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Abstract 

1 Abstract 
Influenza A virus (IAV) increases morbidity and mortality rates and novel antivirals are 

needed to combat the virus. Errors of the viral polymerase lead to the generation of 

defective RNAs. These DI-RNAs may interfere with wild-type (wt) IAV infection and may be 

packaged into defective interfering particles (DIPs), which exhibit antiviral activity. DIPs 

inhibit IAV infection by competing with wt IAV for cellular and viral resources required for 

genome replication (replication interference) and by inducing interferon (IFN). DI-244 is a 

prototypic DI-RNA derived from IAV genomic segment 1 that harbours a large central 

deletion, it exerts potent antiviral activity and is considered for the development as antiviral. 

However, it is unclear whether DI-244 inhibits IAV via replication interference and/or IFN 

induction. Moreover, there is no system available to produce DI-244 in the absence of wt 

IAV, which raises safety concerns. The goal of this thesis was to close these research gaps by 

engineering MDCK cells to express codon optimized PB2 (PB2opt). 

The PB2 open reading frame is destroyed in DI-244 and this defect should be complemented 

by the PB2 provided in trans. Indeed, MDCK-PB2opt cells in absence of wt IAV were able to 

produce DI-244 merely from plasmids. The generated DI-244 exerted strong antiviral activity 

against H1N1 and H3N2 IAV, but not against a dissimilar virus (vesicular stomatitis virus 

(VSV)). Furthermore, MDCK-PB2opt cells were successfully used to quantify DI-244 infectivity 

and thus constituted a useful tool to study how DI-244 inhibits IAV infection. This research 

revealed that any deletion in IAV genomic segment 1 could convert it into a DI-RNA and the 

antiviral activity was inversely correlated with DI-RNA length in the absence of a functional 

IFN system. In the presence of a functional IFN system, DI-244 induced a robust, partially 

STAT1-independent anti-IAV activity that was not determined by DI-RNA length and was 

more potent than DIP-mediated replication interference. Interestingly, RNAseq analysis and 

quantitative RT-PCR revealed that DI-244 induced expression of IFN-stimulating genes (ISGs) 

but not IFN, suggesting that DIPs might stimulate ISG expression via a novel pathway. In 

summary, the present study reports a system that allows production of DIPs in the absence 

of wt IAV and provides evidence that induction of the IFN system is a major contributor to 

DIP antiviral activity. Though, the induction of the IFN system does not involve DIP-

stimulated expression of IFN but direct induction of ISG expression.  
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Zusammenfassung 

2 Zusammenfassung 
Die Infektion mit dem Influenza-A-Virus (IAV) ist für hohe Morbidität und Mortalität 

verantwortlich und neue antivirale Medikamente werden dringend benötigt. Fehler der 

viralen Polymerase führen zur Bildung von defekten RNAs. Diese RNAs können mit der wt 

IAV-Infektion interferieren und in defective interfering particles (DIPs) verpackt werden, die 

antivirale Aktivität aufweisen. DIPs hemmen die IAV-Infektion indem sie mit wt IAV um 

Ressourcen konkurrieren, die für die Genomreplikation benötigt werden 

(Replikationsinterferenz), und indem sie das Interferon (IFN)-System aktivieren. DI-244 ist 

eine prototypische DI-RNA, die sich von dem genomischen Segment 1 von IAV ableitet und 

eine zentrale Deletion aufweist. DI-244 wirkt stark antiviral und könnte die Basis für ein 

neues Medikament darstellen. Es ist jedoch unklar, ob DI-244 die IAV-Infektion durch 

Replikationsinterferenz und/oder IFN-Induktion hemmt. Darüber kann DI-244 nicht ohne wt 

IAV hergestellt werden, was Sicherheitsbedenken aufwirft. Das Ziel dieser Arbeit war es, 

diese Forschungslücken zu schließen. 

Für die Produktion von DI-244 ohne IAV wurden MDCK-Zellen hergestellt, die 

kodonoptimiertes PB2 (PB2opt) exprimieren. Das PB2-Leseraster in DI-244 ist zerstört und 

dieser Defekt sollte durch das in trans bereitgestellte PB2 komplementiert werden. 

Tatsächlich gelang es DI-244 in MDCK-PB2opt Zellen mit Hilfe von Plasmiden und ohne wt 

IAV herzustellen. Das so erzeugte DI-244 hemmte H1N1- und H3N2-IAV und die DIP- 

Infektiosität konnte mit Hilfe der MDCK-PB2opt-Zellen quantifiziert werden. Mechanistische 

Analysen zeigten, dass jede Deletion im IAV-Genomsegment 1 dieses in eine DI-RNA 

verwandelte, deren antivirale Aktivität in Abwesenheit eines funktionierenden IFN-Systems 

invers mit der Länge der DI-RNA korrelierte. In IFN-kompetenten Zellen induzierte DI-244 

eine robuste, teilweise STAT1-unabhängige anti-IAV-Aktivität, die nicht durch die DI-RNA-

Länge bestimmt wurde und die stärker war als die DIP-vermittelte Replikationsinterferenz. 

Interessanterweise zeigten RNAseq- und PCR-Analysen, dass DI-244 die Expression von IFN-

stimulierten Genen (ISGs), aber nicht von IFN induzierte, was darauf hindeutet, dass DIPs die 

ISG-Expression über einen neuartigen Weg stimulieren können. Zusammenfassend zeigt 

diese Arbeit, dass DIPs in Abwesenheit von wt IAV hergestellt werden können und IFN-

unabhängig die ISG-Expression induzieren, was wahrscheinlich wesentlich zu ihrer 

antiviralen Aktivität beiträgt.  
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3 Introduction  
3.1 Viruses 

Viruses are intracellular parasites which require host cells for their replication. They harbour 

genetic material (DNA or RNA) that is protected by a protein shell and, for some viruses, a 

membrane. Viruses enter host cells by binding to surface receptors and hijack the 

biosynthesis machinery of the cell for gene expression and genome replication. Mutations 

occurring during genome replication can provide viruses with new biological properties, for 

instance, the ability to infect new hosts or to evade the immune response. Infection with 

well-studied viruses like human immunodeficiency virus (HIV) and influenza viruses is 

responsible for considerable global morbidity and mortality. Moreover, the emergence of 

new, highly transmissible viruses can threaten human health and economies, as evidenced 

by the current COVID-19 pandemic, which is caused by a novel coronavirus, the severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2). 

3.1.1 Influenza Viruses 

Influenza viruses cause acute infections of the respiratory tract. Symptoms usually last up to 

3-7 days and include sore throat, cough, fever, running nose, chills, and muscle aches (Ohmit 

and Monto 2006; Monto et al. 2000; Public Health England 2019). Influenza virus infection 

can also cause severe illness or death, especially in people with comorbidities, pregnant 

women, individuals with compromised immune system (Ramsay 2019) and infants aged 6 

months or younger (Cromer et al. 2014). Influenza viruses spread via droplets released by an 

infected person through sneezing and coughing, but also by contact with contaminated 

surfaces (Lau et al. 2010). The World Health Organisation (WHO) estimates that 3-5 million 

cases of severe illness and 0.3-0.5 million deaths occur annually worldwide due to recurring 

seasonal influenza (WHO 2020b). Furthermore, influenza pandemics may result in millions of 

deaths as seen with the so-called Spanish influenza in 1918. 

Influenza viruses belong to the family Orthomyxoviridae and are enveloped viruses with a 

segmented, negative-stranded RNA genome (Shaw and Palese 2013). They are divided into 4 

different genera: influenza A, B, C and D viruses (WHO 2020a, 2020c; Ghebrehewet et al. 

2016). Influenza A viruses (IAV) are further classified into subtypes according to their 

hemagglutinin (HA) and neuraminidase (NA) proteins and at present 18 different subtypes of 

HA and 11 subtypes of NA are known (Paules and Subbarao 2017). Two additional HA (H17 
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and H18) and NA (N10 and N11) subtypes have recently been identified in bats (Tong et al. 

2012; Tong et al. 2013). Influenza B viruses (IBV) are classified into 2 lineages – Victoria and 

Yamagata (Bennett et al. 2015; WHO 2020a, 2020c). Influenza virus strains are named 

according to their genus (type), the species from which the virus was isolated, the 

geographical location where the isolate was obtained, the number of the isolate, and the 

year of isolation (Shaw and Palese 2013). For example, A/Puerto Rico/8/34 (H1N1) 

designates 8th isolate of an IAV strain that was isolated from a human patient in Puerto Rico 

in 1934 and has antigenic subtypes 1 for both HA and NA (Krug 1989). A/Puerto Rico/8/34 

hereafter will be referred to as PR8. Influenza A, B and C viruses are known to infect humans 

(Webster et al. 1992) while influenza D viruses mainly infect pigs and cattle (Hause et al. 

2014; Ferguson et al. 2015). Both IAV and IBV can induce severe influenza but only IAV 

causes both epidemics and pandemics. Influenza C viruses cause only mild illness (Matsuzaki 

et al. 2016) and are clinically not relevant. 

Influenza viruses are spherical or filamentous in form with an average diameter of 100 nm  

and a length of 300 nm (Bouvier and Palese 2008). Particles contain an envelope, the viral 

genome, and viral proteins. A schematic diagram of the IAV structure is depicted in Figure 

3.1. Its envelope is formed by a lipid bilayer that harbours three viral proteins, HA, NA and 

the ion channel (M2). A layer of matrix protein (M1) is located below the membrane and the 

particle interior contains eight segments of genomic viral RNA (vRNA) associated with viral 

proteins in a ribonucleoprotein (vRNP) complex (Bouvier and Palese 2008). 

Each of the eight vRNP contains vRNA associated with nucleoprotein (NP) and the viral RNA-

dependent RNA polymerase (RdRp), which consists of the subunits polymerase basic 1 (PB1) 

and 2 (PB2) and polymerase acidic (PA) (Nogales and Martínez-Sobrido 2016). The coding 

region of each vRNA is flanked by non-coding regions (NCR) which are conserved for each 

segment among all IAV strains. The NCRs act as promoters to initiate RNA replication and 

mRNA expression. Sequences adjacent to the NCRs are segment-specific and together with 

the NCRs form the packaging signals required for the incorporation of vRNPs into progeny 

viral particles as well as polyadenylation signals. The eight segments vary in length with the 

segment encoding PB2 being the longest and the segment encoding the non-structural (NS) 

proteins being the shortest. Each viral segment encodes one or more viral proteins with 

specific functions (Table 3.1) (Bouvier and Palese 2008). 



 

5 
 

Introduction 

 

Figure 3.1 A schematic diagram of influenza A virus particle structure. The HA, NA, and matrix (M2) proteins 
are inserted into the lipid bilayer. Matrix protein (M1) surrounds the nucleocapsid, which compromises eight 
ssRNA segments associated with nucleoprotein (NP). The eight RNA segments encode 10 proteins: 3 
polymerase subunits (PB2, PB1, PA), HA, NP, NA, M1, M2, NS1, and NEP. Black lines in the vRNA segments 
represent 3’ and 5’ non-coding regions (NCR). PB1 and PB2, polymerase basic 1 and 2; PA, polymerase acidic; 
NP, nucleoprotein; M, Matrix; NS, non-structural; NEP, nuclear export protein. [Taken from (Nogales and 
Martínez-Sobrido 2016)] 

Table 3.1 Length and function of genome segments of influenza A virus (Bouvier and Palese 2008) *(Hayashi et 
al. 2015) nt, nucleotides 

Segment Length 
(nt)  

Proteins Function 

1 2341 PB2 Polymerase basic 2 Cap recognition 
2 
 

2341 
 

PB1 Polymerase basic 1 Elongation 
PB1-F2 
 
PB1-N40 

(Open reading frame 
overlapping with 
PB1) 

Pro-apoptotic activity, Interferon 
antagonist 
Unknown 

3 2233 
 

PA 
PA-X 

Polymerase acidic Endonuclease activity, protease 
Host shut-off* 

4 1778 HA Hemagglutinin Major antigen, receptor binding, 
membrane fusion  

5 1565 NP Nucleoprotein RNA binding, RNP nuclear export  
6 1413 NA Neuraminidase Sialidase activity, virus release 
7 1027 M1 Matrix protein 1 vRNP and glycoprotein interaction, 

RNP nuclear export, assembly and 
budding  

M2 Matrix protein 2 Ion channel activity, virus uncoating 
and assembly  

8 890 NS1 Non-structural 
protein 1 

Interferon antagonist activity  

 NS2 
/NEP 

Non-structural 
protein 2/ Nuclear 
Export protein 

Regulation of RNA synthesis  
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3.1.1.1 Biology of influenza A viruses  

Influenza A viruses (IAVs) infect diverse mammals, including humans, pigs, dogs, cats, and 

birds (Webster et al. 1992; Hussain et al. 2017). The natural reservoir host of IAVs are wild 

aquatic birds (Webster et al. 1992). The interspecies transmission of IAVs and the constant 

adaptation of these viruses to immune pressure promotes antigenic variation in HA and NA 

(Neumann et al. 2009). Thus, the constant acquisition of point mutations in NA and 

particularly in HA during the circulation of IAV and IBV in humans allow these viruses to 

evade antibody-mediated neutralization and to continuously spread in immunologically non-

naïve human populations. This process is termed antigenic drift (Paules and Subbarao 2017) 

and the mutations arise due to the absence of a proof-reading activity of the viral RNA-

dependant RNA polymerase (RdRp) (Cox and Subbarao 2000; Bennett et al. 2015). Antigenic 

drift is responsible for seasonal epidemics and for the constant need to reformulate vaccines 

(Paules and Subbarao 2017). Novel IAV can arise when two or more IAV coinfect cells and 

exchange genomic segments, which is termed reassortment. If these IAV harbour 

antigenically novel HA and NA proteins, i.e. proteins against which humans have not pre-

existing immunity, this process is called antigenic shift.  It may result in IAVs that can rapidly 

spread in the human population and lead to influenza pandemics (Paules and Subbarao 

2017; Ramsay 2019) . 

The deadliest known pandemic was the so-called Spanish influenza (Spanish flu) which 

occurred in 1918. The responsible H1N1 virus was the result of a reassortment of a human 

H1 and an avian N1 subtype virus and caused over 50 million deaths worldwide (Frost 1919; 

Neumann et al. 2009; CDC 2019a). The next IAV pandemic occurred in 1957 and is termed 

Asian flu. It was caused by an H2N2 virus, which emerged due to reassortment of the then 

circulating seasonal H1N1 IAV with an avian IAV, and resulted in 1-2 million deaths 

(Neumann et al. 2009; CDC 2019b). The next influenza pandemic was recorded in 1968 and 

is termed Hong Kong flu. It was caused by an H3N2 virus that emerged due to reassortment 

between the then circulating seasonal virus of the H2N2 subtype and an avian H3 subtype 

(Neumann et al. 2009). About 1 million deaths are attributed to the Hong Kong flu (CDC 

2019c). The most recent influenza pandemic was the 2009 Swine flu. The responsible virus 

originated from reassortments between human H3N2, North American avian and H1N1 

swine viruses followed by a further reassortment with an Eurasian avian-like swine H1N1 
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virus (Dawood et al. 2009; Neumann et al. 2009). The total number of deaths attributed to 

swine flu was 150,000-575,000 (CDC 2019d) and the consequences of the swine flu were 

thus comparable to that of seasonal influenza. 

In the past decades, IAV subtypes such as H5N1, H7N9, and H10N8 originating from birds 

were transmitted to humans, but human infection frequently requires close contact and 

exposure to high amounts of virus, which limits the transmissibility of these viruses (Lu et al. 

2016). 

3.1.1.2 Replication Cycle 

The replication cycle of IAV begins with the binding of the viral HA to cell surface proteins 

and lipids modified with sialic acids (Dou et al. 2018), where the HA of human and avian IAV 

subtype attaches to α-2,6-linkages and α-2,3-linkages, respectively (Bouvier and Palese 

2008). Following attachment, the virus is taken up into endosomal compartment, where the 

low pH environment stimulates the next steps required for infection. First, it initiates a 

conformational change in HA and that results in fusion between the viral and the endosomal 

membrane (Dou et al. 2018). Membrane fusion requires cleavage of HA by the cellular serine 

protease TMPRSS2 (transmembrane protease serine S1 member 2) in infected cells 

(Böttcher et al. 2006) or addition of trypsin to the culture medium (Klenk et al. 1975). The 

only exception is A/Wilson-Smith Neurotropic/33 (A/WSN/33) for which NA ensures HA 

cleavage by recruiting plasminogen (Goto and Kawaoka 1998; Goto et al. 2001; Chaipan et 

al. 2009). A/WSN/33 hereafter will be referred to as WSN. 

Second, the hydrogen ions are transported via the M2 ion channel into the interior of virus 

particles, which facilitates disassembly by abrogating protein-protein interactions (Shaw and 

Palese 2013). This allows release of viral ribo-nucleoprotein (vRNPs) particles into the 

cytoplasm and subsequent transport to the nucleus (Dou et al. 2018). In the nucleus, the 

viral polymerase, consisting of PB1, PB2 and PA transcribes the vRNA into 5’ capped and 3’ 

polyadenylated mRNAs. For this, the viral polymerase cuts cellular mRNAs near the 5’ end 

and uses the resulting small RNA segments as primers for transcription, a process termed 

cap snatching. Viral mRNA is then exported to the cytoplasm for translation of viral proteins 

(HA, NA and M2). Moreover, the viral polymerase generates complementary RNA (cRNA), 

which serves as a template for production of vRNA (Figure 3.2). Newly synthesized vRNPs are 
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transported into cytoplasm by M1 and NS2/NEP where assembly of progeny virions occurs 

thereafter released by budding from the plasma membrane (Te Velthuis and Fodor 2016). 

 
Figure 3.2 Influenza A virus replication cycle. The virus is engulfed after binding to cell surface receptors 
followed by endocytosis. After fusion of endosomal and viral membrane vRNPs are released into the 
cytoplasm. Subsequently, they are imported to the nucleus for viral replication and transcription. Thereafter, 
viral mRNA is exported for the translation of viral proteins to the cytoplasm. Finally, virus assembles and buds 
from the cell surface (Te Velthuis and Fodor 2016). 

3.1.1.3 Reverse genetics system of influenza A virus 

The generation and modification of recombinant influenza viruses require reverse genetics 

systems. The first reverse genetics system was established in 1999 using twelve plasmids: 

four expression plasmids for the viral RdRp complex and NP for reconstitution of vRNP and 

eight RNA polymerase-I (Pol-I) driven plasmids for transcription of vRNA segments 

(Neumann et al. 1999). Later the use of bidirectional plasmids allowed complete 

reconstitution of influenza virus from only 8 plasmids (Hoffmann et al. 2000a; Hoffmann et 

al. 2000b; Hoffmann 2002) (Figure 3.3 A). The highlight of this system is that each plasmid 

contains RNA Pol-I and-II promoters in opposite directions which, using the same cDNA, 

drive the expression of vRNA and encoded protein(s), respectively (Figure 3.3 A). Briefly, 

human Pol-I promoter and mouse Pol-I terminator are used to synthesize influenza vRNAs. 

Pol-I transcribes vRNA which is recognised by the viral polymerase complex. A Pol-II 

dependent cytomegalovirus promoter and a polyadenylation sequence direct the synthesis 

of segmented proteins from the same viral cDNAs (Figure 3.3 A). Based on this system 
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recombinant influenza viruses harbouring reporter genes were constructed and used to 

study virus replication and spread within the cell culture and in mice (Manicassamy et al. 

2010; Eckert et al. 2014; Nogales et al. 2015; Breen et al. 2016). 

The generation of recombinant influenza virus involves transfection of eight bi-directional 

plasmids into a co-culture of 293T and Madin-Darby Canine Kidney (MDCK) cells, where 293T 

cells provide high transfection efficiency while MDCK cells are known to provide high 

infectious titers (Martínez-Sobrido and García-Sastre 2010). During transfection of cells with 

these plasmids, PoI-I generates the eight-negative sense vRNAs while Pol-II directs the 

synthesis of viral proteins which are translated from viral mRNAs. Following translation, NP 

and polymerase complex associate with vRNAs to form vRNP complex (Figure 3.3 B) (Nogales 

and Martínez-Sobrido 2016). Consequently, the replication cycle process is initiated (section 

3.1.1.2). 

 

 
Figure 3.3 Influenza vRNA cloning and reverse genetics A) vRNA cloning into ambisense plasmid: a bi-
directional vector containing hPol-I and T1 to direct the synthesis of the vRNAs. In opposite orientation to Pol-I 
cassette, a Pol-II and aBGH directs the synthesis of proteins from same viral cDNAs hPol-I, human polymerase-I 
promoter; T1, mouse pol-I terminator; Pol-II, polymerase-II cytomegalovirus promoter; aBGH, polyadenylation 
signal of the gene encoding bovine growth hormone; Ori, plasmid origin of replication; Ampr, Ampicillin 
resistance gene B) In cells transfected with ambisense plasmids, the Pol-I cassette generates 8 (-) vRNAs while 
the Pol-II directs the synthesis of 8 viral mRNAs that are translated into viral proteins.(Nogales and Martínez-
Sobrido 2016) 

3.2 Prophylaxis and Therapy 

Infants, immunocompromised patients and the elderly are at risk of developing severe or 

fatal influenza (Mallia and Johnston 2007; Troeger et al. 2019), vaccination provides the 
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most effective protection (Houser and Subbarao 2015). However, vaccines against seasonal 

influenza will offer little to no protection against pandemic influenza. Besides vaccines, anti-

influenza drugs targeting viral proteins are available to combat influenza. Though, they have 

certain shortcomings such as high resistance, no activity against IBV and associated with side 

effects (Li et al. 2018).  

3.2.1 Vaccines 

Anti-IAV vaccines need to be reformulated on an annual basis due to antigenic drift. The 

current seasonal influenza vaccines are trivalent (H1N1, H3N2, one strain of IBV) or 

quadrivalent (H1N1, H3N2, two strains of IBV) (WHO 2020c; Grohskopf et al. 2019). Three 

classes of licenced vaccines are available. Inactivated influenza vaccines (IIV) contain non-

infectious particles and are commonly used. Live attenuated influenza vaccine (LAIV) 

contains a mixture of four strains of infectious influenza viruses with temperature-sensitive 

and attenuating mutations (Coelingh et al. 2014). Recombinant influenza vaccine (RIV) uses 

the baculovirus expression system or other viral vectors for production of recombinant HA 

(Grohskopf et al. 2019) 

Influenza vaccines are frequently generated in embryonated chicken eggs. The production 

involves isolation of selected strains, virus propagation in the allantoic cavity of eggs, 

harvesting, inactivation, purification and concentration (Stöhr et al. 2012). Despite being a 

well-established process, the whole vaccine production is time-consuming with several 

drawbacks such as limited availability of eggs, allergic reactions to residual egg protein and 

adaptation of influenza viruses to spread in eggs (Houser and Subbarao 2015). In the past 

decade, cell-based influenza vaccines were developed and are available for human 

treatment (Gallo-Ramírez et al. 2015). They are produced in three different cell lines: MDCK 

cells, African monkey kidney epithelial cells (Vero) or primary cultures of human retinoblasts 

(PER.C6) (Milián and Kamen 2015). The use of cell-based vaccines avoids allergic reactions to 

individuals sensitive to egg proteins, lowers the risk of contamination of eggs as a substrate, 

and provides easier and less expensive purification of the desired antigen and high scalability 

(Rappuoli 2006; Hegde 2015). However, despite the advancement in cell-culture vaccines, 

there is no universal flu vaccine.  
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3.2.2 Anti-influenza drugs 

Different classes of antiviral drugs have been approved for influenza treatment and the 

drugs target different steps of the viral replication cycle.  

The first class of antivirals approved are the adamantanes (Hayden et al. 1980), amantadine 

and rimantadine, which block the M2 ion channel and thereby inhibit viral disassembly (Hay 

et al. 1985). However, viruses rapidly acquire mutations in M2 that causes drug resistance 

(Hussain et al. 2017; Han et al. 2018). Therefore, use of M2 inhibitors is not recommended. 

The second class are NA inhibitors: oseltamivir, zanamivir, peramivir and laninamivir inhibit 

NA activity and prevent viral spread (Hussain et al. 2017; Han et al. 2018). Nevertheless, 

viruses can acquire resistance conferring mutations, particularly against oseltamivir. For 

example, a mutation occurred in the NA of 2009 pandemic H1N1 virus strain, resulting in the 

inactivity of the oseltamivir drug (Morlighem et al. 2011). 

The third class of inhibitors is represented by Arbidol, which inhibits HA-driven membrane 

fusion. This drug is licenced in Russia and China for treatment of seasonal influenza (Paules 

and Subbarao 2017). 

The fourth class of inhibitor is the RNA-dependent RNA polymerase inhibitor Favipiravir. It 

inhibits the RdRp of influenza virus preventing vRNA replication and transcription (Jin et al. 

2013). It is approved only in Japan and its use is highly restricted (Ison 2015).  

Fifth is Baloxavir Marboxil, an enzyme inhibitor targeting IAV cap-snatching by the viral PA 

subunit. It inhibits the cap-snatching process, thus blocking viral translation (Hayden et al. 

2018). 

Nevertheless, both IAV and IBV can become resistant to these drugs spontaneously or during 

antiviral treatment and some drugs have no activity against IBV. Therefore, novel antiviral 

approaches are needed and DIPs are one option. 

3.3 Defective Interfering Particles (DIPs) 

DIPs are virus mutants that naturally appears when a critical fragment of the viral genome is 

deleted completely or to an extent of non-functionality due to a replication error (Marriott 

and Dimmock 2010). DIPs were defined based on the following criteria 1) they are produced 

and amplified at high multiplicity of infection (MOI) 2) they are replication-deficient and 

need wild-type (wt) virus for their spread 3) they interfere with wt virus infection, when cells 



 

12 
 

Introduction 

are co-infected by DIPs and wt virus, DIPs are produced at the expense of wt virus 4) they 

contain a shortened version of the wt virus genome 5) they are responsible for interference 

(Nayak et al. 1978; Nayak et al. 1985). Any RNA possessing interfering ability is termed 

defective interfering RNA (DI-RNA) and the virus which helps DI-RNA replicate by providing 

the missing viral protein is termed as wt virus (Nayak et al. 1985).  

3.3.1 Overview of the types of DI-RNAs 

DIPs are known to be produced during DNA and RNA virus infection (Perrault 1981) in the 

laboratory and in the host. Viruses for which DIP formation has been described include the 

RNA viruses – Dengue virus, Polio virus, VSV, Semliki forest virus, SARS coronavirus, West 

Nile virus, Influenza virus, the DNA virus – Herpes simplex virus and plant viruses like 

Geminiviruses (Yang et al. 2019). The term DIPs was first proposed in 1970 (Huang and 

Baltimore 1970), although Von Magnus first described particle preparations with inhibitory 

activity as incomplete influenza  virus particles in 1950 (Magnus 1954). 

The generation and amplification of DI-RNAs are autonomous processes. The generation of 

DI-RNAs depends on transcription of viral RNA during a high MOI infection (Nayak et al. 

1978) and two mechanisms for generation of DI-RNAs were postulated. The “jumping 

polymerase” mechanism encompasses the polymerase detaching from one segment or a 

part of the template to another and reattaching to give rise to short mRNA strand ensuring 

to synthesize this mRNA before it further springs. Alternatively, in the “rolling polymerase” 

mechanism the polymerase does not completely separate from the template, instead it rolls 

over to a new site of the template located nearby (Nayak et al. 1985; Nayak et al. 1982). The 

range of genome present in DIPs are listed in Table 3.2 and depicted in Figure 3.4. 

 

Figure 3.4 Types of defective interfering RNAs [adapted from (Vignuzzi and López 2019)] UTR: Untranslated 
region present one on each side of a coding sequence on a strand of RNA 
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Table 3.2 Types of defective interfering RNA (DI-RNA) (Kolakofsky 1976; Leppert 1977): 

Types of DI-RNA DI-RNA arises when Example References 
Simple internal 

deletion 
part of the genome is deleted 
or skipped during replication 

Influenza A virus; 
Flock house virus  

(Perrault 1981; 
Jaworski and Routh 

2017) 
Snap back or 

hairpin 
replicase transcribes part of 
the genome, which snaps back 
and is then used as a template 
 

Vesicular 
stomatitis virus  

(Schubert and 
Lazzarini 1981) 

Copy back or 
Panhandle 

polymerase carries a partially 
made strand and switches 
back to transcribe 5’ termini 

Human 
metapneumovirus; 

Measles virus 

(van den Hoogen, 
Bernadette G. et al. 
2014; Mura et al. 
2017) 

Mosaic various regions may come 
from same wt virus but in an 
incorrect order 

Tombusvirus (White and Morris 
1994) 

Mutation mutations arise in functionally 
important parts of viral 
genome 

Influenza A virus (Kupke et al. 2019) 

 

3.3.2 Origin of DI-RNA of IAV 

In influenza virus infection a minimum of three types of particles are formed: wt particles, 

defective interfering particles (DIPs) (Nayak 1980), and defective non-interfering particles 

(Hirst and Pons 1973). These particles cannot be substantially separated from each other 

and the ratio with which they are generated may vary between different virus preparations 

and can be determined by plaque assay since non-plaque formers are believed to be 

defective because of the lack of a complete virus genome (Nayak et al. 1985). 

In 1954, IAV was serially passaged in embryonated chicken eggs at a high MOI. As a result, a 

significant decrease in infectivity relative to HA titer was observed. It was due to the 

formation of DIPs (Magnus 1954; Huang and Baltimore 1970). The interfering aspect of DIPs 

was already known from Von Magnus’ studies who infected mice with a fourth undiluted 

PR8 passage and observed complete suppression of wt IAV growth (Magnus 1954). In 

another study the infectious virus load was reduced but provided no protection (Holland and 

Doyle 1973). Though, in general, the stability and level of protection was low, which led to 

inconclusive and unreliable results. To circumvent this issue, DI-RNA sequences were cloned 

with DIPs and wt virus jointly generated by reverse genetics approaches (Duhaut and 

Dimmock 2002). The most extensively studied DI-RNA is DI-244 that arose 
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extemporaneously in PR8 infected cells and was cloned using recombinant virus technology. 

It has a large central deletion in segment 1 of IAV which encodes for the PB2 protein. Despite 

the large deletion the terminal sequences required for genome packaging remain intact in 

DI-244. DI-244 RNA has a total length of 395 nucleotides (nt) and has 244 nt at the 3´ end 

and 151 nt at the 5´ end, as depicted in Figure 3.5 (Dimmock et al. 2008).  

 
Figure 3.5 Schematic diagram of DI-244. DI-244 was derived from segment 1 of PR8, which encodes for PB2 
protein. The name stems from the 244 nt remaining at the 3’ end. The total number of nucleotides is shown at 
the right. The nucleotides remaining after central deletion are indicated at the breakpoints [adapted from 
(Meng et al. 2017)]. 

For DI-244 production, eight wt plasmids and DI-244 encoding plasmid are cotransfected 

into 293T cells and supernatants passaged in embryonated chicken eggs (Dimmock et al. 

2008) followed by purification through sucrose gradient centrifugation (Nayak 1980). This 

mixture is treated with UV-irradiation to inactivate wt IAV (Dimmock and Easton 2015) since 

physical separation of DI-RNA and wt virus genome is not possible due to similar particle size 

and density (Nayak et al. 1985). During UV inactivation, wt virus infectivity is selectively 

eliminated due to large size differences: 395 nt for DI-244 as compared to 13,600 nt for wt-

IAV (Dimmock et al. 2008). Long duration of UV-inactivation (about 8 minutes) inactivates all 

its protecting activity and infectivity, called inactive DI-244 (Dimmock et al. 2008).  

3.3.3 Application of DIPs as antivirals  

Dimmock and his colleagues showed that DI-244 DIP preparations are active both 

prophylactically and therapeutically (Dimmock et al. 2012a; Easton et al. 2011; Scott et al. 

2011c, 2011a). For their studies they used DI-244 produced via reverse genetics (Dimmock et 

al. 2008). To demonstrate homologous protection, they admisnistered DI-244 (DIPs) to mice 

jointly with WSN or first infected the animals with IAV and than administered DI-244. The 

mice were protected in both settings but protection decreased when the animals were 
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infected with virus 4 days before administration of DIPs and was completely lost when 

viruses was added 7 days before DIPs (Dimmock and Easton 2014; Dimmock et al. 2008).  

The ratio of DIP to wt virus plays an crucial role in DIP anti-viral activity. As infection 

progresses, the number of infectious wt IAV particles increases significantly where the 

amount of DIPs administered becomes insufficient to influence the infection. A concern from 

the preclinical studies of DI-244 was that replication of wt virus was reduced but not 

completely repressed. Ferrets are important animal models of IAV infection, and are used to 

evaluate vaccines. In a ferret study, animals were protected from infection with the 

pandemic A/California/04/2009 virus when DI-244 was given 2 hours prior to wt IAV 

infection and were immune to reinfection with A/Cal (Dimmock et al. 2012b).  

Besides protection against homologous viruses, DI-244 was shown to protect in vivo against 

heterologous viruses such as B/Lee/40 (IBV) (Scott et al. 2011a) and pneumonia virus of mice 

(PVM) (Easton et al. 2011). In these studies, coadministration of DI-244 with IBV protected 

the animals from clinical disease and pre-treatment of mice with DI-244 augmented the 

efficiency of protection (Scott et al. 2011a). Similarly, pre-treatment with a single dose of DI-

244 protected mice from PVM (Easton et al. 2011). A comparative study of heterologous 

protection from PVM and homologous protection from IAV showed that homologous 

protection was 5-fold more effective. This difference could be due to different mechanisms 

underlying the two types of protection (Dimmock and Easton 2014), which is summarized in 

below Figure 3.6. The mechanisms are defined later in detail. 

 
Figure 3.6 Overview of homologous and heterologous protection. DI-244 RNA protects from homologous 
challenge with IAV by replication interference and stimulation of the IFN system while protection against 
heterologous challenge is solely due to stimulation of the IFN system. [Adapted from (Easton et al. 2011)] 

DI 244/PR8 
virus

Homologous in vivo 
protection (by replication 

interference)
IAV

Heterologous in vivo 
protection (stimulation of 

IFN system)

IBV
PVM
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These studies prove, that DI-244 1) converts a potentially lethal infection into an avirulent 

infection 2) protection is possible during a substantial time window with a lower 

concentration of DIPs 3) is more effective than a non-clonal DI virus in providing protection 

(Dimmock and Easton 2014). However, these studies also demonstrated that DI viruses 1) 

are ineffective and could be diluted when not administered systematically targeting specific 

areas of organ (Dimmock and Easton 2015)  2) comprised of complex mixtures of different 

DI-RNAs (Jennings et al. 1983; Duhaut and Dimmock 1998) 3) unavoidably contained 

mixtures of defective RNAs that did not interfere with the replication of wt virus (Barrett et 

al. 1984). 4) heterogeneity led to reproducibility issues and prevented that solid conclusions 

on the potential of DIPs as antiviral could be drawn (Dimmock and Easton 2014).  

Wasik and colleagues reported an approach to reduce genetic variablity of DIPs (Wasik et al. 

2018). DI-244 was replicated in a designer cell line, AGE1.CR.pIX, originated from Muscovy 

duck and known to propagate influenza viruses (Lohr et al. 2009) faster than primary chicken 

cells (Jordan et al. 2009). The wt virus used to amplify DIPs was characterized to be free of 

deletions in other segments. This approach allowed DIP production under well-controlled 

conditions but still relied on the use wt IAV (Wasik et al. 2018). This limitation could be 

addressed by generating cell lines that provide these viral proteins in trans that are not 

encoded by DIPs because the respective open reading frames were destroyed during DI-RNA 

generation.  

3.3.4 Antiviral mechanism of DIPs 

Several mechanisms have been proposed for the inhibition of influenza virus infection by 

DIPs including replication interference, IFN induction, viral persistence and virulence 

modulation (Vignuzzi and López 2019) Figure 3.7. Replication interference and IFN induction 

will be discussed below. Viral persistence, the mechanism by which DIPs establish persistent 

infection in cell cultures and re-initiate replication when cells become infected with wt virus. 

It was found that persistently infected cell cultures, at a later passage, were resistant to 

homologous virus infection while producing little or no virus. (De and Nayak 1980). However, 

it is known that the amounts of DIPs remain constant during some of these infections 

(Moscona 1991). Virulence modulation, the mechanism by which DIPs reduce pathogenesis 

by mediating humoral immune responses, rather than auto-interference with replication of 

wt virus (Rabinowitz and Huprikar 1979). 
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Figure 3.7 Overview of mechanisms that may underly DIP antiviral activity. [inspired by (Vignuzzi and López 
2019)] 

3.3.4.1 Replication Interference  

Replication interference is defined as DIPs outcompeting wt virus for resources required for 

genome replication (Pathak and Nagy 2009). Replication interference depends on the size of 

the deletion present in the DI-RNA (Jennings et al. 1983; Nayak et al. 1985; Frensing et al. 

2013) since smaller DI-RNAs replicate faster than larger ones and can thus compete with the 

corresponding wt RNAs with higher efficiency (Nayak et al. 1985; Marriott and Dimmock 

2010). DI-RNAs derived from genomic segments 1, 2 and 3 (encoding the polymerase 

proteins) and harbouring internal deletions are frequently studied (Davis and Nayak 1979; 

Jennings et al. 1983). The 5’ end of these DI-RNAs must retain at least 150 nt in order to 

ensure DI-RNA replication (Duhaut and Dimmock 2002). However, DI-RNAs without 

deletions but harbouring multiple mutations can exist in IAV preparations and may exhibit 

strong antiviral activity via partially understood mechanisms (Kupke et al. 2019).  

The ratio between DIP and wt IAV critically determines replication interference and it has 

been suggested that based on RNA copy numbers, DIPs have to be administered at a 10,000 

to 100,000-fold excess relative to wt virus in order to exert potent antiviral activity via 

replication interference (Dimmock and Easton 2014). Finally, replication interference is most 

potent when the wt viruses are examined from which the DIPs were derived but weak or 

absent when heterologous viruses are studied (Marriott and Dimmock 2010). More 

specifically, replication interference of any IAV DI-RNAs probably extends to all wt IAVs. 

Consequently, DI-244 protects against various strains of IAV subtypes (Dimmock et al. 2008).  
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DIPs suppress replication of wt virus (Figure 3.8). Besides genome replication, DIPs are 

known to exert antiviral activity by affecting packaging steps of IAV. The smaller DI-RNAs are 

preferentially packaged into new virus particles in comparison to wt RNAs (Liao et al. 2016). 

DI-244 RNA interferes with replication of several genomic RNAs in cells infected with IAV and 

mutation of start codons of DI-244 has no effect on interference indicating inhibition is 

independent of any protein product (Meng et al. 2017). Mutation forms of DIPs, OP7 virus, 

reduced HA and infectious titers when co-infected with wt virus by interfering with virus 

replication (Kupke et al. 2019). 

 

 
Figure 3.8. DIPs suppress the cycle of wt viruses. The red arrows indicate the inhibitory effect of DIPs. During 
co-infection with wt virus, DIPs prevent wt virus A-C) from invading cells by binding to cell surface receptors D) 
replication cycle by competing for resources E) RNAs from packaging into progeny virions as DI RNAs being 
shorter are preferentially packaged F) at release step (Yang et al. 2019) 

3.3.4.2 Interferon induction 

Inhibition of heterologous viruses by DIPs suggested that replication interference is not the 

sole mechanism underlying DIP antiviral activity and pointed towards activation of innate 

antiviral defences. Proof of this concept was obtained when type I IFN receptor knock out 
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mice were observed to be weakly protected by DI-244 against PVM, although protection 

against WSN infection was robust (Easton et al. 2011). It was even suggested that DI-244 

may protect against all type I IFN-sensitive respiratory viruses in the presence of a functional 

IFN system. However, induction of IFN by DIPs might not be limited to type I IFN (Easton et 

al. 2011; Scott et al. 2011a) since type III IFN was shown to be important for  protection 

against IAV and IBV infection in vivo (Mordstein et al. 2010).  

3.3.5 The interferon system 

The innate immune system serves as the first line of defence against pathogens and 

macrophages, dendritic cells, neutrophils, eosinophils, natural killer (NK) cells are important 

innate immune cells. The IFN system is a essential component of innate immunity and 

essential for the defence against viral infections. IFNs were discovered in 1957 by Isaacs & 

Lindenmann as a substance produced by cells that interferes with influenza virus infection 

(Isaacs et al. 1957; Schneider et al. 2014; Isaacs and Lindenmann 1957). IFNs are small 

proteins secreted by cells (Lengyel 1982) following the recognition of pathogens (Wu and 

Chen 2014). 

3.3.6 Sensors and signal transducers of the interferon system  

The IFN system recognises pathogen associated molecular patterns (PAMPs) using different 

pattern recognition receptors (PRRs). PRRs are either endosomal transmembrane proteins or 

cytosolic proteins and PRRs recognizing nucleic acids are grouped into three types: Toll-like 

receptor (TLR),  cyclic GMP-AMP synthase (cGAS) and RIG-I-like receptors (RLR) (Fensterl et 

al. 2015). Binding of PAMPs to these PRRs induces conformational changes in the PRRs that 

result in activation of downstream adaptor molecules.  

TLRs are transmembrane proteins containing multiple leucine-rich repeat domains 

responsible for recognition of PAMPs, such as dsRNA (TLR3) or ssRNA (TLR7, TLR8) (Xagorari 

and Chlichlia 2008; Gay et al. 2014). They are localized at the plasma membrane or in 

endosomes and thus mainly responsible for detection of extracellular nucleic acids (Gay et 

al. 2014). The cytosolic cGAS acts as a DNA detector, which produces cyclic dinucleotides 

(2'3'-cGAMP) from ATP and GTP upon binding of DNA (Cai et al. 2014).The RLR family 

consists of three members that include the retinoic acid inducible gene I (RIG-I), melanoma 

differentiation factor 5 (MDA5), and Laboratory of Genetics and Physiology gene 2 (LGP2) 

(Baum et al. 2010). RIG-I recognises RNA of various lengths with 5’-triphosphates (5’ppp) at 



 

20 
 

Introduction 

the ends (Yoneyama et al. 2015; Weber et al. 2013; Goubau et al. 2014) whereas MDA5  

recognises long dsRNAs (Kato et al. 2008). Both RIG-I and MDA5 signal to mitochondrial 

antiviral signalling protein (MAVS) (Seth et al. 2005). PRR signalling ultimately activates 

interferon regulatory factor 3 (IRF3) to induce IFN-β gene expression (Honda et al. 2006; 

Paun and Pitha 2007). Subsequently IFN-β stimulates a first wave of ISG transcription, 

including IFN-inducible transcription factor IRF7. Eventually IRF7 activates various IFN-α 

subtypes, thereby mediating second wave of ISG transcription. (Lazear et al. 2019). In 

addition to IFN-α and IFN-β, IRF3 and/or IRF7 induces IFN-λ (Osterlund et al. 2007), whereas 

IRF1 induces IFN-λ1 (Odendall et al. 2017)   

Indirect evidence from quantification of interferon-inducing and defective particles from DIP 

preparations indicated that DIPs alone do not induce IFN (Ngunjiri et al. 2012). Another 

study showed mini viral RNAs (mvRNAs) bind to RIG-I and considerably induce higher IFN 

expression in comparison to full-length genome or DI-RNA (Te Velthuis et al. 2018). RIG-I 

plays a crucial role in sensing viral infection and commencing IFN expression (Pichlmair et al. 

2006). RIG-I preferentially associates with DI-RNAs in comparison to the corresponding wt  

RNAs in influenza-infected cells (Baum et al. 2010). RIG-I promotes disassembly of viral 

polymerase complex by binding to 5’ppp-ds RNA panhandle structure of PB2 exhibiting 

direct antiviral activity (Weber-Gerlach and Weber 2016).  

3.3.6.1 Types of interferons and receptors 

Interferons (IFN) are classified into three subtypes: type I (IFN- α, β, ε, κ, ω, ζ [mice]), type II 

(IFN-γ) and type III (IFN-λ) based on amino acid sequence and type of receptor they use for 

signalling. IFN-α and IFN-β signal through a heterodimeric IFN-alpha-receptor 1 (IFNAR1) or 

IFN-alpha-receptor 2 (IFNAR2) complex (Pestka et al. 2004). All tissue cells are capable of 

producing IFN-α and β, but a huge amount is produced by plasmacytoid dendritic cells 

(pDCs) and macrophages during influenza virus infection (Siegal et al. 1999).Type II IFN 

consists of single molecule, IFN-γ, produced by immune cells. It signals through homodimeric 

IFN-gamma-receptor 1 (IFNGR1) and IFN-gamma-receptor 2 (IFNGR2) (Pestka et al. 1997).  

Type III IFNs, namely IFN-λ1, IFN-λ2, IFN-λ3 are the most recently discovered members of the 

IFN group (Kotenko et al. 2003; Sheppard et al. 2003). IFN-λ is produced by pDCs and 

monocyte-derived DCs (Coccia et al. 2004). They signal through heterodimeric receptor 
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interleukin-10 receptor 2 (IL-10R2) and IFN-lambda-receptor (IFNLR) (Schneider et al. 2014). 

Type III IFN signalling is restricted to epithelial cells (Sommereyns et al. 2008). 

3.3.6.2 The JAK/STAT pathway 

In the 1990s a pathway for IFN-induced gene expression was found to be a important one, 

commonly known as the JAK-STAT signalling pathway (Velazquez et al. 1992; Darnell et al. 

1994). Upon binding of IFN to their cell-surface receptors a signalling cascade is triggered 

leading to drastic changes in the properties of cells, the foremost being induction of an 

antiviral state (Stark and Darnell 2012).  

 

 
Figure 3.9. The JAK-STAT signalling pathway. Binding of IFN to their respective receptors induces 
phosphorylation of Janus kinase (JAK) and tyrosine kinase (TYK). This leads to phosphorylation of signal 
transducer and activator of transcription (STAT). The STATs important for type I and III IFN signalling then bind 
to the IFN-regulatory factor 9 (IRF9) to form IFN-stimulated gene factor 3 (ISGF3) complex. The STAT1 
homodimers crucial for type II IFN signalling form the IFN-γ activation factor (GAF) complex. Both complexes 
translocate to the nucleus to induce antiviral genes (Schneider et al. 2014). 

Binding of type I and type III IFNs to their receptors trigger phosphorylation of Janus kinase 1 

(JAK1) and tyrosine kinase 2 (TYK2), which in turn phosphorylates the receptors at specific 

intracellular tyrosine residues. Subsequently, this leads to the phosphorylation of signal 

transducers and activators of transcription 1 and 2 (STAT 1 and 2). STAT1 and 2 form 

heterodimers which in turn recruit interferon regulatory factor (IRF9) to form the interferon-
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stimulated gene factor 3 (ISGF3) complex (Schindler et al. 1992; Stark and Darnell 2012). 

Binding of type II IFN dimers to their receptors lead to phosphorylation of JAK1 and JAK2 

tyrosine kinases and transphosphorylation of receptor chains then leads to phosphorylation 

of STAT1. Phosphorylated homodimers of STAT1 form the IFN-gamma activation factor 

(GAF). Both ISGF3 and GAF translocate into the nucleus and induce genes regulated by IFN-

stimulated response elements (ISRE) and gamma-activated sequences (GAS) respectively, 

resulting in the expression of antiviral genes (Schneider et al. 2014; Wang et al. 2017) (Figure 

3.9) 

3.3.6.3 Signal Transducer and Activator of Transcription (STAT) 

There are seven STAT proteins in mammals STAT 1, STAT2, STAT 3, STAT 4, STAT 5a, STAT5b, 

and STAT6 (Schindler et al. 1992; Darnell et al. 1994). STATs belongs to a family of 

transcription factors that are activated in response to cytokines, growth factors and certain 

peptides (Levy and Darnell 2002). STAT1 is phosphorylated in response to IFN binding to 

their receptors (Fu et al. 1992) but can also be acetylated by dephosphorylation of tyrosine 

and methylated by methyl transferase of STAT1 inactivator leading to increased binding 

affinity (Najjar and Fagard 2010). Studies report that after IFN-α treatment, STAT2 was first 

recruited via its Src homology region 2 (SH2) domain to phosphotyrosine and then promotes 

STAT1 phosphorylation (Stark et al. 1998; Park et al. 2000). In the absence of STAT1, STAT2 

interacts with IRF9 forming an ISGF3 complex to stimulate ISG expression (Fink and 

Grandvaux 2013). In STAT1-knockout cells, IFN-γ was found to regulate a large panel of 

genes by mediating via alternative pathways used by their receptors in primary cells (Gil et 

al. 2001).  

3.3.7 Interferon-stimulated genes  

Interferon-stimulated genes (ISGs) are liable for antiviral, antitumor and immunosuppressive 

properties of IFN. IFN induces the expression of roughly 400 genes, many of which encode 

proteins with antiviral activity that are responsible for the IFN-induced antiviral state 

(Iwasaki and Pillai 2014). ISGs with anti-influenza activity are listed in the Table 3.3 

ISGs control viral, bacterial, and parasitic infection by directly targeting pathogens or cellular 

pathways required for pathogen multiplication (Schneider et al. 2014). Importantly, PRRs, 

IRFs, JAK2, STAT1/2 and IRF9 are themselves ISGs which further stimulate IFN expression and 
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thus augment the IFN response. ISGs with antiviral activity can block early or late steps of 

the viral replication cycle (Schneider et al. 2014). For example, IFN-induced transmembrane 

proteins (IFITM) block virus entry (Brass et al. 2009), while viperin inhibits virus budding 

(Wang et al. 2007).  

The murine Myxovirus resistance gene (Mx1) was the first antiviral gene identified and is 

considered to be highly important for countering IAV infection. Human cells express Mx1 

(also termed MxA) and Mx2 (also termed MxB) proteins. Both are IFN-induced and belong to 

the family of GTPases. They block an early post-entry step occurring prior to viral genome 

replication (Schneider et al. 2014). Mx1 acts against IAV while Mx2 potently inhibits HIV-1 

and HIV-2 (Goujon et al. 2013). Mx1 traps the nucleocapsid of IAV and prevents it from 

reaching the nucleus (Zimmermann et al. 2011). Mx1 consists of a stalk region and a GTPase 

effector domain which both are essential for self-oligomerization and formation of a ring-like 

structure. This structure plays an important role in antiviral activity against IAV (Gao et al. 

2010; Haller et al. 2010; Haller et al. 2015; Villalón-Letelier et al. 2017). Mx1 is 

transcriptionally upregulated by type I and type III IFN. Infection of STAT1-deficient cells  

with NS1-deficient IAV did not induce Mx1 gene expression, indicating that Mx1 expression 

requires STAT1 signalling and cannot be triggered upon virus infection (Holzinger et al. 

2007). 

Table 3.3 Anti influenza virus-activity of interferon-stimulated genes [adapted from (Iwasaki and Pillai 2014)] 

ISGs Control mode Reference 
 OAS Inhibits virus by degrading viral RNA and blocking 

translation of viral mRNAs 
Senses foreign RNA and produces 2’-5’ adenylic acid 
which activates RNaseL that cleaves vRNA 

(Silverman 2007) 

PKR Blocks translation, activates the NF-κB pathway, 
Phosphorylates the α-subunit of EIF2α, and stabilizes 
IFN-α and IFNβ mRNA 

(Kumar et al. 1994; 
Balachandran et al. 
2000; Sadler and 
Williams 2007; Schulz 
et al. 2010) 

CH25H Affects virus at host-membrane fusion, protein 
maturation of viral structural proteins and of viral 
replication enzymes 
Blocks viral fusion by converting cholesterol to a soluble 
25-hydroxycholesterol 

(Liu et al. 2012; Blanc 
et al. 2013) 

IFITM1-3 Inhibits endocytic fusion events 
 

(Brass et al. 2009; 
Bailey et al. 2012; Jia 
et al. 2014) 
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OAS, 2’-5’-oligoadenylate synthetase; RNaseL, latent RNase; PKR, protein kinase R; EIF2α, eukaryotic translation 
initiation factor 2α; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B-cells; CH25H, cholesterol 
25 hydroxylase; IFN, interferon; IFITM, IFN-induced transmembrane; ISG, interferon stimulated gene; TRIM, 
tripartite motif-containing protein; MOV10, Moloney leukemia virus 10 homolog; SPRY, SPla and the RYanodine 
Receptor; ANP32A, acidic nuclear phosphoprotein 32 family member A; CD274, programmed cell death 1 
ligand 1 (PDL-1); TLR3, Toll-like receptor 3; TRIF, Toll/interleukin-1 receptor domain-containing adaptor 
inducing IFN-β; CPSF4, cellular protein cleavage and polyadenylation specificity factor 4 

 

 

 

 

 

ISGs Control mode Reference 
ISG15 Targets viral proteins that are newly translated for 

ubiquitination 
(Lenschow et al. 
2007; Durfee et al. 
2010) 

Viperin Forms lipid rafts from which virus buds and prevents 
release of influenza virus 

(Wang et al. 2007; 
Hinson and Cresswell 
2009a, 2009b) 

ISG20 Suppresses viral polymerase and exhibits exonuclease 
activity essential for anti-IAV activity 

(Qu et al. 2016) 

TRIM25 Binds vRNPs in the nucleus of infected cells and restrict 
the influenza replication. 
Inhibits the RNA chain elongation by restricting RNA 
movement in polymerase complex 

(Meyerson et al. 
2017) 

MOV10 Binds to the viral NP to prevent its import into the 
nucleus 

(Zhang et al. 2016) 

TRIM56 Inhibits replication of virus-infected cells in the nucleus 
independent of ubiquitin ligase activity where its C-
terminal tail suppresses viral RNA synthesis 

(Liu et al. 2016; 
Villalón-Letelier et al. 
2017) 

SERPINE1 Reduces infectivity of progeny virus by targeting a 
plasminogen activator inhibitor 1 (PA1-1) that inhibits 
IAV glycoprotein cleavage  

(Dittmann et al. 2015) 

TRIM41 Interacts with nucleoprotein of IAV through target 
binding site (SPRY domain) to inhibit the infection  

(Patil et al. 2018) 

ANP32A Overcomes viral polymerase host (avian) restriction by 
promoting interaction with the viral polymerase  

 (Domingues and Hale 
2017) 

CPSF4 Affects both viral replication and IAV-associated type I 
IFN secretion by interacting with viral NS1  

(Dubois et al. 2019) 

SMARCA2 Facilitates antiviral activity of MxA against IAV by being 
dependent on ISGs   

(Dornfeld et al. 2018) 

TRIM38 Regulates negatively TLR3-mediated IFN-β signalling by 
targeting TRIF 

(Xue et al. 2012) 

CD274 Accelerates influenza virus clearance and infection 
recovery by blockade in the airways 

(McNally et al. 2013) 

TRIM22  Induces proteasomal degradation of the viral NP  (Di Pietro et al. 2013) 
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4 Aims 
Seasonal influenza is responsible for half a million deaths every year. Influenza viruses 

rapidly develop resistance against antivirals and vaccines need to be constantly adapted to 

the circulating viruses. Therefore, novel antiviral strategies to combat influenza are urgently 

needed. One novel approach is the use of defective viral particles that harbour deletions in 

essential genes and interfere with wt virus infection. Such particles are called defective 

interfering particles (DIPs) and exhibit potential as therapeutic and prophylactic agents. 

However, so far, production of DIPs was dependent on the use of wt viruses as helper 

viruses, which raises safety concerns. Moreover, it was incompletely understood how DIPs 

inhibit influenza virus infection. These questions were to be addressed within the present 

thesis: 

The first aim of this thesis was to develop a system for production of DIPs in the absence of 

wt virus. Specifically, it was to be investigated whether expressing the viral polymerase 

protein PB2 in cells allows amplification of DIPs harbouring a deletion in the genomic 

segment encoding for PB2.  

The second aim of this thesis was to obtain insights into how DIPs inhibit influenza virus 

infection. Most importantly, it was to be determined to what extend interference with viral 

genome replication and interferon-induction contribute to the antiviral activity of DIPs. 
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A system for production of defective interfering particles in the absence of 
infectious influenza A viruses. 

(PloS One. March 2019) 

 

 

 

 

 

 

Interferon induction and not replication interference is the major determinant 
of anti-influenza virus activity of defective interfering particles  

(Prepared for submission) 
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5.1 First Manuscript 

 
 
 
 
 
 
 
 
 
 
 
 

Bdeir, Najat*; Arora, Prerna*; Gärtner, Sabine; Hoffmann, Markus; Reichl, Udo; Pöhlmann, 
Stefan*; Winkler, Michael* 

 
A system for production of defective interfering particles in the absence of infectious 

influenza A viruses. 

PloS One. March 2019. 

*shared first authorship 

 

 

 

 

 

 

 

 

 

 

 

Individual contribution: In the following manuscript I conducted experiments for Figure 1 A, 

B and C; “Stable expression of active PB2 protein in 293T and MDCK cells.” for Figure 4; 

“PB2opt stably expressed in 293T cells is active.” for Figure 5 D; “Codon optimization of PB2 

results in increased DIP production.” and for Figure 6 A; “DI-244 produced in PBopt 

expressing cell lines exerts anti-IAV activity.”    
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Second Manuscript 

 

 

 

 

 

 

 

 

Prerna Arora, Najat Bdeir, Sabine Gärtner, Stefanie Kramer, Lars Pelz, 
Ulrike Felgenhauer, Udo Reichl, Stephan Ludwig, Friedemann Weber, Gert Zimmer, Markus  

Hoffmann, Michael Winkler, Stefan Pöhlmann 
 

Interferon induction and not replication interference is the major determinant of anti-
influenza virus activity of defective interfering particles 

(Prepared for submission) 

 

 

 

 

 

 

 

 

 

Individual contribution: In the following manuscript I performed experiments for Figure 1 A, 

B, C, E and F; “ Antiviral activity of DI-RNAs inversely correlates with DI RNA length in the 

presence of trypsin”, Figure 2 A-E; “Induction of the IFN system is a major contributor to DIP 

antiviral activity” Figure 3A; “DI-244 does not induce IFN expression as determined in a VSV-

replicon-based bioassay” Furthermore, I analysed the data for Figure 3B; “DI-244 induces 

robust ISG but not IFN expression as determined by RNAseq.”     
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SUMMARY 26 

Influenza virus infection poses a serious threat to human health. Defective interfering 27 

(DI) RNAs result from errors during viral RNA replication and suppress influenza virus 28 

infection. DI RNAs packaged into defective interfering particles (DIPs) might allow for a 29 

novel approach to antiviral therapy. However, mutations required for converting a viral 30 

RNA into a DI RNA and the mechanism underlying DI RNA antiviral activity are 31 

incompletely understood. Here, we show that any central deletion is sufficient to convert 32 

a viral RNA into a DI RNA and that antiviral activity is inversely correlated with DI 33 

RNA length under conditions which disfavor inhibition of influenza virus infection by 34 

DIP-dependent induction of the IFN system. When full DIP-mediated induction of the 35 

IFN system was allowed before influenza virus infection, it was found to be the major 36 

contributor to DIP antiviral activity while DI RNA length played no detectable role. 37 

Notably, both DIPs and influenza virus triggered expression of IFN-stimulated genes 38 

(ISGs) while only virus stimulated robust expression of IFN, suggesting differences in 39 

DIP- and influenza virus-mediated activation of the effector functions of the IFN system. 40 

Collectively, our results support a model positing that DI RNAs inhibit viral infection by 41 

outcompeting wt RNAs for resources required for RNA replication but demonstrate 42 

that IFN induction outweighs replication interference in IFN-competent target cells.  43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 

 51 
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INTRODUCTION 52 

The annually recurring influenza epidemics are a major source of global morbidity and 53 

mortality and intermittent pandemics can have even more severe consequences (Paules and 54 

Subbarao, 2017). Influenza therapy and vaccination are available but suffer from serious 55 

shortcomings (Paules and Subbarao, 2017). The success of influenza therapy with currently 56 

licensed drugs, which target the viral proteins neuraminidase (NA), matrix protein 2 (M2) or 57 

polymerase acidic protein (PA), can be compromised by resistance development (Han et al., 58 

2018). Moreover, vaccines against epidemic influenza need to be annually adjusted to the 59 

viruses expected to circulate during the next influenza season and offer little or no protection 60 

against emerging pandemic viruses (Paules and Subbarao, 2017). Thus, the identification of 61 

novel targets and strategies for antiviral intervention is an important task. 62 

 Influenza viruses contain a segmented, negative sense RNA genome. The genomic 63 

segments are replicated by the viral polymerase, which consists of the subunits polymerase 64 

basic protein 1 (PB1), PB2 and PA (Te Velthuis and Fodor, 2016). The error rate of the viral 65 

polymerase is high and can result in the synthesis of genomic segments that harbor deletions 66 

(Davis et al., 1980; Davis and Nayak, 1979; Dimmock and Easton, 2014, 2015; Nakajima et 67 

al., 1979; Nayak et al., 1982; Nayak et al., 1978). Some of these defective segments interfere 68 

with the amplification of wt segments and are thus termed defective interfering (DI) RNAs 69 

(Davis et al., 1980; Davis and Nayak, 1979; Dimmock and Easton, 2014, 2015; Nakajima et 70 

al., 1979; Nayak et al., 1982). Packaging of DI RNAs into viral particles results in the 71 

formation of DI particles (DIPs), which suppress wt influenza virus spread (Dimmock and 72 

Easton, 2014, 2015). It has been proposed that DIPs suppress influenza virus infection by 73 

interfering with genome replication (a process subsequently termed replication interference) 74 

and by inducing interferon (IFN) (Baum et al., 2010; Dimmock and Easton, 2014, 2015; 75 

Frensing et al., 2014; Ngunjiri et al., 2013; Ngunjiri et al., 2012; Perez-Cidoncha et al., 2014; 76 

Scott et al., 2011a, b). However, this concept has not been systematically investigated and the 77 
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relative contribution of replication interference and IFN induction to DIP antiviral activity is 78 

unknown. 79 

 We recently developed a cell culture system that allows production of genetically 80 

defined DIPs based on reverse genetics and a cell line complementing defects in influenza A 81 

virus (IAV) genomic segment 1 (Bdeir et al., 2019). Here, we used this system as well as a 82 

mini-replicon assay (Zimmermann et al., 2011) to analyze the contribution of replication 83 

interference and IFN induction to antiviral activity of DIPs. We report that in the mini-84 

replicon assay any central deletion in segment 1, 2 or 3 converts these segments into DI 85 

RNAs, which suppress replication of diverse target segments. Inhibitory activity of these DI 86 

RNAs was inversely correlated with segment length and a similar correlation was seen in the 87 

context of DIPs and IAV infection under conditions which disfavored IAV inhibition by DIP-88 

dependent induction of the IFN system. If induction of the IFN system was allowed before 89 

IAV infection, it largely accounted for DIP antiviral activity. Finally, DIPs robustly induced 90 

ISG but not IFN expression, indicating that IAV and DIPs may differ in the activation of the 91 

effector functions of the IFN system. Our results suggest that although interference with 92 

genome replication contributes to DIP antiviral activity, the induction of IFN is the major 93 

determinant of suppression of virus infection by DIPs. 94 

 95 

RESULTS  96 

 97 

DI-244 inhibits segment replication in a mini-replicon assay and inhibition is 98 

independent of the truncated PB2 open reading frame 99 

We first investigated whether a previously described IAV mini-replicon assay (Zimmermann 100 

et al., 2011) is suitable to detect inhibition of IAV genome replication by a prototypic 101 

segment 1-derived DI RNA, DI-244 (Dimmock et al., 2008). This assay is based on a firefly 102 

luciferase open reading frame flanked by the 5’ and 3’ ends of IAV segment 8, which is 103 
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amplified in cells upon coexpression of the constituents of the viral polymerase complex, 104 

PB2, PB1, PA, and the viral NP protein (Zimmermann et al., 2011). Transfection of 293T 105 

cells with plasmids encoding the mini-genome reporter segment and the IAV proteins 106 

mentioned above resulted in luciferase activities in cell lysates that were approximately 107 

1,000-fold higher than those measured in cells transfected with the reporter alone or 108 

transfected with the full set of plasmids except the PB2 encoding plasmid (Figure 1A). 109 

Moreover, cotransfection of two different amounts of DI-244 encoding plasmid resulted in a 110 

concentration dependent decrease in luciferase activity, indicating that DI-244 inhibited 111 

replication of the reporter segment (Figure 1A). This inhibitory activity was also observed 112 

when the PB2 start codon in DI-244 and two subsequent ATGs (positions 11 and 28) were 113 

mutated (Figure 1B). In contrast, transfection of expression plasmid pCAGGS containing the 114 

truncated PB2 ORF of DI-244 or empty pCAGGS did not reduce luciferase signals (Figure 115 

1B). These results indicate that inhibition of segment replication by DI-244 can be visualized 116 

in the mini-replicon assay and does not require expression of truncated PB2. 117 

 118 

Inhibitory activity of segment 1, 2 and 3-derived DI RNAs is inversely correlated with 119 

RNA length and is independent of the target segment 120 

 It is believed that the short length of DI-244 as compared to wt segment 1 results in faster 121 

amplification of DI-244 and ultimately in suppression of amplification of the wt segment 122 

(Dimmock and Easton, 2014, 2015).  If correct, one would assume that the length of a DI 123 

RNA is a major determinant of antiviral activity. We explored this possibility by investigating 124 

the capacity of a set of ten segment 1-derived RNAs with nested central deletions to inhibit 125 

segment amplification in the mini-replicon assay. All RNAs tested exerted inhibitory activity 126 

and an inverse correlation between RNA length and inhibitory activity was observed (Figure 127 

1C, Table S1). Moreover, further shortening of DI-244 did not augment inhibitory activity 128 

(not shown), suggesting that DI-244 length may be optimal for inhibition of wt segment 129 
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replication. In sum, our results show that the ability of segment 1-derived DI RNAs to block 130 

replication of a wt segment is dependent on the DI RNA length. 131 

 We next explored whether the inverse correlation between length and inhibitory 132 

activity is also observed for segment 2- and 3-derived DI RNAs. For this, we introduced 133 

central, nested deletions in segment 2 and 3 and investigated inhibitory activity in the mini-134 

replicon system. As for segment 1-derived RNAs, all segment 2- and 3-based RNAs with 135 

deletions exerted inhibitory activity and inhibition inversely correlated with RNA length, 136 

although this correlation was more pronounced for segment 2 as compared to segment 3 137 

(Figure 1D, Table S1).  138 

 Next, we examined whether the segment 1-, 2- and 3-derived DI RNAs with the 139 

largest deletion (constructs DI-244 (segment 1, S1), DI-156 (segment 2, S2), DI-178 (segment 140 

3, S3), Table S1) were able to efficiently suppress replication of different IAV segments or 141 

were mainly active against segment 8, which was so far employed in the mini-replicon assay. 142 

For this, we added the 5’ and 3’ ends of segments 1, 2, 4, 6, and 7 to the firefly luciferase 143 

sequence and tested the amplification of these reporter segments in the mini-replicon assay. In 144 

the absence of DI RNAs, all segments were efficiently amplified, as demonstrated by high 145 

luciferase activity in lysates of cells coexpressing PB2, PB1, PA and NP (Figure 1E). 146 

Cotransfection of two different amounts of segment 1-, 2- or 3-derived DI RNAs reduced 147 

replication of all reporter segments efficiently and in a concentration dependent manner 148 

(Figure 1E). Thus, in the mini-replicon assay, introduction of a deletion into an IAV genomic 149 

segment is sufficient to convert it into a DI RNA and length and inhibitory activity of these 150 

DI RNAs are inversely correlated. 151 

 152 

Inverse correlation between anti-IAV activity of DIPs and DI RNA length 153 

 We recently reported a cell culture system for production of DIPs in the absence of helper 154 

virus, which relies on IAV reverse genetics and DIP producer cell lines stably expressing the 155 
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PB2 protein (Bdeir et al., 2019). We employed this system to generate DIPs with nested 156 

deletions in segment 1 and assessed their ability to inhibit infection of MDCK cells with 157 

A/PR/8/34 (PR8). We found that DI-244, which contains the smallest DI RNA, inhibited PR8 158 

infection with the highest efficiency and that inhibitory activity of DIPs decreased as DI RNA 159 

length increased (Figure 1F). Thus, an inverse correlation between DI RNA length and 160 

inhibitory activity observed in the mini-replicon assay could be confirmed in the context of 161 

DIPs, at least under the conditions tested. 162 

 163 

Preincubation of target cells with DI-244 increases antiviral activity 164 

It has been reported that DIPs can block viral infection by stimulating the IFN system (Scott 165 

et al., 2011a, b). Therefore, we sought to clarify whether induction of the IFN system could 166 

contribute to DI-244 antiviral activity in MDCK cells. Trypsin is used for A/PR8/34 167 

activation but can inactivate IFNα (Figure 2A) (Seitz et al., 2012) and can thus cofound 168 

analyses of IAV inhibition by the IFN system. Therefore, we switched to A/WSN/33 (WSN) 169 

as challenge virus and WSN-derived DIPs, since WSN can replicate trypsin-independently in 170 

cell cultures containing fetal bovine serum (FBS) (Goto and Kawaoka, 1998).  To obtain first 171 

insights into a potential role of the IFN system in DIP antiviral activity,  we reasoned that if 172 

induction of the IFN system was a major determinant of DIP antiviral activity, then time-of-173 

DIP addition to target cells should have a major impact on the efficiency of IAV inhibition by 174 

DIPs. Thus, addition of DIPs and virus to target cells at the same time should preclude the 175 

establishment of a DIP induced antiviral state prior to IAV infection. In contrast, addition of 176 

DIPs at 24 h before virus should allow for establishment of such an antiviral state and might 177 

thereby boost DIP antiviral activity. Preincubation of target MDCK cells with DI-244 for 24 h 178 

indeed increased DIP antiviral activity as compared to simultaneous addition of DI-244 and 179 

IAV, especially when high doses of DI-244 were analyzed (Figure 2B, left panel). 180 

Unexpectedly, similar results were obtained in the presence of trypsin (Figure 2B, right 181 



 

54 
 

Manuscripts 

panel), indicating that the enhanced antiviral activity of DI-244 upon 24 h preincubation with 182 

target cells was likely not due to induction of IFNα or another trypsin-sensitive antiviral host 183 

cell protein. 184 

  185 

DI-244 induces anti-IAV activity in A549 cells in a STAT1-independent fashion 186 

In order to more directly assess the contribution of the IFN system to DI-244 antiviral 187 

activity, we used A549 wt cells and A549 cells which lack STAT1 (signal transducer and 188 

activator of transcription 1, STAT1-/-) and are thus defective in IFN-induced signaling. 189 

Confirmatory experiments revealed that IFNα, IAV and DI-244 strongly upregulated MX1 190 

expression in A549 wt but not STAT1-/- cells, in keeping with a defective JAK/STAT 191 

signaling pathway (Figure 2C). Addition of undiluted and 1:10 diluted DI-244 to A549 cells 192 

at 24 h before infection with WSN resulted in 100 -fold higher antiviral activity as compared 193 

to DI-244 added at the same time as virus (Figure 2D), confirming and extending the data 194 

obtained with MDCK cells. Unexpectedly, addition of undiluted DIP to A549 STAT1-/- cells 195 

still resulted in high antiviral activity (Figure 2D), although 10-fold diluted DI-244 showed 196 

markedly reduced antiviral activity in STAT1-/- cells as compared to wt cells. In contrast, 197 

inhibition of vesicular stomatitis virus (VSV) infection by DI-244 was completely dependent 198 

on STAT1, independent of the DIP dose used (Figure 2D). Finally, we asked whether the 199 

antiviral activity of DIPs still depends on the DI RNA length if DIPs are added to cells before 200 

virus. In contrast to what was observed with MDCK cells in the presence of trypsin, all DIPs 201 

with nested deletions in segment 1 inhibited WSN infection of A549 wt cells with similar 202 

efficiency (Figure 2E and data not shown), indicating that the contribution of replication 203 

interference to DIP antiviral activity was minor or absent under those conditions. Collectively, 204 

our findings indicate that DIPs can induce robust, partially STAT1-independent anti-IAV 205 

activity that is not determined by DI RNA length and markedly more potent than DIP-206 

mediated inhibition of IAV genome replication. 207 
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DI-244 induces robust expression of ISGs but not IFN 208 

In order to understand how DIPs, activate the IFN system, we compared DIP- and IAV-209 

mediated stimulation of IFN expression. For this, an IFN bioassay was employed that was 210 

based on VSV, a highly IFN-sensitive virus. A549 or A549 STAT1-/- cells were incubated 211 

with IAV, VSV or DI-244 for 24 h, the supernatants collected and heat and acid treated to 212 

inactivate viral particles but not IFN, which is known to display a certain heat and acid 213 

stability. Subsequently, the supernatants were added to target cells for 16-18 h followed by 214 

infection of A549 target cells with VSV and quantification of infection. For standardization, 215 

A549 cells were incubated with recombinant IFNα, infected and infection efficiency 216 

quantified. Supernatants from IAV exposed A549 wt cells but not A549 STAT1-/- cells 217 

potently inhibited VSV infection (Figure 3A), indicating that IAV induced production of IFN 218 

in a STAT1-dependent fashion, as expected. Similar findings were made with supernatants 219 

from VSV exposed cells but antiviral activity was independent of STAT1 expression (Figure 220 

3A), again in agreement with published data (Basu et al., 2006). Finally, and unexpectedly, 221 

supernatants from A549 wt cells exposed to DI-244 were not inhibitory and the same finding 222 

was made for supernatant from DI-244 treated A549 STAT1-/- cells, indicating that IFN 223 

induction by DI-244 was low or absent. 224 

 The ability of DI-244 to inhibit IAV and VSV infection without inducing IFN posed 225 

the question how DI-244 alters gene expression in target cells to block infection. To address 226 

this question, A549 cells were either incubated with control supernatants or supernatants 227 

containing DI-244 or IAV and subjected to RNAseq analysis. PR8 was employed for these 228 

studies, in order to limit viral replication to a single cycle (since no trypsin was added). 229 

Neither PR8 nor DI-244 induced the expression of IFN receptors (Figure 3B). In contrast, 230 

PR8 but not DI-244 induced expression of IFNβ and IFNλ (Figure 3B). Despite the 231 

differential upregulation of IFNs by PR8 and DI-244 both induced the robust expression of 232 

antiviral ISGs, including MX1, IFITM1 and ISG15, although induction by PR8 was more 233 
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efficient than that observed for DI-244 (Figure 3B). Moreover, no ISG induction was 234 

observed in PR8 or DIP treated A549 STAT1-/- cells, with the exception of ISG15 and 235 

RSAD2 (Viperin), the expression of which was induced by PR8 but not IAV. Finally, results 236 

with A549 wt cells were confirmed by qRT-PCR analyses. Induction of IFNβ and IFNλ by 237 

DI-244 was at least 100-fold less efficient as compared to PR8 while differences in ISG 238 

induction were frequently less than 10-fold (Figure 3C). In sum, these results suggest that DI-239 

244 inhibits viral infection by the IFN-independent, STAT1-dependent induction of ISG 240 

expression.  241 

 242 

DISCUSSION 243 

DI RNAs arise in IAV infected cell cultures, eggs, animals and patients (Bean et al., 1985; 244 

Chambers and Webster, 1987; Dimmock and Easton, 2014, 2015; Dimmock et al., 2008; 245 

Saira et al., 2013; Von Magnus, 1954). They inhibit IAV infection and might modulate IAV 246 

intra- and interpatient spread and pathogenesis. However, the mechanism underlying DI RNA 247 

antiviral activity and the determinants controlling whether a defective viral genomic RNA is 248 

also interfering are incompletely understood. Here, we show that any central deletion in 249 

segments 1, 2 and 3 of IAV is sufficient to convert these RNAs into DI RNAs and that 250 

inhibitory activity of the respective DI RNAs extends to all tested IAV genomic RNAs. 251 

Moreover, we provide evidence that the contribution of replication interference to DIP 252 

antiviral activity in cell culture is minor as compared to induction of the IFN system.  253 

 IAV and influenza B virus DI RNAs usually contain deletions relative to the genomic 254 

RNAs they arose from (Dimmock and Easton, 2014, 2015), although an exception has 255 

recently been reported (Kupke et al., 2019). Moreover, DI RNAs derived from IAV segments 256 

1-3, which encode the subunits of the viral polymerase, arise more frequently than those 257 

derived from other segments (Davis et al., 1980; Davis and Nayak, 1979; Dimmock and 258 

Easton, 2014, 2015; Frensing et al., 2013; Moss and Brownlee, 1981; Nakajima et al., 1979) 259 
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and were thus in the focus of the present study. The almost universal presence of a deletion in 260 

DI RNAs suggests that their shorter length might allow them to out-compete their parental 261 

RNAs for resources required for RNA replication. Although this hypothesis is frequently 262 

posited (Dimmock and Easton, 2014, 2015), direct experimental proof is largely lacking. Here 263 

we provide this proof by demonstrating that deleting any internal sequence from segments 1, 264 

2 and 3 is sufficient to generate a DI RNA. Furthermore, we demonstrate that the inhibitory 265 

activity of these DI RNAs is determined by their length, at least in the absence of an IFN 266 

response, and extends to all target segments tested. The latter observation fits with the finding 267 

that DI-244 interferes with replication of several genomic RNAs in IAV infected cells (Meng 268 

et al., 2017). In sum, deleting the sequences between the conserved 5’ and 3’ ends of any IAV 269 

RNA, which are required for transcription and translation, should generate potent DI RNAs. 270 

In some cases, the truncated open reading frame encoded by such DI RNAs might contribute 271 

to antiviral activity (Boergeling et al., 2015) but this was not observed for DI-244, in keeping 272 

with previous results (Meng et al., 2017). 273 

 Type I IFN triggers the expression of about 400 genes, many of which encode proteins 274 

with antiviral activity, including MX1 (Schoggins et al., 2011). The present study shows that 275 

when conditions are chosen that allow DIPs to activate the IFN system, DIPs are potent 276 

inducers of ISG expression and the contribution of replication interference to DIP antiviral 277 

activity is minor. Notably, RNAseq analysis revealed that IAV but not DIPs robustly induced 278 

type I and type III IFN expression although both triggered ISG expression in a STAT1-279 

dependent fashion. A potential explanation for this discrepancy is that DIPs induced IFN 280 

expression at levels too low to be detected by RNAseq but still sufficient to induce ISGs. 281 

Indeed, qRT-PCR analysis revealed modest upregulation of type I and III IFN upon DIP 282 

treatment. Alternatively, DIPs may induce ISGs via an unknown IFN-independent, STAT1-283 

dependent pathway. Interestingly, Wang and colleagues also reported that DIPs induce robust 284 

levels of ISGs but not IFN (Wang et al., 2020) and further research is required to explore the 285 
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underlying reasons. Moreover, it is unclear how undiluted DIPs exerted anti-IAV but not anti-286 

VSV activity in STAT1-/- cells without inducing ISGs or other cellular genes. Collectively, 287 

our results underline previous findings that DIPs are potent IFN inducers (Baum et al., 2010; 288 

Frensing et al., 2014; Ngunjiri et al., 2013; Ngunjiri et al., 2012; Perez-Cidoncha et al., 2014) 289 

and show that DIP antiviral activity due to IFN induction outweighs that due to replication 290 

interference. 291 

 What are the major implications of our findings for DIP development as antivirals and 292 

for elucidating the role of naturally occurring DIPs in IAV infection? First, it is essential that 293 

antiviral activity of DIPs is examined in IFN competent animal models which express ISGs 294 

with potent anti-IAV activity, particularly MX1. Second, antiviral activity due to replication 295 

interference can be attained only if DIPs are added in 100 to 1,000-fold excess relative to 296 

virus (Bdeir et al., 2019) and it remains to be examined whether the strong IFN induction 297 

under those conditions exerts unwanted toxic effects in animals and humans. Third, DIP 298 

treatment should be more effective in the prophylactic as compared to the therapeutic setting, 299 

since only in the former DIP-induced IFN can fully contribute to antiviral activity. Fourth, 300 

design of DI RNA and analysis of DI RNAs emerging in patients should focus on the smallest 301 

RNAs, since they can be expected to exert the highest antiviral activity. 302 

 303 

  304 

 305 

 306 

 307 

 308 

 309 

 310 

 311 
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MATERIAL AND METHODS 312 

 313 

Plasmids and oligonucleotides 314 

Plasmids for rescue of A/PR/8/34, pHW191-pHW198, and A/WSN/33, pHW181-pHW188, 315 

were previously described (Hoffmann et al., 2002). Plasmids encoding DI RNAs were 316 

generated by splice overlap PCR, joining 5’ and 3’-end sequences of desired length, following 317 

a strategy previously described for DI-244 (Bdeir et al., 2019). A multiple cloning site (mcs) 318 

for later insertion of a reporter gene was included in the respective oligonucleotide sequences 319 

(Table S2). The PCR products were cloned into pHW2000-GGAarI by golden gate cloning 320 

(Eckert et al., 2014). Start codons in DI-244 were mutated using splice overlap PCR primer 321 

pairs mutIAV-seg1-ATG-for (5’- TCAATTATATTCAATTTGGAAAGAATAAAAG -322 

3’)/mutIAV-seg1-ATG-rev (5’- CTTTTATTCTTTCCAAATTGAATATAATTGA-3’) and 323 

DImut2+3ATG-for (5’ ACTACGAAATCTAATCTCGCAGTCTCGCACCCGCGAGATAC 324 

TCACAAAAACCACCGTGGACCATATCGCCATAATCAAGAAG-3’)/DImut2+3ATG-325 

rev (5’-CTTCTTGATTATGGCGATATGGTCCACGGTGGTTTTTGTGAGTATCTCGCG 326 

GGTGCGAGACTGCGAGATTAGATTTCGTAGT-3’). PCR constructs were cloned into 327 

pHW2000-GGAarI as described above. 328 

For expression of the truncated PB2 ORF from DI-244, the ORF was amplified from 329 

pHW2000GG-DI244-rep using primers PB2-QCXIP-5N (5’- CCGCGGCCGCACCATGGA 330 

AAGAATAAAAGAACTAC-3’)/PB2-3XBgl (5’-GGAGATCTCGAGCTAATTGATGGCC 331 

ATCCGAAT-3’) digested with NotI/XhoI and cloned into NotI/SalI digested pCAGGS-mcs 332 

bearing an altered multiple cloning site (XhoI-SacI-Asp718I-NotI-EcoRV-ClaI-EcoRI-SmaI-333 

SalI-SphI-NheI-BglII). 334 

For generation of empty vector p19polI-GGAarI the insert was amplified from pHW2000-335 

GGAarI by splice overlap PCR using primers HW2-GG-5Bgl, CCdelE-rev (5’-336 

CGTCTTTCATTGCCATACGAAACTCCGGATGAGCATTCATCAG-3’), CCdelE-for (5’-337 
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CTGATGAATGCTCATCCGGAGTTTCGTATGGCAATGAAAGACG-3’)/ rRNA-Pr(GG)-338 

3Eco (5’-GCGAATTCTATAGAATAGGGCCAGGTC-3’) and cut with BglII and EcoRI for 339 

insertion into BamHI and EcoRI digested p19luc (Winkler et al., 1994). 340 

Reporter plasmids for mini-replicon assay have been described (pPolI-Luc 341 

(vRNA/FLUAV/NS1 Seg8-NCR) (Zimmermann et al., 2011) or were newly generated. First, 342 

the reporter with segment 8 ends was amplified with primers fluA AarI-NS-1 and fluA AarI-343 

NS-890R (Table S3) and inserted into vector p19polI-GGAarI by Golden Gate cloning. To 344 

generate reporters with ends derived from other segments of IAV, the luciferase reporter gene 345 

was amplified with primers encoding the respective untranslated regions (Table S3) and 346 

cloned into vector p19polI-GGAarI as described before. All PCR amplified sequences were 347 

confirmed by automated sequence analysis. 348 

 349 

Cells and viruses 350 

293T, A549 wt and A549 STAT1-/- cells were maintained in Dulbecco’s Modified Eagle 351 

Medium (DMEM; Gibco) containing 10% fetal bovine serum (FBS, Gibco) and penicillin 352 

(Pen, 100 IU/mL) and streptomycin (Strep, 100 µg/ml). BHK-21 cells were cultivated in 353 

Dulbecco’s modified Eagle medium (DMEM, Pan Biotech) supplemented with 5% fetal 354 

bovine serum and pen/strep. 293T cell lines stably expressing codon optimized PB2 (293T-355 

PB2opt) were cultured in the presence of 1 µg/ml puromycin.  Madin-Darby canine kidney 356 

cells (MDCK) were cultured in Glasgow’s Modified Eagle Medium (GMEM; Gibco) 357 

supplemented with 10% fetal bovine serum (FBS, Gibco) and pen/strep. MDCK cells stably 358 

expressing PB2opt were maintained in the presence of 1.5 µg/ml puromycin. For generation 359 

of A549 STAT1-/- cells, A549 wt cells were transduced with a commercially available 360 

lentivirus expressing Cas9 (Addgene, plasmid 52961), puromycin resistance, and a guide 361 

RNA targeting human STAT1 (TTCAAGACCAGCGGCCTCTGAGG).  Transduced cells 362 

were puromycin selected for seven days and surviving cells were plated in 96-well dishes as 363 
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single cells and expanded. Clonal populations were then lysed and whole cell extract was 364 

examined for STAT1 expression by Western blot.  These efforts identified a single clone that 365 

demonstrated a complete loss of STAT1 expression, which we refer herein as STAT1-/- cells. 366 

All cells lines were regularly tested for mycoplasma contamination.   367 

 A/PR/8/34 (H1N1) and A/WSN/33 (H1N1) (Hoffmann et al., 2002) were produced in 368 

embryonated chicken eggs as described previously (Zmora et al., 2017) while A/WSN/33 369 

adapted to growth in A549 cells was obtained from the strain repository of the IVM Münster 370 

and was amplified in A549 cells by continuous passaging. IAV titers were determined using 371 

focus formation assay as described (Eckert et al., 2014; Winkler et al., 2012). Replication-372 

competent vesicular stomatitis virus (VSV) expressing eGFP and either wildtype VSV matrix 373 

protein (VSV*) or a matrix protein variant harboring four amino acid substitutions associated 374 

with increased induction of type-I interferon response (VSV*MQ) have been described 375 

elsewhere (Hoffmann et al., 2010) and were amplified using BHK-21.  Further, a VSV 376 

glycoprotein trans-complemented, single-cycle VSV replicon that lacks the genetic 377 

information for VSV-G but instead codes for eGFP and firefly luciferase genes (VSV*ΔG-378 

FLuc) (Berger Rentsch and Zimmer, 2011) was employed and propagated on BHK-G43 cells 379 

(Hanika et al., 2005). All VSV variants were titrated on BHK-21 cells and eGFP-positive foci 380 

(replication-competent VSV) or eGFP-positive single cells (single-cycle VSV) were counted. 381 

 382 

Mini-replicon assay 383 

The mini-replicon assay was performed as described (Zimmermann et al., 2011). In brief, 384 

293T cells seeded in 12-well plates at a cell density of 2 x 105 cells per well were 385 

cotransfected with plasmids encoding PB1 (10 ng), PB2 (10 ng), NP (100 ng), reporter 386 

segment encoding firefly luciferase (50 ng) and plasmid encoding a DI RNA or empty 387 

plasmid (amounts indicated in figures or figure legends). Cells were washed at 6-8 h and 388 

harvested at 24 h post transfection. Firefly luciferase activity in cell lysates was measured 389 
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using a commercial kit (PJK) and the Plate Chameleon V reader (Hidex) jointly with 390 

Microwin 2000 software.  391 

 392 

Production of DIPs 393 

A coculture of 1.4 ×106 293T cells and 0.4 ×106 MDCK cells stably expressing PB2opt and 394 

seeded in T-25 flask was cotransfected with plasmids encoding IAV genomic segments 2-8 of 395 

either PR8 or WSN origin and a plasmid encoding a segment 1-derived DI-RNA. After 396 

overnight incubation, cells were washed once with PBS and, for production of A/PR/8/34-397 

derived DIPs, DMEM infection medium (0.2% MACS BSA, 1% pen/strep) supplemented 398 

with TPCK trypsin (0.5 µg/ml) was added. For production of A/WSN/33-derived DIPs, 399 

DMEM growth medium (2% FCS, 1% pen/strep) was added. As a negative control, parental 400 

MDCK and 293T cells were transfected. Supernatants containing A/PR/8/34-derived DIPs 401 

were harvested at 4, 6, 8 and 10 days post transfection while supernatants containing 402 

A/WSN/33-derived DIPs were harvested at 3, 5, 7 and 9 days post transfection. Supernatants 403 

were cleared from debris by centrifugation, aliquoted and stored at -80 °C for further use. For 404 

some experiments, DIPs were further amplified in MDCK-PB2opt cells. For this, a total of 3 405 

×106 cells were seeded in T-75 flasks and infected at an MOI of 0.01 or lower. Upon detection 406 

of CPE, supernatants were cleared from debris by centrifugation and sterile-filtration (0.45 407 

µm filter), aliquoted and stored at -80 °C for further use. Integrity of selected DIP 408 

preparations was controlled with segments specific PCR. Infectious titers of supernatants 409 

were determined by focus formation assay using MDCK-PB2opt cells as targets, as described 410 

(Bdeir et al., 2019; Eckert et al., 2014; Winkler et al., 2012). 411 

 412 

Analysis of antiviral activity of DIPs 413 

For testing the antiviral activity of DIPs in MDCK cells in the presence of trypsin, cells were 414 

seeded at 10,000 cells/well in 96-well plates and coinfected with DIP (MOI 1, and 10-fold 415 



 

63 
 

Manuscripts 

dilutions) and IAV (A/PR/8/34, MOI 0.001) for 1 h in Glasgow's MEM (GMEM) infection 416 

medium containing trypsin (0.5 µg/ml). Alternatively, DIPs were added 24 h prior to the 417 

virus. For analysis of DIP antiviral activity in MDCK cells, A549 wt and A549 STAT1-/- cells 418 

in the absence of trypsin, cells were again seeded at 10,000 cells/well in 96-well plates and 419 

either coinfected with DIP (MOI 5 or 10, and 10-fold dilutions) and IAV (A/WSN/33, MOI 420 

0.1) in DMEM medium without trypsin or DIPs added 24 h prior to the virus. After 1 h, cells 421 

coexposed to DIPs and virus were washed and culture medium with or without trypsin was 422 

added. Supernatants were harvested after 72 h (MDCK) and 96 h (A549 wt and A549 STAT1-423 

/-). Viral titers in culture supernatants were quantified using focus formation assay and MDCK 424 

cells, as described (Eckert et al., 2014; Winkler et al., 2012). 425 

 426 

Quantitative RT-PCR analysis  427 

In order to investigate modulation of MX1 mRNA expression by IAV, DIPs and IFN, a 428 

quantitative RT-PCR assay was performed. For this, A549 cells were seeded at a cell density 429 

of 2 ×105 cells/well in 12-well plates and inoculated with IAV (MOI 1), DIPs (MOI 1) or pan-430 

IFNα (100 U/ml, PBL Assay Science) using DMEM infection medium for 1 h (DMEM 431 

infection medium without trypsin was added to cells exposed to IFNα). Then cells were 432 

washed once with PBS and cultured in DMEM infection medium without trypsin for 24 h. To 433 

assess the effect of trypsin on MX1 induction by IFNα, cells were incubated for 24 h with 434 

IFNα in the presence of 0, 0.5, 0.05 and 0.005 µg/ml trypsin. At 24 h post treatment, total 435 

cellular RNA was extracted using the RNeasy Mini kit (Qiagen) following the manufacturer’s 436 

instructions. After determining the RNA content, 1 µg RNA was used as template for cDNA 437 

synthesis employing the SuperScript III First-Strand Synthesis System (ThermoFisher 438 

Scientific), following the protocol for random hexamers. Subsequently, 1 µl of cDNA (total 439 

volume after cDNA synthesis: 20 µl) was analyzed by quantitative PCR on a Rotorgene Q 440 

device (Qiagen) employing the QuantiTect SYBR Green PCR Kit (Qiagen). Each sample was 441 
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analyzed in triplicates for transcript levels - given as cycle threshold (Ct) values - of ß-actin 442 

(ACTB, internal transcript control) and myxovirus resistance protein 1 (MX1, indicator for 443 

IFN induction, target transcript) with primers previously reported by Biesold and colleagues 444 

(Biesold et al., 2011). In order to analyze the gene expression, the 2-ΔΔCt method was used 445 

(Livak and Schmittgen, 2001).  446 

 447 

Vesicular Stomatitis Virus Replicon-Based Bioassay 448 

To analyze the relative contribution of IFN induction to antiviral activity, a VSV replicon-449 

based bioassay was performed. This assay is based on the principle that inoculation of 450 

effector cells with virus or DIPs leads to the induction of the innate immune system, resulting 451 

in the release of type-I IFN into the culture supernatant. These supernatants are then used to 452 

inoculate sentinel cells. Here, the type-I IFN will bind to the IFNα/β receptors and trigger a 453 

signal cascade leading to the induction of an antiviral state. Subsequent inoculation of the 454 

sentinel cells with a highly IFN-sensitive VSV replicon containing a luciferase reporter will 455 

yield luciferase activities that inversely correlate with the extent of the induced antiviral state.  456 

A549 and A549 STAT1-/- cells (= effector cells) were seeded in 12-well plate (200,000 457 

cells/well) and inoculated with IAV, VSV*, VSV*-MQ or DIPs (all at MOI of 1) using 458 

DMEM infection medium containing trypsin for 1h. The cells were washed once with PBS 459 

and cultured in DMEM infection medium without trypsin (used for all further steps) for 16-18 460 

hours. Next, supernatant was harvested, and infectious virus was inactivated by addition of 461 

0.1 M HCl and heating the samples for 30 mins to 56 °C. After the samples cooled down to 462 

room temperature, alkaline treatment was performed using 0.1 M NaOH to neutralize the 463 

acidic pH. Subsequently, the two-fold serial dilutions of the samples were prepared. In 464 

addition, medium containing two-fold serial dilutions of recombinant pan IFNα (starting at a 465 

concentration of 400 U/ml) were treated in the same fashion. These samples served as 466 

reference and were used to calculate the relative antiviral activity present in the different 467 
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supernatants (given as relative IFNα units per ml). The diluted supernatants and IFNα 468 

reference samples were added in quadruplicates to a confluent layer of A549 cells grown in 469 

96-well plates (= sentinel cells) and incubated for 18-24 h. Thereafter, the cells were 470 

inoculated with VSV*ΔG-FLuc reporter virus (MOI of 3) and further incubated for 6 h. Then, 471 

the medium was aspirated and 50 µl/well of 1x luciferase lysis buffer was added. Following 472 

an incubation period of 30 min, the lysates were transferred into white, opaque-walled 96-473 

well plates and firefly luciferase activity was measured as described above for the mini-474 

replicon assay. For normalization, luciferase activity was set as 100 % for cells that received 475 

regular culture medium instead of diluted culture supernatant/IFNα prior to inoculation with 476 

VSV*ΔG-FLuc. Using the normalized luciferase values of cells treated with the IFNα 477 

reference samples and a non-linear regression model we then calculated the relative IFNα 478 

content (given as units per ml) for the effector cell supernatants.  479 

 480 

RNA-seq analysis 481 

For analysis of IAV and DIP mediated modulation of cellular gene expression, A549 wt and 482 

A549 STAT1-/- cells were exposed to A/PR/8/34, DI-244 or control supernatants at a MOI of 483 

1. At 24 h post treatment, total cellular RNA was extracted using the RNeasy Mini kit 484 

(Qiagen) following the manufacturer’s instructions and subsequently sent for RNAseq 485 

analysis at the Integrative Genomics Core Unit (NIG), Department of Human Genetics, 486 

University Medical Center Göttingen.  487 

RNA-seq libraries were performed using the non-stranded mRNA Kit (Illumina). Quality and 488 

integrity of RNA was assessed with the Fragment Analyzer using the standard sensitivity 489 

RNA Analysis Kit (Advanced Analytical). All samples selected for sequencing exhibited an 490 

RNA integrity number of >8. After library generation, we used the QuantiFluor™dsDNA 491 

System (Promega) for accurate quantitation of cDNA libraries. The size of final cDNA 492 

libraries was determined by using the dsDNA 905 Reagent Kit (Advanced Analytical) 493 
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exhibiting a sizing of 300 bp in average. Libraries were pooled and sequenced on an Illumina 494 

HiSeq 4000 (Illumina) generating 50 bp single-end reads (28-35 Mio reads/sample). The raw 495 

read & quality check were done by transforming sequence images with the BaseCaller 496 

software (Illumina) to BCL files, which were demultiplexed to fastq files with bcl2fastq 497 

v2.20. The sequencing quality was asserted using FastQC 498 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).  499 

For subsequent data analysis, ISGs with anti-IAV activity were selected based on work by 500 

Schoggins and colleagues (Schoggins et al., 2011). ISG expression in IAV- or DIP-treated 501 

cells is shown relative to expression of the same ISGs in control-treated cells.  502 

 503 

SUPPLEMENTAL INFORMATION 504 

Table S1, Table S2, Table S3 505 
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 643 

FIGURE LEGENDS 644 

 645 

Figure 1. Antiviral activity of DI RNAs inversely correlates with DI RNA length in the 646 

presence of trypsin 647 

 (A) DI-244 inhibits genome replication in the mini-replicon assay. 293T cells were 648 

transfected with plasmids encoding the viral polymerase proteins, NP, a segment 8-based 649 

luciferase reporter (mini-replicon system) and either empty plasmid or plasmid for expression 650 

of DI-244 mRNA (10 and 300 ng) and vRNA. Removing the plasmid encoding PB2 from the 651 

transfection mix served as negative control. Cotransfection of all support plasmids and empty 652 

plasmid instead of DI-244 encoding plasmid served as positive control. The average of five 653 

independent experiments is shown, for which the positive control was set as 100%. Error bars 654 

indicate standard error of the mean (SEM).  655 

(B) The truncated open reading frame of DI-244 does not contribute to inhibition of genome 656 

replication in the mini-replicon assay. The experiment was carried out as described for panel 657 

A but the cells were cotransfected with a plasmid for expression of DI-244 mRNA and vRNA 658 

with or without the first three ATGs of the PB2 ORF being intact (DI-244, DI-244 mut ATG), 659 

a plasmid for expression of DI-244 mRNA (DI-244 ORF) or empty plasmid pCAGGS. The 660 

average of three independent experiments is shown, for which the positive control was set as 661 

100%. Error bars indicate SEM.  662 
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(C) The inhibitory activity of segment 1-derived DI RNAs in the mini-replicon assays is 663 

inversely correlated with DI RNA length. The experiment was carried out as described for 664 

panel A but 300 ng of plasmids harboring the indicated segment 1-derived DI RNAs were 665 

cotransfected. The DI RNAs tested were numbered as shown in table S1. The average of five 666 

independent experiments is shown, for which the positive control was set as 100%. Error bars 667 

indicate SEM.  668 

(D) The inhibitory activity of segment 2- and 3-derived DI RNAs in the mini-replicon assays 669 

is inversely correlated with DI RNA length. The experiment was conducted as described for 670 

panel A but 300 ng of plasmids harboring the indicated segment 2 and 3-derived DI-RNAs 671 

were cotransfected. The DI RNAs tested were numbered as shown in table S1. The average of 672 

three independent experiments is shown, for which the positive control was set as 100%. 673 

Error bars indicate SEM.  674 

(E) The inhibitory activity of DI RNAs in the mini-replicon assays is independent from the 675 

origin of the reporter segment. The experiment was carried out as described for panel A but 676 

the indicated reporter segments and segment 1, 2 and 3-derived DI RNAs were used. The 677 

results of a single representative experiment are shown and were confirmed in an independent 678 

experiment. Error bars indicate standard deviation (SD).  679 

(F) Antiviral activity of segment 1-derived DIPs is inversely correlated with DI RNA lengths 680 

in the presence of trypsin. MDCK cells were coinfected with the indicated DIPs (MOI 1) and 681 

A/PR/8/34 (MOI 0.001) in the presence of trypsin, washed, and cultured in medium with 682 

trypsin. DIP-negative supernatants served as controls. At 72 h post infection, viral titers in 683 

culture supernatants were determined by focus formation assay. The average of four 684 

independent experiments is shown; error bars indicate SEM. In panels A-D statistical 685 

significance of differences between values measured for cells cotransfected with support 686 

plasmids and either empty plasmid (+ control) or DI RNA encoding plasmid was determined 687 

using one-way ANOVA with Sidak´s posttest (panel A) and with Dunnett´s posttest (panel B-688 
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D). In panel F statistical significance of differences between values measured for cells with 689 

virus and DIPs at reciprocal DIP dilution was determined using one-way ANOVA with 690 

Dunnett´s posttest. *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001 691 

 692 

Figure 2. Induction of the IFN system is a major contributor to DIP antiviral activity 693 

(A) Trypsin inactivates IFNα. A549 wt cells were exposed to recombinant IFNα (100 U/ml) 694 

in the presence and absence of serially diluted trypsin (T). Undiluted trypsin (IFNα + T) was 695 

added at a concentration of 0.5 µg/ml. After 24 h, cells were harvested, RNA isolated and 696 

MX1 expression analyzed by quantitative RT-PCR. MX1 transcripts levels were normalized 697 

against ß-actin transcript levels. The average of three independent experiments is shown. 698 

Error bars indicate SEM.  699 

(B) Pre-exposure of target cells to DIPs boosts DIP antiviral activity independent of trypsin. 700 

Left panel, - Trypsin condition: MDCK cells were either coinfected with DI-244 (MOI 10) 701 

and A/WSN/33 (MOI 0.1) in the absence of trypsin or DI-244 was added to cells at 24 h 702 

before virus. Cells were washed 1 h after addition of virus and maintained in growth medium. 703 

At 72 h post infection, viral titers in culture supernatants were determined by focus formation 704 

assay. Right panel, + trypsin condition: The experiment was carried out as described for the 705 

left panel, but A/WSN/33-derived DIPs (MOI 1) and A/WSN/33 (MOI 0.001) were used and 706 

maintained in infection medium supplemented with trypsin. The average of three independent 707 

experiments is shown in both panels; error bars indicate SEM.  708 

(C) STAT1 is required MX1 induction by IAV and DIP. A549 cells and A549 STAT1-/- cells 709 

were exposed to IFNα (100 U/ml), A/PR/8/34 or DI-244 (all MOI 1, in the presence of 710 

trypsin) for 1 h, washed, incubated for 24 h in the absence of trypsin and MX1 mRNA 711 

expression quantified using qRT-PCR. The average of five independent experiments is 712 

shown. Error bars indicate SEM.  713 
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(D) Anti-IAV activity of DI-244 is partially and anti-VSV activity of DIP is fully dependent 714 

on STAT1. Antiviral activity of DI-244 was analyzed as described for the left panel of figure 715 

2B but A549 wt and A549 STAT1-/- cells were used. At 96 h post infection, viral titers in 716 

culture supernatants were determined by focus formation assay. The average of six 717 

(A/WSN/33) and three independent experiments (VSV) is shown. Error bars indicate SEM.  718 

(E) DI RNA length does not modulate DIP antiviral activity in the context of a functional IFN 719 

system. Antiviral activity of the indicated DIPs was analyzed as described for panel D adding 720 

DIPs 24 h before virus. The average of five independent experiments is shown. Error bars 721 

indicate SEM. 722 

In panels B and D statistical significance of differences between values measured for cells 723 

inoculated with DIPs at 24 h before IAV infection and cells to which IAV and DIPs were 724 

added at the same time was determined using two-way ANOVA with Sidak´s posttest. In 725 

panel E statistical significance of differences between values measured for cells with virus 726 

and DIPs at reciprocal DIP dilution was determined using one-way ANOVA with Dunnett´s 727 

posttest. *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001 728 

 729 

Figure 3. DI-244 robustly induces ISG but not IFN expression 730 

 (A) DI-244 does not induce IFN expression as determined in a VSV-replicon-based bioassay. 731 

A549 and A549 STAT1-/- cells were exposed to IAV, VSV or DI-244 and supernatants 732 

collected, heat inactivated, acid treated and added onto A549 cells followed by infection with 733 

VSV. For calibration, A549 cells were incubated with recombinant IFNα, VSV infected and 734 

infection efficiency was quantified. The average of three independent experiments is shown. 735 

Error bars indicate SEM. 736 

(B) DI-244 induces robust ISG but not IFN expression as determined by RNAseq. A549 cells 737 

(top panel) and A549 STAT1-/- cells (bottom panel) were incubated with IAV (A/PR/8/34), 738 

DI-244 at a MOI of 1 in the absence of trypsin and control supernatants and subjected to 739 
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RNAseq analysis. Expression of selected ISGs is shown. The average of two independent 740 

experiments (A549) and three experiments (A549 STAT1-/-) is presented. Error bars indicate 741 

SEM. 742 

(C) DI-244 induces robust ISG but not IFN expression as determined by qRT-PCR analysis. 743 

The A549 wt cells described in panel B were subjected to qRT-PCR analysis of ISG 744 

expression. The average of three independent experiments is shown. Error bars indicate SEM. 745 

 746 
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Figure 3 Arora et al., 2020
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Supplemental Table 1      Arora et al. 761 

 762 

 763 

 764 

Segment 1-derived DI-RNAs 
 

Nr. Name Total (b) 5’ end (b) 3’ end (b) 
1 DI-244 421 151 244 
2 DI-346 623 252 346 
3 DI-448 829 354 448 
4 DI-550 1032 456 550 
5 DI-662 1236 558 652 
6 DI-754 1440 660  754 
7 DI-856 1645 762 856 
8 DI-958 1849 864 958 
9 DI-1060 2051 966 1060 
10 DI-1162 2256 1068 1162 
 

Segment 2-derived DI-RNAs 
 

Nr. Name Total (b) 5’ end (b) 3’ end (b) 
1 DI-156 334 151 156 
2 DI-258 537 252 258 
3 DI-360 741 354 360 
4 DI-462 945 456 462 
5 DI-666 1353 660 666 
6 DI-870 1761 864 870 
7 DI-1074 2169 1068 1074 
 

Segment 3-derived DI-RNAs 
 
Nr. Name Total (b) 5’ end (b) 3’ end (b) 
1 DI-178 346 141 178 
2 DI-280 550 243 280 
3 DI-382 754 345 382 
4 DI-484 958 447 484 
5 DI-688 1366 651 688 
6 DI-892 1774 855 892 
7 DI-1096 2182 1059 1096 

All constructs contain an mcs  
located between the viral sequences 

 765 

 766 

 767 
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Table S2 768 

Oligonucleotides for cloning of DI-RNAs  

Name Sequence 
IAVseg1-
DI244-for 

CAGGAAGACAGGAGAAGACTGAGGGGATTCCTCATTC 

IAVseg1-
DI244-rev 

GAATGAGGAATCCCCTCAGTCTTCTCCTGTCTTCCTG 

IAVseg1-
DI244rep-for 

TCAGGAAGACAGGAGAAGAGATCTGGTACCGCAGCGGCCGCTTA
ACTGAGGGGATTCCTCATT 

IAVseg1-
DI244rep-rev 

AATGAGGAATCCCCTCAGTTAAGCGGCCGCTGCGGTACCAGATCT
CTTCTCCTGTCTTCCTGA 

DIP-346-for GAGAAATGAGCAAGGACAAGGATCCGGTACCGCAGCGGCCGCTT
AACTATAACAAGGCCACG 

DIP-346-rev CGTGGCCTTGTTATAGTTAAGCGGCCGCTGCGGTACCGGATCCTT
GTCCTTGCTCATTTCTC 

DIP-448-for CCAATAACAAATACAGTTGGATCCGGTACCGCAGCGGCCGCTTAA
GCCGCTCCACCAAAGCAA 

DIP-448-rev TTGCTTTGGTGGAGCGGCTTAAGCGGCCGCTGCGGTACCGGATCC
AACTGTATTTGTTATTGG 

DIP-550-for CAAGTCAAAATACGTCGGGGATCCGGTACCGCAGCGGCCGCTTA
AGAGGCCAATACAGTGGG 

DIP-550-rev CCCACTGTATTGGCCTCTTAAGCGGCCGCTGCGGTACCGGATCCC
CGACGTATTTTGACTTG 

DIP-652-for GTGGGAGCCAGGATACTAGGATCCGGTACCGCAGCGGCCGCTTA
AGAAACTGGGAAACTGTT 

DIP-652-rev AACAGTTTCCCAGTTTCTTAAGCGGCCGCTGCGGTACCGGATCCT
AGTATCCTGGCTCCCAC 

DIP-754-for CATGTTGGAGAGAGAACTGGGATCCGGTACCGCAGCGGCCGCTT
AACACAGGGAACAGAGAAAC 

DIP-754-rev GTTTCTCTGTTCCCTGTGTTAAGCGGCCGCTGCGGTACCGGATCCC
AGTTCTCTCTCCAACATG 

DIP-856-for CTGGGAACAGATGTATACTGGATCCGGTACCGCAGCGGCCGCTTA
AGAGTACTCCAGCACGGAGA 

DIP-856-rev TCTCCGTGCTGGAGTACTCTTAAGCGGCCGCTGCGGTACCGGATC
CAGTATACATCTGTTCCCAG 

DIP-958-for AGCAGATCCACTAGCATCTGGATCCGGTACCGCAGCGGCCGCTTA
ACCTATCGACAATGTGATGG 

DIP-958-rev CCATCACATTGTCGATAGGTTAAGCGGCCGCTGCGGTACCGGATC
CAGATGCTAGTGGATCTGCT 

DIP-1060-for CGTGGATATATGCAAGGCTGGATCCGGTACCGCAGCGGCCGCTTA
ATTTCGTCAATAGGGCGA 

DIP-1060-rev TCGCCCTATTGACGAAATTAAGCGGCCGCTGCGGTACCGGATCCA
GCCTTGCATATATCCACG 

DIP-1162-for GGAAGAGGTGCTTACGGGCGGATCCGGTACCGCAGCGGCCGCTT
AATAGTGAGTGGGAGAGACG 

DIP-1162-rev CGTCTCTCCCACTCACTATTAAGCGGCCGCTGCGGTACCGGATCC
GCCCGTAAGCACCTCTTCC 

DIP164-for ATCAGGAAGACAGGAGAAGAGAAAGGAGAGAAGGCTAATG 
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DIP164-rev CATTAGCCTTCTCTCCTTTCTCTTCTCCTGTCTTCCTGAT 
DIP164P-for AGACAGGAGAAGAACCCAGCGAAAGGAGAGAAGGCTAATG 
DIP164P-rev CATTAGCCTTCTCTCCTTTCGCTGGGTTCTTCTCCTGTCT 
DIP164-80-for GGATAACGGAAATGATTCCTGAAAGGAGAGAAGGCTAATG 
DIP164-80-
rev 

CATTAGCCTTCTCTCCTTTCAGGAATCATTTCCGTTATCC 

DIP204-for ATCAGGAAGACAGGAGAAGAATGGGCCAGCACTAAGCATC 
DIP204-rev GATGCTTAGTGCTGGCCCATTCTTCTCCTGTCTTCCTGAT 
fluA AarI-
PB2-1G 

CGATCACCTGCTCGAGGGAGCGAAAGCAGGTC 

fluA AarI-
PB2-2341R 

CGATCACCTGCTCTCTATTAGTAGAAACAAGGTCGTTT 

DIPS2-P-for GGATACACCATGGATACTGAGCCCGAATTGATGCAC 
DIPS2-P-rev GTGCATCAATTCGGGCTCAGTATCCATGGTGTATCC 
DIPS2-P-mcs-
for 

GGATACACCATGGATACTGGTACCGCAGCGGCCGCTTAAGAGCC
CGAATTGATGCAC 

DIPS2-P-mcs-
rev 

GTGCATCAATTCGGGCTCTTAAGCGGCCGCTGCGGTACCAGTATC
CATGGTGTATCC 

DIPS2-
252mcs-for 

GGGCCACTGCCAGAAGACGGTACCGCAGCGGCCGCTTAAAAATG
TACCAAAGGTGCT 

DIPS2-
252mcs-rev 

AGCACCTTTGGTACATTTTTAAGCGGCCGCTGCGGTACCGTCTTCT
GGCAGTGGCCC 

DIPS2-
354mcs-for 

AACTCGTGTATTGAAACGGGTACCGCAGCGGCCGCTTAAAAAAC
ATGGAGTATGATG 

DIPS2-
354mcs-rev 

CATCATACTCCATGTTTTTTAAGCGGCCGCTGCGGTACCCGTTTCA
ATACACGAGTT 

DIPS2-
456mcs-for 

GCTGCAACAGCATTGGCCGGTACCGCAGCGGCCGCTTAAATTACC
AGGGGCGTTTAT 

DIPS2-
456mcs-rev 

ATAAACGCCCCTGGTAATTTAAGCGGCCGCTGCGGTACCGGCCAA
TGCTGTTGCAGC 

DIPS2-
660mcs-for 

AAAAAGAAGCAGAGATTGGGTACCGCAGCGGCCGCTTAATCATC
AAAGATTACAGGT 

DIPS2-
660mcs-rev 

ACCTGTAATCTTTGATGATTAAGCGGCCGCTGCGGTACCCAATCT
CTGCTTCTTTTT 

DIPS2-
864mcs-for 

GGCAATGAGAAGAAAGCAGGTACCGCAGCGGCCGCTTAAACATA
AACAGAACAGGTA 

DIPS2-
864mcs-rev 

TACCTGTTCTGTTTATGTTTAAGCGGCCGCTGCGGTACCTGCTTTC
TTCTCATTGCC 

DIPS2-
1068mcs-for 

ATGTTCTCAAACAAAATGGGTACCGCAGCGGCCGCTTAATAAGCA
CTGTATTAGGCG 

DIPS2-
1068mcs-rev 

CGCCTAATACAGTGCTTATTAAGCGGCCGCTGCGGTACCCATTTT
GTTTGAGAACAT 

fluA AarI-
PB1-1-4G 

CGATCACCTGCTCGAGGGAGCGAAAGCAGGCA 

fluA AarI-
PB1-2341R 

CGATCACCTGCTCTCTATTAGTAGAAACAAGGCATTT 

DIPS3-P-for AAATTTGCAGCAATATGCCCTGGGACCTTTGATCTT 
DIPS3-P-rev AAGATCAAAGGTCCCAGGGCATATTGCTGCAAATTT 
DIPS3-P-mcs- AAATTTGCAGCAATATGCAGATCTGGTACCGCAGCGGCCGCTTAA
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 769 

 770 

 771 

 772 

 773 

 774 

 775 

 776 

 777 

 778 

 779 

for CCTGGGACCTTTGATCTT 
DIPS3-P-mcs-
rev 

AAGATCAAAGGTCCCAGGTTAAGCGGCCGCTGCGGTACCAGATC
TGCATATTGCTGCAAATTT 

DIPS3-
243mcs-for 

CCAAATGCACTTTTGAAGAGATCTGGTACCGCAGCGGCCGCTTAA
TCGGTATTCAACAGCTTG 

DIPS3-
243mcs-rev 

CAAGCTGTTGAATACCGATTAAGCGGCCGCTGCGGTACCAGATCT
CTTCAAAAGTGCATTTGG 

DIPS3-
345mcs-for 

AAACCAAAGTTTCTACCAAGATCTGGTACCGCAGCGGCCGCTTAA
GAGTTCTTTGAGAACAAA 

DIPS3-
345mcs-rev 

TTTGTTCTCAAAGAACTCTTAAGCGGCCGCTGCGGTACCAGATCT
TGGTAGAAACTTTGGTTT 

DIPS3-
447mcs-for 

AATAAAATTAAATCTGAGAGATCTGGTACCGCAGCGGCCGCTTAA
AAATGGGGAATGGAGATG 

DIPS3-
447mcs-rev 

CATCTCCATTCCCCATTTTTAAGCGGCCGCTGCGGTACCAGATCTC
TCAGATTTAATTTTATT 

DIPS3-
855rev-for 

AATGGGCCTCCCTGTTCTAGATCTGGTACCGCAGCGGCCGCTTAA
AGCATGAGAAGGAATTAT 

DIPS3-
855mcs-rev 

ATAATTCCTTCTCATGCTTTAAGCGGCCGCTGCGGTACCAGATCT
AGAACAGGGAGGCCCATT 

DIPS3-
651mcs-for 

AGGTTTGAAATCACAGGAAGATCTGGTACCGCAGCGGCCGCTTA
AAGATCCCACTTAAGGAAT 

DIPS3-
651mcs-rev 

ATTCCTTAAGTGGGATCTTTAAGCGGCCGCTGCGGTACCAGATCT
TCCTGTGATTTCAAACCT 

DIPS3-
1059mcs-for 

CAAGTACTGGCAGAACTGAGATCTGGTACCGCAGCGGCCGCTTA
AGAGAACATGGCACCAGAA 

DIPS3-
1059mcs-rev 

TTCTGGTGCCATGTTCTCTTAAGCGGCCGCTGCGGTACCAGATCTC
AGTTCTGCCAGTACTTG 

fluA AarI-
PA1-1-4G 

CGATCACCTGCTCGAGGGAGCGAAAGCAGGTAC 

fluA AarI-
PA1-2233R 

CGATCACCTGCTCTCTATTAGTAGAAACAAGGTACTT 
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Table S3 780 

Oligonucleotides used for cloning of replicon reporter constructs 
Name Sequence 
fluA AarI-
NS-1 

CGATCACCTGCTCGAGGGAGCAAAAGCAGGGTG 

fluA AarI-
NS-890R 

CGATCACCTGCTCTCTATTAGTAGAAACAAGGGTGTTTT 

fluA AarI-
seg2rep-5 

CGATCACCTGCTCGAGGGAGCGAAAGCAGGCAAACCATTTGAATG
GAAGACGCCAAAAACATAAAG 

fluA AarI-
seg2rep-3 

CGATCACCTGCTCTCTATTAGTAGAAACAAGGCATTTTTTCATGAAG
GACAAGCTAAATTCATTACACGGCGATCTTTCCG 

fluA AarI-
seg4rep-5 

CGATCACCTGCTCGAGGGAGCAAAAGCAGGGGAAAATAAAAACAA
CCAAAATGGAAGACGCCAAAAACATAAAG 

fluA AarI-
seg4rep-3 

CGATCACCTGCTCTCTATTAGTAGAAACAAGGGTGTTTTTCCTCATA
TCTCTGAAATTCTAATCTTACACGGCGATCTTTCCG 

fluA AarI-
seg6rep-5 

CGATCACCTGCTCGAGGGAGCAAAAGCAGGAGTTTAAAATGGAAG
ACGCCAAAAACATAAAG 

fluA AarI-
seg6rep-3 

CGATCACCTGCTCTCTATTAGTAGAAACAAGGAGTTTTTTGAACAG
ATTACACGGCGATCTTTCCG 

fluA AarI-
seg7rep-5 

CGATCACCTGCTCGAGGGAGCAAAAGCAGGTAGATATTGAAAGAT
GGAAGACGCCAAAAACATAAAG 

fluA AarI-
seg7rep-3 

CGATCACCTGCTCTCTATTAGTAGAAACAAGGTAGTTTTTTACACGG
CGATCTTTCCG 

fluA AarI-
repPB2-5 

CGATCACCTGCTCGAGGGAGCGAAAGCAGGTCAATTATATTCAATA
TGGAAGACGCCAAAAACATAAAG 

fluA AarI-
repPB2-3 

CGATCACCTGCTCTCTATTAGTAGAAACAAGGTCGTTTTTAAACTAT
TCGACATTACACGGCGATCTTTCCG 

 781 

 782 

 783 

 784 

 785 

 786 

 787 

 788 

 789 

 790 

 791 

 792 

 793 
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6 Discussion 
6.1 First Manuscript - A system for production of defective interfering particles in the 

absence of infectious influenza A virus 

DIPs appear naturally during influenza virus infections at high MOI and were first observed in 

embryonated chicken eggs while performing serial passaging of influenza A virus (Magnus 

1954). Subsequently, it was discovered that DIPs can protect cell cultures and animals from 

wt influenza virus infection, indicating that they could be developed as antiviral agents 

(Dimmock et al. 2008; Easton et al. 2011). However, their production was dependent on the 

presence of wt virus which needed to be UV-inactivated. To tackle this limitation, a cell line-

based system for production of DIPs in the absence of wt virus was established. This 

lessened safety concerns and resulted in substantial homogeneity of DIP preparation and 

thus could facilitate DIP use in humans.  

To produce DI-244 particles in the absence of wt virus, 293T and MDCK cell lines stably 

expressing the IAV polymerase subunit PB2 were generated using retroviral technology. This 

approach was chosen since the PB2 ORF was inactivated in DI-244 (which was derived from 

IAV genomic segment 1) and providing the PB2 protein in trans should allow amplification of 

DIPs harbouring wt genomic segments 2-8 jointly with DI-244. 293T cells were chosen for DIP 

production because of high transfectability while MDCK cells were used because of high 

permissiveness to IAV infection. The DI-244 production in these 293T/MDCK cocultures 

yielded about 106 DI-244 infectious particles/ml when quantified using MDCK PB2opt cells 

for focus formation assay – the first time that DIP infectivity has been ever quantified. A 

similar study also generated about 107 DI-244 PFU/ml using AX4 cells stably expressing PB2 

protein, but they mutated all start codons of DI-244 RNA to prevent unexpected expression 

of unrelated proteins (Yamagata et al. 2019). Previous studies reported about 10 to 100-fold 

higher yields of DI-244 in embryonated chicken eggs, amplified in cell-culture, and 

bioreactors but these production systems depended on use of wt virus and reported viral 

genome copies/ml and not infectious unit/ml (Dimmock et al. 2008; Frensing et al. 2013; 

Wasik et al. 2018). Considering that only a fraction of particles containing RNA will also be 

infectious and interfering, the particle yields obtained here can be considered robust. 

Moreover, this study was the first to report DIP production in the absence of wt IAV and thus 

did not encompass UV irradiation to inactivate wt IAV. UV inactivation relies on the fact that 

DI-244 RNA is much smaller than the corresponding wt RNA and thus much less likely to be 
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inactivated by UV. Moreover, any inactivating mutation in other segments will abrogate 

infectivity of wt IAV but not DIPs, since the latter only need to deliver their DI-RNA into wt 

IAV coinfected cells to ensure their amplification. Considering that UV inactivation can be 

inefficient for large scale production of DIPs and yields variable results, the newly 

established DIP production system constitutes a significant advance. 

The 293T and MDCK cells used for DI-244 production were equipped with expression 

cassettes for codon optimized PB2 to ensure efficient expression and to avoid potential 

recombination events with DI-244, which would result in the production of wt IAV. The use 

of codon optimized PB2 increased PB2 expression in MDCK cells and improved DIP yields 

about 100-fold. Additionally, no evidence of recombination events between DI-244 RNA and 

PB2 RNA was neither observed with confocal microscopy or immunofluorescence, nor 

quantified through focus formation assay or RT-PCR analysis. For visual examination of DI-

244 production and spread, DI-244-mScarlet was generated as it encodes a red fluorescent 

protein. The robust production of DI-244-mScarlet in PB2opt expressing cells raised the 

question of whether the particles exerted antiviral activity. MDCK cells co-infected with PR8 

and DI-244-mScarlet demonstrated that DI-244 displayed robust and concentration-

dependent antiviral activity. Moreover, antiviral activity was also observed with a H3N2 IAV, 

A/Panama/2007/99, but not with VSV. The inhibition of diverse IAV by DI-244 was expected 

from published studies (Dimmock et al. 2008) and reflected replication interference, i.e. the 

DI-RNA outcompetes wt RNAs for viral and cellular genome replication requirements 

(Dimmock and Easton 2014, 2015). The lack of VSV inhibition is noteworthy since DIPs are 

known to inhibit heterologous viruses (Easton et al. 2011; Scott et al. 2011a) by eliciting an 

IFN response (Scott et al. 2011a, 2011b) and not by genome competition (Scott et al. 2011c; 

Easton et al. 2011). The IFN response was likely suppressed in the cell culture systems used 

in the present study. This is the effect of trypsin that was used to ensure robust IAV and DIP 

spread but inactivates type I IFN (Seitz et al. 2012). This means that antiviral activity incurred 

by DIPs is largely due to replication interference in the case of IAV but not VSV which lacks 

genome competition. Robust antiviral activity of DIPs was observed when these particles 

were used at a 100 or 1000-fold excess as compared to wt IAV. This DIP/wt virus ratio is 

similar to that used for previously published animal studies (IAV/DIP ratio of 1:3400 

(determined by qRT-PCR analysis (Dimmock and Easton 2015).  
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What are the implications of the above discussed findings for DIP use in humans? A DIP to 

virus ratio of 1000:1 was required for robust DIP antiviral activity in cell culture. It could be 

speculated that a lower ratio will suffice in humans, as DIPs can stimulate IFN responses in 

vivo although those responses were probably not stimulated in the cell culture systems used 

to determine DIP antiviral activity, as discussed below. Considering that DIPs reside for a 

long time in the respiratory tract of mice, and studies with DIP-treated animals reported one 

week protection after treatment (Dimmock et al. 2008; Dimmock and Easton 2015), DIP 

stability in the respiratory tract of humans should not be considered as an impediment to 

provide protection against influenza virus, which needs to be further investigated. Finally, it 

could be stated that although DIPs can reassort with wt IAV in coinfected cells, such a 

reassortment is unlikely to raise safety concerns since, first, the largely apathogenic PR8 was 

used for DIP production, and second, recombination of wt IAV with PR8 would not increase 

virulence of reassortant virus as compared to the wt virus. 

The results discussed above were obtained with DI-244-mScarlet particles. Pure DI-244 wt 

particles were expected to be produced under same conditions. Unexpectedly, this was not 

the case and a potential explanation for this issue was provided by results obtained in the 

mini-replicon assay (discussed in second manuscript). DI-244 RNA suppressed replication of 

IAV segments, and the inhibitory activity was found to be length dependent. This indicated 

that DI-244 wt might have higher antiviral activity than DI-244-mScarlet and that expression 

of high amounts of DI-244 wt might auto-inhibit segment amplification and particle 

production. Further analysis of the results showed that the efficiency of particle production 

of DI-244 wt in PB2opt cells inversely correlated with the amount of DI-244 wt plasmid 

transfected.  

In summary, this study demonstrated that cell lines expressing PB2opt allow production of 

DI-244 particles in the absence of wt virus. The particles exerted anti-IAV activity and their 

infectivity could be determined by focus formation assay. No recombination events between 

DI-244 RNA and PB2 full-length RNA were observed by immunofluorescence microscopy, 

focus forming assay and RT-PCR analysis, indicating that DIPs produced in the system are 

homogenous and safe. Thus, a DIP production system not relying on wt virus was reported 

for the first time, which shows the feasibility to develop DIPs for antiviral therapies.  
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6.2 Second Manuscript - Interferon induction and not replication interference is the 
major determinant of anti-influenza virus activity of defective interfering particles  

DI-RNAs are found in IAV infected eggs (Magnus 1954), cell cultures (Dimmock et al. 2008; 

Frensing et al. 2013), animals (Bean et al. 1985; Barrett and Dimmock 1986; Chambers and 

Webster 1987; Dimmock and Easton 2014, 2015), and patients (Saira et al. 2013; Vasilijevic 

et al. 2017). They interfere with the replication of the wt IAVs from which they originated 

but also inhibit unrelated viruses (Easton et al. 2011; Scott et al. 2011a). Replication 

interference and IFN induction are important mechanisms by which DIPs inhibit IAV (Vignuzzi 

and López 2019). DIPs suppress influenza virus infection by interfering with genome 

replication (a process termed replication interference) and by stimulating immune response 

(IFN induction) (Dimmock and Easton 2014, 2015; Scott et al. 2011a, 2011b). However, the 

relative contribution of replication interference and IFN induction to DIP antiviral as well as 

the mechanism underlying IFN induction are incompletely understood. The present study 

provides evidence that the contribution of replication interference to DIP antiviral activity is 

minor as compared to IFN induction. Moreover, the study reveals that DIP-dependent 

activation of the IFN system encompasses induction of ISG but not IFN expression. 

The concept behind replication interference posits that DI-RNA outcompete their wt 

counterparts for viral and cellular resources required for replication because they are 

smaller and thus replicate faster (Li and Pattnaik 1997; Calain and Roux 1995). On the other 

hand, the concept has not been systematically investigated. To close this gap, variants of 

genomic segments 1, 2, and 3 with nested deletions were generated. A mini-replicon assay, 

which measures genome replication and mRNA expression, showed that DI-RNA length 

inversely correlated with inhibitory activity. Besides that, any deletion in segment 1, 2 and 3 

was sufficient to convert these RNAs into DI-RNAs and inhibitory activity was independent of 

the target segment, in keeping with findings reported by Meng and colleagues (Meng et al. 

2017). These findings support the replication interference concept and suggest that any 

deletion of sequences located between the conserved regions at the 5’ and 3’ ends of 

genomic segments, which are required for translation and transcription, should generate DI-

RNAs. Indeed, the 5’ and 3’ ends of DI-RNAs were reported exhibit similar sequences that 

are conserved in all influenza virus strains (Saira et al. 2013; Jennings et al. 1983). 

It has been reported that DI-RNAs are frequently generated from genomic IAV segments 1-3, 

which are the largest segments of the viral genome and encode polymerase subunits (Davis 
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and Nayak 1979). The reason for the preferential accumulation of deletions in these 

segments is their length, which makes them prone to internal deletions during genome 

replication (Nayak et al. 1985). Although the deletions present in these DI-RNAs are central 

to antiviral activity, the expression of truncated viral proteins from these DI-RNAs could 

contribute to antiviral activity (Boergeling et al. 2015). However, the truncated PB2 protein 

encoded by DI-244 did not contribute to the antiviral activity. Thus, overexpression of the 

truncated PB2 protein did not result in inhibition of IAV genome replication and mutating 

ATG start codons in DI-244 did not affect the inhibitory activity of DI-244 (Meng et al. 2017).  

To investigate a potential contribution of IFN to DIP antiviral activity, it was necessary to set 

up conditions to ensure activation of hemagglutinin (HA) protein without trypsin as it 

inactivates IFN (Seitz et al. 2012). For this, IAV strain A/WSN/33 (WSN) was used, which does 

not depend on HA activation by trypsin for acquisition of infectivity. Addition of WSN-

derived DIPs to target cells at 24 h before addition of IAV (subsequently termed 24 h setting) 

boosted antiviral activity as compared to addition of DIPs and IAV at the same time 

(subsequently termed 0 h setting). This suggested that activation of the IFN system could 

play a major role in DIP antiviral activity. Unexpectedly, the presence or absence of trypsin 

did not modulate antiviral activity, indicating that the enhanced antiviral activity observed in 

the 24 h setting did not require production of IFN-α. Finally, it is worth mentioning that DI-

RNA segment length did not impact antiviral activity in the 24 h setting, suggesting that 

different mechanisms account for DIP antiviral activity in the 0 and 24 h setting  

In order to determine the contribution of IFN to DIP antiviral activity, IFN-competent human 

A549 wt cells and A549 STAT1-/- cells were used. Type I IFN triggers the expression of about 

400 genes, many of which encode proteins with antiviral activity, including Mx1 (Schoggins 

et al. 2011). To confirm the STAT1 knock-out on a functional level, Mx1-induction by IAV and 

DI-244 particles were analysed. Both particles induced Mx1 expression in A549 wt cells but 

not in A549 STAT1-/- cells. Holzinger and colleagues reported similar findings for IAV but in 

their study Mx1 induction by IAV was less efficient as compared to IFN-α (Holzinger et al. 

2007). In contrast, Marcos-Villar and colleagues and the present study observed the 

opposite trend (Marcos-Villar et al. 2018). Substantial differences in the IFN-α preparations, 

concentrations, conditions used in the presence and absence of trypsin might account for 
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differences in the findings. Nevertheless, the results are in concordance with the expected 

defect in IFN signalling in A549 STAT1-/- cells. 

It was then investigated whether DI-244 antiviral activity was STAT1-dependent, using the 24 

h setting. When A549 STAT1-/- cells were exposed to the highest amount of DIPs analysed, 

potent anti-IAV activity was observed. Nonetheless, when 10-fold diluted DI-244 was 

analysed, markedly reduced anti-IAV activity was observed in STAT1-/- cells as compared to 

wt cells. Thus, the anti-IAV activity of DI-244 was partially dependent on an intact STAT1 

gene. In contrast, the ability of DI-244 to inhibit VSV infection was fully STAT1-dependent, 

independent of the DIP dilution analysed. Several observations could explain why IAV 

inhibition by DI-244 was not STAT1-dependent when the highest amount of DIPs was 

investigated. First, it is possible that IAV inhibition under those conditions was independent 

of the IFN system. Apparently, cells exposed to a high amount of DI-RNAs can induce a pro-

survival program, dependent on RLR signalling pathway, which may protect cells from dying 

during infection (Vignuzzi and López 2019). Second, it is possible that certain ISGs with anti-

IAV activity are upregulated by DI-244 in a STAT1-independent fashion. This agrees with a 

previously study which reported that STAT1 gene is dispensable for IRF3 dependent 

stimulation of ISG expression (Wang et al. 2017).  Third, another possibility is that IRF9 and 

STAT2 could induce an antiviral effect independent of STAT1 by fusion of IRF9 with 

transcriptional activation domain of STAT2 containing binding sites for transcription 

coregulators (Kraus et al. 2003). Finally, unphosphorylated-ISGF3  alone can induce an 

antiviral effect (Cheon et al. 2013).  Collectively, it can be stated, DI-244 induces anti-IAV 

activity partially independent of STAT1.  

The finding that DI-244 anti-IAV activity was partially STAT1-dependent whereas anti-VSV-

activity was fully dependent open two possibilities. Whether DI-244 induces an antiviral 

state through IFN expression, which signals in a STAT1-dependent manner, or directly 

through ISG expression, which is the consequence of IFN induced, STAT1-dependent 

signalling. To determine whether DI-244 induced expression of type I, II, III IFNs in A549 cells 

a bioassay was performed. Briefly, supernatants harvested from IAV, VSV or DI-244 exposed 

cells were heated and acid treated (followed by neutralization) to inactivate residual virus. 

As it has been reported that both type I (IFN-β) and type III (IFN-λ) are acid-stable, but only 

type I (IFN-β) displays resistance to alkaline treatment (Berger Rentsch and Zimmer 2011). 
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However, it needs to be stated that another study reported that IFN-λ is acid-sensitive (Reid 

et al. 2016). Afterwards, supernatants or IFN-α (used for standardization) was inoculated 

onto fresh A549 cells in order to trigger an antiviral state, followed by VSV infection and 

quantification of infection. The quantification showed that supernatant of IAV-infected cells 

induced an antiviral state in target cells that inhibited VSV infection in a STAT1-dependent 

manner, as expected. Similar results were obtained for cells exposed to supernatants from 

VSV infected cells, but inhibition was independent of STAT1. Surprisingly, supernatants from 

DI-244 exposed cells did not induce any antiviral state.  

To confirm that DIPs do not induce IFN and to determine whether DIPs induce expression of 

ISGs, RNAseq analysis was conducted. This analysis showed that neither IAV nor DI-244 

induced expression of IFN receptors while IAV but not DI-244 induced expression of IFN. 

Regardless of the discrepancy in upregulation of IFNs by IAV and DI-244, both induced 

expression of a broad panel of ISGs, although IAV was more efficient than DI-244 in ISG 

induction. These results were confirmed with qRT-PCR and concluded that DI-244 induces 

ISGs in a STAT1-dependent but IFN-independent manner. Notably, a recent study confirmed 

that DIPs can efficiently induce ISGs in the absence of robust type I and III IFN expression 

(Wang et al. 2020). The mechanism behind this induction is unknown. In the absence of IFN, 

expression of a subset of ISGs can be induced by IRF7 (Schmid et al. 2010). For instance, 

ISG56 is upregulated by IRF3 in an IFN-independent manner through ISREs present in the 

ISG56 promoter (Grandvaux et al. 2002). However, in the present screen, no STAT1-

independent DIP induced upregulation of ISGs with anti-IAV activity was observed. 

In conclusion, this study provides evidence that induction of IFN system is a major 

contributor of DIP antiviral activity. Having said this, the induction of IFN system does not 

involve DIP-mediated expression of IFN but direct induction of ISG expression. 
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List of abbreviations 
ATP adenosine triphosphate 

cRNA Complementary RNA 

DI RNAs Defective interfering RNAs 

DIPs Defective interfering particles 

DNA Deoxy-ribonucleic acid 

GAF Interferon-gamma activation factor 

GAS Gamma-activated sequence 

GTP Guanosine triphosphate 

HA Hemagglutinin 

HIV Human immunodeficiency virus 

IAV Influenza A virus 

IBV Influenza B virus 

IFITM Interferon-induced transmembrane protein 

IFN Interferon 

IRF Interferon regulatory factor 

ISG Interferon-stimulated genes 

ISGF3 Interferon-stimulated gene factor 3 

ISRE Interferon-stimulated response element 

M1 Matrix protein 1 

M2 Matrix protein 2 

MAVS Mitochondrial antiviral-signalling protein 

MDA5 Melanoma differentiated-associated protein 5 gene 

MDCK Madin-Darby Canine Kidney cells 

MOI Multiplicity of infection 

mRNA Messenger RNA 

Mx Mxyovirus resistance gene 

NA Neuraminidase 

NCR Non-coding region 

NEP Nuclear export protein 
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NP Nucleoprotein 

NS1 Non-structural protein 1 

NS2 Non-structural protein 2 

PA Polymerase acidic 

PAMPs Pathogen associated molecular patterns 

PB1 Polymerase basic 1 

PB2 Polymerase basic 2 

PB2 opt Codon-optimized PB2 

Pol-I RNA polymerase I 

Pol-II Polymerase II cytomegalovirus promoter 

PR8 A/Puerto Rico/8/34 

PRRs Pattern recognition receptors 

PVM Pneumonia virus of mice 

RdRp RNA-dependant RNA polymerase 

RIG-I Retinoic acid-inducible gene 1 

RLRs RIG-I like receptors 

RNA Ribonucleic acid 

SARS-CoV Severe acute respiratory syndrome corona virus  

SFV Semliki forest virus 

STAT Signal transducers and activators of transcription 

UV Ultra-violet 

vRNA Viral RNA 

vRNP Viral ribonucleoprotein 

VSV Vesicular stomatitis virus 

WHO World Health Organization 

WSN A/WSN/33 

wt Wild-type 
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