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ABSTRACT 

Pancreatic ductal adenocarcinoma (PDAC) is a highly heterogeneous disease 

which is significantly driven by epigenetic alterations, e.g. installed by 

overexpression of Enhancer of Zeste homologue 2 (EZH2). EZH2 constitutes 

the catalytic member of the PRC2 complex and plays a pivotal role in gene 

repression by mediating histone methylation (H3K27me3). High EZH2 

expression levels are predominantly found in undifferentiated PDAC tumors 

and are associated with poor prognosis. However, the underlying mechanisms 

that bridge EZH2 activity to PDAC dedifferentiation remain elusive. Here we 

aim to dissect the mechanistic and functional role of EZH2 in PDAC 

progression and dedifferentiation. 

The functional implications of EZH2 are investigated in vitro in primary PDAC 

cells upon genetic (CRISPR/Cas9 and shRNA-based) or pharmacological 

inhibition (EPZ6438) of EZH2 and in vivo utilizing transgenic mice of EZH2 

deficiency and Patient-Derived-Xenograft (PDX) models. EZH2-dependent 

gene signatures are identified based on ChIP-and RNA-seq analyses and are 

further validated by independent gene expression studies.  

EZH2 activity correlates with increased tumor incidence and metastatic 

propensity in murine PDAC and drives dedifferentiation in human PDAC. 

Blockade of the histone methyltransferase reduces proliferation, invasion and 

stemness features in PDAC cells. Accordingly, genome wide binding- and 

expression analyses reveal EZH2 as a repressor of differentiation-associated 

gene signatures and indicate that blockage of EZH2 activity induces a gene 

signature shift towards classical and less aggressive molecular PDAC 

subtypes. The endodermal transcription factor encoding GATA6 gene is 

identified as one of the most significantly regulated direct EZH2 targets. 

Consequently, abrogation of GATA6 upregulation in the context of EZH2-

deficiency partially counteracts the acquisition of classical gene signatures and 

reinstalls their invasive capacities of PDAC cells, suggesting that the 

tumorigenic activity of EZH2 is critically determined by GATA6 repression. 
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Together, our findings link the EZH2-GATA6 axis to PDAC subtype identity and 

suggest EZH2 inhibition as a promising therapeutic strategy to induce subtype-

switching in favor of a less aggressive PDAC phenotype.  
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1 INTRODUCTION 

 Pancreatic cancer 

The pancreas is a glandular organ that lies behind the lower part of the 

stomach in the abdomen. It mainly consists of two functional units - endocrine 

and exocrine. The endocrine cells help regulate the blood glucose levels, and 

the exocrine unit, which is made of acinar and ductal cells, produces and 

releases digestive enzymes (Zhou and Melton 2018). The tumor can form in 

cells from any of these compartments but 90 % of the pancreatic cancers are 

pancreatic ductal adenocarcinoma (PDAC), which arise from the acinar cells of 

the pancreas (Iguchi et al. 2016).  

 Pancreatic cancer statistics 

Pancreatic cancer is currently the third leading cause of cancer-related deaths 

in the United States (Tavakkoli et al. 2020) and fourth in Europe (Ferlay et al. 

2018). With the records of increasing incidence, consistently low survival rates 

and no significant improvements in mortality trends, it is projected to be the 

second leading cause of cancer-related deaths by 2030 (Tavakkoli et al. 2020). 

According to GLOBOCAN 2018 estimates, pancreatic cancer is the 11th most 

common cancer in the world and was reported to cause 432,242 deaths (4.5 % 

of all deaths caused by cancer) in 2018 (Bray et al. 2018). With the highest 

mortality rate of 91 %, to date, it remains one of the deadliest gastrointestinal 

malignancies worldwide. Even though the overall incidence of pancreatic 

cancer is relatively less, the incidence almost equals the mortality rate (Gordon-

Dseagu et al. 2018; Rahib et al. 2014). Despite all the scientific efforts in the 

last few decades, the five-year survival rate of PDAC remains at 9 %, which is 

the lowest of all cancer entities (Rawla, Sunkara, and Gaduputi 2019). These 

alarming statistics are reasoned by late diagnosis due to lack of specific early 

detection methods and no predictive symptoms or nonspecific symptoms. 

Furthermore, tumors are unresectable when detected at an advanced stage. 

PDAC displays a high recurrence rate after surgery and an intrinsic resistance 

against diverse therapeutic regimens, mainly because of untailored therapeutic 

strategies, extensive tumor heterogeneity and dynamic cellular plasticity (Orth 

et al. 2019). Approximately 70 % of the patients do not respond to therapies 
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and additionally upon failure of chemotherapy, they develop accelerated tumor 

growth, resistance and metastasis (Juiz, Iovanna, and Dusetti 2019). 

Consequently, advanced research is urgently needed for the better 

understanding of disease etiology and the development of novel therapeutic 

strategies.  

 Pancreatic carcinogenesis 

The origin of PDAC was deciphered in the 21st century with the development of 

genetically engineered mouse models (GEMMs) of PDAC. For a long time, 

PDAC was thought to originate from the ductal cells of the pancreas (J. M. 

Bailey, DelGiorno, and Crawford 2014; Busnardo et al. 1983). Later, it was 

experimentally confirmed that PDAC originates from the acinar cells, which are 

known to possess a high degree of cellular plasticity (J. M. Bailey et al. 2015; 

Kopp et al. 2012; Ray et al. 2011). In 1988, Smit et al. set a link between a 

mutation in codon 12 in KRAS and PDAC (Smit et al. 1988). Subsequently, 

many GEMMs verified the association and confirmed that point mutations in the 

KRAS gene is the earliest event for the onset of PDAC (Hingorani et al. 2003; 

Olive and Tuveson 2006). The KRAS gene codes for the KRAS protein, a 

Guanosine triphisphatase (GTPase), which acts as a switch to regulate the 

RAS/MAPK signaling pathway. The mutation results in a constitutively active 

KRAS protein that continuously drives proliferation independent of external 

stimuli (Ellis and Clark 2000). The  KRAS oncogene is found to be mutated in 

90 % of PDACs (Hansel, Kern, and Hruban 2003; Hruban et al. 1993), and this 

gatekeeper KRAS mutation is vital for the initiation of PDAC (Kandha et al. 

2012). Studies in mouse models show that upon acinar damage, mutant KRAS 

blocks acinar regeneration, thus resulting in progression of Acinar-to-ductal 

metaplasia (ADM) to Pancreatic Intraepithelial Neoplasia (PanIN) formation 

(Morris et al. 2010). PanINs represent PDAC precursor lesions, which progress 

through three well-defined stages (PanIN1A/1B, PanIN2, PanIN3) and have the 

potential to cause PDAC. These lesions differ in their level of cytological 

abnormalities (Guerra et al. 2007) and are associated with specific step-wise 

genetic changes. Oncogenic KRAS is present in 90 % of PanIN1A/1B, 

CDKN2A is found to be inactivated in 90 % of PanIN2 (Caldas et al. 1994; 

Russo et al. 1998), inactivation of TP53 is found in 50-70 % (Barton et al. 1991; 
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Berrozpe et al. 1994; Rozenblum et al. 1997; Solcia, Bonato, and Ranzani 

1994) and loss of SMAD4 is seen in 55 % (Hahn et al. 1996) of PanIN3 (Guerra 

et al. 2007; Iacobuzio-Donahue 2012; Thilo Welsch, Jorg Kleeff, and Helmut 

Friess 2007).  

Although oncogenic activation of KRAS is a very early initiating event for PDAC 

origin, certain environmental stimuli like stress or acinar cell injury accelerate 

PDAC initiation and further progression (Dumartin et al. 2017). Accordingly, 

chronic pancreatitis displays a crucial risk factor for PDAC development (Yadav 

and Lowenfels 2013). These events ultimately enhance the secretion of 

inflammatory factors which in combination with mutant KRAS boost progression 

of PDAC (Baer et al. 2014; Ye et al. 2019; Young et al. 2019).   

 PDAC heterogeneity 

 Molecular heterogeneity of PDAC 

One of the major reasons for the aggressive tumor biology and the therapeutic 

resistance of PDAC is its high molecular heterogeneity. Next-generation 

sequencing approaches conducted in the last few years have significantly 

extended our understanding of the molecular complexity of PDAC. The first 

whole-exome sequencing experiment in pancreatic cancer specimens 

conducted in 2008 identified alterations in a number of oncogenes and tumor 

suppressor genes (Jones et al. 2008). Further, numerous follow-up studies 

have revealed huge amount of information regarding the wide spectrum of 

mutational and copy number variations in PDAC (Adamo et al. 2017; P. Bailey 

et al. 2016). These reports have not only reaffirmed signature mutations in 

KRAS, CDKN2A, SMAD4 and TP53 genes but revealed additional genetic 

alterations that occur throughout the process of tumor progression, although at 

lower prevalence (P. Bailey et al. 2016; Biankin et al. 2012; Du et al. 2017). 

However, recent work indicates that phenotypic features of PDAC are not only 

driven by genetic alterations but are significantly determined by epigenetic 

changes (G. Lomberk et al. 2018; Nicolle et al. 2017). Hence, epigenetic 

dysregulation critically contributes to the molecular diversity of PDAC. 
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Figure 1: Schematic depicting heterogeneity in pancreatic cancer. 

Genetic and molecular heterogeneity exists between different patients (intertumoral 
heterogeneity), primary and metastatic sites within the same patient as well as within 
different parts of the same tumor (intratumoral heterogeneity). 

 

 Molecular PDAC subtypes 

The high degree of molecular heterogeneity in PDAC is reflected by the 

identification of various molecular PDAC subtypes with prognostic and therapy 

predictive relevance (Aung et al. 2019; P. Bailey et al. 2016; Collisson et al. 

2011; Moffitt et al. 2015). The first study aiming at molecular PDAC subtyping 

was performed by Collisson et al. in 2011 and is based on microarray-based 

transcriptome analysis in microdissected primary resected PDAC samples as 

well as in mouse and human cell lines. The authors unraveled three subtypes: 

classical (increased expression of epithelial genes), QM (quasi-mesenchymal, 

increased expression of mesenchymal genes) and exocrine (increased 

expression of digestive enzymes genes). They also show the association of 

these subtypes with clinical outcome and differences in response to therapy. 

They developed PDAssigner gene sets comprising 62 genes that define their 

subtypes. (Collisson et al. 2011). Following this up, in 2014, Kim et al. 

conducted microarray analysis in 96 resected non-micro-dissected samples 
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and shared similar findings. They found three molecular subtypes: subtype1 

(similar to classical subtype with enriched immune pathways), subtype2 

(resembles QM PDA) and subtype3 (similar to exocrine-like) which had a 

significant correlation with tumor size, metastasis and survival (S. Kim et al. 

2014). 

In 2015, Moffit et al. performed virtual microdissection to separate stroma from 

epithelial tumors and looked for gene expression in both tumoral and stromal 

compartment. They conducted microarray analysis in both primary and 

metastatic samples and further validated their results by RNA-sequencing 

(RNA-seq), which is a more sensitive method and can capture a broader range 

(Rodríguez-García, Sola-Landa, and Barreiro 2017). They presented two 

subtypes for the tumor compartment: classical and basal-like which overlapped 

with the Collisson classical and QM subtypes, respectively. The authors also 

distinguished two stromal subtypes: Normal and activated stroma which 

independently serve as prognostic markers (Moffitt et al. 2015). Soon after this, 

in 2016, Janky et al. published their microarray data in resected samples, 

where they found three clusters largely reflecting the findings from Collisson et 

al (Janky et al. 2016). In 2016, Bailey et al. in collaboration with International 

Cancer Genome Consortium (ICGC), performed integrated genomic analysis 

and gene expression analysis using deep-exome sequencing and RNA-seq 

approaches. They explored 32 significantly mutated genes that aggregated into 

10 molecular pathways. Clustering from the gene expression analysis revealed 

four clinically relevant subtypes: Progenitor, Aberrantly differentiated endocrine 

exocrine (ADEX), Squamous and Immunogenic. The progenitor and squamous 

subtypes shared common features with Collisson’s classical and QM subtypes, 

respectively (P. Bailey et al. 2016). However, work from The Cancer Genome 

Atlas (TCGA) categorized ADEX and Immunogenic subtypes as less pure. 

Using the transcriptomic data from Bailey et al., Müller classified five different 

clusters: cluster1 overlapped with squamous subtype, cluster2 had more 

epithelial cell signatures, cluster3 had signatures related to EMT and MAPK 

pathways which are characteristics of undifferentiated tumors, cluster4 was 

similar to the immunogenic subtype and cluster5 resembled ADEX subtype 

gene signatures (Mueller et al. 2018). 
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More recently, Puleo et al. conducted a large investigation of the transcriptional 

landscape by performing microarray analysis in 309 paraffin-embedded 

samples. The study integrates data from epithelial and stromal compartments. 

The unsupervised classification of the whole tumor entity revealed five 

subtypes: Pure classical, immune classical, desmoplastic, stroma activated and 

pure-basal-like. The high tumor cellularity classification revealed two well-

defined subtypes: classical and basal-like. This study captured the molecular 

diversification of PDAC compartments and validated the existence of classical 

and basal subtypes as described in all previous PDAC stratification studies 

(Puleo et al. 2018). In the follow-up study, Maurer et al. (2019) carried out RNA-

sequencing in 60 resected samples and revealed two epithelial (classical and 

basal-like) and two stromal (ECM rich and immune rich) subtypes (Maurer et al. 

2019). 

In summary, two subtypes exist in the epithelial PDAC compartment, which 

have been univocally identified by all transcription-based subtyping studies 

conducted in PDAC so far: classical and basal-like. The classical molecular 

PDAC subtype is characterized by the expression of epithelial differentiation-

related gene signatures, is less aggressive and displays a relatively good 

prognosis. In contrast, basal-like PDAC is highly aggressive and is associated 

with chemoresistance and low survival (P. Bailey et al. 2016; Collisson et al. 

2011; G. Lomberk et al. 2018; Moffitt et al. 2015; Puleo et al. 2018). Hence, the 

aforementioned subtyping studies have not only allowed for a better 

understanding of the remarkable molecular heterogeneity of PDAC, but have 

revealed molecular explanations for the poor efficacy of “one-size-fits-all” 

therapeutic approaches in PDAC treatment. Moreover, these studies clearly 

emphasize the necessity of considering the diverse molecular PDAC 

characteristics for pursuing tailored therapeutic strategies to combat pancreatic 

cancer. Finally, the aforementioned studies indicate that molecular PDAC 

subtypes are primarily defined at the level of gene transcription. Hence, a 

thorough understanding of the mechanistic regulation of PDAC subtypes 

requires the exploration of epigenetic alterations underlying the classification of 

PDAC tumors.  

 



INTRODUCTION 

7 
 

 Epigenetics 

Epigenetics literally translates to ‘outside genetics’. The term epigenetics is 

used to describe the heritable changes in gene expression and phenotype 

without any alterations in the DNA sequence itself (Holliday 1994). 

Epigenomics means the genome-wide analysis of the epigenetic process 

(Ideraabdullah and Zeisel 2018). Epigenetics can be broadly classified into 

three principle mechanisms (Bishop and Ferguson 2015; Virani et al. 2012): 

1. Chromatin regulatory processes  

2. DNA Methylation 

3. Non-coding RNA  

In each eukaryotic cell, the DNA strand is around 2 meters in length. To fit itself 

into a small nucleus of some 6 µm diameter, the DNA coils around nuclear 

proteins called histones and forms a compact structure called chromatin (Hauer 

and Gasser 2017). In this process, the DNA becomes inaccessible for DNA 

binding factors and hence does not get transcribed. This state of chromatin 

which displays a high degree of compaction is defined as heterochromatin. For 

gene transcription, the chromatin structure needs to shift from a condensed to a 

transcriptionally accessible relaxed state. This relaxed chromatin state which 

enables active transcription is termed as euchromatin (Corradini et al. 2007; 

Fedorova and Zink 2008). The dynamic reorganization of the chromatin 

architecture and hence the regulation of gene transcription are controlled by 

two major processes: Chromatin remodeling and histone modification. 

Given the critical involvement of chromatin regulatory processes in controlling 

gene transcription, alterations of chromatin-associated processes contribute to 

several pathophysiological conditions, including cancer (Bauer and Martin 

2017; Morgan and Shilatifard 2015). For example, mutation of chromatin 

regulatory proteins or their altered activity have a severe impact on cellular 

functions that support the development and progression of cancer (Jian Chen 

et al. 2016). Accordingly, in PDAC approximately 38 % of specimens carry 

mutational events in chromatin regulatory proteins (P. Bailey et al. 2016), which 

can have prognostic implications (Grassi et al. 2018). Moreover, several 

genetic alterations in PDAC and subsequent dysregulation in signaling 

pathways influence on the expression, recruitment and activity of chromatin 
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regulatory proteins with potential impact on the chromatin landscape (Liu et al. 

2016). 

The following paragraphs summarize the major physiological mechanisms 

controlling chromatin remodeling and histone modifications and provide 

examples, how alterations of chromatin regulatory protein functions can 

contribute to PDAC development and progression.  

 Nucleosome remodeling  

The nucleosome is the fundamental unit of chromatin. Each nucleosome is a 

DNA-protein complex, which comprises 146 bp of DNA wrapped around a 

histone octamer (2 sets of histone H2A, H2B, H3, and H4) (Van Holde et al. 

1980). Nucleosome remodeling is mediated by large multiprotein complexes 

that contain several subunits, including the Adenosine triphosphatase (ATPase) 

catalytic subunit. The energy released by the hydrolysis of ATP is utilized to 

slide nucleosome along the DNA, thereby exposing the DNA to transcription 

factors (Tyagi et al. 2016). Currently, four families of remodeling complexes are 

known: SWI/SNF, ISWI, CHD and INO80, (Musladin et al. 2014) each with 

distinct biological functions. All complexes have a conserved ATPase subunit 

and other members are responsible for the complexes’ recruitment to DNA or 

regulate the ATPase activity (Mani et al. 2017). 

The subunits of the complexes are known to be inactivated in many human 

cancers and are hence referred to as tumor suppressors. Importantly, 

according to investigations by Bailey et al., mutations in components of the 

SWI/SNF complex were detected in 14 % of PDAC samples (P. Bailey et al. 

2016). Importantly, inactivation of selective SWI/SNF complex members has 

been associated with poor survival in PDAC patients (Yoon et al. 2019) and 

impact on the senstitivity towards platinum-based therapy regimens (Hasan and 

Ahuja 2019), hence emphasizing the prognostic and predictive relevance of 

these alterations.  
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 Histone modifications 

Histone tails are susceptible to post-translational modifications, generally 

referred to as ‘histone marks’. The type of histone mark and its relative location 

on the gene (Transcription start site (TSS), promoters, gene body) determines if 

the gene is expressed or repressed. The enzymes that mark the histones are 

referred to as writers, readers or erasers, which add, recognize or remove the 

mark, respectively (Janzen et al. 2010). The consequences of distinct histone 

modifications on DNA accessibility and transcriptional activity are determined 

by the type (e.g. acetylation, methylation, phosphorylation, ubiquitination and 

SUMOylation) and the localization (histone protein and amino acid residue) of 

the histone modification (Audia and Campbell 2016; Goll and Bestor 2002). 

 

Figure 2: Schematics depicting the chromatin regulators. 

Three main categories of chromatin regulators responsible for post-translational 
modifications (PTMs) include writers (adds the modification), readers (recognizes 
particular histone marks) and erasers (catalyze the removal of histone modification). 

 

 

1.3.2.1 Histone acetylation 

In the nucleosome, negatively charged DNA and the positively charged 

histones form the DNA-protein complex (Tammen, Friso, and Choi 2013). 

Histone acetylation (also known as lysine acetylation) is the process of adding 

acetyl groups onto histone tail residues. This neutralizes the positive charge on 

the amino acid residue, thereby loosening DNA-histone contact resulting in an 

open chromatin structure that enables gene transcription (Sterner and Berger 

2000). On the contrary, histone deacetylation, where acetyl groups are erased, 

leads to compaction of the DNA-histone structure resulting in gene repression 
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(De Ruijter et al. 2003). The addition and removal of acetyl groups on lysine 

residues are mediated by histone acetyltransferases (HATs) and Histone 

deacetylases (HDACs), respectively (Singh, Reindl, and Jansen 2019). Further, 

acetylated marks serve as docking sites where chromatin reader proteins bind 

(Yun et al. 2011). 

Aberrant activity of HATs, HDACs and acetylation readers are correlated with 

PDAC development and progression (Glozak and Seto 2007; Köenig et al. 

2010; Ouaïssi et al. 2014; Stenzinger et al. 2013). Considering the implications 

of aberrant acetylation in cancer, several inhibitors are being developed against 

histone lysine writers (Kunnumakkara et al. 2007; Sahu, Batra, and Srivastava 

2009), readers (Pérez-Salvia and Esteller 2017; Y. Xu and Vakoc 2017) and 

erasers (Marmorstein and Zhou 2014; Mottamal et al. 2015). 

1.3.2.2  Histone methylation 

Histone methylation is the process where methyl groups are added to 

lysine/arginine residues of histones (Hyun et al. 2017). Unlike acetylation which 

is always associated with gene activation, methylation can be correlated to 

either gene expression or repression depending on which lysine/arginine 

residue is methylated and how many methyl groups are added (mono-, di- or 

trimethylation) (Dambacher, Hahn, and Schotta 2010). For instance, 

trimethylation of lysine 4 on histone H3 (H3K4me3) by the trithorax complex 

induces gene expression whereas H3K27me3 installed by members of the 

Polycomb repressor complex 2 (PRC2) induces gene repression 

(Schuettengruber et al. 2007). Histone methyltransferases (HMTs) which 

methylate lysine and arginine residues on histones are referred to as lysine 

methyltransferases (KMTs) and protein arginine methyltransferases (PRMTs), 

respectively. (Lorenzo and Bedford 2011; Upadhyay and Cheng 2011). Around 

50 KMTs are known so far, where all of them (except Dot1) have a conserved 

Su(var)3-9,EZH2 and Trithorax (SET) domain, which is responsible for the 

methyltransferase activity (G. A. Lomberk, Iovanna, and Urrutia 2016). Lysine 

demethylases (KDMs) counteracts KMT activity by mediating the removal of 

methyl marks (Thinnes et al. 2014).  

Many histone- methylases and demethylases are known to be mutated, 

dysregulated, overexpressed, or downregulated in various cancers (Singh, 
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Reindl, and Jansen 2019). For instance, studies showed that mutations in 

MLL1, MLL3 and MLL4 and reduced expression of MLL3 and MLL4 had a 

better prognosis and outcome in PDAC (Dawkins et al. 2016). In contrast, high 

levels of KDM1A in PDAC is associated with poor survival. Also, several other 

KDMs (KDM2A, KDM3A, KDM5B) are highly expressed in various cancers 

(McGrath and Trojer 2015). Histone methyltransferases represent another class 

of attractive druggable targets for PDAC intervention. BRD-4770, a molecular 

inhibitor of G9a was found to decrease methylation levels, induce cell cycle 

arrest and mediate cell senescence (Artal-Martinez de Narvajas et al. 2013; 

Yuan et al. 2012).  Another G9a inhibitor, BIX-01294, also showed similar 

results in vitro in pancreatic cancer (Cui et al. 2015). One of the early 

nonselective KDM1 inhibitors, tranylcypromine, is approved by the FDA for 

neural disorders (Thinnes et al. 2014). Several compounds are being tested for 

the development of selective KDM inhibitors (G. A. Lomberk, Iovanna, and 

Urrutia 2016). 

 

 PRC2 complex 

The protein complex families - trithorax group (trxG) genes and polycomb group 

(PcG) genes were initially discovered in Drosophila Melanogaster, where they 

regulate the expression of homeotic genes (Hox genes) during the formation of 

body plan (Deschamps et al. 1999). They work antagonistically with trxG 

maintaining and PcG silencing transcription processes, respectively (Kennison 

1995; Schuettengruber et al. 2007). PcG assembles into two types of 

multiprotein complexes- Polycomb Repressive Complex 1 (PRC1) and 

Polycomb Repressive Complex 2 (PRC2) (Sauvageau and Sauvageau 2010). 

The PRC2 complex mediates H3K27me3 which is then recognized by 

members of the PRC1 complex, which further mediates H2AK119Ub1. This 

causes the chromatin to condense, thereby leading to transcriptional silencing.  
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Figure 3: Schematic illustrating the function mediated by the PRC2 complex 

The core subunits of the PRC2 complex are Enhancer of Zeste 2 (EZH2), Suppressor 
of Zeste 12 (SUZ12), Embryonic ectoderm development (EED) and Retinoblastoma 
binding proteins 4 and 7 (RBBP4/7). The complex mediates addition of three methyl 
groups on lysine 27 of histone H3 (H3K27me3) subsequently switching the chromatin 
from an active transcription state to a repressive state. 

 

The PRC2 complex consists of four core members - Enhancer of Zeste 2 

(EZH2),  Embryonic ectoderm development (EED), Supressor of Zeste 12 

(SUZ12) and Retinoblastoma binding proteins 4 and 7 (RBBP4/7) as well as 

other accessory proteins (AEBP2, PCL, JARID2) (Aranda, Mas, and Di Croce 

2015). EZH2 is the SET domain-containing catalytic subunit of the complex 

which mediates H3K27me3. (Müller et al. 2002) WD40 domain harboring 

component, EED, recognizes the trimethylated residues and zinc finger 

containing subunit, SUZ12, maintains the enzymatic activity of EZH2 (van 

Mierlo et al. 2019). The additional accessory proteins modulate the PRC2 

complex (Ketel et al. 2005). Drosophila has a single Ezh gene whereas 
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mammals have two - EZH1 and EZH2 which are paralogs. Even though both 

EZH1 and EZH2 harbor H3K27me3 activity, PRC2-EZH1 shows relatively lower 

methyltransferase activity than PRC2-EZH2. Also, EZH2 is mostly present in 

proliferating cells whereas EZH1 is found in dividing cells (Margueron et al. 

2008). Genome-wide studies in human embryonic fibroblast cells show that 

PRC2 and H3K27 methylation mark co-occupy on several differentiation-

associated genes (Bracken et al. 2006). 

 Regulation of EZH2 expression in cancer  

EZH2 is an extensively studied SET domain-containing histone 

methyltransferase, which silences gene expression by catalyzing trimethylation 

of H3K27 (Chou et al. 2015). EZH2 dysregulation is frequently seen in a wide 

variety of cancers. Altered EZH2 expression and activity can be caused by 

activating/inactivating mutations of EZH2 which are primarily found in 

hematological malignancies (Jankowska et al. 2011; Morin et al. 2010) or by 

missense mutation (K27M) in H3.3 which is found in pediatric gliomas (Khuong-

Quang et al. 2012). Besides these genetic events targeting EZH2, in solid 

tumors the histone methyltransferase is mostly overexpressed. Overexpression 

of EZH2 can also be caused by various transcriptional pathways. For example, 

the Mitogen-activated protein kinase kinase (MEK) – extracellular signal-

regulated kinase (ERK) – ETS Like-1 (ELK1) pathway has been shown to be 

responsible for increased EZH2 expression in ERBB2 overexpressing and 

triple-negative breast cancers. Phosphorylated ELK1 binds to its binding motif 

on the EZH2 promoter thereby activating EZH2 transcription (Fujii et al. 2011). 

Another pathway involved in EZH2 regulation is Retiniblastoma protein (pRb) - 

E2F signaling. Upon phosphorylation of pRb, E2F dissociates from the pRb-

E2F complex, binds to its binding site on the EZH2 promoter thereby promoting 

EZH2 transcription (Margueron et al. 2008). Abberation of the pRb-E2F 

pathway or E2F overexpression is associated with EZH2 overactivation in 

breast and bladder tumors (Feber et al. 2004; Margueron et al. 2008). Cancer-

related transcription factors bind on the EZH2 promoter and activate its mRNA 

expression. In breast cancer, hypoxia inducible factor 1a (HIF1a) induced by 

the hypoxic environment binds to its consensus sequence on EZH2 and 

activates its expression thereby aggravating breast cancer (Mahara et al. 
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2016). Besides, miRNAs downregulate EZH2 levels by post-translational 

modifications. Many different miRNA s like miR-25, -98, -124, -138, -214 

interact with specific sequences in the EZH2 3’ untranslated region (3’ UTR) 

(Völkel et al. 2015). Together, aberrant EZH2 expression in cancer can be 

caused by various mechanisms which occur at different regulatory levels.   

 Context-dependent roles of EZH2 

EZH2 overexpression was initially detected in breast and prostate cancer 

through microarray analysis where it was strongly correlated with poor 

prognosis and associated with high-grade metastatic stages (Bachmann et al. 

2006; Varambally et al. 2002). High levels of EZH2 are reported in a wide 

variety of other cancers like melanoma (Fan et al. 2012; Zingg et al. 2015), lung 

(Hussain et al. 2009), hepatocellular (Sudo et al. 2005), bladder (Raman et al. 

2005), ovarian (Moses and Jia 2013; Rao et al. 2010), brain (Bracken et al. 

2003) and pancreatic cancer (Han et al. 2016; Ougolkov, Bilim, and Billadeau 

2008; Toll et al. 2010). In these solid tumor entities EZH2 mainly serves as an 

oncogenic factor by silencing tumor suppressor genes via H3K27me3-mediated 

transcriptional repression. However, apart from its PRC2-dependent activity, 

EZH2 exhibits various other modes of action depending on the cellular context. 

For instance, EZH2 mediates posttranslational methylation of many non-histone 

proteins like GATA4 (He et al. 2012), RORα (Lee et al. 2012) and TALIN 

(Gunawan et al. 2015). In addition to mediating gene repression, EZH2 also 

functions in a PRC2 independent manner to mediate transcriptional activation. 

In the estrogen receptor-positive luminal-like breast cancer cell line MCF7 for 

example, EZH2 mediates CYCLIND1 and MYC transcription independent of its 

methyltransferase activity (Shi et al. 2007). Another instance where EZH2 

functions as an activator is in castration-resistant prostate cancer. EZH2 acts 

via its methyltransferase activity but without relying on other PRC2 complex 

members. In this case, EZH2 gets phosphorylated posttranslationally at serine 

21, and then biochemically interacts with the androgen receptor to work as a 

transcriptional coactivator activating downstream target genes (K. Xu et al. 

2012).  

While the aforementioned examples highlight the oncogenic activity of EZH2,  

there is also evidence for tumor suppressive functions of the histone 
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methyltransferase. For instance, Ntziachristos et al. found that loss-of-function 

EZH2 mutations promote tumor progression in T-cell acute lymphoblastic 

leukemia (T-ALL) (Ntziachristos et al. 2012). In another study, Bremer et al. 

demonstrated that high EZH2 expression significantly correlated with favorable 

prognosis in colorectal cancer (CRC) patients (Bremer et al. 2019). Another 

example is in renal cell carcinoma where loss of EZH2 mediates HIF-

dependent CXCR4 activation consequently promoting cancer metastasis 

(Vanharanta et al. 2013).  

Context-dependent EZH2 activities have also been described in the pancreas 

where EZH2 is critically involved in the regulation of cellular plasticity. 

Accordingly, EZH2 has been described as a critical regulator of acinar cell 

regeneration following injury. Mallen-St. Clair et al. showed that EZH2 

represses CDKN2A (encoding for the negative cell cycle regulator p16), thus 

allowing the proliferation of ADM which is a prerequisite for acinar 

redifferentiation (Mallen-St. Clair et al. 2012). Further mechanistic analyses 

suggest that EZH2-driven pancreatic regeneration critically involves 

transcriptional repression of the NFATc1 gene (N. M. Chen et al. 2017). The 

inflammatory transcription factor Nuclear factor of activated T cells (NFATc1) is 

activated upon acinar cell injury and blocks pancreatic regeneration. In KRAS 

wildtype cells, EZH2 counteracts NFATc1 activity by binding to the TSS of the 

NFATc1 gene and transcriptionally repressing its expression, which then allows 

the redifferentiation of acinar cells in later stages of pancreatic recovery. 

However, the EZH2-NFATc1 axis does not operate in the same way in the 

context of PDAC. In the presence of oncogenic KRAS, EZH2 transcriptionally 

activates NFATc1 expression, which further leads to ADM formation and 

progression into PDAC. Hence, KRAS acts as a switch that regulates opposing 

roles of EZH2 in acinar cell regeneration vs. transformation (N. M. Chen et al. 

2017). 

Overall, EZH2 activity are highly context dependent. While EZH2 is crucial 

during development and regeneration of the organ, it shifts its role in cancer. It 

functions via various modes of action, promotes either oncogenic or tumor-

suppressive implications and is regulated at different levels by several 

mechanisms. 
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 EZH2 in PDAC 

EZH2 was identified as an oncogenic driver in PDAC by Ougolvou and 

colleagues, where they found nuclear overexpression of the histone 

methyltransferase in 68 % of PDAC patients. They elegantly provide functional 

insights into the role of EZH2 in mediating cell proliferation and 

chemoresistance. Their study also reported that EZH2 silencing induced 

apoptosis and increased the sensitivity towards gemcitabine and doxorubicin 

(Ougolkov, Bilim, and Billadeau 2008). Another report in 2012 by Toll et al. 

supported this study and reported that EZH2 depletion sensitizes pancreatic 

cancer cells to gemcitabine and subsequently induces apoptosis. They 

evaluated EZH2 levels in PDAC samples from patients treated with 

gemcitabine. Patients with low EZH2 levels survived for a significantly longer 

time compared to the ones with high EZH2 levels. This validates the correlation 

between high EZH2 levels and low gemcitabine response. Furthermore, their 

study was the first to show that high EZH2 levels are associated with reduced 

E-cadherin levels in PDAC (Toll et al. 2010). The EZH2-E-cadherin axis was 

further validated by Han et al., where they additionally showed that EZH2 

mediates cell invasion and migration by transcriptionally repressing CDH-1. In 

their study, patients harboring an abundance of EZH2 and low E-cadherin 

displayed lower survival (Han et al. 2016). Altogether, EZH2 is highly 

expressed and harbors oncogenic activity in pancreatic cancer. 

 EZH2 inhibitors 

Considering that H3K27me3 is one of the frequently dysregulated histone 

modifications in a lot of cancers including PDAC, and EZH2 is the mediator for 

depositing this mark, it has been a major target for the development of 

inhibitors. One of the first inhibitors developed for EZH2 inhibition was 3-

deazaneplanocin (DNZep), an S-adenosyl-L-homocysteine (SAH) hydrolase 

inhibitor, which increases SAH levels, thereby leading to inactivation of several 

methyltransferases including EZH2. It showed promising activity in breast 

cancer and prostate cancer diminishing EZH2 and H3K27me3 levels and 

restoring downstream target genes of PRC2 (Tan et al. 2007). This small 

molecule inhibitor also reduced the self renewal capacity of prostate, ovarian 

and glioblastoma stem cells (Völkel et al. 2015). One of the studies reported 
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that DNZnep boosted the antiproliferative effect of gemcitabine in PDAC cell 

lines and primary cultures derived from PDAC tumors. Despite this, the use of 

this drug has been terminated due to its high toxicity levels (Gaudichon et al. 

2014). 

Following this up, S-adenosyl-L-methionine (SAM) competitive EZH2 inhibitors 

like EPZ005687, GSK2816126, CPI-1205, UNC1999 and EPZ6438 

(tazemetostat) were discovered through high throughput screening approaches. 

They display 1000 times more selectivity for EZH2 over other 

methyltransferases and can effectively antagonize EZH2 activity in the 

nanomolar range (McGrath and Trojer 2015). GSK126 was effective in 

monolayers in gastric cancer and lung adenocarcinoma cell lines as well as in 

xenografts models of lymphoma, where it displayed a decrease in cell 

proliferation, angiogenesis, and a significant increase in apoptosis (Y. T. Chen 

et al. 2016; McCabe et al. 2012). The compound CPI-1205 exhibited a 

decrease in EZH2 and H3K27me3 levels. Additionally, it displayed 

antiproliferative effects and led to increased apoptosis in vitro in 

medulloblastoma. It is relatively well tolerated and currently in clinical trials for 

medulloblastoma and B cell lymphoma (Miele et al. 2017; Vaswani et al. 2016). 

UNC1999, an orally bioavailable EZH2 inhibitor induced durable tumor 

response successfully in monolayers, spheroid cultures and pdx mouse models 

of PDAC (Huang et al. 2015b). Tazematostat (EPZ6438) is a first in class, 

highly selective, orally administered EZH2 inhibitor that has been tested in a 

phase-I study. It exhibited beneficial results with a favorable safety profile and 

anti-tumor activity in patients with B cell non-Hodgkin lymphoma and 

SMARCA4-negative or INI1 negative advanced solid tumors (Italiano et al. 

2018; Richart and Margueron 2020). Moreover, a disease control rate of 55 % 

was observed in solid tumors with this epidrug. Currently, Tazematostat is in 

phase-II clinical trials (NCT01897571) (Hessmann et al. 2017). To date, three 

EZH2 inhibitors, CPI-1205, GSK2816126 and tazematostat (EPZ 6438) have 

shown considerable tolerance and efficiency in hematological malignancies and 

solid cancers. 
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Figure 4: EZH2 SET-domain inhibitors and their mechanism of action. 

The catalytic unit of the PRC2 complex, EZH2, harbours a Su(var)3-9,EZH2 and 
Trithorax (SET) domain which catalyzes the transfer of methyl groups from the methyl 
donor S-Adenosyl-L-methionine (SAM) to H3K27, thus leading to transcriptional 
repression. The competitive SAM inhibitors (belonging to a class of EZH2 inhibitors) 
block the methylation process, thus keeping the chromatin in an active transcriptional 
state. (Adapted from (Gulati, Béguelin, and Giulino-Roth 2018)). 

  

 

Although EZH2 has a more prominent role in mediating H3K27me3, EZH1 

contributes to maintaining the methylation levels. Hence, studies suggest that 

dual inhibitors like DS-3201, which simultaneously inhibit both EZH1 and EZH2, 

are more effective (Honma et al. 2017). The same report also argues that a 

combination of EI1 and EED-226, which are EZH2 and EED inhibitors, 

respectively increased the treatment efficacy compared to monotherapies. Most 

recently, an EZH2 degrader has been characterized which efficiently degrades 

EZH2 protein making this compound highly specific for EZH2. Furthermore, this 

is a valuable epidrug for cancers where EZH2 plays a methyltransferase 

independent role (Ma et al. 2020).  

The majority of these small molecule inhibitors of EZH2 exhibit an optimistic 

effect as monotherapy in preclinical models of PDAC (Huang et al. 2015a; 
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Paradise, Barham, and Fernandez-Zapico 2018). But the combination of these 

inhibitors with a chemotherapeutic agent or another epidrug seems to work 

better in PDAC than a monotherapy (Honma et al. 2017; Ougolkov, Bilim, and 

Billadeau 2008). Further exploration of these inhibitors in larger clinical trials as 

targeted therapy is necessary for maximizing its benefits for translational utility. 

Furthermore, given that EZH2 exhibits a highly context-dependent expression 

and function, inhibiting EZH2 might not be benefical in all situations or might 

even foster cancer progression. Indeed, some studies demonstrate that EZH2 

inhibitors were only effective in subgroups of cancer patients. For instance, 

Puppe et al. showed in 2009 that EZH2 inhibition by DZNep was selectively 

beneficial in BRCA-1 deficient or mutated breast cancer cells as these cells 

promoted tumor progression in an EZH2 dependent manner whereas BRCA-1 

proficient cells were not affected by EZH2 inhibition (Puppe et al. 2009). In 

certain subsets of breast cancer (Shi et al. 2007), EZH2 mediates tumor 

progression in a methyltransferase independent manner and in such cases 

inhibitors blocking the SET domain of EZH2 would not be efficacious while 

inhibitors that degrade EZH2 protein would potentially be more effective (Ma et 

al. 2020). Besides, another study suggests that while inhibiting EZH2 in 

cancers harboring EZH2 Gain-of-function (GOF) mutations like in follicular 

lymphomas (FL) and Diffuse large B cell lymphomas (DLBCL) is very effective, 

the inhibitors were not useful in cells harboring EZH2 Loss-of-function (LOF) 

mutations like in certain cases of Myeloproliferative neoplasms (MPN) and T-

cell acute lymphoblastic leukemia (T-ALL) (Honma et al. 2017). Further several 

lines of evidence demonstrate that blocking EZH2 is specifically impactful in 

cancer cells harboring mutation or loss of SWI/SNF subunits – in lung cancer 

cells (K. H. Kim et al. 2015), small cell carcinoma of ovary (Chan-Penebre et al. 

2017) and other rhaboid tumors (Knutson et al. 2013; Wilson et al. 2010). 

These studies argue that it is necessary to understand the molecular conditions 

underlying EZH2 mediated tumor progression in cancer before designing 

strategies to inhibit it.  
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 Aims of the study 

EZH2 consitutes  a widely studied epigenetic factor in development as well as 

in cancer. Its implications in various cancer types including PDAC characterize 

the histone methyltransferase as a promising therapeutic target in PDAC. 

However, recent findings also suggest that the activity, target gene selection 

and regulation of chromatin regulatory proteins like EZH2 occur in a highly 

context-dependent manner. Hence, the successful application of EZH2 

inhibition in PDAC treatment requires an in-depth understanding of how the 

histone methyltransferase promotes PDAC progression and depends on the 

elucidation of the molecular dependencies determining the efficacy of EZH2 

inhibition in PDAC. 

In this study, we aim at investigating the role of EZH2 in pancreatic cancer  

progression and plasticity and aim at gaining mechanistic insights into EZH2-

dependent gene regulation in PDAC. Our specific aims are: 

1) To dissect the functional implications of EZH2 in PDAC development and 

progression.  

2) To identify EZH2-dependent gene signatures in PDAC progression. 

3) To elucidate the molecular prerequisites determining the efficacy of EZH2 

targeting in PDAC. 
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2  MATERIALS 

 Equipments: 

EQUIPMENT COMPANY 

Agarose electrophoresis chamber 
Peqlab Biotechnologie GmbH, 

Erlangen, Germany 

Arium®pro ultrapure water system Sartorius, Göttingen, Germany 

Aspirator with trap flask Grant Instruments Ltd, Cambs, 

England 

Bioanalyzer ( 2100, 5067-4626) Agilent technologies, USA 

Biorupter® Pico Diagenode, Liege, Belgium 

Class II safety cabinet (S2020 -1.2) Thermo Fisher Scientific, Waltham, 

USA 

Cold plate (Histocore Arcadia c) Leica Biosystem, Wetzlar, Germany 

Dri-Block Heater DB2A Techne, Staffordshire, UK 

Fluorescence Microscope System  Leica Camera, Wetzlar, Germany 

gentleMACS dissociator Miltenyi Biotech, Germany 

Heating plate Leica Biosystem, Wetzlar, Germany 

HERAcell 240i CO2 incubator Thermo Scientific, Waltham, USA  

Ice flaker (AF80) Scotsman, Edinburgh, UK 

INTAS- ECL Chemostar imager INTAS Science Imaging Instruments 

GmbH, Göttingen, Germany 

Inverted microscope (CKX53SF) Olympus, Tokyo, Japan 

Light microscope "BX43" Olympus, Tokyo, Japan 

Magnetic stirrer (RH B S000) IKA®Laboratory equipment, Germany  

Microplate Luminometer "LUMO" Autobiolabtec Instruments Co.,Ltd, 

China 

Microplate reader "PHOmo" Autobiolabtec Instruments Co.,Ltd, 

China 

Microwave (NN-E209W) Panasonic; Japan  

Microtome (Leica RM2265) Leica Biosystems, Wetzlar, Germany 

Mini-PROTEAN Tetra Cell Bio Rad Laboratories, Hercules, USA 

MSA Minishaker IKA, Staufen, Germany 

Multifuge X1 Centrifuge Series Thermo Fisher Scientific, Waltham, 

USA 



MATERIALS 
 

22 
 

EQUIPMENT COMPANY 

Multipette plus Eppendorf, Hamburg, Germany 

NanoPhotometer P-330 Intas Science Imaging Instruments, 

Goettingen, Germany 

Neubauer chamber Assistant, Sondheim/Rhön, Germany 

Paraffin Tissue embedder (EG1150H) Leica Biosystems, Wetzlar, Germany 

pH meter (FiveEasyTM Plus FEP20) Mettler-Toledo AG, Schwerzenbach, 

Switzerland 

PerfectSpin 24R Refrigerated 

Microcentrifuge  
Peqlab, Erlangen, Germany 

Pipetboy acu 2 INTEGRA Biosciences, Biebertal, 

Germany 

PowerPac Basic Power Supply Bio Rad Laboratories, Hercules, USA 

Precision balance PCB  Kern & Sohn, Balingen, Germany 

PSU-20i Orbital Shaking Platform Grant Instruments, Shepreth, UK 

Refrigerator 4°C (Comfort) Liebherr, Bulle, Switzerland 

Safe 2020 Class II Biological Safety 

Cabinets 

Thermo Fisher Scientific, Waltham, 

USA 

SequenzaTM slide rack(cadenza 

system) 
TED PELLA,INC, Redding, CA 

Shandon coverplateTM (cadenza 

system) 
Thermo Scientific, Waltham, USA  

Sprout Minicentrifuge Biozym Scientific, Hessich Oldendorf, 

Germany 

StepOnePlus Real-Time PCR System Thermo Fisher Scientific, Waltham, 

USA 

Thermomixer 5436 Eppendorf, Hamburg, Germany 

Tissue dehydration machine  Leica Biosystems, Wetzlar, Germany 

Trans-Blot Turbo Transfer System Bio Rad Laboratories, Hercules, USA 

TX-400 4 x 400mL Swinging Bucket 

Rotor 

Thermo Fisher Scientific, Waltham, 

USA 

Universal Oven UN55 Memmert, Schwabach, Germany 

VacuuHandControl VHCpro Vacuumbrand, Wertheim, Germany 

Vacuum pump: BVC Control Vacuumbrand, Wertheim, Germany 

Waterbath (WNB14) MemmertGmbH+Co. KG, Schwabach, 

Germany 

Weighing balance  Sartorius  AG, Göttingen, Germany 
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EQUIPMENT COMPANY 

Qubit (Q32854) Fluorometer Invitrogen GmbH, Karlsruhe 

-20°C freezer Liebherr, Bulle, Switzerland 

-80°C Ultra low temperature freezer 

(MDF-U54V) 
Sanyo electric Co.,Ltd Japan 

 

 Consumable materials 

MATERIALS COMPANY 

Centrifuge tube 15 and 50 ml Sarstedt, Nümbrecht, Germany 

Cell culture Inserts - 8um pore size 

(BD 353097) 
Falcon, Germany 

Cell strainer-100µm Falcon, Durham, USA 

Cell scrapper Sarstedt, Nümbrecht, Germany 

Cello meter counting chamber Nexcelom Bioscience, Lawrence, MA 

Cryo pure vial Sarstedt, Nümbrecht, Germany 

Combitips advanced (Multipipette tips) Starlab International GmbH, Hamburg, 

Germany 

Graduated sterile pipettes (2,10,25 

and 50ml) 

Greiner bio-one, Frickenhausen, 

Germany 

Glass coverslips (24×32, 24×60) Menzel Gläser®, Menzel GmbH+Co 

KG, Braunschweig, Germany  

Micropipette filter tips Starlab International GmbH, Hamburg, 

Germany 

Micropipette tips  Starlab International GmbH, Hamburg, 

Germany 

Microtome blade (S35) Feather safety Razer Co. Ltd, Osaka, 

Japan 

Microtube (1.5 and 2ml) Sarstedt, Nümbrecht, Germany 

Injection needle (Sterile) B.Braun, Melsungen, Germany 

Nitrocellulose membrane GE Healthcare lifesciences, 

Marlborough, USA 

Parafilm Pechiney plastic packaging, Chicago, 

USA 

PCR tubes Sarstedt, Nümbrecht, Germany 

Scalpel Feather safety Razer Co. Ltd, Osaka, 

Japan 

Serological pipette (2ml) Greiner bio-one, Frickenhausen, 

Germany 
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MATERIALS COMPANY 

Sponge Pad For XCell IITM Blotting Novex by Life technologies, Carlsbad, 

CA 

Superfrost glass slides (Histology) Thermo Scientific, Waltham, USA  

Syringe (1ml) BD Plastic, Madrid, Spain 

Syringe (5,10,20ml) B.Braun, Melsungen, Germany 

Sterile syringe Filter (0.2µm) Labsolute, Th.Geyer ingredients 

GmbH & Co.KG, Höxter, Germany  

Tissue culture multiwell plates  Greiner bio-one, Frickenhausen, 

Germany 

Tissue culture flasks Greiner bio-one, Frickenhausen, 

Germany 

Tissue culture dishes (2cm, 10cm) Sarstedt, Nümbrecht, Germany 

Tissue cassette Sanowa, Leimen, Germany 

 

 Chemicals 

CHEMICAL COMPANY 

Albumin standard Thermo Scientific, Waltham, USA 

Agarose Biozym Scientific GmbH, Oldendorf, Germany 

Aqua  B.Braun, Melsungen, Germany 

Bovine serum albumin (BSA)  Serva, Heidelberg, Germany 

β-Mercaptoethanol Merck, Darmstadt, Germany 

Citric acid monohydrate Carl Roth GmbH Co. KG, Karlsruhe, Germany 

EDTA Acros organics, Geel, Belgium 

EGTA Sigma-Aldrich, St. Louis, USA 

Ethanol ChemSolute®, Th.Geyer ingredients GmbH & 

Co.KG, Höxter, Germany 

Eosin Sigma-Aldrich, St. Louis, USA 

Formaldehyde (4%) Merck, Darmstadt, Germany 

HEPES  Carl Roth GmbH Co. KG, Karlsruhe, Germany 

Glycerol Carl Roth GmbH Co. KG, Karlsruhe, Germany 

Hematoxylin Sigma-Aldrich, St. Louis, USA 

Hydrochloric acid  Carl Roth GmbH Co. KG, Karlsruhe, Germany 

Hydrogen peroxide Carl Roth GmbH Co. KG, Karlsruhe, Germany 
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CHEMICAL COMPANY 

Isofluran AbbVie Deutschland GmbH & Co. KG, 

Ludwigshafen, Germany 

Methanol Carl Roth GmbH Co. KG, Karlsruhe, Germany 

Non-fat milk powder Carl Roth GmbH Co. KG, Karlsruhe, Germany 

PBS (Dulbecco's) Biochrom, Berlin, Germany 

PMSF Sigma-Aldrich, St. Louis, USA 

Roticlear Carl Roth GmbH Co. KG, Karlsruhe, Germany 

Rotimount Carl Roth GmbH Co. KG, Karlsruhe, Germany 

Saline (0,9% NaCl) B.Braun, Melsungen, Germany 

Sodium chloride Merck, Darmstadt, Germany 

Sodium citrate Sigma-Aldrich, St. Louis, USA 

Sodium hydroxide Acros organics, Geel, Belgium 

Sodium pyrophosphate Sigma-Aldrich, St. Louis, USA 

Sodium pyruvate Gibco®Thermo scientific, Waltham, USA 

Tris-HCl Carl Roth GmbH Co. KG, Karlsruhe, Germany 

Tris- base Carl Roth GmbH Co. KG, Karlsruhe, Germany 

Triton X-100 Sigma-Aldrich, St. Louis, USA 

TRIzol QIAGEN GmbH, Germany 

Tween-20 Sigma-Aldrich, St. Louis, USA 

 

 Kits, reagents and inhibitors 

KITS/REAGENTS/INHIBITORS COMPANY 

Agarose A Beads  Merck Millipore, Billerica, USA 

Agarose G Beads  Merck Millipore, Billerica, USA 

iScript cDNA Synthesis Kit Bio Rad Laboratories, Hercules, USA 

iTaq Universal SYBR Green Supermix Bio Rad Laboratories, Hercules, USA 

Midori green Nippon genetics Europe GmbH 

Bradford reagent Bio Rad Laboratories, Hercules, USA 

Western Lightning ECL/ ECL Ultra Perkin Elmer, USA 

Lipofectamine 2000 Invitrogen, USA 

siLentFect Lipid reagent Bio Rad Laboratories, Hercules, USA 
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KITS/REAGENTS/INHIBITORS COMPANY 

MycoAlert Mycoplasma Detection Kit Lonza Group, Basel, Switzerland 

MicroPlex Library Preparation Kit Diagenode, Liege, Belgium 

True seq RNA Library Preparation Kit Illumina, USA 

Trans-Blot Turbo RTA Midi 

Nitrocellulose Transfer Kit 
Bio Rad Laboratories, Hercules, USA 

Peroxidase Rabbit/Mouse IgG 

Vectastain ABC kits   
Biozol GmbH, Germany 

BrdU cell proliferation kit Roche, 11647229001, Germany 

cOmplete™ protease inhibitor cocktail Roche, 11697498001, Germany 

Tazemetostat/EPZ6438  ChemieTek, USA 

DAB ImmPACT VECTOR Laboratories LTD., UK 

Matrigel GF R Red/F 10 ml Thermo Geyer GmbH&Co KG, 

Germany 

DAPI Sigma-Aldrich, St. Louis, USA 

Ponceau solution Sigma-Aldrich, St. Louis, USA 

ImmuMount Thermofisher, Waltham, USA 

 

 Nucleic acids 

 gRNA sequences and validation primers for CRISPR/Cas9-mediated 

EZH2 knockout 

 Murine Ezh2 Human EZH2 

gRNA 

sequenc

e 

GTGGTGGATGCAACCCGAA

A 
GTGGTGGATGCAACCCGCAA 

Primers 

for 

knockout 

validation 

FP: 

CCTGTGTAAGTGGGTGTGC

T 

RP: 

GTTTGCTGTCACTTGGCTG

G  

FP: 

TGCCTATTCGTGATGTTTGGAA

G 

RP: 

TGTCAACAGCAGGGTGAGAAA 
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 siRNA/shRNA oligonucleotides 

siRNA/shRNA TARGET SEQUENCE (5-3) SOURCE 

siEZH2 #1 GGAUACAGCCUGUGCACAUTT Ambion,Carlsbad,USA 

siGATA6 #1 CCUCUGCACGCUUUCCCUATT Ambion,Carlsbad,USA 

siGATA6 #2 GGCUCUAUAUGAAACUCCATT Ambion,Carlsbad,USA 

shGATA6 #1 CCACTACCTTATGGCGTAGAA Mission (Sigma) 

shGATA6 #2 CTGTCCCTATGACTCCTACTT Mission (Sigma) 

 

 qPCR primers 

GENE SEQUENCE SPECIES 

Ezh2 FP CAACCCGAAAGGGCAACAAA Mouse 

Ezh2 RP ACCAGTCTGGATAGCCCTCT Mouse 

Gata6 FP CTTTGCGGGCTCTATATGAAACTCCAT Mouse 

Gata6 RP TAGAAGAAGAGGAAGTAGGAGTCATAGGGACA Mouse 

Trnp1 FP TCATCTACGCGGAGGAGTCA Mouse 

Trnp1 RP AGCCTCTGAGGAGCTTAGTGT Mouse 

Gata4 FP CTGTCATCTCACTATGGGCAC Mouse 

Gata4 RP GAGTGACAGGAGATGCATAGC Mouse 

Iqgap2 FP AGCCTCTGAGGAGCTTAGTGT Mouse 

Iqgap2 RP ATGAGGCTTCTGCCATCGAC Mouse 

Fam117a FP CACGGTAACAAAGCCTCCTCT Mouse 

Fam117a RP GGCTCCCGTTTGAAGACGTA Mouse 

Pde3b FP TCACAAGGGATTGAGTGGCAG Mouse 

Pde3b RP AGGCCCATTTAGGTGGCATC Mouse 

Inhbb FP ATCAGCTTTGCAGAGACAGATGG Mouse 

Inhbb RP CTCCGTGACCCTGTTCTTGG Mouse 

Sox12 FP TCGTCTAGTATCGCCGACC Mouse 

Sox12 RP GCCCCAATACCTGATTCCTG Mouse 

Creb1 FP CCTTGGGATATTACAGAAGCTGGAT Mouse 

Creb1 RP CCCTTTAGGCATATTACCTTTGGGA Mouse 

Sfrp1 FP GCAAGCGAGTTTGCACTGAG Mouse 
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GENE SEQUENCE SPECIES 

Sfrp1 RP AGTTGTGGCTGAGGTTGTCC Mouse 

Klhl23 FP CGAGCCCACACCCAGAATATG Mouse 

Klhl23 RP TCATGATGACAGCCCCACAC Mouse 

Foxa2 FP ATCCGCCACTCTCCTT Mouse 

Foxa2 RP CAGTGCCAGTTCTCAC Mouse 

Tspan8 FP GAAGGAAAAGAATCTGCAGGCAC Mouse 

Tspan8 RP AGTCCGTAGAAGGCTGTCCT Mouse 

Hdhd3 FP TCTTTTCCCGAGCCAGGATCT Mouse 

Hdhd3 RP TGTAGGTCAGAGGGGTAGGC Mouse 

Ralgps1 FP GATGGCTAGCGTGTTGGTCA Mouse 

Ralgps1 RP GCCAACTCGGCAAACTCCT Mouse 

Txndc16 FP GAGGGGCATCTTGAAGGCAT Mouse 

Txndc16 RP GCAGACAAGACTGTGATGGGA Mouse 

Cxadr FP AGCCGAGATCGTTTACCTGC Mouse 

Cxadr RP ACTGGTGAAATCCGCGATCC Mouse 

Fcgrt FP ATTAAATGGTCAGAAGAGGGGGAC Mouse 

Fcgrt RP CTCCTCACCATTGAGGGCAAA Mouse 

Tgfbr3 FP CCTCCGCAGTACAGACCAAG Mouse 

Tgfbr3 RP CCTCCGAAACCAGGAAGAGTC Mouse 

Tmem51 FP CTTCGGGATCTCTCGTCTGC Mouse 

Tmem51 RP TCACAGCGGAAAGTCATCCG Mouse 

Sort1 FP CTGACAACAAATGGGTACCGGA Mouse 

Sort1 RP AGCTGGATTCTGGGACAAGC Mouse 

RplpO FP TGGGCAAGAACACCATGATG Mouse/ 

Human 

RplpO RP AGTTTCTCCAGAGCTGGGTTGT Mouse 

/Human 

EZH2 FP AAAGAACTCACCGAACAGCA Human 

EZH2 RP CAGAAAAGCGTATGAAAGGAGTG Human 

GATA6 FP TCTACAGCAAGATGAATGGCC Human 

GATA6 RP CTCACCCTCAGCATTTCTACG Human 
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 ChIP Primers 

GENE SEQUENCE SPECIES 

Gata6 TSS/exon FP AAAAAGCGGCGGTTTCGTTT Mouse 

Gata6 TSS/exon RP GCCTCGGTGAAGAGAGTTCC Mouse 

Gata6 intragenic FP GAGGTCCAAGATCATGTGGCA Mouse 

Gata6 intragenic RP TAGCACTGATTGCCCAAGCC Mouse 

Trnp1 TSS/exon FP AGTCAACAACACCGCACCTT Mouse 

Trnp1 TSS/exon RP TCATCTACGCGGAGGAGTCA Mouse 

Trnp1 intragenic FP AGAGTGGAGCCTCTGAGGAG Mouse 

Trnp1 intragenic RP GTAGAAGTTCTGGGTGGGGC Mouse 

Gata4 TSS/exon FP TCCACCAGCCCAGGAGTTTA Mouse 

Gata4 TSS/exon RP GGAGTGGGAAGAAGTGTCGG Mouse 

Gata4 intragenic FP CCAGTGGAAGGGTCGGTAAC Mouse 

Gata4 intragenic RP TCCCATTCTTGACAAGTGAGGC Mouse 

Iqgap2 TSS/exon FP GCTCCTCACCTGATACCCCTA Mouse 

Iqgap2 TSS/exon RP TAAGTCCCTCCACCTCGCAA Mouse 

Iqgap2 intragenic FP AGCCCTGACTAGGTCAATCCC Mouse 

Iqgap2 intragenic RP GGGGCCCTTCAATCCTAACC Mouse 

Fam117a TSS/exon FP AACCGAAAAGTGGTCCGAAGT Mouse 

Fam117a TSS/exon RP CAACACTCCTTGCACGCAC Mouse 

Fam117a intragenic FP ATTGCACCTGAGCTGCGT Mouse 

Fam117a intragenic RP CCTTGAGGGCAGAAGGTTCC Mouse 

Pde3b TSS/exon FP CGAGTACCGCGGAGGAAAAA Mouse 

Pde3b TSS/exon RP ATAGTAACCGGCTGCGCTTT Mouse 

Pde3b intragenic FP TAGTCCTGTGTTGGCTCCGT Mouse 

Pde3b intragenic RP CACCGTCTTCAGTAACTGCCA Mouse 

Inhbb TSS/exon FP GATGCCAGGCCACTTTTGC Mouse 

Inhbb TSS/exon RP TGCCATTTATCCATCGCCCC Mouse 

Inhbb intragenic FP GAATCGTTTGGCCTTTCCGC Mouse 

Inhbb intragenic RP AACTGACAGGTCACTGGTGC Mouse 

Sox12 TSS/exon FP CGATACTAGACGAGCGCCAG Mouse 

Sox12 TSS/exon RP CCTTCGGGCACGTCACATT Mouse 
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GENE SEQUENCE SPECIES 

Sox12 intragenic FP GGCCCTTGTAAGTCAGGTCC Mouse 

Sox12 intragenic RP GGTCCCCATCAAGCAACCAT Mouse 

Creb1 TSS/exon FP GACGCTCCCTCCAGAATGAC Mouse 

Creb1 TSS/exon RP ATGACGCCTCTCGGAACAAC Mouse 

Creb1 intragenic FP AGGTGTGGCTTACTTTGCAGTT Mouse 

Creb1 intragenic RP TGCTCTCTTTCTCTTGTGCCAAA Mouse 

Sfrp1 TSS/exon FP GCGAGTACGACTACGTGAGC Mouse 

Sfrp1 TSS/exon RP CGGGGGCTTGGTGTAGAAG Mouse 

Sfrp1 intragenic FP TGCAGAAACGAGCCAAAAGC Mouse 

Sfrp1 intragenic RP CAGGGCAAGGGTCTGACATT Mouse 

Klhl23 TSS/exon FP TTCTCTCCATCTTGGTGGCATC Mouse 

Klhl23 TSS/exon RP CAATTCGCCGTTGTTGGTTCT Mouse 

Klhl23 intragenic FP AATCCTGTGAGCTAGGGAGGT Mouse 

Klhl23 intragenic RP GTTAGATGGCTGATCTTGAACGATG Mouse 

 

 Buffers 

 ChIP Buffers 

2.6.1.1 Cross linking Buffer 

COMPONENT STOCK CONCENTRATION 

Formaldehyde 37 % 

PBS 1X 

 

2.6.1.2 Nelson lysis Buffer 

COMPONENT STOCK CONCENTRATION 

NaCl 150 mM 

EDTA pH 8 20 mM 

Tris pH 7.5 50 mM 

NP-40 0.5 % 

Triton-X-100 1 % 

NaF 20 mM 
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2.6.1.3 Gomes lysis Buffer 

COMPONENT STOCK CONCENTRATION 

NaCl 150 mM 

NP-40 1 % 

Sodium deoxycholate 0.5 % 

Tris-HCl pH 8 50 mM 

EDTA 20 mM 

NaF 20 mM 

SDS 0.1 % 

 

2.6.1.4 Gomes Wash buffer 

COMPONENT STOCK CONCENTRATION 

Tris-HCl pH 8.5 100 mM 

LiCl 500 mM 

NP-40 1 % (v/v) 

Sodium deoxycholate 1 % (w/v) 

EDTA 20 mM 

NaF 20 mM 

 

2.6.1.5 Weinmann lysis buffer (WB) 

COMPONENT STOCK CONCENTRATION 

Tris-HCl (pH 8) 50 mM 

EDTA 10 mM 

SDS 1 % 

 

 Western Buffers 

2.6.2.1 Buffers for gels 

SOLUTION COMPOSITION AMOUNT 

Stacking gel buffer stock pH 

6.8 

Tris-base 0.5 M 

SDS 0.4 % (v/v) 

Stacking gel buffer Stacking gel buffer stock 25 ml 
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SOLUTION COMPOSITION AMOUNT 

Acrylamide 16 ml 

Aqua dest 25 ml 

Seperating gel buffer stock pH 

8.8 

Tris base 1.5 M 

SDS 0.4 % (v/v) 

Separating gel buffer (10 %) 

Seperating gel buffer stock 20 ml 

Acrylamide 26.6 ml 

Glycerol 4 ml 

Aqua dest 29.3 ml 

Separating gel buffer (15 %) 

Seperating gel buffer stock 20 ml 

Acrylamide 40 ml 

Glycerol 4 ml 

Aqua dest 16 ml 

 

2.6.2.2 Transfer buffer 

COMPONENT AMOUNT 

5X Transfer buffer 200 ml 

Ethanol 200 ml 

Water 600 ml 

 

2.6.2.3 Laemelli Buffer (5X) 

COMPONENT STOCK CONCENTRATION 

Tris-HCl pH 6.8 225 mM 

Glycerine 50 % 

SDS 5 % 

DTT 100 mM 

Bromophenol blue 0.02 % 

B-Mercaptothanol 5 % 
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2.6.2.4 Running buffer 

COMPONENT STOCK CONCENTRATION 

Tris base 250 mM 

Glycine 1.92 M 

SDS 1 % (w/v) 

 

2.6.2.5 TBS 

COMPONENT STOCK CONCENTRATION 

NaCl 150 mM 

KCl 2.68 mM 

Na2HPO4x2HO 4.29 mM 

KH2PO4 (pH 7.4) 1.47 mM 

 

2.6.2.6 TBST 

COMPONENT STOCK CONCENTRATION 

TBS 1 X 

Tween 0.1 % (w/v) 

 

2.6.2.7 WCL Buffer 

COMPONENT STOCK CONCENTRATION 

HEPES pH 7.5 50 mM 

NaCl 150 mM 

EGTA 1 mM 

Glycerol 10 % (v/v) 

Triton X-100 1 % (v/v) 

NaF 100 mM 

Na4P207x10H2O 10 mM 
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2.6.2.8 Blocking solution 

COMPONENT STOCK CONCENTRATION 

TBST 1 X 

Skimmed milk 5 % (w/v) 

 

 Antibodies, Enzymes and standards 

 Antibodies 

2.7.1.1 Antibodies for ChIP and ChIP-Seq 

ANTIBODY COMPANY NUMBER 

EZH2 diagenode C15410039-classic 

H3K27me3 Cell Signaling 9733 

H3K4me3 Cell Signaling 9751 

H3K27ac Genetex GTX128944 

Rabbit IgG diagenode C15410206 

 

2.7.1.2 Antibodies for immunohistochemistry 

ANTIBODY COMPANY NUMBER DILUTION 

EZH2 (murine) Cell Signaling 5246 1:100 

EZH2 (human) Leica NCL-L-EZH2 1:300 

HA Cell Signaling 3724 1:100 

GATA6 R&D Systems AF1700 1:50 

H3K27me3 Cell Signaling 9733 1:200 

 

2.7.1.3 Antibodies for Western Blot 

ANTIBODY COMPANY NUMBER DILUTION 

EZH2 (murine) Cell Signaling 5246 1:100 

GATA6 R&D Systems AF1700 1:300 

H3K27me3 Cell Signaling 9733 1:1000 

H3 Abcam Ab1791 1:1000 

Actin-HRP Sigma A3854 1:40000 



MATERIALS 

35 
 

ANTIBODY COMPANY NUMBER DILUTION 

Anti-rabbit (IgG) 

HRP 
Cell Signalling 7074 1:10000 

Anti-mouse (IgG) 

HRP 
Cell Signalling 7076 1:10000 

Mouse Anti-goat 

(IgG) HRP 
Santa Cruz sc-2354 1:5000 

 

 Enzymes 

ENZYMES COMPANY 

Proteinase K AppliChem Panreac 

RNAse A Sigma-Aldrich 

 

 Standards 

STANDARD COMPANY 

DNA ladder 100 bp Biolabs 

DNA ladder 1 kb ThermoFischer 

Protein prestained ruler Thermoscientific 

 

 Cell culture reagents, growth media and antibiotics 

PRODUCT COMPANY 

Dulbecco’s Modified Eagle Medium 

(DMEM) 

Thermo Fisher Scientific, Waltham, 

USA 

Fetal Calf Serum Biowest, Nuaille, France 

Non-Essential Amino Acids Solution 

(NEAA-100 X) 

Thermo Fisher Scientific, Waltham, 

USA 

Trypsin-EDTA (0.5 %) Thermo Fisher Scientific, Waltham, 

USA 

Puromycin GIBCO, Invitrogen GmbH, Darmstadt 

Hygromycin B Gold InvivoGen, San Diego, USA 
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 Softwares 

SOFTWARE COMPANY 

AUTOsoft 2.6 Autobio, Zhengzhou, China 

Leica Application Suite (LAS) X 

Software 
Leica Camera, Wetzlar, Germany 

Chemostar Software 
Intas Science Imaging Instruments, 

Goettingen, Germany 

StepOne Software Thermo Fisher Scientific, Waltham, 

USA 

ImageJ National Institutes of Health (NIH), 

USA 

GraphPad PRISM GraphPad Software, La Jolla, USA 
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3 METHODS 

This chapter describes the various methods followed towards performing the 

experiments and analyses of the acquired data. Studies were conducted with 

the assistance from and cooperation with different collaborators departments: 

Tumor grading was performed by Prof. Dr. med Philipp Ströbel, Institute of 

Pathology, University Medical Center, Goettingen. EZH2 and GATA6 Stainings 

in Tissue microarray (TMA) samples were provided by Dr. Stefan Kueffer 

(Institute of Pathology, University Medical Center, Goettingen). The generation 

of PDAC-PDX models was performed in close collaboration with Prof. Dr. med. 

Jochen Gaedcke (Department of General-, Visceral- and Pediatric surgery, 

University Medical Center, Goettingen) and Prof. Dr. med Phillip Ströbel 

(Institute of Pathology, University Medical Center, Goettingen). The 

caNFATc1;KrasG12D (NKC) and EZH2fl/+;caNFATc1;KrasG12D (ENKC) mouse 

models have been generated with support from Benjamin Steuber, Waltraut 

Kopp and Sercan Mercan. The shRNA EZH2 NKC cells were obtained from 

Jinsan Zhang (Gene Regulatory Mechanisms and Molecular Epigenetics Lab, 

Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, USA). 

 In vivo experiments 

 Mouse strains  

caNfatc1;KrasG12D (NKC) mice have been previously described (Baumgart et al. 

2014).  Briefly, this model harbors the oncogenic KrasG12D mutation and 

pdx/p48 Cre-mediated expression of HA-tagged NFATc1 constitutively under 

the control of Rosa26 promoter. Ezh2fl/fl mice were purchased from Charles 

River and were interbred with caNfatc1;KrasG12D littermates to generate 

Ezh2fl/+;caNfatc1;KrasG12D (ENKC) mice. For survival studies, 

Ezh2fl/+;caNfatc1;KrasG12D (ENKC) mice were followed up until they reached 

end point criteria and then sacrificed. The pancreas, liver and spleen were 

collected in 4 % formaldehyde for histological analysis and a part of pancreatic 

tissue was frozen in -80 °C. The tissues collected and stored overnight in 4 % 

formaldehyde were subjected to dehydration in increasing concentrations of 

ethanol and further embedded in paraffin for long time storage. The tissues in 
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paraffin blocks were sectioned with a thickness of 4 µm using microtome and 

fixed on glass slides which were then used for various histological stainings.  

All animal procedures were conducted in accordance with the protocols 

approved by the Institutional Animal Care and Use Committee (33.9-42502-04-

14/1633; -17/2497 and -19/3085).  

 Metastatic incidence in transgenic mice 

For evaluation of micrometastases, three liver sections, each section separated 

by 20 µm, from each tumor-bearing caNfatc1;KrasG12D- and 

Ezh2fl/+;caNfatc1;KrasG12D mouse were stained for HA-NFATc1 for better 

visualization of tumor cells in the liver and were subsequently evaluated for 

metastasis. Mice that carried at least one HA-positive lesion which was 

surrounded by healthy liver tissue were considered as positive for metastasis.  

 

 Cell culture: 

 Cells, culture conditions and Tazemetostat (EPZ6438) treatment 

Primary PDAC cells derived from caNfatc1;KrasG12D (NKC) and 

KrasG12D;TP53R172H/+ (KPC) mice have been described previously (Baumgart et 

al. 2014; Hingorani et al. 2005). The isolation of pancreatic tumor and further 

generation of ENKC cell lines from tumor bearing Ezh2fl/+;caNFATc1;KrasG12D 

mice was performed by Waltraut Kopp. Primary murine PDAC cells were 

cultured using Dulbecco’s Modifies Eagle’s Medium (DMEM) containing 4.5 g/L 

D- Glucose, L-Glutamine supplemented with 10 % Fetal calf serum (FCS) and 

1 % Non-essential amino acids (NEAA). PANC-1 cells have been previously 

described (N. M. Chen et al. 2017) and were cultivated using DMEM containing 

4.5 g/L D-Glucose, L-Glutamine supplemented with 10 % FCS. PDX lines 

derived from the subcutaneous tumors of PDX mice were cultured in 

Keratinocyte-SFM (KSF):Roswell Park Memorial Institute (RPMI) (in 3:1 ratio) 

media supplemented with 2 % FCS, 1 % PenStrep, bovine pituitary extract and 

epidermal growth factor. Cells were grown in a sterile incubator with 5 % CO2 

humidity and at 37 °C. The mycoplasma status of the cells was verified after 
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reviving the cells for the experiments using the MycoAlert Mycoplasma 

Detection Kit from Lonza Group following the instructions mentioned in the kit.  

The cells grown up to 80 % confluency were utilized to make cell stocks for 

long term storage. Cells were trypsinized and centrifuged (1200 rpm for 3 

minutes) to pellet down the cells. The supernatant was discarded. Desired 

amount of cryoprotectant medium (90 % FCS + 10 % DMSO) was added onto 

the cells to attain a concentration of 2*106 cells/ml. Further 1 ml cell suspension 

was aliquoted into each cryovial and the cryovials were quickly transferred into 

frosty box (container containing isopropanol). The frosty box was left at -80 °C 

overnight and later transferred into liquid nitrogen for long term storage. While 

reviving the cells, cryovials were removed from the liquid nitrogen, quickly 

thawed in a waterbath (37 °C) and resuspended in a falcon containing 10 ml 

medium. The cell suspension was centrifuged and the supernatant containing 

freezing medium was discarded. Cells were resuspended in fresh medium and 

transferred into a cell culture flask. When passaging the cells, cells were briefly 

washed with PBS to remove the serum. Further, the cells were incubated with 

trypsin for 3-5 minutes and the reaction was neutralized by adding media on the 

cells. The content was collected in a falcon, centrifuged (1200 rpm for 3 

minutes) and the supernatant was discarded. The cells were then resuspended 

in fresh medium and split at the required density into a new cell culture flask. 

EZH2 methyltransferase inhibition was performed by treatment of indicated 

concentrations of Tazemetostat (EPZ6438) for 72 hours diluted in dimethyl 

sulfoxide (DMSO). Control cells were treated with equal amounts of DMSO. 

 Generation of EZH2 shRNA and CRISPR/Cas9 clones and transient 

transfection 

CRISPR/Cas9 based genome editing was utilized to generate EZH2 knockout 

PDAC cells. The PDAC cells were seeded into a 10 cm dish and once they 

attained 60 % confluency, they were transfected with pSpCas9(BB)-2A-Puro 

PX459 vectors containing single guide RNA (sgRNA) against murine or human 

EZH2, respectively, with the help of lipofectamine 2000. The following day, cells 

were split at different dilutions to allow the growth of single colonies and were 

treated with Puromycin (2 µg/ml) to select for transfected cells. Cells were 

allowed to grow until they formed visible single colonies on the culture dish. 
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Further, the single clones were picked by trypsinizing with small volume of 

trypsin, taking care not to disturb the neighbouring colonies. The cells were 

then transferred into 24-well plate and further expanded in culture. Some of 

these cells were used to harvest for lysate and tested on western blot for 

knockdown. Further, genomic DNA was isolated from those clones that showed 

EZH2 knockdown in western blot and a PCR was performed using the 

genotyping primers. The PCR products were then sequenced by Microsynth 

Seqlab GmbH to confirm the knockout. RNA and whole cell lysate (WCL) were 

also extracted to confirm the knockout at RNA and protein level. After 

confirmation of successful EZH2 knockout, cells were used for further 

experiments.  

For siRNA or shRNA based knockdowns, siLentFect or Lipofectamine 2000 

was used respectively. In short, the designated volume of siRNA and 

transfection reagent was added to OptiMEM and incubated for 20 minutes and 

subsequently added on the cells. Media was changed approximately 10 hours 

post transfection and cells were harvested for experiments after 48-72 hours. 

For EZH2 re-expression, HA-tagged EZH2 expression plasmid was transfected 

into NKC cells using lipofectamine 2000 and the transfected cells were selected 

using the antibiotic Hygromycin (300 µg/ml). The selected cells harboring 

transient re-expression of wildtype EZH2 were used for experiments. 

 

 Functional in vitro assays 

 Cell counting assay 

Cell counting assays were performed to determine the trend in cell growth. 

Experiments were conducted in triplicates. 2,500 cells were seeded in each 

well of a 6-well plate (Day 0). On day 3, cells were trypsinized and quantified 

before replating in a fresh 10 cm dish. Finally, on day 6, the cells were 

trypsinized and counted again. 

 BrdU (Bromodeoxyuridine) assay 

BrdU assays were performed to analyze the proliferation capacity of the cells 

by determining the intensity of absorbance of cellular BrdU incorporation. 2,500 
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cells were seeded into each well of a 96-well plate in five replicates per 

condition. After 72 hours, BrdU labelling reagent was added on the cells and 

incubated for 4 hours. Further steps were performed according to 

manufacturer’s instructions (BrdU cell proliferation kit, Roche, 11647229001). 

The absorbance was measured at 405 nm and the OD values were plotted as 

BrdU incorporation. 

 Boyden chamber assay 

Invasion capacities of PDAC cells were determined utilizing Boyden chamber 

assay. 50,000 cells were counted and seeded in 50 % matrigel into the 

collagen coated inserts. The inserts were placed into a 24-well plate. Complete 

media was added in the lower chamber and serum free media was added into 

the inserts. After 48 hours, the non-invaded cells and the matrigel were scraped 

off. The invaded cells were fixed with 4 % paraformaldehyde (PFA) for 20 

minutes, washed twice with 1X PBS, stained with DAPI (1:2000) and mounted 

on a glass slide. The DAPI positive nuclei were counted under fluorescence 

microscope. 

When evaluating the invasion potential of GATA6 knockdown cells, the cells 

transfected with siRNA against GATA6 were trypsinized 24 hours post 

transfection and seeded for Boyden chamber assay. 

 Colony formation assay 

Soft agar assays were performed to evaluate the ability of the cells for 

anchorage independent growth. The 6-well plates were coated with 1:1 mix of 

nobel agar (1 %) and culture medium. Further, 13,000 cells in medium were 

mixed with 1% nobel agar in the ratio 1:3 and seeded on these coated wells. 

After ensuring proper solidification of agar (approximately 30 minutes), cell 

culture medium was added on the top and 7 days later the colonies (cluster of 

cells visible under microscope) were counted under the microscope.  

 Sphere formation assay 

Sphere formation assays were conducted to analyze the stemness behavior of 

the cells. 30,000 cells were seeded into each well of a 6-well low attachment 

plate and were supplemented with sphere medium (DMEM/F-12 supplemented 
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with 1X insulin, 0.4 % BSA, 20 ng/µl EGF, 10 ng/µl FGF, 2 % B27 supplement 

and N2 supplement). 0.02 ng/µl fibroblast growth factor (FGF) was added into 

each well every fourth day. After 11 days, pictures of the spheres from all the 

wells were taken using phase contrast microscopy. Total number of spheres in 

each well were counted, and the size of spheres were measured using ImageJ. 

The average value from three wells were used for plotting the graph. 

 

 Molecular biology 

 RNA isolation 

The media of cells was aspirated, and the cells were washed twice with 1X 

PBS. Further, cells were scraped in TRIzol and collected in a 1.5 ml eppendorf 

tube. 200 µl chloroform was added on the samples, vortexed and centrifuged at 

13500 rpm for 15 minutes at 4 °C. The aqueous phase was collected in a 

separate tube and RNA was precipitated by adding 500 µl isopropanol, allowing 

it to stand at room temperature (RT) for 15 minutes and centrifuging it at 13500 

rpm for 30 minutes at 4 °C. The RNA, which was pelleted down was then 

washed twice with 75 % ethanol, dried and resuspended in 30-40 µl aqua-dest 

water. RNA was stored at -80 °C. The concentration was measured 

photometrically using NanoPhotometer P-330 prior to cDNA synthesis or RNA 

sequencing. 

 cDNA synthesis 

1 µg of RNA was reverse transcribed into cDNA using iscript cDNA synthesis 

kit. cDNA synthesis was performed at 42 °C for 20 minutes and the enzyme 

was inactivated by heating the samples at 95 °C for 1 minute. The sample was 

further diluted in aqua dest water to 10 ng/µl.  

 Quantitative polymerase chain reaction (qPCR) 

qPCR was performed to quantify the gene expression. qPCR was performed in 

triplicates in a reaction volume of 10 µl. For each reaction, 1 µl of cDNA or DNA 

from ChIP was mixed with 3.9 µl H2O, 5 µl of SYBR green mix and 0.05 µl of 

each forward and reverse primers, and added into each well of a MicroAmp 
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Fast Optical 96-well reaction plate. The plate was sealed with an adhesive film 

and was briefly vortexed before placing it into StepOnePlus Real-Time PCR 

System. The PCR reaction was as follows: 

95 °C 10 minutes  

95 °C 15 second 
40 cycles 

60 °C 1 minute 

 

The CT values obtained were used to calculate the expression. The expression 

was normalized to the housekeeping gene Rplp0 and further normalized to 

control using the ΔΔCT method. For ChIP, qPCR samples were normalized 

corresponding to their ChIP input samples.  

 Chromatin Immunoprecipitation (ChIP) 

3.4.4.1 Cross linking and sonication 

Cells were grown in a 15 cm dish and were used for ChIP once they attained 

80 % confluency. Cells were fixed with 1 % formaldehyde in PBS for 20 

minutes and the reaction was quenched by adding 1.25 M glycine for 5 

minutes. Further, cells were washed twice with ice-cold PBS before adding 1 ml 

Nelson buffer containing protease inhibitors on the cells. The cells were 

scraped, collected in a 1.5 ml eppendorf tube and centrifuged at 11000 rpm, 4 

°C for 5 minutes. The nuclei which had formed a pellet were washed once more 

with 1 ml Nelson buffer. The final pellet was resuspended in 200 µl Gomes lysis 

buffer containing protease inhibitors and SDS, and then incubated on a rotating 

wheel at 4 °C for 15 minutes. The samples were sonicated using Biorupter with 

30 seconds ON/OFF pulse for 25 cycles. The sonicated samples were then 

centrifuged at 13000 rpm for 10 minutes at 4 °C and the supernatant was used 

to proceed with pre-clearing. 

3.4.4.2 Shearing check 

Shearing check was performed to confirm that the sonication has sheared the 

chromatin efficiently before proceeding with pre-clearing step. 10 µl of 

sonicated samples was incubated overnight on a shaker (65 °C, 800 rpm) in 

100 µl Weinmann lysis buffer supplemented with 30 µg proteinase K. On the 
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following day, 100 µl water, 10 µl LiCl (8 M) and 2 µl glycogen was added into 

the sample and DNA was isolated by adding phenol/chloroform/isoaymyl 

alcohol (200 µl) and centrifuging at full speed for 2 minutes. The aqueous 

phase was collected and the phenolic phase underwent back extraction with 

200 µl Tris (pH 8) 10 mM + 0.4 M LiCl followed by 2 minutes full speed 

centrifugation. The aqueous phase was added into the first tube and the DNA 

was precipitated using 100 % ethanol. The DNA pellet was washed once with 

70 % ethanol then finally resuspended in aqua-dest water with RNAse A (100 

µg/ml). Further, the DNA was mixed with loading dye and run on a 1.5 % 

agarose gel. The gel was observed under the gel documentation system and 

the shearing was considered efficient if most of the fragments were in the range 

200-500 bp. 

3.4.4.3 Pre-clearing and Immunoprecipitation 

Required volume of Agarose A beads was washed twice with Gomes lysis 

buffer. The ChIP samples were brought up to 500 µl in Gomes lysis buffer and 

were incubated with 100 µl Agarose A beads 50 % slurry for 1 hour at 4 °C. 

Afterwards, the sample were centrifuged and the supernatant was aliquoted for 

IP and one tube (2 % of the total sample) was saved as input. 

The chromatin aliquots were incubated with desired antibodies mix (1-2 µg/ IP) 

at 4 °C overnight on a cogwheel. On the following day, the blocked beads 

(Agarose A beads were blocked in Gomes lysis buffer with 1 mg/ml BSA 

overnight) were added and incubated for an hour. Further, the ChIP immune 

complex were washed once with Gomes lysis buffer, twice with Gomes wash 

buffer, twice with Gomes lysis buffer and finally with 1X TE buffer.  

3.4.4.4 DNA isolation 

The ChIP samples as well as input samples were diluted with 10 mM Tris (pH 

8) containing 10 µg RNAse A and incubated for 30 minutes at 37 °C. Further, 

50 µl Weinmann lysis buffer with an additional 30 µg proteinase K were added 

and incubated at 65 °C overnight. The samples were centrifuged and the 

supernatant was collected in a separate tube. The DNA on the beads was 

eluted by resuspending with 100 µl Tris (pH 8), incubating for 10 minutes at 65 

°C, 800 rpm followed by centrifuging and collecting the supernatant into the first 
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tube. The DNA was further extracted using the phenol/chloroform/isoaymyl 

alcohol extraction method (same as mentioned in shearing check). Finally, the 

DNA was resuspended in 40 µl aqua-dest water. qPCR was performed with the 

input and ChIP samples and further the expression was normalized to 

expression in input samples. 

 

 Protein biochemistry 

 Sample preparation and Bradford Assay 

For protein analyses, cells were harvested in whole cell lysis buffer 

supplemented with 1X cOmplete™ protease inhibitor cocktail and additional 

protease inhibitors- PMSF, NaF and NaO. Cells were scraped, collected in an 

eppendorf tube, incubated for 30 minutes on ice and centrifuged at 13000 rpm 

for 30 minutes at 4 °C. The  supernatant was collected in a fresh eppendorf 

tube which was stored at -20 °C for short time period and at -80 °C for long-

term storage. Protein concentration was measured using Bradford reagent 

following standard protocol. Different dilutions of Bovine serum albumin (BSA) 

was used as the standard. The absorbance of the standards and samples were 

measured at 595 nm. The absorbance value of the standards were plotted and 

the coefficent was derived which was used to calculate the concentration of the 

sample. 

 SDS PAGE and Western blot analysis 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was 

performed to separate the proteins based on their molecular weight. We used a 

10 % gel to detect proteins of size larger than 30 kDa and a 15 % gel to 

visualize proteins smaller than 30 kDa. To generate the polyacrylamide gels, 

the plates were assembled together in the cassette. Approximately 4.5 ml 

resolving gel solution was poured in the spacer within two plates and was 

overlayed with stacking gel solution. 10 well comb was placed and the gel was 

allowed to solidify for 30-45 minutes. Further the comb was carefully removed, 

gel was placed in the electrophoresis tank and the tank was filled with running 

buffer. Equal amount of proteins were incubated with SDS and heated up at 95 
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°C for 5 minutes. These samples were loaded into the wells of the gel and the 

electrophoresis was performed at 120 volts for approximately 1 hour. Once the 

proteins were separated by polyacrylamide gel electrophoresis (PAGE), the 

proteins on the gel were transferred onto a nitrocellulose membrane using a 

TurboBlot system (fixed: 25 V and 1.0 A, time: 22 minutes for 10 % gels and 10 

minutes for 15 % gels). Further, the membrane was briefly stained with 

Ponceau S solution to visualize the proteins bands thereby to confirm the 

blotting. The membrane was blocked using 5 % milk in TBST and incubated 

with primary antibodies overnight at 4 °C. Membranes were then incubated with 

respective secondary antibodies for 1 hour at room temperature. Bands were 

visualized in Intas ECL Chemocam Imager using chemiluminescence. 

 

 Next generation sequencing: 

 ChIP seq library preparation and analysis 

For ChIP-seq, ChIP was performed as described above and with antibodies 

against EZH2, H3K27me3 and H3K4me3. IgG was used as a control. 

Subsequently, DNA samples were sonicated in a Biorupter® Pico to obtain 

approximately 300 bp fragments which were used for library preparation with 

the MicroPlex Library Preparation Kit as per manufacturer’s protocol. 

Sequencing was performed using the HiSeq 2000 Illumina platform of the NIG. 

Subsequently, the ChIP-seq files were analyzed in the public server 

(usegalaxy.org). The quality of the raw files were assessed by running FASTQ 

quality check (FASTQC). After ensuring the quality of the raw data, the 

sequence reads were aligned to the mouse reference genome (mm9) using 

Bowtie2 (version 0.4) with default parameters (Langmead and Salzberg 2012) 

and the aligned reads were saved as a BAM file. This file was used for peak 

calling utilizing the Model based Analysis of ChIP-seq (MACS2 version 

2.1.0.20151222) tool (Zhang et al. 2008) on UseGalaxy (usegalaxy.org) server. 

The cut off value for peak detection was set to 0.05. BigWig files were 

generated using BamCoverage (version 2.2.3) from deeptools (Ramírez et al. 

2016) and were visualized using integrative genomics viewer (IGV version 

2.5.3) (Robinson et al. 2011). Further, BigWig and bed files were used to 

generate aggregate profiles and distribution of ChIP regions on chromosome 
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using CEAS tool (Shin et al. 2009) on Galaxy cistrome. Differential binding 

analysis was performed to identify differentially occupied regions in shRNA 

EZH2- compared to shRNA control NKC cells using the Bioconductor R 

package Diffbind (Ross-Innes et al. 2012) run on R version 3.6.1 according to 

the instruction manual. Furthermore, Genomic Regions Enrichment of 

Annotations Tool (GREAT) analysis (Mclean et al. 2010) was used to identify 

associated genes with regions identified by Diffbind analysis. The default 

association rule, basal plus extension (5 kb upstream, 1kb downstream plus 

distal 1Mb), was set for GREAT analysis. Further, principle component analysis 

(PCA) for the H3K27me3 and H3K4me3 profiles was plotted in R. Heatmaps 

and average profiles for occupancy were generated using the computeMatrix 

and plotHeatmap tools on the UseGalaxy server and peak center was set as 

the reference point mode.  

For analyses in PANC-1 cells, input and EZH2 ChIP-seq sequence reads were 

aligned against the human reference genome (hg38) and BigWig files were 

generated as described above. The input peaks were subtracted from the 

EZH2 binding peaks and visualized in IGV. 

 RNA seq library preparation and analysis 

ShRNA control and shRNA EZH2 NKC cells were cultured in triplicates and 

later harvested in TRIzol. RNA was isolated by phenol-chloroform method 

followed by confirming the purity and integrity on 1 % agarose gel. 500 ng of 

total RNA was used to prepare libraries using True seq RNA library preparation 

kit as per the manufacturer’s instructions. cDNA library concentrations and 

fragment sizes were controlled by Qubit and bioanalyzer respectively prior to 

sequencing in the NGS Integrative Genomics Core Unit (NIG) of the UMG. The 

FastQ files from the RNA sequencing were analyzed in the public server 

usegalaxy.org. The reads were aligned to the murine transcriptome mm9 using 

TopHat2 (version 2.1.0) (D. Kim et al. 2013). Further, differential gene 

regulation and Fragment Per Kilobase Million (FPKM) values were obtained by 

Cuffdiff (version 2.2.1) and Cuffnorm (version 2.2.1.1) respectively (Trapnell et 

al. 2013). The read counts obtained by HTSeq (version 0.9.1) (Anders, Pyl, and 

Huber 2015) were used to plot Principal Component Analysis (PCA) in R. 

Genes with FPKM of < 0.2 were excluded from the analysis to reduce 
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background signals. Gene ontology was performed using PANTHER GO 

Ontology database (Binomial test with Bonferroni correction) and pathways with 

FDR < 0.05 were considered as significant pathways. GSEA was performed 

using standard parameters (Signal2Noise metric for gene ranking).  

 

 H&E staining and immunohistochemistry 

Upon sacrificing the mice, pancreas and liver tissue were collected in 

parafolmaldehyde, dehydrated in increasing concentrations of ethanol and 

further embedded in paraffin to make tissue blocks. Paraffin blocks were 

sectioned into 4 µm sections and fixed on glass slides. Hematoxylin & Eosin 

(H&E) stainings were performed to visualize the tissue morphology. To this end 

the slides were placed in roticlear to remove the paraffin (de-waxing). Further, 

the tissue sections were hydrated by placing the slides in decreasing 

concentrations of ethanol (99 %, 96 %, 80 %, 70 %, 50 %). The slides were 

placed in hematoxylin solution, which stains the nuclei blue, for approximately 5 

minutes and then rinsed with tap water for 7 minutes. Further, the slides were 

transferred to the eosin in 0.2 % acetic acid solution, which consists of a dye 

that stains the cytoplasm, for approximately 10 seconds. The sections were 

further dehydrated by placing in increasing concentrations of ethanol (70 %, 80 

%, 96 %, 99 %) and finally in roticlear. The slides were mounted using a cover 

slip and with a mounting solution  and further viewed under the microscope. 

For immunohistochemistry (IHC), the sections were de-waxed by placing the 

slides in roticlear and further hydrated by placing in decreasing concentrations 

of ethanol. Then, the slides were covered with TE/citrate buffer and boiled for 5-

10 minutes in the microwave to expose the antigens and then cooled down by 

placing it on the ice. Further the sections were incubated in 3 % hydrogen 

peroxide solution for 10 minutes to block the endogenous peroxidase activity. 

The slides were placed in the cadenxa slide holding system and then blocked 

with 10 % BSA solution prepares in PBST (containing 1 % Tween or 1 % 

TritonX). The slides were then incubated overnight with the primary antibody. 

The following day, slides were washed twice with PBST and incubated with the 

secondary antibody for 1 hour, followed by incubating with AB complex for 

another hour (performed utilizing the Peroxidase Rabbit/Mouse IgG Vectastain 
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ABC kits). The slides were then washed with PBST and stained with DAB 

solution. The reaction was stopped by placing the slides in water and further 

the slides were counterstained in hematoxylin for 5 minutes. Slides were placed 

under tap water for 7 minutes for the nuclei stain to develop into blue colour. 

Finally, sections were dehydrated and mounted as explained for H&E stainings. 

The slides were viewed under the microscope. 

 

 Tissue Microarray Analysis (TMA) in human PDAC samples 

EZH2 and GATA6 stainings in TMA were provided by the Institute of Pathology, 

UMG, Göttingen. TMAs were prepared from 54 resected PDAC patients with 

three to four cores per patient. TMAs were evaluated for nuclear EZH2 and 

GATA6 expression and were scored in accordance to the Immune Reactive 

Sore (IRS). Each tissue was given a score for the percentage of positively 

stained cells (A) and intensity of staining (B). Multiplying the scores of two 

variables (A*B) gave a IRS ranging from 0 to 12. Tissues with IRS ≤ 3 were 

considered as tissues with null or mild staining and the tissues with IRS > 3 

were considered as moderate or strongly stained. 

 

 Statistical analysis 

Statistical analysis was performed by Graphpad Prism (version 6.0). Data are 

represented as mean ± standard deviation (SD). Fisher's exact test was used 

to analyze the significance of in vivo data. Log-Rank test was used for the 

survival analysis. Two-tailed unpaired student’s t-test, one-way and two-way 

ANOVA were used calculate the statistical significance of in vitro data 

(described in each figure legend). p value of < 0.05 was considered as 

statistically significant. p- values < 0.05, < 0.01 and < 0.001 are depicted as *, 

** and ***, respectively.  
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4 RESULTS 

 EZH2 in tumor progression  

 EZH2 is overexpressed in dedifferentiated human PDAC 

In order to elucidate the role of EZH2 in PDAC, we initially examined EZH2 

expression in human PDAC samples and adjacent normal pancreatic tissue. To 

this end we conducted EZH2 IHC in a Tissue Microarray (TMA) of resected 

PDAC samples from 54 patients. Consistent with previous reports (Ougolkov, 

Bilim, and Billadeau 2008), EZH2 was almost absent in the normal pancreas 

whereas its expression increased in the epithelial part of PDAC tissues (Figure 

5A).  

Next, we used the immunoreactive score (IRS) to correlate EZH2 expression 

with the tumor grading information of the respective donor patient as provided 

by the Institute of Pathology. The IRS scoring system considers the percentage 

of positively stained cells and the intensity of the staining (Fedchenko and 

Reifenrath 2014). A significant number of patients with low EZH2 levels 

possessed low grade pancreatic tumors. Overall, there was a significant 

association between high EZH2 levels with high-grade tumors (Figure 5B). 

Together, these analyses suggest overexpression of EZH2 in PDAC vs normal 

pancreatic tissue and implicate an association of EZH2 expression with PDAC 

dedifferentiation. 
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Figure 5: EZH2 expression correlates with high grade PDAC. 

(A) Representative immunohistochemical analysis of EZH2 expression in healthy 
pancreatic tissue, moderately and poorly differentiated PDAC from a TMA performed 
in human PDAC patients (n = 54 patients). Magnification 100X, Scale bar: 100 µm. (B) 
Correlation of EZH2 expression (IRS score) and tumor grading in the same TMA. Each 
dot represents a patient. Values represent mean ± SD. Significance was determined 
by two-tailed unpaired student’s t-test. 

 

 

 EZH2 drives PDAC progression in transgenic mice 

Given the observations in human PDAC tissues, we sought to dissect the 

functional implications of EZH2 in vivo using transgenic mouse models. We 

utilized the caNfatc1;KrasG12D (NKC) mice which have been previously 

described (Baumgart et al. 2014). Briefly, this transgenic mouse model has the 

gatekeeper KrasG12D mutation and constitutive expression of HA-tagged 

NFATc1 in the pancreas. NFATc1 is a well-studied inflammatory transcription 

factor and in combination with KrasG12D gives rise to PDAC with a penetrance 

of nearly 100 %. Importantly, PDAC that develops in the NKC model very well 
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mimics human PDAC with frequent occurrence of liver metastasis, ascites and 

bile obstruction (Baumgart et al. 2014).  

To investigate the impact of EZH2 expression in this mouse model, 

caNfatc1;KrasG12D mice were crossed with Ezh2fl/fl mice to obtain 

Ezh2fl/fl;caNfatc1;KrasG12D littermates. Surprisingly, homozygous 

Ezh2fl/fl;caNfatc1;KrasG12D animals died 5-10 days postnatally. Necropsy of 

mice showed signs of liver inflammation, severe pancreatic atrophy or complete 

loss of the pancreatic organ (Figure 6), indicating that in the context of 

constitutively active NFATc1, EZH2 is vital for the development of a 

morphologically and functionally intact pancreas.  

 

 

 

 

Figure 6: Complete loss of EZH2 hampers pancreatic development in mice. 

H&E staining in pancreatic tissue of Ezh2fl/fl;caNfatc1;KrasG12D and 
Ezh2fl/+;caNfatc1;KrasG12D mice displaying severe pancreatic atrophy and liver 
inflammation in animals with homozygous Ezh2 depletion. Magnification 100X, Scale 
bar 100 µm. 

 

 

 

 

 



RESULTS 

54 
 

As the homozygous Ezh2 knockout mice could not be used for the study, we 

interbred Ezh2fl/fl;caNfatc1;KrasG12D mice with Ezh2+l+ (wildtype) animals to 

obtain Ezh2fl/+;caNfatc1;KrasG12D mice with heterozygous EZH2 expression. 

Both caNfatc1;KrasG12D and Ezh2fl/+;caNfatc1;KrasG12D (ENKC) mice gave rise 

to all steps of pancreatic carcinogenesis. ADM and PanIN lesions were 

observed in caNfatc1;KrasG12D mice as soon as 2 weeks after birth. While most 

of the 8 week old mice displayed the full PanIN PDAC precursor lesions, nearly 

all 7 month old animals suffered from PDAC. The pancreas of 8 week old 

Ezh2fl/+;caNfatc1;KrasG12D animals displayed ADMs and PanIN precursor 

lesions and few of these mice developed PDAC. 

The ADM, PanIN lesions and PDAC of caNfatc1;KrasG12D and 

Ezh2fl/+;caNfatc1;KrasG12D mice were subjected to various 

immunohistochemical analyses. As this mouse model has overexpression of 

HA-tagged NFATc1, tissues were stained for HA-tag thereby validating the 

expression of NFATc1 and to distinguish epithelial- from non-epithelial tissue 

parts. Consistent with the observations in human pancreatic cancer tissues, 

EZH2 was nearly absent in acinar cells but showed increased expression and 

activity (as illustrated by H3K27me3 staining) in PDAC precursor lesions and 

established tumors. Interestingly, PDAC developing in 

Ezh2fl/+;caNfatc1;KrasG12D mice were overall more differentiated than the 

tumors in caNfatc1;KrasG12D mice (Figure 7), suggesting that EZH2 promotes 

dedifferentiation in these mice.  
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Figure 7: EZH2 drives PDAC development and dedifferentiation. 

Representative images of H&E and other immunohistochemical stainings (HA-
NFATc1, EZH2, H3K27me3) in ADM, PanIN lesions and PDAC of caNfatc1;KrasG12D 
(NKC) and Ezh2fl/+;caNfatc1;KrasG12D (ENKC) mice. Magnification 200X, Scale bar 50 
µm. 
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Mice were followed till the end point criteria were reached and then sacrificed. 

The end point was defined as mice experiencing weight loss of more than 20 % 

or showing signs of pain. The pancreas tissue of the mice was stained with 

H&E and was evaluated by a pathologist to determine which tissue contains 

PDAC. Remarkably, caNfatc1;KrasG12D mice developed PDAC with almost 100 

% incidence whereas only 5 out of 25 Ezh2fll+;caNfatc1;KrasG12D mice (20 %) 

developed PDAC (Figure 8A). Furthermore, Kaplan Meier plot was plotted to 

compare the survival between the two groups of mice. Surprisingly, and despite 

the EZH2-status dependent differences in PDAC development, 

Ezh2fl/+;caNfatc1;KrasG12D (ENKC) mice had a median survival of 165 days 

which was comparable to that of caNfatc1;KrasG12D mice, which displayed a 

median survival of 145 days (Figure 8B). Ezh2fl/+;caNfatc1;KrasG12D mice 

displayed initial signs of pancreatic insufficiency and atrophy at an advanced 

age, potentially explaining the insignificant differences seen in the survival of 

these mice.  

 

 

 

Figure 8: EZH2 correlates with increased PDAC incidence in transgenic mice 

(A) Bar graph showing PDAC incidence in survival mice of indicated genotypes. 25 
mice per genotype were enrolled into the study. Significance was determined by two-
tailed Fisher’s exact test (B) Kaplan-Meier plot displaying survival of 
Ezh2fl/+;caNfatc1;KrasG12D (ENKC) mice (median survival 162 days) compared to that 
of caNfatc1;KrasG12D (NKC) mice (median survival 145 days). Significance was 
determined by Log-rank (Mantel-Cox) test. 
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 EZH2 drives liver metastasis in transgenic mice 

Tumor dedifferentiation is associated with invasion and metastasis. The liver is 

the most common site for distant metastasis in pancreatic cancer patients 

(Yachida and Lacobuzio-Donahue 2009). Therefore, tumor-bearing mice from 

both genotypes were evaluated for liver metastasis. Three liver sections from 

each tumor-bearing mouse from both groups were stained for HA-NFATc1 for 

better visualization of PDAC cells in the liver. Mice that carried at least one HA-

positive lesion in the liver which was surrounded by healthy liver tissue were 

considered positive for metastasis. While 33 % of tumor-bearing 

caNfatc1;KrasG12D mice displayed liver metastasis, only 20 % of 

Ezh2fl/+;caNfatc1;KrasG12D mice developed metastasis (Figure 9). This suggests 

a possible role of EZH2 in promoting metastasis.  

 

Figure 9: EZH2 deficiency reduces metastatic incidence. 

(A) Representative images of H&E and HA-NFATc1 staining in liver sections of 
caNfatc1;KrasG12D (NKC) and Ezh2fl/+;caNfatc1;KrasG12D (ENKC) mice. Magnification 
100X, Scale bar 100 µm. (B) Bar graph showing percentage of tumor bearing mice 
from indicated genotypes carrying liver metastasis. Significance was determined by 
two-tailed Fisher’s exact test. 



RESULTS 

58 
 

Together, these results in human PDAC samples and transgenic mouse 

models suggest a critical involvement of EZH2 in driving tumor progression and 

dedifferentiation towards a highly aggressive PDAC phenotype. 

 

 Functional implications of EZH2 in PDAC cells 

To delineate the functional implications of EZH2 in PDAC maintenance, we 

isolated pancreatic tumors from the EZH2-expressing caNfatc1;KrasG12D mice 

and further harvested primary PDAC cells (NKC cells) from the tumor 

(Baumgart et al. 2014). NKC cells were subjected to shRNA mediated 

knockdown of EZH2 to generate stable EZH2 knockdown NKC cells (Figure 

10A). The western blot confirms the reduction in EZH2 expression and 

subsequent decrease in H3K27me3 levels upon EZH2 knockdown (Figure 

10B). The shRNA control and shRNA EZH2 NKC cells were utilized to perform 

various functional assays. 
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Figure 10: Generation of shRNA-mediated stable knockdown of EZH2 in NKC 
cells. 

(A) Schematic displaying the isolation of primary PDAC cells (NKC cells) from 
caNfatc1;KrasG12D (NKC) mice and further generation of shRNA-mediated stable 
knockdown of EZH2 in these cells. (B) Western blot depicting reduced EZH2 and 
H3K27me3 expression in NKC cells upon stable shRNA-mediated EZH2 depletion. H3 
and actin serve as loading controls. 
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 EZH2 depletion reduces proliferation in NKC cells 

Uncontrolled cell proliferation is an important property of cancer cells (Hanahan 

and Weinberg 2011) and previous studies have investigated the involvement of 

EZH2 in mediating cellular proliferation (Ougolkov, Bilim, and Billadeau 2008). 

Therefore, we decided to analyze the consequences of EZH2 depletion in NKC 

cells on tumor cell proliferation. Cell counting assay is a very simple method to 

evaluate cell growth kinetics. 2500 cells were seeded on day 0 and the number 

of cells was counted subsequently on day 3 and day 6. On the 6th day, there 

was a significantly higher number of shRNA control cells than shRNA EZH2 

cells (Figure 11A), suggesting that cells grow slower upon depletion of EZH2. 

Bromodeoxyuridine (BrdU) assay is a widely preferred, efficient method to 

detect the proliferation of cells. BrdU is a synthetic analog of thymidine and 

when added on cells gets incorporated into the DNA of replicating cells. The 

shRNA EZH2 cells displayed lower levels of BrdU incorporation, providing 

evidence that PDAC cell proliferation reduces significantly upon EZH2 depletion 

(Figure 11 B). 

 

 

Figure 11: EZH2 depletion reduces cell proliferation in NKC cells. 

(A) Graph from cell counting assay depicting the number of cells counted on days 0, 3 
and 6 in the indicated cells. (B) Bar graph from BrdU cell proliferation assay showing 
BrdU incorporation in NKC cells in the presence and absence of EZH2. Values 
represent mean ± SD from 3 independent experiments. Significance was determined 
by a two-tailed unpaired student’s t-test.  
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 EZH2 depletion reduces stemness properties in NKC cells 

Another important property of cancer cells is anchorage independent growth 

(Hanahan and Weinberg 2011) which can be assessed in vitro by colony 

formation (also known as soft agar assay) assay. This assay evaluates the 

ability of high proliferating tumor cells to form colonies on the soft agar plate 

(Borowicz et al. 2014). Our study showed that EZH2 depleted NKC cells have 

reduced capacity to form colonies on the soft agar compared to the control cells 

(Figure 12A) confirming that EZH2 deficiency diminishes anchorage-

independent growth in NKC cells. 

Stemness appears to be a fundamental hallmark of malignancy and tumor cell 

plasticity (Lathia and Liu 2017). Sphere formation assay is a general in vitro 

approach to analyze the stemness feature of the cells based on their ability to 

form spheres when allowed to grow in suspension in a serum-free sphere 

medium (H. Wang, Paczulla, and Lengerke 2015). In our study, shRNA EZH2 

cells formed an overall less number of spheres and relatively smaller spheres 

compared to the shRNA control cells (Figure 12B), confirming that in the 

absence of EZH2, NKC cells reduce their stemness potential.  

 

 

Figure 12: EZH2 deficiency reduces anchorage independent growth and 
stemness in NKC cells 

(A) Bar graph displaying the number of colonies formed in the soft agar in NKC cells in 
the presence and absence of EZH2. Values represent mean ± SD from 3 independent 
experiments. Significance was determined by two-tailed unpaired student’s t-test. (B) 
Bar graph illustrating total number and size of spheres in the same cells. Values 
represent mean ± SD. Significance was determined by two-way ANOVA. 



RESULTS 

62 
 

 EZH2 depletion reduces the invasive potential of NKC cells 

Cell invasion is the ability of cancer cells to penetrate through the extracellular 

matrix which is basically the primary step in the process of metastasis 

(Zeeshan and Mutahir 2017). Our in vivo data suggests a reduced metastatic 

potential upon heterozygous Ezh2 depletion (Figure 9). Based on these 

findings, we performed a Boyden chamber assay which is a commonly used in 

vitro method to assess tumor cell invasion. The Boyden chamber based 

invasion assay displayed that upon knockdown of EZH2, there is a reduction in 

the capacity of NKC cells to invade (Figure 13).  

 

 

Figure 13: EZH2 knockdown reduces invasive capacity of NKC cells. 

(A) Representative image of DAPI stained nuclei demonstrating invaded NKC cells 
from indicated conditions. (B) Bar graph displaying quantification of invaded cells from 
Boyden chamber assay shown in A. Values represent mean ± SD from 3 independent 
experiments. Significance was determined by two-tailed unpaired student’s t-test. 

 

 

Taken together, all the above-mentioned functional assays in PDAC cells 

indicate that  loss of EZH2 significantly diminishes proliferation, anchorage 

independent growth, stemness and invasive capacity, indicating that EZH2 

depletion strongly reduces cellular plasticity and the tumor promoting potential 

of PDAC cells. 
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 Mechanistic role of EZH2 in PDAC 

In order to understand the mechanism through which EZH2 mediates regulation 

of pancreatic plasticity and dedifferentiation, we set up next-generation 

sequencing approaches in shRNA control and shRNA EZH2 NKC cells. RNA-

seq was performed to determine differential gene regulation by EZH2 and 

Chromatin Immunoprecipitation followed by parallel deep sequencing (ChIP-

seq) identifies the genes directly bound by the methyltransferase (Figure 14). 

The intersection of information from both assays enables us to identify EZH2-

dependent gene signatures involved in PDAC progression. 

 

 

 

 

Figure 14: Schematic of the sequencing analysis. 

Ovelapping the genes derived from high-throughput ChIP- and RNA- sequencing 
analysis performed in shRNA control vs shRNA EZH2 NKC cells identify EZH2 direct 
target genes. 
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 EZH2 regulates genes mediating differentiation and tumor 

progression in PDAC 

ShRNA control and shRNA EZH2 NKC cells were seeded in triplicates and 

were subjected to high throughput RNA-seq. Before proceeding with the 

analysis, we verified the quality of the reads and performed Principal 

component analysis (PCA) through which we confirmed the similarity between 

the triplicates of each condition and the differences between the two conditions 

(Figure 15A). For further analyses, genes with a Fragments Per Kilobase of 

transcript per Million mapped reads (FPKM) threshold less than 0.2 were 

eliminated to reduce false positive expressions, which eliminated approximately 

50 % of the genes and kept 13,467 genes for downstream analysis. 

In order to investigate the pathways affected by EZH2 depletion, we performed 

Gene set enrichment analysis (GSEA) in control and EZH2 knockdown 

samples. GSEA is a tool that determines if a predefined gene set coding for a 

particular pathway is significantly enriched in the given sample (Subramanian et 

al. 2005). We used the default curated gene sets and examined significantly 

enriched pathways. While gene signatures related to tumor cell proliferation, 

migration and metastasis were enriched in shRNA control cells, pathways 

related to differentiation and apoptosis were enriched upon EZH2 depletion 

(Figure 15B). In summary, GSEA results strengthened our hypothesis that 

EZH2 controls dedifferentiation and metastasis in PDAC. 
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Figure 15: EZH2 deficiency leads to enrichment of pathways related to PDAC 
progression. 

(A) PCA plots from RNA-seq analyses showing the triplicates of shRNA control and 
shRNA EZH2 clusters. (B) Gene set enrichment analysis (GSEA) performed from 
RNA-seq analysis displaying pathways positively (blue) and negatively (red) enriched 
in shRNA EZH2 cells. Significance was determined based on normalized enrichment 
score (NES) and false discovery rate (FDR) q value. 

 

 

 

 EZH2 depletion leads to enrichment of favorable prognosis and 

differentiation gene sets 

To investigate if EZH2 has any prognostic relevance, we utilized the 

transcriptomics data from 176 pancreatic cancer patients available in The 

cancer genome atlas (TCGA). Based on their analyses, 669 genes were 
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classified as unfavorable prognosis genes and 857 genes were identified as 

favorable prognosis genes in PDAC (Cancer Genome Atlas Research Network 

et al. 2013). High expression of favorable genes at diagnosis indicated better 

overall survival whereas increased expression of unfavorable genes indicated 

lower survival of PDAC patients. We performed GSEA on our genome-wide 

expression data using these prognostic gene sets. There was a positive 

enrichment of genes associated with favorable prognosis in the context of 

EZH2 deficiency, supporting that depleting EZH2 enables a better prognosis 

(Figure 16A). 

 

 

 

Figure 16: EZH2 depletion mediates better prognosis and cell differentiation 
programs. 

GSEA performed from RNA-seq analysis illustrating enrichment of (A) PDAC favorable 
prognosis gene set (B) cell differentiation gene set and (C) stem cell differentiation 
gene set upon EZH2 depletion. Significance was determined based on NES and FDR 
q value. 
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Our findings accomplished in in vivo models and functional assays link EZH2 to 

PDAC dedifferentiation. In order to explore if EZH2 regulates gene signatures 

related to differentiation programs, we performed GSEA using cell- and stem 

cell- differentiation gene sets. In accordance with our findings in transgenic 

mice and PDAC cells, we observed an induction of gene signatures associated 

with cellular differentiation upon EZH2 depletion (Figure 16 B&C). These 

observations argue that EZH2 regulates PDAC plasticity by repressing 

programs required to maintain a differentiated state.  

 

 Classical subtype PDAC genes are positively enriched upon EZH2 

depletion  

So far, our data suggest that EZH2 activity is associated with an aggressive 

PDAC phenotype, dedifferentiation and an unfavorable prognosis. As these 

features also characterize certain PDAC subtypes (Collisson et al. 2011; Moffitt 

et al. 2015), we asked whether EZH2 controls gene signatures associated with 

a particular molecular PDAC subtype. Two extreme molecular PDAC subtypes 

have remained consistent in all the studies – the classical and basal-like 

subtype (P. Bailey et al. 2016; Collisson et al. 2011; Maurer et al. 2019; Moffitt 

et al. 2015; Puleo et al. 2018). 

In one of the latest works with regard to PDAC subtypes performed by Puleo et 

al., they considered all previous subtyping studies and defined two important 

PDAC subtypes in the epithelial compartment of the tumor – pure classical and 

basal-like subtypes (Puleo et al. 2018). While the basal-like subtype exhibits 

higher tumor grade and poor survival, the pure classical subtype is associated 

with a more differentiated phenotype and exhibits a better prognosis. To 

evaluate if EZH2 is involved in the regulation of gene signatures defining pure 

classical vs basal-like subtypes, we intersected our RNA-seq data with Puleo et 

al. defined gene sets. Interestingly, we found a positive enrichment of pure 

classical gene signatures and negative enrichment of basal-like gene 

signatures in shRNA EZH2 samples (Figure 17 A-D).  
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Figure 17: EZH2 knockdown leads to positive enrichment of classical PDAC- and  
negative enrichment of basal-like PDAC subtype gene signatures. 

Analysis of RNA-seq (A) GSEA plot and (B) Heatmap illustrating positive enrichment 
of Pure classical gene signatures (Puleo et al. 2018) upon EZH2 knockdown. (C) 
GSEA plot and (D) Heatmap illustrating negative enrichment of basal-like gene 
signatures (Puleo et al. 2018) upon EZH2 knockdown. Significance was determined 
based on NES and FDR q value. 
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Importantly, molecular PDAC subtypes not only display distinct histological 

features and prognostic implications, they also exhibit diverse metabolic 

profiles. Indeed, Daemen et al. have identified two extreme metabolic profiles 

which strongly associate with the classical and basal-like subtypes (Daemen et 

al. 2015). While the lipogenic subtype that consists of genes associated with 

lipogenesis is strongly associated with classical PDAC, the glycolytic subtype 

which comprises genes involved in glycolysis correlates with basal PDAC gene 

signatures (Daemen et al. 2015). In line with the aforementioned enrichment of 

classical gene signatures in shEZH2 cells, GSEA using these metabolic gene 

sets revealed that lipogenic gene signatures are enriched in the context of 

EZH2 deficiency (Figure 18). This data further strengthens the observation that 

EZH2 depletion is associated with a less aggressive classical PDAC subtype. 

 

 

 

Figure 18: EZH2 knockdown leads to enrichment of lipogenic subtype gene 
signatures. 

Analysis of RNA-seq: GSEA plot depicting enrichment of lipogenic gene signatures in 
shRNA EZH2 condition. Significance was determined based on NES and FDR q value. 

 

 

 EZH2 binds largely on TSS/promoter sites of its target genes  

The transcriptomics data supported the hypothesis that EZH2 regulates 

differentiation-associated gene signatures and pathways. To further elucidate 

the mechanistic background of oncogenic EZH2 activity in PDAC and to identify 

target genes directly bound by EZH2, we performed genome-wide binding 

analysis by ChIP-seq. To this end, shRNA control and shRNA EZH2 NKC cells 
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were seeded in triplicates and subjected to ChIP-seq. ChIP-seq with an 

antibody recognizing EZH2 was performed in shRNA control cells to identify the 

genes occupied by EZH2. Firstly, we analyzed the location on the genome 

where EZH2 majorly binds. We assessed the enrichment of EZH2 binding at 

different genomic regions like promoter, introns, exon etc. using Cis-regulatory 

Element Annotation System (CEAS). CEAS is a tool that enables the 

visualization of relative ChIP enrichment at important genomic locations 

compared to the whole genome (Shin et al. 2009). The CEAS analysis of EZH2 

ChIP-seq revealed that most of the EZH2 binding regions were confined to the 

TSS/Promoter of the genes (17.1 %) compared to whole-genome (1.1 %) 

(Figure 19A). Additionally, GREAT analysis also validated the genome-wide 

EZH2 occupancy predominantly near the TSS of target genes (Figure 19B). 
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Figure 19: EZH2 largely occupies the promoter region of its target genes. 

(A) Cis-regulatory Element Annotation System (CEAS) analysis of EZH2 ChIP-seq 
showing relative enrichment of EZH2 on promoters and gene bodies compared to the 
whole genome. (B) Genomic Regions Enrichment of Annotations Tool (GREAT) 
analysis of ChIP-seq data revealing that EZH2 largely binds around the TSS of the 
gene. 

 

 

 EZH2-deficiency fosters a shift in histone modifications at EZH2 

target genes  

To study EZH2-dependent histone modifications, EZH2 ChIP-seq was 

accompanied by ChIP-seq analysis for H3K27me3 and H3K4me3 in the 

presence and absence of EZH2. Principal component analysis (PCA) in 

H3K27me3 and H3K4me3 ChIP-seq confirmed the similarity between the 
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triplicates of each condition and the differences between the two conditions 

(Figure 20).  

 

 

 

Figure 20: PCA plots of histone marks from ChIP sequencing analysis 

PCA plots from ChIP-seq analysis of (A) H3K27me3 and (B) H3K4me3 illustrating 
distinct clusters of shRNA control and shRNA EZH2 triplicates. 

 

Subsequently, we developed heatmaps to study the general trends in genome-

wide EZH2 binding and subsequent enrichment of histone modifications. Figure 

21A displays the heatmap profile of EZH2 binding on the shRNA control 

genome. Consistent with its function as a transcriptional repressor, EZH2-

bound regions were enriched for the repressive H3K27me3 mark, which was 

decreased in EZH2 knockdown cells (Figure 21B). In contrast, H3K4me3, 

which is a transcriptionally active mark (Hemming et al. 2016; P. Wang et al. 

2018), displayed increased enrichment in these EZH2 depleted regions (Figure 

21C).  
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Figure 21: Loss of EZH2 binding leads to decrease in H3K27me3 and increase in 
H3K4me3 enrichment. 

Heatmaps from ChIP-seq data in NKC cells depicting (A) EZH2 binding on the 
genome. (B) H3K27me3 occupancy and (C) H3K4me3 occupancy on EZH2 bound 
regions in indicated conditions. 

 

 EZH2 targets differentiation-associated genes   

In order to identify direct EZH2 targets genes, we combined the output of our 

ChIP- and RNA-seq data. With the ChIP-seq data, we performed differential 

binding (Diffbind) analysis to identify differentially occupied regions in shRNA 

EZH2 compared to shRNA control NKC cells. Furthermore, we performed 

Genomic Regions Enrichment of Annotations Tool (GREAT) analysis to identify 

genes associated with regions identified by Diffbind analysis.  

To obtain direct EZH2 binding targets, we focused on genes that i) showed 

EZH2 binding on shRNA control samples, ii) significantly lost H3K27me3 

enrichment (log2FC > 2, q < 0.1) and iii) gained H3K4me3 occupancy (log2FC 

> 0.5, q < 0.1) upon EZH2 knockdown. This strategy led to the identification of 

965 target genes (Figure 22A) which are bound and potentially repressed by 

the histone methyltransferase. We additionally  performed CRISPR/Cas9 

mediated knockout of EZH2 in NKC cells (shown in appendix, figure 35) and 

further subjected CRISPR/Cas9 control vs CRISPR/Cas9 EZH2 NKC cells to 

RNA-seq to identify the genes regulated by EZH2. Subsequently, 965 target 
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genes identified by ChIP-seq were intersected with genes that were found to be 

upregulated upon shRNA- (log2FC > 0.5, q < 0.1) and CRISPR/Cas9 (log2FC > 

0.5, q < 0.1) mediated depletion of EZH2 in the RNA-seq. We identified 47 final 

direct target genes (Figure 22B), whose TSS region is bound  by EZH2 and 

meanwhile expression is increased in the context of EZH2 depletion. 

Consistent with our observations in phenotypic and functional data, Gene 

ontology (GO) analysis of these 47 genes revealed pathways related to 

development and differentiation (Figure 22C).  

 

 

Figure 22: Direct target genes of EZH2 mediate developmental and cell 
differentiation related programs. 

(A) Venn diagram showing the intersection of genes fulfilling the following criteria: 
bound by EZH2, decreased H3K27me3 enrichment in shRNA EZH2 samples (log2FC 
> 2, q < 0.1) and increased H3K4me3 enrichment in shRNA EZH2 samples (log2FC > 
0.5, q < 0.1) as identified by ChIP-seq. (B) Venn diagram showing intersection of direct 
EZH2 target genes from A with genes upregulated upon shRNA- (log2FC > 0.5, q < 
0.1) and CRISPR/Cas9- (log2FC > 0.5, q < 0.1) mediated EZH2 depletion. Box 
indicates an excerpt of the final 47 target genes. (C) GO gene enrichment analysis 
depicts pathways associated with 47 EZH2 target genes. (FDR < 0.25)  
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Out of the 47 direct EZH2 targets we selected a set of eleven genes with 

potential implication in PDAC biology. The ChIP-seq based binding profiles 

were viewed using an integrated genome viewer (IGV), which is a widely used 

visualization tool for NGS data (Robinson et al. 2011; Thorvaldsdóttir, 

Robinson, and Mesirov 2013). The IGV profile of 11 selected EZH2 target 

genes depicted in figure 23 displays the EZH2 binding and associated changes 

in occupancy of histone marks on TSS of the genes in the presence and 

absence of EZH2.  

 

Figure 23: IGV profile of selected 11 EZH2 direct target genes. 

11 genes with potential implications in PDAC were selected from the 47 direct EZH2 
target genes. The figure depicts the Integrated genome viewer (IGV) profiles of the 
finally selected 11 EZH2 target genes. 

 

 EZH2 target gene expression validation 

The selected EZH2 target genes were further validated in independent 

experiments. We performed expression analysis of these target genes in 

shRNA control vs shRNA EZH2 NKC cells, CRISPR/Cas9 control vs 

CRISPR/Cas9 EZH2 NKC cells as well as upon treatment with the EZH2 

inhibitor Tazemetostat (EPZ6438). These analyses revealed that the 

expression of all eleven genes increases significantly upon genetic or 

pharmacological inhibition of the histone methyltransferase, although to 

different magnitudes in the different conditions (Figure 24). The western blot 

confirming successful reduction of H3K27me3 levels upon Tazemetostat 

(EPZ6438) treatment is shown later in Figure 27F. 
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Figure 24: Expression of direct EZH2 target genes increases upon EZH2 
depletion. 

qPCR validating the expression of the selected 11 EZH2 target genes in (A) shRNA 
control vs shRNA EZH2 NKC cells (B) CRISPR/Cas9 control vs CRISPR/Cas9 EZH2 
NKC cells (C) DMSO treated vs 500nM Tazemetostat (EPZ6438) (for 72 hours) 
treated NKC cells. Two-tailed student’s t test was used to determine the significance. 
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Furthermore, we designed specific primers covering the TSS/promoter of the 

the selected target genes where a peak for EZH2 was detected. Also, for the 

negative control, we designed primers across the intragenic region of the gene 

where EZH2 occupancy was not observed. The individual ChIP qPCR analysis 

validated EZH2 occupancy as well as EZH2-dependent H3K27me3 and 

H3K4me3 occupancies specifically on the TSS/promoter of the target genes. 
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Figure 25: EZH2 binds to TSS of its target genes and mediates promoter specific 
histone modifications. 

qRT-PCR following EZH2- and histone modification ChIP analysis utilizing primers 
embracing the TSS/promoter region and intragenic region (negative control) of 
selected genes for validation as a direct EZH2 target gene.  

 

 

 EZH2-GATA6 axis in PDAC 

 EZH2 targets epithelial transcription factor Gata6  

One of the well-regulated and interesting EZH2 target genes was the 

transcription factor GATA6. GATA6 represents a critical regulator of pancreatic 

development and endodermal lineage differentiation (C. Y. Chia et al. 2019; 

Lorberbaum and Sussel 2017; Tiyaboonchai et al. 2017). Its expression in 

various cancers including pancreatic cancer is linked to blocking pancreatic 

carcinogenesis and PDAC progression. GATA6 loss is associated with reduced 

differentiation and increased metastasis in PDAC (Martinelli et al. 2017). 

Further evidence states that GATA6 activates transcriptional programs related 

to epithelial differentiation (Hermann et al. 2014; Martinelli et al. 2016). 

Moreover, all the PDAC subtype studies from this decade portray GATA6 as 

the central regulator of molecular subtype identity. GATA6 proves to be a 

surrogate marker with high and low GATA6 expression implying classical and 

basal-like PDAC subtypes, respectively (Aung et al. 2019; P. Bailey et al. 2016; 

Collisson et al. 2011; O’Kane et al. 2020).  

Interestingly, in our ChIP-seq we detected a prominent EZH2 peak around the 

TSS/promoter of the Gata6 gene. Additionally, we observed a decrease in 

H3K27me3 enrichment and increase in H3K4me3 occupancy in this region 

upon the depletion of EZH2. This was in line with our observations in RNA-seq 

data, where we detected a significantly enhanced upregulation of Gata6 

expression upon EZH2 knockdown (Figure 26A). To further validate that EZH2 

indeed binds specifically to the promoter of Gata6, we performed individual 

ChIP experiments. Consistent with our observations in IGV from ChIP-seq, 

qRT-PCR performed in ChIP samples revealed a significant enrichment of 

EZH2 binding and its activity (H3K27me3) around the promoter of Gata6. In the 

context of EZH2 deficiency, binding of EZH2 and H3K27me3 reduced while 
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H3K4me3 and H3K27ac (active transcription marks) increased (Figure 26B). 

Moreover, the intragenic regions showed no difference in the enrichment of 

these marks (Figure 26B) verifying that all the binding and modifications occur 

specifically around the promoter/TSS of Gata6.  

 

 

 

 

Figure 26: EZH2 binds to TSS of Gata6 and mediates TSS specific histone 
modifications. 

(A) Integrative Genomics Viewer (IGV) profile from ChIP- and RNA-seq at the Gata6 
gene locus in NKC cells showing EZH2 binding and enrichment of H3K27me3 and 
H3K4me3 at the Gata6 gene in indicated conditions. Arrows indicate location of 
primers designed for individual ChIP validation studies shown in B. (B) qRT-PCR 
following EZH2- and histone modification ChIP analysis utilizing primers embracing the 
TSS/promoter region and intragenic region (negative control) of Gata6 for validation as 
an EZH2 target gene.  
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 EZH2 depletion significantly increases Gata6 expression in murine 

PDAC cells   

We further aimed to scrutinize if EZH2 dependent Gata6 regulation could be 

validated in vitro in PDAC cell lines. Therefore, we investigated the EZH2-

Gata6 axis in various cell lines utilizing different genetic as well as 

pharmacological approaches to manipulate EZH2 expression and activity. 

Gata6 expression was upregulated both at the RNA and protein level upon 

shRNA- and CRISPR/Cas9-mediated EZH2 depletion (Fgure 27 A-D). 

Importantly, re-expression of EZH2 in EZH2 deficient NKC cells rescued Gata6 

upregulation (Figure 27 C&D). Moreover, Gata6 transcription was induced 

when NKC cells were treated with Tazemetostat (EPZ6438) (Figure 27 E), 

which specifically inhibits the histone methyltransferase activity of EZH2 

(Italiano et al. 2018; McGrath and Trojer 2015). The western blot shows the 

reduction in H3K27me3 levels upon treating NKC cells with Tazemetostat 

(EPZ6438), confirming that the inhibitor indeed reduced the enzymatic activity 

of EZH2 (Figure 27 F). This suggests that blockade of EZH2 activity is sufficient 

to re-install Gata6 expression. Furthermore, we analyzed Gata6 expression in 

primary PDAC cells derived from caNFATc1;KrasG12D (NKC) and 

EZH2fll+;caNFATc1;KrasG12D (ENKC) mice. As expected, there was an 

upregulation of Gata6 mRNA and protein levels in ENKC cells compared to 

NKC cells (Figure 27 G&H), further confirming Gata6 as a transcriptional EZH2 

target. To understand if the EZH2-Gata6 axis is restricted to PDAC models with 

constitutive NFATc1 expression or also functions similarly in other PDAC 

models, we used KPC PDAC cells. KPC cells are derived from the 

KrasG12D;TP53R172H/+ (KPC) mice. We subjected KPC cells to CRISPR/Cas9-

mediated knockout of Ezh2 and analyzed Gata6 expression in these cells. 

There was an upregulation of Gata6 mRNA and protein expression upon EZH2 

deletion (Figure 27 I&J), thereby confirming that EZH2-dependent repression of 

Gata6 transcription is also seen in murine PDAC cells with endogenous 

NFATc1 expression. 
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Figure 27: EZH2 deficiency leads to increased GATA6 expression in murine 
PDAC cells 

(A) qPCR and (B) western blot analyses depicting increased GATA6 expression in 
NKC cells upon shRNA-mediated EZH2 knockdown. (C) qPCR showing decrease in 
Gata6 expression upon re-expression of EZH2 in CRISPR/Cas9-mediated EZH2 
knockout NKC cells. (D) Western blot analyses depicting increased GATA6 expression 
in NKC cells upon CRISPR/Cas9 mediated EZH2 knockout cells. (E) qPCR illustrating 
reduction in Gata6 expression upon treatment of NKC cells with EZH2 inhibitor 
Tazemetostat (EPZ6438). (F) Expression analysis of H3K27me3 levels to confirm 
successful treatment with Tazemetostat (EPZ6438) (500 nM for 72 hours). H3 is the 
loading control. (G) qPCR and (H) western Blot analyses depicting increased GATA6 
expression in primary PDAC cells derived from  EZH2fll+;caNFATc1;KrasG12D (ENKC) in 
comparison to PDAC cells derived from  caNFATc1;KrasG12D (NKC) mice. (I) qPCR 
and (J) Western Blot analyses depicting increased GATA6 expression in KPC cells 
upon CRISPR/Cas9 mediated EZH2 knockout. Two-way ANOVA was used to check 
the significance of the qPCR results. p < 0.05 was considered significant. 
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 EZH2 represses GATA6 expression in human PDAC 

Our next question was to understand whether EZH2-dependent GATA6 

repression also occurs in human PDAC. First, we took advantage of publicly 

available EZH2 ChIP-seq data accomplished in PANC-1 (Tzatsos et al. 2013). 

PANC-1 is a human pancreatic cancer epithelial cell line which is categorized 

as a basal-like subtype PDAC cell line (Diaferia et al. 2016). The ChIP-seq raw 

data was retrieved and analyzed in usegalaxy server using the default 

parameters. The EZH2 enrichment profile was visualized on IGV which 

revealed a significant enrichment of EZH2 on the GATA6 TSS/promoter (Figure 

28A), confirming that EZH2 binds on the GATA6 gene in human PDAC as well. 

To validate whether EZH2 also blocks GATA6 transcription, we subjected 

PANC-1 cells to CRISPR/Cas9 mediated EZH2 deletion and tested for GATA6 

expression in CRISPR/Cas9 control vs CRISPR/Cas9 EZH2 KO PANC-1 cells. 

As predicted, EZH2 deletion significantly increased GATA6 mRNA and protein 

expression (Figure 28B&C), yet again supporting that the EZH2-GATA6 axis 

also persists in human PDAC. 

 

 

Figure 28: EZH2 regulates GATA6 expression in human PDAC cell line PANC-1. 

(A) IGV profile demonstrating EZH2 occupancy on the GATA6 TSS in PANC1 cells as 
defined by ChIP-seq analysis (Tzatsos et al. 2013). (B) qPCR and (C) western blot 
analyses depicting increased GATA6 expression in PANC-1 cells upon CRISPR/Cas9-
mediated EZH2 knockout. Two-way ANOVA was used to check the significance of the 
qPCR results.  
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We further aimed to validate the EZH2-GATA6-axis in Patient-derived xenograft 

(PDX) models. PDX models are currently largely used as preclinical model 

systems (Li 2015; C. Xu et al. 2019). We took advantage of PDAC PDX models 

established in our department which have been utilized to generate primary 

PDX derived PDAC cells. We utilized cells (GCDX5) generated from one of the 

PDX tumors (PDX5) to explore EZH2-mediated Gata6 repression. When we 

exposed these cells to siRNA-mediated EZH2 knockdown, we observed a 

significant upregulation of GATA6 mRNA and protein. Moreover, the 

pharmacological blockade of EZH2 activity by treating GCDX5 cells with EZH2 

inhibitor also increased GATA6 transcription. These results further strengthen 

the finding that EZH2 dependent GATA6 regulation persists in human PDAC. 

 

 

 

Figure 29: EZH2 regulates GAT6A expression in cells derived from PDX models. 

(A) qPCR and (B) western blot analyses depicting increased GATA6 expression in 
GCDX5 cells upon siRNA-mediated knockdown of EZH2. (C) qPCR and (D) western 
Blot analyses depicting increased GATA6 expression in GCDX5 cells upon and 
Tazemetostat (EPZ6438) treatment (1 µM for 72 hours). Two-way ANOVA was used to 
check the significance of the qPCR results. 
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 The EZH2-GATA6 axis exists in human PDAC specimens 

To further investigate the significance of the EZH2-GATA6 axis in human 

PDAC patient specimens, we performed immunohistochemical staining 

analyses of GATA6 in the PDAC TMA mentioned in Figure 5. We applied the 

immunoreactive score (IRS) to quantify GATA6 expression in each sample. 

Tissues with IRS ≤ 3 were considered as tissues with low GATA6 levels and 

tissues with IRS > 3 were considered as high GATA6 expressing tissues. IRS 

of GATA6 was further correlated with the IRS of EZH2. Remarkably, GATA6 

expression was reduced in a significant number of EZH2-high tumors (Figure 

30), indicating that EZH2-dependent GATA6 repression is evident in a 

subgroup of human PDAC specimens. Taken together, these data suggest that 

EZH2-GATA6 axis also exists in human PDAC. 

 

Figure 30: EZH2 dependent GATA6 regulation is evident in the subpopulation of 
PDAC patients. 

(A) Representative images from two PDAC patients showing EZH2 and GATA6 
expression in human PDAC tissue. Magnification -100X and 400X; Scale bar – 100 µm 
and 10 µm. (B) Graph depicting GATA6 expression in patients expressing low (IRS ≤ 
3) and high (IRS > 3) EZH2 expression. Each dot represents a patient from the TMA 
described in Figure 5. Values represent mean ± SD. Significance was determined by 
two-tailed unpaired student’s t-test. 
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 GATA6 targets are enriched upon EZH2 depletion  

To explore whether EZH2 also interferes with transcription programs regulated 

by GATA6, we utilized publicly available GATA6 ChIP- and RNA- seq data in 

PDAC (Martinelli et al. 2016). From the GATA6 ChIP-seq data, we set a 

threshold of FDR < 1 to the output from Diffbind and analyzed those GATA6 

binding regions using the GREAT tool to obtain the genes associated with 

these regions. We thereby identified 7065 GATA6 target genes. Subsequently, 

we intersected those direct GATA6 target genes with genes for which RNA-seq 

analysis revealed a significant (q ≤ 0.05) downregulation upon knockout of 

Gata6 (172 genes). Hence, we discovered 58 significant genes that are bound- 

and activated by GATA6 (Figure 31A). Subsequently, we performed GSEA with 

these GATA6 targets on our transcriptome data. Interestingly, GATA6 targets 

were positively enriched upon EZH2 depletion (Figure 31B), suggesting that 

EZH2 controls GATA6-dependent transcriptional programs in PDAC. 

 

 

 

 

Figure 31: Direct downstream targets of GATA6 are enriched upon EZH2 
depletion.  

(A) Venn diagram showing direct Gata6 target genes which are transcriptionally 
activated by the transcription factor as identified by Martinelli et al (Martinelli et al. 
2016). (B) GSEA plot showing enrichment of Gata6 targets identified in A upon EZH2 
depletion. Significance was determined based on NES and FDR q value. 
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 Gata6 knockdown can rescue the effects of EZH2 depletion on 

invasion 

In order to explore the functional significance of GATA6 in curbing EZH2 

mediated PDAC progression, we depleted Gata6 in shRNA EZH2 NKC cells 

using siRNA strategies. Figure 32A depicts the confirmation of knockdown of 

Gata6. Subsequently, we performed an invasion assay to investigate whether 

Gata6 knockdown can rescue the invasive capacity of EZH2-deficient PDAC 

cells. The number of invading cells increased significantly upon Gata6 

knockdown in EZH2-depleted cells (Figure 32B), arguing that Gata6 depletion 

partially restores the invasive potential of shRNA EZH2 NKC cells. These 

results suggest that Gata6 repression is essential for EZH2-driven PDAC cells 

invasion. 

To further understand the role of GATA6 in impeding the EZH2-dependent 

repression of gene signatures associated with the classical PDAC subtype, we 

examined the expression of few classical genes in the presence and absence 

of EZH2 and upon GATA6 depletion. The classical genes were selected from 

the previously described Pure-classical gene set defined by Puleo and 

colleagues (Puleo et al. 2018). Consistent with the observed enrichment of pure 

classical and basal-like gene signatures in shRNA EZH2 and shRNA control 

NKC cells, respectively, pure classical genes were upregulated upon sole 

EZH2 depletion. However, GATA6 depletion partially rescued increased 

classical target gene expression observed upon EZH2 deficiency (Figure 32C) 

suggesting that GATA6 is required for EZH2 mediated abrogation of classical 

gene expression signatures. 

Taken together, these data demonstrate that GATA6 expression is essential for 

the abrogation of invasive potential of features of PDAC and acquisition of a 

classical subtype state upon EZH2 depletion.  
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Figure 32: GATA6 knockdown partially rescues the invasion effects mediated by 
EZH2 deficiency. 

(A) qPCR demonstrating successful knockdown of Gata6 in shRNA EZH2 NKC cells. 
(B) Boyden chamber assay to determine NKC cell invasion in the presence and 
absence of EZH2 and upon Gata6 depletion. (C) qPCR performed in NKC cells to 
evaluate a selection of target genes associated with the pure classical PDAC subtypes 
as defined by Puleo et al (Puleo et al. 2018). Two-tailed unpaired student’s t-test was 
used to test the statistical significance. 

 

In summary, our findings link transcriptional GATA6 repression to EZH2-

dependent tumor progression in PDAC and suggest that pharmacological 

interference with EZH2 activity in a subset of PDAC patients can re-install 

GATA6 expression in favor of a less aggressive tumor phenotype (Patil S et al. 

in revision). 
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5 DISCUSSION 

 Polycomb group proteins in the regulation of differentiation 

processes 

Polycomb group (PcG) proteins regulate several processes during development 

including cell fate determination, lineage specification, stem cell regulation and 

maintaining homeostasis (Bracken et al. 2006; Ringrose and Paro 2004; 

Schuettengruber and Cavalli 2009; Surface, Thornton, and Boyer 2010). In the 

course of embryonic development, they control transcriptional programs by 

restricting the expression of specific genes. They particularly repress genes 

linked to differentiation and maintain the repressed state of the genes in an 

adult differentiated cell (Sparmann and Van Lohuizen 2006). Along with their 

critical role in development and differentiation, several studies show a 

significant connection between polycomb proteins and cancer (Hormaeche and 

Licht 2007; Richly, Aloia, and Di Croce 2011; Sauvageau and Sauvageau 

2010; Valk-Lingbeek, Bruggeman, and Van Lohuizen 2004). PcG proteins carry 

out their functions by forming multiprotein complexes like PRC1 and PRC2. 

EZH2 is one of the most important members of the PRC2 complex and is found 

to be vital in ensuring proper development of various organs including the 

pancreas (Chou et al. 2015; San et al. 2016). This is very well reflected in our 

study where we see that pancreas specific homozygous EZH2 knockout mice 

are lethal and show various developmental abnormalities of the pancreas. 

 EZH2 in pancreas development and cancer progression 

Since the past few years, EZH2 has gained a lot of attention regarding its 

deregulation in various cancer entities. For instance, EZH2 overexpression is 

seen in breast and prostate cancer, linking its abundant expression to poor 

prognosis and advanced tumor stages (Bachmann et al. 2006; Kleer et al. 

2003). Similarly, in pancreatic cancer, consistent with previous studies (N. M. 

Chen et al. 2017; Ougolkov, Bilim, and Billadeau 2008), our findings also show 

increased EZH2 levels in dedifferentiated high-grade human PDAC.  

EZH2 overexpression in cancer has been associated with increased 

proliferation (Ougolkov, Bilim, and Billadeau 2008), stemness (Y. H. Chen, 

Hung, and Li 2012), migration (Smits et al. 2010), invasion (Han et al. 2016) 
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and metastasis (Rao et al. 2010; Richter et al. 2009). In line with these reports, 

we made similar observations upon performing functional assays in NKC PDAC 

cells in vitro. Upon EZH2 depletion, cells exhibited reduced proliferation, 

anchorage-independent growth and invasive capabilities confirming that EZH2-

deficient cells reduce their tumor-promoting activities. One of the reasons for 

the failure to sufficiently eradicate cancer cells has been credited to the 

stemness property of cancer cells which lead to therapy resistance and tumor 

relapse (Nangia-Makker, Hogan, and Raz 2018; Shlush et al. 2017). Our 

sphere-formation assay in NKC PDAC cells depicts that upon loss of EZH2, 

NKC cells lose their stemness property. Accordingly, the RNA-seq analysis 

suggests that EZH2 regulates transcriptional programs that mediate stemness 

in PDAC cells. These findings argue that EZH2 depletion can create a shift 

towards reduced stemness features which might reduce the likelihood of PDAC 

relapses.  

We utilized the caNfatc1;KrasG12D transgenic mouse models with wildtype Ezh2 

expression or upon heterozygous Ezh2 expression to investigate the 

implications of EZH2 depletion in PDAC in vivo. Although homozygous mice 

would aid better in characterizing the role of EZH2, the heterozygous mice 

already displayed differences regarding changes in cellular differentiation status 

and metastasis. Despite the EZH2-status dependent differences in tumor 

biology in these models, we did not observe significant differences between the 

survival of caNfatc1;KrasG12D and EZH2fl/+;caNfatc1;KrasG12D mice. Given that 

EZH2 is critical for proper development of the pancreas and based on our 

observation that EZH2 heterozygous mice of advanced age displayed initial 

signs of pancreatic insufficiency and atrophy, the comparable median survival 

between the groups can be best explained by developmental issues. We 

speculate that the utilization of an inducible mouse model (Guerra and Barbacid 

2013; Martinelli et al. 2016) which facilitates EZH2 depletion after the 

completion of pancreatic development would favor a better judgment on the 

impact of EZH2 activity on tumor progression and mice survival. However, our 

GEMM harboring EZH2 heterozygous deficiency already displays reduced 

tumor incidence and metastasis. Hence, despite the limitations of our PDAC 

model, it reflects the human situation to a significant extent.  
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caNfatc1;KrasG12D mouse model harbor the oncogenic KrasG12D mutation and 

constitutive expression of the inflammatory transcription factor NFATc1. 

Considering the implication of inflammation in boosting PDAC development 

(Baer et al. 2014; Yadav and Lowenfels 2013; Ye et al. 2019; Young et al. 

2019), this well-characterized transgenic mouse serves as a good model 

system to study PDAC carcinogenesis. Additionally, these mice undergo all 

steps of pancreatic carcinogenesis, thus highly mimicking human PDAC 

development (Baumgart et al. 2014). Besides, Cre-mediated expression of HA-

tagged NFATc1 in this model occurs constitutively under the control of the 

Rosa26 promoter, thus prohibiting the previously described alterations (N. M. 

Chen et al. 2017) of NFATc1 expression upon interference with EZH2 activity. 

Furthermore, EZH2 has been identified as a transcriptional NFATc1 target gene 

(Baumgart et al. 2014) which means NKC mouse model expresses high levels 

of EZH2, thus characterizing this model as a practicable tool to study the tumor 

biological consequences and the mechanistic basis of EZH2 overexpression in 

PDAC. However, in the context of constitutive NFATc1 activation, homozygous 

Ezh2 depleted mice are lethal which hinders us from examining homozygous 

EZH2 loss in these mice. Interestingly, in another GEMM which is also based 

on KrasG12D but shows endogenous NFATc1 expression (EZH2fl/fl;KrasG12D 

(KEC)), this was not to be observed and the mice were viable even upon 

homozygous Ezh2 depletion (N. M. Chen et al. 2017; Mallen-St. Clair et al. 

2012). Hence, constitutive NFATc1 activation seems to potentiate the functional 

implications of Ezh2 deficiency in PDAC development. However, the EZH2-

GATA6 axis was also confirmed in systems with endogenous NFATc1 

expression and in the context of additional genetic drivers of PDAC (e.g. gain of 

function mutations of TP53). 

Although the functional implications of EZH2 in cancer are published in various 

reports (Y. H. Chen, Hung, and Li 2012; Han et al. 2016; Ougolkov, Bilim, and 

Billadeau 2008; Rao et al. 2010; Richter et al. 2009; Smits et al. 2010), very few 

studies exist that decode the specific function of this histone methyltransferase 

in PDAC. Consistently, very little is known about the mechanistic functions and 

direct targets of EZH2, especially in pancreatic cancer. Our study describes 

ChIP- and RNA-seq analysis which provides insights into the mechanistic 

background of EZH2-dependent gene regulation in PDAC and links EZH2 
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activity to suppression of transcriptional programs fostering differentiation and a 

better outcome of PDAC patients.  

 Role of epigenetic modulations in mediating cancer cell plasticity 

Cancer cells have a high level of cellular and molecular plasticity which is 

predominantly regulated at the level of gene transcription (Flavahan, Gaskell, 

and Bernstein 2017). Their ability to interconvert between different states allows 

them to grow and spread across different sites (Roe et al. 2017). EMT and 

stemness represent crucial factors for cancer cell plasticity which have a major 

impact on metastasis and therapeutic resistance, respectively (Polyak and 

Weinberg 2009). Many epigenetic modulators regulate transcription programs 

that drive this transition. For instance, epigenetic alterations initiated by 

transcription factors like SNAI and ZEB1 modulate the chromatin, consequently 

controlling the transcription of genes involved in EMT (Nieto et al. 2016). In a 

study in small cell lung cancer (SCLC), amplification of the transcription factor 

NFIB offered genome-wide chromatin accessibility subsequently promoting 

gene expression controlling metastasis programs (Denny et al. 2016). Recent 

evidence suggests that reprogramming of the enhancer landscape mediates 

metastatic potential in pancreatic cancer cells (Roe et al. 2017). Few studies 

indicate the role of EZH2 in interacting with EMT associated factors. For 

instance, EZH2 promotes Snail-mediated recruitment of RING1A/B to the 

CDH1 promoter (encoding for E-Cadherin) to repress its expression, thereby 

promoting cell migration in PANC-1 cells (Chen et al. 2014). Furthermore, few 

studies also suggest that EZH2 binds directly to the CDH1 promoter to repress 

its expression, thus promoting cell migration and invasion (Han et al. 2016; 

Qazi et al. 2012). However, in our study, we do not observe any major 

differences in the expression of EMT-related gene signatures upon loss of 

EZH2. Interestingly we still discovered a potential link between EZH2 

expression and metastasis in vivo. However, there are a few reports suggesting 

EMT-independent mechanisms driving PDAC metastasis in GEMMs. For 

instance, Zheng et al demonstrate that loss of Twist1 and Snai1 does not 

influence metastases frequency (Zheng et al. 2015) and further fluorescence-

based lineage tracing experiments confirmed non-EMT associated metastasis 

in mouse models of PDAC (Y. Chen et al. 2018). Considering these studies 



DISCUSSION 

93 
 

arguing that the EMT process is dispensable for metastasis in PDAC, we 

contemplate a possibility that metastasis could have been influenced by 

processes other than EMT in our mouse models. It is also possible that the 

implication of EZH2 on EMT was prominent in mice but not as well captured in 

our in vitro systems. To better understand the implication of EZH2 on EMT in 

vivo, the tumors from the wildtype and EZH2 depleted mice could be stained 

with antibodies recognizing EMT markers. 

There are few studies in breast cancer investigating the differences in 

epigenomic patterns between primary and metastatic sites. Priedigkeit and 

colleagues showed in their study that 20 % of patients with ERBB2-HER2 

negative tumors at the primary tumor site showed ERBB2/HER2 positive brain 

metastasis (Priedigkeit et al. 2017). In a recent report by Cai et al., they studied 

the transcriptional differences between cells from tumors in primary and 

metastasized sites (brain and lung) of breast cancer utilizing high throughput 

sequencing approaches (ChIP-seq, RNA-seq, ATAC-seq, and HiChIP). They 

claim that very few of those differences are driven by genetic mutations, while 

the majority of these are promoted by epigenetic alterations indicating the 

relevance of epigenomic reprogramming in fostering cellular plasticity of cancer 

(Cai et al. 2020). Similarly, pancreatic cancer, which is a highly heterogeneous 

tumor, also displays a high degree of cellular plasticity which is largely 

mediated by differences in epigenetic landscapes. Lomberk et al. performed a 

comprehensive analysis of epigenomic landscapes underlying PDAC subtypes 

in patient-derived tumor xenografts (PDTXs) combining ChIP-seq for various 

histone marks, RNA-seq and DNA methylation approaches where they 

associate the epigenomic pattern with PDAC heterogeneity. Moreover, they 

identify MET as a crucial transcription factor expressed in basal-like PDAC 

subtypes and also show that siRNA mediated depletion of MET in PDTX-

derived cell lines mediates a shift from basal to classical PDAC subtype, 

highlighting the influence of epigenetics in PDAC plasticity (G. Lomberk et al. 

2018). Considering the implications of EZH2 in promoting metastasis and 

stemness in our studies, manipulating EZH2 expression to tackle PDAC 

plasticity could be considered as a therapeutic strategy.  
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 EZH2 in PDAC subtype identity 

In the last decade, various molecular subtypes of PDAC have been described. 

Although just a few genes overlap between different classification systems and 

despite discrepancies in the definition of molecular PDAC subtypes, two 

subtype classes were consistently represented throughout these studies and 

were found to have prognostic relevance – basal-like (also called squamous or 

quasi-mesenchymal (QM)) and classical subtypes (P. Bailey et al. 2016; 

Collisson et al. 2011; Moffitt et al. 2015; Puleo et al. 2018). While the basal 

subtype is correlated with a higher tumor grade and poor survival, the classical 

subtype is relatively well-differentiated and exhibits a better prognosis (P. 

Bailey et al. 2016; Collisson et al. 2011).  

 

Figure 33: Schematic depicting two main PDAC subtypes and its features. 

Two PDAC subtypes represented in all subtyping studies combined are basal-like and 
classical PDACs. There is a clear distinction between the features of these two 
subtypes regarding differentiation status, survival, prognosis, metabolism, gene 
signatures and response to chemotherapy. 
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Molecularly, basal tumors show increased TP63 expression (Mueller et al. 

2018) and express genes related to EMT (Martens et al. 2019; Nicolle et al. 

2017). In contrast, classical tumors are characterized by expression of 

pancreatic developmental transcription factors and epithelial genes (P. Bailey et 

al. 2016). Dissimilar with classical subtypes, basal subtypes lose expression of 

master endodermal transcription factors that are required to maintain 

endodermal differentiation (Adamo et al. 2017). Additionally, basal subtypes 

regularly carry mutations in genes encoding chromatin regulatory proteins like 

KDM6A (Andricovich et al. 2018). Reports also suggest a correlation of PDAC 

subtypes with metabolism. While basal tumors are enriched for genes 

regulating glycolytic pathways, classical tumors show enrichment for lipogenic 

pathways (Daemen et al. 2015; Martens et al. 2019; Nicolle et al. 2017). 

Evidence also suggests that these subtypes differ in their responses to 

chemotherapy where basal tumors show an overall worse chemotherapeutic 

response compared to classical tumors (Aung et al. 2019; P. Bailey et al. 2016; 

Collisson et al. 2011; O’Kane et al. 2020). Together, there exists evidence for a 

classical/basal-like subtype system in PDAC which embodies prognostic and 

predictive relevance. Hence, molecular-subtype-driven stratification in PDAC 

treatment might represent a promising strategy to tackle PDAC.  

Differential gene expression analysis performed in our study revealed that 

EZH2 loss led to the enrichment of transcriptional programs fostering a 

favorable prognosis and promoting differentiation as well as a classical PDAC 

subtype state. Additionally, basal-like gene signatures were negatively enriched 

upon EZH2 depletion. These observations point out to a possibility of the 

existence of the EZH2-high subgroup in the basal-like PDAC subtype. 

However, we did not observe differences in EZH2 expression per se between 

classical and basal-like PDAC subtype states in the published datasets (P. 

Bailey et al. 2016; Diaferia et al. 2016; Puleo et al. 2018). This confirms that the 

expression of EZH2 alone cannot be used as a predictive marker to determine 

the subtype. To understand if manipulating EZH2 truly converts PDAC tumors 

from basal to classical PDA tumors, EZH2 could be depleted in basal tumors 

and further the EZH2 proficient and deficient basal tumors can be analyzed for 

classical/basal PDAC features by staining for classical markers (E-Cadherin, 

GATA6, HNF1A) and basal markers (KRT5, KRT14, TP63). However, we 
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speculate that EZH2 functions by repressing the classical genes rather than 

modulating the basal genes.  

 GATA6 as a marker of the classical PDAC subtype 

The transcription factor that was consistently mentioned in all PDAC molecular 

subtyping studies was GATA6. The classical PDAC subtype defined by both 

Moffit and Collison expressed elevated levels of GATA6 (Collisson et al. 2011; 

Moffitt et al. 2015). Furthermore, Bailey et al. reported that GATA6 was 

epigenetically repressed in the squamous subtype (P. Bailey et al. 2016). The 

aforementioned subtyping studies and various other reports (G. Lomberk et al. 

2018; Puleo et al. 2018; Seino et al. 2018; The Cancer Genome Atlas 

Research Network and Raphael 2017) characterize the expression and activity 

of GATA6 as the crucial driver of PDAC subtype identity. 

GATA6 belongs to the family of GATA transcription factors that contains two 

highly conserved zinc-finger DNA-binding domains that recognize an 

(A/T)GATA(A/G) consensus nucleotide sequence. There are six GATA 

members: while GATA 1-3 are predominantly expressed in the hematopoietic 

lineage, GATA 4-6 are mainly present in the endodermal lineage (Rodríguez-

García, Sola-Landa, and Barreiro 2017; Tiyaboonchai et al. 2017). GATA6 

drives endodermal lineage differentiation by transcriptionally activating lineage 

defining transcription factors (Fisher et al. 2017). Consistently, Gata6 maintains 

epithelial differentiation and suppresses mutant Kras-driven tumorigenesis in 

the mouse pancreas by activating differentiation-related transcription programs 

(Martinelli et al. 2016).  

In pancreatic cancer models, GATA6 blocks dedifferentiation and abrogates 

EMT programs. Moreover, dedifferentiated basal-like PDAC tumors with low 

GATA6 expression associate with poor prognosis and low response to 5-

fluorouracil (5-FU) based adjuvant therapy (Martinelli et al. 2017). In addition to 

these studies, results from the COMPASS trial identified GATA6 expression as 

a robust surrogate biomarker for differentiating classical and basal PDAC 

subtypes utilizing RNA sequencing and RNA in situ hybridization (ISH) 

techniques (Aung et al. 2019). Besides, in the same COMPASS trial samples, 

Kane et al. validated GATA6 as the prime classifier of the classical PDAC 
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subtype, while its expression is low or almost absent in basal-like tumors 

(O’Kane et al. 2020).  

Utilizing high throughput sequencing approaches, our findings identified Gata6 

as a key target of EZH2-dependent transcriptional repression in PDAC. 

Notably, GATA6 depletion in EZH2 deficient cells re-installed the invasive 

potential of PDAC cells and also decreased the expression of classical PDAC 

subtype genes, implying that EZH2-mediated GATA6 repression is crucial for 

the tumor-promoting activities of the histone methyltransferase. However, to 

what extend GATA6 expression impacts on EZH2-driven PDAC biology 

remains to be elucidated, for instance by utilizing in vivo models with and 

without Gata6 expression in the absence of EZH2. 

 PDAC subtype switching 

PDAC subtypes are controlled at the level of transcription (P. Bailey et al. 2016; 

Collisson et al. 2011; Moffitt et al. 2015; Puleo et al. 2018). Considering that 

PDAC exhibits a high degree of plasticity and given that epigenetic alterations 

are reversible, PDAC subtypes are potentially interconvertible. Importantly, 

classical PDAC tumors exhibit a better prognosis and higher chemotherapeutic 

susceptibility, thus underinning that subtype switching towards the classical 

PDAC subtype constitutes an attractive strategy in PDAC treatment. Subtype 

switching has for instance been reported for basal-like PDAC subtypes 

harboring mutations in the histone demethylase encoding gene KDM6A. Loss 

of KDM6A fosters aberrant rewiring of super-enhancers regulating oncogenes 

such as ΔNp63, RUNX, and MYC, thereby promoting dedifferentiation to the 

squamous-like subtype and metastatic PDAC. Furthermore, the study confirms 

in vivo that KDM6A-deficient PDAC is more susceptible to BET inhibitors which 

reverse basal differentiation and restrain PDAC growth. Overall, this study 

reveals reprogramming of super-enhancers as a crucial mechanism for subtype 

switching in pancreatic cancer (Andricovich et al. 2018). Besides the chromatin 

regulatory proteins that control subtype-defining transcription programs, 

subtype switching is also controlled by pioneer transcription factors. For 

instance, Adams and colleagues provide detailed evidence stating Glioma-

associated oncogene homology 2 (GLI2) transcription factor as the critical 

regulator of PDAC subtype switching. GLI2 mediates hedgehog signaling and 
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was found to be highly expressed in basal-like pancreatic cancer cell lines and 

patient tissues. GLI2 activation could sufficiently switch PDAC cells from 

classical to basal-like subtype harboring enhanced EMT potential. Additionally, 

depletion of this transcription factor could suppress basal transcription 

programs, suggesting interfering with GLI2 activity might provide a promising 

strategy to push PDAC cells towards a less aggressive, classical subtype 

(Adams et al. 2019). These studies emphasize the significant degree of 

plasticity modulated by the chromatin factors and transcription factors in PDAC 

subtypes.  

 Strategies to induce GATA6 expression for subtype switching 

Switching from one subtype to another involves transcriptional reprogramming 

of endodermal developmental and differentiation programs. Considering the 

involvement of GATA6 in PDAC development, progression and differentiation 

(Hermann et al. 2014; Martinelli et al. 2016, 2017) and its implications in the 

classical PDAC subtype (Adams et al. 2019; Aung et al. 2019; P. Bailey et al. 

2016; Collisson et al. 2011; Moffitt et al. 2015; O’Kane et al. 2020; Puleo et al. 

2018), upregulation of GATA6 expression is an attractive strategy to promote 

and maintain classical subtype identity. Consistently, the induction of GATA6 

was observed in tumors upon switching from basal to classical subtypes in lung 

and skin cancers (Biehs et al. 2018). Furthermore, the downregulation of 

GATA6 mediated commitment to squamous subtype in lung cancer models 

(Cheung et al. 2013). Consistently, similar observations are made in PDAC 

subtype inter-conversion. For instance, while GATA6 expression declined in 

GLI2-induced basal PDAC cells, loss of GLI2 resulted in increased GATA6 

expression and acquisition of classical gene signatures (Adams et al. 2019). 

Similarly, genetic depletion of the hepatocyte growth factor receptor MET in 

basal PDAC subtypes resulted in a shift towards the classical phenotype which 

involved upregulation of GATA6-dependent transcription programs (G. Lomberk 

et al. 2018). These studies emphasize the role of the transcriptional regulator 

GATA6 in subtype switching in pancreatic cancer. However, the strategies to 

re-induce GATA6 expression are not well understood. 

First insights on the dynamic regulation of GATA6 expression came from 

reports focusing on developmental processes. These studies suggest that the 
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regulation of GATA6 expression occurs at the chromatin level (Fisher et al. 

2017; Smith, Singh, and Dalton 2010; Suzuki et al. 2015), for instance by 

transcriptional repression by PcG proteins. Gata6 expression is found to be 

tightly regulated by polycomb proteins during cardiac development (Kang et al. 

2010). Furthermore, genome-wide shRNA screening in embryonic stem cells 

identified BCOR, an associated member of the PRC1 complex member 

RING1B as an essential repressor of the GATA6 gene (Cooper and Brockdorff 

2013). Further emphasizing the impact of the PcG family of chromatin 

regulatory proteins in GATA6 regulation, the PRC2 core member EED 

maintains neural stem cell differentiation by repressing GATA6 transcription 

(Sun et al. 2018). Finally, loss of the histone methyltransferase EZH2 in mouse 

embryos resulted in the differentiation of germ layers due to the de-repression 

of Hoxb1, Hand1, and Gata6 (Huang et al, 2014).  

However, the mechanisms controlling the expression of GATA6 in cancer 

remain mainly elusive. Our study explored EZH2 dependent Gata6 regulation in 

vitro in different PDAC murine (NKC, KPC) and human (PANC-1) cell lines 

upon transient knockdown and stable knockout of EZH2 as well as upon 

pharmacological EZH2 inhibition. Additionally, EZH2-dependent GATA6 

regulation was recognized in PDX specimens at both mRNA and protein levels. 

Our analysis in human samples also revealed a subgroup of PDAC patients 

with EZH2 high/GATA6 low tumors, and these patients might be potentially 

exhibiting EZH2 dependent GATA6 regulation. Combining all the data, our 

findings identify a novel mechanism of GATA6 regulation in PDAC. EZH2 

regulates Gata6 at the transcriptional level by binding on the TSS/promoter of 

the Gata6 gene and depositing the H3K27me3 repressive mark. Upon loss of 

EZH2, there is a reversal of this regulation which leads to increased Gata6 

transcription and enrichment of GATA6 downstream targets. However, the 

mechanism behind the recruitment of EZH2 to the Gata6 locus is yet to be 

discovered. We have observed before that NFATc1 regulates EZH2 expression 

in PDAC (Baumgart et al. 2014) and biochemically interacts with the 

methyltransferase (unpublished data of the Hessmann group). Hence, NFATc1 

might recruit EZH2 to the Gata6 promoter. Furthermore, one of the previous 

report suggest KDM2B-mediated EZH2 recruitment to the Gata6 locus (Tzatsos 

et al. 2013). Although the exact mechanism targeting EZH2 to the GATA6 gene 
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remains to be elucidated, our data suggest EZH2 inhibition as a promising 

strategy to re-install GATA6 expression in a subgroup of PDAC.  

 Pharmacological inhibition of EZH2 in PDAC 

EZH2 is a very attractive target in cancer therapy due to its oncogenic potential 

in various cancer types (Raman et al. 2005; Rao et al. 2010; Völkel et al. 2015; 

Zingg et al. 2015). Consequently, EZH2 inhibition was evaluated as a 

therapeutic strategy in many cancer entities (Huang et al. 2015a; McCabe et al. 

2012; Miele et al. 2017; Tan et al. 2007). Besides, the data on the safety and 

efficacy of EZH2 inhibitors is already available from clinical trials in 

hematological malignancies and selected solid tumors (e.g. NCT04179864, 

NCT03010982). Consequently, pharmacological interference with EZH2 activity 

represents a therapeutic option with strong translational potential in PDAC. 

However, as described before in chapter 1.4.2, epigenetic mechanisms in 

general, and EZH2 activity in particular, underlay a strong context-dependency. 

Consequently, we proposed that the efficacy of EZH2 inhibition as a therapeutic 

strategy in PDAC might be restricted to a subgroup of PDAC which 

encompasses those molecular prerequisites required for beneficial EZH2 

inhibition.  

Given that our data suggest transcriptional repression of GATA6 as an 

essential mechanism underlying oncogenic EZH2 activity, we propose that the 

therapeutic efficacy of EZH2 inhibition is restricted to a subgroup of PDAC 

patients characterized by high EZH2 activity and low GATA6 expression. In this 

particular context, the EZH2 blockade might sufficiently re-install GATA6 

expression with a subsequent shift towards gene signatures essential for 

maintaining classical subtype identity. Based on our analysis in human PDAC 

tissue the subgroup of EZH2high/GATA6low PDAC subtypes represents 

approximately 40 % of PDAC patients. While pharmacological interference with 

the EZH2-GATA6 axis might be beneficial in this subset of PDAC, EZH2 

inhibition might eventually prove less efficient in tumors which are either 

characterized by low EZH2 expression and activity and/or already express high 

levels of GATA6. Indeed, EZH2-independent mechanisms controlling GATA6 

expression have been reported previously. For instance, some cancer entities 

including PDAC can be characterized by amplification of the GATA6 gene (N. 
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Y. Chia et al. 2015; Lin et al. 2012) which detangles the transcription factor 

from upstream transcriptional regulation. The chromosome location 18q11 is 

found to be prone to encounter copy number variations, particularly 

amplification, and the most important target gene of the copy number increase 

in this location indeed is GATA6 (Fu et al. 2008; Murphy et al. 2016). Integrated 

genetic and transcriptional analysis revealed GATA6 amplification in (4/42) 9.5 

% of PDAC samples (Fu et al. 2008) and in 19 % of xenograft specimens (Kwei 

et al. 2008). GATA6 amplification correlated with an increase in mRNA levels 

and further translated into increased protein expression (Fu et al. 2008). A 

recent study by Yue et al observed GATA6 copy number gains in 16 % of 

PDAC cases, but they also noted that there was a large population of classical 

PDAC tumors with high GATA6 expression without amplification of the gene 

(Chan-Seng-Yue et al. 2020). Mechanistically, upon GATA6 amplification, 

GATA6 positively activates Wnt signaling by negatively regulating the Wnt 

signalling pathway antagonist DKK1. Furthermore, PDAC patients harboring a 

GATA6 gain displayed high overall survival (Zhong et al. 2011). However, with 

regard to GATA6 amplification in PDAC, EZH2 inhibition of those PDAC 

subtypes might not result in a further increase in GATA6 expression, thus 

limiting its therapeutic potential. Further studies, for instance in vivo EZH2 

inhibition in GATA6low and GATA6high PDAC models are required to fully 

address this hypothesis.  

 

Figure 34: Proposed model depicting subtype switching in PDAC mediated by 
inhibiting EZH2. 

A population of basal-like PDAC exhibits high EZH2 and low GATA6 expression. Upon 
treating these PDAC with EZH2 inhibitors, e.g. Tazematostat (EPZ6438), EZH2 activity 
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is abolished which in turn de-represses GATA6 transcription and mediates switching to 
a less aggressive classical PDAC subtype (Adapted and modified from Adams et al. 
2019).  

 

Taken together, EZH2 inhibition might prove as an advantage in the treatment 

of a subset of basal-like PDAC subtype patients exhibiting high EZH2 and low 

GATA6 expression. Therefore, it is important to apply molecular stratification 

approaches before advising EZH2 inhibition in PDAC therapy. 

 Conclusion 

The key findings of this study are: 

1. EZH2 has oncogenic potential in PDAC and mediates tumor 

progression, dedifferentiation, metastasis and PDAC plasticity. 

2. Loss of EZH2 results in the enrichment of gene signatures favoring 

better prognosis, differentiation and a classical PDAC subtype state. 

3. EZH2 transcriptionally represses GATA6, which is a crucial epithelial 

transcription factor. 

4. Genetic or pharmacological inhibition of EZH2 can re-install GATA6 in 

PDAC cells, which further abrogates tumor-promoting functions of EZH2. 

In summary, our findings link transcriptional GATA6 repression to EZH2-

dependent tumor progression in PDAC and suggest that pharmacological 

interference with EZH2 activity specifically in a defined subset of PDAC patients 

can re-install GATA6 expression in favor of a less aggressive and better 

therapy-responsive tumor phenotype. 
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α alpha 

µ micro 

ADM acinar-to-ductal metaplasia 

ADEX Aberrantly differentiated endocrine exocrine 

AEBP2 Adipocyte enhancer binding protein 2 

ANOVA Analysis of variance 

APS Ammonium persulfate 

ATAC-seq 
Assay for transposase-accessible chromatin with high-

throughput sequencing 

ATP Adenosine triphosphate 

BRCA1 Breast cancer 1 

BrdU Bromodeoxyuridine 

BSA Bovine serum albumin 

CDH1 E-Cadherin 

CDKN2A Cyclin dependent kinase inhibitor 2A 

cDNA Complementary DNA 

CDX Cells derived from xenograft 

CEAS Cir-regulatory element annotation system 

CHD Chromodomain helicase DNA-binding 

ChIP Chromatin immunoprecipitation 

ChIP-seq ChIP followed by deep sequencing 

CO2 Carbondioxide 

CRC Colorectal cancer 

CRISPR Clustered regularly interspaced short palindromic repeats 

CXCR4 C-X-C motif chemokine receptor 4 

DAPI 4’,6-diamidino-2-phenylindole 

DLBCL Diffuse large b cell lymphoma 

DMEM Dulbecco’s modified eagle medium 

DMSO Dimethyl sulfoxide 

DNA Deoxyribo nucleic acid 

DZnep 3-deazaneplanocin A 
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ECM Extracellular matrix 

EDTA Ethylenediaminetetraacetic acid 

EED Embryonic ectoderm development 

EGF Epidermal growth factor 

EGTA 
Ethylene glycol-bis(β-aminoethyl ether)-N,N,N’,N’-tetraacetic 

acid 

EMT Epithelial to mesenchymal transition 

ENKC EZH2fl/+;caNFATc1;KrasG12D 

ERBB2 Erythroblastic oncogene B 

ERK Extracellular-signal-regulated kinase 

EZH2 Enhancer of zeste homologue 2 

FCS Fetal calf serum 

FDA Food and drug administration 

FDR False discovery rate 

FGF Fibroblast growth factor 

FP Forward primer 

FPKM Fragment per kilobase of transcript per million 

FL Follicular lymphoma 

fl Floxed 

FU Fluorouracil  

GCDX Goettingen cell derived xenograft 

GEMM Genetically engineered mouse models 

GO Gene ontology 

GOF Gain-of-function 

GREAT Genomin regions enrichment of annotations tool 

GSEA Gene set enrichment analysis 

GTP Guanidine triphosphate 

H3 Histone 3 

H3K4me3 Histone 3 lysine 4 trimethylation 

H3K27ac Histone 3 lysine 27 acetylation 

H3K27me3 Histone 3 lysine 27 trimethylation 
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HAT Histone acetyl transferase 

HDAC Histone deacetylase 

HE Hematoxylin & eosin 

HER2 Human epidermal growth factor receptor 2 

HNF Hepatocyte nuclear factor 

HOX Homeobox 

HRP Horse raddish peroxidase 

IgG Immunoglobulin G 

IGV Integrative genome viewer 

IHC Immunohistochemistry 

INI Integrase interactor 1 

IP Immunoprecipitation 

IRS Immune reactive score 

ISWI Imitation SWI 

JARID Jumonji and AT rich interaction domain 2 

KAT Lysine acetyl transferase 

Kb Kilobase 

KCl Potassium chloride 

KDa Kilo Dalton 

KH2PO4 Potassium dihydrogen phosphate 

KMT Lysine methyltransferase 

KPC KrasG12D;TP53R172H/+ 

KRAS Kirsten rat sarcoma 

KSF Keratinocyte serum-free  

LiCl Lithium chloride 

LOF Loss-of-function 

log2FC Log2 fold change 

MACS Model-based analysis of ChIP-seq 

MAPK Mitogen-activated protein kinase 

MEK MAPK kinase 

miRNA Micro RNA 
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MLL Mixed lineage leukemia 

MPN Myeloproliferative neoplasms 

mRNA Messenger RNA 

N2 Nitrogen supplement 

Na2HPO4 Disodium hydrogen phosphate 

NaCl Sodium chloride 

NaF Sodium fluride 

NaO Sodium oxide 

NEAA Non essential amino acids 

NES Normalized enrichment score 

NFAT Nuclear factor of activated T cells 

NGS Next generation sequencing 

NIG NGS integrative genomics 

NKC caNFATc1;KrasG12D 

NP40 Nonidet P-40 

OD Optical density 

PAGE Polyacrylamide gel electrophoresis 

PanIN Pancreatic intraepithelial neoplasia 

PANTHER Protein analysis through evolutionary relationships 

PBS Phosphate-buffered saline 

PBST PBS with tween20 or triton-X 

PCA Principal component analysis 

PcG Polycomb group  

PCR Polymerase chain reaction 

PDAC Pancreatic ductal adenocarcinoma 

PDTX Patient derived tumor xenograft 

PDX Patient derive xenograft 

PFA Paraformaldehyde 
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PRC Polycomb repressive complex 

PRMT Arginine methyltransferase 

QM Quasi-mesenchymal 
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Rb Retinoblastoma 

RBBP4/7 Retinoblastoma binding protein 4/7 

RNA Ribonucleic acid 

RNA ISH RNA in situ hybridization 

RNA-seq RNA sequencing 

RORα RAR-relate orphan receptor 

RP Reverse primer 

RPM Rotations per minute 

RT Room temperature 

SAH S-adenosyl homocysteine 

SD Standard deviation 

SDS Sodium dodecyl sulfate 

SET Su(var)3-9,EZH2 and Trithorax 

sgRNA Single guide RNA 

siRNA Small interfering RNA 

shRNA Small hair pin RNA 

SMARCA 
SWI/SNF-related matrix-associated actin-dependent 

regulator of chromatin subfamily A 

SUZ12 Suppressor of zeste 12 

SWI/SNF Switch/sucrose non-fermentable 

T-ALL T-cell acute lymphoblastic leukemia 

TBS Tris-buffered saline 

TBST TBS with tween20 or triton-X 

TCGA The cancer genome atlas 

TE Tris EDTA 

TEMED tetramethylethylenediamine 

TMA Tissue microarray 

TP53 Tumor protein 53 

trxG Trithorax group 

TSS Transcription start site 

UTR Untraslated region 
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APPENDIX 

We established CRISPR/Cas9 mediated knockout of Ezh2 in NKC cells. The 

CRISPR/Cas9 control and CRISPR/Cas9 Ezh2 NKC cells were given for 

sequencing to confirm the knockout of Ezh2 at the genome level. Further, we 

isolated the lysate from these cells and validated the absence of EZH2 in the 

western blot. The cells were seeded in triplicates and harvested for RNA. 

Further, they were subjected to high throughput RNA sequencing. Before 

proceeding with the analysis, we carried out the quality check and Principal 

component analysis (PCA) through which we confirmed the similarity between 

the triplicates of each condition and the differences between the two conditions 

(Figure 35).  
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Figure 35: Generation of CRISPR/Cas9 mediated stable knockout of EZH2 in 
NKC cells. 

(A) Schematic displaying the isolation of primary PDAC cells (NKC cells) from 
caNfatc1;KrasG12D mice and further generation of CRISPR/Cas9 mediated stable 
knockdown of Ezh2 in these cells. (B) Nucleotide alignment confirming CRISPR/Cas9-
mediated knockout of Ezh2 in NKC cells. The position where the guide RNA interferes 
is highlighted in green. Red: sequence of CRISPR/Cas9 control cells; blue: sequence 
of CRISPR/Cas9 Ezh2 cells. (C) Western blot analysis in indicated cells confirming 
absence of Ezh2 expression in NKC cells upon CRISPR/Cas9 mediated Ezh2 
knockout. Actin is used as the house keeping gene. (D) PCA plot from RNA-seq 
analysis in CRISPR/Cas9 control and CRISPR/Cas9 Ezh2 NKC cells showing the 
triplicates of both the clones cluster separately.  
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