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Abstract
Since its first use as a genetically encoded fluorescent marker in 1994, GFP and its
homologues have fundamentally revolutionized live-cell fluorescence imaging and
became an essential tool for biomedical research. Many fluorescent proteins have
been engineered from GFP-like proteins with excitation and emission covering the
entirety of the visible spectrum. However, despite substantial efforts it was not pos-
sible to reach the near infrared (NIR) spectral region beyond 650 nm with a GFP
derived fluorescent protein.

The NIR spectral region between 650 to 900 nm is especially suited for live-cell
deep-tissue fluorescence imaging due to reduced autofluorescence, light scattering
and absorption of tissue in this spectral region. Additionally, photo toxicity of NIR
light is reduced compared to UV/vis light.

Recently, utilization of engineered bacterial phytochrome variants opened the
NIR spectral region for fluorescence microscopy with genetically encoded fluores-
cent markers. Bacterial phytochromes gain their unique optical properties by incor-
porating the external chromophore and heme degradation product biliverdin which
is ubiquitous in mammalian cells. A variety of bacterial phytochrome based fluo-
rescent proteins has been successfully applied in various fluorescence microscopy
techniques. However, to date all engineered bacterial phytochrome variants absorb-
ing and emitting beyond 650 nm suffer from a short fluorescence lifetime and a low
fluorescence quantum yield, limiting their potential for fluorescence microscopy.

In this work, an automated fluorescence lifetime screening microscope was built
and applied to increase the fluorescence lifetime and quantum yield of the engi-
neered fluorescent protein miRFP703 via directed evolution. The final protein vari-
ant (V410) had a fluorescence lifetime of 1.1 ns and a fluorescence quantum yield of
21%. With this it is the brightest NIR fluorescent protein described to date. V410 ex-
hibited a good pH stability and a high extinction coefficient. In live-cell fluorescence
microscopy, V410 performed well as fusion tag for various cellular structures. With
STED microscopy, resolutions well beyond 80 nm down to 40 nm were measured on
endogenously tagged vimentin filaments. In consecutive confocal and STED record-
ings, with 1000 and 100 consecutive frames, respectively, V410 demonstrated supe-
rior photo stability. Utilizing the fluorescence lifetime difference between V410 and
the template miRFP703 of approximately 400 ps, two-color fluorescence lifetime con-
focal and STED imaging was performed entirely in the NIR spectral region with a
single excitation beam at 660 nm and a STED beam at 820 nm.
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Chapter 1

Introduction

1.1 Fluorescence Microscopy

The earliest example of a light microscope as we define it today dates back to the
17th century. Around 1665 Robert Hooke studied plant cells using an optical sys-
tem composed of an objective and an eyepiece [59]. From the beginning, the tech-
nique of light microscopy revealed biological structures indiscernible to the naked
eye. However, it also suffered from two major limitations, namely low contrast and
limited resolution. The contrast of classical light microscopy is governed by the
optical properties of the sample, mainly absorption and refraction of light. Since ab-
sorbance and refractive index differ only slightly within biological samples, the con-
trast and, therefore, the information content is limited. In the early days, resolution
was limited by insufficient instrumentation. Besides that, there is also a theoretical
limit of the achievable resolution in a light microscope that was first formulated by
Ernst Abbe in 1873 [1]. The theoretical resolution limit is governed by the process of
diffraction.

In 1911 Oskar Heimstädt introduced the technique of widefield fluorescence mi-
croscopy [51] and used the natural phenomenon of fluorescence to drastically in-
crease the contrast. In fluorescence microscopy, the sample is illuminated with ex-
citation light causing fluorescent molecules in the sample to emit fluorescence light.
The fluorescence light can be detected separately from the excitation light. Hence,
only light from fluorescent molecules is detected allowing for, in principle, ideal
contrast. The first work in which fluorescent dyes were used to specifically enhance
the contrast of desired structures was published in 1913 by Stanislaus von Prowazek
[98]. Since then, numerous techniques have been developed to specifically label
desired cellular structures with fluorescent molecules to enhance the contrast. In
practice, however, contrast in widefield fluorescence microscopy of thick biological
samples was still not ideal due to out-of-focus fluorescence light. This limitation was
tackled with the introduction of confocal fluorescence microscopy by Marvin Min-
sky in 1955 [83, 82].

The second limitation, the limitation of resolution, remained in place until the
21st century, when two different approaches emerged to overcome the resolution
barrier of light microscopy. The approaches are called coordinate-stochastic nanoscopy
and coordinate-targeted nanoscopy. The word nanoscopy in this context describes
microscopy techniques that are no longer limited in resolution by the diffraction
of light. Under coordinate-stochastic nanoscopy techniques like photoactivated lo-
calization microscopy (PALM) [9] and stochastic optical reconstruction microsco-
py (STORM) [112] are subsumed. Techniques like stimulated emission depletion
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(STED) microscopy [53] and reversible saturable optical linear fluorescence transi-
tions (REOLFT) microscopy [57] fall under the label coordinate-targeted nanoscopy.
Combining principles of coordinate-stochastic and coordinate-targeted nanoscopy,
MINFLUX nanoscopy recently enabled fluorescence imaging and tracking of fluo-
rescent molecules with a precision only limited by the size of the fluorescent molecule
itself [35, 5, 50].

The combination of suitable methods for selectively labeling structures of inter-
est with fluorescent molecules and advanced nanoscopy techniques enable highly
sensitive observations of dynamic processes on a molecular level in living biologi-
cal samples. Such information can only be obtained with fluorescence microscopy,
rendering it one of the key techniques in the natural sciences.

1.1.1 Physical Characteristics of Fluorescence

The physical basis of fluorescence microscopy is the quantum mechanical phenom-
enon of fluorescence. An electron in a molecule in the electronic ground state S0 can
be transferred into the first excited electronic state S1 by the absorption of a photon
with sufficient energy to bridge the energy gap between the excited and the ground
state. The spontaneous emission of light caused by the reverse transition from the
excited electronic state S1 to the electronic ground state S0 is called fluorescence.
The energy of the fluorescence photon EP is determined by the energy difference
between the excited state E1 and the ground state E0 as described in equation (1.1).
It is always equal or less than the energy of the photon that excited the molecule in
the first place.

EP = E1 − E0 (1.1)

The mean time a molecule stays in an excited state before the spontaneous emission
of a fluorescence photon is called the fluorescence lifetime τ. Spontaneous emission
is a probabilistic process and follows an exponential decay as described in equation
(1.2).

I(t) = I0e−t/τ (1.2)

The quantum yield of fluorescence Φ is defined as the ratio between the number
of absorbed photons and the number of emitted fluorescence photons as described
by equation (1.3). The quantum yield of fluorescence is an important parameter to
consider when choosing a fluorescent molecule for the application in fluorescence
microscopy. Together with the extinction coefficient, it is the most important param-
eter to determine the contrast achievable with a certain excitation light dose.

Φ =
# emitted photons

# absorbed photons
(1.3)

The fluorescence quantum yield Φ and the fluorescence lifetime τ are connected via
equation (1.4) with kr being the rate constant for radiative decay and knr the rate
constant for non-radiative decay.

Φ =
kr

kr + knr
= τkr (1.4)

The fluorescence quantum yield and the fluorescence lifetime of different fluores-
cent proteins are plotted in figure 1.1. The graph shows an approximately linear
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FIGURE 1.1: Correlation between fluorescence lifetime and fluores-
cence quantum yield of different fluorescent proteins. Data points
are colored in correspondence to the emission wavelength of the re-
spective protein. The data were taken from the "Fluorescent Protein

Database" [42].

relationship between fluorescence quantum yield and fluorescence lifetime in agree-
ment with equation (1.4). Note that the linear correlation between fluorescence life-
time and fluorescence quantum yield of different fluorescent proteins holds strictly
only when the rate constant of radiative decay kr is constant.

Alternatively to the spontaneous process of fluorescence, the excited state of a
molecule can be depopulated by stimulated emission. Stimulated emission can oc-
cur when an excited molecule interacts with an incoming photon with a photon
energy that is equal to the energy difference between the excited electronic state and
the electronic ground state of the molecule. In that case, the excited molecule can
be deexcited under the emission of a stimulated photon that is coherent to the first
photon. The process of stimulated emission is exploited in STED nanoscopy to over-
come Ernst Abbe’s resolution limit (see chapter 1.1.3).

1.1.2 Confocal Microscopy

The standard optical system for biological imaging today is the confocal fluorescence
microscope (see figure 1.2). In confocal fluorescence microscopy the excitation light
of a point like emitter is focused by an objective lens into a sample volume. Flu-
orescence light emitted by the excited sample volume is collected by the objective
lens and focused by a tube lens through a pinhole onto a detector. The image of the
sample is reconstructed by scanning the beam over the sample and recording the
intensity for every sample coordinate.

The pinhole is a core element in a confocal fluorescence microscope. It is posi-
tioned in the focal plane of the tube lens and blocks out-of-focus fluorescence light
from reaching the detector. Only fluorescence light emitted from the focal spot of
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FIGURE 1.2: Schematic representation of a confocal fluorescence mi-
croscope.

the objective lens is detected. This drastically increases the contrast in comparison
to a widefield fluorescence microscope. In practice, the contrast of a confocal flu-
orescence microscope is mainly limited by imperfect labeling and autofluorescence
from the sample. The term autofluorescence describes a situation where the excita-
tion light does not only excite fluorescence from molecules of interest but also from
other molecules present within a biological sample. Molecules that exhibit autoflu-
orescence when imaging with UV/vis light are for example nicotinamid adenine
dinucleotide (NADH), flavine adenine dinucleotide (FAD), haemoglobin and oxy-
haemoglobin. An approach to reduce the problem of autofluorescence is to avoid
imaging in the UV/vis spectral region and use the near-infrared (NIR) spectral re-
gion instead (see chapter 1.3.2).

The resolution of a confocal microscope is denoted as the minimal distance be-
tween two point like emitters where they can still be recognized as two separate
objects. Image reconstruction in confocal microscopy is based on the exact know-
ledge of the fluorescence signal and the position of the excitation spot. Therefore,
the size of the excitation spot determines the resolution of the microscope. Modern
fluorescence microscopes have the ability to focus light close to the physical limits.
Those limits are goverened by the physical laws of diffraction. The lateral resolution
dxy of a perfect widefield fluorescence microscope was described by John William
Strutt, 3. Baron Rayleigh in 1896 by equation (1.5) with λ being the wavelength of
the emitted light and NA the numerical aperture [103].

dxy =
0.61λ

NA
(1.5)
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Similarly, the axial resolution dz can be described by equation (1.6) with n being the
refractive index of the immersion medium.

dz =
2λn
NA2 (1.6)

For a confocal fluorescence microscope, the lateral and axial resolution is improved

by a factor of
1√
2
≈ 1

1.4
as compared to equations (1.5) and (1.6) [25, 26].

1.1.3 STED Microscopy

FIGURE 1.3: Schematic representation of a STED microscope.

In STED microscopy the effective size of the excitation volume is drastically re-
duced as compared to conventional confocal fluorescence microscopy and with this
the achievable resolution is increased beyond the limits described by equations 1.5
and 1.6. A schematic drawing of a STED microscope can be seen in figure 1.3.

Reduction of the effective spot size is achieved by superimposing a diffraction
limited excitation pattern with a second diffraction limited light pattern that exhibits
a minimal intensity region in the center of the excitation pattern. In practice, most
of the times this is achieved by superimposing a Gaussian-shaped excitation beam
with a donut-shaped STED beam. The wavelength of the donut-shaped STED beam
is chosen in a way that molecules in the periphery of the donut are depleted by
stimulated emission. Those stimulated photons are separated with a dichroic mirror
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FIGURE 1.4: Onedimensional representation of molecules residing in
a fluorescent state confined by different multiples of Isat (i,ii,iii,iv) at

the position xi. The figure was adapted from [52].

and do not participate in image formation. Only molecules in the center of the donut
beam where the intensity of the depletion beam is below a certain threshold are
not depleted by stimulated emission and emit fluorescence photons spontaneously.
Only those spontaneously emitted fluorescence photons are detected. The principle
is illustrated in figure 1.4. The red curves depict the intensity profiles of the donut-
shaped depletion beams at different beam intensities. The colored profiles in the
center depict the resulting effective excitation spots corresponding to the different
STED intensities. To describe the axial resolution dxy of a STED microscope, Abbe’s
equation can be modified to equation (1.7) with ISTED being the intensity of the STED
beam, Isat being the saturation intensity, which is the intensity where the probability
of spontaneous emission is reduced by half, σ being the stimulated emission cross
section, τ being the fluorescence lifetime, h being the Planck constant and ν being
the frequency of the light.

dxy =
λ

2NA
√

1 +
ISTED

Isat

=
λ

2NA
√

1 +
στ ISTED

hν

(1.7)

In contrast to equation (1.5), the axial resolution dxy in equation (1.7) can in principle
be made arbitrarily small by increasing the intensity of the STED beam ISTED. In
reality, resolutions down to 30 nm in biological specimen are possible with STED
microscopy.

1.2 Fluorescent Labels

In order to make cellular structures visible with fluorescence microscopy, it is neces-
sary to label the structure of interest with fluorescent molecules. This is typically
done using either chemically synthesized fluorescent molecules coupled to anti-
bodys [48, 10], nanobodys [86, 95, 81] or ligands [76], or fluorescent proteins. In the



1.2. Fluorescent Labels 7

(A) Side view

(B) Top view

FIGURE 1.5: Crystal structure of GFP in (A) side and (B) top view.
The protein is shown in cartoon representation and the chromphore
is shown in stick representation. The figure is based on PDB structure

1GFL [147].

case of fluorescent proteins, it is possible to genetically encode a fusion protein con-
sisting of the molecule of interest coupled to the fluorescent protein via an amino
acid linker. This recombinant fusion protein can be expressed transiently from a
plasmid or it can be integrated stably into the genome typically by CRISPR/Cas-9
genome editing [102]. In the following, only the use of fluorescent proteins as flu-
orescent labels will be discussed, as chemically synthesized fluorescent molecules
were not used in this thesis.

1.2.1 GFP-like fluorescent Proteins

The first fluorescent protein was isolated from jellyfish Aequorea victoria in 1962 by
Shimomura et al. [122]. Due to the green fluorescence, the protein was termed
green fluorescent protein (GFP). GFP is a 238 amino acid protein with a molecu-
lar weight of 27 kDa [97]. The crystal structure of GFP was solved in 1996 inde-
pendently by Ormö et al. [92] and Yang et al. [147] and revealed a β-barrel struc-
ture consisting of 11 β-sheets with a central α-helix going through the barrel from
top to bottom. Figure 1.5 shows the crystal structure of GFP. Its chromophore, 4-
(p-hydroxybenzylidene)-5-imidazolinone, is formed autocatalytically under oxygen
atmosphere from amino acids serine 65, tyrosine 66 and glycine 67 located in the cen-
tral α-helix of GFP [104, 154]. The chemical structure of the chromophore is shown
in figure 1.6. It was not before 1994, when GFP was used as fluorescent marker by
Chalfie et al. [77].

Many GFP homologues have been discovered and engineered since then. They
all share the typical β-barrel structure and form their respective chromophore auto-
catalitically. Due to their structural similarity, those proteins are categorized as GFP-
like fluorescent proteins. Excitation and emission of GFP-like fluorescent proteins
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FIGURE 1.6: Structure of GFP chromophore. The chromophore is
formed by amino acids serine 65, tyrosine 66 and glycine 67.

cover the entire visible spectrum. Figure 1.7 visualizes the spectral range of GFP-
like fluorescent proteins. However, despite substantial efforts, it was not possible to
expand excitation and emission of GFP-like fluorescent proteins to the near-infrared
(NIR) spectral region between 650 to 900 nm. This limitation was overcome by the
employment of bacterial phytochrome based fluorescent proteins incorporating the
external chromophore biliverdin and allowing excitation and emission in the NIR
region.
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FIGURE 1.7: Correlation between molecular brightness and emission
wavelength of GFP-like fluorescent proteins. Data points are colored
in correspondence to the emission wavelength of the respective pro-
tein. The data were taken from the "Fluorescent Protein Database" [42].

1.3 Phytochromes

Besides GFP-like fluorescent proteins that form their chromophore autocatalytically,
organisms have developed a wide collection of photoreceptors that gain their spe-
cific optical properties by binding small molecules as external chromophore. One
representative of this class of photoreceptors is the family of phytochrome proteins
that bind a linear tetrapyrrole as chromophore. Phytochromes have been found
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in plants [100], fungi [21], algae and bacteria [11] and play crucial roles in light-
responsive processes [66]. For example, Arabidopsis thaliana expresses five phyto-
chrome isoforms that regulate photomorphogenesis [100, 124]. In bacteria, phyto-
chrome proteins play important roles in intracellular signalling and regulation of
gene expression [77].

Most members of the phytochrome family share a common modular structure,
consisting of an N-terminal photosensory core domain (PCM) and a C-terminal
regulatory domain [99]. The PCM module of prototypical phytochrome proteins
consists of a PAS (Per-ARNT-Sim), a GAF (cGMP phosphodiesterase/adenylate cy-
clase/FhlA) and a PHY (phytochrome specific) domain. The tetrapyrrole chromo-
phore is bound by and embedded in the PCM domain. Bacteria and fungi bind
biliverdin IXα (BV) [11, 73, 16] as their chromophore, while cyanobacteria and plants
incorporate phycocyanobilin (PCB) [60] and phytochromobilin (PΦB) [71], respec-
tively.

Biosynthesis of linear tetrapyrroles is part of the heme metabolism [134, 43]. In
a first step heme is degraded to BV by enzymatic oxidation catalysed by heme oxy-
genase [134]. In oxygenic photosynthetic organisms, BV is further metabolised to
PCB and PΦB by ferredoxin-dependent bilin reductase [43]. In contrast to oxygenic
photosynthetic organisms, mammals metabolise BV to bilirubin IXα (BR) catalysed
by NADPH-dependent biliverdin reductase [78, 117]. The reverse reaction, the ox-
idation of BR to BV, is catalised by bilirubin oxidase [63]. In the human body, ap-
proximately 300 mg BR are produced daily mainly due to degradation of red blood
cells [68, 17]. It is excreted from the body via bile and urine [135]. The level of BR
in the blood is an indicator for several diseases, e.g. jaundice [12] or cholestasis [13].
Biliverdin and bilirubin are ubiquitously present in submicromolar concentrations
in mammalina cells [39, 123, 94]. The tightly regulated balance between BV and BR
is part of the protective system of the cell against oxidative stress [63].

Phytochromes can adapt two distinct stable states, a red light absorbing Pr state,
and a far-red light absorbing Pfr state [100, 115]. The states are interconvertible ei-
ther by photoisomerization or by dark-conversion. Most phytochromes adapt the
Pr state as ground state [138, 139, 38]. Only the so-called bathyphytochromes adapt
the Pfr state as their ground state [149, 148]. Crystal structures of bacterial phy-
tochromes show a 5Zsyn, 10Zsyn, 15Zanti (ZZZssa) configuration of BV in the Pr
state [138, 139]. The same configuration was found for PCB in a crystal structure of
Cph1 phytochrome from cyanobacterium Synechocystis 6803 [38]. Crystal structures
of bathy-phytochromes in the Pfr state reveal a 5Zsyn, 10Zsyn, 15Eanti (ZZEssa) con-
figuration [149, 148].

The spectral properties of phytochromes are governed by the tetrapyrrole chro-
mophore they incorporate and its interaction with the surrounding protein scaffold.
The absorption maxima of protein-bound PCB and PΦB are located within the red
spectral region. Only the absorption of protein-bound BV is located well within
the NIR spectral region between 650 to 900 nm for most phytochrome proteins. For
live-cell deep-tissue fluorescence microscopy, this spectral region is very beneficial.
Absorbance of abundant molecules like water, haemoglobin and oxyhaemoglobin
is minimal between 650 to 900 nm [120, 142] as can be seen from figure 1.8. Ad-
ditionally, phototoxicity, light scattering, abberations [14] and autofluorescence are
reduced when imaging in the NIR spectral region as compared to imaging in the
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visible spectral region. Due to the unique properties of their external chromophore,
bacterial phytochrome based fluorescent proteins are ideal candidates for engineer-
ing fluorescent probes for NIR fluorescent imaging.

FIGURE 1.8: The absorbance of water, haemoglobin and oxy-
haemoglobin in the visible and NIR spectral region. The figure was
adopted and altered from Shscherbakova et al. [120]. Copyright 2015,

Annual Reviews.

1.3.1 Bacterial Phytochromes

In this work, the engineered bacterial phytochrome miRFP703 [119, 121] was used as
a starting point for further improvement of fluorescence parameters. Therefore, in
this subsection the structure, photocycle and properties of bacterial phytochromes
are discussed in more detail.

The first crystal structure of a bacterial phytochrome was the chromophore bind-
ing domain, i.e. the PAS and the GAF domain, of Deinococcus radiodurans (DrCBD)
obtained by Wagner et al. [138] in 2005. In 2008, Yang et al. [149] published a crystal
structure of a bacterial phytochrome from Pseudomonas aeruginosa consisting of PCM
and PHY domain. The structure can be seen in figure 1.9. The PAS domain consists
of five antiparallel β-sheets (ordered 2-1-5-4-3) and three flanking α-helices. Those
structured elements are preceded by approximately 35 amino acids that do not adapt
any defined secondary structure. Within those unstructured amino acids, a cysteine
is located that covalently binds the chromophore BV via thioether linkage to the C3
atom of BV [73]. The PAS domain is followed by the GAF domain. The GAF domain
is formed by six antiparallel β-sheets (ordered 9-10-11-6-7) and five α-helices. The
GAF domain forms the chromophore binding pocket.

PAS and GAF domain are connected via a ten amino acid linker and, more im-
portantly, by a figure-of-eight knot structure first described by Wagner et al. [138]
(see figure 1.10) based on the crystal structure of DrCBD. This structural element is
formed when the unstructured N-terminal region of the PAS domain pierces through
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FIGURE 1.9: Left: Crystal structure of bacterial phytochrome dimer
from P. aeruginosa (PDB ID: 3C2W [149]) with PAS domain (blue),
GAF domain (red), PHY domain (green), and BV chromophore (ma-
genta). Right: Schematic representation of bacterial phytochrome
structure with PAS domain (blue), GAF domain (red), PHY domain

(green).

a loop formed by two small α-helices from the GAF domain. The knot is stabilized
by a hydrophobic core. In the case of DrCBD, Ile35 is making van der Waals contacts
to Leu41, Val232, Leu234, Leu248 and Leu253 [138]. The function of this structural
element is not entirely clear, but it was proposed that it is important for stabiliz-
ing the connection between PAS and GAF domain and helps positioning the cys-
tein residue in the N-terminal region for efficient chromophore binding [138, 127].
The knot structure is very conserved in most phytochromes. Only phytochromes
without a PAS domain do not contain this structural element [136]. The folding of
proteins into knotted structures is very rare and was only observed for very few ex-
amples [132, 89, 133, 153].

The spectral properties of bacterial phytochromes are tuned by the interactions
between the BV and its binding pocket [138]. The chromophore is embedded in
a pocket formed by the GAF β-sheet and α-helices 6 and 7 [138]. The pocket is
shielded from solvent water via an extension of the PHY domain that reaches over
the pocket [149]. Only a correct positioning of the BV chromophore in the binding
pocket allows the formation of the thioether linkage [3]. A particularly important
role for this positioning was assigned to the propionic-acid side chains of BV’s B
and C rings [138]. Charged interactions, hydrogen bonds and hydrophobic interac-
tions between highly conserved amino acids and the B and C rings were described
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FIGURE 1.10: Figure-of-eight knot from DrCBD. The protein scaf-
fold is colored in rainbow color scheme (N-terminus, blue to C-
terminus, red; figure-of-eight knot: minimal backbone representa-
tion, rest: transparent cartoon representation). The amino acids that
are located within the stabilizing hydrophobic core of the knot are
additionally represented by their van der Waals radii. The BV chro-
mophore is colored in magenta. The figure is based on PDB structure

1ZTU [138].

[138]. For DrCBD, the carbonyl oxygens of BV’s B ring are forming a salt bridge to
Arg254 and hydrogen bonds to Tyr216 and Ser257. The C rings oxygens are forming
hydrogen bonds to His260, Ser272 and Ser274 (see figure 1.11). Another hydrogen
bond is formed between the C ring proprionate and His290 mediated by a water
molecule [138]. Another water mediated network is formed between His260 and
the nitrogen atoms of BV’s A, B and C rings [3] (see figure 1.12a). A highly con-
served interaction between the protein scaffold and the BV chromophore takes place
via the so called DIP motif (see figure 1.12b). For DrCBD, the DIP motif consists of
amino acids Asp207, Ile208 and Pro209. It creates a kink in the polypeptide chain
and allows residues access to the direct chromophore environment. This enables
hydrophobic interactions between Ile208 and the C ring, Pro209 and the C10 carbon
and Pro209 and the B ring. [138]. BV’s D ring however only makes little interac-
tion with the surrounding amino acids of the protein. The relative space around the
D ring is necessary to allow photoisomerization of BV around the C15-C16 double
bond [138].

In order to perform their natural functions, bacterial phytochromes can undergo
a photoisomerization process between two stable conformations. The stable confor-
mations are spectrally different and are called Pr (red absorbing) and Pfr (far-red
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FIGURE 1.11: Interaction between protein scaffold and BV carbonyls
from DrCBD. The protein scaffold is shown in cartoon representa-
tion and colored in rainbow color scheme (N-terminus, blue to C-
terminus, red). The amino acid side chains that interact with the BV
carbonyls are shown in stick representations. The BV chromophore is
colored in magenta. Interactions (hydrogen bonds and salt bridges)
are indicated by dotted black lines. The figure is based on PDB struc-

ture 1ZTU [138].

absorbing) state. The process can be divided into a fast cis-trans photoisomerization
of the BV chromophore around the C15-C16 double bond and a slower subsequent
restructuring of the protein scaffold [131, 140].

For the photoconversion from the Pr to the Pfr state, different intermediates have
been identified [140, 143, 41] (see figure 1.13). Upon absorption of a red photon the
chromophore in the Pr state can rotate around the C15-C16 double bond and form a
metastable Meta-R state within ps. From Meta-R state the protein relaxes thermally
to Meta-Ra and further to Meta-Rc state within µs to ms, respectively. The formation
of Meta-Rc is accompanied by deprotonation of the chromophore. Subsequently, Pfr
state is formed from Meta-Rc within ms by reprotonation of the chromophore. The
reverse photoconversion from the Pfr state to the Pr state is triggered by the absorp-
tion of a far-red photon and involves different intermediates. The first intermediate,
Lumi-F, is formed within ps and is characterized by the trans-cis isomerization of the
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(A) Pyrrole water

(B) DIP motif

FIGURE 1.12: (A) DIP motif and (B) pyrrole water from DrCBD. The
protein scaffold is shown in cartoon representation and colored in
rainbow color scheme (N-terminus, blue to C-terminus, red). The
amino acid side chains that interact with the BV carbonyls are shwon
in stick representations. The BV chromophore is colored in magenta.
Interactions (hydrogen bonds) are indicated by dotted black lines.

The figure is based on PDB structure 1ZTU [138].

chromophore. Lumi-F relaxes to Meta-Fa within ms and further Meta-Fb within µs
and Pr within ms. In contrast to the photoconversion from Pr to Pfr, the reverse pho-
toconversion does not involve a proton transfer. For most bacterial phytochromes,
the Pfr state is not thermally stable and can relax to the Pr state via dark conversion.
The rate of dark conversion can be influenced by external factors, e.g. pH, ionic
strength and interaction with other proteins [108, 129]. It was proposed that dark
conversion is essential for the natural functionality of phytochromes [36].

FIGURE 1.13: Schematic depiction of phytochrome photo cycle. The
figure was adapted from Wagner et al. [140]. Copyright 2008, the Amer-

ican Society for Biochemistry and Molecular Biology.
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Following the photoconversion of the chromophore, structural changes of the
surrounding protein scaffold take place. These changes are altering the protein-
chromophore and protein-protein interactions. The extension of the PHY domain
that covers the BV binding pocket in the Pr state undergoes extensive changes in
secondary structure upon cis-trans isomerization of the chromophore [131]. Crystal
structures from Takala et al. of D. radiodurans bacterial phytochrome in the Pr (PDB
ID:4O0P) and Pfr (PDB ID:4O01) state show a change from an antiparallel β-sheet in
the Pr state to an α-helical structure in the Pfr state. With this, interactions between
the PHY extension and the GAF domain are interrupted. The exact mechanism of
signal transduction to the effector domain is unknown and different models have
been proposed [150, 131, 130]. However, the models agree on a reduced activity of
the effector domain in the Pfr state as compared to the Pr state [131, 130, 150, 87].

1.3.2 Phytochrome based Fluorescent Proteins

In 2009, Shu et al. [123] published the first engineered bacterial phytochrome based
NIR fluorescent protein termed IFP1.4. This fluorescent protein was derived from
D. radiodurans and was truncated to CBD only. Since then, a variety of engineered
NIR fluorescent proteins was published. A non-exhaustive selection of published
proteins can be found in table 1.1.

Name Organism Excitation/ Quantum Reference
Emission [nm] Yield [%]

IFP1.4 D. radiodurans 684/708 7.7 [123]
IFP2.0 D. radiodurans 690/711 8.1 [152]
iRFP670 R. palustris 643/670 12.2 [118]
iRFP682 R. palustris 663/682 11.1 [118]
iRFP702 R. palustris 673/702 8.2 [118]
iRFP720 R. palustris 702/720 6.0 [118]
miRFP670 R. palustris 642/670 14.0 [119]
miRFP703 R. palustris 674/703 8.6 [119]
miRFP709 R. palustris 683/709 5.4 [119]
miRFP670nano N. punctiforme 645/670 10.8 [90]
emiRFP670 R. palustris 642/670 14.0 [80]
emiRFP703 R. palustris 674/703 8.6 [80]
mIFP Bradyrhizobium 683/704 8.4 [151]
smURFP T. erythraeum 642/670 18 [109]
SNIFP D. radiodurans 687/720 2.2 [65, 64]
mRhubarb713 R. palustris 690/713 7.6 [110]
GAF-FP R. palustris 653/670 7.3 [111]
BDFP1.5 Chr. thermalis 688/711 5.6 [30]

TABLE 1.1: Engineered NIR fluorescent proteins

Most of the engineered fluorescent proteins were derived from truncated bacte-
rial phytochromes and consist only of the CBD. For classical bacterial phytochromes
that bind the BV chromophore via a cysteine residue in the PAS domain and embed
the chromophore in a pocket formed mainly by the GAF domain, the CBD, consist-
ing of PAS and GAF domain, is the minimal protein scaffold to covalently incorpo-
rate BV. A 19 kDa fluorescent protein, termed GAF-FP, consisting only of the GAF
domain was engineered by Rumyantsev et al. [111]. This was achieved by removing
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(A) Chromophore binding pocket (B) Dimerization interface

FIGURE 1.14: Crystal structure of miRFP703. (A) Chromophore bind-
ing pocket and (B) dimerization interface of miRFP703. The pro-
tein scaffold is shown in cartoon representation and colored in rain-
bow color scheme (N-terminus, blue to C-terminus, red). The chro-
mophore is colored in red. Mutations introduced to the protein as
compared to the wild type sequence are shown in stick representa-

tion and labeled. The figure is based on PDB structure 5VIK [119].

the cysteine residue from the PAS domain and introducing it into the GAF domain to
enable a chromophore binding similar to cyanobacteriochromes [73, 40]. However,
the alternative binding of BV via a cysteine in the GAF domain causes a major spec-
tral blue shift, resulting into absorption and emission of GAF-FP outside the desired
NIR spectral window. Proteins like miRFP670 [119] and emiRFP670 [80] have two
cysteine residues, one in the PAS and the other in the GAF domain. Studies showed
that BV can be bound via both cysteine residues at the same time. This drastically in-
creases the fluorescence quantum yield at the expense of a spectral blue shift [58, 18].

The engineered fluorescent proteins smURFP [109] and BDFP [30] are not de-
rived from bacterial phytochromes but from phycobiliproteins found in the light
harvesting complexes of cyanobacteria and red algae. Naturally, those proteins do
bind PCB instead of BV. However, it could be shown, that it is possible to increase the
affinity for BV using directed evolution [109, 30]. Nevertheless, the major disadvan-
tage of phycobiliproteins engineered to bind BV remains the low BV affinity [121].
This makes addition of external BV necessary when using those proteins in vivo. Ad-
ditionally, all phycobiliprotein based fluorescent proteins have a high dimerization
tendency which limits their usefulness as fusion tags in fluorescence microscopy.

For this work, the engineered fluorescent protein miRFP703 [119] was of partic-
ular importance. The protein was used as a template for the directed evolution to
increase the fluorescence lifetime and the fluorescence quantum yield. The protein
was selected because it was shown to be truly monomeric and exhibits a high ef-
fective brightness in mammalian cells with excitation and emission within the NIR
spectral region. The protein is based on the CBD of a bacterial phytochrome found
in R. palustris. In order to repress the photoisomerization of the chromophore and
thereby increase the fluorescence quantum yield, mutations D201L, I202V and Y257F
were introduced [119, 4] (see figure 1.14a). The C-terminal α-helix of the GAF do-
main was subjected to random mutagenesis to disrupt the dimerization interface
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[119] (see figure 1.14b).

To this point, available NIR fluorescent proteins suffer from at least one of two
problems. Either they have a relatively low fluorescence quantum yield as compared
to GFP-derived fluorescent proteins (e.g. miRFP703 [119], mIFP [151], SNIFP [65, 64],
iRFP703 [118]) making it challenging to obtain bright fluorescence images with high
signal to background ratio, or they exhibit a major blue shift (e.g. miRFP670 [119],
emiRFP670 [80], miRFP670nano [90], smURFP [109]) rendering them useless for true
NIR imaging with excitation and emission within the NIR spectral window between
650 to 900 nm.

1.4 Aim of the Study

The utilization of engineered bacterial phytochrome variants opened the NIR spec-
tral window for fluorescence microscopy. However, despite substantial efforts all
available NIR fluorescent proteins absorbing and emitting beyond 650 nm suffer
from a short fluorescence lifetime and a low fluorescence quantum yield, limiting
their potential for fluorescence microscopy.

The goal of this work was the development of a bacterial phytochrome based NIR
fluorescent protein with increased fluorescence lifetime and fluorescence quantum
yield. In the first part of this work, an automated screening microscope was planned
and build to screen for protein variants with increased fluorescence lifetime. Based
on the correlation between the fluorescence lifetime and the fluorescence quantum
yield it was hypothesized that protein variants with increased fluorescence lifetimes
would also exhibit increased fluorescence quantum yields. The developed screening
system was used in the second part of this thesis to increase the fluorescence life-
time of a template protein via consecutive rounds of diversification and screening.
In the third part of this work, the improved protein variant was characterized bio-
physically. Afterwards its applicability as fusion tag in confocal and STED live-cell
fluorescence microscopy was demonstrated. In the last part, fluorescence lifetime
imaging was employed to perform two-color confocal and STED imaging entirely in
the NIR spectral region beyond 650 nm for the first time.





19

Chapter 2

Material and Methods

This chapter describes the methods used in this thesis. In order to keep the descrip-
tions compact, cloning primers and buffer compositions are listed in appendix A
and appendix B, respectively.

2.1 Molecular Biology

Different mutagenesis techniques were employed in this work. Standard ligation
and Gibson cloning were used to exchange fluorescent proteins in plasmids. Site
directed, multiple site and error prone mutagenesis were used to create diversified
pools of protein variants for directed evolution of fluorescent proteins.

2.1.1 Standard Cloning

For standard cloning, the insert was amplified using polymerase chain reaction (PCR),
digested using the respective restriction enzymes and ligated with the restricted
vector backbone. To amplify the insert, approximately 250 ng DNA was used in
standard PCR buffer (see appendix B) together with 0.2 mM of each dNTP (Thermo
Fisher Scientific, Waltham, MA, USA), 0.3 µM of each primer and 1 µl Pfu poly-
merase (biotechrabbit, Henningsdorf, Germany) in a total volume of 50 µl. The
reaction was prepared on ice. The PCR reaction was performed using a Biometra
Tone Thermocycler (Analytik Jena, Jena, Germany) following the protocol listed in
table 2.1. After the PCR reaction 1 µl Dpn1 (Thermo Fisher Scientific, Waltham, MA,

98 °C 300 s

98 °C 60 s }
35 cycles55-65 °C 60 s

72 °C 60 s/1 kb

72 °C 600 s
4 °C ∞

TABLE 2.1: PCR protocol

USA) was added to the reaction mix and incubation was performed for 2 h or over
night at 37 °C. Subsequently, the PCR product was purified using the NucleoSpin®

Gel and PCR Clean-up kit (Macherey-Nagel, Düren, Germany). The purified PCR
product and the vector backbone were digested using the appropriate restriction en-
zymes (Thermo Fisher Scientific, Waltham, MA, USA) with the respective buffers
(Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturers in-
structions. After restriction 1 µl of CIP (New England Biolabs, Ipswich, MA, USA)
was added to the restricted vector backbone for dephosphorylation. Subsequently,
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PCR product and vector backbone were purified using agarose gel electrophoresis.
For this, agarose (BioBudget Technologies, Krefeld, Germany) was dissolved in 1x
TAE buffer at a concentration of 1.2 % (w/v). Gels were casted in BlueMarine™
100 gel chambers (Serva Electrophoresis, Heidelberg, Germany). The electrophore-
sis was performed for approximately 1 h at a constant voltage of 80 V delivered by
a voltage source (VWR, Radnor, PA, USA). Together with the samples, GeneRuler™
1 kb DNA ladder (Thermo Fisher Scientific, Waltham, MA, USA) was loaded for
reference. After electrophoresis gels were stained in an ethidium bromide solution
for approximately 20 min. Gels were analyzed under UV light and desired bands
were isolated using a scalpel. The DNA was isolated from the gel slices using the
NucleoSpin® Gel and PCR Clean-up kit according to the manufacturers instructions.
Ligation of insert and vector backbone was carried out in 1x T4 DNA ligase buffer
(Thermo Fisher Scientific, Waltham, MA, USA) with 2 µl purified vector backbone,
6 µl insert and 0.5 µl T4 DNA ligase (Thermo Fisher Scientific, Waltham, MA, USA) at
a total volume of 20 µl. Incubation was performed either over night at 4 °C or for 2 h
at room temperature. Ligations were stopped at 65 °C for 15 min. Before transforma-
tion of 5 µl into electrocompetent E. coli cells, the ligation reaction was dialysed for
1 h using 0.025 µm MCE MF-Millipore™ membranes (Merck, Darmstadt, Germany).
The transformed cells were plated on agar plates with the appropriate antibiotics
and incubated over night at 37 °C. Resulting colonies were sent for sequencing to
verify the successful cloning.

2.1.2 Gibson Cloning

For Gibson cloning, the insert was amplified using PCR as described in chapter 2.1.1.
The vector backbone was either prepared by digestion with appropriate restriction
enzymes (Thermo Fisher Scientific, Waltham, MA, USA) following the manufactur-
ers instructions or via PCR. Before the Gibson reaction the products were purified by
agarose gel electrophoresis. The Gibson reaction was performed using the Gibson
Assembly® kit (New England Biolabs, Ipswich, MA, USA) in agreement with the
manufacturers protocol. Success of the cloning procedure was verified by sequenc-
ing the resulting E. coli colonies.

2.1.3 Site Directed Mutagenesis

To change up to 6 successive base pairs, site directed mutagenesis was performed. To
this end, approximately 250 ng template DNA, 0.2 mM of each dNTP (Thermo Fisher
Scientific, Waltham, MA, Germany), 0.3 µM of each primer and 1 µl Pfu polymerase
(biotechrabbit, Henningsdorf, Germany) were added to 1x standard PCR buffer (see
appendix B) to a total volume of 50 µl. PCR was performed according to the pro-
tocol shown in table 2.1. After the PCR reaction, the template DNA was digested
by adding 1 µl Dpn1 (Thermo Fisher Scientific, Waltham, MA, USA) to the reaction
mix and incubating for either 2 h or over night at 37 °C . Before transformation into
electrocompetent E. coli cells the samples were dialysed for 1 h using 0.025 µm MCE
MF-Millipore™ membranes (Merck, Darmstadt, Germany).

2.1.4 Multiple Site Mutagenesis

For mutating more than one position in a DNA template, multiple site mutagene-
sis [114] was performed. To this end, approximately 500 ng template DNA, 0.28 µM
foward primer with 5’-phosphorylation, 0.2 mM of each dNTP, 1 µl Pfu polymerase
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Protocol 1

65 °C 300 s

95 °C 120 s

95 °C 30 s }
18 cycles55 °C 30 s

65 °C 600 s

75 °C 420 s

Protocol 2

37 °C 1 h

95 °C 30 s

95 °C 30 s }
2 cycles55 °C 60 s

70 °C 600 s

4 °C ∞

TABLE 2.2: Multiple site mutagenesis cycler protocol

and 0.5 µl Taq DNA ligase were added to 0.5x standard PCR buffer and 0.5x Tag lig-
ase buffer with a total volume of 50 µl. The first DNA strand was amplified via pro-
tocol 1 in table 2.2. Subsequently, 1 µl Dpn1 and 1.5 µl reverse primer (10 µM) were
added to the reaction mix before running protocol 2 from table 2.2. After completion
of the protocol, samples were dialyzed for 1 h using 0.025 µm MCE MF-Millipore™
membranes (Merck, Darmstadt, Germany) and transformed into electrocompetent
E. coli cells.

2.1.5 Error Prone Mutagenesis

In order to introduce random mutations into a DNA sequence, error prone mutagen-
esis was performed. Approximately 1 µg of template DNA, 10 µl error-prone dNTP-
mix, 1 µM of each primer, 2 µl GoTaq® DNA polymerase (Promega, Madison, WI,
USA) and 0.2-0.3 mM MnCl2 were added to 1x error prone buffer to a total volume
of 100 µl. The desired error rate was adjusted via the concentration of MnCl2. The
100 µl reaction was split up into 4 separate tubes before performing the PCR protocol
described in table 2.3. After the PCR reaction the separate tubes were combined for

95 °C 60 s

95 °C 30 s }
30 cycles55-65 °C 45 s

68 °C 60 s/1 kb

68 °C 600 s
4 °C ∞

TABLE 2.3: Error prone mutagenesis PCR protocol

further steps. The amplified PCR product and the vector backbone were purified,
restricted with the appropriate restriction enzymes and ligated as described in chap-
ter 2.1.1. In the end, the ligated product was transformed into E. coli for screening.

2.2 Expression Systems

In this work, different expression systems were used for specific experiments. For
cloning, screening and protein expression and purification, bacterial expression sys-
tems were used. For fluorescence imaging and flow cytometry experiments, tran-
sient or stable mammalian expression systems were employed.
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2.2.1 Bacterial Strains

Different specialized bacterial E. coli strains were used for cloning, screening and
recombinant protein expression. For cloning experiments, either E. coli TOP10 (One
Shot™ TOP10 Electrocomp™ E. coli, Thermo Fisher Scientific, Waltham, MA, USA)
or DH5α (Invitrogen, Carlsbad, CA, USA) cells were used. In protein expression
experiments, E. coli BL21AI cells (BL21-AI™ One Shot™ Chemically Competent E.
coli, Thermo Fisher Scientific, Waltham, MA, USA) were utilized.

2.2.2 Cloning of Plasmids for Bacterial Expression

For all experiments performed in E. coli cells the pBAD expression system (Thermo
Fisher Scientific, Waltham, MA, USA) was used. More specifically the vector back-
bone of pBAD-smURFP-RBS-HO1 was utilized. It was a gift from Erik Rodriguez
(Addgene #80341 [109]). Additionally to the fluorescent protein, the vector encodes
for the expression of heme oxygenase 1 (HO1) from the organsim Synechocystis. HO1
catalyzes the enzymatic oxidation of heme to biliverdin. Biliverdin is the external
chromophore utilized in bacterial phytochrome proteins. Both, the expression of the
fluorescent protein and HO1 is under the control of the araBAD promoter, that can be
induced by arabinose. For protein purification a 6xHis-tag was added N-terminally
to the fluorescent protein. For cloning of protein variants into this vector the primers
7819 and 7822 were used for PCR amplification of the insert sequence. Subsequently,
the amplified insert was digested with BglII and EcoRI and the vector was digested
with BamHI and EcoRI. Thereafter, insert and vector backbone were ligated.

2.2.3 Mammalian Cell Lines

For transient expression in mammalian cells, HeLa cells were used. CRISPR/Cas-9
genome edited cell lines and stable Bxb1 landing pad cell lines were established with
either HeLa or U2OS cells.

2.2.4 Cloning of Plasmids for Transient Mammalian Expression

For this work, fusion constructs of V410 with β-actin (actin), centromere protein C1
(CenpC1), histone 2B (H2B), peroxisomal targeting sequence (peroxi), cytokeratin-
18 (keratin), microtubule associated protein 2 (Map2), nuclear pore complex protein
50 (Nup50), vimentin, mito targeting sequence (mito) and translocase of outer mito-
chondrial membrane 20 (tomm20) were produced. All constructs were produced us-
ing the standard ligation cloning protocol as described in chapter 2.1.1. All primers
and restriction enzymes used for cloning the constructs are summarized in table 2.4.
The primer sequences can be found in table A.1.

To target β-actin, the coding sequence of β-actin was amplified from pTagFP635-
actin (Evrogen, Moscow, Russia) via PCR using the primers 4573 and 4574. Sub-
sequently, the coding sequence of human α-tubulin in pEGFP-Tub (BD, Biosciences
Clonetech, Franklin Lakes, NJ, USA) was exchanged for β-actin via BamHI and XhoI.
To produce the final fusion construct of β-actin with V410, EGFP was exchanged via
NheI and BglII for V410 amplified with primers 9561 and 9562.

The fusion construct of V410 with the mitochondrial targeting sequence was
produced by exchanging DsRed in pDsRed1-Mito (BD Biosciences Clontech, Franklin
Lakes, NJ, USA) via AgeI and NotI with the PCR product of V410 amplified with the
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# Construct Primers Enzymes Figure
P2696 V410-Map2 9596/9595 BglII/NheI 3.11, 3.12, 3.20
P2697 V410-Nup50 8911/8912 BglII/NheI 3.11, 3.17
P2698 vimentin-V410 8229/8159 AgeI/NotI 3.11
P3227 V410-CenpC1 9561/9562 NheI/XhoI 3.11
P3229 V410-peroxi 9561/9562 NheI/BglII 3.11
P3230 V410-H2B 9561/9562 NheI/BglII 3.11
P3231 Mito-V410 9563/9564 AgeI/NotI 3.11
P3241 cytokerain-18-V410 8227/8159 KpnI/NotI 3.11, 3.18
P3242 V410-β-actin 9561/9562 NheI/BglII 3.11
P3279 V410-tomm20 9687/9688 AgeI/Not1 3.21, 3.23, 3.24

D.4, D.5
P3319 V410-P2A-mEGFP 9788/9789 AgeI/EcoRI 3.10, E.2
P3320 miRFP703-P2A-mEGFP 9788/9789 AgeI/EcoRI 3.10, E.2

TABLE 2.4: Summary mammalian constructs for transient expression

primers 9563 and 9564.

The outer mitochondrial membrane was targeted with a tomm20 fusion con-
struct. To this end, the coding sequence of tomm20 was amplified via PCR from
pDONR223-tomm20 [72] using the primers 5570 and 5571. The PCR product was
swapped via AgeI and NheI for the Mito targeting sequence in pDsRed1-Mito (BD
Biosciences Clontech, Franklin Lakes, NJ, USA). DSRed was subsequently exchanged
via AgeI and Not1 for the V410 coding sequence amplified with the primers 9687 and
9688.

In the case of keratin, TagRFP from pTagRFP-Keratin18 was swapped via KpnI
and NotI for the coding sequence of V410 amplified with the primers 8227 and 8159.

For CenpC1, pEGFP-CENP C [65] and the coding sequence of V410 amplified
with the primers 9561 and 9562 were digested with NheI and XhoI. Subsequently,
vector backbone and insert were ligated.

To target Map2, EGFP was exchanged via BglII and NheI in pEGFP-Map2 [65]
for the PCR product of V410 amplified with the primers 9596 and 9595.

To produce a fusion construct of V410 with H2B, the coding sequence of V410
was amplified with primers 9561 and 9562. Subsequently, EGFP was swapped for
the PCR product via NheI and BglII in pEGFP-Hist1H2Bn [65].

For Nup50, V410 was amplified using the primers 8911 and 8912. The PCR prod-
uct and the plasmid mEmerald-Nup50-C-10 (Addgene #54209) were ligated after di-
gestion with BglII and NheI.

The fusion construct of the peroxisomal targeting sequence and V410 was con-
structed by replacing EGFP in pEGFP-PTS [65] via NheI and BglII with the coding
sequence of V410 amplified with the primers 9561 and 9562.

To produce a fusion construct between vimentin and V410, the fluorescent pro-
tein mKate2 in pmKate2-vimentin (Evrogen, Moscow, Russia) was swapped via
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AgeI and NotI against the coding sequence of V410 amplified with the primers 8229
and 8159.

To compare the brightness of NIR FPs in mammalian cells, a plasmid was con-
structed that expressed the respective NIR fluorescent protein together with mEFGP
as a NIR-FP-P2A-mEGFP fusion protein. Both proteins are encoded by a single
mRNA and are connected via self-cleaving P2A sequence to ensure equal amounts
of NIR FP and mEGFP. To this end, TagRFP was exchanged via AgeI and NotI in
pTagRFP-N (Evrogen, Moscow, Russia) for the coding sequence of mEGFP ampli-
fied with the primers 1836 and 1837. Subsequently, the desired NIR FP was ampli-
fied using the primers 9788 and 9789 and inserted into the multiple cloning site of
the vector via AgeI and EcoRI.

2.2.5 Cloning of Plasmids for Stable Mammalian Cell Lines

For this work, several stable mammalian cell lines were established. The plasmids
were cloned using the standard ligation cloning protocol as described in chapter 2.1.1.
All primers and restriction enzymes used for cloning the constructs are summarized
in table 2.5.

# Construct Primers Enzymes Figure
P2432 cytokeratin-18- 8348/8352 HindIII/EcoRI 3.21, 3.23, 3.24,

miRFP703-P2A-mEGFP D.4, D.5
P2690 cytokeratin-18- 8348/8352 HindIII/EcoRI 3.20

V410-P2A-mEGFP
P2691 vimentin-V410 8357/8358 NcoI/NotI 3.16

TABLE 2.5: Summary mammalian constructs for stable integration

2.3 Cell Culture

For expression of fusion constructs and measurement of fluorescence brightness
in mammalian cells, either transiently transfected mammalian cells, CRISPR/Cas-
9 genome edited mammalian cells or stable Bxb1 landing pad cells were used.

The mammalian cells were cultured in T25 culture flasks (Sarstedt, Nümbrecht,
Germany) using Dulbecco’s Modified Eagle Medium (DMEM) with 4.5 g/L glucose
GlutaMax™, 1 mM sodium pyruvate (Thermo Fisher Scientific, Waltham, MA,USA)
and 10 % (v/v) fetal bovine serum (FBS) superior (Merck, Darmstadt, Germany).
Bacterial contamination was suppressed by addition of 100 µg/ml streptomycin and
100 U/ml penicillin to the culture medium. The cells were grown in a CO2 incubator
at 37 °C, 5 % CO2 and 90 % humidity. Before the cells reached confluency, they were
splitted into a new flask. To split the cells, DMEM was removed and the cells were
washed twice in phosphate buffered saline (PBS), before addition of an appropri-
ate volume of trypsin/EDTA (Merck, Damrstadt, Germany) and incubation for 10
to 15 min at 37 °C. Trypsination was stopped by addition of DMEM and cells were
transferred in a new flask.

For long time storage, mammalian cells were frozen under liquid nitrogen condi-
tions. To this end, cells were proliferated in T25 culture flasks. When confluency was
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reached, cells were washed twice in PBS and detached from the flask with trypsin.
After the detachment was stopped by addition of DMEM, the cells were transferred
to 15 ml tubes (Sarstedt, Numbrecht, Germany) and sedimented at 100 g . The pellet
was washed twice with PBS before the cells were resuspended in freezing medium.
Cells were aliquoted into cryogenic storage vials. The vials were placed in an iso-
lated box in a -80 °C freezer to slowly freeze at a rate of approximately 1 °C/min,
then the vials were transferred to liquid nitrogen storage.

2.3.1 Creation of Stable Mammalian Cell Lines

For endogenous tagging of vimentin with CRISPR/Cas-9 genome editing, U2OS
cells were cotransfected with 2 µg of the vimentin-V410-donor plasmid (P2691) and
2 µg of the plasmid px330-VIM-gRNA (P2463) [102, 101]. The plasmid px330-VIM-
gRNA was provided by Dr. Michael Ratz and encoded for the gRNA GCGCAA-
GATAGATTTGGAAT and the Cas-9 protein.

For the creation of stable landing pad cell lines a HeLa cell line with a CAG pro-
moter and a Bxb1 attP site in the AAVS1 locus was used. The cell line was provided
by Dr. Isabelle Jansen [61]. For integration into the Bxb1 attP site, 1 µg of the re-
spective integration plasmid (P2432 or P2690) were contransfected with 1 µg of the
plasmid pCAG-NLS-HA-Bxb1 [54]. The plasmid pCAG-NLS-HA-Bxb1 was a gift
from Pawel Pelczar (Addgene #51271) and encoded for the transient expression of
the Bxb1 recombinase.

After transfection, the cells were cultured for one week. Subsequently, a single-
cell sort of fluorescent cells into 96-well plates was performed using flow cytometry
(see chapter 2.5.8 for details). The 96-well plates were further cultivated for two
to three weeks, then colonies were analyzed by fluorescence microscopy (Lionheart
FX automated microscope, BioTek, Winooski, VT, USA) and colonies showing NIR
fluorescence combined with the correct localization pattern were isolated and frozen
for long-time storage and use in further experiments.

2.4 Protein Expression and Purification

2.4.1 Transformation of Bacterial Cells

Plasmid DNA was transformed into the appropriate electrocompetent E. coli strain
following a method described by Dower et al. [31]. Electrocompetent E. coli cells
of various strains were produced from 500 ml LB culture inoculated with 5 ml over
night culture. The culture was grown at 37 °C until OD600nm reached 0.6 to 1.0 and
then cooled on ice. Cells were harvested at 3079 rcf using a Sorvall RC6 Plus cen-
trifuge with a HS-4 rotor (Thermo Fisher Scientific, Waltham, MA, USA). The cells
were resuspended in 500 ml sterile water, then centrifuged again and resuspended
in 250 ml sterile water. Followed by another centrifugation step and resuspension of
the pellet in 10 ml 10% glycerine. After a last centrifugation step, cells were resus-
pended in 1 ml 10% glycerine and stored in aliquots of 50 µl at -80 °C.

For transformation, an aliquot of electrocompetent E. coli cells was thawed slowly
on ice. Then the cells were resuspended in 50 µl sterile water and transferred to an
electroporation cuvette (Cell Projects, Herrietsham, UK). An appropriate volume of
DNA was added, 5 µl for mutagenesis and cloning samples and 1 µl for plasmid
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DNA. Electroporation was performed using a pulse controller (BioRad, Hercules,
CA, USA) set to 200 Ω and a gene pulser set to 25 µF (BioRad, Hercules, CA, USA).
After transformation, 1 ml LB medium was added and cells were incubated for 1 h
at 37 °C. Thereafter, the cells were plated on agar plates or added to liquid medium
with the appropriate antibiotics. The cells were incubated for 18 to 24 h at 37 °C.
If protein expression was desired for screening experiments or protein purification,
0.02 % arabinose was added to the plates or the liquid medium.

2.4.2 Expression and Purification

Depending on the desired amount of protein, E. coli BL21-AI cells (Invitrogen, Carls-
bad, CA, USA) transformed with the appropriate pBad expression plasmid (Thermo
Fisher Scientific, Waltham, MA, USA) were grown in either 50 ml liquid medium
for small scale purification or 1 l liquid medium for large scale purification at 37 °C
for 18-24 h. For small scale purification the liquid medium consisted of LB medium
supplemented with 50 µg/ml ampicilin and 0.02% arabinose for induction of pro-
tein expression. For large scale expression 0.02% arabinose was added not until the
OD600nm reached 0.6 to 0.7. After expression, cells were harvested by centrifuga-
tion using either a Heraeus MULTIFUGE 1 s (Thermo Fisher Scientific, Waltham,
MA, USA) for small scale purification or a Sorvall RC6 Plus centrifuge equipped
with an SS-34 rotor (Thermo Fisher Scientific, Waltham, MA, USA) for large scale
purifications. Cells were resuspended in an appropriate amount of binding buffer
before addition of lysozyme (Serva electrophoresis, Heidelberg, Germany) to a fi-
nal concentration of 1 mg/ml and incubation on ice for 4 h. Afterwards, cell lysis
was performed by repeated freeze and thaw cycles for small scale purification and
by sonification using a Branson 450 Digital Sonifier (Branson Ultrasonic, Danbury,
CT, USA) for large scale purification. 0.5 µl benzonase (Thermo Fisher Scientific,
Waltham, MA, USA) was added to the samples. To remove cell fragments from the
supernatant containing the expressed protein the samples were centrifuged for 3 to
6 h at 4 °C at 21,000 rcf using a Heraeus Fresco 21 micro centrifuge (Thermo Fisher
Scientific, Waltham, MA, USA). The supernatant was removed for further purifica-
tion by Ni NTA affinity purification while the pellet was discarded.

For small scale purification, the protein was further purified using the His Spin
kit (GE Healthcare, Chicago, IL, USA). All following centrifugation steps were car-
ried out at 100 rcf for 1 min using a Heraeus Pico 17 centrifuge (Thermo Fisher Sci-
entific, Waltham, MA, USA). The His Trap columns were equilibrated by an initial
washing step with 600 µl binding buffer. Subsequently, 600 µl of the supernatant was
added to the equilibrated column. Columns were rotated for 30 min in the dark at
room temperature to bind the protein, before centrifugation and removal of the flow
through. This step was repeated until all supernatant was applied to the column.
Afterwards, the columns were washed twice with 600 µl binding buffer and twice
with 200 µl wash buffer. For elution, 200 µl elution buffer was applied and after
3 min incubation the protein was eluted via centrifugation. This step was performed
3 times or until the His Trap column appeared colorless.

For large scale purification, empty 10 ml columns (Mo Bi Tec, Göttingen, Ger-
many) were loaded with an appropriate amount of Ni NTA agarose beads (Qi-
agen, Hilden, Germany) (binding capacity 50 mg/ml). The columns were equili-
brated with 5 ml binding buffer. Afterwards, the supernatant was loaded onto the
columns. This step was repeated until the flow through appeared colorless. To wash
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the columns, 10 ml binding buffer was applied followed by 10 ml washing buffer.
The protein was eluted by applying an appropriate amount of elution buffer until
the Ni NTA beads appeared colorless.

After purification, samples were concentrated using Vivaspin® 500 centrifugal
concentrators (Sartorius, Göttingen, Germany) with a molecular cut-off at 100 kDa.
The elution buffer was exchanged for standard protein buffer using NAP-5 columns
(GE Healthcare, Chicago, IL, USA) following the manufacturers instructions.

2.5 Protein Characterization

In this section, different methods are described that were used to characterize the
biophysical properties of fluorescent proteins. Those methods include spectral char-
acterizations, chromatography and electrophoresis.

2.5.1 Measurement of Absorption Spectra

To measure absorption spectra, a purified protein solution in standard protein buffer
at pH 7.5 was used. Samples were measured using a quartz cuvette with 1 cm path
length at a Carry 4000 UV/vis spectrometer (Varian, Palo Alto, CA, USA) in the
range between 250 to 650 nm. All absorption spectra depict in this work represent
single measurements.

2.5.2 Measurement of Excitation and Emission Spectra

Emission and excitation spectra were measured with purified protein solution in
standard protein buffer at pH 7.5 using a Carry Eclipse fluorescence spectrome-
ter (Varian, Palo Alto, CA, USA). Excitation spectra were recorded between 500 to
700 nm with a fixed emission at 710 nm. Emission spectra were recorded between
680 to 850 nm with a fixed excitation at 670 nm. The emission and excitation spectra
that are shown in this work depict single measurements.

2.5.3 Measurement of Fluorescence Lifetime

The fluorescence lifetime was measured either by Dr. Alexey Chizhik using the
method described by Chizhik et al. [22] or using a Quantaurus-Tau fluorescence
lifetime spectrometer (Hamamatsu, Hamamatsu City, Japan) using purified pro-
tein in standard protein buffer at pH 7.5. For measurements performed with the
Quantaurus-Tau system, exponential models were fitted to the data using the soft-
ware provided with the machine.

2.5.4 Measurement of Fluorescence Quantum Yield

The fluorescence quantum yield was measured either by Dr. Alexey Chizhik based
on the modification of radiative transitions of emitters in a nanocavity as described
by Chizhik et al. [22, 23] or using a Quantaurus-QY system (Hamamatsu, Hama-
matsu City, Japan). For both methods, purified protein solution in standard protein
buffer was used.
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2.5.5 Measurement of pH Stability

The pH stability of fluorescent proteins was measured using the Cytation3 plate
reader (BioTek, Winooski, VT, USA) with fluorescence excitation at 650/19 nm and
detection at 700/19 nm. The protein concentration was 0.1 µg/µl. The measure-
ments were performed in replicates of n=3. The data were analyzed using custom
Python software. The fluorescence signal of each measurement were normalized
to the corresponding maximal value. The pka values were determined by fitting a
monophasic model to the data using custom Python software (see Appendix C).

2.5.6 Semi-native Gel Electrophoresis

One approach to determine the oligomeric state of a fluorescent protein is semi-
native gel electrophoresis. For this, 2 to 4 µg of purified protein in 100 mM TrisHCl,
150 mM NaCl and 10% sucrose at pH7.5 was loaded onto a 15% polyacrylamide gel
containing 0.1% sodium dodecyl sulfate. The gels were casted and run using the
Mini-PROTEAN Tetra handcast system (BioRad, Hercules, CA, USA) at a constant
current of 20 mA for approximately 1 h. The electric current was supplied by a 300 V
power source (VWR, Radnor, PA, USA). As standards, monomeric miRFP703 [119]
and dimereic iRFP702 [118] were loaded. After electrophoresis, the gel was analyzed
using an Amersham Imager 600RGB (GE Healthcare, Chicago, IL, USA) equipped
with a 630 nm excitation source and a Cy5 filter set.

2.5.7 Size Exclusion Chromatography

A second approach to determine the oligomeric state of a fluorescnet protein is size
exclusion chromatography (SEC). To do this, an Äkta pure chromatography sys-
tem (GE Healthcare, Chicago, IL, USA) equipped with a Superdex™ 200 Increase
10/300 column (GE Healthcare, Chicago, IL, USA) was used. Before applying the
purified protein solution to the chromatography system, the solution was filtered
using VIVASPIN 500 columns with 0.2 µm PES membranes (Satorius, Göttingen,
Germany). Subsequently, 250 µl protein solution in standard protein puffer at a con-
centration of 10 µM was applied to the Superdex™ column and eluted at a flow rate
of 0.75 ml/min using standard protein buffer. The protein was detected using a UV
monitor U9-L (GE Healthcare , Chicago, IL USA) operating at a fixed wavelength of
280 nm. As standards, monomeric miRFP703 [119] and dimereic iRFP702 [118] were
measured. All measurements were performed at 6 °C.

2.5.8 Flow Cytometry

In order to measure the brightness of proteins in cells or for fluorescence activated
cell sorting, flow cytometry was performed. The measurements were done using a
modified flow cytometry system (BD influx™ cell sorter, BD Biosciences, Franklin
Lakes, NJ, USA) with a 671 nm laser (SDL-671-300T, Shanghai Dream Laser, Shang-
hai, China) for NIR excitation and a 488 nm laser (Genesis CX488; Coherent, Santa
Clara, CA, USA) for green excitation. The NIR fluorescence was detected in two
windows between 690 to 720 nm and 720 to 766 nm and the green fluorescence was
detected between 495 to 525 nm.

The cells were cultured in 6-well plates until appropriate density. Approximately
2 h before flow cytometry measurements, biliverdin was added to the cells. Imme-
diately before the measurements, the DMEM culture medium was removed and the
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cells were washed twice in PBS. Subsequently, trypsin was added to the cells for 10
to 15 min to detach them from the bottom of the wells. Detachment was stopped by
adding appropriate amounts of DMEM. Then, cells were transferred into 15 ml tubes
and pelleted for 3 min at 100 g. Pellets were washed twice in PBS and subsequently
resuspended in PBS. Before flow cytometry measurements, the cells were filtered.

2.6 Fluorescence Lifetime Screening

In order to increase the fluorescence lifetime and the fluorescence quantum yield
of an NIR FP template, a directed evolution approach was applied combined with
an automated microscope for selection of improved protein variants with increased
fluorescence lifetime. The automated fluorescence microscope is described in chap-
ter 2.6.1 and the directed evolution workflow is described in chapter 2.6.2.

2.6.1 Automated Fluorescence Lifetime Screening Microscope

A customized automated screening microscope was used for automated measure-
ments of diversified protein pools expressed in E. coli colonies growing on agar
plates. An optical plan of the automated screening microscope is shown in fig-
ure 2.1. A large part of the customization of the automated microscope was done
prior to this work by Dr. Martin Andresen and Dr. Timo Konen [69]. Part of this
work was the improvement of the optical system, the electronics and the software in
order to enable automated fluorescence lifetime measurements.

The microscope body was taken from a commercial fluorescence microscope
(DM5500 B, Leica Microsystems, Wetzlar, Germany). The microscope was equipped
with a pulsed 670 nm excitation laser (LDH-P-C-670, PicoQuant, Berlin, Germany,
maximal pulse rate: 80 MHz, output pulse duration 20 ps) operated with a laser
driver (PDL 800-B, PicoQuant, Berlin, Germany) at 20 MHz. The laser beam was
coupled into the microscope via a dichroic mirror (HC BS 685, Semrock, New York,
USA) and focused onto the sample using a 20 x air objective lens (NPLANL 20x/0.40,
Leica Microsystems, Wetzlar, Germany). The emitted fluorescence light was col-
lected via the same objective lens, filtered by an optical filter (720/60 ET Band-
pass, Chroma, Bellows Falls, USA) and focused on an Avalanche photodiode (APD)
(MPD-020-CTB, PicoQuant, Berlin, Germany) and through a pinhole on a photo-
multiplier tube (PMT) (H10723, Hamamatsu, Hamamatsu, Japan). The APD was
connected to time correlated single photon counting (TCSPC) electronics (SPC-830,
Becker & Hickel, Berlin, Germany) for the temporally resolved detection of single
photons. The microscope and the electronic stage (SCAN 100x100, Märzhäuser Wet-
zlar, Wetzlar, Germany) were controlled by a microscope controller box (CTR6500,
Leica Microsystems, Wetzlar, Germany). The automation of the system was imple-
mented using custom LabVIEW code (National Instruments, Austin, TX, USA). The
TCSPC module was integrated using a MATLAB® library provided by Dr. Marcel
Leutenegger. Fitting and analysis of fluorescence lifetime data was performed with
MATLAB® code following a method described by Enderlein et al. [37].

2.6.2 Directed Evolution

In order to successively improve the parameters fluorescence lifetime and fluores-
cence brightness of a fluorescent protein, the approach of directed evolution was
applied in this work. The schematic workflow is depicted in figure 2.2.
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FIGURE 2.1: Schematic drawing of fluorescence lifetime screening mi-
croscope. The plan depicts laser beam path (dashed line), detection
path (solid line) and position of optical elements. PMT, photon mul-
tiplier tube; TCSPC Module, time correlated single photon counting

module; APD, Avalanche photodiode.

In the fist step, the starting template or an intermediate protein variant was di-
versified using PCR based techniques, e.g. site directed (see chapter 2.1.3), multiple
site (see chapter 2.1.4) or error prone mutagenesis (see chapter 2.1.5). Subsequently,
the diversified protein pool was transformed into electrocompetent E. coli BL21AI
cells and the cells were plated on agar plates with appropriate antibiotics and 0.02 %
arabinose. Since E. coli does not have a dedicated BV metabolism heme oxygenase-1
(HO-1) from the cyanobacterium Synechocystis was coexpressed together with the
respective protein variant. For this, the coding sequence of the fluorescent pro-
tein smURFP from the plasmid pBAD-smURFP-RBS-HO-1 (Addgene #80341 [109])
was substituted by the desired protein variant. After incubation for 18 to 24 h at
37 °C, the brightness and fluorescence lifetime of bacterial colonies growing on the
agar plates was measured using the automated fluorescence microscope described in
chapter 2.6.1. Colonies expressing protein variants with increased brightness and/or
fluorescence lifetime were transferred in 5 ml LB medium with appropriate antibi-
otics and incubated for 18 to 24 h at 37 °C. Thereafter, the plasmid DNA was isolated
from the 5 ml cultures using the QIAprep Spin Miniprep Kit (Qiagen, Hilden, Ger-
many). The isolated DNA of the improved protein variants was pooled and another
round of PCR based diversification and selection was performed.
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FIGURE 2.2: Workflow of directed evolution approach.

2.7 Microscopy

Approximately 48 h before imaging, mammalian cells were seeded in 6-well plates
(Sarstedt, Nümbrecht, Germany) on 18 mm glass coverslips No. 1.5H (Paul Marien-
feld, Lauda-Königshofen, Germany). 24 h hours before the imaging experiment,
the cells were transfected with 1 to 3 µg of the desired plasmid using TurboFect
Kit (Thermo Fisher Scientific, Waltham, MA, USA) following the manufacturers in-
structions. Around 2 to 3 h before the imaging experiment, up to 25 µM biliverdin
was added to the cells. Immediately before fluorescence microscopy measurements,
the coverslips with the attached cells were washed in HDMEM (HEPES buffered
DMEM) and sealed on a glass slide. The sealed cells were imaged at room tempera-
ture on the same day.

All fluorescence microscopy measurements were performed on a commercial
QUAD scanning fluorescence microscope (Abberior Instruments GmbH, Göttingen,
Germany) utilizing an inverted microscope body (IX83, Olympus, Tokyo, Japan).
A Schematic drawing of the microscope is shown in figure 2.3. The microscope was
equipped with a titanium-sapphire laser (Mai Tai – Spectra-Physics, Santa Clara, CA,
USA, pulse rate: 80 MHz, output pulse duration 150 fs) that was used to generate
the excitation and STED beam. The laser beam (mode locked between 790 to 840 nm)
was split into excitation and STED beam using a polarizing beam splitter. One polar-
ization was then fed into a photonic crystal fibre (Femto WHITE 800, NKT Photonics
A/S, Birkerød, DK) to generate a white light spectrum. The excitation spectrum was
selected with a tunable band pass filter (VersaChrome HC 708/13, Semrock, New
York, USA). The other polarization was used to produce the STED beam. For this,
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the laser pulse from the titanium-sapphire laser was stretched utilizing glass blocks
as dispersive media. The exact length of the laser pulse was adjusted choosing a sin-
gle mode fibre of appropriate length. The timing between the excitation laser pulse
and the STED pulse was adjusted using an optical delay line. The spectra of the ex-
citation and the STED beams are shown in figur D.1. Both beams were focused into
the sample and fluorescence light was collected using an oil immersion objective
lens (UPlanSApo 100 x/1.4 Oil, Olympus, Tokyo, Japan) together with the supplied
immersion oil. NIR fluorescence light between 680 to 750 nm was focused through a
pinhole on a silicon avalanche photodiode (Photon Counting Module SPCM-AQRH-
13-FC, Excelitas, Waltham, Massachusetts, USA) for confocal and STED imaging and
on a prototype superconducting nanowire single photon detector (SNSPD) (Single-
Quantum, Delft, Netherlands) connected with a TCSPC system (SPC-150, Becker &
Hickel, Berlin, Germany) for fluorescence lifetime imaging. The microscope was
controlled and images were acquired using supplied software (Imspector, Abberior
Instruments GmbH, Göttingen, Germany). The exact imaging parameters are pre-
sented in table D.1.

2.7.1 Image Processing and Analysis

The raw imaging data were exported as msr-files. Processing and analysis was per-
formed with the open source software FIJI [116] or custom Python code. Line pro-
files were taken with FIJI using a pixel averaging of 3. The profiles were then fitted
in Python using a Lorentzian function (equation (2.1)).

y =
A
π
∗ w
(x− x0)2 + w2 + o f f set (2.1)

The Python code together with a detailed description of the method used for analysis
of bleaching, reexcitation and STED efficiency, pH spectra and decomposition of
fluorescence lifetime images can be found in appendix C.
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FIGURE 2.3: Schematic drawing of NIR STED microscope. The draw-
ing depicts laser beam paths (STED beam: red dashed lines; excitation
beam: orange dashed line), detection path (solid lines) and position of
optical elements. SLM, spatial light modulator; AOM, acousto opti-
cal modulator; APD, Avalanche photodiode; PMT, photon multiplier
tube; TCSPC, time correlated single photon counting; SNSPD, super-

conducting nanowire single photon detector.
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Chapter 3

Results

In this work, the NIR fluorescent protein miRFP703 [119] was improved in regards
to an application in fluorescence microscopy. This was done via directed evolution
over consecutive rounds of PCR-based diversification, automated screening and se-
lection of variants with increased fluorescence lifetime and fluorescence intensity.
The results of this efforts are reported in this chapter. First, the implementation
and validation of the automated screening system is described in section 3.1. After-
wards, the results of the screening are reported in section 3.2. The most beneficial
protein variant is characterized biophysically in section 3.3. In section 3.4, different
applications of the variant in live-cell fluorescence microscopy are demonstrated.

3.1 Implementation of Fluorescence Lifetime Screening

The starting template miRFP703 was improved using the approach of directed evo-
lution consisting of consecutive rounds of PCR-based diversification and automated
selection of improved protein variants (see section 2.6.2). In each round, the pool
of template DNA was diversified using site directed, multiple site directed or ran-
dom site mutagenesis (see section 2.1). The diversification step resulted into a pool
of different protein variants. This pool was transformed into E. coli cells and plated
on agar plates. Next, improved protein variants had to be isolated based on perfor-
mance measures that were suitable to predict the performance of the protein in fluo-
rescence live-cell microscopy. For this work, the parameters of fluorescence lifetime
and fluorescence intensity in E. coli cells were used as performance measures. The
parameter of fluorescence lifetime was chosen because it is proportional to the fluo-
rescence quantum yield (compare with equation (1.4)). A high fluorescence quantum
yield enables high contrast and low excitation light doses in live-cell imaging. Addi-
tionally, increasing the fluorescence lifetime also increases the achievable resolution
in STED microscopy (see equation (1.7)). The fluorescence intensity in E. coli cells
reflected a mixture of protein folding, maturation and stability and BV affinity of the
protein variants. Besides this, the measured fluorescence intensity was also affected
by non-protein related factors such as colony size and focus position. Therefore,
this parameter was expected to show considerable variance. However, the param-
eter was included into the screening, to have a measure for the effective brightness
of the protein variants at 37 °C. In conclusion, the working hypothesis was that the
combined screening for protein variants with increased fluorescence lifetime and
fluorescence intensity in E. coli cells would yield proteins with high fluorescence
quantum yields, high BV affinity and good folding, maturation and stability proper-
ties at 37 °C that perform well in live-cell fluorescence microscopy.

The theoretical number of different protein variants is much higher than one can
ever hope to measure. The protein miRFP703 has 315 amino acids. Therefore, there
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are 31520 different possible protein sequences. The task of improving a fluorescent
protein can be viewed as finding maxima in this high dimensional fitness landscape.
In practice, only a fraction of possible protein variants can be explored. To sample as
many variants as possible, a commercial fluorescence microscope was customized
to automatically measure the fluorescence lifetime and the fluorescence intensity of
E. coli colonies expressing a protein variant. For this, the microscope was upgraded
with a movable electronic stage, a pulsed NIR laser system, an APD detector and
a TCSPC timing electronics as described in section 2.6.1. Custom LabVIEW and
MATLAB software was used to control the hardware and analyze the recorded data.
Prior to this work, Dr. Martin Andresen implemented the electronics to control the
microscope via LabVIEW software and Dr. Timo Konen [69] implemented methods
for fast sampling and autofocus. With this screening microscope in place several
thousand colonies could be measured automatically per day.
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FIGURE 3.1: Fluorescence lifetimes of different NIR FPs measured
with the automated screening microscope. The standard deviations

are indicated by black bars.

To evaluate the precision of the fluorescence lifetime measurement of the au-
tomated screening microscope, four different engineered NIR fluorescent proteins
expressed in E. coli cells growing on agar plates were measured with five replicates.
Figure 3.1 shows the mean fluorescence lifetimes of the proteins. The black bars in-
dicate the standard deviation. For all proteins, the standard deviation was below
5 % indicating a reliable performance of the fluorescence lifetime measurement and
the fitting procedure.

To test the performance of the automated microscope under screening condi-
tions, three different engineered fluorescent proteins were transformed into E. coli
cells. The cells were mixed and plated on an agar plate. More than 500 colonies
growing on the agar plate were measured automatically with the screening micro-
scope. The data points were clustered with Python and scikit-learn [19] using a
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gaussian mixture model with three centres. Figure 3.2 shows the result. Three clus-
ters are clearly separated from each other representing the three different fluorescent
proteins. The centres of the clusters are at 0.88 ns|0.23, 0.54 ns|0.11 and 1.10 ns|0.13,
respectively. The fluorescence intensities of the clusters strongly overlapped, while
the fluorescence lifetimes were well separated.

In summary, the automated screening microscope proved capable of automa-
tically measure the fluorescence lifetime and the fluorescence intensity of several
thousand E. coli colonies per day expressing a pool of protein variants. The mea-
surements proved reliable and it was possible to reconstruct clusters from a pool of
protein variants.
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FIGURE 3.2: Test screen of protein pool consisting of 3 different NIR
FPs. The data were clustered using a gaussian mixture model with
three centres. The data points were colored in accordance to their

obtained cluster affiliation.

3.2 Directed Evolution of miRFP703 to Increase Lifetime and
Quantum Yield

In this work, the fluorescence lifetime and quantum yield of the NIR fluorescent
protein miRFP703 was gradually increased over consecutive rounds of diversifica-
tion and selection. In the first rounds of diversification and selection, amino acids
in close proximity to the BV chromophore and positions known from the literature
were targeted specifically using site directed and multiple site directed mutagenesis.
Positions within a radius of 5 Å around the BV chromophore are positions 19, 23, 25,
168, 170, 180, 192, 197, 200, 201, 202, 203, 205, 206, 210, 216, 248, 249, 250, 251, 253,
254, 257, 258, 261, 266, 268, 280, 282 and 284. Figure 3.3 shows the location of those
amino acids relative to the chromophore. Positions from the literature that were se-
lected for directed mutagenesis were positions 264, 274, 284, 290 and 311 described
by Kamper et al. [65] and positions 16, 17, 22, 43, 47, 106, 127, 155, 179, 184, 207,
211, 230, 260, 268, 281, 292, 300, 301 and 305 described by Shcherbakova et al. [119].
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In general, for directed mutagenesis primers were used with random nucleotides at
the positions to mutate.

FIGURE 3.3: Amino acid site chains within a radius of 5 Å around the
BV chromophore in the crystal structure of miRFP703. The respec-
tive site chains are shown in stick representation and are colored by
heteroatoms (sulfur: yellow, oxygen: red, nitrogen: blue). The chro-
mophore is shown in stick representation and colored in red. The

figure is based on PDB structure 5VIK [119].

Additionally, the position of the BV binding cysteine residue was altered. In the
PAS domain, the positions 18, 19, 20 and 21 and in the GAF domain positions 252,
251, 252, 253, 254 and 255 were explored for alternative BV binding. It turned out
that all alternative BV binding positions strongly affected the fluorescence properties
of the protein. However, the resulting parameters of the variants were not beneficial.
Therefore, no protein variant with alternative BV binding sites was used for further
experiments.
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From the first rounds of site directed diversification the single mutant I253S stood
out. It showed a strongly increased fluorescence lifetime (918 ps) and quantum yield
(18%). However, this did not translate into a likewise increased fluorescence inten-
sity in E. coli cells. It was hypothesised that by increasing the fluorescence lifetime,
and with this the fluorescence quantum yield, either protein expression, folding,
maturation or BV affinity was decreased. To rescue the brightness in E. coli cells,
several rounds of random site mutagenesis were performed. Thereafter, the final
variant showed a three times higher fluorescence brightness in the E. coli expression
system as compared to the template miRFP703, accompanied by a further increase
of fluorescence lifetime. The final protein variant was termed V410.

FIGURE 3.4: Position of mutations indicted on the crystal structure
of miRFP703. The protein scaffold is shown in cartoon representation
and rainbow color scheme (N-terminus, blue to C-terminus, red). The
chromophore is colored in red. Mutations introduced to the protein
to form protein variant V410 are shown in stick representation and

are labeled. The figure is based on PDB structure 5VIK [119].

The final protein variant V410 had 4 mutations, namely F193L, V202C, Y210H
and I253S. In figure 3.4 the positions of the mutations are marked in the crystal
structure of miRFP703. The fluorescence lifetimes and the absorption, excitation
and emission spectra of the template miRFP703, the single mutants F193L, V202C,
Y210H and I253S and the final protein variant are shown in figure 3.5, figure 3.6a,



40 Chapter 3. Results

figure 3.6b and figure 3.6c, respectively. Table D.2 summarizes the results. Muta-
tion I253S is located in the GAF domain in close proximity to the BV chromophore.
This mutation alone increased the fluorescence lifetime of miRFP703 from around
700 ps to over 900 ps. However, only the synergistic effects of the all four mutations
combined yielded a fluorescence lifetime of over 1.1 ns for the variant V410. The
overall shape of the absorption spectra did not change for the single mutants and
the final protein variant compared to the template miRFP703 (see figure 3.6a). All
spectra exhibit a peak around 280 nm from the absorption of aromatic amino acids.
The so called Soret peak around 380 nm and the peak around 670 nm are caused by
absorption of the BV chromophore. However, the absorption peak around 670 nm is
broadened for the variants I253S and V410 including a blue shift of 15 nm as com-
pared to the template miRFP703. The broadening and the blue shift for variants
I253S and V410 are also visible in the excitation and emission spectra (see figure 3.6b
and figure 3.6c). In the case of emission spectra, variants I253S and V410 show a
pronounced blue shifted shoulder around 670 nm. Altering the protein concentra-
tion had a strong effect on the size of the shoulder. It was more pronounced for low
protein concentrations and vanished for higher protein concentrations (compare fig-
ure 3.6c and figure 3.7b).
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FIGURE 3.5: Comparison between fluorescent lifetimes of single
mutant protein variants, final protein variant V410 and template

miRFP703. The standard deviations are indicated by black bars.
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(B) Excitation spectra
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(C) Emission spectra

FIGURE 3.6: Spectral comparison between single mutant protein vari-
ants, final protein variant V410 and the template miRFP703. (A) Ab-
sorption, (B) excitation and (C) emission spectra of V410, single mu-
tants and miRFP703. For all measurements purified protein in stan-

dard protein buffer at pH 7.5 was used.

Name Fluorescence Excitation/ Quantum
Lifetime [ps] Emission [nm] Yield [%]

F193L 702±2 681/706 N/A
V202C 791±2 681/706 N/A
Y210H 602±6 688/706 N/A
I253S 918±3 682/706(+678) 18
miRFP703 690±13 681/706 12
V410 1120±3 681/700(+674) 21

TABLE 3.1: Comparison of miRFP703 variants
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3.3 Biophysical Characterization of V410

The final protein variant V410 was characterized further using standard biophysi-
cal techniques. The spectral properties were investigated by fluorescence lifetime
measurements, quantum yield measurements and spectroscopic measurements. To
determine the pH stability, the fluorescence intensity was measured in buffers with
pH values ranging from 3 to 9. The oligomeric state of the protein was investigated
using size exclusion chromatography and semi-native gel electrophoresis. For all
measurements purified protein solution was used. In the following, the results of
the different characterizations are described.

Optical Characterization of V410

The optical properties of a fluorescent protein are the most important measures for
its performance in fluorescence microscopy. In this regard, the protein variant V410
was characterized optically by measuring the absorption, excitation and emission
spectra, the fluorescence lifetime and the fluorescence quantum yield. For compari-
son, the template miRFP703 was characterized alongside V410.

The absorption spectra of V410 and miRFP703 are shown in figure 3.7a. Both
exhibit an absorption peak at 280 nm due to the absorption of aromatic amino acids,
e.g., phenylalanine, tryptophan, tyrosine and histidine. Typical for porphyrin com-
pounds is the Soret peak at 380 nm due to the π − π∗ transition of the BV chro-
mophore [126]. The main absorption peak of the BV chromophore bound to the
protein had a maximum at 658 nm and 673 nm for V410 and miRFP703, respectively.
Additionally to the blue shift of 15 nm, the peak was broadened for V410 as com-
pared to miRFP703. From the absorption spectra normalized to the absorption of
the aromatic amino acids at 280 nm the extinction coefficient from V410 was cal-
culated relatively to miRFP703 (ε670 nm = 90900 M-1 cm-1 [119]) to be approximately
114700 M-1 cm-1.

Figure 3.7b shows the excitation and emission spectra of V410 and miRFP703.
The excitation maxima were at 677 nm and 683 nm, while the emission maxima were
at 704 nm and 707 nm for V410 and miRFP703, respectively. The excitation and emis-
sion peaks of V410 were broadened as compared to miRFP703. In comparison to the
emission spectrum of V410 shown in figure 3.6c the spectrum in figure 3.7b was
recorded at a higher protein concentration and did not show the pronounced shoul-
der at 670 nm.

The fluorescence decay histograms of V410 and miRFP703 were recorded using
the Quantaurus-Tau fluorescence lifetime spectrometer and are shown in figure 3.7c.
An exponential decay model was fitted to the decay histograms and characteristic
fluorescence lifetimes of 1120 ps±3 ps for V410 and 690 ps±13 ps for miRFP703 were
obtained. The fluorescence quantum yields were measured using the Quantaurus-
QY system and a nanocavity-based system by Dr. Alexey Chizhik [23]. The Quan-
taurus-QY system yielded quantum yields of 7% for V410 and 5% for miRFP703,
while Dr. Alexey Chizhik measured values of 21% for V410 and 12% for miRFP703.
The fluorescence quantum yield values obtained with the Quantaurus-QY system
are lower than the values obtained with the nanocavity-based system. The reason
for this is that the values obtained with the Quantaurus-QY system are influenced by
absorbing but non-emitting molecules in the solution while the values obtained with
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FIGURE 3.7: Biophysical characterizations of V410. (A) Absorption
spectra. (B) Excitation and emission spectra. (C) Fluorescence decay
histograms. (D) pH depended fluorescence intensity. Together with
V410, miRFP703 was measured for reference. For all measurements

purified protein solutions were used.

the nanocavity-based system are not. Absorbing but non-emitting species could be,
e.g., misfolded protein or free BV chromophore (see chapter 4.2). The molecular
brightness is the product of fluorescence quantum yield and extinction coefficient.
A molecular brightness of 24000 and 10900 was calculated for V410 and miRFP703,
respectively (using the quantum yield values obtained by Dr. Alexey Chizhik).

pH Stability of V410

In mammalian cells, the pH value in different cell organelles varies from around 4.5
in lysosomes [2] to 8.0 in the mitochondrial matrix [96]. For a fluorescent protein to
be useful as fusion tag for cellular structures in different organelles, the fluorescent
protein must remain fluorescent over a wide range of pH values. The pH stability
of V410 was determined by measuring the fluorescence signal of a purified protein
solution at a concentration of 0.1 µg/µl in buffers with pH values ranging from 3
to 9. For comparison, the template miRFP703 was measured in the same way. The
measurements were performed three times in replicates of n=3. The mean fluores-
cence signal of both proteins at different pH values can be seen in figure 3.7d. A
monophasic model as described by equation (3.1) was fitted to the data points in
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Python using SciPy’s curve_fit function [62].

I670nm = o f f set +
A

1 + 10(pka−pH)
(3.1)

This procedure yielded pka values for V410 and miRFP703 of 4.3 and 3.8, respec-
tively. Therefore, the protein variant V410 is highly fluorescent over the entire range
of physiologically relevant pH values. This indicates its applicability as fusion tag
in different cell organelles.

Oligomeric State of V410

The oligomeric state of a fluorescent protein is an important parameter since it de-
termines the applicability of the protein as fusion tag. If a fluorescent marker protein
forms dimers or higher oligomeric structures, tagging a protein of interest with it is
likely to influence the localization of the protein of interest. Therefore, for labelling
of structures with fluorescent molecules true monomeric fluorescent marker proteins
are desirable.

The oligomeric state of the protein variant V410 was determined using size ex-
clusion chromatography (SEC) and semi-native gel electrophoresis. For SEC, puri-
fied protein solution at a concentration of 10 µM was loaded on the chromatography
column. For semi-native gel electrophoresis, 4 µg of purified protein was used. In
both experiments the monomeric protein miRFP703 and the dimeric protein iRFP702
were used as controls. Figure 3.8a shows the elution profile of the size exclusion
chromatography and figure 3.8b shows the fluorescence image of the electrophore-
sis gel.

The elution profiles for the controls in figure 3.8a show a single peak around
16 ml for the monomeric protein miRFP703 and a main peak for iRFP702 at an elu-
tion volume of 14 ml with additional side peaks at smaller elution volumes. Since
miRFP703 and iRFP702 are nearly identical in size, i.e., 315 amino acids and 311
amino acids, respectively, the elution profiles confirms that miRPF703 behaved like
a monomer while iRFP702 had oligomerization tendencies at a concentration of
10 µM. The protein variant V410 had a similar elution profile as miRFP703 with a sin-
gle peak at 16 ml. Therefore, V410 also behaved like a monomer at a concentration
of 10 µM in SEC. Also the semi-native gel electrophoresis confirmed the monomeric
nature of V410 since only a single band was present at the same height as the single
band of monomeric miRFP703. In contrast, for the oligomeric protein iRFP702 two
bands were visible.

Characterization of Brightness of V410 in Mammalian Cells

For the directed evolution of V410 a bacterial expression system was used. However,
the protein was developed for fluorescence imaging in mammalian cells. Therefore,
the brightness of V410 in mammalian expression systems was characterized using
flow cytometry. The experiment was performed with transiently transfected mam-
malian cells and with stable Bxb1 landing pad cell lines. The stable Bxb1 landing pad
cell lines have the advantage that the expression level is much more homogeneous
as compared to the transfected cells. For comparison of the brightness, the template
miRFP703 was measured alongside V410.
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FIGURE 3.8: Characterization of oligomeric state of V410. (A) Elution
profile of size exclusion chromatography of V410. (B) Semi-native gel
electrophoresis of V410. For (A) and (B), miRFP703 and iRFP702 were

measured alongside V410 for reference.

Figure E.1 shows the results of flow cytometry measurements of Bxb1 landing
pad cell lines expressing the fusion constructs keratin-V410-P2A-mEGFP (P2690)
and keratin-miRFP703-P2A-mEGFP (P2432), respectively. The cells were incubated
in 0 µM, 5 µM or 25 µM external BV for 2 h before the flow cytometry measurements.
The mean brightness of the samples for the different detection channels is shown in
figure 3.9 and in table 3.2.

0 µM 5 µM

690-720 nm 720-766 nm 690-720 nm 720-766 nm

V410 506.00±0.48 357.80±0.44 632.29±0.56 483.11±0.505
miRFP703 603.61±0.62 468.35±0.57 650.14±0.62 507.91±0.57

25 µM

690-720 nm 720-766 nm

V410 651.90±0.63 501.55±0.55
miRFP703 649.78±0.64 508.14±0.58

TABLE 3.2: Comparison of flow cytometry data of stable CRISPR cell
lines
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FIGURE 3.9: Comparison of flow cytometry data of stable Bxb1
landing pad cell lines expressing the fusion constructs (P2690)
keratin-V410-P2A-mEGFP (orange) and (P2432) keratin-miRFP703-
P2A-mEGFP (blue) after incubation with 0, 5 and 25 µM BV for 2 h.
(A) Fluorescence signal of cells in the detection window between 690
to 720 nm. (B) Fluorescence signal of cells in the detection window
between 720 to 766 nm. Black bars indicate standard errors of the
measurements. The measurements were performed in replicates of

n=3 with 10000 cells for each replicate.

Similarly, figure E.2 shows the results of flow cytometry measurements of HeLa
cells transiently expressing V410-P2A-mEFGP and miRFP703-P2A-mEFGP, respec-
tively. To account for different transfection efficiencies, the NIR fluorescence was
normalized to the mEGFP fluorescence. 2 h before the measurements, the cells were
incubated in 0 µM, 5 µM, 25 µM or 100 µM BV. The mean brightness of the samples
is shown in figure 3.10 and in table 3.3.
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FIGURE 3.10: Comparison of flow cytometry data of HeLa cells tran-
siently expressing the fusion constructs (P3319) V410-P2A-mEGFP
(orange) and (P3320) miRFP703-P2A-mEGFP (blue) after incubation
with 0, 5, 25 and 100 µM BV for 2 h. (A) Fluorescence signal of cells in
the detection window between 690 to 720 nm. (B) Fluorescence signal
of cells in the detection window between 720 to 766 nm. NIR fluo-
rescence was normalized to mEGFP fluorescence to account for vari-
ations in transfection efficiency. Black bars indicate standard errors of
the measurements. The measurements were performed in replicates

of n=5 with 10000 cells for each replicate.
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0 µM 5 µM

690-720 nm 720-766 nm 690-720 nm 720-766 nm

V410 0.05±0.0003 0.02±0.0002 0.55±0.0022 0.14±0.0006
miRFP703 0.10±0.0005 0.03±0.0002 0.47±0.0019 0.13±0.0006

25 µM 100 µM

690-720 nm 720-766 nm 690-720 nm 720-766 nm

V410 0.67±0.0026 0.17±0.0007 0.65±0.0027 0.17±0.0008
miRFP703 0.51±0.0020 0.14±0.0006 0.54±0.0023 0.15±0.0007

TABLE 3.3: Comparison of flow cytometry data of transient expres-
sions

The brightness distributions were very different between the stable and transient
expressions. For the stable expression, the brightness of the cells followed approx-
imately a normal distribution (as indicated by the dashed lines in figure E.1). In
contrast, the brightness distribution of the transient expressions was clearly not nor-
mally distributed and varied across orders of magnitude. The reason for this is that
transiently transfected cells take up different amounts of plasmid DNA during trans-
fection.

For the stable expressions, miRFP703 was approximately 20% and 30% brighter
than V410 in the respective detection channels without the addition of external BV.
After incubation with 5 µM BV for 2 h, miRFP703 was still 3% and 5% brighter in the
respective detection channels. At a BV concentration of 25 µM V410 was approxi-
mately as bright as miRFP703. In contrast, for the transient expressions, miRFP703
was only brighter than V410 when no external BV was added. For 5 µM, 25 µM and
100 µM external BV V410 was 17% and 8%, 31% and 21%, 20% and 13% brighter
than miRFP703 in the respective detection channels. The maximum brightness of
V410 in the transient expressions was reached after incubation with 25 µM BV, while
the maximum brightness of miRFP703 was reached after incubation with 100 µM
BV. For both proteins, the difference in brightness between incubation with 0 µM
and 5 µM BV was bigger for the transient expression than for the stable expression.

To summarize the biophysical characterization of V410, the protein showed an
excitation maximum at 677 nm and an emission maximum at 704 nm (see figure 3.7b).
Therefore, excitation and emission maxima were located within the desired NIR
spectral region. A fluorescence lifetime of 1120 ps and a fluorescence quantum yield
of 21% were measured for V410. In comparison, for miRFP703 a fluorescence life-
time of 690 ps and a quantum yield of 12% were measured. Using this values, a
molecular brightness of 24000 and 10900 was calculated for V410 and miRFP703, re-
spectively. Furthermore, V410 showed a high pH stability with a pka value of 4.3 (see
figure 3.7d). The monomeric nature of V410 was confirmed in SEC (see figure 3.8a)
and semi-native gel electrophoresis (see figure 3.8b). This suggests the applicability
of V410 as a fusion tag in live-cell microscopy. In different mammalian expression
systems the protein variant showed bright NIR fluorescence (see figure 3.9 and fig-
ure 3.10). However, especially without addition of external BV the higher quantum
yield of V410 as compared to the template miRFP703 did not translate into likewise
increased brightness in mammalian cells. Moreover, the difference in brightness
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between the addition of 0 and 5 µM external BV was bigger for the transient expres-
sion than for the stable expression. This result suggests, that fluorescence imaging
without addition of external BV should be performed using the stable expression
system. For fluorescence imaging of transiently transfected mammalian cells, the
addition of 25 µM BV resulted into the brightest fluorescence. Therefore, whenever
BV was added before imaging, a concentration of 25 µM was used.

3.4 Application of V410 in Live-Cell Imaging

The protein variant V410 was developed for the application in NIR live-cell fluores-
cence microscopy. The following sections report on the results of the application of
V410 in confocal, STED and FLIM imaging. If not stated differently, transfection of
constructs for transient expression was performed approximately 24 h before imag-
ing and approximately 2 h before imaging 25 µM BV was added to the cells. Details
on the exact imaging conditions used for the recording of the images shown in this
chapter can be found in table D.1. All microscopy images depicted in this chapter
are raw data if not stated otherwise.

3.4.1 Confocal Imaging

To investigate the usefulness of the protein variant V410 as fusion tag in live-cell flu-
orescence microscopy, confocal images of different cellular structures labeled with
V410 were recorded. The cytoskeleton was targeted via β-actin (P3242), cytokeratin-
18 (P3241), vimentin (P2698) and Map2 (P2696) fusion constructs. The nuclear pore
complex was targeted via a Nup50 fusion construct (P2697). Chromatin was stained
via a H2B fusion construct (P3230). The outer mitochondrial membrane was targeted
via a tomm20 fusion construct (P3279) and the centromeres were targeted via a fu-
sion of V410 with CenpC1 (P3227). Additionally, the mitochondrial matrix (P3231)
and peroxisomes (3229) were labeled by adding the respective import sequences N-
or C-terminally to the coding sequence of V410.

Aberrant cells with strong overexpression artefacts could be found for all tran-
siently expressed fusion constructs. This was expected since the number of plasmid
DNA a single cell takes up during transfection, and consequently the expression
level, varies strongly between different cells. Exemplary raw images of cells with
adequate expression levels for some fusion constructs are shown in figure 3.11.

The correct localisation of V410 in peroxisomes and the mitochondrial matrix
demonstrated the applicability of V410 under basic pH conditions (see figure 3.11).
Tightly packed and highly dynamic structures like the microtuble cytoskeleton did
not show signs of impaired functionality caused by the indirect labelling with the
V410-Map2 fusion construct (see figure 3.11 and figure 3.12). Likewise, H2B in-
volved in the formation of tightly packed and strongly regulated chromatin struc-
tures could be labeled with the fluorescent protein without visibly altering cellular
function or even triggering apoptosis (see figure 3.11).

Besides transient expression of fusion constructs, vimentin was tagged endoge-
nously with V410 in HeLa cells via CRISPR/Cas-9 genome editing (P2691). This
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FIGURE 3.11: Confocal localisations of cellular structures with V410.
HeLa cells were transiently transfected with the plasmid for mi-
crotubule localisation (P2696), nuclear pore localisation (P2697), vi-
mentin localisation (P2698), centromere localisation (P3227), localisa-
tion in peroxisomes (P3229), histone localisation (P3230), localisation
in the mitochondrial matrix (P3231), keratin localisation (P3241) and
actin localisation (P3242), respectively. 25 µm BV was added 2 h be-
fore imaging. All images have different color maps. Scale bars: 10 µm.

allowed for expression of a V410-vimentin fusion construct close to endogenous ex-
pression levels. Additionally, a keratin-V410 fusion construct (P2690) was success-
fully integrated into a Bxb1 landing pad cell line [61], for stable expression of the
fusion construct under the control of the CAG promoter in mammalian U2OS cells.
The cells grew in cell culture over several generations without any sign of impaired
proliferation or toxic effects due to the expression of the fusion constructs. In confo-
cal imaging, cells of both cell lines showed homogeneous expression without aggre-
gations or overexpression artefacts (see figure 3.16 and figure 3.19 for reference). The
stable mammalian cell lines allowed for reproducible fluorescence measurements
without perturbation of the cells by the harsh transfection procedure.
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Confocal Movies

To capture dynamic cellular processes, consecutive frames of the same region of
interest were recorded. Figure 3.12a shows the frames 1, 250, 750 and 1000 of an
exemplary series of 1000 confocal frames of HeLa cells transfected with a plasmid
encoding for the expression of the fusion construct V410-Map2 (P2696). The mean
brightness of every 10th raw image is plotted in figure 3.12b.

(A) Representative images from a series of 1000 consecutive confocal images
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(B) Plot of normalized integrated intensity over 1000 consecutive confocal images

FIGURE 3.12: Recording of 1000 consecutive confocal images of HeLa
transfected with the V410-Map2 fusion construct (P2696). (A) Repre-
sentative images. (B) Plot of normalized integrated intensity. 25 µm

BV was added 2 h before imaging. Scale bar: 10 µm.

After 1000 consecutive confocal frames the mean brightness of the raw image
was still above 60% of the initial brightness. This result demonstrates the high photo
stability of V410 in NIR confocal live-cell imaging. Since the entire cell was imaged,
also photo sensitive regions like the nucleus were exposed to high light doses. How-
ever, no signs of cellular response to photo toxic stress were noted by observing the
fluorescent structures.

3.4.2 Implementation of STED Imaging

Since V410 showed correct localisations for various tagged proteins and high pho-
tostability in confocal imaging, the performance of the protein variant in live-cell
STED microscopy was investigated next. An important parameter to optimize for
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STED microscopy is the utilized STED wavelength [137, 15]. For this, three experi-
ments were performed to investigate the influence of the utilized STED wavelength
on photo bleaching, reexcitation and STED efficiency for V410. For those experi-
ments, a stable HeLa cell line expressing V410-keratin (P2690) was used.

Correlation between Photo Bleaching and STED Wavelength

Dynamic processes in living cells can only be observed if the recording of consecu-
tive frames at the same position is possible before the fluorescent molecules in this
region are destroyed by photo bleaching. To investigate the correlation between
photo bleaching and STED wavelength, 20 consecutive STED frames were recorded.
An excitation power of 20 µW at 670 nm and a STED power of 45 mW (measured
at the back aperture of the objective lens) for STED wavelengths between 790 to
840 nm were used. The measurements were performed with transiently transfected
HeLa cells expressing a V410-Map2 fusion protein (P2696). The measurement was
performed in replicates of n=3. The mean fluorescence intensity normalized to the
first frame together with the standard deviation is plotted in figure 3.13a. The prob-
ability of photo bleaching is constant over consecutive time intervalls. Hence, photo
bleaching of an assemble of molecules follows an exponential behaviour [7, 70, 106].
Because of this, an exponential model as described by equation (3.2) was fitted to the
data points.

I(t) = A · e−Kt (3.2)

From the rate constant K the bleaching half time t1/2 was calculated following equa-
tion (3.3).

t1/2 =
ln(2)

K
(3.3)

In figure 3.13b the bleaching half time t1/2 is plotted against the wavelength of the
STED beam. The bleaching half time is lowest for a STED wavelength of 790 nm and
highest for a STED wavelength of 840 nm.

Correlation between Reexcitation and STED Wavelength

Another important consideration for choosing the optimal STED wavelength is the
reexcitation behaviour of the fluorescent protein at that wavelength. A fluorescent
protein in the electronic ground state S0 cannot only be transferred to the first excited
state S1 by the excitation beam, but also by the STED beam. A high reexcitation cross
section causes cycling of the fluorescent protein between the states S0 and S1 and
consequently increased photo bleaching [91]. In order to measure the dependence
of the reexcitation on the STED wavelength, the mean brightness of the same sample
region was compared when excited with the excitation beam at 670 nm or the STED
beam at different wavelengths and different STED powers. Powers were measured
at the back aperture of the objective lens. Transiently transfected HeLa cells express-
ing a V410-Map2 fusion protein (P2696) were used to perform the measurements.
For this experiment, the STED beam was used with a Gaussian beam profile instead
of a donut shaped beam profile. The measurements were performed in replicates of
n=3. The ratio of the mean brightness when excited with 670 nm brconf to the mean
brightness when excited with different STED wavelengths brSTED is plotted in fig-
ure 3.14a. The fluorescence emission intensity is proportional to the intensity of the
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FIGURE 3.13: Analysis of correlation between photo bleaching and
STED wavelength. (A) Measurements of photo bleaching for STED
wavelengths between 790 to 840 nm. (B) Correlation between bleach-
ing halftime and STED wavelength. Data were recorded using tran-
siently transfected HeLa cells expressing a V410-Map2 fusion protein
(P2696). 2 h before recording the data, 25 µM BV was added to the
cells. 20 µW excitation power and 45 mW STED power, measured at
the back aperture of the objective lens, were used to record the im-

ages.
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FIGURE 3.14: Analysis of correlation between reexcitation and STED
wavelength. (A) Measurements of reexcitation for wavelengths be-
tween 790 to 840 nm. (B) Correlation between reexcitation and STED
wavelength. Data were recorded using transiently transfected HeLa
cells expressing a V410-Map2 fusion protein (P2696). 2 h before
recording, the data 25 µM BV was added to the cells. The STED pow-

ers were measured at the back aperture of the objective lens.

excitation light [146, 15]. Therefore, a linear model as described by equation (3.4)
was fitted to the data points.

brSTED

brconf
= b · PSTED (3.4)

In figure 3.14b, the reexcitation rate b was plotted against the STED wavelength. The
curve shows strongest reexcitation for a STED wavelength of 790 nm and the nearly
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no reexcitation for 840 nm, resembling the absorption spectrum of V410 between 790
to 840 nm.

Correlation between STED Efficiency and STED Wavelength

For a given STED beam intensity ISTED the resolution in STED microscopy depends
on the saturation intensity Isat (compare equation (1.7)). The saturation intensity
Isat, however, is a function of the STED wavelength. Consequently, an important
consideration for choosing the ideal STED wavelength is the saturation intensity at
this particular wavelength in order to maximize the resolution enhancement. To
measure the STED efficiency, the mean brightness of a confocal image brconf was
compared to the mean brightness of a STED image brSTED of the same region for dif-
ferent STED wavelengths and STED intensities. Transiently transfected HeLa cells
expressing a V410-keratin fusion protein (P3241) were used as a sample. For the
confocal and STED images, an excitation power of 15 µW at 670 nm (measured at the
back aperture of the objective lens) was used. The STED beam had a Gaussian beam
profile instead of a donut shaped beam profile. The measurements were performed
in replicates of n=3. In figures 3.15a to 3.15f the ratios brSTED/brconf were plotted for
different STED wavelengths from 790 to 840 nm.

An exponential model with an additional offset as described by equation (3.5)
was fitted to the data points. This exponential model can be derived from a simpli-
fied two-level system where the additional offset term represents a confocal back-
ground [53].

brSTED

brconf
= (1− ε) · e(−PSTED/Psat) + ε (3.5)

In figure 3.15g the saturation intensity Psat and the offset term ε were plotted against
the STED wavelength. Psat exhibited a minimum at 790 nm and increased as the
overlap between the spectrum of the STED beam and the emission spectrum of V410
decreased. An exception to this is the Psat value at 830 nm as it is slightly higher than
the value for 840 nm. The offset ε had a maximum value of approximately 0.126 at
790 nm and decreased monotonically to a value of 0.090 for 840 nm.

To summarize, the bleaching half time t1/2 increased with increasing STED wave-
length from 790 to 840 nm (see figure 3.13b), while the reexcitation rate b decreased
(see figure 3.14b). Measurements of the correlation between STED efficiency and
STED wavelength showed an increase of the saturation power Psat and a decrease of
the offset ε with increasing STED wavelength from 790 to 840 nm (see figure 3.15g).
Additionally, technical considerations were taken into account when choosing the
STED wavelength. A part of the STED beam was used for optical pumping of a
photonic crystal fiber to produce the excitation light. The efficiency of this process
and consequently the available excitation power was also influenced by the choice
of the STED wavelength [32]. Based on this, the STED wavelength was set to 820 nm
for the following STED experiments as a compromise between photo bleaching, re-
excitation, STED efficiency, STED offset and efficiency of the optical pumping of the
photonic crystal fiber.
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FIGURE 3.15: Analysis of correlation between STED efficiency and
STED wavelength. (A) - (F) Measurements of STED efficiency for
STED wavelenghts between 790 to 840 nm. (G) Correlation between
STED efficiency and STED wavelength. Data were recorded using
transiently transfected HeLa cells expressing a V410-keratin fusion
protein (P3241). 2 h before recording the data 25 µM BV was added
to the cells. An excitation power of 15 µW was used for confocal and
STED images. The powers were measured at the back aperture of the

objective lens.

3.4.3 STED Imaging

After the best depletion wavelength for STED imaging of protein variant V410 has
been established in section 3.4.2, section 3.4.3 reports on the results of live-cell STED
microscopy of different cellular structures labeled with V410.

First, STED imaging of living CRISPR/Cas-9 genome edited U2OS cells stably
expressing a vimentin-V410 fusion protein (P2691) was performed. Due to the physi-
ological expression level of the fusion construct, a thin filamentous network spanned
through the entire cell. Because of this, the stable CRISPR cell line was a well suited
sample for evaluating the achievable resolution without impairment by overexpres-
sion artefacts. Figure 3.16a shows the confocal and STED overview images of a hole
U2OS cell next to the zoomed confocal and STED images of the marked region.

To determine the resolution of the images, 14 line profiles were drawn as in-
dicated in the images. To account for random fluctuations in the line profiles due
to noise, a pixel averaging of three pixels was used. This means, the line profiles
shown here are actually the average line profiles of three neighboring and parallel
line profiles. A Lorentzian model as described by equation (2.1) was fitted to the line
profiles. Representative line profiles are shown in figures 3.16b to 3.16e (for all line
profiles see figure D.3).

The median of the FWHM of the confocal line profiles was 306 nm. 268 nm was
the lowest FWHM and 346 nm was the highest FWHM that was measured. The
measured values are higher than the theoretical resolution of an ideal confocal mi-
croscope (see equation (3.6) [25, 26]). The reasons for this discrepancy are, i.a., the
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FIGURE 3.16: Confocal and STED recordings of genome edited U2OS
CRISPR cell line expressing vimentin-V410 (P2691). (A) Overview
and zoomed confocal and STED images. (B) - (E) Confocal (blue) and
STED (red) line profiles as indicated in (A). 25 µm BV was added 2 h

before imaging. Scale bar: 10 µm.
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(A) Confocal and STED images
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(B) Confocal and STED line profile

FIGURE 3.17: Confocal and STED recordings of HeLa cells transiently
expressing V410-Nup50 (P2697). (A) Overview and zoomed confocal
and STED images. (B) Confocal (blue) and STED (red) line profiles as
indicated in (A). 25 µm BV was added 2 h before imaging. Scale bars:

10 µm (overview image), 1 µm (zoomed image).

finite pinhole size (equation (3.6) assumes an infinitesimal small pinhole size) and
optical abberations.

FWHMconf =
0.37 · (670 nm + 700 nm

2
)

1.4
= 181 nm (3.6)

For STED, the median FWHM was 83 nm, the lowest FWHM was 43 nm and the
highest FWHM was 98 nm. Hence, the 2D resolution in the STED image is improved
by a factor of 3 to 4 as compared to the confocal image.

Next, transiently transfected HeLa cells were imaged with STED microscopy.
Figure 3.17a shows the exemplary confocal and STED overview images of two HeLa
cells transiently expressing a V410-Nup50 fusion construct (P2697) next to the zoomed
confocal and STED images of the indicated region. The line profiles over three nu-
clear pore complexes indicated in the zoomed images are plotted in figure 3.17b.
The sum of three Lorentzian functions centered at different coordinates was fitted to
the line profile of the STED image. The comparison between the confocal and STED
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(A) Confocal and STED images
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(B) Confocal and STED line profile

FIGURE 3.18: Confocal and STED recordings of HeLa cells transiently
expressing V410-keratin (P3241). (A) Overview and zoomed confocal
and STED images. (B) Confocal (blue) and STED (red) line profiles as
indicated in (A). 25 µm BV was added 2 h before imaging. Scale bars:

10 µm (overview image), 1 µm (zoomed image).

line profiles reveals the resolution enhancement achieved with STED microscopy. In
the confocal image, the neighbouring nuclear pore complexes could not be distin-
guished while STED microscopy clearly resolved three distinct complexes. The cen-
tral intensity maxima of the complexes are approximately 240 nm apart. Figure 3.18a
shows an exemplary overview and zoomed images of HeLa cells transiently express-
ing V410 tagged to keratin (P3241). Again, line profiles were taken at the indicated
regions to illustrate the resolution improvement of STED imaging compared to con-
focal imaging (see figure 3.18b). Due to the limited resolution only a single filament
was visible at the indicated position in confocal microscopy. The improved reso-
lution of STED microscopy revealed two filaments with a distance of 250 nm from
peak to peak.

The desired application for NIR fluorescent proteins in the future is deep-tissue
fluorescence imaging of living mammalian organisms. For this, the physiological
BV levels in living mammalian cells must be sufficient for the fluorescent protein.
To examine if V410 can be imaged in mammalian cells with physiological BV lev-
els, confocal and STED images of stable Bxb1 landing pad HeLa cells expressing a
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FIGURE 3.19: Confocal and STED recordings of stable Bxb1 landing
pad cell line expressing keratin-V410 (P2690). No BV was added be-
fore imaging. Scale bars: 10 µm (overview image), 1 µm (zoomed im-

age).

keratin-V410 fusion protein were recorded without the addition of 25 µM BV before
imaging. The resulting images are shown in figure 3.19. The keratin structures were
much dimer as compared to the situation with external supply of 25 µM BV before
imaging. Additionally, the labelling density seemed worse. This means the intensity
along filaments fluctuated more and was not as homogeneous compared to a sam-
ple incubated with external BV before imaging. However, by adjusting the imaging
parameters (e.g. increasing the pixel dwell time) it was possible to capture the ker-
atin network of a HeLa cell with confocal and STED imaging without the supply of
external BV.

In summary, live-cell STED nanoscopy of transiently transfected mammalian
cells and stable mammalian cell lines with and without addition of external BV was
performed. Using endogenously labeled U2OS cells expressing a vimentin-V410 fu-
sion protein, resolutions down to 43 nm were measured. Next, consecutive STED
images were recorded to capture dynamic cellular processes of living mammalian
cells with increased resolution.

STED Movies

As stated earlier, dynamic cellular processes can only be captured by fluorescence
microscopy if the recording of consecutive images of the same region is possible.
For confocal microscopy, it could be demonstrated that after 1000 consecutive im-
ages of mammalian cells transiently expressing V410 tagged to Map2 only approx-
imately 40% of the initial fluorescence signal was lost due to photo bleaching (see
figure 3.12b). For STED microscopy, the effect of photo bleaching is in general
even more pronounced compared to confocal microscopy. To evaluate this, HeLa
cells were transiently transfected with a plasmid for the expression of V410-Map2
(P2696). After incubation for 2 h with 25 µM BV, STED movies were recorded. Fig-
ure 3.20a shows the frames 1, 25, 75 and 100 of an exemplary recording of 100 con-
secutive STED frames. The normalized integrated intensity is plotted in figure 3.20c.
After 100 STED frames approximately 50% of the initial fluorescence signal of the
image was lost due to photo bleaching. To correct for the effect of photo bleach-
ing, the bleaching correction algorithm of histogram matching was applied using
the BleachCorrector plugin from the software Fiji [84, 116]. Figure 3.20b shows the
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corrected frames 1, 25, 75 and 100. Note, that after applying histogram matching the
color of the pixels does not reflect the actual photon counts in that pixel anymore.
Therefore, quantitative analysis of the corrected images is not possible. After apply-
ing bleaching correction fine filaments were clearly visible even after 100 consecutive
STED frames.

3.4.4 Fluorescence Lifetime Imaging

For many applications in cellular research, it is not sufficient to only have informa-
tion about the distribution and abundance of a single fluorescently labeled protein.
To learn about the interplay between different proteins, it is necessary to be able
to label and detect two or more proteins of interest at the same time. One way to
do this, is the labelling of different proteins with spectrally distinct fluorescent la-
bels. However, in general this approach requires at least one additional excitation
light source, exposing the biological sample to additional photo stress and rendering
imaging entirely within the NIR spectral region difficult. In this section, an alterna-
tive approach was used, namely fluorescence lifetime imaging (FLIM), where the
labels are not spectrally distinct but have distinct fluorescence lifetimes. This en-
ables two color imaging with only one excitation source in the NIR spectral region.

In practice, two-color FLIM images were recorded using a Bxb1 landing pad
HeLa cell line stably expressing keratin-miRFP703 (P2432) (τmiRFP703=690 ps) that
was transfected with a plasmid for transient expression of tomm20-V410 (P3279)
(τV410=1120 ps). The exact imaging parameters are listed in table D.1. For record-
ing of reference lifetime histograms, the stable cell line expressing keratin-miRFP703
alone and normal HeLa cells only transiently expressing tomm20-V410 were used,
respectively. Subsequently, the reference histograms were accumulated by summing
the decay histograms in all pixels above an intensity threshold for the respective
FLIM images.The FLIM images used for the accumulation of reference histograms
are shown in figure 3.21a and the accumulated reference histograms are shown in
figure 3.21b.

Decomposition Methods

Two different methods have been implemented in Python for decomposing the recorded
two-color FLIM images into distinct channels for the respective fluorescent protein
based on their characteristic fluorescence decay. Both methods assume that the mea-
sured fluorescence decay

#»

bn in every pixel of the FLIM image is a linear combination
of the reference decays #»r1 and #»r2 plus noise #»εn (with zero mean) as described by
equation (3.7) with n being the pixel index and y being the number of bins in the
decay histograms.
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(3.7)

The first method finds the least squares solution of matrix equation (3.8) and is based
on a publication from Enderlein et al. [37]. Matrix R is composed of the reference de-
cays #»r1 and #»r2 as column vectors. Matrix A is composed of the unknown coefficients
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(A) Representative images from a series of 100 consecutive STED images

(B) Representative images from a series of 100 consecutive STED images with ap-
plied bleaching correction
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(C) Plot of normalized integrated intensity over 100 consecutive STED images

FIGURE 3.20: Recording of 100 consecutive STED images of HeLa
transiently expressing V410-Map2 (P2696). (A) Representative im-
ages. (B) Representative images with applied bleaching correction
(histogram matching) with Fiji [84, 116] (After bleaching correction
color does not reflect actual photon counts). (C) Plot of normalized
integrated intensity. 25 µm BV was added 2 h before imaging. Scale

bar: 10 µm.
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(A) Reference images
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(B) Reference histograms

FIGURE 3.21: Reference images and histograms for FLIM. (A) Ref-
erence FLIM images of stable keratin-miRPF703 cell line (P2432) and
HeLa cells transiently expressing tomm20-V410 (P3279). (B) Refer-
ence histograms accumulated from reference FLIM images. The refer-
ence histograms are normalized to an integral of 1. Scale bars: 10 µm.

a1n for the first reference decay and a2n for the second reference decay for all x pixel.
Matrix B is composed of the measured decay histograms

#»

bn of the FLIM image as
column vectors. A schematic illustration of equation (3.8) can be found in figure C.1.
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(3.8)

The least squares solution of equation (3.8) is given by equation 3.9.

A = (RTR)−1RTB (3.9)

The second method aims to find the most likely linear combination of reference de-
cays

# »

λn for pixel n given the measured decay
#»

bn on the basis of Poisson statistics.
This approach is reasonable because the main source of noise in fluorescence lifetime
decay histograms is Poisson noise (i.e. shot noise) due to the quantum mechanical
nature of fluorescence. Equation (3.10) shows the probability mass function describ-
ing this process with bnm being the number of measured photons in the mth bin of
the nth pixel of the FLIM image and λnm being the number of expected photons in
the mth bin for the nth pixel of the model function.

f (bnm|λnm) =
λbnm

nm

bnm!
e−λnm , bnm = 0, 1, 2, ..., ∞ (3.10)

By applying the natural logarithm to both sides of equation (3.10) it can be rewritten
as equation (3.11).

ln( f ) = bnmln(λnm)− λnm − ln(bnm!) (3.11)

To maximize the likelihood based on the entire decay curve, summation over all m
bins has to be performed as described by equation (3.15).
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y

∑
m=0

ln( f ) =
y

∑
m=0

bnmln(λnm)− λnm − ln(bnm!) (3.12)

Under the assumption that ∑
y
m=0 λnm ≡ ∑

y
m=0 bnm ( #»εn has a mean of zero) the

terms −λnm and −ln(bnm!) become constant and can be ignored for the maximiza-
tion of the probability. This simplifies equation (3.15) to equation (3.13). From the
assumption, it can additionally be derived that the sum of the amplitudes a1n and
a2n is equal to the sum of counts in the nth pixel of the FLIM image ∑

y
m=0 λnm if

the reference decays #»r1 and #»r2 are normalized so that the integral of each histogram
equals 1. This allows to write the model function as described by equation (3.14).

y

∑
m=0

ln( f ) =
y

∑
m=0

bnmln(λnm) =
#»

bn • ln(
# »

λn) (3.13)

# »

λn = a1n
#»r1 + (

y

∑
m=0

bnm − a1n)
#»r2 (3.14)

Therefore, the optimization problem was finding the a1n for every pixel n in the
FLIM image that maximizes equation (3.13). In practice, instead of maximizing
equation (3.13) both sides of the equation were multiplied by -1 and minimized in
Python using SciPy’s minimize function [62] (see equation (3.15)).

argmin
a1n

(− #»

bn • ln(a1n
#»r1 + (

y

∑
m=0

bnm − a1n)
#»r2)) (3.15)

Evaluation of Decomposition Methods

To evaluate the performance of the different decomposition approaches, two eval-
uation experiments were performed. In the first experiment, both approaches were
evaluated on simulated data. For this, 500 fluorescence decays with different noise-
to-signal levels were simulated by adding the normalized reference histograms with
equal amplitudes, scaling them with a factor and adding shot noise to the resulting
histograms. Both approaches were used to decompose the simulated decays. The
standard deviations of the ratios a1/a2 from 100 decompositions for every noise-
to-signal level for both decomposition approaches are plotted in figure 3.22. For
all noise-to-signal levels the maximum likelihood method outperformed the least
squares method. While at low noise-to-signal levels the difference in performance
between maximum likelihood and least squares method was only little, the perfor-
mance gap became bigger for higher noise-to-signal levels.

For the second evaluation experiment, both reference images from figure 3.21
were decomposed into two separate channels with either approach. Since only one
fluorescent protein was present in the respective reference image, an ideal decom-
position of the reference images would reconstruct the initial image in one channel
while the second channel would be empty. The results of the decompositions are
shown in figure D.4 for the maximum likelihood algorithm and figure D.5 for the
least squares algorithm. The count ratios for the different channels from the decom-
positions of the reference images for both decomposition approaches are plotted in
figure D.6. Again, the maximum likelihood method performed better in the experi-
ment than the least squares method as less photons are assigned to the wrong chan-
nel as can be seen from figure D.6. In summary, in both evaluation experiments the
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FIGURE 3.22: Evaluation of decomposition algorithms with simu-
lated data. Decays were simulated by adding normalized reference
histograms in a one-to-one ratio and adding Poisson noise. The simu-
lated decays were decomposed and the noise-to-signal ratio was plot-
ted against the standard deviation of the ratio a1/a2 of 100 decompo-

sitions.

maximum likelihood approach outperformed the least squares approach. This result
was to be expected, since the maximum likelihood approach is based on the correct
statistical model for the main source of noise in the data, namely shot or Poisson
noise. For this reason, the maximum likelihood method was used in the following
to perform decomposition of FLIM and FLIM-STED images.

Two-color FLIM imaging

As mentioned earlier, for two-color confocal fluorescence lifetime imaging a Bxb1
landing pad cell line stably expressing a miRFP703-keratin fusion protein (P2432)
was transfected with a construct for the transient expression of a V410-tomm20
fusion protein (P3279). Images were recorded using the commercial QUAD scan-
ning microscope and the prototype SNSPD with imaging conditions described in
table D.1. Subsequently, FLIM images were decomposed into two separate channels
using the maximum likelihood method described above based on the recorded refer-
ence decays for the different fluorescent proteins. Figure 3.23 shows a representative
FLIM image, the decomposition of this FLIM image into separate channels and the
merged color-coded image.

For recording of FLIM-STED images, the same sample and microscope was used.
The imaging conditions can be found in table D.1. In contrast to the confocal FLIM
images, the decomposition could not be performed directly, since the fluorescence
signal does not follow a simple exponential decay any more. Figure D.7 shows
the accumulated fluorescence decay of a recorded FLIM-STED image. The decay
is composed of a fast initial component and a slower second component. The fast
component is composed of fluorescence photons from the center of the STED donut
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FIGURE 3.23: Two-color confocal fluorescence lifetime imaging of
HeLa cells stably expressing miRFP703-keratin (P2432) and tran-
siently expressing V410-tomm20 (P3279). From left to right: inten-
sity image, decomposed keratin channel, decomposed tomm20 chan-
nel, merged two-color image. The decomposition was performed us-
ing the maximum likelihood method. Cells were incubated for 2 h in

25 µM BV before imaging. Scale bar: 10 µm.

FIGURE 3.24: Two-color STED fluorescence lifetime imaging of HeLa
cells stably expressing miRFP703-keratin (P2432) and transiently ex-
pressing V410-tomm20 (P3279). From left to right: intensity image,
time gated intensity image, decomposed keratin channel, decom-
posed tomm20 channel, merged two-color image. The decomposition
was performed using the maximum likelihood method. Cells were

incubated for 2 h in 25 µM BV before imaging. Scale bar: 10 µm.

and from the periphery before the respective fluorophores could be deexcited by
stimulated emission. The slow component represents the fluorescence decay of the
fluorophores in the center. The fluorophores in the periphery are now deexcited by
stimulated emission and do not contribute to the decay. For this reason, only the
slow decay was used for decomposition of the FLIM images, while the other bins
were discarded. This is similar to the practice of gated detection to increase the reso-
lution in STED imaging by discarding the initial photons that are not affected by the
STED laser [85]. A representative FLIM-STED image, the digitally gated FLIM STED
image, the decomposed channels and the color-coded merged channels are shown
in figure 3.24.

In summary, by using the difference in fluorescence lifetime it was possible to
perform two-color confocal and STED imaging of living mammalian cells expressing
a miRFP703-keratin and a V410-tomm20 fusion protein. For the first time, two-color
imaging was performed entirely in the NIR spectral region with an excitation beam
at 670 nm and a depletion beam at 820 nm. For this, the fluorescence lifetime images
were decomposed into the respective color channels using custom software based
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on a Poisson noise model. This model takes into account the physical source of the
majority of noise in the images, namely the probabilistic nature of photon emission.
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Chapter 4

Discussion

4.1 Directed Evolution

In this thesis, the fluorescence quantum yield of the NIR fluorescent protein miRFP703
was increased via directed evolution and fluorescence lifetime screening. Prior to
this work, the approach was used for engineering of GFP-like fluorescent proteins.
For example in 2010, Goedhart et al. identified bright cyan fluorescent protein vari-
ants by fluorescence lifetime screening [47]. Eight years later, in 2018, Manna et al.
used a microfluidic sorter to increase the fluorescence quantum yield of the GFP-like
fluorescent protein FusionRed by increasing its fluorescence lifetime [79].

4.1.1 Screening and Selection

The combined screening for fluorescence lifetime and fluorescence brightness in E.
coli cells proved suitable for improving the fluorescence quantum yield of a bacte-
rial phytochrome derived fluorescent protein. In the course of this work, the flu-
orescence lifetime of miRFP703 could be increased from 690 ps to 1120 ps for the
final protein variant V410. With this, the fluorescence quantum yield was increased
from 12 % for miRFP703 to 21 % for V410 while the brightness in the E. coli expres-
sion system increased 3-fold. This makes V410 the bacterial phytochrome derived
fluorescent protein with the longest fluorescence lifetime and the highest quantum
yield absorbing and emitting in the NIR spectral window beyond 650 nm to date.
BV-binding fluorescent proteins with comparable fluorescence lifetimes and fluores-
cence quantum yields, e.g. smURFP with a fluorescence lifetime of 1400 ps and a
fluorescence quantum yield of 18 % [109] and emIRFP670 with a fluorescence quan-
tum yield of 14 % [80], exhibit a blue-shift as compared to V410 and do not fall within
the NIR spectral window. Since the fluorescence quantum yield is one of the major
shortcomings of NIR fluorescent proteins engineered from bacterial phytochromes,
the approach may prove an important tool for further developments in this regard.

For expression of the fluorescent protein variants, an E. coli based bacterial ex-
pression system was used. The choice of a bacterial expression system for screening
allowed to perform many consecutive diversification and screening rounds within
the timeframe of this thesis since plasmid based diversification and bacterial expres-
sion in E. coli is fast and efficient. The entire cycle consisting of PCR based diversifi-
cation, screening and isolation of improved protein variants could be performed in
three to four days.

However, one shortcoming of the current screening approach in E. coli was re-
vealed by the comparison of the effective brightness in mammalian cells between
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V410 and miRFP703. The strongly increased fluorescence quantum yield, molecu-
lar brightness and brightness in E. coli cells of V410 compared to miRFP703, did not
translate into effective brightness in mammalian cells under most conditions. Espe-
cially under low BV concentrations, V410 was, in the tested mammalian expression
systems, not brighter than miRFP703. There are different possible explanations for
this behaviour.

The BV affinity of V410 may have decreased as compared to miRFP703 during
the screening process. The BV affinity was addressed indirectly in the screening
approach by measuring the fluorescence intensity of E. coli colonies expressing the
respective protein variant. However, the fluorescence intensity in E. coli colonies
does not only depend on the BV affinity of the protein, but also on other factors, e.g.,
the colony size and the expression level. Those additional factors could not be ad-
dressed separately. It was assumed they would be stable and would not impair the
measurement. If they were not stable, they may have compensated for decreased BV
affinity so that the fluorescence intensity measured in E. coli colonies may not have
reflected the BV affinity of the fluorescent protein variants.

Since there is no dedicated pathway for BV degradation in E. coli it is likely that
the BV concentration in the E. coli expression system is much higher as the physi-
ological BV concentration in mammalian cells [144, 24]. This may cause saturation
of the fluorescent proteins in the E. coli expression system with BV. This again may
lead to the effect that the fluorescence intensity in E. coli cells may not reflect the BV
affinity.

Finally, reduced expression, impaired folding and maturation or increased degra-
dation in mammalian cells may also explain the fact that the brightness of V410 in the
E. coli expression system did not translate well to the mammalian expression system.

In all three possible explanations above, the core of the problem is a limited trans-
ferability of the results obtained in the E. coli expression system to the mammalian
expression system. To avoid this problem entirely, screening in a mammalian expres-
sion system would be ideal. The easiest and most convenient mammalian expression
system would be a transient expression from a transfected plasmid. The number
of plasmids and, therefore, the resulting expression level of transiently transfected
mammalian cells varies strongly and would not allow to draw conclusions on BV
affinity based on fluorescence intensity of single cells. In principle, the same ap-
plies for transformation of bacterial cells. However, since an ensemble of E. coli cells
forming a colony on an agar plate are measured simultaneously the differences in
expression level between single cells are compensated.

A stable integration of the fluorescent protein variants into the genome would
enable a homogeneous expression level in mammalian cells. The disadvantage of
this approach would be that it is slower and less convenient than the expression in E.
coli cells. For instance, most mammalian cell lines double approximately every 24 h
while E. coli doubles approximately every 20 min [46]. As a result, less consecutive
rounds of screening and diversification could be performed in a given timeframe.
Additionally, the automated screening microscope would not be suitable for screen-
ing of mammalian cells. Instead a flow cytometry or microfluidic system would
have to be used.
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A compromise between the transferability of a mammalian screening and the
convenience of a bacterial screening could be a combined screening approach as de-
scribed for example by Kamper et al. [65, 64]. In a combined screening approach,
rounds of bacterial screening and rounds of mammalian screening could be alter-
nated.

4.1.2 Positions

The final protein variant V410 had 4 mutations compared to the template miRFP703
[119]. In the following, the 4 mutations are discussed based on the crystal structure
of miRFP703 and homologies with other bacterial phytochromes described in the
literature.

Position 193

In V410, phenylalanine at position 193 was substituted by leucine. The amino acid
is located in a flexible linker between β-sheets 7 and 8 in the GAF domain. In the
crystal structure of miRFP703 the side chain of phenylalanine 193 is pointing away
from the chromophore into the surrounding solution [119]. The substituted amino
acid leucine, like phenylalanine, has a hydrophobic side chain but it is sterically less
demanding. An effect on the chromophore via direct interactions is unlikely due to
the relative distance and orientation of amino acid 193. However, the substitution of
phenylalanine to leucine may effect the relative orientation and interaction of other
amino acids with the BV chromophore.

Position 202

In V410 valin 202 was substituted by cystein. Position 202 and the neighbouring po-
sition 201 were described before to have an important role in chromophore stabiliza-
tion [4, 118]. Amino acid 202 is located in the GAF domain and is part of the highly
conserved DIP motif. A kink in the polypeptide chain allows residues of amino acids
in the DIP motif to engage in direct interactions with the BV chromophore [138]. It
has been shown that mutating positions 201 and 202 does not only influence the fluo-
rescence quantum yield by providing stabilization to the chromophore but may also
alter the spectral properties of the protein. The spectrally distinct fluorescent pro-
teins miRFP670, miRFP703 and miRFP709 have threonine and valine, leucine and
valine and phenylalanine and isoleucine at positions 201 and 202 [119], respectively
(see figure 4.1). At position 201, leucine and phenylalanine are unpolar residues,
while threonine is a polar uncharged side chain. Valine and isoleucine at position
202 are both hydrophobic amino acid. Eventough more polar, cystein is regarded
a hydrophibic amino acid like valine and isoleucine [8]. Two cysteine residues of-
ten form a disulfide bond with a length of approximately 2 Å [27]. However, since
no cysteine residue is located in an appropriate distance to cysteine 202 in V410 the
formation of a disulfide bond seems unlikely here.

Position 210

Amino acid 210 is located in the chromophore binding pocket of the GAF domain
in close proximity to the BV chromophore. The original tyrosine residue at position
210 forms a hydrogen bond with the carbonyl oxygens of BV’s B ring [138] (com-
pare to tyrosine 216 in figure 1.11). In V410, tyrosine 210 was replaced by histidine.
Like tyrosine histidine is an aromatic amino acid. It can donate the nitrogen bound
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(A) miRFP670 (PDB ID: 5VIV) (B) miRFP703 (PDB ID: 5VIK)

(C) miRFP709 (PDB ID: 5VIQ)

FIGURE 4.1: Positions 201 and 202 in spectrally distinct miRFP vari-
ants in (A) miRFP670, (B) miRFP703 and (C) miRFP709. The protein
scaffold is shown in cartoon representation and rainbow color scheme
(N-terminus, blue to C-terminus, red). The chromophore is colored in
red. Positions 201 and 202 are shown in stick representation and are
labeled. The figure is based on PDB structures 5VIV, 5VIK and 5VIQ

[119].

hydrogen of its imidazole side chain to a hydrogen bond with the carbonyl oxygens
of BV’s B ring. Therefore, in principle histidine 210 in V410 may behave similar as
tyrosine 210 in miRFP703.

Position 253

Mutation I253S was the key mutation for increasing the fluorescence lifetime and flu-
orescence quantum yield of miRFP703. Additionally, spectral changes in shape and
position of absorption, excitation and emission bands of V410 were caused by the
I253S mutation as can be seen from figure 3.6. In the closely related fluorescent pro-
tein miRFP670 introducing a cysteine residue at position 253 provided an alternative
BV binding site [58, 120, 67]. The differences in BV binding between miRFP703 and
miRFP670 are shown in the respective crystal structures in figure 4.2. The binding
of the chromophore via cystein 253 drastically increased the fluorescence quantum
yield of miRFP670 as compared to miRFP703. Hontani et al. hypothesized that the
effect can be explained by a more constrained thioether linkage between the pro-
tein and the chromophore in miRFP703 [58]. Additionally, they showed that the
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π-electron conjugation to BV’s A-ring is broken in miRFP670 causing the blue-shift.
In the case of V410, mutation I253S does not allow for an alternative thioether link-
age to BV. An ether linkage to the chromophore via position 253 seems unlikely due
to the reduced reactivity of serine’s alcohol group compared to cystein’s thiol group.
However, it is likely that the substitution of the unpolar amino acid isoleucine by
the polar amino acid serine enables strong non-covalent interactions between the
BV chromophore and the amino acid at position 253.

(A) miRFP670 (PDB ID: 5VIV) (B) miRFP703 (PDB ID: 5VIK)

FIGURE 4.2: BV binding in miRFP variants. (A) BV binding of
miRFP670 via C20 and C253. (B) BV binding of miRFP703 via C20.
The protein scaffold is shown in cartoon representation and rain-
bow color scheme (N-terminus, blue to C-terminus, red). The chro-
mophore is colored in red. Amino acids involved in BV binding are
labeled and shown in stick representation. The figure is based on PDB

structures 5VIV and 5VIK [119].

4.2 Characterization

Fluorescence Quantum Yield

To measure the fluorescence quantum yield of bacterial phytochromes, two different
approaches were used. The Quantaurus-QY system determines the absolute quan-
tum yield by measuring the total amount of absorbed excitation photons and the
total amount of emitted fluorescence photons. The fluorescence quantum yield can
then be calculated as the ratio of those values. Due to the nature of the measurement,
all absorbing molecules in the sample will contribute to the amount of absorbed pho-
tons while only fluorescent molecules can contribute to the total amount of emitted
photons. In this sense, the measurement actually determines the quantum yield of
the entire solution including , e.g., non-fluorescent protein species, free chromophore
and protein of interest.

The second method to determine the fluorescence quantum yield used in this
work is based on the modification of radiative transitions of emitters in a nanocavity
and was introduced by Chizhik et al. in 2013 [22]. For this method, only fluorescent
molecules contribute to the measured quantum yield. Non-fluorescent molecules
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are ignored by the measurement.

Since different values were obtained from both methods the conclusion must be
drawn, that there were additional molecules in the purified protein solutions that
did absorb NIR excitation light but did not show fluorescence. Different molecules
are eligible. Free BV chromophore would absorb NIR excitation light but would not
emit fluorescence since deexcitation is achieved via non-radiative pathways. How-
ever, the amount of free BV chromophore in the purified protein solutions should be
low due to several buffer exchanges in the course of protein purification. Another
possible explanation for the observed differences in fluorescence quantum yield is
the presence of additional non-fluorescent bacterial phytochrome species in the pu-
rified protein solution. This non-fluorescent species could be made up of partially
degraded, incompletely folded or misfolded protein or a mix of all of the former. Ei-
ther way, the ratio of fluorescent and non-fluorescent but NIR-absorbing molecules
is likely to vary between different purifications. Consequently, the values measured
for the fluorescence quantum yield using the Quantaurus-QY system will vary ac-
cordingly. Therefore, the values measured with the second method seem to be more
reliable and better suited for comparison between different bacterial phytochrome
based NIR fluorescent proteins.

4.2.1 Spectral Properties

As described before in section 3.3, the shape of the fluorescence emission peak for
V410 was found to be concentration depended. At low protein concentrations the
emission spectrum of V410 exhibits a maximum around 700 nm with a pronounced
shoulder at 670 nm as seen in figure 3.6c. With increasing the protein concentration
the shoulder diminished until it disappeared entirely as shown in figure 3.7b.

A variety of different effects have been reported that can cause spectral shifts in
protein spectra. It has been shown that aggregation and unfolding can cause spectral
changes in the fluorescence emission spectra of proteins [34, 29, 74, 33]. For example,
the ratio between GFP’s absorption peaks at 395 nm and 470 nm is highly variable
depending upon temperature, ionic strength, protein concentration and pH [141].

Naturally, phytochromes assemble into homodimers [149, 6]. A crystal struc-
ture of R. palustris bacterial phytochrome from Bellini et al. indicates that PAS and
GAF domains are not involved in the dimerization interface (PDB ID: 4EHO [6]).
However, in P. aeruginosa bacterial phytochrome the helical bundles of the PAS, GAF
and PHY domain contribute to the dimer interface as demonstrated by Yang et al.
(PDB ID: 3C2W [149]). For the engineered BV binding fluorescent protein SMURFP
the chromophore is directly involved in homodimer formation as discussed by Ro-
driguez et al. [109]. At a protein concentration of 10 µM, no dimerization ten-
dency was observed for V410 in SEC measurements (see figure 3.8a). However,
with increasing protein concentration dimerization and oligomerization tendencies
increase and at some point homodimer formation may occur. Dimerization of V410
may alter the spectral properties of the protein causing the spectral differences ob-
served in the emission spectra of V410 recorded at different concentrations. Espe-
cially, when the dimerization interface involves the BV chromophore or the direct
chromophore vicinity as observed for SMURFP [109] spectral changes in the excita-
tion and emission spectra must be expected. Even if the local chromophore vicinity
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is not directly involved in dimerization, spectral changes may occur upon dimer-
ization due to global restructuring of the protein scaffolds. In this context, it is
interesting to note that the shoulder at 670 nm measured for V410 at low protein
concentrations approximately coincided with the main emission peak of miRFP670
[119] as can be seen in figure 4.3.
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FIGURE 4.3: Comparison between excitation and emission spectra of
protein variant V410 and miRFP670 [119].

4.3 Imaging

Prior to this thesis, several articles have been published describing the use of bacte-
rial phytochrome based NIR fluorescent proteins for live-cell fluorescence imaging.
In 2009, Shu et al. demonstrated NIR fluorescence imaging of engineered fluores-
cent protein IFP1.4 in living mice mediated by adenovirus serotype 5 [123]. Later
an improved variant of IFP1.4, namely IFP2.0, was used for neuronal imaging of
Drosophila melanogaster larvae in 2014 by Yu et al. [152]. Publications involving NIR
fluorescence imaging of mammalian cells are, e.g., Shcherbakova et al. [119], Oliinyk
et al. [90], Kamper et al. [65] and Matlashov et al. [80]. Of particular interest for this
thesis are the publications of Kamper et al. from 2018 [65] and Matlashov et al. from
2020 [80], as they demonstrated STED imaging with bacterial phytochrome based
NIR fluorescent proteins. As mentioned earlier, Kamper et al. employed the protein
SNIFP derived from the engineered protein WiPhy [4], while Matlashov et al. used
improved variants of the miRFP family [119]. Both Kamper et al. and Matlashov et
al., used transiently transfected mammalian cells for fluorescence imaging.

In this thesis, fluorescence imaging was demonstrated using transiently trans-
fected mammalian cells, Bxb1 landing pad cell lines and CRISPR/Cas-9 genome
edited mammalian cell lines. While transiently transfected mammalian cells are an
established model system for fluorescence imaging of bacterial phytochrome based
NIR fluorescent proteins [119, 90, 65, 80], Bxb1 landing pad cell lines and stable
CRISPR/Cas-9 genome edited cell lines have not been used in this context before.
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4.3.1 Confocal Imaging

Confocal imaging of different cellular localisations of V410 demonstrated the broad
applicability of the protein as a fusion tag for fluorescence microscopy.

It was possible to label highly dynamic cellular structures in living mammalian
cells like the microtubule cytoskeleton. The dynamics of the mictrotubule cytoskele-
ton could be followed over the course of several hours with only moderate photo
bleaching and no signs of phototoxic effects caused by elongated exposure of the
living sample with NIR excitation light. Also a fusion protein consisting of V410
and H2B was correctly localised in the nucleus. Again, no signs of toxic effects were
found in the confocal images.

In order to further evaluate and quantify the phototoxicity of NIR fluorescence
imaging and to investigate the phototoxicity of NIR imaging compared to imaging
in the visible region, more sensitive experiments must be performed in the future.
Goryaynov et al. measured the release of different indicators for cellular stress to
evaluate the immediate cellular response to phototoxic stress caused by fluorescence
imaging [49]. The release of Ca2+ was quantified via the Ca2+-sensor Fluoforte, mito-
chondria depolarization was measured through the decrease in fluorescence of JC-1
and reactive oxygen species were monitored using MitoSOX, CMFDA and Enzo To-
tal ROS/Superoxide indicator. Another measure for cell toxicity was used by Pen-
nacchietti et al. [93]. They used the increase in DNA repair puncta visualized with
a fusion construct of XRCC1 with the fluorescent protein EYGFP to quantify photo-
toxic effects of fluorescence imaging on DNA integrity. Long time phototoxic effects
can be quantified for example by observing the mortality rate of living cells after
fluorescence imaging.

Confocal Movies

The photostability of V410 in confocal imaging was demonstrated by recording 1000
consecutive confocal frames of entire HeLa cells transiently expressing a Map2-V410
fusion construct. After 1000 consecutive frames with an excitation light dose of
1.1 kJ cm-2 the normalized frame intensity reached approximately 60 % of the ini-
tial frame intensity.

Matlashov et al. demonstrated a similar bleaching behaviour for confocal record-
ings of fluorescent protein emiRFP703 [80]. However, in contrast to the measure-
ments of Matlashov et al., where they recorded only a small region of the cell, in
this work the entire cell was recorded. This approach measures the true confocal
bleaching behaviour of the fluorescent protein more accurately, since less bleached
protein can be replaced by unbleached protein from outside the imaging region. In
summary, V410 and emiRFP703 performed comparably well in consecutive confocal
imaging concerning photo bleaching. However, V410 showed this performance un-
der more demanding imaging conditions since in contrast to emiRFP703 the entire
cell was imaged over the course of several hours.
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4.3.2 STED Imaging

Implementation

To find the ideal depletion wavelength for STED imaging, the correlation between
the STED wavelength and photo bleaching, reexcitation and the observed STED ef-
ficiency was investigated. The effect of reexcitation decreased for increasing STED
wavelength between 790 to 840 nm following the tail of the excitation spectrum of
V410. This is in agreement with the literature, for example with results by Kamper et
al. [65] obtained with the NIR fluorescent protein SNIFP. The effect can be explained
physically since the amount of reexcitation from the STED beam is correlated to the
spectral overlap between the STED spectrum and the excitation spectrum of the pro-
tein. The bleaching halftime increased for increasing STED wavelength between 790
and 840 nm. This is likely due to increased cycling of the fluorescent molecule be-
tween the states S0 and S1 for shorter STED wavelength. For example, this effect
was described by Oracz et al. in 2017 [91].

The data recorded for the correlation between STED wavelength and STED ef-
ficiency and STED offset exhibited a typical behaviour. The saturation intensity is
typically dominated by the stimulated emission cross section. The larger the over-
lap between the STED spectrum and the emission spectrum of the fluorophore the
larger the stimulated emission cross section and the smaller the saturation inten-
sity. This wavelength dependency was experimentally demonstrated for example
by Vicidomini et al. in 2012 [137] for the fluorescent dye Atto-647N or in 2016 by
Bordenave et al. [15] for the fluorescent stain NileRed. Those experiments are in
agreement with the measurements of the STED efficiency performed in this work.
The only exception being the value obtained for Psat at 830 nm as it is higher than
the value at 840 nm. The STED offset was maximal at 790 nm and monotonically
decreased for longer wavelengths. This behaviour suggests that the offset is domi-
nated by reexcitation of molecules via the STED beam. A STED background due to
reexcitaion via the STED beam was described for example by Rittweger et al. [107]
or Gao et al. [44, 45].

STED Imaging

As demonstrated in figure 3.16, it was possible to perform STED imaging in the NIR
spectral region using an endogenously tagged CRISPR cell line expressing a fusion
construct of vimentin with V410. Filaments of vimentin have a diameter of approx-
imately 10 nm [28, 56, 128, 125, 88, 55] and the CBD of bacterial phytochromes has
a diameter of approximately 6 nm. Therefore, the diameter of vimentin filaments
endogenously labeled with V410 is in the order of 25 nm. This reflects the best reso-
lution achievable under ideal imaging conditions. In the actual experiment pertur-
bations caused by motion artefacts and aberrations lower the achievable resolution.
For example Wurm et al. identified a resolution of 25 nm in STED microscopy of vi-
mentin filaments labeled with Abberior STAR635P for an idividual antibody cluster
[145] and Butkevich et al. measured a resolution of approximately 50 nm in STED
microscopy of vimentin-HaloTag filaments after incubation with the fluorescent dye
610CP [20]. In this work, resolutions from around 80 nm down to 40 nm were mea-
sured for line profiles of STED images recorded with living genome edited U2OS
cells expressing the fusion construct V410-vimentin. The achieved resolutions are
substantially better than the resolutions achieved previously with NIR fluorescent
protein SNIFP [64, 65] and comparable with the resolution achieved with emiRFP
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variants [80].

In STED imaging of emiRFP variants, an excitation wavelength of 640 nm, out-
side the NIR spectral window from 650 to 900 nm, was used [80]. For this work,
an excitation beam at 660 nm was used to truly benefit from the low absorbance
of water, haemoglobin and oxyhaemoglobin in this spectral region beyond 650 nm.
Additionally, compared to Matlashov et al. [80] the STED wavelength employed in
this thesis was red-shifted by 45 nm to 820 nm. Due to the red-shift, phototoxicity
induced by the STED beam is potentially reduced [49].

Many efforts have been made to enable STED imaging of living cells with min-
imal perturbation of the sample. In this regard, Kamper et al. took an important
step by recording the first STED images in the NIR region of mammalian cells ex-
pressing SNIFP fusion constructs. However, due to the limited brightness of SNIFP
transiently transfected cells were used with non-physiological expression levels of
the fusion construct and 25 µM BV had to be added before imaging. STED imaging
of emiRFP703 could be performed without the addition of BV, but Matlashov et al.
still used transiently transfected cells. In this work, STED imaging of mammalian
cells stably expressing a V410-keratin fusion protein from a Bxb1 landing pad was
performed without the addition of BV beforehand. With this, a further improvement
towards physiologically relevant NIR STED imaging was realized.

STED Movies

STED movies of transiently transfected HeLa cells expressing Map2 tagged with
V410 were recorded. After 100 consecutive STED frames with a STED dose of ap-
proximately 3.8 kJ cm-2 the normalized integrated intensity dropped to approximately
50 % of the initial normalized integrated intensity. A direct comparison between
V410 and the NIR fluorescent proteins emiRFP703 and SNIFP is difficult since differ-
ent cellular structures and different imaging parameters were used. SNIFP reached
50 % of the initial frame intensity after approximately eight frames with a STED dose
of 244 kJ cm-2 and a STED wavelength of 860 nm, while emiRFP703 reached 50 % of
the initial frame intensity after 21 frames with a STED dose of 6.7 kJ cm-2 and a STED
wavelength of 775 nm [80].

4.3.3 FLIM Imaging

One benefit in fluorescence imaging is the superior contrast since only fluorescently
labeled structures are visible. However, this property makes it difficult to put the
labeled structure into a cellular context. With multi-color imaging of biological
samples the contextualisation of labeled structures becomes possible. For this, dif-
ferent cellular structures are typically labeled with spectrally different fluorescent
molecules. However, this approach is in general not compatible with imaging en-
tirely in the NIR spectral region. In this work, the spectrally similar NIR fluorescent
proteins V410 and miRFP703 were used for two-color fluorescence imaging. The
structures labeled with the different proteins were separated based on their respec-
tive fluorescence lifetime and not based on their spectral characteristics. For the first
time, this approach enabled two-color confocal and STED imaging entirely in the
NIR spectral region without the need of an additional excitation and STED beam
outside the NIR spectral window. The approach is in principle expandable to more
than two different NIR fluorescent proteins.
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Decomposition Algorithms

The evaluation of the implemented decomposition algorithms showed that the max-
imum likelihood approach outperformed the least squares approach for all scenar-
ios. This was not surprising as the maximum likelihood approach assumed the cor-
rect noise model for fluorescence lifetime data. The Poisson distribution models the
probability distribution of events happening at a constant rate independently from
each other in a defined time interval. The process of spontaneous emission of a pho-
ton is such a process. By finding the most likely distribution to fit the decay data
using Poisson statistics, errors in bins with high photon counts are automatically pe-
nalized more than errors in bins with low photon counts. Using the least squares
approach for fitting the decay data, errors in all bins are treated equally, hence er-
rors in bins with high photon counts are underestimated and errors in bins with low
photon counts are overestimated.

However, despite the inferior precision of the least squares decomposition algo-
rithm as compared to the maximum likelihood algorithm it may be preferable in
situations where large amounts of FLIM data need to be decomposed fast. As the
maximum likelihood algorithm was implemented in this work, the cost function
needs to be minimized separately for every pixel in the FLIM image. In contrast, for
the least squares approach only matrix equation (3.9) had to be solved.

In summary, in the scope of this work a screening system was planned and built
to screen for bacterial phytochrome variants with increased fluorescence lifetime and
fluorescence quantum yield. With the help of this screening system the NIR fluores-
cent protein V410 could be generated from miRFP703. It exhibited the longest fluo-
rescence lifetime and the highest fluorescence quantum yield of all engineered NIR
fluorescent proteins absorbing and emitting in the NIR spectral window between
650 to 900 nm to date. Additionally, it was demonstrated that the protein performed
well in NIR confocal and STED imaging of various cellular structures in mammalian
cells including endogenously labeled mammalian cells. For the first time, two-color
all NIR confocal and STED FLIM imaging was performed within this work.

4.3.4 Outlook

Directed Evolution and Screening

As discussed above, a screening system based on the bacterial expression of the di-
versified protein variants does not address the parameters of chromophore affin-
ity and expression, folding, maturation and degradation in mammalian cells. To
address those issues, it is necessary that the current screening approach is comple-
mented with screening rounds in a mammalian expression system.

To find further diversification strategies it may be helpful to obtain a crystal
structure of the current protein variant V410. A crystal structure would help to un-
derstand the molecular basis of the increased fluorescence lifetime and fluorescence
quantum yield of V410 and would enable to rationally improve those parameters
further. The spectrally distinct set of fluorescent proteins miRFP670 (PDB ID: 5VIV),
miRFP703 (PDB ID: 5VIK) and miRFP709 (PDB ID: 5VIQ) has been crystallized and
the crystal structures have been solved with a resolution of around 1.3 Å [119]. Since
V410 is directly derived from miRFP703, it is likely that the crystallization conditions
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described for miRFP703 would also work for V410.

In order to more efficiently sample the sequence space for improved protein vari-
ants, elaborate computational methods could be employed in future efforts. For ex-
ample, it is possible to model the high dimensional fitness landscape of fluorescent
proteins using machine learning methods and with this knowledge enrich the pool
of protein variants with more promising candidates as demonstrated by Saito et al.
in 2018 [113].

Imaging of Living Organisms

The benefits resulting from imaging in the NIR spectral region are highly relevant
for deep-tissue fluorescence imaging in living mammalian organisms. Only a small
number of publications have been published demonstrating deep-tissue NIR fluo-
rescence imaging. Shu et al. demonstrated adenovirus serotype 5 mediated NIR flu-
orescence imaging in mice [123]. Neuronal imaging of Drosophila melanogaster larvae
was performed by Yu et al. [152]. Shcherbakova et al. used the technique of hydro-
dynamic gene transfer [75] to express a IκBα-miRFP703 fusion construct in mouse
liver [119].

The imaging experiments of V410 in living mammalian cells reported in this the-
sis were necessary steps towards live-cell NIR deep-tissue imaging. A simple model
system to demonstrate the tissue penetration capabilities of NIR fluorescence imag-
ing could be spheroids of mammalian cells. Together with Daniel Stumpf prelimi-
nary penetration experiments using spheroids of mammalian cells expressing V410
fusion constructs were performed (data not shown). Before proceeding to living
mammalian organisms, V410 should be tested as fusion tag in more efficient model
systems, e.g., Drosophila melanogaster, Caenorhabditis elegans or mammalian tissue cul-
ture. In this regard, first preliminary experiments in cooperation with Dr. Kamila
Kiszka with V410 fused to the actin marker LifeAct [105] expressed in cultured brain
slices from mouse embryos were successfully performed (data not shown). The re-
sults suggested the applicability of V410 in complex tissue samples.
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Cloning Primer

# Sequence (3’→ 5’)
1836 TCCACCGGTCGCCACCATGGTGAGCAAGGGCGAGGAGCTGTTC
1837 GTCGCGGCCGCTACTTGTACAGCTCGTCCATGCCGAGAG
4573 CGTCTCGAGCTATGGATGATGATAT
4574 CCGGTGGATCCTTACCTAGAAGCATTTGCGG
5570 AGATCCGCTAGCATGGTGGGTCGGAACAGCGCC
5571 TGGCGACCGGTGGATCCCCTTCCACATCATCTTCAGCC
7819 GCTACAGATCTATGGTAGCAGGTCATGCC
7822 TTCGAATTCGCTCTCAAGCGCGGTGATCCG
8348 AACGAATTCGCTCTCAAGCGCGGTGATCCGC
8352 TCGAAGCTTAGGCATGGTAGCAGGTCATGCCTCT
8357 ATATTAGCGGCCGCCGGTAGTGGTTCAGGGGTAGCAGGTCATGC

CTCTGGC
8358 TTAATTCCATGGTTAGCTCTCAAGCGCGGTGATCCG
8911 CACTCGAGATCTGAGTCCGGAGCTCTCAAGCGCGGTGA
8912 TCCGCTAGCGCTACCGGTCGCCACCATGGTAGCAGGTCATGC
9561 ATCCGCTAGCGCTAATGGTAGCAGGTCATGCC
9562 CACTCGAGATCTGAGTCCGGAGCTCTCAAGCGCGGTGAT
9563 CGACCGGTCGCCACCATGGTAGCAGGTCATGCC
9564 AGCTGTGCGGCCGCTCAGCTCTCAAGCGCGGTGAT
9596 ATCCGCTAGCGCTAATGGTAGCAGGTCATGCC
9595 CTCGAGATCTGAGTCCGGAGCTCTCAAGCGCGGTGAT
9687 GGATCCACCGGTCGCCACCATGGTAGCAGGTCATGCCTCT
9688 TCTAGAGTCGCGGCCGCTAGCTCTCAAGCGCGGTGAT
9788 CTTCGAATTCATGGTAGCAGGTCATGCC
9789 GCGACCGGTTTCATGGTGGCAGGTCCAGGGTTCTCCTCCACGTC

GCCAGCCTGCTTCAGCAGGCTGAAGTTAGTAGCTCCGCTTCCGC
TCTCAAGCGCGGTGAT

TABLE A.1: Primers
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Buffers and Media

Buffer Composition
Standard protein buffer 100 mM TRIS-HCl, 150 mM NaCl, pH 7.5
His binding buffer 20 mM Na3PO4, 500 mM NaCl, 20 mM imidazole, pH 7.5
His washing buffer 20 mM Na3PO4, 500 mM NaCl, 50 mM imidazole, pH 7.5
His elution buffer 20 mM Na3PO4, 500 mM NaCl, 500 mM imidazole, pH 7.5
10x PCR buffer 100 mM TRIS-HCl, 500 mM KCl, 25 mM MgCl2, pH 8.3
10x Error prone buffer 100 mM TRIS-HCl, 500 mM KCl, 70 MgCl2, 0.1% (w/v),

pH 8.3
50x TAE buffer 2 M TRIS, 1 M C2H9NaO5, 50 mM EDTA, pH 7.2
LB medium 1 l sterile water, 5 g NaCl, 5 g yeast extract, 10 g peptone from

casein, 5 ml 1 M NaOH to adjust pH; autoclaved before use
pH buffers pH 3-5.75: 100 mM citric acid, 150 mM NaCl

pH 6-7: 100 mM KH2PO4, 150 mM NaCl
pH 7.5-8.5: 100 mM Tris, 150 mM NaCl
pH 9-9.5: 100 mM glycine, 150 mM NaCl

DMEM 4.5 g/l glucose, GlutaMAX™, phenol red, 10 % (v/v) fetal
bovine serum, 1 mM sodium pyruvate, 100 U/ml penicillin
and 100 µg/ml

Freezing medium DMEM supplemented with 20 % FBS, 10 % dimethyl sulfoxide

TABLE B.1: Buffers and Media
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Python Code

C.1 Analysis of pH spectra

LISTING C.1: Python code for fitting pH spectra
1 import pandas as pd
2 import m a t p l o t l i b . pyplot as p l t
3 import numpy as np
4 from sc ipy . optimize import c u r v e _ f i t
5

6 def background_substract ion ( df , BG, data ) :
7 df [ data ] = df [ data ] − df [BG]
8 return ( df )
9 def normal ize_spectra ( dataframe , x_name , y_name , method= ’max ’ ) :

10 ’ ’ ’ Th i s f u n c t i o n p e r f o r m s n o r m a l i z a t i o n d a t a f r a m e [ y_name ] . I f method
↪→ ==’max ’ d a t a f r a m e [ y_name ]

11 i s n o r m a l i z e d t o t h e maximal v a l u e o f d a t a f r a m e [ y_name ] , e l s e a number
↪→ has t o be g i v e n and

12 d a t a f r a m e [ y_name ] i s n o r m a l i z e d t o t h e v a l u e where t h i s number i s
↪→ e q u a l t o d a t a f r a m e [ x_name ] . ’ ’ ’

13 i f method == ’max ’ :
14 dataframe [ y_name + ’ norm ’ ] = dataframe [ y_name]/max ( dataframe [

↪→ y_name ] )
15 return ( dataframe )
16 e lse :
17 mask = abs [ x_name ] == method
18 dataframe [ y_name + ’ norm ’ ] = dataframe [ y_name ] / sum( abs [ mask ] [

↪→ y_name ] )
19 return ( dataframe )
20 def ph_mono (pH, A, pKa , o f f s e t ) :
21 return o f f s e t + (A/(1+10 * * ( pKa−pH) ) )
22 def ph_curve_f i t ( data ) :
23 """ Th i s f u n c t i o n d o e s monophas i c f i t s t o pH s p e c t r a f o l l o w i n g t h e

↪→ e q u a t i o n y = o f f s e t + A / (1 + 10^( pka−x ) ) .
24 The f i t t i n g p a r a m e t e r s a r e : o f f s e t , a m p l i t u d e and pka v a l u e . The

↪→ f u n c t i o n r e t u r n s t h e f i t p a r a m e t e r s and t h e a r r a y s
25 x _ f i t and y _ f i t . """
26 x = [ 3 , 4 , 5 , 6 , 7 , 8 , 9 ]
27 y = data [ 0 : len ( x ) ]
28 p0 = [max ( y ) , 4 , 0 ] # i n i t i a l f i t v a l u e s
29 popt , pcov = c u r v e _ f i t ( ph_mono , x , y , p0=p0 , bounds =(0 , [ np . inf , 10 ,

↪→ np . i n f ] ) )
30 x _ f i t = np . l i n s p a c e ( 0 , 9 , 200)
31 y _ f i t = [ ph_mono ( x , popt [ 0 ] , popt [ 1 ] , popt [ 2 ] ) for x in x _ f i t ]
32 return popt , pcov , x _ f i t , y _ f i t
33

34 # f l u o r e s c e n c e
35 f l uo = pd . read_exce l ( path_f luo )
36 f l uo = f l uo . transpose ( )
37
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38 col_names = l i s t ( f l uo . columns . values )
39 row_names = l i s t ( f l uo . index . values )
40

41 f l u o _ s t i t c h e d = { ’ blank ’ : [ ] , ’ mirfp703 ’ : [ ] , ’ V410 ’ : [ ] }
42 for a , b , c in zip ( row_names [ 0 : : 3 ] , row_names [ 1 : : 3 ] , row_names [ 2 : : 3 ] ) :
43 for x , y , z in zip ( col_names [ 0 : : 3 ] , col_names [ 1 : : 3 ] , col_names [ 2 : : 3 ] ) :
44 f l u o _ s t i t c h e d [ x [ : − 2 ] ] . append ( f lu o [ x ] [ a ] )
45 f l u o _ s t i t c h e d [ x [ : − 2 ] ] . append ( f lu o [ x ] [ b ] )
46 f l u o _ s t i t c h e d [ x [ : − 2 ] ] . append ( f lu o [ x ] [ c ] )
47

48 f l u o _ s t i t c h e d [ y [ : − 2 ] ] . append ( f lu o [ y ] [ a ] )
49 f l u o _ s t i t c h e d [ y [ : − 2 ] ] . append ( f lu o [ y ] [ b ] )
50 f l u o _ s t i t c h e d [ y [ : − 2 ] ] . append ( f lu o [ y ] [ c ] )
51

52 f l u o _ s t i t c h e d [ z [ : − 2 ] ] . append ( f lu o [ z ] [ a ] )
53 f l u o _ s t i t c h e d [ z [ : − 2 ] ] . append ( f lu o [ z ] [ b ] )
54 f l u o _ s t i t c h e d [ z [ : − 2 ] ] . append ( f lu o [ z ] [ c ] )
55

56 f luo_average = { ’ blank ’ : [ ] , ’ mirfp703 ’ : [ ] , ’ V410 ’ : [ ] }
57 f luo_s tdv = { ’ blank ’ : [ ] , ’ mirfp703 ’ : [ ] , ’ V410 ’ : [ ] }
58 for x in f l u o _ s t i t c h e d :
59 for s1 , s2 , s3 , s4 , s5 , s6 , s7 , s8 , s9 in zip ( f l u o _ s t i t c h e d [ x ] [ 0 : : 9 ] ,

↪→ f l u o _ s t i t c h e d [ x ] [ 1 : : 9 ] , f l u o _ s t i t c h e d [ x ] [ 2 : : 9 ] ,
60 f l u o _ s t i t c h e d [ x ] [ 3 : : 9 ] ,

↪→ f l u o _ s t i t c h e d [ x ] [ 4 : : 9 ] , f l u o _ s t i t c h e d [ x ] [ 5 : : 9 ] ,
61 f l u o _ s t i t c h e d [ x ] [ 6 : : 9 ] ,

↪→ f l u o _ s t i t c h e d [ x ] [ 7 : : 9 ] , f l u o _ s t i t c h e d [ x ] [ 8 : : 9 ] ) :
62 f luo_average [ x ] . append ( np . mean ( [ s1 , s2 , s3 , s4 , s5 , s6 , s7 , s8 , s9

↪→ ] ) )
63 f luo_s tdv [ x ] . append ( np . std ( [ s1 , s2 , s3 , s4 , s5 , s6 , s7 , s8 , s9 ] ) )
64

65 a = max ( f luo_average [ ’ V410 ’ ] )
66 b = max ( f luo_average [ ’ mirfp703 ’ ] )
67 f luo_average [ ’ V410 ’ ] = f luo_average [ ’ V410 ’ ]/ a
68 f luo_average [ ’ mirfp703 ’ ] = f luo_average [ ’ mirfp703 ’ ]/b
69

70

71

72 f luo_s tdv [ ’ V410 ’ ] = f luo_s tdv [ ’ V410 ’ ]/ a
73 f luo_s tdv [ ’ mirfp703 ’ ] = f luo_s tdv [ ’ mirfp703 ’ ]/b
74

75

76 # do c u r v e f i t t i n g
77 popt_v410 , pcov_410 , x_ f i t_v410 , y _ f i t _ v 4 1 0 = ph_curve_f i t ( f luo_average [ ’

↪→ V410 ’ ] )
78 popt_mirfp , pcov_mirfp , x_ f i t_ mir fp , y _ f i t _ m i r f p = ph_curve_f i t (

↪→ f luo_average [ ’ mirfp703 ’ ] )

C.2 Bleaching Analysis

LISTING C.2: Python code for bleaching analysis
1 import numpy as np
2 import os
3 from os import l i s t d i r
4 from os . path import i s f i l e , j o i n
5 from PIL import Image
6 import s t a t i s t i c s
7

8 def model_func ( t , A, K) :
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9 """ Model f u n c t i o n t o model b l e a c h i n g c u r v e s . """
10 return (A * np . exp (K * t ) )
11

12 def f i t _ e x p _ l i n e a r ( t , y ) :
13 """ Th i s f u n c t i o n p e r f o r m s t h e l i n e a r f i t t i n g o f en e x p o n e n t i a l model .

↪→ """
14 y = np . log ( y )
15 K, A_log = np . p o l y f i t ( t , y , 1 )
16 A = np . exp ( A_log )
17 return (A, K)
18

19 def img_STED_bleaching ( dir , n=6 , m=20) :
20 """ Th i s f u n c t i o n c a l c u l a t e s t h e b l e a c h i n g p r o c e s s b a s e d on a s e r i e s o f

↪→ m images . The b r i g h t n e s s o f e a c h image i s
21 j u s t c a l c u l a t e d as t h e mean o f t h e image a r r a y .
22 Input :
23 d i r = d i r e c t o r y c o n t a i n i n g n*m c o n s e c u t i v e t i f images
24 NOTE: must be named as e . g . 840_19uW_45mW_#n_m . t i f wi th #n b e i n g t h e

↪→ nth movie and _m b e i n g t h e mth f rame o f t h i s movie
25 Output :
26 b r i g h t n e s s _ i m g s = b r i g h t n e s s o f t h e images
27 n o r m _ b r i g h t n e s s _ i m g s = b r i g h t n e s s o f t h e images n o r m a l i z e d t o t h e

↪→ b r i g h t n e s s o f t h e f i r s t image
28 b r i g h t n e s s _ i m g s _ m e a n s = mean b r i g h t n e s s o f t h e r e s p e c t i v e images
29 b r i g h t n e s s _ i m g _ s t d v = s t a n d a r d d e v i a t i o n o f b r i g h t n e s s o f r e s p e c t i v e

↪→ images
30 """
31 # g e t names o f a l l f i l e s in d i r e c t o r y
32 f i l es_names = [ f i le_name for f i le_name in l i s t d i r ( dir ) i f i s f i l e ( j o i n (

↪→ dir , f i le_name ) ) ]
33 # j o i n names t o p r o p e r pa th
34 f i l e _ p a t h s = [ os . path . j o i n ( dir , f i le_name ) for f i le_name in

↪→ f i l es_names ]
35

36 frames = d i c t ( )
37 br ightness_frames = d i c t ( )
38 norm_brightness_frames = d i c t ( )
39 for x in range ( 1 , n+1) :
40 frames [ x ] = [ ]
41 br ightness_frames [ x ] = [ ]
42 norm_brightness_frames [ x ] = [ ]
43

44 for f i l e in f i l e _ p a t h s :
45 # open t h e movie f rame d e f i n e d by f rame
46 frame = np . array ( Image . open ( f i l e ) )
47 # c a l c u l a t e t h e mean p i x e l v a l u e o f t h e movie f rame
48 mean = np . mean( frame )
49 # append t h e movie f rame t o t h e r e s p e c t i v e l i s t in f r a m e s

↪→ d i c t i o n a r y
50 frames [ i n t ( f i l e [ f i l e . f ind ( ’ _# ’ ) +2 ] ) ] . append ( frame )
51 # append t h e mean b r i g h t n e s s o f t h e movie f rame t o t h e r e s p e c t i v e

↪→ l i s t in b r i g h t n e s s _ i m g s d i c t i o n a r y
52 br ightness_frames [ i n t ( f i l e [ f i l e . f ind ( ’ _# ’ ) +2 ] ) ] . append (mean)
53

54 for x in range ( 1 , n+1) :
55 for y in range (m) :
56 norm_brightness_frames [ x ] . append ( br ightness_frames [ x ] [ y]/max (

↪→ br ightness_frames [ x ] ) )
57 brightness_imgs_means = [ ]
58 brightness_img_stdv = [ ]
59 for movie in range (m) :
60 y = [ ]
61 for key in br ightness_frames :
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62 y . append ( norm_brightness_frames [ key ] [ movie ] )
63 brightness_imgs_means . append ( np . mean( y ) )
64 brightness_img_stdv . append ( s t a t i s t i c s . stdev ( y ) )
65 A, K = f i t _ e x p _ l i n e a r ( l i s t ( range ( 2 0 ) ) , brightness_imgs_means )
66 f i t _ y = model_func ( np . l i n s p a c e ( 0 , 2 0 , 2 0 0 ) , A, K)
67 return ( br ightness_frames , norm_brightness_frames ,

↪→ brightness_imgs_means , brightness_img_stdv , f i t _ y , K)

C.3 Reexcitation

LISTING C.3: Python code for reexcitation analysis
1 import numpy as np
2 import os
3 from os import l i s t d i r
4 from os . path import i s f i l e , j o i n
5 from PIL import Image
6 import s t a t i s t i c s
7 from sc ipy . optimize import c u r v e _ f i t
8

9

10 def model_func ( x , a , b ) :
11 return ( a * x + b )
12

13 def r e e x c i t a t i o n ( dir ) :
14 """ Th i s f u n c t i o n c a l c u l a t e s t h e q u o t i e n t o f t h e mean b r i g h t n e s s o f a

↪→ c o n f o c a l image and t h e mean b r i g h t n e s s o f an
15 image with STED ( g a u s s i a n s h a p e ) and e x c i t a t i o n beam . Th i s v a l u e

↪→ s h o u l d be p r o p o r t i o n a l t o t h e s a t u r a t i o n i n t e n s i t y
16 f o r STED imaging .
17 Input :
18 d i r = s t r i n g s p e c i f y i n g t h e d i r e c t o r y c o n t a i n i n g t h e images .
19 Note : Th i s f u n c t i o n e x p e c t s d i r e c t o r i e s c o n t a i n i n g image f i l e s named

↪→ a f t e r t h e f o l l o w i n g c o n v e n t i o n :
20 STED_wavelength_exc_power_STED_power_measurment_number_channel (1 f o r

↪→ STED, 0 f o r c o n f ) f o r example l i k e
21 800_7uW_39mW_#30 _1 . t i f """
22 # g e t names o f a l l f i l e s in d i r e c t o r y
23 f i les_names = [ f i le_name for f i le_name in l i s t d i r ( dir ) i f i s f i l e ( j o i n (

↪→ dir , f i le_name ) ) ]
24 # j o i n names t o p r o p e r pa th
25 f i l e _ p a t h s = [ os . path . j o i n ( dir , f i le_name ) for f i le_name in

↪→ f i l es_names ]
26

27 f i l e _ n a m e s _ r e e x c i t a t i o n = [ file_name_STED for file_name_STED in
↪→ f i l e _ p a t h s i f file_name_STED . f ind ( ’ 0_1 ’ ) != −1]

28 i m g s _ r e e x c i t a t i o n = [ ]
29 for i m g _ r e e x c i t a t i o n in f i l e _ n a m e s _ r e e x c i t a t i o n :
30 i m g s _ r e e x c i t a t i o n . append ( np . array ( Image . open ( i m g _ r e e x c i t a t i o n ) ) )
31

32 f i le_names_conf = [ f i le_name_conf for f i le_name_conf in f i l e _ p a t h s i f
↪→ f i le_name_conf . f ind ( ’ 0_0 . t i f ’ ) != −1]

33 imgs_conf = [ ]
34 for img_conf in f i le_names_conf :
35 imgs_conf . append ( np . array ( Image . open ( img_conf ) ) )
36

37 # g e t l i s t o f power v a l u e s f o r f i l e s f o r p l o t t i n g
38 STED_powers = [ f l o a t ( s t r i n g [ s t r i n g . f ind ( ’W_’ ) +2: s t r i n g . f ind ( ’mw’ ) ] )

↪→ for s t r i n g in f i l e _ n a m e s _ r e e x c i t a t i o n ]
39
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40 # c a l c u l a t e l i s t o f means
41 b r i g h t n e s s _ c o n f o c a l = [ np . mean( img ) for img in imgs_conf ]
42 b r i g h t n e s s _ r e e x c i t a t i o n = [ np . mean( img ) for img in i m g s _ r e e x c i t a t i o n ]
43

44 # c a l c u l a t e STED c r o s s s e c t i o n as b r i g h t n e s s _ r e e x c i t a t i o n /
↪→ b r i g h t n e s s _ c o n f o c a l

45 I s a t = [ x/y for x , y in zip ( b r i g h t n e s s _ r e e x c i t a t i o n ,
↪→ b r i g h t n e s s _ c o n f o c a l ) ]

46 powers_error = [ power for power in STED_powers [ 1 : : 3 ] ]
47 Isat_mean = [ np . mean ( [ x , y , z ] ) for x , y , z in zip ( I s a t [ 0 : : 3 ] , I s a t [ 1 : : 3 ] ,

↪→ I s a t [ 2 : : 3 ] ) ]
48 e r r o r = [ s t a t i s t i c s . stdev ( [ x , y , z ] ) for x , y , z in zip ( I s a t [ 0 : : 3 ] , I s a t

↪→ [ 1 : : 3 ] , I s a t [ 2 : : 3 ] ) ]
49 l i s t s = sorted ( zip ( * [ powers_error , Isat_mean ] ) )
50 x , y = l i s t ( zip ( * l i s t s ) )
51

52 popt , pcov = c u r v e _ f i t ( model_func , x , y , )
53 x _ f i t = np . l i n s p a c e ( 0 , 1 0 0 , 2 0 0 )
54 y _ f i t = [ model_func ( x , popt [ 0 ] , popt [ 1 ] ) for x in x _ f i t ]
55

56 return ( x _ f i t , y _ f i t , x , y , error , popt )
57

58 ( x _ f i t , y _ f i t , x , y , error , popt ) = r e e x c i t a t i o n ( "P :/ P r i v a t e /Promotion/
↪→ P r o j e k t /Data/19 _07_30/ R e x c i t a t i o n / t i f /790 " )

C.4 Measuring STED Effect

LISTING C.4: Python code for analysis of STED effect
1 import numpy as np
2 import os
3 from os import l i s t d i r
4 from os . path import i s f i l e , j o i n
5 from PIL import Image
6 import s t a t i s t i c s
7 from sc ipy . optimize import c u r v e _ f i t
8

9

10 def model_func (PSTED , Psat , A, o f f s e t ) :
11 return (A * np . exp(−PSTED / Psat ) + o f f s e t )
12

13 def c r o s s _ s e c t i o n ( dir , f a c t o r =1) :
14 """ Th i s f u n c t i o n c a l c u l a t e s t h e q u o t i e n t o f t h e mean b r i g h t n e s s o f a

↪→ c o n f o c a l image and t h e mean b r i g h t n e s s o f an
15 image with STED ( g a u s s i a n s h a p e ) and e x c i t a t i o n beam . Th i s v a l u e

↪→ s h o u l d be p r o p o r t i o n a l t o t h e s a t u r a t i o n i n t e n s i t y
16 f o r STED imaging .
17 Input :
18 d i r = s t r i n g s p e c i f y i n g t h e d i r e c t o r y c o n t a i n i n g t h e images .
19 f a c t o r = f a c t o r t o d i v i d e t h e powers by i f powers were not measured

↪→ with o b j e c t i v e but w i t h o u t
20 Output :
21 x _ f i t = l i s t o f b r i g h t n e s s q u o t i e n t s ( br ightness_STED / b r i g h t n e s s _ c o n f )

↪→ f o r t h e f i t t e d STED c u r v e
22 y _ f i t = l i s t o f y v a l u e s (STED powers ) f o r t h e f i t t e d STED c u r v e
23 x = l i s t o f mean b r i g h t n e s s q u o t i e n t s
24 y = l i s t o f y v a l u e s (STED powers )
25 e r r o r = e r r o r o f x v a l u e s
26 pop t = c o e f f i c i e n t s o f f i t
27
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28 Note : Th i s f u n c t i o n e x p e c t s d i r e c t o r i e s c o n t a i n i n g image f i l e s named
↪→ a f t e r t h e f o l l o w i n g c o n v e n t i o n :

29 STED_wavelength_exc_power_STED_power_measurment_number_channel (1 f o r
↪→ STED, 0 f o r c o n f ) f o r example l i k e

30 800_7uW_39mW_#30 _1 . t i f """
31 # g e t names o f a l l f i l e s in d i r e c t o r y
32 f i les_names = [ f i le_name for f i le_name in l i s t d i r ( dir ) i f i s f i l e ( j o i n (

↪→ dir , f i le_name ) ) ]
33 # j o i n names t o p r o p e r pa th
34 f i l e _ p a t h s = [ os . path . j o i n ( dir , f i le_name ) for f i le_name in

↪→ f i l es_names ]
35

36 file_names_STED = [ file_name_STED for file_name_STED in f i l e _ p a t h s i f
↪→ file_name_STED . f ind ( ’ 0_1 . t i f ’ ) !=−1]

37

38 imgs_STED = [ ]
39 for img_STED in file_names_STED :
40 imgs_STED . append ( np . array ( Image . open ( img_STED ) ) )
41

42 f i le_names_conf = [ file_name_STED for file_name_STED in f i l e _ p a t h s i f
↪→ file_name_STED . f ind ( ’ 0_0 . t i f ’ ) != −1]

43 imgs_conf = [ ]
44 for img_conf in f i le_names_conf :
45 imgs_conf . append ( np . array ( Image . open ( img_conf ) ) )
46

47 # g e t l i s t o f power v a l u e s f o r f i l e s f o r p l o t t i n g
48 STED_powers = [ 0 , 0 , 0 ] + [ f l o a t ( s t r i n g [ s t r i n g . f ind ( ’W_’ ) +2: s t r i n g . f ind (

↪→ ’mW’ ) ] ) / f a c t o r for s t r i n g in file_names_STED ]
49

50

51 # c a l c u l a t e l i s t o f means
52 b r i g h t n e s s _ c o n f o c a l = [ 1 , 1 , 1 ] + [ np . mean( img ) for img in imgs_conf ]
53 brightness_STED = [ 1 , 1 , 1 ] + [ np . mean( img ) for img in imgs_STED ]
54

55 # c a l c u l a t e STED c r o s s s e c t i o n as br ightness_STED /
↪→ b r i g h t n e s s _ c o n f o c a l

56 I s a t = [ x/y for x , y in zip ( brightness_STED , b r i g h t n e s s _ c o n f o c a l ) ]
57 powers_error = [ power for power in STED_powers [ 1 : : 3 ] ]
58 Isat_mean = [ np . mean ( [ x , y , z ] ) for x , y , z in zip ( I s a t [ 0 : : 3 ] , I s a t [ 1 : : 3 ] ,

↪→ I s a t [ 2 : : 3 ] ) ]
59 e r r o r = [ s t a t i s t i c s . stdev ( [ x , y , z ] ) for x , y , z in zip ( I s a t [ 0 : : 3 ] , I s a t

↪→ [ 1 : : 3 ] , I s a t [ 2 : : 3 ] ) ]
60 l i s t s = sorted ( zip ( * [ powers_error , Isat_mean ] ) )
61 x , y = l i s t ( zip ( * l i s t s ) )
62

63 popt , pcov = c u r v e _ f i t ( model_func , x , y , maxfev =20000 , method= ’ t r f ’ )
64 x _ f i t = np . l i n s p a c e ( 0 , 5 0 , 2 0 0 )
65 y _ f i t = [ model_func ( x , popt [ 0 ] , popt [ 1 ] , popt [ 2 ] ) for x in x _ f i t ]
66 return ( x _ f i t , y _ f i t , x , y , error , popt )

C.5 FLIM

LISTING C.5: Python code for decomposing fluorescence lifetime im-
ages

1 # i mp or t p a c k a g e s
2 import specpy as sp
3 import m a t p l o t l i b . pyplot as p l t
4 import numpy as np
5 import sc ipy . io
6 import cv2
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7 from sc ipy . optimize import minimize
8

9 # h e l p e r f u n c t i o n s
10 def open_msr_f i le ( path , save_as= ’ ’ ) :
11 ’ ’ ’ Opens a msr f i l e a s ndarray .
12 i n p u t :
13 pa th = s t r ; f i l e p a t h o f msr− f i l e t o open as ndarray
14 r e t u r n :
15 FLIM_img_ndarray = ndarray ; c o n v e r t e d msr− f i l e ’ ’ ’
16 msr = sp . F i l e ( path , sp . F i l e . Read )
17 s tack = msr . read ( 0 )
18 FLIM_img_ndarray = s tack . data ( )
19 print ( ’ data loaded ’ )
20 i f save_as != " " :
21 sc ipy . io . savemat ( save_as , { ’d ’ : d } )
22 return ( FLIM_img_ndarray )
23 def accumulate_counts ( img , threshold =100) :
24 ’ ’ ’ Accumulates a l l p i x e l s in a image a b o v e a t h r e s h o l d t o a s i n g l e

↪→ h i s t o g r a m .
25 i n p u t :
26 img = ndarray o f t h e image t o a c c u m u l a t e h i s t o g r a m s
27 t h r e s h o l d = count t h r e s h o l d o f p i x e l s t h a t a r e used t o a c c u m ul a t e d

↪→ h i s t o g r a m
28 r e t u r n :
29 a c c _ h i s t = a c cu m ul a t e d h i s t o g r a m
30 a c c _ h i s t _ n o r m = ac c u mu l a t e d h i s t o g r a m with maximum n o r m a l i z e d t o 1 ’ ’ ’
31 i m g _ f l a t t e n = img . reshape ( img . shape [ 0 ] * img . shape [ 1 ] * img . shape [ 2 ] , img .

↪→ shape [ 3 ] )
32 i m g _ f l a t t e n _ t h r = ( i m g _ f l a t t e n . sum( a x i s =0) > threshold ) * i m g _ f l a t t e n
33 a c c _ h i s t = np . sum( img _f l a t t e n_ t hr , a x i s =0)
34 acc_hist_norm = a c c _ h i s t / sum( a c c _ h i s t )
35 print ( ’ histogram accumulated ’ )
36 return ( a c c _ h i s t , acc_hist_norm )
37 def sum_hist_ in_subpixel ( img , f a c t o r =2) :
38 ’ ’ ’ R e s c a l e s img by summing up h i s t o g r a m s o f p i x e l in k e r n e l o f s i z e

↪→ f a c t o r * f a c t o r .
39 i n p u t :
40 f a c t o r = d e f i n e s t h e k e r n e l s i z e f o r r e b i n n i n g
41 img = image t o r e s c a l e
42 r e t u r n :
43 i m g _ r e s c a l e d = r e s c a l e d image
44 Note : a s impl emented her e , t h e h e i g h t / width r a t i o o f t h e image c h a n g e s

↪→ i f t h e f a c t o r i s not e v e n l y d i v i d a b l e by
45 by h e i g h t and width o f t h e image ’ ’ ’
46 img_rescaled = np . zeros ( ( img . shape [ 0 ] , i n t ( img . shape [ 1 ] / f a c t o r ) , i n t (

↪→ img . shape [ 2 ] / f a c t o r ) , img . shape [ 3 ] ) )
47 for y , b in zip ( range ( 0 , img . shape [ 2 ] , f a c t o r ) , range ( 0 , img_rescaled .

↪→ shape [ 2 ] , 1 ) ) :
48 for x , a in zip ( range ( 0 , img . shape [ 1 ] , f a c t o r ) , range ( 0 ,

↪→ img_rescaled . shape [ 1 ] , 1 ) ) :
49 img_rescaled [ 0 , a , b ] = sum(sum( img [ 0 , x : x+ f a c t o r , y : y+ f a c t o r , : ] ) )
50 return ( img_rescaled )
51 def d i s t r i b u t e _ c o u n t s ( a1 , a2 , counts ) :
52 ’ ’ ’ Th i s f u n c t i o n c o n t r i b u t e s t h e t o t a l c o u n t s in a p i x e l b a s e d on t h e

↪→ r a t i o n be tween t h e d e c a y a m p l i t u d e s
53 in t h e r e s p e c t i v e p i x e l . A t h r e s h o l d can be a p p l i e d t o c o n t i b u t e a l l

↪→ c o u n t s t o t h e o t h e r c h a n n e l i f one c h a n n e l
54 has l e s s c o n t r i b u t i o n than t h r e s h o l d ( d e f a u l t = 5%) .
55 i n p u t :
56 a1 = ndarray o f a m p l i t u d e s o f c h a n n e l 1 from l e a s t s q u a r e f i t
57 a2 = ndarray o f a m p l i t u d e s o f c h a n n e l 1 from l e a s t s u q a r e f i t
58 c o u n t s = ndarray o f t o t a l c o u n t s p e r p i x e l , must have t h e same s i z e

↪→ as a1 and a2
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59 r e t u r n :
60 a 1 _ c o u n t s = ndarray o f c o u n t s in c h a n n e l 1
61 a 2 _ c o u n t s = ndarry o f c o u n t s in c h a n n e l 2
62 a1_ r a t i o = ndarray o f c o n t r i b u t i o n s o f c h a n n e l 1
63 a2_ r a t i o = ndarray o f c o n t r i b u t i o n s o f c h a n n e l 2
64 ’ ’ ’
65 a12 = np . add ( a1 , a2 )
66 a 1 _ r a t i o = np . nan_to_num ( np . divide ( a1 , a12 ) )
67 a1_counts = np . mult iply ( a1_ra t io , counts ) . c l i p ( min=0)
68 a 2 _ r a t i o = np . nan_to_num ( np . divide ( a2 , a12 ) )
69 a2_counts = np . mult iply ( a2_ra t io , counts ) . c l i p ( min=0)
70 return ( a1_counts , a1_ra t io , a2_counts , a 2 _ r a t i o )
71 def rebin_histogram ( histogram , f a c t o r ) :
72 ’ ’ ’ Th i s f u n c t i o n p e r f o r m s r e b i n i n g o f t h e d e c a y h i s t o g r a m . The p u r p o s e

↪→ o f t h i s i s t o i n c r e a s e
73 t h e c o u n t s p e r b i n t o i n c r e a s e s i g n a l t o n o i s e r a t i o . ’ ’ ’
74 rebin = [ ]
75 for idx in range ( 0 , len ( histogram ) , f a c t o r ) :
76 x = sum( histogram [ idx : idx+ f a c t o r ] )
77 rebin . append ( x )
78 return ( rebin )
79 def rebin_image ( B , f a c t o r ) :
80 ’ ’ ’ Th i s f u n c t i o n p e r f o r m s r e b i n i n g o f t h e d e c a y h i s t o g r a m s in e v e r y

↪→ p i x e l o f an image . ’ ’ ’
81 C = np . ones ( ( B . shape [ 0 ] , i n t ( B . shape [ 1 ] / f a c t o r ) +1) )
82 for p i x e l in range ( B . shape [ 0 ] ) :
83 C[ p i x e l ] = rebin_histogram ( B [ p i x e l ] , f a c t o r )
84 return (C)
85 def p r o b a b i l i t y _ f u n c t i o n (A1 , a1 , a2 , c ) :
86 A2 = (sum( c )−A1)
87 d = (A1 * a1 + A2 * a2 )
88 return (−np . dot ( np . log ( d ) . c l i p ( min=−20) , c ) )
89 def f i t _ m a x _ l i k e l i h o o d ( img_hist , a1 , a2 , s t a r t , stop , f a c t o r ) :
90 c = img_hist . reshape ( img_hist . shape [ 0 ] * img_hist . shape [ 1 ] * img_hist .

↪→ shape [ 2 ] , img_hist . shape [ 3 ] )
91 c = rebin_image ( c , f a c t o r )
92 A1s = [ ]
93 A2s = [ ]
94 gated = [ ]
95 for idx in range ( c . shape [ 0 ] ) :
96 x = c [ idx , s t a r t : stop ]
97 r es = minimize ( fun= p r o b a b i l i t y _ f u n c t i o n , x0 = [ 0 ] , args =( a1 , a2 , x ) ,

↪→ bounds = [ ( 0 , sum( x ) ) ] )
98 A1 = r es [ ’ x ’ ] [ 0 ]
99 A2 = sum( x ) − A1

100 A1s . append (A1)
101 A2s . append (A2)
102 gated . append (sum( x ) )
103 i f idx % 1000 == 0 :
104 progress = round ( idx / c . shape [ 0 ] * 100 , 2 )
105 print ( " Progress : " + s t r ( progress ) + ’%’ )
106 A1s = np . array ( A1s ) . reshape ( img_hist . shape [ 1 ] , img_hist . shape [ 2 ] )
107 A2s = np . array ( A2s ) . reshape ( img_hist . shape [ 1 ] , img_hist . shape [ 2 ] )
108 gated = np . array ( gated ) . reshape ( img_hist . shape [ 1 ] , img_hist . shape [ 2 ] )
109 return ( A1s , A2s , gated )
110 def p l o t _ r e s u l t s ( a1 , a2 , in tens i ty_ img ) :
111 p l t . f i g u r e ( )
112 p l t . subplot ( 1 , 3 , 1 )
113 p l t . imshow ( intens i ty_img , cmap= ’ hot ’ )
114 p l t . subplot ( 1 , 3 , 2 )
115 p l t . imshow ( a1 , cmap= ’ hot ’ )
116 p l t . subplot ( 1 , 3 , 3 )
117 p l t . imshow ( a2 , cmap= ’ hot ’ )
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118 def s c a t t _ h i s t o _ v a l i d a t i o n _ p l o t ( x , y , l a b e l , c o l o r ) :
119 x = x . f l a t t e n ( )
120 y = y . f l a t t e n ( )
121 p l t . p l o t ( x , y , c o l o r + ’ o ’ , l a b e l = l a b e l , alpha = 0 . 5 )
122 p l t . x l a b e l ( ’ mito channel ’ )
123 p l t . y l a b e l ( ’ k e r a t i n channel ’ )
124 p l t . gr id ( l i n e s t y l e = ’ : ’ )
125 p l t . legend ( )
126 p l t . xlim ( 0 , max (max ( x ) ,max ( y ) ) )
127 p l t . ylim ( 0 , max (max ( x ) ,max ( y ) ) )
128 def p l o t _ v a l i d a t i o n _ r e f e r e n c e ( a1_counts , a2_counts , b1_counts , b2_counts ,

↪→ a , b ) :
129 p l t . f i g u r e ( )
130 s c a t t _ h i s t o _ v a l i d a t i o n _ p l o t ( a1_counts , a2_counts , ’ v a l i d a t i o n on mito

↪→ r e f e r e n c e ’ , ’ b ’ )
131 s c a t t _ h i s t o _ v a l i d a t i o n _ p l o t ( b1_counts , b2_counts , ’ v a l i d a t i o n on

↪→ k e r a t i n r e f e r e n c e ’ , ’ r ’ )
132 p l t . f i g u r e ( )
133 p l t . subplot ( 2 , 3 , 1 )
134 p l t . imshow ( a1_counts , cmap= ’ hot ’ , vmin=0 , vmax=np . max ( b ) )
135 p l t . a x i s ( ’ o f f ’ )
136 p l t . subplot ( 2 , 3 , 2 )
137 p l t . imshow ( a2_counts , cmap= ’ hot ’ , vmin=0 , vmax=np . max ( b ) )
138 p l t . a x i s ( ’ o f f ’ )
139 p l t . subplot ( 2 , 3 , 3 )
140 p l t . imshow ( a , cmap= ’ hot ’ , vmin=0 , vmax=np . max ( b ) )
141 p l t . c o l or ba r ( )
142 p l t . a x i s ( ’ o f f ’ )
143

144 p l t . subplot ( 2 , 3 , 4 )
145 p l t . imshow ( b1_counts , cmap= ’ hot ’ , vmin=0 , vmax=np . max ( b ) )
146 p l t . a x i s ( ’ o f f ’ )
147 p l t . subplot ( 2 , 3 , 5 )
148 p l t . imshow ( b2_counts , cmap= ’ hot ’ , vmin=0 , vmax=np . max ( b ) )
149 p l t . a x i s ( ’ o f f ’ )
150 p l t . subplot ( 2 , 3 , 6 )
151 p l t . imshow ( b , cmap= ’ hot ’ , vmin=0 , vmax=np . max ( b ) )
152 p l t . c o l or ba r ( )
153 p l t . a x i s ( ’ o f f ’ )
154 def add_shot_noise ( h i s t , f a c t o r ) :
155 noisy_a = np . random . poisson ( h i s t * f a c t o r )
156 return ( noisy_a )
157

158 # f i t t i n g f u n c t i o n
159 def FLIM_f i t t ing ( reference_1_path , reference_2_path , FLIM_image_path ,

↪→ h i s t o g r a m _ s h i f t= ’ auto ’ , method= ’ l e a s t−squares ’ ,
160 r e s c a l e _ f a c t o r =2 , r e b i n _ f a c t o r =1 , h is togram_sector

↪→ =[0 ,−1] , b lur=False , FLIM_image= ’ ’ ) : #
161 i f type ( FLIM_image ) == s t r :
162 FLIM_image = open_msr_f i le ( FLIM_image_path ) # FLIM image as

↪→ ndarray
163 print ( FLIM_image . shape )
164 i f h i s t o g r a m _ s h i f t == ’ auto ’ :
165 # l o a d h i s t o g r a m s and a c c u m u l a t e r e f e r e n c e h i s t o g r a m s
166 a1 , a1_norm = accumulate_counts ( open_msr_f i le ( re ference_1_path ) ,

↪→ 100) # r e f e r e n c e h i s t o g r a m 1
167 a2 , a2_norm = accumulate_counts ( open_msr_f i le ( re ference_2_path ) ,

↪→ 100) # r e f e r e n c e h i s t o g r a m 2
168 b , b_norm = accumulate_counts ( FLIM_image , 100) # FLIM image

↪→ h i s t o g r a m
169 b i n s _ t o _ s h i f t = np . argmax ( b_norm ) − np . argmax ( a1_norm )
170 a1_norm = np . r o l l ( a=a1_norm , s h i f t = b i n s _ t o _ s h i f t ) # s h i f t

↪→ h i s t o g r a m t o match t h e h i s t o g r a m s in t h e image
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171 a2_norm = np . r o l l ( a=a2_norm , s h i f t = b i n s _ t o _ s h i f t ) # s h i f t
↪→ h i s t o g r a m t o match t h e h i s t o g r a m s in t h e image

172 print ( FLIM_image . shape )
173 FLIM_image = sum_hist_ in_subpixel ( FLIM_image , f a c t o r =

↪→ r e s c a l e _ f a c t o r ) # r e s c a l e t h e image t o i n c r e a s e c o u n t s p e r p i x e l (4
↪→ p i x e l a r e summed t o 1 p i x e l )

174 print ( FLIM_image . shape )
175 B = FLIM_image . reshape ( FLIM_image . shape [ 0 ] * FLIM_image . shape [ 1 ] *

↪→ FLIM_image . shape [ 2 ] , FLIM_image . shape [ 3 ] )
176 i f method == ’ l e a s t−squares ’ :
177 a1_norm = rebin_histogram ( a1_norm , r e b i n _ f a c t o r )
178 a2_norm = rebin_histogram ( a2_norm , r e b i n _ f a c t o r )
179 B = rebin_image ( B , r e b i n _ f a c t o r )
180 A = np . s tack ( ( a1_norm , a2_norm ) ) . t ranspose ( ) # A = ( a1 , a2 )
181 Amp = np . l i n a l g . l s t s q (A, B . transpose ( ) ) [ 0 ] . c l i p ( min=0) # s o l v e

↪→ f o r l e a s t s q u a r e s o l u t i o n ; n e g a t i v e Ampl i tude Values a r e c l i p p e d t o
↪→ 0

182 Amp1 = Amp[ 0 , : ] . reshape ( FLIM_image . shape [ 1 ] , FLIM_image . shape [ 2 ] )
183 Amp2 = Amp[ 1 , : ] . reshape ( FLIM_image . shape [ 1 ] , FLIM_image . shape [ 2 ] )
184 in tens i ty_ image = FLIM_image . sum( a x i s =3) [ 0 , : , : ] # c a l c u l a t e

↪→ i n t e n s i t y image from image o f h i s t o g r a m s
185 a1_counts , a1_rat ion , a2_counts , a 2 _ r a t i o = d i s t r i b u t e _ c o u n t s (Amp1

↪→ , Amp2, in tens i ty_ image )
186 i f blur == True :
187 a1_counts = cv2 . blur ( a1_counts , ( 3 , 3 ) )
188 a2_counts = cv2 . blur ( a2_counts , ( 3 , 3 ) )
189 return a1_counts , a2_counts , intens i ty_image , a1_norm , a2_norm

↪→ , B
190 e lse :
191 return a1_counts [ 0 , : , : ] , a2_counts [ 0 , : , : ] , in tens i ty_image

↪→ , a1_norm , a2_norm , B
192 e l i f method == ’maximum−l i k e l i h o o d ’ :
193 a1_norm = rebin_histogram ( a1_norm , r e b i n _ f a c t o r )
194 a2_norm = rebin_histogram ( a2_norm , r e b i n _ f a c t o r )
195 a1_norm = a1_norm [ his togram_sector [ 0 ] : h is togram_sector [ 1 ] ] / sum(

↪→ a1_norm [ his togram_sector [ 0 ] : h is togram_sector [ 1 ] ] )
196 a2_norm = a2_norm [ his togram_sector [ 0 ] : h is togram_sector [ 1 ] ] / sum(

↪→ a2_norm [ his togram_sector [ 0 ] : h is togram_sector [ 1 ] ] )
197

198 a1_counts , a2_counts , in tens i ty_ image = f i t _ m a x _ l i k e l i h o o d (
↪→ FLIM_image , a1_norm , a2_norm , his togram_sector [ 0 ] , h is togram_sector
↪→ [ 1 ] , f a c t o r = r e b i n _ f a c t o r )

199 i f blur == True :
200 a1_counts = cv2 . blur ( a1_counts , ( 3 , 3 ) )
201 a2_counts = cv2 . blur ( a2_counts , ( 3 , 3 ) )
202 return a1_counts , a2_counts , intens i ty_image , a1_norm , a2_norm

↪→ , B
203 e lse :
204 return a1_counts , a2_counts , intens i ty_image , a1_norm , a2_norm

↪→ , B
205 e lse :
206 print ( ’ P lease s p e c i f y method of f i t t i n g . You can choose between

↪→ l e a s t−squares and maximum−l i k e l i h o o d ’ )
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FIGURE C.1: Schematic representation of matrix equation 3.8
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Appendix D

Microscopy

D.0.1 Microscope Characterization
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FIGURE D.1: Comparison between the excitation (top, red) and emis-
sion (top, blue) spectra of V410 with the excitation and STED spec-
tra (bottom) of the fluorescence microscope used for imaging experi-

ments.
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(A) Excitation and STED point spread functions
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(B) Excitation and STED line profiles

FIGURE D.2: (A) Excitation (left) and STED (right) point spread func-
tions of the commercial QUAD scanning fluorescence microscope as
measured on a gold bead sample. The white lines indicate the posi-
tions where line profiles were drawn. (B) Excitation (red) and STED
(blue) line profiles. The excitation line profile was fitted using a single
Gaussian profile. The STED line profile was fitted using the sum of

two Gaussian profiles. Scale bars: 100 nm.

D.0.2 Imaging Parameters

All imaging parameters used to record the images shown in this work are sum-
marized in table D.1. In order to determine the areas for the excitation and STED
beams, the reflection on gold beads was measured. The profiles were fitted with a
single gaussian function in case of the excitation beam and a sum of two Gaussian
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functions in case of the STED beam (see figure D.2). The areas of the excitation and
STED beams were calculated using the equations D.1 and D.2.

AExc = π ∗ (FWHMGauss

2
)2 (D.1)

ASTED = 2 ∗ π ∗ Rdonut ∗ FWHMdonut (D.2)

The light intensities were calculated using equation D.3.

I =
P
A

(D.3)

The light dose applied to the sample during imaging was calculated using equa-
tion D.4.

H =
P ∗ Dwelltime

Pixelsize ∗ Pixelsize
(D.4)
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D.0.3 Line Profiles

(A) Confocal image (B) STED image
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(C) Line profile 0
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(D) Line profile 1
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(E) Line profile 2
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(F) Line profile 3
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(G) Line profile 4
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(H) Line profile 5
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(I) Line profile 6
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(J) Line profile 7
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FIGURE D.3: Line profiles of confocal and STED images of genome
edited U2OS CRISPR cell line expressing V410-vimentin fusion con-
struct (P2690). (A) Confocal image. (B) STED image. (C) - (Q) Line

profiles. Scale bars: 10 µm.

# FWHMconf FWHMSTED

0 294 nm 79 nm
1 319 nm 80 nm
2 309 nm 43 nm
3 276 nm 83 nm
4 346 nm 90 nm
5 303 nm 87 nm
6 306 nm 98 nm
7 334 nm 93 nm
8 300 nm 64 nm
9 268 nm 72 nm
10 310 nm 64 nm
11 308 nm 65 nm
12 283 nm 98 nm
13 306 nm 84 nm
14 286 nm 98 nm
x̃ 306 nm 83 nm

TABLE D.2: FWHM of line profiles of confocal and STED images
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D.0.4 Fluorescence Lifetime Imaging

FIGURE D.4: Decomposition of reference FLIM images with maxi-
mum likelihood algorithm. The left images are the reference images
to decompose, the middle and right images show the counts in the

respective channels after decomposition. Scale bar: 10 µm.

FIGURE D.5: Decomposition of reference FLIM images with least
squares algorithm. The left images are the reference images to decom-
pose, the middle and right images show the counts in the respective

channels after decomposition. Scale bar: 10 µm.
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(A) Plot of count distribution maximum likelihood method

(B) Plot of count distribution least squares method

FIGURE D.6: Count distributions from decomposition of reference
FLIM images. (A) Count distribution from figure D.4 and (B) count

distribution from figure D.5.
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FIGURE D.7: Accumulated decay histogram FLIM-STED. The bins in
the red area were used for image decomposition while the bins in the

blue areas were discarded.
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Appendix E

Biophysical Characterization

E.0.1 Flow Cytometry Measurements
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(A) 0 µM BV (B) 5 µM BV

(C) 25 µM BV

FIGURE E.1: Flow cytometry data of stable Bxb1 landing pad cell lines
expressing the fusion constructs (P2690) keratin-V410-P2A-mEGFP
(red) and (P2432) keratin-miRFP703-P2A-mEGFP (blue), respectively,
after incubation with (A) 0 µM BV, (B) 5 µM BV and (C) 25 µM BV for
2 h. The fluorescence intensity in the detection channel from 720 to
766 nm is plotted against the fluorescence intensity in the detection
channel from 690 to 720 nm. The distributions in both channels were
fitted in Python using a Gaussian model. The measurements were

performed in replicates of n=3 with 10000 cells for each replicate.
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(A) 0 µM BV (B) 5 µM BV

(C) 25 µM BV (D) 100 µM BV

FIGURE E.2: Flow cytometry data of HeLa cells transiently expressing
the fusion constructs (P3319) V410-P2A-mEGFP (orange) and (P3320)
miRFP703-P2A-mEGFP (blue) after incubation with (A) 0 µM BV, (B)
5 µM BV, (C) 25 µM and (D) 100 µM BV for 2 h. The fluorescence in-
tensity in the detection channel from 720 to 766 nm is plotted against
the fluorescence intensity in the detection channel from 690 to 720 nm.
NIR fluorescence was normalized to mEGFP fluorescence to account
for variations in transfection efficiency. The measurements were per-

formed in replicates of n=5 with 10000 cells for each replicate.
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[76] G. Lukinavičius et al. “Fluorescent dyes and probes for super-resolution mi-
croscopy of microtubules and tracheoles in living cells and tissues”. In: Chem.
Sci. 9.13 (2018), pp. 3324–3334. ISSN: 2041-6520. DOI: 10.1039/c7sc05334g.

[77] M Chalfie, Y Tu, G Euskirchen, WW Ward, DC Prasher. “Green fluorescent
protein as a marker for gene expression”. In: Science (1994), pp. 802–805. ISSN:
0036-8075.

[78] M. D. Maines. “Biliverdin reductase: PKC interaction at the cross-talk of MAPK
and PI3K signaling pathways”. In: Antioxidants & redox signaling 9.12 (2007),
pp. 2187–2196.

[79] P. Manna et al. “Directed evolution of excited state lifetime and brightness
in FusionRed using a microfluidic sorter”. In: Integrative Biology 10.9 (2018),
pp. 516–526.

https://doi.org/10.1038/s41467-018-07246-2
https://doi.org/10.1042/BJ20050826
https://doi.org/10.1021/ja00534a042
https://doi.org/10.1016/j.ygeno.2006.11.012
https://doi.org/10.1021/bi035693l
https://doi.org/10.1021/bi035693l
https://doi.org/10.1039/c7sc05334g


114 BIBLIOGRAPHY

[80] M. E. Matlashov et al. “A set of monomeric near-infrared fluorescent proteins
for multicolor imaging across scales”. In: Nature Communications 11.1 (2020),
p. 123. DOI: 10.1038/s41467-019-13897-6.

[81] M. Mikhaylova et al. “Resolving bundled microtubules using anti-tubulin
nanobodies”. In: Nature communications 6.1 (2015), pp. 1–7.

[82] M Minsky. “Microscopy apparatus US patent 3013467”. In: USP Office, Ed.
US (1961).

[83] M. Minsky. “Memoir on inventing the confocal scanning microscope”. In:
Scanning 10.4 (1988), pp. 128–138.

[84] K Miura et al. “ImageJ Plugin CorrectBleach V2. 0.2”. In: Zenodo. doi 10 (2014).

[85] J. R. Moffitt, C. Osseforth, and J. Michaelis. “Time-gating improves the spatial
resolution of STED microscopy”. In: Optics express 19.5 (2011), pp. 4242–4254.

[86] K. Movahedi et al. “Nanobody-based targeting of the macrophage mannose
receptor for effective in vivo imaging of tumor-associated macrophages”. In:
Cancer research 72.16 (2012), pp. 4165–4177.

[87] S. Nagano. “From photon to signal in phytochromes: similarities and differ-
ences between prokaryotic and plant phytochromes”. In: Journal of plant re-
search 129.2 (2016), pp. 123–135.

[88] B. Nöding, H. Herrmann, and S. Köster. “Direct observation of subunit ex-
change along mature vimentin intermediate filaments”. In: Biophysical journal
107.12 (2014), pp. 2923–2931.

[89] O. Nureki et al. “An enzyme with a deep trefoil knot for the active-site ar-
chitecture”. In: Acta Crystallographica Section D: Biological Crystallography 58.7
(2002), pp. 1129–1137.

[90] O. S. Oliinyk et al. “Smallest near-infrared fluorescent protein evolved from
cyanobacteriochrome as versatile tag for spectral multiplexing”. In: Nature
communications 10.1 (2019), p. 279. ISSN: 2041-1723. DOI: 10.1038/s41467-
018-08050-8.

[91] J. Oracz et al. “Photobleaching in STED nanoscopy and its dependence on the
photon flux applied for reversible silencing of the fluorophore”. In: Scientific
reports 7.1 (2017), pp. 1–14.

[92] M. Ormö et al. “Crystal structure of the Aequorea victoria green fluorescent
protein”. In: Science (New York, N.Y.) 273.5280 (1996), pp. 1392–1395. ISSN:
1095-9203. DOI: 10.1126/science.273.5280.1392.

[93] F. Pennacchietti et al. “Fast reversibly photoswitching red fluorescent pro-
teins for live-cell RESOLFT nanoscopy”. In: Nature methods 15.8 (2018), pp. 601–
604.

[94] K. D. Piatkevich, F. V. Subach, and V. V. Verkhusha. “Engineering of bacterial
phytochromes for near-infrared imaging, sensing, and light-control in mam-
mals”. In: Chemical Society reviews 42.8 (2013), pp. 3441–3452. ISSN: 1460-4744.
DOI: 10.1039/c3cs35458j.

[95] T. Pleiner et al. “Nanobodies: site-specific labeling for super-resolution imag-
ing, rapid epitope-mapping and native protein complex isolation”. In: Elife 4
(2015), e11349.

[96] A. M. Porcelli et al. “pH difference across the outer mitochondrial membrane
measured with a green fluorescent protein mutant”. In: Biochemical and bio-
physical research communications 326.4 (2005), pp. 799–804.

https://doi.org/10.1038/s41467-019-13897-6
https://doi.org/10.1038/s41467-018-08050-8
https://doi.org/10.1038/s41467-018-08050-8
https://doi.org/10.1126/science.273.5280.1392
https://doi.org/10.1039/c3cs35458j


BIBLIOGRAPHY 115

[97] D. C. Prasher et al. “Primary structure of the Aequorea victoria green-fluorescent
protein”. In: Gene 111.2 (1992), pp. 229–233. ISSN: 03781119. DOI: 10.1016/
0378-1119(92)90691-H.

[98] S. von Prowazek. “Fluorescenz der Zellen”. In: Zoologischer Anzeiger 42 (1913),
pp. 374–380.

[99] P. H. Quail. “An emerging molecular map of the phytochromes”. In: Plant,
Cell & Environment 20.6 (1997), pp. 657–665. ISSN: 1365-3040. DOI: 10.1046/
j.1365-3040.1997.d01-108.x.

[100] P. H. Quail. “Phytochrome photosensory signalling networks”. In: Nature re-
views. Molecular cell biology 3.2 (2002), pp. 85–93. ISSN: 1471-0072. DOI: 10.
1038/nrm728.

[101] M. Ratz. “CRISPR-Cas9-mediated protein tagging in human cells for RESOLFT
nanoscopy and the analysis of mitochondrial prohibitins”. PhD Thesis. 2015.

[102] M. Ratz et al. “CRISPR/Cas9-mediated endogenous protein tagging for RESOLFT
super-resolution microscopy of living human cells”. In: Scientific reports 5
(2015), p. 9592. ISSN: 2045-2322. DOI: 10.1038/srep09592.

[103] L. Rayleigh. “On the theory of optical images, with special reference to the
microscope”. In: Journal of the Royal Microscopical Society 23.4 (1903), pp. 447–
473.

[104] B. G. Reid and G. C. Flynn. “Chromophore formation in green fluorescent
protein”. In: Biochemistry 36.22 (1997), pp. 6786–6791. ISSN: 0006-2960. DOI:
10.1021/bi970281w.

[105] J. Riedl et al. “Lifeact: a versatile marker to visualize F-actin”. In: Nature meth-
ods 5.7 (2008), pp. 605–607.

[106] J. P. Rigaut and J. Vassy. “High-resolution three-dimensional images from
confocal scanning laser microscopy. Quantitative study and mathematical
correction of the effects from bleaching and fluorescence attenuation in depth.”
In: Analytical and quantitative cytology and histology 13.4 (1991), pp. 223–232.

[107] E Rittweger et al. “Fluorescence depletion mechanisms in super-resolving
STED microscopy”. In: Chemical physics letters 442.4-6 (2007), pp. 483–487.

[108] N. C. Rockwell, Y.-S. Su, and J. C. Lagarias. “Phytochrome structure and sig-
naling mechanisms”. In: Annu. Rev. Plant Biol. 57 (2006), pp. 837–858.

[109] E. A. Rodriguez et al. “A far-red fluorescent protein evolved from a cyanobac-
terial phycobiliprotein”. In: Nature methods 13.9 (2016), pp. 763–769. ISSN:
1548-7105. DOI: 10.1038/nmeth.3935.

[110] O. C. Rogers, D. M. Johnson, and E. Firnberg. “mRhubarb: Engineering of
monomeric, red-shifted, and brighter variants of iRFP using structure-guided
multi-site mutagenesis”. In: Scientific reports 9.1 (2019), p. 15653. ISSN: 2045-
2322. DOI: 10.1038/s41598-019-52123-7.

[111] K. A. Rumyantsev et al. “Design of near-infrared single-domain fluorescent
protein GAF-FP based on bacterial phytochrome”. In: Cell and Tissue Biology
11.1 (2017), pp. 16–26. DOI: 10.1134/S1990519X17010102.

[112] M. J. Rust, M. Bates, and X. Zhuang. “Sub-diffraction-limit imaging by stochas-
tic optical reconstruction microscopy (STORM)”. In: Nature methods 3.10 (2006),
pp. 793–796.

https://doi.org/10.1016/0378-1119(92)90691-H
https://doi.org/10.1016/0378-1119(92)90691-H
https://doi.org/10.1046/j.1365-3040.1997.d01-108.x
https://doi.org/10.1046/j.1365-3040.1997.d01-108.x
https://doi.org/10.1038/nrm728
https://doi.org/10.1038/nrm728
https://doi.org/10.1038/srep09592
https://doi.org/10.1021/bi970281w
https://doi.org/10.1038/nmeth.3935
https://doi.org/10.1038/s41598-019-52123-7
https://doi.org/10.1134/S1990519X17010102


116 BIBLIOGRAPHY

[113] Y. Saito et al. “Machine-learning-guided mutagenesis for directed evolution
of fluorescent proteins”. In: ACS synthetic biology 7.9 (2018), pp. 2014–2022.

[114] A. Sawano and A. Miyawaki. “Directed evolution of green fluorescent pro-
tein by a new versatile PCR strategy for site-directed and semi-random mu-
tagenesis”. In: Nucleic Acids Research 28.16 (2000), e78. ISSN: 0305-1048.

[115] E. Schäfer and F. Nagy. Photomorphogenesis in plants and bacteria: function and
signal transduction mechanisms. Springer Science & Business Media, 2006.

[116] J. Schindelin et al. “Fiji: an open-source platform for biological-image anal-
ysis”. In: Nature methods 9.7 (2012), pp. 676–682. ISSN: 1548-7105. DOI: 10.
1038/nmeth.2019.

[117] W. M. Schluchter and A. N. Glazer. “Characterization of Cyanobacterial Bili-
verdin Reductase”. In: Journal of Biological Chemistry 272.21 (1997), pp. 13562–
13569.

[118] D. M. Shcherbakova and V. V. Verkhusha. “Near-infrared fluorescent proteins
for multicolor in vivo imaging”. In: Nature methods 10.8 (2013), pp. 751–754.
ISSN: 1548-7105. DOI: 10.1038/nmeth.2521.

[119] D. M. Shcherbakova et al. “Bright monomeric near-infrared fluorescent pro-
teins as tags and biosensors for multiscale imaging”. In: Nature communica-
tions 7 (2016), p. 12405. ISSN: 2041-1723. DOI: 10.1038/ncomms12405.

[120] D. M. Shcherbakova et al. “Natural photoreceptors as a source of fluorescent
proteins, biosensors, and optogenetic tools”. In: Annual review of biochemistry
84 (2015), pp. 519–550. ISSN: 1545-4509. DOI: 10.1146/annurev- biochem-
060614-034411.

[121] A. A. Shemetov, O. S. Oliinyk, and V. V. Verkhusha. “How to Increase Bright-
ness of Near-Infrared Fluorescent Proteins in Mammalian Cells”. In: Cell chem-
ical biology 24.6 (2017), 758–766.e3. ISSN: 2451-9456. DOI: 10.1016/j.chembiol.
2017.05.018.

[122] O. Shimomura, F. H. Johnson, and Y. Saiga. “Extraction, purification and
properties of aequorin, a bioluminescent protein from the luminous hydrome-
dusan, Aequorea”. In: Journal of Cellular and Comparative Physiology 59.3 (1962),
pp. 223–239. ISSN: 1553-0809. DOI: 10.1002/jcp.1030590302.

[123] X. Shu et al. “Mammalian expression of infrared fluorescent proteins engi-
neered from a bacterial phytochrome”. In: Science (New York, N.Y.) 324.5928
(2009), pp. 804–807. ISSN: 1095-9203. DOI: 10.1126/science.1168683.

[124] H. Smith. “Phytochromes and light signal perception by plants–an emerging
synthesis”. In: Nature 407.6804 (2000), pp. 585–591. ISSN: 1476-4687. DOI: 10.
1038/35036500.

[125] P. Soellner, R. A. Quinlan, and W. W. Franke. “Identification of a distinct sol-
uble subunit of an intermediate filament protein: tetrameric vimentin from
living cells”. In: Proceedings of the National Academy of Sciences 82.23 (1985),
pp. 7929–7933.

[126] J. Soret. “Analyse spectrale: Sur le spectre d’absorption du sang dans la partie
violette et ultra-violette”. In: Compt. Rend 97 (1883), pp. 1269–1270.

[127] O. V. Stepanenko et al. “A knot in the protein structure–probing the near-
infrared fluorescent protein i RFP designed from a bacterial phytochrome”.
In: The FEBS journal 281.9 (2014), pp. 2284–2298.

https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2521
https://doi.org/10.1038/ncomms12405
https://doi.org/10.1146/annurev-biochem-060614-034411
https://doi.org/10.1146/annurev-biochem-060614-034411
https://doi.org/10.1016/j.chembiol.2017.05.018
https://doi.org/10.1016/j.chembiol.2017.05.018
https://doi.org/10.1002/jcp.1030590302
https://doi.org/10.1126/science.1168683
https://doi.org/10.1038/35036500
https://doi.org/10.1038/35036500


BIBLIOGRAPHY 117

[128] A. C. Steven et al. “The distribution of mass in heteropolymer intermediate
filaments assembled in vitro. Stem analysis of vimentin/desmin and bovine
epidermal keratin.” In: Journal of Biological Chemistry 258.13 (1983), pp. 8323–
8329.

[129] U. Sweere et al. “Interaction of the response regulator ARR4 with phytochrome
B in modulating red light signaling”. In: Science 294.5544 (2001), pp. 1108–
1111.

[130] H. Takala et al. “Light-induced changes in the dimerization interface of bacte-
riophytochromes”. In: Journal of Biological Chemistry 290.26 (2015), pp. 16383–
16392.

[131] H. Takala et al. “Signal amplification and transduction in phytochrome pho-
tosensors”. In: Nature 509.7499 (2014), pp. 245–248.

[132] W. R. Taylor. “A deeply knotted protein structure and how it might fold”. In:
Nature 406.6798 (2000), pp. 916–919.

[133] W. R. Taylor and K. Lin. “Protein knots: a tangled problem”. In: Nature 421.6918
(2003), pp. 25–25.

[134] M. J. Terry. “Biosynthesis and Analysis of Bilins”. In: Heme, chlorophyll, and
bilins. Ed. by A. G. Smith and M. Witty. Vol. 0. Totowa, N.J.: Humana Press,
2002, pp. 273–291. ISBN: 978-1-59259-243-2. DOI: 10.1385/1-59259-243-0:
273.

[135] The Digestive System. Elsevier, 2010. ISBN: 9780702033674.

[136] A. T. Ulijasz et al. “Characterization of two thermostable cyanobacterial phy-
tochromes reveals global movements in the chromophore-binding domain
during photoconversion”. In: Journal of Biological Chemistry 283.30 (2008), pp. 21251–
21266.

[137] G. Vicidomini et al. “STED with wavelengths closer to the emission maxi-
mum”. In: Optics express 20.5 (2012), pp. 5225–5236.

[138] J. R. Wagner et al. “A light-sensing knot revealed by the structure of the
chromophore-binding domain of phytochrome”. In: Nature 438.7066 (2005),
pp. 325–331.

[139] J. R. Wagner et al. “High resolution structure of Deinococcus bacteriophy-
tochrome yields new insights into phytochrome architecture and evolution”.
In: Journal of Biological Chemistry 282.16 (2007), pp. 12298–12309.

[140] J. R. Wagner et al. “Mutational analysis of Deinococcus radiodurans bacterio-
phytochrome reveals key amino acids necessary for the photochromicity and
proton exchange cycle of phytochromes”. In: Journal of Biological Chemistry
283.18 (2008), pp. 12212–12226.

[141] W. W. Ward et al. “Spectral perturbations of the Aequorea green-fluorescent
protein”. In: Photochemistry and photobiology 35.6 (1982), pp. 803–808.

[142] R. Weissleder. “A clearer vision for in vivo imaging”. In: Nature biotechnology
19.4 (2001), pp. 316–317.

[143] L. J. van Wilderen et al. “Mid-Infrared Picosecond Pump- Dump- Probe and
Pump- Repump-Probe Experiments to Resolve a Ground-State Intermediate
in Cyanobacterial Phytochrome Cph1”. In: The Journal of Physical Chemistry B
113.51 (2009), pp. 16354–16364.

https://doi.org/10.1385/1-59259-243-0:273
https://doi.org/10.1385/1-59259-243-0:273


118 BIBLIOGRAPHY

[144] S. I. Woodard and H. A. Dailey. “Regulation of heme biosynthesis in Es-
cherichia coli”. In: Archives of Biochemistry and Biophysics 316.1 (1995), pp. 110–
115.

[145] C. A. Wurm et al. “Novel red fluorophores with superior performance in
STED microscopy”. In: Optical Nanoscopy 1.1 (2012), p. 7.

[146] D. Wüstner et al. “Photobleaching kinetics and time-integrated emission of
fluorescent probes in cellular membranes”. In: Molecules 19.8 (2014), pp. 11096–
11130.

[147] F. Yang, L. G. Moss, and G. N. Phillips. “The molecular structure of green flu-
orescent protein”. In: Nature Biotechnology 14.10 (1996), pp. 1246–1251. ISSN:
1546-1696. DOI: 10.1038/nbt1096-1246.

[148] X. Yang, J. Kuk, and K. Moffat. “Conformational differences between the Pfr
and Pr states in Pseudomonas aeruginosa bacteriophytochrome”. In: Proceed-
ings of the National Academy of Sciences 106.37 (2009), pp. 15639–15644.

[149] X. Yang, J. Kuk, and K. Moffat. “Crystal structure of Pseudomonas aerug-
inosa bacteriophytochrome: photoconversion and signal transduction”. In:
Proceedings of the National Academy of Sciences 105.38 (2008), pp. 14715–14720.

[150] X. Yang et al. “Light signaling mechanism of two tandem bacteriophytochromes”.
In: Structure 23.7 (2015), pp. 1179–1189.

[151] D. Yu et al. “A naturally monomeric infrared fluorescent protein for protein
labeling in vivo”. In: Nature methods 12.8 (2015), pp. 763–765. ISSN: 1548-7105.
DOI: 10.1038/nmeth.3447.

[152] D. Yu et al. “An improved monomeric infrared fluorescent protein for neu-
ronal and tumour brain imaging”. In: Nature communications 5 (2014), p. 3626.
ISSN: 2041-1723. DOI: 10.1038/ncomms4626.

[153] T. I. Zarembinski et al. “Deep trefoil knot implicated in RNA binding found in
an archaebacterial protein”. In: Proteins: Structure, Function, and Bioinformatics
50.2 (2003), pp. 177–183.

[154] L. Zhang et al. “Reaction progress of chromophore biogenesis in green flu-
orescent protein”. In: Journal of the American Chemical Society 128.14 (2006),
pp. 4766–4772. ISSN: 1520-5126. DOI: 10.1021/ja0580439.

https://doi.org/10.1038/nbt1096-1246
https://doi.org/10.1038/nmeth.3447
https://doi.org/10.1038/ncomms4626
https://doi.org/10.1021/ja0580439

