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Preface

The present thesis embraces two major areas of mathematics, namely group the-
ory (especially growth in finite groups) and graph theory (especially the graph
isomorphism problem).

Chapter 1 serves as a somewhat lengthy introduction to both, with §1.1-1.2-
1.3-1.4 focusing on growth in groups and §1.5-1.6 on graph isomorphisms.

The next two chapters are mostly graph-theoretic, although they bear many
connections to growth in groups as well. Chapter 2 is based on the author’s
published article [Don19c]; its main results are Theorem 2.1.6, Theorem 2.1.7 and
Theorem 2.1.8. Chapter 3 is based on the author’s preprint [Donl8]; its main
result is Theorem 3.2.1.

The two chapters that follow are entirely on the topic of growth in groups.
Chapter 4 is based on the author’s preprint [Don19b]; its main results are Theo-
rem 4.1.3 and Theorem 4.1.4. Chapter 5 is based on the author’s preprint [Don19a];
its main result is Theorem 5.1.1.

Finally the last one, Chapter 6, is firmly rooted into both areas at once: more
precisely, graph-theoretic tools intervene in group-theoretic problems; its main
result is Theorem 6.3.6, dependent on Conjecture 6.3.4.

Notation. Any and all notations hold unless otherwise stated.

We adopt the big O notation for describing orders of magnitude. If f, g are
some real-valued functions, we say f(x) = O(g(x)) to mean that there exists a
constant C' > 0 such that |f(x)] < Cg(x) for all z in the intersection of the
domains of f,g; since we are almost always considering f to have domain N and
codomain inside R>g, in those cases it suffices to say that f(z) < Cg(x) for all =
large enough. We also use f(z) = o(g(x)) to mean that for all C > 0 and all =
large enough (depending on C) we have f(z) < Cg(z). Finally, f(z) = Q(g(x))
means that there exists C' > 0 such that f(z) > Cg(x) for all z large enough: in
this, we follow Knuth’s definition of the symbol instead of Hardy and Littlewood’s
convention (see Knuth’s own letter to the editor [Knu76], where “O” is incidentally
revealed to be an omicron!). If we want to emphasize that the constant C' in the
notations above depends on other parameters (say n, k), we write them as indices
to the symbol (say O, x(g(x))). Many other authors, especially of the number
theory school, use also Vinogradov’s < and >> notation: the author appreciates
the fact that essentially the same symbol facing two directions can do the job
of both O(:) and Q(-), but he also needs to write things like ¢?(®), for which
Vinogradov provides no solution; thus, no < will be used.



For the set {1,2,...,n} of natural numbers from 1 to n, we often write [n] for
brevity, as is common in the literature regarding permutation groups; to be clear,
the author subscribes to the convention that 0 € N, but 0 has usually little space
in the context of permutations. For us, p denotes a prime number, and g denotes
a prime power.

If X is a finite set, the set of permutations of X is denoted by Sym(X), and
the set of even permutations by Alt(X); in particular, we write Sym(n), Alt(n)
for Sym([n]), Alt([n]) (we will not use the notations S, 4,, and Sym,,, Alt,, that
frequently occur elsewhere). As for algebraic groups, say the special linear group,
we use the notation SL,(F,) instead of the equally widespread SL(n,F,) and
SL(n, q).

We use log, x to denote the logarithm of x in base a, and log” z to denote
(logz)®. Since we will not be using longer expressions than loglog x, there is no
need to use either notation for the iterated logarithm, as some authors do (and
for good reasons need to do).

About identity elements, notation varies with the context. For general groups,
like in §1 and §5, we use e to denote the group’s identity; for permutation groups of
degree n like in §3 we use Id,,, while for the matrix groups in §4 we use Id without
index since we work only with 2x 2 matrices. In §2, where several identities coexist,
we try and use distinct notations: e for general groups, Id,, for n x n matrices,
Idx for automorphisms on the object X. In §6, where we work with permutation
groups but their identity elements are encountered only in their quality of group
identities, we use e.

Finally, since we abundantly use several terms describing orders of magnitude,
which may be unfamiliar to the readers, we collect them here:

e f(x) is quasipolynomial in x when f(x) < ¢ log" = for some absolute con-
stants C, k > 0;

o f(x)is polylogarithmic in x when f(x) < C'log" x for some absolute constants
C,k>0.
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Chapter 1

General introduction

1.1 Growth in groups, Cayley graphs, diameters

These first introductory sections on growth in groups (from §1.1 to §1.4) owe much
to two surveys by Helfgott [Hell5] [Hel19a]. The reader can find more information
about the topics presented here in them and in their references.

Let G be a group. For any two subsets A, B C G, define

AB={ge€ G|3ac A,be B(g=ab)}.

As a shortcut, we can also define recursively for any k € N the set AF+1 = AF A,
starting with A% = {e}.

The very general problem we are going to talk about is the following: what
is the behaviour of the size |A*| of the set A* as the exponent k grows? This
question can be addressed in a myriad of particular situations, and from many
different points of view. To tackle them all would be a monumental task beyond
the aim, and possibly beyond the strength, of the author, so let us immediately
restrict our attention to the case of G finite.

The first thing we observe is that, when G is finite, there will be a certain k
such that |A¥| stabilizes from that point onwards, in the sense that [A¥| = | A¥|
for all ¥ > k. It is always true in fact that |A*¥*1| > |A*|, simply because
|AFa| = |A¥| for any a € A. Moreover, when equality occurs, it must be that
AFq = AFa/ = AR for any a,a’ € A: therefore a” A*a = o A*a’ as well, and
taking the union of all such sets among all a” € A we get A¥Tla = AFH1lg/ as
well and |A¥*2| = |A*+1|. Given this scenario, to interpret the original question
as a problem on the asymptotic behaviour limy_, ., |A*| (which would be, and is,
natural for G infinite) would amount to produce only trivial answers, for all finite
groups and all their finite subsets would have a constant as the limit above. On
the contrary, the problem of what is the least k such that |A¥| stabilizes is the
correct and interesting question we would want to examine.

The set H = |J;=, A’ is a subgroup of G: in fact we have that = = a!%l=1,
since G is finite. When |A¥| stabilizes, all A¥ with k' > k are cosets of the
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same subgroup of H. If we have not only |A*+!| = |A*| but also A¥*! = AF or
equivalently A* becomes eventually the subgroup H defined before, then we say
that A is a set of generators of such a subgroup, which we denote by (A). In that
case, the least k such that A% = (A) is called the diameter: the reason behind the
name is that we can reframe these concepts in a graph-theoretic language, as we
are going to do now.

Definition 1.1.1. Let G be a finite group, and let A be a set of generators of G.
The Cayley graph Cay(G, A) is the graph (V, E) with set of vertices V.= G and
set of edges E = {(g,ag)|g € G,a € A}.

Other notations are also used in the literature, most prominently I'(G, A), as
in [Hell5).

The concept of Cayley graph dates back to 1878 [Cay78]. In the definition
above, we have arbitrarily chosen the edges to be defined by left multiplication:
there is nothing special about this choice, and we could have used right multipli-
cation without hampering our progress to any of the results that follow, so long
as we are consistent about our decision.

Since (A) = G, Cay(G, A) is strongly connected: using the identity (¢'g~1)g =
g', there exists a directed path from the vertex g to the vertex g’ determined by
a finite sequence of generators a; € A such that ajas...a,, = ¢’¢g~* (this path
is not unique in general, of course). The set A is allowed (and often encouraged)
to contain e, so the set of edges E may contain loops; in some contexts it is also
useful to consider Cay(G, A) as a labelled graph, where the labelling of E is given
by A (i.e. (g,ag) is labelled a: this is unambiguous, as ag = a’g obviously implies
a=a).

As is commonplace with graphs, we can define the length of a walk as the
number of edges involved in the definition of the walk itself, and then for any two
vertices v, w € G we can define the distance d (v, w) as the length of the shortest
walk from v to w in the graph Cay(G, A) (if there is no risk of confusion, the index
in the notation d4 can be dropped). This allows us to give the following definition.

Definition 1.1.2. Let G be a finite group, and let A be a set of generators of G.
The (directed) diameter of Cay(G, A) is

diam™ (Cay (G, A)) = max{da (v, w)|v,w € G}.
The (directed) diameter of G is
diam™ (@) = max{diam™ (Cay(G, A))|A C G, (A) = G}.

Other authors use the notation M(G), as in [HS14].

It is clear that diam™(Cay(G, A)) is the same as the diameter considered, a
bit differently from before, as the least k with Uf:o A = (A). Such k is the same
as the maximum distance from the identity e € G to any other vertex of G (so
that we have the inequality in one direction), and the maximum distances from
all vertices are the same in a Cayley graph: as a matter of fact, Cayley graphs are
vertex-transitive, meaning that there is an automorphism sending vy to vo for any

12



given pair of vertices v, w € G, given by right multiplication (as av; = vo if and
only if avjw = vow)?!, therefore the existence of a vertex at a certain distance d
from v; must be preserved by that transformation.

The questions we are trying to answer in this context become: given a finite
group G and a set of generators A, what is the diameter of Cay(G, A)? Is there
some important difference between classes of sets A that is reflected in different
diameters? Given a finite group G, what is its diameter? Are there general lower or
upper bounds on diam(G) that hold for all groups, or for ample classes of groups,
as either |G| or other parameters relevant to the class of groups one considers tend
to infinity?

Before we go into the more particular and interesting cases, around which
most of today’s research revolves, let us establish some very basic facts. As we are
talking about diameters of (strongly connected) graphs, the most trivial bound
one could think of would be diam™ (Cay(G, A)) < |G| — 1. If we are taking into
consideration the fact that the edges of a Cayley graph are directed, the equality
is achieved by some groups: for example, we can take G = Z/nZ and A = {0, 1},
and the element —1 would be reached only in |G| — 1 steps.

In reality, as many authors do (and as we will do as well in the future), one
can focus on undirected Cayley graphs?, or equivalently on sets of generators A
such that A = A~! since one can see an undirected edge {v,w} as two edges
(v,w), (w,v). In that case, the trivial upper bound becomes |3|G||: in fact for
every such graph I' and every vertex v there cannot be only one vertex with
distance 0 < d < diam(I") from v, or else such a vertex would become a separating
set on its own and, by the vertex-transitivity of Cayley graphs, all vertices would
be (which is impossible). Again, the bound is actually achieved, for example by
G = Z/nZ and A = {—1,0,1}. A second common simplification is to consider
only sets A with e € A: in this case we have A¥ D AF for k' > k and then
Uf:o A" = AF: in particular, every set A is a set of generators of some (4) < G,
and there is a minimum k with A*¥ = (A) that is equal to diam™ (Cay((A), A)).

Our desire to adopt these two simplifications, namely e € A = A~!, prompt us
to write the following definition.

Definition 1.1.3. Let G be a finite group, and let A be a set of generators of G.
The (undirected) diameter of Cay(G, A) is

diam(Cay(G, A)) = max{d sy 4-1 (v, w)|v,w € G}.
The (undirected) diameter of G is
diam(G) = max{diam(Cay (G, A))|A C G, (4) = G}.

1Evidently, the automorphism even preserves labels. Conversely, right multiplications are
obviously the only automorphisms of Cayley graphs, if we must respect the labels; however, if
we are required to respect the labelling but not the labels themselves (i.e. we can send an edge
labelled a1 to another labelled a2, as long as all edges labelled a; are sent to az), or if we
can ignore the labelling entirely, the question is more complicated. It is not known in general
what the group of automorphisms of a Cayley graph is in those cases, although some partial
results exist (see [God81] [BG82] [DSV16] [PSV17]). This is quite an interesting topic, which
unfortunately we are not going to explore.

2For instance, Babai [Bab06] refers to directed Cayley graphs as “Cayley digraphs”, and to
undirected Cayley graphs as “Cayley graphs”.
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From now on, whenever we talk about Cayley graphs and diameters, we always
refer to undirected ones unless otherwise stated. It is clear that if e € A = A™!
then diam and diam™ of the corresponding Cayley graph coincide, and that they
are the same as the least k with AF = (A).

Our questions on diameters remain unchanged, although now they refer to
undirected diameters. This does not entail a significant loss of generality, as long
as we are not particular about small factors: in fact we know that

diam™ (Cay(G, A)) < C - (diam(Cay (G, A)))? - log® |G|,
diam™(G) < (34 o(1)) - diam(G) - log? |G|,

where C' > 0 is some absolute constant (see [Bab06, Thm. 1.4] and [Bab06,
Cor. 2.3] respectively).

The fact that considering A as symmetric is not a big difference form the non-
symmetric case can also be seen, from another point of view, by looking more
closely at the growth of A itself (intended as the ratio between the size of the
powers of A and the size of A) instead of counting the number of steps that are
necessary to fill the group. This assertion is based on the fact that the growth
of the set B = AU A~! U {e} can be controlled by the growth of A itself: more

precisely, we have
3
|B®| _ (3]A%]
— < 1.1.1
B = \a -

for any finite G and any A C GG. This bound is retrieved through rather elementary
means starting from the ideas of Ruzsa: see for example the slightly stronger
statement in [Hell5, (3.2)]. Notice also that we measure growth in terms of the
cube of the set: again, we do so without loss of generality, since one can show that

AR 1A%\
— < | — 1.
A <\ (1.12)

for all k > 3 and all sets A = A™! (a weaker version of which appears in [RT85,
Thm. 3] for G = Z). Both (1.1.1) and (1.1.2) descend in particular from the
fundamental Ruzsa triangle inequality [Ruz96, Thm. 4.2], which dates at least as
back as 1976 (see [Ruz79]) and whose arguments generalize even outside groups
(see [GHR15, Lemma 4.2]). Many of the arguments of Ruzsa (and Pliinnecke
[P1i70] before him) were originally framed in the context of abelian groups, but
they generalize without much difficulty to the non-abelian case. It has to be noted
however that the growth in abelian groups can be measured in terms of | A2| instead
of |A?|; this does not happen in general, for example in the case of A = H U {g}
with H < G and g € G\ H and HgH much larger than A (see for instance [Hel19a,
Ex. 2.1]).

Returning to the question that we were considering before, upper bounds of the
form o(|G|) for the diameter of G are less trivial: as we have observed, there are
groups for which it would not be possible to prove such a statement, but it may be
(and is) possible for more restricted but still interesting classes of groups. It is clear
that we cannot do better than O(log |G|), at least for groups that are generated by

14



a number of elements not larger than a given constant: clearly |AF| < |A|*, with
equality realized only when all products of k elements of A are effectively distinct,
therefore we can have A*¥ = G only for k > %; examples of groups that we are
going to see later and that are generated by a constant number of elements are
Sym(n) and SL,(F,). By the fact that any group has a set of generators of size

< log, |G| (because if H < G and g € G\ H then |(H U{g})| > 2|H]|), we could

also reach at most diam(G) = O (%

Actually such strong bounds are not even true in many interesting cases: see
Example 5.4.1, which shows that diam(Alt(n)?) = Q(n?) whereas log|Alt(n)?| <
2nlogn (with the same methods we can prove the same lower bound for Alt(n)
itself). Another example would be G = (Z/2Z)"™, which cannot be generated by
less that n elements: the set A = {0"} U {010"~*~1|0 < i < n} however generates
G in n steps, so that diam(G) = Q(log |G|). In the latter example, we are hindered
by the abelianness of GG, which stifles the growth of A since not all products of k
elements are distinct; case in point, we have seen Z/nZ having linear diameter.

Many finite groups are, however, not abelian. In fact, most of them are not:
the number of abelian groups of order < n is linear in n (see [Ivi85, Thm. 14.6]),

, for any finite group.

while the number of groups of order p™ is at least p(%ﬂ’(l))”3 for p fixed prime and
n — 0o, as was already known to Higman [Hig60]. For non-commutative groups,
one can hope and often expect A to cover G in a shorter number of steps, and the
Cayley graph Cay(G, A) or even G itself to have a relatively small diameter. In
the next sections, we are going to introduce the concept of simple group and see
what has been proved or conjectured about their diameters.

1.2 Finite simple groups

Let G be a group, not necessarily finite. Among all its subgroups, normal subgroups
occupy a special place: these are the subgroups N such that gN = Ng for any
g € G, and the property of being normal is denoted by the notation N <G. Normal
subgroups enjoy many nice properties, first and foremost the fact that we do not
have to be careful about left and right multiplication, which is used to show that
the set of (left or right) cosets of N behaves like a group as well, the quotient group
G/N.

One could expect to be able to understand G, at least to a certain extent,
by studying N and G/N instead: a spectacularly appropriate example of this is
provided by Lemma 6.2.5. Hence, we could and should aim to reduce ourselves to
the smallest possible unit of study.

Definition 1.2.1. Let G be a group. G is said to be simple if there are no normal
subgroups N <G other than N = {e} and N = G.

We have claimed somewhat vaguely that simple groups are the smallest objects
worth studying in some contexts. Their role is often compared to the one played
by prime numbers in the context of integers: we can split a number n into two
factors a, b such that n = ab, and then keep going until we end up with a product
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of prime numbers. Of course, we are making use of the fact that Z is a UFD, i.e.
that there is an essentially unique way to split n into its prime factors; if we want
to keep up this giuoco delle parti, we need an analogous result in the context of
groups. Fortunately, at least for finite groups, we do have such a result.

Definition 1.2.2. Let G be a finite group. A composition series is a finite chain
of proper normal subgroups

{e}=Hy<H;<H:<...<H, 1<H,=G

such that the quotient H;/H;_1 is simple for every 1 < ¢ < n. The quotients
H;/H;_1 are called composition factors.

Theorem 1.2.3 (Jordan-Hélder theorem). Let G be a finite group. Then, any
two composition series of G are equivalent, i.e. they have the same length and the
composition factors that appear in the two series are the same up to isomorphism
and up to permutation of their position in the series.

This theorem is named after Jordan, who proved that the quotients have the
same size up to permutation [Jor70, §55]%, and Hélder, who proved that they are
actually isomorphic [H6189]; see [Bau06] for a short, modern proof. It is worth
noting that the theorem is generalizable to infinite groups and transfinite series,
as long as they are ascending and not descending: see [Bir34, Thm. 1] for a proof
of the ascending case and [Bir34, Thm. 2| for a counterexample of the descending
one.

Thanks to Jordan-Holder, the study of finite groups can often reduce to the
study of finite simple groups instead. The first question that comes to mind then
is: which are the finite simple groups?

The history of the search for a definitive answer to this question is quite ar-
ticulate, and in some sense still ongoing. Solomon [Sol01] offers a good overview;
we will give here only a handful of highlights. The concepts of normal subgroup
and of simple group go back to Galois, who famously proved that Alt(n) is simple
for n > 5 in order to show that general equations of degree > 5 are not soluble
through radicals [Gal46b]; he later proved that PSL(2, p) is also simple for primes
p > 3 [Gald6a]. An actual conscious search for all finite simple groups is conven-
tionally believed to have started with a question by Holder [Ho192]. The work of
classifying all such groups went on for almost a century after that.

The period of most intense advancement is generally considered to have be-
gun in 1955, when the Brauer-Fowler theorem [BF55] showed a concrete way of
attacking the problem through the study of centralizers of involutions: on this
same track lies the Feit-Thompson theorem, whose proof appeared eight years
later [FT63]. In the years between 1976 and 1983 the classification project was
essentially wrapping up, and in this period it was declared to be near completion
or completed by several mathematicians, like Brauer [Bra79], Collins [Col80] and

3In 150 years, the language has changed: a “substitution” is an element of the group [Jor70,
§23], and “permutable” means normal [Jor70, §35]. The groups that Jordan was studying were
permutation groups, whence the terminology; the proof itself does not restrict only to these
groups, though.
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Gorenstein [Gor82]; it was chiefly Gorenstein’s announcement that marked the
moment when the project was believed to have reached its completion. However,
the case of quasithin groups had been solved only partially, in an unpublished
manuscript by Mason that still had gaps to be filled. Aschbacher and Smith fixed
this last important missing piece only in 2004 [AS04a] [AS04b].

From that year onwards, the Classification of the Finite Simple Groups (CFSG)
has generally been accepted to be proved. Here is the statement.

Theorem 1.2.4 (CFSG). For any group G, G is a finite simple group if and only
if it is one of the following:

(a) a cyclic group Z/pZ with p prime (the only abelian groups of the list);
(b) an alternating group Alt(n) for n > 5;

(¢) a group of Lie type among the following 16 families (in all of them, q is a prime
power): PSL,(q) (with n > 2 and (n,q) # (2,2),(2,3)), PSU,(q) (withn >3
and (n7Q) 7é (352))7 PSan(Q) (thh n > 2 and (n7Q) 7& (232))7 PQQ'rH—l(Q)
(with n > 3 and q odd), PQJ (q) (with n > 4), PQ; (q) (with n > 4), Ga(q)
(with q # 2), Fi(q), Es(q), *Es(q), *Da(a), Er(q), Es(q), *B2(2*"*) (with
n>1), 2Go(32" ) (with n > 1), 2F4(22" 1Y) (withn > 1);

(d) one of 26 sporadic groups (My1, M2, Maa, Mas, May, Coy, Cos, Cos, McL,
HS, SU.Z, Jg, Figg, Figg, Fi/24, M, B, Th, HN, He, J17 J3, J4, OIN, Ly, Ru)
or the Tits group 2Fy(2)’.

For the notation, see [Wil09, §1.2]; mind that there is a finite number of repe-
titions in points (b) and (c) of the list.

The proof of Theorem 1.2.4, as it stands today, is distributed across hundreds
of articles that total around 10000 pages: this is chiefly the reason why most people
refer to CFSG as “widely accepted” instead of saying straight up “a theorem”, for
its unwieldy proof is not fit for human consumption. The truth is, mathematics
is still on some extent based on trusting the community of mathematicians: while
in principle it is a game of absolute rigour, humans are humans and may make
mistakes in writing and proofreading depending on whether they have skipped
lunch a certain day?. The author eventually learned to accept this fact®, and
length is for sure not a sufficient reason for making a proof not a proof, certainly
not when the proofreading machines that we are last at most 122 years and 164
days®: thus, for us CFSG is Theorem 1.2.4, emphasis on “Theorem”.

4[EJt idem / indignor, quandoque bonus dormitat Homerus: / verum operi longo fas est
obrepere somnum. (Quintus Horatius Flaccus, Ars Poetica, 358-360)

5The healthiest attitude towards this problem on the part of a scientist, as far as the author
has encountered, is expressed by Stephen Jay Gould, the paleontologist: faced with a change
of the consensus on a particular scientific issue which was outside his expertise but affected his
own conclusions, he had to “acknowledge, and [...] provisionally accept” (Gould, The Structure
of Evolutionary Theory, §9.3.2). If “provisionally”, for whatever reason, extends until we reach
death or retirement or other invalidating circumstances, a problem that Gould does not address,
the author (in a beautiful Italian turn of phrase that is coincidentally appropriate on multiple
levels) accepts con filosofia.

6Jeanne Calment.
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In any case, there is an ongoing process of writing a second-generation proof: as
of the time of writing, 8 volumes out of the planned 13 have been published [GLS94]
[GLS96] [GLS98] [GLS99] [GLS02] [GLS05] [GLS18a] [GLS18b]. Moreover, there
has been a computer verification of an important part of CFSG, namely the Feit-
Thompson theorem has been proved using Coq, a theorem-proving software (see
[GAAT13]).

Let us leave the topic of CFSG itself, however interesting its history and philo-
sophical implications may be, and move to one of its consequences that will be
important to us. It is a classification of primitive subgroups of Sym(n); the ver-
sion below is due to Maré6ti [Mar02], but the original result comes from Cameron
[Cam81]. For the definition of k-transitive, primitive and wreath product, see §3.1.

Theorem 1.2.5. Let n > 1 and let G < Sym(n) be primitive. Then, one of the
following alternatives holds:

(a) there are integers m,r, k such that Alt(m)” < G < Sym(m) Sym(r), where
Alt(m) acts on k-subsets of {1,2,...,m} and the wreath product action is the
primitive one (so that in particular n = (ZL)T),

(b) G is one of the sporadic groups My1, M12, Mag, Moy with their 4-transitive ac-
tion;

(¢) |G] < 1™ (n — 27) < pltlosan,

Even the history of this particular result is quite involved. The first version of
a classification of primitive permutation subgroups like the one above appeared in
1981 and was due to Cameron [Cam81, Thm. 6.1]; the proof depends on CFSG
(whose statement was already known and considered likely to be correct at the
time, and it is referenced to as a “hypothesis” in [Cam81, §1]) and on the O’Nan-
Scott theorem. The latter result appeared first in an article for a 1979 conference
by Scott [Sco80], who stated in a footnote that O’Nan had also independently
obtained it: the theorem, which does not depend on CFSG, offers a classification
of maximal permutation subgroups. However, the O’'Nan-Scott theorem itself was
incorrectly proved: one case, the “twisted wreath action” case (in the language of
[LPS88]), was omitted; this has no consequence on the validity of the statement
though, as the groups that arise from this case are not maximal. The proof was
first corrected by Aschbacher and Scott [AS85], after Cameron’s article had already
appeared (as the authors themselves point out)”. Cameron’s original theorem thus
is in the unusual position of having been deduced from two major results whose
statements were both correct but whose proofs had both an undiscovered gap at
the time.

After Cameron’s version, another appeared due to Liebeck [Lie84]: this version
is closer to the kind of result we will need to use, and it already acknowledges both

"Technically the first published correction is in [CPSS83], which was received in 1982 and
appeared the following year, but the authors of this article make reference to Aschbacher and
Scott’s paper “to appear” (it was received in 1983 and it appeared in 1985). Liebeck [Lie84]
refers to the theorem as being corrected in [CPSS83], but adds “for instance”: this was in 1984,
after all.
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CFSG as a “theorem” (this was after Gorenstein’s announcement, but before the
quasithin gap had been truly acknowledged) and the correction of the O’Nan-
Scott theorem. Even later, Maréti offered the version stated before (see [Mar02,
Thm. 1.1]), which is in some sense the furthest possible refinement of Liebeck’s
theorem: if we were to tighten (c) inside Theorem 1.2.5 even further, an infinite
family of exceptions as in (b) would emerge.

Now that we have a list of what a finite simple group can be, let us move to
the next problem we face, namely what we can state about the diameter of such
a group.

1.3 Babai’s conjecture

As we have already said, investigating the properties of finite simple groups is often
a good step for describing the properties of finite groups as a whole. This is true
in particular for diameters. A consequence of Schreier’s lemma [Sch27], which
we state as Lemma 5.2.1, is that the diameter of a finite group can essentially
be bounded linearly in terms of the product of the diameters of its composition
factors (see in fact Lemma 6.2.5, in the same spirit). When the group is the direct
product of finite simple groups, the dependence is even nicer: its diameter can
be bounded linearly by the maximum diameter of its factors, as shown in the
author’s preprint [Donl9a] based on previous results by Babai and Seress [BS92]
and Helfgott [Hel18] (see §5).

Our objective then becomes to estimate, as accurately as we are able to, the
diameter of finite simple groups. By CFSG, we only need to do so for a handful
of well-described families, for which we desire to give bounds depending on their
size (or on the parameters that determine them, such as n and ¢). The sporadic
groups in point (d) of Theorem 1.2.4 do not pose a problem at all: they are finitely
many, albeit possibly very big (M, the largest one, approaches size 10°%), so their
diameter is just a constant that is even computable in principle. We have already
seen in §1.1 that diam(Z/pZ) = |Z|, i.e. we have a linear dependence on |G| for
G finite simple abelian. We are thus left with two cases to examine: alternating
groups and groups of Lie type.

Conjecture 1.3.1 (Babai’s conjecture). Let G be a finite simple non-abelian
group. Then, there is an absolute constant C' > 0 such that

diam(G) < log® |G].

From what we discussed in §1.1, this is essentially best possible: already for
G = Alt(n), a lower bound is known with C' = 2 — ¢ for any ¢ > 0 and |G| large
enough. In fact, for any € > 0, given any finite group G large enough with respect
to ¢ and given a non-redundant set A of generators of G (meaning that there is
no proper subset of A that still generates G), we must have |A| < log, |G| and
then diam(Cay(G, A)) > log'~¢|G|. Therefore, even a bound with o(1) instead of
C would be false for any infinite class of finite groups.

Babai’s conjecture was stated in the literature for the first time in 1988 by
Babai and Seress [BS88, Conj. 1.7], and in its full generality it is still unsolved.
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There have been however numerous weaker or partial results, which we are going
to illustrate here.

As we showed, two infinite classes of finite non-abelian simple groups exist,
the alternating groups and the groups of Lie type, and results often apply to only
one of the two. Let us start with Alt(n). The oldest nontrivial bound appears
in the same paper by Babai and Seress [BS88] in which Babai’s conjecture is first
reported: their “modest first step”, as they called it, was to show that

diam(Sym(n)), diam(Alt(n)) < e(tro)vnlogn (1.3.1)

Soon after, they went on to show that the case of transitive permutation groups
reduces to Alt(n), by claiming that for any G < Sym(n) transitive we have

diam(G) = (g’ M) diam(Alt(m)) (1.3.2)

where Alt(m) is the largest alternating group that is a composition factor of G
(see [BS92, Thm. 1.4]). The proof however contains a bookkeeping mistake (as
pointed out by Pyber, see [Hell8, §1]); the correct statement should be

diam(G) = 20" ™ TT diam(Alt(m;)) (1.3.3)

with [[,m; < n, as shown in [Hell8, Prop. 4.15] (known to Pyber). Setting
aside the correctness of (1.3.2), results of this kind are in any case particularly
significant for us, because combining them with (1.3.1) we obtain diameter bounds
for all transitive groups; however, while (1.3.1) does not rely on CFSG (it has
a purely combinatorial proof), both (1.3.2) and (1.3.3) follow from Cameron’s
theorem which in turn, as we mentioned in §1.2, follows from CFSG: it will be the
objective of §6 to try (and only partially succeed) to give a CFSG-free version of
(1.3.3).

The next step, or giant leap, came at the hands of Helfgott and Seress [HS14]:
they proved that

diam(Sym(n)), diam(Alt(n)) < eOllo" nloglogn) (1.3.4)

This quasipolynomial bound in n is much closer to Babai’s conjecture than (1.3.1):
since |Alt(n)| = 3n!, a polylogarithmic bound in |G| as in Conjecture 1.3.1 corre-
sponds to a polynomial bound in n. In particular, combining (1.3.4) and (1.3.3)
(in fact they used the incorrect (1.3.2), but one can replace it with (1.3.3) without
changing the end result, as stated in [Hell8, §1]), Helfgott and Seress settled a
different conjecture stated in [BS88, Conj. 1.6], which claimed that the diameter
of transitive groups is bounded quasipolynomially in n (a stronger polynomial con-
jecture has also been formulated [KMS84]). The upper bound for diam(Alt(n)) in
(1.3.4) is the best to date.

Let us turn now to groups of Lie type. Here, the advancements went mostly
hand in hand with generalizations of the following theorem.

Theorem 1.3.2. Let p be a prime, let G = SLa(F),), PSLa(F)), and let A be a set
of generators of G. Then there exist absolute constants § > 0 and k > 1 such that
at least one of the following alternatives holds:
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(a) | A% > |A]"*°;
(b) (AUA-TU{e})F = G.

The theorem above, in this particular form, is due to Helfgott [Hel08]. It
describes the behaviour of a set of generators as being subject to an alternative:
any such set either has large growth or quickly fills the entire group. Notice
that, as we pointed out in §1.1, “growth” is measured by the ratio %. Any
theorem displaying the same kind of dichotomy is commonly referred to as a
product theorem (as in [Breld] [Razl4] [Hell8], to name a few instances). The
importance of product theorems in the context of diameters is obvious: applying
repeatedly Theorem 1.3.2 to A, A3, A%, etc... until we fall into case (b), the number

of steps (a) that we can pass through at most is bounded by 2% loglgﬁff)logml,

and the diameter is bounded by &+ (log |G|)!°83/1°8(149). hence, Babai’s conjecture
holds for the family of simple groups PSLa(F,) (p prime) [Hel08].

Helfgott’s result, which dates back to 2005, was the first of a series of in-
creasingly general proofs of Babai’s conjecture for classes of finite simple groups
of Lie type. First of all, Theorem 1.3.2 holds with A3 = G replacing case (b)
[NP11], with [A3] = Q(JA|**=0) replacing case (a) [RS18], and cannot hold with
§ > £(logy 7 — 1) [BRD15]. The theorem was generalized for PSLy(F,) with any
prime power ¢ by Dinai [Dinl1], and for PSLs(F,) by Helfgott [Helll]; moreover,
case (a) was shown to hold for all sets of generators of PSL, (F,) that are not
too large [GH11]. Afterwards, a product theorem that holds for all finite simple
groups of Lie type of bounded rank (or equivalently, for all such groups but where
0 depends on the rank) was proved independently by Breuillard, Green and Tao
[BGT11] and by Pyber and Szabé [PS16]: Babai’s conjecture thus holds in this
case as well.

There are however limitations to product theorems. In the sense of Theo-
rem 1.3.2, a product theorem cannot hold for groups of Lie type with no condition
on the rank, as the counterexample in [PS16, Ex. 77] shows. The same is true for
Alt(n), with counterexamples in [Spil2, §4] and [PPSS12, Thm. 17]: a proof of
Babai’s conjecture for Alt(n) therefore cannot pass directly through a statement
as strong as Theorem 1.3.2; there exists however a weaker version of a product
theorem that does hold in the alternating group case, and thanks to which one can
prove a diameter bound almost as strong as (1.3.4): the result is [Hell8, Thm. 1.4],
and we will see more of it in §6. A diameter bound for finite simple groups of Lie
type of bounded base field (and unbounded rank) also exists: for such groups G,

Biswas and Yang [BY17] proved that the diameter is at most ¢© (V108 GI(loglog |G‘)3),
and the exponent 3 has been further reduced to 2 in [HMPQ19].

Existing proofs of the two main cases of Babai’s conjecture, G = Alt(n) and
G of Lie type, do not mingle much, as all the results cited above show. However,
there are some deep-running similarities that pop their head out of the water
here and there: for example, the counterexamples to strong product theorems are
structurally analogous, as recognized for instance in [BGH*14, §1]; the authors
of [BY17] acknowledge that their search for a matrix of small degree and close to
the identity reminds of the search for a permutation of small support in [BS88].
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The use itself of a weakened product theorem in [Hell8] is a deliberate effort in
bringing the alternating and the Lie type case closer together, “towards a unified
perspective”. There is however one nontrivial diameter bound that holds for all
finite simple groups: Breuillard and Tointon [BT16] have proved that for every
€ > 0 there is a constant C. such that

diam(G) < max{|G|%,C.} (1.3.5)

for all finite non-abelian simple groups G (the bound in [BT16, Cor. 1.4] is for
Cayley graphs with symmetric generating sets, to be precise). The proof has also
the remarkable characteristic of being CFSG-free: for Alt(n), the best CFSG-free
bound is (1.3.1), which is stronger than (1.3.5) but not as general, and in any case
much weaker than (1.3.4). A CFSG-free result much closer in strength to (1.3.4)
(and in spirit to [Hell8]) would be Theorem 6.3.6, if Conjecture 6.3.4 were to be
true (see §6 for details).

Another possible way to unify the treatment of the two cases, yet to bear
fruits, could be through Fy, the field with one element. There are ways to define
such an object (which in any case is neither a field nor a one-element object:
an astounding feat, lying twice in the short string of symbols “F;”) and more
importantly to define objects over it, in the sense of algebraic geometry: what is
relevant to us is that generally one shows that “GL,,(F,) = SL,,(F1) = Sym(n)”,
whatever that means (see for instance [Lorl8, §2.1.2]).

Yet another way to close the gap between alternating and Lie type case, subject
of recent research, could be to try and put into practice the following suggestion
by Pyber, based on [BBS04]. One might be able to prove Babai’s conjecture for all
finite simple non-abelian groups by performing three steps: 1) finding quickly an
element of “support” n(1 — ¢) for some € > 0; 2) using this first element, finding
quickly a second element of smallest “support”; 3) using this second element,
concluding the proof. In [BBS04], an element as in (1) is already inside our set
of generators of Alt(n), and the other two steps follow; one would hope to do the
same for groups of Lie type, although even defining what “support” means in this
situation is not obvious. There has been some very recent progress on this front,
due to Halasi [Hal20] and Eberhard and Jezernik [EJ20].

1.4 Other results on growth and diameter

There are many other results that, albeit not sitting directly under the umbrella
of Babai’s conjecture, are closely related to it, either historically or in methods
or purposes or otherwise. Any account the author would make of them would be
incomplete, his perspective skewed by personal interests and general ignorance;
nevertheless, here is an unavoidably incomplete account.

Growth of A. First of all, one could focus more on the information about the
growth of the set A itself, without concerns about the diameter: in this scenario,
the finiteness of G is often not important. The results run mostly on the dichotomy:
either A has large growth or A has structure. This is a point of view that comes
from additive combinatorics, and that originated from the famous Freiman-Ruzsa
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theorem: the result states that any finite set A C Z with growth K = |A‘X|A‘ (in

the abelian setting, we use + and need only A2 = A+ A instead of A%) is contained
in a generalized arithmetic progression of size Ok (]A|) and rank Ox (1) [Fre73],
so that both parameters are bounded in terms of |A|, K only and are independent
from the particular choice of A itself. There have been generalizations to torsion-
free abelian groups [Ruz94|, abelian groups [GRO7], nilpotent groups [Toil4], and
solvable groups [Taol0, Thm. 1.17], with particular focus on subsets of GL,,(K)
[Hrul2, Cor. 5.11] [GH14]; a particularly general theorem by Breuillard, Green and
Tao [BGT12, Thm. 1.6] proves in particular the Helfgott-Lindenstrauss conjecture
[Hell5, Conj. 1]. See [BGT13] for a more extensive survey on the subject.

In this context, obtaining quantitatively good results is often a challenge. To
this day, even for abelian groups we have yet to prove that a set A with |A+ A| =
K|A| can be covered by logo(l) K many translates of a generalized arithmetic
progression of rank logo(l) K and size K O<1)|A|: this is known as polynomial
Freiman-Ruzsa conjecture, in analogy with the Freiman-Ruzsa theorem, although
Ruzsa [Ruz99] attributes its formulation to Marton; the word “polynomial” refers
to the K which is the prominent feature of the statement. The best known
result is due to Sanders [San12], who proved as an application of the methods of
Croot and Sisask [CS10] that we can have a quasipolynomial bound in K (see also
[San13] for a detailed survey).

Similar issues occur in more general scenarios: for instance, the Helfgott-
Lindenstrauss conjecture was proved in [BGT12] “in an impressively general but
quantitatively very weak sense” (to quote [Hell5, §4.2]). The conjecture, in a few
words, asks one to show that for a set A C G = GL,(F) with |A3| = K|A| and F
an arbitrary field we have two normal subgroups Hy, Hy of (A) with H; € A9»(1),
with Hy/H; nilpotent, and with A covered by K9»(1) translates of H,. Now,
consider these three known results: [BGT12, Thm. 1.6] proves the conjecture even
for G an arbitrary group, but only with O (1) instead of K9»(1); [PS14, Thm. §]
proves it with Hy/H; solvable instead of nilpotent; and [GH14, Thm. 2] (using
[PS16]) proves it only for F = F,,.

In the last example, one could also extend the result rather easily to F = [,
but then we would have to use K<) translates of Hy, where e = log, q. The
contrast is stark with the situation of simple groups, where structural theorems
(meaning, diameter bounds) depend on n alone. It is to be hoped that generalizing
[GH14] to arbitrary finite fields is only a question of time, in a similar fashion as
with simple groups leading up to [BGT11] (such hope is expressed in [GH14, §1.3]
and [Hell5, §3.3.2], for instance)®. In a sense, solvable and simple groups are at the
opposite ends of a spectrum, the ones having many nested normal subgroups whose
quotients are abelian (the derived series), the others having no normal subgroups
at all and thus having only one large and complicated quotient; the only finite
simple solvable groups are the prime cycles in Theorem 1.2.4(a).

Focusing on the small-scale example offered by the affine group on a finite field

8 Note added in proof: A very recent preprint by Murphy and Wheeler [MW20] offers a first
step in this direction, treating the case of 2 X 2 upper triangular matrices over Fq. The authors
seem also to be able to deal with the general case, and prove a result analogous to [GH14] for Fy
(personal communication).
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F (see (4.0.1) for its definition), the structural statements about slow-growing sets
A can take stronger forms; this is helped by the fact that we have access to whole
new toolboxes. First of all, the sum-product theorem, i.e. results on the growth
of finite fields under both addition and multiplication: this is a rich terrain of
investigation, in which we search for lower bounds on max{|A + A|,|A - A|} for A
inside a field F, in terms of powers |A|® with ¢ > 1. The first results are due to
Erdés and Szemerédi [ES83] for ¢ =1 + ¢ and F = R, and to Bourgain, Katz and
Tao [BKT04] for ¢ = 1 + ¢, F = F, provided that |A| > p° for some 6§ > 0. Today
there have been many small improvements for ¢, trying to get closer and closer
to ¢ = 2 — e, which is widely considered to be the correct value, and it has been
generalized to arbitrary fields F provided that A is not stuck in some subfield; see
for instance [RS20] for the current record ¢ = % + % — ¢ for F = R. Techniques
for sum-product estimates transfer to results on the affine group: this happened
with [Hell5, Prop. 4.8] (based on [GK07]) and with [Murl7, Thm. 27], which give
theorems for Aff(IF,). Another set of tools at our disposal comes from geometric
arguments on finite planes: [Murl7, Thm. 27] relies also on this second point of
view, and a more recent proof for Aff(F,) has been given in [RS18, Thm. 5] (based
on [Sz899]) without the use of sum-product techniques at all. In all these cases,
the authors focused only on the case of prime fields; in §4 we will give a structural
result for Aff(F,) as well, with ¢ a generic prime power, essentially adopting the
strategy of [RS18].

Probabilistic results. Going back to questions about diameters, another
avenue of research would be on probabilistic results, namely results that hold for
random (read: most) Cayley graphs of G. In this situation, random walks are
examined and results are obtained not only on the diameter but on the mixing
time, i.e. the number of steps necessary for a (lazy) random walk to approach
equidistribution on the graph. Particularly beneficial are results on expander
graphs: a family of graphs {I';}; is an ezpander family if there is a constant € > 0
such that for all ¢ and for all subsets S of vertices of I'; of size < 1|T';| we have
|SUAS| > (14 ¢€)|S|, where AS is the set of vertices that are linked to at least
one vertex of S by an edge?; by their nature, expander graphs have small mixing
time (of the form O(e7!log |G|), see [Hel19a, Ex. 6.1]), which in turn implies small
diameter.

Results on expansion of some Cayley graphs predate [Hel08]: it was already
known that the family of graphs

{Cay(SL2(Fp), A)|p prime > 5}, A= {((1) 1) ’ G (1))}

was an expander family [Lub94, Thm. 4.4.2(i)], a fact that uses Selberg’s -

theorem [Sel65]. There have been some fascinating results holding in much more

9Definitions may vary slightly across the literature. We note that the definition given here is
for a vertex expander; there are also edge erpanders, but most importantly spectral expanders,
which are defined using the eigenvalues of the adjacency operator of the graph. For regular
symmetric graphs, the three concepts are equivalent up to renaming ¢, a fact proved by Alon
and Milman [AMS85] and going under the name of Cheeger inequality in analogy with the case
of manifolds [Che70]; see [Hell9a, §1.1].
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generality: building upon Helfgott [Hel08] and Tao [Tao08], Bourgain and Gam-
burd showed that the same holds for all fixed sets A not contained in proper sub-
groups [BGO08, Thm. 1] and for randomly chosen A of fixed size [BG08, Thm. 2]
(“fixed” here means “the same for all p”); moreover, the family of all Cayley graphs
of SLy(F,) for almost all p is also an expander family [BG10, Cor. 1.1]. However,
it is not known whether all Cayley graphs for all p form an expander family. There
are also results about SL,,(IF,): for example, choosing their sets of generators ap-
propriately, there is an expander family of Cayley graphs of SLs,, (F,) for all p,n
[Kas07b, Thm. 8(a)]. For more discussion on the topic, see [Hell5, §2.2] [Hell9a,
§6.1].

Going to permutation groups, expanders have been known to exist for Sym(n)
and Alt(n) since [KasO7a, Thm. 2]. The fact that other graphs related to Sym(n)
(Schreier graphs, see Definition 2.1.1) are almost always expanders [FJR198,
Thm. 2.2] plays a role in the proof of [HSZ15, Thm. 1.1], which states that for
almost all g, h € Sym(n) the Cayley graph Cay(G, {g,h}) (where (g,h) = G) has
diameter at most n? logc n for some absolute C: in other words, almost all Cayley
graphs of Alt(n) would satisfy Babai’s conjecture; the non-obvious fact that two
random g, h generate almost always either Alt(n) or Sym(n) is a classical theorem
by Dixon [Dix69]. Previous results on the same wavelength are [BH05, Thm. 2.2],
the first polynomial bound for almost all pairs of elements g,h € Sym(n), and
[BBS04, Thm. 1.1], a polynomial bound for all A C Sym(n) having an element
with support of size < dn for some fixed § < % The proof of the latter statement
also uses a general expansion result that goes back to Landau and Odlyzko [LOS81]
(no, not that Landau), and the constant § has been improved over time, with
§ = 0.63 obtained in [BGH'14], with some small margin for improvement (see
[BGH*14, §5)).

The strategies involved especially in [BBS04] and [HSZ15] are of an algorithmic
nature: thus, it is in some measure possible to even give constructive procedures
to determine a word in g, h for any k € Sym(n), in a relatively short time. The
proof in [BBS04] yields a Las Vegas polynomial-time construction'?; for [HSZ15], a
running time of O(n? logc n) is almost always possible, and the authors speculate
that O(nlog® n) might be reachable as well (see [HSZ15, App. A]).

Girth. Finally, let us mention that problems related to the girth of Cayley
graphs can also contribute to diameter bounds; the girth of a graph is the length
of the shortest cycle contained in it. Obviously, if the girth of a graph I' is g, we
have diam(I') > | |: we can show as much in the same way as we have done for
cyclic groups in §1.1; however, we can use the girth to give upper bounds as well.

A straightforward application is the following: by [GHS™09, Thm. 8], the girth
of random Cayley graphs of SLqo(FF,) with bounded set of generators is at least

10 Apposing “Las Vegas” to a running time of an algorithm is to say that the expectation of
the running time is as described (for instance, polynomial). The terminology was introduced
by Babai [Bab79], although a “Las Vegas N time” is most commonly described in terms of
an algorithm able to either output the correct solution in time N with probability > % or
recognize a failure: this reduces to our deterministic description, once we note that making the
same algorithm run k times reduces the probability of failure to less than 2% For Las Vegas

polynomial time specifically, another nomenclature is ZPP (see for example [AB09, §24.3]).
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Q(logp). This, as observed for instance in [Hel08, Proof of Cor. 6.3] and [BGT10,
§7], yields a diameter bound of O(log |G|): in fact, a girth of Q(logp) means that
all words up to that length are distinct, so that in log p steps we reach p® elements
for some € > 0, and then Theorem 1.3.2 tells us that in finitely many iterations
we fill the whole SLy(F,,). Actually, [BG08, Thm. 3] shows even more: a girth of
Q(log p) implies a spectral gap for the eigenvalues of the family of Cayley graphs
we are referring to, which in turn translates into the graphs being expanders.

A more recent result is contained in [LS19, Prop. 3], where in particular the
diameter of Cayley graphs of Alt(n) with sets of generators of fixed size are poly-
nomially bounded almost always by their girth.

1.5 The graph isomorphism problem

Let us seemingly change subject, and move to algorithmic graph theory. First of
all, let us start with a small introduction to complexity, which may be unnecessary
depending on the reader’s background.

In an algorithm, complexity refers to the dependence of the running time of
the algorithm on the size of its input: as it should be clear, an algorithm does not
only need to solve a problem, but also solve it in a reasonable amount of time;
as a consequence, algorithms are placed in different complexity classes depending
chiefly (but not only) on their running times. We shall refer mostly to algorithm
runtimes themselves, with respect to the size of the input, without using classes.
However, let us mention at least the following, which needs more description. A
problem is NP when verifying whether a solution is correct takes polynomial time;
among the NP problems, the NP-complete are the “hardest” ones, in the following
sense: producing a solution to every other NP problem reduces in polynomial time
to producing a solution to an NP-complete problem. For more details, see the
standard textbook [CLRS01, §34].

Now, back to graphs. If one tries to imagine what the first important problem
regarding graph algorithms would be, this hypothetical person will have a good
chance of answering: “To give an algorithm that finds out, in the shortest possible
amount of time, whether or not two arbitrary graphs are actually the same”.

That is essentially the graph isomorphism problem, often shortened to GIP:
given two graphs (Vi, E), (Va, E2) with n vertices, say as subsets of all the un-
ordered pairs of numbers from 1 to n (where an arbitrary ordering is given to V;,
and the pairs represent the elements of F; as defined by this ordering), find the
fastest algorithm that produces the set of isomorphisms from one graph to the
other, where an isomorphism is in this case just a permutation of [n] that respects
the property of pairs being in E;.

Before we give a brief history of the problem, let us note here that GIP reduces
to the string isomorphism problem (SIP): given two strings of length &, namely
two functions from [k] to a finite alphabet X, and a subgroup G < Sym(k), find
the fastest algorithm that produces the set of their isomorphisms inside G, i.e.
the permutations in G forming a commutative diagram with the two functions.

We can in fact take k = (g‘) and describe a graph of n vertices as a string of k
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letters with alphabet ¥ = {0,1}, where the m-th letter is 1 if the m-th pair of
vertices has an edge between them in the graph and it is 0 otherwise; the group
G is then the natural embedding of Sym(n) inside Sym(k). In particular, other
variations of GIP still reduce to SIP, for example considering directed graphs (for
which k& = n? — n) or coloured edges (for which || > 2).

We remark that, in the algorithmic context in which we find ourselves now,
when we say that a group G or a coset GT thereof is “given” at the input (or
“found” at the output) we mean that what we are given or what we find is in
fact an explicit set of generators for G, and additionally an element 7 for S.
Consequently, the complexity of our routines may be affected by the choice (see
also the observations after Proposition 3.3.3).

Small cases of GIP have been known for decades: that the isomorphism set of
trees is computable in polynomial time is a result by Zemlyachenko [Zem70], and
a polynomial-time algorithm for planar graphs has been given by Hopcroft and
Tarjan [HT71] building on Weinberg [Wei66]. One of the oldest algorithms to treat
GIP from a group-theoretic point of view is contained in [Bab79]: it gives a Las
Vegas polynomial time for the isomorphism problem on vertex-coloured graphs
having only a bounded number of vertices of any given colour. On the other hand,
in 1980 no algorithm for the general GIP was known to run deterministically even
in time e°(™1°87); in fact, nothing essentially more clever than brute force was
known at the time (as observed in [Bab80]). The question was: is it possible to
give a polynomial-time algorithm for solving GIP?

Today we still do not know, although we are much closer to a positive answer
than 40 years ago. Some evidence suggests that, at the very least, GIP is not
NP-complete: if that were the case, the polynomial-time hierarchy would collapse
to some finite level [GMWS86] [Sch88]. It has also been clear for a long time that,
if we only ask for probabilistic results, actually almost all graphs are quickly dis-
criminated under very simple algorithms: [BES80] offers one made of just sixteen
lines from “Input” to “End”, finding whether two graphs I'1, I's are isomorphic for
almost all choices of T';, and running in time O(n?) too for such choices. More-
over, following a preprint version of [BES80], [BK79] gave a procedure with O(n?)
expected time for all pairs of graphs'!.

Going back to the actual runtime of GIP, the first important step was Luks’s
polynomial-time algorithm for graphs of bounded degree [Luk82]: not only it uses
techniques upon which even modern results build, like efficient algorithms for work-
ing with permutation groups [FHL80] derived from the Schreier-Sims algorithm
[Sch27] [Sim67] [Luk82, §1.2], but combined with a valence reduction technique
by Zemlyachenko [ZKT85] it also yields an algorithm for GIP that runs in time
e©(Vnlogn) To he more precise, if we have graphs whose vertices have all degree d,
Luks’s algorithm takes time n?(4/1°84) and the GIP algorithm based upon it takes

time @V logn/logd). then we can use this case to deal with general graphs (see
[BKLS83, §9] for details). Both SIP and the related coset intersection problem are

11[

BK79, Thm. 1.2] says “linear expected time”, followed by the remarkable line “Linear means
O(n?)”: the truth is, graphs are represented by inputs of size Q(n2), be they strings as described
before or adjacency matrices, therefore O(n?) is indeed linear in the input. These nomenclature
problems obviously do not arise when we say “polynomial” or “quasipolynomial”.
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also solvable in the same time, as proved by using some additional group-theoretic
reasoning (see [Bab83] and [BKL83, §9-10]).

The algorithm for GIP derived from Luks was undefeated until 2015, when Sun
and Wilmes classified coherent configurations with large automorphism groups
and managed to prove that uniprimitive permutation groups are of size at most
O(n'/*108“ 1) o1 some absolute C except for a family of known exceptions ([SW16],
see the extended abstract in [SW15]). The proof is purely combinatorial and is
interesting on its own, as it gives a CFSG-free upper bound on such a size: [Bab81]
and [Bab82] had shown it with 1 instead of %, and further improvements to Sun-
Wilmes go through Cameron’s theorem (see §1.2); moreover, we can use this to
produce a GIP algorithm that also runs in time eO'?108%n)  Regults on primitive
permutation groups, in particular Cameron’s classification and similar ones, are
very useful for GIP.

Then, an algorithm for GIP (and in fact for SIP) with quasipolynomial runtime,
i.e. €20e” M) for some absolute C, came at the hands of Babai ([Babl6al, see
the extended abstract in [Bab16b]). This marked a stark improvement over the
previous record by Sun and Wilmes, and it appeared only weeks later, as recognized
in [Babl6a, Rem. 6.1.3] and [Babl6a, Acknowl.].

Theorem 1.5.1. There is an algorithm that, given two strings x,y of length n
and a group G < Sym(n), outputs the set Isoq(xX,y) of isomorphisms from x to 'y
in time eOUog” n) where C > 0 is an absolute constant.

Shortly after, Helfgott showed that with minor modifications one can take
C = 3 in the aforementioned runtime bound [Hel19b] [HBD17]; we will also show
in §3 that the implicit constant in the big O notation can be taken to be 103+ 0(1)
(Theorem 3.2.1).

We will see Babai’s algorithm (in Helfgott’s formulation) in more detail in §1.6
and §3; for now, we observe that it draws from both Luks and Sun-Wilmes, and
that it depends on CFSG, mostly because the reduction process on which it is based
goes through Cameron’s classification. However, a CFSG-free version of Babai’s
algorithm exists: Babai himself observed how to replace Cameron [Babl6a, §13.1]
[Hell9b, §3.1] with a procedure that descends from a CFSG-free classification
of 2-transitive groups due to Pyber [Pyb93]; then, Pyber [Pybl6] [Hell9b, §4.1]
removed the last theoretical dependence on CFSG (meaning that the algorithm
did not change, but its runtime had not yet been assured to be quasipolynomial
without the use of CFSG). In its CFSG-free version we have to ask for C' = 6+¢ for
any € > 0: the algorithm has practically only rearranged its subroutines without
any serious modification (see §3.5.2 especially), but the theoretical independence
from CFSG makes us lose efficiency. The implicit constant becomes 26¢!/” + o(1)
for € small enough.

Among the developments that followed Babai’s result, we highlight that his
techniques can be used to improve the algorithm for graphs of degree at most d to
achieve a runtime of n©Uos” @ [GNS18]. Also, with some extra arguments, Babai
[Bab19] seems to have achieved a quasipolynomial-time algorithm for the graph
(and string) canonization problem, i.e. for the problem of choosing a canonical
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representative in the isomorphism class of a given graph: GIP reduces to this
problem very quickly, because once we have found the two canonical represen-
tatives we can just check whether they are equal or not instead of isomorphic
([BES80] and [BK79], which we have mentioned before, actually feature canoniza-
tion algorithms), but it is not known if the inverse reduction also holds. In any
case, historically speaking a canonization algorithm has always quickly followed
its GIP counterpart (for instance [BKL80] followed [Bab79] [FHL&0], and [FSS83]
[BL83] followed [Luk82]).

1.6 Babai’s algorithm

Here we offer a brief description of Babai’s quasipolynomial algorithm for GIP;
this will be useful as a bare-bones reference for the work in §3. Rather than
Babai’s original work [Babl6a], we follow Helfgott’s version [Hell9b] (and its En-
glish translation [HBD17]).

We remind that the algorithm in fact solves SIP, which in turn yields GIP as a
particular case. We start with a group G < Sym(n) and two strings x,y : [n] = X.
At any time, polynomial-time procedures allow us to gain some insight into the
structure of G, particularly its size and its systems of orbits and blocks. Group-
theoretic arguments known since Luks [Luk82] let us reduce to the case of G
transitive (Proposition 3.5.2) and to its primitive action on a minimal system of
blocks, up to quotienting by the system stabilizer.

Now, the classification theorems kick in [Hel19b, §3.1]. Using Cameron (Theo-
rem 1.2.5, or the handier Theorem 3.5.6), we know that either G is small enough
to be treated case-by-case (Proposition 3.5.3) or it acts on the largest blocks as
Alt(m) acts on k-subsets of [m]: the latter case, which entails a situation of consid-
erable symmetry, was the bottleneck on which research was stuck before Babai’s
breakthrough (as pointed out in [Babl6a, §1.1.3]). In the CFSG-free algorithm,
we similarly reduce ourselves to either a small case or a giant case or a not-doubly-
transitive case (Theorem 3.5.14).

At this point, the novelties introduced by Babai intervene in the process. First
is the method of local certificates [Babl6a, §10.1] [Hel19b, §6.1]: very succintly, if
G modulo the system stabilizer acts like Alt(m), we consider all sets T' C [m] of size
t (for some fixed t) and manage to determine whether the set of automorphisms of
x inside G that preserve T contains Alt(T) or not. The theorems invoked here to
make the procedure work require ¢ to be large enough with respect to n (at least
Q(logn) for the original algorithm, Q(log® n) for the CFSG-free version), and the
cost involved is at least quasipolynomial also for this reason. Then we gather all
the pieces T that are guaranteed to give Alt(T') inside the automorphisms of x
(we aggregate the certificates [Babl6a, §10.2] [Hel19b, §6.2]): if the resulting group
acts as an alternating group on a large chunk of [m], this alternating piece will be
part of the automorphisms of x themselves'? and we can completely extract it and

12That we gain this information not on G, but on the actual set of automorphisms of x inside G
(which we do not know at all, and in fact is the objective of the whole algorithm), is astonishing
to the author of these lines and is the reason why everything we are doing works out.
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put it aside; if not, up to fixing some arbitrary logarithmic choice of elements of
m (which also entails a quasipolynomial cost, see Remark 3.5.10), we can recover
enough asymmetry to colour tuples of elements of [m] in different ways according
to orbits they fall into under the action of the automorphisms of x.

Then, it is time for the second new piece in Babai’s algorithm, the Split-or-
Johnson routine [Babl6a, §7] [Hell9b, §5]. Take the coloured tuples of elements of
[m] as described before: to start, we can apply a well-known algorithm due to Weis-
feiler and Leman [WL68] that splits canonically the elements of [m] (thus bringing
us back to the intransitive case) unless some deep symmetry still exists inside a
large part of [m], thus forming a coherent configuration (see Definition 2.1.3). If
such symmetry indeed exists, a routine that involves another logarithmic choice of
elements either partitions the coherent configuration or finds an even more rigid
structure in it, a Johnson scheme: in the first case, we have found an even coarser
system of blocks on which we can act with G; in the second, by the definition of
Johnson scheme, the surjection of G onto Alt(m) reduces to a surjection onto a
certain Alt(m') with m’ = O(y/m). Both processes can be performed only a log-
arithmic number of times, so that reduction must eventually occur in some other
form.

The cost analysis is performed in [Babl6a, §11.2], then more precisely in
[Hel19b, App. A], and even more so in §3.6. It seems clear that, given the types of
recursion and the group-theoretic tools required in the algorithm, such as for ex-
ample the local certificate procedure whose consequences we have sketched, some
essentially new idea would be necessary to solve GIP in polynomial time. However,
it might still be feasible to tweak the present algorithm to make it work in time
eOllog™n) ingtead of eOloe”n)

Of the subroutines involved in the procedure, the Weisfeiler-Leman algorithm
[WL68] ranks among the most interesting and most studied. It is an old and
widely used algorithm designed (in the context we need) to provide a colouring
that encodes structural information about the initial graph, or more generally the
initial collection of coloured tuples of a set: furthermore it runs in polynomial time
in its classical form, and the same goes for its k-ary generalizations, where however
the exponent in the polynomial time depends on k. The Weisfeiler-Leman algo-
rithm is not sufficient to crack GIP on its own (see [CFI92] [EP99] for theoretical
discussions, and [Shr59] [KZA17] for small examples), nevertheless it has ample
applications even today, enough to warrant a dedicated 50th anniversary confer-
ence; see [Grol7, §3.5] for an introduction, and [EP09] for a modern survey on
the topic of coherent configurations. In §2, we will provide a connection between
the number of iterations of the Weisfeiler-Leman algorithm and the diameter of
Cayley and Schreier graphs (published as [Don19c]).

Finally, let us draw another connection between GIP and the diameter prob-
lem, which we will explore more deeply in §6. The group-theoretic classifications
that provide the core engine necessary to make Babai’s algorithm work, namely
Cameron’s theorem in the original version and Pyber’s in the CFSG-free one, are
reduction tools that can potentially be plugged in other contexts where a descent
of the same kind can become effective. An example of this versatility at work is
the proof of the diameter bound for Alt(n) contained in [Hell8]: in it, Cameron’s
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theorem is used to justify the statement that at every step the quotients of a com-
position series we want to work with are either small groups or alternating groups,
and then other arguments intervene to control the overall diameter by the diame-
ter of the factors (see §6.1 and [Hell8, §4]); also, this is the only real dependence
on CFSG of the whole proof. It may be possible then to replace this piece with
the equivalent procedure in the CFSG-free GIP algorithm: as one can observe,
the descent that the new process entails is compatible with our needs in Helfgott’s
proof, and the fact that the final diameter bound is not affected too deeply by the
substitution is essentially a consequence of the cost analysis of Babai’s algorithm.

The one decisive drawback is that the subgroups involved in the descent are
not normal, as they would be under Cameron, so that the machinery involved in
[Hell8, §4] is not suitable anymore'. In §6.3 we partially fix the problem, and
show that under some hypothesis (Conjecture 6.3.4) we can retrieve a diameter

1 ")2
bound of ¢ """ which is worse than [Hell8, Thm. 6.1] and (1.3.4) but
better than the currently known CFSG-free bounds in (1.3.1) and (1.3.5). The
author hopes that §6 will point towards a new direction of investigation in the
search for CFSG-free diameter bounds, even if he himself got only halfway there.

13In particular, it also means that the CFSG-free workaround replacing Cameron in Babai’s
algorithm cannot work as a CFSG-free version of Cameron’s classification in a more general sense.
The author thanks L. Pyber for a private communication that made him realize the importance
of this fact. The author also takes this occasion to point out that in the past he had written
down an arXiv preprint announcing a CFSG-free diameter bound for Alt(n) (in consequence of
which the aforementioned communication took place): the proof was wrong, being based on a
mistake in the original analysis performed here in §3, and the preprint was withdrawn. The
correction resulted in §6, with a worse bound and depending on a conjecture: alas, this is also
mathematics.
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Chapter 2

The Weisfeiler-Leman
algorithm and the diameter

of Schreier graphs

The content of this chapter is essentially taken from [Donl19c|.

In this chapter, we work with Schreier graphs (see Definition 2.1.1) of finite
groups with the natural colouring given by the set of generators from which they
are defined, akin to the labelling discussed in §1.1 for Cayley graphs. To them,
we apply the Weisfeiler-Leman algorithm [WL68] (see §1.6), which refines their
colourings and encodes information about the structure of the graph itself in the
new colouring: as it turns out, the number of iterations taken before stopping is
tightly related to the diameter of the graphs themselves.

An upper bound for the number of iterations is found in the case of general
Schreier graphs: this is the content of Theorem 2.1.6. A lower bound also holds for
some interesting particular cases, such as for Schreier graphs with G = SL,,(F,)
(with g > 2) acting on k-tuples of vectors in Fy: the result is expressed in The-
orem 2.1.7. We underline that the upper bound depends only on the diameter,
and is independent from the group and the set of generators it is defined from; the
lower bound is similarly independent from n and g, as long as char(F,) > 2.

In the case of Cayley graphs, instead of bounds we will be able to find an
exact expression for the number of iterations as a function of the diameter: see
Theorem 2.1.8.

2.1 Introduction

Let G be a finite group and let S be a set of generators of G such that § = S—!
and e € S: the Cayley graph Cay(G,S) is defined as the graph having G as its
set of vertices and {(g, sg)|g € G,s € S} as its set of edges (see Definition 1.1.1).
We have already introduced Cayley graphs in §1.1 and discussed some very basic
characteristics. Unlike what we said therein, in this chapter we will consider often
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edges as being directed: although it does not make any practical difference thanks
to our choice of S symmetric, in our discussion we will colour ordered pairs of
vertices, so our mindset should be the one for directed graphs.

Cayley graphs are special cases of a more general class of graphs that we have
mentioned a couple of times. As a matter of fact, we will define them as directed
multigraphs (i.e. directed graphs that may have multiple edges starting and ending
in the same vertices).

Definition 2.1.1. Let G be a finite group, and let S be a set of generators of
G; let V be a set on which G acts transitively (on the left). The Schreier graph
Sch(V, S) is the graph having V as its set of vertices and {(v,sv)|v € V,s € S} as
its set of edges.

As in Definition 1.1.1, acting on the left is just a convention: as long as the two
definitions agree, we are fine. A Schreier graph depends of course also on G and
its action, which is not reflected in the notation, but we assume that it is implicit
in the choice of working with V'; we will never use two different groups in the same
context, so there is no risk of confusion.

Since S generates G and G acts transitively on V, the graph is strongly con-
nected: if gv = v’ for some g € G, there exists a directed path from the vertex v
to the vertex v’ determined by those s; € S such that s;183...8, = g. A Cayley
graph is just a Schreier graph where V' = G and the action is the usual group
multiplication.

The construction of these graphs and the choice of a symmetric set of generators
containing e allow us to see Cay(G, S) and Sch(V, S) as a different type of structure.

Definition 2.1.2. A (classical) configuration X is a pair (T',c: T? — C) (where
T is a finite set of vertices and C is a finite set of colours) with the following
properties:

(i) for any c € C, if for some v € T" we have c(v,v) = ¢, then for all vi,ve € T
such that c(vy,ve) = ¢ we have v1 = vy;

1

(ii) for any ¢ € C there exists a ¢~ € C such that for any vi,vs € I' with
1

c(v1,v2) = ¢ we have c(ve,v1) = ¢ .

The addendum “classical” comes from the fact that a more general definition
is often used, where the colouring is ¢ : ¥ — C and consequently with some
differences in how to define conditions (i) and (ii). It is also to be noted that this
is a “weak” version of the definition of configuration, as provided in [SW16, §1]
and [Babl6a, Def. 2.3.4], as opposed to the “strong” version that can be found
in [Hell9b, Déf. 2.5]: in that paper, it is also required inside condition (ii) that
there exist ¢/,¢” such that c(vi,v1) = ¢ and c(va,v2) = ¢, which was needed
to prove properties of non-classical configurations that here are not needed (see
[Hell9b, Ex. 2.7]). By property (i), in a configuration we can distinguish between
vertez colours (colours coming from c¢(v,v)) and edge colours (colours coming from
c(v1,v2) with v1 # v9): these names come from the natural observation that we
can think of a configuration as a particular colouring of the complete graph of |T'|
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vertices, giving to v the colour ¢(v,v) and to the directed edge (v1,v2) the colour
¢(v1,v9) and noticing that by condition (i) a vertex and an edge will always have
different colours in this situation.

There is a natural way to define a configuration X¢ from Cay(G,S): T can
be chosen to be the group G, while the colouring is given by c(g1,g2) = gogy " if
9297 € S and ¢(g1,g2) = 0 otherwise; in this case then C = S U {f)} (or C = S
in the trivial case S = G). X¢ is a configuration (in the weak sense): thanks to
e € S the only vertex colour is e and all the others are edge colours, while thanks
to S = S~ the inverse of s € S as a colour is exactly s~! (and the inverse of
() is @); since we have only one vertex colour X¢ is also a configuration in the
strong sense, but it does not make any difference. Notice the similarity between
the colouring and the edge labelling naturally defined on Cayley graphs (see §1.1):
all edges have as colour exactly the label s, and we add two more colours, e and
0, to cover the rest of the pairs (g1, g2) € G*.

In a similar fashion we can define a configuration Xg from Sch(V,S): T can be
defined to be the set V', while the colouring is given by ¢(v1, v2) = {s € S|sv; = va};
in this case then C C P(S). Xg is a classical configuration (in the weak sense, but
not in the strong sense): to prove that it satisfies (i), notice that if for a colour
¢ we have c(v,v) = ¢ then e € ¢, so that for any other two vertices vy, vy with
c(v1,v3) = ¢ we have v; = v9 (in other words, vertex colours are exactly those
who contain e); to prove that it satisfies (ii), observe that for all ¢ € C we have a
natural definition ¢=! = {s7!|s € ¢}, thanks to S = S~!. If we see Cayley graphs
as particular Schreier graphs, the configurations X and Xg built on the same
Cay (@G, S) are clearly isomorphic, with each colour s # ) in X corresponding to
{S} in xS.

As mentioned before, we now introduce a more refined type of structure.

Definition 2.1.3. A (classical) coherent configuration is a pair X = (I',c:T? —
C) that satisfies (i) and (ii) and such that

(iii) for every co,c1,ca € C there is a constant v = (X, co,c1,c2) € N such
that, for every vi,vy € I' with c(vi,v2) = co, the number of w € I' with
c(vy,w) = ¢1 and c(w,va) = ¢y is v (independently from the choice of vy, v2).

The colouring of a coherent configuration contains much more information
about its structure than the one coming from a usual configuration. Especially
important to us is the following result.

Proposition 2.1.4. Let X = (I,c : I'? — C) be a coherent configuration, and

let co,c1,...,cr be a sequence of colours with k > 2. Then there is a constant
v = y(co,c1,...,¢ck) € N such that for every vi,va € T' with c(vi,v2) = ¢ the
number of k-tuples (w1, ..., wi_1) € T* with c(vi,w;) = ¢1, c(w;_1,w;) = ¢; for

all 1 <i<k and c(wi—1,v2) = ¢ is v (independently from the choice of v, v3).

So an edge colour ¢(v1,v2) in a coherent configuration not only knows by def-
inition about colourings of triangles v, w, v2, but knows also about colourings of
walks vy, w1, ..., wk—_1,vs of any length.
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Proof. This is [Hell9b, Ex. 2.16(a)]; we give the same proof as in [HBD17, App. B].
We proceed by induction on k: for k = 2 the statement is exactly condition (iii)
of coherent configurations, so there is nothing to prove.

Suppose now that this is true for k. We are given vy, vy with ¢(vy,v2) = ¢p and
we have to find the number of walks of colours ¢y, ¢, ..., cgr1 from vy to ve: such a
walk however is merely the composition of two walks ¢1, co,...,cx—1 and cg, cri1,
so we can just consider any walk ¢y, ¢a,...,cp_1,c¢ of length k from v; to ve (for
all ¢’) and for each of them any triangle of colours ¢, ¢k, cx+1 built on (wy_o, v2)
of colour ¢’; the composition of these two structures will give us the desired walk
of length k + 1. The constants v for walks of length 2 and % are independent from
the choice of initial vertices, thus the same will occur for k + 1: we have

7(607 Cly--+, Ch, Ck-‘rl) = Z 7(007 Cly---Ck—1, c/)fY(Cl7 Ck, Ck"rl)v
ceC
and the inductive step is complete. O

A configuration, and in particular the configurations X¢, Xg that we are going
to study, is not necessarily coherent. There is a natural way to refine a configura-
tion into a coherent configuration, through the Weisfeiler-Leman algorithm, which
is given as follows.

(1) At the 0-th iteration, we define C(©) = C.

(2) If ¢™™ is the colouring at the h-th iteration, we can define C**1) by calling
") (vy, vy) the tuple
>c1,CQEC<h)> ’

(2.1.1)
In truth, in practical applications we do not actually define C("*1) using the
whole (2.1.1): it is sufficient to give the pairs (v1,v9) colours that are different
if and only if their tuples (2.1.1) are different, so as not to make the algorithm’s
required runtime and memory space blow up. Obviously there can only be at
most |V|? colours, so we are safe on that front.

(C(h)(v1,1}2), (Hw € V|c(h)(v1,w) = cl,c(h)(w,vz) = cz}

(3) If we reach an iteration where there is no refinement, meaning that for a certain
h every time that c"+t1) (v, v5) # 1) (v3,v4) we also had ™ (vy,vy) #
c™ (v3,v4), the Weisfeiler-Leman algorithm stops.

The colouring ¢("*1) is more refined than ¢(™; notice that ¢V (vy,vs) con-
tains as information, for each choice of ¢, o € C™ | the number of vertices w as
in condition (i) (which is not yet independent from the choice of vy, v3). Once the
Weisfeiler-Leman algorithm stops, it means that all these numbers are the same
for each pair (v1,v2) with the same colour, i.e. the configuration has become co-
herent. That we must stop eventually is clear, since we can refine a colouring only
as many times as the total number of pairs of vertices.

One last observation is necessary with regard to Weisfeiler-Leman.
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Proposition 2.1.5. Define X") as the configuration at the h-th step of Weisfeiler-
Leman. Then Aut(X()) = Aut(X("+1),

Proof. As c"*1) is a refinement of ¢(® | we have already Aut(X(") D Aut(X(+1).
On the other side, if o € Aut(X("), then for any pair v1,vo € V and any pair
c1,¢0 € CM each vertex w with (c(vy,w), c(w,v2)) = (c1,c2) is sent to a vertex
o(w) such that (¢(o(vy),o(w)),c(o(w),o(ve))) = (c1,c2): this implies that the
numbers in (2.1.1) are also preserved by o, therefore o € Aut(X*+1) too. O

This explains why Weisfeiler-Leman is so interesting in the context of GIP (the
graph isomorphism problem, see §1.5). After using the algorithm we have a more
refined colouring, which means that we have more possibility to exploit the subtle
differences between two graphs; at the same time the algorithm is designed to
preserve all automorphisms, which in turn implies that all isomorphisms between
two graphs are preserved as well: the set of isomorphisms from a graph to an-
other is a coset of the set of automorphisms of the first graph (see for instance
Remark 3.3.2), and permuting vertices and their colouring does not affect (2.1.1).
Hence, when we prove that a certain bijection o between the vertices of the graphs
is not an isomorphism for the final coherent configurations, we have proved that
it is also not an isomorphism for the original graphs.

We state now our main results of the chapter.

Theorem 2.1.6. Let G be a finite group and let S be a set of generators of G
with e € S = S~1. Suppose that G acts transitively on a set V, and consider the
configuration Xg coming from Sch(V,S). Then the number WL(Xg) of nontrivial
iterations of the Weisfeiler-Leman algorithm satisfies

WL(Xs) < log, diam(Sch(V, S)) + 3.

By counting nontrivial iterations we merely want to ignore the last one with
no colour refinement.

Together with this upper bound, lower bounds also hold in some more limited
but still very interesting cases. The scope of the lower bound is explicitly stated
later (see Theorem 2.3.1), but here we specialize it to a more interesting group-
theoretic situation, which is arguably especially relevant in the context of Babai’s
conjecture (Conjecture 1.3.1).

Theorem 2.1.7. Let G = SL,,(F,) with ¢ > 2 and let S be a set of generators of
G with1d,, € S = S7L; for any 0 < k < n, let V be the set of linearly independent
k-tuples of vectors of ¥y, with the action of G on V defined as Avy, ..., vp) =
(Avy,. .., Avg). Consider the configuration Xg coming from Sch(V,S). Then, if
p is the smallest prime such that p|(q — 1), the number WL(Xs) of nontrivial
iterations of the Weisfeiler-Leman algorithm satisfies

WL(Xg) > log, diam(Sch(V, S)) —logy(p — 1) — 3.

Notice that this result does not depend on n, and we have dependence on ¢
only when char(F,) = 2 (since otherwise p = 2 and log,(p — 1) = 0).

Finally, we state a result that gives an exact expression for the number of
iterations for any Cayley graph.
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Theorem 2.1.8. Let G be a finite group and let S be a set of generators of G
with e € S = S~t. Consider the configuration Xc coming from Cay(G,S). Then
the number WL(X¢) of nontrivial iterations of the Weisfeiler-Leman algorithm
satisfies

WL(Xe) = [log,(diam(Cay(G, S)) — 1)] if Vg 3¢’ with d(g,g’) the diameter,
@ [log, diam(Cay (G, S))] otherwise.
We remark that Theorem 2.1.6 holds in particular for Cayley graphs too, and
so does and a bound analogous to the one in Theorem 2.1.7, although as expected
they are weaker than the theorem above.

2.2 The upper bound

We first prove the upper bound in Theorem 2.1.6. In fact, we prove the same
upper bound for a more general class of configurations, of which the configurations
Xc, Xs that we defined from Cay(G, S) and Sch(V, S) are just particular cases.

Theorem 2.2.1. Let X be a configuration; call an edge colour ¢ € C nonempty if
for everyv € T there is at most one w € T with c¢(v,w) = ¢, and call it empty other-
wise. Suppose that the coloured graph T'x = (T, {(v1,v2) € T%|c(vy,v2) nonempty})
is connected. Then the number WL(X) of nontrivial iterations of the Weisfeiler-
Leman algorithm satisfies

WL(X) < log, diam(T'x) + 3.
Here and everywhere else, log, denotes the logarithm in base 2.

Proof that Thm. 2.2.1 = Thm. 2.1.6. Consider the configuration Xg coming from
the graph Sch(V,S): the only possible empty colour is () (hence the name) and
all the other edge colours are nonempty, because for any v € V and s € S there
is evidently only one v with sv = v/, so by our definition for any colour ¢ C S,
¢ # () at most one v’ would realize c(v,v’) = ¢ for any fixed v. If @ is indeed
empty, by construction a nonempty-coloured pair in I'x, corresponds to an edge
(or multiedge) in Sch(V,.S): thus connectedness of Sch(V, S) implies the same for
I'x,, and the two have the same diameter. If () is nonempty, i.e. in the extreme
case when S sends any v to any v’ except at most one, we have diam(I'x,) = 1
and diam(Sch(V,S)) = 2, so the bound still holds; if § is not a colour at all,
diam(T'x,) = diam(Sch(V,5)) = 1. O

From now on, for the sake of clarity, colours that appear during the iterations of
the Weisfeiler-Leman algorithm as refinements of empty (resp. nonempty) colours
are still called empty (resp. nonempty), even if some new empty colours could now
satisfy the nonemptyness criterion: as a matter of fact, it is a key point in the
success of the argument that eventually all new colours will be nonempty according
to our definition of the word; however our need to refer ourselves to the origin of
the intermediate colours is more pressing than highlighting the acquisition of the
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property of nonemptyness. Observe that, by the construction of the new colours
in (2.1.1), each of them contains information about every past colour from which
it descended, so that recognizing whether a given intermediate colour is empty or
nonempty does not create any problem.

Inside X, call walk (of length ) any sequence of consecutive pairs of vertices
(wo, w1), (w1, wa),. .., (w—1,w;) (with their respective colours) which corresponds
to a walk of length [ in I'x; equivalently, a walk in X is any sequence of consecutive
pairs with only nonempty colours.

Throughout the rest of the paper, we will colloquially say multiple times that
a colour ¢ knows something. With this expression, we want to convey that for
any pair of vertices (v, w) for which ¢(v,w) = ¢ that particular bit of information
is true: in particular, when we say that ¢ knows a certain walk (intended as
a sequence of nonempty colours) we mean that for every two vertices v, w with
¢(v,w) = ¢ there is a walk from v to w made of pairs of vertices having exactly
those colours. Moreover, when we say that ¢ knows all walks, or all walks up to a
certain length, we mean that for every pair (v, w) with ¢(v, w) = ¢ walks (or walks
of a certain length) from v to w made of a given sequence of colours occur the
same number of times regardless of the choice of v, w.

In order to prove Theorem 2.2.1, we need the next lemma.

Lemma 2.2.2. For every vi,vs € I', at the k-th iteration, c(k)(vl,vg) knows all
walks of length < 2F from vy to vs.

Proof. We proceed by induction on k. When k& = 0 the statement is trivial, since
the only walk of length 1 from v; to vy that could possibly exist is the edge (v1, v2)
provided that its colour is nonempty, which the colour ¢(©) (v1, v2) evidently knows.

Suppose that the statement has been proved for k, and consider any walk of
length < 2F+1! from v; to vy: for any such walk, there exists a w that splits the
original walk into two walks (from v; to w and from w to vs) of length < 2.
The existence of these walks is an information contained inside ¢*)(v1,w) and
c®) (w, vy) respectively, so at the (k+1)-th iteration ¢*+1) (vy, v5) will know about
the existence of this pair of walks (and consequently of the original long walk). [

Compare the statement of Lemma 2.2.2 with that of Proposition 2.1.4: ac-
cording to the latter, colours of a coherent configuration know all walks of any
length, while the former describes how, iteration after iteration, the colours of a
configuration arrive to gain knowledge of longer and longer walks, whose length
doubles at every step. The origin of the log, of the diameter in all our results
clearly resides in this “learning” process; proving the lower and the upper bounds
involves making sure that such process is, in a sense, more or less respectively
necessary and sufficient to make the configuration X coherent.

As for the upper bound, it turns out that, given a vertex v, knowing which
walks starting from v reach the same endpoint is enough information (in a graph
like I'x) to reconstruct a piece of the graph around v.

Lemma 2.2.3. Fiz any vertex v € I'x and suppose that we know, for any two
sequences of nonempty colours of length < k, whether the walks starting from v
defined by these sequences exist and have the same endpoint. Then it is possible
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to reconstruct in a unique way the subgraph F(k)(v) C TI'x given by the edges at
distance < k from v. In other words, for any other coloured graph T whose walks
of length < k from a certain verter w satisfy the same conditions of existence and
equality of endpoints, there exists a unique graph isomorphism T'®) (v) — T(F) (1)
sending v to w.

Proof. The information provided to us is the following:

e a collection of statements of the form “the walk from v consisting of con-
secutive edges of colour ci,ca,..., ¢ exists”, for some strings of nonempty
colours C1C2 ... CI<k;

e a collection of statements of the form “the two walks from v consisting of
consecutive edges of colour c1,c¢z,...,¢ and ¢, ch,..., ¢}, end in the same
v'”, for some pairs of strings of nonempty colours (cica . .. ¢i<k, €i¢5 . .. Crcy)-

With these strings and pairs of strings in our hands, we will manage to rebuild
what the graph I'x looks like up to distance k.

We proceed by induction on k. For k = 1, walks of length < 1 are just single
edges: there is no possible equality of two endpoints, so I'(1) (v) is just a star whose
internal vertex is v and whose leaves are all the edges (v,v;) of T'x. There will
obviously be then a unique isomorphism to any other star with internal vertex w
and leaves with the same colour as '™ (v).

Suppose now that the statement is true for k, and consider for k& + 1 the
two graphs T'*+1) (), T": we already have a partial isomorphism from I'*)(v) C
F(k“)(v) to the subgraph given by the edges at distance at most k from w in I,
and we just need to extend this isomorphism to the edges and vertices at distance
k+ 1. The already existing isomorphism already covers walks of length < k, so we
need to consider only relations involving a walk that includes an edge at distance
k+ 1 from v or w (which will necessarily be the last edge).

Each edge at distance k + 1 in T*+1(v) is (v1,vs) where either d(v,v;) =
d(v,v2) =k or d(v,v1) = k and d(v,v2) = k + 1. In the first case, the two vertices
vy, vy are already sent in a unique way to wq,ws € I'V. Moreover, for any string
€1€g . . . cpCr+1 whose last edge would be (v1,v2) in I'y there are pairs of the type
(crca ... Cperyr,cicy ... ¢)) (where the second corresponds to a walk of length k
from v to vy). Inside I', the walks cica . .. ¢, € c5 . . . ¢}, of length k have endpoints
wi and wy, so the information gathered from the pairs above is: “the edge starting
from w; of colour ¢x1q ends in wy”. This implies that the edge (v1,v2) has the
same colour as the edge (wq, ws), and the isomorphism can be extended to all such
edges.

In the second case, consider all pairs (cicz...cpcri1,¢1Ch ... Ch ) of walks
of length & + 1 whose last edge (v1, v2) have d(v,v1) = k and d(v,v2) = k+ 1. We
can group these walks into equivalence classes corresponding to their endpoints
vy inside T+ (v) \ T®) (v). For all strings cich...cic} , inside a given class,
their subwalks of length k end in vertices v € T'yx, which uniquely correspond to
vertices wi € I': therefore the information they carry, when seen in I", signifies
that “the edges starting from w! of colour c}lc 41 all end in the same vertex” (say
ws): we extend then the isomorphism by sending each v to the corresponding ws
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and each (vi,v7) to the corresponding (wi,ws). This covers all vertices at distance
k + 1 and all edges of the second type. The isomorphism has been extended in a
unique way to the whole I'*+1) (), so we are done. O

Notice how important it is that we are working with nonempty colours, i.e.
in a situation where every vertex has at most one adjacent edge of any given
colour: only with this condition we can talk about the edge starting from v and
having colour ¢, or about the walk starting from v and having colours ¢y, co, ..., .
Without it, there would be no guarantee that there is an isomorphism as the one
we constructed, i.e. we would not be able to deduce the shape of the subgraph
I'®)(v) only by looking at the information about the walks, because more than
one graph could satisfy the same conditions: this is crucial in the proof of the
upper bound.

We are now ready to prove Theorem 2.2.1.

Proof of Thm. 2.2.1. Define k = [logy(diam(I'x) 4+ 1)]: for any vy,vs € I'x, the
colour C(k)(’Ul,’Uz) knows all walks of length < 2k from vy to vg by Lemma 2.2.2.
Since d(vy,v9) < diam(T'y) < 2F, there exists at least one of these walks: this
implies that we have ¢®*)(vy,vs) # ¢ (v1,0h) for any vy # vh, because the walk
from a given vertex defined by a given sequence of nonempty colours is unique (if
it exists).

At the next iteration, the colour ¢*+1) (v, v;) knows the number of vertices w
such that (¢ (vy,w), c® (w,v1)) = (c1, ca) for any choice of colours ¢y, ¢y € CF),
so in particular it knows whether there is a colour ¢; containing one or two given
walks (with the expression “the colour ¢; contains a given walk” we mean that
two vertices v,v" with ¢(v,v") = ¢; would have this walk going from v to v') such
that there is one w with ¢®)(vy,w) = ¢1: in other words, the colour c¢*+1) (vy, ;)
knows if a walk starting from v; of length < 2 given by a certain sequence of
nonempty colours exists, thanks to the information about colours containing one
given walk, and it knows also if two walks starting from v; of length < 2% defined
by given sequences of nonempty colours have the same endpoint, thanks to the
information about colours containing two given walks. So we are in the situation
described in the statement of Lemma 2.2.3, where at the (k + 1)-th iteration from

k
the colour ¢*+1)(v;,v;) we can reconstruct the subgraph I‘g? )(vl).

Now, Fg?k)(vl) is actually the whole I'y for any vy, since every edge is at
distance at most diam(I'yx) 41 from v;: this means that at the (k+ 1)-th iteration
we can look at any colour of any vertex and reconstruct the whole graph I'y around
it. A consequence of the above is that for any two vertices that still have the same
colour after k£ + 1 iterations there must be an automorphism of I'y sending one to
the other. We still need to ensure the same for the edges.

After one more iteration, also each pair of distinct vertices (v1,v2) will have
a colour capable of reconstructing the subgraph ng)(”1)7 because c*+2)(vy, vy)
will in turn contain c(k“)(vl, v1) in a way that allows us to identify it unequivo-
cally: remember, in a configuration vertex colours and edge colours are distinct,
so ¢*1D(v1, 1) can be defined as the unique vertex colour ¢ such that the number
of w with (c*+1) (vy, w), c*+ D (w,v9)) = (¢,c* Y (vy,v2)) is nonzero. Therefore,
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at the (k + 2)-th iteration two vertices or two edges with the same colour can be
sent to each other via an automorphism of I'.

We still have to check that this extends to an automorphism of X. We remark
that this passage is not necessary to prove the special cases X, Xg that we are
interested in, since in that case there is at most one empty colour @) and any
automorphism preserving all nonempty colours (i.e. an automorphism of I'yx ) would
preserve all colours (i.e. it would be an automorphism of X).

For any pair (v1,v2) and any ¢(v, w) empty, there is a sequence of consecutive
pairs that goes first through a walk from v; to v, then includes the pair (v,w),
then through another walk goes from w to vg; if ¢ (vy,v5) = cF+2) (v, v}),
the resulting automorphism of 'y sends the walk v; — v to a walk v] — v’ (and
analogously for the second walk), and all these walks can be chosen to be at most
of length diam(I'x) < 2*. The colour ¢(*)(vy,v) knows the walk v; — v, therefore
c(kH)(vl,w) knows the colour of the whole sequence composed by vy — v and
the pair (v,w); on the other side, ¢®)(w,vy) knows the walk w — wva, so that
c#+2) (1, v5) knows the whole long sequence v; — v — w — vy: c¢*+2) (v, v5) =
cF+2) (v vh) then implies (v, w) = c¢(v/,w’) (as always, we have repeatedly used
the uniqueness of nonempty-coloured walks from a given vertex: otherwise we
would have not been able only from colours to identify (v/,w’) as the image of
(v,w)). We have extended the automorphism of I'x to the empty colours, i.e. it is
in fact an automorphism of the whole configuration X.

By Proposition 2.1.5, the existence of this automorphism means that if two
pairs (v1,vs), (v],vh) have the same colour at the (k + 2)-th iteration they will
always have the same colour, i.e.

WL(%) < k+ 2 < log, diam(T'x) + 3,

and the theorem is proved. O

2.3 The lower bound

We now prove the lower bound in Theorem 2.1.7. Again, we prove the same for
a more general class of configurations than the ones given by Cayley and Schreier
graphs.

Theorem 2.3.1. Let X be a configuration with only one empty colour, and let T'x
be defined as in Theorem 2.2.1; suppose that there exists a ¢ € Aut(X), ¢ # Idx
with the property that each nontrivial ' € (@) (where () is the cyclic subgroup of
Aut(X) generated by p) has no fized points, and consider such a ¢ with minimal
[(©)|. Then the number WL(X) of nontrivial iterations of the Weisfeiler-Leman
algorithm satisfies

WL(X) 2 log, diam(I'z) — log,(|{¢)] — 1) — 3.

Proof that Thm. 2.3.1 = Thm. 2.1.7. As we already said in the previous section,
the only possible empty colour is @; the extreme cases of () nonempty and () not
a colour give a trivially true bound in Theorem 2.1.7 since diam(Sch(G, S)) = 2
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and 1 respectively, while when () is empty we have diam(I'x ) = diam(Sch(G, S)).
As for the automorphism condition, if ¢ > 2 the elements h € F, \ {0,1} induce
automorphisms @y, defined by h(vy,...,vg) = (hvy,...,hvg): they are really au-
tomorphisms since Av = v’ < Ahv = hv' and they obviously do not fix any point
since hv # v for h # 1 (v = 0 is not considered linearly independent even on its
own). The multiplicative group IF; is just a cycle of order ¢ — 1, so there will be
an element of order p as defined in the statement of Theorem 2.1.7, and p will
provide an upper bound for min,{|{¢)|}. O

Again, notice that Theorem 2.3.1 would also apply to Cayley graphs: the same
reasoning applies with regard to the colour (), and right multiplication by any
h € G gives an automorphism ¢y, that behaves as required.

The key idea to prove Theorem 2.3.1 is the following: for any ¢ with the
property described in the statement, the various pairs (v, p’(w)) despite being
distinct from one another will all have the same colour until we manage to “cover
the distance” between v and at least one of the ('(w), i.e. to encode inside the
colours information about walks of length d(v,®%(w)). This is what we meant
when we said that the process of bestowing upon our colours knowledge of the
walks was necessary in order to reach coherence through Weisfeiler-Leman: we
prove that, since the surroundings of the ¢(w) are indistinguishable, from the
point of view of v we will not be able to differentiate among them until we manage
to touch at least one of them.

This idea translates to the following result.

Lemma 2.3.2. For any pair of vertices v,w € I'x and for any integer k > 0 such
that d(v, p*(w)) > 2% for all i, we have that c®) (v, ' (w)) is the same for all i.

Proof. We proceed by induction on k. For k = 0 the statement is obvious, since
by hypothesis d(v, ¢*(w)) > 1 for all i and ¢ is the original colouring of X, so
that ¢(9) (v, p*(w)) = B for each of these pairs, where ) is the unique empty colour.

Now suppose that the statement is true for k, i.e. for every two elements v, w €
I'x such that Vi (d(v, ¢*(w)) > 2*) the colour ¢ (v, ¢*(w)) is the same for all 4.
We fix now elements v, w that satisfy the condition Vi (d(v,¢’(w)) > 25*1) and
we prove for them the statement for k + 1.

The colour ¢+ (v, w) consists of the previous colour ¢*)(v,w) and of the
number of v’ such that (¢®)(v,v"), ¢ (v, w)) = (e1, c2) for each choice of ¢1,co €
C®): since by hypothesis we already have the same c¢*) (v, ' (w)) for all i, we only
need to prove that for each pair (cy, co) the numbers are the same for all (v, *(w)),
i.e. for each 7 there exists a bijection o; : V' — V such that

(c(k)(v,v’),c(k)(v’,w)) = (c(k) (v, 0:(v")), ¢®) (Ui(v’),gai(w))) ) (2.3.1)

Define A% = {v' € V|min, d(¢'(v),v") < 2*}: we show that the bijections
then can be defined to be

v’ if v/ € AR,
o) ifu g AR,



Figure 2.1: Colours ¢(®) for the two cases v’ € A®) and v' ¢ A®),

These are really bijections, since the fact that ¢ € Aut(X) preserves distances
implies v ¢ A®) & i(v') ¢ A, Figure 2.1 shows what happens in our situation:
since w is at least 281 far from all the ¢?(v) and the walks that the colours know
have length at most 2%, either we are close to one of the ¢?(v) and then far away
from w (which allows us to “confuse” w and ¢*(w) from the point of view of v') or
we are far away from the ¢(v) (and we can confuse v' and ¢*(v’) from the point
of view of v).

When o' € A% the first components in (2.3.1) are already identical. By
definition, there is a j such that d(¢?(v),v’) < 2F; then using d(¢’ (v), ¢*(w)) =
d(v, =9 (w)) we have

d(v', @' (w)) > d(¢ (v), 9" (w)) = (@ (v),0") > 2"+ — 2% = 2%,

thus obtaining equality for the second components in (2.3.1) by inductive hypoth-
esis.

When v' € A®) | we have d(v, ¢* (v')) = d(¢~*(v),v’) > 2* for all i by definition:
this gives us already c¢® (v,v’) = ¢®) (v, ' (v')) by inductive hypothesis, and the
first components in (2.3.1) are equal; equality of the second components is also
clear, because ¢’ is an automorphism of X that sends (v',w) to (©%(v'), (w)),
which means that their colours will always be equal to each other at every iteration
(as consequence of Proposition 2.1.5).

We have thus shown that the o; are bijections satisfying (2.3.1): this means
that the colours ¢*+1) (v, ! (w)) are all the same for every i, proving the inductive
step. L]

It is now easy to prove Theorem 2.3.1 from this lemma.

Proof of Thm. 2.3.1. Suppose that we have reached the end of the Weisfeiler-
Leman algorithm, i.e. we have reached an iteration k£ that does not refine any
colour in C*=1Y . For any two elements v,w; € I'yx there is a walk of nonempty
colours from v to w; that is unique to wy (by definition of nonempty colour) in the
sense that no other wy will have the same walk going from v to wy. This means in

44



particular that the final colours c¢*)(v, p*(w)) must be all distinct for fixed v, w,
now that we have reached the end of Weisfeiler-Leman and the configuration has
become coherent: in fact for each of them there is a walk that is not shared by the
others, so by Proposition 2.1.4 these walks will give different colours to the pairs
(v,9*(w)). By Lemma 2.3.2 however these pairs have all the same colour when
Vi (d(v, ot (w)) > 2’“), which implies that for any fixed v € I'y and for any other
w € Ty there exists an i such that ¢’(w) has distance at most 2% from v.

We now suppose that the cyclic group generated by ¢ in Aut(X) is of minimal
size, the only property of ¢ required in the statement that we have not used up to
this point. Fix now a v such that diam(T'x) is realized as a distance by some pair
(v,v"), and fix a w such that d(v, w) = 2¥ 4+ 1 (of course we are supposing that the
diameter is larger than 2%, otherwise the bound of the theorem is already true):
we must have d(v, ' (w)) < 2¥ for some i, so changing the name of the generator
of this shortest cycle (¢) we can suppose that d(v, p(w)) < 2¥. For a v’ such that
d(v,v") = diam(I'yx) we must also have d(v, ¢’ (v')) < 2F for some j; therefore

diam(Tx) = d(v,v') = d(¢?(v'), ¢’ (v))

< d(? (v),0) + ) (de" ™ (v), 9" (W) + d(¢' (w), ¢' (v)))
= d(v, ¢’ (') + j(d(v, p(w)) + d(v, w))

<284 j(2F + 28 +1) < 2P < 2FF2(|(p)] - 1),
and we have the bound on the last nontrivial iteration k — 1 as
WL(X) = k—1 > log,diam(T'x) — log,(|{¢)| — 1) — 3.

The proof is concluded. O

2.4 The case of Cayley graphs

Now we prove Theorem 2.1.8. The case of a Cayley graph Cay(G, S) is particularly
nice with respect to general Schreier graphs: the reason behind this fact is ulti-
mately the existence of automorphisms (namely, right multiplications by elements
of G) that can send any g to any ¢, as we will be able to observe during the proof
of the result!.

Before we move to the actual proof, here is an idea (without details) that shows
why the result is reasonable: the author thanks L. Bartholdi (personal communi-
cation) for the observation. If at a certain iteration the algorithm has assigned a
colour to two elements s, s’, in the sense that ¢(g, sg) has been established as a
nonempty colour, then at the next step we would have a colour for ss’ too: this
is because the pair (g, ss’g) has a triangle with sides (g, s'g), (s'g, ss'g) built on
it. Therefore, at the k-th iteration the configuration we obtain from Cay(G, S) is

1To turn a Russian quote inside out, Cayley vertices being all alike make us happy, and
Schreier vertices being all in their own way make us unhappy.
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substantially the same as the initial configuration coming from Cay(G, S 2" ). Thus
it is natural to expect that the algorithm would stop when 52" becomes the whole
G (or possibly G except for just one g), and the number of steps would become
essentially log, diam(Cay (G, S)).

Now, let us turn to filling the necessary details. We start with a lemma that
provides an upper bound for the number of iterations; more specifically, we prove
that the right hand side of the equality in Theorem 2.1.8 provides at least a
sufficient number of iterations to make the configuration X¢ coherent.

Lemma 2.4.1. The inequality with < in Theorem 2.1.8 holds.

Proof. Right multiplication by any h € G gives an automorphism j, of X, since
sg=¢ & sgh = ghfor any g,¢' € G, s € S; by Proposition 2.1.5, at the end of
the algorithm ¢, will still be an automorphism of the final coherent configuration,
which means in particular that every vertex will have the same colour and that for
any three vertices g,¢’,h € G there exists an ' € G such that ¢(g,h) = c(g’, h').
Therefore, the maximum possible colour refinement that we can expect to obtain
from Weisfeiler-Leman is the one where all sets {c¢(g, h)|h € G} are equal for every
g but where any two colours ¢(g, h), (g, h') are distinct for h # h'.

Indeed, this is the colouring that we reach at the end: as we have already
observed in the general Schreier case, any coloured walk from g to h (corresponding
to a certain product of generators that represents g~1h) is the unique walk from
g consisting of that sequence of colours, and by Proposition 2.1.4 the final colour
¢(g,h) knows it. Thus, every c¢(g, h) knows a walk that all other ¢(g,h’) do not
know, and the colouring described above is achieved.

When every colour ¢(g, h) for all h € G has become distinct from the others,
we have undoubtedly reached the end of the algorithm; this happens when the
colour of every pair (g,h) knows at least one walk connecting them, or at the
very least when for a fixed g all but one of them know such a walk (so that the
remaining pair (g, k) has the unique colour that knows no walk: this corresponds,
informally speaking, to the situation where even the emptiest descendant of the
colour ) is nonempty according to the definition given in Theorem 2.2.1). By
Lemma 2.2.2, this happens when at the k-th iteration we have 2* at least as large
as the diameter, or at least diam(Cay (G, S)) — 1 if for any g there is only one h
whose distance from g is the diameter; the result follows. O

To prove an inequality in the other direction, we make use of the abundance of
automorphisms in the Cayley graph to prove a stronger version of Lemma 2.3.2.

Lemma 2.4.2. For any four vertices g,h,q',h' € G and for any integer k > 0
such that d(g, h),d(g',h') > 2%, we have ¢®) (g, h) = ¥ (g’ 1/).

Proof. Again, we proceed by induction on k. For k = 0 the statement is obvious,
because all pairs (g, h) of vertices with distance > 1 have the same colour ) at the
0-th step.

Now suppose that the statement is true for k. First, we are going to prove
that for any three vertices g, h,h’ € G with d(g,h),d(g,h') > 2¥*! the two pairs
(g9,h), (g,h') will still have the same colour at the (k 4 1)-th step; the idea is,

46



as in Lemma 2.3.2, to construct a suitable bijection o : G — G with a property
analogous to (2.3.1), namely

(¢909.9),¢ (', 1)) = (M(g,0(9)), Pr(g), 1)) - (2.4.1)
Define
g if d(g’,h),d(g',h') > 2F,
o(g) =< gh th ifd(g, h) <2F
7(9") if d(g’,h) > 2k, d(g', h') < 2F,

where T is an arbitrary bijection from the set {g’ € G|d(¢’, h) > 2¥,d(g', h') < 2F}
to the set {g’ € G|d(g’,h) < 2F,d(g', ') > 2F}.

In the first case we have obviously a bijection, whose image is the set of all
vertices of distance > 2F from both h and A’; also, by inductive hypothesis in
this set we have ¢®) (¢, h) = c¢®)(¢/, 1), so (2.4.1) is satisfied. In the second case,
right multiplication by A=A’ is an automorphism (hence a bijection) from the ball
around & to the one around h’ both of radius 2*: this descends trivially from the
fact that if we have s; € S such that ([]; s;) ¢’ = h then also (], s;) ¢’h™*h' =1/,
so that in particular d(g’,h) = d(g’h~'h’, h’); moreover for the same reason we
must have ¢(®) (¢', h) = c¢*)(¢’h='h’, h'), because for every walk given by a sequence
of colours s; from ¢’ to h the same walk exists from g’h~'h’ to h/: as observed
in the proof of Lemma 2.4.1, for our three vertices ¢’,h,g’h~'h’ there must be
a fourth z that will have c(g’,h) = c(¢’h~'h’,z) at the end, and = k' is the
only possible candidate. We also have ¢(®)(g,¢") = ¢¥) (g, g’h='h') by inductive
hypothesis, since ¢’ and g’h~'h’ are at distance < 2* from h and A’ (both at
distance > 28! from g); thus, (2.4.1) is satisfied again. In the third case, 7 is a
bijection because the balls around A’ and h of radius 2¥ have the same number of
vertices, and domain and codomain of 7 are these two balls minus their intersection;
in addition, the colours of the four pairs (g,¢’),(¢’, h),(g,7(q")), (7(¢'), h’) are all
the same since each of their distances is > 2, so we have (2.4.1) for this case too.
Given that the codomains in the three cases are disjoint, ¢ is indeed a bijection
satisfying (2.4.1), which implies that c¢(*+1) (g, h) = c*+1 (g, h").

Now we know that for any vertex g there is a colour ¢4 such that all vertices
h at distance > 2F+1 will have c¢(*+1)(g,h) = ¢,: but then it is obvious that
¢y does not depend on g, since any g is sent to any ¢’ by some automorphism
that will preserve distances in the graph, so that (g,h) of distance > 2F+! is
sent to some (g’,h’) of same distance (and consequently ¢, = cy/). This proves
that ¢t (g, h) = c*+1 (¢, h') whenever d(g,h),d(g',h’) > 251 concludes the
inductive step and proves the lemma. O

Now we can easily prove Theorem 2.1.8.

Proof of Thm. 2.1.8. We have already shown the < direction in Lemma 2.4.1.
On the other hand, proving the > direction means proving that if at the k-th
iteration there are three vertices g, h, b’ such that d(g,h),d(g, h’) > 2 then there
are more iterations to come; by Lemma 2.4.2, however, in this situation ¢(*) (g, h) =
c®)(g,h') and we know that at the end of the algorithm we will have c(g, h) #
¢(g, ') (ultimately coming from Proposition 2.1.4), so the statement holds. O
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2.5 Concluding remarks

As we have noted, the Weisfeiler-Leman algorithm behaves especially well on Cay-
ley graphs: Schreier graphs, which in general have not as many automorphisms
as Cayley graphs, satisfy less stringent upper and lower bounds. In one direc-
tion, having vertices with different stabilizers can make pairs of vertices of large
distance receive different colours early on, so that the colouring at the k-th step
of the algorithm conveys more information than the mere colouring coming from
the choice of $2" as generators. Consider for example the set V = Z/nZ and the
group G = Sym(n) generated by the set S consisting of all transpositions of the
type (i i+ 1) and the identity: the diameter of Sch(V, S) is [n/2], but since every
i € V is stabilized by a different subset of the generators (i.e. all of them except
(1—114) and (i i + 1)) after the first step all the pairs of colour @) are differen-
tiated immediately; therefore the number of iterations in this case will be 1, for
any choice of n (the bound given by Theorem 2.3.1 also fails, because there are no
non-trivial automorphisms of the coloured graph).

On the other hand, the fact that the maximum possible colour refinement that
we can expect from Weisfeiler-Leman is more than the one described during the
proof of Lemma 2.4.1 could mean that more steps are necessary than just the ones
needed to reach the end of the graph: the information to reconstruct the whole
graph (to put it in the language of Lemma 2.2.3) exists already but it could be
scattered among the various pairs of vertices of the graph and it could take a few
more steps to make sure that every single pair knows everything about the graph.
Consider for example the set V = {1,2,...,14} and the set S = {e,0*!, 7%} (the
group G has little importance here: for the sake of simplicity, think of it as the
free group Fs, or as a suitable subgroup of Sym(14)) acting on V' as follows:

c:1—=2—-3—4—5—6—T—1,
89— 10— 11— 12— 13— 14— §;
7T:1—»8—-9—2—1,3—10— 3, 4— 11 — 4,
5—12—5, 6—13—6, T— 14— T.

In this situation, Sch(V, S) looks like two coloured heptagons whose correspond-
ing vertices are linked, so that its diameter is 4; from the reasoning in Lemma 2.2.2
and Lemma 2.2.3, after the second iteration of the algorithm there is enough in-
formation to reconstruct the whole graph, and this would be in accord with a
hypothetical estimate as in Theorem 2.1.8. Nevertheless, it is possible to ver-
ify that we have ¢®)(5,5) = ¢(?)(12,12) and ¢®)(5,5) # ¢)(12,12), so that the
number of iterations for this configuration is > 2 (it is 3 indeed).

*okok
Theorems 2.1.6-2.1.7-2.1.8 establish a rather strong correlation between the
number of iterations of Weisfeiler-Leman and the diameter of Cayley and Schreier

graphs. In particular, Theorem 2.1.8 allows us to describe the diameter of Cayley
graphs as a function of WL(X¢); it is natural, in the context of Babai’s conjecture,
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to ask ourselves whether it is possible that the number of Weisfeiler-Leman itera-
tions could be reflected in another way in the construction of the graph: usually,
determining the runtime of the algorithm would involve from the beginning the
actual construction of the graph, thus making it useless for the solution of the
conjecture. In light of this, it would be interesting to find results that express
WL(X(¢) as a more intrinsic feature of the construction of Cayley graphs.

On the other side, to the best of our knowledge the results established here
are the first ones that determine nontrivial bounds for the number of iterations of
the Weisfeiler-Leman algorithm on configurations, either general or of a specific
form (the trivial bound on a generic classical configuration being |I'|?—|C|). In this
direction, it would be interesting to find results in the style of Theorems 2.2.1-2.3.1
with different initial conditions: a case that appears to be particularly appealing
is the case of non-coloured graphs, for which one can wonder whether it could
be possible to bound WL(X) from above by some function of the diameter of the
graph, as we have done here for the particular coloured graphs described in the
statement of Theorem 2.2.1.
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Chapter 3

Short expressions for cosets
of permutation subgroups

The content of this chapter is essentially based on [Don18].

In this chapter, we analyze more closely Babai’s quasipolynomial algorithm
for the graph and string isomorphism problems (GIP and SIP): see §1.5 for the
history of GIP in general, and §1.6 for a short introduction to the algorithm. As
said therein, the reduction and recursion process in the algorithm has at its core
a theorem by Cameron [Cam81] (and later Liebeck [Lie84] and Maréti [Mar02])
that describes all the primitive permutation groups as either having relatively
small size or being very close to a wreath product of alternating groups, and such
a classification makes the whole result operationally depend on CFSG (quoted
here as Theorem 1.2.4, essentially from [Wil09]). On the other hand, it is possible
to slightly modify Babai’s proof to make it independent from CFSG, a feat due to
Babai himself [Bab16a, §13.1] and Pyber [Pyb16]: in particular, the algorithm can
avoid the use of Cameron by resorting to another result by Pyber [Pyb93] that
describes doubly transitive permutation subgroups.

Our analysis here, on a first superficial level, provides a more explicit run-
time for Babai’s algorithm, both in the CFSG and the CFSG-free case. We will
follow Helfgott’s description of Babai’s result given in [Hel19b] [HBD17], instead
of Babai’s original formulation in [Babl6a]: Helfgott makes the algorithm more
explicit and proves that the procedure actually takes time nOUos” 1) when CFSG
is available; we will make it even more explicit and determine the constants in
front of the logarithm. Also, in [Hell9b] the reader’s attention is justifiably fo-
cused on the proof of the single steps that are involved in the procedure, while
the interstitial reasoning that details the recursion is only sketched: in [Hel19b],
this part is contained mostly in §3, §5.3, §6.2 and Appendix A; conversely, we will
concentrate on the jumping between the main processes to delineate what the flow
of the algorithm is, while using its individual theorems and subroutines as black
boxes whose validity and well-functioning is taken for granted (we will mention the
most important ones in §3.4). This will give us the control we need to determine
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the runtime with the desired accuracy.

On a deeper level, the way we achieve the goal described above is interesting
on its own. Babai’s algorithm is combinatorial in nature, although it is based on
group-theoretic results; on the other hand, the combinatorial techniques developed
by Babai have also been used before to deduce consequences for permutation
subgroups, such as in [Bab81]. It turns out that this is possible also in the case
of Babai’s quasipolynomial algorithm: since the procedure described by him is
closely translatable to the CFSG-free case, it is possible to give a description
of permutation subgroups that shares some characteristics of Cameron’s result
even when CFSG is not available, simply by making a subgroup pass through the
algorithm, in a way that will be clarified in the next section; in brief, the use of
the algorithm reveals structural information about permutation subgroups that
we translate in the language of Theorem 3.2.1 as being able to write them as short
expressions made of “easy” or “atomic” subgroups, where shortness here is just
another face of the quasipolynomiality of the whole process.

That all of this can be useful, and that Theorem 3.2.1 can potentially do a job
qualitatively similar to Cameron’s theorem despite its different language, can be
witnessed in §6. A decomposition similar to what we achieve in Theorem 3.2.1,
but based directly on Cameron, makes its appearance in [Hell8, Prop. 4.6] and is
fundamental in proving a diameter bound for Alt(n) that goes through a sort of
product theorem, like Theorem 1.3.2. Passing through our decomposition instead,
we will achieve the more modest and conditional result laid out in Theorem 6.3.6,
which however shows already the potential power of this chapter’s analysis.

3.1 Standard definitions

Before we start, let us recall here some standard terms and properties, coming
from permutation group theory, that we have already mentioned multiple times
and are long due an explanation.

Definition 3.1.1. Let n > 1, and let G < Sym(n) be a permutation subgroup. G
is said to be transitive if for any two elements x,y € [n] there exists a g € G with
g(x) =y. G is intransitive if it is not transitive.

Let d > 1. G 1is said to be d-transitive if for any two d-tuples of distinct
elements (x1,...,24), (Y1, .,ya) € [n]? there is a g € G with g(x;) = y; for each
1 <i<d. A 2-transitive subgroup is also referred to as doubly transitive.

The group G < Sym(n) is a giant if either G = Sym(n) or G = Alt(n).

Transitive subgroups of Sym(n) have only one orbit for their natural action
on [n]. There is another action of permutation subgroups that we will have to
consider, namely the one on the set of k-subsets of [n], denoted by ([Z]) (in obvious
analogy with the binomial coefficients); in particular, the action of a d-transitive
group on ([Z]) has only one orbit too. The same abstract group G can be embedded
into symmetric groups of different degrees, and thus be transitive or intransitive
depending on the situation, therefore we will always specify “G < Sym(n)” or
similar notations to indicate that G is considered to be of degree n; one of the
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reductions we operate, the one we call “fourth action” in §3.6, is a passage to a
smaller degree without changing G, so it is an important detail to keep in mind.
Let us see another important characteristic of the action of permutation groups.

Definition 3.1.2. Let G < Sym(n) be transitive. A system of blocks of (the action
of) G is a partition B = {B1,Ba,..., B} of [n] such that for every g € G and
every 1 < 1,j <r either B; = g(Bj) or B;Ng(B;) =0. A trivial system of blocks
is either the system B = {[n]} or the system B = {{1},{2},...,{n}}.

G is primitive if the only systems of blocks it has are the trivial ones; G is
imprimitive if it is not primitive. G is uniprimitive if it is primitive and not
2-transitive.

By transitivity, all the blocks of the same system have the same size. Every
2-transitive group is primitive, but not vice versa: in other words, there exist
uniprimitive groups, for example Alt(n) acting on (1), provided that n is large
enough (n = 6 is sufficient!). Similarly, there are transitive but imprimitive groups:
an example of minimal size in terms of |G| + n is ((1 2),(1 3)(2 4)) acting on
{1,2,3,4}.

Finally, let us not miss an opportunity to describe the following action, since
it plays a central role in Cameron.

Definition 3.1.3. Let G, H be finite groups acting on finite sets V, W respectively.
Then G H, the wreath product of G by H, is defined to be the semidirect product
GWI s H; in other words, G H is the group whose underlying set is GWI x H
and whose group operation is

(gw17 L 7gw‘W| ) h‘) : (97{017 s 7.97/1)‘W| ) h/) = (gwlg;L*l(wl)u e 7g’w\W\g;’L*1(w|W‘)7 hh/)
The primitive action of GUH on VW is defined to be

(gwlw ~ Gwiws h)'(ku s 7Uu}|w\) = (gh—l(wl)vh—l(wl)a s 7gh—1(w‘w‘)vh—1(w‘w‘))'

There are several wreath products in more general contexts, but for us this
will be sufficient. The primitive action of G ! H is also called product action or
exponentiation in the literature [Cam99, §4.3] [DM96, §2.7] [JK81, §4.1]; there
is also another natural action of the wreath product, the imprimitive action on
V x W, but we will not encounter it.

In Theorem 1.2.5(a), we are using the definition above with G = Sym(m) and
H = Sym(r) and their natural actions on V = ([7;]) and W = [r] respectively.

3.2 Main theorem: statement
Let us start with a permutation subgroup G < Sym(n). How “easy” is it to

describe? Or rather, what are the “easy” permutation subgroups and how can we
obtain all subgroups by building them out of the easy ones?

1Double transitivity fails because if a is stabilized then all pairs containing a are sent to each
other; let us sketch the argument for primitivity. There is 1 such that {1,2} is in a block B and
{1,3} is not: if there is {4,5} € B, use (2 3 6). If on the contrary all pairs in B touch either 1
or 2, we can have either {1,3} € B and {1,4} ¢ B (and use (3 4 5)) or every {1,z},{2,y} € B
(and use (1 2 3)); if there are none at all, |B| = 1.

53



The easiest kind of subgroup that one can imagine would likely be a product of
symmetric groups: given a partition {[n;]}; of [n], in the sense that ). n; = n, the
subgroup corresponding to [, Sym(n;) (provided that we fix a way to partition [n]
into these [n;]) is very easily describable, in terms of generators, size, membership,
etc...; we are curious about the way in which we can assemble groups of this sort
to create GG, or more generally a coset of G if possible. Specifically, given a certain
H =[], Sym(n;) with }>;n; = n and a general G < Sym(n), we are going to give
a description of cosets of the form G N Ho in terms of easy subgroups; note that
this does not include all the possible permutation cosets: for example, G'n with
G’ transitive is of the form G N Ho only if H = Sym(n), which implies that 7 is
the identity permutation. On the other hand, by the same reasoning we promptly
see that any subgroup G’ falls into this class of cosets. The reason why we restrict
to these cosets will lie in our use of Babai’s result (see Definition 3.3.1).

Let us define now more rigorously what it means to build an expression for
G N Ho starting from easy building blocks. Our atomic elements are:

(A) cosets Go of permutation subgroups G of the form Alt(| |, A;) N[, Sym(A4;)
(where the A; are disjoint sets).

So the atoms are defined to be the cosets of the even permutation part of the
aforementioned “easiest subgroups”. In particular, the trivial subgroup {Id|q} is
an atom, being simply Sym(1)!?l, and so are all singletons {¢}, being its cosets.

We declare the atoms to be well-formed. We can combine well-formed expres-
sions to form more complex ones; the legitimate ways to do it are the following
three.

(C1) Paste cosets of a subgroup to get the whole group.
Let G < G < Sym(A) with {o;}; a set of representatives of G’ in G, and
let H = []; Sym(4;) for some partition {A;}; of A; suppose that for some
fixed o € Sym(A) the cosets G'NHoo; ! are all well-formed: then GNHo =
U;(G" N Hoo; '), is also well-formed.

(C2) Paste disjoint domains to get a group acting on both.
Let G < Sym(A;) x Sym(Ag); for i = 1,2, let m; : G — Sym(4;) be the
natural projections, let H; = Hj Sym(A;;) for some partition {A4;;}; of A;,
and let o; € Sym(A4;). Suppose that 71(G) N Hyo1 = K7 is well-formed,
and suppose that (7] (K)) N Hyoama(ny * (7)) is well-formed too: then
G N (Hy x Hy)(o1,09) is well-formed.

(C3) Paste a group fizing a set of blocks with an alternating group permuting them.
Let G < Sym(A) be a well-formed subgroup, contained in [, Sym(A4;) for
some partition {A;}; of A into equally sized parts; let o1,02,0" be three
permutations of A and suppose that ({01, 02}) permutes the A; in the same
way as Alt(T") permutes (1,;) for some T, k: then (G U {o1,02})0’ is also
well-formed.

Since the trivial subgroup is an atom, all subgroups G could be written as a
well-formed expression by (C1), choosing G’ = {Id|q}, H = Sym(f2) and any o.
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That is uninteresting, though, since we need |G| atoms to perform such a task:
the point is to use as few of them as possible. Our main theorem gives a way to
build a well-formed expression of small length for GG, and even for any G N Ho.

Theorem 3.2.1. Let n > 1, let G < Sym(n), let H = [[, Sym(%;) for some
partition {X;}; of [n], and let o € Sym(n).

Then, we can write a well-formed expression for GN Hao, starting from atomic
elements (A) and combining them using (C1)-(C2)-(C3), such that the number
of atomic elements involved in the construction is bounded by n'1°8°"  where
(K, c) = (103,2) if we assume CFSG and (K,c) = (26¢'/<°,5 + ) otherwise for
any € > 0 small enough.

The time necessary to find such an expression is bounded by O(n*1+K10e"n),

One can verify that ¢ < ﬁ is indeed small enough.

The similarities with [Hell8, Prop. 4.6] are important, as they are exactly of
the nature that we would need to free the bound on diam(Alt(n)) proved therein
from the use of CFSG: the descent to smaller cosets (or ascent to larger ones, for
us) works in the same way, and the quasipolynomial bound is fundamental for the
diameter. The only difference that prevents a direct substitution is the fact that
(C1) allows for any subgroup, instead of restricting to normal subgroups like we
would need for other procedures given in the course of such a proof. This whole
discussion will take place again in §6.

The runtime claimed in Theorem 3.2.1 is in reality a bound on the runtime
for Babai’s algorithm: the construction process of the well-formed expression, as
illustrated in the following sections, is part of the description process necessary to
solve the string isomorphism problem; in the proof we will calculate the cost for
the latter, thus retrieving a bound for the former as well.

Setting aside the time issue, this theorem does not surprise us if we assume
CFSG. Cameron implies in its stronger form that any primitive permutation sub-
group either is small enough to be expressed as the union of < nOUog’ n) singletons
through (C1) or it has as large subgroup a wreath product Alt(I") ? Alt(s) where
Alt(T") acts on (1;) (see Definition 3.1.3), so that it is susceptible of being described
using repeatedly (C3); if the subgroup is not primitive, it is not difficult to reduce
to this case by working on each block separately and then uniting and glueing
together the pieces with (C1) and (C2).

Without assuming CFSG however, the situation changes. It is true that,
for doubly transitive permutation subgroups, Theorem 3.2.1 would be a conse-
quence of Pyber’s result: either such a group is Sym(n) or Alt(n), or it has size
< pOUog’ "); the discussion goes basically as above. Pyber’s result does not how-
ever say anything about subgroups that are transitive but not doubly transitive;
in this sense, Theorem 3.2.1 extends this CFSG-free description to this class of
permutation subgroups as well (and [Hell8, Prop. 4.6] is needed for all transitive
groups).

One last note: the computation of K in the main theorem, and many of the
intermediate results leading to it, have been performed with SageMath, version
8.9. The calculations are elementary enough to be easily reproducible with any
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software, but SageMath is open-source and can be embedded into LaTeX, which
is why the author chose to use it.

3.3 Elementary routines

Let us define the fundamental objects in the study of SIP.

Definition 3.3.1. Let  be a finite set, let G < Sym(f2) and let x,y : @ — X be
two strings. The set of isomorphisms from x to 'y in G is defined as

Isoa(x,y) ={g € G|x? =y} = {g € GIVr € Qx(r) = y(9(r)))}.
The group of automorphisms of x in G is defined as Autg(x) = Isog(x,x).

The sets of isomorphisms Isog(x,y) are precisely the intersections GN Ho, H
being a product of smaller symmetric groups, that are featured in Theorem 3.2.1:
in fact, a permutation of € is in such a set if and only if it is in G and for every
letter of ¥ it sends the preimage of that letter in x to its preimage in y. H
is therefore J[,cx(q) Sym(x~!(a)), and vice versa, given a product of symmetric
groups and a o, it is possible to define x as being piecewise constant with a letter
for each symmetric group and then define y = x°.

This also reveals how to find an expression for any permutation subgroup
G < Sym(Q): this corresponds to finding Autg(al®?l), where o!®l is the constant
string consisting of one letter repeated || times, or in other words to making the
algorithm run “in neutral” on a trivial string so as to capture only G.

Remark 3.3.2. Every time we describe Isog(x,y) as a coset G'7, where G’ <
Sym(Q) and 7 € Sym(Q2), G’ is actually Autg(x) and 7 is an element of G sending
x toy.

In fact, since G’ is a subgroup of Sym(Q2) it contains the trivial permutation,
so that 7 € Isog(x,y): this proves what we claimed about 7. If g € G’ (so that
g7 sends x to y) then g fixes x since permutations are bijections and any x’ # x
will not be sent to y by 7; therefore by definition g is also an element of Autg(x).
On the other hand, if o € Autg(x) then o7 € Isog(x,y) = G'7 and o € G'; this
proves also that G’ = Autg(x).

We begin by providing several simple results on computations that we have
to constantly perform throughout the whole procedure. Before that, a couple of
definitions; if G < Sym(Q) and A C €, the setwise stabilizer and the pointwise
stabilizer of A are respectively

Ga={geGlg(A)=A},
Gay =1{9€GVr e A(g(r) =7)}.
We also write Gy, ... ) for G((p,,...r,})- Trying to find the setwise stabilizer for a
generic A is a task of difficulty comparable to producing Isog(x,y) itself; on the

other hand, producing pointwise stabilizers is much easier (see Corollary 3.3.4(e)),
and we can walk down this route to obtain basic but useful algorithms.
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Proposition 3.3.3 (Schreier-Sims algorithm). Let Q = {z1,22,...,2,} and let
G < Sym(Q) be provided with a set of generators A. Then there is an algorithm
that finds in time O(n® +n®|A|) a set C' of generators of G of size < n? such that
Jor every 0 <i <n—2 and for every coset of Gz, ... a; ;) NSide Gz, . o,) there
exists a unique v € C' that is a representative of that coset.

Proof. See [Luk82, §1.2] or [Hell9b, Alg. 1]. O

We will see that in our base cases corresponding to the atoms (.4) the number
of generators will be polynomial in n, so that we will not have problems supposing
that the Schreier-Sims algorithm takes polynomial time in n; from now on, when we
talk about polynomial time (or size, or cost) we mean polynomial in n, the length
of the strings involved. It also happens at some point that we take the union of
several cosets, and the process produces sets of generators of size comparable to
the number of cosets (as described in Proposition 3.5.3); in that case, the time will
be more conspicuous: for instance, Corollary 3.5.7(a) and Proposition 3.5.15 entail
a cost of order m©10s" M) pOM) for the filtering of generators through Schreier-Sims.

In any case, every time a G is already “given”, or has been “described” or
“determined”, or other similar locutions, we will suppose that it has a quadratic
number of generators thanks to Schreier-Sims (unless explicitly stated otherwise).

Proposition 3.3.3 provides us with many useful polynomial-time procedures, as
shown below.

Corollary 3.3.4. Let |2 = n and let G < Sym(Q) be provided with a set of
generators A of polynomial size. Then the following tasks can be accomplished in
polynomial time:

(a) determine |G|;
(b) determine whether a certain g € Sym(Q) is in G;

(c) given a subgroup H < G with index |G : H] of polynomial size and given
a polynomial-time test that determines whether a certain g € G is in H,
determine H and a representative of each coset of H in G;

(d) given a homomorphism ¢ : G — Sym(Q) with Q' of polynomial size and
given a subgroup H < Sym(§Y'), determine ¢~(H), or given an element T €
Sym(Q), determine an element of p~1(7);

(e) given a set S C Q, determine G g);

(f) provided that G acts transitively imprimitively on Q and given a system of
blocks of its action on §Q, determine the stabilizer of this system;

Moreover, we can explicitly write in time O(n® + n3|A| + n?|G|) all the elements

of G.

Proof. For parts (a)-(b)-(c) see [Hell9b, Ex. 2.1(a)-2.1(c)], based on [FHLS0,
Cor. 1] and [Luk82, Lemma 1.2]; the representatives in part (c) are the elements
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of C_; in the solution of [Hel19b, Ex. 2.1(c)] given in [HBD17, App. B]?. Part
(d) is similar to (c), see [Hel19b, Ex. 2.1(b)]; finding an element of the preimage
of a generator is a passage inside the proof of the procedure that finds ¢~!(H),
so to solve the second issue we can take H = (7). Finding pointwise stabilizers
G(s) is a byproduct of Schreier-Sims itself, so we simply have to order 2 so that
S ={xz1,...,m75} and Proposition 3.3.3 will solve part (e) directly. Part (f) is an
application of (d): €' will be the system of blocks (which means that |Q'| < n)
and H = {Idm/‘}

The last statement is a consequence of the particular structure of the set of
generators C' found through Schreier-Sims: C' is divided into sets Cy,...,Cp_o,
each consisting of the generators v € G4, ..o;) \ G(ay,...,2:41), and each element
of G is written uniquely as a product Yo7v1 ... Y¥n—2 with v; € C;. There are |G|
such products, and a product of ttwo permutations is computable in time O(n),
whence the result.

Let us include here the runtimes of the other items, too. Parts (a)-(b)-(e)
consist in using the Schreier-Sims algorithm at most twice with at most one more
generator, so the runtime is O(n® + n3|A|). In Schreier-Sims, the time is more
explicitly of order n - (n? - n? + n? - |A]), where n comes from the use of the
subroutine FILTER in [Hell9b, Alg. 1] and n? is the bound on the size of the
final C; by this analysis, part (c) employs time O(n?**t + nitt|A]), where i is
the maximum between 2 and the exponent of the index [G : H] and ¢ is the
maximum between 1 and the exponent of the test time for H. For part (d), we
use Schreier-Sims first on G, then on each preimage of Sym(Q’)(I/l’,__,_T(i)7 then we
express each generator of H as product of images of generators of G: this takes
time O(n®* 4+n>|A|+n"*+2%), where s is the maximum between 2 and the exponent
of || and h is the exponent of the number of generators of H. Using (d), part
(f) takes time O(n'® + n3|AJ). O

All these polynomial costs will not be particularly relevant: in the course of our
reasoning we will not encounter an exponent of a polynomial cost that is larger than
14, and this is negligible against the n’€1°2" " we have at the end. The constants
hidden in the big O notation are only depending on the cost of procedures like
reading, writing, comparing elements, etc...: we will not care about them, but just
carry them around inside the O.

Another important polynomial-time algorithm is the one illustrated in the fol-
lowing lemma: recalling the definition of transitivity and primitivity for permuta-
tion subgroups, it is clear that being able to quickly determine respectively orbits
and blocks of the actions of groups that do not present these two properties is a
beneficial skill for us to possess.

Lemma 3.3.5. Let |2 = n and G < Sym(Q2). Then the orbits of the action of
G on Q can be determined in time O(n?); also, if G is transitive but imprimitive,

2Between [Hel19b] and [HBD17], Exercise 2.1(b) in one corresponds to Exercise 2.1(c) in the
other. The author apologizes, but that was the order in which he proved things during the
translation process: if he had respected the original order, part (b) would have depended on part

(©)-
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a system of minimal blocks for the action of G on Q0 can be determined in time

O(n%).

Proof. To determine the orbits, we follow [HBD17, Ex. B.2]. Let A be a set of
generators of G, which by Schreier-Sims we can suppose is of size < n?: the sets
A, = {2%a € A} for every z € Q can be determined in time O(n?). After
that, we follow this procedure: we start with any fixed zo € 2 and set A,, =
{zo} U Ay,; we divide the elements of A, in “examined” (at this stage, only )
and “unexamined” (the other elements of A, ;). Then at every step we take an
unexamined x € A,, and we update A,, by adding the elements of A, to it: the
newly added elements are marked as unexamined, while z now is examined; the
procedure stops when A, becomes the orbit {zf|g € G}. If there is an element
x1 that has not yet been considered, we define A,, = {z1} U A,, and go through
the whole procedure again, until we have considered all the elements of Q: the
final sets Ay, Ay, ..., Ay, are the orbits of the action of G on 2; this part takes
time O(n), so the runtime of the whole algorithm is O(n?3).

Suppose now that G is transitive imprimitive: to determine the blocks we
follow [Hel19b, §2.1.2], which is based on an idea by Higman (through Sims and
then Luks). The idea in the previous case was basically to follow the edges of
the Schreier graph of G with set of generators A on €: we will do the same
with different graphs now. Our preparatory work this time consists in considering
all the pairs {z,2’'} C Q and constructing the sets A, = {{z* 2}|a € A}
in time O(n?), forming a first graph; then we fix 7o € Q and for every other
x € Q we build the following graph: the set of vertices is €2 and the edges are the
pairs contained in the connected component of {xg, 2z} of the first graph (finding
the connected component takes linear time in the number of vertices, so O(n?)
here). In the newly formed graphs, the connected components containing {xg, z}
are the smallest blocks containing {xzg,z} (see [Sim67, Prop. 4.4]; again, finding
the connected components is a O(n) routine): once we find among the blocks
constructed from each x a block that is properly contained in 2, which exists for
G imprimitive, we can find a whole system by taking the other components of the
graph given by the same x. The system may not be minimal, but we have only to
repeat the whole process working with the set of blocks instead of {2; since at each
iteration the blocks are at least twice the size of the ones at the previous step,
eventually we reach a system that has blocks of maximal size, i.e. a minimal system.

The whole process works in time O (n4 + (%)4 + (2%)4 +.. ) = O(n%). O

Finally, we illustrate several equalities among different sets of isomorphisms
(employed here in a slightly more flexible way than Definition 3.3.1) that will
allow us to pass from difficult problems to easier ones, or to break down problems
into smaller ones.

Lemma 3.3.6. Let |2] = n, G < Sym(Q2), ¢ € Sym(Q) and let x,y : Q@ —
3 be two strings. For A C Q invariant under G,o, define the set of partial
isomorphisms Iso5, (x,y) as in Definition 8.3.1 with g € Go and x(r) = y(g(r))
necessary only for r € A.
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(a) We can pass from cosets to groups using

—1

(b) We can split unions of cosets using
A A A
ISOGO’1UGO’2 (x7 y) = ISOGo‘l (x’ y) U ISOGO’Q (x7 y)'

(c) We can split unions of windows using

IsoéclruA2 (x,y) = Isoéf (x, y”;1 o1,

where Isoé;(x, y) = Gio1.

(d) For every g € G, call g|a its restriction to A, defined by simply forgetting what
happens in Q\ A (since G leaves A invariant, this is well-defined); define
Sla, Hla,x|a for any S C G, H < G, x : Q@ — ¥ analogously. For any
h € G|a, let h be any element of G whose restriction to G|a is h; if H < G|a,
define H analogously as the subgroup of G whose restriction to G|a is H (since
G leaves A invariant, H is indeed a subgroup).

We can eliminate windows using
Isog(x,y) = G5,
where Isog|, (X|a,y|a) = G'o; this is independent from the choice of @.

Proof. (a) It is easy from the definition: inside A, the permutation g = ¢’ € Go
sends x to y if and only if ¢’ sends x° to y, i.e. if and only if it sends x to y"fl.

(b) Tt is obvious from the definition, since both sides mean the exact same
thing, allowing in both cases g to be either in Go; or in Goa.

(c) First, we obtain IsoéjTUA2 (x,y) = Isoé’fcrl (x,y) easily by examining the
definitions: both sides simply mean that ¢ € Go has to respect both windows
A1, Asy. Then we get Isoéfg1 (x,y) = Isoél2 (%, y”fl)al from part (a).

(d) G'o is the collection of permutations of A that send x to y as far as A is
able to perceive. Passing to the whole by considering G’ and &, the result is the

definition itself of Iso5 (x,y). O

Remark 3.3.7. In the future we are going to need to differentiate the cases of n
large and n small. This will come in the form of C'log®n < n, for certain C, ¢ > 0:
if such an inequality is true, which would allow us to have an intermediate integer
m between them when needed, then n is considered large. Let us make now this
choice.

Assuming CFSG, we suppose that largeness means 102log® n < m < n, which
implies m,n > 8308. See (3.6.8) inside the proof of the main theorem, which
is the final quantity to optimize. Without assuming CFSG we suppose instead
that largeness means 25¢1/¢* (logn)**t® < m < n, which implies in particular
m,n > 25¢'/<". For & small (say € < 5), the CFSG-free condition is a stronger
restriction.
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3.4 Major routines

Before we turn to the algorithm itself, let us describe separately a couple of major
routines that were introduced for the first time by Babai. We will not prove their
validity here: both [Babl6a] and [Hel19b] do that for us. What we want is to sum
up their contribution to the runtime.

We start with a theoretical result, needed to differentiate between the CFSG
and the CFSG-free case.

Lemma 3.4.1. Let G < Sym(n) be primitive, and let ¢ : G — Alt(a) be an
epimorphism.

(a) Assuming CFSG, if a > max{8,2 + logyn} then ¢ is an isomorphism.

b) Not assuming CFSG, if a > max 61/52, log, n)**¢} then ¢ is an isomorphism,
2
for any € > 0 small enough.

Proof. For (a) see [Babl6a, Lemma 8.2.4] or [Hell9b, Lemme 4.1]. For (b) see
[Pyb16, Lemma 12], which states that it’s sufficient to take a > max{C,log}n}
for some constant C' (his “log” is our “log,”). Let us compute our version of the
bound.

Using [MR96, Thm. C(v)], the sum of the first s primes for s > 6 is bounded by
15%(log s+1log, s), so Alt(a) contains a cyclic subgroup whose order is the product

of the first H, /loga—l primes for a > 10000 (say). From [Pybl6, Thm. 7] and

a > (logy n)**¢ if ¢ were not an isomorphism we would get E, /lo‘ga-‘ <27 <
24210 (for small ), which can be true only if a < ¢'/" (again for small £). O

A short verification shows that ¢ < Wlo is plenty enough for the result above
to hold.

We are using Lemma 3.4.1 in the computation of the runtime of the following
routine. The production and aggregation of local certificates (see [Babl6a, §10] or
[Hell9b, §6]) is an important part of the algorithm.

Proposition 3.4.2. Let G < Sym(n), and let ¢ : G — Alt(m) be an epimorphism;
let x be a string of length n. Then we can find the group F < Autg(x) generated
by the certificates of fullness in the time taken by %mzanaa! calls of the whole
algorithm for strings of length < %, where

(a) a € (1.66431,1.77512) - logn, for 102log?n < m < n (assuming CFSG), or

a € (6. ,6.25) - 1/ (logn)4*e, for 25¢1/° (logn)**+s < m < n for any
b 6.24999,6.25) - e!/

€ > 0 small enough (without assuming CFSG),

m

" plus some additional time O(m?*n'!).

and in both cases a <

Proof. The proof is contained in [Hel19b, §6.1]. We are going to discuss the details
of the runtime.
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Let T, T’ be two ordered a-tuples of elements of I, where a is as in Lemma 3.4.1.
Updating one window A(W) relative to the production of the certificate for (T, T")
one time takes %aa! calls for strings of length < #, and we need to apply also some
of the routines in Corollary 3.3.4, which take time O(n'?) at most. This can happen
at most n times for each window (see the end of [Hel19b, §6.1.1]), and the number
of windows to update is < m??® (see [Hell9b, §6.1.2]), so we obtain the claimed
runtime for producing the certificates of fullness. Then, we need to generate F:
we simply take the union of the generators of all certificates, but we do it one
certificate at a time and we apply Schreier-Sims at every step, so that the number
of generators stays quadratic in n (see the observation after Proposition 3.3.3). The
certificates of fullness are at most m2?, so this cost is absorbed in the additional
time already.

Finally, we need to justify the bounds on a given in the statement. First, by
the restrictions on m,n we must have m,n > X, where X = 8308 in the CFSG
case and X = 25¢l/<” (say) in the CFSG-free case: these are the choices we made
in Remark 3.3.7. The conditions then follow, noticing that for our choice of n the
two a respect all bounds in Lemma 3.4.1 and for € small the two intervals are large
enough to contain an integer. O

Again, € < ﬁ is plenty enough.
Let us also insert here a short lemma that we will use as part of the aggregation
of certificates: it is a classical bound on d-transitivity for non-giants.

Lemma 3.4.3. Let G < Sym(n) be d-transitive and G # Sym(n), Alt(n). Then
(a) d <5 (assuming CFSG), or
(b) d < 3logn (without assuming CFSG).

Proof. See [Cam99, Thm. 4.11] for the CFSG result and [Wie34, Satz C] for the
CFSG-free result. O

Then we estimate the cost of another major routine, the one represented by
the Design Lemma and Split-or-Johnson (see [Babl6a, §§6-7] or [Hel19b, §5]3).

Proposition 3.4.4. Let X be a b-ary coherent configuration on T, with |T'| =m >
8308 and 2 < b < %m, such that there is no twin class with > %m elements. Then
we can find either

(a) a coloured %-pam‘ition of I', or
. 2 L
(b) a Johnson scheme of size > m inside T,
at a multiplicative cost of mPT2°1°8™ and at an additive cost of O(m>T1%).

Again, the condition on m is the largeness condition of Remark 3.3.7 (regardless
of our position on CFSG).

3In parts of the next proof, we use terms from the English version [HBD17] instead of the
original French ones. The author thinks the reader is better served by this choice, considering
also that Babai’s original article is in English.
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Proof. As in Proposition 3.4.2, we are going to discuss only the runtime here.
The proof of the rest of the statement is contained in [Hell9b, §§5.1-5.2]. The
“multiplicative cost” we incur here is the cost of fixing images of a certain number
of points of T' (or parts of a partition of T', but fixing the image of a point in the
part implies fixing the image of the whole part): arbitrarily fixing a point z in a
configuration (or in a graph) in an isomorphism problem translates to trying all
possible images of that point, consequently multiplying its contribution. See also
Remark 3.5.10.

First, we plug the configuration X into the Design Lemma, so that we can
pull out a classical configuration to use inside Split-or-Johnson: this involves a
multiplicative cost of m®~! at most, and a time of O(m?) to find the right tuple
to use (see [Hell9b, §5.1]). Then, either we terminate by fixing 1 more point (i.e.
another multiplicative cost of m) if the new configuration is not primitive, or we
call Split-or-Johnson (SoJ, [Hel19b, Thm. 5.3]).

SoJ itself fixes 1 element and then, if it does not terminate, calls Bipartite Split-
or-Johnson (BSoJ, [Hell9b, Prop. 5.7]). Call T(m,v) the number of elements
fixed by BSoJ when |V5| = v. The base case is v < (6logm)?, and here the
multiplicative cost is at most v!; we use Robbins’s bound [Rob55] for factorials,

vl <V omuttie vt

(the latter being an increasing function), and the cost is in turn bounded by

p 3 3 _3
M(Glogm)%((6108"”)2+§)€7(610gm)g+11—2(610gm) 5 :mf(m)logm’

B 3v/6(3loglogm + 3log6 — 2) n 3loglogm + log (63 - 472)
Viogm 4log2m

Now suppose we are outside the base case; first, we apply the Design Lemma again,
for a cost of at most

(72v/6)"!

log% m

+

log m log m
vﬁ[log’u] < v12 logv — le.
Then we fall again into two subcases: either we recur to a new v that is < %

times the old v, with no other cost along the way, or we pass through Coherent
Split-or-Johnson (CSoJ, [Hel19b, Prop. 5.8]) and recur to < 3 times the old v,
with 1 more element fixed in the process (in both cases, it might also happen that
we exit the recursion, which is even better). The two situations lead to bounds
T(m,v) < m"T (m',2v) and T(m,v) < m'T (m’, Jv) respectively, where m’
may be smaller than m but still > %m, or we would exit the recursion again.
Since v < m and given the bound in the base case, we obtain in the end

T(m,w) < mdm)logm oo {Tn‘12log3/2m777,L1310g2 m} _ m(f(m)-&-ﬁ)logm.

As for the additive time incurred during the procedure, the heaviest costs come
from the use of the Weisfeiler-Leman algorithm inside BSoJ ([Hel19b, Alg. 3],
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see also [WL68] or §2.1), which is performed on a c-ary configuration of V5 with

logv
encounter we have with Weisfeiler-Leman: by what we described before, we call
BSoJ at most O(log m) times, so that we can safely bound the runtime by O(m!?).
All other costs inside SoJ and its relatives (finding twins, colours, etc...) can also
be bounded by O(m!4).

Hence, at the end we incurred a multiplicative cost of mb T (F(m)+g87z) logm
and an additive cost of O(m®*14). For m > 8308 we have f(m) < 24.44853, and
we obtain the bound in the statement. O

c<6 Pogm—‘, entailing spending O(c2v?*t'logv) < O(m!?log® m) time for each

3.5 The algorithm

During the whole process, we are working with a pair of strings of the same length
|2 and with a group G that respects a system of blocks in €2; every time we go
through the various steps, we are going to either decrease the length of ), increase
the size of the blocks or decrease the degree of G (in the sense that G will not vary
but we will decrease m where G < Sym(m) as abstract groups).

Remark 3.5.1. The case of n small is trivial to examine, and could work as a
base case for our algorithm (although we actually follow another path): if n < C
for some fixed constant C, then we can determine Isog(x,y) in constant time with
constant number of generators.

To achieve this, just try all the permutations of G: we can write all its elements
in constant time by Corollary 3.3.4, then check whether each of them sends x to
y. If we do not find one, Isog(x,y) is empty, otherwise after we find the first
one (call it 7) we check which elements of G fix x; the collection of all those that
pass the test are all the elements of Autg(x), and they also trivially form a set
of generators of Autg(x): since Isog(x,y) = Autg(x)r by Remark 3.3.2 (or by
Lemma 3.3.6(a) and GT = G), we are done.

As we already mentioned, the base case of the atoms (A) will be treated in a
different way, as presented in Proposition 3.5.8. Here we need only to cover n = 1,
which is trivial: this is also an atom, as Sym(1) = Alt(1) = {Id;}; from now on
we can suppose n > 1.

Let us start now with the simplest of recursions, the one with GG intransitive.

Proposition 3.5.2. Let |2 = n, G < Sym(Q) and let x,y : Q@ = X be two
strings. If G is intransitive, we can reduce the problem of determining Isog(x,y)
to determining sets Isog, (X;,y;) such that 3, |x;| = >, |yi| = n and each G; is
transitive. The reduction takes time O(n'') and no multiplicative cost.

Proof. Let A be an orbit induced by the action of G on {2, nonempty and prop-
erly contained in  since G is intransitive; we can find orbits in time O(n?)
by Lemma 3.3.5. We call G; = G|a,x1 = X|a,y1 = ¥|a the restriction of
G,x,y to A, as in Lemma 3.3.6(d); we suppose that we can compute the set
Isog, (x1,y1) = Hi71. As in Lemma 3.3.6(d), we will use @ to indicate the object
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(or an object) whose restriction to a subset of Q is a: this subset will be either A
or 2\ A, depending on «; by Corollary 3.3.4(d) with s = h = 2, finding @ from «
takes time O(n'?).

First, by Lemma 3.3.6(d) we have Iso5 (x,y) = Hy71; then, by Lemma 3.3.6(c),

Q\A 70

Isog(x,y) = IsobTl (x,y™ )71 (3.5.1)

If we can compute

=1
Isogr 1 (Xlona, y™  lava) = Kivr, (3.5.2)

lo\a
we can use again Lemma 3.3.6(d) to plug (3.5.2) inside (3.5.1) and obtain that
Isog(x,y) = K1o771. The whole process reduces in time O(n'?) the determination
of Isog(x,y) to the determination of Iso sets on the shorter pieces A, Q\ A.

We can repeat the same procedure on the Iso in (3.5.2): notice that the group
and the strings are all defined on Q \ A, so if the group Elﬂ\ A is intransitive we
again have a A’ C Q\ A, a group Go = Hi|as and strings x2 = X|ar, y2 = yﬁ7l N
and we continue as before. This happens at most n times.

In the end, we have spent time O(n'!) and computed sets Isog, (x;,y;): each
G, is defined in a way that makes it transitive, because we always restrict to an
orbit, and each x;,y; is the restriction of strings x,y? to a different part of €2, so
that the sum of their lengths is n. O

The partition of € into the orbits of the action of G, and the reduction of the
problem of determining Isog(x,y) to problems on shorter strings, corresponds (in
reverse, so to speak) to the glueing process of cosets on disjoint sets featured in
(C2).

Then, let us continue tackling the next route to recursion, the case of G im-
primitive.

Proposition 3.5.3. Let |2 = n, G < Sym(Q) and let x,y : Q@ — ¥ be two
strings. If G is transitive but imprimitive, call N the stabilizer of a minimal set of
blocks: then we can reduce the problem of determining Isog(x,y) to computing the
elements of G/N and determining |G/N| sets Ison (x,y;) (where N is intransitive).
The reduction takes time O(|G/N|n'%) and no multiplicative cost.

Proof. Let {B;}; be a minimal system of blocks for G (it is not a trivial partition
since G is imprimitive), which we can retrieve in time O(n?*) by Lemma 3.3.5. Let
N be the stabilizer of this system: by Corollary 3.3.4(f), we can compute it in time
O(n'9).

Write G = |J; No;, where each o; is a representative of a coset of N, so that
the number of elements o; is |G/N]|; if we know all the elements of G/N, we can
determine each o; in time O(n!?) by Corollary 3.3.4(d) with s = h = 2. By
Lemma 3.3.6(a)-3.3.6(b),

Iso (x,y) = | JTson (x,y7 o,

K2
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so we only have to compute the Isox(x,y%: 1) now; after having done so, we have
a description of those sets as Hr; where H = Auty(x) is generated by a certain
set S, and

Isog(x,y) = UHTiO'i = (SU{rioio; ) mon.

K2

Finally, we can filter the set SU{7;0;07 1Tf 11, using the Schreier-Sims algorithm in
time O(n°+n?(n?+|G/N|)) to obtain a description of Isog(x, y) with quadratically
many generators, and the claim is proved. O

This process, which essentially reduces the problem to a case-by-case exami-
nation, corresponds in reverse to the union of cosets featured in (C1). Proposi-
tion 3.5.3 cannot be used directly, as a case-by-case reduction is very expensive
in general: nevertheless, seeing this reduction process is useful, as it is used when
G/N is especially small (Corollary 3.5.7(a), Proposition 3.5.15).

Before going to the key steps of the main algorithm, we introduce a couple of
combinatorial lemmas that will be useful in the future. The spirit behind them is
to be able to start with the set (I,;) of all the k-subsets of some I' and:

(a) in one case, after finding a partition of T', transfer the partition to (1;) itself
(Lemma 3.5.4);

(b) in the other case, after identifying I" with another (1;,,), use this identification

to partition (}) (Lemma 3.5.5).

In the following, a coloured partition of a set is a partition in which each part
is assigned a colour. A permutation subgroup respects a coloured partition if it
respects both the partition and the colouring: in other words, for any permutation
in the group, the image of any part of a given colour is another part of the same
colour.

Lemma 3.5.4. Let [I| = m and let B = (}), with k < T suppose that

logm?’
G < Sym(T") acts on T' in such a way that there is a coloured partition C of T
respected by G and whose parts are of size < «|T'| (for some a < %) Then either
m < 1045 or B has a coloured partition C’, respected by the natural action of G on
B, whose parts are of size < 2|B|.

Proof. Starting from the partition C of I'; we can naturally construct the following
partition C’ of B: each part of C’ collects the elements of B (i.e. the k-subsets of T")
that intersect each part of C with a specific intersection size; C’ is also naturally a
coloured partition: if in a given part A’ € C’ the ordered tuple of intersection sizes
with parts 4; € C' is (k;);, we can give to A’ the colour given by the ordered tuple
of unordered tuples of intersection sizes for all parts of the same colour for every
colour of C (remember, the fact that G respects C means that different colours will
not mix but different parts of the same colour can be sent to each other).

Now we must prove the claim about the size of the parts A} € C'. Fix any
part A € C’: from what we said above, all the k-subsets belonging to Aj are
intersecting the parts of C in the same number of points, so fix a part Ag € C
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whose intersection with them is of a certain size a > 0. The number of k-subsets
of T' intersecting Ag in a points is (l’i‘)l) (m];lA;o\)7 so this is an upper bound for
|Af]: we just have to prove that this number is at most 2 (') (for m large enough).
If K = 1 the task is already accomplished: in this case in fact we also have
a =1 and then |Ag| < am < 2m. From now on, k > 1.
Let us call [Ag| = Bm, where 3 < o < 2. Then

<5;”> ((1k_ﬂim> = ;(S)Bm(ﬁm— 1)...(Bm—a+1)-
1= B)m((1—B)ym—1)...(1-B)m—Fk+a+1).

First, since 8 < 1 we have obviously fm —i < 8(m — i) for all 0 <4 < a. On the
other hand, for 0 < i < k — a,

(1—Bm—-i _ a—(i+a)B a
T-fm—i-a) " A-Pm-i-a = Tm-i-a
k 2k
<1+ < 14—,
m—k m

so that

(B;n) (uk__ﬂim) < ,i,(i) Bm(m—1)...(m—a+1) -

(1=p)Fm—-a)...(m—k+1) (1+f:)ka

- (7:) (’;) Be(1 — B)k—a (1 + if)k_a . (3.5.3)

The last factor can be easily bounded in the following way:

LA R U
m vmlogm
Vi Togm 2k

1 2 T2 Umlogm
N * vmlogm

—_2
< elogm,.

Let us treat the rest now. We are going to prove that

(l;:) Be(1 — gyi-a < % (3.5.4)

First, we start with the case £k > 5 and 2 < a < k — 2, implying that a > 2,
k —a > 2 with at least one being a strict inequality. We have

(1-B)a N B(k — a) (1-pB)%ala+1)+ B*(k —a)(k —a+1)

Blk—a+1) (1-=p)(a+1) B(l—=pB)a+1)(k—a+1)
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(1—5)%a? + B%(k —a)? a k—a
B1-PBalk—a) a+lk—a+1

The first fraction is of the form 12;;’2 , which is equal to % +2 > 2; as for the

other two, they are both > % and at least one is > %: therefore the whole product
is > 1. This means that

1=(B+1-5) i()ﬂ“l—ﬁ)

a’=0

-y (,)ﬂ“( — By

@' €{a-T,a,a+1}
- (i e

2(@)/3@(1 S

and (3.5.4) is proved in this case. For k =4 and a = 2,

20-8), 2B _20-pP+F _4_

3p 31-p) 3 pA-B8) ~—3° 7
and we are done as before. Now, let a =1 or a = k — 1: we can suppose a =k —1
by exchanging the role of § and 1 — 8 if necessary (although we cannot use the
bound 8 < % anymore); k3*~1(1 — B) has a maximum in 8 = 1 — , in which it

is equal to kkl (1 — l)k The factor (1 — 7) is bounded from above by = L s0 for

k > 4 we obtain the bound < =; for k = 2,3 we just check directly obtalmng 5 9
respectively. Finally, let a = k then we have just ¥, which is < % < 4, and
(3.5.4) is proved for all cases.

Plugging our results into (3.5.3),

(BT

and for m > 1046 we obtain %elogm < % O

Given our choice of large m,n inside Remark 3.3.7, Lemma 3.5.4 applies any
time we are assuming m > C'log®n for the appropriate C, e.

Lemma 3.5.5. Let IV be a set, let ' = (1;,/) for some 2 < k' < Il;/‘, and let

B= (g) for some 2 < k < %; suppose that |T'| = m’ > 12. Let any permutation
of T induce the natural permutations of T and B; then any H < Sym(I") divides
B into a system of orbits and blocks such that each part is < %|B|

Proof. Let A be any orbit of B under the action given in the statement. Any
element z € A is a k-set of k’-sets of elements of I': since every 2’ € A can be
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sent to x by some permutation induced by some h € H, all the elements of A are
constructed respecting the same equalities among the elements of their elements
(for example, if there are a1, as € x with by, bs, b3 € a1 Nas, then any z’ also has
al, ab, with b, b, b5 € af Nal, and so on). Every orbit A is therefore contained in
the subset B, C B of elements of B respecting some given set of relations r; if we
prove that either B, is of size < %|B| or can be divided into blocks with the same
property, the same will hold for A and we would be done.

For any x € B,, let A(z) C I be the set of the elements of all the elements of
x, with |A(z)] = a (a does not depend on x since it is determined by the relations
r); we divide B, into blocks, where each of them collects all the x with the same
A(x): these are really blocks, in the sense that the elements of B, inside them move
together under the action of H since this movement depends ultimately on where
A(z) is moved inside I'". We have to exclude that the so formed block system is
trivial, i.e. that either the blocks have size 1 or that the whole B, is a block: if we
do it, we are done.

Having blocks of size 1 means that each z already collects all the possible k’-
subsets of its own A(z), so that x is its own only permutation under Sym(A(x)):
this means that k = () and that B, has (’Zl) elements, one for each A(x). B

has (“,]) elements, where |I'| = (Z‘,), so to prove the statement in this case it is

sufficient to prove that
(%) =3
< Z
a/) 2

and we would have shown that B, is small.
Since k > 2 there are at least two distinct k’-subsets of I participating in the
formation of A(z), so a > k' and then a < (); we also recall the easy bounds

y Y / :
(g) < (%) < (%) . Then, since m’ > 12, 2 <k < % k < % and ()" > 2,

’

(T’?’)), (3.5.5)

v) — \y
we obtain

(OHCUE ( () ) > () s () 22(T). s
(&) a a a a a
and (3.5.5) is proved.

Having B, as a whole block means that all the z € B, are coming from the
same A(z); as B, just collects all elements of B with the same relations, with no
other discriminating condition, A(x) must be the whole I'V. For each z € B, and
v € IV, call N(v,x) the number of elements of = that contain 7: the multiset
{N(v,z)]y € I'"} is independent from z, since it is a reflection of the relations of
B..

Suppose first that such multiset has all equal elements, i.e. every -y is contained
in the same number N of k’-subsets of T belonging to a fixed x (or to any x, given
our hypotheses): this is a rather constraining condition in B, so we will show that
B, is small. Consider the set C; C B of all  with multiset {N, N,N,..., N}
(m/ times), so that B, C Cy, and consider the set Co C B of all z with multiset
{N+1...,N+1,N—1...,N—1,N,..., N}, where the number k" of N+1 is equal
to the number of N — 1 and runs among all 1 < k” < k’: construct the bipartite
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graph C; UCy where {x1, x5} is an edge if and only if we can change exactly one k'-
subset inside x7 to obtain 2. Every x1 € C; has k ((k,) k:) > ( ,/) neighbours,

since we can move each of the k’-subsets of x1 to any of the k’-subsets that are

not already in x; and obtain some (distinct) element of Cg; on the other hand, the

number of neighbours of a given x, is at most (m i’f, ): in fact, each k’-subset

that contains all the v with N 4+ 1 can be moved only in one way to produce an

element of C1, namely by replacing the v with N + 1 with the v with N — 1 and
m'72k”)

fixing the other ones, and the number of such subsets is bounded by ( o

Provided that b; < %a;, a1 < ag and by < by imply (‘Zi) < (2;), therefore

m’ m’ — 2k" m’
(k/)|6’1| S |{edges of C1 UCQ}| S < L — el >|C2| S <k/>|02|,

and since C; and C; are disjoint we obtain |B,| < 1|B|.

Now suppose that the multiset {N(v,z)|y € I} has at least two distinct
elements; take the least frequent of these elements (or the smallest of the least
frequent ones, if more than one exists), say that there are k" of them with k" <
%/ < %’“/: the second inequality comes from the fact that A(z) = I, implying
that kk’ > m/, and that equality is excluded because it would imply N(y,z) =1
regardless of v. Call A’(x) the set of v with this specified N for x; A’(z) is properly
contained in TV, so there must exist elements z with different A’(x): we collect
elements x € B based on their A’(z), and as we said before for A(z) this forms a
system of blocks, which are not the whole B since A’(z) # I''. We have to exclude
that this system has blocks of size 1.

Assume that these blocks have indeed size 1, which means that |B,| = (Z”f:)
(one element for each A’(z)); as before, we have to prove that

()-3(7)

When k" < k' we have ((7’?’/)) > ((Z;;)) > 2(:}:), and when k” < k we can say

k k
((7’%)) > ((E{,)) and continue as in (3.5.6), so we can assume k” > k, k’; this also
excludes the cases k = 2 and k' = 2, using k" < .. Let us start with the case

T > 4; using k > [ ", the bounds on binomial coefﬁments and m’ > 12,

(“%Z)) ()=

Similarly, for 3 < 2 7 <4 1mply1ng k> 4),

!/
( ) ( )>4m424§m>2(;’f/>.

> 457 5 9(v2e)™ > 2<LZT::J> > 2(25)

For2<™ <3a




Finally, for 2 < %’ < 3 and k = 3, we can first check directly that

’

(%)) () > 9 m,/ o™
3 )= U ) = ) =2 e
for each 12 < m/ < 16, while for m’ > 16

/

<(’L;/)) >3m0 > 2(v2e)™ > 2<7,:,,>~

Since % > 2 is always true, this covers all cases and concludes the proof. O

We are now at a point where we must introduce the cornerstone of the al-
gorithm, the group-theoretic result thanks to which the branching into different
cases starts and the recursion is performed. Actually, as anticipated, we have
two of them: Theorem 3.5.6 assumes CFSG and Theorem 3.5.14 does not; conse-
quently, henceforth we split our reasoning into two different parts, according to our
attitude towards CFSG: the two approaches present many points of contact with
each other nonetheless, enough to make the proof of the main theorem virtually
the same both times.

3.5.1 The algorithm, assuming CFSG
Let us start immediately with our theoretic main tool.

Theorem 3.5.6. Let |A] = a and let G < Sym(A). Assume CFSG. If G is

primitive, then one of the following alternatives holds:
(a) |G| < C(a) = max{Cy,a't1°822} for Cy = 244823040

(b) there is a system A of (possibly size 1) blocks of A with |A| = (i’) < a and there
is a« G' 9 G with [G : G'] < a and preserving A, such that we can construct
in time O(n'%) a bijection ¢ between A and the set (?) of t-subsets of a b-set
B in a way that makes G’ isomorphic to Alt(B), with the action of G' on A

agreeing with the natural action induced by Alt(B) on (f)

Proof. This theorem is a consequence of Cameron’s classification of primitive per-
mutation groups in its formulation due to Maréti, which we have already displayed
as Theorem 1.2.5. Case (a) in the present result collects cases (b) and (c) in the
other one, and Cj is the size of the largest of the four Mathieu groups that appear
in (b), namely May4. The other alternative is realized by taking Theorem 1.2.5(a)
and choosing G’ to be the power of Alt(B) that is guaranteed to exist as a sub-
group of G; the rest of the structure is retrieved by creating the partition A with
one block for each of the possible values of the first coordinate (say) in the for-
mulation of the wreath product in Definition 3.1.3, and forgetting the structure
coming from all other coordinates, so that we see only one Alt(B) among all the
ones that compose G’.

As for the polynomial-time construction of ¢, it is described in [BLS87, §4]
(see also [Hell9b, §2.8]). The procedure NATURAL_ACTION thereby described
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produces a set D divided into blocks {B;|i € I} such that the elements of A
correspond to subsets of D of a certain form; our B is any of the B; (say Bi) and
if m: G — Sym([) is the map describing how G permutes the B; then our G’ is
71 (Sym(I)(1y). All the passages involved in finding B and G’ and constructing ¢
come from Corollary 3.3.4 and Lemma 3.3.5 (on sets of size at most |A|?): together,
they cost at most time O(n'%) as claimed. O

When we start the whole algorithm to compute Isog(x,y), we can divide G
into its orbits and blocks (if G is intransitive or imprimitive) in time O(n*) by
Lemma 3.3.5, and then treat the intransitive case thanks to Proposition 3.5.2:
therefore we can suppose that G is transitive and acts primitively on some system
of blocks B that we are able to assume to be known.

Corollary 3.5.7. Let |Q] =n, G < Sym(Q) and let x,y : Q@ — X be two strings;
let B be a system of blocks of Q with 1 < |B| = r <n, on which G acts primitively:
call N the stabilizer of the system B, and suppose that there are a set T' of size
m and a bijection between B and (1;) (for some k) such that the action of G/N
on B corresponds to the action of some transitive subgroup H < Sym(T') on (1,;)
Assume CFSG. Then we can reduce the problem of determining Isog(x,y) to one
of the following problems:

1021og? n

(a) determining < m sets of isomorphisms Isopy (x,y;), where M I N

stabilizes all blocks, in time O(m!92 log? "nl%) and at no multiplicative cost;

(b) determining < m sets of isomorphisms Isog (X,y;), where G' respects a system
of orbits and/or blocks B' strictly coarser than B and whose parts are of size
< 219, in time O(n') and at no multiplicative cost;

(c) determining < m sets of isomorphisms Isog: (x,y;), where G'/N acts on B in
the same way as Alt(T") acts on (1,;,) (where [T'| = m' > 102log®n), in time
O(n'%) and at no multiplicative cost.

Proof. Before we start, we point out that we hypothesize the existence of I' in
the statement (or, from another perspective, the fact that k£ may be > 2) because
we want to leave open the possibility that we are returning to this situation after
having already been through this step before and found a bijection as in Theo-
rem 3.5.6(b) (using the theorem itself or by other means) that we have then carried
forth until this moment, as it may happen. In any case, either we are provided with
such I', k, B, N from past procedures, or in their absence we can determine B, N
in time O(n!°) by Lemma 3.3.5 and Corollary 3.3.4(f) (setting B = {{z}|z € Q}
if G is primitive) and then impose I' = B and k = 1.

As it can be imagined, we want to use Theorem 3.5.6 on A = I'. First, H
must be primitive: if it were not, then its action on (1;) would also be imprimitive
(even intransitive, if k > 1) and this contradicts our hypothesis on G; hence we
can actually use the theorem. The generators of G (at most n? in number) can
be seen as generators of G/N ~ H and can be processed through Schreier-Sims to
determine |H| in time O(n®) by Corollary 3.3.4(a), so that we are able to determine
whether we are in case (a) or (b) of Theorem 3.5.6.
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If we are in case (a), we can write all the elements of H in time O(n®+C(m)n?)
by Corollary 3.3.4 and we are exactly in the situation described in Proposition 3.5.3
(with the computation of all the elements of H ~ G/N already taken care of).
This falls into case (a) of the present corollary: we have N = M for the subgroup;
also, for n < 3 obviously |G/N| < m! < m!0? 1°g2", while for n > 4 both Cy <
210210g” 4 < pp102l0g” 1 g gy l+logam o 4102108° n o6 the hound on the number of
problems holds. The runtime, in light of the previous reasoning on C(m), is also
O(m102108 110y 45 required.

If we are in case (b), there is some H' < H with [H : H'] < m acting on a
partition T of T' as Alt(I") acts on (1,;:) for some |[IV| = m' and some k¥ > 1:
I'°,T7, k" and the action are all found in time O(n!?), as we already said. First,
suppose that m < 102log® n: then |G/N| <m™ < m!Y2 log? " and repeating what
we did before we retrieve again case (a).

Now suppose that m > 102log®n and that I'° is a nontrivial partition: as
observed in Remark 3.3.7 we have m > 8308, and the hypothesis on I'° makes it
into a coloured partition (with only one colour) whose parts are of size < $|I'|; to

For k£ = 1 this is true

use Lemma 3.5.4, we still have to prove that k < 10
gm

for any m, so suppose that k& > 1. Obviously we can assume that m > 2k: in
fact there is a natural identification between (I,;) and (\FI k) just by taking the
complement of each of their elements; therefore

n2<m>2(m) >oF — k<

logn — m > k?-102log?2 > k2,

k k log

and, using this new bound again,

m my\k &
> > — .
n_(k)_<k> > k¥ = logn > klogk

The function f(y) = \/13@ is increasing and f(klogk) > k for k > 1, therefore

. 1 m
using kloghk < logn < \/i5zm we get k < /10210g\/102m 1/10gm (where

m > 8308 is amply sufficient to satisfy the second inequality). Now we are free to
use Lemma 3.5.4, which makes us fall into case (b) of the present corollary.

Finally, let us have m > 1021log®n and T'° = T': since m > 8308 and m = (Z‘/ ),
we have m’ > 12 regardless of our choice of k. If both k and k" are > 1, we can
use Lemma 3.5.5 and we fall again into case (b). If ¥’ = 1, then I" =T and H’

acts as Alt(T") on T itself, thus acting as Alt(T") on (g) ~B. Ifk=1,thenT'=B
and H' acts as Alt(I”) on (I];:) ~ B; if m’ < 102log®n we reduce again to case
(a) exactly as before, so m’ > 102log? n. In both cases, whether & =1 or k =1,
we can take the pullback G’ of H' in G (in time O(n!?) by Corollary 3.3.4(d))
and G'/N ~ H' will satisfy the requirements of case (c) of this corollary: in
fact [G : G'] = [H : H'] and we can obtain (a preimage of) all the elements of

G/G' in time O(n'?), continuing then with Isog(x,y) = |, Isog (x, y”;l)oi as in
Proposition 3.5.3. O
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We point out that [Hel19b] uses actually a bound on m of the form m > C'logn
for the case equivalent to our case (¢). In order to follow our line of thought we

need a stronger bound, quadratic in logn, because otherwise we obtain a weaker

m
logm

with the last factor in (3.5.3), which needs to decrease with the growth of m; the
problem is treated incorrectly in [Hell9b, §4.2]. A bound m > C'logn is more

inequality than k < and then Lemma 3.5.4 does not work: the issue is

than we need to obtain the bound on the runtime of the form n©{°g’n) anyway:
as observed in [Hel19b, §3.1], it is consistent even with a n©(1°8™) runtime, to this
day unproven.

After we have reached case (a) in the previous corollary, we can simply go
through Proposition 3.5.2 and reduce to examinate each block singularly: this
makes n decrease, and we return to the top of this corollary. After case (b), Q is
divided into orbits and blocks that are coarser than the original B: this makes n
decrease or the block size increase (or both). Case (c¢) is the one we will examine
in the following results.

Proposition 3.5.8. Let |Q] = n, and let the action of G < Sym(2) on Q be as
in Corollary 3.5.7(c), i.e. there is a system of blocks B with stabilizer N such that
G/N acts on it as Alt(T") acts on (1;), where |U| =m and |B| = (7). If k=1 and
the blocks have size 1, the set Isog(x,y) can be determined in time O(n%) with at
most n? generators.

Proof. Having k = 1 means that I' = Q, and having block size 1 means that
G = G/N ~ Alt(T') = Alt(Q). This is a trivial case: if x and y do not send the
same number of elements of €2 to the same letter of the alphabet X, the set is
empty.

Otherwise, we first obtain Autgymq)(x) as a product J], Sym(4;), where the
A; are the parts of 2 whose elements are sent by x to the same letter: more
precisely, for each generator of Sym(4A;) we find the corresponding element in
Sym(2)(o\a,), and then we take the union of these preimages for all i; each
Sym(A;) can be described by two generators, a transposition and a cycle of length
|A;|, therefore up until now we are working with < %n generators. Then, we
find H = Autayo)(x): by Corollary 3.3.4(c), since the index is < 2 and the
test to prove whether a permutation is even is linear-time (just by computing the
length of the cycles), we obtain polynomially many generators of H in time O(n’);
more precisely, the number of generators is at most (%n + 1)3 by Schreier’s lemma
([Sch27], see for example [Ser03, Lemma 4.2.1]) and we can reduce it to < n? using
Schreier-Sims and spending time O(n%) by Proposition 3.3.3.

Finally we take any bijection 7 :  — € sending elements sent to each letter of
¥ by x to the elements sent to the same letter by y. If this bijection is in Alt(€2)
we have Isog(x,y) = Hm; if it is not, there are two possibilities: if there is a letter
that appears twice in the strings (say x(r;) = x(r2)) we have Isog(x,y) = Hrw
where 7 is the transposition (r1 r2), otherwise the set is empty again. O

The situation described in Proposition 3.5.8 (apart from the case of n = 1 taken
care of in Remark 3.5.1) is the only true base case of the whole algorithm; the rest of
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the time, the procedure either stops and gives () as a result or it reduces to simpler
cases, until we arrive to the one given above. Proposition 3.5.8 corresponds to the
case of the atom (A) in the main theorem.

Let us see what happens aside from the base case.

Theorem 3.5.9. Let |Q = n, let x : Q@ — X be a string, and let the action of
G < Sym(Q2) on Q be as in Corollary 3.5.7(c), i.e. there is a system of blocks
B such that G acts on it as Alt(T") acts on (1;), where U] = m and |B| = (7).
Assume CFSG; suppose also that m > 102log®n. Then we can reduce to one of
the following cases:

(a) T has a canonical coloured partition in which each part has size < %|I‘|;

(b) there is a canonical set S C T' of size > $|U| such that for any o € Alt(S)
there is an element of Autg(x) that induces o on S;

57 logn

(¢) at a multiplicative cost of at most m , either:

(c1) T has a coloured partition in which each part has size < 2|T'|, or

(c2) there are two disjoint sets Vi, Vo C T, with V5 divided into a system of
blocks G with (lg‘) = [V1| > 2|T| for some k' > 2, and there is a bijection
between Vy and (5,) such that if a g € G induces a permutation o €

Sym(G) of the blocks then it also induces the corresponding permutation
of V1 through the identification of its elements with the k'-subsets of G.

The time necessary for this reduction is the cost of %mzanaa! calls of the whole
algorithm for strings of length < = where a € (1.66431,1.77512) - logn, plus some
additional time O(m3ntt).

Proof. We are in the scenario of Proposition 3.4.2: the construction in our hypoth-
esis yields in particular a surjective map ¢ : G — Alt(T"). After %mganaa! calls
of the algorithm for strings of length < # and an additional time of O(m?*ntt),
we have obtained the group F' < Autg(x) generated by all certificates of fullness.
Now we follow the case subdivision in [Hel19b, §6.2].

e “Cas 17 is the case of |supp(¢(F))| = 2m and no orbit of ¢(F) of length
> %m.

e “Cas 2a” is the case of [supp(¢(F))| > 2m, an orbit ® of ¢(F) of length
> Lm, and Alt(®) < ¢(F)|o.

e “Cas 2b” is the case of [supp(¢(F))| > im, an orbit ® of ¢(F) of length
> 1m, and Alt(®) £ ¢(F)|e.

e “Cas 3" is the case of [supp(¢(F))| < sm.

In “Cas 17 we colour each element of I" by the length of its orbit (in time
O(m3) by Lemma 3.3.5) and we are in our case (a). “Cas 2a” is our case (b) for
S =9a.

(0]



“Cas 2b” starts by arbitrarily fixing some points of I, precisely d — 1 many for
d as in Lemma 3.4.3(a), and then feeds the resulting configuration to the Split-or-
Johnson procedure (without passing through the Design Lemma). In “Cas 37, the
information we already have at hand after the production of the local certificates
lets us have a colouring of (I" \ supp(¢(F)))® with less than half twins (as long
as a < 7): we can make it into an a-ary configuration and refine it through
Weisfeiler-Leman at a cost of O(a?m?**!logm) for the runtime, and then invoke
the Design Lemma plus Split-or-Johnson.

In both cases, we can apply Proposition 3.4.4: the two alternatives (a) and
(b) therein correspond respectively to cases (c1) and (c2) here. We have explicitly
written in our statement what the sentence “nous pouvons trouver [...] un schéma
de Johnson plongé sur [...] I” means in the statement of [Hel19b, Thm. 5.3]: in
particular, the fact that the objects that when permuting induce a permutation of
V1 may be the parts of B’ (instead of being directly the elements of V3) is due to
the use of [Hell9b, Ex. 2.18] inside CSoJ, where from a graph made of elements
of V5 we pass to a contracted graph made of its parts.

The multiplicative cost of “Cas 2b” and “Cas 3” is bounded by m
(certainly d < a, so the “Cas 2b” expense is subsumed by the “Cas 3” expense),
and their additive cost is safely absorbed into the O(m?*n'!). For our choice of
a, we obtain the cost featured in (c). O

a+55logm

Remark 3.5.10. The multiplicative cost described in case (¢) of Theorem 3.5.9
means the following: since a permutation in GG induces also an even permutation
of T', for any choice of s points x1,...,zs € I' each isomorphism from x to y falls
into a particular coset of the stabilizer of these points; these cosets are one for
each possible choice of images of the points in T'.

Call N the preimage in G of Alt(T'),, . ..y, found in time O(n®) by Corol-
lary 3.3.4(e) (N need not be normal in G: we call it N in analogy to Proposi-
tion 3.5.3); [G : N] < m?®, so again by Corollary 3.3.4(c) we can write an element
o; of each coset of N in time O(n® + m*n3). Thus the problem of determining
Isoq(x,y) reduces to < m* problems of determining Isoy (x,y;), because

Tsoc(x,y) = | JTsow (%, ¥ )o;

exactly as in Proposition 3.5.3. It is important to consider that s’ as above, the
exponent of the multiplicative cost, is not the same as s (despite them being
certainly related) and is indeed smaller: the fact is that the elements of I" are not
all indistinguishable (due to the presence of V1, V3), so many possibilities for the
choice of z1, ..., x5 are as a matter of fact forbidden; seen in a different light, many
of the Isoy that emerge are known to be empty without the need for computing

them, as they do not make Vi, V5 correspond in x and y”i_l.

Now that the situation described in the hypothesis of Theorem 3.5.9 has been
split into its various cases, we show how to treat each of them while making at
least one among our parameters n, |B|, m decrease.
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Corollary 3.5.11. Let | =n, G < Sym(Q) and let x,y : Q — 3 be two strings;
let B be a system of blocks such that G acts on it as Alt(T) acts on (1;), where
IT| =m and |B| = (7). Suppose that m > 102 log® n; suppose also that, fizing the
images (y;)i_, of some elements (x;)i_; C T, we can find a coloured partition of
I in which each part has size < || (with a < 2).

Then, if N is the preimage of Alt(T')(,, . ».) inside G, N divides Q into a
system B’ of orbits and blocks (at least as coarse as B) of size < 2[Q)|. Moreover,
Jor any orbit A with |A| > 2|Q|, B'|a is nontrivial and strictly coarser than B|a
and its elements are k-subsets of blocks of B all contained in the same colour Iy of
I of size > 2|T'|; also, the stabilizer of blocks of B'|a coincides with the stabilizer
of blocks of T'y.

Proof. This corollary covers cases (a) and (c1) of Theorem 3.5.9. The focus on N
is due to the reduction to the problem of determining Ison(x, y"fl) featured in
Remark 3.5.10, where o € G is an element that sends each z; to y;.

We have a coloured partition C on T' with parts of size < a|I'| (with o < 2);
we can repeat the same reasoning as in Corollary 3.5.7 (the case m > 102 log®n
and T'° nontrivial) and show that the hypotheses of Lemma 3.5.4 hold here. By
this lemma, € itself has a coloured partition C’ that is at least as coarse as B and
whose parts are also of size < 2|Q: the fact that N respects the colours of C’
means that elements with different colours will not be sent to each other, i.e. they
sit in different orbits, while respecting the parts with the same colours translates
to sending all the elements of one part to the same part, i.e. moving them as a
block.

If we are in an orbit A of size > £|€2], it means that inside C’ we are in a colour
of size > %\QL so that it will also have to be divided into smaller parts with the
same colour: therefore, B'|a is nontrivial and strictly coarser than B|a, since each
part will contain not all blocks and at least two blocks of B. Using the reasoning in
Lemma 3.5.4, A must come from a I'y as in our statement, and by our description
of €’ in that lemma the block stabilizer of B’|a contains the block stabilizer of T'y;
the other direction also holds: in fact, the only case in which a ¢ permutes blocks
of T’y without permuting anything in B’|s is when A represents k-subsets of Ty
intersecting all parts of T'y equally, but then there would be only one block in 5’| A
itself in contradiction with the fact that |A| > 2[€|. O

This corollary divides 2 into orbits and blocks that are coarser than the original
B: this makes n decrease or the block size increase, or both.

Corollary 3.5.12. Let |Q = n, G < Sym(Q?) and let x,y : @ — X be two strings;
let B be a system of blocks such that G acts on it as Alt(T) acts on (1];), where
IT| = m and |B| = (7). Suppose also that there exist sets Sx,Sy C T' of size
> %|F\, canonical for x,y respectively, such that for any o € Alt(Sx) there is an
element of Autg(x) inducing o on Sx (and similarly fory).

Then in time O(n'®) we can reduce the problem of determining Isog(x,y) to

determining 4 sets Ison(x,y;), where N induces orbits of size < 2|Q|.

Proof. This corollary covers case (b) of Theorem 3.5.9.
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If 7 is the map going from G to Alt(I') mentioned in the statement, define
N =7~ (Al4(I")(s,)): we can find N in time O(n'?) by Corollary 3.3.4(d)-3.3.4(c).
Also, define N’ = 7= 1(Alt(I")gs, ): since Sx is canonical for x, Autg(x) stabilizes
Sx setwise, which means that it is contained inside N’. For any even permuta-
tion of I' sending Sx to Sy, we can find a preimage 7 € G in time O(n'?) by
Corollary 3.3.4(d); we have

Iso (x,y) = Isog(x,y" )7 =Ison/(x,y" )7 = Auty/(x)Ison (x,y" )7,

using Lemma 3.3.6(a), the fact that Gr = G, and (by canonicity) the fact that
any string isomorphism between x and yT_1 must stabilize Sy.

Now we have to describe Autys(x): by the canonicity of S, it is equal to
Autg(x). Since by hypothesis Alt(Sx) is contained in Autg(x), there exist two
elements in Autg(x) that induce two generators of Alt(Sx); to find them, we
can take preimages 01,09 of these two generators in G (again in time O(n'%) by
Corollary 3.3.4(d)) and then determine the sets Aut e, (x) = Isoy(x, x"i_l)cri for
1 =1,2: any two elements 71, 75 inside them will give us the whole Aut ' (x), since
this is (A U {7, 2}) for any set A of generators of Auty(x). We have reduced
the problem to the four problems Isoy(x,y;) with y1 = x, y2 = yTﬁl, y3 = x"fl,
ya4 = x%2 "

We still have to prove that N has the property described in the statement. The
partition {Sx,I"\ Sx} can be seen as a coloured partition where Sx and I'\ Sx are
two parts of different colours (if Sx = I" then the second part is empty, but this will
not be a problem): examining the proof of Lemma 3.5.4, we see that each subset
Q, collecting (the elements contained in blocks corresponding to) the k-subsets of
I' containing a > 0 elements of I' \ Sy is of size < 2|Q; on the other hand, the
blocks corresponding to k-subsets of Sx are stabilized by N since this subgroup
stabilizes Sx itself pointwise. Therefore N has only orbits of size < %\Q| O

Again, this corollary makes n decrease or the block size increase (or both) by
dividing € into orbits and blocks coarser than B.

Corollary 3.5.13. Let | = n, G < Sym(Q) and let x,y : Q@ — ¥ be two
strings; let B be a system of blocks such that G acts on it as Alt(T") acts on (I,;),
where || = m and |B| = (7). Suppose also that, fizing the images (y;)i_, of
some elements (x;)i_; C T, we can find two disjoint sets V1,Vo C T, with Vs,
divided into a system of (possibly size 1) blocks G with (‘,f,l) = [V4| > 2|T| for some
k' > 2, and a bijection between Vi and (S,) such that each element of G, seen as
a permutation in Sym(G), also induces the natural permutation of V1 given by the
previous identification.

Then, if N is the preimage of Alt(I') (4, .. 2.y inside G and A C Q is an orbit
induced by N of size > %|Q|, N|a respects a system B’ of blocks inside A (at least
as coarse as B|a), and if M is the stabilizer of B’ then N|a/M < Sym(G) (and
G| < 14++2m).

Proof. This corollary covers case (c2) of Theorem 3.5.9. The focus on N is due

to the reduction to the problem of determining ISON(x,ygfl) featured in Re-
mark 3.5.10, where o € GG is an element that sends each z; to y;.
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We can see {V1,V2,I"\ (V1 U Va)} as a coloured partition on I', where the last
two parts are of size < %|F| combined. Looking at the proof of Lemma 3.5.4,
each subset Q, collecting (the elements contained in blocks corresponding to) the
k-subsets of T containing a > 0 elements of '\ V] is of size < %|Q|, thus, the orbit
A (if it exists at all) can only be one of the orbits collecting k-subsets of I entirely
contained in V;.

An element B € B|a corresponds to a k-subset R of V7 and each element of
R is a kg-subset of G; each element of N|a induces a permutation of G, so any
two subsets R, R’ whose elements cover the same blocks of G (rather, their union
does) move together under the action of N|a, i.e. they are in a same block of
A. A system of blocks B’ is therefore at least as coarse as the system formed by
collecting all the B corresponding to the R based on the same blocks of G, which
is in turn at least as coarse as B; the image of a block B’ € B’ is determined by
the movement of the blocks of G, since a permutation of G determines the new
ko-subsets of G represented in Vi, so N|a/M < Sym(G).

The fact that |G| < 1+ v/2m, which will be helpful in the recursion process, is
evident from the hypotheses we made in the statement: since V3 C I is in bijection

with (kg,) and k' > 2 we have m > (‘gl) > w, and the inequality follows. [J

This corollary either decreases n or reduces the degree of the symmetric group
that contains G (as an abstract group, in the sense that we do not care about the
precise action). In fact, while recursing through Cameron in this circumstance, if
G is not too small we will obtain a subgroup of G that is Alt(I') for some I'V, and
IT"| <1+ v2m where m was the size of the old T.

3.5.2 The algorithm, not assuming CFSG

Now we examine what the algorithm looks like when we are not assuming CFSG:
the result by Cameron and Maréti, which provided us with the initial crossroads
to guide us in the recursion, does not hold anymore. On the other hand, the
fact that the action of G/N on B is the same as the action of Alt(T") on (1;) (in
Theorem 3.5.6(b), Corollary 3.5.7(c) and beyond) is not always essential: in many
occasions the important fact is that each block of B corresponds to a k-subset of
a certain I', but G/N may act on it as some H < Sym(I"), and not necessarily as
H = Alt(T"). We will see this in the next results.

We start with our new building block, a result due to Pyber [Pyb93] that

replaces Cameron and does not depend on CFSG.

Theorem 3.5.14. Let |T'| = m and let G < Sym(T"). Do not assume CFSG. If G
is primitive, then one of the following alternatives holds:

(CL) ‘Gl < m8(4 log, m] log, m.
(b) G is either Sym(T") or Alt(T);
(c) G is transitive but not doubly transitive.

Proof. See the proof of [Pyb93, Thm. Al. O
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Let us tackle each of these alternatives that emerge in our determination of
Isog(x,y). We start again with the case of G/N small enough to be able to
effectively use Proposition 3.5.3.

Proposition 3.5.15. Let [Q)] = n, G < Sym(2) and let x,y : Q@ — ¥ be two
strings; let B be a system of blocks preserved by G, and call N the stabilizer of
B: suppose that there are a set I' of size m and a bijection between B and (I,;)
(for some k) such that the action of G/N on B corresponds to the action of some
H < Sym(T") on (1;) Do not assume CFSG.

If |H| < mBltlogzmllogam = op if < 25¢1/<” (logn)4*<, then we can reduce

25¢1/¢? (log n)4+e

the problem of determining Isog(x,y) to determining < m sets of

. . . . 1/62 44-¢
isomorphisms Ison (x,y;), in time O(m?25¢" (logn)™"" 10)

cost.

and at no multiplicative

Proof. The proof is very similar to part of the proof of Corollary 3.5.7, as expected:
the current proposition corresponds to the route taken by Corollary 3.5.7(a). We
add that, if we know both I" and the bijection, it is a polynomial-time task to find
out whether the conditions on H are satisfied: we can calculate |H| in time O(m®)
by Corollary 3.3.4(a), which will tell us if either condition is true.

First, |H| is always bounded by m! < m™+3el=™m. For m < 5656 we have
(m + %) logm + 1 —m < 67log®m, while for m > 5657 we have 4logym > 49.8

and then [4log, m] < % 1022 log m; hence, for any m,

max 67,Qi}lo 2m 2
|H| < ,,n8|'4log2 m]logy, m |H| <m { 50 Tog2 2 g < mGSIOg m.

52 €
As form < 25¢!/¢” (log n)4*¢ this implies easily that |H| < m™ < m25e’/* (logm)**<
Since m < n, for € small we have 68 log2 m < 25e1/¢* (logn)**2, so both bounds

52 €
on |H| can be summed up by using the unique bound m25e!/* (logm)*™*  Wo can

conclude the proof by producing all the elements of G/N and working as in Propo-
sition 3.5.3. O

Case (b) of Theorem 3.5.14 is extremely similar to the process followed in the
CFSG case, as shown in the following proposition.

Proposition 3.5.16. Let || = n, G < Sym(Q)) and let x,y : Q@ — X be two
strings; let B be a system of blocks preserved by G, and call N the stabilizer of
B: suppose that there are a set I' of size m and a bijection between B and (1;)
(for some k) such that the action of G/N on B corresponds to the action of H =
Sym(T"), Alt(T") on (1;) Do not assume CFSG.

If m > 25¢1/¢ (logn)**e, then we reduce the problem of determining Isog(X,y)
to one of the following:
(a) determining < 8 sets Ison:(x,y;), where N’ divides Q2 into orbits of size <
sl;
52 €
(b) determining < mTe’ < tosm) ™ gots Tsons (x,y:), where N' divides Q into a
system of orbits and/or blocks B’ (at least as coarse as B) such that if there is
an orbit A of size > 2|Q)| then either
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(b1) B'|a is nontrivial and strictly coarser than B|a, with stabilizer of B'|a
equal to the block stabilizer of the large colour of T (in the sense of Corol-
lary 8.5.11), or

(b2) if M is the stabilizer of B'|a, N'|a/M acts on B'|an as some H' <
Sym(I") acts on (1;:) with [T < 1+ v2m.

The time necessary for this reduction is the cost of %mzanaa! calls of the whole
algorithm for strings of length <  where a € (6.24999,6.25) - el/e’ (logn)**e, plus
some additional time O(m3ntt).

Proof. First, in the case of H = Sym(I") we can reduce the problem to 2 sets with
H = Alt(T"). Now we are exactly in the case described in Corollary 3.5.7(c). We
can retrace all the steps from Theorem 3.5.9 to Corollary 3.5.13, this time using the
CFSG-free versions of the results in §3.4, and the results correspond to one of the
final situations thereby reached: case (a) corresponds to Corollary 3.5.12 (where
4 becomes 8 because of the aforementioned reduction from Sym to Alt), case (bl)
corresponds to Corollary 3.5.11, and case (b2) corresponds to Corollary 3.5.13.

We need only to justify how to obtain the action in part (b2) rather than
only a bound on the degree of N|a/M like in Corollary 3.5.13 (as we observed,
this stronger statement is necessary for the recursion, given the unavailability of
Cameron).

Let us start with the first problem. Following the reasoning up to Corol-
lary 3.5.13, we ended up finding two disjoint sets V1,V C T' and a partition G
of V5 that respect the various hypotheses mentioned in the corollary, and in its
proof we find a system of blocks B'|s on an orbit A of size > 2|Q| (if such an
orbit exists) such that the action of N|a is induced by the permutations of G, up
to the stabilizer of the system. If k = 1, B corresponds to T itself: therefore A
of size > %\Q| must correspond to Vj itself, and by hypothesis the permutations
of G induce permutations of V7 in a way that respects the bijection V; (kg/)
(G is then the sought I'V). If k > 2, we can use Lemma 3.5.5 to prove that A
is further split into blocks that are strictly coarser than B: in that lemma, we
use IV, T, B to refer in this situation to G, V;, B|a respectively; we only have to
show that the bounds on |G| hold. If m > 102log®n, by Remark 3.3.7 we have
m > 8308; [Vi| > 2m, so that [V1] > 5539: whatever will be our choice of k', we

have 5539 < (7)) < (/7). hence [g] > 12.
2

Finally, let us obtain the exponent in part (b) and the value of a. The interval
of a is taken directly from Proposition 3.4.2(b). As for the exponent, we notice
that exactly as in Theorem 3.5.9 we still have d < a (with d as in Lemma 3.4.3(b)),
so that the multiplicative cost is still m@+551°e™ For our choice of a, our bounds
25¢1/<” (logn)**t® < m < n, and ¢ small enough, we can bound this cost as in
the statement (remember that we also have a possible multiplication by 2, from
the reduction in the case of H = Sym(TI")). The additive cost is the same as in
Theorem 3.5.9. O

Finally, we treat case (c) of Theorem 3.5.14, whose procedure is a somewhat
shortened version of the one covered in the previous proposition.

81



Proposition 3.5.17. Let | = n, G < Sym(R2) and let x,y : Q@ — ¥ be two
strings; let B be a system of blocks preserved by G, and call N the stabilizer of
B: suppose that there are a set I' of size m and a bijection between B and (I,;)
(for some k) such that the action of G/N on B corresponds to the action of some
H < Sym(T") on (1;) Do not assume CFSG.

If m > 25e1/¢° (logn)**e and H is transitive but not doubly transitive, then
in time O(m'?*) we reduce the problem of determining Isog(x,y) to determining
< mP2loe™ sets Ison (x,y;) where N divides 2 into a system of orbits and/or
blocks B' (at least as coarse as B) such that if there is an orbit A of size > 2|9
then either

(a) B'|a is nontrivial and strictly coarser than B|a, with stabilizer of B'|a equal to
the block stabilizer of the large colour of T (in the sense of Corollary 3.5.11),
or

(b) if M is thle stabilizer of B'|an, N'|a/M acts on B'|x as some H' < Sym(I")
acts on (1;,) with |T'| <1+ v/2m.

Proof. If H is transitive but not doubly transitive, we can determine the nontrivial

orbits of the action of H on (g) in time O(m®) by Lemma 3.3.5; giving to each orbit

its own colour, we can make (1;) into a coherent configuration in time O(mlogm)

(mostly due to Weisfeiler-Leman, see [Hell9b, §52.3-2.5]): the result would be a
nontrivial homogeneous coherent configuration, where homogeneity is consequence
of the fact that this is a canonical process and H moves every point of I" to any
other, so that we are unable to distinguish them with different colours.

Now we can use SoJ directly. We use Proposition 3.4.4, where from the costs
we can remove the exponent b (since we do not perform the Design Lemma).

The shape of the action of N’|a/M on B'|a in part (b) is again proved as in
part (b2) of Proposition 3.5.16, i.e. resorting to Lemma 3.5.5. O

All these cases reduce to some sort of recursion with lower parameters, either
by decreasing n or m or increasing the block size. This works exactly as in the
CFSG case.

3.6 Main theorem: proof

We are at last ready to prove Theorem 3.2.1.

The group-theoretic results to which we keep returning in our recursions are
Theorem 3.5.6 in the CFSG case and Theorem 3.5.14 in the CFSG-free case; we
have already declared this multiple times, but we repeat it here (now with refer-
ences, though): except for exiting through the base cases given in Remark 3.5.1
and Proposition 3.5.8 and for breaking down €2 into smaller orbits through Propo-
sition 3.5.2, the only other alternatives are that on a large chunk of €2 either
the system of blocks B on which we are working becomes coarser and coarser
(the conclusion featured in Corollary 3.5.11, Proposition 3.5.16(b1) and Proposi-
tion 3.5.17(a)) or the group in which we are operating is contained in a symmetric
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group of degree smaller and smaller (the conclusion featured in Corollary 3.5.13,
Proposition 3.5.16(b2) and Proposition 3.5.17(b)).

Proof of Thm. 3.2.1. There are several tasks to accomplish: we need to analyze
the possible passages mentioned above and see that they fit the description given
in terms of (C1)-(C2)-(C3), and that the final base cases fit (A), and we need to
estimate their contribution in terms of both the multiplicative cost (which will
lead us to a bound on the number of atomic elements) and additive cost (which
will yield the total runtime).

To determine the multiplicative cost of the procedure, we start in medias res.
We are working on a certain orbit A of Q, of size |A] = n’ < n, divided into
a system of blocks B, of size |B| = r < n/, such that the group G/N per-
muting the blocks is isomorphic to a subgroup of Sym(m), of degree m < r.
We call M(n/,r,m) (an upper bound on) the multiplicative cost that we incur
from this moment until we manage to make each block into an orbit of its own.
Call T(n/,r,m) the intermediate time cost, in an analogous fashion as we did
with M (n/,r,m); we also suppose that T'(n,r, m) includes the cost of performing
Proposition 3.5.2 on the resulting orbits, so as to cover the time spent to bridge
one intermediate problem to the next one.

The proof is articulated in the following main steps.

(1) From the already known passages we delineate a handful of “actions” and
the reduction they entail on M (n’,r,m); note that here we are using the
word “action” not in a mathematical sense, but in the everyday meaning of
“something done purposefully to accomplish a certain end”. This step gives
us a series of conditions that our function M must respect in order to work.

(2) We choose M and show that it is compatible with the previous conditions
coming from the actions; then M (n,n,n) by definition turns out to be a bound
on the multiplicative cost incurred throughout the whole algorithm.

(3) We translate actions into (C1)-(C2)-(C3) and end-cases into (A), and use
M (n,n,n) to bound the number of atomic elements.

(4) We refine the computations of the second part to tackle T'(n’,r,m).

For the sake of notation, we are going to perform our computations by bounding
log M instead of M, so that the focus will be on the exponents of the quantities
involved.

(1) Description of the actions.

The first action that is possible to perform, following from Corollary 3.5.7(a)
and Proposition 3.5.15, is to directly pass to the stabilizer of the system, thus mak-
ing each block into an orbit: this concludes the calculation of M with no reduction,
and it costs at most 102 logm log? n’ in the CFSG case and 25¢'/¢” log m(logn')4+e
in the CFSG-free case; these are direct lower bounds for log M (n', r, m), therefore

log M(n',7,m) > K; logm(logn’)! (3.6.1)

for (K1,e1) = (102,2), (25e1/¢° 4+ €) appropriately.
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For notational simplicity, let us set X = 8308 for the CFSG case and X =
25¢1/=" for the CFSG-free case: these are the values we have already encountered
many times, and they separate small and large values of m,n (see Remark 3.3.7
in particular). If either n’ or m is smaller than X we are using the first action, so
for the other actions we can assume otherwise.

The second action, following from Corollary 3.5.12 and Proposition 3.5.16(a)
and (in case there are only orbits of size < 2|Q|) from Corollaries 3.5.11-3.5.13
and Propositions 3.5.16(b)-3.5.17, consists in reducing »n’ (and consequently r) by
a fraction at least as small as 2. This costs at most Kslogm(logn’)®?, where
(K2,e2) = (57,1) assuming CFSG and (K3, e2) = (761/8274 + ¢) without CFSG:
for our bounds on m,n’ (and for ¢ small), these are the largest expenses, coming
from Theorem 3.5.9(c) and Propositions 3.5.16(b) respectively. Hence

2,2
log M (n’,7,m) > Kylogm(logn')®* + log M (Bn’7 3" m) : (3.6.2)

The third action, following (in case there is an orbit of size > Z|Q|) from
Corollary 3.5.11 and Propositions 3.5.16(b1)-3.5.17(a), creates a new system of
blocks strictly coarser than the original B, at a cost of at most K»logm(logn')®2:
(K3, e2) is as in the previous action, as the largest expenses originate in the same
results. What happens is, we have first to work on the coarser system, then after
we have stabilized each coarser block we have to work on each one of them as the
new orbit and the finer blocks as the new system; since the stabilizer of coarser
blocks coincides with some block stabilizer of I', we also get m’, % instead of m
in the two steps, for some 2 < m’ < . The bound on log M(n',r,m) given by
this action is

oy

log M (n',7,m) > Kylogm(logn')¢* +log M (n',r",m') + log M (:/, ot %
(3.6.3)
where 2 < 7' < % is the size of the coarser system.
The fourth action, following (in case there is an orbit of size > 2|Q) from
Corollary 3.5.13 and Propositions 3.5.16(b2)-3.5.17(b), reduces the degree of the
minimal symmetric group containing G, at a cost of at most Kslogm(logn')c?

((K2,e2) as in the second and third actions); therefore,
log M (n',7,m) > Kylogm(logn')®* +log M(n',r,1 4+ V2m). (3.6.4)

(2) Choice of function M.
Now let us prove that
log M (n',r,m) = (logn’)*2" (alogm + blogr) (3.6.5)

satisfies the four conditions for some appropriate constants a, b.
Since m < r and e; < ez 4 1, in order to have (3.6.1) we have simply to ask
a+ b > K;. Recall that for the other actions we can assume m,n’ > X.
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For n/ > X and ez > 1 we have (log (%n’))efr1 < (logn/)e2+1 — 3(logn’)e
(for both values of X), so

2 ea+1 2
Ky logm(logn')® + <10g (3n/)> <alogm + blog (37"))

3
< (logn’)>*(alogm + blogr) + (logn')®2 <K2 logm — Z(alogm + blogr)> ,

and since m < r in order to have (3.6.2) it is sufficient to ask 2(a + b) > K». For
o\ e2+1
(3.6.3), using (1og %) o (logn’)e=+1 —logr(log ') and log 2 > log2 the

sufficiency of (3.6.5) in this case is implied by
f(logr') = blog? ' — (alog2 + blogr)logr + Ky logm < 0. (3.6.6)

The function f(z) in the interval [log 2, log r —log 2| has its maximum in z = log 2,
being a quadratic polynomial with the minimum in 2 = $ logr + al;;‘fz > Llogr;
evaluating f(log2) and recalling that X < m < r, (3.6.6) is in turn consequence

of

Kylogm Kylog?2 S Kylog X

_ — — o 3.6.7
~ log2(logr —log2) logr — log 2 ~ log2log(X/2) ( )

To have (3.6.4), we notice that 1++/2m < m%23926 for m > X (for both values
of X); then,

)

(logn’ alogm + blogr)

> Ky logm(logn')® + (logn’)*2™1(0.53926a log m + blogr)

means a >
(3.6.4).

Putting together these conditions and considering our K7, K», it turns out that
a = 13.7085 and b = 89.07486 with CFSG and a = b = %61/62 without CFSG
are suitable choices for (3.6.5). The multiplicative cost of the whole algorithm is
bounded by M (n,n,n); thus we conclude that the multiplicative cost is bounded
by

K K : .
0a607410g w7 S0 that a > 0.2405K3 > ez 18 enough to satisfy

52 . €
pl0278336l0g” n with CFSG, 2T (em™ Githout CFSG.  (3.6.8)

(3) Reduction to (A)-(C1)-(C2)-(C3).

Now that we have bounded the multiplicative cost, let us focus now on the
actions themselves, in order to be able to describe the various stages as one among
(A)-(C1)-(C2)-(C3) and to use M(n,n,n) for the computation of the number of
atomic elements.

The first action entails firstly a reduction of the problem of determining the set

-1
Isog(x,y) to a collection of Ison(x, yf )o; whose union is the original set, as seen
in Proposition 3.5.3 or Remark 3.5.10: the way this union is performed corresponds
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precisely to (C1), and the number of subproblems is equal to the multiplicative
cost incurred during this action; then, each stabilized block becomes an orbit of
its own, in a reduction that corresponds to the situation described in (C2) (see
Proposition 3.5.2). This passage does not feature any multiplicative cost, but
it does multiply the number of atomic elements at the end: however, since we
have simply r blocks, the contribution of (C2) here, and indeed the contribution
of any nested series of (C2) acting throughout the entire process of solving the
intermediate problem with parameters (n',r, m), is at most r.

The second action features a reduction of € to orbits of size at most Z|Q|;
this can happen in two different ways. In the case of Corollaries 3.5.11-3.5.13 and
Propositions 3.5.16(b)-3.5.17, after having fixed the image of a certain number of
points at a multiplicative cost we find orbits of such size, and then we examine each
orbit singularly: this is exactly as in the previous case, where each passage consists
in using (C1) and (C2), and the bounds on the atomic element multiplication are
as above. In the case of Corollary 3.5.12 and Proposition 3.5.16(a), we are in a
situation where

Isog(x,y) = (Auty(x), 71, 72)7'T,

where 7' € Ison (x, yTﬁl) (to use the notation of the corollary); this corresponds
to (C3), and despite the multiplication cost being at most 4 or 8, there is no actual
growth in the number of atomic elements through this case.

The third and the fourth action create respectively (on the large orbit) a strictly
coarser system of blocks and a bijection on a permutation subgroup of strictly
smaller degree: this happens at a certain multiplicative cost, that corresponds to
a passage of the form shown in (C1) and multiplies the atomic elements by the
same quantity.

The various actions, as we already said, decrease at least one of the three
parameters n,r,m, and when r,m become too small n itself diminishes through
the use of the first action: hence, the procedure eventually stops when n = 1, the
trivial case of Remark 3.5.1. There is also a second way to stop the algorithm, and
that is Proposition 3.5.8: both cases correspond to the atom (A). The reduction to
(A)-(C1)-(C2)-(C3) has been proved; the actual writing of the expression is done
following the proofs of Proposition 3.5.3 (for (C1)), Proposition 3.5.2 (for (C2))
and Corollary 3.5.12 (for (C3)). The number of atomic elements, by the reasoning
above, is bounded by

2 2 .
- p102.7833610g n _ 110310 n with CFSG,

1/e2 5+e 1/£2 54¢ .
n-n2oe T (logn)™™ - 26e/ (logn) without CFSG,

since its intermediate multiplication is bounded by » M (n’, 7, m), and we are done.

(4) Runtime.

Finally, let us tackle the runtime; we start at the end, this time. We have
already proved that there are at most n<1°8° " atomic elements constituting the
expression, and by Remark 3.5.1 and Proposition 3.5.8 we can treat each one in
time O(n®%), so the bound on the runtime covers this final stage; now we go back
to the analysis of the recursion process that leads to it.
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Call T(n/,r,m) the intermediate time cost, in an analogous fashion as we did
with M (n/,r,m); most of the computations for M also hold for T, but we have
to verify that the added time does not disrupt the final constants coming from
our multiplicative reasoning: we also suppose that T(n/,r,m) includes the cost
of performing Proposition 3.5.2 on the resulting orbits, so as to cover the time
spent to bridge one intermediate problem to the next one. For the first action, the
bound is as in Corollary 3.5.7(a) and Proposition 3.5.15, with the addition of the
cost for the reduction to single orbits:

T(n',r, m) _ O(mKl(logn/)elnllo + nlll).

As for the other three actions, let us start by working on the additive cost first;
recall that henceforth n’ > r > m > X. The highest additive cost is featured
in Theorem 3.5.9 and Proposition 3.5.16 and it involves the use of the runtime
itself (for smaller n’); supposing that we want to show that it is sufficient to ask
T(n',r,m) = O(e(log"l)eﬁl(“logm"’blogr)n’ll), this cost is of order

1 n’\eg+1 X n/ll
§m2un/yyy . gllog %) (alog m+blogr) — + 277,;,1/”/117 (3.6.9)

where v = a(logn’)®? for some a € (1.66431,1.77512) with CFSG and a €
(6.24999,6.25) - ¢!/ without CFSG. Notice that we write 2m3n/11 (i.e. with
a 2 in front) in order to absorb the successive smaller costs, such as the n'l!
from Proposition 3.5.2, the n''® from Corollary 3.5.12 and the m'# from Proposi-
tion 3.5.17. For a,b > 5, it is easy to prove that the first addend of (3.6.9) is larger
than the second: say for example n/ > 4, vv! > 1 and e(l°® 22t (alogm+blogr) -
g3 log”n'(alogm+b) — G log” n'pyrglogn’ m¥(2v)1. Now let us bound the first
addend (without 3); its logarithm is

r e2+1 11
2vlogm + log(n'vv!) + <log ) (alogm + blogr) + log nT
v v
< 2a(logn’)®? logm + logn’ + logm + a(logn')** log m
+ (log /)™ (alogm + blogr) — 2.19999(log n')*2 (alogm + blogr) + log n'!!
< (logn/)2* (alogm + blogr) + logn/*' — 2.19999b(log n')** log ,

N\ e2+1
using (log ”7) < (logn/)e2tt — (logn/)*2 logv for e; > 1 and 2.19999 <
logry < logm, and noting that the negative (logn’)®2logm term absorbs the
smaller logn’,logm, (logn’)°2 logm positive terms for 3o + 2 < 2a. Therefore
for example b > 5 gives us already enough leeway:

6—2.19999b(logn')62 log r < 10—389.

Now that the additive cost is accounted for, we continue with the multiplicative
one. Since we want to prove that a quantity multiplied by n/'! is larger than
its partial version multiplied by some fraction of n/!!, we can just ignore this
polynomial cost. For the second action, we exploit the already existing margin left
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out before: (log (%n’))eﬁl < (logn/)2 — (2 + :25) (logn’)2, and for a+b > 1
we are left with a constant of

1

3
e—m(log n’)2 (alog m+blogr) < 1

in front of this part of the runtime. For the third action, if b is as on the right
side of (3.6.7), we can use (1 + Wlooo) b as the new coefficient and going through
(3.6.6) we can cut ourselves a margin of

49
50"

b e K e
¢~ Toooos (log )2 log ' log 77—, — out0p (log )2 log X -

The fourth action is treated in the same way: putting (1 + 155555) @ We carve out

a % constant as well. This shows that we can take the same coefficient a,b as
1

e 49 —389 .
before multiplied by 1+ 150550, because z5 + 10 < 1; also, thanks to

P 2 2
1,102.78336( 1+ 155000 ) log” n 103log n_

<n

1/e2 o \5te 1/e2 5
n25(1+m)e /¢ (log n) < n26€ /% (log n) +67

we achieve the bounds we wanted in the two cases for the runtime, too.

The theorem is proved. O

3.7 Concluding remarks

It must be noted that the difference between the exponents for the CFSG and
the CFSG-free case in not a consequence of the different use of group-theoretic
results to produce a suitable recursion (Theorems 3.5.6 and 3.5.14 respectively):
they make the algorithm different in the two cases, that is true, but the different
expense lies elsewhere. What is important in this respect is the theoretic tool
that allows the recursion in Theorem 3.5.9 and Proposition 3.5.16, and that gives
for us a different number of calls to the algorithm for shorter strings. In the
local certificates procedure in Babai’s algorithm, one important detail is that a
certain epimorphism G — Alt(k) for G < Sym(n) primitive is guaranteed to be an
isomorphism, and this is ensured for k£ = Q(logn) with a proof relying on CFSG
(see [Babl6a, Lemma 8.3.1] [Hel19b, Lemme 4.1]), but only for k& = Q(logn)**¢
without CFSG (see [Pyb16, Lemma 12], where Q(log®n) is used). Consequently
the algorithm is still performing the same subroutines, but the tuples on which
we want to build the certificates need to be larger, leading to the loss of efficiency
that we witness.

The constants are likely improvable, if one were to analyze with greater care the
routines. We have been quite accurate, but we have not really aimed at obtaining
the best possible constant, especially in the CFSG-free case: as our position is to
consider CFSG as a theorem (see the discussion after Theorem 1.2.4), the analysis
of the CFSG-free procedure is more of a question of method, given the use we are
going to do of the main theorem in §6.
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In truth, the origin of the whole analysis performed in this chapter lay originally
in trying to find whether we could easily arrive to an improvement of Babai’s
algorithm that would gets us to a n®(°8™) runtime, or, if not, to point out where
exactly the bottleneck was and why.

It is clear, to the attentive reader of these pages, that the obstacle does not lie
in the “interstitial reasoning” as we called it at the start. We have performed our
analysis burdened with multiplicative costs of n@{1°87)  or npOog n’ °, originating
in the main subroutines in §3.4. However, if we had had at that point a polynomial
cost, we could have continued with our bookkeeping until the end and obtained a
nP0ogn) runtime: even the n®(°8™) that is weaved already into Cameron’s theorem
(Theorem 3.5.6(a), coming from Theorem 1.2.5(c¢)) does not pile up eventually,
since (3.6.1) shows that max{e;, es + 1} is the correct exponent of the logarithm.

Hence, the bottleneck must be in the subroutines. The local certificates call

the algorithm for strings of size 2 (L>, for each of the O(logn)-tuples inside

logn

an O(n)-set: thus, unless one manages to bypass the logarithmic requirement
in Lemma 3.4.1, the routine of Proposition 3.4.2 is too expensive to improve the
runtime under the n®(°8* ") threshold. Also Split-or-Johnson is in its current form
too expensive, but in that case one might make do with reworking the recursion
process that comes into play by showing for instance that the worst scenario does
not actually happen in real life. It is already a common thread in the literature
that distinguishing non-isomorphic graphs is actually pretty easy in general (see
[BES80] [BK79]), and a handful of bad cases yields a much worse runtime: SoJ as
well analyzes in its recursion hypothetical configurations where it is very difficult
to break the symmetry of its vertices, even when we are given from the start that
the are few twins among them. It might be feasible to prove that there are actually
no such configurations, or alternatively that they are so well-structured that it is
possible to describe them entirely and treat them separately as exceptional cases,
as was done for instance with the “three exceptional families” in [SW16, Def. 1.3]
(the first paper to break the n®V™) threshold on GIP).
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Chapter 4

Slowly growing sets in Aff(IF)

The content of this chapter is essentially taken from [Donl9b].

We have already mentioned in §1.4 that, among the many different problems
related to the study of growth and expansion in finite groups, the study of the
affine group over finite fields has occupied a particularly interesting place. The

affine group
a b
e ={(G )

where F is a finite field, is one of the smallest interesting examples of an infinite
family of finite groups on which questions of growth of sets A C Aff(F) can yield
nontrivial answers, and it has been used to showcase techniques applicable to more
general situations, like the pivot argument; on the other hand, its shape makes
its uniquely suitable to study the so-called sum-product phenomenon, related to
growth of sets inside finite fields under both addition and multiplication. For both
of these points of view, a remarkable example is provided in Helfgott’s survey
[Hell5, §4.2].

Structural theorems about growth in Aff(F,) (p prime) have been produced
in the last few years, describing in substance what a set A with small growth
must look like. Results like Helfgott’s [Hell5, Prop. 4.8] and Murphy’s [Murl?,
Thm. 27] belong to a first generation of proofs that rely, one way or another, on
sum-product estimates; they already accomplish the goal of characterizing quite
well a slowly growing A: such a set must essentially either be a point stabilizer or
be contained in a few vertical lines, which in addition get filled in finitely many
steps if |A] = Q(p).

Rudnev and Shkredov [RS18] have then quantitatively improved this classifi-
cation in Aff(F,): the main attractivity of their result, however, resides in the
fact that, in their own words, “the improvement [they] gain is due [...] to avoiding
any explicit ties with the sum-product phenomenon, which both proofs of Helfgott
and Murphy relate to”, which makes their version of the characterization of slowly
growing A part of a new generation of efforts. What they rely on instead is a
geometric theorem by Szényi [Sz699, Thm. 5.2] that gives a good lower bound on

aEIF*,beIE‘}, (4.0.1)
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the number of directions spanned by a set of non-collinear points in the plane ]FZQ,
for p prime.

Following the approach by Rudnev and Shkredov, we first produce an analogous
version of SzOnyi’s result for the plane ]Fﬁ, where ¢ is any prime power; then we
use that estimate to prove a structural theorem on slowly growing sets in Aff(F)
(resembling the corresponding ones for Aff(FF,) mentioned before), which to the
best of our knowledge is the first of its kind.

4.1 Introduction

We remind the reader that, at least for us (unlike in some of the works we refer-
ence), p will always denote a prime and ¢ a power of p. Given a set A inside the
plane F2, the set of directions spanned or determined by A denotes the set

a —a

D= { b ’ (a,b), (@, 1) € A, (a,b) # (a’,b’)} CFU{oo},

where conventionally oo corresponds to the fraction with ¢’ —a = 0. We make free
use of the natural identification Aff(F) <> F* x F given by

(g ’;) CAR(F) <«  (a,b) €F* xF,

so that we may refer to points, lines and directions even when speaking of the
group Aff(FF); in particular, we call 7 : Aff(F) — F* the map corresponding to the
projection on the first component, so that the preimage of a point through this
map is a vertical line. Aff(IF) acts also on F as (a,b) - ¢ = ax + b, and we think
of this action when we refer to Stab(x) (which also looks like a line when seen in
[F2); finally, U denotes the unipotent subgroup corresponding to {1} x F, again a
vertical line.

As said before, one of the starting points of the new-style result for slowly
growing sets in Aff(F,) is the following bound by Szényi.
Theorem 4.1.1. Let p be a prime, and let A C Ff, with 1 < |A| < p. Then either

A is contained in a line or A spans > WTJFS directions.
With that, Rudnev and Shkredov prove the following (see [RS18, Thm. 5]).

Theorem 4.1.2. Let p be a prime and let A C Aff(Fy) < Fy x F, with A= A~
and |A3] = C|A|. Then at least one of the following is true:

(a) A C Stab(z) for some x € F;

(b) when 1 < |A| < (1 +¢)p for some 0 < & < 1, we have |n(A)| < 2C*;

_ 1
(c) when |A| > (1 +€)p for some 0 < e < 1, we have |7(A)| = O¢ (5C3|A\), and
in particular for |A| > 4p we have |1(A)| < %C3|A| and A8 D U.
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Sz6nyi’s bound is part of a long history of applications of results about lacunary
polynomials (i.e. polynomials made of a small number of monomials with respect
to their degree) over finite fields to finite geometry: the reader interested in similar
applications can check [Sz699] and its bibliography.

Many results in this area can apply, with the appropriate modifications, to F,
as well. In this case, however, bounds on the number of directions spanned by a set
in the finite plane appear to be messier, and understandably so: unlike in the case
of IF,,, the number of directions determined by A tends to congregate around values

%I for powers p?|g; this is due to the fact that there may exist sets with multiples

of p' points on each line that are so well-structured that they sit in relatively few
directions compared to the amount of points they have (see [BBBT99, §5] for an
example of this assertion when |A4| = q).

The result we essentially use, on the number of directions spanned in Fg by
some set with 1 < |A| < g, is due to Fancsali, Sziklai and Takéts [FST13, Thm. 17]:
for the lower bound they found we give here a proof that is very similar to theirs,
but we also prove a different upper bound that can be more or less advantageous
than theirs depending on the situation (Theorem 4.2.2). Used directly, the lower

i _
[BBB199, Thm. 1.1], would give not only p‘|p® = ¢, but also iJe (and therefore a
much better lower bound of approximately % directions): [BBB*99, Thm. 1.1]
however works only for |A| = ¢, and the lack of a complete set of ¢ points is crucial
in worsening the condition on the denominator p* during the proof.

Nevertheless, it turns out that a simple observation can make us achieve the
bound with /g in the denominator: at its core, we use the fact that a set of points

bound can only give us about % directions; a tighter theorem, in the style of

A either sits on > /g parallel lines or has a line with > % points on it. Our first
main result then, playing the role of Szényi’s bound in [RS18], is as follows.

Theorem 4.1.3. Let ¢ = p© be a prime power, and let A C Fg with 1 < |A| < q.
Then either A is contained in a line or A spans

AL g
(a) > i directions for e even,

(b) > 42— directions for e odd.
p 2 +1

Observe that the theorem is only a constant away from Sz6nyi’s bound when
we use it for ¢ = p; we add that actually the proof can be easily adjusted to yield
that bound exactly: we chose not to do so in order to get a cleaner statement,
with case (b) valid for all e odd.

Using Theorem 4.1.3 and following more or less the same proof as in [RS18],
we obtain our second main result, generalizing Theorem 4.1.2 to any F,.

Theorem 4.1.4. Let ¢ = p® be a prime power and let A C Aff(F,) < F; x F,
with A = A= and |A3| = C|A|. Then at least one of the following is true:

(a) A C Stab(z) for some x € Fy;
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(b) when 1 < |A| < q we have |n(A)| < (pl3d +2)C*, while when ¢ < |A] <
(3 +2v/2)q we have |7(A)| < (4 +2v/2)C4;

(c) when |A| > (3 +2v/2)q we have |m(A)| < %C3|A| and A3 D U.

The statement above looks remarkably similar to Theorem 4.1.2, and is quali-
tatively as strong a structural theorem as in the case of Aff(F,). The plzl in case
(b) cannot be improved in general: for e even, there is a natural embedding of F V@

inside Fg, and A = F7 7 x F 5 has |A] < g, C =1 and |7(A)| = p> — 1. See §4.4
for further remarks.

Let us comment however on a small difference between Theorem 4.1.2 and the
result for F), featured in [RS18]. The case of a medium-sized A (i.e. 1 < “%l =0(1))
has been placed into alternative (c) by Rudnev and Shkredov and into alternative
(b) by us, essentially losing the A¥ O U implication: this has been done because
the subgroup H of Kneser’s theorem [Kne53] can stifle the growth of A, in a way
that the Cauchy-Davenport inequality ([Caul3, Thm. VII] [Dav35], see [TV0G,
Thm. 5.4]) could not; asking for p large enough is innocuous in the latter, but not
in the former: see also §4.3 where we use it.

We could still use Alon’s bound [Alo86, (4.2)] on the number of lines in the
projective plane as done in [RS18], since it holds for F, as well: this would give

for example |7(A)| < %Cﬂm for |A] > @q (where the maximum of

Sl g located) and in general |m(A)| = O (%CBM‘) for [A] > (1 + €)g; then,

2(1+¢)

upon using Kneser’s theorem, one could either ask for p large enough (p > 100
in the first case, say, and p = Q.(1) in general) or classify separately the sets A
with large H (which should be possible, because having large H = Stab(4?2) is a
rather restrictive condition to satisfy), and an additional conclusion AF D U for
k = O.(1) would be reached. It would probably be interesting to explore more
deeply these medium-sized sets; however, for the purpose of obtaining a structural
result like Theorem 4.1.4 whose numerical details are of secondary relevance, we
deemed to be simpler and just as effective to reduce that case to alternative (b),
especially as the observation behind our ability to do so (Lemma 4.2.1) is very
elementary.

4.2 Number of directions in IFZ

In the present section we prove bounds about the number of directions determined
by sets of points in the plane Fg, which lead eventually to Theorem 4.1.3.

Let us start with the following simple statement: it does not concern Theo-
rem 4.1.3, but it will allow us in the next section to deal quickly with the sets A
whose size is slightly larger than q.

Lemma 4.2.1. Any set A C ]Fg with |A| > q spans all ¢+ 1 directions.

Proof. The result is immediate: by the pigeonhole principle, for any given direc-
tion, one of the ¢ parallel lines in IE% following that direction has to contain at
least two points of A. O
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As a complement to Lemma 4.2.1, the following theorem deals with the number
of directions spanned by sets of size at most q. As remarked before, a theorem of
the same nature appears already in [FST13], and it is proved very similarly using
the same techniques deriving from the study of lacunary polynomials.

Theorem 4.2.2. Let ¢ = p° be a prime power, let A C Fg with 1 < |A] < g,
and let D be the set of directions determined by A. Then either |D| =1 (and A
is contained in a line), |D| = ¢+ 1 (and A spans all directions) or there are two
integers 0 < ly <1y < e such that

Al -1
plr+1

|D| > + 2,

D<q—|A|+max{1 A|—1—<q—|A>max{o,|A|+ph—q—l}}_

ph -1

A little notational comment: if I; = 0 we consider the upper bound trivial (but
|A]+3

the lower bound becomes 5

for Fp).

Before we go to the proof, let us spend a few more words comparing this result
with the one in [FST13]: their bounds are written as |?|+—11 +2< D] < ":‘:11, for
some appropriately defined s,t. The lower bound is the same as the one presented
here, as ¢t and p'? are defined in the same way. The situation for the upper bound
is more interesting: we have s < t = p!2 < pl1, because the authors define s looking
at the multiplicities in H,(x) alone (see the proof below for details) instead of the
whole 27+ g, (x), which also gives a stronger geometric meaning to their s than to
our l1; however, our upper bound tends to be stronger when |A| is fairly close to ¢
and there is a gap between s and p'* (which can happen, as observed in [FST13)).

, which is quite strong, identical to Szényi’s bound

Proof. First of all, we can suppose oo € D. If this were not true, we could take
any d € D\ {0} (D is nonempty for |A| > 1, and D = {0} concludes the theorem)
and consider A’ made of points (a — db,b) for any (a,b) € A, which implies also

that |A’| = |A|: such a set would span directions given by
b —b _ 1
a —db —a+db  L=¢ —d’

from which it is clear that the new set of directions D’ is as large as D, since
equalities are preserved, and that moreover co € D’.
Define n > 0 such that |A| = ¢ — n. First, define the Rédei polynomial

Hy(z) = l:l(x—i—yai —b;) € Fylz,y],

i=1

where the product is among all the (a;,b;) € A: it is a polynomial of degree
q—n in two variables (some authors, like in [BBB199], define it as a homogeneous
polynomial in three variables, but by ensuring that co € D we do not need to do
$0). The usefulness of such polynomial lies in the fact that two points of A sitting
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on the same line with slope yq yield the same x + yga — b, so that a multiple root
in Hy,(z) reflects the presence of a line with multiple points, i.e. a secant of A,
and indicates that yg € D. We also define another function in two variables,

n

fy(@) =D (1) 05(F \ {yai — bi|(as, bi) € A", (4.2.1)

Jj=0

where ¢,;(.9) is the j-th elementary symmetric polynomial of the elements in the set
S; fy(x) is itself a polynomial in two variables (see [Sz696, Thm. 4] for a recursive
definition of f,(z)), in which the coefficient of ™"~/ has y-degree j: therefore we
can write

z? + gy(x) = Hy(x) fy(z) € Fylz, v,
where g, (z) is a polynomial in two variables of 2-degree < ¢ — 1.

Substituting y = yo for some yy € D, we observe that by definition the set
F,\{yoa; —b;|(a;,b;) € A} has n elements and that f,,(x) is simply the product of
the z—k; for all the k; € F; not counted in Hy (), 0 gy, (r) = —: this means that
the coefficients of 2771, 2972, ... 2Pl in g, (x) are polynomials of degree < ¢— |D|
in y that take value O for the ¢ —|D|+1 values yo € Fy\ D. Thus, these coefficients
are the zero polynomial; in other words, the z-degree of g,(x) is at most |D| — 1.

Working with z, y has allowed us to give a bound on the degree of g, (). From
now on, for the sake of simplicity we substitute one value y € D\ {c0} inside our
polynomials and drop the index, and we will work with only one variable; this is
possible unless D = {oo}, from which |D| = 1 and A is contained in a vertical line.

Call o the largest integer for which g(z) € F, [m”ZQ]: by the fact that any
r ~ P is an automorphism of F,, we have g(z) = (g(:c))pl2 for some g(x) €
F,[x] \ F4[zP]. Decompose x? + g(z) into its irreducible factors, and call I; the
largest integer for which p"* divides the multiplicity of each linear factor (hence
Iy > 13): 11,15 depend on our choice of y, so for our definition we suppose that we
have chosen a y that yields the smallest I;. We can write

24/p' +g(z) = (R(a:))pllilQN(J?%

where R(z) € F,[z] \ Fy[zP] is such that (R(:z:))pl1 is the divisor of 27 + g(z) made
of its linear factors (the fully reducible part of 27+ g(z)) and N(z) € Fy[x]\F,[2?]
is such that (N(av))pl2 is the divisor of 27 4+ g(x) made of its nonlinear factors.
Note that (N(:c))pl2 must be a divisor of f(z). If l; = e then 27 + g(z) = (x + ¢)?
for some c € F,, which means that all the points of A lie on a line of slope equal
to the y we have fixed, contradicting co € D: hence Iy <1 < e.

Call R*(z) the divisor of R(x) made of all the irreducible factors of R(z)
counted without multiplicity: R*(x) divides also ¢ — 2 by definition, so it divides
2?4+ g(z) — (2 —x) = g(x) + = # 0 (y € D prevents us from having g(z) = —z).
If an irreducible polynomial k;(z) divides another ko(x) with multiplicity m then
it divides k4 (x) with multiplicity m — 1, so

(R(z))”" "

TR | @ @) =@ # 0
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where the last inequality is true because §(x) & F4[2P]. From the reasoning above,
we obtain

e (R*(x)'%> (V@) | (a) +20 (@ @) ) £0,

and therefore ¢ = deg(z? + g(7)) < p'2(deg(g(z) + x) + deg §'(v)) + deg f(z); we
have already determined that deg(g(z) + x) < degg(x) < |D| — 1, and similarly
deg g'(x) < deii(w) -1< \1:;\12—1 — 1, whence from the definition of f(z) we get

S (CEL N FP
settling the lower bound.

Let us focus now on the upper bound. Fix a point (a,b) € A and take a slope
yo € Fy: the multiplicity of the linear factor x + yoa — b inside H(x) determines
how many points of A sit on the line defined by (a,b) and yo. We know that the
multiplicity of every linear factor in the whole H(z)f(x) is a multiple of p'* and
that it is at least 1 for this particular linear factor, since (a,b) sits on the line;
however, we need a way to keep under control the number of false positives that
come from the fully reducible part of f(x) (inexistent “ghost points” that make us
overcount the contribution of a single line to A, and thus undercount |D|). The
way to go is to bound the number of lines passing through (a,b) for which ghost
points exist.

Let fy(x) be as in (4.2.1), call it for simplicity f,(z) = Z;L:O 0y ;2" 7 where
the o, ; are polynomials in y of degree j. Assume that |D| < ¢+ 1: then there
will be a direction yg € F, \ D, as co € D. For this yo, Hy, () fy,(z) = 27 — x
and x + ypa — b has multiplicity 1 in it; moreover, it must come from our fixed
point (a,b), which means that it must divide H,,(z) and be coprime with f,, (z):
this fact implies that the two-variable linear polynomial x + ya — b cannot divide
fy(z). In other words, we cannot write

(" " i A ) (@ tya—b) =2 d oy a" T oy, (4.2.2)
for any choice of polynomials 7, ;; however, defining

i

Ty =Y (1) (ya—b) oy,

Jj=0

(here 0,0 = 1) we can ensure that the equality (4.2.2) works at least at the level
of the coefficients of z,z2,...,2" !, which means that we must have

n

> (=1 (ya—b)oyn_; #0, (4.2.3)

j=0

so as to violate (4.2.2) for the free coefficient.
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Every time fy,(z) has a  + y;a — b factor (or, geometrically speaking, every
time the line determined by (a,b) and y; has a ghost point), (4.2.2) is true for
y = y; though, and in particular the LHS of (4.2.3) is indeed 0: that expression is
a polynomial in y of degree n, so if there were n + 1 lines with ghost points (4.2.3)
would not be true, contradicting the fact that « + ya — b cannot divide f,(z) as
polynomials in two variables. Hence, at most n non-vertical lines through (a,b)
have ghost points.

If |D|—1 < n the upper bound stated in the theorem is already true, so suppose
that the opposite holds: then there is a non-vertical line through (a, b) whose slope
is in D with no ghosts. We can transform A as at the beginning of the proof to
make that slope oo, i.e. (a,b) lies on a vertical secant of A.

Each non-vertical line through (a,b) whose slope is in D has a multiple of p'*
among true points of A and ghost points (I; has been defined so as to make that
statement true for all slopes at the same time). On the ghost-free lines there are
at least p't — 1 true points besides (a, b), while on the ones with ghosts we can only
say that there are at least max{0, p!t — 1 —n} of them (as the z-degree of f,(z) is
n); finally, the vertical secant has at least p* points including (a,b), as we made
sure that it had no ghosts before the transformation. Combining all of this with
the bound on the number of lines with ghosts, and counting all the points of A,
we get

(ID] =1 =n)(p" — 1) + nmax{0,p" —1 —n} +p"* <qg—n.

As we remarked after the statement of the theorem, for I; = 0 there is no upper
bound. For I; > 0, the inequality above concludes the proof. O

Now that we have the lower bound provided by Theorem 4.2.2, we can proceed
with the proof of the first main theorem. We retain the same notation as in the
previous proof.

Proof of Thm. 4.1.3. Suppose that |D| € {1,¢ + 1} (otherwise the theorem is
already proved); fix a slope yp # oo and consider the polynomial R*(z) defined as
in the proof of Theorem 4.2.2. Let £ > 0 be small enough, and let ¢’ = p% — ¢ for
e even and ¢ = p%l for e odd.

If the degree of R*(z) is < ¢/, the set A must be contained in < ¢’ lines with
slope yo, which means that one of them (call it L) will have to contain > 4] points
of A; since A is not contained in one line there must be also a point of AZ outside
L, and each secant laid between this point and a point of A N L has a different

slope, so that |D| > ‘qi,‘: for e even it means [D| > 14 while for e odd it means
D] > Al

Va’
p2

If R*(x) has degree > ¢/, then by the fact that (R*(z))?" divides 29 + g(z) we
must have p2 < pt < %: regardless of whether e is even or odd, p'» < pl%] since

I is an integer. Using the lower bound in Theorem 4.2.2 (which holds for our A),
we have

A1, 14 4] 1

> — — .
Pl 5 Pl T2 T BT r 1) Pl 11

98



For e even, the bound above implies |D| > %‘, while for e odd we can obtain

|D| > A3 O
pT 41

4.3 Growth in Aff(F,)

We move now to the proof of Theorem 4.1.4. We follow closely the proof of the
analogous result in [RS18] for F,,: the only difference is that we use Theorem 4.1.3
instead of Sz6nyi’s bound, and that as we have already said we absorb the case of
A of medium size into alternative (b), without resorting to Alon’s bound to fall
into (c).

We remind the reader of two well-known and by now classical results. First,
an inequality, deducible in multiple ways from bounds by Ruzsa (see for instance
[Ruz96)), states that for any group G and any A = A~! C G the equality |A3| =
C|A| implies |A¥| < C¥=2|A| for any k > 4. Second, Kneser’s theorem [Kne53]
tells us that, given any abelian G and any A, B C G, there is a proper subgroup
H with |A + B| > min{|G|, |A| + |B| — |H|}.

Theorem 4.1.3 and Lemma 4.2.1 will take care of small and medium |A|, re-
spectively. For |A| large we will instead make use of the following bound, due to
Vinh [Vinll, Thm. 3]: the statement therein says actually something weaker, but
it is based on a well-known graph-theoretic result [AS16, Cor. 9.2.5] that lets us
reformulate as follows (as [RS18] does for Fp).

Proposition 4.3.1. Let g be a prime power, let P be a set of points in IE% and let
L be a set of lines in IF(QJ; define I(P, L) as the set of pairs (p,1) € Px L s.t. p €.

Then \PHL|
]1<P,L> _ q\ < JaPITI

Let us also give here separately a lemma that will provide the upper bounds
on 7(A) in Theorem 4.1.4(b)-(c).

Lemma 4.3.2. For any g = (8 117) € Aff(Fy) \ {Id}, define the map

0g  AF(F,) — Aff(F,),  @g(h) =hgh™ .
Then,
(a) any point in the image of @4 has as preimage a line of slope ﬁ,

|AR+2)

(b) if A= A"t C Aff(F,) and g € A* then |7(A)| < eV

Proof. (a) This is just an easy computation: as

ros\(a b\ [(rt —r7ls\ _ [a br+( 1—a
0 1/\0 1 0 1 —\0
two elements are in the preimage of a single point if and only if br + (1 — a)s =

br' + (1 — a)s’, from which all pairs of elements with j,ff = a—ﬁl ust be sent
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to the same point by ¢, (we allow a = 1 and a slope equal to co, but we avoid
(a,b) = (1,0) since g # 1d).

(b) On one hand we have |[Ap,(A)g~!| = |Apy(A)] < |AFT3|, while on the
other hand any element of Ap,(A)g~" is of the form ajasga; 'g~' € AU: since

G D6 D=6 ")

pairs in A x U with either distinct « or with the same z,y but distinct z will all
give different products in AU; hence we can select one element of A for each value
of = (therefore |7(A)| of them) and all the asgay ‘g™ (|o4(A)| of them, they are
all multiplied by the same g~!) and obtain the other side of the bound, namely

[Apg(A)g~| = |m(A)l[pg(A)]. O
With these tools at our disposal, we can proceed with the proof.

Proof of Thm. 4.1.4. Let us start with the case of A large: impose |A| > ¢q for a
constant ¢ > 1 to be chosen later. o

We use the bound from Proposition 4.3.1 with P = A and L = L(A) (the
set of lines that are not determined by A), interpreted as a lower bound on the

expression inside the absolute value, and combine it with the trivial observation
that T(A, L(A)) < |L(A)| by the definition of L(A): this yields

‘M|§q2(c,1)2 e |L(A)| > ¢+ ¢ (1_@1)2)'

14,/
Ife>1+4—5r (ore>3+ 2v/2, which is an upper bound for all primes p), by

1
the pigeonhole principle there must exist > 4 {1+ % non-vertical lines of L(A)

parallel to each other; call d the direction defined by such lines. Given any two
elements of A sitting on one of these lines, we have

(a1 b1 -t a9 bg o agal_l bgafl—blafl . (I/ b/
9=\o 1 0o 1)-\ o 1 “\o 1)

with a,b—il = 22%1’1 = d, so by Lemma 4.3.2(a) there are > (1 + l) > 2 elements
2—ai1 p

in cspg(A); by Lemma 4.3.2(b) and Ruzsa’s inequality, this implies that |7(A)| <

% < %C3|A|. Moreover, the unipotent subgroup U is isomorphic to [F, as an

additive group, so that its largest proper subgroup is of size %; therefore, since

@g(A)g™t C AN U has [py(A)g™!| > 4 (1 + %), by Kneser’s theorem we must
have
A% D AgAAgTI A D (0g(A)g™ ) (g(A)g™) " 21,

and we fall into case (c) of the theorem.
Let us deal now with A of medium size: suppose ¢ < |A| < cq, so that by
Lemma 4.2.1 every direction is determined by some pair of points of A. Partition
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A%\ {Id} into q + 1 subsets, collecting into each one of them elements having the
same value for % € F, U {oo}. Every two distinct a;,as € A yield an element

al_lag € A? that is located inside the part corresponding to the slope of the line

they define: by the pigeonhole principle there will be a part (identifiable with some
2

d € FyU{oo}) with at most ‘24‘51 elements, and therefore every line of L(A) in the

. . AZ|—1 o - -
direction d must have at most qJ‘rl +1 elements of A on it, since aj 'a; # a; a;

for a; # a;. We have thus given a bound on the number of points of A sent to the
same element by the map ¢, for some g € A% with a—ﬁl = d, which translates to

(¢+DIAl Al

A)| > :
|<Pg( )|— |A2|+q CC—FI’

proceeding as before, by Lemma 4.3.2(b) and Ruzsa’s inequality we conclude that
|T(A)| < (Cc+1)C®% < (44 2v/2)C* and we reach case (b) of the theorem.

For A small (i.e. 1 < |A] < q) we repeat essentially what we did for A medium,
but instead of |D| = ¢ + 1 we use the bounds in Theorem 4.1.3 on the number of
directions |D| spanned by A. We obtain

AP A
CIA =D+ 4]~ Cg+1

lpg(A)] >

where ¢’ = /g for e even and ¢’ = p“T +1 for e odd, from which we get |m(A)] <
(pt3) + 2)C* and end up in case (b). Finally, we need to deal with the other
alternative in Theorem 4.1.3, namely that A may be contained in one line: in
other words, the elements of A are either all of the form (a,ad + b) for some
b,d € Fy, through the identification of Aff(F,) with Fy x Iy, or all contained in
U. In the latter alternative A C U implies |7 (A)| = 1, yielding (b); in the former,
since A = A~ and (a,ad + b)~! = (a7, —a~'b — d), we must have b = —d and
then A C Stab(—d). O

4.4 Concluding remarks

Theorem 4.1.4, as addressed several times, gives a structural result on Aff(F,);
more than that, it shows that the techniques used for the case of I, in [RS18] can
be generalized to arbitrary finite fields. This is not a new concept, as the sum-
product theorem has also followed an analogous trajectory, although the same
cannot be said of the proofs about the affine group specifically. There is value in
such feats, as it has often been the case that results for I, have followed the I,
case once the machinery had been understood and streamlined; as commented on
in §1.4, in some situations it is yet an ongoing process, for example with [GH14]
still missing an equally strong counterpart in F, (where weakened generalizations
are included however in [BGT12] and [PS14]).

It is the hope of the author that the present result provides another small
tessera in the mosaic of growth in matrix groups. The differences between The-
orem 4.1.2 and Theorem 4.1.4 seem also to reflect the general divergence point
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between prime fields and general finite fields: the obstacle presented by /g is in
substance the same as providing that we avoid proper subfields, for its origin lies
in the complications of the Frobenius map = — zP in the course of the proof of
Theorem 4.2.2. In this sense, the result also works as a reaffirmation of deeply
rooted principles that are likely to resurface in future research on similar cases,
with matrix groups having larger rank and a more complicated structure without
close access to the perks of a well-understood geometric structure or sum-product
phenomena.

In particular, this refers to the example (immediately following Theorem 4.1.4)
of a set A whose growth is stifled by a subfield. The question of whether the exam-
ple we provided is essentially the only one, in line with the structure predictions
of the Helfgott-Lindenstrauss conjecture [Hell5, Conj. 1], is not answered here; we
thank H. Helfgott and M. Tointon for independently raising this question. How-
ever, the methods involved in the proof of Theorem 4.1.4 seem to yield themselves
to be employed in such a task: having a power of p as a factor in the first half
of Theorem 4.1.4(b) translates into a condition on the polynomials describing the
points of A as being polynomials in some power acpl, instead of simply polynomi-
als in . This in turn might provide enough information on the arrangement of
the points of A in the affine plane (arrangement that defines H,(x), essentially)
to say that A must necessarily be “stuck in a subfield”. This avenue of inquiry
would show a quantitative version of the aforementioned conjecture for the case
of Aff(F,), and it is worth exploring.
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Chapter 5

Diameter bounds for
products of finite simple
groups

The content of this chapter is essentially taken from [Donl19al.

As addressed in §1, an important area of research in finite group theory in the
last decades has been the production of upper bounds for the diameter of Cayley
graphs of such groups. We have mentioned Babai’s conjecture (Conjecture 1.3.1),
asking for diameter bounds polylogarithmic in |G| for finite simple groups, and we
observed that it is still open, despite great progress towards a solution both for
alternating groups and for groups of Lie type.

A more modest question is that of producing bounds for the diameter of direct
products of finite simple groups, depending on the diameter of their factors. This
is not an idle question, for bounds of this sort have been used more than once
as intermediate steps towards the proof of bounds for simple groups themselves:
Babai and Seress have done so in [BS92, Lemma 5.4], as well as Helfgott more than
two decades later in [Hell8, Lemma 4.13]. Here we give a result that improves on
both, in ways that we are going now to discuss.

5.1 Main theorem

The following is our main theorem of the chapter. The bounds presented therein
feature explicit constants, unlike in [Hell8], since it does not take any particular
effort to keep track of computations.

Theorem 5.1.1. Let G = [[;_, T;, where the T; are finite simple groups.

(a) If the T; are all abelian (say G = [];_,(Z/p;Z)% , where the p; are distinct
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primes and e; > 1), then

_ 2 : -
diam(G) < gmax{eﬂl <J< S}j];[lpj~

(b) If the T; are all non-abelian, call d = max{diam(T;)|1 < i < n}; then

1
diam(G) < 196 5 max{Cy4,Cr,Cs}(4d + 1) +d,

243
where
max {3, L%J} if there are alternating groups among the T;
Cy= and where m is their mazimum degree,
0 if there are no alternating groups among the T},
8(5r 4+ 7) if there are groups of Lie type among the T;
Crp = and where r is their mazimum untwisted rank,

0 if there are no groups of Lie type among the Tj,
c {6 if there are sporadic or Tits groups among the T,
g =

0 if there are no sporadic or Tits groups among the T;.

(c¢) If there are abelian and non-abelian T;, write G = G4 X Gya, where Gy
collects the abelian factors and G a collects the non-abelian ones; then

diam(G) <dp+4dna,
where dy = diam(G4),dnya = diam(Gya).

Needless to say, the subdivision of cases that occurs in the theorem descends
from CFSG (Theorem 1.2.4), which we take for granted and do not bother men-
tioning again in the course of the proof.

The result of part (a) is known and elementary: see [BS92, Lemma 5.2], where
the constant is marginally worse only due to the fact that sets of generators are not
required to be symmetric (cfr. also [Hell8, Lemma 4.14], which treats the case of
G = (Z/pZ)*© under this assumption). Part (c) is quite natural, given the different
(in some sense, opposite) behaviour of abelian and non-abelian factors, as it can
be readily observed in its short proof.

Part (b) is where the novelty of the result resides. Dependence on the maxi-
mum of the diameter of the components, instead of dependence on their product
as Schreier’s lemma (see Lemma 5.2.1) would naturally give us, was already es-
tablished in [BS92, Lemma 5.4]: in that case, the diameter was bounded as O(d?),
where the dependence of the constant on n was polynomial as in our statement.
This result was improved in [Hell8, Lemma 4.13] to O(d), but only in the case
of alternating groups: this was done in part to fix a mistake in the use of the
previously available result in Babai-Seress, which is why only alternating groups
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were considered, as permutation subgroups were the sole concern in both papers; a
suggestion by Pyber, reported in Helfgott’s paper, points at the results by Liebeck
and Shalev [LS01] as a way to prove a bound of O(d) for a product of arbitrary
non-abelian finite simple groups.

Indeed, the general approach that we follow in our proof owes its validity to
[LS01, Thm. 1.6], although we do not explicitly use the statement of that theorem:
rather, we closely follow the proof of [Hell8, Lemma 4.13] and show that the same
reasoning applies to groups of Lie type as well. The way that the lemma is related
to Liebeck-Shalev is through the use of the fact that every element in Alt(m) is
a commutator ([Hell8, Lemma 4.12], first proved in [Mil99, Thm. I]), which is
essentially [LS01, Thm. 1.6] with w = zyx~'y~! and a c that is just equal to 1 for
Alt(m); the same can be said for all non-abelian finite simple groups (i.e., ¢ = 1
in general) since Ore’s conjecture [Ore51] was established to be true in [LOST10],
a fact yet unproved at the time of [LSO01].

5.2 Preliminaries

Before we turn to the proof of Theorem 5.1.1, we will need a certain number of
group-theoretic results.

Lemma 5.2.1 (Schreier’s lemma). Let G be a finite group, let N <G, and let S
be a set of generators of G with e € S = S™'. Then S?*1NN generates N, where
d = diam(G/N).

Proof. This is a standard result dating back to Schreier [Sch27], written in various
fashions across the literature according to the needs of the user; let us prove here
the present version (we are going to see another one in Lemma 6.2.5).

Calling 7 : G — G/N the natural projection, by definition we have 7(.59)
G/N; this equality means that S? contains at least one representative for each
coset gN in G. For any coset gN, choose a representative 7(g) € S¢. Then, for
any h € N and any way to write h as a product of elements s; € S, we have

d:

h=518y...5, =
= (s17(51)7Y) - (1(51)827(7(51)82) 1) - oo - (7(T(7(. . ) Sp—2)Sk_1)Sk)-
Each element of the form 7(z)s;7(7(x)s;)~! is contained in S??*! N N, so the

same can be said about the last element of the form 7(z)sy (since h itself is in N);
therefore 5241 N N is a generating set of V. O

Proposition 5.2.2 (Ore’s conjecture). Let G be a finite non-abelian simple group.
Then, for any g € G, there exist g1,92 € G such that g = [g1, g2]-

Proof. See [LOST10], for references to previously known results and for the proof
of the final case. O

Notice that, for any finite non-abelian simple group G, any nontrivial conjugacy
class C' must generate the whole G (because (C') would be a normal subgroup).
This observation justifies the following definition.
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Definition 5.2.3. Let G be a finite non-abelian simple group. The conjugacy
diameter cd(G) is the smallest m such that (CUC~tU{e})™ = G for all nontrivial
conjugacy classes C'.

We will need to have bounds for cd(G).
Proposition 5.2.4. Let G be a finite non-abelian simple group.
(a) If G is an alternating group of degree m, then c¢d(G) < max {3, {%J }
(b) If G is a group of Lie type of untwisted rank r, then cd(G) < 8(5r + 7).
(c) If G is a sporadic group or the Tits group, then cd(G) < 6.

Proof. First of all, cd(G) is trivially bounded by definition by the covering number
of G, which is defined as cn(G) = min{m|vC # {e}(C™ = G)}; therefore it suffices
to give bounds for cn(G).

For (a), see [Dvi73, Thm. 9.1] (our specific result is credited therein to a
manuscript by J. Stavi). For (b), see [LL98, Thm. 1]. To prove (c), the spo-
radic groups all satisfy cn(G) < 6: this inequality can be checked directly from
[Zis89, Table 1]; if G = 2F,(2)’ is the Tits group, we can show the same inequality
using [Zis89, Lemma 3] and the character values reported in the ATLAS of Finite
Groups [CCNT85]. O

Let us also perform a side computation separately from the proof of the main
theorem, so as not to bog down the exposition there.

Lemma 5.2.5. Letn>1. Then

n—1
. 196
4 [log, i] < 3.
Zi:l 243"

Proof. Call m = [logy(n — 1)], and write n — 1 = 2m"1 4+ [, where 1 <[ < 2m~1;
[logyi] = j for all i € (2971,27], hence we can rewrite the sum in the statement
as

n—1 m—1
: . 1 18m—1
gNog2il — 1 412971 4y = — 4
;:1 +) - 5+

4m (210g2("—1) _ 2m—1) —
< 27
3 3 3 / 3 .
-2 4m210g2(n71) _2gm 2 4 92m' [ _ Zgm —1)3
7t 72 =gt 72" ) (=15

where m/ = m —logy(n — 1) € [0,1). We have % (1 — 2z) < 1% for x € [1,2),
196

and 2 < 188(3n? — 3n+ 1) for all n > 1, so the result is proved.

5.3 Proof of the main theorem

Proof of Thm. 5.1.1(a). Let G = (Z/p1Z)** x (Z/p2Z)** % ... x (Z/psZ)*, with
primes p; < ps < ... < ps; we have

G=A1A,.. A, (5.3.1)
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(we are using multiplicative notation even if G is abelian) where the A; are any
sets such that

A =(Z/piZ)" Ay =(0)5 (V] <) (5.3.2)

where A; ; is the projection of A; to the j-th component of G.

Let S be a set of generators of G with e € § = S~ {tPr-Pi-1|t € S} C
SP1-Pi-1 hag elements that are all 0 on the first ¢ — 1 components of G and that
still generate the i-th one since (p1...p;—1,p;) = 1; from now on, let us focus
exclusively on the i-th component. (Z/p;Z)¢ is also a vector space over Z/p;Z,
so there must be e; generators that also form a basis: any element of the space
can be written as a linear combination of those generators with coefficients in
[— 5], |5 |], which corresponds to a word of length < e; | B |; thus, each set A;
with the properties in (5.3.2) is covered in e; | 8| p1...pi—1 steps. This fact and
(5.3.1) imply that G has diameter bounded by

S

i—1 s s s
> (e L%JHPJ‘ f%max{eﬂléjﬁs}npa"z 1) 639
j=1

i=1 j=1 i=1 \j=i+1 pj

The sum in (5.3.3) is maximized when each p; is the j-th prime number: for s =1
the sum is 1 and for s = 2 it is bounded by %; for s > 3, we use p; > 5 and p; > 3
for all 1 < j < s, so that the sum is bounded by 1+ 21 = 3. The result
follows. ’ O

Proof of Thm. 5.1.1(b). Calling G; = [[]_, T;, we have natural projections n; :
G =G, — G and pj, 4, : G, — Tj, for any ji > jo. Asin (5.3.1), we write G as
a product of subsets A; with p,, ;(4;) = T; and p, ;j(4;) = {e} for all j < 4, and
our aim is to cover each one of them.

Suppose that we have two subsets X1, Xy of G for which p,, ;(X1) = pn,i(X2) =
T; for some fixed i € {1,...,n} and that have p, ;, (X1) = {e} = pn,j,(X2) for all
j1 € I, ja € I, where Iy, I5 are two subsets of indices in {1,...,n}\ {i}: then,
the set X = {[z1,2z2]|z1 € X1,22 € Xo} has p, ;(X) = T; by Proposition 5.2.2
(Ore’s conjecture) and p, ;(X) = {e} for all j € I; UI,. Now consider the set
of indices I = {1,...,i — 1}: if [I| > 1 we can partition I into two parts of size

{%‘J , P—Q—‘, then partition each part I’ with |I'| > 1 into two new parts again of
|'] 1]
2 || 2
size 1; the tree of partitions that we constructed to reach this subdivision will
have exactly [log, |I|] layers. Notice that, given any two parts I, I inside the
tree, if we have two subsets X7, X2 (as described before) that are covered by a
certain S, the resulting set X will be covered by 5%¢: this observation, together
with the information about the layers, tells us that if we can cover sets X, ; with
pni(Xi ;) = T; and p, ;(X; ;) = {e} in a steps (for a fixed ¢ > 1 and all j < 7)
then we are able to cover a set A; defined as at the beginning of the proof in
4Mog> (=11 steps as well.

Let us start now with a generating set S with e € S = S~! and fix two
indices i > j: m;(S) is a set of generators for G;, and the set 7;(5)??*! contains

size L —‘, and continue until we reach a subdivision where all sets have
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generators for the whole 77 X ... x Tj_1 x {e} x Tj41 X ... x T; = G Nker(p; ;)
by Lemma 5.2.1 (Schreier’s lemma), where d is as in the statement. In particular,
there is an element x € 524! with p, ;(z) # e and p, ;(z) = e; by hypothesis
pn.i(S?) = T;, which means that there is aset S’ = {yaxy~ !y € S4}U{yz~ty~ |y €
ST} U {e} C S+ with p,;(S") = CUC U {e} and p, ;(S’) = {e}, where C
is the conjugacy class of p, ;(z). By Proposition 5.2.4, p,,,J(S’max{?”L%J}) =T
if T, = Alt(m;), pn,i(S'S(‘E’”*?)) = T; if T; is of Lie type of untwisted rank r;,
and pp, ;(S'%) = T; otherwise; in all three cases, the projection to T is still {e},
therefore we managed to cover a set X; ; of the aforementioned form.

A set Aj is reached in d steps, hence the final count for the whole G following
the reasoning above is

diam(G) < d+ Y _ 4le20"Dg;(4d + 1),

=2

where z; is either max {3, L%J }, 8(5r; + 7) or 6, accordingly. The result follows
by Lemma 5.2.5. O

A note on the connection between the proof given above and [LS01]. As men-
tioned before, Pyber pointed at [LS01] as a way to prove linear dependence on d
for products of arbitrary non-abelian finite simple groups. In particular, [LS01,
Thm. 1.6] seems to fit the bill: it states that for any word w that is not a law in a
finite simple group T there is ¢,, € N, depending on w but not on 7', such that any
element of T can be written as a product of at most c¢,, values of w. We use this
property, in disguise, when we want to pass from two subsets being indentically e
at indices I, I» and filling an entire component T; to a third subset that also fills
the same component and is e for the whole I; U I5: the creation of the new subset
is made possible by taking c,, values of a word w, so that T; remains filled, where
w has two distinct letters z1, xo and presents the same number of z; and a:;l for
i € {1,2}, so that when any one z; is equal to e on a given factor of the product
G the result is e on that factor; in our case, w was the shortest nontrivial word
with these characteristics, namely the commutator [z1,z2] = xlewl_le_ ! (not a
law for any non-abelian group), and ¢,, = 1 by Ore’s conjecture. In this sense
w = [x1,x2] is also computationally the best word we can expect, for it yields the
lowest possible value of |w]|c,,, the 4 that we find in Lemma 5.2.5.

Proof of Thm. 5.1.1(c¢). Define the two projections w4, 74 in the obvious way;
for any generating set S of G, by definition there are a subset X4 C S94 with
7A(X4) = G4 and a subset Xy4 C S94 with mya(Xya) = Gna, and then

G = Xa[Xna, Xna] C Glatidva

again by the fact that [T,T] = T for non-abelian finite simple groups by Ore’s
conjecture and [T, T] = {e} for abelian groups (here with [X, X| we mean the set
of commutators, and not the commutator subgroup). O
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5.4 Concluding remarks

One may wonder how tight the inequalities in Theorem 5.1.1 are. The results
are essentially in line with what is generally expected from the behaviour of the
diameter of finite groups. The abelian case is tight up to constant: for the group
G(z) = [],<, Z/pZ (nontrivial for x > 2) one generator s = (1,1,...,1) is enough,
and then the diameter of Cay(G(z),{s,s',e}) is $|G(x)|; the fact that abelian
groups behave in the worst possible way, i.e. linearly in the size of the group,
should not be a surprise for anyone (this has been discussed in §1.1 as well).

The non-abelian bound of case (b) also matches what is anticipated in general.
Babai’s conjecture posits a polylogarithmic bound on the diameter of finite simple
groups: the natural extension to direct products of such groups would suggest a
bound of the form n*d, which is exactly what we have obtained. Case (c) also
fits into the same idea, as a product |G| = |Ga||Gna| becomes a sum of the
corresponding diameters.

The dependence on d in Theorem 5.1.1(b) is almost best possible by definition
(we cannot drop the “almost”, as m,r are not independent from d). It would
be more interesting to understand which power of n is the correct one: here we
have proved Oy, ,.4(n?), and we can quickly show that the bound is Q,, . 4(n), as
illustrated in the following example.

Example 5.4.1. If G = (Alt(m))" then diam(G) = Q(m?n). We prove it for
m > 5 odd and n even, but the proof is analogous for the general case.

Consider the two permutations 0 = (123 ... m)and 7= (123 ... m —2);
they generate Alt(m), and the elements

50 = (U,O’,...,O’,O’),
s1=(r,0,...,0,0),
s9 = (0,7,...,0,0),
Sn = (0,0,...,0,T)

generate G. Let S = {e} U {Si,Si_l}OSignt to prove the lower bound on the
diameter of G, we construct a function f : G — N such that there are two elements
91,92 € G with | f(g1) — f(g2)| large and such that |f(g) — f(gs)| is small for any
g € G,s € S; this is a known technique to prove lower bounds for the diameter of
Sym(m), as shown for instance in [Tanll, Prop. 3.6].

Call ¢(g,1,7) = (9(4))(j) the image of j € {1,...,m} under the i-th component
of g € G, for 1 <1i < n; define

m n

f(g) = ZZHC(Q’Z+ laj) _C(g7ZaJ)I|Z/m27

j=1i=1

where ||a||z/mz = min{a,m —a} (in the case i = n, c(g,n+1,j) means c(g,1,7)).
First, f(e) = 0; also, if we call e,, the identity element in Alt(m) and n =
(1 mT“) (2 mT”) (mTfl m— 1), for g € G that has e, at all odd components
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and 7 at all even ones we have f(g) = %(m —1)2n. Finally, notice that o simply
adds 1 modulo m to all the elements of {1,...,m}, so that f(g) = f(gs='), while 7
is defined so that it adds 1 for m — 3 elements, adds 3 (modulo m) for one element
and fixes two elements, which means that |f(g) — f(gs')| < 10; these facts taken
together imply that diam(G, S) > 55(m — 1)?n.

The correct (or even expected) order of magnitude for a bound of the form
diam(G) = O, -(n*d) for a generic product G is not known to the author, besides
knowing that 1 < k < 3 by Theorem 5.1.1 and Example 5.4.1.
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Chapter 6

Towards a CFSG-free
diameter bound for Alt(n)

As discussed at length in §1.3, Babai’s conjecture (Conjecture 1.3.1) is an im-
portant open problem in the context of finite group theory. Because of CFSG
(Theorem 1.2.4), we know that we need only to treat the two cases of groups of
Lie type and of alternating groups, and in fact most proofs to date produce results
in only one of the two classes.

The strongest known result for the alternating case is (1.3.4), which was proved
by Helfgott and Seress [HS14]: it was a big improvement over the previous best
bound (1.3.1), due to Babai and Seress [BS88], and is quite close to the actual order
of magnitude that Babai’s conjecture anticipates. Later, Helfgott [Hell8] gave a
proof of slightly less tight bound for (1.3.4) (with (loglogn)? in the exponent
instead of loglogn, see (6.1.1)) that made use of a weakened product theorem
(like Theorem 1.3.2), so as to provide a more general framework for the problem
and shrink the distance between proofs for permutation subgroups and proofs for
groups of Lie type; on the significance and limitations of product theorems, see
again §1.3.

Both [HS14] and [Hel18] rely in some way on CFSG: as a matter of fact they are
both based at their core on the classification of primitive permutation subgroups
given here as Theorem 1.2.5, in primis due to Cameron [Cam81] and refined later by
Liebeck [Lie84] and Maréti [Mar02], which descends from CFSG and the O’Nan-
Scott theorem. Removing the dependence on CFSG from (1.3.4) or analogous
results would be in the words of Helfgott “another worthwhile goal” [Hell8, §1].

Our aim in this chapter will be to walk at least part of the way towards that
goal: modulo an unproven assumption (Conjecture 6.3.4), we will be giving a
CFSG-free proof of a diameter bound for Alt(n), and in fact for all transitive
subgroups of Sym(n), which is not as strong as the one given by Helfgott and Seress
but is a decisive improvement on the CFSG-free bound due to Babai and Seress;
the main result is Theorem 6.3.6. To do so, we are going to make use of a tool that
has not been adopted before in the context of Babai’s conjecture, namely Babai’s
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quasipolynomial GIP algorithm, as already foreshadowed in §1.6: in particular,
the analysis we have performed in §3 will be instrumental in accomplishing what
we want; we discuss the strategy behind it in §6.1, together with overviewing what
is needed from [Hell8] to understand the context of the already known result that
relies on CFSG.

6.1 Background and strategy

Helfgott’s result [Hell8, Thm. 6.1] on the diameter of Alt(n) is the following: if
G = Alt(n), Sym(n) then

diam(G) < Cos" nlloglogn)?), (6.1.1)

To prove the bound above, he shows that a sort of product theorem also holds
in the context of permutation groups. We have seen that product theorems, like
Theorem 1.3.2, are central to proofs in the Lie type case, and that a statement
as strong as that cannot hold for Alt(n): there are specific counterexamples in
[Spil2, §4] and [PPSS12, Thm. 17]. However, the weakened version below is still
true (for the meaning of 3-transitive, see Definition 3.1.1).

Theorem 6.1.1 ([Hell8], Theorem 1.4). Let G < Sym(n) be 3-transitive, and let
A be a set of generators of G withze € A= A"'. Then there are absolute constants
C,k > 0 such that, if |A| > n€1°8" " then at least one of the following alternatives
holds:

(a) |47°) > |A] R

(b) there is a transitive G' < Sym(n') with n’ < n such that diam(Cay(G, A)) <
nCdiam(G"), and either ' < e~ 1on or G’ # Sym(n’), Alt(n/).

Theorem 6.1.1 still qualifies as a sort of product theorem, in the sense that after
as many instances as possible of growth of |A| in case (a), like in Theorem 1.3.2(a),
we reach in case (b) a bound on the diameter of the Cayley graph of G and the
final power of A, which was neater for Theorem 1.3.2(b) (it was 3) whereas now
it sparks a recursion process. In this sense, Theorem 6.1.1 is part of an effort to
close the gap between the Lie type proofs and the alternating proofs.

What is important for us, though, is that Theorem 6.1.1 implies (6.1.1) via
(1.3.3) (which is [Hell8, Prop. 4.15], and is part of the aforementioned recursion
process), and that the part of the proof of (6.1.1) that depends on CFSG is con-
tained solely in (1.3.3), whereas Theorem 6.1.1 itself is CFSG-free. Therefore,
what we need is to show something resembling (1.3.3) without the help of CFSG,
and then we can conclude in a way that is not different from what has already
appeared in [Hell8]; the end of the proof of Theorem 6.3.6 will proceed exactly
along these lines.

As for the strategy leading to that point, it is as follows. An intermediate
result in Helfgott’s proof, i.e. [Hell8, Prop. 4.6], produces a nicely shaped chain of
normal subgroups necessary to reach the conclusion (1.3.3). Let us write it down
for future reference.
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Proposition 6.1.2. Let G < Sym(n) be transitive. Then there is a composition
series {e} = Hy << Hy < ... <1 Hy = G and a partition {Cy,Cs} of the set of
composition factors H;/H;_1 with the following properties:

(a) if H;/H;—1 € Cy then H;/H;_1 ~ Mf for some M; simple and k; < 2n;
() Ma.jm, ecy 1Hi/Hima| = nO02™);

(c) if Hi/H;_1 € Cy then H;/H;_1 ~ Alt(m;)* for some m; > 5 and k; < 2n;
(d) HHi/Hi,leCQ m; <n, and each m; < § unless G is a giant;

(e) £ =0O(logn).

We aim to replace this intermediate result with a CFSG-free analogue that
would prove a counterpart of (1.3.3). Cameron’s structure theorem (Theorem 1.2.5)
is the backbone of the proof of [Hell8, Prop. 4.6], as it breaks down permutation
groups into pieces that are either small or alternating (represented here by the fac-
tors in Cy and Cs respectively) and allows us to construct the chain: a CFSG-free
structure theorem that albeit weaker is still capable of breaking down permutation
groups into small and alternating pieces would be a good candidate for being the
backbone of our own result. We find such a candidate in Theorem 3.2.1, which is
based on Babai’s algorithm for the string isomorphism problem (SIP) both in its
CFSG and in its CFSG-free version.

We have discussed the structure of the algorithm both in §1.6 and in §3, but
let us recall its salient points. Babai [Babl6a] has produced an algorithm that
describes in quasipolynomial time the set Isog(x,y) of all permutations in G that
send the string x to the string y: this algorithm is dependent on CFSG, in that
it uses Cameron as a crossroad to pass from the original problem to a collection
of subproblems with a smaller or more structured GG. A slightly modified CFSG-
free version of the same algorithm has been produced as well, a work started by
Babai [Babl16a, §13.1] and concluded by Pyber [Pyb16]: this new version avoids
the use of Cameron, but broadly speaking retains the same idea of a “crossroad
through structure theorem” using a result by Pyber [Pyb93, Thm. 3.15] and the
Split-or-Johnson routine of the original algorithm [Babl6a, §7].

It is possible to take a general permutation group G and make it pass through
Babai’s algorithm: after all, as observed after Definition 3.3.1, Isog(x,y) is none
other than G N Ho where H is a product of symmetric groups (one for each
distinct letter of x) and o is any one permutation sending x to y; this means that
we can choose xg to be a constant string (equivalently, choose H to be the whole
symmetric group) and we can obtain G = Autg(xg) = Isog(xg,Xo) as a result.
Of course from the standpoint of the string isomorphism algorithm this process is
utterly useless, since xg is trivial and the algorithm outputs G having been given
G as input; nevertheless, the algorithm is still making G pass through the whole
process of reducing it into smaller subgroups, identifying alternating factor, etc...:
this is exactly what we want, i.e. finding structure inside GG, and the modifications
by Babai and Pyber allow us to do precisely that without resorting to CFSG.
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The key observation is that Babai’s algorithm takes only quasipolynomial time
in n, which implies that the information that we retrieve about the structure
of the group is also simple enough. For example, the number of floors of the
structure tree with which we are going to replace the chain in [Hell8, Prop. 4.6]
(see Proposition 6.3.1) will be polylogarithmic too.

Remark 6.1.3. In using Babai’s algorithm to determine the structure of a group
G < Sym(n), i.e. determine G = Isog(xg,X0) with xg = o™, we always reduce to
subproblems that also involve only strings of the form x{, = o™’ In fact, the only
manipulations of the strings themselves that occur in the algorithm in §3.5 are
restrictions x — x| and preimages x x”il, both of which do not change the
property of being a constant string. Hence, all subproblems descending from the
original problem on G are also problems on some G’, and not on a more general
coset G' N H'o' with H' < Sym(n'); in other words, in the language and notation
of Theorem 3.2.1, since the first H is Sym(n), all intermediate H' are Sym(n') and
the final atoms themselves are Alt(n').

In truth, this does not mean that we never use nonconstant strings in Babai’s
algorithm, even when starting with xy constant: some routines feature auxiliary
strings made of different letters, such as the “glauque” letter in [Hell9b, §6.1.2],
but they are used only to gather structural information and the actual xy does
not reduce to them.

There are of course some important disadvantages in adopting this new path
towards a reduction like in (1.3.3): they are going to be due mainly to the fact
that the subgroups involved in the descent process are not necessarily normal, as
they were in the situation where Cameron’s theorem was a viable route. We will
discuss them later in more depth; for now we limit ourselves to observe that the
fact that Theorem 6.3.6 has a weaker final bound and depends on Conjecture 6.3.4
is exactly what we have to pay for this weakening of the intermediate result.

6.2 Tools

Let us start with a couple of easy lemmas, describing the structure of Alt(n).
Lemma 6.2.1. The group Alt(n) is generated by the set of 3-cycles.

Proof. This is elementary. Any element of Alt(n) is the product of an even number
of transpositions 7;, or equivalently a product of 79;_172; = (ab)(cd): if b = ¢ then
Toi—1T2; = (adb) is already a 3-cycle, and if b # ¢ then 79;_172; = (acb)(bdc) is
the product of two 3-cycles. O

Lemma 6.2.2. For any n > 5, any proper subgroup of Alt(n) has index > n.

Proof. This is a standard result that uses the fact that Alt(n) is simple for all
n > 5 (see for instance [DF03, §4.6, Ex. 1]). A whole classification of maximal
permutation subgroups exists, the O’Nan-Scott theorem [Sco80] already mentioned
in §1.2, but we do not need such a powerful tool here.
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Let G < Alt(n): in particular, Alt(n) acts by permuting the cosets of G (left
cosets, say), so that there is a natural group homomorphism

@ Alt(n) — Sym([Alt(n) : G]).

Since Alt(n) is simple, the normal subgroup ker(y) is either {e} or Alt(n); however,
there exists an element o € Alt(n) \ G, and then ¢ induces a nontrivial partition
of the cosets of G, so that ker(p) # Alt(n). Hence, ¢ is injective, and since we
have (n — 1)! = —1-n! < in! we can conclude that [Alt(n) : G] > n. O

n—1

Thanks to the previous lemmas, we can show the following result, which will
prevent the arising of large alternating factors when G itself is not giant (i.e. not
equal to Sym(n) or Alt(n), see Definition 3.1.1). We also recall the notations
G a,G(a) for setwise and pointwise stabilizers respectively, introduced in §3.3, and
G| a for the restriction of the group G to A (when it is possible to do so, namely
when G already stabilizes A), introduced in Lemma 3.3.6(d).

Proposition 6.2.3. Let G < Sym(n) be a transitive permutation subgroup, with
n > 5. Consider a set A C [n] with |A| = an for some 2 < a < 1, and let

H < Ga. Suppose that H| 4 = Alt(A). Then G > Alt(n).

This is the kind of proposition that likely can be proved in several different
fashions. If we were allowed to use CFSG for example, we could argue that G
must be not only transitive but primitive, because an alternating group inside of
it permuting more than half of the vertices prevents the formation of a nontrivial
block system, and then we could use Cameron’s theorem to exclude the possibility
of G not being a giant given that by hypothesis |G| > % (an)!. For our purposes,
however, we will need to provide a proof that does not rely on CFSG.

We remark that there is no particular reason to use % as a lower bound for a:
as one can readily check, we can prove the same for any constant arbitrarily close
to %, as long as we choose n to be large enough.

Proof. By hypothesis we have that H|4 = Alt(A); the main idea is to prove that
Hz)|la = Alt(A) as well, where A = [n] \ A.

Consider an arbitrary z € A. By the isomorphism theorems we first have that
[Alt(A) : Hy|a] < [H : H,], and in turn we also have that [H : H,| = [H| 5 : Hz| 5]
following the same reasoning and using moreover the fact that H, contains the
kernel of the restriction map to A. The subgroup H,| 4 cannot have more than |A]
cosets inside H| 7 (one can see this as an instance of the orbit-stabilizer theorem);
hence

[Alt(A) : Hyla] < (1 —a)n < an = |A], (6.2.1)

and by Lemma 6.2.2 we must have H,|4 = Alt(A). Now we can redefine H to be
H, acting on n \ {z}, and we can repeat the whole process with a new z’: notice
that « increases, so that the second inequality inside (6.2.1) is still valid. Iterating
the process for all points of the original A, we obtain in the end Hz)la = Alt(A).

At this point it is easy to conclude. In fact, H (and therefore G) contains all
the 3-cycles (abc) formed by elements a,b,¢c € A, so we just have to use them
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to get all the 3-cycles in [n] and we could conclude by Lemma 6.2.1. Take any
x € A: since G is transitive there exists a g € G that sends z to a given element
y € A, and since @ > % and n > 5 there exist two elements r,s € A\ g([l); then
g(rsy)g~!is the 3-cycle (g~ 1(r) g~1(s) x), which contains two elements of A and
one element of A. Using

(abc) = (beca) = (cab),
(acb) = (abe)?,
(bex) = (acb)(abz)(cad),

we can then reorder elements and insert elements from other cycles as we please,
and get all the 3-cycles of [n]. O

For any two groups H < G, let us denote by L(G, H) the set of left cosets
of H inside G: to prevent confusion we would rather avoid using the notation
G/H for such a set, unless we are dealing with a normal subgroup H and G/H
is the quotient group!. We are going to work with a class of Schreier graphs (see
Definition 2.1.1) arising from the action on the cosets of a subgroup; incidentally,
this was the context in which Schreier graphs were originally conceived [Sch27].

Definition 6.2.4. Let G be a group and let H < G. We define diam(G, H), the
diameter of the pair (G, H), to be the maximum among the (undirected) diameters
of all the Schreier graphs Sch(L(G, H),S), where S runs through all sets of gen-
erators of G and the action n: G x L(G,H) — L(G, H) defining the graphs is the
left multiplication n(g,g'H) = gg'H.

The diameter of a group diam(G) is then the same as diam(G, {e}), and if H is
normal in G then diam(G/H) = diam(G, H). Of course, there is nothing special
about our choice of “left”: we could as well define R(G, H), and act on it through
right multiplication.

We use here Schreier’s lemma (in a slightly altered form than in Lemma 5.2.1)
so as to be able to use a chain of subgroups as a way to bound diameters. The use
we make of it is identical to what happens with [Hell8, Lemma 4.7].

Lemma 6.2.5. Let G be a finite group, let H < G be a proper nontrivial subgroup,
and let S be a set of generators of G with e € S = S~1. Then

diam(G) < (2diam(G, H) + 1)diam(H) + diam(G, H)
< 4diam(G, H)diam(H).
Proof. First, if d = diam(G, H) then S24t!1 N H generates H: this is almost the
statement of Lemma 5.2.1. In that case however the subgroup of G was assumed
to be normal, so that we could use the usual definition of diameter for the quotient
group, while here we resort to Definition 6.2.4 and the set £L(G, H); apart from
that, the proof with general H is identical to the proof of Lemma 5.2.1.

1The author is embarrassingly prone to get confused by the notation and assume that H is
normal whenever G/H is written on paper. May the reader be indulgent with him.
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The result is now easy: if 241 N H generates H, then (S2d+1)diam(H) 5
and since S¢ contains by definition representatives of all the left cosets of H inside
G we have SYH = G, thus concluding the proof. O

The condition of H being proper nontrivial is really only needed for the second
inequality, since by definition diam({e}) = 0. For ease of notation, we can use the
second inequality anyway and conventionally establish that diam({e}) =1 (which
we are going to do).

6.3 Main theorem

Now we begin our path towards the main result (Theorem 6.3.6). First, let us
rewrite Theorem 3.2.1 in a form that suits us more.

Proposition 6.3.1. Let n > 1 and let Go < Sym(n) acting on a set g of size n.
Then we can build a rooted tree T(Go, o) (oriented away from the root, say) with
the following properties:

(a) the vertices are pairs (G,Q) and the edges are coloured either “(C1)”7, “(C2)”
or “C3)7;

(b) the root is (Go, ) and the leaves are (Alt(€;),Q;) for a partition {Q;}; of
Qo;

(¢) for any non-leaf vertex (G, ), either:

(1) there is only one edge departing from it, coloured “(C1)”, and its endpoint
is (G', Q) for some G' < G, or

(2) there are only edges coloured “(C2)” departing from it, and their endpoints
are (G|q,, ;) for some nontrivial partition {;}; of Q, or

»”

(8) there is only one edge departing from it, coloured {C3)”, and its endpoint
is (G',Q) for some G' < G with G/G’' isomorphic to an alternating group
of degree > 5;

(d) if a vertex (G',§2) has an incoming edge coloured “(C3)” coming from a vertex
(G,Q), then it has departing edges coloured “(C2)” whose endpoints (G'|q,, %)
are such that |Q > m|Q;| for all i, where G/G' ~ Alt(m);

(e) every indezx [G : G'| coming from an edge ((G,),(G',Q)) coloured C1)” is
bounded by nOog’ ") and for any path from the root to a leaf the number of

edges coloured “(C1)” lying on the path is bounded by O(log?n);

(f) for any path from the root to a leaf, the product [, m; of the degrees of the
alternating groups coming from all the edges coloured “(C3)” lying on the path
and from the final leaf is bounded by n.
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If we were to compare the tree above with the chain in Proposition 6.1.2,
the two parts C7,Cs would correspond here to (C1) and (C3) respectively, and
the bounds in Proposition 6.1.2(b)-(d)-(e) would correspond to those in Proposi-
tion 6.3.1(e)-(f). The normality of the subgroups involved adds the following perk:
all composition factors fit into one chain, by making them into direct product of
simple groups; instead, in Proposition 6.3.1 we are forced to deal with a tree, with
bifurcations labelled (C2).

Proof. The construction of T(Go, o) comes as we said from the use of Theo-
rem 3.2.1 in the case of H = Sym(n). Its definition is similar to that, widely used,
of a structure tree as in [Hell8, §4.1] and a structure forest in [LMS88, §3] [BS92,
§3.4], although it is more refined to suit our needs.

The root is the starting point of the algorithm, i.e. the input made of the
group Gy and the set £y on which the group acts, while the leaves are the atoms
that are reached at the end of the procedure; as we said before in Remark 6.1.3,
starting with Gy makes us reach simple alternating groups instead of the more
general possibilities described in (A). The edges leaving a vertex represent the
three possibilities (C1)-(C2)-(C3) in which an expression can break down to smaller
expressions as described in the theorem; however, the construction is not exactly
like giving to each vertex its smaller expressions as children.

In the case of (C1), in T(Go, o) we pass from G to a subgroup G’ as its only
child. By Remark 6.1.3, the group H in this intermediate step is still Sym(),
so there is no loss of information: we are simply writing G = |J, G'0; for a set
of representatives {o;}; of G’ in G, so that the various subproblems (the smaller
well-formed expressions in the language of (C1) inside §3.2) are all on the subgroup
G'.

In the case of (C2), following its exact wording we would reduce from (G, <)
to (m1(G), Q1) and (m2(G), Q2) for a partition = Q; U Qs respected by G: this
is because, as in (C1), H = Sym(f2) by Remark 6.1.3. However, for simplicity we
can reduce directly to subdividing © into its orbits2.

The case of (C3) is as described in the theorem: the only child of G is a G’ such
that (G’ U {o1,02}) = G and the group generated by o1, 02 is some alternating
group; let us prove the stronger claims that are present in our statement. The only
time (C3) emerges in the CFSG-free algorithm of §3.5 is in Proposition 3.5.16(a),
where G acts on 2 preserving a system of blocks B on which it acts as Alt(T") acts on
(i) for some I, k; in general we have some large set Sx C I', canonical with respect
to the string x, such that for any o € Alt(Sx) there is an element of Autg(x)
inducing o on Sy, and that set would be the origin of our alternating quotient (see
Corollary 3.5.12, which traces in more detail the steps we are describing): however
for us x is constant by Remark 6.1.3 and Autg(x) = G, so we can assume Sx =T
Then our G’ is the preimage of {e} = Alt(I')(g,) and our G is the preimage of
Alt(T") = Alt(T")s, (by definition); hence G’ < G and G/G" ~ Alt(T"), and since
the algorithm passes through (C3) only under the condition || = m > 22log?n
we have also |I'| > 5.

2The order in which we subdivide Q is relevant only when starting with nonconstant strings
in the original algorithm.
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To prove (d), observe that from what we just said in the case of (C3) we have
that G’ stabilizes the blocks of B and G permutes them as Alt(T") permutes (1;)
therefore, since G’ is intransitive, the next step will be the restriction to the orbits
of the action, i.e. (C2), and each new orbit will be of the same size (’73)_1|Q| < %‘
where |I'| = m.

To see (e), let us turn to the proof of Theorem 3.2.1: for each use of (C1),
the number of subproblems to which the original problem reduces is bounded as
pnOlog” ") as stated in Propositions 3.5.15-3.5.16-3.5.17; furthermore the number
of subproblems is the same as the index [G : G'], since the reduction we are
performing each time is as in Proposition 3.5.3. On the other hand, let us examine
the four actions we are allowed to do as described in the course of the proof
(§3.6): the first two involve at most one instance of use of (C1) followed by a
reduction through (C2) from €2 to orbits of size < Z|Q; the third involves one
instance of (C1) in exchange for a coarser block system in €; the fourth involves
one (C1) for a reduction of the degree of the smallest symmetric group (that we
know of) containing G, from m to 1 4+ v/2m. The last two actions can happen
at most O(logn) and O(loglogn) times respectively on the same €2, and the first
two (which shrink Q by a fraction) can happen at most O(logn) times on a single
path of the tree: thus, at most O(log®n) edges coloured “(C1)” can exist on such
a path.

Finally, (f) is a consequence of (d): every time we use (C3) with some Alt(m)
associated to it, we are also dividing the orbit size by at least m, so that on a path
we must have [[, m; < n. O

Remark 6.3.2. A language note: when talking informally about the tree, we
will figure the root on top and the paths departing from the root to be vertically
descending®. Thus, expressions like “descending the tree” mean for us “walking
along its paths while moving away from the root”, and anything “horizontal” is
on the contrary something that singles one element out of a path across multiple
paths. We also refer to elements (i.e. vertices or edges) preceding, following or
being between others, or also being closer or farther away than others: all of them
refer to their distance from the root of the tree in the usual graph metric.

As we mentioned in §6.1, this new route going through Proposition 6.3.1 has
some important disadvantages, descending from this one fact: the reduction pro-
cess may involve subgroups with small index that are not necessarily normal.

The first consequence of this is our inability to use [Hell8, Lemma 4.7], i.e.
bounding the diameter of G by the product of the diameters of N, G/N (a conse-
quence of Schreier’s lemma); on the other hand, the diameter of G/N is trivially
bounded by the size of G/N itself, exactly because the small groups are small
enough that we do not need anything more clever than that: therefore, we as well
do not have any issue in using Schreier’s lemma again (Lemma 6.2.5) and get a
multiplication by the index [G : N].

3We imagine a genealogical tree, with the ancestral root on top, rather than a real-life tree
springing from the ground up. If ancient Berbers had conquered the world, maybe writing
conventions and botany would have been in agreement today.
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The second, and most dire, consequence is the fact that, as we cannot pass to
the normal core of our subgroups (which on the contrary was possible in [Hell8,
Lemma 4.2]), we cannot treat all orbits at the same time and reduce the subgroup
tree to a subgroup chain: in this way we are forced to treat all the groups of the
tree at once. The alternating groups can indeed be worked with horizontally quite
well, thanks to the results on products of simple groups (Theorem 5.1.1, or [Hell8,
Lemma 4.13]). A bound of the form [[, m; < n for the set of degrees m; we need
to consider is too strong to be within our reach: by Proposition 6.3.1(f) this holds
on a single branch, but it is not sufficient if we are not passing to the normal core;
as a consequence, the final bound in Theorem 6.3.6 is not polylogarithmic in |G|
as in [HS14], but it is still better than any e™", and more. The problem of treating
the small indices horizontally is in that sense the only difficulty that lies in the
way of producing a CFSG-free proof of a diameter bound for transitive groups.

Let us first introduce some notions that will define more clearly what we mean
when we talk about a horizontal treatment of the tree.

Definition 6.3.3. Let T be a tree as in Proposition 6.3.1.

A horizontal cut of the tree is a set C' of vertices and edges of T such that for
any path from the root to a leaf there is a unique element of C lying on the path.
If a horizontal cut is made only of vertices, we call it a horizontal section.

Two distinct horizontal cuts Cy,Cs are non-crossing if, for every path from
the root to a leaf, the vertex or edge of C1 lying on the path always precedes or
coincides with the vertez or edge of Cy (or vice versa). Two horizontal cuts inside
a set S of non-crossing cuts are consecutive if there are no other cuts in S lying
between them.

A horizontal cut is a (C1)-cut (respectively (C2)-cut, (C3)-cut) if it is not a hor-
izontal section and all its edges are coloured “(C1)” (respectively “(C2)”, “C3)”).

Let us also define precisely what the gap in the argument for small indices is.
We do so by formulating the following conjecture (as said after Lemma 6.2.5 we
can adopt the convention that diam(H') = 1 when H' = {e}, for ease of notation).

Conjecture 6.3.4. Let G < Sym(n) be a transitive permutation subgroup, let
G1,Ga,...,Gy be finite groups lying on a horizontal section of the tree built from
G as in Proposition 6.3.1, and let G, be a subgroup of G; for each 1 <i < k. Let
H<G x...xGy, and let H = HN (G}, x ... x GY},). Then, there are absolute
constants Cy,Co > 0 such that

diam(H) < C1k%? - max{[G; : G}]|]1 <i < k} - diam(H').

The dependence of the diameter of a group G on the product between diam(H)
and diam (G, H) (see Lemma 6.2.5) on one hand, and the dependence of the prod-
uct of diameters of simple groups on the maximum of the diameters of the factors
(see Theorem 5.1.1) on the other, are the clear influences in the formulation of
the conjecture above. The assumption is strong enough to be compatible with a
proof of a diameter bound for transitive permutation subgroups that is as strong
as in [HS14]; a result like Theorem 6.3.6, which provides a qualitatively weaker
statement, can be proved even with a weaker version of Conjecture 6.3.4.
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We remark that the condition that the groups G; should be part of the same
horizontal section inside the tree cannot be completely dropped. One can choose
G; to be the cyclic group generated by a p;-cycle, where p; is the i-th prime, G to
be the trivial subgroup, and H to be the whole product: in Theorem 5.1.1 we have
bounded the diameter of G; x ... X G by the product of the primes p;, and as
we said in §5.4 the bound is tight up to constant; since py = (1 + o(1))klog k and
Hlepi = e(Ito()klogk 1y the prime number theorem, a bound like the one in
Conjecture 6.3.4 for general G; is false. From another perspective, the conjecture
can be seen as limiting the possibilities for groups appearing in horizontal sections
across all transitive groups G.

Before we move to the main theorem, where we use Conjecture 6.3.4 for our
purposes, let us remark that the conjecture itself is true in the case k = 1, by
Lemma 6.2.5 and the trivial bounds diam(H,H’) < [H : H'] < [G1 : G}]. In
fact, for k = 1 we can easily prove even more and replace [Gy : G}] by the tighter
diam(G1, G), thanks to the following result (which we also need in the course of
the proof of the main theorem anyway).

Proposition 6.3.5. Let G be a finite group and let H < G; let G' < G and
H =G NH. Then
diam(G’, H') < diam(G, H).

Proof. Let S be a set of generators of G': we will prove that there is a set S D .5’
of generators of G such that the Schreier graph Sch(L(G’, H'),S’) is an induced
subgraph of Sch(L(G, H),S), so that in particular the diameter of the former is
bounded from above by that of the latter.

First of all, we define an appropriate bijection ¢ between the set {¢'H|g' €
G'} C L(G,H) and L(G',H'), simply by ¢(¢’H) = ¢’H’. The map is well-
defined: if g/H = ghH then ¢}, 'gh € G'NH = H' and ¢{H' = ghH'; it is
surjective because if H' € L(G', H') then in particular xH’ C G’, which means
that € G’, and it is injective because if gj H' = g, H' then g’lflg’2 € H < H and
giH = g’lgiflgéH = ghH. This bijection has also the property of respecting the
edges of the graphs we are working with: for any s’ € S’ and any ¢’,¢" € G', we
have s'(¢’H) = ¢"H if and only if s'(¢’H’) = g" H' (since ¢"~'s'g’ € G'NH = H');
this means that the edges of Sch(L(G, H), S) corresponding to elements of S’ draw
exactly the Schreier graph of £(G’, H') on the vertices of the subset {¢'H|g' € G'}.

We have just to ensure that we can complete S’ to a set of generators S of the
whole G without introducing any new edges between the vertices of {¢’H|g' € G'}.
That is however easy to do: it is sufficient to take a finite set {s1,$2,...,s,} of
new elements of G that do not belong to G’ ensuring only that at every step
s; & (G'U {s1,...,8i—1}), until we cannot do so anymore. The resulting set
S =8"U{s1,89,...,5,} generates G, and since s; ¢ G’ we have sig’,si_lg’ g G
as well for any ¢’ € G’, so that an edge that starts from or ends into a vertex ¢’ H
must have a coset gH with g € G’ as its other vertex. O

Now we move to the main theorem.
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Theorem 6.3.6. Assume that we can prove Conjecture 6.3.4 without using CFSG.
Let n be large enough. Then, for any transitive permutation subgroup G < Sym(n),

we can bound
e@(loglog n)2

diam(G) <e
without using CFSG.

As asserted at the beginning of this chapter, the bound above is worse than the
ones reached using CFSG, namely (1.3.4) and (6.1.1), but it is a large improvement
over the best known bounds that do not use CFSG, which are (1.3.1) for G =
Sym(n), Alt(n) and

diam(G) < gvnlog n

for any G primitive not giant, due to Babai [Bab82, Cor. 1.2]. For comparison,
both bounds would correspond to having %logn + O(loglogn) in the double ex-
ponential instead of 1022 (loglogn)?; the bound given in (1.3.5), due to Breuillard
and Tointon and applying even to all G non-abelian simple groups, would have
logn + loglogn — O(1) (all the advantage of a small ¢ would just contribute to
the size of the O(1)). On the other hand, the known bounds with CFSG would

correspond to (4 + o(1)) loglogn, and Babai’s conjecture to loglogn + O(1).

Proof. Let us draw the tree T associated with our G as described in Proposi-
tion 6.3.1, and call € the set of size n on which G acts. We are going to artificially
lengthen it one step further: from every leaf (Alt(€;), ), if |Q;] > 5 we add one
more (C3) edge to a new vertex ({e}, §2;), otherwise the same edge can be labelled
as (C1); then, (C2) edges are added to split €2; into singletons. Now the leaves of
the tree T are all of the form ({e}, {z}), and all properties of Proposition 6.3.1 are
still respected.

In order to prove our bound, we are going to start from the root (G, $2) and
descend down the tree one horizontal section at the time, bounding every time
the increase in diameter using Lemma 6.2.5, until we end at the leaves. To get
the bound we desire, we will have to be careful in choosing how to descend along
the various branches: we need to take advantage of the fact that many contem-
poraneous descents on multiple branches, either by alternating factors or by small
factors, cost as much as only one of them by Theorem 5.1.1 and Conjecture 6.3.4
respectively. To do so, we will define appropriate horizontal cuts to work with.

Let us start with the (C3)-cuts. By Proposition 6.3.1(c), all the vertices (G’, ')
are such that G’ < Gq/|o/. In the case of a (C3) edge ((G',), (G",Y)), the
alternating group G’/G" acts on a system of blocks in Q' as Alt(m) acts on some
(TIZ), and the blocks themselves are stabilized by G”; if m > %n then the blocks
are of size 1, G” is the trivial subgroup and k = 1: therefore G’ = Alt(£2’) and,
by Proposition 6.2.3, G must be a giant. For the following discussion on the tree
of G, we will assume that our G < Sym(n) is transitive but not a giant, so that
we are able to assume that every alternating group associated to a (C3) edge has
degree < %n

We construct a first (C3)-cut C; in the following way. We start with the (C3)
edge with the alternating group with the largest degree (or one of them arbitrarily
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chosen, if more than one exist), and put it in C7; then we discard all edges lying
on any path from the root to a leaf passing from the edge we have chosen (in
other words, all ancestors and descendants), we choose again the (C3) edge with
the largest degree among all the remaining ones and we put it in C;. We discard
the edges lying on a path passing through the second edge we have chosen, and
repeat the process until all the edges we have left (if any) are either (C1) or (C2):
at this point, we arbitrarily choose vertices on the remaining paths one by one and
put them in Cq, discarding every time all the edges lying on a path through the
vertex we choose, until no edges at all are left. By construction, C; is a (C3)-cut.

(4 divides the tree T into two parts, the one closer to the root (a tree as well)
and the one closer to the leaves (a forest); any vertex belonging to C; is defined to
be in both parts, for the sake of simplicity (it will not matter in what follows, since
by construction both the edge that precedes such a vertex and all the edges that
follow it cannot be (C3)). We repeat the construction of (C3)-cuts as above, in both
parts, and obtain two (C3)-cuts Cy, C5. Then we repeat the same construction on
the four parts in which we have divided the original tree, and do so r times (r > 1
to be set later) obtaining in the end (C3)-cuts Cy, Ca,...,Cor_1: we call these the
thick cuts.

If there are still some (C3) edges in T that have not been put in any thick cut,
we will construct other (C3)-cuts, which we call the thin cuts. For any of the 2"
parts in which 7' is divided by the thick cuts, we do the following: we take an
arbitrary path from a root to a leaf (where the roots are now, quite naturally,
the vertices that were the closest to the original root in T'), choose the first (C3)
edge we find and put it in the first (C3)-cut (or we choose an arbitrary vertex,
if no such edge exists), discard all the paths passing through our choice, take a
second path and repeat until all the paths have been considered or discarded; after
creating the first such cut (call it C), we discard completely its edges and all edges
that precede C' in the part of T' we are examining, and start again as before with
the construction of a second (C3)-cut C’. We discard anything that precedes or
belongs to C’, and repeat until no (C3) edge is left in this part of T'.

In this way, we have created a set of (C3)-cuts, thick and thin, such that every
(C3) edge sits in exactly one of them and such that any two cuts are non-crossing.
More interestingly, if C'is one of these cuts and m(C') is the maximal degree among
the alternating groups of all the (C3) edges of C, we can give bounds on m(C')
that will be useful to us.

By what we said before, we already have m(C1) < Zn; for the other cuts we
can do better than that. Consider any (C3) edge ea € Ca; by construction, there
must be a path passing through it that contains a (C3) edge with a degree at least
as large as the one of ey, and this would be the unique edge e; belonging to both
C7 and that path: if all paths through e, intersected C; either in edges of smaller
degree or in vertices, then ey itself would have belonged to C7 in the first place.
Hence, Proposition 6.3.1(f) implies that m(Cy) < v/n (and m(C3) as well).

For any (C3) edge ey € Cy, by construction there must be a path with two
edges with degrees at least as large as its degree. As before, there is a path with
the degree of the edge e; lying in Cy at least as large, and there is a path (built
in the part of T defined by C; in which ey lies) with an edge ez in Cs of degree
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at least as large (say Cs is the cut lying in the same part as ey, otherwise we say
the same for C5); we have however to guarantee that the path is the same through
both e; and es. If es is closer than e4 to the root of T, then the path through ey
and e; passes through e; as well, and we are done; if e4 is closer than e; to the
root, then the path that we found for es at the previous reasoning for Cy (which
has an edge €] € C; of degree at least as large as eg) passes through ey as well,
and we are done again. Hence, Proposition 6.3.1(f) implies that m(Cy) < ¥/n (and
m(C5), m(Cs), m(C7) as well).

We can work analogously by induction for all the thick C;; start with Cy;, and
say that at every step j/ < j we have that C,; is the cut lying in the same part of
T as Cy; with respect to the subdivision of T yielded by the set of all the C; with
i< 2 (we can rename C; for 27’ <i< 27'+1 a5 we please, so there is no loss of
generality here). If j/ is maximal with respect to the property of having an edge
e,y farther than es; from the root, we take the path found for e,; in the case j’
(which takes care of all edges for j” < j'), and then all the j” with j* < j” < j
have edges lying on that same path as well, just by being closer than ey; to the
root; as before, all these cuts really pass through edges and not vertices, or else
eo; would have belonged instead to one of the C,; with j' < j.

Moreover, we repeat the same reasoning for any thin cut, treating it as if it
were a thick cut at the step 7+ 1 (disregarding all the other thin cuts). Therefore,
we have in the end the following bounds:

2
m(Cy) < gn,
m(C;) < n7it forall 1 <j<r2 <i<2/t! (6.3.1)
m(C) < n for all C thin.

Finally, Proposition 6.3.1(f) implies a bound on the number of thin cuts as
well. If every path has the (C3) edges satisfy such a relation, the number of (C3)
edges themselves on the path is bounded by llgi ; in the worst case, every two
thick cuts C;,C; have at least one path whose (C3) edges all lie between them,
apart from the two (C3) edges that belong already to C;, C;. On the other hand,
the number of thin cuts between two thick cuts is by construction the same as the
maximal number of (C3) edges on a single path between them: thus, there are at
2:01;%" thin cuts.

After that, we move to the (C1)-cuts. Take any part of T' between two consec-
utive (C3)-cuts: we construct (C1)-cuts on it in the same way as we constructed
thin cuts before, i.e. constructing the first (C1)-cut by taking every time the first
(C1) edge and discarding all the paths passing through it, then the second (C1)-cut
by doing the same with the edges left out from the first one, and repeating until
all (C1) edges have been taken. We can again bound the number of total (C1)-
cuts: by Proposition 6.3.1(e), the number of (C1) edges on a path is bounded by
O(log® n), so that reasoning as before there will be at most O(2" log®n) (C1)-cuts
in the whole tree.

Finally, we move to the (C2) edges: by how we constructed them, a (C2) edge
cannot be followed by another (C2) edge, so for every two consecutive cuts among

most
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the (C1)-cuts and (C3)-cuts already defined we simply take the unique (C2)-cut
that we are allowed to have between them (if any).

At this point, we have defined on T a set of horizontal cuts that are pairwise
non-crossing and such that every edge is contained in a unique cut. What we do
now is start from the root and descend the tree, bounding the diameter one cut at
a time by some factor. Between any two consecutive horizontal cuts among those
we have defined, there is a unique horizontal section: at every step we suppose
that we have already bounded diam(G) by some factor times diam(H ), where H is
a subgroup of the product of all the G; in a given horizontal section, and we prove
that we can move to the next section at the cost of a new factor; at the end, we
will then bound all the factors we have collected. The base case, obviously, is the
section made of the sole root, with the tautological bound diam(G) < 1-diam(G).

Say that at the horizontal section {(G;,Q;)}icr we have already shown the
bound diam(G) < C - diam(H), for some H < [[,G; and some C > 0; call
{(G}, ) }icr the next horizontal section, and observe that |I|,|I’| < n since the
Q; and the Q) both form partitions of . If the next horizontal cut is a (C1)-cut,
we have I = I’ and each G} is a subgroup of G; with [G; : Gi] < nCs108° " for some
C3 > 0 by Proposition 6.3.1(e); calling H' = HN[], G’ and using Conjecture 6.3.4,

diam(H) < Cyn®* - nCs1°¢" " . diam(H'), (6.3.2)

so that we have a bound in terms of the next horizontal section with the extra
factor CynC2C3198"n hesides C. If the next cut is a (C3)-cut (call it K), then
I = I’ again and G, /G, is either an alternating group or the trivial group; we call
H' = HN]], G} as before, and we use Lemma 6.2.5, Proposition 6.3.5 and [HellS8,
Lemma 4.13]* to get

diam(H) < 4diam(H, H')diam(H")

< 4diam (H(Gi /G;)> diam(H")
196 45 . /

<4- a3 Sndiam(Alt(m(K))) - diam(H'), (6.3.3)

thus giving a new bound with an extra factor of 17n*diam(Alt(m(K))), say. If the

next cut is a (C2)-cut, then for every (G, ;) there is a subset {(G};, ;) }jes0)

of the next section with Gilo, = Gj; for all j and {J;Q; = Q: in that case

G; <]] j G ; in the obvious way, and we only need to reembed H appropriately so

as to make it into a subgroup of HZ j G;j; we have passed to the next horizontal

section without changing the bound, since H and its diameter have remained the
same.

Combining (6.3.2) and (6.3.3) with the bound on the number of thick, thin

and (C1)-cuts, and recalling that all the leaves are trivial (so that the subgroup

4This is the version of Theorem 5.1.1 holding for alternating groups only. We cannot use
Theorem 5.1.1 itself because its case-by-case subdivision and Ore’s conjecture depend on CFSG,
while Helfgott’s version for the alternating group uses the much older result in [Mil99]. The proof
of Theorem 5.1.1 would work the same way though, so we can insert its constants inside (6.3.3)
as well.
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H at the last step must be {e}, and diam(H) = 1 by our notational convention of
Lemma 6.2.5 and Conjecture 6.3.4), we obtain

diam(G) < (CynC2tCales” MO log™n) . (174)2 logn+2" =L TT diam (Al (m(K)))
K

= n@s2 198" T diam(Alt(m(K))) (6.3.4)
K

for any G < Sym(n) transitive not giant, where Cy is some absolute constant and
the product is on all (C3)-cuts K. This will play the same role as (1.3.3), which
is [Hell8, Prop. 4.15]: as said before, the essential weakening is that we lost the
stronger bound on the indices of the alternating groups in the product.

From here, we proceed along the lines of [Hell8, §6]: we will not go over the
details, except for the calculations that differ from the original route. Assume as
inductive hypothesis that we have proved Theorem 6.3.6 for all n’ < e~ 1on and
all G’ < Sym(n’) transitive. Let G < Sym(n) transitive: if G is not a giant we
have (6.3.4), while if G = Sym(n), Alt(n) we have

diam(G) < eCllogn)® (log 1Og")zdiam(G') (6.3.5)

for some C' > 0, where either G’ = Sym(n’), Alt(n/) with n/ < e~ 10 or G/ <
Sym(n) is transitive not giant; this is a consequence of Theorem 6.1.1, which does
not use CFSG. In the first case we are done by induction, since

C(logn)?(loglogn)? + sz (loglogn’)* 5l (loglog )

for n large; in the second case, we use (6.3.4) on G’ and absorb the factor on the
RHS of (6.3.5), so that we obtain the same bound as in (6.3.4) even for G giant,
with Cy 4+ 1 instead of C4 (as long as n is large enough) and where K are (C3)-
cuts on the tree of a different transitive group G’ (with the same degree, though).
Thus, we only have to see whether the bound in (6.3.4) is enough to imply the
statement of the theorem.

Recall (6.3.1): we can use the inductive hypothesis on each of the diameters in
the product of (6.3.4) since e~ 107 is larger than all the m(K), and therefore we
have

r—1 )
log diam(G) < (G + 1)2" log® n + emba(estos(in)” | 3™ g prakz (ogtos(n'/0+)*
j=1
2"logn 1 (loglog(n'/"t1))*
log 5

The largest term on the RHS is the second one, which we can bound from above
for n large as

e@(loglog(%n))2 _ e@logr"(lognflog%) < eﬁ(loglognf 1?5542)2

N 2 log3/2 loglogn
< elog2 (lOg log n) e Tog 2 Tog n
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< emhzlloglogn)? _ lgf 3/22 10{5 logn 1 (toglogn)?
og ogn

The last term depends on our choice of r. We choose r = 3, and for n large we get

2"logn 1 /e+0))2 8logn 2
g e (loglog(n )) _ g e (log log n—log 4)

log 2 — log 2
log b log b
< Slloﬂeloéz (log log n)267 izzg loglogn
~ logb
< 8/ 10g5e$(loglogn)2.
~ logn

The first term is bounded by a constant times log” n. Finally, for the sum we can
obtain for n large

r—1
Z 2je$(10g log(nl/(J'H)))2 < GQ@OOg log n—log 2)? < ieﬁ(loglog n)z.
= - ~ logn
Combining all of the bounds, we obtain the result. O

6.4 Concluding remarks

It is easy to see that, as long as no deeper analysis is conducted on what possi-
bilities arise for a tree like the one in Proposition 6.3.1, one cannot even prove
Theorem 6.3.6 with a small improvement as putting (loglogn)?~¢ in the double
exponent.

For instance, there could be a permutation subgroup G < Sym(n) and two
disjoint sets €21, C [n] with [Q;] = [Qa]| = {5 such that in the tree relative
to G the two vertices (G1,€1), (Ge, ) appear with G; = Alt (%) and Gy =
Alt (/75) 1 Sym(2). In that situation, after (G1,€) there is forcibly a (C3) edge
where the quotient is the whole Alt (4%), while after (G, 22) there is a (C3) edge

with quotient Alt (, /%)7 followed by (C2) edges and then by other (C3) edges

again with quotients Alt ( 1%): if n is large enough, all other routes in the proof
of Theorem 3.2.1 in fact cannot occur. In that case, it is not possible to give
diameter bounds without having at least to treat, in two separate instances, both
diam (Alt ({5)) and diam (Alt (\/75)); hence, if we assume that we have bounds
with 2 — ¢ instead of 2 for those two factors, the recursion process does not work

since for any C7,Cy > 0 we have

dlam(G) > CleCz(log log %)275 4 01602(103; log 4/ 1%)275
1—¢
N Clng(log logn)2~¢ (67C§% + e—Cé’(loglog 7;)175)
1—¢
> 01602 (log log n)?~¢ 1 - +1-— Cé/ (log lOg n)

(log n)m logn
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and the last expression in parenthesis is > 1 for any € > 0, provided that we choose
n large enough.

The author, as a matter of fact, believes that such vertices cannot occur in the
tree for any G: after all, better bounds that use CFSG exist, at least for Alt(n).
An analysis of which possibilities are excluded from the trees in Proposition 6.3.1
is therefore in line with both proving Conjecture 6.3.4 and improving the overall
bound in Theorem 6.3.6. In fact, that would be the most likely route towards
proving the conjecture: a first step involving a description of which groups can
(or cannot) appear in such trees, and a second step that proves the conjecture
only for those ones that may actually show up. One could even weaken one of the
two steps, investigating a larger class of groups or showing a weaker bound for
them, and Theorem 6.3.6 would still work, albeit with less strong bounds (but not
necessarily so: we have already observed that there is margin for weakening the
conjecture without affecting the final result). Conjecture 6.3.4 in this sense shows
a discrete deal of flexibility, whether the reader deems it to be a virtue or a defect.
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