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Summary 

Aspergillus fumigatus is a globally distributed opportunistic filamentous fungal pathogen 

mainly found in compost and represents the main cause of pulmonary aspergillosis in 

immunocompromised individuals. Fungal development and virulence require a highly 

controlled balance of regulatory protein biosynthesis, posttranslational modification and 

degradation for signal transduction and DNA maintenance to colonise various habitats and 

hosts. F-box proteins are part of the Skp1/A-Cullin -F-Box (SCF) ubiquitin RING ligase 

complex acting as substrate receptors for target proteins, which become posttranslational 

ubiquitinated for 26S proteasome mediated degradation. The Aspergillus-specific F-Box 

protein Fbx15 was initially described in Aspergillus nidulans as developmentally relevant 

protein. A. fumigatus Fbx15 is needed for the regulation of secondary metabolism such as 

the control of gliotoxin synthesis, as well as stress response and pathogenicity. 

A. fumigatus Fbx15 is unusual because a function in protein ubiquitination through 

SCFFbx15 complex was not yet identified, but it is required for the nuclear localisation of the 

essential co-repressor subunit SsnF. A. fumigatus Fbx15 carries two predicted nuclear 

localisation signals (NLS) within its primary amino acid sequence. This study had three 

issues: (i) The functions of Fbx15 and putative interaction partners were compared 

between A. fumigatus and A. nidulans. (ii) It was analysed whether Fbx15-mediated stress 

response and virulence of A. fumigatus depends on its control of the synthesis of gliotoxin 

or other mycotoxins. (iii) The molecular function of the two NLS of A. fumigatus Fbx15 and 

their impact on SsnF localisation was explored. 

(i) This study revealed a partial overlap in the functions of the two Aspergillus Fbx15 

counterparts. Both heterologous expressed Fbx15 proteins complemented each other’s 

functions in secondary metabolite control and in Fbx15-mediated A. nidulans asexual and 

sexual development regulation. In contrast, A. nidulans Fbx15 is only partially required for 

stress response contrary to the crucial role in stress response of A. fumigatus Fbx15. 

Analysis of the interplay of Fbx15 with the transcription factors OefC and SrbB, the putative 

transcription factor FiAt, and the putative part of a F-type ATPase, FidA, did not elucidate 

a clear link to Fbx15 functions in development, stress response and/or pathogenicity. 

(ii) A. fumigatus Fbx15 is not only required for the regulation gliotoxin, but also for the 
biosynthesis of the mycotoxin fumagillin at vegetative growth. A. fumigatus 
Fbx15-dependent regulation of gliotoxin biosynthesis is dispensable for Fbx15-mediated 
stress response at minimal growth and pathogenicity in the Galleria mellonella model. 
(iii) Either A. fumigatus Fbx15 NLS1 or NLS2 are sufficient to support nuclear import of 
Fbx15 during vegetative growth under non-stress conditions. NLS1 is insensitive against 
stress when NLS2 is absent. NLS2 is required to exclude Fbx15 from the nuclear matrix 
to the nuclear periphery during oxidative stress. NLS2 is also sufficient to locate SsnF to 
the nuclear matrix in the absence of stress, and to the nuclear periphery with stress, 
whereas the sole presence of NLS1 results in constitutive nuclear SsnF. Therefore, NLS2 
is the stress-responding element to control and shift the distribution of Fbx15 and of SsnF 
from the nuclear matrix to the periphery presumably to release the fungal cell from SsnF 
dependent gene repression. Fbx15 phosphorylation represents an additional layer of 
location control, which is not relevant during non-stress conditions. Fbx15 phosphorylation 
or dephosphorylation do not require intact NLS1- or NLS2 sequences. Fbx15 cellular 
location during oxidative stress depends on the phosphorylation or dephosphorylation 
status at residue S468|9. The major finding of this thesis is the identification of A. fumigatus 
NLS2 as control element to exclude Fbx15 and simultaneously the corepressor SsnF from 
the nuclear matrix during oxidative stress resulting in derepression of genes e.g. for 
mycotoxin formation. 
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Zusammenfassung 

Aspergillus fumigatus ist ein weltweit verbreiteter, filamentöser Pilz, der hautsächlich auf 
kompostierbarem Medium vorkommt. Als opportunistischer Krankheitserreger 
repräsentiert A. fumigatus die Hauptursache für atemwegsinvasive Aspergillose in 
immungeschwächten Individuen. Pilzspezifische Entwicklungsprozesse und Virulenz 
bedürfen eines kontrollierten Gleichgewichts der Synthese, des Abbaus sowie der 
posttranslationalen Modifikation regulatorischer Proteine. Solche regulatorischen Proteine 
werden für Entwicklungsprozesse, Signaltransduktionen und die DNA-Instandhaltung 
während der Kolonisierung verschiedenster Habitate oder Wirten benötigt. F-box Proteine 
sind Teil des Skp1/A-F-box-Cullin (SCF) Ubiquitin RING Ligasekomplexes. Sie fungieren 
als Substratrezeptoren für Proteine, die für ihren Abbau am 26S Proteasom 
posttranslational ubiquitiniert werden. Das Aspergillus-spezifische F-box Protein Fbx15 
wurde erstmals in A. nidulans als entwicklungsrelevantes Protein beschrieben. 
A. fumigatus Fbx15 ist entscheidend für die Regulation des Sekundärmetabolismus, wobei 
die Biosynthese des Mykotoxins Gliotoxin reguliert wird. Zudem wird A. fumigatus Fbx15 
für die Stresstoleranz und Pathogenität des Pilzes benötigt. A. fumigatus Fbx15 ist für 
seinen Proteintyp untypisch, da bis jetzt keine Funktion bezüglich der Proteindegradation 
mittels Ubiquitinierung durch den SCFFbx15-Komplex identifiziert wurde. Stattdessen wurde 
eine Fbx15-abhängige Kernlokalisierung der essentiellen Ko-Repressoruntereinheit SsnF 
festgestellt. A. fumigatus Fbx15 besitzt zwei potentielle nukleare Lokalisierungssignale 
(NLS) in seiner primären Aminosäuresequenz. Diese Arbeit hatte drei Themen: (i) Die 
Funktionen von Fbx15 und potentieller Interaktionspartner wurden in A. nidulans und 
A. fumigatus miteinander verglichen. (ii) Es wurde untersucht, ob die in Abhängigkeit von 
A. fumigatus Fbx15 entstehende Stressantwort und Virulenz im Zusammenhang mit seiner 
regulatorischen Wirkung auf die Gliotoxinbiosynthese oder andere Mykotoxine steht. (iii) 
Die molekulare Funktion der beiden NLSs von A. fumigatus Fbx15 wurde untersucht, 
sowie dessen Einfluss auf die Lokalisierung von SsnF. 
(i) Diese Arbeit hat gezeigt, dass es eine partielle Übereinstimmung in den Funktionen der 
beiden Aspergillus Fbx15-Proteine gibt. Beide heterolog exprimierte Fbx15-Proteine 
komplementieren gegenseitig ihre jeweiligen Funktionen hinsichtlich des 
Sekundärmetabolismus, sowie der Fbx15-abhängigen asexuellen und sexuellen 
Entwicklung in A. nidulans. Im Gegensatz dazu ist A. nidulans Fbx15 nur partiell für 
Stresstoleranz relevant, wohingegen A. fumigatus Fbx15 eine Hauptfunktion in 
Stresstoleranz vorweist. Die Untersuchung der möglichen Wechselwirkung von Fbx15 mit 
den Transkriptionsfaktoren OefC und SrbB, des potentiellen Transkriptionsfaktors FiAt, 
und FidA, der potentielle Teil einer F-ATPase, wies keinen eindeutigen Zusammenhang 
zu Fbx15 in Entwicklung, Stressantwort und/oder Pathogenität auf. 
(ii) A. fumigatus Fbx15 ist nicht nur für die Regulierung von Gliotoxin verantwortlich. Es 
wird ebenfalls für die Regulation der Biosynthese des Mykotoxins Fumagillin während des 
vegetativen Wachstums benötigt. Darüber hinaus sind die regulatorischen Eigenschaften 
von A. fumigatus Fbx15 in Bezug auf Gliotoxin nicht für die von Fbx15 geleitete 
Stressantwort während des Minimalwachstums und der Pathogenität im 
Galleria mellonella-Model von Bedeutung. 
(iii) Beide NLS-Sequenzen von A. fumigatus Fbx15 werden unabhängig voneinander für 
den Kerntransport von Fbx15 während des vegetativen Wachstums benötigt. Dabei ist 
NLS1 ist für sich alleine unempfindlich gegenüber Stress. NLS2 wird hingegen für den 
Transport von Fbx15 von der Kernmatrix zur Kernperipherie bei oxidativem Stress 
benötigt. Außerdem wird NLS2 für die erfolgreiche Lokalisierung von SsnF in der 
Kernmatrix in Abwesenheit von Stress benötigt, sowie den Transport von SsnF zur 
Kernperipherie bei Stress. In diesem Prozess führt Präsenz von NLS1 ohne NLS2 zu einer 
kontinuierlichen Kernlokalisierung von SsnF. NLS2 ist hierbei ein Element für die 
Stressantwort, das für den Shift von Fbx15 und SsnF von der Kernmatrix zur 
Kernperipherie verantwortlich ist, um vermutlich die von SsnF verursachte Repression der 
Genregulation in der Zelle zu unterbinden. Die Phosphorylierung von Fbx15 repräsentiert 



Zusammenfassung 

3 
 

dabei eine zusätzliche Lokalisierungskontrolle, die jedoch nicht bei vegetativen Wachstum 
entscheidend ist. Dephosphorylierung oder Phosphorylierung von Fbx15 benötigt keine 
intakte NLS1- oder NLS2-Sequenz. Dennoch ist die zelluläre Lokalisierung von Fbx15 bei 
oxidativem Stress abhängig von der Phosphorylierung oder Dephosphorylierung an den 
Aminosäuren S468|9. Das Hauptergebnis dieser Dissertation besteht in der Identifizierung 
von A. fumigatus Fbx15 NLS2 als Kontrollelement, um Fbx15 und SsnF simultan aus der 
Kernmatrix während oxidativen Stresses zu transportieren, was zu einer Derepression von 
Genen führt, die z.B. für die Produktion von Mykotoxinen zuständig sind. 
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I Introduction 

1 Aspergillus fumigatus - an opportunistic human pathogen 

1.1 Nutrient versatility of A. fumigatus and its global distribution 

The ubiquitous airborne saprotrophic fungus Aspergillus fumigatus has its natural niche in 

the soil on decaying organic matter where the fungus makes an important contribution to 

the recycling of carbon and nitrogen (Latgé, 1999). The fungus is able to degrade almost 

all components of organic waste such as cellulose, fatty acids, pectin, proteins, sugars and 

xylane (Adav et al., 2015; Fogarty, 1994; Wang et al., 2012). This ability is due to its high 

metabolic versatility, e.g. demonstrated by the capability to utilise diverse carbon sources 

like D-galactose, L-arabinose and D-xylose or alcohols instead of its favoured carbon 

source glucose (Flipphi et al., 2009; Zhang et al., 2018). Despite of this, A. fumigatus is 

able to recycle nitrogen out of amino acids (aa), nitrate and purines if the favoured 

ammonium, glutamate or glutamine is not available (Krappmann and Braus, 2005; Lee et 

al., 2013). The ability to utilise different compounds for carbon and nitrogen recycling 

contribute to A. fumigatus successful competition with other mesophilic, thermotolerant 

and thermophilic aerobic microorganisms, e.g. different bacteria like actinomycetes and 

fungi such as molds (Bhatti et al., 2017; Fang and Latgé, 2018; Singh and Satyanarayana, 

2019). Whereas most other fungi are mesophilic and grow at temperatures between 

25-35°C, A. fumigatus is highly thermotolerant with a growth ability between 30 to 52°C 

what depicts the ideal proliferation conditions in young composts (Beffa et al., 1998; 

St-Germain and Summerbell, 2003; Cooney and Emerson, 1964). The ability to adapt to a 

wide range of environmental conditions makes A. fumigatus one of the most ubiquitous 

distributed fungi in the world with a very high genetic diversity (Debeaupuis et al., 1997; 

Rocchi et al., 2015). Analysis of over 2,000 A. fumigatus isolates from 13 countries in four 

continents revealed eight genetic clusters of which seven showing a broad geographic 

distribution. These global populations of A. fumigatus are structured by contemporary gene 

flow, historical differentiation, sexual reproduction and local distributed antifungal drug 

resistance (Ashu et al., 2017). 

 

1.2 Developmental stages of A. fumigatus 

A. fumigatus reproduces itself either asexually or sexually. The sexual life cycle is induced 

under specific conditions including heat and a duration of six month resulting in fruiting 

bodies, so called cleistothecia (Dyer and O’Gorman, 2012; Ene and Bennett, 2014; Mullins 

et al., 1976; O’Gorman et al., 2009). Neosartorya as a new Latin genus name was given 

to the telomorphic (sexual) state next to the already existing anamorphic (asexual) state 
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Aspergillus (O’Gorman et al., 2009). During the asexual life cycle airborne haploid spores 

are produced, named conidiospores or conidia (Mullins et al., 1976). Conidia are released 

into the environment from multicellular conidiophores that are produced by vegetative 

hyphae developing specialised foot-cells. Those foot-cells terminate in a stalk with a 

clavate vesicle, which is covered with a layer of green phialides, which act as spore forming 

cells in a budding-like process. From the polar phialides green-pigmented conidia are 

produced by mitotic division and subsequent constriction (Figure 1) (Bayram et al., 2008; 

Brakhage and Langfelder, 2002; Tao and Yu, 2011). 

 

 

Figure 1: A. fumigatus asexual life cycle. A. fumigatus airborne conidiospores germinate on a 
medium containing suitable nutrient – and energy sources. The fungus grows vegetatively out of 
airborne conidia till a new conidiophore is produced, whose first developmental stage is the 
formation of a foot cell. From the foot cell a stalk and a vesicle arise. The full-developed conidiophore 
contains phialides at the vesicle site with chains of conidiospores. Modified from Bayram et al., 
2008. 

 

The conidia of A. fumigatus are long-term resting structures that are resistant against a 

wide range of environmental stress inducers such as oxidative stress, ultraviolet radiation 

and heat (Corrochano, 2007; Hagiwara et al., 2014; Kozakiewicz and Smith, 1994). 

Several layers are covering A. fumigatus conidia and protect them from stressors. The 

outer layer is the rodlet layer that consists of amyloid fibres that are composed of the 

hydrophobin family member protein RodA. So far seven different hydrophobins are 

identified (RodA-RodG) whereby RodA is solely important for the formation of the rodlet 

layer, conidial hydrophobicity, sporulation and resistance to physical injury and 

immunological inertia (Paris, Debeaupuis, et al., 2003; Valsecchi et al., 2018; Wyatt et al., 

2013). The cell wall of A. fumigatus conidia consist of different polysaccharides, 

α-(1,3)-glucan, chitin, galactomannan, ß-(1,3)-glucan and mycelial-specific 
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galactosamino-galactan (Alkhayyat et al., 2015; Hohl and Feldmesser, 2007; Samar et al., 

2015; Valiante et al., 2015). The reorganization of the conidial cell wall during germination 

is mediated by the glycosyl hydrolase GH55 members (Millet et al., 2019). Two types of 

melanin are parts of the conidia cell wall: Pyomelanin and 1,8-dihydroxynaphthalene 

(DHN)-melanin. Pyomelanin is a brown, water-soluble compound protecting the conidia 

against cell wall stress and reactive oxygen species (ROS) whereas DHN-melanin is a 

blue-green pigment accumulated in the conidia and has an additional protective function 

against ROS (Heinekamp et al., 2012; Rambach et al., 2015; Schmaler-Ripcke et al., 2009; 

Sugareva et al., 2006). 

 

1.3 A. fumigatus as opportunistic human pathogen 

A. fumigatus represents the most common and opportunistic aerial fungal pathogen as it 

causes 90% of all cases of invasive aspergillosis in immunosuppressed individuals next to 

other pathogenic fungi such as A. niger, A. flavus or A. terreus (Fang and Latgé, 2018; 

Perfect et al., 2001). The airborne conidia of A. fumigatus with a size of 2 to 3 µm are small 

enough to reach the lung alveoli (Christensen et al., 1989; Yaguchi, 2011). In fact, 

mammals inhale daily several hundreds of A. fumigatus conidia (Chazalet et al., 1998; 

Goodley et al., 1994; Hospenthal et al., 1998). These conidia are normally eliminated in 

immunocompetent individuals, e.g. by engulfing or inactivation through recruited 

neutrophils and Ly6Chi inflammatory monocytes of the innate immune system (Bonnett et 

al., 2006; Espinosa et al., 2014; Jhingran et al., 2012; Mircescu et al., 2009; Shlezinger et 

al., 2017). Immunosuppression is a cause of chemotherapies, diseases like tuberculosis, 

AIDS, neutropenic diseases or as a result of organ transplantations. In these individuals 

inhaled conidia are able to enter the lung where they start to germinate (Figure 2) (Tekaia 

and Latgé, 2005). Invasive aspergillosis can lead to death and is characterized by 

angioinvasion with sinopulmonary involvement while disseminating to the central nervous 

system (Fayed, 2018; Pauw et al., 2008). Invasion to the gastrointestinal tract, skin or 

contiguously belongs to the characteristics of invasive aspergillosis (Pauw et al., 2008). 

Depending on the degree of immune suppression A. fumigatus causes allergic, 

saprophytic, partially invasive or acute invasive aspergillosis clinical syndromes. Allergic 

reactions result in extrinsic asthma including allergic fungal sinusitis, severe asthma with 

fungal sensitization and allergic bronchopulmonary aspergillosis (Chaudhary and Marr, 

2011; Ghosh et al., 2015; Knutsen et al., 2012). Saprophytic syndromes are categorised 

in chronic cavitary or fibrosing aspergillosis and Aspergilloma (Denning et al., 2016; 

Steinbach, 2018). Recent global estimations accomplished in 2017 projected over 

3,000,000 cases of chronic pulmonary aspergillosis and around 250,000 cases of invasive 
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aspergillosis annually (Bongomin et al., 2017). The mortality rate of patients suffering from 

chronic pulmonary aspergillosis ranges from 14% to 53% after one to ten years post 

infection (Lowes et al., 2017). 

 

 

Figure 2: Infection life cycle of A. fumigatus. Inhalation of environmental distributed airborne 
A. fumigatus conidia can distribute through the lung alveoli in immunosuppressed individuals. 
Pulmonary aspergillosis can break out in the absence of a sufficient pulmonary defence leading to 
the germination of conidia through the lung tissue. Modified from Tekaia and Latgé, 2005. 

 

2 Aspergillus nidulans - a genetic model organism for 

filamentous fungi 

Aspergillus nidulans represents a model organism for the genome research, cell 

development and gene regulation of filamentous fungi (Martinelli, 1994; Osmani and 

Mirabito, 2004). In contrast to the heterothallic A. fumigatus, A. nidulans is homothallic and 

undergoes an asexual and sexual life cycle under moderate growth conditions (Bayram et 

al., 2010a; O’Gorman et al., 2009; Ruger-Herreros et al., 2011). 

The asexual life cycle of A. nidulans is favoured by a combination of factors including  light 

and characterized by the production of conidia that origin from conidiophores (Adams et 

al., 1998; Bayram et al., 2010; Mooney and Yager, 1990). The conidiophores of A. nidulans 

contain an additional cell type, called metula, in contrast to A. fumigatus conidiophores 

(Adams et al., 1998; Mims et al., 1988). The metula origins from the conidiophore stalk, 

called conidiophore vesicle, and comprises a single nucleus (Mims et al., 1988). From the 

metula the spore forming phialides arise whose asymmetric budding-like division results in 

the formation of conidia chains (Adams et al., 1998). The sexual life cycle is favoured in 

darkness with limited oxygen levels (Park et al., 2019). After cultivation A. nidulans needs 
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20h at 37°C to initiate sexual development (Seo et al., 2004). In A. nidulans dikaryon 

formation occurs either homothallic (self-fertilized) or heterothallic (two compatible 

partners) (Galagan et al., 2005; Paoletti et al., 2007; Scazzocchio, 2006). Hülle cells cluster 

around the dikaryotic hyphae appearing in a “nest” and differentiate to thick-walled globose 

cells (Pöggeler et al., 2018). They are assumed to function as nurse cells for cleistothecia 

and are not directly connected to sexuality (Braus et al., 2002; Hermann et al., 1983; 

Scherer and Fischer, 1998). Inside the dikaryotic cells, which form a network of 

ascogenous hyphae, nuclear fusion takes place (Pöggeler et al., 2018). Young ascis are 

formed containing eight nuclei synthesized by meiotic division and a post-meiotic mitosis. 

These young ascis are comprised in a pre-mature cleistothecium, the primordium (Sohn 

and Yoon, 2002). In numbers over 10.000 asci are comprised in one cleistothecium. The 

formation of a mature cleistothecium with a size of 125-200 µm in diameter takes 96h (Seo 

et al., 2004). Asexual conidia and sexual ascospores can germinate and undergo either 

the asexual or sexual life cycle depending on the environmental conditions after vegetative 

growth (Figure 3). 

 

Figure 3: Developmental stages of A. nidulans. In light with sufficient oxygen supply the fungus 
favours the asexual development producing conidiophores. Conidiophores contain a foot cell, a 
stalk and a vesicle with metulae, on which spore-forming phialides produce large numbers of 
conidiospores. In darkness with reduced oxygen supply the sexual development is favoured 
resulting in the production of the fruiting bodies, cleistothecia. Cleistothecia arise from Hülle cells 
surrounding nest structures, of which a primordium is developed. Mature cleistothecia contain 
ascospores with inside of each four ascis are present. A released ascospore can germinate like a 
conidiospore producing a mycelium network at vegetative growth. Modified from Bayram et al., 
2008. 
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Reorganisation of the morphogenesis due to environmental changes or by passing 

developmental stages like from filamentous growth to other reproductive stages needs the 

synthesis and degradation of certain proteins as most recently described in 

Candida albicans by an increased ubiquitin polypeptide-dependent protein degradation 

during hyphal growth (Yang et al., 2020). The autophagy as well as degradation of 

corresponding proteins through the ubiquitin-dependent 26S proteasome represent 

important tasks during these processes (Glickman and Ciechanover, 2002; Pollack et al., 

2009). Proteins degraded by the 26S proteasome need to be marked with K48-

polyubiquitin (Petroski and Deshaies, 2005b). This labelling is required for development, 

which process itself reversable (Meister et al., 2019; Tyers and Jorgensen, 2000; von 

Zeska Kress et al., 2012). 

 

3 The fungal F-Box protein Fbx15 

3.1 F-Box proteins as part of the SCF E3 ubiquitin RING ligases 

3.1.1 SCF E3 ubiquitin RING ligases mediate ubiquitination followed by proteasomal 

degradation 

The tetrameric Skp1-cullin-F-box protein (SCF) E3 ubiquitin ligases are one of the 

best-understood families of the cullin-based ‘really interesting new gene’ (RING) ligases 

and were first characterized in Saccharomyces cerevisiae (Bai et al., 1996). They are of 

high importance in biological processes such as cell cycle progression, development, DNA 

replication, gene transcription and signal transduction (Nakayama and Nakayama, 2006; 

Petroski and Deshaies, 2005a; Ren et al., 2008). Most recently, a specific mammalian 

SCFFBXO3 E3 ligase was identified to modulate inflammation in atherosclerosis (Chandra et 

al., 2019). The fungal SCF E3 ubiquitin RING ligase consists of a scaffold protein, cullin (5 

family members), an F-box protein as substrate receptor (approx. 70 family members), an 

adapter protein Skp1/SkpA and a catalytic RING component (2 members: RBX1 and 

RBX2) (Deshaies and Joazeiro, 2009; Sarikas et al., 2011; Willems et al., 2004). 

Dysfunctions in the regulation of cellular processes by the SCF E3 ubiquitin RING ligases 

can cause severe diseases such as human cancer and have a direct influence on the 

embryonic development (Nakayama and Nakayama, 2006; Wei and Sun, 2010). 

The SCF E3 ubiquitin RING ligases are required to control the life span of regulatory 

proteins involved in coordinating development, signal transduction and DNA maintenance 

in the ubiquitin 26S proteasome system (UPS). Hence, around 90% of protein breakdowns 

in mammalian cells are mediated by proteasome degradation (Lee and Goldberg, 1998). 

Well studied substrates are short-lived proteins such as transcription factors, cyclins, 

cyclin-dependent kinases and their inhibitors (Glotzer et al., 1991; Ko and Cho, 2018; 
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McNeilly et al., 2018; Pagano et al., 1995). The degradation of substrates by the 

proteasome occurs either in the nucleus or in the cytoplasm (Berner et al., 2018; 

Serrano-Bueno et al., 2019). Target proteins are recruited to the proteasome if labelled 

with a specific ubiquitin chain in a sequential action of E1, E2 and E3 enzymes, of which 

E3 ubiquitin RING ligases are responsible for the substrate specificity through their F-box 

proteins (Clague et al., 2015; Skaar et al., 2013). The 76 aa long comprising ubiquitin is 

highly conserved in eukaryotic organisms. First, monomeric ubiquitin is bound to the E1 

ubiquitin-activating enzyme and transferred to cysteine residues of E2 

ubiquitin-conjugating enzyme, both in an adenosine triphosphate (ATP)-dependent 

manner. The ubiquitin-bound E2 enzyme binds to the E3 ubiquitin ligase. After the 

substrate is bound to E3 through its F-box protein, the ubiquitin of the E2 enzyme is 

transferred to a lysine residue of the substrate (Glickman and Ciechanover, 2002; Lennarz 

and Lane, 2013). 

 

 

Figure 4: Substrate degradation by the ubiquitin 26S proteasome system (UPS). (1) Linking 
substrates to ubiquitin for degradation by the 26S proteasome starts with activating and binding of 
free monomeric ubiquitin (Ubi) to the E1 ubiquitin-activating enzyme in an energy-consuming step. 
(2) Ubiquitin is transferred to the ubiquitin-conjugating enzyme E2 binding on an internal cysteine 
residue. (3) The E2-Ubiquitin bundle binds to the RbxA adapter of the E3 ubiquitin ligase (here: 
Skp1-cullin/Rbx-F-box protein (SCF) complex), where the transfer of active ubiquitin to a lysine 
residue of the substrate, bound to the F-box protein, is catalysed. (4) A final polyubiquitin chain is 
built by attachment of single ubiquitin to a previous attached ubiquitin through its internal Lys48 
residue and recognized by the ubiquitin binding domains (UBD) in the 19S proteasomal regulatory 
particle (RP). The substrate enters the proteolytic chamber of the 20S core particle (CP) after a ring 
of six ATPases unfolded it. Hereby, the ubiquitin-tag was removed from the substrate by a 
deubiquitinating enzyme (DUB) and releases inactive monoubiquitin. Modified from Jöhnk, 2016. 
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In case of proteasomal degradation of the substrate a polyubiquitin chain is formed by the 

covalent attachment of monomeric ubiquitins achieved by an isopeptide bound of the C-

terminal glycine residue at aa 76 of the new ubiquitin to Lys48 (one of seven lysine 

residues) of the already attached substrate-bound ubiquitin (Komander and Rape, 2012). 

Polyubiquitinated substrates at Lys48 are recognized by two ubiquitin receptors with 

ubiquitin binding domains (UBD) of the 19S proteasomal regulatory particle (RP) and get 

unfolded by six ATPases in the RP. During this process the ubiquitin chain gets cleaved 

and recycled from the target protein by deubiquitinating enzymes (DUBs) (Bhattacharyya 

et al., 2014; Gu and Enenkel, 2014). The unfolded protein exits the proteolytic core of the 

proteasome, the 20S core particle (CP), though its two entrance pores with specific sizes 

allowing only unfolded proteins to pass through (Figure 4) (Bhattacharyya et al., 2014). 

Most recently it has been identified that SCF E3 ligases can regulate the modelling of other 

SCF E3 ligases by coupled monoubiquitylation (Kelsall et al., 2019). 

 

3.1.2 Regulation of the SCF E3 ubiquitin RING ligase 

A specific lysine at the C-terminus of the cullin of the SCF E3 ubiquitin RING ligases gets 

modified in its binding affinity to the other SCF subunits by the 

neural-precursor-cell-expressed developmentally down-regulated 8 (NEDD8) cascade 

(Huang et al., 2009; Osaka et al., 1998; Pan et al., 2004). Neddylation promotes the activity 

of SCF E3 ligases by a NEDD8 cascade (Gong and Yeh, 1999). Thereby, the catalytic 

efficiency is increased, which results in promoting RBX-cullin dimerization by a 

conformational change in the cullin scaffold. Moreover, NEDD8 supports the assembly of 

polyubiquitin chains by allowing the E2 enzyme to move in closer proximity to the acceptor 

lysine residue of the substrate protein (Duda et al., 2008; Merlet et al., 2009). The COP9 

(constitutive photomorphogenesis 9) signalosome (CSN) recognizes cullin ring ligases 

such as SCF E3 ubiquitin RING ligases, which are not bound to substrates. The binding 

leads to a deactivation resulting in the deneddylation of the cullin by the recruitment of the 

cullin-associated neddylation-dissemination 1 (CAND1), which leads to a disassembly of 

the SCF E3 ubiquitin RING ligase components (Goldenberg et al., 2004; Köhler et al., 

2019; J. Zheng et al., 2002). Most recently it was shown that six subunits of the CSN 

interact with a novel ubiquitin-specific protease UspA in A. nidulans (Meister et al., 2019). 

UspA is one of 22 DUBs in A. nidulans, which can reverse the ubiquitination processes 

(Abdul Rehman et al., 2016; Meister et al., 2019). UspA negatively regulates the amount 

of ubiquitinated proteins during developmental processes and is itself repressed by a 

functional CSN as well as reduces the protein level of the secondary metabolism-regulating 

NF-κB-like velvet domain protein VeA (Kato et al., 2003; Meister et al., 2019). 
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3.2 F-Box proteins in fungi 

F-box proteins contain a F-box domain and function as protein receptors for substrates of 

SCF E3 ubiquitin RING ligases for ubiquitination through the adaptor Skp1/A to Cul1/A 

scaffold (Schmidt et al., 2009). The amount of F-box proteins differ among species. For 

instance, humans, A. fumigatus and A. nidulans comprise approx. 70 F-box associated 

genes whereas 897 F-box-coding genes were found in Arabidopsis thaliana (Galagan et 

al., 2005; Hua and Vierstra, 2011; Orejas et al., 2001; Skaar et al., 2009). Based on further 

protein interaction domains, F-box proteins can be subdivided into three classes: FBXW, 

FBXL, FBXO (Shen and Spruck, 2017). The class of the FBXW interaction domains 

contains one or more WD40 domains and ß-propeller structures that are required to 

recognize the specific consensus sequence DSGXXX(X)S, which must be phosphorylated 

on its serine (Ser) residues. FBXL proteins contain a C-terminal leucine-rich repeat (LRR) 

domain as well as an α-β-repeat structure. The last class with FBXO interaction domains 

contains different, partially uncharacterized motifs. Identified motifs of FBXO proteins are 

include carbo-hydrate-binding proteins and sugar hydrolases (CASH), Kelch-repeats 

(double glycine repeats forming ß-propellers), zinc finger and proline rich domains 

(Cardozo and Pagano, 2004; Jöhnk, 2016; Shen and Spruck, 2017; Skaar et al., 2013). 

F-box proteins are involved in different molecular pathways in ascomycetes. For example, 

the F-box protein GrrA is required for the development of matured ascospores during 

meiosis in A. nidulans (Krappmann et al., 2006). In contrast, A. nidulans SconB is a 

negative regulator of the sulphur metabolism by repressing the MetR transcription factor, 

which represents an activator of sulphur metabolism (Natorff et al., 2003; Sieńko et al., 

2014). Fbx23 and Fbx47 of A. nidulans regulate the CreA-mediated catabolite repression. 

Thereby, Fbx23 as part of the SCFFbx23 E3 ubiquitin RING ligase complex is bridged to the 

CreA-SsnF-RcoA repressor complex through the GskA protein kinase, which leads to the 

degradation of the multi-repressor complex during xylan-induced derepressing conditions 

(de Assis et al., 2018). Most recently, Fbx19 and Fbx22 were fund to be required in carbon 

catabolite repression responses in Neurospora crassa as Fbx19 is required to promote 

growth on medium containing arabinan and pectin whereas Fbx22 is needed to negatively 

control growth on D-glucose and glucomannan (Horta et al., 2019). 

The fungal specific Fbx15 is conserved among Aspergillus spp. and was primarily 

characterized in A. nidulans, where it has critical functions for asexual and sexual 

development as well as secondary metabolite homeostasis (Jöhnk et al., 2016; von Zeska 

Kress et al., 2012). The A. fumigatus Fbx15 protein sequence comprises several domains. 

The N-terminal F-box domain at aa position 6 to 53 is followed by the genus-specific 

interaction motif 1 at aa position 223 to 272 and the non-genus-specific second motif 2 at 

aa 313 to 362. Motif 2 is found in different other members of the genus such as 
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Penicillium chrysogenum. Both motifs do not contain FBXW belonging WD40 repeats or 

FBXL belonging LRR, which categorises Fbx15 to the FBXO class of interaction domains 

in F-box proteins (Jöhnk et al., 2016; Skaar et al., 2013). At the C-terminus two predicted 

monopartite nuclear localisation signals (mp NLS) at aa position 407 to 418 (NLS1: 

YERPRKRLRRYY) and 485 to 494 (NLS2: VSRKRKSPID) were identified. Two serine 

(Ser) residues were identified as putative phosphorylation sites by LCMS-analysis at aa 

468 and 469 in between of the NLS sequences. S469 is most likely the critical putative 

phosphorylated residue with a probability of 98% compared to 2% for S468 (Figure 5) 

(Jöhnk et al., 2016). 

 

 

Figure 5: Domain architecture of the A. fumigatus F-box protein Fbx15. The F-box protein 
Fbx15 is 655 amino acids (aa) long. The characteristic F-box domain acting as interface to the SCF 
complex is located at the N-terminus at aa position 6 to 53. Two additional interaction motifs that 
contain no WD40 repeats or leucin-rich repeats (LRR) are positioned in the middle of the protein 
sequence: genus-specific motif 1 at aa position 223 to 272 and non-genus specific motif 2 at aa 
position 313 to 372. Two predicted monopartite nuclear localisation signals (mp NLS) are present 
at the C-terminus: NLS1 at aa position 407 at 418, NLS2 at aa position 485 and 494. Two serine 
(S) residues are probable phosphorylated: S468 (2%) and S469 (98%) are positioned between 
NLS1 and NLS2. Modified from Jöhnk et al., 2016. 

 

Whereas F-box proteins are often rather instable, Fbx15 is a stable protein compared to 

the F-box protein SconB in A. fumigatus, whose homolog Met30 in S. cerevisiae is known 

to be short lived (Jöhnk et al., 2016; Pashkova et al., 2010). An active SCFFbx15 complex 

formation occurs in the cytoplasm when Fbx15 is phosphorylated. However, binding to 

SkpA also occurs in the nucleus when Fbx15 is mimicked to be dephosphorylated at S468 

and S469 by exchanging the Ser residues to alanine (Ala) residues. Increased 

dephosphorylation of Fbx15 protein is triggered by oxidative stress induced by hydrogen 

peroxide (H2O2), which is probably driven by the GlcA/BimG phosphatase. Nonetheless, 

the overall ubiquitin pattern in A. fumigatus is not significantly altered in absence of fbx15, 
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indicating the SCFFbx15 E3 ubiquitin RING ligases bind a rare number of substrates for 

proteasomal degradation (Jöhnk et al., 2016). 

 

3.2.1 Oxidative stress response is supported by fungal F-box proteins 

Aspergillus spp. must cope with diverse stressors during colonization of various habitats 

or invasion of potential host organism including oxidative stress induced by ROS (Fountain 

et al., 2016; Jia et al., 2018). The most critical host immune defence mechanism is the 

NADPH-oxidase-mediated production of ROS by alveolar macrophages and neutrophils 

(Grimm et al., 2013). ROS are divided into three major ROS molecules: superoxide anion 

(O2
−), hydroxyl radical (HO•) and H2O2. O2

− is produced by the reduction of molecular 

oxygen (O2). H2O2 is produced by the conversion of O2
− through superoxide dismutases 

(SODs). A full reduction is performed by catalases or glutathione peroxidases to water. 

HO• results in a partially reduction of O2
− through Fenton reaction catalysed by ferrous 

ions. Targets of O2
− are proteins with prosthetic Fe-S groups, whereas the extremely 

oxidizing HO• can damage all major groups of biomolecules. The relatively stable, 

non-charged H2O2 can diffuse through biological membranes causing damages to Fe-S 

proteins (Breitenbach et al., 2015; Daly, 2009; Sato et al., 2009). Thioredoxin functions as 

oxidoreductase, which acts as electron donor for the thioredoxin peroxidase, comparable 

to glutathione (Sato et al., 2009; Thön et al., 2007). The glutathione system is the major 

cellular oxidative stress defence system (Bakti et al., 2017; Breitenbach et al., 2015). The 

glutathione peroxidase is an electron donor while reducing H2O2 to H2O (Breitenbach et 

al., 2015; Meister and Anderson, 1983; Sato et al., 2009). Menadione generates O2
- and 

is suggested to affect the reduced glutathione (GSH) pool by a detoxification reaction 

catalysed by glutathione S-transferase (Pócsi et al., 2004). Ascomycetes can actively 

regulate the elimination of ROS by e.g. catalases that act as ROS scavengers (Green and 

Johnson, 2004; Paris, Wysong, et al., 2003; Pöggeler et al., 2018). During host invasion 

A. fumigatus has to scope with host-specific ROS of the innate immune system. In this 

context it was examined that the protein AfBIR1 acts as inhibitor of the fungal caspase 

activity, which is controlled by conidial susceptibility to NADPH oxidase-dependent killing 

(Shlezinger et al., 2017). 

Besides, it has been shown that A. fumigatus Fbx15 is required for the fungal tolerance 

against oxidative stress resulting in a diminished growth ability in absence of fbx15. On 

molecular level Fbx15 is required for the downregulation of the catalase associated gene 

cat1. Moreover, fbx15 gene expression and Fbx15 protein amounts are increased in 

presence of H2O2 (Jöhnk et al., 2016). In S. cerevisiae the intrinsically instable F-box 

protein Pof14 is required for oxidative stress response induced by H2O2 in a SCFPof14-
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independent manner (Tafforeau et al., 2006). Most recently, it was investigated that the 

Magnaporthe oryzae F-box protein gene MoFWD1 is required for oxidative stress release 

during conidial germination (Shi et al., 2019). 

 

3.2.2 F-box proteins are involved in secondary metabolite homeostasis in Aspergilli 

Fungi produce a wide range of natural products such as the spore- and fruiting body-

containing pigment melanin (Kimura and Tsuge, 1993; Rambach et al., 2015; 

Schmaler-Ripcke et al., 2009). These natural products can be subdivided in essential 

(primary metabolites) and non-essential (secondary metabolites) natural products. 

Secondary metabolite genes occur in clusters contrary to the primary metabolite genes 

that are scattered in the whole genome (Keller et al., 2005; Malik, 1980). A wide range of 

structurally heterogenous secondary metabolites with high interest to research, medicine 

and biotechnology are produced by Aspergillus spp. (Singh et al., 2016; Yoon et al., 2013). 

Synthesis of the secondary metabolites is performed in two steps: the core backbone is 

processed either by a polyketide synthase (PKS) which can be divided into non-reducing 

PKS and highly-reducing PKS, a non-ribosomal peptide synthetase (NRPS), a PKS– 

NRPS hybrid, a dimethylallyl tryptophan synthase (DMATS) or a terpene cyclase (TC) . 

The carbon skeleton is diversified by enzymes, which genes are usually clustered with the 

secondary metabolites core backbone gene (Fischbach and Walsh, 2006). Under standard 

laboratory growth secondary metabolites are usually repressed in filamentous fungi 

because secondary metabolite production is likely triggered under specific circumstances, 

e.g. to adapt to changed environmental conditions (Bode et al., 2002; Gerke and Braus, 

2014). Some pathogenic Aspergilli produce useful secondary metabolites for 

biotechnology industry like citric acid, enzymes and therapeutically relevant secondary 

metabolites as antimicrobial aurasperone A of A. niger (Schuster et al., 2002; Shaaban et 

al., 2012). So far, for the Aspergillus spp. members A. nidulans, A. fumigatus, A. niger and 

A. terreus several secondary metabolite-linked enzymes were identified. Of 66 core 

synthase genes for secondary metabolite production 29 were verified to secondary 

metabolite production in A. nidulans. In comparison, 19 out of 44 identified genes were 

linked to secondary metabolite production in A. fumigatus. In A. niger only 14 out of 99 

total identified genes were linked to secondary metabolite production and in A. terreus 20 

out of 74 genes (Table 1) (Romsdahl and Wang, 2019). 
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Table 1: Status of linked Aspergillus secondary metabolite core synthase genes to 
downstream products. PKS = Polyketide synthase, NRPS = Non-ribosomal peptide synthetase, 
Hybrid = Mixture of PKS and NRPS, DMATS = Dimethylallyl tryptophan synthase, TC = Terpene 
cyclase, SM = Secondary metabolite (Romsdahl and Wang, 2019). 

 A. nidulans A. fumigatus A. niger A. terreus 
 Linked  Total Linked Total Linked Total Linked Total 

PKS 16 33 6 16 8 46 9 29 

NRPS 11 25 9 18 4 35 9 36 

Hybrid 1 1 1 2 2 9 1 1 

DMATS 0 5 2 3 0 2 0 5 

TC 1 2 1 1 0 7 1 3 

SM 29 66 19 40 14 99 20 74 

 

Fbx15 of A. fumigatus and A. nidulans control the secondary metabolite homeostasis as 

the absence of fbx15 results in an orange (A. fumigatus) or dark reddish (A. nidulans) 

pigmented colony during asexual development, which is presumably due to the regulation 

of so far unidentified or uncharacterised secondary metabolites (Jöhnk et al., 2016; von 

Zeska Kress et al., 2012). 

Previous studies have confirmed that secondary metabolism is directly linked to asexual 

and sexual development (Bayram et al., 2008; Elramli et al., 2019; Zhou et al., 2019). For 

instance, the global regulator, regulation of secondary metabolism and development 

(RsdA), regulates secondary metabolism accompanied by the repression of asexual 

development (Zhou et al., 2019). Also, the assembly of a heptameric striatin-interacting 

phosphatase and kinase (STRIPAK) complex is required for the coordination of 

light-dependent fungal development with secondary metabolism in A. nidulans (Elramli et 

al., 2019). Thereby, the STRIPAK complex is involved in the proper expression of the 

VeA-VelB-LaeA complex, which is required to coordinate secondary metabolism such as 

the production of the mycotoxin sterigmatocystein and fungal development (Bayram and 

Braus, 2012; Elramli et al., 2019). 

 

Some secondary metabolites produced by fungi have toxic features. The secondary 

metabolite gliotoxin is an intensively studied mycotoxin in A. fumigatus. The gli-cluster 

consists of 13 genes (Figure 7) (Gardiner and Howlett, 2005; Schrettl et al., 2010). 

Gliotoxin has antioxidant properties by promoting the degradation and recycling of GSH 

and is considered to be directly linked to virulence (Gallagher et al., 2012; Kwon-Chung 

and Sugui, 2009; Owens et al., 2014; Scharf et al., 2012). However, various studies on 

gliotoxin in context to virulence revealed contradictory findings. Gliotoxin was described as 

virulence factor in a non-neutropenic mouse model as tested with the gliP mutant (Sugui 

et al., 2007). Thereby, it was discovered that gliotoxin impairs the function of neutrophils 
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by inhibiting the formation of neutrophil-recruiting leukotriene A4 hydrolase (König et al., 

2019). However, in neutropenic mice no altered pathogenicity in A. fumigatus lacking 

gliotoxin synthesis by gliP deletion was observable (Spikes et al., 2008; Kupfahl et al., 

2006). 

 

 

Figure 6: Structure of the gli-cluster genes in A. fumigatus. Gliotoxin biosynthesis is encoded 
by the 13 gli-cluster genes (in colour and labelled with their last letter), that are located at 

chromosome 6. Modified from Dolan et al., 2015. 

 

The gene product of gliZ is a Zn2Cys6 finger binuclear transcription factor, which is required 

for the induction of gliotoxin production and its regulation (Bok et al., 2006; Kwon-Chung 

and Sugui, 2009; Scharf et al., 2012). Lacking gliZ gene expression results in a block of all 

other gliotoxin cluster genes except gliT. The bioactivity of gliotoxin is controlled by the 

multimodular NRPS GliP (Balibar and Walsh, 2006). Upstream regulation of the gliotoxin 

gene cluster is performed by transcription factors like VeA or MtfA and the 

methyltransferase LaeA, known as global secondary metabolite regulators (Dhingra et al., 

2012; Perrin et al., 2007; Schoberle et al., 2014; Smith and Calvo, 2014). 

Fbx15 is required for the downregulation of gli-cluster genes such as gliP and gliZ, which 

encoding products are essential for the biosynthesis of the mycotoxin gliotoxin (Gardiner 

and Howlett, 2005; Jöhnk et al., 2016). Moreover, mimicking dephosphorylation of Fbx15 

at S468 and S469 by exchanging Ser to Ala also promotes the induction of gli-gene 

expression but does not influence the gliotoxin biosynthesis (Jöhnk et al., 2016). 

 

3.3 Transcriptional regulators as (potential) interaction partners of 

A. fumigatus Fbx15 

Putative interacting proteins for A. fumigatus Fbx15 were identified by Tandem-Affinity 

Chromatography Purification (TAP). Next to the subunits of the SCFFbx15 complex, nuclear 

proteins, proteins with functions in transcriptional regulation, RNA processing, signal 

transduction, metabolism, fungal morphology, as well as three proteins of unknown 

function were identified, in total 38 proteins (Table 2) (Jöhnk et al., 2016). 
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Table 2: Fbx15 putative interacting proteins - co-purified proteins with Fbx15 identified by 
TAP analysis in A. fumigatus. S. cerevisiae homologous proteins with a known function are given 
in brackets. Co-purified with Fbx15: Putative interacting proteins with Fbx15 had to appear at least 
twice in two independent Fbx15-purifications. Already used proteins for analysing the interaction 
with Fbx15 are shaded in grey. Putative Fbx15-interacting transcription factors are shaded in blue. 
Modified from Jöhnk et al., 2016. 

A. fumigatus Fbx15 co-
purified proteins 

Protein description 

SCF-subunits & related proteins 

AFUA_1G12960 (CulA) SCF ubiquitin ligase subunit 

AFUA_5G06060 (SkpA) SCF ubiquitin ligase subunit 

AFUA_4G10350 (UbiD) Polyubiquitin 

AFUA_4G10780 (Tom1) ubiquitin-protein ligase 

AFUA_8G05500 (CsnD) COP9 signalosome subunit 

AFUA_5G07260 (CsnF) COP9 signalosome subunit 

AFUA_4G12630 (CsnG) COP9 signalosome subunit 

Transcription factors & nuclear proteins 

AFUA_3G09670 (OefC) C6 transcription factor 

AFUA_4G03460 (SrbB) bHLH transcription factor, involved in hypoxia and virulence 

AFUA_4G08930 Putative nucleolar GTPase (Nog2p) 

AFUA_2G11840 (SsnF) Transcriptional corepressor (Ssn6p) 

AFUA_6G05150 (RcoA) Transcriptional corepressor (Tup1p) 

AFUA_5G11390 APSES transcription factor, putative 

AFUA_2G06140 uracil DNA N-glycosylase activity, DNA repair 

AFUA_5G07890 single-stranded DNA binding protein (Rim1p) 

RNA processing 

AFUA_3G06440 Splicing factor with U2 snRNP localisation (Prp21p) 

AFUA_5G04420 Splicing factor with U2 snRNP localisation (Cus1p) 

AFUA_6G08610 RNA trimethyl guanosine synthase, role in 7-methylguanosine 
cap hypermethylation (Tgs1p) 

AFUA_5G09670 RNase III domain protein 

AFUA_7G05810 Putative ribonucleoprotein, nucleic acid binding (Mrd1p) 

Ribosomal proteins 

AFUA_1G05990 60S ribosomal protein (Rpl16Ap) 

AFUA_2G04130 40S ribosomal protein (Rps11A) 

AFUA_2G01830 Protein with putative ribosomal activity 

Signal-transduction 

AFUA_1G11730 (ArfA) GTPase activity, role in ER/Golgi transport  

AFUA_2G07600 GTP binding, signal recognition activity 

AFUA_6G07980 (NimX) Cyclin-dependent serine/threonine kinase  

AFUA_6G06750 14-3-3 family protein; predicted gene pair with ArtA 

Metabolic enzymes 

AFUA_1G12800 Putative NADPH isocitrate dehydrogenase (Idh2p) 

AFUA_2G04520 Protein with metal ion binding domains, oxidoreductase activity 
(Adh4p) 

AFUA_2G10920 (EchA) Putative enoyl-CoA hydratase/isomerase family protein, role in 
beta oxidation of fatty acids  

AFUA_3G08660 (IdpA) Putative isocitrate dehydrogenase  

AFUA_6G10660 (AclA) Putative ATP citrate lyase subunit  

AFUA_3G11070 (PdaC) Putative pyruvate decarboxylase  

Fungal morphology 

AFUA_4G08770 Protein with putative microtubule binding activity 

AFUA_5G03080 (AspC) Septin, role in cell polarity and hyphal growth  

Unknown function 

AFUA_1G09610 Conserved hypothetical protein 

AFUA_3G13930 Conserved hypothetical protein 
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Interactions with A. fumigatus Fbx15 were analysed with the Ser/threonine (Thr) kinase 

NimX and the transcriptional co-repressor subunit SsnF (Table 2, grey). A cytoplasmic 

interaction of A. fumigatus Fbx15 with NimX was investigated considering to trigger Fbx15 

phosphorylation (Jöhnk et al., 2016). 

Three transcription factors were found to be potential interaction partners of A. fumigatus 

Fbx15: OefC (overexpressed fluffy C), SrbB and the putative APSES transcriptional 

regulator AFUA_5G11390 (later called FiAt (Fbx15-interacting putative APSES 

transcription factor)) (Table 2, blue shaded). The regulation of the cellular localisation by 

transcriptional regulators is essential to cope with environmental changes or internal 

constitutions. In general, transcription factors regulate gene transcription through binding 

to DNA motifs or other transcriptional regulators as monomers or in a complex to control 

gene expression, either positively or negatively (Goodbourn and R., 1990; Horikoshi et al., 

1988; Levine and Manley, 1989; Ptashne, 1988; Sigler, 1988; Xiong et al., 2019). In 

A. fumigatus transcriptional regulation is mandatory during adaptation to environmental 

changes and in virulence mechanisms (Bahn, 2015). 6.19% (618/9.981) from annotated 

genes in A. fumigatus genome are specific for DNA binding. Similar proportions are 

predicted in other fungi like A. nidulans FGSC A4 with 5.95% (651/10.931), A. oryzae 

RIB40 with 4.10% (499/12.164) or S. cerevisiae with 4.06% (281/6.918) (Bultman et al., 

2017). 

 

3.3.1 Nuclear localisation of the co-repressor subunit SsnF is mediated by Fbx15 

in A. fumigatus 

The interaction of A. fumigatus Fbx15 with SsnF was analysed in more detail (Jöhnk et al., 

2016). SsnF or Ssn6 in Saccharomyces cerevisiae represents a co-repressor subunit 

forming a complex with homo-tetramers of Tup1 (Gounalaki et al., 2000; Palaiomylitou et 

al., 2008). During transcriptional repression SsnF/Ssn6 functions as an adaptor between 

the specific DNA-binding proteins and the Tup1 tetramer, whereas Tup1 comprises the 

repressive function of the co-repressor complex (García-Sánchez et al., 2005; Liu and 

Karmarkar, 2008; Tzamarias and Struhl, 1994). Remarkable, the Tup1-Ssn6 complex 

belongs to the conserved orthologous protein groups OG5_128428 and OG5_131310 in 

fungi and represses approx. 3 to 5% of the whole yeast genome (http://orthomcl.org) 

(DeRisi et al., 1997; Li et al., 2003; Parnell and Stillman, 2011). 

The wide range of gene regulation is due to its property not to bind directly to DNA but to 

other DNA-binding proteins, demonstrating its flexibility in respect to target a variety of 

proteins (Hanlon et al., 2011; Roy et al., 2013). For instance, the S. cerevisiae TupA-Ssn6 

co-repressor complex is needed to position nucleosomes across the entire coding 
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sequence of the DNA damage-inducible gene RNR3 together with Imitation SWItch (ISWI) 

chromatin remodelling factors (Zhang and Reese, 2004). Moreover, the FLO1 gene, whose 

gene product is responsible for cell-cell adhesion during S. cerevisiae flocculation in terms 

of survival under adverse conditions, is repressed by the TupA-SsnF complex during 

nutrient rich conditions (Church et al., 2017; Teunissen et al., 1995; Verstrepen and Fink, 

2009). Most recently, a TupA-independent network of S. cerevisiae SsnF with other 

transcriptional regulators was elucidated in copper homeostasis by the regulating the 

CTR1 gene, which encodes the Ctr1 copper transporter (Dancis et al., 1994; Voutsina et 

al., 2019). SsnF represses CTR1 gene expression in dependency of the transcriptional 

activator Mac1 (Jungmann et al., 1993; Voutsina et al., 2019). Moreover, SsnF interacts 

physically and genetically with the transcriptional repressor Hir1, a histone chaperon, 

resulting in an inactivation of Hir1 transcription if CTR1 gene expression is repressed (Amin 

et al., 2013; Voutsina et al., 2019). Comparable co-repressor systems are existing in 

mammals. For instance, a well-studied physiological relevant co-regulator complex is the 

NR-co-repressor complex, which includes 6 subunits. The complex is required to 

coordinate the metabolism in hepatocytes (Liang et al., 2019). 

The Fbx15-interacting protein SsnF has essential functions in A. fumigatus and is 

transported through the nuclear core membrane in dependency of Fbx15 and its 

phosphorylation status at S469 and S468. The phosphorylation status is presumably 

controlled by the essential NimX kinase and GlcA phosphatase. It is assumed that On the 

one hand, mimicking dephosphorylation of Fbx15 at S468 and S469 results in a nuclear 

clearance of SsnF during vegetative growth. The physical interaction of Fbx15 and SsnF 

is thereby shifted to the nucleus. On the other hand, mimicking phosphorylation at the most 

likely phosphorylated S469 through replacing the Ser residue with asparagine residue 

results in an accumulation of SsnF in the nucleus during oxidative stress conditions 

(Figure 7) (Jöhnk et al., 2016). 

SsnF is located in the nucleus and suggested to be transported to the nuclear envelop in 

a Fbx15-dependent manner during oxidative stress in A. fumigatus (Jöhnk et al., 2016). 

The molecular traffic through the nuclear core is essential for many cellular processes in 

all multicellular organisms and is mediated either passive through diffusion or active 

transport coupled with energy consumption (Görlich and Kutay, 2002; Mattaj and 

Englmeier, 1998; Nakielny and Dreyfuss, 1999). NLS-containing proteins like A. fumigatus 

Fbx15 are associated with an active nuclear transport mechanism through the nuclear pore 

complex (NPC) contrary to passive diffusion, which is achieved for molecules with a size 

up to 110 kilodalton (kDa) (Jöhnk et al., 2016; Lange et al., 2007; Wang and Brattain, 

2007). Classical NLS sequences are categorised into two subgroups: monopartite (mp) 

NLS consist of single stretches of basic aa and bipartite (bip) NLSs consisting of two 
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stretches of basic aa separated by a linker region (Dingwall and Laskey, 1991; Kalderon 

et al., 1984; Robbins et al., 1991). 

 

 

Figure 7: Simplified model of SsnF shuttle mechanism through the nuclear membrane 
depending of A. fumigatus Fbx15. SsnF gets transferred into the nucleus during vegetative 
growth when Fbx15 is phosphorylated most likely at S469 prior to S468, which is presumably driven 
by the NimX kinase in the cytoplasm. Upon oxidative stress conditions SsnF and Fbx15 RE shuttled 
outside the nucleus whereby SsnF is transported to the nuclear envelop depending on 
dephosphorylated Fbx15 at S468|9. Dephosphorylation of Fbx15 is presumably triggered by the 
GlcA/BimG phosphatase. Modified from Jöhnk et al., 2016. 

 

Most of the active nuclear import is driven by importin ß-related transport receptors which 

are constantly circulating between the nucleus and cytoplasm. Recognized cargo 

molecules are guided through NPCs whereby a physical interaction between the receptors 

and the NPCs is formed. This nuclear trafficking mechanism is regulated by a RanGTP 

gradient, in which low concentrations are present in the cytoplasm and high concentrations 

in the nucleus (Görlich et al., 1996; Mattaj and Englmeier, 1998). Release of cargo 

molecules in the nucleus is triggered by RanGTP binding (Chi et al., 1996; Rexach and 

Blobel, 1995). In contrast to nuclear import where importins are involved, the nuclear 

export is mediated by exportins that bind cargo molecules at high RanGTP concentrations 

in the nucleus (Fornerod et al., 1997; Kutay et al., 1997). Cargo proteins consisting of 

nuclear export signals (NESs) are bound to an exportin and guided through the NPC 

outside the nucleus (Fridell et al., 2002; Murphy and Wente, 1996; Nakielny and Dreyfuss, 

1999; Wen et al., 1995). Exported cargos are released from the cargo-exportin-RanGTP 

complex by GTP hydrolysis, whereby Ran is removed from exportin (Bischoff and Görlich, 

1997; Görlich et al., 1997; Kutay et al., 1997). A higher concentration of RanGTP in the 
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nucleus is ensured by RanGDP nuclear import by nuclear transport factor 2 (NTF2) and 

followed by a RanGEF-mediated re-charging of Ran with GTP (Figure 8) (Bauer et al., 

2015; Bischoff and Ponstingl, 1991; Ribbeck et al., 1998; Smith et al., 2004). Noteworthy, 

in the A. fumigatus Fbx15 protein sequence no NES sequences were identified (Jöhnk et 

al., 2016). 

 

 

Figure 8: Model of the nuclear transport cycle. (1) Import cargo binds to transport 
receptor/karyopherin in the cytoplasm and (2) moves through the nuclear pore complex (NPC) into 
the nucleus. There, (3) Ran‐GTP binds to the karyopherin resulting in the release of the imported 

cargo. (4) Export cargo binds to karyopherin-Ran‐GTP complex, which (5) transits through the NPC 
into the cytoplasm. (6) RanGAP triggers the conversion of Ran‐GTP to Ran‐GDP resulting in the 
dissociation of the karyopherin from Ran and export cargo. Recovering nuclear pools of Ran‐GTP 

is mediated by (7) Ran‐GDP, which binds to the non‐karyopherin transport receptor NTF2, and (8) 
moves into the nucleus, where (9) RanGEF triggers the conversion of Ran‐GDP to Ran‐GTP. NTF2 
is released and (10) moves back into the cytoplasm. Modified from Bauer et al., 2015. 
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Nuclear traffic can be regulated by e.g. masking or posttranslational modifications of NLS 

sequences (Poon and Jans, 2005). NLS sequences can be masked and unmasked intra 

– or intermolecular in order to control nuclear import as shown for the intramolecular 

masking of the p105 NLS, which gets unmasked upon the immune response through 

specific phosphorylation and degradation of the proteins C-terminus (Henkel et al., 1992; 

Poon and Jans, 2005; Rivière et al., 1991). Intermolecular masking is caused by the 

binding to an additional protein which shields the NLS of the corresponding protein and 

thereby controls its nuclear import as shown for the inhibitor of κB. The inhibitor masks the 

NLS of the transcriptional regulator NF-κB and shields the protein from nuclear import 

when NF-κB has to be inactivated (Beg et al., 1992; Ganchi et al., 1992; McLane and 

Corbett, 2009; Zabel et al., 1993). Another regulation of the nuclear import is obtained by 

a covalent modification through phosphorylation as known for S. cerevisiae Gln3p. 

S. cerevisiae Gln3p is a transcription factor, whose activity is dependent on the quality of 

nitrogen and carbon sources. Cytoplasmic abundance of phosphorylated Gln3p is given in 

case of nitrogen sources such as glutamine. Whereas Gln3p is transferred into the nucleus 

via karyopherin α/Srp1p in a dephosphorylated version during nitrogen starvation or 

nonpreferred nitrogen sources. The phosphorylation status of Gln3p is hereby controlled 

by TOR1 and TOR2 (Beck and Hall, 1999; Bertram et al., 2000; Carvalho and Zheng, 

2003). 

 

3.3.2 Several (putative) transcription factors are potential interaction partners of 

A. fumigatus Fbx15 

The overexpressed fluffy C (OefC) zinc binuclear transcription factor, SrbB as transcription 

factor of the sterol regulatory element binding protein family (SREBP) and the putative 

APSES transcription factor FiAt are potential interaction partner of A. fumigatus Fbx15 

(Figure 9) (Jöhnk et al., 2016). 

 

OefC was primarily described in A. nidulans due to a screening of growth- or development-

related genes. Multiple copies of OefC under the niiA-promoter result in “fluffy” hyphae 

formation with aerial hyphae production independent of the promoter induction (Lee et al., 

2005). A. fumigatus OefC is 669 aa long and contains a well-conserved Zn(II)2Cys6 

binuclear cluster domain (Figure 9A). The Zn(II)2Cys6 binuclear cluster domain comprises 

a zinc finger motif as part of a DNA-binding domain (DBD), in which six cysteine residues 

are bound to two zinc atoms uniquely in this type of transcription factors (Lohr et al., 1995; 

Todd and Andrianopoulos, 1997). OefC contains a middle homologous region (MHR) at its 

C-terminus (Figure 9A). MHRs are thought to act as regulators of the protein activity 

(MacPherson et al., 2006; Schjerling and Holmberg, 1996). The functions of zinc cluster 
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transcription factors vary from transcriptional regulation to other physiological roles, 

including mediating chromatin remodelling, lipid binding, protein chaperoning, 

protein-protein interactions, and zinc sensing (Laity et al., 2001). In pathogenic fungi such 

as A. fumigatus and Candida albicans zinc cluster transcription factors are known to be 

involved in virulence and pathogenicity (Issi et al., 2017; Rybak et al., 2017; Vandeputte et 

al., 2011). 

 

 

Figure 9: Domain architecture of the transcriptional regulator OefC and SrbB, and the 
putative transcription factor FiAt in A. fumigatus. (A) The zinc cluster transcription factor OefC 
(overexpressed fluffy C) with a protein length of 669 amino acid (aa) contains a fungus-specific zinc 
binuclear cluster domain (green), which consists of two zinc and two cysteine molecules (Zn2Cyc6) 
at aa position 222 to 257. A monopartite nuclear localisation signal (mp NLS, dark yellow) is present 
at aa 229 to 244. A middle homologous region (MHR, blue) is present at aa 298 to 668. Modified 
from Lee et al., 2005. (B) The SREBP transcription factor SrbB with a protein length of 299 aa 
contains a basic helix-loop-helix (bHLH, green) DNA binding domain at aa 204 to 265. Modified 
from Chung et al., 2014. (C) The uncharacterized putative transcription factor FiAt (Fbx15 
interacting APSES transcription factor) consists of an ASPES-typical included helix-turn-helix (HTH, 
green) domain at aa position 64 to 173 with inside a HTH DNA-binding motif at aa 100 to 121 (dark 
green) (Jöhnk et al., 2016) (https://prosite.expasy.org/scanprosite/). At the N-terminus a putative 
bipartite (bip) NLS at aa position 5 to 33 (light yellow) was identified. At the C-terminus a mp NLS 
at aa position 369 to 379 (dark yellow), as well as a nuclear export signal (NES, orange) at aa 
position 403 to 407 were identified with the cNLS Mapper program 
(http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi) and the NetNES 1.1 Server 
program (http://www.cbs.dtu.dk/services/NetNES/). 

 

The 299 aa long transcription factor SrbB has a characteristic basic helix-loop-helix (bHLH) 

domain with a canonical tyrosine residue at its C-terminus and is conserved among the 

https://prosite.expasy.org/scanprosite/
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Aspergillus family (Figure 9B) (Bien and Espenshade, 2010; Hua et al., 1993; Yokoyama 

et al., 1993). A. fumigatus SrbB was initially identified in CHIP-seq analysis of SrbA, 

another member of the SREBP family. SrbB is not membrane bound and needs regulated 

intramembrane proteolysis for activation contrary to SrbA (Chung et al., 2014). It has been 

shown that the abundance of the srbB transcript is regulated by SrbA and vice versa. SrbB 

regulates together with SrbA genes involved in heme biosynthesis and demethylation of 

C4-sterols upon hypoxia. Independent of SrbA, SrbB is involved in regulating of the 

carbohydrate metabolism, hypoxia adaptation and virulence (Chung et al., 2014). In 

several pathogenic fungi SrbB was reported to have an impact on the fungal fitness in 

response to hypoxia such as A. fumigatus, Cryptococcus neoformans and 

Paracoccidioides brasiliensis (Willger et al., 2008). 

 

The putative APSES (Asm1p, Phd1p, Sok2p, Efg1p and StuAp) transcription factor FiAt is 

434 aa long and contains a basic helix-turn-helix (bHTH) APSES domain with inside a HTH 

motif, a bip NLS, a mp NLS and a NES (Figure 9C). In general APSES domain-containing 

proteins represent transcriptional regulators solely present in fungi that share a highly 

conserved bHLH DNA-binding motif (Aramayo et al., 1996). APSES transcription factors 

are involved in fungal development such as sporulation, secondary metabolism and 

pathogenicity (LeeJ. Y. et al., 2013; Yao et al., 2017; Zhao et al., 2014). An already 

functional analysed APSES transcription factor in A. fumigatus is StuA. A. fumigatus StuA 

positively regulates conidiophore development, ergot alkaloid production and is involved 

in virulence by regulating gene uge3 encoding for the uridine 

diphosphate-glucose-epimerase, which is crucial for adherence by mediating the 

galactosaminogalactan biosynthesis (Gravelat et al., 2013; Sheppard et al., 2005). StuA 

itself is transcriptional regulated by the SREBP transcription factor SrbA (Willger et al., 

2008). Most fungi contain five ASPES proteins. Nonetheless, Cyrptococcus neoformans 

possess only two APSES proteins and Saccharomyces cerevisiae six APSES proteins 

(Zhao et al., 2014). Maturation of ascospores and conidiophores is mediated by Asm1 in 

Neurospora crassa and by StuA in A. nidulans (Aramayo et al., 1996; Dutton et al., 1997). 

The impact on virulence for APSES transcription factors has been shown in Candida 

albicans and A. flavus. Candida albicans Efg1p is needed for host cell invasion and 

virulence of disseminated in mice and oral candidiasis next to its function in mating and 

yeast-to-hypha transition and normal adherence (Doedt et al., 2004; Lo et al., 1997; Park 

et al., 2005; Sonneborn et al., 1999; Sonneborn et al., 1999; Stoldt et al., 1997). A. flavus 

AfRafA and AfStuA play a central role in fungal development, mycotoxin synthesis 

including aflatoxin and cyclopiazonic acid and pathogenicity (Yao et al., 2017). 
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3.3.3 The putative C-terminal part of a F-type ATPase F-subunit FidA as potential 

interaction partner of Fbx15 in A. fumigatus 

The protein Afu2G05520 was identified as putative interaction partner of A. fumigatus 

Fbx15 out of 66 total candidates (Table S1). This protein is the putative C-terminal part of 

an F-type ATPase, later on called FidA (Fbx15-interacting developmental protein A), was 

identified as the C-terminal part of a F-type ATPase F-subunit in Penicillium expansum 

(gene XP_016595530.1) (Figure 10) (Ballester et al., 2015). This C-terminal part is 

separated from the N-terminal part in A. fumigatus (F-domain: Afu2G05510, FidA: 

Afu2g05520) (Figure 10). 

 
 

Figure 10: FidA as putative C-terminal part of a F-type ATPase F-subunit is a putative 
interacting protein of the A. fumigatus Fbx15 protein. (A) The Fbx15-interacting developmental 
protein A (FidA) was identified as an uncharacterized, putative interacting protein of Fbx15 out of 
66 candidates in A. fumigatus from RFP-pulldowns. Data were obtained from LCMS-analysis (see 
for details Table S1).  (B) Analysis of sequential composition of FidA. Sizes are indicated in bp. FidA 
is a potential F-domain-consisting ATPase. The F-domain (yellow) is separated from FidA (green) 
in A. fumigatus (Afu2g05520). In Penicillium expansum the orthologue XP_01659553 is composite 
of FidA together with the corresponding F-domain. Alignments were performed with NCBI-BLAST 
(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins). 

 

Many cellular processes like the UPS or active nuclear traffic consume energy (Bos et al., 

2007; Glickman and Ciechanover, 2002). The most common form of intracellular energy 

carriers is ATP, which is also referred as ‘molecular unit of currency’ (Knowles, 2003). 

Depending on the need in metabolic processes ATP can be interconverted into adenosine 

diphosphate (ADP) or adenosine monophosphate (AMP) in terms of energy consumption 

(Alberts et al., 2014). ATP synthases (ATPases) hydrolyses ATP to ADP and a free 

phosphate ion or syntheses ATP out of ADP and free phosphate in a condensate reaction 

(von Ballmoos et al., 2009; Igamberdiev and Kleczkowski, 2015; Junge and Nelson, 2015; 

Walker, 2013). ATPases can be subdivided in five classes: F-, V-, A-, P-, N- and 

E-ATPases. All ATPases are found in eukaryotes except N-type and A-ATPase. N-type 

ATPases act as F-type ATPases in bacteria whereas A-type ATPases are solely present 
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in Archaea, also acting like F-type ATPases (Dibrova et al., 2010; Müller et al., 2006; 

Steinert et al., 1997). In eukaryotic cells most cellular processes are driven by the 

hydrolysis of ATP in mitochondria by F-type ATPases (von Ballmoos et al., 2009; Junge 

and Nelson, 2015; Walker, 2013). F-type proton-translocating ATPases are 

transmembrane-bound protein channels required to synthesize ATP by oxidative 

phosphorylation. This mechanism is coupled with an electrochemical proton gradient, 

which is established by an electron transfer chain (Futai et al., 1989, 2000, 2005; Pedersen 

and Carafoli, 1987). 

 

4 Aim of this study 

F-box proteins are substrate adaptors of SCF E3 ubiquitin RING ligases, which target 

proteins that should be ubiquitinated (Schmidt et al., 2009). F-box proteins were shown to 

have an influence on multicellular developmental processes and secondary metabolism in 

A. nidulans, among them Fbx15 that is conserved in A. fumigatus (Jöhnk et al., 2016; von 

Zeska Kress et al., 2012). The F-box protein Fbx15 was first identified in A. nidulans with 

a crucial role in asexual and sexual development as well as secondary metabolite 

homeostasis (von Zeska Kress et al., 2012). A. nidulans Fbx15 is to 60% identical to its 

homolog in A. fumigatus (Jöhnk et al., 2016). A. fumigatus Fbx15 is essential for the 

regulation of secondary metabolism, stress response, virulence and was identified as 

putative shuttle protein for the nuclear localisation of the co-repressor subunit SsnF. 

Cellular localisation of the co-repressor subunit SsnF is ensured by the presence of 

A. fumigatus Fbx15 depending on the phosphorylation status at the putative 

phosphorylation residues S468 and S469. The absence of A. fumigatus Fbx15 activity 

results in a complete loss of virulence in mice as well as the regulation of the pathogenicity-

associated mycotoxin gliotoxin is mediated by A. fumigatus Fbx15 (Jöhnk et al., 2016). 

In the first part of this study the stress response-mediating A. fumigatus Fbx15 and the 

development-mediating A. nidulans Fbx15 were analysed if they functionally replace each 

other due to secondary metabolism, stress adaptation and asexual and sexual 

development as they show structural similarities. Therefore, A. fumigatus Fbx15 was 

integrated in A. nidulans and vice versa and analysed due to their phenotypes without and 

with stress detergents. Furthermore, putative interaction partners of Fbx15 were analysed 

according their local physical interaction via bimolecular fluorescence complementation 

(BiFC) and the putative interplay in regulatory processes in A. fumigatus and/or A. nidulans 

by phenotypical assays without and/or with stress detergents, virulence tests in the 

Galleria mellonella larvae infection assay, localisation determination in dependency of the 

presence of Fbx15 and/or by aligning their secondary metabolite profiles. 
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In the second part it was analysed whether A. fumigatus Fbx15-dependent regulation in 

gliotoxin biosynthesis was examined in context to A. fumigatus Fbx15-mediated stress 

response and virulence by deleting gliP or gliZ genes, whose encoding gene products 

represent essential components for gliotoxin biosynthesis (Balibar and Walsh, 2006; Bok 

et al., 2006). Additionally, it was examined if A. fumigatus Fbx15 is required for the 

regulation of other A. fumigatus-specific toxic secondary metabolites despite of gliotoxin 

through HPLC-MS analysis, whose regulation may be required A. fumigatus adaptation 

and/or virulence. 

In the third part of this study A. fumigatus Fbx15 functionality was further elucidated in 

dependency of its two NLS sequences. It was examined whether both NLS sequences are 

required for the same or different functions and/or at different circumstances. Therefore, 

A. fumigatus Fbx15 NLS single and double deficient mutants were generated and analysed 

in growth tests concerning stress tolerance and localisation without and with oxidative 

stress. Furthermore, the localisation of the co-repressor subunit SsnF was examined in 

dependency of A. fumigatus Fbx15 NLS1 and NLS2. Respecting A. fumigatus Fbx15 

cellular localisation dependent on its structural architecture, the impact of S468 and S469 

was additionally analysed during non-stress- and oxidative stress conditions. 
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II Materials and Methods 

 

1 Chemicals and materials 

 

Buffers, media and solutions were prepared with chemicals of the companies 

AppliChem GmbH (Darmstadt, Germany), BD Biosciences (Heidelberg, Germany), 

Biozym Scientific GmbH (Hessisch Oldendorf, Germany), Carl Roth GmbH&Co.KG 

(Karlsruhe, Germany), Fluka (Neu-Ulm, Germany), Invitrogen (Karlsruhe, Germany), 

Merck KGaA (Darmstadt, Germany), Oxoid Deutschland GmbH (Wesel, Germany), 

Roche Diagnostics GmbH (Mannheim, Germany), Sigma-Aldrich Chemie GmbH 

(Munich, Germany), Serva Electrophoresis GmbH (Heidelberg, Germany) and VWR 

International GmbH (Darmstadt, Germany). The pH was determined with a WTW 

bench pH/mV Routine meter pH 526 (Sigma-Aldrich Chemie GmbH) was used. For 

small-scale sterile filtration of solutions Filtropur filters with a pore size of 0.2 and 0.45 

μm from Sarstedt AG&Co.KG (Nümbrecht, Germany) were used. All plastic 

consumables like inoculation loops, petri dishes, pipet tips, and consumables needed 

for cryo – preservation/-conservation etc. were obtained from Sarstedt AG&Co.KG, 

Starlab GmbH (Hamburg, Germany) and Nerbe plus GmbH (Winsen/Luhe, 

Germany). 

For selection of microorganisms ampicillin (Carl Roth GmbH&Co.KG), hygromycin B 

(InvivoGen, San Diego, CA, USA), phleomycin (InvivoGen) and pyrithiamine 

hydrobromide (Sigma-Aldrich Chemie GmbH) were used. Primers were obtained 

from Eurofins Genomics GmbH (Ebersberg, Germany) and Sigma-Aldrich Chemie 

GmbH (Munich, Germany). DNA fragment amplifications were accomplished with the 

Phusion® High-Fidelity DNA polymerase, appropriated polymerase buffers, synthetic 

oligonucleotides and restriction enzymes with corresponding buffers from Thermo 

Fisher Scientific (Schwerte, Germany). The GeneRulerTM 1 kb DNA Ladder (Thermo 

Fisher Scientific) was utilised for DNA on-gel band size determination in DNA gel 

electrophoresis. PCR-reactions were performed with the PCR-cyclers Primus96 

Thermal Cyclers from MWG-Biotech (Ebersberg, Germany), T Professional Standard 

96, T Professional Trio 48, T Professional Standard 96 Gradient thermocycler from 

Biometra GmbH (Göttingen, Germany) or Mastercycler® gradient from Eppendorf AG 

(Hamburg, Germany). 

Gel electrophoresis was performed in the Sub-Cell® GT Cell gel chamber powered 

by the Power Pac 300 from Bio-Rad Laboratories GmbH (Munich, Germany). A 

NanoDropTM ND-1000 spectrophotometer from PeqLab Biotechnology GmbH 
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(Erlangen, Germany) was used to measure DNA and RNA concentrations. RNase A 

was provided by AppliChem GmbH. The DNA polymerases Phusion® High-Fidelity 

DNA polymerase and Taq DNA polymerase with corresponding polymerase buffers 

and deoxynucleotides were obtained from Thermo Fisher Scientific. Harvesting of 

Aspergillus mycelium was performed with Calbiochem® Miracloth from Merck KGaA. 

AmershamTM Hybond-NTM nylon membrane was used to bind nucleic acid that was 

detected by AmershamTM HyperfilmTM-ECL for chemiluminescent signals and the 

Optimax® X-ray Film Processor from Protec GmbH&Co.KG (Oberstenfeld, 

Germany). For western hybridisation proteins were measured with an Infinite M200 

microplate reader operated with Magellan software (both: Tecan Trading AG, 

Männedorf, Switzerland). The Mini-Protean® Tetra Cell, Mini Trans-Blot® 

Electrophoretic Cell and with the PowerPacTM 3000 power supply (Bio-Rad 

Laboratories GmbH) was utilised to perform SDS polyacrylamide gel electrophoresis. 

For protein on-gel band size determination the PageRulerTM Prestained Protein 

Ladder 10-180 kDa (Thermo Fisher Scientific) was used. Proteins were blotted on 

AmershamTM ProtranTM 0.45 μm NC nitrocellulose membrane (GE Healthcare life 

science) and detected with the Fusion SL7 chemiluminescence detector (PeqLab 

Biotechnology GmbH) or AmershamTM HyperfilmTM-ECL (GE Healthcare life science). 

Signal quantification was performed with image processing Fiji software (Schindelin 

et al., 2009). Protein purification of GFP-/RFP-tagged proteins was performed with 

GFP-Trap or RFP-Trap agarose beads from Chromotek (Planegg-Martinsried, 

Germany). The primary antibodies α-HA antibody [clone HA-7] from (Sigma-Aldrich 

Chemie GmbH), Anti-Phospho - (Ser/Thr) Phe antibody (ab17464) from Abcam 

(Cambridge, United Kingdom), Anti-Ubiquitin clone P4D1-A11 mouse antibody 

(Merck KGaA), α-GFP mouse antibody and α-RFP mouse antibody (both: 

Chromotek) and the secondary antibodies horseradish peroxidase-coupled rabbit 

G21234 (Invitrogen) and mouse antibody 115-035-003 from Jackson 

ImmunoResearch (Newmarket, United Kingdom) were used. 

The RealMasterMix SYBR ROX 2.5x from 5 PRIME GmbH (Hilden, Germany) and 

the Light Cycler 2.0 System from Roche Diagnostics GmbH were used for Real-Time 

PCR. Quantitative analysis was performed with CFX ConnectTM Real-Time System 

(Bio-Rad). For 1.5 ml and 2 ml reaction tube centrifugation HeraeusTM Biofuge Fresco 

(cooled) and HeraeusTM PicoTM Microcentrifuges from Heraeus Instruments GmbH 

(Hanau, Germany), Sorvall RC-3B Plus Refrigerated Centrifuge (Thermo Fisher 

Scientific) and Sorvall RC-5B Plus Refrigerated Centrifuge (Thermo Fisher Scientific) 

were used. For 10 ml, 15 ml and 50 ml centrifugation tubes Rotixa/RP from Andreas 

Hettich GmbH & Co. KG (Tuttlingen, Germany), 5804R from Eppendorf AG and 
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4K15C from Sigma Laborzentrifugen GmbH (Osterode am Harz, Germany) were 

used. 

Fluorescence imaging was performed using an Axiovert Observer Z1 confocal 

microscope from Carl Zeiss Microscopy GmbH (Jena, Germany) equipped with a 

CoolSNAP ES2 CCD Camera from Photometrics (Tucson, Arizona, USA) or the 

Confocal Scanner Unit CSU-X1 from Yokogawa Electric Corporation (Tokyo, Japan) 

with a QuantEM:512SC EMCCD Camera from Photometrics. Image analysis was 

performed using the SlideBook 6.0 digital microscopy software (Intelligent Imaging 

Innovations, Göttingen, Germany). Hoechst 33258 pentahydrate (Invitrogen) or DAPI 

(Carl Roth GmbH&Co.KG) were used to visualise nuclei. For virulence assays 

Galleria mellonella moth larvae were purchased from Fauna Topics GmbH 

(Marbach/N. Rielingshausen, Germany). 

Materials, instruments and suppliers not mentioned here are indicated in the following 

chapters. 

 

2 Strains 

2.1 Escherichia coli 

Escherichia coli strain DH5α [F-, ∆ (argF-lac)169, φ80dlacZ∆M15, ∆phoA8, 

glnX44(AS), λ-, deoR481, rfbC1, gyrA96(NalR), recA1, endA1, thiE1, sdR17] 

(Hanahan, 1985) was utilised. 

 

2.2 Aspergillus fumigatus and Aspergillus nidulans 

In this study generated and used A. fumigatus and A. nidulans strains are listed in 

Table 3. Construction details are given below with corresponding plasmids and 

oligonucleotides listed in Table 4 and Table 5. 

 
Table 3: Generated and used A. fumigatus and A. nidulans strains in this study. 
P = promoter, T = terminator, NRM = non-recyclable marker, hph = hygromycin resistance, 
phleo = phleomycine. 

 
A. fumigatus strains generated and used in this study 

Strain name Genotype Reference 

D141 Clinical isolate Reichard et al., 
1990 

Af293.1 
(FGSC# 1137) 

pyrG1 Fungal 
Genetics Stock 
Center, Kansas 
City, 
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Missouri, USA 
(McCluskey et 
al., 2010) 

AfS35 
(FGSC#1159) 

nkuA::loxP  Krappmann, 
Sasse and 
Braus, 2006 

AfGB189 ∆pyroA; loxP C. Sasse 

AfGB118 ∆pyroA::pyroA:tetOn:rfp Helmschrott et 
al., 2013 

AfGB128 ∆nkuA; fbx15::six Jöhnk et al., 
2016 

AfGB417 ∆nkuA; ∆fbx15::fbx15:six This study 

AfGB418 ∆nkuA; ∆fbx15::PgpdA:fbx15:six This study 

AfGB419 ∆nkuA; ∆fbx15::PgpdA:fbx15:sgfp:six This study 

AfGB420 ∆nkuA; ∆fbx15::fbx15∆|NLS2:six This study 

AfGB421 ∆nkuA; ∆fbx15::fbx15NLS1|∆:six This study 

AfGB422 ∆nkuA; ∆fbx15::fbx15∆|∆:six This study 

AfGB423 ∆nkuA; ∆fbx15::PgpdA:fbx15∆|NLS2:rfp:six This study 

AfGB424 ∆nkuA; ∆fbx15::PgpdA:fbx15NLS1|∆:rfp:six This study 

AfGB425 ∆nkuA; ∆fbx15::PgpdA:fbx15∆|∆:rfp:six This study 

AfGB426 ∆nkuA; ∆fbx15::PgpdA:fbx15S468|9A:rfp:six This study 

AfGB427 ∆nkuA; ∆fbx15::PgpdA:fbx15S468|9D:rfp:six This study 

AfGB428 ∆nkuA; gliP::six This study 

AfGB429 ∆nkuA; gliZ::six This study 

AfGB430 ∆nkuA; ∆gliP; fbx15::∆fbx15:six This study 

AfGB431 ∆nkuA; ∆gliZ; fbx15::∆fbx15:six This study 

AfGB432 pyrG1::pyrG, PniiA:cyfp:fbx15:TniiA, PniaA:nyfp:srbB:TniaA This study 

AfGB433 pyrG1::pyrG, PniiA:cyfp:fbx15:TniiA, PniaA:nyfp:fiAt:TniaA This study 

AfGB434 pyrG1::pyrG, PniiA:fbx15:cyfp:TniiA, PniaD:nyfp:fidA:TniaD This study 

AfGB435 pyrG1::pyrG, PniiA:cyfp:fbx15:TniiA, PniaA:nyfp:TniaA This study 

AfGB436 pyrG1::pyrG, PniiA:cyfp:TniiA, PniaA:nyfp:fiAt:TniaA This study 

AfGB437 pyrG1::pyrG, PniiA:cyfp:TniiA, PniaD:nyfp:fidA:TniaD This study 

AfGB438 ∆nkuA; oefC::six This study 

AfGB439 ∆nkuA; ∆oefC::sgfp:oefC:six This study 

AfGB440 ∆nkuA; ∆oefC::PgpdA:sgfp:oefC:six This study 

AfGB441 ∆nkuA; ∆oefC; fbx15::∆fbx15:six This study 

AfGB442 ∆nkuA; ∆fbx15; sgfp:oefC:six This study 

AfGB443 ∆nkuA; ∆fbx15; ∆oefC::PgpdA:sgfp:oefC:six This study 

AfGB444 ∆nkuA, srbB::six C. Sasse 

AfGB445 ∆nkuA; ∆srbB::srbB:rfp:six This study 

AfGB446 ∆nkuA; ∆fbx15; srbB::∆srbB:six This study 

AfGB447 ∆nkuA; ∆srbB::PgpdA:srbB:six This study 

AfGB448 ∆nkuA; ∆fbx15; PgpdA:srbB:six This study 

AfGB449 ∆nkuA; fiAt::six This study 

AfGB450 ∆nkuA, ∆pyroA::pyroA:tetOn:fiAt This study 

AfGB451 ∆nkuA, ∆pyroA::pyroA:tetOn:fiAt:sgfp This study 

AfGB452 ∆nkuA, ∆pyroA::pyroA:tetOn:fiAt:sgfp; fbx15::six This study 

AfGB453 ∆nkuA; ∆fbx15; fiAt::six This study 

AfGB454 ∆nkuA; fidA::six This study 

AfGB455 ∆nkuA; ∆fidA::fidA:sgfp:six This study 

AfGB456 ∆nkuA; fidA::PgpdA:fidA:sgfp:six This study 

AfGB457 ∆nkuA; fidA::sgfp:fidA:six This study 

AfGB458 ∆nkuA; fidA:: PgpdA:sgfp:fidA:six This study 

AfGB459 ∆nkuA; fidA::ha:fidA:six This study 

AfGB464 ∆nkuA; ∆fbx15::PgpdA:fbx15∆|NLS2:rfp:six; 
ssnF::ssnF:sgfp:hphNRM 

This study 

AfGB465 ∆nkuA; ∆fbx15::PgpdA:fbx15NLS1|∆:rfp:six; 
ssnF::ssnF:sgfp:hphNRM 

This study 
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AfGB466 ∆nkuA; ∆fbx15::PgpdA:fbx15∆|∆:rfp:six; 
ssnF::ssnF:sgfp:hphNRM 

This study 

AfGB467 pyrG1::pyrG, PniiA:cyfp:fbx15:TniiA, PniaA:nyfp:oefC:TniaA This study 

 
A. nidulans strains generated and used in this study 

ANCS07 nkuA::loxP C. Sasse 

AGB1265 ∆nkuA; fbx15::six This study 

AGB1266 ∆nkuA; ∆fbx15::fbx15:strep:six This study 

AGB1267 ∆nkuA; ∆fbx15::PgpdA:fbx15:rfp:six This study 

AGB1268 ∆nkuA; PniiA:cyfp:fbx15:TniiA, 
PniaA:nyfp:oefC:TniaA:phleoNRM 

This study 

AGB1269 ∆nkuA; PniiA:cyfp:fbx15:TniiA, PniaA:nyfp:fidA:TniaA:phleoNRM This study 

AGB1270 ∆nkuA; PniiA:cyfp:fbx15:TniiA, PniaA:nyfp:TniaA:phleoNRM This study 

AGB1271 ∆nkuA; PniiA:cyfp:TniiA, PniaA:nyfp:oefC:TniaA:phleoNRM This study 

AGB1272 ∆nkuA; PniiA:cyfp:TniiA, PniaA:nyfp:fidA:TniaA:phleoNRM This study 

AGB1273 ∆nkuA; oefC::six This study 

AGB1274 ∆nkuA; ∆oefC::oefC:six This study 

AGB1275 ∆nkuA; ∆oefC::sgfp:oefC:six This study 

AGB1276 ∆nkuA; ∆oefC::PgpdA:sgfp:oefC:six This study 

AGB1277 ∆nkuA; ∆fbx15; sgfp:oefC:six This study 

AGB1278 ∆nkuA; fidA::six This study 

AGB1279 ∆nkuA; ∆fidA::fidA:sgfp:six This study 

AGB1280 ∆nkuA; ∆fidA::PgpdA:fidA:sgfp:six This study 

AGB1281 ∆nkuA; ∆fidA::sgfp:fidA:six This study 

AGB1282 ∆nkuA; ∆fidA::PgpdA:sgfp:fidA:six This study 

AGB1283 ∆nkuA; ∆fidA::ha:fidA:six This study 

 
A. fumigatus and A. nidulans crossover complementations 

AfGB460 ∆nkuA; ∆fbx15AF::fbx15AN:six This study 

AfGB461 ∆nkuA; ∆oefCAF::oefCAN:six This study 

AGB1284 ∆nkuA; ∆fbx15AN::fbx15AF:six This study 

AGB1285 ∆nkuA; ∆oefCAN::oefCAF:six This study 

 

3 Media and growth conditions 

Used media and supplemental substances were made in deionized water (dH2O) and 

sterilized by autoclaving at 2 bar and 121°C for 20 min or sterile filtrated through a 

0.2 µM - or 0.45 µM pore size filter membrane. 

 

3.1 Escherichia coli cultivation 

E.coli strains were cultivated in liquid lysogeny broth (LB) medium (Bertani, 1951) 

[1% (w/v) bacto-tryptone, 1% (w/v) NaCl, 2% (w/v) agar for solid medium, 0.5% (w/v) 

yeast extract, pH 7.5] by shaking on a rotary shaker at 37°C. For transformation of 

calcium competent E. coli cells liquid super optimal broth with catabolite repression 

(SOC) medium [2% bacto tryptone, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, 

10 mM NaCl, 0.5% yeast extract, supplemented with 20 mM glucose after 

autoclaving] was used. Solid LB medium plates supplemented with 100 µg/ml 

ampicillin was used for the selection of transformants. Plasmids conservation was 

https://en.wikipedia.org/wiki/Catabolite_repression
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performed with equal volumes of bacterial overnight (o/n) cultures and 50% glycerol 

and stored at -80°C. 

 

3.2 Aspergillus cultivation 

A. fumigatus and A. nidulans strains were cultivated in Aspergillus minimal medium 

(AMM) [1% D-glucose, 1 x AspA (7 mM KCl, 11.2 mM KH2PO4, 70 mM NaNO3, 

pH 5.5), 2 mM MgSO4, 1 x trace elements (7.1 μM CoCl2, 6.4 μM CuSO4, 174 μM 

EDTA, 18 μM FeSO4, 178 μM H3BO3, 25 μM MnCl2, 6.2 μM Na2MoO4, 76 μM ZnSO4] 

(Pontecorvo et al., 1953) at 37 °C either shaking in liquid cultures to obtain vegetative 

mycelium, or on solid plates, containing 2% agar for conidiation. A. fumigatus strains 

generated with the TetOn-System (Helmschrott et al., 2013) were grown on solid 

London medium (LM) [1% (w/v) glucose, 7 mM KCl, 11.2 mM KH2PO4, 2 mM MgSO4, 

5 mM (NH4)2C4H4O6, 0.1% (v/v) trace element solution, pH 5.5] (Käfer, 1977) 

supplemented with 30 μg/ml doxycycline (dox) to induce overexpression.  

 

4 Phenotypical assays 

4.1 Fungal stress tests 

Phenotypical stress tests were performed by spotting 2*103 or 5*103 conidia on 30 ml 

AMM or, for overexpression generated with the TetOn-System (Helmschrott et al., 

2013), 30 ml LM containing 30 μg/ml dox. Used stressors were H2O2 for oxidative 

stress response, NaCl for osmotic stress response, lactose for carbon source 

changes, methylmethanesulfonate (MMS), camptothecin (CPT), CongoRed for cell 

wall stress response, 3-aminotriazole (3-AT) for histidine stress response and 

amphotericin B (Amp B) as antifungal drug. Also, the heavy metal stressor cadmium 

sulphate (CdSO4) was tested. Strains were grown for three up to five days at 37°C in 

light (A. nidulans) or darkness (A. fumigatus). Results were documented with an 

Epson Perfection V600 Photo Scanner from Epson (Suwa, Japan). 

 

4.2 Spore and cleistothecia quantification 

For spore and cleistothecia quantification 2000 spores of Aspergilli were point 

inoculated and grown on solid AMM plates for seven days in light or dark with limited 

oxygen supply at 37°C to induce asexual and sexual development. Quantification of 

spores was performed by harvesting all spores from one plate in 5 ml NaCl-Tween 

solution. Spore numbers were determined by using Thoma cell counting chambers 
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(hemocytometer) from PaulMarienfeld GmbH& Co.KG (Lauda-Königshofen, 

Germany). 

Cleistothecia quantification was performed by cutting out 5 mm2 agar plugs with the 

larger opening of a 200 µl pipette tip. Matured cleistothecia were counted by their 

individualization on a new agar plate with a SZX12-ILLB2-200 binocular microscope 

(Olympus Deutschland GmbH, Hamburg, Germany). Significances were determined 

with one-way Anova and Student’s t-test by Simple Interactive Statistical Analysis 

(SISA) (Uitenbroek, 1997). 

 

5 Nucleic acid isolation 

5.1 Isolation and purification of plasmid DNA and linearized DNA 

fragments 

The NucleoSpin® Plasmid Kit (Macherey-Nagel) or the QIAprep® Spin Miniprep Kit 

(Qiagen) were utilised according to manufacturer’s specifications to purify plasmid 

DNA from E. coli cultures. Plasmid DNA was eluted from spin columns with 65°C hot 

ddH2O and stored at -20°C. Linearized DNA fragments obtained from PCR 

amplification or digestions with enzymes for plasmid linearization and construct 

excision were separated by agarose gel electrophoresis using the 10 x DNA loading 

dye [0.2% (w/v) bromophenol blue, 200 mM EDTA pH 8.0, 10% (v/v) Ficoll 400, 0.2% 

(w/v) xylene cyanol FF]. Purification of respective collected DNA bands from agarose 

gels was obtained by utilising the NucleoSpin® Gel and PCR Clean-up Kit 

(Macherey-Nagel) or the QIAquick® Gel Extraction Kit (Qiagen). 

 

5.2 Extraction and purification of genomic DNA from Aspergillus 

Overnight cultivated vegetative mycelium of A. fumigatus and A. nidulans was frozen 

in liquid nitrogen and pulverized with a MM400 table mill from Retsch Technology 

GmbH (Haan, Germany). The pulverized mycelium was mixed with 600 µl gDNA lysis 

buffer (Lee and Taylor, 1990) (50 mM EDTA, 3% (w/v) SDS, 50 mM Tris-HCl pH 7.2, 

1% (v/v) β-mercaptoethanol) to a homogenous solution. After 1h incubation at 65°C 

200 µl 8 M potassium acetate was added to the mycelium solution, mixed by inversion 

and centrifuged for 15 min at 13000 rpm at room temperature (RT). The supernatant 

was subsequently transferred to a clean reaction tube, mixed with 400 µl isopropanol 

supplemented 20 µl of 1 M NaOAc and centrifuged for two min at 13000 rpm at RT. 

Obtained DNA was washed with 70% (v/v) ethanol, centrifuged for two min at 13000 

rpm at RT and dried at 65°C. DNA was resolved in 20 µg/ml RNAse A-containing 
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100 µl ddH2O at 65°C and concentrations were measured with a Nanodrop ND-1000 

(Peqlab Biotechnology GmbH). 

 

6 Bioinformatical analysis 

Multiple protein sequence alignment was performed using the blastp-algorithm of 

NCBI-BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins). The 

ScanProsite tool (https://prosite.expasy.org/scanprosite/) (de Castro et al., 2006) was 

utilised to determine domains using the aa sequences. NES were identified using the 

NetNES 1.1 Server program (http://www.cbs.dtu.dk/services/NetNES/) (La Cour et 

al., 2004) and classical NLS were identified using the cNLS Mapper program 

(http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi) (Kosugi et al., 2008; 

Kosugi et al., 2009; S. Kosugi, Hasebe, Tomita, & Yanagawa, 2009). Putative 

phosphosites were identified with the NetPhos 3.1 Server 

(http://www.cbs.dtu.dk/services/NetPhos/). Disordered region predictions with 

protein-binding activity were identified with the DISOPRED3 program 

(http://bioinf.cs.ucl.ac.uk/disopred) (KosugiShunichi et al., 2009). 

 

7 Molecular techniques 

7.1 Polymerase chain reaction (PCR) 

DNA fragments used for plasmid generation, Southern probes, control of plasmid 

insertion after E. coli transformation through seamless cloning or ligation (colony 

PCR) were obtained by polymerase chain reaction (PCR) (Saiki et al., 1988, 

Bergkessel and Guthrie, 2013; Hofmann and Brian, 1991) using the Phusion® 

High-Fidelity DNA Polymerase (Thermo Fisher Scientific). PCR programs were set 

according to the manufacturer’s instructions. Appropriate annealing and salt adjusted 

temperatures of primers were determined by utilising the OligoCalc program Oligo 

Calculator version 3.27 (Kibbe, 2017). 

 

7.2 Agarose gel electrophoresis 

For purification or determination of DNA fragments sizes (Lee et al., 2012) and to 

control RNA quality agarose gel electrophoresis was used. DNA samples were mixed 

in 10 x loading dye and load on a 1% (v/w) agarose gel in 1 x TAE buffer [2 mM 

EDTA, 20 mM sodium acetate, 40 mM Tris-acetate, pH 8.3] supplemented with 0.001 

mg/ml ethidium bromide. RNA samples were mixed in 0.5 x Taq (Thermo Fisher 

https://prosite.expasy.org/scanprosite/
http://bioinf.cs.ucl.ac.uk/disopred
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Scientific) loading dye diluted in RNAse free water. As size standard the GeneRulerTM 

1 kb DNA Ladder (Thermo Fisher Scientific) was used. An electric field of 90 V was 

utilised for separation. In-gel DNA and RNA samples were visualised and 

documented with UV light (λ = 254 nm) by utilising a TFX-20 MX Vilber Lourmat Super 

Bright transilluminator (Sigma-Aldrich Chemie GmbH) or the Gel iX20 Imager 

Windows Version with the Intas GDS gel documentation software from Intas Science 

Imaging Instruments GmbH (Göttingen, Germany). 

 

8 Construction of plasmids for genetic manipulations of 

fungi 

For plasmid construction DNA fragments were obtained by PCR from gDNA of 

A. nidulans ∆nkuA (ACS07) and A. fumigatus AfS35 as templates. Fusion of DNA 

fragments was performed by fusion-PCR (Szewczyk et al., 2006). Obtained DNA 

fragments and marker cassettes were fused by using the GeneArt®Seamless 

Cloning and Assembly Kit (Invitrogen) and the GeneArt®Seamless Cloning and 

Assembly Enzyme Mix (Invitrogen) according the FastCloning protocol (Li et al., 

2011) or the T4 DNA ligase (Thermo Fisher Scientific) according to manufactural 

protocol. The DNA-marker cassette constructs were cloned into the EcoRV multiple 

cloning site of the backbone plasmid pBluescript SK+. Details to plasmid design are 

described in the following chapter. As selective markers phleomycin (phleo) and 

pyrithiamine recycle marker cassettes were used. For on-locus integration in fungi all 

DNA-marker cassettes were excised by splicing to receive a linear construct. 

Therefore, outermost primers were constructed with either MssI or SwaI restriction 

sites. 

 

8.1 Recyclable marker cassettes as selection markers 

Plasmids constructed and used in this study harbour recyclable marker cassettes if 

not indicated otherwise. The recyclable marker cassettes employ a prokaryotic small 

ß-Ser recombinase and its six-recognition sequences and is based on the bacterial 

recombination system (Canosa et al., 1996; Hartmann et al., 2010; Rojo et al., 1993; 

Rojo and Alonso, 1994). By this system excision of the respective marker cassette 

off the fungal genome after transformation is possible and allows marker-free 

mutations, only leaving a six-recognition sequence of approx. 100 nucleotide base 

pairs (bp) (Figure 11). 
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Figure 11: Scheme of the integration and recycling of a recyclable marker cassette. As 
example a deletion of the gene of interest (GOI) is given. Through homologous recombination 
the ORF (green) of GOI is replaced by a recyclable marker cassette, containing the β-serine 
recombinase gene (β-rec), driven by the xylose-inducible promoter (PxylP) and employing the 
trpC terminator (TtrpC). Supplementation of xylose in the media allows to the induction of 
PxylP:β-rec expression., which triggers the excision of the cassette from the fungal genome, 
only leaving a small six-site as scar. This promotes on-locus integration of the respective 
construct. Modified from Thieme, 2017. 

 

The selection marker can be reused after successful recycling for further integrations 

in the same host strain. In that way interference of large resistance cassettes with 

genetic equipment of the host can be successfully prevent. In this study two different 

marker cassettes were used. The A. oryzae pyrithiamine resistance gene (ptrA) 

included in pSK485 leads to resistance against pyrithiamine and is denoted as ptrARM 

(ptrA recyclable marker) in the following subchapters (Kubodera et al., 2000). The 

plasmid pChS315 (Table 4) harbours the ble gene of Streptoalloteichus hindustanus 

that confers to phleomycin resistance (Drocourt et al., 1990). The recyclable 

phleomycin marker cassette is named phleoRM in the following. 

 

Table 4: Plasmids used in this study. A. fumigatus genes are labelled with AF at the end, 
A. nidulans genes are denoted with AN. The pBlue Skript II (SK+) was used as backbone 
plasmid, if not indicated otherwise. P = promoter, t = terminator, R = resistance, phleoRM = 
phleomycin recyclable resistance marker cassette from pME4305, ptrARM = pyrithiamine 
resistance recyclable marker cassette from pSK485, ptrANRM = pyrithiamine resistance 
non-recyclable marker cassette, hphNRM = hygromycin resistance non-recyclable marker 
cassette, phleoNRM = phleomycin resistance non-recyclable marker cassette, prs. com. = 
personal communication. 
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Name Description Reference/Sourc
e 

pBlue Skript 
II (SK+) 

Cloning vector, ampR Fermentas GmbH 
(St. Leon-Rot, 
Germany) 

pSK485 six-PxylP:ß-rec:trpCt-ptrAR-six Hartmann et al., 
2010 

pBJ97 PniiA:cyfp:fbx15AF (gDNA) in PmeI restriction site of 
pME3160 

B. Jöhnk 

pChS3 5`pyroA:cds: ttrpC:tetOn:3`pyroA C.Sasse 

pChS291 ∆srbBAF:ptrARM C. Sasse 

pChS302 PsrbB:srbBAF:rfp:ptrARM C. Sasse 

pChS314 six-pxylP:ß-rec: ttrpC-ptrARM-six C. Sasse  

pChS315 six-pxylP:ß-rec: ttrpC-phleoRM-six C. Sasse 

pChS379 BiFC vector; tniiA-PmeI-PniiA / PniaD-SwaI-tniaD, 
phleoRM 

C. Sasse 

pME3160 BiFC vector; tniiA-PmeI-PniiA / PniaD-SwaI-tniaD, pyrG Bayram et al., 
2008 

pME4044 PgpdA:fbx15 AF:sgfp in pJET1.2 Jöhnk et al., 2016 

pME4286 ssnFAF:sgfp:TtrpC:PgpdA:hph  Jöhnk et al., 2016 

pME4292 Plasmid contains sgfp B. Jöhnk prs. 
com. 

pME4301 PniiA:cyfp:fbx15AF (cDNA) in PmeI restriction site of 
pME3160 

Jöhnk et al., 2016 

pME4302 PniiA:cyfp:fbx15AF (cDNA) in PmeI restriction site, 
PniaD:nyfp:ssnFAF in SwaI restriction site of pME3160 

Jöhnk et al., 2016 

pME4342 Pfbx15::fbx15AF:rfp:ptrARM Jöhnk et al., 2016 

pME4345  Pfbx15::fbx15[S468|9A]AF:rfp:ptrARM Jöhnk et al., 2016 

pME4350 Pfbx15::fbx15[S468|S469D]AF:rfp:ptrARM Jöhnk et al., 2016 

pME4538 ∆fbx15AF:ptrARM Jöhnk et al., 2016 

pME4915 Pfbx15:fbx15AF:ptrARM This study 

pME4916 PgpdA:fbx15AF:ptrARM This study 

pME4917 PgpdA:fbx15AF:sgfp:ptrARM  This study 

pME4918 Pfbx15:fbx15[∆|NLS2]AF:ptrARM This study 

pME4919 Pfbx15:fbx15[NLS1|∆]AF:ptrARM This study 

pME4920 Pfbx15:fbx15[∆|∆]AF:ptrARM This study 

pME4921 PgpdA:fbx15[∆|NLS2]AF:rfp:ptrARM  This study 

pME4922 PgpdA:fbx15[NLS1|∆]AF:rfp:ptrARM This study 

pME4923 PgpdA:fbx15[∆|∆]AF:rfp:ptrARM This study 

pME4924 PgpdA:fbx15[S468|9A]AF:rfp:ptrARM  This study 

pME4925 PgpdA:fbx15[S468|9D]AF:rfp:ptrARM This study 

pME4926 ∆gliPAF:ptrARM  This study 

pME4927 ∆gliZAF:ptrARM This study 

pME4928 PniiA:cyfp:fbx15AF (gDNA) in PmeI restriction site, 
PniaD:nyfp:oefCAF (gDNA) in SwaI restriction site of 
pME3160 

This study 

pME4929 PniiA:cyfp:fbx15AF (gDNA) in PmeI restriction site, 
PniaD:nyfp:srbBAF (gDNA) in SwaI restriction site of 
pME3160 

This study 

pME4930 PniiA:cyfp:fbx15AF (gDNA) in PmeI restriction site, 
PniaD:nyfp:fiAtAF (gDNA) in SwaI restriction site of 
pME3160 

This study 

pME4931 PniiA:cyfp:fbx15AF (gDNA) in PmeI restriction site, 
PniaD:nyfp:fidAAF (gDNA) in SwaI restriction site of 
pME3160 

This study 

pME4932 PniiA:cyfp:fbx15AF (cDNA) in PmeI restriction site, 
PniaD:nyfp in SwaI restriction site of pME3160 

This study 
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pME4934 PniiA:cyfp in PmeI restriction site, PniaD:nyfp:fiAtAFin 
SwaI restriction site of pME3160 

This study 

pME4935 PniiA:cyfp in PmeI restriction site, PniaD:nyfp:fidAAF 

(gDNA) in SwaI restriction site of pME3160 

This study 

pME4936 ∆oefCAF:ptrARM This study 

pME4937 PoefC:sgfp:oefCAF:ptrARM This study 

pME4938 PgpdA:sgfp:oefCAF:ptrARM This study 

pME4939 PoefCAF:oefCAN:ptrARM This study 

pME4940 PgpdA:srbBAF:ptrARM This study 

pME4941 ∆fiAtAF:ptrARM This study 

pME4942 5’pyroA:cds:trpCt:PgpdA:tetON:fiAt:3’pyroA  This study 

pME4943 5’pyroA:cds:trpCt:PgpdA:tetON:fiAt:sgfp:3’pyroA  This study 

pME4944 ∆fidAAF:ptrARM This study 

pME4945 PfidA:fidAAF:sgfp:ptrARM  This study 

pME4946 PgpdA:fidAAF:sgfp:ptrARM  This study 

pME4947 PfidA:sgfp:fidAAF:ptrARM This study 

pME4948 PgpdA:sgfp:fidAAF:ptrARM  This study 

pME4949 PfidA:ha:fidAAF:ptrARM This study 

pME4950 Pfbx15AF:fbx15AN:ptrARM This study 

pME4951 ∆fbx15AN:phleoRM This study 

pME4952 Pfbx15:fbx15AN:strep:phleoRM This study 

pME4953 PgpdA:fbx15AN:rfp:phleoRM This study 

pME4954 Pfbx15AN:fbx15AF:phleoRM This study 

pME4955 PniiA:cyfp:fbx15AN (gDNA) in PmeI restriction site, 
PniaD:nyfp:oefCAN (gDNA) in SwaI restriction site of 
pChS379 with phleoNRM 

This study 

pME4956 PniiA:cyfp:fbx15AN (gDNA) in PmeI restriction site, 
PniaD:nyfp:fidAAN (gDNA) in SwaI restriction site of 
pChS379 with phleoNRM 

This study 

pME4957 PniiA:cyfp:fbx15AN (gDNA) in PmeI restriction site, 
PniaD:nyfp in SwaI restriction site of pChS379 with 
phleoNRM 

This study 

pME4958 PniiA:cyfp in PmeI restriction site, PniaD:nyfp:oefCAN 
(gDNA) in SwaI restriction site of pChS379 with 
phleoNRM 

This study 

pME4959 PniiA:cyfp in PmeI restriction site, PniaD:nyfp:fidAAN 
(gDNA) in SwaI restriction site of pChS379 with 
phleoNRM 

This study 

pME4960 ∆oefCAN:phleoRM This study 

pME4961 PoefC:oefCAN:phleoRM This study 

pME4962 PoefC:sgfp:oefCAN:phleoRM  This study 

pME4963 PgpdA:sgfp:oefCAN:phleoRM This study 

pME4964 PoefCAN:oefCAF:phleoRM This study 

pME4965 ∆fidAAN:phleoRM This study 

pME4966 PfidA:fidAAN:sgfp:phleoRM This study 

pME4967 PgpdA:fidAAN:sgfp:phleoRM This study 

pME4968 PfidA:sgfp:fidAAN:phleoRM This study 

pME4969 PgpdA:sgfp:fidAAN:phleoRM  This study 

pME4970 PfidA:ha:fidAAN:phleoRM This study 

 

8.2 Primer and Plasmid design 

Constructed plasmids used in this study are listed in Table 4. Corresponding primers 

needed for plasmid design are listed in Table 5. Genetic information was obtained 

from AspGD (Arnaud et al., 2012) and fungiDB (https://fungidb.org/fungidb/). For 
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plasmid design the Lasergene software package from DNA STAR Inc. (Madison, WI, 

USA) was utilised. For seamless cloning reactions primers were constructed with an 

overhang of 15 bp to the backbone plasmid to create a 15 bp long homologous region. 

Primers were designed in a way to generate MssI (GTTT/AAAC motive) restriction 

sites for splicing the DNA-marker cassettes out of the constructed plasmid for further 

integration into fungi, if not indicated otherwise. Therefore, naturally present ACCC 

and GTTT were used as part of the restriction sites to limit the integration of synthetic 

included bps. 

 

Table 5: Oligonucleotides for plasmid construction or fragment amplification used in 
this study. 

Name 5’ – sequence – 3’  Size 

BJ3  GAT CTT TGC CCG GTG TAT GAA ACC 24-mer 

BJ4  GGT GAT GTC TGC TCA AGC GGG 21-mer 

BJ43 TGA CGC CCA GGA CCG AG 17-mer 

BJ63  ATG ACC GAC ATG AGC AAG AAC C 22-mer 

BJ64  GTC ACC GAA GCC AAT ATC CAT G 22-mer 

BJ319 GGT GGT AGC GGT GGT GTC 18-mer 

BJ320 TCA CTT GTA CAG CTC GTC CAT 21-mer 

kt182 CAT CAG TGC CAG CTG TCT TCG 21-mer 

kt184 GGC TTT ACA CTT TAT GCT TCC G 22-mer 

OZG73 ATG GTG AGC AAG GGC GAG GAG 21-mer 

OZG75 ATG GCC GAC AAG CAG AAG AAC 21-mer 

OZG78 GTA TAA TCA TAG ATT GTT TAA CAC TAG 27-mer 

OZG79 CTC GTT GTG CCA CAC TAT GGA TTC 24-mer 

OZG 207  GGT GGT AGC GGT GGT ATG GTG AGC 24-mer 

OZG387 CGT GGC GAT GGA GCG CAT GAT ATA G 25-mer 

OZG388 GTG GTT CAT GAC CTT CTG TTT CAG GTC 27-mer 

srbB-1 CTG CAG GAA TTC GAT GTT TAA ACA AGG CAT TGG ACG GGA 39-mer 

AA1 CTG CAG GAA TTC GAT GTT TAA ACA ACG GAG AAT TGA GGC TC 41-mer 

AA2 CTA TAG GCC TGA GTG ATT TAA ATG TCC AAA CTG AGA GGA 
AGA GAT 

45-mer 

AA3 ATA ATA TGG CCA TCT CGA TCC GTC CTC TCT AGT TG 35-mer 

AA4 ATC GAT AAG CTT GAT GTT TAA ACG GCT TGT GCT ATT TGC AG 41-mer 

AA5 TCA GTT TGG ACA TTT GAT CTT TGC CCG GTG TAT GAA 36-mer 

AA6 CAC TCG GAA TAT CCA CTG GA 20-mer 

AA7 TGG ATA TTC CGA GTG GAT TGC CTT ATT CGA CGA ATC TA 38-mer 

AA8 AGG CCT GAG TGA TTT TCA CTT GTA CAG CTC GTC CAT 36-mer 

AA9 GAG GCA AGC AAC ACC CTC 18-mer 

AA10 GGT GTT GCT TGC CTC TGT CCG AAG GCG GAG GC 32-mer 

AA24 CGC CCG CCA TCG TTT ATG GCC GAC AAG CAG AAG AA 35-mer 

AA25 CAT ACT CTC ACA TTT ATG GTG AGC AAG GGC GAG 33-mer 

AA27 GAC CTT GAT CTG GCA TAT CTA C 22-mer 

AA28 CAC GGC CGT GTA CAT ATC AT 20-mer 

AA33 CGC TCC ATC GCC ACG ATG GCA TAC AAC AAC AGA CCT G 37-mer 

AA34 TGC GAA CCC GTA TTT CTA GGT GCG AAA CTT GTC GTT 36-mer 

AA44 CCT ATG CGAACCCGTATTTCGTGGCGATGGAGCG 34-mer 

AA61 TAG GCC TGA GTA TTT TCA CCG AAG CCA ATA TCC ATG A 37-mer 

AA63 ATA ATA TGG CCA TCT GAT CTT TGC CCG GTG TAT GAA A 37-mer 

AA64 CTA TAG GCC TGA GTG GGC AGG TGA TGG GAG TTC 33-mer 

AA65 CAG ACA TCA CCA TTT ATG GCA TAC AAC AAC AGA CCT G 37-mer 
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AA66 ATA AGC TTG ATA TTT GTT TAA ACT GCG CGT CCT GCA TG 38-mer 

AA75 TCA CCG AAG CCA ATA TCC ATG ATT AAT 27-mer 

AA76 CCG CTT GAG CAG ACA TCA CCA TGA CCG ACA TGA GCA AGA AC 41-mer 

AA78 GTT TAA ACT ATA TCA CCG ATG ACA CTC 27-mer 

AA79 AAA TGA TGT ATG GCT AAT ATG AGT CTA G 28-mer 

AA80 GAA ATC TAG TCC CGG CTC TT 20-mer 

AA81 GTT TAA ACG TTG TAT TAG CCA TTG CAG 27-mer 

AA83 CTA GAA GAA GTA GGG AAT GGA A 22-mer 

AA84 TCA TGC GCT CCA TCG CCA CGG TGC GAT CTC TGC CAA AGA 39-mer 

AA179 GCC CTT GCT CAC CAT GAA GAA GTA GGG AAT GGA AGC 36-mer 

AA186 ATA GGC CTG AGA TTT CTA CTT GTA CAG TTC GTC CAT G 37-mer 

AA198 ATA TGG CCA TCT CAC TTC TTC CAC ACG GTA TAC ATT GTA 39-mer 

AA199 GAT AAG CTT GAT CAC GTT TAA ACC TGC ACC TGC TGC AT 38-mer 

AA200 AGG AAT TCG ATA TTT GTT TAA ACT CAC ATT TCA GGG CAC CA 41-mer 

AA201 ATA GGC CTG AGA TTT AAA TGA TGC AGA GCG TAG GGT TGA 39-mer 

AA202 ATA TGG CCA TCT CAC GCT GTT CTC ACC TCT TTT TTT TTT TT 41-mer 

AA203 GAT AAG CTT GAT CAC GTT TAA ACG ATC GAT TCG AGG CG 38-mer 

AA204 AGG AAT TCG ATA TTT GTT TAA ACG ACT CGG GCT TTC CC 38-mer 

AA205 ATA GGC CTG AGA TTT AAA TCG CTG ACG AGT AGT TTG CTC 39-mer 

AA208 TAG TAG TGC AAG TTT GAA GAA GTA GGG AAT GGA AGC CCT 39-mer 

AA209 CAG ACA TCA CCG TTT ATG GTG CGA TCT CTG CCA AA 35-mer 

AA265 ATA TGG CCA TCT CAC GCT GGT CTA GCT TAT TCA TGT A 37-mer 

AA266 GAT AAG CTT GAT CAC GTT TAA ACC TCC CGT GTT CAC CG 38-mer 

AA267 AGG AAT TCG ATA TTT GTT TAA ACA CCG ACT CTC CTT ATC GT 41-mer 

AA268 ATA GGC CTG AGA TTT AAA TCT GTT AGA CAC TGG TCT TGT AA 41-mer 

AA269 ACC ACC GCT ACC ACC GTG AGA TGC GCT ACT TGT GC 35-mer 

AA270 ATA TGG CCA TCT CAC ACA GAT CGA ACA GGC CGCT 34-mer 

AA271 GAT AAG CTT GAT CAC GTT TAA ACA TTG GTG ACA TTC AAA ATG 
CT 

44-mer 

AA272 AGG AAT TCG ATA TTT GTT TAA ACT TCT ACG CTA AGC TCC C 40-mer 

AA273 ATA GGC CTG AGA TTT AAA TAA CAA TTC TCG AGT CTG TGG G 40-mer 

AA285 TAG TAG TGC AAG TTT CTA CTT GTA CAG TTC GTC CAT G 37-mer 

AA286 ATA TGG CCA TCT CAC CCT TTG TTT CCC CTT CCG TC 35-mer 

AA287 GAT AAG CTT GAT CAC ATT TAA ATA TCG AAA TCA TGC CTT ACC 
A 

43-mer 

AA288 AGG AAT TCG ATA TTT AAA TGA CTA ACA ATG GTC ACA GC 38-mer 

AA289 ATA GGC CTG AGA TTT GTT TAA ACT GAA AGA ATG TGG GCC 
GCA TA 

44-mer 

AA310 AGG AAT TCG ATA TTT GTT TAA ACC TTC TCT AGG GTC ATG C 40-mer 

AA312 ATA TGG CCA TCT CAC ACT ACC AGG CCT GCA CTT 33-mer 

AA313 AGC TTG ATC ACG TTT AAA CGG GAC AGT GTA CGA G 34-mer 

AA319 ATA GGC CTG AGA TTT AAA TTT TCT CTG ACC AAA AAA GCG 39-mer 

AA325 TGC GAA CCC GTA TTT TTA GTG AGA TGC GCT ACT TGT G 37-mer 

AA327 GCC TGA GAT TTG TTT CTA GGT GAT GAG GAA GTC CAT 36-mer 

AA328 ACA TTC TTT CAG TTT ATG GTG AGC AAG GGC GAG G 34-mer 

AA329 ACC ACC GCT ACC ACC CTT GTA CAG TTC GTC CAT GCC 36-mer 

AA330 ACA AGG GTG GTA GCG GTG GTT TGT CCA TGC AAA AGA CGC CC 41-mer 

AA332 CGA GAA TTG TTA TTT GAT CTT TGC CCG GTG TAT GAA A 37-mer 

AA333 CCG CTT GAG CAG ACA TCA CCG CAG AGC AGA ACG GCC AC 38-mer 

AA336 ATA GGC CTG AGA TTT TTA CTT CTC GAA CTG GGG GTG GCT 
CCA AGC GCT ACG GAG CCA GAA ACC ACG G 

67-mer 

AA337 AGG AAT TCG ATA TTT AAA TTC AAG GTT CGC TGG TGT C 37-mer 

AA338 ATA GGC CTG AGA TTT GTT TAA ACT CCA TTC AGC AAC GAC CCG 42-mer 

AA339 ATA TGG CCA TCT CAC TTT TGC TCG GGT CGA GTT CTT 36-mer 

AA340 GAT AAG CTT GAT CAC ATT TAA ATC TTT TCT GAC AAA AGG GAG 
TAA 

45-mer 

AA342 ACC ACC GCT ACC ACC CTT 18-mer 

AA343 GGT GGT AGC GGT GGT TTG TCC ATG CAA AAA TCC CCC 36-mer 
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AA344 GCC TGA GAT TTG TTT TCA AGT AAT CAG GAA ATC CAT ATT CAT 42-mer 

AA346 ATA GGC CTG AGA TTT TCA AGT AAT CAG GAA ATC CAT ATT CA 41-mer 

AA347 TGC TGA ATG GAG TTT GAT CTT TGC CCG GTG TAT GAA 36-mer 

AA350 CCG CTT GAG CAG ACA TCA CCA TGG TGA GCA AGG GCG AGG  39-mer 

AA351 ACA TTC TTT CAG TTT GAT CTT TGC CCG GTG TAT GAA 36-mer 

AA354 ATA GGC CTG AGA TTT TTA TTG AGC TGA ACG CAG CTG 36-mer 

AA357 ACA TTC TTT CAG TTT ATG TTG TCC ATG CAA AAA TCC CC 38-mer 

AA358 TGC TGA ATG GAG TTT ATG TTG TCC ATG CAA AAG ACG C 37-mer 

AA359 GTG TCT AAC AGA TTT GAT CTT TGC CCG GTG TAT GAA 36-mer 

AA360 TGA GCA GAC ATC ACC TCG CAA CCT GCG GAT CTC A 34-mer 

AA361 ATA GGC CTG AGA TTT TTA GTG AGA TGC GCT ACT TGT G 37-mer 

AA362 ACA AGG GTG GTA GCG GTG GTT CGC AAC CTG CGG ATC TCA 39-mer 

AA364 GTG TCT AAC AGA TTT ATG TAC CCC TAC GAC GTC CCC GAC TAC 
GCC TCG CAA CCT GCG GAT CTC A 

64-mer 

AA366 ACA AGG GTG GTA GCG GTG GTG CAG AGC AGA ACG GCC AC 38-mer 

AA367 CGA GAA TTG TTA TTT ATG GTG AGC AAG GGC GAG G 34-mer 

AA368 CGA GAA TTG TTA TTT ATG TAC CCC TAC GAC GTC CCC GAC TAC 
GCC GCA GAG CAG AAC GGC CAC 

63-mer 

AA370 CGC TCC ATC GCC ACG TTG TCC ATG CAA AAA TCC CCC T 37-mer 

AA371 TGC GAA CCC GTA TTT TCA AGT AAT CAG GAA ATC CAT ATT CAT 42-mer 

AA372 AAG GTC ATG AAC CAC ACC AGG AAC CTG GAC TCC A 34-mer 

AA373 TAT CCT CGT CAG TTT CTA ACG GAG CCA GAA ACC AC 35-mer 

AA374 CGC TCC ATC GCC ACG GCA GAG CAG AAC GGC CAC 33-mer 

AA375 TGC GAA CCC GTA TTT TTA TTG AGC TGA ACG CAG CTG T 37-mer 

AA383 ATA GGC CTG AGA TTT TCA CCG AAG CCA ATA TCC ATG A 37-mer 

AA384 TCA GTT TGG ACA TTT ATG ACC AGG AAC CTG GAC TC 35-mer 

AA385 CTA TAG GCC TGA GTG ATT TCT AAC GGA GCC AGA AAC CAC 39-mer 

AA386 GGT CAG AGA AAA TTT GAT CTT TGC CCG GTG TAT GAA A 37-mer 

AA387 GGT GAT GTC TGC TCA AGC G 19-mer 

AA388 CCG CTT GAG CAG ACA TCA CCA TGA CCA GGA ACC TGG ACT C 40-mer 

AA389 ACC ACC GCT ACC ACC ACG GAG CCA GAA ACC ACG G 34-mer 

AA390 ATA GGC CTG AGA TTT TCA CTT GTA CAG CTC GTC CAT 36-mer 

 

8.3 Sequencing of plasmids 

In this study constructed plasmids were checked for correct integration without 

mutations by sequencing performed by Seqlab Sequence Laboratories GmbH 

(Göttingen, Germany). The Lasergene software package (DNA Star Inc.) was used 

to analyse obtained sequences. The primers kt182 and kt184 were used to sequence 

plasmids cloned in the pBluescript SK+. Both primers are binding near the EcoRV 

cloning restriction site of the pBluescript SK+ cloning vector. Other sequencing 

primers are denoted in the following chapter. 

 

8.4 Plasmid construction and strain generation in Aspergilli 

A. fumigatus D141 gDNA was used as templates for plasmid construction. For 

A. nidulans based plasmid construction the ANCS07 (WT, ∆nkuA) was used as 

template. Sizes of DNA fragments are rounded in the upcoming sections. 
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8.5 A. fumigatus plasmid and strain construction 

 

Construction of plasmids and strains for ∆fbx15 and complementation with 

recyclable marker cassette 

The ∆fbx15 strain was constructed by amplifying 1.2 kb of fbx15 5’ flanking region of 

fbx15 (Afu3g14150) with the primer pair AA1/AA2 including a 15 bp overhang to 

introduce homolog overhangs to pBluescript SK+ and the ß-six-site of the ptrA 

recyclable marker cassette. 1.2  kb of fbx15 3’ flanking region was amplified with the 

primer pair AA3/AA4, introducing a 15  bp overhang homologous to pBluescript SK+ 

and the six-site of the ptrA resistance recyclable marker cassette (ptrARM) including a 

SwaI restriction site for further integrations between fbx15 5’ flanking region and six-

site. The fbx15 5’- and 3’ flanking regions were cloned together with the ptrARM into 

the EcoRV multiple cloning site of pBluescript SK+ in a seamless cloning reaction, 

resulting in pME4538 (Jöhnk et al., 2016). 

The fbx15 complementation construct pME4915 was obtained by amplifying the 

fbx15 gene with the primer pair BJ63/64. The fbx15 gene fragment was integrated 

into the SwaI restriction site of pME4538. The constructed deletion as well as the 

complementation cassette of fbx15 were excised with MssI. pME4538 was integrated 

into AfS35, resulting in AfGB128 (Jöhnk et al., 2016), pME4915 was integrated into 

AfGB128, resulting in AfGB417. Correct replacement of the original gene was verified 

with Southern hybridisation before and after marker recycling. 

 

Construction of plasmids and strains for overexpressed fbx15 with recyclable 

marker cassette without and with GFP-tag 

Overexpression of fbx15 gene was achieved by using the gpdA-promoter. pME4916 

was constructed by the amplification of PgpdA-fbx15 from pME4044 with primer pair 

AA5/AA61 introducing a stop codon and 15 bp overhangs to fbx15 5’ flanking region 

and the six-site of the ptrARM. For the construct of pME4917 PgpdA:fbx15:sgfp was 

amplified from pME4044 with the primer pair AA3/AA5 introducing 15 bp overhangs 

to pBluescript SK+ and the six-site of ptrARM. Both plasmids were generated in 

seamless cloning reactions. The overexpressed cassettes were excised with MssI. 

The integration of pME4916 into AfGB128 results in AfGB418 and the integration of 

pME4917 into AfGB128 results into AfGB419. On-locus integrations were confirmed 

by Southern hybridisation before and after marker recycling. 
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Construction of plasmids and strains for fbx15 nuclear localisation signal 

deficiencies 

Deletions of the fbx15 NLS sequences were generated from gDNA of D141 with the 

T4 DNA ligase (Thermo Fisher Scientific). The NLS1 of fbx15 was deleted by 

amplification of the fbx15 gene in two parts without NLS1. The first part consists of 

the N-terminal fraction of fbx15 till NLS1 and was amplified with the primer pair 

AA7/BJ63 with a length of 1.3 kb. AA7 was designed with a 15 bp overhang to the 

second part of fbx15 eliminating NLS1. The second part consists of the C-terminal 

fraction amplified with AA6/AA75 with a length of 700 bp. Both fractions were ligated 

by fusion-PCR (Szewczyk et al., 2006) with the primer pair AA75/BJ63 and cloned 

into the SwaI restriction site of pME4538 in a seamless cloning reaction, resulting in 

pME4918. 

The NLS2 of fbx15 was deleted in the same way by ligating two parts of amplified 

fbx15 fractions without the NLS2. The first part, a 1.5 kb fragment, consists of the 

N-terminal fraction of fbx15 till NLS2 that was amplified with the primer pair 

AA10/BJ63. AA10 has a 15 bp overhang to the second part of fbx15 elimination 

NLS2. The second part, the 500 bp long C-terminal fraction, was amplified with 

AA9/AA75. Both fractions were ligated by fusion-PCR (Szewczyk et al., 2006) with 

the primer pair AA75/BJ63 and cloned into the SwaI restriction site in a seamless 

cloning reaction, resulting in pME4919. 

The double deletion fbx15∆|∆ was constructed using pME4919 as template. Here, the 

NLS1 was deleted in addition by amplifying the first part, the N-terminal fraction of 

fbx15, with primer pair AA7/BJ63 and the second part, the C-terminal fraction of 

fbx15, with primer pair AA6/AA75 without NLS1. The fractions were ligated by 

fusion-PCR (Szewczyk et al., 2006) with primer pair BJ63/AA75 and cloned into the 

SwaI restriction site of pME4538 in a seamless cloning reaction, resulting in 

pME4920. 

All fbx15 NLS-deficient gene cassettes were excised with MssI before fungal 

integration into AfGB128. AfAA420 was constructed by integrating pME4918, 

AfGB421 by integrating pME4919 and AfGB422 by integrating pME4920. Validation 

of correct integration was verified by southern hybridisation before and after marker 

recycling and sequencing with the primer BJ43. 

 

Construction of plasmids and strains for C-terminal RFP-tagged 

overexpressed Fbx15 nuclear localisation signal deficiencies 

Overexpression versions of the fbx15-NLS deficiencies tagged C-terminal with rfp 

were constructed with the templates pME4044 and pME4342. For overexpression of 
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RFP-tagged fbx15∆|NLS2 the same method as described for overexpressed fbx15 

tagged with GFP was used to eliminate NLS1 by amplifying fbx15 in two parts leaving 

out NLS1. PgpdA together with the first part of fbx15 (1.7 kb), the N-terminal fraction 

of fbx15 till NLS1, was amplified from pME4044 with primer pair AA5/AA7 introducing 

15 bp overhangs to fbx15 5’ flanking region and the second part of fbx15 without 

NLS1. The second part, the C-terminal fraction of fbx15 (1.6 kb) with rfp, was 

amplified with AA6/AA8 without stop codon introducing a 15 bp overhang to the six-

site of ptrARM. Both obtained fragments were cloned into the SwaI restriction site of 

pME4538 with a seamless cloning reaction, resulting in pME4921. 

For overexpression of RFP-tagged fbx15NLS1|∆ PgpdA together with the first part of 

fbx15 (1.9 kb), the N-terminal fraction of fbx15 till NLS2, was amplified with primer 

pair AA5/AA10 introducing 15 bp overhangs to fbx15 5’ flanking region and the 

second part of fbx15 without NLS2 from pME4044. The second part, the C-terminal 

fraction of fbx15 (500 bp), was amplified with AA8/AA9 from pME4342 introducing a 

15 bp overhang to the six-site of ptrARM. The two fragments were cloned into the SwaI 

restriction site of pME4538 with a seamless cloning reaction, resulting in pME4922. 

Overexpressed, C-terminal RFP-tagged fbx15∆|∆ was amplified using pME4921 as 

template. The first part, PgpdA and N-terminal fbx15 till NLS2 with a size of 1.9 kb, 

was amplified using primer pair AA5/AA10, where AA10 has a 15bp overhang to the 

second part of fbx15 elimination NLS2 and PgpdA a 15 bp overhang to fbx15 5’ 

flanking region. With the primer pair AA9/AA8 the C-terminal part together with rfp 

with a size of 1.4 kb was amplified. Both fragments were cloned in the SwaI restriction 

site of pME4538 to generate pME4923 with a seamless cloning reaction. The 

overexpression constructs of the fbx15-NLS deficiencies tagged with rfp were 

integrated on-locus into AfGB128 after excising the gene cassettes with MssI, 

resulting in AfGB423 (PgpdA:fbx15∆|NLS2:rfp), AfGB424 (PgpdA:fbx15NLS1|∆:rfp) and 

AfGB425 (PgpdA:fbx15∆|∆:rfp). Correct integration was verified by Southern 

hybridisation before and after marker recycling and sequencing with the primer BJ43. 

 

Construction of C-terminal GFP-tagged SsnF in the RFP-tagged overexpressed 

Fbx15 nuclear localisation signal deficiencies with hph marker cassette 

The GFP-tagged SsnF was excised from the plasmid pME4286 (Jöhnk et al., 2016) 

and integrated in AfGB423, in AfGB424 and in AfGB425, resulting in AfGB464, 

AfGB465 and AfGB466. Southern hybridisation was used for verification of correct 

integration by southern hybridisation. 
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Construction of plasmids and strains for RFP-tagged overexpressed fbx15 

phospho-site manipulations 

The rfp-tagged overexpressed fbx15 phospho-site manipulations were generated 

using the T4 DNA ligase (Thermo Fisher Scientific). Mimicking constantly 

dephosphorylation at Ser residues S468 and S469 was obtained by the exchange of 

Ser to Ala and mimicking constantly phosphorylated S468 and S469 was obtained 

by the exchange of Ser to arginine. PgpdA was amplified from pME4917 with the 

primer pair BJ3/BJ4. Primer pair AA76/BJ320 was used to amplify constantly 

mimicking dephosphorylated fbx15S468|9A:rfp from pME4345 and for the amplification 

of constantly mimicking phosphorylated fbx15S468|9D:rfp from pME4350, where AA76 

has a 20 bp overhang to PgpdA. PgpdA and fbx15S468/469A:rfp or fbx15S468|9D:rfp were 

ligated by fusion-PCR (Szewczyk et al., 2006) with primer pair BJ3/BJ320. The 

ligated fragments were integrated into the SwaI restriction site of pME4538 to 

generate pME4924 for overexpressed dephosphorylated fbx15:rfp or pME4925 for 

overexpressed phosphorylated fbx15:rfp in a T4 DNA ligase reaction. Gene cassettes 

were excised with MssI and integrated into AfGB128, resulting in AfGB426 for 

overexpressed, dephosphorylated fbx15S468/469A:rfp and in AfGB427 for 

overexpressed, phosphorylated fbx15S468/469D:rfp. Southern hybridisation was utilised 

to control correct integration before and after marker recycling. 

 

Construction of plasmids and strains for ∆gliP, ∆gliZ strains in wild type- and 

∆fbx15 background 

For the plasmid construction gDNA of D141 was used as template. The 750 bp long 

gliP 5’ flanking region was amplified with primer pair AA200/AA201 introducing 15 bp 

overhangs to pBluescript SK+ and the six-site of ptrARM. gliP 3’ flanking region with a 

length of 800 bp was amplified with primer pair AA198/AA199 introducing 15 bp 

overhangs to the six-site of ptrARM and pBluescript SK+ and including a SwaI 

restriction site for further applications. Cloning was performed in two steps into 

pChS314 (C. Sasse, prs. com.). The gliP 5’ flanking region was cloned into the SwaI 

restriction site and the gliP 3’ flanking region was cloned into the PmlI restriction site 

in seamless cloning reactions, resulting in pME4926. The gene cassette was excised 

with MssI and integrated on-locus into AfS35 and AfGB128, resulting in AfGB428 and 

AfGB430. 

For pME4927 850 bp long gliZ 5’ flanking region was amplified with primer pair 

AA204/AA205 introducing 15 bp overhangs to pBluescript SK+ and the six-site of 

ptrARM. 900 bp long gliZ 3’ flanking region was amplified with primer pair 

AA202/AA203 introducing 15 bp overhangs to the six-site of ptrARM and pBluescript 
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SK+. pChS314 (C. Sasse, prs. com.) was used as backbone plasmid and cloning 

was performed in two steps. The gliZ 5’ flanking region was cloned into the SwaI 

restriction site and the gliZ 3’ flanking region was cloned into the PmlI restriction site 

in seamless cloning reactions. Excising of the gene cassette was performed with MssI 

and integrated on-locus into AfS35 and AfGB128, resulting in AfGB429 and AfGB431. 

Correct integration was verified by Southern hybridisation after marker recycling. 

 

Construction of BiFC plasmids and strains for localisation determining 

interactions of Fbx15 with FiAt, FidA, OefC and SrbB 

BiFC studies were utilised using the bidirectional nitrate-inducible PniiA/PniaD 

promoter and terminators (niiAT/niaDT) with ectopic integration in respective strains. 

For constructs gDNA of fiAt, fidA, oefC and srbB were used. For fbx15 gDNA and 

cDNA of D141 were utilised for the experiments. Constructed plasmids were 

sequenced with the primers AA27, AAA28, OZG78, OZG79. 

pME4301 (cyfp:fbx15 (cDNA) in PmeI restriction site of pME3160) was used as 

backbone for cloning srbB or oefC gDNA fused to nyfp. srbB gDNA was amplified 

without stop codon with primer pair AA33/AA34 with 15 bp overhangs homologous to 

nyfp and TniaD. nyfp was amplified with the primer pair AA25/OZG387 from 

pME4302, where AA25 has a 15bp overhang to PniaD. Both fragments were cloned 

into the SwaI restriction site of pME4301 in a seamless cloning reaction, resulting in 

pME4929. AfGB432 was generated by ectopic integration of pME4928 into Af293.1. 

oefC gDNA was amplified without stop codon with primer pair AA29/AA30 with 15 bp 

overhangs homologous to nyfp and TniaD. The nyfp fragment used for pME4929 was 

also used for a seamless cloning reaction of oefC and nYFP, which were cloned into 

the SwaI restriction site of pME4301, resulting in pME4928. AfGB467 was generated 

by ectopic integration of pME4928 into Af293.1. 

BiFC experiments for fbx15 with fiAt and fidA were obtained using gDNA as 

templates. As backbone plasmid pBJ97 (cyfp:fbx15 (gDNA) in PmeI restriction site of 

pME3160) was utilised. gDNA of fiAt without stop codon was amplified with primer 

pair AA83/AA84, including a 20 bp overhang to nyfp with AA84. nyfp was amplified 

with primer pair OZG73/OZG387 from pME4302 and ligated with fiAt by fusion-PCR 

(Szewczyk et al., 2006) using primer pair AA83/OZG73. The nyfp:fiAt fusion fragment 

was cloned into the SwaI restriction site of pBJ97 in a T4 DNA ligase reaction, 

resulting in pME4930. As control the obtained fusion fragment nyfp-fiAt and cyfp, 

amplified with primer pair OZG75/OZG388 from pME4302, were cloned in two steps 

into pME3160. The cyfp fragment was cloned into the PmeI restriction site and 

nyfp:fiAt in the SwaI restriction site of pME3160 in a T4 DNA ligase reaction, resulting 
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in pME4934. AfGB433 was constructed by ectopic integration of pME4930 into 

Af293.1 and AfGB436 by ectopic integration of pME4934 into Af293.1. 

For BiFC constructs with fidA, gDNA fidA without stop codon was amplified with 

primer pair AA324/AA325. nyfp was amplified with AA25/OZG387 and ligated with 

fidA in a fusion-PCR reaction (Szewczyk et al., 2006) with primer pair AA25/AA325 

including 15 bp overhangs to nyfp and TniaD. The nyfp:fidA fusion fragment was 

cloned into the SwaI restriction site of pBJ97 in a seamless cloning reaction, resulting 

in pME4931. As control cyfp, amplified with primer pair OZG75/OZG388, and 

nyfp:fidA fusion fragment were cloned into pME3160 in two steps. cyfp was cloned 

into the PmeI restriction site of pME3160 in a T4 DNA ligase reaction and the 

nyfp:fidA fusion fragment into the SwaI restriction site of pME3160 in a seamless 

cloning reaction, resulting in pME4935. Ectopic integration of pME4931 into Af293.1 

result into AfGB434 and pME4935 into AfGB437. 

fbx15 control for BiFC experiments was constructed by cloning of nyfp, amplified with 

primer pair AA25/AA44, into the SwaI restriction site of pME4301 in a seamless 

cloning reaction, resulting in pME4932 and ectopic integrated into Af293.1 leading to 

AfGB435. Correct ectopic integration of all BiFC strains was verified by PCR of gDNA. 

 

Construction of plasmids and strains for ∆oefC, C-terminal GFP-tagged 

complementation and overexpression 

For the construction of the ∆oefC strain 1.3 kb of oefC 5’ flanking region was amplified 

from D141 gDNA with the primer pair AA288/AA289 including 15 bp overhang to 

introduce overhangs to pBluescript SK+ and the six-site of ptrARM. 1.8 kb of oefC 

3’ flanking region was amplified with the primer pair AA286/AA287 from D141 gDNA, 

which introduce 15 bp overhang homologous to pBluescript SK+ and the six-site of 

ptrARM including a PmeI restriction site for further integrations. pChS314 (C. Sasse) 

was used for stepwise cloning of oefC 5’- and 3’ flanking regions. oefC 5’ flanking 

region was cloned into the SwaI restriction site and 3’ flanking regions was cloned 

into the PmII restriction site, resulting in pME4936. On-locus integration into AfS35 of 

the excised gene cassette with SwaI resulted in AfGB438. 

The GFP-tagged complementation plasmid pME4937 was constructed by amplifying 

sgfp with primer pair AA328/AA329 from pME4292, introducing 15 bp overhangs to 

pBluescript SK+ and the six-site of ptrARM. oefC was amplified with primer pair 

AA327/AA330 from D141 gDNA introducing 15 bp overhangs to sgfp and the six-site 

of ptrARM. Both fragments were integrated into the SwaI restriction site of pME4936, 

resulting in pME4937. Excised gene cassette with SwaI was transformed into 

AfGB438, resulting in AfGB439. 
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Overexpressed oefC tagged with sgfp was obtained with the PgpdA, amplified with 

AA351/BJ4 from pME4917 introducing a 15 bp overhang to oefC 5’ flanking region. 

sgfp-oefC was amplified from pME4937 with primer pairs AA327/AA350 with 20 bp 

overhang to PgpdA and 15 bp overhang to ptrARM. Through fusion-PCR (Szewczyk et 

al., 2006) PgpdA and sgfp-oefC were ligated and cloned into the SwaI restriction site 

of pME4936 in a seamless cloning reaction, leading to pME4938. The gene cassette 

was excised with SwaI and integrated into AfGB438 to generate AfGB440. All 

constructed strains were confirmed by Southern hybridisation after marker recycling. 

 

Construction of ∆oefC/∆fbx15 strain and GFP-tagged oefC complementation 

and - overexpression in ∆fbx15 background 

For double deletion of ∆oefC/∆fbx15 the excided gene cassette of pME4538 was 

integrated into AfGB438 background strain, resulting in AfGB441. Excised gene 

cassette of pME4937 (GFP-tagged oefC) and pME4938 (overexpressed GFP-tagged 

oefC) with SwaI were transformed into AfGB128, resulting in AfGB442 and AfGB443. 

Correct integration was verified by Southern hybridisation after marker recycling. 

 

Construction of strains for ∆fbx15/∆srbB and ∆srbB complementation tagged 

with RFP 

For double deletion of ∆fbx15/∆srbB excised gene cassette of pChS291 (C. Sasse, 

prs. com.) with MssI was integrated on-locus into AfGB128, resulting in AfGB446. 

The ∆srbB complementation plasmid pChS301, including the srbB:rfp:ptrARM 

cassette with 5’- and 3’ flanking region (C. Sasse, prs. com.) was excised with PmeI 

and integrated on-locus into AfGB444, resulting in ∆srbB complementation strain 

AfGB445. Correct integration was verified by Southern hybridisation after marker 

recycling. 

 

Construction of plasmids and strains for overexpressed srbB in wild type- and 

∆fbx15 strain background 

Overexpression was induced with PgpdA amplified with AA63/BJ4 from pME4917, 

where AA63 has a 15 bp overhang to the six-site of ptrARM. pME4940 was 

constructed with D141 gDNA by amplification of the 1 kb large srbB 5’ flanking region 

with primer pair AA64/srbB-1, where AA64 has a 15 bp overhang to the six-site of 

ptrARM. srbB-1 introduces a complete PmeI restriction site and a 15 bp overhang to 

pBluescript SK+. The srbB gene with 3’ flanking region was amplified with primer pair 

AA65/AA66. AA65 has a 20 bp overhang to PgpdA and AA66 a 15 bp overhang to 

pBluescript SK+. PgpdA and srbB-srbB 3’ flanking region were ligated by fusion-PCR 
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(Szewczyk et al., 2006) with primer pair AA63/AA66. The srbB 5’ flanking region, the 

fusion fragment PgpdA-srbB-srbB 3’ flanking region and the ptrARM into the EcoRV 

restriction site of pBlueScript SK+. The gene cassette was excised with MssI and 

transformed on-locus into AfGB444, resulting in AfGB447 and in AfGB128, resulting 

in AfGB448. Correct integration after marker recycling was verified by Southern 

hybridisation. 

 

Construction of plasmids and strains for ∆fiAt and ∆fbx15/∆fiAt 

gDNA of D141 was used as template for the plasmid construction of ∆fiAt, fiAt 5’ 

flanking region was amplified with primer pair AA78/AA79 and fiAt 3’ flanking region 

with primer pair AA80/AA81. pME4941 was cloned in two steps were fiAt 5’ flanking 

region was cloned into the SwaI restriction site and 3’ flanking region was cloned into 

the PmII restriction site of pChS314 harboring the ptrARM in T4 DNA ligase reactions. 

The gene cassette was excised with MssI and integrated into AfS35, resulting in 

AfGB449 and AfGB128, resulting in AfGB453. Southern hybridisation was utilised for 

verifying correct integration on-locus after marker recycling. 

 

Construction of plasmid and strain for overexpression for fiAt without and with 

GFP-tag by the TetOn-System 

pChS3 was provided by C. Sasse as backbone plasmid containing the 5’- (1.1 kb) 

and 3’ (1.2 kb) flanking regions of pyroA and the TetOn (Meyer et al., 2011). fiAt was 

amplified from D141 gDNA with primer pair AA208/209 having 15 bp overhangs to 

tetO7-Pmin and pyroA 3’ flanking region. fiAt was integrated into the MssI restriction 

site of pChS3 in a seamless cloning reaction, resulting in pME4942. GFP-tagged 

overexpression of fiAt was constructed by amplifying fiAt without stop codon with 

primer pair AA179/AA209 introducing 20 bp overhangs to tetO7-Pmin and sgfp with 

primer pair AA285/OZG207. AA285 introduced a 15 bp overhang to pyroA 3’ flanking 

region. fiAt and sgfp were ligated by fusion-PCR (Szewczyk et al., 2006) with primer 

pair AA209/AA285 and cloned into the MssI restriction site of pChS3 in a seamless 

cloning reaction, resulting in pME4943. 

Excised gene cassettes were integrated into AfGB189, resulting in AfGB450 by 

pME4942 and AfGB451 by pME4943. Correct integration was confirmed by Southern 

hybridisation. 
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Construction of ∆fbx15 in overexpressed fiAt background strain with GFP-tag 

by the TetOn-System 

Constructed AfGB451 was used as background strain to integrate excised gene 

cassette of ∆fbx15 from pME4538 with MssI, resulting in AfGB452. Southern 

hybridisation was used to verify on-locus integration after marker recycling. 

 

Construction of plasmids and strains for ∆fidA and C-terminal GFP-tagged 

complementation 

The ∆fidA strain was constructed from D141 gDNA by amplifying fidA 5’ flanking 

region (1.2 kb) with primer pair AA267/AA268 introducing 15 bp overhangs to 

pBluescript SK+ and the six-site of ptrARM with a SwaI restriction site between fidA 5’ 

flanking region and ptrARM for further cloning. fidA 3’ flanking region (1 kb) was 

amplified with primer pair AA265/AA266 introducing 15 bp overhangs to the six-site 

of ptrARM and pBluescript SK+. For cloning the pChS314 (C. Sasse, prs. com.) was 

utilised in two step cloning. fidA 5’ flanking region was cloned into the SwaI restriction 

site and fidA 3’ flanking region was cloned into the PmII restriction site in seamless 

cloning reactions, resulting in pME4944. The excised gene cassette of pME4944 was 

transformed into AfS35 to generate AfGB454. 

The complementation plasmid pME4945 was constructed by amplification of fidA 

5’ flanking region and fidA without stop codon (5.5 kb) from D141 gDNA with primer 

pair AA267/AA269 introducing 15 bp overhangs to pBluescript SK+ and C-terminal 

located sgfp. C-terminal located sgfp was amplified from pME4917 with primer pair 

AA186/OZG207 with 15 bp overhang to the six-site of ptrARM. fidA 5’ flanking 

region-fidA and sgfp were ligated by fusion-PCR (Szewczyk et al., 2006) with primer 

pair AA186/AA267. Fused fidA 5’ flanking region-fidA-sgfp and fidA 3’ flanking region 

(1 kb), amplified with primer pair AA265/266 introducing 15 bp overhangs to the six-

site of ptrARM and pBluescript SK+, were cloned in two steps into pChS314 (C. Sasse, 

prs. com.). fidA 5’-flanking region-fidA-sgfp was cloned into SwaI restriction site and 

fidA 3’ flanking region into PmII restriction site with seamless cloning reactions. The 

excised gene cassette was integrated into AfGB454, resulting in AfGB455. Correct 

integration was confirmed by Southern hybridisation after marker recycling. 

 

Construction of plasmid and strain for overexpressed N- and C-terminal 

GFP-tagged FidA 

PgpdA was used for overexpression of fidA. PgpdA was amplified from pME4917 with 

primer pair AA359/BJ4 introducing a 15 bp overhang to fidA 5’ flanking region. 

fidA-sgfp was amplified from pME4945 with primer pair AA186/AA360 introducing 15 
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bp overhangs to the six-site of ptrARM and PgpdA. PgpdA and fidA-sgfp were ligated 

by fusion-PCR (Szewczyk et al., 2006) with primer pair AA186/AA359 and integrated 

into the SwaI restriction site of pME4944 in a seamless cloning reaction, resulting in 

pME4946. N-terminal GFP-tagged overexpressed fidA was obtained by amplifying 

PgpdA-sgfp with primer pair AA329/AA359 from pME4938 introducing a 15 bp 

overhang to fidA 5’ flanking region. Through fusion-PCR (Szewczyk et al., 2006) 

PgpdA-sgfp and fidA were ligated with primer pair AA359/AA361 and cloned into the 

SwaI restriction site of pME4944 in a seamless cloning reaction, resulting in 

pME4948. 

AfGB456 was generated by integration of the excised gene cassette with MssI of 

pME4946 into AfS35. Integration of excised gene cassette with MssI of pME4948 into 

AfS35 resulted in AfGB458. Southern hybridisation after marker recycling was utilised 

to verify correct integration. 

 

Construction of plasmids and strains for N-terminal HA- and GFP-tagged FidA 

Construction of N-terminal HA-tagged fidA was obtained by amplification of fidA from 

D141 gDNA with AA361/AA364 introducing HA (5’- TAC CCC TAC GAC GTC CCC 

GAC TAC GCC – 3’) with start codon by primer AA364 and 15 bp overhangs to fidA 

5’ flanking region. AA361 introduces a 15 bp overhang to the six-site of ptrARM. The 

fragment HA-fidA was cloned with a seamless cloning reaction into the SwaI 

restriction site of pME4944, resulting in pME4949. ha:fidA gene marker cassette was 

excised with MssI and transformed into AfS35, resulting in AfGB459. 

N-terminal GFP-tagged fidA was obtained by amplifying sgfp from pME4292 with 

primer pair AA329/AA383 introducing a 15 bp overhang to fidA 5’ flanking region. fidA 

was amplified from D141 gDNA with primer pair AA361/AA362 introducing a 15 bp 

overhang to the six-site of ptrARM and a 20 bp overhang to sgfp. Through fusion-PCR 

(Szewczyk et al., 2006) sgfp and fidA were ligated and cloned into the SwaI restriction 

site of pME4944 in a seamless cloning reaction, resulting in pME4947. The gene 

cassette was excised with MssI and integrated into AfS35, resulting in AfGB457. 

Correct integration was confirmed by Southern hybridisation before and after marker 

recycling and PCR. 
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8.6 A. nidulans plasmid and strain construction 

 

Construction of plasmids and strains for ∆fbx15 and C-terminal STREP-tagged 

complementation with recyclable resistance marker 

The ∆fbx15 strain was constructed from ANCS07 gDNA by amplification of fbx15 

5’ flanking region (1.2 kb) with primer pair AA310/AA319 introducing 15 bp overhangs 

to pBluescript SK+ and the six-site of phleoRM with a SwaI restriction site between 

fbx15 5’ flanking region and phleoRM for further applications. fbx15 3’ flanking region 

(1.4 kb) was amplified with primer pair AA312/AA313 introducing 15 bp overhangs to 

the six-site of phleoRM and pBluescript SK+. For cloning the pChS315 (C. Sasse, prs. 

com.) was utilised, harbouring the phleoRM cassette, in two step cloning. fbx15 5’ 

flanking region was cloned into the SwaI restriction site and fbx15 3’ flanking region 

was cloned into the PmII restriction site in seamless cloning reactions, resulting in 

pME4951. The excised gene cassette of pME4951 with MssI was transformed into 

ANCS07 to generate AGB1265. 

The complementation construct was generated by amplifying fbx15 5’ flanking region 

and fbx15 gene without stop codon (3.3 kb) with primer pair AA310/AA336 

introducing 15 bp overhang to pBluescript SK+ and the six-site of phleoRM. AA336 

also introduce a C-terminal STREP-tag (5’- AGC GCT TGG AGC CAC CCC CAG 

TTC GAG AAG -3’) with a stop codon. fbx15 3’ flanking region was amplified with 

AA312/313 introducing 15 bp overhangs to the six-site of phleoRM and pBluescript 

SK+. Both fragments were cloned into pChS315 (C. Sasse, prs. com.). fbx15 5’ 

flanking region-fbx15-strep was cloned into SwaI restriction site and fbx15 3’ flanking 

region was cloned into PmII restriction site in seamless cloning reactions, resulting in 

pME4952. Gene cassette was excised with MssI and transformed into AGB1265 to 

generate AGB1266. Correct integration on-locus was verified for AGB1265 and 

AGB1266 with Southern hybridisation and PCR after marker recycling. 

 

Construction of plasmid and strain for overexpressed Fbx15 tagged with RFP 

Overexpression of fbx15 with C-terminal RFP-tag was obtained by PgpdA amplified 

from pME4917 with primer pair AA386/AA387 introducing a 15 bp overhang to fbx15 

5’ flanking region. fbx15 was amplified from ANCS07 gDNA with primer pair 

AA388/AA389 without stop codon introducing 15 bp overhang to rfp and 20 bp 

overhang to PgpdA. The primer pair AA390/BJ319 was used to amplify rfp from 

pME4921. PgpdA and fbx15 were ligated by fusion-PCR (Szewczyk et al., 2006). 

Fused PgpdA- fbx15 together with rfp were cloned into SwaI restriction site of 
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pME4951 in a seamless cloning reaction, resulting in pME4953. Gene cassette 

excised with MssI was integrated into AGB1265 to generate AGB1267. Southern 

hybridisation was utilised to confirm correct on-locus integration. 

 

Construction of BiFC plasmids and strains for localisation determining 

interactions of Fbx15 with FidA and OefC 

BiFC experiments were utilised using the bidirectional nitrate-inducible PniiA/PniaD 

promoter and terminators with ectopic integration in respective strains. gDNA of 

ANCS07 was used as template for fbx15, fidA and oefC amplification. Constructed 

plasmids were sequenced with the primers AA27, AAA28, OZG78, OZG79. pChS379 

(C. Sasse, prs. com.) including a phleo resistance non-recyclable marker cassette 

(phleoNRM) used as backbone plasmid. All constructed plasmids were ectopic 

integrated into ANCS07. 

For the fbx15-oefC BiFC construct cyfp was amplified with primer pair AA24/OZG388 

from pME4302 introducing 15 bp overhangs to PniaD and fbx15. fbx15 was amplified 

with primer pair AA372/AA373 introducing 15 bp overhangs to cyfp and TniaD and 

was ligated with cyfp by fusion-PCR (Szewczyk et al., 2006) with primer pair 

AA24/AA372. nyfp was amplified with primer pair AA25/OZG387 introducing a 15 bp 

overhang to PniiA. oefC was amplified with AA370/371 introducing 15 bp overhangs 

to nyfp and TniiA. Both fragments were ligated with primer pair AA25/AA371 by 

fusion-PCR (Szewczyk et al., 2006). Cloning was performed in two steps cloning 

cyfp-fbx15 into the PmeI restriction site of pChS379 and nyfp:oefc into the SwaI 

restriction site in seamless cloning reactions, resulting in pME4955. pME4955 was 

integrated into ANCS07 to generate AGB1268. 

As control cyfp, amplified with primer pair AA24/AA44 introducing 15 bp overhangs 

to PniaD and TniaD, was cloned into the PmeI restriction site of pChS379 in a 

seamless cloning reaction. The previously obtained nyfp:oefC fusion fragment was 

cloned into the SwaI restriction site of pChS379, generating pME4958. pME4958 was 

integrated into ANCS07, resulting in AGB1271. 

The BiFC construct for the interaction of fbx15 and fidA was obtained by amplifying 

fidA with primer pair AA374/AA375 introducing 15 bp overhangs to nyfp and TniiA. 

nyfp was amplified with primer pair AA25/OZG387 introducing a 15 bp overhang to 

PniiA. nyfp and fidA were ligated through fusion-PCR (Szewczyk et al., 2006) with 

primer pair AA25/AA375. Previously obtained cyfp-fbx15 and nyfp:fidA were cloned 

into pChS379 in two steps. cyfp-fbx15 was cloned into the PmeI restriction site of 

pChS379 and nyfp:fidA into the SwaI restriction site in seamless cloning reactions, 
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resulting in pME4956. AGB1269 was generated by integrating pME4956 into 

ANCS07. 

As control cyfp, amplified with primer pair AA24/AA44 introducing 15 bp overhangs 

to PniaD and TniaD, was cloned in a seamless cloning reaction into the PmeI 

restriction site of pChS379. nyfp-oefC, previously obtained by fusion-PCR (Szewczyk 

et al., 2006), was cloned into the SwaI restriction site of pChS379 in seamless cloning 

reactions, generating pME4959. To generate AGB1272, pME4959 was integrated 

into ANCS07. 

For all BiFC experiments an fbx15 control was generated. nyfp, amplified with primer 

pair AA25/AA44 introducing 15 bp overhangs to PniiA and TniiA. nyfp was cloned into 

the SwaI restriction site of pChS379 and cyfp-fbx15 fusion fragment, previously 

obtained by fusion-PCR (Szewczyk et al., 2006), was cloned into the PmeI restriction 

site of pChS379 in seamless cloning reactions, generating pME4957. pME4957 was 

integrated into ANCS07, resulting in AGB1270. All BiFC strains were verified by PCR 

of gDNA. 

 

Construction of plasmids and strains for ∆oefC and complementation 

ANCS07 gDNA was used as template to construct the ∆oefC strain. oefC 5’ flanking 

region (1.3 kb) with primer pair AA337/AA338 introducing 15 bp overhangs to 

pBluescript SK+ and the six-site of phleoRM with a PmeI restriction site between oefC 

5’ flanking region and phleoRM for further cloning. oefC 3’ flanking region (1.8 kb) was 

amplified with primer pair AA339/AA340 introducing 15 bp overhangs to the six-site 

of phleoRM and pBluescript SK+. pChS315 (C. Sasse, prs. com.) was utilised for 

cloning in two steps. oefC 5’ flanking region was cloned into the SwaI restriction site 

and oefC 3’ flanking region was cloned into the PmII restriction site in seamless 

cloning reactions, resulting in pME4960. The gene cassette was excised with SwaI 

and transformed into ANCS07 to generate AGB1273. 

Construction of the complementation plasmid was generated by amplifying oefC 

5’ flanking region and oefC gene (3.3 kb) with primer pair AA337/AA346 introducing 

15 bp overhang to pBluescript SK+ and the six-site of phleoRM. The previously 

obtained oefC 3’ flanking region and the oefC 5’ flanking region with oefC were cloned 

into pChS315 (C. Sasse, prs. com.) in two steps. oefC 5’ flanking region-oefC was 

cloned into SwaI restriction site and oefC 3’ flanking region was cloned into PmII 

restriction site in seamless cloning reactions, resulting in pME4961. Gene cassette 

was excised with SwaI and transformed into AGB1273 to generate AGB1274. Correct 

on-locus integration for AGB1273 and AGB1274 was verified with Southern 

hybridisation after marker recycling. 
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Construction of plasmids and strains for N-terminal GFP-tagged OefC in wild 

type- and ∆fbx15 background strains 

oefC was tagged on its N-terminus with sgfp. sgfp was amplified from pME4292 with 

primer pair AA328/AA342 with start codon and without stop codon introducing 15 bp 

overhangs to oefC 5’ flanking region and oefC. oefC was amplified with primer pair 

AA343/AA344 introducing 15 bp overhang to sgfp and the six-site of phleoRM. sgfp 

and oefC were cloned together into the PmeI restriction site of pME4960, resulting in 

pME4962. The gene cassette of pME4962 was excised with SwaI and transformed 

into AGB1273 to generate AGB1275 and into AGB1265 to generate AGB1277. 

Correct integration was confirmed by Southern hybridisation after marker recycling. 

 

Construction of plasmid and strain for overexpressed N-terminal GFP-tagged 

OefC 

PgpdA was used to generate an overexpression of oefC. PgpdA was amplified from 

pME4917 with primer pair AA347/BJ4 introducing a 15 bp overhang to oefC 5’ 

flanking region. sgfp:oefC was amplified with primer pair AA344/AA350 introducing a 

15 bp overhang to the six-site of phleoRM and a 20 bp overhang to PgpdA using 

pME4962 as template. PgpdA and sgfp:oefC were ligated with primer pair 

AA344/AA347 by fusion-PCR (Szewczyk et al., 2006) and cloned into the PmeI 

restriction site of pME4960, resulting in pME4963. The gene cassette of pME4963 

was excised with SwaI and integrated into AGB1273 to generate AGB1276. Southern 

hybridisation was utilised to verify correct on-locus integration. 

 

Construction of plasmids and strains for ∆fidA and C-terminal GFP-tagged 

complementation strain 

The ∆fidA strain was constructed with ANCS07 gDNA used as template by amplifying 

fidA 5’ flanking region (1.2 kb) with primer pair AA272/AA273 introducing 15 bp 

overhangs to pBluescript SK+ and the six-site of phleoRM with a SwaI restriction site 

between fidA 5’ flanking region and phleoRM for further integrations. With primer pair 

AA270/AA271 fidA 3’ flanking region (1.2 kb) was amplified, introducing 15 bp 

overhangs to the six-site of phleoRM and pBluescript SK+. The pChS315 (C. Sasse, 

prs. com.) was utilised for cloning in two steps. fidA 5’ flanking region was cloned into 

the SwaI restriction site and fidA 3’ flanking region was cloned into the PmII restriction 

site in seamless cloning reactions, resulting in pME4965. The excised gene cassette 

of pME4965 with MssI was transformed into AfS35 to generate AGB1278. Correct 

integration of AGB1278 was confirmed by Southern hybridisation before and after 

marker recycling. 
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To construct the complementation plasmid pME4966 fidA 5’ flanking region and fidA 

without stop codon (5.3 kb) from ANCS07 gDNA with primer pair AA272/AA274 

introducing 15 bp overhangs to pBluescript SK+ and C-terminal located sgfp. sgfp 

was amplified from pME4917 with primer pair AA186/OZG207 with 15 bp overhang 

to the six-site of phleoRM. fidA 5’ flanking region-fidA and sgfp were ligated by 

fusion-PCR (Szewczyk et al., 2006) with primer pair AA186/AA272. The fused 

fragment fidA 5’ flanking region-fidA:sgfp and fidA 3’ flanking region (1.2 kb), 

amplified with primer pair AA270/AA271 introducing 15 bp overhangs to the six-site 

of phleoRM and pBluescript SK+, were cloned in two steps into pChS315 (C. Sasse, 

prs. com.). fidA 5’ flanking region-fidA:sgfp was cloned into SwaI restriction site and 

fidA 3’ flanking region into PmII restriction site with seamless cloning reactions. The 

excised gene cassette with MssI was integrated into AGB1278, resulting in AGB1279. 

Correct integration of AGB1279 was confirmed by Southern hybridisation after 

marker recycling. 

 

Construction of plasmid and strain for overexpressed N- and C-terminal 

GFP-tagged FidA 

Overexpression of fidA was obtained using PgpdA for induction of multiple copies of 

the fidA gene transcript. Construction of overexpressed C-terminal GFP-tagged fidA 

was performed by amplifying PgpdA from pME4917 with primer pair AA332/BJ4 

introducing a 15 bp overhang to fidA 5’ flanking region. fidA:sgfp was amplified with 

primer pair AA186/AA333 introducing a 15 bp overhang to the six-site of phleoRM and 

a 20 bp overhang to PgpdA. Through fusion-PCR (Szewczyk et al., 2006) PgpdA and 

fidA:sgfp were ligated with primer pair AA186/ AA332 and cloned in a seamless 

cloning reaction into the SwaI restriction site of pME4965, resulting in pME4967. 

Overexpressed, N-terminal GFP-tagged fidA was obtained by amplifying PgpdA:sgfp 

with primer pair AA329/AA332 from pME4963 introducing a 15 bp overhang to fidA 

5’ flanking region. fidA was amplified with primer pair AA354/AA366 introducing a 15 

bp overhang to the six-site of phleoRM and a 20 bp overhang to sgfp. Through 

fusion-PCR (Szewczyk et al., 2006) PgpdA:sgfp and fidA were ligated with primer pair 

AA332/AA354 and cloned into the SwaI restriction site of pME4965 in a seamless 

cloning reaction, resulting in pME4969. 

AGB1280 was generated by integration of the excised gene cassette with MssI of 

pME4967 into AGB1278. Integration of excised gene cassette with MssI of pME4969 

results in AGB1282. Southern hybridisation after marker recycling was utilised to 

verify correct integration. 
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Construction of plasmid and strain for N-terminal GFP- and HA-tagged FidA 

N-terminal GFP-tagged fidA was obtained by amplifying sgfp from pME4963 with 

primer pair AA329/AA367 introducing a 15 bp overhang to fida 5’ flanking region. fidA 

was amplified without start codon with primer pair AA366/AA354 introducing a 15 bp 

overhang to the six-site of phleoRM and a 20 bp overhang to sgfp. sgfp and fidA were 

ligated by fusion-PCR (Szewczyk et al., 2006) with primer pair AA354/AA367 and 

cloned into the SwaI restriction site of pME4965 in a seamless cloning reaction, 

generating pME4968. 

HA-tagged fidA was constructed by amplifying fidA from ANCS07 gDNA with primer 

pair AA354/AA368 introducing 15 bp overhangs to fidA 5’ flanking region and the six-

site of phleoRM. AA368 also introduce the N-terminal HA-tag (5’-TAC CCC TAC GAC 

GTC CCC GAC TAC GCC-3’) with a start codon. ha:fidA was cloned into the SwaI 

restriction site of pME4965 in a seamless cloning reaction, resulting in pME4970. 

AGB1281 was obtained by integration of the excised gene cassette of pME4968 with 

MssI into AGB1278. AGB1283 was obtained by integration of the excised gene 

cassette of pME4970 with MssI into AGB1278. Correct integration was verified by 

Southern hybridisation after marker recycling. 

 

Construction of plasmids and strains for cross complementations of fbx15AN, 

oefCAN into A. fumigatus and fbx15AF, oefCAF into A. nidulans 

The fbx15AN gene was transformed into A. fumigatus by amplifying fbx15AN with 

primer pair AA384/AA385 introducing 15 bp overhangs to fbx15AF 5’- flanking region 

and the six-site of ptrARM. fbx15AN was cloned in a seamless cloning reaction into the 

SwaI restriction site of pME4538, generating pME4950. MssI excised gene cassette 

was transformed into AfGB128, resulting in AfGB460. 

fbx15AF was transformed into A. nidulans by amplifying fbx15AF with primer pair 

AA382/AA383 introducing 15 bp overhangs to fbx15AN 5’- flanking region and the six-

site of phleoRM. fbx15AF was cloned in a seamless cloning reaction into the SwaI 

restriction site of pME4538, generating pME4954. MssI excised gene cassette was 

transformed into AFGB128, resulting in AGB1284. 

The oefCAN gene was integrated into A. fumigatus by amplifying oefCAN with primer 

pair AA344/AA357 introducing 15 bp overhangs to oefCAF 5’- flanking region and the 

six-site of ptrARM. The fragment oefCAN was cloned into the PmeI restriction site of 

pME4936 in a seamless cloning reaction, resulting in pME4939. SwaI excised gene 

cassette was transformed into AfGB438, resulting in AfGB461. 

oefCAF was transformed into A. nidulans by amplifying oefCAF with primer pair 

AA327/AA358 introducing 15 bp overhangs to oefCAN 5’- flanking region and the six-
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site of phleoRM. oefCAF was cloned in a seamless cloning reaction into the PmeI 

restriction site of pME4960, generating pME4964. SwaI excised gene cassette was 

transformed into AGB1273, resulting in AGB1285. 

 

9 Genetical manipulation techniques of microorganisms 

9.1 Transformation in bacteria 

Transformation into E. coli was performed as described (Douglas Hanahan, Jessee 

and Bloom, 1991; Inoue, Nojima and Okayama, 1990). E. coli chemical competent 

cells were added to plasmid DNA and incubated for 30 min on ice and subsequently 

heat shocked at 42°C for approx. 30 to 45 s for plasmid uptake. 800 µl LB medium 

were added to the cells on ice. The mixture of competent cells and plasmid DNA was 

shaken for 30 min at 37°C on a rotary shaker and collected by centrifugation for two 

min at 13000 rpm. Transformants were plated on LB plates supplemented with 

100 µg/ml ampicillin as selective agent. Plates were incubated o/n at 37°C upside 

down to obtain suitable clone shapes for further application. The successful uptake 

of plasmids was verified by screening E. coli transformants through amplification of 

fragments specific for respective plasmids with PCR (colony-PCR). 

 

9.2 Transformation in Aspergillus 

Polyethylene glycol-mediated protoplast fusion of A. fumigatus and A. nidulans was 

described before in Punt and van den Hondel, 1992. For A. fumigatus strains 

constructed in this study AfS35 (Krappmann, Sasse, et al., 2006) and AfS35 derived 

strains were used as host strains. AfS35 was used as wild type (WT). Af293.1 

(McCluskey et al., 2010), containing a pyrG1 mutation, was utilised for BiFC 

experiments as host strain. For A. nidulans strains generated in this study ANCS07 

(C. Sasse, prs. com.) and its derivations were used as host strains. ANCS07 was 

used as WT. AfS35 and ANCS07 harbour the ∆nkuA and ∆nkuA mutation leading to 

increased homologous recombination during transformation leading to on-locus 

integration of linearized genetic constructs (Krappmann, Sasse and Braus, 2006; 

Nayak et al., 2006). 

A. nidulans and A. fumigatus host strains were cultivated vegetatively for 16 to 24 h 

on a rotary shaker at 37°C. Grown mycelium was harvested by filtering the medium 

through a Miracloth filter (Merck KGaA) and washed with sterile citrate buffer (150 

mM KCl, 50 mM Na-citrate, 580 mM NaCl, pH 5.5). Protoplasts were received by 

transferring the washed mycellium to protoplastation solution, which was obtained by 
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dissolving 30mg/ml Vinoflow® Max or Vinotaste® Pro from NOVOZYMES 

(Bagsvaerd, Denmark) in sterile citrate buffer and sterile filtration through 0.5 μm 

filters (Sarstedt). For receiving A. nidulans transformations 15 mg/ml lysozyme 

(Serva Electrophoresis GmbH) was additionally supplemented to the protoplastation 

solution. The mixture of mycelium and protoplastation solution was incubated for 

90 to 115 min at 30°C under constant agitation at 80 rpm. Received protoplasts were 

monitored by microscopy and sterile filtered through a sterile Miracloth filter (Merck 

KGaA) into a precooled sterile 50 ml centrifuge tube (Sarstedt) on ice. The protoblast-

containing solution was filled up to 50 ml with 4°C cold sterile STC 1700 buffer 

(50 mM CaCl2, 35 mM NaCl, 1.2 M sorbitol, 10 mM Tris pH 5.5) and left for 10 min 

on ice. Protoplasts were subsequently centrifuged at 2500 rpm at 4°C for 12 min, 

washed with 30 ml 4°C cold sterile STC1700. Centrifugation was repeated at 

2500 rpm at 4°C for 12 min. Approx. 10 µg linearized DNA was added to the 

protoplasts for the integration on locus or 10 µg of circular DNA was added for ectopic 

integration of BiFC constructs and incubated for 30 min on ice. 1.25 ml of sterile PEG 

solution (50 mM CaCl2, 60% (v/v) PEG4000, 10 mM Tris pH 7.5) was added gradually 

(250 µl, 250 µl, 850 µl) and mixed briefly by careful inverting to increase the DNA 

uptake of the protoplasts and immediately afterwards incubated for 40 min over ice. 

The DNA-protoplast mixture was washed with sterile 4°C cold STC1700, centrifuged 

at 2600 rpm at 4°C for 15 min and distributed on solid AMM plates, supplemented 

with 1.2 M sorbitol and respective selecting agents. Pyrithiamine (125 ng/ml), 

hygromycin G (200 μg/ml) and phleomycin (20 µg/ml) were used in this study as 

selective agents. After three to seven days transformants were picked and 

individualized on selective AMM or LM plates. In order to eliminate the marker 

cassettes the genome of the respective strains, individualization of transformants was 

performed on xylose-containing AMM plates 0.5% (w/v) glucose, 7 mM KCl, 11.2 mM 

KH2PO4, 2 mM MgSO4, 70 mM NaNO3, 0.1% (v/v) trace element solution, 0.5% (w/v) 

xylose, pH 5.5) (Hartmann et al., 2010). Southern hybridisation was used to verify the 

correct integration of transformed constructs in A. fumigatus and A. nidulans. 

 

9.3 Southern hybridisation 

A. fumigatus and A. nidulans transformants generated in this study were confirmed 

by Southern hybridisation analysis (Southern, 1975). Certain restriction enzymes 

(Thermo Fisher Scientific) were chosen to detect a span of DNA fragments, which 

were cut inside the respective gene locus and outside of the integrated construct to 

verify on-locus integration. Digested DNA was separated by agarose gel 
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electrophoresis. The gel was washed in three steps under constant agitation at RT: 

10 minutes in Wash buffer 1 (0.25 M HCl) for depurination, 25 min in Wash buffer 2 

(1.5 M NaCl, 0.5 M NaOH) for denaturation, and 30 min in Wash buffer 3 (1.5 M NaCl, 

0.5 M Tris pH 7.4) for neutralisation. An AmershamTM HybondTM-Nylon membrane 

from GE Healthcare (Munich, Germany) was used to transfer the gDNA fragments by 

dry blotting for 2h or o/n. The membrane was dried at 70°C for ten minutes and 

fragmented DNA was cross-linked by exposure to UV-light for three minutes per side 

of the membrane. DNA fragments were labelled with the probe to detect specific 

regions and were detected with AmershamTM Gene Images AlkPhos Direct Labelling 

and Detection System (GE Healthcare) according to the manufacturer’s instructions. 

Membrane-bound DNA fragments were labelled with the probe by hybridisation at 

60°C rotating o/n. The probe-labelled membrane was washed with post-hybridisation 

buffer 1 (2% blocking reagent, 1 mM MgCl2, 2 M urea, 150 mM NaCl, 50 mM Na3PO4, 

50 mM SDS) for ten minutes at 60°C rotating and with the pre-hybridisation buffer 2 

(1 M NaCl, 1 M Tris base, pH 10) twice for five minutes under constant agitation at 

RT. Labelled DNA bands were detected by utilising the CDP-Star Detection Reagent 

(GE Healthcare), incubation for two min and exposure on an AmershamTM 

HyperfilmTM ECL (GE Healthcare). An Optimax (Protec GmbH&Co.KG) film 

processor was used to develop the film. 

 

10 Protein methods 

10.1 Extraction of proteins 

Proteins were extracted from vegetatively grown strains in liquid AMM. Mycelium was 

harvested through sterile Miracloth (Merck KGaA), washed with 0.96% NaCl 

containing 1% dimethyl sulfoxide (DMSO) and 10mM phenylmethylsulfonyl 

fluorid (PMSF), dried, frozen in liquid nitrogen and pulverized with a table mill (Retsch 

Technology GmbH). 300 µl B* buffer (1 mM EDTA, 10% (v/v) glycerol, 0.1% (v/v) 

NP-40, 300 mM NaCl, 100 mM Tris pH 7.5) supplemented with 1.5 mM DTT, 

1 tablet/50 ml complete EDTA-free protease inhibitor cocktail (Roche Diagnostics 

GmbH), 1 mM PMSF, phosphatase inhibitor mix (1 mM NaF, 0.5 mM 

sodium-orthovanadate, 8 mM ß-glycerolphosphate disodium pentahydrate and 

1.5 mM benzamidine) was added to the grounded pulverized mycelium and 

homogenized. After a centrifugation step for ten min at 13000 rpm at 4°C, the 

supernatant was transferred into a new reaction tube, stored at -20°C or used for 

further analysis. 
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10.2 GFP-/RFP-trap 

Proteins tagged with GFP or RFP were pulled with GFP-trap_A and RFP-trap_A 

agarose beads (Chromotek). An amount of 5 ml of extracted proteins (Chapter 9.1) 

were incubated with 20 µl GFP-Trap_A or RFP-Trap_A beads, which were 

equilibrated to B* buffer used for protein extraction. Protein extracts were incubated 

with beads for two hours at 4°C on a rotator. Beads bound to tagged proteins were 

washed twice for two minutes and were transferred to a new reaction tube. Elution of 

the pulled proteins was performed by boiling the beads in 80 μl SDS-sample buffer 

for ten minutes at 95°C and used directly for SDS-PAGE followed by western 

hybridisation or stored at -80°C. 

 

10.3 SDS-PAGE and western hybridisation 

Protein extracts were separated according to the molecular mass by sodium dodecyl 

sulphate polyacrylamide gel electrophoresis (SDS-PAGE; Smith, 1984). A mixed 

solution of protein extract (Chapter 9.1) and sample buffer (0.3% (w/v) bromophenol 

blue, 30% (v/v) glycerol, 7% (w/v) SDS, 250 mM Tris-HCl pH 6.8, 15% (v/v) 

β-mercaptoethanol), was boiled for five min at 95°C and loaded on 10% acrylamide 

gels [Running gel: 2.8 ml H2O, 3.8 ml Tris buffer pH 8.8 (stock: 1 M), 100 μl SDS 

(stock: 10%), 3.3 ml polyacrylamide (stock: 30%), 100 μl ammonium persulfate (APS; 

stock: 10%), 10 μl N,N,N′,N′-tetramethylethane-1,2-diamine (TEMED); stacking gel: 

50 μl APS (stock: 10%), 3 ml H2O, 650 µl polyacrylamide (stock: 30%), 50 μl SDS 

(stock: 10%), 5 μl TEMED; 625 µl Tris buffer pH 6.8 , for two gels], rinsed in running 

buffer (250 mM glycerol, 0.1% SDS, 25 mM Tris-base) with a voltage of 120-200 V in 

Mini-PROTEAN Tetra Cell (Bio-Rad Laboratories GmbH) at RT. As size standard the 

Prestained Protein Ladder (Thermo Fisher Scientific) was used. 

Separated proteins from SDS gels were blotted semi wet using a Mini Trans-Blot Cell 

(Bio-Rad) on an AmershamTM ProtranTM 0.45 μm NC nitrocellulose membranes (GE 

Healthcare) in transfer buffer (192 mM glycine, 0.02% (w/v) SDS, 25 mM Tris) on ice 

for 1h at 100 V or o/n at 35 V. PonceauS (0.2% PonceauS, 3% TCA) staining was 

used to control protein transfer efficiency and quantification analysis. The membrane 

was blocked in 1x TBST [150 mM NaCl, Tris buffered Saline and Tween-20: 50 mM 

Tris, 0.05% (v/v) Tween-20] with 5% (w/v) skim milk powder from Sucofin TSI 

GmbH&Co.KG (Zeven, Germany) or 3% (w/v) BSA (Carl Roth GmbH&Co.KG) 

depending on antibody requirement for 1h at RT or o/n at 4°C under constant 

agitation to prevent unspecific antibody-binding. The primary antibodies α-GFP 

mouse from Santa Cruz Biotechnology (Dallas, Texas, USA) diluted 1:1000, α-RFP 
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mouse (Chromotek) diluted 1:1000 and α-HA mouse (Sigma-Aldrich Chemie GmbH) 

diluted 1:2000 were mixed in TBST and 5% skim milk powder. The anti-phospho 

Ser/Thr ab17464 rabbit antibody (Abcam) diluted 1:1000 and the α-Ubiquitin clone 

P4D1-A11 mouse (Merck KGaA) diluted 1:5000 were mixed in TBS or TBST (0.05% 

Tween-20) containing 3% BSA. Membranes were incubated with primary antibodies 

three hours at RT or o/n at 4°C under constant agitation. Membranes were washed 

in TBST or TBS three times for five min at RT under constant agitation. The 

secondary antibodies peroxidase coupled rabbit anti-mouse (Jackson 

ImmunoResearch) diluted 1:2000 in TBST and 5% skim milk powder or TBST with 

3% BSA or goat anti-rabbit (Invitrogen) diluted 1:2500 in TBS with 3% BSA were 

incubated on membranes for 1h at RT under constant agitation. Membranes were 

washed in TBST or TBS three times for five min at RT under constant agitation. 

Proteins were detected through horseradish peroxidase substrate luminol based 

chemiluminescence by preparing two solutions (solution 1: 2.5 mM luminol, 400 μM 

paracoumarat, 100 mM Tris-HCl pH 8.5; solution 2: 5.4 mM H2O2, 100 mM Tris-HCl 

pH 8.5). Both solutions were applied contemporaneous to the membrane and 

incubate in darkness for two min under constant agitation. Detection of signals was 

performed with the Fusion SL chemiluminescence detector (Peqlab Biotechnology 

GmbH), operated with the Fusion 15.18 software (Vilber Lourmat) or using an 

Amersham Hyperfilm ECL film (GE Healtcare Life Sciences) developed with the 

Optimax (Protec GmbH&Co.KG) film processor. 

 

 

11 Secondary metabolite extraction 

11.1 Extraction of vegetatively induced secondary metabolites in 

A. fumigatus 

Extraction of secondary metabolites of vegetative grown cultures was performed 

followed by the description from Gerke and collaborators (Gerke et al., 2012). 1*108 

of A. fumigatus spores were grown vegetative in AMM at 37°C on a rotary shaker for 

48h. Mycelia was separated from media by filtration through Miracloth. The media 

were adjusted to pH 5 with HCl and mixed with equal amounts of ethyl acetate in a 

shaking flask to separate secondary metabolites from the forming water phase. The 

secondary metabolite-ethyl acetate mix was evaporated in a round bottom flask after 

the obtained water phase was discarded. Evaporation was performed at 37°C under 

constant gyration in a Hei-VAP-Advantage rotary evaporator from Heidolph 

Instruments GmbH&Co.KG (Schwabach, Germany) with a MWG Lauda RM6 from 
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Lauda-Brinkmann LP (Delran, NJ, USA) and a Laboxact KNF vacuum system 

(Sigma-Aldrich Chemie GmbH). Obtained secondary metabolites were resolved in 

3 ml ethyl acetate, transferred into small glass tubes and evaporated at 37°C under 

constant gyration in an evaporator. Glass tubes were stored at - 20°C. For 

measurement with high-performance liquid chromatography (HPLC) secondary 

metabolites were resolved in 500 µl half acetonitrile, half LCMS grade water, 

centrifuged at 8°C at 13000rpm for ten min and transferred to a LCMS vial. 

 

11.2 Analysis of secondary metabolites by high performance liquid 

chromatography (HPLC) coupled with a UV diode array detector 

(UV-DAD) and an evaporative light scattering detector (ELSD) 

HPLC measurements were performed as described (Thieme, 2017). Dr. Jennifer 

Gerke executed the HPLC measurements (Department of Molecular Microbiology 

and Genetics, Georg-August University Göttingen, Germany). 

20 µl of secondary metabolite extracts dissolved in 500 μl acetonitrile/ LCMS grade 

water [1:1] were analysed under gradient conditions (20% B to 100% B in 20 min) 

with a flow rate of 0.5 ml/min. The Geminyx III software from Goebel Instrumentelle 

Analytik GmbH (Au/Hallertau, Germany) was employed to analyse obtained HPLC 

data. 

 

12 Microscopy 

12.1 Photometric imaging 

Conidiophore and cleistothecia development of A. nidulans strains was monitored on 

solid AMM media. 2*103 spores were point inoculated and incubated for seven days 

at 37°C in light or dark with limited oxygen supply. The binocular microscope 

ZX12-ILLB2-200 (Olympus) equipped with a SC30 digital camera (Olympus) was 

used for quantification. Pictures were processed with the cellSens Dimension 1.4 

software (Olympus). 

 

12.2 Fluorescence microscopy 

2*103 spores were grown vegetative in 500 µl AMM on sterile cover slips at 37°C in 

darkness for 18h. Media were removed carefully with paper tissue without destroying 

the mycelium. For stress induction 500 µl fresh AMM containing 3 mM H2O2 or 

300 µM CdSO4 was added to the samples and incubated for 1h at 37°C in dark. Media 

were again carefully removed, and the cover slip was put upside down on a sterile 
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glass slide prepared with 20 µl AMM. Cover slips were fixated with nail polish at the 

corners. 0.1% 4’,6’-diamidino-2-phenylindole, DAPI (Carl Roth GmbH&Co.KG) or 

0.1% Hoechst 33258 pentahydrate (Invitrogen) in AMM were used to stain nuclei 

immediately before microscopy. While monitoring stress conditions, AMM for 

microscopy was additionally supplemented with stress inducers, 3 mM H2O2 or 300 

µM CdSO4 and incubated for 1h. Fluorescence images were monitored with an 

Axiovert Observer Z1 (Carl Zeiss Microscopy GmbH) microscope equipped with a 

CoolSNAP ES2 (Photometrics) digital camera. Pictures were processed with the 

SlideBook 6.0 software package (Intelligent Imaging Innovations). Samples for 

microscopy were prepared on microscopic slides and cover slides from 

Chem-Solution GmbH (Neustadt, Germany). 

 

13 Galleria mellonella larvae infection assay with 

A. fumigatus strains 

The Galleria mellonella larvae infection assay with A. fumigatus strains was carried 

out as described in Renwick et al., 2006 and Thieme, 2017 (Renwick et al., 2006; 

Thieme, 2017). Galleria mellonella larvae were purchased from Fauna Topics GmbH 

(Marbach am Neckar, Germany). A group of 15 individual Galleria mellonella larvae 

per strain were infected with 8*106 spores in 20 µl sterile 0.96% (w/v) NaCl, 

supplemented with 0.002% (v/v) Tween-80. In order to prevent contaminations with 

other microorganisms 10 μg/ml rifampicin was supplemented to each suspension. 

Mock infections with NaCl-Tween with rifampicin were performed for 15 larvae as 

control for each experimental repetition to ensure that the infection procedure itself is 

not responsible for observed mortality. 

For the infection procedure Micro-FineTM+ 0.3 ml insulin syringes (BD Bioscience) 

were used, sterilized before and after each treatment with Melisepthol from Hajovital 

KG (Bendorf, Germany) and discarded after infection of three individuals to decrease 

contamination risk. Infected Galleria mellonella larvae and controls were kept at 30°C 

in darkness with litter the larvae arrived, each infection group separated from each 

other according to the used A. fumigatus strains. Survival was monitored daily. Dead 

larvae showing no movement upon contact and dark coloration were sorted out and 

stored at -20°C o/n prior to sterilization by autoclaving. Significances were determined 

with one-way Anova and Student’s t-test by SISA (Uitenbroek, 1997). 
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III Results 

 

1 Functions of Fbx15 protein encoding genes of A. fumigatus 

and A. nidulans partially overlap 

1.1 Fbx15 is required for development in A. nidulans and secondary 

metabolism in A. fumigatus and A. nidulans 

A. fumigatus Fbx15 mediates secondary metabolite homeostasis, stress tolerance as 

well as virulence (Jöhnk et al., 2016). A. nidulans Fbx15 is involved in secondary 

metabolism indicated by the control of colony pigmentation and has a role in asexual 

and sexual development as the absence of fbx15 results in decreased conidiation 

and block in cleistothecia formation (von Zeska Kress et al., 2012). 

A. fumigatus Fbx15 has a 59.8% identity to A. nidulans Fbx15 (Jöhnk et al., 2016). 

A. nidulans Fbx15 is 653 aa long, whereas its counterpart in A. fumigatus consist of 

655 aa. The aa sequence alignments have shown that A. nidulans Fbx15 contains 

one interaction motif. The motif shows 90% identity to motif 2 of A. fumigatus Fbx15 

and is positioned at the same aa from 313 to 362 (Figure 12) (Jöhnk et al., 2016). 

Fbx15 encompasses two mp NLS sequences close to the C-terminus in both fungi, 

named NLS1 and NLS2. The NLS1 (YEPPRKRLRRHY) of A. nidulans Fbx15 is 

positioned at aa 403 to 414. The NLS2 (VSRKRKCPID) of Fbx15 A. nidulans is 

positioned at aa 475 to 484. Two adjacent Ser residues were identified to be 

phosphorylated via LCMS-analysis, S468 (2%) and S469 (98%), in the human 

pathogen A. fumigatus (Jöhnk et al., 2016). In in silico analysis via NetPhos 3.1, two 

adjacent Ser residues were found in A. nidulans Fbx15 that are phosphorylated with 

a probability of 52% for S445 and 99% for S446 (Figure 12). 
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Figure 12: Comparison between the Fbx15 domain architectures of the deduced 
corresponding A. fumigatus and A. nidulans proteins. Deduced amino acid (aa) 
sequence alignments of Fbx15 shows that both F-box domains are located at the N-terminus 
in A. fumigatus Af293 at aa position 6 to 53 and A. nidulans FGSC A4 at aa position 4 to 56, 
respectively, and are followed by two motifs in A. fumigatus Fbx15 at aa position 223 to 272 
for motif 1 (genus-specific) and at aa position 313 to 362 for motif 2. A. nidulans Fbx15 
contains one motif with 90% identity to motif 2 of A. fumigatus Fbx15 at aa position 313 to 
362. Two monopartite (mp) nuclear localisation signals (NLS) are identified at the C-terminal 
region at aa positions 407 to 418 (mp NLS1) and 485 to 494 (mp NLS2) in A. fumigatus Fbx15. 
A. nidulans Fbx15 contains two mp NLS sequences at aa positions 403 to 414 (mp NLS1) 
and 475 to 484 (mp NLS2) (http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi). In 
A. fumigatus Fbx15 two adjacent serine (Ser) residues were identified to be phosphorylated, 
S468 with a probability of 2% and S469 with a probability of 98%. Putative adjacent 
phosphorylation sites at Ser residues between NLS1 and NLS2 in A. nidulans Fbx15 were 
determined with NetPhos 3.1 at S445 with a probability of 52% and S446 with a probability of 
99% (http://www.cbs.dtu.dk/services/NetPhos/). 

 

It was analysed which functions of A. fumigatus Fbx15 are able to be complemented 

by A. nidulans Fbx15 and vice versa. A. fumigatus fbx15 gDNA was integrated in the 

locus of A. nidulans fbx15 and vice versa. The resulting strains were compared to the 

corresponding ∆fbx15 and their complementation strains. Growth assays on plates 

were performed in darkness with (only for A. fumigatus) and without limited oxygen 

supply enhancing cleistothecia formation in A. nidulans (Park et al., 2019). 

A. fumigatus ∆fbx15 is known to show an orange pigmentation at the bottom of the 

colony compared to a pale yellowish pigmentation of WT, as well as greenish 

pigmented conidia like WT (Jöhnk et al., 2016). A. nidulans fbx15 gDNA introduced 

on-locus of A. fumigatus ∆fbx15 (fbx15ANcomp) showed a WT-like pale pigmented 

colony (Figure 13A, bottom). 

http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi
http://www.cbs.dtu.dk/services/NetPhos/
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Figure 13: The A. fumigatus and A. nidulans fbx15 genes mutually complement colony 
pigmentation phenotypes of the corresponding deletion strains as well as 
developmental phenotypes of the A. nidulans ∆fbx15 mutant strain. (A) The A. fumigatus 
fbx15 gene (fbx15comp) and the A. nidulans fbx15 gene (fbx15ANcomp) were integrated on-locus 
of the A. fumigatus fbx15 deletion strain (∆fbx15). 2*103 spores of A. fumigatus strains were 
point inoculated and incubated for three days on Aspergillus minimal medium (AMM) at 37°C 
in darkness. The fbx15comp and fbx15ANcomp strains complement the pale yellowish 
pigmentation of WT in ∆fbx15 (bottom). (B) The A. nidulans fbx15 gene fused to strep 
(fbx15:strepcomp) and the A. fumigatus fbx15 gene (fbx15AFcomp) were integrated on-locus of 
the A. nidulans fbx15 deletion strain (∆fbx15). 2*103 spores of A. nidulans strains were point 
inoculated on AMM and incubated at 37°C for seven days in darkness with limited oxygen 
supply. A. nidulans ∆fbx15 shows a dark reddish pigmented colony with less and red 
pigmented conidia (yellow arrow) compared to a yellowish pigmented colony (bottom) with 
abundant green pigmented conidia (top) of wild type (WT), fbx15:strepcomp and the fbx15AFcomp 
(black-white arrows). Cleistothecia formation is complemented by fbx15:strepcomp and the 
fbx15AFcomp in A. nidulans ∆fbx15 (white arrows). Experiments were performed with two 
independent transformants and two biological replicates. PMG: photomicrograph, scale bars: 
200 µm. 

 

The A. nidulans ∆fbx15 colony shows a dark reddish pigmentation with a thinned 

layer of reddish pigmented conidiospores (yellow arrow) and a blocked cleistothecia 

formation (von Zeska Kress et al., 2012). On-locus of A. nidulans ∆fbx15 integrated 

gDNA of A. nidulans fbx15 fused to strep (fbx15:strepcomp) and A. fumigatus fbx15 

(fbx15AFcomp) restored the brown yellowish pigmented colony with a dense greenish 

pigmented conidiospore layer like WT (Figure 13B, top and bottom, black-white 

arrows). Cleistothecia formation was restored in fbx15:strepcomp and fbx15AFcomp, 

showing cleistothecia at the top of the colonies like WT (Figure 13B, white arrows). 

The data show that A. nidulans Fbx15 recovers the A. fumigatus WT-like colony pale 

pigmentation presumably indicating its functionality in A. fumigatus secondary 

metabolite homeostasis and vice versa. Moreover, A. fumigatus Fbx15 is functional 

during asexual and sexual development in A. nidulans as conidiation and 

cleistothecia formation is recovered when A. fumigatus fbx15 gDNA is introduced on-

locus of A. nidulans ∆fbx15. 

 

1.2 A. nidulans Fbx15 plays only a minor role in stress response 

contrary to A. fumigatus Fbx15 

A. fumigatus fbx15 can complement colony and developmental phenotypes of 

A. nidulans ∆fbx15 and vice versa during non-stress conditions. An A. nidulans 

Fbx15 function in stress response like for A. fumigatus Fbx15 has not yet been 

described (von Zeska Kress et al., 2012). It was examined whether there is an 

A. nidulans mediated Fbx15 controlled stress response and whether heterologous 

A. nidulans Fbx15 is capable to perform the Fbx15-mediated stress response of 
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A. fumigatus. Corresponding phenotypical tests of the corresponding constructed 

fungal strains on different stress media were performed. The following stress 

detergents were used to introduce different stress environments: NaCl introduce 

osmotic stress; cadmium sulphate (CdSO4) introduce heavy metal stress; H2O2 

introduce oxidative stress; 3-amino-1,2,4-triazole (3-AT) introduce histidine starvation 

as it represents a histidine analogue triggering the inhibition of histidine biosynthesis 

by a feedback inhibition mechanism (Hilton et al., 1965; Schürch et al., 1974); 

exchange of glucose to lactose introducing carbon source alterations. 

On minimal growth conditions A. nidulans ∆fbx15 did not grow on media containing 

introducing heavy metal stress (300 µM CdSO4). Colony sizes of A. nidulans ∆fbx15 

were comparable to WT and fbx15:strepcomp on media containing lactose as carbon 

source, histidine starvation (1 mM 3-AT), osmotic stress (1 M NaCl) or oxidative 

stress (2 mM H2O2). In locus of A. nidulans ∆fbx15 integrated overexpressed 

A. nidulans fbx15 fused to rfp (oefbx15:rfp) resulted in a smaller colony size during 

histidine starvation and cadmium ion stress conditions compared to WT and 

fbx15:strepcomp whereas during carbon source exchange, osmotic stress and 

oxidative stress conditions oefbx15:rfp showed WT-like colonies. The A. fumigatus 

fbx15 gene integrated in the locus of A. nidulans ∆fbx15 (fbx15AFcomp) resulted in 

WT-like colony growth during all tested media containing carbon source exchange 

and included stress inducing detergents (Figure 14A). 

A. fumigatus ∆fbx15 was sensitive against all tested stressors resulting in a 

decreased colony size or no growth ability as previously described in Jöhnk et al. 

(Jöhnk et al., 2016) (Figure 14B). The strain containing the overexpressed 

A. fumigatus fbx15 (oefbx15) gene integrated in the locus of A. fumigatus ∆fbx15 had 

no effect on growth in comparison to WT and fbx15comp during carbon source 

exchange, osmotic stress, cadmium ion stress and oxidative stress conditions. Media 

including histidine starvation resulted in an increased colony size for oefbx15 

compared to colony sizes of WT and A. fumigatus ∆fbx15 complementation 

(fbx15comp). The strain containing the A. nidulans fbx15 gene integrated in 

A. fumigatus ∆fbx15 (fbx15ANcomp) restored A. fumigatus WT-colony sizes for carbon 

source exchange, osmotic stress and cadmium ion stress conditions (Figure14B, 

black frames). During histidine starvation and oxidative stress conditions fbx15ANcomp 

showed increased colony sizes compared to A. fumigatus ∆fbx15 colonies but 

decreased colony sizes than colonies of WT and fbx15comp (Figure 14B). 
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 Figure 14: A. nidulans fbx15 partially complements stress responses in A. fumigatus 
∆fbx15. (A) The A. nidulans fbx15 gene fused to strep (fbx15:strepcomp), an overexpressed 
A. nidulans fbx15 gene using the constitutively active gpdA promoter and fused to rfp 
(oefbx15:rfp) and the A. fumigatus fbx15 gene (fbx15AFcomp) were integrated on-locus of the 
A. nidulans fbx15 deletion strain (∆fbx15). 2*103 spores of A. nidulans strains were point 
inoculated on Aspergillus minimal medium (AMM) and incubated at 37°C for three to five days 
in light without (control) and with different stressors. ∆fbx15 does not grow on media 
containing cadmium sulphate (300 µM CdSO4) compared to wild type (WT) and 
fbx15:strepcomp. On media containing lactose as sole carbon source, during histidine 
starvation induced by 3-amino-1,2,4-triazol (1 mM 3-AT), osmotic stress induced by natrium 
chloride (1 M NaCl) and oxidative stress induced by hydrogen peroxide (2 mM H2O2) ∆fbx15 
colonies have a comparable colony size as WT and fbx15:strepcomp. The oefbx15:rfp strain 
shows a diminished colony growth during aa starvation and cadmium ion stress conditions 
compared to WT. During carbon exchange (glucose to lactose), osmotic stress and oxidative 
stress conditions oefbx15:rfp phenocopies WT and fbx15:strepcomp. The fbx15AFcomp strain 
phenocopies WT and fbx15:strepcomp on all tested media. Experiments were performed with 
at three biological replicates. (B) The A. fumigatus fbx15 gene (fbx15comp), an overexpressed 
A. fumigatus fbx15 gene using the constitutively active gpdA promoter (oefbx15) and the 
A. nidulans fbx15 gene (fbx15ANcomp) were integrated in the locus of A. fumigatus ∆fbx15 
strain. 2*103 spores of A. fumigatus strains were point inoculated on AMM and incubated at 
37°C for three to five days in darkness without (-) and with different stressors. Growth on all 
tested stressor for ∆fbx15 are diminished (glucose to lactose, 1 mM 3-AT, 1 M NaCl, 300 µM 
CdSO4) or blocked (2 mM H2O2) compared to WT or fbx15comp as described (Jöhnk et al., 
2016). Colony sizes of oefbx15 are in the same sizes than for WT and fbx15comp on all tested 
media except 1 mM 3-AT, where the oefbx15 colony size is increased compared to WT and 
fbx15comp colony sizes. The fbx15ANcomp restores WT-phenotypes during osmotic stress, 
cadmium ion stress and exchanged carbon source (black frames). The fbx15ANcomp colonies 
are decreased compared to WT- or fbx15comp colonies but increased compared to ∆fbx15 
colonies on stress media including oxidative stress and aa starvation. Experiments were 
performed with at least three biological replicates. 

 

These results show that Fbx15-mediated stress responses between A. fumigatus, 

which was earlier described (Jöhnk et al., 2016), and A. nidulans are similar for 

cadmium ion heavy metal tolerance, osmotic stress and the versatility of lactose as 

sole carbon source. However, there is only a partial overlap in stress response 

because oxidative stress tolerance induced by H2O2 depends on A. fumigatus Fbx15, 

whereas A. nidulans Fbx15 is dispensable for oxidative stress tolerance but supports 

growth during histidine starvation induced by the analogue 3-AT. Due to these data 

it is indicated that the importance of Fbx15 regarding its role in stress tolerance could 

be due to interactions with different proteins. 

  



 Results 

74 
 

1.3 Fbx15 interacting proteins 

The interaction of Fbx15 with the co-repressor subunit SsnF had been analysed in 

more detail (Jöhnk et al., 2016). Several candidate proteins were identified as 

possible A. fumigatus Fbx15 interaction partners by TAP analysis (37 candidates: 

Jöhnk et al., 2016) or RFP-traps (66 candidates: Table S1) F-box proteins are 

exchangeable substrate receptors, which usually recognise proteins to be labelled 

with ubiquitin for 26S proteasome mediated degradation (Cardozo and Pagano, 

2004). In contrast, Fbx15 is required for the nuclear location of SsnF in the nucleus, 

whereas SsnF stability seems to be unaffected (Jöhnk et al., 2016). Among the 

putative Fbx15-interacting proteins are several additional control proteins for gene 

expression as the transcriptional regulators OefC, SrbB or FiAt (Jöhnk et al., 2016). 

BiFC analysis were performed as additional evidence to verify a direct physical 

contact with Fbx15 within the cell. Direct interactions could be supported by 

monitoring signals for Fbx15 with the SREBP transcription factor SrbB involved in 

hypoxia adaptation in A. fumigatus (Chung et al., 2014) as well as the 

uncharacterised putative A. fumigatus APSES transcription factor FiAt (Figure S1, 

S2, S5). BiFC analysis of A. nidulans Fbx15 with the in A. nidulans developmental 

relevant zinc cluster transcription factor OefC (Lee et al., 2005) did not support a 

direct interaction in A. fumigatus during standard growth conditions. In contrast, 

A. nidulans Fbx15 interacts during asexual growth or heavy metal stress induced by 

cadmium sulphate with OefC of A. fumigatus or A. nidulans (Figure S 7 – S10, S12). 

However, additional experiments did not support a molecular link between Fbx15 and 

OefC during stress response, pathogenicity, ubiquitination or cellular localisation 

(Figure S 1, S3 – S7, S10 – S15). 

 

1.3.1 fidA supports vegetative growth, conidiation in A. fumigatus and 

A. nidulans as well as cleistothecia formation in A. nidulans 

The putative C-terminal part of a F-type ATPase F-subunit, FidA, was pulled by RFP-

trap as uncharacterised, putative interaction partner of Fbx15 in A. fumigatus 

(Table S1). The annotation of A. fumigatus FidA as stand-alone gene is different to 

the one of P. expansum where FidA is a sequential part of a putative F-subunit 

(Figure 10). This fact was an impetus for launching further analysis with FidA in 

context to Fbx15 even if FidA was first solely pulled with the phospho-mimicking 

mutant Fbx15S468|9D (Table S1). BiFC analysis was used to verify the interaction 

between Fbx15 and FidA in A. fumigatus. Therefore, native Fbx15 was used to check, 

whether an interaction can be obtained under its native protein conditions. The 
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construct fbx15:cYFP with nYFP:fidA showed YFP signals in the cytoplasm during 

vegetative growth conditions in A. fumigatus (Figure 15A, see Figure S2 for controls). 

In the following, the role of FidA in A. fumigatus was examined. The A. fumigatus 

strain lacking the fidA gene (∆fidA) as well as its corresponding complementation 

integrated on-locus of A. fumigatus ∆fidA (fidAcomp) were analysed on minimal growth 

conditions. Phenotypical comparisons revealed that ∆fidA showed a slow growing 

colony with a reduced conidia production resulting in a whitish colony colour 

compared to green conidia-rich colonies grown for WT, ∆fbx15 and fidAcomp 

(Figure 15B, PMG, black arrow). 

This data show that A. fumigatus FidA directly interacts with Fbx15 during non-stress 

conditions and is required for conidiations and vegetative growth contrary to Fbx15, 

which is dispensable for vegetative growth and conidiation in A. fumigatus. 

 

Figure 15: FidA physically interacts with Fbx15 at non-stress conditions and is needed 
for vegetative growth and conidiation in A. fumigatus. (A) 2*103 spores of A. fumigatus 
were grown vegetatively in Aspergillus minimal medium (AMM) for 18h at 37°C in darkness. 
The interaction was analysed via Bimolecular Fluorescence Complementation (BiFC). Fbx15 
was fused to cYFP (fbx15:cYFP). Expressing the Fbx15 interacting developmental protein A 
(FidA) fused to nYFP (nYFP:fidA) and Fbx15 fused to cYFP (fbx15:cYFP) show YFP signals 
in the cytoplasm of A. fumigatus hyphae at vegetative growth. Nuclei were stained with 
Hoechst. Experiments were performed with two independent transformants. (B) 2*103 spores 
of A. fumigatus strains were point inoculated on Aspergillus minimal medium (AMM) and 
incubated for three days at 37°C. The fidA gene was integrated in the locus of ∆fidA resulting 
in fidA:gfpcomp. The ∆fidA strain is diminished in vegetative growth and sporulation (black 
arrow) contrary to ∆fbx15, fidA:gfpcomp and wild type (WT). Experiments were performed with 
three biological replicates. PMG: photomicrograph, scale bars: 200 µm. 
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BLAST analysis was performed to check whether the A. fumigatus Fbx15-interacting 

developmental relevant protein FidA also exists in the A. nidulans genome in the 

same structural composition. In-silico analysis revealed that FidA is also present in 

A. nidulans. FidA in A. nidulans is separated from the putative F-domain (F-domain: 

AN11565, FidA: AN7496) similar to A. fumigatus FidA (F-domain: Afu2g05510, FidA: 

Afu2g05520) in comparison to the F-type ATPase gene in Penicillium expansum, 

which harbours the corresponding FidA in the C-terminal part of the gene 

XP_016595530.1 (Figure 16A) (Ballester et al., 2015). A. nidulans FidA is to 59.6% 

identical to A. fumigatus FidA with a query cover of 98% and the corresponding whole 

F-type ATPase the P. expansum gene is to 49.0% identical to A. fumigatus FidA with 

a query cover of 99% (Figure 16B). 

 

 

 

Figure 16: FidA is a putative C-terminal part of a F-type ATPase F-subunit in 
A. fumigatus and A. nidulans. Alignments were performed with NCBI-BLAST 
(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins). (A) Analysis of sequential 
composition of the Fbx15-interacting developmental protein A (FidA). The F-domain (yellow) 
is separated from FidA (green) in A. nidulans (AN7496) and A. fumigatus (Afu2g05520). In 
Penicillium expansum the orthologue XP_01659553 is composite of FidA together with the 
corresponding F-domain. (B) Multiple alignment of A. fumigatus FidA with its counterparts in 
A. nidulans and P. expansum. ‘Query coverage’ describes the alignment cover of the primary 
amino acid sequence of A. fumigatus FidA in percentage. Similarities between the identified 
FidA homologs of other species in comparison to FidA of A. fumigatus are described in 
‘Identity’ in percentage. 
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BiFC analysis were performed as first line of evidence to examine if Fbx15 is 

interacting with FidA in A. nidulans. The construct fbx15:cYFP with nYFP:fidA show 

YFP signals in the cytoplasm during vegetative growth conditions in A. fumigatus and 

asexual growth in A. nidulans (Figure 17A). 

The role of FidA in asexual or sexual reproduction in A. nidulans was investigated by 

growth assays on plates during minimal growth conditions. A. nidulans fidA fused to 

gfp (fidA:gfpcomp) or overexpressed fidA fused to gfp (oefidA:gfp) were integrated in 

the locus of A. nidulans ∆fidA. The ∆fidA strain was compared to WT, fidA:gfpcomp and 

oefidA:gfp, as well as compared to ∆fbx15 and fbx15 complementation 

(fbx15:strepcomp). The ∆fidA colony size was reduced contrary to ∆fbx15, which 

showed a WT-like colony size like oefidA:gfp during light conditions with sufficient 

oxygen supply enhancing asexual growth (Figure 17B, top) (Park et al., 2019). The 

∆fidA colony was dark reddish pigmented comparable to the pigmentation of the 

∆fbx15 colony and contrary to the greenish pigmented colonies of WT. The oefidA:gfp 

colony showed a slight reddish pigmentation compared to a greenish pigmentation 

for WT (Figure 17B, bottom). The ∆fbx15 and ∆fidA strains displayed a reduced 

conidia production with approx. 0.1% for ∆fbx15 and around 1% for ∆fidA relative to 

WT or corresponding complementations fbx15:strepcomp (76%) and fidA:gfpcomp 

(74%). No significant differences in conidia production were observed for oefidA:gfp 

(61%) compared to fidA:gfpcomp (74%) relative to WT. Observation of cleistothecia 

production in light showed that in contrast to produced cleistothecia in WT, 

fidA:gfpcomp and fbx15:strepcomp (black-white arrows), ∆fidA produced no cleistothecia 

like ∆fbx15 (Figure 13, Figure 17C). The cleistothecia production of fidA:gfpcomp was 

approx. two-fold increased (186%) relative to WT. For oefidA:gfp significantly less 

cleistothecia were produced with around 2% relative to WT (Figure 17C). 
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Figure 17: FidA is directly interacting with Fbx15 at asexual growth and is required for 
asexual and sexual development during light conditions in A. nidulans. (A) 2*103 spores 
of A. nidulans were grown on solid Aspergillus minimal medium (AMM) and incubated for two 
days (2d) to induce asexual growth. The interaction was analysed through Bimolecular 
Fluorescence Complementation (BiFC). Expressing the Fbx15 interacting developmental 
protein A (FidA) fused to nYFP (nYFP:fidA) and Fbx15 fused to cYFP (fbx15:cYFP) show YFP 
signals at induced asexual growth. Experiments were performed with three biological 
replicates. (B) 2*103 spores of A. nidulans strains were point inoculated on solid AMM and 
were incubated for seven days (7d) at 37°C in light with oxygen supply. ∆fidA shows a reddish 
pigmentated colony, as well as reduced conidiation like ∆fbx15 compared to wild type (WT) 
and the corresponding complementations: fbx15 fused to strep on-locus integrated in ∆fbx15 
(fbx15:strepcomp) and fidA fused to gfp (fidA:gfpcomp) on-locus integrated into ∆fidA (bottom, 
PMG). The ∆fidA strain also reduced in vegetative growth. Overexpression of fidA by the 
constitutively active gpdA promoter (oefidA:gfp) results in a slight reddish pigmentated colony 
compared to WT or fidA:gfpcomp. For ∆fbx15 and ∆fidA no cleistothecia could be identified. The 
fbx15:strepcomp, fidA:gfpcomp and oefidA:gfp strains produce cleistothecia after seven days 
incubation like WT (black-white arrows). (C) Error bars represent the SEM and were 
calculated from two independent transformants and three biological replicates. Significances 
were determined with one-way Anova and Student’s t-test in comparison to WT if not indicated 
otherwise (P-value: *P<0.01, **P<0.001, n.s.: not significant). Quantification analysis of the 
asexual spores show that conidiation is strongly inhibited in ∆fidA (blue frame) like in ∆fbx15 
compared to WT or fbx15:strepcomp and fidA:gfpcomp. The oefidA:gfp strain shows no altered 
conidia production compared to fidA:gfpcomp. Quantification of cleistothecia shows an inhibited 
cleistothecia production in oefidA:gfp (blue frame) whereas cleistothecia production is blocked 
in ∆fbx15 and ∆fidA (blue frame). PMG: photomicrograph, scale bars: 200 µm. 

 

When enhancing sexual development during dark conditions with reduced oxygen 

supply the ∆fidA colony size was similar small as during light conditions contrary to 

∆fbx15, which showed a WT-like colony size like oefidA:gfp (Figure 17A, Figure 18A, 

top) (Park et al., 2019). 

Dark reddish pigmented colonies were displayed for ∆fbx15 and ∆fidA. A slightly 

darker colony pigmentation compared to WT was observed for oefidA:gfp 

(Figure 18A, bottom). ∆fidA produced primordia (yellow arrow), unlike an observed 

blocked fruiting body formation in ∆fbx15 (Figure 18A, PMG) (von Zeska Kress et al., 

2012). Matured cleistothecia formation was observed for WT, oefidA:gfp and the 

corresponding complementations (black-white arrow) (Figure 18A, PMG). ∆fbx15 

was strongly reduced in conidia production with around 0.1% relative to WT or 

fbx15:strepcomp (90%). ∆fidA showed similar to ∆fbx15 a strong reduced conidia 

production with around 1.7% relative to WT and fidA:gfpcomp (71%). The oefidA:gfp 

showed a reduced but no significant change in conidia production in darkness with 

59% compared fidA:gfpcomp (71%). Cleistothecia were produced in oefidA:gfp (107%) 

like WT and in fidA:gfpcomp (137%) with a significant increased amount relative to WT 

(Figure 18B). The ability of ascospores produced in ∆fidA was examined. After 21 

days ∆fidA ascospores of mature cleistothecia were isolated and re-plated on AMM 

plates resulting in reproduction of ∆fidA (Figure 18C). 
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Figure 18: fidA is critical for vegetative growth, conidiation and in-time cleistothecia 
formation in A. nidulans under sexual development favouring conditions. 2*103 spores 
of A. nidulans strains were point inoculated on Aspergillus minimal medium (AMM) and 
incubated for seven days at 37°C in darkness with limited oxygen supply. (A) ∆fidA shows a 
reddish pigmentated small colony, reduced conidiation and delayed cleistothecia maturation 
compared to wild type (WT) and complemented fidA fused to gfp on-locus integrated into 
∆fidA (fidA:gfpcomp) (bottom). Overexpression of fidA by the constitutively active gpdA 
promoter (oefidA:gfp) results in a dark reddish pigmentation at the bottom of the colony. 
Primoridia surrounded by Hülle cells were identified for ∆fidA (yellow arrow), whereas no 
cleistothecia formation is observed for ∆fbx15 compared to mature cleistothecia formation in 
WT and the corresponding complementations (fbx15:strepcomp, fidA:gfpcomp) and 
overexpression strain (oefidA:gfp) (black-white arrows). (B) Error bars represent the SEM and 
were calculated from two independent transformants and three biological replicates. 
Significances were determined with one-way Anova and Student’s t-test in comparison to WT 
if not indicated otherwise (P-value: **P<0.001, n.s.: not significant). Quantifications of conidia 
show a significantly reduced production for ∆fidA (blue frame) like ∆fbx15 compared to WT. 
Conidia production in oefidA:gfp is not significantly altered to fidA:gfpcomp. No matured 
cleistothecia are produced in ∆fidA (blue frame) and ∆fbx15 compared to WT, fbx15:strepcomp 
and fidA:gfpcomp. The fidA:gfpcomp strain produces significantly more cleistothecia than WT. 
(C) The ∆fidA strain was incubated for 21 days at 37°C in darkness with limited oxygen supply 
on AMM. Viability of 21-days-old isolated ascospores (white arrows) from mature cleistothecia 
(black-white arrows) was proven by re-plating on AMM for 5 days at 37°C in light. PMG: 
photomicrograph, white scale bars: 200 µm, black scale bars: 500 µm. 

 

The data of Figure 17 and Figure 18 show that the Fbx15-interacting protein 

A. nidulans FidA supports developmental processes. These data are consistent with 

the once obtained for A. fumigatus FidA indicating similar functions of FidA in 

A. fumigatus and A. nidulans (Figure 16). Fbx15-comparable impacts on 

development of A. nidulans in secondary metabolite homeostasis and conidiation 

could be due to the observed interaction verified through BiFC analysis (Figure 15 - 

18) (von Zeska Kress et al., 2012). However, Fbx15 is not required for development 

in A. fumigatus contrary to its interacting partner FidA indicating that the role of FidA 

in development is independent of Fbx15 in A. fumigatus (Figure 13, Figure 16) 

(Jöhnk et al., 2016). Further interaction analysis such as stability test examining 

whether FidA is a candidate of the SCFFbx15 complex or Fbx15-dependent localisation 

test as previously performed with SsnF (Jöhnk et al., 2016) could not be achieved as 

tagged versions of FidA were either not detectable or showing multiple bands by 

immunoprecipitation indicating an unstable fusion protein (Figure S17). 

 

In summary, these data further support Fbx15 interactions of A. fumigatus and/or 

A. nidulans to the zinc cluster transcription factor OefC, the SREBP transcription 

factor SrbB, the putative APSES transcription factor FiAt and to the F-type ATPase 

FidA. Fbx15-FidA was predominantly found in the cytoplasm (Figure 15, Figure S1, 

S5, S7). Fbx15 is capable to assemble to an active SCFFbx15 complex at non-stress 

conditions predominantly in the nucleus (Jöhnk et al., 2016). The analyses of the 
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exact molecular functions of the cytoplasmic or nuclear interactions of Fbx15 and 

their interplay with SCF ubiquitin ligases will be interesting topics of future research. 

 

2 Mycotoxin production depends on A. fumigatus Fbx15 

2.1 Gliotoxin biosynthesis-dependent GliP and GliZ are dispensable for 

stress adaptation in A. fumigatus at minimal growth 

A. fumigatus Fbx15 is essential for virulence in the mouse infection model (Jöhnk et 

al., 2016). The pathogenic potential of A. fumigatus is associated with its ability to 

produce mycotoxins such as the A. fumigatus-specific gliotoxin (König et al., 2019; 

Sugui et al., 2007). Fbx15 is involved in the inhibition of gliotoxin biosynthesis by the 

transcriptional repression of the NRPS encoding gene gliP and the zinc cluster 

transcription factor encoding gene gliZ next to other gli-cluster genes that are 

essential for the biosynthesis of gliotoxin (Bok et al., 2006; Jöhnk et al., 2016; Scharf 

et al., 2012). 

It was investigated if the obtained increased gliotoxin formation in absence of fbx15 

contributes to the observed sensitivity against stress inducers. Therefore, the single 

deletion strains (∆fbx15, ∆gliP, ∆gliZ) and double deletion strains in ∆fbx15 

background (∆fbx15/∆gliP, ∆fbx15/∆gliZ) were constructed and phenotypical 

analysed on media with different carbon sources and stress detergents in the 

background of minimal growth conditions. The ∆gliP - and ∆gliZ strains showed 

WT-like colonies on all tested media including lactose as sole carbon source, aa 

starvation (1 mM 3-AT), osmotic stress (1 M NaCl), heavy metal stress induced by 

cadmium (300 µM CdSO4) and oxidative stress (2 mM H2O2) (Figure 19). The double 

deletions ∆fbx15/∆gliP and ∆fbx15/∆gliZ resulted in the same phenotypes as ∆fbx15 

with small colony sizes or blocked growth on tested stress media (Figure 19, black 

frames). 

These results shows that during minimal growth conditions Fbx15-dependent 

A. fumigatus is independent of GliP and GliZ, which are required for gliotoxin 

production (Bok et al., 2006; Cramer et al., 2006). Moreover, GliP and GliZ are in 

general dispensable for stress response during minimal growth conditions in 

A. fumigatus. 
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Figure 19: A. fumigatus fbx15-mediated stress adaptation is independent of gliP and 
gliZ during minimal growth conditions. Single deletions of the multimodular nonribosomal 
peptide synthetase (NRPS) encoding gene gliP (∆gliP) and the Zn2Cys6 finger binuclear 
transcription factor encoding gene gliZ (∆gliZ) and double deletions of fbx15 with gliP 
(∆fbx15/∆gliP) or with gliZ (∆fbx15/∆gliZ) were compared to each other in A. fumigatus. 2*103 
spores were point inoculated on Aspergillus minimal medium (AMM) and incubated for three 
to five days in darkness at 37°C without (control) and with different stress detergents or carbon 
sources. Phenotypical tests were performed by using following stress inducers: lactose 
instead of glucose as carbon source, histidine starvation induced by 3-amino-1,2,4-triazol 
(1 mM 3-AT), osmotic stress induced by natrium chloride (1 M NaCl), heavy metal stress 
induced by cadmium sulphate (300 µM CdSO4) and oxidative stress induced by hydrogen 
peroxide (2 mM H2O2). The ∆fbx15 colonies grow slower than wild type (WT)-colonies at all 
tested stress conditions, whereas ∆gliP and ∆gliZ phenocopy WT. The ∆fbx15/∆gliP and 
∆fbx15/∆gliZ strains are phenocopy ∆fbx15 colonies on all tested stress media (black frames). 
Experiments were performed with two independent transformants and three biological 
replicates. 
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2.2 Gliotoxin biosynthesis-dependent GliP and GliZ are dispensable for 

Fbx15-mediated pathogenicity in A. fumigatus in the 

Galleria mellonella infection model 

It is known that ∆fbx15 results in a complete clearance of conidia in the alveoli in the 

CD-1 mouse model immunosuppressed with cortisone acetate as well as ∆gliP 

impairs A. fumigatus virulence in BALB/c and 129/Sv mouse models 

immunosuppressed with hydrocortisone acetate (Jöhnk et al., 2016; Sugui et al., 

2007). It is suggested that the observed derepression of gliotoxin biosynthesis in the 

∆fbx15 strain leads to a self-intoxication of A. fumigatus resulting in the disability to 

infect host organisms and consequently lead to a loss of pathogenicity. 

In vivo-infection assays were performed with the single deletion strains ∆fbx15, ∆gliP, 

∆gliP, ∆gliZ, as well as the double deletion strains ∆fbx15/∆gliP and ∆fbx15/∆gliZ and 

compared to WT in the Galleria mellonella moth larvae infection model (Slater et al., 

2011). All infections were performed with the supplementation of the antibiotic 

rifampicin to prevent contaminations as well as injections with NaCl-Tween were 

performed as negative control. The survival rate of ∆fbx15-infected 

Galleria mellonella larvae was significantly higher with 70% after nine days post 

infection compared to WT-infected larvae of which 7% survived. No significant 

changes were observed for the survival rate of ∆gliZ-infected larvae with 10% survival 

to WT-infected larvae (7%). A significant higher survival rate than for WT-infected 

larvae (7%) was observed for ∆gliP-infected larvae with 26% nine days post infection 

(Figure 20A). Galleria mellonella larvae infected with ∆fbx15/∆gliP and ∆fbx15/∆gliZ 

resulted in no significant changes to ∆fbx15-infected larvae with survival rates of 60% 

for ∆fbx15/∆gliP and 70% ∆fbx15/∆gliZ compared to ∆fbx15 with 70% survival nine 

days post infection (Figure 20B). 

These data show that infections with A. fumigatus lacking fbx15 with and without 

increased gliotoxin formation are comparable with each other in the 

Galleria mellonella larvae model. This indicates that the observed inhibition in 

pathogenicity of A. fumigatus when lacking fbx15 is not caused by an increased 

gliotoxin production. So far it is unknown if other mycotoxins are regulated in 

dependency of Fbx15, which might influence the capability of A. fumigatus to adapt 

to various environmental stressors present during stress response or invasion in a 

putative host organism. 
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Figure 20: A. fumigatus Fbx15-mediated pathogenicity is independent of GliP and GliZ 
in the Galleria mellonella larvae infection model. Galleria mellonella larvae were infected 
with 5*106 spores of A. fumigatus strains and incubated in darkness at 30°C for nine days. 
Larvae were treated with 10 µg/ml rifampicin to prevent death by contamination. NaCl-Tween 
(green) was used as negative control. (A) Error bars represent the standard deviation and 
were calculated from two biological replicates. Experiments were performed with two 
independent transformants for each infection series. Significances were determined with 
one-way Anova and Student’s t-test (P-value: *P<0.01, **P<0.001, n.s.: not significant). Single 
deletion strain of the Zn2Cys6 finger binuclear transcription factor encoding gene gliZ (∆gliZ, 
blue) causes the same survival rate as wild type (WT, black) infected larvae. Infection with 
the single deletion strain of the multimodular nonribosomal peptide synthetase (NRPS) 
encoding gene gliP (∆gliP, brown) results in a significantly higher survival rate of larvae than 
for WT-infected larvae. The increased survival rate of larvae-infected with the single deletion 
of fbx15 (∆fbx15, grey) shows the highest significant difference to WT-infected larvae (black). 
(B) Error bars represent the standard deviation and were calculated from two biological 
replicates. Experiments were performed with two independent transformants for each 
infection series. Significances were determined with one-way Anova and Student’s t-test 
(P-value: **P<0.001, n.s.: not significant). Infections with the double deletion strains of fbx15 
with gliZ (∆fbx15/∆gliZ, blue) and with gliP (∆fbx15/∆gliP, brown) show no significant 
differences for the survival rate of larvae compared to ∆fbx15-infected larvae (grey), which is 
significantly higher than for WT-infected larvae (black). 
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2.3 A. fumigatus Fbx15 is required for the repression of fumagillin 

biosynthesis 

It was investigated whether Fbx15 is involved in the regulation of other mycotoxins 

than gliotoxin produced in A. fumigatus (Jöhnk et al., 2016). In order to address this 

question, the secondary metabolite pattern of ∆fbx15 was compared to WT and fbx15 

complementation (fbx15comp). HPLC-MS analysis was performed from vegetatively 

grown A. fumigatus samples. In ∆fbx15 the production of several putative secondary 

metabolites was increased compared to WT and fbx15comp (Figure 21A, arrows). 

Literature-based comparisons with the curves obtained by the ultraviolet/visual light 

(UV/Vis) spectra at retention time 16.14/16.16 min identified the antimicrobial agent 

fumagillin with a wavelength of a maximum absorption at 335 nm and 358 nm with a 

shoulder at 320 nm (Figure 21 A black arrow, Figure 21B blue frame, Figure 21C) 

(Chu et al., 2012; Hanson and Eble, 1949; McCowen et al., 1951). Fumagillin has a 

meroterpenoid chemical structure with the sum formula C26H34O7 (Figure 21D) 

(McCowen et al., 1951). The measured exact mass of fumagillin was 459.238 in the 

positive ionization mode [M+H]+ and 457.222 in the negative ionization mode  [M-H]-, 

which were similar to the calculated exact masses 459.2237 in [M+H]+ and 457.223 

[M-H]- (Figure 21E) (McCowen, Callender, and Lawlis 1951). 

These data show that Fbx15 is not only required for the regulation of the biosynthesis 

of the mycotoxin gliotoxin at gliotoxin-inducible conditions (Jöhnk et al., 2016) but 

also regulates the biosynthesis of the antimicrobial agent fumagillin at vegetative 

growth in A. fumigatus. The Fbx15-dependent regulation in gliotoxin biosynthesis 

matches with the Fbx15-dependent regulation of the cellular localisation of the co-

repressor subunit SsnF. Precisely, the absence of Fbx15 leads to a derepression in 

gliotoxin biosynthesis and in a nuclear clearance of SsnF (Jöhnk et al., 2016). The 

previously obtained data from Jöhnk, et al. and the data achieved in this study 

indicate that the cellular localisation of Fbx15 is essential for the regulation of the 

biosynthesis of certain products such as the mycotoxins gliotoxin and fumagillin. 
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Figure 21: Fbx15 negatively regulates fumagillin biosynthesis during vegetative growth 
conditions in A. fumigatus. 2*108 spores of A. fumigatus wild type (WT), ∆fbx15 and fbx15 
on-locus integration in ∆fbx15 (fbx15comp) were inoculated in Aspergillus minimal medium 
(AMM) and incubated vegetatively for 48h at 37°C. HPLC-MS analysis was performed from 
extracted secondary metabolites with ethyl acetate. (A) Overlap of the relative absorbance by 
photodiode array detection of secondary metabolite extracts of WT (black) and ∆fbx15 (red), 
fbx15comp (green) show that ∆fbx15 produces more of different putative secondary metabolites 
compared to fbx15comp and WT (arrows). (B) Evaporator light scattering data of WT and 
∆fbx15, fbx15comp at retention time 16 (blue box). The relative intensity of the peak at retention 
time 16.16 min is increased in ∆fbx15 compared to WT (16.14 min) and fbx15comp (16.16 min). 
(McCowen et al., 1951). (C) Ultraviolet/visual light (UV/Vis) spectra of the increased peak at 
retention time 16.16 min in ∆fbx15 compared to fbx15comp identified fumagillin (Chu et al., 
2012; Hanson and Eble, 1949; McCowen et al., 1951). Relevant peaks at 335 and 350 nm 
were highlighted in big numbers. (D) Structural formula of the meroterpenoid fumagillin 
consisting of a partial terpenoid structure (McCowen et al., 1951). (E) Data of fumagillin 
identified by HPLC-MS. Fumagillin was identified at retention time 16.14 to 16.16 and has the 
chemical formula C26H34O7. The measured exact mass of fumagillin is 459.238 in the positive 
ionization mode [M+H]+ and 457.222 in the negative ionization mode [M-H]-. The calculated 
exact mass of fumagillin is 459.2237 in [M+H]+ and 457.223 [M-H]-. The identification of 
fumagillin was performed by the exact mass measurement [A] and the UV/Vis spectra [B] 
(McCowen, Callender, and Lawlis 1951). 

 

3 A. fumigatus Fbx15 NLS1 or NLS2 provide nuclear 

location during non-stress conditions, whereas only 

NLS2 locates Fbx15 in the nuclear periphery during stress  

3.1 Either of the two nuclear localisation signals, NLS1 and NLS2, is 

sufficient to facilitate the nuclear import of A. fumigatus Fbx15 

during vegetative growth without stress 

Fbx15 comprises two predicted NLS sequences NLS1: 407YERPRKRLRRYY418 and 

NLS2: 485VSRKRKSPID494 (Jöhnk et al., 2016), which indicates its ability to interact 

with importins for a nuclear transport (Lange et al., 2007). It is indicated that the 

cellular localisation of Fbx15 influences the localisation of the co-repressor subunit 

SsnF as well as the regulation of mycotoxin biosynthesis (Jöhnk et al., 2016) 

(Figure 21). 

The functions of NLS1 and NLS2 in combination or separately at non-stress 

conditions was analysed and monitored using the expression of Fbx15 NLS-deficient 

variants and comparing the cellular location to wild type. The single deletions of the 

DNA for either the codons for NLS1 or NLS2 of the fbx15 gene were constructed and 

integrated on-locus in ∆fbx15. Fbx15 (Fbx15NLS1|NLS2) with a protein length of 655 aa 

in the absence of NLS1 was named Fbx15∆|NLS2. The resulting shortened protein 

sequence includes 644 aa, whereas Fbx15 without NLS2 (Fbx15NLS1|∆) resulted in a 

deduced shortened protein of 646 aa. The combined deletion of NLS1 and NLS2 in 
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the Fbx15 sequence was named Fbx15∆|∆ and shows a deduced shortened protein 

of 635 aa. 
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Figure 22: Either NLS1 or NLS2 are sufficient to provide nuclear localisation of Fbx15 
during vegetative growth in A. fumigatus. (A) Fbx15 and its NLS-variants were fused to 
GFP or RFP through a GGSGG-linker and were overexpressed with the constitutively active 
gpdA-promoter for visualisation in fluorescence microscopy. Overexpressed Fbx15 with an 
amino acid (aa) length of 655 encompasses the F-box domain, two motifs and two 
monopartite (mp) nuclear localisation signals (NLS), NLS1 (yellow) and NLS2 (orange). 
OeFbx15 was fused to GFP resulting in a total protein length of 898 aa 
(oeFbx15NLS1|NLS2-GFP). OeFbx15 in absence of NLS1 has an aa length of 644 and was fused 
to RFP resulting in a total protein length of 887 aa (oeFbx15∆|NLS2-RFP). OeFbx15 in absence 
of NLS2 has an aa length of 646 and was fused to RFP, resulting in a total protein length of 
889 aa (oeFbx15NLS1|∆-RFP). OeFbx15 in absence of NLS1 and NLS2 has an aa length of 635 
and was fused to RFP, resulting in a total protein length of 878 aa (oeFbx15∆|∆-RFP). All 
constructs were integrated on-locus of A. fumigatus ∆fbx15. (B) 2*103 spores of A. fumigatus 
strains were grown vegetatively in Aspergillus minimal medium (AMM) for 18h at 37°C in 
darkness. Hoechst staining was performed to visualise nuclei. OeFbx15-GFP, 
oeFbx15∆|NLS2-RFP and oeFbx15NLS1|∆-RFP are located predominantly the nucleus (N) rather 
then in the cytoplasm (C). OeFbx15∆|∆-RFP fusion protein is solely diffused located in nuclear 
periphery (P) and cytoplasm (C) (black-white arrow). The prevalent localisations are 
highlighted with underscores in the tabular scheme. Experiments were performed with at least 
six biological replicates. 

 

Resulting constructs were overexpressed utilising the active gpdA-promoter and 

integrated on-locus of A. fumigatus ∆fbx15. For microscopical analysis of the cellular 

location, WT Fbx15 (655 aa) was fused to GFP through a 

glycine-glycine-serine-glycine-glycine (GGSGG)-linker, resulting in a total protein 

length of 898 aa. The Fbx15 NLS-deficient strains were fused to RFP through a 

GGSGG-linker, resulting in oeFbx15∆|NLS2-RFP with in total 887 aa, 

oeFbx15NLS1|∆-RFP with in total 889 aa and oeFbx15∆|∆-RFP with in total 878 aa 

(Figure 22A). Fluorescence imaging revealed that oeFbx15∆|NLS2-RFP and 

oeFbx15NLS1|∆-RFP are located in the nucleus at vegetative growth like 

oeFbx15-GFP. The oeFbx15∆|∆-RFP was solely diffused located in the cytoplasm and 

nuclear periphery (Figure 22B, black-white arrow). 

These data show that the simultaneous loss of both NLS sequences leads to a 

diffused localisation of Fbx15 in the cytoplasm as well as at the nuclear periphery. 

The most important finding is that either one of the two NLS sequences is sufficient 

to transfer significant amounts of Fbx15 during vegetative growth into the nucleus 

similar to wild type. 
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3.2 A. fumigatus Fbx15 requires NLS2 during stress response 

The function of NLS1 and NLS2 during Fbx15-mediated stress response was 

analysed. Natively expressed Fbx15 NLS variants were constructed and compared 

to the overexpressed Fbx15 NLS variants previously described in Chapter 3.1. 

Accordingly, the fbx15 gene lacking the codons of NLS1 (fbx15∆|NLS2) resulting in a 

protein with a total length of 644aa or NLS2 (fbx15NLS1|∆) resulting in a total protein 

length of 646 aa or the fbx15 gene lacking the codons of NLS1 and NLS2 (fbx15∆|∆) 

resulting in a deduced protein with a length of 635 aa were constructed and integrated 

on-locus of ∆fbx15 (Figure 23). The resulting proteins are similar to the RFP fusion 

proteins (last line of Figure 22A) but lacks the C-terminal red fluorescent protein 

fusion (Figure 23). Phenotypes during stress conditions of the strains with the 

expressed NLS-deficient variants fbx15∆|NLS2, fbx15NLS1|∆ and fbx15∆|∆ were compared 

to oefbx15∆|NLS2:rfp, oefbx15NLS1|∆:rfp and oefbx15∆|∆:rfp and WT, ∆fbx15 and oefbx15. 

Alterations in the ability to adapt to different stresses between normally expressed 

and overexpressed fbx15-NLS variants were elucidated. 

 

 

Figure 23: Scheme of natively expressed A. fumigatus Fbx15 NLS-deficient variants. 
Wild type (WT) Fbx15NLS1|NLS2 (Afu3g14150) has a protein length of 655 amino acids (aa) and 
contains a F-box domain, two interaction motifs and two monopartite (mp) NLS sequences at 
aa 407 to 418 (NLS1) and 485 to 494 (NLS2). The single NLS-deficient strains lack either 
NLS1 (yellow) or NLS2 (orange) resulting in a total protein length of 644 aa for Fbx15∆|NLS2 or 
646 aa for Fbx15NLS1|∆. In absence of NLS1 and NLS2 Fbx15 has an aa length of 635 
(Fbx15∆|∆). The constructs were integrated in the locus of A. fumigatus ∆fbx15 under its native 
promoter. 
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Figure 24: NLS2 is required for the stress response of A. fumigatus. Overexpressed 
fbx15 (oefbx15) and fbx15 complementation (fbx15comp) were integrated in the locus of 
∆fbx15. The natively expressed NLS-deficient variants, fbx15∆|NLS2, fbx15NLS1|∆ and fbx15∆|∆, 
as well as their oe variants (oefbx15∆|NLS2:rfp, oefbx15NLS1|∆:rfp and oefbx15∆|∆:rfp) using the 
constitutively active gpdA-promoter were fused to rfp and were on-locus integrated in ∆fbx15. 
2*103 spores of A. fumigatus strains were point inoculated on Aspergillus minimal medium 
(AMM) without (control) and with different stress detergents or carbon sources and incubated 
for three to five days at 37°C in darkness. Phenotypical tests were performed by using 
following stress inducers: lactose instead of glucose as carbon source, histidine starvation 
induced by 3-amino-1,2,4-triazol (1 mM 3-AT), osmotic stress induced by natrium chloride 
(1 M NaCl), heavy metal stress induced by cadmium sulphate (300 µM CdSO4) and oxidative 
stress induced by hydrogen peroxide (2 mM H2O2). WT (fbx15NLS1|NLS2) and strains containing 
oefbx15 or the fbx15 variants lacking NLS1 (fbx15∆|NLS2:rfp, oefbx15∆|NLS2:rfp) grow on all 
media (green frames). Strains lacking NLS2 (fbx15NLS1|∆, oefbx15NLS1|∆:rfp) or both NLSs 
(fbx15∆|∆, oefbx15∆|∆:rfp) are sensitive against all tested media containing stress inducers like 
∆fbx15 (red frames). Experiments were performed with at least three biological replicates. 
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All tested strains, the natively expressed and overexpressed Fbx15 NLS-deficient 

variants show a similar growth capability on minimal growth conditions like WT, 

∆fbx15 and the overexpression of fbx15 (oefbx15) (Figure 24, control). Phenotypic 

analysis on stress media also used in the Chapters 1.2 and 2.1 depicted that the 

deletion of the amino acid sequence harbouring the second NLS, NLS2, in fbx15NLS1|∆ 

-, oefbx15NLS1|∆:rfp -, fbx15∆|∆ - and oefbx15∆|∆:rfp strain, are sensitive as ∆fbx15 

during all tested stress conditions (Figure 24, red frames). In contrast, strains 

containing the deletion of the amino acid sequence harbouring only the first NLS, 

NLS1, in fbx15∆|NLS2 and oefbx15∆|NLS2:rfp, are comparable tolerant to the tested stress 

conditions as WT and oefbx15 (Figure 24, green frames). 

These results show that NLS2 is the stress-responsive nuclear localisation site of 

Fbx15, whereas NLS1 on its own is a stress-insensitive nuclear localisation site. 

 

3.3 NLS2 is required to exclude Fbx15 from the nuclear matrix to the 

nuclear periphery during oxidative stress 

The phenotypic analysis revealed that the presence of NLS2 within Fbx15 is a 

prerequisite for the appropriate fungal stress response in various conditions 

(Figure 24). The location of the different NLS-variants of Fbx15 were compared in the 

microscope. Wild type Fbx15, which is located in the nuclear matrix under non-stress 

conditions (Figure 23), is now excluded from the nuclear matrix and is located in the 

nuclear periphery during oxidative stress induced by 3 mM H2O2 (Jöhnk et al., 2016). 

The lack of both NLS (oeFbx15∆|∆-RFP) impairs any nuclear location without or with 

stress (Figure 25). The comparison of the Fbx15 versions carrying only a single NLS 

revealed a remarkable difference. The presence of only NLS1 (Fbx15NLS1|∆-RFP) 

resulted in a Fbx15 distribution, which is different from wild type, because Fbx15 was 

located within the nucleus without or with stress and the fungus was unable to cope 

with stress. In contrast, the presence of only NLS2 (Fbx15∆|NLS2-RFP) resulted in a 

similar location as wild type, i.e in the absence of stress nuclear location of Fbx15 

and in the presence of H2O2 mediated stress location in the nuclear periphery (Figure 

25). This is consistent with the observed stress phenotypes (Figure 25). 

These data corroborate that NLS2 is the stress-responsive nuclear localisation site 

of Fbx15, which repress NLS1 under stress conditions in a yet unknown molecular 

mechanism. NLS1 on its own is a stress-insensitive nuclear localisation site. 
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Figure 25: A. fumigatus Fbx15 requires NLS2 to exclude Fbx15 from the nuclear matrix 
to the nuclear periphery during oxidative stress conditions. Fbx15 fused to GFP, 
Fbx15∆|NLS2 fused to RFP, Fbx15NLS1|∆ fused to RFP and Fbx15∆|∆ fused to RFP were 
overexpressed by using the constitutively active gpdA-promoter and integrated on-locus of 
∆fbx15 for visualisation in fluorescence microscopy. 2*103 spores of A. fumigatus strains were 
grown vegetativly in Aspergillus minimal medium (AMM) for 18h at 37°C and 18h-old mycelia 
were incubated for 1h in 3 mM H2O2-containing AMM at 37°C in darkness. Hoechst staining 
was performed to visualise nuclei. Overexpressed Fbx15NLS1|∆-RFP (oeFbx15NLS1|∆-RFP) is 
located in the nucleus (N) rather than in the cytoplasm (C) whereas GFP-/RFP signals of 
oeFbx15-GFP (accumulated, white arrow), oeFbx15∆|NLS2-RFP and oeFbx15∆|∆-RFP (diffused, 
black-white arrows) are observed solely in the nuclear periphery (P) and cytoplasm (C) at 
oxidative stress. In contrast Fbx15 single NLS-mutant variants (oeFbx15∆|NLS2-RFP, 
oeFbx15NLS1|∆-RFP) are located predominantly in the nucleus (N) whereas the Fbx15 double 
NLS-mutant variant (oeFbx15∆|∆-RFP) is located in the nuclear periphery (P) and cytoplasm 
(C) (also see Figure 23). The prevalent localisations are highlighted with underscores in the 
tabular scheme. Experiments were performed with at least seven biological replicates. 
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3.4 A. fumigatus SsnF localisation in the nucleus during non-stress 

conditions and at the periphery of the nucleus during oxidative 

stress conditions requires NLS2, whereas NLS1 results in 

constitutive nuclear Fbx15 location 

Nuclear localisation of the co-repressor subunit SsnF is dependent on Fbx15 in 

A. fumigatus during vegetative growth -and oxidative stress conditions (Jöhnk et al., 

2016). The impact of the two NLS sequences of A. fumigatus Fbx15 on cellular 

localisation of SsnF with or without stress was analysed. SsnF contains a predicted 

bipartite (bip) NLS at aa 679 to 703 on its own, indicating a putative Fbx15-

independent ability to enter the nucleus under yet unidentified conditions 

(Figure 26A). The ssnF:gfp construct was integrated ectopically in strains expressing 

Fbx15 with only NLS2 (Fbx15∆|NLS2-RFP), with only NLS1 (Fbx15NLS1|∆-RFP) or 

without any NLS ( Fbx15∆|∆-RFP). 

SsnF-GFP in wild type background (in nucleus without stress and in the periphery in 

the presence of stress), and SsnF-GFP in ∆fbx15 background (never in the nuclear 

matrix) were used as control for monitoring cellular localisation of SsnF-GFP (Jöhnk 

et al., 2016). Under normal non-stress growth conditions, a single NLS with either 

Fbx15 with NLS1 (Fbx15∆|NLS2-RFP) or Fbx15 with NLS2 (Fbx15NLS1|∆-RFP) is 

sufficient for nuclear localisation of SsnF-GFP like in wild type (Figure 26B, yellow 

arrows). The absence of both NLS1 and NLS2 in Fbx15 (Fbx15∆|∆-RFP) never results 

in a location of SsnF-GFP in the nuclear matrix, but only in the nuclear envelop like 

a strain without Fbx15 (∆fbx15; Figure 26B, orange arrows). 

Oxidative stress induced by H2O2 results in a SsnF-GFP location which correlates to 

the location of the different NLS-variants analysed for Fbx15. Fbx15 lacking both NLS 

sequences (Fbx15∆|∆-RFP) is never in the nuclear matrix and as well SsnF-GFP is 

only found in the nuclear periphery similar to the ∆fbx15 strain lacking Fbx15. The 

presence of only NLS1 (Fbx15NLS1|∆-RFP) without NLS2 results in a constitutive 

nuclear localisation of SsnF-GFP during stress in contrast to wild type (Figure 26C, 

yellow arrow). NLS2 alone without NLS1 (Fbx15∆|NLS2-RFP) results in nuclear location 

of SsnF-GFP without stress and location in the nuclear periphery with stress – like it 

was shown for Fbx15∆|NLS2 itself (Fig. 23, Fig. 26). 

This correlation between the nuclear location without stress and the location in the 

nuclear periphery with stress for SsnF and for Fbx15 with NLS2 further supports that 

NLS2 is the stress-responsive element, which guides Fbx15 as well as SsnF to the 

correct cellular location with and without stress. 
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Figure 26: A. fumigatus Fbx15-NLS1 alone supports constitutive nuclear location of 
SsnF, whereas NLS2 distributes SsnF (with or without NLS1) during non-stress 
conditions to the nucleus and during stress to the periphery. (A) The 867 amino acids 
(aa) long SsnF consists of a tetratricopeptide (TRP) repeat at aa position 52 to 404 and a 
putative bipartite (bip) NLS at aa position 679 and 703. The 1110 aa long SsnF-GFP fusion 
construct was integrated ectopically in the strains expressing overexpressed Fbx15 
NLS-deficiencies (oeFbx15NLS1|∆-RFP, oeFbx15∆|NLS-RFP and oeFbx15∆|∆-RFP). (B) 2*103 
spores of A. fumigatus strains were grown vegetatively in Aspergillus minimal medium (AMM) 
for 18h at 37°C in darkness. Fluorescence microscopic imaging revealed that SsnF-GFP is in 
the nucleus (N) during non-stress conditions in wild type (WT) expressing Fbx15NLS1|NLS2, 
strains expressing oeFbx15∆|NLS2-RFP or oeFbx15NLS1|∆-RFP (yellow arrows), whereas 
SsnF-GFP accumulated in the nuclear periphery (P) in ∆fbx15 and the strain expressing 
oeFbx15∆|∆-RFP (orange arrows). (C) 18h-old hyphae were incubated in hydrogen peroxide 
(3 mM H2O2)-containing AMM for 1h in darkness. SsnF-GFP accumulates at the nuclear 
periphery (P) in WT, in the strains expressing oeFbx15∆|NLS2-RFP or oeFbx15∆|∆-RFP (orange 
arrows). In the strain expressing oeFbx15NLS1|∆-RFP SsnF-GFP is in the nucleus (N) at 
oxidative stress (yellow arrows). Experiments were performed with three biological replicates. 

 

3.5 Fbx15 cellular location during oxidative stress depends on the 

phosphorylation status at residues S468|9 but is not relevant 

during non-stress conditions 

A. fumigatus NLS2 is the stress-responsive Fbx15 nuclear location site, which is as 

well required for the cellular distribution of Fbx15 as for the co-repressor subunit for 

SsnF to the nuclear matrix (without stress) or the nuclear periphery (with stress) 

(Figure 23, 25, 26). The phosphorylation status at S469 (98% probability to be 

phosphorylated) and maybe also to a minor extent of S468 (2% probability to be 

phosphorylated) represents an additional layer of cellular localisation control of the 

co-repressor subunit SsnF. It was shown that SsnF can enter the nucleus when 

constant phosphorylation of Fbx15 S469 is mimicked by genetically introducing a 

negative charge, whereas constant dephosphorylation mimicking of Fbx15 at S468 

and S469 results in a cytoplasmic accumulation of SsnF at the nuclear envelope 

(Jöhnk et al., 2016). These previous studies where completed. Both Ser residues 

were together replaced and substitutions mimicked phosphorylation or 

dephosphorylation. In this way any putative uncontrolled changes in the 

phosphorylation status on these Ser residues should be prevented. The localisation 

of Fbx15-phosphorylation variants were compared to wild type Fbx15 fused to GFP. 

Mimicking dephosphorylation of the S468 and S469 was achieved by exchanging the 

codons for Ser to Ala (Fbx15S468|9A). Mimicking phosphorylation of the S468 and S469 

was achieved by exchanging Ser to aspartate (Fbx15S468|9D). The constructs 

fbx15S468|9A and fbx15S468|9D were C-terminally fused to RFP and overexpressed by 

utilising the gpdA promoter resulting in Fbx15S468|9A- and Fbx15S468|9D-RFP (both 

916 aa long) (Figure 27A). OeFbx15S468|9A-RFP and oeFbx15S468|9D-RFP were 
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predominantly located in the nucleus like oeFbx15-GFP at vegetative growth 

(Figure 27B, D). OeFbx15S468|9D-RFP is impaired in nuclear localisation resulting in a 

diffused localisation in the complete hyphae (Figure 27C, D, black-white arrow). In 

contrast, oeFbx15-GFP is located outside the nucleus in accumulated structures 

(Figure 27C, D, white arrow). OeFbx15S468|9A-RFP was primarily located in the 

nucleus (Figure 27C, D). 
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Figure 27: Phosphorylation at S468|9 is required for the cytoplasmic localisation of 

Fbx15 at oxidative stress in A. fumigatus. (A) The Fbx15 phospho-mimicking variants were 

fused to RFP through a glycine-glycine-serine-glycine-glycine (GGSGG)-linker and were 

overexpressed by using the constitutively active gpdA-promoter for microscopic visualisation. 

Fbx15 mimicking dephosphorylated serine (Ser) residues S468 and S469 fused to RFP was 

obtained by the exchange of Ser to alanine (Ala), resulting in oeFbx15S468|9A-RFP. Fbx15 

mimicking phosphorylated S468 and S469 fused to RFP was obtained by the exchange of 

serine to aspartate resulting in Fbx15S468|9D-RFP. The overexpressed constructs of 

fbx15S468|9A:rfp and fbx15S468|9A:rfp were integrated in the locus of ∆fbx15. Hoechst staining 

was performed to visualise nuclei. (B) 2*103 spores of A. fumigatus strains were grown 

vegetatively in Aspergillus minimal medium (AMM) for 18h at 37°C in darkness. 

Overexpressed Fbx15 fused to GFP integrated in the locus of ∆fbx15 (oeFbx15-GFP), 

oeFbx15S468|9A-RFP and oeFbx15S468|9D-RFP are predominantly in the nucleus at vegetative 

growth. Experiments were performed with at least eight biological replicates. (C) 18h-old 

hyphae were incubated in 3 mM H2O2-containing AMM for 1h at 37°C in darkness inducing 

oxidative stress conditions. OeFbx15S468|9A-RFP is predominantly located in the nucleus 

whereas oeFbx15-GFP (accumulated, white arrow) and oeFbx15S468|9D-RFP (diffused, black-

white arrow) are solely at the nuclear periphery and in the cytoplasm. Experiments were 

performed with at least eight biological replicates. (D) Tabular scheme of the cellular 

localisation of oeFbx15-GFP, oeFbx15S468|9A-RFP and oeFbx15S468|9D-RFP at vegetative 

growth and oxidative stress induced by H2O2. N: Nucleus, C: Cytoplasm, P: Nuclear periphery. 

The prevalent localisations are highlighted with underscores. 

 

These data suggest that vegetative growth conditions without stress allow the nuclear 

localisation of Fbx15 with a charged as well as an uncharged amino acid at S468|9 

and therefore independently of the phosphorylation status. During oxidative stress a 

negative charge and therefore the phosphorylation status at S468|9 (Fbx15S468|9D) is 

essential for excluding Fbx15 from the nuclear matrix to the cytoplasm or the nuclear 

periphery. Without a negative charge mimicking dephosphorylation at S468|9 

(Fbx15S468|9A) resulted in nuclear accumulation. In comparison to the obtained data 

described in Chapter 3.1 and 3.3 dephosphorylation at S468|9 corresponds to the 

localisation of Fbx15 with exclusively NLS1, whereas phosphorylation at S468|9 

leads to the same cellular localisation as of Fbx15 with only NLS2. 

 

3.6 Phosphorylation during A. fumigatus vegetative growth and 

dephosphorylation during oxidative stress is independent of the 

presence or absence of an intact NLS1 or NLS2 within Fbx15 

A. fumigatus Fbx15 cytoplasmic localisation during oxidative stress conditions is 

linked to Fbx15 NLS2 and the phosphorylation status at S468|9 (Figure 25, 27). 

Therefore, it was examined if the NLS sequences are required for the phosphorylation 

status of A. fumigatus Fbx15 during oxidative stress conditions induced by H2O2. In 

order to address this question, the phosphorylation status of the overexpressed 

versions of Fbx15-GFP (oeFbx15-GFP) and its single deletion constructs of NLS1 
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and NLS2 fused to RFP (oeFbx15∆|NLS2-RFP, Fbx15NLS1|∆-RFP) were analysed during 

oxidative stress conditions through immunoprecipitation. The overexpressed 

Fbx15-variant mimicking dephosphorylation at Ser residues 468 and 469 fused to 

RFP (oeFbx15S468|9A-RFP) was used as control. 

OeFbx15∆|NLS2-RFP, oeFbx15NLS1|∆-RFP and oeFbx15S468|9A-RFP were detected in 

western hybridisation with the Ser/Thr phospho antibody like oeFbx15-GFP during 

vegetative growth conditions. Oxidative stress conditions resulted in a significant 

decreased abundance of oeFbx15-GFP, oeFbx15∆|NLS2-RFP and oeFbx15NLS1|∆-RFP 

detected with the Ser/Thr phospho antibody comparable to non-stress conditions. 

Ser/Thr signals of oeFbx15S468|9A-RFP were not significantly changed under oxidative 

stress conditions (Figure 28). 

 

Figure 28: The phosphorylation status of A. fumigatus Fbx15 is independent of its 
NLSs during vegetative growth and oxidative stress conditions. Overexpressed Fbx15 
fused to GFP (oeFbx15-GFP) was integrated on-locus of ∆fbx15. Overexpressed Fbx15 fused 
to RFP mimicking dephosphorylated serine (Ser) residues S468 and S469 by the exchange 
of Ser to alanine (Ala) (oeFbx15S468|9A-RFP) and NLS1 deletion (oeFbx15∆|NLS2-RFP) and 
NLS2 (oeFbx15NLS1|∆-RFP) deletion variants were integrated in the locus of ∆fbx15. 2*108 
spores of A. fumigatus strains were grown vegetatively in Aspergillus minimal medium (AMM) 
for 18h at 37°C. For the induction of oxidative stress 18h-old hyphae were incubated in 
hydrogen peroxide (3 mM H2O2-treatment)-containing AMM for 60 min. Immunoblotting with 
an antibody against phosphorylated Ser- and threonine (Thr)-residues was done with 
GFP-/RFP pulldown purified overexpressed GFP-/RFP-tagged Fbx15 variants before and 
after 1h incubation in H2O2-containing AMM. Dephosphorylation under oxidative stress 
conditions was quantified against the overall amount of GFP-/RFP-tagged Fbx15 variants. 
Error bars represent the SEM and were calculated from two biological replicates. 
Significances were determined with one-way Anova and Student’s t-test (P-value: *P<0.01, 
n.s.: not significant). A decreased phosphorylation of oeFbx15∆|NLS2-RFP and Fbx15NLS1|∆-RFP 
upon H2O2-stress is shown in the same stage as for oeFbx15-GFP. For oeFbx15S468|9A-RFP 
phosphorylated Ser- and Thr-residues are detected, which are not significantly different during 
oxidative stress conditions. Experiments were performed with two biological replicates. 
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These data show that NLS1 or NLS2 are dispensable for A. fumigatus Fbx15 overall 

phosphorylation status at non-stress or oxidative stress. This indicates that their 

impact on the proteins’ cellular localisation is independently of the overall 

phosphorylation status of A. fumigatus Fbx15 at vegetative growth or oxidative stress. 

Moreover, S468 and S469 are not the only residues critical control the 

phosphorylation status of the whole A. fumigatus Fbx15 protein, however, they are 

required for the cellular localisation of Fbx15 during oxidative stress response. 

 

This study revealed more detailed insights into the interplay between A. fumigatus 

Fbx15 and SsnF during growth without or with oxidative stress. SsnF is localised 

inside the nuclear matrix either with Fbx15 harbouring NLS1 or NLS2 under non-

stress conditions. During oxidative stress Fbx15 NLS-deletion variants and SsnF are 

simultaneously located outside the nuclear matrix like the nonmutated Fbx15 protein 

(Table 6). 

Dephosphorylation at Fbx15 S468|9 leads to an accumulation of SsnF outside the 

nuclear matrix (Jöhnk et al., 2016), whereas, in contrast, Fbx15 itself is presumably 

primarily located inside the nuclear matrix at both conditions (Figure 27) (Table 6). 

The phosphorylation at Fbx15 S469 leads to an accumulation of SsnF in the nuclear 

matrix at non-stress as well as oxidative stress (Jöhnk et al., 2016), whereas Fbx15 

is located in the nuclear matrix at vegetative growth and outside the nuclear matrix at 

oxidative stress (Figure 27) (Table 6). 

In summary, the two NLS sequences of Fbx15 represent a sophisticated control 

system for simultaneous localisation of Fbx15 and SsnF in the nuclear matrix at non-

stress conditions. Fbx15 NLS2 serves as regulatory element during stress response 

by inhibiting the nuclear import function of NLS1 in a yet unknown mechanism. 

Thereby, NLS2 triggers the location of both proteins outside the nuclear matrix at 

oxidative stress. The phosphorylation/dephosporylation at S468|469 of Fbx15 

represents an additional level of control for the location of Fbx15 and SsnF within the 

cell, which is primarily relevant during growth in the presence of stress. 

  



 Results 

102 
 

Table 6: Summary of the cellular localisation of the A. fumigatus Fbx15 variants and 
SsnF in dependency of Fbx15 variants during non-stress - and oxidative stress 

conditions. + = in the nuclear matrix, - = outside the nuclear matrix (in nuclear periphery 

and/or cytoplasm). *Published data from Jöhnk et al., 2016. 

 Non-stress  H2O2-stress  

Fbx15NLS1|NLS2 +* - 

SsnF* + - 

Fbx15∆|NLS2 + - 

SsnF + - 

Fbx15NLS1|∆ + + 

SsnF + + 

oeFbx15∆|∆-RFP - - 

SsnF - - 

Fbx15S468|9A (not phos.) + + 

SsnF* - - 

Fbx15S468|9D (similar to phos.) + - 

SsnF* + + 
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IV   Discussion 

 

1 NLS2 takes Fbx15 and SsnF to the nuclear periphery during 

stress, whereas without stress NLS1 or NLS2 take both 

proteins into the nucleus in A. fumigatus 

This study has revealed that the A. fumigatus Fbx15 second nuclear localisation signal, 

NLS2, is a stress-response element needed for the adaptation of A. fumigatus to various 

environmental stresses, whereas the first nuclear localisation signal, NLS1, is stress-

insensitive. Precisely, both NLS sequences of Fbx15 are capable for the transport of Fbx15 

in a significantly phosphorylated state together with SsnF in the nuclear matrix at 

vegetative growth, whereas NLS2 is besides required for the localisation of Fbx15 in a 

significantly dephosphorylated state and the co-repressor subunit SsnF outside the nuclear 

matrix at oxidative stress. Thereby, NLS2 has a putative inhibitory function regarding the 

activity of NLS1 (Figure 29). 
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Figure 29: Model of Fbx15 NLSs functions during vegetative growth and oxidative stress 
conditions in A. fumigatus. At vegetative growth the Fbx15 nuclear localisation signals (NLS) 1 
and 2 mediate independent of each other the localisation of a significant portion of Fbx15 within the 
nucleus (black dashed lines) together with the co-repressor subunit SsnF (green dashed lines). 
Unphosphorylated Fbx15 (OH, thin red dashed line) as well as presumably NimX kinase mediated 
phosphorylation at S468|9 (P, bold red line) provides nuclear localization of Fbx15 during growth 
without stress. Oxidative stress results in reduced Fbx15 phosphorylation presumably through the 
GlcA/BimG phosphatase and results in localisation of SsnF at the nuclear periphery (green line). 
The molecular mechanism of the inhibitory function of NLS2 on the nuclear import activity of NLS1 
is yet unknown. The unphosporylated form of S468|9 during oxidative stress (red lines) provides an 
additional control level for inhibiting the nuclear localisation of Fbx15 at oxidative stress. 

 

In general, Fbx15 phosphorylation might be favoured by the NimX kinase during non-stress 

vegetative growth, whereas the GlcA/BimG phosphatase acts during oxidative stress 

(Jöhnk et al., 2016) (Figure 29). Phosphorylation of Fbx15 residues S468|9 is presumably 

predominant at vegetative growth but does not seem to be required for the nuclear 

localisation of Fbx15. During vegetative growth there is a co-localisation of Fbx15 and 

SsnF in the nucleus. Oxidative stress dephosphorylates S468|9 and results in nuclear 

localization of Fbx15, but no more co-localisation with SsnF, which is primarily found in the 

periphery of the nucleus or even in the cytoplasm. The displayed molecular mechanism is 

discussed in detail in this chapter. 

 

1.1 NLS2 is a stress-response element, whereas NLS1 is mainly functional 

in mediating Fbx15 nuclear localisation 

In this study it has been investigated that both NLS sequences of A. fumigatus Fbx15, 

NLS1 and NLS2, are independent of each other sufficient for the import of Fbx15 into the 

nucleus during non-stress conditions. However, NLS1 alone without NLS2 is not able to 

take Fbx15 to the nuclear periphery in accumulated structures at oxidative stress. Instead 

the presence of NLS1 alone leads to a nuclear accumulation of Fbx15 (Figure 25). This 

indicates that NLS1 is capable to interact with nuclear import relevant proteins such as 

importins at vegetative growth and oxidative stress. A constantly intact nuclear transport 

driven by a putative high affinity of NLS1 to importins results in a disturbance of required 

interactions with other proteins during stress response as the sole presence of NLS1 leads 

to similar phenotypes like the loss of the fbx15 gene (Figure 24). 

For the localisation of Fbx15 outside the nucleus at stress the presence of NLS2 is 

required, here tested with oxidative stress (Figure 25). Importantly, the presence of NLS2 

alone leads not an accumulation of Fbx15 near the nucleus as shown for the wild type-like 

Fbx15 at oxidative stress (Figure 25). Putatively, NLS2 is required to inhibit the nuclear 

import during oxidative stress in an unknown mechanism resulting in an accumulation of 

Fbx15 at the nuclear periphery as A. fumigatus Fbx15 does not contain any NES 
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sequences signalising its capability for nuclear export (Jöhnk et al., 2016; Wen et al., 

1995). The activity of NLS1 in, for instance, its interaction with importins might be inhibited 

in this context. This would explain why the sole presence of NLS1 leads to a clear 

accumulation of Fbx15 in the nucleus at oxidative stress. 

These putative additional functions of NLS2 are rather untypical as NLS sequences are 

characterised as binding elements for importins. NLS sequences with other functions 

besides to the nuclear localisation of the adjacent proteins were already described. The 

NLS of the ubiquitin-specific protease 7 (USP7)–ring finger protein 169 (RNF169) has, 

besides to its function in nuclear localisation, a role in driving DNA repair and poly 

(ADP-ribose) polymerase inhibition resistance by mediating a direct interaction with a 

deubiquitylase for enhanced stability (An et al., 2017). Furthermore, the NLS of the 

interferon cytokine IFNγ is required for the full expression of the biological activity of IFNγ 

independently of its cellular localisation (Subramaniam et al., 2000). In consequence, 

NLS2 of Fbx15 could have additional functions besides a nuclear transport of Fbx15. 

In case of an inhibitory function of NLS2 regarding NLS1 activity an example for a direct 

regulation of domains by other domains within the same protein sequence is described in 

Yokogawa et al. 2016. The described RNase Regnase-1 contains four domains: N-terminal 

domain (NTD), PilT N-terminus like (PIN) domain, zinc finger (ZF) domain and C-terminal 

domain (CTD). The RNase catalytic centre of Regnase-1 is sitting within the PIN domain 

which gets enhanced in its activity when the NTD interacts with the PIN domain. Thereby, 

the PIN domain forms a dimer interface which overlaps with the NTD binding site. 

Additionally, the ability to form head-to-tail oligomers of the PIN domain is essential for the 

proteins’ RNase activity which indicates that, besides the PIN-NTD interaction, a PIN-PIN 

interaction is required to for the function of Regnase-1 RNase activity (Yokogawa et al., 

2016). Probably, NLS2 of Fbx15 may regulate NLS1 in an opposite mechanism compared 

to NTD-PIN interaction during oxidative stress conditions. In this process the direct or 

indirect interaction through other proteins of NLS2 with NLS1 leads to the inactivation of 

NLS1 or inhibition of its activity. How the interaction of NLS1 and NLS2 is performed is 

unknown. 

Besides of a putative regulatory function of NLS2 regarding the NLS1 activity, NLS2 could 

act as a potential binding site for other proteins triggering Fbx15 nuclear export or its 

degradation in the nucleus. From previous studies it is known that Fbx15 is a stable protein 

compared to another conserved A. fumigatus F-box protein, SconB (Jöhnk et al., 2016). 

On the first glance, a degradation of Fbx15 in the nucleus is therefore rather unlikely, 

however, a degradation of Fbx15 in the nucleus in combination with an enriched Fbx15 

amount outside the nucleus resulting from an inhibited nuclear import cannot be excluded. 

On the other point of view, an export of Fbx15 triggered by the binding to other proteins 
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through NLS2 might be possible. These proteins could mediate the nuclear export of Fbx15 

via a shuttle mechanism, consequently Fbx15 does not need a NES signal to get outside 

the nuclear matrix. Moreover, a putative function of NLS2 in the interaction of Fbx15 with 

other proteins is probably given in the cytoplasm at oxidative stress. This suggestion is 

underpinned by the fact that NLS1 alone as well as the a loss of both NLS sequences lead 

to the same sensitivity against oxidative stress and other stressors as observed for the 

fbx15 deletion strain but these Fbx15 NLS-mutants are located differently in the cell: 

Fbx15NLS1|∆ in the nucleus, Fbx15∆|∆ outside the nucleus similar to WT Fbx15 or Fbx15∆|NLS2 

(Figure 24, Figure 25). A loss of NLS2 results therefore in a sensitivity against stressors 

indicating that NLS2 is a stress-response element in contrast to NLS1, whose loss and 

sole presence of NLS2 results in WT-like stress tolerance (Figure 24). 

Taken together, NLS2 is a stress response-relevant element of Fbx15 which is required 

for the inhibition of NLS1 activity regarding nuclear import at oxidative stress in a so far 

unknown mechanism. Instead, NLS1 itself is insensitive against stress. During stress 

conditions NLS2 is maybe required for the interaction with other proteins relevant for the 

Fbx15-dependent stress response but this remains to be elucidated. 

 

1.2 Correct localisation of SsnF requires NLS1 or NLS2 of Fbx15 at 

vegetative growth and a repressed NLS1 of Fbx15 at oxidative stress 

This study shows that the NLS sequences of Fbx15 are involved in the cellular localisation 

of SsnF at vegetative growth and oxidative stress. Thereby, SsnF is located inside the 

nuclear matrix in presence of Fbx15 NLS1 or - NLS2 without stress as the corresponding 

Fbx15 NLS variants but outside the nuclear matrix in absence of both NLS sequences, 

NLS1 and NLS2 (Figure 22, 26). SsnF composites a bipartite NLS (Figure 26). 

Nonetheless, SsnF nuclear transfer is regulated by the presence of Fbx15 at vegetative 

growth (Jöhnk et al., 2016) (Figure 26). Therefore, it is conceivable that the NLS of SsnF 

is either not active or gets activated by dependent on Fbx15 during vegetative growth. 

NLS sequences can be intermolecular masked and unmasked through interaction partners 

that finally controls the nuclear import of the corresponding protein as previously described 

for the inhibitor of κB, which masks the NLS of the transcriptional regulator NF-κB from 

nuclear import (Beg et al., 1992; Ganchi et al., 1992; McLane and Corbett, 2009; Zabel et 

al., 1993). In chapter 1.1 was described that NLS sequences can function in a nuclear 

import-independent manner. The observed binding of Fbx15 and SsnF in the cytoplasm 

and the final co-localisation in the nucleus (Jöhnk et al., 2016) might serve as a regulatory 

process, in which SsnF gets intermolecular modified leading to an unmasking of its 

bipartite NLS and this through Fbx15, in particular its NLS2 (Figure 26). Nonetheless, the 
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exact mechanism how SsnF gets into the nuclear matrix – via unmasking of its NLS 

sequence or via a direct shuttle with Fbx15 – is yet elusive. 

Moreover, the localisation of SsnF outside the nuclear matrix during oxidative stress 

conditions is blocked when NLS1 is solely present similar to the localisation of the 

corresponding Fbx15 variant. Additionally, SsnF is located outside the nuclear matrix at 

oxidative stress when NLS1 and NLS2 of Fbx15 are absent comparable to the cellular 

localisation of this particular Fbx15 variant (Figure 22, Figure 25, Figure 26). A. fumigatus 

Fbx15 NLS2 is suggested to inhibit the function or block the activity of NLS1 regarding 

nuclear import or promoting Fbx15 degradation in the nuclear matrix or promoting the 

interaction with other proteins relevant for a putative Fbx15-nuclear export at oxidative 

stress (chapter 1.1). Therefore, it is conceivable that this inhibitory function of A. fumigatus 

Fbx15 NLS2 on NLS1 activity or a putative NLS2-promoted degradation or interaction with 

other proteins affects the final co-localisation of SsnF and Fbx15 outside the nuclear matrix 

in a so far an unknown mechanism. 

Taken together, the cellular localisation of SsnF is dependent on Fbx15 during vegetative 

growth conditions in A. fumigatus. Thereby, the bipartite NLS of SsnF gets putatively 

unmasked by Fbx15 though its NLS sequences, NLS1 or NLS2, or is inactivated at 

vegetative growth leading to a Fbx15-dependent nuclear shuttle mechanism independently 

on the presence of the SsnF NLS. How this shuttle mechanism is performed or if the co-

localisation of SsnF and Fbx15 results from a Fbx15 NLS-dependent unmasking of the 

SsnF NLS sequence remains to elucidated. 

 

1.3 NLS1 and NLS2 do not influence the phosphorylation status of Fbx15 at 

vegetative growth or at oxidative stress 

A significant part of Fbx15 gets dephosphorylated during oxidative stress in A. fumigatus 

(Jöhnk et al., 2016) (Figure 28). In this study was elucidated that the NLS sequences of 

A. fumigatus Fbx15 regulate the cellular localisation of Fbx15 independent on its overall 

phosphorylation status and, moreover, the overall phosphorylation of Fbx15 at vegetative 

growth is independent on S468|9 (Figure 28). 

In general, proteins get phosphorylated through protein kinases and dephosphorylated 

through phosphatases (Ardito et al., 2017; Barford, 1996; Slack, 2014; Zhang, 2002). 

A. fumigatus NimX is the homolog of the cyclin-dependent kinase1 NimX of A. nidulans 

(Ye et al., 1999). The Ser/Thr kinase is essential in A. fumigatus and is the only kinase, 

which was identified to interact with Fbx15 in the cytoplasm (Jöhnk et al., 2016). Ser - or 

Thr residues get phosphorylated at their alcohol groups (OH) using phosphate esters 

generated with gamma phosphate of ATP or GTP (Dickman and Yarden, 1999). In the 
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amino acid sequence of Fbx15 several Ser - and Thr residues were found next to S468 

and S469 (Jöhnk et al., 2016). Therefore, it is most likely the case that other Ser - and/or 

Thr residues of A. fumigatus Fbx15 are responsible for its phosphorylation status during 

non-stress conditions, which is presumably driven by the Ser/Thr kinase NimX but not 

dependent on the NLS sequences of Fbx15. Same situation could be present for the 

interaction of Fbx15 with the essential phosphatase GlcA, which occurs primarily during 

H2O2-stress in the cytoplasm (Jöhnk et al., 2016). 

In general it is unknown if A. fumigatus Fbx15 is able get completely dephosphorylated but 

this study has clarified that the overall phosphorylation status of Fbx15 is not depending 

on NLS1 or NLS2. The protein kinase NimX and the phosphatase GlcA/BimG might 

phosphorylate or dephosphorylate Fbx15, which probably take place on Ser-/ Thr residues 

additional to or independent of S468 and S469 but this remains to be elucidated. 

 

1.4 The phosphorylation status at S468|9 determines Fbx15 and SsnF 

cellular localisation during stress 

A. fumigatus Fbx15 is primarily in the nucleus during vegetative growth conditions (Jöhnk 

et al., 2016) (Figure 22) and primarily outside the nuclear matrix upon oxidative stress 

(Figure 25). Thereby, Fbx15 is phosphorylated during non-stress conditions and becomes 

significantly dephosphorylated upon oxidative stress (Jöhnk et al., 2016) (Figure 28). 

Mimicking dephosphorylation of Fbx15 at its most probable phosphorylation sites S469 

(98%) and S468 (2%) leads to a nuclear localisation of Fbx15 as well as at non-stress - 

and at oxidative stress conditions (Figure 27). Mimicking dephosphorylation at S468|9 

does not affect Fbx15 overall phosphorylation at vegetative growth, which suggests that 

additional Ser- and/or Thr residues of A. fumigatus Fbx15 are targets for phosphorylation 

at non-stress conditions. (Figure 28). 

This study did not elucidate if both Ser residues are simultaneously phosphorylated in the 

cell. Phosphorylation at S468|9 leads to a similar Fbx15 localisation in the nuclear matrix 

at vegetative growth like the dephosphorylation variant at S468|9. Fbx15 is significantly 

dephosphorylated during oxidative stress conditions, which results in nuclear location 

Fbx15 (Figure 27) but without SsnF, which is located in the nuclear periphery (Jöhnk et al., 

2016). The small amount of S468|9 phosphorylated Fbx15 might be even localized outside 

of the nuclear matrix at oxidative stress (Figure 27). This suggests that the phosphorylation 

status at S468 and S469 for the cellular localisation of Fbx15 is only relevant during 

oxidative stress. 

Recent studies have shown that the phosphorylation of the NLS in the mammalian GM130 

reduce its binding to p115, but enhance its affinity to importin α and vice versa (Chang et 
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al., 2019). Mammalian GM130 is required for targeting transport vesicles to the Golgi 

together with the vesicle tethering factor p115 (Sönnichsen et al., 1998; Waters et al., 

1992). Replacing the required phosphorylation site S385 of GM130 with aspartic acid 

mimicking constant phosphorylation results in an increased binding affinity for importin α5, 

which demonstrates that the specificity of the response is driven by the phosphate moiety 

(Chang et al., 2019). It will be interesting to examine the similarities and differences to the 

S468 and S469 phosphorylation/dephosphorylation of Fbx15. 

In summary, this study shows that Fbx15 is predominantly present in a dephosphorylated 

population at oxidative stress. A redundant phosphorylated population cannot be excluded, 

especially but not only at S468|9, as the artificial phosphorylation at S468|9 indicates 

Fbx15s’ ability to traffic as wild type-like Fbx15 through the nuclear membrane at non-

stress and stress-conditions, however, this case could not be verified in this study. 

 

2 Fbx15-mediated secondary metabolism in A. fumigatus and 

A. nidulans 

2.1 Fbx15 of A. fumigatus and A. nidulans are involved in secondary 

metabolite regulation 

This study shows that both Fbx15 proteins, A. fumigatus - and A. nidulans Fbx15, 

complement each other’s functions in the corresponding fbx15 deletion strain regarding 

the regulation of secondary metabolism as A. nidulans Fbx15 recovers the pale 

pigmentation of grown colonies in A. fumigatus and vice versa (Figure 13). Differences in 

colour pigmentation were associated with an altered secondary metabolite regulation such 

as for the sterigmatocystin production in A. nidulans. Sterigmatocystin is a precursor of a 

carcinogenic aflatoxin and the enrichment of one of its precursors, norsolorinic acid, results 

in an orange coloured pigmentation similar to colonies in absence of A. nidulans fbx15 

(Butchko et al., 1999; Hajjar et al., 1989; Hsieh et al., 1976; von Zeska Kress et al., 2012). 

The global regulator LaeA is involved in the mycelial pigmentation in A. nidulans and 

A. fumigatus (Bok and Keller, 2004). In case of Fbx15 a similar regulation of secondary 

metabolites could be true in A. fumigatus and A. nidulans as the absence of both F-box 

proteins results in a dark red or orange pigmentation of hyphae (Jöhnk et al., 2016; von 

Zeska Kress et al., 2012) (Figure 13). LaeA coordinates the production of developmental 

and vegetative secondary metabolites in a BrlA-dependent manner in A. fumigatus. The 

zinc cluster transcription factor BrlA represents an activator of conidiation in Aspergillus 

(Adams et al., 1988; Yu et al., 2010). Interestingly, BrlA is required for the SrbA-regulated 

hypoxia stress response compatible to LaeA (Lind et al., 2018). 
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A putative similar regulation could be present for the identified direct interaction of 

A. fumigatus Fbx15 and the Fbx15-interacting transcriptional regulator SrbB as both are 

required for the regulation of four putative identical secondary metabolite (Figure S6). So 

far 43 secondary metabolites were identified for A. fumigatus and 19 out of 44 identified 

genes are directly linked to secondary metabolite production (Romsdahl and Wang, 2019; 

Vadlapudi et al., 2017). Many of the found secondary metabolite gene clusters identified 

in A. fumigatus are conserved in other pathogenic fungi such as the neosartoricin gene 

cluster, whose encoding gene product has a T-cell antiproliferative activity and is therefore 

suggested to have an immunosuppressive function (Bignell et al., 2016; Raffa and Keller, 

2019; Yin et al., 2013). Nonetheless, the identical putative secondary metabolites 

regulated by A. fumigatus Fbx15 and SrbB could not be assign to so far identified 

secondary metabolites. However, the observed comparable regulation on secondary 

metabolite levels by A. fumigatus Fbx15 and SrbB at vegetative growth could indicate a 

putative interplay between the two proteins as they are physically interacting with each 

other at this circumstance. 

Taken together, the Fbx15 counterparts of A. fumigatus and A. nidulans fulfil distinct as 

well as overlapping functions, which includes that they both are involved in the control of 

genes for enzymes of their respective secondary metabolism. In this context, a putative 

interplay between A. fumigatus Fbx15 and SrbB regarding the regulation of the 

biosynthesis of so far unidentified secondary metabolites at vegetative growth is 

conceivable. 

 

2.2 A. fumigatus Fbx15 regulates the production of the mycotoxin 

fumagillin presumably indirectly through biosynthetic enzymes 

Aspergillus spp. produce a wide range of secondary metabolites and are of high interest 

for research, medicine and biotechnology (Singh et al., 2016; Yoon et al., 2013). In this 

study the antimicrobial agent fumagillin was identified as secondary metabolite whose 

production is regulated by Fbx15 next to several other potential, so far unidentified 

secondary metabolites during non-stress minimal growth conditions in A. fumigatus 

(Figure 21). Fumagillin is a metabolite with antibiotic properties and exclusively 

synthesized in A. fumigatus (Hanson and Eble, 1949; McCowen et al., 1951). First 

applications of fumagillin were proceed in apiculture against the microsporidian fungal 

disease caused by Nosema apis (Bailey, 1953; Katznelson and Jamieson, 1952). 

Fumagillin is currently the only effective drug against the Nosema apis related 

Nosema ceranae (Higes et al., 2011; Williams et al., 2011, 2008). In human medicine 

fumagillin is used in immunocompromised patients as prophylaxis against microsporidian 



Discussion 

111 
 

infections or to relieve symptoms after an infection with intestinal microsporidiosis 

(Lanternier et al., 2009; Molina et al., 2002, 2000). 

Fumagillin is synthesized by a cluster of 21 genes (Wiemann et al., 2013). The production 

of secondary metabolites and pathogenicity are often closely related to each as an 

adaptive secondary metabolite production controlled by cluster-specific transcription 

factors guarantees a sufficient growth depending on the present environment such as soil 

or in a putative host organism (Calvo et al., 2002; Lind et al., 2018). Fumagillin suppresses 

the immune response of Galleria mellonella larvae by inhibiting the activity of phagocytes 

(Fallon et al., 2011). Despite of this, recent studies have investigated that fumagillin is 

produced in an in vitro pneumocyte cell line infection model and contribute to epithelial cell 

damage during invasive aspergillosis (Guruceaga et al., 2018). In absence of A. fumigatus 

fbx15 is not able to invade in the alveoli in mice at early stage of infection (Jöhnk et al., 

2016). As the increased fumagillin biosynthesis in absence of fbx15 does not result in a 

WT-like or increased pathogenicity of A. fumigatus in the Galleria mellonella larvae 

infection model, it is suggested that Fbx15 is involved in earlier stages during infection than 

fumagillin. This assumption is supported by an observed loss of virulence when fbx15 is 

absent even if fumagillin biosynthesis is de-repressed but known to promote pathogenicity. 

Also, a direct regulation by the control on localisation level or stability of essential proteins 

for fumagillin biosynthesis can be excluded because none of the biosynthetic proteins were 

identified as putative interaction partners of Fbx15 in previous analysis, similarly to 

gliotoxin biosynthesis-associated proteins (Jöhnk et al., 2016; Wiemann et al., 2013). 

Therefore, a Fbx15-dependent regulation of fumagillin indirectly through biosynthetic 

enzymes, that are involved in the fumagillin production in a direct - or more direct manner 

than Fbx15 is conceivable. 

Noteworthy, a derepressive function of fumagillin biosynthesis in dependency of fbx15 is 

observed during vegetative growth conditions and not during infection. Protein activities 

can differ upon environmental circumstances as previously described for VeA (Mooney 

and Yager, 1990; Stinnett et al., 2007). This would support a putative environmental 

specificity of Fbx15 regarding fumagillin biosynthesis. In consequence the observed 

derepressive function of Fbx15 on fumagillin biosynthesis at vegetative growth must not 

occur during infection. 

Taken together, fumagillin biosynthesis is Fbx15-dependent regulated at vegetative 

growth. This effect might be dispensable for A. fumigatus pathogenicity when lacking 

fbx15. 
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2.3 Fbx15-dependent inhibition of gliotoxin production is independent for 

Fbx15-dependent A. fumigatus virulence in the Galleria mellonella 

infection model and stress response during minimal growth conditions 

This study has shown that the deficiency in gliotoxin biosynthesis by deletion of gliZ or gliP 

did not result in any altered stress adaptation on AMM compared to A. fumigatus AfS35 

WT indicating a specialised role of gliotoxin under certain milieus as found in potential host 

organism. Moreover, the disruption in gliotoxin biosynthesis in absence of fbx15 did not 

lead to differences in the sensitivity against tested stressors when compared to the sole 

deletion of the fbx15 gene (Figure 19). This shows that the reported Fbx15-dependent 

regulation in gliotoxin production (Jöhnk et al., 2016) is dispensable for the Fbx15-

dependent role in stress adaptation. This indicates either that the repressive function of 

Fbx15 on gliotoxin production is only present during gliotoxin-inducible conditions or that 

an overproduction of gliotoxin is dispensable for the adaptation to stress. 

Gliotoxin biosynthesis is blocked when the gene gliP is deleted and results in an attenuated 

pathogenicity of A. fumigatus in non-neutropenic mice immunosuppressed with 

hydrocortisone (Sugui et al., 2007). Previous studies have shown that gliotoxin 

biosynthesis is promoted in the Galleria mellonella model but is dispensable for 

A. fumigatus vegetative growth (Reeves et al., 2004). However, in other studies deletion 

of gliP and incorporated block in gliotoxin biosynthesis does not alter virulence in 

A. fumigatus using neutropenic BALC/c mice immunosuppressed with a combination of 

cyclophosphamide and cortisone acetate suggesting virulence in dependency of gliotoxin 

formation is host-specific (Kupfahl et al., 2006). This suggestions were supported by the 

gliZ deficient strain, which shows no alterations in pathogenicity compared to WT in mice 

immunocompromised by intraperitoneal injection of cyclophosphamide (Bok et al., 2006). 

Larvae of the greater wax moth Galleria mellonella share similar innate immune responses 

with mammals as shown for insects hemocytes, such as phagocytosis or superoxide 

production, and mammalian phagocytes (Browne et al., 2013; Kavanagh and Reeves, 

2004). In this study was demonstrated that a gliP deficiency results in an impaired virulence 

in the Galleria mellonella infection model. Nonetheless, suggestions that Fbx15-dependent 

regulation of gliotoxin biosynthesis is connected to Fbx15-mediated virulence in 

A. fumigatus is presumably not true as no significant changes in the survival rates of 

∆fbx15/∆gliP and ∆fbx15/∆gliZ compared to ∆fbx15 were observed (Figure 20). 

This study has shown that the loss in pathogenicity of A. fumigatus when lacking fbx15 is 

not reasoned by the Fbx15-dependent regulation of gliotoxin biosynthesis in the 

Galleria mellonella infection model. However, it is not clear if this repressive function of 

Fbx15 has in impact on infection in other host organisms such as mice or humans. 
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3 Contribution of asexual and sexual development and stress 

response by A. fumigatus - and A. nidulans Fbx15 

3.1 Fbx15 functions are different during asexual and sexual development in 

A. fumigatus and A. nidulans 

A. fumigatus Fbx15 was already described to be crucial for stress adaptation as well as 

required for developmental processes such as asexual and sexual development in 

A. nidulans (Jöhnk et al., 2016; von Zeska Kress et al., 2012). A. fumigatus Fbx15 rescues 

the ∆fbx15 phenotype in A. nidulans regarding sexual and asexual development 

(Figure 12). Instead ∆fbx15 phenotype during stress response in A. fumigatus is partially 

complemented by the introduction of A. nidulans Fbx15 suggesting a heterologous 

conserved molecular function of fbx15 as Fbx15 is dispensable for asexual development 

in A. fumigatus (Figure 13) (Jöhnk et al., 2016). In fact, A. fumigatus and A. nidulans are 

already different during development. Sexual development only occurs under harsh 

conditions in A. fumigatus whereas the formation of cleistothecia is enhanced in darkness 

with moderate temperatures in A. nidulans (Bayram et al., 2010a; Ruger-Herreros et al., 

2011; O’Gorman et al., 2009). Contradictious functions for one protein and its homolog in 

A. fumigatus and A. nidulans was already described for the transcriptional regulator SclB. 

SclB is repressed by the velvet domain VosA in A. nidulans and required its conidiation. 

Nonetheless, in A. fumigatus SclB is dispensable for conidiation but can take over the 

function in conidiation of SclB in A. nidulans  (Thieme et al., 2018). It was suggested that 

A. nidulans and A. fumigatus conidiation cascades significant differ between each other. 

This suggestions are underpinned by the fact that crucial counterparts required for 

conidiation in A. nidulans have other functions in A. fumigatus like the velvet proteins (Mah 

and Yu, 2006; Park et al., 2012; Thieme et al., 2018; Yu, 2010; Yu et al., 2006). An 

assumed putative different functionality of Fbx15 between A. fumigatus and A. nidulans is 

supported by the fact that stress response in A. nidulans is only partially mediated by 

Fbx15 (Figure 14). This could contribute to identified differences in the domain architecture 

and therefore different involvement in molecular pathways in comparison to A. fumigatus 

Fbx15 (Figure 12) (Jöhnk et al., 2016). During stress response different cascades get 

activated or inhibited to ensure a successful adaptation to environmental changes (Chen 

and Thorner, 2007). The genomes of A. nidulans and A. fumigatus are to 66% identical, 

suggesting putative molecular differences according to responses to environmental 

changes, which were elucidated in this study in focus of Fbx15 (Figure 14) (Galagan et al., 

2005). 

A. fumigatus Fbx15 complements WT-like conidiation and cleistothecia formation in the 

deletion of fbx15 in A. nidulans, which might indicate a putative unknown function of 
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A. fumigatus Fbx15 concerning asexual and sexual development (Figure 13). 

Nonetheless, in A. fumigatus no macroscopic differences in conidiation were observed in 

a loss of fbx15, which indicates rather a dispensable function of fbx15 in developmental 

relevant processes such as asexual development (Jöhnk et al., 2016). Noteworthy, the 

absence of the key regulator in secondary metabolism LaeA shows similar negligible 

effects on the asexual development in A. fumigatus on macroscopic levels like Fbx15 (Bok 

and Keller, 2004; Jöhnk et al., 2016). Instead, microscopic analysis on the conidiospore 

composition in dependency LaeA revealed its influence on the structural composition in 

the hydrophobin layer resulting in an increased phagocytosis in absence of laeA, 

consequently a decreased pathogenicity (Bok and Keller, 2004; Dagenais et al., 2010; 

Girardin et al., 1999). The hydrophin layer of A. fumigatus spores contains the rodlet 

protein/hydrophobin (RodAp) which amount is significantly decreased in spores lacking 

laeA (Dagenais et al., 2010). As the impact on the loss of fbx15 is similar to the loss of 

laeA regarding the pathogenic potential and secondary metabolism homeostasis in 

combination with a non-macroscopic difference in asexual development in A. fumigatus, a 

similar influence on the conidiospore composition identified in the dependency on laeA 

could be conceivable for fbx15 (Bok and Keller, 2004; Dagenais et al., 2010; Girardin et 

al., 1999; Jöhnk et al., 2016). 

In case of sexual reproduction A. fumigatus compromised all essential genes, which get 

activated during harsh conditions in a long term process (Galagan et al., 2005; O’Gorman 

et al., 2009). A. fumigatus Fbx15 interacts physically with the putative APSES transcription 

factor FiAt as shown in this study. APSES transcription factors are solely present in 

filamentous fungi and associated with the regulation of cellular processes and 

pathogenicity (Aramayo et al., 1996; Dutton et al., 1997; LeeJ. Y. et al., 2013; Yao et al., 

2017; Zhao et al., 2014). In this study the role of FiAt in stress response or pathogenicity 

using the Galleria mellonella infection model could not be identified (Figure S1, S4). The 

protein sequence of FiAt shows ‘best hits’ to the non-Aspergillus spp. organisms 

NCU06560 in Neurospora crassa and to Bqt4 in the fission yeast S. pombe (Cerqueira et 

al., 2014; Hu et al., 2019). The inner nuclear membrane protein Bqt4 is essential for the 

association of chromosomes to the nuclear envelop by interacting with different protein 

partners such as the telomere protein Rap1. A loss of Bqt4 results in a partial deficit in 

meiotic telomere clustering with decreased frequency in meiotic recombination which leads 

to a defective spore formation (Chikashige et al., 2009). The N-terminal domain of Bqt4 is 

a protein-interaction module required to recognize a consensus motif whereby the 

interaction to other proteins (Hu et al., 2019). FiAt in A. fumigatus was analysed under 

vegetative conditions and asexual growth. Sexual recombination by meiotic division needs 

two mating types, MAT1-1 and MAT1-2, and certain media, temperature as well as a long 
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period of over six month in A. fumigatus (O’Gorman et al., 2009). However, an interaction 

of Fbx15 and the APSES transcription factor FiAt was examined under vegetative growth 

conditions and not during sexual reproduction indicating an independent relationship of 

FiAt and Fbx15 in A. fumigatus to sexual development (Figure S1) (Jöhnk et al., 2016). 

Nonetheless, a Fbx15-mediated sexual reproduction in A. fumigatus cannot be excluded 

as sexual development was not analysed in dependency of fbx15. 

Taken together, Fbx15 of A. fumigatus and A. nidulans share structural and functional 

similarities in a conserved manner. However, A. fumigatus and A. nidulans differ in 

developmental processes and stress response regarding molecular pathways, which is 

supported by the main function of A. nidulans Fbx15 in development whereas A. fumigatus 

Fbx15 is essential in stress response and virulence. Nonetheless, an impact on asexual 

and sexual development by A. fumigatus Fbx15 could not be excluded and remains to be 

elucidated. 

 

3.2 Fbx15 interacts with its interaction partners predominantly in the 

cytoplasm 

Proteins must be localised in certain compartments depending on their region of action 

such as transcriptional regulators in the nucleus (Whiteside and Goodbourn, 1993; Xu and 

Massagué, 2004). In this study it was identified that A. fumigatus Fbx15 interacts physically 

with the transcriptional regulators SrbB and OefC, as well as the putative APSES 

transcriptional regulator FiAt and the putative F-type ATPase relative protein FidA in the 

cytoplasm in A. fumigatus and/or A. nidulans during different non--stress and/or stress 

conditions similar located as the interaction of Fbx15 with SsnF (Figure 15, Figure S1, S5, 

S7, S12) (Jöhnk et al., 2016). It is known that a cytoplasmic localisation of transcription 

factors can be coupled with their inactivated form as shown for NF-κB (Beg et al., 1992). 

Fbx15 with SsnF co-localise in the nucleus, whereas their physical interaction occurs in 

the cytoplasm during vegetative growth indicating a positive effect of Fbx15 on SsnF 

activity in the nucleus in an SCFFbx15 indirect manner as previously proven (Jöhnk et al., 

2016). In this study a direct interplay of the functions of FiAt with Fbx15 in A. fumigatus or 

OefC with Fbx15 in A. nidulans regarding localisation and/or pathogenicity or as SCFFbx15 

substrate could not be elucidated (Figure S1, S3, S4, S9 – S15) whereas a nuclear 

transport dependent on A. fumigatus Fbx15 for FidA and SrbB is unknown. 

F-box proteins were first described as substrate receptors in SCF E3 ubiquitin ligase 

complexes (Feldman et al., 1997; Skowyra et al., 1997). However, in humans 12% of all 

69 F-box proteins were identified to have a SCF-independent role (Nelson et al., 2013). 

The F-box protein Fbxo7 has SCF-independent functions next to the participation in the 
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degradation of proteins involved in hepatocellular carcinoma and NF-κB activity as part of 

the SCFFbxo7 complex like acting as a regulator of the cell cycle by acting as a scaffold for 

the formation of cyclin D/Cdk6 complexes (Hsu et al., 2004; Kuo et al., 2012; Laman et al., 

2005; Nelson et al., 2013). In case of FiAt, FidA and SrbB a direct interaction with 

A. fumigatus Fbx15 was observed during non-stress conditions, precisely when Fbx15 is 

phosphorylated and able to assemble to an active SCFFbx15 complex as previously 

described (Jöhnk et al., 2016). Consequently, this could be an indicator for a 

stability-dependent interaction in a SCFFbx15 E3 ubiquitin ligase complex manner as Fbx15 

is phosphorylated at non-stress conditions (Figure 15, Figure S1, Figure S5). However, a 

same local interaction of A. fumigatus Fbx15 was examined with SsnF, which was 

identified to be not a substrate of the SCFFbx15 E3 ubiquitin ligase complex (Jöhnk et al., 

2016). Therefore, a physical interaction of A. fumigatus Fbx15 with interaction partners in 

the cytoplasm is not a clear evidence for a SCFFbx15-dependent interplay. 

Taken together, the interaction of Fbx15 of A. fumigatus and A. nidulans with so far 

analysed interaction partners is solely localised in the cytoplasm during non-stress and/or 

stress conditions, where most of them are transcriptional regulators. However, the only 

Fbx15-dependent molecular function was identified for A. fumigatus Fbx15, which 

represents an unusual function for F-box proteins in the regulation of the cellular 

localisation of the co-repressor subunit SsnF. 

 

3.3 FidA is presumably not a part of a F-type ATPase but crucial for 

development in a putative Fbx15-interacting manner in A. fumigatus and 

A. nidulans 

FidA was identified as the putative C-terminal part of a F-type ATPase subunit F in the 

orthologous gene XP_016595530.1 in Penicillium expansum, which interacts with Fbx15 

of A. fumigatus and A. nidulans and indicates the involvement in a conserved interplay for 

developmental processes (Figure 10, Figure 15– 18) (Table S1). In A. fumigatus and 

A. nidulans FidA is annotated separately from the F-domain (AN11565/Afu2g05510) 

(Figure 10, Figure S17). F-type ATPases are composite of two compartments: F0-particel 

and F1-particle, which are synthesised by the involvement of so far 25 identified genes in 

S. cerevisiae. The F0-particle is integral in the membrane, whereas the F1-particle is 

peripheral (Song et al., 2018). FidA as potential part of and F-type ATPase F-subunit would 

be part of the membrane-bound F0-particle (Pedersen and Amzel, 1993) (Figure 30). 

FidA was initially described due to genome -, transcriptome - and functional analysis in 

P. expansum (Ballester et al., 2015) (http://blast.ncbi.nlm.nih.gov/Blast.cgi). However, 

A. nidulans AN11565 is highly similar to the already identified and characterized ATP17 
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gene in Saccharomyces cerevisiae, which encodes the F-domain, respectively the F-

subunit of the F-type ATPase (Table S2). This fact could be an evidence for an annotation 

mistake in the protein sequence of the F-subunit, in which FidA is presumably not a part 

of the F-type ATPase F-subunit in A. nidulans and A. fumigatus. However, FidA in 

A. fumigatus and A. nidulans plays a role in vegetative growth and developmental 

processes such as conidiation, in-time cleistothecia formation as well as secondary 

metabolite homeostasis in A. nidulans. These properties correlate to the observed 

functional impact the previous described ATP17 in S. cerevisiae, whose deficiency results 

in diminished growth on glycerol medium (Spannagel et al., 1997). 

Moreover, the protein structure of FidA in A. fumigatus and A. nidulans is intrinsically 

disordered (Figure S16). Several orthologs of the F-domain as stand-alone gene are found 

in other fungi such as Saccharomyces cerevisiae, Saccharomyces pombe, Candida 

albicans and Neurospora crassa, named ATP17 and is associated with the F-subunit in 

the F0-particle (Figure 30, blue) (Table S2) (Song et al., 2018). 

 

 

Figure 30: Structural model of the mitochondrial F0F1-ATPase. The mitochondrial F-type 
ATPase in eukaryotic cells comprises a stator (in grey: 6, k, i/j, 8, f, e, g, b, h, d and OSCP), a rotator 
(in yellow: c10 ring, δ, γ, ε) and the activity-bearing subunits (in green: three αβ heterodimers). The 
ATPase is subdivided into two major particles: The membrane-bound F0-particle which includes the 
stator and the c-ring of the rotator; and the soluble F1-particle including the αβ heterodimers and 
the δ, γ, ε-subunits of the rotator. The F1-particle represents the catalytic activity and is bound to 
the proton channel F0-particle by the OSCP subunit. The F-subunit is highlighted in blue. Modified 
from Song et al., 2018. 

 

As FidA shows similar properties to known characteristics of F-subunits or in general 

ATPases it could not be excluded that FidA is a putative part of a F-type ATPase. However, 
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FidA is presumably not a part of the F-subunit as this subunit is already annotated as 

AN11565/Afu2G05510 with high similarities to the already described which were already 

described Saccharomyces cerevisiae ATP17 (Table S2) (Spannagel et al., 1997). 

 

4 Conclusion and outlook 

The main result of this study is that the Fbx15 NLS2 of the pathogenic fungus A. fumigatus 

is a stress response-element, whereas NLS1 is mainly required for the nuclear localisation 

of Fbx15. Thereby, NLS2 is required for the localisation outside the nuclear matrix of Fbx15 

and its interaction partner SsnF, a conserved co-repressor subunit (Smith and Johnson, 

2000). 

Pathogenic fungi such as A. fumigatus are threatening as they are capable to adapt to 

various stress inducers (Debeaupuis et al., 1997; Rocchi et al., 2015). In this work the 

function of the domain architecture at the C-terminus of A. fumigatus Fbx15 was further 

analysed concerning the proteins’ function during stress response, especially during 

H2O2-stress. The C-terminal part of A. fumigatus Fbx15, which composites of two 

monopartite NLS sequences and two Ser residues previously identified to be 

phosphorylated, is crucial for its cellular localisation and accumulation within the cell during 

non-stress and oxidative stress conditions. The NLS2 sequence of A. fumigatus Fbx15 has 

additional roles in stress response beyond the function in the nuclear localisation of Fbx15 

as a putative binding site for interacting proteins as well as possessing a putative regulatory 

function regarding NLS1 activity to import factors. For future research it would be of high 

interest to analyse how the NLS-deficiency affects the interplay to A. fumigatus Fbx15 

interacting partners. Especially analysis of A. fumigatus Fbx15 lacking NLS2 would be of 

interest, which has the most considerable impact on A. fumigatus Fbx15 functionality and 

the recruitment of SsnF outside the nuclear matrix upon stress response after SsnF 

entered the nucleus before at non-stress conditions in A. fumigatus. Thereby, the analysis 

of SsnF depending on its bipartite NLS have to be performed to clarify when this NLS is 

active and when Fbx15 takes into account in this process. In this context, it would be of 

high interest to answer the question how SsnF gets from the nuclear matrix to the nuclear 

periphery: Are there any contact points such as nuclear porins or ER membrane proteins? 

Moreover, in this work it was elucidated that S468 and S469, the two Ser residues 

previously identified to be phosphorylated, are dispensable for the phosphorylation of the 

whole A. fumigatus Fbx15 protein. Nonetheless, both aa must be intact to ensure the 

cytoplasmic localisation of A. fumigatus Fbx15 (this study) as well as its interaction with 

SsnF during these circumstances as previously described (Jöhnk et al., 2016). The 

suggestions of a putative given specific phosphate moiety at these Ser residues needs to 
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be clarified. Therefore, it would be of interest to elucidate whether A. fumigatus Fbx15 has 

to be heterogenous phosphorylated at oxidative stress. Therefore, the localisation of 

A. fumigatus Fbx15 with mimicked phosphorylated S469 in combination with mimicked 

dephosphorylated S468 or solely phosphorylated S469 should be analysed, i.e. on protein 

– and localisation level. 

The domain architecture of A. nidulans Fbx15 is to around 60% identical to A. fumigatus 

Fbx15 and compromises also two NLS sequences at its C-terminus with putative 

phosphorylation sites in between of them but only one motif, which is to 90% identical to 

motif 2 of A. fumigatus Fbx15 (Jöhnk et al., 2016). However, despite of’ structural 

similarities A. nidulans Fbx15 is primarily involved in developmental processes and not in 

stress response as previously described (von Zeska Kress et al., 2012). Indications could 

be found that Fbx15 might play a role in the sexual reproduction of the pathogenic fungus 

A. fumigatus. These suggestions were supported by the interaction of A. fumigatus Fbx15 

with interaction partners (FiAt, FidA), which are involved in sexual reproduction in 

A. nidulans (FidA) or are predicted to be involved in sexual reproduction in A. fumigatus 

(FiAt). It would be of high interest to verify this assumption by analysing the cryptic sexual 

reproduction of A. fumigatus as well as to analyse the A. fumigatus conidiospore 

composition on microscopic levels in dependency of Fbx15. 

A. fumigatus Fbx15 is required for the pale pigmentation of colonies, which is also 

observable for A. nidulans Fbx15 indicating a role of A. nidulans Fbx15 in secondary 

metabolism (von Zeska Kress et al., 2012). Further analysis would help to understand how 

A. fumigatus Fbx15 affects secondary metabolism and may elucidate if the regulation of 

secondary metabolism by Fbx15 contributes to its connection to virulence as a part of a 

regulatory network in A. fumigatus. As the involvement of Fbx15 in regulating the 

pigmentation of colonies in A. fumigatus and A. nidulans is conserved, it would be 

interesting to know whether both proteins are involved in similar pathways in secondary 

metabolite regulation by identifying identical metabolites, whose biosynthesis are 

regulated or promoted by Fbx15 in both fungi. 

A. fumigatus Fbx15 regulates the gliotoxin formation required for the repression of the 

antimicrobial agent fumagillin biosynthesis, which contributes to the fungal pathogenicity 

(Fallon et al., 2010; Guruceaga et al., 2018). However, it was discovered that the 

A. fumigatus Fbx15-mediated regulation of mycotoxin biosynthesis, here shown for 

gliotoxin formation, is presumably not responsible for the pathogenicity mediated by Fbx15 

in the Galleria mellonella larvae infection model as well as Fbx15-mediated stress 

response during minimal growth conditions. Nonetheless, it would be of interest to examine 

whether the regulation of fumagillin biosynthesis is required for the A. fumigatus 

pathogenicity dependent on Fbx15. Concerning the regulation of secondary metabolism 
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A. fumigatus Fbx15 might act in a network with the transcriptional regulator SrbB, a SREBP 

family member, in the control of a so far not identified, putative secondary metabolite during 

vegetative growth indicating a putative shared pathway. 

 

In summary, this study shows that A. fumigatus Fbx15 location is controlled by the complex 

interplay between two NLS sequences and as a second layer of control by 

dephosphorylation during oxidative stress. Both NLS sequences can act independently like 

classical NLS facilitating the nuclear localisation of Fbx15. This is the situation during 

vegetative growth, NLS2 acts in addition as stress response-element triggering the 

localisation of Fbx15 outside the nucleus by inhibiting NLS1. Thereby, the cellular 

localisation of SsnF, which can interact with Fbx15 and can function in the nucleus as part 

of a transcriptional repressor complex is simultaneously controlled. The function of Fbx15 

is partially conserved between A. fumigatus and A. nidulans in the regulation of secondary 

metabolism and has additional features in A. fumigatus.  

Many F-box proteins are existing, and it is an exciting question how many of these proteins 

may be controlled in their functions by multiple containing NLS sequences and maybe 

controlling the localisation of other proteins concerning the nucleus, the nuclear periphery 

and/or cytoplasm. Moreover, it will be exciting to determine the contact points for protein 

delivery to the nuclear periphery are to identify other proteins, which are involved and 

necessary for this process. 

.
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Figure S1: fiAt is dispensable for Fbx15-mediated stress response in A. fumigatus. (A) 2*103 
spores of A. fumigatus were grown vegetatively in Aspergillus minimal medium (AMM) for 18h at 
37°C in darkness: The location of the physical interaction was analysed through Bimolecular 
Fluorescence Complementation (BiFC). YFP signals for the putative Fbx15 interacting APSES 
transcription factor (FiAt) fused to nYFP (nYFP:fiAt) and Fbx15 fused to cYFP (fbx15:cYFP) are 
shown in the cytoplasm in hyphae during vegetative growth conditions. Nuclei were stained with 
Hoechst. (B) 2*103 spores of A. fumigatus strains were point inoculated on Aspergillus minimal 
medium (AMM) and incubated for three to five days at 37°C without (control) and with stressors in 
darkness. ∆fiAt phenocopies wild type (WT) all tested stressors including cell wall stress induced 
by 50 µl/ml CongoRed, heat induced by the incubation at 42°C, carbon source stress induced by 
exchanging glucose to lactose, DNA damage induced by methyl methanesulfonate (0.01% MMS) 
OR camptothecin (50 µM CPT), drug tolerance analysed with amphotericin B (0.75 µg/ml Amp B) 
and osmotic stress induced by natrium chloride (1 M NaCl). ∆fbx15-phenotypes dominate in 
∆fbx15/∆fiAt on all tested stress media (black frames). (C) Overexpressed fiAt fused to pyroA was 
integrated in the locus of pyroA under an doxycycline-inducible tetOn promoter in A. fumigatus 
resulting in PtetOn:fiAt. 2*103 spores of A. fumigatus strains were grown for three days at 37°C on 
London medium (LM) supplemented with 30 µM/ml dox without (NC) and with stressors in darkness. 
The PtetOn:fiAt strain phenocopies the reference strain PtetOn:rfp. In contrast to the phenotypes 
observed on AMM, stress sensitivity of ∆fbx15 is reduced on LM + dox at cell wall stress and drug 
resistance resulting in an increased stress tolerance for ∆fbx15. Experiments were performed with 
two independent transformants and three biological replicates. 

 
 

Figure S2: Controls of the interaction analysis of Fbx15 with FiAt and FidA do not produce 

YFP signals at vegetative growth or cadmium ion stress in A. fumigatus. 2*103 spores of 
A. fumigatus strains were grown vegetatively in Aspergillus minimal medium (AMM) for 18h at 37°C 
in darkness. The negative controls expressing nYFP with fbx15:cYFP; cYFP with nYFP:fiAt or cYFP 
with nYFP:fidA were ectopically integrated into A. fumigatus and show no YFP signals during 
vegetative growth. Hoechst dye was used to visualise nuclei. Experiments were performed with at 
least two independent transformants and three biological replicates. 
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Figure S3: Nuclear localisation of FiAt is independent of Fbx15 in A. fumigatus at vegetative 
growth. 2*103 spores of A. fumigatus strains were grown vegetatively in Aspergillus minimal 
medium (AMM) for 18h at 37°C in darkness. Overexpressed fiAt was ectopically integrated in 
Fluorescence microscopic imaging reveals that overexpressed FiAt (TetOn_FiAt-GFP) is located in 
spots, presumably nuclei, in presence or absence of fbx15. Experiments were performed with two 
independent transformants and two biological replicates. 

 

  

Figure S4: fiAt is dispensable for A. fumigatus virulence in the Galleria mellonella larvae 
infection model. Galleria mellonella larvae were injected with 5*106 spores of A. fumigatus strains 
and incubated in darkness at 30°C for 12 days. 10 µg/ml rifampicin were used to prevent death by 
contaminations. Standard deviation from three biological replicates were calculated. Significances 
were determined with one-way Anova and Student’s t-test (P-value: ***P<0.0001, n.s.: not 
significant). The survival rate of larvae injected with ∆fiAt (yellow) is not significantly altered 
compared to that of wild type-infected larvae (WT, black). The survival rate of ∆fbx15-infected larvae 
(grey) is significantly higher compared to larvae infected with WT (black). Larvae injected with 
NaCl-Tween (green) or the avirulent strain AfS12 (blue) were used as negative controls. 
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Figure S5: fbx15 is dispensable for hypoxia adaptation unlike srbB in A. fumigatus. (A) 2*103 
spores of A. fumigatus were grown vegetatively in Aspergillus minimal medium (AMM) for 18h at 
37°C in darkness. The location of the physical interaction was analysed via Bimolecular 
Fluorescence Complementation (BiFC). The A. fumigatus strain expressing the SREBP 
transcription factor SrbB fused to nYFP (nYFP:srbB) and Fbx15 fused to cYFP (fbx15:cYFP) shows 
YFP signals in the cytoplasm at vegetative growth. Nuclei were stained with Hoechst. Experiments 
were performed with three biological replicates. (B) 2*103 spores of A. fumigatus strains were point 
inoculated on Aspergillus minimal medium (AMM) and incubated for four days at 37°C with sufficient 
oxygen supply (normoxia) or reduced oxygen supply (~3% O2, hypoxia) in darkness. 
Overexpressed fbx15 using the constitutively active gpdA promoter (oefbx15) and native expressed 
fbx15 (fbx15comp) were integrated on-locus of ∆fbx15. The srbB gene fused to rfp (srbB:rfpcomp) and 
overexpressed srbB (oesrbB) using the constitutively active gpdA promoter were integrated on-
locus of ∆srbB. Oefbx15, oesrbB and ∆fbx15 in combination with oesrbB (∆fbx15/oesrbB) 
phenocopy wild type (WT) and fbx15comp during hypoxia conditions resulting in colonies harbouring 
a white mycelia ring (white arrows). ∆srbB and ∆fbx15/∆srbB show less hyphal growth compared 
to WT (black arrows). Experiments were performed with two independent transformants or four 
biological replicates. 
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Figure S6: Fbx15 and SrbB are required for the regulation of four identical, unidentified 
secondary metabolites during vegetative growth conditions in A. fumigatus. 2*108 spores of 
A. fumigatus strains were grown vegetatively in Aspergillus minimal medium (AMM) for two days at 
37°C. HPLC analysis were performed from extracted secondary metabolites with ethyl acetate. 
(A) The fbx15 gene (fbx15comp) was integrated on-locus of ∆fbx15. The ∆fbx15 (red) produces 
secondary metabolites, which are less induced in WT (black) or fbx15comp (green) (arrows). (B) The 
srbB gene fused to rfp (srbB:rfpcomp) was integrated on-locus of ∆srbB. ∆srbB (red) leads to a higher 
production of certain secondary metabolites compared to WT (black) and srbBcomp (green) (arrows). 
(C) Four similar increased peaks of ∆fbx15 (red) and ∆srbB (blue) are identified at retention times 
9.88, 10.32 and 10.52 min (bold numbers). 
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Figure S7: Fbx15 interact with the transcriptional regulator OefC at cadmium ion stress in 
A. nidulans but not significantly in A. fumigatus. The interaction was analysed through 
Bimolecular fluorescence complementation (BiFC). 2*103 spores of A. fumigatus - or A. nidulans 
strains were grown vegetatively in Aspergillus minimal medium (AMM) for 18h at 37°C in darkness. 
For cadmium ion stress induction fresh cadmium sulphate (300 µM CdSO4)-containing AMM was 
applied to 18h-old hyphae and incubated in darkness for 1h prior to microscopy. The location of the 
physical interaction was analysed through Bimolecular Fluorescence Complementation (BiFC). 
(A) A. fumigatus Fbx15 fused to cYFP (fbx15:cYFP) and the zinc cluster transcription factor OefC 
fused to nYFP (nYFP:oefC) were ectopically integrated into A. fumigatus. Hyphae stained with 
Hoechst show YFP signals in the cytoplasm at vegetative growth. Without Hoechst staining no 
YFP-signals are observed for the interaction of fbx15:cYFP with nYFP:oefC during vegetative 
growth - or heavy metal stress conditions induced by the incubation in cadmium sulphate (300 µM 
CdSO4)-containing AMM for 1h. Experiments were performed with three biological replicates. 
(B) YFP signals for fbx15:cYFP with nYFP:oefC are observed in the cytoplasm of hyphae during 
cadmium ion stress. No YFP signals are observed during vegetative growth expressing 
fbx15:cYFP, nYFP:oefC. Experiments were performed with two independent transformants. 
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Figure S8: Controls of the interaction analysis of Fbx15 with OefC and FidA do not produce 
significant YFP signals at vegetative - or asexual growth and cadmium ion stress in 
A. nidulans without Hoechst staining. 2*103 spores of A. nidulans strains were grown 
vegetatively in Aspergillus minimal medium (AMM) for 18h at 37°C in darkness or asexual growth 
induced by a 48h incubation of 2*103 spores on solid AMM at 37°C in light. Heavy metal stress 
conditions were induces by a 1h incubation in cadmium sulphate (300 µM CdSO4)-containing AMM 
for on 18h-old vegetatively grown hyphae. Experiments were performed with two independent 
transformants or three biological replicates. (A) The controls expressing fbx15:cYFP and nYFP 
(fbx15:cYFP, nYFP), cYFP and nYFP:oefC (cYFP, nYFP:oefC) were ectopically integrated into 
A. nidulans. Hoechst staining results in YFP signals for fbx15:cYFP, nYFP, whereas the control 
cYFP, nYFP:oefC does not show YFP signals at vegetative growth. (B) Without Hoechst staining 
the controls fbx15:cYFP, nYFP and cYFP, nYFP:oefC or cYFP, nYFP:fidA show not YFP signals 
at vegetative growth or induces asexual growth. (C) No YFP signals were observed in the controls 
fbx15:cYFP and nYFP; cYFP and nYFP:oefC during heavy metal stress conditions. 
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Figure S9: oefC is required for cadmium ion stress tolerance in A. fumigatus and 
A. nidulans. 2*103 spores of A. fumigatus - or A. nidulans strains were point inoculated on 
Aspergillus minimal medium (AMM) and 300µM CdSO4-containing AMM and were incubated at 
37°C for five days in in darkness (A. fumigatus) or in light (A. nidulans). (A) A. fumigatus oefC fused 
to gfp (gfp:oefCcomp) and overexpressed oefC fused to gfp (oegfp:oefC) were on-locus integrated in 
∆oefC, as well as oeoefC fused to gfp (∆fbx15, oegfp:oefC) was on-locus integrated in 
∆fbx15/∆oefC. A. fumigatus ∆fbx15 and ∆oefC are reduced in conidiation and its colony size is 
smaller compared to wild type (WT) at heavy metal stress induced by cadmium ions. The 
∆fbx15/oegfp:oefC and ∆fbx15/∆oefC phenocopy ∆fbx15 in colony size at heavy metal stress. 
(B) A. nidulans oefC (oefCcomp) and oeoefC fused to gfp (oegfp:oefC) were on-locus integrated in 
∆oefC. The colony size of A. nidulans ∆oefC is smaller compared to WT at heavy metal stress. The 
oegfp:oefC strain results in an increased colony size than WT or oefCcomp at heavy metal stress. 
A. nidulans ∆fbx15 is strongly reduced in growth compared to WT. 
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Figure S10: oefC-dependent cadmium ion stress tolerance is conserved among 
A. fumigatus and A. nidulans. (A) A. nidulans oefC fused to gfp (gfp:oefCANcomp) was integrated 
on-locus of A. fumigatus ∆oefC. 2*103 spores of A. fumigatus strains were incubated for five days 
at 37°C in darkness on Aspergillus minimal medium (AMM) and 300µM CdSO4-containing AMM. 
Growth on CdSO4-containing AMM results in a smaller colony size with less conidiation for ∆oefC 
compared to wild type (WT). The gfp:oefCANcomp strain rescues the WT-phenotype during cadmium 
ion stress conditions (CdSO4) in A. fumigatus. (B) A. nidulans oefC (oefCcomp), overexpressed oefC 
fused to gfp (oegfp:oefC) and A. fumigatus oefC (oefCAFcomp) were on-locus integrated in 
A. nidulans ∆oefC. A. nidulans ∆oefC. A dilution series of 3*106 to 3*102 spores of A. nidulans 
strains were point inoculated on AMM without and with cadmium ion stress (300µM CdSO4) and 
were incubated for five days at 37°C in light. Growth on CdSO4-containing AMM results in a smaller 
colony sizes with less conidiation for ∆oefC compared to WT and oefCcomp and oegfp:oefC. The 
gfp:oefCAFcomp rescues the WT-colony sizes during cadmium ion stress conditions in A. nidulans. 
Experiments were performed with two biological replicates. 
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Figure S11: OefC nuclear localisation is independent of Fbx15 during non-stress or 
cadmium ion stress in A. nidulans. 2*103 spores of A. nidulans strains were grown vegetatively 
in Aspergillus minimal medium (AMM) for 18h at 37°C in darkness. (A) Hoechst staining results in 
cytoplasmic localisation of GFP-OefC in ∆fbx15 background. (B) GFP-OefC is in spots presumably 
nuclei during vegetative growth in presence or absence of fbx15 when nuclei are not stained with 
Hoechst. oeFbx15-RFP is in the nucleus at vegetative growth. (C) For heavy metal stress induction 
300 µM CdSO4-containing AMM was applied to grown hyphae and incubated in darkness for 1h. 
oeFbx15-RFP is primarily in the nucleus during heavy metal stress conditions. Experiments were 
performed with three biological replicates. 
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Figure S12: oefC modulates cleistothecia formation and secondary metabolism in light in 
A. nidulans. (A) 2*103 spores of A. nidulans were grown vegetatively in Aspergillus minimal 
medium (AMM) on solid AMM and incubated for two days (2d) to induce asexual growth. The 
interaction was analysed via Bimolecular Fluorescence Complementation (BiFC). YFP signals for 
fbx15:cYFP and the zinc cluster transcription factor OefC fused to nYFP (nYFP:oefC) are observed 
in the cytoplasm of hyphae during asexual growth. Experiments were performed with either two 
independent transformants or at least three biological replicates. (B) The A. nidulans oefC gene 
(oefCcomp) and the overexpressed oefC gene using the constitutively active gpdA promoter fused to 
gfp (oegfp:oefC) were integrated on-locus of the oefC deletion strain (∆oefC) and compared to wild 
type (WT), ∆fbx15 and its on-locus complementation (fbx15:strepcomp). 2*103 spores of A. nidulans 
strains were point inoculated on Aspergillus minimal medium (AMM) and incubated for seven days 
(7d) at 37°C in light with oxygen supply. The ∆oefC colony shows a reddish pigmentation compared 
to WT, oefCcomp and oegfp:oefC (bottom) and cleistothecia are observed at the surface of the colony 
(black-white arrow). The ∆fbx15 colony shows its characteristic phenotype with less conidia (white 
arrow) and dark red pigmentation (bottom) compared to WT and fbx15:strepcomp. (C) Error bars 
represent the SEM and were calculated from six biological replicates. Significances were 
determined with one-way Anova and Student’s t-test (P-value: *P<0.01, **P<0.001). Quantification 
of conidia in light conditions reveals no differences in ∆oefC compared to WT or oefCcomp and 
oegfp:oefC, whereas significant decreased conidia are quantified for ∆fbx15. Cleistothecia amount 
is significantly increased in ∆oefC compared to WT, oefCcomp and oegfp:oefC in light conditions. 
∆fbx15 is blocked in cleistothecia production (blue frames). 
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Figure S13: oefC is dispensable for asexual or sexual development but regulates secondary 
metabolism in darkness in A. nidulans. The A. nidulans oefC gene (oefCcomp) and overexpressed 
oefC gene using the constitutively active gpdA promoter fused to gfp (oegfp:oefC) were integrated 
on-locus of the oefC deletion strain (∆oefC) and compared to wild type (WT), ∆fbx15 and its on-
locus complementation (fbx15:strepcomp). 2*103 spores of A. nidulans strains were point inoculated 
on Aspergillus minimal medium (AMM) and incubated for seven days at 37°C in darkness with 
limited oxygen supply. (A) In darkness ∆fbx15 shows its characteristic phenotype with extreme 
reduced conidiation, no cleistothecia formation and extreme reddish pigmentated colony compared 
to the greenish pigmentation of WT- and fbx15:strepcomp colonies. The ∆oefC colony shows a 
yellowish pigmentation (bottom) compared to the greenish pigmentation of WT-, gfp:oefCcomp or 
oegfp:oefC colonies. (B) Error bars represent the SEM and were calculated from six biological 
replicates. Significances were determined with one-way Anova and Student’s t-test (P-value: 
**P<0.001). Quantifications of conidia and cleistothecia in darkness revealed that the production of 
spores is strongly reduced and cleistothecia formation is blocked in ∆fbx15 compared to 
fbx15:strepcomp and WT. No significant differences of conidia or cleistothecia formation was 
observed in ∆oefC and in oegfp:oefC compared to WT and/or gfp:oefCcomp. PMG: photomicrograph, 
scale bars: 200 µm. 

 

 

Figure S14: OefC is independent of Fbx15 localised in the nucleus during asexual growth in 
A. nidulans. The oefC gene fused to gfp was integrated on-locus of ∆oefC resulting in wild type 
(WT), GFP-OefC or integrated on-locus of ∆fbx15 resulting in ∆fbx15, GFP-OefC. 2*103 spores of 
A. nidulans strains were grown on solid Aspergillus minimal medium (AMM) for 48h at 37°C in light. 
GFP-OefC is localised in spots, presumably nuclear, at asexual growth in presence or absence of 
fbx15. Experiments were performed with three biological replicates. 
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Figure S15: OefC is not ubiquitinated under non-stress or cadmium ion stress conditions in 
a Fbx15-dependent or -independent manner in A. fumigatus or A. nidulans. 2*108 spores of 
A. fumigatus or A. nidulans strains were grown vegetatively for 20h at 37°C in Aspergillus minimal 
medium (AMM) in light. (A) A. fumigatus oefC fused to gfp was on-locus integrated in A. fumigatus 
∆oefC and in A. fumigatus ∆fbx15/∆oefC resulting in wild type (WT), GFP-OefC and ∆fbx15, 
oeGFP-OefC. GFP-pulldown experiments reveal that GFP-OefC does not show ubiquitin signals 
under vegetative growth conditions and/or application of 300 µM CdSO4 for 1h in context of the 
SCFFbx15 complex in A. fumigatus. Crude extract used as input control shows an stronger ubiquitin 
band during cadmium ion stress conditions compared to vegetative growth conditions in WT, 
GFP-OefC and ∆fbx15, oeGFP-OefC. (B) A. nidulans oefC fused to gfp was on-locus integrated in 
A. nidulans ∆oefC resulting in WT, GFP-OefC. GFP-pulldown experiments show that no ubiquitin 
signals for the approx. 110 kDa large WT, GFP-OefC protein under vegetative growth conditions 
and/or application of 300 µM CdSO4 for 1h in A. nidulans. Crude extract of WT, GFP-OefC used as 
input control shows an stronger ubiquitin band during cadmium ion stress conditions compared to 
vegetative growth conditions. Experiments were performed with two biological replicates. 
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Figure S16: FidA has an intrinsically disordered structure in A. fumigatus and A. nidulans. 
Computational analysis show that FidA has no known domain with a complete disordered state 
(blue) and a protein binding side (yellow) on its C-terminus (DISOPRED program 
(http://bioinf.cs.ucl.ac.uk/psipred/) (Ward et al., 2004)). 

 

 

 

Figure S17: Tagged versions of FidA are unstable in A. fumigatus and A. nidulans. 2*108 

spores of A. fumigatus and A. nidulans strains were grown vegetatively in Aspergillus minimal 
medium (AMM) for 18h at 37°C. Immunoprecipitation with α-GFP and α-HA antibody reveals that 
FidA labelled with N-terminal HA, and GFP on C- or N-terminus is unstable in A. fumigatus and/or 
A. nidulans (FidA-GFP, GFP-FidA, oeFidA-GFP, oeGFP-FidA and HA-FidA). AfS35 wild type (WT, 
A. fumigatus) and ∆nkuA WT (A. nidulans) were used as negative controls (nc). Native and/or 
overexpressed FidA has a predicted protein size of ~ 170 kDa with GFP-tag and ~140 kDa with 
HA-tag. 
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Table S1: Putative interaction partners of A. fumigatus Fbx15 identified via RFP-pulldown. 
In total 66 proteins from vegetatively grown cultures were pulled with Fbx15 and/or Fbx15S468|9D 
tagged with RFP, which were identified in at least two out of three biological replicates with MS/MS 
count ≥ 5, unique peptides ≥ 3 and LFQ (label-free quantification) intensity ≥ 20. Sys. name: 
systematic name, Std. name: standard name, Unchar.: uncharacterised. Corresponding 
descriptions were obtained from AspGD (http://www.aspgd.org/). The further analysed protein 
Afu2g05520 is shaded in green. Data were obtained from Jöhnk (unpublished). 

Sys. name  Std. name Description Fbx15 Fbx15 
[S468|9D] 

Afu3g14150 Fbx15 Bait protein x x 

SCF subunit and related proteins   

Afu1g12960 Unchar. Putative orthologe of A. nidulans CulA, 
predicted SCF ubiquitin ligase complex 
subunit CulA 

x x 

Afu5g06060 SkpA Putative sulfur metabolism regulator x x 

Afu5g05790 Unchar. Putative ortholog of S. cerevisiae HRT1, 
putative ubiquitin protein ligase activity 

 x 

Afu2g08150 Unchar. Putative ortholog of A. nidulans NeddH, 
has a putative role in protein neddylation 
and SCF ubiquitin ligase complex 
localisation 

 x 

Transcription factors and nuclear proteins   

Afu2g11840 Cyc8/SsnF Transcriptional co-repressor x x 

Afu6g05150 Unchar. Putative ortholog of A. nidulans 
RcoA/Tup1, has putative histone binding, 
transcription corepressor activity 
 

x x 

Afu8g05570 Unchar. Putative ortholog of S. cerevisiae SIN3, 
putative transcription corepressor activity 

 x 

Afu1g10860 Unchar. Putative ortholog of S. pombe Nup107, 
putative nuclear pore 

 x 

Afu2g08560 Unchar. Putative ortholog of A. nidulans Nup82, 
has putative nuclear pore localisation 

 x 

DNA/RNA processing   

Afu4g09010 Unchar. Putative ortholog of S. pombe Usp105, 
putative U1 snRNP localisation 

 x 

Afu5g06040 Unchar. Putative ortholog of S. cerevisiae RAD23, 
has putative role in cellular response to 
DNA damage stimulus 

x x 

Afu7g01840 Unchar. Putative ortholog of S. pombe Syn1, 
putative plasma membrane localisation 

x x 

Afu6g12300 Unchar. RNP domain protein x x 

Afu4g04350 Unchar. Putative ortholog of S. pombe CWF11, 
putatively has U2-type spliceosomal 
complex 

x x 

Afu1g13060 Unchar. Putative orthologe of S. cerevisiae NAM7, 
predicted ATP-dependent RNA helicase 
of the SFI superfamily 

 x 

Afu2g02780 Unchar. Putative ortholog of S. pombe Rnc1, has 
putative mRNA 3'-UTR AU-rich region 
binding 

x x 

Metabolic enzymes   
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Afu7g01010 ADH1  Putative ortholog of S. pombe ADH1, 
putative alcohol dehydrogenase 

 x 

Afu5g10120 Unchar. Putative ortholog of S. cerevisiae LYS1, 
protein similar to nonribosomal peptide 
synthases (NRPS-like) 

x x 

Afu1G06860 PtcF Putative ortholog of S. cerevisiae PTC5, 
putative protein serine/threonine 
phosphatase activity 

 x 
 

Afu5g08890 Lys4 Putative ortholog of A. nidulans LysF, 
putative homoaconitase 

x x 

Afu4g09140 Car2 Putative ortholog of S. pombe Car2, L-
ornithine aminotransferase 

x x 

Afu3g10300 Unchar. Putative ortholog of A. nidulans GalE, 
putative galactokinase with a role in 
galactose catabolism 

 x 

Afu6g07720 AcuF Putative ortholog of S. cerevisiae PCK1, 
putative phosphoenolpyruvate 
carboxykinase 

 x 

Afu6g08720 Unchar. Putative ortholog of S. cerevisiae MEU1, 
putative 5'-methylthioadenosine 
phosphorylase 

x x 

Afu1g04670 Unchar. Putative PSP1 domain protein  x 

Afu6g13450 Unchar. Putative ortholog of S. cerevisiae NIT1, 
has domain(s) with predicted hydrolase 
activity 

 x 

Afu5g09860 Unchar. Putative ortholog of S. cerevisiae 
YYJL068C, putative esterase  

 x 

Afu2g09130 Unchar. Putative ortholog of N. crassa Nuo24, 
putative NADH-ubiquinone 
dehydrogenase 

x x 

Afu5g08270 Unchar. Putative HAD superfamily hydrolase x  

Afu5g11290 Unchar. Putative ortholog of S. pombe Dao1, has 
predicted D-amino-acid oxidase activity 
and role in D-alanine metabolic process 

x x 

Afu3g02270 Cat1 Mycelial catalase x x 

Afu2g14970 Unchar. Putative ortholog of S. cerevisiae AIM17, 
gamma-butyrobetaine hydroxylase 
subfamily protein 

x x 

Afu6g02260 Unchar. putatively has glyoxysome and 
mitochondrial membrane localisation 

 x 

Afu5g07210 Met2 Homoserine O-acetyltransferase x  

Afu6g04920 AciA/Fdh Putative ortholog of A. nidulans aciA, 
putative NAD-dependent formate 
dehydrogenase 

 x 

Afu4g03900 MFP Putative ortholog of S. cerevisiae FOX2, 
putative multifunctional beta-oxidation 
protein 

 x 

Au5g02480 Unchar.  Putative ortholog of S. cerevisiae GSY1, 
putative glycogen sythase 

 x 

Afu2g06000 Unchar. Putative ortholog of S. pombe GDH2, 
putative NAD+ dependent glutamate 
dehydrogenase 

 x 

Afu5g05820 Unchar. Putative ortholog of S. cerevisiae THR1, 
putative homoserine kinase activity 

x x 

Afu1g07200 Unchar. Has domain(s) with predicted catalytic 
activity 

 x 
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Afu5g03500 Unchar. Putative ortholog of S. pombe GLS2, has 
putative domain(s) with predicted 
hydrolase activity 

 x 

Afu2g04010 TpsB Putative trehalose-6-phosphate synthase x  

Afu6g12950 TpsA Trehalose-6-phosphate synthase x  

Afu3g13970 Unchar. Putative ortholog of S. pombe Psd3, has 
putative phosphatidylserine 
decarboxylase activity 

 x 

Afu5g09910 Unchar. Putative ortholog of S. cerevisiae HBN1, 
putative p-nitroreductase family protein 

x x 

Afu5g06500 Unchar. Putative ortholog of N. crassa Acd-3, acyl-
CoA dehydrogenase family protein with a 
predicted role in fatty acid beta oxidation 

 x 

Afu5g06710 Unchar. Putative ortholog of S. cerevisiae 
YMR027W, has predicted phosphatase 
activity 

 x 

Protein degradation   

Afu2g09030  DppV Dipeptidyl-peptidase V, secreted 
dipeptidyl-peptidase 

x x 

Afu8g04730 Unchar. Putative ortholog of S. pombe ppp16, 
putative oligopeptidase family protein 

 x 

Protein folding   

Afu4g12850 Clx4 Calnexin x x 

Signal transduction 

Afu3g12510 Unchar. Putative ortholog of S. pombe Sec18, has 
putative domain(s) with predicted ATP 
binding 

 x 

Afu3g08620 Unchar. Putative ortholog of S. cerevisiae LSB1, 
has putative role in negative regulation of 
Arp2/3 complex-mediated actin nucleation 
and actin cortical patch 

 x 

Afu3g13440 Unchar. Stomatin family protein x x 

Afu6g02090 Unchar. Putative ortholog of S. cerevisiae VMA4, 
putative vacuolar proton-transporting V-
type ATPase 

x x 

Afu7g03870 Unchar. Putative ortholog of S. cerevisiae PAN1, 
predicted Arp2/3 complex binding activity 

 x 

Afu6g11890 Unchar. Putative ortholog of S. cerevisiae VPS1, 
putative dynamin GTPase 

x x 

Afu4g08040 Unchar. Putative ortholog of S. pombe Ypt5, has 
putative GTP binding activity 

x x 

Afu6g14220 Unchar. Putative ortholog of A. nidulans KinA, has 
putative ATP-dependent microtubule 
motor activity 

 x 

Afu5g05550 Unchar. Putative ortholog of S. cerevisiae MYO2, 
putative class V myosin 

x x 

Other proteins 

Afu1g11120 Unchar. Has putative domain(s) with predicted 
cytoplasm and nucleus localisation 

 x 

Afu6g02870 Unchar. Has putative domain(s) with predicted cell 
outer membrane 

x x 

Proteins with unknown function 

Afu2g05520 Unchar. conserved hypothetical protein  x 
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Afu8g03950 Unchar. conserved hypothetical protein  x 

Afu1g09770 Unchar. conserved hypothetical protein  x 

Afu1g09630 Unchar. conserved hypothetical protein  x 

Afu1g04280 Unchar. conserved hypothetical protein  x 

 

 

Table S2: Homologs of A. nidulans AN11565/ATP17 identified by NCBI-BLAST. ‘Query 
coverage’ describes the alignment cover of the primary amino acid sequence of A. nidulans 
AN11565/ATP17 in percentage. Similarities between the identified ATP17 homologs of other 
species in comparison to ATP17 of A. nidulans ATP17 are described in ‘Identity’ in percentage. 
NCBI-BLAST: https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins. 

F-subunit ATP17 Organism Query coverage Identity 

AN11565/ATP17 Aspergillus nidulans FGSC A4 100% 100% 

ATP17 Saccharomyces cerevisiae S288C 88% 54.74% 

atp17 Schizosaccharomyces pombe 972 90% 42.86% 

ATP17 Candida albicans SC5314 100% 49.51% 

NCU05220 Neurospora crassa OR74A 100% 68.32% 
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5´   upstream flanking region 

3´   downstream flanking region 

3-AT   3-amino-1,2,4-triazole 

°C   degree Celsius 

∆   deletion 

µg   microgram 

µl   microlitre 

µm   micrometre 

µM   micromolar 

A or Ala  alanine 

ADP   Adenosine diphosphate 

AIDS   acquired Immune Deficiency Syndrome 

AMP   Adenosine monophosphate 

Amp B   Amphotericin B 

AMM   Aspergillus minimal medium 

AMPR   ampicillin resistance marker cassette 

Approx.  approximately 

APS   ammonium persulfate 

APSES  Asm1p, Phd1p, Sok2p, Efg1p and StuAp  

ATP   Adenosine triphosphate 

ATPase  Adenosine triphosphate synthase 

bHLH   basic helix-loop-helix 

BiFC   Bimolecular fluorescence complementation 

bip   bipartite 

BLAST   basic local alignment search tool 

bp   base pair(s) 

BSA   bovine serum albumin  

CAND1  cullin-associated Nedd8-dissociated protein A 

cDNA   complementary DNA 

CGD   chronic granulomatous disease  

COP9   constitutive photomorphogenesis 9 

CP   core particle 

CPT   camptothecin 

CSN   COP9 signalosome  

C-terminus  carboxy terminus 

D   asparagine 

DBD   DNA binding domain 
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DHN   1,8-dihydroxynaphthalene 

DKP   diketopiperazine  

DIC   differential interference contrast 

DMATS  dimethylallyl tryptophan synthase  

DNA   deoxyribonucleic acid 

Dox   doxycycline 

DTT   dithiothreitol 

DUB   deubiquitinating enzyme 

EDTA   2,2´,2´´,2´´´-(Ethane-1,2-diyldinitrilo) tetra-acetic acid 

ELSD   evaporative light scattering detector   

g   gram 

gDNA   genomic DNA 

GSH   reduced form of glutathione 

Fbx   F-box 

FidA   Fbx15-interacting developmental protein A 

FiAt   Fbx15-interacting APSES transcription factor 

GDP   guanine diphosphate 

GEF   guanine exchange factor 

GFP   green fluorescent protein 

gpdA   A. nidulans glyceraldehyde-3-phosphate dehydrogenase promoter 

GOI   gene of interest 

GTP   guanine triphosphate 

H2O2   hydrogen peroxide 

h   hour(s) 

H2A   histone 

hphNRM   hygromycin resistance non-recyclable marker cassette 

HPLC   High performance liquid chromatography 

kb   kilobase(s) 

kDA   kilo Dalton 

l   litre 

LB   lysogeny broth 

LCMS   liquid chromatography mass spectrometry 

LM   London medium 

LRR   leucine rich repeats 

M   molar 

mg   milli gram(s) 

MHR   middle homologous region 

min   minute(s) 

ml   millilitre(s) 

mM   millimolar 

MMS   methyl methanesulfonate 

mp   monopartite 
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mRNA   messenger RNA 

NADP(H)   Nicotinamide adenine dinucleotide phosphate 

NEDD8  neural-precursor-cell-expressed developmentally down-regulated 8 

NES   nuclear export signal 

NLS   nuclear localisation signal 

nm   nanometre (s) 

NPC   nuclear pore complex 

NRPS   Non-ribosomal peptide synthetase 

N-terminus  amino terminus 

o/n   over night  

oe   overexpression   

ORF   open reading frame 

PCR   polymerase chain reaction 

PDA   photodiode assay detection 

PKS   polyketide synthase 

P-value  probability value 

phleoNRM  phleomycin resistance non-recyclable marker cassette 

phleoRM  phleomycin resistance recyclable marker cassette 

ptrANRM  pyrithiamine resistance non-recyclable marker cassette 

ptrARM   pyrithiamine resistance recyclable marker cassette 

qRT   quantitative reverse transcriptase 

Ran    RAs-related nuclear protein 

RING   Really interesting new gene 

ROS   reactive oxygen species 

RFP   red fluorescence protein 

RP   regulatory particle 

rpm   revolutions per minute 

RNA   ribonucleic acid 

RT   room temperature 

s   second(s) 

S or Ser  serine 

SCF   SkpA/CulA/F-box 

SDS   sodium dodecyl sulphate 

SEM   standard error of the mean 

SISA   Simple Interactive Statistical Analysis 

SOD   superoxide dismutase 

SREBP   sterol regulatory element binding protein 

SrbA   sterol regulatory element binding protein A 

SrbB   sterol regulatory element binding protein B 

OefC   overexpressed fluffy C 

TAP   Tandem Affinity Purification  

TC   terpene cyclase 
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TEMED  N,N,N′,N′-tetramethylethane-1,2-diamine 

Thr   Threonine 

Tris   2-Amino-2-hydroxymethyl-propane-1,3-diol 

TtrpC   A. nidulans tryptophan biosynthesis gene terminator 

Ubi   Ubiquitin   

UBD   Ubiquitin binding domain 

UPS   Ubiquitin proteasome system 

UV   ultra-violet 

UV-DAD  UV diode array detector 

V   Voltage 

v/v   volume per volume 

WT   wild type 

w/v   weight per volume 

YFP   yellow fluorescence protein 
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as husband of my sister, you became my second brother. Thank you for being part of our 

family and your help when my mother, my brother, my sister and I were helpless with the 

illness of my father. 

Finally, thank you Dominik for your strong support over the last years. You are already a 

part of my family and living without you would be a big loss. I cannot imagine how the last 

months would have been without you. The past six months contributed so far to the most 

stressful time in my life but with you by my side, it was bearable. I can always count on 

you and I am excited about the future with you! 

And most importantly, I thank my tom cat Barney for being the cutest, fluffiest and most 

adorable animal in the world. As I always say to you: “You are my heart!” 


