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ABSTRACT

Marine Rhodobacteraceae are collectively referred to as the Roseobacter
group, and due to their functional versatility and high abundance in
diverse marine habitats, serve as model organisms in the study of mi-
crobial interactions, evolutionary processes, and metabolic pathways.

Two species within this group, which belong to the Octadecabacter
genus, are of particular interest, as they were isolated from sea ice
at both poles, an extreme habitat with regard to temperature, oxida-
tive stress, and nutrient availability. Initial analyses demonstrated their
unique position among roseobacters, since they contained an unusu-
ally large number of transposable elements, inferred gene duplications,
and genome rearrangements. However, a lack of comparable genome
sequences from closely related strains left unclear, to what extent these
observations are actual evidence of environmental adaptations, and
how their genomic features compare to those of temperate strains in
the same genus.
This thesis expanded the pool of availableOctadecabacter genome se-

quences, and utilised the additional data to examine general genomic
properties and the nature of extreme adaptation in this group. Using
phylogenomic methods, the phylogenetic history of the Octadecabac-
ter-associated strains was reconstructed and evaluated in the wider
context of the Roseobacter group. Comparative gene content analyses
were applied to illustrate which aspects of cellular metabolism and
biochemistry are altered in polar Octadecabacters, and were put into an
evolutionary perspective utilising a model of functional gene content
evolution. In addition, the global distribution of individual subgroups
within the Octadecabacters was examined by means of a metagenomic
mapping approach.
The analyses presented here demonstrate that genomes of polar

Octadecabacters encode more complex metabolic networks, consistent
with a broader spectrum of available nutrients and more diverse mi-
crobial interactions in sea ice. Genome flexibility, and evolvability in
general, constitute important prerequisites for efficient adaptation to
this extreme habitat, and are both more pronounced in polar than in
temperate Octadecabacter genomes. Detection patterns of Octadecabac-
ters in metagenome sequences suggest that the currently available po-
lar isolates are members of a cosmopolitan genus that also features
non-polar species.
The presented results add to our knowledge of the nature of extreme

adaptation and its potential underlying processes in roseobacters, and
are a contribution to our goal of understanding the biogeography of
this important marine group.
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1
INTRODUCT ION

The global ocean covers just under 71% of Earth’s surface.With an esti-
mated volume of 1.332,4× 1021 L [1], it constitutes our planet’s largest
consecutive habitat. Its role in climate regulation and nutrient cycling
is well established, yet poorly understood. For example, 86% and 76%
of total global evaporation and precipitation, respectively, take place
over the ocean [2, 3], making it the global water cycle’s most impor-
tant component. Nonetheless, for vast oceanic regions, we still lack
sufficient flux data to accurately model the profound influence on bio-
geochemistry and how they are, in turn, influenced by global climate
change [4]. Furthermore, the ocean constitutes a major carbon sink,
with an estimated 50%of all non-fossil organic carbon stored in oceanic
environments, mostly in the form of dissolved organic carbon (DOC),
and in marine sediments (700× 109 tons and 1,750× 109 tons, respec-
tively) [5, 6]. Each year, marine phytoplankton converts 50× 109 tons
of inorganic to organic carbon, accounting for about half of the world’s
primary production [7]. Yet,we have only recently begun to unravel the
complex interactions and interrelations between these diverse carbon
pools and tomapout the rolemicrobesplay in this cycle [8]. Particularly
the latter aspect is of general interest, considering that even sea water
with severely limited nutrient content contains 104 bacterial cells/mL,
and that the estimated average cell density in the oceans is tenfold
this value [9]. It is now widely recognised that microbiota play a deci-
sive role in shaping the marine and terrestrial environments. In order
to understand the system as a whole, we need to understand the com-
plexmetabolic networks andmutual interactions between itsmicrobial
components.

The recent advent of next-generation sequencing (NGS) methods
(e. g. [10, 11]) has given us unprecedented capabilities to address this
topic indetail [12].With the availability of an ever-increasingnumberof
bacterial genome sequences, it became apparent that several genomic
features can be linked to specific niches in marine habitats [13–15]. Fur-
thermore, cultivation-independent meta-omics techniques enable the
detailed mapping of such genomic features to system dynamics on
the community level and beyond [12, 16]. The following chapter will
briefly summarise our current understanding of the prokaryotes’ role
in marine ecosystems.
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2 introduction

1.1 microbial life in the ocean

Considering the total biomass of oceanic microbes, their importance
in shaping the biochemistry of marine habitats becomes apparent. As
noted above, primary production adds approximately 50× 109 tons of
organic carbon annually to the marine food web, mainly by the action
ofDinoflagellates,Diatoms, andCyanobacteria. Since the only othermajor
carbon input sources, atmospheric deposition and riverine input, con-
tribute an estimated 0.2× 109 tons C/year each [17], it is obvious that
the life of heterotrophic organisms, which require carbon compounds
for their growth, is centred around areas of primary production. Pho-
tosynthesis takes place at the ocean surface layer, down to depths of
≈100m where about 1% of incident light remains, sometimes sum-
marised as the photic zone. Overall, relatively warm surface waters of
the photic zone constitute only approximately 2% of the ocean volume,
whereas the vast majority, 80%, is cold deep water [17], which has a
highly uniform temperature range of around 0 to 3 ◦C. Here, only little
primary production takes place (in the form of chemoautotrophic car-
bon fixation [18, 19]) and respiratory processes dominate. Nutrients
are mainly gained by remineralising the more labile compounds of
sinking particulate organic matter (POM). As a consequence and since
the respiratory processes are slow, cold deepwater is enriched in nutri-
ents compared to the surface water, where most compounds available
through primary production are quickly recycled.
Apart from carbon, microbial growth capacities are mostly dictated

by the availability of phosphorus, nitrogen and iron, the latter two
of which are usually limiting factors in oligotrophic sea water [20].
Reactive nitrogen input – primarily in the form of oxidised nitrogen
species, NOx – is in the order of 20× 106 tons/year from rivers and
67× 106 tons/year from the atmosphere [17, 21]. Notably atmospheric
nitrogen deposition has increased drastically through human activ-
ity since the beginning of industrialisation [21]. A similar amount,
100× 106 tons, is deposited annually in the ocean environment through
microbial N2-fixation [21].

As indicatedabove, thedistributionof thesenutrients varies through-
out different water masses. In tropical waters, high levels of solar ir-
radiation increase the water temperature and, due to evaporation, its
salinity. This leads to the formation of a strong thermocline and pycno-
cline, which prevent mixing of the surface and its subjacent layers, and
thereby stratify the water [17]. Due to the constant export of nutrients
through sedimentation of POM, the surface waters constitute a largely
nutrient-replete, oligotrophic habitat [17]. At high latitudes, where
solar irradiation is weaker, the thermo- and pycnocline are mostly ab-
sent [17]. Here, surfacewaters are cooled down by the cold air and start
to sink, thereby pushing the underlying water to greater depths. These
water masses then flow along the sea bed, following the earth’s topol-
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ogy until they resurface at specific points, e. g. the North Pacific [17].
In combination with warmer, wind-driven surface currents, a global-
scale circulation of water results, called the thermohaline circulation,
which is the most important factor in nutrient transport within the
marine environment [17].

Thus, microbiota are main contributors to the influx of nutrients
into the marine system, whereas geochemical processes in the form of
water currents determine their distribution and thereby set the general
living conditions for the microbial residents. These conditions vary
regionally. For example, while surface waters are usually oligotrophic,
upwelling of cold, nutrient-rich deep water can locally increase the
amount of available solutes and dissolved organic matter (DOM). Ma-
rine sediments and estuaries present additional habitats, which consti-
tute important sources of some nutrients, and sinks for others [17]. Fur-
thermore, the marine environment also includes more extreme niches
such as sea ice, or deep sea vents. This variety of habitats predisposes
marine bacteria to a large phylogenetic and functional diversity, encom-
passing both cosmopolitan groups with a world-wide distribution, as
well as highly specialised endemic species.

The twomost abundant and ubiquitous bacterial groups are Prochlo-
rococcus (Cyanobacteria) and Pelagibacter ubique (α-Proteobacteria) [22].
Both are adapted to oligotrophic growth conditions, exhibiting small
cell sizes and highly streamlined genomes [22, 23]. In contrast, marine
vibrios (γ-Proteobacteria), and members of the Roseobacter group (α-
Proteobacteria) usually possess larger genomes, and generally follow
a more copiotrophic life style. Their representatives often live in close
associationwith primary producers [22, 24]. Roseobacters in particular
demonstrate a degree of genomic flexibility that lets them functionally
adapt to diverse ecological niches (discussed in more detail in a later
section).
Such genomic adaptations and their underlying mechanisms are of

great scientific interest, both for understanding evolutionary processes,
as well as mapping out the factors shaping marine ecology [12, 25].
This thesis will contribute by investigating the adaptation of a group
of organisms to a cold and otherwise extreme habitat.
Since coldhabitats are themost expansive in themarine environment

and pose specific restrictions for their resident microorganisms, their
properties and general microbial adaptations will be elucidated in the
following chapter.

1.2 life in cold habitats

The low temperature in habitats of the cryosphere has a direct effect
on several aspects of cellular biochemistry, which cells need to address
in order to maintain viability. The first is membrane fluidity: at lower
temperatures, the lipid bi-layer is in danger of transitioning from a
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liquid-crystalline into a gel phase, which ultimately leads to loss of its
function. Cells combat this transition by incorporating shorter, as well
as (poly-)unsaturated fatty acids, among other modifications [26]. A
high number of fatty acid desaturase genes has therefore been associ-
ated with cold adaptation in some bacterial genera [15].

Secondly, reaction rates drop exponentially with decreasing tem-
perature [27], and in order to maintain proper function, enzymes un-
dergo distinct changes in their structure and composition. In general,
cells seem to trade enzymatic stability for activity at lower tempera-
tures [27], mainly by reducing intra-molecular interactions in the pro-
tein core, and by increasing the solvent interactions at its surface [28].
The concomitant change in amino acid composition overall includes
an increase in glycine residues, and a decrease in proline content [28].
Since secondary structure elements are crucial for a protein’s tertiary
structure and general function, it is thought that their content does not
differ drastically from mesophilic to cold-adapted enzymes, although
structural data indicate that more destabilising amino acids are incor-
porated into α-helices of the latter [29].

Thementioned alterations also serve to facilitate correct protein fold-
ing at low temperatures. Nonetheless, some organisms also require
dedicated cold-adapted chaperones for viability [28].

In addition, cells need to counter the stabilising effect cold has
on secondary structures of both desoxyribonucleic acid (DNA) and
ribonucleic acid (RNA) molecules, in order to maintain function of
the transcriptional and translational machineries. A universal tactic to
that end is the expression of cold-shock proteins (CSPs), which bind
single stranded DNA and RNA, and thus suppress the formation of sec-
ondary structures [30]. Psychrophilic organisms furthermore incorpo-
ratemore dihydrouridine into transfer RNA (tRNA)molecules than their
mesophilic relatives, thereby increasing their flexibility [31]. Transla-
tional efficiency is also maintained by the expression of specific acces-
sory proteins to the ribosome in some bacteria [32, 33].

Since temperatures in habitats of the cryosphere are near or below
the freezing point of water, microbes need to prevent ice crystal forma-
tion in order to maintain viability. One tactic is to lower the freezing
point through the accumulation of solutes and ions [34], which is why
most of the isolated and described psychrophilic organisms show sim-
ilarities to halophilic or halotolerant individuals. Frequently produced
compatible solutes include glycerol, glycine-betaine, and trehalose,
among others [34, 35]. Moreover, many organisms express antifreeze
proteins (AFPs), which control the crystallisation of water and thereby
avoid physical damage to the cellular environment [36]. Cold-dwelling
microorganisms also often produce extracellular polysaccharides (EPS)
in order to decrease the freeze point in the extracellular space [37].
Particularly in sea ice, Diatoms produce high amounts of EPS for cry-
oprotection [38].
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A further effect of low temperature is the higher solubility of oxygen,
which therefore exposes cells to higher levels of oxidative stress. To
counter this, the specific genetic equipment of psychrophiles often
containsmoreoxygen-consumingenzymes [15, 39], aswell as functions
to detoxify O−

2 radicals like dismutases, catalases, and others [15, 40].

Asmentioned in the previous section, deep oceanwater is the single
most extensive low-temperature habitat. Sea ice, on the other hand,
covers a comparatively small surface (≈15× 106 to 22× 106 km2 [41]),
but still harbours dense and highly diversemicrobial communities [42].
Because of its relevance for this thesis, its genesis and characteristics
as a microbial habitat will be elaborated in more detail below.
Sea ice builds up when a uniform layer of ice crystals forms undis-

turbed at the air-water interface, and these crystals grow downward
due to the continued extraction of heat from the water below (conge-
lation ice) [41]. If strong winds mix the upper water layer, small ice
crystals form in the mixed layer, and rise to the surface once mixing
stops, where they then grow and form pancake ice [41]. In both cases,
ions and solutes contained in the freezing sea water are extruded and
collect between the ice crystals in brine channels, pockets of liquidwater
inwhich salinity can reach near-saturation levels. From these channels,
brine flows back into the sea until the channels become disconnected,
which decreases the overall salinity of the ice [41]. Notably, sea ice
microorganisms are known to hinder this flow via the production of
EPS [43]. During the summer months, the ice melts at the surface due
to increased solar irradiation. The melted water can flow back down
into the sea through channels in the ice, and in the process flush out
nutrients and the resident microorganisms [44]. Thus, sea ice bacte-
ria encounter osmotic stress in the form of phases of both extremely
high and low salinity, and can also face expulsion from their habitat.
While oxygen solubility is decreased in sea ice brine due to the high
salt concentration [45], both poles show seasonally increased levels of
heavy metals [46–48], which constitute sources of significant oxidative
stress for microorganisms (e. g. [49]). Ultraviolet (UV) radiation like-
wise varies seasonally, and can reach high intensities at the poles [50],
posing another form of stress.

Nonetheless, sea ice is a highly productive habitat, which constitutes
the basis of the local marine food web and harbours multiple trophic
levels [41, 42]. The densest microbial populations form at the ice-sea
interface, where the temperature remains mostly uniform at around
−2 ◦C [44]. This community is called the sea ice microbial commu-
nity (SIMCO) and containsDiatoms as the main primary producers. The
numerically dominant prokaryotic groups are Flavobacteria (mostly
the genera Psychrobacter and Polaribacter), and γ-Proteobacteria (Mari-
nobacter,Glaciecola andColwellia) [42, 51],which live in close association
with the primary producers. A high availability of nutrients for bacte-
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ria is reflected in the fact that a comparatively large fraction of bacteria
from sea ice is readily cultivable [51].
α-Proteobacteria are often less abundant in sea ice than in the un-

derlying sea water [52, 53]. However, they can make up a significant
portion of the SIMCO and benefit their Diatom hosts [54]. The most
abundant genus are usually Octadecabacters [51], which belong to the
Roseobacter group. Although present in cold and otherwise extreme
habitats [55, 56], this group of organisms often dominates mesophilic
marine communities [24]. It will be described in the following chapter.

1.3 the roseobacter group

Almost thirty years ago, Shiba instituted the Roseobacter genus within
the α-Proteobacteria, whose members were characterised by their abil-
ity to produce bacteriochlorophyll under aerobic conditions [57]. Since
then, this feature has been termed aerobic anoxygenic photosynthe-
sis (AAP) [58], and a growing number of related bacterial strains has
been isolated from a variety of environments, together called the
Roseobacter group.

Ingeneral, allmarineRhodobacteraceae shouldbe considered roseobac-
ters [59]. Initially, these were thought to form a monophyletic clade,
and earlier reconstructions of this group’s phylogeny defined five sub-
clades, which subsequently served as the basis for multiple compara-
tive analyses (e. g. [60, 61]). This view was however updated recently
by Simon et al., who showed the roseobacters to be paraphyletic to non-
associated Rhodobacteraceae, and that a terrestrial life style has evolved
multiple times in the Roseobacter group phylogeny [59]. It should be
stressed that the term roseobacter does not constitute a valid taxo-
nomic unit above the genus level. Simon et al. further re-categorised
this group into a set of eleven prevalent clades, based on a larger num-
ber of comparison genomes, as well as stricter criteria of phylogenetic
robustness [59].
The roseobacter lineage likely emerged ≈250 million years ago, co-

inciding with the radiation of marine Dinoflagellates [62, 63]. Its mem-
bers are often found in association with eukaryotic hosts, and have
thus emerged as model organisms for the study of the relating inter-
actions [64, 65]. Consequently, roseobacters are highly abundant in
coastal regions and during algal blooms [66]. However, they also oc-
cupy a wide range of other marine habitats [24], and thus, due to their
wide occurrence, play an important role in shaping the ocean’s biogeo-
chemistry (with a potentially strong role in global sulphur cycling [67,
68]). This is why this group has received increased attention in recent
years, and why efforts have been made to isolate and sequence more
of its members from diverse environments.
As far aswe can tell from currently sequenced representatives,Roseo-

bacter group bacteria predominantly seem to maintain comparatively
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large and flexible genomes, which provide them the metabolic versa-
tility to occupy diverse niches [69, 70]. This tactic stands in contrast
to, e. g. Prochlorococcus and Pelagibacter, which tend towards small and
highly streamlined genomes that are optimised to grow in oligotrophic
waters, and which numerically dominate this type of habitat [69].

An important contribution to the roseobacters’ genomic flexibility
are gene transfer agents (GTAs), small, virus-like particles, which pack
and transmit fragments of the host’s DNA [71]. Earlier investigations
found these agents in the vast majority of roseobacter genomes and
demonstrated their activity in vivo [72].
This flexibility makes this group of organisms ideal to study the evo-

lution and regulation of specific physiological and metabolic features,
and relate these to the adaptation to new habitats where appropriate.
Examples of features which have already been analysed in some de-
tail are the degradation of aromatic compounds [73], flagellum gene
clusters [74], AAP [75], or genomic adaptations to life in surface ocean
water [13].

Besides their high abundance in coastal regions and during algal
blooms, the Roseobacter group is also present at a number of more
extremehabitats, such as sea ice [76], orAntarctic hypersaline lakes [55].
One genus, which harbours multiple isolates from extreme and cold
environments, is theOctadecabacter genus. Its representatives therefore
lend themselves to study extremophilic and psychrophilic adaptation
within theRoseobacter group, and the following chapterwill give a brief
overview of this genus and its associated strains.

1.4 the octadecabacter genus

Gosink, Herwig, and Staley isolated the first members fromArctic and
Antarctic sea ice samples, and named them Octadecabacter arcticus and
O. antarcticus, respectively [76]. They chose the genus name based on
the major fatty acid present in these bacteria, which is octadecenoic
acid. These species attracted scientific interest at the time, due to their
strictly psychrophilic life style, as well as their high sequence similarity
despite the large geographic distance. Consequently, their genomes
were sequenced and analysed in order to identify common features, as
well as functional differences which might be linked to the respective
habitats [61, 77]. However, a lack of genomes suitable for comparison
reduced the generality of these findings and it remained unclear, in
how far functions related to adaptation to life at the poles really are
specific (i. e. exclusive) to polar Octadecabacter species [77].

In recent years, a number of Rhodobacteraceae were isolated from
temperate habitats, which, based on their 16S ribosomal RNA (rRNA)
sequences, were assigned to theOctadecabacter genus. The first of these
described in more detail was O. jejudonensis, originating from an estu-
ary of Jeju island, SouthKorea [78] (see Figure 1.1 for an overviewof the
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PAMC 27224 & 27225

NH9-P7

O. arcticus

P. jejudonensis

E8
O. ascidiaceicola

O. temperatus

O. antarcticus

Figure 1.1: The isolation points of Octadecabacter-related strains relevant for
this thesis.

isolation coordinates of allOctadecabacter strains relevant to this study).
Other temperate isolates followed soon after, most notably O. tempera-
tus, isolated from sea water of the North Sea [79]. In their polyphasic
analysis, Billerbeck et al. proposed the reclassification of O. jejudonen-
sis, and the institution of a novel genus Pseudooctadecabacter, due to its
large differences to the polar Octadecabacters and temperate O. temper-
atus [79]. Further polar isolates were recently obtained from Antarctic
sediment, which were assigned to the O. antarcticus species, based on
16S rRNA sequence similarity [80]. Both were deposited at the Polar
and Alpine Microbial Collection (PAMC), and initial studies showed
that they are psychrotolerant, rather than stenopsychrophiles like the
two polar type strains.

Since the polar Octadecabacters dwell in one of the most extreme
marine-associated habitats known, studying them may prove invalu-
able for understanding adaptation to extreme environments in the
Roseobacter group in general. The availability of four polar isolates con-
stitutes a good basis for genomic comparisons and to test the specificity
of observed traits. BesidesO. temperatus andP. jejudonensis, further tem-
perate isolates were recently acquired and their genomes sequenced:
Octadecabacter sp. NH9-P7 was isolated from an Oyster shell, and Oc-
tadecabacter sp. E8 from sediment, both in the North Sea (Figure 1.1,
both unpublished). In addition, the type strain of the new species O.
ascidiaceicola [81]was genome-sequenced. This strainwas isolated from
the sea squirt Halocynthia roretzi [81].
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Taken together, a group of nine closely related strains was available
for comparison, ofwhich the genomes ofO. ascidiaceicola,P. jejudonensis,
and the PAMC isolates had to be sequenced during this thesis. It should
be noted that other cultivated strains exist, which have been classified
asOctadecabacters, e. g. the recently describedO. ponticola [82]. The nine
strains introduced here (and marked in Figure 1.1) were, however, the
only ones available during the time of this thesis’ experimental phase,
and are consequently the only ones analysed in more detail.

The new isolates’ association to theOctadecabacter genus relied solely
on their 16S rRNA sequences. Such comparisons are, however, associ-
ated with great uncertainty [83]. From the analyses of Billerbeck et
al. [79], it is already clear that the nine strains described above con-
stitute members of at least two genera. While the definition and de-
lineation of genera is scientifically less than clear [84–86], to avoid
confusion, the uncharacterised isolates NH9-P7, E8, and PAMC 27224
and 27225will only be referred to by their strain identifier fromhere on,
and not assigned to a genus or species. When, throughout the thesis,
individual species names are mentioned, these will always refer to the
type strains described above, as defined in their original publications
(refs. [76, 78, 79]).

In consequence, it is also wrong to speak of this group as the Oc-
tadecabacter genus, or the Octadecabacters. Rather, it is more adequate
to use the terms group and, if phylogenetically valid, clade. The current
recommendation for node clade nomenclature is to assign the name of
the earliest-described taxon [87]. For informal, e. g. unpublished, clade
designations, the name should not be italicised [87]. Consequently,
provided that all of the included comparison strains share one com-
mon ancestor, which is at the same time exclusive to them, it would
be appropriate to speak of the Octadecabacter clade. In the absence
of converse information, the term Octadecabacter clade, or simply Oc-
tadecabacters, will be used throughout this thesis to refer to this group
of nine strains.

1.5 rationale

Themajority of habitats onEarth are cold,with the cryosphere covering
≈20% of its surface [88], and cold deep water making up most of the
oceans’ volume [17]. Still, only few roseobacter isolates are available
from these habitats, although this group is abundant there as well [55,
89, 90]. Two such isolates, O. arcticus and O. antarcticus, were recently
genomically compared [61], and provided first insights into the genetic
equipment of cold-adapted roseobacters, albeit without a proper basis
for comparison, due to the unavailability of closely related genome
sequences.
Since multiple isolates in close relation to the Octadecabacter genus

have recently become available (some of them from polar habitats),
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a more general comparison is possible. It is therefore the aim of this
thesis to identify genomic features common to cold-adapted Octade-
cabacters, using a comparative genomics approach. Comparison with
prior analyses should show, in how far mechanisms of cold adaptation
known from other organisms are reflected in the polar Octadecabacter
genomes. Furthermore, the combined genomic information can pro-
vide insights into the source of the polar Octadecabacters’ adaptability,
which they require to colonise their extreme habitat. As the number
of available roseobacter genome sequences has risen steadily in recent
years, the general and polar-specific genomic trends observed in Oc-
tadecabacterswill also be related to otherRoseobacter group genera and
some of their few polar isolates currently available. Notably, compar-
ative analyses within Roseobacter group genera concerning adaptation
to extreme environments are generally lacking. Therefore, the present
thesis is also intended as a reference for future analyses, as more ge-
nomic information will no doubt become available over the next years.

This thesis exclusively follows a comparative genomics approach.
In a first step, the genomes of four recently isolated, Octadecabacter-
associated strains (introduced in Section 1.4) will be sequenced using
NGS methods, availing a total of nine genomes for comparative analy-
sis. This helps to establish a reliable phylogeny of these genomes in the
larger context of the Roseobacter group using phylogenomic methods.
These methods are better suited than polyphasic studies or compar-
isons of the 16S rRNA gene for phylogenetic analyses, since they incor-
porate all of the genomic information available for an organism [91].
Sub-clades in the phylogeny, as well as clusters of increased pairwise
sequence similaritywill then serve as the basis for gene content compar-
isons: on the one hand, genome annotation and subsequent orthologue
detection areused todetermine and interpret orthologousgroups (OGs)
specific to individual Octadecabacter sub-groups. These observations
are complemented with a more general comparison of functional gene
content, as captured by the cluster of orthologous groups (COG) classi-
fication.
A robust phylogeny furthermore enables to infer changes of e. g. gene

content, or sequence characters along ancestral lineages. Phylogenetic
birth-and-death models provide a powerful method to that end [92],
and were, for example, used to analyse the divergence of life strategies
between roseobacters and the closely related SAR 11 lineage [93]. In
short, such a model assumes that changes of gene family sizes along
the edges of a phylogenetic tree result from a stochastic process, which
is characterised by three parameters, κ, λ, and µ. Loss within a family
of size n occurs at a rate of n× µ and gain at κ+ n

λ . All three parame-
ters possess a node-specific and a gene family-specific component, and
thus may vary between nodes and families. Given a phylogeny and a
corresponding phyletic pattern, the parameters are first optimised on
the data in a maximum likelihood (ML) setting. In a second step, the
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parameter values can be used to estimate probabilities of gene family
changes at the deeper nodes of the phylogeny. This thesis aims to asso-
ciate specific changes in functional gene content with the colonisation
of polar habitats by using a phylogenetic birth-and-death model.
It is important to note that gene content analyses based purely on se-

quencedatahave a significantdisadvantage:whatwe canfind is always
limited by our prior knowledge. With a large number of genomes, one
has to rely on automatic annotation to infer gene function, a process
which itself can rely on erroneous data (see ref. [94] for one exam-
ple). Furthermore, research has mostly focused on pathways of the
core-metabolism in the past, but these represent only one facet of the
cell’s biochemical network. As a consequence, we lack a deeper under-
standing of pathways involved in, e. g. metabolite repair and quality
control [95], and a lot of essential genes still possess an unknown, or
at best speculative, function [96]. This bias in our current knowledge
will inevitably influence the way in which the results of this thesis are
interpreted and discussed. While an effort will be made to point out
uncertainties and provide alternative explanations where appropriate,
it is beyond the scope of this thesis to experimentally test the role and
involvement of every component found to differ between polar and
temperate strains. Rather, the conclusions drawn here can be the start-
ing point of further experimental analyses concerning the ecology of
this exceptional group of organisms.
Finally, beyond the coordinates fromwhich individual Octadecabac-

ters and associated strains were isolated, no investigation into their
global distribution and abundance has yet been undertaken. With a
multitude of metagenome sequences from a range of sources currently
available, a further aim of this thesis is to test and compare the oc-
currence of sequences related to specific Octadecabacters throughout
different habitats and geographic locations.





2
MATER IAL AND METHODS

2.1 genome sequencing

Genomes of four strains associated with theOctadecabacter genus were
sequenced in this study, as noted in Table 2.2. All strains were culti-
vated in marine broth (MB) medium (Table 2.1) at a temperature of
8 ◦C (isolates PAMC 27224 and 27225), or 20 ◦C (O. ascidiaceicola and P.
jejudonensis). Cells were harvested by centrifuging, and their DNA ex-
tracted using the MasterPure™ DNA Purification Kit (Epicentre, Madi-
son, WI, USA), adhering to the manufacturer’s instructions. Genomic
shotgun paired-end libraries were prepared and sequenced on an Illu-
mina MiSeq (Illumina, San Diego, CA, USA), using the MiSeq reagent
kit version 3 according to the manufacturer’s instructions.

Table 2.1: Marine broth medium composition. Amounts given refer to one
litre of medium. Adjust pH to 7.6 using HCl and NaOH, and sterilise the
medium via autoclaving.

component amount

Bacto peptone 5.0 g
Bacto yeast extract 1.0 g

Fe(III) citrate 0.1 g
NaCl 19.45 g

MgCl2 (anhydrous) 5.9 g
Na2SO4 3.24 g
CaCl2 1.8 g

KCl 0.55 g
NaHCO3 0.16 g

KBr 80 mg
SrCl2 34 mg

H3BO3 22 mg
sodium silicate 4 mg

NaF 2.4 mg
(NH4)NO3 1.6 mg
Na2HPO4 8 mg

ddH2O ad 1,000ml

13
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2.2 genome assembly, annotation, and statistics

The sequencing reads obtained from Section 2.1 were quality-filtered
using Trimmomatic, version 0.32 [97], and subsequently assembled
using the SPAdes genome assembler, version 3.5.0 [98]. All contigs
>500 bp (O. ascidiaceicola), or >2,500 bp (P. jejudonensis, isolates PAMC
27224 and 27225) were annotated using Prokka [99].

Basic genomestatisticswere summarised through theuseof genomes_
feature_table.pl [100] with the option -p to include plasmids in the
calculations. Completeness was assessed using CheckM [101], which
scanned each genome for the presence of 528 marker genes from the
Rhodobacteraceae family. To assist with examining the presence or ab-
sence of specific functions, Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways were reconstructed in all nine genomes [102]. The an-
notation ofKEGG orthology (KO) terms, aswell as the pathwaymapping
were performed via KEGG’s web-interface1.

2.3 sequence comparison of octadecabacter clade genomes

To clearly delineate species and strain relationships among the Octade-
cabacters, their genome sequences were subjected to pairwise digital
DNA-DNA hybridisation (DDH) [103]. All possible pairings of the nine
genomes were submitted to the genome-to-genome distance calcula-
tor (GGDC), version 2.1, through the web interface2 provided by the
Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ).
The recommended formula d4 [103] and its derived distances were
used for downstream analyses.

2.4 bacterial genomes used for comparative analysis

A wide range of available genome sequences from members of the
Roseobacter group were used to create a multilocus sequence analy-
sis (MLSA) phylogeny (Section 2.6), and to analyse their pan-genome
(Section 2.10.1). Table 2.2 lists the respective strains, as well as their
original publication, where available. Relevant metadata, as well as
the genome accession number for each strain are listed in Table A.1 on
page 125.

1 https://www.kegg.jp/kegg/mapper.html
2 http://ggdc.dsmz.de/ggdc.php

https://www.kegg.jp/kegg/mapper.html
http://ggdc.dsmz.de/ggdc.php
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Table 2.2: Genomes for comparative analysis. The reference column lists, in
order of preference, the publication of a strain’s isolation and characterisation,
the genome data report, the accession number, or n. a. if none of the former
are available; data sourceswere eitherGenBank (GB), the IntegratedMicrobial
Genomes (IMG) database, or this study, as indicated in the source column.

strain source reference

Aleiiroseovarius crassostreae
CV919-312Sm

GB Boettcher, Barber,
and
Singer 1999 [104]

Celeribacter baekdonensis B30 GB AMRK_00000000
Celeribacter indicus P73 GB Lai et al. 2014 [105]
Citreicella aestuarii 357 GB Suarez-Suarez

et al. 2012 [106]
Citreicella sp. SE45 GB ACNW_00000000
Rhodobacterales bacterium
HTCC2255

GB NZ_AATR_00000000

Phaeobacter sp. LSS9 IMG n. a.
Dinoroseobacter shibae
DSM 16493

GB Biebl et al. 2005 [107]

Jannaschia aquimarina
GSW-M26

GB Park and
Yoon 2012 [108]

Jannaschia rubra DSM 16279 IMG Macián
et al. 2005 [109]

Jannaschia sp. CCS1 GB Moran
et al. 2007 [70]

Ketogulonicigenium vulgare
WSH-001

GB Liu et al. 2011 [110]

Ketogulonicigenium vulgare Y25 GB Xiong
et al. 2011 [111]

Leisingera aquaemixtae
CECT 8399

GB Park et al. 2017 [112]

Leisingera aquimarina
DSM 24565

GB Vandecandelaere
et al. 2008 [113]

Leisingera caerulea DSM 24564 GB Vandecandelaere
et al. 2009 [114]

Leisingera daeponensis
DSM 23529

GB Yoon et al. 2007 [115]

Leisingera methylohalidivorans
DSM 14336

GB Schaefer
et al. 2002 [116]

Leisingera sp. ANG1 GB Collins and
Nyholm 2011 [117]
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Table 2.2: continued

strain source reference

Litoreibacter albidus DSM 26922 GB Romanenko
et al. 2011 [118]

Litoreibacter arenae DSM 19593 GB Kim et al. 2009 [119]
Litoreibacter ascidiaceicola
DSM 100566

GB Kim et al. 2016 [120]

Litoreibacter janthinus
DSM 26921

GB Romanenko
et al. 2011 [118]

Loktanella atrilutea DSM 29326 GB Hosoya and
Yokota 2007 [121]

Loktanella cinnabarina LL-001 GB Tsubouchi
et al. 2013 [122]

Loktanella fryxellensis
DSM 16213

GB VanTrappen,
Mergaert, and
Swings 2004 [55]

Loktanella hongkongensis
DSM 17492

GB Lau et al. 2004 [123]

Loktanella koreensis DSM 17925 GB Weon
et al. 2006 [124]

Loktanella litorea DSM 29433 GB Yoon, Jung, and
Lee 2013 [125]

Loktanella pyoseonensis
DSM 21424

GB Moon
et al. 2010 [126]

Loktanella rosea DSM 29591 GB Ivanova
et al. 2005 [127]

Loktanella salsilacusDSM 16199 GB VanTrappen,
Mergaert, and
Swings 2004 [55]

Loktanella sediminum
DSM 28715

GB Liang
et al. 2015 [128]

Loktanella sp. SE62 IMG n. a.
Loktanella tamlensisDSM 26879 GB Lee 2012 [129]
Loktanella vestfoldensis
DSM 16212

GB VanTrappen,
Mergaert, and
Swings 2004 [55]

Loktanella vestfoldensis SKA53 GB NZ_AAMS_00000000
Marinovum algicola DG 898 GB Green

et al. 2004 [130]
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Table 2.2: continued

strain source reference

Maritimibacter alkaliphilus
HTCC2654

GB Lee et al. 2007 [131]

Maritimibacter sp. HL-12 GB NZ_FXBQ_00000000
Nautella italica DSM 26436 GB Vandecandelaere

et al. 2009 [132]
Nautella italica R11 GB NZ_ABXM_00000000
Nereida ignava CECT 5292 GB Pujalte

et al. 2005 [133]
Oceanibulbus indolifex HEL-45 GB n. a.
Oceanicola batsensis HTCC2597 GB Cho and Giovan-

noni 2004 [134]
Oceanicola granulosus
HTCC2516

GB Cho and Giovan-
noni 2004 [134]

Oceanicola nanhaiensis
DSM 18065

GB Gu et al. 2007 [135]

Oceanicola sp. HL-35 GB NZ_JAFT_00000000
Oceanicola sp. MCTG156(1a) GB Gutierrez

et al. 2017 [136]
Oceanicola sp. S124 GB Kwon

et al. 2012 [137]
Oceaniovalibus guishaninsula
JLT2003

GB Liu et al. 2012 [138]

Octadecabacter antarcticus 307 GB Gosink, Herwig, and
Staley 1997 [76]

Octadecabacter arcticus
DSM 13978

GB Gosink, Herwig, and
Staley 1997 [76]

Octadecabacter ascidiaceicola
CECT 8868

this study Kim et al. 2016 [81]

Octadecabacter sp. E8 IMG n. a.
Octadecabacter sp. NH9-P7 IMG n. a.
Octadecabacter temperatus SB1 GB Billerbeck

et al. 2015 [79]
Octadecabacter sp. PAMC 27224 this study Lee et al. 2014 [80]
Octadecabacter sp. PAMC 27225 this study Lee et al. 2014 [80]
Parvularcula bermudensis
HTCC2503

GB Cho and Giovan-
noni 2003 [139]

Pelagibaca bermudensis
HTCC2601

GB Cho and Giovan-
noni 2006 [140]
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Table 2.2: continued

strain source reference

Phaeobacter gallaeciensis BS107 GB Ruiz-Ponte
et al. 1998 [141]

Phaeobacter gallaeciensis
DSM 26640

GB Ruiz-Ponte
et al. 1998 [141]

Phaeobacter inhibens
DSM 16374

GB Martens
et al. 2006 [142]

Phaeobacter inhibens
DSM 17395

GB Buddruhs
et al. 2013 [143]

Planktomarina temperata
RCA 23

GB Giebel
et al. 2013 [144]

Pseudophaeobacter arcticus
DSM 23566

GB Zhang
et al. 2008 [56]

Pseudooctadecabacter
jejudonensis CECT 8397

this study Park and
Yoon 2014 [78]

Rhodobacteraceae bacterium
SB2

GB NZ_LGRT_00000000

Rhodobacteraceae bacterium
HTCC2083

GB Kang et al. 2011 [145]

Rhodobacteraceae bacterium
HTCC2150

GB Kang et al. 2010 [146]

Rhodobacterales bacterium Y4I GB NZ_ABXF_00000000
Roseobacter denitrificans
Och 114

GB Shiba 1991 [57]

Roseobacter litoralis Och 149 GB Shiba 1991 [57]
Roseobacter sp. AzwK-3b GB Hansel and

Francis 2006 [147]
Roseobacter sp. CCS2 GB NZ_AAYB_00000000
Roseobacter sp. GAI101 GB NZ_ABXS_00000000
Roseobacter sp. LE17 IMG n. a.
Roseobacter sp. MED193 GB NZ_AANB_00000000
Roseobacter sp. R2A57 IMG n. a.
Roseobacter sp. SK209-2-6 GB NZ_AAYC_00000000
Roseovarius atlanticus R12B GB Li et al. 2016 [148]
Roseovarius mucosus
DSM 17069

GB Biebl et al. 2005 [149]

Roseovarius nubinhibens ISM GB González
et al. 2003 [150]
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Table 2.2: continued

strain source reference

Roseovarius sp. 217 GB Schäfer
et al. 2005 [151]

Roseovarius sp. MCTG156(2b) GB Gutierrez
et al. 2017 [152]

Roseovarius sp. TM1035 GB NZ_ABCL_00000000
Ruegeria atlantica DSM 5823 GB Rüger and

Höfle 1992 [153]
Ruegeria conchae TW15 GB Lee et al. 2012 [154]
Ruegeria halocynthiae
MOLA R1/13b

GB Doberva
et al. 2014 [155]

Ruegeria lacuscaerulensis
ITI-1157

GB NZ_ACNX_00000000

Ruegeria mobilis F1926 GB Sonnenschein
et al. 2017 [156]

Ruegeria pomeroyi DSS-3 GB González
et al. 2003 [150]

Ruegeria sp. TM1040 GB NZ_AAFG_00000000
Sagittula stellata E-37 GB Gonzalez

et al. 1997 [157]
Sedimentalea nanhaiensis
DSM 24252

GB Sun et al. 2010 [158]

Shimia marina CECT 7688 GB Choi and
Cho 2006 [159]

Shimia sp. SK013 GB Kanukollu
et al. 2016 [160]

Sulfitobacter donghicola
DSW-25

GB Yoon et al. 2007 [161]

Sulfitobacter geojensisMM-124 GB Kwak
et al. 2014 [162]

Sulfitobacter guttiformis
KCTC 32187

GB Labrenz
et al. 2000 [163]

Sulfitobacter mediterraneus
KCTC 32188

GB Pukall
et al. 1999 [164]

Sulfitobacter noctilucae NB-68 GB Kwak
et al. 2014 [162]

Sulfitobacter noctilucicolaNB-77 GB Kwak
et al. 2014 [162]
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Table 2.2: continued

strain source reference

Sulfitobacter pontiacus
3SOLIMAR09

GB Mas-lladó
et al. 2014 [165]

Sulfitobacter pseudonitzschiae
H3

GB Hong
et al. 2015 [166]

Sulfitobacter sp.
20_GPM-1509m

GB NZ_JIBC_00000000

Sulfitobacter sp. CB2047 GB Ankrah
et al. 2014 [167]

Sulfitobacter sp. NAS-14.1 GB NZ_AALZ_00000000
Sulfitobacter sp. SA11 IMG n. a.
Tateyamaria sp. ANG1-S1 GB Collins

et al. 2015 [168]
Thalassobium sp. R2A62 GB NZ_ACOA_00000000
Thalassobacter stenotrophicus
CECT 5294

GB Macián
et al. 2005 [169]

Wenxinia marina DSM 24838 GB Ying et al. 2007 [170]

2.5 orthologue detection

The amino acid sequences of all coding DNA sequences (CDSs) were ex-
tracted from the genomes listed in Table 2.2 using cds_extractor.pl,
version 0.7 [100], and written to multifasta files. Proteinortho5 [171]
was used with the options -synteny, -selfblast and -singles to
determine orthologous and paralogous relationships among the ex-
tracted proteins. Minimum identity and coverage values for basic local
alignment search tool (BLAST) hits to be reported were set to 35% and
65%, respectively.

2.6 roseobacter group phylogeny reconstruction

A MLSA phylogeny was reconstructed from the strict, non-redundant
(i. e. excluding genes with paralogues) core-genome, of all Roseobactercore-genome – genes

common to all
members of a group

of organisms

group members listed in Table 2.2. The respective orthologous pro-
tein sequences were aligned with the multiple sequence comparison
by log-expectation (MUSCLE) algorithm via its homonymous program,
version 3.8.31 [172], and the alignments were concatenated to a super-
matrix. Positions containing gaps were removed, resulting in a final
alignment length of 23,052 patterns (139 genes). Using the PTHREADS
implementation of RAxML (version 8.1.22) [173], the roseobacter phy-
logenywas reconstructed in aML-framework under theWAGmodel of
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amino acid substitution (with ML-optimised base frequencies and sub-
stitution rates) and a gamma distribution to model rate heterogeneity
(discretised into four categories, α parameter estimated through ML).
Five hundred bootstraps were computed on random maximum par-
simony (MP) starting trees to estimate branch support. Furthermore,
ML phylogenies were calculated for each of the 139 core-genes individ-
ually, using the same configurations given above. Thesewere then used
to estimate bipartition support in the concatenation-based phylogeny
through calculation of internode certainty (IC) and tree certainty (TC)
scores [174]. In short, bipartitions of the super-matrix-derived phy-
logeny were evaluated for their frequencies in the 139 individual trees
and related to the twomost frequent conflicting bipartitions. IC and TC
scores reflect this relation, with values close to 0 indicating that mul-
tiple conflicting bifurcations occur at the same frequency, and values
close to 1 indicating the absence of such conflicts [174]. The scoreswere
calculated using the respective option of RAxML.
In addition, a hierarchical clusteringwas computed for all compared

genomes, based on the pairwise Jaccard distances in their gene content.
The distances were derived from the orthology information (including
singletons), and binarised into presence or absence of individual OGs
using the scikit-learn package for python [175]. Hierarchical cluster-
ingwas performedusing the Farthest PointAlgorithm implementation
of scipy [176] and the clusters were visualised in form of a tree. Two
trees were calculated this way, one using the distances derived from
all OGs, and one for which core OGs of deeper-branching clades in
the phylogeny were marked as absent in all the clade’s correspond-
ing members prior to distance calculation. The second tree therefore cloud-genome –

genes present in only
a subset of all
compared genomes

reflects the similarity of the cloud-genomes of different clades in the
phylogeny, as well as the shell-genomes of their individual members.
The amount of differing bifurcations between both these trees and the
reconstructed phylogeny was expressed as the Robinson-Foulds (RF)
distance, and calculated using the Environment for (phylogenetic) Tree shell-genome – genes

present in one or few
of the compared
genomes

Exploration (ete3) package for python [177].

2.7 octadecabacter clade phylogeny and gene content
clustering

Individual phylogenies of all 1,513 Octadecabacter core-genes without
paralogues were reconstructed in RAxML, as described in Section 2.6,
with the difference that no bootstrap analyses were performed. The
resulting ML trees were combined into a cluster consensus network
using Dendroscope, version 3.5.9 [178]. Only splits occurring in at least
20% of trees were visualised. Support of the network’s bipartitions
was estimated via their frequencies in the 1,513 individual trees and
expressed in form of IC and TC scores [174], calculated by RAxML (see
Section 2.6). In order to compute the scores, two trees were compared
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against the rest (reflecting ambiguous positioning of O. antarcticus), to
ascertain consistency of the calculated scores.

Clustering the Octadecabacters according to their gene content was
based on pairwise Jaccard distances, and performed as described in
Section 2.6.

2.8 cog annotation

The COG annotation followed the IMG standard operating procedure
(SOP) workflow [179] with a few exceptions. Pre-computed position-
specific scoring matrices (PSSMs) of all COGs were acquired from the
National Center for Biotechnology Information (NCBI)’s Conserved
Domains Database (CDD)3. These were used as reference in reverse
position-specific BLAST (rpsBLAST) runs with the genomes’ protein mul-
tifasta files (created in Section 2.5) as queries. Only the best BLAST hit
for each protein was reported, with an e-value cutoff of 10−5. Tab-
separated output was forced using BLAST’s -outfmt 6 option. The
script cdd2cog.pl version 0.1 [100] parsed the resulting tables and as-
signed BLAST hits to the appropriate COGs, using the COG descriptions
and associations defined in the most recent update from 2014 [180].

2.9 birth-and-death model of functional gene content
evolution

A general phylogenetic birth-and-death model of family size evolu-
tion was optimised on the COG data, as implemented in the program
Count [181]. Owing to the model complexity and a lack of parallelisa-
tion, optimisationwas only computationally feasible for a subset of the
116 strains included in the reference phylogeny. Therefore, a sub-tree
of 32 taxa was pruned from the MLSA phylogeny created in Section 2.6,
comprising mostly the Octadecabacter and Loktanella clades, more
precisely all organisms contained in the equivalents to clades 3, 4,
and 5, which Simon et al. recently defined [59]. COG family numbers
for each of the 32 genomeswere compiled to a phyletic pattern and pro-
vided to Count, together with the reference phylogeny. Multiple runs
of parameter estimation were performed with successively increasing
model complexities, starting fromuniformity of parameters across tree
edges and gene families, and ending with gamma-distributed param-
eter values, discretised into two to three categories. Complexity of the
model was only further increased if the increase in likelihood justified
the higher number of free parameters. The final model contained two
rate categories for gene loss, and three categories each for duplication,
transfer, and length. Using the estimated parameter values, probabil-
ities of gain, loss, expansion, and reduction for each COG at each tree
node were calculated by Count. For downstream analysis, only those

3 ftp.ncbi.nih.gov/pub/COG/COG2014/data/

ftp.ncbi.nih.gov/pub/COG/COG2014/data/
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COGs were considered, which showed a probability of change >0.5 at
the particular node in question.

2.10 gene content analyses

2.10.1 Pan- and core-genome calculations

The pan-genome and strict core-genome sizes of the Octadecabacters pan-genome – union
of all genes within a
group of organisms

were both derived from the orthology information obtained in Sec-
tion 2.5. Their dependence on the number of included genomes was
determined by calculating both for each possible combination of one to
nine Octadecabacter genomes (without replacement) and subsequent
least-squares fit. A power law (Equation (2.1)) and exponential de-
cay (Equation (2.2)) function were fitted, respectively, to the median
values of pan- and core-genome size using the scipy module for the
python programming language [176]. In an equivalent analysis for the
whole Roseobacter group (genomes listed in Table 2.2, excluding the
outgroup genome Parvularcula bermudensis and Phaeobacter sp. LSS9),
approximately 600 combinations were drawn at random for each num-
ber of species included, as testing all possible combinations was not
computationally feasible.

f(x) = a · xb + c (2.1)

f(x) = a · eb·x + c (2.2)

2.10.2 Determination of group-specific orthologous groups

The Octadecabacter clade genomes were divided into four groups,
according to the clusters based on their pairwise distances in gene con-
tent (Section 2.7). Group I contained the polar species O. arcticus, O.
antarcticus, and isolates PAMC 27224 and 27225, group II the temper-
ate species O. temperatus and O. ascidiaceicola, group III P. jejudonensis
and isolate NH9-P7 and group IV the single genome of isolate E8.
Together with the orthology data, the script po2group_stats.pl, ver-
sion 0.1.3 [100] determined which OGs were specific to each group,
i. e. which genes occurred in all members of a group and none of the
other compared genomes.

2.11 protein secondary structure prediction and com-
parison

The secondary structure content of each annotated protein in the nine
Octadecabacter genomes was predicted from the primary amino acid
sequence using the algorithm implemented in the JPred4 secondary
structure prediction server [182]. JPred4 returns the secondary struc-
ture state of each amino acid position in the protein (either helix, sheet,
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or none), alongwith a confidence score. To summarise the total content
of α-helix and β-sheet, amino acids, which were assigned to one of the
two, were counted fully if their confidence score was at least 7, and as
one-half if it was 5 or 6. The absolute number of amino acids of each
structural feature was divided by the length of the protein to obtain
the relative content of bothα-helix andβ-sheet. Utilising the orthology
information (Section 2.5), the nine genomes were hierarchically clus-
tered based on the pairwise euclidean distances in relative secondary
structure content of the core-proteome. Clustering was performed as
described in Section 2.6.

Statistical difference in secondary structure content was tested sep-
arately for helix and sheet through two-sided Wilcoxon signed-rank
tests, as implemented in scipy [176]. This tests the null-hypothesis
H0 that the median difference between two samples equals zero. For
each possible pairing of two Octadecabacter clade genomes, the rela-
tive structure content of either helix or sheet in all core proteins served
as the observations, based on which the test statistic and the corre-
sponding p-value were computed. In order to assert that the median
difference between samples 6= 0, i. e. to accept H1, the significance
level α was corrected for multiple statistical testing via the method
described by Benjamini and Hochberg [183]. In short, the p-valuesBenjamini-Hochberg

correction controls
the false discovery

rate

were sorted in ascending order and assigned ranks. Then, each was
compared to its Benjamini-Hochberg critical value given by i

m × α,
where i is the value’s rank, m = 36 the total number of performed
tests and α = 0.05 the desired significance level, corresponding to the
false discovery rate (FDR). The highest p-value, for which p < i

m × α,
and all values smaller than it were considered significant in rejecting
H0 and indicating that the respective pair of Octadecabacters shows
differences in the particular structural feature. The direction of this
difference was tested in subsequent one-sided Wilcoxon signed-rank
tests, with the hypothesis H0 that the median difference between the
samples is either positive, or negative.

General comparisons of amino acid content were carried out for Oc-
tadecabacter strains with highly similar GC-contents, which excluded
P. jejudonensis and isolate NH9-P7. In χ2 tests, observed numbers of
the twenty amino acids were compared to their expected numbers
from the base frequencies (averaged over all seven clade members) for
each strain. Mean frequencies of the amino acids in general, as well
their ratios of occurrence in α-helices versus non-helix regions, were
compared between the genome groups defined in Section 2.10.2.

2.12 octadecabacter occurrence in metagenomes

TheglobaldistributionofOctadecabacterswas studied throughmetage-
nomic read mapping. The workflow consisted of three main steps:
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(i) selection of metagenomes, (ii) read mapping, and (iii) filtering the
obtained results for unspecific hits and subsequent normalisation.

2.12.1 Selection of metagenomes

In order to keep the workflow computationally feasible, only meta-
genomes available on the Rapid Annotation using Subsystems Tech-
nology (RAST) for metagenomes (mg-RAST) platform [184] were consid-
ered. In a pre-selection step, identifiers andmeta-data ofmetagenomes,
in which Octadecabacters constituted at least 1% of reads assigned to
the α-Proteobacteria, were acquired. These metagenomes’ reads were
then downloaded through the mg-RAST application programming in-
terface (API) and used for subsequent mapping.

2.12.2 Read mapping

Due to their high conservation, rRNA gene clusters were excised from
the Octadecabacter genomes prior to read mapping. Their positions
were identified using rnammer [185] and the sequence between the co-
ordinates excised. The genome DNA sequences were then concatenated
into a single file. Bowtie2 [186], version 2.3.1,wasused tomap the reads.
Alignment seed length was set to 12, with at maximum one mismatch
allowed per seed. Penalties for mismatches, as well as undefined bases
("N"), were set to 3, gap openings and extensions in both reference and
read were penalised with 3 and 5, respectively. The minimum score x
for a hit to be reported had to satisfy x > −0.2× readlength − 6, cor-
responding to a minimum nucleotide identity of approximately 90%
between read and reference. Only the best hit was reported.

2.12.3 Filtering and normalisation

Unspecific hits were filtered using the available Roseobacter group
genome information (Table 2.2). To that end, their nucleotide sequences
were split into fragments of 1,000 nt length, which were then subjected
to pairwise BLAST comparisons between the genomes. Both steps are
part of the average nucleotide identity (ANI) comparison workflow of
the python package pyANI [187]. Subsequently, reads which mapped
with at least 65% of their length to Octadecabacter regions with>90%
nucleotide identity to regions in other roseobacters were discarded,
and the remaining hits were considered specific to Octadecabacters.
The comparison of nucleotide identity included comparisons between
Octadecabacter groups, but not within them. This led to the exclusion
of less reads, but restricted the analysis to the level of Octadecabacter
groups.
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As a means of normalisation, for each metagenome the number of
nucleotides in specific hits was divided by the number of nucleotides
in reads assigned to the bacteria kingdom by mg-RAST.

In order to differentiate between individual Octadecabacters, the
same filtering and normalisation procedure described above was ap-
plied once more, but included the pairwise comparisons between all
nine Octadecabacter genomes.
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RESULTS

3.1 genome assembly and general comparison

General metrics of the analysed Octadecabacter clade genomes are
given in Table 3.1. Despite being highly fragmented with≈130 contigs,
the two PAMC isolate genomes are over 99% complete, based on the
presence of 528 Rhodobacteraceae marker genes. Polar Octadecabacters
possess, on average, larger genomes than temperate clade members
(by ≈800 CDSs), combined with a lower coding percentage. The DNA
GC-content is about 55% in most strains, and markedly higher (about
60%) in isolateNH9-P7 andP. jejudonensis. Basedon the orthologydata,
the Octadecabacter clade’s core-genome size is 1,609 (compared to 142
over the whole Roseobacter group, including the outgroup genome).
Corresponding NCBI accession numbers are provided in Table A.1,
p. 125.

Table 3.1: Basic metrics of Octadecabacter clade genomes. status is listed
as either finished (f), or (permanent) draft (d). For finished genomes, grey
numbers in parentheses indicate the number of plasmids. Plasmids were
included in determining genome size, contig number, and CDS count.

O.
an
tar
cti
cu
s

O.
ar
cti
cu
s

PA
M
C
27
22
4

PA
M
C
27
22
5

O.
tem

pe
ra
tu
s

O.
as
cid

iac
eic
ola

N
H
9-
P7

E8 P.
jej
ud
on
en
sis

size [Mbp] 4.875 5.479 4.095 4.124 3.265 3.228 3.549 3.534 3.405

status f f d d f d d d d
contigs 2 (1) 3 (2) 132 129 2 (1) 11 18 13 20

complete-
ness

>99%

gc % 54.62 55.15 55.11 55.15 54.68 54.94 59.88 54.35 59.57

CDSs 4,569 4,694 4,188 4,161 3,294 3,283 3,484 3,484 3,345

coding % 80.91 78.34 88.77 88.71 91.86 91.51 91.40 90.44 91.22

COGs 3,548 3,851 3,267 3,273 2,717 2,671 2,883 2,914 2,772

Pairwise genome similarities were determined as digital DNA-DNA
hybridisation (DDH) values using the genome-to-genome distance cal-
culator (GGDC) [103] and are visualised in Figure 3.1. Notably, the two
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PAMC isolates show 98% similarity to each other, but only ≈30% to
O. antarcticus. The genome of O. ascidiaceicola is most similar to O.
temperatus, albeit at a low DDH value of ∼25%, while the two strains
E8 and NH9-P7 are less than 20% similar to any other clade member
analysed (the same is true for Pseudooctadecabacter jejudonensis). Based
on the DDH-derived distances, isolate NH9-P7 and P. jejudonensis form
a separate cluster, which coincides with their higher GC-content (Ta-
ble 3.1). The novel polar isolates PAMC 27224 and PAMC 27225 form
a distinct and comparatively deep-branching cluster with the type
strains of the polar species O. antarcticus and O. arcticus, neighbour-
ing a corresponding non-polar cluster formed by O. temperatus and O.
ascidiaceicola.

Figure 3.1: Percent similarity values of pairwiseOctadecabacter clade genome
comparisons via GGDC, presented as a heat-map. Dendrogram on the left
represents hierarchical clustering based on the pairwise distances calculated
from the DDH values.
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3.2 phylogeny

A MLSA-phylogeny based on 139 core-genes of the Roseobacter group
(including the outgroup genome Parvularcula bermudensis) generally
displays the same topology, which other studies observed [59, 60] and
clusters defined therein can be reproduced here (marked respectively
in Figure A.2, p. 131). It also verifies the newly sequenced strains as-
sociation with the Octadecabacters, since they form a coherent clade
with strong bootstrap support (Figure 3.2). Their inferred phylogenetic
relationships also mirror the similarity- (DDH-)based observations (see
Figure 3.1). The earliest branching and therefore most distant member
is isolate NH9-P7, followed by P. jejudonensis, although this bifurca-
tion is associated with some uncertainty (low bootstrap support value
of 64). All polar isolates cluster together and form a common clade
with O. temperatus and O. ascidiaceicola, which means that they share
a more recent common ancestor with each other than with the rest.
Within the polar representatives, isolates from the Antarctic form a
group distinct from the Arctic species. Isolate E8 is closer related to
the temperate/polar clade than to NH9-P7 and P. jejudonensis.
Based on the phylogenetic relationships, as well as the genome prop-

erties and DDH-based similarities described in Section 3.1, the Octade-
cabacter clade genomes were divided into 4 groups for subsequent
functional analyses and comparisons:

I the polar taxa O. arcticus and O. antarcticus, as well as the novel
polar isolates PAMC 27224 & PAMC 27225

II the temperate taxa O. temperatus and O. ascidiaceicola

III the phylogenetically more distant P. jejudonensis and isolate NH9-
P7

IV the temperate isolate E8

Reference clades for the analysis of pan- and core-genome trends
were obtained by searching the Roseobacter group phylogeny (Fig-
ure A.2) for clusters, which branched at a similar distance from the
root as the Octadecabacter clade, and contained a similar number
(from seven to twelve) of representatives. Four such clades, encom-
passing a total of 36 representatives, were chosen for comparison, and
their members are listed in Table 3.2.

In order to obtain a higher phylogenetic resolution within the Oc-
tadecabacter clade, and to test for ambiguities in their relationships,
a consensus cluster network representation of 1,513 individual single-
copy core-gene phylogenies was constructed. Furthermore, the nine
genomes were clustered based on their pairwise Jaccard-distances in
gene presence and absence. Both trees are presented in the form of a
tanglegram in Figure 3.3.
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Figure 3.2: MLSA phylogeny encompassing the Octadecabacter clade and its
closest relatives. Shown is a subtree pruned out of the larger phylogeny in-
ferred for 115 genomes of the Roseobacter group (given in Figure A.2, p. 131).
Numbers indicate bootstrap support, with open and closed circles represent-
ing values of 90–99 and 100, respectively. Scale bar in expected number of
substitutions. Long edges were shortened by 50%, and are marked with in-
terruptions. The Octadecabacter clade is highlighted.

The network mostly agrees with the MLSA phylogeny in Figure 3.2,
but exposes an ambiguous positioning of O. antarcticus. A significant
amount of single gene phylogenies puts this strain in closer relation
to O. arcticus than to the PAMC isolates. The internode certainty (IC)
and tree certainty (TC) value associated with the respective bipartition
are both close to zero, which indicates that both branching patterns
occur in a similar number of genes. Relating O. antarcticus closer to
the PAMC isolates is slightly more frequent than the alternative, as it is
associated with a positive IC score. Beside this ambiguity, formation of
a polar clade is highly supported (IC score close to 1). O. ascidiaceicola,
in agreement with DDH and MLSA, is related closest to O. temperatus at
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Table 3.2: Fourmonophyletic groups (clades), and their associatedRoseobacter
group genera, which branch at a similar distance from the root as the Octade-
cabacter clade. Corresponding members are listed for each clade, and were
used for comparative pan-, and core-genome analyses (Section 3.3.1).

ass . genus genomes

Loktanella L. sediminum DSM 28715, L. koreensis DSM 17925,
Loktanella sp. SE62, L. litorea DSM 29433,
Roseobacter sp. CCS2, L. rosea DSM 29591, L.
vestfoldensis DSM 16212, L. vestfoldensis SKA53, L.
tamlensis DSM 26879, L. atrilutea DSM 29326, L.
fryxellensis DSM 16213, L. salsilacus DSM 16199

Sulfitobacter S. guttiformis KCTC 32187, S. donghicola KCTC 12864,
Oceanibulbus indolifex HEL-45, S. mediterraneus
KCTC 32188, S. geojensisMM-124,
Sulfitobacter sp. NB-77, Sulfitobacter sp. NB-68,
Roseobacter sp. GAI101, S. pontiacus 3SOLIMAR09

Roseovarius R. nubinhibens ISM, R. atlanticus R12B,
Roseobacter sp. AzwK-3b,
Roseovarius sp. MCTG1562b, Roseovarius sp. 217, R.
mucosus DSM 17069, Roseovarius sp. TM1035

Leisingera P. gallaeciensis ANG1, L. aquimarina DSM 24565, L.
methylohalidivorans DSM 14336, L. caerulea
DSM 24564, L. aquaemixtae CECT 8399,
Rhodobacterales sp. Y4I, L. daeponensis DSM 23529,
Roseobacter sp. SK209-2-6, Pseudophaeobacter arcticus
DSM 23566, Roseobacter sp. MED193

high IC support. Common ancestry of O. temperatus, O. ascidiaceicola,
and the polar clade is less supported than indicated by its bootstrap
value in the MLSA phylogeny (Figure 3.2). Likewise, the positioning of
isolate E8 directly outside this clade is only slightly more frequent in
the individual phylogenies than alternative bifurcations (indicated by
a low IC score).

The content-based hierarchical clustering shows a topology similar
to the network. Notably, O. arcticus and O. antarcticus are grouped
together, and the PAMC isolates form a separate group inside the polar
cluster.
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Figure 3.3: Linking core-gene phylogenies to gene content in the Octadecabac-
ter clade. The left is a consensus cluster network representation (>20% fre-
quency) of 1,513 individual Octadecabacter core-gene phylogenies. Note the
ambiguous positioning ofO. antarcticus. Black and red numbers are IC and TC
scores, respectively. The right presents a NJ tree computed from the pairwise
Jaccard-distances in gene presence and absence. See Section 2.7 for methods.
Scales in expected number of substitutions (left) and distance (right). Both
trees were manually rooted, using isolate NH9-P7 as outgroup. Coloured
backgrounds and roman numerals indicate groups for gene content compar-
ison (see main text).

3.3 general gene content

3.3.1 Pan-genome analysis

Pan- and core-genome sizes bynumber of includedgenomes are shown
in Figure 3.4 for the Octadecabacter clade. The fitted power law curve,
with an exponent of 0.512, does not reach saturation. Their extrapolated
core-genome size is 1,496. Table 3.3 provides standard deviations (SDs)
for both parameters, as well as fitting results for lineages within other
Roseobacter groupgenera,which branch at a similar phylogenetic depth.
Over all roseobacter genomes used in this study, the pan-genome expo-
nent is 0.66, and the estimated core-genome size is 287 (Figure 3.5, see
bottom of Table 3.3 for SDs). Concerning the latter analysis, it should be
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noted that the sample size of 600 at each number of genomes is still rep-
resentative of the underlying distribution, although small compared
to the number of possible combinations (e. g.

(
114
60

)
≈ 13 · 1033) [188].

Figure 3.4: Number of pan- and core-OGs for all possible permutations of the
indicated number of genomes from the Octadecabacter clade. Curves were
fitted based on the median values.

Table 3.3: Exponent b of the pan-genome, and extrapolated core-genome
size of the core-genome curve fits are provided for the Octadecabacters, as
well as lineages within other Roseobacter group genera (see Table 3.2). Values
represent estimate ± SD. n: number of genomes

ass . genus n b core

Octadecabacter 9 0.51 ± 0.03 1,496± 17

Loktanella 12 0.644± 0.025 1,162± 20

Sulfitobacter 9 0.632± 0.018 1,477± 24

Leisingera 9 0.526± 0.024 2,027± 34

Roseovarius 7 0.525± 0.025 1,357± 369

all genomes 114a 0.660± 0.001 287± 6

a as in Table 2.2, excluding Parvularcula bermudensis (outgroup
genome), and Phaeobacter sp. LSS9

Koonin andWolf [189] propose to divide the pan-genome into three
categories, based on its frequency in the constituent genomes:
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Figure 3.5: Sizes of pan- (top) and core-genome (bottom) for at least 600 ran-
dom combinations of the indicated number of genomes from the Roseobacter
group (Table 2.2). Curves were fitted based on the median values.

i the core-genome, consisting of genes present in all or the vast major-
ity of comparison organisms,

ii the cloud-genome, containing geneswhich are less frequent than the
core-genome, but occur in multiple of the comparison genomes,
and

iii the shell-genome, i. e. genes exclusive to one or a few organisms.

In the Octadecabacter clade, with nine sequenced representatives, sen-
sible boundaries for these categories are n = 9 for the core-, 1 < n < 9
for the cloud-, and n = 1 for the shell-genome, with n being the
number of genomes sharing a respective OG. Absolute CDS counts of
each category are provided in Figure 3.6 for each compared genome
individually. In all cases, the core-genome, at 1,609 OGs, makes up the
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largest respective fraction of CDSs. The polar Octadecabacter genomes
are larger and contain, on average,≈800 more CDSs than the temperate
strains (apparent also from Table 3.1). Most of these CDSs fall into the
shell-genome, i. e. are exclusive to a single representative (note that this
observation is partially masked in the PAMC-isolates by their high pair-
wise similarity, i. e. close relation, to each other). O. arcticus possesses
the largest absolute shell-genome among the currently sequenced rep-
resentatives (making up ≈30% of its CDSs).

Figure 3.6: Genome category sizes (in number of unique genes, i. e. discount-
ing paralogues) for each Octadecabacter clade genome. Category boundaries
in number of genomes nwere n = 9 for core-, 1 < n < 9 for cloud-, and n = 1

for shell-genome.

3.3.2 Distribution of COG categories

The number and frequency of genes in different COG categories were
analysed for the four Octadecabacter clade groups defined in Sec-
tion 3.2. The fact that polar Octadecabacter clade members (group I)
possess larger genomes than the others (Table 3.1) has to be taken into
account when performing a direct comparison. Generally, three dis-
tinct trends of COG category size change are possible by comparing
larger with smaller genomes:

i the number of genes in a category may remain the same, or de-
crease, which concomitantly decreases this category’s fraction of
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the total COG content (which will be referred to as a negative size
correlation from here on),

ii the number of genes in a category may increase linearly with the
total number of genes, and this category will therefore occupy the
same genome fraction in small and large genomes, and

iii the number of genes in a category may increase super-linearly
with the total number of genes, leading to this category occupying
a larger fraction of the total COG content.

Both, absolute numbers and category fractions are provided for the
four groups in Figure 3.7. Visually, each COG category was assigned to
one of the three behaviours described above, summarised in Table 3.4.

(a) COG categories B, C, D, F, H, L, N, O, Q, S, U, V, W, and Z

Figure 3.7: Mean absolute numbers of COGs in each category are plotted
against its fraction of total COG content as diamonds. Dots show individual
values of the constituent genomes. Groups are as defined in Section 3.2. Bars
indicate SD).
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(b) COG categories E, G, I, J, K, M, P, R, T, and X

Figure 3.7: COG category distributions in the Octadecabacters (continued)

Table 3.4: COG category trends in polar Octadecabacter clade genomes com-
pared to the temperate strains. Trends were derived from Figure 3.7. For their
definitions, see the main text.

negative correlation with genome size

C Energy production and conversion
F Nucleotide transport and metabolism
H Co-enzyme transport and metabolism
J Translation, ribosomal structure, and biogenesis
M Cell wall, membrane, and envelope biogenesis

O Posttranslational modification, protein turnover, and
chaperones



38 results

Table 3.4: continued

S Function unknown

linear increase with genome size

E Amino acid transport and metabolism
I Lipid transport and metabolism
K Transcription
N Motility
P Inorganic ion transport and metabolism
Q Secondary metabolite biosynthesis, transport and metabolism
R General function prediction only
T Signal transduction mechanisms
U Intracellular trafficking, secretion, vesicular transport
V Defence mechanisms

super-linear increase with genome size

G Carbohydrate transport and metabolism
L Replication, recombination, and repair
X Mobilome (prophages, transposons)

unclear trend

B Chromatin structure and dynamics
D Cell cycle control, cell division, chromosome partitioning
W Extra-cellular structures
Z Cytoskeleton

3.4 group-specific genes

Figure 3.8 gives an overview of the number of genes specific to eachspecific – present in
all members of one

group and absent in
all other groups

group defined in Section 3.2, and any of their combinations. po2group_
stats.pl estimates a core-genome size of 1,609 for the nine genomes.
At 90, group I (polar Octadecabacters) has the highest number of spe-
cific genes (discounting the 795 accessory genes of isolate E8). Paralo-
gous genes in the reference genome, listed by po2group_stats.pl as
multiple entries, were only counted once. The individual genes specific
to each group are provided in Tables A.2 to A.5, Appendix A.4, p. 135.

Fifty-five of the 90 genes specific to polar Octadecabacters are co-
localised at 10 positions, with cluster sizes ranging from 2 to 14. Sev-
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enteen genes are annotated as hypothetical proteins (or their functions
are not clearly specified), and 5 as transposases or recombinases.

Figure 3.8: 4-set Venn diagram showing number of genes shared between and
specific to each group defined in Section 2.10.2.

Cases in which multiple genes are encoded directly adjacent to each
other, in conserved gene clusters, are of particular interest, as adjacency
often entails functional interaction or interrelation [190]. Therefore,
these cases will be discussed concomitantly in the following sections.

Since the adaptation of polar Octadecabacters (group I) to their ex-
treme habitat is ofmain interest, focuswill be placed on the description
and interpretation of genes specific to this group.

Comparison group IV consists of isolate E8 as the only member,
and its 795 specific genes therefore constitute the accessory genome of
this strain. As a generalisation from one individual is not meaningful,
discussion of these genes will be omitted here.

3.4.1 Genes specific to polar Octadecabacters

As stated above, 55 of the 90 genes specific to polar Octadecabacters are
co-localised at 10 positions. The corresponding gene products include



40 results

several transcriptional regulators such asMarR, stress-related proteins,
a xanthorhodopsin, dehydrogenases, and enzymes for the degradation
of various substrates (Figures 3.9 to 3.18). Seventeen genes are either
annotated as hypothetical proteins, or their functions are not clearly
specified.

Figure 3.9: MarR-associated gene cluster in polar Octadecabacters

Polar Octadecabacter-specific regulatory proteins include a member
of the MarR-family (Figure 3.9). MarR trancriptional regulators are
associated, among other factors, with oxidative stress in E. coli [191].
The corresponding gene is usually found adjacent and divergently
transcribed to the target genes it regulates, and through binding the
intergenic region, it represses both its own and its targets’ transcrip-
tions [191]. The current model of its inactivation through oxidative
stress is as follows: oxidation of one ormultipleMarR cysteine residues
leads to conformational changes, which impair DNA-binding of this re-
pressor and subsequently lead to transcription (activation) of its target
operon [191]. The corresponding oxidative stress signal was recently
found to be brought about by copper ions, released upon cell enve-
lope stress, in E. coli [192]. MarR may also be involved in metabolic
regulation, where it is activated by binding to a specific substrate, and
consequently acts as transcriptional activator of the respective catabolic
pathway, binding upstream of the respective genes [193].
It has not yet been experimentally tested whether the conserved,

polar Octadecabacter-specific cluster formed by MarR and its three
neighbouring genes is actually under MarR regulation. However, the
corresponding gene functions, which are involved in stress response
indicate this: in cases in which it is induced by stress, MarR is often
associatedwith efflux pumps [191], and the downstreamneighbouring
gene octa_06090 has >70% identity to a sodium:proton antiporter in a
referencemember of theRhodobacteraceae. One of the factors severely af-
fected by oxidative stress is sulphur biochemistry [49], and fittingly, the
next downstream neighbour in polar Octadecabacter MarR-gene clus-
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ters encodes an NfuA-like gene product. NfuA assists FeS-cluster bio-
genesis, likely by binding newly synthesised FeS-clusters and shuttling
them to their targets [194]. It can thus shield these FeS-clusters from
the intracellular environment, thereby protecting them from oxidative
stress [194]. For example, aconitase B of the tricarboxylic acid (TCA)
cycle is one important NufA target in E. coli [194].
The final gene found in conjunction with this MarR-associated gene

cluster is a sigma factor related to σ32, although it is not always
in direct neighbourhood. This sigma factor is involved in the heat-
shock response of E. coli, but also regulates transcription of additional
genes [195]. For polar Octadecabacters, it may exert a protective func-
tion by inducing expression of chaperones. Notably, it may also be
involved in maintenance of proper sulphur biochemistry through in-
duction of thioredoxin expression [195].

Figure 3.10: AAA ATPase specific to polar Octadecabacters

A potentially stress response-associated gene specific to polar Oc-
tadecabacters is an AAA ATPase (Figure 3.10). These are found in all
domains of life and generally induce conformational changes in pro-
teins upon adenosine triphosphate (ATP)-phosphorylation [196]. They
act in a wide range of cellular processes, most notably in protein un-
folding at the proteasome lid, dis-assembly of protein aggregates and
complexes, and membrane protein extraction for subsequent degra-
dation [196]. This unfolding property may be particularly important
for polar Octadecabacters, due to the low resident temperatures of
their habitats. As described in Section 1.2, the cell membrane becomes
more rigid at low temperature, which may necessitate this additional
factor for proper membrane protein extraction and degradation. Al-
though protein stability is generally decreased as adaptation to low
temperatures, the specific properties of some proteins might still re-
quire accessory functions for their successful degradation, such as the
AAA ATPase.

Another, apparently stress-associated, component found only in po-
lar Octadecabacter genomes affects cellular selenium biochemistry
(Figure 3.11). Selenium is an important trace element, whichmay be in-
corporated into proteins (mostly in the form of selenocysteine) and nu-
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Figure 3.11: Selenium-binding protein specific to polar Octadecabacters

cleotides [197]. All Octadecabacter clade members seem to synthesise
selenophosphate (via the product of selD) and to use 2-selenouridine-
modified tRNA (selU gene). Free selenium species induce oxidative
stress, most importantly by binding glutathione molecules, thereby
forming O−

2 radicals [198]. Detoxification happens via reduction by
thioredoxin [197], or, at lower rate, spontaneously-formed elemental
selenium (Se0). Selenium-binding proteins (SBPs) may bind free se-
lenium species through exposed thiol groups and shuttle them to
selenophosphate synthase, thereby shielding them from the cellular
environment [197]. However, other thiol-containing cellular enzymes,
such as 3-mercaptopyruvate sulfurtransferase (3-MST) and glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH), bind and release free se-
lenium effectively, and could therefore suffice as shuttles to supply
selenophosphate synthase with selenium [197, 199]. The function of
SBPs consequently remains elusive to this day [197].

Figure 3.12: Xanthorhodopsin gene cluster specific to polar Octadecabacters

All polar Octadecabacter strains contain a rhodopsin-coding gene
cluster (Figure 3.12), enabling potential photoheterotrophic life strate-
gies. Bacterial rhodopsins were originally discovered in a marine fos-
mid clone [200], and it is now clear that they are more abundant than
photochemical reaction centres inmostmarine habitats [201]. Vollmers
et al. described a new subgroup of rhodopsins, the so-called group II
xanthorhodopsins in O. arcticus and O. antarcticus, which they associ-
ated with cold and saline habitats [77]. The gene locus organisation of
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this group of rhodopsins is also conserved, with the five genes needed
for synthesis of the rhodopsin’s chromophor retinal localised down-
stream of the opsin gene [77] Phylogenetic reconstruction of the PAMC
isolate-derived rhodopsins (see Figure A.6 on page 168), as well as the
organisation of the gene locus (Figure 3.12) revealed that these belong
to the same group. The fact that in the present analysis, group II xan-
thorhodopsins were found to be specific for all polar Octadecabacters,
supports the association by Vollmers et al. While this type of phototro-
phy is relatively rare among Roseobacter group members (eight out
of 115 genomes used presently, including one proteorhodopsin), xan-
thorhodopsins are generally exclusive to polar roseobacters, and occur
in the majority of them, as visualised in Figure A.5 (p. 167).
The cellular role of xanthorhodopsins is currently still unclear, and

may differ greatly between species [202]. Generally, xanthorhodopsins,
like their more abundant sister-group proteorhodopsins, utilise light
energy to translocate protons across the cell membrane, thereby gen-
erating a proton-motive force [200, 203]. This force could be used for
ATP-synthesis, ion transport, or flagellar propulsion [202]. Importantly,
in E. coli, proteorhodopsin was not able to create a greater membrane
potential than the respiratory chain [204], consequently not adding
to the proton-motive force and the observed growth speed. However,
it was able to recover the membrane potential when the respiratory
chain was blocked, implying a protective function for the cell during
respiratory stress [204].
Experiments on Vibrio species implied involvement of proteorho-

dopsin in starvation survival [205], and Vollmers et al. hypothesised
a similar function for the xanthorhodopsins of the sea ice residents O.
arcticus and O. antarcticus [77].

The largest gene cluster specific for polarOctadecabacterswas found
to consist of 15 syntenic genes in the PAMC isolates, but two separate re-
gions, respectively, inO. arcticus andO. antarcticus (Figure 3.13). In this
cluster, a LacI-family transcriptional regulator is found adjacent and
divergent tomultiple partly overlapping genes, indicating that the clus-
ter constitutes an operon. This family usually regulates carbohydrate
metabolism [206], which concurs with the downstream presence of a
CUT 1 family carbohydrate ABC-transporter. The CUT 1 family may
transport a broad range of substrates, such as polyols, oligosaccharides,
or glycerol-phosphate [207]. An adjacent dihydroxyacetone (DHA) ki-
nase is involved in glycerol degradation [208]:DHA is formed fromglyc-
erol through the action of a dehydrogenase, and subsequently phos-
phorylated to form DHA phosphate (DHAP), a glycolysis intermediate.
Notably, the Octadecabacters do not possess the respective dehydro-
genase (instead, all Octadecabacters degrade glycerol via phosphory-
lation using a glycerol kinase, and subsequent oxidation to DHAP). In-
stead, DHA may be imported from the environment (e. g. through the
ABC-transporter in question), as has been observed for other hyper-
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Figure 3.13: Cluster of genes associated with uptake and degradation of car-
bohydrates, specific to polar Octadecabacters

saline communities: in short, primary producers synthesise glycerol
as osmoprotectant, which heterotrophs then take up for degradation.
A part of the imported glycerol may be secreted again, after oxidation,
as DHA [209]. DHA thus constitutes an overflow product [209]. The sit-
uation may be similar in the sea ice habitats of polar Octadecabacters,
since they live in close associationwith primaryproducers, and salinity
often reaches near-saturation levels in brine channels (Section 1.2).

The remaining genes in this region possess similar functions: sub-
units of a glycerol ABC-transporter are localised beside an incomplete
CUT 1 system, and both are specific to polar Octadecabacters. Further-
more,with thepresence of a glycerol kinase and aglycerol-3-phosphate
dehydrogenase, the complete pathwayof glycerol degradation is found
in this locus, under the control of a DeoR-family transcriptional regu-
lator. The latter three components are not exclusive to polar isolates, as
orthologues of these can be found in all Octadecabacter clade genomes
sequenced to date.
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In conclusion, this locus seems to be involved in glycerol degrada-
tion in polar Octadecabacters. This degradation may also be regulated
in response to osmotic and temperature changes, since glycerol is syn-
thesised as both osmo- and cryoprotectant by many algae.

Figure 3.14: RpiR- and TetR-associated gene clusters specific to polar Octade-
cabacters

Another large cluster specific for polar Octadecabacters was found
to consist of a set of eleven syntenic genes, preceded by an inversely
transcribed RpiR-family regulator (Figure 3.14).

The role of the transcriptional regulator has not been characterised
in this group. RpiR was first described to repress ribose phosphate iso-
merase B of the pentose phosphate pathway in E. coli [210], whereas it
serves as an activator in Staphylococcus aureus [211]. Generally, the fam-
ily is involved in regulation of sugar catabolism [211, 212]. This could
functionally correlate with a downstream tripartite ATP-independent
periplasmic (TRAP) transport system encoded in the same gene cluster.
The twin-arginine translocation pathway signal sequence is annotated
as the dctP component of a TRAP system in O. arcticus and O. antarcti-
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cus, thus constituting a complete system. These transport a wide range
of substrates in different organisms, including ectoin and carboxylic
acids [213]. It is important to note that substrate specificity can only
reliably be determined in vitro [214]. However, uptake of mannitol,
as suggested by automatic annotation, or a similar compound would
provide intermediates for use in either glycolysis, or the pentose phos-
phate pathway.

Apart from the TRAP transporter, genes for a spermidine/putrescine
ABC-transport system are also located at this site. All Octadecabacters
possess several copies of this transporter, and are able to degrade pu-
trescine via the putrescine utilisation pathway (puu operon [215]), but
its corresponding biosynthetic pathway is absent. Polyamines gener-
ally provide protection against a number of stress factors [216], but
also serve as a nitrogen source. Indicative of a primary role as nitrogen
donor in this context is an upstream glutamine synthetase (GS) gene
within the same cluster, the product of which constitutes the primary
mechanism of nitrogen assimilation [217].

A predicted N-formylglutamate amidohydrolase within the same
cluster could catalyse the last step in histidine degradation (see Sec-
tion 3.5.4 for more detailed information), which yields glutamate and
formate. The former serves as substrate for GS, thereby increasing the
capacity for nitrogen uptake.

In addition, a TetR-family regulator can be found upstream, in rel-
atively close proximity to this gene cluster in the PAMC isolates, but
at varying locations and genomic contexts in the polar Octadecabac-
ter type strains. This family of regulators can affect a wide range of
functions, includingmetabolic homoeostasis [218]. It is, however, most
often associated with the regulation of efflux pumps under conditions
of cellular stress [218].
In conclusion, the genes in this cluster may be primarily involved

in the regulation of purine and pyrimidine synthesis, since both glu-
tamine, and intermediates of the pentose phosphate pathway are re-
quired as substrates in these pathways.

Three of the polar Octadecabacter-specific genes were found to lie
in close proximity, albeit not directly adjacent to each other, in most
of the four genomes (Figure 3.15). Among them is a transporter of the
BASS family, which imports (primarily) bile acids in conjunction with
sodium ions, and has beenwell characterised in animals [219]. The fam-
ily is also known to transport other substrates, such as steroids and their
derivatives [219]. Structural data and general characterisations of this
family are sparse in prokaryotes [220], andwe are consequently lacking
detailed information regarding their functions and substrates in this
group of organisms. Generally, however, bile salts frequently occur in
the environment, and can be used as the sole carbon source by some
bacteria, although the genetics and regulation behind this process are
currently poorly characterised [221]. Similarly, myo-inositol widely oc-
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Figure 3.15: Genes specific to polar Octadecabacters, which may be involved
in degradation of diverse substrates

curs in natural habitats, and is readily degraded by diverse bacteria to
DHAP and acetyl-coenzymeA (CoA) (Ac-CoA) [222–225].myo-inositol de-
hydrogenase,whichwas found to be specific for polarOctadecabacters,
catalyses the first step in myo-inositol degradation [226]. Usually, the
genes needed for its catabolism are organised in the iol-operon [226],
and an orthologous form of this operon is present in all currently
sequenced Octadecabacters except for isolates E8 and NH9-P7. The
polar-specific dehydrogenase is non-paralogous to its homologue in
this operon, and was therefore likely gained by a common ancestor of
the polar Octadecabacters through lateral transfer.

Finally, a polar Octadecabacter-specific 3-hydroxyisobutyrate dehy-
drogenase gene is positioned downstream and adjacent to a (non-
specific) carbohydrate ABC-transporter. Its gene product is involved
in valine degradation, which ultimately results in succinyl-CoA. CUT 2-
family transporters are usually specific formonosaccharides [207], and
the transport system found at this location therefore likely is not in-
volved in either valine, or myo-inositol uptake.

Without appropriate experimental examination, a detailed function
of these three specific genes remains unknown. However, they gener-
ally seem to be involved in the uptake and degradation of carbohy-
drates, thereby broadening the spectrum of substrates polar Octade-
cabacters can utilise for their growth.
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Figure 3.16: mtnA and fucA in polar Octadecabacters

An mtnA gene (and its immediate genomic context) was also found
tobe specific for polarOctadecabacter isolates (Figure 3.16). Its product,
methylthioribose-1-phosphate isomerase, participates in the methion-
ine salvage pathway, which may not be complete in these organisms
(see Section 3.5.3).

In O. arcticus and O. antarcticus, this gene is directly adjacent to the
group-specific fucA, coding for l-fuculose-phosphate aldolase. This en-
zyme is involved in l-fucose and d-arabinose degradation, and specif-
ically converts l-fuculose-1-phosphate to DHAP [227]. The two genes
could therefore broaden the range of substrates polar Octadecabacters
can use for growth, thereby reflecting diversity as well as scarcity of
nutrients in their natural habitats.

Figure 3.17: Genes encoding DNA polymerase V specific to polar Octade-
cabacters

Among the OGs specific to polar Octadecabacters are genes coding
for a DNA polymerase (Figure 3.17). DNA polymerase V belongs to
the Y-family of polymerases, and is involved in error-prone repair
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of DNA damage, most notably translesion DNA synthesis (TLS) [228].
A heterotrimeric UmuD ′2C complex forms the functional polymerase.
While no annotated umuC gene was found in the PAMC isolate 27225,
and this gene can therefore currently not be considered group-specific,
this is likely due to the high fragmentation of that genome (Table 3.1).

Generally, DNA Pol V is strongly induced after ultraviolet (UV) ir-
radiation, which is seasonally intense in the polar regions [50], and
exacerbated by decreasing atmospheric ozone content [229]. Induction
happens at a late stage of the stress response, and this is interpreted
as a compromise between its ability to perform TLS and its low fidelity
(it possesses no 3’-5’ exonuclease activity) [228]. Importantly, the high
mutability was also shown to constitute an adaptive advantage: when
Yeiser et al. co-incubated umu-deficient and wildtype E. coli, the wild-
type always outgrew and ultimately eliminated the mutant [230]. The
multiple copies of umuC/D in the polar Octadecabacter genomes may
therefore constitute less the result, and more a means of adaptation to
a new environment.
The short hypothetical protein found in conjunction with both umu

genes contains a domain of unknown function (DUF) 1127, and has
orthologues in multiple other Roseobacter group bacteria.

Figure 3.18: Dehydrogenase gene cluster specific to polar Octadecabacters

Four dehydrogenase genes which are involved in the TCA cycle, the
central component of cellularmetabolism, are specific for polarOctade-
cabacters (Figure 3.18). These seem to represent additional variations of
common TCA cycle components, which are non-orthologous to those
of the other Octadecabacters. Although redundant, the fact that the
four genes are group-specific and conserved in order suggests that
they are part of a specific regulatory stage in polar Octadecabacters.

According to automatic annotation of isolate PAMC 27224, two genes
code for the E1 component of pyruvate dehydrogenase, although these
are usually difficult to distinguish from the respective subunits of ace-
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toin dehydrogenase. Both enzyme complexes form Ac-CoA, the former
from pyruvate, thereby linking glycolysis with the TCA cycle, and the
latter from acetoin [231].

2-Oxoglutarate (=α-ketoglutarate (α-KG)) dehydrogenase forms suc-
cinyl-CoA from α-KG.

The three enzyme complexes are structurally related. Each consists
of three components (named E1-3), the last of which is freely shared
between all [231]. However, none of the other components were found
as orthologues specific for the polar Octadecabacters.

Succinate-semialdehyde dehydrogenase produces succinate from its
semialdehyde, which in turn derives from, e. g. putrescine degrada-
tion [215].

The TCA cycle is a central component of cellular metabolism, both
providing reducing equivalents for oxidative phosphorylation, as well
as contributing important precursor molecules to biosynthesis, among
other functions [232]. Flux models of E. coli predict that this central
pathway, along with the amino acid and purine synthesis pathways
and a few others, dominates metabolic flux in the cell at most times, a
network which is termed the high-flux backbone (HFB) [233]. It is this
HFB through which the cell reacts to changes in nutrient availability,
by changing the flux through individual reactions, and (de-)activating
relevant auxiliary pathways [233]. Consequently, concomitant expres-
sion of the four dehydrogenase genes, induced under specific circum-
stances, may serve metabolic steering in the polar group, and may
be part of a cellular state or strategy, which is not encountered in the
other Octadecabacters. For example, pyruvate/acetoin dehydrogenase
would increase flux through the TCA cycle byprovidingAc-CoA, α-KGde-
hydrogenasewould steer flux towards succinate (away fromglutamate
synthesis), which would also be provided by succinate-semialdehyde
dehydrogenase. This configuration would consequently either lead to
increased generation of reducing equivalents and ATP through the TCA
cycle, or feed into biosynthesis pathways,which consume succinyl-CoA,
most importantly cobalamin and other tetrapyrroles [234].

The polar-specific genes, which are not part of consecutive regions,
generally mirror the adaptations described above, i. e. they are in-
volved in the cell’s response to oxidative stress, broaden the range
of usable substrates, or convey similar functions. For example, in ad-
dition to NfuA, two further group-specific enzymes are involved in
sulphur biochemistry: one protein of the cysteine desulphurase-family
(octa_09620), and a thiol-disulphide oxidoreductase of the DCC family
(octa_14550). The former transfers sulphur from cysteine to a range
of possible targets, and may be involved in biosynthetic processes of
thiamine, biotin, FeS-clusters, thionucleosides, and many other com-
pounds [235]. The latter class of enzymes manages the redox balance
of thiol-disulphides of the intra- and extracellular spaces [236]. In their
description of the DCC family, Ginalski et al. noted this family’s non-
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universal taxonomic distribution, and high evolutionary distance from
the related thioredoxin-like families, which they took as an indicator
of a specific, however still undetermined, function [237].

Besides copingwith an increasedpresence of reactive oxygen species,
bacteriamay adapt to alleviate the effects of higher oxygen solubility at
low temperatures by consuming more of it in enzymatic reactions [39].
Beside possessing, on average, slightly more genes coding for (oxygen
consuming) dioxygenases than the temperate clademembers, polarOc-
tadecabacters also possess group-specific enzymes, which convey this
function. One of these is the taurine dioxygenase TauD (octa_12020),
which cleaves taurine to sulphite and aminoacetaldehyde under con-
sumption of molecular oxygen [238]. They further possess a group-
specific glycine/D-amino acid oxidase (octa_06740), which partakes in
the degradation of amino acids through oxidative deamination [239].
As mentioned earlier, the polar Octadecabacters may frequently en-

counter situations of osmotic stress. Fittingly, they possess a group-
specific cation/H+ antiporter of the CPA1 family (octa_12300), which
is known to confer increased salt tolerance through increased export
of cations from the cell [240]. This type of anitporter was also shown
to be present in the genomes of other cold-adapted bacteria [39].
Regarding substrate utilisation, multiple individual components of

uptake systems for, e. g. phosphate, ribose, or simple sugarswere found
specific for thepolar group, in addition to those contained in the loci de-
scribed above. Furthermore, a group-specific 4-α-glucanotransferase
(octa_10680) may avail them maltose [241], or storage polysaccharides
such as glycogen [242] for degradation. These genes, in addition to the
examples discussed throughout this section, hint towards patterns of
nutrient availability which differ from the temperate Octadecabacter
clade members. A concomitant difference in co-factor synthesis and
utilisation was already indicated by the polar group-specific mtnA
gene, and, in addition, a pyridoxamine 5’-phosphate oxidase gene is
specific for polar Octadecabacters (octa_41850). This enzyme catalyses
the last step in pyridoxal-phosphate (vitamin B6) synthesis [243].
Finally, a copy of the small ribosomal subunit protein S21 (gene

name rpsU2, octa_12240), specific to polar Octadecabacters, is of note:
expression of this gene was found to increase drastically at lower tem-
peratures in the Cyanobacterium Anabaena variabilis [32], and it is part
of a cold shock-responsive operon found in Sinorhizobium meliloti [33].
Consequently, it seems to be directly involved in alleviating the effects
of lower temperatures by stabilising the ribosomal complex, as op-
posed to countering indirect effects, such as increased oxidative stress.

3.4.2 Genes specific to temperate Octadecabacter isolates

The majority of genes specific to both O. ascidiaceicola and O. tem-
peratus could not be assigned a specific function, as the products of
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43 out of 68 specific genes are annotated as hypothetical proteins (com-
pare Table A.3, p. 138). This indicates that the biochemical ormetabolic
features, which define this group, are generally poorly characterised.
In addition, most of the functions assigned to group-specific genes
are not exclusive to these two members. These genes constitute non-
orthologous versions of functions, which are also part of the Octade-
cabacter core-genome (unlike with most of the polar Octadecabacter-
specific genes discussed in the previous section).

Among the genes with an assigned function, those involved in stress
resistance dominate numerically. However, none of them are organ-
ised in group-specific loci, as found in polar Octadecabacters. Two
genes belong to the universal stress protein (Usp) A-family (COG 0589),
namely the stress response protein NhaX (oasc_04570, a gene exclu-
sively present in this group), and Usp F (oasc_20280). Its members are
usually involved in the response to a wide range of stress signals, such
as starvation, oxidative stress, or DNA damage [244]. For dealing with
the latter, both Octadecabacters possess a group-specific copy each of
DNA polymerase IV (oasc_15410), and a 3-methyl-adenine DNA glyco-
sylase (oasc_25850). Like polar Octadecabacters, this group therefore
seems to possess increased DNA repair capability, although both func-
tions are also present in the Octadecabacter core-genome. The tellurite
resistance protein TerB (oasc_12800) is specifically required to increase
tellurite resistance, but is also likely involved in integrating more di-
verse stress signals [245]. Taken together, these group-specific genes
hint towards differences in the general stress response network of this
group. Thismay correlatewith a group-specific orthologue of a toluene
efflux pump precursor (TtgF, oasc_10420), as well as a poly-β-1,6-n-
acetyl-d-glucosamine synthase (oasc_28310), and exopolysaccharide
synthesis ExoD (oasc_02050),which are both involved in biofilm forma-
tion [246, 247]. Organic solvents as stress agents, and biofilm formation
in response to stress signals may be of higher relevance for these par-
ticular strains, and could be integrated into the general stress response,
among others, by some of the genes described above. Similar func-
tionalities are also encoded in the Octadecabacter core-genome, and a
detailed account of the environmental integration of this group would
require experimental examination (e. g. via transcriptomic analyses).
A further interesting characteristic is the presence of a group-specific
spermidine synthase gene (oasc_20220), as this polyamine is involved
in the protection of DNA against oxidative stress, and biofilm formation
and surface-associated motility [248, 249]. A non-orthologous form of
this enzyme is only present in the shell-genome of isolate NH9-P7.
Only few group-specific functions are associated with metabolism.

They include an α-ketoglutaric semialdehyde dehydrogenase (oasc_
21950),which catalyses the last step in l-arabinose, and l-prolinedegra-
dation, among other substrates [250]. Thus, expansion of the substrate
range beyond that encoded in the Octadecabacter core-genome is not
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as pronounced in this group as it is in polar Octadecabacters, based on
genes with functional annotation.

Notably, none of the functionally characterised, group-specific OGs
are associated with genetic mobility (such as transposases or insertion
sequences (ISs)), underlining that the abundance of such functions is a
particular characteristic of polar Octadecabacters.

3.4.3 Genes specific to Pseudooctadecabacter-related genomes

The most striking characteristic of group III, formed by P. jejudonen-
sis and isolate NH9-P7, is their genetic ability to perform aerobic
anoxygenic photosynthesis (AAP), which constitutes 39 out of 78 group-
specific genes (Table A.4, p. 140). Photochemical reaction centres gen-
erally seem to increase metabolic efficiency, i. e. they maximise the
amount of biomass an organism can produce from its available nutri-
ents [251]. Their activity generates radicals, and is therefore a source
of oxidative stress [252]. Nonetheless, the former aspect seems to be
more important in the ecology of the two members, underlined by the
presence of a group-specific starvation-inducible DNA-binding protein
(OJEJ_33070).

Two out of nine Octadecabacter clade strains being theoretically able
toperformAAPfits the larger context of theRoseobactergroup, forwhich
31 out of 116 strains possess the relevant genes.
Interestingly, despite a higher potential load of autogenic oxidative

stress induced by performing AAP, the group-specific genetic equip-
ment relating to the cellular stress response is small compared to
groups I and II. For example, specific functions pertaining to DNA
damage repair, or the protection of sulphur species are absent. Both
strains possess a specific copy of a CspA-family β-ribbon cold-shock
protein (OJEJ_11070). This family acts to some extend in the transcrip-
tional regulation of genes involved in the cold-shock response, but,
more importantly, likely halts translation upon cold-shock until the
organism can adapt its metabolic network to the new conditions [30].
As such, this family is also present in all other Octadecabacter clade
genomes, but seems to play a larger role in the ecology and metabolic
regulation of P. jejudonensis and isolate NH9-P7.
As with group II, specific genes of group III are not organised in

functional loci (except for AAP-genes), and do not contain transposases
or other indicators of genetic mobility.

3.5 functional gene content evolution

Lineage-specific parameter values of the birth-and-death model are
depicted in Figure 3.19 for an overview of each parameter’s relative
importance at a given node in the Octadecabacter clade. Note that all
parameters are normalised to µ, which therefore equals 1 in all charts.
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The plot in the upper right corner shows the correlation between the
edge length parameter t estimated byCount, and the respective edge’s
length in the reference tree (Figure 3.2), subdivided into internal and
terminal branches.

Changes in COGs at the polar Octadecabacters’ latest common an-
cestor (LCA) are given in Table 3.5. Three polar Loktanella isolates were
included in the birth-and-deathmodel, which enabled a comparison of
COG changes along their and the polar Octadecabacters’ lineages. Only
COG changes at internal, i. e. ancestral nodes were considered to that
end, and are listed in Tables A.7 to A.11 (see Figure A.8 on p. 172 for
an overview). The ancestor of the two temperate species O. temperatus
andO. ascidiaceicolawas included as a non-polar comparison group. In
general, ancestors of polar strains do not showhigher similarity to each
other than to the temperate ancestor. This situation remains unchanged
when gains and losses at their respective leaf nodes are included in the
comparison. Two COGs were specifically newly gained at the ancestral
lineages of all polar isolates: COG 1484 (DNA replication proteinDnaC),
and COG 2608 (Copper chaperone CopZ). Conversely, only one COG
shows similar behaviour between the temperate and more than one
polar ancestor: COG 0848 (Biopolymer transport protein ExbD).
General pathways affected by the COG content changes listed in Ta-

ble 3.5 will be described in the following sections.

Table 3.5: Changes in COGs at the polar Octadecabacters’ LCA, as predicted by
Count. Only COGswith a probability of change p > 0.5 at this node are listed.
The approximate probability ratios are given on the right, with green and
red indicating gain and loss, respectively. Relevant probabilities are gain (G) :
expansion (E) : neutral (N, no change), and loss (L) : reduction (R) : neutral (N).
A box indicates the highest probability, and is filled if it surpassed the second-
highest by at least 50%. The rightmost column gives the orders of magnitude
between the highest and lowest ratio (the latter is always 1). COGs are sorted by
category, with the respective category code given on the left. COGs assigned
to more than one category are listed multiple times.

cog id description g :e :n/l :r :n

C

0578 Glycerol-3-phosphate
dehydrogenase

1 75 73 10
3

1071
TPP-dependent pyruvate or
acetoin dehydrogenase
subunit α

1 51 27 10
4

1359 Quinol monooxygenase YgiN 319 1 319
1454 Alcohol dehydrogenase, class IV 5 1 2
3794 Plastocyanin 3 4 1
5524 Bacteriorhodopsin 173 1 15 10

3
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Table 3.5: continued

cog id description g :e :n/l :r :n

E

0182

Methylthioribose-1-phosphate
isomerase (methionine salvage
pathway), a paralog of eIF-2B
α subunit

105 1 19 10
3

0263 Glutamate 5-kinase 1 4 1 10
5

0620 Methionine synthase II
(cobalamin-independent)

497 1 200

1231 Monoamine oxidase 1 11 5

2113
ABC-type proline/glycine
betaine transport system,
periplasmic component

1 55 40 10
4

2986 Histidine ammonia-lyase 39 1 14 10
2

2987 Urocanate hydratase 44 1 15 10
2

3741 N-formylglutamate
amidohydrolase

1 50 17 10
4

3931 Predicted N-formylglutamate
amidohydrolase

1 36 22 10
3

4175
ABC-type proline/glycine
betaine transport system,
ATPase component

1 38 27 10
4

4176
ABC-type proline/glycine
betaine transport system,
permease component

1 38 27 10
4

F 0737

2’,3’-cyclic-nucleotide
2’-phosphodiesterase / 5’- or
3’-nucleotidase, 5’-nucleotidase
family

1 4 3 10
3

1051 ADP-ribose pyrophosphatase
YjhB, NUDIX family

1 30 9 10
3

G
0058 Glucan phosphorylase 78 1 7 10

3

1640 4-α-glucanotransferase 78 1 7 10
3

2376 Dihydroxyacetone kinase 745 1 465

H

0351
Hydroxymethylpyrimidine /
phosphomethylpyrimidine
kinase

25 1 1

0352 Thiamine monophosphate
synthase

1 95 16 10
2
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Table 3.5: continued

cog id description g :e :n/l :r :n

0414 Pantothenate synthetase 184 1 28 10
3

0819 Thiaminase 116 1 51

2022 Thiamin biosynthesis thiazole
synthase ThiGH, ThiG subunit

1054 1 235

2145 Hydroxyethylthiazole kinase,
sugar kinase family

3009 1 631

2241 Precorrin-6B methylase 1 26 1 18 10
2

2242 Precorrin-6B methylase 2 41 1 11 10
3

K 1974
SOS-response transcriptional
repressor LexA (RecA-mediated
autopeptidase)

1 34 18 10
5

4567

Two-component response
regulator, ActR/RegA family,
consists of REC and Fis-type
HTH domains

1 32 5 10
4

L

0582 Integrase 1 8 8
1484 DNA replication protein DnaC 531 1 40

3593

Predicted ATP-dependent
endonuclease of the OLD family,
contains P-loop ATPase and
TOPRIM domains

4740 1 1053

3598 RecA-family ATPase 223 1 59

M 0381 UDP-N-acetylglucosamine
2-epimerase

5122 1 2379

O
0694

Fe-S cluster biogenesis
protein NfuA,
4Fe-4S-binding domain

1 153 30 10
4

1305 Transglutaminase-like enzyme,
putative cysteine protease

1 1 2

2761 Predicted dithiol-disulfide
isomerase, DsbA family

1 38 16 10
3

P
0025 NhaP-type Na+/H+ or K+/H+

antiporter
1 29 22

2608 Copper chaperone CopZ 3852 1 1914
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Table 3.5: continued

cog id description g :e :n/l :r :n

4638

Phenylpropionate dioxygenase
or related ring-hydroxylating
dioxygenase, large terminal
subunit

1 15 10 10
3

Q 1228 Imidazolonepropionase or
related amidohydrolase

107 1 67

R

0385 Predicted Na+-dependent
transporter

652 1 644

2321 Predicted metalloprotease 32 1 24 10
2

2910 Putative NADH-flavin reductase 1507 1 569

3380 Predicted NAD/FAD-dependent
oxidoreductase

105 1 34 10
2

3450 Predicted enzyme of the
cupin superfamily

932 1 87

3607 Predicted lactoylglutathione
lyase

61 1 41 10
2

4122 Predicted
O-methyltransferase YrrM

41 1 3 10
3

4638

Phenylpropionate dioxygenase
or related ring-hydroxylating
dioxygenase, large terminal
subunit

1 150 98 10
2

S

0398

Uncharacterized membrane
protein YdjX, TVP38/TMEM64
family, SNARE-associated
domain

1 88 33 10
3

1357 Uncharacterized protein YjbI,
contains pentapeptide repeats

72 1 32

2833
Uncharacterized conserved
protein, contains ferritin-like
DUF455 domain

24 1 4 10
3

2841 Uncharacterized conserved
protein YdcH, DUF465 family

57 1 18 10
3

4067 Uncharacterized conserved
protein

75 1 10 10
3

5345 Uncharacterized protein 303 1 10 10
3



58 results

Table 3.5: continued

cog id description g :e :n/l :r :n

T

1409 3’,5’-cyclic AMP
phosphodiesterase CpdA

4 4 1

1974
SOS-response transcriptional
repressor LexA (RecA-mediated
autopeptidase)

1 340 176 10
4

4567

Two-component response
regulator, ActR/RegA family,
consists of REC and Fis-type
HTH domains

1 320 54 10
3

5524 Bacteriorhodopsin 173 1 15 10
3

U 3505
Type IV secretory pathway,
VirD4 component,
TraG/TraD family ATPase

1196 1 360

V
0737

2’,3’-cyclic-nucleotide
2’-phosphodiesterase/ 5’- or
3’-nucleotidase, 5’-nucleotidase
family

1 4113 3321

1787 Endonuclease,
HJR/Mrr/RecB family

2075 1 1765

2746 Aminoglycoside
N3’-acetyltransferase

462 1 37 10
3

X

0582 Integrase 1 8 8

1943 REP element-mobilizing
transposase RayT

2 1 1

2826 Transposase and inactivated
derivatives, IS30 family

237 22 1

3415 Transposase 970 1 619
3547 Transposase 18 6 1

5433
Predicted transposase
YbfD/YdcC associated with
H repeats

1841 1 983

3.5.1 Thiamine metabolism

All sequenced Octadecabacter clade members possess the genes neces-
sary for thiamine uptake (via the ABC-transporter ThiBPQ) and sub-
sequent conversion to thiamine di- and triphosphate (via the thiamine
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Figure 3.19: Lineage-specific components of transfer (κ), loss (µ), duplica-
tion (λ), and edge length (t) parameters, as estimated by Count (Section 2.9).
Tree presents t directly (but disregard dotted lines), while the other parame-
ters are provided in bar charts. All parameters (including t) are normalised
to µ, which therefore equals 1 in all charts. Charts at internal nodes are filled
with grey background. Plot shows relation between t and edge length in the
ML-tree for internal (grey) and terminal nodes (hollow circles).
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pyrophosphataseThiN). In addition, thepolarOctadecabacters, aswell
as O. ascidiaceicola, can synthesise thiamine de novo: COGs 0351, 0352,
and 2022 constitute three genes in thiamine biosynthesis (thiD, E,
and G, respectively), to which the phylogenetic birth-and-deathmodel
assigns high likelihoods of gain (thiD, G), or expansion (thiE) at the po-
lar Octadecabacters’ ancestral node (see Table 3.5, category H). There
are multiple other genes required for thiamine synthesis (summarised
well by Jurgenson, Begley, and Ealick [253]), all of which are present
in the five genomes. The model assigns a higher probability to the in-
dependent acquisition of the respective genes by O. ascidiaceicola, than
to them being present in a common ancestor of (and subsequent ver-
tical heredity to) the polar Octadecabacters and O. ascidiaceicola (and
their loss inO. temperatus). Interestingly, the five genomes also contain
a single copy of a THI5-like gene. These are known from yeasts, in
which they synthesise hydroxymethyl pyrimidine (HMP), one of the
two thiamine precursors, from pyridoxin and histidine [254]. Usually,
in prokaryotes ThiC, which is also present in all five Octadecabacter
clade genomes, synthesises this compound from 5-aminoimidazole
ribotide, an intermediate in purine biosynthesis [253]. In contrast to
THI5, ThiC consumes S-adenosylmethionine (SAM) (in form of a 5´-
deoxyadenosyl radical), and requires a 4Fe-4S cluster as co-factor.

COGs 0819 (TenA) and 2145 (ThiM) encode enzymes involved in
thiamine salvage [253], the latter being exclusive to the polar members.
Of the two, TenA cleaves the unphosphorylated form of thiamine and
seems to function in recycling of the HMP moiety [255], while ThiM
functions in thiazole-salvage [253].
Generally, thiamine, like the other B vitamins, is a co-factor often

exchanged between microbes in mutualistic relationships [256]. Pres-
ence of its biosynthetic pathway in the polar Octadecabacters and O.
ascidiaceicola therefore reflects differences in these relationships in their
respective environments compared to the other clade members. Thi-
amine is produced by the majority of marine prokaryotes, while many
marine eukaryotes are auxotrophic for it [256]. The latter comprise a
large fraction of the active microbes in sea ice [41], and consequently,
polar Octadecabacters may take up the role of thiamine providers in
exchange for, e. g. photosynthates, a relationship which was demon-
strated for other Roseobacter group bacteria as well [257]. An alterna-
tive explanationmay be that theOctadecabacters preferentially take up
thiamine from the environment, and only synthesise it during phases
of low nutrient availability. Polar Octadecabacters are, for example,
confronted with such situations when the sea ice melts, and they are
expelled to the open ocean. Their need to efficiently recycle nutrients in
order to survive is further signified by the fact that they possess genes
for thiamine degradation which are absent in the rest of the clade.
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3.5.2 Tetrapyrrole biosynthesis

All sequencedOctadecabacter clade genomes encode genes for the syn-
thesis of the most common tetrapyrroles heme, siroheme, and cobal-
amin. The common precursor δ-aminolevulinic acid is synthesised
from glycine and succinyl-CoA by the gene product of hemA in the
C4-pathway, which is prevalent in α-Proteobacteria [234]. A notable
exception exists in the twomembers P. jejudonensis and isolate NH9-P7,
which are also genetically equipped to synthesise bacteriochlorophyll
and perform AAP (see Section 3.4.3).

Orthologues to one of the many methyltransferases in cobalamin
biosynthesis, precorrin-6B methylase (cobL), were assigned to differ-
ent COGs in different Octadecabacters, and the phylogenetic birth-and-
death model predicted their respective gain and loss at the polar Oc-
tadecabacters’ LCA (COGs 2241 and 2242 in Table 3.5, category H). No-
tably, both COGswere registered as orthologues in the present analysis.
Nonetheless, they differ in length (≈240AA and≈200AA for COG 2241
and 2242, respectively) and show different alignment patterns within
the COG reference organisms. The polar Octadecabacters seem to have
lost the second isoform (COG 2422) in favour of the first one (COG 2421).
Among the non-polar Octadecabacters, the only other occurrence of
this enzyme is in isolate NH9-P7. Within the whole Roseobacter group,
COG 2422 seems to be the more prevalent, as it is shared by 85 of the
115 analysed genomes (compared to 29 for COG 2421). No clear dis-
tinction in localisation of the two enzymes seems to exist, based on
the isolation coordinates of the Roseobacter groupmembers (Table A.1).
Neither does life style (as estimated from the isolation circumstances)
serve as a predictor for the isoform (χ2 = 7.03, p = 0.32 and χ2 = 3.86,
p = 0.7 for COGs 2241 and 2242, respectively).

Consequently, a slight difference seems to exist between polar and
non-polar Octadecabacter clade members concerning cobalamin syn-
thesis.

3.5.3 Methionine metabolism

All Octadecabacters possess the necessary genes for methionine syn-
thesis,withbothmethylmethionine andmethyl-tetrahydrofolate (MTHF)
asmethyl donors. The genes likely constitute the homocysteine-respon-
sive metR regulon specific for Rhodobacterales, as recently described by
Leyn et al. [258]. In addition to the cobalamin-dependent methionine
synthase (metH), the polar Octadecabacters seem to have gained the
cobalamin-independent synthase (metE, see Table 3.5). This enzyme
transfers the methyl group from MTHF to homocysteine via a mecha-
nism independent fromcobalamin, albeit at amarkedly lower rate [259].
All Octadecabacters are able to produce cobalamin, as described in
Section 3.5.2. However, its production is costly, and the cobalamin-
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independent methionine synthase may provide an alternative for the
polar Octadecabacters during phases of low nutrient availability.

A further characteristic of polar Octadecabacters is the mtnA gene
(coding for methylthioribose-1-phosphate isomerase; see Table A.2,
and COG 0182 in Table 3.5), the product of which catalyses the second
step of the methionine salvage pathway [260]. This pathway recycles
methylthioadenosine (MTA), a product of SAM utilisation, to regain me-
thionine.MTA is produced through donation of an aminopropyl group
from SAM, e. g. in polyamine or N-acetyl-homoserine lactone synthe-
sis. The first step of the methionine salvage pathway is phosphoroly-
sis of MTA, which is catalysed by the product of mtnP, present in all
Octadecabacters. In this step, adenine and methylthioribose (MTR)-1-
phosphate are formed. The latter is then isomerised to methylthioribu-
lose-1-phosphate by the mtnA-coded isomerase. Subsequent conver-
sion tomethionine happens in five consecutive steps, catalysed by a de-
hydratase, enolase, phosphatase, dioxygenase and transaminase [261].
Notably, almost none of the respective genes could be found in the po-
lar Octadecabacters, neither by their annotation, nor through KO terms.
Only one homologue of the enolase seems to be coded by the PAMC iso-
lates. The enolases usually involved in this reaction belong to the halo-
acid dehalogenase superfamily [261]. While the polar Octadecabacters
have, on average, more genes of this superfamily than the temperates,
there is no enolase specific for this group. Interestingly, RuBisCO-like
proteins were also found to catalyse this reaction [261], and one of the
genes inO. antarcticus is annotated with this function [61]. However, it
does not occur as orthologue in any other Octadecabacters. The dioxy-
genase is usually of the cupin-superfamily [261], and there is a high
probability that one such gene was exclusively gained by the polar
Octadecabacters (COG 3450 in Table 3.5, category R). A high degree of
flexibility is also known for the last step of the cycle, transamination to
methionine [261].
Generally, themethionine salvagepathwayconserves sulphurwithin

the cell. It is only of importance, if larger amounts of SAM are used in
polyamine or homoserine lactone synthesis. The polar Octadecabac-
ters lack polyamine synthases, and therefore likely do not produce
large amounts of MTA. From the produced MTA, adenine is universally
recycled in the Octadecabacters as described above, but instead of re-
cycling the resulting MTR-1-phosphate, they likely export it. A similar
behaviourwas observed in E. coli [262]. In E. coli, absence of themethio-
nine salvage pathwaywas attributed to the high sulphur availability in
its natural environment, which may also exist for the Octadecabacters
(discussed in Section 4.3.2). MTR-1-phosphate has no known immedi-
ate use for cellular biochemistry, but may serve as quorum sensor in
the extra-cellular space [262]. However, the question why the polar
Octadecabacters possess the mtnA gene remains.
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3.5.4 Histidine degradation

All polar Octadecabacters, as well as isolate E8 are able to use histidine
as carbon and nitrogen source. COGs 2986 and 2987, which were likely
independently gained by the polar Octadecabacters’ LCA (Table 3.5),
are the first two steps in histidine degradation, a pathway discussed
in detail in ref. [263]. Histidine ammonia-lyase (hutH) deaminates his-
tidine, producing ammonium and urocanate. The latter is then hy-
drated to imidazolonepropionate (hutU, COG 2987 in Table 3.5), and
further hydrolysed to formiminoglutamate by an imidazolonepropi-
onase (HutI, COG 1228 in Table 3.5, categoryQ). InOctadecabacters, the
hutF gene product (formiminoglutamase/formiminoglutamate deimi-
nase) cleaves a further ammonium molecule off the formimino-group,
leaving formylglutamate. In a last step, N-formylglutamate amidohy-
drolase or formylase, coded for by hutG, cleaves formylglutamate to
formate and glutamate. While a gene encoding this enzyme is present
in all Octadecabacters, the polar species possess more copies, and
expansion likely occurred at their LCA (see COGs 3741 and 3931 in Ta-
ble 3.5). Note that theABC-type proline/glycine betaine system,which
received an expansion in the polar lineage (COGs 2113, 4175 and 4176)
may as well code for histidine uptake transporter, as the two are regu-
larly confused [263].

3.5.5 General cellular stress response

Genes potentially involved in the response to increased levels of oxida-
tive, osmotic, or respiratory stress comprise a significant portion of the
polarOctadecabacter-specific genesdiscussed in Section 3.4.1. Fittingly,
similar functions were gained or expanded at the polar Octadecabac-
ters’ LCA, some of which are identical to those found group-specific
(e. g. NfuA).

Among the COGs gained, some are associatedwith a chaperone func-
tion, such as COG 2608, which represents the copper chaperone CopZ.
CopZ binds copper ions for their export, and thus prevents their ex-
position to the cellular environment, which would result in oxidative
stress [264]. Interestingly, this COG was likely gained in the ancestral
lineages of all polar isolates contained in the birth-and-death model,
including polar Loktanella species (Section 3.5). In addition, a DsbA-
family dithiol-disulphide isomerase (COG 2761) likely experienced fam-
ily expansion at this node. This family mediates the formation of disul-
phide bonds in proteins exported to the periplasm [265], and thus
ensures their proper structure and function.
The Octadecabacter LCA furthermore likely acquired a quinol mono-

oxygenase (COG 1359). This enzyme oxidises quinone-derived sub-
strates, and therefore plays a role in maintaining the proper balance
of quinone and quinol pools in the electron transport chain [266]. No-
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tably, it does not require co-factors. In addition, the functional family
of plastocyanins (COG 3794) likely experienced family expansion at
this point, in accordance with the fact that one such protein is spe-
cific for the polar group (annotated as pseudoazurin, Table A.2). These
copper-binding proteins are usually involved in electron transfer reac-
tions to cytochromes in diverse contexts [267]. Gain and expansion of
these two functions likely serves polar Octadecabacters in oxidative or
respiratory stress protection.

Apossible expansionofNhaP-type cation/H+ antiporters (COG0025)
may complement this functionality, since these are usually involved in
maintenance of the intracellular pH [268]. In combination with the po-
lar Octadecabacters’ increased capacity for proton-gradient generation
(due to their possible xanthorhodopsin phototrophy), this transporter
type may also simply serve as a sodium exporter, and thus function
to counteract osmotic stress. In addition, glutamate kinase (COG 0263),
may have likely expanded at the polar Octadecabacter LCA. This en-
zyme catalyses the first step in proline synthesis from glutamate [269].
Proline, as well as proline betaine are both widespread osmoprotec-
tants [270, 271]. Additional copies of this gene may serve to compen-
sate for its feedback-inhibition by proline itself, and thus allow for the
accumulation of larger proline pools during phases of osmotic stress.

Furthermore, ADP-ribose pyrophosphatase (COG 1051) likely ex-
panded along the polar Octadecabacters’ lineage. This enzyme cleaves
ADP-ribose into AMP and ribose-5-phosphate, but most of its studied
homologues also show reduced activity on ADP-sugars and nicotin-
amide adenine dinucleotide (NAD) [272, 273]. ADP-ribose is a product
of NAD turnover and has potential cytotoxic effects, most importantly
through non-enzymatic protein glycation [274]. Consequently, expan-
sion in this gene familymay reduce cellular damage by this compound.
In addition, this class of pyrophosphatases also contains the tellurite
resistance protein TrgB, which is a major player of tellurite resistance
in E. coli and Rhodobacter capsulatus [272, 275], and in the latter was
shown to also increase resistance to copper [275].
Some transcriptional regulators associated with different types of

stress are specific for polar Octadecabacters (Section 3.4.1). Generally,
DNA damage (induced either by UV-irradiation, or oxidative stress) in-
duces a stress-responsive network of genes in what is referred to as the
SOS-response [276]. This response is mainly regulated by two proteins:
LexAacts as transcriptional repressor of SOS-response-associatedgenes,
and, upon accumulation of DNA damage, its auto-catalytic cleavage is
induced by RecA [276]. The repressor LexA experienced gene family
expansion with high probability in the polar Octadecabacters’ ances-
tral lineage (COG 1974 in Table 3.5). This indicates a tighter control
of the SOS-response in polar Octadecabacters, which concurs with
their altered genetic equipment dealing with DNA damage (DNA poly-
merase V).
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In summary, the diverse stress-related functions discussed above
supplement those foundamong thepolarOctadecabacter group-specific
genes.

3.5.6 Other metabolism-related functions

Apart from (more or less) complete metabolic pathways probably
gained by the polar Octadecabacters’ LCA, which were described in
previous sections, some single COGs showed change at this point in the
phylogeny, which are associated with individual metabolic reactions
and stages. One of these is COG 1409 (cyclic adenosine monophos-
phate (AMP) (cAMP) phosphodiesterase CpdA), which degrades cAMP
and thus regulates cellular pools of this important effector molecule.
In effect, cpdA-overexpressing E. coli cells showed increased resistance
to oxidative stress, mediated by a strong induction of rpoS expres-
sion [277]. Independent from this function, CpdA also seems to be
involved in global regulation of amino acid synthesis [278].
Notably, another cyclic nucleotide phosphodiesterase (COG 0737) is

among the few functions that experienced family reduction along the
polarOctadecabacter lineage. This periplasmic enzymedegrades cyclic
nucleotides with broad specificity [279]. As such, it is important in
utilising extracellular DNA as a carbon and phosphate source [280],
andmay be particularly relevant in habitats with phosphate-limitation.
Moreover, Trülzsch et al. observed that this enzymemediates the ability
of Yersinia enterocolitica to grow on 2´,3´-cAMP as sole carbon and
energy source [281].
Polar Octadecabacter-specific genes indicated a differential utilisa-

tion of glycerol and its intermediates in this group (Section 3.4.1).
In addition to gaining the group-specific DHA kinase, the polar Oc-
tadecabacter LCA likely expanded in glycerol-3-phosphate dehydroge-
nase (GPDH) (COG 0578) functionality. This enzyme is part of the glyc-
erol degradation pathway found in all Octadecabacters. Its increased
numbers in polar representatives may reflect higher availability of this
compatible solute in their habitat, due to its production by eukary-
otes upon osmotic stress [209, 282]. Notably, GPDH links the fatty acid
cycle with glycolysis via its inter-conversion of DHAP and glycerol-3-
phosphate. Expansion of this gene family may therefore serve a reg-
ulatory function, being a further indicator that polar Octadecabacters
possessmore complexmetabolic networks, and need to integratemore
complex environmental stimuli.
Apart from glycerol, primary producers frequently secrete storage

saccharides, which may be degraded and metabolised by associated
prokaryotes [283]. The polar Octadecabacters’ LCA likely gained the
group-specific 4-α-glucanotransferase (COG 1640), as well as a glucan
phosphorylase (COG 0058); both are enzymes for the mobilisation of
these polysaccharides.
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Finally, polar Octadecabacters seem to have lost the ability to synthe-
sise pantothenate at their LCA (loss of pantothenate synthetase PanC,
COG 0414). Pantothenate is the precursor of CoA, and thus essential
for cellular metabolism [284]. However, it is also produced in excess
quantity and secreted by many bacteria [284], and may thus be easily
taken up from the environment by pantothenate-auxotrophs.

3.6 paralogue occurrence in octadecabacter clade mem-
bers

Paralogues are derived from gene duplications within an organism,
and therefore show highest BLAST-based similarity to their original
gene in the same genome [285]. To test the amount of duplications
present in the Octadecabacter genomes, determination of paralogous
relationships was included in the orthology detection (Section 2.5).
Generally, polar Octadecabacters possess more paralogues than the

temperate strains, ranging from an average of 68 in the PAMC isolates to
over 560 inO. arcticus, versus 22 to 45 in the other strains (Table 3.6). Iso-
late NH9-P7 constitutes a notable exception, with over 150 paralogues
in total. While most duplications in the polar type strains ofO. arcticus
andO. antarcticus are attributable tomobile genetic elements, i. e. trans-
posases, integrases, and ISs, they still possess a higher average number
of paralogues than the otherswhen these cases are excluded (Table 3.6).
The relative paralogue content of polar Octadecabacters, normalised

to the number of CDSs (as this group possesses on average ≈800 CDSs
more than the temperate strains, Table 3.1), is still high compared to the
other groups. It ranges from an average of 13.8 paralogues in different
OGs per 1,000 CDSs in the PAMC isolates to 31.6 in O. arcticus and O.
antarcticus (excluding mobile genetic elements). Temperate strains pos-
sess an average of 9 paralogues in different OGs per 1,000 CDSs, with the
exception of isolate NH9-P7 (44.2). Notably, the high fragmentation of
the PAMC-isolate genomes (Table 3.1) could lead to an underestimation
of their total paralogue content (see Appendix A.7, p. 203).
The majority of paralogues (45 to 92%) is strain-specific, only the

highly similar PAMC isolates pose an exception. There are noparalogues
which are specific to the polar Octadecabacters (group I), i. e. which
are present in all members of this group, and absent in all members
of groups II to IV. All polar isolates do, however, possess multiple
paralogues in the group-specific genome (as listed in Table A.2). In
fact, the fraction of their group-specific genes being duplicated in at
least one of their genomes is larger than that of the other groups.
Differences are also visible in the distribution of paralogues among

the core-, cloud-, and shell-genomes defined in Section 3.3.1. While
gene duplications in the type strains ofO. arcticus andO. antarcticuspre-
dominantly affect their shell-genomes, isolate NH9-P7, with its similar
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Table 3.6: Number of paralogues in Octadecabacter clade genomes. Grey
numbers exclude the strain’s mobile elementsa. Group-specific paralogues
are present in all members of a group (as defined in Section 3.2), and absent
in all other strains. Group-specific genes as listed in Appendix A.4. Core-,
cloud-, and shell-genome boundaries as defined in Section 3.3.1.

a all OGs whose annotations contained the strings "obile_element", "ransposase",
"ntegrase", or "IS"

number of paralogues, showsmore duplications in the Octadecabacter
clade core-genome (Table 3.6).

3.7 key characteristics in polar roseobacters

The comparison genomes used in this study included five polar iso-
lates, which were associated with clades other than the Octadecabac-
ters (Table 3.7). Key figures, differing between polar and temperate
Octadecabacters, were compared to these polar isolates and their asso-
ciated clade members (Figure 3.20).

While polar Octadecabacters possess larger genomes with more
protein-coding genes than their temperate relatives, this trend is not
observable in the comparison groups. Regarding singletons, all polar
isolates lie above their respective group’smedian (except for the highly
similar PAMC isolates), but only the Octadecabacters possess the most
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Table 3.7: Isolates outside of the Octadecabacter clade, which were procured
from polar environments based on their isolation coordinates (Table A.1),
are listed together with the Roseobacter group bacteria with which they form
common clades (according to the MLSA phylogeny, Figure A.2). These were
used for comparison of key figures between polar and non-polar isolates
throughout the Roseobacter group (Figure 3.20).

polar isolates ass . clade members

L. vestfoldensis DSM 16212,
L. fryxellensis DSM 16213,
L. salsilacus DSM 16199

Loktanella genus-associated genomes
in Table 3.2

Pseudophaeobacter arcticus
DSM 23566

Leisingera genus-associated genomes
in Table 3.2

Sulfitobacter guttiformis
KCTC 32187

Sulfitobacter genus-associated
genomes in Table 3.2, plus S.
donghicola JCM 14565, Sulfitobacter
sp. EE-36, Sulfitobacter sp. NAS-14.1,
Sulfitobacter sp. CB2047

within their clade. Furthermore, in three of the four analysed clades,
polar isolates show the highest number of paralogues, with the polar
S. guttiformis as the only exception. The differences in the Loktanella
and Leisingera clades are, however, less pronounced than in the Oc-
tadecabacters.

The polar Octadecabacters’ capacity for carbohydrate uptake and
metabolism is likely higher than that of the temperate ones, as they
possess more genes associated with COG category G. Among the other
groups, only polar Loktanella speciesmirror this trend to a degree (2 out
of 3 polar isolates). In addition, polar isolates of both clades concor-
dantly possess more genes in functions associated with recombination
and genetic mobility (COG categories L and X, respectively), whereas
such a difference is lacking in the other two comparison groups.
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Figure 3.20: Key figures in polar roseobacters. Characteristics found to dif-
fer between polar and temperate Octadecabacters were compared to other
Roseobacter group clades which harbour polar isolates. Their predominant as-
sociatedgenera are givenon the top. Larger symbols filledwith grey represent
the polar isolates. Lines present median values. genes – number of protein-
coding genes; singletons relating to all comparison genomes (Table 2.2)
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3.8 protein secondary structure content

Secondary structure content of all proteins coded in the Octadecabac-
ter genomes was estimated using the jpred4 algorithm (Section 2.11).
Pairwise euclidean distances in predicted α-helix and β-sheet content
between the Octadecabacter core proteins were used for hierarchical
clustering. When both structural features are considered together, po-
lar Octadecabacters cluster separate from the rest, and groups defined
in Section 3.2 are coherent (Figure 3.21). However, this coherence is
absent when both features are considered separately.

Figure 3.21: Hierarchical clustering of Octadecabacters based on predicted
protein secondary structure. Clustering was based on the pairwise euclidean
distances in relative secondary structure content between all Octadecabac-
ter clade core proteins. Both structural features (β-sheet and α-helix) were
considered in combination (left), as well as individually (centre and right,
respectively). Colours mark groups defined in Section 3.2.

Wilcoxon signed-rank tests revealed that no Octadecabacter group
shows a clear and statistically significant tendency towards contain-
ing different amounts of either structural feature than the others (Fig-
ure 3.22). Solely O. antarcticus possesses significantly less predicted
β-sheets when compared to the members of group III. A similar dif-
ference in its α-helix content can only be observed for isolate NH9-P7
(and not for P. jejudonensis).

The performed χ2 tests detected significant (p < 0.05) differences
in observed versus expected amino acid count for the seven com-
pared Octadecabacter strains. However, this significance likely stems
from the high number of observations, as the mean differences in
amino acid frequencies between the groups are very small (on the
order of 10−3, Figure 3.23). Nonetheless, polar Octadecabacters show
some clear trends. For example, they possess higher portions of the
hydrophobic amino acids alanine, isoleucine, and methionine (single
letter codesA, I, andM, respectively).Within negatively charged amino
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Figure 3.22: Results of Wilcoxon signed-rank tests for significant difference in
secondary structure content between Octadecabacter clade members. Only
O. antarcticus, when tested against the members of group III (as defined
in Section 3.2), showed significantly different predicted contents under the
Benjamini-Hochberg-corrected significance levels (Section 2.11). The jpred4
algorithm predicts overall less β-sheet in this strain’s core-proteome than in
both isolate NH9-P7 and P. jejudonensis, and less α-helix than in the former
(marked in red).
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Figure 3.23:Mean amino acid frequency deviations inOctadecabacter groups.
The mean amino acid frequencies in the Octadecabacter core-proteome were
calculated for seven strains with similar GC-content (see Table 3.1), which
included groups I, II, and IV (as defined in Section 3.2). The plot shows the
difference of each group’smean to the base frequency, i. e. themean frequency
over all seven strains. Amino acids are sorted into hydrophobic (G, A, V, I, L,
M), polar uncharged (T, S, N, Q), aromatic (F, Y, W), and negatively (D, E) and
positively (R, H, K) charged groups.

acids, the group seems to favour aspartic acid (D) over glutamic acid (E).
Finally, the four strains contain slightly more arginine (R), and slightly
less serine (S) and lysine (K) than groups II and IV (Figure 3.23).

Compared to their general frequencies, the ratio of amino acids in
predicted helix versus non-helix regions shows a higher within-group
variation (compare individual values in Figure 3.23 versus Figure 3.24).
Distinct trends in polar Octadecabacters seem to be an increased incor-
poration of negatively charged amino acids (both D and E), as well
as valine (V) into helices (Figure 3.24). At the same time, their pre-
dicted helices contain a lower percentage of isoleucine, methionine,
asparagine (N), and lysine.
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Figure 3.24: Differences in α-helix amino acid content of Octadecabacter
groups. The average number of each amino acid in core-protein positions
predicted to be part of a helix was related to its average number outside pre-
dicted helices for each group. The plot shows the difference between these
mean ratios and the base (mean) ratio over all seven Octadecabacter strains
with similar GC-content (Table 3.1). Octadecabacter groups and colours as
defined in Section 3.2 (I, II, and IV); amino acid groups are the same as in
Figure 3.23.
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3.9 occurrence of octadecabacter-related sequences in
metagenomes

A total of 591 metagenomes on themg-RAST platformmet the inclusion
criterion for the analysis (Section 2.12.1), of which 559 could be success-
fully downloaded and mapped. The metagenomes contained either
reads, or assembled contigs, with a total of 1,342,811,866 sequences
assigned to the bacterial kingdom by mg-RAST. Mapping returned
359,928 sequences which aligned to the Octadecabacter genomes. The
filtering procedure focusing on distinction between Octadecabacter
groups (Section2.12.3) excluded20,388hits (≈5.6%),whereas 23,983 se-
quences (≈6.7%) were excluded when pairwise comparisons between
all Octadecabacters were considered. All relevant data are also pro-
vided in the supplementary files (see Appendix A.1).

For 522 metagenomes, geographic coordinates were available. They
stemmed from 214 distinct sampling points, at 113 of which several
dates, size fractions, depths, etc. were sampled, leading to 308 meta-
genomes with duplicated coordinates. Eighty-two of the stations con-
tained metagenomes with sequences mapping to at least one Octade-
cabacter, while 132 stations returned no hits (Figure 3.25).

Figure 3.25: Octadecabacter groups at metagenome sampling sites. Where
multiple metagenomes were present for a single sampling point, they were
merged using the highest relative abundance of each group in any of the
samples. Shown are sampling sites with reads mapping to no Octadecabacter
(132 stations, grey diamonds), one specific Octadecabacter group (24 stations
total, circles of correspondent colour), 2–3 Octadecabacter groups (diamonds,
coloured according to most abundant group) or to all Octadecabacter groups
(37 stations, stars coloured according to most abundant group).
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Polar Octadecabacters (group I) were detected in 117 metagenomes
at 69 sampling sites and are the most widely distributed of the four
groups (Figure 3.25). Likewise, they are often the most abundant of
all detected Octadecabacter groups (Figure 3.26). Groups II, III, and IV
were detected in 74, 86, and 88 metagenomes at 51, 49, and 60 stations,
respectively. At 37 sampling sites, metagenome sequences mapped to
all four Octadecabacter groups, while 24 stations featured one group
exclusively (Figure 3.25).

(a) Octadecabacter group I

Figure 3.26: Metagenomes ranked by abundance of Octadecabacter groups.
The number of nucleotides in reads mapping to a specific Octadecabacter
group, divided by the total number of nucleotides assigned to the bac-
terial kingdom, is plotted as the frequency. Sub-figures (a) to (d) list the
30 metagenomes, in which groups I to IV occur with the highest frequency,
respectively, alongwith information on the biome, sample type, and sampling
location.

The vast majority of metagenomes with a high frequency of nu-
cleotides mapped to groups I and II originates from marine water
samples, with marine sediment being the second most frequent biome
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(b) Octadecabacter group II

Figure 3.26: Metagenomes ranked by abundance of Octadecabacter groups
(continued)

(Figures 3.26a and 3.26b). Conversely, habitat types aremore evenly dis-
tributed among themetagenomeswith nucleotidesmapping to groups
III and IV, showing a higher number of microbial mats, estuaries, or
terrestrial samples (Figures 3.26c and 3.26d). These groups’ frequen-
cies are, however, generally much lower. Groups I and II, on the other
hand, predominantly feature in 4 and 2 of the 6 metagenomes with the
highest frequency of nucleotides mapped to Octadecabacters, respec-
tively.

Whilemostmetagenomes listed in Figure 3.26 contain readsmapped
to multiple, or all Octadecabacter groups, those which show the high-
est frequency of an individual group are usually exclusive to that
group. Therefore, despite the frequent co-occurrences, it is possible to
identify some habitat preferences of the different groups. For example,
group I most prominently features in water samples of the Greenland
Sea and theNorth Atlantic Ocean in general, i. e. water samples of high
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(c) Octadecabacter group III

Figure 3.26: Metagenomes ranked by abundance of Octadecabacter groups
(continued)

latitudes, where other Octadecabacter groups seem to be nearly absent
(Figure 3.26a).

Group II has more hits in metagenomes from coastal areas and bays,
and notably features in water samples of coral reefs or algal blooms,
where it likewise is often the only detected group (Figure 3.26b). These
regions are mostly positioned at intermediate latitudes, but the group
also seems to occur to some extent at higher latitudes, e. g. in water
samples of the North Atlantic Ocean.
Group III shows the highest frequencies of mapped nucleotides in

several water samples from low latitudes (Figures 3.25 and 3.26c).
Nonetheless, there are also highly similar sequences present in me-
tagenomes from higher latitudes. Interestingly, it is the only group
detected in one of the northern-most samples included in this anal-
ysis, a freshwater lake microbial mat on Ellesmere Island, Canada
(Figure 3.25).
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(d) Octadecabacter group IV

Figure 3.26: Metagenomes ranked by abundance of Octadecabacter groups
(continued)

Group IV generally exhibits the lowest number of mapped reads
within the Octadecabacters, and among the metagenomes with the
highest nucleotide frequency of this group, there seems to exist no
particular habitat preference (Figure 3.26d).Notably, it is featuredmore
prominently in some of the tested estuarine metagenomes than the
other groups.

Ingeneral,whenevaluatinghowmanyof the candidatemetagenomes
actually contained reads mapping to Octadecabacters, some differ-
ences between the habitat types are noticeable. The sea water and
"marine habitat" biome categories, for the latter of which no further
details were provided in the metadata, contained among the most
metagenomes, based on the biome and sample type descriptions. How-
ever, only 25 to 50%of these gavehits in the strictermappingprocedure
(Figure 3.27). On the other hand, all samples of marine and freshwater
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Figure 3.27: Octadecabacter group occurrence in different biomes. For each
biome/sample type represented by a metagenome in this analysis, the pro-
portion of metagenomes in which individual Octadecabacter groups were
detected is plotted (colours as in Section 3.2, groups I, II, III and IV). Grey
numbers (n) give the total amount of metagenomes for each biome/sample
type. Where more than one group occurs in a habitat, a grey bar indicates the
fraction ofmetagenomeswith readsmapping to any group. Biomes are sorted
into marine (top), freshwater (middle), and terrestrial (bottom) habitats.

sediment, in which mg-RAST assigned sequences to the Octadecabacter
genus, also returned mapped reads.

Agreement in predictions of Octadecabacter occurrence between
mg-RAST and the mapping approach used here is generally high for
marine biomes (70 to 100%, with the exception of sea water and
"marine habitat"). It is, however, lower in freshwater and terrestrial
biomes, where mg-RAST predicted Octadecabacter-related sequences
in 12 and 57 metagenomes, respectively (including bodily fluids and
faeces, Figure 3.27). Read mapping returned hits in 7 and 9 of these
metagenomes, respectively. In over half of the sample types, reads
mapped only to either group III, or group IV. Sediment (both freshwa-
ter and terrestrial), and fresh water samples pose a notable exception
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in this regard, having a higher proportion of metagenomes with reads
mapping to multiple Octadecabacter groups (Figure 3.27).



4
DISCUSS ION

4.1 octadecabacter lifestyle and gene content divergence

Chapter 3 presented several genomic characteristics of Octadecabacter
clade bacteria and made initial comparisons to other members of the
Roseobacter group. These data enable an investigation, in how far such
characteristics generally relate to differences in lifestyle between the
analysed strains, andwhether Octadecabacters constitute special cases
among the roseobacters.

Having reconstructed the group’smost likely phylogenyusing a phy-
logenomics approach is particularly useful in this regard, as it allows
comparison of similarities in gene content to phylogenetic relation in
potentially large groups of genomes. Section 4.1.1 will evaluate the
obtained phylogenies reliability and discuss their congruence with ob-
served lifestyles and genetic divergence. The discussionwill cover both
theRoseobacter group as awhole, and theOctadecabacters in particular.
Variability in gene content is generally well captured by analysing a

group’s pan-genome. Such an analysis provides standardised charac-
teristics, which can be readily compared between different organism
groups. In Section 4.1.2, results of the Octadecabacters’ pan-genome
analysis will be put in relation to other clades of the Roseobacter group.
Finally, genus delineation is a widely debated topic, and can be

particularly problematic for the functionally diverse roseobacters (see
Sections 1.4 and 1.5). Section 4.1.3 will address this problem, using the
example of the Octadecabacter clade to evaluate and compare several
metrics proposed for use in genus delineation.

4.1.1 Phylogeny

As stated in Section 3.2, a super-matrix-based MLSA of the Roseobacter
group core-genome generally reproduced the topology observed in
other studies [59, 60]. The Octadecabacters form a distinct and highly
supported clade (compare Figure 3.2, p. 30), with isolateNH9-P7 being
the earliest branching and therefore most distant member, followed by
P. jejudonensis. The polar isolates cluster together with high bootstrap
support, and also form a common sub-clade with the temperate mem-
bers O. temperatus and O. ascidiaceicola. However, phylogenies derived
from super-matrices are under criticism for not necessarily reflecting
the most prevalent topology, as well as rendering bootstrap supports
misleadingly high [286].

81
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Figure 4.1: Reassessment of bipartition support within the super-matrix-
based tree topology, using IC and TC values. The tree topology was taken
from Figure 3.2, and support values at each bipartition were re-estimated
as IC (black) and TC (red) by comparing the MLSA with 139 single core-gene
phylogenies (see Section 2.6 for details).

Amore realistic estimate of bipartition support can be derived from
the frequency in which the bipartitions occur in the ML phylogenies of
the individual genes. More precisely, the frequency of each bipartition
can be related to the two most frequent conflicting bipartitions, which
results in the information theory-based internode certainty (IC) and
tree certainty (TC) values [174]. Values close to 0 indicate that the next
twomost frequent topologies are almost as prevalent as the one shown
in the tree, whereas values close to 1 show the absence of such conflicts
(negative values mean that at the respective site, other bipartitions
occur more frequently altogether).

When comparing the 139 core-gene phylogenies with the super-
matrix-based one in this manner, it is obvious that the high MLSA
bootstrap support values are exaggerated, implying a false sense of
certainty in the final tree topology (Figure 4.1). While the formation
of an Octadecabacter clade, distinct from their closest relative, Thalas-
siobium, is still well supported (IC value of 0.75), the branching order
between the more distant members P. jejudonensis, isolate NH9-P7,
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and isolate E8, appears to be much less reliable than indicated by the
bootstrap analysis (signified by low IC values of 0.006 to 0.2 at the
respective bipartitions). Common ancestry of the four polar isolates,
O. temperatus, and O. ascidiaceicola is seemingly conflicted in the indi-
vidual Roseobacter group core-gene trees (low IC of 0.16), which agrees
with the network representation of 1,513 Octadecabacter clade core-
gene phylogenies (Figure 3.3). At the same time, both the existence of
a polar clade, and the grouping of O. temperatus and O. ascidiaceicola,
maintain a high support.
Over the rest of the Roseobacter group topology, certainty is compara-

tively low:multiple negative ICvalues indicate that theMLSAphylogeny
does in fact not represent the phylogeny of most of the component
genes (see Figure 4.1).
It should be noted that the genes used for MLSA were selected solely

based on their classification as single-copy core-genes, and not indi-
vidually tested for the strength of their respective phylogenetic sig-
nal. Consequently, part of the observed uncertainty may simply re-
sult from phylogenetic noise within the individual gene trees. In ad-
dition, a super-matrix-based phylogeny always constitutes a compro-
mise between conflicting phylogenetic signals of its component genes,
and is therefore inherently uncertain by necessity. This becomes clear
when analysing the Robinson-Foulds (RF) distances between the super-
matrix-basedMLSA phylogeny and the individual gene trees, and com-
paring them to the pairwise RF distances of the individual trees among
each-other. In this case, themedian normalised RF distance to theMLSA
phylogeny is lower (by 0.13) than the median normalised distance
of pairwise comparisons of the individual gene trees (see Figure 4.2).
Thus, theMLSA phylogeny appears to present an adequate compromise
between the conflicting single gene trees, minimising the overall dis-
tance, while not necessarily agreeing with the majority of their topolo-
gies. For this reason, it is appropriate to use this phylogeny as the basis
of ancestral state reconstruction and the phylogenetic birth-and-death
model, as described in Section 2.9, although the huge uncertainties
concerning the bipartitions (especially deeper ones) should be kept in
mind when discussing findings which rely on phylogenetic data.
Roseobacter groupmembers are widely distributed, mostly inmarine

environments, where they occupy a variety of ecological niches [62].
Even within the genera of this group, different species are often found
to dwell in different micro-environments, which may be as diverse
as planktonic, biofilm, or host-associated habitats (compare Table A.1,
p. 125). In fact, some argue that this colonisation of new micro-envi-
ronments, and the subsequent decrease of gene transfer between pop-
ulations, could constitute a mechanism of speciation [287]. The high
genetic flexibility frequently observed in Roseobacter group members
likely makes such a transition easier, and thus contributes to this
group’s adaptability [69].
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Figure 4.2:RFdistances between individual core-gene and super-matrix-based
phylogenies in the Roseobacter group. Pairwise RF distances were calculated
for all 139 individual core-gene phylogenies, and their distribution is shown
in dark grey (left axis). The distribution of their distances to the super-matrix-
derived phylogeny is depicted in light grey (right axis).

Despite such varying lifestyles, gene content-based hierarchical clus-
tering showed high consistency with the MLSA phylogeny (see Fig-
ure 4.3). Clades defined in ref. [59] are largely conserved between
both trees, with only few individual organisms grouping differently
in the gene content-based clustering. Most differences in bifurcations
between the two trees are restricted to deep nodes, at which point
the aforementioned uncertainty in the MLSA branching forbids exact
comparisons. Consequently, vertical inheritance appears to dominate
gene content over horizontal acquisition, i. e. closely relatedRoseobacter
group members possess a distinct genetic coherence. Notably, this co-
herence does not seem to be limited to the core-genome. The removal
of core-genes within clades throughout the Roseobacter group and sub-
sequent hierarchical clustering results in a tree, which is even more
congruent with the MLSA phylogeny (Figure A.3, p. 133; normalised
RF distance of 0.47 without sub-clade core-genes, versus 0.59 when
including core-genes). This is even the case in groups like the polar
Octadecabacters, which are known to have highly flexible genomes
with strong potential for lateral gene transfer (LGT).

The cloud-, and shell-genomes reflect an organism’s adaptations
to its particular micro-habitat [288]. As these adaptations occur pre-
dominately via acquisition of laterally transferred genes [289], these
acquired genes will primarily make up the shell-genome. Since most
roseobacters possess genes encoding for GTAs (Section 1.3), within-
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lineage transfer of genetic material may have a role in shaping individ-
ual strains’ gene contents [60]. Nonetheless, similarities in cloud- and
shell-genome content do not reflect similar habitats, or geographic
proximity1 of the compared Roseobacter group strains (Table A.1), but,
as stated above, rather follow the phylogeny (Figure A.3). Despite
the higher number of genomes compared here than were available
to Newton et al. [60], reliably testing the idea of a common roseobacter
gene pool, the exchange of which facilitates environmental adaptation,
would likely still require more sequenced representatives [60].

In the phylogenetic analysis based on theOctadecabacter core-genes,
a network representation was chosen to directly visualise conflicts
in phylogenetic signal between the individual gene trees (Figure 3.3).
With regard to the network’s overall fidelity, an analysis of RF dis-
tances, equivalent to the one performed for theRoseobacter groupMLSA,
showed a lower median distance of the individual gene phylogenies to
the network than to each-other (0.33 vs. 0.50, respectively), indicating
that the networkmay be an accurate representation of the phylogenetic
relationships within the Octadecabacters.

Clustering the nine strains based on their gene content, and thereby
their potential functional adaptations, revealed some notable differ-
ences (Figure 3.3). While the polar clade and the clade formed by O.
temperatus andO. ascidiaceicola remain individually unchanged by gene
content clustering , they no longer form a common larger cluster as in
the core-genome phylogeny (albeit at low IC support). Within the po-
lar species, O. antarcticus clusters with O. arcticus, rather than with the
other Antarctic isolates. This may reflect their similar lifestyle:O. arcti-
cus and O. antarcticus occur in sea water as well as in sea ice, while the
PAMC isolates were procured from marine sediments (see Section 1.4).
Notably, this particular bifurcation is also conflicted in the network,
meaning that a significant proportion of single gene phylogenies puts
O. antarcticus in closer relation to O. arcticus than to the PAMC isolates.
Vollmers et al. attributed the high observed similarity between both

strains to a mutual genetic exchange, postulating a potential connec-
tion between both Arctic and Antarctic populations [77]. Apart from
the coherent grouping of the polar Octadecabacter clade members,
lifestyle does not seem to be a good predictor of content-based simi-
larity, neither does geographic proximity: O. temperatus and O. ascidi-
aceicola are stably grouped together, despite the fact that they were
isolated from distant parts of the world, and from different marine
micro-environments (free living fraction of the water column for the
former, sea squirt-associated for the latter, see Section 1.4). Likewise,
both the isolates from Korea (O. ascidiaceicola and P. jejudonensis) and

1 hierarchical clustering based on the geographic distance of the available isolation
coordinates (Figure A.4) returned a tree with an RF distance of 0.96 to the MLSA, as
well as both the gene content and core-genome-reduced gene content trees



86 discussion

Figure 4.3:MLSA phylogeny of 115 roseobacter genomes plus outgroup on the
left, as given in FigureA.2, versus hierarchical clustering of the same genomes
on the right, based on pairwise Jaccard distances of OG presence and absence.
Clades defined in ref. [59] are coloured as in Figure A.2. Each strain’s lifestyle
or preferred type of habitat was estimated from the source publication (see
Table A.1), and branches are coloured accordingly. RF distance between both
trees is 0.59, determined using ete3 [177].
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those from the North Sea (O. temperatus and isolates NH9-P7 and E8)
do not form common clusters.

This reflects the above observations for the whole Roseobacter group,
namely that phylogeny is a better predictor of content-based similar-
ity than similar lifestyles. In the present case, isolate NH9-P7 and
P. jejudonensis are both phylogenetically distant (Figure 3.2), as well
as highly dissimilar from the other clade members on the sequence
level (Figure 3.1). Due to this distance, vertical inheritance of genes
may determine their position in content-based clustering, rather than
similarities in lifestyle. As with the whole Roseobacter group, a higher
number of available genome sequences would allow for more conclu-
sive statements, how far geographic proximity and/or similarity in
lifestyle correlate with phylogenetic relation. It should also be noted
that the circumstances under which an organism is isolated do not nec-
essarily reflect its preferred lifestyle, and this information is therefore
associated with some uncertainty.
In general, the observed distances in gene content between the Oc-

tadecabacters are relatively high, which may be partly owed to the fact
that singletons were included in the distance calculation. The polar
Octadecabacters are, as a group, most divergent in this regard. Apart
from them, strain E8 is notably the single most distantly branching iso-
late of the Octadecabacter clade (based on its distance to the tree root).
This is also reflected in both groups’ singleton fractions (Figure 3.6), as
will be discussed in the following section.

4.1.2 Pan-genome analysis

The genomic diversity of a group of organisms can be assessed by
analysing the correlation between the total number of different orthol-
ogous groups (OGs) (the so-called pan-genome) and the number of
compared genomes [290]. This correlation usually follows a power law.
Pan-genome analysis of the Octadecabacters revealed that the corre-
sponding fitted power law curve does not reach saturation (exponent
0 < b < 1, see Table 3.3, Section 3.3.1), a property which defines
an open pan-genome [290]. This means that the currently available
Octadecabacter clade genome sequences do not yet fully represent
the clade’s inherent genetic diversity [188]. Instead, when added to
the analyses consecutively, each new genome contributes ≈700 novel
genes to the clade’s pan-genome (Figure 4.4), reflecting unique adap-
tations to their different habitats (compare Section 1.4), and indicating
high flexibility of the accessory genome for acclimatisation to specific
niches [291]. This adaptability is, however, notmore pronounced in the
Octadecabacters than in other clades within the Roseobacter group. The
analysed comparison clades show similar power law exponents (see
Table 3.3), and the number of novel OGs added to the pan-genome by
the successive addition of each new species does not differ significantly
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Figure 4.4: Change in pan-genome size in relation to the number of compari-
songenomes forOctadecabacters andother comparison clades of theRoseobac-
ter group. Clades were selected based on similar phylogenetic branching
depth (see Table 3.2). Median values fitted to a power law as in Equation (2.1),
p. 23. Dashed lines are extrapolations based on the parameter estimates.

between any of the investigated clades (compare extrapolated curves
in Figure 4.4). Consequently, they possess equally broad pan-genomes,
which supports the frequently stated assumption that high genome
plasticity and genetic adaptability are general traits of the Roseobacter
group [69, 93] (Section 1.3).

The Roseobacter group possesses an open pan-genome, which com-
prises >70,000 OGs in 114 genomes (Figure 3.5 and Table 3.3). Generally,
openpan-genomes are common for bacteria at the genus [292–294], and
the species level [188]. The increase in number of genes by successively
added genomes is a relatively simple metric that can easily be com-
pared between different studies. Interestingly, this metric is notably
higher in the comparison clades of the Roseobacter group, including
theOctadecabacters, than for other analysedbacterial groups [188, 292–
294]. One should keep in mind that observable pan-genome trends are
dependent on the number and nature of the compared genomes [188].
Due to the limited amount of data for the roseobacters, and Octade-
cabacters in particular, the observed curves can only be taken as a
trend. While the estimated curve parameters seem robust due to their
low variances (Table 3.3), they do not reflect the inherent uncertainty
introduced by the selection of comparison genomes. In order to more
conclusively demonstrate that the Octadecabacters possess a higher
genomic diversity than other comparison groups, the analyses would
therefore need to be repeated with more data. In addition, an open
pan-genome on the genus level can mask the closed pan-genomes of
one or multiple constituent species [293]. Given more genomic data, it
would be interesting to see whether lineages exist within the roseobac-
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Figure 4.5: Occurrence of singletons in Roseobacter group genomes. The num-
ber of singletons (i. e. orthologous groups (OGs) exclusive to one genome) is
plotted against their fraction of total OGs for each comparison genome listed
in Table 2.2, excluding the outgroup genome Parvularcula bermudensis and
Phaeobacter sp. LSS9. Octadecabacters are highlighted in colours correspond-
ing to their groups defined in Section 3.2.

ters, which do not fit into the marine generalist scheme, and if so, at
which level of phylogenetic divergence this behaviour would emerge.

Apart from allowing an estimation of general genomediversity, gene
orthology information enables a detailed look at the specific distri-
bution of genes within a selected group of organisms. To that end,
the distribution of genes in the core, cloud, and shell-genomes of the
Octadecabacters, as well as several comparison clades, was analysed
(Section 3.3.1). As noted there, O. arcticus possesses the largest shell-
genome fraction among the Octadecabacters (Figure 3.6). An earlier
study found both O. arcticus and O. antarcticus to contain the highest
number of unique genes among 32 Roseobacter group genomes [60].
Among the 115 comparison genomes used here, they do not represent
extreme cases in this regard, as multiple other strains possess more
singletons, as well as a higher fraction of unique OGs in their genome singleton – gene

exclusive to one
genome of a
comparison group

(Figure 4.5).
Nonetheless, the core-genome still represents the largest genome

fraction in all Octadecabacters (40% in the polar Octadecabacters and
50% in the rest, Figure 4.6). The shell-genome of O. arcticus makes
up ≈30% of its CDSs. Other clades within the Roseobacter group show
similar variation in the three categories (Figure 4.6). For most of the
respective genomes, the core-genome comprises 30 to 50% of the total
number of CDSs (varying according to genome size). Although the Oc-
tadecabacters tend towards relatively smaller cloud-, and larger shell-
genomes than their relatives, they do not constitute extremes in any
of the two categories. For example, some Roseovarius clade members
contain even smaller cloud-genomes than theOctadecabacters, and the
shell-genome fraction of one Loktanella clade strain exceeds that of O.
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Figure 4.6: Core-, cloud-, and shell-genome fractions (in percent) among se-
lected Roseobacter group lineages. Comparison lineages were selected based
on similar branching depths compared to theOctadecabacter clade (Table 3.2).
In the case of extremely similar genomes (i. e. near-zero branch lengths in the
reference phylogeny), such as the two PAMC isolates, only one respective rep-
resentative was included.

arcticus. The exact genome category distribution is markedly different
between theOctadecabacters and the closely related neighbouring Lok-
tanella clade: Loktanella strains tend towards larger cloud-genomes, at
approximately equal expense of both the shell-, and core-genomes.

4.1.3 Genus delineation within the Octadecabacter clade

The extensive functional divergence discussed in the previous sections
complicates a sensible delineation of generawithin the Octadecabacter
clade andRoseobacter group in general. The re-classification ofO. jejudo-
nensis as Pseudooctadecabacter was, for example, mainly derived from
its phenotypic differences to three other clademembers in the polypha-
sic analyses [79]. Based on the genomic flexibility and range of habi-
tats, however, such phenotypic differences can accumulate quickly, and
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Figure 4.7: Nucleotide identity distribution within Octadecabacter groups.
White curves showdistribution of nucleotide numbers over%-identity values
for pairwise alignments of 1,000 nt-fragments within Octadecabacter groups
I to III (labelled accordingly), and between all nine genomes (solid line).
Background visualises how Octadecabacters compare to other roseobacters
(Table 2.2), showingwhat proportion of nucleotides at a particular %-identity
value to any Octadecabacter stem from a roseobacter (grey), or another Oc-
tadecabacter (coloured according to its group). Note that rRNA genes were
excluded from the comparison (Section 2.12).

traits such as carbon compound utilisation, among others, show a high
phylogenetic dispersion [295]. Digital DNA-DNA hybridisation (DDH)
demonstrated a low similarity between P. jejudonensis, isolates NH9-P7
and E8, and the other clade members (Figure 3.1), and on this basis it
seems justifiable to divide this clade into at least two genera.
Similarly, the Octadecabacters’ ANI profile is distributed around a

lower mean than that of the intra-genus range observed for other or-
ganisms [85] (Figure 4.7). This metric would suggest division into five
distinct genera. Two of these are formed by the members of groups
I and II, as between them, the nucleotide identity within their com-
pared fragments peaks around 85% (Figure 4.7, compare to data in
ref. [85]).
However, the suitability of sequence-basedmeasures for genusdelin-

eation, particularly that of ANI, has recently been questioned by some
authors (e. g. ref. [86]). Instead, Qin et al. propose the percentage of
conserved proteins (POCP) as an alternative, defining a genus as the
"group of species with all pairwise POCP values higher than 50%" [86].
They consider two proteins as conserved when these show reciprocal
BLAST hits above a defined score, identity, and alignment length. The
orthologue detection performed here used similar criteria (minimum
35% identity, versus 40% in Qin et al., and 65% alignment coverage,



92 discussion

91 92 93 94 95 96 97 98 99 100
% similarity of 16S rRNA gene

40

50

60

70

80

90

PO
C
P

Figure 4.8: Percentage of conserved proteins (POCP) versus 16S rRNA gene
similarity in roseobacter strains. POCP in this case refers to the number of
shared OGs, divided by the total number of genes in each two compared
genomes.Data forOctadecabacters are representedwith larger symbols. Sym-
bol colours indicate the groups (Section 3.2), to which the two compared Oc-
tadecabacter strains belong. One proposed definition suggested that a genus
comprise the set of bacterial strains in which all pairwise POCP are higher
than 50% [86].

versus 50% [86]), so that comparison of the inferred orthology relation-
ships should reflect the POCPwell. When applying the proposed genus
definition to the current case, it becomes clear that it is not suitable for
the Octadecabacters, or the Roseobacter group in general, at least not
when using the stated criteria for determining conserved proteins.

The core-genome constitutes the largest fraction of all Octadecabac-
ter strains’ CDSs (see previous section), and all nine consequently show
pairwise POCPs of over 50% (Figure 4.8). However, assignment of at
least P. jejudonensis and isolate NH9-P7 to a different genus than the
rest is strongly supported by multiple factors, including their distant
clustering in the phylogeny, the low sequence similarity (Figure 3.1),
and their variation in GC-content (Table 3.1), in addition to the dif-
ferences observed by Billerbeck et al. The generally high POCPs reflect
the coherence in genetic equipment discussed in Section 4.1.1. Notably,
when compared among each other, groups II to IV show POCP values
well over 60% (Figure 4.8). This again underlines the polar group’s
divergence concerning gene content. It also demonstrates how vulner-
able an individual metric can be to the boundary conditions presented
by a particular group of organisms.
Ultimately, rather than basing it on one set standard, the definition

and delineation of genera should be based on multiple criteria and
should follow a careful individual assessment, taking into account the
specific properties of the group of organisms in question. For example,
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keeping in mind that functional features like carbon compound util-
isation, nitrogen fixation, or even particle colonisation [287, 295] are
phylogenetically dispersed, their distributions among bacterial strains
are unsuited to define genus or species boundaries in functionally ver-
satile organism groups with high genome flexibility.

4.2 functional gene content and its evolution

Polar Octadecabacters show some notable differences in their func-
tional gene content to the temperate isolates (as captured by the COG
classification, Figure 3.7 p. 36). Beyond a simple group-based compar-
ison, gene content evolution was reconstructed by means of a phylo-
genetic birth-and-death model, which allows for predictions of func-
tional gene content at ancestral nodes and its development along the
Octadecabacter lineage. Using COGs to that end reduces the resulting
data complexity, as functionally equivalent proteins are assigned to the
same family, whereas the more stringent orthology detection method
discussed in the previous sections might assign them to different OGs
(asserting different hereditary backgrounds, even if the actual function
may be similar). However, this simplification is at the cost of reduced
integrity, since only 78 to 83% of CDSs in the Octadecabacter genomes
were actually assignable to a COG. Following, the general trends in COG
content of polar Octadecabacters will be interpreted, including the cat-
egory size changes along the Octadecabacter lineage when they are of
interest (Section 4.2.1). The ecological significance ofCOGs gained at the
polar Octadecabacter LCA and the involved pathwayswill be discussed
in Section 4.3. Besides these results, an evaluation of the estimated pa-
rameter values and general properties of the birth-and-death model
can help assess its credibility, and can reveal general trends in individ-
ual lineages. Such an evaluation will be undertaken in Section 4.2.2.

4.2.1 General trends in COG content

As stated earlier, polar Octadecabacters possess, on average, 800 addi-
tional CDSs in comparison to temperate isolates. These are not spread
evenly among the COG categories. Genome fractions devoted to DNA
metabolism and informational functions (i. e. categories J, D, F, and L)
usually negatively correlate with genome size, presumably because
the additional turnover generated by larger genomes can still be pro-
cessed by the same number of genes in these categories [296]. This
behaviour was also found in polar Octadecabacters for categories J, F,
and D. Furthermore, they show little change along the Octadecabac-
ters’ ancestral lineage, judging from the probabilities assigned by the
birth-and-death model (Figure 4.9).
However, COG category L (Replication, recombination, and repair)

is disproportionately stronger represented in polar Octadecabacters
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(a) Categories D and F

Figure 4.9: Changes in COG categories D (Cell cycle control, cell division, chro-
mosome partitioning) and F (Nucleotide transport and metabolism) (a), and
categories J (Translation, ribosomal structure, and biogenesis) and L (Repli-
cation, recombination, and repair) (b) in the Octadecabacter lineage. The
number of all COGs in the indicated category, which were assigned a proba-
bility p > 0.5 of either gain, loss, expansion, or reduction by the phylogenetic
birth-and-death model, are given above for each node in the Octadecabacter
clade phylogeny (coloured bars, left scale). This number was normalised by
the total number of different COGs of that category at that node (that is, all
respective COGs with a summed probability p > 0.5 of occurring once or
multiple times) to obtain the relative change, indicated by grey background
bars (right scale). The overlaid cladogram indicates the order in which the
comparison genomes are shown, which is based on their phylogenetic rela-
tionships. Note that the expansion and reduction bars do not represent absolute
gene numbers, but only the number of COGs in which the respective change
occurred.
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(b) Categories J and L

Figure 4.9: (continued)

(Figure 3.7a). Its change is strongest in these species, and most of it
likely occurred after branching from their common ancestor, close to
the extant taxa (Figure 4.9b). This already illustrates the importance of
recombinatorial effects for environmental adaptation of these strains,
which will be discussed in more depth in Section 4.3.1. Notably, DNA
repair mechanisms also fall into this category, which, as mentioned
in Section 3.4.1, are of particular importance in polar habitats (further
discussed in Section 4.3.3).

The distribution of COG categories C (Energy production and con-
version) and N (Motility) in Octadecabacter genomes further contrasts
previous findings. Normally they would be expected to positively cor-
relate with genome size [296], but instead they show negative cor-
relation2 in polar Octadecabacters. Nevertheless, gain and expansion
events dominated in both categories (Figure 4.10). All Octadecabacters
possess annotated genes for flagellum synthesis, which constitute the
majority of COG category N genes in their genomes. In addition, O.
arcticus and O. antarcticus gained (non-paralogous, i. e. likely horizon-
tally acquired) flagellar genes, leading to large changes in this category.
Motility tests of these two strains, however, gave negative results [61].
Consequently, it remains unclear underwhich circumstances these two

2 term correlation as used in ref. [296], i. e. referring to occupied genome fraction versus
genome size; see also Section 3.3.2
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strains showmotility, andwhat the function of their additional flagella
synthesis genes may be.

Category C comprises functions in energy production and conver-
sion, and includes the xanthorhodopsin specific for polar Octadecabac-
ters, which was likely gained by a common ancestor and then passed
down vertically to subsequent generations (Table 3.5). Apart from ac-
quisition of this new function, expansion of existing gene families in
this category predominate for the extant polar representatives, which
contrasts more distant clade members like isolates NH9-P7 and E8
(Figure 4.10). Drastic changes concerning energy production and con-
version therefore seem to have played a lesser role in polar habitat
adaptation. Rather, as Sections 3.4.1 and 3.5 demonstrated, polar Oc-
tadecabacters utilise a broader range of substrates and integrate dif-
ferent environmental stimuli. Accordingly, COG category G (Carbohy-
drate Transport and Metabolism) shows a higher representation in
their genomes (Table 3.4). Nonetheless, overall restructuring in this
category, i. e. the amount of function gain and loss, is high in all ex-
tant clade members (Figure 4.10), likely since they stem from diverse
habitats with different nutrient spectra (consider also remarks in Sec-
tion 4.1). The mobilome presents a similar case, in that all extant nodes
show large relative changes in COG category X (Figure 4.10), but it
occupies a larger fraction in polar Octadecabacter genomes than in
temperate ones (Table 3.4). This agrees with previous observations
that temperate bacteria possess mobilomes which are distinct from
their psychrophilic relatives, but that the latter usually contain more
mobilome components, like ISs [297].

Categories R and S, comprising genes with poorly characterised
or wholly unknown functions, exhibit the largest changes along the
Octadecabacter lineage (Figure 4.11), although they do not constitute
the largest categories overall (Figure 3.7). A high fraction of uncharac-
terised genes was also noted for the specific genome of Octadecabacter
group II (Section 3.4.2). Consequently, a large part of functional habi-
tat adaptations seen not only in polar, but all Octadecabacter clade
genomes, is currently not available for interpretation, which is a gen-
eral caveat of content-based analyses (Section 1.5).

Large genomes were found to encode a higher proportion of genes
associatedwith transcription [296]. Polar Octadecabacters do not show
this trend, althoughmultiple transcriptional regulators are part of their
group-specific genome (Section 3.4.1). Overall, the variation seen in
this function (COG category K) along the Octadecabacters’ lineage is of
comparable degree between polar and temperate isolates (Figure 4.11).
Co-factor synthesis (categoryH) presents a similar case, despite the po-
lar members’ increased synthesis capabilities (Sections 3.4.1 and 3.5).
Both observations reflect the fact that the group-specific genome, or
functional changes at the LCA, only represent a small part of the vari-
ation in genetic equipment during habitat adaptation. Rather, the ma-
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Figure 4.10: Changes in COG categories C (Energy production and conversion),
G (Carbohydrate transport and metabolism), N (Motility), and X (Mobilome)
in the Octadecabacter lineage. For details, see caption of Figure 4.9.



98 discussion

jority of changes occur on the level of the individual strain. However,
group-specific genes and ancestral changes reflect more general as-
pects of the adaptation, independent of the ecological niche inhabited
by individual polar species, and therefore allow for more generalised
conclusions.

In summary, thedifferences inCOG categorydistributionbetweenpo-
lar and temperateOctadecabacters are partly derived from the former’s
larger genomes, particularly concerning functions in DNA metabolism
and information processing. On the other hand, categorieswhich show
a stronger representation in polar genomes aremore related to the ecol-
ogy at this particular habitat (discussed in more detail in Section 4.3).
Their increased capacity for nutrient uptake and degradation indicates
a copiotrophic lifestyle, which would be plausible given the usually
high microbial density and primary productivity in the sea ice habitat
(Section 1.2). Earlier studies by Lauro et al. found that, compared to
oligotrophs, copiotrophs possess significantly more genes involved in
cellular motility, signal transduction, transcription, and defence mech-
anisms (COG categories N, T, K, and V, respectively), and less genes in-
volved in secondary metabolism, and lipid transport and metabolism
(categories Q and I) [298]. Judging from these observations, polar Oc-
tadecabacters do not seem to follow a more copiotrophic lifestyle than
their temperate relatives, and the implications of this situation are
discussed in Section 4.3.2.

4.2.2 Properties of the birth-and-death model

Wolf and Koonin argue that genome reduction is the predominant pro-
cess in genome evolution [299]. They suggest that genome complexity
does not emerge continually, but punctually, and is followedbygradual
reduction as organisms adapt to their specific niche [299]. Consistently,
former ancestral reconstructions in a broad phylogenetic background
estimated theRoseobacter group’s LCA to have had over 8,000 genes [93].
From this ancestor, gene counts remained high compared to the extant
genomes up to relatively late bifurcations, with subsequent successive
losses. According to amodel computed byLuo et al., the genome size of
the Octadecabacter and Loktanella clade’s LCA was around 7,400 [93].
In this regard, it seems consistent that gene loss also constitutes the
strongest lineage-specific component in almost all deeper branches of
the model computed here (see Figure 3.19 for parameter visualisation
within the Octadecabacter clade).

Luo et al. also found linear correlation between expected amino acid
substitutions and gene duplication and loss rates, fromwhich they pre-
dicted abnormally high gene duplication rates for both O. arcticus and
O. antarcticus [93]. It is, however, only sensible to relate parameter val-
ues to the branch lengths in the phylogeneticML-tree, if these correlate
with the branch length parameter estimated by Count, for which they
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Figure 4.11: Changes in COG categories H (Coenzyme transport and
metabolism), K (Transcription), R (General function prediction only),
and S (Function unknown) in the Octadecabacter lineage. For details, see
caption of Figure 4.9.
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provide no detailed information. In the present analysis, the model
tends to assign relatively shorter lengths to internal edges as com-
pared to the ML-derived lengths, and both correlate poorly (R2 = 0.09,
p = 0.82, Figure 3.19). Edges to extant species correlate well, and
show a tendency towards longer branch lengths for the polar Octade-
cabacters in the birth-and-deathmodel, reflecting their more extensive
content-based divergence (mentioned in Section 4.1.1). Based on these
data, no investigation of clock-like parameter behaviour as in ref. [93]
was undertaken. Contrary to the findings by Luo et al., the parameter
values at most extant and internal nodes of the polar Octadecabacters
suggest that transfer, i. e. acquisition through innovation or LGT, and
not duplication, has been most important in their functional adapta-
tion. This observation agreeswith the recent finding that≈85%of gene
family expansions are due to horizontal acquisition versus ≈15% to
duplication [289]. Only the two PAMC isolates show high duplication
values, albeit at short branch lengths. The discrepancy between this
and Luo et al.’s models may result from the lower depth and higher
resolution of the phylogeny used here, but also from the fact that the
present model was optimised on COG data, and not on orthology data
derived from pairwise BLAST comparisons.
There are no striking similarities in parameter values among the

three Loktanella species, which were isolated from Antarctic lakes [55].
L. vestfoldensis DSM 16212 has high rates of transfer and duplication,
paralleling to some extent the polar Octadecabacters (Figure A.7b,
p. 170). L. salsilacus and L. fryxellensis, which fall into a different sub-
clade, show no strong preference of any specific parameter. This sug-
gests that these species may have followed different strategies in adapt-
ing to their polar habitats, which will be discussed in more detail in
Section 4.3.4.
Among the other genomes, parameter values along the Ketogulonici-

genium branch strongly differ from the rest, as they possess the highest
branch length and show strong tendencies towards loss of functional
families (visualised in Figure A.7c, p. 171). This signifies the drastic
amount of change in functional gene content associated with adapta-
tion of their terrestrial lifestyle.

4.3 environmental adaptations in polar octadecabac-
ters

Sections 3.4 and 3.5 described characteristics of polar Octadecabacters
and provided basic interpretations on their functions and roles in these
organisms. This section seeks to integrate these data into a comprehen-
sive view of how polar Octadecabacters adapted to their environment.
This includes analysing and rating their basic mechanisms of adapta-
tion (Section 4.3.1), and apparent methods to deal with higher levels
of stress (Section 4.3.3). Several metabolism-related content alterations



4.3 environmental adaptations in polar octadecabacters 101

were found, and these are interpreted in Section 4.3.2. Finally, Sec-
tion 4.3.4 compares characteristics of polar Octadecabacters to other
polar isolates within the Roseobacter group and discusses possible rea-
sons behind the observed similarities and differences.

4.3.1 Genomic adaptation mechanisms

Colonisation of a new habitat presents microbes with the challenge of
adapting to new selective stimuli, potentially encompassing extreme
environmental situations. Adaptation takes place via three mecha-
nisms:
i changes in gene regulation, sometimes induced by genomic rear-
rangements, which alter regulatory networks,

ii protein family expansion resulting from LGT, or from duplication
of existing genes, and

iii point mutations, which confer a selective advantage and therefore
become fixed in the population.

The data presented in Sections 3.4 and 3.5 show that functions associ-
ated with these mechanisms are more abundant in polar Octadecabac-
ters than in their temperate relatives, which is a trend often observed
in psychrophilic bacteria [297].

In addition to GTAs, for which at least partial gene clusters are
present in all currently sequencedOctadecabacters, the highnumber of
transposable elements (TEs) and functions associated with recombina-
tion (Section 4.2.1) facilitates not only genomic rearrangement, but also
uptake of laterally transferred genetic material [300]. In Section 3.4.1
some genetic loci were described, which likely constitute parts of reg-
ulatory networks that are specific to polar Octadecabacters. Many of
the corresponding functions coded therein are not per se exclusive to
this group, such as the carbohydrate ABC transporters, or are repre-
sented by additional orthologues elsewhere in the genomes, e. g. the
TCA cycle-associated dehydrogenases. Since these are not paralogous,
but constitute individual OGs with equivalent functions, they were
likely acquired horizontally in the ancestral lineage of polar Octade-
cabacters. This would also explain their conserved order in the four
genomes. The conservation of these particular loci, despite the high
rate of rearrangement in these genomes (demonstrated for O. antarcti-
cus and O. arcticus in fig. 3 of ref. [77]), furthermore indicates that
they are operons of functionally correlating genes. Consequently, LGT
seems to have played a role not only in acquiring completely new func-
tions such as the xanthorhodopsins, or DNA polymerase V, but also in
expanding functionalities already present in the genomes.
Regarding protein family expansion, LGT is markedly more frequent

in situ than duplication [289]. Nonetheless, duplication allows for rela-
tively fast adaptation within the time frame of a few generations [301].
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Polar Octadecabacters generally seem to have undergone more stable
gene duplication events than their closest relatives, as indicated by
their higher average number of paralogues (see Table 3.6). This likely
results from their higher number of mobile genetic elements, i. e. trans-
posases, ISs, etc. At this point, it is worth noting that the activity of
such elements is often increased in situations of stress, demonstrated
for, e. g. oxidative stress [302], starvation [303], or UV-induced dam-
age [304]. Multiple forms of stress are frequently encountered at polar
habitats (and sea ice in particular, as explained in Section 1.2), and
a large mobilome is advantageous to polar Octadecabacters, as it in-
creases their evolvability under these conditions.

Various group-specific genes discussed in Section 3.4.1 are found
in multiple copies within individual polar Octadecabacter genomes,
e. g. DNA polymerase V, NfuA, or pyridoxamine 5’-phosphate oxi-
dase, underlining their apparent importance for habitat adaptation.
Nonetheless, there is no polar group-specific gene, which is duplicated
in all four members of this group. The high fragmentation of the two
PAMC isolate genomes may partially obscure their actual gene content,
and therefore lead to an underestimation of their TEs and paralogue
numbers (see also Appendix A.7, p. 203).

Generally, 45 to 92% of paralogues are exclusive to each strain, with
the exception of the two highly similar PAMC isolates, and predomi-
nantly affect the cloud-, and shell-genomes (Table 3.6). Interestingly,
isolate NH9-P7 possesses a number of paralogues similar to that of po-
lar Octadecabacters, despite its lower number of TEs (Figure 3.7). The
majority of its duplications also occurred in the clade’s core-genome.
Consequently, the number of mobile genetic elements alone is not nec-
essarily a direct indicator for the number of duplications accumulated
in a genome. A larger number of these elements will increase the ca-
pacity for short-term changes, which are stimulated by conditions of
stress, as discussed above.
Notably, the results of transposition and homologous recombina-

tion events of mobile genetic elements are indistinguishable [300]. It
is therefore unclear, which of these processes dominated in polar Oc-
tadecabacters.

TEs not only mediate gene duplications, but also horizontal transfer
and rewiring of genetic networks [305]. In that function, they constitute
one specific strategy an organism can follow in order to adapt. This tac-
tic in some cases trades speed for efficiency, as mutations generated by
TE activity may hinder the fixation of other, more beneficial mutations,
e. g. point mutations in specific promoters [306].
Compared to TE-derived mutations, point mutations are a slower

adaptive process, usually taking thousands of generations [301]. Their
rates are increased in polar Octadecabacters, likely due to the acquisi-
tion of DNA polymerase V. As mentioned in Section 3.4.1, this enzyme
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causes a highermutation ratewhile bypassing and repairingDNA dam-
age, thereby increasing evolvability [230].

Sea ice is thought to be a "hot spot" of microbial evolution due to its
high abundance of phages and lower selective pressure due to graz-
ing [307]. No phage-associated genes were found specific for polar Oc-
tadecabacters, and it is unclear how much of their mobilome, e. g. spe-
cific transposases. or specific gene content results from acquisition of
phage DNA. Transfer and uptake of DNA is however also facilitated by
the othermobilome components. Importantly, the frequent encounters
of stressful situations in sea ice, e. g. rapid shifts in salinity, or phases
of heavy metal exposure, require and will therefore select for highly
mutable genomes. Many components of the mobilome, e. g. specific
transposases or DNA polymerase V are specifically activated during
stress response. This system of reoccurring stress signals and concomi-
tant mutagenesis constitutes another inherent reason why this habitat
acts as evolutionary "hot spot".

4.3.2 Metabolic properties of polar Octadecabacters

Polar Octadecabacters have acquired the ability to utilise a broader
range of substrates for metabolism than other members of this clade,
some ofwhich have beenmentioned in the previous sections (e. g. histi-
dine, fuculose/arabinose). More complex metabolic networks usually
require more complex regulation, and both features are associated
with larger genomes [296, 308], as observed for polar Octadecabacters
(Table 3.1). Metabolic complexity also correlates with the high rates of
genomic rearrangement present in some polar Octadecabacters [77],
since in larger genomes with more regulators, natural selection for
operons is relaxed [309].

Compared to the marine environments from which other Octade-
cabacters were isolated, this difference in metabolic capabilities likely
results from sea ice being a complex, highly productive habitat [42]
where microbial cell densities may reach over 107 cells/mL [310]. The
sea ice residents O. arcticus and O. antarcticus therefore likely live in
close association with primary-producingDiatoms, as it is common for
the most abundant sea ice bacteria [311]. Such relationships usually in-
fluence the capacity for vitamin and co-factor synthesis, and the data
presented throughout Sections 3.4.1 and 3.5 indicate that polar Octade-
cabacters act as providers of thiamine (Section 3.5.1) and cobalamin,
which are frequently exchanged between prokaryotes and their algal
hosts [256, 312]. Nonetheless, when cultivated in vitro, O. antarcticus
and O. arcticus cannot grow without vitamin supplements, indicating
auxotrophy for at least one co-factor [76] (for example pantothenate, as
noted in Section 3.5.6).
The fact that most degrading enzymes require co-factors for their

reactions may also link their increased production capabilities to the
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broader range of degradable substrates in polar Octadecabacters. To
name one example, the glucan phosphorylase activity likely gained
at the polar Octadecabacter LCA (Section 3.5.6) requires pyridoxal-
phosphate, which all Octadecabacters can synthesise. The polar group
gained an additional, group-specific pyridoxamine 5’-phosphate oxi-
dase for its synthesis (Section 3.4.1).

In their relation with primary producers, the associated prokary-
otes gain access to degradable photosynthates in exchange for their
secreted co-factors, and this relationship is the main carbon source for
heterotrophic bacteria, as detailed in Section 1.1. Indicative of this rela-
tionship are the glucan phosphorylase and glucanotransferase gained
by the polar Octadecabacter LCA (Section 3.5.6), as well as their in-
creased carbohydrate transport capabilities mentioned in Section 3.4.1.
Due to the high levels of primary production [42], and since EPS pro-
duced by Diatoms also serve to concentrate DOC [37], sea ice gener-
ally favours a copiotrophic lifestyle. It is generally accepted that copi-
otrophs possess more genomic copies of the rRNA operon [298, 313],
as well as larger genomes and increased transport and degradation
capabilities [298]. Polar Octadecabacters exhibit these features in com-
parison to the other clade members, although the higher rRNA operon
copy number is masked in the PAMC isolates by their high fragmenta-
tion (but see Appendix A.7, p. 203). Nonetheless, they do not show the
typical COG profiles associated with copiotrophy (Section 4.2.1). They
furthermore exhibit slow growth rates even in full medium (for data
on O. arcticus and O. antarcticus see ref. [61]), which is more typical of
oligotrophs. One explanation might be that they require parts of their
increased metabolic capabilities and available energy for the repair of
cellular damage, at the cost of growth speed and efficiency. A higher
number of rRNA and tRNA genes was also suggested to compensate for
reduced translation speeds at low temperatures [39]. Notably, numeri-
cal dominance of α-Proteobacteria, and Octadecabacters in particular,
seems to be relatively uncommon in sea ice, and other known copi-
otrophs from the γ-Proteobacteria and Bacteroidetes usually dominate
the prokaryotic communities [53, 311].
It could seem paradoxical that the sediment-residing PAMC isolates,

which were procured from a depth of 156m [80], show the same
metabolic and substrate patterns as the sea ice residents O. arcticus
and O. antarcticus. Studies in the Arctic showed that during melting
of sea ice, algal biomass sinks to the ocean floor and can reach depths
over 4,000m [314]. Such a process could avail the two isolates the same
nutrient spectrum as their surface-dwelling relatives.
In contrast to seawater, nitrogen is abundantly present in sea ice, and

does not usually constitute a limiting factor for prokaryotic growth [53,
315]. This is reflected in the group-specific Octadecabacter genomes,
since only group III possesses multiple extracellular proteases, which
are secreted to make nitrogen accessible through the degradation of
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extracellular proteins. Thus, in concordance with the presence of a
specific starvation-inducible factor, this group seems to frequently en-
counter phases of (nitrogen) starvation. On the other hand, the number
of genome-encoded metalloproteases seems to have undergone a re-
duction in the polar Octadecabacters’ ancestral lineage (Table 3.5).

Rather than nitrogen, phosphorus seems to be the most limiting el-
ement in sea ice [53]. However, it is unclear from the group-specific
genome, in how far this influences the core metabolism of polar Oc-
tadecabacters. Curiously, a nucleotide phosphodiesterase likely expe-
rienced family reduction along their ancestral lineage, which would
make inorganic phosphate accessible from extracellular nucleotides
(Section 3.5.6). Conversely, a potentially higher amount of rRNA, im-
plied by the increased rRNA operon copy numbers in this group, would
constitute a larger sink of cellular phosphorous [316]. The presence of
TauD may cause a slight alteration in their inorganic phosphate pool
management (see below).

Substrate utilisation is generally controlled through the integration
of environmental stimuli, and most polar group-specific loci related
to degradation are preceded by genes encoding transcriptional regu-
lators (Section 3.4.1). In addition, polar Octadecabacters possess more
genes coding for enzymatic functions which steer cellular metabolism.
For example, as mentioned in Section 3.5.6, GPDH regulates substrate
flow between fatty acid synthesis and glycolysis, and this functionality
expanded in this group. One function in this regard, which is absent
in all other Octadecabacters, is the taurine dioxygenase TauD. Taurine
is abundant in the environment, and serves as a nitrogen, carbon, and
sulphur source [317]. All Octadecabacters are genetically able to de-
grade it via the tpa/xsc route, which first assimilates nitrogen (tpa),
and then sulphur (xsc) from taurine, ultimately producing acetylphos-
phate [317]. TauD, on the other hand, directly obtains sulphite from
taurine in an oxygenolytic reaction [238]. Importantly, it also acts on a
number of different substrates other than taurine [238]. In E. coli, TauD
expression is induced under sulphur-limitation [238], and Rhodococcus
opacus explicitly does not use the tpa/xsc pathway for sulphur assimi-
lation from taurine, but likely uses TauD [318]. Polar Octadecabacters
may follow a similar tactic, since sulphur-assimilation via TauD has
the advantages of i) consuming oxygen, thereby potentially reducing
the level of oxidative stress, as mentioned in Section 3.4.1, and ii) con-
serving phosphate in the cell, as no acetylphosphate is produced. Thus,
TauD is an example of a newly acquired function in polar Octadecabac-
ters, which acts at the intersection of multiple cellular element cycles
(N- and S-cycles), and may therefore serve a specific regulatory func-
tion in this group. The easy acquisition of sulphite from this abundant
substance may explain why this group has no need for the methion-
ine salvage pathway (Section 3.5.3). Most Octadecabacters, including
the polar group, are furthermore genomically able to degrade the sul-
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phur compound 2,3-dihydroxypropane-1-sulfonate (DHPS), which is
produced and secreted by most algae and and a known "currency" in
their symbiotic relationships with roseobacters [65].

The more immediate uptake and therefore regulatory capability of
the S-cycle by TauD may also be related to the increased stress levels
at the polar regions. Section 3.4.1 mentioned that the oxidative state
of sulphur atoms in biomolecules is particularly vulnerable to modi-
fications by free radicals, and the products of various group-specific
genes, such as NfuA, or the thiol-disulfide oxidoreductase, relate to al-
leviating such damage. The low molecular weight sulphur compound
glutathione is highly abundant in α-Proteobacteria and is one of the
most important cellular antioxidants [319]. Even under growth con-
ditions without the presence of external stress agents, glutathione
turnover in the cell is higher than that of most co-factors [320]. With
turnover potentially increasing in their more oxidative environment,
polar Octadecabacters may face higher loss of sulphur species due to
irreversible damage, or need to rapidly synthesise quantities of glu-
tathione (or other antioxidative sulphur compounds) during phases
of acute oxidative stress. TauD would allow for a more rapid mobili-
sation of sulphur from taurine, or similar molecules, than the tpa/xsc
pathway, and would therefore be beneficial under such circumstances.
A further notable aspect is their phototrophic capability due to pres-

ence of a xanthorhodopsin system (Section 3.4.1). Phototrophy is fre-
quently encountered in marine habitats, since it compensates for the
general lack of nutrients in most oceanic water masses, or improves
trophic efficiency [205, 251].Of the twoknownalternatives, photochem-
ical reaction centres are the more complex one, requiring 30 to 40 gene
products for functional assembly [321], and forming huge membrane-
situated complexes [322]. Since membrane biochemistry and protein-
protein interactions are significantly altered in cold environments [28,
323], it is plausible that the polar Octadecabacters favour themore sim-
ple (xantho)̄rhodopsin system, which consists of one protein and its
chromophor, and requires five genes for its biosynthesis. Furthermore,
the activity of photochemical reaction centres generates significant
amounts of oxidative stress [252]. The higher oxygen solubility at low
temperatures, and the enrichment of heavymetals at both poles [46–48]
both generate high background levels of oxidative stress, which might
make the additional cost of reaction centres too high. In contrast, as
discussed in Section 3.4.1, rhodopsins exhibit a protective role during
oxidative stress by maintaining the membrane potential during distur-
bances in the quinol-quinone-cycle, in addition to their potential role
during starvation. Nonetheless, photochemical reaction centres asso-
ciated to Roseobacter group bacteria also occur in sea ice, but at lower
frequency than in the underlying sea water [90]. Exclusively favouring
rhodopsin-based phototrophy therefore constitutes a characteristic of
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polar Octadecabacters (discussed in more detail in Section 4.3.4), al-
though its function in these species remains unknown.

During phases of high primary production, degradable substrates
are available in copious amounts. Their production shows high spatio-
temporal variability. For example, glycerol synthesis is stimulated dur-
ing phases of osmotic stress. At the same time, the sea ice can melt
and release its microorganisms into the water column, thereby poten-
tially disrupting the syntrophic associations and greatly reducing sub-
strate availability. The group-specific genome of polar Octadecabacters
contains several indicators that these strains repeatedly have to deal
with such phases. For example, rhodopsin activity has been impli-
cated as a mechanism to resist starvation [205]. In addition, cobalamin-
independent methionine synthase constitutes a redundant enzymatic
functionwithout the requirement of a (costly) co-factor. Finally, asmen-
tioned in Section 3.5.1, this group possesses more functions related to
thiamine degradation and recycling, which could be related to a more
efficient utilisation of available cellular compounds.

Interestingly, all Octadecabacters are also capable of anaplerotic car-
bon fixation through the malic enzyme route (explained in ref. [324]),
which may reduce their reliance on exogenous substrates.

In conclusion, the specific genome and enriched functions of polar
Octadecabacters reflect metabolic adaptations, which are consistent
with our current knowledge of sea ice ecology (see above). Like other
studied members from the Roseobacter group [54, 257], these strains
seem to be closely associated with primary producers in a mutualistic
relationship.
The present analysis cannot provide statements as to how polar

Octadecabacters interact with the other abundant and usually copi-
otrophic prokaryotic sea ice residents. While only substrate special-
isation and concomitant mutualism theoretically lead to a collective
optimum of biomass [325], it remains unclear at this point whether co-
operative or competitive interactions dominate the relationship among
these members of the sea ice microbial community (SIMCO).
It is noteworthy that polar Octadecabacters are the only group, the

specific genome of which renders a relatively complete and interpret-
able picture of metabolic adaptations, as the above discussion of ad-
ditionally utilised substrates and environmental integration showed.
This may be due to their high homogeneity (i. e. pairwise similarity)
in comparison to the other groups (Figure 3.1). Furthermore, most
of their specific genes are functionally characterised. Conversely, the
specific genome of O. temperatus and O. ascidiaceicola contains mostly
uncharacterised genes. This groupwould thus provide a good basis for
further experimental study, as their characterisation could illuminate
the lifestyle aspects which both strains share, and which seem to be
poorly covered by our current knowledge.
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4.3.3 Genomic indicators of psychrotrophic adaptations

Cold habitats constitute a large part of earth’s biosphere, and cold
adaptation in bacteria has frequently been studied on the genomic
level (Section 1.2). Fluidity of the cellular membrane is usually main-
tained at low temperatures by increasing the amount of unsaturated
fatty acids, and fatty acid desaturases were identified as specifically
enriched in some cold-adapted organisms [15]. This is not the case in
polar Octadecabacters. They possess multiple desaturase genes, but
none of these is specific to this group. The average number of desat-
urase genes is furthermore not higher for polar Octadecabacters than
for the temperate strains.

Existing data, which were compiled by Billerbeck et al., also show
that the lipid profiles of the compared clade members are relatively
similar, and that the content of polyunsaturated fatty acids in temper-
ate isolates can actually exceed that of polar ones at low temperatures
(table 2 in ref. [79]). Polar strains seem to possess a slightly higher
percentage of shorter fatty acids, as it is common for cold-adapted
organisms (Section 1.2). Some adaptation may also derive from dif-
ferential regulation of fatty acid synthesis, since polar Octadecabac-
ters possess additional GPDH functionality (Section 3.5.6), which can
steer substrates between fatty acid synthesis and glycolysis. Beyond
these relatively minor alterations, polar strains seem to counter the al-
tered membrane physiology through other means, such as an increase
in degradation capabilities (indicated by the group-specific AAA AT-
Pase).

In addition, polar Octadecabacters lack group-specific antifreeze
proteins (AFPs) or cold-shock proteins (CSPs), which are proteins that
usually accompanycold-adaptation inbacteria (Section1.2).Conversely,
the temperate group III possesses one specific CSP. As mentioned in
Section 3.4.3, CSPs are particularly important during the cold-shock
response in mesophiles, where they halt translation and regulate tran-
scription, in order for the organism to adapt to the new tempera-
ture [30]. Stenopsychrophiles like the polar Octadecabacters possess
a constitutively cold-adapted transcriptional and translational machin-
ery, and their CSPs rather serve for cold-acclimation [27]. Due to this
lesser role, it is plausible that this groupdoes not require additionalCSP
functionality for efficient growth. Cold-adaptation of the translational
machinery in polar Octadecabacters is evidenced by the group-specific
ribosomal protein RpsU (Section 3.4.1) and, as mentioned in the previ-
ous section, probably by the higher number of rRNA gene copies. For
the replicative machinery, gain of a DNA replication protein (COG 1484,
Table 3.5) seems to constitute one adaptive trait (further discussed in
Section 4.3.4).
With regard to ice crystal formation, the lack of AFPs indicates that

polar Octadecabacters rely on other methods to avoid water freezing
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and its accompanying effects. For example, they possess increased
capacity for the production of proline (Section 3.5.5), and for glycerol
import (Section 3.4.1),which are both effective compatible solutes. Like-
wise, the presence of genes encoding exopolysaccharide synthesis and
export proteins suggests that all members of this group are able to
produce extracellular polysaccharides (EPS) themselves, and therefore
likely do not need to rely on EPS produced by Diatoms to repress the
freezing point of water.
Enzymatic function is usually maintained at low temperatures via a

decrease of protein stability, for which exchange of only a few amino
acid residues (<1%) can suffice [326]. Since secondary structures shape
the tertiary structure of aprotein, andare therefore essential for its func-
tion, it is thought that such features do not differ much between tem-
perate proteins and their cold-adapted homologues [29]. This seems
to hold true for the core-proteome of Octadecabacters. Concerning
relative secondary structure content, polar strains only form a distin-
guished group when both structural features, α-helix and β-sheet, are
considered in combination (Figure 3.21). This clustering may simply
result from the fact that they are more similar to each other on the
sequence level than to the rest (Figures 3.1 and 4.7). Overall, for them
there is clearly no significant trend towards a higher, or lower structural
feature content (Figure 3.22).
Observed differences in amino acid frequencies between psychro-

philic and mesophilic microbes can vary largely, depending on the or-
ganism’s class, GC-content, or the phylogenetic distance to and nature
of the mesophilic comparison organisms [27, 35, 86, 327]. Particularly
GC-content is a strong determinant of amino acid profiles [328], which
is why P. jejudonensis and isolate NH9-P7 were excluded from the com-
parison of amino acid frequencies within the Octadecabacter clade
(Table 3.1). When compared to the remaining three temperate strains,
polar Octadecabacters show only slight deviations in amino acid fre-
quencies (Figure 3.23). Typical observations, such as reduced arginine
content [35], or increase in glycine, and decrease in proline content [28]
in psychrophiles, are not, or onlyweakly (glycine) evident in this group
when the whole core-proteome is considered. However, they show
higher frequencies of some hydrophobic amino acids (four out of six,
Figure 3.23), a trend which is also present in other psychrophiles [35].
Moreover, these differences reflect to some extent correlations between
amino acid content and optimum growth temperature noted for some
model proteins. Specifically, the amino acids which occur more fre-
quently in polar Octadecabacters tend to be less hydrophobic than the
others within the same group (compare data compiled in table 2 of
ref. [329]), and hydrophobicity was found to positively correlate with
growth temperature [329]. The average molecular weight presents a
similar case, with cold-adapted enzymes preferentially incorporating
lighter amino acids [329]. In polar Octadecabacters, this trend is less
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pronounced than the decrease in average hydrophobicity. Yet, it is still
notable, particularly in the group of hydrophobic amino acids, where
the frequency of light amino acids, glycine and alanine, is higher in po-
lar strains than in the temperate ones. Thus, the differences in amino
acid frequencies between polar and temperate Octadecabacters are
broadly consistent with general trends in cold-adapted enzymes, but
agree less with data from direct comparisons of other psychrophilic
and temperate organisms.

The frequency variation of an individual amino acid, which accom-
panies a protein’s stability reduction, can be interpreted on the basis
of its flexibility, and accordingly its rigidity, as captured by atomic
displacement parameters, or B-factors [330]. Overall amino acid fre-
quencies in polar versus temperate Octadecabacters do not display
a tendency towards higher flexibility, judging from their B-factors as
determined by Smith et al. [330] and compiled in ref [29] (see Fig-
ure 3.23). Conversely, such a tendency was shown for psychrophilic
enzymes from other organisms [331]. However, α-helices of polar Oc-
tadecabacters show a consistent trend of avoiding rigid amino acids
(I,M, andA), and increasing their content ofmore flexible ones (mostly
D, E, see Figure 3.24). Organisms can further modulate helix stability
particularly through the modification of charged amino acid numbers
at the helix caps [29]. A breakdown of amino acid frequency by indi-
vidual sub-domains and structural sub-features is beyond the scope
of this analysis, but the fact that both negatively charged amino acids
(and one out of three positively charged ones) deviate in frequency in
polar α-helices (Figure 3.24) could imply the presence of this type of
modification. Thus, indications are strong that polar Octadecabacters
selectively reduce stability of their α-helices.
Rather than modifying their existing enzymes, bacteria often ac-

quire isozymes, which function better at lower temperatures, as part
of their cold-adaptation strategy [332, 333]. Some of the group-specific
genes described in Section 3.4.1 are homologous versions of functions
contained in the Octadecabacter core-genome, such asmyo-inositol de-
hydrogenase, or the cluster of specific dehydrogenases. These could
well constitute cold-adapted enzymes, which polar Octadecabacters
acquired through lateral transfer as alternatives to those coded in their
core-genome. However, due to lack of experimental data, it cannot be
ruled out that they simply integrate different environmental stimuli
as part of these strains’ expanded metabolic networks, or serve both
of these described purposes. Nevertheless, the higher capacity of po-
lar Octadecabacters for lateral acquisition of genes, or, more generally,
their high genome flexibility discussed in Section 4.3.1, thereby also
constitutes a prerequisite for efficient cold-adaptation. Similar observa-
tions were also made for Photobacterium profundum, where inactivation
of transposases lead to a cold-sensitive phenotype [334].
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Beside the traits of cold adaptation discussed so far, resistance to
(oxidative) stress is prominently featured in the polar group-specific
genome and in this group’s expanded functionality (Sections 3.4.1
and 3.5.5).

Some of the involved genes are part of the SOS-response. As men-
tioned in Section 3.5.5, this response is induced by DNA damage and
leads to expression of multiple genes, mediated by the cleavage of the
transcriptional repressor LexA [276]. The precise number andnature of
genesunderLexA-regulationvaries between taxa, but its core-regulons
in different bacterial groups usually include the lexA gene itself, trans-
posases, helicases (such as RuvABC), and DNA polymerases capable of
translesion DNA synthesis (TLS) [276]. Polar Octadecabacters possess
more copies of LexA, transposases, and a specific copy of DNA poly-
merase V, and therefore show increased functionality to copewithDNA
damage, as conveyed by the SOS-response. The higher number of lexA
genes could mean a higher base expression, or a more rapid induction
of this repressor, and may be particularly important for the survival of
this group when one considers the function of DNA polymerase V: this
enzyme, in addition to mediating TLS, acts as DNA damage checkpoint
and can haltDNA synthesis, depending on the state of theUmuDC com-
plex [335]. The latter function leads to a cold-sensitive phenotype in E.
coliwhen UmuDC levels become too high [336]. Thus, both to prevent
the rapid accumulation of random mutations, as well as to enable cell
cycle progression, UmuDC expression has to be tightly controlled in
polar Octadecabacters. Moreover, this control has to take place against
high background levels of DNA-damaging agents (Section 1.2), which
may necessitate more of the transcriptional repressor LexA.
Increased levels of (oxidative) stress also lead to more unwanted

modifications of metabolites, which the cell has to deal with. As noted
in Section 1.5, we currently only have rudimentary understanding of
this particular aspect of metabolism. Nonetheless, some of the polar
Octadecabacters’ characteristics are likely associated with this effect.
For example, the high number of paralogues in their genomes can
be useful to deal with metabolites that are chemical variants of nor-
mal compounds [95], e. g. irregular variants derived from (unwanted)
radical reactions. On the other hand, due to the high diversity and
productivity of their environment, this could also simply result from
a high substrate variation in their habitat. It would be interesting to
experimentally test and compare, which of these purposes outweighs
the other, both in the polar group, as well as isolate NH9-P7, which
shows similarly high paralogue numbers (Table 3.6).
The modification of sulphur species in oxidative reactions, and the

concomitant increase in polar Octadecabacters’ respective damage
protection and repair capabilities was detailed at multiple places in
Chapter 3. At the same time, it is of equal importance to guarantee
the integrity of other cellular compounds such as nucleotides, or co-
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factors. Nudix hydrolases are often involved in quality control of the
former [95], and this functional family expanded at the polar Octade-
cabacters’ LCA (COG 1051, Section 3.5.5). Involvement of this family in
dealing with oxidatively modified compounds could also explain their
role in heavy metal resistance detailed in Section 3.5.5. Besides this ex-
ample, multiple uncharacterised oxidoreductases were likely gained
in the ancestral lineage of polar Octadecabacters (Table 3.5), and such
enzymes are often part ofmechanismswhich repair irregular chemical
modifications of molecules [95].

Recent experimental data indicate that the rate by which most co-
factors are synthesised is adjusted to account for the dilution resulting
from cell division [320]. Conversely, this dilution accounts for most of
the co-factors’ turnover, as cells minimise their loss due to unwanted
and damaging (e. g. oxidative) reactions via specialised repair mech-
anisms [320, 337]. The fact that the cultivated polar Octadecabacter
species have long doubling times implies a decreased turnover of most
co-factors in these organisms and a concomitantly higher importance
of their repair mechanisms. Importantly, organisms counter co-factor
damage by degrading and re-synthesising them from their scavenged
components. Apart from the metabolic advantage of potentially con-
serving nutrients, the additional capacity for thiamine synthesis and
degradation present in polarOctadecabacters (Section 3.5.1)may there-
fore also play a role in their management of damage to this compound
through unwanted modifications. This may also apply to the alter-
ations in their biosynthesis machinery of other co-factors, detailed
e. g. in Sections 3.4.1 and 3.5.2. Yet, without experimental verifica-
tion, it remains unclear to what extent these relate to guaranteeing
the proper chemical nature of the respective co-factor, or to their gen-
erally changed biosynthesis patterns due to different syntrophic rela-
tionships discussed in the previous section.

It was noted earlier that besides passively reacting to oxidative stress
through the mechanisms described in the preceding paragraphs, po-
lar Octadecabacters also possess more enzymatic functions which con-
sume oxygen, and could thus actively eliminate an important source
of this type of stress. Interestingly, epiphytic bacteria on a sea ice Di-
atom were shown to reduce its oxidative stress levels resulting from
photosynthesis [54]. Among these bacteria were Sulfitobacter species,
which belong to the Roseobacter group. Since polar Octadecabacters
also seem to be closely associated with sea ice primary producers, they
may plausibly be involved in the same kind of relationship, and this
would be interesting to test experimentally.

One particular feature of sea ice is its high potential for osmotic
stress (Section 1.2). The specific genetic equipment of polar Octade-
cabacters contains several ion transporters, mostly Na+/H+ antipor-
ters, which are implicated in osmoregulation (Sections 3.4.1 and 3.5.5).
Importantly, such transporters are also frequently associatedwith cold-
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adaptation [39, 338]. As mentioned in Section 1.2, cells may increase
their cytoplasmic ion concentrations to suppress the freezing point of
water, and these transporters may therefore play a role in maintaining
the balance between ion influx and export. It was also noted that the po-
lar Octadecabacters’ transport capability for the common polyamines
spermidine and putrescine is increased as well (Section 3.4.1). Apart
from acting as compatible solutes, i. e. osmoprotectants, they also con-
stitute nitrogen reservoirs and protect DNA against oxidative damage.
Despite this range of desirable functions, and the likely absence of
Nitrogen-limitation (see previous section), polar Octadecabacters can-
not synthesise these compounds on their own. This may be due to the
fact that spermidine is toxic at low temperatures, likely by inhibiting
ribosomal activity [339]. Rather, as mentioned earlier, they seem to
prefer proline and glycerol as compatible solutes.

4.3.4 Comparison to other polar members of the Roseobacter group

Roseobacter group bacteria seem to be well represented in most polar
aquatic environments, such as polarwaters [89], sea ice [51, 90], Antarc-
tic lakes [55], or marine sediment [80]. Comparison of key features
between polar and temperate isolates of three clades other than the Oc-
tadecabacters indicated that the trends observed in the latter are not
common in polar-adapted roseobacters (Figure 3.20). More precisely,
only polar Loktanella species showed a potentially increased capacity
for genetic mobility (i. e. more genes in COG categories L and X), and
above-median numbers of singleton genes and paralogues, as found
to be characteristic for polar Octadecabacters. The differences in these
key characteristics between polar and temperate clade members are
smaller for the Loktanella clade compared to the Octadecabacters. The
single polar isolates associatedwith the Leisingera and Sulfitobacter gen-
era, respectively, did not display these trends at all (Figure 3.20).
Consequently, it seems that large-scale increase in genomic flexibil-

ity as an adaptive strategy to polar habitats is a characteristic of the
Octadecabacter clade, and polar members of other clades follow other
routes of adaptation. This increase is in agreement with general obser-
vations regarding sea ice habitats [307], but can also be observed in
the sediment-residing PAMC isolates, indicating that it is not specific
for one particular type of polar habitat, but rather for this group of
organisms as a whole. The polar Loktanella strains, on the other hand,
follow a markedly different lifestyle (i. e. bio-mat association), which
may require other evolutionary strategies for efficient adaptation.
The latter were also included in the phylogenetic birth-and-death

model, which enabled a comparison of gain and loss of specific genes
along both their and the polar Octadecabacters’ ancestral lineages (Sec-
tion 3.5). Two functions were specifically acquired along all polar lin-
eages:COG 1484 (DNA replication proteinDnaC), andCOG 2608 (Copper
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chaperone CopZ). CopZ is a copper-efflux chaperone, and therefore
plays an important role for the cell in reducing oxidative stress [264].
DnaC acts as a regulator of the DNA helicase DnaB, and is essential
during replication initiation [340]. While the former is clearly involved
in a function that is of higher importance in cold than in temperate
habitats, the meaning behind the gain of DnaC in a polar context
remains enigmatic. More precisely, due to its essential function, all
comparison strains possess an annotated version of it. However, the
respective gene shows conflicting orthology relationships: one orthol-
ogous group (OG) shared by all is annotated as DnaC in some strains,
and as DnaB in others, whereas it is assigned to COG 0305 (Replicative
DNA helicase). COG 1484, on the other hand, occurs as multiple, mostly
singleton, OGs in the polar isolate genomes, and was assigned as either
DNA replication protein, or as an insertion sequence (IS)-associated
protein. Consequently, the current unknown functions and relation-
ships of these genes bar further insight at this point, but they could
be interesting candidates to study their function and potential role in
psychrotrophic adaptation in vivo.

As noted in Section 3.4.1, rhodopsin phototrophy seems to be fre-
quent in polar Roseobacter group isolates, and it constitutes the only
type of phototrophy found in polar Octadecabacters (Section 4.3.2). In-
terestingly, among polar roseobacters, which are not members of the
Octadecabacter clade, the genes required for xanthorhodopsin synthe-
sis and aerobic anoxygenic photosynthesis (AAP) are equally abundant
(present in 3 out of 5 isolates). Loktanella vestfoldensis DSM 16212 and
Sulfitobacter guttiformisKCTC 32187 are genetically capable of bothAAP,
and xanthorhodopsin phototrophy. On the other hand, the two polar
type strains of L. fryxellensis and L. salsilacus each only possess genes
for one of the two: AAP for the former, and xanthorhodopsin for the
latter. Phototrophic functions are absent in Pseudophaeobacter arcticus.
This seems to indicate that the role phototrophy plays for polar Oc-
tadecabacters differs from that of most other polar Roseobacter group
bacteria. Notably, the different micro-environments in which other po-
lar roseobacters dwell pose other restrictions and boundary conditions,
most notably the diverse ecosystems of the Antarctic lakes [341]. Thus,
in some environments, the additional cost of AAP may become fea-
sible, whereas the benefit conveyed by rhodopsin phototrophy may
be marginalised. Similarly, metabolic networks and general survival
strategies vary between polar representatives of different clades,which
is not feasible to investigate without more sequenced genomes of polar
isolates.

Following this thought, it should be noted that the present compari-
son has important limitations: first, the number of other polar isolates
is too low to deduce definitive trends between them and temperate
representatives of their associated genera. Owed to that, it is, secondly,
not clear whether different polar species form monophyletic clades
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within these genera like the polar Octadecabacters do. The two po-
lar type strains of L. fryxellensis and L. salsilacus, for example, clearly
do not, despite their close relation to each other, and L. vestfolden-
sis DSM 16212 falls into a different sub-clade altogether (Figure 3.2).
Therefore, these three isolates do not form a distinct group like the
polar Octadecabacters, and may simply be derived from independent
allopatric speciation events, showing spatially limited distributions
and concomitantly smaller population sizes [342]. Such differences in
evolutionary background and general ecology reduce the explanatory
power of a comparison between both groups.
Nonetheless, these limitations also underline the Octadecabacter

clade’s current unique position among the roseobacters: the fact that
its polar isolates do indeed form a common sub-clade, which contains
comparatively many sequenced representatives, makes this group the
most feasible to study adaptations to polar habitats. Furthermore, the
two type strains ofO. arcticus andO. antarcticus are stenopsychrophilic,
meaning that they require temperatures for growth below ≈16 ◦C. All
other includedpolar roseobacter isolates aremerely eurypsychrophilic,
which means they are able to grow above 16 ◦C, and show higher op-
timum growth temperatures. Given more polar isolates throughout
other Roseobacter group clades, it would be interesting to see how
stenopsychrophily is distributed as a trait, and how steno- and eu-
rypsychrophilic adaptations differ within this group of organisms.

4.4 global distribution of octadecabacter-related se-
quences

While the environment, from which an individual Octadecabacter
strain was isolated, may give an indication of its preferred lifestyle,
this thesis sought to more closely investigate biome preferences and
the global distribution of Octadecabacters by means of metagenomic
read mapping. Indeed, looking at different Octadecabacter groups,
some habitat preferences became apparent (Section 3.9). For example,
the highest frequencies of mapped nucleotides observed for groups
I, II, and III occurred at high, intermediate, and low latitudes, respec-
tively. Group I was preferentially detected in waters of the North At-
lantic Ocean, and group II showed closer association with coral reefs,
algal blooms, and coastal waters in general (Figures 3.26b and 3.27).
Within the Octadecabacters, the observations made for group II most
closely mirror the habitats with the highest abundance of roseobacters
in general [24], whereas the polar group’s distribution resembles that
of a cosmopolitan roseobacter phylotype found at the poles and the
North Sea [22]. Notably, most of themetagenomes used in this analysis
were sampled around the North Sea, as well as the Pacific and Atlantic
coasts of North America (Figure 3.25). The southern hemisphere, on
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the other hand, is represented by less samples, which will influence
the perceived distribution patterns.

Regardless, metagenomes world-wide contain sequences which are
highly similar to Octadecabacters, particularly to groups I and III (Fig-
ure 3.25). Not all of thesemetagenomes likely contain sequenceswhich
are truly derived from Octadecabacters, because certain effects lead
to false positives in both the prediction method of mg-RAST and the
mapping approach used here. mg-RAST assigns reads to taxa by their
highest BLAST-based similarity, which assumes that an aligned hit be-
longs to a close phylogenetic neighbour of the respective taxon. This
assumption is not valid for reads stemming from rare genes [343], and
these will therefore lead to false detection events. The mapping ap-
proach tried to contain this effect by only reporting alignments with
>90% identity, and consequently did not return hits in all of the candi-
date metagenomes (Figure 3.27). Nonetheless, some bodily fluid and
faeces metagenomes contained sequences with high similarity to Oc-
tadecabacters, which led to their detection in these habitats. Although
these detection events are very few compared to the predictions made
bymg-RAST, this precaution evidently cannot prevent false hits from in-
fluencing the perceived habitat preferences of Octadecabacter groups.
False detection events may contribute to the observation that polar
Octadecabacters are the most abundant and widely spread group,
since they possess large shell-genomes (Section 4.1.2), and potentially
contain the most rare genes within the clade. The influence of this
effect on the observed distribution patterns is currently unclear. An
investigation of the global distribution and abundance of (ideally full-
length) rRNA sequences related to Octadecabacters could complement
the present analysis, and allow for a more wholesome view. However,
such an examination is beyond the focus of this thesis.
Despite the noted limitation, observations made here suggest a cos-

mopolitan distribution ofOctadecabacter group I, and correspondwell
to an already known phylotype, as mentioned above. This could cor-
relate with their high evolvability (Section 4.3.1), in the same way
that occupation of various ecological niches in the Roseobacter group
is attributed to their genomic flexibility [69]. More precisely, the polar
Octadecabacters’ high mutagenic potential could only partly have re-
sulted from adaptation to their extreme habitat, and may rather consti-
tute a predisposition of this particular sub-clade,which facilitated both
their cold-adaptation and cosmopolitan distribution (see Sections 4.3.3
and 4.3.4 for additional details). As a consequence, the genus associ-
ated with this group (see Section 4.1.3) may also contain non-polar,
or mesophilic species which share some of the polar Octadecabacters’
characteristics when compared to other roseobacters, e. g. a larger mo-
bilome. Vollmers already noted an indication for this in an analysis of
16S rRNA gene sequences, where some sequences from non-polar iso-
lates clustered together with those ofO. arcticus andO. antarcticus [61].
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There may thus also exist an alternative means of genetic exchange
to the one proposed by Vollmers: he argued that the high degree of
similarity between both genomes despite their bipolar distribution
indicates some form of genetic exchange, for which he proposed deep-
sea water currents, which could transport members of both species
across tropical regions, which would normally be too warm for both
to survive [61]. Stable exchange of genetic material would however
also be favourable between polar members of this genus and highly
similar, but not stenopsychrophilic species, the latter of which could
distribute this material more widely. This would lead to an indirect
genetic exchange between both poles via several closely related inter-
mediate organisms, rather than a direct exchange through transport
of the stenopsychrophilic species themselves. However, it should also
be noted that the pairwise sequence similarity observed between the
polar Octadecabacter strains is typical for what would be expected for
members of a genus (curve I in Figure 4.7), and may therefore not be
particularly special at all. It could simply imply that arctic and Antarc-
tic species divided from their common ancestor a relatively short time
ago. High sequence similarity in places such as the rRNA operon can
also result from functional restraint due to the low temperature and
high stress levels, restricting the number of viable mutations.
Concerning global distribution, the mapping exposed a converse sit-

uation for Octadecabacter group III: this group with two mesophilic
members was the only one detected in one of the northern-most sam-
pled metagenomes (Figure 3.25), which does not necessarily result
from unspecific mapping events. Rather, it could be a further exam-
ple of polar habitat colonisation, which has occurred in single lin-
eages throughout multiple clades of the Roseobacter group (see also
Section 4.3.4).
The frequencies, in which nucleotides mapped to different Octade-

cabacter groups, vary largely between metagenomes (Figure 3.26).
They should nonetheless not be interpreted as a direct indicator of
the groups’ abundances, for the two following reasons: first, the me-
thodical approach taken here underestimates Octadecabacter content
in all metagenomes, since rRNA genes and regions with high sequence
identity between roseobacters were excluded from the mapping. This
is because due to the high pairwise sequence similarity (>96% for
rRNA genes, see Figure 4.8), and the usually short length of NGS reads,
sequences mapped to these regions could not meaningfully distin-
guish between different Octadecabacters, and would thus scramble
the results. Their exclusion therefore increases the reliability of group
assignment, at the expense of detection sensitivity.
Secondly, thepre-selection steponly includedmetagenomes inwhich

mg-RAST had taxonomically assigned a percentage of reads to the Oc-
tadecabacter genus (Section 2.12.1). This assignment only uses publicly
available genome information, and was hence restricted to the three
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speciesO. antarcticus,O. arcticus, andO. temperatus, as none of the other
genomes were public at the time. The metagenomes in the present
analysis are therefore inherently biased towards samples, in which
polar Octadecabacters and temperate species of group II occur more
frequently. The fact that group IV exhibits the lowest frequencies of
mapped nucleotides likely results in part from this bias, especially as
it contains only one strain. Its distribution and habitat preferences are
thus harder to derive from the present selection of metagenomes than
those of the other groups. Nonetheless, it was noted that it featured
more prominently in a number of estuarine habitats and sediment sam-
ples (Section 3.9), which could be indicative of its preferred ecological
niches.
The metagenomic read mapping performed here intended to look

for global occurrence patterns within the Octadecabacter clade. As
mentioned above, an exhaustive analysis including estimations of Oc-
tadecabacter abundances, and correlations to specific environmental
parameters, was not in the scope of this thesis. Nonetheless, it became
obvious that the different sub-groups within this clade show distinct
distributions. This observation lends ecological significance to the sub-
group definition, which was originally purely based on phylogenetic
relations within the clade and on the similarity of several genome
characteristics (Section 3.2). A more detailed view of the different Oc-
tadecabacter groups’ habitat preferences, and how these correlatewith
the group-specific genome, will be an interesting prospect of future in-
vestigations.
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CONCLUS ION

ThegenusOctadecabacteroriginally consisted of only twodescribed and
genome-sequenced members, which were both isolated from sea ice.
They were considered as "extreme cases" among the Roseobacter group
concerning their unusually large number of transposable elements, in-
ferred gene duplications, and genome rearrangements. However, due
to the lack of directly comparable genome sequences from closely re-
lated strains, it remained unclear to what extent these observations
are actual evidence of environmental adaptations in the two strains,
and how these polar isolates might differ from temperate strains of the
same genus on the genome level.

The present thesis expanded the number of available comparison
genomes and re-examined genomic characteristics within this genus,
with a specific focus on adaptations to life in polar habitats.

A direct result of this examination is the distinction between the
genus Octadecabacter and the Octadecabacter clade. The latter consists
of nine sequenced isolates likely associated with five different gen-
era. Uniquely among roseobacters, four of these isolates stem from
extreme polar habitats. They belong to three distinct species, which
form a common phylogenetic sub-clade that arguably represents the
genusOctadecabacter sensu stricto, as it includes the two species which
were the basis of this genus’ original definition. In combination, their
specific genomic functions and genome characteristics reflect the al-
tered nutrient spectra and stress levels encountered at their respective
polar habitat, and are broadly consistent with our current understand-
ing of sea ice ecology, and psychrotrophic adaptations described in
other organisms.
Divergence in both gene content and sequence similarity within the

Octadecabacter clade is similar to other clades in theRoseobacter group,
which is likely due to the fact that different species within a clade often
originate from different micro-environments.

A high amount of transposable elements and genome reshuffling,
originally observed in O. arcticus and O. antarcticus, turned out to be
characteristic for polar Octadecabacters in general. The analyses pre-
sented here could further generalise these findings, concluding that
functions related to all aspects of evolvability are more abundant in
polar than in temperate Octadecabacters, and that this evolvability is
an important prerequisite for polar habitat adaptation. Conversely, fur-
ther comparisons among a larger set of roseobacter genome sequences
now illustrated that several other Roseobacter group members, most of
which do not originate from polar habitats, possess similar, or even
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higher numbers of transposable elements and unique genes, displac-
ing polar Octadecabacters from their position as extreme cases. This
indicates that genome flexibility, while playing an important role in the
polar Octadecabacters’ evolutionary history, does not seem to be exclu-
sively associated with cold-adaptation in roseobacters. At the same
time, adaptation to cold habitats does not generally seem to require
higher potential for evolvability, as polar isolates from other clades in
the Roseobacter group do not exhibit the same characteristics as polar
Octadecabacters when compared to their temperate relatives. Polar Oc-
tadecabacters thus demonstrate a unique evolutionary path in their en-
vironmental adaptation among the currently sequenced roseobacters.
This thesis did its best to outline this path based on all currently avail-
able genome information. In doing so, it revealed several targets which
merit further investigation. For example, for several genes, which were
identified as specifically gained or enriched in polar Octadecabacters,
the scientific literature did not allow a reasonable prediction of their
roles in environmental adaptation. Conversely, some genes were de-
termined to have multiple possible functions by which they would
contribute to the habitat adaptation of polar Octadecabacters. Such ex-
amples would be good candidates for future experiments to try and
clarify their respective roles, as it would further our understanding of
the mechanisms behind specific environmental adaptations. It is also
noteworthy that the available polar Octadecabacter strains are good
candidates for such studies, as they are readily cultivable in a labora-
tory setting.

Using the example of the nine currently available Octadecabacter
genome sequences, the present work also demonstrated how indi-
vidual metrics and methods of genus delineation are influenced by
particular features of a group of organisms. In the Roseobacter group,
despite their functional divergence, members of a clade typically dis-
play a coherence in genetic equipment which goes beyond this clade’s
core-genome, influencing the way in which delineation of genera is
meaningfully possible. From a combination of different metrics, it was
concluded that the Octadecabacter clade currently comprises five dis-
tinct genera, one ofwhich is formed by the polar (including bothArctic
and Antarctic) isolates. However, comparisons with metagenome data
sets indicated that this polar Octadecabacter genus may be cosmopoli-
tan, and therefore also contain species from non-polar habitats, which
still remain to be isolated. This could also add a novel perspective to
the observation that Arctic and Antarctic isolates show high levels of
similarity in sequence and gene content despite their vast geograph-
ical separation. The mutual genetic exchange required to maintain
this degree of similarity may not result from transport of individuals
between poles through cold deep water streams, as an early theory
surmised [61]. Rather, frequent genetic exchange may occur between
exclusively polar Octadecabacters and their more widely distributed
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close relatives, the latter mediating genetic information between com-
munities of both poles.

The present work offered a detailed account of the nature of, and
possiblemechanisms behind, adaptation processes to extreme habitats
in some members of the Roseobacter group. As such, it serves as a basis
for future analyses of similar cases within other roseobacter clades,
and for elucidating and modelling adaptation tactics utilised by bacte-
ria in general. By expanding the comparison data set with additional
Octadecabacter clade genomes and other novel roseobacter isolates,
the analyses presented here yielded a much improved description of
this clade than previous studies could, as these were based on only
twoOctadecabacter isolates. Of course, it can be assumed that a higher
number of closely related comparison genomes will further increase
the detail and reliability of such descriptions. Therefore, it will be in-
teresting to see this picture evolve, as further genome sequences of
the roseobacter group, and possibly the Octadecabacter clade, will no
doubt become available in the near future, either through improved
isolation and cultivation techniques, or by metagenomic binning, or
single cell sorting and sequencing approaches.





A
APPENDIX

a.1 supplementary files

The supplementary data include the output files of most computations
described in Chapter 2. Most visualisations provided throughout the
thesis are derived from data contained in these files. Figure A.1 gives
an overview of the folder structure and the contained files.

..

Dissertation_Florian_Lenk_2020.pdf

2.2_Assembly_Annotation_Statistics

Genome_statistics.tsv

CheckM_results_Octadecabacters.tsv

2.3_Sequence_Comparison

ggdc_results_<strain1>

ggdc_results_<strain2>
..

2.5_Orthologue_Detection

2.6_Roseobacter_Group_Phylogeny

Core-Genome_Reduced_Gene_Content_Clustering

Gene_Content_Clustering

MLSA

IC_and_TC_Scores

ic_and_tc_values_to_reference

raxml_besttrees

RAxML_bestTree.unaligned_temp_fasta_OG00001.fasta

RAxML_bestTree.unaligned_temp_fasta_OG00002.fasta
..

raxml_info_files

..

for all compared roseobacter genomes

Original output files of ggdc

.poff output file from ProteinOrtho

1 newick tree

1 newick tree

RAxML output files

RAxML output files

core-gene trees in newick-format

RAxML info for each tree computation

Figure A.1: Supplementary file folder structure and contents (continued on
next page).
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..

2.7_Octadecabacter_Clade_Phylogeny

core-gene_phylogenies

Consensus-cluster-network.nexml

2.9_Birth-and-Death_Model

COG_pattern.tsv

parameter_estimation_<01�04>

Phylogeny.nex

Posterior_probabilities.tsv

2.10.2_Group-specific_Genes

results_i0.9_e0.1

group_file.tsv

grpstats_output.txt

orthology_information.tsv

2.11_Protein_Secondary_Structure

2.12_Metagenome_Mapping

ANI_filtering

bam_files

Mapped_frequencies_groups.csv

Mapped_frequencies_strains.tsv

Metagenome_data.csv

4.1.1_Phylogeny

4.1.3_Genus_Delineation

RAxML bestTree and info for each core-gene

network from core-gene phylogenies

COG counts for the relevant organisms

ML-estimates of increasing complexity

basis for model optimisation

posterior probabilities estimated by Count

original output of po2group_stats.pl

group definitions

summary report of po2group_stats.pl

sub-frame of orthology table given in 2.5

one prediction file per annotated protein

BLAST-output from pyANI

all mapping results

frequencies after filtering

metagenome metadata

RAxML output of RF distance calculations

dnadiff results with pairwise 16S rRNA similarities

Figure A.1: Supplementary file folder structure and contents (continued)
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a.2 organism metadata

Table A.1 lists metadata to all strains used for comparative analysis,
which were either acquired from the genome data source, or the refer-
ence publications given in Table 2.2. Coordinates were either provided
directly, or inferred, if the names of specific locations given in the
references allowed localisation with reasonable accuracy.

Table A.1: Organism metadata extracted from the database entries, or the
respective literature, as available (see Table 2.2). The temp. column gives tem-
perature ranges for organism growth, with the optimal growth temperature
in grey. habitat reflects where the respective organismwas isolated and does
not necessarily represent its preferred life style.

strain habitat loc . temp. [◦C] accession

Aleiiroseovarius
crassostreae

associated
host

n.a. n.d. LKBA
00000000

Celeribacter
baekdonensis B30

sediment n.a. n.d. AMRK
00000000

Celeribacter indicus P73 sediment 63.93E;
27.85S

10–41 (28) GCA_
000819565.1

Citreicella sp. 357 sand 42.7748N;
9.1242W

n.d. AJKJ
00000000

Citreicella sp. SE45 detritus n.a. n.d. ACNW
00000000

Rhodobacterales
bacterium HTCC 2255

planktonic n.a. n.d. NZ_AATR
00000000

Phaeobacter sp. LSS9 associated
host

n.a. n.d. n.a.

Dinoroseobacter shibae
DSM 16493

associated
patch

n.a. 15–38 (33) NC_
009952

Jannaschia aquimarina
GSW-M26

planktonic n.a. 15–37 (30) NZ_JYFE
00000000

Jannaschia rubra DSM
16279

planktonic 39.4423N;
0.284485W

4-25 n.a.

Jannaschia sp. CCS1 planktonic 38.311N;
123.066W

n.d. GCA_
000013565.1

Ketogulonicigenium
vulgareWSH-001

n.a. n.a. n.d. NC_
017384

Ketogulonicigenium
vulgare Y25

terrestrial n.a. n.d. GCA_
000164885

Loktanella atrilutea
DSM 29326

planktonic n.a. n.d. NZ_FQUE
00000000

Leisingera aquaemixtae
CECT 8399

planktonic 33.251944N;
126.623889E

10–40 (30) NZ_CYSR
00000000

Leisingera aquimarina
DSM 24565

biofilm 44.4123N;
8.9264E

4–37 (20) NZ_AXBE
00000000
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Table A.1: continued

strain habitat loc . temp. [◦C] accession

Leisingera
methylohalidivorans
DSM 14336

planktonic 38.9N;
77.03W

4–36 (27) CP
006773.1

Sedimentalea
nanhaiensis DSM 24252

sediment 15.55N;
114.49E

4–37 (25) NZ_AXBG
00000000

Loktanella fryxellensis
DSM 16213

microbial
mat

77.6099S;
163.1555E

5–25 (25) NZ_FOCI
00000000

Litoreibacter albidus
DSM 26922

associated
host

42.902N;
131.75E

4–37 (26) NZ_FNOI
00000000

Litoreibacter arenae
DSM 19593

sand 36.048N;
129.584E

5–35 (30) NZ_AONI
00000000

Litoreibacter
ascidiaceicola DSM
100566

associated
host

37.801N;
129.021E

4–34 (25) NZ_FQUV
00000000

Litoreibacter janthinus
DSM 26921

sediment 42.902N;
131.75E

4–37 (26) NZ_FOYO
00000000

Loktanella koreensis
DSM 17925

sand 36.048N;
129.584E

5-30 NZ_FOIZ
00000000

Loktanella litorea DSM
29433

planktonic n.a. 15–37 (30) NZ_FOZM
00000000

Loktanella cinnabarina
LL-001

sediment 41.17667N;
142.20056E

15–35 (25) NZ_BATB
00000000

Loktanella
hongkongensis DSM
17492

biofilm 22.3N;
114.19E

8–44 (30) NZ_APGJ
00000000

Loktanella sp. SE62 salt marsh 31.39N;
81.27W

n.d. n.a.

Loktanella vestfoldensis
DSM 16212

microbial
mat

68.4564S;
78.1898E

5–37 (20) NZ_ARNL
00000000

Loktanella vestfoldensis
SKA53

planktonic 58.94083N;
11.07944E

n.d. NZ_AAMS
00000000

Loktanella pyoseonensis
DSM 21424

sand 33.328N;
126.842E

4–30 (25) NZ_FNAT
00000000

Loktanella rosea DSM
29591

sediment 42.908N;
132.349E

4–35 (25) NZ_FTPR
00000000

Loktanella salsilacus
DSM 16199

microbial
mat

68.4593S;
78.1884E

5–30 (25) NZ_FOTF
00000000

Loktanella sediminum
DSM 28715

sediment 30.243333N;
128.4475E

10–46 (30) NZ_FQXB
00000000

Loktanella tamlensis
DSM 26879

planktonic 33.5277N;
126.5856E

4–30 (27) NZ_FOYP
00000000

Marinovum algicola
DG 898

associated
patch

n.a. n.d. GCF_
001046955
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Table A.1: continued

strain habitat loc . temp. [◦C] accession

Maritimibacter
alkaliphilus HTCC 2654

n.a. 31.66667N;
64.16667W

16–37 (30) NZ_AAMT
00000000

Parvularcula
bermudensis HTCC
2503

planktonic 31.66667N;
64.16667W

10–37 (30) NZ_AAMU
01000000

Maritimibacter sp.
HL-12

n.a. n.a. n.d. NZ_FXBQ
00000000

Nautella italica DSM
26436

biofilm 44.404N;
8.923E

4–45 (25) GCA_
900113345

Nautella italica R11 associated
host

33.99389S;
151.26667E

n.d. NZ_ABXM
00000000

Nereida ignava CECT
5292

planktonic 39.4778N;
0.281W

10-30 NZ_CVPC
00000000

Oceanibulbus indolifex
HEL-45

planktonic 54.13333N;
7.86667E

n.d. NZ_ABID
00000000

Oceanicola batsensis
HTCC 2597

planktonic 31.66667N;
64.16667W

4–40 (30) NZ_AAMO
00000000

Oceanicola granulosus
HTCC 2516

planktonic 31.66667N;
64.16667W

4–40 (28) NZ_AAOT
00000000

Oceanicola nanhaiensis
DSM 18065

sediment n.a. 10–37 (28) NZ_JHZF
00000000

Oceanicola sp. HL-35 n.a. n.a. n.d. NZ_JAFT
00000000

Oceanicola sp.
MCTG1561a

n.a. 56.4397N;
5.5449W

n.d. NZ_JQMY
00000000

Oceanicola sp. S124 planktonic 7.4N;
151.75E

n.d. GCA_
000220565.2

Oceaniovalibus
guishaninsula JLT2003

planktonic 24.845N;
121.94E

16–40 (25) NZ_AMGO
00000000

Octadecabacter
antarcticus 307

ice 77.883333S;
166.583333E

4-10 GCA_
000155735.2

Octadecabacter arcticus
DSM 13978

ice 73.016667N;
148.516667E

4-15 GCA_
000155675.2

Octadecabacter
ascidiaceicola CECT
8868

associated
host

34.836N;
128.447E

10–30 (25) NZ_FXYD
00000000

Pseudooctadecabacter
jejudonensis CECT 8397

planktonic 33.2525N;
126.6236E

15–35 (30) n.a.

Octadecabacter sp. E8 associated
host

53.703999N;
7.703611E

n.d. n.a.

Octadecabacter sp.
NH9-P7

sediment 53.70466N;
7.70447E

n.d. n.a.

Octadecabacter
temperatus Sb1

planktonic 54.18N;
7.89E

4–25 (20) GCA_
001187845
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Table A.1: continued

strain habitat loc . temp. [◦C] accession

Octadecabacter sp.
PAMC27224

sediment 74.64611S;
164.22333E

10-25 n.a.

Octadecabacter sp.
PAMC27225

sediment 74.64611S;
164.22333E

10-25 n.a.

Pelagibaca bermudensis
HTCC 2601

planktonic 31.66667N;
64.16667W

10–40 (30) NZ_AATQ
00000000

Pseudophaeobacter
arcticus DSM 23566

sediment 75.006667N;
169.993611W

0–25 (20) NZ_AXBF
00000000

Leisingera caerulea
DSM 24564

biofilm 44.404N;
8.923E

4–45 (25) NZ_AXBI
00000000

Leisingera daeponensis
DSM 23529

sediment 33.2371N;
126.4248E

4-42 NZ_AXBD
00000000

Phaeobacter gallaeciensis
ANG1

associated
host

21.269972N;
157.73739W

n.d. NZ_AFCF
00000000

Phaeobacter gallaeciensis
BS107

planktonic 43.391910N;
8.403664W

15–37 (25) GCA_
000511385

Phaeobacter gallaeciensis
DSM 17395

n.a. n.a. n.d. GCA_
000154765

Phaeobacter gallaeciensis
DSM 26640

planktonic 43.391910N;
8.403664W

15–37 (25) GCA_
000511385

Phaeobacter inhibens
DSM 16374

planktonic 53.705556N;
7.718722E

4–36 (28) GCA_
000473105

Planktomarina
temperata RCA23

planktonic 53.7N; 7.71E 10–30 (25) GCA_
000738435

Rhodobacteraceae
bacterium SB2

planktonic 54.171943N;
7.894196E

n.d. NZ_LGRT
00000000

Rhodobacterales sp.
HTCC 2083

planktonic 44.652137N;
124.070921W

n.d. NZ_ABXE
00000000

Rhodobacterales sp.
HTCC 2150

planktonic 44.651667N;
124.411667W

n.d. NZ_AAZX
00000000

Rhodobacterales sp. Y4I planktonic 30.7236N;
81.5111W

n.d. NZ_ABXF
00000000

Roseobacter denitrificans
OCh 114

associated
host

35.159315N;
139.616576E

2-30 GCA_
000014045.1

Roseobacter litoralis
Och 149

associated
host

n.a. 2-30 GCA_
000154785.2

Roseobacter sp.
AzwK-3b

planktonic 36.84262N;
121.74701W

n.d. GCA_
000170875

Roseobacter sp. CCS2 planktonic 38.308333N;
123.3W

n.d. NZ_AAYB
00000000

Roseobacter sp. GAI101 planktonic n.a. n.d. NZ_ABXS
00000000
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Table A.1: continued

strain habitat loc . temp. [◦C] accession

Roseobacter sp. LE17 n.a. 32.84N;
117.2769W

n.d. n.a.

Roseobacter sp.
MED193

planktonic 41.66667N;
2.8E

n.d. NZ_AANB
00000000

Roseobacter sp. R2A57 planktonic 44.653167N;
124.178167W

n.d. n.a.

Roseobacter sp.
SK209-2-6

n.a. n.a. n.d. NZ_AAYC
00000000

Roseovarius mucosus
DSM 17069

associated
patch

54.195387N;
7.893448E

15–43 (31) NZ_AONH
00000000

Roseovarius
nubinhibens ISM

planktonic 22.066667N;
74.066667W

10–40 (30) NZ_AALY
00000000

Roseovarius sp.
MCTG1562b

associated
patch

56.332304N;
5.748674W

n.d. NZ_JQLS
00000000

Roseovarius sp.
TM1035

associated
patch

n.a. n.d. NZ_ABCL
00000000

Ruegeria atlantica DSM
5823

sediment 21.41N;
17.893333W

n.d. NZ_CYPU
00000000

Ruegeria halocynthiae
MOLA R1 13b

associated
host

48.695278N;
3.143889E

n.d. NZ_JQEZ
00000000

Ruegeria
lacuscaerulensis
ITI-1157

n.a. 63.879N;
22.434W

n.d. NZ_ACNX
00000000

Ruegeria mobilis F1926 planktonic 31.4061S;
91.17758E

n.d. NZ_CP
015230.1

Ruegeria pomeroyi
DSS-3

planktonic n.a. 10-40 GCA
000011965.2

Ruegeria sp. TM1040 associated
patch

n.a. n.d. NZ_AAFG
00000000

Ruegeria sp. TW15 associated
host

n.a. 10–37 (27) NZ_AEYW
00000000

Sagittula stellata E-37 planktonic n.a. 10–41 (30) NZ_AAYA
00000000

Shimia marina CECT
7688

biofilm 34.772850N;
128.387213E

15–35 (33) NZ_CYPW
00000000

Shimia sp. SK013 sediment 57.6125N;
8.59E

10–35 (30) NZ_LAJH
00000000

Sulfitobacter donghicola
KCTC 12864

planktonic 37.240459N;
131.866944E

10–31 (25) NZ_JASF
00000000

Sulfitobacter donghicola
JCM 14565

planktonic 37.240459N;
131.866944E

10–31 (25) NZ_JASF
00000000

Sulfitobacter geojensis
MM-124

planktonic 35.0575N;
128.803056E

4–30 (25) NZ_JASE
00000000
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Table A.1: continued

strain habitat loc . temp. [◦C] accession

Sulfitobacter guttiformis
KCTC 32187

planktonic 68.521S;
78.270E

4–32 (16) NZ_JASG
00000000

Sulfitobacter
mediterraneus KCTC
32188

planktonic 42.516667N;
3.183333E

4–35 (22) NZ_JASH
00000000

Sulfitobacter pontiacus
3SOLIMAR09

planktonic 39.794141N;
2.693348E

n.d. NZ_AXZR
00000000

Sulfitobacter sp. 20
GPM-1509m

n.a. n.a. n.d. NZ_JIBC
00000000

Sulfitobacter sp.
CB2047

n.a. n.a. n.d. NZ_JPOY
00000000

Sulfitobacter sp EE-36 planktonic n.a. n.d. NZ_AALV
00000000

Sulfitobacter sp. MCCC
1A00686

associated
patch

n.a. 10–37 (28) NZ_JAMD
00000000

Sulfitobacter sp.
NAS-14.1

planktonic 33.3N;
74.3W

n.d. NZ_AALZ
00000000

Sulfitobacter sp. NB-68 n.a. 35.658333N;
129.1275E

4–30 (30) NZ_JASC
00000000

Sulfitobacter sp. NB-77 n.a. 35.658333N;
129.1275E

4–30 (25) NZ_JASD
00000000

Sulfitobacter sp. SA11 associated
patch

47.727888N;
122.473801W

n.d. n.a.

Tateyamaria sp. ANG
S1

associated
host

21.269972N;
157.73739W

n.d. NZ_JWLL
00000000

Thalassiobium sp.
R2A62

planktonic 44.65N;
124.167W

n.d. NZ_ACOA
00000000

Thalassobacter
stenotrophicus CECT
5294

n.a. n.a. 13–37 (24) NZ_CYRX
00000000

Wenxinia marina DSM
24838

sediment 22.83021N;
118.088829E

15–42 (36) NZ_ARAY
00000000

Roseovarius atlanticus
R12B

planktonic 15.2S; 13.3W 4–45 (27) NZ_LAXJ
00000000

Roseovarius sp. 217 planktonic 50.25N;
4.21667W

n.d. NZ_AAMV
00000000
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a.3 roseobacter group phylogeny and other trees

The full super-matrix-based phylogeny of 115 roseobacters plus out-
group organism is given in Figure A.2 (see Section 2.6 for method).
Gene-content-basedhierarchical clustering (Figure 4.3)was repeated,

deleting the core-genes of 22 sub-clades within the phylogeny in all
members of that cladeprior to computing Jaccarddistances (FigureA.3).
In addition, strains were clustered based on the distances (in kilome-

tres) between their isolation coordinates listed in TableA.1 (FigureA.4).

Figure A.2: Super-matrix-based core-genome phylogeny of 115 Roseobacter
group genomes. Highlighted clades as defined in ref. [59]. Numbers indicate
bootstrap support. Open and closed circles represent values of 90–99 and 100,
respectively. Scale bar in expected number of substitutions. Long edges were
shortened by 50% (marked by interruptions). Tree continued on next page.
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Figure A.2: Roseobacter group MLSA phylogeny (continued)
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Figure A.3:MLSA phylogeny of 115 roseobacter genomes plus outgroup on the
left, as given in FigureA.2, versus hierarchical clustering of the same genomes
on the right, based on pairwise Jaccard distances of OG presence and absence.
Before clustering, core-genes of sub-clades (labelled 1–22 in the figure) were
removed from all members of that clade (that is, they were marked as absent
prior to the Jaccard distance calculation) in numerical order. Clades defined
in ref. [59] are coloured as in Figure A.2. RF distance between both trees is
0.47, determined using ete3 [177].
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Figure A.4: Hierarchical clustering of genomes based on geographic distance
(in kilometres). Only strains with available isolation coordinates (Table A.1)
were used in the computation. RF distance to MLSA phylogeny (Figure A.2),
gene content clustering, and cloud- and shell-genome clustering (right trees
in Figures 4.3 and A.3, respectively) is 0.96, determined using ete3 [177].
Interrupted edges were shortened by 50%.
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a.4 group-specific genes

Genes specific to each group of Octadecabacter genomes, as defined in
Section 2.10.2, are listed in TablesA.2 toA.5 for each group individually.

Table A.2: Genes exclusive to the group formed by O. arcticus, O. antarcticus,
and isolates PAMC 27224 and 27225 (group I, Section 3.2), as determined by
po2group_stats.pl. For each specific OG, the annotation and locus tag in
the genome of isolate PAMC 27224 is provided for reference.

description locus tag

Site-specific DNA recombinase octa_00090
Protein of unknown function (DUF3987) octa_00390

hypothetical protein octa_02100
hypothetical protein octa_02490

CBS domain-containing protein octa_02830
Protein of unknown function (DUF2848) octa_03810

Uncharacterized conserved protein octa_04100
RNA polymerase σ32 factor octa_06070

Fe-S cluster biogenesis protein NfuA, 4Fe-4S-binding
domain

octa_06080

ATP-binding protein involved in chromosome
partitioning

octa_06090

DNA-binding transcriptional regulator, MarR family octa_06100
Glycine/d-amino acid oxidase (deaminating) octa_06740

transcriptional regulator, TetR family octa_09560
aldehyde dehydrogenase (NAD+) octa_09610

cysteine desulfurase family protein, VC1184 subfamily octa_09620
bile acid:Na+ symporter, BASS family octa_10390

AAA ATPase domain-containing protein octa_10590
hypothetical protein (DUF2333) octa_10600

hypothetical protein octa_10610
4-α-glucanotransferase octa_10680

Taurine catabolism dioxygenase TauD, TfdA family octa_12020
SSU ribosomal protein S21P octa_12240
TIGR02453 family protein octa_12280

monovalent cation:H+ antiporter, CPA1 family octa_12300
transposase octa_13300

Uncharacterized membrane protein YdjX, TVP38/
TMEM64 family, SNARE-associated domain

octa_13530

selenium-binding protein 1 octa_13670
hypothetical protein octa_13680
hypothetical protein octa_14030

β-carotene 15,15’-monooxygenase, Brp/Blh family octa_14420
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Table A.2: continued

description locus tag

lycopene beta-cyclase octa_14430
phytoene synthase octa_14440

geranylgeranyl diphosphate synthase, type II octa_14460
Bacteriorhodopsin octa_14470

Predicted thiol-disulfide oxidoreductase YuxK, DCC
family

octa_14550

hypothetical protein octa_16050
ATP-binding protein involved in chromosome

partitioning
octa_16490

Fe-S cluster biogenesis protein NfuA, 4Fe-4S-binding
domain

octa_16500

Acetyltransferase (GNAT) domain-containing protein octa_19650
Hemolysin-type calcium-binding repeat-containing

protein
octa_20610

PilZ domain-containing protein octa_23420
myo-inositol 2-dehydrogenase / d-chiro-inositol

1-dehydrogenase
octa_25790

3-hydroxyisobutyrate dehydrogenase octa_25810
pyruvate dehydrogenase E1 component alpha subunit octa_25900
pyruvate dehydrogenase E1 component beta subunit octa_25910

2-oxoglutarate dehydrogenase E2 component
(dihydrolipoamide succinyltransferase)

octa_25920

succinate-semialdehyde dehydrogenase /
glutarate-semialdehyde dehydrogenase

octa_25930

hypothetical protein octa_26240
hypothetical protein octa_27350
DNA polymerase V octa_27360

simple sugar transport system ATP-binding protein octa_28990
Alcohol dehydrogenase, class IV octa_29950

Acyl-CoA reductase octa_29960
glutamine synthetase octa_29970

Predicted N-formylglutamate amidohydrolase octa_29980
Alcohol dehydrogenase, class IV octa_30040

carbohydrate ABC transporter substrate-binding protein,
CUT1 family (TC 3.A.1.1.-)

octa_30070

carbohydrate ABC transporter membrane protein 2,
CUT1 family

octa_30090

carbohydrate ABC transporter membrane protein 1,
CUT1 family

octa_30100

glycerol transport system ATP-binding protein octa_30110
glycerol transport system ATP-binding protein octa_30120
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Table A.2: continued

description locus tag

glycerol transport system permease protein octa_30150
glycerol transport system permease protein octa_30160

dihydroxyacetone kinase octa_30190
multiple sugar transport system ATP-binding protein octa_30200
carbohydrate ABC transporter ATP-binding protein,

CUT1 family
octa_30210

carbohydrate ABC transporter membrane protein 2,
CUT1 family

octa_30230

carbohydrate ABC transporter membrane protein 1,
CUT1 family

octa_30240

carbohydrate ABC transporter substrate-binding protein,
CUT1 family

octa_30250

LacI family transcriptional regulator octa_30260
pseudoazurin octa_30490

simple sugar transport system permease protein octa_30600
simple sugar transport system substrate-binding protein octa_30610

transcriptional regulator, TetR family octa_32600
hypothetical protein octa_32620

transcriptional regulator, RpiR family octa_32640
Predicted N-formylglutamate amidohydrolase octa_32650

TRAP-type mannitol/chloroaromatic compound
transport system, small permease component

octa_32660

TRAP transporter, DctM subunit octa_32670
Tat (twin-arginine translocation) pathway signal

sequence
octa_32680

glutamine synthetase octa_32690
Acyl-CoA reductase octa_32700

4-hydroxybutyrate dehydrogenase octa_32710
spermidine/putrescine transport system

substrate-binding protein
octa_32720

spermidine/putrescine transport system ATP-binding
protein

octa_32730

spermidine/putrescine transport system permease
protein

octa_32740

spermidine/putrescine transport system permease
protein

octa_32750

phosphate transport system permease protein octa_36790
ribose transport system permease protein octa_37100

NAD(P)-dependent dehydrogenase, short-chain alcohol
dehydrogenase family

octa_37170

C4-dicarboxylate transporter, DctM subunit octa_37210
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Table A.2: continued

description locus tag

Transposase zinc-binding domain-containing protein octa_38930
Transposase zinc-binding domain-containing protein octa_38960

Methyltransferase domain-containing protein octa_40100
methylthioribose-1-phosphate isomerase octa_41790

l-fuculose-phosphate aldolase octa_41810
Pyridoxamine 5’-phosphate oxidase octa_41850

Site-specific DNA recombinase octa_42090

Table A.3: Genes exclusive to the group formed by O. ascidiaceicola, O. temper-
atus (group II, Section 3.2), as determined by po2group_stats.pl. For each
specific OG, the annotation and locus tag in the genome of O. ascidiaceicola
is provided for reference.

description locus tag

hypothetical protein oasc_00150
hypothetical protein oasc_00540
hypothetical protein oasc_00560

Exopolysaccharide synthesis, ExoD oasc_02050
hypothetical protein oasc_02120
hypothetical protein oasc_02260
hypothetical protein oasc_03570

SnoaL-like domain protein oasc_04030
Stress response protein NhaX oasc_04570

hypothetical protein oasc_04790
Protein MtfA oasc_05940

hypothetical protein oasc_07250
Glycosyl transferases group 1 oasc_07940

hypothetical protein oasc_07950
N-acetylglucosaminyl-diphospho-decaprenol

l-rhamnosyltransferase
oasc_07990

hypothetical protein oasc_08000
hypothetical protein oasc_08010
hypothetical protein oasc_08020

Sulfotransferase domain protein oasc_08030
hypothetical protein oasc_08070

Bifunctional hemolysin/adenylate cyclase precursor oasc_08090
MAPEG family protein oasc_08820

PilZ domain protein oasc_09680
hypothetical protein oasc_09750
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Table A.3: continued

description locus tag

hypothetical protein oasc_09770
hypothetical protein oasc_09940
hypothetical protein oasc_10130
hypothetical protein oasc_10370

Toluene efflux pump outer membrane protein TtgF
precursor

oasc_10420

hypothetical protein oasc_10530
hypothetical protein oasc_11970

Tellurite resistance protein TerB oasc_12800
hypothetical protein oasc_13800

putative xanthine dehydrogenase subunit A oasc_14730
hypothetical protein oasc_14810
hypothetical protein oasc_15100
hypothetical protein oasc_15400
DNA polymerase IV oasc_15410
hypothetical protein oasc_15540
hypothetical protein oasc_15830
hypothetical protein oasc_15840
hypothetical protein oasc_16280

Bacterial SH3 domain protein oasc_16460
hypothetical protein oasc_17860
hypothetical protein oasc_18580
hypothetical protein oasc_19010

Aquaporin Z 2 oasc_19360
hypothetical protein oasc_20210
Spermidine synthase oasc_20220

Universal stress protein F oasc_20280
hypothetical protein oasc_21230

α-ketoglutaric semialdehyde dehydrogenase oasc_21950
hypothetical protein oasc_22120
hypothetical protein oasc_22410
hypothetical protein oasc_22910
hypothetical protein oasc_23140

Demethylmenaquinone methyltransferase oasc_24630
3-methyl-adenine DNA glycosylase I oasc_25850

hypothetical protein oasc_26640
Bifunctional hemolysin/adenylate cyclase precursor oasc_27230

hypothetical protein oasc_27250
hypothetical protein oasc_27410
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Table A.3: continued

description locus tag

Sensor protein EvgS precursor oasc_28280
hypothetical protein oasc_28300

Poly-beta-1,6-N-acetyl-d-glucosamine synthase oasc_28310
Phytanoyl-CoA dioxygenase (PhyH) oasc_30060

hypothetical protein oasc_30790
hypothetical protein oasc_32470

Antitoxin ParD4 oasc_32670

Table A.4: Genes exclusive to the group formed by P. jejudonensis and iso-
late NH9-P7 (group III, Section 3.2), as determined by po2group_stats.pl.
For each specific OG, the annotation and locus tag in the genome of P. jejudo-
nensis is provided for reference.

description locus tag

Protein of unknown function (DUF3833) OJEJ_00230
Catechol 2,3-dioxygenase OJEJ_02950

magnesium chelatase accessory protein OJEJ_03060
magnesium chelatase subunit D OJEJ_03070
magnesium chelatase subunit I OJEJ_03080
spheroidene monooxygenase OJEJ_03090

phytoene synthase OJEJ_03110
TspO and MBR related proteins OJEJ_03120

carotenoid 1,2-hydratase OJEJ_03130
1-hydroxycarotenoid 3,4-desaturase OJEJ_03140

farnesyl-diphosphate synthase OJEJ_03150
demethylspheroidene O-methyltransferase OJEJ_03160

3-hydroxyethyl bacteriochlorophyllide a dehydrogenase OJEJ_03170
chlorophyllide a reductase subunit X OJEJ_03180
chlorophyllide a reductase subunit Y OJEJ_03200
chlorophyllide a reductase subunit Z OJEJ_03210

PufQ cytochrome subunit OJEJ_03220
light-harvesting complex 1 beta chain OJEJ_03230

light-harvesting complex 1 alpha chain OJEJ_03240
photosynthetic reaction center L subunit OJEJ_03250
photosynthetic reaction center M subunit OJEJ_03260

Intrinsic membrane protein PufX OJEJ_03270
1-deoxy-d-xylulose-5-phosphate synthase OJEJ_03290

geranylgeranyl reductase OJEJ_03310
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Table A.4: continued

description locus tag

MFS transporter, BCD family, chlorophyll transporter OJEJ_03320
chlorophyll synthase OJEJ_03330

transcriptional regulator PpsR OJEJ_03340
Methanogenic corrinoid protein MtbC1 OJEJ_03350
3-vinyl bacteriochlorophyllide hydratase OJEJ_03360

ferredoxin protochlorophyllide reductase subunit N OJEJ_03370
ferredoxin protochlorophyllide reductase subunit B OJEJ_03380

cobaltochelatase CobN subunit OJEJ_03390
ferredoxin protochlorophyllide reductase subunit L OJEJ_03410

Mg-protoporphyrin IX methyltransferase OJEJ_03420
MFS transporter, BCD family, chlorophyll transporter OJEJ_03430

photosynthetic reaction center H subunit OJEJ_03440
PH domain-containing protein OJEJ_03450

putative photosynthetic complex assembly protein OJEJ_03460
hypothetical protein OJEJ_03470

Mg-protoporphyrin IX monomethyl ester (oxidative)
cyclase

OJEJ_03480

putative photosynthetic complex assembly protein 2 OJEJ_03490
dimethylglycine dehydrogenase OJEJ_03590

Threonine/homoserine/homoserine lactone efflux
protein

OJEJ_04100

divinylchlorophyllide 8-vinylreductase OJEJ_04740
CubicO group peptidase, β-lactamase class C family OJEJ_04920

single-strand binding protein OJEJ_07520
hypothetical protein OJEJ_08130

TRAP-type C4-dicarboxylate transport system,
substrate-binding protein

OJEJ_08520

Tripartite ATP-independent transporter, DctQ
component

OJEJ_08530

Hemolysin-type calcium-binding repeat-containing
protein

OJEJ_09550

DNA-binding transcriptional regulator, LysR family OJEJ_10900
cold shock protein (beta-ribbon, CspA family) OJEJ_11070

hypothetical protein OJEJ_12280
cytochrome b561 OJEJ_12290

hypothetical protein OJEJ_12550
hypothetical protein OJEJ_13220
hypothetical protein OJEJ_13230

malonyl-CoA/methylmalonyl-CoA synthetase OJEJ_13850
protein-tyrosine phosphatase OJEJ_14330
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Table A.4: continued

description locus tag

NAD-dependent deacetylase OJEJ_14340
divinyl protochlorophyllide a 8-vinyl-reductase OJEJ_14840

monoamine oxidase OJEJ_15480
hypothetical protein OJEJ_16740
hypothetical protein OJEJ_16750

Predicted Zn-dependent protease, minimal
metalloprotease (MMP)-like domain

OJEJ_16950

Long-chain fatty acid transport protein OJEJ_17880
hypothetical protein OJEJ_18740
hypothetical protein OJEJ_21600
hypothetical protein OJEJ_22280
hypothetical protein OJEJ_23970
alpha-glucosidase OJEJ_26210

GDP-mannose 4,6-dehydratase OJEJ_28540
UPF0271 protein OJEJ_29170
inhibitor of KinA OJEJ_29180

diguanylate cyclase (GGDEF) domain-containing protein OJEJ_30050
Uncharacterized conserved protein YndB, AHSA1/

START domain
OJEJ_30720

hypothetical protein OJEJ_32880
starvation-inducible DNA-binding protein OJEJ_33070

Table A.5: Genes exclusive to the Octadecabacter-associated isolate E8
(group IV, Section 3.2), as determined by po2group_stats.pl. For each spe-
cificOG, the annotation and locus tag in thegenome isprovided for reference.

description locus tag

Nucleoside-diphosphate-sugar epimerase Ga0068414_1011
peptide/nickel transport system ATP-binding

protein
Ga0068414_1012

peptide/nickel transport system ATP-binding
protein

Ga0068414_1013

Multidrug resistance protein Ga0068414_1021
transcriptional regulator, LacI family Ga0068414_1024
Phage terminase large subunit (GpA) Ga0068414_1025

Phage DNA packaging protein, Nu1 subunit of
terminase

Ga0068414_1026

Uncharacterized conserved protein YjdB, contains
Ig-like domain

Ga0068414_1031
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Table A.5: continued

description locus tag

Phage minor tail protein U Ga0068414_10310
Phage minor tail protein U Ga0068414_1032

Prophage minor tail protein Z (GPZ) Ga0068414_1033
Phage Head-Tail Attachment Ga0068414_1034
DNA packaging protein FI Ga0068414_1035

Phage major capsid protein E Ga0068414_1036
Bacteriophage lambda head decoration protein D Ga0068414_1037

protein C (EC:3.4.21.69). Serine peptidase. MEROPS
family S49

Ga0068414_1038

Uncharacterized conserved protein YjdB, contains
Ig-like domain

Ga0068414_1039

hypothetical protein Ga0068414_10410
peptide/nickel transport system permease protein Ga0068414_1042
peptide/nickel transport system substrate-binding

protein
Ga0068414_1043

oligopeptide transport system substrate-binding
protein

Ga0068414_1044

oligopeptide transport system permease protein Ga0068414_1047
oligopeptide transport system permease protein Ga0068414_1048
transcriptional regulator, XRE family with cupin

sensor
Ga0068414_1049

adenosylhomocysteinase Ga0068414_10525
hypothetical protein Ga0068414_1055

C-terminal domain of 1-Cys peroxiredoxin Ga0068414_1061
NitT/TauT family transport system ATP-binding

protein
Ga0068414_10610

NitT/TauT family transport system permease
protein

Ga0068414_10611

NitT/TauT family transport system permease
protein

Ga0068414_10612

MgsA AAA+ ATPase C terminal Ga0068414_10613
Nucleoside 2-deoxyribosyltransferase Ga0068414_10614

regulatory protein, lacI family Ga0068414_10615
transcriptional regulator, GntR family Ga0068414_10616

NitT/TauT family transport system permease
protein

Ga0068414_10617

NitT/TauT family transport system ATP-binding
protein

Ga0068414_10618

NitT/TauT family transport system
substrate-binding protein

Ga0068414_10619

hypothetical protein Ga0068414_1062
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fumarylpyruvate hydrolase Ga0068414_10620
4-hydroxy-4-methyl-2-oxoglutarate aldolase Ga0068414_10621

3-hydroxyisobutyrate dehydrogenase Ga0068414_10622
Uncharacterized membrane protein YfcA Ga0068414_10623

ABC transporter Ga0068414_10625
hypothetical protein Ga0068414_10626

chromosome partitioning protein, ParB family Ga0068414_10627
chromosome partitioning protein Ga0068414_10628

hypothetical protein Ga0068414_1063
DDE domain-containing protein Ga0068414_10631

hypothetical protein Ga0068414_10632
iron(III) transport system ATP-binding protein Ga0068414_10633

iron(III) transport system substrate-binding protein Ga0068414_10634
iron(III) transport system permease protein Ga0068414_10635

4-nitrophenyl phosphatase Ga0068414_10636
peptide/nickel transport system permease protein Ga0068414_10638

Type I phosphodiesterase / nucleotide
pyrophosphatase

Ga0068414_10639

ADP-ribose pyrophosphatase Ga0068414_1064
glycerophosphoryl diester phosphodiesterase Ga0068414_10640

oligopeptide transport system ATP-binding protein Ga0068414_10641
peptide/nickel transport system substrate-binding

protein
Ga0068414_10643

catalase Ga0068414_1065
hypothetical protein Ga0068414_10654
hypothetical protein Ga0068414_10655

Transposase InsO and inactivated derivatives Ga0068414_10656
GntR family transcriptional regulator Ga0068414_10657

basic membrane protein A Ga0068414_10658
simple sugar transport system ATP-binding protein Ga0068414_10659

simple sugar transport system permease protein Ga0068414_10660
nucleoside ABC transporter membrane protein Ga0068414_10661

Nicotinamidase-related amidase Ga0068414_10662
ribokinase Ga0068414_10663

uridine phosphorylase Ga0068414_10664
Uncharacterized protein, contains SIS (Sugar
ISomerase) phosphosugar binding domain

Ga0068414_10665

succinate-semialdehyde dehydrogenase /
glutarate-semialdehyde dehydrogenase

Ga0068414_10666

hypothetical protein Ga0068414_10667
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description locus tag

transcriptional regulator, RpiR family Ga0068414_1068
ABC-type nitrate/sulfonate/bicarbonate transport

system, substrate-binding protein
Ga0068414_1069

Helix-turn-helix Ga0068414_1071
hypothetical protein Ga0068414_10710

Integrase core domain-containing protein Ga0068414_10711
hypothetical protein Ga0068414_10712

Uracil DNA glycosylase superfamily protein Ga0068414_10713
hypothetical protein Ga0068414_1072
hypothetical protein Ga0068414_1073

HYR domain-containing protein Ga0068414_1074
hypothetical protein Ga0068414_1075
hypothetical protein Ga0068414_1076

Putative flagellar system-associated repeat Ga0068414_1077
Site-specific recombinase XerD Ga0068414_10771

ParB-like nuclease domain-containing protein Ga0068414_10772
hypothetical protein Ga0068414_10773

Site-specific DNA recombinase Ga0068414_10774
hypothetical protein Ga0068414_10775

protein of unknown function (DUF4102) Ga0068414_10776
Integrase core domain-containing protein Ga0068414_10777

Hemolysin-type calcium-binding repeat-containing
protein

Ga0068414_10778

hypothetical protein Ga0068414_1078
hypothetical protein Ga0068414_1079
hypothetical protein Ga0068414_1081

putative efflux protein, MATE family Ga0068414_10812
hypothetical protein Ga0068414_10813

cephalosporin-C deacetylase Ga0068414_10814
transcriptional regulator, LacI family Ga0068414_10815

FAD dependent oxidoreductase Ga0068414_10816
multiple sugar transport system substrate-binding

protein
Ga0068414_10817

multiple sugar transport system permease protein Ga0068414_10818
multiple sugar transport system permease protein Ga0068414_10819

multiple sugar transport system ATP-binding
protein

Ga0068414_10820

Phosphoglycerate dehydrogenase Ga0068414_10821
hypothetical protein Ga0068414_10825

Signal transduction histidine kinase Ga0068414_10826
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hypothetical protein Ga0068414_10827
hypothetical protein Ga0068414_10828

Phage integrase family Ga0068414_10829
hypothetical protein Ga0068414_1083
hypothetical protein Ga0068414_10830
hypothetical protein Ga0068414_10831
hypothetical protein Ga0068414_10832

Phage integrase family protein Ga0068414_10833
methyltransferase, FkbM family Ga0068414_1084

Glycosyl transferase family 2 Ga0068414_1085
PRC-barrel domain-containing protein Ga0068414_10850

Glycosyltransferase sugar-binding region containing
DXD motif-containing protein

Ga0068414_1086

Glycosyltransferase involved in cell wall bisynthesis Ga0068414_1087
hypothetical protein Ga0068414_10875

Phage integrase family protein Ga0068414_10876
hypothetical protein Ga0068414_10877
hypothetical protein Ga0068414_10878

Transposase Ga0068414_10879
hypothetical protein Ga0068414_1088

putative RNA 2’-phosphotransferase Ga0068414_10880
AraC-type DNA-binding protein Ga0068414_10884

outer membrane autotransporter barrel
domain-containing protein

Ga0068414_10885

hypothetical protein Ga0068414_10886
transporter family-2 protein Ga0068414_10887

Acetyltransferase (GNAT) family protein Ga0068414_10888
Helix-turn-helix domain-containing protein Ga0068414_10889
Integrase core domain-containing protein Ga0068414_1089

hypothetical protein Ga0068414_10890
hypothetical protein Ga0068414_10891

protein of unknown function (DUF4422) Ga0068414_1091
oligopeptide transport system ATP-binding protein Ga0068414_109100
oligopeptide transport system ATP-binding protein Ga0068414_109101
peptide/nickel transport system permease protein Ga0068414_109103
peptide/nickel transport system substrate-binding

protein
Ga0068414_109104

Short-chain dehydrogenase Ga0068414_109106
DNA-binding transcriptional regulator, MarR family Ga0068414_109107

hypothetical protein Ga0068414_109114
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hypothetical protein Ga0068414_109115
hypothetical protein Ga0068414_109116

Methyltransferase domain-containing protein Ga0068414_109117
hypothetical protein Ga0068414_109118

High-affinity nickel-transport protein Ga0068414_109122
ABC-type uncharacterized transport system,

substrate-binding protein
Ga0068414_109123

hypothetical protein Ga0068414_109128
TRAP-type C4-dicarboxylate transport system, small

permease component
Ga0068414_109130

C4-dicarboxylate transporter, DctM subunit Ga0068414_109131
hypothetical protein Ga0068414_109132

amino acid ABC transporter ATP-binding protein,
PAAT family

Ga0068414_109133

amino acid ABC transporter membrane protein 2,
PAAT family (TC 3.A.1.3.-)

Ga0068414_109134

amino acid ABC transporter membrane protein 1,
PAAT family

Ga0068414_109135

amino acid ABC transporter substrate-binding
protein, PAAT family

Ga0068414_109136

hypothetical protein Ga0068414_109142
creatinine amidohydrolase Ga0068414_109146

Uncharacterized membrane protein Ga0068414_109148
transcriptional regulator, LacI family Ga0068414_109149

cytidine deaminase Ga0068414_109150
5-methylthioadenosine/S-adenosylhomocysteine

deaminase
Ga0068414_109151

non-specific riboncleoside hydrolase Ga0068414_109152
nucleoside-binding protein Ga0068414_109153

simple sugar transport system permease protein Ga0068414_109155
simple sugar transport system permease protein Ga0068414_109156

guanine deaminase Ga0068414_109157
UDP-glucose 4-epimerase Ga0068414_109160

Glycosyltransferase involved in cell wall bisynthesis Ga0068414_109161
hypothetical protein Ga0068414_109162

Sulfotransferase family protein Ga0068414_109163
Polysaccharide pyruvyl transferase Ga0068414_109165

Glycosyl transferase family 2 Ga0068414_109166
Glycosyltransferase involved in cell wall bisynthesis Ga0068414_109167

hypothetical protein Ga0068414_109168
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Lipopolysaccharide biosynthesis protein,
LPS:glycosyltransferase

Ga0068414_109169

Endonuclease/Exonuclease/phosphatase family
protein

Ga0068414_10917

Glycosyltransferase, GT2 family Ga0068414_1092
TctA family transporter Ga0068414_10930

putative tricarboxylic transport membrane protein Ga0068414_10931
Tripartite-type tricarboxylate transporter, receptor

component TctC
Ga0068414_10932

hypothetical protein Ga0068414_10933
LysR family transcriptional regulator, cys regulon

transcriptional activator
Ga0068414_10934

phosphate uptake regulator, PhoU Ga0068414_10939
hypothetical protein Ga0068414_10951

toxin CcdB Ga0068414_10952
LysR family transcriptional regulator, glycine

cleavage system transcriptional activator
Ga0068414_10953

hypothetical protein Ga0068414_10954
protein of unknown function (DUF885) Ga0068414_10955

glyoxylate/hydroxypyruvate reductase A Ga0068414_10956
peptide/nickel transport system substrate-binding

protein
Ga0068414_10957

peptide/nickel transport system permease protein Ga0068414_10959
Hemolysin-type calcium-binding repeat-containing

protein
Ga0068414_1096

peptide/nickel transport system ATP-binding
protein

Ga0068414_10960

peptidase T. Metallo peptidase. MEROPS family
M20B

Ga0068414_10961

hypothetical protein Ga0068414_10962
ketopantoate reductase Ga0068414_10963

Predicted dehydrogenase Ga0068414_10964
peptide/nickel transport system substrate-binding

protein
Ga0068414_10967

peptide/nickel transport system permease protein Ga0068414_10968
hypothetical protein Ga0068414_10970

peptide/nickel transport system ATP-binding
protein

Ga0068414_10971

peptide/nickel transport system ATP-binding
protein

Ga0068414_10972

peptide/nickel transport system permease protein Ga0068414_10973
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description locus tag

peptide/nickel transport system permease protein Ga0068414_10974
peptide/nickel transport system substrate-binding

protein
Ga0068414_10975

Nucleotide-binding universal stress protein, UspA
family

Ga0068414_10981

TRAP transporter, DctM subunit Ga0068414_10982
TRAP-type C4-dicarboxylate transport system, small

permease component
Ga0068414_10983

TRAP-type C4-dicarboxylate transport system,
substrate-binding protein

Ga0068414_10984

amidohydrolase Ga0068414_10989
gluconate 2-dehydrogenase gamma chain Ga0068414_10990
gluconate 2-dehydrogenase alpha chain Ga0068414_10991

Cytochrome c, mono- and diheme variants Ga0068414_10992
putative membrane protein Ga0068414_10993

Uncharacterized membrane protein Ga0068414_10994
Uncharacterized membrane protein Ga0068414_10995

cytochrome c oxidase subunit 2 Ga0068414_10996
cytochrome c oxidase subunit I+III Ga0068414_10997

hypothetical protein Ga0068414_10998
Glycine/D-amino acid oxidase (deaminating) Ga0068414_10999

hypothetical protein Ga0068414_110106
TupA-like ATPgrasp Ga0068414_110107

Integrase core domain-containing protein Ga0068414_11011
MJ0042 family finger-like domain-containing protein Ga0068414_110114

hypothetical protein Ga0068414_110119
Helix-turn-helix domain-containing protein Ga0068414_11012

transcriptional regulator, AraC family Ga0068414_110122
hypothetical protein Ga0068414_110137

YrhK-like protein Ga0068414_110139
hypothetical protein Ga0068414_11014

Opacity protein Ga0068414_110145
hypothetical protein Ga0068414_110148

alcohol dehydrogenase Ga0068414_11015
Ankyrin repeat-containing protein Ga0068414_110158

hypothetical protein Ga0068414_11016
hypothetical protein Ga0068414_11018

transcriptional regulator, LysR family Ga0068414_11019
hypothetical protein Ga0068414_110194

Cu+-exporting ATPase Ga0068414_110205
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solute:Na+ symporter, SSS family Ga0068414_11022
Protein N-acetyltransferase, RimJ/RimL family Ga0068414_110220

hypothetical protein Ga0068414_11023
hypothetical protein Ga0068414_110236
hypothetical protein Ga0068414_11024
hypothetical protein Ga0068414_110244
hypothetical protein Ga0068414_11026
hypothetical protein Ga0068414_110272
hypothetical protein Ga0068414_110275

Predicted dehydrogenase Ga0068414_11028
aldehyde dehydrogenase Ga0068414_110289

hypothetical protein Ga0068414_11029
hypothetical protein Ga0068414_110291

PAS domain S-box-containing protein Ga0068414_110292
hypothetical protein Ga0068414_110294

Lipoprotein-anchoring transpeptidase ErfK/SrfK Ga0068414_110295
hypothetical protein Ga0068414_110296

DNA-binding transcriptional regulator, MerR family Ga0068414_110297
zinc transporter, ZIP family Ga0068414_110298

hypothetical protein Ga0068414_110299
hypothetical protein Ga0068414_1103
hypothetical protein Ga0068414_11030

Alpha/beta hydrolase family protein Ga0068414_110300
hypothetical protein Ga0068414_110301

DNA-binding transcriptional regulator, MarR family Ga0068414_110302
YHYH protein Ga0068414_110303

hypothetical protein Ga0068414_110304
MFS transporter, DHA1 family, bicyclomycin/

chloramphenicol resistance protein
Ga0068414_110305

intein N-terminal splicing region Ga0068414_110309
hypothetical protein Ga0068414_11031
hypothetical protein Ga0068414_110312

iron complex transport system substrate-binding
protein

Ga0068414_110313

hypothetical protein Ga0068414_110314
iron complex transport system substrate-binding

protein
Ga0068414_110315

iron complex transport system substrate-binding
protein

Ga0068414_110319
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iron complex transport system substrate-binding
protein

Ga0068414_110320

iron complex transport system permease protein Ga0068414_110321
iron complex transport system permease protein Ga0068414_110322

iron complex transport system ATP-binding protein Ga0068414_110323
Coiled stalk of trimeric autotransporter adhesin Ga0068414_110324
Invasion protein IalB, involved in pathogenesis Ga0068414_110325

hypothetical protein Ga0068414_110326
hypothetical protein Ga0068414_110327

transcriptional regulator, ArsR family Ga0068414_110332
hypothetical protein Ga0068414_110333

uncharacterized protein Ga0068414_110334
hypothetical protein Ga0068414_110335
hypothetical protein Ga0068414_110336
hypothetical protein Ga0068414_110337

protein of unknown function (DUF2088) Ga0068414_110338
altronate hydrolase Ga0068414_110339

L-lactate dehydrogenase Ga0068414_110341
Tripartite-type tricarboxylate transporter, receptor

component TctC
Ga0068414_110343

Tripartite tricarboxylate transporter TctB family
protein

Ga0068414_110344

putative tricarboxylic transport membrane protein Ga0068414_110345
DNA-binding transcriptional regulator, GntR family Ga0068414_110346

Integrase core domain-containing protein Ga0068414_110347
hypothetical protein Ga0068414_110348

aromatic-amino-acid transaminase Ga0068414_11035
hypothetical protein Ga0068414_11039
hypothetical protein Ga0068414_1104
hypothetical protein Ga0068414_11041
hypothetical protein Ga0068414_11043

Protein of unknown function (DUF1328) Ga0068414_11045
hypothetical protein Ga0068414_1105

transcriptional regulator, LacI family Ga0068414_11052
hypothetical protein Ga0068414_1107
hypothetical protein Ga0068414_1108

YcxB-like protein Ga0068414_11080
hypothetical protein Ga0068414_11098

Site-specific recombinase XerD Ga0068414_1111
type I restriction enzyme M protein Ga0068414_11110
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MFS transporter, SET family, sugar efflux transporter Ga0068414_111107
Excalibur calcium-binding domain-containing

protein
Ga0068414_111110

Ca2+-binding protein, RTX toxin-related Ga0068414_111118
hypothetical protein Ga0068414_111126
hypothetical protein Ga0068414_11113

single-strand binding protein Ga0068414_111164
Uncharacterized conserved protein YbjQ, UPF0145

family
Ga0068414_111189

Site-specific recombinase XerD Ga0068414_1112
Tetratricopeptide repeat-containing protein Ga0068414_111202

hypothetical protein Ga0068414_111215
hypothetical protein Ga0068414_111217

Predicted dehydrogenase Ga0068414_111218
glucose-fructose oxidoreductase Ga0068414_111219

monosaccharide ABC transporter membrane
protein, CUT2 family

Ga0068414_111220

monosaccharide ABC transporter membrane
protein, CUT2 family

Ga0068414_111221

monosaccharide ABC transporter ATP-binding
protein, CUT2 family

Ga0068414_111222

monosaccharide ABC transporter substrate-binding
protein, CUT2 family

Ga0068414_111223

Sugar phosphate isomerase/epimerase Ga0068414_111224
Predicted dehydrogenase Ga0068414_111225

regulatory protein, lacI family Ga0068414_111226
substrate-binding protein domain-containing

protein
Ga0068414_111227

Inosine-uridine nucleoside N-ribohydrolase Ga0068414_111228
putative spermidine/putrescine transport system

permease protein
Ga0068414_111229

putative spermidine/putrescine transport system
permease protein

Ga0068414_111230

putative spermidine/putrescine transport system
substrate-binding protein

Ga0068414_111231

L-fucose isomerase Ga0068414_111233
GntR family transcriptional regulator Ga0068414_111234
phenylacetaldehyde dehydrogenase Ga0068414_111235
tagatose 1,6-diphosphate aldolase Ga0068414_111236

dihydroxyacetone kinase DhaK subunit Ga0068414_111237
dihydroxyacetone kinase DhaL subunit Ga0068414_111238
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D-psicose/D-tagatose/L-ribulose 3-epimerase Ga0068414_111239
acetyl-CoA synthetase Ga0068414_111240

Rubredoxin-like zinc ribbon domain (DUF35 N) Ga0068414_111241
acetyl-CoA C-acetyltransferase Ga0068414_111242

Major Facilitator Superfamily protein Ga0068414_111243
gamma-glutamyltranspeptidase / glutathione

hydrolase
Ga0068414_111244

D-3-phosphoglycerate dehydrogenase Ga0068414_111245
Hemolysin-type calcium-binding repeat-containing

protein
Ga0068414_111247

iron complex transport system ATP-binding protein Ga0068414_111249
iron complex transport system substrate-binding

protein
Ga0068414_111251

(2Fe-2S) ferredoxin Ga0068414_111252
hypothetical protein Ga0068414_111254

regulatory protein, luxR family Ga0068414_111256
hypothetical protein Ga0068414_111257
hypothetical protein Ga0068414_111258
hypothetical protein Ga0068414_111261
hypothetical protein Ga0068414_111262
hypothetical protein Ga0068414_111263
hypothetical protein Ga0068414_111264

Plasmid recombination enzyme Ga0068414_111265
hypothetical protein Ga0068414_111266
hypothetical protein Ga0068414_111267
hypothetical protein Ga0068414_111268

Signal transduction histidine kinase Ga0068414_111269
PAS domain S-box-containing protein Ga0068414_111270

hypothetical protein Ga0068414_111279
hypothetical protein Ga0068414_111288
hypothetical protein Ga0068414_111291
hypothetical protein Ga0068414_1113

glutathione S-transferase Ga0068414_111311
hypothetical protein Ga0068414_111313

DNA-binding transcriptional regulator, IscR family Ga0068414_111314
Thioredoxin reductase Ga0068414_111315

FAD/FMN-containing dehydrogenase Ga0068414_111316
EcoRII C terminal Ga0068414_111317

putative spermidine/putrescine transport system
permease protein

Ga0068414_111319
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putative spermidine/putrescine transport system
permease protein

Ga0068414_111320

putative spermidine/putrescine transport system
substrate-binding protein

Ga0068414_111321

hypothetical protein Ga0068414_111323
hypothetical protein Ga0068414_111324

transcriptional regulator, IclR family Ga0068414_111325
acetolactate synthase-1/2/3 large subunit Ga0068414_111326

transcriptional regulator, LacI family Ga0068414_111330
hypothetical protein Ga0068414_111332
hypothetical protein Ga0068414_111333

adenosylhomocysteinase Ga0068414_111334
adenosylhomocysteinase Ga0068414_111335

hypothetical protein Ga0068414_1114
hypothetical protein Ga0068414_1115

Site-specific DNA recombinase Ga0068414_1116
hypothetical protein Ga0068414_1117
hypothetical protein Ga0068414_11177

type I restriction enzyme, R subunit Ga0068414_1118
type I restriction enzyme, S subunit Ga0068414_1119

hypothetical protein Ga0068414_11197
Transposase and inactivated derivatives Ga0068414_1121

hypothetical protein Ga0068414_11210
zinc transporter, ZIP family Ga0068414_112122

hypothetical protein Ga0068414_112135
DNA-binding transcriptional regulator, MerR family Ga0068414_112136

intein N-terminal splicing region Ga0068414_112137
Uncharacterized conserved protein YdeI, YjbR/

CyaY-like superfamily, DUF1801 family
Ga0068414_112138

Ubiquinone/menaquinone biosynthesis
C-methylase UbiE

Ga0068414_11215

Lrp/AsnC family transcriptional regulator,
leucine-responsive regulatory protein

Ga0068414_112153

leucine dehydrogenase Ga0068414_112154
Uncharacterized conserved protein, DUF1330 family Ga0068414_112155

hypothetical protein Ga0068414_112156
NADPH2:quinone reductase Ga0068414_112157

Uncharacterized conserved protein, DUF1697 family Ga0068414_112158
hypothetical protein Ga0068414_112159
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Alpha/beta hydrolase family/Bacterial regulatory
proteins, luxR family

Ga0068414_112162

hypothetical protein Ga0068414_112185
transposase Ga0068414_1122

Activator of Hsp90 ATPase homolog 1-like protein Ga0068414_112213
Methyladenine glycosylase Ga0068414_112215

Transposase IS200 like Ga0068414_112220
Abortive infection C-terminus Ga0068414_112221

Cell Wall Hydrolase Ga0068414_112243
Ribosomal protein S18 acetylase RimI Ga0068414_112251

ribosome-associated heat shock protein Hsp15 Ga0068414_112269
Zn-dependent dipeptidase, dipeptidase homolog Ga0068414_112275

hypothetical protein Ga0068414_112299
hypothetical protein Ga0068414_1123
hypothetical protein Ga0068414_112327
hypothetical protein Ga0068414_112332
hypothetical protein Ga0068414_112336

Uncharacterized membrane protein Ga0068414_112352
hypothetical protein Ga0068414_112356
hypothetical protein Ga0068414_112362
hypothetical protein Ga0068414_112364

peptide/nickel transport system permease protein Ga0068414_112370
regulatory protein, luxR family Ga0068414_112372

Aldehyde oxidase and xanthine dehydrogenase, a/b
hammerhead domain

Ga0068414_112383

Site-specific recombinase XerD Ga0068414_112397
hypothetical protein Ga0068414_112398

Helix-turn-helix Ga0068414_112399
Protein of unknown function (DUF3768) Ga0068414_1124

hypothetical protein Ga0068414_112400
hypothetical protein Ga0068414_112401

sporadically distributed protein, TIGR04141 family Ga0068414_112402
Phage integrase family protein Ga0068414_112404

hypothetical protein Ga0068414_112405
hypothetical protein Ga0068414_112406
hypothetical protein Ga0068414_112407
hypothetical protein Ga0068414_112408

replication region DNA-binding N-term Ga0068414_112409
plasmid mobilization system relaxase Ga0068414_112410
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hypothetical protein Ga0068414_112411
hypothetical protein Ga0068414_112412

TRAP transporter, 4TM/12TM fusion protein Ga0068414_112413
Dienelactone hydrolase Ga0068414_112414

glutathione S-transferase Ga0068414_112415
peptide/nickel transport system permease protein Ga0068414_112421

hypothetical protein Ga0068414_112459
hypothetical protein Ga0068414_112462
hypothetical protein Ga0068414_112498
hypothetical protein Ga0068414_11251
hypothetical protein Ga0068414_112510
hypothetical protein Ga0068414_11252
Peptidase M50B-like Ga0068414_112558

ABC-2 type transport system permease protein Ga0068414_112561
ABC-2 type transport system permease protein Ga0068414_112562

HlyD family secretion protein Ga0068414_112563
transcriptional regulator, TetR family Ga0068414_112564

regulatory helix-turn-helix protein, lysR family Ga0068414_112565
hypothetical protein Ga0068414_112566

Uncharacterized lipoprotein YbaY Ga0068414_112567
hypothetical protein Ga0068414_112568

Integrase core domain-containing protein Ga0068414_112569
Helix-turn-helix domain-containing protein Ga0068414_112570

hypothetical protein Ga0068414_112571
hypothetical protein Ga0068414_112572

transposase Ga0068414_112573
hypothetical protein Ga0068414_112575
hypothetical protein Ga0068414_112576
HupE / UreJ protein Ga0068414_112577
hypothetical protein Ga0068414_112578
hypothetical protein Ga0068414_112579
hypothetical protein Ga0068414_112580

Transposase DDE domain-containing protein Ga0068414_112581
hypothetical protein Ga0068414_112582

Patatin-like phospholipase Ga0068414_112583
hypothetical protein Ga0068414_112584
DinB family protein Ga0068414_112585
Aldo/keto reductase Ga0068414_112586

luciferase-type oxidoreductase, BA3436 family Ga0068414_112587
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Predicted arabinose efflux permease, MFS family Ga0068414_112588
DNA-binding transcriptional regulator, LysR family Ga0068414_112589

hypothetical protein Ga0068414_112590
Tetratricopeptide repeat-containing protein Ga0068414_112591

hypothetical protein Ga0068414_112592
hypothetical protein Ga0068414_112593

TniQ Ga0068414_112594
hypothetical protein Ga0068414_112595

TniQ protein Ga0068414_112596
AAA domain-containing protein Ga0068414_112597

putative transposase Ga0068414_112598
hypothetical protein Ga0068414_112599

Site-specific recombinase XerD Ga0068414_1126
hypothetical protein Ga0068414_112600

HTH-like domain-containing protein Ga0068414_112603
hypothetical protein Ga0068414_112604

outer membrane protein, adhesin transport system Ga0068414_112605
membrane fusion protein, adhesin transport system Ga0068414_112606

ATP-binding cassette, subfamily C, LapB Ga0068414_112607
hypothetical protein Ga0068414_112608
hypothetical protein Ga0068414_11263
hypothetical protein Ga0068414_1127
hypothetical protein Ga0068414_1128

Uncaracterized surface protein containing fasciclin
(FAS1) repeats

Ga0068414_11281

hypothetical protein Ga0068414_11285
hypothetical protein Ga0068414_1129
hypothetical protein Ga0068414_1131

HYR domain-containing protein Ga0068414_11310
hypothetical protein Ga0068414_1131000
hypothetical protein Ga0068414_1131005
hypothetical protein Ga0068414_113101

uncharacterized protein Ga0068414_1131019
BFD-like [2Fe-2S] binding domain-containing

protein
Ga0068414_1131024

hypothetical protein Ga0068414_1131026
hypothetical protein Ga0068414_1131027
hypothetical protein Ga0068414_1131028

solute carrier family 34 (sodium-dependent
phosphate cotransporter)

Ga0068414_1131029
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Table A.5: continued

description locus tag

hypothetical protein Ga0068414_113103
DNA-binding transcriptional regulator, LysR family Ga0068414_1131030

transcriptional regulator, IclR family Ga0068414_1131037
putative tricarboxylic transport membrane protein Ga0068414_1131038

Tripartite tricarboxylate transporter TctB family
protein

Ga0068414_1131039

Crotonobetainyl-CoA:carnitine CoA-transferase
CaiB

Ga0068414_1131041

citrate lyase subunit beta / citryl-CoA lyase Ga0068414_1131042
transcriptional regulator, LacI family Ga0068414_1131043

putative aldouronate transport system permease
protein

Ga0068414_1131044

putative aldouronate transport system permease
protein

Ga0068414_1131045

putative aldouronate transport system
substrate-binding protein

Ga0068414_1131046

ADP-ribosylglycohydrolase Ga0068414_1131047
ADP-ribosylglycohydrolase Ga0068414_1131048

multiple sugar transport system ATP-binding
protein

Ga0068414_1131049

Predicted amidohydrolase Ga0068414_1131060
SIR2-like domain-containing protein Ga0068414_1131066

hypothetical protein Ga0068414_1131068
hypothetical protein Ga0068414_113107

Homeodomain-like domain-containing protein Ga0068414_1131071
transposase Ga0068414_1131072

EcoRII C terminal Ga0068414_1131073
DNA-binding transcriptional response regulator,

NtrC family, contains REC, AAA-type ATPase, and a
Fis-type DNA-binding domains

Ga0068414_1131076

two-component system, NtrC family, sensor kinase Ga0068414_1131077
Major Facilitator Superfamily protein Ga0068414_1131078

lysine 2-monooxygenase (EC 1.13.12.2) Ga0068414_1131079
sulfopropanediol 3-dehydrogenase Ga0068414_1131082

hypothetical protein Ga0068414_1131086
Winged helix-turn helix Ga0068414_11311

hypothetical protein Ga0068414_1131102
hypothetical protein Ga0068414_113111

BCCT, betaine/carnitine/choline family transporter Ga0068414_1131120
hypothetical protein Ga0068414_1131125
hypothetical protein Ga0068414_1131153
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Table A.5: continued

description locus tag

hypothetical protein Ga0068414_113116
hypothetical protein Ga0068414_1131164
hypothetical protein Ga0068414_1131175

Site-specific recombinase XerD Ga0068414_1131177
hypothetical protein Ga0068414_1131178

Predicted phosphoesterase, NUDIX family Ga0068414_1131179
Methyltransferase domain-containing protein Ga0068414_1131180

hypothetical protein Ga0068414_1131181
hypothetical protein Ga0068414_1131183
hypothetical protein Ga0068414_1131184
hypothetical protein Ga0068414_1131185
hypothetical protein Ga0068414_1131186
hypothetical protein Ga0068414_1131187
hypothetical protein Ga0068414_1131188

N-acetylmuramoyl-L-alanine amidase Ga0068414_1131189
Membrane-associated phospholipid phosphatase Ga0068414_113119

hypothetical protein Ga0068414_1131190
hypothetical protein Ga0068414_1131191
hypothetical protein Ga0068414_1131192

Endonuclease YncB, thermonuclease family Ga0068414_1131193
Phosphatidylserine/

phosphatidylglycerophosphate/cardiolipin
synthase

Ga0068414_1131195

FAD-NAD(P)-binding Ga0068414_1131196
Uncharacterized conserved protein Ga0068414_1131197

Transposase InsO and inactivated derivatives Ga0068414_11312
FMN-dependent oxidoreductase, nitrilotriacetate

monooxygenase family
Ga0068414_1131205

Predicted metal-dependent enzyme of the
double-stranded beta helix superfamily

Ga0068414_1131210

DNA-binding transcriptional regulator, LysR family Ga0068414_1131211
His Kinase A (phospho-acceptor)

domain-containing protein
Ga0068414_1131216

PAS domain S-box-containing protein Ga0068414_1131217
Response regulator receiver domain-containing

protein
Ga0068414_1131218

RND family efflux transporter, MFP subunit Ga0068414_1131219
hypothetical protein Ga0068414_113122

hydrophobe/amphiphile efflux-1 (HAE1) family
protein

Ga0068414_1131220
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Table A.5: continued

description locus tag

hypothetical protein Ga0068414_1131221
transcriptional regulator, TetR family Ga0068414_1131231

Predicted flavoprotein CzcO associated with the
cation diffusion facilitator CzcD

Ga0068414_1131232

bile acid:Na+ symporter, BASS family Ga0068414_1131233
UDP-glucose 4-epimerase Ga0068414_1131234

Short-chain dehydrogenase Ga0068414_1131235
hypothetical protein Ga0068414_113125
hypothetical protein Ga0068414_1131250
hypothetical protein Ga0068414_1131259
hypothetical protein Ga0068414_1131262

sec-independent protein translocase protein TatB Ga0068414_1131290
Integrase core domain-containing protein Ga0068414_11313

hypothetical protein Ga0068414_1131306
TIGR02300 family protein Ga0068414_113131

dihydroorotase Ga0068414_1131312
hypothetical protein Ga0068414_1131315

MFS transporter, DHA1 family, bicyclomycin/
chloramphenicol resistance protein

Ga0068414_1131317

hypothetical protein Ga0068414_1131320
Uncharacterized membrane protein YoaK, UPF0700

family
Ga0068414_1131366

hypothetical protein Ga0068414_11314
hypothetical protein Ga0068414_1131400
hypothetical protein Ga0068414_1131401
hypothetical protein Ga0068414_1131402

Sulfotransferase domain-containing protein Ga0068414_1131404
hypothetical protein Ga0068414_113142
hypothetical protein Ga0068414_1131428
hypothetical protein Ga0068414_113147
hypothetical protein Ga0068414_1131470
hypothetical protein Ga0068414_1131471

gamma-glutamyltranspeptidase / glutathione
hydrolase

Ga0068414_1131491

zinc transport system substrate-binding protein Ga0068414_1131494
SIR2-like domain-containing protein Ga0068414_11315

Ca2+-binding protein, RTX toxin-related Ga0068414_1131502
hypothetical protein Ga0068414_1131503
hypothetical protein Ga0068414_1131504

regulatory protein, luxR family Ga0068414_1131505
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Table A.5: continued

description locus tag

hypothetical protein Ga0068414_1131506
hypothetical protein Ga0068414_1131508

FAD binding domain-containing protein Ga0068414_1131509
Cytochrome C oxidase, cbb3-type, subunit III Ga0068414_1131510

transcriptional regulator, TetR family Ga0068414_1131511
polar amino acid transport system substrate-binding

protein
Ga0068414_1131513

polar amino acid transport system permease protein Ga0068414_1131514
polar amino acid transport system ATP-binding

protein
Ga0068414_1131515

methionine-gamma-lyase Ga0068414_1131516
hypothetical protein Ga0068414_1131521

Phage integrase family Ga0068414_1131522
hypothetical protein Ga0068414_1131561

DNA-binding protein HU-alpha Ga0068414_1131563
hypothetical protein Ga0068414_1131593

Hemolysin-type calcium-binding repeat-containing
protein

Ga0068414_1131594

hypothetical protein Ga0068414_1131595
LysR family transcriptional regulator, glycine

cleavage system transcriptional activator
Ga0068414_1131596

hypothetical protein Ga0068414_1131598
ferredoxin, 2Fe-2S Ga0068414_1131599

trk system potassium uptake protein TrkH Ga0068414_11316
Predicted metal-dependent hydrolase, TIM-barrel

fold
Ga0068414_1131601

transcriptional regulator, LysR family Ga0068414_1131603
Enamine deaminase RidA, house cleaning of

reactive enamine intermediates, YjgF/YER057c/
UK114 family

Ga0068414_1131605

D-arabinitol 4-dehydrogenase Ga0068414_113162
transcriptional regulator, AraC family Ga0068414_113163

Glycosyl hydrolase 108 Ga0068414_1131642
hypothetical protein Ga0068414_1131666
hypothetical protein Ga0068414_1131684

trk system potassium uptake protein TrkA Ga0068414_11317
hypothetical protein Ga0068414_1131703

His Kinase A (phospho-acceptor)
domain-containing protein

Ga0068414_1131704

Glycosyltransferase involved in cell wall bisynthesis Ga0068414_1131715
hypothetical protein Ga0068414_1131720
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Table A.5: continued

description locus tag

hypothetical protein Ga0068414_1131721
hypothetical protein Ga0068414_1131729

NitT/TauT family transport system
substrate-binding protein

Ga0068414_1131733

transporter, NhaC family Ga0068414_1131734
Metallopeptidase family M24 Ga0068414_1131735

hypothetical protein Ga0068414_1131736
ParD-like antitoxin of type II toxin-antitoxin system Ga0068414_1131737

lactaldehyde dehydrogenase / glycolaldehyde
dehydrogenase

Ga0068414_1131746

hypothetical protein Ga0068414_1131747
hypothetical protein Ga0068414_1131748

Uncharacterized protein YcnI Ga0068414_1131749
hypothetical protein Ga0068414_1131750
hypothetical protein Ga0068414_1131751
hypothetical protein Ga0068414_1131752
hypothetical protein Ga0068414_1131754

Integrase core domain-containing protein Ga0068414_1131759
hypothetical protein Ga0068414_1131760

transcriptional regulator, XRE family with cupin
sensor

Ga0068414_1131761

peptide/nickel transport system substrate-binding
protein

Ga0068414_1131762

peptide/nickel transport system permease protein Ga0068414_1131764
ABC-type dipeptide/oligopeptide/nickel transport

system, ATPase component
Ga0068414_1131765

peptide/nickel transport system ATP-binding
protein

Ga0068414_1131766

GAF domain-containing protein Ga0068414_1131767
N-methylhydantoinase A Ga0068414_1131768
N-methylhydantoinase B Ga0068414_1131769
Xaa-Pro aminopeptidase Ga0068414_1131770
N-methylhydantoinase B Ga0068414_1131771

hypothetical protein Ga0068414_1131772
Integrase core domain-containing protein Ga0068414_1131773

hypothetical protein Ga0068414_1131774
transposase Ga0068414_1131775

raffinose/stachyose/melibiose transport system
permease protein

Ga0068414_1131777

raffinose/stachyose/melibiose transport system
permease protein

Ga0068414_1131778
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Table A.5: continued

description locus tag

ADP-ribosylglycohydrolase Ga0068414_1131779
transcriptional regulator, LacI family Ga0068414_1131781

raffinose/stachyose/melibiose transport system
substrate-binding protein

Ga0068414_1131782

glucosamine–fructose-6-phosphate
aminotransferase (isomerizing)

Ga0068414_1131783

secondary thiamine-phosphate synthase enzyme Ga0068414_1131784
Sugar or nucleoside kinase, ribokinase family Ga0068414_1131785

purine nucleosidase Ga0068414_1131786
ADP-ribosylglycohydrolase Ga0068414_1131787

uridine phosphorylase Ga0068414_1131788
hypothetical protein Ga0068414_1131789

HAD-superfamily class IIA hydrolase, TIGR01459 Ga0068414_1131791
CDP-alcohol phosphatidyltransferase Ga0068414_1131793

L-glutamine/L-glutamate/L-aspartate/
L-asparagine ABC transporter membrane protein

Ga0068414_113194

hypothetical protein Ga0068414_1132
Sulfotransferase family protein Ga0068414_113208

hypothetical protein Ga0068414_113212
Hint domain-containing protein Ga0068414_113225

hypothetical protein Ga0068414_113228
ATPase Ga0068414_113234

Na+/H+-dicarboxylate symporter Ga0068414_113244
hypothetical protein Ga0068414_113249

N-acylneuraminate cytidylyltransferase Ga0068414_113250
hypothetical protein Ga0068414_113257

Sulfotransferase family protein Ga0068414_113260
serine/threonine protein phosphatase 1 Ga0068414_11328

hypothetical protein Ga0068414_11329
Transposase Ga0068414_1133

ATPase family associated with various cellular
activities (AAA)

Ga0068414_11330

LPXTG-motif cell wall anchor domain-containing
protein

Ga0068414_113313

Glutathione-dependent formaldehyde-activating
enzyme

Ga0068414_113327

LPS sulfotransferase NodH Ga0068414_113365
hypothetical protein Ga0068414_113376
hypothetical protein Ga0068414_113377

transposase Ga0068414_1134
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Table A.5: continued

description locus tag

hypothetical protein Ga0068414_113428
hypothetical protein Ga0068414_113429
hypothetical protein Ga0068414_113430
hypothetical protein Ga0068414_113442
hypothetical protein Ga0068414_113470

quaternary ammonium compound-resistance
protein SugE

Ga0068414_113472

hypothetical protein Ga0068414_113478
nucleoside ABC transporter membrane protein Ga0068414_113479

simple sugar transport system permease protein Ga0068414_113480
basic membrane protein A Ga0068414_113482
Creatinine amidohydrolase Ga0068414_113483

Phage integrase family protein Ga0068414_113484
hypothetical protein Ga0068414_113485
hypothetical protein Ga0068414_113487
hypothetical protein Ga0068414_113488

Type VI secretion system VasI, EvfG, VC A0118 Ga0068414_113489
hypothetical protein Ga0068414_113490

Homeodomain-like domain-containing protein Ga0068414_1135
hypothetical protein Ga0068414_113505

extracellular solute-binding protein, family 3 Ga0068414_11357
hypothetical protein Ga0068414_113579
hypothetical protein Ga0068414_113580

Protein of unknown function DUF45 Ga0068414_1136
PAS domain-containing protein Ga0068414_113626

AraC-type DNA-binding protein Ga0068414_113641
hypothetical protein Ga0068414_113642
hypothetical protein Ga0068414_113643
hypothetical protein Ga0068414_113644
hypothetical protein Ga0068414_113692

hook-length control protein FliK Ga0068414_113695
hypothetical protein Ga0068414_1137

LysR family transcriptional regulator, glycine
cleavage system transcriptional activator

Ga0068414_113702

hypothetical protein Ga0068414_113709
2,4-dienoyl-CoA reductase Ga0068414_113716

hypothetical protein Ga0068414_113717
Phage integrase family protein Ga0068414_113718

methionine aminopeptidase, type I (EC 3.4.11.18) Ga0068414_113719
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Table A.5: continued

description locus tag

FCD domain-containing protein Ga0068414_113720
Transposase Ga0068414_113721

His Kinase A (phospho-acceptor)
domain-containing protein

Ga0068414_113722

hypothetical protein Ga0068414_113723
transcriptional regulator, AlpA family Ga0068414_113724

hypothetical protein Ga0068414_113725
hypothetical protein Ga0068414_113726

protein of unknown function (DUF4102) Ga0068414_113727
mannosyl-3-phosphoglycerate phosphatase Ga0068414_113728

glucosyl-3-phosphoglycerate synthase Ga0068414_113729
sucrose phosphorylase Ga0068414_113730

hypothetical protein Ga0068414_113745
MarR family protein Ga0068414_113747
hypothetical protein Ga0068414_113776
hypothetical protein Ga0068414_1138
hypothetical protein Ga0068414_11385
hypothetical protein Ga0068414_113853

AAA domain-containing protein Ga0068414_113862
hypothetical protein Ga0068414_113863
hypothetical protein Ga0068414_113864

Opacity protein Ga0068414_113865
hypothetical protein Ga0068414_113867

peptide/nickel transport system permease protein Ga0068414_113871
allantoate deiminase Ga0068414_113875

HTH-like domain-containing protein Ga0068414_113877
PRC-barrel domain-containing protein Ga0068414_113880

putative Mg2+ transporter-C (MgtC) family protein Ga0068414_113881
PAS domain S-box-containing protein Ga0068414_113882

hypothetical protein Ga0068414_113883
Signal transduction histidine kinase Ga0068414_113884

hypothetical protein Ga0068414_113885
hypothetical protein Ga0068414_113886

Cd2+/Zn2+-exporting ATPase Ga0068414_113888
hypothetical protein Ga0068414_113889

L,D-transpeptidase catalytic domain Ga0068414_113890
transcriptional regulator, MerR family Ga0068414_113891

NADPH:quinone reductase Ga0068414_113897
hypothetical protein Ga0068414_1139
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Table A.5: continued

description locus tag

oligopeptide transport system ATP-binding protein Ga0068414_113919
hypothetical protein Ga0068414_113935
hypothetical protein Ga0068414_113953

Glycosyltransferase family 92 Ga0068414_113963
capsular polysaccharide export protein Ga0068414_113964

hypothetical protein Ga0068414_11398
hypothetical protein Ga0068414_113999
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a.5 xanthorhodopsins in roseobacter group bacteria

Figure A.5 visualises the isolation coordinates from Table A.1 on the
world map, and xanthorhodopsin-bearing strains are highlighted in
red. In addition, the amino acid sequences of roseobacter-family xan-
thorhodopsins were aligned (via MUSCLE) with those of select other
species, spanning both subgroups of the xanthorhodopsins. AML phy-
logeny was reconstructed using RAxML’s HPC implementation, with the
same configuration as given in Section 2.6. Branch support was esti-
mated through 100 bootstrap repetitions.
Figure A.6 presents the final tree, with both xanthorhodopsin sub-

groupshighlighted indifferent colours. Xanthorhodopsins of roseobac-
ter strains which had not previously been phylogenetically analysed
are coloured red.Roseobacter group xanthorhodopsins formone highly-
supported cluster in close relation to the second subgroup, which was
found to be most abundant in cold and predominantly saline habi-
tats [77].

Figure A.5: Isolation coordinates from Table A.1 plotted on the world map.
Red diamonds represent strains possessing a xanthorhodopsin.
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Figure A.6: Phylogenetic placement of Roseobacter group xanthorhodopsins.
Subgroups as defined in [77]. Numbers indicate bootstrap support, with hol-
low and filled circles representing values of 90–99, and 100, respectively.
Highlighted roseobacter strains’ xanthorhodopsins have not previously been
classified.
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a.6 phylogenetic birth-and-death model

Estimated parameter values of the birth-and-death model are visu-
alised for the Octadecabacters in Figure 3.19. Visualisations for the
other included strains are given in Figure A.7. Posterior probabilities
of COG changes at nodes other than the polar Octadecabacter LCA are
provided in Tables A.6 to A.11 (see Figure A.8). They were used to
identify changes common to all polar Roseobacter group isolates (Sec-
tion 3.5).

(a) overview

Figure A.7: Lineage-specific compo-
nents of transfer (κ), loss (µ), duplica-
tion (λ), and edge length (t) param-
eters, as estimated by Count (Sec-
tion 2.9). Trees present tdirectly (dot-
ted lines do not count toward its
value; scale is the same in all subfig-
ures), while the other parameters are
provided in bar charts. All parame-
ters (including t) are normalised toµ,
which therefore equals 1 in all charts.
Charts at internal nodes are filled
with grey background. Strain desig-
nations are omitted when appropri-
ate, but are identical to those given
in Table 2.2. (a) general overview, as
well as parameters at deep nodes;
(b) parameter values in the Lok-
tanella clade; (c) parameter values in
the smaller clade containing Ketogu-
lonicigenium, some Loktanella species,
and others.



170 appendix

(b) Loktanella genus

Figure A.7: Lineage-specific Count parameters (continued)
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(c) Ketogulonicigenium and others

Figure A.7: Lineage-specific Count parameters (continued)



172 appendix

6

Table A.7
L. salsilacus

Table A.8
L. fryxellensis

L. atrilutea

L. koreensis

L. sediminum
L. sp. SE62

L. rosea
Rsb. sp. CCS2

L. litorea

L. tamlensis

Table A.9
L. vestfoldensis DSM

L. vestfoldensis SKA

Thalassiobium

Table A.6

NH9-P7

P. jejudonensis

E8

Table A.10
O. temperatus

O. ascidiaceicola

Table 3.5
O. arcticus

Table A.11
O. antarcticus
PAMC 27224

PAMC 27225

Figure A.8: Tables listing COG changes at specific nodes in Octadecabacter
and Loktanella clade phylogeny. The information on gain and loss of specific
COGs was used for comparison of changes associated with polar habitats
(Section 4.3.4). electronic version – labels at internal nodes of the tree link
directly to the respective table
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Table A.6: Changes in COGs at the Octadecabacter clade members’ LCA. Only
COGs with a probability of change p > 0.5 at this node are listed. The approx-
imate probability ratios are given in the rightmost column, with green and
red indicating gain and loss, respectively. Relevant probabilities are gain (G)
: expansion (E) : neutral (N, no change), and loss (L) : reduction (R) : neu-
tral (N). A box indicates the highest probability, and is filled if it surpassed
the second-highest by at least 50%. The rightmost column gives the orders of
magnitude between the highest and lowest ratio (the latter is always 1). COGs
are sorted by category, with the respective category code given on the left.
COGs assigned to more than one category are listed multiple times. (back to
overview)

cog id description g :e :n/l :r :n

C 1454 Alcohol dehydrogenase, class IV 10 1 9

G 3507 β-xylosidase 440 1 151

H 1763
Molybdopterin-guanine
dinucleotide biosynthesis
protein

5033 1 783

P 2998 ABC-type tungstate transport
system, permease component

7705 1 882

4662 ABC-type tungstate transport
system, periplasmic component

8562 1 1287

R 3565 Predicted dioxygenase of
extradiol dioxygenase family

141 1 4 10
3

4277
Predicted DNA-binding protein
with the Helix-hairpin-helix
motif

66 1 4 10
3

S
4103

Uncharacterized conserved
protein, tellurite resistance
protein B (TerB) family

1 271 209 10
4

4246 Uncharacterized protein 10 1 3 10
5

4338 Uncharacterized protein 6672 1 1820

U 0341 Preprotein translocase
subunit SecF

29 1 1 10
4

Table A.7: Changes in COGs at the LCA of the two polar Loktanella isolates
L. fryxellensis DSM 16213 and L. salsilacus DSM 16199. See description of
Table A.6 for detailed information. (back to overview)

cog id description g :e :n/l :r :n

C

0711 FoF1-type ATP synthase,
membrane subunit b or b’

1 11 2 10
3
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Table A.7: continued (back to overview)

cog id description g :e :n/l :r :n

0843
Heme/copper-type
cytochrome/quinol oxidase,
subunit 1

1 12 3 10
5

1145 Ferredoxin 91 1 7 10
4

1182 FMN-dependent
NADH-azoreductase

2344 1 619

1301 Na+/H+-dicarboxylate
symporter

23 1 2 10
5

1454 Alcohol dehydrogenase, class IV 3 1 3

1622
Heme/copper-type
cytochrome/quinol oxidase,
subunit 2

1 168 58 10
4

2326 Polyphosphate kinase 2,
PPK2 family

1 3181 1878

2421 Acetamidase/formamidase 8118 1 3960

2838 Monomeric isocitrate
dehydrogenase

24 1 2 10
3

2864 Cytochrome b subunit of
formate dehydrogenase

118 1 30

3278 Cbb3-type cytochrome oxidase,
subunit 1

1 2328 1992

D 1475
Chromosome segregation
protein Spo0J, contains ParB-like
nuclease domain

1 40 4 10
4

3773 Cell wall hydrolase CwlJ,
involved in spore germination

1 16 2 10
5

E

0019 Diaminopimelate decarboxylase 1 24 9 10
4

0069 Glutamate synthase domain 2 1 1886 582
0405 Gamma-glutamyltranspeptidase 1 29 14 10

3

0686 Alanine dehydrogenase 1 428 48

0754 Glutathionylspermidine
synthase

20 1 2 10
4

1003
Glycine cleavage system
protein P (pyridoxal-binding),
C-terminal domain

5454 1 1034

1124

ABC-type
dipeptide/oligopeptide/nickel
transport system, ATPase
component

19 1 11 10
3
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Table A.7: continued (back to overview)

cog id description g :e :n/l :r :n

2066 Glutaminase 111 1 14 10
3

3340 Peptidase E 147 1 8 10
3

3591 V8-like Glu-specific
endopeptidase

12 3 1

4302 Ethanolamine ammonia-lyase,
small subunit

186 1 9 10
3

4303 Ethanolamine ammonia-lyase,
large subunit

105 1 3 10
4

4311 Sarcosine oxidase delta subunit 1 576 25

4392 Branched-chain amino acid
transport protein

456 1 140

4583 Sarcosine oxidase gamma
subunit

1 299 14

F

0005 Purine nucleoside
phosphorylase

1 1732 153

0015 Adenylosuccinate lyase 1 16 11 10
4

0788 Formyltetrahydrofolate
hydrolase

11 1 9 10
3

2233 Xanthine/uracil permease 12 1 1 10
3

G

0296 1,4-alpha-glucan branching
enzyme

3 2 1

0698 Ribose 5-phosphate isomerase
RpiB

15 1 2 10
3

1523 Pullulanase/glycogen
debranching enzyme

2 1 1

1869 D-ribose pyranose/furanose
isomerase RbsD

105 1 3 10
4

1877 Trehalose-6-phosphatase 6890 1 1035
1904 Glucuronate isomerase 519 1 498

2120 N-acetylglucosaminyl
deacetylase, LmbE family

8700 1 4461

2133
Glucose/arabinose
dehydrogenase, beta-propeller
fold

1 123 27

2271 Sugar phosphate permease 38 1 8 10
3

2513
2-Methylisocitrate lyase and
related enzymes, PEP mutase
family

1652 1 475
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Table A.7: continued (back to overview)

cog id description g :e :n/l :r :n

2861

Uncharacterized conserved
protein YibQ, putative
polysaccharide deacetylase 2
family

28 1 5 10
3

2943 Membrane glycosyltransferase 493 1 433
3280 Maltooligosyltrehalose synthase 3345 1 829
3717 5-keto 4-deoxyuronate isomerase 530 1 177
4993 Glucose dehydrogenase 15 1 4 10

3

H

0161
Adenosylmethionine-8-amino-7-
oxononanoate
aminotransferase

1 4134 787

1335 Nicotinamidase-related amidase 1 90 32 10
4

2141

Flavin-dependent
oxidoreductase, luciferase family
(includes alkanesulfonate
monooxygenase SsuD and
methylene
tetrahydromethanopterin
reductase)

1 56 51 10
4

5598 Trimethylamine:corrinoid
methyltransferase

1 117 13

I

0236 Acyl carrier protein 1 26 19 10
3

0657 Acetyl esterase/lipase 1 62 14 10
4

0688 Phosphatidylserine
decarboxylase

10 1 2 10
3

0818 Diacylglycerol kinase 6504 1 777
1183 Phosphatidylserine synthase 1 163 13 10

4

1597 Diacylglycerol kinase family
enzyme

1200 1 626

2267 Lysophospholipase, alpha-beta
hydrolase superfamily

1 177 39 10
3

2854

ABC-type transporter Mla
maintaining outer membrane
lipid asymmetry, periplasmic
MlaC component

23 1 2 10
3

J 0590 tRNA(Arg) A34 adenosine
deaminase TadA

1 309 32 10
4
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Table A.7: continued (back to overview)

cog id description g :e :n/l :r :n

1234 Ribonuclease BN, tRNA
processing enzyme

9095 1 7188

K

0782 Transcription elongation factor,
GreA/GreB family

1 402 55 10
4

1733 DNA-binding transcriptional
regulator, HxlR family

91 1 35

1842 Phage shock protein A 30 1 4 10
3

2183 Transcriptional accessory
protein Tex/SPT6

7544 1 2231

2378

Predicted DNA-binding
transcriptional regulator YafY,
contains an HTH and WYL
domains

1 2536 2019

3070
Transcriptional regulator of
competence genes, TfoX/Sxy
family

11 1 2 10
3

4567

Two-component response
regulator, ActR/RegA family,
consists of REC and Fis-type
HTH domains

1 340 25 10
4

4941
Predicted RNA polymerase
sigma factor, contains
C-terminal TPR domain

3356 1 1221

L

0420 DNA repair exonuclease SbcCD
nuclease subunit

59 1 12 10
4

0847
DNA polymerase III, epsilon
subunit or related 3’-5’
exonuclease

1 476 10 10
3

1484 DNA replication protein DnaC 5146 1 25

1961 Site-specific DNA recombinase
related to the DNA invertase Pin

1 3681 3178

4912 3-methyladenine DNA
glycosylase AlkD

119 1 4 10
3

M

0381 UDP-N-acetylglucosamine
2-epimerase

618 1 176

0562 UDP-galactopyranose mutase 2455 1 2170
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Table A.7: continued (back to overview)

cog id description g :e :n/l :r :n

0767

ABC-type transporter Mla
maintaining outer membrane
lipid asymmetry, permease
component MlaE

1 75 31

1127

ABC-type transporter Mla
maintaining outer membrane
lipid asymmetry, ATPase
component MlaF

1 75 31

1210 UTP-glucose-1-phosphate
uridylyltransferase

1 36 33 10
4

1463

ABC-type transporter Mla
maintaining outer membrane
lipid asymmetry, periplasmic
component MlaD

1 75 31

1538 Outer membrane protein TolC 1 143 53 10
4

2825 Periplasmic chaperone for outer
membrane proteins, Skp family

1099 1 562

2853

ABC-type transporter Mla
maintaining outer membrane
lipid asymmetry, lipoprotein
component MlaA

22 1 3 10
3

2943 Membrane glycosyltransferase 493 1 433
3307 O-antigen ligase 52 1 32 10

3

3757
Lyzozyme M1
(1,4-beta-N-acetylmuramidase),
GH25 family

28 1 4 10
3

3773 Cell wall hydrolase CwlJ,
involved in spore germination

1 164 17 10
4

N 1352 Methylase of chemotaxis
methyl-accepting proteins

5 1 1

O

0501 Zn-dependent protease with
chaperone function

13 1 13

0846 NAD-dependent protein
deacetylase, SIR2 family

17 1 2 10
3

1404 Serine protease, subtilisin family 24 1 6 10
3

1858 Cytochrome c peroxidase 1 794 94

2135
Putative SOS
response-associated peptidase
YedK

1 3234 321
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Table A.7: continued (back to overview)

cog id description g :e :n/l :r :n

2825 Periplasmic chaperone for outer
membrane proteins, Skp family

1099 1 562

3187 Heat shock protein HslJ 658 1 288

3381
Cytoplasmic chaperone TorD
involved in molybdoenzyme
TorA maturation

677 1 348

4960 Flp pilus assembly protein,
protease CpaA

995 1 201

P

0053 Divalent metal cation
(Fe/Co/Zn/Cd) transporter

25 1 19

0306 Phosphate/sulfate permease 144 1 8 10
2

0569 Trk K+ transport system,
NAD-binding component

1 293 43 10
4

0598 Mg2+ and Co2+ transporter
CorA

27 1 25

0748 Putative heme iron utilization
protein

16 1 3 10
3

0753 Catalase 206 1 42 10
3

1122
Energy-coupling factor
transporter ATP-binding protein
EcfA2

38 1 10 10
3

1124

ABC-type
dipeptide/oligopeptide/nickel
transport system, ATPase
component

19 1 11 10
3

1230 Co/Zn/Cd efflux system
component

7 1 8

2608 Copper chaperone CopZ 2556 1 775

3119 Arylsulfatase A or related
enzyme

1 1 1

3158 K+ transporter 186 1 8 10
4

3685 Ferritin-like metal-binding
protein YciE

814 1 366

Q

0236 Acyl carrier protein 1 26 19 10
3

3485 Protocatechuate 3,4-dioxygenase
beta subunit

7 1 2

3509 Poly(3-hydroxybutyrate)
depolymerase

14 1 9
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Table A.7: continued (back to overview)

cog id description g :e :n/l :r :n

5285
Ectoine hydroxylase-related
dioxygenase, phytanoyl-CoA
dioxygenase (PhyH) family

353 1 62

R

0121 Predicted glutamine
amidotransferase

50 1 9 10
3

0388 Predicted amidohydrolase 1 345 72 10
3

0599

Uncharacterized conserved
protein YurZ, alkylhydroperoxi-
dase/carboxymuconolactone
decarboxylase family

1 194 54 10
3

1122
Energy-coupling factor
transporter ATP-binding protein
EcfA2

38 1 10 10
3

1335 Nicotinamidase-related amidase 1 89 32 10
4

1597 Diacylglycerol kinase family
enzyme

1200 1 626

1611 Predicted Rossmann fold
nucleotide-binding protein

1 9724 729

1741 Redox-sensitive bicupin YhaK,
pirin superfamily

1 12 6

1917 Cupin domain protein related to
quercetin dioxygenase

1 5060 1964

2124

Flavin-dependent
oxidoreductase, luciferase family
(includes alkanesulfonate
monooxygenase SsuD and
methylene
tetrahydromethanopterin
reductase)

1 56 51 10
4

2261

Uncharacterized membrane
protein YeaQ/YmgE,
transglycosylase-associated
protein family

10 1 4 10
3

2350
Uncharacterized conserved
protein YciI, contains a putative
active-site phosphohistidine

4879 1 130

3128
Predicted 2-oxoglutarate- and
Fe(II)-dependent dioxygenase
YbiX

78 1 26 10
3

3360 Flavin-binding protein dodecin 8640 1 1541
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Table A.7: continued (back to overview)

cog id description g :e :n/l :r :n

3800 Predicted transcriptional
regulator

7 22 1

4132
ABC-type uncharacterized
transport system, permease
component

105 1 3 10
4

4589
Predicted CDP-diglyceride
synthetase/phosphatidate
cytidylyltransferase

32 1 2 10
3

4666
TRAP-type uncharacterized
transport system, fused
permease components

1 21 20

4783 Putative Zn-dependent protease,
contains TPR repeats

1 50 41

5496 Predicted thioesterase 105 1 3 10
4

S

0586
Uncharacterized membrane
protein DedA,
SNARE-associated domain

5 9 1

2121

Uncharacterized conserved
protein, lysophospholipid
acyltransferase (LPLAT)
superfamily

44 1 4 10
3

2308
Uncharacterized conserved
protein, circularly permuted
ATPgrasp superfamily

1 4 1

2860 Uncharacterized membrane
protein YeiH

23 1 5 10
3

2898
Lysylphosphatidylglycerol
synthetase, C-terminal domain,
DUF2156 family

1 20 11

2979 Uncharacterized membrane
protein YebE, DUF533 family

11 1 3

3329 Uncharacterized conserved
protein

1 1 2

3490 Uncharacterized protein 476 1 313

3514 Uncharacterized conserved
protein, DUF4415 family

1099 1 302

3544 Uncharacterized conserved
protein, DUF305 family

20 2 1

3603 Uncharacterized protein 66 1 60 10
3
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Table A.7: continued (back to overview)

cog id description g :e :n/l :r :n

3673 Uncharacterized protein,
PA2063/DUF2235 family

1 48 33

3739 Uncharacterized membrane
protein YoaT, DUF817 family

33 1 5 10
3

3795 Uncharacterized conserved
protein

5025 1 2271

3921 Uncharacterized conserved
protein

1 1547 743

4196 Uncharacterized conserved
protein, DUF2126 family

147 1 25 10
3

4275 Uncharacterized protein 50 1 9 10
3

4286 Uncharacterized protein,
UPF0160 family

930 1 552

4298 Uncharacterized protein 30 1 4 10
3

4307 Uncharacterized protein 228 1 17 10
3

4325 Uncharacterized membrane
protein

1 5 5

4405 Uncharacterized protein YhfF 1 297 135

4625
Uncharacterized conserved
protein, contains a C-terminal
beta-barrel porin domain

21 1 5 10
3

4717 Uncharacterized protein YhaN 389 1 49 10
3

4991 Uncharacterized conserved
protein YraI

136 1 37

5463

Uncharacterized conserved
protein YgiB, involved in
bioifilm formation,
UPF0441/DUF1190 family

111 1 8 10
3

5481 Uncharacterized protein 10 1 1 10
3

5579 Uncharacterized protein,
DUF1810 family

1200 1 626

T

1352 Methylase of chemotaxis
methyl-accepting proteins

5 1 1

1842 Phage shock protein A 30 1 4 10
3

3806 Anti-sigma factor ChrR, cupin
superfamily

1 38 2
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Table A.7: continued (back to overview)

cog id description g :e :n/l :r :n

4567

Two-component response
regulator, ActR/RegA family,
consists of REC and Fis-type
HTH domains

1 340 25 10
4

4960 Flp pilus assembly protein,
protease CpaA

995 1 201

V 1764 Organic hydroperoxide
reductase OsmC/OhrA

3728 1 1584

4845 Chloramphenicol
O-acetyltransferase

23 1 4 10
3

X
3547 Transposase 732 1 241
4584 Transposase 5756 1 3472

5534 Plasmid replication initiator
protein

1432 1 448

Table A.8: Changes in COGs at the LCA of the polar Loktanella isolate L. fryx-
ellensis DSM 16213 and the temperate isolate L. atrilutea DSM 29326. See
description of Table A.6 for detailed information. (back to overview)

cog id description g :e :n/l :r :n

G 3405 Endo-1,4-beta-D-glucanase Y 2768 1 2471

J 4123 tRNA1(Val) A37 N6-methylase
TrmN6

65 1 21 10
4

P 1910 Periplasmic molybdate-binding
protein/domain

2820 1 1939

2216 High-affinity K+ transport
system, ATPase chain B

233 1 82

R

2144 Selenophosphate
synthetase-related protein

2654 1 1845

2516 Biotin synthase-related protein,
radical SAM superfamily

2654 1 1845

3864 Predicted metal-dependent
peptidase

3111 1 2120

4671 Predicted glycosyl transferase 216 1 85

S 3506
Regulation of enolase protein 1
(function unknown),
concanavalin A-like superfamily

4135 1 1944
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Table A.8: continued (back to overview)

cog id description g :e :n/l :r :n

3802 Uncharacterized protein 3183 1 2140

T 0467 RecA-superfamily ATPase,
KaiC/GvpD/RAD55 family

2862 1 2540

U 4618
ABC-type protease/lipase
transport system, ATPase and
permease components

1 2016 1290

Table A.9: Changes in COGs at the LCA of Loktanella vestfoldensis DSM 16212
and SKA 53 (a polar and temperate isolate, respectively). See description of
Table A.6 for detailed information. (back to overview)

cog id description g :e :n/l :r :n

C

0778 Nitroreductase 1 1844 150

1182 FMN-dependent
NADH-azoreductase

3781 1 708

1251 NAD(P)H-nitrite reductase,
large subunit

15 1 1 10
3

1319 CO or xanthine dehydrogenase,
FAD-binding subunit

1 135 107

2326 Polyphosphate kinase 2, PPK2
family

1 3556 397

3658 Cytochrome b 72 1 19 10
3

4147 Na+(or H+)/acetate symporter
ActP

16 1 9 10
3

D 1196 Chromosome segregation
ATPase

1 8422 6645

4942
Septal ring factor EnvC, activator
of murein hydrolases AmiA and
AmiB

1 4222 596

E

0069 Glutamate synthase domain 2 1 1345 304
0308 Aminopeptidase N 455 1 6 10

4

0509 Glycine cleavage system H
protein (lipoate-binding)

61 1 2 10
3

1003
Glycine cleavage system protein
P (pyridoxal-binding),
C-terminal domain

45 1 5 10
3
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Table A.9: continued (back to overview)

cog id description g :e :n/l :r :n

1063
Threonine dehydrogenase or
related Zn-dependent
dehydrogenase

1 848 810

1247 L-amino acid N-acyltransferase
YncA

45 1 2 10
3

1410 Methionine synthase I,
cobalamin-binding domain

1 176 21 10
4

1770 Protease II 14 1 11 10
3

1834 N-Dimethylarginine
dimethylaminohydrolase

11 1 6 10
3

2355
Zn-dependent dipeptidase,
microsomal dipeptidase
homolog

367 1 20

2755 Lysophospholipase L1 or related
esterase

1 793 102

4160
ABC-type arginine/histidine
transport system, permease
component

1 268 102

4215 ABC-type arginine transport
system, permease component

1 33 13 10
4

F 0563 Adenylate kinase or related
kinase

1 6621 4071

0788 Formyltetrahydrofolate
hydrolase

267 1 161

G

0235

Ribulose-5-phosphate
4-epimerase/Fuculose-1-
phosphate
aldolase

48 1 3

0246 Mannitol-1-phosphate/altronate
dehydrogenases

1 5269 328

0297 Glycogen synthase 29 1 22

0362 6-phosphogluconate
dehydrogenase

188 1 3 10
4

0366 Glycosidase 1 148 63

0448 ADP-glucose
pyrophosphorylase

4533 1 3258

0580
Glycerol uptake facilitator and
related aquaporins (Major
Intrinsic Protein Family)

1032 1 805
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Table A.9: continued (back to overview)

cog id description g :e :n/l :r :n

0637
β-phosphoglucomutase or
related phosphatase, HAD
superfamily

221 1 15

0698 Ribose 5-phosphate isomerase
RpiB

116 1 60 10
3

2211 Na+/melibiose symporter or
related transporter

1 1278 724

2220 L-ascorbate metabolism protein
UlaG, β-lactamase superfamily

38 1 3

2943 Membrane glycosyltransferase 80 1 53
3622 Hydroxypyruvate isomerase 145 1 6
4813 Trehalose utilization protein 55 1 43 10

3

H
0414 Panthothenate synthetase 72 1 2 10

3

0432 Thiamin phosphate synthase
YjbQ, UPF0047 family

37 1 29 10
3

4032
Sulfopyruvate decarboxylase,
TPP-binding subunit (coenzyme
M biosynthesis)

69 1 37 10
3

I
0584 Glycerophosphoryl diester

phosphodiesterase
1 6720 6281

3000
Sterol desaturase/sphingolipid
hydroxylase, fatty acid
hydroxylase superfamily

265 1 129

4850 Phosphatidate phosphatase
APP1

142 1 88 10
3

J 3719 Ribonuclease I 369 1 5 10
4

K

0553 Superfamily II DNA or RNA
helicase, SNF2 family

49 1 27 10
3

0864

Metal-responsive transcriptional
regulator, contains
CopG/Arc/MetJ DNA-binding
domain

55 1 9 10
4

2186 DNA-binding transcriptional
regulator, FadR family

1 8408 7368

3070
Transcriptional regulator of
competence genes, TfoX/Sxy
family

96 1 50 10
3
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Table A.9: continued (back to overview)

cog id description g :e :n/l :r :n

L

0350
O6-methylguanine-DNA–
protein-cysteine
methyltransferase

1 45 1 10
3

0553 Superfamily II DNA or RNA
helicase, SNF2 family

49 1 27 10
3

1484 DNA replication protein DnaC 637 1 118

2176 DNA polymerase III, alpha
subunit (gram-positive type)

7499 1 4127

2827 Predicted endonuclease,
GIY-YIG superfamily

103 1 37 10
3

3569 DNA topoisomerase IB 70 1 38 10
3

4912 3-methyladenine DNA
glycosylase AlkD

538 1 12 10
3

M

0399
dTDP-4-amino-4,6-
dideoxygalactose
transaminase

57 3 1

2943 Membrane glycosyltransferase 80 1 53

2989 Murein L,D-transpeptidase
YcbB/YkuD

130 1 1 10
5

5622 Protein required for attachment
to host cells

105 1 58 10
3

O

0225 Peptide methionine sulfoxide
reductase MsrA

1 102 2 10
3

0846 NAD-dependent protein
deacetylase, SIR2 family

100 1 51 10
3

1858 Cytochrome c peroxidase 1 8159 4065

2020 Protein-S-isoprenylcysteine
O-methyltransferase Ste14

1 136 110

2135
Putative SOS
response-associated peptidase
YedK

3258 1 97

2170 Gamma-glutamyl:cysteine ligase
YbdK, ATP-grasp superfamily

14 1 10 10
3

2370 Hydrogenase/urease accessory
protein HupE

14 1 9 10
3

P

0310 ABC-type Co2+ transport
system, permease component

298 1 34 10
3

0475 Kef-type K+ transport system,
membrane component KefB

1 14 6
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Table A.9: continued (back to overview)

cog id description g :e :n/l :r :n

0704 Phosphate uptake regulator 1 37 13 10
4

1814 Predicted Fe2+/Mn2+
transporter, VIT1/CCC1 family

8121 1 7623

1840 ABC-type Fe3+ transport
system, periplasmic component

1 1569 108

2116 Formate/nitrite transporter
FocA, FNT family

88 1 48 10
3

2215
ABC-type nickel/cobalt efflux
system, permease component
RcnA

33 1 31

2608 Copper chaperone CopZ 2393 1 1421
2847 Copper(I)-binding protein 1 12 9 10

3

3197
Uncharacterized protein,
possibly involved in nitrogen
fixation

7344 1 480

3221

ABC-type
phosphate/phosphonate
transport system, periplasmic
component

1 8027 5756

3454

α-D-ribose
1-methylphosphonate
5-triphosphate diphosphatase
PhnM

4 1 1

3720 Putative heme degradation
protein

6749 1 5850

4521 ABC-type taurine transport
system, periplasmic component

69 1 52 10
3

4558 ABC-type hemin transport
system, periplasmic component

8006 1 7784

4559 ABC-type hemin transport
system, ATPase component

15 1 10 10
3

4651
Predicted Kef-type K+ transport
protein, K+/H+ antiporter
domain

199 1 36 10
3

Q
1647 Esterase/lipase 46 1 35 10

3

2931 Ca2+-binding protein, RTX
toxin-related

33 1 1

3509 Poly(3-hydroxybutyrate)
depolymerase

40 1 40
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Table A.9: continued (back to overview)

cog id description g :e :n/l :r :n

R

0384 Predicted epimerase
YddE/YHI9, PhzF superfamily

1528 1 76

0637
β-phosphoglucomutase or
related phosphatase, HAD
superfamily

221 1 15

1063
Threonine dehydrogenase or
related Zn-dependent
dehydrogenase

1 848 810

1739
Putative translation regulator,
IMPACT (imprinted ancient)
protein family

31 1 3 10
3

1741 Redox-sensitive bicupin YhaK,
pirin superfamily

1 3 3

1765 Uncharacterized OsmC-related
protein

6585 1 5860

1917 Cupin domain protein related to
quercetin dioxygenase

490 1 26

2249
Putative NADPH-quinone
reductase (modulator of drug
activity B)

26 1 18

2304
Secreted protein containing
bacterial Ig-like domain and
vWFA domain

48 1 4 10
3

2321 Predicted metalloprotease 12 1 9 10
3

3021

Uncharacterized conserved
protein YafD, endonuclease/ex-
onuclease/phosphatase (EEP)
superfamily

336 1 216

3153 Predicted N-acetyltransferase
YhbS

1 3007 118

3214
Uncharacterized conserved
protein YcaQ, contains winged
helix DNA-binding domain

7076 1 235

3217
Uncharacterized conserved
protein YcbX, contains MOSC
and Fe-S domains

67 1 40 10
3

3360 Flavin-binding protein dodecin 116 1 66 10
3

3380 Predicted NAD/FAD-dependent
oxidoreductase

500 1 178

3393 Predicted acetyltransferase,
GNAT family

47 1 5 10
3
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Table A.9: continued (back to overview)

cog id description g :e :n/l :r :n

3450 Predicted enzyme of the cupin
superfamily

74 1 37 10
3

3576

Predicted
flavin-nucleotide-binding
protein, pyridoxine 5’-phosphate
oxidase superfamily

307 1 12

3828
Type 1 glutamine
amidotransferase (GATase1)-like
domain

65 1 11 10
3

S

1295
Uncharacterized membrane
protein, BrkB/YihY/UPF0761
family (not an RNase)

1 895 480

2268
Uncharacterized membrane
protein YqiK, contains
Band7/PHB/SPFH domain

79 1 29 10
3

2311 Uncharacterized membrane
protein YeiB

62 1 17 10
3

2833
Uncharacterized conserved
protein, contains ferritin-like
DUF455 domain

21 1 1 10
3

3108 Uncharacterized conserved
protein YcbK, DUF882 family

1 33 13 10
3

3514 Uncharacterized conserved
protein, DUF4415 family

21 1 15 10
3

3544 Uncharacterized conserved
protein, DUF305 family

249 1 187

3673 Uncharacterized protein,
PA2063/DUF2235 family

1 434 236

3739 Uncharacterized membrane
protein YoaT, DUF817 family

90 1 9 10
3

3788 Uncharacterized membrane
protein YecN, MAPEG domain

2783 1 1563

3832
Uncharacterized conserved
protein YndB, AHSA1/START
domain

1 5 2

3921 Uncharacterized conserved
protein

1 28 2

4093 Uncharacterized protein 29 1 2 10
4

4275 Uncharacterized protein 90 1 8 10
3
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Table A.9: continued (back to overview)

cog id description g :e :n/l :r :n

4327 Uncharacterized membrane
protein

11 1 6 10
3

4338 Uncharacterized protein 62 1 36 10
3

4446 Uncharacterized conserved
protein, DUF1499 family

78 1 48 10
3

4944 Uncharacterized protein 111 1 28 10
3

5375 Uncharacterized protein 38 1 28 10
3

5425 Usg protein (tryptophan operon,
function unknown)

103 1 56 10
3

5453 Uncharacterized protein 76 1 4 10
3

5470 Uncharacterized conserved
protein, DUF1330 family

1 785 156

T

2199

GGDEF domain, diguanylate
cyclase (c-di-GMP synthetase) or
its enzymatically inactive
variants

1 128 60

2808 Predicted FMN-binding
regulatory protein PaiB

74 1 35 10
3

2905

Signal-transduction protein
containing cAMP-binding, CBS,
and nucleotidyltransferase
domains

219 1 119

3045
Periplasmic catabolite regulation
protein CreA (function
unknown)

119 1 69 10
3

3437

Response regulator c-di-GMP
phosphodiesterase, RpfG family,
contains REC and HD-GYP
domains

9409 1 6369

3806 Anti-sigma factor ChrR, cupin
superfamily

1 6359 2864

3916 N-acyl-L-homoserine lactone
synthetase

1 120 38

4191

Signal transduction histidine
kinase regulating
C4-dicarboxylate transport
system

1 859 82

U 0848 Biopolymer transport protein
ExbD

1 41 38 10
3
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Table A.9: continued (back to overview)

cog id description g :e :n/l :r :n

5010 Flp pilus assembly protein TadD,
contains TPR repeats

21 1 1

V 1566 Multidrug resistance efflux
pump

1 44 43

1680 CubicO group peptidase,
β-lactamase class C family

1 389 249

W 5010 Flp pilus assembly protein TadD,
contains TPR repeats

21 1 1

X 3436 Transposase 356 1 73

Table A.10: Changes in COGs at the LCA of O. temperatus and O. ascidiaceicola.
See description of Table A.6 for detailed information. (back to overview)

cog id description g :e :n/l :r :n

C

0644 Dehydrogenase (flavoprotein) 1 5737 1964

0785 Cytochrome c biogenesis
protein CcdA

1 60 5 10
3

1049 Aconitase B 80 1 11 10
3

1053
Succinate dehydrogenase/
fumarate reductase, flavoprotein
subunit

1 71 34 10
3

2041

Periplasmic DMSO/TMAO
reductase YedYZ,
molybdopterin-dependent
catalytic subunit

1 15 8 10
3

2055 Malate/lactate/ureidoglycolate
dehydrogenase, LDH2 family

1 2559 1445

3258 Cytochrome c 31 1 10 10
3

4106 Trans-aconitate
methyltransferase

1 13 7

4736 Cbb3-type cytochrome oxidase,
subunit 3

15 1 2 10
4

D 1475
Chromosome segregation
protein Spo0J, contains ParB-like
nuclease domain

1 35 12 10
3

4942
Septal ring factor EnvC, activator
of murein hydrolases
AmiA and AmiB

1 13 3 10
3
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Table A.10: continued (back to overview)

cog id description g :e :n/l :r :n

E

0112 Glycine/serine
hydroxymethyltransferase

1 12 3 10
4

0531 Amino acid transporter 13 1 3 10
4

1246
N-acetylglutamate synthase or
related acetyltransferase,
GNAT family

1362 1 724

1247 L-amino acid
N-acyltransferase YncA

1 4 2 10
4

1363 Putative aminopeptidase FrvX 43 1 1 10
4

1748 Saccharopine dehydrogenase,
NADP-dependent

2670 1 1505

2049 Allophanate hydrolase subunit 1 4280 1 2656
3191 L-aminopeptidase/D-esterase 17 1 2 10

3

G

0297 Glycogen synthase 11 1 2 10
4

0448 ADP-glucose
pyrophosphorylase

11 1 1 10
4

0574 Phosphoenolpyruvate synthase/
pyruvate phosphate dikinase

1 20 7 10
3

0580
Glycerol uptake facilitator and
related aquaporins (Major
Intrinsic Protein Family)

1 17 5

0726 Peptidoglycan/xylan/chitin
deacetylase, PgdA/CDA1 family

32 1 20

0837 Glucokinase 1 55 7 10
5

1363 Putative aminopeptidase FrvX 43 1 1 10
4

1940
Sugar kinase of the NBD/HSP70
family, may contain an
N-terminal HTH domain

1 8 4

2115 Xylose isomerase 25 1 4 10
5

2211 Na+/melibiose symporter or
related transporter

98 10 1

2942

Mannose or cellobiose
epimerase,
N-acyl-D-glucosamine
2-epimerase family

18 1 8 10
3

4124 β-mannanase 37 1 5 10
3

4130 Predicted sugar epimerase,
xylose isomerase-like family

6635 1 2434
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Table A.10: continued (back to overview)

cog id description g :e :n/l :r :n

4213 ABC-type xylose transport
system, periplasmic component

14 1 1 10
3

4214 ABC-type xylose transport
system, permease component

14 1 1 10
3

4573
Tagatose-1,6-bisphosphate
aldolase non-catalytic subunit
AgaZ/GatZ

81 1 16 10
3

H

0054
6,7-dimethyl-8-ribityllumazine
synthase (Riboflavin synthase
β chain)

1 68 21 10
4

0189
Glutathione synthase/
RimK-type ligase, ATP-grasp
superfamily

1 2907 1358

0661

Predicted unusual protein
kinase regulating ubiquinone
biosynthesis, AarF/ABC1/UbiB
family

1 80 5 10
3

1120

ABC-type
cobalamin/Fe3+-siderophores
transport system, ATPase
component

31 1 8 10
3

1335 Nicotinamidase-related amidase 1 14 5 10
4

2141

Flavin-dependent
oxidoreductase, luciferase family
(includes alkanesulfonate
monooxygenase SsuD and
methylene
tetrahydromethanopterin
reductase)

1 13 10 10
4

I 1562 Phytoene/squalene synthetase 66 2 1

J
0189

Glutathione
synthase/RimK-type ligase,
ATP-grasp superfamily

1 2907 1358

1236 RNA processing exonuclease,
beta-lactamase fold, Cft2 family

177 1 7 10
4

1600
Epoxyqueuosine
reductase QueG (queuosine
biosynthesis)

1 50 8 10
5

K

1733 DNA-binding transcriptional
regulator, HxlR family

7501 1 2950
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Table A.10: continued (back to overview)

cog id description g :e :n/l :r :n

1940
Sugar kinase of the NBD/HSP70
family, may contain an
N-terminal HTH domain

1 8 4

2315
Predicted DNA-binding protein
with ‘double-wing’ structural
motif, MmcQ/YjbR family

55 1 22

3284 Transcriptional regulator of
acetoin/glycerol metabolism

13 1 4 10
3

3609

Transcriptional regulator,
contains Arc/MetJ-type RHH
(ribbon-helix-helix)
DNA-binding domain

59 1 12 10
3

3829

Transcriptional regulator
containing PAS, AAA-type
ATPase, and DNA-binding
Fis domains

9477 1 3704

4977

Transcriptional regulator GlxA
family, contains an amidase
domain and an AraC-type
DNA-binding HTH domain

1 38 28 10
3

L

0415 Deoxyribodipyrimidine
photolyase

45 1 1

0582 Integrase 528 1 55

0847 DNA polymerase III, ε subunit
or related 3’-5’ exonuclease

1 48 32 10
3

1201 Lhr-like helicase 60 1 2 10
5

1793 ATP-dependent DNA ligase 96 1 16 10
3

2818 3-methyladenine DNA
glycosylase Tag

1 50 13 10
4

4973 Site-specific recombinase XerC 11 1 4 10
3

M

0726 Peptidoglycan/xylan/chitin
deacetylase, PgdA/CDA1 family

32 1 20

0767

ABC-type transporter Mla
maintaining outer membrane
lipid asymmetry, permease
component MlaE

1 1760 377

1087 UDP-glucose 4-epimerase 1 9003 4981

1088 dTDP-D-glucose
4,6-dehydratase

1 17 3
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Table A.10: continued (back to overview)

cog id description g :e :n/l :r :n

1091 dTDP-4-dehydrorhamnose
reductase

1 14 3

1127

ABC-type transporter Mla
maintaining outer membrane
lipid asymmetry, ATPase
component MlaF

1 1760 377

1209 dTDP-glucose
pyrophosphorylase

1 10 2

1463

ABC-type transporter Mla
maintaining outer membrane
lipid asymmetry, periplasmic
component MlaD

1 1760 377

1538 Outer membrane protein TolC 1 44 5 10
4

2222

Fructoselysine-6-P-deglycase
FrlB and related proteins with
duplicated sugar isomerase (SIS)
domain

55 1 27

3524 Capsule polysaccharide export
protein KpsE/RkpR

1 31 22 10
3

O

0443 Molecular chaperone DnaK
(HSP70)

1 68 24 10
3

0785 Cytochrome c biogenesis
protein CcdA

1 60 5 10
3

1305 Transglutaminase-like enzyme,
putative cysteine protease

41 1 18

1858 Cytochrome c peroxidase 1 50 5 10
3

2143 Thioredoxin-related protein 6995 1 5018

2170 Gamma-glutamyl:cysteine ligase
YbdK, ATP-grasp superfamily

28 1 5 10
3

3484 Predicted proteasome-type
protease

98 1 3 10
4

P

0025 NhaP-type Na+/H+ or K+/H+

antiporter
39 1 2

0288 Carbonic anhydrase 115 1 1 10
6

0614
ABC-type Fe3+-hydroxamate
transport system, periplasmic
component

8970 1 2220
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Table A.10: continued (back to overview)

cog id description g :e :n/l :r :n

1120

ABC-type
cobalamin/Fe3+-siderophores
transport system, ATPase
component

31 1 8 10
3

1629 Outer membrane receptor
proteins, mostly Fe transport

362 1 45

2346 Truncated hemoglobin YjbI 1961 1 1119

2375
NADPH-dependent ferric
siderophore reductase, contains
FAD-binding and SIP domains

54 1 42 10
3

3454

α-D-ribose
1-methylphosphonate
5-triphosphate
diphosphatase PhnM

674 1 529

3720 Putative heme degradation
protein

2658 1 1570

4558 ABC-type hemin transport
system, periplasmic component

2156 1 1078

4559 ABC-type hemin transport
system, ATPase component

20 1 6 10
3

4604 ABC-type enterochelin transport
system, ATPase component

42 1 10 10
3

4605 ABC-type enterochelin transport
system, permease component

9317 1 3566

4606 ABC-type enterochelin transport
system, permease component

1735 1 990

4607 ABC-type enterochelin transport
system, periplasmic component

4818 1 2015

4638

Phenylpropionate dioxygenase
or related ring-hydroxylating
dioxygenase, large terminal
subunit

1 13 12 10
3

Q
1233 Phytoene dehydrogenase-related

protein
276 1 63

2130 NADPH-dependent curcumin
reductase CurA

27 1 23 10
4

3191 L-aminopeptidase/D-esterase 17 1 2 10
3

R

1335 Nicotinamidase-related amidase 1 14 5 10
4

1407 Metallophosphoesterase
superfamily enzyme

60 1 2 10
5
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Table A.10: continued (back to overview)

cog id description g :e :n/l :r :n

1741 Redox-sensitive bicupin YhaK,
pirin superfamily

1 277 144

2130 NADPH-dependent curcumin
reductase CurA

27 1 23 10
4

2141

Flavin-dependent
oxidoreductase, luciferase family
(includes alkanesulfonate
monooxygenase SsuD and
methylene
tetrahydromethanopterin
reductase)

1 13 10 10
4

2350
Uncharacterized conserved
protein YciI, contains a putative
active-site phosphohistidine

1 15 2 10
3

3046
Uncharacterized protein related
to deoxyribodipyrimidine
photolyase

55 1 2 10
4

3218
ABC-type uncharacterized
transport system, auxiliary
component

20 1 3 10
4

3393 Predicted acetyltransferase,
GNAT family

19 1 2 10
4

3453

Predicted phosphohydrolase,
protein tyrosine
phosphatase (PTP) superfamily,
DUF442 family

1 18 8 10
3

3608 Predicted deacylase 4248 1 3419

3828
Type 1 glutamine
amidotransferase (GATase1)-like
domain

20 1 3 10
4

4341 Predicted HD phosphohydrolase 2016 1 266

4638

Phenylpropionate dioxygenase
or related ring-hydroxylating
dioxygenase, large terminal
subunit

1 13 12 10
3

4782 Esterase/lipase superfamily
enzyme

42 1 11 10
3

4922 Predicted SnoaL-like aldol
condensation-catalyzing enzyme

58 1 18 10
3
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Table A.10: continued (back to overview)

cog id description g :e :n/l :r :n

S

1238
Uncharacterized membrane
protein YqaA,
SNARE-associated domain

120 1 1 10
4

1432 Uncharacterized conserved
protein, LabA/DUF88 family

1 1048 725

2307 Uncharacterized conserved
protein, Alpha-E superfamily

21 1 1 10
4

2308
Uncharacterized conserved
protein, circularly permuted
ATPgrasp superfamily

6328 1 2810

2862 Uncharacterized membrane
protein YqhA

20 1 2 10
5

3329 Uncharacterized conserved
protein

17 1 3

3650 Uncharacterized membrane
protein

2286 1 2050

3779 Uncharacterized conserved
protein YegJ, DUF2314 family

52 1 7 10
4

3813 Uncharacterized protein 30 1 5 10
4

3932 Uncharacterized conserved
protein

6297 1 3021

4283 Uncharacterized protein 63 1 4 10
4

4337 Uncharacterized protein 72 1 5 10
4

4427 Uncharacterized protein 15 1 1 10
4

4852 Uncharacterized membrane
protein

7114 1 3467

5375 Uncharacterized protein 9 1 6 10
4

5477 Predicted small integral
membrane protein

29 1 14 10
4

5501 Predicted secreted protein 21 1 10 10
3

T

0661

Predicted unusual protein
kinase regulating ubiquinone
biosynthesis, AarF/ABC1/UbiB
family

1 80 5 10
3

0784 CheY chemotaxis protein or a
CheY-like REC (receiver) domain

2153 1 194

3228 Mlc titration factor MtfA,
regulates ptsG expression

72 1 5 10
4
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Table A.10: continued (back to overview)

cog id description g :e :n/l :r :n

3806 Anti-sigma factor ChrR, cupin
superfamily

1 42 3 10
3

3829

Transcriptional regulator
containing PAS, AAA-type
ATPase, and DNA-binding
Fis domains

9477 1 3704

3916 N-acyl-L-homoserine lactone
synthetase

1 576 157

U

0342 Preprotein translocase
subunit SecD

1 34 4 10
5

0811 Biopolymer transport protein
ExbB/TolQ

1 16 7 10
3

0848 Biopolymer transport protein
ExbD

1 17 4 10
4

1826 Sec-independent protein
translocase protein TatA

2994 1 523

4618
ABC-type protease/lipase
transport system, ATPase and
permease components

1 11 5 10
3

X 0582 Integrase 528 1 55

3668 Plasmid stabilization system
protein ParE

812 1 760

Table A.11: Changes in COGs at the LCA of the O. antarcticus type strain and
the two PAMC isolates. See description of Table A.6 for detailed information.
(back to overview)

cog id description g :e :n/l :r :n

C 0651
Formate hydrogenlyase subunit
3/Multisubunit Na+/H+

antiporter, MnhD subunit
1 35 14 10

3

1979 Alcohol dehydrogenase YqhD,
Fe-dependent ADH family

5238 1 1850

E 0165 Argininosuccinate lyase 1 54 39 10
3

F 0647
Ribonucleotide
monophosphatase NagD, HAD
superfamily

1 20 11 10
4
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Table A.11: continued (back to overview)

cog id description g :e :n/l :r :n

G

1850
Ribulose 1,5-bisphosphate
carboxylase, large subunit, or a
RuBisCO-like protein

1166 1 1009

3734 2-keto-3-deoxy-galactonokinase 1 194 46 10
4

3958 Transketolase, C-terminal
subunit

1168 1 1019

3959 Transketolase, N-terminal
subunit

1168 1 1019

H 2896 Molybdenum cofactor
biosynthesis enzyme MoaA

1 67 32 10
4

I 2230
Cyclopropane
fatty-acyl-phospholipid synthase
and related methyltransferases

1 15 12 10
3

K
1321 Mn-dependent transcriptional

regulator, DtxR family
5128 1 2232

3279 DNA-binding response
regulator, LytR/AlgR family

1 5 5

5662
Transmembrane transcriptional
regulator (anti-sigma factor
RsiW)

5442 1 2334

M 1346 Putative effector of murein
hydrolase

10 1 2

3713
Outer membrane scaffolding
protein for murein synthesis,
MipA/OmpV family

2 1 1

P
0651

Formate hydrogenlyase subunit
3/Multisubunit Na+/H+

antiporter, MnhD subunit
1 35 14 10

3

1320 Multisubunit Na+/H+

antiporter, MnhG subunit
1 15 13 10

3

1863 Multisubunit Na+/H+

antiporter, MnhE subunit
1 15 13 10

3

S

3002
Uncharacterized conserved
protein YbcC,
UPF0753/DUF2309 family

9 1 2

3152 Uncharacterized membrane
protein YhaH, DUF805 family

6 1 4
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Table A.11: continued (back to overview)

cog id description g :e :n/l :r :n

3205 Uncharacterized membrane
protein

6915 1 1791

3535 Uncharacterized conserved
protein, DUF917 family

24 1 10

4728 Uncharacterized protein 3891 1 1533
5467 Uncharacterized protein 1 51 32 10

3

5587 Uncharacterized conserved
protein, DUF2461 family

2 1 2

T 3279 DNA-binding response
regulator, LytR/AlgR family

1 5 5

U 0811 Biopolymer transport protein
ExbB/TolQ

1 11 5 10
3

0848 Biopolymer transport protein
ExbD

1 70 32 10
3

V 0610

Type I site-specific
restriction-modification system,
R (restriction) subunit and
related helicases

106 1 96

X 3654 Prophage maintenance system
killer protein

1104 1 971
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a.7 read coverage of pamc 27224 contigs

To assess variances in genome coverage, the sequencing reads of isolate
PAMC 27224 were mapped back onto the 132 assembled contigs using
bowtie2. Coverage of each individual contig was related to themedian
coverage (Figure A.9). A high ratio can indicate the presence of mul-
tiple copies of genes or features within that particular contig. While
the method deployed here is less sophisticated than other described
workflows (e. g. [344]), its purpose is only to serve as a rough estimate.
Among the contigs with the highest coverage (≈6-fold higher than
the median coverage) is the one containing the rRNA genes. This indi-
cates that these are present in multiple copies throughout the genome,
although they are annotated just once, likely due to the high fragmen-
tation. Other contigs with high coverage usually contain one or more
transposase-encoding genes, which couldmean that their number, too,
is underestimated from the annotated CDSs.
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Figure A.9: Read coverage of isolate PAMC 27224 contigs. Reads were mapped
back onto the genome using bowtie2, and the coverage for each contig was
divided by the median coverage of all contigs. Contigs with a coverage of 3-
to 9-fold the median exist, and usually encode one or multiple transposases.
In addition, the contig carrying the rRNA genes shows a high coverage (high-
lighted in the plot), which indicates multiple copies of these genes in the
genome.
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