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Summary 

In this thesis, several sedimentological archives from Altai Tavan Bogd National Park are studied to 

reconstruct the vegetation-, fire-, climate- and human history of the forest-steppe biome in the 

Mongolian Altai. The research is carried out to improve the understanding of the dynamics and 

variability of this sensitive ecosystem and its unique biodiversity. Previous palynological or 

palaeoecological work from the Mongolian Altai is sparse, yet important for an implementation of 

sustainable land use as well as protection and management of the species-rich vegetation in the Altai 

region. The main goals of this research are to reconstruct past vegetation and to investigate the role 

and extent of climate, fire and anthropogenic impact on environmental change.  

A multi-site approach of five environmental archives (lacustrine and peat) from different locations 

and elevations within the forest-steppe biome (below, within and above the forest belt) is applied to 

obtain as much information as possible. Multi-proxy analyses including palynological and 

sedimentological proxies (pollen, NPPs, charcoal, diatoms and XRF-scanning) were used on the 

radiocarbon dated sediment archives.  

During the mid- and the beginning of the late Holocene (4,300 to 1,000 (2,000) cal yr BP) the 

vegetation in the area was characterized by open coniferous forest and high-mountain steppe 

indicating rather warm and humid conditions. In the further course of the late Holocene, steppe 

communities expanded noticeably favoring a colder and more arid climate. During the last approx. 

70 years an increase in tree and shrub vegetation indicates a warming climate and a higher availability 

of water due to permafrost and glacier degradation in the high mountains. Regarding the human 

history in the Mongolian Altai, the period from 2,000 to 1,000 cal yr BP represents a transition phase 

from hunters and gatherers to a nomadic herding lifestyle. Coprophilous fungi reconstructions show 

that grazing intensified around 1,000 cal yr BP, possibly also favoring the expansion of steppe. High-

resolution data show that changes in human occupation due to political shifts and changing 

Mongolian settlements had an impact on the vegetation in the area, especially during Mongol Empire 

(744 to 582 cal yr BP). Regardless of specific settlement periods, short-term changes in climatic 

conditions favored shifts in grazing activities. In the Mongolian Altai, fires play a tangential role. 

However, at around 1,000 cal yr BP the fire frequency increased in accord with growing 

anthropogenic impact and climate aridity. An episode of low fire activity persists since around 150 

cal yr BP.  

Major local variances occurred regarding the time frame and extent of steppe expansion and grazing 

activities in the soil archive within the forest belt and with respect to the fire frequency in the peat 

archive above the upper forest line. The applied multi-proxy approach highlights the value of the 

reconstruction of several independent proxies to examine various aspects of an ecosystem in the same 

archive, despite of that the interpretation of results is challenging. Additionally, the multi-site study 

offers the best possibility to distinguish between local environmental signals and regional trends.  
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Chapter 1: Introduction 

 

Thesis objectives: aims, outline and personal contributions 

Recently, considerable attention has been devoted to global warming discussions. The desire for a 

better understanding of present climate conditions to predict future scenarios has increased the 

interest in climate and environmental dynamics of the past. In this regard, the extent of anthropogenic 

influence to environmental change is widely discussed as well. Multi-proxy studies provide new 

insights into archives from all over the world and enable the reconstruction of various independent 

proxies within the same archive. This holistic examination of ecosystems and their response to 

climate change as well as the use of natural resources make a valuable contribution in the context of 

adaption strategies to global warming.  

The vegetation of the forest-steppe biome in the Mongolian Altai is very sensitive and responds 

strongly to natural and anthropogenic changes. However, in this region in Central Asia 

palaeoarchives have rarely been studied (Brügger et al., 2018; Rudaya et al., 2008, 2009; Tarasov et 

al., 2000). More detailed investigations are needed to examine the response of forest and steppe 

communities to natural and anthropogenic variabilities during the Holocene.  

This thesis is devoted to the research of detailed vegetation-, fire-, climate- and human history in the 

Mongolian Altai from the mid- to late Holocene. Environmental archives from different locations in 

the forest-steppe biome are radiocarbon dated and analyzed by using a multi-proxy approach as well 

as multivariate statistics. The aim is to gain a holistic view on present and past vegetation and 

environmental changes and the role of anthropogenic impact. Those changes are expressed by the 

reconstruction of several sedimentological and palynological proxies. Pollen analysis is applied to 

investigate the response of vegetation to climate, fire and human influences. A climate reconstruction 

for the mid- to late Holocene is intended to a certain extent. Non-pollen palynomorph (NPP) analysis 

is also used to reconstruct the grazing history, and charcoal analysis provides information about the 

fire frequency.  

The focus is on the dynamics and stability of the forest and steppe vegetation, the role of fire in the 

past, erosion processes and the conditions for lake formation and lake level dynamics in the area. 

Firstly, the aim is to examine how natural the existing forest-steppe vegetation is and to focus on the 

driving forces of the environmental changes in Central Asia. Changes in the Mongolian Altai’s 

forest-steppe ecosystem and plant diversity shall be detected in response to natural and anthropogenic 

environmental shifts. In the next step, the extent of these natural and anthropogenic impacts shall be 

quantified. Secondly, a combination of the multi-proxy records enables the examination of the 

temporal aspect of human impact. It shall be evaluated since when the Mongolian Altai is subject of 

human disturbance and to what extent different cultures inhabiting the area had an influence on the 
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vegetation over time. It is desired to gain a better understanding of the natural or socio-economic 

driving factors for herding and grazing in this remote alpine area. Finally, this thesis shall give a 

perspective of future protection and management of the species-rich vegetation of the Mongolian 

Altai. One prerequisite for a successful implementation is to understand the dynamics of the forest 

boundary. In particular, the aim is to investigate which areas have once been covered by forests, if 

forest-steppe-changes proceeded continuously or if conditions favored abrupt changes between both 

stable ecosystems (forest and steppe). 

The main part of the thesis is comprised of four manuscripts. Two published in international peer-

reviewed journals, one submitted and one in preparation. The complete versions of the pollen- and 

NPP diagrams are presented in Appendix B.  

 

Chapter 1: Introduction (pp. 1-23) 

The introduction deals with the state of knowledge of palynological and palaeoecological studies in 

the Altai Mountains and adjacent regions in Central Asia. The region under investigation is described 

in detail. Additionally, a general overview of applied methods is presented. 

Chapter 2: Manuscript 1 (pp. 24-43)  

In the first manuscript “Late Holocene vegetation, climate, human and fire history of the forest-

steppe ecosystem inferred from core G2-A in the ‘Altai Tavan Bogd’ conservation area in Mongolia” 

(J. Unkelbach, Ch. Dulamsuren, G. Punsalpaamuu, D. Saindovdon, H. Behling, published in 

Vegetation History and Archaeobotany, 27(5), 665-677) the first pollen and macro-charcoal records 

(G2-A) inferred from a peat sequence south of Dayan Nuur in the Mongolian Altai are given. Forest-

steppe and fire dynamics of the last 3,880 cal yr BP are reconstructed and discussed in the context of 

climate change. An initial estimate of a possible human impact on the environment is given based on 

the fire history. Subsampling, laboratory work, pollen and macro-charcoal counting, age-depth-

model, numerical analysis, analysis of results, preparation of figures and tables as well as writing 

and revising the manuscript were performed by myself.  

Chapter 3: Manuscript 2 (pp. 44-70) 

The second manuscript “Late Holocene (Meghalayan) palaeoenvironmental evolution inferred from 

multi-proxy-studies of lacustrine sediments from the Dayan Nuur region of Mongolia” (J. Unkelbach, 

K. Kashima, D. Enters, Ch. Dulamsuren, G. Punsalpaamuu, H. Behling, published in 

Palaeogeography, Palaeoclimatology, Palaeoecology 530, 1-14) deals with multi-proxy analyses 

(pollen, spores, NPP, charcoal, diatoms, XRF scanning) of a lacustrine sediment core (D1L1) from 

the same area in the Mongolian Altai. Holistic late Holocene (4,310 cal yr BP) palaeoenvironmental 

reconstructions are presented revealing an increased anthropogenic influence on the vegetation in the 

area for the last approx. 1,000 years. My personal contribution includes sample preparation, counting 

and analysis of results for pollen, spores, NPPs and charcoal data as well as age-depth-modeling, 
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preparation of all figures and tables, and writing and revision of the manuscript (except XRF-

scanning sections). 

Chapter 4: Manuscript 3 (pp. 71-89) 

The third manuscript “Decadal high-resolution multi-proxy analysis to reconstruct natural and 

human induced environmental changes over the last 1,350 cal yr BP in the Altai Tavan Bogd 

National Park, western Mongolia” (J. Unkelbach, K. Kashima, G. Punsalpaamuu, L. Shumilovskikh, 

H. Behling, submitted to The Holocene) addresses the development of anthropogenic impact on the 

environment of Dayan Nuur area inferred from a multi-proxy-study of a high-resolution, lacustrine 

sediment record. Possible impacts of natural and political shifts on the herding and grazing habits of 

the nomadic population over the last 1,350 cal yr BP are discussed. Practical work for pollen, spore, 

NPP and charcoal analysis, preparation of the age-depth-model, all figures and tables as well as 

manuscript writing were performed by me. 

Chapter 5: Manuscript 4 (pp. 90-101) 

The desired aim of the fourth manuscript “Late-Holocene climate and land-use history in the 

Mongolian-Chinese border area, Altai Mountains: combined evidence from palynological, macro-

charcoal and tree-ring analyses” (J. Unkelbach, Ch. Dulamsuren, H. Behling, in preparation) is to 

compare the vegetation and climate history inferred from two additional high-resolution pollen, 

spore, NPP and charcoal records (Ch and Tr5-2B) to dendrochronological climate data obtained from 

Larix sibirica trees in the same valley south of Dayan Nuur. The main part of the manuscript is 

supposed to deal with the comparison and discussion of the different climate reconstructions. My 

personal contribution was to perform pollen, spore, NPP and charcoal analysis including the 

preparation of respective figures and tables, establishment of the age-depth-model as well as writing 

the manuscript draft (except future dendrological sections). 

Chapter 6: Synthesis (pp. 102-108) 

The thesis concludes with a summary and synthesis of the multi-site investigation of environmental 

archives. Uncertainties as well as recommendations for future protection and management of the 

forest-steppe ecosystem are discussed.  

 

 

 

Palynological and palaeoecological investigations in the Altai Mountains and adjacent 

regions – state of knowledge 

Previous studies on the vegetation, climate, fire and settlement history in the Altai Mountains and 

surrounding areas are presented according to their spatial distribution in Fig. 1.1. These offer 

reconstructions ranging from the late Pleistocene (22,600 cal yr BP, e1 Achit Nuur) to present day 

(Tab. 1.1). Most studies cover the mid- and late Holocene (8,200 cal yr BP to present).  



 
Introduction 

 

4 
 

 

Fig. 1.1 Map of mountainous regions (grey) within Central Asia (after Klinge et al., 2003) showing 

the locations of the presented palynological and palaeoecological studies (red dots). Sites are 

grouped according to their region (a1-f4), numbers correspond to Tab. 1.1. 

 

 

Mongolian Altai 

The pioneer work of Tarasov et al. (2000) and Rudaya et al. (2009) were the first palynological 

records providing information on the vegetation and climate dynamics for the terminal late Glacial 

and the Holocene in the Mongolian Altai. Based on low resolution pollen, NPP and diatom data from 

Hoton Nuur (a2), both studies suggest a vegetation pattern dominated by steppe communities prior 

to 10,000 (9,000) cal yr BP indicating a cold and dry climate. For the period from 10,000 (9,000) to 

5,000 (4,000) cal yr BP, boreal forest expanded in the area, revealing an increase in precipitation and 

temperature during the early and mid-Holocene. After 5,000 (4,000) cal yr BP, both records suggest 

a reversion to open vegetation types and drier climatic conditions. Both authors have not considered 

human impact as an important factor for forest reduction until recently.  

Pollen and charcoal reconstructions of Tsambagarav Glacier (a4) ice core material by Brügger et al. 

(2018) are in accord with the general climatic trends reconstructed at Hoton Nuur. Brügger et al. 

(2018) dated the start of the irrecoverable forest decline to 3,750 cal yr BP followed by a fire 

maximum in response to increased dead biomass accumulation after the forest collapse.  

Further palaeoecological studies in the Mongolian Altai were carried out by D’Arrigo et al. (2000) 

(a3) and Dulamsuren et al. (2014) (a1) providing climate information reconstructed from Larix 

sibirica tree rings. These studies demonstrate short-term temperature and moisture oscillations over 

the last approx. 400 years and generally wetter conditions due to the 20th century climate warming 

since around 60 years ago.  
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Russian Altai 

There are plenty of pollen reconstructions carried out by Blyakharchuk et al. (2004, 2007) who 

documented the palaeoenvironmental history in the Russian Altai. Based on a study of three peat 

sequences (Kendegelukol (b4), Tashkol (b7) and Uzunkol (b9)), the history of vegetation and climate 

in the area can be described as follows: at the end of the late Glacial, before 15,500 cal yr BP, the 

distribution of forest and steppe suggests cold and rather dry climatic conditions. A short-term forest 

decline from 15,500 to 15,000 cal yr BP was followed by a more prominent forest increase revealing 

warmer but still dry conditions from 15,000 to 12,200 cal yr BP. After a transition phase (12,200 to 

9,500 cal yr BP), forest expanded markedly pointing to an increase in humidity. Since 7,700 cal yr 

BP, the amount of forest in the Russian Altai declined irrecoverably indicating a stable period of 

cooler and more continental climate. Pollen data obtained from Akkol Lake (b1) and Grusha Lake 

(b3) confirm the results of the previous studies but reveal that the mid-Holocene forest decline 

occurred more than 2,500 years later (5,000 cal yr BP) as demonstrated in Blyakharchuk et al. (2004).  

Contrasting results are also presented by Schlütz and Lehmkuhl (2007). They date the start of the 

forest reduction and steppe expansion caused by climatic cooling at Kuray Range (b5) to 3,400 cal 

yr BP. In that area, the Tarkhata Valley record (b6) provides detailed information on the local human 

influence in the Russian Altai since 1,900 cal yr BP. 

Further palynological and palaeoecological studies were carried out on Lake Teletskoye (b8) 

lacustrine sediments by Andreev et al (2007), Eichler et al (2011) and Sidorova et al. (2012). These 

studies provided high-resolution vegetation and climate reconstructions for the late Holocene 

highlighting the effect of the 20th century global warming and the regional significance of vegetation 

changes. This is supported by temperature and precipitation reconstructions from Belukha Glacier 

(b2), indicating a gradual climate warming in the Russian Altai since AD 1850.  

 

 

Chinese Altai 

Over the last decade, Holocene environmental change was subject of numerous publications. The 

most extensive pollen record was established by Tao et al. (2010) providing detailed information on 

vegetation and climate history at Balikun Lake (c2) since 16,700 cal yr BP. In that generally arid 

area, vegetation cover varied from desert to steppe communities depending on general climatic 

trends. During the period from 16,700 to 8,900 cal yr BP, extremely dry conditions prevailed 

followed by an increasingly moister interval from 8,900 to 7,900 cal yr BP. In the period from 7,900 

to 4,300 cal yr BP, steppe vegetation recovered suggesting a persisting precipitation increase. An 

extremely arid climate event from 4,300 to 3,800 cal yr BP is reconstructed from the desert steppe 

pollen dominance. From 3,800 to 530 cal yr BP, moisture increased again. Tao et al. (2010) suggest 

that 530 cal yr BP marks the beginning of a climate deterioration which continues to date. An et al. 
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(2011) present similar pollen results revealing rather consistent vegetation and climate 

reconstructions. Contrasting trends were only observed over the last 530 cal yr BP, for which they 

suggest commencing humid conditions.  

A recently published lacustrine sediment record from Kanas Lake (c4) presents a different 

perspective on the climate change during the Holocene. Huang et al. (2018) argued that climate 

shifted from extremely cold and dry conditions before 11,700 cal yr BP to increasingly warm and 

humid lasting until 4,000 cal yr BP. For the whole period after 4,000 cal yr BP, they reconstructed a 

decrease in temperature and precipitation. A diatom record established by Lin et al. (2018) covering 

the last approx. 100 years complements the work of Huang et al. (2018) suggesting an increased 

influx of meltwater into Balikun Lake since around AD 1970. 

Liu et al. (2009) provide a palaeoenvironmental record from Wulungu Lake (c7) spanning the last 

9,550 cal yr BP corresponding to the reconstructions of Huang et al. (2018) in almost every detail.  

Further, two palynological studies were carried out on peat sequences. The Narenxia record (c5) 

published by Feng et al. (2017) extends beyond 11,500 cal yr BP and the Tielishan record (c6) studied 

by Zhang et al. (2016) spanning over the last 10,000 cal yr BP show more detailed discoveries of 

climate change during the Holocene. However, both studies reveal contrasting trends for most of the 

reconstructed periods. Especially for the last approx. 1,000 cal yr BP, Feng et al. (2017) disproved 

the reconstruction of a climate warming by Zhang et al. (2016) suggesting an interval of cooler 

conditions.  

Discrepancies in data interpretation might have been caused by anthropogenic disturbance as 

suggested by Li et al. (2019) from Alahake Lake area (c1) for the last 790 cal yr BP or by Tarasov et 

al. (2019) from Bosten Lake (c3).  

 

 

Gobi Altai 

Palynological and palaeoecological records from Gobi Altai are still sparse. There are plenty of 

recent sedimentological studies (e.g. Lehmkuhl et al., 2018) but only one pollen record published by 

Miehe et al. (2007). Palynological investigations were carried out on a peat sequence from Yolin Am 

(d1) covering more than the last 5,000 cal yr BP. Climate reconstructions revealed a warm and wet 

phase before 4,350 cal yr BP. From 4,350 to 850 cal yr BP, warm conditions prevailed while the area 

was impacted by an increasingly dry climate and increasing nomadic activities. In the period from 

850 to 350 al yr BP, temperature decreased but grazing impact on the vegetation intensified. After 

350 cal yr BP, aridity and temperature increased under a pronounced intensification of land use. 
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Valley of the Great Lakes 

The most extensive palaeoenvironmental study in the region was carried out by Grunert et al. (2000) 

on lake deposits and terrace formations around Uvs Nuur (e3) extending beyond 46,000 cal yr BP. 

Their broad reconstructions demonstrate that arid conditions prevailed in the Valley of the Great 

Lakes before 46,000 cal yr BP. Based on their geomorphological data, the period before the Last 

Glacial Maximum (LGM, 46,000 to 26,000 cal yr BP) was presumably influenced by wet and cool 

to cold climate conditions while the LGM (26,000 to 20,000 cal yr BP) itself was assumed to be 

characterize by extremely dry and cold climate. During the Late Glacial (20,000 to 11,500 cal yr BP), 

climatic conditions were marked by rising temperatures and increased precipitation, and this trend 

continued in the early Holocene from 11,500 to 5,000 cal yr BP. Contrasting trends were observed 

in the period from 5,000 to 3,000 cal yr BP (drier and colder conditions). After 3,000 cal yr BP, the 

late Holocene was still characterized by lower temperatures, but precipitation increased again. Over 

the last decades, a reconstructed lake level rise was attributed to increased meltwater inflow due to 

climate warming.  

For the Holocene, contrasting climate reconstructions are reported from Achit Nuur (e1) and Bayan 

Nuur (e2). Especially for the mid-Holocene (6,500 to 3,000 cal yr BP) the palynological results of 

Gunin et al. (1999), Sun et al. (2013) and Tian et al. (2014) suggest markedly moister and warmer 

climatic conditions and a generally drier period for the late Holocene since 3,000 cal yr BP. 

 

 

Central Mongolia 

In Central Mongolia, Telmen Nuur (f3) has intensively been studied by Fowell et al. (2003), Peck et 

al. (2002) and Soninkhishig et al. (2003) in order to reconstruct climate information. The 

palynological record established by Fowell et al. (2003) and the moisture record obtained from 

sedimentological evidence by Peck et al. (2003) provide similar climatic patterns for Central 

Mongolia over the last approx. 7,000 cal yr BP. An initial arid period starting from 7,000 cal yr BP 

ended at around 4,500 cal yr BP due to increasing precipitation. The moisture maximum was 

reconstructed to the interval from 2,710 to 1,260 cal yr BP. A stable period was followed by a 

renewed increase in humidity after 680 cal yr BP. Telmen Nuur diatom record presented by 

Soninkhishig et al. (2003) is sparse due to poor diatom preservation, hence it provides additional 

temperature information for the mid-Holocene interval from 6,230 to 5,520 cal yr BP. In that period, 

diatom data suggests a relatively warm climate compared to present-day conditions.  

Further palynological studies were carried out on Ugii Nuur (f4) lacustrine sediments by Wang et al. 

(2009) covering the mid- and late Holocene. During the period prior to 7,880 cal yr BP, mild and 

semi-humid conditions prevailed. Increasingly dry and warm climate was reconstructed for the 

period from 7,880 to 3,170 cal yr BP. The interval from 3,170 to 1,600 cal yr BP was assumed to be 
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increasingly cool and wet with a maximum in humidity at around 2,340 cal yr BP. The period after 

1,600 cal yr BP is characterized by an increase in climate instability.  

In the Orkhon Valley (f1), sedimentological and palynological analyses performed by Lehmkuhl et 

al. (2011) demonstrate that sedimentation in the area started in the Late Glacial at around 15,000 cal 

yr BP. At the end of the Late Glacial period and in the beginning of the Holocene the sediment 

composition was characteristic for arid conditions and indicated moister conditions for the mid-

Holocene from 8,000 to 3,000 cal yr BP. For the late Holocene (3,000 cal yr BP to present), a 

continuous vegetation decrease was reconstructed based on palynological evidence. This vegetation 

reduction was assumed to be a result of intensified human impact as several ancient capitals were 

located in the area. After 600 calyr BP, anthropogenic impact decreased because of changing political 

powers and relocation of the capital.  

Recent climatic trends in Central Mongolia were reconstructed by Jacoby and Baatarbileg (2003) 

based on dendrochronolgical data. The record from Solongotyn Daava (f2) suggests rather high 

temperatures for the period from AD 1450 to AD 1800 and markedly cooler conditions from AD 

1800 to AD 1900. From AD 1900 to AD 2000, temperatures increased steadily. Precipitation 

oszillated from AD 1650 to AD 1840 and decreased in the following interval (AD 1840 to AD 1985). 

From AD 1985 to AD 2000, precipitation increased in correlation with temperature.  

 

Tab. 1.1 Information on investigated palaeoecological sites from the Mongolian Altai and adjacent 

areas. Sites are grouped according to their region (a1-f4), numbers correspond to Fig. 1.1. Cha: 

charcoal, Dia: diatoms, NPP: non-pollen palynomorphs, Pol: pollen, Sed: Sedimentological 

parameters, Tre: tree-rings, XRF: XRF-data.  

 

No. Site Coordinates 

Elevation 

(m a.s.l.) Proxies Time interval Reference 

(a) Mongolian Altai      

a1 Dayan Area 

48°15' N,  

88°54' E 2300 Tre 280 cal yr BP Dulamsuren et al. (2014) 

a2 Hoton Nuur 

48°40' N,  

88°18' E 2083 Pol >9070 cal yr BP Tarasov et al. (2000) 

a2 Hoton Nuur 

48°37'18" N,  

88°20'45" E 2083 

Pol, 

NPP, 

Dia >11500 cal yr BP Rudaya et al. (2009) 

a3 Khalzan Khamar 

49°55′ N,  

91°34′ E 2500 Tre 550 cal yr BP D'Arrigo et al. (2000) 

a4 

Tsambagarav 

Glacier 

48° 39.338' 

N,  

90° 50.826' E 4130 

Pol, 

Cha 5450 cal yr BP Bruegger et al. (2018) 

       

(b) Russian Altai       

b1 Akkol Lake 

50°15' N,  

89°37'30" E 2204 Pol 10000 cal yr BP Blyakharchuk et al. (2007) 

b2 Belukha Glacier 

49°48'26" N,  

86°34'43" E 4062 Sed 171 cal yr BP Sidorova et al. (2012) 

b3 Grusha Lake 

50°23' N,  

89°25' E 2413 Pol 15900 cal yr BP Blyakharchuk et al. (2007) 

b4 Kendegelukol 

50° 30'20" N,  

87°38'30" E 2050 Pol 15250 cal yr BP Blyakharchuk et al. (2004) 
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b5 Kuray Range 

50°08'04" N,  

88°51'10" E 2330 Pol 6500 cal yr BP Schlütz and Lehmkuhl (2007) 

b6 Tarkhata Valley 

49°39'01" N,  

88°28'10" E 2210 Pol 1900 cal yr BP Schlütz and Lehmkuhl (2007) 

b7 Tashkol 

50°27' N,  

87°40'15" E 2150 Pol 16300 cal yr BP Blyakharchuk et al. (2004) 

b8 Teletskoye Lake 

51° 43' N,  

87° 39' E 434 Pol 900 cal yr BP Andreev et al. (2007) 

b8 Teletskoye Lake 

51° 43' N,  

87° 39' E 434 

Pol, 

Cha 700 cal yr BP Eichler et al. (2011) 

b8 Teletskoye Lake 

51° 43' N,  

87° 39' E 434 Sed 171 cal yr BP Sidorova et al. (2012) 

b9 Uzunkol  

50°29' N,  

87°6'30" E 1985 Pol 16200 cal yr BP Blyakharchuk et al. (2004) 

       

(c)  Chinese Altai      

c1 Alahake Lake 

47°41'18" N,  

87°34'16" E 483 

Pol, 

Cha 4700 cal yr BP Li et al. (2019) 

c2 Balikun Lake 

43°40' N,  

92°50' E 1575 Pol 9000 cal yr BP An et al. (2011) 

c2 Balikun Lake 

43°40' N,  

92°50' E 1575 Pol 16700 cal yr BP Tao et al. (2010) 

c3 Bosten Lake 

41°59'34" N,  

87°03'26" E 1050 

Pol, 

NPP 8540 cal yr BP Tarasov et al. (2019) 

c4 Kanas Lake 

48°43'23" N,  

87°01'22" E 1365 Pol 13400 cal yr BP Huang et al. (2018) 

c4 Kanas Lake 

48°53'34" N,  

87°07'50" E 1370 

Dia, 

XRF ⁓100 cal yr BP Lin et al. (2018) 

c5 Narenxia Peat 

48°48'N,  

86°54' E 1750 Pol 12240 cal yr BP Feng et al. (2017) 

c6 Tielishan Peat  

48°48'31" N,  

86°55'10" E 1770 Bio 9665 cal yr BP Zhang et al. (2016) 

c7 Wulungu Lake 

47°13' N,  

87°15' E 479 Pol 9550 cal yr BP Liu et al. (2009) 

       

(d) Gobi Altai      

d1 Yolin Am 

43°26' N,  

104°06' E 2390 

Pol, 

NPP ⁓5000 cal yr BP Miehe et al. (2007) 

       

(e) Valley of Great Lakes      

e1 Achit Nuur 

49°30' N,  

90°36' E 1435 Pol 12500 cal yr BP Gunin et al. (1999) 

e1 Achit Nuur 

49°30' N,  

90°36' E 1435 Pol 22600 cal yr BP Sun et al. (2013) 

e2 Bayan Nuur 

49.98° N,  

93.95° E 932 Pol 15800 cal yr BP Tian et al. (2014) 

e3 Uvs Nuur 

50°20' N,  

92°50' E 1100 Sed 46700 cal yr BP Grunert et al. (2000) 

      

(f) Central Mongolia       

f1 Orkhon Valley 

47°13' N,  

102°56' E 1600 Pol 2350 cal yr BP Lehmkuhl et al. (2011) 

f2 Solongotyn Dava 

48°19' N,  

98°59' E 2200 Tre 1150 cal yr BP Jacoby and Baatarbileg (2003) 

f3 Telmen Nuur 

48°50' N,  

97°20' E 1789 Pol 6090 cal yr BP Fowell et al. (2003) 

f3 Telmen Nuur 

48°50' N,  

97°20' E 1789 

Pol, 

Dia 7110 cal yr BP Peck et al. (2002) 

f3 Telmen Nuur 

48°50' N,  

97°20' E 1789 Dia 6230 cal yr BP Soninkhishig et al. (2003) 

f4 Ugii Nuur 

47°46' N,  

102°46' E 1332 

Pol, 

Dia 8660 cal yr BP Wang et al. (2009) 
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Palynology and Palaeoecology 

Investigation of ecosystems 

Ecosystems consist of a network of interacting biotic (e.g. plants, animals, other organisms) and 

abiotic (e.g. rocks, sediments, temperature) constituents. In their ideal state, ecosystems are at 

equilibrium between internal and external driving factors. Each ecosystem constituent contributes to 

the constitution of the present-day environment (Birks and Birks, 2006). Palaeoecologists evaluate 

environments of the past (palaeoenvironments) by reconstructing the dynamics of ecosystems from 

biotic responses of proxy data (Guiot et al., 2009). Biotic proxy data can be derived from different 

natural archives (e.g. lake sediments, peat, trees, ice cores) and provide a record of changes over time 

in the characteristics of sediment and fossil organisms (Birks and Birks, 2006). As there is a high 

number of different biotic proxies, a specialist knowledge is required to identify and interpret the 

fossil material. In this regard, organisms are commonly investigated as whole groups: pollen, 

diatoms, ostracods, chironomids, etc. Ecological tolerances and biology of taxa indicate 

environmental preferences and, assuming similar present-day and past conditions, taxa serve as 

indicator species for the investigation of palaeoenvironments (Birks and Birks, 1980, 2006; Birks, 

2003; Smol, 2002). In palaeoecology, it is particularly of interest to infer past habitat, vegetation 

distribution and climate about the time of deposition.  

Pollen analysis is one valuable tool for the reconstruction of catchment and regional vegetation. 

Pollen assemblages reflect its composition and structure, and provide quantitative information of 

climate change over long time periods through intermediate vegetation reconstruction steps or 

transfer functions (e.g. Guiot et al., 2009; Telford and Birks, 2009). Pioneer work about the 

application of pollen in vegetation science was carried out by Lennart von Post (1884-1951). He 

published the first pollen diagrams (Fries, 1967) and taught of the principles of pollen analysis, 

methodology, pollen counting, statistics, presentation of results and problems in dating and 

interpretation. Knut Faegri and Johannes Iversen refined van Post’s work and devoted their Text-

book of Modern Pollen Analysis (1950) to him, which is still used as a standard reference in 

palynology today (Birks and Berglund, 2017). 

However, pollen, as every other proxy, has its advantages as well as disadvantages. Although pollen 

analysis enables the possibility of identifying taxa occurrences and relative changes on a high 

resolution and allows the reconstruction of local and regional vegetation (depending on 

palaeoarchive quality and size), spatially accurate taxa reconstructions are still difficult (Nelle et al., 

2010). Plant-climate interactions are not only affected by the non-stable atmospheric CO2 

concentration, but pollen assemblages are also noisy in various other aspects. The pollen productivity 

cannot be directly presumed to be equal to the productivity of vegetation, because it varies over space 

and time (Sugita, 2007). Pollen grain transportation disturbs the assemblage and plant species are 

influenced by more than one climatic variable causing interpretation problems (Guiot et al., 2009). 
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The effects of background pollen disturbance and percentage calculations result in non-linear pollen-

vegetation relationships (Sugita, 2007). Additionally, reconstructions based on just one single proxy 

may generally result in systematic errors (Sidorova et al., 2012).  

 

 

Multi-proxy approach 

A wider overview of the dynamics of present and past ecosystems can be derived from the 

investigations of as many proxies as possible (Smol, 2002). A multi-proxy approach applies several 

proxies simultaneously to extend the spatial scale and diminish the weaknesses of single proxies 

(Birks and Birks, 2006; Mann, 2002). Hence, each proxy reflects different aspects of the ecosystem 

and several proxies help to gain a holistic view on the reconstructed environment (Birks and Birks, 

2006). Despite of that they have many advantages, successful multi-proxy studies reveal various 

methodological challenges such as different time-resolutions, possible contrasting results, high 

amounts of data, etc. (Sidorova et al., 2012). Hence, like in all palaeoenvironmental studies, it is 

necessary to address the following requirements: (1) formulate clear and relevant research questions, 

(2) chose investigation areas which will provide answers to the research aims, (3) take samples for 

different proxies at the same locations or levels in the same core, (4) data collections should be 

coordinated and stored efficiently, (5) create a reliable age-depth-model, (6) present numerous results 

clearly and apply numerical techniques for detecting similar patterns in all proxies, (7) interpret 

similarities and differences wisely and with regard to greater patterns (Birks and Birks, 2006).  

 

 

 

Study area 

Geography 

The Altai Mountains are a sub-longitudinal mountain range in Central and East Asia with an 

extension of more than 2,100 km (Rudaya et al., 2009). They are subdivided into the Russian Altai 

in the North and West, the Chinese Altai in the Southwest and the Mongolian Altai in the East. The 

Mongolian Altai is bordered to the Southeast by the Gobi Altai and by the Valley of Great Lakes to 

the East and Northeast (Lehmkuhl et al., 2016). The Altai is the tallest and most extensive mountain 

range in Mongolia. The highest mountain massif is Kuiten Uul of Tavan Bogd, 4,374 m a.s.l. (Gunin 

et al., 1999). 

The study area (48°15’N, 88°48’E, Fig. 1.2) is located in the province Bayan-Ulgii, south of Dayan 

Nuur close to the Chinese border. Other significant regional lakes are Hoton Nuur (11pprox.. 50 km 

distant), Kanas Lake (145 km) and Achit Nuur (180 km). The area is part of the Altai Tavan Bogd 

National Park, established in 1996. The National Park is situated at >2,000 m a.s.l., whereas the 
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highest altitudes exceed 4,000 m. a.s.l. in the North and West (Lkhagvadorj et al., 2013). At present, 

the national park is divided into three zones, (1) a special conservation zone (19% of the park), (2) a 

tourism zone (58%) that is used for grazing and tourism and (3) a limited use zone (20%) where 

traditional land use is allowed, tourism is not regulated and illegal hunting is tolerated (Beket and 

Knapp, 2012).  

The closest town is Ulgii (48°55’N, 89°56’E, 1,715 m a.s.l.), located 12pprox.. 120 km northeast of 

the study area.  

 

 

Fig. 1.2 Topographic map showing the location of the Altai Tavan Bogd National Park within Central 

Asia (overview map), the characteristics of the Altai Mountains and the location of investigation area 

(yellow oval). 

 

 

Geology, relief and soils 

The Altai Mountain relief started its present formation roughly around 5 Ma ago because of the 

Indian and Eurasian continental plate collision (Jolivet et al., 2007). It developed under successive 

accretion of subduction complexes and continental fragments along the Precambrian Angara cratin 
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south of Siberia. Precambrian assemblages form the basement of the orogen trending in accurate 

belts in NW-SE directions (Cunningham, 2005). Other major geological structures are N-S- or 

WNW-ESE-directed (Klinge et al., 2003). Paleozoic to Mesozoic intrusive structures occur, which 

range from not deformed plutons to severely deformed orthogneisses consisting of gabbroic to 

alaskitic granite rocks. Metamorphosed Precambrian assemblages are exposed at higher elevations, 

cut by Paleozoic or Mesozoic plutons in most locations. In some areas, rift deposits of Jurassic and 

Cretaceous clastic sediment sequences occur (Cunningham et al., 1996). Uplift processes in the 

Cenozoic resulted in the development of alluvial deposits along the mountain range margins and 

within several mountain basins (Cunningham, 2005).  During the late Quaternary, older structures 

have been highly shaped by glaciation dynamics and erosion processes (Lehmkuhl et al., 2016). 

Hence, nowadays, the Altai Mountain ranges are characterized by flat summit plateaus of tens of 

kilometers length, large moraine ridges and systems of glaciofluvial terraces (Jolivet et al., 2007; 

Lehmkuhl et al., 2016). 

Summits above 3,400 m a.s.l. are covered by bare rock deposits and plateau glaciers (Klinge et al., 

2017). In the basins and on the slopes, pediments are composed of gravel and alluvial sediments as 

well as aeolian sand and loess-like material (Klinge et al., 2017; Lehmkuhl, 1997). Dominating soils 

in the area are leptosols (Dulamsuren et al., 2014).  

Permafrost conditions prevail from the mountain plateaus to the basins. However, in lower elevations 

periglacial processes and permafrost distribution are limited by the low soil humidity (Klinge et al., 

2017). Only forested areas are underlain by continuous permafrost.  

 

 

Modern climate 

Climate in the Altai Tavan Bogd National 

Park is characterized by extreme 

continentality due to its specific 

topographic conditions and the great 

distance to the moisture sources of the 

Indian, Arctic and Pacific Oceans 

(Andreev et al., 2007). Nowadays, the only 

circulation system of Central Asia 

impacting western Mongolia is the 

westerlies (Fig. 1.3) (Herzschuh, 2006). 

However, most wet air masses arriving 

from the West are captured by the 

westernmost mountain ranges of the Altai. 

Fig. 1.3 Circulation systems influencing Central 

Asia and present-day limit of the summer monsoon 

(Herzschuh, 2006)  
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Whereas the Russian Altai receives more than 800 mm of mean annual precipitation, the rain shadow 

effect causes a reduction to 200 mm in the Southeast and down to 50 mm in the Valley of Great 

Lakes (Klinge et al., 2003).  

The climate station of Ulgii is the closest source providing reliable climate data for the study area 

(Fig. 1.4). Average temperatures range from -17.1 °C in January to 16.3 °C in July. A variation of 

33.4 °C in average monthly temperatures is one indicator for the strongly continental climate. The 

other indicator is the low average precipitation of 114 mm per year. Most of the rainfall occurs during 

the short summer period from June to August (70-80%). During the winter period (6 month), the area 

is covered by ice and snow (Chen et al., 2003).  

 

Fig. 1.4 Climate graph of Ulgii, Mongolia (http://www.ulgii.climatemps.com/, accessed 05 

September 2017) 

 

 

Vegetation 

In the Mongolian Altai, gradients such as elevation and exposure, temperature and precipitation are 

the main drivers affecting vegetation composition, distribution and productivity (Rudaya et al., 

2009). Precipitation is the main factor favoring a W-E-directed plant community pattern, whereas 

altitude determines the vertical range of vegetation distribution (Gunin et al., 1999). In the north-

http://www.ulgii.climatemps.com/
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western part of the Mongolian Altai the altitudinal vegetation zones are described as follows (after 

Beket and Knapp, 2012): 

 

I. High mountain zone/belt ((2,100) 2,700 to 4,374 m a.s.l.) 

1. nival: regular snow cover, without vascular plants 

2. subnival: lichen communities, fragments of petrophytes, cryophyte meadows and 

swamps 

3. alpine: high mountain tundra, cryophyte grassland and subalpine shrubs 

II. Mountain forest zone/belt (1,700 to 2,200 m a.s.l.) 

divided into several sub-zones without distinctive boundaries 

1. Sub-alpine open woodland 

2. Coniferous forests with larch, spruce and pine 

3. Forest-steppe complex, forests with shrubs and meadow steppes 

 

III. Mountain steppe zone/belt (1,600 to 3,200 m a.s.l.) 

high mountain cushion herb vegetation, cryo-xerophytic grassland, xerophytic shrubs and 

grass steppes 

 

IV. Desert zone/belt (1,100 to 2,100 m a.s.l.) 

Semi-desert and desert communities, occurs only depending in micro-climatic phenomenon 

(very warm and dry climate in intra-montane basins in the rain shadow of surrounding 

depressions) 

 

In addition to the altitudinal vegetation zones (Fig. 1.5), there are some types of azonal vegetation 

such as water plant communities within/surrounding lakes and rivers, pioneer and floodplain 

vegetation, and shrubs associated with gravel banks in river valleys (Beket and Knapp, 2012). Forests 

and forest-steppes only occur on north-facing slopes as a result of less evapotranspiration. They 

usually grow on the upper parts of the mountain slopes or on the central parts if a high mountain 

zone is present (Dulamsuren et al., 2014). Summer temperature controls the upper tree growth limit, 

whereas moisture availability and human impact determine the lower limit (Klinge et al., 2003). Most 

forested areas are only composed of Siberian larch (Larix sibirica). In some areas close to the Chinese 

border Siberian pine (Pinus sibirica) and Siberian spruce (Picea obovata) add to the forest 

composition (Dulamsuren et al., 2014). In places where forest stands are missing and on south-facing 

slopes, the transition from mountain steppe communities to alpine grassland communities is 

continuous (Gunin et al., 1999).  
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Fig. 1.5 Altitudinal vegetation zones in the Mongolian Altai. A: High mountain zone, vegetation 

complex of alpine Kobresia-grassland (brown) and subalpine Betula-shrubland (red), nival belt with 

peaks and glaciers in the background, B:  Mountain forest zone, mountain steppe in the valley 

(brown), closed mountain forest belt on the lower slopes (green), forest line to the subalpine Betula-

shrubland (red), C: Mountain steppe zone, D: Desert zone, semi-desert with Anabasis brevifolia Stipa 

glareosa, Kraschennikovia ceratoides, Reaumuria soongorica (Beket and Knapp, 2012). 

 

 

Settlement and herding history 

The area of the current state of Mongolia has been inhabited by modern humans since the Upper 

Paleolithic (46,000-12,000 cal yr BP) (Tab. 1.2). Until the early/mid Bronze Age (before 4,450 cal 

yr BP), various gatherer-hunter-groups subsisted on forest and steppe. During late Bronze Age 

(3,450-2,650 cal yr BP) animal husbandry and mobile pastoralism developed within the Eurasian 

steppe and were introduced to multi-cultural Mongolian territory, most likely via Tuva in Southern 

Siberia (eg Fernández-Giménez et al., 2017; Houle, 2015; Miehe et al., 2009; Tumen, 2006). Those 

conclusions are drawn from bones of sheep, goats and horses found in excavated burials. Except of 

their mortuary behaviors, only very little is known about Mongolian Bronze Age cultures, such as 

their settlement patterns, subsistence practices and demographics to present day (Houle, 2015). 

Organizational forms of nomadic cultures and pastoral activities adjusted and stabilized throughout 

Terminal Bronze Age (2,650-2,350 cal yr BP). Mobile pastoralism expanded noticeably, increasing 

the pressure on the environment by intensified deforestation for new pasture grounds, firewood and 

building materials (e.g. burial chambers). Scythian and Pazyryk cultures of the Iron Age (2,350-

2,159 cal yr BP), were the first communities expanding their habitats into the sub-alpine and high-
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altitude steppe zones while practicing semi-sedentary herding (Chlachula, 2019). Under Xiongnu 

(2,159-1,795 cal yr BP), Xianbei (1,795-1,715 cal yr BP) and Rouran Empire (1,620-1,395 cal yr 

BP), new organizational forms established uniting pastoral activities of small-scale nomadic 

clans/cultures (Holcombe, 2013; Kradin, 2005; Park et al., 2017; Rogers, 2015). As a result of 

eastward Turkic expansions, a Turkic State established on Mongolian territory lasting from 1,395 to 

1,150 cal yr BP. At this time, an agricultural herding society developed (Neolithic evolution), but 

due to climatic conditions, only pastoralism remained possible in the Mongolian Altai. Around 1,150 

cal yr BP the Turks were pushed back and Khanates replaced the Turkic State. More traditions in 

pastoral economy developed: herders adapted to grazing patterns and summer/winter shelters 

(Fernández-Giménez, 1999; Fernández-Giménez et al., 2017).  

 

 

Tab. 1.2 Brief overview of cultural/political periods in the Mongolian Altai from Early Bronze Age 

to present 

 

Time period 

(BC/AD) 

Time period 

(cal yr BP) 
Cultural/Political Period 

2,500 - 1,500 BC 4,450 – 3,450 Early/Mid Bronze Age 

1,500 - 700 BC 3,450 – 2,650 Late Bronze Age 

700 - 400 BC 2,650 – 2,350 Terminal Bronze Age 

400 - 209 BC 2,350 – 2,159 
Beginning of Early Iron Age 

Scythian culture, Pazyryk culture 

209 BC - 155 AD 2,159 – 1,795 Xiongnu Empire 

155 - 235 AD 1,795 – 1,715  Xianbei Empire 

330 - 555 AD 1,620 – 1,395  Rouran Empire 

555 - 900 AD 1,395 - 1,050  Turkic State 

900 - 1206 AD 1,050 – 744 Khaganates 

1206 - 1368 AD 744 – 582 Mongol Empire 

1368 - 1691 AD 582 – 259 Northern Yuan Dynasty 

1691 - 1911 AD 259 – 39 Qing Dynasty 

1911 - 1924 AD 39 - 26 Independence 

1924 - 1960 AD 26 to -10 

Mongolian People’s Republic in Soviet 

Union 

(Centrally planned economy) 

1960 - 1990 AD -10 to -40  

Mongolian People’s Republic in Soviet 

Union 

(Collective Period) 

1990 - 2000 AD -40 to -50 
Democracy 

(Privatization) 

2000 AD to present -50 to present 
Democracy 

(Market Economy) 
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During Mongol Empire (744-582 cal yr BP), Mongol territory expanded massively, increasing the 

number of livestock (e.g. cows, sheep and horses) and, again, reorganizing pastoral activities. 

Political allies of the Great Khan controlled the pastures and from that time on, groups of herders 

were assigned to fixed territories including the possibility of wide-ranging seasonal migrations 

(Fernández-Giménez et al., 2017). The establishment of Northern Yuan Dynasty in Mongolia (582-

259 cal yr BP) sealed the disintegration of the Mongol Empire and reintroduced Tibetan Buddhism 

into Mongolia. Consequently, powerful Buddhist leaders were granted their own territories on which 

clans herded the monasteries’ livestock for church wealth. Coordinated seasonal migrations were 

allowed under customary law of the steppe.  

After Northern Yuan Dynasty was superseded by Qing Dynasty (259-39 cal yr BP) in Mongolia, 

Mongolian territory was divided into administrative areas (banners) ruled by a hereditary prince or 

religious leader. Herders were allowed to graze specific pasture areas but moving from one banner 

to another was permitted. Nomadic movements were also coordinated by the leader of the banner. 

Two to twelve households, respectively, formed a herding encampment traveling and camping 

together increasing the number of livestock per camp. In some areas, grazing was prohibited 

(Fernández-Giménez et al., 2017). In general, these nomadic herding regulations persisted until the 

Socialist Government of the Soviet Union established a centrally planned economy in Mongolia (26 

to -10 cal yr BP). They only allowed herding of state-owned livestock and nomadic movements were 

restricted which led to a sharp decline in livestock population due to slaughter. From -10 to -40 cal 

yr BP, a form of specialized herding (one-species herding) in collectives was introduced. Collectives 

provided infrastructure for supplied transportation, veterinary service and water. Seasonal 

movements averaged four movements per year, while some areas were kept as emergency reserve 

pastures (Fernández-Giménez et al., 2017; Johnson et al., 2006). Under democracy (after -40 cal yr 

BP), most state-owned livestock was privatized, whereas pastureland remained state property. These 

massive changes resulted in a short-term increase in animal population (Fernández-Giménez, 1999; 

Johnson et al., 2006). The establishment of a market economy in Mongolia since -50 cal yr BP, favors 

a rise in mining and service industries and a general decline in the number of nomadic herders and 

livestock-owning households. Persisting nomadic herders move from rural to more urban areas as a 

result of the development of regional production centers (State Farm approach) (Hirano and Batbileg, 

2013;). Nowadays, approx. 80 nomadic clans (>400 persons) inhabit the area around Dayan Nuur in 

summer, some live there the whole year. Their livestock includes goats, horses, sheep, yaks, and 

camels grazing on both forests and grasslands (Khishigjargal et al., 2013)  
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Materials and methods 

In this thesis, multi-site and multi-proxy research was carried out on five sediment cores of different 

lengths, sediment compositions and time intervals. All sediment cores were collected in the Altai 

Tavan Bogd National Park in an area of about 136 km2 south of Dayan Nuur. The maximum distance 

between two sites (cores Ch and D3L6) is approx. 22 km. 

 

 

Fig. 1.6 Locations and characteristics of sites within the study area south of Dayan Nuur in the Altai 

Tavan Bogd National Park (modified from Google Inc., 2019 (accessed 03 August 2019)).  

 

 

Cores were selected based on their location and characteristics to reflect a broad spectrum of features 

of the forest-steppe ecosystem in the Mongolian Altai. Archive locations and details are presented in 

Fig. 1.6 and Tab. 1.3. 

The following five different archives were selected according to specific environmental criteria: 

(1) Core D3L6 (big lake below lower forest boundary), wide catchment area reflects long-term 

regional changes at a lower elevation 

(2) Core D1L1 (small lake below lower forest boundary), smaller catchment area compared to 

core D3L6 reflects more short-term local changes at a lower elevation 

(3) Cores Ch, Tr5-2B and G2-A (peat core transect from below, within and above the forest 

boundary), smaller catchment area compared to lacustrine archives reflect local changes at 

different elevations and vegetation types 
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Tab. 1.3 Detailed description of studied sites and sediment cores 

Name of site Ch D1L1 D3L6 

Synonym name border core small lake big lake 

Location (latitude, 

longitude 

48°12‘57.76“N 

88°38‘1.85“E 

48°15’26.94“N 

88°49’59.29“E 

48°16’22.18“N 

88°54’48.50“E 

Altitude (a.s.l.) 2,583 m 2,312 m 2,239 m 

Current vegetation forest-steppe dry mountain-steppe dry mountain-steppe 

Current location 

within ecosystem below forest belt below forest belt below forest belt 

Core type peat lake lake 

Core length (cm) 33 135 94 

Basal age (cal yr BP) 320 1,350 4,310 

Analyzed proxies 

pollen, NPP, micro 

charcoal, macro-

charcoal 

pollen, NPP, micro 

charcoal, macro-

charcoal, diatoms, 

XRF data 

pollen, NPP, micro 

charcoal, macro-

charcoal, diatoms, 

XRF data 

Thesis chapter 5 4 3 

 

Name of site G2-A Tr5-2B 

Synonym name above treeline core forest core 

Location (latitude, 

longitude 

48°15‘0.00“N 

88°53’40.10“E 

48°15’12.00“N 

88°50’19.06“E 

Altitude (a.s.l.) 2,430 m 2,380 m 

Current vegetation dry mountain-steppe forest-steppe 

Current location 

within ecosystem above forest belt within forest belt 

Core type peat peat 

Core length (cm) 34 38 

Basal age (cal yr BP) 3,880 1,350 

Analyzed proxies 

pollen, macro-

charcoal 

pollen, NPP, micro 

charcoal, macro-

charcoal 

Thesis chapter 2 5 

 

 

Due to the advantages of multi-proxy analyses, several different proxies have been studied on the 

sediment material: pollen and spores, NPPs, micro and macro-charcoal, diatoms and XRF-data.  

For palynological analysis (pollen, spores, NPPs), laboratory work was performed according to the 

detailed schedule in Tab. 1.4 taught by U. Nüsse-Hahne after Faegri & Iversen (1989). Chemicals 

and sieves are used to break up and remove large amounts of inorganic and organic sediment 

components and color the remaining material to facilitate the identification of pollen grains and other 

palynomorphs under the light microscope.  
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Tab. 1.4 Detailed laboratory schedule for pollen analysis applied on Mongolian sediments in the 

research (after Faegri and Iversen, 1989). 

Chemicals/ 

Methods 
Steps Purpose 

Markers 
• Addition of 1 tablet with Lycopodium 

clavatum spores 

Concentration and 

influx calculations 

HCl 10% 

• Addition of 4 ml HCl 10% 

calcareous fraction 

removal 

• Wait until tablet is fully dissolved 

• Mix with plastic stick 

• Centrifuge, discard supernatant in respective 

waste container 

• Addition of 4 ml distilled water 

• Mix with vortexer 

• Centrifuge, discard supernatant 

HF 40% 

• Addition of 4 ml HF 40% 

silicate fraction 

removal 

• Mix carfully with plastic stick 

• Leave samples under fume cupboard overnight 

• Mix again carefully 

• Centrifuge, discard supernatant in respective 

waste container 

• Addition of 4 ml distilled water 

• Mix with vortexer 

• Centrifuge, discard supernatant 

• repeat sample washing 2 times 

KOH 10% 

• Heat water bath to 90 °C 

Organic matter break 

up and humic acid 

removal 

• Addition of 4 ml potassium hydroxide 10% 

• Mix with vortexer 

• Put into water bath for 10 min 

• Centrifuge, discard supernatant in respective 

waste container 

• Addition of 4 ml distilled water 

• Mix with vortexer 

• Centrifuge, discard supernatant 

Sieving 
• Wet sieve with 120 µm mesh 

large fraction removal 
• Centrifuge, discard supernatant 

Erdtman's 

acetolysis 

(CH3COOH) 

and 

CH3CO)2O 

+ H2SO4 

• Addition of 4 ml acetic acid 

dehydrogenation, 

cellulose removal and 

coloring 

• Mix with vortexer 

• Centrifuge, discard supernatant in respective 

waste container 

• Mix acetic anhydride and sulfuric acid at a 

ratio of 1:9 

• Addition of 4 ml of mixture 

• Mix with vortexer 

• Put into water bath of 90°C for 10 min 

• Centrifuge, discard supernatant in respective 

waste container 

• Addition of 4 ml distilled water 

• Mix with vortexer 

• Centrifuge, discard supernatant 

• repeat sample washing until water is clean 
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Sieving 

• Wet sieve with 5 µm mesh 

fine fraction removal • Transfer material to Eppendorf tube by 

disposable syringe for storage 

 

 

Charred particles of <125 µm are referred to as microscopic (micro) charcoal (e.g. Clark, 1990; 

Whitlock and Millspaugh, 1996) and counted in the same preparations as the palynomorphs. 

However, it must be considered that the palynological laboratory procedure favors charcoal particle 

fragmentation. Hence, micro charcoal results should be interpreted as general trends rather than 

reliable data (Biagioni, 2015).  

The preparation of macroscopic (macro) charcoal (>125 µm) samples was carried out following the 

procedure of Stevenson and Haberle (2005) taught by Dr. S. Biagioni. A detailed schedule is 

presented in Tab. 1.5. Employing this method, chemicals are used to break up organic matter, remove 

humic acid and bleach the remaining fraction. The process simplifies the separation of charred 

particles from organic material due to its resistance to hydrogen peroxide. Wet sieving is conducted 

to remove the microscopic fraction (<125 µm).  

Macro-charcoal samples are counted using a bionocular dissecting microscope. Inspired by the 

methods presented by Umbanhowar and McGrath (1998) and Mustaphi and Pisaric (2014), all 

charred macroscopic fragments are assigned to one of the following morphological groups: (A) 

wood-type, (B) leaf-type, (C) grass-type charcoal or (D) others by visual inspection (see Appendix 

A3). (D) others include roots, mosses, seeds and all unidentifiably small particles.  

Diatom analysis and XRF scanning have been conducted on two of the investigated sediment cores 

(D1L1 and D3L6). Performing those analyses in the laboratory were not part of my personal work 

and are therefore not explained in detail here. Descriptions of respective laboratory work and 

counting methods are presented in the materials and methods sections in chapters 3 and 4.  
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Tab. 1.5 Detailed laboratory schedule for macro-charcoal analysis applied on Mongolian sediments 

in the research (after Stevenson and Haberle, 2005). 

 

Chemicals/Methods Steps Purpose 

KOH 10% 

• Addition of 5-10 ml potassium hydroxide 

10% 

Organic matter 

break up and 

humic acid 

removal 

• Mix with plastic stick 

• Leave samples under fume cupboard 

overnight (approx. 24 hours) 

• Mix with plastic stick 

• After sediment settled: pipe out potassium 

hydroxide with plastic pipette 

• Discard supernatant in respective waste 

container 

H2O2 4-6% 

• Addition of 5-10 ml hydrogen peroxyde 
bleaching of 

organic material 

in remaining 

fraction 

• Mix with plastic stick 

• If solution foams, make sure no particles are 

transported out of the vial 

• Leave samples under fume cupboard 

overnight (approx. 24 hours), same amount 

of time for all samples 

Sieving 

• Wet sieve with 125 µm mesh 

small fraction 

removal 

• Wash under gentle water flux to avoid 

particle fragmentation 

• Discard supernatant in respective waste 

container 

Storage 
• Use water to wash the coarse fraction back 

into the vial 

sample 

conservation 
• Store in water until counting 
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Abstract 

The ‘Altai Tavan Bogd’ conservation area, located between 2,000 and 4,000 m a.s.l. in the north-

western part of the Mongolian Altai, is a montane forest-steppe ecosystem which has developed 

under extreme continental and alpine climatic conditions and is very sensitive to natural variations. 

Nomadic peoples have influenced the area due to grazing, logging of trees and fire for a long time. 

To reconstruct the dynamics of this unique forest-steppe ecosystem for the last 4,000 years under the 

influence of climatic changes and/or nomads, palynological and macro-charcoal analyses of the 

radiocarbon dated core G2-A have been performed. Between 3,880 and 2,610 cal BP the vegetation 

was represented by a mixture of rather open forests and non-forested high mountain steppe areas 

suggesting a moist and warm climate similar to the present conditions. Macro-charcoal analysis 

reveals three main fire events, which are probably of anthropogenic origin. In the period from 2,610 

to 550 cal BP a decrease in precipitation and temperature is suggested by a higher representation of 

herbaceous species, retreating open forests and an increase in macro-charcoal concentration. Since 

550 cal BP the forest spread out again, whereas the composition of trees differs from the period 

between 3,880 and 2,610 cal BP. It is characterized by the shrubs Betula rotundifolia and Juniperus 

indicating a more open forest, which is probably related to human activities. The advancing upper 

forest line and a higher plant diversity reveals that the conditions changed to a more humid climate 

again, lasting until present. 

 

 

 

Introduction 

The conservation area ‘Altai Tavan Bogd’ is located in the northwestern part of Mongolia, where the 

southernmost extensions of the boreal forest merge into the Mongolian steppe. In this area, the forest 

growth is stretched to its natural limits in several aspects. The cold-continental climate conditions, 

especially the aridity and low summer temperatures, enable only a very short growing season, 

limiting the forest expansion in higher elevations (upper forest boundary) (Sommer and Treter, 

1999). The low summer temperatures in combination with harsh winters and the deforestation by the 

inhabitants constrains the forest expansion into the plain (lower forest boundary). The amount of 

precipitation is the most important factor controlling vegetation distribution (Gunin et al., 1999). 

Under these extreme conditions, a small arboreal zone evolved with Larix sibirica as the most 

common tree species (Dulamsuren et al., 2014). Changes in the microclimate of this ecosystem may 

lead to shifts in the location of the forest boundary and the composition of the forests as well as their 

reduction and expansion (Sommer and Treter, 1999). In the past, these changes have not only been 

caused by climatic fluctuations but also by land use.  
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For the last 2,000–3,000 years, various nomadic peoples have inhabited the Mongolian Altai 

(Fernandez-Gimenez, 1999; Schlütz and Lehmkuhl, 2007). Changes in political structures as a 

consequence of the occupation of the Mongolian Altai under different rulers has led to shifts in land 

use and animal husbandry through time. Different approaches, especially to grazing activities, are 

connected to the Mongol Empire (AD 1206–1690), the Manchu Rule (AD 1691–1911), Early 

Communism (AD 1924–1959) and the breakup of the Soviet Union in the 1990s (Fernandez-

Gimenez, 1999). Although the region has only been sparsely populated, the response of the flora to 

human impact is rather sensitive (Hilbig, 1995). Further investigations are needed to detect 

similarities between historical data and changes in the vegetation composition.  

Palaeoecological data derived from environmental archives in the transition zone from coniferous 

forest to mountain steppe can provide detailed information on environmental changes. Palynological 

studies allow a detailed reconstruction of the former vegetation and forest boundaries as well as 

climatic changes in general. In combination with these studies, analysis of charcoal remains permits 

determination of the anthropogenic influence on the region.  

Several recent studies in the Mongolian and Russian Altai focused on the reconstruction of vegetation 

and climate based on data obtained from lake records (Kalugin et al., 2005; Andreev et al., 2007; 

Rudaya et al., 2008, 2009; Wang et al., 2009, 2011). Tarasov et al. (2000), Rudaya et al. (2008, 2009, 

2016) and Rudaya and Li (2013) implemented detailed palynological and geochemical analyses of 

sediments from Lake Teletskoye (Russian Altai) and Hoton-Nur Lake (Mongolian Altai, approx. 30 

km distant from the new study site ‘Altai Tavan Bogd’ presented here) revealing general climatic 

trends and changes in precipitation for the last 10,700 cal year BP. According to these studies the 

regional climate was rather dry prior to 10,700 cal year BP, followed by a marked increase in 

precipitation in the early and mid-Holocene and a return to a precipitation level of 250–300 mm/year 

after 5,000 years BP. However, so far, no palynological or macro-charcoal studies have been 

implemented in the conservation area ‘Altai Tavan Bogd’.  

Hence not much is known about the human impact on the vegetation and fire history from this part 

of the Altai Mountains. The studies by Dulamsuren et al. (2014) focus on the response of tree-ring 

width to climate warming, while Lkhagvadorj et al. (2013) investigated today’s nomadism in the 

Mongolian Altai under a changing economy and warming climate. Some publications on adjacent 

areas are supplemented by results from other proxies such as diatoms (Rudaya et al., 2009), 

chironomid remains (Ilyashuk and Ilyashuk, 2007) and tree rings (D’Arrigo et al., 2001; Zhang et 

al., 2003; Dulamsuren et al., 2014).  

Available palaeoecological studies indicate that the coniferous forest in the Mongolian Altai and 

adjacent areas has been established from 9,000 to 6,000 cal BP under the influence of a moister and 

warmer climate (Herzschuh, 2006; Schlütz and Lehmkuhl, 2007; Tao et al., 2010). At that time, the 

expansion of the steppe communities was limited to the southern exposed mountain slopes and 
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intermontane drought islands. Between 6,000 and 4,900 cal BP the climate became more continental 

which caused an expansion of steppe and a decline of the coniferous forest. This trend intensified 

over the last 3,000 years (Schlütz and Lehmkuhl, 2007; Rudaya et al., 2008). The evaluation of the 

vegetation indicates a high variability between dry and moist periods (Chenlemuge et al., 2013; Tian 

et al., 2013). The results of Wang et al. (2009, 2011) of pollen and diatom records from Ugii Nuur 

basin in Central Mongolia verify the interpretation of a warmer and drier mid-Holocene (6,000–3,000 

cal BP) in Mongolia. However, these results are contradicted by Schwanghart et al. (2009), who 

indicate wetter conditions around the same basin between 8,000 and 4,000 cal BP. 

In this paper, results of a detailed pollen and macro-charcoal analysis of deposits from a small basin 

on a hilltop close to Lake Dayan Nuur in the Mongolian Altai Mountains are presented. Pollen ratios 

are used to determine palaeoclimatic and palaeovegetational information from pollen assemblages. 

Furthermore, the macro-charcoal record resembles the fire history of the Lake Dayan Nuur region in 

the conservation area ‘Altai Tavan Bogd’. By excluding the charcoal background signal, a detection 

of local main fire events is provided.  

Based on these results, the aim is to reconstruct the dynamics of the forest-steppe ecosystem in the 

Mongolian Altai during the last about 4,000 cal BP. In order to gain new insights into the 

environmental and climatic changes as well as human impact by nomads in the Altai region, the 

results will be used to investigate how natural the existing vegetation is and to what extend the 

dynamics of the forest boundaries together with the forest and steppe vegetation of the past can be 

reconstructed. These findings will be important for sustainable use as well as protection and 

management of the species-rich vegetation in the ‘Altai Tavan Bogd’ conservation area and other 

regions. This kind of study is the first one in the Mongolian Altai. 

 

 

 

Study area 

The study area is located in the Mongolian part of the Altai Mountains (Fig. 2.1), a sub-longitudinal 

mountain range in Central and East Asia with an extension of more than 2,100 km (Rudaya et al., 

2009). It is situated in western Mongolia south of Lake Dayan Nuur in the province Bayan-Ulgii that 

has an area of 45,700 km2. The area is part of the Tavan Bogd National Park, established in 1996, 

and located at >2000 m a.s.l. The highest elevations reach up to a maximum of 4,000 m a.s.l. in the 

western and the northern part of the region (Lkhagvadorj et al., 2013).  

Due to the specified topographic setting and its large distance to the moisture sources of the Indian 

and the Pacific Ocean, the Mongolian Altai is characterized by an extreme continental climate 

(Andreev et al., 2007). Winters are severely cold with mean annual temperatures of -21.2 ± 3.4 °C 

in the village of Altai (48°17′N, 89°31′E, 2,150 m a.s.l.). Summers are accordingly chilly with mean 
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annual July temperatures of 12.9 ± 1.1 °C that provide a short vegetation period. The annual 

precipitation of only 120 ± 26 mm implies the extreme aridity (Lkhagvadorj et al., 2013).  

 

 

 

Fig. 2.1 Map of the study area in the Mongolian Altai (earth.google.com) and its location within 

Mongolia (http://www.laenderservice.de). The yellow star indicates the location of the G2-A coring 

site (48°15′3.00″N, 88°53′40.10″E; 2,490 m a.s.l.), the two yellow circles indicate the location of the 

two comparison sites Lake Teletskoye and Hoton-Nur Lake. 

 

 

The vegetation in this part of the Mongolian Altai is strongly connected with the relief and the annual 

precipitation. Those special conditions create a specific mosaic vegetation cover characterized by the 

development of high mountain steppes as well as a discontinuous coniferous forest belt in between. 

In the ‘Altai Tavan Bogd’ conservation area it is dominated by alpine steppe vegetation mainly 

consisting of Cyperaceae, especially Kobresia, Artemisia and Chenopodiaceae (Schlütz and 

Lehmkuhl, 2007; Dulamsuren et al., 2014) as well as Festuca lenensis, Oxytropis oligantha and 

Potentilla nivea. On mountain slopes occur open larch forests composed of Larix sibirica, Picea 

obovata, Pinus sibirica, Betula rotundifolia and Salix glauca (Rudaya et al., 2008). The vegetation 

surrounding the study site provides rather open forests of Larix sibirica at the upper forest limit. 

Trees of Picea obovata and Pinus sibirica do not occur in the forests in the study area, but at a 

distance of about 10 km from the coring site.  

This province is one of the lowest populated regions in Mongolia. Only few of its 93,000 inhabitants 

live in small villages, the remainder (> 90%) are pastoral nomads (Soma, 2014). 



 

Manuscript 1 

29 
 

Materials and methods 

A 49 cm-long sediment core (G-2 A) was obtained by use of a Russian corer from a very small round 

peat bog formation of around 2 m in diameter located on top of a hill 2 km south of Lake Dayan 

Nuur. The coring site (48°15′ 0.00″N, 88°53′ 40.10″E) is situated at 2,490 m a.s.l. at the upper forest 

line. The sediment core was photographed for lithological description and wrapped in plastic for 

conservation. Subsequently, it was transported to the Department of Palynology and Climate 

Dynamics at Georg-August-University of Göttingen in Germany and stored in darkness in a cold 

room at 4 °C. 

 

Tab. 2.1 Radiocarbon dates from the G2-A core sediments 

Laboratory Code Depth (cm) Type of Material C14 Age (yr BP) 

Poz-81590 14 Bulk sediment 1660 ± 30 

Poz-81592 23 Bulk sediment 2530 ± 30 

NTUAMS-2014 34 Bulk sediment 3067 ± 12 

 

 

Radiocarbon dating and age‑depth‑modelling 

Three bulk sediment samples were sent for radiocarbon dating, due to the lack of larger organic or 

charred macro remains in the sediment core G2-A. One sample was sent to AMS 14C Dating Facility 

at National Taiwan University in 2015 and two to Poznan Radiocarbon Laboratory, Poland, in 2016 

(Tab. 2.1). Ages were calibrated using IntCal13 (Reimer et al., 2013) and an age-depth-model was 

established with BACON version 2.2 (Blaauw and Christen, 2011) (Fig. 2.2). The ages of the pollen 

zones have been interpolated. 

 

 

Fig. 2.2 Age-depth model of the sediment core G2-A. 
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Palynological analysis 

For the fossil pollen record 20 samples of 0.25 cm3 were taken in intervals of 1-2 cm along the core 

G2-A down to a depth of 34 cm. All samples were processed using the standard method with 10% 

HCl, 10% KOH, 40% HF and acetolysis (Fægri and Iversen, 1989). Before this procedure, a tablet 

of Lycopodium spores was added to each sample as an exotic marker to calculate pollen 

concentrations. 

Pollen and spores were identified based on the reference collection of Mongolian pollen and spore 

taxa at the Department of Palynology and Climate Dynamics, established by Gaadan Punsalpaamuu 

(Mongolian State University of Education, Ulaanbaatar), the online pollen database PalDat, hosted 

by the Society for the Promotion of Palynological Research in Austria, and other relevant literature 

and pictures (Beug, 2004; Murad, 2011). All samples were counted up to a terrestrial pollen sum of 

300 in the upper part (0–14 cm) and of 200 in the middle part (16–34 cm) due to lower content and 

poor pollen preservation at greater depths. Below the depth of 34 cm only very few and mostly 

damaged pollen grains or only grain fragments were visible in the samples. On that account, the 

segment from 34 to 49 cm was not analyzed.  

Pollen percentages and concentrations were calculated based on the sum of Lycopodium spores 

together with a pollen sum consisting of arboreal and herbaceous pollen grains per sample and plotted 

against core depth. In the diagram, all types are grouped into trees and shrubs, herbs and ferns. Within 

the groups, they were arranged according to their family affiliations and chronological occurrence. 

Subsequently, the ratios of arboreal pollen (AP) to non-arboreal pollen (NAP), Artemisia to 

Chenopodiaceae (A/C) and Artemisia to Cyperaceae (A/Cy) were calculated for further inspection. 

Especially in arid and semi-arid regions, where the climate is highly continental (cold winters and 

dry summers) and vegetation density and productivity are limited by the availability of water, 

Artemisia and Chenopodiaceae are the most common taxa to be used as a moisture indicator. 

Chenopodiaceae require less water during the growing season and have less demanding habitat 

requirements than Artemisia (Herzschuh, 2007; Zhao et al., 2012).  

The program TILIAGRAPH was used for data illustration (Grimm, 1991). A cluster analysis on the 

pollen assemblage via CONISS (Grimm 1987) was performed to establish pollen zones (PZ). 
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Fig. 2.3 Plate showing macro-charcoal types from G2-A sediment core: 1 wood type, 2 leaf type, 3 

grass type, 4 other types: 4a root type, 4b seed type, 4c moss type. 

 

 

Macro-charcoal analysis 

For charcoal analysis, 1 cm3 samples were taken along the core G2-A at intervals of 0.5 cm up down 

to a depth of 35 cm (70 samples). All samples were processed according to the method of Stevenson 

and Haberle (2005) with 10% KOH and 6% H2O2. Wet sieving during the preparation procedure was 

conducted carefully with low water pressure to ensure little particle fragmentation in the course of 

the treatment.  

Charred fragments (> 150 μm) were counted under a binocular dissecting microscope. According to 

the examples in Umbanhowar and McGrath (1998) and Mustaphi and Pisaric (2014), all charred 

material was divided into four different types: wood, leaf, grass and others (including roots, mosses, 

seeds and very small fragments, which could not be assigned correctly) (Fig. 2.3). In all samples, 

comparatively many charcoal particles could be identified. Results are depicted in terms of charcoal 

particles concentration per cm3.  
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Charcoal data was analysed by 

CharAnalysis version 1.1 (Higuera 

et al., 2009) to separate 

background charcoal from the 

charcoal record in order to detect 

main fire events. The inserted data 

(depth, ages, sample volumes and 

sums of charcoal counts per 

sample) were converted to 

charcoal accumulation rates 

CHAR (cm−2 year −1) with an 

interpolation to the median sample resolution of this record (58 years). The varying low-frequency 

charcoal CHARbackground was calculated by the use of a lowess smoother, which is robust to outliers 

over a 500-year interval. Locally defined peaks within this interval were estimated by subtracting 

CHARbackground from CHAR and peak identification via base threshold values on a noise distribution 

determined by a Gaussian mixture model. The fire frequency and fire return intervals were smoothed 

over 1,000 years. A significant peak was recognized if the minimum charcoal count within a 75-year 

period prior to a peak had a < 5% chance of coming from the same Poisson distribution as the 

maximum charcoal count associated with the peak. A CHAR peak represents a fire episode of one 

or more large fire events in the catchment of core G2-A within a 58-year interval (Higuera et al., 

2009; Mustaphi and Pisaric, 2014) (Fig. 2.4). 

 

 

Numerical analysis 

A Principal Component Analysis (PCA) was performed to investigate interdependencies among the 

identified taxa in the 20 subsamples of core G2-A. PCA on a basis of square root transformation and 

covariance matrices of taxa was realized in RStudio version 1.0.136 (RStudio Team, 2016) using 

Vegan package version 2.0-10 (Oksanen, 2013). For reasons of clarity and comprehensibility, rare 

taxa with a share of < 1% in every subsample were excluded. 

 

 

 

Results 

Lithology 

Based on visual inspection the sediment core G-2 A mainly consists of dark brownish clayey and 

silty organic rich sediments, partly with fine horizontal laminations. It can be subdivided into four 

Fig. 2.4 CHARAnalysis diagram presenting the interpolated 

charcoal counts (Cinterpolated), the background charcoal noise 

(Cbackground, grey line) and the main fire events (peak ID, +). 
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sedimentary units that are separated by colour and organic content. The lowermost part (49–37.5 cm) 

consists of mostly inorganic, homogenous and sparsely laminated dark brown sediment with many 

small stones. The second part (37.5–20.5 cm) is characterized by a lighter brown colour with slightly 

lighter laminations with low organic content. The third part (20.5–8.5 cm) is composed of the same 

dark brown and homogenous sediment as the lowermost part, but of higher organic content. The 

uppermost part (8.5–0 cm) is a humus layer of dark brown colour and largely disturbed by sizeable 

roots. 

 

 

Chronology and sedimentation rate 

The chronology of the core record G2-A is based on three AMS radiocarbon dates (Tab. 2.1). As the 

vegetation cover of the coring site was intact, the core top should have an age of 2014 (year of 

coring). The dated base of the analysed 34 cm-long core segment is 3,880 cal BP. The chronology 

indicates a low average sedimentation rate of 0.088 mm/year at the coring site and the age-depth 

modelling with BACON did not suggest any major changes in the sedimentation rate for the 34-cm-

interval of core G2-A (Fig. 2.2). 

 

 

Palynological results 

In total 41 different pollen and spore taxa could be identified: 10 arboreal, 30 herbaceous and 1 spore 

taxa (Fig. 2.5, Appendix B1). The pollen concentration of core G2-A ranges from 14,500 in the 

lowermost part to 268,420 grains per cm3 in the upper part (Fig. 2.6). In general, the pollen spectra 

are characterized by herbaceous pollen with a representation of > 80%, corresponding to the modern 

natural setting of the area, and a marked dominance of Cyperaceae and Poaceae. The amount of 

arboreal pollen is relatively low and varies from 5 to 22%. Spores are very rare and occur generally 

at core depths between 6 and 24 cm. A CONISS cluster analysis on all pollen grains suggests three 

pollen zones (PZ).  

PZ 1 (34–23 cm core interval; 6 samples; 3,880–2,610 cal BP) 

A characteristic feature of the first PZ is the relatively high representation and diversity of arboreal 

pollen (up to 22%; 10 taxa present) where Larix sibirica values rise up to 11%. Pinus sibirica, Picea 

obovata and Ephedra fragilis are present. Despite Cyperaceae (45–65%) and Poaceae (10–13%), 

Artemisia, Chenopodiaceae and Rosaceae show the highest percentages among the non-arboreal 

pollen taxa. Other herbaceaeous taxa, e.g. Liliaceae, Rumex, Gentiana barbata and Chichorioideae-

type, are present in lower concentrations. Single spores of Polypodium are present in the sample at 

24 cm.  
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The AP/NAP ratio shows relatively high values (0.11–0.33). A/C ratio values range from 0.81 to 

1.86, whereas the A/Cy ratio (0.05–0.12) is far smaller because of the higher representation of 

Cyperaceae in the record. 

 

 

Fig. 2.5 Percentage diagram presenting lithology and results of the palynological analysis of G2-A 

sediment core using TILIA/TILIAGRAPH software (Grimm, 1991) and the pollen zones supported 

by CONISS (Grimm, 1987). 

 

 

PZ 2 (23–5 cm core interval; 9 samples; 2,610–550 cal BP) 

Herbaceous taxa increase slightly up to 90–95%. Arboreal pollen proportions decrease to 5–9%, 

mainly due to a steadily decline of Larix sibirica, Ulmus and Ephedra fragilis. Among the herbaceous 

pollen the percentages of Artemisia stabilize, while the representations of Cyperaceae, Poaceae, 

Apiaceae, Chenopodiaceae and Rumex increase markedly and the proportion of Liliaceae and 

Rosaceae is lower. Single spores of Polypodium are present in one sample at 6 cm depth.  

The AP/NAP ratio generally decreases to values between 0.06 and 0.10. A/C ratio values decrease 

as well and range between 0.29 and 1, whereas the A/Cy ratio remains roughly constant varying 

between 0.03 and 0.1. 

PZ 3 (5–0 cm core interval; 5 samples; 550 cal BP ‑ present) 

The transition to PZ 2 is marked by a decrease in herbaceous pollen to 86%. The share of the arboreal 

pollen rises to 8–14%, mostly due to an increase in Larix sibirica, Pinus sibirica, Betula and 

Juniperus. In this context, a marked decline in the representation of Cyperaceae (from 53 to 38%) is 



 

Manuscript 1 

35 
 

noteworthy. Additionally, the percentages of Poaceae, Apiaceae, Artemisia, Brassicaceae and 

Thalictrum reach their maxima. There is an increase in the diversity of the herbaceous pollen. 

Agropyron, Typhaceae, Caryophyllaceae and Polygonum aviculare occur in this zone only.  

PZ 3 shows an increase in the AP/NAP ratio to values from 0.08 to 0.18. The A/C ratio increases as 

well and ranges from 1.05 to 1.50. Concurrently, there is a marked increase in the A/Cy ratio (0.10–

0.14). 

 

 

 

Fig. 2.6 Diagram presenting pollen concentration in × 104 counts per cm3, Artemisia to 

Chenopodiaceae ratio (A/C), Artemisia to Cyperaceae ratio (A/Cy), arboreal to non-arboreal pollen 

ratio (AP/NAP), cumulative macro-charcoal counts in total (charcoal sum) and the main fire events 

suggested by CharAnalysis (Higuera et al., 2009). Diagram was constructed with 

TILIA/TILIAGRAPH software (Grimm, 1991). 

 

 

Macro-charcoal results 

The charcoal record has an average time resolution of 56 years per sample. Charred material is 

present in all samples along core G2-A (Fig. 2.7). Relatively high charcoal concentrations are found 

especially in PZ 2 from 22 to 14 cm in the middle part of the record. Comparatively low 

concentrations are mainly observed in PZ 1 from 5 to 0 cm. CHARAnalysis software suggests 9 main 

fire events in the catchment: two in PZ 3 (178 cal bp; 468 cal BP), four in PZ 2 (874; 1,570; 1,860; 

2,498 cal BP) and three in PZ 1 (3,194; 3,426; 3,774 cal BP).  
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Fig. 2.7 Diagram presenting charcoal results divided into wood, leaf, grass and other charcoal 

remains, the main fire events indicated by CharAnalysis software (Higuera et al. 2009) and the three 

pollen zones according to CONISS (Grimm, 1987). Diagram was constructed with 

TILIA/TILIAGRAPH software (Grimm, 1991). 

 

 

Regarding the four different morphotypes, it is noticeably that charred roots, mosses and seeds or 

very small charcoal particles are the most frequent fraction (44% of charcoal counts in total). Charred 

leaves (10%) are rarer than wood (20%) and grass particles (26%). In general, the proportions of the 

quantities in the different fractions seem to correlate. The same peaks are often visible in all four 

morphological groups.  

The composition of the charcoal material only changes little through time. At greater depths, grass 

material is more frequent than wood, especially in PZ 2 between 22 and 14 cm. At the top of the 

record (5–0 cm) both fractions show almost equal values. 

 

 

Numerical results 

The PCA is comprised of 30 taxa in the 20 subsamples of the period from 3,880 cal BP to present 

time (Figs. 2.8, 2.9). PC1 (2.0993) captures 33% of the total variance (6355) in the dataset and PC2 

(1.1453) comprises 18%. The first axis divides the taxa into arid species (negative end) and alpine 

species (positive end) (Fig. 2.8). The arboreal species (especially Larix sibirica, Salix, Ulmus and 

Populus) at the positive end of the second axis (PC2) are separated by their ordination from steppe 

species (e.g. Chenopodiaceae, Cyperaceae and Rumex) at the negative end. Poaceae, Asteraceae 

types and Pinus sibirica show an intermediate orientation on both axes. Pollen subsamples are 
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clustered according to their PZs within the plot along both axes (Fig. 2.9). Samples of PZ1 (sit15–

sit20) show comparatively high values on both axes, samples of PZ2 (sit6–sit14) cluster at the 

negative end of PC2 and all samples of PZ3 (sit1–sit5) show low values on the first axis. 

 

 

 

 

 

 

 

 

 

 

 

 

Interpretation and discussion 

Only minor changes in the sedimentation rate can be observed in the record, with slightly higher 

values in PZ 1 and PZ 3 (Fig. 2.2). The established chronology suggests a continuous sedimentation 

without any interruption. This is also supported by the lithology and pollen record, which do not 

indicate any gaps or interruptions. The low pollen concentration in the record from 3,880 to ca. 1,300 

cal BP in PZ 1 (Fig. 2.5), could have been caused by poorer pollen preservation (Havinga, 1967), 

due to increased decomposition because of the warmer and moister climate. However, this 

contradicts the relatively high representation of arboreal pollen during this period. The cause of the 

increase in the pollen concentration (Fig. 2.6) in the upper core part (10–0 cm) is not clear, but might 

Fig. 2.8 PCA of taxa, Lar: Larix sibirica, Pin: 

Pinus sibirica, Pic: Picea obovata, Ulm: Ulmus, 

Bet: Betula, Sal: Salix, Jun: Juniperus, Pop: 

Populus, E-di: Ephedra distachya-type, E-fr: 

Ephedra fragilis-type, Cyp: Cyperaceae, Poa: 

Poaceae, Art: Artemisia, Sen: Senecio-type, Chi: 

Chicorioideae-type, All: Allium, Car: Caryo-

phyllaceae, Api: Apiaceae, Bra: Brassicaceae, 

Che: Chenopodiaceae, Rho: Rhododendron, 

Lam: Lamiaceae, Men: Mentha-type, Lil: 

Liliaceae, P-av: Polygonum aviculare-type, P-

bi: Polygonum bistorta-type, Rum: Rumex, Ran: 

Ranunculaceae, Tha: Thalictrum, Ros: 

Rosaceae. 
 

Fig. 2.9 PCA of subsamples, sit1-sit20: 

pollen samples 1–20. 
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be related to a higher pollen productivity due to wetter and warmer climatic conditions, or due to 

peat growth and the development of locally wetter conditions favouring better pollen preservation.  

For the interpretation of the pollen record it needs to be considered that today, within a radius of 

about 50 m around the coring site, the vegetation consists only of herbaceous plants, and within a 

radius of up to 500 m there are only few trees, almost entirely Larix sibirica, with a few Salix, 

Juniperus and Betula shrubs. This situation in combination with the poor pollen production of Larix 

sibirica (Ekberg and Eriksson, 1966) leads to a high representation of herbaceous species. Other 

trees, such as Pinus and Picea, are present in the record due to long-distance transport over several 

kilometres. The ecological differences between arboreal species (e.g. Larix sibirica, Salix, Ulmus 

and others) and arid steppe species are evident from the PCA (Fig. 2.8). Especially on the second 

axis, both groups show opposite ordinations due to their different water requirements.  

In the late Holocene from 3,880 to 2,610 cal BP (PZ 1) the pollen spectra reflect the dominance of 

herbaceous vegetation rich in Cyperaceae and Poaceae above the upper forest line (Fig. 2.5).  

However, during this period the proportion of arboreal pollen is relatively high. Larix sibirica, in 

particular, has the highest occurrence of the whole record in this period. According to Liu et al. 

(1999) and Herzschuh (2007) the relatively high AP/NAP ratios (0.11–0.33) can be attributed to the 

presence of a mixture of open forests or small areas of forest and non-forested steppe-zones. Despite 

the much higher occurrence of Larix sibirica, this is roughly comparable to the modern vegetation 

cover (core top samples) in the study area. The absence of heliophilous Juniperus shrubs, which can 

be seen as an indicator of open forests (Hilbig, 1995), compared to the more recent period (PZ 3) 

where Juniperus was common, suggests that the forests in the study region were more closed. 

Ephedra fragilis is usually strongly linked to aridity (Hilbig, 1995). The occurrence of this small 

shrub suggests vegetation of an open character in the study area, growing perhaps on eroded slopes 

or on exposed rocks (Rudaya et al., 2008).  

The A/C ratio (0.9–1.9) points to forest or forest-steppe vegetation during this period (Fig. 2.6). The 

evaluation of the ratio results in this study is based on the classification according to El-Moslimany 

(1990), Herzschuh (2007) and Liu et al. (1999). Although Zhao et al. (2012) argue that the application 

of this ratio is limited to steppe, steppe desert and desert areas, and requires Artemisia and 

Chenopodiaceae percentages of more than 45–50% of the pollen sum in each sample, the A/C results 

in this paper should be considered as a trend. In addition, the A/Cy (Artemisia to Cyperaceae) ratio 

(0.05–0.12) reflects alpine steppe vegetation (Herzschuh, 2007). These extremely low values are 

attributed to the abundance of some species of Cyperaceae, such as Kobresia, in all samples of core 

G2-A, a distinctive occurrence of the dry mountain steppe vegetation in Mongolia (Hilbig, 1995; 

Kürschner et al., 2005; Schlütz et al., 2007).  

In this context, Andreev et al. (2007) also took into consideration that high representations of 

Cyperaceae in pollen records from dry areas in Mongolia should not be considered directly as an 
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indicator of humidity, but of cooler temperatures and a possible expansion of cold adapted 

sedge/grass steppe-tundra vegetation. The relatively high proportions of Larix sibirica, Pinus sibirica 

and Salix as well as the presence of Rosaceae and Liliaceae point to a rather humid and slightly 

warmer climate (Hilbig, 1995). However, the values of the A/C ratio (> 1) emphasize the suggestion 

of humid conditions as in forests or forest-steppes (0.5–1.7 according to El-Moslimany (1990)). 

Additionally, the macro-charcoal record displays an average charcoal concentration with increasing 

values (Figs. 2.6, 2.7). In this regard, a rather humid episode at the beginning is indicated that changes 

to drier conditions at the end of this period.  

Admittedly, it is possible to detect a few relationships between climate and fire history in the area, 

but to solely interpret the fire history with regard to human activities is inherently difficult. It is, for 

instance, not possible to connect a pollen increase/decrease after changes in the fire frequency with 

agricultural activities, because the cold and arid climate does not permit the practice of agriculture 

in the Mongolian Altai at that elevation (Gunin et al., 1999). Nevertheless, there are a few hypotheses 

concerning human impact on fires in the area that need to be verified by means of additional proxies. 

Non-pollen palynomorphs, e.g. coprophilous fungi, could be a more valuable indicator of the 

presence of humans and their interactions with the environment (van Geel et al., 2003). Studies of 

this character are already scheduled. The interpretations below regarding the fire history derived from 

macro-charcoal should be taken as possible but not confirmed scenarios.  

The reconstruction of the fire frequency in combination with the climatic conditions indicates that 

the three main fire events in the first half of this period might be of anthropogenic origin, because of 

the distinct peaks in relation to the adjacent macro-charcoal samples (Higuera et al., 2007). This may 

point to the assumption of the presence of early settlers or nomadic peoples in the ‘AltaiTavan Bogd’ 

conservation area even before 3,000 cal BP. This has not yet been inferred from other records, e.g. 

in the Russian Altai (Schlütz and Lehmkuhl, 2007; Rudaya et al., 2008). These suggestions correlate 

with the results by Schlütz et al. (2007) regarding the great expansion of Kobresia mats due to grazing 

activities by domesticated yaks in connection with nomadic migration. Kobresia mats are generally 

more resistant to grazing and trampling than other species in the area (Wesche et al., 2005), which 

could enhance intense grazing activities around the coring site since the beginning of the record.  It 

might also be an explanation for the high occurrence of Cyperaceae in this record compared to other 

studies in the Mongolian Altai (Tarasov et al., 2000; Rudaya et al., 2008), the Russian Altai (Schlütz 

and Lehmkuhl, 2007; Rudaya et al., 2016) and Central Mongolia (Wang et al., 2009).  

The second period between 2,610 and 550 cal BP (PZ 2) is characterized by markedly lower 

proportions of arboreal species while the proportions of herbaceous taxa are the highest of the whole 

record.  

The AP/NAP ratio (0.06–0.1) also reflects an expansion of the herbaceous vegetation around the 

coring site. Tree growth was even more limited, and the forest line might have been more distant 
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from the coring site than in the previous period. However, larger amounts of wood-type charcoal in 

this period (Fig. 2.7) do not support this suggestion of a reduction in vegetation cover and a retreat 

of the forest line. It should be considered that errors in the identification of the wood-type charcoal 

cannot completely be excluded (Umbanhowar and McGrath, 1998; Mustaphi and Pisaric, 2014).  

In the steppe, an increase in Chenopodiaceae, Artemisia and Poaceae is notable (Fig. 2.5). According 

to Liu et al. (1999) the very low A/C values (< 0.2) can be attributed to a non-forested steppe zone, 

whereas El-Moslimany (1990) suggests a transition from forest or forest-steppe to a semiarid steppe 

for the local vegetation cover. These trends are corresponding to a regional precipitation change and 

a possible onset of a cooler climate in the area (Herzschuh, 2007).  

Furthermore, the decreasing values of the A/C ratio (0.3–1) point to a change in the moisture 

conditions as well (e.g. Zhao et al., 2012). Also, the even lower values of the A/Cy ratio (0.03–0.1) 

support the assumption of an onset of a cooler period in this part of the Mongolian Altai (Herzschuh, 

2007). In this period, the macro-charcoal record generally displays a very high charcoal concentration 

(Figs. 2.6, 2.7), which also favours a more arid period, but the concentration tends to decline during 

the latter part of this time interval. The reconstruction of the frequency and intensity of the fires might 

also favour the assumption of arid climate conditions, where fires can spread more easily 

(Umbanhowar et al., 2009).  

In particular, the continuous occurrence of high amounts of charcoal from 2,000 to 1,250 cal BP may 

lead to the conclusion that these fires might be of natural origin. However, the three reconstructed 

main fire events at about 2,500, 1,860 and 1,570 cal BP still need to be treated with care because of 

their intensity in contrast to their adjacent time intervals (Higuera et al., 2007). Further inspection of 

non-pollen palynomorphs might also be useful to gain a final insight into its origin.  

The suggestions of an opening of the forests and a retreating forest line in this period correlate with 

the results from Schlütz et al. (2008) regarding the additional development of steppes caused by the 

initial pressure of use in this part of the late Holocene.  

The third late Holocene period from 550 cal BP to today (PZ 3) is distinguished by a renewed increase 

in the arboreal pollen proportions similar to the first period. According to Liu et al. (1999), based on 

the higher AP/NAP ratio (0.08–0.18) in this period, the vegetation cover tends to revert from non-

forested steppe zones to a mixture of high mountain steppe and rather open forests. The composition 

of the arboreal pollen indicates a trend towards heliophilous species (e.g. Betula, Juniperus). At the 

same time, the proportion of drought-resistant species in the assemblage (Ephedra fragilis, E. 

distachya) decreases, possibly due to a denser arboreal vegetation cover than in the previous interval. 

This trend points to an approaching forest line and forests that are more open than in the first period. 

Moreover, the comparably low charcoal concentration (Figs. 2.6, 2.7) might indicate a reduction of 

vegetation cover serving as fuel for fires in the region as Umbanhowar et al. (2009) suggested. The 
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abundance of Juniperus and Betula in this period in this intensively grazed environment can also be 

explained by its unsuitability for grazing animals (Earle, 2015).  

In this context, the occurrence of Polygonum aviculare may indicate a more intense land use, because 

it is a secondary cultivation indicator and resistant to trampling (Jäger, 2011). Re-emerging taxa such 

as Agropyron, Typhaceae, Thalictrum or Caryophyllaceae point to a greater diversity among the non-

arboreal species and a better access to water resources (Hilbig, 1995).  

The A/C ratio (1.05–1.5) again points to conditions that are more humid (El-Moslimany, 1990). The 

slight rise in the A/Cy ratio (0.1–0.14) reinforces the assumption of moister conditions similar to 

those before 2,610 cal BP. Additionally, it favours the presumption of a marginal increase in 

temperature (Herzschuh, 2007). Moreover, the macro-charcoal record presents a very low charcoal 

concentration, which may also generally point to a more humid episode.  

The reconstruction of fire frequency in combination with the climatic conditions might indicate that 

both main fire events at 470 and 180 cal BP are possibly of anthropogenic origin. The small number 

of charcoal fragments suggests rather two small local fires by nomads than extended regional fires 

(Higuera et al., 2007; Umbanhowar et al., 2009). This might reflect the general changes as well in 

the political structures of animal husbandry management and the grazing practices of the inhabitants 

of the area correlating with changes in the land use system (Fernandez-Gimenez, 1999), possibly 

using less fire. Unfortunately, the time resolution of the samples in this period does not allow any 

detailed comparisons between the political periods in the Mongolian Altai and the fire history. It is 

noticeable, however, that both small fire events occurred during the Mongol Empire (cal AD 1480) 

and the Manchu Rule (cal AD 1770), respectively (Fernandez-Gimenez, 1999). Presumably, in these 

periods the use of fire as a source of warmth, for cooking, and for deforestation to maintain more 

space for grazing, was a more common tool than in modern times.  

The data reveal that during the last approx. 4,000 years not only climate was an important factor for 

environmental changes in the ‘Altai Tavan Bogd’ conservation area, but possibly also human 

activities to some degree. Palynological data generally suggest three major periods of a changing 

climate from more humid and warm (3,880–2,610 cal BP) to more arid and rather cold (2,610–550 

cal BP) and eventually to slightly more humid and warm again, lasting until the present (Fig. 2.5). 

These results show some similarities to pollen data from the Hoton-Nur basin (Tarasov et al., 2000; 

Rudaya et al., 2008), also located in the Mongolian Altai. At this site, there have also been shifts 

from forest-steppe to steppe visible for the last 9,000 years. In contrast to our site, there was already 

a major decrease in precipitation at around 4,000 cal BP, but resulting in the establishment of arid 

steppe vegetation and also the retreat of forest communities around the lake. Nevertheless, a 

correlation of both records shows at least a similar recovery of the open forest landscape at around 

500 cal BP (Tarasov et al., 2000). Another reconstruction by Rudaya et al. (2008) at Hoton-Nur 

arrived at a different result, especially for the period between 3,000 and 2,000 cal BP. At that time, 
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the proportion of arboreal pollen was still comparably high and decreased continuously after 2,000 

cal BP. A 1,738-year tree-ring record by D’Arrigo et al. (2001) from the Tarvagastay Mountains in 

western central Mongolia offers a very high time resolution and shows comparably small temperature 

oscillations for this period. The results support the assumption of a slightly increasing temperature 

in the study area, especially since 550 cal BP.  

Palynological data from Wulungu Lake in northern Xinjiang, China, located between the Chinese 

Altai Mountains and the Jungger Basin show a similar temporal zonation but reveal entirely opposite 

climatic trends. At that site climate changed from more humid and colder (4,200–560 cal BP) to even 

colder and drier conditions (from 560 cal BP to today) (Liu et al., 2008). These results are supported 

by a palynological record from Balikun Lake, Xinjiang, China, located southeast of the Chinese Altai 

Mountains (Tao et al., 2010), and a 2,326-year tree-ring record from Quinhai-Tibetan Plateau at a 

comparable elevation at about 3,500 m a.s.l. (Zhang et al., 2003).  

Another markedly different climatic reconstruction of the past 4,300 years is presented from the Lake 

Teleskoye record in the Russian Altai (Rudaya et al., 2008, 2009, 2016), where, for example, the 

maximum of mountain taiga coverage is visible from 3,500 cal BP and only interrupted by short 

cooling events (Rudaya et al., 2016). In general, this site is characterized by higher precipitation and 

the absence of steppe communities, which makes it difficult to compare with our data. These spatial 

differences may lead to the conclusion that small-scale variations and regional influences on the 

climatic trends occurred in the ‘Altai Tavan Bogd’ study area.  

However, as mentioned before, comparisons with records from close to our study area are difficult 

because of the availability of data with a similar time resolution and vegetational setting. Further 

investigations are needed to verify regional and local climate signals in our analysis. The same holds 

true for the charcoal record. 

 

 

 

Conclusions 

The palaeoecological analyses of core G2-A display the vegetation, climate, fire and human history 

in the forest-steppe ecosystem south of Lake Dayan Nuur in the conservation area ‘Altai Tavan 

Bogd’, Mongolian Altai, for the past 3,880 years. The reconstruction of pollen, pollen ratios and 

charcoal suggest a mixture of open forests and high mountain steppe vegetation in this area since 

3,880 cal BP. In the second period from 2,610 to 550 cal BP the steppe vegetation expanded 

noticeably, which points to a decrease in precipitation and possibly lower temperatures. At about 550 

cal BP the reconstruction demonstrates a recovery of the open forest landscape at the cost of the 

steppe vegetation cover, and a rise in plant diversity. This trend can both be attributed to an increase 

in temperature and precipitation to modern values and less use of fire. The fire history documents 
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that an intensification of pastoralism and deforestation by the inhabitants might have taken place. 

This reflects a possible importance of the local anthropogenic influence on environmental changes 

in the conservation area ‘Altai Tavan Bogd’ around Lake Dayan Nuur. The interpretation of the 

human impact on the fire history in this study must be discussed cautiously, because there is more 

evidence (e.g. from non-pollen palynomorphs) needed to get more solid results. This record is the 

first vegetation and climate reconstruction for the period from 4,000 cal BP in this part of the 

Mongolian Altai inferred from pollen and macro-charcoal. Sites from neighbouring areas, northern 

Mongolian Altai (Tarasov et al., 2000; Rudaya et al., 2008) or Russian Altai (Andreev et al., 2007; 

Rudaya et al., 2009) show different time resolutions but are consistent with the general climatic trend 

inferred from this record. 
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Abstract 

The ‘Altai Tavan Bogd’ National Park, located between 2,000 m and 4,000 m a.s.l. in the north-

western part of the Mongolian Altai, is a forest-steppe ecosystem in Central Asia which is noticeable 

because of its extreme continental and high-altitude conditions. Its vegetation is very sensitive to 

environmental changes and impact by nomadic people. To reconstruct the dynamics of this forest-

steppe ecosystem, a broad approach was taken employing multi-proxy analyses including the 

analysis of pollen, spores, non-pollen palynomorphs, charcoal and diatoms, as well as XRF scanning 

of a lacustrine sediment core of a small and shallow lake located south of Dayan Nuur. Five 

radiocarbon dates indicate a record spanning the last 4,375 years. 

Between 4,310 and 1,040 cal yr BP, the vegetation was characterized by a mixture of alpine meadow 

and moist true steppe communities as well as forested areas with Larix sibirica, Pinus sibirica and 

Picea obovata stands. Starting around 2,350 cal yr BP, a substantially greater and/or denser forest 

occurrence can be inferred. A marked forest decline after 1,040 cal yr BP and the loss of Pinus 

sibirica and Picea obovata near the study area proceeded in accordance with a significantly higher 

abundance of large herbivores and a strong indication of nomadic people in the area as inferred from 

coprophilous fungi. One period of markedly increased fire activity is found from 640 to 550 cal yr 

BP. For the latest Holocene period, the records of non-pollen palynomorphs and diatoms suggest a 

rise of the lake water level. These contrasting trends of forest decline despite higher water availability 

may reflect the considerable human impact of the nomadic population and their cattle on the 

ecosystem in the ‘Altai Tavan Bogd’ National Park and Central Asia in general. 

 

 

 

Introduction 

The ‘Altai Tavan Bogd’ National Park (Fig. 3.1) is situated in the Mongolian Altai Mountains. As 

many parts of continental Central Asia, the area is influenced by extreme climatic conditions which 

create a unique vegetation mosaic, mainly composed of dry steppe, meadow steppe and forests. The 

annual precipitation rate as well as the grazing activity due to pastoral nomads, is an important factor 

controlling the vegetation pattern (Gunin et al., 1999).  

Past palaeoenvironments have been rarely studied in the Mongolian Altai Mountains despite their 

importance for understanding the vegetation and settlement history in Central Asia. Forest-steppe 

ecotones are generally sensitive to climate and anthropogenic influence and little palaeoecological 

knowledge about their dynamics in the Altai Mountains has been derived so far. There are studies 

carried out at Dayan Nuur (Unkelbach et al., 2018), Hoton Nuur basin (Rudaya et al., 2008, 2009; 

Tarasov et al., 2000) and Tsambagarav glacier (Brugger et al., 2018). At Hoton Nuur basin, pollen 

and diatom records represent the last 11,500 cal yr BP. Studies by Rudaya et al. (2008, 2009) and 
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Tarasov et al. (2000) reconstructed a warmer and moister period with an extensive forest expansion 

before 6,500 cal yr BP and a forest reduction as well as drier and colder conditions for the late 

Holocene (since ca. 3,800 cal yr BP). However, both latter studies admitted certain limitations 

concerning time resolution and dating quality in their studies. On a local scale, pollen and macro-

charcoal reconstructions of a small peat bog by Unkelbach et al. (2018) suggested warmer and more 

humid conditions from at least 3,880 to 2,610 cal yr BP. Findings showing a decrease in the forest 

vegetation and an increase in macro-charcoal particles imply a climatic change to drier and colder 

conditions, but also land-use intensification from 2,610 to 550 cal yr BP. Since 550 cal yr BP a steady 

recovery of the forests could be attributed to a rise in temperature and annual precipitation. Based on 

an ice core analysis, Brugger et al. (2018) identified more periods of forest expansion, contradiction 

and forest recoveries during the late Holocene in the Altai. However, the role of human impact on 

the late Holocene vegetation has only been considered in Central Asian environmental studies in a 

few cases.  

 

 

Fig. 3.1. Map showing the location of the Altai Tavan Bogd National Park within Central Asia 

(overview map) and the location of core D3L6 (orange dot). Forest distribution (green): modified 

from Klinge et al. (2018). Source: Digital Elevation Model based on Shuttle Radar Topography 

Mission, projection: UTM Zone 46, map created with ArcGIS version 10.6.1.  
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In this paper, we aim to contribute to a better understanding of the driving forces of the environmental 

changes in Central Asia. Studies using a wide set of independent proxies to identify detailed 

environmental changes are still rare. Our multi-proxy approach enables the analysis of palynological 

parameters (pollen, spores, non-pollen palynomorphs), and additional parameters (macro-charcoal, 

diatoms, XRF-data). Our objectives are to detect changes in the Mongolian Altai's forest-steppe 

ecosystem and plant diversity in response to natural (climatic) and anthropogenic environmental 

shifts. In the next step, we aim to quantify the extent of these natural and anthropogenic impacts. 

Additionally, we want to focus on the dynamics and stability of the forest and steppe vegetation, the 

role of fires in the past and the conditions for lake formation and lake level dynamics in the area. 

 

 

 

Environmental setting 

Relief and climate 

The Altai Mountains are an active intraplate and intracontinental orogen within the Indo-Eurasia 

deformation field in Central Asia. They cover 170,000 km2 over four different countries (Russia, 

Kazakhstan, Mongolia and China) and are subdivided accordingly into the Russian Altai, in the 

northern and western part; the Chinese Altai, in the South; and the Mongolian Altai, in the eastern 

part. In the Southeast, the Mongolian Altai borders the Gobi Altai and the Valley of Great Lakes in 

the East (Lehmkuhl et al., 2016). In Mongolia, the Altai is the tallest and most extensive mountain 

range (Gunin et al., 1999). The alpine relief exhibits steep U-shaped valleys trending mostly in N-S-

directions (western and southern Mongolian Altai) and several large mountain massifs, partly shaped 

by glacial erosion and separated by intermontane basins (eastern Mongolian Altai) (Lehmkuhl et al., 

2016). The highest elevation in the area is the Tavan Bogd, 4,370m a.s.l. In these altitudes the 

mountain massifs are covered by bare rock debris and glaciers. In general, the geological structures 

are formed by siliceous rock, including schists and granites. In the alpine belt, continuous permafrost 

conditions prevail, whereas in the basins permafrost is discontinuous. The dominating soils are 

leptosols (Klinge et al., 2017). Fluvial systems serve as internal drainage systems towards the basins 

of the Valley of the Great Lakes. Most of the eroded sediment is deposited in its valleys or closed 

basins (Cunningham, 2005). 

Due to these specific topographic conditions and the large distance to the Indian, Arctic and Pacific 

Oceans as moisture sources, the Mongolian Altai is characterized by extreme continentality (Andreev 

et al., 2007). The westernmost mountain ranges of the Altai capture the wet air masses transported 

by the westerlies. The rain shadow effect causes a reduction to 300 mm in the southeast and to 50 

mm in the Valley of the Great Lakes, in contrast to the northwestern parts of the Altai (Russia), which 

receive >800 mm of annual precipitation. Most of the rainfall (70–80%) occurs during the short 
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summertime (June to August). For the city of Ölgii (48°55′N, 89°56′E) at an elevation of about 1,700 

m a.s.l., the mean annual precipitation is 114 mm and the mean annual air temperature is 0.3 °C. The 

monthly mean temperatures range from −16.8 °C in January to 16.4 °C in July (AM Online Projects, 

2018). Dry weather with temperature inversions and extremely cold air in the mountain basins 

(Klinge et al., 2003) with expectedly minor snowfall prevailing in winter. 

 

 

Fig. 3.2. Detailed satellite map showing the location of the coring site D3L6 (48°16’22.18’’N, 

88°54’48.50’’E, 2,450 m a.s.l.) in the vicinity of Dayan Nuur. Core G2-A (48°15′0.00″N, 88°53′ 

40.10″E) was added from Unkelbach et al. (2018). Source: Sensor Spot 7 (09/02/2014), map created 

with ArcGIS version 10.6.1. 

 

 

Vegetation 

In the Mongolian Altai elevation and precipitation are the driving factors for the vegetation 

distribution. Precipitation controls W-E-directed vegetation patterns, whereas elevation determines 

the vertical zonation of plant communities (Gunin et al., 1999). Consequently, the slopes in the 

western parts of the Mongolian Altai are dominated by alpine meadow steppes, forb grass steppe, 

dry mountain steppe and small forested areas. In the eastern parts, only dry steppe and semi-deserts 

make for comparatively sparse vegetation (Neuffer et al., 2003). At the lower slopes, forb-grass 
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steppes and dry mountain steppes merge into cold mountain steppes. On southern foothills, desert 

steppes occur at the mountain base (Gunin et al., 1999).  

Meadow steppes with Kobresia and Carex formations in combination with cushion plant 

communities comprise most of the Mongolian Altai area. Their vegetation composition differs 

greatly, merging locally with small spots of Juniperus sabina, Betula rotundifolia and Salix glauca 

(Gunin et al., 1999; Rudaya et al., 2008). Forested areas only occur on the wettest north-facing slopes 

between 2,000 and 2,500 m a.s.l. in the upper and central parts of the mountains (Gunin et al., 1999). 

In the basins and on the toe slopes, forest growth is prevented by temperature inversions in wintertime 

(Neuffer et al., 2003) and presumably by prolonged human disturbance through tree logging and 

livestock grazing (Hauck et al., 2012). Forests consist of larch trees (Larix sibirica), occasionally 

mixed with pine (Pinus sibirica) and spruce (Picea obovata) (Gunin et al., 1999). 

 

 

Tab. 3.1. A brief overview of the settlement history in western Mongolia (Fernández-Giménez, 

1999; Fernández-Giménez et al., 2017; Gonzaléz-Ruiz et al., 2012; Khishigjaral et al., 2013; 

Lkhagvadorj et al., 2013; Tumen, 2006; van Geel et al., 2004). 

Time period 

(BC/AD) 

Time period 

(cal yr BP) 

Political/Cultural 

structure 

Possible 

environmental 

impact 

 3,550 - 1,350 BC 5,500 – 3,300 BP Bronze Age hunting/fishing, 

pastoralism first 

introduced 

1,350 – 850 BC 3,300 – 2,800 BP Late Bronze Age transition to 

specialized 

pastoralism 

850 – 450 BC 2,800 – 2,400 BP Early Iron Age 

Scythian  

expansion of mobile 

pastoralism 

450 BC – 150 AD 2,400 – 1,800 BP Xiongnu mass migration 

150 – 550 AD 1,800 – 1,400 BP Turk  Turkish invasions 

550 – 1150 AD 1,400 – 800 BP Chinese Chinese invasions 

1206 – 1368 AD 744 – 582 BP Mongol Empire fixed territories for 

nomads, wide-

ranging seasonal 

migrations 

1691 – 1924 AD 259 - 26 BP Manchu Colonial Period 

and Autonomy 

reorganization of 

territories, grazing 

prohibited in some 

areas 

1924 – 1959 AD 26 to -9 BP Early Communism sharp decline in 

livestock population 

1960 – 1990 AD -10 to -40 BP Collective Period specialized herding 

in collectives 

1991 - 1999 AD -41 to -49 BP Privatization increase of cattle, 

overgrazing and 

forest threats 

2000 AD to present -50 to present  Market Economy decline in number of 

herders 
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Settlement history 

Starting with early human occupation of the mountain regions in Central Asia from the Middle 

Palaeolithic (Tumen, 2006) and the introduction of cattle breeding in the Late Neolithic (late 3rd 

millennium BCE) (Volkov, 1995), the Mongolian Altai has been influenced by various nomadic 

tribes (Ėnkhtör et al., 2018). Diverse cultural and political structures have led to changes in land use 

and animal husbandry over time. A brief overview about the settlement history in western Mongolia 

is given in Table 3.1.  

 

 

 

Material and methods 

Field work was conducted in 2016 in the ‘Altai Tavan Bogd’ National Park, Bayan-Ölgii province, 

located 110 km southwest of Ölgii (Fig. 3.1). The coring site (48°16′22.18″N, 88°54′48.50″E, 2,450 

m a.s.l.) is an approximately round lake of around 150 m in diameter and 2.5 m max. water depth, 

located southeast of Dayan Nuur (Fig. 3.2). It is situated in a depression between hills and a flat 

floodplain with a little stream about 1 km from the lake. The lake has no river inflow or outflow. 

Today's vegetation surrounding the lake is mainly composed of dry and meadow steppe species such 

as Cyperaceae, Poaceae, Artemisia and Chenopodiaceae. About 2 km southwest of the lake few small 

stands of Larix sibirica are spread out across the area. Pinus sibirica and Picea obovata trees are not 

present near the lake, but close to the border of China at a distance of about 10 km and 15–20 km, 

respectively (Beket, 2009). 

In 2016, two core sections of 94 cm total length (D3L6) were obtained from the center of the lake 

using a Russian peat corer. They were transferred to the University of Göttingen, Germany, for 

further analyses and stored at 4 °C under dark conditions. 

 

 

Tab. 3.2. Uncalibrated and calibrated radiocarbon dates of core D3L6. Calibration was performed 

using the Northern Hemisphere terrestrial calibration curve IntCal13 (Reimer et al., 2013). 

 

Laboratory 

Code 

Depth 

(cm) 

Type of 

Material 

C14 Age (yr BP) calibrated C14 Age 

(cal yr BP +/- 1σ) 

Poz-93840 27 Bulk sediment 480 ± 30 451 ± 30 

Poz-93932 55 Bulk sediment 735 ± 30 710 ± 30 

Poz-93845 71 Bulk sediment 1105 ± 30 1036 ± 30 

Poz-93766 84 Bulk sediment 2310 ± 30 2235 ± 30 

Poz-85952 94 Bulk sediment 4045 ± 30 4309 ± 30 
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Radiocarbon dating and age-depth-modelling 

As there were no plant remains in the core, five bulk samples (approx. 3 cm3 each sample) were 

selected for radiocarbon dating based on changes in lithology and pollen composition. These 

radiocarbon dates were measured at the Poznan Radiocarbon Laboratory, Poland, in 2017, using an 

accelerator mass spectrometer (AMS). The age-depth-model was established with standard settings 

of BACON version 2.2 (Blaauw and Christen, 2011) in RStudio version 3.3.3 (RStudio Team, 2016) 

for which the Northern Hemisphere terrestrial calibration curve IntCal13 of Reimer et al. (2013) was 

employed. 

 

 

Palynological analysis 

In total, 48 samples of 0.5 cm3 sediment material were taken continually at 2 cm intervals along core 

D3L6. They were prepared using the standard pollen preparation method of Faegri and Iversen 

(1989) including 10% HCl, 10% KOH, 40% HF and acetolysis. All samples were sieved twice during 

the process to reduce overly coarse >120 μm and <10 μm fine material. Exotic marker spores 

(Lycopodium clavatum) were added for concentration (grains/cm 3) and influx (grains/cm2/yr) 

calculations. The identification of pollen and spores was based on the reference collection of 

Mongolian pollen and spores at the Department of Palynology and Climate Dynamics, University of 

Göttingen (Germany) and relevant literature (Beug, 2004; Demske et al., 2013; Murad, 2011; Willard 

et al., 2004). All samples were counted to a terrestrial pollen sum of 300 pollen grains. Spores and 

aquatic pollen taxa were excluded from the pollen percentage sum. To obtain additional 

palaeoecological information, non-pollen palynomorphs (NPP) were counted. Identification of NPPs 

was based on Demske et al. (2013), Shumilovskikh et al. (2015) and van Geel (1978). New NPP-

types were introduced using lake code (D3L6) with a number and described morphologically in the 

Supplementary Material. If possible, they were added to the specific taxonomic group. NPP counts 

were presented in relation to the pollen sum. Pollen and NPP percentages, concentrations and influx 

were calculated based on the sum of Lycopodium clavatum spores. 

For further interpretation, the ratios of arboreal to non-arboreal pollen (AP/NAP) and Artemisia to 

Chenopodiaceae (A/C) were calculated. Especially in highly continental climates (arid and semi-arid 

regions) with dry summers and cold winters the vegetation density and productivity are limited by 

the availability of water. In these regions, Artemisia and Chenopodiaceae are the most common 

species that are used as a moisture indicator (Fowell et al., 2003). Artemisia requires more water 

during the growing season and demands higher habitat requirements than Chenopodiaceae 

(Herzschuh, 2007; Zhao et al., 2012). Additionally, pollen of Artemisia and Chenopodiaceae species 

were distinguished based on their size and separated between <20 μm-types and >20 μm-types. The 
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ratios Abig/Asmall and Cbig/Csmall were calculated to discover changes in the species' composition (Davis 

and Shafer, 2006; Schlütz and Lehmkuhl, 2007). 

The software packages TILIA and TILIAGRAPH (Grimm, 1991) were used to illustrate pollen and 

NPP data. CONISS was applied to perform a square root transformation of the pollen data and to 

establish pollen zones (PZ) by statistical subdivision (Grimm, 1987). 

3.3 Micro and macro-charcoal analysis 

In total, 188 samples of 0.5 cm3 were taken in seamless intervals of 0.5 cm. Following the method 

established by Stevenson and Haberle (2005), the samples were processed using 10% KOH and 4% 

H2O2 and wet sieving to reduce particle fragmentation. Macro-charcoal fragments (>150 μm) were 

recorded using a binocular dissecting microscope. As presented by Unkelbach et al. (2018), all 

recorded particles were separated into four taxonomic types: wood, leaf, grass and others (e.g. small 

roots, moss and unidentifiably small particles). The results were illustrated in terms of total counts 

per sample. Additionally, the macro-charcoal influx was calculated. Software package 

TILIAGRAPH (Grimm, 1991) was used to visualize macro-charcoal data.  

Furthermore, micro-charcoal particles were counted in the same samples as pollen and NPPs. Micro-

charcoal concentration and influx were calculated. They are used as an additional proxy for paleo-

fire history (Whitlock and Larsen, 2001) and for comparison with macro-charcoal data. 

 

 

Diatom analysis 

In total, 48 samples of 2 cm intervals were taken along the core D3L6 at the same depths as the pollen 

samples. For preparation, about 10 mg of material was taken from each sampled layer and stirred 

gently with pure water to avoid destroying diatom valves and chrysophyte cysts. The samples were 

dried on a heater at 70 °C and observed by SEM (scanning electron microscope) and through a light 

microscope.  

SEM observation was conducted under 10 kV without vacuum deposition using a low vacuum 

pressure SEM (Phenom Pro). After SEM observation, the samples were mounted in the high 

refractive material (Mount Media, Wako Pure Chemical Industries, Ltd.). Diatoms and chrysophyte 

cysts were counted by a light microscope (×1000) using oil emersion lenses. At least, 200 valves and 

cysts were counted in each sample. In samples of a very low diatom and chrysophyte cysts 

abundance, counting was stopped before reaching 200 valves.  

Diatom species were identified using Krammer and Lange-Bertalot (1986, 1988, 1991a, 1991b) and 

Watanabe (2005). Diatoms were grouped into (a) epiphytic, (b) plankton, (c) benthos, (d) saline 

according to their ecological indication. Despite the core being taken from a currently freshwater 

lake, saline species were found in the samples. Chrysophyte cysts were counted as well, but not 

classified into species, because species level identification of chrysophytes is very difficult only by 
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observation of their cysts. Software package TILIAGRAPH (Grimm, 1991) was used to visualize 

diatom data. 

 

 

XRF-scanning analysis 

XRF-scanning was conducted with an ITRAX XRF-core scanner, COX analytical systems 

(Croudace et al., 2006) at the University of Bremen, Germany. Both sediment core sections were 

scanned for the detection of major and trace elements with a Cr-tube using a step size of 0.5 mm and 

a count time of 10 s for each step. Tube settings were set to 30 kV voltage and 50 mA current for 

both sections. Semi-quantitative element data was obtained for Si, S, K, Ca, Ti, Mn, Fe, Br, Rb, Sr 

and Zr. XRF scanning data were normalized by coh-radiation to reduce matrix effects and averaged 

to 5 mm intervals. 

 

 

 

Results 

Lithology 

Lake core D3L6 mainly consists of dark brownish organic rich gyttja. It can be subdivided into four 

lithological units (I–IV) based on visual inspection. The lowermost unit (94–92 cm) is composed of 

a blackish dark-brown silty mud. Unit II (92–76 cm) mainly consists of a brownish pale gray mud, 

followed by unit III (76–68 cm), a rather thin layer composed of brownish sandy silt with many small 

enclosed pebbles. The uppermost unit (68–0 cm) is composed of homogenous dark-brown silty 

sediments, with small and thin rootlets in the uppermost 10 cm. 

 

 

Chronology and sedimentation rate 

The chronology of the D3L6 record is established based on five AMS radiocarbon dates (Table 3.2). 

The age of the core top (sediment surface) is used with the year of coring (2016 CE). The base of the 

94 cm-long core was dated and calibrated to 4,310 cal yr BP. For the first 27 cm, the model suggests 

a sedimentation rate of 0.52 mm/yr and of 1.08 mm/yr for the interval between 27 and 55 cm core 

depth. A sedimentation rate of 0.49 mm/yr was calculated for the section from 55 to 71 cm, and a 

rate of 0.11 mm/yr between 71 and 84 cm. For the lowermost section (84–94 cm), the age-depth-

model suggests a sedimentation rate of 0.05 mm/yr (Fig. 3.3). Visual examination showed 

consistently compact and dense sediments along the core. No further calibration of sedimentation 

rate was necessary. 
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Fig. 3.3. BACON output diagram. Upper parts show the Markov chain Monte Carlo (MCMC) 

iterations (left), and the prior (green) and posterior (grey) distributions for the accumulation rate 

(middle) and memory (right). Bottom part shows the calibrated 14C dates (blue) and the age-depth-

model for lacustrine sediment core D3L6. 

 

 

Pollen results 

The palynological diagram (Fig. 3.4 and Appendix B2) is divided in two local pollen zones (PZ) with 

five sub-zones (PZ Ia, PZ Ib, PZ IIa, PZ IIb and PZ IIc). The pollen record has an average resolution 

of 273 years per sample for PZ I and of 31 years per sample for PZ II. At this site, both pollen zones 

are dominated by herbaceous species (55–93%) where Cyperaceae (16–41%) and Poaceae (13-29%) 

are abundant. Artemisia (4–23%) and Chenopodiaceae (1–22%) are constantly present in lower 

concentrations. 
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The lower zone PZ I (94–71 cm; 4,310–1,040 cal yr BP) is characterized by a relatively high 

abundance of coniferous species: Larix sibirica (4–15%), Pinus sibirica (3–12%) and Picea obovata 

(4–17%). Betula (0–4%) and Ephedra shrubs (0–3%) occur frequently. In PZ Ia (94–85cm; 4,310–

2,350 cal yr BP), Artemisia, Ranunculaceae and especially Myriophyllum (up to 20%) are very 

frequent. PZ Ib (85–71 cm; 2,350–1,040 cal yr BP) is characterized by an increase in coniferous taxa 

and Ephedra distachya and Ephedra fragilis. The proportion of Artemisia decreases slightly, while 

the Chenopodiaceae percentages are constant. Pollen concentration and influx are low. The AP/NAP 

(0.1–0.8) and A/C (0.5–3.3) ratios are generally high, whereas the sample at 72 cm differs from the 

other samples with its markedly high A/C value (6.5). The size ratios of Artemisia (0–2.5) and 

Chenopodiaceae (0–6) show low variations. 

 

 

Fig. 3.4. Vegetation type and pollen ratio percentage diagram. Ratios: arboreal pollen to non-arboreal 

pollen (AP/NAP), Artemisia to Chenopodiaceae (A/C) and the bigger Artemisia and Chenopodiaceae 

types to the smaller Artemisia and Chenopodiaceae types (A_big/A_small and C_big/C_small). 

 

 

In the upper pollen zone PZ II (71–0 cm; 1,040 cal yr BP to present), percentages of Larix sibirica, 

Pinus sibirica and Picea obovata decrease to a minimum of 2%, 0.5% and 1%, respectively. 

Percentages of most herbaceous species increase markedly, e.g. Artemisia (>7%), Chenopodiaceae 
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(>9%) and Caryophyllaceae (>0.5%) or occur frequently for the first time, e.g. Apiaceae, 

Brassicaceae and Violaceae. Shrubs of Salix, Juniperus and Populus are present. In PZ IIa (71–33 

cm; 1,040–510 cal yr BP), Artemisia and Chenopodiaceae show their highest values. Both taxa 

decrease in PZ IIb (33–15 cm; 510–240 cal yr BP), while Cyperaceae, Polygonaceae and 

Ranunculaceae increase. Betula, Salix and Ulmus reach their maxima in PZ IIc (15–0 cm; 240 cal yr 

BP to present). Additionally, a marked increase in pollen concentration and influx is visible in PZ II. 

Both AP/NAP (0.1–0.2) and A/C (0.6–1.7) ratios decrease. The frequency variations of Abig/Asmall 

and Cbig/Csmall are more pronounced than before, especially in PZ IIb. 

4.4 Non-pollen palynomorph results 

The non-pollen palynomorph percentage diagram is represented in Appendix B3. It depicts all 

encountered NPP types, which have already been described in literature, and 12 of the most common 

unknown types in core D3L6 (Supplementary materials 1). In total, 96 NPP types were recorded, of 

which only 44 (46%) could be identified reliably. All new types were assigned provisionally to the 

12 different taxonomic groups. NPP assemblages are dominated by algae (10–410%), mainly HdV-

128 (7–396%) and Botryococcus (0–29%) as well as the fungus Glomus (4–76%). Spores of almost 

all other fungi types, microfossils, animal and plant remains are rather frequent, soil fungi and testate 

amoebae are rather rare. The zonation is consistent with the pollen results; hence no different 

expression is introduced.  

The assemblage of PZ I is markedly dominated by algae species, e.g. HdV-128 (70–396%), 

Botryococcus (2–29%) and Pediastrum (1–8%). Glomus (16–76%) is abundant. Saprophilous fungi 

(12%), plant parasites (7%) and other fungi (28%) reach their maximum. At the transition from PZ 

Ia to PZ Ib, single peaks of Sordaria type A (up to 12%), Dictisporium (11%) and Chaetomium (7%) 

exist. At the same time, Sporormiella is introduced and becomes frequent. In PZ Ib, all four species 

of coprophilous/saprophilous fungi occur simultaneously and are almost consistently present since 

that time. Whereas the non-pollen palynomorph concentration is rather low at the beginning of the 

record, two major peaks are visible in the middle section (approx. 1.3 million species per sample) 

and the uppermost part of PZ Ib (approx. 1.0 million species per sample). 

In PZ II, the percentages of HdV-128 and Botryococcus decrease to a minimum of 7% and 0.5%. 

Zygnemataceae, Spirogyra and Debarya occur. Percentages of Glomus, saprophilous and other fungi 

decrease as well. Coprophilous, coprophilous/saprophilous fungi and plant parasites are frequent, 

showing minor maxima. In PZ IIa, microfossils and testate amoebae were found. The non-pollen 

palynomorph concentration decreases slightly from around 0.25 million species per sample in PZ IIa 

to around 0.05 million in PZ IIc. 
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Charcoal results 

The macro-charcoal record has an average resolution of 71 years per sample for PZ I and of 8 years 

per sample for PZ II. Charred macro particles are present in almost all samples along core D3L6 (Fig. 

3.5). Macro-charcoal is abundant especially in PZ Ia from 4,310 cal yr BP to 2,350 cal yr BP and 

decreases afterwards. In PZ IIa, one minor peak of charcoal particles can be observed between 640 

and 550 cal yr BP. Very low concentrations are found from 340 cal yr BP to today (PZ IIb and IIc). 

In contrast, the macro-charcoal influx is generally low within the whole record, but the peak between 

640 and 550 cal yr BP is still distinct.  

 

 

Fig. 3.5. Macro-charcoal diagram. Total charred particles are divided into wood, dicot leaf, grass and 

other charcoal fragments. Macro-charcoal concentration [particles/cm3] and macro-charcoal influx 

[particles/cm2/yr] have been calculated using the sum of total charcoal counts. 
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With respect to the four different morphotypes, charred mosses, seeds, fine roots and unidentifiable 

particles are the most abundant fraction (47% of total macro-charcoal counts). Charred grass particles 

(24%) are more frequent than wood (23%) and leaves (5%). Generally, the peaks in the record seem 

to correlate at least in the proportions of three of the four morphological groups: wood, grass and 

other macro-charcoal particles. The composition of the macro-charcoal material shows only minor 

changes within the record. At the beginning of PZ Ia, charred wood material is more abundant than 

grass, and in PZ II the abundance of charred grass material is higher. 

The micro charcoal record (Appendix B2) shows slightly different results. In PZ I, the maximum of 

charcoal fragments cannot be observed in PZ Ia, but in PZ Ib. In PZ II, the concentration decreases 

markedly, but, in contrast to the macro-charcoal record, not constantly. A minor decrease in the micro 

charcoal concentration is detected in PZ IIb. The micro charcoal influx is markedly lower in PZ I, 

but generally consistent with the concentration in PZ II. 

 

 

 

Fig. 3.6. Diatom percentage diagram including diatom concentration [valves/mg]. Samples are 

grouped into 5 diatom zones (DZ) by visual inspection. 

 

 

Diatom results 

Core D3L6 can be divided into five diatom zones (DZ) according to the distribution of diatoms and 

chrysophytes cysts (Fig. 3.6). The first zone, DZ I (94–84 cm; 4,310–2,230 cal yr BP), is 

characterized by Staurosira spp. (54–83%) and chrysophytes cysts (11–36%). The diatom 

concentration varies from 558 valves to 3,480 valves per mg sediment. In DZ II (84–70 cm; 2,230–

990 cal yr BP), Staurosira spp. (13–44%) and chrysophytes cysts (10–73%) are abundant. More 

benthic species (e.g. Achnanthes spp., Gomphonema spp. and Hantzschia spp.) are introduced. 

Benthic (6–35%) and saline proportions (1–31%) increase slightly at the end of this period. The 

diatom concentration decreases. Benthic species (11–56%) are abundant in DZ III (70–54 cm; 990–

700 cal yr BP), e.g. Cocconeis spp. and Gomphonema spp. Chrysophytes cysts (5–36%) decrease 
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while saline species Gyrosigma spp. (1–7%), Navicula spp. (2–13%) and Nitzschia spp. (1–8%) reach 

their maxima. A markedly low diatom concentration (70–310 valves per mg sediment) can be 

observed. In DZ IV (54–2 cm; 700 to −26 cal yr BP), epiphytic species Staurosira spp. increase 

markedly and are dominating (38–97%). Benthic (1–33%) and saline species (1–10%) decrease as 

well as chrysophytes cysts (1–15%). The diatom concentration increases markedly in this period up 

to 12,000 valves per mg sediment. DZ V (2–0 cm; −26 cal yr BP to present) is characterized by a 

marked decrease of Staurosira spp. (22%) and an abundance of plankton species Cyclotella spp. (54–

62%). Additionally, another increase in the diatom concentration can be observed (<330 valves per 

mg sediment). 

 

 

Fig. 3.7. XRF-scanning diagram of selected normalized proxies. 

 

 

XRF-scanning results 

Due to a very fluid consistency of the sediments at the top of core D3L6 no XRF scanning data could 

be obtained for the uppermost 6 cm (55 cal yr BP to present) (Fig. 3.7). The records of potassium 

(K) and titanium (Ti) show a very similar development with maximum values at the base of the core, 
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minimum values between 70 and 58 cm (990–760 cal yr BP) and stable, intermediate values in the 

upper 50 cm. In contrast, calcium (Ca) has a pronounced maximum between 82 and 73 cm core depth 

(2,000–1.130 cal yr BP). Then, Ca values decrease rapidly to very low values between 70 and 6 cm 

(990–50 cal yr BP). The calcium/strontium (Ca/Sr) ratio likewise shows high values above 50 in the 

oldest sediments, but a more gradual decrease between 68 and 62 cm (950–830 cal yr BP) to values 

of around 20. While almost no sulfur (S) could be detected in the upper 62 cm, increased values and 

several peaks appear in the S record below 62 cm core depth. The record of bromine (Br) has a 

marked peak between 66 and 62 cm (910–830 cal yr BP), whereas values are low in sediments below 

and above. In core D3L6, the iron/manganese (Fe/Mn) record closely follows the siliciclastic proxies 

K and Ti (r2=0.75 between K and Fe/Mn) with high values between 90 and 70 cm (3,330–990 cal yr 

BP), a broad minimum at around 62 cm and fluctuating intermediate values between 50 and 6 cm 

(670–50 cal yr BP). 

 

 

 

Interpretation and discussion 

Vegetation since the end of the mid-Holocene 

From 4,310 to 2,350 cal yr BP (PZ Ia) the landscape south of Dayan Nuur in the ‘Altai Tavan Bogd’ 

National Park was dominated by alpine meadow and moist steppe communities such as Artemisia, 

Cyperaceae and Ranunculaceae. Many modern-day shrub and herbaceous taxa did not yet occur in 

this period. A higher representation of Pinus sibirica and Picea obovata with a steady share of Larix 

sibirica as a short-distance pollen distributor (Savina and Burenina, 1981) could be observed. Hence, 

it suggests not only the local presence of Larix sibirica, but also the occurrence of Pinus sibirica and 

Picea obovata stands much closer to the coring site in comparison to recent time. A much higher 

representation of the forest can be inferred compared to the modern setting. At present, Pinus sibirica 

and Picea obovata occur in a forested area in up to 20 km distance (Beket, 2009) with a similar 

amount of both taxa (Unkelbach, unpublished data). The higher AP/NAP and A/C ratios confirm a 

larger forested area. A comparison of those ratios with results by Liu et al. (1999) for Inner Mongolia 

(China) and El-Moslimany (1990) for the continental Middle East also supports our interpretation. 

Hence, the A/C ratio values in the Mongolian Altai are consistently low due to the general open 

character of forests as Herzschuh (2007) ascertained for Inner Mongolia. 

According to the increasing proportion of arboreal pollen, the forest started to expand after 2,350 cal 

yr BP until 1,040 cal yr BP (PZ Ib). The occurrence of Ephedra distachya and the rising percentages 

of Ephedra fragilis point to an increased expansion of dry ruderal habitats (Gunin et al., 1999). The 

expansion of dry steppe takes place at an expense of the more water-requiring herbs, e.g. Cyperaceae. 

This points to a contradictive repression of alpine meadow communities not only by forested areas 
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but also by dry mountain steppe. Increasing AP/NAP and A/C values feature these uncommon 

processes.  

The period from 1,040 to 510 cal yr BP (PZ IIa) is characterized by major vegetation changes. One 

aspect is the abrupt and simultaneous retreat of Pinus sibirica and Picea obovata as well as the 

decline of Larix sibirica and Betula stands. From that time on, the forest near the coring site is only 

composed of Larix sibirica trees. The introduction of Juniperus and Populus shrubs and the increased 

representation of Salix and Ulmus indicate a higher diversity and an opening of the forests. Their 

rather low representations in the pollen diagram suggest only local presence in the ‘Altai Tavan 

Bogd’ National Park. In this period, a marked increase of herbaceous ruderal plants, e.g. Artemisia 

and Chenopodiaceae, and the introduction of new species, e.g. Apiaceae, Brassicaceae and 

Rubiaceae, point to newly created open habitats. The high representations of Poaceae, a decrease of 

Cyperaceae and a reduced A/C ratio show that the proportion of dry mountain steppe appears to have 

increased further.  

In the period from 510 to 240 cal yr BP (PZ IIb), alpine meadow communities replaced the dry 

mountain steppe in parts of the area, as demonstrated by the increased shares of Cyperaceae, 

Polygonaceae and Ranunculaceae. The extent of forest distribution persisted. The period from 240 

cal yr BP to present time (PZ IIc) is characterized by an opening of the forests and a slight recovery 

of the Larix sibirica stands in the area. Pinus sibirica and Picea obovata were further repressed while 

the shares of open forest indicators (Betula, Salix, Juniperus) increased. Another expansion of dry 

mountain steppe occurred from around 100 cal yr BP onwards, indicated by a decrease in the 

representation of Artemisia and an increase of Poaceae. 

 

 

Grazing since the end of the mid-Holocene 

Among the NPP, coprophilous fungi are significant indicators for detecting the presence of large 

herbivores and their grazing pressure in the course of pastoralism (e.g. Davis et al., 1984; Burney et 

al., 2003; Raper and Bush, 2009). Initial occurrence of the Sordaria-type and Sporormiella dung 

fungi suggest that the inhabitants of the study area started to change their lifestyle habits from hunting 

and gathering to pastoralism at around 2,350 cal yr BP, at the time of Xiongnu (Table 1). After a 

transition phase, Sporormiella spores became markedly more plentiful at around 1,040 cal yr BP in 

the period of Chinese invasions to Mongolia and occurred continuously since that time. A peak in 

the Sporormiella record (PZ IIa) coincides with the abrupt decrease of arboreal pollen and the 

expansion of steppe communities starting from 1,040 cal yr BP. Trampling and grazing of the animals 

diminished the number of saplings, reduced the forested areas and interfered with their recovery 

(Hauck et al., 2012; Khishigjargal et al., 2013). Instead, ruderal herbaceous plants became prevalent. 
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Hence, even lower numbers of animals may have a major impact on the vegetation composition and 

expansion in the area. 

 

 

Fire since the end of the mid-Holocene 

The macro-charcoal record enables to detect climate-fire-vegetation linkages and prehistoric human 

practices (e.g. Clark and Royall, 1995; Pitkänen and Huttunen, 1999; Umbanhowar et al., 2009; Wick 

and Möhl, 2006). From 4,310 to 1,040 cal yr BP, the fire frequency is assumed to be very low. After 

1,040 cal yr BP, the influx started to increase slightly. A fire activity maximum is visible from 640 

to 550 cal yr BP during the period of the Mongol Empire (Table 3.1). It could be attributed to the 

increased formation of dead biomass under drier and probably warmer conditions at that time 

(Eichler et al., 2011). After 550 cal yr BP, the fire frequency decreased steadily. From 240 cal yr BP 

to present time, the very low number of charred particles suggests rare fires in the area starting at the 

time of Manchu Colonial Period and Autonomy. Despite of the peak from 640 to 550 cal yr BP, it 

can be inferred that fire generally played a minor role in forming the landscape of the ‘Altai Tavan 

Bogd’ National Park over the recorded last 4,375 years.  

Brugger et al. (2018) provided information on a correlation of dry periods indicated by the 

herbaceous pollen composition (e.g. A/C ratio) and a decrease in arboreal taxa with a following 

maximum of micro charcoal. This phenomenon was explained by dead trees originating from the dry 

period serving as fuel for the later forest fires. In our data, there is a peak in the A/C ratio (Fig. 5) 

shortly before the transition from PZ Ib to PZ IIa indicating a dry period. In Fig. 3.4, a decline of 

trees and shrubs can be observed during this transition. However, a maximum in the macro-charcoal 

influx (Fig. 3.5) occurs shortly after the beginning of PZ IIa. The sequence of events proceeds exactly 

as described by Brugger et al. (2018). Umbanhowar et al. (2009) explained that overgrazing reduces 

biomass and consequently the fuel for fire. Thus, they concluded that low charcoal content in lake 

sediments serves as an indirect proxy for increased grazing pressure. A relation of decreased fire 

frequency with increased grazing activity after 1,040 cal yr BP (PZ II) can be inferred from our data. 

 

 

Lake level since the end of the mid-Holocene 

Epiphytic diatom species and the presence of chrysophytes cysts suggest the existence of a small and 

shallow pond starting from 4,310 until 2,230 cal yr BP (DZ I). The period from 2,230 to 990 cal yr 

BP (DZ II) is characterized by a dominance of chrysophytes cysts indicating a lower water level 

compared to the modern setting. An extensive wetland spread along the lake shore and possibly the 

lake dried up seasonally. Gyrosigma acuminatum and Nitzschia frustulum suggest an increasing 

electric conductivity of the lake water. After 990 until 700 cal yr BP (DZ III) the occurrence of 
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planktonic diatom species and the increasing representation of benthos species point to a water level 

rise. At the beginning of this period, a very shallow freshwater pond was newly formed. The distinct 

maximum of Cocconeis sp. indicates relatively high values of pH, oxygen and a eutrophic state (Van 

Dam et al., 1994). A further increase in some saline species leads to a maximum of inferred electric 

conductivity from 990 to 870 cal yr BP. In the subsequent period from 700 to −26 cal yr BP (DZ IV) 

the further dominance of Staurosira construens suggests a further rise of the water level. The water 

depth of the lake is assumed to have been around 1 m, or slightly less. Over the recent decades (−26 

cal yr BP to present, DZ V) the abundance of plankton species features a drastic increase in the lake 

level. Today, the water depth is measured at 250 cm. A rise of >150 cm in about 75 years was most 

probably caused by the degradation of permafrost and glaciers due to climate warming at the 

beginning of the 21st century from 2006 to 2016, as has also been pointed out by Walther et al. (2017). 

 

 

Erosion since the end of the mid-Holocene 

K and Ti commonly serve as siliciclastic indicators (Kylander et al., 2011; Unkel et al., 2014). The 

records of these elements show a period of increased erosion between 3,500 and 1,000 cal yr BP (PZ 

I) despite very low sedimentation rates. During this period, the influx of minerogenic matter into the 

lake was relatively high, probably caused by increased precipitation and surface inflow. Likewise, 

the elevated amounts of sulfur prior to ca. 800 cal yr BP may point to a reduced mixing of the lake, 

perhaps caused by higher water levels and a stratified water body during this time. As the distribution 

of sulfur is closely linked to the redox cycles of Fe (e.g. Davison, 1988), high concentrations of 

sedimentary sulfur usually indicate the occurrence of Fe-sulfides under reducing conditions that 

might have developed in a deeper, stratified water body. During this time, the high Ca content also 

indicates the presence of Ca‑carbonates and the high Ca/Sr ratio suggests an allochthonous source. 

In marine environments, high Ca/Sr ratios have been found in detrital carbonates (e.g. Hodell et al., 

2008). However, Sr can also be found in feldspars (Kylander et al., 2011) and the different trends of 

the Ca and Ca/Sr record may be caused by in-situ precipitation of carbonates. The differential 

solubility and mobility of Mn and Fe under changing redox conditions have also been utilized as a 

palaeo-redox indicator at the sediment-water interface (e.g. Haberzettl et al., 2006). Increasing 

Fe/Mn-ratios may indicate the onset of reducing conditions (Wersin et al., 1991). However, this 

interpretation is often challenged by a variety of other factors such as geochemical focusing (Schaller 

and Wehrli, 1996) or the incorporation of Mn and/or Fe into carbonates (e.g. Stevens et al., 2000). 

For lake D3L6 the strong correlation between the Fe/Mn and the siliciclastic indicators K and Ti 

suggests considerable amounts of “redox-insensitive” Fe or Mn bound in silicate rocks, impeding the 

use of this ratio as redox proxy.  
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At ca. 800 cal yr BP (PZ II), rainfall dropped to very low levels and according the reduced K and Ti 

values, almost no allochthonous material was washed into lake D3L6 for 200 years. In this period, 

Br reaches a maximum. Br is bound to organic matter (e.g. Kalugin et al., 2013); this confirms a 

period of stable conditions under a drier climate with autochthonous organic matter as the dominant 

sediment component. The appearance of saline diatom species suggests a lower lake-level, but the 

Ca record is surprisingly low although the precipitation of autochthonous carbonates could be 

expected.  

Intermediate levels of soil erosion due to increased precipitation started again at around 600 cal yr 

BP but the lake level does not seem to have risen high enough to develop a stratified water body for 

a longer period. Likewise, the Ca record does not show considerable changes. Apparently, no detrital 

carbonates were transported into the lake. The observed vegetation changes in the catchment of the 

lake had seemingly no impact on the sedimentation processes. It is likely that sedimentation in lake 

D3L6 was then being dominated by persistent human impact which overpowered climatic factors. 

 

 

Fig. 3.8. Summarized multi-proxy diagram of selected proxies and settlement periods in the 

Mongolian Altai. 

 

 

Driving factor of the environmental changes 

A composite diagram of selected proxies is illustrated in Fig. 3.8. According to the pollen data, the 

period from 4,310 to 2,350 cal yr BP (PZ Ia) was characterized by rather humid and cold conditions 

in the Mongolian Altai. Compared with present time the annual precipitation was presumably slightly 

higher, as the then greater representation of coniferous trees in the area indicates. It is additionally 

assumed that the extreme continental conditions, especially the very low winter temperatures, were 

not as distinct as nowadays. For this period, diatom data suggest an increase in water availability, 

which is consistent with the climate reconstructions from pollen data (Fig. 3.8). In the period from 

2,350 to 1,040 cal yr BP (PZ Ib) humid climate still prevailed. But an increase in temperature after 

2,350 cal yr BP featured the expansion of forests and inhabiting areas of sparse vegetation with steppe 
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communities. The temperature rise might have also facilitated evaporation and caused the lake's 

drying up.  

At around 1,040 cal yr BP (PZ II), marked changes in plant diversity and the amount of biomass 

occurred in the Mongolian Altai. One possible scenario could be a climate change to more continental 

(dry and cold) conditions. Probably at that time, the temperature extremes between summer and 

winter developed. But in contrast to the findings by Andreev et al. (2007) in the Russian Altai, there 

is no evidence of the Medieval Warm Period at around 750 to 550 cal yr BP in our record. Another 

contradiction is the renewed water level rise indicated by the diatom record since 990 cal yr BP. The 

nearly simultaneous rise in water availability and the disappearance of trees in the area represent 

opposite climate signals.  

According to the pollen and diatom record, moisture increased slightly within the cold phase between 

510 and 240 cal yr BP. A marked increase of Chenopodiaceae and a slight decrease in the 

representation of Larix sibirica correspond with the beginning of the Little Ice Age in the Altai 

Mountains from around 370 to 110 cal yr BP found by Andreev et al. (2007). After that, the annual 

temperature started to increase gradually, and this tendency of climate warming persists. Summer 

temperatures increased over the last decades (Syromyatina et al., 2015) favoring permafrost 

degradation and water level rise.  

But what caused the contrasting results at around 1,040 cal yr BP? The most likely scenario is the 

intensification of human land-use, possibly induced by slightly wetter conditions. An increase in the 

number of cattle as well as an expansion of tree logging for firewood are the likely factors for the 

observed decline of natural forests despite favorable climatic conditions. This interpretation is 

supported by the almost simultaneous changes seen in our proxy data. If those shifts had been caused 

solely by climatic signals, diatoms and NPPs would have responded more quickly than the forests 

surrounding the lake. Hence, our findings demonstrate a strong correlation between corresponding 

changes in the vegetation composition and the increased impact on the landscape by pastoral nomads 

in the area during the period of Chinese invasions into Mongolia starting at around 1400calyrBP 

(Table 1). Tree logging and grazing caused a decline of natural forests and favored the establishment 

of steppe vegetation.  

Minor changes in the steppe composition over the last 1,000 years can possibly also be attributed to 

an intensification or reduction of human activities in this part of the Mongolian Altai. Our data reveal 

intensified periods of human impact from around 1,000 to 880 cal yr BP during the Chinese 

invasions, from 680 to 650 cal yr BP during the Mongol Empire and from 75 to 15 cal yr BP at the 

transition from Autonomy to Early Communism. An increase of more open forests after 240 cal yr 

BP started at the beginning of Manchu Colonial Period (259 BP). The minor forest recovery from 15 

cal yr BP to present might either be attributed to the general decline in livestock population as a 
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consequence of soviet policies (Early Communism) or to increased water availability due to 

permafrost degradation under a warming climate. 

 

 

Comparison with other records 

Our data reveal environmental changes in the Dayan Nuur region since the end of the mid-Holocene. 

Particularly advantageous is the large number of independent proxies, the analysis of coprophilous 

fungi as another indirect indicator for grazing activities, and the high resolution of samples. They 

indicate a trend from larger and more densely forested areas since the start of the record at 4,310 cal 

yr BP until the beginning of steppe expansion from ca. 1,040 cal yr BP. Pollen results coincide with 

findings by Unkelbach et al. (2018) from peat core G2-A at a small mire in approx. 3 km distance 

from core D3L6. The general trend from a rather humid and warm climate with greater forested areas 

(3,880–2,610 cal yr BP) to a decrease in the forest vegetation because of much drier and cooler 

conditions (2,610–550 cal yr BP) and a recovery of forests in accordance with increasing 

precipitation and temperature since 550 cal yr BP are consistent with the data inferred from core 

D3L6. Here, too, the decline of forests corresponds with the intensified inhabitation of the area by 

nomadic peoples. But, a deviation of >1500 years compared to findings from core G2-A seems 

remarkable on such a local scale. However, it needs to be considered that coprophilous fungi have 

not been analyzed for core G2-A in our previous study. Additionally, the core for this study was 

obtained at a markedly lower elevation than core G2-A (approx. 150 m higher, upper forest 

boundary). The deviation of vegetation recovery after the cold and dry period starting from 550 cal 

yr BP to 510 cal yr BP (G2-A), respectively, is considerably smaller. A comparison with the two 

Holocene studies from the Hoton-Nuur basin, 50 km northwest of our coring site, reveal greater 

differences. In the first pollen and diatom record, Tarasov et al. (2000) found a shift from wetter to 

drier climatic conditions at around 3,900 cal yr BP. Rudaya et al. (2008, 2009) dated the beginning 

of a gradual increase of aridity to 6,500 cal yr BP caused by a diminution of forests. A possible 

climatic cooling was only ascertained to a period from 2,900 to 1,200 cal yr BP. However, both 

studies recognized certain limitations concerning time resolution and sample quality. Pollen analysis 

of the Hoton-1 core studied by Tarasov et al. (2000) has an average time resolution of approx. 600 

years per sample and each pollen sample contained 5–10 cm sediment material to reconstruct general 

trends. The average time resolution of the Hoton-2 core studied by Rudaya et al. (2008, 2009) is 

approx. 145 years per sample, in marked contrast to 31 years per sample for PZ II in our research. In 

the lowermost part of core Hoton-2, only presence/absence of pollen taxa could be expressed due to 

low pollen content. Neither Tarasov et al. (2000) nor Rudaya et al. (2008, 2009) found any evidence 

of significant human impact in the region until recent times, whereas in our data anthropogenic 

influences due to animal husbandry and deforestation are present for >2000 years. A similar 
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palynological research is presented by Sun et al. (2013) from Achit Nuur, 200 km northeast of our 

coring site. From 6,400 to 1,600 cal yr BP, the authors reconstructed an expansion of taiga in higher 

elevations and found a maximum in herbaceous taxa from 1,600 cal yr BP to present. The pollen 

assemblage of Achit Nuur core suggested a relatively warm climate over the last 5,000 years and wet 

conditions for the period from 6,400 cal yr BP to 1,600 cal yr BP proceeding to dry conditions from 

1,600 cal yr BP to present. Again, limitations concerning low sample resolution and dating quality 

for the last 1,600 cal yr BP were discussed. Despite the fact that the pollen-based climate 

reconstructions show temporarily similar results compared to our record, similarly to Hoton-Nuur 

research, anthropogenic impact on the environment was understated. The ice core studies from 

Tambagarav Mountain in the Mongolian Altai (Brugger et al., 2018) reveal forest expansions from 

4,950 to 4,750 cal yr BP, 4,350 to 4,050 cal yr BP and 3,850 to 3,750 cal yr BP and a forest decline 

starting from 3,750 cal yr BP. The deviation to our reconstructed beginning of forest decline is 

remarkable. But it needs to be considered that ice cores depict vegetation changes on a considerably 

more regional scale than cores of lacustrine sediment. On a more regional scale, two contrasting 

environmental reconstructions are presented in the Lake Teletskoye record (Russian Altai 

Mountains). Rudaya et al. (2016) suggest a maximum of mountain taiga coverage in combination 

with a warm and humid climate starting from around 3,500 cal yr BP, only interrupted by a short 

cooling event. An additional reconstruction of Lake Teletskoye pollen and NPP data by Andreev et 

al. (2007) for the last 1,000 years shows climatic shifts of the last millennium in a higher resolution. 

But it needs to be considered that much higher precipitation and a markedly higher proportion of 

arboreal taxa characterize this Russian Altai site. Tian et al. (2013) presented a high-resolution multi-

proxy record from Khuisiin Nuur in the southeastern Khangai Mountains (Central Mongolia). 

Palynological reconstructions revealed generally lower percentages of arboreal taxa compared to the 

Mongolian Altai records for the last 1,200 years. At this site, a forest maximum occurred from 1,000 

to 475 cal yr BP, indicating wetter and warmer conditions than in previous and subsequent times. 

Differences to our data can be explained by different moisture sources. Dayan Nuur area in the Altai 

Mountains is only dominated by the westerlies, whereas the Khangai Mountains were also under the 

influence of the Asian summer monsoon from the East. Palynological data from the Chinese Altai 

Mountains show an opposite climatic trend. At Lake Wulungu, northern Xinjiang, climate changed 

from colder and more humid conditions (4,200–560 cal yr BP) to drier, but even colder (560 cal yr 

BP to present) (Liu et al., 2008). These results are partly supported by Huang et al. (2018). Their 

review of 14 long-term records from the Altai Mountains (e.g. Lake Kanas) reveals more humid and 

warm conditions at the end of the mid-Holocene and a forest decline in the late Holocene. The 

significance of human impact on the environment is discussed, but a climatic cooling with an increase 

in humidity from 4,000 cal yr BP to today is considered as the driving factor for Central Asian 

environmental change rather than the influence of nomadic people. 
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Conclusions 

This paper aimed to examine the environmental variations in the ‘Altai Tavan Bogd’ National Park, 

Mongolian Altai, over the last 4,375 years with special regard to the extent of natural and 

anthropogenic influences on the environmental changes since the end of the mid-Holocene of Central 

Asia. Markedly larger and denser forest areas with Larix sibirica, Pinus sibirica and Picea obovata 

occurred in the study area and were strongly reduced after 1,040 cal yr BP. First evidence of a change 

from hunters and gatherers to nomadic activities can be inferred from the Sordaria- and 

Sporormiella-type coprophilous fungi in the NPP record at around 2,350 cal yr BP. Intensified local 

grazing activities might have caused the intense forest reduction and steppe expansion at around 

1,040 cal yr BP. Since 15 cal yr BP, Larix sibirica forest recovers to some degree, probably as a 

result of a decline in livestock population or permafrost degradation due to global climate warming. 

This multi-proxy approach shows significant vegetation and environmental changes at around 1,040 

cal yr BP in all pollen, non-pollen palynomorph, charcoal, diatom and XRF-scanning records. Those 

changes lead to contradictive reconstructions of climate signals under concurrent occupation of the 

area by nomads. Hence, small-scale variations, regional climatic trends and the local human 

settlement may have a greater impact on the ‘Altai Tavan Bogd’ study area than large-scale climate 

patterns during approximately the last 1,000 years. For a more detailed reconstruction of the 

anthropogenic impact on the environment during the various settlement periods in Mongolia, further 

investigations at a higher spatial scale and temporal resolution are necessary. In particular, in these 

settings NPPs are a valuable tool to show human impact on forest-steppe ecosystems, which has 

rarely been studied in Central Asia.  
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Supplementary materials 1 

Descriptions of selected unknown NPP types: 

Tr5-2B-A: (Plate I, A) 

probably fruiting body of fungus, roundish, multicellular, cells irregularly shaped, thin walled, 

perithecium approx. 50 x 45 µm, beige. 

Tr5-2B-C: (Plate I, B) 

probably fruiting body of fungus, roundish with hole in centrum, multicellular, cells irregularly 

shaped, thick-walled, perithecium approx. 135x 90 µm, dark brown. 

Tr5-2B-1: (Plate I, C) 

probably fungal spore, assemblage of 8-10 loosely connected cells (possibly ascospores), pale, 

approx. 20 x 15 µm, psilate, thick-walled, no apertures observed. 

D3L6-36: (Plate I, D) 

probably fungal spore, ascospores ellipsoid to rectangular, slightly curved, unequally 4-celled, pale, 

approx. 30 x 12 µm, psilate, thick-walled, constricted at the septa, slit-shaped aperture. 

D3L6-77: (Plate I, F) 

probably fungal spore, ascospores ellipsoid to rectangular, equally 2-celled, dark brown, approx. 32 

x 20 µm, verrucate, thin-walled, constricted at the septum, septum thick, slit-shaped apertures.  

Tr5-2B-11: (Plate I, H) 

probably fungal spore, prolate cylindric form, composed of numerous asymmetric cells, transversal 

and longitudinal septa, irregular pattern, approx. 80 x 20 µm, cells up to 20 x 15 µm, psilate, thin-

walled, cells with pores and anulus.  

D3L6-1: (Plate I, J) 

probably fungal spore, ascospore ellipsoid, 1-celled, dark brown, approx. 28 x 22 µm, psilate, thick-

walled, no apertures visible.  

D3L6-34: (Plate I, L) 

probably fungal spore, assemblage of 9 irregular connected cells, irregular septa, middle-brown, 

approx. 40 x 25 µm, cells up to 10 x 10 µm, psilate, thick-walled, no apertures observed.  

D3L6-21 (Plate I, E) 

probably microfossil, hyaline, approx. 20 x 10 µm, transparent to slightly yellow, 8-12 acanthaceous 

protuberances, protuberances 2-3 µm. 

D3L6-49: (Plate I, G) 

probably egg of Arthropoda species, spherical, yellow to brownish, approx. 90 x 90 µm, distinct 

scabrate ornamentation, thick-walled.  

D3L6-65: (Plate I, I) 
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probably cocoon of arthropoda species, oval cylindric form with rounded ends, equilateral, 3-celled 

each side, separated by thin septum, dark brown, approx. 50 x 40 µm, psilate to scabrate, open each 

end.  

D3L6-56 (Plate I, K) 

trilete spore, probably fern, yellow, approx. 70 x 55 µm, surface covered with tubercles, trilete scar 

indistinct. 

 

 

Fig. 3.9. Photos of selected unknown NPP types. A: Tr5-2B-A, probably fruiting body, fungi, B: 

Tr5-2B-C, probably fruiting body, fungi, C: Tr5-2B-1, probably fungi, D: D3L6-36, probably fungi, 

E: D3L6-21, probably microfossil, F: D3L6-77, probably fungi, G: D3L6-49, probably animal 

remain, H: Tr5-2B-11, probably fungi, I: D3L6-65, probably animal remain, J: D3L6-1, probably 

fungi, K: D3L6-56, probably plant spore, L: D3L6-34, probably fungi.



 

Manuscript 3 

71 
 

 

 

 

 

 

 

 

Chapter 4: 

Manuscript 3 

 

 

Decadal high-resolution multi-proxy analysis to reconstruct natural and 

human-induced environmental changes over the last 1,350 cal yr BP in 

the Altai Tavan Bogd National Park, western Mongolia 

 

 

JULIA UNKELBACH
1, KAORU KASHIMA

2, GAADAN PUNSALPAAMUU
3, LYUDMILA 

SHUMILOVSKIKH
1, HERMANN BEHLING

1 

 

 

1 Department of Palynology and Climate Dynamics, Albrecht-von-Haller Institute for Plant 

Sciences, University of Goettingen, Untere Karspüle 2, 37073 Goettingen, Germany 

2 Department of Earth and Planetary Sciences, Kyushu University, 744 Motooka, Nishi-ku, 

Fukuoka 819-0395, Japan 

3 Department of Biology, Mongolian State University of Education, Baga Toiruu-14, 210648 

Ulaanbaatar, Mongolia 

 

 

 

 

 

Published in: 

The Holocene 

DOI  https://doi.org/10.1177/0959683620908662 



 
Manuscript 3 

 

72 
 

Abstract 

The ‘Altai Tavan Bogd’ National Park in the north-western part of the Mongolian Altai, Central Asia, 

is located in a forest-steppe ecosystem. It occurs under the influence of extreme continental and 

montane climate and is sensitive to natural and anthropogenic impacts. High-resolution (<20 years 

per sample) multi-proxy data of pollen, non-pollen palynomorphs (NPPs),  macro-charcoal,  diatoms,  

and XRF scanning from radiocarbon-dated lacustrine sediments reveal various environmental 

changes and the impact of different settlement periods for the late-Holocene. From 1,350 to 820 cal 

yr BP (AD 600–1130), the distribution of grass steppe indicates a climate similar to present-day 

conditions. Rapid improvements of climatic conditions (e.g. increased rainfall events) possibly 

favored a recovery of forest-steppe encouraging nomadic movements into alpine areas. In the period 

from 820 to 400 cal yr BP (AD 1130–1550), the decline of forested areas suggests an increasingly 

drier and possibly colder climate. Some political shifts during the Mongol Empire (744–582 cal yr 

BP; AD 1206–1368) favored variations in nomadic grazing habits. After 400 cal yr BP (AD 1550), 

moisture and temperature increased slightly, and from ca. 40 cal yr BP (AD 1910) to present, annual 

temperature continued to increase more markedly favoring an additional water availability due to 

permafrost degradation. Diatom data suggest several intervals of increased water availability in all 

periods which might have caused erosion due to heavier rainfall events or increased snow melt. 

Immediately after most of these high-water intervals, NPP data reveal periods of increased grazing 

activities in the area. 

 

 

Introduction 

Vegetation and climate change in Central Asia have received considerable attention over the last few 

years (e.g.  Herzschuh  et  al.,  2009; Huang et al., 2018; Klinge and Sauer, 2019; Rudaya et al., 2016, 

2009; Tarasov et al., 2013; Zhang and Feng, 2018), but the extent of human impact on the 

environment during the mid- and late Holocene or by forced changes in human practices due to cli-

mate change have rarely been discussed in this context (Bruegger et al., 2018; Rudaya et al., 2009). 

Some palynological records (e.g. Rudaya et al., 2008; Tarasov et al., 2000; Zhang and Feng, 2018) 

are not taking any account of anthropogenic influence, focusing only on general climatic trends.  

However,  the  human–environment relationship has been described by Fernández-Giménez et al. 

(2017) for the last 30 years by a review of vegetation and cultural changes for Mongolia and adjacent 

areas, by Pederson et al. (2014) for Central Mongolia at the time of the Mongol Empire (744–582 

cal  yr BP), and by Lehmkuhl et al. (2011) during the last 2,300 years in the Orkhon valley (Central 

Mongolia). Other available archeological studies (e.g. Holcombe, 2014; Kradin, 2005;  Park et al., 

2017; Schmidt and Seguchi, 2016) focus on population and origin history, technologies, rise of  

power, or burial rituals, but only very little is known about nomadic herding and moving practices 
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before modern times. Humans have always been dependent on developing strategies in adaptation to 

changing environments. This is of particular importance in Mongolia, because its economy is still 

notably reliant on pastoralism and the availability of natural resources (Lkhagvadorj et al., 2013; 

Ykhanbai et al., 2004). Hence, nomadic pastoralists have developed strategies for economic and 

environmentally friendly herding over millennia (Chlachula, 2018). Even though nomads reduce 

their impact on the environment to bare necessities, the forest sustains damage by trampling saplings 

and tree-logging (Khishigjargal et al., 2013).  Especially the forest-steppe ecosystems of Central Asia 

are strongly dependent on moisture and temperature and sensitive to natural and anthropo-genic-

induced changes (e.g. D’Arrigo et al., 2000; Gunin et al., 1999; Miehe et al., 2009). Our study area 

in the Altai Tavan Bogd National Park (Fig. 4.1), Mongolian Altai Mountains, is a representative 

location to investigate vegetation responses to environmental changes as well as human impact. This 

remote mountain area (2,000–2,500 m a.s.l.) is inhabited by nomadic tribes (Afanasievo) since the 

middle Bronze Age (e.g. Kovalev and Erdenebaatar, 2009; Vadetskaya, 1986), who are dependent 

on natural resources to present-day. Hence, the work presented here is an enhancement of other mid- 

to late Holocene reconstructions from Dayan Nuur region (Unkelbach et al., 2018, 2019). Both 

previous studies reveal a forest decline since 2,610 cal yr BP (core G2-A, upper forest boundary) and 

1,040 cal yr BP (core D3L6, lower forest boundary), respectively. These vegetation changes are 

attributed to increased anthropogenic impact rather than climate change. Building on this, we  

conduct  a decennial-scale multi-proxy analysis of pollen, spores, non-pollen palynomorph (NPP), 

charcoal, diatoms, and XRF-scanning data from another lake core to attain a more detailed insight 

into the human–climate–vegetation dynamics in the ‘Altai Tavan Bogd’ National Park in this paper. 

Based on the high-resolution reconstructions of forest-steppe fire, lake level, and erosion dynamics, 

we aim to quantify an extent of natural and anthropogenic impacts on the environment. We want to 

gain a better understanding of the driving factors for herding and grazing in this remote area, and 

therefore, address the following questions: (1) Did human occupation of the area have a significant 

impact on vegetation changes?  and (2) What are the natural or socio-political drivers for changes in 

herding and grazing activities in the area since 1,350 cal yr BP? 

 

 

 

Study area 

Environmental setting 

The Altai Mountains (Fig. 4.1), an active intraplate and intracontinental orogen, are subdivided into 

the Russian Altai in the northern and western part, the Chinese Altai in the south, and the Mongolian 

Altai in the eastern part. The Mongolian Altai borders the Gobi Altai in the southeast and the Valley 

of Great Lakes in the northeast and east (Lehmkuhl et al., 2016). The Tavan Bogd peak, 4,370 m 
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a.s.l., is the highest elevation in the area. The mountain massifs are covered by bare rock debris and 

glaciers in higher altitudes. In the area, discontinuous permafrost occurs in the alluvial plains in the 

basins, in peats, and in the periglacial belt of the high mountains. In the mountain forest-steppe belt 

permafrost occurs in forest areas on north-facing slopes, whereas it is absent on the south-facing 

slopes with steppe vegetation (Klinge et al., 2017). Because of the huge distance to the Indian, Arctic, 

and Pacific Oceans as moisture sources and these specific topographic conditions, the Mongolian 

Altai is characterized by extreme continental climate (Andreev et al., 2007). The westernmost ranges 

of the Altai Mountains capture the wet air masses transported by the westerlies.  

 

 

Fig. 4.1 Detailed map showing the location of the ‘Altai Tavan Bogd’ National Park within Central 

Asia (overview map) and the location of the coring site (yellow dot). The DEM is based on SRTM. 

Projection: UTM Zone 46. Forest distribution (green): modified from Klinge et al. (2018). 

 

Whereas the Russian Altai receives more than 800 mm annual precipitation, in the southeast the rain 

shadow effect causes a reduction to 300 mm and to 50 mm in the Valley of the Great Lakes. In the 

city of Ulgii, about 1,700 m a.s.l., the mean annual temperature is 0.3°C and the annual precipitation 
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averages 114 mm.  Monthly average temperatures range from −16.8°C in January to 16.4°C in July 

(AM Online Projects, 2019). During the short summer season from June to August, 70–80% of the 

rainfall occurs. 

In the Mongolian Altai elevation, temperature and precipitation are the driving factors determining 

the vegetation composition and distribution. Precipitation determines the latitudinal zonation of plant 

communities, whereas elevation induces the vertical (or altitudinal) zonation of vegetation patterns 

(Gunin et al., 1999). The north-facing slopes in the western parts of the Mongolian Altai are 

dominated by alpine meadow steppes, forb grass steppe, dry mountain steppe, and smaller forested 

areas (e.g. Hilbig, 1995; Beket, 2009). On south-facing slopes, desert steppes are found at the 

mountain base and trees are absent (Gunin et al., 1999). In the study area, 2,000–2,500 m a.s.l., 

vegetation is mainly composed of dry and meadow steppe dominated by Poaceae, Cyperaceae, 

Chenopodiaceae, and Artemisia. In short distance to the lake open forest stands of Larix sibirica, 

with shrubs of Betula and Juniperus occur on the north-facing mountain slopes. 

 

 

Settlement and grazing history of the Mongolian Altai 

The area of the current state of Mongolia has been inhabited by humans since the Upper Paleolithic 

(46,000–12,000 cal yr BP) (Tumen, 2006). Until the early/middle Bronze Age (before 4,450 cal yr 

BP), gatherer-hunter groups subsisted on forest and steppe. During middle Bronze Age, animal 

husbandry and mobile pastoralism developed within the Eurasian steppe and were introduced to 

Mongolian territory by the Afanasievo culture around 4,700 cal yr BP. The Afanasievo were the first 

known culture herding sheep and goats, and using copper (Dirksen et al., 2007; Frachetti, 2012). 

Organizational forms of nomadic cultures and pastoral activities adjusted and stabilized throughout 

terminal Bronze Age (2,650–2,350 cal yr BP) and under changing Empires of the Iron Age (2,350–

744 cal yr BP). Herding traditions of Turkic and Chinese origin favored transitions to mobile 

pastoralism. Herders adapted to grazing patterns and summer/winter shelters (Fernández-Giménez, 

1999; Fernández-Giménez et al., 2017). During the Mongol Empire (744–582 cal yr BP), Mongol 

territory expanded noticeably, increasing the number of livestock. From that time on, groups of 

herders were assigned to fixed territories including the possibility of wide-ranging seasonal 

migrations (Fernández-Giménez et al., 2017). In general, these herding organizations persisted until 

the Socialist Government of the Soviet Union established their centrally planned economy in 

Mongolia (AD 1924–1990). They only allowed herding of state-owned livestock, and nomadic 

movements were restricted which led to a sharp decline in livestock population due to slaughter and 

later a return to one-species herding (Fernández-Giménez et al., 2017; Johnson et al., 2006). Under 

democracy (after AD 1990), state-owned livestock was privatized leading to a short-term increase in 

animal population. The establishment of a market economy in Mongolia since AD 2000 favors a rise 
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in mining and service industries and a general decline in the number of nomadic herders (Fernández-

Giménez, 1999; Hirano and Batbileg, 2013; Johnson et al., 2006). 

 

 

 

Material and methods 

The coring site (48°15′27.13′′ N, 88°49′59.32′′ E; 2312 m a.s.l.) is a small round freshwater lake of 

20 m in diameter and 2.7 m of maximum water depth, located in the ‘Altai Tavan Bogd’ National 

Park (Fig. 4.1). Lake D1L1 is situated in a depression below the forest belt without any river inflow 

or outflow, sur-rounded by other small lakes. Three laminated sections were obtained by a Russian 

Corer in the center of the lake in 2016 using a wooden platform on two rubber boats. The collected 

core starts from the rocky lake base, is measured to 135 cm, and could be recovered in three 

overlapping 50-cm long sections. The core was transported to the University of Gottingen and stored 

under dark conditions at 4°C for further analysis. Five bulk samples of approx. 2 cm3 were obtained 

for AMS radiocarbon dating (Table 4.1) along the core based on significant changes in lithology or 

pollen composition. Radiocarbon samples were analyzed at Poznan Radiocarbon Laboratory, Poland. 

An age-depth model was performed with BACON version 2.2 (Blaauw and Christen, 2011) in 

RStudio version 3.4.4 (RStudio Team, 2019) using standard settings and the Northern Hemisphere 

terrestrial calibration curve IntCal13 by Reimer et al. (2013). Core D1L1 was sampled (0.5 cm3) for 

palynological analysis at 2-cm intervals along the core (68 subsamples). Each subsample is 1-cm 

thick. Chemical preparation included 10% HCl, 10% KOH, 40% HF, and acetolysis (Faegri and 

Iversen, 1989). Spores of Lycopodium clavatum were added as an exotic marker to calculate 

concentrations (grains/cm3) and influx (grains/cm2/yr). To reduce overly fine and coarse material, all 

subsamples were sieved twice (10-μm and 120-μm mesh width). Pollen and non-pollen palynomorph 

(NPP) analyses were carried out in the Department of Palynology and Climate Dynamics at the 

University of Goettingen. Pollen and spores were identified based on relevant literature (Beug, 2004; 

Demske et al., 2013) and the reference collection of Mongolian pollen and spores of the Department. 

All subsamples were counted to a pollen sum of 300. The pollen sum includes trees, shrubs, and 

herbaceous plants, while aquatic plants, moss, and fern spores were excluded. For further 

investigations, pollen ratios (AP/NAP, Artemisia/Chenopodiaceae and Artemisia/Cyperaceae) were 

calculated as moisture indicators (Herzschuh, 2007; Zhao et al., 2012). NPPs were identified 

according to Van Geel (1978, 2001), Van Geel et al. (2011), Shumilovskikh et al. (2015), and the 

NPP database (Shumilovskikh, 2018). They were counted with special regard to coprophilous fungi, 

which serve as an indirect indicator for the presence of large herbivores (e.g. Burney et al., 2003; 

Raper and Bush, 2009). NPP percentages are presented in relation to the terrestrial pollen sum of 

100%.  
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Subsamples for diatom analysis were taken at the same 2-cm intervals as the palynological samples. 

About 10 mg of material was taken from each sample and stirred with distilled water to avoid 

destruction of diatom valves and chrysophyte cysts. Slides were dried on a heater at 70°C. The 

identification of diatom species is based on Krammer and Lange-Bertalot (1986, 1988, 1991a, 1991b) 

and Watanabe (2005). According to their ecological preferences, diatoms were classified into (1) 

epiphytic, (2) planktonic, (3) benthic, and (4) saline.  

 

 

Tab. 4.1 Uncalibrated and calibrated radiocarbon dates of core D1L1. Calibration was performed 

using the Northern Hemisphere terrestrial calibration curve IntCal13 (Reimer et al., 2013). 

Laboratory 

Code 

Depth 

(cm) 

Type of 

Material 

C14 Age (yr BP) calibrated C14 Age 

(cal BP +/- 1σ) 

Poz-93767 51 Bulk sediment 405 ± 30 465 ± 30 

Poz-101220 82 Bulk sediment 830 ± 30 736 ± 30 

Poz-85951 107 Bulk sediment 975 ± 30 894 ± 30 

Poz-101221 118 Bulk sediment 1060 ± 30 973 ± 30 

Poz-93933 135 Bulk sediment 1585 ± 30 1353 ± 30 

 

 

Chrysophyte cysts were not identified on species level to avoid classification mistakes. All valves of 

each sample were counted. Based on that, diatom percentages, concentrations, and influx were 

calculated for further interpretation.  

XRF scanning was performed using an ITRAX XRF core scanner, COX analytical systems 

(Croudace et al., 2006), at Bremen University, Germany. All three sediment core sections were 

scanned to detect major and trace elements with a Cr-tube using a 0.5-mm step size and a 10-s count 

time for each step. Settings of the tube were set to 30-kV voltage and 50-mA current for all sections. 

Semi-quantitative element data were obtained for Si, S, K, Ca, Ti, Mn, Fe, Br, Rb, Sr, and Zr. XRF-

scanning data were normalized by coh-radiation to reduce matrix effects.  

For macro-charcoal analysis, subsamples (0.5 cm3) were taken in evenly spaced 0.5-cm intervals 

along the core. All 271 sub-samples were processed using 10% KOH and 4% H2O2 following the 

method of Stevenson and Haberle (2005). Wet sieving was conducted to reduce particle 

fragmentation. Particles (>125 μm) were counted under a binocular dissecting microscope and 

divided into four taxonomic groups (wood, leaf, grass, others) as presented in Unkelbach et al. 

(2018). The results are expressed in terms of the total number of charred particles per subsample. 

Macro-charcoal concentration per cm3 and influx per cm2 were calculated. In addition, micro-

charcoal fragments (>5 μm) were counted in the same subsamples as pollen, spores, and NPPs for 

comparison with macro-charcoal results. TILIA and TILIAGRAPH (Grimm, 1991) were used to 

visualize multi-proxy data. CONISS was performed on the pollen data to calculate pollen zones (PZ) 
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by square root transformation of the pollen percentages and a stratigraphically constrained cluster 

analysis (Grimm, 1987). 

 

 

 

Fig. 4.2 BACON output diagram. Upper figures show the Markov chain Monte Carlo (MCMC) 

iterations (left), and the prior (green) and posterior (grey) distributions for the accumulation rate 

(middle) and memory (right). Bottom figure shows the calibrated 14C dates (blue) and the age-depth-

model for lacustrine core D1L1. 

 

 

Results 

Lithology, chronology and sedimentation rate 

The sediments of core D1L1 can be divided lithologically into five units. The basal sediment layer 

(135–132 cm) consists of dark brown, sandy organic material (gyttja) above rocky under-ground. 

The following sediment layer (132–127 cm) comprises gray sand, poor in organic material. The unit 

from 127 to 111 cm is characterized by several dark brown and medium brown sandy organic rich 

gyttja layers. The adjoining unit (111–49 cm) consists of laminated layers of either medium and dark 

brown gyttja or pale white silty sediment. The uppermost unit (49–0 cm) is characterized by dark 

brown sandy gyttja layers with several slightly lighter brown laminations. The core base (135 cm) 

was calibrated to 1,350 cal yr BP. The core surface is considered to correspond to the year of field 

work in 2016. The age-depth model (Fig. 4.2) indicates no gaps in the sediment core. The calculated 

sedimentation rate is 0.45 mm/yr for the lowermost section. For the section from 118 to 107 cm, the 

model indicates a sedimentation rate of 1.39 mm/yr. For the section from 107 to 82 cm, the 
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sedimentation rate is 1.58 and 1.51 mm/yr for the interval between 82 and 51 cm. For the uppermost 

51 cm, the sedimentation rate is 0.96 mm/yr. 

 

 

Palynological results 

In total, 63 pollen and spore types and 110 NPP could be identified in core D1L1. According to 

CONISS, the palynological diagram (Appendices B4 and B5) is divided into three local PZs. The 

pollen record has an average time resolution of 26 years per sample for PZ I, 17 years per sample for 

PZ II, and 20 years per sample for PZ III. Pollen spectra throughout the diagram are dominated by 

herbaceous taxa (83–95%), such as Cyperaceae (7–35%), Poaceae (12–33%), Artemisia (8–33%), 

and Chenopodiaceae (8–28%) pollen.  

The lowermost PZ I (135–95 cm; 1,350–820 cal yr BP, AD 600–1130) is characterized by relatively 

high pollen proportions of Larix sibirica (2–6%). Cyperaceae reveal low proportions (9–28%) while 

Poaceae (13–33%) and Chenopodiaceae percentages (10–28%) are high. The proportion of aquatic 

plants is generally low. Only one fern spore occurs at 112 cm. Sordaria occurs frequently, and 

Sporormiella sporadically starting from 126-cm core depth. In PZ I, the pollen influx is rather low 

with two marked peaks at 118 and 128 cm. AP/NAP ratio (0.06–0.19) is generally high with only 

slight variations. Art/Che (0.46–2.58) and Art/Cy (0.33–3.26) ratios vary markedly with maxima at 

the same depths (134, 124, and 110 cm).In PZ II (95–45 cm; 820–400 cal yr BP, AD 1130–1550), 

percentages of Larix sibirica decrease to a minimum (1–3%). Among the herbaceous taxa Artemisia 

(11–33%) and Polygonum persicaria (2–8%) percentages increase, while Chenopodiaceae (<12%) 

decrease. The distribution of cryophilic species (e.g. Cortusa) is more frequent.  

At the beginning of PZ II, there is an increase in the proportion of aquatic plants (2–4%), but from 

64 cm their percentages decrease (<2%). Fern spores are missing. Sporormiella spores are more 

frequent with a maximum of 11% at 76 cm. A general increase in pollen concentration and influx is 

visible. AP/NAP ratio (0.02–0.14) decreases, while both Art/Che (0.89–3.36) and Art/Cy (0.48–2.26) 

ratios increase.  

The uppermost PZ III (45–0 cm; 400 cal yr BP (AD 1550) to present) is featured by an increase of 

Larix sibirica (up to 4%). Betula (2–3%), Pinus, Picea, and Cyperaceae increase, while the 

proportion of Artemisia shows lower values (8–23%). Fern and moss spores are more present at the 

end of this period. Sporormiella (1–4%) is abundant accompanied by Sordaria. Pollen concentration 

and influx values tend to be double in PZ III. A gradual increase in the AP/NAP ratio (0.07–0.19) is 

visible while Art/Che (0.58–3.00) and Art/Cy (0.24–1.72) ratios decrease markedly. 
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Diatom results 

Beside chrysophyte cysts, 36 diatom species could be identified in record D1L1. In general, the 

diatom assemblage is dominated by benthic (22–100%) and epiphytic (1–68%) types, while no 

diatoms were found in the samples from 132 to 128 cm. The diagram can be divided into four diatom 

zones (DZs) according to visual inspection (Appendix B6). In DZ I (135–99 cm; 1,350–850 cal yr 

BP, AD 600–1100), epiphytic (up to 68%) and benthic (up to 85%) species are abundant, while 

crysophyte cysts increase. Planktonic species (3–18%) occur from 120 to 110 cm. The diatom 

concentration varies from 44 valves to 1224 valves per mg sediment. DZ II (99–45 cm; 850–400 cal 

yr BP, AD 1100–1550) is dominated by benthic species (up to 83%). Epiphytic taxa decrease 

markedly. Four distinct peaks in the proportions of planktonic species can be observed at 82, 74, 68, 

and 46 cm, corresponding to maxima in the diatom concentration and influx. In DZ III (45–15 cm; 

400–90 cal yr BP, AD 1550–1860), epiphytic species (10–52%) increase markedly while benthic 

species decrease. One peak in planktonic taxa is found at 32 cm. From 27 cm, diatom concentration 

decreases markedly. DZ IV (15–0 cm; 90 cal yr BP (AD 1860) to present) is dominated by benthic 

(up to 79%) species with a decreased role of epiphytic species (6–37%). Saline species and 

Crysophyte cysts decrease. Minor proportions of plank-tonic frustules are observed at 10 and 0 cm. 

Diatom concentration is stable at around 150–400 valves per mg sediment. 

 

 

 

Fig. 4.3 XRF-scanning results of core D1L1. PZ I – III are added from Appendix B4 for comparison. 
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XRF-scanning results 

For the upper 9 cm (5 cal yr BP (AD 1945) to present), no XRF data could be obtained due to fluid 

sediment consistency at the top of the uppermost core section (Fig. 4.3). The potassium (K), titanium 

(Ti), iron/manganese (Fe/Mn), and rubidium/strontium (Rb/Sr) ratio records demonstrate similar 

trends with maxima at the core base from 132 to 126 cm and from 62 to 52 cm, intermediate values 

from 126 to 62 cm, and slightly lower values from 52 cm to the top. Calcium (Ca), in general, shows 

an opposite pattern. Ca values have maxima from 126 to 112 cm, 87 to 66 cm, and in the upper 45 

cm, whereas Ca decreases to rather low values from 132 to 126 cm and from 62 to 52 cm. In contrast, 

the calcium/strontium (Ca/Sr) ratio shows low values below 126 cm and stable higher values above. 

In the core section from 135 to 87 cm, increased values of sulfur (S) with several peaks could be 

detected while its values decrease to a stable minimum for the upper 87 cm. The bromine (Br) record 

has higher values between 87 and 62 cm and for the uppermost 52 cm. Br values are rather low from 

135 to 87 cm and from 62 to 52 cm. The rubidium/zirconium (Rb/Zr) ratio shows steady values with 

two distinct maxima at 87 and 38 cm. 

 

 

 

Fig. 4.4 Diagram presenting macro-charcoal and micro charcoal results of core D1L1. Macro-

charcoal analysis includes the breakdown of results into different morphotypes, ratios as well as 

concentration [particles/cm3] and influx [particles/cm2/yr]. Micro charcoal results are only depicted 

in terms of concentration [particles/cm3] and influx [particles/cm2/yr]. 
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Charcoal results 

The macro-charcoal record has an average time resolution of 7 years per sample for PZ I, of 4 years 

for PZ II, and of 5 years per sample for PZ III. Abundant charred material is found in all sub-samples 

along the record (Fig. 4.4). With respect to the macro-charcoal influx, four peaks (periods of 

increased fire activity) can be observed: (1) from 112 to 88 cm (930–780 cal yr BP, AD 1020–1170), 

(2) from 81 to 80 cm (730–720 cal yr BP, AD 1220–1230), (3) from 63 to 57 cm (570–520 cal yr 

BP, AD 1380–1430), and (4) from 31 to 21 cm (260–160 cal yr BP, AD 1690–1790). Comparably 

low charcoal influx is found below 112 cm (1,350–930 cal yr BP, AD 600–1020), from 80 to 63 cm 

(720–570 cal yr BP, AD 1230–1380), and from 5 to 0 cm (–10 cal yr BP (AD 1960) to present).In 

terms of the four different morphotypes, the most abundant charcoal fraction is other charred particles 

such as rootlets, seeds, mosses, or unidentifiably small material (46% of macro-charcoal sum). 

Charred wood material (26%) occurs more frequently than grass (20%) and leaf (8%). In general, 

trends in these four morphological groups seem to be consistent along the whole record. From the 

morphotype ratios it can be inferred that charred material shows minor changes in PZ I and PZ II but 

diversifies slightly in PZ III. The grass/wood and grass/leaf ratios increase in the uppermost period 

while the wood/leaf ratio shows lower values. The micro-charcoal record (Fig. 4.4) is generally 

consistent with the macro-charcoal results. In PZ I, the maximum of micro-charcoal influx is from 

118 to 110 cm (970–910 cal yr BP, AD 980–1040). In PZ II, the maximum at 58 cm (530 cal yr BP, 

AD 1420) correlates with the macro-charcoal findings. A decrease in micro-charcoal material can be 

observed in PZ III. 

 

 

 

Interpretation and discussion 

Regional vegetation and climate changes 

From 1,350 to 820 cal yr BP (PZ I), the landscape in the study area of the Altai Tavan Bogd National 

Park was characterized by steppe, mainly composed of grasses, Artemisia and Chenopodiaceae. 

Close to the study site, the forest was composed of Larix sibirica with open habitat shrubs such as 

Betula and Juniperus (Appendix B4). Like nowadays, Pinus sibirica and Picea obovata did probably 

not occur in the forests nearby. Compared with the modern setting, a similar distribution of forest 

can be inferred. The recon-structed vegetation composition suggests relatively dry but rather warm 

climatic conditions. A low annual precipitation is inferred. After 820 cal yr BP (PZ II), the decreasing 

proportions of trees and shrubs suggest an expansion of Artemisia steppe at the cost of Larix forest. 

The increase in cryophilic (cold steppe) species may also suggest a decrease in temperature whereas 

dry conditions prevailed. The period from 400 cal yr BP to present (PZ III) is characterized by a 

slow, gradual recovery of Larix forest and an expansion of the moist steppe, as indicated by the 
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higher distribution of Cyperaceae. Both taxa point to an increase in moisture, and steppe expansion 

to a possible decrease in temperature, leading to down-ward movement of the tree line. These 

changes correspond to the ‘Little Ice Age’ (LIA; 420 to 160 cal yr BP; Andreev et al., 2007), which 

apparently affected the vegetation in the study area. The occurrence of more shrub species such as 

Betula and Salix as well as ferns and mosses points to moister soil conditions after ca. 60 cal yr BP. 

We conclude that annual temperature increased favoring permafrost degradation. 

 

 

Grazing dynamics 

For reconstruction of the grazing activities in the area, we use coprophilous fungal spores 

Sporormiella and Sordaria-type. The consistent occurrence of coprophilous fungi suggests nomadic 

settlement close by the study area since the beginning of the recorded period. From 1,350 to 820 cal 

yr BP (PZ I), Sporormiella and Sordaria-type spores occurred sparsely, indicating a grazing pressure 

on the vegetation. After 820 cal yr BP (PZ II), coprophilous fungi became more abundant. Especially 

the increase in the Sporormiella coincides with the decrease of arboreal pollen (e.g. Larix) and the 

expansion of steppe (Appendix B4). At that time, the number of tree saplings might have been 

severely reduced due to trampling and grazing by an increased number of animals, or due to tree-

logging and forest mismanagement which interfered forest recovery (Hauck et al., 2012; 

Khishigjargal et al., 2013). The distinct maximum in the Sporormiella record at around 690 cal yr 

BP occurs during the Mongol Empire (744–582 cal yr BP) and might be related to the westward 

expansion of the Mongol territory. From 400 cal yr BP to present (PZ III), the coprophilous fungi 

increased further. However, the increasing arboreal pollen percentage suggests that the grazing 

pressure is compensated by an increasing moisture. 

 

 

Lake dynamics 

Established DZs are similar to the suggested PZs by CONISS. An additional DZ from 90 cal yr BP 

to present indicates more prominent changes within the lake’s condition than suggested by its 

surrounding vegetation. The abundance of epiphytic diatom species (Appendix B6) indicates the 

formation and existence of a shallow freshwater pond from 1,350 to 850 cal yr BP (DZ I). Temporary 

increases in saline species indicate a rise of electric conductivity (e.g. Navicula cincta and Nitzschia 

frustulum) in the lake water in these periods as a result of either erosion into the lake or a temporal 

increase in temperature (Bhateria and Jain, 2016). In the period from 850 to 400 cal yr BP (DZ II), 

the benthic-dominated diatom assemblages together with Crysophyte cysts indicate a lower water 

level. At the beginning of this period (840–740 cal yr BP), a maximum in benthic species Synedra 

ulna (alkaliphilous, eutrophilous) indicates high pH values and nutrient richness at that time 
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(Whitmore, 1989). From 400 to 90 cal yr BP (DZ III), a shallow pond reformed. The subsequent 

period from 90 cal yr BP to present (DZ IV) is characterized by an abundance of epiphytic and 

benthic species indicating the prevalence of the small shallow lake. During this period, higher values 

of oxygen and pH as well as a low electric conductivity can be inferred from a distinct increase in 

some benthic (e.g. Cocconeis placentula and Gomphonema sp.) and a decrease of saline species (e.g. 

Navicula sp. and Nitzschia sp.). Both favor a eutrophic lake state (Van Dam et al., 1994). Long-term 

fluctuations in the lake level were interrupted by several short phases of higher lake levels, indicated 

by distinct peaks in the planktonic species proportion (Appendix B6). These peaks occurred around 

980, 920, 720, 620, 580, 410, 280, 200, and 40 cal yr BP and over the last 20 years. Planktonic 

species’ abundance correlates with maxima in diatom concentration and influx at all stages. This 

correspondence demonstrates the temporarily improved conditions of diatom growth during high 

lake levels. A higher water level might either be caused by an increasing snowfall during winter 

season, more intense rainfall during summer, or increasing permafrost melting. A long-term 

precipitation increase is neither supported by the diatom assemblage nor by the vegetation 

reconstruction from the pollen assemblage (Appendix B4).  

At the beginning of the record, the increased amount of S (Fig. 4.3) may indicate a reduced mixing 

of the lake from 1,350 to 770 cal yr BP (PZ I), probably due to water body stratification. After 770 

cal yr BP (PZ II and PZ III), S decreased to a constant minimum pointing to enhanced lake water 

mixing. The siliciclastic indicators K and Ti (e.g. Kylander et al., 2011; Unkel et al., 2014) show two 

periods of elevated erosion from 1,250 to 1,110 cal yr BP and between 570 to 470 cal yr BP. During 

both periods, the minerogenic influx into the lake was rather high. Based on the diatom data, the lake 

level was rather low during both periods excluding an increased precipitation or surface inflow. 

Probably due to the sparse vegetation cover and generally low precipitation, erosion was caused by 

aeolian processes. However, Ca and Ca/Sr records show opposite trends. From 1,250 to 1,110 cal yr 

BP and from 570 to 470 cal yr BP, the lower Ca contents indicate a reduced presence of Ca-

carbonates, yet the high Ca/Sr ratio suggests an allochthonous source for the whole record. After 400 

cal yr BP (PZ III), the influx of allochthonous material decreased according to the reduced K and Ti 

values. Br, an element bound to organic matter (e.g. Kalugin et al., 2013), increases in this period, 

indicating a sediment composition dominated by autochthonous organic matter under stable climatic 

conditions. High Ca values suggest increased precipitation of autochthonous carbonates. Comparing 

the diatom and XRF data, the results for lake dynamics seem to be complementary. The diatom 

record suggests more stages of higher lake levels than siliciclastic elements indicate. Erosion 

processes in the area over the last 1350 cal yr BP can be described as a combination of wind (under 

extremely dry conditions) and water (unusual heavy rainfall and surface runoff) erosion. Both 

processes might have produced siliciclastic white sediment layers (Fig. 4.5). An increase in moisture 
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conditions leading to the development of denser vegetation hinders erosion processes and causes 

higher lake levels. 

 

 

Fire dynamics 

Based on the macro-charcoal influx (Fig. 4.4), the fire frequency is in general assumed to be rather 

low in the study area. However, four periods of increased fire activity occurred in the period from 

930 to 160 cal yr BP. With respect to the palynological results (Appendix B4), the first strong fire 

period (930–780 cal yr BP, PZ I) is linked to the initial period of increased forested areas during the 

Medieval Warm Period (MWP; 1,030–730 cal yr BP). In many cases fire intensity and frequency in 

grasslands are dependent on fuel sources, whereas fuel is strongly linked to net primary productivity 

which is directly dependent on temperature and precipitation (Umbanhowar et al., 2009). In addition, 

the fire maximum could be attributed to increased human activities during the time of Khaganates 

(Fig. 4.5) under a warmer and more humid climate that attracted more people to settle in the area. 

The second fire maximum (730–720 cal yr BP; PZ II) occurred at the end of the MWP during the 

Mongol Empire. A comparison with the Sporormiella record (Appendix B5) suggests that the same 

reasons apply for this short period: Improved climatic conditions favored nomadic activities around 

the study site. At the beginning of the Northern Yuan Dynasty, the third period of increased fire 

activity (570–520 cal yr BP; PZ II) is found. This period is characterized by a drier and colder climate. 

An increased formation of dead biomass as a fuel for fire or an increased import of charred material 

into the lake caused by wind erosion can be inferred as observed by Bruegger et al. (2018) at 

Tsambagarav glacier (Mongolian Altai Mountains) and Eichler et al. (2011) at Belukha glacier in the 

Russian Altai. This assumption is supported by the presence of a white erosion layer in the sediment 

from 62 to 56 cm and the absence of planktonic diatoms in these core depths (Fig. 4.5). The last 

period of increased fire activity (260–160 cal yr BP; PZ III) occurred under increasing humidity at 

the beginning of Qing Dynasty. It is highly likely that a correlation between more attractive pastures 

in the higher elevations of the Mongolian Altai and increased population has contributed to the higher 

amount of fire evidence in the study area. Over the last decades (ca. 40 years), nomads still settle in 

the area, but reduce the use of fire to a minimum to prevent environ-mental destruction (oral 

communication with locals, 2016). 

 

 

 

Discussion 

Our data reveal grazing activities during the entire 1,350 cal yr BP. Based on changing amount in 

spores of coprophilous fungi, pasture intensity varied through time. In the Mongolian Altai, the extent 



 
Manuscript 3 

 

86 
 

of anthropogenic impact on the environment by pastoral land use over time is influenced by a variety 

of external factors such as climate, political powers, or social structures (Unkelbach et al., 2019). In 

the discussion, we present a multi-proxy composite diagram of the core lithology, the most 

representative proxies for environmental changes, and a compilation of grazing indicators and the 

settlement history since 1,350 cal yr BP (Fig. 4.5) and discuss an influence of socio-economic and 

climatic factors on herding activities and pasture. 

 

 

Fig. 4.5 Composite diagram of lithology, selected proxies and settlement periods in the Mongolian 

Altai. Pollen zones (PZ I-PZ III) are separated by dashed lines, MWP (Medieval Warm Period 1,030-

730 cal yr BP) and LIA (Little Ice Age, 420-160 cal yr BP) are highlighted in gray. 

 

 

Long-term climate and vegetation changes 

Forest-steppe dynamics in the Altai Tavan Bogd National Park during the last 1,350 years correspond 

in general to the climate changes. The MWP (1,030–730 cal yr BP; Kalugin et al., 2005) is well 

represented in the assemblage by an increase in Larix and aquatic pollen taxa. After 820 cal yr BP, 

spread of Artemisia steppe point to dry climate conditions, causing upward movement of the Larix 

tree line. During the LIA, moist steppe developed leading to the recovery of larch forests close to the 

site. The D1L1 record is an enhancement of other reconstructions from Dayan Nuur region 

(Unkelbach et al., 2018, 2019). Both other studies reveal a forest decline due to increased 

anthropogenic impact since 2,610 cal yr BP (core G2-A, upper forest boundary) and 1,040 cal yr BP 

(core D3L6, lower forest boundary), respectively. Temporal discrepancies may be attributed to lower 

sample resolution, elevation differences, or rather local signals. In addition, our findings are in accord 

with Bruegger et al. (2018) who suggest that moisture is a more important factor for forest 

preservation than temperature in the Altai Mountains. However, the lack of paleoenvironmental 



 

Manuscript 3 

87 
 

multi-proxy studies on a comparable temporal resolution in the area hampers a reliable comparison 

on the regional scale. Due to the specific geographical situation of our study site in the high 

mountains, climatic and anthropogenic impacts on the environment can entirely differ from those in 

several hundred kilometers distance. A review of climatic and environmental developments of 

western Mongolia by Klinge and Sauer (2019) refers to these strong discrepancies in the 

reconstructions of different authors based additionally on diverse methodologies and differing 

potentials of the archives. Huang et al. (2018) dated the beginning of an increased human impact 

caused by climate warming of the MWP in the Chinese Altai (about 150 km distant to our study site) 

to approx. 1,400 cal yr BP. Consistencies regarding the extent of climatic influences on settlement 

processes, especially during the Mongol Empire, were already noticed. Fernández-Giménez et al. 

(2017), Pederson et al. (2014), and Lehmkuhl et al. (2011) attribute the expansion of Mongol political 

power and altering nomadic pastoralism to a period of high rainfall and persistently warm climate 

during the 13th century, whereas Miehe et al. (2007) see a connection between pronounced human 

influence and cold-dry climate in the Gobi Altai at that time. 

 

 

Short-term events and grazing dynamic around the lake 

Coprophilous fungi grow on dung of domesticated and wild animals (e.g. Doveri, 2004). Independent 

on the dung source, transitions in pastoral intensity might lie in changing climatic conditions. 

Planktonic diatom data and siliciclastic sediment laminations indicate that these transitions seem to 

be related to lake water level variations (Fig. 4.5). Based on the correlation of sediment stratigraphy 

with planktonic diatom and coprophilous fungal spore representations, most of the increases in 

grazing indicators around the study site occurred after the formation of white sediment layers or 

temporary lake level rises. The availability of water due to increased soil moisture had positive effects 

on the vegetation cover and pasture conditions attracting more animals in the area. An increase in 

soil moisture might have been caused by increased precipitation of snow, and a higher accumulation 

of meltwater during summer or a decrease in temperature which would have decreased the 

evapotranspiration pressure. Similar results were recently described for the early Holocene in 

northeastern Europe. Stivrins et al. (2019) demonstrated increase in large herbivore density during 

relatively stable climatic and environmental conditions, suggesting that herbivores did not constantly 

live at high densities around one lake but rather were dynamic and moved/migrated according to 

their needs. In case of Mongolia, nomad herding practices request an adaptation to the local 

environment, what consequently implies a selection of pasture locations. The correlation applies to 

all settlement periods from Khanates to Qing Dynasty (1,150–40 cal yr BP) and during Market 

Economy (–50 cal yr BP to present), in which short-term climatic variations occur. Over the last 

1,350 cal yr BP, nomadic herding and grazing practices including the increase in number of livestock, 
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grazing different pastures, and moving to different areas did often change in accordance with natural 

events. Lake level changes reflect the humidity conditions in the region. Humidity is a major 

influencing factor for pasture conditions, to which changes in anthropogenic impact seem to be 

directly related in the area. 

 

 

Socio-political impact on pastoral activities 

One main driver for changes in herding and grazing habits is assumed to be the changing leadership 

in the area during the his-tory of Mongolian territory. Since the beginning of the sediment record, 

various political powers of different origin (Turks, Chinese, Mongols) had a marked impact on 

nomadic activities in our study area. To encipher impact of these groups on pastoral intensity, we 

compare changes in grazing indicators with a preceding transition of settlement periods. For the 

Khaganate period (1,150–744 cal yr BP), no correlation between herding changes due to settlement 

transition and grazing indicators can be inferred. The increasing grazing activity might be attributed 

to visible occupation of this remote area by nomads starting at around 1,040 cal yr BP (Unkelbach et 

al., 2019). At the beginning of the Mongol Empire (744–582 cal yr BP), the human impact increases 

markedly, probably in accordance with westward nomadic migrations. Arboreal species decrease to 

a minimum in this period (Fig. 4.5) indicating a landscape shaped by humans. For Northern Yuan 

Dynasty period (582–259 cal yr BP), only a minor correlation is detected. The amount of 

coprophilous fungi stabilizes at a lower level, while the increasing number of charred materials can 

rather be attributed to natural erosion processes (570–470 cal yr BP; Fig. 4.5) than changing human 

impact. For the Qing Dynasty and Independence (259–26 cal yr BP), amounts of coprophilous fungi 

and macro-charcoal might have increased very likely due to a higher livestock number at the 

beginning of this period. Immediately upon takeover by the Soviet Union (Socialist Government and 

Collective Period, 26 to −40 cal yr BP), a sharp decrease in coprophilous fungal spores indicates the 

decline in number of cattle and possible restrictions on nomadic movements into the area. 

Furthermore, restrictions were eased, and herders returned. Consequently, trees and shrubs such as 

Larix, Betula, Juniperus, and Populus proceeded to recover. For the transition to Democracy (–40 

cal yr BP to present), no correlation between grazing indicators and changing political powers is 

visible. Admittedly, based on only two samples, the period might be too short to indicate valid results. 

 

 

 

Conclusions 

Based on new multi-proxy analyses in the Altai Tavan Bogd National Park, western Mongolia, we 

reconstructed vegetation, fire, lake dynamics, climate and human impact for the last 1,350 cal yr BP 
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in the highest resolution available in the area. Our multi-proxy data indicate long-term environmental 

trends as well as short-term climatic events both affecting settlement and herding activities in the 

Altai Tavan Bogd National Park since 1,350 cal yr BP (AD 600). Vegetation reconstruction suggests 

a forest opening after 820 cal yr BP (AD 1130) and a slow recovery of forested areas starting at 

around 400 cal yr BP (AD 1550).There are both, long-term stability of the forest-ecosystem and 

climate-induced short-term shifts found in the records. Humans were present in the area for millennia 

and had a marked impact on the Mongolian Altai environment due to animal herding since Khaganate 

period (1,150–744 cal yr BP, AD 900–1206). We show that changes in human occupation due to 

political shift and changing Mongolian settlement had an impact on the vegetation during Mongol 

Empire (744–582 cal yr BP, AD 1206–1368), Qing Dynasty and Independence (259 to 26 cal yr BP, 

AD 1691–1924), and Socialist Government and Collective Period (26 to −40 cal yr BP, AD 1924–

1990). In addition, altered climatic conditions had an influence on settlement processes regardless of 

specific settlement periods. Short-term lake water rises due to heavier rainfall events or increased 

snow melt had positive effects on pasture conditions and caused temporarily increasing grazing 

activities. 
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Abstract 

The Mongolian Altai is an ecologically sensitive region in Central Asia where changes in climate 

and anthropogenic activities have a strong impact on the forest-steppe vegetation. We combine high-

resolution data (pollen, non-pollen palynomorphs (NPP), charcoal) of two new sedimentological 

archives from the Altai Tavan Bogd National Park with dendrochronological analyses on Siberian 

larch trees to study climatic changes and human landscape interactions over the last 1,350 cal yr BP. 

Multi-proxy palaeoenvironmental reconstructions show that the present landscape is a result of both 

short- and long-term climatic variations and of locally different land use. Combined evidence 

suggests that in the period from 1,350 to 670 cal yr BP western Mongolia was impacted by a rather 

cold and dry climate, followed by an episode of improved warmer and wetter climatic conditions 

from 670 to 400 cal yr BP. From around 400 to 200 cal yr BP, the Little Ice Age shaped the forest-

steppe vegetation in the area, favoring an expansion of steppe vegetation. After 200 cal yr BP, 

climatic conditions improved again gradually with markedly high summer temperatures over the last 

70 years. NPP data reveal periods of increased grazing activities in the forests especially during 

unfavorable climatic periods. During the late 20th century, a decreasing deposition of coprophilous 

fungal spores with a simultaneous slight decrease of Larix sibirica forest suggest that economic 

timber harvesting seemed to be of more significance for forest degradation than pastural activities. 

 

 

 

Kurzfassung 

Der mongolische Altai ist eine ökologisch sensitive Region in Zentralasien, in der 

Klimaveränderungen und anthropogene Einwirkungen einen starken Einfluss auf die vorherrschende 

Waldsteppen-Vegetation haben. In dieser Arbeit verknüpfen wir hochauflösende Daten zweier neuer 

Sedimentarchive aus dem Altai Tavan Bogd Nationalpark (Pollen, Non-Pollen Palynomorphe (NPP), 

Holzkohle) mit dendrochronologischen Parametern der Sibirischen Lärche, um Klimaveränderungen 

sowie Mensch-Umwelt-Interaktionen über die letzten 1350 J.v.h. zu untersuchen. Unsere Multi-

Proxy-Rekonstruktionen zeigen, dass die heutige Landschaft sowohl ein Ergebnis kurzzeitiger und 

langfristiger Klimaveränderungen als auch lokal variierender Landnutzung ist. Die 

zusammengeführten Daten deuten an, dass die Westmongolei von 1350 bis 670 J.v.h. von einem eher 

kühleren und trockenen Klima geprägt war, gefolgt von einer wärmeren und feuchteren Phase von 

670 bis 400 J.v.h. Zwischen etwa 400 und 200 Jahren vor heute formte die Kleine Eiszeit die 

Waldsteppen-Vegetation in der Region und begünstigte eine Ausbreitung der Steppe. Nach etwa 200 

J.v.h. verbesserten sich die klimatischen Verhältnisse schrittweise, insbesondere mit einem Anstieg 

der Sommertemperaturen während der letzten 70 Jahre. NPP Daten zeigen, dass Phasen mit stärkerer 

Weidenutzung in den Waldarealen mit ungünstigen Klimaperioden korrelieren. Während des späten 
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20. Jahrhunderts nehmen sowohl die Ablagerung von coprophilen Pilzsporen als auch der Anteil an 

Larix sibirica in der Vegetation ab. Eine mögliche Erklärung ist die zunehmende Bedeutung der 

kommerziellen Waldabholzung beim Verlust der Wälder in der Mongolei. 

 

 

 

Introduction 

The forest-steppe ecotone in the Altai Tavan Bogd National Park (NP), western Mongolia, is overly 

sensitive. It responds strongly to natural and anthropogenic changes in climate as well as land-use 

pressure due to its extremely arid and cold climatic conditions (e.g. Gunin et al., 1999; Beket and 

Knapp, 2012). However, until recently, palaeoarchives of this Central Asian region have only rarely 

been studied (Brügger et al., 2018; Rudaya et al., 2008, 2009; Tarasov et al., 2000). More detailed 

multi-proxy investigations were carried out by Unkelbach et al. (2018, 2019, 2020) examining the 

responses of forest and steppe communities to natural and anthropogenic variabilities during the mid- 

to late Holocene. Vegetation, grazing and fire dynamics provide general information on vegetation 

and environmental changes, their driving factors and the role of pastoral nomads. During the mid- 

and beginning of the late Holocene from 4,300 to 2350 cal yr BP, the vegetation in the area was 

characterized by open coniferous forest and high mountain steppe, indicating relatively warm and 

humid conditions in the Mongolian Altai. In the further course, steppe communities expanded 

noticeably due to a colder and more arid climate (Brügger et al., 2018; Unkelbach et al., 2019). The 

Little Ice Age (LIA), which globally lasted from the 16th to the late 19th century also caused 

significant cooling and glacier advances (doubling their size compared to modern times) in the 

Mongolian Altai (Lehmkuhl, 2012; Lehmkuhl et al., 2016). For the Russian Altai, not far from the 

Mongolian border, Andreev et al. (2007) dated LIA cooling to the period from 1530 to 1790 AD. 

During the last decades, an increase in tree and shrub vegetation indicated a warmer climate and a 

higher accessibility of water due to permafrost and glacier degradation in the high mountains. 

Coprophilous fungi reconstructions show that grazing intensified around 1,000 cal yr BP, possibly 

also favoring the expansion of steppe (Unkelbach et al., 2018, 2019). Changes in human occupation 

due to political shifts and changing Mongolian settlements had an impact on the vegetation in the 

area, especially during Mongol Empire (744 to 582 cal yr BP), when grazing activities increased 

(Unkelbach et al., 2019). Regardless of specific settlement periods, short-term changes in climatic 

conditions favored shifts in grazing activities. At around 1,000 cal yr BP, the fire frequency increased 

in accord with growing anthropogenic impact and climate aridity (Unkelbach et al., 2020). Further 

palaeoecological studies in the Mongolian Altai were carried out by D’Arrigo et al. (2000) and 

Dulamsuren et al. (2014) providing climatic information reconstructed from Larix sibirica tree rings. 
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These studies demonstrate short-term temperature oscillations over the last approx. 400 years as well 

as a continuous long-term temperature increase during the 20th century.  

In this paper, new high-resolution palaeoecological data from two additional archives from Altai 

Tavan Bogd NP are compared with dendrochronological data from the same locality. In addition to 

the capabilities of palynological data, tree-ring widths of larch trees are a suitable high-resolution 

parameter reflecting climate signals as well as stand density changes due to selective logging 

(Dulamsuren et al., 2014). A combined approach enables to achieve a better time resolution and an 

improvement of data quality (Birks and Birks, 2006). Similar studies from mountainous regions in 

Central Asia (Eastern Tibetan Plateau, Wischnewski et al., 2014), South America (Chonos 

Archipelago, Szeicz et al., 2003) and Europe (Northern Alps, Röpke et al., 2011; Czech Republic, 

Šamonil et al., 2018; Central Pyrenees, Garcés-Pastor et al., 2019) provided promising results.  

Our main objectives are (1) to reconstruct the late Holocene climate and human history in the 

Mongolian Altai on a decennial scale by using a multi-proxy-approach and (2) to examine the 

potential of correlating palynological and dendrochronological data sets with regard to their different 

impact factors (climate, fire, grazing, humans) on the environment in the forest-steppe-ecotone.  

 

 

 

Study area 

Environmental setting 

The Mongolian Altai is the highest and most extensive mountain system in Mongolia (Gunin et al., 

1999), bordering Russia in the north, Kazakhstan in the west and China in the southwest. The study 

area (48°15’N, 88°48’E) is part of the Altai Tavan Bogd NP (Fig. 5.1), established in 1996, and 

situated in the province Bayan-Ulgii. The NP is located above 2,000 m a.s.l., whereas the highest 

elevations exceed 4,000 m a.s.l. in the northern and western parts (Lkhagvadorj et al., 2013). The 

mountain systems are characterized by long, flat summit plateau ranges, large moraine ridges and 

numerous glaciofluvial terraces shaped by glaciation dynamics in the late Quaternary (Jolivet et al., 

2007; Lehmkuhl et al., 2016). Leptosols are prevailing soils in the area (Dulamsuren et al., 2014).  

Extreme continentality controls the area’s climate due to the topographic setting and the great 

distance to moisture sources (Andreev et al., 2007). In Ulgii (48°55’N, 89°56’E, 1,715 m a.s.l., 

located approx. 120 km northeast), average temperatures range from 16.3 °C in July to -17.1 °C in 

January. Precipitation averages 114 mm per year. During the short summer period from June to 

August most of the rainfall occurs (70-80%). In winter (6 month), the area is covered by snow and 

ice (Enkhtaivan, 2006).  
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Fig. 5.1. Detailed topographic map showing the locations of cores Tr5-2B and Ch (red) within the 

area of investigation (Yamaat valley). The locations of other existing palynological archives from 

the Mongolian Altai are added (green): 1 - D3L6 (Unkelbach et al., 2019), 2 - G2-A (Unkelbach et 

al., 2018), 3 - D1L1 (Unkelbach et al., 2020), 4 - Khoton-2 (Rudaya et al., 2008; 2009), 5 - Khoton-

1 (Tarasov et al., 2000), 6 - Tsambagarav Glacier (Bruegger et al., 2019).  

 

 

Gradients such as elevation and exposure, temperature and precipitation are the main drivers in the 

area influencing the composition, distribution, and productivity of vegetation (Rudaya et al., 2009). 

The temperature decline with elevation shapes the vertical range of vegetation distribution, while 

precipitation is the main factor determining a W-E-directed plant community pattern (Gunin et al., 

1999). In general, vegetation ranges from semi-desert and desert communities on some slope bases 

(1,100 to 2,100 m a.s.l.), to high mountain cushion herb vegetation, cryo-xerophytic grassland, 

xerophytic shrubs and grass steppes (1,600 to 3,200 m a.s.l.) and a mountain forest belt (1,700 to 

2,200 m a.s.l.) to cryophyte grassland and subalpine shrubs, lichen communities, fragments of 

cryophyte meadows and regular snow cover in the highest altitudes ((2,100)2,700 to 4,374 m a.s.l.) 

(Beket and Knapp, 2012). Forests and forest-steppes are only present on north-facing slopes, growing 

on the upper parts or on the central parts if a high mountain zone exists. Most of the forested areas 



 

Manuscript 4 

95 
 

are only composed of Siberian larch (Larix sibirica), whereas in some areas close to the border to 

China Siberian pine (Pinus sibirica) and Siberian spruce (Picea obovata) contribute to the forest 

assemblage (Dulamsuren et al., 2014). The transition from mountain steppe communities to alpine 

grassland is continuous, if forests are missing (Gunin et al., 1999). From the mountain plateaus to 

the basins, permafrost conditions prevail, though limited by the low soil humidity in lower elevations 

(Klinge et al., 2017). Permafrost only occurs under forested areas and in alpine grasslands. 

The Mongolian Altai has been inhabited by modern humans since the Upper Paleolithic (46,000-

12,000 cal yr BP) (Tumen, 2006). During late Bronze Age (3,450-2,650 cal yr BP), animal husbandry 

and mobile pastoralism developed within the Eurasian steppe and were introduced to Mongolian 

territory (eg Fernández-Giménez et al., 2017; Houle, 2016; Miehe et al., 2009; Tumen, 2006). 

Organizational forms of nomadic cultures and pastoral activities adjusted and stabilized throughout 

Terminal Bronze Age (2,650-2,350 cal yr BP) and basically persist to this day in the Mongolian 

Altai. 

 

Table 5.1. Uncalibrated and calibrated radiocarbon dates of cores Tr5-2B and Ch. Calibration was 

performed using the Northern Hemisphere terrestrial calibration curve IntCal13 (Reimer et al., 2013). 

Laboratory 

Code 

Core 

name 

Depth 

(cm) 

Type of 

Material 

C14 Age (yr 

BP) 

calibrated C14 

Age (cal BP +/- 

1σ) 

Poz-89784 Tr5-2B 9 Bulk sediment 61 ± 30 178 ± 126 

Poz-89785 Tr5-2B 21 Bulk sediment 497 ± 30 521 ± 55 

Poz-93768 Tr5-2B 29 Bulk sediment 598 ± 30 667 ± 74 

Poz-89786 Tr5-2B 46 Bulk sediment 2482 ± 30 2096 ± 666 

Poz-107682 Ch 21 Bulk sediment 185 ± 30 185 ± 105 

Poz-107683 Ch 33 Bulk sediment 225 ± 30 321 ± 136 

 

 

Site description 

The study site (Fig. 5.1) is located in Songinot region south-west of Dayan Nuur. Two sediment and 

several wood cores from Larix sibirica trees were taken in Yamaat valley following a small stream 

flowing from behind the Chinese border to the North-East. In direction to the border the valley 

continues to be narrower and markedly moist. Core Tr5-2B (46 cm, 48°15’12.00’’N, 

88°50’19.06’’E; 2,380 m a.s.l.) was taken from peaty soil on a north-west-facing slope within the 

forest belt near Dayan Lake. Core Ch (33 cm, 48°12’57.76’’N, 88°38’1.85’’E; 2,583 m a.s.l.) was 

obtained from a small depression in the valley bottom below the lower forest line close to the Chinese 

border, which is nowadays temporarily, but not constantly, filled with water. It is located in around 
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20 km distance to core Tr5-2B and in direct vicinity of the small stream. In contrast to site Tr5-2B, 

nomadic settling and livestock grazing are difficult at site Ch, because the valley is too narrow and 

located in close vicinity to the national border. All wood cores were drilled on Larix sibirica trees 

within the area.  

 

 

 

 

Fig. 5.2. BACON output diagram for core Tr5-2B. Upper parts show the Markov chain Monte Carlo 

(MCMC) iterations (left), and the prior (green) and posterior (grey) distributions for the accumulation 

rate (middle) and memory (right). Bottom part shows the calibrated 14C dates (blue) and the age-

depth-model.  

 

 

Material and methods 

Radiocarbon dating and age-depth-modeling 

Four bulk samples samples were taken at the base and at 29, 21 and 9 cm core depth of core Tr5-2B. 

Core Ch was sampled accordingly at the core base and at 21 cm (Table 5.1). Samples were sent to 

Poznan Radiocarbon Laboratory, Poland, for AMS radiocarbon dating. The age-depth-models (Figs. 

5.2 and 5.3) were created using rbacon package version 2.3.4 (Blaauw et al., 2018) in RStudio 
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software version 3.4.4. Default settings including the Northern Hemisphere terrestrial calibration 

curve IntCal13 (Reimer et al., 2013) have been applied.  

 

 

Fig. 5.3. BACON output diagram for core Ch. Upper parts show the Markov chain Monte Carlo 

(MCMC) iterations (left), and the prior (green) and posterior (grey) distributions for the accumulation 

rate (middle) and memory (right). Bottom part shows the calibrated 14C dates (blue) and the age-

depth-model.  

 

 

Palynological analysis 

Core Ch was sampled (0.5 cm3) continuously at 1 cm-intervals for palynological analysis, core Tr5-

2B at 2 cm-intervals. Samples of both sediment cores were prepared by employing the same treatment 

after Faegri and Iversen (1989) including HCl (10%), HF (40%), KOH (10%) and acetolysis. Sieving 

was conducted twice during the preparation process to achieve a reduction of overly coarse >120 µm 

and fine <10 µm particles. For concentration and influx calculations, Lycopodium clavatum spores 

were added as an exotic marker. Pollen and spore identification were carried out using the reference 

collection of Mongolian pollen and spores at the Department of Palynology and Climate Dynamics 

(University of Goettingen) and based on relevant literature (Beug, 2004; Demske et al., 2013). In 

each sample, 300 terrestrial pollen grains were counted excluding spores and aquatic pollen taxa. 

Non-pollen palynomorphs (NPPs) were counted on the same slides and identified based on the NPP 

database (Shumilovskikh, 2019) and additional literature (Demske et al., 2013; van Geel, 1978). 
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Unknown NPP types are presented by their respective core name and a consecutive number. New 

types were assigned to their taxonomic group according to their morphology. For further 

interpretation, the following moisture indicators were calculated: ratio of arboreal to non-arboreal 

pollen (AP/NAP), ratio of Artemisia to Chenopodiaceae (A/C) and ratio of Artemisia to Cyperaceae 

(A/Cy).  

CONISS was applied on the pollen data performing a square root transformation in TILIA software 

(Grimm, 1991) to establish pollen zones (PZs) by statistical subdivision (Grimm, 1987). TILIA was 

also used for visualization of palynological data.  

 

 

Macro-charcoal analysis 

For macro charcoal analysis both sediment cores were sampled seamlessly (0.5 cm3) in 0.5 cm-

intervals. All samples were prepared using KOH (10%), H2O2 (6%) and wet sieving (125 µm) to 

decrease particle fragmentation (Stevenson and Haberle, 2005). All charred macro particles were 

identified and counted according to the method described in Unkelbach et al. (2019). Data was 

illustrated in TILIA (Grimm, 1991) in total counts per sample as well as concentration and influx 

calculations.  

Additionally, palynological samples provided micro charcoal information for comparison with 

macro charcoal data. Charred micro particles were counted in the same slides (and depths) as pollen 

and NPP. Concentration and influx values were also calculated.  

 

 

Dendrochronological analysis 

A total of wood cores was sampled from 94 Larix sibirica trees for tree ring analysis in 2010. Wood 

cores were collected at 130 cm height above the ground using an increment borer of 5 mm inner 

diameter. The borer was driven into the wood parallel to the contour lines of the mountain slopes to 

avoid compression of wood. We selected dominant and subdominant trees. Annual tree-ring width 

was measured with a precision of 10 µm on a movable object table (Lintab 6, Rinntech, Heidelberg, 

Germany), the movements of which are electronically transmitted to a computer system equipped 

with TSAP (Time Serias Analysis and Presentation)-Win software (Rinntech). 

Evaluation of tree-ring data was conducted with TSAP-Win software. Tree-ring series were 

controlled for missing rings and false rings during crossdating because especially missing tree rings 

can be relatively common in the semiarid environment of Mongolia at the drought limit of forests. 

Tree-ring series used for the calculation of means had a coefficient of agreement (‘Gleichläufigkeit’, 

GL) >60% (P≤0.05) and t values >3. Trend lines were calculated using moving 5-year averages. 

Since our study was focused on the reconstruction of climate and vegetation variability over time, 
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we concentrated on the oldest tree individuals. All specifications of tree age refer to the age of the 

oldest tree ring at 130 cm above the ground (cambial age); approximate 10 to 20 years should be 

added to deduce tree age from cambial age. 

 

 

 

Results 

Lithology, chronology and sedimentation rate 

Based on visual examination, core Tr5-2B can be separated lithologically into five units (Appendix 

B9). The lowermost unit (46-29 cm) consists of light brown, silty sand with small admixed stones. 

The following layer (29-19 cm) is formed of dark brown silt. Middle brown silty sediments comprise 

the third unit (19-13.5 cm), followed by the same dark brown silt layer (13.5-6.5 cm) as found in the 

second unit. The uppermost unit (6.5-0 cm) consists of dark brown humus soil. Four AMS 

radiocarbon dates (Table 5.1) are the basis for the chronology of record Tr5-2B. The uppermost 

sample (0 cm) is considered as the year of coring (2014). The core base (46 cm) was calibrated to 

2,100 cal yr BP. A continuous record was established by the age-depth-model; hence proxies could 

only be studied from 38 to 0 cm due to poor pollen and NPP preservation. A sedimentation rate of 

0.12 mm/yr was calculated for the lowermost section (46-29 cm). The model indicates a 

sedimentation rate of 0.55 mm/yr for the section from 29 to 21 cm and of 0.43 mm/yr for the 

following section (21-9 cm). For the uppermost section, a sedimentation rate of 0.37 mm/yr is 

calculated.  

Core Ch can be subdivided into two lithological units (Appendix B7). The basal unit (33-9 cm) is 

characterized by homogenous middle brown, silty sediments. Dark brown humus soil forms the upper 

unit (9-0 cm). In the upper depths, rootlets and other coarse organic material is visible. The age-

depth-model of the short record Ch is based on two AMS radiocarbon dates (Table 5.1). The year of 

coring (2014) is set as the age of the sediment surface (uppermost sample). The core base (33 cm) 

was radiocarbon dated and calibrated to 320 cal yr BP. An additional bulk sample at 21 cm was 

measured and calibrated to 185 cal yr BP. For the lower core section (33-21 cm), a sedimentation 

rate of 0.88 mm per year was calculated based on the age-depth-model. A sedimentation rate of 0.84 

mm/yr is calculated for the upper section (21-0 cm).  

 

 

Pollen results 

Core Tr5-2B 

The pollen results of core Tr5-2B are presented in Appendix B9 and Fig. 5.4. In total, 48 pollen and 

spore types could be identified. According to CONISS the pollen diagram can be divided into three 
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local pollen zones (PZ I-III). PZ II is subdivided into PZ IIa and PZ IIb. The palynological record 

has an average resolution of 136 years per sample for PZ I and of 48 years per sample for PZ II. The 

average time resolution for PZ III is 22 years per sample. In general, the entire record is characterized 

by an abundance of Larix sibirica (13-45%), Cyperaceae (8-41%) and Poaceae species (6-17%). 

Aquatic taxa and mosses are absent.  

In PZ I (38-29 cm; 1,350-670 cal yr BP), proportions of 

Larix sibirica are relatively low (13-27%), whereas the 

shares of Cyperaceae (24-41%) and Poaceae (10-17%) 

show comparably high values. The percentages of 

Artemisia (1-2%) and Chenopodiaceae (3-6%) are at their 

minimum. Polygonaceae, Ranunculus and Rosaceae 

occur steadily.  All pollen ratios (AP/NAP 0.31-0.65, A/C 

0.08-0.36 and A/Cy 0.01-0.06) are low. Pollen influx is 

very low.  

Percentages of Larix sibirica (19-45%) increase to their 

maximum in PZ II (29-2 cm; 670 to -20 cal yr BP), while 

Cyperaceae (9-20%) decreases markedly. Artemisia (3-

7%) and Chenopodiaceae (4-8%) increase. In PZ IIa (29-

12 cm; 670-270 cal yr BP), several herbaceous taxa, e.g. 

Apiaceae, Cortusa and Rhododendron disappear from the 

pollen assemblage, but occur again more frequently in PZ 

IIb (12-2 cm; 270 to -20 cal yr BP). AP/NAP ratio 

increases markedly in PZ IIa (0.77-1.45) and decreases in 

PZ IIb. A/C and A/Cy ratios increase gradually and reach 

provisional maxima in the upper part of PZ IIb (A/C up 

to 0.91 and A/Cy up to 0.71). Plant diversity and pollen 

influx increase in PZ II. 

The uppermost zone, PZ III (2-0 cm; -20 cal yr BP to present) is characterized by a decrease of Larix 

sibirica (28-29%), while the proportions of Betula (4-5%) and Juniperus (2%) increase. Pinus 

sibirica (1-2%) and Picea obovata (1%) decrease. Among the herbaceous taxa the diagram suggests 

an increase of Artemisia percentages and of several other taxa such as Cortusa, Polygonaceae, 

Rhododendron and Thalictrum. In PZ III, AP/NAP ratio decreases while A/C (1.77-1.88) and A/Cy 

(1.07-1.39) ratios increase markedly. The pollen influx is stable compared to PZ IIb. 
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Core Ch 

In pollen record Ch (Appendix B7 and Fig. 5.5), 63 different pollen and spore taxa were found. The 

diagram is divided into two local pollen zones (PZ II-III) with two subzones (PZ IIa, PZ IIb). The 

zonation starts with PZ II to allow a better correlation of the two sediment cores. The high average 

resolution of pollen samples is 12 years per sample for PZ IIa and PZ IIb, whereas the time resolution 

averages 10 years per sample in PZ III. Local PZ II is characterized by an abundance of herbaceous 

taxa (66-89%) dominated by Cyperaceae (21-43%), whereas in PZ III tree and shrub (43-53%) and 

herbaceous species (46-55%) are equally distributed. In addition to Cyperaceae, Poaceae (7-20%), 

Artemisia (1-10%) and Chenopodiaceae species (3-16%) show high proportions in the pollen 

assemblage over the whole record.  

The lowermost zone, PZ IIa (33-28.5 cm; 320-270 cal yr 

BP), is characterized by a rather low abundance of 

coniferous taxa: Larix sibirica (5-12%), Pinus sibirica (1-

2%) and Picea obovata (3-6%). Ephedra fragilis is 

frequent. Cyperaceae (23-32%) and Cichorioideae (9-

30%) are abundant among the herbaceous pollen. 

Senecio-type pollen, Fabaceae and Valeriana occur 

frequently. Aquatic plants, ferns and mosses are not 

present in PZ IIa. AP/NAP (0.11-0.30) and A/C (0.08-

0.43) ratios are generally low but increase in the upper 

part of PZ IIa. A/Cy ratio (0.04-0.14) is constantly low. 

Pollen influx is low.  

In PZ IIb (28.5-3.5 cm; 270 to -20 cal yr BP), percentages 

of tree and shrub pollen increase slightly. Among the 

herbaceous taxa, the transition from PZ IIa to PZ IIb is 

highlighted by a marked decrease of Cichorioideae pollen 

to an average of 3%. Percentages of Ephedra distachya 

and Populus increase. Some herbaceous taxa, e.g. Geum, 

Rhodiola and Rumex, as well as Sparganium and ferns 

occur for the first time. Chenopodiaceae percentages 

vary, whereas Caryophyllaceae (1-4%) and Ranunculus 

(1-5%) values increase. Sparganium is not present while Meesia triquetra occurs infrequently. In 

general, AP/NAP (0.20-0.49) and A/Cy (0.03-0.27) ratios are stable in PZ IIb, whereas the A/C ratio 

(0.19-1.20) increases and varies markedly. Pollen influx increases but varies over the entire period.  

The uppermost zone, PZ III (3.5-0 cm; -20 cal yr BP to present), is mainly characterized by a marked 

increase of Salix (28-39%) and a respective decrease of many other tree, shrub and herbaceous taxa, 
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e.g. Larix sibirica (1-5%), Picea obovata (1-3%) and Cyperaceae (3-10%). Populus increases as well 

as Plantago, Rosaceae and Sorbarieae-type. As in PZ I, no aquatic plant taxa, ferns or mosses are 

present in the assemblage. In PZ III, all ratios increase markedly and reach their respective maxima: 

AP/NAP up to 1.16, A/C up to 1.46 and A/Cy up to 2.21. Pollen influx increases further resulting in 

a maximum in the topmost sample. 

 

 

Non-pollen palynomorph results 

Core Tr5-2B 

The NPP percentage diagram of core Tr5-2B (Appendix B10) consists of 10 taxonomic NPP groups. 

The detailed diagram (S1) can be found in the Supporting information. 26 NPP types (72%) could 

be identified reliably, but all 36 types were assigned to one of the presented taxonomic groups. In 

general, the NPP assemblage is dominated by Glomus (3-26%), coprophilous fungi (1-31%), plant 

parasites (6-28%) and other fungal types (3-95%). The zonation is based on the pollen results.  

In PZ I, Glomus (16-34%), Sporormiella (5-21%), Arnium (12-16%) and plant parasites (Uredospore 

and HdV-4) are present in high percentages. Sordaria spores occur frequently as well as conifer 

stomata and animal remains.  

The diversity of taxa decreases in PZ IIa. Arnium and plant parasites increase slightly while the 

proportions of Glomeromycota (3-9%), coprophilous fungi (5-14%), other fungi (3-8%) and conifer 

stomata (1-4%) decrease. A more prominent increase of NPP diversity can be observed in PZ IIb. In 

this zone, the assemblage is dominated by other fungi (14-64%), especially fruit body types and Tr5-

2b-7, as well as coprophilous fungi (5-31%). Glomus, Sporormiella and Leptosphaeria proportions 

increase markedly. Neorhabdocoela and Assulina are present.  

PZ III is characterized by a continual increase of other fungi (76-95%) and plant parasites (10-21%) 

shares. Glomeromycota (1-3%), Sporormiella (1-7%) and Sordaria (1%) percentages decrease 

markedly.  

 

 

Core Ch 

The NPP percentage diagram (Appendix B8) shows the 10 taxonomic NPP groups of core Ch. The 

detailed diagram (S2) of all 108 recorded NPP types can be found in the Supporting information.  

Only 51% of all recorded types were identified by name or HdV-code, but all could be assigned to 

their respective taxonomic group. The NPP assemblage is characterized by Glomeromycota (2-83%), 

coprophilous (1-21%) and other fungi (7-76%) as well as animal remains (2-10%). The zonation is 

adopted from the pollen record. 
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PZ IIa is dominated by Glomus (72-83%). Scolescoporites, algae HdV-200 occur in high proportions, 

Sporormiella is absent and Sordaria spores are rare. In general, the diversity of NPP types and the 

NPP concentration are very low in PZ I.  

In PZ IIb, the diversity of fungal spores and animal remains increases. Arnium, Tr5-2B-1 and Tr5-

2B-11 increase. Sporormiella spores are still absent in the beginning of PZ IIb but occur in high 

proportions (2-8%) in the uppermost part. Sordaria spores are more frequent in the lowermost part 

and likewise reach their maximum (14%) at the end of PZ IIb.  

The NPP assemblage in PZ III is characterized by a marked decrease of Glomeromycota (2-5%) and 

a major increase of other fungal types. A marked maximum of Pleospora-type HdV-3B (35%) occurs 

at the beginning of PZ III. The proportions of Sporormiella and Sordaria decrease slightly.  

 

 

Fig. 5.6. Macro-charcoal diagram of core Tr5-2B. Total charred particles are divided into wood, dicot 

leaf, grass and other charcoal fragments. Macro-charcoal concentration [particles/cm3] and macro-

charcoal influx [particles/cm2/yr] have been calculated using the sum of total charcoal counts. 

 

 

Charcoal results 

Core Tr5-2B 

The micro charcoal record (Appendix B9) is established based on the same time resolution as the 

palynological record. The influx of micro charcoal particles changes from lower values in PZ I to 

several maxima in PZ II. In PZ III, the influx decreases to its minimum. The micro charcoal results 

are generally consistent with the macro charcoal record.  
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For PZ I, the macro charcoal record (Fig. 5.6) has an average time resolution of 38 years per sample, 

for PZ II of 13 years and for PZ III an average resolution of 9 years per sample. In PZ I and PZ III 

almost no charred macro particles were deposited, whereas several maxima occur in PZ II. Five 

maxima are suggested for PZ II: three in PZ IIa (26, 22 and 17 cm) and two in PZ IIb (11.5 and 8.5 

cm). Very low charred material deposition is found before 660 cal yr BP and after 100 cal yr BP.  

In terms of the different morphological types, the dominating macro charcoal fraction is others 

(mosses, rootlets, seeds and unidentifiably small particles; 65%). Charred wood-type material (21%) 

occurs more frequently than grass-type (11%) and leaf-type (4%) macro charcoal. Trends seem 

generally consistent within the morphotypes; however, the record of the wood-type fraction 

diversifies slightly in PZ IIb.  

 

 

 

Fig. 5.7. Macro-charcoal diagram of core Ch. Total charred particles are divided into wood, dicot 

leaf, grass and other charcoal fragments. Macro-charcoal concentration [particles/cm3] and macro-

charcoal influx [particles/cm2/yr] have been calculated using the sum of total charcoal counts. 

 

 

Core Ch 

Whereas in PZ IIa and PZ III the influx of charred micro particles (Appendix B7) is rather low, PZ 

IIb is characterized by a higher micro charcoal deposition. Over the last 320 cal yr BP, six maxima 

of increased micro charcoal influx can be observed: one at the end of PZ IIa (29 cm) and five in PZ 
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IIb (24, 22, 16, 11 and 7 cm). Since 10 cal yr BP, the influx of micro charcoal particles decreases 

steadily.  

Macro charcoal particles are present at all depths along core Ch. The record (Fig. 5.7) has an average 

resolution of 5 years per sample for PZ IIa, of 6 years per sample for PZ IIb and of 5 years per sample 

for PZ III. The macro charcoal influx is high in PZ IIa and generally decreases subsequently. As 

observed in the micro charcoal record, six maxima of increased influx of charred macro particles are 

found, but they differ from the micro charcoal results in their temporal distribution. Two maxima 

occur in PZ IIa (33 and 30 cm) and four in PZ IIb (27, 22, 18.5 and 14.5 cm). Very low deposition 

of macro charcoal particles can be observed from 60 cal yr BP to present.  

Among the four different macro charcoal morphotypes the dominating fractions are wood-type 

charcoal (36% of total macro charcoal particles counted) and charred mosses, seeds, roots and 

indeterminate particles (38%). Charred grass-type material (15%) occurs more frequently than leaf-

type particles (10%). Within the four morphological groups, the composition of charred material is 

nearly consistent over the whole period. 

 

 

Dendrochronological results 

There were few tree individuals that stood out from the majority of Larix sibirica trees by their high 

age. The oldest sample tree had established in the mid-15th century and had a cambial age (at 

sampling height) of 565 years. The second oldest tree originated from the early 16th century and had 

a cambial age of 490 years. These two tree-ring series were merged to a mean chronology covering 

the period from 1445 to 2010 AD (Fig. 5.8a). This chronology shows depressed growth from ca. 

1560 to 1750, but an upward trend for increased annual increment since the late 18th century. The 

long-term trends for depressed or increasing stemwood formation were interrupted by short-term 

minima of tree-ring width (e.g. around 1650, 1720, 1785, 1820, 1850, 1890 AD), which are generally 

the results of climate extremes lasting one or several consecutive years. 

The chronologies in Fig. 5.8b, c, d cover shorter time intervals, but are based on larger sample sizes, 

including trees of a cambial age of 315 to 490 years (9 trees; Fig. 5.8b), 200 to 310 years (9 trees; 

Fig. 5.8c), 100 to 150 years (25 trees; Fig. 5.8d). These shorter chronologies confirm both the long-

term trends and the dating of short climate extremes visible from Fig. 5.8a, but partly have a better 

resolution, for instance, for the increase of annual stem increment in the mid-18th century (Fig. 5.8c) 

or since the 1960s (Fig. 5.8d). 
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Fig. 5.8. Tree-ring chronologies of Larix sibirica from Lake Dayan, Mongolian Altai including trees 

of differing in cambial age: (a) 490 to 565 years, (b) 315 to 490 years, (c) 200 to 310 years, (d) 100 

to 150 years. 
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Discussion 

Vegetation and climate dynamics 

Interpretation of palynological results 

The interpretation of the pollen results is based on the combined results of both environmental 

archives Tr5-2B (forest, slope) and Ch (steppe, valley bottom). With respect to their different 

positions within the forest-steppe-ecotone, especially the Larix sibirica records must be interpreted 

with caution. Several authors reported that Larix is usually greatly underrepresented in fossil pollen 

records because of its low pollen productivity and its low dispersal distance (Gunin et al., 1999; 

Minckley and Whitlock, 2000; Nashiro et al., 1997). Pélanková and Chytrý (2009) emphasized that 

in addition to landscape openness another influencing factor is the presence of other tree species. 

They suggest that in continental steppe or forest-steppe regions, where Larix is the only dominant 

tree, the proportion of Larix in the pollen diagram may be a good indicator of the actual abundance 

of Larix in the landscape. As expected, the forest record (Tr5-2B) shows clearly higher Larix 

proportions as the steppe record (Ch), located in a greater distance to a mixed coniferous forest of 

larch, pine, and spruce.  

From 1,350 to 670 cal yr BP (PZ I), the studied valley in the Altai Tavan Bogd NP was dominated 

by moist high mountain vegetation and grass steppe, mainly composed of Cyperaceae, Poaceae and 

Chenopodiaceae. The relatively low representation of Larix sibirica suggests that the forest belt 

surrounding the study site (Tr5-2B) already existed but had a rather open character. Most likely, due 

to the constantly low shares of Pinus sibirica and Picea obovata (Appendix B9), pine and spruce 

never added to the forest composition at this location. Relatively dry and rather cold climate 

conditions can be inferred from the reconstructed vegetation data and moisture indicators (Fig. 5.4).  

In the period from 670 to 290 cal yr BP (PZ IIa), an increasing abundance of Larix sibirica suggests 

a densification of larch stands or a probable forest expansion (Fig. 3a). The landscape surrounding 

the steppe study site closer to the Chinese border (Ch) is characterized by a steppe vegetation 

comprising Poaceae, Asteraceae and Chenopodiaceae communities. Forested areas were clearly 

more distant compared to site Tr5-2B and probably generally more open. A slightly higher 

representation of Pinus sibirica and Picea obovata may indicate their local occurrence in the forest 

assemblage.  

After 290 cal yr BP (PZ IIb), decreasing proportions of trees and shrubs (Appendix B9) indicate a 

short-term expansion of moist high mountain steppe which may be associated with the Litte Ice Age 

(LIA) period (420-160 cal yr BP, e.g. Andreev et al., 2007; Unkelbach et al., 2019; 2020). Forest 

recovered since around 180 cal yr BP (Appendix B9) and the diversity of steppe species increased 

(Appendix B7), both indicating better climatic conditions.  

Over the last 40 years (PZ III), local vegetation differences emerged, especially regarding shrub 

community distribution and composition. Around the forest site (Tr5-2B) an increase of Betula and 
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Juniperus proportions indicate lighter woodland interspersed with greater alpine steppe areas 

including Cortusa, Gentiana, Rhododendron and Thalictrum. Whereas around the steppe site (Ch) 

Populus and especially Salix stands increased markedly. We infer that the climate warming of the 

20th century facilitated permafrost degradation in the area which lead to increasingly moister soil 

conditions. Our results suggest that the forest-steppe ecosystem of the Mongolian Altai is a very 

heterogenic landscape where climate variabilities can cause different vegetation responses over short 

distances and altitudinal differences. 

 

 

Interpretation of tree-ring data 

The harsh mountain climate of the Mongolian Altai leaves a strong imprint in the annual radial stem 

increment as it has been shown in previous dendrochronological studies from this region (D’Arrigo 

et al., 2000; Dulamsuren et al., 2014). Since the late 20th century, also timber harvest plays a major 

role in controlling annual stem increment due to logging-induced changes in the stand structure and 

thus competition. In a climate-response analysis based on ca. 1800 Larix sibirica trees, Dulamsuren 

et al. (2014) showed that tree growth in the period from 1940 to 2010, which was covered by weather 

data, was primarily promoted by high summer temperatures. Temperature limitation of annual stem 

increment is typical for high mountain forests, but contrast with most L. sibirica forests in Inner Asia 

at lower elevations, which are mostly limited by summer drought. Under drought limitation, tree-

ring width increases with increasing summer precipitation, but decreasing summer temperature 

(Dulamsuren et al., 2010, 2013; Liu et al., 2013). The evaluation of temperature and precipitation 

extremes for the Mongolian Altai by Dulamsuren et al. (2014) in the period from 1940 to 2010 

revealed that years, which were cold and dry at the same time resulted in particularly low stem 

increment. Such an extreme occurred, for example, in the early 1980s and the resulting growth 

minimum is also visible in our data in Fig. 5.8d. It is plausible to assume that most short-term minima 

of tree-ring width (Fig. 5.8) in the centuries before the availability of instrumental weather data also 

represent cold and dry extreme years. The long-term trends in annual stem increment correspond 

with long-term shifts in climate. The depressed growth from the mid-16th to the mid-18th century 

(Fig. 5.8a) can be related to the LIA period. Improved climatic conditions since the mid-18th century 

have not only resulted in increased tree-ring width, but probably also in increased regeneration, 

which might be the cause of the increasing number of available sample trees since that point in time 

(Fig. 5.8c). 
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Grazing dynamics 

Grazing dynamics and anthropogenic influence on the environment are reconstructed based on 

coprophilous fungi data (Sporormiella and Sordaria-type spores). These fungi can be used as an 

indicator for the presence of megaherbivores in the immediate surrounding of the site and, for the 

forest-steppe-ecotone of Mongolia, display the history of grazing pressure by nomadic pastoralists 

(e.g. Baker et al., 2013; Davis, 1987; Perrotti and van Asperen, 2018). The consistent distribution of 

coprophilous fungal spores (Appendix B10) suggests ongoing nomadic activities in the Mongolian 

Altai since the beginning of the record in 1,350 cal yr BP (see also Unkelbach et al., 2019; 2020).  

From 1,350 to 670 cal yr BP (PZ I), coprophilous fungi were rather plentiful compared to modern 

times indicating a high level of grazing pressure on the environment. This fact may be related to the 

minor expansion of forest at the beginning of the record (Appendix B9), as browsing and trampling 

of livestock reduce the number of tree saplings, diminish tree stands and affect their recovery (Hauck 

et al., 2012; Khishigjargal et al., 2013). In the period from 670 cal yr BP to AD 1970 (PZ II), peaks 

in the coprophilous fungi records (Appendix B10) seem to correspond to reduced forest distribution 

as well. Over the last approx. 50 years (PZ III), coprophilous fungi data suggests that the grazing 

pressure around the site decreased given the vicinity to the Chinese border, but not favoring an 

expansion of forest.  

A comparison of both coprophilous fungi records shows that the data do not coincide in some points, 

e.g. maxima at different time intervals, initial occurrence of Sporormiella spores in core Ch only 

starting at around 150 cal yr BP (Appendix B8). These differences enable us to draw more 

conclusions about the local character of anthropogenic impact by nomadic pastoralists on the 

environment in the Mongolian Altai. Whereas the pastures around the forest site (Tr5-2B) have 

always been used extensively for settling and grazing, the border site (Ch) has only been exploited 

by grazing animals over the last two centuries.  

 

 

Fire dynamics 

Previous studies revealed that the fire frequency in the Mongolian Altai is rather low due to the 

general lack of biomass resources in arid Central Asia (e.g. Bruegger et al., 2018; Eichler et al., 

2011). This connection is confirmed in both our new charcoal records (Fig. 5.6 and 5.7) from the 

area. However, as expected, the extent of charcoal deposition varied locally on a greater scale. Given 

the fact that the abundance of macro charcoal particles in diameter decreases increasing the distance 

between fire source and deposition site (e.g. Clark, 1988), the influx of charred macro particles is 

generally much higher in the record from the forest site (Tr5-2B).  

Initially, the fire frequency was very low from 1,350 to 670 cal yr BP. After 670 cal yr BP, it 

increased in accord with growing anthropogenic impact (Appendix 10). The first fire activity 
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maximum is documented from around 660 to 550 cal yr BP during the Mongol Empire period. It is 

in accord with other macro charcoal records from the area (Unkelbach et al., 2019, 2020), thus being 

of a rather regional extent. At least substantial enough for charred material to be deposited in a radius 

of 20 kilometers or more. The same applies to two subsequent periods of increased fire activity from 

around 250 to 220 cal yr BP and from around 170 to 150 cal yr BP. Over the last 100 cal yr BP, the 

influx of charcoal material decreased drastically. A possible explanation might be that in modern 

times the local nomadic pastoralists are more aware of the additional risk of environmental 

destruction due to unlimited use of fire and reduce it to a minimum.  

 

 

Synthetic interpretation of the environmental data 

For data synthesis we will mainly focus on the last 500 cal yr BP (1450-2014 AD) for which all 

multi-proxy data are available. The high-resolution dendrochronology will provide the basis for 

comparison with the other palynological and charcoal proxies.  

According to the tree-ring data (Fig. 5.8), the period from 500 to 400 cal yr BP (1450-1550 AD) was 

assumed to be warm and possibly rather humid. In the period from 400 to 200 cal yr BP (1550-1750 

AD), a depressed tree growth suggests lower temperatures and less precipitation in the area reflecting 

an impact by the LIA. After 200 cal yr BP (1750 AD) climate improved to warmer and more humid 

conditions. From 10 cal yr BP (1940 AD) to present, stem increments generally increased even more 

indicating the global climate warming. During this period, temperature in the study area increased in 

all seasons, but the increase in summer temperatures had the highest impact on the trees’ productivity 

(Dulamsuren et al., 2014), as it is generally found in cold-limited ecosystems. Other available tree-

ring records from the Mongolian Altai at Khoton Nuur (Davi et al., 2009) and Khalzan Kalmar 

(D’Arrigo et al., 2000) confirm our reconstructions.  

The environmental changes reconstructed from our pollen records Tr5-2B and Ch (Appendix B7 and 

B9) mainly coincide with our dendrochronological data. The general trend from a rather warm and 

moist climate with an expanded arboreal vegetation (670-400 cal yr BP) to a slight decrease in Larix 

stands due to cooler and drier conditions during LIA (until approx. 200 cal yr BP) and forest recovery 

in accordance with  improved climatic conditions since around 200 cal yr BP are consistent with our 

dendrochronological findings. However, the more prominent increase of summer temperature over 

the last approx. 70 years and the higher availability of water due to the degradation of permafrost 

(Dulamsuren et al., 2014; Walther et al., 2017) are not consistently reflected in the arboreal pollen 

assemblage in both pollen records, but left a clear imprint in the tree-ring data. The trees in the 

Mongolian Altai benefit from increasing summer temperatures despite constantly low precipitation 

due to permafrost meltwater captured forested slope tops from upslope grassland areas. Otherwise 

increased temperature could have easily resulted in increased drought stress and growth depressions. 
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Whereas the A/C and A/Cy ratios of both sediment cores increase since around AD 1940 indicating 

a shift towards more hydrophilic vegetation (e.g. Herzschuh, 2007; Zhao et al., 2012), only at the 

steppe site Ch, the arboreal vegetation is impacted as demonstrated by the marked increase in willow 

species (Appendix B7). In contrast, the arboreal vegetation at the forest site even decreases slightly. 

Considering the increased timber harvesting in Mongolia since the late 20th century (Dulamsuren et 

al., 2014), harmful human induced impacts are visible in the forest-steppe ecotone of the Mongolian 

Altai.  

The grazing pressure does not seem to contribute to any major extent to the environmental changes 

at site Ch. The local peaks in the coprophilous fungi record (Appendix B8) from AD 1850 to 1930 

cannot be linked with any significant changes in vegetation. Since nomadic settlement and pasture 

use are not possible due to the geographical setting of the valley, coprophilous fungi deposition may 

either be a result of wild animal grazing (e.g. Ekblom and Gillson, 2010) or long-distance transport 

(Davis and Shafer, 2006). However, at the forest site Tr5-2B the grazing maximum occurred during 

and shortly after LIA (Appendix B10) when the vegetation cover was reduced. Presumably, in this 

period livestock preferred forested areas due to its higher biomass (Arnold, 1987). In general, both 

cores from peat sequences seem to reflect rather local grazing trends because other studies on 

anthropogenic impact in the Mongolian Altai (Unkelbach et al., 2019; 2020) proved the significance 

of grazing activities as a cause of vegetation changes. 

The local peaks in the macro charcoal influx (Fig. 5.6 and 5.7) cannot be linked with any vegetation 

changes (Appendix B7 and B9) or climate oscillations (Fig. 5.8) over the last 500 cal yr BP. The 

general trends of charcoal are not in accord with the findings by Brügger et al. (2018) from the 

Tsambagarav glacier in the north-eastern part of the Mongolian Altai which is in about 150 km 

distance to our study area. They reconstructed that dead biomass resulting from forest and steppe 

community diebacks due to an increase in aridity serve as additional fuel for future fires from the 

correlation of dry periods with increased fire activity. The extent of charcoal deposition differs 

depending on the distance to the fire source and according to Umbanhowar et al. (2009) also on 

grazing activity. Overgrazing reduces biomass and consequently the fuel for fire. Pastureland is used 

locally, hence at some locations more biomass is reduced by livestock than in other areas. Hence, it 

can be assumed that presumably all fires in the area are of anthropogenic origin. 

 

 

 

Conclusions 

Our new palaeoecological findings contribute to the understanding of the late Holocene climate and 

human land use history over the last 1,350 cal yr BP in western Mongolia. The period from 1,350 to 

670 cal yr BP was characterized by high proportions of moist high mountain vegetation and grass 
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steppe indicating relatively cold and rather dry climatic conditions. An increasing abundance of Larix 

suggests a climatic improvement from 670 to 400 cal yr BP. Smaller stem increments and an 

increasing abundance of steppe vegetation point to an episode of cooler and drier conditions 

associated with the LIA. At around 200 cal yr BP, the forest started to recover gradually indicating 

warmer and wetter conditions. Since the mid-20th century pollen and tree-ring data reflect the 

ongoing global climate warming.  

Our study revealed the strong potential of including dendrochronological datasets into multi-proxy 

palaeoecological studies. The results from the Mongolian Altai show that each discipline of our 

research offered temporally and spatially independent insights into climate dynamics and human-

environment interactions. Although data availability is limited and differing time resolutions 

complicate a joint evaluation of data, tree-ring records strengthen the entire palaeoecological 

chronology.  
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Chapter 6: Synthesis 

 

The late Holocene multi-proxy records from the Altai Tavan Bogd National Park in the Mongolian 

Altai are an important contribution to the understanding of vegetation-, fire-, climate- and human 

history in the high altitudes of Central Asia. In particular, the new data contributes to raise awareness 

about human involvement in environmental changes during the late Holocene.  

The purpose of combining a multi-proxy approach with a multi-site study was to derive as much 

information on the dynamics of the forest-steppe biome in the Mongolian Altai as possible. The 

advantage of including various archives (lacustrine and peat sediments) with different catchment 

areas (large and small lake) and locations at different altitudes (steppe below forest line, within the 

forest belt, steppe above the forest line) is the detection of local and regional signals as well as natural 

and anthropogenic influences. Since this is the first time that this kind of study was carried out on 

Central Asian sediments, data interpretation is challenging. Strengths and weaknesses of all proxies 

need to be considered, whereas difficulties in the interpretation of multi-site data mainly result from 

different temporal resolution of the five sediment cores and differing recorded time periods.  

 

 

 

Palaeoenvironmental change in the Mongolian Altai since 4,310 cal yr BP  

Vegetation-, climate-, grazing- and fire dynamics 

Vegetation and climate over the last 4,310 cal yr BP are reconstructed based on pollen data of five 

sediment cores (D3L6, D1L1, Ch, Tr5-2B and G2-A; Fig. 1.6) and diatom analyses on two lacustrine 

cores (D3L6 and D1L1). A composite diagram of the tree and shrub percentages of all sediment cores 

examined within the framework of this study is shown in Figure 6.1. It reflects the forest dynamics 

in the area around Dayan Nuur in the Mongolian Altai during the end of the mid- and the late 

Holocene.  

Pollen-based reconstructions show that pollen assemblages differ on a very small spatial scale. 

However, there is a recognizable trend in four of five sediment cores. During the mid-Holocene and 

the beginning of the late Holocene (4,310 to 1,040 cal yr BP), the area was dominated by a mixture 

of open coniferous forest and high-mountain steppe suggesting warm and moist climatic conditions. 

At some point, steppe communities expanded noticeably, and forest was reduced. The timeframe and 

the extent of forest reduction vary from 2,610 cal yr BP inferred from the peat core above the forest 

belt to 1,040 cal yr BP inferred from lacustrine sediments in the large lake (D3L6) below the lower 

forest line to 820 cal yr BP inferred from the smaller lake (D1L1) below the lower forest line. In any 

case, the minimum of forest area occurred between 1,000 and 500 cal yr BP, indicating colder and 
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drier conditions. A correlation of D3L6 (large lake) and Tr5-2B (within forest belt) pollen data 

suggests that forest was markedly reduced on the north-facing slopes in the area, but Larix sibirica 

stands did not disappear completely.  

 

Over the last centuries, since around 

250 cal yr BP, a slow recovery of the 

open larch forest landscape took place. 

Furthermore, all investigated sites show 

a prominent increase in tree and shrub 

vegetation from around 20 cal yr BP 

(AD 1930) to present. There is no doubt 

that the climate warming of the 20th 

century has an impact on permafrost 

degradation and glacier melting in the 

area (Walther et al., 2017), and the 

increased vegetation cover reflects 

shifts in moisture availability.  

The new palynological data are in line 

with several records from the 

Mongolian Altai and adjacent areas 

(e.g. Brügger et al., 2018; Huang et al., 

2018; Liu et al., 2009; Sun et al., 2013) 

suggesting a warm and humid period 

during the mid-Holocene and a climatic 

cooling under increasing aridity for the 

late Holocene in north-western Mongolia. In contrast, reconstructions from Central Mongolia (e.g. 

Fowell et al., 2003; Peck et al., 2002; Soninkhishig et al., 2003; Wang et al., 2009) provide 

information of a more humid episode during the late Holocene. In this respect, some explanations 

have been offered regarding different circulation systems impacting north-western and 

central/eastern Mongolia. As nowadays, in the late Holocene, the Altai Mountains were only 

dominated by the westerlies, whereas the limit of the south-eastern Asian and Indian summer 

monsoon was shifted several hundreds of kilometers to the West (Fig. 1.3).  

 

Grazing dynamics and anthropogenic influence on environmental changes during the last 4,310 cal 

yr BP are reconstructed based on coprophilous fungi data (Sporormiella and Sordaria-type fungal 

spores) from four of the five sediment cores (D3L6, D1L1, Ch and Tr5-2B). In Fig. 6.2, a composite 
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diagram of the Sporormiella influx is displayed. It reflects the grazing pressure in the Dayan Nuur 

area during the mid- and late Holocene allowing conclusions regarding nomadic settlement in the 

study area.  

 

Sporormiella spore data show that influx values of 

coprophilous fungi seem to vary according to the 

origin of the sediment core within the study area. 

Similar trends can be observed in the two 

lacustrine sediment cores, whereas the 

Sporormiella-based reconstructions from the two 

peat sequences close to the Chinese border and 

within the forest tree line show contrasting results.  

However, the first occurrences of a few 

Sporormiella spores between around 2,000 and 

1,000 cal yr BP (D3L6) are the first evidence of a 

change from hunters and gatherers to nomadic 

herding in the area. Around 1,000 cal yr BP local 

grazing activities intensified in lower elevations 

(D1L1, D3L6) and expanded to the forest belt in 

higher elevations at around 700 cal yr BP (Tr5-

2B). Grazing intensification correlated with a 

marked forest decline (D1L1, D3L6), possibly 

indicating a shift of the lower forest boundary to 

higher elevations. During the Mongol Empire (744 

to 582 cal yr BP), a consistent short-term grazing 

maximum occurred. It was most likely caused by 

temporarily altered climatic conditions (rise in 

temperature and precipitation) which had positive effects on pasture conditions. Since then, nomads 

have constantly been present in the area south of Dayan Nuur regardless of the political power on 

Mongolian territory. Whereas over the last around 600 cal yr BP grazing pressure oscillated on a 

lesser scale in lower elevations, grazing within the forest increased. Presumably, livestock preferred 

forested areas due to its higher biomass (Arnold, 1987). 

 

The reconstruction of fire dynamics since 4,310 cal yr BP in the Altai Tavan Bogd National Park is 

based on macro-charcoal data of the five above mentioned sediment cores. A composite diagram of 

Fig 6.2 Multi-site Sporormiella influx. Big 

lake: D3L6, small lake: D1L1 (blue), peat 

core below forest belt: Ch, within forest belt: 

Tr5-2B and above forest belt: G2-A 

(brown). 
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macro-charcoal influx results in presented in Fig. 6.3. It depicts periods of lower and increased 

regional fire activity during the mid- and late Holocene.  

In general, trends in fire frequency are more consistent among the five cores than forest expansion 

and grazing activity data. In all cores, fire frequency was very low from 4,310 to 1,000 cal yr BP. 

After 1,000 cal yr BP, fire frequency increased in accord with growing anthropogenic impact and 

climate aridity. Fire maxima over the last approx. 1,000 cal yr BP are reflected in all but one sediment 

cores (G2-A, peat core above the forest belt). The most prominent episodes of increased fire activity 

occurred from around 930 to 780 cal yr BP, from 570 to 520 cal yr BP and from 260 to 160 cal yr 

BP, whereas the extent of charcoal deposition varied locally. The strong representation of macro-

charcoal in core Tr5-2B within the forest belt from 570 to 520 cal yr BP may suggest a rather local 

origin of the fire indicated by more burned biomass. 

Over the last 200 cal yr BP, only a very low amount of charred material was deposited in the area 

indicating a markedly decreased fire frequency. One possible explanation for these observations 

could be that in modern times local nomadic inhabitants are more aware of the additional risk for 

environmental destruction due to unlimited use of fire and reduce it to a minimum.   

 

The general trends of charcoal 

influx in his research are in 

accordance with the findings by 

Brügger et al. (2018) from 

Tsambagarav glacier in the 

north-eastern part of the 

Mongolian Altai. They 

reconstructed that dead biomass 

resulting from forest and steppe 

community diebacks due to an 

increase in aridity serve as 

additional fuel for future fires 

from the correlation of dry 

periods with increased fire 

activity. This coherence seems to 

explain the charcoal influx 

maximum starting from 1,000 

cal yr BP after the Larix forest 

reduction. The extent of charcoal 

deposition differs depending on 
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the distance to the fire source and according to Umbanhowar et al. (2009) also on grazing activity. 

Overgrazing reduces biomass and consequently the fuel for fire. Pastureland is used locally, hence 

at some locations more biomass is reduced by livestock than in other areas.  

 

 

Multi-proxy multi-site evidence 

Multi-proxy research is a valuable tool to gather information on independent palaeoproxies, learn 

about ecosystem processes and put future actions into perspective. However, there are several factors 

that need to be considered to assess the findings from this study regarding the reliability of multi-

proxy evidence as well as the strengths and weaknesses of the multi-site approach. A multi-site study 

enables to examine the varying response to natural and anthropogenic impact of different vegetation 

types and to determine whether environmental changes are regional or rather local For example, it is 

possible to distinguish between locally limited or widespread regional fires, if steppe vegetation 

responds differently to fire activity than forest vegetation or if grazing activity is attached to a specific 

vegetation type of a certain elevation. 

As expected, the composite diagrams in Figs. 6.1 to 6.3 show both similarities (regional signals) and 

differences (local signals), whereas the differing time resolutions impede a joint evaluation. 

However, some important aspects become apparent regarding the different types of archives. Both 

lacustrine records provide similar patterns of vegetation and grazing dynamics for the overlapping 

period, indicating valid and rather regional trends. Vegetation and grazing dynamics reconstructed 

from the peat sequences vary widely, especially in core Tr5-2B from within the forest belt. These 

differences could either be attributed to productivity and pollen transport of the immediate plant 

communities or a varying response of Larix forest vegetation to natural and anthropogenic influences 

compared to steppe vegetation.  

Regarding the fire frequency during the mid- and late Holocene similar patterns are observed in all 

sediment cores below and within the forest belt. Markedly contrasting trends are found in the record 

above the forest line. Lacustrine sediment record D3L6 confirms the regional significance of fire 

events from around 1,000 to 500 cal yr BP and their rather local extent from 500 cal yr BP to present.  

 

 

Outlook 

Implications for sustainable land use and conservation management 

The new research data from Altai Tavan Bogd National Park can contribute to the understanding of 

climate change and especially vegetation degradation due to overgrazing pose in the Altai Mountains. 

Despite of that Mongolia is sparsely populated but overgrazing by livestock is a serious threat to the 

environment as well as (illegal) tree-cutting for export, mining and poaching, because local 
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inhabitants are socio-economically fully dependent on these natural resources. In the past, the 

traditional way of herding and grazing has been characterized by resource-preserving actions, but 

due to more intensive, market-driven practices (e.g. increased global demand for Kashmir wool, 

herders competing for the best pastures), nomads have to pursue new ways of sustaining their income 

(Beket and Knapp, 2012). 

The multi-site data examined in this research reveals general vegetation recovery (expansion of forest 

and shrub species, increase in biodiversity) over the last decades, but they rather seem to originate 

from effects of climate warming than as a consequence of the current management strategies in the 

National Park. To promote a sustainable vegetation development, more political and management 

actions are required, which should combine socio-economical demands of the local inhabitants with 

the conservation of the forest-steppe biome. These actions could include a reorganization of the three 

existing zones within the National Park, e.g. an expansion of the special conservation zone at the cost 

of the tourism and limited use zone or a restriction of grazing activities in the tourism zone. In any 

case, more care should be taken to ensure compliance with restrictions concerning land use and 

hunting activities. One political element could be subsidizing and economically support herding 

families who are willing to reduce their number of livestock to improve the conservation 

management situation in the Altai Tavan Bogd National Park.  

 

 

Perspectives on future research 

The high-resolution multi-proxy results complied in this thesis underline the importance of multi-

site investigations for a better understanding of palaeoenvironmental processes and their driving 

factors. The number of comparable studies is still rather limited; therefore, it is essential to encourage 

the establishment of more relevant research in the Altai Mountains and in other areas all over the 

world. Additionally, it would be of interest to find longer records spanning back to the early 

Holocene. Several palaeoecological investigations in other forest-steppe areas in northern and central 

Mongolia are needed. These studies might unravel more information on climate patterns and the 

significance of different circulation systems impacting Central Asia. These studies will also allow to 

gain a more comprehensive view on local human impact and their role in environmental and 

biodiversity changes during the Holocene. 

Pollen-based vegetation reconstructions suggest stable climate patterns with short-term oscillations 

over the past 4,310 cal yr BP. An advantage of the stable climate patterns is that the area is 

particularly suitable to investigate anthropogenic influence on the vegetation. More archaeological 

studies dealing with herding and grazing habits (e.g. nomadic movements, number and types of 

livestock, etc.) in high-mountain areas of Central Asia might be useful to unravel external influences 

that may lead to significant changes in nomadic activities. Understanding these diverse socio-
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political processes over the past two millennia may contribute to the basic understanding of the extent 

of human impact on the vegetation in the Mongolian Altai. It is of particular importance because the 

new data suggests that anthropogenic impact might be a more prominent impact factor for 

environmental change and vegetation degradation than climate change. The results show that over 

the last 1,000 cal yr BP, human impact due to grazing and other economic activities seems to 

superimpose climate signals. Another approach could be to find more suitable proxies to better depict 

the human impact in the sediment archives, because the reconstruction of grazing and herding 

activities just from NPPs was challenging. The identification of all coprophilous fungi is difficult 

due to the lack of reference material for Central Asia. Additionally, some coprophilous fungi cannot 

be sufficiently distinguished from saprophilous fungi, because they do also grow on other organic 

matter such as decayed wood (e.g. Arnium, Delitschia). Hence, the interpretation of anthropogenic 

impact in this research was only based on Sporormiella and Sordaria-type fungal spores, which could 

be identified reliably. However, the main challenge was to evaluate the extent of “background signal” 

by wild animals in the samples. Distortion of results by wild animals is considered negligible in this 

study. If there was a significant number of wild animals in the area, there would have been 

coprophilous fungi in the samples prior to their first occurrence at around 2,350 cal yr BP. 

The slight trend of vegetation recovery over the last 70 to 50 years and the establishment of the 

National Park in 1996 do not diminish the need to manage the conservation of the forest-steppe 

ecotone and its biodiversity. Further studies on recent environmental processes and stricter political 

actions might be needed to make sure conservation strategies are implemented the most efficient 

way. Additional statistical calibration of recent pollen data might as well improve the interpretation 

of palynological processes.  
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Appendix A1:  Atlas of identified pollen and spore taxa  

 

The atlas comprises all pollen and spore taxa identified during the research in the Mongolian Altai. 

They are presented by pollen type (if available), family and lake code of records, where they occur. 

Scale bars are depicted within the pollen and spore pictures. By analogy with the pollen diagrams, 

the atlas is divided into (A) trees and shrubs, (B) herbaceous and aquatic plants, (C) unknown pollen 

types and (D) ferns and mosses. Unknown pollen types are presented by lake code of (first) 

occurrence and a consecutive letter.  

 

(A) Trees and shrubs 

   
Rhus toxicodendron Alnus Betula 

Anacardiaceae Betulaceae Betulaceae 

Ch, D1L1 Ch, D3L6 Ch, D1L1, D3L6,  

G2-A, Tr5-2B 

 

   
Juniperus Ephedra sp. Ephedra distachya 

Cupressaceae Ephedraceae Ephedraceae 

Ch, D1L1, D3L6,  

G2-A, Tr5-2B 

Ch, D1L1 Ch, D1L1, D3L6,  

G2-A, Tr5-2B 

 

   
Ephedra fragilis Larix sibirica Picea obovata 

Ephedraceae Pinaceae Pinaceae 

Ch, D1L1, D3L6,  

G2-A, Tr5-2B 

Ch, D1L1, D3L6,  

G2-A, Tr5-2B 

Ch, D1L1, D3L6,  

G2-A, Tr5-2B 
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Pinus sibirica Populus suaveolens Salix 

Pinaceae Salicaceae Salicaceae 

Ch, D1L1, D3L6,  

G2-A, Tr5-2B 

Ch, D1L1, D3L6,  

G2-A, Tr5-2B 

Ch, D1L1, D3L6,  

G2-A, Tr5-2B 

 

   

Ulmus   

Ulmaceae   

Ch, D1L1, D3L6,  

G2-A, Tr5-2B 

  

 

 

 

(B) Herbaceous and aquatic plants 

   
Allium  Polygonatum 

Amaryllidaceae Apiaceae Aspagaraceae 

Ch, D1L1, G2-A Ch, D1L1, D3L6,  

G2-A, Tr5-2B 

D3L6, G2-A, Tr5-2B 
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Ambrosia-type Artemisia Asterothamnus-type 

Asteraceae Asteraceae Asteraceae 

D1L1, D3L6 Ch, D1L1, D3L6,  

G2-A, Tr5-2B 

Ch, D1L1 

 

   
Cicorioideae-type Senecio-type Serratula-type 

Asteraceae Asteraceae Asteraceae 

Ch, D1L1, D3L6,  

G2-A, Tr5-2B 

Ch, D1L1, D3L6,  

G2-A, Tr5-2B 

Ch, D1L1 

 

   
   

Asteraceae Brassicaceae Caryophyllaceae 

Ch, D1L1 

 

Ch, D1L1, D3L6,  

G2-A, Tr5-2B 

Ch, D1L1, D3L6,  

G2-A, Tr5-2B 

 

   
Dianthus  Helianthemum-type 

Caryophyllaceae Chenopodiaceae Cistaceae 

Ch, D1L1, D3L6,  

G2-A, Tr5-2B 

Ch, D1L1, D3L6,  

G2-A, Tr5-2B 

Ch, D1L1 
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Orostachys Rhodiola  

Crassulaceae Crassulaceae Cyperaceae 

Ch Ch, D1L1 Ch, D1L1, D3L6,  

G2-A, Tr5-2B 

 

   
Rhododendron  Astragalus chainngaica 

Ericaceae Fabaceae Fabaceae 

D1L1, D3L6, G2-A, Tr5-2B Ch, D1L1, D3L6, Tr5-2B Ch, D1L1, D3L6, Tr5-2B 

 

   
Caragana Gentiana Gentiana barbata 

Fabaceae Gentianaceae Gentianaceae 

Ch, D1L1 D3L6 Ch, D1L1, D3L6,  

G2-A, Tr5-2B 

 

   
Gentiana grandiflora Myriophyllum Luzula sibirica 

Gentianaceae Haloragaceae Juncaceae 

Ch, D1L1, D3L6, Tr5-2B D1L1, D3L6, G2-A D3L6 
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  Lloydia setotina 

Lamiaceae Liliaceae Liliaceae 

Ch, D1L1, D3L6,  

G2-A, Tr5-2B 

D1L1, D3L6, G2-A, Tr5-2B D1L1, D3L6, Tr5-2B 

 

   
Nymphoides Linaria Plantago 

Menyanthaceae Plantaginaceae Plantaginaceae 

D1L1 Ch, D1L1 Ch, D1L1 

 

   
  Polygonum aviculare 

Poaceae Polygonaceae Polygonaceae 

Ch, D1L1, D3L6,  

G2-A, Tr5-2B 

Ch, D1L1, D3L6,  

G2-A, Tr5-2B 

Ch, D1L1, D3L6,  

G2-A, Tr5-2B 

 

   
Polygonum bistorta Polygonum persicaria Rumex 

Polygonaceae Polygonaceae Polygonaceae 

Ch, D1L1, D3L6,  

G2-A, Tr5-2B 

Ch, D1L1 Ch, D1L1, D3L6,  

G2-A, Tr5-2B 
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Cortusa altaica  Ranunculus pulchellus 

Primulaceae Ranunculaceae Ranunculaceae 

Ch, D1L1, D3L6, Tr5-2B Ch, D1L1, D3L6,  

G2-A, Tr5-2B 

D1L1, G2-A, Tr5-2B 

 

   
Thalictrum Geum Potentilla 

Ranunculaceae Rosaceae Rosaceae 

Ch, D1L1, D3L6,  

G2-A, Tr5-2B 

Ch, D1L1, D3L6,  

G2-A, Tr5-2B 

Ch, D1L1, D3L6, Tr5-2B 

 

   
Sorbus-type  Galium 

Rosaceae Rosaceae Rubiaceae 

Ch Ch, D1L1, D3L6,  

G2-A, Tr5-2B 

Ch, D1L1, D3L6, Tr5-2B 

 

   
Saxifraga Sparganium Typha 

Saxifragaceae Typhaceae Typhaceae 

Ch, D1L1 Ch, D1L1, D3L6 Ch, D1L1, G2-A, Tr5-2B 

 



 
Appendix A 

145 
 

   

Viola altaica   

Violaceae   

Ch, D1L1, D3L6, Tr5-2B   

 

 

(C) Unknown pollen types 

   
D1L1-A D1L1-B D1L1-D 

   

D1L1 D1L1 D1L1 

 

   
D1L1-F D1L1-H D1L1-I 

   

Ch, D1L1 D1L1 D1L1 

 

 
Ch-A 

 

Ch 
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(D) Ferns and mosses 

   
Trilete fern spore Meesia triquetra Sphagnum 

 Meesiaceae Sphagnaceae 

Ch, D1L1, G2-A Ch D1L1, D3L6 
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Appendix A2:  Atlas of identified non-pollen palynomorphs (NPPs) 

 

The atlas comprises all NPP taxa identified during the research in the Mongolian Altai. They are 

presented by name, HdV-code and lake code of records, where they occur. Scale bars are depicted 

within the NPP pictures. By analogy with the NPP diagrams, the atlas is divided into (A) 

Glomeromycota, (B) Coprophilous fungi, (C) Coprophilous/Saprophilous fungi and (D) 

Saprophilous fungi, (E) Soil fungi, (F) Plant parasites, (G) Other fungi, (H) Microfossils, (I) Animal 

remains, (J) Testate Amoebae, (K) Plant remains and (L) Algae. Unknown NPP types are presented 

by lake code of (first) occurrence and a consecutive number. 

 

 

(A) Glomeromycota 

  
Glomus Glomosporium leptideum 

HdV-207  

Ch, D1L1, D3L6, Tr5-2B Ch, D1L1, D3L6 

 

 

(B) Coprophilous fungi 

   
Sporormiella Sporormiella Sordaria 

HdV-113 HdV-113 HdV-55A 

Ch, D1L1, D3L6, Tr5-2B Ch, D1L1, D3L6, Tr5-2B Ch, D1L1, D3L6, Tr5-2B 
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(C) Coprophilous/Saprophilous fungi 

   
Arnium Coniochaeta Delitschia, type 1 

   

Ch, D1L1, D3L6, Tr5-2B Ch, D1L1, D3L6, Tr5-2B Ch, D1L1, D3L6, Tr5-2B 

 

  
Delitschia, type 2 Neurospora 

 HdV-55C 

Ch, D1L1, D3L6, Tr5-2B Ch 

 

 

(D) Saprophilous fungi 

 

   
Alternaria Brachysporium, type 1 Brachysporium, type 2 

 HdV-359 HdV-462 

Ch, Tr5-2B D3L6, Tr5-2B D1L1, D3L6, Tr5-2B 

   
Chaetomium Pleospora, type 1 Pleospora, type 2 

HdV-7A HdV-3A HdV-3B 

Ch, D1L1, D3L6 Ch, D1L1 Ch, D1L1 
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(E) Soil fungi 

  
Sphaerodes  

 HdV-527 

Ch, D1L1, D3L6, Tr5-2B Ch, D1L1 

 

 

(F) Plant parasites 

   
Anthostomella fuegiana Chromelosporium Clasterosporium caricinum 

HdV-4  HdV-25 

Ch, D1L1, Tr5-2B Ch Ch 

 

   
Drechslera Gaeumannomyces Leptosphaeria 

HdV-503 HdV-126  

Ch Ch, D1L1, D3L6 Ch, D1L1, D3L6, Tr5-2B 

 

   
Phragmidium Puccinia Pucciniales 

 HdV-357  

D3L6 Ch, D1L1, D3L6, Tr5-2B Ch 
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Thecaphora Uredospore Urocystis 

HdV-364   

Ch, D3L6, Tr5-2B Ch, D1L1, D3L6, Tr5-2B Ch, D1L1 

 

 

(G) Other fungi 

   
Fruit body, type 1 Fruit body, type 2 Fruit body, type 3 

HdV-8B HdV-8E  

Ch, D1L1, D3L6, Tr5-2B Ch, Tr5-2B Ch, D1L1, D3L6, Tr5-2B 

 

   
Fruit body, type 4   

 HdV-16A HdV-16C 

Ch, D1L1, D3L6 Ch Ch 
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HdV-18 HdV-38 HdV-86 

Ch, D1L1 Ch, D1L1 D1L1 

 

   
   

HdV-200 HdV-359 HdV-366 

Ch, D1L1 D1L1 Ch, D1L1 

 

   
   

HdV-495 HdV-496 HdV-1032 

D1L1 Ch, D1L1 Ch, D1L1 

 

   
Ch-4 Ch-7 Ch-9 

   

Ch Ch Ch 
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Ch-11 Ch-12 Ch-13 

   

Ch Ch Ch 

 

   
Ch-17 Ch-18 Ch-21 

   

Ch Ch Ch 

 

   
Ch-22 Ch-25 Ch-27 

   

Ch Ch Ch 

 

   
Ch-28 Ch-29 Ch-30 

   

Ch Ch Ch 
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D1L1-5 D1L1-6 D1L1-10 

   

Ch, D1L1 D1L1 Ch, D1L1 

   

   

   
D1L1-11 D1L1-13 D1L1-14 

   

Ch, D1L1 Ch, D1L1 Ch, D1L1 

 

   
D1L1-18 D1L1-27 D1L1-31 

   

D1L1 Ch, D1L1 D1L1 

 

   
D1L1-34 D1L1-37 D1L1-39 

   

D1L1 D1L1 Ch, D1L1 
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D1L1-40 D1L1-41 D1L1-44 

   

Ch, D1L1 Ch, D1L1 Ch, D1L1 

 

 

  

   
D1L1-47 D1L1-50 D1L1-51 

   

D1L1 Ch, D1L1 Ch, D1L1 

 

   
D1L1-52 D1L1-53 D1L1-54 

   

D1L1 Ch, D1L1 D1L1 

 

   
D1L1-58 D1L1-59 D3L6-1 

   

Ch, D1L1 D1L1 Ch, D1L1, D3L6 
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D3L6-2 D3L6-3 D3L6-17 

   

D3L6 Ch, D1L1, D3L6 D1L1, D3L6 

   

   

 

   
D3L6-28 D3L6-32 D3L6-36 

   

D1L1, D3L6 Ch, D1L1, D3L6 Ch, D1L1, D3L6 

 

   
D3L6-47 D3L6-57 D3L6-77 

   

D3L6 Ch, D1L1, D3L6 D1L1, D3L6 

 

   
Tr5-2B-1 Tr5-2B-3 Tr5-2B-6 

   

Ch, D1L1, D3L6, Tr5-2B D1L1, Tr5-2B Tr5-2B 
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Tr5-2B-7 Tr5-2B-11 Tr5-2B-15 

   

Tr5-2B Ch, D1L1, D3L6, Tr5-2B Ch, Tr5-2B 

 

 

  

  
Tr5-2B-16 Tr5-2B-22 

  

Tr5-2B Tr5-2B 

 

 

(H) Microfossils 

   
Unknown Phytolith   

 HdV-188 HdV-222 

D1L1, D3L6 Ch Ch, D1L1, D3L6 
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 D1L1-1 D1L1-25 

HdV-731   

D1L1, D3L6 Ch, D1L1 Ch, D1L1 

 

 

(I) Animal remains 

   
Aranaria claw Acari part Brachionus egg 

HdV-71 HdV-36  

D1L1 Ch, D3L6, Tr5-2B Ch, D1L1, D3L6 

 

   
Insect hair Lepidoptera scale Operculum of Neorhabdocoela 

   

Ch, D1L1, D3L6, Tr5-2B Ch, D1L1, D3L6, Tr5-2B Ch, D1L1, D3L6, Tr5-2B 
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Rhabdocoela cocoon Rotatoria egg Unknown Crustaceae fragment 

HdV-353B   

Ch Ch, D1L1, D3L6, Tr5-2B Ch, D1L1, D3L6 

 

   
 Ch-1 Ch-8 

HdV-221   

Ch Ch Ch 

 

   
Ch-14 Ch-16 Ch-26 

   

Ch Ch Ch 

 

   
D1L1-8 D1L1-15 D1L1-19 

   

Ch, D1L1 Ch, D1L1 Ch, D1L1 
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D1L1-22 D1L1-33 D1L1-42 

   

D1L1 Ch, D1L1 D1L1 

 

 

  

   
D1L1-48 D1L1-57 D3L6-12 

   

D1L1 D1L1 Ch, D1L1, D3L6 

 

   
D3L6-31 D3L6-35 D3L6-49 

   

D1L1, D3L6 D3L6 Ch, D1L1, D3L6 

 

   
D3L6-54 D3L6-73 D3L6-75 

   

D3L6 D3L6 Ch, D1L1, D3L6 
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D3L6-79 Tr5-2B-10 Tr5-2B-18 

   

D3L6 Tr5-2B Tr5-2B 

 

 

(J) Testate Amoebae 

  
Arcella Assulina 

HdV-352 HdV-32 

Ch, D1L1, D3L6 Tr5-2B 

 

 

(K) Plant remains 

   
Conifer stomata Riccia of Sorocarpa D3L6-10 

 HdV-165  

Ch, D1L1, D3L6, Tr5-2B Ch Ch, D1L1, D3L6 
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Tr5-2B-4 

 

Tr5-2B 

 

 

 

(L) Algae 

   
Botryococcus Debarya Pediastrum 

HdV-766 HdV-214 HdV-760 

D1L1, D3L6 D1L1, D3L6 D1L1, D3L6 

 

   
Spirogyra, type 1 Spirogyra, type 2 Spirogyra, type 3 

HdV-130 HdV-132 HdV-210 

D1L1, D3L6 D1L1, D3L6 D1L1, D3L6 
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Spirogyra, type 4 Zygnemataceae  

HdV-417A  HdV-128 

D1L1, D3L6 D1L1, D3L6 D1L1, D3L6 

 

  
D1L1-23 D1L1-28 

  

D1L1 D1L1 
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Appendix A3:  Atlas of identified macro-charcoal morphotypes 

 

The atlas comprises all macro-charcoal morphotypes identified during the research in the Mongolian 

Altai. They are presented by name of type, pictures and morphological description. The atlas is 

divided into (A) wood-type macro-charcoal, (B) leaf-type macro-charcoal, (C) grass-type macro-

charcoal and (D) other macro-charcoal types. 

 

(A) Wood-type macro charcoal 

   

three-dimensional, larger particles 

 

 

(B) Leaf-type macro charcoal 

   

two-dimensional, irregularly shaped 

 

 

(C) Grass-type macro charcoal 

   

two-dimensional, elongated shape 
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(D) Other macro charcoal types 

   
seed-type moss-type root-type 

three-dimensional, rounded 

three-dimensional,  

frayed edges three-dimensional, long, thin 
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Appendix B  

 

Detailed pollen and non-pollen palynomorph diagrams  

 

 

Appendix B1:  Complete pollen percentage diagram of core G2-A, covering the last 3,880  

                         cal yr BP (Manuscript 1) 

Appendix B2:  Complete pollen percentage diagram of core D3L6, covering the last 4,310  

                         cal yr BP (Manuscript 2) 

Appendix B3:  Complete NPP percentage diagram of core D3L6, covering the last 4,310  

                         cal yr BP (Manuscript 2) 

Appendix B4:  Complete pollen percentage diagram of core D1L1, covering the last 1,350  

                         cal yr BP (Manuscript 3) 

Appendix B5:  Complete NPP percentage diagram of core D1L1, covering the last 1,350  

                         cal yr BP (Manuscript 3) 

Appendix B6:  Complete diatom percentage diagram of core D1L1, covering the last   

                        1,350 cal yr BP (Manuscript 3) 

Appendix B7:  Complete pollen percentage diagram of core Ch, covering the last 320 cal  

                         yr BP (Manuscript 4) 

Appendix B8:  Complete NPP percentage diagram of core Ch, covering the last 320 cal yr  

                         BP (Manuscript 4) 

Appendix B9:  Complete pollen percentage diagram of core Tr5-2B, covering the last  

                         1,350 cal yr BP (Manuscript 4) 

Appendix B10:Complete NPP percentage diagram of core Tr5-2B, covering the last 1,350  

                         cal yr BP (Manuscript 4) 
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Appendix B1: Complete pollen percentage diagram of core G2-A, covering the last 3,880 

cal yr BP (Manuscript 1) 
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Appendix B2: Complete pollen percentage diagram of core D3L6, covering the last 4,310 

cal yr BP (Manuscript 2) 
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Appendix B3: Complete NPP percentage diagram of core D3L6, covering the last 4,310 

cal yr BP (Manuscript 2) 
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Appendix B4: Complete pollen percentage diagram of core D1L1, covering the last 1,350 

cal yr BP (Manuscript 3) 
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Appendix B5: Complete NPP percentage diagram of core D1L1, covering the last 1,350 

cal yr BP (Manuscript 3) 
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Appendix B6: Complete diatom percentage diagram of core D1L1, covering the last 1,350 

cal yr BP (Manuscript 3) 
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Appendix B7: Complete pollen percentage diagram of core Ch, covering the last 320 cal yr 

BP (Manuscript 4) 
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Appendix B8: Complete NPP percentage diagram of core Ch, covering the last 320 cal yr 

BP (Manuscript 4) 
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Appendix B9: Complete pollen percentage diagram of core Tr5-2B, covering the last 1,350 

cal yr BP (Manuscript 4) 
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Appendix B10: Complete NPP percentage diagram of core Tr5-2B, covering the last 1,350 

cal yr BP (Manuscript 4) 
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