs. In der Gruppe der hochregulierten Gene, aufgeführt in den grün hinterlegten Tabellen, befinden sich vier Gene - *SAA1*, *BMP6*, *FKBP5* und *MAOA* - die beim Wechsel in das ODM sowohl in den Stro-1^{+ZK} als auch Stro-1^{+BK} hochreguliert werden. Beim Wechsel vom DMEM in das ODM steigt bei den Stro-1^{+BK} die Expression von *SAA1* um das 256-Fache und von *BMP6* um das 32-Fache. Bei den Stro-1^{+ZK} verändern sich die Expressionen dieser Gene um das 13- bzw. 8-Fache. Auffällig ist, dass die logFC-Werte bei den Stro-1^{+BK} für *serum amyloid A1* ungefähr um den Faktor 20 und für *BMP6* um den Faktor 4 gegenüber den Stro-1^{+ZK} erhöht sind. Wie aus den rot hinterlegten Tabellen hervorgeht, finden sich bei den Stro-1^{+ZK} und Stro-1^{+BK} keine gleichen herunterregulierten Gene. Insgesamt reagieren die Stro-1^{+BK} wesentlich stärker auf den Wechsel des Mediums als die Stro-1^{+ZK}. Dies betrifft nicht nur die höhere Anzahl der Gene, die beim Umsetzen in das ODM reagieren, sondern auch die Intensität der Reaktion der Gene. So wurden für die Stro-1^{+BK} die zehn Gene mit der höchsten Signifikanz beim Medienwechsel zwischen dem 8- bis 256-Fachen hoch- und zwischen dem 4- bis 21-Fachen herunterreguliert. Die Stro-1^{+ZK} reagierten mit der 5- bis 22-fachen Hoch- und 8- bis 36-fachen Herunterregulation ihrer Genexpression. Der logFC-Median der höchst signifikant hochregulierten Gene beträgt bei den Stro-1^{+BK} 4,29 und bei den Stro-1^{+ZK} 3,54, während die Mediane der höchst signifikant herunterregulierten Gene jeweils -3,30 und -3,65 betragen. Die Stro-1^{+ZK} werden also stärker herunter- und die Stro-1^{+BK} stärker heraufreguliert.

Die nachfolgende Tabelle 3 fasst die zehn höchst signifikant im ODM gegenüber dem DMEM hoch- bzw. herunterregulierten Gene der Stro-1^{+ZK} und Stro-1^{+BK} mit zugehörigen Namen sowie FDR- und logFC-Werten zusammen.

Tabelle 3: Darstellung der ersten zehn im ODM gegenüber dem DMEM höchst signifikant hoch- bzw. herunterregulierten Gene der Stro-1 ⁺ -Zahnkeimzellen
(ZK2-1) und Stro-1 ⁺ -Beckenkammzellen (BK2-1). In den grün hinterlegten Tabellen lässt sich die Hochregulation der Genexpression statistisch aus den positi-
/en logFC-Werten ableiten. In den rot hinterlegten Tabellen sind korrespondierend die zehn höchst signifikant herunterregulierten Gene im ODM dargestellt.
Diese Gene sind im DMEM hochreguliert, so dass sich im Vergleich zum ODM negative logFC-Werte ergeben.

Symbol	Name	logFC ZK2-1	FDR ZK2-1
DDIT4	DNA-damage-inducible transcript 4	4,507	3,31E-09
SAA1	serum amyloid A1	3,692	5,72E-09
IGFBP2	insulin-like growth factor binding protein 2, 36kDa	3,228	6,33E-09
BMP6	bone morphogenetic protein 6	3,115	8,66E-09
PTX3	pentraxin-related gene, rapidly induced by IL-1 beta	3,741	2,99E-08
FKBP5	FK506 binding protein 5	3,267	2,99E-08
MAOA	monoamine oxidase A	2,491	2,99E-08
DCN	decorin	4,26	5,47E-08
PTGER4	prostaglandin E receptor 4 (subtype EP4)	3,483	1,37E-07
METTL7A	methyltransferase like 7A	3,598	1,39E-07

Symbol	Name	logFC ZK2-1	FDR ZK2-1
PODXL	podocalyxin-like	-5,212	2,23E-10
NRG1	neuregulin 1	-3,056	1,52E-09
IGFBP3	insulin-like growth factor binding protein 3	-4,854	1,78E-09
DACT1	dapper, antagonist of beta-catenin, homolog 1 (Xenopus laevis)	-3,922	1,87E-09
LRRC15	leucine rich repeat containing 15	-4,167	3,31E-09
NEFM	neurofilament, medium polypeptide	-4,333	4,19E-09
MMP3	matrix metallopeptidase 3 (stromelysin 1, progelatinase)	-3,384	5,46E-09
ACTC1	actin, alpha, cardiac muscle 1	-3,361	2,99E-08
CNN1	calponin 1, basic, smooth muscle	-2,953	5,04E-08
ESM1	endothelial cell-specific molecule 1	-3,302	6,54E-08

Symbol	Name	logFC BK2-1	FDR BK2-1
SAA1	serum amyloid A1	8,034	6,63E-14
BMP6	bone morphogenetic protein 6	5,251	3,81E-12
FRZB	frizzled-related protein	4,406	3,81E-12
VM01	vitelline membrane outer layer 1 homolog (chicken)	4,586	3,95E-11
FRZB	frizzled-related protein	4,352	4,19E-10
IMPA2	inositol(myo)-1(or 4)-monophosphatase 2	4,105	4,19E-10
MAOA	monoamine oxidase A	3,299	4,19E-10
FKBP5	FK506 binding protein 5	4,235	4,68E-10
EEF1A2	eukaryotic translation elongation factor 1 alpha 2	3,277	4,68E-10
AOX1	aldehyde oxidase 1	3,06	1,63E-09

Symbol	Name	logFC BK2-1	FDR BK2-1
GPR68	G protein-coupled receptor 68	-4,408	1,42E-10
FLG	filaggrin	-4,291	4,68E-10
FLG	filaggrin	-4,326	1,58E-09
LYPD1	LY6/PLAUR domain containing 1	-3,128	4,17E-09
AK5	adenylate kinase 5	-3,33	4,82E-09
NLRP1	NLR family, pyrin domain containing 1	-3,202	6,16E-09
ALDH1A3	aldehyde dehydrogenase 1 family, member A3	-3,266	1,37E-08
KRT19	keratin 19	-3,073	1,77E-08
ARL4C	ADP-ribosylation factor-like 4C	-3,754	2,67E-08
NRG1	neuregulin 1	-2,153	3,74E-08

3.2.1 Funktionelle Genanalyse der Stro-1^{+ZK} und Stro-1^{+BK}

Da die Auflistung der signifikant über- oder unterexprimierten Gene zunächst keinen Zusammenhang in ihrer funktionellen Bedeutung erkennen lässt, wurden sie in einem weiteren Schritt in das Programm "DAVID Bioinformatics Resources" (**D**atabase for **A**nnotation, **V**isualization and **I**ntegrated **D**iscovery) eingespeist. Diese Software ermöglicht die Evaluierung großer Datenmengen wie sie im Zuge der Auswertung von Microarrays anfallen können und ordnet sie auf Basis von *Gene Ontology* (GO)-Klassifizierungen nach funktionellen Gruppen. Eine gezielte Analyse bezüglich biologischer Prozesse wurde mittels des *Functional Annotation Tool* vorgenommen.

Hierzu wurden die nach den Kriterien FDR ≤ 1 % und $|\log FC| > 2$ gefilterten Gene getrennt für beide Stammzellpopulationen (Stro-1^{+ZK} bzw. Stro-1^{+BK}) sowie sortiert nach dem logFC-Wert (positiv bzw. negativ) dem Programm zugeführt. Über den Befehl "GOTERM_BP_FAT" wurden insbesondere Gene in den Daten gesucht, die im Zuge von biologischen Prozessen (BP) eine entscheidende Rolle spielen. Die anschließende Visualisierung erfolgte anhand einer tabellarischen Auflistung (*Functional Annotation Chart*) aller detektierten Gene. Mithilfe dieses Anschauungsmodus findet eine geordnete Darstellung derjenigen Gene in Gruppen statt, die in ausgewählte biologische Prozesse eingebunden sind. Diese werden im Rahmen der Software als *terms* bezeichnet und sind in der *chart* nach ihrer Signifikanz entsprechend dem Benjamini- sowie p-Wert aufgelistet. Die Anzahl der zu einem *term* gehörigen Gene findet sich als Zahlenwert in der Spalte *count*. Daneben ist die prozentuale Gewichtung der einzelnen Gengruppen im Hinblick auf die Gesamtheit aller eingespeisten Daten gelistet.

Sowohl für die Zahnkeimzellen als auch die Beckenkammzellen ergeben sich jeweils zwei *charts*. Von den 60 im ODM gegenüber dem DMEM hochregulierten Genen der Stro-1^{+ZK} konnten 37 Gene insgesamt 55 GO-*terms* zugeordnet werden. Bei den 52 herunterregulierten Genen der Stro-1^{+ZK} wurden für 38 Gene 113 GO-*terms* detektiert. Die Stro-1^{+BK} wiesen für die 84 hochregulierten Gene insgesamt 153 GO-*terms* mit 56 Genen auf, für die 66 herunterregulierten Gene 123 GO-*terms* mit 46 Genen. Die ersten zehn signifikant hochbzw. herunterregulierten Gengruppen (*terms*) der Stro-1^{+ZK} finden sich jeweils in den Tabellen 4a und 4b. Die Tabellen 5a und 5b umfassen die ersten zehn Gengruppen der Beckenkammzellen, die entweder im ODM oder DMEM im Hinblick auf ihre Expression hochreguliert sind.

Tabelle 4a,b: (a) Die ersten zehn im **ODM** signifikant **hochregulierten** funktionellen Gruppen der Stro-1⁺-**Zahnkeimzellen** (nach DAVID Version 6.7). **(b)** Die ersten zehn im **ODM** signifikant **herunterregulierten** (= im DMEM signifikant hochregulierten) funktionellen Gruppen der Stro-1⁺-**Zahnkeimzellen**. Die zugehörigen Gene der funktionellen Gruppen finden sich im Anhang in Tabelle A-5 und A-6. Die Tabellen sind nach der aufsteigenden Höhe der p-Werte sortiert.

Tabelle 4a

Term	Genes	<u>Count</u>	%	P-Value	<u>Benjamini</u>
response to organic substance		10	18,5	9,9E-4	5,1E-1
positive regulation of multicellular organismal process		6	11,1	1,8E-3	4,8E-1
response to wounding		8	14,8	2,8E-3	4,9E-1
response to endogenous stimulus		7	13,0	3,3E-3	4,4E-1
response to steroid hormone stimulus		5	9,3	5,1E-3	5,1E-1
negative regulation of inflammatory response		3	5,6	5,6E-3	4,9E-1
inflammatory response		6	11,1	6,2E-3	4,7E-1
behavior		7	13,0	6,7E-3	4,5E-1
negative regulation of glycogen catabolic process		2	3,7	7,2E-3	4,4E-1
negative regulation of defense response		3	5,6	7,5E-3	4,1E-1

Tabelle 4b

Term	Genes	<u>Count</u>	%	P-Value	<u>Benjamini</u>
regulation of cell migration		6	13,3	7,9E-5	5,3E-2
striated muscle cell differentiation		5	11,1	8,4E-5	2,8E-2
regulation of locomotion	-	6	13,3	1,4E-4	3,2E-2
regulation of cell motion		6	13,3	1,5E-4	2,5E-2
striated muscle tissue development		5	11,1	2,7E-4	3,6E-2
muscle cell differentiation		5	11,1	2,9E-4	3,2E-2
muscle tissue development	-	5	11,1	3,3E-4	3,1E-2
cell adhesion		9	20,0	4,1E-4	3,5E-2
negative regulation of secretion		4	8,9	4,1E-4	3,1E-2
biological adhesion		9	20,0	4,1E-4	2,8E-2

Tabelle 5a,b: (a) Die ersten zehn im **ODM** signifikant **hochregulierten** funktionellen Gruppen der Stro-1⁺-**Beckenkammzellen** (nach DAVID Version 6.7). **(b)** Die ersten zehn im **ODM signifikant herunterregulierten** (= im DMEM signifikant herunterregulierten) funktionellen Gruppen der Stro-1⁺-**Beckenkammzellen**. Die zugehörigen Gene der funktionellen Gruppen finden sich im Anhang in Tabelle A-7 und A-8. Die Tabellen sind nach der aufsteigenden Höhe der p-Werte sortiert.

Tabelle 5a

Term	Genes	<u>Count</u>	<u>%</u>	P-Value	<u>Benjamini</u>
response to insulin stimulus		7	9,5	6,2E-6	5,7E-3
response to endogenous stimulus		11	14,9	1,4E-5	6,3E-3
response to hormone stimulus		10	13,5	4,1E-5	1,3E-2
response to peptide hormone stimulus		7	9,5	7,2E-5	1,6E-2
negative regulation of response to external stimulus		5	6,8	7,9E-5	1,4E-2
negative regulation of inflammatory response		4	5,4	3,8E-4	5,6E-2
response to organic substance		12	16,2	3,8E-4	4,9E-2
regulation of glucose metabolic process		4	5,4	5,4E-4	6,0E-2
negative regulation of defense response		4	5,4	5,9E-4	5,8E-2
regulation of cellular carbohydrate metabolic process		4	5,4	6,9E-4	6,2E-2

Tabelle 5b

<u>Term</u>	Genes	<u>Count</u>	<u>%</u>	P-Value	<u>Benjamini</u>
negative regulation of secretion		5	8,6	4,9E-5	4,2E-2
regulation of leukocyte migration		4	6,9	5,2E-5	2,2E-2
wound healing	=	7	12,1	6,9E-5	2,0E-2
regulation of secretion		7	12,1	9,5E-5	2,0E-2
angiogenesis		6	10,3	2,1E-4	3,6E-2
blood vessel morphogenesis		6	10,3	1,1E-3	1,4E-1
positive regulation of leukocyte migration	=	3	5,2	1,4E-3	1,6E-1
negative regulation of transport		5	8,6	1,5E-3	1,5E-1
blood vessel development		6	10,3	2,0E-3	1,8E-1
regulation of cellular localization		6	10,3	2,2E-3	1,7E-1
In den Tabellen 4a und 5a finden sich bei den Stro-1^{+ZK} und Stro-1^{+BK} vier gleiche funktionelle Gengruppen, welche im ODM gegenüber dem DMEM hochreguliert werden (in den Tabellen gelb markiert). Es handelt sich um die GO-*terms response to organic substance, response to endogenous stimulus, negative regulation of inflammatory response* sowie *negative regulation of defense response*. Die Tabellen 4b und 5b zeigen dagegen nur eine gemeinsame herunterregulierte Gengruppe mit dem GO-*term negative regulation of secretion*. Um ähnliche bzw. voneinander abweichende Gene innerhalb der Gengruppen ausfindig machen zu können, wurden für alle in den Tabellen 4 und 5 aufgeführten GO*terms* die zugehörigen Gene getrennt nach Zelltyp aufgelistet. Die entsprechenden Tabellen A-5 bis A-8 finden sich im Anhang. In den jeweiligen Gruppen kommen bestimmte Gene mehrfach vor, da diese in mehreren biologischen Prozessen wichtige Rollen übernehmen. DAVID listet diese Gene entsprechend in allen relevanten *terms* auf.

3.2.2 Genexpression der Stro-1^{+ZK} im osteogenen und DME-Medium

Zu den zehn am höchst signifikant exprimierten Genen der Stro-1^{+ZK} zählen *SAA1*, *BMP6*, *FKBP5* und *MAOA*, die auch in den Stro-1^{+BK} höchste Signifikanzen zeigen. Auffällig ist, dass das *IGFBP2* bei den Zahnkeimzellen im ODM gegenüber dem DMEM eine Hochregulation in seiner Expression erfährt, während das *IGFBP3* herunterreguliert wird. Dies bedeutet entsprechend ein umgekehrtes Verhalten im DMEM.

Die für die Stro-1^{+ZK} signifikant veränderten funktionellen Gengruppen sind in den Tabellen 4a und 4b aufgeführt. Tabelle 4a umfasst jene GO-*terms*, die im ODM gegenüber dem DMEM hochreguliert werden, während Tabelle 4b die herunterregulierten GO-*terms* auflistet. Im ODM werden insbesondere Gene hochreguliert, die biologischen Prozesse umfassen, welche mit der Reaktion auf organische Substanzen, der Wundheilung und der Entzündungsantwort im Zusammenhang stehen. Exemplarisch stehen hierfür die GO-*terms response to organic substance, positive regulation of multicellular organismal process, response to wounding, response to endogenous stimulus, response to steroid hormone stimulus und negative regulation of defense response. Es fällt dabei auf, dass in acht der zehn Gengruppen aus Tabelle 4a das Gen <i>IGF2 (insulin-like growth factor 2)* eine zentrale Rolle spielt (Tabelle A-5 im Anhang). Darauf weist bereits die oben genannte hohe Expression von *IGFBP2* hin. Demgegenüber sind im ODM funktionelle Gruppen der Zellmigration und Muskeldifferenzierung sowie der Zelladhäsion herunterreguliert (im

DMEM hochreguliert). In diesen Gruppen dominieren *IGFBP3* und *IGFBP5* (Tabelle A-6 im Anhang).

Um Aufschluss über die Eigenschaften der Stro-1^{+ZK} bezüglich ihrer biologischen Funktion zu erhalten, erschien es wichtig, auch einige Gene zu betrachten, die sich trotz unterschiedlicher Nährmedien in ihrer Expression <u>nicht</u> ändern. Beim Wechsel der Stro-1^{+ZK} vom DMEM in das ODM gibt es keine signifikante Expressionsänderung von *BMP1*, *BMP2* und *BMP7*, aber eine geringe Hochregulierung von *BMP4* (logFC = 0,782; FDR = 8,45E-2) und eine hoch signifikante Überexpression von *BMP6* (Tabelle 3). Keine wesentliche Reaktion auf einen Medienwechsel zeigen die für die Körpersegmente zuständigen HOX-Gene der Cluster A-D (|logFC| < 1; FDR = 100 %) mit Ausnahme einer geringen Herunterregulierung von *HOXB2* im ODM.

3.2.3 Genexpression der Stro-1^{+BK} im osteogenen und DME-Medium

Neben den Genen, die auch bei den Stro-1^{+ZK} stark exprimiert werden (*SAA1*, *BMP6*, *FKBP5*, *MAOA*), fällt bei den Stro-1^{+BK} das Gen *VMO1* (*vitelline membrane outer layer 1 homolog*) auf, ein Protein, das im Zusammenhang mit mesenchymalen, knochenbildenden Stammzellen nicht bekannt ist. Hoch exprimiert wird auch das Gen *FRZB* (*frizzled-related protein*), welches unter zwei verschiedenen Agilent-IDs vorkommt.

Auch bei den Stro-1^{+BK} werden im ODM Gene hochreguliert, die ähnliche biologische Prozesse wie bei den Stro-1^{+ZK} umfassen, z. B. die *terms response to endogenous stimulus*, *response to organic substance*, *negative regulation of defense response* und *negative regulation of inflammatory response*. Ferner treten hier die Gruppen *response to insulin stimulus*, *response to hormone stimulus* und speziell *response to peptide hormone stimulus* auf. Die im ODM herunterregulierten (im DMEM hochregulierten) Gengruppen sind größtenteils der Angiogenese zuzuordnen. Das Gen *IGFBP3* ist im ODM ebenfalls unterexprimiert (logFC = -1,45; FDR = 1,97E-3), allerdings nicht so deutlich wie bei den Stro-1^{+ZK}. Die HOX-Gene zeigen keine signifikante Änderung ihrer Expression mit Ausnahme von *HOXB3* und *HOXC8*, welche im ODM herunterreguliert werden.

3.3 Differentielle Genexpression der Stro-1^{+ZK} und Stro-1^{+BK} in den Medien

Während in Kapitel 3.2 insbesondere der Einfluss des jeweiligen Nährmediums auf die Stro-1^{+ZK} bzw. Stro-1^{+BK} anhand der ersten zehn höchst signifikant hoch- und herunterregulierten Gene sowie funktionellen Gruppen untersucht wurde, soll in diesem Teil der Arbeit durch ein spezielles Filterverfahren ein direkter Vergleich zwischen den beiden Zellpopulationen erfolgen. Dieses Vorgehen gewährleistet eine wesentlich höhere Trennschärfe beider Stammzelltypen hinsichtlich ihrer Genexpression auch in funktioneller Hinsicht.

Um gezielt Unterschiede im Expressionsverhalten der Stro-1^{+ZK} und Stro-1^{+BK} beim Medienwechsel herauszufiltern, wurden alle 22.454 Gene zunächst alphabetisch aufsteigend sortiert und ihnen dann die entsprechenden FDR- und logFC-Werte beider Zelltypen zugeordnet, wie sie als Differenzen der Werte beider Medien (ODM minus DMEM) entstehen.

Abbildung 8: Korrelation der logFC-Werte identischer Gene der Stro-1^{+ZK} und Stro-1^{+BK}. Die Regression zeigt, dass die Expression der Gene bei den Stro-1^{+ZK} im ODM geringer zunimmt als die Expression bei den Stro-1^{+BK}.

Anschließend wurden alle Gene nach dem Kriterium $FDR \le 5$ % zunächst nach dem einen und dann nach dem anderen Zelltyp synchron gefiltert. Die nachfolgende Sortierung unter Berücksichtigung negativer und positiver logFC-Werte sollte hochregulierte (positive) und herunterregulierte (negative) Genexpressionen voneinander trennen. Bei dieser Betrachtung können die Werte des |logFC| < 1 sein. Abbildung 8 zeigt eine Grafik, in der alle logFC-Werte der Stro-1^{+ZK} und Stro-1^{+BK} miteinander korreliert sind. Die Regression gibt dabei Aufschluss über die unterschiedliche Expressionsveränderung beider Zelltypen beim Medienwechsel. Während der logFC der Stro-1^{+BK} um eine Einheit zu- oder abnimmt (= das 2-Fache), verändert er sich bei den Stro-1^{+ZK} lediglich um 0,3 Einheiten, was dem 1,23-Fachen entspricht.

Bei den Stro-1^{+BK} fanden sich **960 Gene** mit signifikanten logFC-Werten, während bei den Stro-1^{+ZK} **696 Gene** detektiert wurden, die sich im ODM gegenüber dem DMEM signifikant in ihrer Expression veränderten. Wurden die logFC-Werte paarweise miteinander verglichen, so ergaben sich bei den Stro-1^{+BK} 720 signifikante Gene, die bei den Stro-1^{+ZK} keine Signifikanz aufwiesen. Umgekehrt wiesen die Stro-1^{+ZK} 456 Gene auf, die bei den Stro-1^{+BK} nicht-signifikante logFC-Werte zeigten. Diese Gene werden in den folgenden Analysen als "einseitig signifikant" bezeichnet.

3.3.1 Funktionelle Analyse der Gene mit einseitig signifikanten logFC-Werten

Die Grafik in Abbildung 9 veranschaulicht den Zusammenhang der einseitig signifikanten Gene. Dabei können entweder die Stro-1^{+BK} beim Wechsel in das ODM signifikant heraufoder herunterreguliert sein, während die Stro-1^{+ZK} nicht signifikant verändert sind, oder umgekehrt.

Die **720 einseitig signifikanten Gene der Stro-1^{+BK}** konnten wiederum in 398 hoch- und 322 herunterregulierte Gene separiert werden. Bei den **456 einseitig signifikanten Genen der Stro-1^{+ZK}** ergaben sich 176 hoch- und 280 herunterregulierte Gene, denen keine signifikant veränderten Gene der Beckenkammzellen gegenüberstanden. Diese vier Gengruppen wurden zur Analyse bezüglich ihrer biologischen Funktion der DAVID-Software zugeführt. Die *screenshots* in den Tabellen 6 und 7 zeigen die Ergebnisse der Auswertung über das *Functional Annotation Clustering* mit den empfohlenen Standardeinstellungen für die Stro-1^{+BK}. Das Programm klassifiziert dabei die eingegebenen Gene und ordnet sie funktionellen Gruppen zu. Ähnliche Gengruppen werden in *cluster* zusammengefasst, um Redundanzen zu vermeiden. In Tabelle 6 zeigt die Analyse 43 *cluster*, die sich aus den 398 Genen ableiten, die bei den Stro-1^{+BK} signifikant überexprimiert und bei den Stro-1^{+ZK} keine signifikante Veränderung aufweisen. Für die 322 einseitig signifikant herunterregulierten Gene der Stro-1^{+BK} wurden 48 *cluster* gefunden (Tabelle 7). Die Wichtigkeit der

entsprechenden Gen-Cluster wird durch den *enrichment score* beschrieben. Je bedeutender die zu analysierenden Gene für die funktionellen Gruppen sind, desto höher ist der *score*. Die *Functional Annotation Chart* im unteren Teil der *screenshots* gibt die Gewebeart an, in der die entsprechenden einseitig signifikanten Gene der Stro-1^{+BK} überrepräsentiert vorliegen. Die Stro-1^{+BK} wurden hier als Beispiel für die weitere Betrachtung aufgeführt. Die Tabellen der noch zu beschreibenden Versuchsgruppen befinden sich im Anhang.

Korrelation der logFC-Werte einseitig signifikanter Gene

Abbildung 9: Korrelation der logFC-Werte einseitig signifikanter Gene (*cut-off* FDR \leq 0,05). Die dunkelroten Punkte stellen signifikante logFC-Werte der Stro-1^{+BK} dar, denen keine signifikanten Werte bei den Stro-1^{+ZK} entsprechen. Bei den grünen Punkten sind die logFC-Werte der Zahnkeimzellen signifikant und die der Beckenkammzellen nicht.

3.3.1.1 Gene mit signifikanten logFC-Werten bei den Stro-1^{+BK} und nicht signifikanten logFC-Werten bei den Stro-1^{+ZK}

Von den 720 einseitig signifikanten Genen der Stro-1^{+BK} waren **398 Gene hoch-** und **322 Gene herunterreguliert**, während die gleichen Gene der Stro-1^{+ZK} keine signifikante Veränderung zeigten. Die zugehörigen Gen-Cluster der DAVID-Auswertung finden sich in den Tabellen 6 und 7. Bei den hochregulierten Genen der Stro-1^{+BK} sind dies überwiegend Gruppen, die Proteine codieren, welche für die Zellmembran, die extrazelluläre Matrix und die Proteinkonfiguration notwendig sind. Einige dieser Gene haben auch eine große Bedeutung bei der Bildung von Leberzellen, der Plazenta sowie des Serumplasmas (Tabelle 6). Herunterreguliert werden Gene der Stro-1^{+BK}, die an der Angiogenese, der Bildung von Endothelzellen und Signalproteinen (Pleckstrin-Homologie-Domäne) sowie an der Wachstumsfaktoraktivität beteiligt sind. Diese Gene sind außerdem zu einem Großteil in die Bildung von Gehirngewebe involviert (Tabelle 7). Die von DAVID generierte *heatmap* in Abbildung 10 zeigt die herunterregulierten Gene in den funktionellen Untergruppen zur Angiogenese.

Es fällt auf, dass sowohl bei den hoch- als auch herunterregulierten Genen der Stro-1^{+BK} gleiche funktionelle Gruppen vorhanden sind. Dies betrifft *cluster* 1 bei den hoch- und *cluster* 2 bei den herunterregulierten Genen mit den Untergruppen *Glycoprotein, Signal, Secreted, Disulfide Bond* und *extracellular region*. Diese haben bei den hochregulierten Genen aufgrund des höheren *enrichment scores* allerdings eine wesentlich größere Bedeutung. Wie sich die hoch- und herunterregulierten Gene der funktionellen Untergruppen für *cluster* 1 und *cluster* 2 unterscheiden, kann den *heatmaps* der Abbildungen A-1 und A-2 im Anhang entnommen werden.

Tabelle 6: Funktionelle Gruppen der Gene, die bei den Stro-1⁺-**Beckenkammzellen** einseitig signifikant **hochreguliert** sind. Diese zeigen bei den Stro-1⁺-Zahnkeimzellen keine signifikante Veränderung (n = 398). In der Tabelle sind von insgesamt 43 *clustern* nur die ersten drei mit den höchsten *enrichment scores* dargestellt (*screenshot* aus DAVID Version 6.8).

Annotation Cluster 1	Enrichment Score: 12.91	G		Count	P_Value	Benjamini
UP_KEYWORDS	Glycoprotein	RT		99	8.1E-18	2.1E-15
UP_SEQ_FEATURE	signal peptide	RT		84	1.1E-17	8.9E-15
UP_KEYWORDS	Signal	RT		89	6.1E-15	7.8E-13
UP_SEQ_FEATURE	glycosylation site:N-linked (GlcNAc)	RT		90	1.9E-14	7.4E-12
UP_KEYWORDS	Secreted	RT		57	3.6E-14	3.1E-12
UP_KEYWORDS	Disulfide bond	RT		71	1.1E-10	6.7E-9
GOTERM_CC_DIRECT	extracellular region	RT		47	5.5E-10	6.2E-8
UP_SEQ_FEATURE	disulfide bond	RT		62	2.4E-9	6.4E-7
Annotation Cluster 2	Enrichment Score: 4.6	G		Count	P_Value	Benjamini
UP_KEYWORDS	Membrane	RT		115	6.4E-10	3.3E-8
UP_KEYWORDS	Transmembrane	RT		89	1.5E-7	6.5E-6
UP_KEYWORDS	Transmembrane helix	RT		88	2.9E-7	1.0E-5
UP_SEQ_FEATURE	transmembrane region	RT		77	1.8E-5	3.6E-3
UP_SEQ_FEATURE	topological domain:Cytoplasmic	RT		55	2.0E-4	3.1E-2
GOTERM_CC_DIRECT	integral component of plasma membrane	RT	-	30	5.8E-4	2.1E-2
GOTERM_CC_DIRECT	integral component of membrane	RT		77	9.7E-4	2.7E-2
GOTERM_CC_DIRECT	plasma membrane	RT		61	5.7E-3	1.1E-1
UP_SEQ_FEATURE	topological domain:Extracellular	RT		40	1.2E-2	4.2E-1
Annotation Cluster 3	Enrichment Score: 3.99	G		Count	P_Value	Benjamini
GOTERM_BP_DIRECT	extracellular matrix organization	RT	=	13	1.9E-6	1.4E-3
GOTERM_CC_DIRECT	proteinaceous extracellular matrix	RT	=	12	1.6E-4	8.9E-3
UP_KEYWORDS	Extracellular matrix	RT	1 🚍 2	9	3.5E-3	5.8E-2

Functional Annotation Clustering

Functional Annotation Chart

Category 4	<u>Term</u>	🕈 RT	Genes	<u>Count</u> :	<u>%</u>	P-Value	<mark>Benjamini</mark> ≑
UP_TISSUE	Plasma	<u>RT</u>		19	6,5	6,2E-7	1,0E-4
UP_TISSUE	Placenta	<u>RT</u>		80	27,5	1,2E-4	1,0E-2
UP_TISSUE	Heart	<u>RT</u>		20	6,9	1,9E-3	1,0E-1
UP_TISSUE	Liver	<u>RT</u>	-	49	16,8	6,0E-3	2,2E-1
UP_TISSUE	Urinary bladder	<u>RT</u>	=	10	3,4	8,2E-3	2,3E-1
UP_TISSUE	Trachea	<u>RT</u>	=	12	4,1	3,1E-2	5,7E-1
UP_TISSUE	Skeletal muscle	RT	-	16	5,5	3,2E-2	5,3E-1

Tabelle 7: Funktionelle Gruppen der Gene, die bei den Stro-1⁺-**Beckenkammzellen** einseitig signifikant **herunterreguliert** sind. Diese zeigen bei den Stro-1⁺-Zahnkeimzellen keine signifikante Veränderung (n = 322). In der Tabelle sind von insgesamt 48 *clustern* nur die ersten vier mit den höchsten *enrichment scores* dargestellt (*screenshot* aus DAVID Version 6.8).

		_			
Annotation Cluster 1	Enrichment Score: 4.61	G	2	Count	P_Value Benjamini
GOTERM_BP_DIRECT	positive regulation of angiogenesis	RT	- -	10	6.6E-6 5.1E-3
GOTERM_BP_DIRECT	positive regulation of endothelial cell proliferation	RT	=	8	1.3E-5 5.1E-3
GOTERM_BP_DIRECT	positive regulation of endothelial cell migration	RT	=	6	1.7E-4 3.2E-2
Annotation Cluster 2	Enrichment Score: 4.15			Count	P_Value Benjamini
UP_KEYWORDS	Secreted	<u>RT</u>		42	3.4E-6 4.3E-4
UP_SEQ_FEATURE	signal peptide	RT		61	3.9E-6 3.3E-3
UP_KEYWORDS	Signal	RT		69	7.2E-6 6.0E-4
UP_SEQ_FEATURE	glycosylation site:N-linked (GlcNAc)	RT		68	6.0E-5 2.5E-2
UP_KEYWORDS	Disulfide bond	RT		55	2.6E-4 8.2E-3
GOTERM_CC_DIRECT	extracellular region	RT		34	4.1E-4 4.2E-2
UP_KEYWORDS	Glycoprotein	RT		67	4.5E-4 1.0E-2
UP_SEQ_FEATURE	disulfide bond	RT		46	2.4E-3 2.9E-1
Annotation Cluster 3	Enrichment Score: 4.07	G		Count	P_Value Benjamini
INTERPRO	Pleckstrin homology-like domain	RT	-	19	6.8E-7 3.4E-4
INTERPRO	Pleckstrin homology domain	RT	=	12	1.5E-4 3.7E-2
SMART	<u>PH</u>	RT	=	12	5.7E-4 7.3E-2
UP_SEQ_FEATURE	domain:PH	RT	=	10	9.3E-4 1.8E-1
Annotation Cluster 4	Enrichment Score: 3.37	G	7	Count	P_Value Benjamini
UP_KEYWORDS	Growth factor	RT	=	9	5.0E-5 2.5E-3
GOTERM_MF_DIRECT	growth factor activity	RT	—	9	4.5E-4 1.6E-1
GOTERM_MF_DIRECT	cytokine activity	RT	=	9	7.8E-4 1.4E-1
GOTERM_BP_DIRECT	positive regulation of tyrosine phosphorylation of Stat3 protein	RT	a	5	8.8E-4 1.2E-1
GOTERM_BP_DIRECT	positive regulation of cell proliferation	RT		15	9.2E-4 1.1E-1

Functional Annotation Clustering

Functional Annotation Chart

Category 4	<u>Term</u>	RT	Genes	<u>Count</u>	<u>%</u>	P-Value	<u>Benjamini</u> 🖨
UP_TISSUE	Kidney	<u>RT</u>		34	14,2	9,7E-4	1,5E-1
UP_TISSUE	Brain	<u>RT</u>		116	48,5	1,4E-2	6,8E-1
UP_TISSUE	Fibroblast	RT	=	6	2,5	3,3E-2	8,3E-1
UP_TISSUE	Thyroid	<u>RT</u>	Ξ	6	2,5	5,4E-2	8,9E-1
UP_TISSUE	Thalamus	RT	a	7	2,9	6,0E-2	8,6E-1

forkhead box P1(FOXP1) Jun proto-oncogene, AP-1 transcription factor subunit(JUN) C-C motif chemokine ligand 26(CCL26) runt related transcription factor 1(RUNX1) chitinase 3 like 1(CHI3L1) GATA binding protein 6(GATA6) SAM and SH3 domain containing 1(SASH1) placental growth factor(PGF) semaphorin 5A(SEMA5A) vascular endothelial growth factor A(VEGFA) Wnt family member 5A(WNT5A) protein kinase C alpha(PRKCA) programmed cell death 6(PDCD6)

GO:0010595~positive regulation of endothelial cell migration GO:0001938~positive regulation of endothelial cell proliferation GO:0045766~positive regulation of angiogenesis

Abbildung 10: Heatmap der für die Angiogenese erkannten Gene der funktionellen Untergruppen aus *cluster* 1 (Tabelle 7; *enrichment score* = 4,61). Diese sind bei den Stro-1⁺-**Beckenkammzellen** signifikant **herunterreguliert** und zeigen bei den Stro-1⁺-Zahnkeimzellen keine signifikante Veränderung (*screenshot* aus DAVID Version 6.8).

3.3.1.2 Gene mit signifikanten logFC-Werten bei den Stro-1^{+ZK} und nicht signifikanten logFC-Werten bei den Stro-1^{+BK}

Die Stro-1^{+ZK} wiesen 456 einseitig signifikant veränderte Gene auf, die bei den Stro-1^{+BK} keine Signifikanz zeigten. Dabei war im ODM gegenüber dem DMEM die Expression von **176 Genen hoch-** und **280 Genen herunterreguliert**.

In der Cluster-Analyse nach DAVID finden sich für die hochregulierten Gene der Stro-1^{+ZK} mit einem hohen *enrichment score* gleiche funktionelle Gruppen wie bei den oben beschriebenen Stro-1^{+BK} (Tabelle A-9 im Anhang). Die übereinstimmenden Untergruppen *Glycoprotein*, *Disulfide Bond* und *Signal* finden sich in *cluster* 1. Wie aus der *heatmap* im Anhang (Abbildung A-3) hervorgeht, sind hier jedoch andere Gene involviert. Mit einem relativ hohen *enrichment score* weist *cluster* 2 in den funktionellen Untergruppen Gene auf, die eine Rolle bei der Bildung und Funktion von Zellmembranen spielen. Die *cluster* 3 und 4 beinhalten dagegen Gengruppen, die für die extrazelluläre Matrix, die Kollagen- und Hartsubstanzbildung verantwortlich sind. Unter den hochregulierten Genen befinden sich auch solche, die bei der Bildung von Plazenta- und Lungengewebe eine wichtige Bedeutung haben (*Functional Annotation Chart* der Tabelle A-9 im Anhang).

Die Gen-Cluster für die herunterregulierten Gene der Stro-1^{+ZK} sind in Tabelle A-10 im Anhang aufgelistet. In *cluster* 1 (Abbildung A-4 im Anhang) werden auch hier Gene herunterreguliert, die denselben funktionellen Gruppen angehören wie in *cluster* 1 der oben beschriebenen hochregulierten Gene. *Cluster* 2 beinhaltet Gene, die an der Synapsenbildung und Zellverbindung beteiligt sind (Abbildung A-5 im Anhang). *Cluster* 3 bildet wie bei den hochregulierten Genen die Gruppe der extrazellulären Matrix ab (Abbildung A-6 im Anhang). Herunterreguliert werden von den Stro-1^{+ZK} auch Gene, die für die Bildung von Gehirn- und Plazentagewebe sowie für die Skelettmuskulatur verantwortlich sind (*Functional Annotation Chart* der Tabelle A-10 im Anhang).

3.3.2 Funktionelle Analyse der Gene mit beidseitig signifikanten logFC-Werten

Neben den Genen mit einseitig signifikanten logFC-Werten konnten vier weitere Gruppen herausgefiltert werden, die sich aus jenen Genen zusammensetzen, deren logFC-Werte für beide Zelltypen gemeinsam signifikant waren. Diese als "beidseits signifikant" bezeichneten Gengruppen sind in Abbildung 11 dargestellt und korreliert. Es ergaben sich jeweils zwei Gruppen mit gleichsinnig verlaufenden logFC-Werten sowie zwei Gruppen mit gegensinnig verlaufenden logFC-Werten. Das Koordinatensystem der Abbildung 11 wurde hierzu in vier Quadranten (QI bis IV) aufgeteilt. In QI sind die logFC-Werte der Gene beider Zelltypen zu finden, die **gleichsinnig im ODM heraufreguliert** (++) werden, in QIII sind die **gleichsinnig im ODM herunterregulierten** (--) logFC-Werte dargestellt. QII und QIV repräsentieren die Gene mit **gegensinnigen logFC-Werten**.

Korrelation der logFC-Werte beidseitig signifikanter Gene

Die **130 gleichsinnig im ODM heraufregulierten Gene** werden in der DAVID-Analyse funktionellen Gruppen zugeordnet, die bereits bei den Genen mit einseitig signifikanten logFC-Werten in Kapitel 3.3.1 beschrieben wurden. Ein *screenshot* der drei wichtigsten Gen-Cluster des *Functional Annotation Clustering* findet sich im Anhang in Tabelle A-14. Unter *cluster* 1 werden die funktionellen Gruppen der extrazellulären Matrix zusammengefasst (Abbildung 12). In *cluster* 2 finden sich die bekannten Untergruppen *Secreted*, *Disulfide Bond*, *Glycoprotein*, *Signal* und *extracellular region* (Abbildung 13).

Für die **94 gleichsinnig im ODM herunterregulierten Gene** finden sich für beide Zellarten 2 *cluster* (Tabelle A-15 im Anhang), zu denen unter *cluster* 1 oben gennannte Untergruppen gehören. Die zugehörige heatmap in Abbildung 15 zeigt aber, dass es sich trotz gleicher funktioneller Untergruppen um verschiedene Gene handelt. Einige der gleichsinnig herunterregulierten Gene finden sich auch in Melanomzellen, dem fetalen Hirn und sind an der Bildung von Serumplasma beteiligt (*Functional Annotation Chart* der Tabelle A-15 im Anhang).

In den nachfolgenden *heatmaps* wird die genaue Zusammensetzung der oben beschriebenen Gen-Cluster verdeutlicht und auf Unterschiede bzw. Gemeinsamkeiten hingewiesen.

Extracellular matrix proteinaceous extracellular matrix Secreted

Abbildung 12:

Heatmap der Gene aus *cluster* 1 mit den funktionellen Untergruppen *Extracellular Matrix* und *Secreted* der **gleichsinnig signifikant heraufregulierten Gene** von Stro-1^{+ZK} und Stro-1^{+BK} (Tabelle A-14; *screenshot* aus DAVID Version 6.8). Die Gene *SAA1, BMP6, IGFBP2* und *DCN* gehören zu den zehn höchstsignifikant exprimierten Genen.

G0:0005576-extracellular region G0:0005615-extracellular space Secreted disulfide bond jlycosylation site:N-linked (GlcNac...) Disulfide bond signal peptide Signal Glycoprotein

Abbildung 13:

Heatmap der Gene der funktionellen Untergruppen aus *cluster* 2 der **gleichsinnig signifikant heraufregulierten Gene** von Stro-1^{+ZK} und Stro-1^{+BK} (Tabelle A-14; *screenshot* aus DAVID Version 6.8). Hier finden sich sechs Gene, die allen funktionellen Gruppen zugeordnet werden können. *SAA1* und *IGFBP2* zählen zu den am höchsten exprimierten Genen.

peroxisome proliferator activated receptor gamma(PPARG)
Fos proto-oncogene, AP-1 transcription factor subunit(FOS)
NFKB inhibitor alpha(NFKBIA)
FYN proto-oncogene, Src family tyrosine kinase(FYN)

h_tcrPathway:T Cell Receptor Signaling Pathway
hsa04660:T cell receptor signaling pathway
hsa04380:Osteoclast differentiation

Abbildung 14:

Heatmap der Gene der funktionellen Untergruppen aus *cluster* 15 (in Tabelle A-14 nicht aufgeführt; *screenshot* aus DAVID Version 6.8) der **gleichsinnig signifikant heraufregulierten Gene** von Stro-1^{+ZK} und Stro-1^{+BK}. Es sind vier Gene aufgeführt, die für die Osteoklastendifferenzierung wichtig und bei beiden Zellarten hochreguliert sind.

G0:0005576-extracellular region Secreted disulfide bond signal peptide Disulfide bond glycosylation site:N-linked (GlcNAc...) Signal Glycoprotein

Abbildung 15:

Heatmap der Gene der funktionellen Untergruppen aus *cluster* 1 der **gleichsinnig signifikant herunterregulierten Gene** von Stro-1^{+ZK} und Stro-1^{+BK} (Tabelle A-15; *screenshot* aus DAVID Version 6.8). 13 Gene gehören den acht Untergruppen gemeinsam an. *POXL, GPR68* und *IGFBP3* zählen zu den zehn am höchsten herunterregulierten Genen. Für beide Stammzelltypen existieren insgesamt 16 Gene, die sich in ihrer Expression gegensinnig verhalten. Davon werden neun Gene **bei den Stro-1^{+BK} herauf- und bei den Stro-1^{+ZK} herunterreguliert**, aufgeführt in Tabelle 8 sowie in Abbildung 16 als *heatmap* mit den zugehörigen funktionellen Untergruppen des *Functional Annotation Clustering* (Tabelle A-16 im Anhang). Diese Gene sind an Zelladhäsion, der Glykoprotein- und Signalbildung sowie den Zellmembranproteinen beteiligt. Sechs Gene stehen im Zusammenhang mit Polymorphismus, drei Gene zeigen einen Bezug zu Transkriptionsfaktoren. Drei der neun Gene sind an der Bildung der Skelettmuskulatur beteiligt.

Tabelle 8: Identische Gene, die in den Stro-1^{+BK} signifikant herauf- und in den Stro-1^{+ZK} herunterreguliert sind (n = 9). Die Gene sind alphabetisch aufsteigend nach ihrem Symbol geordnet.

Gensymbol	Genname
ACTG2	actin, gamma 2, smooth muscle, enteric
CD24	CD24 molecule
DUSP26	dual specificity phosphatase 26 (putative)
ITGA7	integrin, alpha 7
NRP2	neuropilin 2
NR4A1	nuclear receptor subfamily 4, group A, member 1
SPP1	secreted phosphoprotein 1
SORBS1	sorbin and SH3 domain containing 1
TNFRSF21	tumor necrosis factor receptor superfamily, member 21

integrin subunit alpha 7(ITGA7)
neuropilin 2(NRP2)
TNF receptor superfamily member 21(TNFRSF21)
CD24 molecule(CD24)
secreted phosphoprotein 1(SPP1)
sorbin and SH3 domain containing 1(SORBS1)
nuclear receptor subfamily 4 group A member 1(NR4A1)

Abbildung 16: Heatmap der gegensinnig exprimierten Gene (horizontale Beschriftung) mit den zugehörigen funktionellen Untergruppen (vertikale Beschriftung).

Die sieben Gene in Tabelle 9, die **bei den Stro-1^{+BK} herunter- und bei den Stro-1^{+ZK} heraufreguliert** sind, konnten nur jeweils einem einzigen Gen-Cluster mit drei funktionellen Untergruppen zur Membranbildung oder dem alternativen Spleißen der DNA zugeordnet werden (Tabelle A-17 im Anhang).

Tabelle 9: Identische Gene, die in den Stro- 1^{+BK} signifikant herunter- und in den Stro- 1^{+ZK} heraufreguliert sind (n = 7). Die Gene sind alphabetisch aufsteigend nach ihrem Symbol geordnet.

Gensymbol	Genname
FOXQ1	forkhead box Q1
HES1	hairy and enhancer of split 1, (Drosophila)
KIAA1199	KIAA1199
CMKLR1	chemokine-like receptor 1
CCL2	chemokine (C-C motif) ligand 2
PHLDA1	pleckstrin homology-like domain, family A, member 1
PLEKHA4	pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 4

3.4 Funktionelle Unterschiede der Stro-1^{+ZK} und Stro-1^{+BK} im osteogenen Medium

In den vorangegangenen Kapiteln 3.2 und 3.3 wurde die differentielle Genexpression beider Stammzellpopulationen beim Wechsel vom DMEM ins ODM untersucht. Um einen Vergleich der Genexpression von Stro-1^{+ZK} und Stro-1^{+BK} im osteogenen Differenzierungsmedium vornehmen zu können, wurden die Rohdaten nach dem Vorgehen in Kapitel 3.1 sortiert. Die Differenzbildung lautete entsprechend "logFC = $log_2(ZK \text{ im ODM})$ minus $log_2(BK \text{ im ODM})$ " und wird nachfolgend mit ZK2-BK2 abgekürzt. Die anschließende Filterung erfolgte zunächst nach den Kriterien **FDR ≤ 1 %** und **|logFC| > 2** und begrenzte die Anzahl von 22.454 Genen auf 375 Gene mit signifikant veränderten Expressionswerten. Davon zeigten **109 Gene** eine **hochregulierte Expression (positive logFC-Werte)** bei den Zahnkeimzellen (ZK2) gegenüber den Beckenkammzellen (BK2). Für **266 Gene** war die Expression bei ZK2 im Vergleich zu BK2 **herunterreguliert (negative logFC-Werte)**. Umgekehrt entspricht dies einer hochregulierten Genexpression bei den Beckenkammzellen. Mithilfe des Programms DAVID wurden innerhalb der gefilterten Daten über das *Functional Annotation Tool* Gengruppen detektiert, die in biologischen Prozessen wichtige Funktionen übernehmen.

3.4.1 Im ODM hochregulierte Gene der Stro-1^{+ZK}

Für die 109 Gene, welche im ODM bei den Stro-1^{+ZK} gegenüber den Stro-1^{+BK} eine Hochregulation erfahren, wurden 118 GO-*terms* der Kategorie *biological process* gefunden. Die Tabelle 10 listet die ersten zehn funktionellen Gengruppen (*terms*) auf.

Im ODM exprimieren die Stro-1^{+ZK} insbesondere Gene, die in die Zellproliferation, Organentwicklung sowie Organisation der extrazellulären Matrix eingebunden sind. Verdeutlicht wird dies durch die GO-*terms organ morphogenesis, extracellular matrix/structure organization* sowie *positive regulation of cell proliferation*. Daneben finden sich unter den ersten zehn signifikanten Gengruppen auch Prozesse, die bei der Drüsenentwicklung eine Rolle spielen. Einzelne Gene können dabei Gegenstand verschiedener Gruppen sein, wenn sie für mehrere biologische Prozesse von Bedeutung sind. **Tabelle 10:** Die ersten zehn im **ODM** bei den Stro-1⁺-**Zahnkeimzellen** signifikant **hochregulierten** (= bei den Stro-1⁺-Beckenkammzellen signifikant herunterregulierten) funktionellen Gruppen (nach DAVID Version 6.8). Die Tabellen sind nach der aufsteigenden Höhe der p-Werte sortiert.

<u>Term</u>	Genes	<u>Count</u>	<u>%</u>	P-Value	<u>Benjamini</u>
organ morphogenesis		19	20,0	1,4E-6	3,9E-3
extracellular matrix organization		11	11,6	6,1E-6	8,3E-3
extracellular structure organization		11	11,6	6,3E-6	5,7E-3
epithelium development		18	18,9	1,5E-5	1,0E-2
positive regulation of cell proliferation		16	16,8	1,7E-5	9,3E-3
collagen metabolic process		7	7,4	1,8E-5	8,2E-3
mesenchyme development		9	9,5	2,2E-5	8,4E-3
multicellular organismal macromolecule metabolic process		7	7,4	2,3E-5	7,9E-3
gland development		11	11,6	4,5E-5	1,4E-2
mammary gland development		7	7,4	5,1E-5	1,4E-2

In den GO-*terms organ morphogenesis* und *epithelium development* (in Tabelle 10 gelb markiert) finden sich neben einigen spezifische Homeobox-Genen der Odontogenese (siehe Tabelle 11) weitere wichtige Gene, die im Zusammenhang mit der Zahnentwicklung stehen. Dazu gehören *FOXF1* und *FOXF2* (*forkhead box F1* und *F2*), welche für die gleichnamigen Transkriptionsfaktoren codieren. Auffällig sind zudem die Gene *GREM1* (*gremlin 1*), *PTN* (*pleiotrophin*) und *FST* (*follistatin*), welche im ODM bei den Stro-1^{+ZK} gegenüber den Stro-1^{+BK} eine signifikante Hochregulation in ihrer Expression aufweisen.

Tabelle 11: Homeobox-Gene, die bei den Stro-1^{+ZK} im ODM für den **GO-***term organ morphogene-sis* hochreguliert sind. Die Gene sind aufsteigend nach der Höhe der FDR sortiert.

organ morphogenesis							
Symbol	Genname	logFC ZK2-BK2	FDR ZK2-BK2				
MSX1	msh homeobox 1	3,816	1,07E-08				
DLX1	distal-less homeobox 1	2,639	1,40E-08				
SIX1	SIX homeobox 1	2,703	8,67E-07				
PAX9	paired box 9	3,367	1,64E-06				

Je strenger die Auswahl der Gene über die cut-offs von FDR und logFC erfolgt, desto signifikanter, aber auch geringer wird die entsprechend selektierte Genanzahl. Die geringe Zahl der hochsignifikanten Gene ist allerdings mit einem Verlust der biologischen Relevanz des Gesamtergebnisses der differentiellen Genexpression verbunden. Aus diesem Grund wurden die 22.454 Gene für ZK2 und BK2 zusätzlich alleine nach dem Kriterium FDR ≤ 5 % gefiltert. Es ergibt sich eine größere Anzahl an Genen, die statistisch weniger signifikant ist, aber das gesamte differentielle Expressionsverhalten der Stro-1^{+ZK} und Stro-1^{+BK} besser abbildet. Die logFC-Werte können dabei |logFC| < 1 sein. Insgesamt verblieben nach der Filterung 2583 Gene, von denen 1105 Gene bei den Stro-1^{+ZK} (positive logFC-Werte) und 1478 Gene bei den Stro-1^{+BK} (negative logFC-Werte) im ODM hochreguliert waren. Um einen besseren Gesamtüberblick über die funktionellen Zusammenhänge der exprimierten Gene zu erhalten, wurde das Functional Annotation Clustering der DAVID-Software mit den empfohlenen Standardeinstellungen verwendet. Die 1105 im ODM hochregulierten Gene der Stro-1^{+ZK} konnten auf 151 *cluster* verteilt werden. Ein screenshot der ersten fünf cluster mit den dazugehörigen Annotationen findet sich in Tabelle 12.

Die funktionellen Untergruppen der *cluster* 1, 2 und 3 beinhalten für die Stro-1^{+ZK} Gene, welche die Zellteilung und den Zellzyklus unterstützen, die DNA reparieren und die hierfür benötigte Energie bereitstellen. Diese wurden in den nachfolgenden Abbildungen 17 bis 19 als *heatmap* visualisiert. Im weiteren Verlauf finden sich in *cluster* 54 (Abbildung 20) und 126 (Abbildung 21) Homeobox-Gene und Transkriptionsfaktoren, die sich teilweise mit den in Tabelle 11 aufgeführten Genen überschneiden. Im Rahmen der Kollagensynthese in *cluster* 85 (Abbildung 22) sind die Gene der Kollagene IV, X, XIII und XVIII (*COL4A5, COL10A1, COL13A1, COL18A1*) bei den Stro-1^{+ZK} im ODM überexprimiert. Es finden sich dagegen kaum Gene, die mit der Hartsubstanzbildung im Zusammenhang stehen. **Tabelle 12:** Die ersten fünf signifikant hochregulierten Gen-Cluster der Stro-1^{+ZK} (= herunterregulierten Gen-Cluster der Stro-1^{+BK}) im ODM (*screenshot* aus DAVID Version 6.8).

Annotation Cluster 1	Enrichment Score: 30.74	G		15 C	Count	P_Value	Benjamini
UP_KEYWORDS	Cell cycle	<u>RT</u>	_		127	1.2E-46	5.1E-44
UP_KEYWORDS	Mitosis	<u>RT</u>	=		69	1.7E-33	1.9E-31
UP_KEYWORDS	Cell division	<u>RT</u>	=		83	3.3E-33	2.8E-31
UP_KEYWORDS	Centromere	RT	=		47	2.4E-28	1.7E-26
GOTERM_BP_DIRECT	cell division	RT	=		74	5.7E-26	1.0E-22
GOTERM_BP_DIRECT	mitotic nuclear division	RT	-		56	3.8E-21	4.4E-18
Annotation Cluster 2	Enrichment Score: 22.49	G		1	Count	P_Value	Benjamini
UP_KEYWORDS	Centromere	RT	-		47	2.4E-28	1.7E-26
GOTERM_BP_DIRECT	sister chromatid cohesion	<u>RT</u>	=		43	8.0E-28	2.8E-24
UP_KEYWORDS	Chromosome	RT	-		76	6.3E-27	3.4E-25
UP_KEYWORDS	Kinetochore	RT	a (1997)		37	7.8E-24	3.7E-22
GOTERM_CC_DIRECT	condensed chromosome kinetochore	RT			31	2.9E-18	4.4E-16
GOTERM_CC_DIRECT	kinetochore	RT			26	3.9E-14	4.7E-12
Annotation Cluster 3	Enrichment Score: 13.03	G	_		Count	P_Value	Benjamini
UP_KEYWORDS	DNA damage	RT	=		53	2.0E-14	7.2E-13
UP_KEYWORDS	DNA repair	RT	=		47	6.9E-14	2.1E-12
GOTERM_BP_DIRECT	DNA repair	RT	a 100		43	6.0E-13	4.2E-10
Annotation Cluster 4	Enrichment Score: 9.66	G		1	Count	P_Value	Benjamini
UP_KEYWORDS	ATP-binding	RT	_		123	2.0E-13	5.7E-12
UP_KEYWORDS	Nucleotide-binding	RT	-		143	3.6E-12	8.5E-11
GOTERM_MF_DIRECT	ATP binding	<u>RT</u>	_		132	4.7E-11	1.2E-8
UP_SEQ_FEATURE	nucleotide phosphate-binding region:ATP	RT	-		91	6.7E-10	8.4E-7
INTERPRO	P-loop containing nucleoside triphosphate	PT	_		70	2 2E-5	1 1E-2
Annotation Cluster F	hydrolase		_	199	Count	D. Malua	Benjamia
Annotation Cluster 5	Enrichment Score: 7.5	U		N N	Count	P_value	Benjamini
INTERPRO	RNA recognition motif domain	RT			44	3.4E-15	5.3E-12

Functional Annotation Clustering

CDC28 protein kinase regulatory subunit 1B(CKS1B) CDC28 protein kinase regulatory subunit 2(CKS2) centromere protein A(CENPA) shugoshin 2(SGO2) protein phosphatase 1 catalytic subunit gamma(PPP1CC) anillin actin binding protein(ANLN) abnormal spindle microtubule assembly(ASPM) citron rho-interacting serine/threonine kinase(CIT) centrosomal protein 55(CEP55) kinesin family member C1(KIFC1) non-SMC condensin II complex subunit D3(NCAPD3) cyclin B1(CCNB1) kinesin family member 18B(KIF18B) non-SMC condensin I complex subunit H(NCAPH) non-SMC condensin I complex subunit D2(NCAPD2) non-SMC condensin I complex subunit G(NCAPG) proline and serine rich coiled-coil 1(PSRC1) ubiquitin conjugating enzyme E2 C(UBE2C) transforming acidic coiled-coil containing protein 3(TACC3) polo like kinase 1(PLK1) aurora kinase B(AURKB) MAD2 mitotic arrest deficient-like 1 (yeast)(MAD2L1) centromere protein E(CENPE) structural maintenance of chromosomes 1A(SMC1A) DSN1 homolog, MIS12 kinetochore complex component(DSN1) zinc finger protein 207(ZNF207) ZW10 interacting kinetochore protein(ZWINT) sperm associated antigen 5(SPAG5) cell division cycle associated 8(CDCA8) spindle apparatus coiled-coil protein 1(SPDL1) kinesin family member 11(KIF11) aurora kinase A(AURKA) cell division cycle associated 5(CDCA5) family with sequence similarity 64 member A(FAM64A) F-box protein 5(FBXO5) family with sequence similarity 83 member D(FAM83D) cyclin A2(CCNA2) helicase, lymphoid-specific(HELLS) high mobility group AT-hook 2(HMGA2) TPX2, microtubule nucleation factor(TPX2) leucine rich repeat and coiled-coil centrosomal protein 1(LRRCC1) non-SMC condensin II complex subunit G2(NCAPG2) RuvB like AAA ATPase 1(RUVBL1) cyclin B2(CCNB2) cell division cycle 25A(CDC25A) cell division cycle 25B(CDC25B) cell division cycle 20(CDC20) cyclin dependent kinase 1(CDK1) microtubule associated serine/threonine kinase like(MASTL) cell division cycle associated 3(CDCA3) cell division cycle associated 2(CDCA2) kinesin family member 2C(KIF2C) stromal antigen 2(STAG2) kinetochore associated 1(KNTC1) dynein cytoplasmic 1 light intermediate chain 1(DYNC1LI1) SPC24, NDC80 kinetochore complex component(SPC24) baculoviral IAP repeat containing 5(BIRC5) centromere protein F(CENPF) NDC80, kinetochore complex component(NDC80) NIMA related kinase 2(NEK2) BUB1 mitotic checkpoint serine/threonine kinase B(BUB1B) BUB1 mitotic checkpoint serine/threonine kinase(BUB1) nucleoporin 37(NUP37) kinetochore scaffold 1(KNL1) spindle and kinetochore associated complex subunit 3(SKA3) Opa interacting protein 5(OIP5) structural maintenance of chromosomes 3(SMC3) spindle and kinetochore associated complex subunit 1(SKA1) zwilch kinetochore protein(ZWILCH) shugoshin 1(SGO1) ERCC excision repair 6 like, spindle assembly checkpoint helicase(ERCC6L) SPC25, NDC80 kinetochore complex component(SPC25)

Abbildung 17: Limitierte Darstellung einiger hochregulierter Gene aus *cluster* 1 (Tabelle 12; *enrichment score* = 30,74) der Stro-1^{+ZK} im ODM (*screenshot* aus DAVID Version 6.8).

GO:0000777--kinetochore GO:0000777--condensed chromosome kinetochore Kinetochore GO:0007062--sister chromatid cohesion Centromere Chromosome

Abbildung 18: Limitierte Darstellung einiger hochregulierter Gene aus *cluster* 2 (Tabelle 12; *enrichment score* = 22,49) der Stro-1^{+2K} im ODM (*screenshot* aus DAVID Version 6.8).

poly(ADP-ribose) polymerase 2(PARP2) kinesin family member 22(KIF22) nudix hydrolase 1(NUDT1) Bloom syndrome RecQ like helicase(BLM) RecQ like helicase 4(RECQL4) DNA polymerase delta 1, catalytic subunit(POLD1) DNA polymerase epsilon 2, accessory subunit(POLE2) cyclin dependent kinase 1(CDK1) anti-silencing function 1A histone chaperone(ASF1A) formin 2(FMN2) denticleless E3 ubiquitin protein ligase homolog(DTL) E2F transcription factor 7(E2F7) ATPase family, AAA domain containing 5(ATAD5) replication timing regulatory factor 1(RIF1) minichromosome maintenance 10 replication initiation factor(MCM10) ubiquitin specific peptidase 1(USP1) nei like DNA glycosylase 3(NEIL3) protein kinase, DNA-activated, catalytic polypeptide(PRKDC) general transcription factor IIH subunit 2(GTF2H2) RAD54 homolog B (S. cerevisiae)(RAD54B) replication protein A4(RPA4) MMS22 like, DNA repair protein(MMS22L) BRCA1 associated RING domain 1(BARD1) UV stimulated scaffold protein A(UVSSA) H2A histone family member X(H2AFX) proliferating cell nuclear antigen(PCNA) DNA cross-link repair 1B(DCLRE1B) minichromosome maintenance 8 homologous recombination repair factor(MCM8) NSE4 homolog A, SMC5-SMC6 complex component(NSMCE4A) poly(ADP-ribose) polymerase 1(PARP1) BRCA1, DNA repair associated(BRCA1) Fanconi anemia complementation group G(FANCG) Fanconi anemia complementation group D2(FANCD2) checkpoint kinase 1(CHEK1) regulator of telomere elongation helicase 1(RTEL1) topoisomerase (DNA) II binding protein 1(TOPBP1) flap structure-specific endonuclease 1(FEN1) PARP1 binding protein(PARPBP) DNA polymerase theta(POLQ) ubiquitin like with PHD and ring finger domains 1(UHRF1) X-ray repair cross complementing 2(XRCC2) MRE11 homolog, double strand break repair nuclease(MRE11) RAD54-like (S. cerevisiae)(RAD54L) exonuclease 1(EXO1) RAD18, E3 ubiquitin protein ligase(RAD18) RAD50 double strand break repair protein(RAD50) RuvB like AAA ATPase 1(RUVBL1) TOPBP1 interacting checkpoint and replication regulator(TICRR) biorientation of chromosomes in cell division 1 like 1(BOD1L1) chromatin assembly factor 1 subunit B(CHAF1B) tetratricopeptide repeat domain 5(TTC5) structural maintenance of chromosomes 3(SMC3) ubiquitin conjugating enzyme E2 T(UBE2T) mutS homolog 2(MSH2) mutS homolog 3(MSH3) cell division cycle 5 like(CDC5L) Fanconi anemia complementation group A(FANCA) DNA ligase 1(LIG1) structural maintenance of chromosomes 1A(SMC1A) Fanconi anemia complementation group I(FANCI) tyrosyl-DNA phosphodiesterase 1(TDP1) forkhead box M1(FOXM1)

GO:0006281~DNA repair DNA repair DNA damage

Abbildung 19: Heatmap der hochregulierten Gene aus *cluster* 3 (Tabelle 12; *enrichment score* = 13,03) der Stro-1^{+ZK} im ODM (*screenshot* aus DAVID Version 6.8).

paired box 9(PAX9) DEK proto-oncogene(DEK) cell division cycle 5 like(CDC5L) PBX homeobox 4(PBX4) mohawk homeobox (MKX) SATB homeobox 2(SATB2) SIX homeobox 1(SIX1) paired related homeobox 1(PRRX1) hematopoietically expressed homeobox(HHEX) distal-less homeobox 1(DLX1) distal-less homeobox 2(DLX2) BARX homeobox 1(BARX1) msh homeobox 1(MSX1)

IPR009057:Homeodomain-like SM00389:HOX Homeobox IPR001356:Homeodomain DNA-binding region:Homeobox IPR017970:Homeobox, conserved site IPR020479:Homeodomain, metazoa IPR000047:Helix-turn-helix motif GO:009952~anterior/posterior pattern specification GO:00922~anterior/posterior pattern specification

Abbildung 20: Darstellung einiger hochregulierter Gene aus *cluster* 126 (*enrichment score* = 0,16 oder 1,7) der Stro-1^{+ZK} im ODM, die mit der Funktion der mRNA in Verbindung stehen (in Tabelle 12 nicht aufgeführt; *screenshot* aus DAVID Version 6.8).

runt related transcription factor 3(RUNX3) poly(rC) binding protein 1(PCBP1) runt related transcription factor 2(RUNX2) cell division cycle 5 like(CDC5L) prohibitin(PHB) forkhead box F1(FOXF1) forkhead box F2(FOXF2) forkhead box M1(FOXM1) forkhead box D2(FOXD2) forkhead box D1(FOXD1) forkhead box Q1(FOXQ1)

GO:0000981~RNA polymerase II transcription factor activity, sequence-specific DNA binding IPR018122:Transcription factor, fork head, conserved site IPR001766:Transcription factor, fork head DNA-binding region:Fork-head SM00339:FH

Abbildung 21: Darstellung einiger hochregulierter Gene für Transkriptionsfaktoren aus *cluster* 54 (*enrichment score* = 1,0) der Stro-1^{+ZK} im ODM (in Tabelle 12 nicht aufgeführt; *screenshot* aus DAVID Version 6.8).

C-type lectin domain family 2 member D(CLEC2D) thrombomodulin(THBD) solute carrier family 8 member A1(SLC8A1) membrane metalloendopeptidase(MME) matrix metallopeptidase 3(MMP3) cathepsin K(CTSK) ribonuclease T2(RNASET2) UDP-glucose glycoprotein glucosyltransferase 1(UGGT1) cathepsin Z(CTSZ) cathepsin C(CTSC) coagulation factor X(F10) Wnt family member 5A(WNT5A) matrix metallopeptidase 1(MMP1) collagen and calcium binding EGF domains 1(CCBE1) collectin subfamily member 12(COLEC12) collagen type X alpha 1 chain(COL10A1) collagen type XIII alpha 1 chain(COL13A1) collagen type XVIII alpha 1 chain(COL18A1) collagen type IV alpha 5 chain(COL4A5)

IPR016187:C-type lectin fold hsa04974:Protein digestion and absorption GO:0030574~collagen catabolic process GO:0005788~endoplasmic reticulum lum en IPR008160:Collagen triple helix repeat GO:0005581~collagen trim er Collagen trim er

Abbildung 22: Darstellung einiger hochregulierter Gene aus *cluster* 85 (*enrichment score* = 0,45) der Stro-1^{+ZK} im ODM, die für die Kollagensynthese und benachbarte Funktionen zuständig sind (in Tabelle 12 nicht aufgeführt; *screenshot* aus DAVID Version 6.8).

3.4.2 Im ODM hochregulierte Gene der Stro-1^{+BK}

Nach den Kriterien **FDR \leq 1 %** und **|logFC| > 2** gefiltert, wiesen die Stro-1^{+BK} gegenüber den Stro-1^{+ZK} im ODM 266 hochregulierte Gene auf, für die 121 GO-*terms* der Kategorie "biological process" detektiert wurden. Die ersten zehn funktionellen Gengruppen finden sich in Tabelle 13.

Auch bei den Stro-1^{+BK} werden im ODM biologische Prozesse hochreguliert, die sich mit der Organ- und Strukturentwicklung befassen, wobei ein Schwerpunkt auf die skelettale Entwicklung entfällt. Der für die Stro-1^{+BK} als hochsignifikant gelistete GO-*term skeletal system development* (in Tabelle 13 gelb markiert) enthält eine Reihe von Homeobox-Genen, die sich von den Stro-1^{+ZK} unterscheiden (Tabelle 14). Ein Großteil der hochregulierten Gengruppen beschreibt daneben Vorgänge, die mit der Gefäßentwicklung in Verbindung stehen, z. B. die GO-*terms angiogenesis, vasculature development* und *blood vessel development*.

Bei einem *cut-off* der **FDR** \leq **5** % zeigten 1478 Gene bei den Stro-1^{+BK} eine hochregulierte Expression gegenüber den Stro-1^{+ZK} im ODM. Die über DAVID ermittelten 177 *cluster* des *Functional Annotation Clustering* bilden dabei nicht immer die funktionellen Gengruppen aus Tabelle 13 ab, ergänzen sie aber, da es häufig Überschneidungen der aufgeführten Gene gibt. In Tabelle 15 finden sich exemplarisch die ersten drei *cluster* mit den entsprechenden Untergruppen. Die Untergruppen von *cluster* 2 (Abbildung 23) und *cluster* 163 (Abbildung 25) sind mit Homeobox-Genen und Transkriptionsfaktoren belegt, die bereits im oben genannten GO-*term skeletal system development* eine wichtige Rolle spielen. Entsprechend der *heatmap* von *cluster* 72 (Abbildung 24) exprimieren die Stro-1^{+BK} mit einem signifikant höheren logFC-Wert die für Kollagene codierenden Gene *COL4A1*, *COL4A2*, *COL11A1*, *COL12A1* und *COL6A2*. Die Gene aus *cluster* 174 (Abbildung 26), welche mit der Zellteilung und dem Zellzyklus verbunden sind, haben für die Stro-1^{+BK} nur eine geringe Bedeutung. **Tabelle 13:** Die ersten zehn im ODM bei den Stro-1⁺-**Beckenkammzellen** signifikant hochregulierten (= bei den Stro-1⁺-Zahnkeimzellen signifikant herunterregulierten) funktionellen Gruppen (nach DAVID Version 6.8). Die Tabellen sind nach der aufsteigenden Höhe der p-Werte sortiert.

<u>Term</u>	Genes	<u>Count</u>	<u>%</u>	<u>P-Value</u>	<u>Benjamini</u>
skeletal system development	_	31	13,1	3,3E-13	1,1E-9
extracellular matrix organization		24	10,2	2,2E-11	3,8E-8
extracellular structure organization		24	10,2	2,4E-11	2,7E-8
angiogenesis	-	24	10,2	1,5E-9	1,2E-6
vasculature development		29	12,3	1,7E-9	1,2E-6
blood vessel development		28	11,9	2,2E-9	1,2E-6
blood vessel morphogenesis	=	25	10,6	8,3E-9	4,0E-6
organ morphogenesis		36	15,3	1,3E-8	5,6E-6
cardiovascular system development		35	14,8	1,4E-8	5,2E-6
circulatory system development		35	14,8	1,4E-8	5,2E-6

Tabelle 14: Homeobox-Gene, die bei den Stro-1^{+BK} im ODM für den **GO-***term skeletal system development* hochreguliert sind. Die Gene sind aufsteigend nach der Höhe der FDR sortiert.

skeletal system development								
Symbol	Genname	logFC ZK2-BK2	FDR ZK2-BK2					
нохс9	homeobox C9	-6,222	6,58E-12					
НОХВ6	homeobox B6	-4,073	3,82E-10					
НОХА9	homeobox A9	-3,793	1,54E-08					
НОХВ2	homeobox B2	-4,878	4,90E-08					
HOXA10	homeobox A10	-2,595	5,73E-08					
НОХВЗ	homeobox B3	-3,325	7,44E-08					
HOXA7	homeobox A7	-3,644	3,96E-07					
НОХС8	homeobox C8	-3,354	1,23E-06					
НОХВ4	homeobox B4	-2,263	2,73E-05					
HOXC10	homeobox C10	-2,801	4,70E-04					

Tabelle 15: Die ersten drei signifikant hochregulierten Gen-Cluster der Stro-1^{+BK} (= herunterregulierten Gen-Cluster der Stro-1^{+ZK}) im ODM (*screenshot* aus DAVID Version 6.8).

Annotation Cluster 1	Enrichment Score: 16.06	G		Count	P_Value	Benjamini
UP_SEQ_FEATURE	signal peptide	<u>RT</u>		342	7.0E-24	2.2E-20
UP_KEYWORDS	Glycoprotein	<u>RT</u>		402	8.1E-19	3.8E-16
UP_KEYWORDS	Secreted	RT	_	214	9.3E-19	2.2E-16
UP_KEYWORDS	Signal	RT		369	2.6E-17	4.0E-15
UP_SEQ_FEATURE	glycosylation site:N-linked (GlcNAc)	<u>RT</u>		372	1.5E-14	2.3E-11
UP_KEYWORDS	Disulfide bond	<u>RT</u>		302	5.1E-13	5.9E-11
UP_SEQ_FEATURE	disulfide bond	RT	_	263	3.9E-11	4.2E-8
Annotation Cluster 2	Enrichment Score: 5.81	G		Count	P_Value	Benjamini
INTERPRO	Homeodomain, metazoa	<u>RT</u>	E	26	2.2E-10	3.7E-7
INTERPRO	Homeobox, conserved site	<u>RT</u>	=	36	6.5E-9	5.4E-6
UP_KEYWORDS	Homeobox	RT	=	38	1.0E-6	6.0E-5
INTERPRO	Homeodomain	<u>RT</u>	=	38	1.5E-6	4.2E-4
UP_SEQ_FEATURE	DNA-binding region:Homeobox	<u>RT</u>	-	31	2.1E-6	1.3E-3
SMART	HOX	<u>RT</u>	=	38	1.1E-5	2.0E-3
GOTERM_BP_DIRECT	anterior/posterior pattern specification	RT	÷	18	1.3E-5	6.2E-3
INTERPRO	Homeodomain-like	RT	a	42	3.0E-5	5.5E-3
GOTERM_MF_DIRECT	sequence-specific DNA binding	<u>RT</u>	=	51	2.4E-3	1.4E-1
Annotation Cluster 3	Enrichment Score: 5.78	G		Count	P_Value	Benjamini
INTERPRO	Homeodomain, metazoa	<u>RT</u>	-	26	2.2E-10	3.7E-7
INTERPRO	Homeobox protein, antennapedia type, conserved site	<u>RT</u>	÷	11	8.9E-8	3.7E-5
UP_SEQ_FEATURE	DNA-binding region:Homeobox	<u>RT</u>	=	31	2.1E-6	1.3E-3
UP_SEQ_FEATURE	short sequence motif:Antp-type hexapeptide	<u>RT</u>	¥	10	4.6E-6	2.4E-3
GOTERM_BP_DIRECT	anterior/posterior_pattern_specification	<u>RT</u>	÷	18	1.3E-5	6.2E-3
GOTERM_BP_DIRECT	embryonic skeletal system morphogenesis	RT	1	12	2.7E-5	8.7E-3

Functional Annotation Clustering

GO:0009952~anterior/posterior pattern specification IPR020479:Hom eodomain, metazoa DNA-binding region:Hom eobox GO:0043565~sequence-specific DNA binding IPR017970:Hom eobox, conserved site Hom eobox IPR001356:Hom eodomain SM00389:HOX IPR009057:Hom eodomain-like

Abbildung 23: Limitierte Darstellung einiger hochregulierter Homeobox-Gene aus *cluster* 2 (Tabelle 15; *enrichment score* = 5,81) der Stro-1^{+BK} im ODM (*screenshot* aus DAVID Version 6.8).

protease, serine 3(PRSS3) furin, paired basic amino acid cleaving enzyme(FURIN) matrix metallopeptidase 15(MMP15) cathepsin D(CTSD) ADAM metallopeptidase with thrombospondin type 1 motif 2(ADAMTS2) lysyl oxidase(LOX) endothelial PAS domain protein 1(EPAS1) hypoxia inducible factor 1 alpha subunit(HIF1A) protein S (alpha)(PROS1) latent transforming growth factor beta binding protein 2(LTBP2) elastin(ELN) TIMP metallopeptidase inhibitor 1(TIMP1) C1q and tumor necrosis factor related protein 5(C1QTNF5) gliomedin(GLDN) scavenger receptor class A member 3(SCARA3) collagen triple helix repeat containing 1(CTHRC1) collagen type IV alpha 1 chain(COL4A1) collagen type IV alpha 2 chain(COL4A2) collagen type XII alpha 1 chain(COL12A1) collagen type XI alpha 1 chain(COL11A1) collagen type VI alpha 2 chain(COL6A2)

region of interest: Triple-helical region hsa04974: Protein digestion and absorption GO:0030574--collagen catabolic process GO:0005581--collagen trimer Hydroxylation IPR008160:Collagen triple helix repeat Collagen

Abbildung 24: Heatmap der hochregulierten Gene aus *cluster* 72 (*enrichment score* = 0,8) der Stro-1^{+BK} im ODM, die für Kollagene codieren (in Tabelle 15 nicht aufgeführt; *screenshot* aus DAVID Version 6.8).

Abbildung 25: Heatmap der hochregulierten Gene für Transkriptionsfaktoren aus *cluster* 163 (*enrichment score* = 0,08) der Stro-1^{+BK} im ODM (in Tabelle 15 nicht aufgeführt; *screenshot* aus DAVID Version 6.8).

GO:0007067~mitotic nuclear division Mitosis GO:0051301~cell division Cell division Cell cycle

Abbildung 26: Heatmap der überexprimierten Gene des Zellzyklus aus *cluster* 174 (*enrichment score* = 0,0) der Stro-1^{+BK} im ODM (in Tabelle 15 nicht aufgeführt; *screenshot* aus DAVID Version 6.8).

3.5 Zusammenfassung der Ergebnisse

Die Auswertung der Microarray-Daten wurde nach drei unterschiedlichen Kriterien vorgenommen:

- Zunächst wurden für beide Stammzelltypen die zehn höchst signifikant hoch- und herunterregulierten Gene bestimmt und ihre funktionellen Gruppen ermittelt, wie sie sich beim Wechsel vom DMEM in das ODM ergeben.
- 2) In einer weiteren Sortierung wurden Gene ermittelt, die bei einem Zelltyp signifikante logFC-Werte aufweisen und bei dem jeweils anderen Zelltyp keine entsprechende Veränderung zeigen. Bei beiden Stammzelltypen wurden zusätzlich identische Gene gesucht, die gemeinsam über- bzw. unterexprimiert werden oder sich in ihrer Expression gegensätzlich verhalten.
- Abschließend wurde das differentielle Expressionsprofil beider Stammzelltypen im ODM untersucht.

Ad 1) Stro-1^{+ZK} und Stro-1^{+BK} zeigen beim Wechsel vom DME-Medium in das osteogene Differenzierungsmedium ein unterschiedliches Verhalten in ihrer Genexpression. Unter den zehn höchst signifikant hochregulierten Genen befinden sich vier Gene, die bei beiden Zelltypen identisch sind (*SAA1*, *BMP6*, *FKBP5*, *MAOA*). Bei den zehn höchst signifikant herunterregulierten Genen finden sich für beide Zelltypen keine identischen Gene.

Die im ODM gegenüber dem DMEM hochregulierten Gene der Stro-1^{+ZK} werden anteilsmäßig vor allem durch die funktionellen Gruppen *response to organic substance, response to wounding, response to endogenous stimulus* und *behavior* repräsentiert. Die überwiegende Anzahl der herunterregulierten Gene der Stro-1^{+ZK} findet sich in den Gruppen *biological adhesion, cell adhesion, regulation of cell motion, regulation of locomotion* und *regulation of cell migration*. Die hochregulierten Gene der Stro-1^{+BK} sind größtenteils den Gruppen *response to organic substance, response to endogenous stimulus, response to hormon stimulus, response to peptide hormon stimulus* und *response to insulin stimulus* zuzuordnen. Die herunterregulierten Gene der Stro-1^{+BK} werden hauptsächlich durch die Gruppen *wound healing, regulation of secretion, angiogenesis, blood vessel morphogenesis* und *blood vessel development* bestimmt.
Ad 2) Beim Medienwechsel vom DMEM ins ODM werden bei einer FDR ≤ 5 % für die Stro-1^{+BK} 720 Gene mit signifikant veränderten logFC-Werten detektiert, deren identische Gene bei den Stro-1^{+ZK} keine signifikante Veränderung aufzeigen. Bei den Stro-1^{+ZK} weisen wiederum 456 Gene signifikante logFC-Werte auf, denen keine signifikant veränderten Werte bei den Stro-1^{+BK} gegenüberstehen. Die einseitig signifikant hoch- und herunterregulierten Gene der Stro-1^{+ZK} weisen als wesentliche funktionelle Gruppen *Glycoprotein, Disulfide Bond* und *Signal* in der Cluster-Analyse auf. Die hochregulierten Gene der Stro-1^{+ZK} werden zugeordnet, die im Zusammenhang mit der Zellmembran und der extrazellulären Matrix stehen. Diese Gruppen sind auch der primäre Bestandteil der Gen-Cluster, die sich aus den einseitig signifikant hochregulierten Genen der Stro-1^{+BK} ableiten. An erster Stelle der herunterregulierten funktionellen Gruppen bei den Stro-1^{+BK} stehen Gene, die für die Angiogenese und die Bildung von Endothelzellen verantwortlich sind.

Für beide Zellarten werden beim Wechsel in das ODM gemeinsam 130 identische Gene hoch- und 94 Gene herunterreguliert. 16 Genpaare verhalten sich in ihrer Expression gegensinnig. Die gleichsinnig hoch- sowie herunterregulierten Genpaare der Stro-1^{+ZK} und der Stro-1^{+BK} werden hauptsächlich durch die bereits oben beschriebenen funktionellen Gruppen *Glycoprotein*, *Disulfide Bond* und *Signal* charakterisiert. Bei den Stro-1^{+BK} signifikant hoch- und den Stro-1^{+ZK} herunterreguliert werden Gene, die Proteine codieren, welche die Zelladhäsion und Zellmembran beeinflussen. Die Gene, die umgekehrt bei den Stro-1^{+BK} herunter- und den Stro-1^{+ZK} hochreguliert werden, codieren ebenfalls Proteine, die für Zellmembraneigenschaften stehen oder aber für alternatives Spleißen der DNA verantwortlich sind.

Ad 3) Wird das Expressionsprofil beider Zelltypen im ODM verglichen, so ergeben sich bei den *cut-offs* FDR $\leq 1\%$ und $|\log FC| > 2$ eine Anzahl von 375 signifikant veränderten Genen. Die 109 hochregulierten Gene der Stro-1^{+ZK} werden vor allem funktionellen Gruppen zugeordnet, die für die Zellproliferation, Organentwicklung und extrazelluläre Matrix wichtig sind. Hierzu gehören neben Homeobox-Genen auch die Gene *GREM1*, *PTN* und *FST*, welche eine Rolle bei der Odontogenese spielen. Bei den Stro-1^{+BK} werden 266 Gene hochreguliert, die an der Skelettentwicklung und Angiogenese beteiligt sind.

Bei dem weiter gefassten *cut-off* der FDR ≤ 5 % ergeben sich signifikant veränderte logFC-Werte für 2583 Gene, von denen 1105 Gene bei den Stro-1^{+ZK} und 1478 Gene bei den Stro-1^{+BK} hochreguliert waren. Bei den Zahnkeimzellen codieren diese Gene überwiegend Proteine, die in die Zellteilung eingreifen, den Zellzyklus unterstützen, die DNA reparieren und die Bereitstellung der dafür notwendigen Energie sichern. Bei den Beckenkammzellen sind funktionellen Gengruppen hochreguliert, die Proteine codieren, welche an der skelettalen Morphogenese beteiligt sind, wie z. B. Homeobox-Gene. Die Stro-1^{+BK} exprimieren mit einem signifikant höheren logFC die für Kollagene codierenden Gene *COL4A1*, *COL4A2*, *COL11A1*, *COL12A1* und *COL6A2*.

4 Diskussion

Mithilfe der Microarrays wurde die Genexpression als durchschnittliche cDNA(mRNA)-Level der Stro-1⁺-Zellen aus den Mischpopulationen der Zahnkeime und des Beckenkamms gemessen. Da es kein Maß für die absolute Höhe der Genexpression gibt, sind alle Messungen nur dann sinnvoll, wenn die Expressionshöhe eines bestimmten Gens in zwei verschiedenen biologischen Zuständen betrachtet wird. In der vorliegenden Arbeit sollten daher die beiden Medien DMEM und ODM den Schwerpunkt des Vergleichs bilden und gezeigt werden, ob sich die Stro-1⁺-Zahnkeim- und -Beckenkammzellen in den Medien unterschiedlich in ihrer Genexpression darstellen. Alle Aussagen sind daher relative Feststellungen. Aus diesem Grund werden in der vorliegenden Arbeit die unterschiedlichen Expressionshöhen der gleichen Gene zum einen durch die unterschiedlichen Medien und zum anderen durch den unterschiedlichen Ursprung der Stro-1⁺-Zellen determiniert. Bei allen Untersuchungen zur Höhe einer mRNA-Expression liegt die Annahme zugrunde, dass die Höhe des Expressionsniveaus auch die Höhe des synthetisierten Proteins definiert, falls die RNA ein Protein codiert.

Während die Erfassung der mRNA-Expression in den 90er-Jahren des letzten Jahrhunderts noch eine außerordentliche methodische Schwierigkeit darstellte, hat die Entwicklung der Microarray-Technik die fast vollständige Erfassung der Genexpression des Transkriptoms ermöglicht (Schena et a. 1995). Die aktuelle Herausforderung liegt aber nach wie vor in der Interpretation und Sinngebung der gewaltigen Datenmengen. Der Vorteil sowie der Schwerpunkt der Microarray-Analyse liegt daher nicht in erster Linie darin, Aussagen über die individuelle Höhe der Expression einzelner Gene zu machen, sondern biologische Prozesse zu erkennen und zu verstehen (Miller et al. 2002).

4.1 Methodik

Mithilfe der DNA-Sequenzierung konnte im April 2003 das gesamte menschliche Genom mit seinen 20.000 bis 30.000 Genen dekodiert werden (U.S. Department of Energy: *Hu-man Genome Project*). Die Microarray-Technologie erlaubt eine funktionelle Analyse, indem sie Gen-Transkripte detektiert und somit das Transkriptom "entschlüsselt". Anhand der gewonnenen Daten lassen sich Rückschlüsse auf die genetische Aktivität unterschiedlicher Zelltypen schließen.

In Abhängigkeit von der Größe des gewählten Microarray-Chips können spezifisch die Expressionswerte einer Vielzahl von Genen ermittelt werden. In der vorliegenden Arbeit wurden Human Genome Chips des Herstellers Agilent verwendet. Diese stellen das komplette menschliche Genom zur Genexpressionsanalyse zur Verfügung. Entsprechend ergibt sich eine umfassende molekulargenetische Charakterisierung der jeweiligen Zelltypen im Probenmaterial. Gleichzeitig fallen jedoch enorme Datenmengen an, die einer gezielten Auswertung bedürfen. Ein spezieller Erkenntnisgewinn wird auch dadurch erschwert, wenn Untersuchungen von Geweben oder Zellkulturen vorgenommen werden, in denen verschiedene Zellpopulationen oder Zelltypen vorliegen. Bei der Isolierung der mRNA liegt dann ein "mRNA-Gemisch" vor, welches es möglicherweise nicht erlaubt, die Genexpression einzelner, spezieller Zellen zu detektieren und somit ihre funktionelle Bedeutung zu erkennen. Da Stro-1⁺-Zellen bereits im Fokus neuerer Erkenntnisse standen (Rolf et al. 2008, 2012), sollte hier dieser Zelltyp aus Zahnkeimen und Beckenkamm untersucht werden, um signifikante Veränderungen seiner Genexpression zu registrieren. Gleichzeitig sollte der Einfluss unterschiedlicher Kulturmedien analysiert werden. Die Detektion differentiell exprimierter Gene erfolgte daher einerseits zwischen den Stro-1^{+ZK} und Stro-1^{+BK}, andererseits in Abhängigkeit von den beiden Kulturmedien DMEM und ODM.

Diese gewaltige Datenmenge von zehntausenden Genen kann in der Vielfalt der hier zugrunde liegenden vier Datensätze nur mit Computersoftware-Programmen bewältigt werden, die Speicherung, Analyse, Datentransfer und Visualisierung übernehmen müssen (Stoeckert et al. 2002). Der Datenanalyse lagen zwei wichtige, international anerkannte Kenngrößen zugrunde. Die Fluoreszenz-Intensitätswerte der Genexpression sowie die Differenzen zweier Expressionszustände werden als das Vielfache des 2er Logarithmus (log₂) angegeben und als logFC-Wert (englisch: *fold change*) beschrieben. Gegenüber der Verwendung einfacher Quotienten zweier zu vergleichender Intensitäten hat dies den Vorteil, dass die log₂-Werte bei gleicher Über- oder Unterexpression symmetrisch zu Null sind (Lee und Saeed 2007).

Aufgrund der Verwendung des binären Logarithmus ergeben sich folgende Berechnungen:

\geq	2-fold upregulation	>>	$\log_2(2)$	\rightarrow	logFC = 1	\supset
\geq	2-fold downregulation	>>	$\log_2(\frac{1}{2})$		$\log FC = -1$	\supset

Eine Einheit in der logFC-Skalierung entspricht folglich einer zweifachen Veränderung in der Genexpression. Diese Darstellung vereinfacht die Auswertung der gemessenen Fluoreszenz-Intensitäten, da absolute Werte in Relation zueinander gesetzt werden. Differentiell exprimierte Gene lassen sich über das (negative/positive) Vorzeichen der logFC-Werte leichter ermitteln und einteilen.

Neben dieser Umwandlung der komplexen Datensätze in "handliche" Zahlenwerte spielt die statistische Signifikanz eine wichtige Rolle. Bei der Überprüfung einer einzelnen Alternativhypothese wird die Möglichkeit eines Fehlers 1. Art (Ablehnung der Nullhypothese) über die Irrtumswahrscheinlichkeit p kontrolliert. Die Gültigkeit der Alternativhypothese ist nur dann gegeben, wenn der zugehörige p-Wert das zuvor festgelegte Signifikanzniveau α nicht überschreitet. Die statistische Auswertung von Microarrays erfordert dagegen die Überprüfung mehrerer tausend Gene gleichzeitig. Infolge dieser multiplen Testung ergibt sich ein erhöhtes Risiko für das Auftreten falschpositiver Ergebnisse. Die bekannteste Methode zur Vermeidung dieser Problematik ist die Bonferroni-Korrektur. Über eine Adjustierung der p-Werte oder des Signifikanzniveaus (nach Bonferroni-Holm) ergeben sich engere Grenzen für die Datenanalyse. Eine weitere Möglichkeit bietet die explorative Benjamini-Hochberg-Prozedur. Hierbei wird über die false discovery rate (FDR) der erwartete Anteil (in %) falschpositiv signifikanter Gene an allen signifikanten Genen ausgedrückt (Benjamini und Hochberg 1995, Benjamini et al. 2001, Tusher et al. 2001). Sie kann als p-Wert-Korrektur nach multipler Testung angesehen werden und entspricht einem ad-hoc-Test nach durchgeführter ANOVA. Ein hoher Wert des logFC und eine niedrige FDR können daher als hohe Wahrscheinlichkeit einer Änderung der Genexpression gelten. Die biologische Bedeutung von Genexpressionen mit niedrigen logFC-Werten und hoher FDR sowie umgekehrt wird durch die statistische Aussage jedoch nicht unbedingt wiedergegeben. Durch die individuelle, teils intuitive Entscheidung der Wahl der jeweiligen cut-offs von logFC und FDR kann die Interpretation der Ergebnisse verschiedener Forschergruppen selbst bei exakt reproduzierbaren Array-Versuchen unterschiedlich ausfallen (Dalman et al. 2012). Es wird daher eine Standardisierung von Genarray-Versuchen gefordert, insbesondere wenn die Daten in internationale Pools eingegeben werden (Ashburner et al. 2000, Taylor et al. 2008).

Um eine schärfere Aussage für das hier vorliegende Experiment machen zu können, wurden nicht, wie in vielen international vorhandenen Arbeiten, die Genexpressionen von Zahnkeim- oder Beckenkammzellen untersucht, die als Mischkulturen betrachtet werden müssen, sondern ausschließlich nur ein bestimmter Zelltyp, die Stro-1⁺-Zellen. Da jedem zu untersuchenden Zustand Triplets zugrunde lagen, deren Standardabweichung äußerst gering war, wurde auf zusätzliche Verifizierung der Ergebnisse mit anderen Methoden (z. B. RT-PCR) verzichtet.

Um aus dem Genpool der signifikant veränderten Gene sowohl beim Medienwechsel der beiden Zellarten als auch bei ihrem direkten Vergleich miteinander im ODM funktionelle Gruppen im biologischen Kontext zu ermitteln, wurde die **DAVID-Software** genutzt. Das Programm ist über das Internet frei zugänglich, international anerkannt und mit über 20.000 Publikationen eines der am häufigsten verwendeten Tools (Huang et al. 2007). Das *Functional Annotation Clustering* des Programms kreiert aus der eingegebenen Genliste funktionelle Gruppen (*terms*) mit einer Rank-Einteilung (*enrichment score*), welche die Bedeutung des biologischen Prozesses der jeweiligen Gruppe hervorhebt. Je höher dieser *score* ausfällt, desto bedeutender ist die jeweilige Gruppe für die eingegebene Genliste. Ein *score* von 1,3 entspricht einem p-Wert von 0,05, daher sollte den Gruppen mit einem *score* \geq 1,3 höhere Beachtung geschenkt werden.

4.2 Ergebnisse

Aus der Pulpa extrahierter Weisheitszähne konnten dentale Stammzellen (DPSCs) isoliert, kultiviert und charakterisiert werden. In Mäuse reimplantierte Zellen aus Kulturen können ektopisches Dentin und Pulpa-ähnliches Gewebe bilden (Gronthos et al. 2000). Sie weisen ähnliche Eigenschaften wie die aus dem Beckenkamm isolierten mesenchymalen Stammzellen (BMSCs) auf. Beide sind plastikadhärent, zeigen ein klonogenes Wachstum und exprimieren die Stammzellmarker CD44, CD106, CD146 sowie Stro-1 (Gronthos et al. 2002, Gronthos et al. 2000, Lei et al. 2014, Shi et al. 2001). Trotz vieler Ähnlichkeiten verhalten sich DPSCs und BMSCs in Kulturen unterschiedlich. Beide sezernieren kalzifizierte Ablagerungen. Während diese bei den DPSCs härter sind und langsamer in geringerem Ausmaß entstehen, sind die BMSCs in der Lage, diese in größeren Mengen viel schneller zu bilden (Batouli et al. 2003, Gronthos et al. 2002, Gronthos et al. 2000). Aufgrund der multiplen Expression der Oberflächen-Epitope bei DPSCs und BMSCs in den oben genannten Untersuchungen kann davon ausgegangen werden, dass es sich bei beiden Zelltypen um eine heterogene Zellpopulation handelt. Die Analyse der Genexpression heterogener Zellpopulationen zeichnet kein klares Ergebnis, da sich bezogen auf ein Gen je nach Zelltyp unterschiedliche Expressionshöhen ergeben können, die zu einer Nivellierung des Endergebnisses führen. Daher wurde in der vorliegenden Arbeit nur die Genexpression der Stro-1⁺-Zellen untersucht.

Das stromale Stro-1-Zelloberflächen-Antigen wurde erstmals von Simmons und Torok-Storb 1991 beschrieben. Mit einem monoklonalen Stro-1-Antikörper in Kombination mit der fluoreszenz- oder magnetisch-aktivierten Zellsortierung (FACS, MACS) können mesenchymale Stammzellen aus verschiedenen Geweben isoliert oder in diesen markiert werden (Gronthos et al. 1994, Simmons und Torok-Storb 1991, Stewart et al. 2003). Stro-1⁺-Zellen können in Adipozyten, Fibroblasten, Chondroblasten und Osteoblasten differenzieren und sind daher multipotente Stammzellen (Atkins et al. 2003, Byers et al. 1999, Mödder et al. 2012).

4.2.1 Analyse der Rohdaten

Für den *cut-off* der FDR ≤ 1 % ergeben sich beim Vergleich der in DMEM und ODM kultivierten Stro-1^{+ZK} 437 und Stro-1^{+BK} 624 signifikant in ihrer Höhe der Expression veränderte Gene (n = 22.454). Damit ist der Einfluss des Medienwechsels wesentlich geringer als der differentielle Unterschied beider Zelltypen im DMEM, der von Oellerich bei identischem *cut-off* mit 2293 Genen (n = 22.454) angegeben wird (Oellerich 2016). Der Einfluss des ODM auf die Stro-1^{+ZK} ist ca. 30 % geringer im Vergleich zu den Stro-1^{+BK}. Beim Wechsel der Stro-1^{+ZK} in das ODM verändert sich ihre Genexpression gegenüber ihrem Expressionsmuster im DMEM folglich weniger signifikant als bei den Stro-1^{+BK}. Gegenüber dem DMEM wird im ODM die Mehrzahl der Gene der Stro-1^{+ZK} herunterreguliert (\downarrow 234 : \uparrow 203), während sie bei den Stro-1^{+BK}.

Es erscheint interessant, von den jeweils zehn Genen, die bei beiden Zelltypen am signifikantesten hoch- oder herunterreguliert sind, die wesentlichen zu betrachten, um eventuell daraus schon Hinweise auf ihren Zusammenhang hinsichtlich ihrer funktionellen Bedeutung zu erhalten (Tabelle 3). Die im ODM gegenüber dem DMEM hochregulierten Gene sind in den folgenden Kapiteln 4.2.2 und 4.2.3 grün markiert, die herunterregulierten Gene rot.

4.2.2 Der Einfluss der Medien auf die Genexpression von Stro-1^{+ZK}

Bei der Betrachtung der Stro-1^{+ZK} fällt zunächst auf, dass die zehn höchst signifikanten Gene im ODM weniger hoch exprimiert sind als bei den Stro-1^{+BK} (Tabelle 3). Im Folgenden sollen von einigen Genen die wichtigsten Eigenschaften und ihre funktionelle Bedeutung kurz beschrieben werden.

Das Gen **DDIT4** (DNA-damage-inducible transcript 4, syn. REDD1) zeigt höchste logFCund niedrigste FDR-Werte. Das Gen codiert ein Protein, das als upstream repressor **mTOR** (mechanistic target of rapamycin) inaktiviert, eine Serin-Threonin-Kinase, die Wachstum, Proliferation und Autophagie von Zellen regelt (Ellisen 2005). Unter Autophagie wird ein kataboler zellulärer Prozess verstanden, der bei Substratmangel das Zellüberleben garantiert, indem zelluläre Komponenten zu Molekülen degradiert und recycelt werden (Marino et al. 2014a, 2014b). Autophagie ist verantwortlich für die Entfernung alter oder beschädigter Zellorganellen und wird mit dem Überleben von Tumorzellen in Verbindung gebracht (Kimmelman 2011). Eine Fehlfunktion von *DDIT4* wird daher auch mit vielen Erkrankungen verbunden. Dazu gehören Diabetes, Krebs (Zoncu et al. 2011), Präeklampsie (Hu et al. 2012), die ischämische proliferative Retinopathie (Brafman et al. 2004) und neurodegenerative Erkrankungen (Kim et al. 2003, Malagelada et al. 2011). Eine besondere Rolle spielt mTOR bei der Steuerung der inaktiven Ruhephase, der Selbsterneuerung und der Differenzierung von Stamm- und deren Tochterzellen. Anhand von MSCs konnte nachgewiesen werden, dass *DDIT4* direkt in die Steuerung des mTOR-Signalwegs eingreift und ihre Stammzelleigenschaften aufrechterhält. Es steuert die Expression von Pluripotenzgenen, die Differenzierung und Proliferation von MSCs und deren Progenitorzellen (Gharibi et al. 2016). Hohe Expressionswerte von mTOR wurden auch in Experimenten mit Peroxiden in Zusammenhang mit der Zellalterung gefunden. Dabei wurde festgestellt, dass auch *IGFBP3* mTOR beeinflusst und es hochregulieren kann (Hong und Kim 2018). Da bei den Stro-1^{+ZK} *IGFBP3* stark herunter- und *DDIT4* hochreguliert wurde, ergänzen sich beide Mechanismen in ihrer Wirkung. Es kann daher vermutet werden, dass die Zahnkeimstammzellen im ODM die Expression von mTOR supprimieren.

Das Gen *SAA1* (*serum amyloid A1*) codiert das Protein SAA1, welches hauptsächlich in Hepatozyten synthetisiert wird und als Reaktion auf Infektionen, Gewebeverletzungen oder Tumore gebildet wird (Lowell et al. 1986). Die Expression von *SAA1* wird im Wesentlichen durch die für das Entzündungsgeschehen verantwortlichen Zytokine IL-1 β , IL-6 und TNF- α stimuliert. Es ist wie das C-reaktive Protein (CRP) ein Akute-Phase-Protein der Entzündungsreaktion und hat eine starke chemotaktische Wirkung auf Makrophagen und neutrophile Granulozyten (De Buck et al. 2016, 2018). In der Literatur wird beschrieben, dass es mit äußeren Membranproteinen diverser gramnegativer Bakterien, wie *E. coli*, *P. aeruginosa*, Salmonellen und Cholerabakterien reagiert. Es wird vermutet, dass es auch in Makrophagen und Epithelzellen produziert wird (Su und Weindl 2018).

Das Gen *IGFBP2* (*insulin-like growth factor binding protein 2*) ist im ODM stark heraufreguliert, während *IGFBP3* ebenso stark herunterreguliert wurde. Erhöhte Serumwerte von IGFBP2 sind nach klinischen Beobachtungen mit einer erhöhten Knochenresorption und einer erniedrigten Knochenmineraldichte (BMD = bone mineral density) bei älteren Patienten verbunden (Amin et al. 2007). Die Serumwerte von IGFBP2 steigen mit zunehmendem Alter, während die Werte von IGFBP3 sinken (Amin et al. 2004). Die kurzzeitige Gabe von IGF2 und IGFBP2 konnte eine postoperativ eintretende BMD verhindern (Conover et al. 2002). Glukokortikoide supprimieren die Expression aller IGFBPs. Das Gen *BMP6* (*bone morphogenetic protein 6*) ist ebenfalls sowohl in den Stro-1^{+ZK} als auch in den Stro-1^{+BK} hoch exprimiert. BMP6 ist wie alle BMPs ein Mitglied der TGF- β -Familie. BMP6 stimuliert in Osteoblasten die Bildung von alkalischer Phosphatase (ALP) und führt in den entsprechenden Zellkulturen zu ektopischer Mineralisation (Eyckmans und Luyten 2006). In ovarektomierten Ratten führt die systemische Gabe von BMP6 zu einer Steigerung des Knochenvolumens (Simic et al. 2006). Eine erhöhte Expression von *BMP6* konnte zudem im Zahnfollikel nachgewiesen werden und steht vermutlich mit der Knochenbildung während des Zahndurchbruchs in Verbindung (Yao et al. 2013).

Das Gen *PTX3* (*pentraxin 3*) codiert für den gleichnamigen, frei im Blut zirkulierenden, solublen Rezeptor der Pentraxin-Familie, die auch als *pattern recognition receptors* (PRRs) bezeichnet werden. Der Rezeptor aktiviert über die Bindung von Antigenen im Blut das Komplementsystem, so dass neutrophile Granulozyten das Antigen phagozytieren können. Dieser Mechanismus wird auch zur Elimination von körpereigenem Gewebe genutzt, um beispielsweise Zellfragmente nach der Apoptose zu entfernen. Die PRRs gehören zum angeborenen Immunsystem und haben eine eher hemmende Wirkung auf das erworbene Immunsystem (Baruah et al. 2006, Erreni et al. 2017, Presta et al. 2007). Es kann daher vermutet werden, dass Stro-1^{+ZK} über die Synthese von PTX3 Granulozyten rekrutieren, um bei der Zahnbildung Zelldetritus zu entfernen.

Das Gen *MAOA* ist bei den Stro-1^{+ZK} signifikant hochreguliert. Es codiert für das Enzym MAO-A, welches zusammen mit MAO-B zu den Monoaminoxidasen (MAO) gehört. Die Gene beider Formen sind auf dem X-Chromosom lokalisiert, was es einerseits schwierig macht, Erkenntnisse aus Tierversuchen auf den Menschen zu übertragen und andererseits gleichgültige Aussagen für beide Geschlechter zu treffen. Monoaminoxidasen sind mitochondrale Enzyme, die Gifte oder aktive Substanzen durch Desaminierung degradieren, deren Endprodukte dann Ammoniak, Aldehyde, Karbonsäuren oder Peroxide sein können. MAO-A baut z. B. Serotonin, Melatonin und die Katecholamine Noradrenalin und Adrenalin ab, MAO-B vorwiegend Benzylamin und Phenylethylamin. Beide bauen Tyramin, Tryptamin und Dopamin ab (Shih et al. 1999). MAO-A ist hauptsächlich im ZNS, in den Nervenenden des Sympathikus, den Schleimhäuten des Darms und in der Plazenta zu finden (Riederer et al. 1987, Nagatsu 2004). Ihr Ausfall ist mit dem Brunner-Syndrom verbunden, das familiär auftritt und mit geistiger Retardierung sowie einem stark erhöhten Aggressionspotential verbunden ist (Brunner et al. 1993, Whibley et al. 2010).

verortet. Über die Bedeutung der MAO im Zusammenhang mit der Hartgewebeforschung ist so gut wie nichts bekannt. Es wird lediglich in einer Publikation beschrieben, dass der Polymorphismus der *MAOA* durch variable Anzahl der Tandemwiederholungen möglicherweise die Knochendichte (BMD) beeinflusst, da Personen mit einer höheren Anzahl von Tandemwiederholungen eine höhere BMD aufwiesen als Personen mit weniger Wiederholungen (Yamada et al. 2008).

Das von *FKBP5* (*FK506 binding protein 5*) codierte gleichnamige Protein bindet **FK506**, auch Tacrolimus genannt, und **Rapamycin**. FK506 inhibiert Calcineurin, welches die T-Lymphozyten aktiviert. Es gilt daher als Immunsuppressivum und wird bei Organtransplantationen verwendet. Ähnlich wie *MAOA* wird auch *FKBP5* häufig im Zusammenhang mit neurologischen Erkrankungen, wie Depression oder Schizophrenie, in der Literatur erwähnt, da es mit Antidepressiva (Lithium) interferiert (Kato 2007). Die Bindung an FKBP5 hemmt die Wirkung von FK506 und Rapamycin (Baughman et al. 1995). Das oben genannte DDIT4 wird bei den Stro-1^{+ZK} durch die Bindung von Rapamycin von FKBP5 in seiner Wirkung, die Stammzelleigenschaften von MSCs aufrechtzuerhalten, unterstützt.

Das Protein Decorin wird vom Gen DCN (decorin) codiert, ist ein kleines Matrixproteoglykan und strukturell eng verwandt mit Biglycan. Es wird vermutet, dass beide das Ergebnis einer Genduplikation sein könnten. Während Biglycan an Kollagenfibrillen des Typ I bindet, einer Komponente des Bindegewebes und der extrazellulären Matrix, interagiert Decorin mit Fibronektin, Thrombospontin, dem epidermal growth factor receptor (EGFR) und dem *transforming growth factor beta* (TGF-β) (Hildebrand et al. 1994, Lysiak et al. 1995, Schönherr et al. 1998). Ferner reguliert es maßgeblich die Aktivität des Matrixassoziierten Wachstumsfaktors FGF-2. Decorin inhibiert die Angiogenese und interagiert dabei hochspeziell mit VEGFR2 (vascular endothelial growth factor receptor 2) (Järveläinen et al. 2015), was auch zu steigenden Expressionen des Tumorsuppressor-Gens PEG3 führt (Buraschi et al. 2013, Neill et al. 2013). Parathormon steigert die Expression von DCN, das ebenso wie die BMPs zu den Genen der Knochenbildung zählt (Onyia et al. 2005). Es wird in verschiedenen Geweben des cranio-facialen Komplexes hoch exprimiert und führt bei Biglycan- und Decorin-doppelt-defizienten Mäusen zu Hypomineralisationen der Schädelsuturen (Wadhwa et al. 2007). Eine reduzierte Decorinexpression ist mit starker Narben- und Keloidbildung verbunden. Decorin wird nach dem heutigen Stand des Wissens mit der Regulierung des Zellzyklus, der Autophagie von Endothelzellen und Angiogenese assoziiert. Offensichtlich spielt es auch eine wichtige Rolle bei der Zahnbildung, da diese vier Regulierungsprozesse beim komplexen Ablauf der Dentition beteiligt sein müssen.

Das von *PTGER4* (*prostaglandin E receptor 4*) codierte Protein ist einer von vier Prostaglandin-Rezeptoren für das **Prostaglandin E**₂ (PGE₂). Das Gen wird in vielen verschiedenen Geweben, wie Herz, Darm, Lunge, Nieren, Thymus, Uterus, in den dorsalen Ganglien und im Gehirn exprimiert. Das Protein ist hauptsächlich in der *Tunica media* vieler Gefäße, wie Lungenvenen, Aorta, im *Corpus cavernosum* und auch in den Nierenglomeruli zu finden ist. Die Bindung von PGE₂ an den Rezeptor führt zur Relaxation der glatten Muskulatur, wenn sie zuvor aktiviert wurde und zu einer Mobilisierung des G-Proteins. Nach Zerfall des G-Proteins in seine Untereinheiten G α_s und G $\beta\gamma$ aktivieren diese wiederum bestimmte Zellsignalketten. G α_s stimuliert z. B. die Adenylylcyclase, welche die Konzentration des cAMP in der Zelle erhöht, was wiederum die PKA (Proteinkinase A) aktiviert, in deren Folge der Transkriptionsfaktor CREB aktiviert wird. CREB sorgt dann für die Expression von c-fos und Somatostatin, die die zelluläre Proliferation und Differenzierung, sowie die Angiogenese regulieren (Inada et al. 2015, McKinnon und Mellor 2017, Przygrodzka et al. 2016). Über die Aktivierung des G-Proteins wird auch der mTOR-Signalweg aktiviert.

Bei dem Gen *METTL7A* (*methyltransferase like 7A*) wird angenommen, dass es eine Methyltransferase codiert, da es wenig untersucht ist (McKinnon und Mellor 2017). Die Übertragung von Methylgruppen auf DNA dient dazu, Gene abzuschalten bzw. ihr Ablesen von der DNA zu unterbinden (*DNA silencing*), ohne die Sequenz zu verändern (Zhou et al. 2017).

Das am höchsten <u>herunterregulierte</u> Gen der Stro-1^{+ZK} im ODM ist *PODXL* (*podocalyxin-like*). Es codiert ein Protein, das in glomerulären Podozyten, Endothelzellen, Drüsenzellen und im Uterus vornehmlich in den Plasmamembranen, Mikrotubuli oder Vesikeln präsent ist. Eine Inaktivierung des Gens führt zur Anurie und zum perinatalen Tod. Hohe Expressionswerte sind mit einer schlechten Prognose bei Patienten mit Nierenkrebs assoziiert (Doyonnas et al. 2001, Kang et al. 2017).

Das von *IGFBP3* (*insulin-like growth factor binding protein 3*) codierte Protein bindet mit hoher Affinität **IGF1** und **IGF2**. Es ist sowohl intra- als auch extrazellulär vorhanden und das wichtigste Transportprotein für IGF1 und 2 im Blut. In malignen Tumoren sind hohe Konzentrationen von IGFBP3 mit einer schlechten Prognose verbunden (Bao et al. 2016).

4.2.3 Der Einfluss der Medien auf die Genexpression von Stro-1^{+BK}

Die Gene *SAA1*, *BMP6*, *FKBP5* und *MAOA* sind ebenfalls bei den Stro-1^{+BK} unter den zehn höchst signifikant exprimierten Genen zu finden. Das am höchsten exprimierte Gen in den Stro-1^{+BK} ist *SAA1*. Es ist hier um das ca. 20-Fache höher exprimiert als bei den Stro-1^{+ZK}. Auch *BMP6* liegt um das etwa 4-Fache höher exprimiert vor als bei den Stro-1^{+ZK}.

Das Gen *FRZB* (*frizzled-related protein*) wird in Chondrozyten exprimiert und codiert ein Protein, das im Wnt-Signalweg und in der embryonalen Entwicklung bedeutend ist (Hoang et al. 1996, Zorn 1997). Es aktiviert die G-Proteine. Ursprünglich wurde es als chondrogener Faktor bei der Morphogenese von embryonalem Knochen identifiziert (Enomoto-Iwamoto et al. 2002, Lodewyckx et al. 2012) und auch als Marker für MSCs aus der Neuralleiste beschrieben, die das Zahnsäckchen bilden, aus dem die Zahnentwicklung hervorgeht (Sarkar und Sharpe 1999). In Knochenmetastasen von hepatozellulären Karzinomen ist *FRZB* überexprimiert (Huang et al. 2015).

Das Gen *VMO1* (vitelline membrane outer layer 1) codiert ein Protein, das die äußere Schicht der Eimembran, bei Hühnern direkt unter der Eierschale gelegen, bildet, wobei Vitellin neben der mechanischen Schutzfunktion starke antimikrobielle Eigenschaften aufweist (Da Silva et al. 2019, Kido et al. 1995, Shamsi et al. 2011). Vitellin ist nicht nur in Vogeleiern, sondern auch in den Eiern von Parasiten, wie *Ascaris lumbricoides* und vielen Nematoden, nachweisbar (Gerton und Hedrick 1986, Mahmoud und el-Alfy 2003, Ravaglia und Maggese 2003, Shinn et al. 2016). Das menschliche Gen stimmt zu 52,2 % mit dem Gen des Huhnes überein (Guyot et al. 2016). Das entsprechende Protein wurde bei Menschen, Schafen, Kühen und Kamelen in der Tränenflüssigkeit nachgewiesen (Shamsi et al. 2011). Über die Funktion und Bedeutung dieses Gens in mesenchymalen Stammoder Progenitorzellen liegen bislang keine Erkenntnisse vor.

Das durch *IMPA2* (*inositol(myo)-1(or4)-monophosphatase 2*) codierte Gen spaltet Phosphat von Myo-Inositol-Monophosphat und wird in der Literatur im Zusammenhang mit manisch-depressiven Erkrankungen erwähnt (Arai et al. 2007, Kato 2007, Tomioka et al. 2018). Im Zusammenhang mit MSCs findet sich in der Literatur keine Erwähnung.

Das Gen *EEF1A2* (*eukaryotic translation elongation factor 1 alpha 2*) codiert die Isoform der alpha-2-Untereinheit des *elongation factor-1 complex*, die maßgeblich am Transport der tRNA zu den Ribosomen während der Proteinsynthese beteiligt ist. Alpha 2 wird in den Zellen des zentralen Nervensystem, Herz- und Skelettmuskeln exprimiert, während alpha 1 neben dem Gehirn auch in Plazenta, Lunge, Leber, Pankreas und Niere vorkommt (Newbery et al. 2007). Das Gen ist in Prostatakarzinomen überexprimiert (Worst et al. 2017). Es findet sich eine Publikation, die bei zwei Patienten einen Zusammenhang zwischen *EEF1A2*-Mutationen und neurologischen Erkrankungen kombiniert mit Fehlbildungen im Lippenbereich beschreibt (Nakajima et al. 2015).

Das Gen *AOX1* (*aldehyde oxidase 1*) codiert ein Enzym, das den Abbau von Aldehyden katalysiert. Es ist homolog zur Xanthindehydrogenase. Das Enzym ist im Zytosol von Leber-, Lungen-, Fett- und Skelettmuskelzellen lokalisiert (Kurosaki et al. 2013). Es ist von großer Wichtigkeit für die Funktion der Adipozyten, da es die Ausschüttung von Adiponektin regelt. In Leberzellen bewirkt Adiponektin die Herunterregulierung von AOX1, wodurch die Fettausschüttung aus den Zellen reduziert wird (Weigert et al. 2008).

Die am höchsten <u>herunterregulierten</u> Gene der Stro-1^{+BK} sind ebenfalls in Tabelle 3 aufgeführt. Dazu gehört das Gen *GPR68* (*G protein-coupled receptor 68*). Es codiert einen G-Protein vernetzten Rezeptor, der pH-empfindlich agiert. Er ist physiologisch im leicht sauren Bereich bei pH 6,8 aktiv und wird im basischen Bereich ab pH 7,8 inaktiv (Weiß et al. 2017). Mutationen des Gens bewirken die *Amelogenesis imperfecta* (Parry et al. 2016). Es ist vermutlich auch in Osteoblasten aktiv und vermittelt in Verbindung mit den G-Proteinen die Kalziummobilisation sowie die Inositolphosphat-Produktion. Eine weitere Funktion ist die eines Suppressor-Gens beim Prostatakarzinom. Ein wichtiges Paralog von *GPR68* ist das *LPAR5* (Justus et al. 2013, Wiley et al. 2019).

Das Gen *FLG* (*filaggrin*) codiert die Proteingruppe der **Filaggrine**, die in Keratinozyten gebildet werden, welche die Verhornung der Haut bewirken und somit strukturbildende Funktionen für die Epidermis haben. Hierbei dient ionisiertes Kalzium als Kofaktor. Mutationen führen zur erblichen Form der *Ichthyosis vulgaris* oder zur atopischen Dermatitis in Verbindung mit Allergien (Cabanillas und Novak 2016, Elmose und Thomsen 2015, Emons und Gerth van Wijk 2018, Kezic und Jakasa 2016). Für den physiologisch niedrigen, bakteriziden pH-Wert des *Stratum corneum* wird u. a. die Degradation der Filaggrine verantwortlich gemacht (Proksch 2018). Die starke Herunterregulierung dieses Gens ist plausibel, da seine Funktionen weder bei den mesenchymalen Zellen der Zahnkeime noch

Beckenkammzellen benötigt wird. Überraschend ist jedoch, dass Eigenschaften ektodermaler Zellen auch in mesenchymalen Zellen geregelt werden.

4.2.3.1 Funktionelle Genanalyse der Stro-1^{+ZK} und Stro-1^{+BK}

Während im DMEM gegenüber dem ODM bei den Stro-1^{+ZK} funktionelle Gruppen der Zellmigration, Muskelzelldifferenzierung sowie Zelladhäsion im Vordergrund stehen, finden sich bei den Stro-1^{+BK} gehäuft Gengruppen, die in Verbindung mit der Angiogenese stehen. Im ODM tritt ein Wechsel der Genexpression ein, bei der Gruppen der Antwort auf Wundheilung und Entzündung überrepräsentiert sind. Es ist hinlänglich bekannt, dass Wundheilung und Entzündung ähnliche Reaktionen auslösen und identische pathophysiologische Abläufe aufweisen können. Dass der Mineralisationsprozess eventuell auch in diesen funktionellen Formenkreis passt, ist bislang weniger bekannt. Es wurde allerdings beschrieben, dass die Zytokine IL-1 β und TNF- α in Kulturen von MSCs aus humanem Beckenkamm eine starke Mineralisation bewirken können (Ferreira et al. 2013).

Auffällig ist, dass das Gen *IGF2* bei den Stro-1^{+ZK} in acht der ersten zehn im ODM signifikant hochregulierten funktionellen Gruppen dominiert und somit offensichtlich eine zentrale Rolle spielt, während im Milieu des DMEM die Gene seiner Bindungsproteine IGFBP3 und 5 am häufigsten erscheinen (Tabelle A-6 im Anhang). **IGF2** besitzt eine strukturelle Ähnlichkeit mit Insulin. Es wird vermutet, dass es ein wichtiger fetaler Wachstumsfaktor ist, der seine Wirkung vornehmlich während der Schwangerschaft entfaltet. **IGF1** wird dagegen eine hauptsächliche Wirkungsentfaltung im Erwachsenen zugeschrieben (Barroca et al. 2017). Beide weisen insulinähnliche, wachstumsfördernde und mitogene Eigenschaften auf (Frasca et al. 1999). IGF2 bindet an den IGF1-Rezeptor oder die kurze Isoform des Insulin-Rezeptors (IR-A). Bei Bindung an den IGF2-Rezeptor bleibt IGF2 wirkungslos. Es konnte ferner gezeigt werden, dass IGF2 die Überlebensrate von neuen Hippocampusneuronen unterstützt und daher möglicherweise anxiolytische Wirkung bei exzessiven Angstneurosen besitzen könnte (Barroca et al. 2017).

Im DMEM dominieren funktionelle Gruppen, in denen nicht *IGF2*, sondern die Gene für seine Bindungsproteine 3 und 5 am häufigsten vertreten sind. Im Blut und in der extrazellulären Flüssigkeit sind die IGF-Proteine instabil und fragmentieren leicht. Die Bindung an ihre Bindungsproteine erhöht ihre Stabilität und stellt daher ihre Transportform im Blut und in den extrazellulären Körperflüssigkeiten dar. Die *IGFBP*s sind evolutionär hoch konservierte Gene, was ihre Bedeutung unterstreicht. Das Gen *IGFBP3* ist verantwortlich für die Translation des gleichnamigen Proteins, das an IGF1 und 2 bindet und für deren Transport verantwortlich ist. Da IGF1 und 2 eine höhere Affinität zu IGFBP3 als zu ihren Rezeptoren haben, kann es deren Bindung an die entsprechenden Rezeptoren blockieren. IGFBP3 interagiert auch mit den Oberflächenrezeptoren von Zellen und kann somit ihre Signalkaskaden blockieren (Bergman et al. 2013).

4.2.4 Differentielle Genexpression der Stro-1^{+ZK} und Stro-1^{+BK} in den Medien

Die Stro-1^{+ZK} und Stro-1^{+BK} haben 224 identische Gene, die beim Wechsel vom DMEM in das ODM gleichsinnig hoch- und herunterreguliert werden. Diese Reaktion ihrer Genexpression auf den Medienwechsel könnte neben der gemeinsamen Expression des Oberflächenmarkers Stro-1 ihre Verwandtschaft dokumentieren. Andererseits verändert der Medienwechsel bei den Stro-1^{+ZK} 456 Gene signifikant, deren identische Partner bei den Stro-1^{+BK} keine signifikante Veränderung erfahren. Umgekehrt zeigen die Stro-1^{+BK} 720 signifikant veränderte Gene, denen bei den Stro-1^{+ZK} keine signifikante Reaktion beim Medienwechsel gegenübersteht. Würde das Verhältnis ihrer Reaktion auf den Medienwechsel im übertragenen Sinne als Verwandtschaftsverhältnis ausgedrückt, so wären beide Zelltypen keine "Geschwister" oder gar "Zwillinge", sondern eher "Halbgeschwister" oder "Verwandte zweiten Grades". Da die Zahnkeimbildung eine Interaktion zwischen Zellen ektodermalen und mesenchymalen Ursprungs darstellt (Gronthos et al. 2000), ist es naheliegend, dass die Stro-1^{+ZK} anders konditioniert sind als die Stro-1^{+BK}. Dies könnte möglicherweise durch eine epithelial-mesenchymale Transition (EMT) während der Zahnkeimentwicklung entstanden sein, wie sie auch bei der Tumorentstehung beschrieben wird (Mimeault und Batra 2011).

Bei den gleichsinnig hochregulierten Genen beider Zelltypen stellen die funktionellen Untergruppen von *cluster* 1 der DAVID-Analyse eine wichtige Gemeinsamkeit dar (Tabelle A-14 im Anhang). Hier finden sich Gengruppen, die mit der Bildung und Aufrechterhaltung der extrazellulären Matrix sowie Adhäsionsmolekülen (*secreted*) in der Plasmamembran von Zellen zusammenhängen, die den Zell-Matrix-Kontakt vermitteln. Unter den Genen von *cluster* 1 befinden sich auch die vier Gene *SAA1*, *BMP6*, *IGFBP2* und *DCN*, die zu den zehn am höchst signifikant exprimierten Genen der Stro-1^{+ZK} gehören. Ferner findet sich hier auch *VMO1*, das bei den Stro-1^{+BK} zu den zehn Genen mit höchster Signifikanz zählt. Die extrazelluläre Matrix (EZM) steht mit den Zellen, die sie bilden und abbauen, in ständiger Wechselwirkung. Die Bindung an die EZM durch Zellrezeptoren und Adhäsionsmoleküle kann die Expression von Genen in den Zellen modifizieren (Halper und Kjaer 2014). Auch können Strukturproteine wie das Decorin in diesem Zusammenhang als Botenstoffe oder Signalmoleküle wirken, so dass Zellmigration, Zelladhäsion und Zellproliferation beeinflusst werden können (Gubbiotti et al. 2016, Hildebrand et al. 1994, Miyachi et al. 2018). Ferner besteht auf diesem Weg die Möglichkeit, den Auf-, Um- und Abbau der EZM zu regulieren. Die EZM ist nicht nur im Knochen oder in den Zähnen als mineralisierte Matrix von Bedeutung, sondern spielt auch bei der Bildung jeglicher Gewebe eine entscheidende Rolle, da sie die Grundsubstanz bildet. So befindet sich beispielsweise das Epithel der Haut auf der Basalmembran, die von der EZM gebildet wird. Der Ab- und Umbau der EZM wird hauptsächlich mithilfe von Matrix-Metalloproteasen vorgenommen (Rodríguez et al. 2010). Zu den gemeinsam überexprimierten Genen beider Zellarten gehört auch *TIMP4* (*tissue inhibitor of metalloproteinase 4*), welches ein Protein codiert, das die Aktivität von Matrix-Metalloproteasen hemmt (Brew und Nagase 2010).

In diesem Zusammenhang erscheint es äußerst interessant, dass die gleichsinnig herunterregulierten Gene beider Zelltypen in *cluster* 1 funktionelle Untergruppen wie *Glycoprotein, Disulfide Bond, Signal, Secreted* und *extracellular region* aufweisen (Tabelle A-15 im Anhang), die im Zusammenhang mit dem Abbau der EZM stehen. Hier sind insbesondere die codierenden Gene der Matrix-Metalloproteasen 1, 2 und 14 (*MMP1, MMP2, MMP14*) zu nennen, die als herunterreguliert aufgeführt werden. Nach der funktionellen Einteilung baut MMP1 Kollagen ab, MMP2 gilt als Gelatinase und MMP14 zählt zu den Membranbezogenen Proteasen (Rodríguez et al. 2010, Van Doren 2015).

Für die einseitig signifikant herunterregulierten Gene der Stro-1^{+BK} finden sich in *cluster* 1 der DAVID-Analyse funktionelle Gruppen, die für die Angiogenese zuständig sind (Abbildung 10). Die Herunterregulierung der Angiogenese wird durch die Herunterregulierung der MMPs unterstützt, da MMP2 und 14 auch die Bildung von Blutgefäßen fördern. Eine wichtige Rolle bei der Angiogenese spielt das bei den Stro-1^{+ZK} hoch exprimierte **Decorin**. Es kann sowohl die Angiogenese fördern als auch hemmenden Einfluss auf sie ausüben (Järveläinen et al. 2015). Das Kernprotein von Decorin stimuliert die Expression von MMP1. MMP1 ist wiederum in der Lage, die Expression von VEGFR2 (*vasculsar endothelial growth factor receptor 2*) über die Aktivierung von PAR1 (*protease-activated receptor 1*) und NF-κB (*nuclear factor κB*) zu initiieren. Interessanterweise zählt das Gen des **NF-κB Inhibitors** (*NFKB1A*) zu den gemeinsam signifikant heraufregulierten Genen

der funktionellen Gruppen *osteoclast differentiation* und *receptor signaling pathway* aus *cluster* 15 (Abbildung 14). Decorin stimuliert ferner die Bildung von MMP2, die das Kollagen IV der Basalmembran degradiert (Schönherr et al. 1998).

Die wichtigsten Adhäsionsproteine, die für die Zelladhäsion an der EZM Bedeutung haben, sind die **Integrine**. Sie bestehen aus Alpha- und Beta-Untereinheiten, die durch Ca⁺⁺ miteinander verbunden sind. Das Gen der Alpha-Untereinheit ist bei den Stro-1^{+BK} heraufreguliert, während es bei den Stro-1^{+ZK} herunterreguliert wird. Da die Gene der Integrine und HOX-Familie auf der gleichen Seite desselben Chromosoms liegen, wird vermutet, dass sie sich während der Evolution parallel entwickelt haben (Wang et al. 1995).

4.2.5 Differentialexpression der Gene von Stro-1^{+ZK} und Stro-1^{+BK} im osteogenen Medium und ihre biologisch-funktionellen Gruppen

Bei dem Vergleich der differentiellen Genexpression im ODM werden im Hinblick auf die funktionellen Gruppen Unterschiede deutlich, die eine Charakterisierung der beiden Zelltypen unabhängig vom Medienwechsel ermöglichen.

Die 109 Gene der Stro-1^{+ZK}, die gegenüber den Stro-1^{+BK} im ODM höchst signifikant hochreguliert werden, gehören insbesondere Gruppen an, die an Zellproliferation, Organentwicklung und Organisation der extrazellulären Matrix beteiligt sind. Der weniger streng gewählte *cut-off* von FDR \leq 5 % ordnet die Genexpression der Stro-1^{+ZK} dagegen in einen größeren Gesamtkontext von höherer biologischer Relevanz ein. Danach sind bei den Stro-1^{+ZK} gegenüber den Stro-1^{+BK} im ODM hauptsächlich Gengruppen überexprimiert, die mit der Zellteilung und ihren Modalitäten im Zellkern und Zytoplasma verbunden sind. Eine hohe Relevanz nimmt auch die wichtige Funktion der DNA-Reparatur in cluster 3 der DAVID-Analyse ein. Im Vergleich dazu sind bei den Stro-1^{+BK} Gene funktioneller Gruppen überexprimiert, die wichtige Proteine der extrazellulären Matrix bilden und die "Bauplan-Gene" (HOX-Gene in *cluster* 2 mit ES = 5,81; Abbildung 23) der Körpersegmente codieren. Unter den ersten zehn höchst signifikant hochregulierten funktionellen Gruppen der Stro-1^{+BK} finden sich Prozesse, die der Organ- und Skelettentwicklung angehören. Unter dem GO-term skeletal system development findet sich HOX-Gene der Cluster A-C, was vermuten lässt, dass den Stro-1^{+BK} eine höhere Bedeutung bezüglich der Strukturgebung von Geweben zukommt als den Stro-1^{+ZK}. Auch die Stro-1^{+ZK} exprimieren einige Homeobox-Gene, wobei Gesamtzusammenhang diese im ihrer in

funktionellen Bedeutung als gering eingestuft werden (*cluster* 126 mit ES = 0,16; Abbildung 20).

Interessant sind dagegen die in den funktionellen Gruppen der Stro-1^{+ZK} hochregulierten Gene GREM1, PTN und FST. GREM1 (gremlin 1) codiert für ein Protein, welches als extrazellulärer Antagonist von BMP 2, 4 und 7 in den TGF_β-Signalweg eingreift. Es spielt eine entscheidende Rolle bei der Organentwicklung, Gewebedifferenzierung, Angiogenese sowie Entstehung von Tumoren (Sneddon et al. 2006). Auch für die Zahnentwicklung konnte anhand genmodifizierter Mäuse nachgewiesen werden, dass eine Überexpression von GREM1 neben der bekannten Verminderung der Knochendichte zu Zähnen mit erweiterten Pulpenkammern und ausgedünntem Hartsubstanzmantel führt (Gazzerro et al. 2005, Nagatomo et al. 2008). PTN (pleiotrophin) codiert für einen Heparin-bindenden Wachstumsfaktor, der Zelldifferenzierung und -migration beeinflusst. Es wird in mesodermalen und extodermalen Zellen exprimiert und ist wesentlich an epithelial-mesenchymalen Interaktionen während der Morphogense beteiligt (Mitsiadis et al. 1995). Da auch die Odontogenese auf derartigen Wechselwirkungen beruht, konnte PTN in den Inzisivi und Molaren von Mäusen nachgewiesen werden, wobei mit zunehmendem Differenzierungsgrad der zahnbildenden Amelo- und Odontoblasten eine verstärkte Expression auftrat (Erlandsen et al. 2012). In PTN-defizienten Mäusen kam es zur Ausbildung von hypomineralisierten Zähnen mit vergrößerten Pulpenkammern (Stidham et al. 2009). Auch das durch FST (follistatin) codierte Glykoprotein hat über die Bindung von Activin einen antagonistisches Effekt auf den TGFβ-Signalweg. Activin tritt während der Zahnentwicklung als wichtiges Signalmolekül im Mesenchym von Zahnkeimen auf (Ferguson et al. 1998). In Versuchen mit FST-Knockout-Mäusen kam es zu fehlerhaften Ausbildungen der Zahnleiste und ihrer Schmelzknoten. Eine Überexpression von FST resultierte dagegen in irregulären Zahnkronen sowie Aplasie aller dritten Molaren (Wang et al. 2004).

Unter den hochregulierten Gruppen der Stro-1^{+BK} gegenüber den Stro-1^{+ZK} im ODM finden sich weiterhin Prozesse der Angiogense, wobei dies nicht im Widerspruch zu den unter 1.2.4 erwähnten Ergebnissen steht. Zwar werden Vorgänge, die sich mit der Gefäßentwicklung befassen, bei den Stro-1^{+BK} beim Wechsel vom DMEM in das ODM herunterreguliert, jedoch nicht in dem Ausmaß, dass sie unter die Expressionswerte der entsprechenden Gene bei den Stro-1^{+ZK} fallen. Im direkten Vergleich beider Zelltypen im ODM wird also deutlich, dass sich die Stro-1^{+BK} tatsächlich eher um ihr extrazelluläres Milieu kümmern, während die Stro-1^{+ZK} in erster Linie zellbezogene Prozesse steuern. Interessant scheint daher ein Überblick, welche Gene beide Zelltypen hinsichtlich der Kollagensynthese im ODM differentiell exprimieren.

Im ODM sind bei den Stro-1^{+ZK} die Gene der Kollagene IV, X, XIII und XVIII (*COL4A5*, *COL10A1*, *COL13A1*, *COL18A1*) überexprimiert. Das Gen *COL4A5* codiert das Kollagen IV mit der alpha-Kette 5, eine der sechs Untereinheiten des Kollagen IV, die als Hauptstruktureinheiten der Basalmembran fungieren und wie Kollagen VIII und X als netzbildende Kollagene bezeichnet werden (Pozzi et al. 2017). Das vom Gen *COL10A1* codierte Kollagen wird auch von Chondroblasten bei der enchondralen Ossifikation gebildet und gilt wie Kollagen VIII als kurzkettiges Kollagen (Hansen et al. 2016). Es erscheint daher eher ungewöhnlich, dass es in den Stro-1^{+ZK} exprimiert wird. Kollagen XIII spielt ebenfalls bei der enchondralen Ossifikation eine Rolle, ist aber auch an der Zell-Matrix-Bindung und der Zelladhäsion beteiligt. Das C-terminale Ende von Kollagen XVIII inhibiert die Angiogenese und sorgt so für eine gefäßfreie Knorpelbildung (Marneros und Olsen 2005, Pufe et al. 2004, Sertié et al. 2000). Es könnte daher vermutet werden, dass für die Stro-1⁺-Zahnkeimzellen das ODM nicht das physiologische Medium darstellt und sie in Richtung der chondralen Ossifikation gedrängt werden, da diese Kollagene bei der Zahnbildung keine Rolle spielen.

Die Stro-1^{+BK} exprimieren mit einem signifikant höheren logFC die Gene der Kollagene *COL4A1, COL4A2, COL6A2, COL11A1* und *COL12A1*. Das Kollagen vom Typ **COL4A2** ist ein integraler Bestandteil der Basalmembran und wirkt inhibierend auf die Zellmigration von Endothelzellen und die Zellproliferation. Des Weiteren induziert es die FAS-abhängige Apoptose und aktiviert die Caspase-Aktivität (Maeshima et al. 2000). Kollagen VI als perlschnurartiges Kollagen ist Bestandteil der extrazellulären Matrix der Skelettmuskeln und verankert die Basalmembran mit dem interstitiellen Gewebe (Endicott et al. 2017). Die autosomal dominanten und rezessiv vererbten Genmutationen sind mit der kongenitalen Ullrich-Muskeldystrophie, der Bethlem-Myopathie oder einer starken Keloid-Bildung nach Hautverletzungen verbunden (Echeverria et al. 2017). Kollagen XII gehört zu den fibrillenassoziierten Kollagenen und ist mit Kollagen XIV in embryonalen Basalmembranen anzutreffen (Thierry et al. 2004).

5 Zusammenfassung

Die Vermutung, dass Zellen auf physiologische Veränderungen ihres Milieus reagieren, ist in vielen Fällen nachgewiesen, jedoch nicht vollständig geklärt, da die einzelnen Zelltypen in einem Gewebeverband oder in der Zellkultur selten isoliert betrachtet werden. Diese Frage ist jedoch für das *tissue engineering* von entscheidender Bedeutung. In der vorliegenden Arbeit sollte daher der Frage nachgegangen werden, ob und wie sich aus Zahnkeimen und Beckenkamm isolierte, Stro-1⁺-Zellen in verschiedenen Medien in ihrer Genexpression unterscheiden.

Dazu wurden die isolierten Zellen in DME-Medium und einem osteogenen Differenzierungsmedium kultiviert. Die Genexpression wurde mithilfe von Microarrays ermittelt. Für jeden Zelltyp wurden in beiden Medien jeweils drei Arrays angelegt, sodass die Auswertung für die Intensitätsdaten der Gene (n = 28.889) als Triplets erfolgte. Nach Normalisierung der Daten wurden aus den Mittelwerten der Intensitäten die log₂FC-Werte und die FDR ermittelt. Anhand dieser beiden Größen wurden unter Abzug noch unbekannter Gene die Daten von 22.454 Genen nach signifikant differentiell exprimierten Genen gefiltert. In einem zweiten, speziellen Filterverfahren wurden alle Gene alphabetisch geordnet und die logFC- und FDR-Werte der Stro-1^{+ZK} und Stro-1^{+BK} jeweils den identischen Genen zugeordnet, um anschließend eine synchrone Filterung beider Zelltypen vornehmen zu können. Dabei ergaben sich für beide Zellarten signifikante Werte, die jedoch zahlenmäßig und bei vielen Genen nicht mit der jeweils anderen Zellart übereinstimmten. Abschließend erfolgte eine Betrachtung des differentiellen Expressionsprofils von Stro-1^{+ZK} und Stro-1^{+BK} im osteogenen Differenzierungsmedium, um beide Zelltypen direkt miteinander vergleichen zu können. Die anhand dieser Methodik gewonnenen Daten wurden mit dem Software-Programm DAVID analysiert oder durch Einzelbeobachtung beschrieben.

Dabei wurden als wesentliche Ergebnisse folgende Erkenntnisse gewonnen:

Bei einem Wechsel vom DMEM in das osteogene Medium werden bei den Stro-1^{+BK} erheblich mehr Gene signifikant verändert als bei den Stro-1^{+ZK} (Verhältnis ZK : BK = 2 : 3). Dabei werden die Gene der Stro-1^{+ZK} zu einem höheren Anteil im ODM herunterreguliert, während bei den Stro-1^{+BK} größtenteils eine Heraufregulation erfolgt. Insgesamt werden in den Stro-1^{+ZK} weniger Gene signifikant verändert als in den Stro-1^{+BK}, d. h. die Stro-1⁺-Beckenkammzellen werden durch das osteogene Differenzierungsmedium stärker stimuliert als die Stro-1⁺-Zahnkeimzellen. Zusätzlich fällt die

Intensität der Genexpression bei den Stro-1^{+BK} wesentlich höher aus als bei den Stro-1^{+ZK}. Der logFC-Median der zehn höchst signifikant hochregulierten Gene beträgt bei den Stro-1^{+ZK} 3,54 und bei den Stro-1^{+BK} 4,29, während die Mediane der zehn höchst signifikant herunterregulierten Gene jeweils -3,65 und -3,30 betragen. Die Gene der Stro-1^{+ZK} werden also stärker herunter- und die der Stro-1^{+BK} stärker heraufreguliert. Für beide Zelltypen fanden sich unter den zehn im ODM gegenüber dem DMEM höchst signifikant hochregulierten Genen die vier identischen Gene *SAA1*, *BMP6*, *FKBP5* und *MAOA*. Die funktionelle DAVID-Analyse zeigte für die Stro-1^{+ZK} und Stro-1^{+BK} beim Wechsel in das ODM eine Überrepräsentierung von biologischen Prozessen, die mit der Antwort auf Wundheilung und Entzündung zusammenhängen.

Durch die zweite, synchrone Filterung aller Gene beider Zelltypen nach alphabetischer Sortierung konnten bei einem *cut-off* der FDR ≤ 5 % für die Stro-1^{+ZK} 696 Gene mit signifikant veränderten logFC-Werten beim Wechsel vom DMEM in das ODM detektiert werden. Von diesen zeigten 456 Gene bei den Stro-1^{+BK} keine signifikante Veränderung. Die Stro-1^{+BK} wiesen 960 Gene mit signifikanten logFC-Werten auf, von denen 720 Gene bei den Stro-1^{+ZK} <u>nicht</u> signifikant verändert wurden. Dagegen existierten für beide Zelltypen 130 identische Gene, die gleichsinnig signifikant herauf-, und 94 identische Gene, die gleichsinnig signifikant herunterreguliert wurden. Folglich reagierten 224 Gene für beide Zelltypen gleichartig beim Wechsel vom DMEM in das osteogene Medium. 16 Genpaare verhielten sich gegensätzlich. Davon waren sieben Gene bei den Stro-1^{+ZK} hoch- und den Stro-1^{+BK} herunterreguliert, neun Gene zeigten ein umgekehrtes Verhalten. Sowohl die einseitig bei einem Zelltyp signifikant veränderten Gene als auch die gleich- und gegensinnig veränderten Gene wurden in der funktionellen DAVID-Analyse hauptsächlich Gruppen zugeordnet, die im Zusammenhang mit Zellmembraneigenschaften und der extrazellulären Matrix stehen. Die einseitig signifikant herunterregulierten Gene der Stro-1^{+BK} repräsentieren dagegen auch funktionelle Gruppen, die für die Angiogenese und Bildung von Endothelzellen verantwortlich sind.

Im direkten Vergleich beider Zelltypen im osteogenen Medium werden für die *cut-offs* FDR ≤ 1 % und $|\log FC| > 2$ bei den Stro-1^{+ZK} 109 Gene signifikant gegenüber den Stro-1^{+BK} hochreguliert, während diese mit 266 hochregulierten Genen eine stärkere Beeinflussung der Genexpression zeigen. Bei den zugehörigen funktionellen Gruppen der Stro-1^{+BK} sind vor allem Prozesse der Skelettentwicklung und Organisation der extrazellulären Matrix überrepräsentiert. Hier finden sich HOX-Gene der Cluster A-C, während bei den Stro-1^{+ZK} die für die Odontogenese wichtigen Gene *MSX1*, *DLX1*, *SIX1* und *PAX9* hochreguliert werden. Anhand des weniger streng gefassten *cut-offs* der FDR ≤ 5 % konnte deutlich gemacht werden, dass im Gesamtkontext der Genexpression neben den statistisch hochsignifikanten Gengruppen auch biologische Prozesse relevant sind, die sich mit grundlegenden Zellfunktionen wie Proliferation und Energiestoffwechsel befassen.

Die Ergebnisse der vorliegenden Arbeit zeigen, dass die Stro-1^{+BK} eine stärkere Stimulation in ihrer Genexpression bezogen auf Genanzahl und Intensität durch das osteogene Differenzierungsmedium erfahren. Beide Stammzelltypen reagieren beim Wechsel vom DMEM in das osteogene Medium zwar mit einer Hochregulation ähnlicher Gene und funktioneller Gruppen, im direkten Vergleich miteinander grenzen sich die Stro-1^{+BK} jedoch deutlicher von den Stro-1^{+ZK} als "knochenbildende Zellen" ab.

6 Anhang

Tabelle A-1: Die **84 Gene** der Stro-1⁺-**Beckenkammzellen**, die gegenüber dem **DMEM (BK1)** im **osteogenen Medium (BK2)** hochsignifikant **heraufreguliert** sind. Die Gene sind nach der Höhe der FDR aufsteigend sortiert. Die Auswahlkriterien waren $|\log FC| > 2$ und FDR $\leq 0,01$.

AgilentID	Symbol	Genname	logFC BK2-1	FDR BK2-1
A_24_P335092	SAA1	serum amyloid A1	8,034	6,63E-14
A_23_P19624	BMP6	bone morphogenetic protein 6	5,251	3,81E-12
A_23_P10902	FRZB	frizzled-related protein	4,406	3,81E-12
A_23_P55356	VM01	vitelline membrane outer layer 1 homolog (chicken)	4,586	3,95E-11
A_23_P363778	FRZB	frizzled-related protein	4,352	4,19E-10
A_23_P50081	IMPA2	inositol(myo)-1(or 4)-monophosphatase 2	4,105	4,19E-10
A_23_P83857	MAOA	monoamine oxidase A	3,299	4,19E-10
A_24_P38081	FKBP5	FK506 binding protein 5	4,235	4,68E-10
A_23_P256033	EEF1A2	eukaryotic translation elongation factor 1 alpha 2	3,277	4,68E-10
A_23_P154037	AOX1	aldehyde oxidase 1	3,060	1,63E-09
A_23_P306203	SAA2	serum amyloid A2	5,669	4,82E-09
A_23_P111206	FKBP5	FK506 binding protein 5	3,590	4,83E-09
A_23_P203957	TMTC1	transmembrane and tetratricopeptide repeat containing 1	3,175	4,83E-09
A_24_P296772	PPP1R14A	protein phosphatase 1, regulatory (inhibitor) subunit 14A	4,168	1,02E-08
A_24_P397817	LEP	leptin	3,301	1,13E-08
A_24_P231104	LEPR	leptin receptor	3,745	1,13E-08
A_24_P938352	СРМ	carboxypeptidase M	3,283	1,22E-08
A_23_P216596	SVEP1	sushi, von Willebrand factor type A, EGF and pentraxin domain containing 1	2,922	1,37E-08
A_23_P356004	KCNIP3	Kv channel interacting protein 3, calsenilin	3,167	1,45E-08
A_23_P166376	GGT5	gamma-glutamyltransferase 5	2,885	3,74E-08
A_23_P253692	GPR64	G protein-coupled receptor 64	2,479	3,74E-08
A_23_P104318	DDIT4	DNA-damage-inducible transcript 4	3,528	3,84E-08
A_23_P378416	GPM6B	glycoprotein M6B	3,454	5,64E-08
A_23_P7144	CXCL1	chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity, alpha)	2,306	5,70E-08
A_24_P297182	GGT5	gamma-glutamyltransferase 5	3,511	7,34E-08
A_23_P254741	SOD3	superoxide dismutase 3, extracellular	3,178	8,33E-08
A_23_P162668	СРМ	carboxypeptidase M	3,547	9,89E-08
A_24_P117620	CAMK2N1	calcium/calmodulin-dependent protein kinase II inhibitor 1	2,523	1,08E-07
A_23_P201587	SORT1	sortilin 1	2,492	1,23E-07
A_32_P114284	IKZF2	IKAROS family zinc finger 2 (Helios)	3,008	1,23E-07
A_23_P204937	C13orf15	chromosome 13 open reading frame 15	4,711	1,24E-07
A_32_P154911	PRR15	proline rich 15	3,411	1,25E-07
A_23_P91230	SLPI	secretory leukocyte peptidase inhibitor	2,633	1,44E-07
A_23_P127948	ADM	adrenomedullin	2,989	1,71E-07
A_23_P50946	RAMP1	receptor (G protein-coupled) activity modifying protein 1	2,388	1,88E-07
A_23_P252062	PPARG	peroxisome proliferator-activated receptor gamma	2,088	2,53E-07
A_24_P264943	COMP	cartilage oligomeric matrix protein	2,973	2,77E-07
A_23_P397999	FZD5	frizzled homolog 5 (Drosophila)	2,279	2,77E-07
A_24_P325520	SORT1	sortilin 1	2,822	3,64E-07

AgilentID	Symbol	Genname	logFC BK2-1	FDR BK2-1
A_23_P302005	STON1	stonin 1	2,443	4,12E-07
A_24_P369232	CCDC3	coiled-coil domain containing 3	2,576	4,14E-07
A_23_P27795	SPINT2	serine peptidase inhibitor, Kunitz type, 2	2,376	4,41E-07
A_23_P428129	CDKN1C	cyclin-dependent kinase inhibitor 1C (p57, Kip2)	2,724	4,91E-07
A_32_P2452	TMTC1	transmembrane and tetratricopeptide repeat containing 1	2,429	5,18E-07
A_23_P11806	COL11A1	collagen, type XI, alpha 1	3,372	1,11E-06
A_23_P307544	PLXNA2	plexin A2	2,206	1,11E-06
A_24_P206776	CRYAB	crystallin, alpha B	3,109	1,25E-06
A_23_P89589	PER1	period homolog 1 (Drosophila)	2,042	1,79E-06
A_23_P211207	ADARB1	adenosine deaminase, RNA-specific, B1 (RED1 homolog rat)	2,787	2,76E-06
A_23_P150018	DUSP5	dual specificity phosphatase 5	2,295	2,77E-06
A_24_P220485	OLFML2A	olfactomedin-like 2A	2,832	2,77E-06
A_23_P33326	ADRA1B	adrenergic, alpha-1B-, receptor	3,363	2,97E-06
A_23_P46618	PLXNA2	plexin A2	2,125	3,00E-06
A_23_P31810	CEBPD	CCAAT/enhancer binding protein (C/EBP), delta	2,665	3,03E-06
A_23_P159325	ANGPTL4	angiopoietin-like 4	3,388	3,50E-06
A_23_P214026	FBN2	fibrillin 2	3,082	4,21E-06
A_23_P40847	CHST2	carbohydrate (N-acetylglucosamine-6-O) sulfotransferase 2	2,727	5,57E-06
A_24_P31627	KCNB1	potassium voltage-gated channel, Shab-related subfamily, mem- ber 1	2,146	5,82E-06
A_23_P415021	METTL7A	methyltransferase like 7A	2,559	6,98E-06
A_23_P104804	ZBTB16	zinc finger and BTB domain containing 16	3,247	7,27E-06
A_23_P163087	NID2	nidogen 2 (osteonidogen)	3,344	7,47E-06
A_24_P366526	SYNGR2	synaptogyrin 2	2,084	1,01E-05
A_23_P209167	FSTL3	follistatin-like 3 (secreted glycoprotein)	2,178	1,39E-05
A_23_P90436	COMP	cartilage oligomeric matrix protein	2,971	1,99E-05
A_24_P124349	PDGFD	platelet derived growth factor D	2,197	2,91E-05
A_23_P151710	PTGER2	prostaglandin E receptor 2 (subtype EP2), 53kDa	2,202	3,06E-05
A_23_P81131	CORIN	corin, serine peptidase	2,064	4,40E-05
A_23_P148047	PTGER4	prostaglandin E receptor 4 (subtype EP4)	2,060	6,15E-05
A_23_P319617	CHST7	carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 7	2,013	9,05E-05
A_23_P103232	DUSP23	dual specificity phosphatase 23	2,275	9,05E-05
A_24_P154037	IRS2	insulin receptor substrate 2	2,259	1,08E-04
A_24_P329795	C10orf10	chromosome 10 open reading frame 10	2,203	1,14E-04
A_24_P49199	GLDN	gliomedin	2,009	1,31E-04
A_23_P207507	ABCC3	ATP-binding cassette, sub-family C (CFTR/MRP), member 3	2,076	1,83E-04
A_23_P151426	FOXO1	forkhead box O1	2,562	2,52E-04
A_24_P10137	C13orf15	chromosome 13 open reading frame 15	4,054	2,56E-04
A_23_P150609	IGF2	insulin-like growth factor 2 (somatomedin A)	3,748	2,90E-04
A_23_P371495	TMTC1	transmembrane and tetratricopeptide repeat containing 1	2,533	3,60E-04
A_23_P206707	MT1G	metallothionein 1G	2,148	3,70E-04
A_23_P97700	TXNIP	thioredoxin interacting protein	2,173	4,41E-04
A_24_P53976	GLUL	glutamate-ammonia ligase (glutamine synthetase)	2,072	7,29E-04
A_23_P10127	SFRP1	secreted frizzled-related protein 1	2,057	1,53E-03
A_24_P84279	EBPL	emopamil binding protein-like	2,022	4,08E-03
A_23_P348737	NR2F1	nuclear receptor subfamily 2, group F, member 1	3,075	8,08E-03

AgilentID	Symbol	Genname	logFC BK2-1	FDR BK2-1
A_24_P931443	GPR68	G protein-coupled receptor 68	-4,408	1,42E-10
A_24_P34199	FLG	filaggrin	-4,291	4,68E-10
A_32_P387648	FLG	filaggrin	-4,326	1,58E-09
A_23_P419696	LYPD1	LY6/PLAUR domain containing 1	-3,128	4,17E-09
A_23_P200015	AK5	adenylate kinase 5	-3,330	4,82E-09
A_23_P107351	NLRP1	NLR family, pyrin domain containing 1	-3,202	6,16E-09
A_23_P205959	ALDH1A3	aldehyde dehydrogenase 1 family, member A3	-3,266	1,37E-08
A_23_P66798	KRT19	keratin 19	-3,073	1,77E-08
A_23_P317620	ARL4C	ADP-ribosylation factor-like 4C	-3,754	2,67E-08
A_23_P315815	NRG1	neuregulin 1	-2,153	3,74E-08
A_23_P360777	NRG1	neuregulin 1	-2,982	4,93E-08
A_24_P288890	FAM101A	family with sequence similarity 101, member A	-2,392	1,09E-07
A_23_P67529	KCNN4	potassium intermediate/small conductance calcium-activated channel, subfamily N, member 4	-2,167	1,23E-07
A_23_P202269	ANK3	ankyrin 3, node of Ranvier (ankyrin G)	-2,909	1,24E-07
A_23_P1691	MMP1	matrix metallopeptidase 1 (interstitial collagenase)	-2,941	1,25E-07
A_23_P320054	WNT7B	wingless-type MMTV integration site family, member 7B	-2,253	1,71E-07
A_23_P108842	DUSP2	dual specificity phosphatase 2	-2,272	2,09E-07
A_23_P40415	ADAMTS5	ADAM metallopeptidase with thrombospondin type 1 motif, 5	-3,335	2,13E-07
A_24_P205994	EPGN	epithelial mitogen homolog (mouse)	-2,057	3,26E-07
A_23_P110531	FST	follistatin	-3,134	4,41E-07
A_23_P16523	GDF15	growth differentiation factor 15	-2,597	4,46E-07
A_23_P122924	INHBA	inhibin, beta A	-3,072	4,91E-07
A_32_P164246	FOXQ1	forkhead box Q1	-2,365	6,32E-07
A_32_P24382	KRTAP2-4	keratin associated protein 2-4	-2,412	7,76E-07
A_23_P219197	RGS3	regulator of G-protein signaling 3	-2,623	9,14E-07
A_23_P42257	IER3	immediate early response 3	-2,613	1,19E-06
A_23_P156970	MEST	mesoderm specific transcript homolog (mouse)	-2,690	1,34E-06
A_23_P141624	KRTAP1-1	keratin associated protein 1-1	-2,513	1,87E-06
A_24_P827037	LRRC15	leucine rich repeat containing 15	-2,388	2,08E-06
A_32_P200697	FAM101A	family with sequence similarity 101, member A	-3,372	2,59E-06
A_23_P120883	HMOX1	heme oxygenase (decycling) 1	-2,054	3,88E-06
A_23_P218928	C4orf18	chromosome 4 open reading frame 18	-2,433	4,07E-06
A_23_P251075	MAMLD1	mastermind-like domain containing 1	-2,537	6,03E-06
A_23_P301530	ANK3	ankyrin 3, node of Ranvier (ankyrin G)	-2,996	7,27E-06
A_23_P216167	PSD3	pleckstrin and Sec7 domain containing 3	-2,322	7,39E-06
A_23_P87150	LPXN	leupaxin	-2,313	1,00E-05
A_23_P15876	ALPK2	alpha-kinase 2	-2,148	1,07E-05
A_23_P99063	LUM	lumican	-2,293	1,31E-05
A_24_P275073	ADAMTS14	ADAM metallopeptidase with thrombospondin type 1 motif, 14	-2,378	1,38E-05
A_23_P148990	HMCN1	hemicentin 1	-2,166	1,84E-05
A_24_P122137	LIF	leukemia inhibitory factor (cholinergic differentiation factor)	-2,020	2,18E-05
A_24_P302584	SOX11	SRY (sex determining region Y)-box 11	-2,049	2,70E-05
A_32_P101031	LYPD1	LY6/PLAUR domain containing 1	-5,025	3,50E-05
A_32_P24376	KRTAP2-4	keratin associated protein 2-4	-2,292	3,71E-05

Tabelle A-2: Die 66 Gene der Stro-1⁺-Beckenkammzellen, die gegenüber dem DMEM (BK1) im osteogenen Medium (BK2) hochsignifikant herunterreguliert sind. Die Gene sind nach der Höhe der FDR aufsteigend sortiert. Die Auswahlkriterien waren |logFC| > 2 und FDR $\leq 0,01$.

AgilentID	Symbol	Genname	logFC BK2-1	FDR BK2-1
A_23_P90626	CYTIP	cytohesin 1 interacting protein	-2,384	3,89E-05
A_23_P202448	CXCL12	chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1)	-2,132	3,93E-05
A_23_P58796	RGMB	RGM domain family, member B	-2,462	3,93E-05
A_24_P137434	DCBLD2	discoidin, CUB and LCCL domain containing 2	-2,311	3,95E-05
A_24_P245379	SERPINB2	serpin peptidase inhibitor, clade B (ovalbumin), member 2	-2,085	6,13E-05
A_23_P10206	HAS2	hyaluronan synthase 2	-2,210	6,15E-05
A_23_P71037	IL6	interleukin 6 (interferon, beta 2)	-2,272	6,69E-05
A_23_P75310	ARHGAP22	Rho GTPase activating protein 22	-2,053	7,17E-05
A_24_P354689	SPOCK1	sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 1	-2,021	7,30E-05
A_23_P24104	PLAU	plasminogen activator, urokinase	-2,267	8,07E-05
A_24_P298224	NAP5	Nck-associated protein 5	-2,022	8,66E-05
A_23_P384044	CNIH3	cornichon homolog 3 (Drosophila)	-2,079	9,67E-05
A_23_P202327	ADAM12	ADAM metallopeptidase domain 12	-2,400	1,73E-04
A_32_P185140	TPM1	tropomyosin 1 (alpha)	-2,155	2,42E-04
A_24_P362931	SLC4A7	solute carrier family 4, sodium bicarbonate cotransporter, mem- ber 7	-2,272	2,69E-04
A_24_P254789	COL14A1	collagen, type XIV, alpha 1	-2,171	2,96E-04
A_23_P84063	NTM	neurotrimin	-2,011	3,54E-04
A_23_P211926	WNT5A	wingless-type MMTV integration site family, member 5A	-2,061	3,63E-04
A_23_P70398	VEGFA	vascular endothelial growth factor A	-2,052	4,15E-04
A_24_P12401	VEGFA	vascular endothelial growth factor A	-2,057	5,01E-03
A_23_P417918	PENK	proenkephalin	-2,375	5,12E-03
A_23_P372234	CA12	carbonic anhydrase XII	-2,262	5,23E-03

Tabelle A-3: Die 60 Gene der Stro-1 ⁺ -Zahnkeimzellen, die gegenüber dem DMEM (ZK1) im osteo-
genen Medium (ZK2) hochsignifikant heraufreguliert sind. Die Gene sind nach der Höhe der FDR
aufsteigend sortiert. Die Auswahlkriterien waren logFC > 2 und FDR ≤ 0,01.

AgilentID	Symbol	Genname	logFC ZK2-1	FDR ZK2-1
A_23_P104318	DDIT4	DNA-damage-inducible transcript 4	4,507	3,31E-09
A_24_P335092	SAA1	serum amyloid A1	3,692	5,72E-09
A_23_P119943	IGFBP2	insulin-like growth factor binding protein 2, 36kDa	3,228	6,33E-09
A_23_P19624	BMP6	bone morphogenetic protein 6	3,115	8,66E-09
A_23_P121064	РТХЗ	pentraxin-related gene, rapidly induced by IL-1 beta	3,741	2,99E-08
A_24_P38081	FKBP5	FK506 binding protein 5	3,267	2,99E-08
A_23_P83857	MAOA	monoamine oxidase A	2,491	2,99E-08
A_23_P64873	DCN	decorin	4,260	5,47E-08
A_23_P148047	PTGER4	prostaglandin E receptor 4 (subtype EP4)	3,483	1,37E-07
A_23_P415021	METTL7A	methyltransferase like 7A	3,598	1,39E-07
A_23_P31810	CEBPD	CCAAT/enhancer binding protein (C/EBP), delta	3,522	1,39E-07
A_23_P337262	APCDD1	adenomatosis polyposis coli down-regulated 1	2,947	2,01E-07
A_23_P19894	AQP1	aquaporin 1 (Colton blood group)	3,391	2,24E-07
A_23_P372834	AQP1	aquaporin 1 (Colton blood group)	3,893	2,24E-07
A_24_P260101	MME	membrane metallo-endopeptidase	2,900	2,48E-07
A_23_P94397	OMD	osteomodulin	2,380	4,47E-07
A_23_P154037	AOX1	aldehyde oxidase 1	2,072	5,00E-07
A_24_P131622	FAM107A	family with sequence similarity 107, member A	2,283	5,15E-07
A_23_P39237	ZFP36	zinc finger protein 36, C3H type, homolog (mouse)	2,147	8,80E-07
A_23_P111206	FKBP5	FK506 binding protein 5	2,455	1,24E-06
A_23_P18372	B3GNT5	UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 5	2,201	1,44E-06
A_23_P415401	KLF9	Kruppel-like factor 9	2,963	1,48E-06
A_24_P289471	RNASET2	ribonuclease T2	2,137	1,48E-06
A_24_P64167	PTGS1	prostaglandin-endoperoxide synthase 1 (prostaglandin G/H syn- thase and cyclooxygenase)	2,367	1,69E-06
A_23_P128974	BATF	basic leucine zipper transcription factor, ATF-like	3,164	1,82E-06
A_23_P69497	CLEC3B	C-type lectin domain family 3, member B	2,981	2,13E-06
A_23_P89589	PER1	period homolog 1 (Drosophila)	2,066	2,38E-06
A_23_P216630	SLC44A1	solute carrier family 44, member 1	2,140	2,75E-06
A_23_P50946	RAMP1	receptor (G protein-coupled) activity modifying protein 1	2,031	2,81E-06
A_23_P151710	PTGER2	prostaglandin E receptor 2 (subtype EP2), 53kDa	2,694	3,79E-06
A_24_P231104	LEPR	leptin receptor	2,380	7,33E-06
A_23_P214026	FBN2	fibrillin 2	3,083	7,41E-06
A_23_P216966	PTGS1	prostaglandin-endoperoxide synthase 1 (prostaglandin G/H syn- thase and cyclooxygenase)	3,095	8,50E-06
A_23_P335920	RPS6KA2	ribosomal protein S6 kinase, 90kDa, polypeptide 2	2,238	9,96E-06
A_23_P33326	ADRA1B	adrenergic, alpha-1B-, receptor	3,000	2,11E-05
A_24_P734953	TRNP1	TMF1-regulated nuclear protein 1	2,056	2,34E-05
A_23_P89431	CCL2	chemokine (C-C motif) ligand 2	2,221	3,60E-05
A_24_P48204	SECTM1	secreted and transmembrane 1	2,613	4,03E-05
A_23_P354694	WISP1	WNT1 inducible signaling pathway protein 1	2,259	4,64E-05
A_24_P360269	RNASET2	ribonuclease T2	2,511	5,17E-05
A_24_P53976	GLUL	glutamate-ammonia ligase (glutamine synthetase)	2,640	7,08E-05
A_23_P40880	CMTM8	CKLF-like MARVEL transmembrane domain containing 8	2,675	1,00E-04
A_23_P2705	P2RY5	purinergic receptor P2Y, G-protein coupled, 5	2,312	1,14E-04

AgilentID	Symbol	Genname	logFC ZK2-1	FDR ZK2-1
A_23_P215566	AHR	aryl hydrocarbon receptor	2,085	1,72E-04
A_23_P31064	MOXD1	monooxygenase, DBH-like 1	2,126	1,99E-04
A_23_P212061	MME	membrane metallo-endopeptidase	2,214	2,00E-04
A_23_P209625	CYP1B1	cytochrome P450, family 1, subfamily B, polypeptide 1	2,675	2,19E-04
A_23_P398294	HIP1R	huntingtin interacting protein 1 related	2,117	3,05E-04
A_23_P433016	FBLN1	fibulin 1	2,073	3,64E-04
A_23_P9232	GCNT1	glucosaminyl (N-acetyl) transferase 1, core 2 (beta-1,6-N- acetylglucosaminyltransferase)	2,033	4,27E-04
A_23_P69030	COL8A1	collagen, type VIII, alpha 1	2,575	6,84E-04
A_23_P163087	NID2	nidogen 2 (osteonidogen)	2,342	7,20E-04
A_23_P136347	EPS8	epidermal growth factor receptor pathway substrate 8	2,356	8,05E-04
A_23_P501007	EFEMP1	EGF-containing fibulin-like extracellular matrix protein 1	2,278	1,38E-03
A_23_P72737	IFITM1	interferon induced transmembrane protein 1 (9-27)	2,137	2,00E-03
A_23_P17095	TFPI	tissue factor pathway inhibitor (lipoprotein-associated coagula- tion inhibitor)	2,759	2,49E-03
A_32_P138348	LY6K	lymphocyte antigen 6 complex, locus K	2,145	2,90E-03
A_23_P82868	PLAT	plasminogen activator, tissue	2,168	3,38E-03
A_24_P693986	TRNP1	TMF1-regulated nuclear protein 1	2,470	5,13E-03
A_23_P150609	IGF2	insulin-like growth factor 2 (somatomedin A)	2,827	7,59E-03

Tabelle A-4: Die **52 Gene** der Stro-1⁺-**Zahnkeimzellen**, die gegenüber dem **DMEM (ZK1)** im **osteogenen Medium (ZK2)** hochsignifikant **herunterreguliert** sind. Die Gene sind nach der Höhe der FDR aufsteigend sortiert. Die Auswahlkriterien waren $|\log FC| > 2$ und FDR $\leq 0,01$.

AgilentID	Symbol	Genname	logFC ZK2-1	FDR ZK2-1
A_23_P215060	PODXL	podocalyxin-like	-5,212	2,23E-10
A_23_P315815	NRG1	neuregulin 1	-3,056	1,52E-09
A_23_P215634	IGFBP3	insulin-like growth factor binding protein 3	-4,854	1,78E-09
A_23_P65518	DACT1	dapper, antagonist of beta-catenin, homolog 1 (Xenopus laevis)	-3,922	1,87E-09
A_24_P827037	LRRC15	leucine rich repeat containing 15	-4,167	3,31E-09
A_24_P264832	NEFM	neurofilament, medium polypeptide	-4,333	4,19E-09
A_23_P161698	MMP3	matrix metallopeptidase 3 (stromelysin 1, progelatinase)	-3,384	5,46E-09
A_23_P205894	ACTC1	actin, alpha, cardiac muscle 1	-3,361	2,99E-08
A_23_P125233	CNN1	calponin 1, basic, smooth muscle	-2,953	5,04E-08
A_23_P144843	ESM1	endothelial cell-specific molecule 1	-3,302	6,54E-08
A_23_P40415	ADAMTS5	ADAM metallopeptidase with thrombospondin type 1 motif, 5	-3,757	9,32E-08
A_23_P67169	IL11	interleukin 11	-3,134	1,37E-07
A_23_P14083	AMIGO2	adhesion molecule with Ig-like domain 2	-3,350	2,07E-07
A_23_P138194	NCF2	neutrophil cytosolic factor 2	-2,297	5,22E-07
A_23_P202448	CXCL12	chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1)	-3,063	6,94E-07
A_23_P396858	FZD8	frizzled homolog 8 (Drosophila)	-2,559	7,17E-07
A_23_P136493	NRG1	neuregulin 1	-3,101	9,65E-07
A_32_P24382	KRTAP2-4	keratin associated protein 2-4	-2,455	1,18E-06
A_23_P363344	TPM1	tropomyosin 1 (alpha)	-2,503	1,24E-06
A_32_P24376	KRTAP2-4	keratin associated protein 2-4	-3,078	1,48E-06
A_23_P360777	NRG1	neuregulin 1	-2,381	1,52E-06
A_24_P402510	SAMD11	sterile alpha motif domain containing 11	-2,144	2,18E-06

AgilentID	Symbol	Genname	logFC ZK2-1	FDR ZK2-1
A_23_P168610	TSPAN13	tetraspanin 13	-2,003	2,30E-06
A_23_P374082	ADAM19	ADAM metallopeptidase domain 19 (meltrin beta)	-2,569	2,34E-06
A_23_P57089	PMEPA1	prostate transmembrane protein, androgen induced 1	-2,189	5,27E-06
A_23_P100754	SMURF2	SMAD specific E3 ubiquitin protein ligase 2	-2,015	8,33E-06
A_23_P1691	MMP1	matrix metallopeptidase 1 (interstitial collagenase)	-2,233	8,50E-06
A_23_P122216	LOX	lysyl oxidase	-2,133	1,38E-05
A_23_P157865	TNC	tenascin C	-2,279	1,43E-05
A_24_P320699	IGFBP3	insulin-like growth factor binding protein 3	-3,595	1,89E-05
A_23_P210176	ITGA6	integrin, alpha 6	-2,463	2,19E-05
A_23_P101054	KRT34	keratin 34	-2,491	2,56E-05
A_32_P300427	APCDD1L	adenomatosis polyposis coli down-regulated 1-like	-2,065	3,14E-05
A_23_P141802	SERPINB7	serpin peptidase inhibitor, clade B (ovalbumin), member 7	-2,087	3,29E-05
A_32_P34920	FOXD1	forkhead box D1	-2,206	3,67E-05
A_23_P406385	FBXL16	F-box and leucine-rich repeat protein 16	-2,087	4,03E-05
A_23_P110531	FST	follistatin	-2,276	4,47E-05
A_23_P154115	IGFBP5	insulin-like growth factor binding protein 5	-2,061	4,64E-05
A_24_P413126	PMEPA1	prostate transmembrane protein, androgen induced 1	-2,428	6,08E-05
A_23_P214821	EDN1	endothelin 1	-2,054	6,91E-05
A_23_P87700	MFAP5	microfibrillar associated protein 5	-2,115	7,28E-05
A_24_P664891	COX6A1	cytochrome c oxidase subunit VIa polypeptide 1	-2,387	7,37E-05
A_24_P354689	SPOCK1	sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 1	-2,061	8,51E-05
A_23_P383009	IGFBP5	insulin-like growth factor binding protein 5	-3,072	1,01E-04
A_23_P38106	SPHK1	sphingosine kinase 1	-2,203	1,12E-04
A_23_P58796	RGMB	RGM domain family, member B	-2,276	1,45E-04
A_23_P202327	ADAM12	ADAM metallopeptidase domain 12	-2,246	5,28E-04
A_23_P334870	TMEM217	transmembrane protein 217	-2,431	1,08E-03
A_23_P38732	CDH2	cadherin 2, type 1, N-cadherin (neuronal)	-2,043	1,56E-03
A_24_P412156	CXCL12	chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1)	-2,351	1,77E-03
A_23_P56197	CRLF1	cytokine receptor-like factor 1	-2,116	3,23E-03
A_23_P156327	TGFBI	transforming growth factor, beta-induced, 68kDa	-2,689	6,52E-03

Symbol	Genname
response to	o organic substance (n = 10)
adra1b	adrenergic, alpha-1B-, receptor
aqp1	aquaporin 1 (Colton blood group)
Ccl2	chemokine (C-C motif) ligand 2
CYP1B1	cytochrome P450, family 1, subfamily B, polypep- tide 1
Eps8	epidermal growth factor receptor pathway sub- strate 8
GLUL	glutamate-ammonia ligase (glutamine synthetase)
IGF2	insulin-like growth factor 2 (somatomedin A); insulin; INS-IGF2 readthrough transcript
igfbp2	insulin-like growth factor binding protein 2, 36kDa
LEPR	leptin receptor
Ptgs1	prostaglandin-endoperoxide synthase 1 (prostag- landin G/H synthase and cyclooxygenase)
positive reg	gulation of multicellular organismal process (n = 6)
adra1b	adrenergic, alpha-1B-, receptor
BMP6	bone morphogenetic protein 6
Ccl2	chemokine (C-C motif) ligand 2
IGF2	insulin-like growth factor 2 (somatomedin A);
Ptgs1	prostaglandin-endoperoxide synthase 1 (prostag- landin G/H synthase and cyclooxygenase)
SAA1	serum amyloid A1
response to	o wounding (n = 8)
AOX1	aldehyde oxidase 1
BMP6	bone morphogenetic protein 6
Ccl2	chemokine (C-C motif) ligand 2
IGF2	insulin-like growth factor 2 (somatomedin A); insulin; INS-IGF2 readthrough transcript
Ptx3	pentraxin-related gene, rapidly induced by IL-1 beta
PLAT	plasminogen activator, tissue
SAA1	serum amyloid A1
TFPI	tissue factor pathway inhibitor (lipoprotein- associated coagulation inhibitor)
response to	o endogenous stimulus (n = 7)
adra1b	adrenergic, alpha-1B-, receptor
aqp1	aquaporin 1 (Colton blood group)
Ccl2	chemokine (C-C motif) ligand 2
IGF2	insulin-like growth factor 2 (somatomedin A); insulin; INS-IGF2 readthrough transcript
igfbp2	insulin-like growth factor binding protein 2, 36kDa
LEPR	leptin receptor
	prostaglandin-endoperoxide synthase 1 (prostag-

Tabelle A-5: Gene der ersten zehn im ODM gegenüber dem DMEM signifikant **hochregulierten** funktionellen Gruppen der Stro-1⁺-**Zahnkeimzellen** (siehe Tabelle 4a).

Symbol	Genname
response to	o steroid hormone stimulus (n = 5)
aqp1	aquaporin 1 (Colton blood group)
Ccl2	chemokine (C-C motif) ligand 2
igfbp2	insulin-like growth factor binding protein 2, 36kDa
LEPR	leptin receptor
Ptgs1	prostaglandin-endoperoxide synthase 1 (prostag- landin G/H synthase and cyclooxygenase)
negative re	gulation of inflammatory response (n = 3)
IGF2	insulin-like growth factor 2 (somatomedin A); insulin; INS-IGF2 readthrough transcript
SAA1	serum amyloid A1
ZFP36	zinc finger protein 36, C3H type, homolog (mouse)
inflammato	ory response (n = 6)
AOX1	aldehyde oxidase 1
BMP6	bone morphogenetic protein 6
Ccl2	chemokine (C-C motif) ligand 2
IGF2	insulin-like growth factor 2 (somatomedin A); insulin; INS-IGF2 readthrough transcript
Ptx3	pentraxin-related gene, rapidly induced by IL-1 beta
SAA1	serum amyloid A1
behavior (r	ı = 7)
CMTM8	CKLF-like MARVEL transmembrane domain con- taining 8
adra1b	adrenergic, alpha-1B-, receptor
Ccl2	chemokine (C-C motif) ligand 2
Eps8	epidermal growth factor receptor pathway sub- strate 8
LEPR	leptin receptor
MAOA	monoamine oxidase A
SAA1	serum amyloid A1
negative re	gulation of glycogen catabolic process (n = 2)
adra1b	adrenergic, alpha-1B-, receptor
IGF2	insulin-like growth factor 2 (somatomedin A);
negative re	gulation of defense response (n = 3)
negative re IGF2	insulin-like growth factor 2 (somatomedin A); insulin-like growth factor 2 (somatomedin A);
negative re IGF2 SAA1	insulin, INS IGI 2 redutiliough transcript gulation of defense response (n = 3) insulin-like growth factor 2 (somatomedin A); insulin; INS-IGF2 readthrough transcript serum amyloid A1

Tabelle A-6: Gene der ersten zehn im ODM gegenüber dem DMEM signifikant **herunterregulierten** funktionellen Gruppen der Stro-1⁺-**Zahnkeimzellen** (siehe Tabelle 4b).

Symbol	Genname	
regulation	of cell migration (n = 6)	
CXCL12	chemokine (C-X-C motif) ligand 12 (stromal cell- derived factor 1)	
EDN1	endothelin 1	
igfbp3	insulin-like growth factor binding protein 3	
IGFBP5	insulin-like growth factor binding protein 5	
SPHK1	sphingosine kinase 1	
TPM1	tropomyosin 1 (alpha)	
striated muscle cell differentiation (n = 5)		
adam12	ADAM metallopeptidase domain 12	
Actc1	actin, alpha, cardiac muscle 1	
NRG1	neuregulin 1	
TNC	tenascin C	
TPM1	tropomyosin 1 (alpha)	
regulation	of locomotion (n = 6)	
CXCL12	chemokine (C-X-C motif) ligand 12 (stromal cell- derived factor 1)	
EDN1	endothelin 1	
igfbp3	insulin-like growth factor binding protein 3	
IGFBP5	insulin-like growth factor binding protein 5	
SPHK1	sphingosine kinase 1	
TPM1	tropomyosin 1 (alpha)	
regulation	of cell motion (n = 6)	
CXCL12	chemokine (C-X-C motif) ligand 12 (stromal cell- derived factor 1)	
EDN1	endothelin 1	
igfbp3	insulin-like growth factor binding protein 3	
IGFBP5	insulin-like growth factor binding protein 5	
SPHK1	sphingosine kinase 1	
TPM1	tropomyosin 1 (alpha)	
striated mu	uscle tissue development (n = 5)	
Actc1	actin, alpha, cardiac muscle 1	
IGFBP5	insulin-like growth factor binding protein 5	
NRG1	neuregulin 1	
TNC	tenascin C	
TPM1	tropomyosin 1 (alpha)	
muscle cell	differentiation (n = 5)	
adam12	ADAM metallopeptidase domain 12	
Actc1	actin, alpha, cardiac muscle 1	
NRG1	neuregulin 1	
TNC	tenascin C	
TPM1	tropomyosin 1 (alpha)	

Symbol	Genname	
muscle tiss	muscle tissue development (n = 5)	
Actc1	actin, alpha, cardiac muscle 1	
IGFBP5	insulin-like growth factor binding protein 5	
NRG1	neuregulin 1	
TNC	tenascin C	
TPM1	tropomyosin 1 (alpha)	
cell adhesion (n = 9)		
adam12	ADAM metallopeptidase domain 12	
rgmb	RGM domain family, member B	
AMIGO2	adhesion molecule with Ig-like domain 2	
CDH2	cadherin 2, type 1, N-cadherin (neuronal)	
CXCL12	chemokine (C-X-C motif) ligand 12 (stromal cell- derived factor 1)	
itga6	integrin, alpha 6	
Spock1	sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 1	
TNC	tenascin C	
tgfbi	transforming growth factor, beta-induced, 68kDa	
negative re	gulation of secretion (n = 4)	
EDN1	endothelin 1	
Fst	follistatin	
IL11	interleukin 11	
NRG1	neuregulin 1	
biological a	idhesion (n = 9)	
adam12	ADAM metallopeptidase domain 12	
rgmb	RGM domain family, member B	
AMIGO2	adhesion molecule with Ig-like domain 2	
CDH2	cadherin 2, type 1, N-cadherin (neuronal)	
CXCL12	chemokine (C-X-C motif) ligand 12 (stromal cell- derived factor 1)	
itga6	integrin, alpha 6	
Spock1	sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 1	
TNC	tenascin C	

Tabelle A-7: Gene der ersten zehn im ODM gegenüber dem DMEM signifikant **hochregulierten** funktionellen Gruppen der Stro-1⁺-**Beckenkammzellen** (siehe Tabelle 5a).

Symbol	Genname	
response to insulin stimulus (n = 7)		
ADM	adrenomedullin	
foxo1	forkhead box O1	
irs2	insulin receptor substrate 2	
IGF2	insulin-like growth factor 2 (somatomedin A); insulin; INS-IGF2 readthrough transcript	
LEP	leptin	
PPARG	peroxisome proliferator-activated receptor gamma	
Sort1	sortilin 1	
response to	o endogenous stimulus (n = 11)	
adra1b	adrenergic, alpha-1B-, receptor	
ADM	adrenomedullin	
CRYAB	crystallin, alpha B	
foxo1	forkhead box O1	
irs2	insulin receptor substrate 2	
IGF2	insulin-like growth factor 2 (somatomedin A); insulin; INS-IGF2 readthrough transcript	
LEP	leptin	
LEPR	leptin receptor	
PPARG	peroxisome proliferator-activated receptor gamma	
Sort1	sortilin 1	
TXNIP	thioredoxin interacting protein	
response to	o hormone stimulus (n = 10)	
ADM	adrenomedullin	
CRYAB	crystallin, alpha B	
foxo1	forkhead box O1	
irs2	insulin receptor substrate 2	
IGF2	insulin-like growth factor 2 (somatomedin A); insulin; INS-IGF2 readthrough transcript	
LEP	leptin	
LEPR	leptin receptor	
PPARG	peroxisome proliferator-activated receptor gamma	
Sort1	sortilin 1	
TXNIP	thioredoxin interacting protein	
response t	o peptide hormone stimulus (n = 7)	
ADM	adrenomedullin	
foxo1	forkhead box O1	
irs2	insulin receptor substrate 2	
IGF2	insulin-like growth factor 2 (somatomedin A); insulin; INS-IGF2 readthrough transcript	
LEP	leptin	
PPARG	peroxisome proliferator-activated receptor gamma	
Sort1	sortilin 1	

Symbol	Genname	
negative regulation of response to external stimulus (n = 5)		
IGF2	insulin-like growth factor 2 (somatomedin A);	
LEP	leptin	
PPARG	peroxisome proliferator-activated receptor gamma	
SAA1	serum amyloid A1	
SAA2	serum amyloid A2	
negative re	negative regulation of inflammatory response (n = 4)	
IGF2	insulin-like growth factor 2 (somatomedin A); insulin; INS-IGF2 readthrough transcript	
PPARG	peroxisome proliferator-activated receptor gamma	
SAA1	serum amyloid A1	
SAA2	serum amyloid A2	
response to	o organic substance (n = 12)	
adra1b	adrenergic, alpha-1B-, receptor	
ADM	adrenomedullin	
CRYAB	crystallin, alpha B	
foxo1	forkhead box O1	
GLUL	glutamate-ammonia ligase (glutamine synthetase)	
irs2	insulin receptor substrate 2	
IGF2	insulin-like growth factor 2 (somatomedin A); insulin; INS-IGF2 readthrough transcript	
LEP	leptin	
LEPR	leptin receptor	
PPARG	peroxisome proliferator-activated receptor gamma	
Sort1	sortilin 1	
TXNIP	thioredoxin interacting protein	
regulation	of glucose metabolic process (n = 4)	
adra1b	adrenergic, alpha-1B-, receptor	
irs2	insulin receptor substrate 2	
IGF2	insulin-like growth factor 2 (somatomedin A); insulin; INS-IGF2 readthrough transcript	
LEP	leptin	
negative re	egulation of defense response (n = 4)	
IGF2	insulin-like growth factor 2 (somatomedin A); insulin; INS-IGF2 readthrough transcript	
PPARG	peroxisome proliferator-activated receptor gamma	
SAA1	serum amyloid A1	
SAA2	serum amyloid A2	
regulation	of cellular carbohydrate metabolic process (n = 4)	
adra1b	adrenergic, alpha-1B-, receptor	
irs2	insulin receptor substrate 2	
IGF2	insulin-like growth factor 2 (somatomedin A); insulin; INS-IGF2 readthrough transcript	
LEP	leptin	

Tabelle A-8: Gene der ersten zehn im ODM gegenüber dem DMEM signifikant herunterregulier-
ten funktionellen Gruppen der Stro-1 ⁺ -Beckenkammzellen (siehe Tabelle 5b).

Symbol	Genname
negative re	gulation of secretion (n = 5)
Fst	follistatin
hmox1	heme oxygenase (decycling) 1
INHBA	inhibin, beta A
LIF	leukemia inhibitory factor (cholinergic differentia- tion factor)
NRG1	neuregulin 1
regulation	of leukocyte migration (n = 4)
CXCL12	chemokine (C-X-C motif) ligand 12 (stromal cell- derived factor 1)
hmox1	heme oxygenase (decycling) 1
IL6	interleukin 6 (interferon, beta 2)
VEGFA	vascular endothelial growth factor A
wound hea	ling (n = 7)
dcbld2	discoidin, CUB and LCCL domain containing 2
hmox1	heme oxygenase (decycling) 1
Hmcn1	hemicentin 1
IL6	interleukin 6 (interferon, beta 2)
NRG1	neuregulin 1
PLAU	plasminogen activator, urokinase
SERPINB2	serpin peptidase inhibitor, clade B (ovalbumin), member 2
regulation	of secretion (n = 7)
Fst	follistatin
hmox1	heme oxygenase (decycling) 1
INHBA	inhibin, beta A
IL6	interleukin 6 (interferon, beta 2)
LIF	leukemia inhibitory factor (cholinergic differentia- tion factor)
NRG1	neuregulin 1
KCNN4	potassium intermediate/small conductance calci- um-activated channel, subfamily N, member 4
angiogenes	sis (n = 6)
ARH- GAP22	Rho GTPase activating protein 22
CXCL12	chemokine (C-X-C motif) ligand 12 (stromal cell- derived factor 1)
EPGN	epithelial mitogen homolog (mouse)
hmox1	heme oxygenase (decycling) 1
PLAU	plasminogen activator, urokinase
VEGFA	vascular endothelial growth factor A

Symbol	Genname		
blood vess	blood vessel morphogenesis (n = 6)		
ARH- GAP22	Rho GTPase activating protein 22		
CXCL12	chemokine (C-X-C motif) ligand 12 (stromal cell- derived factor 1)		
EPGN	epithelial mitogen homolog (mouse)		
hmox1	heme oxygenase (decycling) 1		
PLAU	plasminogen activator, urokinase		
VEGFA	vascular endothelial growth factor A		
positive regulation of leukocyte migration (n = 3)			
CXCL12	chemokine (C-X-C motif) ligand 12 (stromal cell- derived factor 1)		
IL6	interleukin 6 (interferon, beta 2)		
VEGFA	vascular endothelial growth factor A		
negative regulation of transport (n = 5)			
Fst	follistatin		
hmox1	heme oxygenase (decycling) 1		
INHBA	inhibin, beta A		
LIF	leukemia inhibitory factor (cholinergic differentia- tion factor)		
NRG1	neuregulin 1		
blood vess	el development (n = 6)		
ARH- GAP22	Rho GTPase activating protein 22		
CXCL12	chemokine (C-X-C motif) ligand 12 (stromal cell- derived factor 1)		
EPGN	epithelial mitogen homolog (mouse)		
hmox1	heme oxygenase (decycling) 1		
PLAU	plasminogen activator, urokinase		
VEGFA	vascular endothelial growth factor A		
regulation	of cellular localization (n = 6)		
Fst	follistatin		
hmox1	heme oxygenase (decycling) 1		
INHBA	inhibin, beta A		
IL6	interleukin 6 (interferon, beta 2)		
LIF	leukemia inhibitory factor (cholinergic differentia- tion factor)		
KCNN4	potassium intermediate/small conductance calci- um-activated channel, subfamily N, member 4		

Die folgenden Tabellen sind Ergebnisse der Auswertung mit dem DAVID-Programm. Jede Tabelle beinhaltet zwei *screenshots*. Das *Functional Annotation Clustering* zeigt funktionelle Gruppen von Genen (*cluster*) mit mehreren funktionellen, verwandten Untereinheiten (*terms*), die jeweils gleiche Gene beinhalten können. Die zweite *Functional Annotation Chart* bezieht sich auf Gruppen von Genen, die in bestimmten Geweben gehäuft exprimiert werden und dort funktionelle Einheiten bilden.

5615-extracellular space 576-extracellular region Secreted disulfide bond Disulfide bond ite:N-linked (GleNAc...) signal peptide Glycoprotein Signal

Teil aus Darstellungsgründen

gekappt.

GO:0005576-extracellular region Secreted disulfide bond Disulfide bond signal peptide glycosylation site:N-linked (GlcNAc...) Glycoprotein Signal

Abbildung A-2:

Darstellung einer reduzierten Anzahl von Genen der funktionellen Gruppen aus *cluster* 2, die bei den Stro-1⁺-**Beckenkammzellen** signifikant **herunterreguliert** sind und bei den Stro-1⁺-Zahnkeimzellen keine signifikante Veränderung aufzeigen (siehe Tabelle 7). Die funktionellen Gruppen von *cluster* 1 der hoch- und *cluster* 2 der herunterregulierten Gene der Stro-1^{+BK} sind identisch, aber ihre Genzusammensetzung nicht.

97

Tabelle A-9: Funktionelle Gruppen der Gene, die bei den Stro-1⁺-**Zahnkeimzellen** signifikant **hochreguliert** sind und bei den Stro-1⁺-Beckenkammzellen keine signifikante Veränderung aufzeigen (n = 176). In der Tabelle sind von insgesamt 36 *clustern* nur die ersten vier mit den höchsten *enrichment scores* dargestellt.

Annotation Cluster 1	Enrichment Score: 7.64	G		Count	P_Value	Benjamini
UP_KEYWORDS	Glycoprotein	<u>RT</u>		69	6.6E-12	1.5E-9
UP_SEQ_FEATURE	glycosylation site:N-linked (GlcNAc)	RT		62	1.7E-9	1.0E-6
UP_KEYWORDS	Disulfide bond	RT		52	1.8E-8	2.0E-6
UP_SEQ_FEATURE	disulfide bond	RT		45	2.8E-7	8.5E-5
UP_KEYWORDS	Signal	RT		54	1.4E-6	5.2E-5
UP_SEQ_FEATURE	signal peptide	RT		47	2.0E-6	3.0E-4
Annotation Cluster 2	Enrichment Score: 4.82	G		Count	P_Value	Benjamini
UP_KEYWORDS	Membrane	<u>RT</u>		84	4.5E-8	3.5E-6
UP_KEYWORDS	Transmembrane helix	<u>RT</u>		68	2.5E-7	1.4E-5
UP_KEYWORDS	Transmembrane	<u>RT</u>		68	2.8E-7	1.3E-5
UP_SEQ_FEATURE	transmembrane region	<u>RT</u>		62	1.6E-6	3.1E-4
UP_SEQ_FEATURE	topological domain:Cytoplasmic	RT		42	2.8E-4	3.3E-2
GOTERM_CC_DIRECT	integral component of membrane	<u>RT</u>		60	3.0E-4	2.6E-2
GOTERM_CC_DIRECT	integral component of plasma membrane	RT	_	23	1.2E-3	4.9E-2
UP_SEQ_FEATURE	topological domain:Extracellular	RT		32	5.2E-3	3.6E-1
Annotation Cluster 3	Enrichment Score: 2.17	G		Count	P_Value	Benjamini
GOTERM_CC_DIRECT	extracellular matrix	RT	=	9	2.1E-3	7.0E-2
GOTERM_CC_DIRECT	extracellular space	<u>RT</u>		21	3.4E-3	8.1E-2
UP_KEYWORDS	Secreted	<u>RT</u>		24	7.5E-3	1.1E-1
GOTERM_CC_DIRECT	extracellular region	RT		20	3.9E-2	4.2E-1
Annotation Cluster 4	Enrichment Score: 2.11	G		Count	P_Value	Benjamini
GOTERM_BP_DIRECT	collagen catabolic process	RT	=	6	1.4E-4	1.3E-1
UP_KEYWORDS	Hydroxylation	RT	=	6	5.0E-4	1.6E-2
GOTERM_CC_DIRECT	extracellular matrix	RT	=	9	2.1E-3	7.0E-2
GOTERM_BP_DIRECT	collagen fibril organization	RT		4	3.5E-3	3.8E-1

Functional Annotation Clustering

Functional Annotation Chart

<u>Category</u>	¢ <u>Term</u>	¢ RT	Genes	Count	\$ <u>%</u>	P-Value	<u>Benjamini</u>
UP_TISSUE	Colon endothelium	RT	-	6	3,6	2,9E-5	4,1E-3
UP_TISSUE	Placenta	RT		44	26,7	9,6E-3	5,0E-1
UP_TISSUE	Spleen	RT		16	9,7	1,2E-2	4,5E-1
UP_TISSUE	Lung	RT		36	21,8	1,4E-2	4,1E-1

GO:0005576--extracellular region GO:0005615--extracellular space Secreted disulfide bond signal poptide Disulfide bond Disulfide bond diyoosylation site:N-linked (GloNAc...) Glyooprotein

Abbildung A-3:

Heatmap der Gene der funktionellen Gruppen aus *cluster* 1, die bei den Stro-1⁺-**Zahnkeimzellen** signifikant **hochreguliert** sind und bei den Stro-1⁺-Beckenkammzellen keine signifikante Veränderung aufzeigen (siehe Tabelle A-9).

Tabelle A-10: Funktionelle Gruppen der Gene, die bei den Stro-1⁺-**Zahnkeimzellen** signifikant **herunterreguliert** sind und bei den Stro-1⁺-Beckenkammzellen keine signifikante Veränderung aufzeigen (n = 280). In der Tabelle sind von insgesamt 42 *clustern* nur die ersten vier mit den höchsten *enrichment scores* dargestellt.

Annotation Cluster 1	Enrichment Score: 7.61	G		Count	P_Value	Benjamini
UP_KEYWORDS	Glycoprotein	RT		90	2.0E-10	5.2E-8
UP_SEQ_FEATURE	signal peptide	<u>RT</u>		74	5.6E-10	4.9E-7
UP_SEQ_FEATURE	glycosylation site:N-linked (GlcNAc)	RT		83	9.6E-9	4.2E-6
UP_KEYWORDS	Secreted	<u>RT</u>		48	5.8E-8	7.4E-6
UP_KEYWORDS	Signal	<u>RT</u>		78	8.7E-8	7.4E-6
UP_KEYWORDS	Disulfide bond	<u>RT</u>		68	1.3E-7	8.3E-6
UP_SEQ_FEATURE	disulfide bond	<u>RT</u>		57	7.6E-6	1.7E-3
Annotation Cluster 2	Enrichment Score: 5.88	G		Count	P_Value	Benjamini
GOTERM_CC_DIRECT	cell junction	<u>RT</u>	=	21	5.2E-7	6.7E-5
UP_KEYWORDS	Cell junction	<u>RT</u>	=	24	7.5E-7	2.7E-5
UP_KEYWORDS	Synapse	<u>RT</u>	=	16	6.0E-6	1.5E-4
Annotation Cluster 3	Enrichment Score: 5.09	G		Count	P_Value	Benjamini
GOTERM_BP_DIRECT	extracellular matrix organization	<u>RT</u>	=	15	1.3E-7	2.3E-4
UP_KEYWORDS	Extracellular matrix	<u>RT</u>	=	15	6.3E-7	2.7E-5
GOTERM_CC_DIRECT	extracellular matrix	<u>RT</u>	=	14	5.0E-5	3.3E-3
GOTERM_MF_DIRECT	extracellular matrix structural constituent	<u>RT</u>	Ξ	6	1.1E-3	1.5E-1
Annotation Cluster 4	Enrichment Score: 3.52	G		Count	P_Value	Benjamini
UP_KEYWORDS	Immunoglobulin domain	<u>RT</u>	=	21	1.4E-6	4.4E-5
UP_SEQ_FEATURE	domain:Ig-like V-type	<u>RT</u>	=	10	1.1E-5	1.9E-3
INTERPRO	Immunoglobulin subtype	<u>RT</u>	=	18	6.0E-5	2.9E-2
INTERPRO	Immunoglobulin-like fold	RT	—	26	9.0E-5	2.2E-2
UP_SEQ_FEATURE	domain:Ig-like C2-type	RT	=	8	1.4E-4	2.0E-2
INTERPRO	Immunoglobulin subtype 2	RT	=	12	1.5E-4	2.4E-2
UP_SEQ_FEATURE	domain:Ig-like C2-type 1	RT	=	10	3.5E-4	4.3E-2

Functional Annotation Clustering

Functional Annotation Chart

Category	≑ <u>Term</u>	¢ RT	Genes	Count :	<u>%</u>	≑ <u>P-Value</u> ≎	≑ <u>Benjamini</u> ≑
UP_TISSUE	Fetal brain	<u>RT</u>	_	28	10,8	6,6E-6	1,2E-3
UP_TISSUE	Brain	<u>RT</u>		144	55,6	1,0E-5	8,9E-4
UP_TISSUE	Aorta endothelial cell	<u>RT</u>	=	7	2,7	8,1E-4	4,6E-2
UP_TISSUE	Hippocampus	<u>RT</u>	=	15	5,8	3,8E-3	1,6E-1
UP_TISSUE	Tongue	RT	=	13	5,0	1,4E-2	3,9E-1
UP_TISSUE	Leukocyte	<u>RT</u>	a	7	2,7	1,8E-2	4,1E-1
UP_TISSUE	Brain cortex	RT	=	6	2,3	2,7E-2	4,9E-1
UP_TISSUE	Amygdala	<u>RT</u>	=	15	5,8	3,5E-2	5,4E-1
UP_TISSUE	PNS	RT	a	7	2,7	4,7E-2	6,1E-1
UP_TISSUE	Skeletal muscle	<u>RT</u>	=	14	5,4	4,8E-2	5,8E-1
UP_TISSUE	Placenta	RT		58	22,4	6,4E-2	6,5E-1
UP_TISSUE	Peripheral blood	<u>RT</u>	1	5	1,9	9,0E-2	7,5E-1
UP_TISSUE	Plasma	RT	-	8	3,1	1,0E-1	7,6E-1

protocadherin 19(PCDH19) carcinoembryonic antigen related cell adhesion molecule 3(CEACAM3) chromosome 14 open reading frame 37(C14orf37) cadherin 2(CDH2) cadherin 7(CDH7) cadherin 6(CDH6) protein tyrosine phosphatase, receptor type R(PTPRR) MAM domain containing 2(MAMDC2) endothelin 1(EDN1) TIMP metallopeptidase inhibitor 3(TIMP3) C-X-C motif chemokine ligand 12(CXCL12) elastin(ELN) transforming growth factor beta induced(TGFBI) repulsive guidance molecule family member b(RGMB) hyaluronan and proteoglycan link protein 1(HAPLN1) EPH receptor B1(EPHB1) G protein-coupled estrogen receptor 1(GPER1) serpin family E member 1(SERPINE1) fibronectin type III domain containing 1(FNDC1) gamma-aminobutyric acid type B receptor subunit 2(GABBR2) protein tyrosine phosphatase, receptor type N(PTPRN) prostaglandin-endoperoxide synthase 2(PTGS2) lymphocyte antigen 6 complex, locus H(LY6H) semaphorin 7A (John Milton Hagen blood group)(SEMA7A) insulin like growth factor binding protein 5(IGFBP5) microfibrillar associated protein 5(MFAP5) lysyl oxidase(LOX) leucine rich repeat neuronal 2(LRRN2) neurotrophic receptor tyrosine kinase 3(NTRK3) CD274 molecule(CD274) melanoma cell adhesion molecule(MCAM) ADAM metallopeptidase domain 19(ADAM19) LDL receptor related protein 11(LRP11) leucine rich repeat and Ig domain containing 1(LINGO1) integrin subunit alpha 6(ITGA6) frizzled class receptor 1(FZD1) protein tyrosine phosphatase, receptor type D(PTPRD) protein tyrosine phosphatase, receptor type F(PTPRF) thrombospondin 1(THBS1) olfactomedin 1(OLFM1) latent transforming growth factor beta binding protein 2(LTBP2) ADAM metallopeptidase with thrombospondin type 1 motif 1(ADAMTS1) periostin(POSTN) plasminogen activator, urokinase receptor(PLAUR) semaphorin 3D(SEMA3D) MET proto-oncogene, receptor tyrosine kinase(MET) interleukin 13 receptor subunit alpha 2(IL13RA2) programmed cell death 1 ligand 2(PDCD1LG2) cytokine receptor like factor 1(CRLF1) TIMP metallopeptidase inhibitor 1(TIMP1) pregnancy specific beta-1-glycoprotein 8(PSG8) brain derived neurotrophic factor(BDNF) collagen type IV alpha 1 chain(COL4A1) insulin like growth factor binding protein 3(IGFBP3) collagen type IV alpha 2 chain(COL4A2) pregnancy specific beta-1-glycoprotein 9(PSG9) pregnancy specific beta-1-glycoprotein 6(PSG6) pregnancy specific beta-1-glycoprotein 3(PSG3) pregnancy specific beta-1-glycoprotein 2(PSG2) pregnancy specific beta-1-glycoprotein 11(PSG11) slit guidance ligand 2(SLIT2) nerve growth factor(NGF) inhibin beta B subunit(INHBB) glial cell derived neurotrophic factor(GDNF) versican(VCAN) nephroblastoma overexpressed(NOV) matrix metallopeptidase 3(MMP3) neuropilin 2(NRP2) DS cell adhesion molecule(DSCAM) KIT ligand(KITLG)

topological domáin: Cytoplasmic GO:0005576-extracellular region Secreted disulfide bond Disulfide bond signal peptide Signal glycosylation site: N-linked (GlcNAc...)

Abbildung A-4:

Heatmap der Gene der funktionellen Gruppen aus *cluster* 1, die bei den Stro-1⁺-**Zahnkeimzellen** signifikant **herunterreguliert** sind und bei den Stro-1⁺-Beckenkammzellen keine signifikante Veränderung aufzeigen (siehe Tabelle A-10). Die Heatmap wurde im oberen Teil aus Darstellungsgründen gekappt. nuclear receptor interacting protein 1(NRIP1) protein tyrosine phosphatase, receptor type R(PTPRR) formin 1(FMN1) catenin delta 2(CTNND2) nephroblastoma overexpressed(NOV) plasminogen activator, urokinase receptor(PLAUR) NADPH oxidase 4(NOX4) TBC1 domain family member 2(TBC1D2) testin LIM domain protein(TES) desmoplakin(DSP) G protein-coupled estrogen receptor 1(GPER1) cytoplasmic polyadenylation element binding protein 4(CPEB4) syntaxin 1A(STX1A) septin 3(SEPT3) discs large MAGUK scaffold protein 2(DLG2) neuronal calcium sensor 1(NCS1) synuclein alpha(SNCA) protein kinase C and casein kinase substrate in neurons 1(PACSIN1) synapse differentiation inducing 1(SYNDIG1) olfactomedin 1(OLFM1) synapsin II(SYN2) DS cell adhesion molecule(DSCAM) gamma-aminobutyric acid type B receptor subunit 2(GABBR2) dishevelled binding antagonist of beta catenin 1(DACT1) protein tyrosine phosphatase, receptor type N(PTPRN)

Synapse GO:0030054~cell junction Cell junction

Abbildung A-5: Heatmap der Gene der funktionellen Gruppen aus *cluster* 2, die bei den Stro-1⁺-**Zahnkeimzellen** signifikant **herunterreguliert** sind und bei den Stro-1⁺-Beckenkammzellen keine signifikante Veränderung aufzeigen (siehe Tabelle A-10).

apolipoprotein E(APOE) nephroblastoma overexpressed(NOV) desmoplakin(DSP) MAM domain containing 2(MAMDC2) matrix metallopeptidase 3(MMP3) ADAM metallopeptidase with thrombospondin type 1 motif 1(ADAMTS1) lysyl oxidase(LOX) SRY-box 9(SOX9) fibroblast growth factor 2(FGF2) integrin subunit alpha 6(ITGA6) TIMP metallopeptidase inhibitor 3(TIMP3) latent transforming growth factor beta binding protein 2(LTBP2) serpin family E member 1(SERPINE1) thrombospondin 1(THBS1) collagen type X alpha 1 chain(COL10A1) coiled-coil domain containing 80(CCDC80) elastin(ELN) microfibrillar associated protein 5(MFAP5) transforming growth factor beta induced(TGFBI) periostin(POSTN) hyaluronan and proteoglycan link protein 1(HAPLN1) versican(VCAN) collagen type IV alpha 1 chain(COL4A1) collagen type IV alpha 2 chain(COL4A2)

GO: 0005201~extracellular matrix structural constituent GO: 0031012~extracellular matrix Extracellul ar matrix GO: 0030198~extracellul ar matrix organization

Abbildung A-6: Heatmap der Gene der funktionellen Gruppen aus *cluster* 3, die bei den Stro-1⁺-**Zahnkeimzellen** signifikant **herunterreguliert** sind und bei den Stro-1⁺-Beckenkammzellen keine signifikante Veränderung aufzeigen (siehe Tabelle A-10).

Agilent ID	Symbol	logFC BK2-1	FDR BK2-1	logFC ZK2-1	FDR ZK2-1
A_23_P104318	DDIT4	3,528	3,836e-8	4,507	3,310e-9
A_24_P335092	SAA1	8,034	6,634e-14	3,692	5,719e-9
A_23_P119943	IGFBP2	0,825	0,034	3,228	6,331e-9
A_23_P19624	BMP6	5,251	3,809e-12	3,115	8,659e-9
A_23_P83857	MAOA	3,299	4,193e-10	2,491	2,993e-8
A_24_P38081	FKBP5	4,235	4,680e-10	3,267	2,993e-8
A_23_P121064	PTX3	1,863	1,246e-4	3,741	2,993e-8
A_23_P64873	DCN	1,846	9,115e-4	4,260	5,468e-8
A_23_P148047	PTGER4	2,060	6,148e-5	3,483	1,368e-7
A_23_P31810	CEBPD	2,665	3,028e-6	3,522	1,386e-7
A_23_P415021	METTL7A	2,559	6,985e-6	3,598	1,386e-7
A_23_P337262	APCDD1	0,930	0,049	2,947	2,007e-7
A_24_P260101	MME	1,601	2,516e-4	2,900	2,483e-7
A_23_P94397	OMD	1,878	5,349e-6	2,380	4,466e-7
A_23_P154037	AOX1	3,060	1,633e-9	2,072	5,001e-7
A_24_P131622	FAM107A	1,045	3,212e-3	2,283	5,147e-7
A_23_P39237	ZFP36	1,078	1,845e-3	2,147	8,796e-7
A_23_P111206	FKBP5	3,590	4,832e-9	2,455	1,244e-6
A_23_P18372	B3GNT5	1,483	1,139e-4	2,201	1,439e-6
A_23_P415401	KLF9	1,160	0,030	2,963	1,477e-6
A_32_P35512	SSB	1,088	5,643e-4	1,847	1,513e-6
A_23_P128974	BATF	1,373	0,015	3,164	1,824e-6
A_23_P89589	PER1	2,042	1,787e-6	2,066	2,383e-6
A_23_P50946	RAMP1	2,388	1,883e-7	2,031	2,808e-6
A_23_P151710	PTGER2	2,202	3,055e-5	2,694	3,790e-6
A_24_P231104	LEPR	3,745	1,131e-8	2,380	7,332e-6
A_23_P214026	FBN2	3,082	4,206e-6	3,083	7,409e-6
A_23_P55356	VM01	4,586	3,950e-11	1,868	8,498e-6
A_23_P335920	RPS6KA2	1,029	0,028	2,238	9,955e-6
A_23_P33326	ADRA1B	3,363	2,966e-6	3,000	2,108e-5
A_24_P734953	TRNP1	1,457	7,521e-4	2,056	2,339e-5
A_23_P106002	NFKBIA	1,274	2,068e-4	1,542	3,564e-5
A_23_P105794	EPSTI1	0,858	0,021	1,634	3,564e-5
A_24_P921436	FBN2	0,909	5,880e-3	1,463	4,643e-5
A_24_P938352	СРМ	3,283	1,224e-8	1,780	4,926e-5
A_24_P53976	GLUL	2,072	7,290e-4	2,640	7,077e-5
A_23_P203957	TMTC1	3,175	4,832e-9	1,513	9,928e-5
A_23_P40880	CMTM8	1,538	0,022	2,675	1,003e-4
A_24_P16124	IFITM4P	0,801	0,017	1,330	1,187e-4
A_23_P216429	ASPN	1,345	2,125e-4	1,461	1,187e-4
A_23_P109171	BFSP1	0,960	7,673e-3	1,461	1,188e-4
A_23_P254741	SOD3	3,178	8,335e-8	1,794	1,772e-4
A_23_P252062	PPARG	2,088	2,528e-7	1,285	1,880e-4
A_23_P118615	ABCA8	1,590	4,859e-5	1,450	2,131e-4

Tabelle A-11: Gene der Stro-1⁺-Beckenkamm- und -Zahnkeimzellen mit **beidseits signifikanten logFC-Werten**, die **gleichsinnig im ODM heraufreguliert** werden (n = 130). Die Gene sind in der Tabelle alphabetisch aufsteigend nach ihrem Symbol geordnet.

Agilent ID	Symbol	logFC BK2-1	FDR BK2-1	logFC ZK2-1	FDR ZK2-1
A_23_P331670	PYGB	1,730	5,613e-5	1,582	2,316e-4
A_23_P201587	SORT1	2,492	1,227e-7	1,412	2,383e-4
A_23_P13222	RCN1	0,949	7,982e-3	1,368	2,398e-4
A_23_P87545	IFITM3	0,818	0,043	1,429	2,398e-4
A_23_P144476	SPRY1	1,157	7,837e-4	1,331	2,477e-4
 A_23_P302005	STON1	2,443	4,118e-7	1,512	2,577e-4
A 23 P216596	SVEP1	2,922	1,372e-8	1,381	2,809e-4
A 24 P20327	KLF15	1,669	9,673e-5	1,574	2,828e-4
A 23 P356004	KCNIP3	3,167	1,448e-8	1,500	2,911e-4
A 23 P398294	HIP1R	1,352	0,020	2,117	3,046e-4
A 23 P433016	FBLN1	1,640	3,123e-3	2,073	3,644e-4
A 23 P162668	СРМ	3,547	9,887e-8	1,887	3,863e-4
A 23 P145935	EPHB6	1,328	2,368e-4	1,301	4,268e-4
A 24 P325520	SORT1	2,822	3,636e-7	1,633	4,895e-4
A 23 P56578	VIT	1,721	2,758e-5	1,371	5,374e-4
A 23 P40847	CHST2	2,727	5,566e-6	1,906	5,758e-4
A 23 P163087	NID2	3,344	7,474e-6	2,342	7,200e-4
A 23 P77048	SLC25A29	0,748	0,036	1,147	7,914e-4
A 23 P128967	ALDH6A1	0,752	0,032	1,125	8,743e-4
A 23 P47135	NR1H3	0,985	8,000e-3	1,259	8,988e-4
A 23 P76914	SIX1	1,359	6,295e-3	1,690	9,169e-4
A 24 P137522	USP53	1,112	5,068e-3	1,321	1,175e-3
A 23 P120594	ACSS1	1,030	0,017	1,389	1,230e-3
A 23 P150018	DUSP5	2,295	2,767e-6	1,408	1,296e-3
A 23 P106194	FOS	1,553	6,983e-4	1,508	1,355e-3
A_32_P70315	TIMP4	1,660	1,240e-4	1,380	1,363e-3
 A_23_P97700	TXNIP	2,173	4,409e-4	1,983	1,665e-3
A_32_P2452	TMTC1	2,429	5,184e-7	1,283	1,756e-3
A_23_P303671	ECM2	1,096	7,624e-3	1,289	2,004e-3
A_23_P50081	IMPA2	4,105	4,193e-10	1,210	2,044e-3
A_23_P435407	GPC4	1,269	1,159e-3	1,243	2,070e-3
A_23_P81158	ADH1C	1,497	7,290e-4	1,389	2,265e-3
A_23_P116414	PLA2G16	1,362	0,033	1,860	2,295e-3
A_23_P48676	PYGL	0,861	0,015	1,061	2,614e-3
A_23_P138352	WNT2B	1,384	8,071e-5	1,031	2,879e-3
A_24_P154037	IRS2	2,259	1,080e-4	1,724	2,879e-3
A_23_P85682	NFIA	1,140	4,052e-4	0,956	3,638e-3
A_23_P88303	HSPA2	0,940	0,038	1,234	4,138e-3
A_23_P101551	BCAT2	1,027	4,999e-4	0,861	4,405e-3
A_23_P32404	ISG20	1,089	2,574e-3	1,058	4,580e-3
A_24_P406060	RNF144B	1,664	1,519e-6	0,842	5,655e-3
A_32_P157846	DUSP5P	1,349	7,377e-4	1,138	5,892e-3
A_32_P175301	DENND3	1,078	5,418e-4	0,878	6,187e-3
A_23_P325690	ANKRD35	1,409	0,015	1,588	6,310e-3
A_23_P58359	ADH1A	1,363	1,168e-3	1,192	6,377e-3
A_23_P150609	IGF2	3,748	2,897e-4	2,827	7,593e-3
A_23_P113111	AR	1,395	8,444e-5	0,943	7,632e-3

Agilent ID	Symbol	logFC BK2-1	FDR BK2-1	logFC ZK2-1	FDR ZK2-1
A_23_P254507	НОРХ	1,495	3,973e-4	1,153	7,999e-3
A_32_P56661	IGF2	1,191	3,973e-4	0,912	8,692e-3
A_23_P52727	NAV2	1,412	2,501e-4	1,032	9,022e-3
A_23_P307544	PLXNA2	2,206	1,112e-6	1,035	9,464e-3
A_23_P259166	TCEAL4	1,462	9,644e-6	0,802	0,010
A_23_P69908	GLRX	1,532	3,602e-4	1,141	0,010
A_23_P204937	C13orf15	4,711	1,238e-7	1,861	0,010
A_23_P56734	HNMT	0,855	0,042	1,009	0,013
A_23_P306203	SAA2	5,669	4,819e-9	1,668	0,014
A_23_P67864	ADCY3	1,000	0,011	0,999	0,015
A_32_P46214	SLC9A9	1,026	5,013e-3	0,933	0,016
A_24_P329795	C10orf10	2,203	1,139e-4	1,404	0,017
A_23_P161458	OLAH	1,368	5,878e-4	1,008	0,017
A_23_P31873	RAB11FIP1	0,969	7,915e-3	0,905	0,019
A_23_P217688	TSC22D3	1,921	2,832e-5	1,068	0,019
A_32_P83256	IRAK3	1,213	1,731e-4	0,782	0,021
A_23_P134085	CNKSR3	1,795	8,072e-5	1,073	0,023
A_32_P114284	IKZF2	3,008	1,227e-7	1,074	0,025
A_24_P74828	MT1JP	1,083	0,025	1,115	0,025
A_23_P86653	SRGN	1,544	0,012	1,466	0,026
A_23_P31143	TPD52L1	1,104	0,027	1,144	0,026
A_23_P253536	NPR3	1,635	4,859e-5	0,922	0,026
A_24_P372625	RNF141	1,452	2,456e-4	0,927	0,030
A_23_P51339	DNAJB4	1,564	2,778e-4	0,951	0,030
A_23_P57856	BCL6	1,428	4,458e-3	1,195	0,030
A_23_P315364	CXCL2	1,000	1,127e-3	0,736	0,030
A_23_P352402	C10orf47	1,537	6,363e-5	0,869	0,032
A_24_P296772	PPP1R14A	4,168	1,018e-8	1,171	0,036
A_24_P321581	SLC38A4	1,074	0,036	1,103	0,038
A_23_P5405	UBR3	1,214	2,265e-3	0,925	0,038
A_23_P502142	FYN	1,072	1,233e-3	0,770	0,040
A_23_P378416	GPM6B	3,454	5,637e-8	1,094	0,041
A_24_P78590	ELF1	0,836	0,017	0,866	0,041
A_23_P82047	STXBP5	0,815	0,015	0,842	0,042
A_24_P262543	KCNK6	1,411	7,280e-4	0,951	0,044
A_24_P393958	DNAJB4	1,175	3,091e-3	0,961	0,046
A_23_P29784	ARMC8	1,482	5,639e-4	0,965	0,049
A_23_P58676	C5orf23	1,317	0,029	1,274	0,050
A_24_P916965	ITGBL1	1,853	2,435e-5	0,912	0,050

Agilent ID	Symbol	logFC BK2-1	FDR BK2-1	logFC ZK2-1	FDR ZK2-1
A 23 P202327	ADAM12	-2.400	1.731e-4	-2.246	5.276e-4
A 23 P40415	ADAMTS5	-3.335	2.131e-7	-3.757	9.323e-8
A 23 P256158	ADRA2C	-1.164	0.026	-1.638	1.313e-3
A 23 P15876	ALPK2	-2.148	1.070e-5	-1.049	0.032
A 23 P14083	AMIGO2	-1.841	2.169e-4	-3.350	2.072e-7
A 32 P300427	APCDD1L	-1.190	8.218e-3	-2.065	3.138e-5
A 23 P19030	ARSI	-1.274	1.457e-4	-0.820	0.019
A 23 P128744	BDKRB1	-1.545	0.028	-1.777	0.011
A 24 P919850	BDKRB1	-1.530	7.395e-3	-1.834	1.600e-3
A 24 P50228	C11orf87	-1,149	5,660e-3	-1,401	1,018e-3
A 24 P130296	C17orf79	-0,789	0,028	-0,855	0,018
A 23 P410717	C1orf51	-1,063	1,025e-3	-0,913	6,704e-3
A 23 P60227	CCIN	-1,057	3,170e-3	-0,809	0,050
A 23 P24870	CD44	-1,496	3,602e-4	-1,932	2,990e-5
A 23 P215913	CLU	-1,027	0,029	-1,855	9,660e-5
A 23 P106322	CPEB1	-1,730	1,187e-4	-1,286	4,061e-3
A 23 P111888	CTHRC1	-0,746	0,020	-1,411	3,595e-5
A 24 P944054	CXCL12	-1,939	6,927e-5	-1,802	2,383e-4
A 23 P202448	CXCL12	-2,132	3,931e-5	-3,063	6,937e-7
A 23 P65518	DACT1	-1,360	4,946e-4	-3,922	1,867e-9
A 23 P28595	DLX2	-1.198	8.479e-4	-0.855	0.011
A 23 P28598	DLX2	-1,423	7,181e-5	-0,992	8,141e-3
A 24 P45980	DLX2	-1,346	6,097e-5	-1,019	3,823e-3
A 23 P40217	DOK5	-0,710	0,028	-1,495	1,436e-5
A 23 P156880	ENPP1	-1,457	2,422e-4	-1,531	2,021e-4
A 23 P144843	ESM1	-1,021	0,029	-3,302	6,542e-8
A_23_P43273	EXT1	-1,228	0,017	-1,323	0,011
A_23_P62999	EXTL1	-1,056	0,019	-1,108	0,016
A_24_P706340	FAM155A	-1,715	1,541e-4	-1,116	0,018
A_32_P34444	FHOD3	-1,093	8,180e-3	-1,637	1,655e-4
A_32_P387648	FLG	-4,326	1,577e-9	-1,188	5,666e-3
A_24_P34199	FLG	-4,291	4,680e-10	-1,638	4,879e-4
A_32_P34920	FOXD1	-1,440	2,808e-3	-2,206	3,675e-5
A_23_P26037	FRMD5	-1,447	1,224e-3	-1,187	0,012
A_24_P330303	FRMD6	-1,211	0,016	-1,422	4,551e-3
A_23_P110531	FST	-3,134	4,405e-7	-2,276	4,468e-5
A_23_P396858	FZD8	-1,057	0,011	-2,559	7,170e-7
A_23_P257043	GEM	-1,508	4,686e-4	-1,103	0,015
A_24_P931443	GPR68	-4,408	1,419e-10	-0,955	0,019
A_23_P97181	GREM2	-1,624	9,484e-3	-1,936	0,019
A_23_P329822	GREM2	-1,443	1,372e-4	-1,030	6,799e-3
A_23_P37856	HBA1	-1,324	3,820e-4	-1,388	3,258e-4
A_24_P140608	HBEGF	-1,414	2,981e-3	-1,793	3,352e-4
A_23_P148990	HMCN1	-2,166	1,838e-5	-1,205	0,014

Tabelle A-12: Gene der Stro-1⁺-Beckenkamm- und -Zahnkeimzellen mit **beidseits signifikanten logFC-Werten**, die gleichsinnig im ODM herunterreguliert werden (n = 94). Die Gene sind in der Tabelle alphabetisch aufsteigend nach ihrem Symbol geordnet.

Agilent ID	Symbol	logFC BK2-1	FDR BK2-1	logFC ZK2-1	FDR ZK2-1
A_23_P120883	HMOX1	-2,054	3,880e-6	-1,946	1,267e-5
A 23 P66525	HS3ST3A1	-1,211	0,017	-1,136	0,038
A 23 P42257	IER3	-2,613	1,195e-6	-1,456	1,792e-3
A 32 P145502	IGFBP3	-0,926	0,026	-3,595	1,893e-5
A 23 P215634	IGFBP3	-1,450	1,971e-3	-4,854	1,777e-9
A 23 P383009	IGFBP5	-1,937	0,010	-2,061	4,643e-5
A 23 P67169	IL11	-1,970	3,055e-5	-3,134	1,368e-7
A 23 P35444	INA	-1,036	2,090e-3	-0,839	0,021
A 23 P122924	INHBA	-3,072	4,908e-7	-1,529	3,081e-3
A 32 P208076	ITGA2	-1,523	1,607e-3	-1,259	0,014
A 23 P67529	KCNN4	-2,167	1,227e-7	-1,128	6,029e-4
A 23 P48327	KCTD4	-0,993	2,460e-3	-1,118	9,890e-4
A 23 P66798	KRT19	-3,073	1,775e-8	-1,917	1,389e-5
A 23 P101054	KRT34	-1,215	0,032	-2,491	2,558e-5
A 23 P141624	KRTAP1-1	-2,513	1,874e-6	-1,955	6,589e-5
A 32 P24376	KRTAP2-4	-2,292	3,714e-5	-3,078	1,477e-6
A 32 P24382	KRTAP2-4	-2,412	7,756e-7	-2,455	1,175e-6
 A_32_P82462	LOC554202	-1,211	8,588e-4	-1,214	1,230e-3
A_24_P827037	LRRC15	-2,388	2,081e-6	-4,167	3,310e-9
A_23_P419696	LYPD1	-3,128	4,167e-9	-1,033	4,039e-3
A 23 P102681	MGC4294	-1,203	4,796e-4	-0,796	0,038
A_23_P1691	MMP1	-2,941	1,254e-7	-2,233	8,498e-6
A_24_P82106	MMP14	-1,153	0,029	-1,202	0,026
A_23_P163787	MMP2	-1,989	3,094e-5	-1,314	4,167e-3
A_24_P264832	NEFM	-1,669	3,716e-4	-4,333	4,191e-9
A_23_P107351	NLRP1	-3,202	6,159e-9	-1,124	3,304e-3
A_23_P420873	NR1D1	-1,738	2,033e-6	-1,619	8,335e-6
A_23_P136493	NRG1	-1,980	1,461e-4	-2,381	1,515e-6
A_23_P360777	NRG1	-2,982	4,926e-8	-3,101	9,652e-7
A_23_P315815	NRG1	-2,153	3,740e-8	-3,056	1,523e-9
A_23_P84063	NTM	-2,011	3,536e-4	-1,315	0,032
A_23_P201547	NTNG1	-0,897	0,026	-1,346	6,392e-4
A_32_P160563	OPCML	-1,455	2,213e-4	-1,370	6,196e-4
A_23_P24104	PLAU	-2,267	8,071e-5	-1,311	0,031
A_23_P215060	PODXL	-0,934	0,042	-5,212	2,225e-10
A_24_P810290	PPAPDC1A	-1,499	1,282e-3	-1,219	0,014
A_23_P218774	RAC2	-1,066	0,028	-0,871	0,012
A_23_P76731	RAGE	-0,750	0,037	-1,516	3,675e-5
A_23_P58796	RGMB	-2,462	3,931e-5	-2,276	1,446e-4
A_24_P402510	SAMD11	-1,397	2,561e-4	-2,144	2,180e-6
A_24_P686965	SH2D5	-0,913	3,805e-3	-0,921	4,630e-3
A_23_P100754	SMURF2	-1,173	2,579e-3	-2,015	8,335e-6
A_23_P38106	SPHK1	-1,817	6,840e-4	-2,203	1,124e-4
A_24_P354689	SPOCK1	-2,021	7,304e-5	-2,061	8,511e-5
A_32_P40288	TMEM200A	-1,707	1,014e-5	-1,026	4,405e-3
A_23_P157865	TNC	-1,846	1,139e-4	-2,279	1,428e-5
A_23_P363344	TPM1	-1,231	3,045e-3	-1,901	9,057e-6
A_32_P185140	TPM1	-2,155	2,420e-4	-2,503	1,239e-6

Agilent ID	Symbol	logFC BK2-1	FDR BK2-1	logFC ZK2-1	FDR ZK2-1
A_23_P167096	VEGFC	-1,483	2,580e-4	-1,828	3,595e-5
A_23_P320054	WNT7B	-2,253	1,709e-7	-0,835	0,023

Tabelle A-13: Gene der Stro-1⁺-Beckenkamm- und -Zahnkeimzellen mit **beidseits signifikanten logFC-Werten**, die sich **gegensinnig** verhalten (n = 16). Positive logFC-Werte stehen für eine Hochregulation im ODM gegenüber dem DMEM, negative logFC-Werte für eine Herunterregulation.

Agilent ID	Symbol	logFC BK2-1	FDR BK2-1	logFC ZK2-1	FDR ZK2-1
A_32_P164246	FOXQ1	-2,365	6,317e-7	1,394	6,330e-4
A_23_P17998	HES1	-1,522	1,133e-3	1,061	0,048
A_32_P161855	KIAA1199	-1,427	1,080e-3	1,160	0,012
A_24_P766716	CMKLR1	-1,330	0,022	1,275	0,041
A_23_P89431	CCL2	-1,301	8,032e-3	2,221	3,595e-5
A_24_P915692	PHLDA1	-1,253	5,752e-3	1,023	0,046
A_24_P408047	PLEKHA4	-0,965	5,356e-3	1,253	4,879e-4
A_23_P39955	ACTG2	1,994	3,082e-6	-1,161	2,416e-3
A_23_P85250	CD24	1,390	0,015	-1,952	6,440e-4
A_23_P146134	DUSP26	1,105	0,039	-1,211	0,024
A_23_P128084	ITGA7	1,230	1,926e-3	-1,128	6,207e-3
A_23_P209669	NRP2	0,797	0,029	-0,861	0,019
A_23_P128230	NR4A1	1,587	3,856e-4	-1,499	1,021e-3
A_23_P7313	SPP1	0,759	0,031	-1,707	7,853e-6
A_24_P317907	SORBS1	2,114	0,043	-0,967	0,015
A_23_P30666	TNFRSF21	1,042	8,120e-3	-1,245	1,821e-3

Tabelle A-14: Funktionelle Gruppen der Gene, die bei den Stro-1⁺-Beckenkamm- und -Zahnkeimzellen im ODM **gleichsinnig signifikant hochreguliert** sind (n = 130). In der Tabelle sind von insgesamt 20 *clustern* nur die ersten drei mit den höchsten *enrichment scores* dargestellt.

Annotation Cluster 1	Enrichment Score: 4.25	G		Count	P_Value Benjamini
UP_KEYWORDS	Extracellular matrix	RT	—	10	1.7E-5 3.6E-3
GOTERM_CC_DIRECT	proteinaceous extracellular matrix	RT	-	10	4.1E-5 5.3E-3
UP_KEYWORDS	Secreted	RT		25	2.5E-4 2.6E-2
Annotation Cluster 2	Enrichment Score: 2.37	G		Count	P_Value Benjamini
UP_KEYWORDS	Secreted	RT		25	2.5E-4 2.6E-2
GOTERM_CC_DIRECT	extracellular space	RT		20	5.3E-4 3.3E-2
UP_KEYWORDS	Disulfide bond	RT		33	2.5E-3 1.2E-1
UP_SEQ_FEATURE	signal peptide	RT		33	2.8E-3 4.2E-1
UP_KEYWORDS	Glycoprotein	RT		40	3.4E-3 1.1E-1
UP_SEQ_FEATURE	disulfide bond	RT		28	1.0E-2 6.9E-1
UP_KEYWORDS	Signal	RT		35	1.4E-2 3.1E-1
UP_SEQ_FEATURE	alycosylation site:N-linked (GlcNAc)	RT		35	2.9E-2 7.0E-1
GOTERM_CC_DIRECT	extracellular region	RT		17	3.7E-2 5.5E-1
Annotation Cluster 3	Enrichment Score: 1.75	G		Count	P_Value Benjamini
UP_KEYWORDS	Proteoglycan	RT	-	4	2.7E-3 1.1E-1
GOTERM_CC_DIRECT	Golgi lumen	RT	-	4	2.1E-2 4.2E-1
GOTERM_CC_DIRECT	lysosomal lumen	RT		3	9.6E-2 7.3E-1
Annotation Cluster 4	Enrichment Score: 1.52	G		Count	P_Value Benjamini

Functional Annotation Clustering

Functional Annotation Chart

Category	≑ <u>Term</u>	🖨 RT	Genes	Count	¢ <u>%</u>	¢ <u>P-Value</u>	¢ <u>Benjamini</u>	\$
UP_TISSUE	Liver	RT		30	24,8	7,8E-5	8,5E-3	
UP_TISSUE	Placenta	<u>RT</u>		33	27,3	1,7E-2	6,1E-1	
UP_TISSUE	Tongue	RT		8	6,6	2,0E-2	5,2E-1	
UP_TISSUE	Heart	RT	=	8	6,6	8,3E-2	9,1E-1	

Tabelle A-15: Funktionelle Gruppen der Gene, die bei den Stro-1⁺-Beckenkamm- und -Zahnkeimzellen im ODM **gleichsinnig signifikant herunterreguliert** sind (n = 94). In der Tabelle sind beide ermittelten *cluster* dargestellt.

Annotation Cluster 1	Enrichment Score: 7.77	G	Count	P_Value	Benjamini
UP_KEYWORDS	Glycoprotein	RT	 49	3.5E-12	5.3E-10
UP_KEYWORDS	Disulfide bond	RT	 38	3.6E-9	2.7E-7
UP_SEQ_FEATURE	signal peptide	RT	 37	2.9E-8	1.4E-5
UP_SEQ_FEATURE	disulfide bond	RT	 34	4.5E-8	1.1E-5
UP_KEYWORDS	Signal	RT	40	5.6E-8	2.9E-6
UP_SEQ_FEATURE	glycosylation site:N-linked (GlcNAc)	RT	 41	1.2E-7	1.9E-5
UP_KEYWORDS	Secreted	RT	 26	1.6E-7	6.1E-6
GOTERM_CC_DIRECT	extracellular region	RT	 24	3.9E-7	2.7E-5
Annotation Cluster 2	Enrichment Score: 0.78	G	Count	P_Value	Benjamini
UP_KEYWORDS	Membrane	RT	 40	3.8E-2	5.7E-1
UP_SEQ_FEATURE	topological domain:Extracellular	RT	 17	1.3E-1	1.0E0
UP_SEQ_FEATURE	topological domain:Cytoplasmic	RT	 20	1.5E-1	1.0E0
UP_KEYWORDS	Transmembrane helix	RT	 28	1.9E-1	9.8E-1
UP_KEYWORDS	Transmembrane	RT	 28	2.0E-1	9.8E-1
UP_SEQ_FEATURE	transmembrane region	RT	 25	3.2E-1	1.0E0
GOTERM_CC_DIRECT	integral component of membrane	RT	 26	3.7E-1	1.0E0

Functional Annotation Clustering

Functional Annotation Chart

<u>Category</u>	≑ <u>Term</u>	¢ RT	Genes	Count	\$ <u>%</u>	¢ <u>P-Value</u>	≑ <u>Benjamini</u> ¢
UP_TISSUE	Foreskin	RT	-	3	3,4	2,5E-2	9,4E-1
UP_TISSUE	Scalp	<u>RT</u>	=	3	3,4	3,8E-2	8,8E-1
UP_TISSUE	Plasma	RT		5	5,7	4,3E-2	8,0E-1
UP_TISSUE	Fetal brain	<u>RT</u>	-	8	9,1	6,2E-2	8,3E-1
UP_TISSUE	Melanoma	RT		5	5,7	6,9E-2	7,9E-1

Tabelle A-16: Funktionelle Gruppen der Gene, die bei den Stro-1⁺-Zellen aus dem **Beckenkamm** signifikant hochreguliert und den Zahnkeimen signifikant herunterreguliert sind, sich in ihrer Expression also gegensinnig verhalten (n = 9). In der Tabelle sind beide ermittelten *cluster* dargestellt.

Annotation Cluster 1	Enrichment Score: 0.92	G	 Count	P_Value	Benjamini
GOTERM_BP_DIRECT	cell adhesion	<u>RT</u>	5	3.5E-5	4.5E-3
UP_KEYWORDS	Glycoprotein	RT	 6	1.6E-2	5.8E-1
UP_KEYWORDS	Receptor	RT	 4	2.1E-2	4.4E-1
UP_SEQ_FEATURE	signal peptide	RT	 5	3.1E-2	8.3E-1
UP_KEYWORDS	Signal	RT	 5	5.8E-2	6.6E-1
UP_SEQ_FEATURE	glycosylation site:N-linked (GlcNAc)	RT	 5	6.7E-2	8.6E-1
GOTERM_CC_DIRECT	plasma membrane	RT	 4	2.6E-1	1.0E0
UP_SEQ_FEATURE	topological domain:Extracellular	RT	 3	3.1E-1	1.0E0
UP_KEYWORDS	Membrane	RT	 5	3.2E-1	9.7E-1
UP_SEQ_FEATURE	disulfide bond	RT	 3	3.3E-1	1.0E0
UP_KEYWORDS	Disulfide bond	RT	 3	4.0E-1	9.7E-1
UP_SEQ_FEATURE	topological domain:Cytoplasmic	RT	 3	4.1E-1	9.9E-1
UP_KEYWORDS	Polymorphism	RT	 6	5.6E-1	9.9E-1
UP_SEQ_FEATURE	transmembrane region	RT	 3	6.4E-1	1.0E0
UP_SEQ_FEATURE	sequence variant	RT	 6	6.4E-1	1.0E0
UP_KEYWORDS	Transmembrane helix	RT	3	6.9E-1	9.9E-1
UP_KEYWORDS	Transmembrane	<u>RT</u>	 3	6.9E-1	9.9E-1
Annotation Cluster 2	Enrichment Score: 0.31	G	 Count	P_Value	Benjamini
UP_KEYWORDS	Cytoplasm	RT	4	2.8E-1	9.7E-1
GOTERM_CC_DIRECT	cytoplasm	RT	4	4.1E-1	1.0E0
UP_KEYWORDS	Nucleus	RT	 3	6.4E-1	9.9E-1
GOTERM_CC_DIRECT	nucleus	RT	 3	7.4E-1	1.0E0

Functional Annotation Clustering

Functional Annotation Chart

<u>Category</u> ¢	<u>Term</u>	¢ RT	Genes	<u>Count</u> :	<u>%</u>	≑ <u>P-Value</u>	≑ <u>Benjamini</u> ¢
UP_TISSUE	Skeletal muscle	<u>RT</u>		3	27,3	3,6E-2	7,4E-1

Tabelle A-17: Funktionelle Gruppen der Gene, die bei den Stro-1⁺-Zellen aus dem **Beckenkamm** signifikant herunterreguliert und den Zahnkeimen signifikant hochreguliert sind, sich in ihrer Expression also gegensinnig verhalten (n = 7). Es wurde nur ein *cluster* ermittelt. Für die *Functional Annotation Chart* konnten keine Gengruppen für eine Überexpression in bestimmten Geweben ermittelt werden.

Functional Annotation Clustering

Annotation Cluster 1	Enrichment Score: 0.11	G	 Count	P_Value Benja	amini
UP_KEYWORDS	<u>Membrane</u>	RT	3	7.1E-1 1.0E	0
UP_SEQ_FEATURE	splice variant	<u>RT</u>	 3	7.5E-1 1.0E	0
UP_KEYWORDS	Alternative splicing	RT	3	9.0E-1 1.0E	0

AgilentID	Symbol	Genname	logFC ZK2-BK2	FDR ZK2-BK2
A_23_P337262	APCDD1	adenomatosis polyposis coli down-regulated 1	6,374	2,83E-12
A_23_P372834	AQP1	aquaporin 1 (Colton blood group)	6,634	5,35E-11
A_23_P67847	GALNT14	UDP-N-acetyl-alpha-D-galactosamine:polypeptide N- acetylgalactosaminyltransferase 14 (GalNAc-T14)	4,469	6,64E-11
A_23_P154566	TOX2	TOX high mobility group box family member 2	3,317	1,21E-10
A_23_P118254	FOXF1	forkhead box F1	3,426	1,66E-10
A_23_P19894	AQP1	aquaporin 1 (Colton blood group)	4,947	3,49E-10
A_23_P94800	S100A4	S100 calcium binding protein A4	5,011	4,81E-10
A_23_P79482	CHN1	chimerin (chimaerin) 1	4,172	6,15E-10
A_23_P145054	FAM162B	family with sequence similarity 162, member B	4,263	1,61E-09
A_32_P208350	TDRD9	tudor domain containing 9	3,280	2,38E-09
A_23_P257924	ETS2	v-ets erythroblastosis virus E26 oncogene homolog 2 (avian)	2,643	2,61E-09
A_24_P500584	XIST	X (inactive)-specific transcript (non-protein coding)	7,301	2,77E-09
A_24_P260101	MME	membrane metallo-endopeptidase	3,474	5,05E-09
A_23_P384044	CNIH3	cornichon homolog 3 (Drosophila)	4,013	7,28E-09
A_23_P212800	FGF5	fibroblast growth factor 5	3,157	7,28E-09
A_23_P32279	BARX1	BARX homeobox 1	4,074	8,18E-09
A_23_P110430	MSX1	msh homeobox 1	3,816	1,07E-08
A_23_P205713	STXBP6	syntaxin binding protein 6 (amisyn)	2,762	1,09E-08
A_23_P4536	EPB41L3	erythrocyte membrane protein band 4.1-like 3	2,567	1,15E-08
A_32_P142818	DLX1	distal-less homeobox 1	2,639	1,40E-08
A_23_P144326	ASB5	ankyrin repeat and SOCS box-containing 5	4,178	1,58E-08
A_23_P303087	PTN	pleiotrophin	3,662	2,04E-08
A_23_P200015	AK5	adenylate kinase 5	2,700	2,31E-08
A_23_P110957	FOXF2	forkhead box F2	4,116	2,33E-08
A_24_P375691	LOC100131606	hypothetical protein LOC100131606	2,279	2,47E-08
A_24_P64167	PTGS1	prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase and cyclooxygenase)	2,853	3,03E-08
A_23_P103672	NES	nestin	3,082	4,63E-08
A_23_P34744	СТЅК	cathepsin K	4,055	6,04E-08
A_23_P120472	TFAP2C	transcription factor AP-2 gamma (activating enhancer binding protein 2 gamma)	2,246	6,48E-08
A_23_P213562	F2R	coagulation factor II (thrombin) receptor	3,044	6,50E-08
A_23_P216655	TRIM14	tripartite motif-containing 14	2,029	7,44E-08
A_24_P10214	STXBP6	syntaxin binding protein 6 (amisyn)	2,251	8,18E-08
A_24_P870620	PTN	pleiotrophin	3,377	8,48E-08
A_23_P19987	IGF2BP3	insulin-like growth factor 2 mRNA binding protein 3	3,647	1,04E-07
A_24_P882959	LOC284344	hypothetical protein LOC284344	2,550	1,08E-07
A_23_P216966	PTGS1	prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase and cyclooxygenase)	3,716	1,64E-07
A_23_P156861	RGS17	regulator of G-protein signaling 17	2,073	1,84E-07
A_23_P28898	PLCB4	phospholipase C, beta 4	3,143	2,62E-07
A_23_P383819	ТВХЗ	T-box 3	2,077	2,73E-07
A_23_P211212	COL18A1	collagen, type XVIII, alpha 1	3,365	2,74E-07
A_23_P362719	LSM14B	LSM14B, SCD6 homolog B (S. cerevisiae)	2,774	2,95E-07
A_23_P258136	MXRA5	matrix-remodelling associated 5	3,079	3,09E-07

Tabelle A-18: Die **109 Gene** der Stro-1⁺-**Zahnkeimzellen**, die gegenüber den Stro-1⁺-Beckenkammzellen im ODM **hochreguliert** sind. Die Gene sind nach der Höhe der FDR aufsteigend sortiert. Die Auswahlkriterien waren $|\log FC| > 2$ und FDR $\le 0,01$.

AgilentID	Symbol	Genname	logFC ZK2-BK2	FDR ZK2-BK2
A_24_P233786	FAM129A	family with sequence similarity 129, member A	2,111	3,53E-07
A_32_P60065	F2RL2	coagulation factor II (thrombin) receptor-like 2	2,437	3,97E-07
A_24_P664891	COX6A1	cytochrome c oxidase subunit VIa polypeptide 1	3,164	5,42E-07
A_23_P251421	CDCA7	cell division cycle associated 7	3,014	5,57E-07
A_23_P45365	COL4A5	collagen, type IV, alpha 5	2,481	6,37E-07
A_23_P317591	SEMA3A	sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3A	2,185	6,45E-07
A_23_P76914	SIX1	SIX homeobox 1	2,703	8,67E-07
A_23_P214144	COL10A1	collagen, type X, alpha 1	2,636	1,15E-06
A_23_P408996	MBOAT1	membrane bound O-acyltransferase domain containing	2,605	1,16E-06
A_24_P314179	ETS2	v-ets erythroblastosis virus E26 oncogene homolog 2 (avian)	2,364	1,47E-06
A_32_P70818	PAX9	paired box 9	3,367	1,64E-06
A_23_P127911	DKFZP586H2123	regeneration associated muscle protease	2,042	1,65E-06
A_32_P29118	SEMA3D	sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3D	2,032	2,00E-06
A_32_P208076	ITGA2	integrin, alpha 2 (CD49B, alpha 2 subunit of VLA-2 receptor)	2,479	2,20E-06
A_23_P110531	FST	follistatin	2,576	2,36E-06
A_23_P214026	FBN2	fibrillin 2	2,984	2,45E-06
A_23_P30315	TRIM7	tripartite motif-containing 7	2,128	2,73E-06
A_23_P256470	NPY	neuropeptide Y	3,493	2,78E-06
A_32_P34444	FHOD3	formin homology 2 domain containing 3	2,034	3,05E-06
A_23_P316612	GLIS1	GLIS family zinc finger 1	2,209	3,24E-06
A_24_P115762	СТЅС	cathepsin C	2,177	3,92E-06
A_24_P915692	PHLDA1	pleckstrin homology-like domain, family A, member 1	2,197	3,97E-06
A_23_P16944	SDC1	syndecan 1	3,025	4,47E-06
A_23_P212061	MME	membrane metallo-endopeptidase	2,667	5,50E-06
A_24_P345837	MSX1	msh homeobox 1	2,419	5,50E-06
A_23_P124905	NPTX1	neuronal pentraxin I	2,467	5,85E-06
A_23_P1331	COL13A1	collagen, type XIII, alpha 1	2,440	6,37E-06
A_23_P255331	C4orf49	chromosome 4 open reading frame 49	2,410	6,64E-06
A_23_P125383	TMEFF2	transmembrane protein with EGF-like and two follistat- in-like domains 2	2,247	7,12E-06
A_24_P197964	TRIM14	tripartite motif-containing 14	2,081	8,54E-06
A_23_P108170	PSG6	pregnancy specific beta-1-glycoprotein 6	2,268	8,91E-06
A_24_P942493	WSCD1	WSC domain containing 1	2,049	8,96E-06
A_23_P323930	TSPAN5	tetraspanin 5	2,124	9,26E-06
A_23_P128974	BATF	basic leucine zipper transcription factor, ATF-like	2,460	1,03E-05
A_23_P45324	TMEM35	transmembrane protein 35	2,749	1,07E-05
A_23_P164451	ТВХ2	T-box 2	2,227	1,15E-05
A_23_P258493	LMNB1	lamin B1	2,270	1,34E-05
A_23_P55544	CCBE1	collagen and calcium binding EGF domains 1	2,771	1,37E-05
A_24_P90005	COL13A1	collagen, type XIII, alpha 1	2,189	1,41E-05
A_23_P21324	TWIST2	twist homolog 2 (Drosophila)	2,744	1,58E-05
A_24_P234196	RRM2	ribonucleotide reductase M2 polypeptide	2,569	1,68E-05
A_23_P42718	NFE2L3	nuclear factor (erythroid-derived 2)-like 3	2,029	1,78E-05
A_24_P302172	PTGFR	prostaglandin F receptor (FP)	2,273	1,93E-05
A_24_P360269	RNASET2	ribonuclease T2	2,410	2,23E-05
A_24_P20630	LEF1	lymphoid enhancer-binding factor 1	2,377	2,29E-05
 A_23_P432947	GREM1	gremlin 1, cysteine knot superfamily, homolog (Xenopus laevis)	3,065	2,93E-05

AgilentID	Symbol	Genname	logFC ZK2-BK2	FDR ZK2-BK2
A_23_P252449	HNRNPA0	heterogeneous nuclear ribonucleoprotein A0	2,070	3,12E-05
A_23_P204133	GALNT6	UDP-N-acetyl-alpha-D-galactosamine:polypeptide N- acetylgalactosaminyltransferase 6 (GalNAc-T6)	2,146	3,20E-05
A_23_P76364	CD9	CD9 molecule	2,025	3,45E-05
A_23_P66017	PRRT2	proline-rich transmembrane protein 2	2,151	3,96E-05
A_32_P108277	SLC8A1	solute carrier family 8 (sodium/calcium exchanger), member 1	2,150	8,02E-05
A_23_P433016	FBLN1	fibulin 1	2,095	9,38E-05
A_24_P401855	FGF5	fibroblast growth factor 5	2,750	1,02E-04
A_24_P53976	GLUL	glutamate-ammonia ligase (glutamine synthetase)	2,270	1,13E-04
A_32_P62997	РВК	PDZ binding kinase	2,524	1,46E-04
A_24_P918317	DKK3	dickkopf homolog 3 (Xenopus laevis)	2,241	1,77E-04
A_24_P350589	RNF150	ring finger protein 150	2,029	2,36E-04
A_23_P75002	МКХ	mohawk homeobox	2,330	3,13E-04
A_23_P118834	TOP2A	topoisomerase (DNA) II alpha 170kDa	2,077	5,25E-04
A_23_P76450	PHLDA1	pleckstrin homology-like domain, family A, member 1	2,224	5,32E-04
A_24_P187218	PCDH9	protocadherin 9	2,068	6,94E-04
A_23_P132619	OXTR	oxytocin receptor	2,418	7,99E-04
A_32_P138348	LY6K	lymphocyte antigen 6 complex, locus K	2,146	8,99E-04
A_24_P261417	DKK3	dickkopf homolog 3 (Xenopus laevis)	2,235	2,70E-03
A_24_P914434	GSTM3	glutathione S-transferase mu 3 (brain)	2,012	4,04E-03
A_23_P94255	TRPA1	transient receptor potential cation channel, subfamily A, member 1	2,045	9,22E-03
A_23_P361085	SNHG5	small nucleolar RNA host gene 5 (non-protein coding)	2,335	9,33E-03

Tabelle A-19: Die **266 Gene** der Stro-1⁺-**Beckenkammzellen**, die gegenüber den Stro-1⁺-Zahnkeimzellen im ODM **hochreguliert** sind. Die Gene sind nach der Höhe der FDR aufsteigend sortiert. Die Auswahlkriterien waren |logFC| > 2 und FDR $\le 0,01$.

AgilentID	Symbol	Genname	logFC ZK2-BK2	FDR ZK2-BK2
A_23_P324384	RPS4Y2	ribosomal protein S4, Y-linked 2	-8,315	5,50E-14
A_24_P264943	СОМР	cartilage oligomeric matrix protein	-7,208	2,25E-12
A_23_P307310	ACAN	aggrecan	-8,333	6,58E-12
A_23_P25150	HOXC9	homeobox C9	-6,222	6,58E-12
A_23_P10902	FRZB	frizzled-related protein	-3,923	1,46E-11
A_23_P259314	RPS4Y1	ribosomal protein S4, Y-linked 1	-8,323	2,61E-11
A_23_P64617	FZD4	frizzled homolog 4 (Drosophila)	-4,151	2,61E-11
A_23_P128084	ITGA7	integrin, alpha 7	-4,812	3,47E-11
A_23_P40574	CRYBB2	crystallin, beta B2	-3,835	5,35E-11
A_23_P406025	PRUNE2	prune homolog 2 (Drosophila)	-3,643	5,35E-11
A_24_P892472	EMX2OS	EMX2 opposite strand (non-protein coding)	-4,620	6,64E-11
A_23_P119943	IGFBP2	insulin-like growth factor binding protein 2, 36kDa	-4,077	7,13E-11
A_23_P215060	PODXL	podocalyxin-like	-4,674	8,67E-11
A_23_P44264	EMX2	empty spiracles homeobox 2	-3,890	8,67E-11
A_23_P167367	PITX2	paired-like homeodomain 2	-4,167	1,13E-10
A_23_P90436	СОМР	cartilage oligomeric matrix protein	-6,911	1,21E-10
A_24_P335092	SAA1	serum amyloid A1	-4,345	1,43E-10
A_23_P27400	HAS1	hyaluronan synthase 1	-5,860	1,52E-10

AgilentID	Symbol	Genname	logFC ZK2-BK2	FDR ZK2-BK2
A_24_P652609	RP11-138L21.1	similar to cell recognition molecule CASPR3	-3,765	2,92E-10
A_24_P128442	TBX15	T-box 15	-4,878	3,10E-10
A_24_P206776	CRYAB	crystallin, alpha B	-5,444	3,11E-10
A_23_P87700	MFAP5	microfibrillar associated protein 5	-4,891	3,68E-10
A_23_P66682	НОХВ6	homeobox B6	-4,073	3,82E-10
A_32_P117354	LIMCH1	LIM and calponin homology domains 1	-4,707	3,98E-10
A_23_P55356	VM01	vitelline membrane outer layer 1 homolog (chicken)	-3,548	4,20E-10
A_23_P211207	ADARB1	adenosine deaminase, RNA-specific, B1 (RED1 homolog rat)	-4,927	5,45E-10
A_23_P217797	DDX3Y	DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, Y-linked	-4,481	5,45E-10
A_23_P50081	IMPA2	inositol(myo)-1(or 4)-monophosphatase 2	-3,591	7,16E-10
A_23_P3312	ISLR	immunoglobulin superfamily containing leucine-rich repeat	-3,489	7,37E-10
A_23_P363778	FRZB	frizzled-related protein	-3,796	9,02E-10
A_23_P137665	CHI3L1	chitinase 3-like 1 (cartilage glycoprotein-39)	-4,818	1,09E-09
A_23_P6771	LMCD1	LIM and cysteine-rich domains 1	-3,661	1,15E-09
A_23_P75283	RBP4	retinol binding protein 4, plasma	-5,730	1,18E-09
A_24_P296772	PPP1R14A	protein phosphatase 1, regulatory (inhibitor) subunit 14A	-4,525	1,18E-09
A_23_P167129	ннір	hedgehog interacting protein	-2,944	1,18E-09
A_32_P154911	PRR15	proline rich 15	-4,526	1,25E-09
A_23_P150281	TP53I11	tumor protein p53 inducible protein 11	-3,112	1,34E-09
A_32_P169406	LOC400043	hypothetical LOC400043	-3,689	1,43E-09
A_23_P19624	BMP6	bone morphogenetic protein 6	-3,098	2,13E-09
A_23_P349966	TMEM130	transmembrane protein 130	-3,477	2,40E-09
A_23_P27734	NPAS1	neuronal PAS domain protein 1	-3,008	2,61E-09
A_23_P256033	EEF1A2	eukaryotic translation elongation factor 1 alpha 2	-2,678	2,61E-09
A_23_P153745	IFI30	interferon, gamma-inducible protein 30	-2,964	2,76E-09
A_23_P103703	HSPB7	heat shock 27kDa protein family, member 7 (cardiovas- cular)	-4,242	2,77E-09
A_23_P368028	TP53I11	tumor protein p53 inducible protein 11	-3,352	2,77E-09
A_23_P76731	RAGE	renal tumor antigen	-2,804	2,77E-09
A_23_P255104	LHFPL2	lipoma HMGIC fusion partner-like 2	-2,415	2,77E-09
A_23_P390504	FOXC1	forkhead box C1	-3,101	3,28E-09
A_24_P297182	GGT5	gamma-glutamyltransferase 5	-4,096	3,36E-09
A_32_P140489	GDF6	growth differentiation factor 6	-3,608	4,22E-09
A_23_P99515	C13orf33	chromosome 13 open reading frame 33	-4,718	5,05E-09
A_23_P206022	ITGA11	integrin, alpha 11	-3,759	5,05E-09
A_23_P166376	GGT5	gamma-glutamyltransferase 5	-3,084	5,40E-09
A_23_P218928	C4orf18	chromosome 4 open reading frame 18	-3,722	5,48E-09
A_23_P403445	CGREF1	cell growth regulator with EF-hand domain 1	-3,096	5,80E-09
A_23_P66798	KRT19	keratin 19	-3,093	5,80E-09
A_23_P91230	SLPI	secretory leukocyte peptidase inhibitor	-3,130	5,86E-09
A_24_P50228	C11orf87	chromosome 11 open reading frame 87	-3,278	6,16E-09
A_23_P56197	CRLF1	cytokine receptor-like factor 1	-5,473	7,28E-09
A_23_P151075	ARHGDIB	Rho GDP dissociation inhibitor (GDI) beta	-2,754	7,28E-09
A_23_P156708	ТNХВ	tenascin XB	-2,723	7,28E-09
A_23_P24077	C10orf54	chromosome 10 open reading frame 54	-2,257	7,39E-09
A_24_P86537	HSPB1	heat shock 27kDa protein 1	-2,479	8,86E-09
A_23_P144911	EGFLAM	EGF-like, fibronectin type III and laminin G domains	-3,234	9,15E-09
A_24_P919150	ACAN	aggrecan	-2,880	9,28E-09

AgilentID	Symbol	Genname	logFC ZK2-BK2	FDR ZK2-BK2
A_23_P27795	SPINT2	serine peptidase inhibitor, Kunitz type, 2	-2,943	9,74E-09
A_23_P112798	CRIP2	cysteine-rich protein 2	-3,160	9,76E-09
A_23_P397999	FZD5	frizzled homolog 5 (Drosophila)	-2,687	1,19E-08
A_23_P142796	LIMS2	LIM and senescent cell antigen-like domains 2	-2,784	1,22E-08
A_23_P215454	ELN	elastin	-3,292	1,43E-08
A_23_P146554	PTGDS	prostaglandin D2 synthase 21kDa (brain)	-3,132	1,52E-08
A_23_P500998	HOXA9	homeobox A9	-3,793	1,54E-08
A_23_P200737	RGS4	regulator of G-protein signaling 4	-3,064	1,58E-08
A_23_P215459	ELN	elastin	-4,358	1,61E-08
A_23_P119562	CFD	complement factor D (adipsin)	-2,542	1,77E-08
A_24_P397817	LEP	leptin	-2,910	1,85E-08
A_24_P926960	MEGF6	multiple EGF-like-domains 6	-3,186	2,11E-08
A 23 P253692	GPR64	G protein-coupled receptor 64	-2,366	2,31E-08
A 23 P35414	PPP1R3C	protein phosphatase 1. regulatory (inhibitor) subunit 3C	-3.522	2.31E-08
A 23 P407840	FNDC1	fibronectin type III domain containing 1	-2,737	2,32E-08
A 23 P87011	TAGLN	transgelin	-2.308	2.33E-08
A 23 P28434	VAMP8	vesicle-associated membrane protein 8 (endobrevin)	-2.641	2.63E-08
A_23_P65518	DACT1	dapper, antagonist of beta-catenin, homolog 1 (Xenopus laevis)	-2,738	2,78E-08
A_23_P256158	ADRA2C	adrenergic, alpha-2C-, receptor	-3,471	3,05E-08
A_24_P389916	LRRC32	leucine rich repeat containing 32	-3,318	3,07E-08
A_24_P329795	C10orf10	chromosome 10 open reading frame 10	-3,862	3,07E-08
A_23_P87013	TAGLN	transgelin	-2,621	3,10E-08
A_23_P381261	ADCY4	adenylate cyclase 4	-2,914	3,15E-08
A_23_P161837	MRVI1	murine retrovirus integration site 1 homolog	-2,229	3,34E-08
A_23_P306105	GALNT1	UDP-N-acetyl-alpha-D-galactosamine:polypeptide N- acetylgalactosaminyltransferase 1 (GalNAc-T1)	-2,895	3,61E-08
A_23_P257704	HSPB1	heat shock 27kDa protein 1	-2,526	4,06E-08
A_23_P398854	DOK7	docking protein 7	-3,005	4,10E-08
A_23_P208991	PALM	paralemmin	-2,447	4,46E-08
A_23_P363769	KRT86	keratin 86	-2,188	4,60E-08
A_23_P107283	HOXB2	homeobox B2	-4,878	4,90E-08
A_24_P178444	LOC341230	similar to argininosuccinate synthase	-2,296	4,90E-08
A_23_P215634	IGFBP3	insulin-like growth factor binding protein 3	-3,184	4,90E-08
A_23_P378416	GPM6B	glycoprotein M6B	-3,195	5,51E-08
A_23_P106389	SEMA7A	semaphorin 7A, GPI membrane anchor (John Milton Hagen blood group)	-3,170	5,58E-08
A_23_P201808	PPAP2B	phosphatidic acid phosphatase type 2B	-2,357	5,58E-08
A_24_P77904	HOXA10	homeobox A10	-2,595	5,73E-08
A_23_P435407	GPC4	glypican 4	-2,627	5,75E-08
A_23_P128230	NR4A1	nuclear receptor subfamily 4, group A, member 1	-2,954	5,84E-08
A_23_P46470	ERRFI1	ERBB receptor feedback inhibitor 1	-2,800	5,93E-08
A_23_P64743	STK38L	serine/threonine kinase 38 like	-3,303	6,59E-08
A_24_P220485	OLFML2A	olfactomedin-like 2A	-3,452	7,02E-08
A_23_P62021	THBS2	thrombospondin 2	-3,164	7,17E-08
A_32_P108254	FAM20A	family with sequence similarity 20, member A	-3,478	7,44E-08
A_24_P399220	НОХВЗ	homeobox B3	-3,325	7,44E-08
A_32_P157945	DSP	desmoplakin	-2,836	7,44E-08
A_23_P4335	KRT14	keratin 14	-2,776	7,44E-08
A_23_P352402	C10orf47	chromosome 10 open reading frame 47	-2,394	7,44E-08

AgilentID	Symbol	Genname	logFC ZK2-BK2	FDR ZK2-BK2
A_23_P309619	LOC100131004	hypothetical protein LOC100131004	-2,202	7,89E-08
A_23_P204286	MGP	matrix Gla protein	-2,977	8,02E-08
A_32_P42574	C1orf198	chromosome 1 open reading frame 198	-3,087	8,18E-08
A_32_P66881	TLR4	toll-like receptor 4	-2,952	8,41E-08
A_23_P399001	CXXC5	CXXC finger 5	-2,789	1,13E-07
A_23_P306203	SAA2	serum amyloid A2	-4,078	1,14E-07
A_32_P201261	C11orf87	chromosome 11 open reading frame 87	-2,779	1,16E-07
A_23_P121795	SORBS2	sorbin and SH3 domain containing 2	-3,615	1,16E-07
A_24_P218814	RDH5	retinol dehydrogenase 5 (11-cis/9-cis)	-3,045	1,21E-07
A_23_P341223	KLHL21	kelch-like 21 (Drosophila)	-2,102	1,21E-07
A_23_P36562	ITGA5	integrin, alpha 5 (fibronectin receptor, alpha polypep- tide)	-3,222	1,31E-07
A_24_P237511	EIF1AY	eukaryotic translation initiation factor 1A, Y-linked	-2,827	1,39E-07
A_23_P31143	TPD52L1	tumor protein D52-like 1	-2,929	1,52E-07
A_23_P13382	LSP1	lymphocyte-specific protein 1	-3,307	1,59E-07
A_23_P254741	SOD3	superoxide dismutase 3, extracellular	-2,751	1,99E-07
A_23_P216556	EPB41L4B	erythrocyte membrane protein band 4.1 like 4B	-2,308	2,09E-07
A_23_P156970	MEST	mesoderm specific transcript homolog (mouse)	-2,857	2,19E-07
A_23_P101054	KRT34	keratin 34	-3,189	2,32E-07
A_23_P315320	IL27	interleukin 27	-2,247	2,49E-07
A_23_P205894	ACTC1	actin, alpha, cardiac muscle 1	-2,494	2,72E-07
A_32_P200697	FAM101A	family with sequence similarity 101, member A	-3,683	2,85E-07
A_23_P329573	ITGB2	integrin, beta 2 (complement component 3 receptor 3 and 4 subunit)	-2,155	3,08E-07
A_24_P406754	LOXL4	lysyl oxidase-like 4	-2,676	3,18E-07
A_23_P36658	MGST1	microsomal glutathione S-transferase 1	-2,385	3,46E-07
A_23_P43164	SULF1	sulfatase 1	-2,396	3,90E-07
A_23_P70968	HOXA7	homeobox A7	-3,644	3,96E-07
A_23_P167159	SCRG1	scrapie responsive protein 1	-2,334	4,11E-07
A_23_P114740	CFH	complement factor H	-3,109	4,40E-07
A_23_P72157	MFSD7	major facilitator superfamily domain containing 7	-2,458	4,72E-07
A_23_P365685	LIMS3	LIM and senescent cell antigen-like domains 3	-2,123	5,04E-07
A_23_P114883	FMOD	fibromodulin	-3,006	5,57E-07
A_23_P324340	DISP2	dispatched homolog 2 (Drosophila)	-2,507	6,02E-07
A_23_P125233	CNN1	calponin 1, basic, smooth muscle	-2,154	6,28E-07
A_23_P83403	LIMCH1	LIM and calponin homology domains 1	-2,474	6,92E-07
A_24_P80204	MALL	mal, T-cell differentiation protein-like	-3,514	7,24E-07
A_23_P41854	CARD6	caspase recruitment domain family, member 6	-2,569	8,22E-07
A_23_P253982	HOXA4	homeobox A4	-2,515	8,22E-07
A_23_P210708	SIRPA	signal-regulatory protein alpha	-2,740	8,25E-07
A_32_P334340	C6orf124	chromosome 6 open reading frame 124	-2,184	8,92E-07
A_24_P605612	THBS2	thrombospondin 2	-2,116	9,78E-07
A_23_P57709	PCOLCE2	procollagen C-endopeptidase enhancer 2	-3,673	1,01E-06
A_24_P372625	RNF141	ring finger protein 141	-2,104	1,01E-06
A_23_P65240	COL4A1	collagen, type IV, alpha 1	-2,784	1,06E-06
A_23_P361336	ADARB1	adenosine deaminase, RNA-specific, B1 (RED1 homolog rat)	-2,405	1,06E-06
A_23_P69497	CLEC3B	C-type lectin domain family 3, member B	-2,792	1,14E-06
A_23_P112634	C4orf34	chromosome 4 open reading frame 34	-2,185	1,22E-06
A_24_P124558	HOXC8	homeobox C8	-3,354	1,23E-06

AgilentID	Symbol	Genname	logFC ZK2-BK2	FDR ZK2-BK2
A_32_P76247	HSPB1	heat shock 27kDa protein 1	-2,130	1,26E-06
A_23_P422851	CABLES1	Cdk5 and Abl enzyme substrate 1	-2,058	1,30E-06
A_24_P17490	CNTN3	contactin 3 (plasmacytoma associated)	-2,106	1,37E-06
A_24_P48723	PTGIS	prostaglandin I2 (prostacyclin) synthase	-2,988	1,46E-06
A_23_P74609	G0S2	G0/G1switch 2	-2,102	1,49E-06
A_23_P62583	MEGF6	multiple EGF-like-domains 6	-2,574	1,50E-06
A_23_P254654	CLIC3	chloride intracellular channel 3	-2,747	1,59E-06
A_23_P426021	KIAA0746	KIAA0746 protein	-2,832	1,76E-06
A_24_P218805	HOXC10	homeobox C10	-2,359	1,81E-06
A_23_P61688	SLC12A7	solute carrier family 12 (potassium/chloride transport- ers), member 7	-2,130	1,88E-06
A_24_P262543	KCNK6	potassium channel, subfamily K, member 6	-2,146	1,97E-06
A_23_P257971	AKR1C1	aldo-keto reductase family 1, member C1 (dihydrodiol dehydrogenase 1; 20-alpha (3-alpha)-hydroxysteroid dehydrogenase)	-2,612	2,13E-06
A_23_P421423	TNFAIP2	tumor necrosis factor, alpha-induced protein 2	-2,629	2,17E-06
A_23_P399255	RNF182	ring finger protein 182	-2,576	2,26E-06
A_23_P369994	DCLK1	doublecortin-like kinase 1	-2,222	2,27E-06
A_24_P766716	CMKLR1	chemokine-like receptor 1	-2,817	2,28E-06
A_23_P122216	LOX	lysyl oxidase	-2,192	2,28E-06
A_24_P133584	MFGE8	milk fat globule-EGF factor 8 protein	-3,079	2,40E-06
A_23_P82420	STX1A	syntaxin 1A (brain)	-2,251	2,48E-06
A_23_P417942	FNBP1L	formin binding protein 1-like	-2,248	2,50E-06
A_23_P138541	AKR1C3	aldo-keto reductase family 1, member C3 (3-alpha hydroxysteroid dehydrogenase, type II)	-3,582	2,89E-06
A_24_P943894	SCUBE3	signal peptide, CUB domain, EGF-like 3	-2,791	2,93E-06
A_24_P924862	RAPH1	Ras association (RalGDS/AF-6) and pleckstrin homology domains 1	-2,220	3,09E-06
A_23_P38795	FPR1	formyl peptide receptor 1	-2,377	3,24E-06
A_24_P158946	FGD4	FYVE, RhoGEF and PH domain containing 4	-3,041	3,38E-06
A_24_P231104	LEPR	leptin receptor	-2,235	3,51E-06
A_24_P31627	KCNB1	potassium voltage-gated channel, Shab-related subfam- ily, member 1	-2,065	3,61E-06
A_23_P162171	MCAM	melanoma cell adhesion molecule	-2,437	3,71E-06
A_32_P205110	FOXC1	forkhead box C1	-2,202	3,76E-06
A_23_P170233	CSTA	cystatin A (stefin A)	-2,412	3,94E-06
A_23_P161218	ANKRD1	ankyrin repeat domain 1 (cardiac muscle)	-2,139	4,00E-06
A_23_P363255	CCDC68	coiled-coil domain containing 68	-2,227	4,04E-06
A_23_P339818	ARRDC4	arrestin domain containing 4	-2,794	4,22E-06
A_32_P11372	KGFLP1	keratinocyte growth factor-like protein 1	-2,798	4,77E-06
A_23_P161727	HSPB2	heat shock 27kDa protein 2	-2,436	4,96E-06
A_24_P150466	SMOC1	SPARC related modular calcium binding 1	-2,301	4,98E-06
A_23_P357207	MRAP2	melanocortin 2 receptor accessory protein 2	-2,231	5,22E-06
A_32_P37867	KIAA1644	KIAA1644	-2,232	5,42E-06
A_24_P176079	WASF3	WAS protein family, member 3	-3,254	5,62E-06
A_24_P354689	SPOCK1	sparc/osteonectin, cwcv and kazal-like domains prote- oglycan (testican) 1	-2,299	5,80E-06
A_23_P254944	GSTT1	glutathione S-transferase theta 1	-2,086	5,85E-06
A_23_P253542	SMPX	small muscle protein, X-linked	-2,020	6,15E-06
A_23_P116898	A2M	alpha-2-macroglobulin	-2,407	6,36E-06
A_23_P217326	FHL1	four and a half LIM domains 1	-2,562	6,38E-06
A_23_P86653	SRGN	serglycin	-2,814	6,60E-06

AgilentID	Symbol	Genname	logFC ZK2-BK2	FDR ZK2-BK2
A_24_P403417	PTGES	prostaglandin E synthase	-2,608	7,50E-06
A_23_P141624	KRTAP1-1	keratin associated protein 1-1	-2,077	7,80E-06
A_23_P120227	LBH	limb bud and heart development homolog (mouse)	-2,470	8,61E-06
A_24_P412734	PRSS36	protease, serine, 36	-2,392	8,78E-06
A_23_P118203	LOC124220	similar to common salivary protein 1	-2,288	8,91E-06
A_23_P428129	CDKN1C	cyclin-dependent kinase inhibitor 1C (p57, Kip2)	-2,026	8,98E-06
A_23_P106405	NDN	necdin homolog (mouse)	-2,185	9,03E-06
A_23_P58082	CCDC80	coiled-coil domain containing 80	-2,267	9,78E-06
A_23_P31921	ASS1	argininosuccinate synthetase 1	-2,030	9,87E-06
A_24_P348861	TTTY15	testis-specific transcript, Y-linked 15	-2,427	1,17E-05
A_23_P205031	COL4A2	collagen, type IV, alpha 2	-2,206	1,22E-05
A_24_P140475	SORBS2	sorbin and SH3 domain containing 2	-2,987	1,37E-05
A_23_P73848	CYorf14	chromosome Y open reading frame 14	-2,790	1,38E-05
A_23_P116414	PLA2G16	phospholipase A2, group XVI	-2,585	1,63E-05
A_23_P14612	FGF7	fibroblast growth factor 7 (keratinocyte growth factor)	-2,598	1,68E-05
A_24_P892612	LOC100128164	hypothetical LOC100128164	-2,413	1,73E-05
A_24_P220947	AKR1C1	aldo-keto reductase family 1, member C1 (dihydrodiol dehydrogenase 1; 20-alpha (3-alpha)-hydroxysteroid dehydrogenase)	-2,772	2,29E-05
A_23_P151426	FOXO1	forkhead box O1	-2,871	2,70E-05
A_24_P416370	HOXB4	homeobox B4	-2,263	2,73E-05
A_32_P42895	NOTCH3	Notch homolog 3 (Drosophila)	-2,025	3,25E-05
A_23_P392575	KCNE4	potassium voltage-gated channel, Isk-related family, member 4	-2,906	3,36E-05
A_32_P78816	PSPH	phosphoserine phosphatase	-2,345	3,45E-05
A_23_P50919	SERPINE2	serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 2	-2,787	3,48E-05
A_23_P19142	KCNMB1	potassium large conductance calcium-activated chan- nel, subfamily M, beta member 1	-2,350	3,63E-05
A_23_P381945	KRT7	keratin 7	-2,222	5,02E-05
A_24_P14584	BACE2	beta-site APP-cleaving enzyme 2	-2,106	5,20E-05
A_23_P398476	HOXC8	homeobox C8	-2,671	5,35E-05
A_23_P202327	ADAM12	ADAM metallopeptidase domain 12	-2,441	5,84E-05
A_24_P6370	C1orf110	chromosome 1 open reading frame 110	-2,049	5,97E-05
A_24_P370372	CBX6	chromobox homolog 6	-2,114	6,82E-05
A_23_P374695	ТЕК	TEK tyrosine kinase, endothelial	-2,509	8,16E-05
A_24_P326660	MCAM	melanoma cell adhesion molecule	-2,001	8,67E-05
A_23_P94517	DBC1	deleted in bladder cancer 1	-2,290	8,75E-05
A_23_P371284	LCE2D	late cornified envelope 2D	-2,551	9,17E-05
A_23_P156445	DDX43	DEAD (Asp-Glu-Ala-Asp) box polypeptide 43	-2,524	9,90E-05
A_23_P501007	EFEMP1	EGF-containing fibulin-like extracellular matrix protein 1	-2,500	1,47E-04
A_23_P58676	C5orf23	chromosome 5 open reading frame 23	-2,037	1,56E-04
A_24_P274111	CHI3L1	chitinase 3-like 1 (cartilage glycoprotein-39)	-2,158	1,57E-04
A_23_P78158	RABEP1	rabaptin, RAB GTPase binding effector protein 1	-2,262	1,82E-04
A_24_P382187	IGFBP4	insulin-like growth factor binding protein 4	-2,841	1,92E-04
A_23_P146572	NPDC1	neural proliferation, differentiation and control, 1	-2,057	1,95E-04
A_24_P498854	LOC284998	hypothetical protein LOC284998	-2,044	1,97E-04
A_23_P170649	C8orf84	chromosome 8 open reading frame 84	-2,051	1,99E-04
A_23_P97700	TXNIP	thioredoxin interacting protein	-2,154	2,06E-04
A_23_P110686	STC2	stanniocalcin 2	-2,041	2,44E-04
A_23_P127584	NNMT	nicotinamide N-methyltransferase	-2,267	2,57E-04

AgilentID	Symbol	Genname	logFC ZK2-BK2	FDR ZK2-BK2
A_24_P270728	NUPR1	nuclear protein 1	-2,265	3,33E-04
A_32_P62963	MGC102966	similar to Keratin, type I cytoskeletal 16 (Cytokeratin- 16) (CK-16) (Keratin-16) (K16)	-2,762	3,93E-04
A_23_P36546	HOXC10	homeobox C10	-2,801	4,70E-04
A_32_P114003	LOC100192378	hypothetical LOC100192378	-2,484	5,17E-04
A_23_P119353	RASIP1	Ras interacting protein 1	-2,445	7,35E-04
A_32_P24832	OLFML3	olfactomedin-like 3	-2,553	7,68E-04
A_23_P48951	MFGE8	milk fat globule-EGF factor 8 protein	-2,886	8,05E-04
A_23_P314101	SUSD2	sushi domain containing 2	-2,330	8,05E-04
A_23_P209625	CYP1B1	cytochrome P450, family 1, subfamily B, polypeptide 1	-2,097	9,00E-04
A_23_P119196	KLF2	Kruppel-like factor 2 (lung)	-3,402	9,30E-04
A_24_P258473	SMOC1	SPARC related modular calcium binding 1	-2,306	1,12E-03
A_23_P83328	ENG	endoglin	-2,245	2,34E-03
A_23_P154338	EFHD1	EF-hand domain family, member D1	-2,060	3,21E-03
A_24_P265346	KRT14	keratin 14	-2,412	4,36E-03
A_24_P887857	KRT17P3	keratin 17 pseudogene 3	-2,450	5,67E-03
A_32_P232214	LOC388630	UPF0632 protein A	-2,130	5,68E-03

7 Literaturverzeichnis

Amin S, Riggs BL, Atkinson EJ, Oberg AL, Melton LJ 3rd, Khosla S (2004): A potentially deleterious role of IGFBP-2 on bone density in aging men and women. J Bone Miner Res <u>19</u>, 1075–1083

Amin S, Riggs BL, Melton LJ 3rd, Achenbach SJ, Atkinson EJ, Khosla S (2007): High serum IGFBP-2 is predictive of increased bone turnover in aging men and women. J Bone Miner Res <u>22</u>, 799–807

Arai R, Ito K, Ohnishi T, Ohba H, Akasaka R, Bessho Y, Hanawa-Suetsugu K, Yoshikawa T, Shirouzu M, Yokoyama S (2007): Crystal structure of human myo-inositol monophosphatase 2, the product of the putative susceptibility gene for bipolar disorder, schizophrenia, and febrile seizures. Proteins <u>67</u>, 732–742

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT et al. (2000): Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet <u>25</u>, 25–29

Atkins GJ, Kostakis P, Pan B, Farrugia A, Gronthos S, Evdokiou A, Harrison K, Findlay DM, Zannettino AC (2003): RANKL expression is related to the differentiation state of human osteoblasts. J Bone Miner Res <u>18</u>, 1088–1098

Bao L, Liu H, You B, Gu M, Shi S, Shan Y, Li L, Chen J, You Y (2016): Overexpression of IGFBP3 is associated with poor prognosis and tumor metastasis in nasopharyngeal carcinoma. Tumour Biol <u>37</u>, 15043–15052

Barroca V, Lewandowski D, Jaracz-Ros A, Hardouin SN (2017): Paternal Insulin-like Growth Factor 2 (Igf2) Regulates Stem Cell Activity During Adulthood. EBioMedicine <u>15</u>, 150–162

Baruah P, Dumitriu IE, Peri G, Russo V, Mantovani A, Manfredi AA, Rovere-Querini P (2006): The tissue pentraxin PTX3 limits C1q-mediated complement activation and phagocytosis of apoptotic cells by dendritic cells. J Leukoc Biol <u>80</u>, 87–95

Batouli S, Miura M, Brahim J, Tsutsui TW, Fisher LW, Gronthos S, Robey PG, Shi S (2003): Comparison of stem-cell-mediated osteogenesis and dentinogenesis. J Dent Res <u>82</u>, 976–981

Baughman G, Wiederrecht GJ, Campbell NF, Martin MM, Bourgeois S (1995): FKBP51, a novel T-cell-specific immunophilin capable of calcineurin inhibition. Mol Cell Biol <u>15</u>, 4395–4402

Becker AJ, McCulloch EA, Till JE (1963): Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature <u>197</u>, 452–454

Beissbarth T, Speed TP (2004): GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics <u>20</u>, 1464–1465

Benjamini Y, Hochberg Y (1995): Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol <u>57</u>, 289–300

Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001): Controlling the false discovery rate in behavior genetics research. Behav Brain Res <u>125</u>, 279–284

Bennett JH, Joyner CJ, Triffitt JT, Owen ME (1991): Adipocytic cells cultured from marrow have osteogenic potential. J Cell Sci <u>99</u>, 131–139

Bergman D, Halje M, Nordin M, Engström W (2013): Insulin-like growth factor 2 in development and disease: a mini-review. Gerontology <u>59</u>, 240–249

Brafman A, Mett I, Shafir M, Gottlieb H, Damari G, Gozlan-Kelner S, Vishnevskia-Dai V, Skaliter R, Einat P, Faerman A et al. (2004): Inhibition of oxygen-induced retinopathy in RTP801-deficient mice. Invest Ophthalmol Vis Sci <u>45</u>, 3796–3805

Brew K, Nagase H (2010): The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta <u>1803</u>, 55–71

Brunner HG, Nelen MR, van Zandvoort P, Abeling NG, van Gennip AH, Wolters EC, Kuiper MA, Ropers HH, van Oost BA (1993): X-linked borderline mental retardation with prominent behavioral disturbance: phenotype, genetic localization, and evidence for disturbed monoamine metabolism. Am J Hum Genet <u>52</u>, 1032–1039

Buraschi S, Neill T, Goyal A, Poluzzi C, Smythies J, Owens RT, Schaefer L, Torres A, Iozzo RV (2013): Decorin causes autophagy in endothelial cells via Peg3. Proc Natl Acad Sci U S A <u>110</u>, E2582–91

Byers RJ, Brown J, Brandwood C, Wood P, Staley W, Hainey L, Freemont AJ, Hoyland JA (1999): Osteoblastic differentiation and mRNA analysis of STRO-1-positive human bone marrow stromal cells using primary in vitro culture and poly (A) PCR. J Pathol <u>187</u>, 374–381

Cabanillas B, Novak N (2016): Atopic dermatitis and filaggrin. Curr Opin Immunol 42, 1-8

Christophersen NS, Helin K (2010): Epigenetic control of embryonic stem cell fate. J Exp Med 207, 2287–2295

Cohnheim J (1867): Ueber Entzündung und Eiterung. Virchows Arch Pathol Anat Physiol Klin Med <u>40</u>, 1–79

Conover CA, Johnstone EW, Turner RT, Evans GL, John Ballard FJ, Doran PM, Khosla S (2002): Subcutaneous administration of insulin-like growth factor (IGF)-II/IGF binding protein-2 complex stimulates bone formation and prevents loss of bone mineral density in a rat model of disuse osteo-porosis. Growth Horm IGF Res <u>12</u>, 178–183

D'Aquino R, Graziano A, Sampaolesi M, Laino G, Pirozzi G, De Rosa A, Papaccio G (2007): Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell Death Differ <u>14</u>, 1162–1171

Da Silva M, Dombre C, Brionne A, Monget P, Chessé M, De Pauw M, Mills M, Combes-Soia L, Labas V, Guyot N et al. (2019): The Unique Features of Proteins Depicting the Chicken Amniotic Fluid. Mol Cell Proteomics <u>18</u>, 174–190

Dalman MR, Deeter A, Nimishakavi G, Duan ZH (2012): Fold change and p-value cutoffs significantly alter microarray interpretations. BMC Bioinformatics <u>13</u>, 11

De Buck M, Gouwy M, Wang JM, Van Snick J, Opdenakker G, Struyf S, Van Damme J (2016): Structure and Expression of Different Serum Amyloid A (SAA) Variants and their Concentration-Dependent Functions During Host Insults. Curr Med Chem <u>23</u>, 1725–1755

De Buck M, Gouwy M, Berghmans N, Opdenakker G, Proost P, Struyf S, Van Damme J (2018): COOH-terminal SAA1 peptides fail to induce chemokines but synergize with CXCL8 and CCL3 to recruit leukocytes via FPR2. Blood <u>131</u>, 439–449

Deutsch E (1992): Fetus in Germany: the Fetus Protection Law of 12.13.1990. J Int Bioethique <u>3</u>, 85–93

Dittrich R, Beckmann MW, Würfel W (2015): Non-embryo-destructive Extraction of Pluripotent Embryonic Stem Cells: Implications for Regenerative Medicine and Reproductive Medicine. Geburtshilfe Frauenheilkd <u>75</u>, 1239–1242

Doyonnas R, Kershaw DB, Duhme C, Merkens H, Chelliah S, Graf T, McNagny KM (2001): Anuria, omphalocele, and perinatal lethality in mice lacking the CD34-related protein podocalyxin. J Exp Med <u>194</u>, 13–27

Echeverria C, Diaz A, Suarez B, Bevilacqua JA, Bonnemann C, Bertini E, Castiglioni C (2017): Keloids, Spontaneous or After Minor Skin Injury: Importance of Not Missing Bethlem Myopathy. Acta Derm Venereol <u>97</u>, 297–298

Ellisen LW (2005): Growth control under stress: mTOR regulation through the REDD1-TSC pathway. Cell Cycle <u>4</u>, 1500–1502

Elmose C, Thomsen SF (2015): Twin Studies of Atopic Dermatitis: Interpretations and Applications in the Filaggrin Era. J Allergy (Cairo) 2015, 902359

Emons JAM, Gerth van Wijk R (2018): Food Allergy and Asthma: Is There a Link? Curr Treat Options Allergy <u>5</u>, 436–444

Endicott J, Holden P, Fitzgerald J (2017): Authentication of collagen VI antibodies. BMC Res Notes <u>10</u>, 358

Enomoto-Iwamoto M, Kitagaki J, Koyama E, Tamamura Y, Wu C, Kanatani N, Koike T, Okada H, Komori T, Yoneda T et al. (2002): The Wnt antagonist Frzb-1 regulates chondrocyte maturation and long bone development during limb skeletogenesis. Dev Biol <u>251</u>, 142–156

Erlandsen H, Ames JE, Tamkenath A, Mamaeva O, Stidham K, Wilson ME, Perez-Pinera P, Deuel TF, Macdougall M (2012): Pleiotrophin expression during odontogenesis. J Histochem Cytochem <u>60</u>, 366–375

Erreni M, Manfredi AA, Garlanda C, Mantovani A, Rovere-Querini P (2017): The long pentraxin PTX3: A prototypical sensor of tissue injury and a regulator of homeostasis. Immunol Rev <u>280</u>, 112–125

Eyckmans J, Luyten FP (2006): Species specificity of ectopic bone formation using periosteumderived mesenchymal progenitor cells. Tissue Eng <u>12</u>, 2203–2213

Faltus T, Storz U (2016): Response to: Dittrich et al.: Non-Embryo-Destructive Extraction of Pluripotent Embryonic Stem Cells - Overlooked Legal Prohibitions, Professional Legal Consequences and Inconsistencies in Patent Law. Geburtshilfe Frauenheilkd <u>76</u>, 1302–1307

Ferguson CA, Tucker AS, Christensen L, Lau AL, Matzuk MM, Sharpe PT (1998): Activin is an essential early mesenchymal signal in tooth development that is required for patterning of the murine dentition. Genes Dev <u>12</u>, 2636–2649

Ferreira E, Porter RM, Wehling N, O'Sullivan RP, Liu F, Boskey A, Estok DM, Harris MB, Vrahas MS, Evans CH et al. (2013): Inflammatory cytokines induce a unique mineralizing phenotype in mesenchymal stem cells derived from human bone marrow. J Biol Chem <u>288</u>, 29494–29505

Frasca F, Pandini G, Scalia P, Sciacca L, Mineo R, Costantino A, Goldfine ID, Belfiore A, Vigneri R (1999): Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol <u>19</u>, 3278–3288

Galotto M, Campanile G, Robino G, Cancedda FD, Bianco P, Cancedda R (1994): Hypertrophic chondrocytes undergo further differentiation to osteoblast-like cells and participate in the initial bone formation in developing chick embryo. J Bone Miner Res <u>9</u>, 1239–1249

Gazzerro E, Pereira RC, Jorgetti V, Olson S, Economides AN, Canalis E (2005): Skeletal overexpression of gremlin impairs bone formation and causes osteopenia. Endocrinology <u>146</u>, 655–665

Gerton GL, Hedrick JL (1986): The vitelline envelope to fertilization envelope conversion in eggs of Xenopus laevis. Dev Biol <u>116</u>, 1–7

Gharibi B, Ghuman M, Hughes FJ (2016): DDIT4 regulates mesenchymal stem cell fate by mediating between HIF1 α and mTOR signalling. Sci Rep <u>6</u>, 36889

Gronthos S, Graves SE, Ohta S, Simmons PJ (1994): The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors. Blood <u>84</u>, 4164–4173

Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000): Postnatal human dental pulp stem cells (DPSCs) *in vitro* and *in vivo*. Proc Natl Acad Sci U S A <u>97</u>, 13625–13630

Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM (2001): Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol <u>189</u>, 54–63

Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S (2002): Stem cell properties of human dental pulp stem cells. J Dent Res <u>81</u>, 531–535

Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ (2003): Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci <u>116</u>, 1827–1835

Gubbiotti MA, Vallet SD, Ricard-Blum S, Iozzo RV (2016): Decorin interacting network: A comprehensive analysis of decorin-binding partners and their versatile functions. Matrix Biol <u>55</u>, 7–21

Gümmer AM: Proliferations- und Differenzierungsverhalten humaner Zahnkeimzellen der Pulpa. Zahnmed. Diss. Göttingen 2011

Guyot N, Labas V, Harichaux G, Chessé M, Poirier JC, Nys Y, Réhault-Godbert S (2016): Proteomic analysis of egg white heparin-binding proteins: towards the identification of natural antibacterial molecules. Sci Rep <u>6</u>, 27974

Halper J, Kjaer M (2014): Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. Adv Exp Med Biol <u>802</u>, 31–47

Hansen NU, Willumsen N, Sand JM, Larsen L, Karsdal MA, Leeming DJ (2016): Type VIII collagen is elevated in diseases associated with angiogenesis and vascular remodeling. Clin Biochem 49, 903–908

Hepp H, Haller U, Winter R (2003): Science and law in assisted reproductive medicine – two sides of the same token. Gynakol Geburtshilfliche Rundsch 43, 1–5

Hildebrand A, Romarís M, Rasmussen LM, Heinegard D, Twardzik DR, Border WA, Ruoslahti E (1994): Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem J <u>302</u>, 527–534

Hoang B, Moos M Jr, Vukicevic S, Luyten FP (1996): Primary structure and tissue distribution of FRZB, a novel protein related to Drosophila frizzled, suggest a role in skeletal morphogenesis. J Biol Chem <u>271</u>, 26131–26137

Hong S, Kim MM (2018): IGFBP-3 plays an important role in senescence as an aging marker. Environ Toxicol Pharmacol <u>59</u>, 138–145

Hu YY, Liu JC, Xing AY, You Y, Wang XD (2012): REDD1 expression in placenta during human gestation. Reprod Sci <u>19</u>, 995–1000

Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC et al. (2007): DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res <u>35</u>, W169–75

Huang J, Hu W, Lin X, Wang X, Jin K (2015): FRZB up-regulated in hepatocellular carcinoma bone metastasis. Int J Clin Exp Pathol <u>8</u>, 13353–13359

Ikeda E, Morita R, Nakao K, Ishida K, Nakamura T, Takano-Yamamoto T, Ogawa M, Mizuno M, Kasugai S, Tsuji T (2009): Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci U S A <u>106</u>, 13475–13480

Inada M, Takita M, Yokoyama S, Watanabe K, Tominari T, Matsumoto C, Hirata M, Maru Y, Maruyama T, Sugimoto Y et al. (2015): Direct Melanoma Cell Contact Induces Stromal Cell Autocrine Prostaglandin E2-EP4 Receptor Signaling That Drives Tumor Growth, Angiogenesis, and Metastasis. J Biol Chem <u>290</u>, 29781–29793

Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003): Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics <u>4</u>, 249–264

Järveläinen H, Sainio A, Wight TN (2015): Pivotal role for decorin in angiogenesis. Matrix Biol <u>43</u>, 15–26

Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M et al. (2002): Pluripotency of mesenchymal stem cells derived from adult marrow. Nature <u>418</u>, 41–49

Justus CR, Dong L, Yang LV (2013): Acidic tumor microenvironment and pH-sensing G proteincoupled receptors. Front Physiol <u>4</u>, 354

Kang HG, Lee M, Lee KB, Hughes M, Kwon BS, Lee S, McNagny KM, Ahn YH, Ko JM, Ha IS et al. (2017): Loss of podocalyxin causes a novel syndromic type of congenital nephrotic syndrome. Exp Mol Med <u>49</u>, e414

Kato T (2007): Molecular genetics of bipolar disorder and depression. Psychiatry Clin Neurosci <u>61</u>, 3–19

Kemp KC, Hows J, Donaldson C (2005): Bone marrow-derived mesenchymal stem cells. Leuk Lymphoma <u>46</u>, 1531–1544

Kezic S, Jakasa I (2016): Filaggrin and Skin Barrier Function. Curr Probl Dermatol <u>49</u>, 1–7

Kido S, Doi Y, Kim F, Morishita E, Narita H, Kanaya S, Ohkubo T, Nishikawa K, Yao T, Ooi T (1995): Characterization of vitelline membrane outer layer protein I, VMO-I: amino acid sequence and structural stability. J Biochem <u>117</u>, 1183–1191

Kim JR, Lee SR, Chung HJ, Kim S, Baek SH, Kim JH, Kim YS (2003): Identification of amyloid beta-peptide responsive genes by cDNA microarray technology: involvement of RTP801 in amyloid beta-peptide toxicity. Exp Mol Med <u>35</u>, 403–411

Kimmelman AC (2011): The dynamic nature of autophagy in cancer. Genes Dev 25, 1999–2010

Kurosaki M, Bolis M, Fratelli M, Barzago MM, Pattini L, Perretta G, Terao M, Garattini E (2013): Structure and evolution of vertebrate aldehyde oxidases: from gene duplication to gene suppression. Cell Mol Life Sci <u>70</u>, 1807–1830

Lee NH, Saeed AI (2007): Microarrays: an overview. Methods Mol Biol 353, 265–300

Lei M, Li K, Li B, Gao LN, Chen FM, Jin Y (2014): Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after in vivo transplantation. Biomaterials <u>35</u>, 6332–6343

Lodewyckx L, Cailotto F, Thysen S, Luyten FP, Lories RJ (2012): Tight regulation of winglesstype signaling in the articular cartilage - subchondral bone biomechanical unit: transcriptomics in Frzb-knockout mice. Arthritis Res Ther <u>14</u>, R16

Lowell CA, Stearman RS, Morrow JF (1986): Transcriptional regulation of serum amyloid A gene expression. J Biol Chem <u>261</u>, 8453–8461

Lysiak JJ, Hunt J, Pringle GA, Lala PK (1995): Localization of transforming growth factor beta and its natural inhibitor decorin in the human placenta and decidua throughout gestation. Placenta <u>16</u>, 221–231

Maeshima Y, Colorado PC, Torre A, Holthaus KA, Grunkemeyer JA, Ericksen MB, Hopfer H, Xiao Y, Stillman IE, Kalluri R (2000): Distinct antitumor properties of a type IV collagen domain derived from basement membrane. J Biol Chem <u>275</u>, 21340–21348

Mahmoud LH, el-Alfy NM (2003): Electron miscroscopy and histochemical studies on four Egyptian helminthes eggs of medical importance. J Egypt Soc Parasitol <u>33</u>, 229–243

Malagelada C, Lopez-Toledano MA, Willett RT, Jin ZH, Shelanski ML, Greene LA (2011): RTP801/REDD1 regulates the timing of cortical neurogenesis and neuron migration. J Neurosci <u>31</u>, 3186–3196

Marino G, Niso-Santano M, Baehrecke EH, Kroemer G (2014a): Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol <u>15</u>, 81–94

Marino G, Pietrocola F, Madeo F, Kroemer G (2014b): Caloric restriction mimetics: natural/physiological pharmacological autophagy inducers. Autophagy <u>10</u>, 1879–1882

Marneros AG, Olsen BR (2005): Physiological role of collagen XVIII and endostatin. FASEB J <u>19</u>, 716–728

McKinnon CM, Mellor H (2017): The tumor suppressor RhoBTB1 controls Golgi integrity and breast cancer cell invasion through METTL7B. BMC Cancer <u>17</u>, 145

Miller LD, Long PM, Wong L, Mukherjee S, McShane LM, Liu ET (2002): Optimal gene expression analysis by microarrays. Cancer Cell <u>2</u>, 353–361

Mimeault M, Batra SK (2011): Frequent Gene Products and Molecular Pathways Altered in Prostate Cancer– and Metastasis-Initiating Cells and Their Progenies and Novel Promising Multitargeted Therapies. Mol Med <u>17</u>, 949–964

Mitsiadis TA, Salmivirta M, Muramatsu T, Muramatsu H, Rauvala H, Lehtonen E, Jalkanen M, Thesleff I (1995): Expression of the heparin-binding cytokines, midkine (MK) and HB-GAM (pleiotrophin) is associated with epithelial-mesenchymal interactions during fetal development and organogenesis. Development <u>121</u>, 37–51

Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003): SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A <u>100</u>, 5807–5812

Miura M, Chen XD, Allen MR, Bi Y, Gronthos S, Seo BM, Lakhani S, Flavell RA, Feng XH, Robey PG et al. (2004): A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J Clin Invest <u>114</u>, 1704–1713

Miyachi K, Yamada T, Kawagishi-Hotta M, Hasebe Y, Date Y, Hasegawa S, Arima M, Iwata Y, Kobayashi T, Numata S et al. (2018): Extracellular proteoglycan decorin maintains human hair follicle stem cells. J Dermatol <u>45</u>, 1403–1410

Mödder UI, Roforth MM, Nicks KM, Peterson JM, McCready LK, Monroe DG, Khosla S (2012): Characterization of mesenchymal progenitor cells isolated from human bone marrow by negative selection. Bone <u>50</u>, 804–810

Morsczeck C, Götz W, Schierholz J, Zeilhofer F, Kühn U, Möhl C, Sippel C, Hoffmann KH (2005): Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol <u>24</u>, 155–165

Musina RA, Bekchanova ES, Belyavskii AV, Sukhikh GT (2006): Differentiation potential of mesenchymal stem cells of different origin. Bull Exp Biol Med <u>141</u>, 147–151

Nagatomo KJ, Tompkins KA, Fong H, Zhang H, Foster BL, Chu EY, Murakami A, Stadmeyer L, Canalis E, Somerman MJ (2008): Transgenic overexpression of gremlin results in developmental defects in enamel and dentin in mice. Connect Tissue Res <u>49</u>, 391–400

Nagatsu T (2004): Progress in monoamine oxidase (MAO) research in relation to genetic engineering. Neurotoxicology <u>25</u>, 11–20

Nakajima J, Okamoto N, Tohyama J, Kato M, Arai H, Funahashi O, Tsurusaki Y, Nakashima M, Kawashima H, Saitsu H et al. (2015): De novo EEF1A2 mutations in patients with characteristic facial features, intellectual disability, autistic behaviors and epilepsy. Clin Genet <u>87</u>, 356–361

Neill T, Torres A, Buraschi S, Iozzo RV (2013): Decorin has an appetite for endothelial cell autophagy. Autophagy <u>9</u>, 1626–1628

Newbery HJ, Loh DH, O'Donoghue JE, Tomlinson VAL, Chau YY, Boyd JA, Bergmann JH, Brownstein D, Abbott CM (2007): Translation elongation factor eEF1A2 is essential for post-weaning survival in mice. J Biol Chem <u>282</u>, 28951–28959

Oellerich DC: Analyse der differentiellen Genexpression von humanen Stro1-positiven Zellen aus pulpalem Zahnkeimgewebe und Beckenkammspongiosa. Zahnmed. Diss. Göttingen 2016

Onyia JE, Helvering LM, Gelbert L, Wei T, Huang S, Chen P, Dow ER, Maran A, Zhang M, Lotinun S et al. (2005): Molecular profile of catabolic versus anabolic treatment regimens of parathyroid hormone (PTH) in rat bone: an analysis by DNA microarray. J Cell Biochem <u>95</u>, 403–418

Opitz L, Salinas-Riester G, Grade M, Jung K, Jo P, Emons G, Ghadimi BM, Beissbarth T, Gaedcke J (2010): Impact of RNA degradation on gene expression profiling. BMC Med Genomics <u>3</u>, 36

Oshima M, Mizuno M, Imamura A, Ogawa M, Yasukawa M, Yamazaki H, Morita R, Ikeda E, Nakao K, Takano-Yamamoto T et al. (2011): Functional tooth regeneration using a bioengineered tooth unit as a mature organ replacement regenerative therapy. PLoS One <u>6</u>, e21531

Parry DA, Smith CE, El-Sayed W, Poulter JA, Shore RC, Logan CV, Mogi C, Sato K, Okajima F, Harada A et al. (2016): Mutations in the pH-Sensing G-protein-Coupled Receptor GPR68 Cause Amelogenesis Imperfecta. Am J Hum Genet <u>99</u>, 984–990

Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999): Multilineage potential of adult human mesenchymal stem cells. Science <u>284</u>, 143–147 Pozzi A, Yurchenco PD, Iozzo RV (2017): The nature and biology of basement membranes. Matrix Biol <u>57-58</u>, 1–11

Presta M, Camozzi M, Salvatori G, Rusnati M (2007): Role of the soluble pattern recognition receptor PTX3 in vascular biology. J Cell Mol Med <u>11</u>, 723–738

Proksch E (2018): pH in nature, humans and skin. J Dermatol 45, 1044–1052

Przygrodzka E, Kaczmarek MM, Kaczynski P, Ziecik AJ (2016): Steroid hormones, prostanoids, and angiogenic systems during rescue of the corpus luteum in pigs. Reproduction <u>151</u>, 135–147

Pufe T, Petersen WJ, Miosge N, Goldring MB, Mentlein R, Varoga DJ, Tillmann BN (2004): Endostatin/collagen XVIII – an inhibitor of angiogenesis – is expressed in cartilage and fibrocartilage. Matrix Biol <u>23</u>, 267–276

Ravaglia MA, Maggese MC (2003): Ovarian follicle ultrastructure in the teleost Synbranchus marmoratus (Bloch, 1795), with special reference to the vitelline envelope development. Tissue Cell <u>35</u>, 9–17

Riederer P, Konradi C, Schay V, Kienzl E, Birkmayer G, Danielczyk W, Sofic E, Youdim MB (1987): Localization of MAO-A and MAO-B in human brain: a step in understanding the therapeutic action of L-deprenyl. Adv Neurol <u>45</u>, 111–118

Rodríguez D, Morrison CJ, Overall CM (2010): Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim Biophys Acta <u>1803</u>, 39–54

Rolf HJ, Kierdorf U, Kierdorf H, Schulz J, Seymour N, Schliephake H, Napp J, Niebert S, Wölfel H, Wiese KG (2008): Localization and characterization of STRO-1 cells in the deer pedicle and regenerating antler. PLoS One <u>3</u>, e2064

Rolf HJ, Niebert S, Niebert M, Gaus L, Schliephake H, Wiese KG (2012): Intercellular transport of Oct4 in mammalian cells: a basic principle to expand a stem cell niche? PLoS One <u>7</u>, e32287

Sarkar L, Sharpe PT (1999): Expression of Wnt signalling pathway genes during tooth development. Mech Dev <u>85</u>, 197–200

Schena M, Shalon D, Davis RW, Brown PO (1995): Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science <u>270</u>, 467–470

Schiebler TH, Korf HW: Anatomie: Histologie, Entwicklungsgeschichte, makroskopische und mikroskopische Anatomie, Topographie. 10. Auflage; Steinkopff-Verlag, Darmstadt 2007

Schöne-Seifert B (2009): Induzierte pluripotente Stammzellen: Ruhe an der Ethikfront? Ethik Med <u>21</u>, 271-273

Schönherr E, Broszat M, Brandan E, Bruckner P, Kresse H (1998): Decorin core protein fragment Leu155-Val260 interacts with TGF-beta but does not compete for decorin binding to type I collagen. Arch Biochem Biophys <u>355</u>, 241–248

Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2004): Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet <u>364</u>, 149–155

Seo BM, Sonoyama W, Yamaza T, Coppe C, Kikuiri T, Akiyama K, Lee JS, Shi S (2008): SHED repair critical-size calvarial defects in mice. Oral Dis <u>14</u>, 428–434

Sertié AL, Sossi V, Camargo AA, Zatz M, Brahe C, Passos-Bueno MR (2000): Collagen XVIII, containing an endogenous inhibitor of angiogenesis and tumor growth, plays a critical role in the maintenance of retinal structure and in neural tube closure (Knobloch syndrome). Hum Mol Genet <u>9</u>, 2051–2058

Shamsi FA, Chen Z, Liang J, Li K, Al-Rajhi AA, Chaudhry IA, Li M, Wu K (2011): Analysis and comparison of proteomic profiles of tear fluid from human, cow, sheep, and camel eyes. Invest Ophthalmol Vis Sci <u>52</u>, 9156–9165

Shi S, Gronthos S (2003): Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res <u>18</u>, 696–704

Shi S, Robey PG, Gronthos S (2001): Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone <u>29</u>, 532–539

Shih JC, Chen K, Ridd MJ (1999): Role of MAO A and B in neurotransmitter metabolism and behavior. Pol J Pharmacol <u>51</u>, 25–29

Shinn SE, Liyanage R, Lay JO Jr, Proctor A (2016): Isolation and Characterization of Chicken Yolk Vitelline Membrane Lipids Using Eggs Enriched With Conjugated Linoleic Acid. Lipids <u>51</u>, 769–779

Simic P, Culej JB, Orlic I, Grgurevic L, Draca N, Spaventi R, Vukicevic S (2006): Systemically administered bone morphogenetic protein-6 restores bone in aged ovariectomized rats by increasing bone formation and suppressing bone resorption. J Biol Chem <u>281</u>, 25509–25521

Siminovitch L, McCulloch EA, Till JE (1963): The Distribution of Colony-forming Cells among Spleen colonies. J Cell Comp Physiol <u>62</u>, 327–336

Simmons PJ, Torok-Storb B (1991): Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood <u>78</u>, 55–62

Smyth GK (2004): Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol <u>3</u>, 3

Sneddon JB, Zhen HH, Montgomery K, van de Rijn M, Tward AD, West R, Gladstone H, Chang HY, Morganroth GS, Oro AE et al. (2006): Bone morphogenetic protein antagonist gremlin 1 is widely expressed by cancer-associated stromal cells and can promote tumor cell proliferation. Proc Natl Acad Sci U S A <u>103</u>, 14842–14847

Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, Huang GT (2008): Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod <u>34</u>, 166–171

Stewart K, Monk P, Walsh S, Jefferiss CM, Letchford J, Beresford JN (2003): STRO-1, HOP-26 (CD63), CD49a and SB-10 (CD166) as markers of primitive human marrow stromal cells and their more differentiated progeny: a comparative investigation in vitro. Cell Tissue Res <u>313</u>, 281–290

Stidham K, Macdougall M, Perez-Pinera P, Deuel TF, Erlandsen H (2009): Critical Role for Pleiotrophin during Tooth Development. J Dent Res <u>88</u>, 3089

Stoeckert, CJ Jr, Causton HC, Ball CA (2002): Microarray databases: standards and ontologies. Nat Genet <u>32</u>, 469–473

Su Q, Weindl G (2018): Glucocorticoids and Toll-like receptor 2 cooperatively induce acute-phase serum amyloid A. Pharmacol Res <u>128</u>, 145–152

Takahashi K, Yamanaka S (2006): Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell <u>126</u>, 663–676

Takeda T, Tezuka Y, Horiuchi M, Hosono K, Iida K, Hatakeyama D, Miyaki S, Kunisada T, Shibata T, Tezuka K (2008): Characterization of dental pulp stem cells of human tooth germs. J Dent Res <u>87</u>, 676–681

Taylor CF, Field D, Sansone SA, Aerts J, Apweiler R, Ashburner M, Ball CA, Binz PA, Bogue M, Booth T et al. (2008): Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project. Nat Biotechnol <u>26</u>, 889–896

Thierry L, Geiser AS, Hansen A, Tesche F, Herken R, Miosge N (2004): Collagen types XII and XIV are present in basement membrane zones during human embryonic development. J Mol Histol <u>35</u>, 803–810

Thomson M, Liu SJ, Zou LN, Smith Z, Meissner A, Ramanathan S (2011): Pluripotency factors in embryonic stem cells regulate differentiation into germ layers. Cell <u>145</u>, 875–889

Tomioka Y, Jiménez E, Salagre E, Arias B, Mitjans M, Ruiz V, Sáiz P, García-Portilla MP, de la Fuente L, Gomes-da-Costa SP et al. (2018): Association between genetic variation in the myoinositol monophosphatase 2 (IMPA2) gene and age at onset of bipolar disorder. J Affect Disord <u>232</u>, 229–236

Tuli R, Tuli S, Nandi S, Wang ML, Alexander PG, Haleem-Smith H, Hozack WJ, Manner PA, Danielson KG, Tuan RS (2003): Characterization of multipotential mesenchymal progenitor cells derived from human trabecular bone. Stem Cells <u>21</u>, 681–693

Tusher VG, Tibshirani R, Chu G (2001): Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A <u>98</u>, 5116–5121

Van Doren SR (2015): Matrix metalloproteinase interactions with collagen and elastin. Matrix Biol <u>44-46</u>, 224–231

Wadhwa S, Bi Y, Ortiz AT, Embree MC, Kilts T, Iozzo R, Opperman LA, Young MF (2007): Impaired posterior frontal sutural fusion in the biglycan/decorin double deficient mice. Bone <u>40</u>, 861–866
Wang W, Wu W, Desai T, Ward DC, Kaufman SJ (1995): Localization of the alpha 7 integrin gene (ITGA7) on human chromosome 12q13: clustering of integrin and Hox genes implies parallel evolution of these gene families. Genomics <u>26</u>, 568–570

Wang XP, Suomalainen M, Jorgez CJ, Matzuk MM, Wankell M, Werner S, Thesleff I (2004): Modulation of activin/bone morphogenetic protein signaling by follistatin is required for the morphogenesis of mouse molar teeth. Dev Dyn <u>231</u>, 98–108

Weigert J, Neumeier M, Bauer S, Mages W, Schnitzbauer AA, Obed A, Gröschl B, Hartmann A, Schäffler A, Aslanidis C et al. (2008): Small-interference RNA-mediated knock-down of aldehyde oxidase 1 in 3T3-L1 cells impairs adipogenesis and adiponectin release. FEBS Lett <u>582</u>, 2965–2972

Weiß KT, Fante M, Köhl G, Schreml J, Haubner F, Kreutz M, Haverkampf S, Berneburg M, Schreml S (2017): Proton-sensing G protein-coupled receptors as regulators of cell proliferation and migration during tumor growth and wound healing. Exp Dermatol <u>26</u>, 127–132

Whibley A, Urquhart J, Dore J, Willatt L, Parkin G, Gaunt L, Black G, Donnai D, Raymond FL (2010): Deletion of MAOA and MAOB in a male patient causes severe developmental delay, intermittent hypotonia and stereotypical hand movements. Eur J Hum Genet <u>18</u>, 1095–1099

Wiley SZ, Sriram K, Salmerón C, Insel PA (2019): GPR68: An Emerging Drug Target in Cancer. Int J Mol Sci <u>20</u>, 559

Worst TS, Waldbillig F, Abdelhadi A, Weis CA, Gottschalt M, Steidler A, von Hardenberg J, Michel MS, Erben P (2017): The EEF1A2 gene expression as risk predictor in localized prostate cancer. BMC Urol <u>17</u>, 86

Yamada Y, Ando F, Shimokata H (2008): Association of genetic variants of MAOA and SH2B1 with bone mineral density in community-dwelling Japanese women. Mol Med Rep <u>1</u>, 269–274

Yao S, He H, Gutierrez DL, Rad MR, Liu D, Li C, Flanagan M, Wise GE (2013): Expression of bone morphogenetic protein-6 in dental follicle stem cells and its effect on osteogenic differentiation. Cells Tissues Organs <u>198</u>, 438–447

Zhou S, Shen Y, Zheng M, Wang L, Che R, Hu W, Li P (2017): DNA methylation of METTL7A gene body regulates its transcriptional level in thyroid cancer. Oncotarget <u>8</u>, 34652–34660

Zoncu R, Efeyan A, Sabatini DM (2011): mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol <u>12</u>, 21–35

Zorn AM (1997): Cell-cell signalling: frog frizbees. Curr Biol 7, R501-504

Danksagung

Allen voran möchte ich mich besonders bei meinem Doktorvater Herrn Prof. Dr. med. Dr. med. dent. K. G. Wiese für die freundliche Überlassung des Themas und die hervorragende Betreuung dieser Dissertation bedanken. Mein Dank gilt ferner Herrn Dipl.-Biol. Dr. rer. nat. Hans J. Rolf und Frau Dr. rer. nat. Sabine Niebert für die Durchführung der Zellkulturexperimente sowie Frau Dr. rer. nat. G. Salinas-Riester und Herrn Dr. rer. nat. T. Linger des Transkriptomanalyselabors der Universitätsmedizin Göttingen. Des Weiteren möchte ich dem gesamten Laborteam der Abteilung für Mund-, Kiefer- und Gesichtschirurgie unter der Leitung von Prof. Dr. med. Dr. med. dent. H. Schliephake meinen herzlichen Dank für die tatkräftige Unterstützung aussprechen, namentlich Frau C. Schäfer für die Unterstützung bei der Anfertigung der histologischen Präparate. Abschließend danke ich der Georg-August-Universität Göttingen für die Bereitstellung und Nutzungsmöglichkeit der räumlichen und technischen Einrichtungen.