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Abstract

Evapotranspiration (ET) is a central flux in the hydrological cycle on a regional
and on a global scale. Transpiration from plants is the largest water flux from
terrestrial surfaces, accounting for the major part of terrestrial ET. This thesis
comprises method comparisons of methods for ET and plant-water-use analyses.
Established and well-tested methods are compared with recently emerging meth-
ods based on drone remote sensing thermography and modelling approaches.
The presented studies were developed and realized in the frame work of the Col-
laborative Research Centre 990 and the subproject A02. Based on the methods
comparisons, a standardized workflow for ET prediction by land surface tempera-
tures was implemented in a user friendly open-source software for ET calculation.

The primary goal of this thesis was to test and evaluate the new possibilities that
result from the application of drones, radiometric thermal cameras as well as the
utilization of causal and machine learning models. Therefore, method compar-
isons between well-known and tested reference methods and new drone-based
methods are implemented. Another objective of this thesis was to streamline
measurement efforts in the field and therefore evaluate the most important vari-
ables to measure to provide precise predictions. Based on the results of these
objectives a standardized workflow for the calculation of ET based on thermal
images from a variety of sources is developed and implemented into an open-
source software available to a wide range of potential users.

For the first study, thermal images of land surface temperatures were recorded
in 61 drone recording flights on five days over a commercially managed oil palm
plantation. To predict ET from the thermal images three energy-balance-models
(EBMs) were applied: The relatively simple one-source EBM DATTUTDUT
(Timmermans et al., 2015) and the more complex two-source EBMs TSEB-PT
(Norman et al., 1995) and DTD (Norman et al., 2000). Latent heat flux esti-
mates of the DATTUTDUT model with measured net radiation agreed well with
eddy covariance measurements (r?=0.85; MAE=47; RMSE=60) across variable
weather conditions and day times. Confidence intervals for slope and intercept
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of a model Il Deming regression suggest no difference between drone-based and
eddy covariance method, thus indicating interchangeability. TSEB-PT and DTD
yielded agreeable results, but all three models are sensitive to the configuration of
the net radiation assessment. Overall, we conclude that drone-based thermogra-
phy with energy-balance modeling is a reliable method complementing available
methods for evapotranspiration studies. It offers promising, additional opportu-
nities for fine grain and spatially explicit studies.

The second study focused on plant transpiration as a key element in the hydrolog-
ical cycle. Widely used methods for its assessment comprise sap flux techniques
for whole-plant transpiration and porometry for leaf stomatal conductance. Re-
cently emerging approaches based on surface temperatures and a wide range
of machine learning techniques offer new possibilities to quantify transpiration.
The focus of this study was to predict sap flux and leaf stomatal conductance
based on drone-recorded and meteorological data and compare these predictions
with in-situ measured transpiration. Therefore, a comparatively large data set,
consisting of 103 drone recording flights, two weeks of sap flux measurements
in 10 min intervals and thousands of stomatal conductance measurements was
recorded. The data collection was focused on oil palm, as well as on four local
tree species that are native to the Sumatra region. Since no causal, but strictly
data-driven machine-learning (ML) models were applied, such a large data set
would be necessary for accurate prediction results. The models applied were a
multiple linear regression that would serve as a simple base line method to com-
pare with the more complex ML algorithms. The ML algorithms used in the study
were a support vector machine (SVM), two types of random forest algorithms
(RF) and an artificial neural network (ANN). Random forest predictions yielded
the highest congruence with measured sap flux (r*=0.87 for trees and r*=0.58
for palms) and indicated differences among tree species. Confidence intervals
for intercept and slope of a Passing-Bablok regression suggest interchangeability
of methods for sap flux prediction using random forest. However, the other al-
gorithms also showed promising results, especially for the prediction of sap flux
from oil palm. Predictions for stomatal conductance were less congruent, likely
due to spatial and temporal offsets of the measurements. Overall, the applied
drone and modelling scheme predicts whole-plant transpiration with high accu-
racy, especially using random forest algorithms.

Various approaches to compute ET via energy balance models exist, but their
handling is often complex and challenging. The prevalent aim of the third study
was the development of a user friendly open-source software, that would imple-
ment central findings of the first two studies and that would be publicly available
as an extension for the geospatial QGIS3 platform. Special emphasis was put
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on the option to use thermal maps from a variety of sources including drones,
satellites and handheld thermal cameras. As the previously mentioned studies
showed, measured radiation and meteorological variables contribute significantly
to the prediction accuracy. An option to input measured variables has there-
fore been added to the software. To test the performance of the software, land
surface temperatures from an oil palm plantation were recorded using a drone
and a handheld thermal cameras and radiation measurements were further used
as optional input. Typical daily ET patterns were found with all model config-
urations for both recording types. However, the precision of the ET estimates
by the software was significantly improved using solar radiation measurements.
QWaterModel is compatible with all versions of QGIS3 and is available from the
official QGIS Plugin Repository.

In summary, this thesis shows that evapotranspiration and plant-water-use pre-
diction approaches based on drone thermography and subsequent modelling with
causal as well as machine learning models are a useful extension or even a po-
tential alternative to well-proven methods such as eddy covariance, sap flux,
stomatal conductance. However, using only drone recorded data was often not
enough since all predictions benefited from additional information on solar ra-
diation as well as from measurements of relative humidity and air temperature.
The open-source software developed in the scope of this thesis is at this time
available in four versions and more than 1100 downloads were registered up to
this moment.
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Zusammenfassung

Evapotranspiration (ET) ist eine zentrale GroBe sowohl im regionalen als auch
im globalen Wasserkreislauf. Terrestrische ET besteht zum groRten Teil aus
Transpirationsfliissen von Pflanzen. Diese Dissertation stellt einen Methodenver-
gleich von Methoden zur Untersuchung von Evapotranspiration und Pflanzen-
wasserverbrauch an. Verglichen werden etablierte und umfangreich erprobte mit
neuen Methoden, die auf dem Einsatz von Thermographie, Drohnen und Vorher-
sagemodellen basieren. Die wichtigsten Erkenntnisse dieses Methodenvergleichs
wurden in einem standardisierten Arbeitsablauf zusammengefasst und in eine
nutzer*innenfreundliche Software integriert. Diese Software wurde iiber die of-
fizielle QGIS3-Erweiterungsplattform (QGIS3 Python Plugin Repository) zur 6f-
fentlichen Verfiigbarkeit bereitgestellt.

Die primare Zielsetzung der hier vorgestellten Studien war es, die neuen Moglich-
keiten, die durch den Einsatz von Drohnen, radiometrischer Warmebildkameras,
sowie verschiedener kausaler Modelle und durch maschinelles Lernen zur Quan-
tifizierung von Evapotranspiration und Pflanzenwasserverbrauch moglich wurden,
zu erproben und gegen etablierte Methoden zu testen. Zudem war es Ziel der
Dissertation, die wichtigsten, im Feld zu messenden Variablen festzustellen, um
einen minimal notwendigen Datensatz fiir kiinftige Studien zu evaluieren. Ein
weiteres Ziel war die Erstellung und Verdffentlichung einer quelloffenen Software,
die einen standardisierten Arbeitsablauf zur Berechnung von Evapotranspiration
auf Basis von Warmebildern unterschiedlichster Quellen bereitstellt, und so einem
moglichst breiten Spektrum von Nutzer*innen zur Verfiigung steht. Die aus
diesen Zielsetzungen hervorgehenden Fragestellungen wurden in drei Einzelstu-
dien beantwortet:

In der ersten Studie wurden Warmebildaufnahmen der Oberflachentemperaturen
als wichtigste Eingangsvariablen fiir Energiebalancemodelle (EBMs) iiber den
Zeitraum von flinf Tagen bei 61 Drohnenbefliegungen iiber einer Palmélplantage
aufgezeichnet. Insgesamt wurden dazu drei verschiedene EBMs verwendet: das
DATTUTDUT-Modell (Timmermans et al., 2015), bei dem keine Unterscheidung
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zwischen Vegetation und Boden vorgenommen wird, und zwei komplexere EBMs,
TSEB-PT (Norman et al., 1995) und DTD (Norman et al., 2000), die diese Un-
terscheidung vornehmen. Vorhersagen zum latenten Warmefluss stimmten bei
unterschiedlichen Wetterlagen in hohem Male mit den Messungen des Eddy
Kovarianz Systems Uiberein (r?=0.85; MAE=47; RMSE=60). Die Konfidenzin-
tervalle fiir die Steigung und den Interzept der Regressionsgerade einer Deming-
Regression weillen darauf hin, dass zwischen beiden Methoden kein signifikan-
ter Unterschied besteht. Mit dem TSEB-PT- und DTD-Modell konnten auch
gute Ergebnisse erzielt werden, allerdings ist die Genauigkeit der Vorhersagen
bei allen Modellen von der prazisen Bestimmung der Nettostrahlung abhangig.
Zusammenfassend stellen drohnenbasierte Thermographieansitze kombiniert mit
EBMs eine verladssliche Methode zur Feststellung von ET dar. Zusatzlich bietet
dieser Ansatz die Moglichkeit ET-fliisse in raumlichen Karten zu analysieren und
darzustellen.

Die zweite Studie konzentriert sich auf Transpiration von Pflanzen als Schliis-
selgroBe im Wasserkreislauf. Die typischen Methoden um Transpiration und
stomatare Leitfahigkeit zu messen sind die Saftflussmethode und die Porometie.
Kombinationen aus der Nutzung von Oberflichentemperaturen und Machine-
Learning-Techniken eréffnen neue Méoglichkeiten um Transpiration und stom-
atdre Leitfahigkeit zu bestimmen. Der Schwerpunkt dieser Studie liegt auf der
Vorhersage von Saftfluss und stomatérer Leitfahigkeit mithilfe von mit Drohnen
aufgenommener und meteorologischer Daten. Hierfiir wurde ein verhaltnismaBig
groBer Datensatz, bestehend aus 103 Drohnenbefliegungen, Saftflussaufzeich-
nungen in 10 min Intervallen iiber einen Zeitraum von zwei Wochen und mehreren
tausend Messungen der stomataren Leitfahigkeit, angelegt. Der Datensatz wurde
sowohl an Olpalmen als auch an vier auf Sumatra heimischen Baumarten erhoben,
die mit Olpalmen in einem Agroforst-Mischbestand wuchsen. Da hier im Ver-
gleich zur ersten Studie keine Modelle verwendet wurden, die auf kausalen Zusam-
menhangen basieren, sondern ganz im Gegenteil, rein datengetriebene Algorith-
men zum Einsatz kommen sollten, war dieser umfangreiche Datensatz fiir ein
erfolgreiches Trainieren der Modelle notwendig. Die Algorithmen bestanden aus
einer multiplen linearen Regression, die als einfache Vergleichsalternative fiir die
deutlich komplexeren Machine-Learning-Algorithmen gedient hat. Als Machine-
Learning-Algorithmen wurden jeweils eine Stiitzvektormaschine (Support Vector
Machine, SVM), zwei verschiedene Random-Forest-Modelle (RF) sowie ein kiin-
stliches neuronales Netz (ANN) angelegt und mit den Trainingsdatensatzen fiir
Saftfluss und stomatire Leitfahigkeit trainiert. Das Ergebnis der Evaluation war,
dass vor allem die RF-Modelle bei der Quantifizierung von Saftfluss den gréRten
Erfolg versprechen, da hier kongruente Ergebnisse mit den Saftflussmessungen
berechnet wurden (r?=0.87 for trees and r*=0.58 for palms). Fiir die meisten

vi
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Arten und Artenzusammenstellungen hat sich gezeigt, dass diese Methode ver-
gleichbar gute Ergebnisse wie die Saftflussmethode produziert. Allerdings zeigten
auch die anderen Methoden, vor allem bei der Saftflussbestimmung in Olpalmen,
ein groles Potential fiir weitere Entwicklung. Stomatdre Leitfdhigkeit konnte
nur mit durchwachsenem Erfolg vorhergesagt werden, was vermutlich an der der
relativ groRen Zeitdifferenz zwischen den Messungen lag. Allerdings kdnnte ein
groBerer Datensatz mit geringerer Zeitdifferenz zu deutlich besseren Ergebnissen
fihren.

ET lasst sich mit Hilfe von EBMs bestimmen, aber die Nutzung dieser Modelle
ist oft relativ komplex. Die letzte Studie hat sich mit der Entwicklung einer
quelloffenen Software befasst, die zur Anwender*innen freundlichen Nutzung
iiber eine graphische Nutzer*innenoberfldche (GUI) verfiigt und als Erweiterung
fir die Geoinformationsplattform QGIS3 implementiert worden ist. Wichtigstes
Ziel fiir die Umsetzung der Software war die Moglichkeit, Warmebilder aus un-
terschiedlichsten Quellen (z.B. Satelliten- und Drohnenaufnahmen sowie Auf-
nahmen von Handwarmebildkameras) verwenden zu kénnen. Zudem sollten die
Erkenntnisse aus den ersten beiden Studien, vor allem die Option, gemessene
Strahlungswerte und Lufttemperatur in den Quantifizierungsprozess der Evap-
otranspiration zu integrieren, Eingang in die Software finden. Die aus diesen
Zielsetzungen entstandene Software ,,QWaterModel” steht in der offiziellen QGIS3
Erweiterungsplattform zum Download bereit. Um ihre Anwendungsmdoglichkeiten
zu testen, wurden Warmebildaufnahmen einer Palmélplantage mit Drohnen und
einer Handwarmebildkamera sowie verschiedene Strahlungsmessungen und -model-
lierungen als Datengrundlage verwendet. Typische, tagliche Evapotranspira-
tionskurven konnten fiir beide Aufnahmeoptionen sowie alle Strahlungsoptionen
festgestellt werden. Die Prazision der Vorhersage wurde im Vergleich mit der Ref-
erenzmethode Eddy-Kovarianz allerdings durch den Einsatz von Strahlungsmes-
sungen erheblich verbessert.

Zusammenfassend zeigt die Arbeit, dass auf Drohnen aufbauende Thermographie-
und Modellierungsmethoden zur Quantifizierung von Evapotranspiration und des
Pflanzenwasserverbrauchs eine brauchbare Erweiterung oder Alternative zu den
weitverbreiteten Methoden (Eddy-Kovarianz, Saftfluss und bedingt auch Porome-
trie) darstellen. Allerdings sind zusatzliche Messungen, vor allem der Strahlungsin-
tensitdt sowie der Luftfeuchte und -temperatur, der Quantifizierungsprazision
zutraglich. Die im Rahmen dieser Dissertation entwickelte Software ,QWater-
Model" ist zu diesem Zeitpunkt bereits in vier Versionen verflighar und erfreut
sich mit mittlerweile weit mehr als 1100 Downloads groRer Beliebtheit in der
hydrologischen QGIS3 Gemeinschaft.
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Chapter 1

Introduction

In 1867 G.J. Symons described the science of evaporation as the most desperate
branch of the desperate science of meteorology, in an effort to find 'the almost
universal method’ to quantify this flux (Symons, 1867). While devices such as
the standardized rain gauge had already been installed in many locations in the
kingdom, the quantification of evaporation was still very difficult (Symons, 1867).
First long term records from evaporation pans were available, but their layout
and methodology of use was not standardized and therefore difficult to compare
(Symons, 1867). Since the definition of evaporation was much wider at that time
and is better described as evapotranspiration (ET) nowadays, this period did not
only mark the beginning of ET measurements but it also marked the beginning
of the methodological discussion on its assessment and quantification.

Now, 150 years later, many methods to quantify ET have been proposed, tested,
standardized and established and the toolbox of available quantification schemes
is growing steadily (Verstraeten et al., 2008). In the last decade autonomous
flying sensor platforms for near surface remote sensing and miniaturized ther-
mal and multispectral sensors have been added to this toolbox and enabled a
large variety of new methods for ET assessment (Berni et al., 2009; Brenner
et al., 2018; Sullivan et al., 2007). The use of a combination of unmanned
aerial vehicles (UAVs or drones) and miniaturized sensors became very present in
many scientific branches and form the basic framework of numerous new meth-
ods (Ahongshangbam et al., 2019; Berni et al., 2008; Hoffmann et al., 2016).

This dissertation attempts to compare near-surface drone remote sensing based
methods with widely used and established ground-based methods (eddy covari-
ance, sap flux and porometry) to test and add new methods to the available set
of tools for evapotranspiration assessment. Furthermore, in the sense of Symons
(1867), this study aims to create a standardized tool for ET derivation from

1
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thermal images from best practice workflow evaluations.

ET represents both a mass and an energy flux and describes the process of water
transfer from water and land surfaces, sublimation of ice and snow and plant
transpiration to the atmosphere (Verstraeten et al., 2008). It is a central flux in
the hydrological cycle and consumes almost two-thirds of terrestrial precipitation
on a global scale (Oki and Kanae, 2006). Knowledge on ET is essential for a
large variety of scientific, environmental and economical applications and fields.
In agricultural production ET is a direct indicator of plant water use and affects
the choice for land management systems and irrigation schemes in arid regions
(Allen et al., 1998). The assessment of thermal patterns and ET can support
ecosystem conservation, precision agriculture, and wildfire detection (Baena et
al., 2017; Messina and Modica, 2020; Moulianitis et al., 2019). Moreover, ET is
closely linked to carbon cycles influencing terrestrial carbon flows from and to-
wards the atmosphere and is therefore important for the assessment of nutrient
flows and carbon balance modelling (Verstraeten et al., 2008). Information on
ET is further essential for the provision of drinking water, water resource man-
agement and food security and therefore directly influencing human life (Kaushal
et al., 2017). There is a special urge to better understand ET and its drivers as
global climate change is expected to increase atmospheric evaporative demand
and droughts are predicted to become more severe and frequent in the future
(Prudhomme et al., 2014).

ET is mainly controlled by meteorological and vegetation factors. Therefore, so-
lar radiation, air temperature, wind velocity, relative humidity, leaf area, stomatal
conductance and rooting depth play a prevalent role that shape the magnitudes
of ET (Verstraeten et al., 2008). Since transpiration from plants represents 80
to 90% of this entire ET magnitude on land, changes in the biosphere and vege-
tation cover will directly translate to alternations in ET quantities (Jasechko et
al., 2013). Therefore, ET is largely affected by land-cover and land-use changes
(Good et al., 2015; Hansen et al., 2013). Especially in tropical regions where
major conversation efforts foster the transfer from forest to agricultural land, ET
is subject to large scale alterations (Hansen et al., 2013; Margono et al., 2014).

The adequate method for ET measurements or its components highly depends
on the spatial and temporal scale of interest. For studies that focus on plant
metabolisms or water use patterns of a certain species, a small spatial footprint
approach on a leaf, individual plant or on a plot level represent the most suitable
scale (Dolman, 1988; Waite et al., 2019). Efficient methods for this particular
spatial scale are the application of devices such as porometers, sap flux sensors,
lysimeters, or deuterium tracing approaches (Mei et al., 2019; Rall et al., 2019;
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Teuling, 2018; Waite et al., 2019). If the research object is less focused on indi-
vidual plants but rather on ecosystems, farms or smaller catchments, a landscape
scale is more suitable. The prevalent method for this scale is probably the eddy
covariance technique (EC), but also SWAT models and water balancing meth-
ods are frequently applied (Meijide et al., 2018; Teuling, 2018; Xia et al., 2016).
Large spatial scales are mostly energy or mass balance modelling approaches such
as SEBAL or PROMET, which are based on satellite recorded spatial data (Bach
et al., 2015; Bastiaanssen et al., 1998).

Furthermore, temporal scales are an important factor to consider. Temporal res-
olution of data is usually highly dependent on the level of automation of the
individual methods. Methods with a high level of automation that (once set
up) only require a minimum of direct human interaction are e.g. satellite-based
approaches or terrestrial EC, sap flux or lysimeter systems. These methods can
provide a constantly updated stream of data, which may last for several decades,
as e.g. in case of the Landsat missions (Lechner et al., 2020). Handheld porom-
etry devices or thermal cameras, require high direct involvement of human in-
teraction, since they have to be applied to each measurement point manually.
The logging cycle, the time period required to record a single measurement for a
certain object or area, represents an important temporal factor. While measure-
ment systems such as EC stations or sap flux devices measure with a very high
frequency (every 0.1 to 30 seconds respectively) (Meijide et al., 2017; Rdll et al.,
2015), the return time of satellites can span up to several weeks (Brenner et al.,
2018). Contrary to this, porometry has highly variable measuring periods that
depend on external factors such as relative humidity influencing the time required
to provide a controlled air humidity in the measurement chamber (Jones, 2014).

Ground based measurements, such as sap flux, stomatal conductance or EC, ben-
efit from the proximity to the measured object. Interference of other variables
are usually minor or are well known and can be accounted for. This proximity
helps to reduce measurement errors but comes at the cost of a reduced spatial
representation. To represent spatial trades more adequately, ground based point
measurements require spatial replication and the limited set of samples is often
interpolated to estimate the gaps between the measured points (Lechner et al.,
2020).

A different option to ground based point measurements is remote sensing, where
data is collected without directly contacting the feature of interest (Jones and
Vaughan, 2010). Remote sensing approaches to derive ET provide a good spa-
tial representation of data, but often lack a high temporal frequency. In case of
satellites, a trade off situation between temporal frequency and resolution exists
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(Brenner et al., 2018; Delogu et al., 2012). Using satellite recorded land surface
temperature data for ET computations has many advantages, especially when
long-term observations are needed (Kalma et al., 2008; Lechner et al., 2020).
However, clouds, haze and atmospheric humidity represent a barrier for the ther-
mal spectrum (Still et al., 2019) and hence data availability depends on both,
overpass frequency and cloud cover conditions (Delogu et al., 2012). Aerial pho-
tography from planes or helicopters can benefit from their relative proximity to
the land surface producing a higher resolution compared to satellite recordings.
ET has been successfully predicted on plot to landscape scale with thermal images
recorded from planes (Xia et al., 2016). Drone-based remote sensing systems,
which have recently emerged, could be an option to bridge the gap between plant
scale measurement methods and catchment or landscape scale schemes. Drones
can operate close to the surface enabling a delimitation of single plant canopies
and simultaneously cover considerable areas (Ahongshangbam et al., 2019; Mo-
han et al., 2017). They can be equipped with a growing variety of light-weight
sensors for diverse spectral ranges or structural measurements (Berni et al., 2008;
Brenner et al., 2017; Kellner et al., 2019).

This study attempts to bridge the gap between classical methods and recently
emerging methods for ET and transpiration assessment. Therefore, well-estab-
lished ground-based methods for ET and transpiration measurement are com-
pared with drone thermal remote sensing and prediction modelling approaches.
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In view of the numerous opportunities originating from drone-based remote sens-
ing with miniaturized thermal sensors and the need for a streamlined and stan-
dardized workflow, the following four objectives were set for this dissertation:

(1) For the assessment of bias between well-known and recently emerging ap-
proaches, a method comparison of classical methods of energy flux and ET mea-
surements (eddy covariance) with drone remote sensing data based modelling
approaches is conducted.

(2) Similar to objective (1) a method comparison of plant scale sap flux and
porometry methods with a drone-based transpiration derivation approach, sup-
ported by different statistical and machine learning algorithms, is performed to
assess the potential bias between the methods.

(3) The most important environmental parameters to predict ET and transpira-
tion from a minimal set of data are determined.

(4) An open-source tool based on the results of objective 1-3 is developed. The
aim of this tool is to standardize the workflow for ET computation, and to pro-
vide the ability to use thermal input data from different sources (e.g. satellites,
drones, handheld thermal cameras). The resulting software is explained and
tested against an established reference method.

Working towards objective (1) and (2) it will become clear, whether the drone-
based methods are comparable with well-established methods. Objective (3) will
show which parameters are relevant to optimize the measurement process in the
future. Finally, objective (4) will make some of the results available to a wider
public.






Chapter 2
Methods

The choice for the most adequate method highly depends on the feature of in-
terest, scale, availability and cost. In many studies the methods part is used to
describe in detail how a method was applied, but often there is no justification
why certain methods have been chosen. This part, however, illustrates both rea-
sons and inducements of how the decisions for certain methods were made. The
specific methods used in this dissertation are described in detail in each study
(Chapter 3-5).

2.1 Canopy temperatures and evapotanspira-
tion

Canopy temperatures are a good indicator for the processes which control the
leaf energy balance, since they are linearly related to the rate of water loss (Jones,
2014; Raschke, 1956). Water is lost from the plant surface by evaporation, in
the same process energy (or heat) from the leaf is applied to change water from
a liquid to a gaseous state (Raschke, 1956). With the evaporation of water,
both water and energy are transferred from the plant to the atmosphere, cooling
the surface — a process, which is called evaporative cooling. The process of ET
therefore affects the mass and energy balance of the leaf (Jones and Vaughan,
2010) and the overall canopy temperatures. The rate of water loss is regulated by
stomatal conductance and the coupling of the leaf or canopy to the atmosphere
(Raschke, 1956). Transpiration behaves proportional to stomatal conductance,
if the plant is well coupled to the atmosphere (Jones, 2014). This is the case
for single plants or smaller canopies, where the boundary-layer transfer process is
benefited by factors, such as small leaf size, turbulent air movement and a large

7
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canopy roughness (Jones, 2014). For larger continuous canopy areas with ho-
mogeneous vegetation these factors are less dominant, since the total ET rate is
more dependent on the available energy rather than on stomatal aperture (Jones,
2014).

2.2 Thermal infrared remote sensing and its
challenges

To remotely measure canopy temperatures, thermal infrared radiation (TIR) emit-
ted from the canopy is measured using the thermography method. This method
measures electromagnetic radiation, which is emitted by all objects with a tem-
perature above 0 K (Planck, 1900) and from most objects on the earth surface,
including plants (Kuenzer and Dech, 2013). This emittance peaks at the thermal
infrared domain of around 9.7 um (Sabins and Lulla, 1987).

Remotely sensed TIR data must be corrected for geometric and radiometric dis-
tortions (Kuenzer and Dech, 2013). Therefore, the recorded measurement value
at the sensor, is converted to a value for the corresponding amount of incoming
energy. Then, the temperature on the measured surface is calculated considering
the atmospheric path length, atmospheric radiation attenuation, surface and at-
mospheric emissivity (Kuenzer and Dech, 2013). Thermal radiation is an energy
transfer process, that can travel undisturbed through a vacuum but interacts
with matter (Sabins and Lulla, 1987). Atmospheric humidity can have a major
effect on measurement accuracy, because water vapor does not only attenuate
thermal radiation from the surface of interest to the sensor, but also emits its
own thermal radiation (Still et al., 2019).

A typical product of remote sensing thermography are land surface temperatures
(LST). These LSTs are the key input in a growing number of agricultural, envi-
ronmental or urban environment studies (Anderson et al., 2011; Brenner et al.,
2017; Hoffmann et al., 2016). Typical studies assess plant water stress, yields,
evapotranspiration or changes in stomatal conductance (Berni et al., 2009; Hoff-
mann et al., 2016; Siebert et al., 2014).

2.3 Drones as remote sensing platforms

To record LSTs from remote, a thermal sensor has to be placed on a carrier sys-
tem to locate it in the right position. The simplest form of sensor location would
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be a handheld thermal camera or a camera that is attached to a steady object
(Jones et al., 2009; Leinonen et al., 2006; Maes and Steppe, 2012). Camera
carriers, such as planes and satellites, are more complex, but have the advantage
of covering larger areas (Anderson et al., 2011; Xia et al., 2016). The choice
for a sensor carrier is characterized by desired temporal and spatial coverage and
resolution (Figure 2.1). Earlier approaches of canopy temperature-based studies
either focused on very small scale areas (Leinonen et al., 2006), such as leaves
or single plants, or use satellite data on a regional or continental scale (Anderson
et al., 2011).

Both approaches have advantages and drawbacks: the small-scale approach offers
a high resolution, but does not cover enough area to answer research questions
related to the landscape scale; the large-scale approach covers a wider area, but
the resolution is too coarse to respond to single plant related research objectives.

Most ecological and agricultural interests require a scale from individual plants
over plot scale to a landscape scale. The reasoning behind this scale decision is
simple: in this scale range single plant behaviour, as well as plant communities
can be observed and analysed in snapshots without an extended time scale. If
the area is picked smaller, interactions or patterns in plant communities are diffi-
cult to observe. If a larger research area is chosen, time dependent hydrological
variables, such as surface runoff, water storage and ground water, have to be
considered, requiring longer time series. Figure 2.1 shows the different scales
and points out the most relevant scale for ecological research in green. For the
studies in this dissertation drones were the tool of choice, because the covered
footprint ideally fits most ecohydrological questions.

TIR images and maps usually have a much lower spatial resolution than RGB or
near IR cameras. This is caused by the longer wavelength that requires a bigger
sensor and larger lens for similar resolutions of images in the TIR range (Kuen-
zer and Dech, 2013). However, increasing the lens size is costly since they are
usually produced from rather expensive Germanium (Luhmann et al., 2013). It
is therefore difficult and expensive to obtain high resolution of TIR images with
a similar coverage than e.g. an RGB image, if the sensor is placed far away from
the surface of interest.

Satellites are good tools for time series data in regional, global or continental
scales and their constant recording frequency allows for time series in ET studies
(Sobrino and Julien, 2013). The current operational satellite systems offer a
thermal resolution of 100m (Brenner et al., 2017) and will not be able to cover
single plants or the variability of plot sized areas adequately. For the small-scale
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Figure 2.1: Devices and carriers for land surface temperature recording and
their associated scale.

approach, many small measurements can be up-scaled through different tech-
niques to cover the gaps between the point measurements. But there are still
many difficulties to cover e.g. plant community behaviour or thermal patterns in
an ecosystem.

In the last decade, an additional option to measure LSTs is the use of unmanned
aerial vehicles (UAV) or drones (Berni et al., 2008; Brenner et al., 2017; Hoff-
mann et al., 2016). The term drone actually covers a much wider variety of
autonomous vehicles of all sorts, including autonomous rovers, boats and sub-
marines. However, the term drone is used in this study, since most people would
associate this type of carrier platform more with the term 'drone’ than the rather
technical term "UAV'. Drones offer a unique opportunity of supporting TIR im-
age acquisition in just the right scale for many ecological, forestry and agri-
cultural questions (Vasterling and Meyer, 2013). Drones operate very close to
the surface and can provide images with a higher spatial resolution, compared
to satellites (Hoffmann et al., 2016). This proximity reduces the interaction of
atmospheric effects with the thermal radiation on its path from the recorded
surface to the sensor. A further advantage of close surface remote sensing is the
increased resolution, which allows for a delimitation of canopy and non-canopy
pixels. Therefore, emissivity can be adjusted individually for e.g. soil and canopy
pixels. Depending on the type of drone and its flight and stabilization perfor-
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mance, a special camera positioning gear, commonly referred to as gimbal is
required. The gimbal can maintain the sensor in a stable position, even if the
drone is manoeuvring. This is very important in order to keep a stable angle
between the sensor and the recorded surface (usually the sensor is positioned in
a nadir view angle, 90° towards the Earth surface). Drones further offer a high
degree of flexibility: In a temporal manner, the time and number of overpasses
can be planned and adjusted, exact times for overpasses can be planned and
operated, which allows for more flexibility compared to satellites (Berni et al.,
2008). The area to be covered is not constrained by terrain or flight passes, so
decisions on spatial coverage rather depend on drone type and can be chosen
flexibly. Pixel size and single image coverage can be adjusted according to the
allowed flight height. There is a steadily growing number of sensors that can be
attached to the drones and multi-sensor approaches are also an option (Berni et
al., 2008; Brenner et al., 2017; Kellner et al., 2019). Radiometric TIR sensors for
LST recording have become light-weight and affordable (Brenner et al., 2017),
since their production volume and availability increased and miniaturization of
parts became cheaper. The uncooled microbolometer, that most of the TIR sen-
sors are based on, can be integrated by the thousands into a tiny chip and the
miniaturization of calibration and computation gear benefitted the development
of very small, lightweight TIR sensors, which are robust enough to be applied in
conjunction with drone carriers (Vasterling and Meyer, 2013).

However, there are disadvantages to this carrier type too: Apart from the chal-
lenging technical handling — especially of highly customized drones in science —
and the rather small payload of 1-5 kg, a considerable danger of hurting the
operation team or bystanders is always involved with the operation of drones.
Furthermore, special attention has to be taken for local laws and restrictions.
Drones are a great tool for near-surface remote sensing applications, but have to
be handled with special care, responsibility and precaution.

2.4 Data and data structure

This section discusses management, alteration and processing of the data and
illuminates the basic concepts behind the data structures used. This topic is not
discussed very often in scientific publications, but the more data driven and quan-
titative research becomes, the more work and decisions on data sets are involved,
the more 'number crunching’ matters. A clear data philosophy helps to increase
productivity and to avoid errors. If a database is set up in a well-organized and
transparent way, it also provides quick access to all relevant metrics and allows

11



Chapter 2: Methods

the generation of data subsets and additional metrics. With the appropriate data
structure, the detection of errors is facilitated and corrections are easier to im-
plement. The data for this study can be divided up into different data types:
Continuous measurements from EC, meteorological measurements and sap flux,
scheduled measurements from drone data acquisition and the handheld thermal
camera and less regular semi-timed measurements, such as measurement from
stomatal conductance. A further non-time dependent component of data, such
as geo-location, LAI, canopy size and flight height, is part of the data set, too.

The data sets arranged for this thesis are usually combinations of all the above-
mentioned data types. In the following, the major data sets recorded during
the field work for this dissertation are shortly presented. Unfortunately, due to
limitations in time, only a small portion of all the gathered data could be used
in the studies comprised in this dissertation.

(1) PTPN VI data set | location: 103.3914785, -1.6939520

Data used for study in Chapter 3
Recording period: 05.08.2017 — 10.08.2017
Number of flights: 63 (61 used)

Data recorded with drone: TIR, RGB
Other data recorded:

eddy covariance data (in 30 min means)
meteorological data (in 10 min means)

TIR calibration data set

(2) Humusindo data set | location: 103.251170, -1.948734

Data used for study in Chapter 4
Recording period: 01.10.2016 — 16.0.2016
Number of flights: 103 (103 used)

Data recorded with drone:

TIR, RGB, NGB

Other data recorded:

sap flux measurements (in 10 min means)
porometry measurements

meteorological data (in 10 min means)
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(3) PTPN VI data set Il

location: 103.3914785, -1.6939520

(4) PT REKI data set

Data used for study in Chapter 5
Recording period: 07.08.2017
Number of flights: 13 (13 used)

Data recorded with drone: TIR, RGB
Other data recorded:

eddy covariance data (in 30 min means)
meteorological data (in 10 min means)
handheld thermal camera data

location: 103.3441548, -2.1898686

Data used for (Ahongshangbam et al., 2020)
Recording periods:

12.11.2016 - 20.11.2016

16.07.2017 - 01.08.2017

05.09.2017 - 12.09.2017

Number of flights: 216 (72,72,72)

Data recorded with drone: TIR, RGB

Other data recorded:

meteorological data (in 10 min means)

(5) Oil palm management experiment location: 103.3981297, -1.7065760

Recording period: 08.08.2018 — 15.08.2018
Number of flights: 47

Data recorded with drone:

TIR, RGB, Multispectral

Other data recorded:

meteorological data (in 10 min means)

TIR calibration data set

reference flights over the PTPN VI EC-tower
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(6) Bungku land use data set location: 103.2641877, -1.9387656

Recording period: 13.09.2017 — 19.09.2017
Number of flights: 39

Data recorded with drone: TIR, RGB
Other data recorded:

meteorological data (in 10 min means)

sap flux measurements (in 10 min means)
measurements of tree diameters

location: 103.3914916, -1.6939556

This data set was used to create a detailed
map

Recording period: 01.08.2017

Number of flights: 13 (13 used)

Data recorded with drone: RGB

Other data recorded:

(8) PTPN VI oil palm 3D model location: 103.3850863, -1.6945917

Recording period: 14.08.2017
Number of flights: 4

Data recorded with drone: TIR, RGB
Other data recorded:

meteorological data (in 10 min means)
3D calibration data
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(9) Humusindo data set Il location: 103.2436324, -1.9539240

Recording period: 23.08.2017 — 29.08.2017
Number of flights: 39

Data recorded with drone: TIR, RGB
Other data recorded:

meteorological data (in 10 min means)
|IButton measurements (air temp., rel. hum.)
TIR calibration data set

(10) Humusindo data set Ill location: 103.2482880, -1.9483750

Recording period: 20.09.2017 — 26.09.2017
Number of flights: 67

Data recorded with drone: TIR, RGB
Other data recorded:

meteorological data (in 10 min means)
|IButton measurements (air temp., rel. hum.)
TIR calibration data set

(11) Bat observation data set location: 103.2530733, -1.9519718

Recording period: 23.09.2020-25.09.2020
Number of flights: 13

Data recorded with drone:

TIR, night vision

Other data recorded:

eddy covariance data (in 30 min means)
meteorological data (in 10 min means)
handheld thermal camera data

The data sets comprised data measured in oil palm plantations with very different
management philosophies and practices. The data contain typical examples for
commercial management in oil palm plantations of larger companies (1, 3, 4, 7,
8), plantations of small-holder farming (6) and areas that were part of biodiver-
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sity enrichment efforts (2, 9, 10). A large portion of the data was recorded in a
long-term study in the forest protection area PT REKI (4), where the rainy sea-
son as well as the beginning and end of the dry season was covered. Furthermore,
the data set (4) covers four flooded and four non-flooded plots. Other data sets
covered the 3D modelling of oil palms (8) and the creation of high-resolution
spatial maps (7). A very special data set was recorded at night (11) where bats
were filmed in a big tree and along a small river using a specially designed night
vision camera and a near-IR spotlight.

A calibration data set was recorded with a handheld thermal camera to radiomet-
rically reference the drone TIR recordings. The exact data pre-processing and
processing procedure is described in Chapter 3-5. Images were exported to .csv
Format using TeAX-Thermoviewer (TeAx Technology GmbH, Wilnsdorf, Ger-
many). All thermal data was checked visually and the images taken before and
after the flight were removed. The images were automatically tacked with the
geo-location and time (UTC), from the exact site where they had been recorded
using the drone GPS output. Blurry pictures were removed visually. The im-
ages were then converted from temperature measurements in °C to K and saved
as .asc files using a software we especially developed for that purpose. Then,
the .asc files were loaded into QGIS3 as a raster layer. Background maps and
3D-Point clouds were created from the RGB images that were recorded with the
thermal flights or other mapping missions during the field study. We used Agisoft
Photoscan Professional 1.2.6 to create point clouds and subsequently exported
orthomosaicked maps.

Following the energy balance modelling procedures (described in detail in Chapter
3 - 5) the results were arranged in an SQL-like database programmed in Python
3.6.9, which uses pandas (McKinney, 2010) and NumPy (Oliphant, 2006; van
der Walt et al., 2011) libraries. Graphs and figures were created with Matplotlib
(Hunter, 2007) and seaborn (Waskom et al., 2020) libraries.

2.5 Classical statistics and machine learning
The fundamental different concepts of classical statistics and machine learning
(ML) are often not discussed. This part was included into this dissertation, be-
cause why and when the respective approach is appropriate in science, is rarely
explained.

This study comprises two main statistical objectives: inference and prediction.
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While inference usually aims at building a mathematical model to formalize a
relationship between variables or at testing a hypothesis, prediction aims at fore-
casting an outcome from previous observations (Bzdok et al., 2018). The goal
of inference and classical statistics is to understand the underlying mechanisms
of data relations. Prediction in contrary does not necessarily require a deep un-
derstanding of the underlying mechanisms and is rather aimed at guessing the
unknown based on known parameters (Breiman, 2001).

Back in 2001 Breiman estimated that 98% of statisticians were predominately
using classical statistics and inference approaches (Breiman, 2001). While this
percentage might have slightly changed in the last two decades, classical statis-
tics are obviously still the dominant procedure for studies in natural sciences.
The general idea of classical statistics is routed in the assumption that data are
generated by a stochastic data model (probability spaces or probability triples)
(Bzdok, 2017; Kolmogorov and Morrison, 2013). In a typical study inference is
based on an estimation component - often a linear-regression model — and a test
for statistical significance. Typical examples of this approach are the Deming
and Passing-Bablok regressions used in Chapter 3 and 4. ML in contrary is an
out-of-sample generalization approach, which uses an algorithmic learning model
fitted on a bigger training data set and the resulting model is later empirically
evaluated using a smaller test data set (Breiman, 2001; Bzdok, 2017).

Unlike classical statistical approaches that typically consider the whole data set,
consisting of all available data to reject the null hypothesis, ML procedures derive
a model from only a part of the available data (Breiman, 2001; Bzdok, 2017,
Wasserstein and Lazar, 2016). A test data set with previously unused data is
later used to test predictive accuracy. The validation process in classical statistics
is commonly based on a goodness-of-fit test and a residual examination while
ML approaches validate the resulting model with metrics, such as predictive ac-
curacy, and based on aforesaid test data set (Breiman, 2001).

Chapter 4 is a typical application of algorithmic modelling with ML, where two
target variables sap flux and stomatal conductance are predicted from a large set
of different variables. The resulting models are not designed to causally imple-
ment or explain all the processes, which take place in the plant, in the leaf to
atmosphere boundary-layer transfer process or in the atmosphere. Their purpose
is merely the prediction of plant-water-cycle components based on remote sensing
and meteorological data, which has been gathered. Classical statistics are then
used to evaluate these prediction models against their measured counterparts in
a method comparison approach.
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2.6  The relevance of method comparisons

The idea of a method comparison is to answer the question whether both meth-
ods measure the same values for the same quantity of a feature of interest, or
whether there is a systematic difference between the measurements (Passing and
Bablok, 1983). This is an important procedure to test a new method against
an established method and to verify their comparability. A method comparison
is a valuable tool, if a new method is supposed to be established or to replace
an older, more labour-intense or more expensive method (Bland and Altman,
1986). For this task, correlation analysis and t-tests are a common procedure
in literature, but both methods are not appropriate for the purpose of an actual
method comparison (Bland and Altman, 1986). A correlation analysis captures
the degree of association of two variables using either the correlation coefficient
r or the coefficient of determination r?>. The idea is to provide a metric of how
well the data can be explained by a linear relationship. This method is problem-
atic for method comparisons, since the resulting linear model is not necessarily
without bias (Simundic, 2016). The linear model could have a bias of e.g. 100%
but the degree of association of both variables might still be described by r?=1.
To present the study results the coefficient of determination is still used in this
dissertation, mainly as an additional descriptive method in conjunction with the
results of the Deming or Passing-Bablok regression. T-tests (paired or for in-
dependent samples) are also not the ideal tool for method comparison. The
independent t-test compares the means of both methods. If the means of the
X and Y method measurements are similar by coincidence, the methods would
be declared as comparable in this approach. If the measured values would be
exactly opposite, no difference would be detected neither. The paired t-test is
already a better choice for a method comparison, but it is highly susceptible to
the number of samples (Simundic, 2016). If the number of samples is low, it is
biased to neglect a difference between both methods. If the sample size is too
big, it will be biased to detect a difference between both methods.

Typical statistical methods to compare two methods are the Deming regression
(Deming, 1964) and the Passing Bablok regression (Passing and Bablok, 1983).
A simple linear regression assumes no measurement error in the X-variable. The
Deming regression extends this concept and considers random measurement er-
rors in both X- and Y-variables (Cornbleet and Gochman, 1979). If the measure-
ment errors of both methods are not known, the default procedure is to assume
an error ratio of 1 (Legendre and Legendre, 2003). Deming regression is a para-
metric method and data is expected to follow a normal distribution. Further,
a constant precision over the measurement range and the removal of extreme
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outliers are a prerequisite (Simundic, 2016). The sample size should exceed a
minimum of n = 60 samples (Legendre and Legendre, 2003). Passing-Bablok
regression is a non-parametric method, assumptions about data distribution are
not made (Passing and Bablok, 1983). For a statistically unbiased result, it is
assumed that both variables are correlated and show a linear relationship (Pass-
ing and Bablok, 1984). Both, the Deming and the Passing-Bablok regressions
are analysed by verifying if the numbers 1 and 0 are contained in the confidence
intervals for intercept and slope respectively. If both numbers are contained in
the respective confidence intervals, the methods can be used interchangeably.

This places particular emphasis on the adequate calculation of confidence inter-
vals. For the Deming regression the Jackknife method is suggested to support
the calculation of confidence intervals (Linnet, 1993). For the Passing-Bablok
regression a nested bootstrap interval is the method of choice (Hinkley and Shi,

1989).

To create adequate data sets for a method comparison, the entire meaningful
range of data should be covered (Passing and Bablok, 1983). Measurements
should be distributed along the measurement range as evenly as possible. Scat-
ter plots are a good way to check whether there are gaps in the measurements.
Figure 5.3 in Chapter 5 shows such a distribution without gaps. Figure 5.4b and
5.4c in Chapter 5 are examples of data sets with a gap. In case of the specific
study in Chapter 5, this gap does not present a big problem, since the focus of
this particular analysis is not on a method comparison. If a data set for a method
comparison is prepared, these gaps should ideally be filled with additional mea-
surements in the missing range. Measurement duplication is advisable but often
not a really practical approach in applied science. In case of this dissertation,
the data for Chapter 3 cover an entire week of measurements. However, an
ideal data set would contain a second data set covering another week — e.g. in
another season of the year — using the same procedure and instruments, to be
able to calculate measurement errors. Measurements should be taken along the
most frequent measurement situations (Simundic, 2016). In case of the methods
compared in this dissertation, this implies varying weather conditions, strong and
lower solar irradiance and variations of relative humidity. Environmental data is
ideally recorded over several days, with a minimum of five days (Simundic, 2016).
Except for data duplication in other seasons, all of the requirements mentioned
for an ideal method comparison have been fulfilled in the studies presented in
Chapter 3 and 4.

There are several options to visualize the agreement between two methods. The
two most common difference plots are the Bland-Altman plot and the Krouwer
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plot (Giavarina, 2015). The Bland-Altman plot is designed to show the average
of the methods measurements on the X-axis and the ratio or percentages be-
tween the methods on the Y-axis. In the Krouwer plot the established reference
method is plotted on the X-axis and the differences of the methods are plotted on
the Y-axis. In this dissertation the results are shown in rather simplified figures
that show the limits of the confidence intervals of slope and intercept of a model
Il regression. These figures simplify the visual observation whether the numbers
0 or 1 are included into the confidence intervals. This is the simplest and most
intuitive form of presenting the results of a model comparison.

2.7 Open-source scientific tools

The wide availability of scientific publications allows to build upon research and
previous work from other studies. Still, the exact statistical procedures or models
are often not published as software or code and hence a lot of effort is required to
reconstruct them from publications and other descriptions. One of the guiding
principles of the open-source community is to avoid the time-consuming process
of reinventing what other people already developed. Many scientific applica-
tions and processes have been developed to solve a vast variety of problems or
- as Kinkler's second law defines it - 'all the easy problems have already been
solved" (Raymond, 1999). Many times, time and energy are spent solving al-
ready solved problems and 'reinventing the wheel’ over and over again. In the
framework of this thesis I'll try to go a slightly different way by not only pub-
lishing the results of my work in peer-reviewed publications, but also providing
a simple open-source tool, which streamlines the workflow for similar studies.
Hereby, | expect the following benefits for my work: (1) An improvement of my
code through a collaborative community approach. By publishing code, other
developers and researchers can detect, diagnose and resolve software bugs, or
as Linus's Law puts it: 'given enough eyeballs, all bugs are shallow’ (Raymond,
1999). (2) Increasing the number of potential users and hence encouraging an
adaption to a variety of use cases of the software in the long run is a further
strategy to improve this software. (3) Foster the possibility for more frequent
releases of new versions by accelerating the development using typical modern
software development practices such as time and location agnostic, asynchronous
development by using online platforms such as github.com.
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ABSTRACT

For the assessment of evapotranspiration, near-surface airborne thermography offers new op-
portunities for studies with high numbers of spatial replicates and in a fine spatial resolution.
We tested drone-based thermography and the subsequent application of three energy balance
models (DATTUTDUT, TSEB-PT, DTD) using the widely accepted eddy covariance technique
as a reference method. The study site was a mature oil palm plantation in lowland Suma-
tra, Indonesia. For the 61 flight missions, latent heat flux estimates of the DATTUTDUT
model with measured net radiation agreed well with eddy covariance measurements (r=0.85;
MAE=47; RMSE=60) across variable weather conditions and daytimes. Confidence intervals
for slope and intercept of a model Il Deming regression suggest no difference between drone-
based and eddy covariance method, thus indicating interchangeability. TSEB-PT and DTD
yielded agreeable results, but all three models are sensitive to the configuration of the net ra-
diation assessment. Overall, we conclude that drone-based thermography with energy-balance
modeling is a reliable method complementing available methods for evapotranspiration studies.
It offers promising, additional opportunities for fine grain and spatially explicit studies.

3.1 Introduction crease atmospheric evaporative demand
and droughts are predicted to become

o ) more severe and frequent in the fu-
Evapotranspiration (ET) is a central (Prudhomme et al., 2014). ET
flux in the hydrological cycle on a re-

gional and on alglobal scaleh_'l;lerre;trlal and land-use changes, which are cur-
ET consumes almost two-thirds of ter- rently very pronounced in tropical re-

restrial precipita.tion (Qki and .Kanae, gions (Hansen et al., 2013).
2006). There is an interest in bet-
ter understanding ET and its drivers
as climate change is expected to in-

is also strongly affected by land-cover

The eddy covariance technique (EC) is
a widely accepted and well-established
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method to quantify ET at the stand
scale (Baldocchi et al., 2001; Fisher et
al., 2017). It results in a single latent
heat flux (LE) value integrated over the
footprint of the EC tower at a given
time that can be converted to an ET
estimate. A spatial fine grain attribu-
tion of different surface patches to this
overall ET value is generally not possi-
ble. The EC method is costly and labor
intensive, and therefore, a relatively
low number of spatial replicates within
a given region and among its different
ecosystems are typically available. The
EC method also has certain constrains
regarding topography, atmospheric tur-
bulence and landscape heterogeneity
(Gockede et al., 2008).

A complementary approach for assess-
ing LE at larger spatial scales is the use
of remotely sensed land surface temper-
atures (LST) as boundary conditions
for energy balance modeling and subse-
quent conversion to ET (Brenner et al.,
2017; Guzinski et al., 2014; Hoffmann
et al., 2016; Ortega-Farias et al., 2016;
Xia et al., 2016). Compared to the EC
method, this approach can potentially
increase the number of spatial repli-
cates within and among ecosystems
and is also applicable in challenging
terrain. Remotely sensed LSTs are re-
garded as good indicators for plant wa-
ter use, stress and transpiration (Jones
and Vaughan, 2010). One approach to
obtain LST data is the use of satellite-
based observations (Allen et al., 2007;
Bastiaanssen et al., 1998; Ershadi et
al., 2013). However, the spatial reso-
lution of satellite data such as Land-
sat TM, ASTER, MODIS or AVHRR

ranges from 90 m to 1 km, limiting the
distinction of plant canopies and soil
(Berni et al., 2009). A higher tempo-
ral resolution of satellite-based thermal
infrared (TIR) observations is usually
associated with a lower spatial reso-
lution, and TIR data from satellites in
both high spatial and high temporal res-
olution are not yet available (Brenner et
al., 2017). Additionally, clouds are bar-
riers for thermal radiation and therefore
have a strong effect on the quality and
availability of satellite-based TIR obser-
vations (Guzinski et al., 2013). This is
of particular importance in regions with
frequent cloud cover such as in tropical
environments.

An alternative, recently emerging ap-
proach to measure LSTs is the use
of drones. Radiometric TIR sensors
for LST recording have become light-
weight and affordable, and drones are
now capable of carrying adequate pay-
loads for reasonable timespans. Near-
surface thermography-based studies al-
low temporal resolutions in flexible,
e.g. hourly time steps and a spa-
tial resolution in the decimeter scale
or finer. Drone-based TIR recording
and subsequent modeling of LE with
energy balance models has previously
shown promising results for short grass
and crop vegetation in Central Europe
(Brenner et al., 2018; Hoffmann et al.,
2016). However, remote sensing of
LST from drones is challenging and in-
volves careful planning. Recording LST
close to the surface results in a high
resolution but reduces the area cov-
ered in a certain time span compared
to surveying from a higher altitude.
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Increasing flight altitude reduces spa-
tial resolution of LST images and thus
increases the averaging of surface tem-
peratures from individual canopies, soil
patches and branches from neighboring
canopies into a single pixel (Still et al.,
2019). Further, air humidity can have a
major effect on measurement accuracy
as water vapor does not only attenuate
the signals from the surface of interest
to the sensor, but also emits its own
thermal radiation (Still et al., 2019).

Different energy balance models are
available to compute LE from LST
and subsequently calculate ET. In the
one-source energy balance model DAT-
TUTDUT (Deriving Atmosphere Tur-
bulent Transport Useful To Dummies
Using Temperature) (Timmermans et
al., 2015) fluxes are estimated by re-
lating single pixel temperatures to local
temperature extremes; the hottest and
a group of coldest pixels in the im-
age (Timmermans et al., 2015). Two-
source energy balance models such as
TSEB (Two-Source Energy Balance)
(Norman et al., 1995) and DTD (Dual
Temperature Difference) (Norman et
al., 2000) divide measured LSTs into
a vegetation and a soil fraction. Sev-
eral adaptions of these models were
developed; the TSEB-PT model as de-
scribed in Hoffmann et al. (2016),
uses the Priestley-Taylor coefficient
(PT) to determine canopy H flux and
subsequently calculate the other frac-
tions from the surface energy balance.
TSEB-PT is based on the tempera-
ture difference between LST and air
temperature (Norman et al., 1995).
Expanding this concept, DTD uses a

dual-temperature difference from an
additional early morning set of mea-
surements to account for biases in re-
motely sensed LSTs (Hoffmann et al.,
2016; Norman et al., 2000). Crucial in
applying such energy balance models
is how the net radiation (Rn) is imple-
mented. In the original formulation of
the DATTUTDUT model Rn is fully
modeled, assuming a range of prereg-
uisites and environmental conditions
(Timmermans et al., 2015). TSEB-PT
and DTD models use measured short
and long-wave radiation to estimate
Rn as a sum of in- and outgoing long-
and short-wave radiation (Norman et
al.,, 1995, 2000). Using airplanes or
drones to record LSTs, the three mod-
els previously showed promising results
for grass and crop surfaces in temper-
ate and subtropical regions (Brenner et
al., 2017, 2018; Hoffmann et al., 2016;
Xia et al., 2016). However, the lim-
ited number of temporal replicates for
a given study site constrained previous
studies to using error terms and corre-
lation coefficients. To our knowledge,
a comprehensive method comparison
considering potential errors in both ref-
erence method (e.g. the EC technique)
and novel drone-based approaches is
not yet available.

The presented study was conducted in
the lowlands of Jambi province (Suma-
tra, Indonesia) where over the last
decades, large areas of rainforest have
been converted to rubber and oil palm
plantations (Clough et al., 2016; Mar-
gono et al.,, 2012). This resulted in
regional-scale changes in transpiration
(Roll et al., 2019) and land surface
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warming (Sabajo et al., 2017). We
assessed energy fluxes in a mature
monoculture oil palm plantation and
compared the LE estimates of drone-
based methods with the established EC
method as measured ground-based ref-
erence. Three energy-balance mod-
els (DATTUTDUT, TSEB-PT, DTD)
were tested, each with three different
configurations for determination of Rn
(fully modeling Rn, Rn estimates based
on short-wave irradiance and measur-
ing Rn). The objectives of our study
were to compare LE estimates from
the drone-based methods to the EC
technique, with a special focus on the
detection of proportional and contin-
uous errors among the methods and
an evaluation of the models prediction
performance.

3.2 Methods

3.2.1 Study site
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¥ M ’
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Figure 3.1: The study site in a mature
commercial oil palm plantation in the
lowlands of Jambi province, Sumatra,
Indonesia.

The study site is located in the lowlands
of Jambi province (Sumatra, Indone-
sia) near the equator (E 103.3914411,
N -1.6929879, 76 m a.s.l.). Average
annual air temperature in the region is
26.5°C and average annual precipita-
tion is 2235 mm yr—! (Drescher et al.,
2016). At the time of our measurement
campaign in August 2017, the studied
monoculture oil palm (Elaeis guineen-
sis) plantation was 15 years old. Palm
stem density was 140 palms ha=!, with
an average palm height of 14.3 m and
an average canopy radius of 4.5 m.
Leaf area index (LAI) was estimated
at 3.64 m? m~2 (Fan et al., 2015) and
canopy cover was estimated to be 90%.
Plantation management included the
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removal of older and non-vital leaves
from the oil palms, herbicide applica-
tion to remove most understory plants
and fertilization (196 kg N ha=! yr™1)
(Meijide et al., 2017). The average an-
nual oil palm yield is 27.7 Mg ha=!. An
EC tower (22 m height) is situated in
the center of the site with a fetch of up
to 500 m in each direction (Meijide et
al., 2017) (Figure 3.1).

3.2.2 Drone-based
acquisition

image

We used an octocopter drone (MK
EASY Okto V3; HiSystems, Germany)
equipped with a thermal and an RGB
camera mounted in a stereo setup on
a gimbal to ensure nadir perspective.
The radiometric thermal camera was a
FLIR Tau 2 640 (FLIR Systems, USA)
attached to a TeAx Thermo-capture
module (TeAx Technology, Germany).
The sensor covers spectral bands rang-
ing from 7.5 to 13.5 um with a thermal
accuracy of 0.04 K. The RGB camera
was based on an Omnivision OV12890
CMOS Sensor (Omnivision, USA) with
a 170° FOV fish—eye lens. Instead of
the mosaicking approaches applied in
most of the mentioned previous stud-
ies, we used a single image recording
concept as faster image acquisition al-
lows for a denser temporal resolution
of LSTs. To capture an area of 100 m
radius around the EC tower in a sin-
gle shot of the thermal camera, images
were taken from 260 m altitude. Image
corners were removed due to vignetting

effects. During a consecutive five-day
flight campaign in August 2017, 61
LST data sets and matching EC mea-
surements were recorded. Flights were
conducted between 9 am and 4 pm
local time, in accordance with the 30
min intervals of the EC averaging cy-
cles, resulting in 10 to 14 flights per day
(Table Al). All LSTs were measured
using a fixed emissivity of one as the
energy balance models would introduce
specific soil and vegetation emissivities
in the process.

3.2.3 Energy balance

models

LSTs are recorded as 'snapshots’ repre-
senting an instantaneous state of sur-
face temperatures.  Soil-Vegetation-
Atmosphere Transfer models use these
instantaneous observations of LST to
solve the energy balance equation and
estimate instantaneous fluxes. In our
study the one-source energy balance
model DATTUTDUT (Timmermans et
al., 2015) and two two-source energy
balance models, TSEB-PT (Norman et
al.,, 1995) and DTD (Norman et al.,
2000), were applied.

The key input for the DATTUTDUT
model is a LST map from which the
hottest and coldest pixels are extracted,
assuming that hot pixels are a result
of very little to no ET and cold pix-
els origin from high ET (Timmermans
et al., 2015). Apart from the LST
map, all further inputs for the model
such as albedo, atmospheric transmis-
sivity and surface emissivity are either
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calculated from temperature extremes
in the map, location and time or are
fixed values as suggested in Timmer-
mans et al. (2015). A version of the
DATTUTDUT model has recently been
implemented in form of a QGIS3 plu-
gin (QWaterModel) with focus on easy
usability (EllsaRer et al., 2020). TSEB-
PT calculates surface-energy budgets
from the recorded LSTs splitting ob-
servations into a canopy and a soil
fraction (Norman et al., 1995; Song
et al.,, 2016; Xia et al., 2016). The
Priestley-Taylor (PT) approximation is
used to calculate the sensible heat flux
for the canopy fraction from net radia-
tion divergence estimates (Hoffmann et
al., 2016). With the sensible heat flux
known, canopy and soil temperature
are calculated and with known resis-
tances fluxes are computed (Hoffmann
et al.,, 2016). Calculation of aerody-
namic temperature by using an excess
resistance term is not needed, since
TSEB-PT uses directional radiomet-
ric temperature as input (Hoffmann et
al., 2016). The TSEB-PT model re-
quires additional in situ meteorological
measurements of long- and short-wave
radiation, wind speed, barometric pres-
sure and relative humidity, which in our
case were recorded at the EC tower.
Further, data on LAl as well as surface
and canopy albedo are required. In the
DTD model, the absolute temperatures
of land surface and air (as used in the
TSEB-PT) are supplemented with a
second set of early morning reference
measurements of LST and air tempera-
ture, thus creating a dual-temperature
difference (Norman et al., 2000). This

relates measurements at any time dur-
ing the day to measurements recorded
in the morning, when fluxes are as-
sumed to be minimal, and thereby ac-
counts for measurement biases of LST
(Anderson et al., 1997; Hoffmann et
al., 2016). H flux is then calculated
using the time-differential temperature
and a series resistance network as it is
recommended for densely vegetated re-
gions to consider interaction of soil and
canopy fluxes (Guzinski et al., 2014;
Li et al., 2005). We used two thermal
cameras attached to the EC tower (see
EC methodology for details and Sect.
2.7 for the limitations) for the neces-
sary early morning reference readings of
absolute temperature and used the av-
eraged LSTs from the thermal images
to create a uniform map as input for
the DTD model (similar as e.g. in Hoff-
mann et al., 2016). Ground heat flux
(G) was computed in the same way for
all three models, i.e. as a linear func-
tion of Rn (Liebethal and Foken, 2007).
More details on the applied models are
provided as supplementary information
(Appendix ).

Modeled LE estimates are highly sensi-
tive to the type of Rn estimates used.
Consequently, in our study we com-
pared three different configurations to
include Rn into each of the three men-
tioned energy balance models: a) fully
modeled Rn from sun-earth-geometrics
(Rn_mod) as in the original procedure
of the DATTUTDUT model with no
option to consider clouds, b) measur-
ing only incoming short-wave radiation
and calculating net short-wave using
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the surface albedo, while net long-wave
is calculated from measured air tem-
perature, LST, the Stefan Bolzmann
equation and atmospheric emissivity
to estimate Rn (Rn_sw) as in Guzin-
ski et al. (2013), and c) measuring
the four components of the radiation
budget independently and calculating
Rn (Rn_mes), as is the case for the
original procedure for the TSEB-PT
and DTD model and the reference EC
method. From the presented results
(LE flux densities normalized by area,
in W m~2), we further calculated hourly
ET rates (amount of water, mm h™');
in this, we assumed a stable relation-
ship of the fluxes during the estimation
period (Cammalleri et al., 2014), and
followed Timmermans et al. (2015) for
calculating the latent heat of vaporiza-
tion.

3.2.4 Eddy covariance
measurements

The micrometeorological tower is lo-
cated in the center of the study site
(Fig. 1). The EC technique was used
to measure LE and H fluxes from high
frequency (10 Hz) measurements of
above-canopy water vapor concentra-
tion, sonic temperature, and 3-D wind
components. The flux system consisted
of a sonic anemometer (Metek uSonic-
3 Scientific, Elmshorn, Germany) and
a fast response open-path CO2/H20
infrared gas analyzer (Li-Cor7500A,
LI-COR Inc. Lincoln, USA) installed
at 22 m height. Meteorological vari-
ables were measured every 10 sec, av-

eraged to 10 min means and stored
on a DL16 Pro data logger (Thies
Clima, Géttingen, Germany). Rn and
its components were measured with a
net radiometer (CNR4, Kipp & Zo-
nen, Delft, The Netherlands) at 22
m height. Air temperature and rela-
tive humidity were measured with ther-
mohygrometers (type 1.1025.55.000,
Thies Clima, Gottingen, Germany) at
22 m height. Further, a wind direc-
tion sensor (Thies Clima, Gottingen,
Germany) (22 m height) and 3-cup
anemometers (Thies Clima, Gottingen,
Germany) (18.5, 15.4, 13, and 2.3 m
height) for wind speed measurements
were installed on the tower. Two fixed
thermal cameras (IR100 Radiometer,
Campbell Scientific Inc., Logan, USA)
on top of the tower (22 m height) were
used for early morning measurements
of LST. Ground heat flux was mea-
sured using heat flux plates (HFPOL,
Huxeflux, Delft, The Netherlands) at
10 cm depth. Additional soil mois-
ture and temperature measurements
(Trime-Pico 32, Imko, Ettlingen, Ger-
many) above the heat flux plate at 5 cm
depth were used to calculate heat flux
at the soil surface. EC data recording,
filtering and processing were carried out
identical to the methodology described
in Meijide et al. (2017) for the same
study site. As the applied drone-based
models all assume full energy balance
closure, we used the Bowen ratio clo-
sure method (Pan et al., 2017; Twine
et al., 2000) to compute full closure for
the EC measurements.
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3.2.5 Statistical analyses

We applied the model II Deming regres-
sion method to consider uncertainties
in both x and y variables (Cornbleet
and Gochman, 1979; Glaister, 2001)
with the assumption that the error ra-
tio (0g%/06?) of the variances (o) of
errors on y (g;) and on x (¢6;) would
not differ from 1 which is the standard
procedure if both uncertainties are un-
known (Legendre and Legendre, 2003).
We used the interquartile range method
with a factor k=1.5 to remove outliers
from the regression. A Durbin-Watson
test was applied to test for correla-
tion in error terms. We checked for
heteroscedasticity visually and using a
White test. Normal distribution of error
terms was tested visually plotting stan-
dardized residuals vs. theoretical quan-
tities and performing a Shapiro-Wilk
test. Standard errors and confidence
intervals for slope and intercept of the
Deming regression were calculated us-
ing analytical methods (parametric)
and the jackknife method (Armitage
et al., 2001; Linnet, 1993). As further
indicators of model performance, we
calculated the coefficients of determi-
nation (r*), the Mean Absolute Error
(MAE), the Root Mean Square Error
(RMSE) and slope and intercept from
the Deming regression. Statistics such
as r? have their limitations in method
comparison since they are designed to
indicate how well the resulting model
of the regression describes the outcome
and are not necessarily a good measure
for systematical bias between methods.
However, they are used as a statistic

in this study since they represent an
additional indicator for interpretation.
Linearity was checked visually plotting
residuals vs. fitted values. To examine
the spatial heterogeneity of the LE from
drone-data based estimates, we calcu-
lated standard deviation, coefficient of
variation, Kurtosis and median-based
Fisher-Pearson Coefficient of Skewness
(FPCS) for each model output to char-
acterize the respective distributions in
relation to a normal distribution (Doane
and Seward, 2011; Legendre and Leg-
endre, 2003).

All modeling procedures and parts of
the statistical analyses were computed
using Python version 3.7.1 (Python
Software Foundation), involving the
libraries NumPy 1.14.2, SciPy 1.1.0,
pandas 0.23.1, scikit-learn 0.19.1, gdal
2.3.2, Astropy 3.2.2 and tkinter 8.6.
The Deming regression was computed
using the MethComp and mcr v2.2.1
package (Manuilova et al., 2014) in
R version 3.6.1 (R Development Core
Team, 2019). Graphic representation
was processed in Python using the Mat-
plotlib 3.0.2 and Seaborn 0.9.0 libraries.

3.2.6 Data set character-
istics

The dataset offers a comparatively high
number of replicates from 61 drone
recording flights and the correspond-
ing eddy covariance measurements en-
abling a method comparison which re-
quires at least n = 60 observations
(Legendre and Legendre, 2003). The
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data was recorded in a 30 min fre-
quency, to facilitate the analysis of daily
courses of evapotranspiration behavior
creating a trade-off situation of more
flights per day with shorter flight times
per flight. Because flight times were
so short, only a smaller footprint with
a radius of 100 m around the eddy co-
variance station was covered, while the
footprint recorded with the eddy co-
variance system ranged up to a 500 m
radius around the tower. Therefore,
the reduced area of the drone recorded
LST maps is often smaller than the ex-
tent of the eddy covariance footprint.
We have several reasons to assume that
this doesn’t cause major problems for
the comparison though: the study area
is very homogenous with an elevation
difference of 5 m in the eddy covari-
ance footprint and the biosphere is
strongly dominated by only one species
(oil palm). The plantation is very well
managed, so that all oil palm canopies
are vital, no oil palms have died and
only dry leaves are removed. A further
limitation of the data set is the lack of
morning or night LST measurements
that could not be recorded with the
drone due to security concerns and lim-
ited access to the plantation at night.
This doesn't affect the procedure of the
DATTUTDUT and TSEB-PT model,
but morning measurements are an im-
portant factor for the DTD model. We
were able to record night and morning
measurements with two stationary ther-
mal cameras that were attached to the
tower. As for the DTD model, morn-
ing and later recordings should ideally
be recorded with the same camera.

To check whether both cameras would
measure similar temperatures, we com-
pared a total of 122 LST maps from
the drone and the stationary cameras
and plotted the measured and adjusted
temperatures of both recording systems
(Fig. Al). There is a small deviation
of the measured temperatures result-
ing in a mean absolute error (MAE)
and root mean squared error (RMSE)
of 1.59 and 2.15 K respectively. Since
LST measurements are subject to a cer-
tain degree of uncertainty and thermal
cameras usually have a measurement
error of up to +1°C we decided to use
the morning measurements from the
tower cameras as input for the morn-
ing temperature reference (Aubrecht et
al., 2016). The implementation of the
DTD model is therefore strictly exper-
imental and has to be interpreted with
the uncertainties of the morning mea-
surements in mind.

3.3 Results

3.3.1 Meteorology

During our 61 flight missions, cloudi-
ness was variable from clear sky to
full cloud cover; short-wave irradiance
ranged from 204 to 1110 W m~2
The prevailing wind direction was from
north-east, at an average wind speed
of 1.7 m s7!. Canopy air temperature
ranged from 22.5 to 32.3°C and relative
humidity varied between 62 and 99%.
The energy balance closure of the ref-
erence EC measurements was 0.77 (r?
= 0.87).
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3.3.2 Drone-based mod-

eling methods wvs.
eddy covariance
method

At the time of the drone flights, LE
from the EC method ranged between
87 and 596 W m~2 (mean: 337 W
m~2). Congruence of the LE estimates
of the three applied models differed
in their congruence with EC measure-
ments, depending on the configuration
of the Rn assessment (Appendix fig-
ure 3). Generally, error metrics were
reduced and congruence was increased
the more measurement-controlled the
Rn determination process was.

For the Rn_mod configuration the
daily patterns of DATTUTDUT LE es-
timates closely agreed with EC mea-
surements around noon but resulted in
higher LE fluxes in the morning and
afternoon where TSEB-PT LE esti-
mates are much higher than EC mea-
surements (Figure 3.2a). While some
of the LE predictions from the DTD

model in Rn_mod configuration are
similar to the EC measurements, many
of its LE predictions are over- or un-
derestimations. Models with Rn_sw
configuration produced LE estimates
that matched LE from EC more closely.
DATTUTDUT computed higher esti-
mates of LE compared to the EC mea-
surements during noon, while TSEB-
PT produced more congruent LE esti-
mates for the midday hours but rather
underestimated LE fluxes especially in
the morning.

The DTD model underestimated LE
fluxes for all daytimes (Figure 3.2b).
All models with Rn_sw configuration
yielded comparably low estimates dur-
ing the morning and afternoon hours.
With Rn_mes configuration, DAT-
TUTDUT computed closely matching
LE estimates at all times of day across
the five-day measurement period, while
TSEB-PT consistently produced much
higher estimates than EC around noon
and the DTD model underestimated LE
fluxes especially in the morning hours
while otherwise producing accurate re-
sults (Figure 3.2c).

31



Chapter 3: Predicting evapotranspiration

1000

800

600

400

200

-200

1000

N B D @
o o o o
o o o o

Latent heat flux [W m~2]

o

-200

1000

800

600

400

200

-200

(a) Models lNith fully modelled net rsadiation (Rn_mod)
L]

- EC
«  DATTUTDUT
« TSEB-PT
DTD
217 218 ! 219 ! 220 ! 221 '
- EC
«  DATTUTDUT
« TSEB-PT
DTD
- EC
«  DATTUTDUT
« TSEB-PT
DTD

218 ! 219 ! 220 ! 221 !
Day of the year

Figure 3.2: Latent heat flux (LE) from energy balance models (DATTUTDUT,
TSEB-PT, DTD) and three different configurations of net radiation (Rn)
determination (Rn_mod, Rn_sw, Rn_mes) and eddy covariance
measurements (EC) over five consecutive days (n = 61 flight missions).
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Figure 3.3: Model Il Deming regression of latent heat flux estimates from
drone-based energy balance models (DATTUTDUT, TSEB-PT, DTD) and
different configurations of net radiation (Rn_mod, Rn_sw, Rn_mes) with the
eddy covariance method (n = 61 flight missions).
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Figure 3.4: Confidence intervals for intercept and slope of Deming regression
for the different LE estimation approaches compared with EC measurements.
X-level for the bias is the mean of the established EC reference method. The
intercept is displayed in W m—2.
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Across all daytimes and weather con-
ditions (n=61 flight missions), congru-
ence among drone-based LE estimates
and reference EC measurements was
highest for the DATTUTDUT model
with Rn_mes configuration (r?=0.85);
MAE and RMSE were 47 and 60 W
m~2, respectively (Figure 3.3). To
compare the model predictions and
the eddy covariance measurements, we
computed a Deming regression between
both LE predictions and LE estimates.
The methods are considered to be sta-
tistically interchangeable if the confi-
dence intervals of the slope and in-
tercept include one and zero respec-
tively. Deming regression of the LE
estimates of the DATTUTDUT model
with Rn__mes configuration showed no
significant proportional or constant er-
ror compared to EC measurements as
the values one and zero lay within
the respective 99% confidence interval
ranges of slope and intercept (Figure
3.4). It is thus indicated that there is
no significant difference between DAT-
TUTDUT with Rn_mes configuration
and the EC technique. The TSEB-PT
model in Rn_mes configuration also
showed no significant continuous errors
but was subject to proportional bias
(Figure 3.4c) predictions tend to over-
estimate LE around noon when fluxes
are very high (Figure 3.2c and 3.3c).
The DTD model showed no propor-
tional bias but indicated a continuous
error in the analytical method and the
Jackknife method (Figure 3.4c). In the
Rn_sw configuration, all three models
showed no significant proportional error
of LE estimates compared to EC mea-

surements (Figure 3.4b). However, all
TSEB-PT and DTD model estimates
deviated from the EC measurements
by a significant constant amount (Fig-
ure 3.2a and 3.3b). All models in the
Rn_mod configuration showed signifi-
cant proportional and constant errors or
large biases compared to EC measure-
ments, as well as very large confidence
intervals (Figure 3.3a and 3.4a).

3.3.3 Spatial
of LE

For 9th of August 2017, 12.30 h, the
DATTUDUT in Rn__mes configuration
suggested a mean of 526 W m~2 (mini-
mum of 0 on the corrugated iron roof of
the EC tower system, maximum of 637
W m~2, coefficient of variation 7.53%,
for the analyzed 18,383 pixels) (Fig-
ure 3.5), which translates to a mean
ET of 0.778 mm m=2 h™!. Locally,
i.e. in the center of oil palm crowns,
high LE of > 400 W m~2 was observed,
while LE from soil and ground vegeta-
tion areas between oil palm canopies
was lower. The LE fluxes of all pix-
els were almost normally distributed for
the one-source energy balance model
DATTUDUT (Figure 3.6), whereas the
distributions of the two-source energy
balance model TSEB-PT (for the same
LST dataset) was more skewed, with
more LE observations at the upper end
of the range. The DTD model re-
sulted in an almost normal distribu-
tion but with values far more evenly
distributed over the entire range from
minimal to maximal value and with a

distribution
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less pronounced peak. While the av- the DATTUTDUT and DTD models
eraged FPCS ranged around +1 for all revealing a very low number of out-
three models and model configurations liers whereas the distribution was highly
over the 61 flights indicating only a variable for TSEB-PT (Appendix figure
minor skewness, Kurtosis was always A2).

within the platykurtic distribution for

Latent heat flux
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Figure 3.5: Spatial distribution of latent heat flux from drone-based
thermography and subsequent energy balance modeling (DATTUTDUT with
Rn_mes configuration, 9 August 2017, 12.30 h).

36



Chapter 3: Predicting evapotranspiration

20+ DATTUTDUT 20+ TSEB-PT 20+ DTD

_15¢ 15+ 15+

=

)

$10 10+ 10+

=}

o

o

w

5 5 51

0 — — 0 — 0 ——
0 200 400 600 0 200 400 600 0 200 400 600

Latent heat flux [W m~2]

Figure 3.6: Frequency distribution of latent heat flux for the model output
images from the same thermal image as shown in Fig. 5 (9 August 2017, 12.30

h). Absolute histogram bin size was set to 16 W m~

to 800 W m™2.

3.4 Discussion

Our study indicates a high agreement
between latent heat fluxes assessed
by drone-based thermography and the
eddy covariance technique. However,
the performance of the three applied
energy balance models differed among
each other and among different config-
urations of net radiation assessments
in the models (Figure 3.2 and Ap-
pendix figure A3). Model Il Deming re-
gression analyses and associated quality
assessments suggest interchangeabil-
ity between the DATTUTDUT model
in Rn_mes configuration and the EC
technique (Figure 3.3 and 3.4). Apply-
ing this configuration, a fine grain spa-
tial analysis of latent heat fluxes sug-
gests relatively low heterogeneity of LE
in the studied tropical oil palm planta-
tion (Figure 3.5).

2 we used 50 bins from 0

3.4.1 Drone-based LE

modeling vs. eddy
covariance measure-
ments

The confidence intervals of slope and
intercept of the Deming regression
indicate that the one-source energy
balance model DATTUTDUT with
Rn_mes configuration is statistically
interchangeable with the established
EC method for estimating LE fluxes.
There are advantages and limitations
to both methods. For example, the
DATTUTDUT model provides insights
on the spatial distribution of LE fluxes
within the full extent of the available
LST maps, whereas the EC technique
averages the LE fluxes within its foot-
print to a single value. On the other
hand, the DATTUTDUT model is tem-
porally limited to the availability of
LST maps, whereas the EC method
can measure fluxes continuously over
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several years once the equipment is in
place. The DATTUTDUT model with
Rn _mes configuration further requires
additional measurements of short- and
long-wave radiation budgets. In our
study, these measurements were taken
with the EC equipment, but future
stand-alone drone approaches are pos-
sible by using on-board miniaturized
radiation sensors (Castro Aguilar et
al., 2015; Suomalainen et al., 2018).
The two-source energy balance models
TSEB-PT and DTD in the Rn_mes
configuration showed different behav-
iors. TSEB-PT was found to have no
significant continuous errors, but pro-
portional errors compared to the refer-
ence EC method. This is largely rooted
in the overestimation of relatively high
fluxes around noon, while lower fluxes
during the morning and afternoon hours
were predicted more accurately.

An opposite situation was found for
the DTD model that showed no pro-
portional errors but a continuous error
for the analytical method. Intercept
confidence intervals from the Jackknife
method included zero and suggest no
continuous error for the DTD model in
the Rn__mes configuration. Due to the
mismatch between the results of the
Jackknife and the analytical method, a
considerable bias of -30.65% over the
mean and remaining accuracy concerns
of the morning LST measurements, this
method configuration cannot yet be
considered as statistically interchange-
able.

All models with the Rn_sw configura-
tion showed a significant constant error
compared to EC measurements, i.e.

all modeled LE estimates derived from
this configuration underestimate mea-
sured fluxes by a certain fixed amount
(about 200 W m™2 on average com-
pared to EC measurements). These
underestimations of Rn translated di-
rectly to an underestimation of turbu-
lent fluxes (Appendix figure A3). Pre-
vious studies have pointed out that
Rn derivation based on short-wave ir-
radiance measurements is challenging
as long-wave radiation budgets are of-
ten completely independent from their
short-wave counterparts (Hoffmann et
al. 2016). Estimation errors in long-
wave radiation budgets have e.g. been
reported to be related to high relative
air humidity, when some of the original
model assumptions are no longer met
(Hoffmann et al., 2016). We observed
a negative correlation (r* = 0.46) be-
tween incoming long-wave irradiance
and relative humidity and assume that
the high relative humidity in our trop-
ical study area may have affected the
determination of Rn when using the
Rn_sw configuration through inaccu-
racies in estimating long-wave radiation
budgets, therefore causing the observed
significant continuous errors. Such con-
stant errors in Rn estimation can be re-
duced or even eliminated by enhanced
calibration of the models. We thus
also consider the Rn_sw configuration
valuable for future research, particularly
because measurements of incoming
short-wave radiation are much easier
to implement than assessing complete
short- and long-wave radiation budgets
as necessary for the Rn__mes configu-
ration. The application of the Rn_sw
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configuration for a one-source energy
balance model such as DATTUTDUT
was also tested in two previous studies,
with similar results to our study, i.e.
a reduction of errors compared to its
original formulation with fully modeled
Rn_mod (Brenner et al., 2018; Xia et
al., 2016).

Lastly, the model configuration
Rn_mod did not produce accurate LE
estimates for all three models, as many
of the basic assumptions for fully mod-
elled Rn determination are not met in
tropical environments such as our equa-
torial study area. As such, the sky is of-
ten cloudy, while haze frequently occurs
during periods without rainfall. Even if
no clouds are visible, relative humidity
is often high, which interferes with the
clear-sky assumptions of the Rn_mod
configuration (Still et al., 2019).

LE estimates from TSEB-PT and DTD
are sometimes close to zero or even
negative (for all three Rn configura-
tions) and thus deviate substantially
from the EC measurements (Figure
3.2). This occurs when the difference
between surface aerodynamic tempera-
ture and air temperature becomes very
small, which causes the evaporative
fraction to approach zero, resulting in
an overestimation of H and an under-
estimation of LE in the fragmentation
process of turbulent fluxes (see Eq.
1 in Norman et al. 2000). This ef-
fect is especially pronounced for the
DTD model, when the morning refer-
ence air and land surface temperature
measurements are very similar to each
other. We assume that the problem is
rather typical for tropical environments

as daily temperature changes are often
not as pronounced as e.g. in semiarid
areas where, conversely to our findings
substantial overestimations of LE fluxes
were observed (Kustas et al., 2016; Mo-
rillas et al., 2013).

Among the three models applied in our
study, the relatively simple DATTUT-
DUT model produced the most precise
LE estimates compared to eddy covari-
ance reference measurements. Similar
conclusions were reached by Brenner
et al. (2018), where DATTUTDUT
marginally outperformed the more com-
plex TSEB-PT model. On the other
hand, contrasting observations were
made by Xia et al. (2016) in vine-
yards with more extreme temperature
divergences between soil and vegeta-
tion, where the TSEB-PT model pro-
duced more precise estimates of LE
than the DATTUTDUT model. This
was explained by the better physical
representation of energy and radia-
tive exchange in the TSEB-PT model.
The authors further point out that Rn
determination is not the only source
of error in the DATTUTDUT model
(Xia et al., 2016). In our study, the
TSEB-PT model slightly outperformed
the more complex DTD model in the
Rn_mes configuration regarding error
terms, congruence and continuous er-
rors. The DTD model on the other
hand showed less bias and no propor-
tional error and is therefore the more
promising approach as its continuous
error can be reduced through calibra-
tion.

We used the Bowen-ratio method to
close the energy balance for the refer-
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ence EC measurements. As reported by
Xia et al. (2016), agreement between
measured EC and modeled LE esti-
mates could potentially be increased by
using the residual method from Twine
et al. (2000) for energy balance closure.
Further potential improvements include
the aerial sampling alignment with the
EC measurement logging cycles. We
compared snapshot measurements of
LST to 30 min averages of EC for the
corresponding times in an environment
where key variables such as solar irra-
diance can change very quickly. Better
matching the measurement cycle du-
ration may further improve agreement
between the methods and was already
suggested in a previous study (Brenner
et al., 2018). Further, in our study the
aerial-derived LST images represented
only the center area of the (at times
quite variable and large) EC footprint.
Covering the whole potential area of
the footprint in all directions could
also increase agreement between the
measurements, but would require even
higher flight altitude or longer flight
times to cover the whole area; both
options would reduce the number of
temporal replicates and increase errors
from measurements and processing, but
could nonetheless be viable approaches
for other research questions.

Only few previous studies have demon-
strated applicability and limitations
of estimating LE with the three en-
ergy balance models from non-satellite
data. In these studies, LSTs were
e.g. recorded from drones for Euro-
pean grasslands and croplands (Bren-
ner et al., 2018; Hoffmann et al., 2016)

and from drones or airplanes for taller
vegetation including olive orchards and
vineyards (Ortega-Farias et al., 2016;
Xia et al., 2016). Our study adds to
this an application of these models in
a tropical environment, for higher veg-
etation (i.e. oil palm) and across vari-
able daytimes and weather conditions.
We further analyzed for the first time
whether drone-data based models and
EC measurements can be used inter-
changeably, as our large sample size
of n=61 flights allowed for a method
comparison based on a model Il Dem-
ing regression (Legendre and Legendre,
2003). We conclude that this is the
case for some models and configura-
tions, above all for the DATTUTDUT
with Rn__mes configuration.

3.4.2 Spatial distribution
of latent heat fluxes

A particular strength of drone-based
thermal imagery is the high spatial res-
olution which allows for spatially ex-
plicit assessments of evapotranspira-
tion, within and potentially also be-
yond the footprints of EC towers.
The outlines of the single oil palm
canopies are clearly visible in the LE
flux map (Figure 3.5), with the high-
est LE fluxes occurring in the center
of the oil palm canopies. We assume
that this spatial pattern is caused by
an increased local LAl in the cen-
ters of the oil palm canopies, while
leaf area density decreases towards the
outer canopies. Further, the central
areas of oil palm canopies are more ex-
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posed to sunlight and wind throughout
most of the day, increasing their poten-
tial for (evapo)transpiration compared
to canopy edges. Mixed pixel effects
(among soil and canopy) likely also
contribute to the observed lower LE
fluxes towards the borders of oil palm
canopies. Further contributing factors
to higher LE fluxes in the centers of ol
palm canopies could be leaf age (with
younger leaves in the center) and ad-
ditional ET from pockets in the axils
of pruned leaves along the stem, which
contain small water reservoirs and epi-
phytes (Meijide et al., 2017; Tarigan et
al., 2018).

In the histograms of LE fluxes from all
pixels within the single studied foot-
prints (Figure 3.6), the DATTUTDUT
and DTD models results in a bell-
shaped normal distribution but very
different value ranges. While the DAT-
TUTDUT histogram shows only few
pixel values of zero and most pixels
closely distributed around the mean,
the DTD histogram is much wider dis-
tributed and the peak is much more
moderate. Mean and median are very
similar indicating close to zero skew-
ness for both, the DATTUTDUT and
DTD model. Such a distribution tend-
ing towards unimodality is also consid-
ered typical for landscapes where ET is
highly dominated by one species (Xia et
al., 2016). The TSEB-PT model shows
a different, more skewed distribution
of LE fluxes (for the same dataset of
LST), with the median of the LE esti-
mates located between the mean and
the upper end of the LE flux range.
Kurtosis is much more pronounced for
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the TSEB-PT model in all net radia-
tion configurations than in the other
two models (Appendix figure A2).

The increased Kurtosis is a very strong
sign towards more extreme outliers that
emerge in the TSEB-PT model. We as-
sume that the TSEB-PT model is more
sensitive to dry surfaces and hence pro-
duces more extreme outliers. Since the
DTD model references the LST mea-
surements with a second set of land
surface and air temperatures it is less
affected by extreme outliers in the LST
data.

We see great potential in the drone-
based remote sensing applications
presented in this study; especially
when recent developments in drone-
environment interaction, mobile edge
computing (potentially on-board of the
drone) and communication technolo-
gies such as LoRaWan (Long Range
Wide Area Network) or 5G are com-
bined (Becerra, 2019; Marchese et
al., 2019). Autonomous acquisition of
LSTs over EC stations and the sur-
rounding areas can be supplemented
by on-board and ground sensors and
energy-balance models can be com-
puted on the edge enabling a dense
temporal resolution of LST, flux and ET
maps in almost real-time. This concept
can e.g. be used for the attribution of
fluxes in mixed species plant communi-
ties, the study of edge effects in land-
scapes, and further be adapted e.g. to
detect water stress in agriculture and
forests.
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3.5 Conclusions

Drone-based thermography and subse-
quent energy balance modeling under
certain configurations can be consid-
ered a highly reliable method for esti-
mating latent heat flux and evapotran-
spiration; for some configurations sta-
tistical interchangeability is suggested
with the established eddy covariance
technique. They thus complement the
asset of available methods for evapo-
transpiration studies by fine grain and
spatially explicit assessments.
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ABSTRACT

Plant transpiration is a key element in the hydrological cycle. Widely used methods for its
assessment comprise sap flux techniques for whole-plant transpiration and porometry for leaf
stomatal conductance. Recently emerging approaches based on surface temperatures and a
wide range of machine learning techniques offer new possibilities to quantify transpiration.
The focus of this study was to predict sap flux and leaf stomatal conductance based on
drone-recorded and meteorological data and compare these predictions with in-situ measured
transpiration. To build the prediction models, we applied statistical approaches and machine
learning algorithms. The field work was conducted in an oil palm agroforest in lowland Sumatra.
Random forest predictions yielded the highest congruence with measured sap flux (r>=0.87 for
trees and r>=0.58 for palms) and indicated differences among tree species. Confidence intervals
for intercept and slope of a Passing-Bablok regression suggest interchangeability of methods
for sap flux prediction using random forest. Predictions for stomatal conductance were less
congruent, likely due to spatial and temporal offsets of the measurements. Overall, the applied
drone and modelling scheme predicts whole-plant transpiration with high accuracy, especially
using random forest algorithms.

4.1 Introduction sions of forests to agricultural land are
ongoing (Hansen et al., 2013; Margono

et al., 2014), resulting in large scale
alterations of the water cycle and tran-
spiration as a key flux. To measure,
model and understand the effects of
altered transpiration on the hydrologi-
cal cycle, measurements at the plant
and leaf scale with sap flux probes

Transpiration is the largest water flux
from terrestrial surfaces, accounting for
80 to 90% of terrestrial evapotranspi-
ration (Jasechko et al., 2013). Transpi-
ration is strongly affected by changes
in land cover and land use (Good et al.,
2015). In many tropical regions conver-
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and porometers are frequently applied
(Ahongshangbam et al., 2019; R&ll et
al., 2019; Waite et al., 2019). While
these hydrometric methods are com-
monly implemented at the leaf, plant
or plot level, measuring transpiration at
larger scales remains a challenging task
(Ford et al., 2007; Good et al., 2015;
Kume et al., 2010). Remote sensing
techniques are considered to be more
cost- and labour effective than their
ground-based counterparts, particularly
for applications in agricultural and for-
est landscapes (Virnodkar et al., 2020).
Remote sensing data e.g. from satel-
lites offers opportunities for spatial ex-
trapolation of point measurements but
is associated with large uncertainties,
especially for diverse mixed stands and
agricultural areas (Wei et al., 2017).

Recently emerging drone-based remote
sensing systems could be an option
to bridge the gap between leaf and
plant scale measurement methods and
catchment or landscape scale schemes
(Suab and Avtar, 2020). Drones can
operate close to the surface enabling
a delimitation of single plant canopies
and simultaneously cover considerable
areas (Khokthong et al., 2019; Mohan
et al., 2017). They can be equipped
with a growing variety of light-weight
sensors for diverse spectral ranges or
structural measurements (Berni et al.,
2008; Brenner et al., 2017; Kellner
et al., 2019). For evapotranspiration,
modelled results based on thermal sen-
sor data often follow a linear rela-
tionship with ground based measure-
ments from eddy covariance systems

(EllsaRer et al., 2020b). For complex
non-linear structures and relationships
e.g. between evapotranspiration and
its controlling factors statistical regres-
sion models can be supplemented us-
ing machine learning (ML) algorithms
(Dou and Yang, 2018; Fernandes et
al., 2016). ML models are not explic-
itly programmed to represent biological
processes but are rather trained us-
ing a training data set and can later
be applied to previously unknown data
(Virnodkar et al., 2020). ML algo-
rithms such as support vector machines
(SVM), random forests (RF) and ar-
tificial neural networks (ANN) have
frequently been used e.g. to estimate
evapotranspiration or to predict vegeta-
tion structural characteristics in a wide
range of ecosystems (Antonopoulos et
al., 2016; dos Reis et al., 2018; Dou
and Yang, 2018; Feng et al., 2017; Pan
et al., 2019; Wu et al., 2016). Despite
many successful applications of ML al-
gorithms to predict hydrological fluxes
in the biosphere, the reliable quantifi-
cation of the non-linear processes that
govern water fluxes remains a chal-
lenging task (Dou and Yang, 2018). A
successful quantification of water fluxes
would highly depend on the choice of al-
gorithm, a set of representative predic-
tion variables and the availability of an
appropriately sized data set (Granata,
2019).
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The objectives of this study were:

(1) to compare linear statistical and
ML approaches to calibrate models to
predict sap flux and stomatal conduc-
tance measurements from drone remote
sensing data and meteorological mea-
surements

(2) to delineate the most important
prediction variables for these models
(3) to compare the direct measurement
methods (sap flux, porometry) with the
modelling and drone-based methods for
bias and interchangeability.

4.2 Methods

4.2.1 Study site

The study was conducted in the low-
lands of Sumatra, in Jambi province, In-
donesia. Average elevation of the area
is 47 m asl., mean annual precipitation
is 2,235 mm year—! and average an-
nual temperature 26.7°C (Drescher et
al., 2016).

103.2536 E

-1.9463 N

Figure 4.1: The studied monoculture oil palm plantation on the left-hand side,
and an oil palm agroforest site on the right side. Canopies of some of the
measured trees and palms are shown with greyscale thermal images. Canopies
were marked with 8-bit barcodes (small white dots in the image) to be
recognizable from the air. The map shows an exemplary selection of all

sampled canopies.
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The sites were situated in an oil palm
plantation of the company PT Hu-
musindo in a conventional monocul-
tural oil palm plantation and oil palm
agroforests, that were established in the
context of a biodiversity enrichment ex-
periment (EFForts-BEE, 103.2536 E,
-1.9463 N) (Teuscher et al., 2016). At
the experimental agroforest sites, three
years prior to this study, 40% of the oil
palms were cut and native tree species
were planted. In the conventional oil
palm monoculture palms were between
9 and 15 years old and the stem den-
sity was approximately 140 palms per
hectare. At the time of our study in
October 2016, average tree height was
4.7 m and average oil palm meristem
height was 6.8 m.

4.2.2 Data acquisition

Two groups of data were acquired: the
target variables, i.e. point measure-
ments of sap flux and stomatal con-
ductance with in situ sensor applica-
tions, and a set of prediction variables
recorded with a drone and a meteoro-
logical station.

Sap flux measurements

Eight oil palms (Elaeis guineensis) and
16 trees of the four native species
Archidendron  pauciflorum, Parkia
speciosa, Peromena canescens and
Shorea leprosula were equipped with
sap flux sensors. Four palms were lo-
cated in a conventional monoculture
area and four palms and all 16 trees

o1

in the agroforest sites. Qil palm sap
flux was assessed with thermal dissipa-
tion probes (Granier, 1985) installed in
the leaf petioles as described in Niu et
al. (2015); sap flux density was cal-
culated using calibrated, oil palm spe-
cific parameters (Niu et al., 2015). For
the dicot trees, we used the heat ratio
method (Burgess et al., 2001); sensors
were installed radially into the xylem at
breast height. Sap flux was then calcu-
lated using Sap Flow Tool version 1.4.1
(ICT International, Australia). Further
details on the applied sap flux methods
are provided in Ahongshangbam et al.
(2019). Plant water use is expressed
as mm h~! to provide a fine temporal
resolution format that allows the pre-
diction of variations during the course
of the day. Sap flux measurements were
recorded every 10 min over the course
of two weeks. We used barcode markers
on sample trees and palms to facilitate
their identification in the aerial images.

Stomatal conductance measure-
ments
Stomatal conductance measurements

were conducted using three porometers
(AP4-UM-3, Delta-T Devices Ltd, Bur-
well, Cambridge, UK). The sunlit areas
of the canopies were reached using scaf-
foldings. Three palms were assessed us-
ing nine fronts per palm as described in
Waite et al. (2019). For trees we suc-
cessfully measured three Archidendron
pauciflorum, three Peromena canescens
and four Shorea leprosula. The species
Parkia speciosa is not included in the
stomatal conductance data set because
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leaflets were too small to fully cover
the porometer measurement chamber.
Seven to ten sunlit leaves each were
measured on three branches per tree
and mean values were calculated. Each
sample palm or tree was measured be-
tween three and five times per day, over
the course of two weeks. This varia-
tion was mainly caused by differences
in relative humidity which affected the
time period to complete the measure-
ment cycle of the porometer devices.
Measured leaves were marked with bar-
codes to facilitate identification in the
drone recorded images.

Drone-based image acquisition

We used a multicopter drone (MK
EASY Okto V3; HiSystems, Moormer-
land, Germany) equipped with a ther-
mal and an RGB camera mounted in
a stereo setup on a gimbal set to
nadir perspective.  The radiometric
thermal camera was a FLIR Tau 2
640 (FLIR Systems Inc., Wilsonville,
Oregon, USA) attached to a TeAx
Thermo-capture module (TeAx Tech-
nology GmbH, Wilnsdorf, Germany).
The sensor covers spectral bands rang-
ing from 7.5 to 13.5 um with a ther-
mal accuracy of 0.04 K. The RGB cam-
era was a Sony A5000 (Sony Corpo-
ration, Tokio, Japan) with an EPZ 16
— 55mm F3.5-5.6 OSS lens that was
set to 16 mm focal length. During an
11-day campaign in October 2016 a
total of 103 flights were conducted to
record canopy surface temperatures si-
multaneously to the sap flux and stom-
atal conductance measurements. RGB

images were merged using Photoscan
1.3.0 (Agisoft LLC, St. Petersburg,
Russia) to create a geo-referenced or-
thomosaic map. All TIR images were
then referenced to the RGB map, the
canopies were delineated and single
palm and tree canopies were extracted
using QGIS3 version 3.6 Noosa (QGIS
Development Team, 2020).

Meteorological measurements

Meteorological measurements were
conducted at a station located in the
studied oil palm plantation. The sta-
tion was equipped with a global ra-
diation sensor (CMP3 Pyranometer,
Kipp & Zonen, Delft, The Nether-
lands), two thermohygrometers (type
1.1025.55.000, Thies Clima, Géttingen,
Germany), a net radiometer (NR Lite2,
Kipp & Zonen) and a 3-cup anemome-
ter and a wind direction sensor (both
Thies Clima). Data were stored on a

logger every 10 min (see Meijide et al.
(2018) for details).

Data pre-processing

Single canopies were marked with 8-
bit barcodes that were visible in the
RGB as well as the thermal spec-
trum and canopy surface temperatures
were cut from the thermal images for
each canopy and flight. We used
the QGIS3-plugin QWaterModel (Ell-
saler et al., 2020a) to analyse the
canopy surface temperatures, extract
key metrics and apply the energy bal-
ance model DATTUTDUT (Timmer-
mans et al., 2015) based on the canopy
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temperatures. We applied both a fully
modelled net radiation approach and
a short-wave irradiance-based estima-
tion approach (EllsiRer et al., 2020b).
We used the pandas library (McKin-
ney, 2010) in Python 3.6.9 to merge
the datasets according to the individual
plant and recording time.

We set the maximum time delta to an
hour and matched 1710 datasets for sap
flux and 877 for stomatal conductance.
The average time offsets for sap flux
and stomatal conductance with the re-
mote sensing data were 70 and 1481
seconds, respectively.

The final data set contained 94 vari-
ables including the two target variables
(sap flux and stomatal conductance),
meteorological variables (short-wave ir-
radiance, barometric pressure, air tem-
perature, wind speed and direction, rel-
ative humidity) and a multitude of vari-
ables from drone recorded data and
modelled products such as land sur-
face temperatures, evaporative fraction
and different evapotranspiration esti-
mates (incl. various dispersion metrics
such as mean, median, standard devi-
ation, coefficients of variance, kurto-
sis and the Fisher-Pearson Coefficient
of Skewness (FPCS)). Furthermore, the
data set contained local time encoded
as cyclical features (with sinus and co-
sine as a variable), the canopy area, the
number of pixels and atmospheric emis-
sivity and transmissivity.

Prediction models

The data sets for sap flux prediction
(n = 1710) and stomatal conductance

prediction (n = 877) were each split
into a training (or fitting) set and a
test (or validation) set (70% and 30%
of the data, respectively). We per-
formed a multicollinearity test based on
a variance inflation factor with Pear-
son's r (cut-off value > 0.9) and back-
ward elimination of variables based on
the Akaike information criterion (sig-
nificance level 0.05) and removed vari-
ables accordingly reducing the input
variables to 42. We decided to use a
multiple linear regression (MLR) as our
baseline method as it represents a well-
known standard approach in statistics.
We further applied support vector ma-
chine regressors (SVM), random forest
regressors (RF) and artificial neural net-
work regressors (ANN) to build predic-
tion models.

Multiple linear regression

Multiple linear regression (MLR) is an
approach to model the relationship be-
tween the explanatory input variables
and a response variable by fitting a
linear equation expressed as a regres-
sion plane (Nguyen and Zeigermann,
2018). In our study we used a least-
squares model that minimizes the sum
of squared vertical deviations from each
point to this regression plane (Legen-
dre and Legendre, 2003). MLR was
computed using the LinearRegression
regression class from the Scikit-learn
package in python (Pedregosa et al.,
2011). MLR were previously success-
fully used to predict daily transpiration,
evapotranspiration and basal area of
trees from spatial data (dos Reis et al.,
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2018; Fernandes et al., 2016; Pan et
al., 2019).

Support Vector Machine

SVMs model the relationship between
explanatory variables and the response
variable by fitting a regression plane
with parallel margins to the data in or-
der to include as many instances as pos-
sible between the two margins (Guo et
al., 2012; Vapnik, 2000). This regres-
sion plane is also referred to as a hy-
perplane if several explanatory variables
are used (Raschka, 2017). SVMs are
mostly known as classifier algorithms,
but can also be applied for regression
problems (Shrestha and Shukla, 2015).
SVM regressors were previously suc-
cessfully applied to regression problems
with spatial data (dos Reis et al., 2018;
Garcia-Gutierrez et al., 2014; Wu et al.,
2016). We used the SVR method of
Scikit-learn package and a linear kernel
to build SVMs (Pedregosa et al., 2011).

Random Forest

Decision trees are predictive models
that use recursive partitioning for clas-
sification or regression tasks (Rokach
and Maimon, 2015). Random forests
combine the results of a set of individ-
ually trained decision trees (Breiman,
2001). This principle is called ensem-
ble learning and has shown to improve
the predictive performance (Opitz and
Maclin, 1999; Raschka, 2017). Two
widely used methods of ensemble learn-
ing are bootstrap aggregation referred
to as Bagging (Breiman, 1996a) and

Boosting (Freund and Schapire, 1996;
Schapire, 1990).

In the Bagging method multiple repli-
cates of the original learning data set
are created by bootstrapping with re-
placement (Breiman, 1996b). The
decision trees are then trained with
these different variations of the orig-
inal data set and the results of the
individual decision trees are averaged
(Breiman, 1996b). Bagging reduces
the variance of simple models and helps
to avoid overfitting of more complex
models (Ghojogh and Crowley, 2019).
We trained 2000 trees and used the
RandomForestRegressor method of the
Scikit-learn package (Pedregosa et al.,
2011) to build our model. The idea
behind Boosting is to combine a set
of weak and moderately inaccurate de-
cision trees and average their predic-
tions to create very accurate predic-
tions (Freund and Schapire, 1999). We
trained 4000 trees and used the adap-
tive boosting algorithm (AdaBoost) in-
troduced by (Freund and Schapire,
1997) from the Scikit-learn package
(Pedregosa et al., 2011). Different de-
signs of RF algorithms have previously
been used to successfully predict e.g.
crop water stress, evapotranspiration,
above ground-biomass and basal area
(dos Reis et al., 2018; Feng et al., 2017,
Pan et al., 2019; Virnodkar et al., 2020;
Wu et al., 2016).

Artificial Neural Network

ANNs are inspired by biological brains
and consist of multiple neurons that are
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organized in a set of layers (Nguyen
and Zeigermann, 2018). ANNs are
ideal to identify complex non-linear re-
lationships between in- and output data
sets and particularly useful in regression
problems with processes that are diffi-
cult to capture entirely (Antonopoulos
et al., 2016; Fernandes et al., 2016).
We used the Sequential, Dense and
KerasRegressor methods of the keras li-
brary (Chollet, 2015) to build an ANN
with the typical multiple perceptron
type (MLP) architecture which was re-
cently used to predict tree metrics from
spatial data (dos Reis et al., 2018;
Tavares Janior et al., 2019). Similar
ANN designs have been used to es-
timate evapotranspiration and transpi-
ration in a wide range of ecosystems
(Antonopoulos et al., 2016; Feng et al.,
2017; Fernandes et al., 2016). We used
rectified linear units (ReLU) for the ac-
tivation function in the input and the
three hidden layers and a linear activa-
tion function for the output layer.

Variable importance

To estimate the importance of each
predictor variable for the regression
model, we decided against a removal-
based approach as described in e.g.
dos Reis et al. (2018) and opted
for a randomization-based permutation
test (also called Mean Decrease Ac-
curacy) using the Permutationlmpor-
tance method from the eli5 package
(Breiman, 2001; Strobl et al., 2008).
Hereby, the values of a single input vari-
able of the prediction dataset are ran-
domized (and not left out) and its ef-

fect on the prediction accuracy of the
regression model is measured (Strobl et
al., 2008).

Statistical analyses of predicted
and measured values

To evaluate the prediction models, we
compared measured and predicted val-
ues from the test data set and calcu-
lated model accuracy in %, mean ab-
solute percentage error (MAPE), root
mean squared error (RMSE) and R®.
Variable importance of each predictor
variable was assessed using a permuta-
tion test (Strobl et al., 2008). Single
variable importance was averaged over
all data sets for each sap flux and stom-
atal conductance and might vary for
single species. To compare the predic-
tion methods we used a non-parametric
Passing-Bablok regression (Bilic-Zulle,
2011; Passing and Bablok, 1984,
1983). The python MethComp pack-
age (van Doorn, 2020) was used for the
computation of the Passing-Bablok re-
gressions. The Passing-Bablok regres-
sion outputs a regression line of which
the confidence intervals of slope and in-
tercept are especially interesting for a
model comparison analysis. If the con-
fidence intervals of the slope and the
intercept include 1 and O respectively,
there is no statistically significant bias
between the methods (Legendre and
Legendre, 2003; Passing and Bablok,
1983). Linearity of the data is a cru-
cial assumption for Passing-Bablok re-
gressions (Passing and Bablok, 1983);
and was checked visually. All statistical
analyses were computed with Python
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3.6.9 using pandas (McKinney, 2010),
NumPy (Oliphant, 2006; van der Walt
et al.,, 2011), SciPy (SciPy 1.0 Con-
tributors et al., 2020), statsmodels,
scikit learn (Pedregosa et al., 2011),
keras and eli5 packages and libraries.
Graphs and figures were created with
Matplotlib (Hunter, 2007) and seaborn
(Waskom et al., 2020) libraries.

sap flux

4.3 Results

4.3.1

Highest model accuracy was achieved
by Random Forest models (both bag-
ging and boosting) predicting sap
flux for individual tree species, espe-
cially Archidendron pauciflorum where
a model accuracy of well over 90% was
reached (Figure 4.2). Across all tree
species, accuracy was 60% and 52% for
oil palm (RF bagging).

Prediction accuracy

stomatal conductance

100

H MLR
. SVM
I RF Bagging
B RF Boosting
60 ANN

80

40

Model Accuracy %

20

all all trees  Elaeis

(palms & trees) (oil palm) (tree) (tree) (tree)

Parkia Archidend.Peronema Shorea
(tree)  (palms & trees)

Elaeis Archidend. Peronema Shorea
(oil palm)  (tree) (tree) (tree)

all all trees

Figure 4.2: Model accuracy % comparing measured and predicted values of sap

flux and stomatal conductance.

Prediction of sap flux across all
canopies, including dicot trees and
palms, was unsuccessful with all applied
algorithms. For predictions of stomatal
conductance, RF bagging was again the
method with the highest model accu-
racy, consistently yielding prediction ac-
curacies of 60% for the tree species
and 48% for oil palm (Figure 4.2).
For stomatal conductance, predictions
across all canopies were successful, with
60% accuracy for RF bagging. A
comparison of error metrics (MAE and
RMSE) showed that errors for the ran-

dom forest algorithms and particularly
RF bagging were comparatively low for
both sap flux and stomatal conductance
prediction (Figures 4.3 and 4.4). The
simpler algorithms such as MLR and
SVM but also the more complex ANN
frequently produced higher errors. Gen-
erally, the errors for stomatal conduc-
tance predictions are more evenly dis-
tributed across algorithms and target
groups than for sap flux prediction. For
instance, MAE and RMSE for Shorea
leprosula were relatively small and ho-
mogeneous across algorithms for stom-
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atal conductance, but ranged from un- (ANN) for sap flux.
der 30% (RF bagging) to over 100%

sap flux stomatal conductance
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Figure 4.3: Mean Absolute Error (MAE) of predicted and measured values for
sap flux and stomatal conductance.
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Figure 4.4: Root Mean Square Error (RMSE) of predicted and measured values
for sap flux and stomatal conductance.

Both RF algorithms resulted in predic- conductance are generally less congru-
tions highly congruent with the sap flux ent with the measurements than for sap
measurements in terms of R? (Figure flux. However, the RF bagging algo-
4.5); across all tree species as well as for rithm does achieve R?s around 0.5 or
each individual tree species, R?s were higher across all canopies and across all
close to or higher than 0.8 (RF bag- tree species, as well as individually for
ging), while they were close to 0.6 for two of the four species.

oil palm. The predictions for stomatal
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Figure 4.5: Coefficient of determination (R?) for predicted and measured values

for sap flux and stomatal conductance.

4.3.2 Variable Importance

A total of 94 input variables (or fea-
tures) were used to train the algo-
rithms. After applying a multicollinear-
ity test and a backward elimination the
remaining 42 variables were used to
train the prediction algorithms. To im-

sap flux

prove the distribution of measurement
efforts and the relevance of input fea-
tures we performed a permutation im-
portance analysis. Therein, the num-
bers of most important variables that
explain 95% of the model outcome are
highly variable (Figure 4.6).

stomatal conductance
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Archidend. Peronema
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all all trees
(palms & trees)

Figure 4.6: Number of most important input variables that explain 95% of the

corresponding models.

For the MLR a very low number of
only up to 7 input variables are re-
quired to explain most of the model
result for both sap flux and stomatal
conductance. For the SVM algorithm
between 10 and 20 variables explain

95% of the model outcome; a smaller
number of variables explain the sap
flux results, while the number of vari-
ables was higher for stomatal conduc-
tance predictions. The RF algorithms
showed the highest variations ranging
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from only one variable up to 20 for sap
flux and generally using 15 to 20 main
variables for stomatal conductance to
explain most of the model's outcome.
The ANN algorithm uses an intermedi-
ate number of around 9 to 17 important
variables for both sap flux and stomatal
conductance prediction.

Variable importance (expressed in %)
for predicting sap flux averaged over all
sap flux and stomatal conductance data
sets shows big differences for the MLR

algorithm, where variables for sap flux
are very homogeneous and the predic-
tion of stomatal conductance is domi-
nated by the latent heat flux as derived
from the DATTUTDUT model (Figure
4.7 and 4.8). A similar but less pro-
nounced pattern can be observed for
the SVM regressor where the main pre-
diction variables for sap flux are very
homogeneous and for the prediction of
stomatal conductance barometric pres-
sure is the prevalent variable.

Most important variables for sap flux
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RF Bagging
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Figure 4.7: The seven most important input variables averaged over all data
sets (different canopies and combinations) for the corresponding models when

predicting sap flux

Both RF algorithms mainly rely on the
canopy area as a main prediction vari-
able for both sap flux and stomatal con-
ductance. Another observation is the
second variable that is of a much less
pronounced importance for the model
results: both algorithms use the num-
ber of pixels for sap flux predictions

and the barometric pressure for stom-
atal conductance predictions (Figure
47 and 4.8). The ANN algorithm
shows a very homogeneous distribution
for both sap flux and stomatal conduc-
tance and no prevalent variable that
is especially important for the results
(Figure 4.7 and 4.8).
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Figure 4.8: The seven most important input variables averaged over all data
sets (different canopies and combinations) for the corresponding models when

predicting stomatal conductance.

4.3.3 Method comparison

Predicted values for sap flux from the
RF algorithms almost always showed a
linear relationship with their measured
counterparts, whereas this can only be
observed for the MLR and SVM algo-
rithms for oil palm datasets and was
never detected for the ANN algorithm
(Figure 4.9). There was no linear re-
lationship of measured and predicted
values for stomatal conductance for
all prediction algorithms (Figure 4.10).
Sap flux predictions for all trees and oil
palm (but not all canopies) as well as
for Archidendron pauciflorum showed
no significant continuous or system-
atic bias from the measurements when
the RF Bagging algorithm was applied

(Figures 4.9 and 4.11), which indicates
interchangeability of the methods.

Except for some outliers, the measured
and RF bagging predicted values for
sap flux in trees closely follow the 1:1
line, while showing more variance for
oil palm (Figure 4.11). The same was
observed for oil palm canopies where
the MLR and RF Boosting algorithms
predicted sap flux without significant
bias or errors (Figure 4.9). For species
specific predictions, linearity was found
for both RF algorithms but except for
Archidendron pauciflorum a significant
systematic and continuous bias was de-
tected. None of the algorithms showed
potential in predicting sap flux of Parkia
speciosa.
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Figure 4.11: Measured and predicted sap flux for all tree and palm canopies

from RF Bagging algorithm.
4.4 Discussion

Our study demonstrates the applicabil-
ity of thermal remote sensing data from
drones and meteorological data for pre-
dicting sap flux and stomatal conduc-
tance, two key processes related to the
water balance of individual plants and
ecosystems. Model accuracy was gen-
erally higher and errors were lower for
sap flux than for the stomatal con-
ductance predictions. Therein, differ-
ent prediction algorithms showed sub-
stantially different behaviour in terms
of input requirements and variable im-
portance. The prediction results es-
pecially from the RF Bagging method
were found to be interchangeable with
ground-based measurements for some
canopy types and species.

4.4.1 Prediction accuracy

Using the initially reduced input data
set of 42 variables, the five applied pre-
diction algorithms estimated the target
variables sap flux and stomatal conduc-

tance with varying results. In our study,
MLR, representing the simplest algo-
rithm, produced results of intermediate
quality, often with lower errors than the
more complex SVM algorithm. This
stands in contrast to previous studies
where the SVM algorithm produced
more congruent estimates, e.g. sap
flux from a range of directly measured
variables or biomass from remote sens-
ing data (Fernandes et al., 2016; Wu
et al., 2016). Since the creation of
a representative model with MLR re-
quires a prevalent linear relationship
of at least some input variables with
the target variables, we assume that
given a supplementary set of ground-
based measurements MLR can still be
a simple alternative to more complex
machine learning algorithms. The rela-
tively poor results of MLR predictions
might be caused due to the fact that es-
pecially the remotely sensed data often
does not directly correlate with either
sap flux or stomatal conductance mea-
surements.

Compared to previous studies that
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e.g. modelled evapotranspiration from
hydro-climatic variables (Shrestha and
Shukla, 2015), the SVM algorithm did
not produce satisfying results. On aver-
age, model accuracy was higher for the
SVM when predicting stomatal conduc-
tance than when predicting sap flux,
coefficients of determination indicate
that neither model predicts the target
variable accurately. Since we used a
linear kernel, the performance of the
SVM algorithm highly depends on the
linear relationship of at least some in-
put variables with the according target
variable.

Overall, both RF algorithms (Bag-
ging and Boosting) resulted in similar,
high quality predictions, with the Bag-
ging algorithm commonly performing
slightly better. Previous studies pre-
dicting water stress from remote sens-
ing data showed similar results, i.e. the
bootstrapping based Bagging option
slightly outperforming the boosting al-
gorithm, but small overall differences
between the methods were observed
(Ismail and Mutanga, 2010). In our
study both RF algorithms show a com-
paratively high model accuracy and low
errors with a high congruence of mea-
sured and predicted values, particularly
for sap flux. Similar outcomes were
found in studies where above-ground
biomass was estimated from remote
sensing data and where RF algorithms
had the lowest errors and highest con-
gruence and generally outperformed all
other algorithms (dos Reis et al., 2018;
Wu et al., 2016).

The ANN algorithm did not produce
sufficiently accurate predictions in our

study, except for the prediction of
sap flux for one tree species, Parkia
speciosa. A previous study applying
similar feed-forward networks but using
ground-based input data approaches
showed satisfactory results for sap flux
prediction (Liu et al., 2009). While we
expected better results from the ANN
algorithm due to its complexity, the pa-
rameterization of the method is known
to be difficult and highly sensitive to
variations in input parameters (dos Reis
et al., 2018; Rodriguez-Galiano et al.,
2015). Further research in parameter
setting options might therefore produce
more accurate results.

4.4.2 Variable importance
evaluation

The output quality of prediction algo-
rithms highly depends on how well the
input variables represent the ecosys-
tem and the target variables (Pan et
al., 2019). For sap flux and stomatal
conductance, one would generally ex-
pect a strong influence of environmen-
tal and physiological variables. The
overall number of variables that ex-
plained 95% of our MLR model was
low, never surpassing 7 variables (Fig-
ure 4.6). This is a strong indicator
for either no or non-linear relationships
between most input variables and the
output variables. The seven most im-
portant variables averaged over all in-
put data set configurations (mixed and
single species) of the MLR model in our
study show that canopy area as well as
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relative humidity have the greatest im-
pact when predicting sap flux (Figure
4.6). These results only partly resem-
ble variables from other studies where
air temperature and VPD related vari-
ables such relative humidity played a
key role in MLR derived models to pre-
dict sap flux (Liu et al., 2009). The
most important variable for stomatal
conductance predictions is the mean
latent heat flux derived from the DAT-
TUTDUT model (Figure 4.7). Surpris-
ingly wind speed was not amongst the
most important input variables for the
MLR algorithm whereas an influence
of wind speed on both target variables
was shown in several previous studies
(e.g. Chu et al., 2009). Asides from
meteorological variables, soil moisture
is considered to be a classic driver of
sap flux and thus transpiration (e.g.
Giambelluca et al., 2016; Kobayashi et
al., 2014). While our data set unfor-
tunately did not comprise soil moisture
data, in a previous study soil moisture
played a key role for predicting transpi-
ration with a MLR in a semiarid region
(Fernandes et al., 2016). However, in
our equatorial study region in lowland
Sumatra previous assessments showed
no significant influence of the typically
rather small soil moisture fluctuations
on (evapo)transpiration of oil palms
and trees (ROl et al., 2019; Stiegler et
al., 2019), with exception of a strong
El Nifio event (Stiegler et al., 2019).

We could not identify dominating input
variables that would explain the model
built by the SVM algorithm for sap
flux. The prediction from the SVM al-
gorithm for stomatal conductance was

slightly dominated from the barometric
pressure variable (Figure 4.8). None
of the variables explained more than
20% of the final model. In contrast,
a previous study successfully applied a
SVM to predict potential evaporation
using solar radiation, relative humidity,
air temperature and wind speed as in-
put variables (Kisi and Cimen, 2009).
As both sap flux and stomatal conduc-
tance are related to evapotranspiration
we expected the SVM derived model to
be based on these variables. However,
compared to the MLR algorithm, none
of these variables was among the most
important variable for sap flux predic-
tion and only relative humidity played
a minor role for stomatal conductance
prediction.

The number of variables that explains
95% of the model results was very low
for both RF algorithms when predicting
sap flux. In contrast, the RF algorithms
used among the highest numbers of
variables when predicting stomatal con-
ductance. Among them, canopy area
was the (clearly) dominating variable
for the prediction of both sap flux and
stomatal conductance. With simple lin-
ear regression analysis, no relationship
between canopy size and sap flux could
be found, mainly because the canopy
size is a constant variable while sap
flux quantity varies during the day. We
assume a non-linear relationship be-
tween canopy size and sap flux which
requires auxiliary variables to be pre-
dicted. Remotely sensed canopy size
is an important factor for plant tran-
spiration and was already found to be
a suitable predictor in previous studies
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(Ahongshangbam et al., 2019, 2020).
A general advantage of RF algorithms
is their ability to produce accurate pre-
dictions even from small samples and
with a large set of independent input
variables (dos Reis et al., 2018); in our
study, they performed better than all
other applied algorithms.

The ANN algorithm mainly uses an in-
termediate number of input variables
compared to the small set of MLR
based models and the large sets of
the SVM models. Compared to the
other algorithms, the ANN does not
show any clearly dominant input vari-
able. An interesting observation is that
the ANN algorithm uses cyclic local
time variables among its most impor-
tant input variables. This seems logical
approach as sap flux is known to follow
a daily course with near-noon maxima
and night time near-zero minima in the
study region (e.g. Niu et al., 2017,
Roll et al., 2015). One previous study
found that the best results for stand
transpiration prediction were achieved
by using climate data, soil water con-
tent and canopy properties as key in-
put variables (Fernandes et al., 2016),
which are partly also represented in our
ANN derived prediction models.

4.4.3 Method comparison

Compared to the ground measure-
ments, most algorithms were able to
predict sap flux in oil palm without ma-
jor errors, three algorithms even showed
no bias in its prediction. Simple MLR
was sufficient to predict sap flux from

oil palm canopies without bias. Com-
pared to the other species oil palm had
by far the biggest sample size. This il-
lustrates how important adequate sam-
ple sizes are for model training. While
the SVM algorithm produced rather
poor predictions in our study, it was
found to predict better results for e.g.
potential ET when compared with con-
ventional ANN approaches (Kisi and
Cimen, 2009). Using RF algorithms,
sap flux can be predicted from re-
mote sensing data in close congruence
to measurements without producing
many outliers (Figure 4.11). While
analysing tree and palm canopies sep-
arately, sap flux can well be predicted
by the RF bagging algorithm, while for
the whole data set including both, trees
and palms, sap flux was not adequately
predicted. The reasons are likely under-
lying differences in physiology between
dicot trees and monocot palms; this
e.g. includes size and distribution of
water-conductive vessels in the stem
and crown and leaf architecture. As
such, previous ecohydrological assess-
ments in the study region pointed to
vast differences in water use between
oil palms and trees including rubber
trees of similar age, with substantially
higher per-tree and stand transpiration
rates of oil palms (R&ll et al., 2015; Niu
et al., 2017; Rall et al., 2019). Drone-
derived crown metrics of oil palms and
adjacent trees further suggested that
oil palms transpire two-times more wa-
ter per unit of crown volume as agro-
forest trees (Ahongshangbam et al.,
2019) and about five-times more per
unit of crown surface area than rain-
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forest trees (Ahongshangbam et al.,
2020), which may well be the reason
why the joined analysis of trees and
palms was unsuccessful. The good pre-
diction performance of RF algorithms
compared to e.g. ANN algorithms was
previously also described for predict-
ing potential evapotranspiration (Feng
et al.,, 2017). RF was further found
to be the best of several algorithms
for above ground biomass estimation
from remote sensing data (Wu et al.,
2016). The rather complex ANN al-
gorithm showed no convincing results
in our study. Potential reasons include
that variables might not have been cap-
tured due to a lack of a sufficing num-
ber of free weights (Fernandes et al.,
2016), or that a surplus of free weights
might have caused an over-fitting of
the model which lacked the generaliza-
tion to predict reasonable results from
our test data set (Kumar et al., 2011).
More than the other algorithms optimal
layout of the ANN highly depends on
the input variables, the problem that
one tries to solve and is often subject
to a trial and error process (Maier and
Dandy, 2000).

None of the applied models could pre-
dict sap flux in Parkia speciosa, de-
spite comparatively low errors and a
promising model accuracy as well as
high congruence with measurements.
However, confidence intervals tended
towards infinity and intercept and slope
were far off their regular scope. Re-
viewing the thermal canopy pictures of
Parkia speciosa canopies it is quite ob-
vious that the canopies are not dense
and partly ‘invisible’ in the thermal im-

ages and most pixels are either mixed
or just represent the soil below.

Since a core advantage of ML algo-
rithms is that they can continuously be
improved when new data is available
(dos Reis et al., 2018), better predic-
tions for single tree species are possible
opening up new options to predict sap
flux for a vast variety of species. In
our study, major challenges remain with
the prediction of stomatal conductance.
The data set for stomatal conductance
differed strongly from the data set for
sap flux. Average time offsets of di-
rectly and remotely measuring stomatal
conductance were much bigger than for
sap flux and measured and modelled in-
put variables were not ideally suited for
stomatal conductance prediction. The
use of an additional set of multispectral
images and resulting indices such as the
NDVI (normalized difference vegetation
index) or the EVI (enhanced vegeta-
tion index) could potentially enhance
the prediction of stomatal conductance
(Panda et al., 2014). Further, the sam-
ple size for sap flux was much larger
than for stomatal conductance due to
a limited amount of porometry devices
and the non-automated nature of the
measurements. Furthermore, the stom-
atal conductance measurements repre-
sent only a small portion (centimetre
scale) of a given canopy. The identifi-
cation and subsequent upscaling from
this small leaf area to a whole canopy
thus likely introduces substantial errors
into the predictions.

A general drawback of machine learn-
ing models is that they usually lack
causal relations that would enable a bi-
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ological interpretation (dos Reis et al.,
2018; Ozgelik et al., 2013). Our study
is based on approaches that are often
described as the traditional statistical
(MLR) and traditional machine learn-
ing (SVM, RF, ANN) methods (Dou
and Yang, 2018), while more complex
approaches such as the stochastic gra-
dient boosting, which combines the
advantages of boosting and bagging
(Wu et al., 2016), were not within the
scope of this study. In summary, RF
approaches worked best for predicting
sap flux, while a model that can predict
stomatal conductance without bias was
not found.

4.5 Conclusions

Drone remote sensing and in situ mete-
orological observations in conjunction
with machine learning algorithms can
be considered reliable methods for the
prediction of sap flux. For tree and
palm canopies random forest regres-
sors predicted interchangeable results
without significant bias compared to
direct sap flux measurements. The pre-
diction of stomatal conductance from
remotely sensed data was less success-
ful and requires further research. Our
study complements the asset of avail-
able sap flux approaches by a reliable
method for drone-based sap flux pre-
diction.
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ABSTRACT

Evapotranspiration (ET) is a central flux in the hydrological cycle. Various approaches to
compute ET via energy balance models exist, but their handling is often complex and chal-
lenging. We developed QWaterModel as an easy-to-use tool to make ET predictions available
to broader audiences. QWaterModel is based on the DATTUTDUT energy balance model
and uses land surface temperature maps as an input. Such maps can e.g. be obtained from
satellite, drone or handheld camera imagery. In the present study, we successfully tested QWa-
terModel for predicting ET in a tropical oil palm plantation against the well-established eddy
covariance method. QWaterModel is compatible with all versions of QGIS3 and is available
from the official QGIS Plugin Repository.

Software Availability:
Version: 1.0 / Software licence: GNU - General Public License
Availability: plugins.qgis.org/plugins/qwatermodel / github.com/FloEll/QWaterModel

cycle are projected; therefore, a broad
understanding and knowledge of ET
and its patterns are of paramount im-
portance (Kaushal et al., 2017; Ziegler
et al., 2003). The current under-
standing of how ecosystems respond

5.1 Introduction

Evapotranspiration (ET) is the com-
bined water flux of evaporation from
soil, plant and water surfaces as well as

transpiration from plants (Allen et al.,
1998). Terrestrial ET is a major flux in
the hydrological cycle consuming about
60% of terrestrial precipitation (Oki
and Kanae, 2006). Associated with cli-
mate and land-use change, major trans-
formations in the global hydrological

to such changes is limited by insuffi-
cient monitoring capabilities (Fisher et
al., 2017). The development of effec-
tive adaption strategies for agriculture,
ecosystems and water management will
depend on the availability of ET assess-
ment schemes that can be readily ap-
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plied from local to global scales (Fisher
et al., 2017). ET can be measured lo-
cally using e.g. the eddy covariance
method or estimated at larger spatial
scales by applying energy balance mod-
els. For many energy balance models
remotely-sensed land surface tempera-
tures (LST) are used as principal in-
put, therein assuming that hot pixels
are the result of low ET and cold pix-
els indicate high ET (Timmermans et
al., 2015). Current developments such
as increasing computation power, ex-
tensive availability of free satellite im-
agery (e.g. from Landsat 7 and 8) and
a large variety of portable thermal cam-
eras that can be attached to drones or
used as handheld devices foster the use
of energy balance modeling for ET es-
timation (Hoffmann et al., 2016; Maes
and Steppe, 2012; Timmermans et al.,
2015; Xia et al., 2016). However, most
energy balance models are complex and
their implementation requires advanced
programming skills and technical ex-
pertise, which constitutes a barrier for
the application of energy balance mod-
els for ET estimation. To overcome
this barrier, we developed the QGIS
plugin ‘QWaterModel’, which addresses
the following objectives: to facilitate
the use of energy balance and evap-
otranspiration modeling, to take LST
images and maps from a wide range
of sources including satellites, planes,
drones and handheld thermal cameras
as input, to reduce the use of comple-
mentary data to a feasible level and to
use a documented open source struc-
ture to encourage further development.
In the present study, we explain and

test key-features of QWaterModel in a
scientific context, using exemplary LST
data from different sources recorded
in an oil palm plantation in Indonesia
to compute ET estimates. We then
compare the ET predictions from the
plugin with simultaneous ET reference
measurements with the well-established
eddy covariance method.

5.2 Methods

5.2.1 Software design

To facilitate the use of energy bal-
ance modeling for ET estimation for
a broad audience, we chose QGIS3
(QGIS Development Team, 2020) as
a platform. QGIS is a free and open
source geographic information system
that provides a versatile environment
for work flows with spatial data such
as LST maps. It offers subsystems for
data input and management, analysis,
easy visualization of spatial data, has
a large community of developers and
is supported by most operating sys-
tems (Bhatt et al., 2014; Criollo et
al., 2019). The use of QGIS is fre-
quently taught in scientific institutions
and its functionality can be extended
with a large variety of available plugins.
For example, the WET (Water Ecosys-
tems Tool) plugin (Nielsen et al., 2017)
provides easy access to complex water-
shed modeling. To our knowledge, no
such easy-to-use plugins exist in the
QGIS environment for instantaneous
flux modeling or ET prediction. The
presented plugin, QWaterModel, was
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developed to fill this gap. It is based
on the energy balance model DAT-
TUTDUT (Deriving Atmosphere Tur-
bulent Transport Useful To Dummies
Using Temperature) (Timmermans et
al., 2015), which uses LST maps as
main input and, except for time and lo-
cation of the LST recording, requires no
further input of ancillary data. In the
original DATTUTDUT model the ra-
diation budget is simply modeled from
a set of parameters and sun-earth ge-
ometrics (Timmermans et al., 2015).
This approach works well for cloud-free
conditions. For a broader usability un-
der conditions of cloudy skies and high
relative air humidity we extended this
original model concept, giving the user
the possibility to configure model pa-
rameters according to in-situ field mea-
surements. The radiation budget can
be complemented by measurements of
short-wave irradiance or net radiation
at the study sites via manual input.
The DATTUTDUT model has success-
fully been tested for a broad range of
LST input types, from satellite recorded
images (Timmermans et al., 2015) to
plane and drone recorded images (Bren-
ner et al., 2018; Xia et al., 2016). The
plugin was built using Plugin Builder
3.2.1 (GeoApt LLC, 2019) and Plu-
gin Reloader 0.7.9 (Jurgiel, 2020). We
used Qt Creator 4.11.0 (The Qt Com-
pany, 2020) to develop the graphical
user interface (GUI) and Python 3.8
with the QGIS3/Python standard li-
braries (gdal, math, numpy, datetime
and os) for the associated functionality.

Detailed installation instructions and
the source code can be found on:
github.com/FloEll/QWaterModel /blob/
master/README.md

5.2.2 Application and

testing

To test the plugin, we used data
recorded in a mature monoculture oil
palm (Elaeis guineensis Jacq.) plan-
tation located in the lowlands of
Sumatra (Jambi province, Indonesia,
103.3914411 E, -1.6929879 N, 76 m
as.l, see Meijide et al.  (2017)
for further details). We exemplarily
use LST recordings from two indepen-
dent sources (drone and handheld cam-
era) to test the QWaterModel plugin
against eddy covariance reference mea-
surements:

1. Images recorded with an oc-
tocopter drone (MK EASY
Okto V3; HiSystems, Germany)
equipped with a radiometric ther-
mal camera FLIR Tau 2 640
(FLIR Systems, USA) attached
to a TeAx Thermo-capture mod-
ule (TeAx Technology, Ger-
many). The data have a spatial
resolution of 0.2 m and cover a
footprint of 0.8 ha and are thus
suitable for tree-scale to stand-
scale assessments of ET. 13 im-
ages from 09:00 to 15:00 h local
time on 7th of August 2017 were
recorded in 30 min intervals.
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2. Images taken from a tower at 10
m above the canopy with a hand-
held Fluke til00 thermal camera
(Fluke Systems, USA). The data
have an approx. spatial resolu-
tion of 0.06 m and a footprint of
0.006 ha and are thus suitable for
leaf to canopy assessments of ET.
5 images from 11:00 to 15:00 h
on 7th of August 2017 were taken
in 60 min intervals.

Data are provided for download at:
github.com/FloEll/QWaterModel /tree/
master/Data_Examples

We did not include satellite images
into this study since this was al-
ready included in the original DATTUT-
DUT model study (Timmermans et al.,
2015). In addition, satellite (Landsat 7
and 8) recorded LST maps for our study
region contain a very high cloud cover
fraction (for 2017: min. 23%, mean
72%, max. 100%). Our study thus fo-
cuses on drone and handheld thermal
camera acquired images.

A widely accepted ground-based ref-
erence method for ET assessments is
the eddy covariance method, which pro-
vides measurements of ET at the stand-
scale. Eddy covariance data at the ol
palm site was recorded, filtered and pro-
cessed according to the methodology
described in Meijide et al. (2017). Be-
cause the energy-balance model used
in the plugin assumes full energy bal-
ance closure, eddy covariance data was
processed using the Bowen ratio closure
method (Pan et al., 2017; Twine et al.,
2000). Horizontal energy flows or in-

complete energy balance closure might
introduce certain errors to this refer-
ence method (Loescher et al., 2006).
To derive ET from latent heat fluxes,
latent heat of vaporization was calcu-
lated using in-situ air temperature mea-
surements for eddy covariance measure-
ments and the lowest pixel tempera-
tures from the LST maps for the plu-
gin estimates following the methodol-
ogy described in Timmermans et al.
(2015).

5.3 Results

5.3.1 Software implemen-
tation results

The QWaterModel plugin can be in-
stalled from the official QGIS3 python
plugin repository. The plugin GUI con-
sists of a main window with four differ-
ent input sections (A, B, C, D, Figure
5.1) and an information window, which
are both organized using tabs. In the
main window, section A contains the in-
puts that are essential for the plugin to
work with in a minimal data approach:
a thermal image with temperatures in
Kelvin (e.g. from satellite, drone or
handheld camera), the definition of an
output raster and an output file where
key statistics will be summarized, and
the coordinated universal time (UTC)
when the picture was taken. Providing
information in boxes B, C and D is op-
tional, but may improve the quality of
the ET estimates. The default values
that are visible in the input fields of
box B are taken from Timmermans et
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al. (2015) and can be adjusted if more
local data are available from field mea-
surements or previous studies. The info
tab offers detailed information on input,
output and usage of the plugin. The
plugin outputs a raster with 6 bands
(net radiation Rn [W m~2], latent heat
flux LE [W m™2], sensible heat flux H
[W m~2], ground heat flux G [W m~?],
evaporative fraction EF in [%], evapo-

transpiration ET [mm time™!]). Input
raster details and output statistics are
stored in a .csv file.

Figure 5.2 shows a workflow example
with LST data from different sources,
i.e. recorded from drone and handheld
thermal camera and the corresponding
output.

@ qQWaterModel X

Model Info

Define inputfoutput files and time (minimum requirements) A
Select input raster

Select output raster
Select output file
Coordinated Universal Tme UTC | 2017-08-05T06:00:00

Define model parameters (optional) B

Min. Temp. [K] Percentile Min. Temp. 0,5

Max. Temp. [K] Percentile Max. Temp. | 100
Short-wave irradiance [W/m2]

Net radiation [W/m?]

Gound heat flux % 10
Atmospheric transmissivity 0.7
Atmospheric emissivity 0.8
Surface emissivity 1.0
Define location parameters manually (optional) C

Measured longitude [dec]
Measured latitude [dec]

Altitude above sealevel [m]

Define evapotranspiration parameters D
Time period [s] 3600
Air temperature (optional) [K]
OK | Cancel

() QwaterModel X
Model = Info

o

QWwaterModel is a simple tool to calculate evapotranspiration
from thermal images.

QWwaterModel in a nutshell:

This tool provides a simple workflow to calculate
evapotranspiration from land surface temperature maps. It is
based on the energy balance model DATTUTDUT (Deriving
Atmosphere Turbulent Transport Useful To Dummies Using
Temperature) (Timmermans et al., 2015). Thermal maps from a
wide range of sources induding satellites, drones and handheld
thermal cameras can be used as input.

Index:

1. How to run QWaterModel

2. How to dte the use of QWaterModel

3. More information

4. References

1. How to run QWaterModel:

To run QWaterModel please open the tab Model

1.1 Minimum requirements:

1.1.1 Select an input raster:

This raster should be a one-band .tif file with a single
temperature value per pixel in Kelvin. If possible try to use a .tif
file that has been georeferenced before. If this is not possible
(e.g. because the footprint of the temperature map is too
small) you can define the location parameters in a later step.

Example data is provided for download from this source:

https://github.com FloEll [QWaterModel ftree jmaster/
Data_Examples

1.1.2 Select an output raster:

Define a location where the output raster is stored. The output
raster will be a six band raster containing the following data:

Band 1: net radiation Rn [W/m?]

Cancel

Figure 5.1: Both tabs of the graphical user interface (GUI) of the plugin version
1.0 with the ‘Model’-tab input boxes highlighted in red.
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LST [K]
310

Drone Handheld camera

305

LST input image

300

6 band output

ET [mm/h]
1.0

ET band

0.0

Figure 5.2: The ET modelling workflow with input and output examples. The
input files are one-layer .tif files where each pixel contains a temperature value
in Kelvin. The output files are raster files with 6 bands of which the ET
estimates are contained in the 6th band, which is presented separately in the
lower panels. ET was extracted from the 6-band output raster using the
Rearrange Bands tool from the Processing Toolbox in QGIS 3.10.
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5.3.2 Software experimen-
tal testing results

Land surface temperatures differed with
the time of recording. Thermal variabil-
ity was high in both drone and hand-
held camera obtained maps (Table 1).
To compare the ET estimates from
drone and handheld thermal camera
maps with a measured reference, we
plotted them against the daily course
of eddy covariance derived ET values
(Figure 5.3) and into a scatterplot
comparing measurements and predic-
tions of ET (Figure 5.4). Applying
the energy balance model in its original
version with minimal data input re-
sulted in overestimations of ET during
the morning and afternoon hours, but
in acceptable estimates around noon
(Figure 5.3a). Errors were smaller for
the estimates based on handheld cam-
era pictures than on drone recordings
(Figure 5.4 and Table 2). More pre-
cise results were achieved by adding
measured short-wave irradiance (Figure

5.3b) or net radiation measurements
(Figure 5.3c) to the model inputs, i.e.
ET estimates closely follow the ref-
erence method if additional radiation
data is supplied. The handheld thermal
camera maps generally produce slightly
more congruent results with the eddy
covariance measurements than drone
maps; therein, around noon ET esti-
mates from drone maps are slightly
higher than eddy covariance ET mea-
surements. In the minimal data ap-
proach, ET predictions are most con-
gruent with eddy covariance measure-
ments when ET is high (Figure 5.4a),
while in contrast predictions are most
congruent at low ET when measure-
ments of short-wave irradiance or net
radiation are used in the model (Figure
5.4b and 5.4c). Congruence generally
increases with increasing measurement-
based input; errors are thus smallest for
models computed with directly mea-
sured net radiation (Table 2).

Table 1: Input key-values of land surface temperatures from both sources.

Temperatures Drone (13 maps) | Handheld camera (5 maps)
Mean Temp. [K] 298.3 — 305.5 300.8 — 308.3
Minimum Temp. [K] | 297.2 — 303.0 299.6 — 305.5
Maximum Temp. [K] | 301.2 - 325.1 302.4 - 317.0
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(a) minimal Data (b) with short-wave irradiance (c) with net radiation
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Figure 5.3: Temporal comparison of measured reference ET from eddy

covariance and estimated ET from different LST sources during the course of a
day.
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Figure 5.4: Comparison of measured reference ET from eddy covariance and
estimated ET from different LST sources; metrics on the respective
relationships are shown in the figure and provided in Table 2.

Table 2: Key metrics of linear regression between in-situ measurements and
model output for different data input options (a-c) and recording methods (hand-
held thermal camera and drone).

Metrics (a) minimal data | (b) with short wave irradiance | (c) with net radiation
handheld | drone | handheld drone handheld drone
r’ 0.61 0.66 0.96 0.88 0.95 0.89
MAE 0.17 0.2 0.1 0.11 0.05 0.1
RMSE 0.19 0.23 0.12 0.14 0.06 0.14
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5.4 Discussion and

conclusions

The QWaterModel plugin is an easy-
to-use open-source tool for predicting
evapotranspiration from land surface
temperatures. It is aimed at appli-
cations in ecology, bioclimatology and
land-use science, but is also useful for a
broader utilization including hydrologi-
cal and ecosystem management. It of-
fers a link between science and practical
application of energy balance modelling
for ET prediction. Meeting our objec-
tives, a variety of LST data from very
different sources and spatial extends
can be used as input and complemen-
tary data input requirements were kept
at a minimum level. The case study
showed that images taken at the same
time but with different camera setups
(drone and handheld) result in compa-
rable results for ET estimates and show
high congruence with reference eddy
covariance measurements. Because in
the minimal data approach the radia-
tion budget is calculated from sun-earth
geometry, clouds and relative humidity
or haze are not considered. This ex-
plains the overestimation of ET in the
morning and afternoon hours (Figure
5.3a). In-situ measurements of short-
wave irradiance or net radiation sig-
nificantly improved the ET estimates
(Figure 5.3b and 5.3c). Similar ob-
servations were made in other studies
e.g. on European grasslands where ad-
ditional short-wave irradiance measure-
ments improved the overall accuracy of

the DATTUTDUT model (Brenner et
al., 2018). A method comparison of the
DATTUTDUT model with the eddy co-
variance method over varying weather
conditions and day times showed the
general applicability of this approach in
the tropics and suggested no difference
between drone-based and eddy covari-
ance method for certain configurations
(EllsaRer et al., under review). How-
ever, even when using measured short-
wave or net radiation, ET estimates
based on drone recorded LST data
showed overestimations around noon,
which did not occur in the estimates
based on handheld images. A possible
reason is the presence of artefacts (e.g.
roofs, cars, rocks) in the drone images,
which have a much larger footprint than
the handheld images. Temperatures on
such non-canopy components can dif-
fer greatly from surface temperatures of
vegetation, and these temperature out-
liers have a strong effect on the quality
of predictions. This was also observed
in a study with big temperature differ-
ences conducted in vineyards (Xia et
al., 2016). A potential solution would
be to manually exclude known artefacts
from the images before analysis or to
manually define minimal and maximal
temperatures in the GUI of the plugin.
Unfortunately, no matching satellite im-
ages were available for the time and
date when drone and handheld cam-
era maps were recorded therefore fur-
ther analyses are not performed in this
study. This should be followed up upon
in future studies, even though a major
restriction in our study region is that
satellite images are generally hard to ac-
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quire since a considerable cloud cover
is present on most days of the year.
A further challenge is the fixed over-
pass time of satellites, which is often
not around noon and therefore not ideal
for ET derivation (Delogu et al., 2012).
To overcome these limitations, com-
plementary ET methods from planes,
drones and handheld or fixed thermal
cameras can potentially be calibrated
against simultaneously acquired satel-
lite images (e.g. using QWaterModel)
and then be applied to increase tempo-
ral and spatial coverage.

The scatterplots reveal a gap between
lower and higher ET estimates (Fig-
ure 5.4b and 5.4c). This gap and
its absence in the ET estimates based
on modelled Rn in Figure 5.4a demon-
strates the effects of clouds on predic-
tion accuracy. If clouds are present,
and measurements of short-wave irra-
diance or net radiation can represent
this adequately in the model, ET esti-
mates are clearly lower than with the Rn
modelling approach. Future improve-
ments of the software could include a
referencing tool that links ground mea-
surements of hot and cold surfaces with
LST data. This would allow for a simple
radiometric correction of LST images
and maps. To make the plugin applica-
ble to the needs of a broader range of
users, upcoming versions could further
include other LST map-based indices
such as the CWSI (crop water stress
index) (Bian et al., 2019; Idso et al.,
1981; Jones, 2014). We appreciate all
user input and ideas to further develop
the plugin and encourage to modify the
plugin for other ET related applications
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or to report bugs via our bug tracker. In
the present study, the software was only
tested at one site, a commercial mono-
culture oil palm plantation in lowland
Sumatra. We strongly encourage the
testing and use of the software in other
climatic regions and on other crop and
ecosystem types for further validation.
We provide the source code for the plu-
gin and plan to consistently add more
functionality to the QWaterModel.
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Chapter 6

Conclusions

This dissertation comprises a combination of three individual studies on evapo-
transpiration (ET) and plant-water-use prediction with remote sensing thermog-
raphy using drones. The first two studies (Chapter 3 and 4) are focused on
method comparisons where the well-known and established methods — eddy co-
variance, sap flux and porometry — are compared with modelling and prediction
approaches, based on drone recorded and auxiliary data. The last study (Chap-
ter 5) summarizes key ideas and findings, which result from the first two studies,
and crafts them into an easy to use software. From the findings in all three pa-
pers, overall conclusions on the potential of drone recorded data and predictions
in hydrological modelling can be drawn. Furthermore, possible future use case
scenarios and applications of this methodology and its development options are
illuminated.

This dissertation presents two very common prediction approaches for hydrologi-
cal features of interest: (1) The energy balance model (EBM) prediction methods
for ET are based on causal relations between the plant surface, the atmosphere
and the boundary layer between both. (2) The statistical and machine learning
(ML) prediction approaches for sap flux and stomatal conductance, which use
emerging patterns among multiple variables in the data set to compute predic-
tions. All prediction methods have overall shown very promising results. Given
enough data on solar radiation, ET could well be predicted by all EBMs applied in
Chapter 3 and 5. Daily evapotranspiration patterns were accurately represented
by the EBMs model results, especially when radiation budget measurements were
available. Frequency distributions of latent heat fluxes showed, that increasing
complexity of the EBM also resulted in a more heterogenous representation of
flux variability, while not necessarily contributing to an overall more accurate
result, compared to the eddy covariance reference. This more complex represen-
tation of frequency distribution can be interpreted as a result of a better physical
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representation of energy and radiative exchange by the model (Xia et al., 2016).

Since the statistical and ML based prediction models in Chapter 4 lack the rep-
resentation of causal relations of the biosphere and are purely data driven, they
represent an entirely different approach. Sap flux was overall well predicted, and
random forest prediction methods have proofed to be by far the most promising
approach. While a prediction of both dicot trees and monocot palms in the same
data set remains a challenging matter, the prediction of sap flux from trees and
oil palm in separate data sets resulted in very precise predictions. Vast differ-
ences in water use between trees and oil palm have been observed for this region
(Niu et al., 2017; Réll et al., 2019, 2015) and might be the main reason for the
challenges to predict sap flux from both dicot and monocot canopies in the same
data set. Compared to the EBMs, where the simplistic DATTUTDUT approach
computed the most congruent predictions, and the more complex EBMs better
represented diverse canopy patterns, an increase in complexity of the prediction
models from the simple multiple linear regression to the random forest regressors
improved prediction quality significantly. However, when the much more complex
artificial neural network has been applied to the same data, prediction accuracy
was largely reduced. The prediction success of data driven models is highly de-
pendent on the quantity of input data. Random forest models are known to
be able to compute decent predictions already from a very limited number of
samples (dos Reis et al., 2018), whereas artificial neural networks benefit from
a large data base. The data set used for the study in Chapter 4 was already
very large in terms of a conventional analysis. However, it might still not have a
sufficient size for the application of artificial neural networks yet.

Major challenges to predict stomatal conductance from the recorded data set re-
main. Compared to the sap flux data base, the data set for stomatal conductance
was only half the size, and temporal offsets were by average 20 times larger. An-
other uncertainty was introduced by up-scaling 7-10 measurements of stomatal
conductance covering a centimetre scale of leaf area to an entire canopy. Since
we applied strictly data driven algorithms, the amount of data and its accuracy
are the most crucial components of the input data set and might have directly
led to the high variance in prediction results for stomatal conductance.

The applied model Il regressions (Deming and Passing-Bablok) found inter-
changeability of the well-known methods with the drone data-based approaches
for both causal and data driven prediction strategies. However, such method
comparisons allowing measurement bias in both X and Y variable methods are
rarely applied in forest hydrology studies. Our comparatively large data sets have
opened up the possibilities for full method comparisons. However, a profound
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comparison of the presented results of the model Il method comparisons with
similar studies was not possible, since no such studies — using equally large or
larger data sets or similar model Il method comparisons — have yet been published.

Performing up to 16 survey flights per day, it was possible to record the daily
course of land surface temperatures and model evapotranspiration in a very high
frequency. This temporal resolution is denser than in any other published drone-
based study on plant water traits, and almost resembles studies with constantly
installed thermal cameras (Aubrecht et al., 2016), while it additionally covers a
much larger area. This dense observation of ET and plant water use allows for
a detailed insight into water use patterns and sets the presented studies apart
from others with a much lower temporal or spatial resolution. The daily course
of latent heat fluxes in oil palm from the EBM approach peaked between 600 and
700 W m~1, with some outliers exceeding these values. These findings are highly
congruent with eddy covariance measurements, where some EBM configurations
are more likely to match these measurements taken in the morning and afternoon
hours and others during the peak ET at noon.

The original version of the DATTUTDUT model (Timmermans et al., 2015)
works only under clear sky conditions, therefore assuming the absence of clouds.
However, since the sky has usually been clouded and a high air humidity has
been present at our study site, modelling ET from only a thermal image, time
and location proved very difficult. The original DATTUTDUT model was there-
fore modified to account for cloud cover and humidity. These adapted versions of
the DATTUTDUT model, which have been modified to include radiation mea-
surements and therefore consider cloud cover and relative humidity, predicted
latent heat fluxes with remarkable accuracy. The results from predicting ET em-
phasized that EBMs benefit significantly from radiation measurements, as well
as from knowledge on reflective and absorptive properties from surfaces. For
one-source EBMs, such as DATTUTDUT, the minimal set of collected variables
would therefore be the land surface temperatures (as collected with the thermal
camera mounted on the drone), as well as local time, location, short-wave irra-
diance or, for the most accurate results, the net radiation as a budget of short-
and long wave radiation. The more complex two-source EBMs (TSEB-PT and
DTD) further require wind speed, relative humidity and air temperature and their
respective measurement altitudes, as well as information on the canopy proper-
ties. Not all of these variables can simply be measured from a drone platform.
This fact has also influenced the decision of which EBM to implement into the
software described in Chapter 5.

The prediction models for sap flux were mainly based on canopy area, relative hu-
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midity, the number of pixels and the air temperature. The importance of canopy
area for transpiration estimates has already been shown (Ahongshangbam et al.,
2020, 2019). However, canopy size cannot fully explain the good prediction re-
sults of the presented prediction models. ET is subject to strong variations during
the course of the day, while canopy size remains steady, even during extreme con-
ditions e.g. dryness or flooding. Therefore, canopy area might be an important
indicator, but it is surely not the only variable that led to the observed accuracy in
the predictions. This fact emphasizes the importance of auxiliary variables, such
as relative humidity, air temperature and solar radiation, for precise estimates.
Stomatal conductance has mainly been predicted by barometric pressure, canopy
area, relative humidity, latent heat flux estimates and land surface temperature
derivates. The influence of soil moisture has not been investigated in the scope
of this study, since no significant influence on (evapo)transpiration of oil palm
and trees in lowland Sumatra had been found in non-ENSQO periods in previous
studies (Roll et al., 2019; Stiegler et al., 2019). In other study regions, soil
moisture is known to be an important driver of transpiration (Giambelluca et al.,
2016; Kobayashi et al., 2014) and therefore a key variable in prediction models
(Fernandes et al., 2016).

In conclusion, drones as recording tools for land surface temperatures, have shown
many advantages over other methods. For studies on forestry hydrology, where
the determination of water fluxes in the forest ecosystem and water use on stand
level are of major importance, drones can cover just the right scale, consider-
ing resolution and coverage area. Compared to remote sensing from satellites,
drones are able to record a high spatial resolution which allows to easily dis-
tinguish between canopies, while still covering considerably large areas. Drones
are extremely mobile and versatile and the recording process is usually not con-
strained by terrain or remoteness of the studied area. For this dissertation, a
multicopter drone was used to record land surface temperatures and RGB im-
ages in plantations and forest environments. The payload options, consisted
mainly of thermal infrared sensors and RGB cameras in a stereo-camera setup.
Moreover, a multispectral camera and an on-board sensor to record meteoro-
logical parameters were applied, but the data was not used in the scope of this
dissertation. Chapter 3 and 5 showed, that EBMs can benefit significantly from
additional measurements, especially incoming short-wave radiation and the net
radiation budget of short- and long wave radiation. Sensors to measure these
variables can easily be mounted on the drone, as several studies measuring similar
variables have shown (Suomalainen et al., 2018, 2017). In the scope of this dis-
sertation, a small set of on-board drone sensors has been developed and tested,
but the recorded solar radiation data has not been used for the studies after all.
Extending this concept, auxiliary modelling data can further be gathered by en-
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vironmental sensor networks on the ground. These networks record and transmit
the data, using e.g. the LoRaWAN protocol to directly communicate with the
drone and to supply further variables, such as soil moisture, in-canopy air tem-
perature and relative humidity to the modelling process. A big disadvantage of
drones is, that their complex handling requires training and experience. But with
progressing development of more autonomous systems, less human interaction
will be required in the future. Fully automated drone-based survey flights were
not used for the data acquisition in this dissertation yet, but they will surely be
part of the frame work of hydrological studies in the coming years.

A fully automated data acquisition approach will not only increase the frequency
of recording, but further enable a new branch of scientific studies and publica-
tions. A constant stream of near-real-time recorded data, similar to the reliability
of satellite maps will be available. However, since drones are much more flexible
carrier vehicles than satellites, the choice for payloads and locations can easily
be adapted and temporal and spatial resolution can be increased dramatically.
Since ML models usually boost their prediction quality when more data is avail-
able, they can continuously be improved using the available continuous stream
of automated drone recorded data. These constantly evolving prediction mod-
els might also change the concept of scientific publications. Publications might
therefore not be immutable if published, but rather frequently adapted to the
latest findings based on the ever-evolving data base.

The urge for standardized and simple-to-use tools for ET prediction dates back
even further, then the example from Symons (1867), mentioned in the introduc-
tion of this work. With the open-source software QWaterModel from Chapter
5, we introduced our own tool to enable a simple and easy-to-use workflow for
EB-modelling of mass and energy fluxes from thermal images. The development
of the software followed Occam’s razor principle, for which the minimum of com-
plexity needed to get decent ET prediction results, has been implemented. The
combination of an easy access via download from the official QGIS3 Plugin repos-
itory, a simple and self-explanatory graphical user interface (GUI), and the code
published, reviewable and adaptable on the biggest public code data base, re-
sulted in a wide user base (up to the submission of this dissertation four versions
of QWaterModel exist and more than 1000 downloads have been registered),
ensuring a broad and standardized use and a future interactive development of
the software.

The drone-based remote sensing applications presented in this dissertation and

the modelling and prediction approaches entail a large potential for agriculture
and forestry studies. As shown in Chapter 3, adding a spatially explicit map to the
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eddy covariance footprints is a very useful supplement to understand flux distri-
butions. Autonomous acquisition of LSTs over EC stations and the surrounding
areas can be supplemented by on-board and ground sensors, and energy-balance
models can be computed on the edge, enabling a dense temporal resolution of
LST, flux and ET maps in almost real-time. This concept can e.g. be used for
the attribution of fluxes in mixed species plant communities, the study of edge
effects in landscapes, and can further be adapted e.g. to detect water stress
in agriculture and forests. The very promising results from Chapter 4 support
point measurements of sap flux and stomatal conductance and enable an extrap-
olation of the point measurements to large landscape sized areas with a solid
spatially explicit representation. The results from both Chapter 3 and 4 can help
to optimize irrigation, save water, prevent water stress, reduce crop fatality and
increase yields in precision agriculture applications. Moreover, an urban appli-
cation is the option to adjust irrigation and to detect plant diseases in urban
green lands and parks. It is difficult to estimate the impact of an open-source
software such as 'QWaterModel’ on the spatial ecohydrology community. Since
this software is the first of its kind in terms of free and open-source availability
and user-friendliness in the QGIS3 environment, there is a small chance that it
might actually set a standard for ET modelling using thermal images. However,
it might also be replaced by a more accurate or specialized approach in the long
run, if user-friendliness and availability of the new software can match or improve
the simple GUI-based concept of 'QWaterModel'.
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Table Al: All flight missions (n = 61) indicated with their flight registration
numbers (176-236) conducted from DOY 217 to DOY 221 in 2017. (c) indi-

cates cloudy or partly cloudy skies as observed on site.

Timetable PTPN VI Flights (176-236)

local time 217 218 219 220 221

9:00 T [ (c) 189 | (c) 200 | (c) 213 | (c) 223
9:30 - (c) 190 | (c) 201 | (c) 214 | (c) 224
10:00 | 176 | (c) 191 | (c) 202 | (c) 215 | (c) 225
1030 | 177 | 192 | 203 | (c) 216 (c) 226
11:00 178 | 193 | (c) 204 | (c) 217 | 227

11:30 (c) 179 194 205 218 228
12:00 (c) 180 195 206 219 (c) 229

12:30 181 | (c) 196 | 207 | 220 | 230
13:00 182 197 208 221 231
1330 | 183 | 198 | (c) 209 | (c) 222 | (c) 232
14:00 184 | 199 |(c)210| - | (c)233
14:30 - T (21| - | (c) 234
15:00 (c) 185 - (c) 212 - (c) 235
1530 | (c) 186 | - - T () 236
16:00 | (c) 187 | - - - -
1630 | (c) 188 | - - - -
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Appendix Figure A 1: Scatterplot and linear regression of LSTs obtained with
the drone and tower cameras. Mean absolute error (MAE) is 1.59 K and root
mean squared error (RMSE) is 2.15 K, relationship of both measurements is

r =04
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Appendix Figure A 2: Boxplot distribution of histogram Kurtosis and
Fisher-Pearson Coefficient of Skewness (FPCS) for the different model settings,
each with n=61. Zero for normal distribution is indicated with a red line, the
blue area indicates platykurtic distribution.
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Appendix Figure A 3. Measured net radiation (Rn_mes) plotted against fully
modeled net radiation (Rn_mod) and net radiation estimates based on
short-short wave irradiance (Rn_sw).
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Appendix Il
Method appendix: model descriptions

All models in this study use instantaneous land surface temperatures (LST) to
solve the energy balance equation:

Rn=G+H+ LE (1)

Where Rn is the net radiation, G is the ground heat flux and the turbulent fluxes
H and LE represent sensible and latent heat flux, respectively. Rn is estimated by
calculating the budget of incoming (J) and outgoing (1) long- (1) and short-wave
(s) radiation:

Rn = R'+RI+R/+ Ry = (1= )% R+ gurp*€atm %0 % Ty — Equr %0 % T (0) 0
)
where the short-wave component is calculated by multiplying incoming shortwave
radiation Rs| [W m~2] with its absorption ratio deducted from the combined soil
and vegetation albedo «. The long-wave radiation budget is calculated from sur-
face (soil and vegetation) emissivity £4,,s and atmospheric emissivity €44, the
Stefan-Boltzmann constant o (5.6704*1078 W m—2*K~%), air temperature T},
and radiometric land surface temperature T(6)4,¢ (both in K). The available
energy consisting of the turbulent fluxes H and LE is calculated by subtracting
G from Rn. G is computed as a linear function of Rn similar as described in

Liebethal and Foken, (2007):

G=axR,—b (3)

We set a = 0.1 for ground heat flux under canopies and b = 0 (Ogée et al.,
2001). A time offset ARn as in the original formulation of Liebethal and Foken,
(2007) is not included for simplicity reasons. With the fraction of turbulent fluxes
(Rn = G / Rn) known, radiometric LSTs are used to calculate H and obtain LE
as a residual.

DATTUTDUT

Key input for the DATTUTDUT model is a LST map from where the hottest and
the 0.5% of coldest pixels are extracted, assuming that hot pixels are a result of
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very little to no evapotranspiration and cold pixels origin in a high evapotranspi-
ration rate (Timmermans et al., 2015). Fully modeled Rn is calculated based on
down-welling short-wave radiation estimates calculated using sun-earth geometry
to solve eq. 2. Surface albedo PO is calculated as in Timmermans et al. (2015)
based on the assumption that dense vegetation appears colder than rocks or soil
in the thermal imagery (Brutsaert, 1982; Garratt, 1992):

Py = 0.05+ ((To — Trnin)/(Trnaz — Tinin)) * 0.2 (4)

Downwelling shortwave radiation R, | is calculated from the dimensionless at-
mospheric transmissivity 7 and the exo-atmospheric shortwave radiation SWexo
= 1360 W m~2 (Timmermans et al., 2015). Transmissivity 7 is calculated as
described in Burridge and Gadd (1977) using the solar elevation angle « that
was determined from the geographic position of our site and the coordinated
universal time (UTC) of the measurements:

7 =0.6+ 0.2 * sin(«a) (5)

Rs \l/: T * SWea:o (6)

Timmermans et al. (2015) suggest using a constant value of 0.7 for 7 and 0.8
atmospheric emissivity (€44, ), but as our flight times range from 09:00 to 16:30
h local time we decided to include the solar elevation angle as in eq. 5. Further,
we used a constant surface emissivity (£4,,¢) of 0.98 and not 1.0 as in the original
formulation of the DATTUTDUT model. Air temperature T,;, was calculated as
mean temperature from 0.5% of the coldest pixels in the image.

Calculation of Rn using short wave irradiance or measured Rn for DATTUTDUT:

As the original DATTUTDUT formulation doesn’t account for cloud cover, eq.
6 is replaced by measured short-wave irradiance as in Brenner et al. (2018) for
model runs with Rn_sw. For model runs with Rn_mes eq. 2 was replaced by
Rn measurements recorded at the EC-tower.

Calculation of turbulent fluxes in DATTUTDUT:
The sum of the turbulent fluxes is calculated by subtracting G from Rn. The

result is fractioned into its components H and LE, using the evaporative fraction
(EF) (Timmermans et al., 2015):
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EF = LE/(LE+H) = LE/(Rn—G) = (Tae—T () surs)/ Taz—Tonin) (7)
TSEB-PT

The TSEB-PT model divides eq. 1 into a canopy and a soil fraction (Kustas
and Norman, 1999; Song et al., 2016; Xia et al., 2016). The model consists of
two parts: First an initialization part where all parameters that do not depend
on soil and canopy temperature partition and knowledge of atmospheric stability
are computed. Afterwards an iterative part where the Monin-Obukhov length
is stabilized and the fluxes are finally derived. To begin this process vegetation
cover f.(#) is computed as in Campbell and Norman, (1998):

fe(0) =1 —exp((—0.5w(0) x LAI)/(cos(6))) (8)

where LAl is leaf area index, 6 is the sun zenith angle and w is a nadir view
clumping factor to represent the cross-row structure in which the oil palm is
planted (Kustas and Norman, 1999). Guzinski et al., (2014) suggest a maximum
limit of 0.95 for f.(f), so that a small fraction of the soil is still visible and ex-
treme magnitudes for soil temperature are avoided. Roughness parameters are
calculated from vegetation height. Eq. 2 is used for the original calculation of Rn
from short-wave irradiance for TSEB-PT. Tair was measured at the EC-tower,
T(6)surf was recorded with the drone both similar to descriptions in Hoffmann et
al. (2016). The canopy emissivity E;.,r was set to 0.98 and soil emissivity E,,;
to 0.95. The three resistances in the soil-canopy-atmosphere heat flux network,
the aerodynamic resistance to heat transport (Ry4), the resistance to heat trans-
port from the soil surface (Rg) and the total boundary layer resistance of the leaf
canopy (Rx) are calculated as in Norman et al. (2000, 1995). Net radiation and
the three resistances remain constant during the model runs. After finishing the
computation of all constant parameters, the iterative part of the model starts
assuming Monin-Obukhov length tends to infinity. In the first iteration Rn is par-
titioned into a soil and canopy fraction by calculating net radiation divergence
ARn (Hoffmann et al., 2016; Norman et al., 2000):

ARn = Rnx (1 — eap((—K  LAI % wy) 1/ ((2c05(6,)))) (9)

where K is an extinction coefficient that varies according to LAl (Hoffmann et
al., 2016). We are aware of the fact, that the determination of K using LAl is
disputed as other studies found no significant correlation of K and LAl (Zhang
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et al.,, 2014). With ARn known, sensible heat flux is then estimated using the
Priestley-Taylor approximation:

H.=ARnx (1 —apr* fagx(D/(D+7)) (10)

Where aPT is the Priestley-Taylor coefficient that was calculated as described in
Lhomme (1997). The psychrometric constant v and the slope of the saturation
pressure curve D were both calculated as in Allen et al. (1998). Canopy temper-
ature To was computed by summing up the results of the linear approximation
in equation (A7) for T¢ i, and ATe from equation (All) both from Norman
et al. (1995). Knowing canopy temperature T and fraction of view covered by
vegetation @ as in Hoffmann et al. (2016), soil temperature Tg can be calculated:

T, = (TOR" — foxT¢) /(1 — fo) /Y (11)

Now with soil and canopy temperatures and the resistances of the soil-canopy-
atmosphere heat flux network known, fluxes can be calculated with equations
(9), (10), (11) and (13) from Hoffmann et al. (2016). Soil heat flux G is com-
puted as in equation (3). Total latent and sensible heat fluxes are calculated as
the sums of canopy and soil fluxes. In the following iterations, a recalculation
of Monin-Obukhov length takes place until a stable value is reached and the
resulting fluxes are derived.

Turbulent fluxes are calculated and the original EF is also used to estimate LE
from fully modeled and measured Rn. For model runs with fully modelled Rn,
Rn is calculated as in DATTUTDUT using equation (2), for model runs with
measured Rn, Rn is measured at the EC-tower.

DTD

The Dual-Temperature-Difference (DTD) model works very similar to TSEB-PT
and differs mainly in the way how sensible heat flux is calculated (Hoffmann
et al., 2016). A detailed description of the model can be found in Guzinski et
al. (2014) and Norman et al. (2000). It uses two observations of LST and
air temperature in the same day. The first observation is recorded in the early
morning hours, when fluxes are known to be minimal and the second observation
is recorded later on the same day at any given time. To account for inaccuracies
and bias in the measurements a double-difference of LSTs and air temperatures
is calculated to avoid the direct use of absolute LST data. Equation (A37) from
Guzinski et al. (2014) describes how sensible heat flux is calculated using a series
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resistance network instead of the parallel from the original model formulation in
Norman et al. (1995).

Calculation of evapotranspirated amount of water:

The actual amount of evapotranspirated water (ET,,) in mm h~! was calculated
as in Timmermans et al. (2015):

ET, = ((LE *)/1000000)/(2.501 — 0.002361 % (T, — 273.15))  (12)

Where LE is the latent heat flux in W m~2, t is the respective timespan in seconds
and T, is the air temperature in Kelvin.
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