Site-Selectivity in Ruthenium-Catalyzed C-H and C-C Activations

Dissertation

for the award of the degree
"Doctor rerum naturalium"
of the Georg-August-University Göttingen

within the doctoral program of chemistry
of the Georg-August-University School of Science (GAUSS)
submitted by

Korkit Korvorapun
from Bangkok, Thailand

Thesis Committee

Prof. Dr. Lutz Ackermann, Institute of Organic and Biomolecular Chemistry

Prof. Dr. Konrad Koszinowski, Institute of Organic and Biomolecular Chemistry

Members of the Examination Board

Reviewer: Prof. Dr. Lutz Ackermann, Institute of Organic and Biomolecular Chemistry

Second Reviewer: Prof. Dr. Konrad Koszinowski, Institute of Organic and Biomolecular Chemistry

Further Members of the Examination Board

Prof. Dr. Dr. h.c.mult. Lutz F. Tietze, Institute of Organic and Biomolecular Chemistry

Prof. Dr. Dietmar Stalke, Institute of Inorganic Chemistry

Jun.-Prof. Dr. Johannes C. L. Walker, Institute of Organic and Biomolecular Chemistry

Dr. Michael John, Institute of Organic and Biomolecular Chemistry

Date of the Oral Examination: 16.09.2020

Acknowledgement

Firstly, I would like to express my sincere gratitude and respect to my supervisor, Prof. Dr. Lutz Ackermann, for giving me the opportunity to study my PhD in his research group. Moreover, I would like to thank him for his supervision, valuable instructions, outstanding suggestions, kindness, and encouragement throughout the course of work.

I am grateful to Prof. Dr. Konrad Koszinowski for accepting to be my second supervisor. I also would like to thank Prof. Dr. Dr. h.c.mult. Lutz F. Tietze, Prof. Dr. Dietmar Stalke, Jun.-Prof. Dr. Johannes C. L. Walker, and Dr. Michael John for agreeing to take part in my defense.

I gratefully acknowledge Deutscher Akademischer Austauschdienst (DAAD) or German Academic Exchange Service for the financial support during my research stay in Germany

I would like to thank Mrs. Gabriele Keil-Knepel for her continuous assistance with administrative tasks. I also thank Mr. Stefan Beußhausen for taking care of the instruments and computers in our research group and Mr. Karsten Rauch for his continuous support to our lab work, and especially for the preparation of ruthenium catalysts.

My thankfulness is also offered to all the members of the analytical departments (NMR spectroscopy and mass spectrometry) at the IOBC for their continuous support to our research work, as well as Dr. Christopher Golz for the X-ray diffraction analysis. Moreover, I deeply thank to Dr. Michael John for helping me analyze some NMR spectroscopic data and Dr. A. Claudia Stückl for her EPR spectroscopic measurement.

I also would like to thank all members from our research group, especially the person whom I had the opportunity to collaborate with: Dr. Suman De Sarkar, Dr. David J. Burns, Dr. Svenja Warratz, Dr. Torben Rogge, Dr. Rositha Kuniyil, Dr. Marc Moselage, Dr. Gandeepan Parthasarathy, Dr. Julian Koeller, Dr. Antonis M. Messinis, Nikolaos Kaplaneris, Julia Struwe, Anna Casnati, Agnese Zangarelli, and Marjo Waeterschoot. In addition, I wish to thank Dr. Lars Finger for advising and suggesting me for CV studies and X-ray crystallography. Thank you all!

I would like to sincerely thank all the people who proofread this thesis: Dr. João C. A. de Oliveira, Julia Struwe, Valentin Müller, Ralf A. Steinbock, Nikolaos Kaplaneris, and Leonardo Massignan. Thank you all for your time and your patience!

I also would like to express my gratitude to my former supervisors for teaching me about chemistry and giving me the opportunity to conduct research within their laboratories, particularly Prof. Dr. Manat Pohmakotr and Assoc. Prof. Dr. Darunee Soorukram.

Finally, I wish to thank my family for their love, kindness, encouragement, and support during my study.

Contents

1 Introduction 1
1.1 Transition Metal-Catalyzed C-H Functionalization 1
1.2 Ruthenium-Catalyzed Direct ortho-C-H Functionalizations 4
1.2.1 ortho-C-H Alkylations 5
1.2.2 ortho-C-H Benzylations 8
1.2.3 ortho-C-H Arylations 8
1.2.4 ortho-C-H Halogenations 14
1.3 Ruthenium-Catalyzed Remote meta-C-H Functionalizations 15
1.3.1 meta-C-H Alkylations 18
1.3.2 meta-C-H Benzylations 22
1.3.3 meta-C-H Carboxylations 23
1.3.4 meta-C-H Acylation 24
1.3.5 meta-C-H Sulfonylation 24
1.3.6 meta-C-H Brominations. 26
1.3.7 meta-C-H Nitrations 28
1.4 Ruthenium-Catalyzed Remote para-C-H Functionalizations 31
2 Objectives 34
3 Results and Discussion 37
3.1 Ruthenium-Catalyzed meta-Selective Bromination 37
3.1.1 Optimization Studies 37
3.1.2 Scope of the meta-Selective $\mathrm{C}-\mathrm{H}$ Bromination 38
3.2 Ruthenium(II)-Catalyzed Remote meta-C-H Alkylation of Ketimines 40
3.2.1 Optimization Studies 40
3.2.2 Scope of the meta-Selective C-H Alkylation of Ketimines 42
3.2.3 Mechanistic Studies 44
3.2.4 Late-Stage Diversification 47
3.3 Sequential meta-/ortho-C-H Functionalizations by One-Pot Ruthenium(II/III) Catalysis 49
3.3.1 Optimization Studies 50
3.3.2 Scope of the meta-Selective $\mathrm{C}-\mathrm{H}$ Alkylation with α-bromo carbonyl compounds 53
3.3.3 Scope of the Sequential meta-C-H Alkylation/ortho-C-H Arylation in One-Pot 56
3.3.4 Mechanistic Studies 57
3.3.5 Proposed Catalytic Cycle 59
3.3.6 Late-Stage Diversification 60
3.3.7 Preliminary Studies on para-Selective C-H Alkylation 61
3.4 Late-Stage Diversification by Selectivity Switch in meta-C-H Activation 63
3.4.1 Optimization Studies 63
3.4.2 Effect of Phosphine Ligand to Site-Selectivity 69
3.4.3 Scope of the meta-Selective C-H Benzylation 72
3.4.4 Scope for Late-Stage Diversification through the remote meta-C-H Activation 75
3.4.5 Mechanistic Studies 80
3.4.6 Proposed Catalytic Cycle 87
3.5 Ruthenium(II)-Catalyzed Decarboxylative Alkylation 88
3.5.1 Optimization Studies for Decarboxylative meta-C-H Alkylation. 89
3.5.2 Scope of the Ruthenium-Catalyzed Decarboxylative Alkylation 90
3.5.3 Mechanistic Studies 93
3.6 Ruthenium-Catalyzed C-H Alkylation of Pyrazoles: ortho versus meta 94
3.6.1 Site-Selectivity in Ruthenium-Catalyzed C-H Alkylation of Pyrazoles 96
3.6.2 Mechanistic Studies 99
3.6.3 Proposed Catalytic Cycle 102
3.7 Photo-Induced Ruthenium-Catalyzed C-H Arylations at Room Temperature 103
3.7.1 Optimization Studies 104
3.7.2 Scope of Photo-Induced Ruthenium-Catalyzed Direct C-H Arylation 108
3.7.3 Mechanistic Studies 112
3.7.4 Plausible Catalytic Cycle 113
4 Summary and Outlook 115
5 Experimental Part 121
5.1 General Remarks 121
5.2 General Procedures 126
5.2.1 General Procedure A: Ruthenium-Catalyzed meta-Selective Bromination 126
5.2.2 General Procedure B: Ruthenium(II)-Catalyzed Remote meta-C-H Alkylations of Ketimines using 1- $\mathrm{AdCO}_{2} \mathrm{H}$ as the Ligand 126
5.2.3 General Procedure C: Ruthenium(II)-Catalyzed Remote meta-C-H Alkylations of Ketimines using Piv-lle-OH as the Ligand. 127
5.2.4 General Procedure D: Ruthenium(II)-Catalyzed Remote meta-C-H Alkylations of Ketimines Followed by Reduction in One-Pot Fashion 127
5.2.5 General Procedure E: Ruthenium(II)-Catalyzed Remote meta-C-H Alkylations using PPh_{3} as the Ligand 127
5.2.6 General Procedure F: Ruthenium(II)-Catalyzed Sequential meta-Alkylation/ortho- Arylation. 128
5.2.7 General Procedure G: Ruthenium(II)-Catalyzed Sequential meta-Alkylation/ortho- Arylation in One-Pot Fashion by Temperature Control 128
5.2.8 General Procedure H: Photocatalytic Decarboxylation 128
5.2.9 General Procedure I: Ruthenium(II)-Catalyzed meta-C-H Benzylation of Heteroarenes 129
5.2.10 General Procedure J: Late-Satge Diversification through Ruthenium(II)-Catalyzed meta-C-H Activation 129
5.2.11 General Procedure K: Ruthenium(II)-Catalyzed C-C Alkylation of Acids 144 129
5.2.12 General Procedure L: Ruthenium(II)-Catalyzed C-C Alkylation of Acids 144 using PPh_{3} as the Ligand 130
5.2.13 General Procedure M: Ruthenium-Catalyzed C-H Alkylations of Pyrazoles 130
5.2.14 General Procedure N: Photo-Induced Ruthenium-Catalyzed C-H Arylations at Room Temperature 130
5.3 Experimental Procedures and Analytical Data 131
5.3.1 Ruthenium-Catalyzed meta-Selective Bromination 131
5.3.2 Ruthenium(II)-Catalyzed Remote meta-C-H Alkylation of Ketimines 137
5.3.2.1 Characterization Data for 154 137
5.3.2.2 Mechanistic Studies 167
5.3.2.2.1 Intermolecular Competition Experiments 167
5.3.2.2.2 Intramolecular Competition Experiment 171
5.3.2.2.3 Reactions with Radical Scavengers 173
5.3.2.2.4 Reactions with Diastereomerically Pure Alkyl Bromide 136s 174
5.3.2.3 Late-Stage Diversifications 176
5.3.3 Sequential meta-/ortho-C-H Functionalizations by One-Pot Ruthenium(II/III) Catalysis 181
5.3.3.1 Characterization Data for 141 181
5.3.3.2 Characterization Data for 164 191
5.3.3.3 Characterization Data for 166 194
5.3.3.4 Mechanistic Studies 200
5.3.3.4.1 Reaction with TEMPO 200
5.3.3.4.2 Reactions with Diastereomerically Pure Alkyl Bromide 201
5.3.3.4.3 Spin Trapping with DMPO 204
5.3.3.5 Late-Stage Diversifications 205
5.3.3.6 Characterization Data for 180 208
5.3.3.7 Fluorescence Spectra 211
5.3.3.8 X-Ray Crystallographic Analysis 212
5.3.4 Late-Stage Diversification by Selectivity Switch in meta-C-H Activation 228
5.3.4.1 Characterization Data for 143 and 183 228
5.3.4.2 Characterization Data for 185 241
5.3.4.3 Characterization Data for 187 251
5.3.4.4 Mechanistic Studies 274
5.3.4.4.1 Competition Experiments of Alkyl Halides 274
5.3.4.4.2 Intermolecular Competition Experiment 276
5.3.4.4.3 Reactions with Radical Scavengers 277
5.3.4.4.4 Isotopic Studies 279
5.3.4.4.5 Cyclometallic Complex Studies 283
5.3.4.5 Racemization Examination 293
5.3.4.6 Fluorescence Spectra 301
5.3.4.7 X-Ray Crystallographic Analysis 302
5.3.5 Ruthenium(II)-Catalyzed Decarboxylative Alkylation 349
5.3.5.1 Characterization Data for 145, 146, and 201 349
5.3.5.2 Characterization Data for $\mathbf{1 4 1} \mathrm{g}$ and 202 357
5.3.5.3 Mechanistic Studies 364
5.3.5.3.1 Isotopic Studies 364
5.3.5.3.2 Reactions with Radical Scavengers 366
5.3.5.4 X-Ray Crystallographic Analysis 368
5.3.6 Ruthenium-Catalyzed C-H Alkylation of Pyrazoles: ortho versus meta 373
5.3.6.1 Characterization Data for 145, 146, and 203 373
5.3.6.2 Mechanistic Studies 390
5.3.6.2.1 Reactions with Diastereomerically Pure Alkyl Bromides 390
5.3.6.2.2 Synthesis of Cyclometalated Ruthenium Complex 204 395
5.3.6.2.3 Catalytic C-H Alkylation with Cyclometalated Complex 204 396
5.3.6.3 X-Ray Crystallographic Analysis 397
5.3.7 Photo-Induced Ruthenium-Catalyzed C-H Arylations at Room Temperature 421
5.3.7.1 Characterization Data for 151 and 214 421
5.3.7.2 Photo-Induced Ruthenium-Catalyzed C-H Arylation of Ketimine $\mathbf{1 3 5 z}$ 442
5.3.7.3 Photo-Induced C-H Arylation by Ruthenacycle 218 443
5.3.7.4 X-Ray Crystallographic Analysis 443
6 References 457
7 Appendix: NMR spectra 468

List of Abbreviations

A	ampere
Å	angstrom (Ångström)
Ac	acetyl
Ad	adamantane
Alk	alkyl
AMLA	ambiphilic metal ligand activation
aq.	aqueous
Ar	aryl
ATR	attenuated total reflection
BHT	3,5-di-tert-butyl-4-hydroxytoluene
BIES	base-assisted internal electrophilic substitution
BINAP	2,2'-bis(diphenylphosphino)-1,1'-binaphthyl
$B n$	benzyl
BNDHP	1,1'binaphthyl-2,2'-diyl hydrogenphosphate
Boc	tert-butyloxycarbonyl
bpy	2,2'-bipyridine
Bu	butyl
Bz	benzoyl
cat.	catalytic
CMD	concerted metalation-deprotonation
CV	cyclic voltammetry
Cy	cyclohexyl
d	doublet
1,2-DCE	1,2-dichloroethane
D-CSA	D-camphorsulfonic acid
Dec	decyl
DFT	density-functional theory
DG	directing group
DIPEA	N, N-di-iso-propylethylamine
DMA	N, N-dimethylacetamide
DMEDA	N, N^{\prime}-dimethylethylenediamine, Hünig's base
DMPO	5,5-dimethyl-1-pyrroline N -oxide
DMSO	dimethyl sulfoxide

DPEPhos	bis[(2-diphenylphosphino)phenyl] ether
dr	diastereomeric ratio
DTBP	di-tert-butyl peroxide
$E_{1 / 2}$	half-wave potential
ee	enantimeric excess
El	electron ionization
EPR	electron paramagnetic resonance
equiv	equivalent
ESI	electrospray ionization
Et	ethyl
FTICR	fourier transform ion cyclotron resonance
g	gram
GC	gas chromatography
GPC	gel permeation chromatography
GVL	γ-valerolactone
h	hour
HATU	hexafluorophosphate azabenzotriazole tetramethyl uronium
hept	heptet
Het	heterocycle
Hex	hexyl
HFIP	1,1,1,3,3,3-hexafluoro-2-propanol
HMBC	heteronuclear multiple bond correlation
HOMO	highest occupied molecular orbital
HPLC	high-performance-liquid-chromatography
HR-MS	high resolution mass spectrometry
Hz	hertz
i	iso
IES	internal electrophilic substitution
Ile	isoleucine
IPr	1,3-bis(2,6-di-iso-propylphenyl)-1H-imidazole
IR	infrared
ISC	intersystem crossing
ISET	inner-sphere electron transfer
J	coupling constant

k	rate constant
L	ligand or liter
LED	light-emitting diode
LIFDI	liquid injection field desorption/ionization
LMCT	ligand-to-metal charge-transfer
LUMO	lowest unoccupied molecular orbital
m	multiplet
m	meta
M	molar
M	mega
μ	micro
m-CPBA	m-chloroperoxybenzoic acid
Me	methyl
Mes	mesitylene
MLCT	metal-to-ligand charge-transfer
m.p.	melting point
MPAA	monoprotected amino acid
MS	mass spectrometry
m / z	mass-to-charge ratio
n	normal
N	normality
NBS	N-bromosuccinimide
NCS	N-chlorosuccinimide
NIS	N-iodosuccinimide
NMP	N-methyl-2-pyrrolidone
NMR	nuclear magnetic resonance
NOESY	nuclear overhauser effect spectroscopy
0	ortho
Oct	octyl
OSET	outer-sphere electron transfer
p	pentet
p	para
Ph	phenyl
Phe	phenylalanine

Piv	pivaloyl
PMP	4-methoxyphenyl
Pr	propyl
PTS	polyoxyethanyl- α-tocopheryl sebacate
2-py	2-pyridyl
2-pym	2-pyrimidyl
pyr	pyrazole
q	quartet
rac	racemic or racemate
rt	room temperature
s	singlet or second
sat.	saturated
SDS	sodium dodecyl sulfate
SET	single-electron transfer
TBA	tetrabutylammonium
TBME	tert-butylmetylether
TBS	tert-butyldimethylsilyl
TEMPO	2,2,6,6-tetramethylpiperidin-1-oxyl
t	triplet
tert, t	tertiary
TD-DFT	time-dependent density-functional theory
Tf	trifluoromethanesulfonyl
TFA	Trifluoroacetic acid
THF	tetrahydrofuran
TLC	thin layer chromatography
TM	transition metal
TMP	3,4,5-trimethoxyphenyl
TOF	time-of-flight
UV	ultraviolet
V	volt
Val	valine
Vis	visible

1 Introduction

Regarding global warming issue, the scientific revolution has nowadays tended to reduce the use of non-renewable resources and to avoid the productions of chemical wastes and pollutants, which represent major environmental issues. Therefore, the development of sustainable chemistry has become a major goal for chemists. In 1998, Anastas and Warner published the 12 Principles of Green Chemistry to diminish the impact of chemical processes on the environment and health, and to guide the development of green chemistry technologies. ${ }^{[1]}$ Catalysis emerges as one of these principles in order to prevent stoichiometric transformations and reduce the amount of chemical waste. Thus, catalysis plays an important role in organic synthesis, with broad applications to academia as well as industries. ${ }^{[2]}$

1.1 Transition Metal-Catalyzed C-H Functionalization

A major breakthrough in modern organic synthesis over five decades has been represented by transition metal-catalyzed $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-$ Het bond formations, allowing for the preparation and the synthetic modification of natural products and biological active compounds, among others. ${ }^{[3]}$ Well-known transition metal catalyses, such as the Kumada-Corriu, ${ }^{[4]}$ Mizoroki-Heck, ${ }^{[5]}$ Sonogashira-Hagihara, ${ }^{[6]}$ Negishi, ${ }^{[7]}$ Stille, ${ }^{[8]}$ Suzuki-Miyaura, ${ }^{[9]}$ and Hiyama ${ }^{[10]}$ cross-couplings afford new C-C bond formation for arylations, alkylations, alkenylations, and alkynylations. Due to these reactions emerging as a powerful toolbox for molecular synthesis with broad applications in crop protection, material sciences, and drug discovery, ${ }^{[11]}$ these innovative transformations were recognized with the Nobel Prize in Chemistry in 2010 to R. F. Heck, E.-i. Negishi, and A. Suzuki. ${ }^{[12]}$

Despite this revolution in synthesis, cross-coupling reactions still display a number of drawbacks. First, a pre-functionalization of both substrates is obligatory, not only for organic (pseudo-)halides, but also for the employed organometallic reagents, which usually require multistep syntheses. Moreover, some of the nucleophiles are highly reactive and difficult to handle organometallic compounds, e.g. organomagnesium (RMgX) or organozinc ($\mathrm{R}_{2} \mathrm{Zn}$), and toxic organotin reagents ($\mathrm{RSnR}^{\prime}{ }_{3}$) (Scheme 1). In addition to these operational issues, a generation of environmentally problematic metal-waste constitutes a disadvantage of traditional cross-coupling reactions. To avoid the use of these organometallic reagents, transition metal-catalyzed selective C-H functionalization has evolved as a powerful and sustainable method over the last decades
(Scheme 1). ${ }^{[13]}$ Since the pre-functionlization for organometallic coupling partners is not necessary, the catalytic $\mathrm{C}-\mathrm{H}$ activation strategy proves to be a more atom- and step-economical process. Furthermore, ideal oxidative $\mathrm{C}-\mathrm{H} / \mathrm{C}-\mathrm{H}$ activations allow for the formation of new $\mathrm{C}-\mathrm{C}$ bonds (Scheme 1). ${ }^{[13 \mathrm{~h}, 14]}$ Although the dehydrogenative transformation formally generates an equivalent of H_{2} as the sole by-product, the oxidative process of the twofold $\mathrm{C}-\mathrm{H}$ activations typically requires stoichiometric amounts of an oxidant, often silver(I) salts.

Scheme 1: General methods for the formation of $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{Het}$ bonds.

Since the $\mathrm{C}-\mathrm{H}$ activation strategy has become more attractive, the nature of $\mathrm{C}-\mathrm{H}$ bond cleavage has been extensively examined. Excluding radical-type outer-sphere mechanisms, ${ }^{[15]}$ several modes of C-H bond activation have been categorized in five different pathways, depending on the electronic properties and the coordination environment of the metal center (Scheme 2). ${ }^{[16]}$ The oxidative addition of a $\mathrm{C}-\mathrm{H}$ bond is a typical reaction mechanism for electron-rich late transition metals in low oxidation states, such as ruthenium (0), rhodium (1), and palladium (0) (Scheme $2 a$). In contrast, most late transition metals in higher oxidation states act preferentially through an electrophilic substitution (Scheme 2b). The concerted pathway proceeding through four-centered transition state in which two σ-bond cleavage and two new σ-bond formation without any overall change in the oxidation state of the metal center is called σ-bond metathesis. This pathway is observed for early transition metals as well as lanthanides and actinides (Scheme 2c). ${ }^{[17]}$ The 1,2-addition usually takes place for early transition metals with an unsaturated $\mathrm{M}=\mathrm{X}$ bond, mostly metal imido complexes (Scheme 2d). ${ }^{[18]}$ Moreover, the base-assisted C-H metalation occurs with metal-carboxylate or -carbonate complexes, leading to the formation of a new $\mathrm{M}-\mathrm{R}$ bond (Scheme 2e). ${ }^{[16 a, 19]}$

(a) oxidative addition

(b) electrophilic substitution

(c) σ-bond metathesis

(d) 1,2-addition

(e) base-assisted metalation

Scheme 2: Mechanistic pathways for $\mathrm{C}-\mathrm{H}$ activations.

The base-assisted mechanism was further investigated and different transition states were identified (Figure 1). The concerted metalation-deprotonation (CMD) ${ }^{[20]}$ and the ambiphilic metal ligand activation (AMLA), ${ }^{[21]}$ which propose through a six-membered transition state, preferentially take place for electron-deficient substrates. A more strained four-membered transition state has been coined the internal electrophilic substitution (IES), which is mostly observed in C-H activations enabled by metal-alkoxy complexes. ${ }^{[22]}$ Recently, the base-assisted internal electrophilic substitution (BIES) has been frequently observed through an electrophilic substitution-type pathway for electron-rich substrates. ${ }^{[23]}$

CMD

AMLA

IES

BIES

Figure 1: Proposed transition states for base-assisted C-H metalation.

Since C-H bonds are omnipresent in organic compounds with similar bond dissociations energies, site-selective functionalization has become a key challenge wthin the $\mathrm{C}-\mathrm{H}$ activations concept. To conquer the regioselectivity issues, three different methods have been established (Figure 2). ${ }^{[24]}$ The difference in reactivity among $\mathrm{C}-\mathrm{H}$ bonds in heterocyclic compounds is highly related to their kinetic acidity, which leads to selective C-H transformations (Figure 2a). ${ }^{[25]}$ The use of sterically hindered substituents in the substrate prevents the $\mathrm{C}-\mathrm{H}$ activation process in the neighboring position, resulting in the selective functionalization of the less hindered $\mathrm{C}-\mathrm{H}$ bond (Figure 2 b). ${ }^{[26]}$ However, the electronic or steric biased methods require specific substrates, which are considered as one of their drawbacks. The basic concept of proximity-induced $\mathrm{C}-\mathrm{H}$ activation is representative of a general strategy for selective C-H transformations by using a Lewis-basic group (Figure 2c). ${ }^{[27]}$ The chelation-assistance through directing groups (DG) brings the metal complex into close proximity to the desired C-H bond, typically at the ortho position. Over the years, a variety of N -heterocyclic compounds and Lewis basic functional groups have been identified as the directing groups in ortho-selective C-H activations (Figure 3).
(a) electronic bias
(b) steric bias
(c) directing group

Figure 2: Site-selectivity control in $\mathrm{C}-\mathrm{H}$ bond activation. pK_{a} values of $\mathrm{C}-\mathrm{H}$ bonds of benzoxazole are given.

Figure 3: Selected examples of directing groups in $\mathrm{C}-\mathrm{H}$ activation catalysis.

1.2 Ruthenium-Catalyzed Direct ortho-C-H Functionalizations

Over the last decade, transition metal-catalyzed C-H functionalization has gained significant momentum with notable achievements by means of 4d and 5d metal catalysis. ${ }^{[28]}$ In addition to precious transition metals, ruthenium catalysis has emerged as an effective and inexpensive
alternative for several transformations. ${ }^{[19 b, 29]}$ In particular, site-selective $\mathrm{C}-\mathrm{H}$ functionalizations on arenes have become more attractive.

1.2.1 ortho-C-H Alkylations

In 1986, the first ruthenium-catalyzed C-H alkylation of phenol (1) was reported by Lewis and Smith (Scheme 3). ${ }^{[30]}$ A triphenylphosphite was proven to be a transient directing group in the catalytic alkylation of phenol (1) with ethylene (2), affording the mono- and diethylated products 4 and 5 at the ortho position. The reaction was performed under high pressure and temperature of 6.6 bar and $177^{\circ} \mathrm{C}$, respectively.

Scheme 3: Direct C-H alkylation of phenol (1) with ethylene (2).

Afterwards, the group of Murai successfully developed a general method for the ortho-C-H alkylations using $\left[\mathrm{RuH}_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right]$ as the catalyst precursor (Scheme 4). ${ }^{[31]}$ This effective protocol was applicable to a variety of aromatic ketones 6 and alkenes 7, affording the desired alkylated ketones 8 with excellent levels of regioselectivity. In spite of no mechanistic studies, the in situ formed five-membered cyclometalated ruthenium complex 9 was proposed as an intermediate in the catalytic transformation, which undergoes olefin insertion followed by reductive elimination to deliver the ortho-alkylated products 8.

Scheme 4: Ruthenium-catalyzed hydroarylations of ketones 6.

In contrast to hydroarylations via sensitive ruthenium hydrides, ${ }^{[32]}$ the method for carboxylateassisted direct alkylation of alkyl halides 11 was first reported by the group of Ackermann in 2009 (Scheme 5). ${ }^{[33]}$ The catalytic alkylations were proven to be applicable to arylpyridines, arylpyrazoles, and arylimines. Moreover, the well-defined $\left[\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CAd}\right)_{2}(p\right.$-cymene $\left.)\right]$ provided a catalytic efficacy comparable to the standard reaction conditions.

Scheme 5: Ruthenium-catalyzed direct C-H alkylations with primary alkyl bromides 11.

Later, the versatility of carboxylate-assisted ruthenium-catalyzed ortho-C-H functionalization was mirrored by the direct alkylation of ketimines 14 , followed by reduction in one-pot fashion, affording the ortho-alkylated benzylamines 15 (Scheme 6). ${ }^{[34]}$ Experiments with isotopically labeled substrates were indicative of a reversible carboxylate-assisted $\mathrm{C}-\mathrm{H}$ bond cleavage to form ruthenacycle 18 (Scheme 7). Oxidative addition with alkyl halide 11 followed by reductive
elimination delivers the corresponding alkylated product $\mathbf{2 0}$ and regenerates the active ruthenium catalyst 16.

Scheme 6: Sequential direct C-H alkylations of ketimines 14 followed by reduction.

Scheme 7: Proposed catalytic cycle for direct alkylations.

1.2.2 ortho-C-H Benzylations

In continuation of the previous study, the group of Ackermann further demonstrated the power of carboxylate-assisted ruthenium catalysis, enabling ortho-selective $\mathrm{C}-\mathrm{H}$ benzylations (Scheme 8). ${ }^{[35]}$ In addition to pyridines and pyrazoles, transformative oxazolines were employed as the directing group in these direct $\mathrm{C}-\mathrm{H}$ benzylations.

Scheme 8: Ruthenium(II)-catalyzed direct benzylations.

1.2.3 ortho-C-H Arylations

The group of $\mathrm{Oi} /$ Inoue developed ruthenium-phosphine catalysis for the first direct arylations of phenylpyridines in 2001 (Scheme 9). ${ }^{[36]}$ Afterwards, the ruthenium catalysis under the same reaction condition allowed for ortho-selective arylation of synthetically useful ketimines, ${ }^{[37]}$ oxazolines, and imidazolines. ${ }^{[38]}$ The catalytic arylations selectively occurred at the less stericallyhindered ortho position when meta-substituted arenes were employed. It is noteworthy that impurities in NMP solvent exerted a major influence on the catalytic efficacy of ruthenium catalysis, leading to a lack of reproducibility. ${ }^{[39]}$

(2005)

90\%

Scheme 9: Ruthenium-catalyzed direct C-H arylations.

In 2011, the modified direct arylation protocol with KOAc as the key additive enabled the formation of biaryl 27 on a multikilogram scale, as was demonstrated by the group of Ouellet (Scheme 10). ${ }^{[39]}$ Oxazoline 27 was smoothly converted to benzyl alcohol 28, which is an intermediate in the synthesis of Anacetrapib (29), a CETP inhibitor.

Scheme 10: Synthesis of the biaryl core of Anacetrapib (29).

In addition to ruthenium-phosphine catalysis, a simple $\mathrm{RuCl}_{3} \cdot \mathrm{nH}_{2} \mathrm{O}$ (30) catalyst allowed for ortho-selective C-H arylations under phosphine-free conditions, as was reported by the group of Ackermann in 2007 (Scheme 11). ${ }^{[40]}$ The uncommon ruthenium(III)-catalyzed C-H activations were applicable to 2-alkenyl or 2-arylpyridines, 2-aryloxazoline, and arylpyrazoles.

Scheme 11: Direct arylations by $\mathrm{RuCl}_{3} \cdot \mathrm{nH}_{2} \mathrm{O}$ (30) as a catalyst.

In 2008, the group of Ackermann disclosed the first general and robust method for ruthenium(II)catalyzed direct C-H arylations using carboxylic acids as additives (Scheme 12). ${ }^{[41]}$ Sterically hindered $\mathrm{MesCO}_{2} \mathrm{H}$ (31) proved to be an efficient additive in nonpolar solvent, PhMe , whereas phosphines and NHC ligands provided low catalytic efficacy. The ruthenium-carboxylate catalysis verified to be applicable to various aromatic substrates 10. In particular, 1,2,3-triazoles, which are found in broad applications in drug discovery, crop protection, and material sciences, were simply converted to the ortho-arylated products $24 .{ }^{[42]}$ Furthermore, the C-H bond cleavage process was proposed to occur through a base-assisted metalation, involving a six-membered cyclic transition state 32

Scheme 12: Ruthenium-carboxylate catalysis for direct arylations through transition state 32.

Afterwards, mechanistic insights of ruthenium-catalyzed ortho-arylations were studied. ${ }^{[43]}$ Stoichiometric experiments of $\left[\mathrm{RuCl}_{2}\left(p-\mathrm{cymene}^{2}\right)\right]_{2}$ and $\mathrm{MesCO}_{2} \mathrm{H}$ (31) led to the formation of the well-defined $\left[\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CMes}\right)_{2}(p\right.$-cymene $\left.)\right]$ (33), which was highly effective for the catalytic arylations. Although ruthenium biscarboxylate complex 33 exhibited no reaction with aryl chloride, the reaction of complex 33 with 2-(4-methoxyphenyl)pyridine afforded the corresponding cyclometalated complex, which showed high catalytic efficacy in the arylation reactions. Furthermore, an observed H/D scrambling was indicative of a reversible, carboxylate-assisted C-H ruthenation, as shown in Scheme 13. Ruthenacycle 36 reacts with aryl halide 23 to form putative ruthenium(IV) intermediate 37 , which finally undergoes reductive elimination to give the ortho-arylated product 38 and regenerate the active catalyst 34.

38

35

23

36

Scheme 13: Proposed catalytic cycle for direct arylations.

Thereafter, the group of Ackermann reported on a modified ruthenium-carboxylate catalysis, which allowed for the direct arylations of aryltetrazoles 39 (Scheme 14a). ${ }^{[44]}$ In addition to the commercially available carboxylic acids, ${ }^{[44 b]}$ the use of monoprotected amino acid (MPAA) Piv-Val-OH (41) in ruthenium catalysis smoothly afforded the corresponding biaryl tetrazoles 42, ${ }^{[44 a]}$ which are core structures of angiotensin II receptor blockers (ARBs). In particular, the powerful $\mathrm{C}-\mathrm{H}$ arylations enabled the concise synthesis of antihypertensive Valsartan (44), as illustrated in Scheme 14b.
(a) scope

(b) synthesis of protected Valsartan (44)

$$
\begin{aligned}
& X=\mathrm{Br}: 89 \% \\
& X=\mathrm{Cl}: 72 \%
\end{aligned}
$$

Scheme 14: Direct arylations of protected tetrazoles 39 using Piv-Val-OH (41) as a ligand and their application for synthesis of Valsartan (44).

In 2017, the group of Larrosa reported on direct C-H arylations of benzoic acids 45 and aryl iodides 46 using a cationic ruthenium(II) complex 47 (Scheme 15). ${ }^{[45]}$ It is noteworthy that the addition of potassium perfluoro-tert-butoxide enhanced the catalytic efficacy.

Scheme 15: ortho-C-H Arylations of benzoic acids 45 by cationic ruthenium complex 47.

Subsequently, the cyclometalated ruthenium complex 49 allowed for the catalytic arylations at mild reaction temperature of $35-50^{\circ} \mathrm{C}$ (Scheme 16). ${ }^{[46]}$ In the presence of carboxylate salts, the power of the ruthenium catalysis was reflected by late-stage $\mathrm{C}-\mathrm{H}$ arylations of relevant pharmaceuticals and natural products.

Scheme 16: Late-stage direct arylations of pharmaceuticals and natural products.

1.2.4 ortho-C-H Halogenations

In addition to the new $\mathrm{C}-\mathrm{C}$ bond formations, the protocol for ruthenium-catalyzed direct brominations and iodinations of tertiary amides 50 was illustrated by the group of Ackermann in 2014 (Scheme 17). ${ }^{[47]}$ Both experiments with 2,6-di-tert-butylpyridine and TEMPO were suggestive of a single-electron transfer mechanism for the catalytic $\mathrm{C}-\mathrm{H}$ halogenations.

Scheme 17: ortho-Selective C-H halogenations of amides 50.

1.3 Ruthenium-Catalyzed Remote meta-C-H Functionalizations

In contrast to a plethora of reports on ortho-C-H transformations, methods for the site-selective C-H bond activations at the meta position continue to be in high demand. Among those reports on meta-selective C-H functionalizations, they were classified into five categories (Figure 4). ${ }^{[48]}$ First, the use of bulky substituents on the aromatic substrates can block the activation of $\mathrm{C}-\mathrm{H}$ bonds in the adjacent positions, ${ }^{[49]}$ leading to the $\mathrm{C}-\mathrm{H}$ transformation at a less sterically-hindered meta position (Figure 4a). ${ }^{[50]}$ However, this method is restricted to few transformations, mainly borylation or silylation. On the basis of chelation-assistance, the installation of a template on the arenes assists the coordination of the catalyst to come into close proximity to the targeted $\mathrm{C}-\mathrm{H}$ bond at the meta or para position (Figure 4b). ${ }^{[51]}$ Although the template assistance ${ }^{[52]}$ is one of the favorite methods for remote functionalizations, the template design, installation, and subsequent removal require the number additional synthetic steps, which is addressed as the drawback of this strategy. The third method developed by Kuninobu/Kanai is a reversible hydrogen bonding linker, enabling C-H borylations at the meta position (Figure 4c). ${ }^{[53]}$ However, the limitation to iridium catalysis and specific transformations is a weakness of this method. Inspired by the Catellani reaction, ${ }^{[54]}$ norbornene and derivatives are employed as effective transient mediators to promote palladium-catalyzed meta-selective C-H transformations (Figure 4d). ${ }^{[55]}$ Finally, the in situ formed cyclometalated ruthenium complexes by proximity-induced ortho- $\mathrm{C}-\mathrm{H}$ metalation allow for the remote $\mathrm{C}-\mathrm{H}$ functionalizations at the para position with respect to ruthenium (Figure 4 e). ${ }^{[56]}$ This phenomena is explained by the electronic bias of the ruthenacycles, identifying the $\mathrm{Ru}-\mathrm{C}$ bond as an ortho/para-directing entity.
(a) steric contro

(b) template-assisted

(c) hydrogen bonding linker

(e) remote σ-activation

Figure 4: Methodologies for remote meta-C-H activations.

The inspiration for the ruthenium-catalyzed remote $\mathrm{C}-\mathrm{H}$ functionalizations results from the reports on stoichiometric nitration of ruthenium aryl complexes by Roper/Wright in 1994 (Scheme 18). ${ }^{[57]}$ The C-H nitrations of o-tolyl ruthenium complex 53 selectively occurred at the position para to the ruthenium metal center (Scheme 18a). In contrast, the reaction of p-tolyl ruthenium complex 56 led to the formation of very stable five-membered ruthenacycle 57 (Scheme 18b). The results were presumably clarified by ortho/para-directing effect of the metal center.

(a)

Scheme 18: Stoichiometric C-H nitrations

Later, the first chelation-assisted oxidative remote $\mathrm{C}-\mathrm{H} / \mathrm{C}-\mathrm{H}$ functionalization was illustrated by the group of van Koten (Scheme 19). ${ }^{[58]}$ The treatment of the cationic ruthenium complex 58 with CuCl_{2} furnished the formation of a binuclear complex 59 and small amounts of chlorinated
ruthenium complex 60. It is noteworthy that the reduced form of 59 strongly displayed electron resonance between the two metal centers through an ideally planar 4,4'-biphenyldiyl bridge.

Scheme 19: Oxidative homocoupling of ruthenium complex 58.

In addition, the group of Coudret reported on site-selective electrophilic $\mathrm{C}-\mathrm{H}$ halogenations of cyclometalated ruthenium complex 61 at room temperature (Scheme 20a). ${ }^{[59]}$ N-Bromosuccinimide (NBS, 62) proved to be an efficient brominating agent, whereas N-iodosuccinimide (NIS) led to complex degradation. The treatment of complex 61 with the combination of molecular iodine and $\mathrm{Phl}(\mathrm{OAc})_{2}$ smoothly delivered the desired iodinated ruthenacycle 63b. Afterwards, Roper and Wright disclosed highly selective C-H brominations of arenes on the ruthenium and osmium complexes 64 (Scheme 20b). ${ }^{[60]}$ The electrophilic substitutions using operational-simple pyridinium perbromide and a catalytic amount of iron powder occurred at the para position with respect to metal centers. Furthermore, the same regioselectivity was observed in brominations of metallacycles 66 , while no substitution occurred on the non-activated arene. ${ }^{[60 \mathrm{a}]}$ This observation was suggestive of electronic directing effect of the metal centers, controlling positional selectivity of electrophilic functionalizations.
(a) Coudret

(b) Roper/Wright

$M=R u(65 a): 69 \%$ $\mathrm{M}=\mathrm{Os}(65 \mathrm{~b}): 78 \%$

$M=R u(67 a): 27 \%$
$M=O s(67 b): 52 \%$
Scheme 20: Electrophilic C-H halogenations of cyclometalated complexes.

1.3.1 meta-C-H Alkylations

The first observation for catalytic remote C-H functionalization was reported by the group of Ackermann in 2011 (Scheme 21). ${ }^{[34]}$ Chelation-assisted C-H alkylations with primary alkyl bromides typically furnished the ortho-alkylated products. However, the catalytic transformation of phenylpyridine 68a with 1-bromohexane (69) delivered the ortho-alkylated product 70 along with the unprecendented meta-decorated arene 70', albeit in rather low yield.

Scheme 21: Ruthenium-catalyzed C-H alkylation with n-hexyl bromide (69).

Inspired by the first observation, the group of Ackermann thereafter disclosed the methods for remote meta-C-H alkylations using secondary alkyl bromides $\mathbf{7 2}$ through an ortho-ruthenation strategy (Scheme 22). ${ }^{[61]}$ The catalytic remote alkylations were applicable to pyridines, pyrimidines, and azoles as directing groups, leading to the formation of meta-alkylated arenes $\mathbf{7 3}$ with excellent levels of position-selectivity (Scheme 22a). Detailed mechanistic studies of this remote functionalization were supportive of a reversible $\mathrm{C}-\mathrm{H}$ ruthenation and a subsequent site-selective alkylation, which was rationalized by the strong electronic effect of the Ru-C(sp $\left.{ }^{2}\right)$ σ-bond. It is noteworthy that the enantiomerically-enriched alkyl bromide (s)-72a was converted to the racemic product 73a (Scheme 22b).
(a) scope

$\mathrm{R}=n-\mathrm{Pr}: \quad 62 \%$
$\mathrm{R}=n-\mathrm{Bu}: 70 \%$
$\mathrm{R}=n$-Hex: 60\%

76\%

(rac)-73a: 53\%

Scheme 22: Remote meta-C-H alkylations with secondary alkyl bromides $\mathbf{7 2}$.

In 2015, carboxylate-assisted ruthenium catalysis enabled tertiary meta-C-H alkylations was concurrently investigated by the group of Ackermann ${ }^{[62]}$ and Frost ${ }^{[63]}$ (Scheme 23). The highlight of Ackermann's protocol was the use of monoprotected amino acids 41 (MPAA) as the carboxylate ligand for the first time in ruthenium-catalyzed C-H activation (Scheme 23a). Furthermore, the
power of the effective transformations was reflected by broadly applicable directing groups. Particularly, removable N-pyrimidyl anilines were efficiently converted to the corresponding products 75. Notably, the catalytic reactions with commercially available and less reactive tertiary alkyl chlorides 74a under Frost's conditions provided the desired product 76 with high catalytic efficacy (Scheme 23b).
(a) Ackermann

(b) Frost

Scheme 23: Remote C-H transformations with tertiary alkyl halides 74.

Mechanistic experiments by Ackermann, such as reactions with radical scavengers, reactions with diastereomerically pure alkyl bromides, and radical clock experiments, were supportive of a radical mechanism. ${ }^{[62]}$ Based on such findings, the following catalytic cycle was proposed by Ackermann (Scheme 24). The in situ generated ruthenium complex 77 initially undergoes a reversible $\mathrm{C}-\mathrm{H}$ ruthenation to form cyclometalated ruthenium intermediate 78. Single-electron transfer from ruthenium(II) to alkyl halide $\mathbf{7 4}$ provides the corresponding radical $\mathbf{7 9}$, which attacks on the arene at the para position with respect to the $\mathrm{Ru}-\mathrm{C}$ bond to form radical intermediate $\mathbf{8 0}$.

Then, rearomatization and hydrogen-atom abstraction afford the ruthenacycle intermediate $\mathbf{8 1}$. Finally, complex 81 undergoes protodemetalation, delivering the meta-alkylated product 82 and regenerating the catalytically active complex 77.

Scheme 24: Proposed catalytic cycle for remote C-H alkylations via ortho-ruthenation.

Since organofluorine compounds display an important role in agrochemicals, pharmaceuticals, and material sciences, ${ }^{[64]}$ the installation of fluorine-containing groups has been of interest during the past decade. ${ }^{[65]}$ In 2017, the group of Ackermann reported on the first remote meta-C-H mono- and difluoromethylations by the cooperative action of phosphine and carboxylate ligands in ruthenium(II) catalysis (Scheme 25a). ${ }^{[66]}$ Later, the group of Wang disclosed a dual ruthenium and palladium catalysis, allowing for remote mono- and difluoromethylations (Scheme 25b). ${ }^{[67]}$
(a) Ackermann

(b) Wang

Scheme 25: Ruthenium catalysis for remote mono- and difluoromethylations.

1.3.2 meta-C-H Benzylations

Although the benzyl radical is more stable than the alkyl radicals, the ruthenium catalysis of primary benzyl chlorides enabled direct ortho-C-H benzylations. ${ }^{[35]}$ Taking into account atom- and step economical $\mathrm{C}-\mathrm{H} / \mathrm{C}-\mathrm{H}$ activations ${ }^{[14]}$ for the formation of new $\mathrm{C}-\mathrm{C}$ bonds, oxidative ruthenium-catalyzed remote $\mathrm{C}-\mathrm{H}$ benzylations of toluene derivatives 87 using di-tert-butylperoxide (DTBP) as a radical initiator were illustrated by the group of Shi/Zhao (Scheme 26a). ${ }^{[68]}$ Even though the pre-functionalized substrates are not obligatory for the C-H/C-H activations, an excess of toluene derivative 87 is mandatory in the catalytic benzylations. $\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}_{2}$ catalyst provided the direct benzylated products 88 without additional ligands. Among the additive ligands, the combination between RuCl_{3} and (\pm)-BNDHP was the most effective catalytic system, switching the site-selectivity of the oxidative $\mathrm{C}-\mathrm{H} / \mathrm{C}-\mathrm{H}$ benzylations from ortho (88) to meta (89). Simultaneously, the group of Shi also reported on oxidative benzylations using perfluoroisopropyl iodide as a radical generator (Scheme 26b). ${ }^{[69]}$

(b) Shi

Scheme 26: Oxidative ruthenium-catalyzed C-H/C-H benzylations with toluene derivatives 87.

1.3.3 meta-C-H Carboxylations

Carboxylation reactions are powerful methods for introducing a C-1 moiety into target molecules. ${ }^{[70]}$ In 2017, the group of Greaney disclosed meta-selective carboxylation through a single-electron transfer process (Scheme 27). ${ }^{[71]}$ Ruthenium-catalyzed meta-C-C bond formation followed by methanolysis was applicable to various arylheteroarenes, such as 2-arylpyridines (68b), 2-arylpyrimidines, and 6-arylpurines, thus affording meta-decorated arenes 92.

Scheme 27: Ruthenium-catalyzed remote $\mathrm{C}-\mathrm{H}$ carboxylation with CBr_{4}.

1.3.4 meta-C-H Acylation

Recently, the group of Wang demonstrated a protocol for oxidative meta- $\mathrm{C}-\mathrm{H}$ acylations, as shown in Scheme $28 .{ }^{[72]}$ In the presence of a silver salt and a persulfate oxidant, the ketoacids 93 underwent oxidative decarboxylation to furnish an acyl radical, which is the key intermediate in the remote transformations. Radical intermediate selectively attacked on the arene of the in situ formed cyclometalated ruthenium complexes, leading to the formation of new meta-C-C bonds.

Scheme 28: Remote C-H acylations via oxidative decarboxylation.

1.3.5 meta-C-H Sulfonylation

In addition to C-C bond, site-selective C-Het bond formation reactions have gained considerable attention over the last decade. ${ }^{[73]}$ On the basis of remote functionalizations of ruthenacycles, the group of Frost first reported on a meta-selective C-H sulfonylation of 2-arylpyridines 68 and arylsulfonyl chlorides 95 in 2011 (Scheme 29). ${ }^{[74]}$ Chelation-assisted C-H ruthenation led to the formation of a Ru-C bond, which exerts a strong para-directing effect for the subsequent proposed electrophilic sulfonylation.

Scheme 29: meta-C-H Sulfonylations of phenylpyridines 68 with sulfonyl chlorides 95.

Afterwards, mechanistic experiments of meta- $\mathrm{C}-\mathrm{H}$ sulfonylations were studied in more detail to unravel the catalyst working mode of such remote transformations. ${ }^{[75]}$ It is noteworthy that the yields for the meta-sulfonylation of 2-phenylpyridine (68b) with p-tosyl chloride (95a) in the latter report ${ }^{[75]}$ remarkably dropped from 80% to 50%, compared to the identical reaction conditions published earlier. ${ }^{[74]}$ Among a series of well-defined cyclometalated ruthenium complexes in the catalytic sulfonylations, p-cymene-free ruthenacycle 98 provided a similar catalytic efficacy. ${ }^{[75]}$ Moreover, dissociation of the p-cymene was observed during the course of the reaction by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy, which suggested cyclometalated complex 98 to be an active catalyst for this reaction. Reactions with various sulfonating agents and an experiment with radical scavenger TEMPO revealed that the catalytic sulfonylations likely proceeded via a radical mechanism, whereas a previously proposed electrophilic pathway could be ruled out. This is in good agreement with single-electron transfer (SET) mechanism for ruthenium-catalyzed meta-alkylation, which was earlier reported by the group of Ackermann. ${ }^{[62]}$ On the basis of their findings, the catalytic cycle for remote sulfonylations was proposed, ${ }^{[75]}$ which commences by $\mathrm{C}-\mathrm{H}$ ruthenation followed by decoordination of p-cymene to form cationic cyclometalated complex 98 (Scheme 30). Sulfonyl radical 99, which is generated from SET process from ruthenium(II), attacks at the position para to the $\mathrm{Ru}-\mathrm{C}$ bond to form intermediate 100. Rearomatization followed by ligand replacement furnish cationic ruthenium 102, which undergoes demetalation and $\mathrm{C}-\mathrm{H}$ ruthenation to deliver the desired product 96 and the active ruthenium intermediate 98.

Scheme 30: Proposed catalytic cycle for meta-sulfonylation.

1.3.6 meta-C-H Brominations

Since aryl halides are typically used as starting materials for arylation reactions, a number of methods for direct $\mathrm{C}-\mathrm{H}$ halogenation have been reported. ${ }^{[76]}$ However, general methods for meta-selective halogenations continue to be scarce. In 2015, the group of Greaney disclosed ruthenium-catalyzed meta-C-H brominations of 2-phenylpyridine (68b) (Scheme 31a). ${ }^{[77]}$ Tetrabutylammonium tribromide (103) was proven to be the most effective for remote brominations in Greaney's protocol. The synthetic utility of meta-brominations was reflected by late-stage transformations of the obtained adducts by Suzuki-Miyaura and Heck reactions in one-pot fashion, furnishing the meta-arylated product 105 or meta-alkenylated product 106, respectively (Scheme 31b).

(a) meta-bromination

(b) sequential transformation in one-pot fashion

106: 56\%

Scheme 31: Remote C-H brominations and sequential transformations.

Concurrently, the group of Huang also reported on remote $\mathrm{C}-\mathrm{H}$ brominations using N-bromosuccinimide (NBS, 62) as a bromine source (Scheme 32a). ${ }^{[78]}$ In addition to palladium-catalyzed coupling reactions, the power of meta-brominations was highlighted by the concise synthesis of anti-cancer drug Vismodegib (109), as shown in Scheme 32b. The sequential meta-bromination followed by ortho-chlorination in one-pot fashion delivered the desired intermediate 107, which underwent copper-catalyzed amidation and substituent replacement to furnish the target molecule Vismodegib (109). Moreover, the cross-over H/D scrambling experiment suggested biscyclometalated complex as the key intermediate in the catalytic brominations. Remote meta-bromination was fully inhibited by the addition of radical scavenger BHT, which was indicative of a radical mechanism.
(a) meta-bromination

(b) synthesis of Vismodegib (109)

Scheme 32: Ruthenium-catalyzed meta-brominations and synthesis of Vismodegib (109).

1.3.7 meta-C-H Nitrations

The nitro group is a strongly electron-withdrawing group, which is frequently found in drug and material sciences. ${ }^{[79]}$ Therefore, site-selective nitrations are in high demand. ${ }^{[80]}$ The group of Zhang reported for the first time on a ruthenium-catalyzed meta- $\mathrm{C}-\mathrm{H}$ nitration using $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (110) (Scheme 33a). ${ }^{[81]}$ The protocol for meta-nitrations was applicable to various directing group, such as pyridines, pyrimidines, pyrazoles, and ketoximes. Transformations of the obtained product 111a led to the concise synthetic pathway of a marketed drug, Vismodegib (109), and a CDK/CK1 dual inhibitor (R)-DRFO53 (115) (Scheme 33b). On the basis of their mechanistic findings, a plausible mechanism commences by the formation of biscyclometalated ruthenium complex 116 (Scheme 34). Nitrogen dioxide radical, which is generated from anion exchange and a silver-mediated radical process, attacks on the arene at para to $\mathrm{Ru}-\mathrm{C}$ bond, providing ruthenium intermediate 117. Afterwards, oxidative rearomatization and ligand exchange afford the desired product 111a and regenerate the active catalyst 116.
(a) meta-nitration

(b) synthesis of Vismodegib (109) and (R)-DRF053 (115)

Scheme 33: Ruthenium-catalyzed meta-nitrations and their synthetic applications.

Scheme 34: Proposed catalytic cycle for ruthenium-catalyzed meta-nitrations.

Later, the group of Zhang improved the remote nitration protocol for transformable ketoximes 119 by using $\mathrm{Ph}(\text { TFA })_{2}$ as oxidant under an oxygen atmosphere (Scheme 35a). ${ }^{[82]}$ Under the standard conditions, a monomeric octahedral ruthenium(II) complex 122 was isolated and confirmed by X-ray crystallography. Catalytic and stoichiometric reactions as well as DFT calculations prove ruthenacycle $\mathbf{1 2 2}$ to be an active intermediate in the catalytic nitration. Thereafter, a modified method using sterically hindered trimesitylphosphine was shown to be effective for the meta-nitration of 6-arylpurines 123a and nucleosides (Scheme 35b). ${ }^{[83]}$
(a)

(b)

Scheme 35: Ruthenium-catalyzed remote C-H nitrations of ketoximes 119 and purines 123a.

1.4 Ruthenium-Catalyzed Remote para-C-H Functionalizations

In contrast to the significant progress in meta-selective C-H transformations, challenging para-C-H functionalizations remain scarce. According to transition metal catalysis for para-selectivity, it can be achieved by three possible methodologies (Figure 5). ${ }^{[48 \mathrm{~b}, 48 \mathrm{c}]}$ The use of bulky ligand coordinated with iridium catalyst allowed for para-C-H borylations (Figure 5a). ${ }^{[84]}$ It is noteworthy that the site-selectivity at the para position increased when sterically hindered substituents on the arene were employed. Moreover, cation/anion pairing can prevent meta-C-H activation, leading to $\mathrm{C}-\mathrm{H}$ bond cleavage at the para position. ${ }^{[85]}$ Nevertheless, this strategy is limited to iridium-catalyzed borylations. On the basis of proximity-induced $\mathrm{C}-\mathrm{H}$ activation, the designed templates were installed to the target molecules, guiding the metal catalyst to be close to the desired $\mathrm{C}-\mathrm{H}$ bond (Figure 5 b). ${ }^{[51 a, 86]}$ The positional selectivity is directly controlled by the shape of the design template, enabling remote meta- or para-functionalizations. In addition, the electronic bias at the arene ring of cyclometalated ruthenium complexes leads to remote $\mathrm{C}-\mathrm{H}$ transformations, furnishing the para-substituted products (Figure 5c)
(a) steric control

(b) template-assisted

(c) ruthenation

Figure 5: Methodologies for remote para-C-H activations.

In 2017, the groups of Frost disclosed a ruthenium-catalyzed para-C-H functionalizations, leading to remote alkylations of α-bromo esters 126 (Scheme 36). ${ }^{[87]}$ To avoid the second remote alkylation on the pyrimidine ring, chloro-substituent pyrimidine 125a was employed in the remote transformations, smoothly delivering the corresponding para-alkylated adduct 127. Mechanistic insights by experiments and DFT calculations were suggestive of a four-membered ruthenacycle 128 as the key intermediate.

Scheme 36: Ruthenium-catalyzed para-C-H alkylations with α-bromo esters 126.

Thereafter, ruthenium-catalyzed para-C-H fluoroalkylations of anilides 129 with α-bromo esters 84a were demonstrated by Zhao/Lan (Scheme 37a). ${ }^{[88]}$ The combination between AgNTf_{2} and carboxylic acid additive 12 under harsh reaction conditions of $120^{\circ} \mathrm{C}$ selectively afforded the desired products 130. Under the standard reaction conditions, 2-phenylpyridine (68b) was converted to the meta-difluoromethylated product, whereas the site-selectivity of phenylpyrazoles was controlled by the electron density of pyrazole rings. These findings were indicative of the electronic influence of the cyclometallic $\mathrm{C}-\mathrm{N}$ bond on the para position. Moreover, the same group later employed similar reaction conditions for remote transformations of ketoximes 119 (Scheme 37b). ${ }^{[89]}$ It is noteworthy that the well-defined monocylometalated
ruthenium complex 132 was proven to be the active intermediate by catalytic and stoichiometric experiments as well as DFT calculations.

(b)

Scheme 37: Ruthenium-catalyzed para-C-H difluoroalkylations.

2 Objectives

On the basis of sustainable chemistry, transition metal-catalyzed $\mathrm{C}-\mathrm{H}$ activation has been recognized as a powerful platform in organic synthesis, accessing the selective formations of $\mathrm{C}-\mathrm{C}$ and C-Het bonds. ${ }^{[13,90]}$ Control of site-selectivity is one of the key challenges for synthetically useful C-H transformations. ${ }^{[24 a]}$ Thus, the concept of chelation-assistance unravels the positional selectivity, enabling the functionalization of arenes at the ortho position. ${ }^{[27 \mathrm{a}, ~ 27 b]}$

Beside precious transition metals, ruthenium offers a highly reactive and cost-effective catalyst, with broadly transformative applications. Due to the distinctive character of the cyclometalated complexes, ruthenium catalysis accomplished the selective C-H transformations of arenes at the ortho, ${ }^{[29 e]}$ meta, ${ }^{[56 b]}$ or para positions. ${ }^{[87-89]}$ However, the reports on ruthenium-catalyzed remote meta- $\mathrm{C}-\mathrm{H}$ activations are limited to alkylations, sulfonylation, and nitrations. Since aryl halides are typically employed as starting materials in several catalytic transformations, a protocol for a meta-selective C-H bromination should be investigated (Scheme 38).

Scheme 38: Ruthenium-catalyzed romote meta-C-H brominations of purines 123.

In addition, efficient protocols for ruthenium-catalyzed remote alkylations are generally restricted to strongly-coordinating directing groups, such as pyridines, pyrimidines, and pyrazoles. ${ }^{[61,}{ }^{63]}$ Inspired by the report from the group of Ackermann on remote alkylations of removable N-pyrimidyl anilines, ${ }^{[62]}$ transformable ketimines 135 should be studied in remote meta-C-H functionalization (Scheme 39). Additionally, further modifications of the obtained products 137 should be investigated.

Scheme 39: Remote C-H alkylations of ketimines 135 and further transformations.

Typically, methods for remote C-H transformations require high reaction temperature of $100-120{ }^{\circ} \mathrm{C} .[56 \mathrm{~b}]$ The synergistic ruthenium catalysis with phosphine ligands furnishing remote meta-C-H mono- or difluoromethylations at lower temperature of $60^{\circ} \mathrm{C}$, was demonstrated by the group of Ackermann. ${ }^{[66]}$ Thus, the power of carboxylate-phosphine ruthenium catalysis should be further explored with α-bromo carbonyl compounds 140 and benzyl chlorides 142 (Scheme 40). Furthermore, detailed mechanistic insights should be investigated to rationalize the siteselectivity of $\mathrm{C}-\mathrm{C}$ bond formations and to better understand the reaction mechanism.

Scheme 40: Carboxylate-phosphine ruthenium catalysis for remote alkylation and benzylation.

Besides numerous reports on $\mathrm{C}-\mathrm{H}$ functionalizations, a ruthenium-catalyzed decarbamoylative arylation of aromatic amides was illustrated by the group of Ackermann. ${ }^{[91]}$ Therefore, a concept of ruthenium-catalyzed $\mathrm{C}-\mathrm{C}$ activation should be applied for site-selective alkylations of primary, secondary, and tertiary alkyl halides 136 (Scheme 41).

Scheme 41: Ruthenium catalysis for decarboxylative alkylations.

Since unprecedented ortho-alkylations of bromocyclohexane and bromonorbornane were observed in decarboxylative reactions, ruthenium-catalyzed $\mathrm{C}-\mathrm{H}$ transformations of pyrazole derivatives 147 with a variety of secondary alkyl bromides 148 should be explored (Scheme 42). Moreover, mechanistic experiments should be conducted to elucidate the mechanistic pathway for ortho-selective alkylations.

Scheme 42: Site-selective C-H alkylation of secondary alkyl bromides.

Inspired by reports on photo-induced ruthenium-catalyzed remote $\mathrm{C}-\mathrm{H}$ alkylations at room temperature ${ }^{[92]}$ the photoredox concept should be applied to direct $\mathrm{C}-\mathrm{H}$ arylations to avoid the requirement of high reaction temperature of $100-140^{\circ} \mathrm{C}$ (Scheme 43). In addition, mechanistic insights by experiments should be investigated to reveal the working mode of photoredox ruthenium catalysis.

Scheme 43: Direct C-H arylations under photoredox ruthenium catalysis.

3 Results and Discussion

3.1 Ruthenium-Catalyzed meta-Selective Bromination

Aryl halides have played an important role in several organic transformations, especially in coupling reactions. ${ }^{[93]}$ The electrophilic halogenation on arenes is a powerful transformation among direct $\mathrm{C}-\mathrm{H}$ activations. However, the drawbacks of this method were reflected by multiple halogenated products. Moreover, halogenations at the benzylic position tend to be more efficient than at aromatic $\mathrm{C}-\mathrm{H}$ bonds in the presence of light. Consequently, site-selective halogenation has been highly demanded in the synthetic methodology. Chelation-assistance has not allowed only for ortho- $\mathrm{C}-\mathrm{H}$ halogenations, ${ }^{[47,76]}$ but also more challenging meta- $\mathrm{C}-\mathrm{H}$ halogenations. However, the protocols were limited to pyridines, pyrimidines, and pyrazoles as directing groups. ${ }^{[77-78]}$

Due to a number of biologically active unnatural nucleosides, ${ }^{[94]}$ late-stage transformations of nucleosides became more attractive in molecular syntheses. Although the most acidic C-H bond on purine ring is at the C8 position, a meta-selective C-H bromination on arene $\mathbf{1 2 3}$ using purine as the directing group was achieved by Dr. D. J. Burns in the Ackermann group (Scheme 44). ${ }^{[95]}$

Scheme 44: Remote C-H bromination in the homogeneous system.

3.1.1 Optimization Studies

Having identified DMA as a good choice for the solvent (Table 1, entries $1-2$), ${ }^{[95]}$ some investigations concerning the nature of the catalyst and its loading were performed. A reduced catalytic loading significantly decreased the obtained yields of the meta-brominated product 133a (entries 3-4). To reduce the metal waste, heterogeneous remote $\mathrm{C}-\mathrm{H}$ bromination using ruthenium-sol-gel catalysts 152 was accomplished by Dr. S. Warratz (entry 5). In contrast to the homogeneous catalyst, a slight decrease of the product yields was observed in the reaction with lower catalytic loading (entries 6-7). Moreover, it was highlighted that the catalyst 152 could be
recovered and reused for 4-5 times without loss of catalytic efficacy. ${ }^{[95]}$ In terms of sustainability, the heterogeneous catalyst 152 was therefore chosen to explore the scope of the metabromination.

Table 1: Ruthenium-catalyzed meta-bromination of purine 123a with various catalytic loading. ${ }^{[a]}$

Entry	cat. [Ru]	133a (\%)
1	$\mathrm{RuCl}_{3} \cdot \mathrm{nH}_{2} \mathrm{O}(30,10 \mathrm{~mol} \%)$	$77^{[b]}$
2	30 (10 mol \%)	---[c]
3	30 (5 mol \%)	25
4	30 (2.5 mol \%)	6
5	Ru@ $\mathrm{SiO}_{2}(152,10 \mathrm{~mol} \%)$	63 (70) ${ }^{[d]}$
6	152 (5 mol \%)	68
7	152 (2.5 mol \%)	50

${ }^{[a]}$ Reaction conditions: 123a (0.25 mmol), NBS (62, 0.50 mmol), [Ru$](x \mathrm{~mol} \%), \mathrm{DMA}(0.5 \mathrm{~mL}), 40^{\circ} \mathrm{C}, 20 \mathrm{~h}$, under N_{2}; yield of isolated products. ${ }^{[b]}$ Reaction was performed by Dr. D. J. Burns. ${ }^{[c]}$ DMA: $\mathrm{H}_{2} \mathrm{O}(1: 1) .{ }^{[d]}$ Reaction was performed by Dr. S. Warratz.

3.1.2 Scope of the meta-Selective C-H Bromination

With the optimized catalytic system in hand, the versatility of heterogeneous remote $\mathrm{C}-\mathrm{H}$ bromination was explored with various N-substituents of purine $\mathbf{1 2 3}$ (Scheme 45). Even though the meta-brominated adducts 133 were observed in excellent level of site-selectivity, the scope of purines in the heterogeneous ruthenium catalysis was limited to substituents on the aromatic motif.

The heterogeneous meta-bromination was not restricted to the assistance of purines 123, but pyridines ${ }^{[95]}$ and pyrimidines 139 were also efficiently converted to the desired products 153 (Scheme 46). The reaction of 2-(o-tolyl)pyrimidine (139d) delivered the monobrominated product 153c as the major product in 62% yield and the dibrominated arene $\mathbf{1 5 3 c}^{\prime}$ as a side product in 13%. Moreover, the bromination of bromo-substituted pyrazole 147b gave 23% of the corresponding adduct 153d.

${ }^{[a]}$ Reaction conditions: 123 (0.25 mmol), NBS ($\left.62,0.50 \mathrm{mmol}\right), 152(10 \mathrm{~mol} \%)$, DMA (0.50 mL), $80^{\circ} \mathrm{C}, 20 \mathrm{~h}$, under air; yield of isolated products. ${ }^{[b]}$ Reactions were performed by Dr. S. Warratz. ${ }^{[c]} 100^{\circ} \mathrm{C}$.

Scheme 45: Scope of meta-bromination in heterogeneous system.

153a:80\%

[^0]Scheme 46: meta-Bromination of different heteroarenes.

3.2 Ruthenium(II)-Catalyzed Remote meta-C-H Alkylation of Ketimines

During the past decade, full control of positional selectivity in $\mathrm{C}-\mathrm{H}$ functionalization reactions has been identified as a major challenge. ${ }^{[24 a]}$ To achieve the selectivity, chelation-assistance has thus proven to be valuable for proximity-induced C-H functionalization. ${ }^{[27 b]}$ Unlike other orthometalations, ortho- -CH ruthenation process allowed not only for ortho $-\mathrm{C}-\mathrm{H}$ transformations, ${ }^{[29 e]}$ but also more challenging meta-C-H functionalizations. ${ }^{[56 b]}$ In the early progress from the groups of Ackermann ${ }^{[61]}$ and Frost, ${ }^{[63]}$ pyridines and azoles were employed as the directing groups in the meta-C-H alkylations. The utility of these directing groups was limited, as they are difficult to modify or remove. The first report on the remote meta-alkylation of removable N-pyrimidylanilines was achieved by the group of Ackermann. ${ }^{[62]}$

3.2.1 Optimization Studies

To expand the versatility of ruthenium catalysis, Dr. J. Li in the Ackermann group developed a remote meta-C-H alkylation of ketimine 135 using $\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2}$ catalyst, 1-adamantanecarboxylic acid (1- $\mathrm{AdCO}_{2} \mathrm{H}, 12$) as an additive in toluene as the solvent (Table 2, entry 1). ${ }^{[96]}$ Then acid additives as the ligand of the ruthenium catalyst were tested. While pivalic acid showed similar efficacy to acid 12 (entry 2), MPAAs gave lower conversions (entries 3-4). However, the drawback of toluene is the radical-sensitive benzylic proton, resulting in the formation of ortho-benzylated adducts as a side product. To prevent the side reaction, Dr. S. De Sarkar found tert-butylbenzene (PhCMe_{3}) could be employed as the solvent instead of toluene and the twofold catalytic efficacy was observed (entry 5). After probing the additives and solvents (entries 6-10), the optimized reaction condition was to use a catalytic amount of acid $\mathbf{1 2}$ in PhCMe_{3} (entry 7). In addition, it was found that carboxylic acid additive was essential in the ruthenium-catalyzed $\mathrm{C}-\mathrm{H}$ activation (entry 11). Moreover, arenes on ruthenium complexes did not exert influence on the catalytic efficacy (entries $12-17$). RuCl_{3} catalysts failed to give any conversion (entries 18-19). Due to a reduced electronic density of imine, the reaction of N-(4-methoxyphenyl)imine provided the corresponding ketone 154aa in moderate yield (entry 20).

Table 2: Optimization studies for the ruthenium(II)-catalyzed meta-alkylation of ketimine 135a. ${ }^{[\mathrm{a}]}$

[^1]
3.2.2 Scope of the meta-Selective C-H Alkylation of Ketimines

Having identified the optimal catalytic system, the versatility of ruthenium(II)-catalyzed remote meta-alkylation of ketimines 135 and tertiary alkyl bromides 136 was investigated (Scheme 47). In all cases, the ruthenium(II) biscarboxylate catalyst proved to be more effective than the ruthenium catalyst derived from Piv-Ile-OH (155). Acyclic and cyclic tertiary alkyl bromides 136 were smoothly reacted under the remote alkylation conditions. It is noteworthy that the less reactive alkyl chloride also furnished the desired meta-decorated arene 154ab with similar catalytic efficacy, in contrast to tert-butyl iodide. ${ }^{[96]}$ Moreover, the reaction of tertiary alkyl bromide $136 f$ containing a reactive primary alkyl chloride motif delivered the meta-alkylated ketone 154af with excellent levels of chemo- and site-selectivity. Additionally, 3,4,5trimethoxyphenylamine (TMP- NH_{2}) was recovered in a sustainable fashion in high yield after acidic hydrolysis, which could possibly be reused in further transformations. ${ }^{[96]}$ However, strong electron-withdrawing substituents on the arenes $\mathbf{1 3 5 k} \mathbf{- 1 3 5 m}$ gave unsatisfactory results (154kb154 mb) under the optimized reaction conditions. Furthermore, ketimines 135 n and 1350 decorated with cyclic amine, methylenedioxy (135p), naphthalene (135q), and thiophene (135r) poorly reacted with tert-butyl bromide (136b). Steric hinderance of ketimines 135s and 135t changed the equilibrium to the inactive Z-isomer, resulting in inefficiency in the ruthenium catalysis.

In addition to tertiary alkyl bromides $136 \mathrm{a}-136 \mathrm{~g}$, the applicability of the remote $\mathrm{C}-\mathrm{H}$ functionalization procedure was reflected by efficient meta-alkylation with various secondary alkyl bromides 136h-136q (Scheme 48). A range of electronically different ketimines 135 performed efficiently with cyclic alkyl bromides 136h-136k. The highly effective remote alkylation proved to be broadly applicable, tolerating a wealth of functional groups, including chlorides (154ch), esters (154kh), nitriles (154lh), and amines. ${ }^{[96]}$ Unlike tertiary alkyl bromides, ketimines derived from amino-subtituted acetophenones (135n and 1350) and 2-acetylnaphthalene (135q) were effortlessly reacted with both cyclic and acyclic secondary alkyl bromides. While the reaction of 4-bromopiperidine (136p) and 4-bromotetrahydropyran (136q) delivered the corresponding ketones 154qp, 154ap, and 154aq in moderate yields, 3-bromotetrahydrofuran (136r) gave low yield of the corresponding product 154ar. Moreover, the reaction of nitro-substituted ketimine 135m failed to provide any conversion.

${ }^{[a]}$ Reaction conditions: 135 (0.50 mmol$), 136(1.50 \mathrm{mmol}),\left[\mathrm{RuCl}_{2}(p-\text { cymene })\right]_{2}(5.0 \mathrm{~mol} \%), 1-\mathrm{AdCO}_{2} \mathrm{H}$ (12, $30 \mathrm{~mol} \%$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 equiv), $\mathrm{PhCMe}_{3}\left(2.0 \mathrm{~mL}\right.$), $120^{\circ} \mathrm{C}, 20 \mathrm{~h}$, under N_{2}, then hydrolysis by 2 N $\mathrm{HCl}, 3 \mathrm{~h}$; yield of isolated products. ${ }^{[b]}$ With Piv-lle-OH (155) as the ligand. ${ }^{[c]}\left[\mathrm{RuCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\right]_{2} .{ }^{[d]} \mathrm{PhMe}$.

Scheme 47: Remote meta-C-H alkylation with tertiary alkyl bromides.

[^2]Scheme 48: Remote meta-C-H alkylation with secondary alkyl bromides.

3.2.3 Mechanistic Studies

In order to delineate the working mode of the ruthenium(II)-catalyzed remote $\mathrm{C}-\mathrm{H}$ activation, experimental mechanistic studies were conducted. To this end, intermolecular competition experiments highlighted electron-deficient arene to be conducted more preferentially (Scheme
49). Similarly, the meta-C-H alkylation of ketimine 135 w favorably occurred on the arene with fluorine substituent, delivering the monoalkylated product 154 wh as well as the dialkylated product (Scheme 50). It is noteworthy that the monoalkylated product on unsubstituted arene moiety was not observed even though the E / Z isomeric mixture of 135 w was employed. To rationalize this phenomenon, NOESY experiment was performed. According to the 2D-spectrum, the interconversion between E - and Z-isomer was observed even at ambient temperature with kinetic conversion rate $k_{B A}>k_{A B}$ (Figure 6).

Scheme 49: Intermolecular competition experiments for remote $\mathrm{C}-\mathrm{H}$ alkylation. The conversion was determined by ${ }^{1} \mathrm{H}$-NMR spectroscopy using 1,3,5-trimethoxybenzene as the internal standard.

Scheme 50: Intramolecular competition experiments for remote $\mathrm{C}-\mathrm{H}$ alkylation.

${ }^{1} \mathrm{H}-\mathrm{NMR} ; \mathbf{A}: \mathbf{B}=1.52: 1.00$
${ }^{19}$ F-NMR; $\mathbf{A}: \mathbf{B}=1.53: 1.00$

Figure 6: NOESY 2D-spectrum for isomeric mixture of ketimine $135 w$.

To understand the nature of the $\mathrm{C}-\mathrm{X}$ bond cleavage, the reaction was performed in the presence of radical scavengers (Scheme 51a). While BHT did not exert influence on the catatytic potency, the addition of the typically used radical trap TEMPO completely inhibited the catalytic $\mathrm{C}-\mathrm{H}$ transformation. The TEMPO adduct 156 was isolated, which supported a homolytic $\mathrm{C}-\mathrm{X}$ bond cleavage. Moreover, the reactions with enantiomerically enriched substrate (S)-1360 and diasteromerically pure alkyl bromides 136s delivered the isomeric mixtures 154ao and 154as, respectively, which are suggestive of a radical-type mechanism (Scheme 51b and c).
(a) reaction with radical scavengers

(b) reaction with enantiomerically enriched alkyl bromide by Dr. T. Rogge

Scheme 51: Support for a radical-type mechanism of meta-C-H alkylation.

3.2.4 Late-Stage Diversification

Finally, the power of efficient remote meta-C-H alkylation was illustrated by late-stage diversification of the thus obtained meta-alkylated arenes as depicted in Scheme 52. First, facile reduction of the obtained meta-alkylated ketimines in a one-pot fashion furnished benzylamine derivatives 157. Second, the sequential twofold meta-/ortho-C-H functionalizations, performed
by Dr. T. Rogge, provided the approach for densely-tetrasubstituted arenes 158a and 158b without any additional catalysts. Moreover, the synthetic utilization of the meta-decorated arenes 154 was mirrored by transformative oxidation ${ }^{[97]}$ to form valuable carboxylic acid 159 and Fischer indole synthesis (162) (Scheme 53). Since phenols and anilines are strong ortho-/para-directors in the electrophilic aromatic substitutions, the classical Friedel-Crafts reaction fails to provide meta-C-H transformations. Notably, classically transformative Baeyer-Villiger oxidation and Beckmann rearrangement ${ }^{[98]}$ of ketones 154 impressively accessed to meta-alkylated phenols $\mathbf{1 6 0}$ and anilines 161, respectively.
(a) remote alkylation/reduction

(b) sequential meta-/ortho-C-H functionalizations by Dr. T. Rogge

${ }^{[a]} \mathrm{dr}=1.0: 1.3 .{ }^{[b]} \mathrm{dr}=1.0: 1.2$.

Scheme 52: Sequential transformations in a one-pot fashion.

${ }^{[a]}$ Reactions were performed by Dr. D. J. Burns.

Scheme 53: Late-stage diversifications of the meta-alkylated arenes.

3.3 Sequential meta-/ortho-C-H Functionalizations by One-Pot Ruthenium(II/III) Catalysis

Since the earlier protocols for ruthenium(II)-catalyzed remote $\mathrm{C}-\mathrm{H}$ secondary and tertiary alkylations, ${ }^{[61-63]}$ sulfonylations, ${ }^{[74]}$ brominations, ${ }^{[77-78]}$ and nitrations ${ }^{[81]}$ were performed at high reaction temperatures, the development of milder remote $\mathrm{C}-\mathrm{H}$ transformations have been highly demanded in order to access to biorthogonal late-stage diversifications of biorelevant molecules and expand the range of tolerated functional groups. Further development in remote alkylations was achieved by Dr. Z. Ruan in the Ackermann group using a ruthenium(II) biscarboxylate complex cooperated with phosphine ligands. ${ }^{[66]}$ The synergistic ruthenium catalysis was first accomplished meta-C-H mono- and difluoromethylation under milder conditions.

Acetic acid and propionic acid are important structural moieties of biologically and pharmaceutically active compounds, namely nonsteroidal anti-inflammatory drugs (NSAIDs), as depicted in Figure 7. ${ }^{[99]}$ Among them, Ketoprofen, Flurbiprofen, and Fenoprofen contain meta-substituted pattern of arenes. Therefore, the remote meta-alkylations of α-halocarbonyl compounds have been of interest. In 2017, the group of Frost demonstrated protocols for the remote alkylation of α-halo esters and ketones. However, the reactions were still conducted at high reaction temperature of $120^{\circ} \mathrm{C} .{ }^{[100]}$

Figure 7: Selected nonsteroidal anti-inflammatory drugs (NSAIDs).

3.3.1 Optimization Studies

Initially, the remote alkylations were optimized by probing various reaction conditions for the transformation of 2-phenylpyrimidine (139a) with alkyl bromide 140a (Table 3). It was found that a PPh_{3} had a great influence on the formation of meta-alkylated product 141a (entries 1-2). Moreover, the lower reaction temperatures significantly increased the catalytic efficacy (entries 2-6). Among the inorganic bases, $\mathrm{K}_{2} \mathrm{CO}_{3}$ proved to be most effective (entries 5-11).

Table 3: Bases and reaction temperatures for the remote meta- $\mathrm{C}-\mathrm{H}$ alkylation. ${ }^{[\mathrm{a}]}$

Entry	Base	$\boldsymbol{T}\left({ }^{\circ} \mathrm{C}\right)$	141a (\%)
1	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	120	$30^{[b]}$
2	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	120	54
3	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	80	71
4	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	60	77
$\mathbf{5}$	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	40	82
6	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	23	78
7	KOAc^{2}	40	70

Entry	Base	$\boldsymbol{T}\left({ }^{\circ} \mathrm{C}\right)$	141a (\%)
8	$\mathrm{~K}_{3} \mathrm{PO}_{4}$	40	69
9	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	40	(9)
10	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	40	72
11	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	40	(3)

${ }^{[a]}$ Reaction conditions: 139a (0.5 mmol$)$, 140a (1.5 mmol), [$\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CMes}\right)_{2}$ (p-cymene)] ($33,10 \mathrm{~mol} \%$), $\mathrm{PPh}_{3}(10 \mathrm{~mol} \%)$, base (1.0 mmol), 1,4-dioxane (2.0 mL), 20 h , under N_{2}; yield of isolated products. The yield in parentheses was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy using 1,3,5-trimethoxybenzene as the internal standard. ${ }^{[b]}$ Without PPh_{3}.

Among a variety of substituents on triarylphosphines, the cost-effective and commercially available PPh_{3} was found as the optimal ligand for the remote meta-alkylations (Table 4, entry 3). Sterically-hindered triarylphosphines (entries 7-10), trialkylphosphines (entries 11-13) and phosphine oxides (entries 14-15) gave less satisfactory results. In addition, bidentate phosphine ligands failed to give any formation of 141a (entries 16-17). It is noteworthy that chiral phosphoramidite ligand was also effective in the catalytic remote meta-alkylation. However, a racemic mixture of 141a was observed by analytical HPLC (entry 18).

Table 4: Screening of different phosphine ligands for the remote meta- $\mathrm{C}-\mathrm{H}$ alkylation. ${ }^{[a]}$

Entry	Phosphine	141a (\%)	Entry	Phosphine	141a (\%)
10	$\mathrm{P}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$	---			
11	$\mathrm{P}(1-\mathrm{Ad})_{2} n-\mathrm{Bu}$	---	18		
12	PCy_{3}	(6)			

${ }^{[a]}$ Reaction conditions: 139a (0.5 mmol), 140a (1.5 mmol), [$\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CMes}\right)_{2}(p$-cymene)] (33, $10 \mathrm{~mol} \%$), phosphine $(10 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{mmol}), 1,4$-dioxane $(2.0 \mathrm{~mL}), 40^{\circ} \mathrm{C}, 20 \mathrm{~h}$, under N_{2}; yield of isolated products. The yield in parentheses was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy using 1,3,5-trimethoxybenzene as the internal standard. ${ }^{[b]}$ Enantiomerical excess (ee) was determined by chiral HPLC with n-hexane:i-PrOH (90:10).

Then carboxylate assistance was found to be of key importance to enable the remote meta-C-H alkylations, with the best results using $\left[\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CAd}\right)_{2}(p\right.$-cymene) $](163)$ as the catalyst (Table 5 , entry 3), while N . Kaplaneris found $\left[\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CMes}\right)_{2}(p\right.$-cymene) $]$ (33) performed more effectively in the remote transformations of imidates. ${ }^{[101]}$ Other ruthenium sources fell short of the formation of meta-decorated arene 141a (entries 7-9). Moreover, among other solvents, 1,4-dioxane proved to be the most efficient in the catalytic transformations (entries 10-13).

Table 5: Probing of ruthenium catalysts and solvents for the remote meta- $\mathrm{C}-\mathrm{H}$ alkylation. ${ }^{[\mathrm{a}]}$

Entry	cat. [Ru]	Solvent	141a (\%)
1	[Ru(OAc) ${ }_{2}(p$-cymene $)$]	1,4-dioxane	76
2	[Ru($\left.\mathrm{O}_{2} \mathrm{CMes}\right)_{2}(p$-cymene)] (33)	1,4-dioxane	82
3	[Ru($\left.\mathrm{O}_{2} \mathrm{CAd}\right)_{2}(p$-cymene $\left.)\right]$ (163)	1,4-dioxane	85
4	$\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2}$	1,4-dioxane	---- ${ }^{[b]}$
5	$\left[\mathrm{RuCl}_{2}(p \text {-cymene) }]_{2}\right.$	1,4-dioxane	$(3)^{[b, c]}$
6	$\left[\mathrm{RuCl}_{2}(p \text {-cymene) }]_{2}\right.$	1,4-dioxane	$(1)^{[b, d]}$
7	$\mathrm{RuCl}_{3} \cdot \mathrm{nH}_{2} \mathrm{O}$ (30)	1,4-dioxane	----[e]
8	$\left[\mathrm{Ru}(t-\mathrm{BuCN})_{6}\right]\left[\mathrm{BF}_{4}\right]_{2}$	1,4-dioxane	---- ${ }^{\text {e] }}$
9	$\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$	1,4-dioxane	$(2)^{[\mathrm{e}, \mathrm{f}]}$
10	163	2-MeTHF	77
11	163	cyclopentyl methyl ether	69

Entry	cat. [Ru]	Solvent	141a (\%)
12	163	PhMe	71
13	163	$1,2-\mathrm{DCE}$	72

${ }^{[a]}$ Reaction conditions: 139a (0.5 mmol), 140a (1.5 mmol), [Ru$](10 \mathrm{~mol} \%), \mathrm{PPh}_{3}(10 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{mmol})$, solvent (2.0 mL), $40^{\circ} \mathrm{C}, 20 \mathrm{~h}$, under N_{2}; yield of isolated products. The yield in parentheses was determined by ${ }^{1} \mathrm{H}$-NMR spectroscopy using 1,3,5-trimethoxybenzene as the internal standard. ${ }^{[b]} 5.0 \mathrm{~mol} \%$. [c] Piv-lle-OH (155, $30 \mathrm{~mol} \%)$. ${ }^{[d]}$ Piv-Phe-OH (30 mol \%). ${ }^{[e]} \mathrm{MesCO}_{2} \mathrm{H}(31,30 \mathrm{~mol} \%)$. ${ }^{[f]}$ Without PPh_{3}.

3.3.2 Scope of the meta-Selective C-H Alkylation with α-bromo carbonyl compounds

With the optimized ruthenium(II) biscarboxylate catalyst in hand, the robustness in the remote meta-alkylation of α-bromo carbonyl compounds 140 was explored (Scheme 54). Notably, the potent remote alkylation proved to be generally applicable, tolerating a wealth of functional groups, including halides, esters, ketones, and amides. In addition to 2 -arylpyrimidines, the developed procedure was appropriate to transformable imidates (141f), removable pyrazoles ($\mathbf{1 4 1} \mathbf{g} \mathbf{- 1 4 1 i}$), and purines ($\mathbf{1 4 1 j}$). It was highlighted that α-bromo-substituted esters, ketones, and amides were efficiently converted into the meta-alkylated arenes 141 with excellent levels of positional selectivity. Moreover, the reaction of methyl 2-bromoacetate (140b) afforded the desired meta-alkylated product $\mathbf{1 4 1} \mathbf{k}$, which is unlike ruthenium-catalyzed ortho-C-H alkylations with primary alkyl bromides. ${ }^{[33]}$

68b, 123a, 139, 147

140

$R^{1}=H \quad$ (141a): 85%
141f: $72 \%(76 \%)^{[b, ~ c}$

$$
\begin{aligned}
& R^{2}=H(141 \mathrm{~g}): 71 \% \\
& R^{2}=\operatorname{Br}(\mathbf{1 4 1}): 84 \%\left(60^{\circ} \mathrm{C}\right)
\end{aligned}
$$

141i: $52 \%\left(60{ }^{\circ} \mathrm{C}\right)$
(141b): 82%
$R^{1}=O M e \quad$ (141c): 73%
$R^{1}=C l \quad$ (141d): 67%
$\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Me}$ (141e): 74\%

141k: $50 \%\left(60^{\circ} \mathrm{C}\right)$

141m: 71\%

1410: $56 \%{ }^{[b]}$
141p: $54 \%\left(60{ }^{\circ} \mathrm{C}\right)$

141I: 65\%

141n: 71\%

141q: 63\%

141I
CCDC 1865623

CCDC 1865620

${ }^{[a]}$ Reaction conditions: 68b, 123a, 139, or $147(0.5 \mathrm{mmol}), 140(1.5 \mathrm{mmol}),\left[\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CAd}\right)_{2}(p\right.$-cymene $\left.)\right]$ (163, $10 \mathrm{~mol} \%$), PPh_{3} ($10 \mathrm{~mol} \%$), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{mmol})$, 1,4-dioxane $\left(2.0 \mathrm{~mL}\right.$), $40^{\circ} \mathrm{C}, 20 \mathrm{~h}$, under N_{2}; yield of isolated products. ${ }^{[b]}$ Reactions were performed by N . Kaplaneris. ${ }^{[c]}\left[\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CMes}\right)_{2}(p\right.$-cymene $\left.)\right]$ (33) was used at $60^{\circ} \mathrm{C}$.

Scheme 54: Remote meta-alkylation under the synergistic ruthenium catalysis.

The synergistic ruthenium-catalyzed meta-C-H alkylation was also effective with arylketimines 135, providing the meta-alkylated ketone 164 after acid hydrolysis (Scheme 55). Therefore, this protocol was applied for a step-economical synthesis of Ketoprofen derivatives 164b and 164c.

164a: 64\%

$R=H \quad$ (164b): $40 \%+$ di: 41%
$R=C l(164 c): 52 \%$
Ketoprofen derivatives
${ }^{[a]}$ Reaction conditions: $135(0.5 \mathrm{mmol}), 140(1.5 \mathrm{mmol}),\left[\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CAd}\right)_{2}(p\right.$-cymene $\left.)\right](163,10 \mathrm{~mol} \%), \mathrm{PPh}_{3}$ ($10 \mathrm{~mol} \%$), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{mmol}), 1,4$-dioxane $(2.0 \mathrm{~mL}), 60^{\circ} \mathrm{C}, 20 \mathrm{~h}$, under N_{2}, then hydrolysis by 2 N HCl , 3 h ; yield of isolated products.

Scheme 55: Remote alkylation of ketimines 135 followed by acid hydrolysis.

In spite of the efficacy, robustness, and versatility of the ruthenium catalysis, N-pyrimidyl anilines, triazoles, tetrazoles, and acyclic imidates failed to give any conversion under the optimized ruthenium catalysis (Figure 8). Moreover, ineffective alkyl bromides are listed in Figure 8.
directing group

Figure 8: Inefficient directing groups and alkyl bromides in the synergistic ruthenium catalysis.

3.3.3 Scope of the Sequential meta-C-H Alkylation/ortho-C-H Arylation in One-Pot

The potential of the synergistic ruthenium catalysis was explored through sequential meta- $\mathrm{C}-\mathrm{H}$ alkylations followed by ortho-C-H arylations in a one-pot fashion. The operationally simple addition of the electrophilic aryl bromides 165 after completion of the meta- $\mathrm{C}-\mathrm{H}$ functionalizations allowed for the twofold one-pot C-H transformations (Scheme 56). The sequential meta- $\mathrm{C}-\mathrm{H} /$ ortho- -H functionalizations under the synergistic ruthenium catalysis were applicable for removable pyrazoles (166a-166d) in excellent levels of positional selectivity. In particular, late-stage fluorescence labeling on purine bases (166e-166f) was achieved under the catalytic system.

${ }^{[a]}$ Reaction conditions: 123a or $147(0.5 \mathrm{mmol}), 140(1.5 \mathrm{mmol}),\left[\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CAd}\right)_{2}(p\right.$-cymene $\left.)\right]$ (163, $10 \mathrm{~mol} \%), \mathrm{PPh}_{3}(10 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(2.0 \mathrm{mmol}), 1,4$-dioxane $(2.0 \mathrm{~mL}), 60^{\circ} \mathrm{C}, 20 \mathrm{~h}$, under N_{2}, then ArBr 165 (1.0-1.5 mmol), $120^{\circ} \mathrm{C}, 20 \mathrm{~h}$; yield of isolated products.

Scheme 56: Sequential one-pot meta-alkylation followed by ortho-arylation under the carboxylate-phosphine ruthenium catalysis.

Due to the different reactivities of alkyl bromides 140 and aryl bromides 165, a temperaturecontrolled sequential meta-C-H/ortho-C-H functionalization in a one-pot reaction of alkyl bromide 140a and aryl halides 165 led to the formation of the corresponding products 166 with excellent levels of chemo- and positional selectivities (Scheme 57). This protocol was efficiently applicable to pyrimidines ($\mathbf{1 6 6 g} \mathbf{- 1 6 6 h}$), removable pyrazoles (166c), and transformable oxazolines (166i).

166g: $X=\operatorname{Br}: 63 \%$
X = CI: 70\%

166h: $\mathrm{X}=\mathrm{Br}: 63 \%$

166c: $X=B r: 72 \%$

166i: $X=B r: 46 \%{ }^{[b]}$
$X=\mathrm{Cl}: 27 \%{ }^{[b]}$

[^3]Scheme 57: Temperature controlled chemo-selective twofold C-H functionalizations.

3.3.4 Mechanistic Studies

To understand its mode of action, the H/D exchange and KIE experiments were conducted by N. Kaplaneris. ${ }^{[101]}$ The obtained results indicated that the $\mathrm{C}-\mathrm{H}$ bond cleavage is a reversible process.

To delineate $\mathrm{C}-\mathrm{X}$ bond cleavage event of the meta $-\mathrm{C}-\mathrm{H}$ transformations, experiments with radical scavengers were conducted. The catalytic C-H activation was completely inhibited by the addition of TEMPO (Scheme 58a). The isolated TEMPO adduct 167 was supportive of the homolytic $\mathrm{C}-\mathrm{X}$ bond cleavage. In addition, the stereochemically well-defined substrate 140j was converted under the catalytic transformation to the diastereomeric mixtures $141 r$ and 141s, which is again in good agreement with a single-electron transfer promoted C-X bond cleavage (Scheme 58b). Further strong support for a radical mechanism was obtained by EPR spectroscopic studies, in
collaboration with Dr. A. C. Stückl. Hence, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was employed as a spin-trap label to indicate the in situ generation of an alkyl radical (Scheme 59).
(a) Reaction with TEMPO

(b) Reaction with diastereomerically pure alkyl bromide

Scheme 58: Experimental support for radical-type mechanism.

Scheme 59: EPR spectroscopic evidence for the in situ generation of an alkyl radical in ruthenium-catalyzed meta-alkylations.

3.3.5 Proposed Catalytic Cycle

On the basis of the experimental and computational studies, ${ }^{[101]}$ a plausible catalytic cycle commences with a reversible, carboxylate-assisted C-H ruthenation of arene 139h (Scheme 60). Subsequently, single-electron transfer occurs from ruthenacycle 170 to alkyl halides 140, forming the ruthenium(III) intermediate 171 and the alkyl radical 172. Radical attack on the aromatic moiety at the position para to ruthenium generates ruthenacycle intermediate 173. Rearomatization followed by protodemetalation delivers the desired meta-substituted product 141 and regenerates the catalytically active ruthenium(II) complex 169.

Scheme 60: Proposed catalytic cycle for the remote meta-alkylation.

3.3.6 Late-Stage Diversification

Finally, the potential of the sequential meta- $\mathrm{C}-\mathrm{H} /$ ortho $-\mathrm{C}-\mathrm{H}$ functionalization strategy was reflected by the facile late-stage modification of the thus obtained arenes 141a and $\mathbf{1 6 6 g}$ (Scheme $61)$. The saponification of the ester group afforded the corresponding carboxylic acids $\mathbf{1 7 5}$ in high yields. Then, decarboxylative reduction under photoredox catalysis at room temperature ${ }^{[102]}$ efficiently provided the meta-alkylated products 177. Notably, carboxylic acid derivative 178, which was modified by hydrolysis of adduct 141f, underwent through a visible-light photoredox catalysis reduction manifold, leading to the chemo-selective decarboxylation of the aliphatic carboxylic acids

${ }^{[a]}$ Reaction was performed by N. Kaplaneris.

Scheme 61: Late-stage modification of the obtained meta-alkylated products.

3.3.7 Preliminary Studies on para-Selective C-H Alkylation

With respect to Frost's report on ruthenium-catalyzed para-C-H alkylation, ${ }^{[87]}$ the synergistic ruthenium catalyst was examined on para-C-H functionalization (Table 6). The reaction between N-pyrimidyl aniline (125b) and alkyl bromide 140k provided promising results in m-xylene as solvent (entries 1-3). Moreover, different electronic influence on phosphine ligand gave the similar results (entries 4-6). In addition to the corresponding product 180a, the twofold alkylation of aniline 125b was observed at the position para to NH group on both the phenyl and pyrimidine rings.

Table 6: Screening of phosphine ligands and solvents for the remote para-alkylation of 125b. ${ }^{[a]}$

Entry	Phosphine	Solvent	180a (\%)
1	PPh_{3}	1,4-dioxane	trace ${ }^{[\mathrm{b}, \mathrm{c}]}$
2	PPh_{3}	1,4-dioxane	$12(\mathrm{di} 15)^{[\mathrm{bb]}}$
3	PPh_{3}	m-xylene	$33^{[\mathrm{bb]}}$

Entry	Phosphine	Solvent	180a (\%)
4	PPh_{3}	PhCMe_{3}	26 (di 23)
5	$\mathrm{P}\left(4-\mathrm{FC}_{6} \mathrm{H}_{4}\right)_{3}$	m-xylene	28 (di 23)
6	$\mathrm{P}\left(4-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)_{3}$	m-xylene	26 (di 19)

${ }^{[a]}$ Reaction conditions: 125b (0.25 mmol), 140k (0.75 mmol), [$\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CMes}\right)_{2}(p$-cymene)] (33, $10 \mathrm{~mol} \%)$, phosphine $(10 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(0.50 \mathrm{mmol})$, solvent $(1.0 \mathrm{~mL}), 120^{\circ} \mathrm{C}, 20 \mathrm{~h}$, under N_{2}; yield of isolated products. ${ }^{[b]}$ Reactions were performed by N. Kaplaneris. ${ }^{[c]} 60^{\circ} \mathrm{C}$.

To avoid the formation of the dialkylated product, 4-chloropyrimidine 125a was employed in the para-C-H alkylation (Table 7). The synergistic ruthenium catalysis with a phosphine ligand proved to be more powerful than the reaction without phosphine (entries 1-3). Different carboxylates on ruthenium precatalysts slightly dropped the yield of the corresponding product 180b (entries 4-5), while the reaction of $\left[\mathrm{RuCl}_{2}(p-c y m e n e)\right]_{2}$ without additional acids also delivered the para-alkylated product 180b with similar catalytic efficacy (entry 6).

Table 7: Screening of ruthenium complexes and phosphine ligands for the remote para-alkylation of 125a. ${ }^{[a]}$

Entry	cat. [Ru]	Phosphine	180b (\%)
1	$\left[\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CMes}\right)_{2}(p\right.$-cymene $\left.)\right](33)$	-	$37^{[\mathrm{b}]}$
2	33	PPh_{3}	$56^{[\mathrm{b}]}$
3	33	$\mathrm{P}\left(4-\mathrm{FC}_{6} \mathrm{H}_{4}\right)_{3}$	$57^{[\mathrm{bb}]}$
4	$\left[\mathrm{Ru}(\mathrm{OPiv})_{2}(p-c y m e n e)\right]$	PPh_{3}	49%
5	$\left[\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CAd}\right)_{2}(p-\mathrm{cymene})\right](163)$	PPh_{3}	49%
6	$\left[\mathrm{RuCl}_{2}(p-\text { cymene })\right]_{2}$	PPh_{3}	56%

[^4]
3.4 Late-Stage Diversification by Selectivity Switch in meta-C-H Activation

In 2009, Ackermann first reported on ruthenium-catalyzed direct C-H benzylations using primary benzyl chlorides. ${ }^{[35]}$ On the principle of the atom- and step-economical C-H/C-H activation ${ }^{[14]}$ for the construction of new $\mathrm{C}-\mathrm{C}$ bonds, the groups of $\mathrm{Shi} / \mathrm{Zhao}{ }^{[68]}$ and $\mathrm{Shi}^{[69]}$ later reported on oxidative ruthenium-catalyzed remote $\mathrm{C}-\mathrm{H}$ benzylations of toluene derivatives using di-tert-butylperoxide (DTBP) and heptafluoroisopropyl iodide ($i-\mathrm{C}_{3} \mathrm{~F}_{7}$) as the radical initiators, respectively. Even though the prefunctionalized substrates are not required for the $\mathrm{C}-\mathrm{H} / \mathrm{C}-\mathrm{H}$ activation, an excess of toluene derivative is mandatory in these catalytic transformations.

3.4.1 Optimization Studies

The synergistic ruthenium catalysis with phosphine ligands was further examined for a remote meta-C-H benzylations of arene 139a and secondary benzyl chloride 142a (Table 8). First, the addition of triphenylphosphine significantly enhanced the catalytic efficacy (entries 1-2). Second, the reaction at lower reaction temperature of $40^{\circ} \mathrm{C}$ dramatically increased the yield of the meta-benzylated product 143a (entry 3), while the reaction at an ambient temperature of $23^{\circ} \mathrm{C}$ furnished 47% of the corresponding product 143a (entry 4). Third, among inorganic bases, $\mathrm{K}_{2} \mathrm{CO}_{3}$ and $\mathrm{K}_{3} \mathrm{PO}_{4}$ were found to be optimal bases in the catalytic transformation (entries 5-10).

Table 8: Bases and reaction temperatures for the remote meta- $\mathrm{C}-\mathrm{H}$ benzylation. ${ }^{[\mathrm{a}]}$

	 142a	$\xrightarrow[\text { base }]{\substack{\left[R u\left(\mathrm{O}_{2} \mathrm{CMes}\right)_{2}(p \text {-cymene })\right] \\(33,10 \mathrm{~mol} \%) \\ \mathrm{PPh}(10 \mathrm{~mol} \%)}}$	 143a
Entry	Base	$T\left({ }^{\circ} \mathrm{C}\right)$	143a (\%)
1	$\mathrm{K}_{2} \mathrm{CO}_{3}$	120	$16^{[b]}$
2	$\mathrm{K}_{2} \mathrm{CO}_{3}$	120	39
3	$\mathrm{K}_{2} \mathrm{CO}_{3}$	40	62 (73)
4	$\mathrm{K}_{2} \mathrm{CO}_{3}$	23	47 (52)
5	KOAc	23	41 (46)
6	$\mathrm{K}_{3} \mathrm{PO}_{4}$	23	51 (58)
7	$\mathrm{K}_{3} \mathrm{PO}_{4}$	40	64 (76)

Entry	Base	$\boldsymbol{T}\left({ }^{\circ} \mathrm{C}\right)$	143a (\%)
8	$\mathrm{~K}_{3} \mathrm{PO}_{4}$	60	(64)
9	$\mathrm{Li}_{3} \mathrm{PO}_{4}$	40	(5)
10	$\mathrm{Na}_{3} \mathrm{PO}_{4}$	40	$59(73)$

[a] Reaction conditions: 139a (0.50 mmol), 142a (1.50 mmol), [$\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CMes}\right)_{2}\left(p\right.$-cymene)] (33, $10 \mathrm{~mol} \%$), PPh_{3} $(10 \mathrm{~mol} \%)$, base (1.00 mmol), 1,4-dioxane $(2.0 \mathrm{~mL}), T, 20 \mathrm{~h}$, under N_{2}; yield of isolated products. The yield in parentheses was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy using 1,3,5-trimethoxybenzene as the internal standard. ${ }^{[b]}$ Without PPh_{3}.

Among a variety triarylphosphines, PPh_{3}, tris(4-fluorophenyl)phosphine, and tris(4trifluoromethylphenyl)phosphine provided similar results (Table 9, entries 1-10). Due to the reasonable price and commercial availability, PPh_{3} was selected as the optimal ligand for the remote meta-C-H benzylation. While trialkylphosphines and phosphine oxides failed to give any conversion (entries 11-15), triphenyl or triethyl phosphites provided the low formation of the corresponding product 143a (entries 16-17). Moreover, 2-(diphenylphosphino)benzoic acid gave unsatisfactory results with two different ruthenium sources (entries 18-19). In addition, no conversion was observed when bidentate phosphine ligands were employed (entries 20-21). Although N-Heterocyclic carbene (NHC) (entry 22) and chiral phosphine oxide (entry 24) were absolutely ineffective in the catalytic transformation, the chiral phosphoramidite ligand delivered 30% of the desired product 143a (entry 23).

Table 9: Screening of phosphine ligands for the remote meta-C-H benzylation. ${ }^{[a]}$

${ }^{[a]}$ Reaction conditions: 139a (0.50 mmol), 142a (1.50 mmol), [$\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CMes}\right)_{2}(p$-cymene)] (33, $10 \mathrm{~mol} \%$), phosphine (10 mol \%), $\mathrm{K}_{3} \mathrm{PO}_{4}(1.00 \mathrm{mmol}), 1,4$-dioxane $(2.0 \mathrm{~mL}), 40^{\circ} \mathrm{C}, 20 \mathrm{~h}$, under N_{2}; yield of isolated products. The yield in parentheses was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy using 1,3,5-trimethoxybenzene as the internal standard. ${ }^{[b]}\left[\mathrm{Ru}(\mathrm{OAc})_{2}(p\right.$-cymene) $](\mathbf{1 8 1}, 10 \mathrm{~mol} \%)$. ${ }^{[c]}\left[\mathrm{RuCl}_{2}(p \text {-cymene) }]_{2}(5.0 \mathrm{~mol} \%)\right.$.

Afterwards, various ruthenium source and additives were tested in the remote benzylation (Table 10). No conversion was observed when the reaction was performed without a ruthenium catalyst (entry 1). Several ruthenium sources, such as $\mathrm{RuCl}_{3} \cdot \mathrm{nH}_{2} \mathrm{O}$ (entries $2-3$), $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ (entry 4), $\mathrm{Ru}(\mathrm{OAc})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (entries 5-7), $\mathrm{Ru}(\mathrm{OAc})_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ (entry 8), and $\left[\mathrm{Ru}(\mathrm{NCMe})_{6}\right] \mathrm{X}_{2}$ (entries 9-10) provided unsatisfactory results. However, $\mathrm{Ru}(\mathrm{OAc})_{2}\left(\mathrm{PPh}_{3}\right)_{2}{ }^{[103]}$ was highly catalytically effective when the reaction was performed at high reaction temperature of $100^{\circ} \mathrm{C}$ (entry 6). Notably, carboxylate was found to be essential in this $\mathrm{C}-\mathrm{H}$ functionalization (entries 11-16). Moreover, a variety of ruthenium(II) biscarboxylate precatalysts comparably provided the high catalytic efficacy. The 1:1 ratio of ruthenium catalysts to phosphine ligands furnished the best results for the meta-C-H benzylation (entries 17-21). In addition, the addition of phosphine ligand was required in the ruthenium-catalyzed remote $\mathrm{C}-\mathrm{H}$ benzylations (entry 22).

Table 10: Ruthenium sources and additives for the remote meta- $\mathrm{C}-\mathrm{H}$ benzylation. ${ }^{[\mathrm{a}]}$

Entry	cat. [Ru]	Additive	143a (\%)
1	---	---	---
2	$\mathrm{RuCl}_{3} \cdot \mathrm{nH}_{2} \mathrm{O}$ (30)	MesCO2H (31)	---
3	30	KOAc	$(6)^{[b, c, d]}$
4	$\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$	31	----[e]
5	$\mathrm{Ru}(\mathrm{OAc})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$	---	---
6	$\mathrm{Ru}(\mathrm{OAc})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$	---	$-^{--[e]},(3)^{[c, ~ d, ~ e]},(68)^{[c, e, j]}$
7	$\mathrm{Ru}(\mathrm{OAc})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$	---	(3) ${ }^{[c, ~ d]}$
8	$\mathrm{Ru}(\mathrm{OAc})_{2}\left(\mathrm{PPh}_{3}\right)_{3}$	---	----[e]
9	$\left[\mathrm{Ru}(\mathrm{NCMe})_{6}\right]\left[\mathrm{BF}_{4}\right]_{2}$	KOAc	----[c, d]
10	$\left.\left[\mathrm{Ru}\left(\mathrm{NCMe}^{6}\right)_{6}\right] \mathrm{SbF}_{6}\right]_{2}$	KOAc	---[c, d]
11	$\left[\mathrm{RuCl}_{2}(p \text {-cymene) }]_{2}\right.$	---	-.-- ${ }^{[f]}$
12	[$\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CMes}\right)_{2}(p$-cymene) $]$ (33)	---	64 (76)
13	[Ru(OAc) ${ }_{2}(p$-cymene $\left.)\right]$ (181)	---	69 (76)
14	[Ru($\left.\mathrm{O}_{2} \mathrm{CAd}\right)_{2}(p$-cymene) $]$ (163)	---	68 (76)
15	[Ru(OPiv) $\left.2^{(p-c y m e n e)}\right]$	---	68 (75)
16	181	---	$68(75)^{[c]}$
17	181	---	(5) ${ }^{[\mathrm{g}]}$
18	181	---	$(42)^{[\mathrm{h}]}$
19	181	---	(3) ${ }^{[i]}$
20	181	---	$(56)^{[g, ~ h] ~}$
21	181	---	$68(76)^{[c, d]}$
22	181	---	$(1)^{[c, ~ d, ~ e]}$

[^5]The synergistic ruthenium-catalyzed $\mathrm{C}-\mathrm{H}$ transformations similarly showed high efficiency in various organic solvents (Table 11, entries 1-4), while the catalytic reaction failed to give any conversion in MeCN (entry 5).

Table 11: Screening of solvents for the remote meta $-\mathrm{C}-\mathrm{H}$ benzylation. ${ }^{[\mathrm{ab}}$

 139a	 142a	$\left[\mathrm{Ru}(\mathrm{OAc})_{2}(p\right.$-cymene $\left.)\right]$ $(181,10 \mathrm{~mol} \%)$ $\mathrm{PPh}_{3}(10 \mathrm{~mol} \%)$ $\mathrm{K}_{3} \mathrm{PO}_{4}$ solvent, $40{ }^{\circ} \mathrm{C}, 20 \mathrm{~h}$	
Entry		Solvent	143a (\%)
1		1,4-dioxane	69 (76)
2		2-MeTHF	65 (71)
3		PhMe	67 (76)
4		1,2-DCE	64 (70)
5		MeCN	---

${ }^{[a]}$ Reaction conditions: 139a (0.50 mmol), 142a (1.50 mmol), [Ru(OAc) ${ }_{2}(p$-cymene)] (181, $10 \mathrm{~mol} \%), \mathrm{PPh}_{3}(10 \mathrm{~mol} \%)$, $\mathrm{K}_{3} \mathrm{PO}_{4}(1.0 \mathrm{mmol})$, solvent $(2.0 \mathrm{~mL}), 40^{\circ} \mathrm{C}, 20 \mathrm{~h}$, under N_{2}; yield of isolated products. The yield in parentheses was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy using 1,3,5-trimethoxybenzene as the internal standard.

In contrast to the report on a ruthenium-catalyzed direct $\mathrm{C}-\mathrm{H}$ benzylation with primary benzyl chloride in 2009, ${ }^{[35]}$ the reaction of pyrimidine 139a and 4-methoxybenzyl chloride (142b) under the synergistic ruthenium catalysis conditions selectively afforded the meta-benzylated product 143b (Table 12, entries $1-2$), with the best results being accomplished using $\mathrm{K}_{2} \mathrm{CO}_{3}$ as base. In addition, no conversion was observed in the absence of phosphine ligands (entry 3). Although the remote $\mathrm{C}-\mathrm{H}$ benzylations under photoredox catalysis furnished the corresponding product 143b (entries 4-5), visible light was verified to be inessential in the remote $\mathrm{C}-\mathrm{H}$ transformations by the control experiment under dark condition (entry 6).

Table 12: Reaction studies for remote meta-benzylation of primary benzyl chloride 142b. ${ }^{\text {[a] }}$

${ }^{[a]}$ Reaction conditions: 139a (0.50 mmol), 142b (1.50 mmol), [Ru(OAc) ${ }_{2}$ (p-cymene)] (181, $10 \mathrm{~mol} \%$), $\mathrm{PPh}_{3}(10 \mathrm{~mol} \%)$, base (1.00 mmol), 1,4-dioxane (2.0 mL), $T, 20 \mathrm{~h}$, under N_{2}; yield of isolated products. The yield in parentheses was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy using 1,3,5-trimethoxybenzene as the internal standard. The yield of the ortho-benzylated products is given in square brackets. ${ }^{[b]}$ Without PPh $_{3}$. ${ }^{[c]}$ Under Blue LED (5 W). ${ }^{[d]} 2$ MeTHF.

Notably, the reaction of benzylphosphonium salt 182 under ruthenium catalyst did not deliver any formation of the corresponding product 143c (Scheme 62). This finding was supportive of the benzylphosphonium not being an intermediate in the catalytic transformation.

Scheme 62: Ruthenium-catalyzed benzylation of benzylphosphonium salt 182.

In the remote $\mathrm{C}-\mathrm{H}$ functionalization with primary benzyl chloride 142b, cationic ruthenium(II) complexes and $\left[\mathrm{Ru}(\mathrm{OAc})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ were not effective (Table 13, entries $1-3$), even though the reaction was conducted at high reaction temperature at $100^{\circ} \mathrm{C}$ (entry 4).

Table 13: Various ruthenium sources for remote meta-benzylation of primary benzyl chloride 142b. ${ }^{\text {[a] }}$

 68b	cat. $[\mathrm{Ru}](10 \mathrm{~mol} \%)$ $\mathrm{PPh}_{3}(10 \mathrm{~mol} \%)$		
	142b	143d	
Entry	cat. [Ru]	143d (\%)	68b (\%)
1	$\left[\mathrm{Ru}(\mathrm{NCMe})_{6}\right]\left[\mathrm{BF}_{4}\right]_{2}$	---	96
2	$\left[\mathrm{Ru}(\mathrm{NCMe})_{6}\right]\left[\mathrm{SbF}_{4}\right]_{2}$	---	88
$3^{[b]}$	$\left[\mathrm{Ru}(\mathrm{OAc})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$	13	71
$4^{[b, c]}$	$\left[\mathrm{Ru}(\mathrm{OAc})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$	32	---

${ }^{[a]}$ Reaction conditions: 68b (0.50 mmol), $\mathbf{1 4 2 b}(1.50 \mathrm{mmol}),[\mathrm{Ru}](10 \mathrm{~mol} \%), \mathrm{PPh}_{3}(10 \mathrm{~mol} \%), \mathrm{KOAc}(20 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}$ (1.00 mmol), 1,4-dioxane (2.0 mL), $60^{\circ} \mathrm{C}$, 20 h , under N_{2}. Yields were determined by ${ }^{1} \mathrm{H}$-NMR spectroscopy using 1,3,5-trimethoxybenzene as the internal standard ${ }^{[b]}$ Without PPh_{3} and KOAc. ${ }^{[c]} 100{ }^{\circ} \mathrm{C}$.

3.4.2 Effect of Phosphine Ligand to Site-Selectivity

The site-selectivity of the ruthenium-catalyzed $\mathrm{C}-\mathrm{H}$ benzylation was controlled by the addition of a phosphine ligand, as shown in Scheme 63. The reaction without phosphine ligand afforded the ortho-benzylated products 183 with excellent levels of positional selectivity. It was found that the site-selectivity switched from ortho to meta position in the presence of phosphine ligands.

Scheme 63: Influence of phosphine ligands to site-selectivity of ruthenium-catalyzed benzylation.

To elucidate the role of the carboxylate and phosphine ligands, the reactions were performed using the catalytic amount of monocyclometalated (98) or biscyclometalated (184) ruthenium complexes in the absence and presence of ligands (Table 14). It was verified in the reaction of ruthenacycle 98 that carboxylate ligand was essential in the $\mathrm{C}-\mathrm{H}$ bond cleavage, while the addition of phosphine ligand controlled the site-selectivity of the $\mathrm{C}-\mathrm{H}$ benzylations. On the other hand, biscyclometalated ruthenium complexes 184 was ineffective in any reaction conditions.

Table 14: Roles of carboxylate and phosphine ligands in ruthenium-catalyzed benzylation. ${ }^{[a]}$

Entry	KOAc	PPh ${ }_{3}$	[Ru]	143d (\%)	183 (\%)	68b (\%)
1	3		98	9	$14^{[b]}$	62
2			184	---	---	85
3			98	5	$2^{[b]}$	83
4			184	---	---	90
	$\sqrt{ }$				76 (1.0:7.4)	
5			98	---	$66^{[c]}(1.0: 7.3)$	---
6			184	---	---	87
7	$\sqrt{ }$	$\sqrt{ }$	98	$80,7{ }^{[c]}$	15 (1.0:2.8)	---
8			184	---	---	90

[^6]Afterwards, the stoichiometry of ruthenium to phosphine was studied (Table 15 and Figure 9). Increasing amounts of PPh_{3} up to $20 \mathrm{~mol} \%$ had an impact on acceleration and inhibition of the
formation of 143d and 183, respectively. Higher loadings of PPh_{3} poisoned the active catalyst and led to inhibition of any $\mathrm{C}-\mathrm{H}$ benzylation.

Table 15: Stoichiometry of ruthenium to phosphine in the benzylation reaction. ${ }^{[a]}$

${ }^{[a]}$ Reaction conditions: 68b (0.50 mmol), 142b (1.50 mmol), [Ru(OAc) $)_{2}(p$-cymene)] (181, $10 \mathrm{~mol} \%), \mathrm{PPh}_{3}(\mathrm{x} \mathrm{mol} \%)$, $\mathrm{K}_{2} \mathrm{CO}_{3}(1.00 \mathrm{mmol})$, 1,4-dioxane $(2.0 \mathrm{~mL}), 60^{\circ} \mathrm{C}, 20 \mathrm{~h}$, under N_{2}. Yields were determined by ${ }^{1} \mathrm{H}$-NMR spectroscopy using 1,3,5-trimethoxybenzene as the internal standard. ${ }^{[b]}$ Combined yield of mono-and dibenzylated products was given and the ratio of mono- to dibenzylated products was shown in the parentheses.

Figure 9: Site-selectivity of ruthenium-catalyzed benzylation with different amount of phosphine ligand at $60^{\circ} \mathrm{C}$.

3.4.3 Scope of the meta-Selective C-H Benzylation

With the optimized conditions for the ruthenium-catalyzed meta-C-H benzylation in hand, the versatility of this remote $\mathrm{C}-\mathrm{H}$ functionalization was explored with different heteroarenes $\mathbf{6 8}, 139$ and benzyl chlorides $\mathbf{1 4 2}$ (Scheme 64). The protocol was highly effective for primary and secondary benzylation. Furthermore, the synergistic ruthenium catalysis was applicable to pyrimidines, pyridines, and synthetically transformative oxazolines. It was found that sterically hindered 1 -chloro-2-(1-chloroethyl)benzene (142e) smoothly delivered the desired meta-benzylated products 1431. The connectivity of meta-benzylated products 143 was established by two-dimensional nuclear magnetic resonance (2D-NMR) and X-ray crystal structure analyses.

The potential of the synergistic ruthenium-catalyzed meta-C-H transformation was also reflected by late-stage transformations of biorelevant purines $\mathbf{1 2 3}$ (Scheme 65). Notably, the robustness of ruthenium(II) catalysis proved to tolerate a wide range of functional groups, including ester (185ah), halides (185ai-185ak), ketone (185hb), and amide (185kb). Likewise, the twofold C-H functionalizations with dichloro-p-xylene (142n) effortlessly delivered bis-purine xylene 185an. The positional selectivity of meta-benzylated products $\mathbf{1 8 5}$ was confirmed by 2D-NMR and X-ray crystal structure analysis.

secondary benzylation

$R=H$ (143a): $68 \%,(1 \%)^{[b]}$
$R=F(143 j): 81 \%$

143k: $74 \%, 67 \%{ }^{[d, ~ e] ~}$

CCDC 1915687

143I: $52 \%{ }^{[f]}$

CCDC 1915684

143m: 52\%
${ }^{[a]}$ Reaction conditions: 68 or $139(0.50 \mathrm{mmol}), 142(1.50 \mathrm{mmol}),\left[\mathrm{Ru}(\mathrm{OAc})_{2}(p\right.$-cymene $\left.)\right]$ ($\left.181,10 \mathrm{~mol} \%\right)$, $\mathrm{PPh}_{3}(10 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{mmol}), 1,4$-dioxane $(2.0 \mathrm{~mL}), 60^{\circ} \mathrm{C}, 20 \mathrm{~h}$, under N_{2}; yield of isolated products. ${ }^{[b]}$ Without PPh_{3} determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ using 1,3,5-trimethoxybenzene as internal standard. ${ }^{[c]}$ 2-MeTHF. ${ }^{[d]} \mathrm{K}_{3} \mathrm{PO}_{4}$. ${ }^{[\mathrm{e}]} 40{ }^{\circ} \mathrm{C} .{ }^{[f]} 80^{\circ} \mathrm{C}$.

Scheme 64: Remote meta-C-H benzylation under ruthenium catalysis.

185hb: 68\%

CCDC 1915681

CCDC 1915610

185if: 50%

185jb: 75\%

185kb: 63\%

185am: $67 \%{ }^{[b]}$

185an: 48\% ${ }^{[c]}$

185aa: $87 \%, 82 \%{ }^{[d]}$
${ }^{[a]}$ Reaction conditions: $123(0.50 \mathrm{mmol}), 142(1.50 \mathrm{mmol}),\left[\mathrm{Ru}(\mathrm{OAc})_{2}(p\right.$-cymene $\left.)\right](181,10 \mathrm{~mol} \%), \mathrm{PPh}_{3}(10 \mathrm{~mol} \%)$, $\mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{mmol}), 1,4$-dioxane $(2.0 \mathrm{~mL}), 60^{\circ} \mathrm{C}, 20 \mathrm{~h}$, under N_{2}; yield of isolated products. ${ }^{[\mathrm{b}]} 80^{\circ} \mathrm{C} .{ }^{[\mathrm{cc}]} \mathbf{1 2 3 a}(1.25 \mathrm{mmol})$, 142n (0.50 mmol). ${ }^{[\mathrm{d}]} \mathrm{K}_{3} \mathrm{PO}_{4}$ at $40^{\circ} \mathrm{C}$.

Scheme 65: Ruthenium-catalyzed meta-C-H benzylation of purines 123.

3.4.4 Scope for Late-Stage Diversification through the remote meta-C-H Activation

In addition to simple and commercially available benzyl chlorides, the synergistic protocol for the remote $\mathrm{C}-\mathrm{H}$ functionalizations was applicable to structurally complex electrophiles (Scheme 66). Late-stage diversification of purine bases with BODIPY fluorescence labels was accomplished by carboxylate-phosphine ruthenium catalysis (187a and 187b). Notably, electrophiles bearing amino acids were smoothly transformed to the corresponding products 187c-187i with high levels of chemo-selectivity without any evidence for racemization. It was highlighted that reactive unprotected hydroxyl groups in serine (187f) and tyrosine (187i) as well as free NH-indole in tryptophan (187h) were fully tolerated. In addition, more structurally complex peptides underwent the desired chemical ligation to form products $\mathbf{1 8 7 j}$ and $\mathbf{1 8 7}$ k, featuring among others sensitive methionine. The synergistic ruthenium(II) catalyst verified also fully compatible with triglycerides derived from saturated and unsaturated fatty acids (1871-1870) and vitamin D - α-tocopherol (187p). Particularly, the chemo-selectivity of the meta- $\mathrm{C}-\mathrm{H}$ transformation in the presence of unsaturated fatty acids (187n and 1870) is noteworthy, since they are simply disposed to olefinic and allylic functionalizations. Remarkably, the late-stage modification of marketed drugs was accomplished, including transformations of neuroprotective agent gastrodin (187q187s) and anti-inflammatory salicin (187t). The ruthenium catalysis was not restricted to benzylic electrophiles, but also synthetically useful monosaccharide bromoesters afforded the desired meta-alkylated products $187 \mathrm{u}-187 \mathrm{w}$ with high catalytic efficacy. It is noteworthy that fully unprotected OH -free monosaccharides (187t) proved to be compatible for the first time in ruthenium catalysis. Notably, purine-uridine hybrids $187 x$ and $187 y$ were obtained by the synergistic catalysis via catalytic nucleoside ligation.

Amino Acids

187c: 74%

s-187f: 50\% (98\% ee, from R-Cl >99\% ee) rac-187f: 55\% (0\% ee, from R-Cl 0\% ee)

s-187e: 70\% (>99\% ee) R-Cl (>99\% ee)

R-187e: 77\% (>99\% ee) R-Cl (>99\% ee)

187g: 79\%

187h: 67\%

187i: 53%
${ }^{[a]}$ Reaction conditions: 123 (0.50 mmol), 186 (1.00 mmol), $\left[\mathrm{Ru}(\mathrm{OAc})_{2}(p\right.$-cymene)] (181, $10 \mathrm{~mol} \%), \mathrm{PPh}_{3}(10 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}$ (1.0 mmol), 1,4-dioxane $(2.0 \mathrm{~mL}), 60^{\circ} \mathrm{C}, 20 \mathrm{~h}$, under N_{2}; yield of isolated products.

Scheme 66: Late-stage diversification of structurally complex drugs and natural product molecules by remote meta- $\mathrm{C}-\mathrm{H}$ functionalization.

[^7]Scheme 66 (cont.): Late-stage diversification of structurally complex drugs and natural product molecules by remote meta-C-H functionalization.

187p: 65\% (from Vitamin E or D-Tocopherol)

Monosaccharides

187t: 55% (from Salicin, $80^{\circ} \mathrm{C}$)
187u: 54\%
187v: 76%
187w: 68\%
Nucleoside Ligation

187x: 55\% (from Uridine)

${ }^{[a]}$ Reaction conditions: 123 (0.50 mmol), 186 (1.00 mmol), [$\mathrm{Ru}(\mathrm{OAc})_{2}\left(p\right.$-cymene)] (181, $10 \mathrm{~mol} \%$), $\mathrm{PPh}_{3}(10 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}$ (1.0 mmol), 1,4-dioxane $(2.0 \mathrm{~mL}), 60^{\circ} \mathrm{C}, 20 \mathrm{~h}$, under N_{2}; yield of isolated products.

Scheme 66 (cont.): Late-stage diversification of structurally complex drugs and natural product molecules by remote meta-C-H functionalization.

Although the synergistic ruthenium catalysis proved to be robust and versatile, low conversion of pyrazoles (1430) and azobenzenes (143t) was noted (Scheme 67). The reactions of oxazolinylbenzenes with different primary benzyl chlorides delivered the corresponding product 143p-143s in low yields. Moreover, fully unreactive arenes, such as O-methyloximes, dimethylpyrazoles, N-pyrimidylanilines, benzodiazepines, 2-pyridylpyridone, and others, as well as ineffective alkyl chlorides or bromides are listed in Scheme 67.

unsuccessful substrates

Scheme 67: Unsuccessful results and ineffective substrates in the synergistic ruthenium-phosphine catalysis.

3.4.5 Mechanistic Studies

Since the carboxylate-phosphine ruthenium catalysis effectively transformed several electrophiles, competition experiments were conducted to examine their reactivities (Scheme 68). The results showed that primary benzyl chloride $\mathbf{1 4 2 b}$ is less active than bromoesters $\mathbf{8 4 a} \mathbf{1 4 0} \mathbf{1 4}$, and 140k, whereas no reactivity was observed in case of bromocycloheptane (136h).

Scheme 68: Intermolecular competition experiments of electrophiles under the carboxylate-phosphine ruthenium catalysis.

Moreover, an intermolecular competition experiment of arenes 68a and 68b highlighted electron-rich arenes to be more efficiently converted (Scheme 69)

Scheme 69: Intermolecular competition experiment of pyridines 68a and 68b.

To understand the cleavage of $\mathrm{C}-\mathrm{X}$ bond, experiments with radical scavengers were investigated (Scheme 70). The typically used radical scavenger TEMPO fully inhibited the synergistic $\mathrm{C}-\mathrm{H}$ transformations. The isolated TEMPO adduct 191 strongly indicated the homolytic $\mathrm{C}-\mathrm{X}$ bond cleavage. While the addition of BHT did not have any influence on the catatytic potential, the reaction with 1,1-diphenylethylene significantly reduced the formation of the meta-benzylated product 143b. Moreover, the adduct derived from 1,1-diphenylethylene and benzyl chloride was detected by GC-MS spectrometry. These findings suggested a radical mechanism through homolytic $\mathrm{C}-\mathrm{X}$ bond cleavage.

Scheme 70: meta-Benzylation in the presence of radical scavengers.

Afterwards, isotopically labelled substrates $[D]_{2}-68 b$ and $[D]_{3}-68 b$ were employed in the synergistic catalysis (Scheme 71). The substrates were efficiently converted into the corresponding product $[D]_{n}-\mathbf{1 4 3 d}$. The deuteration degree of product $[D]_{n}-143 d$ was measured by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy, where H/D scrambling at ortho position was observed. Owing to a trace amount of $\mathrm{H}_{2} \mathrm{O}$ from $\mathrm{K}_{2} \mathrm{CO}_{3}$, it could not indicate proton source in protodemetalation process. However, it was suggestive of a reversible C-H metalation process.

Scheme 71: Ruthenium-catalyzed meta-benzylation of isotopically labeled substrates [D] ${ }_{2}$ - and [D] $]_{3}-68 \mathrm{~b}$.

To delineate the mechanism of the synergistic C-H functionalization, the series of well-defined ruthenium intermediates were prepared (Scheme 72). First, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopic studies revealed the p-cymene dissociation from the ruthenium precatalyst, which suggested p-cymene-coordinated ruthenacycle was not involved in the catalytic cycle. Second, the obtained single crystals from mixture of pyridine $68 \mathrm{~b},\left[\mathrm{Ru}(\mathrm{OAc})_{2}(p\right.$-cymene $\left.)\right](181)$, and PPh_{3} were analyzed by X-ray crystallography, providing the structure of ruthenacycle trans-192a with two phosphines (Scheme 72a). Due to two phosphine equivalents on complex trans-192a, an additional equivalent of phosphine was added into the complex mixture, affording 59\% of complex trans-192a (Scheme 72b). Moreover, pyridine 68d gave under the same conditions a 1:17 mixture of cis- and transruthenacycle 192b. The alternative protocol with two equivalents of phosphine ligands delivered a 1:1 mixture of cis- and trans-ruthenacycle 192a (Scheme 72c). In the case of the bidentate phosphine ligand DPEPhos, monocyclometalated complex 193 was obtained and confirmed by X-ray crystal structure analysis (Scheme 72d).
(a)

trans-192a
CCDC 1915676
(c)

68b

trans-192b
CCDC 1979318

68b (R = H)
68d ($\mathrm{R}=\mathrm{F}$)
$R=F(192 b): \quad 34 \%$ (cis:trans $=1: 17$)
(d)

68b
$\left[\mathrm{Ru}(\mathrm{OAc})_{2}(p\right.$-cymene $\left.)\right]$

192a: 82\%
(mixture cis- and trans-isomer $=1: 1$)

Scheme 72: Preparation of well-defined ruthenacycles 192 and 193.

In addition, the carboxylate-phosphine ruthenium complex trans-192a could be derived from cationic monocyclometalated complex 98 with two equivalents of phosphine (Scheme 73a). In contrast, the reaction with one equivalent of phosphine smoothly delivered ruthenacycle 194 (Scheme 73b). The structure of complex 194 was established by X-ray crystallography.

(b)

Scheme 73: Ligand modification of cyclometalated ruthenium complex 98.

Having a series of well-defined ruthenacycles in hand, the isomerization of complex 192a was examined by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ spectroscopy (Scheme 74). The solution of complex trans-192a in THF- d_{8} was heated at $60^{\circ} \mathrm{C}$, affording a $0.3: 1.0$ mixture of cis- and trans-192a. This finding indicated that one of the phosphine ligands is simply labile in the ruthenium complex. These results are in good agreement with the Ru-P bond lengths of well-defined ruthenium complexes. According to X-ray crystallographic data, ruthenacycle trans-192a has Ru-P bond lengths of 2.3421 and $2.3355 \AA$, which are longer than complex 194 with a bond length of $2.2451 \AA$. In addition, bidentate phosphine ruthenium complex 193 has an axial Ru-P bond length of $2.2377 \AA$ and an equatorial Ru-P bond length of $2.3263 \AA$. These data supported the weak coordination of phosphine ligand on ruthenium complex trans-192a.

Scheme 74: Isomerization of trans-192a by temperature.

Afterwards, the second C-H metalation of monocyclometalated complex cis-/trans-192a and pyridine 68d was investigated (Table 16). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ spectroscopic studies did not detect any construction of the biscyclometalated ruthenium complex. However, ligand exchange of ruthenacycles cis-/trans-192 with pyridine 68d was observed in the presence and absence of $\mathrm{K}_{2} \mathrm{CO}_{3}$, leading to the formation of ruthenium complexes cis-/trans-192b.

Table 16: Studies on ligand exchange of ruthenacycle cis-/trans-192a and pyridine 68d.

In addition, redox properties of the novel ruthenacycles 192-194 were studied by cyclic voltammetry (Figure 10). The results of ruthenacycle 98 and 192-194 showed reversible oneelectron redox processes at $E_{1 / 2}=0.75 \mathrm{~V}(98), E_{1 / 2}=0.32 \mathrm{~V}$ (trans-192a), $E_{1 / 2}=0.44 \mathrm{~V}$ (193), and $E_{1 / 2}=0.47 \mathrm{~V}(194)$ versus $\mathrm{Ag} / \mathrm{AgCl}$. The change of the half wave potential ($E_{1 / 2}$) suggested that phosphine ligands significantly reduced oxidation potential of ruthenium(II/III) complexes. In contrast, the p-cymene-coordinated ruthenium complex 195 exhibited an irreversible oxidation event at $E=0.81 \mathrm{~V}$.

Figure 10: Cyclic voltammetry studies in 1,2-DCE containing $0.1 \mathrm{~mol} \cdot \mathrm{~L}^{-1} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$, scan rate $100 \mathrm{mV} \cdot \mathrm{s}^{-1}$.

193

Figure 10 (cont.): Cyclic voltammetry studies in $1,2-\mathrm{DCE}$ containing $0.1 \mathrm{~mol}^{-\mathrm{L}^{-1} n-\mathrm{Bu}_{4} \mathrm{NPF}_{6} \text {, scan }}$ rate $100 \mathrm{mV} \cdot \mathrm{s}^{-1}$.

Then, the catalytic efficacy of well-defined ruthenacycle 192a-194 was evaluated in the remote meta-C-H benzylations (Table 17). Complex trans-192a and 194 efficiently delivered the desired product 143d, while bidentate phosphine ruthenium complex 193 failed to give any conversion of substrate 68b.

Table 17: Remote meta- -H benzylation catalyzed by cyclometalated ruthenium complexes. ${ }^{[a]}$

Entry	$[\mathrm{Ru}]$	143d (\%)
1	trans-192a	$54(39)$
2	193	$---(---)$
3	194	$59(50)$

${ }^{[a]}$ Reaction conditions: 68b (0.50 mmol), 142b (1.50 mmol), [Ru$](10 \mathrm{~mol} \%), \mathrm{KOAc}(10 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{mmol})$, 1,4-dioxane (2.0 mL), $60^{\circ} \mathrm{C}, 20 \mathrm{~h}$, under N_{2}; yield of isolated products. The yield in parentheses was obtained in the absence of KOAc.

Furthermore, the stoichiometric experiments of ruthenacycle 192a with benzyl chloride 142b selectively afforded the corresponding product 143d (Scheme 75a). It is noteworthy that demetalation by the addition of $2,2^{\prime}$-bipyridine and acetic acid was obligatory after the transformation. On the other hand, carboxylate-phosphine ruthenium complex 194 failed to provide the desired product 143d (Scheme 75b).

Scheme 75: Stoichiometric benzylation of ruthenacycle 192a and 194.

3.4.6 Proposed Catalytic Cycle

On the basis of experimental and computational findings, ${ }^{[104]}$ a plausible catalytic cycle commences by carboxylate-assisted ortho-C-H ruthenation to generate complex trans-192a (Scheme 76). Then, single-electron transfer (SET) from the ruthenium(II) complex trans-192a to the benzyl halide 142, generates the ruthenium-(III) intermediate 196. The benzyl radical 197 attacks on the arene moiety at the position para to ruthenium, providing triplet species 198. Next, ligand-to-metal charge-transfer leads to the significantly stabilized singlet ruthenacycle 199.

Finally, rearomatization and ligand exchange delivers the desired meta-benzylated product 143 and regenerates ruthenium(II) complex trans-192a.

Scheme 76: Proposed catalytic cycle for ruthenium-catalyzed remote $\mathrm{C}-\mathrm{H}$ benzylation.

3.5 Ruthenium(II)-Catalyzed Decarboxylative Alkylation

During the last decades, methods of site-selective $\mathrm{C}-\mathrm{H}$ functionalizations have gained enormous attention. ${ }^{[13,90]}$ In particular, ruthenium catalysis allowed for ortho-, ${ }^{[33-34]}$ meta-, ${ }^{[61-62,96,101]}$ and para-selective ${ }^{[87-89]} \mathrm{C}-\mathrm{H}$ alkylations. In contrast, ruthenium-catalyzed $\mathrm{C}-\mathrm{C}$ bond activations remain seldom. ${ }^{[105]}$

Recently, the group of Ackermann reported the first ruthenium(II)-catalyzed decarbamoylative and decarboxylative C-C arylation of aromatic amides and acids. ${ }^{[91]}$ Due to the versatility and robustness of the ruthenium catalyst, Dr. M. Moselage in the Ackermann group further developed the method for decarboxylative alkylations of acid 144a, as shown in Scheme 77. ${ }^{[106]}$ The C-C
alkylation with primary alkyl bromide 136t efficiently delivered the ortho-alkylated product 145at with excellent levels of positional selectivity.

Scheme 77: Ruthenium-catalyzed decarboxylative alkylation of primary alkyl bromide 136t.

3.5.1 Optimization Studies for Decarboxylative meta-C-H Alkylation

In addition, the ruthenium catalysis enabled decarboxylative meta-C-H alkylations of secondary alkyl bromide 136h (Table 18, entry 1). Different carboxylic acid additives were tested, however, MesCO 2 H (31) provided the best result (entries $1-3$). The reaction without the addition of any acid additives still enabled product formation (entry 4), presumably because the acid starting material 144a can act itself as carboxylate ligand. Moreover, the cationic ruthenium complexes were effective in the decarboxylative alkylations (entries 5-6). This indicated that a p-cymene cyclometalated ruthenium complex was likely not involved in the catalytic alkylation. Other ruthenium sources, such as $\mathrm{RuCl}_{3} \cdot \mathrm{nH}_{2} \mathrm{O}(\mathbf{3 0})$ or $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$, failed to provide the formation of the corresponding product 146ah (entries 7-8). Furthermore, no conversion was observed when the reaction was performed without the catalyst (entry 9). It is noteworthy that the reaction in γ-valerolactone, a polar green solvent, did not allow any formation of product 146ah, while the formation of ester via nucleophilic substitution of acid 144a with alkyl bromide 136h was observed (entry 10).

Table 18: Optimization studies for ruthenium-catalyzed decarboxylative meta- $\mathrm{C}-\mathrm{H}$ alkylation. ${ }^{[a]}$

Entry	cat. [Ru]	Additive	146ah (\%)
1	$\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2}$	MesCO2H (31)	$73^{[b]}$
2	$\left[\mathrm{RuCl}_{2}(p \text {-cymene) }]_{2}\right.$	$1-\mathrm{AdCO}_{2} \mathrm{H}$ (12)	$49^{[b]}$
3	$\left[\mathrm{RuCl}_{2}(p \text {-cymene) }]_{2}\right.$	PivOH	56
4	$\left[\mathrm{RuCl}_{2}(p \text {-cymene) }]_{2}\right.$	---	$39^{[b]}$
5	$\left[\mathrm{Ru}(\mathrm{NCt}-\mathrm{Bu})_{6}\right]\left[\mathrm{BF}_{4}\right]_{2}$	31	60
6	$\left[\mathrm{Ru}(\mathrm{NCt}-\mathrm{Bu})_{6}\right]\left[\mathrm{SbF}_{6}\right]_{2}$	31	49
7	$\mathrm{RuCl}_{3} \cdot \mathrm{nH}_{2} \mathrm{O}$ (30)	31	---
8	$\mathrm{Ru}_{3}(\mathrm{CO})_{12}$	31	---
9	---	31	---
10	$\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2}$	31	trace ${ }^{[c]}$

${ }^{[a]}$ Reaction conditions: 144a (0.50 mmol), $136 \mathrm{~h}(1.50 \mathrm{mmol})$, Ru$](5.0 \mathrm{~mol} \%)$, additive ($30 \mathrm{~mol} \%$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.0 mmol), o-xylene (1.0 mL), $120^{\circ} \mathrm{C}, 16 \mathrm{~h}$, under N_{2}; yield of isolated products. ${ }^{[\mathrm{b}]}$ Reactions were performed by Dr . M. Moselage. ${ }^{[c]} \gamma$-Valerolactone (GVL).

3.5.2 Scope of the Ruthenium-Catalyzed Decarboxylative Alkylation

With the optimized conditions for the ruthenium-catalyzed decarboxylative alkylation in hand, the versatility of this remote transformation was explored with different acids 144 and alkyl bromides 136 (Scheme 78). Primary alkyl bromide 136t was efficiently converted to the ortho-alkylated product 145 et. The decarboxylative alkylation of acid 144 f and alkyl bromide 136 t afforded the corresponding product $\mathbf{1 4 5 f t}$ as well as ortho-benzylated adduct $\mathbf{2 0 1}$ as a side-product, which resulted from benzylic hydrogen abstraction of o-xylene solvent. Unprecedentedly, secondary alkyl bromides, such as bromocyclohexane (136j) and exo-2-bromonorbornane (136u), were mainly converted into the ortho-alkylated products 145 aj , 145 fj , and 145 fu . In contrast, cycloheptyl and cyclooctyl bromides 136h and 136k, respectively, were generally transformed into the meta-alkylated products 146. Moreover, the catalytic functionalizations of tertiary alkyl bromides 136b and 136v furnished the corresponding meta-alkylated products $\mathbf{1 4 6 e b} \mathbf{- 1 4 6 g b}$ and 146av with excellent levels of site-selectivity. The connectivity of the thus-obtained products 146eh and 201 was unambiguously confirmed by X-ray crystal structure analyses.

secondary alkyl bromides - ortho

145aj: 40\%

145fj: 33% (o/m = 10:1)

145fu: 54\%
secondary alkyl bromides - meta

146gh: 64\%

146eh: 59\%

$146 \mathrm{eh}^{[\mathrm{b}]}$

146ek: 35\%

146fh: 28\%
tertiary alkyl bromides - meta

146fb: 54\%

146 gb : 54%

146eb: 28\%

146av: 31\%
${ }^{[a]}$ Reaction conditions: 144 (0.50 mmol), 136 (1.50 mmol$),\left[\mathrm{RuCl}_{2}(p \text {-cymene) }]_{2}(2.5 \mathrm{~mol} \%), \mathrm{MesCO}_{2} \mathrm{H}(\mathbf{3 1}\right.$, $30 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{mmol})$, o-xylene $(1.0 \mathrm{~mL}), 120^{\circ} \mathrm{C}, 16 \mathrm{~h}$, under N_{2}; yield of isolated products. ${ }^{[b]} \mathrm{HCl}$ adduct.

Scheme 78: Decarboxylative alkylations of acids 144 with primary, secondary, tertiary alkyl bromides 136.

In addition, the catalyst was modified by the addition of a phosphine ligand and the replacement of PhCMe_{3} as solvent, enabling decarboxylative alkylation with α-bromoesters and amides $\mathbf{1 4 0}$ (Scheme 79). Reactions of methyl 2-bromohexanoate (140a) provided the meta-alkylated product 141g and 202a-202c with good catalytic efficacy. High chemo- and positional-selectivities were observed in these decarboxylative transformations, although the corresponding products 202d202g were obtained in lower yields. Likewise, secondary benzyl chlorides 142 were converted to the desired products $\mathbf{2 0 2} \mathbf{h} \mathbf{- 2 0 2}$ i, albeit in lower yields.

${ }^{[a]}$ Reaction conditions: $144(0.50 \mathrm{mmol}), 140$ or $142(1.50 \mathrm{mmol}),\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2}$
$(2.5 \mathrm{~mol} \%), \mathrm{MesCO}_{2} \mathrm{H}(31,30 \mathrm{~mol} \%), \mathrm{PPh}_{3}(5.0 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{mmol}), \mathrm{PhCMe}_{3}$
$(1.0 \mathrm{~mL}), 120^{\circ} \mathrm{C}, 16 \mathrm{~h}$, under N_{2}; yield of isolated products. ${ }^{[b]} o-X y l e n e .{ }^{[\mathrm{cc}]}$ Without PPh_{3}.

Scheme 79: Site-selective meta-C-H alkylation through decarboxylation.

Under the developed decarboxylative alkylation conditions, some pyrazole acids and some alkyl bromides gave rather unsatisfactory results, which are listed in Figure 11. It is noteworthy that nucleophilic substitutions of acids and alkyl bromides were mostly observed as a side reaction.

Figure 11: Inefficient acid arenes and alkyl bromides in decarboxylative alkylation.

3.5.3 Mechanistic Studies

To unravel the working mode of this ruthenium-catalyzed decarboxylative alkylation, a reaction was conducted in the presence of deuterated co-solvent (Scheme 80). In the presence of alkyl bromide 136h, the alkylated product [D] $]_{n}$-146ah showed deuterium incorporation of 46% and 47% at the ortho positions. Moreover, the proto-decarboxylative compound $[D]_{n}-147 a$ was obtained with deuterium incorporation of 42% at the ortho position.

Scheme 80: Experiment with isotopically labeled co-solvent $\mathrm{CD}_{3} \mathrm{OD}$.

Then, reactions with radical scavengers were performed to explain the $\mathrm{C}-\mathrm{X}$ bond cleavage process (Scheme 81). In the reaction of primary alkyl bromide 136t, the addition of the radical trap TEMPO led to complete inhibition of the transformation (Scheme 81a). Unfortunately, the alkyl-TEMPO product could not be detected. The decarboxylative alkylation of acid 144a with secondary alkyl bromide 136 h gave no formation of the corresponding product 146 ah when the reaction was conducted under air atmosphere (Scheme 81b). Moreover, the addition of radical scavenger BHT reduced the catalytic efficacy. Likewise, primary alkyl bromides, the reaction with bromocycloheptane (136h) was fully inhibited by the addition of TEMPO and the isolated alkyl-TEMPO adduct 156 can be explained by the homolytic $\mathrm{C}-\mathrm{X}$ bond cleavage.

Scheme 81: Decarboxylative alkylation with radical scavengers.

Furthermore, a substantial amount of free p-cymene was detected in the first period of the decarboxylative alkylation, which was conducted by J. Struwe. ${ }^{[106]}$ It again suggested that p-cymene-coordinated ruthenacycle was not involved as an intermediate in the catalysis.

3.6 Ruthenium-Catalyzed C-H Alkylation of Pyrazoles: ortho versus meta

Over the last decades, ruthenium-catalyzed site-selective alkylations on the arene moiety have gained significant momentum. ${ }^{[29 e, 56 b]}$ These studies showed that secondary and tertiary alkyl
bromides were selectively converted to the corresponding meta- ${ }^{[61-62,96]}$ or para-alkylated products under ruthenium catalysis, ${ }^{[87-89]}$ whereas the reactions of primary alkyl bromides afforded the ortho-alkylated products. ${ }^{[33-34]}$ As shown in Scheme 78 in section 3.5, rutheniumcatalyzed decarboxylative alkylation of bromocyclohexane (136j) and exo-2-bromonorbornane (136u) extraordinarily delivered the ortho-alkylated products. After these findings, it became of interest to investigate the mechanism for ruthenium-catalyzed ortho-alkylations.

The site-selectivity of alkylation reactions was first examined through a ruthenium-catalyzed $\mathrm{C}-\mathrm{H}$ functionalization of pyridine 68b and pyrazole 147a (Scheme 82). The catalytic transformation of pyridine 68b with bromocyclohexane (136j) or bromocyclopentane (136i) afforded the corresponding meta-alkylated arenes 203a and 203b, respectively, with excellent levels of positional selectivity (Scheme 82a and b). Conversely, the C-H alkylation of pyrazole 147a occurred at the ortho position (Scheme 82c). Moreover, trace amounts of benzylated adducts were observed by GC-MS spectrometry, when o-xylene was used as the solvent.

Scheme 82: Ruthenium-catalyzed C-H alkylation of pyridine 68b and pyrazole 147a with bromocyclohexane (136j) and bromocyclopentane (136i).

To prevent the side reaction, PhCMe_{3} was employed as the solvent in the catalytic transformation (Scheme 83). The alkylation reaction of bromide 136j gave a $5: 1$ mixture of the corresponding
ortho- and meta-alkylated products 145aj and 146aj, respectively. Likewise, cyclohexyl chloride and iodide were transformed into the ortho-alkylated product 145aj as a major product.

Scheme 83: C-H Alkylation of pyrazole 147a with cyclohexyl halides 136j.

3.6.1 Site-Selectivity in Ruthenium-Catalyzed C-H Alkylation of Pyrazoles

Then, the effect of the ring size of the bromocycloalkanes 136 on the positional selectivity was investigated (Scheme 84a). The catalytic alkylations of unsubstituted phenylpyrazole 147a with bromocyclobutane (136w) and bromocyclohexane (136j) favorably gave the ortho-alkylated products 145aw and 145aj, respectively, while bromocycloheptane (136h) and bromocyclooctane (136k) preferentially delivered the meta-alkylated products 146ah and 146ak. Low site-selectivity was observed in the reaction of bromocyclopentane (136i). In addition, no formation of products was observed in the reactions of pyrazole 147a with bromocyclopropane. Then, the scope of primary alkyl bromide as well as secondary alkyl bromides 136 was explored in the $\mathrm{C}-\mathrm{H}$ alkylations (Scheme 84b). The reactions with neopentyl bromide (136t) or exo-2-bromonorbornane (136u) provided the ortho-alkylated products 145at and 145au, respectively. Acyclic secondary alkyl bromides 136 m and 136 were efficiently converted into the meta-alkylated products 146 am and 146an, respectively, with excellent levels of site-selectivity.

Afterwards, the electronic influence on the site-selectivity was probed by the reactions of the differently substituted pyrazolylarenes 147 with bromocyclohexane (136j) (Scheme 85). Electrondonating groups at the para position afforded a mixture of ortho- and meta-alkylated products 145 and 146, while electron-withdrawing groups exclusively furnished the ortho-alkylated products $\mathbf{1 4 5 g j} \mathbf{- 1 4 5 j j}$. The molecular structure of $\mathbf{1 4 5 j j}$ was established by X-ray crystal structure analysis.

${ }^{[a]}$ Reaction conditions: 147a (0.50 mmol), $136(1.50 \mathrm{mmol}),\left[\mathrm{RuCl}_{2}(p-c y m e n e)\right]_{2}(2.5 \mathrm{~mol} \%)$, $\mathrm{MesCO}_{2} \mathrm{H}(31,30 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{mmol}), \mathrm{PhCMe}_{3}(1.0 \mathrm{~mL}), 120^{\circ} \mathrm{C}, 16 \mathrm{~h}$, under N_{2}; yield of isolated products. ${ }^{[b]}$ The reactions were performed by J. Struwe. ${ }^{[c]}$ The yield of meta-alkylated products 146 was given in the parentheses.

Scheme 84: (a) Positional selectivity of ruthenium-catalyzed C-H alkylation of pyrazole 147a with various bromocycloalkanes 136 and (b) scope of C-H alkylations of phenylpyrazole 147a.

\square	ortho
meta	

145ej: 62\% (25\%) $)^{[b, c]}$
145dj: 68\% (11\%) ${ }^{[c]}$

$145 \mathrm{ij}: 55 \%{ }^{[b]}$

145jj: $65 \%{ }^{[d]}$

145gj: 61\%

[^8]Scheme 85: Electronic effect on the site-selectivity of ruthenium-catalyzed C-H alkylation of pyrazoles 147 with bromocyclohexane $\mathbf{1 3 6 j}$.

In contrast to arylpyrazoles 147a and 147d-147j, the alkylation reactions of 3,5-dimethyl-1-phenyl-1H-pyrazole (147c) with cyclic or acyclic secondary alkyl bromides 136 solely furnished the meta-alkylated products 146 (Scheme 86). Moreover, the reaction of neopentyl bromide (136t) selectively provided the meta-alkylated arene 146ct, albeit in lower yield.

[^9]Scheme 86: meta-C-H Alkylations of pyrazole 147c with alkyl bromides 136.

3.6.2 Mechanistic Studies

To delineate $\mathrm{C}-\mathrm{X}$ bond cleavage event of the ruthenium-catalyzed $\mathrm{C}-\mathrm{H}$ alkylations, the reactions of 1-phenylpyrazole (147a) with 2-bromocyclohexane (136j) in the presence of radical scarvengers were conducted by J. Struwe. ${ }^{[106]}$ The catalytic alkylations were fully inhibited by the addition of TEMPO. Moreover, the lower catalytic efficacy was observed in the reactions with 1,1-diphenylethylene and the isolation of 2-cyclohexyl-1,1-diphenylethylene can be explained by homolytic C-X bond cleavage. The reaction mechanism was further studied by the alkylation reactions with diastereomerically pure electrophilles 136s and 136x (Scheme 87). The reaction
with endo-2-bromobornane (endo-136x) gave the ortho-alkylated product endo-145jx as well as a diastereomeric mixture of the meta-alkylated products 146jx (Scheme 87a). Likewise, the stereochemistry of tert-butylcyclohexyl bromide cis-136s and trans-136s translated directly into the corresponding ortho-alkylated product cis-145js and trans-145js, respectively (Scheme 87b and c. Therefore, these results are strongly supportive of a concerted oxidative addition/reductive elimination mechanism to be operative for the ortho-alkylation. In contrast, the meta-functionlized product 146js was obtained as cis- and trans-isomers from the alkylation reaction with the single diastereomer cis-136s, which is indicative of the formation of an alkyl radical via a single-electron transfer (SET) process. The site-selectivity and stereochemistry of the obtained products 145 and 146 were confirmed by 2D-NMR and X-ray analysis.

To elucidate the working mode of the ruthenium catalysis, the well-defined cationic cyclometalated ruthenium complex 204 was employed as the catalyst in the alkylation reaction (Scheme 88). In the presence of $\mathrm{MesCO}_{2} \mathrm{H}(31)$, the reaction afforded the meta-alkylated product 146cj with excellent level of positional selectivity. While, the reaction in the absence of acid 31 resulted in a mixture of ortho- and meta-functionalized products 145 cj and 146 cj , which is in contrast to the standard reaction condition. Moreover, 62% of free p-cymene was observed in the first period of the catalytic alkylations by gas chromatography analysis, which was conducted by J. Struwe. ${ }^{[106]}$

Scheme 87: C-H Alkylation of pyrazole 147j with diastereomerically pure alkyl bromides 136x and 136s.

Scheme 88: C-H Alkylation catalyzed by the cationic cyclometalated ruthenium complex 204.

3.6.3 Proposed Catalytic Cycle

On the basis of these findings in experiments and computations, ${ }^{[106]}$ a plausible catalytic cycle for the ortho- $\mathrm{C}-\mathrm{H}$ alkylation commences by a carboxylate-assisted $\mathrm{C}-\mathrm{H}$ ruthenation and dissociation of p-cymene, therefore leading to the cyclometalated ruthenium complex 206 (Scheme 89, left) A second molecule of phenylpyrazole 147 coordinates to ruthenacycle 206 and undergoes $\mathrm{C}-\mathrm{H}$ activation to form biscyclometalated complex 207. The oxidative addition of alkyl bromide $\mathbf{1 3 6}$ to complex 207 generates the stable ruthenium(IV) intermediate 208. Finally, reductive elimination followed by ligand exchange delivers the ortho-alkylated product 145 and ruthenacycle 206. In contrast, meta-C-H alkylation occurs through a single-electron transfer (SET) process from ruthenium(II) complex 206 to alkyl bromides 136, generating the ruthenacycle(III) intermediate 210 and a stabilized alkyl radical 211 (Scheme 89, right). Subsequently, the radical 211 preferentially attacks on the arene moiety at the position para to ruthenium, leading to triplet ruthenium intermediate 212. Ligand-to-metal electron transfer and rearomatization furnish ruthenacycle 213, which undergoes protodemetalation and $\mathrm{C}-\mathrm{H}$ activation to afford the meta-alkylated product 146 and regenerate the active ruthenium species 206.

Scheme 89: Proposed catalytic cycle for ortho- and meta-C-H alkylation.

3.7 Photo-Induced Ruthenium-Catalyzed C-H Arylations at Room Temperature

In addition to C-H alkylations, ruthenium-catalyzed direct arylations have become an important role in crop protection, material sciences, and drug discovery. ${ }^{[29 b]}$ The synthesis of biological active compounds, such as Anacetrapib, Valsartan, and Candesartan, through direct C-H arylations was contributed by Ouellet at Merck, ${ }^{[39]}$ Ackermann, ${ }^{[44]}$ and Seki, ${ }^{[107]}$ respectively (Figure 12). In addition, the versatility of ruthenium-catalyzed C-H arylations was reflected by late-stage peptide ${ }^{[108]}$ and nucleoside ${ }^{[109]}$ transformations. In spite of major advances, those reports generally require high reaction temperatures of $100-140^{\circ} \mathrm{C}$.

Anacetrapib
CETP inhibitor

Valsartan antihypertensive

Candesartan
angiotensin receptor blocker

Figure 12: Selected examples of biologically active biaryl compounds.

Photoredox catalysis ${ }^{[110]}$ allows for direct $\mathrm{C}-\mathrm{H}$ functionalizations at room temperature, nonetheless, additional iridium ${ }^{[111]}$ or ruthenium ${ }^{[112]}$ photocatalysts are typically required in these catalytic transformations. To avoid this issue, the group of Ackermann ${ }^{[92]}$ and then Greaney ${ }^{[113]}$ disclosed visible-light-induced ruthenium-catalyzed remote $\mathrm{C}-\mathrm{H}$ alkylations. According to those protocols, an in situ generated cyclometalated ruthenium complex performed as a catalyst for photocatalysis and cross couplings. The versatility of photo-induced ruthenium-catalyzed $\mathrm{C}-\mathrm{H}$ transformations was further examined for direct arylations (Scheme 90). Among different arylating agents, 4-iodoanisole (46a) provided the best results for the photoredox arylations.

Scheme 90: Ruthenium-catalyzed direct C-H arylation under photoredox condition.

3.7.1 Optimization Studies

The reaction conditions for room temperature direct arylations were probed by using various organic solvents and micellar media (Table 19). DMA solvent provided the best catalytic efficacy for direct arylations (entries 1-9). Although the reaction in 1,4-dioxane gave slightly lower
efficiency, 1,4-dioxane was also chosen as the optimal solvents since it is easy to operate. It is noteworthy that the reaction in the dark furnished only a trace amount of product 151a, which proved blue light to be essential in the catalytic transformations (entry 3). Moreover, environmentally benign water and micellar medium afforded the low to moderate yields of the corresponding product 151a (entries 10-18).

Table 19: Reaction media for photo-induced direct arylation. ${ }^{[a]}$

Entry	x equiv	Solvent/Medium	151a (\%)
1	1.5	1,4-dioxane	66 (68)
2	2.0	1,4-dioxane	70 (72)
3	2.0	1,4-dioxane	(3) ${ }^{[b]}$
4	2.0	1,2-DCE	$(22)^{[c]}$
5	2.0	PhMe	(12)
6	1.5	2-MeTHF	(17)
7	1.5	MeCN	(3) ${ }^{[c]}$
8	1.5	DMA	$84(86)^{[c]}$
9	1.5	NMP	$(49)^{[c]}$
10	1.5	TPGS-750-M/ $\mathrm{H}_{2} \mathrm{O}$ (2 wt\%)	(16)
11	1.5	SPGS-550-M/ $\mathrm{H}_{2} \mathrm{O}$ (2 wt\%)	(38)
12	1.5	PTS/ $\mathrm{H}_{2} \mathrm{O}$ (5 wt\%)	(30)
13	1.5	Triton X-100/ $\mathrm{H}_{2} \mathrm{O}$ (10 wt\%)	(54)
14	1.5	Tween 20/ $\mathrm{H}_{2} \mathrm{O}$ (10 wt\%)	(51)
15	1.5	Brij 93/ $\mathrm{H}_{2} \mathrm{O}$ (10 wt\%)	(15)
16	1.5	Brij 35/ $\mathrm{H}_{2} \mathrm{O}$ (10 wt\%)	(26)
17	1.5	SDS/ $\mathrm{H}_{2} \mathrm{O}$ (10 wt\%)	(47)
18	1.5	$\mathrm{H}_{2} \mathrm{O}$	(19)

[^10]Among acetate bases, KOAc in 1,4-dioxane or DMA similarly provided the high catalytic efficacy (Table 20, entries 1-5). While phosphate base failed to give any conversion (entry 6), the combination of carboxylic acid additives and $\mathrm{K}_{2} \mathrm{CO}_{3}$ smoothly delivered the corresponding product 151a (entries 7-10).

Table 20: Screening of bases for photo-induced direct arylation. ${ }^{[a]}$

			 151a	
Entry	Additive	Base	Solvent	151a (\%)
1	---	LiOAc	1,4-dioxane	(9) ${ }^{[b]}$
2	---	NaOAc	1,4-dioxane	66 (68)
3	---	KOAc	1,4-dioxane	$90(92)^{[b]}$
4	---	CsOAc	1,4-dioxane	$(27)^{[b]}$
5	---	KOAc	DMA	87 (88)
6	MesCO2 ${ }_{2}$ (31)	$\mathrm{K}_{3} \mathrm{PO}_{4}$	1,4-dioxane	---
7	31	$\mathrm{K}_{2} \mathrm{CO}_{3}$	1,4-dioxane	91 (93)
8	31	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMA	89 (88)
9	1- $\mathrm{AdCO}_{2} \mathrm{H}$ (12)	$\mathrm{K}_{2} \mathrm{CO}_{3}$	1,4-dioxane	86 (86)
10	PivOH	$\mathrm{K}_{2} \mathrm{CO}_{3}$	1,4-dioxane	93 (93)

${ }^{[a]}$ Reaction conditions: $68 \mathrm{e}(0.50 \mathrm{mmol}), 46 \mathrm{a}(0.75 \mathrm{mmol})$, $\left[\mathrm{RuCl}_{2}(p-c y m e n e)\right]_{2}(5.0 \mathrm{~mol} \%)$, additive ($30 \mathrm{~mol} \%$), base (1.0 mmol), solvent (2.0 mL), $30-35^{\circ} \mathrm{C}, 24 \mathrm{~h}$, under N_{2}, irradiate Blue LEDs; yield of isolated products. The conversion in the parentheses were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy using 1,3,5-trimethoxybenzene as the internal standard. ${ }^{[b]}$ Reactions were performed by M. Waeterschoot.

Afterwards, various ruthenium sources were examined (Table 21). Well-defined carboxylate-coordinated ruthenium complexes were highly effective under photoredox conditions (entries 1-2). Due to their low solubility in 1,4-dioxane, cationic ruthenium complexes provided the unsatisfactory results (entries 3-4), while the reaction in DMA efficiently delivered the desired product 151a in moderate yield (entry 5). Other ruthenium sources, such as $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ and $\mathrm{RuCl}_{3} \cdot \mathrm{nH}_{2} \mathrm{O}(\mathbf{3 0})$, failed to furnish product 151a (entries 6-8).

Table 21: Ruthenium sources for photo-induced direct arylation. ${ }^{[a]}$

 68e		
Entry	cat. [Ru]	151a (\%)
1	[Ru(OAc) ${ }_{2}$ (p-cymene)] (181)	$94(95)^{[b]}$
2	[$\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CMes}\right)_{2}(p$-cymene $\left.)\right]$ (33)	$88(91)^{[b]}$
3	$\left[\mathrm{Ru}(\mathrm{NCt}-\mathrm{Bu})_{6}\right]\left[\mathrm{BF}_{4}\right]_{2}$	(6)
4	$\left[\mathrm{Ru}(\mathrm{NCt} \text { - } \mathrm{Bu})_{6}\right]\left[\mathrm{PF}_{6}\right]_{2}$	(4)
5	$\left[\mathrm{Ru}(\mathrm{NCt} \text { - } \mathrm{Bu})_{6}\right]\left[\mathrm{PF}_{6}\right]_{2}$	$(52)^{[c]}$
6	$\mathrm{Ru}_{3}(\mathrm{CO})_{12}$	----[d]
7	$\mathrm{RuCl}_{3} \cdot \mathrm{nH}_{2} \mathrm{O}$ (30)	----[d]
8	30	--- [d, e]

${ }^{[a]}$ Reaction conditions: 68e (0.50 mmol), 46a (0.75 mmol), [Ru$](10 \mathrm{~mol} \%), \mathrm{MesCO}_{2} \mathrm{H}(30 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{mmol})$, 1,4-dioxane (2.0 mL), $30-35^{\circ} \mathrm{C}, 24 \mathrm{~h}$, under N_{2}, irradiate Blue LEDs; yield of isolated products. The conversion in the parentheses were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy using 1,3,5-trimethoxybenzene as the internal standard. ${ }^{[b]}$ Without $\mathrm{MesCO}_{2} \mathrm{H} .{ }^{[c]}$ DMA $(2.0 \mathrm{~mL}) .{ }^{[d]}$ Reactions were performed by M. Waeterschoot. ${ }^{[e]} \mathrm{NMP}(2.0 \mathrm{~mL})$.

Notably, aryl iodide proved to be the most effective substrate in the photo-induced arylations (Table 22). The reactions of aryl bromide also furnished the desired arylated product 151a with high catalytic efficacy (entries 2-3), while chloride and triflate delivered the moderate yields of the product 151a (entries 4-6). In addition, control experiments verified the essential role of the ruthenium catalyst, carboxylate, base, and blue light, as conducted by M. Waeterschoot. ${ }^{[114]}$

Table 22: Screening of aryl (pseudo)halides for photo-induced direct arylation. ${ }^{[a]}$

	 46a		 151a
Entry	X	Solvent	151a (\%)
1	1	1,4-dioxane	94 (95)
2	Br	1,4-dioxane	68 (69)
3	Br	DMA	75 (75)

Entry	X	Solvent	151a (\%)
4	Cl	1,4-dioxane	(43)
5	Cl	DMA	(6)
6	OTf	1,4 -dioxane	$39^{[\mathrm{b]}}$

${ }^{[a]}$ Reaction conditions: $68 \mathrm{e}(0.50 \mathrm{mmol})$, $\operatorname{ArX} 46 \mathrm{a}(0.75 \mathrm{mmol}),\left[\mathrm{Ru}(\mathrm{OAc})_{2}(p-c y m e n e)\right](10 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{mmol})$, 1,4-dioxane or DMA (2.0 mL), 30-35 ${ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$, under N_{2}, irradiate Blue LEDs; yield of isolated products. The conversion in the parentheses were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy using 1,3,5-trimethoxybenzene as the internal standard. ${ }^{[b]}$ Reactions were performed by A. Casnati.

3.7.2 Scope of Photo-Induced Ruthenium-Catalyzed Direct C-H Arylation

Having the optimized reaction conditions in hand, the robustness of photo-induced ruthenium-catalyzed direct C-H arylation was explored by a variety of aryl iodides 46 (Scheme 91). Electron-donating and electron-withdrawing groups of para- and meta-substituted aryl halides 46 were well tolerated, providing the corresponding arylated products 151 with moderate to high efficacy. It is noteworthy that the ruthenium-catalyzed $\mathrm{C}-\mathrm{H}$ arylation proved broadly applicable, tolerating sensitive functional groups, including halides (151c-151e, 151i), ketone (151k), ester (151f and 151s) and nitrile (151I). Sterically hindered 2-iodoanisole (46m) was also converted to the desired product 151m. Furthermore, the ruthenium(II) catalysis was effective for (NH)-free indole (1510) and carbazole (151t). The connectivity of the thus-obtained products 1510 and 151t was unambiguously confirmed by X-ray crystal structure analyses.

Besides monohaloarenes, the versatility of the room temperature ruthenium catalysis was mirrored by twofold (216a and 216b) and threefold C-H functionalization (216c) (Scheme 92). The molecular structure of product 216b was established by X-ray crystal structure analysis.

[^11]Scheme 91: Visible-light-induced ruthenium-catalyzed direct arylation of pyridine 68e.

216a: 75\%

216c: 86\%
[a] Reaction conditions: 68e (1.10-1.65 mmol), 215 (0.50 mmol), [Ru(OAc) $\left.{ }_{2}(p-c y m e n e)\right]$ (181, $10 \mathrm{~mol} \%$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0-3.0 mmol), 1,4-dioxane (2.0 mL), 30-35 ${ }^{\circ} \mathrm{C}$, 24 h , under N_{2}, Blue LEDs; yield of isolated products.

Scheme 92: Twofold and threefold C-H arylations of pyridine 68 e .

The photo-induced direct arylation was not limited to the assistance of pyridines. Indeed, arenes bearing pyrimidines (151x), transformable imidates (151y), removable pyrazoles (151z and 151aa), and substituted click-triazoles (151ab) were effective in the photoredox direct arylations (Scheme 93). The potential of the visible-light-induced ruthenium-catalyzed direct arylation was highlighted by the late-stage diversification of biorelevant purines 151ac-151ad, sensitive nucleoside 151ae, and nucleotide 151af.

${ }^{[a]}$ Reaction conditions: 68, 123, 139, or 147 (0.50 mmol), 46a (0.75 mmol), [Ru(OAc) ${ }_{2}$ (p-cymene)] (181, $10 \mathrm{~mol} \%$) $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.0 mmol), 1,4-dioxane (2.0 mL), $30-35^{\circ} \mathrm{C}, 24 \mathrm{~h}$, under N_{2}, Blue LEDs; yield of isolated products ${ }^{[b]}$ Reactions were performed by M. Waeterschoot. ${ }^{[c]} \mathbf{4 6 a}(1.50 \mathrm{mmol})$ and $181(20 \mathrm{~mol} \%) .{ }^{[d]}$ DMA.

Scheme 93: Light-induced direct arylation of various heterorenes.

In addition, ketimine $\mathbf{1 3 5 z}$ underwent the direct arylation followed by acidic hydrolysis to deliver the ortho-arylated acetophenone 217, which was unambiguously confirmed by X-ray crystal structure analysis (Scheme 94).

Scheme 94: Photoredox arylation of ketimine $\mathbf{1 3 5 z}$ at room temperature.

Despite of broad applicability of the reaction procedure, some unsuccessful starting materials, such as 2-pyridylindole, 1-naphthol, and 2-pyridylpyrrole, among others, as well as some ineffective aryl halides are listed in Figure 13.

Figure 13: Unsuccessful substrates and aryl halides in the direct arylation.

3.7.3 Mechanistic Studies

Given the versatility of the room temperature photo-indued direct $\mathrm{C}-\mathrm{H}$ arylations, mechanistic experiments were conducted to explain its working mode. A cationic monocyclometalated complex 218 proved to be highly effective in the presence of KOAc (Scheme 95). Moreover, the significant amount of free p-cymene was detected in the first period of the photo-induced transformation, which was found by J. Struwe. ${ }^{[114]}$ These findings are suggestive of a p-cymene-free carboxylate-modified ruthenacycle as a catalytically active intermediate in the photoredox catalysis. Under the visible-light-driven direct arylations conditions, the quantum
yield of $\Phi=0.087$ was observed. ${ }^{[114]}$ Furthermore, an on/off light experiment performed by J. Struwe was indicative of the photoredox arylation not involving a radical chain process. ${ }^{[114]}$

Scheme 95: Light-driven direct arylation catalyzed by cyclometalated ruthenium 218.

3.7.4 Plausible Catalytic Cycle

On the basis of the mechanistic findings in experiments and computations, ${ }^{[114]}$ a plausible catalytic cycle was proposed, which commences by twofold carboxylate-assisted $\mathrm{C}-\mathrm{H}$ ruthenation and dissociation of p-cymene, affording the corresponding biscyclometalated complex 219 (Scheme 96). The coordination of iodoarene to complex 219 leads to ruthenacycle $\mathbf{2 2 0}$, which is excited by blue-light-absorption to form singlet excited species 220*. Relaxation through intersystem crossing (ISC) furnishes a long-lived triplet ruthenacycle 220**. Afterwards, an inner-sphere electron transfer (ISET) to iodoarene generates ruthenium(III) intermediate 221 and a phenyl radical (222), which readily recombine to form stable ruthenium(IV) intermediate 223. Reductive elimination and ligand exchange deliver the arylated product 151 and ruthenium(II) complex 224, which finally undergoes $\mathrm{C}-\mathrm{H}$ bond activation to regenerate the photocatalytically active ruthenium(II) complex 219.

Scheme 96: Plausible catalytic cycle for visible-light-induced ruthenium-catalyzed direct arylation.

4 Summary and Outlook

$\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{C}$ activations have proven to bear great potential for the construction of $\mathrm{C}-\mathrm{C}$ and C-Het bonds, with widespread applications to pharmaceutical, agrochemical chemistry, and material sciences. Ruthenium catalysis offers a powerful tool for site-selective C-H functionalizations. To further promote the catalytic $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{C}$ activation, a mechanistic understanding of the transformations is essential. Within this thesis, several new synthetic strategies were investigated for ruthenium-catalyzed site-selective $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{C}$ functionalization.

First, methods for remote meta-C-H bromination were developed (Scheme 97). ${ }^{[95]}$ Both of homogeneous $\mathrm{RuCl}_{3} \cdot \mathrm{nH}_{2} \mathrm{O}(30)$ and heterogeneous ruthenium catalyst 152 showed comparable catalytic efficacy, furnishing the meta-brominated products 133 with excellent levels of positional selectivity. In addition to pyridine and pyrimidine, biorelevant purines 123 was for the first time employed as a directing group in remote $\mathrm{C}-\mathrm{H}$ functionalization.

Scheme 97: Remote meta-C-H bromination of purine 123 by homogeneous or heterogenous ruthenium catalyst.

The second project focused on remote meta-C-H alkylations of arenes bearing with removable and transformable ketimines 135 (Scheme 98). ${ }^{[96]}$ The alkylation reaction required PhCMe_{3} as the solvent to prevent a side reaction at the benzylic position. Sequential one-pot remote alkylation followed by acid hydrolysis highlighted a broad substrate scope of different arylketimines 135 and a variety of secondary and tertiary alkyl bromides 136. Moreover, the method was tolerant of various functional groups, valuable heterocycles, and structurally complex cholesterol. TMP-NH2 could be recovered by an acid-base extraction. Mechanistic experiments gave strong support for a radical-type mechanism of meta-C-H alkylations. The power of this remote transformation set the stage for operationally simple one-pot protocols for the synthesis of meta-alkylated benzyl amines and the sequential twofold meta-/ortho-C-H activation. Furthermore, the transformation of the obtained alkylated phenones 154 provided a general platform to synthetically useful metasubstituted arenes, including anilines, phenols, acids, and indoles.

Scheme 98: Sequential one-pot ruthenium-catalyzed remote meta-alkylation.

In continuation of ruthenium-catalyzed remote transformations, the cooperation of carboxylate and phosphine ligands in ruthenium catalysis offered a general method for highly selective meta-C-H alkylations of α-bromo carbonyl compounds 140, such as ketones, esters, and amides (Scheme 99a). ${ }^{[101]}$ In contrast to the previous projects, the synergistic ruthenium catalysis was performed at lower reaction temperature. Moreover, the remote protocol was applicable to broad heterocyclic directing groups, such as pyridines, pyrimidines, removable pyrazoles, transformable oxazolines, and biologically relevant purines. In particular, remote alkylation of ketimine led to concise synthesis of an anti-inflammatory drug, Ketoprofen derivatives. Furthermore, the synergistic transformation was highlighted by sequential meta-alkylation/orthoarylation in a user-friendly one-pot fashion, allowing for late-stage fluorescence labelling on purine bases. In addition to site-selectivity, the excellent chemo-selectivity of rutheniumcatalyzed twofold C-H activations was obtained by controlling reaction temperature. Detailed experimental mechanistic studies, including unprecedented EPR studies, were strongly supportive of a reversible C-H ruthenation and a single-electron transfer process, suggesting the formation of an arene-ligand-free cyclometalated ruthenium(III) complex. In contrast, the catalytic alkylation of N-pyrimidyl aniline 125a took place on the arene at the position para to directing group, delivering the para-alkylated product 180a (Scheme 99b). Detailed mechanistic investigations for para-selective transformation should be provided in the future.

(a) meta-selectivity

Scheme 99: Carboxylate-phosphine ruthenium catalysis for remote meta- or para-C-H alkylation.

In addition to meta-alkylation, the synergistic ruthenium catalysis proved to be a general tool for remote meta-benzylation (Scheme 100a). ${ }^{[104]}$ The addition of phosphine ligand exerted an influence on positional selectivity of a ruthenium-catalyzed $\mathrm{C}-\mathrm{H}$ benzylation. In addition to a broad substrate scope, the cooperative ruthenium catalysis set a stage for broadly effective late-stage C-H diversification of biologically relevant molecules and structurally complex drugs, including monosaccharides, nucleotides, triglycerides, amino acids, and peptides, as well as fluorescence label BODIPY (Scheme 100b). Particularly, fully unprotected OH-free monosaccharides proved to be tolerant. Mechanistic insights were suggestive of a reversible, carboxylate-assisted $\mathrm{C}-\mathrm{H}$ ruthenation and a radical-involving mechanism. Moreover, the well-defined ruthenacycle trans192a showed a reversible redox event and proved to be a key intermediate of the remote functionalization.
(a) meta-benzylation

(b) late-stage $\mathrm{C}-\mathrm{H}$ diversifications

Scheme 100: Remote meta-benzylation and late-stage diversification.

The next project focused on a ruthenium-catalyzed decarboxylative C-C activation enabled site-selective new C-C bond formation (Scheme 101). ${ }^{[106]}$ Catalytic reaction of primary alkyl bromides provided the ortho-alkylated products 145 , whereas secondary and tertiary alkyl bromides mostly led to meta-selective alkylation. Surprisingly, the decarboxylative transformations of bromocyclohexane (136j) and exo-2-bromonorbornane (136u) afforded the alkylation at the ortho position, which were unusual for secondary alkyl halides. In case of α-bromo carbonyl compounds and secondary benzyl chlorides, the addition of phosphine ligand was essential for the decarboxylative alkylation. Mechanistic insights including experiments with radical scavengers and the observed benzylation as a side-reaction were supportive of the homolytic C-X bond cleavage of alkyl halide. Additionally, p-cymene-free cyclometalated ruthenium complex was proposed as a catalytically active species. To understand the working mode of C-C activation, more detailed mechanistic insights by experiment and computation should be investigated in the future.

Scheme 101: Ruthenium-catalyzed decarboxylative alkylation of acid 144.

In spite of major breakthrough in C-C activation chemistry, the nucleophilic substitution of carboxylate to alkyl halide forming alkyl ester became the limitation of the decarboxylative transformation.

Owing to decarboxylative ortho-selective alkylation of bromocyclohexane and exo-2-bromonorbornane, positional selectivity in ruthenium-catalyzed $\mathrm{C}-\mathrm{H}$ alkylation of pyrazoles was examined (Scheme 102). ${ }^{[106]}$ Steric hindrance of alkyl halides and directing group of arenes had significant impacts on positional selectivity of the catalytic alkylation. Detailed mechanistic experiments were suggestive of two distinct mechanisms, a concerted oxidative addition/reductive elimination event for the ortho-C-H alkylation, while a SET pathway is proposed for the meta-functionalization. In addition, an arene-ligand-free ruthenacycle was identified as the catalytically active species in the catalysis.

Scheme 102: Site-selective ortho- or meta-alkylation of pyrazoles 147 under ruthenium catalysis.

The last project focused on integrating the chemistry of C-H activation and photoredox for direct arylation under exceedingly mild conditions (Scheme 103). Visible-light-induced rutheniumcatalyzed direct $\mathrm{C}-\mathrm{H}$ arylation at room temperature was evolved without exogenous photocatalysts. ${ }^{[114]}$ The catalytic method was tolerant of various functional groups and valuable heteroaromatic compounds, especially NH -free indole. In addition, twofold and threefold $\mathrm{C}-\mathrm{H}$ activations of di- and triiodoarenes were highly effective. Notably, the power of this photoredox transformation set a stage for late-stage $\mathrm{C}-\mathrm{H}$ arylation of sensitive nucleosides and nucleotides.

Detailed mechanistic investigations by experiments and computations were indicative of the in situ generated cyclometalated ruthenium complex 219 being a photocatalytically active species, which underwent light-induced metal-to-ligand charge-transfer and intersystem crossing to form long-lived triplet species. In addition, calculations were suggestive of an inner-sphere electron transfer process to be a preferable pathway.

Scheme 103: Visible-light-induced ruthenium-catalyzed direct arylation at room temperature.

5 Experimental Part

5.1 General Remarks

All reactions involving moisture- or air-sensitive reagents or products were performed under an atmosphere of nitrogen using pre-dried glassware and standard Schlenk techniques. If not otherwise mentioned yields refer to isolated compounds, estimated to be $>95 \%$ pure as determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$.

Chromatography

Analytical thin layer chromatography (TLC) was performed on Merck, silica gel $60 \mathrm{~F}_{254}$ aluminum sheets. Detection was performed under UV light at 254 or 365 nm or developed by treatment with a potassium permanganate solution followed by careful warming or iodine spray technique. Chromatographic purification of products was accomplished by flash column chromatography on Merck Geduran ${ }^{\circledR}$ silica gel, grade 60 ($0.040-0.063 \mathrm{~mm}, 230-400$ mesh ASTM).

High-performance Liquid Chromatography

Analytical high-performance liquid chromatography (HPLC) for determination of the enantiomeric excess was performed on an Agilent 1260/1290 Infinity equipped with Daicel CHIRALPAK IA-3 or IC-3 ($4.6 \mathrm{~mm} \times 250 \mathrm{~mm}, 3 \mu \mathrm{~m}$ particle size, $1 \mathrm{~mL} / \mathrm{min}$ flow rate). Preparative HPLC from Agilent 1260 Infinity equipped with VP 250/16 Nucleodur 100-10 C18 ec column.

Recycling Preparative HPLC

Recycling preparative HPLC or gel permeation chromatography (GPC) was performed on a Japan Analytical Industries (JAI) LC-92XX II NEXT system equipped with a JAIGEL 2.5HR or JAIGEL 2HH column. Chloroform was used as the solvent.

Cyclic Voltammetry

Cyclic Voltammetry (CV) spectra were measured using a Metrohm Autolab PGSTAT204 workstation using a glassy-carbon disc electrode (3.0 mm diameter, CH Instruments) as a working electrode, a platinum wire (1.0 mm diameter, 99.99%, chempur) as a counter electrode and a
$\mathrm{Ag} / \mathrm{AgCl}$ electrode as a reference electrode. The CV spectra were measured with $n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{M}$ in 1,2-DCE, Sigma-Aldrich) as electrolyte and a sample concentration of 4 mm , at a $100 \mathrm{mV} \cdot \mathrm{s}^{-1}$ scanning rate. The data were analysed with NOVA 2.1.3 software (Metrohm)

Electron Paramagnetic Resonance

Continuous-wave (CW) electron paramagnetic resonance (EPR) spectra were recorded at X-band microwave frequencies (9 GHz) using a Bruker ElexSys E500 spectrometer with a Bruker SuperX CW bridge. The spectrometer was equipped with the Bruker SHQ rectangular microwave cavity (Bruker 4122SHQ) and a helium flow cryostat (Oxford Instruments) for low temperature experiments.

Fluorescence Spectroscopy

Fluorescence excitation and emission data in solution were recorded on a Jasco ${ }^{\circledR}$ FP-8500 spectrofluorometer. The scan speed was adjusted to 500 or $1000 \mathrm{~nm} / \mathrm{min}$. All compounds were measured at a concentration of $1 \mathrm{mg} \cdot \mathrm{L}^{-1}$ in CHCl_{3}.

UV-VIS Spectroscopy

UV-Visible Spectroscopy was performed on a Jasco ${ }^{\circledR} \mathrm{V}$ - 770 spectrophotometer. A baseline in the appropriate solvent was obtained prior to recording spectra.

Gas Chromatography

Gas chromatographic analysis (GC) was performed on an Agilent 7890A GC system or Agilent $7890 B$ GC System equipped with an Agilent HP-5 column ($30 \mathrm{~m}, 0.320 \mathrm{~mm}$ diameter, $0.25 \mu \mathrm{~m}$ film thickness) and a flame-ionization detector (FID) using hydrogen as the carrier gas. Gas chromatography coupled with mass spectrometry (GC-MS) was performed on the same instrument equipped with an Agilent HP-5MS column ($30 \mathrm{~m}, 0.250 \mathrm{~mm}$ diameter, $0.25 \mu \mathrm{~m}$ film thickness) and an Agilent 5875C Triple-Axis-Detector or an Agilent 5977B MSD. Mass spectra were obtained with electron-ionization (EI) at 70 eV in positive ion mode.

Infrared Spectroscopy

Infrared (IR) spectra were recorded on a Bruker Alpha-P FT-IR spectrometer with a diamond ATR probe in the range of $4000-400 \mathrm{~cm}^{-1}$. Liquid samples were measured as film and solid samples neat. Analysis of the spectral data was carried out using Opus 6 software. Absorption is given in wavenumbers $\left(\mathrm{cm}^{-1}\right)$.

Mass Spectrometry

Electron-ionization (EI) and EI high resolution mass spectra (HR-MS) were recorded on a Jeol AccuTOF instrument at 70 eV . Electrospray-ionization (ESI) mass spectra were obtained on Bruker micrOTOF and maXis instruments. All systems are equipped with time-of-flight (TOF) analyzers. Liquid injection field desorption/ionization (LIFDI) mass spectra were measured on a Jeol AccuTOF instrument with a Linden CMS. The ratios of mass to charge (m / z) are indicated and the intensity relative to the base peak $(I=100)$ is given in parenthesis.

Melting Points

Melting points (m.p.) were measured on a Stuart ${ }^{\circledR}$ Melting Point Apparatus SMP3 from Barloworld Scientific. All values are uncorrected.

Nuclear Magnetic Resonance Spectroscopy

Nuclear magnetic resonance (NMR) spectra were recorded on Varian Mercury Plus 300, Inova 500, Inova 600 or Bruker Avance III 300, Avance III HD 300, Avance III 400, Avance III HD 400, Avance Neo 400, Avance III HD 500 spectrometer. All measurements were performed at 298 K. Chemical shifts (δ) are reported in ppm. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were calibrated using the residual proton peak or carbon peak of the deuterated solvent, respectively (see table). For ${ }^{19} \mathrm{~F}$ - and ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectra were referenced using CFCl_{3} and 85% phosphoric acid as external standard, respectively.

Solvent	${ }^{1} \mathrm{H}-\mathrm{NMR}$	${ }^{13} \mathrm{C}-\mathrm{NMR}$
CDCl_{3}	7.26 ppm	77.16 ppm
$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	5.32 ppm	53.84 ppm
DMSO_{6}	2.50 ppm	39.52 ppm
Acetone- d_{6}	2.05 ppm	$29.84,206.26 \mathrm{ppm}$

Solvent	${ }^{1} \mathrm{H}-\mathrm{NMR}$	${ }^{13} \mathrm{C}-\mathrm{NMR}$
PhMe- d_{8}	$2.08,6.97,7.01,7.09 \mathrm{ppm}$	$20.43,125.13,127.96$,
		$128.87,137.48 \mathrm{ppm}$
THF- d_{8}	$1.72,3.58 \mathrm{ppm}$	$25.31,67.21 \mathrm{ppm}$
MeCN-d ${ }_{3}$	1.94 ppm	$1.32,118.26 \mathrm{ppm}$

The observed multiplicities are reported as follows: s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), hept (heptet), m (multiplet) or combinations thereof. The coupling constants J are given in Hertz (Hz). All spectra were analyzed using Mestrelab Research MestReNova v. 10.0.2 software.

Crystal Structure Analysis

X-ray structures were measured on a Bruker D8 Venture four-circle-diffractometer from Bruker AXS GmbH equipped with a Photon II detector purchased from Bruker AXS GmbH and using microfocus $\mathrm{I} \mu \mathrm{S} \mathrm{Cu} / \mathrm{Mo}$ radiation from Incoatec GmbH with HELIOS mirror optics and single-hole collimator from Bruker AXS GmbH.

Vacuum

A pressure of approx. $4 \cdot 10^{-1}$ mbar was measured on the employed rotary vane pump RZ6 from Vacuubrand ${ }^{\circledR}$.

Solvents

All solvents used for work-up and purification were distilled prior to use. Solvents used in reactions involving air- or moisture-sensitive compounds were dried, distilled, and stored under an inert atmosphere of nitrogen or argon according to the following standard procedures.

Solvents purified by solvent purification system (SPS-800) from M. Braun: Dichloromethane, diethyl ether, N, N-dimethylformamide, tetrahydrofuran, toluene.

Solvents dried and distilled over Na using benzophenone as indicator: 1,4-Dioxane, n-hexane, toluene, o-xylene.

Solvents dried and distilled over CaH_{2} : 1,2-Dichloroethane, N, N-dimethylacetamide, N, N-dimethylformamide, dimethylsulfoxide, N -methyl-2-pyrrolidone, pyridine, triethylamine.

Solvents dried over molecular sieve and degassed by freeze-pump-thaw cycles: Acetonitrile (3 Å), acetonitrile- $d_{3}(3 \AA)$, tert-butylbenzene (4 Å), chloroform-d (4 Å), dichloromethane- $d_{2}(4 \AA)$, 2-methyltetrahydrofuran (4 A) , tetrahydrofuran- $d_{8}(4 \AA)$, toluene- $d_{8}(4 \AA)$.

Methanol was dried and distilled over $\mathrm{Mg}(\mathrm{OMe})_{2}$.

Water was degassed before its use by repeated freeze-pump-thaw cycles.

Reagents

Chemicals obtained from commercial sources were used without further purification unless stated otherwise. $\mathrm{K}_{2} \mathrm{CO}_{3}$ was dried at $140{ }^{\circ} \mathrm{C}$ and $4 \cdot 10^{-1}$ mbar for 16 h and stored under an atmosphere of N_{2}.

The following compounds were synthesized according to previously described literature protocols:

2-Arylpyridines 68a, 68d, 68e, 68h, ${ }^{[115]}$ ruthenacycle 98, 218, ${ }^{[46]}$ purines 123a, 123d, ${ }^{[116]}$ 123I-123n, ${ }^{[117]}$ ketimines 135, ${ }^{[118]}$ 1-bromo-1-methylcyclohexane (136a), ${ }^{[119]}$ 2-arylpyrimidines 139a-139c, 139e-139g, ${ }^{[120]}$ 2-(o-tolyl)pyrimidine (139d), ${ }^{[121]}$ 4-butyl-1-(2-methoxyphenyl)-1H-1,2,3-triazole (139m), ${ }^{[41]}$ arylpyrazoles 147a, 147d-147j, ${ }^{[122]}$ 4-bromo-1-phenyl-1H-pyrazole (147b), ${ }^{[123]}$ 3,5-dimethyl-1-phenyl-1H-pyrazole (147c), ${ }^{[124]} \quad\left[\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CAd}\right)_{2}\left(\right.\right.$ p-cymene)] (163), ${ }^{[33]}$ [Ru(OPiv) ${ }_{2}\left(p\right.$-cymene)], ${ }^{[33]}$ benzyl chlorides 142d-142e, 186n, ${ }^{[125]}$ BODIPY 186a, ${ }^{[126]}$ 2,7-diiodo-9Hfluorene (215a), ${ }^{[127]} 3,6$-diiodo-9H-carbazole (215b), ${ }^{[128]}$ and tris(4-iodophenyl)amine (215c). ${ }^{[129]}$ The following chemicals were kindly provided by the persons named below:

Karsten Rauch: $\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2},\left[\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CMes}\right)_{2}(p\right.$-cymene $\left.)\right](33),\left[\mathrm{Ru}(\mathrm{OAc})_{2}(p\right.$-cymene $\left.)\right](181)$.

Dr. David J. Burns: purines 123e-123g.

Dr. Svenja Warratz: $\mathrm{Ru} @ \mathrm{SiO}_{2}(152),\left[\mathrm{RuCl}_{2}\left(\mathrm{PhCMe}_{3}\right)\right]_{2}, \mathrm{Ru}(\mathrm{OAc})_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{Ru}(\mathrm{OAc})_{2}\left(\mathrm{PPh}_{3}\right)_{3}$.

Prof. Dr. Hongjun Ren: 1-(4-bromophenyl)pyrene (165d).

Nikolaos Kaplaneris: 5-chloro-N-phenylpyrimidin-2-amine (125a), 2-(4-methoxyphenyl)-4,5dihydrooxazole (139i), 2-(4-bromophenyl)-4,5-dihydrooxazole (139j), 2-(2-ethoxyphenyl)-4,5-
dihydrooxazole (139k), 2-bromo-1-morpholinopropan-1-one (140e), methyl 2,5dibromopentanoate (140f), 2-bromo- N, N-diethylpropanamide (140h), (tetrahydrofuran-2yl)methyl 2-bromopropanoate (140I), benzoic acid 178.

Dr. Torben Rogge: 2-(2-methoxyphenyl)pyridine (68f), 2-[2-(trifluoromethyl)phenyl]pyridine (68 g).

Dr. Joachim Loup: chiral phosphoramidite ligands.

5.2 General Procedures

5.2.1 General Procedure A: Ruthenium-Catalyzed meta-Selective Bromination

A microwave vial was charged with purine 123 or heteroarene $\mathbf{6 8}, 139,147$ (0.30 mmol), NBS (62, $107 \mathrm{mg}, 0.60 \mathrm{mmol})$ and 152 ($0.14 \mathrm{mmol}[\mathrm{Ru}] / \mathrm{g}, 214 \mathrm{mg}, 10 \mathrm{~mol} \%$) in DMA (0.6 mL) and the mixture was stirred open to air at $80-100^{\circ} \mathrm{C}$. After 20 h , the resulting mixture was filtered and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography (SiO_{2}, n-hexane/EtOAc) yielded meta-brominated products 133 or 153.

5.2.2 General Procedure B: Ruthenium(II)-Catalyzed Remote meta-C-H Alkylations of Ketimines using 1-AdCO2 H as the Ligand

Ketimine 135 (0.50 mmol), $\left[\mathrm{RuCl}_{2}(p-c y m e n e)\right]_{2}(15.3 \mathrm{mg}, 25.0 \mu \mathrm{~mol}, 5.0 \mathrm{~mol} \%), 1-\mathrm{AdCO}_{2} \mathrm{H}(12$, $27.3 \mathrm{mg}, 0.15 \mathrm{mmol}, 30 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{mmol})$ were placed in a pre-dried 25 mL pressure tube. The tube was evacuated and purged with N_{2} for three times. Alkyl bromide $\mathbf{1 3 6}$ $(1.50 \mathrm{mmol})$ and $\mathrm{PhCMe}_{3}(2.0 \mathrm{~mL})$ were then added and the mixture was stirred at $120^{\circ} \mathrm{C}$ for 20 h . At ambient temperature, $\mathrm{HCl}(2 \mathrm{~N}, 3.0 \mathrm{~mL})$ was added, and the resulting mixture was stirred for an additional 3 h , and then extracted with $\mathrm{EtOAc}^{\text {or }} \mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the residue by column chromatography (SiO_{2}, n-hexane/EtOAc or n-pentane/Et ${ }_{2} \mathrm{O}$) yielded phenone 154.

5.2.3 General Procedure C: Ruthenium(II)-Catalyzed Remote meta-C-H Alkylations of Ketimines using Piv-Ile-OH as the Ligand

Ketimine 135 (0.50 mmol), $\left[\mathrm{RuCl}_{2}(p \text {-cymene) }]_{2}(15.3 \mathrm{mg}, 25.0 \mu \mathrm{~mol}, 5.0 \mathrm{~mol} \%\right.$), Piv-Ile-OH (155, $32.3 \mathrm{mg}, 0.15 \mathrm{mmol}, 30 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{mmol})$ were placed in a pre-dried 25 mL pressure tube. The tube was evacuated and purged with N_{2} for three times. Alkyl bromide 136 $(1.50 \mathrm{mmol})$ and $\mathrm{PhCMe}_{3}(2.0 \mathrm{~mL})$ were then added and the mixture was stirred at $120^{\circ} \mathrm{C}$ for 20 h . At ambient temperature, $\mathrm{HCl}(2 \mathrm{~N}, 3.0 \mathrm{~mL})$ was added, and the resulting mixture was stirred for an additional 3 h , and then extracted with $\mathrm{EtOAc}^{\text {or }} \mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the residue by column chromatography $\left(\mathrm{SiO}_{2}, n\right.$-hexane/ EtOAc or n-pentane $\left./ \mathrm{Et}_{2} \mathrm{O}\right)$ yielded phenone 154.

5.2.4 General Procedure D: Ruthenium(II)-Catalyzed Remote meta-C-H Alkylations of Ketimines Followed by Reduction in One-Pot Fashion

Ketimine 135 (0.50 mmol), $\left[\mathrm{RuCl}_{2}(p-c y m e n e)\right]_{2}(15.3 \mathrm{mg}, 25.0 \mu \mathrm{~mol}, 5.0 \mathrm{~mol} \%), 1-\mathrm{AdCO}_{2} \mathrm{H}(12$, $27.3 \mathrm{mg}, 0.15 \mathrm{mmol}, 30 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{mmol})$ were placed in a pre-dried 25 mL pressure tube. The tube was evacuated and purged with N_{2} for three times. Alkyl bromide $\mathbf{1 3 6}$ $(1.50 \mathrm{mmol})$ and $\mathrm{PhCMe}_{3}(2.0 \mathrm{~mL})$ were then added and the mixture was stirred at $120^{\circ} \mathrm{C}$ for 20 h . Then, a solution of ZnCl_{2} in THF ($1.0 \mathrm{M}, 0.50 \mathrm{mmol}$), $\mathrm{NaBH}_{3} \mathrm{CN}(63.5 \mathrm{mg}, 2.00 \mathrm{mmol})$ and MeOH $(1.5 \mathrm{~mL})$ were successively added to the reaction mixture at ambient temperature. The reaction mixture was stirred at ambient temperature for 16 h and then distributed between $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$ and sat. aq. $\mathrm{K}_{2} \mathrm{CO}_{3}(8 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by column chromatography (SiO_{2}, n-hexane/EtOAc) yielded 157.

5.2.5 General Procedure E: Ruthenium(II)-Catalyzed Remote meta-C-H Alkylations using PPh_{3} as the Ligand

Heteroarene 68b, 123a, 139, or 147 (0.50 mmol), [Ru($\left.\mathrm{O}_{2} \mathrm{CAd}\right)_{2}(p$-cymene)] (163, 29.7 mg , $50.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%), \mathrm{PPh}_{3}(13.1 \mathrm{mg}, 50.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{mmol})$ were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} for three times. Alkyl bromide 140 (1.50 mmol) and 1,4-dioxane (2.0 mL) were then added and the mixture was stirred at $40^{\circ} \mathrm{C}$. After 20 h , the resulting mixture was filtered through a pad of silica gel and
washed with EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography (SiO_{2}, n-hexane/EtOAc) yielded meta-alkylated product 141.

5.2.6 General Procedure F: Ruthenium(II)-Catalyzed Sequential meta-Alkylation/orthoArylation

Heteroarene 123a or 147 (0.50 mmol$),\left[\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CAd}\right)_{2}(p\right.$-cymene)] (163, $29.7 \mathrm{mg}, 50.0 \mu \mathrm{~mol}$, $10 \mathrm{~mol} \%), \mathrm{PPh}_{3}(13.1 \mathrm{mg}, 50.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(276 \mathrm{mg}, 2.00 \mathrm{mmol})$ were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} for three times. Alkyl bromide $140(1.50 \mathrm{mmol})$ and 1,4-dioxane $(2.0 \mathrm{~mL})$ were then added and the mixture was stirred at $60^{\circ} \mathrm{C}$. After 20 h , bromoarene 165 (1.00 or 1.50 mmol) was added to the reaction mixture at ambient temperature and the mixture was stirred at $120^{\circ} \mathrm{C}$ for an additional 20 h . The resulting mixture was filtered through a pad of silica gel and washed with EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography $\left(\mathrm{SiO}_{2}\right.$, n-hexane/EtOAc) yielded product 166.

5.2.7 General Procedure G: Ruthenium(II)-Catalyzed Sequential meta-Alkylation/orthoArylation in One-Pot Fashion by Temperature Control

Heteroarene 139 or 147 (0.50 mmol$),\left[\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CAd}\right)_{2}(p\right.$-cymene)] (163, $29.7 \mathrm{mg}, 50.0 \mu \mathrm{~mol}$, $10 \mathrm{~mol} \%), \mathrm{PPh}_{3}(13.1 \mathrm{mg}, 50.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(276 \mathrm{mg}, 2.00 \mathrm{mmol})$ were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} for three times. Alkyl bromide 140a (1.50 mmol), bromoarene $165(1.50 \mathrm{mmol})$, and 1,4-dioxane (2.0 mL) were then added and the mixture was stirred at $40^{\circ} \mathrm{C}$. After 18 h , the reaction mixture was stirred at $120^{\circ} \mathrm{C}$ for an additional 18 h . Afterwards, the resulting mixture was filtered through a pad of silica gel and washed with EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography (SiO_{2}, n-hexane/EtOAc) yielded product 166.

5.2.8 General Procedure H: Photocatalytic Decarboxylation

Carboxylic acid 175 or 178 (0.20 mmol), bis(4-chlorophenyl)disulfide ($5.8 \mathrm{mg}, 20.0 \mu \mathrm{~mol}$, $10 \mathrm{~mol} \%)$, and photocatalyst [Mes-Acr-Me][CIO $\left.{ }_{4}\right](176,1.0-4.8 \mathrm{~mol} \%)$ were placed in 10 mL vial. The vial was evacuated and purged with N_{2} for three times. To the reaction mixture was added 2,6-lutidine ($5 \mu \mathrm{~L}, 40.0 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%$) and 1,2-DCE (8.0 mL). The mixture was degassed for

5 min . The reaction mixture was stirred under blue LED irradiation (8 W). After 16 h , the solvent was removed in vacuo. Purification of the residue by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{n}\right.$ hexane/EtOAc or $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{HOAc}$) yielded product 177 or 179 .

5.2.9 General Procedure I: Ruthenium(II)-Catalyzed meta-C-H Benzylation of Heteroarenes

Heteroarene 68, 139 or purine $123(0.50 \mathrm{mmol}),\left[\mathrm{Ru}(\mathrm{OAc})_{2}(p\right.$-cymene)] (181, $17.7 \mathrm{mg}, 50.0 \mu \mathrm{~mol}$, $10 \mathrm{~mol} \%), \mathrm{PPh}_{3}(13.1 \mathrm{mg}, 50.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{mmol})$ were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. Benzyl chloride $142(1.50 \mathrm{mmol})$ and 1,4-dioxane (2.0 mL) were then added and the mixture was stirred at $60^{\circ} \mathrm{C}$. After 20 h , the resulting mixture was filtered through a pad of silica gel and washed with EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography (SiO_{2}, n-hexane/EtOAc) yielded meta-benzylated product 143 or 185.

5.2.10 General Procedure J: Late-Satge Diversification through Ruthenium(II)-Catalyzed meta-C-H Activation

Purine 123 (0.25 mmol$),\left[\mathrm{Ru}(\mathrm{OAc})_{2}(p-c y m e n e)\right](181,8.9 \mathrm{mg}, 25.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%), \mathrm{PPh}_{3}(6.6 \mathrm{mg}$, $25.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(69 \mathrm{mg}, 1.00 \mathrm{mmol})$ were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. Alkyl halide $186(0.50 \mathrm{mmol})$ and 1,4-dioxane (1.0 mL) were then added and the mixture was stirred at $60^{\circ} \mathrm{C}$. After 20 h , the resulting mixture was filtered through a pad of silica gel and washed with EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography $\left(\mathrm{SiO}_{2}\right.$, n-hexane/EtOAc) yielded meta-alkylated product 187.

5.2.11 General Procedure K: Ruthenium(II)-Catalyzed C-C Alkylation of Acids 144

Carboxylic acid 144 (0.50 mmol), $\left[\mathrm{RuCl}_{2}(p \text {-cymene) }]_{2}(7.7 \mathrm{mg}, 12.5 \mu \mathrm{~mol}, 2.5 \mathrm{~mol} \%), \mathrm{MesCO}_{2} \mathrm{H}\right.$ ($31,24.6 \mathrm{mg}, 0.15 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{mmol})$ were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. Alkyl bromide 136 (1.50 mmol) and o-xylene (1.0 mL) were then added. The Schlenk tube was degassed and filled with N_{2} three times and the mixture was stirred at $120^{\circ} \mathrm{C}$. After 16 h , the resulting mixture was filtered through a pad of silica gel and washed with EtOAc. The filtrate was concentrated in vacuo.

Purification of the residue by column chromatography (SiO_{2}, n-hexane/EtOAc) yielded alkylated product 145 or 146.

5.2.12 General Procedure L: Ruthenium(II)-Catalyzed C-C Alkylation of Acids 144 using PPh_{3} as the Ligand

Carboxylic acid 144 (0.50 mmol), $\left[\mathrm{RuCl}_{2}(p-c y m e n e)\right]_{2}(7.7 \mathrm{mg}, 12.5 \mu \mathrm{~mol}, 2.5 \mathrm{~mol} \%), \mathrm{MesCO}_{2} \mathrm{H}$ ($31,24.6 \mathrm{mg}, 0.15 \mathrm{mmol}, 30 \mathrm{~mol} \%$), $\mathrm{PPh}_{3}\left(6.6 \mathrm{mg}, 25.0 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%\right.$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}$, 1.00 mmol) were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. Alkyl bromide 140 or benzyl chloride $142(1.50 \mathrm{mmol})$ and $\mathrm{PhCMe}_{3}(1.0 \mathrm{~mL})$ were then added. The Schlenk tube was degassed and filled with N_{2} three times and the mixture was stirred at $120^{\circ} \mathrm{C}$. After 16 h , the resulting mixture was filtered through a pad of silica gel and washed with EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography (SiO_{2}, n-hexane/EtOAc) yielded meta-alkylated product $\mathbf{1 4 1 \mathrm { g }}$ or 202.

5.2.13 General Procedure M: Ruthenium-Catalyzed C-H Alkylations of Pyrazoles

Pyrazole 147 (0.50 mmol), $\left[\mathrm{RuCl}_{2}(p-\text { cymene })\right]_{2}(7.7 \mathrm{mg}, 12.5 \mu \mathrm{~mol}, 2.5 \mathrm{~mol} \%), \mathrm{MesCO}_{2} \mathrm{H}$ (31, $24.6 \mathrm{mg}, 0.15 \mathrm{mmol}, 30 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{mmol})$ were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. Alkyl bromide 136 (0.75$1.50 \mathrm{mmol})$ and $\mathrm{PhCMe}_{3}(1.0 \mathrm{~mL})$ were then added and the mixture was stirred at $120^{\circ} \mathrm{C}$. After 16 h , the resulting mixture was filtered through a pad of silica gel and washed with EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography $\left(\mathrm{SiO}_{2}\right.$, n-hexane/EtOAc) yielded alkylated product 145 or 146.

5.2.14 General Procedure N: Photo-Induced Ruthenium-Catalyzed C-H Arylations at Room Temperature

Heteroarene 68, 123, 139, or 147 (0.50 mmol), [Ru(OAc) ${ }_{2}(p$-cymene)] (181, $17.7 \mathrm{mg}, 50.0 \mu \mathrm{~mol}$, $10 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{mmol})$ were placed in a 10 mL vial. The vial was capped with a septum and wrapped with parafilm. The vial was evacuated and purged with N_{2} three times. Aryl iodide $46(0.75 \mathrm{mmol})$ and 1,4-dioxane $(2.0 \mathrm{~mL})$ were then added and the mixture was stirred under visible light irradiation ($2 \times$ Kessil A360N, temperature was maintained between $30^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$). After 24 h , the resulting mixture was filtered through a pad of silica gel and washed with

EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography (SiO_{2}, n-hexane/EtOAc) yielded ortho-arylated product 151.

5.3 Experimental Procedures and Analytical Data

5.3.1 Ruthenium-Catalyzed meta-Selective Bromination

6-(3-Bromophenyl)-9-iso-propyl-9H-purine (133a)

The general procedure A was followed using purine 123a ($59.6 \mathrm{mg}, 0.25 \mathrm{mmol}$) at $80^{\circ} \mathrm{C}$. After 20 h , purification by column chromatography (n-hexane/EtOAc 3:1) yielded 133a ($49.6 \mathrm{mg}, 63 \%$) as a white soild.
$i-\operatorname{Pr} \quad{ }^{\prime} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.99(\mathrm{~s}, 1 \mathrm{H}), 8.94$ (ddd, $\left.J=2.1,1.6,0.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.78$ (ddd, J = 7.9, 1.6, 1.1 Hz, 1H), $8.18(s, 1 H), 7.62(d d d, J=7.9,2.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{ddd}, J=7.9,7.9$, $0.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.97$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=152.8\left(\mathrm{C}_{\mathrm{q}}\right), 152.2\left(\mathrm{C}_{\mathrm{q}}\right), 151.9(\mathrm{CH}), 142.3(\mathrm{CH}), 137.7\left(\mathrm{C}_{\mathrm{q}}\right), 133.7(\mathrm{CH})$, $132.3(\mathrm{CH}), 131.5\left(\mathrm{C}_{q}\right), 130.1(\mathrm{CH}), 128.4(\mathrm{CH}), 122.8\left(\mathrm{C}_{\mathrm{q}}\right), 47.3(\mathrm{CH}), 22.5\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2977,1576,1553,1447,1324,1217,786,736,698,646 \mathrm{~cm}^{-1}$.
m.p.: $120-121^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 318 (68) $\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)\right]^{+}, 316$ (69) $\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)\right]^{+}, 276$ (92) $\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)-i-\mathrm{Pr}\right]^{+}$, 274 (94) [M($\left.\left.{ }^{79} \mathrm{Br}\right)-i-\mathrm{Pr}\right]^{+}, 195$ (100) [M-i-Pr-Br] ${ }^{+}, 141$ (27), 44 (48).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{14}{ }^{79} \mathrm{BrN}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 317.0396$, found 317.0399.

6-(3-Bromophenyl)-9-n-butyl-9H-purine (133b)

The general procedure A was followed using purine 123b ($75.7 \mathrm{mg}, 0.30 \mathrm{mmol}$) at $80^{\circ} \mathrm{C}$. After 20 h , purification by column chromatography (n-hexane/EtOAc 3:1) yielded 133b ($67.7 \mathrm{mg}, 68 \%$) as a white soild.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.02(\mathrm{~s}, 1 \mathrm{H}), 8.97(\mathrm{dd}, J=2.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.80$ (ddd, $J=7.9,1.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{ddd}, J=8.0,2.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=8.0,7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.32(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.33(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=152.9\left(\mathrm{C}_{\mathrm{q}}\right), 152.7\left(\mathrm{C}_{\mathrm{q}}\right), 152.2(\mathrm{CH}), 144.6(\mathrm{CH}), 137.7\left(\mathrm{C}_{\mathrm{q}}\right), 133.8(\mathrm{CH})$, $132.4(\mathrm{CH}), 131.1\left(\mathrm{C}_{\mathrm{q}}\right), 130.1(\mathrm{CH}), 128.5(\mathrm{CH}), 122.9\left(\mathrm{C}_{\mathrm{q}}\right), 43.8\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 19.9\left(\mathrm{CH}_{2}\right), 13.5$ $\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2957,1579,1450,1216,869,580,693,580,498,420 \mathrm{~cm}^{-1}$.
m.p.: $70-71^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 332 (13) $\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)\right]^{+}, 330(75)\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)\right]^{+}, 289$ (100), 274 (42), 208 (26), 195 (77), 168 (28), 141 (33).

HR-MS (EI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{15}{ }^{79} \mathrm{BrN}_{4}{ }^{+}[\mathrm{M}]^{+} 330.0475$, found 330.0476.

6-(3-Bromophenyl)-9-phenyl-9H-purine (133c)

The general procedure A was followed using purine $\mathbf{1 2 3 c}(81.7 \mathrm{mg}, 0.30 \mathrm{mmol})$ at $100^{\circ} \mathrm{C}$. After 20 h , purification by column chromatography (n-hexane/EtOAc $4: 1$) yielded 133 c ($52.4 \mathrm{mg}, 50 \%$) as a white soild.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.08(\mathrm{~s}, 1 \mathrm{H}), 9.01$ (ddd, $\left.J=2.1,1.6,0.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.84$ (ddd, $J=7.9$, $1.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~s}, 1 \mathrm{H}), 7.77-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{ddd}, J=8.0,2.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.59(\mathrm{~m}$, 2H), 7.53-7.48 (m, 1H), 7.46 (ddd, $J=8.0,7.9,0.4 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}-$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=153.6\left(\mathrm{C}_{\mathrm{q}}\right), 153.0(\mathrm{CH}), 152.4\left(\mathrm{C}_{\mathrm{q}}\right), 143.6(\mathrm{CH}), 137.5\left(\mathrm{C}_{\mathrm{q}}\right), 134.3\left(\mathrm{C}_{\mathrm{q}}\right)$, $134.0(\mathrm{CH}), 132.5(\mathrm{CH}), 131.5\left(\mathrm{C}_{q}\right), 130.2(\mathrm{CH}), 130.0(\mathrm{CH}), 128.6$ (CH), $128.5(\mathrm{CH}), 123.7(\mathrm{CH}), 122.9$ (C_{q}).

IR (ATR): $\tilde{v}=3050,1571,1507,1328,1225,1192,928,755,686,645 \mathrm{~cm}^{-1}$.
m.p.: $180-181{ }^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 352 (97) $\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)\right]^{+}, 350(100)\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)\right]^{+}, 323$ (17), 271 (42) [M$\mathrm{Br}]^{+}, 244$ (16), 141 (19), 77 (59), 51 (28).

HR-MS (EI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{11}{ }^{79} \mathrm{BrN}_{4}{ }^{+}[\mathrm{M}]^{+} 350.0162$, found 350.0161.

6-(3-Bromophenyl)-9-(4-fluorobenzyl)-9H-purine (133e)

The general procedure A was followed using purine 123e $(91.3 \mathrm{mg}$, 0.30 mmol) at $80^{\circ} \mathrm{C}$. After 20 h , purification by column chromatography (n-hexane/EtOAc 3:1) yielded 133 e ($74.1 \mathrm{mg}, 64 \%$) as a white soild.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.03(\mathrm{~s}, 1 \mathrm{H}), 8.96(\mathrm{dd}, \mathrm{J}=1.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.79$ (ddd, $J=7.9,1.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $8.09(\mathrm{~s}, 1 \mathrm{H}), 7.63$ (ddd, $J=8.0,1.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.41 (dd, $J=8.0$, $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.32 (dd, $J=8.8,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.04$ (dd, $J=8.8,8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.43$ (s, 2H).
${ }^{13} \mathrm{C}-$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=162.7\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=248 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 153.0\left(\mathrm{C}_{\mathrm{q}}\right), 152.5\left(\mathrm{C}_{\mathrm{q}}\right), 152.5(\mathrm{CH}), 144.2$ $(\mathrm{CH}), 137.5\left(\mathrm{C}_{\mathrm{q}}\right), 133.8(\mathrm{CH}), 132.4(\mathrm{CH}), 130.9\left(\mathrm{C}_{\mathrm{q}}\right), 130.9\left(\mathrm{C}_{\mathrm{q}}\right), 130.1(\mathrm{CH}), 129.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}\right.$, $\mathrm{CH}), 128.4(\mathrm{CH}), 122.8\left(\mathrm{C}_{\mathrm{q}}\right), 116.1\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=22 \mathrm{~Hz}, \mathrm{CH}\right), 46.6\left(\mathrm{CH}_{2}\right)$.
${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-112.8(\mathrm{tt}, \mathrm{J}=8.9,5.2 \mathrm{~Hz})$.

IR (ATR): $\tilde{v}=3064,1577,1552,1506,1224,1202,765,733,697,641 \mathrm{~cm}^{-1}$.
m.p.: $155-156{ }^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): $384(36)\left[M\left({ }^{81} \mathrm{Br}\right)\right]^{+}, 383(38)\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)-\mathrm{H}\right]^{+}, 382(36)\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)\right]^{+}, 381$ (32) $\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)-\mathrm{H}\right]^{+}, 207$ (91), 109 (100), 44 (59).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{13}{ }^{79} \mathrm{BrFN}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 383.0302$, found 383.0300.

6-(3-Bromophenyl)-9-(4-chlorobenzyl)-9H-purine (133f)

The general procedure A was followed using purine 123 f (96.3 mg , 0.30 mmol) at $80^{\circ} \mathrm{C}$. After 20 h , purification by column chromatography (n-hexane/EtOAc 3:1) yielded $133 \mathrm{f}(76.2 \mathrm{mg}, 64 \%$) as a white soild.
${ }^{1} \mathrm{H}-$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.03(\mathrm{~s}, 1 \mathrm{H}), 8.96(\mathrm{dd}, \mathrm{J}=1.9,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 8.79 (ddd, $J=7.9,1.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $8.10(\mathrm{~s}, 1 \mathrm{H}), 7.64$ (ddd, $J=8.0,1.9,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42(\mathrm{dd}, \mathrm{J}=8.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33\left(\mathrm{~d}_{\mathrm{AB}}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.26\left(\mathrm{~d}_{\mathrm{AB}}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.43(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=153.1\left(\mathrm{C}_{q}\right), 152.5\left(\mathrm{C}_{\mathrm{q}}\right), 152.5(\mathrm{CH}), 144.2(\mathrm{CH}), 137.5\left(\mathrm{C}_{q}\right), 134.6\left(\mathrm{C}_{q}\right)$, 133.9 (CH), 133.5 (C_{q}), 132.4 (CH), 130.9 ($\left.\mathrm{C}_{\mathrm{q}}\right), 130.1$ (CH), 129.3 (CH), 129.1 (CH), 128.4 (CH), 122.8 $\left(\mathrm{C}_{\mathrm{q}}\right), 46.6\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=3058,2926,1578,1495,1324,1213,1091,764,695,638 \mathrm{~cm}^{-1}$.
m.p.: $166-167{ }^{\circ} \mathrm{C}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{13}{ }^{79} \mathrm{Br}^{35} \mathrm{ClN}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 399.0007$, found 398.9993.

6-(3-Bromophenyl)-9-[2-(trifluoromethyl)benzyl]-9H-purine (133g)

The general procedure A was followed using purine 123g (106 mg, 0.30 mmol$)$ at $80^{\circ} \mathrm{C}$. After 20 h , purification by column chromatography (n-hexane/EtOAc $4: 1$) yielded 133 g ($86.4 \mathrm{mg}, 66 \%$) as a white soild.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.05(\mathrm{~s}, 1 \mathrm{H}), 8.98(\mathrm{dd}, J=1.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.80$ (ddd, $J=7.9,1.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $8.09(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64$ (ddd, $J=8.0,1.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{dd}, J=8.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=7.5$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=153.3\left(\mathrm{C}_{\mathrm{q}}\right), 152.9\left(\mathrm{C}_{\mathrm{q}}\right), 152.7(\mathrm{CH}), 144.5(\mathrm{CH}), 137.5\left(\mathrm{C}_{\mathrm{q}}\right), 133.9(\mathrm{CH})$, $133.5\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 132.7\left(\mathrm{q},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=1 \mathrm{~Hz}, \mathrm{CH}\right), 132.5(\mathrm{CH}), 130.8\left(\mathrm{C}_{\mathrm{q}}\right), 130.1(\mathrm{CH}), 129.7(\mathrm{CH})$, $128.7(\mathrm{CH}), 128.5(\mathrm{CH}), 128.1\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=31 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 126.5\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=6 \mathrm{~Hz}, \mathrm{CH}\right), 124.2\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=274 \mathrm{~Hz}\right.$, $\left.C_{q}\right), 122.9\left(C_{q}\right), 43.5\left(q,{ }^{4} J_{C-F}=3 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$.
${ }^{19} \mathrm{~F}$-NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-59.2(\mathrm{~s})$.
IR (ATR): $\tilde{v}=3086,1578,1555,1309,1164,1100,1033,774,730,633 \mathrm{~cm}^{-1}$.
m.p.: $145-146{ }^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): $434(17)\left[M\left({ }^{81} \mathrm{Br}\right)\right]^{+}, 433(15)\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)-\mathrm{H}\right]^{+}, 432(18)\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)\right]^{+}, 431$ (13) $\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)-\mathrm{H}\right]^{+}, 365(57)\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)-\mathrm{CF}_{3}\right]^{+}, 363(51)\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)-\mathrm{CF}_{3}\right]^{+}, 207$ (100), 159 (31), 44 (63).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{13}{ }^{79} \mathrm{BrF}_{3} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}$433.0270, found 433.0266.

2-(3-Bromo-4-methylphenyl)pyrimidine (153a)

 The general procedure A was followed using 2-(p-tolyl)pyrimidine (139b, 51.1 mg , 0.30 mmol) at $80^{\circ} \mathrm{C}$. After 20 h , purification by column chromatography (n-hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$) yielded 153a ($60.1 \mathrm{mg}, 80 \%$) as a white soild.
$J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=163.3\left(\mathrm{C}_{q}\right), 157.1(\mathrm{CH}), 140.5\left(\mathrm{C}_{q}\right), 136.9\left(\mathrm{C}_{q}\right), 131.9(\mathrm{CH}), 130.8(\mathrm{CH})$, $126.8(\mathrm{CH}), 125.2\left(\mathrm{C}_{\mathrm{q}}\right), 119.2(\mathrm{CH}), 23.0\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3069,2971,1566,1541,1409,1374,1032,795,676 \mathrm{~cm}^{-1}$.
m.p.: $69-70^{\circ} \mathrm{C}$.

MS (ESI) m / z (relative intensity): 251 (98) $\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{H}\right]^{+}, 249(100)\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{10}{ }^{79} \mathrm{BrN}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 249.0022$, found 249.0025.

The spectral data are in accordance with those reported in the literature. ${ }^{\text {[78] }}$

2-(3-Bromo-4-fluorophenyl)pyrimidine (153b)

The general procedure A was followed using 2-(4-fluorophenyl)pyrimidine (139c, $52.3 \mathrm{mg}, 0.30 \mathrm{mmol}$) at $100^{\circ} \mathrm{C}$. After 20 h , purification by column chromatography (n-hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 7: 2: 1$) yielded 153 b ($21.3 \mathrm{mg}, 28 \%$) as a white soild.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.79(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.70(\mathrm{dd}, J=6.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{ddd}, J=$ 8.7, 4.9, 2.2 Hz, 1H), $7.22(\mathrm{dd}, \mathrm{J}=8.7,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, \mathrm{J}=4.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=162.5\left(\mathrm{~d},{ }^{5} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=1 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 160.7\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=251 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 157.2(\mathrm{CH})$, $135.0\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 133.5(\mathrm{CH}), 128.9\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}, \mathrm{CH}\right), 119.3(\mathrm{CH}), 116.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}\right.$, $C H), 109.4\left(d,{ }^{2} J_{C-F}=21 \mathrm{~Hz}, C_{q}\right)$.
${ }^{19}$ F-NMR (282 MHz, CDCl 3): $\delta=-104.7$ (ddd, $\left.J=8.3,6.9,4.9 \mathrm{~Hz}\right)$.

IR (ATR): $\tilde{v}=2927,1557,1489,1408,1315,1242,810,796,675,601 \mathrm{~cm}^{-1}$.
m.p.: $112-114{ }^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 255 (9) $\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{H}\right]^{+}, 254$ (96) $\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)\right]^{+}, 253$ (16) $\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}$, 252 (100) [$\left.\mathrm{M}\left({ }^{79} \mathrm{Br}\right)\right]^{+}, 201(56), 199(57), 173$ (47) [M-Br] ${ }^{+}, 120$ (40), 100 (22), 91 (13), 69 (11).

HR-MS (EI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{6}{ }^{79} \mathrm{BrFN}_{2}{ }^{+}[\mathrm{M}]^{+}$251.9693, found 251.9693.

2-(3-Bromo-2-methylphenyl)pyrimidine (153c)

The general procedure A was followed using 2-(o-tolyl)pyrimidine (139d, 51.1 mg , 0.30 mmol) at $80^{\circ} \mathrm{C}$. After 20 h , purification by column chromatography (n-hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ EtOAc $7: 2: 1$) yielded $153 \mathrm{c}(46.4 \mathrm{mg}, 62 \%$) as a colorless oil and dibrominated product $153 \mathbf{c}^{\prime}$ ($12.9 \mathrm{mg}, 13 \%$) as a white soild.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.85(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=$ $7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=7.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.4\left(\mathrm{C}_{\mathrm{q}}\right), 157.0(\mathrm{CH}), 140.5\left(\mathrm{C}_{\mathrm{q}}\right), 136.5\left(\mathrm{C}_{\mathrm{q}}\right), 133.5(\mathrm{CH}), 129.5(\mathrm{CH})$, $126.9(\mathrm{CH}), 126.8\left(\mathrm{C}_{\mathrm{q}}\right), 118.9(\mathrm{CH}), 20.6\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3038,1567,1551,1408,1001,777,672 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): $250(71)\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)\right]^{+}, 249(100)\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)-\mathrm{H}\right]^{+}, 248(74)\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)\right]^{+}, 247$ (95) $\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)-\mathrm{H}\right]^{+}, 168(93)[\mathrm{M}-\mathrm{HBr}]^{+}, 141$ (10), 115 (26), 89 (30), 63 (17).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{10}{ }^{79} \mathrm{BrN}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$249.0022, found 249.0026.
The spectral data are in accordance with those reported in the literature. ${ }^{[78]}$

2-(3,6-Dibromo-2-methylphenyl)pyrimidine (153c')

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.91(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (dq, $J=8.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=166.9\left(\mathrm{C}_{\mathrm{q}}\right), 157.4(\mathrm{CH}), 141.3\left(\mathrm{C}_{\mathrm{q}}\right), 137.7\left(\mathrm{C}_{\mathrm{q}}\right), 133.6$ $(\mathrm{CH}), 131.1(\mathrm{CH}), 124.6\left(\mathrm{C}_{q}\right), 120.9\left(\mathrm{C}_{q}\right), 119.7(\mathrm{CH}), 21.1\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2924,1559,1423,1386,1005,813,579 \mathrm{~cm}^{-1}$.
m.p.: $71-72{ }^{\circ} \mathrm{C}$.

MS (ESI) m / z (relative intensity): 331 (48) $\left[\mathrm{M}\left({ }^{81} \mathrm{Br}{ }^{81} \mathrm{Br}\right)+\mathrm{H}\right]^{+}, 329$ (100) $\left[\mathrm{M}\left({ }^{81} \mathrm{Br}{ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}, 327$ (49) $\left[\mathrm{M}\left({ }^{79} \mathrm{Br}^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{9}{ }^{79} \mathrm{Br}^{81} \mathrm{BrN}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$328.9107, found 328.9111.

4-Bromo-1-(3-bromophenyl)-1H-pyrazole (153d)

The general procedure A was followed using 4-bromo-1-phenyl-1H-pyrazole (147b, $67.0 \mathrm{mg}, 0.30 \mathrm{mmol}$) at $100^{\circ} \mathrm{C}$. After 20 h , purification by column chromatography (n-hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$) yielded $153 \mathrm{~d}(21.1 \mathrm{mg}, 23 \%$) as a white soild.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.92(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dd}, J=2.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67$
(d, $J=0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.57 (ddd, $J=8.2,2.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.44 (ddd, $J=8.1,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.32 (dd, $J=8.2,8.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=141.9(\mathrm{CH}), 140.5\left(\mathrm{C}_{\mathrm{q}}\right), 130.7(\mathrm{CH}), 129.9(\mathrm{CH}), 126.9(\mathrm{CH}), 123.2$ $\left(C_{q}\right), 122.1(C H), 117.2(C H), 96.2\left(C_{q}\right)$.

IR (ATR): $\tilde{v}=3122,1579,1484,1430,1378,1034,954,841,774,671 \mathrm{~cm}^{-1}$.
m.p.: $63-64{ }^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 305 (5), $304(50)\left[\mathrm{M}\left({ }^{81} \mathrm{Br}{ }^{81} \mathrm{Br}\right)\right]^{+}, 303(10), 302(100)\left[\mathrm{M}\left({ }^{81} \mathrm{Br}{ }^{79} \mathrm{Br}\right)\right]^{+}$, 301 (5), 300 (51) [M($\left.\left.{ }^{79} \mathrm{Br}^{79} \mathrm{Br}\right)\right]^{+}, 223$ (7) [M($\left.\left.{ }^{81} \mathrm{Br}\right)-\mathrm{Br}\right]^{+}, 221$ (8) [M($\left.\left.{ }^{79} \mathrm{Br}\right)-\mathrm{Br}\right]^{+}, 196$ (16), 194 (14), 157 (18), 155 (18), 142 (45) [$\mathrm{M}-\mathrm{Br}-\mathrm{Br}]^{+}, 115$ (17), 75 (20), 63 (12).

HR-MS (EI): m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{6}{ }^{79} \mathrm{Br}_{2} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+}$299.8892, found 299.8897 .

The spectral data are in accordance with those reported in the literature. ${ }^{[78]}$

5.3.2 Ruthenium(II)-Catalyzed Remote meta-C-H Alkylation of Ketimines

5.3.2.1 Characterization Data for 154

1-[4-Fluoro-3-(1-methylcyclohexyl)phenyl]ethan-1-one (154aa)

The general procedure B was followed using ketimine 135a (152 mg, 0.50 mmol) and 1-bromo-1-methylcyclohexane (136a, $266 \mathrm{mg}, 1.50 \mathrm{mmol})$. After 20 h , purification by column chromatography (n-pentane/Et ${ }_{2} \mathrm{O} 50: 1$) yielded 154aa ($85.1 \mathrm{mg}, 73 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.99(\mathrm{dd}, \mathrm{J}=8.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{ddd}, J=8.4,4.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ (dd, J = 12.4, 8.4 Hz, 1H), $2.57(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.33(\mathrm{~m}, 4 \mathrm{H})$, $1.29(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=196.9\left(\mathrm{C}_{\mathrm{q}}\right), 165.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=257 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 136.8\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=12 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $133.2\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 129.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}, \mathrm{CH}\right), 128.3\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=11 \mathrm{~Hz}, \mathrm{CH}\right), 116.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=26 \mathrm{~Hz}\right.$, $\mathrm{CH}), 37.9\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 37.0\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{3}\right), 26.4\left(\mathrm{CH}_{3}\right), 26.2\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right)$.
${ }^{19}$ F-NMR (376 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=-101.0(\mathrm{ddd}, J=12.7,7.9,4.6 \mathrm{~Hz})$.

IR (ATR): $\tilde{v}=2953,2870,1687,1590,1340,1280,1067,830 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 234 (24) [M] ${ }^{+}, 219$ (60) [M-Me] ${ }^{+}, 178$ (35), 163 (62).

HR-MS (EI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{FO}^{+}[\mathrm{M}]^{+}$234.1414, found 234.1420.

1-[3-(tert-Butyl)phenyl]ethan-1-one (154bb)

The general procedure B was followed using ketimine 135b (143 mg, 0.50 mmol) and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 50: 1$) yielded 154 bb ($62.6 \mathrm{mg}, 71 \%$) as a colorless oil.

The general procedure C was followed using ketimine 135 ($143 \mathrm{mg}, 0.50 \mathrm{mmol}$) and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol})$. After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 50: 1$) yielded $154 \mathrm{bb}(48.0 \mathrm{mg}, 54 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.01$ (ddd, $\left.J=2.1,1.8,0.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.76$ (ddd, $J=7.8,1.8,1.1 \mathrm{~Hz}$, 1 H), 7.61 (ddd, $J=7.8,2.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.40 (ddd, $J=7.8,7.8,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=198.3\left(\mathrm{C}_{\mathrm{q}}\right), 151.6\left(\mathrm{C}_{\mathrm{q}}\right), 136.9\left(\mathrm{C}_{\mathrm{q}}\right), 130.2(\mathrm{CH}), 128.2(\mathrm{CH}), 125.7(\mathrm{CH})$, $124.8(\mathrm{CH}), 34.9\left(\mathrm{C}_{\mathrm{q}}\right), 31.3\left(\mathrm{CH}_{3}\right), 26.8\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2962,2869,1682,1581,1460,1353,1283,967,795 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 176 (21) [M] ${ }^{+}, 161$ (100) $[\mathrm{M}-\mathrm{Me}]^{+}, 133$ (23) [M-Ac] ${ }^{+}, 115$ (8).
HR-MS (EI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}^{+}[\mathrm{M}]^{+}$176.1196, found 176.1203.
The spectral data are in accordance with those reported in the literature. ${ }^{[130]}$

1-[3-(tert-Butyl)-4-fluorophenyl]ethan-1-one (154ab)

The general procedure B was followed using ketimine 135a ($152 \mathrm{mg}, 0.50 \mathrm{mmol}$) and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 50: 1$) yielded 154 ab ($72.0 \mathrm{mg}, 74 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.97(\mathrm{dd}, \mathrm{J}=8.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{ddd}, \mathrm{J}=8.4,4.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ (dd, J = 12.0, 8.4 Hz, 1H), $2.59(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=196.8\left(\mathrm{C}_{\mathrm{q}}\right), 165.0\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=257 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 137.5\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=12 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $133.1\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 128.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}, \mathrm{CH}\right), 127.9\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}, \mathrm{CH}\right), 116.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=25 \mathrm{~Hz}\right.$, $\mathrm{CH}), 34.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 29.8\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 26.6\left(\mathrm{CH}_{3}\right)$.
${ }^{19}$ F-NMR (376 MHz, CDCl ${ }_{3}$): $\delta=(-101.5)-(-101.8)(\mathrm{m})$.

IR (ATR): $\tilde{v}=2961,2873,1683,1606,1490,1355,1235,1094,817 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 194 (18) [M] ${ }^{+}, 179$ (100) [M-Me] ${ }^{+}, 151$ (58) [M-Ac] ${ }^{+}, 136$ (10).

HR-MS (EI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{FO}^{+}[\mathrm{M}]^{+}$194.1101, found 194.1106.

1-[3-(tert-Butyl)-4-chlorophenyl]ethan-1-one (154cb)

The general procedure B was followed using ketimine $\mathbf{1 3 5 c}$ ($160 \mathrm{mg}, 0.50 \mathrm{mmol}$) and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 50: 1$) yielded 154 cb ($64.8 \mathrm{mg}, 62 \%$) as a colorless oil.

The general procedure C was followed using ketimine 135 c ($160 \mathrm{mg}, 0.50 \mathrm{mmol}$) and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/Et ${ }_{2} \mathrm{O} 50: 1$) yielded 154 cb ($68.9 \mathrm{mg}, 65 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.05(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=197.2\left(\mathrm{C}_{\mathrm{q}}\right), 146.9\left(\mathrm{C}_{\mathrm{q}}\right), 139.0\left(\mathrm{C}_{\mathrm{q}}\right), 135.3\left(\mathrm{C}_{\mathrm{q}}\right), 132.1(\mathrm{CH}), 127.6(\mathrm{CH})$, $127.0(\mathrm{CH}), 36.3\left(\mathrm{C}_{q}\right), 29.5\left(\mathrm{CH}_{3}\right), 26.6\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2964,1684,1588,1353,1233,1038,818,529 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 212 (9) $\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)\right]^{+}, 210(25)\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)\right]^{+}, 197(28)\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)-\mathrm{Me}\right]^{+}, 195$ (82) $\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)-\mathrm{Me}\right]^{+}, 169$ (34) [M($\left.\left.{ }^{37} \mathrm{Cl}\right)-\mathrm{Ac}\right]^{+}, 167$ (100) [M($\left.\left.{ }^{35} \mathrm{Cl}\right)-\mathrm{Ac}\right]^{+}, 115$ (26), 91 (13), 75 (9), 57 (10), 43 (81).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ClO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$211.0884, found 211.0885.

1-[3-(tert-Butyl)-4-methoxyphenyl]ethan-1-one (154db)

The general procedure B was followed using ketimine 135 d ($158 \mathrm{mg}, 0.50 \mathrm{mmol}$) and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O}$ 10:1) yielded 154 db ($83.8 \mathrm{mg}, 81 \%$) as a colorless oil.

The general procedure C was followed using ketimine 135d (158 mg, 0.50 mmol) and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O}$ 10:1) yielded 154 db ($67.6 \mathrm{mg}, 66 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.94(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{dd}, \mathrm{J}=8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=197.1\left(\mathrm{C}_{\mathrm{q}}\right), 162.4\left(\mathrm{C}_{\mathrm{q}}\right), 138.2\left(\mathrm{C}_{\mathrm{q}}\right), 129.7\left(\mathrm{C}_{\mathrm{q}}\right), 128.5(\mathrm{CH}), 127.0(\mathrm{CH})$, $110.6(\mathrm{CH}), 55.2\left(\mathrm{CH}_{3}\right), 35.0\left(\mathrm{C}_{\mathrm{q}}\right), 29.6\left(\mathrm{CH}_{3}\right), 26.4\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2958,1674,1595,1495,1457,1357,1237,1182,1026,970 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 206 (36) [M] ${ }^{+}, 191$ (100) [M-Me] ${ }^{+}, 163$ (42) [M-Ac] ${ }^{+}, 133$ (18).
HR-MS (EI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}{ }^{+}[\mathrm{M}]^{+}$206.1301, found 206.1297.
The spectral data are in accordance with those reported in the literature. ${ }^{[131]}$

1-(3-(tert-Butyl)-4-methylphenyl)ethan-1-one (154eb)

The general procedure B was followed using ketimine 135 e ($150 \mathrm{mg}, 0.50 \mathrm{mmol}$) and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 70: 1$) yielded 154 eb ($43.6 \mathrm{mg}, 46 \%$) as a colorless oil.

The general procedure C was followed using ketimine 135 e ($150 \mathrm{mg}, 0.50 \mathrm{mmol}$) and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/Et ${ }_{2} \mathrm{O} 70: 1$) yielded $154 \mathrm{eb}(38.1 \mathrm{mg}, 40 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.01(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{ddd}, J=7.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=198.2\left(\mathrm{C}_{\mathrm{q}}\right), 148.4\left(\mathrm{C}_{\mathrm{q}}\right), 142.4\left(\mathrm{C}_{\mathrm{q}}\right), 134.9\left(\mathrm{C}_{\mathrm{q}}\right), 132.9(\mathrm{CH}), 126.0(\mathrm{CH})$, $125.9(\mathrm{CH}), 35.9\left(\mathrm{C}_{\mathrm{q}}\right), 30.7\left(\mathrm{CH}_{3}\right), 26.5\left(\mathrm{CH}_{3}\right), 23.4\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2963,1681,1601,1355,1267,1237,815 \mathrm{~cm}^{-1}$.

MS (ESI) m / z (relative intensity): $213(100)[\mathrm{M}+\mathrm{Na}]^{+}, 191(20)[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$213.1250, found 213.1253.

4-Acetyl-2-(tert-butyl)phenyl benzoate (154fb)

The general procedure B was followed using ketimine 135 f ($203 \mathrm{mg}, 0.50 \mathrm{mmol}$) and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 9:1) yielded 154 fb ($89.7 \mathrm{mg}, 61 \%$) as a viscous colorless oil.

The general procedure C was followed using ketimine 135 f ($203 \mathrm{mg}, 0.50 \mathrm{mmol}$) and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 9:1) yielded 154 fb ($65.1 \mathrm{mg}, 44 \%$) as a viscous colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.27-8.21(\mathrm{~m}, 2 \mathrm{H}), 8.11(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, \mathrm{J}=8.4,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.68(\mathrm{tt}, \mathrm{J}=6.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}$, $9 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=197.1\left(\mathrm{C}_{\mathrm{q}}\right), 164.8\left(\mathrm{C}_{\mathrm{q}}\right), 153.2\left(\mathrm{C}_{\mathrm{q}}\right), 141.9\left(\mathrm{C}_{\mathrm{q}}\right), 134.5\left(\mathrm{C}_{\mathrm{q}}\right), 133.8(\mathrm{CH})$, $130.2(\mathrm{CH}), 129.3\left(\mathrm{C}_{\mathrm{q}}\right), 128.7(\mathrm{CH}), 127.6(\mathrm{CH}), 127.4(\mathrm{CH}), 124.4(\mathrm{CH}), 34.9\left(\mathrm{C}_{q}\right), 30.2\left(\mathrm{CH}_{3}\right), 26.7$ $\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2964,1736,1682,1599,1356,1237,1190,1083,1053,703 \mathrm{~cm}^{-1}$.

MS (ESI) m / z (relative intensity): 615 (11) $\left[2 \mathrm{M}+\mathrm{Na}^{+}, 319(100)[\mathrm{M}+\mathrm{Na}]^{+}, 297(11)[\mathrm{M}+\mathrm{H}]^{+}\right.$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 319.1305$, found 319.1306.

1-[3-(1-Methylcyclohexyl)phenyl]ethan-1-one (154ba)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.00(\mathrm{dd}, \mathrm{J}=1.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{ddd}, \mathrm{J}=7.7,1.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ (ddd, $J=7.7,2.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(d d d, J=7.7,7.7,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.08-1.96(\mathrm{~m}, 2 \mathrm{H})$, 1.68-1.51 (m, 4H), 1.51-1.34 (m, 4H), $1.20(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=198.5\left(\mathrm{C}_{\mathrm{q}}\right), 150.6\left(\mathrm{C}_{\mathrm{q}}\right), 137.1\left(\mathrm{C}_{\mathrm{q}}\right), 130.9(\mathrm{CH}), 128.4(\mathrm{CH}), 125.6(\mathrm{CH})$, $125.6(\mathrm{CH}), 38.1\left(\mathrm{C}_{q}\right), 37.8\left(\mathrm{CH}_{2}\right), 30.3\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{3}\right), 26.2\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2925,2856,1682,1597,1425,1356,1256,1196,1080,965 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 216 (40) [M] ${ }^{+}, 201$ (75) [M-Me] ${ }^{+}, 173(26)[\mathrm{M}-\mathrm{Ac}]^{+}, 160(32), 145$ (48).

HR-MS (EI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}^{+}[\mathrm{M}]^{+} 216.1509$, found 216.1512.

1-[4-Fluoro-3-(tert-pentyl)phenyl]ethan-1-one (154ac)

The general procedure B was followed using ketimine $\mathbf{1 3 5 a}$ ($152 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 2-bromo-2-methylbutane ($\mathbf{1 3 6 c}, 227 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/Et $2 \mathrm{O} 50: 1$) yielded 154 ac ($78.7 \mathrm{mg}, 76 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.91(\mathrm{dd}, J=8.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{ddd}, J=8.4,4.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ (dd, $J=12.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{qd}, J=7.5,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.66$ (td, $J=7.5,0.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=196.9\left(\mathrm{C}_{\mathrm{q}}\right), 164.9\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=257 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 136.0\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=12 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $133.1\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 129.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}, \mathrm{CH}\right), 128.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}, \mathrm{CH}\right), 116.3\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=26 \mathrm{~Hz}\right.$, $\mathrm{CH}), 38.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{q}\right), 34.0\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 27.6\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 26.5\left(\mathrm{CH}_{3}\right), 9.3\left(\mathrm{CH}_{3}\right)$.
${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=(-101.5)-(-101.7)(\mathrm{m})$.
IR (ATR): $\tilde{v}=2965,2877,1683,1604,1491,1355,1252,1094,822 \mathrm{~cm}^{-1}$.
MS (EI) m / z (relative intensity): 208 (7) [M] ${ }^{+}, 179$ (100) [M-Et] ${ }^{+}, 151$ (65), 136 (10).
HR-MS (EI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{FO}^{+}[\mathrm{M}]^{+}$208.1258, found 208.1266.

1-[4-Fluoro-3-(2-methylpentan-2-yl)phenyl]ethan-1-one (154ad)

The general procedure B was followed using ketimine 135 a (152 mg , 0.50 mmol) and 2-bromo-2-methylpentane (136d, $249 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 50: 1$) yielded 154ad ($53.3 \mathrm{mg}, 48 \%$) as a colorless oil.

The general procedure C was followed using ketimine 135a ($152 \mathrm{mg}, 0.50 \mathrm{mmol}$), 2-bromo-2methylpentane ($\mathbf{1 3 6 d}$, $249 \mathrm{mg}, 1.50 \mathrm{mmol}$), and $\left[\mathrm{RuCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\right]_{2}(12.6 \mathrm{mg}, 5 \mathrm{~mol} \%)$. After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 50: 1$) yielded 154 ad ($61.4 \mathrm{mg}, 55 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.90(\mathrm{dd}, \mathrm{J}=8.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{ddd}, J=8.4,4.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ (dd, J = 12.1, 8.4 Hz, 1H), $2.57(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.09-0.97(\mathrm{~m}$, $2 \mathrm{H}), 0.83(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=196.9\left(\mathrm{C}_{\mathrm{q}}\right), 164.9\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=257 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 136.3\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=12 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $133.1\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 129.0\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}, \mathrm{CH}\right), 128.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}, \mathrm{CH}\right), 116.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=26 \mathrm{~Hz}\right.$, $\mathrm{CH}), 44.0\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 37.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 28.1\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 26.5\left(\mathrm{CH}_{3}\right), 18.3$ $\left(\mathrm{CH}_{2}\right), 14.6\left(\mathrm{CH}_{3}\right)$.
${ }^{19}$ F-NMR (376 MHz, CDCl 3): $\delta=(-101.4)-(-101.7)(\mathrm{m})$.

IR (ATR): $\tilde{v}=2958,2931,1683,1583,1490,1355,1247,1097,958 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 222 (5) [M] ${ }^{+}, 179$ (100) [M-Pr] ${ }^{+}, 151$ (56), 115 (6).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{FO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$223.1493, found 223.1493.

1-[3-(2-Methyl-4-phenylbutan-2-yl)phenyl]ethan-1-one (154ae)

The general procedure B was followed using ketimine 135a (152 mg, $0.50 \mathrm{mmol})$ and (3-bromo-3-methylbutyl)benzene (136e, $341 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 50: 1$) yielded 154ae ($84.1 \mathrm{mg}, 59 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.98$ (dd, $\left.J=8.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.83(\mathrm{ddd}, J=8.4,4.5,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.26-7.21 (m, 2H), 7.17-7.12 (m, 1H), 7.12-7.06 (m, 3H), 2.60(s, 3H), 2.36-2.30(m, 2H), 2.12$2.06(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=197.0\left(\mathrm{C}_{\mathrm{q}}\right), 164.9\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=257 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 142.5\left(\mathrm{C}_{\mathrm{q}}\right), 135.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=\right.$ $\left.12 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 133.2\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 129.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}, \mathrm{CH}\right), 128.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}, \mathrm{CH}\right), 128.3(\mathrm{CH})$, $128.2(\mathrm{CH}), 125.6(\mathrm{CH}), 116.5\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=26 \mathrm{~Hz}, \mathrm{CH}\right), 43.6\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 38.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $31.7\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 26.6\left(\mathrm{CH}_{3}\right)$.
${ }^{19}$ F-NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=(-101.5)-(-101.7)(\mathrm{m})$.

IR (ATR): $\tilde{v}=3026,2965,1683,1491,1355,1257,1220,823,698 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 284 (14) [M] ${ }^{+}, 179$ (100), 151 (53), 105 (36), 91 (43), 77 (9), 65 (11), 43 (42).

HR-MS (EI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{FO}^{+}[\mathrm{M}]^{+}$284.1571, found 284.1577.

1-[3-(5-Chloro-2-methylpentan-2-yl)-4-fluorophenyl]ethan-1-one (154af)

The general procedure B was followed using ketimine 135a (152 mg , 0.50 mmol) and 4-bromo-1-chloro-4-methylpentane (136f, 299 mg , 1.50 mmol). After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 50: 1$) yielded 154af ($70.6 \mathrm{mg}, 55 \%$) as a colorless oil.

The general procedure \mathbf{C} was followed using ketimine 135 ($152 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 4-bromo-1-chloro-4-methylpentane ($136 \mathrm{f}, 299 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/Et ${ }_{2} \mathrm{O} 50: 1$) yielded 154af ($28.0 \mathrm{mg}, 22 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.91(\mathrm{dd}, \mathrm{J}=8.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{ddd}, J=8.4,4.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.07$ (dd, J = 12.1, 8.4 Hz, 1H), 3.44 (t, J=6.7 Hz, 2H), $2.58(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.46(\mathrm{~m}, 2 \mathrm{H})$, $1.41(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=196.9\left(\mathrm{C}_{\mathrm{q}}\right), 164.8\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=257 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 135.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=12 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $133.2\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 128.9\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}, \mathrm{CH}\right), 128.8\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}, \mathrm{CH}\right), 116.5\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=26 \mathrm{~Hz}\right.$, $\mathrm{CH}), 45.4\left(\mathrm{CH}_{2}\right), 38.8\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 37.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 28.6\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{3}\right), 26.5\left(\mathrm{CH}_{3}\right)$.
${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=(-101.6)-(-101.7)(\mathrm{m})$.

IR (ATR): $\tilde{v}=2961,2874,1682,1581,1477,1258,1090,822 \mathrm{~cm}^{-1}$.
MS (EI) m / z (relative intensity): $258(1)\left[\mathrm{M}\left({ }^{37} \mathrm{CI}\right)\right]^{+}, 256(3)\left[\mathrm{M}\left({ }^{35} \mathrm{CI}\right)\right]^{+}, 179$ (100), 151 (48), 115 (5).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~F}^{35} \mathrm{ClO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$257.1103, found 257.1103.

1-[3-(tert-Butyl)phenyl]propan-1-one (154gb)

The general procedure B was followed using ketimine $\mathbf{1 3 5 g}(150 \mathrm{mg}, 0.50 \mathrm{mmol})$ and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 80: 1$) yielded 154 gb ($76.2 \mathrm{mg}, 80 \%$) as a colorless oil.

The general procedure C was followed using ketimine 135 g ($150 \mathrm{mg}, 0.50 \mathrm{mmol}$) and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/Et ${ }_{2} \mathrm{O} 80: 1$) yielded 154 gb ($55.8 \mathrm{mg}, 59 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.02$ (ddd, $\left.J=2.0,1.9,0.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.77$ (ddd, $J=7.8,1.9,1.1 \mathrm{~Hz}$, 1 H), 7.59 (ddd, J = 7.8, 2.0, 1.1 Hz, 1H), 7.39 (ddd, J = 7.8, 7.8, $0.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.01(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $1.35(\mathrm{~s}, 9 \mathrm{H}), 1.23(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=201.2\left(\mathrm{C}_{\mathrm{q}}\right), 151.6\left(\mathrm{C}_{\mathrm{q}}\right), 136.8\left(\mathrm{C}_{\mathrm{q}}\right), 130.0(\mathrm{CH}), 128.2(\mathrm{CH}), 125.3(\mathrm{CH})$, $124.7(\mathrm{CH}), 34.8\left(\mathrm{C}_{\mathrm{q}}\right), 31.9\left(\mathrm{CH}_{2}\right), 31.2\left(\mathrm{CH}_{3}\right), 8.3\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2963,2872,1685,1581,1459,1364,1209,850 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 190 (6) [M] ${ }^{+}, 161$ (100) [M-Et] $]^{+}, 133$ (13), 115 (10).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$191.1430, found 191.1436.

1-[3-(tert-Butyl)-4-fluorophenyl]propan-1-one (154hb)

The general procedure B was followed using ketimine 135 h ($159 \mathrm{mg}, 0.50 \mathrm{mmol}$) and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/Et ${ }_{2} \mathrm{O} 80: 1$) yielded $154 \mathrm{hb}(85.5 \mathrm{mg}, 83 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.98(\mathrm{dd}, J=8.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{ddd}, J=8.5,4.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ (dd, J = 12.0, $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 9 \mathrm{H}), 1.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=199.7\left(\mathrm{C}_{\mathrm{q}}\right), 164.9\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=257 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 137.5\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=12 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $132.9\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 128.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}, \mathrm{CH}\right), 127.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=7 \mathrm{~Hz}, \mathrm{CH}\right), 116.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=25 \mathrm{~Hz}\right.$, $\mathrm{CH}), 34.4\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{q}\right), 31.7\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 8.3\left(\mathrm{CH}_{3}\right)$.
${ }^{19}$ F-NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=(-102.0)-(-102.1)(\mathrm{m})$.
IR (ATR): $\tilde{v}=2945,2022,1686,1605,1458,1366,1210,1089,800 \mathrm{~cm}^{-1}$.
m.p.: $44-45^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 208 (7) [M] $]^{+}, 193$ (14) [M-Me] $]^{+}, 179$ (100) [M-Et] $]^{+}, 165$ (22).

HR-MS (EI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{FO}^{+}[\mathrm{M}]^{+}$208.1258, found 208.1263.

1-[3-(tert-Butyl)phenyl]pentan-1-one (154ib)

The general procedure B was followed using ketimine 135 i ($164 \mathrm{mg}, 0.50 \mathrm{mmol}$) and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O}$ 100:1) yielded 154ib ($81.0 \mathrm{mg}, 74 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.02-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.76(\mathrm{ddd}, J=7.8,1.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{ddd}, J=$ $7.8,2.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.39 (ddd, $J=7.8,7.8,0.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.97 (dd, $J=7.7,7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 1.77-1.68 (m, $2 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR (100 MHz, CDCl_{3}): $\delta=200.9\left(\mathrm{C}_{\mathrm{q}}\right), 151.6\left(\mathrm{C}_{\mathrm{q}}\right), 136.9\left(\mathrm{C}_{\mathrm{q}}\right), 130.0(\mathrm{CH}), 128.2(\mathrm{CH}), 125.4(\mathrm{CH})$, $124.7(\mathrm{CH}), 38.4\left(\mathrm{CH}_{2}\right), 34.8\left(\mathrm{C}_{\mathrm{q}}\right), 31.3\left(\mathrm{CH}_{3}\right), 26.6\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 13.9\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2959,2871,1684,1598,1462,1365,1285,1243,1020,793 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 218 (5) [M] ${ }^{+}$, 203 (8) [M-Me] ${ }^{+}, 176$ (32) [M-Pr] ${ }^{+}, 161$ (100) [M$\mathrm{Bu}]^{+}$.

HR-MS (EI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}^{+}[\mathrm{M}]^{+}$218.1665, found 218.1682.

1-[4-Fluoro-3-(1-methylcyclohexyl)phenyl]propan-1-one (154ha)

The general procedure B was followed using ketimine 135h (159 mg, 0.50 mmol) and 1-bromo-1-methylcyclohexane (136a, $266 \mathrm{mg}, 1.50 \mathrm{mmol})$. After 20 h , purification by column chromatography (n-pentane/Et ${ }_{2} \mathrm{O} 70: 1$) yielded 154ha ($87.3 \mathrm{mg}, 70 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.00(\mathrm{dd}, \mathrm{J}=8.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{ddd}, J=8.4,4.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ (dd, $J=12.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.34$ $(\mathrm{m}, 4 \mathrm{H}), 1.30(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=199.5\left(\mathrm{C}_{\mathrm{q}}\right), 165.0\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=256 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 136.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=11 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $132.8\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 128.8\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}, \mathrm{CH}\right), 127.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}, \mathrm{CH}\right), 116.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=26 \mathrm{~Hz}\right.$, $\mathrm{CH}), 38.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 37.1\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{3}\right), 26.4\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right)$, $8.4\left(\mathrm{CH}_{3}\right)$.
${ }^{19}$ F-NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-101.4$ (ddd, $J=12.7,8.2,4.8 \mathrm{~Hz}$).
IR (ATR): $\tilde{v}=2927,2858,1685,1581,1488,1451,1228,1182,799 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 248 (8) [M] ${ }^{+}, 219$ (100) [M-Et] ${ }^{+}, 163$ (22), 133 (12).

HR-MS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{FO}^{+}[\mathrm{M}]^{+}$248.1571, found 248.1579.

1-[4-Fluoro-3-(4-methyltetrahydro-2H-pyran-4-yl)phenyl]ethan-1-one (154ag)

The general procedure B was followed using ketimine 135a (152 mg, 0.50 mmol) and 4-bromo-4-methyltetrahydro-2H-pyran (136g, $269 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/Et ${ }_{2} \mathrm{O}$ 3:1) yielded 154ag ($66.9 \mathrm{mg}, 57 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.93(\mathrm{dd}, J=7.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{ddd}, J=8.4,4.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$ (dd, $J=12.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.80\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{dd}, J=11.0,9.1,3.1 \mathrm{~Hz}, 2 \mathrm{H}\right.$), $3.70\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{dd}, J=11.0,6.2,3.8 \mathrm{~Hz}\right.$, 2 H), 2.58 (s, 3H), 2.20 (ddd, $J=12.7,9.1,3.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.91-1.82 (m, 2H), $1.40(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=196.7\left(\mathrm{C}_{\mathrm{q}}\right), 165.0\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=257 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 135.9\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=11 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $133.3\left(\mathrm{~d},{ }^{4} J_{C-F}=3 \mathrm{~Hz}, C_{q}\right), 128.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=11 \mathrm{~Hz}, \mathrm{CH}\right), 128.2\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}, \mathrm{CH}\right), 116.9\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=26 \mathrm{~Hz}\right.$, $\mathrm{CH}), 64.2\left(\mathrm{CH}_{2}\right), 36.7\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 35.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 26.5\left(\mathrm{CH}_{3}\right), 25.3\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}\right.$, CH_{3}).
${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-101.8$ (ddd, $J=12.4,7.9,4.6 \mathrm{~Hz}$).

IR (ATR): $\tilde{v}=2932,2853,1683,1605,1490,1356,1244,1106,826 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 236 (10) [M] ${ }^{+}, 221$ (14) [M-Me] ${ }^{+}, 192$ (53), 177 (65), 163 (90), 149 (49), 133 (20), 83 (22), 49 (22), 43 (100).

HR-MS (EI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{FO}_{2}{ }^{+}[\mathrm{M}]^{+}$236.1207, found 236.1226.

1-[2-(tert-Butyl)-[1,1'-biphenyl]-4-yl]ethan-1-one (154jb)

The general procedure B was followed using ketimine $\mathbf{1 3 5 j}$ ($181 \mathrm{mg}, 0.50 \mathrm{mmol}$) and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 50: 1$) yielded $\mathbf{1 5 4 j b}$ ($34.1 \mathrm{mg}, 27 \%$) as a colorless oil.

The general procedure C was followed using ketimine 135 j ($181 \mathrm{mg}, 0.50 \mathrm{mmol}$) and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/Et ${ }_{2} \mathrm{O} 50: 1$) yielded 154 jb ($48.0 \mathrm{mg}, 38 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.18(\mathrm{dd}, J=1.9,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J=7.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-$ $7.34(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{dd}, \mathrm{J}=7.9,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=198.2\left(\mathrm{C}_{\mathrm{q}}\right), 148.3\left(\mathrm{C}_{\mathrm{q}}\right), 147.1\left(\mathrm{C}_{\mathrm{q}}\right), 144.2\left(\mathrm{C}_{\mathrm{q}}\right), 135.9\left(\mathrm{C}_{\mathrm{q}}\right), 132.9(\mathrm{CH})$, $129.5(\mathrm{CH}), 127.3(\mathrm{CH}), 127.0(\mathrm{CH}), 126.7(\mathrm{CH}), 124.9(\mathrm{CH}), 36.7\left(\mathrm{C}_{\mathrm{q}}\right), 32.5\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2964,1686,1596,1398,1354,1236,770,707 \mathrm{~cm}^{-1}$.

MS (ESI) m / z (relative intensity): 527 (74) [2M+Na] ${ }^{+}$, 275 (100) $[\mathrm{M}+\mathrm{Na}]^{+}, 253(13)[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$275.1406, found 275.1407.

Methyl 4-acetyl-2-(tert-butyl)benzoate (154kb)

The general procedure B was followed using ketimine $\mathbf{1 3 5 k}$ ($172 \mathrm{mg}, 0.50 \mathrm{mmol}$) and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O}$ 10:1) yielded $154 \mathbf{k b}$ ($15.6 \mathrm{mg}, 13 \%$) as a colorless oil.

The general procedure C was followed using ketimine 135 k ($172 \mathrm{mg}, 0.50 \mathrm{mmol}$) and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O}$ 10:1) yielded $\mathbf{1 5 4 k b}(32.3 \mathrm{mg}, 28 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.10(\mathrm{dd}, J=1.7,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (dd, $J=7.9,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=197.5\left(\mathrm{C}_{\mathrm{q}}\right), 171.5\left(\mathrm{C}_{\mathrm{q}}\right), 148.1\left(\mathrm{C}_{\mathrm{q}}\right), 137.7\left(\mathrm{C}_{\mathrm{q}}\right), 136.9\left(\mathrm{C}_{\mathrm{q}}\right), 128.8(\mathrm{CH})$, $126.8(\mathrm{CH}), 125.4(\mathrm{CH}), 52.6\left(\mathrm{CH}_{3}\right), 36.1\left(\mathrm{C}_{\mathrm{q}}\right), 31.3\left(\mathrm{CH}_{3}\right), 26.8\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2954,1729,1687,1434,1291,1255,1121,1069 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 234 (2) [M] ${ }^{+}$, 219 (43) [M-Me] ${ }^{+}, 203$ (58) [M-OMe] ${ }^{+}, 187$ (100), 177 (23) [M-t-Bu] ${ }^{+}, 115$ (29), 91 (17), 43 (79).

HR-MS (EI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}{ }^{+}[\mathrm{M}]^{+}$234.1250, found 234.1261.

4-Acetyl-2-(tert-butyl)benzonitrile (154lb)

The general procedure B was followed using ketimine 135 I ($155 \mathrm{mg}, 0.50 \mathrm{mmol}$) and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O}$ 10:1) yielded 154 lb ($19.8 \mathrm{mg}, 20 \%$) as a colorless oil.

The general procedure C was followed using ketimine 135 ($155 \mathrm{mg}, 0.50 \mathrm{mmol}$) and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/Et ${ }_{2} \mathrm{O}$ 10:1) yielded 154 lb ($26.7 \mathrm{mg}, 27 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.06(\mathrm{dd}, J=1.6,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.78$ $\left(d_{A B} d, J=7.9,0.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.63(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=196.9\left(\mathrm{C}_{q}\right), 154.3\left(\mathrm{C}_{q}\right), 139.6\left(\mathrm{C}_{q}\right), 135.8(\mathrm{CH}), 125.7(\mathrm{CH}), 125.7(\mathrm{CH})$, $119.3\left(\mathrm{C}_{\mathrm{q}}\right), 114.7\left(\mathrm{C}_{\mathrm{q}}\right), 35.9\left(\mathrm{C}_{\mathrm{q}}\right), 30.1\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2967,2223,1692,1483,1404,1288,1237,835 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 201 (10) [M $]^{+}, 186$ (100) [M-Me] ${ }^{+}, 158$ (31) [M-Ac] ${ }^{+}, 143$ (14) [M-$t-\mathrm{Bu}]^{+}, 115$ (14), 43 (29).

HR-MS (EI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}^{+}[\mathrm{M}]^{+}$201.1148, found 201.1150.

1-[3-(tert-Butyl)-4-(piperidin-1-yl)phenyl]ethan-1-one (154nb)

The general procedure B was followed using ketimine 135 n ($184 \mathrm{mg}, 0.50 \mathrm{mmol}$) and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , to the reaction mixture was added $\mathrm{HCl}(2 \mathrm{~N}, 3.0 \mathrm{~mL})$ and the resulting mixture was stirred for additional 3 h , and then neutralized with sat. aq. NaHCO_{3} solution until pH 8. The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by column chromatography (n-hexane/EtOAc 19:1 to $9: 1$) yielded 154 nb ($18.7 \mathrm{mg}, 14 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.01(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, \mathrm{J}=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.63(\mathrm{~m}, 4 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.45-1.23(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=197.8\left(\mathrm{C}_{\mathrm{q}}\right), 159.7\left(\mathrm{C}_{\mathrm{q}}\right), 147.7\left(\mathrm{C}_{\mathrm{q}}\right), 134.3\left(\mathrm{C}_{\mathrm{q}}\right), 127.1(\mathrm{CH}), 127.1(\mathrm{CH})$, $125.7(\mathrm{CH}), 55.3\left(\mathrm{CH}_{2}\right), 35.8\left(\mathrm{C}_{\mathrm{q}}\right), 30.7\left(\mathrm{CH}_{3}\right), 26.6\left(\mathrm{CH}_{3}\right), 26.2\left(\mathrm{CH}_{2}\right), 24.3\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2932,1682,1594,1352,1237,1216,918,833 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 259 (65) [M] ${ }^{+}, 258$ (38) [M-H] ${ }^{+}, 244$ (100) [M-Me] ${ }^{+}, 230$ (8), 216 (64), 202 (17), 188 (14), 43 (44).

HR-MS (EI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}^{+}[\mathrm{M}]^{+}$259.1931, found 259.1934.

1-[7-(tert-Butyl)benzo[d][1,3]dioxol-5-yl]ethan-1-one (154pb)

The general procedure B was followed using ketimine 135 p ($165 \mathrm{mg}, 0.50 \mathrm{mmol}$) and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 10: 1$) yielded $154 \mathrm{pb}(38.8 \mathrm{mg}, 35 \%)$ as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.52(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~s}, 2 \mathrm{H}), 2.54(\mathrm{~s}$, $3 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=196.4\left(\mathrm{C}_{\mathrm{q}}\right), 149.2\left(\mathrm{C}_{\mathrm{q}}\right), 147.9\left(\mathrm{C}_{\mathrm{q}}\right), 132.3\left(\mathrm{C}_{\mathrm{q}}\right), 131.4\left(\mathrm{C}_{\mathrm{q}}\right), 121.6(\mathrm{CH})$, $106.3(\mathrm{CH}), 101.1\left(\mathrm{CH}_{2}\right), 34.1\left(\mathrm{C}_{\mathrm{q}}\right), 29.3\left(\mathrm{CH}_{3}\right), 26.6\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2961,2908,1669,1588,1419,1290,1252,1044,966,867 \mathrm{~cm}^{-1}$.
m.p.: $114-115{ }^{\circ} \mathrm{C}$.

MS (ESI) m / z (relative intensity): 463 (67) [2M+Na] ${ }^{+} 243(100)[\mathrm{M}+\mathrm{Na}]^{+}, 221(94)[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$243.0992, found 243.0988 .

1-[4-(tert-Butyl)naphthalen-2-yl]ethan-1-one (154qb)

The general procedure B was followed using ketimine $\mathbf{1 3 5 q}$ ($168 \mathrm{mg}, 0.50 \mathrm{mmol}$) and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/Et ${ }_{2} \mathrm{O} 50: 1$) yielded 154 qb ($42.9 \mathrm{mg}, 38 \%$) as a white solid.

The general procedure C was followed using ketimine 135q (168 mg, 0.50 mmol) and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/Et ${ }_{2} \mathrm{O} 50: 1$) yielded 154 qb ($21.0 \mathrm{mg}, 19 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.49$ (dddd, $\left.J=8.8,1.1,0.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.32$ (ddd $J=1.7,0.9,0.7 \mathrm{~Hz}$, 1 H), $8.10(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.99 (dddd, $J=8.0,1.7,0.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.61 (ddd, J = $8.8,6.9,1.7 \mathrm{~Hz}$, 1 H), 7.52 (ddd, J = 8.0, 6.9, $1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.73 (s,3H), $1.66(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=198.2\left(\mathrm{C}_{\mathrm{q}}\right), 146.8\left(\mathrm{C}_{\mathrm{q}}\right), 134.2\left(\mathrm{C}_{\mathrm{q}}\right), 133.9\left(\mathrm{C}_{\mathrm{q}}\right), 133.5\left(\mathrm{C}_{\mathrm{q}}\right), 131.2(\mathrm{CH})$, $129.8(\mathrm{CH}), 127.1(\mathrm{CH}), 126.9(\mathrm{CH}), 125.4(\mathrm{CH}), 120.9(\mathrm{CH}), 36.3\left(\mathrm{C}_{\mathrm{q}}\right), 31.8\left(\mathrm{CH}_{3}\right), 26.6\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2965,1679,1388,1288,1240,1213,894,791,758 \mathrm{~cm}^{-1}$.
m.p.: $71-72^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 226 (46) [M $]^{+}, 211$ (100) [M-Me] ${ }^{+}, 165$ (14), 152 (19), 141 (10), 43 (92).

HR-MS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}^{+}[\mathrm{M}]^{+}$226.1352, found 226.1361.

1-[5-(tert-Butyl)thiophen-3-yl]ethan-1-one (154rb)

The general procedure B was followed using ketimine 135 r ($146 \mathrm{mg}, 0.50 \mathrm{mmol}$) and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/Et $\mathrm{E}_{2} \mathrm{O} 50$) yielded 154 rb ($25.4 \mathrm{mg}, 14 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.83(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}$, 9H).
${ }^{13} \mathrm{C}$-NMR (75 MHz, CDCl 3): $\delta=192.7\left(\mathrm{C}_{\mathrm{q}}\right), 158.7\left(\mathrm{C}_{\mathrm{q}}\right), 142.1\left(\mathrm{C}_{\mathrm{q}}\right), 130.2(\mathrm{CH}), 120.7(\mathrm{CH}), 34.6\left(\mathrm{C}_{\mathrm{q}}\right)$, $32.3\left(\mathrm{CH}_{3}\right), 27.1\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3098,2963,1668,1395,1232,853,792,647,598 \mathrm{~cm}^{-1}$.

MS (ESI) m/z (relative intensity): 205 (100) [M+Na] ${ }^{+}, 183(48)[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{OSNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$205.0658, found 205.0660.

1-[3-(tert-Butyl)phenyl]-2-methylpropan-1-one (154sb)

The general procedure B was followed using ketimine 135s (157 mg, 0.50 mmol) and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol}$) in PhMe (2.0 mL). After 20 h , purification by column chromatography (n-pentane $/ \mathrm{Et}_{2} \mathrm{O} 50: 1$) yielded 154sb ($13.6 \mathrm{mg}, 13 \%$) as a colorless oil.

The general procedure C was followed using ketimine 135 s ($157 \mathrm{mg}, 0.50 \mathrm{mmol}$) and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 50: 1$) yielded 154sb ($30.6 \mathrm{mg}, 30 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.01$ (ddd, $\left.J=2.0,1.7,0.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.76$ (ddd, $J=7.7,1.7,1.1 \mathrm{~Hz}$, 1 H), 7.59 (ddd, $J=7.8,2.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.39 (ddd, $J=7.8,7.7,0.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.57 (hept, $J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.23(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=204.6\left(\mathrm{C}_{\mathrm{q}}\right), 151.6\left(\mathrm{C}_{\mathrm{q}}\right), 136.0\left(\mathrm{C}_{\mathrm{q}}\right), 129.8(\mathrm{CH}), 128.2(\mathrm{CH}), 125.5(\mathrm{CH})$, $125.1(\mathrm{CH}), 35.5(\mathrm{CH}), 34.9\left(\mathrm{C}_{\mathrm{q}}\right), 31.3\left(\mathrm{CH}_{3}\right), 19.3\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2965,1682,1467,1365,1213,1162,991,743,696 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 204 (4) [M] ${ }^{+}, 189$ (4) [M-Me] ${ }^{+}, 161$ (100) [M-i-Pr] ${ }^{+}, 133$ (16) [M$C(0) i-\mathrm{Pr}]^{+}, 105$ (19), 91 (16), 77 (9), 43 (19).

HR-MS (EI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}^{+}[\mathrm{M}]^{+}$204.1509, found 204.1519.

1-(3-Cycloheptylphenyl)ethan-1-one (154bh)

The general procedure B was followed using ketimine 135b ($143 \mathrm{mg}, 0.50 \mathrm{mmol}$) and bromocycloheptane (136h, $266 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 50: 1$) yielded 154 bh ($74.6 \mathrm{mg}, 69 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.81-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.74(\mathrm{ddd}, \mathrm{J}=7.0,1.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.32(\mathrm{~m}$, 2H), 2.79-2.67 (m, 1H), 2.59 (s, 3H), 1.97-1.47 (m, 12H).
${ }^{13} \mathrm{C}$-NMR (125 MHz, CDCl 3): $\delta=198.2\left(\mathrm{C}_{\mathrm{q}}\right), 150.3\left(\mathrm{C}_{\mathrm{q}}\right), 137.1\left(\mathrm{C}_{\mathrm{q}}\right), 131.5(\mathrm{CH}), 128.4(\mathrm{CH}), 126.3(\mathrm{CH})$, $125.7(\mathrm{CH}), 47.0(\mathrm{CH}), 36.7\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3352,2921,2853,1681,1582,1434,1356,1270,793 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 216 (60) [M] ${ }^{+}, 201$ (100) [M-Me] ${ }^{+}, 146$ (36), 131 (64).

HR-MS (EI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}^{+}[\mathrm{M}]^{+}$216.1509, found 216.1510.

1-(3-Cycloheptyl-4-methylphenyl)ethan-1-one (154eh)

The general procedure B was followed using ketimine $\mathbf{1 3 5 e}$ ($150 \mathrm{mg}, 0.50 \mathrm{mmol}$) and bromocycloheptane ($136 \mathrm{~h}, 266 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/Et ${ }_{2} \mathrm{O} 50: 1$) yielded $154 \mathrm{eh}(82.3 \mathrm{mg}, 71 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.83(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}, \mathrm{J}=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.78-1.46(\mathrm{~m}, 8 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=198.1\left(\mathrm{C}_{\mathrm{q}}\right), 148.4\left(\mathrm{C}_{\mathrm{q}}\right), 140.4\left(\mathrm{C}_{\mathrm{q}}\right), 135.4\left(\mathrm{C}_{\mathrm{q}}\right), 130.2(\mathrm{CH}), 125.5(\mathrm{CH})$, $125.4(\mathrm{CH}), 41.8(\mathrm{CH}), 35.9\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{3}\right), 19.7\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2920,2853,1678,1602,1444,1353,1242,813 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 230 (42) [M] ${ }^{+}, 215$ (100) [M-Me] ${ }^{+}, 145$ (40), 115 (18).

HR-MS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}^{+}[\mathrm{M}]^{+}$230.1665, found 230.1673 .

1-(3-Cycloheptyl-4-methoxyphenyl)ethan-1-one (154dh)

 The general procedure B was followed using ketimine 135d ($158 \mathrm{mg}, 0.50 \mathrm{mmol}$) and bromocycloheptane (136h, $266 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O}$ 10:1) yielded 154dh ($99.7 \mathrm{mg}, 81 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.83(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.17-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.45(\mathrm{~m}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=197.1\left(\mathrm{C}_{\mathrm{q}}\right), 160.2\left(\mathrm{C}_{\mathrm{q}}\right), 138.2\left(\mathrm{C}_{\mathrm{q}}\right), 130.0\left(\mathrm{C}_{\mathrm{q}}\right), 127.9(\mathrm{CH}), 127.1(\mathrm{CH})$, $109.5(\mathrm{CH}), 55.5\left(\mathrm{CH}_{3}\right), 38.9(\mathrm{CH}), 35.2\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2919,2852,1672,1596,1495,1354,1241,1025,810 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 246 (95) [M] ${ }^{+}, 231$ (100) [M-Me] ${ }^{+}, 161$ (57), 147 (26).

HR-MS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2}{ }^{+}[\mathrm{M}]^{+}$246.1614, found 246.1630.

1-(2-Cycloheptyl-[1,1'-biphenyl]-4-yl)ethan-1-one (154jh)

The general procedure B was followed using ketimine 135j ($181 \mathrm{mg}, 0.50 \mathrm{mmol}$) and bromocycloheptane ($136 \mathrm{~h}, 266 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 50: 1$) yielded $154 \mathrm{jh}(92.4 \mathrm{mg}, 63 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.95(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, \mathrm{J}=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.32(\mathrm{~m}$, $3 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 3 \mathrm{H}), 2.89-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.61(\mathrm{~m}, 6 \mathrm{H}), 1.57-1.46(\mathrm{~m}, 4 \mathrm{H})$, 1.39-1.23 (m, 2H).
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=197.9\left(\mathrm{C}_{\mathrm{q}}\right), 147.9\left(\mathrm{C}_{q}\right), 145.2\left(\mathrm{C}_{\mathrm{q}}\right), 140.9\left(\mathrm{C}_{q}\right), 136.4\left(\mathrm{C}_{q}\right), 130.0(\mathrm{CH})$, $128.8(\mathrm{CH}), 128.0(\mathrm{CH}), 127.1(\mathrm{CH}), 126.3(\mathrm{CH}), 125.1(\mathrm{CH}), 41.6(\mathrm{CH}), 36.8\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right), 27.3$ $\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2919,2852,1681,1597,1458,1353,1277,1008,827 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 292 (85) [M] ${ }^{+}, 221$ (46), 165 (41), 115 (6).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$293.1900, found 293.1905.

4-Acetyl-2-cycloheptylphenyl benzoate (154fh)

 The general procedure B was followed using ketimine 135 f ($203 \mathrm{mg}, 0.50 \mathrm{mmol}$) and bromocycloheptane ($136 \mathrm{~h}, 266 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 95:5) yielded 154fh ($88.1 \mathrm{mg}, 52 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.25-8.20(\mathrm{~m}, 2 \mathrm{H}), 7.98(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.83$ (dd, J = 8.4, 2.2 Hz, 1H), 7.71-7.65 (m, 1H), 7.58-7.52 (m, 2H), 7.23 (d, J=8.4 Hz, 1H), $2.92(\mathrm{tt}, J=$ $10.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.39(\mathrm{~m}, 10 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=197.3\left(\mathrm{C}_{\mathrm{q}}\right), 164.8\left(\mathrm{C}_{\mathrm{q}}\right), 151.7\left(\mathrm{C}_{\mathrm{q}}\right), 141.9\left(\mathrm{C}_{\mathrm{q}}\right), 135.2\left(\mathrm{C}_{\mathrm{q}}\right), 133.9(\mathrm{CH})$, $130.2(\mathrm{CH}), 129.1\left(\mathrm{C}_{\mathrm{q}}\right), 128.7(\mathrm{CH}), 127.9(\mathrm{CH}), 127.0(\mathrm{CH}), 122.7(\mathrm{CH}), 40.2(\mathrm{CH}), 35.4\left(\mathrm{CH}_{2}\right), 27.6$ $\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2922,1737,1683,1600,1451,1238,1081,1056,1023,707 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 336 (2) [M] ${ }^{+}, 231$ (10) $[\mathrm{M}-\mathrm{Bz}]^{+}, 135$ (15), 105 (100), 77 (35), 51 (5), 43 (13).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 359.1618$, found 359.1622.

1-[3-Cycloheptyl-4-(trifluoromethyl)phenyl]ethan-1-one (154uh)

The general procedure B was followed using ketimine 135 u ($177 \mathrm{mg}, 0.50 \mathrm{mmol}$) and bromocycloheptane ($136 \mathrm{~h}, 266 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/Et ${ }_{2} \mathrm{O} 50: 1$) yielded 154uh ($84.0 \mathrm{mg}, 59 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.99(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{dq}, J=8.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.15-3.06 (m, 1H), 2.63 (s, 3H), 1.91-1.78 (m, 4H), 1.78-1.51 (m, 8H).
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=197.4\left(\mathrm{C}_{\mathrm{q}}\right), 149.9\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 139.8\left(\mathrm{C}_{\mathrm{q}}\right), 130.7\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=\right.$ $30 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$), $127.8(\mathrm{CH}), 125.9\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=6 \mathrm{~Hz}, \mathrm{CH}\right), 125.2(\mathrm{CH}), 124.1\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=273 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 41.6(\mathrm{q}$, $\left.{ }^{4} J_{C-F}=2 \mathrm{~Hz}, \mathrm{CH}\right), 36.9\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{3}\right)$.
${ }^{19}$ F-NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-59.5(\mathrm{~s})$.

IR (ATR): $\tilde{v}=2925,2856,1692,1574,1415,1310,1238,1154,1035,829 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 284 (35) [M] ${ }^{+}, 214$ (55), 199 (100), 151 (23).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$307.1280, found 307.1286.

1-(4-Chloro-3-cycloheptylphenyl)ethan-1-one (154ch)

The general procedure B was followed using ketimine 135c (160 mg, 0.50 mmol) and bromocycloheptane (136h, $266 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 50: 1$) yielded 154ch ($68.1 \mathrm{mg}, 54 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.87(\mathrm{dd}, J=2.2,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ (dd, $J=8.3,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.27-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.52(\mathrm{~m}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=197.1\left(\mathrm{C}_{\mathrm{q}}\right), 147.2\left(\mathrm{C}_{\mathrm{q}}\right), 138.2\left(\mathrm{C}_{\mathrm{q}}\right), 135.8\left(\mathrm{C}_{\mathrm{q}}\right), 129.5(\mathrm{CH}), 127.2(\mathrm{CH})$, $126.5(\mathrm{CH}), 42.3(\mathrm{CH}), 35.4\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2922,2854,1684,1591,1406,1355,1235,1038,815,523 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): $252(17)\left[\mathrm{M}\left({ }^{37} \mathrm{CI}\right)\right]^{+}, 250(48)\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)\right]^{+}, 237(27)\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)-\mathrm{Me}\right]^{+}, 235$ (81) $\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)-\mathrm{Me}\right]^{+}, 215$ (44) $[\mathrm{M}-\mathrm{Cl}]^{+}, 180$ (41), 165 (73), 115 (27), 55 (23), 43 (100).

HR-MS (EI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{ClO}^{+}[\mathrm{M}]^{+}$250.1119, found 250.1118.

Methyl 4-acetyl-2-cycloheptylbenzoate (154kh)

 The general procedure B was followed using ketimine 135k (172 mg, $0.50 \mathrm{mmol})$ and bromocycloheptane ($136 \mathrm{~h}, 266 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/Et ${ }_{2} \mathrm{O}$ 10:1) yielded $154 \mathbf{k h}$ ($97.9 \mathrm{mg}, 71 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.94(\mathrm{dd}, J=1.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.72(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.40$ $(\mathrm{tt}, \mathrm{J}=10.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.49(\mathrm{~m}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=197.6\left(\mathrm{C}_{\mathrm{q}}\right), 168.1\left(\mathrm{C}_{\mathrm{q}}\right), 150.8\left(\mathrm{C}_{\mathrm{q}}\right), 139.1\left(\mathrm{C}_{\mathrm{q}}\right), 133.4\left(\mathrm{C}_{\mathrm{q}}\right), 129.6(\mathrm{CH})$, $126.8(\mathrm{CH}), 125.0(\mathrm{CH}), 52.3\left(\mathrm{CH}_{3}\right), 42.1(\mathrm{CH}), 36.8\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2921,2854,1723,1686,1433,1270,1233,1096,1065,785 \mathrm{~cm}^{-1}$.
MS (EI) m / z (relative intensity): 274 (28) [M] ${ }^{+}, 259$ (17) [M-Me] ${ }^{+}, 243$ (73), 199 (34), 181 (28), 115 (23), 59 (18), 43 (100).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$275.1642, found 275.1646.

4-Acetyl-2-cycloheptylbenzonitrile (154lh)

The general procedure B was followed using ketimine 135 ($155 \mathrm{mg}, 0.50 \mathrm{mmol}$) and bromocycloheptane ($136 \mathrm{~h}, 266 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O}$ 10:1) yielded 154 lh ($56.3 \mathrm{mg}, 47 \%$) as a yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.92(\mathrm{dd}, J=1.7,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=8.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.68$ (dd, $J=8.1,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{tt}, J=10.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.55(\mathrm{~m}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=196.8\left(\mathrm{C}_{\mathrm{q}}\right), 153.9\left(\mathrm{C}_{\mathrm{q}}\right), 140.1\left(\mathrm{C}_{\mathrm{q}}\right), 133.0(\mathrm{CH}), 126.1(\mathrm{CH}), 125.6(\mathrm{CH})$, $117.4\left(\mathrm{C}_{\mathrm{q}}\right), 115.3\left(\mathrm{C}_{\mathrm{q}}\right), 44.9(\mathrm{CH}), 36.0\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2923,2855,2224,1688,1410,1357,1241,831,541 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 241 (25) [M] ${ }^{+}$, 240 (12) [M-H] ${ }^{+}, 226$ (79) [M-Me] ${ }^{+}, 212$ (27), 198 (34) [M-Ac] ${ }^{+}, 186$ (24), 172 (29), 156 (100), 128 (20), 115 (19), 55 (32), 43 (76).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$264.1359, found 264.1364.

1-(3-Cycloheptylphenyl)propan-1-one (154gh)

 The general procedure B was followed using ketimine $\mathbf{1 3 5 g}$ ($150 \mathrm{mg}, 0.50 \mathrm{mmol}$) and bromocycloheptane (136h, $266 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 80: 1$) yielded 154 gh ($67.7 \mathrm{mg}, 59 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.81-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 2 \mathrm{H}), 2.99(\mathrm{q}, \mathrm{J}$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.78-2.66(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.45(\mathrm{~m}, 12 \mathrm{H}), 1.22(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (125 MHz, CDCl_{3}): $\delta=201.0\left(\mathrm{C}_{\mathrm{q}}\right), 150.3\left(\mathrm{C}_{\mathrm{q}}\right), 137.0\left(\mathrm{C}_{\mathrm{q}}\right), 131.3(\mathrm{CH}), 128.4(\mathrm{CH}), 126.1(\mathrm{CH})$, $125.3(\mathrm{CH}), 47.0(\mathrm{CH}), 36.7\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right), 8.4\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3391,2921,2853,1683,1582,1482,1348,1233,1161,781 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 230 (5) [M] ${ }^{+}, 201$ (100) [M-Et] ${ }^{+}, 179$ (13), 131 (8).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$231.1743, found 231.1749.

1-(3-Cycloheptyl-4-fluorophenyl)propan-1-one (154hh)

The general procedure B was followed using ketimine 135h (159 mg, 0.50 mmol) and bromocycloheptane (136h, $266 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/Et ${ }_{2} \mathrm{O}$ 80:1) yielded 154 hh ($96.9 \mathrm{mg}, 78 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.88(\mathrm{dd}, \mathrm{J}=7.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{ddd}, J=8.5,4.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ (dd, J = 9.9, 8.5 Hz, 1H), 3.07-2.91 (m, 3H), 1.94-1.47 (m, 12H), $1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=199.4\left(\mathrm{C}_{\mathrm{q}}\right), 162.8\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=252 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 136.6\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=16 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $133.2\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 128.3\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=7 \mathrm{~Hz}, \mathrm{CH}\right), 127.3\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}, \mathrm{CH}\right), 115.3\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24 \mathrm{~Hz}\right.$, $\mathrm{CH}), 39.6(\mathrm{CH}), 35.3\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 8.4\left(\mathrm{CH}_{3}\right)$.
${ }^{19}$ F-NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=(-111.4)-(-111.6)(\mathrm{m})$.

IR (ATR): $\tilde{v}=2923,2855,1685,1586,1492,1350,1237,1150,797 \mathrm{~cm}^{-1}$.
MS (EI) m / z (relative intensity): 248 (6) [M] ${ }^{+}, 219$ (100) [M-Et] $]^{+}, 149$ (10), 109 (13).
HR-MS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{FO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$249.1649, found 249.1654.

1-(3-Cyclopentyl-4-fluorophenyl)ethan-1-one (154ai)

The general procedure B was followed using ketimine 135a ($152 \mathrm{mg}, 0.50 \mathrm{mmol}$) and bromocyclopentane ($\mathbf{1 3 6 i}, 224 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/Et $2 \mathrm{O} 50: 1$) yielded 154 ai ($73.0 \mathrm{mg}, 71 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.90(\mathrm{dd}, J=7.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{ddd}, J=8.5,4.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ (dd, J = 9.9, 8.5 Hz, 1H), 3.32-3.16 (m, 1H), 2.57 (d, J = 0.5 Hz, 3H), 2.14-1.97 (m, 2H), 1.91-1.52 ($\mathrm{m}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=196.6\left(\mathrm{C}_{\mathrm{q}}\right), 164.0\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=253 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 133.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=16 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $133.3\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 128.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=7 \mathrm{~Hz}, \mathrm{CH}\right), 128.0\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}, \mathrm{CH}\right), 115.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24 \mathrm{~Hz}\right.$, $\mathrm{CH}), 38.8\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=1 \mathrm{~Hz}, \mathrm{CH}\right), 33.1\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{3}\right), 25.4\left(\mathrm{CH}_{2}\right)$.
${ }^{19}$ F-NMR (282 MHz, CDCl ${ }_{3}$): $\delta=-109.7$ (ddd, $J=9.9,7.3,5.0 \mathrm{~Hz}$).

IR (ATR): $\tilde{v}=3348,2954,2871,1682,1585,1492,1356,1250,1112,822 \mathrm{~cm}^{-1}$.
MS (EI) m/z (relative intensity): 206 (23) [M] ${ }^{+}, 191$ (100) [M-Me] ${ }^{+}, 163$ (16), 149 (20).
HR-MS (EI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{FO}^{+}[\mathrm{M}]^{+}$206.1101, found 206.1112.

1-(3-Cyclohexyl-4-fluorophenyl)ethan-1-one (154aj)

The general procedure B was followed using ketimine 135a ($152 \mathrm{mg}, 0.50 \mathrm{mmol}$) and bromocyclohexane ($\mathbf{1 3 6 j}, 245 \mathrm{mg}, 1.50 \mathrm{mmol})$. After 20 h , purification by column chromatography (n-pentane/Et $2 \mathrm{O} 50: 1$) yielded 154 aj ($76.3 \mathrm{mg}, 69 \%$) as a colorless oil
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.88(\mathrm{dd}, J=7.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{ddd}, J=8.5,4.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ (dd, J = 9.9, 8.5 Hz, 1H), 2.94-2.81 (m, 1H), $2.57(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.71(\mathrm{~m}, 5 \mathrm{H}), 1.57-1.18(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=196.7\left(\mathrm{C}_{\mathrm{q}}\right), 163.5\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=253 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 134.9\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=16 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $133.4\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 128.3\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=7 \mathrm{~Hz}, \mathrm{CH}\right), 128.0\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}, \mathrm{CH}\right), 115.3\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24 \mathrm{~Hz}\right.$, $\mathrm{CH}), 37.2\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2 \mathrm{~Hz}, \mathrm{CH}\right), 32.9\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{3}\right), 26.1\left(\mathrm{CH}_{2}\right)$.
${ }^{19}$ F-NMR (282 MHz, CDCl 3): $\delta=-111.6(\mathrm{ddd}, \mathrm{J}=9.9,7.2,4.9 \mathrm{~Hz})$.

IR (ATR): $\tilde{v}=2926,2852,1682,1586,1492,1355,1254,1107,820 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 220 (23) [M] ${ }^{+}, 205$ (100) [M-Me] ${ }^{+}, 149$ (23), 109 (12)

HR-MS (EI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{FO}^{+}[\mathrm{M}]^{+}$220.1258, found 220.1262.

1-(3-Cycloheptyl-4-fluorophenyl)ethan-1-one (154ah)

The general procedure B was followed using ketimine 135a ($152 \mathrm{mg}, 0.50 \mathrm{mmol}$)
and bromocycloheptane ($136 \mathrm{~h}, 266 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h, purification by
column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O}$ 50:1) yielded 154ah ($94.7 \mathrm{mg}, 81 \%$) as
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.88(\mathrm{dd}, \mathrm{J}=7.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{ddd}, J=8.5,4.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ (dd, J = 9.8, 8.5 Hz, 1H), 3.08-2.94 (m, 1H), $2.55(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.46(\mathrm{~m}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=196.9\left(\mathrm{C}_{\mathrm{q}}\right), 163.1\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=253 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 136.8\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=16 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $133.5\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 128.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=7 \mathrm{~Hz}, \mathrm{CH}\right), 127.9\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}, \mathrm{CH}\right), 115.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24 \mathrm{~Hz}\right.$, CH), $39.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=1 \mathrm{~Hz}, \mathrm{CH}\right), 35.2\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=1 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $27.7\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{3}\right)$.
${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=(-111.0)-(-111.1)(\mathrm{m})$. IR (ATR): $\tilde{v}=2921,1682,1585,1492,1416,1355,1243,1170,1104,819 \mathrm{~cm}^{-1}$. MS (EI) m/z (relative intensity): 234 (41) [M] ${ }^{+}, 219$ (100) [M-Me] ${ }^{+}, 164$ (40), 149 (70).

HR-MS (EI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{FO}^{+}[\mathrm{M}]^{+}$234.1414, found 234.1416.

1-(3-Cyclooctyl-4-fluorophenyl)ethan-1-one (154ak)

The general procedure B was followed using ketimine 135a (152 mg, 0.50 mmol) and bromocyclooctane (136k, $287 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/Et ${ }_{2} \mathrm{O} 50: 1$) yielded 154ak ($82.7 \mathrm{mg}, 67 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.87(\mathrm{dd}, J=7.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{ddd}, J=8.5,4.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ (dd, J = 9.9, 8.5 Hz, 1H), 3.20-3.05 (m, 1H), 2.57 (s, 3H), 1.90-1.73 (m, 6H), 1.73-1.50 (m, 8H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=196.7\left(\mathrm{C}_{\mathrm{q}}\right), 163.1\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=253 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 137.2\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=16 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $133.4\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 128.8\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=7 \mathrm{~Hz}, \mathrm{CH}\right), 127.8\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}, \mathrm{CH}\right), 115.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24 \mathrm{~Hz}\right.$, $\mathrm{CH}), 37.3(\mathrm{CH}), 33.4\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{3}\right), 26.4\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right)$.
${ }^{19}$ F-NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=(-110.5)-(-110.7)(\mathrm{m})$.

IR (ATR): $\tilde{v}=2919,2852,1682,1585,1492,1355,1283,1108,822 \mathrm{~cm}^{-1}$.
MS (EI) m / z (relative intensity): 248 (47) [M] ${ }^{+}, 233$ (38) [M-Me] ${ }^{+}, 164$ (69), 149 (100).
HR-MS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{FO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$249.1649, found 249.1654.

1-[3-Cycloheptyl-4-(piperidin-1-yl)phenyl]ethan-1-one (154nh)

The general procedure B was followed using ketimine 135n ($184 \mathrm{mg}, 0.50 \mathrm{mmol}$) and bromocycloheptane ($136 \mathrm{~h}, 266 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , to the reaction mixture was added $\mathrm{HCl}(2 \mathrm{~N}, 3.0 \mathrm{~mL})$ and the resulting mixture was stirred for additional 3 h , and then neutralized with sat. aq. NaHCO_{3} solution until pH 8. The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the residue by column chromatography (n-hexane/EtOAc 95:5) yielded 154nh (105 mg, 70\%) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.83(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{tt}, \mathrm{J}=10.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=5.3,5.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.45(\mathrm{~m}$, 18H).
${ }^{13} \mathrm{C}-$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=197.6\left(\mathrm{C}_{\mathrm{q}}\right), 156.0\left(\mathrm{C}_{\mathrm{q}}\right), 145.1\left(\mathrm{C}_{\mathrm{q}}\right), 132.2\left(\mathrm{C}_{\mathrm{q}}\right), 127.4(\mathrm{CH}), 126.9(\mathrm{CH})$, $119.0(\mathrm{CH}), 54.2\left(\mathrm{CH}_{2}\right), 38.9(\mathrm{CH}), 36.8\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{3}\right), 24.3$ $\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2917,2852,1676,1595,1354,1266,920,827,599 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 299 (100) [M] ${ }^{+}, 284$ (19) [M-Me] ${ }^{+}, 242$ (30), 228 (35), 217 (35), 200 (19), 186 (38), 172 (27), 144 (14), 130 (14), 43 (42).

HR-MS (EI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}^{+}[\mathrm{M}]^{+}$299.2244, found 299.2260.

1-(3-Cycloheptyl-4-morpholinophenyl)ethan-1-one (154oh)

The general procedure B was followed using ketimine 1350 ($186 \mathrm{mg}, 0.50 \mathrm{mmol}$) and bromocycloheptane ($136 \mathrm{~h}, 266 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , to the reaction mixture was added $\mathrm{HCl}(2 \mathrm{~N}, 3.0 \mathrm{~mL})$ and the resulting mixture was stirred for additional 3 h , and then neutralized with sat. aq. NaHCO_{3} solution until pH 8 . The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the residue by column chromatography (n-hexane/EtOAc 4:1) yielded 154oh ($88.0 \mathrm{mg}, 58 \%$) as a yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.85(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{dd}, \mathrm{J}=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.83(\mathrm{~m}, 4 \mathrm{H}), 3.18(\mathrm{tt}, \mathrm{J}=9.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.88(\mathrm{~m}, 4 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.90-$ $1.43(\mathrm{~m}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=197.3\left(\mathrm{C}_{\mathrm{q}}\right), 154.0\left(\mathrm{C}_{\mathrm{q}}\right), 145.1\left(\mathrm{C}_{\mathrm{q}}\right), 133.0\left(\mathrm{C}_{\mathrm{q}}\right), 127.6(\mathrm{CH}), 126.9(\mathrm{CH})$, $119.2(\mathrm{CH}), 67.3\left(\mathrm{CH}_{2}\right), 53.2\left(\mathrm{CH}_{2}\right), 39.1(\mathrm{CH}), 36.8\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{3}\right)$. IR (ATR): $\tilde{v}=2915,2850,1677,1595,1450,1355,1235,1114,919,828 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 301 (100) [M] ${ }^{+}, 286$ (11) [M-Me] ${ }^{+}, 244$ (18), 228 (29), 219 (28), 200 (24), 186 (25), 172 (40), 144 (16), 130 (15), 43 (37).

HR-MS (EI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}]^{+} 301.2036$, found 301.2047.

1-(4-iso-Propylnaphthalen-2-yl)ethan-1-one (154ql)

The general procedure B was followed using ketimine $\mathbf{1 3 5 q}$ ($168 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 2-bromopropane ($136 \mathrm{l}, 185 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/Et ${ }_{2} \mathrm{O} 50: 1$) yielded $154 \mathrm{ql}(89.3 \mathrm{mg}, 84 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.32(\mathrm{br} s, 1 \mathrm{H}), 8.15(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.99$ (dd, $J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.64 (ddd, $J=8.5,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.54 (ddd, $J=8.1,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.75 (hept, J = 6.9 Hz, 1H), 2.73 (s, 3H), 1.44 (d, J = 6.9 Hz, 6H).
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=198.2\left(\mathrm{C}_{\mathrm{q}}\right), 145.3\left(\mathrm{C}_{q}\right), 134.0\left(\mathrm{C}_{\mathrm{q}}\right), 133.6\left(\mathrm{C}_{q}\right), 133.0\left(\mathrm{C}_{q}\right), 130.4(\mathrm{CH})$, $128.7(\mathrm{CH}), 128.2(\mathrm{CH}), 126.0(\mathrm{CH}), 123.3(\mathrm{CH}), 119.4(\mathrm{CH}), 28.8(\mathrm{CH}), 26.6\left(\mathrm{CH}_{3}\right), 23.4\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3063,2960,1671,1397,1271,1229,1194,1142,882 \mathrm{~cm}^{-1}$.
m.p.: $60-62{ }^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 212 (58) [M] ${ }^{+}, 197$ (100) [M-Me] ${ }^{+}, 152$ (25), 115 (8).
HR-MS (EI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}^{+}[\mathrm{M}]^{+}$212.1196, found 212.1209.

1-[4-(sec-Butyl)naphthalen-2-yl]ethan-1-one (154qm)

The general procedure B was followed using ketimine 135 q ($168 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 2-bromobutane ($136 \mathrm{~m}, 206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 50: 1$) yielded $154 \mathrm{qm}(87.7 \mathrm{mg}, 78 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.32(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.01-7.94(\mathrm{~m}, 2 \mathrm{H})$, 7.63 (ddd, J = 8.5, 6.8, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.54 (ddd, J = 8.0, $6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.52(\mathrm{dt}, J=6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.73(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=198.2\left(\mathrm{C}_{\mathrm{q}}\right), 144.5\left(\mathrm{C}_{\mathrm{q}}\right), 134.1\left(\mathrm{C}_{\mathrm{q}}\right), 134.0\left(\mathrm{C}_{q}\right), 133.0\left(\mathrm{C}_{\mathrm{q}}\right), 130.4(\mathrm{CH})$, $128.6(\mathrm{CH}), 128.1(\mathrm{CH}), 126.0(\mathrm{CH}), 123.3(\mathrm{CH}), 120.1(\mathrm{CH}), 35.5(\mathrm{CH}), 30.5\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{3}\right), 21.1$ $\left(\mathrm{CH}_{3}\right), 12.3\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3056,2961,1674,1622,1425,1396,1278,1174,885 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 226 (52) [M] ${ }^{+}, 197$ (100) [M-Et] ${ }^{+}, 153$ (25), 127 (10).

HR-MS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}^{+}[\mathrm{M}]^{+}$226.1352, found 226.1365.

1-[4-(Pentan-2-yl)naphthalen-2-yl]ethan-1-one (154qn)

The general procedure B was followed using ketimine 135q ($168 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 2-bromopentane ($136 \mathrm{n}, 227 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 50: 1$) yielded $154 \mathrm{qn}(91.8 \mathrm{mg}, 77 \%$) as a light yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.31(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.95(\mathrm{~m}, 2 \mathrm{H})$, 7.63 (ddd, $J=8.6,6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55$ (ddd, $J=8.0,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dt}, J=6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.74(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.25(\mathrm{~m}, 5 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=198.2\left(\mathrm{C}_{\mathrm{q}}\right), 144.8\left(\mathrm{C}_{\mathrm{q}}\right), 134.0\left(\mathrm{C}_{\mathrm{q}}\right), 134.0\left(\mathrm{C}_{\mathrm{q}}\right), 133.0\left(\mathrm{C}_{q}\right), 130.5(\mathrm{CH})$, $128.6(\mathrm{CH}), 128.1(\mathrm{CH}), 126.0(\mathrm{CH}), 123.2(\mathrm{CH}), 120.2(\mathrm{CH}), 40.0\left(\mathrm{CH}_{2}\right), 33.6(\mathrm{CH}), 26.6\left(\mathrm{CH}_{3}\right), 21.6$ $\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right)$. j

IR (ATR): $\tilde{v}=2957,2928,1675,1623,1453,1375,1277,1194,885 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 240 (53) [M] ${ }^{+}, 197$ (100) [M-Pr] ${ }^{+}, 153$ (26), 127 (11).

HR-MS (EI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}^{+}[\mathrm{M}]^{+}$240.1509, found 240.1523.

1-[4-(Octan-2-yl)naphthalen-2-yl]ethan-1-one (154qo)

The general procedure B was followed using ketimine 135 q ($168 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 2-bromooctane (1360, $290 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/Et ${ }_{2} \mathrm{O} 50: 1$) yielded 154 qo ($111.9 \mathrm{mg}, 79 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.32(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.01-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.63$ (ddd, J $=8.5,6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{ddd}, J=8.0,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dt}, J=6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H})$, $1.93-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.16(\mathrm{~m}, 8 \mathrm{H}), 0.92-0.75(\mathrm{~m}$, 3 H).
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=198.2\left(\mathrm{C}_{\mathrm{q}}\right), 144.8\left(\mathrm{C}_{\mathrm{q}}\right), 134.0\left(\mathrm{C}_{\mathrm{q}}\right), 134.0\left(\mathrm{C}_{\mathrm{q}}\right), 133.0\left(\mathrm{C}_{\mathrm{q}}\right), 130.5(\mathrm{CH})$, $128.6(\mathrm{CH}), 128.1(\mathrm{CH}), 126.0(\mathrm{CH}), 123.2(\mathrm{CH}), 120.1(\mathrm{CH}), 37.8\left(\mathrm{CH}_{2}\right), 33.9(\mathrm{CH}), 31.8\left(\mathrm{CH}_{2}\right), 29.5$ $\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2956,2954,1677,1454,1352,1276,1195,885 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 282 (50) [M] ${ }^{+}, 191$ (100), 153 (22), 127 (5).

HR-MS (EI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}^{+}[\mathrm{M}]^{+}$282.1978, found 282.1994.

1-(4-CycloheptyInaphthalen-2-yl)ethan-1-one (154qh)

The general procedure B was followed using ketimine 135q (168 mg, 0.50 mmol) and bromocycloheptane (136h, $266 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/Et ${ }_{2} \mathrm{O} 50: 1$) yielded 154qh (117.9 mg, 89\%) as a light yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.59$ $(\mathrm{m}, 1 \mathrm{H}), 7.57-7.49(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.14-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.99-$ 1.56 (m, 10H).
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.2\left(\mathrm{C}_{\mathrm{q}}\right), 146.5\left(\mathrm{C}_{\mathrm{q}}\right), 134.0\left(\mathrm{C}_{\mathrm{q}}\right), 133.4\left(\mathrm{C}_{\mathrm{q}}\right), 133.0\left(\mathrm{C}_{\mathrm{q}}\right), 130.5(\mathrm{CH})$, $128.5(\mathrm{CH}), 128.2(\mathrm{CH}), 126.0(\mathrm{CH}), 123.4(\mathrm{CH}), 120.3(\mathrm{CH}), 41.2(\mathrm{CH}), 36.3\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 27.7$ $\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2919,2852,1674,1457,1397,1260,1194,885 \mathrm{~cm}^{-1}$.
MS (EI) m / z (relative intensity): 266 (100) [M] ${ }^{+}, 209$ (16), 183 (28), 153 (40).
HR-MS (EI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}^{+}[\mathrm{M}]^{+}$266.1665, found 266.1661.

tert-Butyl 4-(3-acetyInaphthalen-1-yl)piperidine-1-carboxylate (154qp)

The general procedure B was followed using ketimine 135q (168 mg , 0.50 mmol) and tert-butyl 4-bromopiperidine-1-carboxylate (136p, 396 mg , 1.50 mmol) was added by syringe pump over 5.5 h at $140^{\circ} \mathrm{C}$. After 20 h , to the reaction mixture was added $\mathrm{HCl}(2 \mathrm{~N}, 3.0 \mathrm{~mL})$ and the resulting mixture was stirred for additional 3 h , and then neutralized with sat. aq. NaHCO_{3} solution until pH 8. The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the residue by column chromatography (n-pentane/Et ${ }_{2} \mathrm{O}$ 3:1) yielded $\mathbf{1 5 4 q p}$ ($96.3 \mathrm{mg}, 54 \%$) as a white solid
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.32(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.01-7.96(\mathrm{~m}, 1 \mathrm{H})$, 7.93 (d, J = $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.64 (ddd, $J=8.4,6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.55 (ddd, $J=8.0,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.34 (br d, $J=13.1 \mathrm{~Hz}, 2 \mathrm{H}$), $3.46(\mathrm{tt}, J=11.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{t}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.92$ (m, 2H), 1.92-1.72 (m, 2H), $1.50(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=197.9\left(\mathrm{C}_{\mathrm{q}}\right), 154.6\left(\mathrm{C}_{\mathrm{q}}\right), 142.2\left(\mathrm{C}_{\mathrm{q}}\right), 134.0\left(\mathrm{C}_{\mathrm{q}}\right), 133.4\left(\mathrm{C}_{\mathrm{q}}\right), 133.1\left(\mathrm{C}_{\mathrm{q}}\right)$, $130.6(\mathrm{CH}), 129.2(\mathrm{CH}), 128.4(\mathrm{CH}), 126.2(\mathrm{CH}), 122.8(\mathrm{CH}), 120.2(\mathrm{CH}), 79.5\left(\mathrm{C}_{\mathrm{q}}\right), 44.6\left(\mathrm{CH}_{2}\right), 37.8$ (CH), $32.8\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{3}\right), 26.5\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2973,2855,1673,1426,1363,1228,1163,1122,891,753 \mathrm{~cm}^{-1}$.
m.p.: $139-140^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 353 (10) [M] ${ }^{+}, 280$ (10) [M-Ot-Bu] ${ }^{+}, 253$ (46) [M-Boc] ${ }^{+}, 198$ (21), 165 (9), 152 (14), 83 (17), 69 (9), 57 (100), 43 (61).

HR-MS (EI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}]^{+} 353.1985$, found 353.1980.

1-[4-Fluoro-3-(tetrahydro-2H-pyran-4-yl)phenyl]ethan-1-one (154aq)

 The general procedure B was followed using ketimine 135a ($152 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 4-bromotetrahydro-2H-pyran (136q, $248 \mathrm{mg}, 1.50 \mathrm{mmol}$. After 20 h , purification by column chromatography (n-pentane/Et ${ }_{2} \mathrm{O} 10: 1$ to $3: 1$) yielded 154aq ($46.7 \mathrm{mg}, 42 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.88(\mathrm{dd}, \mathrm{J}=7.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{ddd}, J=8.5,5.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ (dd, $J=9.9,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.08 (ddt, $J=11.7,4.3,1.1 \mathrm{~Hz}, 2 \mathrm{H}$), $3.55(\mathrm{ddd}, J=11.8,11.7,2.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.13 (ddt, J = 12.1, 7.6, $3.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.57(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.71(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=196.6\left(\mathrm{C}_{\mathrm{q}}\right), 163.7\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=254 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 133.7\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $132.9\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=15 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 128.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}, \mathrm{CH}\right), 128.3\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=7 \mathrm{~Hz}, \mathrm{CH}\right), 115.6\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=\right.$ $24 \mathrm{~Hz}, \mathrm{CH}), 68.2\left(\mathrm{CH}_{2}\right), 34.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2 \mathrm{~Hz}, \mathrm{CH}\right), 32.3\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{3}\right)$.
${ }^{19}$ F-NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-111.5(\mathrm{ddd}, \mathrm{J}=9.9,7.3,5.1 \mathrm{~Hz})$.

IR (ATR): $\tilde{v}=2952,2843,1682,1586,1494,1356,1234,1087,821 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 222 (44) [M] ${ }^{+}$, 207 (33) [M-Me] ${ }^{+}, 178$ (31), 163 (71), 149 (60), 133 (14), 101 (19), 58 (17), 43 (100).

HR-MS (EI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{FO}_{2}{ }^{+}[\mathrm{M}]^{+}$222.1051, found 222.1050.

tert-Butyl 4-(5-acetyl-2-fluorophenyl)piperidine-1-carboxylate (154ap)

The general procedure B was followed using ketimine 135a (152 mg, 0.50 mmol) and tert-butyl 4-bromopiperidine-1-carboxylate (136p, 396 mg , 1.50 mmol) was added in 3 portions after 3 h and 6 h at $140^{\circ} \mathrm{C}$. After 20 h , to the reaction mixture was added $\mathrm{HCl}(2 \mathrm{~N}, 3.0 \mathrm{~mL})$ and the resulting mixture was stirred for additional 3 h , and then neutralized with sat. aq. NaHCO_{3} solution until pH 8 . The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the residue by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 3: 1$) yielded 154ap ($83.1 \mathrm{mg}, 52 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.86(\mathrm{dd}, J=7.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{ddd}, J=8.5,5.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$ (dd, $J=9.9,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{tt}, J=12.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=13.0$, $12.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 1.81\left(\mathrm{~d}_{\mathrm{AB}}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.69\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{ddd}, J=12.6,12.6,12.3,4.1 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $1.49(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=196.4\left(\mathrm{C}_{\mathrm{q}}\right), 163.5\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=253 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 154.6\left(\mathrm{C}_{\mathrm{q}}\right), 133.7\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=\right.$ $\left.3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 132.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=15 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 128.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}, \mathrm{CH}\right), 128.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7 \mathrm{~Hz}, \mathrm{CH}\right), 115.6(\mathrm{~d}$, $\left.{ }^{2} J_{C-F}=24 \mathrm{~Hz}, \mathrm{CH}\right), 79.6\left(\mathrm{C}_{\mathrm{q}}\right), 44.3\left(\mathrm{CH}_{2}\right), 35.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2 \mathrm{~Hz}, \mathrm{CH}\right), 31.7\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{3}\right), 26.6\left(\mathrm{CH}_{3}\right)$.
${ }^{19}$ F-NMR (282 MHz, CDCl 3): $\delta=-111.5$ (ddd, $J=9.9,7.2,5.0 \mathrm{~Hz}$).
IR (ATR): $\tilde{v}=2975,2930,1685,1587,1420,1365,1233,1166,1021,819 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 321 (2) [M] ${ }^{+}, 266$ (7) [M-t-Bu] ${ }^{+}, 248$ (21) [M-t-Bu-Me] ${ }^{+}, 221$ (51), 83 (9), 57 (100), 43 (40).

HR-MS (EI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{FNO}_{3}{ }^{+}[\mathrm{M}]^{+}$321.1735, found 321.1742.

1-[4-Fluoro-3-(tetrahydrofuran-3-yl)phenyl]ethan-1-one (154ar)

The general procedure B was followed using ketimine 135a ($152 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 3-bromotetrahydrofuran (136r, $226 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O}$ 10:1 to 4:1) yielded 154ar ($26.1 \mathrm{mg}, 25 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.93(\mathrm{dd}, J=7.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{ddd}, J=8.5,5.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10$ (dd, $J=9.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}$) , 4.19-4.12 (m, 1H), 4.08 (ddd, $J=8.3,8.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.94 (ddd, $J=8.3$, $7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{p}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.13-$ $2.01(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=196.4\left(\mathrm{C}_{\mathrm{q}}\right), 163.7\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=254 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 133.7\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $130.0\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=15 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 128.8\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}, \mathrm{CH}\right), 128.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=6 \mathrm{~Hz}, \mathrm{CH}\right), 115.6\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=\right.$ $24 \mathrm{~Hz}, \mathrm{CH}), 73.0\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 68.2\left(\mathrm{CH}_{2}\right), 37.9\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=1.6 \mathrm{~Hz}, \mathrm{CH}\right), 33.0\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{3}\right)$.
${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-109.6(\mathrm{ddd}, \mathrm{J}=9.7,7.3,5.0 \mathrm{~Hz})$.
IR (ATR): $\tilde{v}=2876,1684,1588,1496,1359,1254,1063,830,572 \mathrm{~cm}^{-1}$.

MS (ESI) m / z (relative intensity): 231 (100) $[\mathrm{M}+\mathrm{Na}]^{+}, 209(41)[\mathrm{M}+\mathrm{H}]^{+}$.
HR-MS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{FO}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$231.0792, found 231.0794.

4-Acetyl-2-cycloheptylphenyl 4-cyanobenzoate (154vh)

The general procedure B was followed using ketimine 135v (108 mg, $0.25 \mathrm{mmol})$ and bromocycloheptane ($136 \mathrm{~h}, 133 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 9:1) yielded 154vh ($10.2 \mathrm{mg}, 11 \%$) as a yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.32(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.87 (d, J = $8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.84 (dd, J=8.4, 2.2 Hz, 1H), $7.22(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.85$ (tt, J = 10.4, 3.3 Hz, 1H), 2.62 (s, 3H), 1.95-1.37 (m, 12H).
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=197.0\left(\mathrm{C}_{\mathrm{q}}\right)$, $163.1\left(\mathrm{C}_{\mathrm{q}}\right), 151.0\left(\mathrm{C}_{\mathrm{q}}\right), 141.6\left(\mathrm{C}_{\mathrm{q}}\right), 135.5\left(\mathrm{C}_{\mathrm{q}}\right), 132.8\left(\mathrm{C}_{\mathrm{q}}\right)$, 132.5 (CH), 130.5 (CH), $128.0(\mathrm{CH}), 127.1(\mathrm{CH}), 122.4(\mathrm{CH}), 117.6\left(\mathrm{C}_{\mathrm{q}}\right), 117.3\left(\mathrm{C}_{q}\right), 40.4(\mathrm{CH}), 35.5$ $\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2924,2856,2232,1743,1684,1239,1081,1018,761 \mathrm{~cm}^{-1}$.

MS (ESI) m/z (relative intensity): 384 (100) [M+Na] ${ }^{+}, 362(47)[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 384.1570$, found 384.1575.

5.3.2.2 Mechanistic Studies

5.3.2.2.1 Intermolecular Competition Experiments

Ketimine 135b (143 mg, 0.50 mmol), 135a ($152 \mathrm{mg}, 0.50 \mathrm{mmol}$), $\left[\mathrm{RuCl}_{2}(p \text {-cymene) }]_{2}(15.3 \mathrm{mg}\right.$, $25.0 \mu \mathrm{~mol}, 5.0 \mathrm{~mol} \%), 1-\mathrm{AdCO}_{2} \mathrm{H}\left(12,27.3 \mathrm{mg}, 0.15 \mathrm{mmol}, 30 \mathrm{~mol} \%\right.$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (138 mg , 1.00 mmol) were placed in a pre-dried 25 mL pressure tube. The tube was evacuated and purged with N_{2} for three times. Bromocycloheptane ($136 \mathrm{~h}, 70.8 \mathrm{mg}, 0.40 \mathrm{mmol}$) and $\mathrm{PhCMe}_{3}(2.0 \mathrm{~mL})$ were then added and the mixture was stirred at $120^{\circ} \mathrm{C}$ for 6 h . At ambient temperature, the
resulting mixture was filtered and washed with EtOAc. The filtrate was concentrated in vacuo. The crude mixture was analyzed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy using 1,3,5-trimethoxybenzene (84.1 mg , 0.50 mmol) as the internal standard (Figure 14). The mixture was dissolved with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and then treated with $\mathrm{HCl}(2 \mathrm{~N}, 3.0 \mathrm{~mL})$. The resulting mixture was stirred at ambient temperature for 3 h , and then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude mixture was again analyzed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy (Figure 15).

Figure 14: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum for a crude mixture before hydrolysis ($\mathrm{H}=\bullet, \mathrm{F}=\bullet$).

Figure 15: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum for a crude mixture after hydrolysis $(154 \mathrm{bh}(\mathrm{H})=\bullet, 154 \mathrm{ah}(\mathrm{F})=\bullet)$.

Ketimine 135e (150 mg, 0.50 mmol$), 135 \mathrm{u}(177 \mathrm{mg}, 0.50 \mathrm{mmol}),\left[\mathrm{RuCl}_{2}(p-c y m e n e)\right]_{2}(15.3 \mathrm{mg}$, $25.0 \mu \mathrm{~mol}, 5.0 \mathrm{~mol} \%), 1-\mathrm{AdCO}_{2} \mathrm{H}\left(12,27.3 \mathrm{mg}, 0.15 \mathrm{mmol}, 30 \mathrm{~mol} \%\right.$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}$, 1.00 mmol) were placed in a pre-dried 25 mL pressure tube. The tube was evacuated and purged with N_{2} for three times. Bromocycloheptane ($136 \mathrm{~h}, 70.8 \mathrm{mg}, 0.40 \mathrm{mmol}$) and $\mathrm{PhCMe}_{3}(2.0 \mathrm{~mL})$ were then added and the mixture was stirred at $120^{\circ} \mathrm{C}$ for 6 h . At ambient temperature, the resulting mixture was filtered and washed with EtOAc. The filtrate was concentrated in vacuo. The crude mixture was analyzed by ${ }^{1} \mathrm{H}$-NMR spectroscopy using 1,3,5-trimethoxybenzene (84.1 mg , 0.50 mmol) as the internal standard (Figure 16). The mixture was dissolved with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and then treated with $\mathrm{HCl}(2 \mathrm{~N}, 3.0 \mathrm{~mL})$. The resulting mixture was stirred at ambient temperature for

3 h , and then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude mixture was again analyzed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy (Figure 17).

Figure 16: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum for a crude mixture before hydrolysis $\left(\mathrm{CH}_{3}=\bullet, \mathrm{CF}_{3}=\bullet\right)$.

Figure 17: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum for a crude mixture after hydrolysis $\left(154 \mathrm{eh}\left(\mathrm{CH}_{3}\right)=\bullet, 154 \mathbf{u h}\left(\mathrm{CF}_{3}\right)=\bullet\right)$.

5.3.2.2.2 Intramolecular Competition Experiment

Alkyl bromide 136h (1.2 equiv)

The general procedure B was followed using ketimine 135 w ($183 \mathrm{mg}, 0.50 \mathrm{mmol}$) and bromocycloheptane $(136 \mathrm{~h}, 107 \mathrm{mg}, 0.60 \mathrm{mmol})$. After 20 h , purification by column chromatography (n-hexane/EtOAc 100:1) followed by recycling preparative HPLC yielded monoalkylated $\mathbf{1 5 4 w h}(43.0 \mathrm{mg}, 29 \%$) as a colorless oil as well as dialkylated $\mathbf{1 5 4} \mathbf{w h}$ ($9.1 \mathrm{mg}, 5 \%$) as a colorless oil and recovered unreacted ketone ($43.2 \mathrm{mg}, 43 \%$) as a colorless oil.

Alkyl bromide 136h (1.5 equiv)

The general procedure B was followed using ketimine 135 w ($183 \mathrm{mg}, 0.50 \mathrm{mmol}$) and bromocycloheptane $(136 \mathrm{~h}, 133 \mathrm{mg}, 0.75 \mathrm{mmol})$. After 20 h , purification by column chromatography (n-hexane/EtOAc 100:1) followed by recycling preparative HPLC yielded monoalkylated $154 \mathbf{w h}(68.1 \mathrm{mg}, 46 \%$) as a colorless oil as well as dialkylated $\mathbf{1 5 4} \mathbf{w h}$ (62.2 mg , 31%) as a colorless oil and recovered unreacted ketone ($8.1 \mathrm{mg}, 8 \%$) as a colorless oil.

(3-Cycloheptyl-4-fluorophenyl)(phenyl)methanone (154wh)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.78-7.75(\mathrm{~m}, 3 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.47$ $(\mathrm{m}, 2 \mathrm{H}), 7.07(\mathrm{dd}, J=9.9,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{tt}, \mathrm{J}=10.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.88(\mathrm{~m}$, $2 H), 1.84-1.77(m, 2 H), 1.75-1.65(m, 4 H), 1.63-1.53(m, 4 H)$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=195.7\left(\mathrm{C}_{\mathrm{q}}\right), 162.8\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=253 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 137.7\left(\mathrm{C}_{\mathrm{q}}\right)$,
$136.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=16 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 133.6\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 132.3(\mathrm{CH}), 130.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7 \mathrm{~Hz}, \mathrm{CH}\right), 129.9$ (CH), $129.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}, \mathrm{CH}\right), 128.3(\mathrm{CH}), 115.2\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24 \mathrm{~Hz}, \mathrm{CH}\right), 39.5(\mathrm{CH}), 35.2\left(\mathrm{CH}_{2}\right), 27.7$ $\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right)$.
${ }^{19}$ F-NMR (470 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=(-111.7)-(-111.8)(\mathrm{m})$.

IR (ATR): $\tilde{v}=2924,2855,1657,1599,1490,1446,1281,1092,713 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 296 (92) [M] ${ }^{+}, 226$ (68), 149 (53), 105 (100).
HR-MS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{FO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$297.1649, found 297.1654.
(3-Cycloheptyl-4-fluorophenyl)(3-cycloheptylphenyl)methanone (154wh')

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.74(\mathrm{dd}, J=7.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{ddd}, \mathrm{J}=8.5$, $5.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.60-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.56$ (ddd, $J=7.4,1.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42$ (ddd, $J=7.6,1.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.38 (dd, $J=7.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.08 (dd, $J=9.9$, $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{tt}, J=10.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{tt}, J=10.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-$ $1.89(\mathrm{~m}, 4 \mathrm{H}), 1.85-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.74-1.65(\mathrm{~m}, 8 \mathrm{H}), 1.63-1.51(\mathrm{~m}, 8 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=195.9\left(\mathrm{C}_{\mathrm{q}}\right), 162.7\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=252 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 150.1\left(\mathrm{C}_{\mathrm{q}}\right), 137.7\left(\mathrm{C}_{\mathrm{q}}\right), 136.5$ $\left(\mathrm{d},{ }^{2} J_{C-F}=16 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 133.8\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 130.9(\mathrm{CH}), 130.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=7 \mathrm{~Hz}, \mathrm{CH}\right), 129.6\left(\mathrm{~d},{ }^{3} J_{C-F}=\right.$ $10 \mathrm{~Hz}, \mathrm{CH}), 128.3(\mathrm{CH}), 128.2(\mathrm{CH}), 127.3(\mathrm{CH}), 115.2\left(\mathrm{~d}^{2}{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24 \mathrm{~Hz}, \mathrm{CH}\right), 46.9(\mathrm{CH}), 39.3(\mathrm{CH}), 36.8$ $\left(\mathrm{CH}_{2}\right), 35.3\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right)$.
${ }^{19}$ F-NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=(-112.1)-(-112.2)(\mathrm{m})$.

IR (ATR): $\tilde{v}=2919,1657,1583,1284,1246,1170,1091,833,806,755 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 392 (100) [M] ${ }^{+}, 310$ (22), 219 (57), 201 (22), 149 (24), 55 (19).

HR-MS (EI): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{FO}^{+}[\mathrm{M}]^{+} 392.2510$, found 392.2523.

5.3.2.2.3 Reactions with Radical Scavengers

Ketimine 135a ($152 \mathrm{mg}, 0.50 \mathrm{mmol}$), [$\mathrm{RuCl}_{2}(p-\text { cymene) }]_{2}(15.3 \mathrm{mg}, 25.0 \mu \mathrm{~mol}, 5.0 \mathrm{~mol} \%$), 1- $\mathrm{AdCO}_{2} \mathrm{H}(12,27.3 \mathrm{mg}, 0.15 \mathrm{mmol}, 30 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{mmol})$ and BHT (110 mg, 0.50 mmol) were placed in a pre-dried 25 mL pressure tube. The tube was evacuated and purged with N_{2} for three times. Bromocycloheptane (136h, $266 \mathrm{mg}, 1.50 \mathrm{mmol}$) and $\mathrm{PhCMe}_{3}(2.0 \mathrm{~mL})$ were then added and the mixture was stirred at $120^{\circ} \mathrm{C}$ for 20 h . At ambient temperature, $\mathrm{HCl}(2 \mathrm{~N}$, 3.0 mL) was added, and the resulting mixture was stirred for additional 3 h , and then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the residue by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 50: 1$) yielded product 154ah ($91.0 \mathrm{mg}, 78 \%$) as a colorless oil.

Ketimine 135a ($152 \mathrm{mg}, 0.50 \mathrm{mmol}$), $\left[\mathrm{RuCl}_{2}(p-\text { cymene })\right]_{2}(15.3 \mathrm{mg}, 25.0 \mu \mathrm{~mol}, 5.0 \mathrm{~mol} \%$), 1- $\mathrm{AdCO}_{2} \mathrm{H}(12,27.3 \mathrm{mg}, 0.15 \mathrm{mmol}, 30 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{mmol})$ and TEMPO (78.5 mg , 0.50 mmol) were placed in a pre-dried 25 mL pressure tube. The tube was evacuated and purged with N_{2} for three times. Bromocycloheptane ($136 \mathrm{~h}, 266 \mathrm{mg}, 1.50 \mathrm{mmol}$) and $\mathrm{PhCMe}_{3}(2.0 \mathrm{~mL})$ were then added and the mixture was stirred at $120^{\circ} \mathrm{C}$ for 20 h . At ambient temperature, $\mathrm{HCl}(2 \mathrm{~N}$,
3.0 mL) was added, and the resulting mixture was stirred for additional 3 h , and then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the residue by column chromatography (n-pentane/Et $\mathrm{O}_{2} \mathrm{O} 50: 1$) yielded TEMPO-adduct 156 ($20.0 \mathrm{mg}, 16 \%$) as a colorless oil.

1-(Cycloheptyloxy)-2,2,6,6-tetramethylpiperidine (156)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.82(\mathrm{tt}, \mathrm{J}=8.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.95(\mathrm{~m}, 2 \mathrm{H})$, 1.71-1.41 (m, 13H), 1.40-1.22 (m, 3H), $1.11(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=83.8(\mathrm{CH}), 59.7\left(\mathrm{C}_{\mathrm{q}}\right), 40.3\left(\mathrm{CH}_{2}\right), 34.4\left(\mathrm{CH}_{3}\right), 33.5$ $\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 23.4\left(\mathrm{CH}_{2}\right), 20.4\left(\mathrm{CH}_{3}\right), 17.3\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2924,2856,1458,1359,1132,1006,973 \mathrm{~cm}^{-1}$.

MS (ESI) m/z (relative intensity): 254 (100) [$\mathrm{M}+\mathrm{H}]^{+}, 126$ (33).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$254.2478, found 254.2479.

The spectral data are in accordance with those reported in the literature. ${ }^{[132]}$

5.3.2.2.4 Reactions with Diastereomerically Pure Alkyl Bromide 136s

The general procedure B was followed using ketimine 135a ($152 \mathrm{mg}, 0.50 \mathrm{mmol}$) and cis-1-bromo-4-(tert-butyl)cyclohexane (cis-136s, $329 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 50: 1$) yielded 154as as a mixture of cis- and trans-isomers (cis-154as/trans-154as 43:57, $104 \mathrm{mg}, 75 \%$).

The general procedure B was followed using ketimine 135 ($152 \mathrm{mg}, 0.50 \mathrm{mmol}$) and trans-1-bromo-4-(tert-butyl)cyclohexane (trans-136s, $329 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 50: 1$) yielded 154 as as a mixture of cis- and trans-isomers (cis-154as/trans-154as 43:57, $71.2 \mathrm{mg}, 51 \%$).

1-\{3-[trans-4-(tert-Butyl)cyclohexyl]-4-fluorophenyl\}ethan-1-one (trans-154as)

White solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.88(\mathrm{dd}, \mathrm{J}=7.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ (ddd, $\mathrm{J}=$ $8.5,4.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.05 (dd, $J=9.9,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{tt}, J=12.2,3.4 \mathrm{~Hz}$, 1H), $2.58(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.05(\mathrm{~m}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=196.7\left(\mathrm{C}_{\mathrm{q}}\right), 163.7\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=253 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 134.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=16 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $133.5\left(\mathrm{~d},{ }^{4} J_{C-F}=3 \mathrm{~Hz}, C_{q}\right), 128.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7 \mathrm{~Hz}, \mathrm{CH}\right), 128.0\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}, \mathrm{CH}\right), 115.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24 \mathrm{~Hz}\right.$, $\mathrm{CH}), 47.7(\mathrm{CH}), 37.2\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2 \mathrm{~Hz}, \mathrm{CH}\right), 33.3\left(\mathrm{CH}_{2}\right), 32.5\left(\mathrm{C}_{\mathrm{q}}\right), 27.6\left(\mathrm{CH}_{3}\right), 27.6\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{3}\right)$.
${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-111.5(\mathrm{ddd}, \mathrm{J}=9.9,7.1,4.9 \mathrm{~Hz})$.

IR (ATR): $\tilde{v}=2940,2859,1681,1606,1491,1354,1281,1116,825,570 \mathrm{~cm}^{-1}$.
m.p.: $54-55^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 276 (32) [M] ${ }^{+}, 261$ (11) [M-Me] ${ }^{+}, 220$ (71) [M-Bu] ${ }^{+}, 205$ (100), 177 (25), 151 (34), 57 (94), 43 (96).

HR-MS (EI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{FO}^{+}[\mathrm{M}]^{+} 276.1884$, found 276.1896.

1-\{3-[cis-4-(tert-Butyl)cyclohexyl]-4-fluorophenyl\}ethan-1-one (cis-154as)

 Colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.11$ (ddd, $\left.J=7.6,2.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.79$ (dddd, J $=8.5,4.8,2.3,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, \mathrm{J}=11.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.26(\mathrm{~m}, 1 \mathrm{H})$, $2.59(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{qd}, \mathrm{J}=12.1,3.5 \mathrm{~Hz}$, 2 H), $1.14(\mathrm{tt}, \mathrm{J}=11.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=196.7\left(\mathrm{C}_{\mathrm{q}}\right), 164.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=254 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 133.8\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=14 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $132.9\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 129.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=6 \mathrm{~Hz}, \mathrm{CH}\right), 128.0\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}, \mathrm{CH}\right), 115.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=24 \mathrm{~Hz}\right.$, $\mathrm{CH})$, $47.4(\mathrm{CH}), 32.7\left(\mathrm{C}_{4}\right), 31.1(\mathrm{CH}), 29.9\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{3}\right), 26.6\left(\mathrm{CH}_{3}\right), 23.3\left(\mathrm{CH}_{2}\right)$.
${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=-107.9(\mathrm{ddd}, \mathrm{J}=11.0,7.6,4.8 \mathrm{~Hz})$.

IR (ATR): $\tilde{v}=2941,2866,1687,1584,1491,1357,1254,1112,828,575 \mathrm{~cm}^{-1}$.
MS (EI) m / z (relative intensity): 276 (2) [M] ${ }^{+}, 261$ (3) [M-Me] $]^{+}, 220$ (29) [M-Bu] ${ }^{+}, 205$ (23), 177 (14), 149 (10), 57 (26), 43 (100).

HR-MS (EI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{FO}^{+}[\mathrm{M}]^{+} 276.1884$, found 276.1884.

5.3.2.3 Late-Stage Diversifications

Remote meta-C-H Alkylations Followed by Reduction in One-Pot Fashion

N-[1-(4-CycloheptyInaphthalen-2-yl)ethyl]-3,4,5-trimethoxyaniline (157a)

The general procedure \mathbf{D} was followed using ketimine $\mathbf{1 3 5 q}$ ($168 \mathrm{mg}, 0.50 \mathrm{mmol}$) and bromocycloheptane ($136 \mathrm{~h}, 266 \mathrm{mg}, 1.50 \mathrm{mmol}$). Purification by column chromatography (n-hexane/EtOAc 10:1) yielded 157a (167 mg, 77\%) as a white solid as well as alkylated phenone $\mathbf{1 5 4} \mathbf{q}$ ($4.1 \mathrm{mg}, 3 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.10(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.52-7.40$ $(\mathrm{m}, 3 \mathrm{H}), 5.85(\mathrm{~s}, 2 \mathrm{H}), 4.59(\mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H}), 3.56-3.47$ (m, 1H), 2.14-2.03 (m, 2H), 1.96-1.75 (m, 6H), 1.75-1.63 (m, 4H), 1.61 (d, J=6.7 Hz, 3H).
${ }^{13} \mathrm{C}$-NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=153.6\left(\mathrm{C}_{\mathrm{q}}\right), 146.4\left(\mathrm{C}_{\mathrm{q}}\right), 144.2\left(\mathrm{C}_{\mathrm{q}}\right), 142.3\left(\mathrm{C}_{\mathrm{q}}\right), 134.1\left(\mathrm{C}_{\mathrm{q}}\right), 130.3\left(\mathrm{C}_{\mathrm{q}}\right)$, $129.8\left(\mathrm{C}_{\mathrm{q}}\right), 128.8(\mathrm{CH}), 125.4(\mathrm{CH}), 125.2(\mathrm{CH}), 123.1(\mathrm{CH}), 122.1(\mathrm{CH}), 121.3(\mathrm{CH}), 91.1(\mathrm{CH}), 60.9$
$\left(\mathrm{CH}_{3}\right), 55.7\left(\mathrm{CH}_{3}\right), 54.5(\mathrm{CH}), 40.9(\mathrm{CH}), 36.5\left(\mathrm{CH}_{2}\right), 36.2\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{2}\right)$, $27.6\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3362,2919,1604,1507,1446,1235,1123,1009,810,749 \mathrm{~cm}^{-1}$.
m.p.: $158-159^{\circ} \mathrm{C}$.

MS (EI) m/z (relative intensity): 433 (80) [M] ${ }^{+}, 418$ (18) [M-Me] ${ }^{+}, 251$ (100), 183 (24), 168 (35), 155 (16), 55 (24).

HR-MS (EI): m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}]^{+} 433.2611$, found 433.2628.

3,4,5-Trimethoxy- N-\{1-[4-(pentan-2-yl)naphthalen-2-yl]ethyl\}aniline (157b)

The general procedure \mathbf{D} was followed using ketimine $\mathbf{1 3 5 q}$ ($168 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 2-bromopentane ($136 \mathrm{n}, 227 \mathrm{mg}, 1.50 \mathrm{mmol}$). Purification by column chromatography (n-hexane/EtOAc $10: 1$ to $4: 1$) yielded 157b ($164 \mathrm{mg}, 80 \%$, dr 1.0:1.3) as a viscous yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, determined as a diastereomeric mixture (1.0:1.3)): $\delta=8.12-8.06(\mathrm{~m}$, 2H), 7.84-7.78 (m, 2H), 7.69-7.66 (m, 2H), 7.50-7.40 (m, 4H), 7.38 (d, J=1.7 Hz, 2H), 5.81 (s, 2H), $5.80(\mathrm{~s}, 2 \mathrm{H}), 4.58(\mathrm{qd}, \mathrm{J}=6.7,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{brs}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 6 \mathrm{H}), 3.67$ (s, 6H), 3.65-3.55 (m, 2H), 1.86-1.62 (m, 4H), $1.59(d, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.59(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.36$ (d, J = 6.9 Hz, 6H), 1.40-1.20 (m, 4H), $0.90(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, determined as a diastereomeric mixture (1.0:1.3)): $\delta=153.7\left(4 \times \mathrm{C}_{\mathrm{q}}\right)$, $144.7\left(C_{q}\right), 144.6\left(C_{q}\right), 144.2\left(C_{q}\right), 144.2\left(C_{q}\right), 142.3\left(C_{q}\right), 142.3\left(C_{q}\right), 134.2\left(2 \times C_{q}\right), 131.0\left(2 \times C_{q}\right)$, $129.9\left(2 \times \mathrm{C}_{q}\right), 128.9(\mathrm{CH}), 128.8(\mathrm{CH}), 125.4(2 \times \mathrm{CH}), 125.3(2 \times \mathrm{CH}), 123.1(2 \times \mathrm{CH}), 122.4(\mathrm{CH})$, $122.3(\mathrm{CH}), 121.3(\mathrm{CH}), 121.2(\mathrm{CH}), 91.2(2 \times \mathrm{CH}), 91.1(2 \times \mathrm{CH}), 61.0\left(2 \times \mathrm{CH}_{3}\right), 55.7\left(2 \times \mathrm{CH}_{3}\right), 55.7$ $\left(2 \times \mathrm{CH}_{3}\right), 54.6(\mathrm{CH}), 54.5(\mathrm{CH}), 40.3\left(\mathrm{CH}_{2}\right), 40.0\left(\mathrm{CH}_{2}\right), 33.5(\mathrm{CH}), 33.4(\mathrm{CH}), 24.8\left(2 \times \mathrm{CH}_{3}\right), 22.0$ $\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{2}\right), 20.8\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right), 14.2\left(\mathrm{CH}_{3}\right)$. IR (ATR): $\tilde{v}=3390,2958,1610,1509,1452,1234,1128,1012,784,748 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 407 (49) [M] ${ }^{+}, 392$ (15) [M-Me] ${ }^{+}, 295$ (14), 225 (100) [M-NHTMP] ${ }^{+}$, 183 (30) [$\left.\mathrm{NH}_{2} \mathrm{TMP}\right]^{+}, 168$ (42) [TMP] ${ }^{+}, 155$ (35), 91 (11), 43 (23).

HR-MS (EI): m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}]^{+} 407.2455$, found 407.2446 .

3,4,5-Trimethoxy-N-\{1-[4-(octan-2-yl)naphthalen-2-yl]ethyl\}aniline (157c)

 The general procedure \mathbf{D} was followed using ketimine $\mathbf{1 3 5 q}$ ($168 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 2-bromooctane $(\mathbf{1 3 6 0}, 290 \mathrm{mg}, 1.50 \mathrm{mmol})$. Purification by column chromatography (n-hexane/EtOAc $10: 1$ to $4: 1$) yielded 157c ($169 \mathrm{mg}, 75 \%$, dr 1.0:1.2) as a viscous yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, determined as a diastereomeric mixture (1.0:1.2)): $\delta=8.11-8.06$ (m, 2H), 7.83-7.78 (m, 2H), 7.68 (br s, 2H), 7.49-7.41 (m, 4H), 7.40-7.36 (m, 2H), $5.82(\mathrm{~s}, 2 \mathrm{H}), 5.81$ (s, $2 H), 4.58(q, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{br} s, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 6 \mathrm{H}), 3.67(\mathrm{~s}, 6 \mathrm{H}), 3.62-$ $3.52(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.58(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.36(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.33-1.17(\mathrm{~m}, 16 \mathrm{H}), 0.91-0.80(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, determined as a diastereomeric mixture (1.0:1.2)): $\delta=153.7\left(4 \times \mathrm{C}_{\mathrm{q}}\right)$, $144.8\left(C_{q}\right), 144.7\left(C_{q}\right), 144.2\left(C_{q}\right), 144.2\left(C_{q}\right), 142.3\left(C_{q}\right), 142.3\left(C_{q}\right), 134.2\left(C_{q}\right), 134.2\left(C_{q}\right), 131.0\left(C_{q}\right)$, $131.0\left(\mathrm{C}_{\mathrm{q}}\right), 129.9\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 128.8(\mathrm{CH}), 128.8(\mathrm{CH}), 125.4(2 \times \mathrm{CH}), 125.3(2 \times \mathrm{CH}), 123.1(2 \times \mathrm{CH})$, $122.3(\mathrm{CH}), 122.3(\mathrm{CH}), 121.2(2 \times \mathrm{CH}), 91.1(4 \times \mathrm{CH}), 61.0\left(\mathrm{CH}_{3}\right), 61.0\left(\mathrm{CH}_{3}\right), 55.7\left(4 \times \mathrm{CH}_{3}\right), 54.5(2$ $\times \mathrm{CH})$, $38.1\left(\mathrm{CH}_{2}\right), 37.7\left(\mathrm{CH}_{2}\right), 33.8(\mathrm{CH}), 33.7(\mathrm{CH}), 31.8\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right)$, $27.8\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right), 24.8\left(2 \times \mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right), 22.0\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{CH}_{3}\right), 14.0$ $\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3383,2926,1608,1507,1451,1232,1125,1011,782,746 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 449 (65) [M] ${ }^{+}, 434$ (19) [M-Me] ${ }^{+}, 267$ (100), 183 (35), 168 (39), 155 (16), 43 (13).

HR-MS (EI): m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}]^{+} 449.2924$, found 449.2921.

N-[1-(3-Cycloheptylphenyl)ethyl]-3,4,5-trimethoxyaniline (157d)

The general procedure D was followed using ketimine 135b ($285 \mathrm{mg}, 1.00 \mathrm{mmol}$)
and bromocycloheptane (136h, $531 \mathrm{mg}, 3.0 \mathrm{mmol})$. Purification by column
chromatography (n-hexane/EtOAc 10:1) yielded 157d (200 $\mathrm{mg}, 52 \%$) as a light
yellow oil as well as alkylated phenone $154 \mathrm{bh}(51.3 \mathrm{mg}, 24 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.23(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 1 \mathrm{H})$, $5.76(\mathrm{~s}, 2 \mathrm{H}), 4.39(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 6 \mathrm{H}), 2.65(\mathrm{tt}, J=10.6$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.53(\mathrm{~m}, 8 \mathrm{H}), 1.51(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=153.6\left(\mathrm{C}_{\mathrm{q}}\right), 150.4\left(\mathrm{C}_{\mathrm{q}}\right), 145.3\left(\mathrm{C}_{\mathrm{q}}\right), 144.2\left(\mathrm{C}_{\mathrm{q}}\right), 129.7\left(\mathrm{C}_{\mathrm{q}}\right), 128.6(\mathrm{CH})$, $125.2(\mathrm{CH}), 124.4(\mathrm{CH}), 122.8(\mathrm{CH}), 90.9(\mathrm{CH}), 61.0\left(\mathrm{CH}_{3}\right), 55.7\left(\mathrm{CH}_{3}\right), 54.4(\mathrm{CH}), 47.0(\mathrm{CH}), 37.0$ $\left(\mathrm{CH}_{2}\right), 36.7\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3356,2996,2850,1599,1507,1447,1205,1126,1008,812 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 383 (92) [M] ${ }^{+}, 201$ (100), 168 (78), 119 (15).

HR-MS (EI): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}]^{+} 383.2455$, found 383.2469.

Oxidation of Phenone

3-(tert-Butyl)-4-fluorobenzoic acid (159)

A mixture of phenone 154 ab ($97.5 \mathrm{mg}, 0.50 \mathrm{mmol}$) and anhydrous $\mathrm{Mn}(\mathrm{OAc})_{2}$ $(1.0 \mathrm{mg}, 5.8 \mu \mathrm{~mol})$ in acetic acid $(1.0 \mathrm{~mL})$ was stirred at $100^{\circ} \mathrm{C}$ under an oxygen atmosphere for $15 \mathrm{~h} .{ }^{[97]}$ The reaction mixture was concentrated in vacuo to give a crude mixture. The crude mixture was dissolved with EtOAc and washed with HCl $(1 \mathrm{~N}, 10 \mathrm{~mL})$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration followed by evaporation gave a crude product. Purification of the residue by column chromatography (n-hexane/EtOAc 9:1 to 1:1) yielded the corresponding product 159 ($87.4 \mathrm{mg}, 89 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.11(\mathrm{dd}, \mathrm{J}=8.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{ddd}, J=8.5,4.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ (dd, $J=12.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), $1.42(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.4\left(\mathrm{C}_{\mathrm{q}}\right), 165.6\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=258 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 137.6\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=13 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $130.4\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=11 \mathrm{~Hz}, \mathrm{CH}\right), 130.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}, \mathrm{CH}\right), 124.9\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 116.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=26 \mathrm{~Hz}\right.$, CH), $34.4\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 29.7\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$.
${ }^{19}$ F-NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=(-100.4)-(-100.5)(\mathrm{m})$.
mp.: $154-155^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=2964,1683,1428,1294,1258,1217,1089,839,772 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 196 (14) [M] ${ }^{+}, 181$ (100) [M-Me] ${ }^{+}, 153$ (79), 109 (15).

HR-MS (EI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{FO}_{2}{ }^{+}[\mathrm{M}]^{+}$196.0894, found 196.0902.

Baeyer-Villiger Oxidation of Phenone

4-Fluoro-3-(tert-pentyl)phenol (160b)

Phenone 154ac ($83.5 \mathrm{mg}, 0.40 \mathrm{mmol}$) and m-CPBA ($207 \mathrm{mg}, 1.20 \mathrm{mmol}$) were placed in a pre-dried 10 mL pressure tube and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ was added. The mixture was stirred at $60^{\circ} \mathrm{C}$. After 6 h , the mixture was concentrated in vacuo. The residue was dissolved in $\mathrm{EtOH}(1.5 \mathrm{~mL})$ and aq. NaOH solution ($50 \%, 1.5 \mathrm{~mL}$) and stirred at ambient temperature for 16 h . Then, the resulting mixture was neutralized with $\mathrm{HCl}(1 \mathrm{~N})$ until pH 7 and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the residue by column chromatography (n-pentane/Et ${ }_{2} \mathrm{O}$ 10:1 to 1:1) yielded phenol 160 b ($53.5 \mathrm{mg}, 73 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.84(\mathrm{dd}, J=12.0,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=6.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.62$ (ddd, $J=8.6,3.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{qd}, J=7.5,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.69(\mathrm{td}, J=7.5$, $0.6 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=156.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=240 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 150.8\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 136.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}\right.$ $\left.=13 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 116.6\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=27 \mathrm{~Hz}, \mathrm{CH}\right), 115.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=6 \mathrm{~Hz}, \mathrm{CH}\right), 113.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}, \mathrm{CH}\right), 38.0$ $\left(d,{ }^{3} J_{C-F}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 34.1\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 27.6\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 9.4\left(\mathrm{CH}_{3}\right)$.
${ }^{19}$ F-NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=(-120.2)-(-120.4)(\mathrm{m})$.
IR (ATR): $\tilde{v}=3315,2965,1482,1440,1194,811,761,738 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 182 (36) [M] ${ }^{+}, 153$ (100) [M-Et] ${ }^{+}, 125$ (81).

HR-MS (EI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{FO}^{+}[\mathrm{M}]^{+}$182.1101, found 182.1103.

Fischer Indole Synthesis

2-[4-Fluoro-3-(tert-pentyl)phenyl]-1H-indole (162)

The indole was prepared by a modified literature procedure. ${ }^{[133]}$ Phenone 154ac ($104 \mathrm{mg}, 0.50 \mathrm{mmol}$), phenylhydrazine hydrochloride salt ($145 \mathrm{mg}, 1.00 \mathrm{mmol}$), and polyphosphoric acid $(0.5 \mathrm{~mL})$ in a microwave tube were stirred at $120^{\circ} \mathrm{C}$ under microwave irradiation for 1 h . Then, sat. aq. NaHCO_{3} solution (20 mL) and EtOAc $(20 \mathrm{~mL})$ were added. The layers were separated and the aqueous layer was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and
concentrated in vacuo. Purification by column chromatography (n-hexane/EtOAc 20:1 and $\mathrm{Et}_{3} \mathrm{~N}$ $1 \%)$ yielded indole 162 ($81.2 \mathrm{mg}, 58 \%$) as a pale yellow solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.27(\mathrm{br} s, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=7.7,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.46 (ddd, $J=8.3,4.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{ddd}, J=8.1,7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.13 (ddd, J = 7.9, 7.1, 1.1 Hz, 1H), 7.07 (dd, J = 12.3, 8.3 Hz, 1H), $6.76(\mathrm{dd}, J=2.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.84$ ($q d, J=7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.74(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=161.6\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=250 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 137.7\left(\mathrm{C}_{\mathrm{q}}\right), 136.7\left(\mathrm{C}_{\mathrm{q}}\right), 136.2\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=\right.$ $\left.12 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 129.3\left(\mathrm{C}_{\mathrm{q}}\right), 128.2\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 125.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=6 \mathrm{~Hz}, \mathrm{CH}\right), 124.4\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}, \mathrm{CH}\right)$, $122.2(\mathrm{CH}), 120.5(\mathrm{CH}), 120.3(\mathrm{CH}), 116.9\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=26 \mathrm{~Hz}, \mathrm{CH}\right), 110.8(\mathrm{CH}), 99.7\left(\mathrm{~d},{ }^{6} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=1 \mathrm{~Hz}, \mathrm{CH}\right)$, $38.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 34.1\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 27.7\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 9.5\left(\mathrm{CH}_{3}\right)$.
${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=(-109.9)-(-110.1)(\mathrm{m})$.

IR (ATR): $\tilde{v}=3423,2967,1480,1454,1230,797,747 \mathrm{~cm}^{-1}$.
m.p.: $142-144{ }^{\circ} \mathrm{C}$.

MS (ESI) m / z (relative intensity): 561 (25), 490 (45), 381 (77), 312 (41), 282 (74) [M+H] ${ }^{+}, 118$ (100).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{FN}^{+}[\mathrm{M}+\mathrm{H}]^{+}$282.1653, found 282.1642.

5.3.3 Sequential meta-/ortho-C-H Functionalizations by One-Pot Ruthenium(II/III) Catalysis

5.3.3.1 Characterization Data for 141

Methyl 2-[3-(pyrimidin-2-yl)phenyl]hexanoate (141a)

The general procedure E was followed using 2-phenylpyrimidine (139a, 78.1 mg , 0.50 mmol) and methyl 2-bromohexanoate (140a, $314 \mathrm{mg}, 1.50 \mathrm{mmol})$. After 20 h , purification by column chromatography (n-hexane/EtOAc 10:1) yielded 141a (121 mg, 85\%) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.81(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.40-8.37(\mathrm{~m}, 1 \mathrm{H}), 8.37-8.30(\mathrm{~m}, 1 \mathrm{H}), 7.49-$ $7.42(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.63(\mathrm{~m}, 4 \mathrm{H}), 2.15(\mathrm{dddd}, \mathrm{J}=13.4,9.4,8.0,5.7 \mathrm{~Hz}, 1 \mathrm{H})$, 1.85 (dddd, J = 13.4, 9.4, 7.4, 5.7 Hz, 1H), 1.41-1.17 (m, 4H), 0.87 (t, J = 7.0 Hz, 3H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.4\left(\mathrm{C}_{\mathrm{q}}\right), 164.5\left(\mathrm{C}_{\mathrm{q}}\right), 157.1(\mathrm{CH}), 139.7\left(\mathrm{C}_{\mathrm{q}}\right), 137.8\left(\mathrm{C}_{\mathrm{q}}\right), 130.0(\mathrm{CH})$, $128.8(\mathrm{CH}), 127.9(\mathrm{CH}), 127.0(\mathrm{CH}), 119.0(\mathrm{CH}), 52.0\left(\mathrm{CH}_{3}\right), 51.7(\mathrm{CH}), 33.4\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right), 22.5$ $\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2953,2860,1732,1567,1555,1409,1158,775,697 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 284 (24) [M] ${ }^{+}, 228$ (59) [M-Bu] ${ }^{+}, 225$ (83) [M-CO2 $\left.{ }_{2}{ }^{2}\right]^{+}, 183$ (14), 169 (100) [$\left.\mathrm{M}-\mathrm{Bu}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}$.

HR-MS (EI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}^{+}[\mathrm{M}]^{+}$284.1519, found 284.1524.

Methyl 2-[2-methyl-5-(pyrimidin-2-yl)phenyl]hexanoate (141b)

The general procedure E was followed using 2-(p-tolyl)pyrimidine (139b, $85.3 \mathrm{mg}, 0.50 \mathrm{mmol}$) and methyl 2-bromohexanoate (140a, 314 mg , 1.50 mmol). After 20 h , purification by column chromatography (n-hexane/EtOAc 9:1) yielded 141b (123 mg, 82\%) as a white soild.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.78(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.43(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{dd}, J=8.0$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=8.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}$, $3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.22(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.4\left(\mathrm{C}_{\mathrm{q}}\right), 164.5\left(\mathrm{C}_{\mathrm{q}}\right), 157.0(\mathrm{CH}), 139.1\left(\mathrm{C}_{\mathrm{q}}\right), 138.2\left(\mathrm{C}_{\mathrm{q}}\right), 135.8\left(\mathrm{C}_{\mathrm{q}}\right)$, $130.7(\mathrm{CH}), 126.8(\mathrm{CH}), 126.5(\mathrm{CH}), 118.7(\mathrm{CH}), 51.9\left(\mathrm{CH}_{3}\right), 47.2(\mathrm{CH}), 32.8\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right), 22.7$ $\left(\mathrm{CH}_{2}\right), 20.0\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2953,2859,1726,1549,1417,1158,796,782 \mathrm{~cm}^{-1}$.
m.p.: $58-59^{\circ} \mathrm{C}$.

MS (EI) m/z (relative intensity): 298 (34) [M] ${ }^{+}, 283$ (13) [M-Me] ${ }^{+}, 255$ (18) [M-Pr] ${ }^{+} 239$ (49) [M$\left.\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 183$ (100), 168 (22).

HR-MS (EI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}]^{+}$298.1676, found 298.1675.

Methyl 2-[2-methoxy-5-(pyrimidin-2-yl)phenyl]hexanoate (141c)

The general procedure E was followed using 2-(4-methoxyphenyl)pyrimidine (139e, $93.3 \mathrm{mg}, 0.50 \mathrm{mmol}$) and methyl 2-bromohexanoate (140a, 314 mg , 1.50 mmol). After 20 h , purification by column chromatography (n-hexane/EtOAc 5:1) yielded 141c ($115 \mathrm{mg}, 73 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.75(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.38(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{dd}, J=8.6$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}$, 3 H), 3.66 (s, 3H), 2.15 (dddd, $J=13.0,9.7,7.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.83 (dddd, $J=13.3,9.7,7.6,5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.39-1.20(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.6\left(\mathrm{C}_{\mathrm{q}}\right), 164.3\left(\mathrm{C}_{\mathrm{q}}\right), 159.1\left(\mathrm{C}_{\mathrm{q}}\right), 157.0(\mathrm{CH}), 130.1\left(\mathrm{C}_{\mathrm{q}}\right), 128.7(\mathrm{CH})$, $128.3(\mathrm{CH}), 128.3\left(\mathrm{C}_{q}\right), 118.2(\mathrm{CH}), 110.5(\mathrm{CH}), 55.8\left(\mathrm{CH}_{3}\right), 51.8\left(\mathrm{CH}_{3}\right), 44.5(\mathrm{CH}), 32.0\left(\mathrm{CH}_{2}\right), 29.9$ $\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2953,2859,1732,1567,1402,1246,1026,798 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 314 (41) [M] ${ }^{+}, 255$ (47) [M-CO2 Me$]^{+}, 199$ (100), 169 (27).
HR-MS (EI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}]^{+}$314.1625, found 314.1629.

Methyl 2-[2-chloro-5-(pyrimidin-2-yl)phenyl]hexanoate (141d)

The general procedure E was followed using 2-(4-chlorophenyl)pyrimidine (139f, $95.5 \mathrm{mg}, 0.50 \mathrm{mmol}$) and methyl 2-bromohexanoate (140a, 314 mg , 1.50 mmol). After 20 h , purification by column chromatography (n-hexane/EtOAc 9:1) yielded 141d (107 mg, 67\%) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.80(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.51(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{dd}, \mathrm{J}=8.4$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}$, $3 H$), 2.19 (dddd, $J=13.5,9.9,7.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.88 (dddd, $J=16.0,9.9,7.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.40-1.31 (m, 3H), 1.30-1.23 (m, 1H), $0.88(t, J=7.2 H z, 3 H)$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.7\left(\mathrm{C}_{\mathrm{q}}\right), 163.5\left(\mathrm{C}_{\mathrm{q}}\right), 157.1(\mathrm{CH}), 137.4\left(\mathrm{C}_{\mathrm{q}}\right), 136.7\left(\mathrm{C}_{\mathrm{q}}\right), 136.6\left(\mathrm{C}_{\mathrm{q}}\right)$, $129.8(\mathrm{CH}), 128.6(\mathrm{CH}), 127.8(\mathrm{CH}), 119.2(\mathrm{CH}), 52.1\left(\mathrm{CH}_{3}\right), 47.5(\mathrm{CH}), 32.6\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 22.6$ $\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2955,2861,1733,1568,1551,1416,1165,1036,797 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): $320(3)\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)\right]^{+}, 318$ (9) $\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)\right]^{+}, 283$ (100) $[\mathrm{M}-\mathrm{Cl}]^{+}, 264$ (8) $\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)-\mathrm{Bu}\right]^{+}, 262(26)\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)-\mathrm{Bu}\right]^{+}, 261(12)\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 259(35)\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 203$ (65), 168 (19).

HR-MS (EI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{19}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}]^{+}$318.1130, found 318.1136.

Methyl 2-(1-methoxy-1-oxohexan-2-yl)-4-(pyrimidin-2-yl)benzoate (141e)

The general procedure \mathbf{E} was followed using methyl 4-(pyrimidin-2yl)benzoate ($\mathbf{1 3 9 g}, 107 \mathrm{mg}, 0.50 \mathrm{mmol}$) and methyl 2-bromohexanoate (140a, $314 \mathrm{mg}, 1.50 \mathrm{mmol})$. After 20 h , purification by column chromatography (n-hexane/EtOAc 5:1) yielded 141 e ($126 \mathrm{mg}, 74 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.83(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.56(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{dd}, J=8.2$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{dd}, J=7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}$, $3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.29(\mathrm{~m}, 3 \mathrm{H}), 1.29-1.20(\mathrm{~m}, 1 \mathrm{H}), 0.86$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.3\left(\mathrm{C}_{\mathrm{q}}\right), 167.7\left(\mathrm{C}_{\mathrm{q}}\right), 163.5\left(\mathrm{C}_{\mathrm{q}}\right), 157.2(\mathrm{CH}), 140.9\left(\mathrm{C}_{\mathrm{q}}\right), 140.7\left(\mathrm{C}_{\mathrm{q}}\right)$, $131.5\left(\mathrm{C}_{\mathrm{q}}\right), 130.8(\mathrm{CH}), 128.6(\mathrm{CH}), 126.3(\mathrm{CH}), 119.5(\mathrm{CH}), 52.2\left(\mathrm{CH}_{3}\right), 52.0\left(\mathrm{CH}_{3}\right), 47.3(\mathrm{CH}), 33.2$ $\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2953,2859,1726,1549,1417,1158,796,782 \mathrm{~cm}^{-1}$.
m.p.: $77-78^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 342 (7) [M] ${ }^{+}, 310$ (74) [M-Et] $]^{+}, 282$ (100) [$\left.\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 267$ (97) $\left[\mathrm{M}-\mathrm{Me}-\mathrm{CO}_{2} \mathrm{Me}^{+}, 239 \text { (74) [M-Pr-CO2 } \mathrm{Me}\right]^{+}, 211$ (28), 169 (19), 59 (12).

HR-MS (EI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}[\mathrm{M}]^{+}$342.1574, found 342.1582.

Methyl 2-[3-(4,5-dihydrooxazol-2-yl)phenyl]hexanoate (141f)

The general procedure E was followed using 2-phenyl-4,5-dihydrooxazole (139h, $73.6 \mathrm{mg}, \quad 0.50 \mathrm{mmol}$) and methyl 2-bromohexanoate (140a, 314 mg , 1.50 mmol). After 20 h , purification by column chromatography (n-hexane/EtOAc 4:1) yielded 141f (99.2 mg, 72\%) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.88(\mathrm{dd}, \mathrm{J}=1.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{ddd}, J=7.6,1.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (ddd, $J=7.7,1.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.36 (ddd, $J=7.7,7.6,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{td}, J=9.6,0.8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.05 (td, J = 9.6, 0.8 Hz, 2H), 3.64 (s, 3H), 3.57 (dd, J = 7.8, 7.7 Hz, 1H), 2.09 (dddd, J = 13.3, 9.4, 7.8, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.78$ (dddd, $J=13.5,9.4,7.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.39-1.11(\mathrm{~m}, 4 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.1\left(\mathrm{C}_{\mathrm{q}}\right), 164.4\left(\mathrm{C}_{\mathrm{q}}\right), 139.5\left(\mathrm{C}_{\mathrm{q}}\right), 130.6(\mathrm{CH}), 128.5(\mathrm{CH}), 128.0\left(\mathrm{C}_{\mathrm{q}}\right)$, $127.8(\mathrm{CH}), 126.9(\mathrm{CH}), 67.6\left(\mathrm{CH}_{2}\right), 55.0\left(\mathrm{CH}_{2}\right), 52.0\left(\mathrm{CH}_{3}\right), 51.5(\mathrm{CH}), 33.2\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 22.5$ $\left(\mathrm{CH}_{2}\right), 13.9\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2952,2872,1733,1649,1357,1160,950,709 \mathrm{~cm}^{-1}$.

MS (ESI) m / z (relative intensity): $298(14)[\mathrm{M}+\mathrm{Na}]^{+}, 276(100)[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$276.1594, found 276.1597.

Methyl 2-[3-(1H-pyrazol-1-yl)phenyl]hexanoate (141g)

The general procedure E was followed using 1-phenyl-1H-pyrazole (147a, $72.1 \mathrm{mg}, \quad 0.50 \mathrm{mmol})$ and methyl 2-bromohexanoate (140a, 314 mg , 1.50 mmol). After 20 h , purification by column chromatography (n-hexane/EtOAc 10:1) yielded $141 \mathrm{~g}(97.0 \mathrm{mg}, 71 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.93(\mathrm{dd}, J=2.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J=1.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}$, $J=2.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.58 (ddd, $J=8.0,2.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.40(\mathrm{dd}, J=8.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ (ddd, $J=$ $7.8,1.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=2.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{dd}, J=7.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.11$ (dddd, $J=13.5,9.3,7.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.82$ (dddd, $J=13.5,9.3,7.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.41-1.16(\mathrm{~m}, 4 \mathrm{H})$, $0.87(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR (125 MHz, CDCl $)_{3}$: $\delta=174.1\left(\mathrm{C}_{\mathrm{q}}\right), 141.0(\mathrm{CH}), 140.8\left(\mathrm{C}_{\mathrm{q}}\right), 140.3\left(\mathrm{C}_{\mathrm{q}}\right), 129.5(\mathrm{CH}), 126.7(\mathrm{CH})$, $125.9(\mathrm{CH}), 118.9(\mathrm{CH}), 117.9(\mathrm{CH}), 107.5(\mathrm{CH}), 52.0\left(\mathrm{CH}_{3}\right), 51.6(\mathrm{CH}), 33.3\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 22.5$ $\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$. IR (ATR): $\tilde{v}=2953,2860,1732,1593,1520,1392,1160,1044,747,695 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 272 (79) [M] ${ }^{+}$, 216 (67) [M-Bu] ${ }^{+}, 213$ (72) [$\left.\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}$, 185 (47) $\left[\mathrm{M}-\mathrm{Et}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 171$ (37) [$\left.\mathrm{M}-\mathrm{Pr}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 157$ (100) [$\left.\mathrm{M}-\mathrm{Bu}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 130$ (19), 115 (18), 77 (16).

HR-MS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}]^{+}$272.1519, found 272.1526.

Methyl 2-[3-(4-bromo-1H-pyrazol-1-yl)phenyl]hexanoate (141h)

The general procedure \mathbf{E} was followed using 4-bromo-1-phenyl-1H-pyrazole (147b, $112 \mathrm{mg}, 0.50 \mathrm{mmol}$) and methyl 2-bromohexanoate (140a, 314 mg , 1.50 mmol) at $60^{\circ} \mathrm{C}$. After 20 h , purification by column chromatography (n-hexane/EtOAc 20:1) yielded 141 h ($147 \mathrm{mg}, 84 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.95(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, \mathrm{J}=2.2$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{ddd}, J=8.0,2.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 1 \mathrm{H})$, 3.67 (s, 3H), $3.60(d d, J=7.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.11$ (dddd, $J=13.6,9.5,7.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.80$ (dddd, $J=$ $13.5,9.5,7.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.38-1.17(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.9\left(\mathrm{C}_{q}\right), 141.4(\mathrm{CH}), 141.0\left(\mathrm{C}_{q}\right), 139.8\left(\mathrm{C}_{q}\right), 129.6(\mathrm{CH}), 127.0(\mathrm{CH})$, $126.5(\mathrm{CH}), 118.6(\mathrm{CH}), 117.8(\mathrm{CH}), 95.6\left(\mathrm{C}_{\mathrm{q}}\right), 52.1\left(\mathrm{CH}_{3}\right), 51.6(\mathrm{CH}), 33.4\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 22.5$ $\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2953,2860,1731,1593,1336,1160,953,791,694 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): $352(86)\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)\right]^{+}, 350(88)\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)\right]^{+}, 296(88)\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)-\mathrm{Bu}\right]^{+}, 294$ (100) $\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)-\mathrm{Bu}\right]^{+}, 293(63)\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 291(63)\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 264(54)\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)-\mathrm{Et}-\right.$ $\left.\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 262(39)\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)-\mathrm{Et}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 251(45)\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)-\mathrm{Pr}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 249$ (41) $\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)-\mathrm{Pr}-\right.$ $\mathrm{CO}_{2} \mathrm{Me}^{+}, 237(94)\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)-\mathrm{Bu}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 235(94)\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)-\mathrm{Bu}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 212(24)[\mathrm{M}-\mathrm{Br}-\mathrm{Bu}]^{+}$, 183 (31), 155 (31), 115 (41), 91 (61), 77 (36).

HR-MS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{19}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}]^{+}$350.0624, found 350.0630.

Methyl 2-[3-(3,5-dimethyl-1H-pyrazol-1-yl)phenyl]hexanoate (141i)

The general procedure \mathbf{E} was followed using 3,5-dimethyl-1-phenyl-1Hpyrazole (147c, $86.2 \mathrm{mg}, 0.50 \mathrm{mmol}$) and methyl 2-bromohexanoate (140a, $314 \mathrm{mg}, 1.50 \mathrm{mmol}$) at $60^{\circ} \mathrm{C}$. After 20 h , purification by column chromatography (n-hexane/EtOAc 10:1) yielded 141 i ($78.3 \mathrm{mg}, 52 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.42-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.00-5.98(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}$, $3 H$), 3.58 (dd, $J=7.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.30(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.08$ (dddd, $J=13.5,9.2,7.9,5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.79$ (dddd, $J=13.5,9.2,7.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.38-1.15(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.1\left(\mathrm{C}_{\mathrm{q}}\right), 148.9\left(\mathrm{C}_{\mathrm{q}}\right), 140.2\left(\mathrm{C}_{\mathrm{q}}\right), 140.0\left(\mathrm{C}_{\mathrm{q}}\right), 139.3\left(\mathrm{C}_{\mathrm{q}}\right), 129.1(\mathrm{CH})$, $126.7(\mathrm{CH}), 124.3(\mathrm{CH}), 123.4(\mathrm{CH}), 106.9(\mathrm{CH}), 52.0\left(\mathrm{CH}_{3}\right), 51.5(\mathrm{CH}), 33.4\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 22.5$ $\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right), 13.6\left(\mathrm{CH}_{3}\right), 12.5\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2953,2860,1734,1607,1591,1494,1160,779,700 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 300 (100) [M] ${ }^{+}$, 257 (51) [M-Pr] ${ }^{+}$, 244 (38) [M-Bu] ${ }^{+}, 241$ (59) [M$\left.\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 213$ (44) [$\left.\mathrm{M}-\mathrm{Et}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 199$ (44) $\left[\mathrm{M}-\mathrm{Pr}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 186$ (82) [M-Bu-CO2Me] ${ }^{+}, 144$ (12), 115 (13), 77 (10).

HR-MS (EI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}]^{+} 300.1832$, found 300.1837.

Methyl 2-[3-(9-iso-propyl-9H-purin-6-yl)phenyl]hexanoate (141j)

The general procedure E was followed using purine 123a (119 mg, 0.50 mmol) and methyl 2-bromohexanoate (140a, $314 \mathrm{mg}, 1.50 \mathrm{mmol})$. After 20 h , purification by column chromatography (n-hexane/EtOAc $3: 1$) yielded 141 j ($159 \mathrm{mg}, 87 \%$) as a light yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.01(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{ddd}, J=6.6,2.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.69-8.66(\mathrm{~m}, 1 \mathrm{H})$, $8.19(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{hept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H})$, 2.23-2.09 (m, 1H), 1.95-1.80 (m, 1H), 1.67 (d, J=6.8 Hz, 6H), 1.41-1.19 (m, 4H), 0.87 (t, J=7.0 Hz, 3 H).
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.4\left(\mathrm{C}_{\mathrm{q}}\right), 154.4\left(\mathrm{C}_{\mathrm{q}}\right), 152.0\left(\mathrm{C}_{\mathrm{q}}\right), 151.9(\mathrm{CH}), 141.9(\mathrm{CH}), 139.7\left(\mathrm{C}_{\mathrm{q}}\right)$, $136.0\left(\mathrm{C}_{\mathrm{q}}\right), 131.5\left(\mathrm{C}_{\mathrm{q}}\right), 130.1(\mathrm{CH}), 129.3(\mathrm{CH}), 128.9(\mathrm{CH}), 128.8(\mathrm{CH}), 52.0\left(\mathrm{CH}_{3}\right), 51.8(\mathrm{CH}), 47.3$ $(\mathrm{CH}), 33.4\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{3}\right), 22.5\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2953,2872,1732,1568,1324,1218,1160,799,702,646 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 366 (63) [M] ${ }^{+}, 323$ (30) [M-Pr] ${ }^{+}, 310$ (100) [M-Bu] ${ }^{+}, 307$ (49) [M$\left.\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 278$ (58) [$\left.\mathrm{M}-\mathrm{Et}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 265$ (95) [$\left.\mathrm{M}-\mathrm{Pr}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 251$ (49) [$\left.\mathrm{M}-\mathrm{Bu}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 236$ (25), 209 (41), 59 (12).

HR-MS (EI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}[\mathrm{M}]^{+}$366.2050, found 366.2055.

Methyl 2-[3-(pyrimidin-2-yl)phenyl]acetate (141k)

The general procedure E was followed using 2-phenylpyrimidine (139a, 78.1 mg , 0.50 mmol) and methyl 2-bromoacetate ($\mathbf{1 4 0 b}, 230 \mathrm{mg}, 1.50 \mathrm{mmol}$) at $60^{\circ} \mathrm{C}$. After 20 h , purification by column chromatography (n-hexane/EtOAc 5:1) yielded 141k ($57.0 \mathrm{mg}, 50 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.78(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.36(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.34$ (ddd, $J=6.7$, $1.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.6\left(\mathrm{C}_{\mathrm{q}}\right), 164.3\left(\mathrm{C}_{\mathrm{q}}\right), 157.0(\mathrm{CH}), 137.8\left(\mathrm{C}_{\mathrm{q}}\right), 134.3\left(\mathrm{C}_{\mathrm{q}}\right), 131.5(\mathrm{CH})$, $129.0(\mathrm{CH}), 128.7(\mathrm{CH}), 126.8(\mathrm{CH}), 119.0(\mathrm{CH}), 52.0\left(\mathrm{CH}_{3}\right), 41.1\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2952,1735,1568,1556,1411,1159,1013,789,769 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): $228(35)[\mathrm{M}]^{+}, 213(34)[\mathrm{M}-\mathrm{Me}]^{+}, 185(15), 169(100)\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}$, 116 (11), 89 (13).

HR-MS (EI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}]^{+}$228.0893, found 228.0898.

1-(Piperidin-1-yl)-2-[3-(pyrimidin-2-yl)phenyl]hexan-1-one (141))

The general procedure E was followed using 2-phenylpyrimidine (139a, $78.1 \mathrm{mg}, \quad 0.50 \mathrm{mmol})$ and 2-bromo-1-(piperidin-1-yl)hexan-1-one (140c, $394 \mathrm{mg}, 1.50 \mathrm{mmol})$. After 20 h , purification by column chromatography (n-hexane/EtOAc 4:1) yielded 141 ($110 \mathrm{mg}, 65 \%$) as a white soild.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.80(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.33-8.28(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.18$ $(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=7.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.35(\mathrm{~m}, 3 \mathrm{H}), 2.16$ (dddd, $J=13.4,10.1,7.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{dddd}, J=13.2,10.1,6.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.24(\mathrm{~m}, 8 \mathrm{H}), 1.24-$ $0.99(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.0\left(\mathrm{C}_{\mathrm{q}}\right), 164.5\left(\mathrm{C}_{\mathrm{q}}\right), 157.1(\mathrm{CH}), 141.4\left(\mathrm{C}_{\mathrm{q}}\right), 137.7\left(\mathrm{C}_{\mathrm{q}}\right), 129.8(\mathrm{CH})$, $129.0(\mathrm{CH}), 127.8(\mathrm{CH}), 126.4(\mathrm{CH}), 119.0(\mathrm{CH}), 48.8(\mathrm{CH}), 46.7\left(\mathrm{CH}_{2}\right), 43.2\left(\mathrm{CH}_{2}\right), 34.9\left(\mathrm{CH}_{2}\right), 30.2$ $\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2932,2855,1633,1567,1554,1408,1249,1011,776,701 \mathrm{~cm}^{-1}$.
m.p.: $72-73^{\circ} \mathrm{C}$.

MS (EI) m/z (relative intensity): 337 (21) [M] ${ }^{+}, 281$ (35) [M-Bu] ${ }^{+}, 238$ (14), 225 (17), 169 (34), 112 (100), 84 (13), 69 (42), 41 (15).

HR-MS (EI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}^{+}[\mathrm{M}]^{+} 337.2149$, found 337.2145 .

1-Phenyl-2-[3-(pyrimidin-2-yl)phenyl]pentan-1-one (141m)

The general procedure E was followed using 2-phenylpyrimidine (139a, $78.1 \mathrm{mg}, 0.50 \mathrm{mmol})$ and 2-bromo-1-phenylpentan-1-one (140d, 362 mg , 1.50 mmol). After 20 h , purification by column chromatography (n-hexane/EtOAc 4:1) yielded 141m (113 mg, 71\%) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.80(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.43$ (dd, $\left.J=1.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.30$ (ddd, $J=$ $7.0,1.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{t}, \mathrm{J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dd}, \mathrm{J}=7.3$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.23 (dddd, $J=13.6,10.0,7.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.88 (dddd, $J=13.6,10.0,7.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.45-1.22 (m, 2H), $0.93(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=199.8\left(\mathrm{C}_{\mathrm{q}}\right), 164.3\left(\mathrm{C}_{\mathrm{q}}\right), 157.1(\mathrm{CH}), 140.2\left(\mathrm{C}_{\mathrm{q}}\right), 138.0\left(\mathrm{C}_{\mathrm{q}}\right), 136.9\left(\mathrm{C}_{\mathrm{q}}\right)$, 132.7 (CH), 130.3 (CH), 129.1 (CH), 128.6 (CH), 128.4 (CH), 128.2 (CH), 126.8 (CH), 119.1 (CH), 53.5 $(\mathrm{CH}), 36.4\left(\mathrm{CH}_{2}\right), 21.0\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2957,1679,1567,1554,1409,1204,783,696 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 316 (11) [M] ${ }^{+}, 274$ (6) [M-Pr] ${ }^{+}$, 211 (31) [M-Bz] ${ }^{+}, 169$ (60) [M-Pr$\mathrm{Bz}]^{+}, 105$ (100) [Bz] ${ }^{+}, 77$ (13).

HR-MS (EI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}]^{+} 316.1570$, found 316.1584.

1-Morpholino-2-[3-(pyrimidin-2-yl)phenyl]propan-1-one (141n)

The general procedure E was followed using 2-phenylpyrimidine (139a, $78.1 \mathrm{mg}, \quad 0.50 \mathrm{mmol})$ and 2-bromo-1-morpholinopropan-1-one (140e, $334 \mathrm{mg}, 1.50 \mathrm{mmol})$. After 20 h , purification by column chromatography (n-hexane/EtOAc 2:3) yielded 141 n ($105 \mathrm{mg}, 71 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.81(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.38-8.28(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{dd}, \mathrm{J}=7.9,7.8 \mathrm{~Hz}$, 1 H), 7.38 (ddd, $J=7.8,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.20(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.76$ (m, 1H), 3.75-3.61 (m, 1H), 3.60-3.29 (m, 5H), 3.21-3.10 (m, 1H), $1.52(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.9\left(\mathrm{C}_{\mathrm{q}}\right), 164.2\left(\mathrm{C}_{\mathrm{q}}\right), 157.1(\mathrm{CH}), 142.2\left(\mathrm{C}_{\mathrm{q}}\right), 138.1\left(\mathrm{C}_{\mathrm{q}}\right), 129.3(\mathrm{CH})$, $129.2(\mathrm{CH}), 127.2(\mathrm{CH}), 126.7(\mathrm{CH}), 119.2(\mathrm{CH}), 66.8\left(\mathrm{CH}_{2}\right), 66.3\left(\mathrm{CH}_{2}\right), 46.1\left(\mathrm{CH}_{2}\right), 43.4(\mathrm{CH}), 42.5$ $\left(\mathrm{CH}_{2}\right), 20.7\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2971,2855,1641,1558,1415,1232,1121,834,789,699 \mathrm{~cm}^{-1}$.
m.p.: $123-125^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 297 (8) [M] ${ }^{+}, 267$ (42), 210 (31), 183 (98), 168 (54), 114 (100), 70 (58).

HR-MS (EI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}[\mathrm{M}]^{+}$297.1472, found 297.1479.

2-[3-(Pyrimidin-2-yl)phenyl]cyclohexan-1-one (141p)

The general procedure \mathbf{E} was followed using 2-phenylpyrimidine ($\mathbf{1 3 9} \mathbf{a}, 78.1 \mathrm{mg}$, 0.50 mmol) and 2-bromocyclohexan-1-one ($\mathbf{1 4 0 g}, 266 \mathrm{mg}, 1.50 \mathrm{mmol}$) at $60^{\circ} \mathrm{C}$. After 20 h , purification by column chromatography (n-hexane/EtOAc 4:1) yielded 141 p ($68.7 \mathrm{mg}, 54 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.79(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.35(\mathrm{ddd}, J=7.8,1.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.24$ (dd, $J=1.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.47 (dd, $J=7.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (ddd, $J=7.7,1.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, \mathrm{J}=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.74 (dd, $J=12.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.60-2.53 (m, 1H), 2.53-2.43 (m, 1H), 2.39-2.30 (m, 1H), 2.23-2.07 (m, 2H), 2.07-1.98 (m, 1H), 1.92-1.80 (m, 2H).
${ }^{13}$ C-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=209.7\left(\mathrm{C}_{\mathrm{q}}\right)$, $164.6\left(\mathrm{C}_{\mathrm{q}}\right)$, $157.0(\mathrm{CH}), 139.1\left(\mathrm{C}_{\mathrm{q}}\right), 137.5\left(\mathrm{C}_{\mathrm{q}}\right), 131.1(\mathrm{CH})$, 128.5 (CH), 128.3 (CH), 126.7 (CH), $119.0(\mathrm{CH}), 57.5(\mathrm{CH}), 42.3\left(\mathrm{CH}_{2}\right), 35.3\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 25.5$ $\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2935,2862,1706,1567,1554,1408,1125,784,699 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 252 (67) [M] ${ }^{+}, 224$ (73), 209 (47), 207 (53), 195 (100), 183 (64), 168 (35), 156 (20), 129 (29), 115 (26), 103 (15).

HR-MS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}]^{+}$252.1257, found 252.1259.

N,N-Diethyl-2-[3-(pyrimidin-2-yl)phenyl]propanamide (141q)

The general procedure \mathbf{E} was followed using 2-phenylpyrimidine (139a, 78.1 mg , 0.50 mmol) and 2-bromo- N, N-diethylpropanamide ($140 \mathrm{~h}, 313 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 3:2) yielded 141q ($89.0 \mathrm{mg}, 63 \%$) as a white soild.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.81(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.31$ (ddd, $J=5.1,3.7,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{t}, \mathrm{J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dq}, \mathrm{J}=14.1,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.37(\mathrm{dq}, J=14.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dq}, J=14.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dq}, J=14.5,7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.50(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.5\left(\mathrm{C}_{\mathrm{q}}\right), 164.5\left(\mathrm{C}_{\mathrm{q}}\right), 157.1(\mathrm{CH}), 142.8\left(\mathrm{C}_{\mathrm{q}}\right), 137.9\left(\mathrm{C}_{\mathrm{q}}\right), 129.3(\mathrm{CH})$, $129.1(\mathrm{CH}), 127.3(\mathrm{CH}), 126.5(\mathrm{CH}), 119.0(\mathrm{CH}), 43.2(\mathrm{CH}), 41.7\left(\mathrm{CH}_{2}\right), 40.3\left(\mathrm{CH}_{2}\right), 21.1\left(\mathrm{CH}_{3}\right), 14.4$ $\left(\mathrm{CH}_{3}\right), 12.9\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2973,1623,1551,1411,1269,1082,789,700,636 \mathrm{~cm}^{-1}$.
m.p.: $133-134{ }^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 283 (19) [M] ${ }^{+}, 226$ (4) [M-2Et] ${ }^{+}, 210(4)\left[\mathrm{M}-\mathrm{NEt}_{2}\right]^{+}, 183$ (17) [M$\left.\mathrm{C}(\mathrm{O}) \mathrm{NEt}_{2}\right]^{+}, 168$ (19) $\left[\mathrm{M}-\mathrm{Me}-\mathrm{C}(\mathrm{O}) \mathrm{NEt}_{2}\right]^{+}, 100$ (100) [C(O)NEt $\left.{ }_{2}\right]^{+}, 72$ (44).

HR-MS (EI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}^{+}[\mathrm{M}]^{+}$283.1679, found 283.1672.

5.3.3.2 Characterization Data for 164

Methyl 2-(5-acetyl-2-fluorophenyl)hexanoate (164a)

The general procedure \mathbf{E} was followed using ketimine 135 a ($152 \mathrm{mg}, 0.50 \mathrm{mmol}$) and methyl 2-bromohexanoate (140a, $314 \mathrm{mg}, 1.50 \mathrm{mmol}$). After $20 \mathrm{~h}, \mathrm{HCl}(2 \mathrm{~N}$, 3.0 mL) was added at ambient temperature, and the resulting mixture was stirred for an additional 3 h , extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the residue by column chromatography (n-pentane/ $\mathrm{Et}_{2} \mathrm{O}$ 20:1) yielded phenone 164 a ($85.1 \mathrm{mg}, 64 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.99(\mathrm{dd}, J=7.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{ddd}, J=8.6,5.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ (dd, J = 9.5, 8.6 Hz, 1H), 3.93 (dd, J = 7.7, $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68 (s, 3H), 2.59 (s, 3H), 2.13 (dddd, J = 12.8, $9.8,7.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.15(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=196.3\left(\mathrm{C}_{\mathrm{q}}\right), 173.3\left(\mathrm{C}_{\mathrm{q}}\right), 163.4\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=254 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 133.7\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=\right.$ $3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$), $129.9\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=6 \mathrm{~Hz}, \mathrm{CH}\right), 129.3\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}, \mathrm{CH}\right), 126.9\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=16 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 115.7$ (d, $\left.{ }^{2} J_{C-F}=24 \mathrm{~Hz}, \mathrm{CH}\right), 52.2\left(\mathrm{CH}_{3}\right), 43.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2 \mathrm{~Hz}, \mathrm{CH}\right), 32.2\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{3}\right), 22.4$ $\left(\mathrm{CH}_{2}\right), 13.9\left(\mathrm{CH}_{3}\right)$.
${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-110.4$ (ddd, $\left.J=9.5,7.1,5.0 \mathrm{~Hz}\right)$.

IR (ATR): $\tilde{v}=2956,1736,1686,1590,1358,1253,1171,827,567 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 266 (2) [M] ${ }^{+}, 251$ (58) [M-Me] ${ }^{+}, 223$ (5) [M-Ac] ${ }^{+}, 210$ (100) [M$\mathrm{Bu}]^{+}, 178$ (27) [$\left.\mathrm{M}-\mathrm{Bu}-\mathrm{OMe}\right]^{+}, 163$ (15), 151 (68) [$\mathrm{M}-\mathrm{Bu}-\mathrm{CO}_{2} \mathrm{Me}^{+}, 136$ (12).

HR-MS (EI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{FO}_{3}{ }^{+}[\mathrm{M}]^{+}$266.1313, found 266.1318.

Methyl 2-(3-benzoylphenyl)propanoate (164b)

The general procedure E was followed using ketimine $\mathbf{1 3 5 x}$ ($174 \mathrm{mg}, 0.50 \mathrm{mmol}$) and methyl 2-bromopropanoate (140i, $251 \mathrm{mg}, 1.50 \mathrm{mmol}$). After $20 \mathrm{~h}, \mathrm{HCl}(2 \mathrm{~N}$, 3.0 mL) was added at ambient temperature, and the resulting mixture was stirred for an additional 3 h , extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the residue by column chromatography (n-hexane/EtOAc 10:1 to 4:1) yielded phenone 164b ($53.3 \mathrm{mg}, 40 \%$) as a colorless oil and 164b' ($72.3 \mathrm{mg}, 41 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.83-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{dd}, J=1.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68$ (ddd, $J=7.6$, $1.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.54$ (dddd, $J=7.7,1.8,1.3,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.40(\mathrm{~m}, 3 \mathrm{H})$, $3.81(q, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=196.3\left(\mathrm{C}_{\mathrm{q}}\right), 174.4\left(\mathrm{C}_{\mathrm{q}}\right), 140.7\left(\mathrm{C}_{\mathrm{q}}\right), 137.8\left(\mathrm{C}_{\mathrm{q}}\right), 137.4\left(\mathrm{C}_{\mathrm{q}}\right), 132.4(\mathrm{CH})$, $131.4(\mathrm{CH}), 130.0(\mathrm{CH}), 129.1(\mathrm{CH}), 128.9(\mathrm{CH}), 128.5(\mathrm{CH}), 128.2(\mathrm{CH}), 52.2\left(\mathrm{CH}_{3}\right), 45.3(\mathrm{CH}), 18.6$ $\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2981,2951,1733,1657,1447,1281,1206,1164,703,642 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 268 (31) [M] ${ }^{+}, 209$ (100) $\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 191$ (24), 105 (71) [Bz] ${ }^{+}, 77$ (51).

HR-MS (EI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3}{ }^{+}[\mathrm{M}]^{+}$268.1094, found 268.1097.

The spectral data are in accordance with those reported in the literature. ${ }^{[134]}$

Dimethyl 2,2'-[carbonylbis(3,1-phenylene)]dipropionate (164b')

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2\right.$ diastereomers): $\delta=7.75-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.67$ (ddd, $J=7.7,1.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.67 (ddd, $J=7.7,1.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.56-7.53$ $(\mathrm{m}, 4 \mathrm{H}), 7.44(\mathrm{dd}, J=7.7,7.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.80(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.68(\mathrm{~s}, 6 \mathrm{H})$, $3.68(\mathrm{~s}, 6 \mathrm{H}), 1.54(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.54(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (125 MHz, CDCl_{3}, 2 diastereomers): $\delta=196.0\left(\mathrm{C}_{\mathrm{q}}\right), 174.3\left(\mathrm{C}_{\mathrm{q}}\right), 140.8\left(\mathrm{C}_{\mathrm{q}}\right), 140.7\left(\mathrm{C}_{\mathrm{q}}\right), 137.7$ $\left(\mathrm{C}_{\mathrm{q}}\right), 137.7\left(\mathrm{C}_{\mathrm{q}}\right), 131.5(\mathrm{CH}), 131.5(\mathrm{CH}), 129.2(\mathrm{CH}), 129.1(\mathrm{CH}), 128.9(\mathrm{CH}), 128.5(\mathrm{CH}), 128.5(\mathrm{CH})$, $52.2\left(\mathrm{CH}_{3}\right), 45.3(\mathrm{CH}), 18.6\left(\mathrm{CH}_{3}\right), 18.6\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2981,2952,1731,1659,1434,1287,1162,1067,742,696 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 354 (4) [M] ${ }^{+}, 322$ (60) [M-OMe] ${ }^{+}, 295$ (54) [$\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}^{+}, 235$ (100) [$\left.\mathrm{M}-2 \mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 191$ (59), 131 (56), 103 (53), 77 (19), 59 (12), 43 (17).

HR-MS (EI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{5}{ }^{+}[\mathrm{M}]^{+}$354.1462, found 354.1458.

Methyl 2-[3-(3-chlorobenzoyl)phenyl]propanoate (164c)

The general procedure E was followed using ketimine 135 y ($191 \mathrm{mg}, 0.50 \mathrm{mmol}$) and methyl 2-bromopropanoate (140i, $251 \mathrm{mg}, 1.50 \mathrm{mmol}$). After $20 \mathrm{~h}, \mathrm{HCl}(2 \mathrm{~N}$, 3.0 mL) was added at ambient temperature, and the resulting mixture was stirred for an additional 3 h , extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the residue by column chromatography (n-hexane/EtOAc 10:1) yielded phenone 164 c (78.6 mg , 52\%) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.77$ (ddd, $\left.J=2.1,1.6,0.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.74(\mathrm{td}, J=1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.69-7.63 (m, 2H), 7.59-7.53 (m, 2H), 7.49-7.40 (m, 2H), 3.81 (q, J=7.2 Hz, 1H), 3.69 (s, 3H), 1.54 (d, J = 7.2 Hz, 3H).
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=194.7\left(\mathrm{C}_{\mathrm{q}}\right), 174.2\left(\mathrm{C}_{\mathrm{q}}\right), 140.9\left(\mathrm{C}_{\mathrm{q}}\right), 139.1\left(\mathrm{C}_{\mathrm{q}}\right), 137.2\left(\mathrm{C}_{\mathrm{q}}\right), 134.5\left(\mathrm{C}_{\mathrm{q}}\right)$, 132.3 (CH), 131.8 (CH), 129.9 (CH), 129.6 (CH), 129.1 (CH), 128.8 (CH), 128.6 (CH), 128.0 (CH), 52.2 $\left(\mathrm{CH}_{3}\right), 45.3(\mathrm{CH}), 18.6\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2981,2952,1733,1661,1434,1281,1203,1163,737,679 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): $304(10)\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)\right]^{+}, 302(32)\left[\mathrm{M}\left({ }^{35} \mathrm{CI}\right)\right]^{+}, 245(34)\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}$, 243 (100) [$\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)-\mathrm{CO}_{2} \mathrm{Me}^{+}, 191$ (24), 141 (19), 139 (57), 113 (10), 111 (30), 103 (19), 77 (12), 43 (24).

HR-MS (EI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{15}{ }^{35} \mathrm{ClO}_{3}{ }^{+}[\mathrm{M}]^{+}$302.0704, found 302.0712.

5.3.3.3 Characterization Data for 166

Methyl 2-[2-(1H-pyrazol-1-yl)-[1,1'-biphenyl]-4-yl]propanoate (166a)

The general procedure F was followed using 1-phenyl-1H-pyrazole (147a, $72.1 \mathrm{mg}, 0.50 \mathrm{mmol}$), methyl 2-bromopropanoate (140i, 251 mg , 1.50 mmol), and bromobenzene ($165 \mathrm{a}, 236 \mathrm{mg}, 1.50 \mathrm{mmol}$). Purification by column chromatography (n-hexane/EtOAc 10:1) yielded 166a $(88.3 \mathrm{mg}, 58 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}-$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.63(\mathrm{dd}, J=1.9,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.43\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, J=8.1\right.$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, J=8.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.30-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{dd}, J=2.4$, $0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=2.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.3\left(\mathrm{C}_{\mathrm{q}}\right), 140.8\left(\mathrm{C}_{\mathrm{q}}\right), 140.2(\mathrm{CH}), 138.5\left(\mathrm{C}_{\mathrm{q}}\right), 138.1\left(\mathrm{C}_{\mathrm{q}}\right), 135.3\left(\mathrm{C}_{\mathrm{q}}\right)$, 131.3 (CH), 131.2 (CH), $128.4(\mathrm{CH}), 128.3(\mathrm{CH}), 127.3(\mathrm{CH}), 127.2(\mathrm{CH}), 125.7(\mathrm{CH}), 106.3(\mathrm{CH}), 52.2$ $\left(\mathrm{CH}_{3}\right), 45.0(\mathrm{CH}), 18.5\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2980,2950,1732,1519,1442,1200,1164,1042,739,699 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 306 (38) [M] ${ }^{+}, 305$ (100) $[\mathrm{M}-\mathrm{H}]^{+}, 247$ (23) $\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 245$ (29).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$307.1441, found 307.1443.

Methyl 2-[5-methoxy-2-(1H-pyrazol-1-yl)-[1,1'-biphenyl]-4-yl]propanoate (166b)

The general procedure F was followed using 1-(4-methoxyphenyl)-1Hpyrazole (147d, $87.1 \mathrm{mg}, 0.50 \mathrm{mmol}$), methyl 2-bromopropanoate (140i, $251 \mathrm{mg}, 1.50 \mathrm{mmol}$), and bromobenzene (165a, $236 \mathrm{mg}, 1.50 \mathrm{mmol})$. Purification by column chromatography (n-hexane/EtOAc 7:1) yielded 166b ($94.5 \mathrm{mg}, 56 \%$) as a viscous colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.59(\mathrm{dd}, \mathrm{J}=2.0,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.12-$ $7.09(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{dd}, J=2.3,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.15(\mathrm{dd}, J=2.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.7\left(\mathrm{C}_{\mathrm{q}}\right), 156.2\left(\mathrm{C}_{\mathrm{q}}\right), 139.8(\mathrm{CH}), 138.3\left(\mathrm{C}_{\mathrm{q}}\right), 136.7\left(\mathrm{C}_{\mathrm{q}}\right), 131.7\left(\mathrm{C}_{\mathrm{q}}\right)$, 131.3 (CH), 129.4 (Cq), 128.3 (CH), 128.2 (CH), 127.4 (CH), 126.6 (CH), 112.4 (CH), 106.0 (CH), 55.9 $\left(\mathrm{CH}_{3}\right), 52.0\left(\mathrm{CH}_{3}\right), 39.2(\mathrm{CH}), 17.1\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2981,2947,1733,1518,1488,1222,1036,750,700 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 336 (96) [M] ${ }^{+}, 335$ (100) [$\left.\mathrm{M}-\mathrm{H}\right]^{+}, 277$ (81) [$\left.\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 261$ (29), 165 (11), 59 (13).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 337.1547$, found 337.1547.

Methyl 2-[4'-fluoro-2-(1H-pyrazol-1-yl)-[1,1'-biphenyl]-4-yl]hexanoate (166c)

The general procedure \mathbf{F} was followed using 1-phenyl-1H-pyrazole (147a, $72.1 \mathrm{mg}, 0.50 \mathrm{mmol})$, methyl 2-bromohexanoate ($140 \mathrm{a}, 314 \mathrm{mg}$, 1.50 mmol), and 1-bromo-4-fluorobenzene (165b, 263 mg , 1.50 mmol). Purification by column chromatography (n-hexane/EtOAc 20:1) yielded 166 ($130 \mathrm{mg}, 71 \%$) as a viscous light yellow oil.

The general procedure G was followed using 1-phenyl-1H-pyrazole (147a, $72.1 \mathrm{mg}, 0.50 \mathrm{mmol}$), methyl 2-bromohexanoate (140a, $314 \mathrm{mg}, 1.50 \mathrm{mmol}$), and 1-bromo-4-fluorobenzene (165b, $263 \mathrm{mg}, 1.50 \mathrm{mmol}$). Purification by column chromatography (n-hexane/EtOAc 15:1) yielded 166c (133 mg, 72\%) as a viscous light yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.63(\mathrm{dd}, J=1.9,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.42\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, J=\right.$ 8.1, 1.9 Hz, 1H), $7.39\left(d_{A B} d, J=8.1,0.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.09(\mathrm{dd}, J=2.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=8.9,5.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.96(\mathrm{dd}, J=8.9,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.21(\mathrm{dd}, J=2.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{dd}, J=7.7,7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.19-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.23(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.1\left(\mathrm{C}_{\mathrm{q}}\right), 162.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=247 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 140.4(\mathrm{CH}), 140.0\left(\mathrm{C}_{\mathrm{q}}\right), 138.6$ $\left(C_{q}\right), 134.6\left(C_{q}\right), 134.2\left(d,{ }^{4} J_{C-F}=3 \mathrm{~Hz}, C_{q}\right), 131.2(C H), 131.1(C H), 130.1\left(d,{ }^{3} J_{C-F}=8 \mathrm{~Hz}, \mathrm{CH}\right), 127.8$ $(\mathrm{CH}), 126.4(\mathrm{CH}), 115.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}, \mathrm{CH}\right), 106.5(\mathrm{CH}), 52.1\left(\mathrm{CH}_{3}\right), 51.2(\mathrm{CH}), 33.3\left(\mathrm{CH}_{2}\right), 29.8$ $\left(\mathrm{CH}_{2}\right), 22.4\left(\mathrm{CH}_{2}\right), 13.9\left(\mathrm{CH}_{3}\right)$.
${ }^{19}$ F-NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-114.7(\mathrm{tt}, \mathrm{J}=8.6,5.4 \mathrm{~Hz})$.

IR (ATR): $\tilde{v}=2954,2860,1733,1489,1222,1158,1040,828,749 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 366 (52) [M$]^{+}, 365$ (100) $[\mathrm{M}-\mathrm{H}]^{+}, 307(15)\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 263$ (10), 251 (24).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 389.1636$, found 389.1627.

Methyl 2-[4'-methoxy-2-(1H-pyrazol-1-yl)-[1,1'-biphenyl]-4-yl]hexanoate (166d)

The general procedure F was followed using 1-phenyl-1H-pyrazole (147a, $72.1 \mathrm{mg}, 0.50 \mathrm{mmol}$), methyl 2-bromohexanoate (140a, $314 \mathrm{mg}, 1.50 \mathrm{mmol}$), and 1-bromo-4-methoxybenzene (165c, $281 \mathrm{mg}, 1.50 \mathrm{mmol})$. Purification by column chromatography (n-hexane/EtOAc 10:1) yielded 166d (122 mg, 65\%) as a viscous light yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.64(\mathrm{dd}, \mathrm{J}=1.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, \mathrm{J}=1.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.38$ (m, 2H), $7.09(\mathrm{dd}, J=2.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.20(\mathrm{dd}, J=$ $2.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{dd}, \mathrm{J}=8.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.91-$ $1.76(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.21(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.0\left(\mathrm{C}_{\mathrm{q}}\right), 158.9\left(\mathrm{C}_{\mathrm{q}}\right), 140.1(\mathrm{CH}), 139.2\left(\mathrm{C}_{\mathrm{q}}\right), 138.4\left(\mathrm{C}_{\mathrm{q}}\right), 135.1\left(\mathrm{C}_{\mathrm{q}}\right)$, 131.3 (CH), 131.0 (CH), 130.4 (C_{q}), 129.5 (CH), 127.5 (CH), 126.2 (CH), 113.9 (CH), 106.3 (CH), 55.2 $\left(\mathrm{CH}_{3}\right), 52.1\left(\mathrm{CH}_{3}\right), 51.2(\mathrm{CH}), 33.3\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2954,1733,1609,1489,1245,1161,1039,826,750 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 378 (62) [M$]^{+}, 377$ (100) $[\mathrm{M}-\mathrm{H}]^{+}, 319$ (10) $\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 263$ (19), 261 (15).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$401.1836, found 401.1825.

Methyl 2-[2-(9-iso-propyl-9H-purin-6-yl)-4'-(pyren-1-yl)-[1,1'-biphenyl]-4-yl]hexanoate (166e)

The general procedure F was followed using purine 123a ($119 \mathrm{mg}, 0.50 \mathrm{mmol}$), methyl 2-bromohexanoate (140a, $314 \mathrm{mg}, 1.50 \mathrm{mmol})$, and 1-(4-bromophenyl)pyrene (165d, 357 mg , 1.00 mmol). Purification by column
chromatography (n-hexane/EtOAc 3:1) yielded 166e (190 mg, 59\%) as a light yellow solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.98(\mathrm{~s}, 1 \mathrm{H}), 8.20-8.13(\mathrm{~m}, 3 \mathrm{H}), 8.07(\mathrm{~s}, 2 \mathrm{H}), 8.04(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.02(\mathrm{~s}, 1 \mathrm{H}), 8.01-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.67\left(\mathrm{~d}_{\mathrm{AB}}, J=8.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.61\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, \mathrm{J}=8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.39\left(\mathrm{~d}_{\mathrm{AB}}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.34\left(\mathrm{~d}_{\mathrm{AB}}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.94$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.67(\mathrm{~m}, 4 \mathrm{H}), 2.29-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H})$, $1.48-1.26(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.3\left(\mathrm{C}_{\mathrm{q}}\right), 158.7\left(\mathrm{C}_{\mathrm{q}}\right), 151.9(\mathrm{CH}), 151.1\left(\mathrm{C}_{\mathrm{q}}\right), 141.8(\mathrm{CH}), 140.5\left(\mathrm{C}_{\mathrm{q}}\right)$, $139.9\left(C_{q}\right), 139.1\left(C_{q}\right), 138.5\left(C_{q}\right), 137.3\left(C_{q}\right), 134.8\left(C_{q}\right), 132.6\left(C_{q}\right), 131.4\left(C_{q}\right), 130.8\left(C_{q}\right), 130.8(C H)$, $130.4\left(\mathrm{C}_{\mathrm{q}}\right), 129.9$ (CH), 129.2 (CH), 129.1 (CH), $128.3\left(\mathrm{C}_{\mathrm{q}}\right), 127.4(\mathrm{CH}), 127.3$ (CH), 127.3 (CH), 127.2 (CH), $125.9(\mathrm{CH}), 125.0(\mathrm{CH}), 125.0(\mathrm{CH}), 124.9\left(\mathrm{C}_{q}\right), 124.8\left(\mathrm{C}_{q}\right), 124.7(\mathrm{CH}), 124.5(\mathrm{CH}), 52.0\left(\mathrm{CH}_{3}\right)$, $51.4(\mathrm{CH}), 47.3(\mathrm{CH}), 33.5\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{3}\right), 22.6\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3038,2951,1732,1580,1328,1214,1162,846,722,647 \mathrm{~cm}^{-1}$.
m.p.: $109-110{ }^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 642 (100) [M] ${ }^{+}, 641$ (76) [M-H] ${ }^{+}$, 599 (17) [M-Pr] ${ }^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$665.2887, found 665.2887.
$E m: \lambda \max \left(1.0 \mathrm{mg} / \mathrm{L}\right.$ in $\left.\mathrm{CHCl}_{3}, \mathrm{Ex} 280 \mathrm{~nm}\right)=434 \mathrm{~nm}$.

Methyl 2-[4-(7-bromo-9H-fluoren-2-yl)-3-(9-iso-propyl-9H-purin-6-yl)phenyl]hexanoate (166f)

The general procedure \mathbf{F} was followed using purine 123a (119 mg, $0.50 \mathrm{mmol})$, methyl 2-bromohexanoate (140a, 314 mg , 1.50 mmol), and 2,7-dibromofluorene (165e, 486 mg , 1.50 mmol). Purification by column chromatography (n-hexane/EtOAc 3:1) yielded 166 f ($158 \mathrm{mg}, 52 \%$) as a light yellow solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.86(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.55\left(\mathrm{~d}_{\mathrm{AB}}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.54\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.52(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.43(\mathrm{~m}$, $2 \mathrm{H}), 7.42-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.86$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, $3.69-3.65(\mathrm{~m}, 4 \mathrm{H}), 2.19-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.38-1.27(\mathrm{~m}$, $4 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.3\left(\mathrm{C}_{\mathrm{q}}\right)$, $158.7\left(\mathrm{C}_{\mathrm{q}}\right), 151.8(\mathrm{CH}), 151.1\left(\mathrm{C}_{\mathrm{q}}\right), 145.3\left(\mathrm{C}_{\mathrm{q}}\right), 142.5\left(\mathrm{C}_{\mathrm{q}}\right)$, $141.9(\mathrm{CH}), 140.7\left(\mathrm{C}_{\mathrm{q}}\right), 140.4\left(\mathrm{C}_{q}\right), 140.1\left(\mathrm{C}_{q}\right), 138.9\left(\mathrm{C}_{\mathrm{q}}\right), 138.3\left(\mathrm{C}_{\mathrm{q}}\right), 134.7\left(\mathrm{C}_{q}\right), 132.6\left(\mathrm{C}_{q}\right), 130.9$ (CH), 130.8 (CH), 129.8 (CH), 129.1 (CH), 128.3 (CH), 128.1 (CH), 125.7 (CH), 120.9 (CH), 120.2 (C C_{q}, $119.1(\mathrm{CH}), 52.0\left(\mathrm{CH}_{3}\right), 51.4(\mathrm{CH}), 47.3(\mathrm{CH}), 36.7\left(\mathrm{CH}_{2}\right), 33.5\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right), 22.5$ $\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2952,2870,1732,1577,1455,1327,1214,1162,812,647 \mathrm{~cm}^{-1}$.
m.p.: $92-94^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): $610(71)\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)\right]^{+}, 609(100)\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)-\mathrm{H}\right]^{+}, 608(69)\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)\right]^{+}, 607$ (81) $\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)-\mathrm{H}\right]^{+}, 43$ (17).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{34}{ }^{79} \mathrm{BrN}_{4} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$609.1860, found 609.1857.

Em: $\lambda \max \left(1.0 \mathrm{mg} / \mathrm{L}\right.$ in $\left.\mathrm{CHCl}_{3}, \mathrm{Ex} 280 \mathrm{~nm}\right)=441 \mathrm{~nm}$.

Methyl 2-[2-(pyrimidin-2-yl)-[1,1'-biphenyl]-4-yl]hexanoate (166g)

The general procedure \mathbf{G} was followed using 2-phenylpyrimidine (139a, $78.1 \mathrm{mg}, \quad 0.50 \mathrm{mmol}$), methyl 2-bromohexanoate (140a, 314 mg , 1.50 mmol), and bromobenzene ($\mathbf{1 6 5 a}, 236 \mathrm{mg}, 1.50 \mathrm{mmol}$). Purification by column chromatography (n-hexane/EtOAc 7:1) yielded 166g (113 mg, 63%) as a light yellow oil.

In case of using chlorobenzene ($\mathbf{1 6 5 a}^{\prime}$) ($169 \mathrm{mg}, 1.50 \mathrm{mmol}$), the reaction provided product $\mathbf{1 6 6 g}$ ($126 \mathrm{mg}, 70 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.63(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, \mathrm{J}=7.9\right.$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43\left(\mathrm{~d}_{\mathrm{AB}}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{t}, \mathrm{J}=4.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.67 (s, 3H), 3.65 (dd, $J=8.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.15 (dddd, $J=13.3,9.6,8.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.85 (dddd, $J=$ $13.3,9.3,7.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.39-1.23(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.3\left(\mathrm{C}_{\mathrm{q}}\right), 167.8\left(\mathrm{C}_{\mathrm{q}}\right), 156.6(\mathrm{CH}), 141.2\left(\mathrm{C}_{\mathrm{q}}\right), 140.3\left(\mathrm{C}_{\mathrm{q}}\right), 138.4\left(\mathrm{C}_{\mathrm{q}}\right)$, 138.3 (C_{q}), 130.9 (CH), 130.2 (CH), 129.0 (CH), 128.7 (CH), 127.9 (CH), 126.4 (CH), 118.4 (CH), 52.0 $\left(\mathrm{CH}_{3}\right), 51.4(\mathrm{CH}), 33.4\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2953,1732,1566,1553,1437,1400,1161,818,747,700 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 360 (39) $[\mathrm{M}]^{+}, 359$ (100) $[\mathrm{M}-\mathrm{H}]^{+}, 301$ (6) $\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 257$ (13) $\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}-\mathrm{Pr}\right]^{+}, 245(20)\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}-\mathrm{Bu}\right]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 383.1730$, found 383.1730.

Methyl 2-[4'-fluoro-5-methyl-2-(pyrimidin-2-yl)-[1,1'-biphenyl]-4-yl]hexanoate (166h)

The general procedure \mathbf{G} was followed using 2-(p-tolyl)pyrimidine (139b, $85.3 \mathrm{mg}, 0.50 \mathrm{mmol}$), methyl 2-bromohexanoate (140a, $314 \mathrm{mg}, 1.50 \mathrm{mmol}$), and 1-bromo-4-fluorobenzene (165b, 263 mg , 1.50 mmol). Purification by column chromatography (n-hexane/EtOAc $7: 1$) yielded 166 h ($124 \mathrm{mg}, 63 \%$) as a yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.61(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.11-7.03(\mathrm{~m}, 3 \mathrm{H})$, 6.90 (dd, J = 8.8, $8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $3.88(\mathrm{dd}, \mathrm{J}=8.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.27-2.13(\mathrm{~m}$, 1H), 1.88-1.73 (m, 1H), 1.42-1.22 (m, 4H), $0.89(t, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=174.3\left(\mathrm{C}_{\mathrm{q}}\right), 167.5\left(\mathrm{C}_{\mathrm{q}}\right), 161.6\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=245 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 156.5(\mathrm{CH}), 138.7$ $\left(C_{q}\right), 137.4\left(C_{q}\right), 137.3\left(d,{ }^{4} J_{C-F}=3 \mathrm{~Hz}, C_{q}\right), 137.2\left(C_{q}\right), 136.2\left(C_{q}\right), 132.6(C H), 130.4\left(d,{ }^{3} J_{C-F}=8 \mathrm{~Hz}\right.$, $\mathrm{CH}), 129.3(\mathrm{CH}), 118.2(\mathrm{CH}), 114.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}, \mathrm{CH}\right), 51.9\left(\mathrm{CH}_{3}\right), 46.8(\mathrm{CH}), 32.9\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right)$, $22.6\left(\mathrm{CH}_{2}\right), 19.8\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3}\right)$.
${ }^{19}$ F-NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-116.6(\mathrm{tt}, \mathrm{J}=8.8,5.4 \mathrm{~Hz})$.

IR (ATR): $\tilde{v}=2954,1733,1565,1495,1421,1219,1160,837,812 \mathrm{~cm}^{-1}$.

MS (ESI) m / z (relative intensity): 807 (18) [2M+Na] ${ }^{+}, 415(48)[\mathrm{M}+\mathrm{Na}]^{+}, 393(100)[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{FN}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$393.1973, found 393.1973.

Methyl 2-[2-(4,5-dihydrooxazol-2-yl)-5-methoxy-[1,1'-biphenyl]-4-yl]hexanoate (166i)

The general procedure \mathbf{G} was followed using 2-(4-methoxyphenyl)-4,5dihydrooxazole (139i, $88.6 \mathrm{mg}, 0.50 \mathrm{mmol}$), methyl 2-bromohexanoate (140a, $314 \mathrm{mg}, 1.50 \mathrm{mmol})$, and bromobenzene (165a, 236 mg , 1.50 mmol). Purification by column chromatography (n-hexane/EtOAc $3: 2$) yielded 166 i ($87.2 \mathrm{mg}, 46 \%$) as a colorless oil.

In case of using chlorobenzene ($165 \mathrm{a}^{\prime}$) ($169 \mathrm{mg}, 1.50 \mathrm{mmol}$), the reaction provided product $\mathbf{1 6 6 i}$ (52.2 mg, 27\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.71(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 4.14-4.03(\mathrm{~m}, 2 \mathrm{H}), 4.00$ (dd, $J=7.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.88 (dd, $J=10.0,8.9 \mathrm{~Hz}, 2 \mathrm{H}$), $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{dddd}, J=$ 13.1, $9.6,7.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.78 (dddd, J = 13.4, $9.6,7.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.40-1.20(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.5\left(\mathrm{C}_{\mathrm{q}}\right), 165.7\left(\mathrm{C}_{\mathrm{q}}\right), 158.2\left(\mathrm{C}_{\mathrm{q}}\right), 142.3\left(\mathrm{C}_{\mathrm{q}}\right), 141.5\left(\mathrm{C}_{\mathrm{q}}\right), 130.6(\mathrm{CH})$, $128.3(\mathrm{CH}), 127.9(\mathrm{CH}), 127.2(\mathrm{CH}), 127.1\left(\mathrm{C}_{\mathrm{q}}\right), 119.8\left(\mathrm{C}_{q}\right), 112.6(\mathrm{CH}), 67.5\left(\mathrm{CH}_{2}\right), 55.8\left(\mathrm{CH}_{3}\right), 55.0$ $\left(\mathrm{CH}_{2}\right), 51.9\left(\mathrm{CH}_{3}\right), 43.8(\mathrm{CH}), 32.0\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 13.9\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2953,1733,1647,1609,1487,1346,1224,1166,752,700 \mathrm{~cm}^{-1}$.

MS (ESI) m / z (relative intensity): $785(80)[2 \mathrm{M}+\mathrm{Na}]^{+}, 763(37)[2 \mathrm{M}+\mathrm{H}]^{+}, 404(27)[\mathrm{M}+\mathrm{Na}]^{+}, 382(100)$ $[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{4}^{+}[\mathrm{M}+\mathrm{H}]^{+}$382.2013, found 382.2011.

5.3.3.4 Mechanistic Studies

5.3.3.4.1 Reaction with TEMPO

2-Phenylpyrimidine (139a, $78.1 \mathrm{mg}, \quad 0.50 \mathrm{mmol})$, [Ru(O2 CMes$)_{2}$ (p-cymene)] (33, 28.1 mg , $50.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%), \mathrm{PPh}_{3}(13.1 \mathrm{mg}, 50.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{mmol})$, and TEMPO ($78.2 \mathrm{mg}, 0.50 \mathrm{mmol}$) were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} for three times. Methyl 2-bromohexanoate (140a, 314 mg , 1.50 mmol) and 1,4-dioxane (2.0 mL) were then added and the mixture was stirred at $40^{\circ} \mathrm{C}$. After 20 h , the resulting mixture was filtered through a pad of silica gel and washed with EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography (n-hexane/EtOAc 30:1) followed by recycling preparative HPLC yielded TEMPO-adduct 167 ($18.1 \mathrm{mg}, 13 \%$) as a colorless oil.

Methyl 2-[(2,2,6,6-tetramethylpiperidin-1-yl)oxy]hexanoate (167)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.25-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.74(\mathrm{~m}$, $2 \mathrm{H}), 1.50-1.14(\mathrm{~m}, 13 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.1\left(\mathrm{C}_{\mathrm{q}}\right), 85.7(\mathrm{CH}), 60.3\left(\mathrm{C}_{\mathrm{q}}\right), 59.4\left(\mathrm{C}_{\mathrm{q}}\right), 51.3\left(\mathrm{CH}_{3}\right), 40.3\left(\mathrm{CH}_{2}\right)$, $40.2\left(\mathrm{CH}_{2}\right), 33.5\left(\mathrm{CH}_{3}\right), 32.9\left(\mathrm{CH}_{3}\right), 31.8\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right), 20.2\left(\mathrm{CH}_{3}\right), 20.1\left(\mathrm{CH}_{3}\right), 17.1$ $\left(\mathrm{CH}_{2}\right), 13.9\left(\mathrm{CH}_{3}\right)$

IR (ATR): $\tilde{v}=2931,2872,1742,1458,1375,1261,1170,1132,1034,791 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 285 (1) [M] ${ }^{+}, 270$ (4) [M-Me] ${ }^{+}, 156$ (100) [TEMPO] ${ }^{+}, 123$ (29), 83 (15), 69 (22), 55 (26), 41 (18).

HR-MS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}]^{+}$285.2298, found 285.2309.

5.3.3.4.2 Reactions with Diastereomerically Pure Alkyl Bromide

The general procedure E was followed using 2-phenylpyrimidine (139a, $102 \mathrm{mg}, 0.65 \mathrm{mmol}$) and (s)-4-benzyl-3-((s)-2-bromopropanoyl)oxazolidin-2-one (140j, $156 \mathrm{mg}, 0.50 \mathrm{mmol})$. After 20 h , purification by column chromatography (n-hexane/EtOAc $3: 1$) yielded 141r ($141 \mathrm{mg}, 73 \%$, dr 1.0:1.4). Two diastereomers was separated by recycling preparative HPLC to provide isomer A ($57.3 \mathrm{mg}, 30 \%$) as a white solid and isomer B ($41.8 \mathrm{mg}, 36 \%$) as a colorless oil

(s)-4-Benzyl-3-\{(s)-2-[3-(pyrimidin-2-yl)phenyl]propanoyl\}oxazolidin-2-one (141rA)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.80(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.46$ (dd, $\left.J=1.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.33$ (ddd, $\mathrm{J}=$ $7.7,1.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ (ddd, J = 7.7, 1.7, 1.4 Hz, 1H), 7.45 (dd, J=7.7, 7.7 Hz, 1H), 7.36-7.31 (m, $2 H), 7.30-7.27(m, 1 H), 7.24-7.21(m, 2 H), 7.18(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62$

(dddd, $J=9.8,7.6,3.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, J=9.1\right.$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{dd}, J=9.1,7.6,0.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.37(\mathrm{dd}$, $J=13.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=13.3,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.63$ (d, J = 7.0 Hz, 3H).
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.4\left(\mathrm{C}_{\mathrm{q}}\right), 164.5\left(\mathrm{C}_{\mathrm{q}}\right)$, $157.1(\mathrm{CH}), 152.8\left(\mathrm{C}_{q}\right), 140.6\left(\mathrm{C}_{\mathrm{q}}\right), 137.9\left(\mathrm{C}_{\mathrm{q}}\right), 135.3\left(\mathrm{C}_{\mathrm{q}}\right)$, $130.6(\mathrm{CH}), 129.4(\mathrm{CH}), 128.9(\mathrm{CH}), 128.8(\mathrm{CH}), 127.9(\mathrm{CH}), 127.3(\mathrm{CH}), 127.1(\mathrm{CH}), 119.0(\mathrm{CH}), 65.9$ $\left(\mathrm{CH}_{2}\right), 55.8(\mathrm{CH}), 43.4(\mathrm{CH}), 38.0\left(\mathrm{CH}_{2}\right), 19.5\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2977,1771,1694,1554,1410,1357,1209,760,745,699 \mathrm{~cm}^{-1}$.
m.p.: $140-141{ }^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 387 (33) [M] ${ }^{+}, 210$ (100), 183 (51), 168 (34), 91 (14) [Bn].

HR-MS (EI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+}[\mathrm{M}]^{+}$387.1577, found 387.1583.

(s)-4-Benzyl-3-\{(R)-2-[3-(pyrimidin-2-yl)phenyl]propanoyl\}oxazolidin-2-one (141rB)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.80(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{dd}, \mathrm{J}=1.8,1.7 \mathrm{~Hz}$, 1 H), 8.37 (ddd, $J=7.8,1.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.56 (ddd, $J=7.7,1.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.49 (dd, J = 7.8, 7.7 Hz, 1H), 7.20-7.18 (m, 3H), $7.17(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.99$ $(\mathrm{m}, 2 \mathrm{H}), 5.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(d d d d, J=9.2,8.1,3.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ (dd, $J=9.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $4.08(\mathrm{dd}, J=9.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=13.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=$ 13.5, $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.3\left(\mathrm{C}_{\mathrm{q}}\right), 164.4\left(\mathrm{C}_{\mathrm{q}}\right), 157.1(\mathrm{CH}), 152.8\left(\mathrm{C}_{\mathrm{q}}\right), 140.6\left(\mathrm{C}_{\mathrm{q}}\right), 138.0\left(\mathrm{C}_{\mathrm{q}}\right)$, $135.0\left(\mathrm{C}_{\mathrm{q}}\right), 130.6$ (CH), 129.3 (CH), 128.9 (CH), 128.7 (CH), 128.1 (CH), 127.1 (CH), 127.0 (CH), 119.0 $(\mathrm{CH}), 65.9\left(\mathrm{CH}_{2}\right), 55.1(\mathrm{CH}), 43.5(\mathrm{CH}), 37.5\left(\mathrm{CH}_{2}\right), 19.3\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2977,1772,1693,1555,1410,1356,1210,734,699 \mathrm{~cm}^{-1}$.
MS (EI) m / z (relative intensity): 387 (29) [M] ${ }^{+}, 210$ (100), 183 (47), 168 (34), 91 (18) [Bn].
HR-MS (EI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+}[\mathrm{M}]^{+}$387.1577, found 387.1586.

The general procedure \mathbf{E} was followed using $\left[\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CMes}\right)_{2}(p\right.$-cymene $\left.)\right](33,28.1 \mathrm{mg}, 50.0 \mu \mathrm{~mol}$, $10 \mathrm{~mol} \%)$, 2-phenyl-4,5-dihydrooxazole (139h, $57.6 \mathrm{mg}, 0.39 \mathrm{mmol})$ and (s)-4-benzyl-3-((s)-2-bromopropanoyl)oxazolidin-2-one (140j, $93.8 \mathrm{mg}, 0.30 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 3:2) yielded 141s ($65.1 \mathrm{mg}, 57 \%$ dr 1.0:1.7). Two diastereomers was separated by recycling preparative HPLC to provide isomer $\mathbf{A}(23.8 \mathrm{mg}, 21 \%)$ as a colorless oil and isomer B ($41.2 \mathrm{mg}, 36 \%$) as a colorless oil.

(4s)-4-Benzyl-3-\{2-[3-(4,5-dihydrooxazol-2-yl)phenyl]propanoyl\}oxazolidin-2-one (141s)

Diastereomer A:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.00(\mathrm{dd}, \mathrm{J}=1.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.88$ (ddd, $J=7.8$, $1.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.54 (ddd, $J=7.7,1.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=7.8,7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.23-7.19 (m, 3H), 7.02-6.98 (m, 2H), $5.14(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.74$ (dddd, $J=$ $9.2,8.2,3.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{t}, \mathrm{J}=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{dd}, J=9.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=9.0$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{t}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{dd}, J=13.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=13.5,9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.54(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.0\left(\mathrm{C}_{\mathrm{q}}\right), 164.3\left(\mathrm{C}_{\mathrm{q}}\right), 152.8\left(\mathrm{C}_{\mathrm{q}}\right), 140.4\left(\mathrm{C}_{\mathrm{q}}\right), 134.9\left(\mathrm{C}_{\mathrm{q}}\right), 131.2(\mathrm{CH})$, $129.3(\mathrm{CH}), 128.8(\mathrm{CH}), 128.6(\mathrm{CH}), 128.2\left(\mathrm{C}_{\mathrm{q}}\right), 127.9(\mathrm{CH}), 127.1(\mathrm{CH}), 127.1(\mathrm{CH}), 67.6\left(\mathrm{CH}_{2}\right), 65.9$ $\left(\mathrm{CH}_{2}\right), 55.0(\mathrm{CH}), 55.0\left(\mathrm{CH}_{2}\right), 43.2(\mathrm{CH}), 37.5\left(\mathrm{CH}_{2}\right), 19.2\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2978,2933,1779,1697,1650,1360,1214,1068,948,706 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 378 (100) [M] ${ }^{+}$, 201 (96), 174 (76), 143 (29), 131 (42), 103 (35), 91 (20) $[\mathrm{Bn}], 77$ (13).

HR-MS (EI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}[\mathrm{M}]^{+} 378.1574$, found 378.1590.

Diastereomer B:
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.94(\mathrm{dd}, \mathrm{J}=1.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{ddd}, J=7.7,1.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (ddd, J = 7.8, 1.7, 1.5 Hz, 1H), 7.39-7.31 (m, 3H), 7.30-7.24 (m, 1H), 7.24-7.18 (m, 2H), 5.15 (q, J= $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61$ (dddd, J = 9.8, 7.4, 3.3, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{dd}, \mathrm{J}=9.1,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.10-4.02(\mathrm{~m}, 3 \mathrm{H}), 3.35(\mathrm{dd}, \mathrm{J}=13.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, \mathrm{J}=13.3,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{~d}, \mathrm{~J}=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=174.2\left(\mathrm{C}_{\mathrm{q}}\right), 164.4\left(\mathrm{C}_{\mathrm{q}}\right), 152.8\left(\mathrm{C}_{\mathrm{q}}\right), 140.5\left(\mathrm{C}_{\mathrm{q}}\right), 135.3\left(\mathrm{C}_{\mathrm{q}}\right), 131.3(\mathrm{CH})$, $129.4(\mathrm{CH}), 128.9(\mathrm{CH}), 128.6(\mathrm{CH}), 128.1\left(\mathrm{C}_{\mathrm{q}}\right), 127.8(\mathrm{CH}), 127.3(\mathrm{CH}), 127.1(\mathrm{CH}), 67.6\left(\mathrm{CH}_{2}\right), 65.9$ $\left(\mathrm{CH}_{2}\right), 55.7(\mathrm{CH}), 54.9\left(\mathrm{CH}_{2}\right), 43.1(\mathrm{CH}), 37.9\left(\mathrm{CH}_{2}\right), 19.4\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2976,2932,1777,1696,1650,1359,1212,1069,948,706 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 378 (87) [M] ${ }^{+}, 201$ (100), 174 (83), 143 (40), 131 (47), 115 (15), 103 (42), 91 (58) [Bn], 77 (18), 65 (13)

HR-MS (EI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}[\mathrm{M}]^{+} 378.1574$, found 378.1583.

5.3.3.4.3 Spin Trapping with DMPO

A mixture of 2-phenyl-4,5-dihydrooxazole (139h, $17.7 \mathrm{mg}, 0.12 \mathrm{mmol})$, methyl 2-bromohexanoate (140a, $75.3 \mathrm{mg}, 0.36 \mathrm{mmol}),\left[\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CMes}\right)_{2}(p\right.$-cymene)] (33, $33.7 \mathrm{mg}, 60 \mu \mathrm{~mol}), \mathrm{PPh}_{3}(15.7 \mathrm{mg}$, $60 \mu \mathrm{~mol}), \mathrm{K}_{2} \mathrm{CO}_{3}(33.2 \mathrm{mg}, 0.24 \mathrm{mmol})$ and DMPO ($6.8 \mathrm{mg}, 60 \mu \mathrm{~mol}$) in 1,4-dioxane (3.0 mL) was heated to $60^{\circ} \mathrm{C}$ for 30 min in a glovebox with N_{2}-atmosphere. A filtered sample was transferred to an EPR-tube and measured directly (Figure 18).

DMPO itself gave small background signals which are different to the strong ones observed after the reaction. The observed spectrum is in accordance to reported DMPO-adducts with alkyl radicals. ${ }^{[135]}$

Figure 18: EPR spectroscopic studies for the synergistic ruthenium catalytic system.

5.3.3.5 Late-Stage Diversifications

Saponification of Esters

2-[3-(Pyrimidin-2-yl)phenyl]hexanoic acid (175a)

To a solution of 141a ($569 \mathrm{mg}, 2.00 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (9:1, 20 mL) was added NaOH in $\mathrm{MeOH}(2 \mathrm{M}, 2.0 \mathrm{~mL})$. The reaction mixture was stirred at ambient temperature. After 24 h , the reaction mixture was concentrated in vacuo and acidified with 2 N HCl until $\mathrm{pH} 1-2$. The resulting mixture was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the residue by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 50: 1\right)$ yielded product 175a (508 mg, 94\%) as a viscous colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.85(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.38(\mathrm{dd}, \mathrm{J}=1.8,1.7 \mathrm{~Hz}$, 1 H), 8.30 (ddd, $J=7.3,1.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.51 (ddd, $J=7.7,1.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.44 (dd, J = 7.7, 7.3 Hz , $1 \mathrm{H}), 7.19(\mathrm{t}, \mathrm{J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=7.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.19$ (dddd, $J=13.2,9.5,7.8,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, 1.89 (dddd, $J=13.2,9.5,7.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.43-1.19 (m, 4H), $0.87(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.5\left(\mathrm{C}_{\mathrm{q}}\right), 164.3\left(\mathrm{C}_{\mathrm{q}}\right), 157.1(\mathrm{CH}), 139.4\left(\mathrm{C}_{\mathrm{q}}\right), 137.4\left(\mathrm{C}_{\mathrm{q}}\right), 130.4(\mathrm{CH})$, $128.8(\mathrm{CH}), 128.0(\mathrm{CH}), 127.3(\mathrm{CH}), 119.1(\mathrm{CH}), 51.8(\mathrm{CH}), 32.8\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 13.9$ $\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2956,2930,1704,1556,1411,1168,907,727,646 \mathrm{~cm}^{-1}$.
MS (EI) m / z (relative intensity): 270 (28) [M] ${ }^{+}, 225(50)\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{H}\right]^{+}, 214$ (51) [M-Bu] ${ }^{+}, 196$ (23) [M$\left.\mathrm{CO}_{2} \mathrm{H}-\mathrm{Et}\right]^{+}, 183$ (27) [M-CO2H-Pr] ${ }^{+}, 169$ (79) [M-CO2H-Bu] ${ }^{+}, 84$ (10), 58 (41) [Bu], 43 (100) [Pr].

HR-MS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}]^{+}$270.1363, found 270.1377.

2-[2-(Pyrimidin-2-yl)-[1,1'-biphenyl]-4-yl]hexanoic acid (175b)

To a solution of $\mathbf{1 6 6 g}(113 \mathrm{mg}, 0.31 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(9: 1,3.0 \mathrm{~mL})$ was added NaOH in $\mathrm{MeOH}(2 \mathrm{M}, 0.3 \mathrm{~mL})$. The reaction mixture was stirred at ambient temperature. After 24 h , the reaction mixture was concentrated in vacuo and acidified with 2 N HCl until $\mathrm{pH} 1-2$. The resulting mixture was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the residue by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 50: 1\right)$ yielded product 175b ($96.4 \mathrm{mg}, 89 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.72(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, \mathrm{J}=8.0\right.$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43\left(\mathrm{~d}_{\mathrm{AB}}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.23-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 2 \mathrm{H})$, 3.64 (dd, $J=7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.86$ (dddd, $J=13.4,9.4,7.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.41$1.21(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=177.3\left(\mathrm{C}_{\mathrm{q}}\right), 167.5\left(\mathrm{C}_{\mathrm{q}}\right), 156.6(\mathrm{CH}), 140.9\left(\mathrm{C}_{\mathrm{q}}\right), 140.4\left(\mathrm{C}_{\mathrm{q}}\right), 138.5\left(\mathrm{C}_{\mathrm{q}}\right)$, 137.4 (C_{q}), 130.9 (CH), 130.5 (CH), 129.1 (CH), 128.9 (CH), 127.9 (CH), 126.5 (CH), 118.6 (CH), 51.3 $(\mathrm{CH}), 32.7\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2955,2929,1710,1567,1439,1401,1176,910,732,701 \mathrm{~cm}^{-1}$.
m.p.: $79-80^{\circ} \mathrm{C}$.

MS (EI) m/z (relative intensity): 346 (40) [M] ${ }^{+}, 345$ (100) [M-H] ${ }^{+}, 288$ (6) [M-Bu] ${ }^{+}, 271$ (8) [M$\left.\mathrm{CO}_{2} \mathrm{H}-\mathrm{Et}\right]^{+}, 257$ (12) $\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{H}-\mathrm{Pr}\right]^{+}, 244$ (12) $\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{H}-\mathrm{Bu}\right]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$369.1573, found 369.1569.

Photocatalytic Decarboxylations

2-(3-Pentylphenyl)pyrimidine (177a)

The general procedure \mathbf{H} was followed using substrate 175 ($54.1 \mathrm{mg}, 0.20 \mathrm{mmol}$) and photocatalyst [Mes-Acr-Me][ClO$\left.{ }_{4}\right]$ (176, $\left.1.0 \mathrm{mg}, 2.4 \mu \mathrm{~mol}, 1.2 \mathrm{~mol} \%\right)$. After 16 h , purification by column chromatography (n-hexane/EtOAc 10:1) yielded 177a ($39.9 \mathrm{mg}, 88 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.81(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.27-8.23(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{dd}, \mathrm{J}=8.3,7.6 \mathrm{~Hz}$, 1 H), 7.31 (ddd, $J=7.6,1.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.18(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=8.0,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.76-$ $1.59(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.30(\mathrm{~m}, 4 \mathrm{H}), 0.93-0.86(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=164.9\left(\mathrm{C}_{\mathrm{q}}\right), 157.1(\mathrm{CH}), 143.3\left(\mathrm{C}_{q}\right), 137.4\left(\mathrm{C}_{q}\right), 130.9(\mathrm{CH}), 128.4(\mathrm{CH})$, $128.0(\mathrm{CH}), 125.5(\mathrm{CH}), 118.9(\mathrm{CH}), 36.1\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2927,2856,1568,1553,1423,1408,782,697,636 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 226 (47) [M] ${ }^{+}, 197$ (7) [M-Et] ${ }^{+}, 183$ (45) [M-Pr] ${ }^{+}, 170$ (93), 169 (100) $[\mathrm{M}-\mathrm{Bu}]^{+}, 116$ (8), 89 (7).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$227.1543, found 227.1538.

2-(4-Pentyl-[1,1'-biphenyl]-2-yl)pyrimidine (177b)

The general procedure \mathbf{H} was followed using substrate $\mathbf{1 7 5 b}$ (34.7 mg , $0.10 \mathrm{mmol})$ and photocatalyst [Mes-Acr-Me][ClO$\left.{ }_{4}\right](176,2.0 \mathrm{mg}, 4.8 \mu \mathrm{~mol}$, $4.8 \mathrm{~mol} \%$). After 16 h , purification by column chromatography (n-hexane/EtOAc 10:1) yielded 177b ($16.3 \mathrm{mg}, 54 \%$) as a light yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.63(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{dd}, \mathrm{J}=1.9,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, \mathrm{J}=\right.$ $7.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, \mathrm{J}=7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.25-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=$ $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, \mathrm{J}=7.9,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.31(\mathrm{~m}, 4 \mathrm{H}), 0.94-0.87(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.3\left(\mathrm{C}_{\mathrm{q}}\right), 156.7(\mathrm{CH}), 142.2\left(\mathrm{C}_{\mathrm{q}}\right), 141.6\left(\mathrm{C}_{\mathrm{q}}\right), 138.8\left(\mathrm{C}_{\mathrm{q}}\right), 138.0\left(\mathrm{C}_{\mathrm{q}}\right)$, $130.6(\mathrm{CH}), 130.4(\mathrm{CH}), 129.5(\mathrm{CH}), 129.1(\mathrm{CH}), 127.9(\mathrm{CH}), 126.2(\mathrm{CH}), 118.3(\mathrm{CH}), 35.5\left(\mathrm{CH}_{2}\right), 31.6$ $\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2927,2856,1566,1552,1423,1397,817,770,699 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 302 (37) [M] ${ }^{+}, 301$ (100) [M-H] ${ }^{+}, 244$ (27) [M-Bu] ${ }^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 303.1856$, found 303.1860.

3-Pentylbenzoic acid (179)

The general procedure \mathbf{H} was followed using substrate 178 ($47.3 \mathrm{mg}, 0.20 \mathrm{mmol}$) and photocatalyst [Mes-Acr-Me][ClO$\left.{ }_{4}\right](176,2.0 \mathrm{mg}, 4.8 \mu \mathrm{~mol}, 2.4 \mathrm{~mol} \%)$. After 16 h , purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{HOAc} 100: 1\right)$ yielded 179 (34.5 mg , 90\%) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=11.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.98-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.43$ (ddd, J=7.7, 1.6, 1.6 Hz, $1 \mathrm{H}), 7.38(\mathrm{dd}, J=7.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=7.9,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.25(\mathrm{~m}$, $4 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.6\left(\mathrm{C}_{\mathrm{q}}\right), 143.3\left(\mathrm{C}_{\mathrm{q}}\right), 133.9(\mathrm{CH}), 130.1(\mathrm{CH}), 129.5\left(\mathrm{C}_{\mathrm{q}}\right), 128.4(\mathrm{CH})$, $127.6(\mathrm{CH}), 35.7\left(\mathrm{CH}_{2}\right)$, $31.4\left(\mathrm{CH}_{2}\right)$, $31.0\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2925,2854,1678,1451,1275,946,739,666 \mathrm{~cm}^{-1}$.
m.p.: $58-59^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 192 (41) [M] ${ }^{+}, 149$ (10) [M-Pr] ${ }^{+}, 136$ (100) [M-Bu] ${ }^{+}, 135$ (85), 105 (10), 92 (37), 91 (47), 77 (19), 58 (22) [Bu], 43 (66) [Pr].

HR-MS (EI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}^{+}[\mathrm{M}]^{+}$192.1145, found 192.1149.
The spectral data are in accordance with those reported in the literature. ${ }^{[136]}$

5.3.3.6 Characterization Data for 180

Ethyl 2-methyl-2-[4-(pyrimidin-2-ylamino)phenyl]propanoate (180a)

N Pyrimidyl aniline $125 \mathrm{~b}(42.8 \mathrm{mg}, 0.25 \mathrm{mmol})$, $\left[\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CMes}\right)_{2}(p\right.$-cymene)] (33, $14.1 \mathrm{mg}, 25.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%), \mathrm{PPh}_{3}(6.6 \mathrm{mg}, 25.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($69.1 \mathrm{mg}, 0.50 \mathrm{mmol}$) were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} for three times. Ethyl 2-bromo-2methylpropanoate ($\mathbf{1 4 0 k}, 146 \mathrm{mg}, 0.75 \mathrm{mmol}$) and $\mathrm{PhCMe}_{3}(1.0 \mathrm{~mL})$ were then added and the mixture was stirred at $120^{\circ} \mathrm{C}$. After 20 h , the resulting mixture was filtered through a pad of siliga gel and washed with EtOAc. The filtrate was concentrated in vacuo. Purification of
the residue by column chromatography (n-hexane/EtOAc $6: 1$) yielded monoalkylated product 180a ($18.9 \mathrm{mg}, 26 \%$) as a colorless oil and dialkylated product $180{ }^{\prime}$ ($22.8 \mathrm{mg}, 23 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.42(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.32$ (d, J = 8.7 Hz, 2H), $6.71(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 6 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=176.8\left(\mathrm{C}_{\mathrm{q}}\right), 160.2\left(\mathrm{C}_{\mathrm{q}}\right), 158.1(\mathrm{CH}), 139.1\left(\mathrm{C}_{\mathrm{q}}\right), 137.8\left(\mathrm{C}_{q}\right), 126.3(\mathrm{CH})$, $119.4(\mathrm{CH}), 112.6(\mathrm{CH}), 60.8\left(\mathrm{CH}_{2}\right), 45.9\left(\mathrm{C}_{\mathrm{q}}\right), 26.5\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2975,1720,1579,1522,1446,1415,1243,1143,796 \mathrm{~cm}^{-1}$.

MS (ESI) m/z (relative intensity): 308 (22) [M+Na]+, 286 (100) [M+H] ${ }^{+}, 212$ (9).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$286.1550, found 286.1556 .

Ethyl 2-\{2-\{[4-(1-ethoxy-2-methyl-1-oxopropan-2-yl)phenyl]amino\}pyrimidin-5-yl\}-2-methyl propanoate (180a')

$(\mathrm{CH}), 138.9\left(\mathrm{C}_{\mathrm{q}}\right), 137.8\left(\mathrm{C}_{\mathrm{q}}\right), 128.2\left(\mathrm{C}_{\mathrm{q}}\right), 126.2(\mathrm{CH}), 119.2(\mathrm{CH}), 61.3\left(\mathrm{CH}_{2}\right), 60.7\left(\mathrm{CH}_{2}\right), 46.0\left(\mathrm{C}_{\mathrm{q}}\right), 43.1$ $\left(\mathrm{C}_{\mathrm{q}}\right), 26.6\left(\mathrm{CH}_{3}\right), 26.0\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3390,2978,1709,1595,1519,1436,1249,1144,800 \mathrm{~cm}^{-1}$.
m.p.: $105-106{ }^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 399 (15) [M] ${ }^{+}, 326$ (100) [$\left.\mathrm{M}-\mathrm{CO}_{2} \mathrm{Et}\right]^{+}, 298$ (14), 252 (14).

HR-MS (EI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{+}[\mathrm{M}]^{+}$399.2153, found 399.2168.

Ethyl 2-\{4-[(5-chloropyrimidin-2-yl)amino]phenyl\}-2-methylpropanoate (180b)

Pyrimidyl aniline 125a ($51.5 \mathrm{mg}, 0.25 \mathrm{mmol}$), $\left[\mathrm{RuCl}_{2}(p \text {-cymene) }]_{2}(7.7 \mathrm{mg}\right.$, $12.5 \mu \mathrm{~mol}, 5.0 \mathrm{~mol} \%), \mathrm{PPh}_{3}(6.6 \mathrm{mg}, 25.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($69.1 \mathrm{mg}, 0.50 \mathrm{mmol}$) were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} for three times. Ethyl 2-bromo-2methylpropanoate ($\mathbf{1 4 0 k}, 146 \mathrm{mg}, 0.75 \mathrm{mmol}$) and m-xylene $(1.0 \mathrm{~mL})$ were then added and the mixture was stirred at $120^{\circ} \mathrm{C}$. After 20 h , the resulting mixture was filtered through a pad of siliga gel and washed with EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography (n-hexane/EtOAc 10:1) yielded 180b ($44.4 \mathrm{mg}, 56 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.34(\mathrm{~s}, 2 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 3 \mathrm{H}), 4.12(\mathrm{q}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 6 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=176.7\left(\mathrm{C}_{\mathrm{q}}\right), 158.2\left(\mathrm{C}_{\mathrm{q}}\right), 156.2(\mathrm{CH}), 139.5\left(\mathrm{C}_{\mathrm{q}}\right), 137.3\left(\mathrm{C}_{\mathrm{q}}\right), 126.3(\mathrm{CH})$, $120.8\left(\mathrm{C}_{\mathrm{q}}\right), 119.3(\mathrm{CH}), 60.8\left(\mathrm{CH}_{2}\right), 45.9\left(\mathrm{C}_{\mathrm{q}}\right), 26.5\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2981,1718,1612,1522,1429,1241,1149,1026,839,779 \mathrm{~cm}^{-1}$.
m.p.: $92-94{ }^{\circ} \mathrm{C}$.

MS (ESI) m / z (relative intensity): 344 (13) $\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)+\mathrm{Na}\right]^{+}, 342$ (40) $\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)+\mathrm{Na}\right]^{+}, 322$ (33) $\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)+\mathrm{H}\right]^{+}, 320(100)\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)+\mathrm{H}\right]^{+}, 246$ (9).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{19}{ }^{35} \mathrm{ClN}_{3} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$320.1160, found 320.1164.

The spectral data are in accordance with those reported in the literature. ${ }^{[87]}$

5.3.3.7 Fluorescence Spectra

Concentration of sample: $1 \mathrm{mg} / \mathrm{L}$ in CHCl_{3}

Figure 19: Excitation/emission fluorescence spectrum of 166 .

Figure 20: Excitation/emission fluorescence spectrum of $\mathbf{1 6 6 f}$.

Figure 21: Emission fluorescence spectra of 141j, 166e, and 166 f (excitation at 280 nm).

5.3.3.8 X-Ray Crystallographic Analysis

A suitable crystal was selected and the crystal was mounted on a MITIGEN holder in NVH oil on a Bruker D8 Venture diffractometer. The crystal was kept at 100 K during data collection. Using Olex2, ${ }^{[137]}$ the structure was solved with the $\mathrm{XT}^{[138]}$ structure solution program using Intrinsic Phasing and refined with the $X{ }^{[139]}$ refinement package using Least Squares minimisation.

Figure 22: Molecular structure of 141 with thermal ellipoids at 50\% probability level. The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}(M=337.45 \mathrm{~g} / \mathrm{mol})$: triclinic, space group P-1 (no. 2), $a=10.1934(6) \AA$, $b=10.7135(6) \AA, \quad c=17.2661(11) \AA, \quad \alpha=89.316(2)^{\circ}, \quad b=85.141(2)^{\circ}, \quad \gamma=82.592(2)^{\circ}, \quad V=$ 1863.12(19) $\AA^{3}, Z=4, T=99.99 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.075 \mathrm{~mm}^{-1}$, Dcalc $=1.203 \mathrm{~g} / \mathrm{cm}^{3}, 105267$ reflections measured $\left(4.504^{\circ} \leq 2 \Theta \leq 63.066^{\circ}\right), 12396$ unique ($R_{\text {int }}=0.0272, R_{\text {sigma }}=0.0158$) which were used in all calculations. The final R_{1} was $0.0394(I>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.1119 (all data).

Table 23: Crystal data and structure refinement for 141 .

Compound	1411
CCDC	1865623
Identification code	mo_0069_CG_0m
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}$
Formula weight	337.45
Temperature/K	99.99
Crystal system	triclinic
Space group	P-1
a/Å	10.1934(6)
b/Å	10.7135(6)
c/Å	17.2661(11)
$\alpha /{ }^{\circ}$	89.316(2)
$\beta /{ }^{\circ}$	85.141(2)
V/ ${ }^{\circ}$	82.592(2)
Volume/ ${ }^{3}$	1863.12(19)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.203
μ / mm^{-1}	0.075
F(000)	728.0
Crystal size/mm ${ }^{3}$	$0.417 \times 0.182 \times 0.144$
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.504 to 63.066
Index ranges	$-14 \leq h \leq 14,-15 \leq k \leq 15,-25 \leq \mathrm{l} \leq 25$
Reflections collected	105267

Independent reflections	$12396\left[\mathrm{R}_{\text {int }}=0.0272, \mathrm{R}_{\text {sigma }}=0.0158\right]$
Data/restraints/parameters	$12396 / 0 / 453$
Goodness-of-fit on F^{2}	1.043
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0394, \mathrm{wR}_{2}=0.1086$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0432, \mathrm{wR}_{2}=0.1119$
Largest diff. peak/hole $/ \mathrm{e}_{\mathrm{A}}{ }^{-3}$	$0.46 /-0.19$

Table 24: Selected bond lengths [\AA] for 141 .

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O1	C1	$1.2355(9)$	C7	C8	$1.3975(10)$
N1	C1	$1.3513(10)$	C7	C12	$1.3944(10)$
N1	C17	$1.4651(10)$	C8	C9	$1.3913(11)$
N1	C21	$1.4627(10)$	C9	C10	$1.3896(11)$
N2	C13	$1.3399(10)$	C10	C11	$1.3963(10)$
N2	C16	$1.3364(11)$	C11	C12	$1.3993(10)$
N3	C13	$1.3420(10)$	C11	C13	$1.4850(10)$
N3	C14	$1.3402(11)$	C14	C15	$1.3800(13)$
C1	C2	$1.5304(10)$	C15	C16	$1.3876(12)$
C2	C3	$1.5348(10)$	C17	C18	$1.5238(13)$
C2	C7	$1.5221(10)$	C18	C19	$1.5261(14)$
C3	C4	$1.5233(11)$	C19	C20	$1.5285(14)$
C4	C5	$1.5284(11)$	C20	C21	$1.5262(12)$
C5	C6	$1.5198(12)$			

Table 25: Selected bond angles [${ }^{\circ}$] for 1411.

Atom	Atom	Atom	Angle/ $^{\circ}$	Atom	Atom	Atom	Angle/ $^{\circ}$
C 1	N 1	C 17	$119.50(7)$	C 10	C 9	C 8	$120.53(7)$
C 1	N 1	C 21	$126.89(7)$	C 9	C 10	C 11	$119.87(7)$
C 21	N 1	C 17	$113.30(7)$	C 10	C 11	C 12	$119.40(7)$
C 16	N 2	C 13	$116.50(7)$	C 10	C 11	C 13	$120.52(6)$
C 14	N 3	C 13	$116.07(7)$	C 12	C 11	C 13	$120.00(6)$

Atom	Atom	Atom	Angle/ $^{\circ}$	Atom	Atom $^{\text {Atom }}$	Angle/ $^{\circ}$	
O1	C1	N1	$121.74(7)$	C7	C12	C11	$120.87(7)$
O1	C1	C2	$119.41(7)$	N2	C13	N3	$125.84(7)$
N1	C1	C2	$118.77(6)$	N2	C13	C11	$117.18(6)$
C1	C2	C3	$110.00(6)$	N3	C13	C11	$116.95(7)$
C7	C2	C1	$107.55(6)$	N3	C14	C15	$122.84(8)$
C7	C2	C3	$112.95(6)$	C14	C15	C16	$116.30(8)$
C4	C3	C2	$111.68(6)$	N2	C16	C15	$122.44(8)$
C3	C4	C5	$113.94(7)$	N1	C17	C18	$110.21(7)$
C6	C5	C4	$112.75(7)$	C17	C18	C19	$110.35(8)$
C8	C7	C2	$120.00(6)$	C18	C19	C20	$110.57(8)$
C12	C7	C2	$120.91(6)$	C21	C20	C19	$111.20(8)$
C12	C7	C8	$119.08(7)$	N1	C21	C20	$110.04(7)$
C9	C8	C7	$120.22(7)$				

Figure 23: Molecular structure of 141 n with thermal ellipoids at 50% probability level. The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}(M=297.35 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{P}_{2} / \mathrm{n}$ (no. 14), $a=$ $10.0431(10) \AA$ A $, b=9.7828(11) \AA, c=15.4733(11) \AA$ A $, B=99.887(4)^{\circ}, V=1497.7(2) \AA^{3}, Z=4, T=$ $100.01 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.088 \mathrm{~mm}^{-1}$, Dcalc $=1.319 \mathrm{~g} / \mathrm{cm}^{3}, 20654$ reflections measured $\left(4.506^{\circ} \leq 2 \Theta \leq\right.$ $\left.65.196^{\circ}\right), 5448$ unique ($R_{\text {int }}=0.0229, \mathrm{R}_{\text {sigma }}=0.0212$) which were used in all calculations. The final R_{1} was 0.0406 (I $\left.>2 \sigma(\mathrm{I})\right)$ and $w R_{2}$ was 0.1176 (all data).

Table 26: Crystal data and structure refinement for 141n.

Compound	141n
CCDC	1865620
Identification code	mo_0090_CG_Om
Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$
Formula weight	297.35
Temperature/K	100.01
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$
a/Å	10.0431(10)
b/Å	9.7828(11)
c/Å	15.4733(11)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	99.887(4)
$\mathrm{V} /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	1497.7(2)
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.319
μ / mm^{-1}	0.088
F(000)	632.0
Crystal size/mm ${ }^{3}$	$0.283 \times 0.2 \times 0.138$
Radiation	MoKa ($\lambda=0.71073$)
2θ range for data collection/ ${ }^{\circ}$	4.506 to 65.196
Index ranges	$-15 \leq h \leq 15,-14 \leq k \leq 14,-23 \leq 1 \leq 23$
Reflections collected	20654
Independent reflections	$5448\left[\mathrm{R}_{\text {int }}=0.0229, \mathrm{R}_{\text {sigma }}=0.0212\right]$
Data/restraints/parameters	5448/0/255
Goodness-of-fit on F^{2}	1.038
Final R indexes $[1>=2 \sigma(1)]$	$\mathrm{R}_{1}=0.0406, \mathrm{wR}_{2}=0.1135$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0452, \mathrm{wR}_{2}=0.1176$
Largest diff. peak/hole / e \AA^{-3}	0.46/-0.22

Table 27: Bond lengths [\AA] for 141 n .

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O1	C13	$1.2275(10)$	C2	C3	$1.3850(10)$
O2A	C15A	$1.416(5)$	C3	C4	$1.3853(11)$
O2A	C16A	$1.423(5)$	C5	C6	$1.3979(10)$
O2B	C15B	$1.445(12)$	C5	C10	$1.3956(10)$
O2B	C16B	$1.416(14)$	C6	C7	$1.3931(10)$
N1	C1	$1.3396(9)$	C7	C8	$1.3968(10)$
N1	C2	$1.3404(9)$	C7	C11	$1.5198(10)$
N2	C1	$1.3408(9)$	C8	C9	$1.3907(11)$
N2	C4	$1.3355(10)$	C9	C10	$1.3914(11)$
N3A	C13	$1.375(2)$	C11	C12	$1.5282(11)$
N3A	C14A	$1.469(2)$	C11	C13	$1.5296(10)$
N3A	C17A	$1.463(2)$	C14A	C15A	$1.5151(17)$
N3B	C13	$1.348(7)$	C14B	C15B	$1.502(6)$
N3B	C14B	$1.465(7)$	C16A	C17A	$1.5144(18)$
N3B	C17B	$1.477(7)$	C16B	C17B	$1.504(6)$
C1	C5	$1.4831(10)$			

Table 28: Bond angles [${ }^{\circ}$] for 141n.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C15A	O2A	C16A	109.0(3)	C6	C7	C11	121.72(6)
C16B	O2B	C15B	109.9(6)	C8	C7	C11	119.39(6)
C1	N1	C2	116.51(6)	C9	C8	C7	120.35(7)
C4	N2	C1	116.43(7)	C8	C9	C10	120.49(7)
C13	N3A	C14A	124.20(17)	C9	C10	C5	119.79(7)
C13	N3A	C17A	117.43(16)	C7	C11	C12	110.30(6)
C17A	N3A	C14A	114.48(15)	C7	C11	C13	110.77(6)
C13	N3B	C14B	127.1(5)	C12	C11	C13	110.99(6)
C13	N3B	C17B	120.7(5)	O1	C13	N3A	121.07(11)
C14B	N3B	C17B	110.7(5)	O1	C13	N3B	121.3(3)

Atom	Atom	Atom	Angle/ $^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
N1	C1	N2	$125.59(7)$	O1	C13	C11	$120.96(7)$
N1	C1	C5	$117.24(6)$	N3A	C13	C11	$117.73(11)$
N2	C1	C5	$117.17(6)$	N3B	C13	C11	$115.9(3)$
N1	C2	C3	$122.54(7)$	N3A	C14A	C15A	$109.85(13)$
C2	C3	C4	$116.08(7)$	N3B	C14B	C15B	$110.2(3)$
N2	C4	C3	$122.82(7)$	O2A	C15A	C14A	$111.18(16)$
C6	C5	C1	$120.28(6)$	O2B	C15B	C14B	$111.1(6)$
C10	C5	C1	$120.35(7)$	O2A	C16A	C17A	$111.01(15)$
C10	C5	C6	$119.36(7)$	O2B	C16B	C17B	$111.8(6)$
C7	C6	C5	$121.13(6)$	N3A	C17A	C16A	$110.80(13)$
C6	C7	C8	$118.87(7)$	N3B	C17B	C16B	$109.6(4)$

Figure 24: Molecular structure of 141q with thermal ellipoids at 50% probability level. The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}(M=283.37 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{P}_{2} / \mathrm{n}$ (no. 14), $a=$ $10.0808(7) \AA, b=9.7488(6) \AA$ A,$c=15.9224(12) \AA$ A $, b=108.079(3)^{\circ}, V=1487.53(18) \AA^{3}, Z=4, T=$ $100.01 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.081 \mathrm{~mm}^{-1}$, Dcalc $=1.265 \mathrm{~g} / \mathrm{cm}^{3}, 18332$ reflections measured $\left(4.97^{\circ} \leq 2 \Theta \leq\right.$ $\left.61.044^{\circ}\right), 4530$ unique ($R_{\text {int }}=0.0270, R_{\text {sigma }}=0.0240$) which were used in all calculations. The final R_{1} was $0.0395(I>2 \sigma(I))$ and $w R_{2}$ was 0.1064 (all data).

Table 29: Crystal data and structure refinement for 141q.

Compound	141q
CCDC	1865624
Identification code	mo_0087_CG_0m
Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}$
Formula weight	283.37
Temperature/K	100.01
Crystal system	monoclinic
Space group	$\mathrm{P} 2{ }_{1} / \mathrm{n}$
a/Å	10.0808(7)
b/Å	9.7488(6)
c/Å	15.9224(12)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	108.079(3)
$\mathrm{V} /{ }^{\circ}$	90
Volume/ \AA^{3}	1487.53(18)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.265
μ / mm^{-1}	0.081
F(000)	608.0
Crystal size/mm ${ }^{3}$	$0.54 \times 0.516 \times 0.182$
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.97 to 61.044
Index ranges	$-14 \leq h \leq 12,-13 \leq k \leq 13,-22 \leq \mathrm{l} \leq 22$
Reflections collected	18332
Independent reflections	$4530\left[R_{\text {int }}=0.0270, R_{\text {sigma }}=0.0240\right]$
Data/restraints/parameters	4530/0/193
Goodness-of-fit on F^{2}	1.053
Final R indexes [$1>=2 \sigma(\mathrm{l})$]	$\mathrm{R}_{1}=0.0395, \mathrm{wR}_{2}=0.1026$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0432, \mathrm{wR}_{2}=0.1064$
Largest diff. peak/hole / e \AA^{-3}	0.44/-0.29

Table 30: Bond lengths [Å] for 141q.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O1	C13	$1.2356(10)$	C5	C6	$1.3983(11)$
N1	C1	$1.3419(10)$	C5	C10	$1.3982(11)$
N1	C2	$1.3397(11)$	C6	C7	$1.3955(11)$
N2	C1	$1.3431(10)$	C7	C8	$1.3948(11)$
N2	C4	$1.3389(11)$	C7	C11	$1.5238(11)$
N3	C13	$1.3527(11)$	C8	C9	$1.3923(11)$
N3	C14	$1.4674(11)$	C9	C10	$1.3901(12)$
N3	C16	$1.4708(11)$	C11	C12	$1.5323(12)$
C1	C5	$1.4836(11)$	C11	C13	$1.5302(11)$
C2	C3	$1.3851(12)$	C14	C15	$1.5207(12)$
C3	C4	$1.3869(12)$	C16	C17	$1.5198(13)$

Table 31: Bond angles [${ }^{\circ}$] for 141q.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C2	N1	C1	116.25(7)	C6	C7	C11	121.59(7)
C4	N2	C1	116.39(7)	C8	C7	C6	118.79(7)
C13	N3	C14	125.90(7)	C8	C7	C11	119.62(7)
C13	N3	C16	118.00(7)	C9	C8	C7	120.46(7)
C14	N3	C16	116.03(7)	C10	C9	C8	120.60(7)
N1	C1	N2	125.83(7)	C9	C10	C5	119.56(7)
N1	C1	C5	116.91(7)	C7	C11	C12	110.89(7)
N2	C1	C5	117.26(7)	C7	C11	C13	109.21(6)
N1	C2	C3	122.64(8)	C13	C11	C12	111.01(7)
C2	C3	C4	116.37(8)	01	C13	N3	121.27(8)
N2	C4	C3	122.47(8)	O1	C13	C11	119.69(7)
C6	C5	C1	119.88(7)	N3	C13	C11	118.87(7)
C10	C5	C1	120.60(7)	N3	C14	C15	113.59(7)
C10	C5	C6	119.52(7)	N3	C16	C17	112.62(7)
C7	C6	C5	121.05(7)				

Figure 25: Molecular structure of 166 with thermal ellipoids at 50% probability level. The hydrogen atoms are omitted for clarity

Crystal Data for $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{BrN}_{4} \mathrm{O}_{2}(M=609.55 \mathrm{~g} / \mathrm{mol})$: triclinic, space group $\mathrm{P}-1$ (no. 2), $a=$ 8.4938(10) $\AA, b=10.8107(10) \AA, c=16.6719(19) \AA, \alpha=104.927(3)^{\circ}, b=95.326(4)^{\circ}, v=99.344(4)^{\circ}$, $V=1445.0(3) \AA^{3}, Z=2, T=99.98 \mathrm{~K}, \mu(\mathrm{MoK} \mathrm{\alpha})=1.461 \mathrm{~mm}^{-1}$, Dcalc $=1.401 \mathrm{~g} / \mathrm{cm}^{3}, 47834$ reflections measured $\left(4.91^{\circ} \leq 2 \Theta \leq 61.12^{\circ}\right), 8840$ unique ($R_{\text {int }}=0.0269, \mathrm{R}_{\text {sigma }}=0.0227$) which were used in all calculations. The final R_{1} was $0.0380(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.0989 (all data).

Table 32: Crystal data and structure refinement for 166 f .

Compound	$\mathbf{1 6 6 f}$
CCDC	1865621
Identification code	mo_0133_CG_0m $^{\text {Empirical formula }} \mathrm{C}_{34} \mathrm{H}_{33} \mathrm{BrN}_{4} \mathrm{O}_{2}$
Formula weight	609.55
Temperature/K	99.98
Crystal system	triclinic
Space group	$\mathrm{P}-1$
a/Å	$8.4938(10)$
$\mathrm{b} / \AA \AA$	$10.8107(10)$
c/Å	$16.6719(19)$
$\alpha /{ }^{\circ}$	$104.927(3)$

$\beta /{ }^{\circ}$	95.326(4)
$\mathrm{V} /{ }^{\circ}$	99.344(4)
Volume/ 3	1445.0(3)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.401
μ / mm^{-1}	1.461
F(000)	632.0
Crystal size/mm ${ }^{3}$	$0.518 \times 0.179 \times 0.08$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.91 to 61.12
Index ranges	$-12 \leq \mathrm{h} \leq 12,-15 \leq \mathrm{k} \leq 15,-23 \leq \mathrm{l} \leq 23$
Reflections collected	47834
Independent reflections	8840 [$\left.\mathrm{R}_{\text {int }}=0.0269, \mathrm{R}_{\text {sigma }}=0.0227\right]$
Data/restraints/parameters	8840/12/439
Goodness-of-fit on F^{2}	1.028
Final R indexes [l>=2 $\sigma(1)$]	$\mathrm{R}_{1}=0.0380, \mathrm{wR}_{2}=0.0968$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0417, \mathrm{wR}_{2}=0.0989$
Largest diff. peak/hole / e \AA^{-3}	1.48/-0.69

Table 33: Bond lengths [Å] for 166 f.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Br1	C1	$1.8987(17)$	C 9	C 10	$1.389(2)$
O1A	C29A	$1.205(5)$	C 10	C 11	$1.399(2)$
O1B	C29B	$1.158(10)$	C 11	C 12	$1.406(2)$
O2A	C29A	$1.323(5)$	C 11	C 14	$1.481(2)$
O2A	C30A	$1.430(9)$	C 12	C 13	$1.386(2)$
O2B	C29B	$1.340(12)$	C 14	C 15	$1.402(2)$
O2B	C30B	$1.482(16)$	C 14	C 19	$1.404(2)$
N1	C20	$1.3455(18)$	C 15	C 16	$1.398(2)$
N1	C21	$1.345(2)$	C 15	C 20	$1.486(2)$
N2	C21	$1.336(2)$	C 16	C 17	$1.399(3)$

Atom	Atom	Length/Å	Atom	Atom	Length/Å
N2	C22	$1.3367(17)$	C17	C18	$1.381(3)$
N3	C22	$1.3702(17)$	C17	C28A	$1.484(3)$
N3	C24	$1.3710(17)$	C17	C28B	$1.672(5)$
N3	C25	$1.4744(18)$	C18	C19	$1.383(3)$
N4	C23	$1.3870(17)$	C20	C23	$1.3936(19)$
N4	C24	$1.3135(18)$	C22	C23	$1.4075(19)$
C1	C2	$1.390(2)$	C25	C26	$1.519(2)$
C1	C6	$1.393(3)$	C25	C27	$1.519(2)$
C2	C3	$1.393(2)$	C28A	C29A	$1.511(6)$
C3	C4	$1.403(2)$	C28A	C31A	$1.518(4)$
C3	C7	$1.508(2)$	C28B	C29B	$1.562(12)$
C4	C5	$1.389(2)$	C28B	C31B	$1.541(7)$
C4	C8	$1.470(2)$	C31A	C32A	$1.608(9)$
C5	C6	$1.389(2)$	C31B	C32B	$1.471(12)$
C7	C9	C9	$1.513(2)$	C32A	C33
C8	C13	$1.404(2)$	C32B	C33	$1.455(10)$

Table 34: Bond angles [${ }^{\circ}$] for 166 f.

Atom	Atom	Atom $^{\text {Angle/ }}$	Atom	Atom	Atom	Angle/ $^{\circ}$	
C29A	O2A	C30A	$116.2(4)$	C16	C17	C28A	$127.1(2)$
C29B	O2B	C30B	$111.8(10)$	C16	C17	C28B	$106.4(3)$
C21	N1	C20	$118.61(13)$	C18	C17	C16	$118.68(16)$
C21	N2	C22	$111.67(13)$	C18	C17	C28A	$114.3(2)$
C22	N3	C24	$105.33(11)$	C18	C17	C28B	$134.6(3)$
C22	N3	C25	$128.54(11)$	C17	C18	C19	$120.60(16)$
C24	N3	C25	$125.95(12)$	C18	C19	C14	$121.59(17)$
C24	N4	C23	$103.60(11)$	N1	C20	C15	$117.32(13)$
C2	C1	Br1	$119.06(13)$	N1	C20	C23	$118.64(13)$
C2	C1	C6	$122.32(16)$	C23	C20	C15	$123.59(12)$

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C6	C1	Br1	118.62(13)	N2	C21	N1	128.40(14)
C1	C2	C3	117.71(15)	N2	C22	N3	127.91(13)
C2	C3	C4	120.18(15)	N2	C22	C23	125.94(13)
C2	C3	C7	129.15(14)	N3	C22	C23	106.08(11)
C4	C3	C7	110.67(14)	N4	C23	C20	132.92(13)
C3	C4	C8	108.08(13)	N4	C23	C22	110.08(12)
C5	C4	C3	121.42(15)	C20	C23	C22	116.64(12)
C5	C4	C8	130.49(15)	N4	C24	N3	114.91(12)
C4	C5	C6	118.55(16)	N3	C25	C26	110.44(12)
C5	C6	C1	119.82(16)	N3	C25	C27	111.12(12)
C3	C7	C9	102.45(13)	C26	C25	C27	112.39(13)
C9	C8	C4	108.69(13)	C17	C28A	C29A	107.6(3)
C13	C8	C4	129.92(14)	C17	C28A	C31A	110.0(2)
C13	C8	C9	121.39(14)	C29A	C28A	C31A	111.4(3)
C8	C9	C7	110.09(14)	C29B	C28B	C17	105.5(5)
C10	C9	C7	129.85(14)	C31B	C28B	C17	106.7(4)
C10	C9	C8	120.05(14)	C31B	C28B	C29B	105.6(6)
C9	C10	C11	119.26(14)	01A	C29A	O2A	123.0(4)
C10	C11	C12	119.62(14)	01A	C29A	C28A	125.3(4)
C10	C11	C14	122.39(14)	O2A	C29A	C28A	111.6(4)
C12	C11	C14	117.96(13)	01B	C29B	O2B	124.3(10)
C13	C12	C11	121.52(14)	01B	C29B	C28B	129.0(10)
C12	C13	C8	118.14(14)	O2B	C29B	C28B	106.7(7)
C15	C14	C11	123.91(13)	C28A	C31A	C32A	113.2(4)
C15	C14	C19	118.03(15)	C32B	C31B	C28B	102.1(6)
C19	C14	C11	118.06(14)	C33	C32A	C31A	104.5(6)
C14	C15	C20	124.28(13)	C31B	C32B	C33	136.5(8)
C16	C15	C14	119.77(14)	C32A	C33	C34	113.8(5)
C16	C15	C20	115.83(14)	C32B	C33	C34	114.2(5)
C15	C16	C17	121.27(17)				

Figure 26: Molecular structure of 141rA with thermal ellipoids at 50\% probability level. The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}(M=387.43 \mathrm{~g} / \mathrm{mol})$: orthorhombic, space group $\mathrm{P}_{2}{ }_{1} 2_{1} 2_{1}$ (no. 19), $a=$ $6.2748(5) \AA$, $b=13.1370(11) \AA, c=24.081(2) \AA, V=1985.1(3) \AA^{3}, Z=4, T=101.23 \mathrm{~K}, \mu(\mathrm{CuK} \alpha)=$ $0.708 \mathrm{~mm}^{-1}$, Dcalc $=1.296 \mathrm{~g} / \mathrm{cm}^{3}, 16924$ reflections measured $\left(7.342^{\circ} \leq 2 \Theta \leq 149.108^{\circ}\right), 4024$ unique ($R_{\text {int }}=0.0197, \mathrm{R}_{\text {sigma }}=0.0181$) which were used in all calculations. The final R_{1} was 0.0259 ($\mathrm{I}>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.0659 (all data).

Table 35: Crystal data and structure refinement for 141rA.

Compound	141rA
CCDC	1865622
Identification code	cu_0123_CG_Om
Empirical formula	$\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$
Formula weight	387.43
Temperature/K	101.23
Crystal system	orthorhombic
Space group	$\mathrm{P} 2_{1} 2_{1} 2_{1}$
$\mathrm{~b} / \AA \AA$	$6.2748(5)$
$\mathrm{c} / \AA \therefore$	$13.1370(11)$
$\alpha /{ }^{\circ}$	$24.081(2)$

$\beta /{ }^{\circ}$	90
V/ ${ }^{\circ}$	90
Volume/Å ${ }^{3}$	1985.1(3)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.296
μ / mm^{-1}	0.708
F(000)	816.0
Crystal size/mm ${ }^{3}$	$0.49 \times 0.21 \times 0.092$
Radiation	CuK α ($\lambda=1.54178$)
2Θ range for data collection/ ${ }^{\circ}$	7.342 to 149.108
Index ranges	$-7 \leq h \leq 7,-13 \leq k \leq 16,-30 \leq \mathrm{l} \leq 29$
Reflections collected	16924
Independent reflections	$4024\left[\mathrm{R}_{\text {int }}=0.0197, \mathrm{R}_{\text {sigma }}=0.0181\right]$
Data/restraints/parameters	4024/0/263
Goodness-of-fit on F^{2}	1.077
Final R indexes [$1>=2 \sigma(1)$]	$\mathrm{R}_{1}=0.0259, \mathrm{wR}_{2}=0.0658$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0260, \mathrm{wR}_{2}=0.0659$
Largest diff. peak/hole / e \AA^{-3}	0.14/-0.18
Flack parameter	0.03(3)

Table 36: Bond lengths [Å] for 141rA.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O1	C11	$1.2140(18)$	C6	C7	$1.389(2)$
O2	C1	$1.1994(17)$	C7	C8	$1.385(3)$
O3	C1	$1.3474(16)$	C8	C9	$1.387(2)$
O3	C2	$1.4597(18)$	C9	C10	$1.394(2)$
N1	C1	$1.3927(17)$	C11	C12	$1.516(2)$
N1	C3	$1.4654(18)$	C12	C13	$1.530(2)$
N1	C11	$1.3999(18)$	C12	C14	$1.5263(18)$
N2	C20	$1.3424(19)$	C14	C15	$1.390(2)$
N2	C21	$1.339(2)$	C14	C19	$1.393(2)$

Atom	Atom	Length/Å	Atom	Atom	Length/Å
N3	C20	$1.3420(18)$	C15	C16	$1.3984(19)$
N3	C23	$1.335(2)$	C16	C17	$1.397(2)$
C2	C3	$1.517(2)$	C16	C20	$1.484(2)$
C3	C4	$1.5420(18)$	C17	C18	$1.388(2)$
C4	C5	$1.509(2)$	C18	C19	$1.390(2)$
C5	C6	$1.397(2)$	C21	C22	$1.381(2)$
C5	C10	$1.398(2)$	C22	C23	$1.384(2)$

Table 37: Bond angles [${ }^{\circ}$] for 141rA.

Atom	Atom	Atom	Angle/	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C1	O3	C2	$109.68(11)$	O1	C11	N1	$118.31(13)$
C1	N1	C3	$110.80(11)$	O1	C11	C12	$123.74(13)$
C1	N1	C11	$128.92(12)$	N1	C11	C12	$117.87(12)$
C11	N1	C3	$120.23(11)$	C11	C12	C13	$110.38(12)$
C21	N2	C20	$116.29(13)$	C11	C12	C14	$109.18(11)$
C23	N3	C20	$116.49(13)$	C14	C12	C13	$111.37(11)$
O2	C1	O3	$122.29(13)$	C15	C14	C12	$120.41(12)$
O2	C1	N1	$129.25(13)$	C15	C14	C19	$119.20(12)$
O3	C1	N1	$108.45(11)$	C19	C14	C12	$120.34(13)$
O3	C2	C3	$104.65(11)$	C14	C15	C16	$120.93(13)$
N1	C3	C2	$99.96(11)$	C15	C16	C20	$119.57(13)$
N1	C3	C4	$112.47(11)$	C17	C16	C15	$119.20(13)$
C2	C3	C4	$114.86(12)$	C17	C16	C20	$121.23(13)$
C5	C4	C3	$114.11(11)$	C18	C17	C16	$120.01(13)$
C6	C5	C4	$121.66(14)$	C17	C18	C19	$120.30(13)$
C6	C5	C10	$117.99(14)$	C18	C19	C14	$120.36(13)$
C10	C5	C4	$120.35(13)$	N2	C20	C16	$117.40(12)$
C7	C6	C5	$120.85(15)$	N3	C20	N2	$125.43(13)$
C8	C7	C6	$120.45(14)$	N3	C20	C16	$117.16(13)$
C7	C8	C9	$119.67(15)$	N2	C21	C22	$122.92(15)$

Atom	Atom	Atom	Angle/ $^{\circ}$	Atom	Atom	Atom	Angle $^{\circ}$
C8	C9	C10	$119.81(16)$	C 21	C 22	C 23	$115.97(15)$
C9	C10	C5	$121.22(14)$	N3	C23	C22	$122.89(14)$

5.3.4 Late-Stage Diversification by Selectivity Switch in meta-C-H Activation

5.3.4.1 Characterization Data for 143 and 183

2-[3-(1-Phenylethyl)phenyl]pyrimidine (143a)

The general procedure I was followed using 2-phenylpyrimidine (139a, 78.1 mg , 0.50 mmol) and (1-chloroethyl)benzene (142a, $211 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 10:1) followed by recycling preparative HPLC yielded 143a ($88.6 \mathrm{mg}, 68 \%$) as a white solid.
${ }^{1} \mathrm{H}-$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.76(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.38(\mathrm{dd}, J=1.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.28$ (ddd, $J=$ $7.6,1.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.14$ $(\mathrm{m}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=164.7\left(\mathrm{C}_{\mathrm{q}}\right), 157.0(\mathrm{CH}), 146.6\left(\mathrm{C}_{\mathrm{q}}\right), 146.1\left(\mathrm{C}_{\mathrm{q}}\right), 137.5\left(\mathrm{C}_{\mathrm{q}}\right), 130.1(\mathrm{CH})$, 128.6 (CH), 128.3 (CH), 127.5 (CH), 127.3 (CH), 126.0 (CH), 125.9 (CH), 118.9 (CH), 44.9 (CH), 21.9 $\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3027,2966,1567,1553,1422,1407,794,765,698 \mathrm{~cm}^{-1}$.
m.p.: $78-79^{\circ} \mathrm{C}$.

MS (EI) m/z (relative intensity): 260 (42) [M] ${ }^{+}, 259$ (14) [M-H] ${ }^{+}, 245$ (100) [M-Me] ${ }^{+}, 190$ (6), 165 (18), 122 (7).

HR-MS (EI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+}$260.1308, found 260.1321.

2-[3-(4-Methoxybenzyl)phenyl]pyrimidine (143b)

The general procedure I was followed using 2-phenylpyrimidine (139a,
$78.1 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 4-methoxybenzyl chloride (142b, 235 mg , 1.50 mmol). After 20 h , purification by column chromatography (n-hexane/EtOAc 10:1) yielded 143b ($82.2 \mathrm{mg}, 59 \%$) as a white soild.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.79(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.32$ (ddd, $\left.J=1.8,1.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.28$ (ddd, $J=7.7,1.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=7.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.16(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.7\left(\mathrm{C}_{\mathrm{q}}\right), 157.9\left(\mathrm{C}_{\mathrm{q}}\right), 157.0(\mathrm{CH}), 141.9\left(\mathrm{C}_{\mathrm{q}}\right), 137.6\left(\mathrm{C}_{\mathrm{q}}\right), 133.1\left(\mathrm{C}_{\mathrm{q}}\right)$, $131.3(\mathrm{CH}), 129.8(\mathrm{CH}), 128.7(\mathrm{CH}), 128.5(\mathrm{CH}), 125.9(\mathrm{CH}), 118.9(\mathrm{CH}), 113.9(\mathrm{CH}), 55.3\left(\mathrm{CH}_{3}\right), 41.1$ $\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=3033,2908,1567,1555,1509,1407,1242,1033,786,696 \mathrm{~cm}^{-1}$.
m.p.: 90-92 ${ }^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 276 (100) $[\mathrm{M}]^{+}, 275(53)[\mathrm{M}-\mathrm{H}]^{+}, 261$ (39) [M-Me] ${ }^{+}, 245(12)[\mathrm{M}-$ $\mathrm{OMe}^{+}, 231$ (8), 121 (12).

HR-MS (EI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}]^{+}$276.1257, found 276.1264.

2-(3-Benzylphenyl)pyrimidine (143c)

The general procedure I was followed using 2-phenylpyrimidine (139a, 78.1 mg , 0.50 mmol) and benzyl chloride (142c, $190 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 10:1) yielded 143c ($63.7 \mathrm{mg}, 52 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.79(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.36-8.34(\mathrm{~m}, 1 \mathrm{H}), 8.31(\mathrm{ddd}, \mathrm{J}=7.8,1.8$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{ddd}, \mathrm{J}=7.8,7.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.16(\mathrm{t}, \mathrm{J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~s}$, 2 H).
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.6\left(\mathrm{C}_{\mathrm{q}}\right), 157.0(\mathrm{CH}), 141.4\left(\mathrm{C}_{\mathrm{q}}\right), 140.9\left(\mathrm{C}_{\mathrm{q}}\right), 137.7\left(\mathrm{C}_{\mathrm{q}}\right), 131.4(\mathrm{CH})$, $128.8(\mathrm{CH}), 128.7(\mathrm{CH}), 128.6(\mathrm{CH}), 128.4(\mathrm{CH}), 126.0(\mathrm{CH}), 118.9(\mathrm{CH}), 42.0\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=3024,2918,1566,1553,1425,1408,778,759,701,635 \mathrm{~cm}^{-1}$.
m.p.: $76-78^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 246 (98) [M] ${ }^{+}, 245$ (100) [M-H] ${ }^{+}, 190$ (8), 165 (24), 152 (5), 122 (7), 91 (8) [Bn] ${ }^{+}, 43$ (19).

HR-MS (EI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+}$246.1151, found 246.1149.

The spectral data are in accordance with those reported in the literature. ${ }^{[69]}$

2-[3-(4-Methoxybenzyl)phenyl]pyridine (143d)

The general procedure I was followed using 2-phenylpyridine (68b, $77.6 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 4-methoxybenzyl chloride (142b, 235 mg , 1.50 mmol). After 20 h , purification by column chromatography (n-hexane/EtOAc 10:1) yielded 143d ($75.4 \mathrm{mg}, 55 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.69$ (ddd, $\left.J=4.8,1.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.86$ (ddd, $J=1.7,1.5,0.6 \mathrm{~Hz}$, 1 H), 7.81 (ddd, $J=7.8,1.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.76-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.39$ (ddd, J = 7.8, 7.7, 0.6 Hz, 1H), 7.25$7.19(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=157.9\left(\mathrm{C}_{\mathrm{q}}\right), 157.4\left(\mathrm{C}_{\mathrm{q}}\right), 149.5(\mathrm{CH}), 142.0\left(\mathrm{C}_{\mathrm{q}}\right), 139.5\left(\mathrm{C}_{\mathrm{q}}\right), 136.5(\mathrm{CH})$, $133.0\left(\mathrm{C}_{\mathrm{q}}\right), 129.8(\mathrm{CH}), 129.4(\mathrm{CH}), 128.8(\mathrm{CH}), 127.4(\mathrm{CH}), 124.6(\mathrm{CH}), 121.9(\mathrm{CH}), 120.6(\mathrm{CH}), 113.8$ $(\mathrm{CH}), 55.3\left(\mathrm{CH}_{3}\right), 41.1\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2906,2834,1583,1509,1461,1242,1033,811,774,696 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 275 (100) [M] ${ }^{+}, 274$ (94) [M-H $]^{+}, 260(45)[\mathrm{M}-\mathrm{Me}]^{+}, 230(12), 121$ (12), 78 (11), 51 (6).

HR-MS (EI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}^{+}[\mathrm{M}]^{+}$275.1305, found 275.1312.

2-[2-(4-Methoxybenzyl)phenyl]pyridine (183)

2-Phenylpyridine (68b, $233 \mathrm{mg}, 1.50 \mathrm{mmol}),\left[\mathrm{Ru}(\mathrm{OAc})_{2}(p\right.$-cymene)] (181, $17.7 \mathrm{mg}, 50.0 \mu \mathrm{~mol}, 10.0 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{mmol})$ were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. 4-Methoxybenzyl chloride (142b, 78.3 mg , $0.50 \mathrm{mmol})$ and 1,4-dioxane (2.0 mL) were then added and the mixture was stirred at $100^{\circ} \mathrm{C}$. After 20 h , the resulting mixture was filtered through a pad of silica gel and washed with EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography (n-hexane/EtOAc 8:1) yielded monobenzylated product 183 ($26.4 \mathrm{mg}, 19 \%$) as a colorless oil and

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.67(\mathrm{ddd}, J=4.9,1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{ddd}, J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39-7.18(\mathrm{~m}, 6 \mathrm{H}), 6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (125 MHz, CDCl_{3}): $\delta=159.8\left(\mathrm{C}_{\mathrm{q}}\right), 157.5\left(\mathrm{C}_{\mathrm{q}}\right), 149.0(\mathrm{CH}), 140.5\left(\mathrm{C}_{\mathrm{q}}\right), 139.1\left(\mathrm{C}_{\mathrm{q}}\right), 136.0(\mathrm{CH})$, $133.3\left(\mathrm{C}_{\mathrm{q}}\right), 130.4$ (CH), 129.7 (CH), 129.7 (CH), 128.3 (CH), 126.1 (CH), 124.1 (CH), 121.6 (CH), 113.5 $(\mathrm{CH}), 55.2\left(\mathrm{CH}_{3}\right), 37.9\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=3003,2907,2834,1585,1510,1468,1245,1176,1036,753 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 275 (75) [M] ${ }^{+}, 274$ (100) [M-H] ${ }^{+}, 260$ (30) [M-Me] ${ }^{+} 230$ (18), 167 (45).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$276.1383, found 276.1384.

The spectral data are in accordance with those reported in the literature. ${ }^{[35]}$

2-[2,6-Bis(4-methoxybenzyl)phenyl]pyridine (183')

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.69$ (ddd, $J=4.9,1.8,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.54$ (ddd, $J=7.8,7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.20 (ddd, J = 7.7, 4.9, 1.2 Hz, 1H), 7.09 (d, J = 7.7 Hz, 2H), 6.92 (ddd, $J=7.8,1.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.73(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 3.72\left(\mathrm{~d}_{\mathrm{AB}}, J=15.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.65\left(\mathrm{~d}_{\mathrm{AB}}, J=15.6 \mathrm{~Hz}, 2 \mathrm{H}\right)$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=158.8\left(\mathrm{C}_{\mathrm{q}}\right), 157.5\left(\mathrm{C}_{\mathrm{q}}\right), 149.2(\mathrm{CH}), 140.2\left(\mathrm{C}_{\mathrm{q}}\right), 139.4\left(\mathrm{C}_{\mathrm{q}}\right), 135.5(\mathrm{CH})$, $132.9\left(\mathrm{C}_{\mathrm{q}}\right), 129.6(\mathrm{CH}), 128.0(\mathrm{CH}), 127.8(\mathrm{CH}), 125.2(\mathrm{CH}), 121.6(\mathrm{CH}), 113.4(\mathrm{CH}), 55.2\left(\mathrm{CH}_{3}\right), 38.5$ $\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=3002,2906,2834,1610,1508,1241,1175,1033,789,750 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 395 (94) [M] ${ }^{+}, 394$ (100) $[\mathrm{M}-\mathrm{H}]^{+}, 380(12)[\mathrm{M}-\mathrm{Me}]^{+}, 286(29), 272$ (25), 242 (9), 121 (9).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$396.1958, found 396.1962.

2-[4-Methoxy-3-(4-methoxybenzyl)phenyl]pyridine (143e)

The general procedure I was followed using 2-(4-methoxyphenyl)pyridine (68a, $92.6 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 4-methoxybenzyl chloride (142b, 235 mg , 1.50 mmol). After 20 h , purification by column chromatography (n-hexane/EtOAc 6:1) yielded 143e ($94.9 \mathrm{mg}, 62 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.64(\mathrm{ddd}, \mathrm{J}=4.9,1.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.78$ $(\mathrm{d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{ddd}, J=8.0,7.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{ddd}, J=8.0,1.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{ddd}, J=7.3,4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.00(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=158.3\left(\mathrm{C}_{\mathrm{q}}\right), 157.7\left(\mathrm{C}_{\mathrm{q}}\right), 157.3\left(\mathrm{C}_{\mathrm{q}}\right), 149.5(\mathrm{CH}), 136.5(\mathrm{CH}), 133.0\left(\mathrm{C}_{\mathrm{q}}\right)$, $131.7\left(\mathrm{C}_{\mathrm{q}}\right), 130.3\left(\mathrm{C}_{\mathrm{q}}\right), 129.7(\mathrm{CH}), 128.9(\mathrm{CH}), 126.1(\mathrm{CH}), 121.3(\mathrm{CH}), 119.8(\mathrm{CH}), 113.6(\mathrm{CH}), 110.6$ $(\mathrm{CH}), 55.5\left(\mathrm{CH}_{3}\right), 55.2\left(\mathrm{CH}_{3}\right), 35.2\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=3003,2931,2834,1607,1584,1507,1463,1240,1026,779 \mathrm{~cm}^{-1}$.

MS (ESI) m / z (relative intensity): 306 (100) $[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 306.1489$, found 306.1494.

4-Methoxy-2-[3-(4-methoxybenzyl)phenyl]pyridine (143f)

The general procedure I was followed using 4-methoxy-2-phenylpyridine (68c, $92.6 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 4-methoxybenzyl chloride (142b, 235 mg , 1.50 mmol). After 20 h , purification by column chromatography (n-hexane/EtOAc 7:3) yielded 143 f ($99.5 \mathrm{mg}, 65 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.51(\mathrm{dd}, J=5.8,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.77$ (ddt, $J=7.8$, $1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{ddd}, J=7.8,7.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=2.5,0.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.14 (d, J = $8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.83 (d, J = $8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.77 (dd, J = 5.8, 2.5 Hz, 1H), 4.01 (s, 2H), 3.90 (s, $3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.3\left(\mathrm{C}_{\mathrm{q}}\right), 159.1\left(\mathrm{C}_{\mathrm{q}}\right), 157.9\left(\mathrm{C}_{\mathrm{q}}\right), 150.7(\mathrm{CH}), 141.9\left(\mathrm{C}_{\mathrm{q}}\right), 139.4\left(\mathrm{C}_{\mathrm{q}}\right)$, $133.0\left(\mathrm{C}_{\mathrm{q}}\right), 129.8$ (CH), 129.5 (CH), 128.7 (CH), 127.5 (CH), 124.6 (CH), $113.8(\mathrm{CH}), 108.0(\mathrm{CH}), 107.0$ $(\mathrm{CH}), 55.3\left(\mathrm{CH}_{3}\right), 55.2\left(\mathrm{CH}_{3}\right), 41.1\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2936,2835,1590,1563,1509,1243,1175,1032,794,699 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 305 (64) [M] ${ }^{+}, 304$ (100) [M-H] ${ }^{+}, 290$ (25) [M-Me] ${ }^{+}, 260$ (6) [M-$\mathrm{Me}-\mathrm{OMe}^{+}, 121$ (8), 43 (9).

HR-MS (EI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}]^{+} 305.1410$, found 305.1408.

2-[4-Fluoro-3-(4-methoxybenzyl)phenyl]pyrimidine (143g)

The general procedure I was followed using 2-(4-fluorophenyl)pyrimidine (139c, $87.1 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 4-methoxybenzyl chloride (142b, 235 mg , 1.50 mmol). After 20 h , purification by column chromatography (n-hexane/EtOAc 6:1) yielded $\mathbf{1 4 3 g}$ ($74.6 \mathrm{mg}, 51 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.75(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.36-8.27(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, 7.14 (dd, J = 9.6, 8.5 Hz, 1H), $7.14(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}$, 3 H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=163.8\left(\mathrm{C}_{\mathrm{q}}\right), 162.8\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=248 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 157.9\left(\mathrm{C}_{\mathrm{q}}\right), 157.0(\mathrm{CH}), 133.6$ $\left(\mathrm{d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 131.8\left(\mathrm{C}_{\mathrm{q}}\right), 131.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=6 \mathrm{~Hz}, \mathrm{CH}\right), 129.5(\mathrm{CH}), 128.6\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=16 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $128.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}, \mathrm{CH}\right), 118.8(\mathrm{CH}), 115.6\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}, \mathrm{CH}\right), 113.9(\mathrm{CH}), 55.2\left(\mathrm{CH}_{3}\right), 34.3(\mathrm{~d}$, $\left.3^{3} J_{C-F}=3 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$.
${ }^{19}$ F-NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=(-114.8)-(-115.0)(\mathrm{m})$.

IR (ATR): $\tilde{v}=3010,2936,1556,1514,1494,1415,1240,1028,796,568 \mathrm{~cm}^{-1}$.
m.p.: 89-90 ${ }^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 294 (100) [$\mathrm{M}^{+}, 293$ (55) [M-H $]^{+}, 279$ (24) [M-Me] ${ }^{+}, 263$ (11) [M$\mathrm{OMe}]^{+}, 121$ (13), 91 (4) [Bn] ${ }^{+}, 77$ (4), 43 (6).

HR-MS (EI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{O}^{+}[\mathrm{M}]^{+}$294.1163, found 294.1167.

2-[3-(4-Methoxybenzyl)phenyl]-4,5-dihydrooxazole (143h)

The general procedure I was followed using 2-phenyl-4,5-dihydrooxazole (139h, $73.6 \mathrm{mg}, 0.50 \mathrm{mmol})$ and 4-methoxybenzyl chloride (142b, 235 mg , 1.50 mmol). After 20 h , purification by column chromatography (n-hexane/EtOAc 7:3) yielded 143h ($80.7 \mathrm{mg}, 60 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.83-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{ddd}, \mathrm{J}=7.2,1.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}$, $2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{td}, J=9.4,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{td}, J=9.4$, $0.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.6\left(\mathrm{C}_{q}\right), 157.9\left(\mathrm{C}_{q}\right), 141.7\left(\mathrm{C}_{q}\right), 132.7\left(\mathrm{C}_{q}\right), 131.7(\mathrm{CH}), 129.7(\mathrm{CH})$, $128.5(\mathrm{CH}), 128.4(\mathrm{CH}), 127.8\left(\mathrm{C}_{\mathrm{q}}\right), 125.8(\mathrm{CH}), 113.9(\mathrm{CH}), 67.5\left(\mathrm{CH}_{2}\right), 55.3\left(\mathrm{CH}_{3}\right), 54.9\left(\mathrm{CH}_{2}\right), 40.9$ $\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2904,2835,1647,1509,1242,1176,1033,952,801,707 \mathrm{~cm}^{-1}$.
MS (EI) m/z (relative intensity): 267 (100) [M] ${ }^{+}, 266$ (34) [M-H] ${ }^{+}, 252$ (16) [M-Me] ${ }^{+}, 236$ (16) [MOMe] ${ }^{+}, 223$ (10), 208 (10), 165 (15), 152 (14), 121 (25), 105 (17), 89 (6), 77 (7).

HR-MS (EI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}]^{+}$267.1254, found 267.1262.

2-[4-Bromo-3-(4-methoxybenzyl)phenyl]-4,5-dihydrooxazole (143i)

The general procedure I was followed using 2-(4-bromophenyl)-4,5dihydrooxazole ($\mathbf{1 3 9 j}, 113 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 4-methoxybenzyl chloride (142b, $235 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 7:3) yielded 143i ($87.2 \mathrm{mg}, 50 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.78(\mathrm{dd}, \mathrm{J}=2.0,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.64\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, \mathrm{J}=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.60$ ($d_{A B} d, J=8.3,0.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.12(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{td}, J=9.5,0.8 \mathrm{~Hz}$, $2 \mathrm{H}), 4.08(\mathrm{~s}, 2 \mathrm{H}), 4.02(\mathrm{td}, \mathrm{J}=9.5,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=163.8\left(\mathrm{C}_{\mathrm{q}}\right), 158.0\left(\mathrm{C}_{\mathrm{q}}\right), 140.9\left(\mathrm{C}_{\mathrm{q}}\right), 132.9(\mathrm{CH}), 131.0\left(\mathrm{C}_{\mathrm{q}}\right), 130.5(\mathrm{CH})$, $129.7(\mathrm{CH}), 128.1\left(\mathrm{C}_{\mathrm{q}}\right), 127.3(\mathrm{CH}), 127.1\left(\mathrm{C}_{\mathrm{q}}\right), 113.9(\mathrm{CH}), 67.7\left(\mathrm{CH}_{2}\right), 55.2\left(\mathrm{CH}_{3}\right), 55.0\left(\mathrm{CH}_{2}\right), 40.9$ $\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2903,1648,1509,1243,1176,1074,1023,811,722 \mathrm{~cm}^{-1}$.
MS (EI) m / z (relative intensity): 347 (98) $\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)\right]^{+}, 345(100)\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)\right]^{+}, 316(16), 266(40)[\mathrm{M}-$ $\mathrm{Br}]^{+}, 223$ (22), 195 (18), 152 (26), 121 (39).

HR-MS (EI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{16}{ }^{79} \mathrm{BrNO}_{2}{ }^{+}[\mathrm{M}]^{+} 345.0359$, found 345.0354 .

2-\{3-[1-(4-Fluorophenyl)ethyl]phenyl\}pyrimidine (143j)

The general procedure I was followed using 2-phenylpyrimidine (139a, $78.1 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 1-(1-chloroethyl)-4-fluorobenzene (142d, 238 mg , 1.50 mmol). After 20 h , purification by column chromatography (n-hexane/EtOAc 10:1) yielded 143 j ($113 \mathrm{mg}, 81 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.80(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.34(\mathrm{ddt}, J=1.9,1.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.28$ (dddd, J = 7.7, 1.5, 1.2, $0.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.42 (dd, J = 7.7, $7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.30 (dddd, J = 7.7, 1.9, 1.2, 0.6 Hz , $1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=8.7,8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.70(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=164.7\left(\mathrm{C}_{\mathrm{q}}\right), 161.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=244 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 157.1(\mathrm{CH}), 146.5\left(\mathrm{C}_{\mathrm{q}}\right), 141.8$ ($\mathrm{d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$), $137.7\left(\mathrm{C}_{\mathrm{q}}\right), 130.0(\mathrm{CH}), 128.9\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}, \mathrm{CH}\right), 128.7(\mathrm{CH}), 127.2(\mathrm{CH}), 126.1$ $(\mathrm{CH}), 119.0(\mathrm{CH}), 115.0\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}, \mathrm{CH}\right), 44.2(\mathrm{CH}), 22.1\left(\mathrm{CH}_{3}\right)$.
${ }^{19} \mathrm{~F}$-NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-117.5(\mathrm{tt}, \mathrm{J}=8.7,5.4 \mathrm{~Hz})$.

IR (ATR): $\tilde{v}=2961,1567,1554,1505,1406,1219,1158,835,782,690 \mathrm{~cm}^{-1}$.
m.p.: $88-90^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 278 (38) [M] ${ }^{+}, 263$ (100) [M-Me] ${ }^{+}, 243$ (11), 208 (7), 183 (17).

HR-MS (EI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FN}_{2}^{+}[\mathrm{M}]^{+}$278.1214, found 278.1211.

2-[3-(1-Phenylethyl)phenyl]pyridine (143k)

The general procedure I was followed using 2-phenylpyridine (68b, 77.6 mg , 0.50 mmol) and (1-chloroethyl)benzene (142a, $211 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 10:1) followed by recycling preparative HPLC yielded 143k ($96.2 \mathrm{mg}, 74 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.67(\mathrm{ddd}, \mathrm{J}=4.8,1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=1.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.78$ (ddd, J = 7.7, 1.9, 1.2 Hz, 1H), 7.75-7.65 (m, 2H), 7.38 (dd, J = 7.7, 7.7 Hz, 1H), 7.32-7.13 (m, 7H), $4.25(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=157.5\left(\mathrm{C}_{\mathrm{q}}\right), 149.5(\mathrm{CH}), 146.8\left(\mathrm{C}_{\mathrm{q}}\right), 146.1\left(\mathrm{C}_{\mathrm{q}}\right), 139.4\left(\mathrm{C}_{\mathrm{q}}\right), 136.5(\mathrm{CH})$, 128.7 (CH), 128.3 (CH), 128.2 (CH), 127.6 (CH), 126.3 (CH), $126.0(\mathrm{CH}), 124.7(\mathrm{CH}), 121.9(\mathrm{CH}), 120.6$ $(\mathrm{CH}), 44.9(\mathrm{CH}), 22.0\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2966,1583,1565,1433,1414,761,696,614 \mathrm{~cm}^{-1}$.
MS (EI) m / z (relative intensity): 259 (63) [M] ${ }^{+}, 258$ (100) [M-H] ${ }^{+}, 244$ (90) [M-Me] ${ }^{+}, 165$ (20), 78 (12), 51 (9).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}$260.1434, found 260.1435 .

The spectral data are in accordance with those reported in the literature. ${ }^{[68-69]}$

2-\{3-[1-(2-Chlorophenyl)ethyl]phenyl\}pyrimidine (143I)

The general procedure I was followed using 2-phenylpyrimidine (139a, 78.1 mg , $0.50 \mathrm{mmol})$ and 1-chloro-2-(1-chloroethyl)benzene (142e, $263 \mathrm{mg}, 1.50 \mathrm{mmol})$ at $80^{\circ} \mathrm{C}$. After 20 h , purification by column chromatography (n-hexane/EtOAc 10:1) yielded 1431 ($76.3 \mathrm{mg}, 52 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.80(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.39(\mathrm{ddd}, J=1.9,1.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.30$ (ddd, $J=7.7,1.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.42 (ddd, $J=7.7,7.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (dd, J = 7.6, 1.5 Hz, 1H), 7.33 (dddd, $J=7.7,1.9,1.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{ddd}, J=7.6,7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ $(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{ddd}, J=7.6,7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.7\left(\mathrm{C}_{\mathrm{q}}\right), 157.1(\mathrm{CH}), 145.2\left(\mathrm{C}_{\mathrm{q}}\right), 143.5\left(\mathrm{C}_{\mathrm{q}}\right), 137.6\left(\mathrm{C}_{\mathrm{q}}\right), 133.8\left(\mathrm{C}_{\mathrm{q}}\right)$, 130.3 (CH), 129.5 (CH), 128.6 (CH), 128.6 (CH), 127.4 (CH), 127.3 (CH), 126.9 (CH), 126.1 (CH), 118.9 $(\mathrm{CH}), 41.2(\mathrm{CH}), 21.2\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2968,1567,1553,1422,1407,1034,793,757,699,635 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): $296(31)\left[\mathrm{M}\left({ }^{37} \mathrm{CI}\right)\right]^{+}, 294(89)\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)\right]^{+}, 281(35)\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)-\mathrm{Me}\right]^{+}, 279$ (100) $\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)-\mathrm{Me}\right]^{+}, 259(24)[\mathrm{M}-\mathrm{Cl}]^{+}, 243(60)[\mathrm{M}-\mathrm{Me}-\mathrm{Cl}]^{+}, 190$ (26), 165 (12), 129 (10), 122 (10), 103 (14), 77 (13).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{16}{ }^{35} \mathrm{ClN}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$295.0997, found 295.0999.

2-[3-(1-Phenylethyl)phenyl]-4,5-dihydrooxazole (143m)

The general procedure I was followed using 2-phenyl-4,5-dihydrooxazole (139h, $73.6 \mathrm{mg}, 0.50 \mathrm{mmol}$) and (1-chloroethyl)benzene (142a, $211 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 3:1)
followed by recycling preparative HPLC yielded 143m ($65.6 \mathrm{mg}, 52 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.89-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.79-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.15$ $(\mathrm{m}, 3 \mathrm{H}), 4.42(\mathrm{td}, J=9.5,0.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.66(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=164.8\left(\mathrm{C}_{\mathrm{q}}\right), 146.6\left(\mathrm{C}_{\mathrm{q}}\right), 145.9\left(\mathrm{C}_{\mathrm{q}}\right), 130.7(\mathrm{CH}), 128.4(\mathrm{CH}), 127.8\left(\mathrm{C}_{\mathrm{q}}\right)$, $127.6(\mathrm{CH}), 127.2(\mathrm{CH}), 126.1(\mathrm{CH}), 126.0(\mathrm{CH}), 67.5\left(\mathrm{CH}_{2}\right), 54.9\left(\mathrm{CH}_{2}\right), 44.7(\mathrm{CH}), 21.7\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2967,2875,1647,1450,1356,1264,1178,1066,947,700 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 251 (69) [M] ${ }^{+}, 236$ (100) [M-Me] ${ }^{+}, 221$ (12), 193 (40), 192 (40), 178 (15), 165 (68), 103 (19), 89 (9), 77 (16).

HR-MS (EI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}^{+}[\mathrm{M}]^{+}$251.1305, found 251.1316.

2-[3-(Naphthalen-1-ylmethyl)phenyl]pyridine (143n)

The general procedure I was followed using 2-phenylpyridine (68b, 77.6 mg , $0.50 \mathrm{mmol})$ and 1-(chloromethyl)naphthalene ($142 \mathrm{~m}, 265 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 20:1) yielded 143n ($28.8 \mathrm{mg}, 20 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.70(\mathrm{ddd}, \mathrm{J}=4.8,1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.09-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.96$ (dddd, J $=1.8,1.2,0.6,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.82$ (dddd, $J=7.7,1.2,1.2,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dtt}, J$ $=8.1,0.9,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{dd}, J=8.0,7.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.67\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{dd}, J=8.0,1.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.50-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{ddd}, \mathrm{J}=7.7,7.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 4.56$ (s, 2H).
${ }^{13} \mathrm{C}-$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=157.4\left(\mathrm{C}_{\mathrm{q}}\right), 149.5(\mathrm{CH}), 141.1\left(\mathrm{C}_{\mathrm{q}}\right), 139.5\left(\mathrm{C}_{\mathrm{q}}\right), 136.5(\mathrm{CH}), 136.4\left(\mathrm{C}_{\mathrm{q}}\right)$, $133.8\left(\mathrm{C}_{\mathrm{q}}\right), 132.0\left(\mathrm{C}_{\mathrm{q}}\right), 129.3(\mathrm{CH}), 128.8(\mathrm{CH}), 128.6(\mathrm{CH}), 127.3(\mathrm{CH}), 127.1(\mathrm{CH}), 125.9(\mathrm{CH}), 125.5$ $(\mathrm{CH}), 124.7(\mathrm{CH}), 124.2(\mathrm{CH}), 121.9(\mathrm{CH}), 120.6(\mathrm{CH}), 39.2\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=3045,1584,1565,1461,1435,769,744 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 295 (75) [M] ${ }^{+}$, 294 (100) [M-H] ${ }^{+}, 215$ (27), 147 (14), 115 (7), 43 (10).

HR-MS (EI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}^{+}[\mathrm{M}]^{+}$295.1356, found 295.1350.

The spectral data are in accordance with those reported in the literature. ${ }^{[68]}$

1-[3-(4-Methoxybenzyl)phenyl]-1H-pyrazole (143o)

The general procedure I was followed using 1-phenyl-1H-pyrazole (147a, $72.1 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 4-methoxybenzyl chloride (142b, 235 mg , $1.50 \mathrm{mmol})$. After 20 h , purification by column chromatography (n-hexane/EtOAc 30:1) yielded 1430 ($48.9 \mathrm{mg}, 37 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.88(\mathrm{dd}, J=2.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=1.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.55$ $(\mathrm{m}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{ddd}, J=7.8,7.7,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.10$ (dddd, $J=7.7,2.2,0.9,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.44(\mathrm{dd}, J=2.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H}), 3.78$ (s, 3H).
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=158.1\left(\mathrm{C}_{\mathrm{q}}\right), 143.3\left(\mathrm{C}_{\mathrm{q}}\right), 141.0(\mathrm{CH}), 140.3\left(\mathrm{C}_{\mathrm{q}}\right), 132.6\left(\mathrm{C}_{\mathrm{q}}\right), 129.9(\mathrm{CH})$, $129.4(\mathrm{CH}), 126.9(\mathrm{CH}), 126.8(\mathrm{CH}), 119.8(\mathrm{CH}), 116.9(\mathrm{CH}), 114.0(\mathrm{CH}), 107.4(\mathrm{CH}), 55.2\left(\mathrm{CH}_{3}\right), 41.0$ $\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2835,1608,1592,1509,1391,1242,1176,1033,786,747 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 264 (100) [M] ${ }^{+}, 249$ (22) [M-Me] ${ }^{+}, 152$ (13), 121 (21), 77 (9).
HR-MS (EI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}]^{+}$264.1257, found 264.1270.

2-(3-Benzylphenyl)-4,5-dihydrooxazole (143p)

The general procedure I was followed using 2-phenyl-4,5-dihydrooxazole (139h, $73.6 \mathrm{mg}, 0.50 \mathrm{mmol}$) and benzyl chloride ($142 \mathrm{c}, 190 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 7:3) followed by recycling preparative HPLC yielded 143 p (33.9 mg , 29\%) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.84(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.16(\mathrm{~m}, 7 \mathrm{H}), 4.42(\mathrm{t}, \mathrm{J}=$ $9.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{t}, \mathrm{J}=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=164.5\left(\mathrm{C}_{\mathrm{q}}\right), 141.3\left(\mathrm{C}_{\mathrm{q}}\right), 140.5\left(\mathrm{C}_{\mathrm{q}}\right), 131.8(\mathrm{CH}), 128.8(\mathrm{CH}), 128.6(\mathrm{CH})$, $128.4(\mathrm{CH}), 127.8\left(\mathrm{C}_{q}\right), 126.1(\mathrm{CH}), 125.9(\mathrm{CH}), 67.6\left(\mathrm{CH}_{2}\right), 54.9\left(\mathrm{CH}_{2}\right), 41.8\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2903,1647,1600,1493,1357,1263,1179,1065,952,700 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 237 (100) [M] ${ }^{+}, 236(34)[\mathrm{M}-\mathrm{H}]^{+}, 207$ (84), 193 (13), 165 (55), 152 (15), 91 (31) [Bn] ${ }^{+}, 65$ (9).

HR-MS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}^{+}[\mathrm{M}]^{+}$237.1148, found 237.1149.

2-[3-(4-Methylbenzyl)phenyl]-4,5-dihydrooxazole (143q)

The general procedure I was followed using 2-phenyl-4,5-dihydrooxazole (139h, $73.6 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 4-methylbenzyl chloride (142f, 211 mg , 1.50 mmol). After 20 h , purification by column chromatography (n-hexane/EtOAc 7:3) followed by recycling preparative HPLC yielded 143q ($37.4 \mathrm{mg}, 30 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.83$ (ddd, $J=1.7,1.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.77 (ddd, $J=7.4,1.7,1.7 \mathrm{~Hz}$, 1H), 7.32 (ddd, J = 7.6, 7.4, 0.7 Hz, 1H), 7.28 (ddd, J = 7.6, 1.7, 1.7 Hz, 1H), 7.11-7.06 (m, 4H), 4.41 ($\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}$), $4.05(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=164.7\left(\mathrm{C}_{\mathrm{q}}\right), 141.7\left(\mathrm{C}_{\mathrm{q}}\right), 137.6\left(\mathrm{C}_{\mathrm{q}}\right), 135.7\left(\mathrm{C}_{\mathrm{q}}\right), 131.8(\mathrm{CH}), 129.2(\mathrm{CH})$, $128.7(\mathrm{CH}), 128.6(\mathrm{CH}), 128.5(\mathrm{CH}), 127.8\left(\mathrm{C}_{\mathrm{q}}\right), 125.9(\mathrm{CH}), 67.5\left(\mathrm{CH}_{2}\right), 54.9\left(\mathrm{CH}_{2}\right), 41.4\left(\mathrm{CH}_{2}\right), 21.0$ $\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2903,1648,1513,1356,1262,1180,1064,951,797,707 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 251 (100) [M] ${ }^{+}, 236$ (5) [M-Me] ${ }^{+}, 221$ (16), 206 (14), 193 (10), 179 (12), 165 (24), 105 (15) [MeBn] ${ }^{+}$.

HR-MS (EI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}^{+}[\mathrm{M}]^{+}$251.1305, found 251.1308.

2-[3-(4-Fluorobenzyl)phenyl]-4,5-dihydrooxazole (143r)

The general procedure I was followed using 2-phenyl-4,5-dihydrooxazole (139h, $73.6 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 4-fluorobenzyl chloride ($142 \mathrm{i}, 217 \mathrm{mg}$, 1.50 mmol). After 20 h , purification by column chromatography (n-hexane/EtOAc 7:3) followed by recycling preparative HPLC yielded 143r $(42.7 \mathrm{mg}, 33 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.84-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 1 \mathrm{H})$, 7.13 (dd, J = 8.8, 5.4 Hz, 2H), 6.96 (dd, J = 8.8, 8.7 Hz, 2H), 4.42 (t, J = 9.5 Hz, 2H), 4.05 (t, J = 9.5 Hz, $2 \mathrm{H}), 3.97$ ($\mathrm{s}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=164.5\left(\mathrm{C}_{\mathrm{q}}\right), 161.3\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=244 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 141.1\left(\mathrm{C}_{\mathrm{q}}\right), 136.2\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=\right.$ $\left.3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 131.7(\mathrm{CH}), 130.2\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}, \mathrm{CH}\right), 128.5(\mathrm{CH}), 127.9\left(\mathrm{C}_{\mathrm{q}}\right), 126.0(\mathrm{CH}), 115.2\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=\right.$ $21 \mathrm{~Hz}, \mathrm{CH}), 67.6\left(\mathrm{CH}_{2}\right), 54.9\left(\mathrm{CH}_{2}\right), 41.0\left(\mathrm{CH}_{2}\right)$.
${ }^{19}$ F-NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=(-117.1)-(-117.3)(\mathrm{m})$.

IR (ATR): $\tilde{v}=2877,1648,1602,1507,1357,1219,1157,1065,952,707 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 255 (100) [M] ${ }^{+}, 254$ (32) [M-H $]^{+}, 225$ (88), 211 (13), 183 (38), 165 (16), 109 (34) [FBn] ${ }^{+}, 89$ (9), 43 (22).

HR-MS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{FNO}^{+}[\mathrm{M}]^{+}$255.1054, found 255.1063.

2-[3-(4-Chlorobenzyl)phenyl]-4,5-dihydrooxazole (143s)

The general procedure I was followed using 2-phenyl-4,5-dihydrooxazole ($139 \mathrm{~h}, 73.6 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 4-chlorobenzyl chloride (142j, 242 mg , 1.50 mmol). After 20 h , purification by column chromatography (n-hexane/EtOAc 7:3) followed by recycling preparative HPLC yielded 143s ($39.0 \mathrm{mg}, 29 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.90-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{dd}, \mathrm{J}=7.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{t}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.97(\mathrm{~s}$, 2 H).
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.4\left(\mathrm{C}_{\mathrm{q}}\right), 140.7\left(\mathrm{C}_{\mathrm{q}}\right), 139.0\left(\mathrm{C}_{\mathrm{q}}\right), 131.9\left(\mathrm{C}_{\mathrm{q}}\right), 131.7(\mathrm{CH}), 130.1(\mathrm{CH})$, $128.5(\mathrm{CH}), 128.0\left(\mathrm{C}_{\mathrm{q}}\right), 126.2(\mathrm{CH}), 67.6\left(\mathrm{CH}_{2}\right), 54.9\left(\mathrm{CH}_{2}\right), 41.1\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2903,1649,1490,1357,1264,1181,1084,980,791,709 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): $273(34)\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)\right]^{+}, 272(29)\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)-\mathrm{H}\right]^{+}, 271(100)\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)\right]^{+}, 270$ (37) $\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)-\mathrm{H}\right]^{+}, 243$ (30), 241 (89), 193 (14), 178 (11), 165 (56), 127 (9) [$\left.{ }^{37} \mathrm{ClBn}\right]^{+}, 125$ (23) $\left[{ }^{35} \mathrm{ClBn}\right]^{+}, 103$ (17), 89 (17).

HR-MS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{14}{ }^{35} \mathrm{ClNO}^{+}[\mathrm{M}]^{+}$271.0758, found 271.0758.

(E)-1-Phenyl-2-[3-(1-phenylethyl)phenyl]diazene (143t)

 The general procedure I was followed using azobenzene (139I, 91.2 mg , 0.50 mmol) and (1-chloroethyl)benzene (142a, $211 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane to n-hexane/EtOAc 100:1) followed by recycling preparative HPLC yielded 143t ($39.1 \mathrm{mg}, 27 \%$) as an orange oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.96-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.88(\mathrm{dd}, J=1.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{ddd}, J=7.8$, $1.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.57-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{dd}, J=7.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.19(\mathrm{~m}$, $1 \mathrm{H}), 4.30(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=152.7\left(\mathrm{C}_{\mathrm{q}}\right), 152.6\left(\mathrm{C}_{\mathrm{q}}\right), 147.4\left(\mathrm{C}_{\mathrm{q}}\right), 145.8\left(\mathrm{C}_{\mathrm{q}}\right), 130.8(\mathrm{CH}), 130.4(\mathrm{CH})$, 129.0 (CH), 128.4 (CH), 127.6 (CH), 126.1 (CH), 122.7 (CH), 122.5 (CH), 120.1 (CH), 44.8 (CH), 21.9 $\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2967,1598,1492,1449,1150,1027,763,690,529 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 286 (68) [M] ${ }^{+}, 209$ (9) [M-Ph] ${ }^{+}, 181$ (88) [M-Ph-N $\left.{ }_{2}\right]^{+}, 166$ (60), 165 (68), 105 (48) [EtPh] ${ }^{+}, 77$ (100) [Ph] ${ }^{+}$.

HR-MS (EI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+}$286.1465, found 286.1461.

5.3.4.2 Characterization Data for 185

6-(3-Benzylphenyl)-9-iso-propyl-9H-purine (185ac)

The general procedure I was followed using purine 123a ($119 \mathrm{mg}, 0.50 \mathrm{mmol}$) and benzyl chloride (142c, $190 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc $3: 1$) yielded 185ac (116 mg, 71\%) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.01(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{ddd}, \mathrm{J}=7.7,1.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.62$ (ddd, $J=1.8$, 1.3, $0.6 \mathrm{~Hz}, 1 \mathrm{H}$), $8.18(\mathrm{~s}, 1 \mathrm{H}), 7.48$ (ddd, $J=7.7,7.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.32 (dddd, $J=7.7,1.3,1.3,0.6 \mathrm{~Hz}$, 1H), 7.30-7.15 (m, 5H), 4.98 (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $4.14(\mathrm{~s}, 2 \mathrm{H}), 1.67(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}-$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=154.7\left(\mathrm{C}_{\mathrm{q}}\right), 152.0\left(\mathrm{C}_{\mathrm{q}}\right), 151.9(\mathrm{CH}), 141.8(\mathrm{CH}), 141.4\left(\mathrm{C}_{\mathrm{q}}\right), 140.9\left(\mathrm{C}_{\mathrm{q}}\right)$, $135.9\left(\mathrm{C}_{\mathrm{q}}\right), 131.5\left(\mathrm{C}_{\mathrm{q}}\right.$ and CH$)$, $129.9(\mathrm{CH}), 128.9(\mathrm{CH}), 128.7(\mathrm{CH}), 128.4(\mathrm{CH}), 127.9(\mathrm{CH}), 126.0$ $(\mathrm{CH}), 47.3(\mathrm{CH}), 42.1\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2977,1567,1494,1324,1217,783,700,646 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 328 (42) [M] ${ }^{+}, 327$ (41) [M-H] ${ }^{+}, 285$ (100) [M-i-Pr] ${ }^{+}, 165$ (8), 91 (6).

HR-MS (EI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}]^{+} 328.1682$, found 328.1685.

9-iso-Propyl-6-[3-(4-methoxybenzyl)phenyl]-9H-purine (185ab)

The general procedure I was followed using purine 123a (119 mg, 0.50 mmol) and 4-methoxybenzyl chloride (142b, $235 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 3:1) yielded 185ab ($133 \mathrm{mg}, 74 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.01(\mathrm{~s}, 1 \mathrm{H}), 8.66$ (ddd, $\left.J=7.8,1.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.59$ (ddd, $J=1.8$, $1.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}$), $8.18(\mathrm{~s}, 1 \mathrm{H}), 7.47$ (ddd, $J=7.8,7.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.30(\mathrm{dddd}, J=7.7,1.5,1.2,0.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.98(\mathrm{hept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}$, $3 \mathrm{H}), 1.67(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=157.9\left(\mathrm{C}_{\mathrm{q}}\right), 154.8\left(\mathrm{C}_{\mathrm{q}}\right), 152.0\left(\mathrm{C}_{\mathrm{q}}\right), 151.9(\mathrm{CH}), 141.9\left(\mathrm{C}_{q}\right), 141.8(\mathrm{CH})$, $135.8\left(\mathrm{C}_{\mathrm{q}}\right), 133.1\left(\mathrm{C}_{\mathrm{q}}\right), 131.5\left(\mathrm{C}_{\mathrm{q}}\right), 131.4(\mathrm{CH}), 129.8(\mathrm{CH}), 129.8(\mathrm{CH}), 128.7(\mathrm{CH}), 127.8(\mathrm{CH}), 113.8$ $(\mathrm{CH}), 55.3\left(\mathrm{CH}_{3}\right), 47.3(\mathrm{CH}), 41.2\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2977,1567,1509,1324,1243,1217,1033,791,703,646 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 358 (84) [M] ${ }^{+}, 357(30)[\mathrm{M}-\mathrm{H}]^{+}, 343$ (14) $[\mathrm{M}-\mathrm{Me}]^{+}, 315$ (100) [M-$i-\mathrm{Pr}]^{+}, 301$ (43), 121 (13), 43 (8).

HR-MS (EI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}^{+}[\mathrm{M}]^{+} 358.1788$, found 358.1796.

9-iso-Propyl-6-[3-(4-methylbenzyl)phenyl]-9H-purine (185af)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.01(\mathrm{~s}, 1 \mathrm{H}), 8.67$ (ddd, $\left.J=7.8,1.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.61$ (ddd, $J=1.8$, $1.2,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.47$ (ddd, $J=7.8,7.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.31 (dddd, J=7.7, 1.2, 1.2, 0.6 Hz , $1 \mathrm{H}), 7.14\left(\mathrm{~d}_{\mathrm{AB}}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.09\left(\mathrm{~d}_{\mathrm{AB}}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.98$ (hept, $\left.J=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.09(\mathrm{~s}, 2 \mathrm{H}), 2.30$ $(\mathrm{s}, 3 \mathrm{H}), 1.67(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=154.9\left(\mathrm{C}_{\mathrm{q}}\right), 152.1\left(\mathrm{C}_{\mathrm{q}}\right), 152.0(\mathrm{CH}), 141.9(\mathrm{CH}), 141.8\left(\mathrm{C}_{\mathrm{q}}\right), 138.0\left(\mathrm{C}_{\mathrm{q}}\right)$, $135.9\left(\mathrm{C}_{\mathrm{q}}\right), 135.5\left(\mathrm{C}_{\mathrm{q}}\right), 131.5\left(\mathrm{C}_{\mathrm{q}}\right), 131.5(\mathrm{CH}), 129.9(\mathrm{CH}), 129.1(\mathrm{CH}), 128.8(\mathrm{CH}), 128.8(\mathrm{CH}), 127.9$ $(\mathrm{CH}), 47.2(\mathrm{CH}), 41.6\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{3}\right), 21.0\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2977,2919,1567,1495,1445,1324,1217,790,702,646 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 342 (75) [M] ${ }^{+}, 341$ (27) [M-H] ${ }^{+}, 327$ (2) [M-Me] ${ }^{+} 299$ (100) [M-$i-\mathrm{Pr}]^{+}, 285$ (11), 165 (6), 142 (7).

HR-MS (EI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}]^{+}$342.1839, found 342.1845.

9-iso-Propyl-6-\{3-[4-(trifluoromethyl)benzyl]phenyl\}-9H-purine (185ag)

The general procedure I was followed using purine 123a (119 mg, 0.50 mmol) and 4-(trifluoromethyl)benzyl chloride (142g, 292 mg , 1.50 mmol). After 20 h , purification by column chromatography (n-hexane/EtOAc 3:1) yielded 185ag ($146 \mathrm{mg}, 73 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.01(\mathrm{~s}, 1 \mathrm{H}), 8.70$ (ddd, $\left.J=7.8,1.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.61$ (dd, $J=1.7$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{dd}, \mathrm{J}=7.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, 2H), 7.31 (ddd, J = 7.7, 1.7, 1.3 Hz, 1H), 4.99 (hept, J = $6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $4.18(\mathrm{~s}, 2 \mathrm{H}), 1.68(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, 6 H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=154.6\left(\mathrm{C}_{\mathrm{q}}\right), 152.1\left(\mathrm{C}_{\mathrm{q}}\right), 152.0(\mathrm{CH}), 145.1\left(\mathrm{C}_{\mathrm{q}}\right), 142.0(\mathrm{CH}), 140.4\left(\mathrm{C}_{\mathrm{q}}\right)$, $136.2\left(\mathrm{C}_{\mathrm{q}}\right), 131.5\left(\mathrm{C}_{\mathrm{q}}\right), 131.5(\mathrm{CH}), 130.0(\mathrm{CH}), 129.2(\mathrm{CH}), 129.0(\mathrm{CH}), 128.4\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=32 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $128.3(\mathrm{CH}), 125.4\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}, \mathrm{CH}\right), 124.3\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=270 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 47.3(\mathrm{CH}), 41.8\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{3}\right)$.
${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-62.3(\mathrm{~s})$.

IR (ATR): $\tilde{v}=2980,1568,1321,1219,1107,1065,1018,788,703,646 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 396 (46) $[\mathrm{M}]^{+}, 395$ (58) $[\mathrm{M}-\mathrm{H}]^{+}, 353$ (100) [M-i-Pr] ${ }^{+}, 333$ (17).

HR-MS (EI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}]^{+}$396.1556, found 396.1557.

Ethyl 4-[3-(9-iso-propyl-9H-purin-6-yl)benzyl]benzoate (185ah)

The general procedure I was followed using purine 123a (119 mg, 0.50 mmol) and ethyl 4-(chloromethyl)benzoate (142h, 298 mg , 1.50 mmol). After 20 h , purification by column chromatography (n-hexane/EtOAc 2:1) yielded 185ah (144 mg, 72\%) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.00(\mathrm{~s}, 1 \mathrm{H}), 8.69$ (ddd, $\left.J=7.8,1.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.60$ (ddd, $J=1.8$, $1.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{ddd}, J=7.8,7.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.27$
$(\mathrm{m}, 3 \mathrm{H}), 4.98(\mathrm{hept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{~s}, 2 \mathrm{H}), 1.67(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$, $1.37(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.4\left(\mathrm{C}_{\mathrm{q}}\right), 154.5\left(\mathrm{C}_{\mathrm{q}}\right), 152.0\left(\mathrm{C}_{\mathrm{q}}\right), 151.9(\mathrm{CH}), 146.2\left(\mathrm{C}_{\mathrm{q}}\right), 141.9(\mathrm{CH})$, $140.5\left(\mathrm{C}_{\mathrm{q}}\right), 136.0\left(\mathrm{C}_{\mathrm{q}}\right), 131.5\left(\mathrm{C}_{\mathrm{q}}\right), 131.4(\mathrm{CH}), 130.0(\mathrm{CH}), 129.7(\mathrm{CH}), 128.9(\mathrm{CH}), 128.8(\mathrm{CH}), 128.4$ $\left(\mathrm{C}_{\mathrm{q}}\right), 128.1(\mathrm{CH}), 60.8\left(\mathrm{CH}_{2}\right), 47.3(\mathrm{CH}), 42.0\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{3}\right), 14.4\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2978,1711,1567,1325,1272,1219,1101,1021,703,646 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 400 (60) $[\mathrm{M}]^{+}, 399$ (100) $[\mathrm{M}-\mathrm{H}]^{+}, 371$ (10) $[\mathrm{M}-E t]^{+}, 357$ (47) [M-$i-\mathrm{Pr}]^{+}, 329$ (21) [M-i-Pr-Et] ${ }^{+} 311$ (48), 285 (19), 283 (26) [$\left.\mathrm{M}-i-\mathrm{Pr}-\mathrm{CO}_{2} \mathrm{Et}\right]^{+}, 165$ (9), 156 (11), 142 (9).

HR-MS (EI): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}[\mathrm{M}]^{+} 400.1894$, found 400.1883.

6-[3-(4-Fluorobenzyl)phenyl]-9-iso-propyl-9H-purine (185ai)

The general procedure I was followed using purine 123a ($119 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 4 -fluorobenzyl chloride (142i, $217 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc $3: 1$) yielded 185ai (123 mg , 71%) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.01(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{ddd}, \mathrm{J}=7.8,1.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{dd}, \mathrm{J}=2.0$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.48$ (dd, $J=7.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (ddd, J = 7.7, 2.0, 1.3 Hz, 1H), 7.19 (dd, $J=8.8,5.4 \mathrm{~Hz}, 2 \mathrm{H}$), $6.96(\mathrm{dd}, J=8.8,8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.98$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $4.09(\mathrm{~s}, 2 \mathrm{H}), 1.67(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=161.3\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=244 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 154.6\left(\mathrm{C}_{\mathrm{q}}\right), 152.0\left(\mathrm{C}_{\mathrm{q}}\right), 151.9(\mathrm{CH}), 141.8$ (CH), $141.2\left(C_{q}\right), 136.6\left(d,{ }^{4} J_{C-F}=3 H z, C_{q}\right), 136.0\left(C_{q}\right), 131.5\left(C_{q}\right), 131.3(C H), 130.2\left(d,{ }^{3} J_{C-F}=8 \mathrm{~Hz}\right.$, $(\mathrm{CH}), 129.8(\mathrm{CH}), 128.8(\mathrm{CH}), 128.0(\mathrm{CH}), 115.1\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}, \mathrm{CH}\right), 47.3(\mathrm{CH}), 41.2\left(\mathrm{CH}_{2}\right), 22.6$ $\left(\mathrm{CH}_{3}\right)$.
${ }^{19}$ F-NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-117.4(\mathrm{tt}, J=8.7,5.4 \mathrm{~Hz})$.

IR (ATR): $\tilde{v}=2980,1567,1506,1444,1326,1221,834,794,704,651 \mathrm{~cm}^{-1}$.
m.p.: $95-96{ }^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 346 (41) $[\mathrm{M}]^{+}, 345$ (38) $[\mathrm{M}-\mathrm{H}]^{+}, 303$ (100) [M-i-Pr] ${ }^{+}, 183$ (5), 109 (9), 43 (6).

HR-MS (EI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{FN}{ }_{4}{ }^{+}[\mathrm{M}]^{+} 346.1588$, found 346.1591.

6-[3-(4-Chlorobenzyl)phenyl]-9-iso-propyl-9H-purine (185aj)

The general procedure I was followed using purine 123a (119 mg, 0.50 mmol) and 4-chlorobenzyl chloride (142j, $242 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 3:1) yielded 185aj ($132 \mathrm{mg}, 73 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.01(\mathrm{~s}, 1 \mathrm{H}), 8.68$ (ddd, $\left.J=7.8,1.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.58$ (ddd, $J=1.8$, $1.2,0.6 \mathrm{~Hz}, 1 \mathrm{H}$), $8.18(\mathrm{~s}, 1 \mathrm{H}), 7.48$ (ddd, J = 7.8, 7.7, $0.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.29 (dddd, J = 7.7, 1.2, 1.2, 0.6 Hz , 1H), 7.25 (d, J = $8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.17 (d, J = $8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 4.98 (hept, J = $6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.09 (s, 2H), 1.67 (d, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (125 MHz, CDCl_{3}): $\delta=154.6\left(\mathrm{C}_{\mathrm{q}}\right)$, $152.0\left(\mathrm{C}_{\mathrm{q}}\right), 151.9(\mathrm{CH}), 141.8(\mathrm{CH}), 140.8\left(\mathrm{C}_{\mathrm{q}}\right), 139.4\left(\mathrm{C}_{\mathrm{q}}\right)$, $136.0\left(\mathrm{C}_{\mathrm{q}}\right), 131.8\left(\mathrm{C}_{\mathrm{q}}\right), 131.5\left(\mathrm{C}_{\mathrm{q}}\right), 131.3(\mathrm{CH}), 130.2(\mathrm{CH}), 129.9(\mathrm{CH}), 128.8(\mathrm{CH}), 128.5(\mathrm{CH}), 128.1$ $(\mathrm{CH}), 47.3(\mathrm{CH}), 41.4\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2977,1567,1490,1448,1324,1217,1089,781,700,647 \mathrm{~cm}^{-1}$.
m.p.: $104-105^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 364 (16) $\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)\right]^{+}, 363(25)\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)-\mathrm{H}\right]^{+}, 362(46)\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)\right]^{+}, 361$ (51) $\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)-\mathrm{H}\right]^{+}, 321(35)\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)-i-\mathrm{Pr}\right]^{+}, 319(100)\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)-i-\mathrm{Pr}\right]^{+}, 283$ (16) $[\mathrm{M}-i-\mathrm{Pr}-\mathrm{Cl}]^{+}, 165$ (7), 142 (10), 125 (9), 43 (7).

HR-MS (EI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{19}{ }^{35} \mathrm{ClN}_{4}{ }^{+}[\mathrm{M}]^{+}$362.1293, found 362.1287.

6-[3-(4-Bromobenzyl)phenyl]-9-iso-propyl-9H-purine (185ak)

The general procedure I was followed using purine 123a (119 mg, 0.50 mmol) and 4-bromobenzyl chloride (142k, $308 \mathrm{mg}, 1.50 \mathrm{mmol}$. After 20 h , purification by column chromatography (n-hexane/EtOAc 3:1) yielded 185ak ($142 \mathrm{mg}, 70 \%$) as a pale yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.00(\mathrm{~s}, 1 \mathrm{H}), 8.68$ (ddd, $\left.J=7.8,1.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.59$ (ddd, $J=1.8$, $1.2,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{ddd}, J=7.8,7.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28$ (dddd,
$J=7.7,1.2,1.2,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.96(\mathrm{hept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H}), 1.65(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=154.5\left(\mathrm{C}_{\mathrm{q}}\right), 152.0\left(\mathrm{C}_{\mathrm{q}}\right), 151.8(\mathrm{CH}), 141.8(\mathrm{CH}), 140.7\left(\mathrm{C}_{\mathrm{q}}\right), 139.9\left(\mathrm{C}_{\mathrm{q}}\right)$, $136.0\left(\mathrm{C}_{\mathrm{q}}\right), 131.4\left(\mathrm{C}_{\mathrm{q}}\right), 131.4(\mathrm{CH}), 131.3(\mathrm{CH}), 130.6(\mathrm{CH}), 129.8(\mathrm{CH}), 128.8(\mathrm{CH}), 128.1(\mathrm{CH}), 119.8$ $\left(\mathrm{C}_{\mathrm{q}}\right), 47.2(\mathrm{CH}), 41.4\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2977,1567,1486,1325,1218,1070,1011,781,703,646 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): $408(48)\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)\right]^{+}, 407(64)\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)-\mathrm{H}\right]^{+}, 406(48)\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)\right]^{+}, 405$ (55) $\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)-\mathrm{H}\right]^{+}, 365$ (100) $\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)-i-\mathrm{Pr}\right]^{+}, 363$ (100) $\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)-i-\mathrm{Pr}\right]^{+}, 283$ (39) [M-i-Pr-Br] ${ }^{+}, 165$ (14), 142 (11).

HR-MS (EI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{19}{ }^{79} \mathrm{BrN}_{4}{ }^{+}[\mathrm{M}]^{+}$406.0788, found 406.0778 .

1-\{4-\{6-[3-(4-Methoxybenzyl)phenyl]-9H-purin-9-yl\}phenyl\}ethan-1-one (185hb)

The general procedure I was followed using purine 123 h (157 mg , 0.50 mmol) and 4-methoxybenzyl chloride (142b, $235 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 7:3) yielded 185hb (147 mg, 68\%) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.09(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{ddd}, J=7.8,1.8,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 8.64$ (ddd, $J=1.9,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, 7.97 (d, J = $8.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.50(\mathrm{dd}, J=7.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{ddd}, J=7.7,1.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=196.4\left(\mathrm{C}_{\mathrm{q}}\right), 157.9\left(\mathrm{C}_{\mathrm{q}}\right), 155.8\left(\mathrm{C}_{\mathrm{q}}\right), 153.1(\mathrm{CH}), 152.0\left(\mathrm{C}_{\mathrm{q}}\right), 142.3(\mathrm{CH})$, $142.1\left(\mathrm{C}_{\mathrm{q}}\right), 138.2\left(\mathrm{C}_{\mathrm{q}}\right), 136.4\left(\mathrm{C}_{\mathrm{q}}\right), 135.4\left(\mathrm{C}_{\mathrm{q}}\right), 133.0\left(\mathrm{C}_{\mathrm{q}}\right), 131.8(\mathrm{CH}), 131.6\left(\mathrm{C}_{\mathrm{q}}\right), 130.1(\mathrm{CH}), 129.9$ $(\mathrm{CH}), 129.8(\mathrm{CH}), 128.8(\mathrm{CH}), 128.0(\mathrm{CH}), 122.9(\mathrm{CH}), 113.9(\mathrm{CH}), 55.3\left(\mathrm{CH}_{3}\right), 41.2\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{3}\right)$. IR (ATR): $\tilde{v}=3112,1679,1557,1509,1233,1173,1026,928,835,786 \mathrm{~cm}^{-1}$.
m.p.: $159-160{ }^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 434 (100) [M] ${ }^{+}, 433$ (63) [M-H] ${ }^{+}, 419$ (53) [M-Me] ${ }^{+}, 210$ (9), 121 (9), 43 (16).

HR-MS (EI): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}[\mathrm{M}]^{+}$434.1737, found 434.1743.

6-[4-Fluoro-3-(4-methylbenzyl)phenyl]-9-iso-propyl-9H-purine (185if)

 The general procedure I was followed using purine 123 i ($128 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 4-methylbenzyl chloride (142f, $211 \mathrm{mg}, 1.50 \mathrm{mmol})$. After 20 h , purification by column chromatography (n-hexane/EtOAc $3: 1$) followed by recycling preparative HPLC yielded 185if ($90.5 \mathrm{mg}, 50 \%$) as a white soild.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.98(\mathrm{~s}, 1 \mathrm{H}), 8.76$ (ddd, $\left.J=8.6,5.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.71(\mathrm{dd}, \mathrm{J}=7.5$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=9.5,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}$, 2H), 4.96 (hept, J = 6.8 Hz, 1H), $4.10(\mathrm{~s}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=162.7\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=251 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 153.6\left(\mathrm{C}_{\mathrm{q}}\right), 151.9\left(\mathrm{C}_{\mathrm{q}}\right), 151.8(\mathrm{CH}), 141.7$ $(C H), 136.7\left(C_{q}\right), 135.5\left(C_{q}\right), 132.6\left(d,{ }^{3} J_{C-F}=6 \mathrm{~Hz}, C H\right), 131.9\left(d,{ }^{4} J_{C-F}=3 \mathrm{~Hz}, C_{q}\right), 131.1\left(C_{q}\right), 130.2$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}, \mathrm{CH}\right), 129.0(\mathrm{CH}), 128.6\left(\mathrm{~d},{ }^{2} J_{C-F}=16 \mathrm{~Hz}, C_{q}\right), 128.4(\mathrm{CH}), 115.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}, \mathrm{CH}\right)$, $47.3(\mathrm{CH}), 34.9\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $22.6\left(\mathrm{CH}_{3}\right), 21.0\left(\mathrm{CH}_{3}\right)$.
${ }^{19}$ F-NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=(-113.6)-(-113.8)(\mathrm{m})$.

IR (ATR): $\tilde{v}=2978,1574,1502,1446,1326,1219,834,806,646 \mathrm{~cm}^{-1}$.
m.p.: $72-74{ }^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 360 (90) [M] ${ }^{+}, 359$ (26) [M-H] ${ }^{+}, 345(2)[\mathrm{M}-\mathrm{Me}]^{+}, 317$ (100) [M-$i-\mathrm{Pr}]^{+}, 303$ (9).

HR-MS (EI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{FN}_{4}{ }^{+}[\mathrm{M}]^{+} 360.1745$, found 360.1748 .

6-[3-(4-Methoxybenzyl)phenyl]-9-(tetrahydro-2H-pyran-2-yl)-9H-purine (185jb)

The general procedure I was followed using purine 123 j (140 mg , 0.50 mmol) and 4-methoxybenzyl chloride (142b, $235 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 3:1) yielded 185jb ($150 \mathrm{mg}, 75 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.01(\mathrm{~s}, 1 \mathrm{H}), 8.68$ (ddd, $J=7.8,1.8,1.2 \mathrm{~Hz}$, 1 H), 8.61 (ddd, $J=1.8,1.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}$), $8.32(\mathrm{~s}, 1 \mathrm{H}), 7.46$ (ddd, $J=7.8,7.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.30 (ddd, $J=7.7,1.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.82(\mathrm{dd}, J=9.9,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.20-4.13(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H}), 3.82-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.19-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.58$ ($\mathrm{m}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=157.8\left(\mathrm{C}_{\mathrm{q}}\right), 154.8\left(\mathrm{C}_{\mathrm{q}}\right), 152.1(\mathrm{CH}), 151.5\left(\mathrm{C}_{\mathrm{q}}\right), 141.8\left(\mathrm{C}_{\mathrm{q}}\right.$ and CH$)$, $135.6\left(\mathrm{C}_{\mathrm{q}}\right)$, $132.9\left(\mathrm{C}_{\mathrm{q}}\right), 131.4(\mathrm{CH}), 131.0\left(\mathrm{C}_{\mathrm{q}}\right), 129.7(\mathrm{CH}), 128.6$ (CH), $127.8(\mathrm{CH}), 113.7(\mathrm{CH}), 81.9$ $(\mathrm{CH}), 68.7\left(\mathrm{CH}_{2}\right), 55.1\left(\mathrm{CH}_{3}\right), 41.1\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2946,1567,1509,1323,1243,1083,1042,734,701,643 \mathrm{~cm}^{-1}$.
MS (EI) m / z (relative intensity): 400 (41) [M] ${ }^{+}, 372$ (11) [M-Et] ${ }^{+}, 316$ (100) [M-THP] ${ }^{+}, 315$ (76), 301 (52), 121 (22), 85 (33), 67 (11), 41 (12).

HR-MS (EI): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}[\mathrm{M}]^{+} 400.1894$, found 400.1903.

N,N-Di-iso-propyl-4-\{\{6-[3-(4-methoxybenzyl)phenyl]-9H-purin-9-yl\}methyl\}benzamide (185kb)

 The general procedure I was followed using purine 123k (207 mg , 0.50 mmol) and 4-methoxybenzyl chloride ($\mathbf{1 4 2 b}, 235 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 2:3) yielded $\mathbf{1 8 5} \mathbf{k b}$ ($167 \mathrm{mg}, 63 \%$) as a white soild.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.04(\mathrm{~s}, 1 \mathrm{H}), 8.68$ (ddd, $J=7.8,1.8,1.2 \mathrm{~Hz}$, 1 H), 8.62 (ddd, $J=1.8,1.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.47$ (dd, $J=7.8,7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.47(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H})$, 3.75 (s, 3H), 3.87-3.39 (br, 2H), 1.78-0.88 (br, 12H).
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.1\left(\mathrm{C}_{\mathrm{q}}\right)$, $157.9\left(\mathrm{C}_{\mathrm{q}}\right)$, $155.0\left(\mathrm{C}_{\mathrm{q}}\right), 152.6(\mathrm{CH}), 152.4\left(\mathrm{C}_{\mathrm{q}}\right), 144.0(\mathrm{CH})$, $142.0\left(\mathrm{C}_{\mathrm{q}}\right), 139.2\left(\mathrm{C}_{\mathrm{q}}\right), 135.7\left(\mathrm{C}_{\mathrm{q}}\right), 133.1\left(\mathrm{C}_{\mathrm{q}}\right), 131.6$ (CH), $130.9\left(\mathrm{C}_{\mathrm{q}}\right), 129.9(\mathrm{CH}), 129.8(\mathrm{CH}), 128.8$ (CH), 127.9 (CH), $127.8(\mathrm{CH}), 126.4(\mathrm{CH}), 113.8(\mathrm{CH}), 55.2\left(\mathrm{CH}_{3}\right), 51.6-50.0(\mathrm{br}, \mathrm{CH}), 46.8\left(\mathrm{CH}_{2}\right)$, 46.6-45.2 (br, CH), $41.1\left(\mathrm{CH}_{2}\right), 20.6\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2967,1623,1568,1509,1439,1323,1244,1035,794,703 \mathrm{~cm}^{-1}$.
m.p.: $68-70^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 533 (56) [M] ${ }^{+}, 532$ (10) $[\mathrm{M}-\mathrm{H}]^{+}, 518$ (5) [M-Me] ${ }^{+}, 490$ (21) [M-$i-\operatorname{Pr}]^{+}, 433$ (100) [$\left.\mathrm{M}-\mathrm{N}(i-\operatorname{Pr})_{2}\right]^{+}, 405$ (18) [M-C(O)N(i-Pr) $]^{+}, 315$ (25), 217 (14), 118 (19), 91 (23) $[B n]^{+}, 58(14), 43$ (52).

HR-MS (EI): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{2}{ }^{+}[\mathrm{M}]^{+} 533.2785$, found 533.2807 .

6-[3-(3,5-Dimethoxybenzyl)phenyl]-9-iso-propyl-9H-purine (185al)

The general procedure I was followed using purine 123a (119 mg, 0.50 mmol) and 3,5-dimethoxybenzyl chloride (142I, $280 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 2:1) yielded 185al ($130 \mathrm{mg}, 67 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.99(\mathrm{~s}, 1 \mathrm{H}), 8.67$ (ddd, $\left.\mathrm{J}=7.8,1.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.62$ (ddd, $\mathrm{J}=1.8$, $1.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}$), $8.14(\mathrm{~s}, 1 \mathrm{H}), 7.46$ (ddd, $J=7.8,7.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.32 (dddd, $J=7.7,1.5,1.2,0.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.40(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.29(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{hept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}$, $6 \mathrm{H}), 1.63(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=160.6\left(\mathrm{C}_{\mathrm{q}}\right), 154.5\left(\mathrm{C}_{\mathrm{q}}\right), 151.9\left(\mathrm{C}_{\mathrm{q}}\right), 151.8(\mathrm{CH}), 143.1\left(\mathrm{C}_{\mathrm{q}}\right), 141.7(\mathrm{CH})$, $140.9\left(\mathrm{C}_{\mathrm{q}}\right), 135.8\left(\mathrm{C}_{\mathrm{q}}\right), 131.3\left(\mathrm{C}_{\mathrm{q}}\right), 131.3(\mathrm{CH}), 129.8(\mathrm{CH}), 128.6(\mathrm{CH}), 127.9(\mathrm{CH}), 107.0(\mathrm{CH}), 98.0$ $(\mathrm{CH}), 55.1\left(\mathrm{CH}_{3}\right), 47.2(\mathrm{CH}), 42.2\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2936,1567,1457,1324,1204,1145,1063,791,703,646 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 388 (97) [M] ${ }^{+}, 387$ (58) [M-H] ${ }^{+}, 373$ (4) [M-Me] ${ }^{+}, 345$ (100) [M-$i-\mathrm{Pr}]^{+}, 331$ (10) [$\left.\mathrm{M}-i-\mathrm{Pr}-\mathrm{Me}\right]^{+}, 313$ (20), 299 (8), 173 (8), 151 (6), 43 (14).

HR-MS (EI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}[\mathrm{M}]^{+}$388.1894, found 388.1894.

9-iso-Propyl-6-[3-(naphthalen-1-ylmethyl)phenyl]-9H-purine (185am)

The general procedure I was followed using purine 123a ($119 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 1-(chloromethyl)naphthalene (142m, $265 \mathrm{mg}, 1.50 \mathrm{mmol}$) at $80^{\circ} \mathrm{C}$. After 20 h , purification by column chromatography (n-hexane/EtOAc $3: 1$) yielded 185am (127 mg, 67\%) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.02(\mathrm{~s}, 1 \mathrm{H}), 8.73$ (ddd, $\left.J=1.8,1.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.67$ (ddd, $J=7.8$, $1.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 8.09-8.03(\mathrm{~m}, 1 \mathrm{H}), 7.89-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.76(\mathrm{brd}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-$ $7.40(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{ddt}, J=7.0,1.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$ (dddd, $J=7.6,1.5,1.2,0.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.98 (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 1.67(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=154.8\left(\mathrm{C}_{\mathrm{q}}\right), 152.0\left(\mathrm{C}_{\mathrm{q}}\right), 151.9(\mathrm{CH}), 141.8(\mathrm{CH}), 141.0\left(\mathrm{C}_{\mathrm{q}}\right), 136.5\left(\mathrm{C}_{\mathrm{q}}\right)$, $135.9\left(\mathrm{C}_{\mathrm{q}}\right), 133.8\left(\mathrm{C}_{\mathrm{q}}\right), 132.0\left(\mathrm{C}_{\mathrm{q}}\right), 131.5\left(\mathrm{C}_{\mathrm{q}}\right), 131.2(\mathrm{CH}), 129.9(\mathrm{CH}), 128.7(\mathrm{CH}), 128.5(\mathrm{CH}), 127.9$ (CH), $127.3(\mathrm{CH}), 127.1(\mathrm{CH}), 125.9(\mathrm{CH}), 125.5(\mathrm{CH}), 125.4(\mathrm{CH}), 124.2(\mathrm{CH}), 47.3(\mathrm{CH}), 39.2\left(\mathrm{CH}_{2}\right)$, $22.6\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2978,1569,1444,1324,1225,791,705,647,571 \mathrm{~cm}^{-1}$.
m.p.: $114-116^{\circ} \mathrm{C}$.

MS (ESI) m / z (relative intensity): 757 (6) $[2 \mathrm{M}+\mathrm{H}]^{+}, 401(2)[\mathrm{M}+\mathrm{Na}]^{+}, 379(100)[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$379.1917, found 379.1920.

1,4-Bis[3-(9-iso-propyl-9H-purin-6-yl)benzyl]benzene (185an)

Purine 123a (297 mg, 1.25 mmol$), ~ \alpha, \alpha^{\prime}$-dichloro- p-xylene (142n, $87.6 \mathrm{mg}, \quad 0.50 \mathrm{mmol}), \quad\left[\mathrm{Ru}(\mathrm{OAc})_{2}(p\right.$-cymene)] (181, $17.7 \mathrm{mg}, 50.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%), \mathrm{PPh}_{3}(13.1 \mathrm{mg}, 50.0 \mu \mathrm{~mol}$, $10 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(276 \mathrm{mg}, 2.00 \mathrm{mmol})$ were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. 1,4-Dioxane (2.0 mL) was then added and the mixture was stirred at $60^{\circ} \mathrm{C}$. After 20 h , the resulting mixture was filtered through a pad of silica gel and washed with EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography (n-hexane/EtOAc 1:2) yielded 185an (139 mg, 48\%) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.99(\mathrm{~s}, 2 \mathrm{H}), 8.65$ (ddd, $\left.J=7.8,1.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.61$ (ddd, $J=1.8$, $1.8,0.6 \mathrm{~Hz}, 2 \mathrm{H}$), $8.15(\mathrm{~s}, 2 \mathrm{H}), 7.45$ (ddd, $J=7.8,7.7,0.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{ddd}, J=7.7,1.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.16(\mathrm{~s}, 4 \mathrm{H}), 4.96$ (hept, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{~s}, 4 \mathrm{H}), 1.65(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=154.7\left(\mathrm{C}_{\mathrm{q}}\right), 151.9\left(\mathrm{C}_{\mathrm{q}}\right), 151.8(\mathrm{CH}), 141.7(\mathrm{CH}), 141.5\left(\mathrm{C}_{\mathrm{q}}\right), 138.6\left(\mathrm{C}_{\mathrm{q}}\right)$, $135.8\left(\mathrm{C}_{\mathrm{q}}\right), 131.4\left(\mathrm{C}_{\mathrm{q}}\right.$ and CH$), 129.9(\mathrm{CH}), 128.9(\mathrm{CH}), 128.6(\mathrm{CH}), 127.8(\mathrm{CH}), 47.2(\mathrm{CH}), 41.6\left(\mathrm{CH}_{2}\right)$, $22.6\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2975,1570,1441,1326,1218,790,699,646,582 \mathrm{~cm}^{-1}$.
m.p.: $156-158{ }^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 578 (100) [M] ${ }^{+}$, 536 (17) [M-i-Pr] ${ }^{+}, 493$ (12) [M-i-Pr-i-Pr] ${ }^{+}, 285$ (21), 246 (12), 209 (17), 43 (6).

HR-MS (EI): m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{~N}_{8}{ }^{+}[\mathrm{M}]^{+} 578.2901$, found 578.2900.

9-iso-Propyl-6-[3-(1-phenylethyl)phenyl]-9H-purine (185aa)

The general procedure I was followed using purine 123a (119 mg, 0.50 mmol) and (1-chloroethyl)benzene (142a, $211 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc $3: 1$) yielded 185aa ($149 \mathrm{mg}, 87 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.01(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{dd}, \mathrm{J}=1.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.66$ (ddd, J = 7.7, 1.6, 1.4 Hz, 1H), $8.18(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{dd}, \mathrm{J}=7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.31-$ $7.27(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{hept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.67(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=154.9\left(\mathrm{C}_{\mathrm{q}}\right), 152.0\left(\mathrm{C}_{\mathrm{q}}\right), 151.9(\mathrm{CH}), 146.7\left(\mathrm{C}_{\mathrm{q}}\right), 146.1\left(\mathrm{C}_{\mathrm{q}}\right), 141.8(\mathrm{CH})$, $135.8\left(\mathrm{C}_{\mathrm{q}}\right), 131.5\left(\mathrm{C}_{\mathrm{q}}\right), 130.2(\mathrm{CH}), 128.6(\mathrm{CH}), 128.6(\mathrm{CH}), 128.3(\mathrm{CH}), 127.9(\mathrm{CH}), 127.6(\mathrm{CH}), 125.9$ $(\mathrm{CH}), 47.3(\mathrm{CH}), 45.0(\mathrm{CH}), 22.7\left(\mathrm{CH}_{3}\right), 22.0\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2973,1566,1494,1446,1324,1218,799,700,646,573 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 342 (81) [M] ${ }^{+}, 341$ (63) [M-H] ${ }^{+}, 327$ (34) [M-Me] ${ }^{+}$, 299 (95) [M-$i-\mathrm{Pr}]^{+}, 285$ (100) [$\left.\mathrm{M}-i-\mathrm{Pr}-\mathrm{Me}\right]^{+}, 165$ (14), 142 (8).

HR-MS (EI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}]^{+}$342.1839, found 342.1832.

5.3.4.3 Characterization Data for 187

5,5-Difluoro-10-\{4-[3-(9-iso-propyl-9H-purin-6-yl)benzyl]phenyl\}-1,3,7,9-tetramethyl-5H-

 $4 \lambda^{4}, 5 \lambda^{4}$-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinine (187a)

The general procedure J was followed using purine 123a (23.9 mg , 0.10 mmol) and benzyl chloride 186a ($75 \mathrm{mg}, 0.20 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 7:3) yielded 187a (26.1 mg , 45\%) as an orange solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.00(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{ddd}, J=7.8,1.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{dd}, J=2.0$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $8.18(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=7.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.31$ (ddd, $J=7.7$, $2.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $5.96(\mathrm{~s}, 2 \mathrm{H}), 4.99$ (hept, J = $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~s}, 2 \mathrm{H}), 2.54$ ($s, 6 \mathrm{H}$), 1.68 ($\mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, 6 \mathrm{H}$), $1.39(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=155.1\left(\mathrm{C}_{\mathrm{q}}\right), 154.6\left(\mathrm{C}_{\mathrm{q}}\right), 152.0\left(\mathrm{C}_{\mathrm{q}}\right), 151.9(\mathrm{CH}), 143.1\left(\mathrm{C}_{\mathrm{q}}\right), 141.8\left(\mathrm{C}_{\mathrm{q}}\right.$ and $C H$), $141.8\left(\mathrm{C}_{q}\right), 141.0\left(\mathrm{C}_{q}\right), 136.0\left(\mathrm{C}_{\mathrm{q}}\right), 132.7\left(\mathrm{C}_{q}\right), 131.4\left(\mathrm{C}_{q}\right), 131.2(\mathrm{CH}), 129.8(\mathrm{CH}), 129.7(\mathrm{CH})$, $128.8(\mathrm{CH}), 128.1(\mathrm{CH}), 128.0(\mathrm{CH}), 121.0(\mathrm{CH}), 47.3(\mathrm{CH}), 41.7\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{3}\right), 14.6\left(\mathrm{CH}_{3}\right), 14.5$ $\left(\mathrm{CH}_{3}\right)$.
${ }^{11}$ B-NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.8\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{B}-\mathrm{F}}=33.1 \mathrm{~Hz}\right)$.
${ }^{19}$ F-NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-146.3\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{F}-\mathrm{B}}=33.1 \mathrm{~Hz}\right)$.

IR (ATR): $\tilde{v}=2925,1542,1508,1306,1191,1155,976,731,703,647 \mathrm{~cm}^{-1}$.
m.p.: $170-172{ }^{\circ} \mathrm{C}$ (decomp.).

MS (ESI) m / z (relative intensity): 1150 (5) $\left[2 \mathrm{M}+\mathrm{H}^{+}, 597(4)[\mathrm{M}+\mathrm{Na}]^{+}, 575\right.$ (100) $[\mathrm{M}+\mathrm{H}]^{+}, 177$ (6), 117 (19).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{BF}_{2} \mathrm{~N}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 575.2906$, found 575.2903.

UV-Vis: $\boldsymbol{\lambda}_{\text {max }}\left(1.0 \mathrm{mg} / \mathrm{L}\right.$ in $\left.\mathrm{CHCl}_{3}\right)=502 \mathrm{~nm}$.
$E_{m}: \boldsymbol{\lambda}_{\text {max }}\left(1.0 \mathrm{mg} / \mathrm{L}\right.$ in $\left.\mathrm{CHCl}_{3}\right)=514 \mathrm{~nm}$.
\{(3aR,4R,6R,6aR)-6-\{6-\{3-[4-(5,5-Difluoro-1,3,7,9-tetramethyl-5H-4 $\lambda^{4}, 5 \lambda^{4}$-dipyrrolo[1,2-c:2', $\mathbf{1}^{\prime}-$ $f][1,3,2]$ diazaborinin-10-yl)benzyl]phenyl\}-9H-purin-9-yl\}-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl\}methyl diethyl phosphate (187b)

The general procedure J was followed using purine 1231 ($50.5 \mathrm{mg}, 0.10 \mathrm{mmol}$) and benzyl chloride 186a $(75 \mathrm{mg}, 0.20 \mathrm{mmol})$. After 20 h , purification by column chromatography (n-hexane/EtOAc 3:7) yielded 187b (12.9 mg, 15\%) as an orange solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.01(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.50$ (dd, J=7.8, 7.8 Hz, 1H), $7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.27$ $(\mathrm{d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~s}, 2 \mathrm{H}), 5.45(\mathrm{dd}, J=6.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=6.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-$ $4.51(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{ddd}, J=10.8,6.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{~s}, 2 \mathrm{H}), 4.13-3.98(\mathrm{~m}$, $4 \mathrm{H}), 2.54(\mathrm{~s}, 6 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 6 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=155.3\left(\mathrm{C}_{\mathrm{q}}\right), 155.1\left(\mathrm{C}_{\mathrm{q}}\right), 152.5(\mathrm{CH}), 151.7\left(\mathrm{C}_{\mathrm{q}}\right), 143.2(\mathrm{CH}), 143.1\left(\mathrm{C}_{\mathrm{q}}\right)$, $141.8\left(C_{q}\right), 141.8\left(C_{q}\right), 141.2\left(C_{q}\right), 135.7\left(C_{q}\right), 132.8\left(C_{q}\right), 131.7\left(C_{q}\right), 131.6(C H), 131.5\left(C_{q}\right), 129.9$
$(\mathrm{CH}), 129.8(\mathrm{CH}), 128.9(\mathrm{CH}), 128.3(\mathrm{CH}), 128.1(\mathrm{CH}), 121.1(\mathrm{CH}), 114.8\left(\mathrm{C}_{\mathrm{q}}\right), 91.1(\mathrm{CH}), 85.2(\mathrm{~d}$, $\left.{ }^{3} J_{C-p}=8 \mathrm{~Hz}, \mathrm{CH}\right), 84.2(\mathrm{CH}), 81.3(\mathrm{CH}), 66.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{p}}=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 64.1\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 64.1(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{C}-\mathrm{p}}=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 41.6\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{3}\right), 25.3\left(\mathrm{CH}_{3}\right), 16.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 16.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=7 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{3}\right), 14.6\left(\mathrm{t},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 14.4\left(\mathrm{CH}_{3}\right)$.
${ }^{11}$ B-NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.8\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{B}-\mathrm{F}}=33.0 \mathrm{~Hz}\right)$.
${ }^{19} \mathrm{~F}$-NMR (376 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=-146.3\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{F}-\mathrm{B}}=33.0 \mathrm{~Hz}\right)$.
${ }^{31}$ P-NMR (162 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=(-0.8)-(-1.2)(\mathrm{m})$.

IR (ATR): $\tilde{v}=2927,1543,1509,1306,1192,1155,1020,972,752,643 \mathrm{~cm}^{-1}$.

MS (ESI) m/z (relative intensity): 863 (100) [M+Na] ${ }^{+}, 841(13)[\mathrm{M}+\mathrm{H}]^{+}, 821(16)[\mathrm{M}-\mathrm{F}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{48} \mathrm{BF}_{2} \mathrm{~N}_{6} \mathrm{O}_{7} \mathrm{PNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 863.3283$, found 863.3273.

UV-Vis: $\boldsymbol{\lambda}_{\max }\left(1.0 \mathrm{mg} / \mathrm{L}\right.$ in $\left.\mathrm{CHCl}_{3}\right)=502 \mathrm{~nm}$.
$\mathbf{E}_{\mathrm{m}}: \boldsymbol{\lambda}_{\text {max }}\left(1.0 \mathrm{mg} / \mathrm{L}\right.$ in $\left.\mathrm{CHCl}_{3}\right)=514 \mathrm{~nm}$.

Methyl \{4-[3-(9-iso-propyl-9H-purin-6-yl)benzyl]benzoyl\}-L-isoleucinate (187c)

The general procedure J was followed using purine 123a (59.6 mg , 0.25 mmol) and benzyl chloride 186b ($149 \mathrm{mg}, 0.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 1:1) yielded 187c ($92.4 \mathrm{mg}, 74 \%$) as a viscous colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.00(\mathrm{~s}, 1 \mathrm{H}), 8.68$ (ddd, $\left.\mathrm{J}=7.8,1.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.60(\mathrm{dd}, \mathrm{J}=1.8$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48$ (dd, J=7.8, 7.7 Hz, 1H), $7.32(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$, $2 H), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.61(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.97$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{dd}, \mathrm{J}=8.5,4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.58-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.31-$ $1.13(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.4\left(\mathrm{C}_{\mathrm{q}}\right), 166.8\left(\mathrm{C}_{\mathrm{q}}\right), 154.5\left(\mathrm{C}_{\mathrm{q}}\right), 152.0\left(\mathrm{C}_{\mathrm{q}}\right), 151.9(\mathrm{CH}), 145.0\left(\mathrm{C}_{\mathrm{q}}\right)$, 141.9 (CH), $140.5\left(C_{q}\right), 136.0\left(C_{q}\right), 131.9\left(C_{q}\right), 131.4\left(C_{q}\right), 131.4(C H), 129.9(C H), 129.1(C H), 128.8$ $(\mathrm{CH}), 128.1(\mathrm{CH}), 127.2(\mathrm{CH}), 56.7(\mathrm{CH}), 52.1\left(\mathrm{CH}_{3}\right), 47.3(\mathrm{CH}), 41.9\left(\mathrm{CH}_{2}\right), 38.3(\mathrm{CH}), 25.4\left(\mathrm{CH}_{2}\right), 22.6$ $\left(\mathrm{CH}_{3}\right), 15.5\left(\mathrm{CH}_{3}\right), 11.7\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3311,2966,1737,1646,1569,1496,1326,1218,733,647 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 499 (9) [M] ${ }^{+}, 440$ (53) [M-CO2Me] ${ }^{+}, 355$ (100) [M-(H-Leu-OMe)] ${ }^{+}$, 328 (19), 285 (32), 156 (12).

HR-MS (EI): m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{3}{ }^{+}[\mathrm{M}]^{+} 499.2578$, found 499.2586.

Methyl \{4-\{3-\{9-\{(3aR,4R,6R,6aR)-6-\{[(diethoxyphosphoryl)oxy]methyl\}-2,2-dimethyltetrahydro-furo[3,4-d][1,3]dioxol-4-yl\}-9H-purin-6-yl\}benzyl\}benzoyl\}-L-valinate (187d)

The general procedure J was followed using purine 1231 (126 mg, 0.25 mmol) and benzyl chloride $\mathrm{s}-186 \mathrm{c}$ ($142 \mathrm{mg}, 0.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 1:3) yielded 187 d ($110 \mathrm{mg}, 59 \%$) as a viscous colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.02(\mathrm{~s}, 1 \mathrm{H}), 8.68$ (ddd, $\mathrm{J}=7.8,1.6$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.60 (dd, $J=1.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.29 (s, 1H), $7.74(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{dd}, \mathrm{J}=7.8$, $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{ddd}, J=7.7,1.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.26$ (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45$ (dd, $J=6.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.13 (dd, $J=6.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.76$ (dd, $J=8.7$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.53 (dddd, $J=4.9,4.5,3.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.29$ (ddd, $J=11.0,6.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21$ (ddd, $J=11.0,6.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 2 \mathrm{H}), 4.10-4.00(\mathrm{~m}, 4 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{pd}, \mathrm{J}=6.9,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.65(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{td}, \mathrm{J}=7.1,1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{td}, \mathrm{J}=7.1,1.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, \mathrm{~J}=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.5\left(\mathrm{C}_{\mathrm{q}}\right)$, $166.9\left(\mathrm{C}_{\mathrm{q}}\right), 155.0\left(\mathrm{C}_{\mathrm{q}}\right), 152.4(\mathrm{CH}), 151.6\left(\mathrm{C}_{\mathrm{q}}\right), 144.9\left(\mathrm{C}_{\mathrm{q}}\right)$, $143.1(\mathrm{CH}), 140.7\left(\mathrm{C}_{\mathrm{q}}\right), 135.7\left(\mathrm{C}_{\mathrm{q}}\right), 132.0\left(\mathrm{C}_{\mathrm{q}}\right), 131.6\left(\mathrm{C}_{\mathrm{q}}\right.$ and CH$), 130.0(\mathrm{CH}), 129.1(\mathrm{CH}), 128.9(\mathrm{CH})$, 128.2 (CH), $127.3(\mathrm{CH}), 114.7\left(\mathrm{C}_{q}\right), 91.1(\mathrm{CH}), 85.3\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=8 \mathrm{~Hz}, \mathrm{CH}\right), 84.2(\mathrm{CH}), 81.4(\mathrm{CH}), 66.6(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{C}-\mathrm{p}}=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 64.0\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 63.9\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 57.4(\mathrm{CH}), 52.2\left(\mathrm{CH}_{3}\right), 41.9$ $\left(\mathrm{CH}_{2}\right), 31.7(\mathrm{CH}), 27.3\left(\mathrm{CH}_{3}\right), 25.4\left(\mathrm{CH}_{3}\right), 19.1\left(\mathrm{CH}_{3}\right), 18.0\left(\mathrm{CH}_{3}\right), 16.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$.
${ }^{31}{ }^{1}\left\{{ }^{1} \mathrm{H}\right.$ \}-NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-1.1(\mathrm{~s})$.
IR (ATR): $\tilde{v}=3327,2981,1739,1648,1569,1498,1260,1209,1020,733 \mathrm{~cm}^{-1}$.
MS (ESI) m / z (relative intensity): 774 (33) $[\mathrm{M}+\mathrm{Na}]^{+}, 752(100)[\mathrm{M}+\mathrm{H}]^{+}$.
HR-MS (ESI): m / z calcd for $\mathrm{C}_{3} 7 \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{10} \mathrm{P}^{+}[\mathrm{M}+\mathrm{H}]^{+} 752.3055$, found 752.3055 .

Methyl \{4-[3-(9-iso-propyl-9H-purin-6-yl)benzyl]benzoyl\}-L-valinate (s-187e)

The general procedure J was followed using purine 123a (59.6 mg , 0.25 mmol) and benzyl chloride $\mathrm{s}-\mathbf{1 8 6 c}$ ($142 \mathrm{mg}, 0.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 1:1) yielded s-187e ($85.3 \mathrm{mg}, 70 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.00(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{ddd}, \mathrm{J}=7.8,1.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{dd}, \mathrm{J}=1.8$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{dd}, J=7.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, $2 H$), 7.30 (ddd, $J=7.7,1.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.57 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.98 (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.76 (dd, $J=8.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{heptd}, J=6.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $6 \mathrm{H}), 0.99$ (d, J = 6.9 Hz, 3H), 0.96 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.5\left(\mathrm{C}_{\mathrm{q}}\right), 167.0\left(\mathrm{C}_{\mathrm{q}}\right), 154.5\left(\mathrm{C}_{\mathrm{q}}\right), 152.0\left(\mathrm{C}_{\mathrm{q}}\right), 151.9(\mathrm{CH}), 145.0\left(\mathrm{C}_{\mathrm{q}}\right)$, 141.9 (CH), $140.6\left(C_{q}\right), 136.1\left(C_{q}\right), 132.0\left(C_{q}\right), 131.4\left(C_{q}\right), 131.4(C H), 129.9(C H), 129.1(C H), 128.9$ $(\mathrm{CH}), 128.1(\mathrm{CH}), 127.2(\mathrm{CH}), 57.4(\mathrm{CH}), 52.2\left(\mathrm{CH}_{3}\right), 47.3(\mathrm{CH}), 41.9\left(\mathrm{CH}_{2}\right), 31.7(\mathrm{CH}), 22.6\left(\mathrm{CH}_{3}\right), 19.1$ $\left(\mathrm{CH}_{3}\right), 18.0\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3321,2965,1737,1644,1568,1495,1325,1214,783,646 \mathrm{~cm}^{-1}$.
m.p.: $62-64{ }^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 485 (14) $[\mathrm{M}]^{+}, 453$ (8) $\left[\mathrm{M}-\mathrm{OMe}^{+}, 426\right.$ (49) $\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 355$ (100) [M-(H-Val-OMe)] ${ }^{+}, 328$ (23), 285 (34), 165 (7), 156 (13), 142 (8), 43 (16).

HR-MS (EI): m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{3}{ }^{+}[\mathrm{M}]^{+} 485.2421$, found 485.2409.

Methyl \{4-[3-(9-iso-propyl-9H-purin-6-yl)benzyl]benzoyl\}-D-valinate (R-187e)

colorless oil.

The general procedure J was followed using purine 123a (59.6 mg , 0.25 mmol) and benzyl chloride R - $\mathbf{1 8 6 c}$ ($142 \mathrm{mg}, 0.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 1:1) yielded R-187e ($92.9 \mathrm{mg}, 77 \%$) as a viscous
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.01(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{ddd}, \mathrm{J}=7.8,1.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{dd}, \mathrm{J}=1.7$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{dd}, J=7.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 2 H), 7.30 (ddd, $J=7.7,1.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $6.57(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.98 (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.76 (dd,
$J=8.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{pd}, J=6.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$, $0.99(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.5\left(\mathrm{C}_{\mathrm{q}}\right), 167.0\left(\mathrm{C}_{\mathrm{q}}\right), 154.5\left(\mathrm{C}_{\mathrm{q}}\right), 152.0\left(\mathrm{C}_{\mathrm{q}}\right), 151.9(\mathrm{CH}), 145.0\left(\mathrm{C}_{\mathrm{q}}\right)$, $141.9(\mathrm{CH}), 140.6\left(\mathrm{C}_{\mathrm{q}}\right), 136.1\left(\mathrm{C}_{\mathrm{q}}\right), 132.0\left(\mathrm{C}_{\mathrm{q}}\right), 131.5\left(\mathrm{C}_{\mathrm{q}}\right), 131.4(\mathrm{CH}), 129.9(\mathrm{CH}), 129.2(\mathrm{CH}), 128.9$ $(\mathrm{CH}), 128.1(\mathrm{CH}), 127.2(\mathrm{CH}), 57.4(\mathrm{CH}), 52.2\left(\mathrm{CH}_{3}\right), 47.3(\mathrm{CH}), 41.9\left(\mathrm{CH}_{2}\right), 31.7(\mathrm{CH}), 22.7\left(\mathrm{CH}_{3}\right), 19.1$ $\left(\mathrm{CH}_{3}\right), 18.0\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3319,2966,1736,1644,1568,1495,1325,1213,703,646 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 485 (10) $[\mathrm{M}]^{+}, 426(46)\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}^{+}, 355(100)[\mathrm{M}-(\mathrm{H}-\mathrm{Val}-\mathrm{OMe})]^{+}\right.$, 328 (15), 285 (31), 156 (14).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{5} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 486.2500$, found 486.2497.

Methyl \{4-[3-(9-iso-propyl-9H-purin-6-yl)benzyl]benzoyl\}-L-serinate (s-187f)

The general procedure J was followed using purine 123a (59.6 mg , 0.25 mmol) and benzyl chloride s -186d ($136 \mathrm{mg}, 0.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 1:9) yielded s - 187 f ($59.1 \mathrm{mg}, 50 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.99(\mathrm{~s}, 1 \mathrm{H}), 8.64(\mathrm{ddd}, J=7.8,1.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{dd}, \mathrm{J}=1.7$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{dd}, J=7.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H})$, $7.28(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{hept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.81$ (ddd, $J=7.3,3.7$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}), 4.02(\mathrm{dd}, J=11.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=11.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, 3.18 (br s, 1H), 1.66 (d, J = 6.8 Hz, 6H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.0\left(\mathrm{C}_{\mathrm{q}}\right), 167.5\left(\mathrm{C}_{\mathrm{q}}\right), 154.6\left(\mathrm{C}_{\mathrm{q}}\right), 152.1\left(\mathrm{C}_{\mathrm{q}}\right), 152.0(\mathrm{CH}), 145.3\left(\mathrm{C}_{\mathrm{q}}\right)$, $142.1(\mathrm{CH}), 140.6\left(\mathrm{C}_{\mathrm{q}}\right), 136.0\left(\mathrm{C}_{\mathrm{q}}\right), 131.5(\mathrm{CH}), 131.4\left(\mathrm{C}_{q}\right), 131.3\left(\mathrm{C}_{\mathrm{q}}\right), 130.0(\mathrm{CH}), 129.2(\mathrm{CH}), 129.0$ $(\mathrm{CH}), 128.2(\mathrm{CH}), 127.4(\mathrm{CH}), 63.4\left(\mathrm{CH}_{2}\right), 55.1(\mathrm{CH}), 52.8\left(\mathrm{CH}_{3}\right), 47.3(\mathrm{CH}), 41.8\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3355,2980,1741,1644,1569,1497,1326,1219,703,647 \mathrm{~cm}^{-1}$.
MS (EI) m / z (relative intensity): 473 (7) $[\mathrm{M}]^{+}, 472$ (5) $[\mathrm{M}-\mathrm{H}]^{+}, 455$ (5) $\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 443$ (32) [M$\mathrm{CHOH}^{+}, 414$ (8) $\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}^{+}, 400\right.$ (13), 372 (12), 355 (100) [M-(H-Ser-OMe)] ${ }^{+}, 328$ (23), 285 (41), 165 (10), 156 (20), 142 (13).

HR-MS (EI): m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{4}{ }^{+}[\mathrm{M}]^{+} 473.2058$, found 473.2079.

Methyl \{4-[3-(9-iso-propyl-9H-purin-6-yl)benzyl]benzoyl\}-D/L-serinate (rac-187f)

The general procedure J was followed using purine 123a (59.6 mg , 0.25 mmol) and benzyl chloride rac-186d ($136 \mathrm{mg}, 0.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 1:9) yielded rac-187f ($65.5 \mathrm{mg}, 55 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.99(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{ddd}, \mathrm{J}=7.8,1.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{dd}, \mathrm{J}=1.6$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{dd}, J=7.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H})$, 7.29 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.09 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.97 (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.83 (ddd, $J=7.2,3.7$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 4.03(\mathrm{dd}, J=11.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=11.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, 3.01 (br s, 1H), 1.66 (d, J = 6.8 Hz, 6H).
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.9\left(\mathrm{C}_{\mathrm{q}}\right), 167.3\left(\mathrm{C}_{\mathrm{q}}\right), 154.5\left(\mathrm{C}_{\mathrm{q}}\right), 152.0\left(\mathrm{C}_{\mathrm{q}}\right), 151.9(\mathrm{CH}), 145.3\left(\mathrm{C}_{\mathrm{q}}\right)$, $142.0(\mathrm{CH}), 140.5\left(\mathrm{C}_{q}\right), 136.0\left(\mathrm{C}_{q}\right), 131.4\left(\mathrm{C}_{q}\right.$ and CH$), 131.3\left(\mathrm{C}_{q}\right), 129.9(\mathrm{CH}), 129.1(\mathrm{CH}), 128.9(\mathrm{CH})$, $128.1(\mathrm{CH}), 127.3(\mathrm{CH}), 63.5\left(\mathrm{CH}_{2}\right), 55.2(\mathrm{CH}), 52.8\left(\mathrm{CH}_{3}\right), 47.3(\mathrm{CH}), 41.9\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3333,2976,1739,1643,1569,1496,1326,1218,703,646 \mathrm{~cm}^{-1}$.
m.p.: $73-75^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 473 (4) $[\mathrm{M}]^{+}, 472$ (3) $[\mathrm{M}-\mathrm{H}]^{+}, 455$ (11) $\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 443$ (29) [M$\mathrm{CHOH}]^{+}, 414$ (5) [$\left.\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 400$ (9), 372 (7), 355 (100) [M-(H-Ser-OMe)] ${ }^{+}, 328$ (16), 311 (14), 285 (38), 165 (9), 156 (20), 142 (13).

HR-MS (EI): m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{4}{ }^{+}[\mathrm{M}]^{+} 473.2058$, found 473.2055.

Methyl \quad-\{4-[3-(9-iso-propyl-9H-purin-6-yl)benzyl]benzoyl\}-S-(4-methylbenzyl)-L-cysteinate (187g)

The general procedure J was followed using purine 123a ($59.6 \mathrm{mg}, 0.25 \mathrm{mmol}$) and benzyl chloride 186e (196 mg, 0.50 mmol). After 20 h , purification by column chromatography (n-hexane/EtOAc $1: 1$) yielded 187 g ($117 \mathrm{mg}, 79 \%$) as a viscous colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.01(\mathrm{~s}, 1 \mathrm{H}), 8.69(\mathrm{ddd}, \mathrm{J}=7.8,1.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{dd}, \mathrm{J}=1.9$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{dd}, J=7.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.3 \mathrm{~Hz}$,
$2 H), 7.30(\mathrm{ddd}, J=7.7,1.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.98$ (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.98$ (ddd, $J=7.5,5.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, $3.67\left(\mathrm{~d}_{\mathrm{AB}}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.66\left(\mathrm{~d}_{\mathrm{AB}}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.01\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, J=13.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.96\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, J\right.$ $=13.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.2\left(\mathrm{C}_{\mathrm{q}}\right), 166.7\left(\mathrm{C}_{\mathrm{q}}\right), 154.5\left(\mathrm{C}_{\mathrm{q}}\right), 152.0\left(\mathrm{C}_{\mathrm{q}}\right), 151.9(\mathrm{CH}), 145.2\left(\mathrm{C}_{\mathrm{q}}\right)$, $141.9(\mathrm{CH}), 140.5\left(\mathrm{C}_{\mathrm{q}}\right), 136.8\left(\mathrm{C}_{\mathrm{q}}\right), 136.1\left(\mathrm{C}_{\mathrm{q}}\right), 134.4\left(\mathrm{C}_{\mathrm{q}}\right), 131.4\left(\mathrm{C}_{\mathrm{q}}\right), 131.4(\mathrm{CH}), 129.9(\mathrm{CH}), 129.2$ $(\mathrm{CH}), 129.1(\mathrm{CH}), 128.8(\mathrm{CH}), 128.6(\mathrm{CH}), 128.1(\mathrm{CH}), 127.3(\mathrm{CH}), 52.7\left(\mathrm{CH}_{3}\right), 52.0(\mathrm{CH}), 47.3(\mathrm{CH})$, $41.9\left(\mathrm{CH}_{2}\right), 36.5\left(\mathrm{CH}_{2}\right), 33.5\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3329,2979,1741,1650,1569,1494,1325,1216,731,647 \mathrm{~cm}^{-1}$.
MS (ESI) m / z (relative intensity): 1209 (16) [2M+Na] ${ }^{+}, 1187$ (9) [2M+H $]^{+}, 616(100)[\mathrm{M}+\mathrm{Na}]^{+}, 594$ (47) $[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 616.2353$, found 616.2372.

Methyl \{4-[3-(9-iso-propyl-9H-purin-6-yl)benzyl]benzoyl\}-L-tryptophanate (187h)

The general procedure J was followed using purine 123a ($59.6 \mathrm{mg}, \quad 0.25 \mathrm{mmol}$) and benzyl chloride 186 f (186 mg , 0.50 mmol). After 20 h , purification by column chromatography (n-hexane/EtOAc 1:2) yielded $\mathbf{1 8 7 h}$ ($96.5 \mathrm{mg}, 67 \%$) as a viscous
colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.01(\mathrm{~s}, 1 \mathrm{H}), 8.67(\mathrm{ddd}, \mathrm{J}=7.8,1.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{dd}, \mathrm{J}=1.8$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{dd}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$ (dd, J = 7.8, 7.7 Hz, 1H), $7.32(\mathrm{~d}, J=8.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.16$ (ddd, J = 8.2, 7.0, 1.1 Hz, 1H), 7.06 (ddd, J = 7.9, 7.0, 1.0 Hz, 1H), $6.97(d, J=2.4 H z, 1 H), 6.63(d, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dt}, J=7.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{hept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.42$ (d, J=5.3 Hz, 2H), $1.67(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.2\left(\mathrm{C}_{\mathrm{q}}\right), 166.6\left(\mathrm{C}_{\mathrm{q}}\right), 154.5\left(\mathrm{C}_{\mathrm{q}}\right), 152.0\left(\mathrm{C}_{\mathrm{q}}\right), 151.8(\mathrm{CH}), 144.9\left(\mathrm{C}_{\mathrm{q}}\right)$, $142.0(\mathrm{CH}), 140.6\left(\mathrm{C}_{\mathrm{q}}\right), 136.0\left(\mathrm{C}_{q}\right), 135.9\left(\mathrm{C}_{\mathrm{q}}\right), 131.7\left(\mathrm{C}_{\mathrm{q}}\right), 131.4(\mathrm{CH}), 131.4\left(\mathrm{C}_{q}\right), 129.9(\mathrm{CH}), 129.1$ (CH), $128.9(\mathrm{CH}), 128.1(\mathrm{CH}), 127.5\left(\mathrm{C}_{\mathrm{q}}\right), 127.2(\mathrm{CH}), 122.7(\mathrm{CH}), 122.2(\mathrm{CH}), 119.6(\mathrm{CH}), 118.6(\mathrm{CH})$, $111.2(\mathrm{CH}), 110.0\left(\mathrm{C}_{\mathrm{q}}\right), 53.4(\mathrm{CH}), 52.4\left(\mathrm{CH}_{3}\right), 47.3(\mathrm{CH}), 41.8\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3300,2980,1737,1644,1570,1495,1327,1218,736,647 \mathrm{~cm}^{-1}$.

MS (ESI) m / z (relative intensity): 1168 (5) $[2 \mathrm{M}+\mathrm{Na}]^{+}, 1145$ (19) $[2 \mathrm{M}+\mathrm{H}]^{+}, 595$ (10) $[\mathrm{M}+\mathrm{Na}]^{+}, 573$ (100) $[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{~N}_{6} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$573.2609, found 573.2608.

Methyl \{4-[3-(9-iso-propyl-9H-purin-6-yl)benzyl]benzoyl\}-L-tyrosinate (187i)

The general procedure J was followed using purine 123a ($59.6 \mathrm{mg}, 0.25 \mathrm{mmol}$) and benzyl chloride 186 g (174 mg , 0.50 mmol). After 20 h , purification by column chromatography (n-hexane/EtOAc 1:2) yielded 187i (72.2 mg , 53\%) as a viscous colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.01(\mathrm{~s}, 1 \mathrm{H}), 8.62$ (ddd, $\left.\mathrm{J}=7.8,1.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.53$ (dd, $J=1.8$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{dd}, J=7.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H})$, 7.23 (d, J = $8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $6.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.69(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dt}, J=7.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{hept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.16$ (dd, J = 14.0, 5.6 Hz, 1H), 3.09 (dd, J = 14.0, $5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.66 (d, J = 6.8 Hz, 6H).
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.0\left(\mathrm{C}_{\mathrm{q}}\right), 166.8\left(\mathrm{C}_{\mathrm{q}}\right), 155.3\left(\mathrm{C}_{\mathrm{q}}\right), 154.7\left(\mathrm{C}_{\mathrm{q}}\right), 152.0\left(\mathrm{C}_{\mathrm{q}}\right), 151.9(\mathrm{CH})$, $145.1\left(\mathrm{C}_{\mathrm{q}}\right), 142.1(\mathrm{CH}), 140.6\left(\mathrm{C}_{\mathrm{q}}\right), 135.8\left(\mathrm{C}_{q}\right), 131.6\left(\mathrm{C}_{\mathrm{q}}\right), 131.5(\mathrm{CH}), 131.3\left(\mathrm{C}_{q}\right), 130.3(\mathrm{CH}), 130.0$ $(\mathrm{CH}), 129.1(\mathrm{CH}), 128.9(\mathrm{CH}), 128.1(\mathrm{CH}), 127.2(\mathrm{CH}), 127.1\left(\mathrm{C}_{\mathrm{q}}\right), 115.6(\mathrm{CH}), 53.7(\mathrm{CH}), 52.4\left(\mathrm{CH}_{3}\right)$, $47.4(\mathrm{CH}), 41.8\left(\mathrm{CH}_{2}\right), 37.1\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3269,2978,1736,1639,1569,1326,1217,784,703,646 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 549 (3) [M] ${ }^{+}, 490$ (5) [$\left.\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 443$ (100) [M-(4-OHBn)] ${ }^{+}, 400$ (40) [M-(4-OHBn)-iPr] ${ }^{+}, 372$ (24), 355 (58) [M-(H-Tyr-OMe)] ${ }^{+}, 328$ (37), 313 (18), 285 (45), 178 (8), 147 (7), 107 (19), 43 (8).

HR-MS (EI): m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{4}{ }^{+}[\mathrm{M}]^{+}$549.2371, found 549.2387.

Methyl \{4-[3-(9-iso-propyl-9H-purin-6-yl)benzyl]benzoyl\}-L-prolyl-L-leucinate (187j)

The general procedure \mathbf{J} was followed using purine 123a ($59.6 \mathrm{mg}, 0.25 \mathrm{mmol}$) and benzyl chloride 186 h (198 mg , 0.50 mmol). After 20 h , purification by column chromatography (n-hexane/EtOAc 1:4) yielded 187j ($107 \mathrm{mg}, 72 \%$) as a viscous colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.99(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.48$ (dd, J = 7.8, 7.8 Hz, 1H), $7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.98 (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{dd}, J=7.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.54$ (ddd, $J=8.0,7.8$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.54-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.42(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.38(\mathrm{~m}, 1 \mathrm{H})$, $2.06-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.67-1.53(\mathrm{~m}, 3 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}$, $3 \mathrm{H}), 0.87(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.0\left(\mathrm{C}_{\mathrm{q}}\right), 170.9\left(\mathrm{C}_{\mathrm{q}}\right), 170.7\left(\mathrm{C}_{\mathrm{q}}\right), 154.5\left(\mathrm{C}_{\mathrm{q}}\right), 152.0\left(\mathrm{C}_{\mathrm{q}}\right), 151.9(\mathrm{CH})$, $143.4\left(\mathrm{C}_{\mathrm{q}}\right), 141.9(\mathrm{CH}), 140.6\left(\mathrm{C}_{\mathrm{q}}\right), 136.0\left(\mathrm{C}_{\mathrm{q}}\right), 133.9\left(\mathrm{C}_{\mathrm{q}}\right), 131.4\left(\mathrm{C}_{\mathrm{q}}\right.$ and CH$), 129.9(\mathrm{CH}), 128.8(\mathrm{CH})$, $128.8(\mathrm{CH}), 128.1(\mathrm{CH}), 127.2(\mathrm{CH}), 59.6(\mathrm{CH}), 52.2\left(\mathrm{CH}_{3}\right), 51.1(\mathrm{CH}), 50.4\left(\mathrm{CH}_{2}\right), 47.3(\mathrm{CH}), 41.9$ $\left(\mathrm{CH}_{2}\right), 41.2\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 25.0(\mathrm{CH}), 22.8\left(\mathrm{CH}_{3}\right), 22.6\left(\mathrm{CH}_{3}\right), 21.9\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3282,2957,1743,1681,1614,1570,1428,1327,1221,648 \mathrm{~cm}^{-1}$.
MS (EI) m / z (relative intensity): 596 (5) [M] ${ }^{+}, 424$ (30) [M-(C(O)-Leu-OMe)] ${ }^{+}, 355$ (100) [M-(H-Pro-Leu-OMe)] ${ }^{+}, 328$ (11), 285 (18), 156 (9), 43 (6).

HR-MS (EI): m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{4}{ }^{+}[\mathrm{M}]^{+} 596.3106$, found 596.3124.

Methyl \{4-[3-(9-iso-propyl-9H-purin-6-yl)benzyl]benzoyl\}-L-leucyl-L-methioninate (187k)

The general procedure J was followed using purine 123a ($59.6 \mathrm{mg}, 0.25 \mathrm{mmol}$) and benzyl chloride $\mathbf{1 8 6 i}$ (215 mg , 0.50 mmol . After 20 h , purification by column chromatography (n-hexane/EtOAc 1:2) yielded 187k ($117 \mathrm{mg}, 74 \%$) as a viscous colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.00(\mathrm{~s}, 1 \mathrm{H}), 8.68$ (ddd, $\left.J=7.8,1.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.59$ (dd, $J=1.9$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{dd}, J=7.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 H$), 7.28 (ddd, $J=7.7,1.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.98$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.66(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.17-2.09(\mathrm{~m}$,
$1 \mathrm{H}), 2.02-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.61(\mathrm{~m}, 3 \mathrm{H}), 1.67(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.95(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}$, $3 H), 0.95(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.9\left(\mathrm{C}_{\mathrm{q}}\right), 171.7\left(\mathrm{C}_{\mathrm{q}}\right), 167.1\left(\mathrm{C}_{\mathrm{q}}\right), 154.4\left(\mathrm{C}_{\mathrm{q}}\right), 152.0\left(\mathrm{C}_{\mathrm{q}}\right), 151.8(\mathrm{CH})$, $145.2\left(C_{q}\right), 142.0(C H), 140.5\left(C_{q}\right), 135.9\left(C_{q}\right), 131.5\left(C_{q}\right), 131.4\left(C_{q}\right.$ and $\left.C H\right), 129.9(C H), 129.2(C H)$, $128.9(\mathrm{CH}), 128.1(\mathrm{CH}), 127.2(\mathrm{CH}), 52.5\left(\mathrm{CH}_{3}\right), 52.0(\mathrm{CH}), 51.6(\mathrm{CH}), 47.3(\mathrm{CH}), 41.9\left(\mathrm{CH}_{2}\right), 41.1$ $\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right), 24.9(\mathrm{CH}), 22.9\left(\mathrm{CH}_{3}\right), 22.6\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right), 15.5\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3272,2954,1742,1632,1568,1325,1218,784,703,646 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 630 (1) $[\mathrm{M}]^{+}, 615$ (1) $[\mathrm{M}-\mathrm{Me}]^{+}, 569$ (6) $\left[\mathrm{M}-\mathrm{SMe}_{2}\right]^{+}, 556$ (33) [MEtSMe] ${ }^{+}$, 500 (32) [M-EtSMe-Bu] ${ }^{+}, 468$ (11) [M-EtSMe-Bu-OMe] ${ }^{+}, 440$ (20) [M-EtSMe-Bu$\left.\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 355$ (100) [M-(H-Leu-Met-OMe)] ${ }^{+}, 328$ (17), 313 (7), 285 (30), 156 (10), 43 (8).

HR-MS (EI): m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}]^{+}$630.2983, found 630.2984 .
(R)-3-\{\{4-[3-(9-iso-Propyl-9H-purin-6-yl)benzyl]benzoyl\}oxy\}propane-1,2-diyl
didodecanoate (R-187I)

The general procedure J was followed using purine 123a (59.6 mg , 0.25 mmol) and benzyl chloride R - 186j ($305 \mathrm{mg}, 0.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 4:1) yielded R-187l (153 $\mathrm{mg}, 75 \%$) as a yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.01(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{ddd}, \mathrm{J}=7.8,1.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{dd}, \mathrm{J}=1.8$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{dd}, J=7.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, 2H), $7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 5.40$ (dddd, $J=6.0,5.9,4.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.98 (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.49 $\left(\mathrm{d}_{\mathrm{AB}} \mathrm{d}, J=11.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.39\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, J=11.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.37(\mathrm{dd}, J=11.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}$, $J=11.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 2 \mathrm{H}), 2.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.68(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $6 \mathrm{H}), 1.64-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.33-1.17(\mathrm{~m}, 32 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.3\left(\mathrm{C}_{\mathrm{q}}\right), 172.9\left(\mathrm{C}_{\mathrm{q}}\right), 165.9\left(\mathrm{C}_{\mathrm{q}}\right), 154.6\left(\mathrm{C}_{\mathrm{q}}\right), 152.1\left(\mathrm{C}_{\mathrm{q}}\right), 152.0(\mathrm{CH})$, $146.9\left(\mathrm{C}_{\mathrm{q}}\right), 142.0(\mathrm{CH}), 140.4\left(\mathrm{C}_{\mathrm{q}}\right), 136.2\left(\mathrm{C}_{\mathrm{q}}\right), 131.5\left(\mathrm{C}_{\mathrm{q}}\right), 131.5(\mathrm{CH}), 130.0(\mathrm{CH}), 130.0(\mathrm{CH}), 129.1$ $(\mathrm{CH}), 129.0(\mathrm{CH}), 128.3(\mathrm{CH}), 127.5\left(\mathrm{C}_{\mathrm{q}}\right), 68.9(\mathrm{CH}), 62.7\left(\mathrm{CH}_{2}\right), 62.2\left(\mathrm{CH}_{2}\right), 47.2(\mathrm{CH}), 42.0\left(\mathrm{CH}_{2}\right)$, $34.2\left(\mathrm{CH}_{2}\right)$, $34.0\left(\mathrm{CH}_{2}\right)$, $31.9\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 29.1$ $\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2923,2853,1726,1569,1326,1269,1102,783,703,647 \mathrm{~cm}^{-1}$.

MS (ESI) m / z (relative intensity): $1622(33)\left[2 \mathrm{M}+\mathrm{H}^{+}, 834(32)[\mathrm{M}+\mathrm{Na}]^{+}, 812(100)[\mathrm{M}+\mathrm{H}]^{+}\right.$.
HR-MS (ESI): m / z calcd for $\mathrm{C}_{49} \mathrm{H}_{71} \mathrm{~N}_{4} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$811.5368, found 811.5372.

3-\{\{4-[3-(9-iso-Propyl-9H-purin-6-yl)benzyl]benzoyl\}oxy\}propane-1,2-diyl
didodecanoate (rac-1871)

chromatography (n-hexane/EtOAc 4:1) yielded rac-187l ($153 \mathrm{mg}, 75 \%$) as a yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.00(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{ddd}, J=7.8,1.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{dd}, \mathrm{J}=1.8$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{dd}, J=7.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, 2 H), $7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 5.40$ (dddd, $J=5.9,5.8,4.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.98 (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.48 $\left(d_{A B} \mathrm{~d}, J=11.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.39\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, J=11.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.37(\mathrm{dd}, J=11.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22$ (dd, $J=11.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 2 \mathrm{H}), 2.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.67(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $6 \mathrm{H}), 1.65-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.15(\mathrm{~m}, 32 \mathrm{H}), 0.86(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.1\left(\mathrm{C}_{\mathrm{q}}\right), 172.7\left(\mathrm{C}_{\mathrm{q}}\right), 165.8\left(\mathrm{C}_{\mathrm{q}}\right), 154.4\left(\mathrm{C}_{\mathrm{q}}\right), 152.0\left(\mathrm{C}_{\mathrm{q}}\right), 151.9(\mathrm{CH})$, $146.7\left(\mathrm{C}_{\mathrm{q}}\right), 141.9(\mathrm{CH}), 140.3\left(\mathrm{C}_{\mathrm{q}}\right), 136.1\left(\mathrm{C}_{\mathrm{q}}\right), 131.4\left(\mathrm{C}_{\mathrm{q}}\right), 131.3(\mathrm{CH}), 129.9(\mathrm{CH}), 129.9(\mathrm{CH}), 129.0$ $(\mathrm{CH}), 128.9(\mathrm{CH}), 128.2(\mathrm{CH}), 127.4\left(\mathrm{C}_{q}\right), 68.9(\mathrm{CH}), 62.7\left(\mathrm{CH}_{2}\right), 62.2\left(\mathrm{CH}_{2}\right), 47.3(\mathrm{CH}), 42.0\left(\mathrm{CH}_{2}\right)$, $34.3\left(\mathrm{CH}_{2}\right)$, $34.1\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 29.1$ $\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{3}\right), 14.2\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2922,2853,1725,1569,1326,1269,1102,783,704,647 \mathrm{~cm}^{-1}$.

MS (ESI) m / z (relative intensity): 834 (1) $[\mathrm{M}+\mathrm{Na}]^{+}, 812(100)[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{49} \mathrm{H}_{71} \mathrm{~N}_{4} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$811.5368, found 811.5352.
(R)-3-\{\{4-\{3-\{9-\{(2R,4R,5R)-4-[(tert-Butyldimethylsilyl)oxy]-5-\{[(tert-butyldimethylsilyl)oxy] methyl\}tetrahydrofuran-2-yl\}-9H-purin-6-yl\}benzyl\}benzoyl\}oxy\}propane-1,2-diyl didodecanoate (187m)

The general procedure J was followed using purine $123 \mathrm{~m} \quad(135 \mathrm{mg}$, 0.25 mmol) and benzyl chloride R - $\mathbf{1 8 6} \mathbf{j}$ ($305 \mathrm{mg}, \quad 0.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc

6:1) yielded 187 m ($195 \mathrm{mg}, 70 \%$) as a yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.99(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{ddd}, \mathrm{J}=7.8,1.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{dd}, \mathrm{J}=1.8$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{dd}, J=7.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J=6.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dddd}, J=6.0,5.9,4.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.65$ (ddd, $J=5.9,3.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.49\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, J=11.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.40\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, J=11.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.37$ (dd, J = 11.9, 4.4 Hz, 1H), 4.22 (dd, J = 11.9, $5.9 \mathrm{~Hz}, 1 \mathrm{H}$), $4.17(\mathrm{~s}, 2 \mathrm{H}), 4.06$ (ddd, J = 4.3, 3.3, 3.3 Hz, $1 \mathrm{H}), 3.88\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, J=11.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.80\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, \mathrm{J}=11.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.71(\mathrm{ddd}, J=13.0,6.7,5.9 \mathrm{~Hz}$, 1 H), 2.49 (ddd, $J=13.0,6.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.54$ $(\mathrm{m}, 4 \mathrm{H}), 1.33-1.17(\mathrm{~m}, 32 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}$, $3 H), 0.12(s, 6 H), 0.09(s, 3 H), 0.09(s, 3 H)$.
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.3\left(\mathrm{C}_{\mathrm{q}}\right), 172.9\left(\mathrm{C}_{\mathrm{q}}\right), 165.9\left(\mathrm{C}_{\mathrm{q}}\right), 154.7\left(\mathrm{C}_{\mathrm{q}}\right), 152.2(\mathrm{CH}), 152.0\left(\mathrm{C}_{\mathrm{q}}\right)$, $146.9\left(\mathrm{C}_{\mathrm{q}}\right), 142.8(\mathrm{CH}), 140.4\left(\mathrm{C}_{\mathrm{q}}\right), 136.0\left(\mathrm{C}_{\mathrm{q}}\right), 131.7\left(\mathrm{C}_{\mathrm{q}}\right), 131.5(\mathrm{CH}), 130.0(\mathrm{CH}), 129.1(\mathrm{CH}), 129.0$ $(\mathrm{CH}), 128.4(\mathrm{CH}), 127.5\left(\mathrm{C}_{\mathrm{q}}\right), 88.0(\mathrm{CH}), 84.5(\mathrm{CH}), 72.0(\mathrm{CH}), 68.9(\mathrm{CH}), 62.8\left(\mathrm{CH}_{2}\right), 62.7\left(\mathrm{CH}_{2}\right), 62.2$ $\left(\mathrm{CH}_{2}\right), 42.0\left(\mathrm{CH}_{2}\right), 41.1\left(\mathrm{CH}_{2}\right), 34.2\left(\mathrm{CH}_{2}\right), 34.0\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right)$, $29.3\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right), 22.7$ $\left(\mathrm{CH}_{2}\right), 18.4\left(\mathrm{C}_{\mathrm{q}}\right), 18.0\left(\mathrm{C}_{\mathrm{q}}\right), 14.1\left(\mathrm{CH}_{3}\right),-4.7\left(\mathrm{CH}_{3}\right),-4.8\left(\mathrm{CH}_{3}\right),-5.4\left(\mathrm{CH}_{3}\right),-5.5\left(\mathrm{CH}_{3}\right)$. IR (ATR): $\tilde{v}=2925,2854,1727,1570,1256,1107,835,778,703,646 \mathrm{~cm}^{-1}$.

MS (ESI) m/z (relative intensity): 2227 (38) [2M+H] ${ }^{+}$, 1136 (39) [M+Na] ${ }^{+}, 1114$ (100) [M+H]+.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{63} \mathrm{H}_{101} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{Si}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$1113.7102, found 1113.7102.

3-\{\{4-[3-(9-iso-Propyl-9H-purin-6-yl)benzyl]benzoyl\}oxy\}propane-1,2-diyl dioleate (187n)

The general procedure J was followed using purine 123a (59.6 mg , 0.25 mmol) and benzyl chloride 186k
($387 \mathrm{mg}, 0.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 4:1) yielded 187 n (174 mg, 71\%) as a pale yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.00(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{ddd}, \mathrm{J}=7.8,1.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{dd}, \mathrm{J}=1.8$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{dd}, J=7.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, 2 H), $7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 5.44-5.25(\mathrm{~m}, 5 \mathrm{H}), 4.98$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, J=11.9,4.3 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.39\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, J=11.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.37(\mathrm{dd}, J=11.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=11.9,5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.18(\mathrm{~s}, 2 \mathrm{H}), 2.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.08-1.91(\mathrm{~m}, 8 \mathrm{H}), 1.67(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $6 \mathrm{H}), 1.64-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.37-1.18(\mathrm{~m}, 40 \mathrm{H}), 0.87(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.1\left(\mathrm{C}_{\mathrm{q}}\right), 172.7\left(\mathrm{C}_{\mathrm{q}}\right), 165.8\left(\mathrm{C}_{\mathrm{q}}\right), 154.4\left(\mathrm{C}_{\mathrm{q}}\right), 152.0\left(\mathrm{C}_{\mathrm{q}}\right), 151.9(\mathrm{CH})$, $146.7\left(\mathrm{C}_{\mathrm{q}}\right), 141.8(\mathrm{CH}), 140.3\left(\mathrm{C}_{\mathrm{q}}\right), 136.1\left(\mathrm{C}_{\mathrm{q}}\right), 131.4\left(\mathrm{C}_{\mathrm{q}}\right), 131.3(\mathrm{CH}), 129.9(\mathrm{CH}), 129.9(\mathrm{CH}), 129.6$ $(\mathrm{CH}), 129.6(\mathrm{CH}), 129.0(\mathrm{CH}), 128.8(\mathrm{CH}), 128.2(\mathrm{CH}), 127.4\left(\mathrm{C}_{\mathrm{q}}\right), 68.9(\mathrm{CH}), 62.7\left(\mathrm{CH}_{2}\right), 62.2\left(\mathrm{CH}_{2}\right)$, $47.3(\mathrm{CH}), 42.0\left(\mathrm{CH}_{2}\right), 34.2\left(\mathrm{CH}_{2}\right), 34.1\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 29.3$ $\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right)$, $22.7\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{3}\right), 14.2\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2923,2853,1726,1570,1458,1269,1175,1096,703,647 \mathrm{~cm}^{-1}$.
MS (ESI) m / z (relative intensity): 1951 (14) $[2 \mathrm{M}+\mathrm{H}]^{+}, 976(100)[\mathrm{M}+\mathrm{H}]^{+}$.
HR-MS (ESI): m / z calcd for $\mathrm{C}_{61} \mathrm{H}_{91} \mathrm{~N}_{4} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$975.6933, found 975.6929.

3-\{\{4-\{3-\{9-\{(3aR,4R,6R,6aR)-6-\{[(Diethoxyphosphoryl)oxy]methyl\}-2,2-dimethyltetrahydrofuro

 [3,4-d][1,3]dioxol-4-yl\}-9H-purin-6-yl\}benzyl\}benzoyl\}oxy\}propane-1,2-diyl dioleate (187o)

The general procedure J was followed using purine 123I (126 mg, 0.25 mmol) and benzyl chloride 186k (387 mg , 0.50 mmol). After 20 h , purification by column chromatography (n-hexane/EtOAc 3:2) yielded 1870 ($172 \mathrm{mg}, 55 \%$) as a greenish yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.01(\mathrm{~s}, 1 \mathrm{H}), 8.69(\mathrm{ddd}, \mathrm{J}=7.8,1.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{dd}, \mathrm{J}=1.9$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{dd}, J=7.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{dd}, J=6.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.39$ (dddd, $J=6.0$, $5.9,4.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.36-5.27(\mathrm{~m}, 4 \mathrm{H}), 5.13(\mathrm{dd}, J=6.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dddd}, J=4.5,4.5,3.1$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.48\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, J=11.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.38\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, J=11.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.36(\mathrm{dd}, J=11.9$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{ddd}, J=10.9,6.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=11.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{ddd}, J=10.9$, $6.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 2 \mathrm{H}), 4.09-4.00(\mathrm{~m}, 4 \mathrm{H}), 2.30(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 2.06-1.95 (m, 8H), $1.64(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.36-1.19(\mathrm{~m}, 46 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=173.1\left(\mathrm{C}_{\mathrm{q}}\right), 172.7\left(\mathrm{C}_{\mathrm{q}}\right), 165.7\left(\mathrm{C}_{\mathrm{q}}\right), 154.9\left(\mathrm{C}_{\mathrm{q}}\right), 152.3(\mathrm{CH}), 151.6\left(\mathrm{C}_{\mathrm{q}}\right)$, $146.6\left(\mathrm{C}_{\mathrm{q}}\right), 143.1(\mathrm{CH}), 140.4\left(\mathrm{C}_{\mathrm{q}}\right), 135.7\left(\mathrm{C}_{\mathrm{q}}\right), 131.6\left(\mathrm{C}_{\mathrm{q}}\right.$ and CH$), 129.9(\mathrm{CH}), 129.9(\mathrm{CH}), 129.8(\mathrm{CH})$, 129.6 (CH), 129.6 (CH), $129.0(\mathrm{CH}), 128.9(\mathrm{CH}), 128.3(\mathrm{CH}), 127.4\left(\mathrm{C}_{\mathrm{q}}\right), 114.6\left(\mathrm{C}_{\mathrm{q}}\right), 91.0(\mathrm{CH}), 85.3$ ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=8 \mathrm{~Hz}, \mathrm{CH}$), $84.2(\mathrm{CH}), 81.3(\mathrm{CH}), 68.9(\mathrm{CH}), 66.6\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 64.1\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=5 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2}\right), 64.1\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 62.7\left(\mathrm{CH}_{2}\right), 62.2\left(\mathrm{CH}_{2}\right), 42.0\left(\mathrm{CH}_{2}\right), 34.2\left(\mathrm{CH}_{2}\right), 34.1\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right)$, $29.8\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 27.3$ $\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{3}\right), 27.2\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right), 16.11\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{c}-\mathrm{p}}=7 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{3}\right), 14.2\left(\mathrm{CH}_{3}\right)$.
${ }^{31}$ P-NMR (162 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=(-0.8)-(-1.2)(\mathrm{m})$.

IR (ATR): $\tilde{v}=2923,2853,1741,1569,1268,1097,1021,703,645 \mathrm{~cm}^{-1}$.

MS (ESI) m/z (relative intensity): 2484 (15) [2M+H] ${ }^{+}, 1264$ (32) $[\mathrm{M}+\mathrm{Na}]^{+}, 1242$ (100) $[\mathrm{M}+\mathrm{H}]^{+}, 632$ (4) $[\mathrm{M}+\mathrm{H}+\mathrm{Na}]^{2+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{70} \mathrm{H}_{106} \mathrm{~N}_{4} \mathrm{O}_{13} \mathrm{P}^{+}[\mathrm{M}+\mathrm{H}]^{+}$1241.7489, found 1241.7480.

(R)-2,5,7,8-Tetramethyl-2-[(4R,8R)-4,8,12-trimethyltridecyl]chroman-6-yl 4-[3-(9-iso-propyl-9H-purin-6-yl)benzyl]benzoate (187p)

0.50 mmol). After 20 h , purification by column chromatography (n-hexane/EtOAc $3: 1$) yielded 187p (127 mg, 65\%) as a viscous pale yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.03(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{ddd}, \mathrm{J}=7.8,1.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.68(\mathrm{dd}, \mathrm{J}=1.7$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{dd}, J=7.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, 2 H), 7.36 (ddd, $J=7.7,1.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.99 (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $4.23(\mathrm{~s}, 2 \mathrm{H}), 2.61(\mathrm{dd}, J=7.0$, $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{dt}, J=13.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 1 \mathrm{H})$, $1.68(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.62-1.02(\mathrm{~m}, 24 \mathrm{H}), 0.90-0.83(\mathrm{~m}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 1$ Conformer A and B$): \delta=164.9\left(\mathrm{C}_{\mathrm{q}}\right), 154.4\left(\mathrm{C}_{\mathrm{q}}\right), 152.0\left(\mathrm{C}_{\mathrm{q}}\right), 151.9$ (CH), $149.3\left(C_{q}\right), 146.9\left(C_{q}\right), 141.9(C H), 140.5\left(C_{q}\right), 140.3\left(C_{q}\right), 136.1\left(C_{q}\right), 131.5\left(C_{q}\right), 131.4(C H)$, 130.3 (CH), 130.0 (CH), 129.0 (CH), 128.9 (CH), 128.2 (CH), $127.5\left(\mathrm{C}_{\mathrm{q}}\right), 126.8\left(\mathrm{C}_{\mathrm{q}}\right), 125.0\left(\mathrm{C}_{\mathrm{q}}\right), 122.9$ $\left(\mathrm{C}_{\mathrm{q}}\right), 117.3\left(\mathrm{C}_{\mathrm{q}}\right), 75.0\left(\mathrm{C}_{\mathrm{q}}\right), 47.3(\mathrm{CH}), 42.1\left(\mathrm{CH}_{2}\right), 40.4$ and $39.7\left(\mathrm{CH}_{2}\right), 39.4\left(\mathrm{CH}_{2}\right), 37.5\left(\mathrm{CH}_{2}\right), 37.5$ $\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right), 32.8(\mathrm{CH}), 32.8$ and $32.7(\mathrm{CH}), 31.3$ and $31.1\left(\mathrm{CH}_{2}\right), 28.0(\mathrm{CH}), 24.8\left(\mathrm{CH}_{2}\right), 24.5$ $\left(\mathrm{CH}_{2}\right)$, 24.2 and $23.8\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{3}\right), 22.6\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{2}\right), 20.7\left(\mathrm{CH}_{2}\right), 19.8\left(\mathrm{CH}_{3}\right), 19.7$ $\left(\mathrm{CH}_{3}\right), 13.1\left(\mathrm{CH}_{3}\right), 12.3\left(\mathrm{CH}_{3}\right), 11.9\left(\mathrm{CH}_{3}\right)$. Conformer A and B originate from the hindered rotation around the $\mathrm{C}-\mathrm{C}$ bond to the ester group.

IR (ATR): $\tilde{v}=2925,1732,1571,1459,1327,1273,1237,1092,704,648 \mathrm{~cm}^{-1}$.

MS (ESI) m / z (relative intensity): $808(14)[\mathrm{M}+\mathrm{Na}]^{+}, 786(100)[\mathrm{M}+\mathrm{H}]^{+}$.
HR-MS (ESI): m / z calcd for $\mathrm{C}_{51} \mathrm{H}_{69} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 785.5364$, found 785.5349 .

(2R,3R,4s,5R,6S)-2-(Acetoxymethyl)-6-\{4-[3-(9-iso-propyl-9H-purin-6-yl)benzyl]phenoxy\} tetrahydro-2H-pyran-3,4,5-triyl triacetate (187q)

The general procedure J was followed using purine 123a (119 mg, 0.50 mmol) and benzyl chloride 186 m ($473 \mathrm{mg}, 1.00 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc $1: 1$) yielded 187 q ($240 \mathrm{mg}, 71 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.00(\mathrm{~s}, 1 \mathrm{H}), 8.67$ (ddd, $\left.\mathrm{J}=7.8,1.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.58$ (ddd, $\mathrm{J}=1.8$, $1.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{ddd}, J=7.8,7.7,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{ddd}, J=7.7,1.8,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.16 (d, J = $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.29-5.22(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{dd}, J=9.9,9.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.98$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=12.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=12.3$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{ddd}, \mathrm{J}=9.9,5.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H})$, $2.02(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.4\left(\mathrm{C}_{\mathrm{q}}\right), 170.0\left(\mathrm{C}_{\mathrm{q}}\right), 169.2\left(\mathrm{C}_{\mathrm{q}}\right), 169.1\left(\mathrm{C}_{\mathrm{q}}\right), 155.2\left(\mathrm{C}_{\mathrm{q}}\right), 154.6\left(\mathrm{C}_{\mathrm{q}}\right)$, $152.0\left(C_{q}\right), 151.9(C H), 141.8(C H), 141.4\left(C_{q}\right), 136.1\left(C_{q}\right), 135.9\left(C_{q}\right), 131.5\left(C_{q}\right), 131.3(C H), 129.9$ (CH), $129.8(\mathrm{CH}), 128.7(\mathrm{CH}), 128.0(\mathrm{CH}), 117.1(\mathrm{CH}), 99.3(\mathrm{CH}), 72.8(\mathrm{CH}), 72.0(\mathrm{CH}), 71.2(\mathrm{CH}), 68.4$ $(\mathrm{CH}), 62.0\left(\mathrm{CH}_{2}\right), 47.3(\mathrm{CH}), 41.6\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2977,1746,1570,1508,1367,1213,1035,704,647,598 \mathrm{~cm}^{-1}$.

```
m.p.: 182-184 ' C.
```

MS (ESI) m / z (relative intensity): 697 (8) $[\mathrm{M}+\mathrm{Na}]^{+}, 675(100)[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{10}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$675.2661, found 675.2656.
($2 R, 3 R, 4 S, 5 R, 6 S$)-2-(Acetoxymethyl)-6-\{4-\{3-\{9-[(2R,3R,4R,5R)-3,4-diacetoxy-5-(acetoxymethyl) tetrahydrofuran-2-yl]-9H-purin-6-yl\}benzyl\}phenoxy\}tetrahydro-2H-pyran-3,4,5-triyl triacetate (187r)

The general procedure J was followed using purine 123n (182 mg, 0.40 mmol) and benzyl chloride 186 m ($379 \mathrm{mg}, 0.80 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc $2: 3$) yielded 187 r ($231 \mathrm{mg}, 67 \%$) as a viscous pale yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.01(\mathrm{~s}, 1 \mathrm{H}), 8.64(\mathrm{ddd}, \mathrm{J}=7.8,1.8$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{dd}, J=1.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=7.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{ddd}, J=$
$7.6,1.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.29(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.00$ (dd, J = 5.5, 5.4 Hz, 1H), 5.70 (dd, J = 5.5, $4.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.28-5.22(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{dd}, J=10.0,9.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.45(\mathrm{~m}, 2 \mathrm{H}), 4.42-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=12.3,5.3 \mathrm{~Hz}, 1 \mathrm{H})$, 4.13 (dd, $J=12.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{ddd}, J=10.1,5.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.13$ (s, 3H), $2.08(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.4\left(\mathrm{C}_{\mathrm{q}}\right), 170.1\left(\mathrm{C}_{\mathrm{q}}\right), 170.0\left(\mathrm{C}_{\mathrm{q}}\right), 169.4\left(\mathrm{C}_{\mathrm{q}}\right), 169.2\left(\mathrm{C}_{\mathrm{q}}\right), 169.1\left(\mathrm{C}_{\mathrm{q}}\right)$, $155.3\left(\mathrm{C}_{\mathrm{q}}\right), 155.2\left(\mathrm{C}_{\mathrm{q}}\right), 152.5(\mathrm{CH}), 151.9\left(\mathrm{C}_{\mathrm{q}}\right), 142.4(\mathrm{CH}), 141.5\left(\mathrm{C}_{\mathrm{q}}\right), 135.9\left(\mathrm{C}_{\mathrm{q}}\right), 135.5\left(\mathrm{C}_{\mathrm{q}}\right), 131.6$ (CH), $131.6\left(\mathrm{C}_{\mathrm{q}}\right), 129.9(\mathrm{CH}), 129.8(\mathrm{CH}), 128.8(\mathrm{CH}), 128.0(\mathrm{CH}), 117.1(\mathrm{CH}), 99.3(\mathrm{CH}), 86.4(\mathrm{CH})$, $80.4(\mathrm{CH}), 73.1(\mathrm{CH}), 72.8(\mathrm{CH}), 72.0(\mathrm{CH}), 71.2(\mathrm{CH}), 70.7(\mathrm{CH}), 68.3(\mathrm{CH}), 63.1\left(\mathrm{CH}_{2}\right), 62.0\left(\mathrm{CH}_{2}\right)$, $41.2\left(\mathrm{CH}_{2}\right)$, $20.8\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=1745,1569,1508,1368,1216,1038,907,703,642,600 \mathrm{~cm}^{-1}$.

MS (ESI) m / z (relative intensity): 913 (37) $[\mathrm{M}+\mathrm{Na}]^{+}, 891(100)[\mathrm{M}+\mathrm{H}]^{+}, 465$ (38).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{17}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$891.2931, found 891.2923.

($2 R, 3 R, 4 S, 5 R, 6 S$)-2-(Acetoxymethyl)-6-\{4-\{3-\{9-\{(3aR,4R,6R,6aR)-6-\{[(diethoxyphosphoryl)oxy] methyl\}-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl\}-9H-purin-6-yl\}benzyl\}phenoxy\} tetrahydro-2H-pyran-3,4,5-triyl triacetate (187s)

The general procedure J was followed using purine $\mathbf{1 2 3 1}$ (99.0 mg , 0.20 mmol) and benzyl chloride 186 m ($189 \mathrm{mg}, 0.40 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 1:4) yielded 187 s ($130 \mathrm{mg}, 69 \%$) as a viscous pale yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.99(\mathrm{~s}, 1 \mathrm{H}), 8.64(\mathrm{ddd}, \mathrm{J}=7.8,1.6$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{dd}, J=1.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=$ $7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.28 (ddd, $J=7.8,1.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.24(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=6.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-5.20(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{dd}, J=10.1,9.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.10(\mathrm{dd}, J=6.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dddd}, J=5.1,4.5,3.0,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.27 (ddd, $J=11.0,6.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=12.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{ddd}, J=11.0,6.9,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.11(\mathrm{dd}, \mathrm{J}=12.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-3.99(\mathrm{~m}, 6 \mathrm{H}), 3.80(\mathrm{ddd}, J=10.1,5.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~s}$, $3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{td}, \mathrm{J}=7.2,1.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.22(\mathrm{td}, J=7.1,1.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.4\left(\mathrm{C}_{\mathrm{q}}\right), 170.0\left(\mathrm{C}_{\mathrm{q}}\right), 169.2\left(\mathrm{C}_{\mathrm{q}}\right), 169.1\left(\mathrm{C}_{\mathrm{q}}\right), 155.2\left(\mathrm{C}_{\mathrm{q}}\right), 155.1\left(\mathrm{C}_{\mathrm{q}}\right)$, $152.4(\mathrm{CH}), 151.6\left(\mathrm{C}_{\mathrm{q}}\right), 143.1(\mathrm{CH}), 141.5\left(\mathrm{C}_{\mathrm{q}}\right), 135.9\left(\mathrm{C}_{\mathrm{q}}\right), 135.6\left(\mathrm{C}_{\mathrm{q}}\right), 131.6\left(\mathrm{C}_{\mathrm{q}}\right), 131.6(\mathrm{CH}), 129.9$ (CH), $129.8(\mathrm{CH}), 128.8(\mathrm{CH}), 128.1(\mathrm{CH}), 117.1(\mathrm{CH}), 114.7\left(\mathrm{C}_{q}\right), 99.3(\mathrm{CH}), 91.0(\mathrm{CH}), 85.3\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}\right.$ $=8 \mathrm{~Hz}, \mathrm{CH}), 84.2(\mathrm{CH}), 81.4(\mathrm{CH}), 72.8(\mathrm{CH}), 72.0(\mathrm{CH}), 71.2(\mathrm{CH}), 68.3(\mathrm{CH}), 66.6\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{c}-\mathrm{p}}=5 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2}\right), 64.1\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 64.1\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 62.0\left(\mathrm{CH}_{2}\right), 41.2\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{3}\right), 25.4$ $\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right), 16.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-1.1(\mathrm{~s})$.

IR (ATR): $\tilde{v}=2985,1754,1569,1508,1373,1213,1029,733,702,645 \mathrm{~cm}^{-1}$.

MS (ESI) m / z (relative intensity): 1904 (8) $[2 \mathrm{M}+\mathrm{Na}]^{+}, 1882$ (13) $[2 \mathrm{M}+\mathrm{H}]^{+}, 963$ (66) $[\mathrm{M}+\mathrm{Na}]^{+}, 941$ (100) $[\mathrm{M}+\mathrm{H}]^{+}, 655$ (3), 482 (12).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{44} \mathrm{H}_{54} \mathrm{~N}_{4} \mathrm{O}_{17} \mathrm{P}^{+}[\mathrm{M}+\mathrm{H}]^{+}$941.3216, found 941.3219.

($2 R, 3 s, 4 s, 5 R, 6 s$)-2-(Hydroxymethyl)-6-\{2-[3-(9-iso-propyl-9H-purin-6-yl)benzyl]phenoxy\} tetrahydro-2H-pyran-3,4,5-triol (187t)

The general procedure J was followed using purine 123a (119 mg, $0.50 \mathrm{mmol})$ and benzyl chloride 186 n ($305 \mathrm{mg}, 1.00 \mathrm{mmol}$) at $80^{\circ} \mathrm{C}$. After 20 h , purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ acetone $\left.1: 1\right)$ followed by reverse phase HPLC ($\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN} 60: 40$) yielded 187 t ($139 \mathrm{mg}, 55 \%$) as a viscous colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}\right.$, acetone- d_{6}) $\delta=8.96(\mathrm{~s}, 1 \mathrm{H}), 8.90(\mathrm{dd}, J=1.7,1.7 \mathrm{~Hz}$, 1 H), 8.70 (ddd, $J=7.6,1.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.63 (s, 1H), 7.49 (ddd, J = 7.6, 1.7, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.16 (ddd, $J=8.3,7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 6.97 (ddd, $J=7.4,7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.26 (br s, 1H), 5.02 (hept, J $=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.19\left(\mathrm{~d}_{\mathrm{AB}}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.13$ $\left(\mathrm{d}_{\mathrm{AB}}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.90-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.66(\mathrm{~m}, 3 \mathrm{H}), 3.55(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.49(\mathrm{~m}$, $1 \mathrm{H}), 3.46(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR (125 MHz , acetone- d_{6}): $\delta=156.4\left(\mathrm{C}_{q}\right), 154.4\left(\mathrm{C}_{q}\right), 153.1\left(\mathrm{C}_{q}\right), 152.4(\mathrm{CH}), 144.6(\mathrm{CH}), 142.3$ $\left(\mathrm{C}_{\mathrm{q}}\right), 136.5\left(\mathrm{C}_{\mathrm{q}}\right), 132.2(\mathrm{CH}), 131.9\left(\mathrm{C}_{q}\right), 131.6(\mathrm{CH}), 131.4\left(\mathrm{C}_{\mathrm{q}}\right), 131.0(\mathrm{CH}), 129.0(\mathrm{CH}), 128.3(\mathrm{CH})$, $128.1(\mathrm{CH}), 122.7(\mathrm{CH}), 116.1(\mathrm{CH}), 102.1(\mathrm{CH}), 78.2(\mathrm{CH}), 77.7(\mathrm{CH}), 74.5(\mathrm{CH}), 71.3(\mathrm{CH}), 62.7\left(\mathrm{CH}_{2}\right)$, $48.4(\mathrm{CH}), 37.2\left(\mathrm{CH}_{2}\right), 22.4\left(\mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3340,2919,1572,1491,1454,1328,1223,1072,1043,648 \mathrm{~cm}^{-1}$.

MS (ESI) m / z (relative intensity): 529 (42) $[\mathrm{M}+\mathrm{Na}]^{+}, 507(100)[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 507.2238$, found 507.2249.

(3aR,5R,6s,6aR)-5-[(R)-2,2-Dimethyl-1,3-dioxolan-4-yl]-2,2-dimethyltetrahydrofuro[2,3-d][1,3] dioxol-6-yl 2-[3-(9-iso-propyl-9H-purin-6-yl)phenyl]acetate (187u)

The general procedure J was followed using purine 123a (119 mg, 0.50 mmol) and alkyl bromide 1860 ($381 \mathrm{mg}, 1.00 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 3:2) yielded 187u (145 mg, 54\%) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.00(\mathrm{~s}, 1 \mathrm{H}), 8.76$ (ddd, $J=7.8,1.7,1.5 \mathrm{~Hz}$, 1 H), 8.68 (dd, $J=1.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.18 (s, 1H), 7.52 (dd, $J=7.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.45 (ddd, $J=7.7,1.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.98$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18\left(\mathrm{~d}_{A B} \mathrm{~d}, J=8.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.16$ ($\mathrm{d}_{\mathrm{AB}} \mathrm{dd}$, $J=8.0,5.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.98\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, J=8.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.96\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, J=8.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.82\left(\mathrm{~d}_{\mathrm{AB}}, J=\right.$ $15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80\left(\mathrm{~d}_{\mathrm{AB}}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.67(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}$, $3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=169.8\left(\mathrm{C}_{\mathrm{q}}\right), 154.0\left(\mathrm{C}_{\mathrm{q}}\right), 152.1\left(\mathrm{C}_{\mathrm{q}}\right), 151.9(\mathrm{CH}), 141.9(\mathrm{CH}), 136.1\left(\mathrm{C}_{\mathrm{q}}\right)$, $133.7\left(\mathrm{C}_{\mathrm{q}}\right), 131.6(\mathrm{CH}), 131.4\left(\mathrm{C}_{\mathrm{q}}\right), 130.2(\mathrm{CH}), 128.9(\mathrm{CH}), 128.8(\mathrm{CH}), 112.2\left(\mathrm{C}_{\mathrm{q}}\right), 109.2\left(\mathrm{C}_{\mathrm{q}}\right), 105.0$ $(\mathrm{CH}), 83.2(\mathrm{CH}), 79.9(\mathrm{CH}), 76.4(\mathrm{CH}), 72.3(\mathrm{CH}), 67.2\left(\mathrm{CH}_{2}\right), 47.3(\mathrm{CH}), 41.4\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 26.8$ $\left(\mathrm{CH}_{3}\right), 26.3\left(\mathrm{CH}_{3}\right), 25.1\left(\mathrm{CH}_{3}\right), 22.6\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2984,1742,1570,1372,1215,1072,1018,843,703,647 \mathrm{~cm}^{-1}$.

MS (ESI) m / z (relative intensity): $1100(12)[2 \mathrm{M}+\mathrm{Na}]^{+}, 561(43)[\mathrm{M}+\mathrm{Na}]^{+}, 539(100)[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{7}^{+}[\mathrm{M}+\mathrm{H}]^{+} 539.2500$, found 539.2490.
(3aR,5R,6s,6aR)-5-[(R)-2,2-Dimethyl-1,3-dioxolan-4-yl]-2,2-dimethyltetrahydrofuro[2,3-d][1,3] dioxol-6-yl 2-[3-(9-iso-propyl-9H-purin-6-yl)phenyl]-2-methylpropanoate (187v)

The general procedure J was followed using purine 123a (119 mg, 0.50 mmol) and alkyl bromide 186 p ($409 \mathrm{mg}, 1.00 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc $2: 1$) yielded 187v ($241 \mathrm{mg}, 76 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.00(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{dd}, \mathrm{J}=1.8,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 8.74 (ddd, $J=7.5,1.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=7.7,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.49 (ddd, $J=7.7,1.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.98$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=8.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{ddd}, J=$ $8.0,6.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, J=8.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.85\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, J=8.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.71(\mathrm{~s}, 3 \mathrm{H})$, $1.68-1.66(\mathrm{~m}, 9 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.1\left(\mathrm{C}_{\mathrm{q}}\right), 154.3\left(\mathrm{C}_{\mathrm{q}}\right), 152.0\left(\mathrm{C}_{\mathrm{q}}\right), 151.9(\mathrm{CH}), 144.5\left(\mathrm{C}_{\mathrm{q}}\right), 141.9(\mathrm{CH})$, $135.9\left(\mathrm{C}_{\mathrm{q}}\right), 131.4\left(\mathrm{C}_{\mathrm{q}}\right), 128.6(\mathrm{CH}), 128.5(\mathrm{CH}), 128.0(\mathrm{CH}), 126.9(\mathrm{CH}), 112.1\left(\mathrm{C}_{\mathrm{q}}\right), 109.1\left(\mathrm{C}_{\mathrm{q}}\right), 105.1$ $(\mathrm{CH}), 83.0(\mathrm{CH}), 80.2(\mathrm{CH}), 76.3(\mathrm{CH}), 72.3(\mathrm{CH}), 67.3\left(\mathrm{CH}_{2}\right), 47.3(\mathrm{CH}), 47.1\left(\mathrm{C}_{\mathrm{q}}\right), 26.9\left(\mathrm{CH}_{3}\right), 26.8$ $\left(\mathrm{CH}_{3}\right), 26.8\left(\mathrm{CH}_{3}\right), 26.3\left(\mathrm{CH}_{3}\right), 26.1\left(\mathrm{CH}_{3}\right), 25.1\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2983,1737,1569,1372,1217,1140,1073,1020,845,647 \mathrm{~cm}^{-1}$.

MS (ESI) m / z (relative intensity): 1156 (6) $[2 \mathrm{M}+\mathrm{Na}]^{+}, 589(14)[\mathrm{M}+\mathrm{Na}]^{+}, 567(100)[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{7}^{+}[\mathrm{M}+\mathrm{H}]^{+} 567.2813$, found 567.2812.
[(3aR,5R,6s,6aR)-6-Hydroxy-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl]methyl 2-[3-(9-iso-propyl-9H-purin-6-yl)phenyl]-2-methylpropanoate (187w)

The general procedure \mathbf{J} was followed using purine 123a (119 mg , 0.50 mmol) and alkyl bromide $\mathbf{1 8 6 q}$ ($339 \mathrm{mg}, 1.00 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 1:1) followed by recycling preparative HPLC yielded 187w (169 mg, 68\%) as a viscous colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.97(\mathrm{~s}, 1 \mathrm{H}), 8.58(\mathrm{ddd}, \mathrm{J}=6.7,2.3,2.1 \mathrm{~Hz}$, 1H), 8.28 (dd, J = 2.3, 1.4 Hz, 1H), 8.22 (s, 1H), 7.58-7.53 (m, 2H), 5.92 $(\mathrm{d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{hept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{dd}, J=10.3,10.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.40(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{ddd}, J=10.3,4.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=10.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85$
(dd, $J=4.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.68(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H})$, $1.40(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=176.1\left(\mathrm{C}_{\mathrm{q}}\right), 155.0\left(\mathrm{C}_{\mathrm{q}}\right), 152.1\left(\mathrm{C}_{\mathrm{q}}\right), 151.7(\mathrm{CH}), 145.4\left(\mathrm{C}_{\mathrm{q}}\right), 142.6(\mathrm{CH})$, $135.1\left(\mathrm{C}_{\mathrm{q}}\right), 131.4\left(\mathrm{C}_{\mathrm{q}}\right), 128.9(\mathrm{CH}), 128.8(\mathrm{CH}), 127.2(\mathrm{CH}), 111.6\left(\mathrm{C}_{\mathrm{q}}\right), 105.0(\mathrm{CH}), 85.6(\mathrm{CH}), 77.6$ $(\mathrm{CH}), 72.7(\mathrm{CH}), 60.7\left(\mathrm{CH}_{2}\right), 47.6(\mathrm{CH}), 47.1\left(\mathrm{C}_{\mathrm{q}}\right), 28.0\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{3}\right), 26.2\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CH}_{3}\right), 22.7$ $\left(\mathrm{CH}_{3}\right), 22.6\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2978,1729,1569,1326,1217,1147,1070,1012,702,647 \mathrm{~cm}^{-1}$.

MS (ESI) m / z (relative intensity): 1016 (65) [2M+Na] ${ }^{+}, 994(6)[2 \mathrm{M}+\mathrm{H}]^{+}, 519(66)[\mathrm{M}+\mathrm{Na}]^{+}, 497$ (100) $[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 497.2395$, found 497.2384.

\{(3aR,4R,6R,6aR)-6-[2,4-Dioxo-3,4-dihydropyrimidin-1(2H)-yl]-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl\}methyl 4-[3-(9-iso-propyl-9H-purin-6-yl)benzyl]benzoate (187x)

The general procedure J was followed using purine 123a ($59.6 \mathrm{mg}, 0.25 \mathrm{mmol}$) and benzyl chloride 186 r (219 mg , 0.50 mmol). After 20 h , purification by column chromatography (n-hexane/EtOAc 1:3) yielded 187x ($87.3 \mathrm{mg}, 55 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.62(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.99(\mathrm{~s}, 1 \mathrm{H}), 8.66(\mathrm{ddd}, J=7.8,1.6,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.54(\mathrm{dd}, J=1.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{dd}, J=7.8,7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dd}$, $J=8.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J=6.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.97$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dd}, J=6.3,3.4 \mathrm{~Hz}$, 1 H), 4.61 (dd, $J=12.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.55 (ddd, $J=4.9,3.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.44 (dd, $J=12.1,4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.17\left(\mathrm{~d}_{\mathrm{AB}}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.15\left(\mathrm{~d}_{\mathrm{AB}}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.66(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.35$ (s, 3H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.8\left(\mathrm{C}_{\mathrm{q}}\right), 162.8\left(\mathrm{C}_{\mathrm{q}}\right), 154.6\left(\mathrm{C}_{\mathrm{q}}\right), 152.0\left(\mathrm{C}_{\mathrm{q}}\right), 151.9(\mathrm{CH}), 149.9\left(\mathrm{C}_{\mathrm{q}}\right)$, $147.1\left(\mathrm{C}_{\mathrm{q}}\right), 142.1(\mathrm{CH}), 140.8(\mathrm{CH}), 140.1\left(\mathrm{C}_{\mathrm{q}}\right), 136.1\left(\mathrm{C}_{\mathrm{q}}\right), 131.5(\mathrm{CH}), 131.3\left(\mathrm{C}_{\mathrm{q}}\right), 130.0(\mathrm{CH}), 129.6$ (CH), $129.0(\mathrm{CH}), 128.9(\mathrm{CH}), 128.3(\mathrm{CH}), 127.3\left(\mathrm{C}_{\mathrm{q}}\right), 114.3\left(\mathrm{C}_{\mathrm{q}}\right), 102.3(\mathrm{CH}), 95.0(\mathrm{CH}), 85.4(\mathrm{CH})$, $85.1(\mathrm{CH}), 81.2(\mathrm{CH}), 64.4\left(\mathrm{CH}_{2}\right), 47.3(\mathrm{CH}), 42.0\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{3}\right), 25.3\left(\mathrm{CH}_{3}\right), 22.6\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2983,1688,1570,1456,1378,1270,1216,1087,750,647 \mathrm{~cm}^{-1}$.
m.p.: $87-90^{\circ} \mathrm{C}$.

MS (ESI) m / z (relative intensity): $661(3)[\mathrm{M}+\mathrm{Na}]^{+}, 639(100)[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{~N}_{6} \mathrm{O}_{7}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 639.2562$, found 639.2562 .
\{(3aR,4R,6R,6aR)-6-[2,4-Dioxo-3,4-dihydropyrimidin-1(2H)-yl]-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl\}methyl $4-\{3-\{9-\{(3 a R, 4 R, 6 R, 6 a R)-6-\{[($ diethoxyphosphoryl)oxy]methyl\}-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl\}-9H-purin-6-yl\}benzyl\}benzoate (187y)

The general procedure \mathbf{J} was followed using purine 1231 ($126 \mathrm{mg}, 0.25 \mathrm{mmol}$) and benzyl chloride 186 r (219 mg , 0.50 mmol). After 20 h , purification by column chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone 3:1) yielded 187y ($83.5 \mathrm{mg}, 37 \%$) as a viscous colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.24(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.01(\mathrm{~s}$, 1 H), 8.66 (ddd, $J=7.8,1.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.55 (dd, $J=1.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.50$ (dd, J = 7.8, 7.7 Hz, 1H), 7.34 (ddd, J = 7.7, 1.6, 1.4 Hz, 1H), 7.32 (d, J = $8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.24 (d, J=8.1 Hz, 1H), $6.26(d, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{dd}, J=8.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.45$ (dd, J=6.3, 2.5 Hz, 1H), 5.13 (dd, $J=6.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.02 (dd, $J=6.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.90 (dd, $J=6.3$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, \mathrm{J}=12.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.51(\mathrm{~m}, 2 \mathrm{H}), 4.45(\mathrm{dd}, \mathrm{J}=12.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29$ (ddd, $J=11.1,6.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{ddd}, J=11.1,6.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18\left(\mathrm{~d}_{\mathrm{AB}}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.15$ $\left(\mathrm{d}_{\mathrm{AB}}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.11-4.01(\mathrm{~m}, 4 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.27$ (td, J=7.1, 0.9 Hz, 3H), 1.24 (td, J=7.1, 1.0 Hz, 3H).
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.8\left(\mathrm{C}_{\mathrm{q}}\right), 162.5\left(\mathrm{C}_{\mathrm{q}}\right), 155.0\left(\mathrm{C}_{\mathrm{q}}\right), 152.3(\mathrm{CH}), 151.6\left(\mathrm{C}_{\mathrm{q}}\right), 149.9\left(\mathrm{C}_{\mathrm{q}}\right)$, $147.0\left(\mathrm{C}_{\mathrm{q}}\right), 143.4(\mathrm{CH}), 140.7(\mathrm{CH}), 140.3\left(\mathrm{C}_{\mathrm{q}}\right), 135.7\left(\mathrm{C}_{\mathrm{q}}\right), 131.8(\mathrm{CH}), 131.6\left(\mathrm{C}_{\mathrm{q}}\right), 130.0(\mathrm{CH}), 129.6$ (CH), 129.1 (CH), $129.0(\mathrm{CH}), 128.4(\mathrm{CH}), 127.4\left(\mathrm{C}_{\mathrm{q}}\right), 114.7\left(\mathrm{C}_{\mathrm{q}}\right), 114.3\left(\mathrm{C}_{\mathrm{q}}\right), 102.4(\mathrm{CH}), 94.9(\mathrm{CH})$, $91.0(\mathrm{CH}), 85.4(\mathrm{CH}), 85.3\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=8 \mathrm{~Hz}, \mathrm{CH}\right), 85.1(\mathrm{CH}), 84.2(\mathrm{CH}), 81.4(\mathrm{CH}), 81.2(\mathrm{CH}), 66.6(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{C}-\mathrm{p}}=5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 64.4\left(\mathrm{CH}_{2}\right), 64.1\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 64.1\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 42.0\left(\mathrm{CH}_{2}\right), 27.2$ $\left(\mathrm{CH}_{3}\right), 27.2\left(\mathrm{CH}_{3}\right), 25.4\left(\mathrm{CH}_{3}\right), 25.3\left(\mathrm{CH}_{3}\right), 16.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR (121 MHz, CDCl_{3}): $\delta=-1.1(\mathrm{~s})$.

IR (ATR): $\tilde{v}=3493,2988,1694,1571,1382,1270,1213,1088,1029,866 \mathrm{~cm}^{-1}$.

MS (ESI) m / z (relative intensity): 1832 (2) [2M+Na] ${ }^{+}, 1811(4)[2 \mathrm{M}+\mathrm{H}]^{+}, 928(12)[\mathrm{M}+\mathrm{Na}]^{+}, 906(100)$ $[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{50} \mathrm{~N}_{6} \mathrm{O}_{14} \mathrm{P}^{+}[\mathrm{M}+\mathrm{H}]^{+} 905.3117$, found 905.3120.

5.3.4.4 Mechanistic Studies

5.3.4.4.1 Competition Experiments of Alkyl Halides

Purine 123a ($119 \mathrm{mg}, 0.50 \mathrm{mmol}$), [Ru(OAc) $\left.{ }_{2}(p-c y m e n e)\right](181,17.7 \mathrm{mg}, 50.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), $\mathrm{PPh}_{3}(13.1 \mathrm{mg}, 50.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{mmol})$ were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. Ethyl 2-bromo-2methylpropanoate (140k, $195 \mathrm{mg}, 1.00 \mathrm{mmol}$), 4-methoxybenzyl chloride (142b, 157 mg , $1.00 \mathrm{mmol})$, and 1,4-dioxane (2.0 mL) were then added and the mixture was stirred at $60^{\circ} \mathrm{C}$. After 20 h , the resulting mixture was filtered through a pad of silica gel and washed with EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography (n-hexane/EtOAc $3: 1$) yielded 188 ($137 \mathrm{mg}, 78 \%$) as a colorless oil.

Ethyl 2-[3-(9-iso-propyl-9H-purin-6-yl)phenyl]-2-methylpropanoate (188)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.01(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{dd}, J=1.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.71$ (ddd, $J=7.5,1.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $8.18(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=7.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$ (ddd, $J=7.8,1.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.98 (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.68$ $(\mathrm{s}, 6 \mathrm{H}), 1.67(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.5\left(\mathrm{C}_{\mathrm{q}}\right)$, $154.6\left(\mathrm{C}_{\mathrm{q}}\right), 152.0\left(\mathrm{C}_{\mathrm{q}}\right), 151.9(\mathrm{CH})$, $145.2\left(\mathrm{C}_{\mathrm{q}}\right), 141.8(\mathrm{CH}), 135.8\left(\mathrm{C}_{q}\right), 131.5\left(\mathrm{C}_{q}\right), 128.4(\mathrm{CH}), 128.4(\mathrm{CH}), 128.3(\mathrm{CH}), 126.8(\mathrm{CH}), 60.8$ $\left(\mathrm{CH}_{2}\right), 47.2(\mathrm{CH}), 46.8\left(\mathrm{C}_{q}\right), 26.7\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2977,1722,1567,1324,1218,1142,1025,798,702,646 \mathrm{~cm}^{-1}$.
MS (EI) m / z (relative intensity): 352 (18) [M] $]^{+}, 323$ (4) [M-Et] ${ }^{+}, 279$ (89) $\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Et}\right]^{+}, 237$ (100) [M$\left.\mathrm{C}(\mathrm{Me})_{2} \mathrm{CO}_{2} \mathrm{Et}\right]^{+}, 221$ (12).

HR-MS (EI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}[\mathrm{M}]^{+} 352.1894$, found 352.1897.

Purine 123a (119 mg, 0.50 mmol$),\left[\operatorname{Ru}(\mathrm{OAc})_{2}(p\right.$-cymene) ($181,17.7 \mathrm{mg}, 50.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), $\mathrm{PPh}_{3}(13.1 \mathrm{mg}, 50.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{mmol})$ were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. Methyl 2bromohexanoate (140a, $209 \mathrm{mg}, 1.00 \mathrm{mmol}$), 4-methoxybenzyl chloride (142b, 157 mg , 1.00 mmol), and 1,4-dioxane (2.0 mL) were then added and the mixture was stirred at $60^{\circ} \mathrm{C}$. After 20 h , the resulting mixture was filtered through a pad of silica gel and washed with EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography (n-hexane/EtOAc $3: 1$) yielded 141 j $^{[101]}$ ($114 \mathrm{mg}, 62 \%$) as a colorless oil and 185ab (11.3 mg, 6\%) as a colorless oil.

Purine 123a (119 mg, 0.50 mmol$),\left[\mathrm{Ru}(\mathrm{OAc})_{2}(p-c y m e n e)\right](181,17.7 \mathrm{mg}, 50.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(13.1 \mathrm{mg}, 50.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{mmol})$ were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. Ethyl 2-bromo-2,2difluoroacetate (84a, $203 \mathrm{mg}, 1.00 \mathrm{mmol}$), 4-methoxybenzyl chloride ($\mathbf{1 4 2 b}, 157 \mathrm{mg}, 1.00 \mathrm{mmol}$), and 1,4-dioxane (2.0 mL) were then added and the mixture was stirred at $60^{\circ} \mathrm{C}$. After 20 h , the resulting mixture was filtered through a pad of silica gel and washed with EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography (n-hexane/EtOAc 3:1) yielded $189^{[103]}$ ($79.3 \mathrm{mg}, 44 \%$) as a colorless oil and $185 \mathrm{ab}(27.7 \mathrm{mg}, 15 \%)$ as a colorless oil.

Purine 123a (119 mg, 0.50 mmol$),\left[\mathrm{Ru}(\mathrm{OAc})_{2}(p-c y m e n e)\right](181,17.7 \mathrm{mg}, 50.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), $\mathrm{PPh}_{3}(13.1 \mathrm{mg}, 50.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{mmol})$ were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. Bromocycloheptane ($136 \mathrm{~h}, 177 \mathrm{mg}, 1.00 \mathrm{mmol}$), 4-Methoxybenzyl chloride ($\mathbf{1 4 2 b}, 157 \mathrm{mg}, 1.00 \mathrm{mmol}$), and 1,4-dioxane (2.0 mL) were then added and the mixture was stirred at $60{ }^{\circ} \mathrm{C}$. After 20 h , the resulting mixture was filtered through a pad of silica gel and washed with EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography (n-hexane/EtOAc $3: 1$) yielded 185ab ($122 \mathrm{mg}, 68 \%$) as a colorless oil.

5.3.4.4.2 Intermolecular Competition Experiment

2-Phenylpyridine (68b, $77.6 \mathrm{mg}, 0.50 \mathrm{mmol}$), 2-(4-methoxyphenyl)pyridine (68a, 92.6 mg , $0.50 \mathrm{mmol}),\left[\mathrm{Ru}(\mathrm{OAc})_{2}(p-c y m e n e)\right](181,17.7 \mathrm{mg}, 50.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%), \mathrm{PPh}_{3}(13.1 \mathrm{mg}, 50.0 \mu \mathrm{~mol}$, $10 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{mmol})$ were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. 4-Methoxybenzyl chloride (142b, 117 mg , 0.75 mmol) and 1,4-dioxane (2.0 mL) were then added and the mixture was stirred at $60^{\circ} \mathrm{C}$. After 20 h , the resulting mixture was filtered through a pad of silica gel and washed with EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography (n-hexane/EtOAc 6:1) yielded 143d ($32.1 \mathrm{mg}, 23 \%$) as a colorless oil, 143e (122 mg, 80\%) as a colorless oil, and recovered 68b ($43.1 \mathrm{mg}, 56 \%$) as a colorless oil.

5.3.4.4.3 Reactions with Radical Scavengers

2-Phenylpyrimidine (139a, $78.1 \mathrm{mg}, 0.50 \mathrm{mmol}),\left[\mathrm{Ru}(\mathrm{OAc})_{2}(p\right.$-cymene)] (181, $17.7 \mathrm{mg}, 50.0 \mu \mathrm{~mol}$, $10 \mathrm{~mol} \%), \mathrm{PPh}_{3}(13.1 \mathrm{mg}, 50.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{mmol})$ and TEMPO (78.2 mg , 0.50 mmol) were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. 4-Methoxybenzyl chloride (142b, $235 \mathrm{mg}, 1.50 \mathrm{mmol}$) and 1,4-dioxane $(2.0 \mathrm{~mL})$ were then added and the mixture was stirred at $60^{\circ} \mathrm{C}$. After 20 h , the resulting mixture was filtered through a pad of silica gel and washed with EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography (n-hexane/EtOAc 20:1) followed by recycling preparative HPLC yielded TEMPO-adduct 191 ($23.0 \mathrm{mg}, 17 \%$) as a colorless oil and recovered 139a ($61.0 \mathrm{mg}, 78 \%$) as a colorless oil.

1-[(4-Methoxybenzyl)oxy]-2,2,6,6-tetramethylpiperidine (191)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.29(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $4.74(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.31(\mathrm{~m}, 6 \mathrm{H}), 1.26(\mathrm{~s}, 6 \mathrm{H}), 1.13(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.0\left(\mathrm{C}_{\mathrm{q}}\right), 130.4\left(\mathrm{C}_{\mathrm{q}}\right), 129.2(\mathrm{CH}), 113.6(\mathrm{CH}), 78.4$
$\left(\mathrm{CH}_{2}\right), 60.0\left(\mathrm{C}_{\mathrm{q}}\right), 55.3\left(\mathrm{CH}_{3}\right), 39.7\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{3}\right), 20.3\left(\mathrm{CH}_{3}\right), 17.1\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2930,1613,1513,1359,1247,1173,1036,821,695,603 \mathrm{~cm}^{-1}$.

MS (ESI) m/z (relative intensity): 278 (100) [M+H] ${ }^{+}, 243$ (3), 137 (16).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$278.2115, found 278.2120.

The spectral data are in accordance with those reported in the literature. ${ }^{[140]}$

2-Phenylpyrimidine (139a, $78.1 \mathrm{mg}, 0.50 \mathrm{mmol}$), [Ru(OAc) ${ }_{2}(p$-cymene)] (181, $17.7 \mathrm{mg}, 50.0 \mu \mathrm{~mol}$, $10 \mathrm{~mol} \%), \mathrm{PPh}_{3}(13.1 \mathrm{mg}, 50.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{mmol})$ and BHT (110 mg, 0.50 mmol) were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. 4-Methoxybenzyl chloride (142b, $235 \mathrm{mg}, 1.50 \mathrm{mmol}$) and 1,4-dioxane $(2.0 \mathrm{~mL})$ were then added and the mixture was stirred at $60^{\circ} \mathrm{C}$. After 20 h , the resulting mixture was filtered through a pad of silica gel and washed with EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography (n-hexane/EtOAc 10:1) yielded 143b ($91.4 \mathrm{mg}, 66 \%$) as a colorless oil.

2-Phenylpyrimidine (139a, $78.1 \mathrm{mg}, 0.50 \mathrm{mmol}),\left[\mathrm{Ru}(\mathrm{OAc}){ }_{2}\right.$ (p-cymene)] (181, $17.7 \mathrm{mg}, 50.0 \mu \mathrm{~mol}$, $10 \mathrm{~mol} \%), \quad \mathrm{PPh}_{3}(13.1 \mathrm{mg}, \quad 50.0 \mu \mathrm{~mol}, \quad 10 \mathrm{~mol} \%), \quad \mathrm{K}_{2} \mathrm{CO}_{3} \quad(138 \mathrm{mg}, \quad 1.00 \mathrm{mmol})$ and 1,1-diphenylethylene ($90.1 \mathrm{mg}, 0.50 \mathrm{mmol}$) were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. 4-Methoxybenzyl chloride (142b, 235 mg , $1.50 \mathrm{mmol})$ and 1,4-dioxane (2.0 mL) were then added and the mixture was stirred at $60^{\circ} \mathrm{C}$. After 20 h , the resulting mixture was filtered throough a pad of silica gel and washed with EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography (n-hexane/EtOAc 10:1) yielded 143b ($42.3 \mathrm{mg}, 31 \%$) as a colorless oil and recovered 139a ($39.2 \mathrm{mg}, 50 \%$) as a colorless oil.

5.3.4.4.4 Isotopic Studies

Preparation of $[D]_{2}-68 b$

2-Phenylpyridine ($68 \mathbf{b}, 776 \mathrm{mg}, 5.00 \mathrm{mmol}$), $\left[\mathrm{RuCl}_{2}(p-\text { cymene })\right]_{2}(76.5 \mathrm{mg}, 0.13 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, MesCO ${ }_{2} \mathrm{H}(31,246 \mathrm{mg}, 1.50 \mathrm{mmol}, 30 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.38 \mathrm{~g}, 10.0 \mathrm{mmol})$ were placed in a pre-dried 50 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. $\mathrm{D}_{2} \mathrm{O}$ $(17 \mathrm{~mL})$ was then added and the mixture was stirred at $100^{\circ} \mathrm{C}$. After 24 h , the resulting mixture was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the residue by column chromatography (n-hexane/EtOAc 10:1) yielded [D$]_{2}-68 \mathrm{~b}$ ($630 \mathrm{mg}, 80 \%$) as a colorless oil. The degree of deuteration was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy (Figure 27).

Figure 27: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $[\mathrm{D}]_{2}-68 \mathrm{~b}$.

Preparation of $[D]_{3}-68 b$

$[\mathrm{D}]_{5}-2$-Phenylpyridine ([D] $\left.]_{5}-68 \mathrm{~b}, 481 \mathrm{mg}, 3.00 \mathrm{mmol}\right),\left[\mathrm{RuCl}_{2}(p-c y m e n e)\right]_{2}(45.9 \mathrm{mg}, 75.0 \mu \mathrm{~mol}$, $2.5 \mathrm{~mol} \%$), $\mathrm{MesCO}_{2} \mathrm{H}\left(31,148 \mathrm{mg}, 0.90 \mathrm{mmol}, 30 \mathrm{~mol} \%\right.$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(829 \mathrm{mg}, 6.00 \mathrm{mmol})$ were placed in a pre-dried 50 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was then added and the mixture was stirred at $100^{\circ} \mathrm{C}$. After 24 h , the resulting mixture was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the residue by column chromatography (n-hexane/EtOAc 10:1) yielded [D] $]_{3}-68 \mathrm{~b}(317 \mathrm{mg}, 67 \%)$ as a colorless oil. The degree of deuteration was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy (Figure 28).

Figure 28: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $[\mathrm{D}]_{3}-\mathbf{6 8 b}$.

Ruthenium-Catalyzed meta-Benzylation of [D]_-68b

The general procedure I was followed using [D] $]_{2}-\mathbf{6 8 b}(78.6 \mathrm{mg}, 0.50 \mathrm{mmol})$ and 4-methoxybenzyl chloride (142b, $235 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 10:1) yielded [D] $]_{n}$-143d ($83.6 \mathrm{mg}, 60 \%$) as a colorless oil. The degree of deuteration was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy (Figure 29).

Figure 29: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $[\mathrm{D}]_{\mathrm{n}}-\mathbf{1 4 3 d}$.

Ruthenium-Catalyzed meta-Benzylation of $[D]_{3}-68 b$

The general procedure I was followed using [D] $]_{3}-68 b(79.1 \mathrm{mg}, 0.50 \mathrm{mmol})$ and 4-methoxybenzyl chloride (142b, $235 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 20 h , purification by column chromatography (n-hexane/EtOAc 10:1) yielded [D] $]_{n}$-143d ($92.4 \mathrm{mg}, 66 \%$) as a colorless oil. The degree of deuteration was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy (Figure 30).

Figure 30: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $[\mathrm{D}]_{\mathrm{n}}$-143d.

5.3.4.4.5 Cyclometallic Complex Studies

Preparation of Ruthenacycle 192a

2-Phenylpyridine (68b, $77.6 \mathrm{mg}, 0.50 \mathrm{mmol}),\left[\mathrm{Ru}(\mathrm{OAc})_{2}(p\right.$-cymene)] (181, $177 \mathrm{mg}, 0.50 \mathrm{mmol})$, and PPh_{3} ($131 \mathrm{mg}, 0.50 \mathrm{mmol}$) were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. THF (2.0 mL) was added and the mixture was stirred at $60^{\circ} \mathrm{C}$. After 2 h , an additional $\mathrm{PPh}_{3}(131 \mathrm{mg}, 0.50 \mathrm{mmol})$ was added into the reaction mixture at ambient temperature and the mixture was again stirred at $60^{\circ} \mathrm{C}$ for an additional 2 h . An orange solid formed during this time and the reaction was cooled to ambient temperature. The orange solid was collected and washed with THF (5.0 mL) and dry n-hexane $(2 \times 10 \mathrm{~mL})$. The orange solid was dried under vacuum, providing complex trans-192a ($249 \mathrm{mg}, 59 \%$). Suitable crystals of trans-192a for X-ray crystallography were grown by slow crystallization from THF/n-hexane (see X-Ray Crystallographic Analysis section).

2-Phenylpyridine (68b, $155 \mathrm{mg}, 1.00 \mathrm{mmol}),\left[\mathrm{Ru}(\mathrm{OAc})_{2}\right.$ (p-cymene)] (181, $353 \mathrm{mg}, 1.00 \mathrm{mmol}$), and PPh_{3} ($525 \mathrm{mg}, 2.00 \mathrm{mmol}$) were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. THF (2.0 mL) was added and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 4 h . An orange solid formed during this time and the reaction was cooled to ambient temperature. The orange solid was collected and washed with THF (5.0 mL) and dry n-hexane $(2 \times 10 \mathrm{~mL})$. The orange solid was dried under vacuum, providing complex 192a ($690 \mathrm{mg}, 82 \%$).

Ruthenacycle 98 ($282 \mathrm{mg}, 0.50 \mathrm{mmol}$), TBAOAc ($151 \mathrm{mg}, 0.50 \mathrm{mmol}$), and PPh_{3} (262 mg , 1.00 mmol) were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. 1,4-Dioxane (1.6 mL) was added and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 1 h . Then, the reaction was cooled to ambient temperature. The orange solid was collected and washed with THF (5.0 mL) and dry n-hexane $(2 \times 10 \mathrm{~mL})$. The orange solid was dried under vacuum, providing complex trans-192a (203 mg, 48\%).

Characteristic Data for trans-192a

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=8.79(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}$, 1H), 7.30-7.06 (m, 30H), 6.93-6.84 (m, 1H), $6.74(\mathrm{dd}, \mathrm{J}=7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.64(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.53$ (ddd, $J=7.4,7.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=7.4$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.34$ (ddd, $J=7.2,5.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.77(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=184.5\left(\mathrm{dd}, \mathrm{J}=23,11 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 180.9\left(\mathrm{C}_{\mathrm{q}}\right), 169.8\left(\mathrm{C}_{\mathrm{q}}\right), 153.2(\mathrm{CH}), 148.8$ $\left(C_{q}\right), 140.7(C H), 134.7\left(\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{P}}+{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=11 \mathrm{~Hz}, \mathrm{CH}\right), 133.0\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}+{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=35 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 131.9(\mathrm{CH})$, $129.1(\mathrm{CH}), 127.7\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}+{ }^{5} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=9 \mathrm{~Hz}, \mathrm{CH}\right), 125.3(\mathrm{CH}), 123.5(\mathrm{CH}), 118.8(\mathrm{CH}), 118.0(\mathrm{CH}), 117.9$ $(\mathrm{CH}), 22.8\left(\mathrm{CH}_{3}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(121 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=41.2$ (s).

IR (ATR): $\tilde{v}=3047,1536,1431,1090,1067,745,693,672,510,493 \mathrm{~cm}^{-1}$.
m.p.: $100-103^{\circ} \mathrm{C}$ (decomp.).

MS (LIFDI) m / z (relative intensity): 839.2 (100) [M] ${ }^{+}$.

Preparation of Ruthenacycle 192b

68d

192b: 34\% (cis:trans = 1:17)

trans-192b
CCDC 1979318

2-(4-Fluorophenyl)pyridine (68d, $86.6 \mathrm{mg}, 0.50 \mathrm{mmol})$, [Ru(OAc) $)_{2}(p$-cymene)] (181, 177 mg , 0.50 mmol), and PPh_{3} ($131 \mathrm{mg}, 0.50 \mathrm{mmol}$) were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. THF (2.0 mL) was added and the mixture was stirred at $60^{\circ} \mathrm{C}$. After 2 h , an additional $\mathrm{PPh}_{3}(131 \mathrm{mg}, 0.50 \mathrm{mmol})$ was added into the reaction mixture at ambient temperature and the mixture was again stirred at $60^{\circ} \mathrm{C}$ for an additional 2 h . An orange solid formed during this time and the reaction was cooled to ambient temperature. The orange solid was collected and washed with THF (5.0 mL) and dry n-hexane ($2 \times 10 \mathrm{~mL}$). The orange solid was dried under vacuum, providing complex 192b ($145 \mathrm{mg}, 34 \%$, cis:trans $=1: 17$). Suitable crystals of trans-192b for X-ray crystallography were grown by slow crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane (see X-Ray Crystallographic Analysis section).

Characteristic Data for 192b

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, determined as a mixture of cis- and transisomer 1:16): $\delta=8.78$ (d, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}$, trans-isomer), 8.22 (d, $J=5.7 \mathrm{~Hz}$, 1H, cis-isomer), 7.54 (dd, J = 10.7, $2.6 \mathrm{~Hz}, 1 \mathrm{H}$, trans-isomer), 7.33-7.06 (m, 30 H , trans-isomer), 6.91 (ddd, J = 7.9, 7.5, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$, trans-isomer), 6.69 (dd, J = 8.7, $5.9 \mathrm{~Hz}, 1 \mathrm{H}$, trans-isomer), 6.60 (d, J = 7.9 Hz, 1H, trans-isomer), 6.51 (ddd, $J=8.5,8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}$, cis-isomer), 6.35 (ddd, J = 7.5, 5.7, 1.4 Hz, 1H, trans-isomer), 6.14 (ddd, J = 8.9, 8.7, $2.6 \mathrm{~Hz}, 1 \mathrm{H}$, trans-isomer), 1.07 (s, 3H, cis-isomer), 0.77 (s, 3H, trans-isomer). Due to overlapping, some proton peaks of cis192b could determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$.
${ }^{19}{ }^{\mathrm{F}}\left\{{ }^{1} \mathrm{H}\right\}$-NMR ($282 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, determined as a mixture of cis- and trans-isomer 1:16): $\delta=-116.7$ (s, cis-isomer), -116.9 (s, trans-isomer).
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-N M R\left(121 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, determined as a mixture of cis- and trans-isomer 1:16): $\delta=56.5$ (d, J = 31.8 Hz, 1P, cis-isomer), 51.7 (d, J = 31.8 Hz, 1P, cis-isomer), 41.1 (s, trans-isomer).

IR (ATR): $\tilde{v}=3053,1585,1541,1430,1090,855,740,693,510,405 \mathrm{~cm}^{-1}$.
m.p.: $130-133^{\circ} \mathrm{C}$ (decomp.).

MS (LIFDI) m / z (relative intensity): 857.2 (100) [M] ${ }^{+}$.

Preparation of Ruthenacycle 193

68b

DPEPhos (1 equiv) THF, $60^{\circ} \mathrm{C}, 4 \mathrm{~h}$

193: 65\%

2-Phenylpyridine (68b, $77.6 \mathrm{mg}, 0.50 \mathrm{mmol}$), [Ru(OAc) $)_{2}(p$-cymene)] (181, $177 \mathrm{mg}, 0.50 \mathrm{mmol}$), and bis[2-(diphenylphosphino)phenyl]ether (DPEPhos, $269 \mathrm{mg}, 0.50 \mathrm{mmol}$) were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. THF $(2.0 \mathrm{~mL})$ was added and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 4 h . A yellow solid formed during this time and the reaction was cooled to ambient temperature. The yellow solid was collected and washed with dry n-hexane ($2 \times 10 \mathrm{~mL}$). The yellow solid was dried under vacuum, providing complex 193 ($276 \mathrm{mg}, 65 \%$). Suitable crystals of 193 for X-ray crystallography were grown by slow crystallization from THF/n-hexane (see X-Ray Crystallographic Analysis section).
${ }^{1} \mathrm{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=7.94-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.54-7.06 (m, 20H), $6.91(\mathrm{dd}, J=7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.74-6.62(\mathrm{~m}, 5 \mathrm{H}), 6.57$ (dd, $J=8.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.43 (dd, $J=6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), $6.23(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.08$ (dd, $J=8.7$, $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 0.87(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=184.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=2 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 182.0\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=17,8 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 164.5\left(\mathrm{C}_{\mathrm{q}}\right)$, $160.7\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=8 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 158.9\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=8 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 151.1(\mathrm{CH}), 146.6\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=1 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 145.3(\mathrm{~d}$, $\left.{ }^{4} J_{C-p}=4 \mathrm{~Hz}, \mathrm{CH}\right), 136.8\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=42 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 136.3\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=43 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 136.1-135.5(\mathrm{~m}, \mathrm{CH}), 135.4$ $(\mathrm{CH}), 135.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=39 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 135.2-134.6(\mathrm{br}, \mathrm{CH}), 134.0\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=37 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 134.1-133.6(\mathrm{~m}$, $\mathrm{CH}), 131.6\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=9 \mathrm{~Hz}, \mathrm{CH}\right), 131.3(\mathrm{CH}), 131.1(\mathrm{CH}), 129.3(\mathrm{CH}), 128.6\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=2 \mathrm{~Hz}, \mathrm{CH}\right), 127.9$ $\left(\mathrm{d},{ }^{4} J_{\mathrm{C}-\mathrm{p}}=2 \mathrm{~Hz}, \mathrm{CH}\right), 127.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{p}}=7 \mathrm{~Hz}, \mathrm{CH}\right), 127.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=7 \mathrm{~Hz}, \mathrm{CH}\right), 127.4\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=39 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $127.2\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=9 \mathrm{~Hz}, \mathrm{CH}\right), 126.9\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=8 \mathrm{~Hz}, \mathrm{CH}\right), 125.7(\mathrm{CH}), 125.4\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=38 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 124.7$
($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=6 \mathrm{~Hz}, \mathrm{CH}$), $124.4\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=5 \mathrm{~Hz}, \mathrm{CH}\right), 123.3\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=6 \mathrm{~Hz}, \mathrm{CH}\right), 122.9(\mathrm{CH}), 120.1\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}\right.$ $=3 \mathrm{~Hz}, \mathrm{CH}), 119.7(\mathrm{CH}), 118.6(\mathrm{br}, \mathrm{CH}), 117.6\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=2 \mathrm{~Hz}, \mathrm{CH}\right), 23.6\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{c}-\mathrm{p}}=2 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=59.5(\mathrm{~d}, \mathrm{~J}=37.7 \mathrm{~Hz}), 46.7(\mathrm{~d}, \mathrm{~J}=37.7 \mathrm{~Hz})$.

IR (ATR): $\tilde{v}=3050,1578,1454,1433,1232,1091,744,695,673,518 \mathrm{~cm}^{-1}$.
m.p.: $215-217{ }^{\circ} \mathrm{C}$ (decomp.).

MS (LIFDI) m / z (relative intensity): 853.1 (100) [M] ${ }^{+}$.

Preparation of Ruthenacycle 194

Ruthenacycle 98 ($282 \mathrm{mg}, 0.50 \mathrm{mmol}$), TBAOAc ($151 \mathrm{mg}, 0.50 \mathrm{mmol}$), and PPh_{3} (131 mg , 0.50 mmol) were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. 1,4-Dioxane (1.6 mL) was added and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 1 h . Then, the reaction was cooled to ambient temperature. The orange solid was collected and washed with THF (5.0 mL) and dry n-hexane $(2 \times 10 \mathrm{~mL})$. The orange solid was dried under vacuum, providing complex 194 ($234 \mathrm{mg}, 75 \%$). Suitable crystals of 194 for X-ray crystallography were grown by slow crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane (see X-Ray Crystallographic Analysis section).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=8.44(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.34(\mathrm{~m}, 3 \mathrm{H})$, 7.30-7.19 (m, 3H), 7.19-7.08 (m, 12H), 6.83 (ddd, J = 7.5, 7.3, 1.5 Hz, 1H), 6.78-6.67 (m, 2H), 2.12 (s, 3H), 1.89 (s, 3H).
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=187.3\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=16 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 185.3\left(\mathrm{C}_{\mathrm{q}}\right), 167.4\left(\mathrm{C}_{\mathrm{q}}\right), 151.8(\mathrm{CH}), 146.6$ $\left(C_{q}\right), 140.0(C H), 135.7\left(d,{ }^{1} J_{C-p}=43 \mathrm{~Hz}, C_{q}\right), 134.7(C H), 133.6\left(d,{ }^{2} J_{C-p}=10 \mathrm{~Hz}, \mathrm{CH}\right), 129.1\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=\right.$ $2 \mathrm{~Hz}, \mathrm{CH}), 127.9\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=9 \mathrm{~Hz}, \mathrm{CH}\right), 126.8(\mathrm{CH}), 123.9(\mathrm{CH}), 122.1\left(\mathrm{C}_{q}\right), 120.6$ (CH), 119.1 (CH), $118.0(\mathrm{CH}), 24.7\left(\mathrm{CH}_{3}\right), 4.9\left(\mathrm{CH}_{3}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=65.7(\mathrm{~s})$.

IR (ATR): $\tilde{v}=3052,2241,1538,1474,1434,1092,751,696,664,518 \mathrm{~cm}^{-1}$.
m.p.: $147-149{ }^{\circ} \mathrm{C}$ (decomp.).

MS (LIFDI) m / z (relative intensity): 618.2 (100) [M] ${ }^{+}$.

Isomerization of Ruthenacycle trans-192a

The NMR tube equipped with J. Young valve was charged with the solution of trans-192a (42.0 mg, $50 \mu \mathrm{~mol})$ in THF- $d_{8}(0.5 \mathrm{~mL})$. Then, the tube was heated at $60^{\circ} \mathrm{C}$. After 4 h , the tube was cooled to ambient temperature and measured ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectroscopy (Figure 31).

After heating 4 h

Figure 31: Isomerization of ruthenacycle trans-192a determined by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectroscopy (cis-isomer $=\bullet$, trans-isomer $=\bullet$).

Ligand Exchange of Ruthenacycle cis-/trans-192a with pyridine 68d

The NMR tube equipped with J. Young valve was charged with the solution of cis-/trans-192a ($42.0 \mathrm{mg}, 50 \mu \mathrm{~mol}$, cis:trans $=1: 10$) and pyridine $68 \mathrm{~d}(8.7 \mathrm{mg}, 50 \mu \mathrm{~mol})$ in $\mathrm{PhMe}-\mathrm{d}_{8}(0.5 \mathrm{~mL}) . \mathrm{K}_{2} \mathrm{CO}_{3}$ ($7.0 \mathrm{mg}, 50 \mu \mathrm{~mol}$) was then added and the tube was heated at $60^{\circ} \mathrm{C}$. After 4 h , the tube was cooled to ambient temperature and measured ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectroscopy.

;0595857565554535251504948474645444342414039383736353433323130292827262524232221 ppm

Figure 32: Ligand exchange of ruthenacycle 192a with 68d determined by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ spectroscopy (cis-192a $=\bullet$, trans-192a $=\bullet$, cis-192b $=\bullet$, trans-192b $=\bullet, 0=\mathrm{PPh}_{3}=\bullet$).

Cyclic Voltammetry

Cyclic voltammetric analysis was carried out with a Metrohm Autolab PGSTAT204 workstation and analysis was performed with Nova 2.1.4 software. A glassy-carbon electrode (3 mm -diameter, disc-electrode) was used as the working electrode, a Pt wire was used as the auxiliary electrode and a $\mathrm{Ag} / \mathrm{AgCl}$ electrode was used as the reference. $1,2-\mathrm{DCE}$ with $0.1 \mathrm{~mol} \cdot \mathrm{~L}^{-1} \mathrm{n}-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ as conducting salt served as electrolytes for the measurements. 1,2-DCE was dried and degassed prior to its use. Measurements were carried out at a scan rate of $100 \mathrm{mV} \cdot \mathrm{s}^{-1}$.

98

trans-192a

194

Figure 33: Cyclic voltammogram at $100 \mathrm{mV} \cdot \mathrm{s}^{-1}$ in $1,2-\mathrm{DCE} . n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{M}$ in $1,2-\mathrm{DCE}$), concentration of substrates 4 mM . $E_{1 / 2}$ of $98=0.75 \mathrm{~V}, E_{1 / 2}$ of cis-/trans-192a $=0.33$ and $0.56 \mathrm{~V}, E_{1 / 2}$ of trans-192a $=0.32 \mathrm{~V}, E_{1 / 2}$ of $194=0.47 \mathrm{~V}$.

193

195

Figure 34: Cyclic voltammogram at $100 \mathrm{mV} \cdot \mathrm{s}^{-1}$ in $1,2-\mathrm{DCE}$. $n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{M}$ in $1,2-\mathrm{DCE}$), concentration of substrates $4 \mathrm{~mm} . E_{1 / 2}$ of $193=0.44 \mathrm{~V}, E_{\mathrm{ox}}$ of $195=0.81 \mathrm{~V}$.

Catalytic Reactions with Ruthenacycle trans-192a, 193, and 194

Reactions with Ruthenacycle trans-192a

2-Phenylpyridine ($68 \mathrm{~b}, 38.8 \mathrm{mg}, 0.25 \mathrm{mmol}$), trans-192a ($21.0 \mathrm{mg}, 25.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), KOAc $(2.5 \mathrm{mg}, 25.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(69 \mathrm{mg}, 0.50 \mathrm{mmol})$ were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. 4-Methoxybenzyl chloride ($\mathbf{1 4 2 b}, 118 \mathrm{mg}, 0.75 \mathrm{mmol}$) and 1,4-dioxane (1.0 mL) were then added and the mixture was stirred at $60^{\circ} \mathrm{C}$. After 20 h , the resulting mixture was filtered through a pad of silica gel and washed with EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography (n-hexane/EtOAc 10:1) yielded meta-benzylated product 143d ($37.2 \mathrm{mg}, 54 \%$). In case of the condition without KOAc, the reaction gave the product 143d ($26.8 \mathrm{mg}, 39 \%$).

Reactions with Ruthenacycle 193

2-Phenylpyridine (68b, $38.8 \mathrm{mg}, 0.25 \mathrm{mmol}$), 193 ($21.3 \mathrm{mg}, 25.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), KOAc (2.5 mg , $25.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(69 \mathrm{mg}, 0.50 \mathrm{mmol})$ were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. 4-Methoxybenzyl chloride (142b, $118 \mathrm{mg}, 0.75 \mathrm{mmol})$ and 1,4-dioxane (1.0 mL) were then added and the mixture was stirred at $60^{\circ} \mathrm{C}$. After 20 h , the resulting mixture was determined by gas chromatography. Both reactions with and without KOAc did not afford any conversion of the product 143d.

Reactions with Ruthenacycle 194
2-Phenylpyridine (68b, $77.6 \mathrm{mg}, 0.5 \mathrm{mmol}$), 194 ($30.9 \mathrm{mg}, 50.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), KOAc (5.0 mg , $50.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(139 \mathrm{mg}, 1.00 \mathrm{mmol})$ were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. 4-Methoxybenzyl chloride (142b, $235 \mathrm{mg}, 1.5 \mathrm{mmol})$ and 1,4-dioxane (2.0 mL) were then added and the mixture was stirred at $60^{\circ} \mathrm{C}$. After 20 h , the resulting mixture was filtered through a pad of silica gel and washed with EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography (n-hexane/EtOAc 10:1) yielded meta-benzylated product 194 ($81.0 \mathrm{mg}, 59 \%$). In case of the condition without KOAc, the reaction gave the product 194 ($68.7 \mathrm{mg}, 50 \%$).

Stoichiometric Reactions of Ruthenacycle 192a

Ruthenacycle 192a ($84.0 \mathrm{mg}, 0.10 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(28.0 \mathrm{mg}, 0.20 \mathrm{mmol})$ were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. 4-Methoxybenzyl chloride (142b, $23.5 \mathrm{mg}, 0.15 \mathrm{mmol}$) and 1,4-dioxane (1.0 mL) were then added and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 20 h . At ambient temperature, 2,2'-bipyridine (46.9 mg , $0.30 \mathrm{mmol})$, $\mathrm{AcOH}(30.0 \mathrm{mg}, 0.50 \mathrm{mmol})$ and 1,2-DCE (1.0 mL) were added, and the resulting mixture was stirred at ambient temperature for 16 h . Then, the reaction mixture was quenched with sat. aq. NaHCO_{3} solution $(10 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the residue by column chromatography (n-hexane/EtOAc 10:1) yielded meta-benzylated product 143d (in case of cis-/trans-192a: $11.0 \mathrm{mg}, 40 \%$, in case of trans-192a: $13.2 \mathrm{mg}, 48 \%$) as a colorless oil.

5.3.4.5 Racemization Examination

Benzyl chlorides $s-186 \mathrm{c}$ and R -186c were examined by HPLC with a Daicel CHIRALPAK IA-3 (4.6 mm x $250 \mathrm{~mm}, 3 \mu \mathrm{~m}$ particle size) n-hexane $/ i-\operatorname{PrOH} 80: 20,1 \mathrm{~mL} / \mathrm{min}$ flow rate, detection at 250 nm . $s-186 \mathrm{c}: t_{r}=13.6 \mathrm{~min} . R-186 \mathrm{c}: t_{r}=9.9 \mathrm{~min}$.

$s-186 \mathrm{c}$

$\begin{array}{ccccc}\text { Peak RetTime Type } & \text { Width } & \text { Area } & \text { Height } & \text { Area } \\ \# & {[\mathrm{~min}]} & {[\mathrm{min}]} & {[\mathrm{mAU} \mathrm{s}]} & {[\mathrm{mAU}]}\end{array}$
----|-------|----|----------------------------------|-|-|
$1 \quad 9.881$ FM $0.25664 .34942 \mathrm{e} 4 \quad 2824.75732100 .0000$

Mixture of $s-186 \mathrm{c}$ and $R-186 \mathrm{c}$

| Peak | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RetTime Type | Width | Area | Height | Area | |
| \# | [min] | [min] | [mAU*s] | [mAU] | $\%$ |

Benzyl chlorides rac-186d and s-186d were examined by HPLC with a Daicel CHIRALPAK IA-3 ($4.6 \mathrm{~mm} \times 250 \mathrm{~mm}, 3 \mu \mathrm{~m}$ particle size) n-hexane/i-PrOH 70:30, $1 \mathrm{~mL} / \mathrm{min}$ flow rate, detection at $250 \mathrm{~nm} . \mathrm{s}-186 \mathrm{~d}: t_{r}=11.8 \mathrm{~min} . R-186 \mathrm{~d}: t_{r}=9.1 \mathrm{~min}$.

rac-186d

$\begin{array}{lllllll}1 & 9.098 & \mathrm{FM} & 0.2622 & 1.59660 \mathrm{e} 4 & 1014.76837 & 50.0523\end{array}$
2 11.833 MF 0.3308 1.59327e4 $802.82697 \quad 49.9477$

$s-186 d$

Peak RetTime [min]	Width [min]	Area $\left[\mathrm{mAU}^{*} \mathrm{~s}\right]$	Height [mAU]	Area $\%$	
-1	11.397 FM	0.3281	4.57105 e 4	2322.30566	100.0000

Benzyl chlorides rac-186j and R - $\mathbf{1 8 6} \mathbf{j}$ were examined by HPLC with a Daicel CHIRALPAK IC-3 ($4.6 \mathrm{~mm} \times 250 \mathrm{~mm}, 3 \mu \mathrm{~m}$ particle size) n-hexane/EtOAc 95:5, $1 \mathrm{~mL} / \mathrm{min}$ flow rate, detection at $273 \mathrm{~nm} . R-186 \mathrm{j}: t_{r}=15.0 \mathrm{~min} . s-186 \mathrm{j}: t_{r}=19.3 \mathrm{~min}$.

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	14.872		0.4534	2565.91406	85.42355	95.5278
2	19.047	MM	0.8916	120.12537	2.24563	4.4722

Compound s-187e and R-187e were examined by HPLC with a Daicel CHIRALPAK IA-3 (4.6 mm x $250 \mathrm{~mm}, 3 \mu \mathrm{~m}$ particle size) n-hexane $/ i-\operatorname{PrOH} 50: 50,1 \mathrm{~mL} / \mathrm{min}$ flow rate, detection at 250 nm . $s-187 \mathrm{e}: t_{r}=10.1 \mathrm{~min} . R-187 \mathrm{e}: t_{r}=7.8 \mathrm{~min}$.

Mixture of s-187e and R-187e

Compound rac-187f and s-187f were examined by HPLC with a Daicel CHIRALPAK IA-3 (4.6 mm x $250 \mathrm{~mm}, 3 \mu \mathrm{~m}$ particle size) n-hexane $/ i-\operatorname{PrOH} 50: 50,1 \mathrm{~mL} / \mathrm{min}$ flow rate, detection at 250 nm . s-187f: $t_{r}=10.1 \mathrm{~min} . R$-187f: $t_{r}=8.0 \mathrm{~min}$.

rac-187f

$s-187 f$

Compound rac-187I and R-187I were examined by HPLC with a Daicel CHIRALPAK IC-3 $14.6 \mathrm{~mm} x$ $250 \mathrm{~mm}, 3 \mu \mathrm{~m}$ particle size) n-hexane/EtOAc $85: 15,1 \mathrm{~mL} / \mathrm{min}$ flow rate, detection at 274 nm . R-1871: $t_{r}=13.6 \mathrm{~min} . s-187 \mathrm{I}: t_{r}=14.8 \mathrm{~min}$.

5.3.4.6 Fluorescence Spectra

Concentration of sample: $1 \mathrm{mg} / \mathrm{L}_{\mathrm{in}} \mathrm{CHCl}_{3}$

Figure 35: Excitation/emission fluorescence spectrum of 187a.

Figure 36: Excitation/emission fluorescence spectrum of 187b.

Figure 37: Emission fluorescence spectra of 187a and 187b (excitation at 502 nm).

5.3.4.7 X-Ray Crystallographic Analysis

A suitable crystal was selected and the crystal was mounted on a MITIGEN holder in NVH oil on a Bruker D8 Venture diffractometer. The crystal was kept at 100 or 150 K during data collection. Using Olex2, ${ }^{[137]}$ the structure was solved with the $\mathrm{XT}^{[138]}$ structure solution program using Intrinsic Phasing and refined with the $\mathrm{XL}^{[139]}$ refinement package using Least Squares minimisation.

Figure 38: Molecular structure of 143a with thermal ellipoids at 50\% probability level. The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2}(M=260.33 \mathrm{~g} / \mathrm{mol})$: orthorhombic, space group Pca2 ${ }_{1}$ (no. 29), $a=$ $12.2928(3) \AA \AA, b=6.01020(10) \AA, \quad c=36.9034(9) \AA \AA, \quad V=2726.50(10) \AA^{3}, \quad Z=8, T=99.97 K$, $\mu(\mathrm{MoK} \alpha)=0.075 \mathrm{~mm}^{-1}$, Dcalc $=1.268 \mathrm{~g} / \mathrm{cm}^{3}, 28332$ reflections measured $\left(6.624^{\circ} \leq 2 \Theta \leq 59.142^{\circ}\right)$, 7604 unique ($R_{\text {int }}=0.0264, \mathrm{R}_{\text {sigma }}=0.0245$) which were used in all calculations. The final R_{1} was $0.0431(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.1162 (all data).

Table 38: Crystal data and structure refinement for 143a.

Compound	143a
CCDC number	1915687
Identification code	Pca21
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2}$
Formula weight	260.33
Temperature/K	99.97
Crystal system	orthorhombic
Space group	Pca2 ${ }_{1}$
a/Å	12.2928(3)
b/Å	6.01020(10)
c/Å	36.9034(9)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume/ ${ }^{3}$	2726.50(10)
Z	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.268
μ / mm^{-1}	0.075
F(000)	1104.0
Crystal size/mm ${ }^{3}$	$0.309 \times 0.268 \times 0.244$
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	6.624 to 59.142
Index ranges	$-17 \leq h \leq 17,-8 \leq k \leq 8,-51 \leq \mathrm{l} \leq 51$
Reflections collected	28332

Independent reflections	$7604\left[\mathrm{R}_{\text {int }}=0.0264, \mathrm{R}_{\text {sigma }}=0.0245\right]$
Data/restraints/parameters	$7604 / 151 / 452$
Goodness-of-fit on F^{2}	1.050
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0431, \mathrm{wR}_{2}=0.1153$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0443, \mathrm{wR}_{2}=0.1162$
Largest diff. peak/hole /e \AA^{-3}	$0.52 /-0.25$
Flack parameter	$-0.2(5)$

Table 39: Bond lengths [Å] for 143a.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
N1	C1	$1.342(3)$	C7	C11	$1.541(3)$
N1	C4	$1.337(2)$	C8	C9	$1.403(3)$
N2	C3	$1.334(3)$	C9	C10	$1.388(3)$
N2	C4	$1.342(3)$	C11	C12	$1.524(3)$
C1	C2	$1.378(3)$	C11	C18	$1.522(3)$
C2	C3	$1.391(3)$	C12	C13	$1.393(3)$
C4	C5	$1.486(3)$	C12	C17	$1.384(4)$
C5	C6	$1.394(3)$	C13	C14	$1.397(3)$
C5	C10	$1.396(3)$	C14	C15	$1.388(4)$
C6	C7	$1.399(3)$	C15	C16	$1.379(4)$
C7	C8	$1.391(3)$	C16	C17	$1.385(4)$

Table 40: Bond angles [${ }^{\circ}$] for 143a.

Atom	Atom	Atom	Angle/ $^{\circ}$	Atom	Atom	Atom	Angle/ $^{\circ}$
C4	N1	C1	$116.03(18)$	C7	C8	C9	$120.75(19)$
C3	N2	C4	$116.4(2)$	C10	C9	C8	$120.37(19)$
N1	C1	C2	$122.9(2)$	C9	C10	C5	$119.62(19)$
C1	C2	C3	$116.23(19)$	C12	C11	C7	$109.22(17)$
N2	C3	C2	$122.4(2)$	C18	C11	C7	$113.9(2)$
N1	C4	N2	$126.02(18)$	C18	C11	C12	$111.3(2)$
N1	C4	C5	$117.10(17)$	C13	C12	C11	$122.1(2)$

Atom	Atom	Atom	Angle $^{\circ}$	Atom	Atom	Atom $^{\text {Angle }}{ }^{\circ}$	
N2	C 4	C 5	$116.87(17)$	C 17	C 12	C 11	$119.1(2)$
C 6	C 5	C 4	$119.36(17)$	C 17	C 12	C 13	$118.8(2)$
C 6	C 5	C 10	$119.46(18)$	C 12	C 13	C 14	$120.3(2)$
C 10	C 5	C 4	$121.18(17)$	C 15	C 14	C 13	$119.8(2)$
C 5	C 6	C 7	$121.70(19)$	C 16	C 15	C 14	$119.9(2)$
C 6	C 7	C 11	$117.46(19)$	C 15	C 16	C 17	$120.1(2)$
C 8	C 7	C 6	$118.1(2)$	C 12	C 17	C 16	$121.1(2)$
C 8	C 7	C 11	$124.44(19)$				

Figure 39: Molecular structure of 143b with thermal ellipoids at 50\% probability level. The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}(M=276.33 \mathrm{~g} / \mathrm{mol})$: orthorhombic, space group Pbca (no. 61), $a=$ 18.7085(6) $\AA, b=6.2302(2) \AA, c=24.4878(10) \AA, V=2854.24(17) \AA^{3}, Z=8, T=100.0 K, \mu(\mathrm{MoK} \alpha)=$ $0.081 \mathrm{~mm}^{-1}$, Dcalc $=1.286 \mathrm{~g} / \mathrm{cm}^{3}, 37416$ reflections measured $\left(4.354^{\circ} \leq 2 \Theta \leq 59.152^{\circ}\right), 3996$ unique ($R_{\text {int }}=0.0318, \mathrm{R}_{\text {sigma }}=0.0169$) which were used in all calculations. The final R_{1} was 0.0436 ($\mathrm{I}>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.1102 (all data).

Table 41: Crystal data and structure refinement for 143b.

Compound	143b
CCDC number	1915683

Identification code	Pbca
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	276.33
Temperature/K	100.0
Crystal system	orthorhombic
Space group	Pbca
a/Å	18.7085(6)
b/Å	6.2302(2)
c/Å	24.4878(10)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\mathrm{V} /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	2854.24(17)
Z	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.286
μ / mm^{-1}	0.081
F(000)	1168.0
Crystal size/mm ${ }^{3}$	$0.251 \times 0.204 \times 0.076$
Radiation	MoKa ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ}$	4.354 to 59.152
Index ranges	$-21 \leq h \leq 25,-8 \leq k \leq 8,-33 \leq 1 \leq 33$
Reflections collected	37416
Independent reflections	$3996\left[\mathrm{R}_{\text {int }}=0.0318, \mathrm{R}_{\text {sigma }}=0.0169\right]$
Data/restraints/parameters	3996/0/191
Goodness-of-fit on F^{2}	1.068
Final R indexes [$1>=2 \sigma(1)]$	$\mathrm{R}_{1}=0.0436, w \mathrm{R}_{2}=0.1080$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0469, \mathrm{wR}_{2}=0.1102$
Largest diff. peak/hole / e \AA^{-3}	0.37/-0.23

Table 42: Bond lengths [\AA] for 143b.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O1	C1	$1.4292(13)$	C6	C7	$1.3970(14)$
O1	C2	$1.3748(12)$	C8	C9	$1.5199(13)$
N1	C15	$1.3420(13)$	C9	C10	$1.3965(14)$
N1	C16	$1.3384(14)$	C9	C14	$1.3961(13)$
N2	C15	$1.3436(13)$	C10	C11	$1.3915(14)$
N2	C18	$1.3394(15)$	C11	C12	$1.3880(14)$
C2	C3	$1.3954(13)$	C12	C13	$1.3999(14)$
C2	C7	$1.3883(14)$	C13	C14	$1.3976(13)$
C3	C4	$1.3854(14)$	C13	C15	$1.4850(14)$
C4	C5	$1.4001(13)$	C16	C17	$1.3807(17)$
C5	C6	$1.3907(13)$	C17	C18	$1.3810(18)$
C5	C8	$1.5123(13)$			

Table 43: Bond angles [${ }^{\circ}$] for 143b.

Atom	Atom	Atom	Angle/ $^{\circ}$	Atom	Atom	Atom	Angle/ $^{\circ}$
C2	O1	C1	$117.38(8)$	C14	C9	C8	$119.58(9)$
C16	N1	C15	$116.26(10)$	C14	C9	C10	$118.70(9)$
C18	N2	C15	$116.37(10)$	C11	C10	C9	$120.51(9)$
O1	C2	C3	$115.48(9)$	C12	C11	C10	$120.57(9)$
O1	C2	C7	$124.56(9)$	C11	C12	C13	$119.69(9)$
C7	C2	C3	$119.95(9)$	C12	C13	C15	$119.76(9)$
C4	C3	C2	$119.97(9)$	C14	C13	C12	$119.40(9)$
C3	C4	C5	$121.13(9)$	C14	C13	C15	$120.79(9)$
C4	C5	C8	$120.37(9)$	C9	C14	C13	$121.12(9)$
C6	C5	C4	$117.99(9)$	N1	C15	N2	$125.58(10)$
C6	C5	C8	$121.62(9)$	N1	C15	C13	$117.25(9)$
C5	C6	C7	$121.62(9)$	N2	C15	C13	$117.17(9)$
C2	C7	C6	$119.33(9)$	N1	C16	C17	$122.81(11)$
C5	C8	C9	$115.13(8)$	C16	C17	C18	$116.37(10)$

Atom	Atom	Atom	Angle/ $^{\circ}$	Atom	Atom	Atom	Angle/ $^{\circ}$
C 10	C 9	C 8	$121.71(9)$	N 2	C 18	C 17	$122.60(11)$

Figure 40: Molecular structure of $\mathbf{1 4 3 g}$ with thermal ellipoids at 50% probability level. The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{O}(M=294.32 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{P}_{1} / \mathrm{c}$ (no. 14), $a=$ 8.1191(4) A, $b=5.6386(3) \AA, c=31.0628(17) \AA, \quad b=93.276(2)^{\circ}, V=1419.74(13) \AA^{3}, Z=4, T=$ $99.98 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.096 \mathrm{~mm}^{-1}$, Dcalc $=1.377 \mathrm{~g} / \mathrm{cm}^{3}, 20105$ reflections measured $\left(5.026^{\circ} \leq 2 \Theta \leq\right.$ 59.122°), 3964 unique ($R_{\text {int }}=0.0168, \mathrm{R}_{\text {sigma }}=0.0125$) which were used in all calculations. The final R_{1} was $0.0370(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.1001 (all data).

Table 44: Crystal data and structure refinement for 143g.

Compound	$\mathbf{1 4 3 g}$
CCDC number	1915686
Identification code	mo_0182_CG_0m $^{\text {Empirical formula }} \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{O}$
Formula weight	294.32
Temperature/K	99.98
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{c}$
a/Å	$8.1191(4)$
b/Å	$5.6386(3)$

c/Å	31.0628(17)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	93.276(2)
$\mathrm{V} /{ }^{\circ}$	90
Volume/ ${ }^{3}$	1419.74(13)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.377
μ / mm^{-1}	0.096
F(000)	616.0
Crystal size/mm ${ }^{3}$	$0.426 \times 0.412 \times 0.326$
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	5.026 to 59.122
Index ranges	$-11 \leq \mathrm{h} \leq 11,-7 \leq \mathrm{k} \leq 7,-43 \leq \mathrm{l} \leq 39$
Reflections collected	20105
Independent reflections	3964 [$\left.\mathrm{intr}^{\text {in }}=0.0168, \mathrm{R}_{\text {sigma }}=0.0125\right]$
Data/restraints/parameters	3964/0/200
Goodness-of-fit on F^{2}	1.039
Final R indexes [$1>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0370, \mathrm{wR}_{2}=0.0984$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0389, \mathrm{wR}_{2}=0.1001$
Largest diff. peak/hole / e \AA^{-3}	0.43/-0.19

Table 45: Bond lengths [\AA] for 143g.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
F1	C1	$1.3658(10)$	C4	C7	$1.4836(12)$
O1	C15	$1.3692(11)$	C5	C6	$1.3964(12)$
O1	C18	$1.4255(12)$	C6	C11	$1.5157(12)$
N1	C7	$1.3444(12)$	C8	C9	$1.3867(14)$
N1	C8	$1.3381(12)$	C9	C10	$1.3840(15)$
N2	C7	$1.3431(11)$	C11	C12	$1.5145(12)$
N2	C10	$1.3342(12)$	C12	C13	$1.3920(12)$
C1	C2	$1.3830(13)$	C12	C17	$1.3964(13)$

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C1	C6	$1.3860(13)$	C13	C14	$1.3952(13)$
C2	C3	$1.3880(12)$	C14	C15	$1.3929(12)$
C3	C4	$1.3963(12)$	C15	C16	$1.3945(13)$
C4	C5	$1.3949(12)$	C16	C17	$1.3873(13)$

Table 46: Bond angles [${ }^{\circ}$] for 143g.

Atom	Atom	Atom $^{\text {Angle/ }}{ }^{\circ}$	Atom	Atom	Atom	Angle/ $^{\circ}$	
C15	O1	C18	$116.57(8)$	N2	C7	N1	$125.87(8)$
C8	N1	C7	$116.46(8)$	N2	C7	C4	$116.77(8)$
C10	N2	C7	$116.10(8)$	N1	C8	C9	$122.20(9)$
F1	C1	C2	$117.78(8)$	C10	C9	C8	$116.53(9)$
F1	C1	C6	$118.51(8)$	N2	C10	C9	$122.85(9)$
C2	C1	C6	$123.71(8)$	C12	C11	C6	$111.51(7)$
C1	C2	C3	$118.22(8)$	C13	C12	C11	$120.96(8)$
C2	C3	C4	$120.48(8)$	C13	C12	C17	$117.98(8)$
C3	C4	C7	$119.94(8)$	C17	C12	C11	$121.03(8)$
C5	C4	C3	$119.27(8)$	C12	C13	C14	$121.67(8)$
C5	C4	C7	$120.79(8)$	C15	C14	C13	$119.26(8)$
C4	C5	C6	$121.60(8)$	O1	C15	C14	$124.28(8)$
C1	C6	C5	$116.69(8)$	O1	C15	C16	$115.79(8)$
C1	C6	C11	$122.40(8)$	C14	C15	C16	$119.92(8)$
C5	C6	C11	$120.90(8)$	C17	C16	C15	$119.86(8)$
N1	C7	C4	$117.36(8)$	C16	C17	C12	$121.29(8)$

Figure 41: Molecular structure of 143j with thermal ellipoids at 50\% probability level. The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FN}_{2}(M=278.32 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{P}_{1} / \mathrm{c}$ (no. 14), $a=$ 19.3115(8) \AA, $b=5.8472(3) \AA, c=12.7090(5) \AA \AA, B=106.294(2)^{\circ}, V=1377.44(11) \AA^{3}, Z=4, T=$ $100.01 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.089 \mathrm{~mm}^{-1}$, Dcalc $=1.342 \mathrm{~g} / \mathrm{cm}^{3}, 39008$ reflections measured $\left(4.394^{\circ} \leq 2 \Theta \leq\right.$ $\left.59.996^{\circ}\right), 4019$ unique $\left(R_{\text {int }}=0.0356, \mathrm{R}_{\text {sigma }}=0.0218\right)$ which were used in all calculations. The final R_{1} was 0.0533 (I > $2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.1230 (all data).

Table 47: Crystal data and structure refinement for 143j.

Compound	143j
CCDC number	1915684
Identification code	mo_0065_CG_0m
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FN}_{2}$
Formula weight	278.32
Temperature/K	100.01
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{c}$
a/Å	19.3115(8)
b/Å	5.8472(3)
c/Å	12.7090(5)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	106.294(2)

$\mathrm{V} /{ }^{\circ}$	90
Volume/ ${ }^{\text {a }}$	1377.44(11)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.342
μ / mm^{-1}	0.089
F(000)	584.0
Crystal size/mm ${ }^{3}$	$0.29 \times 0.17 \times 0.065$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.394 to 59.996
Index ranges	$-26 \leq \mathrm{h} \leq 27,-8 \leq \mathrm{k} \leq 8,-17 \leq \mathrm{l} \leq 17$
Reflections collected	39008
Independent reflections	4019 [$\left.\mathrm{intr}^{\text {int }}=0.0356, \mathrm{R}_{\text {sigma }}=0.0218\right]$
Data/restraints/parameters	4019/36/295
Goodness-of-fit on F^{2}	1.183
Final R indexes [$1>=2 \sigma(1)]$	$\mathrm{R}_{1}=0.0533, \mathrm{wR}_{2}=0.1197$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0588, \mathrm{wR}_{2}=0.1230$
Largest diff. peak/hole / e \AA^{-3}	0.40/-0.33

Table 48: Selected bond lengths [$\AA \AA$] for 143j.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
F1	C1A	$1.374(3)$	C7A	C8A	$1.528(3)$
N1	C15	$1.3446(17)$	C7A	C9A	$1.528(3)$
N1	C16	$1.3374(19)$	C9A	C10A	$1.391(3)$
N2	C15	$1.3429(17)$	C9A	C14A	$1.395(3)$
N2	C18	$1.3355(18)$	C10A	C11A	$1.388(4)$
C1A	C2A	$1.373(4)$	C11A	C12A	$1.375(4)$
C1A	C6A	$1.382(4)$	C12A	C13A	$1.399(4)$
C2A	C3A	$1.382(4)$	C13A	C14A	$1.395(3)$
C3A	C4A	$1.396(3)$	C13A	C15	$1.478(3)$
C4A	C5A	$1.392(3)$	C16	C17	$1.379(2)$
C4A	C7A	$1.526(3)$	C17	C18	$1.380(2)$

Atom	Atom	Length/Å	Atom	Atom	Length/A
C 5 A	C 6 A	$1.395(4)$			

Table 49: Selected bond angles [${ }^{\circ}$] for $\mathbf{1 4 3 j}$.

Atom	Atom	Atom	Angle/ $^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C16	N1	C15	$116.14(12)$	C10A	C9A	C14A	$117.9(2)$
C18	N2	C15	$116.38(12)$	C14A	C9A	C7A	$118.4(2)$
F1	C1A	C6A	$114.0(4)$	C11A	C10A	C9A	$120.9(2)$
C2A	C1A	F1	$122.3(4)$	C12A	C11A	C10A	$120.2(3)$
C2A	C1A	C6A	$123.7(3)$	C11A	C12A	C13A	$120.8(3)$
C1A	C2A	C3A	$117.9(3)$	C12A	C13A	C15	$122.2(3)$
C2A	C3A	C4A	$121.3(2)$	C14A	C13A	C12A	$118.0(2)$
C3A	C4A	C7A	$120.0(2)$	C14A	C13A	C15	$119.7(3)$
C5A	C4A	C3A	$118.6(2)$	C13A	C14A	C9A	$122.2(2)$
C5A	C4A	C7A	$121.4(3)$	N1	C15	C13A	$118.11(19)$
C4A	C5A	C6A	$121.4(2)$	N2	C15	N1	$125.54(13)$
C1A	C6A	C5A	$117.1(3)$	N2	C15	C13A	$116.36(19)$
C4A	C7A	C8A	$111.63(18)$	N1	C16	C17	$122.83(13)$
C4A	C7A	C9A	$109.42(19)$	C16	C17	C18	$116.39(13)$
C8A	C7A	C9A	$114.46(18)$	N2	C18	C17	$122.71(14)$
C10A	C9A	C7A	$123.7(2)$				

Figure 42: Molecular structure of 185ai with thermal ellipoids at 50\% probability level. The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{FN}_{4}(M=346.40 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{P} 2_{1} / \mathrm{c}$ (no. 14), $a=$ 11.2425(7) $\AA, b=9.3295(6) \AA, c=16.3348(11) \AA, B=94.764(2)^{\circ}, V=1707.39(19) \AA^{3}, Z=4, T=$ $99.98 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.090 \mathrm{~mm}^{-1}$, Dcalc $=1.348 \mathrm{~g} / \mathrm{cm}^{3}, 5632$ reflections measured $\left(5.004^{\circ} \leq 2 \Theta \leq\right.$ 63.084°), 5632 unique ($R_{\text {int }}=0.0, \mathrm{R}_{\text {sigma }}=0.0206$) which were used in all calculations. The final R_{1} was $0.0392(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.1096 (all data).

Table 50: Crystal data and structure refinement for 185ai.

Compound	185ai
CCDC number	1915675
Identification code	mo_0272_CG_0m_4
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{FN}_{4}$
Formula weight	346.40
Temperature/K	99.98
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{c}$
a/Å	11.2425(7)
b/Å	9.3295(6)
c/Å	16.3348(11)
$\alpha /{ }^{\circ}$	90

$\beta /{ }^{\circ}$	94.764(2)
$\mathrm{V} /{ }^{\circ}$	90
Volume/ ${ }^{3}{ }^{3}$	1707.39(19)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.348
μ / mm^{-1}	0.090
F(000)	728.0
Crystal size/mm ${ }^{3}$	$0.424 \times 0.247 \times 0.21$
Radiation	MoK α ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ}$	5.004 to 63.084
Index ranges	$-16 \leq h \leq 16,13 \leq \mathrm{k} \leq 0,24 \leq \mathrm{l} \leq 0$
Reflections collected	5632
Independent reflections	$5632\left[\mathrm{R}_{\text {int }}=0.0, \mathrm{R}_{\text {sigma }}=0.0206\right]$
Data/restraints/parameters	5632/0/237
Goodness-of-fit on F^{2}	1.041
Final R indexes [$1>=2 \sigma(1)$]	$\mathrm{R}_{1}=0.0392, \mathrm{wR}_{2}=0.1076$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0428, \mathrm{wR}_{2}=0.1096$
Largest diff. peak/hole / e \AA^{-3}	0.44/-0.27

Table 51: Bond lengths [Å] for 185ai.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
F1	C1	$1.3554(11)$	C4	C7	$1.5150(12)$
N1	C14	$1.3502(10)$	C5	C6	$1.3911(13)$
N1	C15	$1.3397(11)$	C7	C8	$1.5132(12)$
N2	C15	$1.3367(11)$	C8	C9	$1.3925(11)$
N2	C16	$1.3337(10)$	C8	C13	$1.3960(12)$
N3	C16	$1.3730(10)$	C9	C10	$1.4001(11)$
N3	C17	$1.3691(10)$	C10	C11	$1.4004(11)$
N3	C19	$1.4762(10)$	C10	C14	$1.4770(11)$
N4	C17	$1.3179(11)$	C11	C12	$1.3882(12)$
N4	C18	$1.3913(10)$	C12	C13	$1.3908(12)$

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C1	C2	$1.3774(13)$	C14	C18	$1.4032(11)$
C1	C6	$1.3841(12)$	C16	C18	$1.4076(11)$
C2	C3	$1.3891(14)$	C19	C20	$1.5227(13)$
C3	C4	$1.3948(12)$	C19	C21	$1.5200(12)$
C4	C5	$1.3969(11)$			

Table 52: Bond angles [${ }^{\circ}$] for 185ai.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C15	N1	C14	119.49(7)	C9	C10	C11	119.40(7)
C16	N2	C15	111.22(7)	C9	C10	C14	119.41(7)
C16	N3	C19	125.59(7)	C11	C10	C14	121.19(7)
C17	N3	C16	105.56(7)	C12	C11	C10	119.80(8)
C17	N3	C19	128.70(7)	C11	C12	C13	120.20(8)
C17	N4	C18	104.01(7)	C12	C13	C8	120.91(8)
F1	C1	C2	118.70(8)	N1	C14	C10	117.00(7)
F1	C1	C6	118.57(8)	N1	C14	C18	117.75(7)
C2	C1	C6	122.73(9)	C18	C14	C10	125.25(7)
C1	C2	C3	117.97(8)	N2	C15	N1	128.32(8)
C2	C3	C4	121.76(8)	N2	C16	N3	126.86(7)
C3	C4	C5	118.12(8)	N2	C16	C18	126.84(7)
C3	C4	C7	120.23(8)	N3	C16	C18	106.29(7)
C5	C4	C7	121.63(8)	N4	C17	N3	114.51(7)
C6	C5	C4	121.33(8)	N4	C18	C14	134.05(7)
C1	C6	C5	118.10(8)	N4	C18	C16	109.63(7)
C8	C7	C4	114.04(7)	C14	C18	C16	116.32(7)
C9	C8	C7	120.19(8)	N3	C19	C20	109.47(7)
C9	C8	C13	118.62(8)	N3	C19	C21	110.16(7)
C13	C8	C7	121.19(8)	C21	C19	C20	112.01(7)
C8	C9	C10	121.07(7)				

Figure 43: Molecular structure of 185aj with thermal ellipoids at 50\% probability level. The hydrogen atoms are omitted for clarity

Crystal Data for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{ClN}_{4}(M=362.85 \mathrm{~g} / \mathrm{mol})$: triclinic, space group P-1 (no. 2), $a=8.9649$ (8) \AA, $b=9.9520(7) \AA, c=11.7814(11) \AA, \alpha=100.554(3)^{\circ}, \quad b=105.986(3)^{\circ}, \quad \gamma=111.878(2)^{\circ}, \quad V=$ $888.28(13) \AA^{3}, Z=2, T=100.0 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.227 \mathrm{~mm}^{-1}$, Dcalc $=1.357 \mathrm{~g} / \mathrm{cm}^{3}, 12425$ reflections measured $\left(4.656^{\circ} \leq 2 \Theta \leq 63.036^{\circ}\right), 5883$ unique ($R_{\text {int }}=0.0176, R_{\text {sigma }}=0.0255$) which were used in all calculations. The final R_{1} was $0.0376(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.1059 (all data).

Table 53: Crystal data and structure refinement for 185aj.

Compound	185aj
CCDC number	1915610
Identification code	mo_0273_CG_0m
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{ClN}_{4}$
Formula weight	362.85
Temperature/K	100.0
Crystal system	triclinic
Space group	$\mathrm{P}-1$
$\mathrm{~b} / \AA \AA$	$8.9649(8)$
$\mathrm{c} / \AA 8$	$9.9520(7)$
$\alpha /{ }^{\circ}$	$11.7814(11)$
$\beta /{ }^{\circ}$	$100.554(3)$
$\mathrm{Y} /{ }^{\circ}$	$105.986(3)$

Volume/Å ${ }^{3}$	888.28(13)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.357
μ / mm^{-1}	0.227
F(000)	380.0
Crystal size/mm ${ }^{3}$	$0.287 \times 0.198 \times 0.162$
Radiation	MoK α ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ}$	4.656 to 63.036
Index ranges	$-13 \leq h \leq 9,-14 \leq k \leq 14,-17 \leq 1 \leq 17$
Reflections collected	12425
Independent reflections	$5883\left[\mathrm{R}_{\text {int }}=0.0176, \mathrm{R}_{\text {sigma }}=0.0255\right]$
Data/restraints/parameters	5883/0/237
Goodness-of-fit on F^{2}	1.078
Final R indexes [$1>=2 \sigma(1)$]	$\mathrm{R}_{1}=0.0376, \mathrm{wR}_{2}=0.1031$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0407, \mathrm{wR}_{2}=0.1059$
Largest diff. peak/hole / e \AA^{-3}	0.49/-0.52

Table 54: Bond lengths [Å] for 185aj.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Cl1	C1	$1.7425(10)$	C 4	C 7	$1.5099(15)$
N1	C 14	$1.3485(12)$	C 5	C 6	$1.3913(15)$
N1	C 15	$1.3365(12)$	C 7	C 8	$1.5123(14)$
N2	C 15	$1.3376(12)$	C 8	C 9	$1.3949(13)$
N2	C 16	$1.3310(12)$	C 8	C 13	$1.3933(15)$
N3	C 16	$1.3715(11)$	C 9	C 10	$1.4013(13)$
N3	C 18	$1.3729(12)$	C 10	C 11	$1.3992(13)$
N3	C 19	$1.4755(12)$	C 10	C 14	$1.4782(13)$
N4	C 17	$1.3905(12)$	C 11	C 12	$1.3905(13)$
N4	C 18	$1.3172(12)$	C 12	C 13	$1.3885(15)$
C1	C 2	$1.3885(13)$	C 14	C 17	$1.4048(12)$
C1	C 6	$1.3821(14)$	C 16	C 17	$1.4063(12)$

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C2	C3	$1.3915(14)$	C19	C20	$1.5140(16)$
C3	C4	$1.3956(14)$	C19	C21	$1.5035(16)$
C4	C5	$1.3920(15)$			

Table 55: Bond angles [${ }^{\circ}$] for 185aj.

Atom	Atom	Atom	Angle/ $^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C15	N1	C14	$119.56(8)$	C9	C10	C14	$119.50(8)$
C16	N2	C15	$111.07(8)$	C11	C10	C9	$119.16(9)$
C16	N3	C18	$105.30(8)$	C11	C10	C14	$121.32(8)$
C16	N3	C19	$124.64(8)$	C12	C11	C10	$119.88(9)$
C18	N3	C19	$130.03(8)$	C13	C12	C11	$120.36(10)$
C18	N4	C17	$104.07(8)$	C12	C13	C8	$120.72(9)$
C2	C1	C11	$119.39(8)$	N1	C14	C10	$117.03(8)$
C6	C1	C11	$118.85(8)$	N1	C14	C17	$117.62(8)$
C6	C1	C2	$121.76(9)$	C17	C14	C10	$125.36(8)$
C1	C2	C3	$118.39(9)$	N1	C15	N2	$128.45(9)$
C2	C3	C4	$121.37(9)$	N2	C16	N3	$126.45(8)$
C3	C4	C7	$121.12(9)$	N2	C16	C17	$126.96(8)$
C5	C4	C3	$118.47(9)$	N3	C16	C17	$106.58(8)$
C5	C4	C7	$120.31(9)$	N4	C17	C14	$134.12(8)$
C6	C5	C4	$121.19(9)$	N4	C17	C16	$109.54(8)$
C1	C6	C5	$118.82(9)$	C14	C17	C16	$116.33(8)$
C4	C7	C8	$115.92(8)$	N4	C18	N3	$114.51(8)$
C9	C8	C7	$120.82(10)$	N3	C19	C20	$110.46(8)$
C13	C8	C7	$120.33(9)$	N3	C19	C21	$110.84(9)$
C13	C8	C9	$118.79(9)$	C21	C19	C20	$112.70(12)$
C9	C10	$121.08(9)$					

Figure 44: Molecular structure of 185hb with thermal ellipoids at 50\% probability level. The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}(M=434.48 \mathrm{~g} / \mathrm{mol})$: triclinic, space group P-1 (no. 2), $a=6.3344$ (7) \AA, $b=12.4251(18) \AA, c=13.9524(19) \AA, \alpha=106.848(5)^{\circ}, \quad b=91.291(5)^{\circ}, \quad \gamma=93.640(5)^{\circ}, \quad V=$ 1047.9(2) $\AA^{3}, Z=2, T=100.01 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.089 \mathrm{~mm}^{-1}$, Dcalc $=1.377 \mathrm{~g} / \mathrm{cm}^{3}, 38890$ reflections measured $\left(5.22^{\circ} \leq 2 \Theta \leq 63.094^{\circ}\right)$, 7003 unique ($R_{\text {int }}=0.0243$, $\mathrm{R}_{\text {sigma }}=0.0175$) which were used in all calculations. The final R_{1} was $0.0393(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.1124 (all data).

Table 56: Crystal data and structure refinement for 185 hb .

Compound	185hb
CCDC number	1915681
Identification code	mo_0250_CG_0m
Empirical formula	$\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}$
Formula weight	434.48
Temperature/K	100.01
Crystal system	triclinic
Space group	$\mathrm{P}-1$

a/Å	6.3344(7)
b/Å	12.4251(18)
c/Å	13.9524(19)
$\alpha /{ }^{\circ}$	106.848(5)
$\beta /{ }^{\circ}$	91.291(5)
$\mathrm{V} /{ }^{\circ}$	93.640(5)
Volume/ \AA^{3}	1047.9(2)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.377
μ / mm^{-1}	0.089
F(000)	456.0
Crystal size/mm ${ }^{3}$	$0.567 \times 0.17 \times 0.062$
Radiation	MoK α ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ}$	5.22 to 63.094
Index ranges	$-9 \leq h \leq 9,-18 \leq k \leq 18,-20 \leq \mathrm{l} \leq 20$
Reflections collected	38890
Independent reflections	$7003\left[\mathrm{R}_{\text {int }}=0.0243, \mathrm{R}_{\text {sigma }}=0.0175\right]$
Data/restraints/parameters	7003/0/300
Goodness-of-fit on F^{2}	1.045
Final R indexes [$1>=2 \sigma(1)]$	$\mathrm{R}_{1}=0.0393, \mathrm{wR}_{2}=0.1089$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0433, \mathrm{wR}_{2}=0.1124$
Largest diff. peak/hole / e \AA^{-3}	0.47/-0.23

Table 57: Bond lengths [Å] for 185hb.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O1	C1	$1.4302(11)$	C8	C9	$1.5137(12)$
O1	C2	$1.3665(10)$	C9	C10	$1.3900(12)$
O2	C26	$1.2206(11)$	C9	C14	$1.3993(13)$
N1	C15	$1.3497(11)$	C10	C11	$1.4028(11)$
N1	C16	$1.3356(11)$	C11	C12	$1.4009(12)$
N2	C16	$1.3425(11)$	C 11	C 15	$1.4799(12)$

Atom	Atom	Length/Å	Atom	Atom	Length/Å
N2	C17	$1.3333(10)$	C12	C13	$1.3930(13)$
N3	C18	$1.3907(11)$	C13	C14	$1.3911(13)$
N3	C19	$1.3055(11)$	C15	C18	$1.4012(11)$
N4	C17	$1.3881(10)$	C17	C18	$1.4052(11)$
N4	C19	$1.3875(11)$	C20	C21	$1.3907(12)$
N4	C20	$1.4193(11)$	C20	C25	$1.3985(11)$
C2	C3	$1.3901(12)$	C21	C22	$1.3892(12)$
C2	C7	$1.3984(12)$	C22	C23	$1.3957(12)$
C3	C4	$1.3973(12)$	C23	C24	$1.3966(12)$
C4	C5	$1.3902(12)$	C23	C26	$1.4906(12)$
C5	C6	$1.3994(12)$	C24	C25	$1.3853(12)$
C5	C8	$1.5085(12)$	C26	C27	$1.5076(13)$
C6	C7	$1.3844(12)$			

Table 58: Bond angles [${ }^{\circ}$] for 185 hb .

Atom	Atom	Atom $^{\text {Angle }}{ }^{\circ}$	Atom	Atom	Atom	Angle/ $^{\circ}$	
C2	O1	C1	$116.58(7)$	C14	C13	C12	$120.74(9)$
C16	N1	C15	$119.31(7)$	C13	C14	C9	$120.36(8)$
C17	N2	C16	$111.49(7)$	N1	C15	C11	$116.88(7)$
C19	N3	C18	$104.44(7)$	N1	C15	C18	$117.56(8)$
C17	N4	C20	$129.35(7)$	C18	C15	C11	$125.50(8)$
C19	N4	C17	$105.13(7)$	N1	C16	N2	$128.45(8)$
C19	N4	C20	$125.52(7)$	N2	C17	N4	$128.29(8)$
O1	C2	C3	$124.61(8)$	N2	C17	C18	$125.97(8)$
O1	C2	C7	$115.72(8)$	N4	C17	C18	$105.73(7)$
C3	C2	C7	$119.66(8)$	N3	C18	C15	$132.49(8)$
C2	C3	C4	$119.19(8)$	N3	C18	C17	$110.28(7)$
C5	C4	C3	$121.92(8)$	C15	C18	C17	$117.21(7)$
C4	C5	C6	$117.86(8)$	N3	C19	N4	$114.39(7)$
C4	C5	C8	$121.14(8)$	C21	C20	N4	$120.61(7)$

Atom	Atom	Atom	Angle/ $^{\circ}$	Atom	Atom	Atom	Angle/ $^{\circ}$
C6	C5	C 8	$120.92(8)$	C 21	C 20	C 25	$120.25(8)$
C 7	C 6	C 5	$121.06(8)$	C 25	C 20	N 4	$119.14(7)$
C 6	C 7	C 2	$120.24(8)$	C 22	C 21	C 20	$119.57(8)$
C 5	C 8	C 9	$116.24(7)$	C 21	C 22	C 23	$120.87(8)$
C 10	C 9	C 8	$119.52(8)$	C 22	C 23	C 24	$118.79(8)$
C 10	C 9	C 14	$118.68(8)$	C 22	C 23	C 26	$122.55(8)$
C 14	C 9	C 8	$121.75(8)$	C 24	C 23	C 26	$118.65(7)$
C 9	C 10	C 11	$121.58(8)$	C 25	C 24	C 23	$120.92(8)$
C 10	C 11	C 15	$118.78(7)$	C 24	C 25	C 20	$119.50(8)$
C 12	C 11	C 10	$119.01(8)$	O 2	C 26	C 23	$120.55(8)$
C 12	C 11	C 15	$122.14(8)$	O 2	C 26	C 27	$121.26(8)$
C 13	C 12	C 11	$119.62(8)$	C 23	C 26	C 27	$118.16(7)$

Figure 45: Molecular structure of $\mathbf{1 8 5 k b}$ with thermal ellipoids at 50% probability level. The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{2}(M=533.66 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{P} 2_{1} / \mathrm{n}$ (no. 14), $a=$ $10.1416(6) \AA, b=27.4937(13) \AA$, $c=10.2461(6) \AA, B=101.977(2)^{\circ}, V=2794.7(3) \AA^{3}, Z=4, T=$ $100.0 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.081 \mathrm{~mm}^{-1}$, Dcalc $=1.268 \mathrm{~g} / \mathrm{cm}^{3}, 44140$ reflections measured $\left(5.03^{\circ} \leq 2 \Theta \leq\right.$ $\left.62.986^{\circ}\right), 9275$ unique ($R_{\text {int }}=0.0219, \mathrm{R}_{\text {sigma }}=0.0176$) which were used in all calculations. The final R_{1} was $0.0409(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.1117 (all data).

Table 59: Crystal data and structure refinement for $\mathbf{1 8 5 k b}$.

Compound	185kb
CCDC number	1915682
Identification code	mo_0241_CG_0m
Empirical formula	$\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{2}$
Formula weight	533.66
Temperature/K	100.0
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$
a/Å	10.1416(6)
b/Å	27.4937(13)
c/A	10.2461(6)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	101.977(2)
$\mathrm{V} /{ }^{\circ}$	90
Volume/ \AA^{3}	2794.7(3)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.268
μ / mm^{-1}	0.081
F(000)	1136.0
Crystal size/mm ${ }^{3}$	$0.438 \times 0.434 \times 0.37$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	5.03 to 62.986
Index ranges	$-14 \leq \mathrm{h} \leq 14,-40 \leq \mathrm{k} \leq 40,-15 \leq \mathrm{l} \leq 14$
Reflections collected	44140

Independent reflections	$9275\left[\mathrm{R}_{\text {int }}=0.0219, \mathrm{R}_{\text {sigma }}=0.0176\right]$
Data/restraints/parameters	$9275 / 0 / 366$
Goodness-of-fit on F^{2}	1.039
Final R indexes [l>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0409, \mathrm{wR}_{2}=0.1081$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0455, \mathrm{wR}_{2}=0.1117$
Largest diff. peak/hole $/ \mathrm{e}_{\mathrm{A}} \mathrm{A}^{-3}$	$0.46 /-0.24$

Table 60: Bond lengths [Å] for 185kb.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O1	C1	$1.4265(12)$	C8	C9	$1.5110(12)$
O1	C2	$1.3681(10)$	C9	C10	$1.3938(12)$
O2	C27	$1.2366(11)$	C9	C14	$1.3978(12)$
N1	C15	$1.3529(10)$	C10	C11	$1.3999(11)$
N1	C16	$1.3418(11)$	C11	C12	$1.4006(11)$
N2	C16	$1.3392(12)$	C11	C15	$1.4787(11)$
N2	C17	$1.3324(11)$	C12	C13	$1.3941(12)$
N3	C17	$1.3718(11)$	C13	C14	$1.3936(12)$
N3	C19	$1.3727(12)$	C15	C18	$1.3996(11)$
N3	C20	$1.4611(11)$	C17	C18	$1.4062(11)$
N4	C18	$1.3921(10)$	C20	C21	$1.5135(12)$
N4	C19	$1.3156(11)$	C21	C22	$1.3898(12)$
N5	C27	$1.3496(11)$	C21	C26	$1.3963(12)$
N5	C28	$1.4869(10)$	C22	C23	$1.3948(12)$
N5	C31	$1.4843(11)$	C23	C24	$1.3904(12)$
C2	C3	$1.3954(12)$	C24	C25	$1.3940(12)$
C2	C7	$1.3937(12)$	C24	C27	$1.5105(11)$
C3	C4	$1.3942(12)$	C25	C26	$1.3939(12)$
C4	C5	$1.3964(11)$	C28	C29	$1.5193(13)$
C5	C6	$1.3940(11)$	C28	C30	$1.5176(14)$
C5	C8	$1.5155(12)$	C31	C32	$1.5266(14)$
C6	C7	$1.3892(12)$	C31	C33	$1.5277(13)$

Table 61: Bond angles [${ }^{\circ}$] for $\mathbf{1 8 5 k b}$.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C2	01	C1	116.90(7)	N1	C15	C11	117.52(7)
C16	N1	C15	119.01(7)	N1	C15	C18	118.02(7)
C17	N2	C16	111.16(7)	C18	C15	C11	124.46(7)
C17	N3	C19	106.04(7)	N2	C16	N1	128.49(8)
C17	N3	C20	125.94(8)	N2	C17	N3	127.32(8)
C19	N3	C20	127.37(8)	N2	C17	C18	126.84(8)
C19	N4	C18	104.00(7)	N3	C17	C18	105.80(7)
C27	N5	C28	120.29(7)	N4	C18	C15	133.51(7)
C27	N5	C31	122.97(7)	N4	C18	C17	110.02(7)
C31	N5	C28	116.05(7)	C15	C18	C17	116.45(7)
01	C2	C3	124.48(8)	N4	C19	N3	114.12(8)
01	C2	C7	115.57(8)	N3	C20	C21	115.36(7)
C7	C2	C3	119.95(8)	C22	C21	C20	119.83(8)
C4	C3	C2	119.17(8)	C22	C21	C26	118.82(8)
C3	C4	C5	121.69(8)	C26	C21	C20	121.09(8)
C4	C5	C8	119.26(7)	C21	C22	C23	120.83(8)
C6	C5	C4	117.99(8)	C24	C23	C22	120.03(8)
C6	C5	C8	122.74(7)	C23	C24	C25	119.44(7)
C7	C6	C5	121.27(8)	C23	C24	C27	118.20(8)
C6	C7	C2	119.92(8)	C25	C24	C27	122.36(8)
C9	C8	C5	115.97(7)	C26	C25	C24	120.14(8)
C10	C9	C8	120.18(8)	C25	C26	C21	120.51(8)
C10	C9	C14	118.59(8)	02	C27	N5	123.26(8)
C14	C9	C8	121.21(8)	02	C27	C24	119.35(8)
C9	C10	C11	121.30(7)	N5	C27	C24	117.35(7)
C10	C11	C12	119.37(7)	N5	C28	C29	112.50(7)
C10	C11	C15	119.10(7)	N5	C28	C30	112.69(7)
C12	C11	C15	121.53(7)	C30	C28	C29	112.42(9)
C13	C12	C11	119.70(8)	N5	C31	C32	111.04(7)
C14	C13	C12	120.27(8)	N5	C31	C33	111.36(8)

Atom	Atom	Atom	Angle/	Atom	Atom	Atom	Angle/ $^{\circ}$
C 13	C 14	C 9	$120.76(8)$	C 32	C 31	C 33	$112.64(8)$

Figure 46: Molecular structure of 187a with thermal ellipoids at 50\% probability level. The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{BF}_{2} \mathrm{~N}_{6}(M=574.47 \mathrm{~g} / \mathrm{mol})$: triclinic, space group P-1 (no. 2), $a=$ 10.4593(10) $\AA, b=16.8136(17) ~ \AA ̊, c=16.9094(11) ~ \AA \AA, \alpha=94.418(2)^{\circ}, b=94.020(3)^{\circ}, y=90.953(3)^{\circ}$, $V=2956.8(5) \AA^{3}, \quad Z=4, T=100.0 K, \mu(\mathrm{MoK} \alpha)=0.086 \mathrm{~mm}^{-1}, \quad D c a l c=1.290 \mathrm{~g} / \mathrm{cm}^{3}, 108206$ reflections measured $\left(4.646^{\circ} \leq 2 \Theta \leq 61.34^{\circ}\right)$, 18151 unique ($R_{\text {int }}=0.0389, \mathrm{R}_{\text {sigma }}=0.0271$) which were used in all calculations. The final R_{1} was $0.0464(I>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.1302 (all data).

Table 62: Crystal data and structure refinement for 187a.

Compound	187a
CCDC number	1915685
Identification code	0408_CG_Om
Empirical formula	$\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{BF}_{2} \mathrm{~N}_{6}$
Temperature/K	574.47
Crystal system	100.0
Space group	triclinic
a/Å	P-1
b/Å	$10.4593(10)$
c/A	$16.8136(17)$
	$16.9094(11)$

$\alpha /{ }^{\circ}$	94.418(2)
$\beta /{ }^{\circ}$	94.020(3)
$\gamma /{ }^{\circ}$	90.953(3)
Volume/ ${ }^{3}$	2956.8(5)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.290
μ / mm^{-1}	0.086
F(000)	1208.0
Crystal size/mm ${ }^{3}$	$0.607 \times 0.465 \times 0.242$
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.646 to 61.34
Index ranges	$-14 \leq h \leq 15,-24 \leq k \leq 24,-24 \leq 1 \leq 24$
Reflections collected	108206
Independent reflections	$18151\left[\mathrm{R}_{\text {int }}=0.0389, \mathrm{R}_{\text {sigma }}=0.0271\right]$
Data/restraints/parameters	18151/0/787
Goodness-of-fit on F^{2}	1.031
Final R indexes [$1>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0464, \mathrm{wR}_{2}=0.1217$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0569, \mathrm{wR}_{2}=0.1302$
Largest diff. peak/hole / e \AA^{-3}	0.41/-0.39

Table 63: Selected bond lengths [Å] for 187a.

Atom	Atom	Length/A	Atom	Atom	Length/Å
F1	B1	$1.3996(14)$	C6	C7	$1.4289(15)$
F2	B1	$1.3927(14)$	C7	C8	$1.3877(17)$
N1	C1	$1.3475(14)$	C7	C11	$1.4966(16)$
N1	C4	$1.4020(14)$	C8	C9	$1.4069(16)$
N1	B1	$1.5470(15)$	C9	C10	$1.4859(16)$
N2	C6	$1.4010(14)$	C12	C13	$1.3906(16)$
N2	C9	$1.3491(14)$	C12	C17	$1.3926(16)$
N2	B1	$1.5453(15)$	C13	C14	$1.3928(16)$
N3	C22	$1.3502(14)$	C14	C15	$1.3921(17)$

Atom	Atom	Length/Å	Atom	Atom	Length/Å
N3	C30	$1.3373(15)$	C15	C16	$1.3950(17)$
N4	C24	$1.3329(14)$	C15	C18	$1.5119(16)$
N4	C30	$1.3398(15)$	C16	C17	$1.3896(16)$
N5	C24	$1.3710(14)$	C18	C19	$1.5179(16)$
N5	C31	$1.3715(15)$	C19	C20	$1.3929(16)$
N5	C32	$1.4766(15)$	C19	C27	$1.3986(15)$
N6	C23	$1.3863(14)$	C20	C21	$1.3993(16)$
N6	C31	$1.3127(16)$	C21	C22	$1.4786(15)$
C1	C2	$1.4041(16)$	C21	C25	$1.4015(15)$
C1	C29	$1.4879(16)$	C22	C23	$1.3978(16)$
C2	C3	$1.3863(16)$	C23	C24	$1.4073(16)$
C3	C4	$1.4261(16)$	C25	C26	$1.3905(16)$
C3	C28	$1.4987(16)$	C26	C27	$1.3877(17)$
C4	C5	$1.3954(15)$	C32	C33	$1.500(2)$
C5	C6	$1.3939(16)$	C32	C34	$1.5037(19)$
C5	C12	$1.4910(15)$			

Table 64: Selected bond angles [${ }^{\circ}$] for 187a.

Atom	Atom	Atom	Angle/ $^{\circ}$	Atom	Atom	Atom	Angle/ $^{\circ}$
C1	N1	C4	$108.40(9)$	C12	C13	C14	$120.02(11)$
C1	N1	B1	$125.97(9)$	C15	C14	C13	$121.08(11)$
C4	N1	B1	$125.63(9)$	C14	C15	C16	$118.40(10)$
C6	N2	B1	$125.75(9)$	C14	C15	C18	$121.26(11)$
C9	N2	C6	$108.57(9)$	C16	C15	C18	$120.29(11)$
C9	N2	B1	$125.66(9)$	C17	C16	C15	$120.88(11)$
C30	N3	C22	$118.63(10)$	C16	C17	C12	$120.25(11)$
C24	N4	C30	$111.08(10)$	C15	C18	C19	$113.56(10)$
C24	N5	C31	$105.50(10)$	C20	C19	C18	$121.67(10)$
C24	N5	C32	$125.65(10)$	C20	C19	C27	$118.66(11)$
C31	N5	C32	$128.73(10)$	C27	C19	C18	$119.64(10)$

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C31	N6	C23	103.92(10)	C19	C20	C21	121.09(10)
N1	C1	C2	109.01(10)	C20	C21	C22	119.32(10)
N1	C1	C29	123.13(11)	C20	C21	C25	119.37(10)
C2	C1	C29	127.85(11)	C25	C21	C22	121.30(10)
C3	C2	C1	108.62(10)	N3	C22	C21	117.52(10)
C2	C3	C4	106.09(10)	N3	C22	C23	118.04(10)
C2	C3	C28	124.72(11)	C23	C22	C21	124.44(10)
C4	C3	C28	129.18(11)	N6	C23	C22	133.07(11)
N1	C4	C3	107.86(9)	N6	C23	C24	109.96(10)
C5	C4	N1	120.38(10)	C22	C23	C24	116.93(10)
C5	C4	C3	131.61(10)	N4	C24	N5	127.74(11)
C4	C5	C12	118.72(10)	N4	C24	C23	126.21(10)
C6	C5	C4	121.09(10)	N5	C24	C23	106.02(10)
C6	C5	C12	120.19(10)	C26	C25	C21	119.71(11)
N2	C6	C7	107.79(10)	C27	C26	C25	120.35(10)
C5	C6	N2	120.33(10)	C26	C27	C19	120.78(11)
C5	C6	C7	131.71(10)	N3	C30	N4	129.10(11)
C6	C7	C11	128.87(11)	N6	C31	N5	114.60(10)
C8	C7	C6	106.15(10)	N5	C32	C33	111.27(10)
C8	C7	C11	124.97(11)	N5	C32	C34	110.42(11)
C7	C8	C9	108.55(10)	C33	C32	C34	113.29(14)
N2	C9	C8	108.93(10)	F1	B1	N1	110.21(9)
N2	C9	C10	122.61(10)	F1	B1	N2	110.45(9)
C8	C9	C10	128.47(11)	F2	B1	F1	108.57(9)
C13	C12	C5	120.36(10)	F2	B1	N1	110.56(9)
C13	C12	C17	119.37(10)	F2	B1	N2	110.59(9)
C17	C12	C5	120.24(10)	N2	B1	N1	106.46(9)

Figure 47: Molecular structure of trans-192a with thermal ellipoids at 50\% probability level. The hydrogen atoms and THF are omitted for clarity.

Crystal Data for $\mathrm{C}_{55} \mathrm{H}_{53} \mathrm{NO}_{3.5} \mathrm{P}_{2} \mathrm{Ru}(M=946.99 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{P}_{2} / \mathrm{n}$ (no. 14), $a=$ $11.9019(7) \AA$ A,$b=15.2039(9) \AA$ A $, c=24.7562(15) A ̊, b=93.907(3)^{\circ}, V=4469.4(5) \AA^{3}, Z=4, T=$ $99.99 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.471 \mathrm{~mm}^{-1}$, Dcalc $=1.407 \mathrm{~g} / \mathrm{cm}^{3}, 13699$ reflections measured $\left(4.57^{\circ} \leq 2 \Theta \leq\right.$ 61.146°), 13699 unique ($R_{\text {int }}=0, \mathrm{R}_{\text {sigma }}=0.0303$) which were used in all calculations. The final R_{1} was $0.0435(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.1183 (all data).

Table 65: Crystal data and structure refinement for trans-192a.

Compound	trans-192a
CCDC number	1915676
Identification code	0473_CG_Om_4
Empirical formula	$\mathrm{C}_{55} \mathrm{H}_{53} \mathrm{NO}_{3.5} \mathrm{P}_{2} \mathrm{Ru}$
Termula weight	946.99
Crystal system	99.99
Space group	monoclinic
a / \AA	$\mathrm{P} 2_{1} / \mathrm{n}$
b / \AA	$11.9019(7)$
c / \AA	$15.2039(9)$
$\alpha /{ }^{\circ}$	$24.7562(15)$
	90

$\beta /{ }^{\circ}$	93.907(3)
$\mathrm{V} /{ }^{\circ}$	90
Volume/ ${ }^{3}$	4469.4(5)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.407
μ / mm^{-1}	0.471
F(000)	1968.0
Crystal size/mm ${ }^{3}$	$0.317 \times 0.086 \times 0.063$
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.57 to 61.146
Index ranges	$-16 \leq h \leq 16,0 \leq k \leq 21,0 \leq 1 \leq 35$
Reflections collected	13699
Independent reflections	13699 [$\left.\mathrm{R}_{\text {int }}=0, \mathrm{R}_{\text {sigma }}=0.0303\right]$
Data/restraints/parameters	13699/30/587
Goodness-of-fit on F^{2}	1.048
Final R indexes [l>=2 $\sigma(1)$]	$\mathrm{R}_{1}=0.0435, \mathrm{wR}_{2}=0.1132$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0516, \mathrm{wR}_{2}=0.1183$
Largest diff. peak/hole / e \AA^{-3}	1.34/-0.94

Table 66: Selected bond lengths [Å] for trans-192a.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Ru1	P1	$2.3421(5)$	C16	C17	$1.392(3)$
Ru1	P2	$2.3355(5)$	C18	C19	$1.395(3)$
Ru1	O1	$2.1592(16)$	C18	C23	$1.395(3)$
Ru1	O2	$2.3317(17)$	C19	C20	$1.387(3)$
Ru1	N1	$2.0554(18)$	C20	C21	$1.380(4)$
Ru1	C1	$2.0031(17)$	C21	C22	$1.380(4)$
P1	C12	$1.8378(19)$	C22	C23	$1.386(3)$
P1	C18	$1.828(2)$	C24	C25	$1.397(3)$
P1	C24	$1.8314(19)$	C24	C29	$1.392(3)$
P2	C30	$1.832(2)$	C25	C26	$1.389(3)$

Atom	Atom	Length/Å	Atom	Atom	Length/Å
P2	C36	1.8312(19)	C26	C27	1.392(3)
P2	C42	1.837(2)	C27	C28	1.383(3)
01	C48	1.264(2)	C28	C29	1.393(3)
02	C48	1.261(2)	C30	C31	1.390(3)
N1	C2	1.387(3)	C30	C35	1.398(3)
N1	C11	1.379(3)	C31	C32	1.398(3)
C1	C3	1.382(3)	C32	C33	1.382(3)
C1	C7	1.386(2)	C33	C34	1.390(3)
C2	C3	1.451(3)	C34	C35	1.386(3)
C2	C8	1.397(3)	C36	C37	1.393(3)
C3	C4	1.397(3)	C36	C41	1.398(3)
C4	C5	1.385(3)	C37	C38	1.392(3)
C5	C6	1.387(3)	C38	C39	1.384(3)
C6	C7	1.383(3)	C39	C40	1.381(3)
C8	C9	1.381(3)	C40	C41	1.386(3)
C9	C10	1.390(4)	C42	C43	1.392(3)
C10	C11	1.385(3)	C42	C47	1.397(3)
C12	C13	1.394(3)	C43	C44	1.386(3)
C12	C17	1.388(3)	C44	C45	1.387(3)
C13	C14	1.394(3)	C45	C46	1.384(3)
C14	C15	1.383(3)	C46	C47	1.395(3)
C15	C16	1.386(3)	C48	C49	1.489(3)

Table 67: Selected bond angles [${ }^{\circ}$] for trans-192a.

Atom	Atom	Atom	Angle/ $^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
P2	Ru1	P1	$172.681(17)$	C 17	C 12	P1	$119.96(15)$
O1	Ru1	P1	$91.03(4)$	C 17	C 12	C 13	$118.84(18)$
O1	Ru1	P2	$92.19(4)$	C 14	C 13	C 12	$120.6(2)$
O1	Ru1	O2	$57.94(6)$	C 15	C 14	C 13	$120.0(2)$
O2	Ru1	P1	$85.36(4)$	C 14	C 15	C 16	$119.67(19)$

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
02	Ru1	P2	90.78(4)	C15	C16	C17	120.4(2)
N1	Ru1	P1	88.04(5)	C12	C17	C16	120.5(2)
N1	Ru1	P2	88.70(5)	C19	C18	P1	122.35(16)
N1	Ru1	01	179.02(6)	C19	C18	C23	118.57(19)
N1	Ru1	02	121.66(6)	C23	C18	P1	119.01(16)
C1	Ru1	P1	93.47(5)	C20	C19	C18	120.7(2)
C1	Ru1	P2	92.29(5)	C21	C20	C19	119.8(2)
C1	Ru1	01	101.95(6)	C22	C21	C20	120.3(2)
C1	Ru1	02	159.78(6)	C21	C22	C23	120.1(2)
C1	Ru1	N1	78.41(7)	C22	C23	C18	120.5(2)
C12	P1	Ru1	115.92(7)	C25	C24	P1	117.64(15)
C18	P1	Ru1	115.73(6)	C29	C24	P1	123.60(15)
C18	P1	C12	101.27(9)	C29	C24	C25	118.73(18)
C18	P1	C24	103.56(9)	C26	C25	C24	120.78(19)
C24	P1	Ru1	115.02(6)	C25	C26	C27	119.8(2)
C24	P1	C12	103.44(9)	C28	C27	C26	119.8(2)
C30	P2	Ru1	115.18(6)	C27	C28	C29	120.3(2)
C30	P2	C42	104.39(9)	C24	C29	C28	120.51(19)
C36	P2	Ru1	115.02(6)	C31	C30	P2	122.18(15)
C36	P2	C30	102.04(9)	C31	C30	C35	118.87(18)
C36	P2	C42	102.48(9)	C35	C30	P2	118.83(15)
C42	P2	Ru1	115.91(6)	C30	C31	C32	120.29(19)
C48	01	Ru1	95.11(13)	C33	C32	C31	120.39(19)
C48	02	Ru1	87.27(13)	C32	C33	C34	119.54(19)
C2	N1	Ru1	115.92(13)	C35	C34	C33	120.31(19)
C11	N1	Ru1	126.77(16)	C34	C35	C30	120.59(18)
C11	N1	C2	117.31(18)	C37	C36	P2	122.21(14)
C3	C1	Ru1	118.20(13)	C37	C36	C41	118.53(17)
C3	C1	C7	118.03(17)	C41	C36	P2	119.20(15)
C7	C1	Ru1	123.77(14)	C38	C37	C36	120.64(19)
N1	C2	C3	113.97(17)	C39	C38	C37	120.21(19)

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
N1	C2	C8	121.79(19)	C40	C39	C38	119.51(18)
C8	C2	C3	124.23(19)	C39	C40	C41	120.67(19)
C1	C3	C2	113.47(17)	C40	C41	C36	120.42(19)
C1	C3	C4	120.81(18)	C43	C42	P2	118.07(15)
C4	C3	C2	125.70(19)	C43	C42	C47	118.63(18)
C5	C4	C3	120.1(2)	C47	C42	P2	123.20(15)
C4	C5	C6	119.6(2)	C44	C43	C42	120.85(19)
C7	C6	C5	119.4(2)	C43	C44	C45	120.17(19)
C6	C7	C1	122.04(19)	C46	C45	C44	119.8(2)
C9	C8	C2	119.7(2)	C45	C46	C47	120.1(2)
C8	C9	C10	119.2(2)	C46	C47	C42	120.46(18)
C11	C10	C9	120.0(2)	01	C48	C49	119.0(2)
N1	C11	C10	122.0(2)	O 2	C48	O1	119.45(19)
C13	C12	P1	121.20(15)	O2	C48	C49	121.5(2)

Figure 48: Molecular structure of trans-192b with thermal ellipoids at 50\% probability level. The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{50} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{FNO}_{2} \mathrm{P}_{2} \mathrm{Ru}(\mathrm{M}=941.75 \mathrm{~g} / \mathrm{mol}$): monoclinic, space group Pc (no. 7), $a=$ $12.5538(4) \AA$, $b=20.7915(6) \AA, c=17.2221(5) \AA, B=109.9250(10)^{\circ}, V=4226.1(2) \AA^{3}, Z=4, T=$ $100.0 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.620 \mathrm{~mm}^{-1}$, Dcalc $=1.480 \mathrm{~g} / \mathrm{cm}^{3}, 196620$ reflections measured $\left(4.656^{\circ} \leq 2 \Theta \leq\right.$
63.094°), 28065 unique ($R_{\text {int }}=0.0236, R_{\text {sigma }}=0.0164$) which were used in all calculations. The final R_{1} was $0.0240(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.0645 (all data).

Table 68: Crystal data and structure refinement for trans-192b.

Compound	trans-192b
CCDC number	1979318
Identification code	0497_CG_Om
Empirical formula	$\mathrm{C}_{50} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{FNO}_{2} \mathrm{P}_{2} \mathrm{Ru}$
Formula weight	941.75
Temperature/K	100.0
Crystal system	monoclinic
Space group	Pc
a/Å	12.5538(4)
b/Å	20.7915(6)
c/Å	17.2221(5)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	109.9250(10)
$\mathrm{V} /{ }^{\circ}$	90
Volume/ A 3	4226.1(2)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.480
μ / mm^{-1}	0.620
F(000)	1928.0
Crystal size/mm ${ }^{3}$	$0.344 \times 0.309 \times 0.17$
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.656 to 63.094
Index ranges	$-18 \leq h \leq 18,-30 \leq k \leq 30,-25 \leq 1 \leq 25$
Reflections collected	196620
Independent reflections	$28065\left[\mathrm{R}_{\text {int }}=0.0236, \mathrm{R}_{\text {sigma }}=0.0164\right]$
Data/restraints/parameters	28065/2/1085
Goodness-of-fit on F^{2}	1.069

Final R indexes [l>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0240, \mathrm{wR}_{2}=0.0639$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0250, \mathrm{wR}_{2}=0.0645$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.62 /-0.98$
Flack parameter	$-0.004(4)$

Table 69: Selected bond angles [${ }^{\circ}$] for trans-192b.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Ru1	P1	$2.3514(9)$	C15	C16	$1.385(4)$
Ru1	P2	$2.3266(10)$	C16	C17	$1.393(3)$
Ru1	O1	$2.3822(19)$	C18	C19	$1.399(3)$
Ru1	O2	$2.1251(19)$	C18	C23	$1.397(3)$
Ru1	N1	$2.056(2)$	C19	C20	$1.397(4)$
Ru1	C1	$1.981(2)$	C20	C21	$1.382(4)$
Ru1	C48	$2.598(2)$	C21	C22	$1.384(4)$
P1	C12	$1.830(2)$	C22	C23	$1.402(4)$
P1	C18	$1.833(3)$	C24	C25	$1.399(3)$
P1	C24	$1.821(2)$	C24	C29	$1.399(4)$
P2	C30	$1.840(2)$	C25	C26	$1.394(3)$
P2	C36	$1.836(3)$	C26	C27	$1.393(4)$
P2	C42	$1.826(2)$	C27	C28	$1.388(4)$
F1	C5	$1.366(3)$	C28	C29	$1.382(4)$
O1	C48	$1.267(3)$	C30	C31	$1.401(3)$
O2	C48	$1.260(3)$	C30	C35	$1.396(3)$
N1	C7	$1.369(3)$	C31	C32	$1.385(3)$
N1	C11	$1.354(3)$	C32	C33	$1.394(4)$
C1	C2	$1.410(3)$	C33	C34	$1.382(4)$
C1	C6	$1.404(3)$	C34	C35	$1.393(4)$
C2	C3	$1.399(3)$	C36	C37	$1.395(3)$
C2	C7	$1.460(4)$	C36	C41	$1.402(3)$
C4	C5	$1.399(4)$	C37	C38	$1.395(3)$
	$1.383(3)$	C38	C39	$1.389(4)$	

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C5	C6	$1.375(3)$	C39	C40	1.386(4)
C7	C8	1.396(3)	C40	C41	1.389(3)
C8	C9	1.376(4)	C42	C43	$1.396(3)$
C9	C10	1.397(3)	C42	C47	1.408(3)
C10	C11	1.385(3)	C43	C44	1.396(4)
C12	C13	1.397(3)	C44	C45	1.385(4)
C12	C17	1.396(3)	C45	C46	1.385(4)
C13	C14	1.386(3)	C46	C47	1.385(3)
C14	C15	1.392(4)	C48	C49	1.516(4)

Table 70: Selected bond angles [${ }^{\circ}$] for trans-192b.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
P1	Ru1	01	87.75(5)	N1	C11	C10	123.1(2)
P1	Ru1	C48	88.14(6)	C13	C12	P1	119.17(19)
P2	Ru1	P1	178.80(3)	C17	C12	P1	121.85(18)
P2	Ru1	O1	92.96(5)	C17	C12	C13	118.5(2)
P2	Ru1	C48	92.95(6)	C14	C13	C12	120.9(3)
01	Ru1	C48	29.06(7)	C13	C14	C15	120.0(3)
O 2	Ru1	P1	90.88(6)	C16	C15	C14	119.8(2)
O 2	Ru1	P2	90.31(6)	C15	C16	C17	120.1(3)
O 2	Ru1	O1	57.81(7)	C16	C17	C12	120.7(2)
O2	Ru1	C48	28.79(8)	C19	C18	P1	117.76(18)
N1	Ru1	P1	88.41(6)	C23	C18	P1	123.57(19)
N1	Ru1	P2	90.40(6)	C23	C18	C19	118.6(2)
N1	Ru1	01	120.61(7)	C20	C19	C18	120.8(2)
N1	Ru1	O 2	178.31(8)	C21	C20	C19	120.1(3)
N1	Ru1	C48	149.61(8)	C20	C21	C22	119.8(2)
C1	Ru1	P1	90.08(7)	C21	C22	C23	120.6(3)
C1	Ru1	P2	89.58(7)	C18	C23	C22	120.1(3)
C1	Ru1	O1	160.14(9)	C25	C24	P1	119.70(17)

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C1	Ru1	02	102.52(9)	C25	C24	C29	119.0(2)
C1	Ru1	N1	79.02(9)	C29	C24	P1	121.23(19)
C1	Ru1	C48	131.16(10)	C26	C25	C24	120.0(2)
C12	P1	Ru1	112.99(8)	C27	C26	C25	120.4(2)
C12	P1	C18	105.23(12)	C28	C27	C26	119.5(2)
C18	P1	Ru1	115.22(8)	C29	C28	C27	120.3(2)
C24	P1	Ru1	118.05(9)	C28	C29	C24	120.7(3)
C24	P1	C12	101.52(11)	C31	C30	P2	117.07(17)
C24	P1	C18	102.05(11)	C35	C30	P2	125.08(19)
C30	P2	Ru1	116.23(8)	C35	C30	C31	117.8(2)
C36	P2	Ru1	117.38(8)	C32	C31	C30	121.3(2)
C36	P2	C30	99.83(12)	C31	C32	C33	120.3(2)
C42	P2	Ru1	113.34(9)	C34	C33	C32	119.0(2)
C42	P2	C30	105.57(11)	C33	C34	C35	120.9(3)
C42	P2	C36	102.59(11)	C34	C35	C30	120.7(3)
C48	01	Ru1	84.96(15)	C37	C36	P2	119.89(18)
C48	02	Ru1	96.92(16)	C37	C36	C41	119.4(2)
C7	N1	Ru1	116.60(16)	C41	C36	P2	120.64(17)
C11	N1	Ru1	124.81(15)	C36	C37	C38	119.9(2)
C11	N1	C7	118.6(2)	C39	C38	C37	120.3(2)
C2	C1	Ru1	117.31(18)	C40	C39	C38	119.9(2)
C6	C1	Ru1	125.20(17)	C39	C40	C41	120.3(2)
C6	C1	C2	117.5(2)	C40	C41	C36	120.1(2)
C1	C2	C7	113.7(2)	C43	C42	P2	121.87(19)
C3	C2	C1	122.2(2)	C43	C42	C47	118.5(2)
C3	C2	C7	124.1(2)	C47	C42	P2	119.48(17)
C2	C3	C4	119.4(2)	C44	C43	C42	120.4(2)
C5	C4	C3	117.6(2)	C45	C44	C43	120.4(2)
F1	C5	C4	118.0(2)	C44	C45	C46	119.7(2)
F1	C5	C6	117.9(2)	C45	C46	C47	120.5(2)
C6	C5	C4	124.0(2)	C46	C47	C42	120.4(2)

Atom	Atom	Atom	Angle/ $^{\circ}$	Atom	Atom	Atom	Angle/ $^{\circ}$
C5	C6	C1	$119.3(2)$	O1	C48	Ru1	$65.98(13)$
N1	C7	C2	$113.4(2)$	O1	C48	C49	$120.2(2)$
N1	C7	C8	$120.4(2)$	O2	C48	Ru1	$54.29(12)$
C8	C7	C2	$126.2(2)$	O2	C48	O1	$120.2(2)$
C9	C8	C7	$120.4(2)$	O2	C48	C49	$119.5(3)$
C8	C9	C10	$119.3(2)$	C49	C48	Ru1	$170.5(2)$
C11	C10	C9	$118.2(2)$				

Figure 49: Molecular structure of 193 with thermal ellipoids at 50% probability level. The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{49} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{P}_{2} \mathrm{Ru}(M=852.82 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{C} 2 / \mathrm{c}$ (no. 15), $a=$ 19.1587(12) $\AA, b=20.6734(11) \AA, c=20.6880(9) \AA, b=107.466(2)^{\circ}, V=7816.2(7) \AA^{3}, Z=8, T=$ $149.96 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.529 \mathrm{~mm}^{-1}$, Dcalc $=1.449 \mathrm{~g} / \mathrm{cm}^{3}, 182744$ reflections measured $\left(5.086^{\circ} \leq 2 \Theta\right.$ $\leq 63.122^{\circ}$), 13014 unique ($R_{\text {int }}=0.0258, \mathrm{R}_{\text {sigma }}=0.0112$) which were used in all calculations. The final R_{1} was $0.0217\left(\mathrm{I}>2 \sigma(\mathrm{I})\right.$) and $w R_{2}$ was 0.0600 (all data).

Table 71: Crystal data and structure refinement for 193.

Compound	193
CCDC number	1915688
Identification code	0527_CG_Om

Empirical formula	$\mathrm{C}_{49} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{P}_{2} \mathrm{Ru}$
Formula weight	852.82
Temperature/K	149.96
Crystal system	monoclinic
Space group	C2/c
a/Å	19.1587(12)
b/Å	20.6734(11)
c/Å	20.6880(9)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	107.466(2)
V°	90
Volume/ \AA^{3}	7816.2(7)
Z	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.449
μ / mm^{-1}	0.529
F(000)	3504.0
Crystal size/mm ${ }^{3}$	$0.529 \times 0.31 \times 0.154$
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	5.086 to 63.122
Index ranges	$-28 \leq h \leq 28,-29 \leq k \leq 29,-28 \leq 1 \leq 30$
Reflections collected	182744
Independent reflections	$13014\left[\mathrm{R}_{\text {int }}=0.0258, \mathrm{R}_{\text {sigma }}=0.0112\right]$
Data/restraints/parameters	13014/0/506
Goodness-of-fit on F^{2}	1.052
Final R indexes [$1>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0217, \mathrm{wR}_{2}=0.0583$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0240, \mathrm{wR}_{2}=0.0600$
Largest diff. peak/hole / e \AA^{-3}	0.44/-0.54

Table 72: Selected bond lengths [\AA] for 193.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Ru1	P1	2.2377(3)	C15	C16	1.3885(17)
Ru1	P2	2.3263(3)	C16	C17	1.3830(18)
Ru1	01	2.2928(8)	C17	C18	1.3903(16)
Ru1	O 2	2.1987(8)	C19	C20	1.3870(14)
Ru1	N1	2.0836(9)	C19	C24	1.3922(15)
Ru1	C37	2.5928(11)	C20	C21	1.3865(17)
Ru1	C45	2.0302(10)	C21	C22	1.3808(19)
P1	C1	1.8379(11)	C22	C23	1.3910(16)
P1	C7	1.8263(10)	C23	C24	1.3990(15)
P1	C13	1.8506(10)	C25	C26	1.3963(15)
P2	C24	1.8388(10)	C25	C30	1.3989(16)
P2	C25	1.8503(11)	C26	C27	1.3934(17)
P2	C31	1.8325(11)	C27	C28	1.381(2)
01	C37	1.2627(13)	C28	C29	1.389(2)
O 2	C37	1.2700(13)	C29	C30	1.3893(17)
03	C14	1.3899(13)	C31	C32	1.3923(15)
03	C19	1.3839(13)	C31	C36	1.3966(15)
N1	C39	1.3452(14)	C32	C33	1.3908(15)
N1	C43	1.3561(13)	C33	C34	1.3822(18)
C1	C2	1.3936(15)	C34	C35	1.3881(17)
C1	C6	1.3966(15)	C35	C36	1.3897(16)
C2	C3	1.3926(16)	C37	C38	1.5027(16)
C3	C4	1.377(2)	C39	C40	1.3827(16)
C4	C5	1.380(2)	C40	C41	1.3874(18)
C5	C6	1.3904(18)	C41	C42	1.3819(16)
C7	C8	1.3952(15)	C42	C43	1.3977(14)
C7	C12	1.3906(14)	C43	C44	1.4616(14)
C8	C9	1.3844(16)	C44	C45	1.4264(14)
C9	C10	1.385(2)	C44	C49	1.4016(14)
C10	C11	1.379(2)	C45	C46	1.4080(14)

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C11	C12	$1.3948(16)$	C46	C47	$1.3919(15)$
C13	C14	$1.3961(15)$	C47	C48	$1.3908(16)$
C13	C18	$1.4026(15)$	C48	C49	$1.3826(16)$
C14	C15	$1.3863(15)$			

Table 73: Selected bond angles [${ }^{\circ}$] for 193.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
P1	Ru1	P2	96.827(9)	C18	C13	P1	122.74(8)
P1	Ru1	01	111.67(2)	03	C14	C13	119.50(9)
P1	Ru1	C37	140.68(3)	C15	C14	O3	117.78(10)
P2	Ru1	C37	88.90(3)	C15	C14	C13	122.62(10)
01	Ru1	P2	90.52(2)	C14	C15	C16	119.60(11)
01	Ru1	C37	29.14(3)	C17	C16	C15	119.49(11)
02	Ru1	P1	169.67(2)	C16	C17	C18	120.21(11)
O2	Ru1	P2	86.58(2)	C17	C18	C13	121.78(11)
02	Ru1	01	58.41(3)	O3	C19	C20	122.38(10)
O2	Ru1	C37	29.29(3)	03	C19	C24	115.08(9)
N1	Ru1	P1	93.69(3)	C20	C19	C24	122.43(10)
N1	Ru1	P2	169.30(3)	C21	C20	C19	118.66(11)
N1	Ru1	O1	83.73(3)	C22	C21	C20	120.59(11)
N1	Ru1	02	82.72(3)	C21	C22	C23	119.98(11)
N1	Ru1	C37	81.68(3)	C22	C23	C24	120.86(11)
C45	Ru1	P1	91.38(3)	C19	C24	P2	116.57(8)
C45	Ru1	P2	101.60(3)	C19	C24	C23	117.42(10)
C45	Ru1	01	152.61(3)	C23	C24	P2	126.01(9)
C45	Ru1	02	97.50(3)	C26	C25	P2	123.27(9)
C45	Ru1	N1	80.07(4)	C26	C25	C30	118.14(10)
C45	Ru1	C37	125.59(4)	C30	C25	P2	118.58(8)
C1	P1	Ru1	112.82(3)	C27	C26	C25	120.49(12)
C1	P1	C13	99.47(5)	C28	C27	C26	120.65(12)

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C7	P1	Ru1	113.34(3)	C27	C28	C29	119.63(12)
C7	P1	C1	100.59(5)	C28	C29	C30	119.83(13)
C7	P1	C13	102.72(5)	C29	C30	C25	121.24(12)
C13	P1	Ru1	124.57(3)	C32	C31	P2	122.92(8)
C24	P2	Ru1	123.17(3)	C32	C31	C36	118.78(10)
C24	P2	C25	99.76(5)	C36	C31	P2	118.23(8)
C25	P2	Ru1	111.22(3)	C33	C32	C31	120.69(10)
C31	P2	Ru1	117.34(3)	C34	C33	C32	120.16(11)
C31	P2	C24	101.20(5)	C33	C34	C35	119.70(11)
C31	P2	C25	100.65(5)	C34	C35	C36	120.33(11)
C37	01	Ru1	88.72(6)	C35	C36	C31	120.32(11)
C37	02	Ru1	92.83(6)	01	C37	Ru1	62.14(5)
C19	03	C14	118.07(8)	01	C37	02	119.99(10)
C39	N1	Ru1	125.21(7)	01	C37	C38	120.32(10)
C39	N1	C43	119.79(9)	02	C37	Ru1	57.88(5)
C43	N1	Ru1	114.43(7)	02	C37	C38	119.68(10)
C2	C1	P1	122.72(8)	C38	C37	Ru1	177.39(9)
C2	C1	C6	118.59(10)	N1	C39	C40	122.52(11)
C6	C1	P1	118.67(8)	C39	C40	C41	118.15(11)
C3	C2	C1	120.69(12)	C42	C41	C40	119.64(10)
C4	C3	C2	120.18(13)	C41	C42	C43	119.79(10)
C3	C4	C5	119.69(12)	N1	C43	C42	119.94(10)
C4	C5	C6	120.74(12)	N1	C43	C44	113.83(9)
C5	C6	C1	120.10(12)	C42	C43	C44	126.20(9)
C8	C7	P1	115.36(8)	C45	C44	C43	116.48(9)
C12	C7	P1	125.30(8)	C49	C44	C43	121.34(9)
C12	C7	C8	119.31(10)	C49	C44	C45	122.16(9)
C9	C8	C7	120.16(11)	C44	C45	Ru1	112.30(7)
C10	C9	C8	120.18(12)	C46	C45	Ru1	132.00(8)
C11	C10	C9	120.14(11)	C46	C45	C44	115.37(9)
C10	C11	C12	120.01(12)	C47	C46	C45	122.18(10)

Atom	Atom	Atom	Angle/ $^{\circ}$	Atom	Atom	Atom ${ }^{\text {Angle }}{ }^{\circ}$	
C 7	C 12	C 11	$120.09(11)$	C 48	C 47	C 46	$120.97(10)$
C 14	C 13	P 1	$120.96(8)$	C 49	C 48	C 47	$119.01(10)$
C 14	C 13	C 18	$116.28(9)$	C 48	C 49	C 44	$120.24(10)$

Figure 50: Molecular structure of 194 with thermal ellipoids at 50\% probability level. The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PRu}(M=617.62 \mathrm{~g} / \mathrm{mol})$: orthorhombic, space group Pna2 (no. 33), $a=16.2264(8) \AA, b=9.3716(4) \AA, c=17.7053(10) \AA, V=2692.4(2) \AA^{3}, Z=4, T=100.1 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=$ $0.676 \mathrm{~mm}^{-1}$, Dcalc $=1.524 \mathrm{~g} / \mathrm{cm}^{3}, 57514$ reflections measured $\left(4.602^{\circ} \leq 2 \Theta \leq 63.044^{\circ}\right), 8977$ unique ($R_{\text {int }}=0.0242, \mathrm{R}_{\text {sigma }}=0.0160$) which were used in all calculations. The final R_{1} was 0.0155 ($\mathrm{I}>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.0412 (all data).

Table 74: Crystal data and structure refinement for 194.

Compound	194
CCDC number	1915689
Identification code	Pna21
Empirical formula	$\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PRu}$
Temperature/K	617.62
Crystal system	100.1
Space group	orthorhombic
a/Å	Pna2 $16.2264(8)$

b/Å	9.3716(4)
c/Å	17.7053(10)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
V°	90
Volume/ ${ }^{3}$	2692.4(2)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.524
μ / mm^{-1}	0.676
F(000)	1264.0
Crystal size/mm ${ }^{3}$	$0.305 \times 0.139 \times 0.09$
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.602 to 63.044
Index ranges	$-23 \leq h \leq 23,-13 \leq k \leq 13,-26 \leq 1 \leq 26$
Reflections collected	57514
Independent reflections	8977 [$\left.\mathrm{R}_{\text {int }}=0.0242, \mathrm{R}_{\text {sigma }}=0.0160\right]$
Data/restraints/parameters	8977/1/354
Goodness-of-fit on F^{2}	1.034
Final R indexes [$1>=2 \sigma(1)$]	$\mathrm{R}_{1}=0.0155, \mathrm{wR}_{2}=0.0408$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0160, \mathrm{wR}_{2}=0.0412$
Largest diff. peak/hole / e \AA^{-3}	0.37/-0.43
Flack parameter	-0.032(5)

Table 75: Bond lengths [Å] for 194.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Ru1	P1	$2.2451(5)$	C9	C10	$1.393(3)$
Ru1	O1	$2.2216(12)$	C10	C11	$1.389(2)$
Ru1	O2	$2.2956(11)$	C12	C13	$1.397(2)$
Ru1	N1	$2.0531(13)$	C12	C17	$1.394(2)$
Ru1	N2	$2.0148(14)$	C13	C14	$1.395(2)$
Ru1	C1	$2.0085(15)$	C14	C15	$1.394(3)$

Atom	Atom	Length/Å	Atom	Atom	Length/Å
P1	C12	$1.8372(16)$	C15	C16	$1.388(3)$
P1	C18	$1.8283(16)$	C16	C17	$1.391(2)$
P1	C24	$1.8394(16)$	C18	C19	$1.396(2)$
O1	C30	$1.267(2)$	C18	C23	$1.400(2)$
O2	C30	$1.2635(19)$	C19	C20	$1.395(2)$
N1	C3	$1.3643(19)$	C20	C21	$1.381(2)$
N1	C7	$1.345(2)$	C21	C22	$1.393(3)$
N2	C32	$1.147(2)$	C22	C23	$1.390(2)$
C1	C2	$1.424(2)$	C24	C25	$1.396(2)$
C1	C11	$1.412(2)$	C24	C29	$1.398(2)$
C2	C3	$1.456(2)$	C25	C26	$1.395(2)$
C2	C8	$1.403(2)$	C26	C27	$1.383(3)$
C3	C4	$1.396(2)$	C27	C28	$1.390(3)$
C4	C5	$1.380(3)$	C28	C29	$1.390(2)$
C5	C6	$1.394(3)$	C30	C31	$1.507(2)$
C6	C7	$1.383(2)$	C32	C33	$1.460(2)$
C8	C9	$1.382(3)$			

Table 76: Bond angles [${ }^{\circ}$] for 194.

Atom	Atom	Atom	Angle/ $^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
P1	Ru1	O2	$105.56(3)$	C5	C4	C3	$120.03(16)$
O1	Ru1	P1	$163.66(3)$	C4	C5	C6	$118.98(16)$
O1	Ru1	O2	$58.10(4)$	C7	C6	C5	$118.58(16)$
N1	Ru1	P1	$92.21(4)$	N1	C7	C6	$122.93(16)$
N1	Ru1	O1	$88.19(5)$	C9	C8	C2	$120.10(15)$
N1	Ru1	O2	$91.65(5)$	C8	C9	C10	$119.48(16)$
N2	Ru1	P1	$93.88(4)$	C11	C10	C9	$120.47(16)$
N2	Ru1	O1	$87.33(5)$	C10	C11	C1	$122.38(16)$
N2	Ru1	O2	$91.42(5)$	C13	C12	P1	$123.40(12)$
N2	Ru1	N1	$172.18(6)$	C17	C12	P1	$118.07(12)$

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C1	Ru1	P1	95.99(4)	C17	C12	C13	118.48(14)
C1	Ru1	01	100.17(5)	C14	C13	C12	120.72(16)
C1	Ru1	02	157.26(5)	C15	C14	C13	119.83(16)
C1	Ru1	N1	80.16(6)	C16	C15	C14	119.97(16)
C1	Ru1	N2	94.33(6)	C15	C16	C17	119.78(16)
C12	P1	Ru1	121.81(5)	C16	C17	C12	121.19(15)
C12	P1	C24	101.16(7)	C19	C18	P1	121.80(12)
C18	P1	Ru1	113.59(5)	C19	C18	C23	118.57(14)
C18	P1	C12	102.78(7)	C23	C18	P1	119.34(12)
C18	P1	C24	101.24(7)	C20	C19	C18	120.50(15)
C24	P1	Ru1	113.57(5)	C21	C20	C19	120.46(16)
C30	01	Ru1	92.44(9)	C20	C21	C22	119.60(18)
C30	02	Ru1	89.14(10)	C23	C22	C21	120.18(17)
C3	N1	Ru1	115.95(10)	C22	C23	C18	120.66(15)
C7	N1	Ru1	125.24(11)	C25	C24	P1	119.44(12)
C7	N1	C3	118.82(13)	C25	C24	C29	119.11(14)
C32	N2	Ru1	174.61(14)	C29	C24	P1	121.43(12)
C2	C1	Ru1	113.99(11)	C26	C25	C24	120.21(15)
C11	C1	Ru1	129.80(12)	C27	C26	C25	120.23(16)
C11	C1	C2	115.52(14)	C26	C27	C28	119.99(16)
C1	C2	C3	115.34(13)	C27	C28	C29	120.04(16)
C8	C2	C1	122.04(14)	C28	C29	C24	120.42(15)
C8	C2	C3	122.62(15)	01	C30	C31	120.13(15)
N1	C3	C2	113.71(13)	02	C30	01	120.31(15)
N1	C3	C4	120.63(15)	02	C30	C31	119.57(15)
C4	C3	C2	125.62(15)	N2	C32	C33	177.99(19)

5.3.5 Ruthenium(II)-Catalyzed Decarboxylative Alkylation

5.3.5.1 Characterization Data for 145,146 , and 201

1-(3-Cycloheptylphenyl)-1H-pyrazole (146ah)

The general procedure K was followed using 2-(1H-pyrazol-1-yl)benzoic acid (144a, $94.1 \mathrm{mg}, 0.50 \mathrm{mmol})$ and bromocycloheptane (136h, $266 \mathrm{mg}, 1.50 \mathrm{mmol}$) and $\left[\mathrm{Ru}(\mathrm{NCt}-\mathrm{Bu})_{6}\right]\left[\mathrm{BF}_{4}\right]_{2}(19.3 \mathrm{mg}, 25.0 \mu \mathrm{~mol}, 5.0 \mathrm{~mol} \%)$. After 16 h , purification by column chromatography (n-hexane/EtOAc $30: 1$) yielded meta-alkylated product 146ah ($71.8 \mathrm{mg}, 60 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.92(\mathrm{dd}, J=2.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J=1.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}$, $J=2.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{ddd}, J=7.9,2.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=7.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{ddd}, J=$ $7.7,1.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{dd}, J=2.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{tt}, J=10.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.91(\mathrm{~m}, 2 \mathrm{H})$, 1.85-1.77 (m, 2H), 1.76-1.50 (m, 8H).
${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=151.7\left(\mathrm{C}_{\mathrm{q}}\right), 140.8(\mathrm{CH}), 140.2\left(\mathrm{C}_{\mathrm{q}}\right), 129.2(\mathrm{CH}), 126.8(\mathrm{CH}), 124.9$ $(\mathrm{CH}), 117.9(\mathrm{CH}), 116.3(\mathrm{CH}), 107.3(\mathrm{CH}), 47.1(\mathrm{CH}), 36.7\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2919,2852,1607,1590,1518,1392,1043,784,744,697 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 240 (100) [M] ${ }^{+}, 239(36)[\mathrm{M}-\mathrm{H}]^{+}, 225$ (10), 211 (17), 197 (26), 183 (29), 171 (53), 158 (61), 144 (14), 130 (15), 115 (23), 77 (12).

HR-MS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+}$240.1621, found 240.1633.

1-(4-Methyl-2-neopentylphenyl)-1H-pyrazole (145et)

The general procedure \mathbf{K} was followed using 5-methyl-2-(1H-pyrazol-1-yl)benzoic acid ($144 \mathrm{e}, 101 \mathrm{mg}, 0.50 \mathrm{mmol}$) and neopentyl bromide ($136 \mathrm{t}, 227 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 16 h , purification by column chromatography (n-hexane/EtOAc 20:1) yielded ortho-alkylated product $145 \mathrm{et}(57.0 \mathrm{mg}, 50 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.68(\mathrm{dd}, J=2.0,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=2.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.39(\mathrm{dd}, \mathrm{J}=2.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 0.68(\mathrm{~s}$, 9 H).
${ }^{13} \mathrm{C}$-NMR (125 MHz, CDCl_{3}): $\delta=139.7(\mathrm{CH}), 138.0\left(\mathrm{C}_{q}\right), 137.2\left(\mathrm{C}_{q}\right), 135.1\left(\mathrm{C}_{q}\right), 133.5(\mathrm{CH}), 130.9(\mathrm{CH})$, $127.4(\mathrm{CH}), 126.4(\mathrm{CH}), 105.9(\mathrm{CH}), 44.0\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{C}_{\mathrm{q}}\right), 29.4\left(\mathrm{CH}_{3}\right), 21.2\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2950,2865,1518,1476,1395,1234,1044,818,746 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 228 (29) [M] ${ }^{+}, 213$ (30) [M-Me] ${ }^{+}, 172$ (100) [M-t-Bu] ${ }^{+}, 171$ (67), 144 (52), 130 (9), 115 (9), 57 (13), 43 (14).

HR-MS (EI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+}$228.1621, found 228.1632.

1-(4-Methoxy-2-neopentylphenyl)-5-methyl-1H-pyrazole (145ft)

The general procedure K was followed using 5-methoxy-2-(5-methyl-1H-pyrazol-1-yl)benzoic acid ($144 \mathrm{f}, 116 \mathrm{mg}, 0.50 \mathrm{mmol}$) and neopentyl bromide $(136 t, 227 \mathrm{mg}, 1.50 \mathrm{mmol})$. After 16 h , purification by column chromatography (n-hexane/EtOAc 10:1) yielded ortho-alkylated product 145ft ($51.2 \mathrm{mg}, 40 \%$) as a colorless oil and ortho-benzylated product 201 ($54.3 \mathrm{mg}, 37 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.54(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.81(\mathrm{dd}, J=8.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{dq}, J=1.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.13(\mathrm{~d}$, $J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.75(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.7\left(\mathrm{C}_{\mathrm{q}}\right), 139.5\left(\mathrm{C}_{\mathrm{q}}\right), 138.9(\mathrm{CH}), 138.8\left(\mathrm{C}_{\mathrm{q}}\right), 132.2\left(\mathrm{C}_{\mathrm{q}}\right), 128.8(\mathrm{CH})$, $117.7(\mathrm{CH}), 111.6(\mathrm{CH}), 105.2(\mathrm{CH}), 55.4\left(\mathrm{CH}_{3}\right), 44.1\left(\mathrm{CH}_{2}\right), 32.2\left(\mathrm{C}_{\mathrm{q}}\right), 29.7\left(\mathrm{CH}_{3}\right), 11.8\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2952,1608,1505,1464,1279,1238,1052,922,813,770 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 258 (42) [M] ${ }^{+}, 243$ (100) [M-Me] ${ }^{+}$, 202 (65) [M-t-Bu] ${ }^{+}$, 187 (74) $\left[\mathrm{M}-\mathrm{CH}_{2} t-\mathrm{Bu}\right]^{+}, 174$ (18), 160 (13), 57 (12), 41 (13).

HR-MS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}]^{+}$258.1727, found 258.1738.

1-[4-Methoxy-2-(2-methylbenzyl)phenyl]-5-methyl-1H-pyrazole (201)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.57(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.12-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{dd}, J=7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=8.6,2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.56(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=1.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H})$, $2.09(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.9\left(\mathrm{C}_{\mathrm{q}}\right), 140.4\left(\mathrm{C}_{\mathrm{q}}\right), 139.9\left(\mathrm{C}_{\mathrm{q}}\right), 139.5(\mathrm{CH}), 137.3\left(\mathrm{C}_{\mathrm{q}}\right), 136.6\left(\mathrm{C}_{\mathrm{q}}\right)$, $131.6\left(\mathrm{C}_{\mathrm{q}}\right), 130.2(\mathrm{CH}), 130.0(\mathrm{CH}), 129.0(\mathrm{CH}), 126.5(\mathrm{CH}), 125.9(\mathrm{CH}), 115.8(\mathrm{CH}), 111.2(\mathrm{CH}), 105.1$ $(\mathrm{CH}), 55.4\left(\mathrm{CH}_{3}\right), 34.5\left(\mathrm{CH}_{2}\right), 19.6\left(\mathrm{CH}_{3}\right), 11.2\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2961,1610,1499,1438,1280,1217,1110,1045,799,742 \mathrm{~cm}^{-1}$.
m.p.: $65-66^{\circ} \mathrm{C}$

MS (EI) m/z (relative intensity): 292 (100) [M] ${ }^{+}, 291$ (22) [M-H] ${ }^{+}, 277$ (38) [M-Me] ${ }^{+} 264$ (35), 250 (9), 210 (16), 179 (12), 174 (17), 165 (15), 152 (12), 43 (13).

HR-MS (EI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}]^{+}$292.1570, found 292.1571.

1-(2-CyclohexyIphenyl)-1H-pyrazole (145aj)

The general procedure K was followed using 2-(1H-pyrazol-1-yl)benzoic acid (144a, $94.1 \mathrm{mg}, 0.50 \mathrm{mmol}$) and bromocyclohexane (136j, $245 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 16 h , purification by column chromatography (n-hexane/EtOAc 20:1) followed by recycling preparative HPLC yielded ortho-alkylated product 145aj ($45.4 \mathrm{mg}, 40 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.72(\mathrm{dd}, \mathrm{J}=1.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, \mathrm{J}=2.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.38$ $(\mathrm{m}, 2 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.44(\mathrm{dd}, \mathrm{J}=2.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{tt}, J=12.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.66$ $(\mathrm{m}, 5 \mathrm{H}), 1.48-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.16(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=144.0\left(\mathrm{C}_{\mathrm{q}}\right), 140.0(\mathrm{CH}), 138.9\left(\mathrm{C}_{\mathrm{q}}\right), 130.9(\mathrm{CH}), 128.8(\mathrm{CH}), 127.1$ $(\mathrm{CH}), 126.9(\mathrm{CH}), 126.0(\mathrm{CH}), 105.9(\mathrm{CH}), 38.3(\mathrm{CH}), 34.3\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2924,2851,1515,1448,1394,1043,938,745,620 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 226 (74) [M] ${ }^{+}, 225$ (100) [M-H $]^{+}, 208$ (14), 197 (21), 183 (39), 169 (46), 157 (17), 143 (13), 130 (25), 115 (17).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2}^{+}[\mathrm{M}+\mathrm{H}]^{+}$227.1543, found 227.1552.

1-(2-Cyclohexyl-4-methoxyphenyl)-5-methyl-1H-pyrazole (145fj)

The general procedure \mathbf{K} was followed using 5-methoxy-2-(5-methyl-1H-pyrazol-1-yl)benzoic acid (144f, $116 \mathrm{mg}, 0.50 \mathrm{mmol}$) and bromocyclohexane (136j, $245 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 16 h , purification by column chromatography (n-hexane/EtOAc 10:1) yielded ortho-alkylated product 145fj (44.3 mg, 33\%, as a 10:1 mixture of ortho and meta product) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, determined as a 10:1 mixture of ortho- and meta-isomer): $\delta=7.54$ (d, J $=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}$, meta-isomer), 7.18 (dd, J = $8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}$, meta-isomer), 7.10
(d, J = 8.6 Hz, 1H) , $6.90(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=8.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.16-6.13(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}$, 3 H , meta-isomer), $3.85(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{tt}, J=11.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}$, meta-isomer), $2.29(\mathrm{~s}, 3 \mathrm{H}$, metaisomer), $2.07(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{tt}, J=11.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.60(\mathrm{~m}, 5 \mathrm{H}), 1.45-1.04(\mathrm{~m}, 5 \mathrm{H})$. Some proton peaks of meta isomer could observed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy.
${ }^{13} \mathrm{C}-$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, determined as a 10:1 mixture of ortho and meta isomer): $\delta=160.0\left(\mathrm{C}_{\mathrm{q}}\right)$, $147.4\left(\mathrm{C}_{\mathrm{q}}\right), 139.8\left(\mathrm{C}_{\mathrm{q}}\right), 139.2\left(\mathrm{CH}\right.$, meta-isomer), $139.0(\mathrm{CH}), 136.9\left(\mathrm{C}_{q}\right.$, meta-isomer), $132.8\left(\mathrm{C}_{q}\right.$, meta-isomer), $130.6\left(\mathrm{C}_{\mathrm{q}}\right), 128.9(\mathrm{CH}), 123.8$ (CH, meta-isomer), $123.0(\mathrm{CH}$, meta-isomer), 112.8 $(\mathrm{CH}), 110.8(\mathrm{CH}), 110.2\left(\mathrm{CH}\right.$, meta-isomer), $106.1\left(\mathrm{CH}\right.$, meta-isomer), $104.7(\mathrm{CH}), 55.7\left(\mathrm{CH}_{3}\right.$, metaisomer), $55.4\left(\mathrm{CH}_{3}\right), 38.7(\mathrm{CH}), 36.9\left(\mathrm{CH}\right.$, meta-isomer), $33.1\left(\mathrm{CH}_{2}\right.$, meta-isomer), $27.1\left(\mathrm{CH}_{2}\right.$, metaisomer), $26.8\left(\mathrm{CH}_{2}\right)$, $26.4\left(\mathrm{CH}_{2}\right.$, meta-isomer), $26.1\left(\mathrm{CH}_{2}\right), 12.3\left(\mathrm{CH}_{3}\right.$, meta-isomer), $11.6\left(\mathrm{CH}_{3}\right)$. Due to overlapping, some carbon peaks of meta-isomer could not be detected by ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectroscopy.

IR (ATR): $\tilde{v}=2924,2850,1608,1506,1445,1294,1242,1051,922,770 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 270 (38) [M] ${ }^{+}, 269$ (12) [M-H] ${ }^{+}, 255$ (100) [M-Me] ${ }^{+}, 241$ (6), 227 (17), 213 (12), 187 (10).

HR-MS (EI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}]^{+}$270.1727, found 270.1727.

1-[exo-2-(Bicyclo[2.2.1]heptan-2-yl)-4-methoxyphenyl]-5-methyl-1H-pyrazole (145fu)

The general procedure K was followed using 5-methoxy-2-(5-methyl-1H-pyrazol-1-yl)benzoic acid (144f, $116 \mathrm{mg}, 0.50 \mathrm{mmol}$) and exo-2bromonorbornane ($136 \mathrm{u}, 263 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 16 h , purification by column chromatography (n-hexane/EtOAc 10:1) yielded ortho-alkylated product 145 fu ($76.5 \mathrm{mg}, 54 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.55(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dq}, J=1.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.17(\mathrm{~m}, 3 \mathrm{H}), 2.08$ $(\mathrm{s}, 3 \mathrm{H}), 1.56(\mathrm{dt}, J=9.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.52-1.24(\mathrm{~m}, 4 \mathrm{H}), 1.19(\mathrm{ddt}, J=9.7,2.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.13-$ $0.96(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.8\left(\mathrm{C}_{\mathrm{q}}\right), 147.0\left(\mathrm{C}_{\mathrm{q}}\right), 139.6\left(\mathrm{C}_{\mathrm{q}}\right), 139.1(\mathrm{CH}), 131.3\left(\mathrm{C}_{\mathrm{q}}\right), 129.0(\mathrm{CH})$, $112.9(\mathrm{CH}), 109.9(\mathrm{CH}), 104.7(\mathrm{CH}), 55.4\left(\mathrm{CH}_{3}\right), 42.2(\mathrm{CH}), 41.5(\mathrm{CH}), 39.4\left(\mathrm{CH}_{2}\right), 36.7(\mathrm{CH}), 36.5$ $\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{2}\right), 11.7\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2950,2869,1607,1503,1299,1225,1111,1041,922,769 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 282 (88) [M] ${ }^{+}, 267$ (68) [M-Me] ${ }^{+}, 253$ (100), 241 (26), 226 (50), 200 (16), 115 (12), 77 (11), 67 (14), 43 (24).

HR-MS (EI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}]^{+}$282.1727, found 282.1736.

1-(3-Cycloheptyl-4-fluorophenyl)-1H-pyrazole (146gh)

The general procedure \mathbf{K} was followed using 5-fluoro-2-(1H-pyrazol-1-yl)benzoic acid (144g, $103 \mathrm{mg}, 0.50 \mathrm{mmol})$ and bromocycloheptane (136h, 266 mg , 1.50 mmol). After 16 h , purification by column chromatography (n-hexane/EtOAc $15: 1$) yielded meta-alkylated product $146 \mathrm{gh}(82.6 \mathrm{mg}, 64 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.84(\mathrm{dd}, J=2.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=1.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ (dd, $J=6.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.38 (ddd, $J=8.8,4.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.06 (dd, $J=9.9,8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.45 (dd, $J=$ $2.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{tt}, \mathrm{J}=10.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.49(\mathrm{~m}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=158.3\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=244 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 140.8(\mathrm{CH}), 137.5\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=17 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $136.4\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 126.8(\mathrm{CH}), 119.4\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=6 \mathrm{~Hz}, \mathrm{CH}\right), 117.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}, \mathrm{CH}\right), 115.9(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{C}-\mathrm{F}}=25 \mathrm{~Hz}, \mathrm{CH}\right), 107.4(\mathrm{CH}), 39.8(\mathrm{CH}), 35.3\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right)$.
${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-121.6(\mathrm{ddd}, \mathrm{J}=9.9,6.4,4.3 \mathrm{~Hz})$.

IR (ATR): $\tilde{v}=2922,2855,1519,1494,1393,1220,1039,811,744,635 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 258 (100) [M] ${ }^{+}, 229$ (9), 215 (9), 201 (17), 188 (43), 176 (35), 133 (16), 41 (12).

HR-MS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{FN}_{2}{ }^{+}[\mathrm{M}]^{+}$258.1527, found 258.1531.

1-(3-Cycloheptyl-4-methylphenyl)-1H-pyrazole (146eh)

The general procedure \mathbf{K} was followed using 5-methyl-2-(1H-pyrazol-1-yl)benzoic acid (144e, $101 \mathrm{mg}, 0.50 \mathrm{mmol})$ and bromocycloheptane ($\mathbf{1 3 6 h}, 266 \mathrm{mg}$, 1.50 mmol). After 16 h , purification by column chromatography (n-hexane/EtOAc $30: 1$) yielded meta-alkylated product 146eh ($74.5 \mathrm{mg}, 59 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.88(\mathrm{dd}, J=2.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=1.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=8.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{dd}, J=2.5,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.91 (tt, J = 10.4, $3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.35 ($\mathrm{s}, 3 \mathrm{H}$), 1.96-1.49 (m, 12H).
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=149.3\left(\mathrm{C}_{\mathrm{q}}\right), 140.5(\mathrm{CH}), 138.6\left(\mathrm{C}_{\mathrm{q}}\right), 132.8\left(\mathrm{C}_{\mathrm{q}}\right), 130.7(\mathrm{CH}), 126.6(\mathrm{CH})$, $117.0(\mathrm{CH}), 116.0(\mathrm{CH}), 107.0(\mathrm{CH}), 42.2(\mathrm{CH}), 36.0\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right), 19.1\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2920,2853,1611,1518,1391,1334,1043,808,743 \mathrm{~cm}^{-1}$.
MS (EI) m / z (relative intensity): 254 (100) [M] ${ }^{+}, 239$ (11) [M-Me] ${ }^{+}, 225$ (9), 211 (19), 197 (24), 185 (35), 172 (38), 128 (16), 115 (21), 41 (14).

HR-MS (EI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+}$254.1778, found 254.1783.

1-(3-Cyclooctyl-4-methylphenyl)-1H-pyrazole (146ek)

The general procedure \mathbf{K} was followed using 5 -methyl-2-(1H-pyrazol-1-yl)benzoic acid ($\mathbf{1 4 4 e}, 101 \mathrm{mg}, 0.50 \mathrm{mmol}$) and bromocyclooctane ($\mathbf{1 3 6 k}, 287 \mathrm{mg}$, 1.50 mmol). After 16 h , purification by column chromatography (n-hexane/EtOAc 30:1) yielded meta-alkylated product 146ek ($46.4 \mathrm{mg}, 35 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.88(\mathrm{dd}, \mathrm{J}=2.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, \mathrm{J}=1.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=8.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{dd}, J=2.4,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.08-2.99 (m, 1H), 2.36 (s, 3H), 1.88-1.54 (m, 14H).
${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=150.2\left(\mathrm{C}_{\mathrm{q}}\right), 140.6(\mathrm{CH}), 138.6\left(\mathrm{C}_{\mathrm{q}}\right), 132.8\left(\mathrm{C}_{\mathrm{q}}\right), 130.8(\mathrm{CH}), 126.7(\mathrm{CH})$, $117.5(\mathrm{CH}), 116.0(\mathrm{CH}), 107.1(\mathrm{CH}), 39.6(\mathrm{CH}), 34.3\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 19.2\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2917,2850,1611,1585,1518,1392,1334,1043,809,743 \mathrm{~cm}^{-1}$.
MS (EI) m / z (relative intensity): 268 (100) [M] ${ }^{+}, 253$ (8) [M-Me] ${ }^{+}, 225$ (11), 211 (17), 197 (24), 185 (46), 172 (41), 128 (14), 115 (19), 41 (21).

HR-MS (EI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+}$268.1934, found 268.1941.

1-(3-Cycloheptyl-4-methoxyphenyl)-5-methyl-1H-pyrazole (146fh)

The general procedure \mathbf{K} was followed using 5-methoxy-2-(5-methyl-1H-pyrazol1 -yl)benzoic acid ($\mathbf{1 4 4 f}, 116 \mathrm{mg}, 0.50 \mathrm{mmol}$) and bromocycloheptane ($\mathbf{1 3 6}$, $266 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 16 h , purification by column chromatography (n-hexane/EtOAc 10:1) yielded meta-alkylated product 146 fh ($39.3 \mathrm{mg}, 28 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.54(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=8.6$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dq}, J=1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{tt}, J=10.2$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.50(\mathrm{~m}$, 6 H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=155.6\left(\mathrm{C}_{\mathrm{q}}\right), 139.3(\mathrm{CH}), 138.9\left(\mathrm{C}_{\mathrm{q}}\right), 138.6\left(\mathrm{C}_{\mathrm{q}}\right), 132.8\left(\mathrm{C}_{\mathrm{q}}\right), 124.1(\mathrm{CH})$, $122.9(\mathrm{CH}), 110.3(\mathrm{CH}), 106.1(\mathrm{CH}), 55.7\left(\mathrm{CH}_{3}\right), 38.8(\mathrm{CH}), 35.4\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 12.3$ $\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2920,2852,1499,1442,1238,1102,1028,921,811,771 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 284 (100) [M $]^{+}, 269$ (5) [M-Me] ${ }^{+}, 255$ (8), 241 (9), 227 (20), 215 (15), 201 (14), 171 (11), 55 (9), 41 (13).

HR-MS (EI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}]^{+}$284.1883, found 284.1891.

1-[3-(tert-Butyl)-4-methoxyphenyl]-5-methyl-1H-pyrazole (146fb)

 The general procedure \mathbf{K} was followed using 5-methoxy-2-(5-methyl-1H-pyrazol-1yl)benzoic acid (144f, $116 \mathrm{mg}, 0.50 \mathrm{mmol}$) and tert-butyl bromide (136b, 206 mg , 1.50 mmol). After 16 h , purification by column chromatography (n-hexane/EtOAc $10: 1$) yielded meta-alkylated product 146 fb ($65.9 \mathrm{mg}, 54 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.54(\mathrm{dq}, \mathrm{J}=1.8,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, \mathrm{J}=$ 8.6, 2.7 Hz, 1H), $6.92(d, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dq}, J=1.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{dd}, J=0.8$, $0.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.39$ (s, 9H).
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=157.8\left(\mathrm{C}_{\mathrm{q}}\right), 139.2(\mathrm{CH}), 139.0\left(\mathrm{C}_{\mathrm{q}}\right), 138.5\left(\mathrm{C}_{\mathrm{q}}\right), 132.5\left(\mathrm{C}_{\mathrm{q}}\right), 124.1(\mathrm{CH})$, $123.5(\mathrm{CH}), 111.4(\mathrm{CH}), 106.1(\mathrm{CH}), 55.3\left(\mathrm{CH}_{3}\right), 35.1\left(\mathrm{C}_{\mathrm{q}}\right), 29.6\left(\mathrm{CH}_{3}\right), 12.3\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2955,1497,1454,1234,1091,1027,922,814,772 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 244 (76) [M] ${ }^{+}$, 229 (100) [M-Me] ${ }^{+}, 214$ (23) [M-2Me] ${ }^{+}, 201$ (25), 171 (9), 77 (8), 43 (9).

HR-MS (EI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}]^{+}$244.1570, found 244.1577.

1-[3-(tert-Butyl)-4-fluorophenyl]-1H-pyrazole (146gb)

The general procedure \mathbf{K} was followed using 5-fluoro-2-(1H-pyrazol-1-yl)benzoic acid ($\mathbf{1 4 4 g}, 103 \mathrm{mg}, 0.50 \mathrm{mmol}$) and tert-butyl bromide (136b, $206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 16 h, purification by column chromatography (n-hexane/EtOAc $25: 1$) yielded metaalkylated product $\mathbf{1 4 6 g b}$ ($59.1 \mathrm{mg}, 54 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.84(\mathrm{dd}, J=2.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=1.9,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}$, $J=7.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.42 (ddd, $J=8.7,3.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=11.8,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{dd}, J=$ $2.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=160.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=248 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 140.8(\mathrm{CH}), 138.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=13 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, $136.1\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 126.9(\mathrm{CH}), 119.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=6 \mathrm{~Hz}, \mathrm{CH}\right), 118.4\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}, \mathrm{CH}\right), 116.9(\mathrm{~d}$, $\left.{ }^{2} J_{C-F}=26 \mathrm{~Hz}, \mathrm{CH}\right), 107.4(\mathrm{CH}), 34.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 29.8\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$.
${ }^{19}$ F-NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=(-112.1)-(-112.2)(\mathrm{m})$.
IR (ATR): $\tilde{v}=2961,1518,1491,1395,1211,1044,949,812,744,640 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 218 (67) [M] ${ }^{+}, 203$ (100) [M-Me] ${ }^{+}, 175$ (74).

HR-MS (EI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{FN}_{2}{ }^{+}[\mathrm{M}]^{+}$218.1214, found 218.1221.

The analytical data correspond with those reported in the literature. ${ }^{[62]}$

1-[3-(tert-Butyl)-4-methylphenyl]-1H-pyrazole (146eb)

The general procedure K was followed using 5-methyl-2-(1H-pyrazol-1-yl)benzoic acid (144e, $101 \mathrm{mg}, 0.50 \mathrm{mmol}$) and tert-butyl bromide ($136 \mathrm{~b}, 206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 16 h , purification by column chromatography (n-hexane/EtOAc 25:1) yielded meta-alkylated product 146 eb ($30.4 \mathrm{mg}, 28 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.88(\mathrm{dd}, \mathrm{J}=2.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, \mathrm{J}=$ $1.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=8.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{dd}, \mathrm{J}=2.4,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.57 ($s, 3 H), 1.46(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=149.3\left(\mathrm{C}_{q}\right), 140.6(\mathrm{CH}), 138.1\left(\mathrm{C}_{q}\right), 134.6\left(\mathrm{C}_{q}\right), 133.4(\mathrm{CH}), 126.7(\mathrm{CH})$, $117.7(\mathrm{CH}), 116.6(\mathrm{CH}), 107.1(\mathrm{CH}), 36.1\left(\mathrm{C}_{q}\right), 30.7\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2959,1610,1517,1492,1395,1045,949,811,745 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 214 (52) [M] ${ }^{+}, 199$ (100) [M-Me] ${ }^{+}, 184$ (9) [M-2Me] ${ }^{+}, 171$ (18), 115 (10), 91 (9), 77 (6), 41 (7).

HR-MS (EI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+}$214.1465, found 214.1475.

The spectral data are in accordance with those reported in the literature. ${ }^{[103]}$

1-[3-(Adamantan-1-yl)phenyl]-1H-pyrazole (146av)

The general procedure K was followed using 2-(1H-pyrazol-1-yl)benzoic acid (144a, $94.1 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 1-bromoadamantane (136v, $324 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 16 h , purification by column chromatography (n-hexane/EtOAc 30:1) yielded metaalkylated product 146av ($42.7 \mathrm{mg}, 31 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.93(\mathrm{dd}, J=2.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.45 (ddd, $J=7.8,2.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=7.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dt}, J=7.6,1.6 \mathrm{~Hz}$, 1H), 6.46 (dd, $J=2.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.08(\mathrm{~m}, 3 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 6 \mathrm{H}), 1.85-1.72(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=153.0\left(\mathrm{C}_{\mathrm{q}}\right), 140.8(\mathrm{CH}), 140.1\left(\mathrm{C}_{\mathrm{q}}\right), 128.9(\mathrm{CH}), 126.8(\mathrm{CH}), 123.1$ $(\mathrm{CH}), 116.5(\mathrm{CH}), 116.4(\mathrm{CH}), 107.3(\mathrm{CH}), 43.2\left(\mathrm{CH}_{2}\right), 36.8\left(\mathrm{CH}_{2}\right), 36.5\left(\mathrm{C}_{\mathrm{q}}\right), 29.0(\mathrm{CH})$.

IR (ATR): $\tilde{v}=2899,2846,1606,1518,1391,1032,945,781,743,696 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 278 (100) [M] ${ }^{+}, 235$ (8), 221 (65), 184 (9).

HR-MS (EI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+}$278.1778, found 278.1784.

5.3.5.2 Characterization Data for 141g and 202

Methyl 2-[3-(1H-pyrazol-1-yl)phenyl]hexanoate (141g)

The general procedure L was followed using 2-(1H-pyrazol-1-yl)benzoic acid (144a, $94.1 \mathrm{mg}, 0.50 \mathrm{mmol}$) and methyl 2-bromohexanoate (140a, 314 mg , 1.50 mmol). After 16 h , purification by column chromatography (n-hexane/EtOAc 10:1) yielded meta-alkylated product 141 g ($80.1 \mathrm{mg}, 59 \%$) as a colorless oil. The analytical data of $\mathbf{1 4 1 g}$ are in section 5.3.3.1.

Methyl 2-[2-methyl-5-(1H-pyrazol-1-yl)phenyl]hexanoate (202a)

The general procedure \mathbf{L} was followed using 5-methyl-2-(1H-pyrazol-1yl)benzoic acid ($\mathbf{1 4 4 e}, 101 \mathrm{mg}, 0.50 \mathrm{mmol}$) and methyl 2-bromohexanoate (140a, $314 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 16 h , purification by column chromatography (n-hexane/EtOAc 15:1) yielded meta-alkylated product 202a ($82.1 \mathrm{mg}, 57 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.89(\mathrm{dd}, J=2.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=1.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=8.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{dd}, J=2.5,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.85 (dd, J = 8.1, $7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.66 ($\mathrm{s}, 3 \mathrm{H}$), $2.39(\mathrm{~s}, 3 \mathrm{H}), 2.15$ (dddd, $J=13.2,10.0,8.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.78 (dddd, $J=13.7,10.0,7.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.37-1.19(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.2\left(\mathrm{C}_{\mathrm{q}}\right), 140.7(\mathrm{CH}), 139.0\left(\mathrm{C}_{\mathrm{q}}\right), 138.7\left(\mathrm{C}_{\mathrm{q}}\right), 134.3\left(\mathrm{C}_{\mathrm{q}}\right), 131.2(\mathrm{CH})$, $126.7(\mathrm{CH}), 117.8(\mathrm{CH}), 117.7(\mathrm{CH}), 107.3(\mathrm{CH}), 52.0\left(\mathrm{CH}_{3}\right), 47.1(\mathrm{CH}), 33.0\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right), 22.6$ $\left(\mathrm{CH}_{2}\right), 19.5\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2954,1732,1613,1520,1392,1161,1043,956,815,747 \mathrm{~cm}^{-1}$.
MS (EI) m / z (relative intensity): 286 (62) $[\mathrm{M}]^{+}, 271$ (4) $[\mathrm{M}-\mathrm{Me}]^{+}, 257$ (9) $[\mathrm{M}-E t]^{+}, 243$ (39) $[\mathrm{M}-\mathrm{Pr}]^{+}$, $230(60)[\mathrm{M}-\mathrm{Bu}]^{+}, 227(83)\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 213(23)\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}-\mathrm{Me}\right]^{+}, 199(18)\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}-\mathrm{Et}\right]^{+}, 185$ (31) $\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}-\mathrm{Pr}\right]^{+}, 171$ (100) $\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}-\mathrm{Bu}\right]^{+}, 157$ (17), 128 (14), 115 (24), 41 (18).

HR-MS (EI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}]^{+}$286.1676, found 286.1681.

Methyl 2-[2-fluoro-5-(1H-pyrazol-1-yl)phenyl]hexanoate (202b)

The general procedure L was followed using 5-fluoro-2-(1H-pyrazol-1-yl)benzoic acid (144g, $103 \mathrm{mg}, 0.50 \mathrm{mmol}$) and methyl 2-bromohexanoate (140a, 314 mg , 1.50 mmol). After 16 h , purification by column chromatography (n-hexane/EtOAc 10:1) yielded meta-alkylated product 202b ($93.9 \mathrm{mg}, 65 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.87(\mathrm{dd}, J=2.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=1.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}$, $J=6.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.56 (ddd, $J=8.9,4.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.13(\mathrm{dd}, J=9.5,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=$ $2.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.45-$ $1.13(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.3\left(\mathrm{C}_{\mathrm{q}}\right), 158.7\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=245 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 141.0(\mathrm{CH}), 136.6\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=\right.$ $3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$), $127.5\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=17 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 126.9(\mathrm{CH}), 120.0\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}, \mathrm{CH}\right), 119.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}\right.$, $\mathrm{CH}), 116.2\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=25 \mathrm{~Hz}, \mathrm{CH}\right), 107.6(\mathrm{CH}), 52.2\left(\mathrm{CH}_{3}\right), 43.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2 \mathrm{~Hz}, \mathrm{CH}\right), 32.4\left(\mathrm{CH}_{2}\right), 29.7$ $\left(\mathrm{CH}_{2}\right), 22.4\left(\mathrm{CH}_{2}\right), 13.9\left(\mathrm{CH}_{3}\right)$.
${ }^{19}$ F-NMR (282 MHz, CDCl 3): $\delta=-120.9$ (ddd, $\left.J=9.5,6.2,4.4 \mathrm{~Hz}\right)$.

IR (ATR): $\tilde{v}=2955,2861,1734,1520,1500,1394,1224,1039,819,747 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 290 (77) [M] ${ }^{+}, 247$ (9) [M-Pr] ${ }^{+}$, 234 (60) [M-Bu] ${ }^{+}$, 231 (70) [M$\left.\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 203$ (14) [$\left.\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}-E t\right]^{+}, 189$ (24) [$\left.\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}-\mathrm{Pr}\right]^{+}, 175$ (100) [$\left.\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}-\mathrm{Bu}\right]^{+}, 148$ (13), 133 (10).

HR-MS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}]^{+}$290.1425, found 290.1434.

Methyl 2-[2-chloro-5-(1H-pyrazol-1-yl)phenyl]hexanoate (202c)

The general procedure L was followed using 5-chloro-2-(1H-pyrazol-1-yl)benzoic acid (144h, $111 \mathrm{mg}, 0.50 \mathrm{mmol}$) and methyl 2-bromohexanoate (140a, 314 mg , 1.50 mmol). After 16 h , purification by column chromatography (n-hexane/EtOAc 10:1) yielded meta-alkylated product 202c ($91.2 \mathrm{mg}, 59 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.90(\mathrm{dd}, \mathrm{J}=2.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{dd}, \mathrm{J}=$ $1.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{dd}, J=2.5,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.18 (dd, $J=7.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{dddd}, J=13.1,9.7,7.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.82$ (dddd, $J=$ $13.4,9.7,7.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.41-1.18(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.5\left(\mathrm{C}_{\mathrm{q}}\right), 141.3(\mathrm{CH}), 139.1\left(\mathrm{C}_{\mathrm{q}}\right), 138.3\left(\mathrm{C}_{\mathrm{q}}\right), 131.5\left(\mathrm{C}_{\mathrm{q}}\right), 130.4(\mathrm{CH})$, $126.7(\mathrm{CH}), 119.2(\mathrm{CH}), 118.9(\mathrm{CH}), 107.9(\mathrm{CH}), 52.2\left(\mathrm{CH}_{3}\right), 47.4(\mathrm{CH}), 32.9\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 22.5$ $\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$. IR (ATR): $\tilde{v}=2954,2860,1733,1519,1481,1392,1166,1032,818,746 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 308 (17) $\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)\right]^{+}, 306$ (47) $\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)\right]^{+}, 271$ (100) $[\mathrm{M}-\mathrm{Cl}]^{+}, 252$ (8) $\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)-\mathrm{Bu}\right]^{+}, 250(24)\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)-\mathrm{Bu}\right]^{+}, 249(12)\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 247(35)\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 193$ (23) $\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)-\mathrm{CO}_{2} \mathrm{Me}-\mathrm{Bu}\right]^{+}, 191$ (58) $\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)-\mathrm{CO}_{2} \mathrm{Me}-\mathrm{Bu}\right]^{+}, 155$ (12), 115 (13), 59 (13), 43 (35).

HR-MS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{19}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}]^{+}$306.1130, found 306.1136.

Methyl 2-[2-methyl-5-(1H-pyrazol-1-yl)phenyl]propanoate (202d)

The general procedure \mathbf{L} was followed using 5-methyl-2-(1H-pyrazol-1yl)benzoic acid (144e, $101 \mathrm{mg}, 0.50 \mathrm{mmol}$) and methyl 2-bromopropanoate ($\mathbf{1 4 0 i}, 251 \mathrm{mg}, 1.50 \mathrm{mmol})$. After 16 h , purification by column chromatography (n-hexane/EtOAc 10:1) yielded meta-alkylated product 202d ($33.3 \mathrm{mg}, 27 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.88(\mathrm{dd}, J=2.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=1.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=8.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{dd}, J=2.5,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.99(q, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.6\left(\mathrm{C}_{\mathrm{q}}\right), 140.7(\mathrm{CH}), 140.2\left(\mathrm{C}_{\mathrm{q}}\right), 138.7\left(\mathrm{C}_{\mathrm{q}}\right), 134.0\left(\mathrm{C}_{\mathrm{q}}\right), 131.3(\mathrm{CH})$, $126.7(\mathrm{CH}), 117.8(\mathrm{CH}), 117.7(\mathrm{CH}), 107.3(\mathrm{CH}), 52.1\left(\mathrm{CH}_{3}\right), 41.5(\mathrm{CH}), 19.2\left(\mathrm{CH}_{3}\right), 17.9\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2951,1731,1613,1520,1393,1335,1199,1045,946,750 \mathrm{~cm}^{-1}$.
MS (EI) m / z (relative intensity): 244 (59) [M] ${ }^{+}$, 212 (8) $\left[\mathrm{M}-\mathrm{OMe}^{+}, 185\right.$ (100) $\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}^{+}, 170\right.$ (13) $\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}-\mathrm{Me}\right]^{+}, 157$ (12), 143 (11), 115 (17), 91 (12), 77 (7), 59 (9), 43 (10).

HR-MS (EI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}]^{+}$244.1206, found 244.1210.

(Tetrahydrofuran-2-yl)methyl 2-[2-methyl-5-(1H-pyrazol-1-yl)phenyl]propanoate (202e)

 The general procedure \mathbf{L} was followed using 5-methyl-2-(1H-pyrazol-1yl)benzoic acid (144e, $101 \mathrm{mg}, 0.50 \mathrm{mmol}$) and (tetrahydrofuran-2yl)methyl 2-bromopropanoate ($\mathbf{1 4 0 1}, 356 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 16 h , purification by column chromatography (n-hexane/EtOAc 7:1) yielded meta-alkylated product $\mathbf{2 0 2 e}(68.6 \mathrm{mg}, 44 \%$, as a diastereomeric mixture (1:1)) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, determined as a diastereomeric mixture (1:1)): $\delta=7.91(\mathrm{dd}, \mathrm{J}=2.5$, $0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{dd}, J=2.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=1.8,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=8.2,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.43(\mathrm{dd}, J=2.5,1.8 \mathrm{~Hz}$, $2 \mathrm{H}), 4.22-3.98(\mathrm{~m}, 8 \mathrm{H}), 3.82-3.67(\mathrm{~m}, 4 \mathrm{H}), 2.39(\mathrm{~s}, 6 \mathrm{H}), 1.97-1.71(\mathrm{~m}, 6 \mathrm{H}), 1.54(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.54(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.54-1.43(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, determined as a diastereomeric mixture (1:1)): $\delta=174.1\left(\mathrm{C}_{q}\right), 174.0$ $\left(C_{q}\right), 140.7(2 \times C H), 140.1\left(C_{q}\right), 140.1\left(C_{q}\right), 138.7\left(2 \times C_{q}\right), 134.0\left(2 \times C_{q}\right), 131.2(2 \times \mathrm{CH}), 126.7(2 \times$ $\mathrm{CH}), 117.8(\mathrm{CH}), 117.8(\mathrm{CH}), 117.6(\mathrm{CH}), 117.6(\mathrm{CH}), 107.2(2 \times \mathrm{CH}), 76.4(\mathrm{CH}), 76.3(\mathrm{CH}), 68.4\left(\mathrm{CH}_{2}\right)$,
$68.3\left(\mathrm{CH}_{2}\right), 66.8\left(\mathrm{CH}_{2}\right), 66.6\left(\mathrm{CH}_{2}\right), 41.6(\mathrm{CH}), 41.6(\mathrm{CH}), 28.0\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right)$, $19.2\left(2 \times \mathrm{CH}_{3}\right), 17.9\left(\mathrm{CH}_{3}\right), 17.9\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2975,2873,1730,1613,1520,1393,1187,1044,947,749 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 314 (42) [M] ${ }^{+}, 271$ (13), 244 (9) [M-THF] ${ }^{+} 230$ (21) [M-CH2THF] ${ }^{+}$, 212 (31) [$\left.\mathrm{M}-\mathrm{OCH}_{2} \mathrm{THF}\right]^{+}, 186$ (98), 185 (100) $\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{THF}\right]^{+}, 171$ (37) [$\left.\mathrm{M}-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{THF}-\mathrm{Me}\right]^{+}, 143$ (14), 115 (24), 91 (15), 71 (71), 43 (61), 41 (26).

HR-MS (EI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}[\mathrm{M}]^{+}$314.1625, found 314.1637.

2-[2-Methyl-5-(1H-pyrazol-1-yl)phenyl]-1-morpholinopropan-1-one (202f)

The general procedure \mathbf{L} was followed using 5-methyl-2-(1H-pyrazol-1yl)benzoic acid (144e, $101 \mathrm{mg}, \quad 0.50 \mathrm{mmol})$ and 2-bromo-1-morpholinopropan-1-one (140e, $333 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 16 h , purification by column chromatography (n-hexane/EtOAc 1:1) yielded meta-alkylated product 202 f ($54.8 \mathrm{mg}, 37 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.87(\mathrm{dd}, J=2.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=1.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ (dd, $J=8.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{dd}, J=2.5,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.95(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.41(\mathrm{~m}, 3 \mathrm{H}), 3.34-3.22(\mathrm{~m}$, 1H), 3.18-3.04 (m, 2H), 2.37 (s, 3H), 1.44 (d, J = $6.8 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.1\left(\mathrm{C}_{\mathrm{q}}\right), 141.2\left(\mathrm{C}_{\mathrm{q}}\right), 140.8(\mathrm{CH}), 139.1\left(\mathrm{C}_{\mathrm{q}}\right), 132.2\left(\mathrm{C}_{\mathrm{q}}\right), 131.7(\mathrm{CH})$, $126.6(\mathrm{CH}), 117.9(\mathrm{CH}), 117.0(\mathrm{CH}), 107.4(\mathrm{CH}), 66.8\left(\mathrm{CH}_{2}\right), 66.2\left(\mathrm{CH}_{2}\right), 45.7\left(\mathrm{CH}_{2}\right), 42.5\left(\mathrm{CH}_{2}\right), 40.0$ $(\mathrm{CH}), 18.9\left(\mathrm{CH}_{3}\right), 18.7\left(\mathrm{CH}_{3}\right)$

IR (ATR): $\tilde{v}=2969,2856,1643,1519,1429,1394,1228,1114,1029,753 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 299 (20) [M] ${ }^{+}$, 269 (34), 212 (29), 185 (100), 170 (14), 158 (9), 143 (12), 114 (99), 91 (14), 70 (68), 43 (24).

HR-MS (EI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}[\mathrm{M}]^{+}$299.1628, found 299.1629.

Methyl 5-bromo-2-[2-methyl-5-(1H-pyrazol-1-yl)phenyl]pentanoate (202g)

The general procedure \mathbf{L} was followed using 5-methyl-2-(1H-pyrazol-1yl)benzoic acid ($\mathbf{1 4 4 e}, 101 \mathrm{mg}, 0.50 \mathrm{mmol}$) and methyl 2,5-dibromopentanoate ($140 \mathrm{f}, 411 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 16 h , purification by column chromatography (n-hexane/EtOAc 10:1) yielded meta-alkylated product $\mathbf{2 0 2 g}$ ($33.5 \mathrm{mg}, 19 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.89(\mathrm{dd}, J=2.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=1.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{dd}, J=2.5,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.88 (dd, J = 8.1, $6.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.67(\mathrm{~s}, 3 \mathrm{H}), 3.43-3.37(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.07-$ $1.73(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.6\left(\mathrm{C}_{\mathrm{q}}\right), 140.8(\mathrm{CH}), 138.8\left(\mathrm{C}_{\mathrm{q}}\right), 138.2\left(\mathrm{C}_{\mathrm{q}}\right), 134.3\left(\mathrm{C}_{\mathrm{q}}\right), 131.5(\mathrm{CH})$, $126.7(\mathrm{CH}), 118.1(\mathrm{CH}), 117.7(\mathrm{CH}), 107.4(\mathrm{CH}), 52.2\left(\mathrm{CH}_{3}\right), 46.3(\mathrm{CH}), 33.0\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right), 30.7$ $\left(\mathrm{CH}_{2}\right), 19.5\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2951,1730,1613,1520,1434,1393,1198,1162,1043,748 \mathrm{~cm}^{-1}$.
MS (EI) m / z (relative intensity): $352(22)\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)\right]^{+}, 350(22)\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)\right]^{+}, 293(28)\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}$, $291(28)\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)-\mathrm{CO}_{2} \mathrm{Me}^{+}, 271(100)[\mathrm{M}-\mathrm{Br}]^{+}, 243(47)[\mathrm{M}-\mathrm{Br}-\mathrm{Et}]^{+}, 211 \text { (70) [} \mathrm{M}-\mathrm{Br}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 185$ (23), 183 (28), 171 (64), 157 (15), 143 (10), 128 (14), 115 (20), 91 (9).

HR-MS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{19}{ }^{79} \mathrm{BrN}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}]^{+} 350.0624$, found 350.0643 .

1-[3-(1-Phenylethyl)phenyl]-1H-pyrazole (202h)

The general procedure \mathbf{L} was followed using 2-(1H-pyrazol-1-yl)benzoic acid (144a, $94.1 \mathrm{mg}, 0.50 \mathrm{mmol}$) and (1-chloroethyl)benzene (142a, 211 mg , 1.50 mmol). After 16 h , purification by column chromatography (n-hexane/EtOAc 30:1) followed by recycling preparative HPLC yielded meta-benzylated product 202h ($28.8 \mathrm{mg}, 23 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.89(\mathrm{dd}, J=2.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{dd}, \mathrm{J}=1.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63$ (dddd, J=2.0, 1.8, 0.5, 0.5 Hz, 1H), 7.49 (ddd, $J=7.8,2.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=7.8,7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.33-7.18(\mathrm{~m}, 5 \mathrm{H}), 7.15$ (dddd, $J=7.7,1.8,1.1,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{dd}, J=2.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{q}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.0\left(\mathrm{C}_{q}\right), 145.6\left(\mathrm{C}_{q}\right), 140.8(\mathrm{CH}), 140.2\left(\mathrm{C}_{q}\right), 129.3(\mathrm{CH}), 128.4(\mathrm{CH})$, $127.5(\mathrm{CH}), 126.7(\mathrm{CH}), 126.1(\mathrm{CH}), 125.7(\mathrm{CH}), 118.7(\mathrm{CH}), 116.9(\mathrm{CH}), 107.4(\mathrm{CH}), 44.8(\mathrm{CH}), 21.8$ $\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2969,1592,1519,1493,1393,1044,945,750,702 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 248 (83) [M] ${ }^{+}, 233$ (100) [M-Me] ${ }^{+}, 206$ (17), 179 (12), 165 (30), 115 (8), 77 (13).

HR-MS (EI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+}$248.1308, found 248.1314.

1-\{3-[1-(4-Fluorophenyl)ethyl]phenyl\}-1H-pyrazole (202i)

The general procedure \mathbf{L} was followed using 2-(1H-pyrazol-1-yl)benzoic acid (144a, $94.1 \mathrm{mg}, 0.50 \mathrm{mmol})$ and 1-(1-chloroethyl)-4-fluorobenzene (142d, $238 \mathrm{mg}, 1.50 \mathrm{mmol})$. After 16 h , purification by column chromatography (n-hexane/EtOAc 30:1) yielded meta-benzylated product 202i (38.4 mg, 29\%) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.89(\mathrm{dd}, J=2.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J=1.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ (dd, $J=2.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.48 (ddd, $J=7.9,2.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.36 (dd, $J=7.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20$ (ddd, $J=$ 8.9, 5.4, $0.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{dd}, \mathrm{J}=8.9,8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{dd}, \mathrm{J}=2.5,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.21 (q, J = 7.3 Hz, 1H), 1.67 (d, J = 7.3 Hz, 3H).
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=161.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=244 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 147.8\left(\mathrm{C}_{\mathrm{q}}\right), 141.3\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right)$, 140.9 (CH), $140.2\left(\mathrm{C}_{\mathrm{q}}\right), 129.3(\mathrm{CH}), 128.9\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=8 \mathrm{~Hz}, \mathrm{CH}\right), 126.7(\mathrm{CH}), 125.6(\mathrm{CH}), 118.6(\mathrm{CH})$, $116.9(\mathrm{CH}), 115.1\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}, \mathrm{CH}\right), 107.5(\mathrm{CH}), 44.1(\mathrm{CH}), 22.0\left(\mathrm{CH}_{3}\right)$.
${ }^{19}$ F-NMR (376 MHz, CDCl 3): $\delta=-117.1(\mathrm{tt}, J=8.7,5.4 \mathrm{~Hz})$

IR (ATR): $\tilde{v}=2968,1607,1592,1508,1393,1222,1040,945,837,749 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 266 (77) [M] ${ }^{+}$, 251 (100) [M-Me] ${ }^{+}, 231$ (8) [M-Me-F] ${ }^{+}, 224$ (14), 183 (25).

HR-MS (EI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{FN}_{2}{ }^{+}[\mathrm{M}]^{+}$266.1214, found 266.1216.

5.3.5.3 Mechanistic Studies

5.3.5.3.1 Isotopic Studies

2-(1H-Pyrazol-1-yl)benzoic acid (144a, $94.1 \mathrm{mg}, 0.50 \mathrm{mmol})$, $\left[\mathrm{RuCl}_{2}(p-\text { cymene) }]_{2}(7.7 \mathrm{mg}, 13 \mu \mathrm{~mol}\right.$, $2.5 \mathrm{~mol} \%$), $\mathrm{MesCO}_{2} \mathrm{H}(\mathbf{3 1}, 24.6 \mathrm{mg}, 150 \mu \mathrm{~mol}, 30 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{mmol})$ were placed in a pre-dried 25 mLSchlenk tube. The tube was evacuated and purged with N_{2} three times. Bromocycloheptane ($\mathbf{1 3 6 h}, 266 \mathrm{mg}, 1.50 \mathrm{mmol}$), o-xylene (0.8 mL) and $\mathrm{D}_{3} \mathrm{COD}(0.1 \mathrm{~mL})$ were then added. The Schlenk tube was degassed and filled with N_{2} three times and the mixture was stirred at $120^{\circ} \mathrm{C}$. After 16 h , the resulting mixture was filtered through a pad of silica gel and washed with EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography (SiO_{2}, n-hexane/EtOAc 25:1) yielded [D] $]_{n}$-146ah ($13.4 \mathrm{mg}, 11 \%$) and $[\mathrm{D}]_{\mathrm{n}}-147 \mathrm{a}$ ($14.6 \mathrm{mg}, 20 \%$). The degree of deuteration was determined by ${ }^{1} \mathrm{H}$-NMR spectroscopy (Figure 51 and Figure 52).

Figure 51: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $[\mathrm{D}]_{\mathrm{n}}-146 \mathrm{ah}$.

Figure 52 : ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $[\mathrm{D}]_{\mathrm{n}}-\mathbf{1 4 7 a}$.

5.3.5.3.2 Reactions with Radical Scavengers

Primary Alkylations

2-(1H-Pyrazol-1-yl)benzoic acid (144a, $94.1 \mathrm{mg}, 0.50 \mathrm{mmol}),\left[\mathrm{RuCl}_{2}(p-c y m e n e)\right]_{2}(7.7 \mathrm{mg}, 13 \mu \mathrm{~mol}$, $2.5 \mathrm{~mol} \%), \mathrm{MesCO}_{2} \mathrm{H}(31,24.6 \mathrm{mg}, 150 \mu \mathrm{~mol}, 30 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{mmol})$ and TEMPO $(78.2 \mathrm{mg}, 0.50 \mathrm{mmol})$ were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. Neopentyl bromide (136 t , $227 \mathrm{mg}, 1.50 \mathrm{mmol}$) and o-xylene (1.0 mL) were then added. The Schlenk tube was degassed and filled with N_{2} three times and the mixture was stirred at $120^{\circ} \mathrm{C}$. After 16 h , the resulting mixture was determined by GC-MS spectrometry. The reaction did not provide any formation of product 145at.

Secondary Alkylation

To a pre-dried 25 mL Schlenk tube charged with 2-(1H-pyrazol-1-yl)benzoic acid (144a, 94.1 mg , $0.50 \mathrm{mmol})$, bromocycloheptane $(136 \mathrm{~h}, 266 \mathrm{mg}, 1.50 \mathrm{mmol}),\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2}(7.7 \mathrm{mg}$, $13 \mu \mathrm{~mol}, 2.5 \mathrm{~mol} \%), \mathrm{MesCO}_{2} \mathrm{H}(31,24.6 \mathrm{mg}, 150 \mu \mathrm{~mol}, 30 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{mmol})$ was added o-xylene (1.0 mL) under air atmosphere. The mixture was then stirred at $120^{\circ} \mathrm{C}$. After 16 h , the resulting mixture was determined by GC-MS spectrometry. The reaction did not provide any formation of product 146ah.

2-(1H-Pyrazol-1-yl)benzoic acid (144a, $94.1 \mathrm{mg}, 0.50 \mathrm{mmol}),\left[\mathrm{RuCl}_{2}(p-c y m e n e)\right]_{2}(7.7 \mathrm{mg}, 13 \mu \mathrm{~mol}$, $2.5 \mathrm{~mol} \%$), $\mathrm{MesCO}_{2} \mathrm{H}(31,24.6 \mathrm{mg}, 150 \mu \mathrm{~mol}, 30 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{mmol})$ and BHT ($110 \mathrm{mg}, 0.50 \mathrm{mmol}$) were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. Bromocycloheptane ($136 \mathrm{~h}, 266 \mathrm{mg}, 1.50 \mathrm{mmol}$) and o-xylene (1.0 mL) were then added. The Schlenk tube was degassed and filled with N_{2} three times and the mixture was stirred at $120^{\circ} \mathrm{C}$. After 16 h , the resulting mixture was filtered through a pad of silica gel and washed with EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography (SiO_{2}, n-hexane/EtOAc $25: 1$) yielded $146 \mathrm{ah}(66.0 \mathrm{mg}, 55 \%$) as a colorless oil.

2-(1H-Pyrazol-1-yl)benzoic acid (144a, $94.1 \mathrm{mg}, 0.50 \mathrm{mmol}),\left[\mathrm{RuCl}_{2}(p-c y m e n e)\right]_{2}(7.7 \mathrm{mg}, 13 \mu \mathrm{~mol}$, $2.5 \mathrm{~mol} \%$), $\mathrm{MesCO}_{2} \mathrm{H}(31,24.6 \mathrm{mg}, 150 \mu \mathrm{~mol}, 30 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{mmol})$ and TEMPO ($78.2 \mathrm{mg}, 0.50 \mathrm{mmol}$) were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. Bromocycloheptane ($136 \mathrm{~h}, 266 \mathrm{mg}, 1.50 \mathrm{mmol}$) and o-xylene (1.0 mL) were then added. The Schlenk tube was degassed and filled with N_{2} three times and the mixture was stirred at $120^{\circ} \mathrm{C}$. After 16 h , the resulting mixture was filtered through a pad of silica gel and washed with EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography (SiO_{2}, n-pentane/ $\mathrm{Et}_{2} \mathrm{O} 50: 1$) yielded TEMPO-adduct 156 (9.2 mg, 7\%) as a colorless oil. The analytical data of 156 are in section 5.3.2.2.3.

5.3.5.4 X-Ray Crystallographic Analysis

A suitable crystal was selected and the crystal was mounted on a MITIGEN holder in NVH oil on a Bruker D8 Venture diffractometer. The crystal was kept at 100 K during data collection. Using Olex2, ${ }^{[137]}$ the structure was solved with the $\mathrm{XT}^{[138]}$ structure solution program using Intrinsic Phasing and refined with the $\mathrm{XL}^{[139]}$ refinement package using Least Squares minimisation.

Figure 53: Molecular structure of 201 with thermal ellipsoids at 50\% probability level. The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}(M=292.37 \mathrm{~g} / \mathrm{mol})$: triclinic, space group P-1 (no. 2), $a=8.7004$ (7) \AA, $b=9.8431(8) \AA$,,$c=10.0077(7) \AA$ A $, \alpha=86.914(3)^{\circ}, b=82.448(3)^{\circ}, v=66.641(2)^{\circ}, V=779.98(11) \AA^{3}$, $Z=2, T=100.0 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.078 \mathrm{~mm}^{-1}$, Dcalc $=1.245 \mathrm{~g} / \mathrm{cm}^{3}, 26231$ reflections measured (4.508° $\left.\leq 2 \Theta \leq 61.054^{\circ}\right), 4757$ unique ($R_{\text {int }}=0.0192, \mathrm{R}_{\text {sigma }}=0.0154$) which were used in all calculations. The final R_{1} was 0.0417 (I $>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.1196 (all data).

Table 77: Crystal data and structure refinement for 201.

Compound	$\mathbf{2 0 1}$
CCDC number	1979319
Identification code	mo_0190_CG_0m
Empirical formula	$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	292.37
Temperature/K	100.0
Crystal system	triclinic
Space group	$\mathrm{P}-1$

a/Å	8.7004(7)
b/Å	9.8431(8)
c/Å	10.0077(7)
$\alpha /{ }^{\circ}$	86.914(3)
$\beta /{ }^{\circ}$	82.448(3)
$\mathrm{V} /{ }^{\circ}$	66.641(2)
Volume/Å ${ }^{3}$	779.98(11)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.245
μ / mm^{-1}	0.078
F(000)	312.0
Crystal size/mm ${ }^{3}$	$0.464 \times 0.395 \times 0.391$
Radiation	MoKa ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ}$	4.508 to 61.054
Index ranges	$-12 \leq h \leq 12,-14 \leq k \leq 14,-14 \leq \mathrm{l} \leq 14$
Reflections collected	26231
Independent reflections	4757 [$\left.\mathrm{R}_{\text {int }}=0.0192, \mathrm{R}_{\text {sigma }}=0.0154\right]$
Data/restraints/parameters	4757/0/202
Goodness-of-fit on F^{2}	1.042
Final R indexes [l>=2 σ (1]	$\mathrm{R}_{1}=0.0417, \mathrm{wR}_{2}=0.1185$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0429, \mathrm{wR}_{2}=0.1196$
Largest diff. peak/hole / e \AA^{-3}	0.42/-0.32

Table 78: Bond lengths [Å] for 201.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O1	C1	$1.4290(11)$	C6	C12	$1.5167(11)$
O1	C2	$1.3627(10)$	C8	C9	$1.4025(13)$
N1	N2	$1.3649(10)$	C9	C10	$1.3788(12)$
N1	C5	$1.4298(10)$	C10	C11	$1.4905(13)$
N1	C10	$1.3624(11)$	C12	C13	$1.5089(11)$
N2	C8	$1.3313(12)$	C13	C14	$1.3948(11)$

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C2	C3	$1.3924(12)$	C13	C18	$1.4043(11)$
C2	C7	$1.3958(11)$	C14	C15	$1.3922(12)$
C3	C4	$1.3892(12)$	C15	C16	$1.3870(15)$
C4	C5	$1.3883(11)$	C16	C17	$1.3886(14)$
C5	C6	$1.4002(11)$	C17	C18	$1.3954(12)$
C6	C7	$1.3923(11)$	C18	C19	$1.5046(12)$

Table 79: Bond angles [${ }^{\circ}$] for 201.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C2	O1	C1	116.64(7)	N2	C8	C9	111.89(8)
N2	N1	C5	118.22(7)	C10	C9	C8	105.48(8)
C10	N1	N2	112.59(7)	N1	C10	C9	105.90(8)
C10	N1	C5	129.18(7)	N1	C10	C11	123.30(8)
C8	N2	N1	104.14(7)	C9	C10	C11	130.80(8)
O1	C2	C3	124.21(8)	C13	C12	C6	113.98(7)
01	C2	C7	115.63(7)	C14	C13	C12	119.86(7)
C3	C2	C7	120.16(8)	C14	C13	C18	119.50(8)
C4	C3	C2	118.64(8)	C18	C13	C12	120.63(7)
C5	C4	C3	121.15(8)	C15	C14	C13	121.17(8)
C4	C5	N1	118.36(7)	C16	C15	C14	119.35(9)
C4	C5	C6	120.72(8)	C15	C16	C17	119.86(8)
C6	C5	N1	120.79(7)	C16	C17	C18	121.44(8)
C5	C6	C12	121.52(7)	C13	C18	C19	120.86(8)
C7	C6	C5	117.83(7)	C17	C18	C13	118.66(8)
C7	C6	C12	120.65(7)	C17	C18	C19	120.47(8)
C6	C7	C2	121.47(7)				

Figure 54: Molecular structure of 146eh with thermal ellipsoids at 50\% probability level. The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{34} \mathrm{H}_{51} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{O}_{2}(M=654.13 \mathrm{~g} / \mathrm{mol})$: orthorhombic, space group Pben (no. 60), $a=$ $5.2607(4) \AA, b=16.9010(10) \AA, c=39.466(3) \AA, V=3509.0(4) \AA^{3}, Z=4, T=99.99 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=$ $0.296 \mathrm{~mm}^{-1}$, Dcalc $=1.238 \mathrm{~g} / \mathrm{cm}^{3}, 29694$ reflections measured $\left(4.128^{\circ} \leq 2 \Theta \leq 59.152^{\circ}\right), 4931$ unique ($R_{\text {int }}=0.0287, \mathrm{R}_{\text {sigma }}=0.0209$) which were used in all calculations. The final R_{1} was 0.0503 ($\mathrm{I}>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.1112 (all data).

Table 80: Crystal data and structure refinement for 146eh.

Compound	146eh
CCDC number	1979310
Identification code	mo_0079_CG_0m $^{\text {Empirical formula }}$
Formula weight	$\mathrm{C}_{34} \mathrm{H}_{51} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{O}_{2}$
Temperature/K	654.13
Crystal system	99.99
Space group	orthorhombic
a/Å	Pbcn
b/Å	$5.2607(4)$
$c / \AA ̊$	$16.9010(10)$
$\alpha /{ }^{\circ}$	$39.466(3)$
$\beta /{ }^{\circ}$	90

$\gamma /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	3509.0(4)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.238
μ / mm^{-1}	0.296
F(000)	1400.0
Crystal size/mm ${ }^{3}$	$0.406 \times 0.197 \times 0.167$
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.128 to 59.152
Index ranges	$-7 \leq h \leq 7,-23 \leq k \leq 22,-54 \leq 1 \leq 54$
Reflections collected	29694
Independent reflections	$4931\left[\mathrm{R}_{\text {int }}=0.0287, \mathrm{R}_{\text {sigma }}=0.0209\right]$
Data/restraints/parameters	4931/4/229
Goodness-of-fit on F^{2}	1.217
Final R indexes [$1>=2 \sigma(1)$]	$\mathrm{R}_{1}=0.0503, \mathrm{wR}_{2}=0.1090$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0554, \mathrm{wR}_{2}=0.1112$
Largest diff. peak/hole / e \AA^{-3}	0.30/-0.34

Table 81: Bond lengths [Å] for 146eh.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
N1	N2	1.3510(19)	C7	C10	1.508(3)
N1	C1	1.349(2)	C8	C9	$1.375(3)$
N1	C4	1.430(2)	C11	C12	1.536(2)
N2	C3	1.333(2)	C11	C17	1.540(2)
C1	C2	1.372(3)	C12	C13	1.533(2)
C2	C3	1.385(3)	C13	C14	1.527(2)
C4	C5	1.385(2)	C14	C15B	1.533(7)
C4	C9	1.388(2)	C14	C15A	1.565(3)
C5	C6	1.398(2)	C15B	C16B	1.512(11)
C6	C7	1.411(2)	C16B	C17	1.696(7)
C6	C11	1.514(2)	C17	C16A	1.499(3)

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C7	C8	$1.390(3)$	C15A	C16A	$1.532(4)$

Table 82: Bond angles [${ }^{\circ}$] for 146eh.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
N2	N1	C4	122.97(13)	C8	C7	C10	119.42(16)
C1	N1	N2	108.07(15)	C9	C8	C7	122.69(16)
C1	N1	C4	128.96(15)	C8	C9	C4	118.25(17)
C3	N2	N1	108.80(14)	C6	C11	C12	113.02(13)
N1	C1	C2	108.71(16)	C6	C11	C17	108.88(14)
C1	C2	C3	105.80(17)	C12	C11	C17	114.08(14)
N2	C3	C2	108.61(17)	C13	C12	C11	113.08(13)
C5	C4	N1	120.33(14)	C14	C13	C12	116.43(15)
C5	C4	C9	121.04(17)	C13	C14	C15B	109.6(3)
C9	C4	N1	118.63(15)	C13	C14	C15A	116.02(16)
C4	C5	C6	120.40(14)	C16B	C15B	C14	107.8(5)
C5	C6	C7	119.05(16)	C15B	C16B	C17	112.1(6)
C5	C6	C11	120.19(14)	C11	C17	C16B	119.5(3)
C7	C6	C11	120.71(16)	C16A	C17	C11	114.48(18)
C6	C7	C10	122.02(18)	C16A	C15A	C14	114.1(2)
C8	C7	C6	118.55(17)	C17	C16A	C15A	111.8(2)

5.3.6 Ruthenium-Catalyzed C-H Alkylation of Pyrazoles: ortho versus meta

5.3.6.1 Characterization Data for 145,146 , and 203

2-(3-Cyclohexylphenyl)pyridine (203a)

2-Phenylpyridine (68b, $77.6 \mathrm{mg}, 0.50 \mathrm{mmol}),\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2}(7.7 \mathrm{mg}, 13 \mu \mathrm{~mol}$, $2.5 \mathrm{~mol} \%$), $\mathrm{MesCO}_{2} \mathrm{H}\left(31,24.6 \mathrm{mg}, 150 \mu \mathrm{~mol}, 30 \mathrm{~mol} \%\right.$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (138 mg , 1.00 mmol) were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. Bromocyclohexane ($\mathbf{1 3 6 j}, 245 \mathrm{mg}, 1.50 \mathrm{mmol}$) and o-xylene (1.0 mL) were then added and the mixture was stirred at $120^{\circ} \mathrm{C}$. After 16 h , the resulting
mixture was filtered through a pad of silica gel and washed with EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography $\left(\mathrm{SiO}_{2}\right.$, n-hexane/EtOAc 10:1) yielded meta-alkylated product 203a ($60.5 \mathrm{mg}, 51 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.70(\mathrm{ddd}, J=4.8,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87$ (dddd, $J=1.9,1.8,0.6$, $0.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.77 (ddd, $J=7.8,1.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.75-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.40$ (ddd, $J=7.8,7.7,0.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.27$ (dddd, $J=7.7,1.8,1.3,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{ddd}, J=5.4,4.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{tt}, J=11.6$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.77(\mathrm{dtt}, J=10.5,3.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-1.37(\mathrm{~m}, 4 \mathrm{H}), 1.37-1.19$ ($\mathrm{m}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=157.7\left(\mathrm{C}_{q}\right), 149.5(\mathrm{CH}), 148.5\left(\mathrm{C}_{q}\right), 139.3\left(\mathrm{C}_{q}\right), 136.5(\mathrm{CH}), 128.6(\mathrm{CH})$, $127.4(\mathrm{CH}), 125.5(\mathrm{CH}), 124.3(\mathrm{CH}), 121.8(\mathrm{CH}), 120.6(\mathrm{CH}), 44.8(\mathrm{CH}), 34.5\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{2}\right), 26.2$ $\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2921,2849,1583,1564,1461,1434,1152,768,741,698 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 237 (91) [M] ${ }^{+}, 236$ (100) [M-H] ${ }^{+}, 222$ (9), 208 (45), 194 (51), 182 (97), 180 (32), 169 (49), 167 (44), 155 (29) [M-Cy] ${ }^{+}, 115$ (9), 78 (13), 43 (24), 41 (19).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}$238.1590, found 238.1598.
The spectral data are in accordance with those reported in the literature. ${ }^{[61,113]}$

2-(3-Cyclopentylphenyl)pyridine (203b)

2-Phenylpyridine ($68 \mathrm{~b}, 77.6 \mathrm{mg}, 0.50 \mathrm{mmol}$), $\left[\mathrm{RuCl}_{2}(p-c y m e n e)\right]_{2}(7.7 \mathrm{mg}, 13 \mu \mathrm{~mol}$, $2.5 \mathrm{~mol} \%$), $\mathrm{MesCO}_{2} \mathrm{H}\left(31,24.6 \mathrm{mg}, 150 \mu \mathrm{~mol}, 30 \mathrm{~mol} \%\right.$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}$, 1.00 mmol) were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. Bromocyclopentane ($\mathbf{1 3 6 i}, 224 \mathrm{mg}, 1.50 \mathrm{mmol}$) and $\mathrm{PhCMe}_{3}(1.0 \mathrm{~mL})$ were then added and the mixture was stirred at $120^{\circ} \mathrm{C}$. After 16 h , the resulting mixture was filtered through a pad of silica gel and washed with EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography $\left(\mathrm{SiO}_{2}\right.$, n-hexane/EtOAc 10:1) yielded meta-alkylated product 203b ($56.9 \mathrm{mg}, 51 \%$) as a colorless oil and di-meta-alkylated product 203b' ($5.2 \mathrm{mg}, 4 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.70(\mathrm{ddd}, \mathrm{J}=4.8,1.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=1.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ (ddd, $J=7.7,1.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{dd}, J=7.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ (ddd, $J=7.6$, $1.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{ddd}, J=6.0,4.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{tt}, J=9.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.07(\mathrm{~m}, 2 \mathrm{H})$, 1.91-1.62 (m, 6H).
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=157.8\left(\mathrm{C}_{q}\right), 149.6(\mathrm{CH}), 147.1\left(\mathrm{C}_{q}\right), 139.3\left(\mathrm{C}_{q}\right), 136.6(\mathrm{CH}), 128.6(\mathrm{CH})$, $127.7(\mathrm{CH}), 125.8(\mathrm{CH}), 124.3(\mathrm{CH}), 121.9(\mathrm{CH}), 120.7(\mathrm{CH}), 46.1(\mathrm{CH}), 34.7\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2949,2866,1584,1564,1461,1434,1151,769,742,698 \mathrm{~cm}^{-1}$.

MS (ESI) m/z (relative intensity): 246 (24) [M+Na] ${ }^{+}$, 224 (100) [M+H] ${ }^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}$224.1434, found 224.1436.

The spectral data are in accordance with those reported in the literature. ${ }^{[113]}$

2-(3,5-Dicyclopentylphenyl)pyridine (203b’)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.71-8.66(\mathrm{~m}, 1 \mathrm{H}), 7.76-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{~s}$, $2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 3.06(\mathrm{tt}, \mathrm{J}=8.4,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.18-2.04(\mathrm{~m}$, $4 \mathrm{H}), 1.90-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.77-1.60(\mathrm{~m}, 8 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.2\left(\mathrm{C}_{\mathrm{q}}\right), 149.6(\mathrm{CH}), 146.9\left(\mathrm{C}_{\mathrm{q}}\right), 139.3\left(\mathrm{C}_{\mathrm{q}}\right)$, $136.5(\mathrm{CH}), 126.8(\mathrm{CH}), 123.3(\mathrm{CH}), 121.8(\mathrm{CH}), 120.8(\mathrm{CH}), 46.2(\mathrm{CH}), 34.7\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2949,2866,1585,1566,1474,1441,991,874,783,743 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 291 (35) [M] ${ }^{+}, 290$ (19) [M-H] ${ }^{+}, 263$ (30), 250 (100), 222 (17), 220 (9), 194 (20), 182 (13), 167 (10), 43 (10), 41 (10).

HR-MS (EI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}^{+}[\mathrm{M}]^{+}$291.1982, found 291.1982.

1-(2-Cyclohexylphenyl)-1H-pyrazole (145aj)

The general procedure \mathbf{M} was followed using 1-phenyl-1H-pyrazole (147a, 72.1 mg , $0.50 \mathrm{mmol})$ and bromocyclohexane ($\mathbf{1 3 6 j}, 245 \mathrm{mg}, 1.50 \mathrm{mmol}$. After 16 h , purification by column chromatography (n-hexane/EtOAc $30: 1$) yielded orthoalkylated product 145aj ($68.0 \mathrm{mg}, 60 \%$) as a colorless oil and meta-alkylated product 146aj (13.1 mg, 12\%) as a colorless oil.

In case of using o-xylene (1.0 mL) as a solvent, the reaction provided the product 145 aj (57.1 mg , 50\%). The analytical data of 145aj are in section 5.3.5.1.

1-(3-Cyclohexylphenyl)-1H-pyrazole (146aj)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.92(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ (dd, $J=2.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 (ddd, $J=7.9,2.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.36(\mathrm{dd}, J=7.9,7.8 \mathrm{~Hz}$, 1 H), 7.14 (ddd, $J=7.8,1.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.46 (dd, $J=2.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{tt}, J=$ $12.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.92 (ddd, $J=12.5,3.7,2.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.86 (ddd, $J=13.0,3.5,3.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.76$ (dtt, $J=12.8,3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.48$ (dddd, $J=12.6,12.5,12.2,3.1 \mathrm{~Hz}, 2 \mathrm{H}$), 1.40 (ddddd, J $=13.0,12.8,12.6,3.0,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{dtt}, \mathrm{J}=12.8,12.8,3.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=149.7\left(\mathrm{C}_{\mathrm{q}}\right), 140.8(\mathrm{CH}), 140.1\left(\mathrm{C}_{\mathrm{q}}\right), 129.1(\mathrm{CH}), 126.7(\mathrm{CH}), 125.0$ $(\mathrm{CH}), 118.0(\mathrm{CH}), 116.6(\mathrm{CH}), 107.3(\mathrm{CH}), 44.7(\mathrm{CH}), 34.4\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2924,2851,1608,1591,1519,1448,1393,1044,950,748 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 226 (100) [M] ${ }^{+}, 225$ (29) [M-H] ${ }^{+}, 211$ (14), 197 (18), 183 (20), 171 (40), 170 (29), 158 (24), 144 (10) [M-Cy] ${ }^{+}, 115$ (14), 77 (9).

HR-MS (EI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+}$226.1465, found 226.1471 .

1-(2-Cyclobutylphenyl)-1H-pyrazole (145aw)

The general procedure M was followed using 1-phenyl-1H-pyrazole (147a, 72.1 mg , $0.50 \mathrm{mmol})$ and bromocyclobutane ($136 \mathrm{w}, 203 \mathrm{mg}, 1.50 \mathrm{mmol})$. After 16 h , purification by column chromatography (n-hexane/EtOAc 30:1) yielded orthoalkylated product 145aw ($70.5 \mathrm{mg}, 71 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.71(\mathrm{dd}, \mathrm{J}=1.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, \mathrm{J}=2.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.36$ $(\mathrm{m}, 2 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.42(\mathrm{dd}, \mathrm{J}=2.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.56(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.82(\mathrm{~m}, 5 \mathrm{H})$, 1.80-1.68 (m, 1H).
${ }^{13} \mathrm{C}-$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=141.5\left(\mathrm{C}_{\mathrm{q}}\right), 140.1(\mathrm{CH}), 138.8\left(\mathrm{C}_{\mathrm{q}}\right), 130.5(\mathrm{CH}), 128.5(\mathrm{CH}), 127.2$ $(\mathrm{CH}), 126.3(\mathrm{CH}), 126.3(\mathrm{CH}), 106.0(\mathrm{CH}), 36.4(\mathrm{CH}), 29.3\left(\mathrm{CH}_{2}\right), 18.4\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2972,2865,1516,1498,1394,1044,938,750,622 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 198 (17) [M] ${ }^{+}, 197$ (7) [M-H] ${ }^{+}, 169$ (100), 142 (9), 130 (6), 115 (12), 77 (7).

HR-MS (EI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+}$198.1151, found 198.1152.

1-(2-Cyclopentylphenyl)-1H-pyrazole (145ai)

The general procedure \mathbf{M} was followed using 1-phenyl-1H-pyrazole (147a, 72.1 mg , $0.50 \mathrm{mmol})$ and bromocyclopentane ($\mathbf{1 3 6 i}, 224 \mathrm{mg}, 1.50 \mathrm{mmol})$. After 16 h , purification by column chromatography (n-hexane/EtOAc $30: 1$) followed by recycling preparative HPLC yielded ortho-alkylated product 145ai ($23.2 \mathrm{mg}, 22 \%$) as a colorless oil and meta-alkylated product 146ai ($28.9 \mathrm{mg}, 27 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.72(\mathrm{dd}, \mathrm{J}=1.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, \mathrm{J}=2.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.36$ (m, 2H), 7.29-7.22 (m, 2H), 6.43 (dd, J = 2.3, 1.9 Hz, 1H), 2.92 (ddt, J = 10.0, 8.6, 7.5 Hz, 1H), 1.97$1.68(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.47(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=142.9\left(\mathrm{C}_{\mathrm{q}}\right), 140.0(\mathrm{CH}), 139.6\left(\mathrm{C}_{\mathrm{q}}\right), 130.9(\mathrm{CH}), 128.9(\mathrm{CH}), 127.0$ $(\mathrm{CH}), 126.7(\mathrm{CH}), 126.0(\mathrm{CH}), 105.9(\mathrm{CH}), 39.7(\mathrm{CH}), 34.8\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2951,2867,1516,1453,1394,1043,938,744,621 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 212 (73) [M] ${ }^{+}, 211$ (51) [M-H] ${ }^{+}, 194$ (11), 183 (34), 169 (100), 156 (18), 143 (12), 130 (19), 128 (14), 115 (24), 91 (15), 77 (14), 58 (23), 43 (70).

HR-MS (EI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+}$212.1308, found 212.1315.

The spectral data are in accordance with those reported in the literature. ${ }^{[141]}$

1-(3-Cyclopentylphenyl)-1H-pyrazole (146ai)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.92(\mathrm{dd}, J=2.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J=1.8,0.7 \mathrm{~Hz}$, 1 H), 7.61 (ddd, $J=2.3,1.6,0.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.45 (ddd, $J=7.9,2.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.35 (dd, $J=7.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (dddd, $J=7.7,1.6,1.2,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=2.5,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.07(\mathrm{tt}, \mathrm{J}=9.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.56(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=148.2\left(\mathrm{C}_{\mathrm{q}}\right), 140.8(\mathrm{CH}), 140.1\left(\mathrm{C}_{\mathrm{q}}\right), 129.1(\mathrm{CH}), 126.7(\mathrm{CH}), 125.2$ $(\mathrm{CH}), 118.2(\mathrm{CH}), 116.5(\mathrm{CH}), 107.3(\mathrm{CH}), 46.0(\mathrm{CH}), 34.6\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2950,2867,1608,1589,1518,1392,1043,785,746,698 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 212 (100) [M] ${ }^{+}, 211$ (36) [M-H] ${ }^{+}, 197$ (8), 184 (42), 183 (35), 171 (59), 158 (12), 144 (14), 129 (10), 115 (27), 77 (14).

HR-MS (EI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+}$212.1308, found 212.1316.

1-(3-Cycloheptylphenyl)-1H-pyrazole (146ah)

The general procedure \mathbf{M} was followed using 1-phenyl-1H-pyrazole (147a, $72.1 \mathrm{mg}, 0.50 \mathrm{mmol}$) and bromocycloheptane ($136 \mathrm{~h}, 266 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 16 h , purification by column chromatography (n-hexane/EtOAc 30:1) yielded meta-alkylated product $146 \mathrm{ah}(69.9 \mathrm{mg}, 58 \%$) as a colorless oil. The analytical data of 146ah are in section 5.3.5.1.

1-[exo-2-(Bicyclo[2.2.1]heptan-2-yl)phenyl]-1H-pyrazole (145au)

The general procedure M was followed using 1-phenyl-1H-pyrazole (147a, $72.1 \mathrm{mg}, 0.50 \mathrm{mmol})$ and exo-2-bromonorbornane ($136 \mathrm{u}, 263 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 16 h , purification by column chromatography (n-hexane/EtOAc 30:1) yielded ortho-alkylated product 145au ($64.4 \mathrm{mg}, 54 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.72(\mathrm{dd}, J=1.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=2.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}$, $J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{ddd}, J=8.0,6.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, J=7.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.25\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{dd}\right.$, $J=7.8,6.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{dd}, J=2.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=9.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32$ (ddd, $J=$ 2.7, 1.7, 1.4 Hz, 1H), 2.27 (ddd, $J=3.9,2.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.58$ (ddd, $J=9.8,2.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.52-$ $1.45(\mathrm{~m}, 3 \mathrm{H}), 1.38(\mathrm{ddd}, J=12.2,9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{ddd}, J=9.8,2.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.16-1.09(\mathrm{~m}$, $2 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=143.7\left(\mathrm{C}_{\mathrm{q}}\right), 140.0(\mathrm{CH}), 139.7\left(\mathrm{C}_{\mathrm{q}}\right), 131.0(\mathrm{CH}), 128.7(\mathrm{CH}), 127.1$ $(\mathrm{CH}), 126.4(\mathrm{CH}), 125.9(\mathrm{CH}), 105.9(\mathrm{CH}), 42.6(\mathrm{CH}), 41.7(\mathrm{CH}), 39.5\left(\mathrm{CH}_{2}\right), 36.9(\mathrm{CH}), 36.5\left(\mathrm{CH}_{2}\right), 30.5$ $\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2949,2869,1515,1454,1394,1043,938,747,624 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 238 (100) [M] ${ }^{+}, 237$ (50) [M-H $]^{+}, 223$ (10), 209 (80), 197 (45), 182 (83), 169 (99), 156 (27), 142 (13), 130 (22), 128 (18), 115 (27), 77 (19), 41 (13).

HR-MS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+}$238.1465, found 238.1467.

The spectral data are in accordance with those reported in the literature. ${ }^{[141-142]}$

1-[3-(sec-Butyl)phenyl]-1H-pyrazole (146am)

The general procedure M was followed using 1-phenyl-1H-pyrazole (147a, 72.1 mg , 0.50 mmol) and 2-bromobutane ($136 \mathrm{~m}, 206 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 16 h , purification by column chromatography (n-hexane/EtOAc $30: 1$) yielded meta-alkylated product 146am ($39.3 \mathrm{mg}, 39 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.92(\mathrm{dd}, J=2.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{dd}, J=1.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}$, $J=2.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{ddd}, J=7.9,2.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=7.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ (dddd, $J=$ $7.7,1.6,1.2,0.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=2.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~h}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.58(\mathrm{~m}, 2 \mathrm{H})$, $1.28(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=149.4\left(\mathrm{C}_{\mathrm{q}}\right), 140.9(\mathrm{CH}), 140.2\left(\mathrm{C}_{\mathrm{q}}\right), 129.2(\mathrm{CH}), 126.8(\mathrm{CH}), 125.3$ $(\mathrm{CH}), 118.2(\mathrm{CH}), 116.6(\mathrm{CH}), 107.4(\mathrm{CH}), 41.8(\mathrm{CH}), 31.1\left(\mathrm{CH}_{2}\right), 21.8\left(\mathrm{CH}_{3}\right), 12.2\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2960,1609,1591,1519,1392,1042,945,787,745,698 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 200 (47) [M] ${ }^{+}, 185$ (7) [M-Me] ${ }^{+}, 171$ (100) [M-Et] ${ }^{+}, 156$ (9) [M-Me-Et] ${ }^{+}, 144$ (11) [M-sec-Bu] ${ }^{+}, 130$ (8), 117 (7), 103 (8), 77 (9).

HR-MS (EI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+}$200.1308, found 200.1311.

1-[3-(Pentan-2-yl)phenyl]-1H-pyrazole (146an)

The general procedure M was followed using 1-phenyl-1H-pyrazole (147a, $72.1 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 2-bromopentane (136n, $227 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 16 h , purification by column chromatography (n-hexane/EtOAc $30: 1$) yielded metaalkylated product 146 an ($45.0 \mathrm{mg}, 42 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.92(\mathrm{dd}, J=2.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{dd}, J=1.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}$, $J=2.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 (ddd, $J=7.9,2.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.36 (dd, $J=7.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.12 (ddd, $J=$ $7.7,1.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=2.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~h}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.36-$ $1.15(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=149.7\left(\mathrm{C}_{\mathrm{q}}\right), 140.9(\mathrm{CH}), 140.2\left(\mathrm{C}_{\mathrm{q}}\right), 129.2(\mathrm{CH}), 126.8(\mathrm{CH}), 125.2$ $(\mathrm{CH}), 118.1(\mathrm{CH}), 116.6(\mathrm{CH}), 107.4(\mathrm{CH}), 40.5\left(\mathrm{CH}_{2}\right), 39.8(\mathrm{CH}), 22.2\left(\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2957,1609,1591,1519,1392,1042,948,787,743,698 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 214 (45) [M] ${ }^{+}, 199$ (3) [M-Me] ${ }^{+}, 185$ (7) [M-Et] ${ }^{+}, 171$ (100) [M-$n-\operatorname{Pr}]^{+}, 157$ (13) [M-n-Pr-Me] ${ }^{+}, 144$ (13), 130 (9), 103 (9), 77 (11), 58 (26), 43 (78).

HR-MS (EI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+} 214.1465$, found 214.1466.
The spectral data are in accordance with those reported in the literature. ${ }^{[61]}$

1-(2-Neopentylphenyl)-1H-pyrazole (145at)

The general procedure M was followed using 1-phenyl-1H-pyrazole (147a, 72.1 mg , $0.50 \mathrm{mmol})$ and neopentyl bromide (136t, $227 \mathrm{mg}, 1.50 \mathrm{mmol}$. After 16 h , purification by column chromatography (n-hexane/EtOAc 30:1) yielded orthoalkylated product 145at ($53.2 \mathrm{mg}, 50 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.70(\mathrm{dd}, \mathrm{J}=2.0,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, \mathrm{J}=2.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.26$ $(\mathrm{m}, 4 \mathrm{H}), 6.41(\mathrm{dd}, \mathrm{J}=2.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~s}, 2 \mathrm{H}), 0.68(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=140.4\left(\mathrm{C}_{\mathrm{q}}\right), 140.0(\mathrm{CH}), 135.5\left(\mathrm{C}_{\mathrm{q}}\right), 133.0(\mathrm{CH}), 130.9(\mathrm{CH}), 127.6$ $(\mathrm{CH}), 126.8(\mathrm{CH}), 126.7(\mathrm{CH}), 106.1(\mathrm{CH}), 43.9\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{C}_{\mathrm{q}}\right), 29.3\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2950,1517,1476,1394,1364,1044,939,748,718 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 214 (23) [M] ${ }^{+}$, 199 (28) [M-Me] ${ }^{+}, 158$ (100) [M-t-Bu] ${ }^{+}, 157$ (74), 130 (55), 103 (9), 77 (11), 57 (15), 41 (13).

HR-MS (EI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+}$214.1465, found 214.1470.

The spectral data are in accordance with those reported in the literature. ${ }^{[33]}$

1-(2-Cyclohexyl-4-methoxyphenyl)-1H-pyrazole (145dj)

The general procedure \mathbf{M} was followed using 1-(4-methoxyphenyl)-1H-pyrazole ($147 \mathrm{~d}, 87.1 \mathrm{mg}, 0.50 \mathrm{mmol}$) and bromocyclohexane ($\mathbf{1 3 6 j}, 245 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 16 h, purification by column chromatography (n-hexane/EtOAc 10:1) yielded ortho-alkylated product $145 \mathrm{dj}(86.6 \mathrm{mg}, 68 \%)$ as a colorless oil and meta-alkylated product 146dj ($14.7 \mathrm{mg}, 11 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.69(\mathrm{dd}, J=2.0,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=2.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=8.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{dd}, J=2.2,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{tt}, \mathrm{J}=12.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.62(\mathrm{~m}, 5 \mathrm{H}), 1.43-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.11(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR (100 MHz, CDCl_{3}): $\delta=159.9\left(\mathrm{C}_{\mathrm{q}}\right), 145.9\left(\mathrm{C}_{\mathrm{q}}\right), 139.9(\mathrm{CH}), 132.4\left(\mathrm{C}_{\mathrm{q}}\right), 131.3(\mathrm{CH}), 128.1(\mathrm{CH})$, $112.7(\mathrm{CH}), 110.7(\mathrm{CH}), 105.8(\mathrm{CH}), 55.4\left(\mathrm{CH}_{3}\right), 38.5(\mathrm{CH}), 34.2\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2924,2850,1607,1517,1288,1241,1041,944,810,747 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 256 (100) [M] ${ }^{+}, 255$ (90) [M-H] ${ }^{+}, 239$ (14), 227 (17), 213 (31), 199 (28), 184 (10), 160 (13), 115 (9), 77 (8), 41 (9).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{ONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$279.1468, found 279.1470.

1-(3-Cyclohexyl-4-methoxyphenyl)-1H-pyrazole (146dj)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.83(\mathrm{dd}, J=2.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, \mathrm{J}=1.8,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.52(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 6.43 (dd, J = 2.3, 1.8 Hz, 1H), 3.86 (s, 3H), $3.00(\mathrm{tt}, J=11.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.91-1.80 $(\mathrm{m}, 4 \mathrm{H}), 1.80-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.36(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.18(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=155.5\left(\mathrm{C}_{\mathrm{q}}\right), 140.4(\mathrm{CH}), 137.5\left(\mathrm{C}_{\mathrm{q}}\right), 134.0\left(\mathrm{C}_{\mathrm{q}}\right), 126.9(\mathrm{CH}), 118.7(\mathrm{CH})$, $117.6(\mathrm{CH}), 110.7(\mathrm{CH}), 106.9(\mathrm{CH}), 55.7\left(\mathrm{CH}_{3}\right), 36.9(\mathrm{CH}), 33.1\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right)$. IR (ATR): $\tilde{v}=2925,2850,1517,1499,1238,1047,955,809,747,638 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 256 (100) [M] ${ }^{+}, 255$ (9) [M-H] ${ }^{+}, 213$ (21), 200 (10), 187 (13), 185 (9), 157 (12), 145 (10), 130 (10), 115 (8), 77 (6), 41 (9).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{ONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$279.1468, found 279.1472.

1-(2-Cyclohexyl-4-fluorophenyl)-1H-pyrazole (145gj)

The general procedure \mathbf{M} was followed using 1-(4-fluorophenyl)-1H-pyrazole (147g, $81.1 \mathrm{mg}, 0.50 \mathrm{mmol}$) and bromocyclohexane ($\mathbf{1 3 6 j}$, $245 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 16 h , purification by column chromatography (n-hexane/EtOAc $30: 1$) yielded orthoalkylated product $\mathbf{1 4 5 g j}$ ($74.2 \mathrm{mg}, 61 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.71(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, \mathrm{J}=8.5$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ (dd, $J=10.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.93 (ddd, $J=8.5,8.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.43 (dd, $J=2.2$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{tt}, \mathrm{J}=12.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.63(\mathrm{~m}, 5 \mathrm{H}), 1.42-1.12(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=163.0\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=248 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 147.2\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=7 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 140.4(\mathrm{CH})$, $135.3\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{C}_{q}\right), 131.3(\mathrm{CH}), 128.9\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}, \mathrm{CH}\right), 114.1\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}, \mathrm{CH}\right), 113.1$ $\left(\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}, \mathrm{CH}\right), 106.3(\mathrm{CH}), 38.6\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=1 \mathrm{~Hz}, \mathrm{CH}\right), 34.2\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right)$.
${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=(-112.1)-(-112.3)(\mathrm{m})$.
IR (ATR): $\tilde{v}=2926,2852,1517,1498,1395,1238,953,866,817,747 \mathrm{~cm}^{-1}$.
MS (ESI) m / z (relative intensity): 245 (100) $[\mathrm{M}+\mathrm{H}]^{+}$.
HR-MS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~F}^{+}[\mathrm{M}+\mathrm{H}]^{+}$245.1449, found 245.1450 .

1-[3-Cyclohexyl-4-(1H-pyrazol-1-yl)phenyl]ethan-1-one (145jj)

The general procedure \mathbf{M} was followed using 1-[4-(1H-pyrazol-1-yl)phenyl]ethan-1one ($\mathbf{1 4 7 j}$, $93.1 \mathrm{mg}, 0.50 \mathrm{mmol}$) and bromocyclohexane ($\mathbf{1 3 6} \mathbf{j}, 245 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 16 h , purification by column chromatography (n-hexane/EtOAc 10:1) yielded ortho-alkylated product $145 \mathrm{jj}(86.6 \mathrm{mg}, 65 \%)$ as a white solid, di-ortho-alkylated product 145jj' ($36.8 \mathrm{mg}, 21 \%$) as a white solid and dialkylated product $\mathbf{1 4 5 j j}{ }^{\prime \prime}$ ($14.4 \mathrm{mg}, 8 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.03(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=$ $1.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=2.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{dd}, J=2.4,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.64(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{tt}, \mathrm{J}=12.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.40(\mathrm{~m}, 2 \mathrm{H})$, 1.32-1.16 (m, 3H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=197.4\left(\mathrm{C}_{\mathrm{q}}\right), 144.0\left(\mathrm{C}_{\mathrm{q}}\right), 142.7\left(\mathrm{C}_{\mathrm{q}}\right), 140.8(\mathrm{CH}), 137.0\left(\mathrm{C}_{\mathrm{q}}\right), 130.9(\mathrm{CH})$, $127.6(\mathrm{CH}), 126.9(\mathrm{CH}), 126.4(\mathrm{CH}), 106.7(\mathrm{CH}), 38.3(\mathrm{CH}), 34.1\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{3}\right), 26.6\left(\mathrm{CH}_{2}\right), 25.9$ $\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2920,2850,1679,1602,1519,1396,1264,939,834,752 \mathrm{~cm}^{-1}$.
m.p.: $75-77^{\circ} \mathrm{C}$.

MS (EI) m/z (relative intensity): 268 (96) [M] ${ }^{+}, 267$ (100) [M-H] ${ }^{+}, 251$ (10), 239 (16), 225 (41) [M$A c]^{+}, 211$ (29), 199 (11), 185 (10), 168 (13), 157 (11), 115 (11), 58 (27), 43 (98).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{ONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$291.1468, found 291.1471.

1-[3,5-Dicyclohexyl-4-(1H-pyrazol-1-yl)phenyl]ethan-1-one (145jj')

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.78(\mathrm{~s}, 2 \mathrm{H}), 7.74(\mathrm{dd}, \mathrm{J}=2.0,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ (dd, J=2.2, 0.6 Hz, 1H), 6.47 (dd, J=2.2, 2.0 Hz, 1H), $2.64(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{tt}, J=$ 11.9, 3.3 Hz, 2H), 1.85-1.77 (m, 2H), 1.77-1.58 (m, 8H), 1.48-1.33 (m, 4H), 1.27-1.04 (m, 6H).

145jj' CCDC 1979313
${ }^{13} \mathrm{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=197.9\left(\mathrm{C}_{\mathrm{q}}\right), 146.6\left(\mathrm{C}_{\mathrm{q}}\right), 141.1\left(\mathrm{C}_{\mathrm{q}}\right), 140.1$ $(\mathrm{CH}), 137.8\left(\mathrm{C}_{\mathrm{q}}\right), 131.6(\mathrm{CH}), 124.2(\mathrm{CH}), 106.0(\mathrm{CH}), 39.0(\mathrm{CH}), 34.7\left(\mathrm{CH}_{2}\right)$, $34.1\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2922,2850,1692,1444,1393,1271,1193,939,875$, $766 \mathrm{~cm}^{-1}$.
m.p.: $138-140^{\circ} \mathrm{C}$.

MS (EI) m/z (relative intensity): 350 (100) [M] ${ }^{+}, 349$ (77) [M-H] ${ }^{+}, 321$ (12), 307 (25) [M-Ac] ${ }^{+}, 295$ (25), 267 (23) [M-Cy] ${ }^{+}, 252$ (32), 184 (11) [M-Cy-Cy] ${ }^{+}, 115$ (8), 55 (13), 43 (62), 41 (18).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{ONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 373.2250$, found 373.2251.

1-[2,5-Dicyclohexyl-4-(1H-pyrazol-1-yl)phenyl]ethan-1-one (145jj")

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.74(\mathrm{dd}, \mathrm{J}=1.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, \mathrm{J}=2.3$, $0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=2.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{tt}, J$ $=11.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{tt}, \mathrm{J}=12.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.66(\mathrm{~m}$, $10 \mathrm{H}), 1.45-1.31(\mathrm{~m}, 6 \mathrm{H}), 1.29-1.14(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.4\left(\mathrm{C}_{\mathrm{q}}\right), 144.8\left(\mathrm{C}_{\mathrm{q}}\right), 140.8\left(\mathrm{C}_{\mathrm{q}}\right), 140.7\left(\mathrm{C}_{\mathrm{q}}\right), 140.5(\mathrm{CH}), 139.6\left(\mathrm{C}_{\mathrm{q}}\right)$, $130.9(\mathrm{CH}), 126.5(\mathrm{CH}), 125.5(\mathrm{CH}), 106.4(\mathrm{CH}), 39.7(\mathrm{CH}), 37.9(\mathrm{CH}), 34.5\left(\mathrm{CH}_{2}\right), 34.2\left(\mathrm{CH}_{2}\right), 30.9$ $\left(\mathrm{CH}_{3}\right), 26.8\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2922,2852,1691,1517,1449,1402,1218,953,883,760 \mathrm{~cm}^{-1}$.
m.p.: $165-167^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 350 (100) $[\mathrm{M}]^{+}, 349(85)[\mathrm{M}-\mathrm{H}]^{+}, 335(13)[\mathrm{M}-\mathrm{Me}]^{+}, 318(12), 307$ (21) $[\mathrm{M}-\mathrm{Ac}]^{+}, 293$ (18), 267 (11) [M-Cy] ${ }^{+}, 58$ (24), 43 (73).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+} 351.2431$, found 351.2437.

1-(3-Cyclopentylphenyl)-3,5-dimethyl-1H-pyrazole (146ci)

The general procedure \mathbf{M} was followed using 3,5-dimethyl-1-phenyl- 1 H -pyrazole ($147 \mathrm{c}, 86.2 \mathrm{mg}, 0.50 \mathrm{mmol}$) and bromocyclopentane ($136 \mathrm{i}, 112 \mathrm{mg}, 0.75 \mathrm{mmol}$). After 16 h , purification by column chromatography (n-hexane/EtOAc 30:1) yielded meta-alkylated product $146 \mathrm{ci}(69.3 \mathrm{mg}, 58 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.34(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=2.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22$ (ddd, $J=7.8,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{ddd}, J=7.8,2.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 3.04(\mathrm{tt}, J=9.6,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.30(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.12-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.65-$ 1.57 (m, 2H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.6\left(\mathrm{C}_{\mathrm{q}}\right), 147.7\left(\mathrm{C}_{\mathrm{q}}\right), 139.7\left(\mathrm{C}_{\mathrm{q}}\right), 139.2\left(\mathrm{C}_{\mathrm{q}}\right), 128.6(\mathrm{CH}), 126.0(\mathrm{CH})$, $123.7(\mathrm{CH}), 122.0(\mathrm{CH}), 106.6(\mathrm{CH}), 45.8(\mathrm{CH}), 34.6\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 13.6\left(\mathrm{CH}_{3}\right), 12.4\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2951,2867,1606,1589,1557,1492,1380,792,702 \mathrm{~cm}^{-1}$.
MS (EI) m / z (relative intensity): 240 (100) [M] ${ }^{+}, 239$ (33) [M-H $]^{+}, 212$ (32), 211 (27), 199 (96), 169 (10), 130 (9), 115 (18), 91 (16), 77 (10), 43 (27), 41 (15).

HR-MS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+}$240.1621, found 240.1623.

1-(3-Cyclohexylphenyl)-3,5-dimethyl-1H-pyrazole (146cj)

The general procedure M was followed using 3,5-dimethyl-1-phenyl-1H-pyrazole ($147 \mathrm{c}, 86.2 \mathrm{mg}, 0.50 \mathrm{mmol}$) and bromocyclohexane ($\mathbf{1 3 6} \mathbf{j}, 122 \mathrm{mg}, 0.75 \mathrm{mmol}$). After 16 h , purification by column chromatography (n-hexane/EtOAc 30:1) yielded meta-alkylated product $146 \mathrm{cj}(79.3 \mathrm{mg}, 62 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.34(\mathrm{dd}, \mathrm{J}=7.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{ddd}, J=2.3,1.6,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (ddd, J = 7.9, 2.3, 1.2 Hz, 1H), 7.19 (dddd, J = 7.7, 1.6, 1.2, 0.6 Hz, 1H), 6.00-5.97 (m, 1H), 2.55 (tt, $J=11.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.29(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.96-1.71(\mathrm{~m}, 5 \mathrm{H}), 1.52-1.18$ ($\mathrm{m}, 5 \mathrm{H}$).
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=149.1\left(\mathrm{C}_{\mathrm{q}}\right), 148.6\left(\mathrm{C}_{\mathrm{q}}\right), 139.8\left(\mathrm{C}_{\mathrm{q}}\right), 139.2\left(\mathrm{C}_{\mathrm{q}}\right), 128.6(\mathrm{CH}), 125.7(\mathrm{CH})$, $123.4(\mathrm{CH}), 122.1(\mathrm{CH}), 106.6(\mathrm{CH}), 44.5(\mathrm{CH}), 34.4\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 13.6\left(\mathrm{CH}_{3}\right), 12.4$ $\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2922,2850,1605,1590,1492,1446,1380,792,701 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 254 (100) [M] ${ }^{+}$, 253 (34) [M-H] ${ }^{+}, 239$ (8) [M-Me] ${ }^{+}, 225$ (26), 213 (12), 211 (11), 199 (74), 186 (15), 115 (11), 91 (9), 77 (8), 41 (10).

HR-MS (EI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+}$254.1778, found 254.1773.

1-(3-Cycloheptylphenyl)-3,5-dimethyl-1H-pyrazole (146ch)

The general procedure \mathbf{M} was followed using 3,5-dimethyl-1-phenyl-1Hpyrazole (147c, $86.2 \mathrm{mg}, 0.50 \mathrm{mmol}$) and bromocycloheptane ($136 \mathrm{~h}, 133 \mathrm{mg}$, 0.75 mmol). After 16 h , purification by column chromatography (n-hexane/EtOAc 20:1) yielded meta-alkylated product 146 ch ($75.5 \mathrm{mg}, 56 \%$) as a colorless oil and di-meta-alkylated product 146ch' ($72.8 \mathrm{mg}, 40 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.32(\mathrm{dd}, J=7.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=2.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (ddd, $J=7.9,2.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 2.71(\mathrm{tt}, \mathrm{J}=10.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$, $2.29(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{dtd}, J=13.2,6.6,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.74-1.47(\mathrm{~m}, 8 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=151.1\left(\mathrm{C}_{\mathrm{q}}\right), 148.7\left(\mathrm{C}_{\mathrm{q}}\right), 139.8\left(\mathrm{C}_{\mathrm{q}}\right), 139.3\left(\mathrm{C}_{\mathrm{q}}\right), 128.7(\mathrm{CH}), 125.6(\mathrm{CH})$, $123.3(\mathrm{CH}), 121.9(\mathrm{CH}), 106.6(\mathrm{CH}), 46.9(\mathrm{CH}), 36.7\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right), 13.5\left(\mathrm{CH}_{3}\right), 12.4$ $\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2919,2853,1605,1589,1492,1444,1380,975,789,702 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 268 (100) [M] ${ }^{+}$, 267 (23) [M-H] ${ }^{+}, 253$ (8) [M-Me] ${ }^{+}, 239$ (21), 225 (35), 211 (20), 199 (69), 186 (64), 115 (15), 77 (10).

HR-MS (EI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+}$268.1934, found 268.1944.

1-(3,5-Dicycloheptylphenyl)-3,5-dimethyl-1H-pyrazole (146ch')

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.01(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{t}, \mathrm{J}=1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.96(\mathrm{q}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{tt}, J=10.6,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.27$ (d, $J=0.7 \mathrm{~Hz}, 3 \mathrm{H}$), 1.93 (dddd, $J=13.5,6.6,3.5,1.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.78(\mathrm{dtt}, J=$ $13.1,6.6,3.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.74-1.47(\mathrm{~m}, 16 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=150.8\left(\mathrm{C}_{q}\right), 148.5\left(\mathrm{C}_{q}\right), 139.6\left(\mathrm{C}_{q}\right), 139.3\left(\mathrm{C}_{q}\right), 124.3(\mathrm{CH}), 120.5(\mathrm{CH})$, $106.4(\mathrm{CH}), 47.0(\mathrm{CH}), 36.8\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right), 13.6\left(\mathrm{CH}_{3}\right), 12.4\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2917,2852,1597,1557,1455,1383,975,776,709 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 364 (100) [M] ${ }^{+}, 363$ (23) [M-H] ${ }^{+}, 349$ (8) [M-Me] ${ }^{+}, 335$ (13), 321 (26), 309 (12), 295 (68), 282 (63), 267 (13), 225 (12), 199 (10), 55 (19), 44 (38).

HR-MS (EI): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+} 364.2873$, found 364.2869.

1-[exo-3-(Bicyclo[2.2.1]heptan-2-yl)phenyl]-3,5-dimethyl-1H-pyrazole (146cu)

The general procedure \mathbf{M} was followed using 3,5-dimethyl-1-phenyl-1Hpyrazole (147c, $86.2 \mathrm{mg}, 0.50 \mathrm{mmol}$) and exo-2-bromonorbornane (136 u , $131 \mathrm{mg}, 0.75 \mathrm{mmol})$. After 16 h , purification by column chromatography (n-hexane/EtOAc $30: 1$) yielded meta-alkylated product 146 cu ($49.6 \mathrm{mg}, 37 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.33(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 2 \mathrm{H})$, 6.00-5.97 (m, 1H), 2.78 (dd, J = 8.9, $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~d}, \mathrm{~J}=$ $0.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.29(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.80(\mathrm{dddd}, J=12.2,8.9,2.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.63(\mathrm{~m}, 1 \mathrm{H})$, 1.63-1.50 (m, 3H), 1.40-1.23 (m, 2H), 1.23-1.16 (m, 1H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.7\left(\mathrm{C}_{\mathrm{q}}\right), 148.6\left(\mathrm{C}_{\mathrm{q}}\right), 139.7\left(\mathrm{C}_{\mathrm{q}}\right), 139.2\left(\mathrm{C}_{\mathrm{q}}\right), 128.6(\mathrm{CH}), 125.9(\mathrm{CH})$, $123.6(\mathrm{CH}), 121.8(\mathrm{CH}), 106.6(\mathrm{CH}), 47.2(\mathrm{CH}), 42.9(\mathrm{CH}), 39.3\left(\mathrm{CH}_{2}\right), 36.9(\mathrm{CH}), 36.2\left(\mathrm{CH}_{2}\right), 30.6$ $\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 13.6\left(\mathrm{CH}_{3}\right), 12.5\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2949,2868,1605,1588,1556,1493,1380,789,701 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 266 (100) [M] ${ }^{+}$, 265 (19) [M-H] ${ }^{+}$, 251 (5) [M-Me] ${ }^{+} 237$ (12), 199 (68), 186 (41), 128 (9), 115 (14), 84 (14), 77 (10), 67 (12), 49 (19).

HR-MS (EI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+}$266.1778, found 266.1792 .

1-[3-(sec-Butyl)phenyl]-3,5-dimethyl-1H-pyrazole (146cm)

 The general procedure \mathbf{M} was followed using 3,5-dimethyl-1-phenyl-1H-pyrazole ($147 \mathrm{c}, 86.1 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 2-bromobutane ($\mathbf{1 3 6 \mathrm { m } , 1 0 3 \mathrm { mg } , 0 . 7 5 \mathrm { mmol } \text {). After }}$ 16 h , purification by column chromatography (n-hexane/EtOAc 20:1) yielded meta-alkylated product $146 \mathrm{~cm}(57.5 \mathrm{mg}, 50 \%$) as a colorless oil and di-metaalkylated product $\mathbf{1 4 6} \mathbf{c m}^{\prime}(60.2 \mathrm{mg}, 42 \%$, as a diastereomeric mixture (1:1)) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.35(\mathrm{ddd}, \mathrm{J}=7.6,7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{ddd}, \mathrm{J}=$ $7.5,2.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ (dddd, $J=7.6,1.7,1.2,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.99-5.97(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~h}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.67-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{t}, \mathrm{J}=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.8\left(\mathrm{C}_{\mathrm{q}}\right), 148.7\left(\mathrm{C}_{\mathrm{q}}\right), 139.8\left(\mathrm{C}_{\mathrm{q}}\right), 139.3\left(\mathrm{C}_{\mathrm{q}}\right), 128.7(\mathrm{CH}), 126.0(\mathrm{CH})$, $123.6(\mathrm{CH}), 122.3(\mathrm{CH}), 106.7(\mathrm{CH}), 41.6(\mathrm{CH}), 31.1\left(\mathrm{CH}_{2}\right), 21.7\left(\mathrm{CH}_{3}\right), 13.5\left(\mathrm{CH}_{3}\right), 12.4\left(\mathrm{CH}_{3}\right), 12.2$ $\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2960,1607,1590,1557,1492,1379,974,791,702 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 228 (53) [M] ${ }^{+}$, 213 (18) [M-Me] ${ }^{+}, 199$ (100) [M-Et] ${ }^{+}, 184$ (7) [M-Me-Et $]^{+}, 143$ (10), 115 (7), 77 (7).

HR-MS (EI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+}$228.1621, found 228.1627.

1-(3,5-Di-sec-butylphenyl)-3,5-dimethyl-1H-pyrazole (146 cm')

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.03(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.98(\mathrm{~s}, 1 \mathrm{H}), 2.62(\mathrm{~h}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.66-$ $1.53(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H})$. Proton signals of two diastereomers are identical.
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, determined as a diastereomeric mixture (1:1)): $\delta=148.5\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 148.4$ $\left(4 \times \mathrm{C}_{\mathrm{q}}\right), 139.7\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 139.3\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 125.2(\mathrm{CH}), 125.2(\mathrm{CH}), 121.1(2 \times \mathrm{CH}), 121.1(2 \times \mathrm{CH}), 106.4$ $(2 \times \mathrm{CH}), 41.6(4 \times \mathrm{CH}), 31.2\left(2 \times \mathrm{CH}_{2}\right), 31.1\left(2 \times \mathrm{CH}_{2}\right), 21.7\left(4 \times \mathrm{CH}_{3}\right), 13.6\left(2 \times \mathrm{CH}_{3}\right), 12.3\left(2 \times \mathrm{CH}_{3}\right)$, $12.2\left(2 \times \mathrm{CH}_{3}\right), 12.2\left(2 \times \mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2959,2925,1598,1557,1460,1381,875,778,710 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 284 (51) [M] ${ }^{+}, 269(20)[\mathrm{M}-\mathrm{Me}]^{+}, 255$ (100) [M-Et] ${ }^{+}, 225(15), 199$ (14), 115 (7).

HR-MS (EI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+}$284.2247, found 284.2246.

3,5-Dimethyl-1-[3-(pentan-2-yl)phenyl]-1H-pyrazole (146cn)

The general procedure \mathbf{M} was followed using 3,5-dimethyl-1-phenyl-1H-pyrazole ($147 \mathrm{c}, 86.1 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 2-bromopentane ($136 \mathrm{n}, 113 \mathrm{mg}, 0.75 \mathrm{mmol}$). After 16 h , purification by column chromatography (n-hexane/EtOAc 20:1) yielded meta-alkylated product $146 \mathrm{cn}(61.0 \mathrm{mg}, 50 \%)$ as a colorless oil and di-meta-alkylated product $\mathbf{1 4 6} \mathbf{c n}$ ' ($64.1 \mathrm{mg}, \mathbf{4 1 \%}$, as a diastereomeric mixture (1:1)) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.34(\mathrm{ddd}, J=7.7,7.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{ddd}, \mathrm{J}=$ 7.7, 2.2, $1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.16 (dddd, $J=7.5,1.4,1.3,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{q}, \mathrm{J}=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~h}, \mathrm{~J}=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.65-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.14(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=149.1\left(\mathrm{C}_{\mathrm{q}}\right), 148.7\left(\mathrm{C}_{\mathrm{q}}\right), 139.8\left(\mathrm{C}_{\mathrm{q}}\right), 139.3\left(\mathrm{C}_{\mathrm{q}}\right), 128.7(\mathrm{CH}), 126.0(\mathrm{CH})$, $123.6(\mathrm{CH}), 122.3(\mathrm{CH}), 106.7(\mathrm{CH}), 40.5\left(\mathrm{CH}_{2}\right), 39.6(\mathrm{CH}), 22.1\left(\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right), 13.5$ $\left(\mathrm{CH}_{3}\right), 12.3\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2956,1607,1557,1492,1380,974,890,792,702 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 242 (50) [M] ${ }^{+}, 227$ (5) [M-Me] ${ }^{+}, 213$ (13) [M-Et] ${ }^{+}, 199$ (100) [M-nPr] ${ }^{+}, 143$ (9), 115 (7), 77 (7), 58 (8), 43 (30).

HR-MS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+}$242.1778, found 242.1778.

1-[3,5-Di(pentan-2-yl)phenyl]-3,5-dimethyl-1H-pyrazole (146cn')

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.02(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.98(\mathrm{~s}, 1 \mathrm{H}), 2.71(\mathrm{~h}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.63-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.14(\mathrm{~m}, 4 \mathrm{H}), 1.24(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.86(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 6 \mathrm{H}$). Proton signals of two diastereomers are identical.
${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, determined as a diastereomeric mixture (1:1)): $\delta=148.8\left(4 \times \mathrm{C}_{\mathrm{q}}\right), 148.5$ $\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 139.7\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 139.3\left(2 \times \mathrm{C}_{\mathrm{q}}\right), 125.1(\mathrm{CH}), 125.1(\mathrm{CH}), 121.0(4 \times \mathrm{CH}), 106.5(2 \times \mathrm{CH}), 40.6$ $\left(2 \times \mathrm{CH}_{2}\right), 40.6\left(2 \times \mathrm{CH}_{2}\right), 39.6(4 \times \mathrm{CH}), 22.1\left(4 \times \mathrm{CH}_{3}\right), 20.8\left(4 \times \mathrm{CH}_{2}\right), 14.1\left(4 \times \mathrm{CH}_{3}\right), 13.6\left(2 \times \mathrm{CH}_{3}\right)$, $12.3\left(2 \times \mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2956,2926,1599,1557,1459,1383,876,777,710 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 312 (66) [M] ${ }^{+}$, 297 (4) [M-Me] ${ }^{+}, 283$ (14) [M-Et] ${ }^{+}, 270$ (100) [M-$n-\mathrm{Pr}]^{+}, 269$ (85) [M-Et-Me] ${ }^{+}$, 227 (13) [M-n-Pr-n-Pr] ${ }^{+}, 225$ (17), 199 (14), 115 (6), 43 (19), 41 (11).

HR-MS (EI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+} 312.2560$, found 312.2568.

3,5-Dimethyl-1-(3-neopentylphenyl)-1H-pyrazole (146ct)

The general procedure \mathbf{M} was followed using 3,5-dimethyl-1-phenyl-1H-pyrazole (147c, $86.1 \mathrm{mg}, 0.50 \mathrm{mmol})$ and neopentyl bromide ($136 \mathrm{t}, 113 \mathrm{mg}, 0.75 \mathrm{mmol}$). After 16 h , purification by column chromatography (n-hexane/EtOAc 20:1) yielded meta-alkylated product 146ct ($39.2 \mathrm{mg}, 32 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.33$ (ddd, $\left.J=8.0,7.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.27$ (ddd, $J=8.0,2.2,1.3 \mathrm{~Hz}$, 1H), 7.16 (ddd, J = 2.2, 1.7, $0.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.11 (ddd, J = 7.5, 1.7, 1.3 Hz, 1H), 5.99-5.97 (m, 1H), 2.54 (s, 2H), 2.30 (d, J = 0.4 Hz, 3H), 2.29 (d, J = 0.8 Hz, 3H), $0.93(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.7\left(\mathrm{C}_{\mathrm{q}}\right), 140.7\left(\mathrm{C}_{\mathrm{q}}\right), 139.4\left(\mathrm{C}_{\mathrm{q}}\right), 139.3\left(\mathrm{C}_{\mathrm{q}}\right), 129.4(\mathrm{CH}), 128.2(\mathrm{CH})$, $126.7(\mathrm{CH}), 122.5(\mathrm{CH}), 106.6(\mathrm{CH}), 50.0\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{C}_{\mathrm{q}}\right), 29.4\left(\mathrm{CH}_{3}\right), 13.5\left(\mathrm{CH}_{3}\right), 12.4\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2951,1607,1557,1494,1380,1363,975,797,742,702 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 242 (27) [M] ${ }^{+}, 227$ (13) [M-Me] ${ }^{+}, 186$ (100) [M-t-Bu] ${ }^{+}, 171$ (6) [M$\left.\mathrm{CH}_{2} t-\mathrm{Bu}\right]^{+}, 144$ (10), 130 (6), 115 (5), 57 (15), 41 (10).

HR-MS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}]^{+}$242.1778, found 242.1782.

5.3.6.2 Mechanistic Studies

5.3.6.2.1 Reactions with Diastereomerically Pure Alkyl Bromides

The general procedure \mathbf{M} was followed using 1-[4-(1H-pyrazol-1-yl)phenyl]ethan-1-one (147j, $93.1 \mathrm{mg}, 0.50 \mathrm{mmol}$) and endo-2-bromobornane (endo-136x, $327 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 16 h , purification by column chromatography (n-hexane/EtOAc 10:1) yielded ortho-alkylated product endo-145jx ($27.4 \mathrm{mg}, 17 \%$) as a white solid, meta-alkylated product exo-146jx ($22.0 \mathrm{mg}, 14 \%$) as a white solid and meta-alkylated product endo-146jx ($21.0 \mathrm{mg}, 13 \%$) as a white solid.

1-[4-(1H-Pyrazol-1-yl)-3-(endo-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl)phenyl]ethan-1-one (endo-145jx)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.13(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.72(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.44$ (dd, $J=2.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.86 (ddd, $J=11.7,5.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.67 (s, 3H), 2.34$2.18(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{dd}, \mathrm{J}=4.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-1.33(\mathrm{~m}, 3 \mathrm{H})$,
1.22-1.10(m, 1H), $0.84(\mathrm{~s}, 6 \mathrm{H}), 0.20(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=197.6\left(\mathrm{C}_{\mathrm{q}}\right), 144.8\left(\mathrm{C}_{\mathrm{q}}\right), 140.7(\mathrm{CH}), 139.6\left(\mathrm{C}_{\mathrm{q}}\right), 136.3\left(\mathrm{C}_{\mathrm{q}}\right), 131.4(\mathrm{CH})$, $130.5(\mathrm{CH}), 127.2(\mathrm{CH}), 126.6(\mathrm{CH}), 106.8(\mathrm{CH}), 50.5\left(\mathrm{C}_{\mathrm{q}}\right), 50.5\left(\mathrm{C}_{\mathrm{q}}\right), 45.6(\mathrm{CH}), 42.1(\mathrm{CH}), 35.4\left(\mathrm{CH}_{2}\right)$, $28.8\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 19.8\left(\mathrm{CH}_{3}\right), 18.5\left(\mathrm{CH}_{3}\right), 14.3\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2951,1684,1602,1518,1395,1239,937,909,827,728 \mathrm{~cm}^{-1}$.
m.p.: 97-98 ${ }^{\circ} \mathrm{C}$.

MS (ESI) m / z (relative intensity): 667 (12) $[2 \mathrm{M}+\mathrm{Na}]^{+}, 645(3)[2 \mathrm{M}+\mathrm{H}]^{+}, 345(35)[\mathrm{M}+\mathrm{Na}]^{+}, 323(100)$ $[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$323.2118, found 323.2119.

1-[4-(1H-Pyrazol-1-yl)-2-(exo-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl)phenyl]ethan-1-one (exo-146jx)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.97-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=2.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}$, $J=9.1,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{ddt}, J=12.2,8.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.77(\mathrm{~m}$, $2 \mathrm{H}), 1.73(\mathrm{dd}, \mathrm{J}=12.2,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.32(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~s}$, $3 H), 0.86(s, 3 H), 0.68(s, 3 H)$.
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=202.6\left(\mathrm{C}_{\mathrm{q}}\right), 145.8\left(\mathrm{C}_{\mathrm{q}}\right), 141.8(\mathrm{CH}), 141.6\left(\mathrm{C}_{\mathrm{q}}\right), 138.4\left(\mathrm{C}_{\mathrm{q}}\right), 130.5(\mathrm{CH})$, $126.8(\mathrm{CH}), 119.3(\mathrm{CH}), 115.3(\mathrm{CH}), 108.3(\mathrm{CH}), 50.7\left(\mathrm{C}_{q}\right), 48.6\left(\mathrm{C}_{\mathrm{q}}\right), 46.5(\mathrm{CH}), 45.8(\mathrm{CH}), 39.7\left(\mathrm{CH}_{2}\right)$, $35.4\left(\mathrm{CH}_{2}\right)$, $31.0\left(\mathrm{CH}_{3}\right), 27.4\left(\mathrm{CH}_{2}\right), 21.8\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{3}\right), 13.6\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2952,2878,1682,1605,1577,1390,1247,1043,948,749 \mathrm{~cm}^{-1}$.
m.p.: $129-131^{\circ} \mathrm{C}$.

MS (ESI) m / z (relative intensity): 667 (6) $[2 \mathrm{M}+\mathrm{Na}]^{+}, 645(2)[2 \mathrm{M}+\mathrm{H}]^{+}, 345(37)[\mathrm{M}+\mathrm{Na}]^{+}, 323(100)$ $[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+} 323.2118$, found 323.2118.

1-[4-(1H-Pyrazol-1-yl)-2-(endo-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl)phenyl]ethan-1-one

 (endo-146jx)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.97(\mathrm{dd}, \mathrm{J}=2.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}$, 1 H), $7.77(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 2 \mathrm{H}), 6.51(\mathrm{dd}, J=2.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.25 (ddd, J = 11.6, 5.6, 2.3 Hz, 1H), 2.58 (s, 3H), 2.34-2.23 (m, 1H), 1.93-1.84 $(\mathrm{m}, 1 \mathrm{H}), 1.81(\mathrm{dd}, J=4.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{dd}, J=13.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.47-1.39$ $(\mathrm{m}, 2 \mathrm{H}), 1.21-1.14(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 0.61(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=203.3\left(\mathrm{C}_{\mathrm{q}}\right), 144.0\left(\mathrm{C}_{\mathrm{q}}\right), 141.8(\mathrm{CH}), 141.1\left(\mathrm{C}_{\mathrm{q}}\right), 139.7\left(\mathrm{C}_{\mathrm{q}}\right), 129.4(\mathrm{CH})$, 126.9 (CH), 120.3 (CH), 115.8 (CH), 108.3 (CH), $51.4\left(\mathrm{C}_{\mathrm{q}}\right), 50.6\left(\mathrm{C}_{\mathrm{q}}\right), 45.6(\mathrm{CH}), 42.7(\mathrm{CH}), 35.4\left(\mathrm{CH}_{2}\right)$, $31.0\left(\mathrm{CH}_{3}\right), 28.9\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 20.0\left(\mathrm{CH}_{3}\right), 18.8\left(\mathrm{CH}_{3}\right), 14.5\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2938,2882,1683,1603,1389,1247,1038,909,828,762 \mathrm{~cm}^{-1}$.
m.p.: $118-120^{\circ} \mathrm{C}$.

MS (EI) m / z (relative intensity): 322 (1) [M] ${ }^{+}, 308$ (7), 304 (10), 289 (8), 279 (14) [M-Ac] $]^{+}, 213$ (94), 211 (100), 196 (42), 169 (16), 95 (10).

HR-MS (EI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}]^{+} 322.2040$, found 322.2037.

The general procedure \mathbf{M} was followed using 1-[4-(1H-pyrazol-1-yl)phenyl]ethan-1-one (147j, $93.1 \mathrm{mg}, 0.50 \mathrm{mmol})$ and cis-1-bromo-4-(tert-butyl)cyclohexane (cis-136s, $312 \mathrm{mg}, 1.50 \mathrm{mmol}$). After 16 h, purification by column chromatography (n-hexane/EtOAc 10:1 to 4:1) yielded orthoalkylated product cis-145js ($31.2 \mathrm{mg}, 19 \%$) as a white solid, meta-alkylated product $\mathbf{1 4 6 j}$
($16.5 \mathrm{mg}, 10 \%$) as a $1: 1.3$ mixture of cis- and trans-isomer as a colorless oil, and starting material 147j ($35.2 \mathrm{mg}, 38 \%$) as a white solid.

1-\{3-[cis-4-(tert-Butyl)cyclohexyl]-4-(1H-pyrazol-1-yl)phenyl\}ethan-1-one (cis-145js)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.24(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.74(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=$ $2.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.32(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.52(\mathrm{~m}$, $4 \mathrm{H}), 1.38-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{tt}, J=11.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=197.5\left(\mathrm{C}_{\mathrm{q}}\right), 143.4\left(\mathrm{C}_{\mathrm{q}}\right), 143.0\left(\mathrm{C}_{\mathrm{q}}\right), 140.9(\mathrm{CH}), 136.6\left(\mathrm{C}_{\mathrm{q}}\right), 130.8(\mathrm{CH})$, $129.2(\mathrm{CH}), 127.5(\mathrm{CH}), 126.5(\mathrm{CH}), 106.9(\mathrm{CH}), 46.6(\mathrm{CH}), 32.9\left(\mathrm{C}_{\mathrm{q}}\right), 32.2(\mathrm{CH}), 29.9\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{3}\right)$, $26.9\left(\mathrm{CH}_{3}\right), 23.1\left(\mathrm{CH}_{2}\right)$.

IR (ATR): $\tilde{v}=2934,1678,1596,1420,1393,1359,1260,939,826,771 \mathrm{~cm}^{-1}$.
m.p.: $98-99^{\circ} \mathrm{C}$.

MS (EI) m/z (relative intensity): 324 (31) [M] ${ }^{+}, 323$ (100) $[\mathrm{M}-\mathrm{H}]^{+}, 309$ (18) $[\mathrm{M}-\mathrm{Me}]^{+}, 267$ (47) [M-$t-\mathrm{Bu}]^{+}, 250$ (14), 225 (24) [M-t-Bu-Ac] ${ }^{+}, 211$ (21), 199 (11), 183 (6), 169 (10), 157 (5), 115 (4).

HR-MS (EI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}]^{+} 324.2196$, found 324.2173.

Mixture of 1-\{2-[trans-4-(tert-Butyl)cyclohexyl]-4-(1H-pyrazol-1-yl)phenyl\}ethan-1-one (trans146js) and 1-\{2-[cis-4-(tert-Butyl)cyclohexyl]-4-(1H-pyrazol-1-yl)phenyl\}ethan-1-one (cis-146js)

trans-146js

cis-146js
${ }^{1} \mathrm{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, determined as 1:1.3 mixture of cis-146js and trans-146js): $\delta=7.97$ (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$, cis-isomer), 7.96 (d, J = 2.7 Hz, 1H, trans-isomer), 7.90 (d, J $=2.3 \mathrm{~Hz}, 1 \mathrm{H}$, cis-isomer), 7.77 (d, J = $2.3 \mathrm{~Hz}, 1 \mathrm{H}$, transisomer), 7.76-7.73 (m, 2H), 7.64 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}$, cis- isomer), 7.63 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, trans-isomer), 7.56 (dd, $J=8.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}$, cis-isomer), 7.53 (dd, J $=8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}$, trans-isomer), 6.51-6.47(m,2H), 3.78-3.69(m,1H, cis-isomer), $3.17(\mathrm{tt}, \mathrm{J}=12.2$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}$, trans-isomer), $2.60(\mathrm{~s}, 6 \mathrm{H}), 2.00-1.78(\mathrm{~m}, 8 \mathrm{H}), 1.69-1.59$ ($\mathrm{m}, 2 \mathrm{H}$, cis-isomer), 1.57-1.45 (m, 2H, trans-isomer), 1.40-1.28 (m, 2H, cis-isomer), 1.25-1.05 (m, 4H), 0.88 ($\mathrm{s}, 9 \mathrm{H}$, cis-isomer), 0.86 (s, 9H, trans-isomer). Some proton peaks could not be identified due to overlapping.
${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, determined as 1:1.3 mixture of cis-146js and trans-146js): $\delta=202.6\left(\mathrm{C}_{\mathrm{q}}\right.$ of cis-isomer), 202.2 (C_{q} of trans-isomer), 149.6 (C_{q} of trans-isomer), 149.1 (C_{q} of cis-isomer), 142.0 (C_{q} of trans-isomer), 141.8 (CH of cis-isomer), 141.8 (CH of trans-isomer), 141.5 (C_{q} of cis-isomer), 137.0 (C_{q} of cis-isomer), 136.6 (C_{q} of trans-isomer), 130.2 (CH of cis-isomer), 130.0 (CH of transisomer), 126.9 (CH of trans-isomer), 126.8 (CH of cis-isomer), 118.9 (CH of cis-isomer), 117.7 (CH of trans-isomer), 115.6 (CH of trans-isomer), 115.4 (CH of cis-isomer), 108.3 (CH of cis-isomer), 108.3 (CH of trans-isomer), 48.0 (CH of trans-isomer), 46.1 (CH of cis-isomer), 40.1 (CH of transisomer), 34.9 (CH_{2} of trans-isomer), 33.3 (CH of cis-isomer), 32.9 (C_{q} of cis-isomer), 32.6 (C_{q} of transisomer), 31.1 (CH_{2} of cis-isomer), $30.7\left(\mathrm{CH}_{3}\right.$ of trans-isomer), $30.6\left(\mathrm{CH}_{3}\right.$ of cis-isomer), $27.8\left(\mathrm{CH}_{2}\right.$ of trans-isomer), 27.8 (CH_{3} of cis- and trans-isomer), 23.4 (CH_{2} of cis-isomer).

IR (ATR): $\tilde{v}=2936,2857,1682,1605,1576,1391,1246,1043,945,747 \mathrm{~cm}^{-1}$.
MS (EI) m / z (relative intensity): 324 (5) [M^{+}, 309 (100) [M-Me] ${ }^{+}, 306$ (19), 291 (11), 267 (8) [M-tBu] ${ }^{+}, 249$ (24), 235 (23), 222 (38), 209 (18), 195 (12), 183 (8), 157 (6), 115 (8).

HR-MS (EI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}]^{+} 324.2196$, found 324.2195 .

The general procedure \mathbf{M} was followed using 1-[4-(1H-pyrazol-1-yl)phenyl]ethan-1-one ($\mathbf{1 4 7 j}$, $93.1 \mathrm{mg}, \quad 0.50 \mathrm{mmol}$) and trans-1-bromo-4-(tert-butyl)cyclohexane (trans-136s, 312 mg , 1.50 mmol). After 16 h , purification by column chromatography (n-hexane/EtOAc 10:1) yielded ortho-alkylated product trans-145js ($107 \mathrm{mg}, 66 \%$) as a white solid.

1-\{3-[trans-4-(tert-Butyl)cyclohexyl]-4-(1H-pyrazol-1-yl)phenyl\}ethan-1-one (trans-145js)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.03(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}$, 1 H), 7.76 ($\mathrm{d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.59 ($\mathrm{d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.48(\mathrm{dd}, J=2.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{tt}, \mathrm{J}=12.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-$ $1.79(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.14-0.92(\mathrm{~m}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=197.5\left(\mathrm{C}_{\mathrm{q}}\right), 143.9\left(\mathrm{C}_{\mathrm{q}}\right), 143.0\left(\mathrm{C}_{\mathrm{q}}\right), 141.0(\mathrm{CH}), 137.2\left(\mathrm{C}_{\mathrm{q}}\right), 131.0(\mathrm{CH})$, $127.7(\mathrm{CH}), 127.1(\mathrm{CH}), 126.6(\mathrm{CH}), 106.9(\mathrm{CH}), 47.8(\mathrm{CH}), 38.4(\mathrm{CH}), 34.6\left(\mathrm{CH}_{2}\right), 32.6\left(\mathrm{C}_{q}\right), 27.7\left(\mathrm{CH}_{3}\right)$, $27.7\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2920,2854,1690,1601,1390,1224,935,824,770,624 \mathrm{~cm}^{-1}$.
m.p.: $109-110{ }^{\circ} \mathrm{C}$.

MS (EI) m/z (relative intensity): 324 (34) [M] ${ }^{+}, 323$ (100) $[\mathrm{M}-\mathrm{H}]^{+}, 309$ (19) $[\mathrm{M}-\mathrm{Me}]^{+}, 267$ (46) [M-$t-\mathrm{Bu}]^{+}, 250$ (14), 225 (25) [M-t-Bu-Ac] ${ }^{+}, 211$ (22), 199 (12), 169 (12).

HR-MS (EI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}]^{+}$324.2196, found 324.2175.

5.3.6.2.2 Synthesis of Cyclometalated Ruthenium Complex 204

An oven-dried pressure tube was charged with 3,5-dimethyl-1-phenyl-1H-pyrazole (147c, 172 mg , $1.00 \mathrm{mmol}),\left[\mathrm{RuCl}_{2}(p-c y m e n e)\right]_{2}(306 \mathrm{mg}, 0.50 \mathrm{mmol}), \mathrm{KOAc}(196 \mathrm{mg}, 2.00 \mathrm{mmol})$, and KPF_{6} ($368 \mathrm{mg}, 2.00 \mathrm{mmol}$). After evacuation and refilling with N_{2} for three times, MeCN (6.5 mL) was added and the tube was sealed. The reaction mixture was stirred at $120^{\circ} \mathrm{C}$. After 16 h , the reaction was cooled down to the ambient temperature. The crude mixture was loaded on an aluminium oxide ($\mathrm{Al}_{2} \mathrm{O}_{3}$, neutral, conditioned with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) column and eluted with $\mathrm{MeCN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1) using N_{2} instead of air. The pale green band was collected and the solvent was removed under reduced pressure. The complex was dissolved in $\mathrm{MeCN}(10 \mathrm{~mL})$ and precipitated with $\mathrm{Et}_{2} \mathrm{O}$, affording the desired complex 204 ($391 \mathrm{mg}, 67 \%$) as a green solid. The complex 204 was transferred to the glovebox subsequently. Suitable crystals of $\mathbf{2 0 4}$ for X-ray crystallography were grown by slow crystallization from $\mathrm{MeCN} / \mathrm{Et}_{2} \mathrm{O}$ (see X-Ray Crystallographic Analysis section).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{MeCN}-d_{3}\right): \delta=7.95-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.08$ (s, 1H), $2.70(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{~s}, 6 \mathrm{H}), 2.05(\mathrm{~s}, 6 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR ($\left.100 \mathrm{MHz}, \mathrm{MeCN}-d_{3}\right): \delta=166.3\left(\mathrm{C}_{\mathrm{q}}\right), 152.9\left(\mathrm{C}_{\mathrm{q}}\right), 148.7\left(\mathrm{C}_{\mathrm{q}}\right), 141.1\left(\mathrm{C}_{\mathrm{q}}\right), 139.9(\mathrm{CH}), 124.2$ $(\mathrm{CH}), 123.3\left(\mathrm{C}_{q}\right), 122.4\left(\mathrm{C}_{\mathrm{q}}\right), 121.9(\mathrm{CH}), 112.6(\mathrm{CH}), 110.1(\mathrm{CH}), 15.1\left(\mathrm{CH}_{3}\right), 14.7\left(\mathrm{CH}_{3}\right), 4.36\left(\mathrm{CH}_{3}\right)$, $3.8\left(\mathrm{CH}_{3}\right)$.
${ }^{19}$ F-NMR (376 MHz, MeCN- $\left.d_{3}\right): \delta=(-71.8)-(-74.0)(\mathrm{m})$.
${ }^{31}$ P-NMR (162 MHz, MeCN- d_{3}): $\delta=-144.6$ (hept, $J=708 \mathrm{~Hz}$).

IR (ATR): $\tilde{v}=2274,1546,1460,1436,1419,1032,832,737,719,556 \mathrm{~cm}^{-1}$.
m.p.: $>170^{\circ} \mathrm{C}$ (decomp.)

MS (ESI) m / z (relative intensity): 396 (100) $\left[\mathrm{M}-\mathrm{MeCN}-\mathrm{PF}_{6}\right]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{Ru}^{+}\left[\mathrm{M}-\mathrm{MeCN}-\mathrm{PF}_{6}\right]^{+}$396.0761, found 396.0759.

5.3.6.2.3 Catalytic C-H Alkylation with Cyclometalated Complex 204

3,5-Dimethyl-1-phenyl-1H-pyrazole (147c, $86.2 \mathrm{mg}, 0.50 \mathrm{mmol}$), complex 204 ($14.5 \mathrm{mg}, 25 \mu \mathrm{~mol}$, $5.0 \mathrm{~mol} \%$), $\mathrm{MesCO}_{2} \mathrm{H}\left(31,24.6 \mathrm{mg}, 150 \mu \mathrm{~mol}, 30 \mathrm{~mol} \%\right.$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{mmol})$ were placed in a pre-dried 25 mL Schlenk tube. The tube was evacuated and purged with N_{2} three times. Bromocyclohexane ($\mathbf{1 3 6} \mathbf{j}, 123 \mathrm{mg}, 0.75 \mathrm{mmol}$) and $\mathrm{PhCMe}_{3}(1.0 \mathrm{~mL})$ were then added and the mixture was stirred at $120^{\circ} \mathrm{C}$. After 16 h , the resulting mixture was filtered through a pad of silica gel and washed with EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography on silica gel (n-hexane/EtOAc 30:1) yielded meta-alkylated product 146cj ($89.5 \mathrm{mg}, 70 \%$) as a colorless oil.

In case of the reaction without $\mathrm{MesCO}_{2} \mathrm{H}(31)$, the reaction provided ortho-alkylated product $\mathbf{1 4 5} \mathbf{c j}$ ($24.4 \mathrm{mg}, 19 \%$) as a colorless oil, meta-alkylated product 146 cj ($13.1 \mathrm{mg}, 10 \%$) as a colorless oil, and starting material 147 c ($34.4 \mathrm{mg}, 38 \%$) as a colorless oil.

1-(2-Cyclohexylphenyl)-3,5-dimethyl-1H-pyrazole (145cj)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.14$ $(\mathrm{m}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 2.29(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.16(\mathrm{tt}, J=12.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.04$ (d, J = 0.9 Hz, 3H), 1.82-1.61 (m, 5H), 1.44-1.29 (m, 2H), 1.24-1.14 (m, 3H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.3\left(\mathrm{C}_{\mathrm{q}}\right), 146.2\left(\mathrm{C}_{\mathrm{q}}\right), 140.5\left(\mathrm{C}_{\mathrm{q}}\right), 137.8\left(\mathrm{C}_{\mathrm{q}}\right), 129.3$
$(\mathrm{CH}), 128.3(\mathrm{CH}), 127.3(\mathrm{CH}), 126.2(\mathrm{CH}), 104.9(\mathrm{CH}), 38.5(\mathrm{CH}), 34.1\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right)$, $13.8\left(\mathrm{CH}_{3}\right), 11.6\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2924,2851,1555,1498,1448,1028,774,754,530 \mathrm{~cm}^{-1}$.
MS (ESI) m / z (relative intensity): $277(2)[\mathrm{M}+\mathrm{Na}]^{+}, 255(100)[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$255.1856, found 255.1859.

5.3.6.3 X-Ray Crystallographic Analysis

A suitable crystal was selected and the crystal was mounted on a MITIGEN holder in NVH oil on a Bruker D8 Venture diffractometer. The crystal was kept at 100 or 300 K during data collection. Using Olex2, ${ }^{[137]}$ the structure was solved with the $\mathrm{XT}^{[138]}$ structure solution program using Intrinsic Phasing and refined with the $\mathrm{XL}^{[139]}$ refinement package using Least Squares minimisation.

Figure 55: Molecular structure of 145jj with thermal ellipsoids at 50\% probability level. The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}(M=268.35 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group P2/c (no. 13), $a=$ 20.7094(15) $\AA, b=5.3605(4) \AA, c=27.2622(18) \AA, B=106.154(2)^{\circ}, V=2907.0(4) \AA^{3}, Z=8, T=$ $100.0 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.077 \mathrm{~mm}^{-1}$, Dcalc $=1.226 \mathrm{~g} / \mathrm{cm}^{3}, 56579$ reflections measured $\left(4.4^{\circ} \leq 2 \Theta \leq\right.$ 57.528°), 7532 unique ($R_{\text {int }}=0.0559, \mathrm{R}_{\text {sigma }}=0.0337$) which were used in all calculations. The final R_{1} was $0.0648(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.1690 (all data).

Table 83: Crystal data and structure refinement for 145 jj .

Compound	145jj
CCDC number	1979314
Identification code	0700_CG_Om
Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	268.35
Temperature/K	100.0
Crystal system	monoclinic
Space group	P2/c
a/Å	20.7094(15)
b/Å	5.3605(4)
c/Å	27.2622(18)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	106.154(2)
$\mathrm{V} /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	2907.0(4)
Z	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.226
μ / mm^{-1}	0.077
F(000)	1152.0
Crystal size/mm ${ }^{3}$	$0.405 \times 0.162 \times 0.145$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.4 to 57.528
Index ranges	$-28 \leq h \leq 27,-7 \leq k \leq 7,-36 \leq 1 \leq 36$
Reflections collected	56579

Independent reflections	$7532\left[\mathrm{R}_{\text {int }}=0.0559, \mathrm{R}_{\text {sigma }}=0.0337\right]$
Data/restraints/parameters	$7532 / 0 / 363$
Goodness-of-fit on F^{2}	1.122
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0648, \mathrm{wR}_{2}=0.1655$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0709, \mathrm{wR}_{2}=0.1690$
Largest diff. peak/hole $/ \mathrm{e}^{-3}$	$0.45 /-0.29$

Table 84: Selected bond lengths [Å] for 145jj.

Atom	Atom	Length/A	Atom	Atom	Length/Å
O1	C1	$1.214(2)$	C4	C8	$1.515(2)$
N1	N2	$1.363(2)$	C5	C6	$1.390(2)$
N1	C5	$1.427(2)$	C6	C7	$1.387(3)$
N1	C15	$1.361(2)$	C8	C9	$1.536(3)$
N2	C17	$1.331(2)$	C8	C13	$1.539(3)$
C1	C2	$1.503(2)$	C9	C10	$1.527(2)$
C1	C14	$1.503(3)$	C10	C11	$1.527(3)$
C2	C3	$1.393(2)$	C11	C12	$1.529(3)$
C2	C7	$1.395(3)$	C12	C13	$1.530(3)$
C3	C4	$1.399(2)$	C15	C16	$1.367(3)$
C4	C5	$1.402(2)$	C16	C17	$1.402(3)$

Table 85: Selected bond angles [${ }^{\circ}$] for $\mathbf{1 4 5 j j}$.

Atom	Atom	Atom	Angle/	Atom	Atom	Atom	Angle/ $^{\circ}$
N2	N1	C5	$120.98(15)$	C 6	C 5	N 1	$116.44(16)$
C 15	N 1	N 2	$111.92(15)$	C 6	C 5	C 4	$122.00(16)$
C 15	N 1	C 5	$126.38(15)$	C 7	C 6	C 5	$120.32(17)$
C 17	N 2	N 1	$103.99(15)$	C 6	C 7	C 2	$119.21(16)$
O1	C 1	C 2	$120.17(17)$	C 4	C 8	C 9	$111.09(15)$
O1	C 1	C 14	$121.75(17)$	C 4	C 8	C 13	$111.69(15)$
C 2	C 1	C 14	$118.07(16)$	C 9	C 8	C 13	$110.35(15)$
C 3	C 2	C 1	$118.47(16)$	C 10	C 9	C 8	$111.31(15)$

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C3	C2	C7	119.51(16)	C11	C10	C9	111.27(15)
C7	C2	C1	121.99(16)	C10	C11	C12	110.86(16)
C2	C3	C4	122.55(17)	C11	C12	C13	111.47(16)
C3	C4	C5	116.26(16)	C12	C13	C8	110.97(15)
C3	C4	C8	119.85(16)	N1	C15	C16	106.98(16)
C5	C4	C8	123.89(16)	C15	C16	C17	104.77(16)
C4	C5	N1	121.56(16)	N2	C17	C16	112.33(16)

Figure 56: Molecular structure of 145jj' with thermal ellipsoids at 50\% probability level. The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{23} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}(M=350.49 \mathrm{~g} / \mathrm{mol})$: triclinic, space group P-1 (no. 2), $a=5.8157(4) \AA$, $b=10.5817(8) \AA, c=16.4884(12) \AA, \alpha=79.072(3)^{\circ}, \quad b=84.757(2)^{\circ}, \quad \gamma=81.344(3)^{\circ}, V=$ $982.88(12) \AA^{3}, Z=2, T=100.01 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.072 \mathrm{~mm}^{-1}, D c a l c=1.184 \mathrm{~g} / \mathrm{cm}^{3}, 36020$ reflections measured $\left(5.042^{\circ} \leq 20 \leq 57.588^{\circ}\right), 5088$ unique ($R_{\text {int }}=0.0191$, $R_{\text {sigma }}=0.0142$) which were used in all calculations. The final R_{1} was 0.0395 ($1>2 \sigma(\mathrm{I})$ and $w R_{2}$ was 0.1053 (all data).

Table 86: Crystal data and structure refinement for 145jj'.

Compound	$\mathbf{1 4 5 j j}$
CCDC number	1979313
Identification code	0687_CG_0m
Empirical formula	$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	350.49

Temperature/K	100.01
Crystal system	triclinic
Space group	P-1
a/Å	5.8157(4)
b/Å	10.5817(8)
c/Å	16.4884(12)
$\alpha /{ }^{\circ}$	79.072(3)
$\beta{ }^{\circ}$	84.757(2)
$\gamma /{ }^{\circ}$	81.344(3)
Volume/Å ${ }^{3}$	982.88(12)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.184
μ / mm^{-1}	0.072
F(000)	380.0
Crystal size/mm ${ }^{3}$	$0.817 \times 0.269 \times 0.16$
Radiation	MoK α ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ}$	5.042 to 57.588
Index ranges	$-7 \leq h \leq 7,-14 \leq k \leq 14,-22 \leq 1 \leq 22$
Reflections collected	36020
Independent reflections	$5088\left[\mathrm{R}_{\text {int }}=0.0191, \mathrm{R}_{\text {sigma }}=0.0142\right]$
Data/restraints/parameters	5088/0/236
Goodness-of-fit on F^{2}	1.059
Final R indexes [$1>=2 \sigma(1)]$	$\mathrm{R}_{1}=0.0395, \mathrm{wR}_{2}=0.1044$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0407, \mathrm{wR}_{2}=0.1053$
Largest diff. peak/hole / e \AA^{-3}	0.40/-0.25

Table 87: Bond lengths [Å] for 145jj'.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O1	C2	$1.2196(11)$	C9	C10	$1.5348(13)$
N1	N2	$1.3537(11)$	C9	C14	$1.5352(12)$
N1	C6	$1.4326(11)$	C10	C11	$1.5313(13)$

Atom	Atom	Length/Å	Atom	Atom	Length/Å
N1	C21	$1.3516(11)$	C11	C12	$1.5273(14)$
N2	C23	$1.3333(13)$	C12	C13	$1.5263(14)$
C1	C2	$1.5020(12)$	C13	C14	$1.5282(12)$
C2	C3	$1.5045(12)$	C15	C16	$1.5364(13)$
C3	C4	$1.3963(12)$	C15	C20	$1.5359(13)$
C3	C8	$1.3934(12)$	C16	C17	$1.5339(13)$
C4	C5	$1.4015(12)$	C17	C18	$1.5254(14)$
C5	C6	$1.4026(12)$	C18	C19	$1.5208(15)$
C5	C15	$1.5196(11)$	C19	C20	$1.5319(13)$
C6	C7	$1.4054(12)$	C21	C22	$1.3716(13)$
C7	C8	$1.3911(12)$	C22	C23	$1.3967(14)$
C7	C9	$1.5153(12)$			

Table 88: Bond angles [${ }^{\circ}$] for 145 jj '.

Atom	Atom	Atom	Angle/ $^{\circ}$	Atom	Atom	Atom	Angle/ $^{\circ}$
N2	N1	C6	$120.46(7)$	C7	C8	C3	$121.68(8)$
C21	N1	N2	$112.15(8)$	C7	C9	C10	$111.30(7)$
C21	N1	C6	$127.32(8)$	C7	C9	C14	$110.43(7)$
C23	N2	N1	$103.86(8)$	C10	C9	C14	$110.53(7)$
O1	C2	C1	$121.09(8)$	C11	C10	C9	$111.04(8)$
O1	C2	C3	$119.40(8)$	C12	C11	C10	$111.30(8)$
C1	C2	C3	$119.49(8)$	C13	C12	C11	$110.34(8)$
C4	C3	C2	$123.33(8)$	C12	C13	C14	$111.18(8)$
C8	C3	C2	$117.19(8)$	C13	C14	C9	$112.24(8)$
C8	C3	C4	$119.42(8)$	C5	C15	C16	$110.95(7)$
C3	C4	C5	$121.15(8)$	C5	C15	C20	$111.40(7)$
C4	C5	C6	$117.53(8)$	C20	C15	C16	$110.98(7)$
C4	C5	C15	$120.29(7)$	C17	C16	C15	$112.20(8)$
C6	C5	C15	$122.17(8)$	C18	C17	C16	$111.59(8)$
C5	C6	N1	$119.12(7)$	C19	C18	C17	$110.59(8)$

Atom	Atom	Atom	Angle/ $^{\circ}$	Atom	Atom	Atom	Angle/ $^{\circ}$
C 5	C 6	C 7	$122.69(8)$	C 18	C 19	C 20	$110.94(8)$
C 7	C 6	N 1	$118.19(7)$	C 19	C 20	C 15	$111.72(8)$
C 6	C 7	C 9	$122.69(8)$	N 1	C 21	C 22	$107.31(8)$
C 8	C 7	C 6	$117.50(8)$	C 21	C 22	C 23	$104.11(9)$
C 8	C 7	C 9	$119.79(8)$	N 2	C 23	C 22	$112.56(9)$

Figure 57: Molecular structure of endo-145jx with thermal ellipsoids at 50\% probability level.
The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}(M=322.44 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group Cc (no. 9), $a=10.588(6) \AA$, $b=19.131(10) \AA$ A $, c=10.302(6) \AA, B=118.335(11)^{\circ}, V=1836.9(17) \AA^{3}, Z=4, T=300 K, \mu(\mathrm{MoK} \alpha)=$ $0.072 \mathrm{~mm}^{-1}$, Dcalc $=1.166 \mathrm{~g} / \mathrm{cm}^{3}, 35887$ reflections measured $\left(4.862^{\circ} \leq 2 \Theta \leq 55.924^{\circ}\right), 4332$ unique ($R_{\text {int }}=0.0350, \mathrm{R}_{\text {sigma }}=0.0234$) which were used in all calculations. The final R_{1} was 0.0420 (I > $2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.1202 (all data).

Table 89: Crystal data and structure refinement for endo-145jx.

Compound	endo-145jx
CCDC number	2016734
Identification code	mo_1053_CG_0m
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	322.44
Temperature $/ \mathrm{K}$	300

Crystal system	monoclinic
Space group	Cc
a/Å	10.588(6)
b/Å	19.131(10)
c/Å	10.302(6)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	118.335(11)
$\mathrm{V} /{ }^{\circ}$	90
Volume/ ${ }^{3}$	1836.9(17)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.166
μ / mm^{-1}	0.072
F(000)	696.0
Crystal size/mm ${ }^{3}$	$0.386 \times 0.191 \times 0.052$
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.862 to 55.924
Index ranges	$-13 \leq h \leq 13,-24 \leq k \leq 25,-13 \leq \mathrm{l} \leq 13$
Reflections collected	35887
Independent reflections	$4332\left[\mathrm{R}_{\text {int }}=0.0350, \mathrm{R}_{\text {sigma }}=0.0234\right]$
Data/restraints/parameters	4332/2/221
Goodness-of-fit on F^{2}	1.075
Final R indexes [$1>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0420, \mathrm{wR}_{2}=0.1132$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0489, \mathrm{wR}_{2}=0.1202$
Largest diff. peak/hole / e \AA^{-3}	0.21/-0.18
Flack parameter	0.1(4)

Table 90: Bond lengths [\AA] for endo-145jx.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O1	C2	$1.215(3)$	C9	C10	$1.559(3)$
N1	N2	$1.353(3)$	C9	C13	$1.559(3)$
N1	C6	$1.432(3)$	C10	C11	$1.567(3)$

Atom	Atom	Length/Å	Atom	Atom	Length/Å
N1	C19	1.340(4)	C10	C15	1.534(4)
N2	C21	1.318(4)	C10	C18	1.506(4)
C1	C2	1.502(4)	C11	C12	1.534(4)
C2	C3	1.489(3)	C11	C16	1.530(4)
C3	C4	1.395(3)	C11	C17	1.528(4)
C3	C8	1.385(3)	C12	C13	1.539(4)
C4	C5	1.394(3)	C12	C14	1.518(5)
C5	C6	1.410(3)	C14	C15	1.542(5)
C5	C9	1.513(3)	C19	C20	$1.364(5)$
C6	C7	1.382(3)	C20	C21	1.385(6)
C7	C8	1.371(4)			

Table 91: Bond angles [${ }^{\circ}$] for endo-145jx.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
N2	N1	C6	120.5(2)	C9	C10	C11	100.54(18)
C19	N1	N2	112.1(2)	C15	C10	C9	108.8(2)
C19	N1	C6	126.9(2)	C15	C10	C11	101.5(2)
C21	N2	N1	104.4(3)	C18	C10	C9	114.0(2)
01	C2	C1	120.7(2)	C18	C10	C11	116.5(2)
01	C2	C3	121.1(2)	C18	C10	C15	114.0(2)
C3	C2	C1	118.3(2)	C12	C11	C10	93.0(2)
C4	C3	C2	119.4(2)	C16	C11	C10	113.3(3)
C8	C3	C2	121.2(2)	C16	C11	C12	114.8(3)
C8	C3	C4	119.3(2)	C17	C11	C10	115.0(2)
C5	C4	C3	122.8(2)	C17	C11	C12	113.7(3)
C4	C5	C6	115.57(19)	C17	C11	C16	107.0(3)
C4	C5	C9	123.3(2)	C11	C12	C13	103.3(2)
C6	C5	C9	121.14(19)	C14	C12	C11	102.7(3)
C5	C6	N1	122.2(2)	C14	C12	C13	106.8(2)
C7	C6	N1	115.9(2)	C12	C13	C9	103.6(2)
C7	C6	C5	121.9(2)	C12	C14	C15	102.9(3)

Atom	Atom	Atom	Angle/ $^{\circ}$	Atom	Atom	Atom	Angle/ $^{\circ}$
C8	C7	C6	$120.7(2)$	C 10	C 15	C 14	$104.0(2)$
C7	C8	C3	$119.6(2)$	N 1	C 19	C 20	$106.6(3)$
C5	C9	C10	$116.03(17)$	C 19	C 20	C 21	$105.2(3)$
C5	C 9	C 13	$117.54(19)$	N 2	C 21	C 20	$111.8(3)$
C13	C 9	C 10	$101.97(19)$				

Figure 58: Molecular structure of exo-146jx with thermal ellipsoids at 50\% probability level. The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}(M=322.44 \mathrm{~g} / \mathrm{mol})$: orthorhombic, space group Pbca (no. 61), $a=$ $18.2576(9) \AA$) $, b=9.0892(4) \AA, c=21.3228(9) \AA, V=3538.5(3) \AA^{3}, Z=8, T=100.0 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=$ $0.074 \mathrm{~mm}^{-1}$, Dcalc $=1.211 \mathrm{~g} / \mathrm{cm}^{3}, 108209$ reflections measured $\left(3.82^{\circ} \leq 2 \Theta \leq 59.25^{\circ}\right), 4981$ unique $\left(R_{\text {int }}=0.0595, \mathrm{R}_{\text {sigma }}=0.0246\right)$ which were used in all calculations. The final R_{1} was $0.0759(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.1690 (all data).

Table 92: Crystal data and structure refinement for exo-146jx.

Compound	exo-146jx
CCDC number	2016645
Identification code	mo_1036_CG_0m
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	322.44

Temperature/K	100.0
Crystal system	orthorhombic
Space group	Pbca
a/Å	18.2576(9)
b/Å	9.0892(4)
c/Å	21.3228(9)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\mathrm{V} /{ }^{\circ}$	90
Volume/ \AA^{3}	3538.5(3)
Z	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.211
μ / mm^{-1}	0.074
F(000)	1392.0
Crystal size/mm ${ }^{3}$	$0.409 \times 0.367 \times 0.307$
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	3.82 to 59.25
Index ranges	$-24 \leq h \leq 25,-12 \leq k \leq 12,-29 \leq 1 \leq 29$
Reflections collected	108209
Independent reflections	$4981\left[\mathrm{R}_{\text {int }}=0.0595, \mathrm{R}_{\text {sigma }}=0.0246\right]$
Data/restraints/parameters	4981/252/354
Goodness-of-fit on F^{2}	1.203
Final R indexes [$1>=2 \sigma(\mathrm{l})$]	$\mathrm{R}_{1}=0.0759, \mathrm{wR}_{2}=0.1676$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0789, \mathrm{wR}_{2}=0.1690$
Largest diff. peak/hole / e \AA^{-3}	0.44/-0.26

Table 93: Selected bond lengths [Å] for exo-146jx.

Atom	Atom	Length/A	Atom	Atom	Length/Å
O1	C2	$1.217(2)$	C9A	C10A	$1.558(4)$
N1	N2	$1.368(3)$	C9A	C13A	$1.587(3)$
N1	C6A	$1.396(3)$	C10A	C11A	$1.525(4)$

Atom	Atom	Length/Å	Atom	Atom	Length/Å
N1	C19	$1.354(3)$	C11A	C12A	$1.541(5)$
N2	C21	$1.328(3)$	C11A	C15A	$1.544(4)$
C1	C2	$1.511(3)$	C12A	C13A	$1.569(5)$
C2	C3A	$1.529(3)$	C12A	C17A	$1.530(5)$
C3A	C4A	$1.415(3)$	C12A	C18A	$1.544(4)$
C3A	C8A	$1.398(3)$	C13A	C14A	$1.560(3)$
C4A	C5A	$1.396(3)$	C13A	C16A	$1.516(3)$
C4A	C9A	$1.521(3)$	C14A	C15A	$1.552(4)$
C5A	C6A	$1.394(3)$	C19	C20	$1.369(3)$
C6A	C7A	$1.386(3)$	C20	C21	$1.393(4)$
C7A	C8A	$1.386(3)$			

Table 94: Selected bond angles [${ }^{\circ}$] for exo-146jx.

Atom	Atom	Atom	Angle/	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
N2	N1	C6A	$120.4(2)$	C11A	C10A	C9A	$103.5(2)$
C19	N1	N2	$111.42(18)$	C10A	C11A	C12A	$103.2(2)$
C19	N1	C6A	$128.1(2)$	C10A	C11A	C15A	$106.6(2)$
C21	N2	N1	$104.2(2)$	C12A	C11A	C15A	$102.6(2)$
01	C2	C1	$120.21(19)$	C11A	C12A	C13A	$93.6(3)$
01	C2	C3A	$121.8(2)$	C11A	C12A	C18A	$114.4(3)$
C1	C2	C3A	$118.0(2)$	C17A	C12A	C11A	$112.8(3)$
C4A	C3A	C2	$124.5(3)$	C17A	C12A	C13A	$114.6(2)$
C8A	C3A	C2	$115.6(3)$	C17A	C12A	C18A	$106.8(3)$
C8A	C3A	C4A	$119.9(2)$	C18A	C12A	C13A	$114.5(3)$
C3A	C4A	C9A	$121.3(2)$	C12A	C13A	C9A	$104.4(2)$
C5A	C4A	C3A	$116.99(19)$	C14A	C13A	C9A	$102.92(18)$
C5A	C4A	C9A	$121.7(2)$	C14A	C13A	C12A	$100.0(2)$
C6A	C5A	C4A	$122.1(2)$	C16A	C13A	C9A	$116.66(19)$
C5A	C6A	N1	$117.5(3)$	C16A	C13A	C12A	$117.2(2)$
C7A	C6A	N1	$121.7(3)$	C16A	C13A	C14A	$113.4(2)$

Atom	Atom	Atom	Angle/ $^{\circ}$	Atom	Atom	Atom	Angle/ $^{\circ}$
C7A	C6A	C5A	$120.8(2)$	C15A	C14A	C13A	$102.73(19)$
C6A	C7A	C8A	$117.7(2)$	C11A	C15A	C14A	$103.7(2)$
C7A	C8A	C3A	$122.4(2)$	N1	C19	C20	$107.2(2)$
C4A	C9A	C10A	$117.1(2)$	C19	C20	C21	$104.8(2)$
C4A	C9A	C13A	$119.31(18)$	N2	C21	C20	$112.3(2)$
C10A	C9A	C13A	$102.3(2)$				

Figure 59: Molecular structure of endo-146jx with thermal ellipsoids at 50\% probability level. The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}(M=322.44 \mathrm{~g} / \mathrm{mol})$: orthorhombic, space group Pbca (no. 61), $a=$
 $0.573 \mathrm{~mm}^{-1}$, Dcalc $=1.201 \mathrm{~g} / \mathrm{cm}^{3}, 136327$ reflections measured $\left(8.258^{\circ} \leq 2 \Theta \leq 159.994^{\circ}\right), 3880$ unique ($R_{\text {int }}=0.0354$, $\mathrm{R}_{\text {sigma }}=0.0087$) which were used in all calculations. The final R_{1} was 0.0524 ($\mathrm{I}>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.1295 (all data).

Table 95: Crystal data and structure refinement for endo-146jx.

Compound	endo-146jx
CCDC number	2016646
Identification code	1041_Pbca
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	322.44
Temperature/K	100.0

Crystal system	orthorhombic
Space group	Pbca
a/Å	18.2383(3)
b/Å	9.1329(2)
c/Å	21.4131(4)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\mathrm{V} /{ }^{\circ}$	90
Volume/ ${ }^{3}$	3566.75(12)
Z	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.201
μ / mm^{-1}	0.573
F(000)	1392.0
Crystal size/mm ${ }^{3}$	$0.26 \times 0.247 \times 0.197$
Radiation	CuK α ($\lambda=1.54178$)
2Θ range for data collection/ ${ }^{\circ}$	8.258 to 159.994
Index ranges	$-23 \leq h \leq 23,-11 \leq k \leq 11,-27 \leq 1 \leq 27$
Reflections collected	136327
Independent reflections	$3880\left[\mathrm{R}_{\text {int }}=0.0354, \mathrm{R}_{\text {sigma }}=0.0087\right]$
Data/restraints/parameters	3880/60/287
Goodness-of-fit on F^{2}	1.138
Final R indexes [$1>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0524, \mathrm{wR}_{2}=0.1291$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0531, \mathrm{wR}_{2}=0.1295$
Largest diff. peak/hole / e \AA^{-3}	0.31/-0.24

Table 96: Selected bond lengths [\AA] for endo-146jx.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O1	C7	$1.2166(19)$	C9	C10	$1.568(2)$
N1	N2	$1.365(2)$	C9	C14A	$1.588(2)$
N1	C1	$1.419(2)$	C10	C11A	$1.562(3)$
N1	C19	$1.363(2)$	C11A	C12A	$1.538(3)$

Atom	Atom	Length/A	Atom	Atom	Length/Å
N2	C21	$1.332(2)$	C11A	C15A	$1.556(3)$
C1	C2	$1.391(2)$	C12A	C13A	$1.557(3)$
C1	C6	$1.385(2)$	C13A	C14A	$1.543(3)$
C2	C3	$1.397(2)$	C14A	C15A	$1.571(3)$
C3	C4	$1.412(2)$	C14A	C16	$1.490(2)$
C3	C9	$1.514(2)$	C15A	C17A	$1.531(3)$
C4	C5	$1.396(2)$	C15A	C18A	$1.526(3)$
C4	C7	$1.505(2)$	C19	C20	$1.363(3)$
C5	C6	$1.383(2)$	C20	C21	$1.397(3)$
C7	C8	$1.509(2)$			

Table 97: Selected bond angles [${ }^{\circ}$] for endo- $\mathbf{1 4 6 j x}$.

Atom	Atom	Atom	Angle/ $^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
N2	N1	C1	$120.35(13)$	C11A	C10	C9	$102.96(13)$
C19	N1	N2	$111.27(14)$	C12A	C11A	C10	$108.17(17)$
C19	N1	C1	$128.28(14)$	C12A	C11A	C15A	$102.42(18)$
C21	N2	N1	$104.44(14)$	C15A	C11A	C10	$102.76(15)$
C2	C1	N1	$119.06(14)$	C11A	C12A	C13A	$102.78(16)$
C6	C1	N1	$120.49(14)$	C14A	C13A	C12A	$104.05(15)$
C6	C1	C2	$120.44(14)$	C13A	C14A	C9	$109.29(15)$
C1	C2	C3	$121.79(14)$	C13A	C14A	C15A	$101.35(15)$
C2	C3	C4	$117.61(13)$	C15A	C14A	C9	$100.24(15)$
C2	C3	C9	$120.51(13)$	C16	C14A	C9	$114.26(15)$
C4	C3	C9	$121.84(13)$	C16	C14A	C13A	$113.31(17)$
C3	C4	C7	$123.97(13)$	C16	C14A	C15A	$116.93(16)$
C5	C4	C3	$119.47(14)$	C11A	C15A	C14A	$93.20(14)$
C5	C4	C7	$116.52(13)$	C17A	C15A	C11A	$113.62(17)$
C6	C5	C4	$122.23(15)$	C17A	C15A	C14A	$113.88(18)$
C5	C6	C1	$118.33(14)$	C18A	C15A	C11A	$113.71(18)$
O1	C7	C4	$121.79(15)$	C18A	C15A	C14A	$115.15(18)$

Atom	Atom	Atom	Angle/ $^{\circ}$	Atom	Atom	Atom	Angle/ $^{\circ}$
O1	C7	C8	$120.83(15)$	C 18 A	C 15 A	C 17 A	$107.10(18)$
C4	C7	C 8	$117.36(14)$	N 1	C 19	C 20	$107.22(16)$
C3	C9	C10	$117.07(13)$	C 19	C 20	C 21	$105.15(15)$
C3	C9	C14A	$113.48(14)$	N 2	C 21	C 20	$111.92(17)$
C10	C9	C14A	$102.80(13)$				

Figure 60: Molecular structure of cis-145js with thermal ellipsoids at 50\% probability level. The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}(M=324.45 \mathrm{~g} / \mathrm{mol})$: orthorhombic, space group Pna2 ${ }_{1}$ (no. 33), $a=$ $16.476(3) \AA$ Å, $b=18.989(4) \AA$ Å, $c=5.7847$ (9) $\AA, V=1809.9(6) \AA^{3}, Z=4, T=100.0 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.073$ mm^{-1}, Dcalc $=1.191 \mathrm{~g} / \mathrm{cm}^{3}, 130203$ reflections measured $\left(4.29^{\circ} \leq 2 \Theta \leq 57.42^{\circ}\right.$), 4675 unique ($R_{\text {int }}$ $\left.=0.0354, \mathrm{R}_{\text {sigma }}=0.0114\right)$ which were used in all calculations. The final R_{1} was $0.0296(1>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.0774 (all data).

Table 98: Crystal data and structure refinement for cis-145js.

Compound	cis-145js
CCDC number	2016647
Identification code	$1048 _$Pna21
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	324.45
Temperature/K	100.0
Crystal system	orthorhombic

Space group	Pna2 ${ }_{1}$
a/Å	16.476(3)
b/Å	18.989(4)
c/Å	5.7847(9)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\mathrm{V} /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	1809.9(6)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.191
μ / mm^{-1}	0.073
F(000)	704.0
Crystal size/mm ${ }^{3}$	$0.384 \times 0.19 \times 0.038$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.29 to 57.42
Index ranges	$-22 \leq h \leq 22,-25 \leq k \leq 25,-7 \leq 1 \leq 7$
Reflections collected	130203
Independent reflections	$4675\left[\mathrm{R}_{\text {int }}=0.0354, \mathrm{R}_{\text {sigma }}=0.0114\right]$
Data/restraints/parameters	4675/1/221
Goodness-of-fit on F^{2}	1.040
Final R indexes [$1>=2 \sigma(1)$]	$\mathrm{R}_{1}=0.0296, \mathrm{wR}_{2}=0.0761$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0308, \mathrm{wR}_{2}=0.0774$
Largest diff. peak/hole / e \AA^{-3}	0.22/-0.15
Flack parameter	-0.08(19)

Table 99: Bond lengths [Å] for cis-145js.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O1	C2	$1.2190(18)$	C7	C18	$1.3894(18)$
N1	N2	$1.3637(16)$	C8	C9	$1.533(2)$
N1	C6	$1.4277(16)$	C8	C13	$1.546(2)$
N1	C19	$1.3601(17)$	C9	C10	$1.5394(18)$

Atom	Atom	Length/Å	Atom	Atom	Length/Å
N2	C21	1.3305(18)	C10	C11	1.5307(18)
C1	C2	1.501(2)	C11	C12	1.5341(18)
C2	C3	1.4988(18)	C11	C14	1.5557(17)
C3	C4	1.3937(18)	C12	C13	1.528(2)
C3	C18	1.4004(18)	C14	C15	1.5342(18)
C4	C5	1.3911(18)	C14	C16	1.5357(19)
C5	C6	1.3915(18)	C14	C17	1.5319(19)
C6	C7	1.4135(17)	C19	C20	1.373(2)
C7	C8	1.5241(18)	C20	C21	1.407(2)

Table 100: Bond angles [${ }^{\circ}$] for cis-145js.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
N2	N1	C6	120.79(11)	C7	C8	C13	110.17(12)
C19	N1	N2	112.21(11)	C9	C8	C13	109.05(11)
C19	N1	C6	126.99(12)	C8	C9	C10	116.27(12)
C21	N2	N1	103.96(12)	C11	C10	C9	112.75(11)
01	C2	C1	120.92(13)	C10	C11	C12	107.91(10)
01	C2	C3	120.01(13)	C10	C11	C14	113.33(10)
C3	C2	C1	119.07(12)	C12	C11	C14	113.90(11)
C4	C3	C2	122.61(12)	C13	C12	C11	111.60(12)
C4	C3	C18	119.37(12)	C12	C13	C8	112.68(11)
C18	C3	C2	118.01(12)	C15	C14	C11	109.82(11)
C5	C4	C3	119.40(12)	C15	C14	C16	107.92(11)
C4	C5	C6	120.13(12)	C16	C14	C11	110.02(11)
C5	C6	N1	117.22(11)	C17	C14	C11	112.27(10)
C5	C6	C7	121.87(11)	C17	C14	C15	108.55(11)
C7	C6	N1	120.91(11)	C17	C14	C16	108.15(11)
C6	C7	C8	121.26(11)	C7	C18	C3	122.76(12)
C18	C7	C6	116.18(12)	N1	C19	C20	106.89(13)
C18	C7	C8	122.48(11)	C19	C20	C21	104.55(13)
C7	C8	C9	116.23(12)	N2	C21	C20	112.37(13)

Figure 61: Molecular structure of trans-145js with thermal ellipsoids at 50\% probability level.
The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}(M=324.45 \mathrm{~g} / \mathrm{mol})$: triclinic, space group P-1 (no. 2), $a=5.9333(2) \AA$, $b=10.3005(3) \AA$ A,$c=16.2603(5) \AA$ A $, \alpha=98.9640(10)^{\circ}, b=99.7430(10)^{\circ}, v=91.3860(10)^{\circ}, V=$ $966.16(5) \AA^{3}, Z=2, T=300.0 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.068 \mathrm{~mm}^{-1}$, Dcalc $=1.115 \mathrm{~g} / \mathrm{cm}^{3}, 7889$ reflections measured $\left(5.104^{\circ} \leq 2 \Theta \leq 55.832^{\circ}\right.$), 7889 unique ($R_{\text {int }}=$?, $R_{\text {sigma }}=0.0275$) which were used in all calculations. The final R_{1} was $0.0670(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.1864 (all data).

Table 101: Crystal data and structure refinement for trans-145js.

Compound	trans-145js
CCDC number	2016735
Identification code	mo_1054_CG_0m_4
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	324.45
Temperature/K	300.0
Crystal system	triclinic
Space group	P-1
a/Å	5.9333(2)
b/Å	10.3005(3)
c/Å	16.2603(5)
$\alpha /{ }^{\circ}$	98.9640(10)
$\beta /{ }^{\circ}$	99.7430(10)
$\mathrm{V} /{ }^{\circ}$	91.3860(10)

Volume/ ${ }^{\text {a }}$	966.16(5)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.115
μ / mm^{-1}	0.068
F(000)	352.0
Crystal size/mm ${ }^{3}$	$0.376 \times 0.302 \times 0.084$
Radiation	MoK α ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ}$	5.104 to 55.832
Index ranges	$-7 \leq h \leq 7,-13 \leq k \leq 13,-21 \leq 1 \leq 21$
Reflections collected	7889
Independent reflections	$7889\left[\mathrm{R}_{\text {int }}=\right.$?, $\left.\mathrm{R}_{\text {sigma }}=0.0275\right]$
Data/restraints/parameters	7889/0/222
Goodness-of-fit on F^{2}	1.074
Final R indexes [$1>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0670, \mathrm{wR}_{2}=0.1752$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0850, \mathrm{wR}_{2}=0.1864$
Largest diff. peak/hole / e \AA^{-3}	0.27/-0.17

Table 102: Bond lengths [\AA] for trans-145js.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O1	C2	1.189(4)	C7	C18	1.384(3)
N1	N2	1.343(3)	C8	C9	1.514(3)
N1	C6	1.427(3)	C8	C13	1.517(3)
N1	C19	1.351(3)	C9	C10	1.527(3)
N2	C21	1.333(4)	C10	C11	1.528(3)
C1	C2	1.484(4)	C11	C12	1.519(3)
C2	C3	1.490(3)	C11	C14	1.560(2)
C3	C4	1.390(3)	C12	C13	1.527(3)
C3	C18	1.385(3)	C14	C15	1.531(3)
C4	C5	$1.371(3)$	C14	C16	1.521(3)
C5	C6	1.387(3)	C14	C17	1.536(3)
C6	C7	1.396(3)	C19	C20	1.353(4)

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C7	C8	$1.518(2)$	C 20	C 21	$1.368(5)$

Table 103: Bond angles [${ }^{\circ}$] for trans-145js.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
N2	N1	C6	120.08(18)	C9	C8	C13	109.65(16)
N2	N1	C19	112.0(2)	C13	C8	C7	110.92(16)
C19	N1	C6	127.9(2)	C8	C9	C10	111.17(18)
C21	N2	N1	103.2(3)	C9	C10	C11	112.48(18)
01	C2	C1	119.8(3)	C10	C11	C14	114.00(16)
01	C2	C3	120.8(3)	C12	C11	C10	107.91(16)
C1	C2	C3	119.4(3)	C12	C11	C14	114.16(16)
C4	C3	C2	122.1(2)	C11	C12	C13	112.26(18)
C18	C3	C2	118.7(2)	C8	C13	C12	111.61(17)
C18	C3	C4	119.1(2)	C15	C14	C11	111.49(17)
C5	C4	C3	119.49(19)	C15	C14	C17	108.29(19)
C4	C5	C6	120.5(2)	C16	C14	C11	110.63(17)
C5	C6	N1	118.02(18)	C16	C14	C15	108.7(2)
C5	C6	C7	121.44(19)	C16	C14	C17	108.3(2)
C7	C6	N1	120.52(17)	C17	C14	C11	109.31(18)
C6	C7	C8	122.51(17)	C7	C18	C3	122.8(2)
C18	C7	C6	116.55(17)	N1	C19	C20	107.0(3)
C18	C7	C8	120.80(17)	C19	C20	C21	104.8(2)
C9	C8	C7	113.61(17)	N2	C21	C20	112.9(3)

Figure 62: Molecular structure of $\mathbf{2 0 4}$ with thermal ellipsoids at 50\% probability level. The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{PRu}(M=581.47 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{P} 2_{1} / \mathrm{n}$ (no. 14), $a=$ $12.6946(6) \AA, b=12.8467(6) \AA, c=15.4440(9) \AA, B=96.350(2)^{\circ}, V=2503.2(2) \AA^{3}, Z=4, T=300 K$, $\mu(\mathrm{MoK} \alpha)=0.753 \mathrm{~mm}^{-1}$, Dcalc $=1.543 \mathrm{~g} / \mathrm{cm}^{3}, 54797$ reflections measured $\left(3.946^{\circ} \leq 2 \Theta \leq 55.846^{\circ}\right)$, 5985 unique ($R_{\text {int }}=0.0233, \mathrm{R}_{\text {sigma }}=0.0138$) which were used in all calculations. The final R_{1} was $0.0299(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.0764 (all data).

Table 104: Crystal data and structure refinement for 204.

Compound	$\mathbf{2 0 4}$
CCDC number	2017186
Identification code	mo_1055_CG_0m $^{\text {Empirical formula }}$
Formula weight	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{PRu}$
Temperature/K	581.47
Crystal system	300
Space group	monoclinic
a/A	P2 $1 / \mathrm{n}$
b/A	$12.6946(6)$
c/A	$12.8467(6)$

$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	96.350(2)
$\mathrm{V} /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	2503.2(2)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.543
μ / mm^{-1}	0.753
F(000)	1168.0
Crystal size/mm ${ }^{3}$	$0.369 \times 0.338 \times 0.128$
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	3.946 to 55.846
Index ranges	$-16 \leq h \leq 16,-16 \leq k \leq 16,-20 \leq 1 \leq 20$
Reflections collected	54797
Independent reflections	$5985\left[\mathrm{R}_{\text {int }}=0.0233, \mathrm{R}_{\text {sigma }}=0.0138\right]$
Data/restraints/parameters	5985/6/359
Goodness-of-fit on F^{2}	1.187
Final R indexes [$1>=2 \sigma(1)$]	$\mathrm{R}_{1}=0.0299, \mathrm{wR}_{2}=0.0756$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0314, \mathrm{wR}_{2}=0.0764$
Largest diff. peak/hole / e \AA^{-3}	0.37/-0.37

Table 105: Selected bond lengths [Å] for 204.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Ru1	N1	$2.0616(18)$	C3	C4	$1.383(4)$
Ru1	N3	$2.0128(19)$	C4	C5	$1.363(4)$
Ru1	N4	$2.020(2)$	C5	C6	$1.380(3)$
Ru1	N5	$2.156(2)$	C7	C8	$1.491(4)$
Ru1	N6	$2.010(2)$	C8	C9	$1.386(4)$
Ru1	C1	$2.020(2)$	C9	C10	$1.359(4)$
N1	N2	$1.382(3)$	C10	C11	$1.501(4)$
N1	C8	$1.333(3)$	C12	C13	$1.458(4)$
N2	C2	$1.428(3)$	C14	C15	$1.449(3)$

Atom	Atom	Length/Å	Atom	Atom	Length/Å
N2	C10	$1.359(3)$	C16	C17	$1.449(4)$
N3	C12	$1.127(3)$	C18	C19	$1.463(4)$
N4	C14	$1.133(3)$	P1B	F1A	$1.539(4)$
N5	C16	$1.129(3)$	P1B	F2A	$1.571(4)$
N6	C18	$1.123(3)$	P1B	F3A	$1.513(7)$
C1	C2	$1.397(3)$	P1B	F4A	$1.542(4)$
C1	C6	$1.400(3)$	P1B	F5A	$1.584(5)$
C2	C3	$1.381(3)$	P1B	F6A	$1.557(6)$

Table 106: Selected bond angles [${ }^{\circ}$] for 204.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
N1	Ru1	N5	100.39(7)	C10	C9	C8	108.1(2)
N3	Ru1	N1	93.27(7)	N2	C10	C11	124.8(3)
N3	Ru1	N4	86.93(8)	C9	C10	N2	106.5(2)
N3	Ru1	N5	91.04(7)	C9	C10	C11	128.7(3)
N3	Ru1	C1	89.56(8)	N3	C12	C13	178.7(3)
N4	Ru1	N1	173.12(7)	N4	C14	C15	178.6(3)
N4	Ru1	N5	86.49(7)	N5	C16	C17	179.3(3)
N6	Ru1	N1	89.52(8)	N6	C18	C19	178.9(4)
N6	Ru1	N3	177.21(8)	C2	C3	C4	118.8(2)
N6	Ru1	N4	90.29(8)	C5	C4	C3	120.3(2)
N6	Ru1	N5	88.48(8)	C4	C5	C6	120.2(2)
N6	Ru1	C1	90.94(8)	C5	C6	C1	122.1(2)
C1	Ru1	N1	79.15(8)	N1	C8	C7	122.5(2)
C1	Ru1	N4	93.97(8)	N1	C8	C9	109.1(2)
C1	Ru1	N5	179.26(9)	C9	C8	C7	128.5(2)
N2	N1	Ru1	114.91(12)	F1A	P1B	F2A	92.8(3)
C8	N1	Ru1	138.28(17)	F1A	P1B	F4A	90.4(4)
C8	N1	N2	106.50(18)	F1A	P1B	F5A	176.7(4)
N1	N2	C2	115.17(17)	F1A	P1B	F6A	80.3(4)
C10	N2	N1	109.84(19)	F2A	P1B	F5A	88.4(4)

Atom	Atom	Atom	Angle/ $^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C10	N2	C2	$134.9(2)$	F3A	P1B	F1A	$101.3(6)$
C12	N3	Ru1	$173.41(19)$	F3A	P1B	F2A	$89.9(5)$
C14	N4	Ru1	$177.2(2)$	F3A	P1B	F4A	$93.1(4)$
C16	N5	Ru1	$173.7(2)$	F3A	P1B	F5A	$81.7(5)$
C18	N6	Ru1	$176.8(2)$	F3A	P1B	F6A	$176.2(5)$
C2	C1	Ru1	$116.00(15)$	F4A	P1B	F2A	$175.1(5)$
C2	C1	C6	$115.5(2)$	F4A	P1B	F5A	$88.3(4)$
C6	C1	Ru1	$128.49(17)$	F4A	P1B	F6A	$90.4(4)$
C1	C2	N2	$114.66(19)$	F6A	P1B	F2A	$86.5(4)$
C3	C2	N2	$122.3(2)$	F6A	P1B	F5A	$96.7(5)$
C3	C2	C1	$123.0(2)$				

5.3.7 Photo-Induced Ruthenium-Catalyzed C-H Arylations at Room Temperature

5.3.7.1 Characterization Data for 151 and 214

2-(4'-Methoxy-3-methyl-[1,1'-biphenyl]-2-yl)pyridine (151a)

The general procedure \mathbf{N} was followed using 2-(o-tolyl)pyridine (68e, $84.6 \mathrm{mg}, 0.50 \mathrm{mmol})$ and 1-iodo-4-methoxybenzene (46a, 176 mg , 0.75 mmol). After 24 h , purification by column chromatography (n-hexane/EtOAc 7:1) yielded 151a (129 mg, 94\%) as a viscous colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.64$ (ddd, $\left.J=4.9,1.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.46$ (ddd, $J=7.8,7.7,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34(\mathrm{dd}, J=7.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{ddd}, J=7.7,4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{ddd}, J=7.8,1.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.8\left(\mathrm{C}_{\mathrm{q}}\right), 158.0\left(\mathrm{C}_{q}\right), 148.9(\mathrm{CH}), 140.8\left(\mathrm{C}_{\mathrm{q}}\right), 139.3\left(\mathrm{C}_{q}\right), 136.7\left(\mathrm{C}_{\mathrm{q}}\right)$, 135.7 (CH), 134.1 (Cq), 130.7 (CH), 129.0 (CH), 128.0 (CH), 127.6 (CH), 125.6 (CH), 121.2 (CH), 113.1 $(\mathrm{CH}), 55.1\left(\mathrm{CH}_{3}\right), 20.5\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2954,2835,1609,1585,1511,1458,1244,1178,1029,748 \mathrm{~cm}^{-1}$.

MS (EI) m / z (relative intensity): 275 (48) [M] ${ }^{+}, 274$ (100) [M-H $]^{+}, 260(24)[\mathrm{M}-\mathrm{Me}]^{+}, 231$ (20).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$276.1383, found 276.1381.
The spectral data are in accordance with those reported in the literature. ${ }^{[41]}$

2-(3,3'-Dimethyl-[1,1'-biphenyl]-2-yl)pyridine (151g)

The general procedure \mathbf{N} was followed using 2-(o-tolyl)pyridine (68e, $84.6 \mathrm{mg}, \quad 0.50 \mathrm{mmol})$ and 1-iodo-3-methylbenzene $(46 \mathrm{~g}, 164 \mathrm{mg}$, 0.75 mmol). After 24 h , purification by column chromatography (n-hexane/EtOAc $15: 1$) yielded $\mathbf{1 5 1 g}$ ($114 \mathrm{mg}, 88 \%$) as a viscous colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.63$ (ddd, $J=4.9,1.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.45 (ddd, $J=7.8,7.7,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35$ (dd, J = 7.6, $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.09$ (ddd, J=7.7, 4.9, 1.2 Hz, 1H), 7.03-6.98 $(\mathrm{m}, 1 \mathrm{H}), 6.94-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{ddd}, J=7.8,1.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.83(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.19$ (s, 3H).
${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.7\left(\mathrm{C}_{\mathrm{q}}\right), 148.7(\mathrm{CH}), 141.5\left(\mathrm{C}_{\mathrm{q}}\right), 141.3\left(\mathrm{C}_{\mathrm{q}}\right), 139.3\left(\mathrm{C}_{\mathrm{q}}\right), 137.1\left(\mathrm{C}_{\mathrm{q}}\right)$, $136.6\left(\mathrm{C}_{\mathrm{q}}\right), 135.6(\mathrm{CH}), 130.5(\mathrm{CH}), 129.3(\mathrm{CH}), 128.0(\mathrm{CH}), 127.5(\mathrm{CH}), 127.4(\mathrm{CH}), 126.9(\mathrm{CH}), 126.7$ $(\mathrm{CH}), 125.6(\mathrm{CH}), 121.2(\mathrm{CH}), 21.2\left(\mathrm{CH}_{3}\right), 20.5\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3058,2920,1584,1562,1459,1423,1024,776,746,705 \mathrm{~cm}^{-1}$.

MS (ESI) m/z (relative intensity): $282(52)[\mathrm{M}+\mathrm{Na}]^{+}, 260(100)[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}$260.1434, found 260.1428.
The spectral data are in accordance with those reported in the literature. ${ }^{[143]}$

2-(3'-Methoxy-3-methyl-[1,1'-biphenyl]-2-yl)pyridine (151h)

The general procedure \mathbf{N} was followed using 2-(o-tolyl)pyridine (68e, $84.6 \mathrm{mg}, \quad 0.50 \mathrm{mmol}$) and 1-iodo-3-methoxybenzene ($46 \mathrm{~h}, 176 \mathrm{mg}$, $0.75 \mathrm{mmol})$. After 24 h , purification by column chromatography (n-hexane/EtOAc 7:1) yielded 151 h ($114 \mathrm{mg}, 82 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.64$ (ddd, $J=4.9,1.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 (ddd, $J=7.7,7.6,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36$ (dd, J = 7.9, $7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.31-7.27 (m, 2H), 7.10 (ddd, J = 7.6, 4.9, 1.2 Hz, 1H), 7.07 (dd, J
$=8.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{ddd}, J=7.7,1.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ (ddd, J=7.6, 1.6, 1.0 Hz, 1H), 6.67 (ddd, $J=8.2,2.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{dd}, J=2.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.7\left(\mathrm{C}_{\mathrm{q}}\right), 158.7\left(\mathrm{C}_{\mathrm{q}}\right), 148.7(\mathrm{CH}), 143.0\left(\mathrm{C}_{\mathrm{q}}\right), 141.0\left(\mathrm{C}_{\mathrm{q}}\right), 139.2\left(\mathrm{C}_{\mathrm{q}}\right)$, $136.7\left(\mathrm{C}_{\mathrm{q}}\right), 135.8$ (CH), 129.5 (CH), 128.6 (CH), $128.0(\mathrm{CH}), 127.4(\mathrm{CH}), 125.6$ (CH), $122.0(\mathrm{CH}), 121.3$ $(\mathrm{CH}), 114.6(\mathrm{CH}), 112.8(\mathrm{CH}), 55.0\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2955,1576,1463,1413,1226,1039,778,747,702 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 275 (41) [M] ${ }^{+}, 274$ (100) [M-H] ${ }^{+}, 258$ (20), 231 (15).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$298.1202, found 298.1207.

The spectral data are in accordance with those reported in the literature. ${ }^{[143]}$

2-(3'-Fluoro-3-methyl-[1,1'-biphenyl]-2-yl)pyridine (151i)

The general procedure \mathbf{N} was followed using 2-(o-tolyl)pyridine (68e, $84.6 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 1-fluoro-3-iodobenzene ($46 \mathrm{i}, 167 \mathrm{mg}, 0.75 \mathrm{mmol}$). After 24 h , purification by column chromatography (n-hexane/EtOAc 15:1) yielded 151i ($73.3 \mathrm{mg}, 56 \%$) as a viscous colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.63$ (ddd, $\left.J=4.9,1.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.48$ (ddd, $J=7.8,7.7,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.37$ (dd, J = 7.6, $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.31 (ddd, J = 7.6, 1.6, $0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.27-7.23 (m, 1H), 7.12 (ddd, $J=7.7,4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{ddd}, J=7.8,1.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.78(\mathrm{~m}, 3 \mathrm{H})$, 2.18 ($s, 3 H$).
${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=162.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=245 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 159.2\left(\mathrm{C}_{\mathrm{q}}\right), 149.0(\mathrm{CH}), 143.9\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=\right.$ $8 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$), $140.0\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 139.3\left(\mathrm{C}_{\mathrm{q}}\right), 136.8\left(\mathrm{C}_{\mathrm{q}}\right), 135.8(\mathrm{CH}), 129.8(\mathrm{CH}), 128.9\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=\right.$ $8 \mathrm{~Hz}, \mathrm{CH}), 128.1(\mathrm{CH}), 127.4(\mathrm{CH}), 125.5(\mathrm{CH}), 125.4\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3 \mathrm{~Hz}, \mathrm{CH}\right), 121.5(\mathrm{CH}), 116.5\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}\right.$ $=22 \mathrm{~Hz}, \mathrm{CH}), 113.1\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}, \mathrm{CH}\right), 20.4\left(\mathrm{CH}_{3}\right)$.
${ }^{19}$ F-NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=(-114.1)-(-114.2)(\mathrm{m})$.

IR (ATR): $\tilde{v}=3061,1611,1577,1461,1416,1194,1156,874,779,699 \mathrm{~cm}^{-1}$.

MS (ESI) m / z (relative intensity): 286 (67) [M+Na] ${ }^{+}$, $264(100)[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FN}^{+}[\mathrm{M}+\mathrm{H}]^{+}$264.1183, found 264.1184 .

The spectral data are in accordance with those reported in the literature. ${ }^{[143]}$

2-[3-Methyl-3'-(trifluoromethyl)-[1,1'-biphenyl]-2-yl]pyridine (151j)

The general procedure \mathbf{N} was followed using 2-(o-tolyl)pyridine (68e, $84.6 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 1-iodo-3-(trifluoromethyl)benzene (46j, 204 mg , $0.75 \mathrm{mmol})$. After 24 h , purification by column chromatography (n-hexane/EtOAc $15: 1$) yielded $151 \mathrm{j}(80.2 \mathrm{mg}, 51 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.62$ (ddd, $\left.J=4.9,1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.48(\mathrm{ddd}, J=7.8,7.7,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.11$ (ddd, $J=7.7,4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89$ (ddd, $J=7.8$, $1.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.0\left(\mathrm{C}_{\mathrm{q}}\right), 149.1(\mathrm{CH}), 142.3\left(\mathrm{C}_{\mathrm{q}}\right), 139.7\left(\mathrm{C}_{\mathrm{q}}\right), 139.4\left(\mathrm{C}_{\mathrm{q}}\right), 136.9\left(\mathrm{C}_{\mathrm{q}}\right)$, $135.9(\mathrm{CH}), 132.8(\mathrm{CH}), 130.0(\mathrm{CH}), 129.9$ (q, $\left.{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=32 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 128.2(\mathrm{CH}), 128.0(\mathrm{CH}), 127.3(\mathrm{CH})$, $126.5\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}, \mathrm{CH}\right), 125.5(\mathrm{CH}), 124.0\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 122.9\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4 \mathrm{~Hz}, \mathrm{CH}\right), 121.5$ $(\mathrm{CH}), 20.4\left(\mathrm{CH}_{3}\right)$.
${ }^{19} \mathrm{~F}$-NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-62.8(\mathrm{~s})$.

IR (ATR): $\tilde{v}=3063,1585,1430,1333,1271,1162,1119,1070,783,748 \mathrm{~cm}^{-1}$.
MS (ESI) m/z (relative intensity): 336 (100) $[\mathrm{M}+\mathrm{Na}]^{+}, 314(98)[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$336.0971, found 336.0976.

The spectral data are in accordance with those reported in the literature. ${ }^{[144]}$

1-[3'-Methyl-2'-(pyridin-2-yl)-[1,1'-biphenyl]-3-yl]ethan-1-one (151k)

The general procedure \mathbf{N} was followed using 2-(o-tolyl)pyridine (68e, $84.6 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 1-(3-iodophenyl)ethan-1-one ($46 \mathrm{k}, 185 \mathrm{mg}$, 0.75 mmol). After 24 h , purification by column chromatography (n-hexane/EtOAc $3: 1$) yielded 151k ($99.0 \mathrm{mg}, 69 \%$) as a yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.64(\mathrm{ddd}, J=4.9,1.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{ddd}, J=7.7,1.6,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.64(\mathrm{dd}, J=1.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{ddd}, J=7.8,7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.29$ (ddd, $J=7.6,1.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25$ (ddd, J=7.7, 7.7, $0.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.11 (ddd, $J=7.7,4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90$ (ddd, $J=7.8,1.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=198.0\left(\mathrm{C}_{\mathrm{q}}\right), 159.3\left(\mathrm{C}_{\mathrm{q}}\right), 149.0(\mathrm{CH}), 141.9\left(\mathrm{C}_{\mathrm{q}}\right), 140.1\left(\mathrm{C}_{q}\right), 139.3\left(\mathrm{C}_{\mathrm{q}}\right)$, $136.9\left(\mathrm{C}_{\mathrm{q}}\right), 136.4\left(\mathrm{C}_{\mathrm{q}}\right), 136.0(\mathrm{CH}), 134.1(\mathrm{CH}), 130.2(\mathrm{CH}), 129.9(\mathrm{CH}), 128.3(\mathrm{CH}), 128.0(\mathrm{CH}), 127.4$ $(\mathrm{CH}), 125.9(\mathrm{CH}), 125.6(\mathrm{CH}), 121.5(\mathrm{CH}), 26.6\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3060,1681,1584,1562,1425,1357,1242,782,749,698 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 287 (39) [M] ${ }^{+}, 286$ (100) [M-H] ${ }^{+}, 244$ (30) [M-Ac] ${ }^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$288.1383, found 288.1385.

3'-Methyl-2'-(pyridin-2-yl)-[1,1'-biphenyl]-3-carbonitrile (151I)

The general procedure N was followed using 2-(o-tolyl)pyridine (68e, $84.6 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 3-iodobenzonitrile ($46 \mathrm{l}, 172 \mathrm{mg}, 0.75 \mathrm{mmol}$) in DMA (2.0 mL). After 24 h , purification by column chromatography (n-hexane/EtOAc 4:1) yielded 151I ($68.0 \mathrm{mg}, 50 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.62$ (ddd, $J=4.9,1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.51 (ddd, $J=7.8,7.7,1.8 \mathrm{~Hz}$, 1 H), $7.42-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.34$ (ddd, $J=7.7,1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.29 (ddd, J=7.9, 1.5, 1.5 Hz, 1H), 7.247.19 (m, 2H), 7.13 (ddd, $J=7.7,4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91$ (ddd, $J=7.8,1.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=158.7\left(\mathrm{C}_{\mathrm{q}}\right), 149.2(\mathrm{CH}), 142.9\left(\mathrm{C}_{\mathrm{q}}\right), 139.3\left(\mathrm{C}_{\mathrm{q}}\right), 138.9\left(\mathrm{C}_{\mathrm{q}}\right), 137.0\left(\mathrm{C}_{\mathrm{q}}\right)$, 135.9 (CH), 134.0 (CH), 132.9 (CH), 130.3 (CH), 129.9 (CH), 128.4 (CH), 128.3 (CH), 127.2 (CH), 125.5 $(\mathrm{CH}), 121.7(\mathrm{CH}), 118.7\left(\mathrm{C}_{\mathrm{q}}\right), 111.8\left(\mathrm{C}_{\mathrm{q}}\right), 20.4\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2924,2225,1585,1456,1422,1149,1025,785,754,699 \mathrm{~cm}^{-1}$.
m.p.: 97-99 ${ }^{\circ} \mathrm{C}$.

MS (ESI) m/z (relative intensity): 563 (5) [2M+Na] ${ }^{+}$, 293 (100) [$\left.\mathrm{M}+\mathrm{Na}\right]^{+}, 271$ (74) [M+H] ${ }^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$293.1049, found 293.1051.

2-(2'-Methoxy-3-methyl-[1,1'-biphenyl]-2-yl)pyridine (151m)

The general procedure \mathbf{N} was followed using 2-(o-tolyl)pyridine (68e, 84.6 mg , 0.50 mmol) and 1-iodo-2-methoxybenzene ($46 \mathrm{~m}, 176 \mathrm{mg}, 0.75 \mathrm{mmol}$). After 24 h , purification by column chromatography (n-hexane/EtOAc 6:1) yielded 151m ($60.5 \mathrm{mg}, 44 \%$) as a light yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.55$ (ddd, $\left.\mathrm{J}=4.9,1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.40(\mathrm{ddd}, \mathrm{J}=7.8,7.7,1.9 \mathrm{~Hz}$, 1 H), 7.34 (dd, $J=7.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.29 (ddd, $J=7.6,1.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.21 (ddd, $J=7.5,1.7,0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.13$ (ddd, $J=8.2,7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.01(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{ddd}, J=7.7,4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ (d, J=7.8 Hz, 1H), $6.78(\mathrm{dd}, J=7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.5\left(\mathrm{C}_{\mathrm{q}}\right), 156.2\left(\mathrm{C}_{\mathrm{q}}\right), 148.4(\mathrm{CH}), 140.1\left(\mathrm{C}_{\mathrm{q}}\right), 137.9\left(\mathrm{C}_{\mathrm{q}}\right), 136.2\left(\mathrm{C}_{\mathrm{q}}\right)$, 135.0 (CH), 131.8 (CH), 130.5 (Cq), 129.5 (CH), 128.2 (CH), 128.1 (CH), 127.6 (CH), 124.8 (CH), 121.0 $(\mathrm{CH}), 119.9(\mathrm{CH}), 110.1(\mathrm{CH}), 55.1\left(\mathrm{CH}_{3}\right), 20.5\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2930,1583,1496,1462,1419,1238,1126,1024,787,745 \mathrm{~cm}^{-1}$.
MS (ESI) m / z (relative intensity): 573 (27) [2M+Na] ${ }^{+}$, $298(100)[\mathrm{M}+\mathrm{Na}]^{+}, 276(96)[\mathrm{M}+\mathrm{H}]^{+}$.
HR-MS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$298.1202, found 298.1204.

2-(3,3',5'-Trimethyl-[1,1'-biphenyl]-2-yl)pyridine (151n)

The general procedure \mathbf{N} was followed using 2 -(o-tolyl)pyridine (68e, $84.6 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 1 -iodo-3,5-dimethylbenzene ($46 \mathrm{n}, 174 \mathrm{mg}$, $0.75 \mathrm{mmol})$. After 24 h , purification by column chromatography (n-hexane/EtOAc $15: 1$) yielded $151 \mathrm{n}(126 \mathrm{mg}, 92 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.63$ (ddd, $\left.J=4.9,1.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.46(\mathrm{ddd}, J=7.8,7.6,1.8 \mathrm{~Hz}$, 1 H), 7.34 (dd, $J=8.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.29-7.24$ (m, 2H), 7.09 (ddd, $J=7.6,4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.90 (ddd, $J=7.8,1.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.70-6.68(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.14(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13}$ C-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.8\left(\mathrm{C}_{\mathrm{q}}\right), 148.6(\mathrm{CH}), 141.4\left(\mathrm{C}_{\mathrm{q}}\right), 141.4\left(\mathrm{C}_{\mathrm{q}}\right), 139.3\left(\mathrm{C}_{\mathrm{q}}\right), 136.9\left(\mathrm{C}_{\mathrm{q}}\right)$, 136.6 (C_{q}), 135.6 (CH), 129.2 (CH), 127.9 (CH), 127.8 (CH), 127.6 (CH), 127.5 (CH), 125.6 (CH), 121.1 $(\mathrm{CH}), 21.1\left(\mathrm{CH}_{3}\right), 20.5\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2917,1583,1562,1460,1426,1025,851,784,748,704 \mathrm{~cm}^{-1}$.
m.p.: $55-57^{\circ} \mathrm{C}$.

MS (ESI) m / z (relative intensity): 569 (20) $[2 \mathrm{M}+\mathrm{Na}]^{+}, 296(100)[\mathrm{M}+\mathrm{Na}]^{+}, 274(90)[\mathrm{M}+\mathrm{H}]^{+}$.
HR-MS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$296.1410, found 296.1412.
The spectral data are in accordance with those reported in the literature. ${ }^{[46]}$

5-[3-Methyl-2-(pyridin-2-yl)phenyl]-1H-indole (151o)

The general procedure \mathbf{N} was followed using 2-(o-tolyl)pyridine (68e,
 $84.6 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 5-iodo-1H-indole ($46 \mathrm{o}, 182 \mathrm{mg}, 0.75 \mathrm{mmol}$). After 24 h , purification by column chromatography (n-hexane/EtOAc $2: 1$) yielded 1510 (128 mg, 90\%) as a white solid.
${ }^{1} \mathrm{H}-$ NMR (400 MHz, DMSO- d_{6}): $\delta=10.96$ (s, 1H), 8.58 (ddd, $J=4.9,1.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.50 (ddd, $J=$ $7.8,7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.36 (dd, J = 8.3, $6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.29-7.24$ (m, 4H), 7.15 (ddd, J = 7.7, 4.9, 1.2 Hz, 1 H), 7.11 (ddd, $J=8.4,0.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.89 (ddd, $J=7.8,1.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $6.69(\mathrm{dd}, \mathrm{J}=8.4,1.7 \mathrm{~Hz}$, 1H), 6.28 (ddd, J = 3.0, 1.9, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.06 (s, 3H).
${ }^{13} \mathrm{C}-$ NMR (100 MHz, DMSO- $\left.d_{6}\right): \delta=159.5\left(\mathrm{C}_{\mathrm{q}}\right), 148.6(\mathrm{CH}), 142.0\left(\mathrm{C}_{\mathrm{q}}\right), 139.5\left(\mathrm{C}_{\mathrm{q}}\right), 135.9\left(\mathrm{C}_{\mathrm{q}}\right), 135.8$ (CH), $134.4\left(\mathrm{C}_{\mathrm{q}}\right), 132.0\left(\mathrm{C}_{\mathrm{q}}\right), 128.2(\mathrm{CH}), 127.9(\mathrm{CH}), 127.7(\mathrm{CH}), 127.3\left(\mathrm{C}_{\mathrm{q}}\right), 125.5(\mathrm{CH}), 125.3$ (CH), $122.9(\mathrm{CH}), 121.4(\mathrm{CH}), 120.7(\mathrm{CH}), 110.4(\mathrm{CH}), 101.2(\mathrm{CH}), 20.3\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3137,1592,1454,1420,1316,888,766,730 \mathrm{~cm}^{-1}$.
m.p.: $189-191^{\circ} \mathrm{C}$.

MS (ESI) m / z (relative intensity): 307 (15) $[\mathrm{M}+\mathrm{Na}]^{+}, 285(100)[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$285.1386, found 285.1388.

2-(3',4'-Dimethoxy-3-methyl-[1,1'-biphenyl]-2-yl)pyridine (151p)

The general procedure \mathbf{N} was followed using 2-(o-tolyl)pyridine (68e, $84.6 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 4-iodo-1,2-dimethoxybenzene (46p, 198 mg , 0.75 mmol). After 24 h , purification by column chromatography (n-hexane/EtOAc 3:1) yielded 151p (118 mg, 77\%) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.65$ (ddd, $J=4.9,1.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.47 (ddd, $J=7.8,7.7,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35$ (dd, J = 7.6, $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.30-7.26 (m, 2H), 7.11 (ddd, J = 7.7, 4.9, 1.2 Hz, 1H), 6.88 (ddd, $J=7.8,1.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.72\left(\mathrm{~d}_{\mathrm{AB}}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.48(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=160.0\left(\mathrm{C}_{\mathrm{q}}\right), 148.7(\mathrm{CH}), 147.7\left(\mathrm{C}_{\mathrm{q}}\right), 147.4\left(\mathrm{C}_{\mathrm{q}}\right), 140.8\left(\mathrm{C}_{\mathrm{q}}\right), 139.2\left(\mathrm{C}_{\mathrm{q}}\right)$, $136.7\left(\mathrm{C}_{\mathrm{q}}\right), 136.0(\mathrm{CH}), 134.3\left(\mathrm{C}_{\mathrm{q}}\right), 129.2(\mathrm{CH}), 128.1(\mathrm{CH}), 127.4(\mathrm{CH}), 125.6(\mathrm{CH}), 121.5(\mathrm{CH}), 121.3$ $(\mathrm{CH}), 113.3(\mathrm{CH}), 110.4(\mathrm{CH}), 55.7\left(\mathrm{CH}_{3}\right), 55.5\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2933,1584,1512,1462,1247,1138,1024,788,748 \mathrm{~cm}^{-1}$.
m.p.: 90-92 ${ }^{\circ} \mathrm{C}$.

MS (ESI) m/z (relative intensity): 633 (17) [2M+Na] ${ }^{+}, 328(100)[\mathrm{M}+\mathrm{Na}]^{+}, 306(79)[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$328.1308, found 328.1308.

2-[2-(Benzo[d][1,3]dioxol-5-yl)-6-methylphenyl]pyridine (151q)

The general procedure \mathbf{N} was followed using 2-(o-tolyl)pyridine (68e, $84.6 \mathrm{mg}, \quad 0.50 \mathrm{mmol})$ and 5-iodobenzo[d][1,3]dioxole (46q, 186 mg , $0.75 \mathrm{mmol})$. After 24 h , purification by column chromatography (n-hexane/EtOAc 7:1) yielded 151q (102 mg, 70\%) as a viscous colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.64(\mathrm{ddd}, J=4.9,1.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{ddd}, J=7.8,7.7,1.9 \mathrm{~Hz}$, 1 H), 7.33 (dd, $J=7.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.27 (ddd, $J=7.6,1.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.23 (ddd, J=7.5, 1.5, 0.7 Hz , 1 H), 7.11 (ddd, $J=7.7,4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.92 (ddd, $J=7.8,1.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $6.59(\mathrm{dd}, J=6.3,0.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.54-6.51(\mathrm{~m}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.6\left(\mathrm{C}_{\mathrm{q}}\right), 148.9(\mathrm{CH}), 146.9\left(\mathrm{C}_{\mathrm{q}}\right), 146.0\left(\mathrm{C}_{\mathrm{q}}\right), 140.8\left(\mathrm{C}_{\mathrm{q}}\right), 139.3\left(\mathrm{C}_{\mathrm{q}}\right)$, $136.7\left(\mathrm{C}_{\mathrm{q}}\right), 135.8(\mathrm{CH}), 135.7\left(\mathrm{C}_{\mathrm{q}}\right), 129.2(\mathrm{CH}), 128.0(\mathrm{CH}), 127.5(\mathrm{CH}), 125.5(\mathrm{CH}), 123.2(\mathrm{CH}), 121.3$ $(\mathrm{CH}), 110.1(\mathrm{CH}), 107.6(\mathrm{CH}), 100.7\left(\mathrm{CH}_{2}\right), 20.5\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2892,1584,1459,1337,1223,1036,936,784,748,638 \mathrm{~cm}^{-1}$.
MS (ESI) m / z (relative intensity): 601 (5) $[2 \mathrm{M}+\mathrm{Na}]^{+}, 312(100)[\mathrm{M}+\mathrm{Na}]^{+}, 290(98)[\mathrm{M}+\mathrm{H}]^{+}$.
HR-MS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 312.0995$, found 312.0999.

2,3,3-Trimethyl-5-[3-methyl-2-(pyridin-2-yl)phenyl]-3H-indole (151r)

The general procedure \mathbf{N} was followed using 2-(o-tolyl)pyridine (68e, $84.6 \mathrm{mg}, \quad 0.50 \mathrm{mmol})$ and 5 -iodo-2,3,3-trimethyl-3H-indole (46r, $214 \mathrm{mg}, \quad 0.75 \mathrm{mmol})$. After 24 h , purification by column chromatography (n-hexane/EtOAc 1:1) yielded 151 r ($83.7 \mathrm{mg}, 51 \%$) as a viscous dark yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.63$ (ddd, $J=4.9,1.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.38-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.37$ (ddd, $J=$ $7.8,7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{ddd}, J=7.1,1.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.04$ (ddd, $J=7.7,4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{ddd}, J=7.8,1.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, \mathrm{J}=1.8,0.6 \mathrm{~Hz}$, 1H), 2.20 (s, 6H), 1.03 (s, 6H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=187.9\left(\mathrm{C}_{\mathrm{q}}\right), 159.9\left(\mathrm{C}_{\mathrm{q}}\right), 151.9\left(\mathrm{C}_{\mathrm{q}}\right), 148.6(\mathrm{CH}), 144.8\left(\mathrm{C}_{\mathrm{q}}\right), 141.3\left(\mathrm{C}_{\mathrm{q}}\right)$, $139.4\left(\mathrm{C}_{\mathrm{q}}\right), 138.6\left(\mathrm{C}_{\mathrm{q}}\right), 136.7\left(\mathrm{C}_{\mathrm{q}}\right), 135.7(\mathrm{CH}), 129.3(\mathrm{CH}), 128.6(\mathrm{CH}), 128.0(\mathrm{CH}), 127.4(\mathrm{CH}), 125.7$ $(\mathrm{CH}), 123.3(\mathrm{CH}), 121.1(\mathrm{CH}), 119.0(\mathrm{CH}), 53.2\left(\mathrm{C}_{\mathrm{q}}\right), 22.9\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right), 15.4\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2961,1577,1456,1426,1204,1025,834,791,749,733 \mathrm{~cm}^{-1}$.

MS (ESI) m / z (relative intensity): 675 (49) $[2 \mathrm{M}+\mathrm{Na}]^{+}, 653(17)[2 \mathrm{M}+\mathrm{H}]^{+}, 349$ (47) $[\mathrm{M}+\mathrm{Na}]^{+}, 327$ (100) $[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$327.1856, found 327.1851.

(1R,2s,5R)-2-iso-Propyl-5-methylcyclohexyl carboxylate (151s)

 3'-methyl-2'-(pyridin-2-yl)-[1,1'-biphenyl]-4-

The general procedure \mathbf{N} was followed using 2-(o-tolyl)pyridine (68e, $84.6 \mathrm{mg}, \quad 0.50 \mathrm{mmol})$ and ($1 R, 2 s, 5 R$)-2-iso-propyl-5methylcyclohexyl 4-iodobenzoate (46s, $290 \mathrm{mg}, 0.75 \mathrm{mmol}$). After 24 h , purification by column chromatography (n-hexane/EtOAc 10:1) yielded 151s ($94.6 \mathrm{mg}, 44 \%$) as a viscous colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.63(\mathrm{ddd}, \mathrm{J}=4.9,1.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ (ddd, $J=7.8,7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.37 (dd, $J=7.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.32 (ddd, J = $7.6,1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.26 (ddd, $J=7.5,1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.15(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.12$ (ddd, $J=7.7,4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.90 (ddd, $J=$ $7.8,1.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.89 (ddd, $J=10.9,10.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.19 (s, 3H), 2.09 (dddd, $J=12.1,4.2$, $3.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.93 (heptd, J=7.0, 2.7 Hz, 1H), 1.75-1.67 (m, 2H), 1.60-1.46 (m, 2H), 1.17-1.00 $(\mathrm{m}, 2 \mathrm{H}), 0.97-0.84(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.0\left(\mathrm{C}_{\mathrm{q}}\right), 159.1\left(\mathrm{C}_{\mathrm{q}}\right), 149.0(\mathrm{CH}), 146.3\left(\mathrm{C}_{\mathrm{q}}\right), 140.2\left(\mathrm{C}_{\mathrm{q}}\right), 139.2\left(\mathrm{C}_{\mathrm{q}}\right)$, $136.9\left(\mathrm{C}_{\mathrm{q}}\right), 135.9(\mathrm{CH}), 130.0(\mathrm{CH}), 129.5(\mathrm{CH}), 128.9(\mathrm{CH}), 128.6\left(\mathrm{C}_{\mathrm{q}}\right), 128.1(\mathrm{CH}), 127.4(\mathrm{CH}), 125.5$ $(\mathrm{CH}), 121.5(\mathrm{CH}), 74.7(\mathrm{CH}), 47.2(\mathrm{CH}), 40.9\left(\mathrm{CH}_{2}\right), 34.3\left(\mathrm{CH}_{2}\right), 31.4(\mathrm{CH}), 26.4(\mathrm{CH}), 23.5\left(\mathrm{CH}_{2}\right), 22.0$ $\left(\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right), 16.4\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2954,2868,1707,1457,1267,1178,1099,767,735,702 \mathrm{~cm}^{-1}$.

MS (ESI) m / z (relative intensity): 878 (24) $[2 \mathrm{M}+\mathrm{Na}]^{+}, 856(3)[2 \mathrm{M}+\mathrm{H}]^{+}, 450(100)[\mathrm{M}+\mathrm{Na}]^{+}, 428$ (87) $[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 450.2404$, found 450.2407.

9-[3'-Methyl-2'-(pyridin-2-yl)-[1,1'-biphenyl]-4-yl]-9H-carbazole (151t)

The general procedure \mathbf{N} was followed using 2-(o-tolyl)pyridine (68e, $84.6 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 9 -(4-iodophenyl)-9H-carbazole (46t, $277 \mathrm{mg}, \quad 0.75 \mathrm{mmol}$. After 24 h , purification by column chromatography (n-hexane/EtOAc 7:1) yielded 151t (182 mg, 88\%) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.69$ (ddd, $\left.J=4.9,1.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.13$ (ddd, $J=7.8,1.0,1.0 \mathrm{~Hz}$, $2 H$), 7.56 (ddd, $J=7.8,7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.44 (dd, $J=7.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.42-7.26$ (m, 12H), 7.17 (ddd, $J=7.7,4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{ddd}, J=7.8,1.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.4\left(\mathrm{C}_{\mathrm{q}}\right), 149.0(\mathrm{CH}), 140.9\left(\mathrm{C}_{\mathrm{q}}\right), 140.7\left(\mathrm{C}_{\mathrm{q}}\right), 140.4\left(\mathrm{C}_{\mathrm{q}}\right), 139.5\left(\mathrm{C}_{\mathrm{q}}\right)$, $136.9\left(\mathrm{C}_{\mathrm{q}}\right), 135.7$ (CH), $135.7\left(\mathrm{C}_{\mathrm{q}}\right), 131.0(\mathrm{CH}), 129.8(\mathrm{CH}), 128.2(\mathrm{CH}), 127.4(\mathrm{CH}), 126.1(\mathrm{CH}), 125.8$ $(\mathrm{CH}), 125.7(\mathrm{CH}), 123.3\left(\mathrm{C}_{q}\right), 121.5(\mathrm{CH}), 120.2(\mathrm{CH}), 119.8(\mathrm{CH}), 109.7(\mathrm{CH}), 20.5\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3023,1582,1515,1451,1316,1229,841,742,719 \mathrm{~cm}^{-1}$.
m.p.: $178-180^{\circ} \mathrm{C}$.

MS (ESI) m / z (relative intensity): 843 (38) [2M+Na] ${ }^{+}, 821(4)\left[2 \mathrm{M}+\mathrm{H}^{+}, 433(57)[\mathrm{M}+\mathrm{Na}]^{+}, 411\right.$ (100) $[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$411.1856, found 411.1858.

2,7-Bis[3-methyl-2-(pyridin-2-yl)phenyl]-9H-fluorene (216a)

The general procedure \mathbf{N} was followed using 2-(o-tolyl)pyridine (68e, $186 \mathrm{mg}, 1.10 \mathrm{mmol}$), 2,7-diiodo-9H-fluorene (215a, $209 \mathrm{mg}, 0.50 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(276 \mathrm{mg}, 2.00 \mathrm{mmol})$. After 24 h , purification by column chromatography (n-hexane/EtOAc $2: 1$) yielded 216a (189 mg, 75\%) as a pale yellow solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.63(\mathrm{ddd}, J=5.0,1.9,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41$ (ddd, $J=7.8,7.7,1.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.37 (dd, $J=7.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.33-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{dd}, J=1.7$,
$0.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.06$ (ddd, $J=7.7,5.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{ddd}, J=7.8,1.2$, $1.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.7\left(\mathrm{C}_{\mathrm{q}}\right), 148.8(\mathrm{CH}), 142.9\left(\mathrm{C}_{\mathrm{q}}\right), 141.4\left(\mathrm{C}_{\mathrm{q}}\right), 140.2\left(\mathrm{C}_{\mathrm{q}}\right), 139.5\left(\mathrm{C}_{\mathrm{q}}\right)$, $139.4\left(\mathrm{C}_{\mathrm{q}}\right), 136.7\left(\mathrm{C}_{\mathrm{q}}\right), 135.7(\mathrm{CH}), 129.3(\mathrm{CH}), 128.4(\mathrm{CH}), 128.0(\mathrm{CH}), 127.6(\mathrm{CH}), 126.2(\mathrm{CH}), 125.6$ $(\mathrm{CH}), 121.2(\mathrm{CH}), 118.9(\mathrm{CH}), 36.7\left(\mathrm{CH}_{2}\right), 20.5\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2920,1584,1562,1455,1411,1275,1024,826,785,746 \mathrm{~cm}^{-1}$.
m.p.: $175-177^{\circ} \mathrm{C}$.

MS (ESI) m/z (relative intensity): 1024 (30) [2M+Na] ${ }^{+}, 1002(48)[2 \mathrm{M}+\mathrm{H}]^{+}, 523(29)[\mathrm{M}+\mathrm{Na}]^{+}, 501$ (100) $[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{29} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$501.2325, found 501.2328.

3,6-Bis[3-methyl-2-(pyridin-2-yl)phenyl]-9H-carbazole (216b)

The general procedure \mathbf{N} was followed using 2-(o-tolyl)pyridine (68e, $186 \mathrm{mg}, 1.10 \mathrm{mmol}), ~ 3,6$-diiodo-9H-carbazole (215b, $210 \mathrm{mg}, 0.50 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(276 \mathrm{mg}, 2.00 \mathrm{mmol})$. After 24 h, purification by column chromatography (n-hexane/EtOAc 1:1) yielded 216b ($238 \mathrm{mg}, 95 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.63(\mathrm{ddd}, J=5.0,1.9,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.73-7.71(\mathrm{~m}, 2 \mathrm{H})$, 7.38 (dd, $J=7.5,7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.37-7.34 (m, 2H), 7.35 (ddd, $J=7.7,7.6,1.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.30(\mathrm{ddd}, J=$ $7.3,1.8,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{ddd}, J=7.6,5.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.98\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, J=8.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.96\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}\right.$, $J=8.4,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.89$ (ddd, $J=7.7,1.2,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.9\left(\mathrm{C}_{\mathrm{q}}\right), 148.7(\mathrm{CH}), 141.9\left(\mathrm{C}_{\mathrm{q}}\right), 139.5\left(\mathrm{C}_{\mathrm{q}}\right), 138.4\left(\mathrm{C}_{\mathrm{q}}\right), 136.6\left(\mathrm{C}_{\mathrm{q}}\right)$, $135.7(\mathrm{CH}), 132.9\left(\mathrm{C}_{\mathrm{q}}\right), 128.9(\mathrm{CH}), 128.1(\mathrm{CH}), 128.0(\mathrm{CH}), 127.9(\mathrm{CH}), 125.7(\mathrm{CH}), 122.9\left(\mathrm{C}_{q}\right), 121.1$ $(\mathrm{CH}), 121.0(\mathrm{CH}), 109.6(\mathrm{CH}), 20.6\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3411,3023,1585,1455,1287,1235,1025,784,746,618 \mathrm{~cm}^{-1}$.
m.p.: 256-257 ${ }^{\circ} \mathrm{C}$.

MS (ESI) m / z (relative intensity): 1003 (17) $[2 \mathrm{M}+\mathrm{H}]^{+}, 524(37)[\mathrm{M}+\mathrm{Na}]^{+}, 502(100)[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{~N}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 502.2278$, found 502.2279.

Tris[3'-methyl-2'-(pyridin-2-yl)-[1,1'-biphenyl]-4-yl]amine (216c)

The general procedure \mathbf{N} was followed using 2-(o-tolyl)pyridine (68e, $279 \mathrm{mg}, 1.65 \mathrm{mmol})$, tris(4-iodophenyl)amine (215c, $312 \mathrm{mg}, 0.50 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($415 \mathrm{mg}, 3.00 \mathrm{mmol}$). After 24 h , purification by column chromatography (n-hexane/EtOAc 1:1) yielded 216c ($323 \mathrm{mg}, 86 \%$) as a off-white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.62$ (ddd, $J=4.9,1.9,1.1 \mathrm{~Hz}$, 3 H), 7.47 (ddd, $J=7.8,7.7,1.9 \mathrm{~Hz}, 3 \mathrm{H}$), 7.35 (dd, $J=8.4,6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.11$ (ddd, $J=7.7,4.9,1.2 \mathrm{~Hz}, 3 \mathrm{H}), 6.89(\mathrm{ddd}, J=7.8,1.2,1.1 \mathrm{~Hz}, 3 \mathrm{H}), 6.86$ (d, J = 8.6 Hz, 6H), $6.67(d, J=8.6 \mathrm{~Hz}, 6 \mathrm{H}), 2.19(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.7\left(\mathrm{C}_{\mathrm{q}}\right), 148.7(\mathrm{CH}), 145.5\left(\mathrm{C}_{\mathrm{q}}\right), 140.9\left(\mathrm{C}_{\mathrm{q}}\right), 139.3\left(\mathrm{C}_{\mathrm{q}}\right), 136.6\left(\mathrm{C}_{\mathrm{q}}\right)$, $135.9\left(\mathrm{C}_{\mathrm{q}}\right), 135.5(\mathrm{CH}), 130.3(\mathrm{CH}), 129.2(\mathrm{CH}), 128.0(\mathrm{CH}), 127.2(\mathrm{CH}), 125.7(\mathrm{CH}), 122.9(\mathrm{CH}), 121.2$ $(\mathrm{CH}), 20.5\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=3028,1584,1506,1458,1318,1269,834,785,746,580 \mathrm{~cm}^{-1}$.
m.p.: $>190^{\circ} \mathrm{C}$ (decomp.).

MS (ESI) m / z (relative intensity): $747(80)[\mathrm{M}+\mathrm{H}]^{+}, 374(100)[\mathrm{M}+2 \mathrm{H}]^{2+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{54} \mathrm{H}_{43} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 747.3482$, found 747.3486 .

2-(3,4'-Dimethoxy-[1,1'-biphenyl]-2-yl)pyridine (151u)

The general procedure \mathbf{N} was followed using 2-(2methoxyphenyl)pyridine ($68 \mathrm{f}, 92.7 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 1-iodo-4methoxybenzene (46a, $176 \mathrm{mg}, 0.75 \mathrm{mmol}$). After 24 h , purification by column chromatography (n-hexane/EtOAc $2: 1$) yielded 151u (125 mg , $86 \%)$ as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.60$ (ddd, $J=4.9,1.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.49 (ddd, $J=7.8,7.7,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ (ddd, $J=7.7,4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.02 (ddd, $J=7.8,1.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{dd}, J=8.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR (100 MHz, CDCl_{3}): $\delta=158.1\left(\mathrm{C}_{\mathrm{q}}\right), 157.2\left(\mathrm{C}_{\mathrm{q}}\right), 157.0\left(\mathrm{C}_{\mathrm{q}}\right), 148.8(\mathrm{CH}), 142.3\left(\mathrm{C}_{\mathrm{q}}\right), 135.4(\mathrm{CH})$, $133.4\left(\mathrm{C}_{\mathrm{q}}\right), 130.5(\mathrm{CH}), 129.0(\mathrm{CH}), 129.0\left(\mathrm{C}_{\mathrm{q}}\right), 126.2(\mathrm{CH}), 122.4(\mathrm{CH}), 121.2(\mathrm{CH}), 113.0(\mathrm{CH}), 109.6$ $(\mathrm{CH}), 55.9\left(\mathrm{CH}_{3}\right), 55.0\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2935,2835,1586,1514,1463,1242,1174,1121,1021,733 \mathrm{~cm}^{-1}$.
m.p.: $111-112{ }^{\circ} \mathrm{C}$.

MS (ESI) m/z (relative intensity): 314 (16) [M+Na] ${ }^{+}, 292(100)[\mathrm{M}+\mathrm{H}]^{+}, 236$ (12).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$292.1332, found 292.1336.

The spectral data are in accordance with those reported in the literature. ${ }^{[43]}$

2-[4'-Methoxy-3-(trifluoromethyl)-[1,1'-biphenyl]-2-yl]pyridine (151v)

The general procedure \mathbf{N} was followed using 2-[2(trifluoromethyl)phenyl]pyridine ($68 \mathrm{~g}, 112 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 1-iodo-4methoxybenzene (46a, $176 \mathrm{mg}, 0.75 \mathrm{mmol}$). After 24 h , purification by column chromatography (n-hexane/EtOAc 10:1) yielded 151v (161 mg, 97\%) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.57(\mathrm{ddd}, \mathrm{J}=4.9,1.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.52(\mathrm{~m}$, $2 H$), 7.49 (ddd, $J=7.8,7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.12 (ddd, $J=7.7,4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.02 (ddd, $J=7.8,1.2$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=158.4\left(\mathrm{C}_{\mathrm{q}}\right), 156.8\left(\mathrm{C}_{\mathrm{q}}\right), 148.4(\mathrm{CH}), 142.9\left(\mathrm{C}_{\mathrm{q}}\right), 138.3\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2 \mathrm{~Hz}\right.$, C_{q}), $135.3(C H), 133.6(C H), 132.4\left(C_{q}\right), 130.7(C H), 129.2\left(q,{ }^{2} J_{C-F}=30 \mathrm{~Hz}, C_{q}\right), 128.2(C H), 125.6(q$, $\left.{ }^{5} J_{C-F}=2 \mathrm{~Hz}, \mathrm{CH}\right), 124.9\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=5 \mathrm{~Hz}, \mathrm{CH}\right), 124.0\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=274 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 122.0(\mathrm{CH}), 113.2(\mathrm{CH}), 55.1$ $\left(\mathrm{CH}_{3}\right)$.
${ }^{19} \mathrm{~F}$-NMR (376 MHz, CDCl_{3}): $\delta=-57.1(\mathrm{~s})$.

IR (ATR): $\tilde{v}=2934,1609,1517,1445,1323,1247,1166,1119,1025,748 \mathrm{~cm}^{-1}$.
m.p.: $83-85^{\circ} \mathrm{C}$.

MS (ESI) m/z (relative intensity): 681 (3) [2M+Na] ${ }^{+}, 352(22)[\mathrm{M}+\mathrm{Na}]^{+}, 330(100)[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+} 330.1100$, found 330.1114 .

The spectral data are in accordance with those reported in the literature. ${ }^{[43]}$

2-(4'-Methoxy-3,4-dimethyl-[1,1'-biphenyl]-2-yl)-5-methylpyridine (151w)

The general procedure \mathbf{N} was followed using 2-(2,3-dimethylphenyl)-5methylpyridine ($68 \mathrm{~h}, 98.7 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 1-iodo-4-methoxybenzene (46a, $176 \mathrm{mg}, 0.75 \mathrm{mmol}$). After 24 h , purification by column chromatography (n-hexane/EtOAc 7:1) yielded 151w (127 mg, 84\%) as a
viscous colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.47$ (ddd, $\left.J=2.4,0.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.26$ (ddd, $J=8.0,2.4,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=157.8\left(\mathrm{C}_{\mathrm{q}}\right), 157.3\left(\mathrm{C}_{\mathrm{q}}\right), 149.1(\mathrm{CH}), 139.4\left(\mathrm{C}_{\mathrm{q}}\right), 138.7\left(\mathrm{C}_{\mathrm{q}}\right), 136.3(\mathrm{CH})$, $135.9\left(\mathrm{C}_{\mathrm{q}}\right), 135.1\left(\mathrm{C}_{\mathrm{q}}\right), 134.6\left(\mathrm{C}_{\mathrm{q}}\right), 130.6(\mathrm{CH}), 130.3\left(\mathrm{C}_{\mathrm{q}}\right), 129.4(\mathrm{CH}), 127.1(\mathrm{CH}), 125.1(\mathrm{CH}), 113.0$ $(\mathrm{CH}), 55.1\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right), 18.2\left(\mathrm{CH}_{3}\right), 16.9\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2924,1609,1514,1465,1242,1176,1030,816,574 \mathrm{~cm}^{-1}$.

MS (EI) m/z (relative intensity): 303 (63) [M] ${ }^{+}, 302$ (100) [M-H] ${ }^{+}, 288(26)[\mathrm{M}-\mathrm{Me}]^{+}, 258(13), 244$ (9).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$304.1696, found 304.1698.

2-(4'-Methoxy-3-methyl-[1,1'-biphenyl]-2-yl)pyrimidine (151x)

The general procedure \mathbf{N} was followed using 2-(o-tolyl)pyrimidine (139d, $85.1 \mathrm{mg}, 0.50 \mathrm{mmol})$ and 1-iodo-4-methoxybenzene (46a, 176 mg , 0.75 mmol). After 24 h , purification by column chromatography (n-hexane/EtOAc 5:1) yielded 151x ($132 \mathrm{mg}, 96 \%$) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.68(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}$, $2 \mathrm{H}), 7.09(\mathrm{t}, \mathrm{J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.4\left(\mathrm{C}_{\mathrm{q}}\right), 158.0\left(\mathrm{C}_{\mathrm{q}}\right), 156.6(\mathrm{CH}), 140.5\left(\mathrm{C}_{\mathrm{q}}\right), 138.2\left(\mathrm{C}_{\mathrm{q}}\right), 135.9\left(\mathrm{C}_{\mathrm{q}}\right)$, $134.0\left(\mathrm{C}_{\mathrm{q}}\right), 130.1(\mathrm{CH}), 129.0(\mathrm{CH}), 128.5(\mathrm{CH}), 127.6(\mathrm{CH}), 118.4(\mathrm{CH}), 113.2(\mathrm{CH}), 55.1\left(\mathrm{CH}_{3}\right), 20.0$ $\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2936,1607,1556,1510,1460,1236,1184,1023,848,790 \mathrm{~cm}^{-1}$.
m.p.: $109-110^{\circ} \mathrm{C}$.

MS (EI) m/z (relative intensity): 276 (100) [M] ${ }^{+}, 275(80)[\mathrm{M}-\mathrm{H}]^{+}, 261(41)[\mathrm{M}-\mathrm{Me}]^{+}, 232(22), 168$ (18).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$277.1335, found 277.1337.

2-(3-Ethoxy-4'-methoxy-[1,1'-biphenyl]-2-yl)-4,5-dihydrooxazole (151y)

The general procedure \mathbf{N} was followed using 2-(2-ethoxyphenyl)-4,5dihydrooxazole (139k, $95.7 \mathrm{mg}, \quad 0.50 \mathrm{mmol})$ and 1-iodo-4methoxybenzene (46a, $176 \mathrm{mg}, 0.75 \mathrm{mmol}$). After 24 h , purification by column chromatography (n-hexane/EtOAc 1:1) yielded 151y (112 mg, 75%) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.37(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{dd}, \mathrm{J}=7.7,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{t}, \mathrm{J}=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.85$ ($\mathrm{t}, \mathrm{J}=9.4 \mathrm{~Hz}, 2 \mathrm{H}$), $3.83(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=162.8\left(\mathrm{C}_{\mathrm{q}}\right), 158.9\left(\mathrm{C}_{\mathrm{q}}\right), 157.5\left(\mathrm{C}_{\mathrm{q}}\right), 142.9\left(\mathrm{C}_{\mathrm{q}}\right), 133.0\left(\mathrm{C}_{\mathrm{q}}\right), 130.5(\mathrm{CH})$, $129.5(\mathrm{CH}), 121.9(\mathrm{CH}), 118.2\left(\mathrm{C}_{\mathrm{q}}\right), 113.5(\mathrm{CH}), 110.6(\mathrm{CH}), 67.2\left(\mathrm{CH}_{2}\right), 64.5\left(\mathrm{CH}_{2}\right), 55.2\left(\mathrm{CH}_{3}\right), 55.1$ $\left(\mathrm{CH}_{2}\right), 14.7\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2979,1667,1568,1516,1460,1240,1121,1033,939,792 \mathrm{~cm}^{-1}$.
m.p.: 88-90 ${ }^{\circ} \mathrm{C}$.

MS (ESI) m / z (relative intensity): $320(35)[\mathrm{M}+\mathrm{Na}]^{+}, 298(100)[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$298.1438, found 298.1441.

The spectral data are in accordance with those reported in the literature. ${ }^{[145]}$

1-(3-Fluoro-4'-methoxy-[1,1'-biphenyl]-2-yl)-1H-pyrazole (151z)

The general procedure \mathbf{N} was followed using 1-(2-fluorophenyl)-1Hpyrazole ($147 \mathrm{k}, 81.1 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 1-iodo-4-methoxybenzene (46a, $176 \mathrm{mg}, 0.75 \mathrm{mmol})$. After 24 h , purification by column chromatography (n-hexane/EtOAc 7:1) yielded $151 z$ (124 mg, 93\%) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.68(\mathrm{dd}, J=1.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{ddd}, J=8.2,8.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ (ddd, $J=8.0,1.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{ddd}, J=2.5,0.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{ddd}, J=9.5,8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.00(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.29(\mathrm{dd}, J=2.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.3\left(\mathrm{C}_{\mathrm{q}}\right), 158.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=252.0 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 141.1\left(\mathrm{C}_{\mathrm{q}}\right), 140.6(\mathrm{CH})$, $132.1(\mathrm{CH}), 129.9\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=8.8 \mathrm{~Hz}, \mathrm{CH}\right), 129.5\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2.5 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right), 129.4(\mathrm{CH}), 126.8\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=\right.$ $\left.12.4 \mathrm{~Hz}, C_{q}\right), 125.8\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3.5 \mathrm{~Hz}, \mathrm{CH}\right), 114.9\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=20.4 \mathrm{~Hz}, \mathrm{CH}\right), 113.8(\mathrm{CH}), 106.5(\mathrm{CH}), 55.2$ $\left(\mathrm{CH}_{3}\right)$.
${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-122.3(\mathrm{dd}, \mathrm{J}=9.5,5.4 \mathrm{~Hz})$

IR (ATR): $\tilde{v}=2837,1608,1515,1467,1242,1180,1095,1023,938,743 \mathrm{~cm}^{-1}$.
MS (ESI) m / z (relative intensity): 559 (5) [2M+Na] ${ }^{+}$, $291(100)[\mathrm{M}+\mathrm{Na}]^{+}, 269(16)[\mathrm{M}+\mathrm{H}]^{+}$.
HR-MS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{ONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$291.0904, found 291.0906.

4-Butyl-1-(3,4'-dimethoxy-[1,1'-biphenyl]-2-yl)-1H-1,2,3-triazole (151ab)

The general procedure \mathbf{N} was followed using 4-butyl-1-(2-methoxyphenyl)-1H-1,2,3-triazole ($139 \mathrm{~m}, 116 \mathrm{mg}, 0.50 \mathrm{mmol}$), 1-iodo-4methoxybenzene (46a, $352 \mathrm{mg}, 1.50 \mathrm{mmol}$) and [Ru(OAc) ${ }_{2}(p$-cymene)] (181, $35.3 \mathrm{mg}, 0.10 \mathrm{mmol}, 20 \mathrm{~mol} \%$) in DMA (2.0 mL). After 24 h , purification by column chromatography (n-hexane/EtOAc 3:1) yielded 151ab (129 mg, 77\%) as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.48(\mathrm{dd}, J=8.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J$ $=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.17(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.1\left(\mathrm{C}_{\mathrm{q}}\right), 155.2\left(\mathrm{C}_{\mathrm{q}}\right), 147.4\left(\mathrm{C}_{\mathrm{q}}\right), 140.7\left(\mathrm{C}_{\mathrm{q}}\right), 130.7(\mathrm{CH}), 129.7\left(\mathrm{C}_{\mathrm{q}}\right)$, $129.4(\mathrm{CH}), 124.5\left(\mathrm{C}_{\mathrm{q}}\right), 123.7(\mathrm{CH}), 122.2(\mathrm{CH}), 113.6(\mathrm{CH}), 110.5(\mathrm{CH}), 56.2\left(\mathrm{CH}_{3}\right), 55.1\left(\mathrm{CH}_{3}\right), 31.4$ $\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{2}\right), 21.9\left(\mathrm{CH}_{2}\right), 13.8\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2932,1610,1516,1471,1244,1176,1122,1021,833,790 \mathrm{~cm}^{-1}$.
m.p.: $60-62{ }^{\circ} \mathrm{C}$.

MS (EI) m/z (relative intensity): 337 (3) [M] ${ }^{+}$, 308 (59) [M-Et] ${ }^{+}, 294$ (40) [M-Pr] ${ }^{+}, 278$ (13) [M-PrMe] ${ }^{+}, 266$ (100) [M-Bu-Me] ${ }^{+}$, 251 (61) [M-Bu-OMe] ${ }^{+}, 236$ (36), 223 (25), 155 (10), 139 (12), 127 (12).

HR-MS (EI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}[\mathrm{M}]^{+} 337.1785$, found 337.1791.

The spectral data are in accordance with those reported in the literature. ${ }^{[145]}$

9-iso-Propyl-6-(4'-methoxy-4-methyl-[1,1'-biphenyl]-2-yl)-9H-purine (151ac)

The general procedure \mathbf{N} was followed using purine 1230 (63.1 mg , 0.25 mmol) and 1-iodo-4-methoxybenzene (46a, $87.8 \mathrm{mg}, 0.38 \mathrm{mmol}$). After 24 h , purification by column chromatography (n-hexane/EtOAc 3:2 to $1: 1$) yielded 151ac ($50.1 \mathrm{mg}, 56 \%$) as a viscous light yellow oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.85(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.52$ (ddd, J=1.9, 0.7, $\left.0.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.40(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{ddd}, J=7.8,1.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, 4.89 (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.71(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.4\left(\mathrm{C}_{\mathrm{q}}\right), 158.1\left(\mathrm{C}_{\mathrm{q}}\right), 151.8(\mathrm{CH}), 151.1\left(\mathrm{C}_{\mathrm{q}}\right), 141.9(\mathrm{CH}), 138.5\left(\mathrm{C}_{\mathrm{q}}\right)$, $136.5\left(\mathrm{C}_{\mathrm{q}}\right), 134.1\left(\mathrm{C}_{\mathrm{q}}\right), 133.7\left(\mathrm{C}_{\mathrm{q}}\right), 132.6\left(\mathrm{C}_{\mathrm{q}}\right), 131.3(\mathrm{CH}), 130.5(\mathrm{CH}), 130.4(\mathrm{CH}), 130.2(\mathrm{CH}), 113.2$ $(\mathrm{CH}), 55.1\left(\mathrm{CH}_{3}\right), 47.2(\mathrm{CH}), 22.4\left(\mathrm{CH}_{3}\right), 21.0\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2977,1576,1494,1329,1242,1177,1037,820,734,648 \mathrm{~cm}^{-1}$.

MS (ESI) m / z (relative intensity): 739 (38) [2M+Na] ${ }^{+}, 717(5)[2 \mathrm{M}+\mathrm{H}]^{+}, 381(24)[\mathrm{M}+\mathrm{Na}]^{+}, 359$ (100) $[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+} 359.1866$, found 359.1868.

9-iso-Propyl-6-(4'-methoxy-[1,1'-biphenyl]-2-yl)-9H-purine (151ad)

The general procedure \mathbf{N} was followed using purine 123a (59.6 mg , 0.25 mmol) and 1-iodo-4-methoxybenzene ($46 \mathrm{a}, 87.8 \mathrm{mg}, 0.38 \mathrm{mmol}$) in DMA (1.0 mL). After 24 h , purification by column chromatography (n-hexane/EtOAc 3:2) yielded monoarylated product 151ad (20.5 mg , 24%) as a viscous yellow oil and diarylated product 151ad' ($65.0 \mathrm{mg}, 58 \%$) as a viscous colorless oil.
${ }^{1} \mathrm{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.84(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.76-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.08$ (d, J = 8.8 Hz, 2H), $6.67(d, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.90(\mathrm{hept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, 6 H).
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.1\left(\mathrm{C}_{\mathrm{q}}\right), 158.3\left(\mathrm{C}_{\mathrm{q}}\right), 151.8(\mathrm{CH}), 151.2\left(\mathrm{C}_{\mathrm{q}}\right), 142.0(\mathrm{CH}), 141.4\left(\mathrm{C}_{\mathrm{q}}\right)$, $134.3\left(\mathrm{C}_{\mathrm{q}}\right), 133.8\left(\mathrm{C}_{\mathrm{q}}\right), 132.7\left(\mathrm{C}_{\mathrm{q}}\right), 131.0(\mathrm{CH}), 130.6(\mathrm{CH}), 130.3(\mathrm{CH}), 129.7(\mathrm{CH}), 126.9(\mathrm{CH}), 113.3$ $(\mathrm{CH}), 55.1\left(\mathrm{CH}_{3}\right), 47.2(\mathrm{CH}), 22.5\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2977,1580,1517,1495,1330,1243,1215,1035,833,763 \mathrm{~cm}^{-1}$.

MS (ESI) m / z (relative intensity): 367 (28) $[\mathrm{M}+\mathrm{Na}]^{+}, 345(100)[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$345.1710, found 345.1713.

6-(4,4"-Dimethoxy-[1,1':3',1"-terphenyl]-2'-yl)-9-iso-propyl-9H-purine (151ad’)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.71(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.54$ (dd, $J=8.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.42(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 4.78$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 6 \mathrm{H}), 1.53(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.4\left(\mathrm{C}_{\mathrm{q}}\right), 158.1\left(\mathrm{C}_{\mathrm{q}}\right), 151.2(\mathrm{CH}), 150.4\left(\mathrm{C}_{\mathrm{q}}\right), 141.7(\mathrm{CH}), 141.6\left(\mathrm{C}_{\mathrm{q}}\right)$, $134.1\left(\mathrm{C}_{\mathrm{q}}\right), 133.7\left(\mathrm{C}_{\mathrm{q}}\right), 133.4\left(\mathrm{C}_{\mathrm{q}}\right), 130.2(\mathrm{CH}), 129.0(\mathrm{CH}), 129.0(\mathrm{CH}), 112.9(\mathrm{CH}), 55.1\left(\mathrm{CH}_{3}\right), 47.0$ $(\mathrm{CH}), 22.3\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2977,1609,1592,1513,1455,1330,1244,1176,1031,803 \mathrm{~cm}^{-1}$.

MS (ESI) m / z (relative intensity): 923 (58) [2M+Na] ${ }^{+}, 901$ (9) [2M+H $]^{+}, 473(60)[\mathrm{M}+\mathrm{Na}]^{+}, 451$ (100) $[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 451.2129$, found 451.2130.

9-\{(2R,4R,5R)-4-[(tert-Butyldimethylsilyl)oxy]-5-\{[(tert-butyldimethylsilyl)oxy]methyl\} tetrahydrofuran-2-yl\}-6-(4'-methoxy-[1,1'-biphenyl]-2-yl)-9H-purine (151ae)

The general procedure \mathbf{N} was followed using purine 123 m ($135 \mathrm{mg}, 0.25 \mathrm{mmol}$) and 1-iodo-4-methoxybenzene (46a, $87.8 \mathrm{mg}, \quad 0.38 \mathrm{mmol})$ in DMA $(1.0 \mathrm{~mL})$. After 24 h , purification by column chromatography (n-hexane/EtOAc $5: 1$) yielded monoarylated product 151ae ($24.4 \mathrm{mg}, 15 \%$) as a viscous colorless oil and diarylated product 151ae' (109 mg, 58\%) as a viscous colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.83(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.73$ (ddd, $\left.J=7.5,1.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.55-$ $7.49(\mathrm{~m}, 2 \mathrm{H}), 7.46$ (ddd, $J=7.5,5.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.51(\mathrm{dd}, J=7.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{ddd}, J=5.9,3.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{ddd}, J=4.3,3.3,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.85\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, J=11.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.77\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, J=11.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{ddd}, J=13.1$, $7.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.44 (ddd, $J=13.1,6.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.06(\mathrm{~s}$, $3 H), 0.05(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.3\left(\mathrm{C}_{\mathrm{q}}\right), 158.3\left(\mathrm{C}_{\mathrm{q}}\right), 152.1(\mathrm{CH}), 151.1\left(\mathrm{C}_{\mathrm{q}}\right), 142.8(\mathrm{CH}), 141.4\left(\mathrm{C}_{\mathrm{q}}\right)$, $134.2\left(\mathrm{C}_{\mathrm{q}}\right), 133.7\left(\mathrm{C}_{\mathrm{q}}\right), 132.8\left(\mathrm{C}_{\mathrm{q}}\right), 131.0(\mathrm{CH}), 130.7(\mathrm{CH}), 130.3(\mathrm{CH}), 129.7(\mathrm{CH}), 126.9(\mathrm{CH}), 113.3$ $(\mathrm{CH}), 88.0(\mathrm{CH}), 84.3(\mathrm{CH}), 72.1(\mathrm{CH}), 62.9\left(\mathrm{CH}_{2}\right), 55.1\left(\mathrm{CH}_{3}\right), 41.0\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CH}_{3}\right), 18.4$ $\left(\mathrm{C}_{\mathrm{q}}\right), 18.0\left(\mathrm{C}_{\mathrm{q}}\right),-4.7\left(\mathrm{CH}_{3}\right),-4.8\left(\mathrm{CH}_{3}\right),-5.4\left(\mathrm{CH}_{3}\right),-5.5\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2929,2857,1581,1252,1109,1032,834,778 \mathrm{~cm}^{-1}$.

MS (ESI) m / z (relative intensity): 669 (84) $\left[\mathrm{M}+\mathrm{Na}^{+}, 647(100)[\mathrm{M}+\mathrm{H}]^{+}\right.$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{51} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Si}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$647.3443, found 647.3447.

The spectral data are in accordance with those reported in the literature. ${ }^{[109]}$

9-\{(2R,4R,5R)-4-[(tert-Butyldimethylsilyl)oxy]-5-\{[(tert-butyldimethylsilyl)oxy]methyl\} tetrahydrofuran-2-yl\}-6-(4,4'-dimethoxy-[1,1':3',1"-terphenyl]-2'-yl)-9H-purine (151ae')

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.71(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.53$ (dd, J = 7.8, 7.6 Hz, 1H), 7.42 (dd, J = 7.8, 1.3 Hz, 1H), 7.40 (dd, $J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.59$ (d, J = $8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.57 (d, J = $8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.40 (dd, $J=7.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.54 (ddd, $J=5.7,3.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.00$ (ddd, $J=4.1,3.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.81\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, J=11.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.74\left(\mathrm{~d}_{\mathrm{AB}} \mathrm{d}, J=11.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.68$
$(\mathrm{s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{ddd}, J=13.1,7.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{ddd}, \mathrm{J}=13.1,6.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.91$ (s, 9H), $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.4\left(\mathrm{C}_{\mathrm{q}}\right), 158.1\left(\mathrm{C}_{\mathrm{q}}\right), 158.1\left(\mathrm{C}_{\mathrm{q}}\right), 151.5(\mathrm{CH}), 150.3\left(\mathrm{C}_{\mathrm{q}}\right), 142.4(\mathrm{CH})$, $141.7\left(\mathrm{C}_{\mathrm{q}}\right), 141.7\left(\mathrm{C}_{\mathrm{q}}\right), 134.1\left(\mathrm{C}_{\mathrm{q}}\right), 133.7\left(\mathrm{C}_{\mathrm{q}}\right), 133.6\left(\mathrm{C}_{\mathrm{q}}\right), 133.2\left(\mathrm{C}_{\mathrm{q}}\right), 130.2(\mathrm{CH}), 130.1(\mathrm{CH}), 129.2$ $(\mathrm{CH}), 129.1(\mathrm{CH}), 129.0(\mathrm{CH}), 113.0(\mathrm{CH}), 112.9(\mathrm{CH}), 88.0(\mathrm{CH}), 84.1(\mathrm{CH}), 72.2(\mathrm{CH}), 62.9\left(\mathrm{CH}_{2}\right)$, $55.0\left(\mathrm{CH}_{3}\right), 41.2\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{3}\right), 25.7\left(\mathrm{CH}_{3}\right), 18.4\left(\mathrm{C}_{\mathrm{q}}\right), 18.0\left(\mathrm{C}_{\mathrm{q}}\right),-4.7\left(\mathrm{CH}_{3}\right),-4.9\left(\mathrm{CH}_{3}\right),-5.4\left(\mathrm{CH}_{3}\right)$, $-5.6\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2929,2857,1610,1579,1513,1245,1113,1031,830,777 \mathrm{~cm}^{-1}$.

MS (ESI) m / z (relative intensity): 775 (100) $[\mathrm{M}+\mathrm{Na}]^{+}, 753(49)[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{42} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 775.3681$, found 775.3679.

The spectral data are in accordance with those reported in the literature. ${ }^{[109]}$

Diethyl $\quad\{\{(3 \mathrm{aR}, 4 \mathrm{R}, 6 \mathrm{R}, 6 \mathrm{aR})-6-[6-(4 '-m e t h o x y-[1,1 '-b i p h e n y l]-2-\mathrm{yl})-9 H-p u r i n-9-\mathrm{yl}]-2,2-d i m e t h y l$ tetrahydrofuro[3,4-d][1,3]dioxol-4-yl\}methyl\} phosphate (151af)

The general procedure \mathbf{N} was followed using purine 123I ($126 \mathrm{mg}, 0.25 \mathrm{mmol}$) and 1-iodo-4-methoxybenzene (46a, $87.8 \mathrm{mg}, 0.38 \mathrm{mmol})$ in DMA (1.0 mL). After 24 h , purification by column chromatography (n-hexane/EtOAc $3: 7$) yielded monoarylated product 151af ($26.7 \mathrm{mg}, 17 \%$) as a viscous light yellow oil and diarylated product 151af' ($107 \mathrm{mg}, 60 \%$) as a viscous colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.86(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.72$ (ddd, $\left.\mathrm{J}=7.5,0.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.56-$ $7.50(\mathrm{~m}, 2 \mathrm{H}), 7.47$ (ddd, $J=7.5,6.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.18(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{dd}, J=6.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{dd}, J=6.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{dddd}, J=$ 4.9, 4.6, 3.2, 1.1 Hz, 1H), 4.27 (ddd, $J=11.1,6.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.20 (ddd, $J=11.1,7.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), $4.12-4.00(\mathrm{~m}, 4 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{td}, \mathrm{J}=7.1,1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{td}, \mathrm{J}=$ 7.1, 1.0 Hz, 3H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.7\left(\mathrm{C}_{\mathrm{q}}\right), 158.4\left(\mathrm{C}_{\mathrm{q}}\right), 152.4(\mathrm{CH}), 150.8\left(\mathrm{C}_{\mathrm{q}}\right), 143.2(\mathrm{CH}), 141.5\left(\mathrm{C}_{\mathrm{q}}\right)$, $133.9\left(\mathrm{C}_{\mathrm{q}}\right), 133.6\left(\mathrm{C}_{\mathrm{q}}\right), 132.8\left(\mathrm{C}_{\mathrm{q}}\right), 131.0(\mathrm{CH}), 130.8(\mathrm{CH}), 130.2(\mathrm{CH}), 129.9(\mathrm{CH}), 126.9(\mathrm{CH}), 114.8$ $\left(\mathrm{C}_{\mathrm{q}}\right), 113.4(\mathrm{CH}), 90.7(\mathrm{CH}), 84.9\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=8 \mathrm{~Hz}, \mathrm{CH}\right), 84.0(\mathrm{CH}), 81.2(\mathrm{CH}), 66.5\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$,
$64.1\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 64.1\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 55.1\left(\mathrm{CH}_{3}\right), 27.2\left(\mathrm{CH}_{3}\right), 25.3\left(\mathrm{CH}_{3}\right), 16.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}\right.$ $\left.=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-1.0(\mathrm{~s})$.

IR (ATR): $\tilde{v}=2984,1582,1517,1244,1208,1019,834,763,728 \mathrm{~cm}^{-1}$.

MS (ESI) m/z (relative intensity): 1243 (11) [2M+Na] ${ }^{+}, 1221(35)[2 \mathrm{M}+\mathrm{H}]^{+}, 633(25)[\mathrm{M}+\mathrm{Na}]^{+}, 611$ (100) $[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{P}^{+}[\mathrm{M}+\mathrm{H}]^{+}$611.2265, found 611.2266.

\{(3aR,4R,6R,6aR)-6-[6-(4,4'-Dimethoxy-[1,1':3',1'-terphenyl]-2'-yl)-9H-purin-9-yl]-2,2-

 dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl\}methyl diethyl phosphate (151af')
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.73(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H})$, 7.53 (dd, $J=7.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.42 (dd, $J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.41 (dd, $J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.01$ $(\mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.07$ (d, J = $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.22 (dd, $J=6.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.04 (dd, $J=6.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.43 (dddd, $J=4.9,4.8,3.2$,
$1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{ddd}, \mathrm{J}=11.4,6.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.01(\mathrm{~m}, 5 \mathrm{H}), 3.68(\mathrm{~s}, 6 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.37$ (s, 3H), 1.27 (td, J = 7.1, 1.0 Hz, 3H), 1.25 (td, J = 7.1, 1.0 Hz, 3H).
${ }^{13} \mathrm{C}-$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=159.9\left(\mathrm{C}_{\mathrm{q}}\right)$, $158.2\left(\mathrm{C}_{\mathrm{q}}\right), 158.1\left(\mathrm{C}_{\mathrm{q}}\right), 151.7(\mathrm{CH}), 150.0\left(\mathrm{C}_{\mathrm{q}}\right), 143.0(\mathrm{CH})$, $141.7\left(C_{q}\right), 141.6\left(C_{q}\right), 134.1\left(C_{q}\right), 133.5\left(C_{q}\right), 133.4\left(C_{q}\right), 132.9\left(C_{q}\right), 130.1(C H), 130.1(C H), 129.1$ (CH), $129.1(\mathrm{CH}), 114.7\left(\mathrm{C}_{\mathrm{q}}\right), 113.0(\mathrm{CH}), 112.9(\mathrm{CH}), 90.5(\mathrm{CH}), 84.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=8 \mathrm{~Hz}, \mathrm{CH}\right), 83.9(\mathrm{CH})$, $81.1(\mathrm{CH}), 66.3\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 64.1\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 55.0\left(\mathrm{CH}_{3}\right), 27.1\left(\mathrm{CH}_{3}\right), 25.3\left(\mathrm{CH}_{3}\right)$, $16.0\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{c}-\mathrm{p}}=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-1.0(\mathrm{~s})$.

IR (ATR): $\tilde{v}=2985,1580,1514,1245,1024,835,803,732 \mathrm{~cm}^{-1}$.

MS (ESI) m/z (relative intensity): 739 (100) [M+Na] ${ }^{+}, 717$ (19) [M+H] ${ }^{+}$.

HR-MS (ESI): m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{PNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 739.2503$, found 739.2501.

5.3.7.2 Photo-Induced Ruthenium-Catalyzed C-H Arylation of Ketimine $135 z$

1-(3,4'-Dimethoxy-[1,1'-biphenyl]-2-yl)ethan-1-one (217)

Ketimine $135 z \quad(158 \mathrm{mg}, \quad 0.50 \mathrm{mmol}), \quad\left[\mathrm{Ru}(\mathrm{OAc})_{2}(p\right.$-cymene $\left.)\right] \quad$ (181, $17.7 \mathrm{mg}, 50.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{mmol})$ were placed in a 10 mL vial. The vial was capped with a septum and wrapped with parafilm. The vial was evacuated and purged with N_{2} three times. 1-lodo-4-methoxybenzene ($46 \mathrm{a}, 176 \mathrm{mg}, 0.75 \mathrm{mmol}$) and 1,4-dioxane (2.0 mL) were then added and the mixture was stirred under visible light irradiation ($2 \times$ Kessil A360N, temperature was maintained between $30^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$) for 24 h . At ambient temperature, $\mathrm{HCl}(2 \mathrm{~N}, 3.0 \mathrm{~mL})$ was added, and the resulting mixture was stirred for an additional 3 h , and then extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the residue by column chromatography (SiO_{2}, n-hexane/EtOAc 7:1) yielded ortho-arylated product 217 (58.4 mg, 46\%) as a light yellow solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.36(\mathrm{dd}, \mathrm{J}=8.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{dd}, J=$ $7.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{dd}, J=8.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.14$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=205.2\left(\mathrm{C}_{\mathrm{q}}\right), 159.2\left(\mathrm{C}_{\mathrm{q}}\right), 155.5\left(\mathrm{C}_{\mathrm{q}}\right), 139.6\left(\mathrm{C}_{\mathrm{q}}\right), 132.0\left(\mathrm{C}_{\mathrm{q}}\right), 131.1\left(\mathrm{C}_{\mathrm{q}}\right)$, $130.0(\mathrm{CH}), 129.8(\mathrm{CH}), 122.2(\mathrm{CH}), 113.9(\mathrm{CH}), 109.5(\mathrm{CH}), 55.9\left(\mathrm{CH}_{3}\right), 55.2\left(\mathrm{CH}_{3}\right), 32.4\left(\mathrm{CH}_{3}\right)$.

IR (ATR): $\tilde{v}=2938,1687,1566,1514,1462,1247,1176,1020,834,795 \mathrm{~cm}^{-1}$.
m.p.: $127-129^{\circ} \mathrm{C}$.

MS (ESI) m/z (relative intensity): 535 (13) [2M+Na] ${ }^{+}, 404(27), 279(100)[\mathrm{M}+\mathrm{Na}]^{+}, 257(11)[\mathrm{M}+\mathrm{H}]^{+}$, 148 (31).

HR-MS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$279.0992, found 279.0994.

The spectral data are in accordance with those reported in the literature. ${ }^{[146]}$

5.3.7.3 Photo-Induced C-H Arylation by Ruthenacycle 218

2-(o-Tolyl)pyridine ($68 \mathrm{e}, 84.6 \mathrm{mg}, 0.50 \mathrm{mmol}$), ruthenacycle 218 ($28.9 \mathrm{mg}, 50.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), $\mathrm{KOAc}(9.8 \mathrm{mg}, 0.10 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(138 \mathrm{mg}, 1.00 \mathrm{mmol})$ were placed in a 10 mL vial. The vial was capped with a septum and wrapped with parafilm. The vial was evacuated and purged with N_{2} three times. 1-lodo-4-methoxybenzene ($46 \mathrm{a}, 176 \mathrm{mg}, 0.75 \mathrm{mmol}$) and 1,4-dioxane $(2.0 \mathrm{~mL})$ were then added and the mixture was stirred under visible light irradiation ($2 \times$ Kessil A360N, temperature was maintained between $30^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$). After 24 h , the resulting mixture was filtered through a pad of silica gel and washed with EtOAc. The filtrate was concentrated in vacuo. Purification of the residue by column chromatography (SiO_{2}, n-hexane/EtOAc $7: 1$) yielded ortho-arylated product 151a ($145 \mathrm{mg}, 96 \%$) as a viscous colorless oil.

In case of the reaction without $K O A c$, the reaction provided the arylated product 151a (32.3 mg , $21 \%)$ as a viscous colorless oil.

5.3.7.4 X-Ray Crystallographic Analysis

A suitable crystal was selected and the crystal was mounted on a MITIGEN holder in NVH oil on a Bruker D8 Venture diffractometer. The crystal was kept at 100 or 150 K during data collection. Using Olex2, ${ }^{[137]}$ the structure was solved with the $\mathrm{XT}^{[138]}$ structure solution program using Intrinsic Phasing and refined with the $\mathrm{XL}^{[139]}$ refinement package using Least Squares minimisation.

Figure 63: Molecular structure of 1510 with thermal ellipoids at 50% probability level. The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2}(M=284.35 \mathrm{~g} / \mathrm{mol})$: orthorhombic, space group Pca2 ${ }_{1}$ (no. 29), $a=$ 15.2112(6) $\AA, b=8.9415(4) \AA$ A $, c=22.0568(12) \AA \AA, V=3000.0(2) \AA^{3}, Z=8, T=150.04 \mathrm{~K}, \mu(\mathrm{MoK} \mathrm{\alpha})=$ $0.074 \mathrm{~mm}^{-1}$, Dcalc $=1.259 \mathrm{~g} / \mathrm{cm}^{3}, 48106$ reflections measured $\left(4.556^{\circ} \leq 2 \Theta \leq 57.456^{\circ}\right)$, 7738 unique ($R_{\text {int }}=0.0299, \mathrm{R}_{\text {sigma }}=0.0205$) which were used in all calculations. The final R_{1} was 0.0434 ($\mathrm{I}>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.1161 (all data).

Table 107: Crystal data and structure refinement for 1510.

Compound	1510
CCDC number	1968604
Identification code	0764_CG_Pca21
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2}$
Formula weight	284.35
Temperature/K	150.04
Crystal system	orthorhombic
Space group	Pca2 ${ }_{1}$
a/Å	15.2112(6)
b/Å	8.9415(4)
c/Å	22.0568(12)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90

Volume/ \AA^{3}	3000.0(2)
Z	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.259
μ / mm^{-1}	0.074
F(000)	1200.0
Crystal size/mm ${ }^{3}$	$0.418 \times 0.311 \times 0.126$
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.556 to 57.456
Index ranges	$-20 \leq h \leq 19,-12 \leq \mathrm{k} \leq 12,-29 \leq \mathrm{l} \leq 29$
Reflections collected	48106
Independent reflections	$7738\left[\mathrm{R}_{\text {int }}=0.0299, \mathrm{R}_{\text {sigma }}=0.0205\right]$
Data/restraints/parameters	7738/1/405
Goodness-of-fit on F^{2}	1.063
Final R indexes [$1>=2 \sigma(1)]$	$\mathrm{R}_{1}=0.0434, \mathrm{wR}_{2}=0.1138$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0460, \mathrm{wR}_{2}=0.1161$
Largest diff. peak/hole / e \AA^{-3}	0.30/-0.27
Flack parameter	-0.1(6)

Table 108: Bond lengths [\AA] for 1510.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
N1	C1	$1.375(3)$	C7	C8	$1.497(3)$
N1	C20	$1.378(3)$	C7	C13	$1.413(3)$
N2	C8	$1.346(3)$	C8	C9	$1.388(3)$
N2	C12	$1.345(3)$	C9	C10	$1.385(3)$
C1	C2	$1.360(3)$	C10	C11	$1.385(3)$
C2	C3	$1.437(3)$	C11	C12	$1.383(4)$
C3	C4	$1.401(3)$	C13	C14	$1.389(3)$
C3	C20	$1.418(3)$	C13	C17	$1.512(3)$
C4	C5	$1.391(3)$	C14	C15	$1.385(4)$
C5	C6	$1.490(3)$	C15	C16	$1.386(4)$
C5	C18	$1.415(3)$	C18	C19	$1.389(3)$

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C6	C7	$1.408(3)$	C19	C20	$1.395(3)$
C6	C16	$1.393(3)$			

Table 109: Bond angles [${ }^{\circ}$] for 1510.

Atom	Atom	Atom	Angle/ $^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C1	N1	C20	$108.50(19)$	N2	C8	C9	$122.3(2)$
C12	N2	C8	$117.4(2)$	C9	C8	C7	$119.9(2)$
C2	C1	N1	$110.4(2)$	C10	C9	C8	$119.4(2)$
C1	C2	C3	$106.9(2)$	C11	C10	C9	$118.7(2)$
C4	C3	C2	$134.3(2)$	C12	C11	C10	$118.4(2)$
C4	C3	C20	$119.2(2)$	N2	C12	C11	$123.7(2)$
C20	C3	C2	$106.47(19)$	C7	C13	C17	$122.4(2)$
C5	C4	C3	$119.8(2)$	C14	C13	C7	$118.8(2)$
C4	C5	C6	$120.93(19)$	C14	C13	C17	$118.8(2)$
C4	C5	C18	$119.6(2)$	C15	C14	C13	$121.2(2)$
C18	C5	C6	$119.4(2)$	C14	C15	C16	$119.9(2)$
C7	C6	C5	$122.82(19)$	C15	C16	C6	$120.8(2)$
C16	C6	C5	$118.1(2)$	C19	C18	C5	$121.8(2)$
C16	C6	C7	$119.0(2)$	C18	C19	C20	$117.8(2)$
C6	C7	C8	$120.4(2)$	N1	C20	C3	$107.7(2)$
C6	C7	C13	$120.2(2)$	N1	C20	C19	$130.6(2)$
C13	C7	C8	$119.3(2)$	C19	C20	C3	$121.6(2)$
N2	C8	C7	$117.79(19)$				

Figure 64: Molecular structure of 151 t with thermal ellipoids at 50% probability level. The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{~N}_{2}(M=410.49 \mathrm{~g} / \mathrm{mol})$: triclinic, space group P-1 (no. 2), $a=8.0802(7) \AA$ A,$b=$ $9.6205(6) \AA, \quad c=15.0324(11) \AA, \quad \alpha=105.143(4)^{\circ}, \quad b=91.497(3)^{\circ}, \quad \gamma=110.285(3)^{\circ}, \quad V=$ 1049.19(14) $\AA^{3}, Z=2, T=100.0 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.076 \mathrm{~mm}^{-1}$, Dcalc $=1.299 \mathrm{~g} / \mathrm{cm}^{3}, 54130$ reflections measured $\left(4.714^{\circ} \leq 2 \Theta \leq 61.172^{\circ}\right)$, 6426 unique ($R_{\text {int }}=0.0207, \mathrm{R}_{\text {sigma }}=0.0113$) which were used in all calculations. The final R_{1} was $0.0412(I>2 \sigma(I))$ and $w R_{2}$ was 0.1124 (all data).

Table 110: Crystal data and structure refinement for 151t.

Compound	151t
CCDC number	1968602
Identification code	0773_CG_0m
Empirical formula	$\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{~N}_{2}$
Formula weight	410.49
Temperature/K	100.0
Crystal system	triclinic
Space group	P-1
a/Å	8.0802(7)
b/Å	9.6205(6)
c/Å	15.0324(11)
$\alpha /{ }^{\circ}$	105.143(4)
$\beta /{ }^{\circ}$	91.497(3)
$\mathrm{V} /{ }^{\circ}$	110.285(3)
Volume/Å ${ }^{3}$	1049.19(14)

Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.299
μ / mm^{-1}	0.076
F(000)	432.0
Crystal size/mm ${ }^{3}$	$0.497 \times 0.38 \times 0.311$
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.714 to 61.172
Index ranges	$-11 \leq h \leq 11,-11 \leq k \leq 13,-21 \leq 1 \leq 21$
Reflections collected	54130
Independent reflections	$6426\left[\mathrm{R}_{\text {int }}=0.0207, \mathrm{R}_{\text {sigma }}=0.0113\right]$
Data/restraints/parameters	6426/0/290
Goodness-of-fit on F^{2}	1.032
Final R indexes [$1>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0412, \mathrm{wR}_{2}=0.1107$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0430, \mathrm{wR}_{2}=0.1124$
Largest diff. peak/hole / e \AA^{-3}	0.41/-0.24

Table 111: Bond lengths [Å] for 151t.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
N1	C1	$1.3952(11)$	C13	C30	$1.3980(11)$
N1	C4	$1.3969(11)$	C14	C15	$1.3918(11)$
N1	C13	$1.4143(10)$	C15	C16	$1.3968(12)$
N2	C19	$1.3440(11)$	C16	C17	$1.4865(11)$
N2	C23	$1.3421(12)$	C16	C29	$1.4001(11)$
C1	C2	$1.4092(11)$	C17	C18	$1.4072(12)$
C1	C12	$1.3929(12)$	C17	C27	$1.3976(12)$
C2	C3	$1.4433(12)$	C18	C19	$1.4947(12)$
C2	C9	$1.3959(12)$	C18	C24	$1.4059(11)$
C3	C4	$1.4105(12)$	C19	C20	$1.3966(12)$
C3	C8	$1.3980(12)$	C20	C21	$1.3872(13)$
C4	C5	$1.3935(12)$	C21	C22	$1.3873(14)$
C5	C6	$1.3889(12)$	C22	C23	$1.3854(13)$

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C6	C7	$1.4010(14)$	C24	C25	$1.3961(13)$
C7	C8	$1.3858(14)$	C24	C28	$1.5068(13)$
C9	C10	$1.3871(13)$	C25	C26	$1.3888(14)$
C10	C11	$1.4043(13)$	C26	C27	$1.3890(12)$
C11	C12	$1.3905(12)$	C29	C30	$1.3890(11)$
C13	C14	$1.3941(11)$			

Table 112: Bond angles [${ }^{\circ}$] for 151t.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C1	N1	C4	108.37(7)	C15	C14	C13	119.96(8)
C1	N1	C13	126.14(7)	C14	C15	C16	120.94(8)
C4	N1	C13	125.09(7)	C15	C16	C17	120.58(7)
C23	N2	C19	117.42(8)	C15	C16	C29	118.55(8)
N1	C1	C2	108.97(7)	C29	C16	C17	120.87(7)
C12	C1	N1	129.22(8)	C18	C17	C16	120.52(7)
C12	C1	C2	121.80(8)	C27	C17	C16	119.72(8)
C1	C2	C3	106.89(7)	C27	C17	C18	119.75(8)
C9	C2	C1	119.55(8)	C17	C18	C19	119.00(7)
C9	C2	C3	133.55(8)	C24	C18	C17	120.19(8)
C4	C3	C2	106.96(7)	C24	C18	C19	120.80(8)
C8	C3	C2	133.46(8)	N2	C19	C18	117.08(7)
C8	C3	C4	119.55(8)	N2	C19	C20	122.34(8)
N1	C4	C3	108.81(7)	C20	C19	C18	120.53(8)
C5	C4	N1	129.16(8)	C21	C20	C19	119.21(8)
C5	C4	C3	121.96(8)	C20	C21	C22	118.80(9)
C6	C5	C4	117.38(9)	C23	C22	C21	118.15(8)
C5	C6	C7	121.36(9)	N2	C23	C22	124.05(9)
C8	C7	C6	121.02(8)	C18	C24	C28	121.08(8)
C7	C8	C3	118.70(9)	C25	C24	C18	118.70(8)
C10	C9	C2	119.16(8)	C25	C24	C28	120.23(8)

Atom	Atom	Atom	Angle/ $^{\circ}$	Atom	Atom	Atom	Angle/ $^{\circ}$
C 9	C 10	C 11	$120.49(8)$	C 26	C 25	C 24	$121.27(8)$
C 12	C 11	C 10	$121.37(9)$	C 25	C 26	C 27	$119.98(8)$
C 11	C 12	C 1	$117.59(8)$	C 26	C 27	C 17	$120.10(9)$
C 14	C 13	N 1	$119.99(7)$	C 30	C 29	C 16	$120.87(8)$
C 14	C 13	C 30	$119.64(7)$	C 29	C 30	C 13	$120.00(7)$
C 30	C 13	N 1	$120.36(7)$				

Figure 65: Molecular structure of 216b with thermal ellipoids at 50\% probability level. The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{37} \mathrm{Cl}_{2} \mathrm{H}_{29} \mathrm{~N}_{3}(M=586.53 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{P}_{2} / \mathrm{n}$ (no. 14), $a=$
 $\mu(\mathrm{MoK} \alpha)=0.247 \mathrm{~mm}^{-1}$, Dcalc $=1.293 \mathrm{~g} / \mathrm{cm}^{3}, 99832$ reflections measured ($5.074^{\circ} \leq 2 \Theta \leq 59.19^{\circ}$), 8420 unique ($R_{\text {int }}=0.0300, \mathrm{R}_{\text {sigma }}=0.0153$) which were used in all calculations. The final R_{1} was $0.0438(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.1151 (all data).

Table 113: Crystal data and structure refinement for 216b.

Compound	216b
CCDC number	1968605
Identification code	mo_0856_CG_0m
Empirical formula	$\mathrm{C}_{37} \mathrm{Cl}_{2} \mathrm{H}_{29} \mathrm{~N}_{3}$
Formula weight	586.53
Temperature/K	100.0

Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$
a/Å	8.3699(11)
b/Å	13.291(3)
c/Å	27.082(3)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90.799(7)
$\mathrm{V} /{ }^{\circ}$	90
Volume/ \AA^{3}	3012.4(8)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.293
μ / mm^{-1}	0.247
F(000)	1224.0
Crystal size/mm ${ }^{3}$	$0.401 \times 0.105 \times 0.068$
Radiation	MoK α ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ}$	5.074 to 59.19
Index ranges	$-11 \leq h \leq 11,-18 \leq \mathrm{k} \leq 18,-36 \leq \mathrm{l} \leq 37$
Reflections collected	99832
Independent reflections	$8420\left[\mathrm{R}_{\text {int }}=0.0300, \mathrm{R}_{\text {sigma }}=0.0153\right]$
Data/restraints/parameters	8420/0/359
Goodness-of-fit on F^{2}	1.029
Final R indexes [$1>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0438, \mathrm{wR}_{2}=0.1092$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0518, \mathrm{wR}_{2}=0.1151$
Largest diff. peak/hole / e \AA^{-3}	0.38/-0.25

Table 114: Bond lengths [Å] for 216b.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
N1	C1	$1.3865(13)$	C12	C13	$1.3809(19)$
N1	C4	$1.3839(13)$	C13	C14	$1.3822(18)$
N2	C25	$1.3426(14)$	C15	C16	$1.3906(18)$
N2	C29	$1.3387(16)$	C15	C19	$1.5081(18)$

Atom	Atom	Length/Å	Atom	Atom	Length/Å
N3	C10	$1.3413(14)$	C16	C17	$1.384(2)$
N3	C14	$1.3428(15)$	C17	C18	$1.3877(17)$
C1	C2	$1.4178(14)$	C21	C22	$1.3926(14)$
C1	C36	$1.3938(14)$	C22	C23	$1.4926(14)$
C2	C3	$1.4449(14)$	C22	C35	$1.4057(15)$
C2	C21	$1.3957(14)$	C23	C24	$1.4034(15)$
C3	C4	$1.4143(14)$	C23	C33	$1.4011(15)$
C3	C20	$1.3951(14)$	C24	C25	$1.4917(15)$
C4	C5	$1.3957(14)$	C24	C30	$1.4077(15)$
C5	C6	$1.3846(15)$	C25	C26	$1.3925(15)$
C6	C7	$1.4097(15)$	C26	C27	$1.3807(18)$
C7	C8	$1.4920(14)$	C27	C28	$1.3798(19)$
C7	C20	$1.3905(14)$	C28	C29	$1.3806(18)$
C8	C9	$1.3988(15)$	C30	C31	$1.3941(17)$
C8	C18	$1.3991(15)$	C30	C34	$1.5071(17)$
C9	C10	$1.4915(15)$	C31	C32	$1.3862(18)$
C10	C15	C11	$1.4054(15)$	C32	C33
C12	$1.3911(15)$	C35	C36	$1.3891(16)$	

Table 115: Bond angles [${ }^{\circ}$] for 216b.

Atom	Atom	Atom	Angle/ $^{\circ}$	Atom	Atom	Atom	Angle/ $^{\circ}$
C4	N1	C1	$108.68(9)$	C9	C15	C19	$120.39(11)$
C29	N2	C25	$117.28(10)$	C16	C15	C9	$118.64(11)$
C10	N3	C14	$117.44(10)$	C16	C15	C19	$120.96(11)$
N1	C1	C2	$108.94(9)$	C17	C16	C15	$121.01(11)$
N1	C1	C36	$130.21(10)$	C16	C17	C18	$120.15(11)$
C36	C1	C2	$120.81(9)$	C17	C18	C8	$120.33(11)$
C1	C2	C3	$106.60(9)$	C7	C20	C3	$119.18(9)$
C21	C2	C1	$120.12(9)$	C22	C21	C2	$119.33(9)$

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C21	C2	C3	133.17(9)	C21	C22	C23	119.78(9)
C4	C3	C2	106.47(9)	C21	C22	C35	119.56(9)
C20	C3	C2	133.42(9)	C35	C22	C23	120.52(9)
C20	C3	C4	120.10(9)	C24	C23	C22	121.73(9)
N1	C4	C3	109.26(9)	C33	C23	C22	118.57(10)
N1	C4	C5	129.60(10)	C33	C23	C24	119.63(10)
C5	C4	C3	121.13(9)	C23	C24	C25	119.84(9)
C6	C5	C4	117.72(9)	C23	C24	C30	120.11(10)
C5	C6	C7	122.07(9)	C30	C24	C25	120.05(10)
C6	C7	C8	119.67(9)	N2	C25	C24	116.84(9)
C20	C7	C6	119.78(9)	N2	C25	C26	122.47(10)
C20	C7	C8	120.51(9)	C26	C25	C24	120.69(10)
C9	C8	C7	121.29(9)	C27	C26	C25	119.06(11)
C9	C8	C18	118.98(10)	C28	C27	C26	118.89(11)
C18	C8	C7	119.72(10)	C27	C28	C29	118.40(12)
C8	C9	C10	120.19(9)	N2	C29	C28	123.87(12)
C8	C9	C15	120.85(10)	C24	C30	C34	121.00(11)
C15	C9	C10	118.97(10)	C31	C30	C24	118.94(11)
N3	C10	C9	115.86(9)	C31	C30	C34	120.05(11)
N3	C10	C11	122.62(10)	C32	C31	C30	121.13(11)
C11	C10	C9	121.50(10)	C31	C32	C33	120.04(11)
C12	C11	C10	118.82(11)	C32	C33	C23	120.13(11)
C13	C12	C11	119.07(11)	C36	C35	C22	122.20(10)
C12	C13	C14	118.31(11)	C35	C36	C1	117.93(9)
N3	C14	C13	123.70(11)				

Figure 66: Molecular structure of 217 with thermal ellipoids at 50\% probability level. The hydrogen atoms are omitted for clarity.

Crystal Data for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}(M=256.29 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{P} 2_{1} / \mathrm{c}$ (no. 14), $a=$ $7.9023(5) \AA$ Å, $b=17.4162(12) \AA$, $c=10.1964(7) \AA$, $b=110.822(2)^{\circ}, V=1311.66(15) \AA^{3}, Z=4, T=$ $100.0 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.089 \mathrm{~mm}^{-1}$, Dcalc $=1.298 \mathrm{~g} / \mathrm{cm}^{3}, 26466$ reflections measured $\left(4.678^{\circ} \leq 2 \Theta \leq\right.$ $\left.57.442^{\circ}\right), 3377$ unique ($R_{\text {int }}=0.0225, \mathrm{R}_{\text {sigma }}=0.0127$) which were used in all calculations. The final R_{1} was $0.0418(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.1093 (all data).

Table 116: Crystal data and structure refinement for 217.

Compound	217
CCDC number	1979317
Identification code	mo_0859_CG_0m
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$
Formula weight	256.29
Temperature/K	100.0
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
a/Å	7.9023(5)
b/Å	17.4162(12)
c/Å	10.1964(7)
$\alpha /{ }^{\circ}$	90
$\beta{ }^{\circ}$	110.822(2)
$\gamma /{ }^{\circ}$	90
Volume/ ${ }^{3}$	1311.66(15)

Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.298
μ / mm^{-1}	0.089
F(000)	544.0
Crystal size/mm ${ }^{3}$	$0.337 \times 0.214 \times 0.153$
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.678 to 57.442
Index ranges	$-10 \leq h \leq 10,-23 \leq k \leq 23,-13 \leq 1 \leq 13$
Reflections collected	26466
Independent reflections	3377 [$\left.\mathrm{R}_{\text {int }}=0.0225, \mathrm{R}_{\text {sigma }}=0.0127\right]$
Data/restraints/parameters	3377/0/175
Goodness-of-fit on F^{2}	1.053
Final R indexes [$1>=2 \sigma(1)$]	$\mathrm{R}_{1}=0.0418, \mathrm{wR}_{2}=0.1058$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0461, \mathrm{wR}_{2}=0.1093$
Largest diff. peak/hole / e \AA^{-3}	0.96/-0.20

Table 117: Bond lengths [\AA] for 217.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O1	C1	$1.3673(13)$	C4	C7	$1.4862(15)$
O1	C15	$1.4269(14)$	C5	C6	$1.3906(16)$
O2	C9	$1.3657(14)$	C7	C8	$1.4033(15)$
O2	C16	$1.4313(13)$	C7	C12	$1.4032(15)$
O3	C13	$1.2140(13)$	C8	C9	$1.4053(14)$
C1	C2	$1.3973(15)$	C8	C13	$1.5093(14)$
C1	C6	$1.3900(15)$	C9	C10	$1.3945(15)$
C2	C3	$1.3841(15)$	C10	C11	$1.3865(18)$
C3	C4	$1.4034(14)$	C11	C12	$1.3837(17)$
C4	C5	$1.3947(15)$	C13	C14	$1.5069(15)$

Table 118: Bond angles [${ }^{\circ}$] for 217.

Atom	Atom	Atom $^{\text {Angle/ }}$	Atom	Atom	Atom	Angle/ $^{\circ}$	
C1	O1	C15	$117.16(9)$	C12	C7	C8	$118.91(10)$
C9	O2	C16	$117.64(9)$	C7	C8	C9	$119.60(9)$
O1	C1	C2	$115.67(9)$	C7	C8	C13	$121.25(9)$
O1	C1	C6	$124.33(10)$	C9	C8	C13	$119.09(9)$
C6	C1	C2	$119.99(10)$	O2	C9	C8	$115.57(9)$
C3	C2	C1	$120.12(10)$	O2	C9	C10	$123.48(10)$
C2	C3	C4	$121.00(10)$	C10	C9	C8	$120.91(10)$
C3	C4	C7	$122.38(9)$	C11	C10	C9	$118.81(11)$
C5	C4	C3	$117.69(10)$	C12	C11	C10	$121.22(10)$
C5	C4	C7	$119.86(9)$	C11	C12	C7	$120.52(11)$
C6	C5	C4	$122.11(10)$	O3	C13	C8	$120.05(10)$
C1	C6	C5	$119.08(10)$	O3	C13	C14	$121.23(10)$
C8	C7	C4	$122.87(9)$	C14	C13	C8	$118.72(9)$
C12	C7	C4	$118.18(10)$				

6 References

[1] a) P. T. Anastas, M. M. Kirchhoff, Acc. Chem. Res. 2002, 35, 686-694; b) P. T. Anastas, J. C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, 1998.
[2] W. Keim, Concepts for the Use of Transition Metals in Industrial Fine Chemical Synthesis in Transition Metals for Organic Synthesis (Eds.: M. Beller and C. Bolm), Wiley-VCH, Weinheim, 2008.
[3] For selected reviews, see: a) D. J. Abrams, P. A. Provencher, E. J. Sorensen, Chem. Soc. Rev. 2018, 47, 8925-8967; b) D. Basu, S. Kumar, V. S. Sudhir, R. Bandichhor, J. Chem. Sci. 2018, 130, 71; c) Z. Dong, Z. Ren, S. J. Thompson, Y. Xu, G. Dong, Chem. Rev. 2017, 117, 93339403; d) Y. Park, Y. Kim, S. Chang, Chem. Rev. 2017, 117, 9247-9301; e) A. F. M. Noisier, M. A. Brimble, Chem. Rev. 2014, 114, 8775-8806; f) W. R. Gutekunst, P. S. Baran, Chem. Soc. Rev. 2011, 40, 1976-1991; g) L. McMurray, F. O'Hara, M. J. Gaunt, Chem. Soc. Rev. 2011, 40, 1885-1898; h) R. Giri, B.-F. Shi, K. M. Engle, N. Maugel, J.-Q. Yu, Chem. Soc. Rev. 2009, 38, 3242-3272; i) J.-P. Corbet, G. Mignani, Chem. Rev. 2006, 106, 2651-2710.
[4] a) R. J. P. Corriu, J. P. Masse, J. Chem. Soc., Chem. Commun. 1972, 144a-144a; b) K. Tamao, K. Sumitani, M. Kumada, J. Am. Chem. Soc. 1972, 94, 4374-4376.
[5] a) R. F. Heck, J. P. Nolley, J. Org. Chem. 1972, 37, 2320-2322; b) M. Tsutomu, M. Kunio, O. Atsumu, Bull. Chem. Soc. Jpn. 1971, 44, 581-581.
[6] a) K. Sonogashira, J. Organomet. Chem. 2002, 653, 46-49; b) K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett. 1975, 16, 4467-4470.
[7] a) A. O. King, N. Okukado, E.-i. Negishi, J. Chem. Soc., Chem. Commun. 1977, 683-684; b) E. Negishi, A. O. King, N. Okukado, J. Org. Chem. 1977, 42, 1821-1823.
[8] a) J. K. Stille, Angew. Chem. Int. Ed. Engl. 1986, 25, 508-524; b) D. Milstein, J. K. Stille, J. Am. Chem. Soc. 1979, 101, 4992-4998; c) D. Milstein, J. K. Stille, J. Am. Chem. Soc. 1978, 100, 3636-3638.
[9] a) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457-2483; b) N. Miyaura, A. Suzuki, J. Chem. Soc., Chem. Commun. 1979, 866-867; c) N. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Lett. 1979, 20, 3437-3440.
[10] a) T. Hiyama, J. Organomet. Chem. 2002, 653, 58-61; b) K.-i. Gouda, E. Hagiwara, Y. Hatanaka, T. Hiyama, J. Org. Chem. 1996, 61, 7232-7233; c) Y. Hatanaka, T. Hiyama, J. Org. Chem. 1988, 53, 918-920.
[11] C. C. C. Johansson Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus, Angew. Chem. Int. Ed. 2012, 51, 5062-5085.
[12] The Nobel Prize in Chemistry 2010. NobelPrize.org. Nobel Media AB 2020. Tue. 7 Apr 2020. https://www.nobelprize.org/prizes/chemistry/2010/summary/.
[13] For selected reviews on C-H functionalizations, see: a) P. Gandeepan, T. Müller, D. Zell, G. Cera, S. Warratz, L. Ackermann, Chem. Rev. 2019, 119, 2192-2452; b) Y. Hu, B. Zhou, C. Wang, Acc. Chem. Res. 2018, 51, 816-827; c) J. R. Hummel, J. A. Boerth, J. A. Ellman, Chem. Rev. 2017, 117, 9163-9227; d) R. Shang, L. Ilies, E. Nakamura, Chem. Rev. 2017, 117, 9086-9139; e) T. Gensch, M. N. Hopkinson, F. Glorius, J. Wencel-Delord, Chem. Soc. Rev. 2016, 45, 2900-2936; f) W. Liu, L. Ackermann, ACS Catal. 2016, 6, 3743-3752; g) M. Moselage, J. Li, L. Ackermann, ACS Catal. 2016, 6, 498-525; h) C.-L. Sun, B.-J. Li, Z.-J. Shi, Chem. Rev. 2011, 111, 1293-1314; i) O. Baudoin, Chem. Soc. Rev. 2011, 40, 4902-4911; j) L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. Int. Ed. 2009, 48, 9792-9826.
[14] For selected reviews on oxidative C-H/C-H couplings, see: a) H. Wang, X. Gao, Z. Lv, T. Abdelilah, A. Lei, Chem. Rev. 2019, 119, 6769-6787; b) Y. Yang, J. Lan, J. You, Chem. Rev. 2017, 117, 8787-8863; c) C. Liu, J. Yuan, M. Gao, S. Tang, W. Li, R. Shi, A. Lei, Chem. Rev. 2015, 115, 12138-12204; d) S. H. Cho, J. Y. Kim, J. Kwak, S. Chang, Chem. Soc. Rev. 2011, 40, 5068-5083.
[15] a) H. Yi, G. Zhang, H. Wang, Z. Huang, J. Wang, A. K. Singh, A. Lei, Chem. Rev. 2017, 117, 9016-9085; b) J.-T. Yu, C. Pan, Chem. Commun. 2016, 52, 2220-2236.
[16] For selected reviews, see: a) L. Ackermann, Chem. Rev. 2011, 111, 1315-1345; b) D. Balcells, E. Clot, O. Eisenstein, Chem. Rev. 2010, 110, 749-823; c) J. A. Labinger, J. E. Bercaw, Nature 2002, 417, 507-514.
[17] Z. Lin, Coord. Chem. Rev. 2007, 251, 2280-2291.
[18] For selected examples of $\mathrm{C}-\mathrm{H}$ activation through 1,2-addition, see: a) H. M. Hoyt, F. E. Michael, R. G. Bergman, J. Am. Chem. Soc. 2004, 126, 1018-1019; b) T. R. Cundari, T. R. Klinckman, P. T. Wolczanski, J. Am. Chem. Soc. 2002, 124, 1481-1487; c) P. J. Walsh, F. J. Hollander, R. G. Bergman, J. Am. Chem. Soc. 1988, 110, 8729-8731.
[19] For selected reviews, see: a) D. L. Davies, S. A. Macgregor, C. L. McMullin, Chem. Rev. 2017, 117, 8649-8709; b) L. Ackermann, Acc. Chem. Res. 2014, 47, 281-295.
[20] a) L. David, F. Keith, Chem. Lett. 2010, 39, 1118-1126; b) S. I. Gorelsky, D. Lapointe, K. Fagnou, J. Am. Chem. Soc. 2008, 130, 10848-10849.
[21] a) Y. Boutadla, D. L. Davies, S. A. Macgregor, A. I. Poblador-Bahamonde, Dalton Trans. 2009, 5820-5831; b) Y. Boutadla, D. L. Davies, S. A. Macgregor, A. I. Poblador-Bahamonde, Dalton Trans. 2009, 5887-5893.
[22] J. Oxgaard, W. J. Tenn, R. J. Nielsen, R. A. Periana, W. A. Goddard, Organometallics 2007, 26, 1565-1567.
[23] For selected examples of C-H activation through BIES mechanism, see: a) W.-J. Kong, L. H. Finger, A. M. Messinis, R. Kuniyil, J. C. A. Oliveira, L. Ackermann, J. Am. Chem. Soc. 2019, 141, 17198-17206; b) K. Raghuvanshi, D. Zell, L. Ackermann, Org. Lett. 2017, 19, 12781281; c) D. Zell, M. Bursch, V. Müller, S. Grimme, L. Ackermann, Angew. Chem. Int. Ed. 2017, 56, 10378-10382; d) R. Mei, J. Loup, L. Ackermann, ACS Catal. 2016, 6, 793-797; e) H. Wang, M. Moselage, M. J. González, L. Ackermann, ACS Catal. 2016, 6, 2705-2709; f) W. Ma, R. Mei, G. Tenti, L. Ackermann, Chem. Eur. J. 2014, 20, 15248-15251.
[24] For selected reviews on regioselective C-H functionalizations, see: a) L. Ping, D. S. Chung, J. Bouffard, S.-g. Lee, Chem. Soc. Rev. 2017, 46, 4299-4328; b) T. Cernak, K. D. Dykstra, S. Tyagarajan, P. Vachal, S. W. Krska, Chem. Soc. Rev. 2016, 45, 546-576.
[25] X.-S. Xue, P. Ji, B. Zhou, J.-P. Cheng, Chem. Rev. 2017, 117, 8622-8648.
[26] J. F. Hartwig, Chem. Soc. Rev. 2011, 40, 1992-2002.
[27] For selected reviews on chelation-assisted C-H functionalizations, see: a) S. Rej, Y. Ano, N. Chatani, Chem. Rev. 2020, 120, 1788-1887; b) C. Sambiagio, D. Schönbauer, R. Blieck, T. Dao-Huy, G. Pototschnig, P. Schaaf, T. Wiesinger, M. F. Zia, J. Wencel-Delord, T. Besset, B. U. W. Maes, M. Schnürch, Chem. Soc. Rev. 2018, 47, 6603-6743; c) Z. Chen, B. Wang, J. Zhang, W. Yu, Z. Liu, Y. Zhang, Org. Chem. Front. 2015, 2, 1107-1295; d) Z. Huang, H. N. Lim, F. Mo, M. C. Young, G. Dong, Chem. Soc. Rev. 2015, 44, 7764-7786; e) F. Zhang, D. R. Spring, Chem. Soc. Rev. 2014, 43, 6906-6919.
[28] For selected reviews on C-H functionalizations by 4d or 5d transition metals catalysis, see: a) J. He, M. Wasa, K. S. L. Chan, Q. Shao, J.-Q. Yu, Chem. Rev. 2017, 117, 8754-8786; b) C. G. Newton, S.-G. Wang, C. C. Oliveira, N. Cramer, Chem. Rev. 2017, 117, 8908-8976; c) Q.Z. Zheng, N. Jiao, Chem. Soc. Rev. 2016, 45, 4590-4627; d) G. Song, F. Wang, X. Li, Chem. Soc. Rev. 2012, 41, 3651-3678; e) T. C. Boorman, I. Larrosa, Chem. Soc. Rev. 2011, 40, 1910-1925; f) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624-655; g) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147-1169; h) V. Ritleng, C. Sirlin, M. Pfeffer, Chem. Rev. 2002, 102, 1731-1770.
[29] For selected reviews on ruthenium-catalyzed C-H functionalizations, see: a) C. Shan, L. Zhu, L.-B. Qu, R. Bai, Y. Lan, Chem. Soc. Rev. 2018, 47, 7552-7576; b) P. Nareddy, F. Jordan,
M. Szostak, ACS Catal. 2017, 7, 5721-5745; c) S. Ruiz, P. Villuendas, E. P. Urriolabeitia, Tetrahedron Lett. 2016, 57, 3413-3432; d) S. De Sarkar, W. Liu, S. I. Kozhushkov, L. Ackermann, Adv. Synth. Catal. 2014, 356, 1461-1479; e) P. B. Arockiam, C. Bruneau, P. H. Dixneuf, Chem. Rev. 2012, 112, 5879-5918; f) L. Ackermann, R. Vicente, Top. Curr. Chem. 2010, 292, 211-229.
[30] L. N. Lewis, J. F. Smith, J. Am. Chem. Soc. 1986, 108, 2728-2735.
[31] S. Murai, F. Kakiuchi, S. Sekine, Y. Tanaka, A. Kamatani, M. Sonoda, N. Chatani, Nature 1993, 366, 529-531.
[32] D. J. Burns, S. I. Kozhushkov, L. Ackermann, Ruthenium Catalysts for the Alkylation of Functionalized Arenes and Heteroaromatic Substrates via Hydroarylation in Catalytic Hydroarylation of Carbon-Carbon Multiple Bonds (Eds.: L. Ackermann), Wiley-VCH, Weinheim, 2017.
[33] L. Ackermann, P. Novák, R. Vicente, N. Hofmann, Angew. Chem. Int. Ed. 2009, 48, 60456048.
[34] L. Ackermann, N. Hofmann, R. Vicente, Org. Lett. 2011, 13, 1875-1877.
[35] L. Ackermann, P. Novák, Org. Lett. 2009, 11, 4966-4969.
[36] S. Oi, S. Fukita, N. Hirata, N. Watanuki, S. Miyano, Y. Inoue, Org. Lett. 2001, 3, 2579-2581.
[37] S. Oi, Y. Ogino, S. Fukita, Y. Inoue, Org. Lett. 2002, 4, 1783-1785.
[38] S. Oi, E. Aizawa, Y. Ogino, Y. Inoue, J. Org. Chem. 2005, 70, 3113-3119.
[39] S. G. Ouellet, A. Roy, C. Molinaro, R. Angelaud, J.-F. Marcoux, P. D. O’Shea, I. W. Davies, J. Org. Chem. 2011, 76, 1436-1439.
[40] a) L. Ackermann, A. Althammer, R. Born, Tetrahedron 2008, 64, 6115-6124; b) L. Ackermann, A. Althammer, R. Born, Synlett 2007, 2833-2836.
[41] L. Ackermann, R. Vicente, A. Althammer, Org. Lett. 2008, 10, 2299-2302.
[42] L. Ackermann, H. K. Potukuchi, Org. Biomol. Chem. 2010, 8, 4503-4513.
[43] L. Ackermann, R. Vicente, H. K. Potukuchi, V. Pirovano, Org. Lett. 2010, 12, 5032-5035.
[44] a) J. Hubrich, L. Ackermann, Eur. J. Org. Chem. 2016, 2016, 3700-3704; b) E. Diers, N. Y. Phani Kumar, T. Mejuch, I. Marek, L. Ackermann, Tetrahedron 2013, 69, 4445-4453.
[45] M. Simonetti, D. M. Cannas, A. Panigrahi, S. Kujawa, M. Kryjewski, P. Xie, I. Larrosa, Chem. Eur. J. 2017, 23, 549-553.
[46] M. Simonetti, D. M. Cannas, X. Just-Baringo, I. J. Vitorica-Yrezabal, I. Larrosa, Nat. Chem. 2018, 10, 724-731. L. Wang, L. Ackermann, Chem. Commun. 2014, 50, 1083-1085.
[48] For selected reviews on remote meta- and para-C-H functionalizations, see: a) M. T. Mihai, G. R. Genov, R. J. Phipps, Chem. Soc. Rev. 2018, 47, 149-171; b) M. Ghosh, S. De Sarkar, Asian J. Org. Chem. 2018, 7, 1236-1255; c) J. Li, S. De Sarkar, L. Ackermann, Top. Organomet. Chem. 2016, 55, 217-257.
[49] In an earlier study, Fujiwara and Moritani reported sterically controlled C-H alkenylations, see: Y. Fujiwara, I. Moritani, S. Danno, R. Asano, S. Teranishi, J. Am. Chem. Soc. 1969, 91, 7166-7169.
[50] For selected reviews and examples of sterically controlled C-H functionalizations, see: a) A. Mondal, H. Chen, L. Flämig, P. Wedi, M. van Gemmeren, J. Am. Chem. Soc. 2019, 141, 18662-18667; b) C. Cheng, J. F. Hartwig, Science 2014, 343, 853-857; c) D. W. Robbins, J. F. Hartwig, Angew. Chem. Int. Ed. 2013, 52, 933-937; d) I. A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy, J. F. Hartwig, Chem. Rev. 2010, 110, 890-931; e) J.-Y. Cho, M. K. Tse, D. Holmes, R. E. Maleczka, M. R. Smith, Science 2002, 295, 305-308; f) T. Ishiyama, J. Takagi, K. Ishida, N. Miyaura, N. R. Anastasi, J. F. Hartwig, J. Am. Chem. Soc. 2002, 124, 390-391.
[51] For a recent review on template-assisted remote C-H functionalizations, see: a) A. Dey, S. K. Sinha, T. K. Achar, D. Maiti, Angew. Chem. Int. Ed. 2019, 58, 10820-10843; selected examples, see: b) J. Xu, J. Chen, F. Gao, S. Xie, X. Xu, Z. Jin, J.-Q. Yu, J. Am. Chem. Soc. 2019, 141, 1903-1907; c) H.-J. Xu, Y.-S. Kang, H. Shi, P. Zhang, Y.-K. Chen, B. Zhang, Z.-Q. Liu, J. Zhao, W.-Y. Sun, J.-Q. Yu, Y. Lu, J. Am. Chem. Soc. 2019, 141, 76-79; d) U. Dutta, A. Modak, B. Bhaskararao, M. Bera, S. Bag, A. Mondal, D. W. Lupton, R. B. Sunoj, D. Maiti, ACS Catal. 2017, 7, 3162-3168; e) S. Bag, R. Jayarajan, R. Mondal, D. Maiti, Angew. Chem. Int. Ed. 2017, 56, 3182-3186; f) R.-Y. Tang, G. Li, J.-Q. Yu, Nature 2014, 507, 215-220; g) D. Leow, G. Li, T.-S. Mei, J.-Q. Yu, Nature 2012, 486, 518-522.
[52] In an earlier study, Breslow, and Crabtree/Brudvig reported a molecular recognition approach for remote $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ oxidations, see: a) S. Das, G. W. Brudvig, R. H. Crabtree, J. Am. Chem. Soc. 2008, 130, 1628-1637; b) S. Das, C. D. Incarvito, R. H. Crabtree, G. W. Brudvig, Science 2006, 312, 1941-1943; c) R. Breslow, X. Zhang, Y. Huang, J. Am. Chem. Soc. 1997, 119, 4535-4536.
[53] Y. Kuninobu, H. Ida, M. Nishi, M. Kanai, Nat. Chem. 2015, 7, 712-717.
[54] a) M. Catellani, E. Motti, N. Della Ca’, Acc. Chem. Res. 2008, 41, 1512-1522; b) M. Catellani, F. Frignani, A. Rangoni, Angew. Chem. Int. Ed. Engl. 1997, 36, 119-122.
[55] For selected examples, see: a) L.-Y. Liu, J. X. Qiao, K.-S. Yeung, W. R. Ewing, J.-Q. Yu, J. Am. Chem. Soc. 2019, 141, 14870-14877; b) J. Liu, Q. Ding, W. Fang, W. Wu, Y. Zhang, Y. Peng,
J. Org. Chem. 2018, 83, 13211-13216; c) H. Shi, A. N. Herron, Y. Shao, Q. Shao, J.-Q. Yu, Nature 2018, 558, 581-585; d) Z. Dong, J. Wang, G. Dong, J. Am. Chem. Soc. 2015, 137, 5887-5890; e) X.-C. Wang, W. Gong, L.-Z. Fang, R.-Y. Zhu, S. Li, K. M. Engle, J.-Q. Yu, Nature 2015, 519, 334-338; f) J. Ye, M. Lautens, Nat. Chem. 2015, 7, 863-870.
[56] For recent reviews, see: a) K. Korvorapun, R. C. Samanta, T. Rogge, L. Ackermann, Ruthenium-Catalyzed Remote $\mathrm{C}-\mathrm{H}$ Functionalizations in Remote $\mathrm{C}-\mathrm{H}$ bond Functionalizations (Eds.: D. Maiti, S. Guin), Wiley-VCH, Weinheim, 2020; b) J. A. Leitch, C. G. Frost, Chem. Soc. Rev. 2017, 46, 7145-7153.
[57] G. R. Clark, C. E. L. Headford, W. R. Roper, L. J. Wright, V. P. D. Yap, Inorganica Chim. Acta 1994, 220, 261-272.
[58] J.-P. Sutter, D. M. Grove, M. Beley, J.-P. Collin, N. Veldman, A. L. Spek, J.-P. Sauvage, G. van Koten, Angew. Chem. Int. Ed. Engl. 1994, 33, 1282-1285.
[59] C. Coudret, S. Fraysse, Chem. Commun. 1998, 663-664.
[60] a) A. M. Clark, C. E. F. Rickard, W. R. Roper, L. J. Wright, J. Organomet. Chem. 2000, 598, 262-275; b) A. M. Clark, C. E. F. Rickard, W. R. Roper, L. J. Wright, Organometallics 1999, 18, 2813-2820.
[61] N. Hofmann, L. Ackermann, J. Am. Chem. Soc. 2013, 135, 5877-5884.
[62] J. Li, S. Warratz, D. Zell, S. De Sarkar, E. E. Ishikawa, L. Ackermann, J. Am. Chem. Soc. 2015, 137, 13894-13901.
[63] A. J. Paterson, S. St John-Campbell, M. F. Mahon, N. J. Press, C. G. Frost, Chem. Commun. 2015, 51, 12807-12810.
[64] For selected reviews, see: a) Y. Zhu, J. Han, J. Wang, N. Shibata, M. Sodeoka, V. A. Soloshonok, J. A. S. Coelho, F. D. Toste, Chem. Rev. 2018, 118, 3887-3964; b) J. Wang, M. Sánchez-Roselló, J. L. Aceña, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem. Rev. 2014, 114, 2432-2506.
[65] For selected reviews, see: a) X. Liu, C. Xu, M. Wang, Q. Liu, Chem. Rev. 2015, 115, 683730; b) D. Soorukram, C. Kuhakarn, V. Reutrakul, M. Pohmakotr, Synlett 2014, 25, 25582573.
[66] Z. Ruan, S.-K. Zhang, C. Zhu, P. N. Ruth, D. Stalke, L. Ackermann, Angew. Chem. Int. Ed. 2017, 56, 2045-2049.
[67] Z.-Y. Li, L. Li, Q.-L. Li, K. Jing, H. Xu, G.-W. Wang, Chem. Eur. J. 2017, 23, 3285-3290.
[68] G. Li, D. Li, J. Zhang, D.-Q. Shi, Y. Zhao, ACS Catal. 2017, 7, 4138-4143.
[69] B. Li, S.-L. Fang, D.-Y. Huang, B.-F. Shi, Org. Lett. 2017, 19, 3950-3953.
[70] For selected reviews on transition metal-catalyzed carboxylations, see: a) T. Fujihara, Y. Tsuji, Beilstein J. Org. Chem. 2018, 14, 2435-2460; b) A. Tortajada, F. Juliá-Hernández, M. Börjesson, T. Moragas, R. Martin, Angew. Chem. Int. Ed. 2018, 57, 15948-15982; c) L. Ackermann, Angew. Chem. Int. Ed. 2011, 50, 3842-3844.
[71] H. L. Barlow, C. J. Teskey, M. F. Greaney, Org. Lett. 2017, 19, 6662-6665.
[72] K. Jing, Z.-Y. Li, G.-W. Wang, ACS Catal. 2018, 8, 11875-11881.
[73] For selected reviews on C-Het bond formations, see: a) A. Correa, O. García Mancheño, C. Bolm, Chem. Soc. Rev. 2008, 37, 1108-1117; b) J. F. Hartwig, Nature 2008, 455, 314322; c) T. Kondo, T.-a. Mitsudo, Chem. Rev. 2000, 100, 3205-3220.
[74] O. Saidi, J. Marafie, A. E. W. Ledger, P. M. Liu, M. F. Mahon, G. Kociok-Köhn, M. K. Whittlesey, C. G. Frost, J. Am. Chem. Soc. 2011, 133, 19298-19301.
P. Marcé, A. J. Paterson, M. F. Mahon, C. G. Frost, Catal. Sci. Technol. 2016, 6, 7068-7076.
[76] D. A. Petrone, J. Ye, M. Lautens, Chem. Rev. 2016, 116, 8003-8104.
[77] C. J. Teskey, A. Y. W. Lui, M. F. Greaney, Angew. Chem. Int. Ed. 2015, 54, 11677-11680.
[78] Q. Yu, L. Hu, Y. Wang, S. Zheng, J. Huang, Angew. Chem. Int. Ed. 2015, 54, 15284-15288.
[79] K. Nepali, H.-Y. Lee, J.-P. Liou, J. Med. Chem. 2019, 62, 2851-2893.
[80] L.-R. Song, Z. Fan, A. Zhang, Org. Biomol. Chem. 2019, 17, 1351-1361.
[81] Z. Fan, J. Ni, A. Zhang, J. Am. Chem. Soc. 2016, 138, 8470-8475.
[82] Z. Fan, J. Li, H. Lu, D.-Y. Wang, C. Wang, M. Uchiyama, A. Zhang, Org. Lett. 2017, 19, 31993202.
[83] Z. Fan, H. Lu, A. Zhang, J. Org. Chem. 2018, 83, 3245-3251.
[84] For selected examples, see: a) L. Zhu, X. Qi, Y. Li, M. Duan, L. Zou, R. Bai, Y. Lan, Organometallics 2017, 36, 2107-2115; b) Y. Saito, Y. Segawa, K. Itami, J. Am. Chem. Soc. 2015, 137, 5193-5198.
[85] For selected examples, see: a) J. R. Montero Bastidas, T. J. Oleskey, S. L. Miller, M. R. Smith, R. E. Maleczka, J. Am. Chem. Soc. 2019, 141, 15483-15487; b) M. T. Mihai, B. D. Williams, R. J. Phipps, J. Am. Chem. Soc. 2019, 141, 15477-15482.
[86] For selected examples of template-assisted remote para-C-H functionalizations, see: a) U. Dutta, S. Maiti, S. Pimparkar, S. Maiti, L. R. Gahan, E. H. Krenske, D. W. Lupton, D. Maiti, Chem. Sci. 2019, 10, 7426-7432; b) M. Li, M. Shang, H. Xu, X. Wang, H.-X. Dai, J.-Q. Yu, Org. Lett. 2019, 21, 540-544; c) A. Maji, A. Dahiya, G. Lu, T. Bhattacharya, M. Brochetta, G. Zanoni, P. Liu, D. Maiti, Nat. Commun. 2018, 9, 3582; d) T. Patra, S. Bag, R. Kancherla, A. Mondal, A. Dey, S. Pimparkar, S. Agasti, A. Modak, D. Maiti, Angew. Chem. Int. Ed. 2016,

55, 7751-7755; e) S. Bag, T. Patra, A. Modak, A. Deb, S. Maity, U. Dutta, A. Dey, R. Kancherla, A. Maji, A. Hazra, M. Bera, D. Maiti, J. Am. Chem. Soc. 2015, 137, 11888-11891.
[87] J. A. Leitch, C. L. McMullin, A. J. Paterson, M. F. Mahon, Y. Bhonoah, C. G. Frost, Angew. Chem. Int. Ed. 2017, 56, 15131-15135.
[88] C. Yuan, L. Zhu, C. Chen, X. Chen, Y. Yang, Y. Lan, Y. Zhao, Nat. Commun. 2018, 9, 1189.
[89] C. Yuan, L. Zhu, R. Zeng, Y. Lan, Y. Zhao, Angew. Chem. Int. Ed. 2018, 57, 1277-1281.
[90] For selected reviews, see: a) Z. Chen, M.-Y. Rong, J. Nie, X.-F. Zhu, B.-F. Shi, J.-A. Ma, Chem. Soc. Rev. 2019, 48, 4921-4942; b) X.-X. Guo, D.-W. Gu, Z. Wu, W. Zhang, Chem. Rev. 2015, 115, 1622-1651.
[91] M. Moselage, J. Li, F. Kramm, L. Ackermann, Angew. Chem. Int. Ed. 2017, 56, 5341-5344.
[92] P. Gandeepan, J. Koeller, K. Korvorapun, J. Mohr, L. Ackermann, Angew. Chem. Int. Ed. 2019, 58, 9820-9825.
[93] For selected reviews, see: a) J. I. Ayogu, E. A. Onoabedje, Catal. Sci. Technol. 2019, 9, 5233-5255; b) P. Ruiz-Castillo, S. L. Buchwald, Chem. Rev. 2016, 116, 12564-12649; c) C.L. Sun, Z.-J. Shi, Chem. Rev. 2014, 114, 9219-9280; d) G. Cahiez, A. Moyeux, Chem. Rev. 2010, 110, 1435-1462.
[94] For selected reviews, see: a) L. P. Jordheim, D. Durantel, F. Zoulim, C. Dumontet, Nat. Rev. Drug Discov. 2013, 12, 447-464; b) C. Mathé, G. Gosselin, Antivir. Res. 2006, 71, 276-281.
[95] S. Warratz, D. J. Burns, C. Zhu, K. Korvorapun, T. Rogge, J. Scholz, C. Jooss, D. Gelman, L. Ackermann, Angew. Chem. Int. Ed. 2017, 56, 1557-1560.
[96] J. Li, K. Korvorapun, S. De Sarkar, T. Rogge, D. J. Burns, S. Warratz, L. Ackermann, Nat. Commun. 2017, 8, 15430.
[97] R. Nakamura, Y. Obora, Y. Ishii, Adv. Synth. Catal. 2009, 351, 1677-1684.
[98] S. Mahajan, B. Sharma, K. K. Kapoor, Tetrahedron Lett. 2015, 56, 1915-1918.
[99] R. O. Day, G. G. Graham, K. Williams, Propionic Acid Derivative Drugs (Profens) in Compendium of Inflammatory Diseases (Eds.: M. J. Parnham), Springer, Basel, 2016.
[100] A. J. Paterson, C. J. Heron, C. L. McMullin, M. F. Mahon, N. J. Press, C. G. Frost, Org. Biomol. Chem. 2017, 15, 5993-6000.
[101] K. Korvorapun, N. Kaplaneris, T. Rogge, S. Warratz, A. C. Stückl, L. Ackermann, ACS Catal. 2018, 8, 886-892.
[102] C. Cassani, G. Bergonzini, C.-J. Wallentin, Org. Lett. 2014, 16, 4228-4231.
[103] F. Fumagalli, S. Warratz, S.-K. Zhang, T. Rogge, C. Zhu, A. C. Stückl, L. Ackermann, Chem. Eur. J. 2018, 24, 3984-3988.
[104] K. Korvorapun, R. Kuniyil, L. Ackermann, ACS Catal. 2020, 10, 435-440.
[105] For selected examples of ruthenium-catalyzed C-C bond activation, see: a) Z. Hu, X.-Q. Hu, G. Zhang, L. J. Gooßen, Org. Lett. 2019, 21, 6770-6773; b) J. Zhu, P.-h. Chen, G. Lu, P. Liu, G. Dong, J. Am. Chem. Soc. 2019, 141, 18630-18640; c) N. Y. P. Kumar, A. Bechtoldt, K. Raghuvanshi, L. Ackermann, Angew. Chem. Int. Ed. 2016, 55, 6929-6932; d) J. Zhang, R. Shrestha, J. F. Hartwig, P. Zhao, Nat. Chem. 2016, 8, 1144-1151; e) N. Chatani, Y. Ie, F. Kakiuchi, S. Murai, J. Am. Chem. Soc. 1999, 121, 8645-8646.
[106] K. Korvorapun, M. Moselage, J. Struwe, T. Rogge, A. M. Messinis, L. Ackermann, Angew. Chem. Int. Ed. 2020, 59, DOI: 10.1002/anie. 202007144.
[107] M. Seki, ACS Catal. 2014, 4, 4047-4050.
[108] A. Schischko, H. Ren, N. Kaplaneris, L. Ackermann, Angew. Chem. Int. Ed. 2017, 56, 15761580.
[109] M. K. Lakshman, A. C. Deb, R. R. Chamala, P. Pradhan, R. Pratap, Angew. Chem. Int. Ed. 2011, 50, 11400-11404.
[110] For selected reviews on photoredox catalysis for $\mathrm{C}-\mathrm{H}$ functionalizations, see: a) C.-S. Wang, P. H. Dixneuf, J.-F. Soulé, Chem. Rev. 2018, 118, 7532-7585; b) J. Twilton, C. Le, P. Zhang, M. H. Shaw, R. W. Evans, D. W. C. MacMillan, Nat. Rev. Chem. 2017, 1, 0052; c) D. C. Fabry, M. Rueping, Acc. Chem. Res. 2016, 49, 1969-1979; d) J. M. R. Narayanam, C. R. J. Stephenson, Chem. Soc. Rev. 2011, 40, 102-113.
[111] For selected examples of iridium photocatalyst in C-H arylation, see: a) X. Zhang, D. W. C. MacMillan, J. Am. Chem. Soc. 2017, 139, 11353-11356; b) M. H. Shaw, V. W. Shurtleff, J. A. Terrett, J. D. Cuthbertson, D. W. C. MacMillan, Science 2016, 352, 1304-1308; c) D. R. Heitz, J. C. Tellis, G. A. Molander, J. Am. Chem. Soc. 2016, 138, 12715-12718; d) J. D. Cuthbertson, D. W. C. MacMillan, Nature 2015, 519, 74-77.
[112] For selected examples of ruthenium photocatalyst in C-H arylation, see: a) P. Natarajan, N. Kumar, M. Sharma, Org. Chem. Front. 2016, 3, 1265-1270; b) D. Kalyani, K. B. McMurtrey, S. R. Neufeldt, M. S. Sanford, J. Am. Chem. Soc. 2011, 133, 18566-18569; c) M. Osawa, H. Nagai, M. Akita, Dalton Trans. 2007, 827-829.
[113] A. Sagadevan, M. F. Greaney, Angew. Chem. Int. Ed. 2019, 58, 9826-9830.
[114] K. Korvorapun, J. Struwe, R. Kuniyil, A. Zangarelli, A. Casnati, M. Waeterschoot, L. Ackermann, Angew. Chem. Int. Ed. 2020, 59, DOI: 10.1002/anie.202003035.
[115] V. P. W. Böhm, T. Weskamp, C. W. K. Gstöttmayr, W. A. Herrmann, Angew. Chem. Int. Ed. 2000, 39, 1602-1604.
[116] a) M. Havelková, D. Dvořák, M. Hocek, Synthesis 2001, 2001, 1704-1710; b) L.-L. Gundersen, A. Kristin Bakkestuen, A. Jørgen Aasen, H. Øverås, F. Rise, Tetrahedron 1994, 50, 9743-9756.
[117] a) M. A. Ali, X. Yao, H. Sun, H. Lu, Org. Lett. 2015, 17, 1513-1516; b) M. Martín-Ortíz, M. Gómez-Gallego, C. Ramírez de Arellano, M. A. Sierra, Chem. Eur. J. 2012, 18, 1260312608; c) V. B. Oza, R. C. Corcoran, J. Org. Chem. 1995, 60, 3680-3684.
[118] M. Periasamy, G. Srinivas, P. Bharathi, J. Org. Chem. 1999, 64, 4204-4205.
[119] M. Hiromitsu, M. Yoshiharu, Bull. Chem. Soc. Jpn. 1980, 53, 1181-1182.
[120] J.-M. Bégouin, C. Gosmini, J. Org. Chem. 2009, 74, 3221-3224.
[121] B. Song, X. Zheng, J. Mo, B. Xu, Adv. Synth. Catal. 2010, 352, 329-335.
[122] A. Correa, C. Bolm, Adv. Synth. Catal. 2007, 349, 2673-2676.
[123] S. Song, X. Sun, X. Li, Y. Yuan, N. Jiao, Org. Lett. 2015, 17, 2886-2889.
[124] H. Wang, X. Sun, S. Zhang, G. Liu, C. Wang, L. Zhu, H. Zhang, Synlett 2018, 29, 2689-2692.
[125] L. Sun, G. Peng, H. Niu, Q. Wang, C. Li, Synthesis 2008, 3919-3924.
[126] Z. Li, Q.-Y. Chen, P.-D. Wang, Y. Wu, RSC Adv. 2013, 3, 5524-5528.
[127] M. Hempe, L. Schnellbächer, T. Wiesner, M. Reggelin, Synthesis 2017, 49, 4489-4499.
[128] K. L. Woon, A. Ariffin, K. W. Ho, S.-A. Chen, RSC Adv. 2018, 8, 9850-9857.
[129] R. Zheng, M. Häussler, H. Dong, J. W. Y. Lam, B. Z. Tang, Macromolecules 2006, 39, 79737984.
[130] S. Berger, Tetrahedron 1976, 32, 2451-2455.
[131] B. Charpentier, J.-M. Bernardon, J. Eustache, C. Millois, B. Martin, S. Michel, B. Shroot, J. Med. Chem. 1995, 38, 4993-5006.
[132] K. S. Root, C. L. Hill, L. M. Lawrence, G. M. Whitesides, J. Am. Chem. Soc. 1989, 111, 54055412.
[133] C. Shen, R.-R. Liu, R.-J. Fan, Y.-L. Li, T.-F. Xu, J.-R. Gao, Y.-X. Jia, J. Am. Chem. Soc. 2015, 137, 4936-4939.
$[134]$ a) T. T. Dang, A. M. Seayad, Adv. Synth. Catal. 2016, 358, 3373-3380; b) Z. Dong, J. Wang, Z. Ren, G. Dong, Angew. Chem. Int. Ed. 2015, 54, 12664-12668.
[135] a) L. Julià, M. P. Bosch, S. Rodriguez, A. Guerrero, J. Org. Chem. 2000, 65, 5098-5103; b) H. Taniguchi, K. P. Madden, Radiat. Res. 2000, 153, 447-453; c) L. D. Haire, P. H. Krygsman, E. G. Janzen, U. M. Oehler, J. Org. Chem. 1988, 53, 4535-4542.
[136] P. L. Creger, J. Am. Chem. Soc. 1970, 92, 1396-1397.
[137] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339-341.
[138] G. Sheldrick, Acta Cryst. A 2015, 71, 3-8.
[139] G. Sheldrick, Acta Cryst. A 2008, 64, 112-122.
[140] H. Huo, K. Harms, E. Meggers, J. Am. Chem. Soc. 2016, 138, 6936-6939.
[141] Y. Sunada, H. Soejima, H. Nagashima, Organometallics 2014, 33, 5936-5939.
[142] Z. Mo, A. Kostenko, Y.-P. Zhou, S. Yao, M. Driess, Chem. Eur. J. 2018, 24, 14608-14612.
[143] Q. Wu, C. Du, Y. Huang, X. Liu, Z. Long, F. Song, J. You, Chem. Sci. 2015, 6, 288-293.
[144] T. Rogge, L. Ackermann, Angew. Chem. Int. Ed. 2019, 58, 15640-15645.
[145] S. R. Yetra, T. Rogge, S. Warratz, J. Struwe, W. Peng, P. Vana, L. Ackermann, Angew. Chem. Int. Ed. 2019, 58, 7490-7494.
[146] I. Suzuki, H. Kondo, T. Kochi, F. Kakiuchi, J. Org. Chem. 2019, 84, 12975-12982.

7 Appendix: NMR spectra

133a
($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

153b
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

153c
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

153c
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

153c'
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

153c'
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\text { N }}{\substack{\text { ® } \\ \text { I } \\ \hline}}$

153d
$\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{+}{\circ}$
$\stackrel{\circ}{\circ}$
$\stackrel{1}{1}$

154aa ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

154bb
($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

154ab ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

154ab
${ }^{19}$ F-NMR
($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
ño No to 욱웁뭄

154cb
($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{n}{0}$

154cb
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

0
0
$\stackrel{0}{0}$
1

154db
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

154eb
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

154fb
($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

154ac ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

						$\xrightarrow{\text { T }}$									+	$\stackrel{\text { Nr }}{\substack{\text { N }}}$	-		Y		
J. 0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	$m^{4.5}$	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-c

ก

154ac
${ }^{19}$ F-NMR
($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{array}{lllllllllllllllllllll}-94 & -95 & -96 & -97 & -98 & -99 & -100 & -101 & -102 & -103 & -104 & -105 & -106 & -107 & -108 & -109 & -110 & -111 & -112 & -113\end{array}$

154gb
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

154hb
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

154hb
${ }^{19}$ F-NMR
($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^12]

154ib
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

154ib
$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

154ha ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^13]

N

154jb
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

154nb
($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\infty}{\square}$	m ~	do	$\stackrel{\square}{\text { m }}$
ず	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{7}$	$\stackrel{\circ}{-}$
,	\}	\|	\|

154pb
$\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

154qb ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ت゙

154qb ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

154rb
($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

8.78 .68 .58 .48 .38 .28 .18 .07 .97 .87 .77 .67 .57 .47 .37 .27 .17 .06 .96 .86 .76 .66 .56 .46 .36 .2 ppm

154sb $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

154bh
$\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

154eh
($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\overrightarrow{-}$
$\stackrel{\infty}{\infty}$
$\stackrel{\rightharpoonup}{1}$

154eh ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

154fh
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

154fh ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

154uh ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

154uh
${ }^{19}$ F-NMR
($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
\qquad

154ch
($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

-
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)


~~~

( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


154Ih
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

N
\(\stackrel{\circ}{\circ}\)
\(\stackrel{\rightharpoonup}{\circ}\)


+

154lh
( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )





154gh
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


154gh
( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


154hh
( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




154ai
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )







154aj
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\(\stackrel{\circ}{\circ}\)
\(\stackrel{\circ}{-}\)
\(\stackrel{1}{2}\)




154aj ( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



\begin{tabular}{lllllllllllllll} 
\\
30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 \\
ppm
\end{tabular}


154ah
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


154ah
\({ }^{19}\) F-NMR
( \(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



154ak
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )





154nh ( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


\footnotetext{
\(\stackrel{\stackrel{N}{N}}{\stackrel{\rightharpoonup}{2}}\)



154oh ( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )
}



154qI
\(\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



N \({ }^{\infty}\) F
N ~~~~


154qI
( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




154qm
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



154qm
( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




\(\stackrel{\rightharpoonup}{\underset{\sim}{i}}\)

\(\begin{array}{llllllllllllllllllllllllllllll}10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 1\end{array}\)

154qn
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



Mo o o


154qn ( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )
\(-198.15\)
ボ



154qo （ \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ）


154qh （ \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ）





\(\stackrel{\leftrightarrow}{\infty}\)
\begin{tabular}{|c|c|}
\hline ก &  \\
\hline 過 &  \\
\hline \(\stackrel{\square}{1}\) & \(\xrightarrow{-7}\) \\
\hline
\end{tabular}



154qp
\(\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)




154aq
( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )






154aq
\({ }^{19}\) F-NMR
( \(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


154ap
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



154ap
( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\footnotetext{
\(\begin{array}{llllllllllllllllllllll}10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 1\end{array}\)
}




\section*{154ap}
\({ }^{19}\) F-NMR
( \(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



154ar
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




154ar
\({ }^{19}\) F-NMR
( \(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\footnotetext{
\(\begin{array}{llllllllllllllllllllllllllll}-40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -1\end{array}\)
}





154wh
\({ }^{19}\) F-NMR
( \(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline . 90 & -92 & -94 & -96 & -98 & -100 & -102 & -104 & -106 & -108 & -110 & -112 & -114 & -116 & -118 & -120 & -122 & -124 \\
\hline & & & & & & & & & m & & & & & & & & \\
\hline
\end{tabular}


154wh'
( \(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )





154wh'
\({ }^{19}\) F-NMR
( \(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


156
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



156
( \(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



trans-154as
\({ }^{19}\) F-NMR
( \(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )






억욱
cis-154as
\({ }^{19}\) F-NMR
( \(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




157a
( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\section*{ \\ }




( \(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



157c
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


@in e



157c
( \(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )





159
( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


7 Appendix: NMR spectr \(\qquad\) _


159
\({ }^{19}\) F-NMR
( \(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )
100.44
100.46
100.48
\(\underset{r}{r}\)


160b
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




160b
\({ }^{19} \mathrm{~F}\)-NMR
( \(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


162
( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )






141a
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


\(\left.\begin{array}{lllllllllllllllllllll}00 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 1 \\ \mathrm{ppm}\end{array}\right)\)


and







141d
( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




\(\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)





141 g
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




141h
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


141h
( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\begin{tabular}{llllllllllllllllllllll}
\hline 00 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 1
\end{tabular}




141j
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




141k
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




\(\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)









141p
( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


141q
\(\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


\begin{tabular}{|c|c|c|c|}
\hline ヘ & \(\stackrel{\sim}{\sim}\) & ¢ \({ }_{\sim}^{\infty}\) &  \\
\hline \(\stackrel{\square}{\square}\) & \(\stackrel{\sim}{\sim}\) & ¢ ¢ &  \\
\hline । & & 1 & - \\
\hline
\end{tabular}


164a
\(\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\({ }^{19} \mathrm{~F}\)-NMR
( \(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )







166a
\(\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)








166c
( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )






166e
( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



166f
( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


166 g
( \(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

 \(\underset{\sim}{\underset{\sim}{m}} \underset{\sim}{\sim}\)

166 g
( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



\(\begin{array}{llllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}\)




166h
\({ }^{19}\) F-NMR
( \(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


166i
( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



167
( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



\(\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



( \(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



\(\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



175a
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )










177b
( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




179
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )





180a
\(\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)




\begin{tabular}{llllllllllllllllllllllllllll}
\hline 00 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 1 \\
\hline
\end{tabular}









143a
\(\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)











143d
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )










\footnotetext{

Nin in in \(\underbrace{\infty}\)
}
~웅








143g
\({ }^{19} \mathrm{~F}\)-NMR
( \(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )






143i
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )





(0)
8.88 .68 .48 .28 .07 .87 .67 .47 .27 .06 .86 .66 .46 .26 .05 .85 .65 .45 .25 .04 .84 .64 .44 .2
ppm










( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




1430
( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )





143p
( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




143q ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\section*{ \\  \\ \(\stackrel{\bullet}{\underset{\sim}{7}}\) \\ }


143r
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




143r
\({ }^{19}\) F-NMR
( \(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

1




143t
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



185ac
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




185ab
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )





185af
( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )






185ah
\(\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



185ah
( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


185ai
( \(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




\(\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



185aj
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\(\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{cc}
\circ & 0 \\
\underset{\sim}{m} & \stackrel{m}{7} \\
\underset{\sim}{\mid} & \dot{j}
\end{array}
\]}} \\
\hline & \\
\hline
\end{tabular}



185ak
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )










185jb
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )





185kb
( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




185al
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




185am
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



185am
( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )







( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




























\(\begin{array}{lllllllllllllllllllllllllllllllllll}8.6 & 8.4 & 8.2 & 8.0 & 7.8 & 7.6 & 7.4 & 7.2 & 7.0 & 6.8 & 6.6 & 6.4 & 6.2 & 6.0 & 5.8 & 5.6 & 5.4 & 5.2 & 5.0 & 4.8 & 4.6 & 4.4 & 4.2\end{array}\) ppm


187h
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




187i
( \(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )






187k
( \(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )






( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )













187q
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )





187r
( \(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




187
( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )








187s
( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



187s
\({ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\)
( \(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )














187x
\(\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)






\begin{tabular}{llllllllllllllllllll}
\hline 10 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \begin{tabular}{c}
0 \\
ppm
\end{tabular} & -10 & -20 & -30 & -40 & -50 & -60 & -70
\end{tabular}

( \(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




191
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



191
\(\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 00 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline & & & & & & & & & & ppm & & & & & & & & & \\
\hline
\end{tabular}




trans-192a
\({ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\)
\(\left(121 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.\) )

192b
( \(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\) )



192b
\({ }^{19}\) F \(\left\{{ }^{1} \mathrm{H}\right\}\)-NMR
\(\left(282 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)\)


192b
\({ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\)
( \(121 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\) )
\[
\begin{aligned}
& \square
\end{aligned}
\]



193
\({ }^{31}\) P\{ \(\left.{ }^{1} \mathrm{H}\right\}\)-NMR
( \(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\) )


Pr \({ }^{(1)}\)
O
\(\|\)

\section*{ñ}

( \(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\) )










145et
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




145ft
( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




201
( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )






145fj
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




145fu
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )








146gh
\({ }^{19}\) F-NMR
( \(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )
\begin{tabular}{lllllllllllllllllllllllllllllllllll}
\hline 30 & -85 & -90 & -95 & -100 & -105 & -110 & -115 & -120 & -125 & -130 & -135 & -140 & -145 & -150 & -155 & -160 & -165 & -1
\end{tabular}


146eh
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )





146eh
( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )







146fh
( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




146fb
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )





146gb
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



146gb
( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\section*{ \\ \(\underbrace{\sim \cdots} \underbrace{m} \underbrace{m}\)}
\(\underset{\sim}{\sim}\)
- +






146eb
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )





146eb
( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



146av
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



146av
( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )





202a
( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )





202b
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




202b
\({ }^{19}\) F-NMR
( \(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190 \\
\hline & & & & & & & & ppm & & & & & & & \\
\hline
\end{tabular}



202c
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )








( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )





202g
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



202h
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



( \(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



\section*{ón eno no do \\ }

202i
\({ }^{19} \mathrm{~F}\)-NMR
( \(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\footnotetext{
 ppm
}


 -

203a
( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )





203b
( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )





203b'
( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



146aj \(\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



146aj
( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\footnotetext{
\(\begin{array}{llllllllllllllllllll}00 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\ \mathrm{ppm} & & \end{array}\)
}






145ai
\(\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)


146ai
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



146ai
( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\section*{ \\ }







146am
\(\left.00 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



146am
\(\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)







146an
( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



145at
( \(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




145at ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




146dj
( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )






145gj ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )






145 gj
\({ }^{19}\) F-NMR
( \(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



145jj
( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



145jj'
( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )






( \(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )





Me


146cj
( \(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )







146ch
( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\(\stackrel{+}{⿺}\)
\(\stackrel{\text { ® }}{0}\)
\(\stackrel{1}{1}\)
1
\(\stackrel{\infty}{\infty}\)






146ch'
( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




146ch'
( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



146cu
( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




146 cm ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


\begin{tabular}{l}
\(\bullet\) \\
0 \\
0 \\
\hline
\end{tabular}

( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




\(146 \mathrm{~cm}^{\prime}\) ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



\(146 \mathrm{~cm}^{\prime}\) \(\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)














endo-145jx ( \(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\(\stackrel{n}{\sim}\)

endo-145jx ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



exo-146jx
( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




\(\stackrel{\stackrel{m}{m}}{\stackrel{m}{0}}\)

endo-146jx ( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )






cis-145js
( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



trans-145js ( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )









145cj
( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




人,


151a \(\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)




151g
( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




151h
( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




 ppm


151i
( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


151i
\({ }^{19} \mathrm{~F}\)-NMR
( \(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



151j
\(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)




151j
\({ }^{19} \mathrm{~F}\)-NMR
( \(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )

\footnotetext{

}


151k
( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )





151I



151m
( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



151m
\(\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)




151n
( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




1510
\(\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)\)




151p




151q
( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




151r
( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




151s
( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




151t
( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )





216a
( \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


216b
( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




216c




151u
( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




151v
( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




151v
\({ }^{19}\) F-NMR
( \(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )
\(\qquad\)






151x
( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )




151y
( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



\(151 z\)
( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



\(151 z\)
\({ }^{19}\) F-NMR
( \(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


\footnotetext{
\(-65-70-75-80 \quad-85-90 \quad-95-100-105-110-115-120-125-130-135-140-145-150-155-160-165-170-175-1\) ppm
}














( \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )



\(\qquad\)





\(\qquad\)
\(\begin{array}{llllllllllllllllllllllllllll}0 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10 & 5 & \begin{array}{lllllllllllll}0 \\ \mathrm{ppm}\end{array} & -5 & -10 & -15 & -20 & -25 & -30 & -35 & -40 & -45 & -50 & -55 & -6\end{array}\)


\begin{tabular}{lllllllllllllllllllllll}
20 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 1
\end{tabular}

\section*{Curriculum Vitae}

\section*{Personal Information}
\begin{tabular}{ll} 
Name: & Korkit Korvorapun \\
Date of Birth: & 16.12.1988 \\
Place of Birth: & Bangkok, Thailand \\
Nationality: & Thai
\end{tabular}

\section*{Academic Education}

05/2015-09/2020

06/2011-09/2014

05/2007-03/2011 Bachelor of Science (B.Sc.) in Chemistry (GPA 3.79 with the first class honors)

Bachelor Thesis under the supervision of Prof. Dr. Manat Pohmakotr (major advisor) and Assoc. Prof. Dr. Darunee Soorukram (co-advisor) Mahidol University, Bangkok, Thailand

Title: "Preliminary Study of the Reaction of \(\mathrm{PhSCF}_{2} \mathrm{SiMe}_{3}\) with Nitrile Oxides and Nitrones"

\section*{School Education}

2001-2007
Suksanareewittaya School (Secondary School), Bangkok, Thailand

\section*{Publications}
9) K. Korvorapun,' M. Moselage,' J. Struwe, T. Rogge, A. M. Messinis, L. Ackermann, "Regiodivergent C-H and Decarboxylative Alkylation by Ruthenium Catalysis: ortho versus meta Position-Selectivity" Angew. Chem. Int. Ed. 2020, 59, DOI: 10.1002/anie.202007144.
8) K. Korvorapun,' J. Struwe,' R. Kuniyil, A. Zangarelli, A. Casnati, M. Waeterschoot, L. Ackermann, "Photo-Induced Ruthenium-Catalyzed C-H Arylations at Ambient Temperature" Angew. Chem. Int. Ed. 2020, 59, DOI: 10.1002/anie. 202003035.
7) K. Korvorapun, R. C. Samanta, T. Rogge, L. Ackermann, "Ruthenium-Catalyzed Remote CH Functionalizations", in Remote C-H Bond Functionalizations: Methods and Strategies in Organic Synthesis (Eds.: D. Maiti, S. Guin), Wiley-VCH, Weinheim, 2020.
6) K. Korvorapun, R. Kuniyil, L. Ackermann, "Late-Stage Diversification by Selectivity Switch in meta-C-H Activation: Evidence for Singlet Stabilization" ACS Catal. 2020, 10, 435-440.
5) P. Gandeepan, J. Koeller, K. Korvorapun, J. Mohr, L. Ackermann, "Visible-Light-Enabled Ruthenium-Catalyzed meta-C-H Alkylation at Room Temperature" Angew. Chem. Int. Ed. 2019, 58, 9820-9825.
4) K. Korvorapun,' N. Kaplaneris,' T. Rogge, S. Warratz, A. C. StückI, L. Ackermann, "Sequential meta-/ortho-C-H Functionalizations by One-Pot Ruthenium(II/III) Catalysis" ACS Catal. 2018, 8, 886-892. 'equal contribution
3) J. Li,' K. Korvorapun,' S. De Sarkar,' T. Rogge, D. J. Burns, S. Warratz, L. Ackermann, "Ruthenium(II)-catalysed remote \(\mathrm{C}-\mathrm{H}\) alkylations as a versatile platform to metadecorated arenes" Nat. Commun. 2017, 8, 15430. 'equal contribution
2) S. Warratz, D. J. Burns, C. Zhu, K. Korvorapun, T. Rogge, J. Scholz, C. Jooss, D. Gelman, L. Ackermann, "meta-C-H Bromination on Purine Bases by Heterogeneous Ruthenium Catalysis" Angew. Chem. Int. Ed. 2017, 56, 1557-1560.
1) K. Korvorapun, D. Soorukram, C. Kuhakarn, P. Tuchinda, V. Reutrakul, M. Pohmakotr, "Stereoselective Nucleophilic Addition of \(\mathrm{PhSCF}_{2} \mathrm{SiMe}_{3}\) to Chiral Cyclic Nitrones: Asymmetric Synthesis of gem-Difluoromethylenated Polyhydroxypyrrolizidines and -indolizidines" Chem. Asian J. 2015, 10, 948-968.

Conferences
\begin{tabular}{ll} 
05/2013 & \begin{tabular}{l} 
The International Conference of the International Congress for \\
Innovation in Chemistry (PERCH-CIC Congress VIII), Pattaya, Thailand \\
(Poster Presentation)
\end{tabular} \\
\(09 / 2017\) & ICASEC Summer School on Organic Catalysis for Energy Conversion, \\
Göttingen, Germany (Poster Presentation)
\end{tabular}

\section*{Erklärung}

Hiermit versichere ich, dass ich die vorliegende Dissertation im Zeitraum von Mai 2015 bis September 2020 am Institut für Organische und Biomolekulare Chemie der Georg-August-Universität Göttingen auf Anregung und unter Anleitung von

\section*{Herrn Prof. Dr. Lutz Ackermann}
selbstständig durchgeführt und keine anderen als die angegeben Hilfsmittel und Quellen verwendet habe.

Göttingen, den 16.09.2020~~~


[^0]:    ${ }^{[a]}$ Reaction conditions: 139, or $147(0.25 \mathrm{mmol})$, NBS ( $\left.62,0.50 \mathrm{mmol}\right), 152(10 \mathrm{~mol} \%)$, DMA ( 0.50 mL ) $80^{\circ} \mathrm{C}, 20 \mathrm{~h}$, under air; yield of isolated products. ${ }^{[\mathrm{b}]} 100^{\circ} \mathrm{C}$.

[^1]:    [a] Reaction conditions: 135a ( 0.50 mmol ), 136a ( 1.50 mmol ), [ Ru ] ( $10 \mathrm{~mol} \%$ ), additive ( $30 \mathrm{~mol} \%$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(1.00 \mathrm{mmol})$, solvent $(2.0 \mathrm{~mL}), 120^{\circ} \mathrm{C}, 20 \mathrm{~h}$, under $\mathrm{N}_{2}$, then hydrolysis by $2 \mathrm{~N} \mathrm{HCl}, 3 \mathrm{~h}$; yield of isolated products.
     instead of TMP. TMP = 3,4,5-trimethoxyphenyl.

[^2]:    ${ }^{[a]}$ Reaction conditions: $135(0.50 \mathrm{mmol}), 136(1.50 \mathrm{mmol}),\left[\mathrm{RuCl}_{2}(p-c y m e n e)\right]_{2}(5.0 \mathrm{~mol} \%), 1-\mathrm{AdCO}_{2} \mathrm{H}(12,30 \mathrm{~mol} \%)$, $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( 2.0 equiv), $\mathrm{PhCMe}_{3}\left(2.0 \mathrm{~mL}\right.$ ), $120{ }^{\circ} \mathrm{C}, 20 \mathrm{~h}$, under $\mathrm{N}_{2}$, then hydrolysis by $2 \mathrm{~N} \mathrm{HCl}, 3 \mathrm{~h}$; yield of isolated products. ${ }^{[b]}$ Alk $-\mathrm{Br}(0.75 \mathrm{mmol})$. ${ }^{[\mathrm{cc}]}$ With Piv-Ile-OH (155) as the ligand.

[^3]:    ${ }^{[a]}$ Reaction conditions: 139 or $147(0.5 \mathrm{mmol})$, 140a ( 1.5 mmol ), $165(1.5 \mathrm{mmol})$, [Ru( $\left.\left.\mathrm{O}_{2} \mathrm{CAd}\right)_{2}(p-c y m e n e)\right]$ ( 163 , $10 \mathrm{~mol} \%), \mathrm{PPh}_{3}(10 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(2.0 \mathrm{mmol}), 1,4$-dioxane ( 2.0 mL ), $40^{\circ} \mathrm{C}, 18 \mathrm{~h}$, under $\mathrm{N}_{2}$, then $120^{\circ} \mathrm{C}, 18 \mathrm{~h}$; yield of isolated products. ${ }^{[b]}\left[\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CMes}\right)_{2}(p\right.$-cymene $\left.)\right]$ (33) was used at $60^{\circ} \mathrm{C}$.

[^4]:    [a] Reaction conditions: 125a ( 0.25 mmol ), 140k ( 0.75 mmol ), [ Ru$]\left(10 \mathrm{~mol} \%\right.$ ), phosphine ( $10 \mathrm{~mol} \%$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(0.50 \mathrm{mmol})$, $m$-xylene $(1.0 \mathrm{~mL}), 120^{\circ} \mathrm{C}, 20 \mathrm{~h}$, under $\mathrm{N}_{2}$; yield of isolated products. ${ }^{[b]}$ Reactions were performed by N. Kaplaneris.

[^5]:    ${ }^{[a]}$ Reaction conditions: 139a ( 0.50 mmol ), 142a ( 1.50 mmol ), [ Ru ] ( $10 \mathrm{~mol} \%$ ), $\mathrm{PPh}_{3}\left(10 \mathrm{~mol} \%\right.$ ), $\mathrm{K}_{3} \mathrm{PO} 4$ ( 1.00 mmol ), 1,4-dioxane $(2.0 \mathrm{~mL}), 40^{\circ} \mathrm{C}, 20 \mathrm{~h}$, under $\mathrm{N}_{2}$; yield of isolated products. The yield in parentheses was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy using 1,3,5-trimethoxybenzene as the internal standard. ${ }^{[b]} \mathrm{NMP}$ ( 1.0 mL ). [c] $\mathrm{K}_{2} \mathrm{CO} \mathrm{CO}_{3}{ }^{[d]} 60{ }^{\circ} \mathrm{C}$.
     [j] $100^{\circ} \mathrm{C}$.

[^6]:    ${ }^{[a]}$ Reaction conditions: 68b ( 0.50 mmol ), 142b ( 1.50 mmol ), [ Ru$](10 \mathrm{~mol} \%), \mathrm{PPh}_{3}(10 \mathrm{~mol} \%), \mathrm{KOAc}(20 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}$ ( 1.00 mmol ), 1,4-dioxane ( 2.0 mL ), $60^{\circ} \mathrm{C}, 20 \mathrm{~h}$, under $\mathrm{N}_{2}$. Yields were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy using 1,3,5-trimethoxybenzene as the internal standard and ratios of mono- to dibenzylated products were given in the parentheses. ${ }^{[b]}$ Only monobenzylated product was observed. ${ }^{[c]}$ Isolated yields.

[^7]:    ${ }^{[a]}$ Reaction conditions: $123(0.50 \mathrm{mmol}), 186(1.00 \mathrm{mmol})$, $\left[\mathrm{Ru}(\mathrm{OAc})_{2}(p\right.$-cymene)] (181, $10 \mathrm{~mol} \%), \mathrm{PPh}_{3}(10 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}$ ( 1.0 mmol ), 1,4-dioxane ( 2.0 mL ), $60^{\circ} \mathrm{C}, 20 \mathrm{~h}$, under $\mathrm{N}_{2}$; yield of isolated products.

[^8]:    ${ }^{[a]}$ Reaction conditions: 147 ( 0.50 mmol ), 136j ( 1.50 mmol ), [ $\mathrm{RuCl}_{2}(p \text {-cymene) }]_{2}$ ( $2.5 \mathrm{~mol} \%$ ), $\mathrm{MesCO}_{2} \mathrm{H}(\mathbf{3 1}, 30 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{mmol}), \mathrm{PhCMe}_{3}(1.0 \mathrm{~mL}), 120^{\circ} \mathrm{C}, 16 \mathrm{~h}$, under $\mathrm{N}_{2}$; yield of isolated products. ${ }^{[b]}$ The reactions were performed by J. Struwe. ${ }^{[c]}$ The yield of meta-alkylated products 146 was given in the parentheses. ${ }^{[d]}$ Dialkylated products were obtained in $29 \%$ yield.

[^9]:    ${ }^{[a]}$ Reaction conditions: $147 \mathrm{c}(0.50 \mathrm{mmol}), 136(0.75 \mathrm{mmol}),\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2}(2.5 \mathrm{~mol} \%)$, $\mathrm{MesCO}_{2} \mathrm{H}(31,30 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{mmol}), \mathrm{PhCMe}_{3}(1.0 \mathrm{~mL}), 120^{\circ} \mathrm{C}, 16 \mathrm{~h}$, under $\mathrm{N}_{2}$; yield of isolated products. ${ }^{[b]}$ The yield of di-meta-alkylated product is given in the parentheses.

[^10]:    ${ }^{[a]}$ Reaction conditions: 68e ( 0.5 mmol ), 46a (x equiv), $\left[\mathrm{RuCl}_{2}(p \text {-cymene) }]_{2}\right.$ ( $5.0 \mathrm{~mol} \%$ ), $\mathrm{NaOAc}(1.0 \mathrm{mmol})$, solvent $(2.0 \mathrm{~mL}), 30-35^{\circ} \mathrm{C}, 24 \mathrm{~h}$, under $\mathrm{N}_{2}$, irradiate Blue LEDs; yield of isolated products. The conversion in the parentheses were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy using 1,3,5-trimethoxybenzene as the internal standard. ${ }^{[b]}$ without light at $30-35{ }^{\circ} \mathrm{C}$. ${ }^{[c]}$ Reactions were performed by M. Waeterschoot.

[^11]:    ${ }^{\text {a] }}$ Reaction conditions: $68 \mathrm{e}(0.50 \mathrm{mmol}), 46(0.75 \mathrm{mmol}),\left[\mathrm{Ru}(\mathrm{OAc})_{2}(p-c y m e n e)\right](181,10 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{mmol})$, 1,4-dioxane ( 2.0 mL ), $30-35{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$, under $\mathrm{N}_{2}$, Blue LEDs; yield of isolated products. ${ }^{[\mathrm{b}]}$ Reactions were performed by A. Casnati. ${ }^{[\mathrm{c]}}$ Reactions were performed by J. Struwe. ${ }^{[d]}$ Without light at $30-35{ }^{\circ} \mathrm{C} .{ }^{[e]} 48 \mathrm{~h} .{ }^{[f]}$ DMA.

[^12]:    $\begin{array}{lllllllllllllllllllll}-89 & -91 & -93 & -95 & -97 & -99 & -101 & -103 & -105 & -107 & -109 & -111 & -113 & -115 & -117 & -119 & -121 & -123 & -125 & -127\end{array}$

[^13]:    

