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1 Summary 

 

 

Much of the success of arthropods is attributed to their body’s segmentation. 

Segmentation provides various opportunities for nature to evolve new structures without 

greatly impacting overall fitness of the animal. Most knowledge about the development of 

segmentation comes from the vinegar fly, Drosophila melanogaster. Drosophila has a 

derived long-germ embryogenesis with simultaneous segmentation. Short-germ 

embryogenesis or sequential segmentation as in the red flour beetle, Tribolium castaneum, 

however, is regarded as a more ancestral state of segmentation. Much less is known about 

the genetic processes underlying this sequential segmentation. Recently, a segmentation 

clock was identified in Tribolium. This clock utilizes oscillatory expression of the primary 

pair-rule genes (pPRGs) to pattern the body axis during both the static blastoderm and the 

elongating germband. The segmentation clock receives input from the upstream “posterior 

signaling center” and Tc-caudal (Tc-cad). Downstream of the segmentation clock, the 

secondary PRGs and the segment polarity genes interpret the pPRG input and provide 

further positional information along the AP axis. Studies in Tribolium revealed great insights 

into the molecular mechanism of sequential segmentation. However, most of these 

findings are based on RNAi leading to the permanent knockdown of gene function. Thus, 

they are not suited for studying gene interactions at later stages of the dynamic process of 

segmentation and the segmentation clock. I utilized a Viral Suppressors of RNAi (VSR) as a 

novel tool to temporally restrict RNAi in Tribolium. This novel tool, hsVSR (heat shock VSR), 

allowed me to investigate the segmentation processes in more depth. Specifically, I aimed 

to answer the question whether RNAi-induced breakdown of segmentation is irreversible 

or if re-initiation of segmentation is possible. With proof-of-concept experiments, I 
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confirmed the functionality and specificity of the hsVSR system to investigate 

segmentation. I could then show that a rescue of segmentation after RNAi-mediated 

breakdown is possible by re-initiating the segmentation clock itself. However, rescue of 

segmentation by inhibiting RNAi of upstream factors of the segmentation clock was not 

possible. Once the “posterior signaling center” is lost, it cannot re-initiate. Additionally, a 

possible negative autoregulation of the pPRG Tc-even-skipped was uncovered. Taken 

together, I showed the functionality of the hsVSR system during segmentation. I identified 

the level at which RNAi inhibition can rescue segmentation within the segmentation 

process and provided molecular evidence for the nature of the rescue. 
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2 Introduction 

2.1 Segmentation 

One of the most obvious and simultaneously striking features of arthropods is their body 

segmentation, the subdivision of the anteroposterior (AP) body axis into serially repeating 

yet often morphologically distinct units (Hannibal and Patel, 2013). There are two other big 

clades of metazoans that show segmentation: the annelids and the vertebrates. In the 

former, the segmentation is as obvious as it is in the arthropods. In vertebrates, it is less 

obvious since the initial segmented structure, the somites, are not visible from the outside. 

The debate about whether or not segmentation is an ancestral feature of the urbilateria is 

ongoing (Budd, 2001; Clark et al., 2019; Davis and Patel, 1999; Graham et al., 2014; Peel 

and Akam, 2003). To better understand the evolution of segmentation and its possible 

origin(s), it is necessary to first understand the genetic and molecular processes governing 

the segmentation process itself. In vertebrates, quite a bit is known about the underlying 

mechanisms and signaling controlling segmentation (reviewed in Bénazéraf and Pourquié, 

2013; Hubaud and Pourquié, 2014). In insects, most of what we know about segmentation 

was found out in Drosophila melanogaster (henceforth Drosophila), the prime arthropod 

model organism (Akam, 1987; Alberts et al., 2002; Gilbert, 2000). Drosophila, however, 

shows a rather derived mode of embryogenesis (Davis and Patel, 2002; Sander, 1976; Tautz 

and Sommer, 1995). Studies in other insect and arthropod models, especially in the last 

decade and a half, revealed quite a level of conservation of embryogenesis and even 

similarities to vertebrate segmentation, albeit only on a mechanistic level (Choe et al., 

2006; Clark and Peel, 2018; Clark et al., 2019; El-Sherif et al., 2012; Paese et al., 2018; Peel 

and Akam, 2003; Peel et al., 2005; Richmond and Oates, 2012; Sarrazin et al., 2012; 

Schönauer et al., 2016; Stollewerk et al., 2003). 

In the following introduction, I will first give a brief overview of vertebrate segmentation, 

mainly due to the commonalities in the segmentation mechanism that might be shared 

between them and arthropods: the segmentation clock. Then, a more in-depth 

introduction of insect segmentation with a focus on the segmentation process of Tribolium 

castaneum (henceforth Tribolium), the red flour beetle is given. This will include the current 

(and rather new) models to explain Tribolium segmentation. This is followed by a paragraph 

about the appeared conservation of a common segmentation network within arthropods 
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and possibly beyond, to appreciate the importance of the study of segmentation processes 

in a diverse range of animals. 

 

2.1.1 Vertebrate segmentation 

The segmental unit of vertebrates are the somites. These are blocks of mesodermal tissue 

derived from the so-called presomitic mesoderm (PSM) that are located on both sides of 

the neural tube of developing vertebrate embryos. Somites will give rise to, among other 

things, the vertebrae. The development of this segmental patterning involves a molecular 

oscillator, the so-called segmentation clock. Its presence was already theoretically 

predicted with the “clock-and-wavefront” model (Cooke and Zeeman, 1976). Later, also 

molecular evidence in the form of periodic or oscillating expression of multiple genes linked 

by intercellular signaling was found (Horikawa et al., 2006; Palmeirim et al., 1997a).  

In summary, there are two opposing gradients along the AP (or caudorostral) axis, retinoic 

acid from anterior and fibroblast growth factor (FGF) and Wnt signaling from posterior. The 

determination front is basically the intersect of the opposing gradients and travels from 

anterior towards posterior during axial elongation. Within this field, gene expression of the 

clock genes oscillates while the frequency of oscillation depends on the gradients. The 

phase of the oscillation is linked from cell to cell by Delta-Notch signaling. Due to the 

gradient of the FGF and Wnt signaling, the expression of the segmentation clock genes 

appears to move along the AP axis from posterior towards anterior. The oscillation slows 

and finally freezes as it reaches the determination front and there, a new somite boundary 

(i.e segment border) is formed. The retinoic acid gradient, and with it the determination 

front moves posterior and the next wave of the segmentation clock oscillation travels long 

the AP axis towards it. This process is repeated to form consecutive somites along the AP 

axis (Maroto et al., 2012). 

 

2.1.2 Segmented arthropod body Bauplan 

Much of the success of arthropods, both evolutionary and ecologically speaking, is probably 

due to their segmented body Bauplan. It enables natural selection to tinker with form and 

function of a single (or in some cases, multiple) segments and their appendages without 

disturbing the others and decreasing the fitness of the whole organism. The resulting 

flexibility gave rise to a true plethora of specialized and morphologically divers modes of 
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sensing, feeding, and locomotion and many more (Davis and Patel, 1999; Grimaldi and 

Engel, 2005; Hannibal and Patel, 2013; Prpic and Damen, 2008; Tautz, 2004). The 

Euarthropoda, the “true arthropods” are made up of three extant groups: the Chelicerata 

(like spiders, mites and scorpions), the Myriapoda (millipedes and centipedes) and the 

Pancrustacea (crustaceans and insects). The insects, with more than a million described 

species, are the most numerous among them (Chapman, 2009) and do show a vast number 

of segmental appendage adaptations. However, the presence of their appendages is mainly 

limited to the head and thorax segments, while the abdominal segments are (with a few 

exceptions, like reproductive appendages) appendage-free. Also, the number of body 

segments within the Insecta is rather stable. It usually consists of at least two pre-gnathal 

segments (ocular and antennal – the nature of the labrum as either a segment (Schmidt-

Ott and Technau, 1992; Schmidt-Ott et al., 1994) or a non-segmental part of the head (Haas 

et al., 2001; Posnien et al., 2009b) remains disputed), the intercalary segment, three 

gnathal segments (mandibles, maxillae, labium), three thoracic segments (pro-, meso, and 

metathorax) and 10-12 abdominal segments. The embryonic development that leads to 

this stable body plan can, however, vary quite extensively and further be divided into two 

different modes, long- and short-germ embryogenesis.  

 

2.1.3 Long- vs. short-germ embryogenesis 

Among arthropods, Drosophila is the best studied model organism. It develops as a long 

germ embryo, which originally meant that the embryo itself takes up most of the space 

within the blastoderm, leaving only very little room for extraembryonic tissue (Fig. 2.1A) 

(Sander, 1976). It also became synonymous for embryos that pattern all their segments 

more or less at the same time, often before the onset of gastrulation and germband 

extension/elongation. The mode of long germ embryogenesis is considered a derived mode 

of development (Davis and Patel, 2002; Peel et al., 2005; Tautz and Sommer, 1995). 

However, it appears to have evolved multiple times within the insects. A more ancestral 

and commonly used mode is short-germ embryogenesis (Sander, 1976). According to the 

older definition1, short germ embryos only take up a limited (but rather variable) space 

 
1 Sander (Sander, 1976) and others (Davis and Patel, 2002) have distinguished between, short-, intermediate- 
and long-germ embryos, often based on both the ratio germband to blastoderm size and mode of 
segmentation. In recent years, often only a distinction between short- and long-germ embryos is made. 
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within the whole egg (Davis and Patel, 2002). Short germ insects only pattern a few anterior 

segments in the blastoderm stage. The more posterior segments are patterned 

sequentially from anterior to posterior in the germband stage from a segment addition 

zone (SAZ)2. Recently, the terms long- and short-germ embryogenesis to describe modes 

of segmentation were replaced by “simultaneous” and “sequential” segmentation, 

respectively, to distinguish them from the previous, more morphological terms (Clark et 

al., 2019). 

 

Figure 2.1 – The Drosophila fate 
map and segmentation cascade 
Drosophila develops as a long-germ 
embryo, therefore the germ Anlagen and 
primordia for all future body regions are 
determined during the blastoderm stage 
(A). The hierarchical and simultaneous 
segmentation cascade in Drosophila 
starts with maternal gradients from 
anterior and posterior (exemplified by 
bicoid and nanos expression in B). Gap 
genes expressed in broad and partially 
overlapping domains spanning multiple 
segment primordia and are positioned by 
both maternal gradient and regulations 
between themselves (C). The gap genes 
activate the pair-rule genes (primary and 
secondary) in seven two-segment 
periodicity stripes (some of which later 
become segmental; exemplified in the 
scheme by even-skipped and fushi tarazu 
expression) (D). Lastly, the segment 

polarity genes (exemplified by engrailed expression) are activated to define the (para-)segment borders 
and maintain them (E). (based on Gilbert, 2000; Martin and Kimelman, 2009) 

 

2.1.4 Segmentation in Drosophila 

Drosophila has contributed widely to the understanding of biological and developmental 

mechanisms. One of the prime achievements of Drosophila research was a saturated 

screen that identified many of the genes involved in patterning of the Drosophila embryo 

 
2 The previously used term “growth zone” fell out of favor since it implies that growth (i.e. proliferation) plays 
a dominating role during segmentation and germ band elongation when in reality it is only one of several 
processes important in elongation and (subsequent) segmentation (Janssen et al., 2010) 
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(Nüsslein-Volhard and Wieschaus, 1980). Most research into segmentation of insects or 

even arthropods can be back-traced to this initial publication and its follow-ups. 

In broad strokes, the Drosophila genetic cascade controlling its simultaneous segmentation 

can be subdivided into four more or less hierarchical levels: (1) the maternal effect genes, 

(2) the gap genes, (3) the pair-rule genes (PRGs) and (4) the segment polarity genes (Fig. 

2.1B-E). The Hox genes are required for segment identity and not involved in the 

segmentation process per se. This cascade and its molecular components are text-book 

knowledge and reviewed in more depth elsewhere (Akam, 1987; Alberts et al., 2002; 

Gilbert, 2000). I will therefore only give a brief overview of the segmentation cascade and 

some exemplary genes involved to highlight its hierarchical organisation. 

Gradients of maternal effect genes set up the AP axis with gene product gradients from 

both the anterior and posterior poles of the embryo (classified as the “anterior system”, 

the “posterior system” and the “terminal system”; Fig. 2.1B). The anterior system relies on 

bicoid (bcd) while the posterior system is defined by nanos (nos). Bicoid is responsible for 

the first body axis symmetry break and both instructive for anterior fates while blocking 

the translation of caudal (cad), another maternal factor. Nanos, together with cad is 

determining posterior (abdominal) fates. Maternal Torso signaling and the resulting 

MAPK/ERK signaling gradients determine terminal structures.  

On the next level, the gap genes (e.g. hunchback (hb), Krüppel (Kr), knirps (kni)) are 

activated via thresholds and combinations of the maternal gradients in broad and often 

overlapping expression domains along the AP axis. Their mutual interactions refine their 

patterns (Fig. 2.1C). The gap gene further subdivide the three fates (head, thorax, 

abdomen) by regulating both Hox genes and the expression of the pair-rule genes. 

The pair-rule genes (PRGs) can be subdivided into two groups, the earlier expressed 

primary (e.g. even-skipped (eve), fushi tarazu (ftz)) and later expressed secondary PRGs 

(e.g. paired (prd)). They are expressed via certain combinations of activation and repression 

by the gap genes via stripe-specific enhancers along the AP axis in a two-segment 

periodicity. Later cross-regulation among themselves via zebra elements refines their 

pattern. The PRGs expression is the first indication of the metameric body plan of 

Drosophila. Some PRG later transition into a segmental periodicity.  

Lastly, the segment polarity genes interpret the pair-rule gene expression and define 

(para-)segmental borders as well as maintain them.  
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2.1.5 Segmentation in Tribolium  

Although most genetic studies were performed in Drosophila, its simultaneous 

segmentation probably represents a derived mode of segmentation. The question how 

similar the genetic basis of the different modes of segmentation is, requires studies in more 

insect species, especially with examples from the more conserved sequential segmentation 

mode (i.e. short-germ embryogenesis).  

Tribolium castaneum, the red flour beetle shows such a sequential segmentation. In the 

last 20 years, it has emerged as a sophisticated model organism for the study of evolution 

and development that is second only to Drosophila in terms of functional genetic tools 

(Brown et al., 2009; Schröder et al., 2008). Tribolium segmentation can generally be divided 

into two stages: the blastoderm and the germband stages. During the blastoderm stage 

roughly ⅓ of the anterior and dorsal tissue become extraembryonic tissue primordia. The 

ventral-posterior ⅔ of the blastoderm are the germ anlagen (Fig. 2.2A, left-most panel) 

(Benton, 2018). The head and thorax are (pre-)patterned during this stage, at least on the 

level of the pPRGs (El-Sherif et al., 2012). The second stage is the germband stage. The 

germband forms during gastrulation by extensive cell movements (Benton, 2018). During 

this stage, the germband elongates and the abdominal segments are patterned 

progressively from a posterior SAZ (El-Sherif et al., 2012; El-Sherif et al., 2015; Sarrazin et 

al., 2012). This progressive elongation of the germband makes it obvious that (more or less) 

static expression domains like those found in Drosophila blastoderm could not pattern the 

complete body axis of Tribolium (or any other sequential segmenting insect for that 

matter). It was therefore assumed that the blastoderm could be patterned similar to the 

Drosophila blastoderm via a hierarchical segmentation cascade while the elongating 

germband might be segmented using similar mechanisms as in vertebrates (i.e. a 

segmentation clock) (Peel et al., 2005). However, already during the blastoderm stage of 

Tribolium embryos, a segmentation clock consisting of the pPRGs can be found with pair-

rule stripes moving from posterior to anterior. This segmentation clock patterns the head 

and thoracic segments (Choe et al., 2006; El-Sherif et al., 2012; Schröder et al., 1999). In 

the germband, the same segmentation clock continues to segment the body axis from the 

posterior SAZ (El-Sherif et al., 2012; Sarrazin et al., 2012). Secondary pair-rule genes (sPRGs) 

are expressed later from the anterior SAZ (Choe and Brown, 2007; Clark and Peel, 2018; 

Davis et al., 2001). The expression of both pPRGs and sPRGs is transient and will fade in the 
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more anterior (i.e. older) segments (Choe and Brown, 2007; Choe et al., 2006; Clark and 

Peel, 2018). Ultimately, the segment polarity genes are expressed to define and maintain 

the (para-)segment boundaries (Brown et al., 1994; Choe and Brown, 2009; Davis et al., 

2001; Nagy and Carroll, 1994).  

Since one of the central components of segmentation in Tribolium is the segmentation 

clock, in the following paragraphs, I will provide a more detailed overview of the patterning 

events upstream of the clock, the mechanisms of the segmentation clock itself, and 

patterning downstream of the clock. After that, I will give an overview of the current 

models that try to explain sequential segmentation. 

 

 

Figure 2.2 – The Tribolium fate maps and axis patterning gene expressions 
(A) In contrast to Drosophila, in Tribolium roughly the anterior and dorsal 1/3 of blastoderm tissue are 
extraembryonic tissue primordia (amnion and serosa). The former will completely cover the embryo during 
germband elongation. (B) In the sequential segmentation process in Tribolium, only head and thorax are 
patterned during the blastoderm stage. After gastrulation the germband has a posterior segment addition 
zone (SAZ) from which segments are added progressively during germband elongation. (C) During 
germband elongation, gap genes are expressed in a specific anterior-to-posterior cascade and have no 
(known) influence on pair-rule gene expression. (D) Pair-rule gene (PRG) expression (exemplified by the 
primary PRG Tc-even-skipped) is independent of gap gene expression and emerges from the SAZ, initially 
in a two-segment periodicity, and later splits into segmental stripes. Primary and secondary PRGs are 
expressed transiently and activate the segment polarity genes. (E) Segment polarity genes (exemplified by 
Tc-wingless expression) emerge progressively due to activation from the PRGs and define and later 
maintain the segment boundaries, resulting in a segmented germband. (based on Benton, 2018; Boos et 
al., 2018; Choe et al., 2006; Martin and Kimelman, 2009; Bucher (unpubl.)) 
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2.1.5.1 Patterning upstream of the segmentation clock 

One of the most important early developmental steps is breaking the symmetry of the egg. 

For this first, important step during embryonic development Tribolium is not different from 

many other metazoans because posterior Wnt signaling is required for this symmetry break 

(Ansari et al., 2018; Bolognesi et al., 2008b; Martin and Kimelman, 2009). Hand in hand 

with posterior Wnt signaling goes the expression of Tc-cad, forming a gradient from the 

posterior pole (Copf et al., 2004; Schulz et al., 1998; Schulz et al., 1998). At the anterior 

pole of the Tribolium egg and blastoderm, the Wnt antagonist Tc-axin is counteracting the 

posterior Wnt signaling allowing the expression of anterior fate genes (Fu et al., 2012). 

Disruptions of these gradients can have drastic consequences for the embryo, like loss of 

anterior structures in the case of Tc-axin (Fu et al., 2012) or axis duplication (Ansari et al., 

2018). Posterior Wnt signaling further acts as a “posterior signaling center” for patterning 

(Oberhofer et al., 2014). Tc-Wnt8/D, together with Tc-wg, is specifically expressed in the 

posterior of both blastoderm and germband stage embryos (Bolognesi et al., 2008b). Both 

Tc-Wnt8/D and Tc-arrow (Tc-arr, a Wnt co-receptor) are necessary for segmentation of the 

abdomen. Parental RNA interference (pRNAi) of these two Wnt signaling components 

results in loss of posterior segments in germbands while the head and thorax segments are 

patterned normally (Bolognesi et al., 2009). However, already established segment polarity 

stripes fade away during further germband development indicating the loss of segment 

boundary maintenance function. In cuticles, however, all visible segmentation is lost, most 

likely since the retraction of the germband is misregulated, possibly due to the (later) loss 

of segment boundary maintenance (Bolognesi et al., 2008b). Wnt signaling also shows an 

influence on Tc-cad expression (Ansari et al., 2018; Beermann et al., 2011; Oberhofer et al., 

2014), which itself influences the expression of both gap and primary pair-rule genes (El-

Sherif et al., 2015; Zhu et al., 2017)  

Similar to Drosophila, the terminal system in Tribolium also depends on the Torso signaling 

(Schoppmeier and Schröder, 2005; Schröder et al., 2000). In Tribolium posterior Torso 

signaling is required for the establishment of the SAZ and therefore posterior segmentation 

of the germband. It also showed influence of the expression of a gap gene (Schoppmeier 

and Schröder, 2005). 

In stark contrast to Drosophila, Tribolium pPRGs expression and regulation is probably 

independent from the gap genes (Marques-Souza et al., 2008). It was even shown that the 
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gap gene Tc-knirps is regulated by the pair-rule gene Tc-even-skipped (Tc-eve) (Peel et al., 

2013). I will not detail the gap gene expressions and current models on their regulation in 

Tribolium since they appear to be less involved in segmentation per se, but rather involved 

in providing segment identity via the Hox genes. However, one needs to keep in mind that 

knockdown of the gap genes lead to breakdown of segmentation (either directly or due to 

halted germband elongation), which is not yet fully understood (Bucher and Klingler, 2004; 

Cerny et al., 2005; Marques-Souza et al., 2008; Peel et al., 2013; Schröder, 2003). 

 

2.1.5.2 The segmentation clock 

One major developmental difference between segmentation in Drosophila and Tribolium 

is the presence of a segmentation clock in the latter. In Tribolium this clock is necessary for 

the formation of all gnathal, thoracic and abdominal body segments. While the genes 

involved in this insect segmentation clock are different from the vertebrate segmentation 

clock genes, both clocks have converged on using a similar principle, based on a “clock-and-

wavefront” system (Cooke and Zeeman, 1976). This system involves (cell-autonomous) 

oscillating gene expression in an elongating tissue and a traveling wavefront to arrest the 

oscillation of the clock. This results in repetitive structures along the elongation axis. In 

Tribolium, the oscillating segmentation clock genes are the primary pair-rule genes3 

Tc-even-skipped (Tc-eve), Tc-runt (Tc-run), and Tc-odd-skipped (Tc-odd). Their involvement 

and necessity for segmentation was shown repeatedly (this work; Choe et al., 2006; El-

Sherif et al., 2012; Sarrazin et al., 2012). However, the exact regulatory relationship 

between the pPRGs (e.g. activation- vs. repression-based) is still discussed (Choe et al., 

2006; Clark, 2017; Clark et al., 2019). In Drosophila mutants of the pPRGs eve, run and odd 

are missing half their segments (i.e. every other segment, the “classic” pair-rule gene 

phenotype). In contrast, parental RNAi knockdown of the pPRGs in Tribolium leads to a 

complete breakdown of segmentation and results in offspring cuticles missing all (in the 

case of Tc-eve) or almost all (in the case of Tc-run and Tc-odd) segments beyond the pre-

gnathum (Choe et al., 2006). The segmentation clock is active in both the posterior of the 

 
3 The use of the term “pair-rule gene” (PRG) might lead to confusion here. The terms originate from 
Drosophila, where the function of this group of genes was deduced from their mutant phenotypes (“classic” 
PRG phenotype) (Nüsslein-Volhard and Wieschaus, 1980). This phenotype was caused by their two-segment 
periodicity expression pattern and the specific loss of structures within this domain. The use of the term “pair-
rule gene” in other insects is now mainly based on their two-segment periodicity expression and NOT on their 
RNAi or mutant phenotype. 
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blastoderm and in the posterior SAZ in the germband (El-Sherif et al., 2012; Sarrazin et al., 

2012). The spatiotemporal dynamics of the clock in both the blastoderm and germband are 

probably regulated by Tc-cad (Ezzat El-Sherif, personal communication; El-Sherif et al., 

2015). Segmentation by the segmentation clock is a reiterating process along the AP axis in 

both the blastoderm and germband. It receives a more or less static posterior input from 

the “posterior signaling center” via Wnt signaling and Tc-cad and has a transient output in 

the form of pPRG stripes.  

 

2.1.5.3 Patterning downstream of the segmentation clock 

The dynamics of the segmentation clock lead to the expression of the pPRGs Tc-eve, Tc-

run, and Tc-odd in an initial two-segment periodicity, emerging from the posterior SAZ, 

along the body axis (Choe et al., 2006; El-Sherif et al., 2012; Patel et al., 1994; Sarrazin et 

al., 2012). This pattern later resolves into a segmental periodicity probably due to the 

expression of timing factors (Clark and Peel, 2018). Additionally, a second striped 

expression pattern consisting of the secondary pair-rule genes (sPRGs) Tc-paired (Tc-prd) 

and Tc-sloppy-paired (Tc-slp) emerges from the anterior SAZ. Both Tc-prd and Tc-slp are 

initially also expressed in a two-segment periodicity, but split into segmental stripes with 

alternating expression intensity during further germband elongation (according to Choe 

and Brown, 2007). The sPRG expression is controlled by both the pPRGs and the timing 

factors (Choe and Brown, 2007; Choe et al., 2006; Clark and Peel, 2018) More interestingly, 

RNAi knock-down of both Tc-prd or Tc-slp result in classic pair-rule gene phenotypes with 

every other segments missing (Choe and Brown, 2007), comparable to PRG phenotypes in 

Drosophila. A combination of primary and the secondary PRGs is then responsible for the 

expression of the segment polarity genes, that determine and maintain the final 

(para-)segment borders (Choe and Brown, 2007; Choe et al., 2006). 

 

2.1.6 Same genes, different mechanisms (?), same output 

As described so far, and from a mechanistical point of view, segmentation between 

Drosophila and Tribolium appears to be rather different. In Drosophila, all segments are 

patterned during the blastoderm stage and more or less simultaneously. In Tribolium, only 

the head and thorax are progressively patterned during the blastoderm stage and not all 

at once. In addition, the posterior segments are pattered in the germband, also in a 
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progressive fashion from a SAZ. The use of a segmentation clock patterning system in 

Tribolium further distinguishes it from Drosophila patterning and actually makes Tribolium 

segmentation, at least in this particular aspect, more similar to vertebrate somite 

segmentation. Interestingly, despite all these remarkable mechanistic differences, the 

same set of genes acts as key players controlling germband patterning and segmentation 

in both species. In accordance, two recently published models suggest that there are 

indeed more similarities between Drosophila and Tribolium segmentation than originally 

thought.  

 

These two, largely complementary, hypothetical models are primarily concerned with the 

evolvability of short- into long-germ patterning and vise-versa. They are both based on the 

more general “clock-and-wavefront” model (Cooke and Zeeman, 1976), that was originally 

proposed in the context of vertebrate somitogenesis.  

The “speed regulator model” (Zhu et al., 2017) was originally proposed to explain 

patterning in both blastoderm-like and germband-like tissues by a posterior “speed 

regulator” molecule and was mainly tested with the Tribolium gap gene cascade. Its 

mechanism, however, is also applicable to the segmentation clock and the pPRGs (Ezzat El-

Sherif, pers. communication; Zhu et al., 2017). The as of yet unnamed “segmentation by 

timing factors model” (Clark et al., 2019) tries to answer the evolution from a “sequential” 

segmentation towards “simultaneous” segmentation. This model could show that the key 

mechanisms of PRG expression and regulation are largely conserved between Drosophila 

and Tribolium and orchestrated by a conserved set of “timing factors”(Clark, 2017; Clark 

and Akam, 2016; Clark and Peel, 2018). In the following few paragraphs I will give a brief 

introduction of each model and point out the information most relevant for this work. 

 

1. Speed Regulator model 

In the “speed regulator model”, the concentration of the speed regulator molecule has 

influence on the oscillation of the clock (Fig. 2.3A and B). In the blastoderm, the speed 

regulator molecule forms a gradient along the AP axis (Fig. 2.3C, “Blastoderm”; Fig. 2.4, 

“Blastoderm”). Because of this gradient, cells in the posterior will oscillate faster than those 

in the anterior, resulting in a wave-like expression pattern of the pPRGs towards anterior 

along the AP axis (Fig. 2.3C, “Blastoderm”; Fig. 2.4, “Blastoderm”). These particular 
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expression waves were indeed observed for Tc-eve in the blastoderm (El-Sherif et al., 

2012). In the germband, the “speed regulator” molecule does not form a gradient but a 

stable expression domain in the posterior (Fig. 2.3 C, “Germband”; Fig. 2.4, “Germband”). 

Therefore, the clock in this posterior domain is oscillating at a constant speed. The phase 

of the clock (i.e. the expressed pPRG) starts to freeze upon leaving the posterior domain 

due to axial elongation. Tc-cad was predicted to be this posterior speed regulator because 

it on the one hand, shows compatible expression in the Tribolium germband (Copf et al., 

2004; Schulz et al., 1998) and on the other hand it has a fitting influence on the 

spatiotemporal expression of the pPRGs (Ezzat El-Sherif, personal comm.; El-Sherif et al., 

2015) and the gap gene cascade (Zhu et al., 2017). 

 

 
Figure 2.3 – The "speed regulator" model I 

The speed regulator model describes patterning along both a fixed (blastoderm-like) and an elongating 
(germband-like) tissue axis. (A) The basis of this model is a genetic network that enables a cell to express 
genes in a cascade and transition from one state to the next (in the case of the pPRGS, oscillation of three 
factors). (B) The oscillation speed is dependent on the concentration of the speed regulator molecule, with 
little to no molecule leads to no oscillation while high concentrations lead to fast oscillation. (C) In the 
blastoderm, the speed regulator forms a gradient, so cells in the posterior oscillate faster than cells more 
anterior. This differences in oscillation speed in each cell along the AP axis forms waves of gene expression 
propagating from posterior to anterior, patterning the blastoderm. In the germband, the speed regulator 
molecule does not form a gradient but is restricted to a posterior domain. Cells in this domain will oscillate 
and transition from one state to the next (see A) with a constant speed, but will arrest in a specific state 
upon leaving the posterior speed regulator domain due to axial elongation. The posterior shift of the 
posterior domain is relative to the rest of the germband. The asterisk marks a hypothetical cell during both 
blastoderm and germband patterning, see text more for details. Note: the arrows in (A) are only indented 
to show progression from one state to the next (i.e. oscillation) and do not represent a regulatory 
relationship. (modified from Zhu et al., 2017). 
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To further illustrate the model: a hypothetical cell is located in the posterior blastoderm 

(asterisk in either Fig. 2.3C or 2.4, “Blastoderm”). Due to the concentration of the “speed 

regulator” molecule, the segmentation clock genes in this cell oscillate. The segmentation 

clock in cells more posterior oscillates faster while it oscillates slower in cells more anterior 

(if at all). Through time, this will lead to “progressive” waves of clock gene expression from 

posterior to anterior (Fig. 2.3C or 2.4, “Blastoderm”). The marked cell will express each of 

the clock genes multiple times as each wave passes from anterior to posterior. The phases 

of the clock (i.e. the currently expressed pPRG) will arrest, probably due to loss of speed 

regulator expression during/after gastrulation and the final positional information of the 

cell is provided. After germband formation, another hypothetical cell (again marked by an 

asterisk in either Fig. 2.3C or 2.4, “Germband”) “starts” in the posterior SAZ, expressing the 

segmentation clock due to activation by the “speed regulator”. This cell will leave this 

posterior domain through axial elongation of the germband that shifts the “speed 

regulator” expression domain more posterior in relation to the rest of the embryo. The cell 

will then transiently become part of the anterior SAZ, where the clock phase is arrested by 

the wavefront. The exact molecular nature of the wavefront is debated, but it is situated 

at the boundary of the posterior and anterior SAZ. The cell will subsequently end up in the 

segmented germband. Depending on the time at which a cell will leave the posterior SAZ, 

it will arrest in a different state, i.e. a different pPRG expression or stripe. For any given cell 

in the SAZ, this process is repeated until patterning and axial elongation stop. The cells then 

have received their positional input and the germband is fully segmented.  

While the “speed regulator” model is based on and was tested with the aperiodic Tribolium 

gap gene cascade, according to its authors it is also applicable to the segmentation clock 

(i.e. oscillating gene expression).  
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Figure 2.4 – The "speed regulator" model II 

This figure also represents the speed regulator model as in Fig. 2.3, but directly applied to the topology of 
a Tribolium embryo and the expression of the pPRGs during both blastoderm and germband stages. The 
speed regulator molecule forms a posterior-to-anterior gradient in the blastoderm and a posterior 
expression domain (in the SAZ) during the germband stages. The asterisk marks a hypothetical cell during 
both blastoderm and germband patterning, see text more for details. Note: as in Fig. 2.3, the arrows in the 
small top-right panel do not represent regulation, but the ability to progress for one stage to the next 
(oscillate). (based on Zhu et al., 2017) 

 

2. Timing Factor model 

The second model (Clark et al., 2019), that I called “segmentation by timing factors” is 

based on recent work from Clark (2017) and Clark and Peel (Clark and Peel, 2018). In it they 

argue that the important steps of segmentation and their regulation are largely conserved, 

but are shifted in time or place (Fig. 2.5 C) between Drosophila and Tribolium. These stages 

are defined as (1) the early (or “upper”) pair-rule gene network (pPRGs), (2) the late (or 

“lower”) pair-rule gene network (sPRGs), and (3) the segment polarity network. While 

these stages in Drosophila are sequential, more or less occurring one after the other and in 

line with its hierarchical segmentation cascade, the same stages need to occur all at once 

in different regions along the AP axis of Tribolium (see Fig. 2.5C). These stages are regulated 

by a conserved set of “timing factors” (Fig. 2.5A) and represent the aforementioned 

wavefront. The expression of each timing factor ((Tc-)cad, (Tc-)Dichaete and 

(Tc-)odd-paired ((Tc-)opa)) correlates with each stage either temporally (Drosophila) or 

spatially (Tribolium) (see Fig. 2.5C). The early PRG network represents the segmentation 

clock in the posterior of the Tribolium SAZ (and comparable to the function of the zebra 

elements in Drosophila). This stage is controlled by (Tc-)cad (and (Tc-)Dicheate) and 
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provides the phases of the different PRGs to be expressed along the AP axis (comparable 

to what the speed regulator is proposed to do). The second stage, the late PRG network, is 

the pattern resolution stage of the pPRGs in Tribolium, as they emerge from the posterior 

SAZ. During this stage, the pPRG stripes are splitting and secondary pair-rule genes are 

being expressed. This stage is controlled by (Tc-)Dichaete alone (and is comparable to the 

7-to-14 stripe transition in Drosophila). The third and last stage, the segment polarity stage, 

occurs anterior to the SAZ in Tribolium and corresponds to the segmented and now also 

extended Drosophila germband. This stage is controlled by (Tc-)odd-paired.  

Due to the overall evidence of the necessity of posterior Wnt signaling for segmentation, I 

further included a “posterior signaling center” (Fig. 2.5A) controlling the spatiotemporal 

regulation (or at the very least Tc-cad, for which there is ample evidence (Ansari et al., 

2018; Beermann et al., 2011; Oberhofer et al., 2014)) 

Again, to illustrate the model: A hypothetical cell (asterisk in Fig. 2.5) in the posterior SAZ 

starts under the influence of Tc-cad (and Tc-Dichaete) and the segmentation clock is active 

in this cell. Upon leaving the posterior SAZ, the cell is now only under the influence of 

Tc-Dichaete in the anterior SAZ and the segmentation clock phase freezes (i.e. one PRG 

remains expressed) and sPRGs are expressed based on the cell’s pPRG expression. Entering 

the non-SAZ Tc-opa domain, the segment polarity genes become expressed. The positional 

information previously obtained is now translated into a segmental position. Repeating this 

process with every cell in the SAZ will result in a segmentally patterned germband. 
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Figure 2.5 – The "timing factor" model 
(A) The three stages of Tribolium segmentation, as defined by and modified from Clark, Peel and Akam 
(2019). I. The “posterior signaling center” is located in the posterior and in mainly made up of Wnt signaling 
components. It activity is required for Tc-caudal expression. II. The “spatiotemporal regulation” are the 
timing factors (Tc-caudal, Tc-Dichaete and Tc-odd-paired) that are active in difference regions of the 
germband and responsible for the regulation of different phases of the fate specification process. III. The 
“fate specification” is performed by the primary and secondary PRGs and the segment polarity network. 
Simplified, the oscillation of the pPRGs is controlled by Tc-caudal, sPRGs are controlled by Tc-Dichaete and 
the segment polarity network is controlled by Tc-odd-paired. The PRGs further control the expression of 
the segment polarity genes. The three stages are occurring in different regions of the germband, with the 
pPRG oscillation (“upper” fate specification) in the posterior while sPRGs and segment polarity gene 
patterning (“lower” fate specification) is occurring in the anterior (relative to each other). (B) Differences 
in timing between the stages of segmentation in Drosophila (simultaneous segmentation) and Tribolium 
(sequential segmentation). In Drosophila (upper panel), the effectors of each stage are affecting all 
segments, but are expressed at different times. In Tribolium (lower panel), all three stages and their 
effectors are expressed at once, but in different regions of the germband. In both cases, each cell will 
receive all three signals to determine its positional information. Note: Arrows in A do not imply activating 
regulation, but rather only shows regulation or influence (be it activating or repressing). Gene mentioned 
in A are only exemplary for any given process and not representing the whole repertoire of genes involved. 
Modified from Clark et al. (2019). 

 

Despite all these explanations regarding the involvement of similar genes and gene 

regulatory networks as well as the evolvability of short- into long-germ modes of 

segmentation, the main difference in body axis patterning between Drosophila and 

Tribolium remains. That is the use of a SAZ to progressively pattern the AP axis during 

germband elongation. The outcome, however, is the same in both: a germband, subdivided 

into segments by the segment polarity genes that demark (para-)segment borders. 
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2.1.7 Evolution and conservation of segmentation in (eu-)arthropods 

As mentioned, sequential segmentation or short-germ embryogenesis is thought to 

represent the ancestral mode of arthropod segmentation (Sander, 1976). Even within the 

insects long-germ embryogenesis is only found within the holometabola (Davis and Patel, 

2002). A plethora of studies have not only shown sequential segmentation in other 

arthropod species, but also identified key genes commonly involved in the process.  

For example, in the centipede Strigamia maritima, similar genes are involved in 

segmentation. The expression pattern of Sm-eve1, Sm-runt, Sm-hairy2 and Sm-odd-

related1 (Sm-odr1) start with a two-segment periodicity as soon as they emerge in the 

posterior disk (the SAZ). They later resolve into segmental stripes (or fade as Sm-odr1 does) 

upon entering a transition zone. Sm-sloppy-paired and Sm-pax3/7-2 appear later and are 

regarded sPRGs (Green and Akam, 2013). Interestingly, Sm-cad is expressed in segmental 

rings emanating from the posterior disk and has a few segments overlay with Sm-odr-1 

before fading away (Chipman et al., 2004).  

In the spider Cupiennius salei, both Cs-Delta and Cs-Notch are involved in posterior 

segmentation (Stollewerk et al., 2003) as are Cs-hairy, Cs-even-skipped, and Cs-runt 

(Damen et al., 2000). Delta-Notch signaling is, as mentioned above, necessary in the 

patterning of vertebrate somites (Jouve et al., 2000). More detailed studies in the common 

house spider Parasteatoda tepidariorum also revealed that both Delta-Notch and Wnt 

signaling via Pt-Wnt8 are required for segmentation (McGregor et al., 2008; Schönauer et 

al., 2016). Pt-Wnt8 is necessary for the formation of the SAZ and opisthosomal segments 

(McGregor et al., 2008) while Delta-Notch signaling is required for the expression of Pt-

Wnt8. Both signaling pathways are further required for the expression of pair-rule genes in 

the SAZ, and that at least in part, occurs via cad (Schönauer et al., 2016). Recently, in 

Parasteatoda a Sox gene (Pt-Sox21b-1) was identified to play a major role in posterior 

segmentation (Paese et al., 2018). This gene is closely related to Dicheate, whose role as a 

timer gene in both Drosophila and Tribolium segmentation is explained above (Clark and 

Peel, 2018). This is interesting in so far that Sox genes also play a role in vertebrate 

segmentation. Tribolium and the common house spider therefore not only control PRGs 

similarly (El-Sherif et al., 2015), but also share more genes involved in segmentation. This 

could very well present a conserved part of embryonic segmentation in arthropods. There 

is, however, no pair-rule expression of the (oddly-named) pair-rule genes in spiders. Also 
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the involvement of Delta-Notch signaling in Tribolium segmentation could not be shown so 

far or might indeed have been lost (Clark, Peel and Akam (2019) suggest Toll genes, with 

limitations, as a possible alternative for that case). 

Even in the annelid Platynereis dumerilii, a member of the Lophotrochozoa, which are 

considered the third main branch of the bilaterians (besides the Deuterostomes and 

Ecdysozoa), orthologs of Pd-caudal and Pd-even-skipped are expressed in a posterior 

growth region and are involved in posterior growth and segmentation (de Rosa et al., 

2005). Both Pd-engrailed and Pd-wingless are segmentally expressed (Prud’homme et al., 

2003) and hedgehog-signaling was shown to regulate segment formation (Dray et al., 

2010). 

There is a strong level of conservation regarding the genetic key players orchestrating 

segmentation in all these animals. Yet interesting, there are also differences in the details 

of the mechanisms. This exemplifies the importance of understanding segmentation in 

greater detail in not only one or two model systems. This further includes the long-standing 

question if segmentation has evolved de novo several times convergently (and apparently 

using quite similar mechanisms) from using evolutionary “old” genes or if there is a 

common origin to segmentation. These examples show that comparative studies in a great 

number of different species are needed to shed light on the conserved genetic basis of 

segmentation. For such detailed studies novel tools are required to increase the functional 

toolkits of model species besides Drosophila. 

 

2.2 RNAi as a tool in developmental biology 

To reveal details of complex developmental processes, like e.g. segmentation, it is 

necessary to develop and test novel and advanced techniques to study gene function in a 

broad range of model organisms. In this thesis, I tested such a novel approach to reveal 

greater details of Tribolium segmentation by optimizing temporal inhibition of RNAi gene 

knockdown. This novel approach is based on Viral suppressors of RNAi (VSRs) explained in 

more detail in the following chapter 2.3.  

The “discovery” of RNAi (Fire et al., 1998) and its subsequent use as a tool in the life 

sciences enabled the investigation of cellular and developmental processes in species 

where genetic modifications are either not possible or not practical. Large genetic screens 

for any given biological process are limited to a very small number of highly developed 
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model species like Drosophila melanogaster. While multiple unbiased (forward) genetic 

screens in other model insect species have been performed (like Tribolium castaneum 

(Maderspacher et al., 1998; Sulston and Anderson, 1996; Trauner et al., 2009) and Nasonia 

vitripennis (Pultz et al., 2000)), neither was saturated, mainly due to technical reasons. And 

even with more and more sequenced (high-quality) genomes, many developmental studies 

and screens are still relying on the Drosophila candidate gene approach. This is ultimately 

a limitation for research of arthropod development since Drosophila shows a rather 

diverged embryonic development.  

However, reverse genetic screens, utilizing RNAi, have emerged as a strong alternative to 

conduct unbiased genetic screens and were already performed successfully in 

Caenorhabditis elegans, Drosophila, cell culture, and most recently Tribolium (Schmitt-

Engel et al., 2015). 

Another advantage of RNAi is that it can be applied at different developmental stages. In 

Tribolium, for example, dsRNA can be injected at the embryonic, larval (Tomoyasu and 

Denell, 2004), pupal (Posnien et al., 2009a), or adult stage. The latter two also offer the 

application of parental RNAi (pRNAi, Bucher et al., 2002), another huge advantage of 

certain insect or arthropod species over others. In pRNAi, either injected dsRNA or already 

processed siRNA is spread throughout the body of the injected individual (dsRNA via the 

hemolymph, siRNA often via systemic RNAi mechanisms), and is transported into the 

developing oocytes. This later enables the collection of embryos in which both maternal 

and zygotic gene functions are knocked down. This is accompanied by the technical 

advantage that injecting only a limited number of individuals results in several hundred 

offspring, often showing a phenotypic range of the gene of interest.  

The joined knockdown of both maternal and zygotic gene functions, however, can also be 

a disadvantage. A maternal or early zygotic phenotype might mask a possible later function 

of the gene of interest. Nevertheless, pRNAi in Tribolium is so efficient that a genome-wide 

screen was performed (Schmitt-Engel et al., 2015) and identified novel genes and gene 

functions in variety of different (developmental) processes, like head patterning, axis 

formation and even pest control (Ansari et al., 2018; Kitzmann et al., 2017; Schultheis et 

al., 2019; Siemanowski et al., 2015; Ulrich et al., 2015). The high “efficacy” of Tribolium 

(p)RNAi led to the question if the RNAi response could be further modified. Especially how 

it could be modulated to either enable early gene function while blocking later functions 
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or vice versa. Also, the use of tissue-specific RNAi as established in Drosophila would be of 

great interest for other species as well, especially since (p)RNAi by injection of dsRNA 

always targets all tissues of the animal. 

 

2.3 Modulating RNAi by viral suppressors of RNAi 

VSRs have evolved out of the necessity of viruses to overcome antiviral defenses of their 

(prospective) hosts. Especially plants and insects heavily rely on RNA interference (RNAi)-

based strategies to defend themselves against viral infections (Csorba et al., 2009; van 

Mierlo et al., 2011) since they do not possess an adaptive immune system comparable to 

that of (higher) vertebrates. Conversely, plant and insect viruses have evolved strategies to 

counteract and overcome these innate defenses. One common strategy is to inhibit the 

RNAi pathways via Viral Suppressors of RNAi (VSRs) (further reviewed in Csorba et al., 2009; 

van Mierlo et al., 2011). A plethora of viral proteins capable of suppressing RNAi silencing 

were identified4. Just as diverse as the viral proteins are the mechanisms of action by which 

they inhibit RNAi: from binding dsRNA and inhibiting its processing, inhibiting dsRNA or 

siRNA processing proteins, to inhibiting Argonaut or RISC itself. The resulting evolutionary 

arms race further led to multiple examples of co-evolution of virus suppressor and host 

RNAi proteins (Csorba et al., 2009). 

Using VSRs as a possibility to modulate the RNAi response in Tribolium was previously 

tested in our group (Ulrich, 2015). Several VSRs were tested for their ability to block RNAi 

using knockdowns of certain body colour enzymes or transgenic GFP. Among them, only 

the VSR from the Cricket paralysis virus (CrPV), CrPV-1A, showed reliable RNAi inhibition 

(Ulrich, 2015). CrPV-1A was previously been shown to modulate the antiviral response in 

Drosophila by antagonizing an effector protein of the RNAi pathways, the endonuclease 

Argonaute 2 by either directly binding (Nayak et al., 2010) or E3 ligase-mediated 

degradation of it (Nayak et al., 2018). While at first, no interference of CrPV-1A with the 

endogenous miRNA pathways that is mediated by Argonaute 1 (Ago1) was reported (Nayak 

et al., 2010), later analysis showed that a fraction of the endogenous miRNA can be loaded 

onto Ago2. Their function is therefore also impaired by CrPV-1A (Besnard-Guérin et al., 

 
4 The Swiss Institute of Bioinformatics (SIB) has a useful overview of suppressors of RNAi including virus name 
and order, protein sequence, mechanism of action, and references, accessible at 
https://viralzone.expasy.org/891 (Suppressor of RNA silencing, 2020) 
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2015). Nevertheless, Ulrich (2015) did observe no adverse effects of CrPV-1A on 

development or reproduction. Multiple transgenic lines, including lines where CrPV-1A is 

ubiquitously expressed by an α-Tubulin 1 promoter were kept for several generations 

without any observation of developmental abnormalities, reduced fecundity or reduced 

life span (Gregor Bucher, personal communication). Ulrich (2015) also created a transgenic 

line where CrPV-1A was put under the control of the endogenous Tribolium heat-shock 

promoter (Schinko et al., 2012), enabling temporal control over the inhibition of RNAi. In 

initial tests the functionality of this transgenic heat-shock CrPV line (“hsCrPV”) was 

confirmed to rescue cuticle phenotypes using previously defined heat-shock treatment 

parameters (in the following text, the transgenic line will simply be called “hsVSR” for “heat 

shock VSR line”) (Material and Methods section; Oberhofer, 2014). 

 

2.4 Aims 

The subdivision of the body or body structures into segmental units is present in at least 

three large animal phyla (arthropods, annelids, and chordates). For many species it was 

shown that the development of this segmentation is realized using oscillatory gene 

expression within a clock-and-wavefront patterning system. In the main arthropod model 

organism Drosophila melanogaster, segmentation was studied in great detail, but 

Drosophila employs the derived mode of simultaneous segmentation. So far, functional 

studies of the more ancestral arthropod segmentation clock-mechanism were mainly 

performed in the red flour beetle Tribolium castaneum, but were limited to permanent 

RNAi knockdowns. Using parental RNAi, target genes are downregulated from the very 

beginning of embryogenesis. In Tribolium, RNAi-mediated knockdown of segmentation 

genes leads to breakdown of segmentation. This early breakdown makes it difficult to infer 

complex gene functions and interactions during the segmentation process.  

Our lab has created a temporally controlled RNAi inhibition system, hsVSR, utilizing heat 

shock-induced expression of a Viral Suppressors of RNAi (VSR). This system enables the 

inhibition of RNAi at almost any time during development. 

The aim of my thesis was to gain a better understanding of sequential segmentation in 

arthropods by optimizing the hsVSR system in Tribolium for studying these later gene 

functions. Specifically, I asked what happens to posterior segmentation if RNAi-induced 

segmentation breakdown is inhibited during later stages of germband development. 
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Would segmentation re-initiate or would the breakdown be irreversible? Further, I wanted 

to know at what level of segmentation a rescue might be possible and characterize the 

molecular and genetic consequences. 
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3 Material and Methods 

3.1 Strains and husbandry 

Tribolium castaneum beetles were reared using standard conditions and methods (Bucher, 

2009). If not stated otherwise, specimens for experiments (e.g. injected pupae/beetles, egg 

collections) were kept at 32°C and 40% relative humidity (RH), while general stock keeping 

was done at 28°C and 40% RH.  

The transgenic RNAi inhibitor line (in the original thesis called “hsCrPV”) containing the 

construct pBac[3xP3-DsRedaf;Tc'hsp5'-CrPV1A-3'UTR] (Ulrich, 2015) was used for the RNAi 

rescue experiments and allowed the expression of a VSR upon heat shock treatment. In the 

following text the RNAi inhibitor line will simply be called “hsVSR” (for “heat shock VSR”). 

The “hsVSR” line is based on the vermilion white (vw) strain (Lorenzen et al., 2002). In the 

following text, “vw” is often referred to as the “wild type control” since vw and hsVSR are 

genetically identical except for the aforementioned transgenic element. “RNAi wild type 

control” will refer to dsRNA injected vw beetles or offspring embryos. The transgenic heat 

shock hunchback line (hs-hb) (Distler, 2012) contains a heat shock inducible hunchback 

construct allowing ectopic expression of the gap gene hunchback upon heat shock 

treatment (Boos et al., 2018). 

 

3.2 RNA interference 

Functional gene analysis was performed via parental RNAi according to established 

methods (Bucher et al., 2002; Posnien et al., 2009a). For rescue experiments in the hsVSR 

line, female pupae were injected with double stranded RNA (dsRNA) against target gene. 

For the gap gene timer reset experiment, female pupae for the hshb line were injected with 

dsRNA against Tc-eve and crossed with hsVSR males. Injections were performed using a 

“FemtoJet express” device (Eppendorf) and glass capillaries (borosilicate) pulled with a P-

2000 needle puller (Shutter Instruments). 

Injected dsRNA was in-vitro transcribed using the MEGAscript™ T7 Transcription Kit (Life 

Technologies). Templates were amplified using T7 promoter sequence overhang containing 

primers (either binding T7 promoter directly, or binding to other promoter sequences in 

the plasmid [T3, SP6], or being either plasmid or gene specific (Table 3.1). Concentrations 
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necessary to obtain both high penetrance and severe cuticular phenotypes were 

determined beforehand and are indicated in table 3.1.  

 

Table 3.1 – Clones for dsRNA/riboprobe synthesis 

Gene/clone Concentratio
n for pRNAi 

Clone/dsRNA 
length 
(approx.)5 

Clone origin (if 
known) 

Primers (with 
T7 overhang) 

Tc-arrow 100 ng/µl ~1800 bp N. Posnien; cDNA T7, SP6 

Tc-even-skipped 1000 ng/µl ~1400 bp Unknown; cDNA SP6, T7 

Tc-odd-skipped 500 ng/µl ~380 bp Unknown SP6, T7 

Tc-paired 500 ng/µl ~540 bp W. Damen (?) T7, SP6 

Tc-runt 500 ng/µl ~1500 bp S.e Brown; cDNA T7, SP6 

Tc-wingless6 Not used for 
RNAi 

1100 bp J. Schinko; cDNA Not amplified 

Tc-Wnt8/D 100 ng/µl ~500 bp R. Schröder T7, T3 

Tc-wntless 100 ng/µl ~600 bp this work; cDNA Gene specific 

 

3.3 Molecular cloning 

To generate dsRNA for functional gene analysis via RNAi, the genes of interests first had to 

be cloned from embryonic cDNA. For most of the genes studied in this thesis coding 

sequence fragments of the genes were already cloned in appropriate plasmids and 

available (see table 3.1). The genes which were not already cloned (Tc-wntless) were 

identified from the current Tribolium gene set (Tcas5.2) on iBeetle-Base (Dönitz et al., 2015; 

Herndon et al., 2020) using the Drosophila ortholog protein sequence and blast search 

(Altschul et al., 1990). Coding sequence was amplified from embryonic (0-72h) cDNA with 

gene-specific primers (synthesized by Eurofins) (Table 3.2) using the Phusion DNA 

polymerase (selfmade). PCR fragments were cloned into appropriate vectors using 

standard procedures (Sambrook and Russell, 2001). The Tc-Wnt8/D clone was provided by 

R. Schröder (University of Rostock). Sequences for clones used in this work are attached in 

the supplementary file “clones_phd_FK.docx”. 

 
5 If the length of the transcribed dsRNA fragment is different (i.e. shorter) than the clone from which is made, 
the length of the dsRNA is given. If no length is given, the clone was not used to produce dsRNA. 
6 Tc-wingless was used only as a riboprobe 
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Table 3.2 – Primer list 

primer name sequence purpose 
for dsRNA w/ T7 
overhangs   

pJET_Rv_T7 
GAATTGTAATACGACTCACTATAGGAAGAA
CATCGATTTTCCATG 

amplify pJet insert with T7 promoter 
seq. 

pJET_Fw_T7 
GAATTGTAATACGACTCACTATAGGCGACT
CACTATAGGGAGAGC 

amplify pJet insert with T7 promoter 
seq. 

T7-SP6 
TAATACGACTCACTATAGGATTTAGGTGAC
ACTATAGA 

amplify with T7 overhang from SP6 
promoter seq. site 

T7-T3 
TAATACGACTCACTATAGGAATTAACCCTC
ACTAAAGGG 

amplify with T7 overhang from T3 
promoter seq. site 

T7 GAATTGTAATACGACTCACTATAGG 
amplify with T7 overhang from T7 
promoter seq. site 

FK147_wls_sh_FW
-T7 

TAATACGACTCACTATAGGACCATGACTAC
TACCTTCTG gene specific wls-T7 primers 

FK148_wls_sh_RV
-T7 

TAATACGACTCACTATAGGAGTACATACTA
GCGGAAATC gene specific wls-T7 primers 

qPCR primers   
FK_eve7_fwd TCGCCGCACAACTCAATCTC even-skipped exon 

FK_eve7_rev TGGCGTTTGTCTTTCATGCG even-skipped exon 
FK_eve_intron_1_
fwd GCGTTTTATTTGAGCGGGCA even-skipped intron 
FK_eve_intron_1_
rev CGCTCGCATCAAGGTGTTTT even-skipped intron 

FK_crpv1a_2_fwd GGAGCTTGCTGCTCAAGAACT VSR 

FK_crpv1a_2_rev TAGTTGTGGTTTGGACTGCACA VSR 

FK_odd_1_fwd AGGGACCACAGGTACATCCA odd-skipped exon 

FK_odd_1_rev TTGAGATTGGAGCGCTGGTT odd-skipped exon 

FK_run_1_fwd GGTACTTGGGGTAGTTGTCGG runt exon 

FK_run_1_rev ACACGCTTTCTCGCACTGTA runt exon 

VT_RPS3.3F1 AGGGTGTGCTGGGAATTAAAG rps3 for normalization 

VT_RPS3.3R1 GGGTAGGCAGGCAAAATCTC rps3 for normalization 

VT_GapDH3fw1 CGTTTCCGTTGTGGATTTGAC GapDH for normalization 

VT_GapDH3rv1 AACGACCTCTTCCTCCGTGTA GapDH for normalization 
VT_alpha-
tubulin3fw1 CGCCAATAACTACGCCAGAG 

α-Tubulin1 for normalization (not 
used) 

VT_alpha-
tubulin3rv1 CGAACGAGTGGAAAATCAAGAA 

α-Tubulin1 for normalization (not 
used) 

VT_actin-3fw1 TGGCTACTCGTTCACAACCAC Actin for normalization (not used) 

VT_actin-3rv1 GCCATTTCCTGTTCAAAGTCC Actin for normalization (not used) 
gene specific 
primers   

wntl_F1 ATGCCGGGAACAATCCTCGA 
almost full length wntless (wls/wntl) 
form cDNA 

wntl_R2 CCGGTAGATTATACCTTCGTAG 
almost full length wntless (wls/wntl) 
form cDNA 
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3.4 Heat shock treatment 

To express the VSR and investigate the effect of RNAi inhibition on segmentation, staged 

egg collections were heat shock-treated (hs-treated) at appropriate time points (see Figs. 

4.2, 4.10, 4.12 and 4.21). The main conditions for the heat-shock treatment (2x10 min at 

48°C, 2h recovery in between) are based on previous theses from our lab (Oberhofer, 2014; 

Ulrich, 2015). Since a detailed description of the hs-treatment procedure itself is not 

available in written from, and personal observations have indicated that variations in the 

outcome could occur upon minute changes in the procedure, it is detailed below. 

Collected embryos of dsRNA injected animals of either the hsVSR or wild type control line 

(vw) are kept at 32°C in a small Drosophila vial until the appropriate heat-shock time point. 

A water bath is pre-heated to 48°C. The eggs to be hs-treated are transferred to small 

(40ml) glass beakers with a flat bottom. The beaker is “closed” with a piece of perforated 

aluminum foil. The foil keeps most of the heat in the beaker, but the perforation prevents 

it from becoming a small-scale pressure vessel. The glass beakers are kept in the 48°C water 

bath for 10 min, with the bottom of the beaker submerged in it. Not all eggs can be 

transferred back into the plastic vials after the hs-treatment at the same time. Therefore, 

the beakers are kept with their bottom submerged in room-temperature water so that the 

hs-treatment does not continue due to the remaining heat in the glass beaker itself. After 

transferring the embryos back into the vials, they are allowed to recover for two hours at 

32°C, until they are hs-treated again, for 10 min at 48°C, following the same procedure as 

mentioned above. These twice hs-treated eggs are kept at 32°C until embryos fixation or 

cuticle preparations. If variations to the procedure were made, they are indicated in the 

text. These mainly concern the number of hs-treatments or the recovery time in-between 

hs-treatments. Both the treatment temperature and duration remained unchanged in all 

cases. 

For all tested genes except Tc-torso, at least two independent repetitions of each rescue 

experiment were performed. 

 

3.5 Fixation  

Treated and untreated embryos of desired age were fixed according to standard methods 

as previously described (Schinko et al., 2009) with one minor change: volume of 37% 

formaldehyde solution reduced to 200µl. Embryos were stored in methanol at −20°C. 
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3.6 L1 cuticle preparation 

Treated and untreated embryos for cuticle preparation of first instar (L1) larvae were 

allowed to develop for at least 4 days at 32°C. Larvae (and eggs) were washed twice in 50% 

bleach, mounted in a 1:1 mixture of Hoyer’s solution and lactic acid (Anderson, 1954) and 

incubated for 24h-48h at 60°C. Cuticles were analyzed using a Zeiss AxioPlan 2 or a Zeiss 

AxioScope using both DIC optics and autofluorescence of the cuticles. For blastodermal 

segments, appendages were counted. For paired appendages, the presence of only one 

was counted as half a segment present. For the number of abdominal segments, paired 

tracheal openings (in the text referred to as stomata) were counted. Two opposing tracheal 

openings were assumed to belong to one abdominal segment. Presence of half an 

abdominal segment (in the case of an uneven number of abdominal segments) were 

counted as such. 

(Note to Figs. S7.4 and S7.8: while structures indicative of stomata were observed, it was 

unclear if these were indeed tracheal openings (due to previously published results and the 

overall strong phenotype of the cuticles). As to not overestimate a possible rescue of 

abdominal segments, in later iteration of the rescue experiments, structures indicative of 

stomata in untreated cuticles were counted as presence of abdominal segment(s). 

 

3.7 Alkaline phosphatase and HCR in-situ stainings 

To analyze the gene expression pattern after RNAi and/or hs-treatment, the RNA 

expression was visualized using two different methods. Single in-situ hybridization was 

performed as previously described (Schinko et al., 2009) using digoxigenin (DIG)-labeled 

riboprobes targeting Tc-wg (DIG RNA Labeling Kit, Roche), detected by anti-DIG-AP 

antibodies (Roche) and visualization by NBT/BCIP. The only modification was the omission 

of the Proteinase K treatment of the embryos. 

Hybridization chain reaction (HCR) in-situ staining (Molecular Instruments) was performed 

according to manufacturer’s instructions following the “HCR v3.0 protocol for whole-

mount fruit fly embryos” protocol with the following modifications (provided by Eric Clark 

and Olivia Tidswell): 5% Dextrane sulphate (instead of 10%) in both the “30% probe 

hybridization buffer” and “Amplification buffer”. Stained embryos were rehydrated in 

decreasing methanol series (75%, 50%, 25% in PBT). HCR probe sets for each target gene 
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(except Tc-even-skipped) with specific amplifier sequences were synthesized according to 

provided accession number by Molecular Instruments (see table 3.2). HCR Probes for Tc-

even-skipped with specific amplifier sequences were ordered from Molecular Technologies 

(see table 3.2). Binding sequences are known but not published because they are the 

intellectual property of Molecular Instruments and Molecular Technologies, respectively. 

 

Table 3.3 – HCR targets, NCBI accession number, attached amplifier (incl. Alexa fluorophore 
used for imaging) and lot number. 

Target NCBI accession 

number 

Amplifier/Alexa 

fluorophore 

Lot number  

Tc-caudal NM_001039409.1 B1 / Alexa-488 PRA974 

Tc-even-skipped NM_001039449 B1 / Alexa-488 3483/D413 

Tc-runt XM_964184.3 B2 / Alexa-594 PRA978 

Tc-odd-skipped XM_008198532.2 B3 / Alexa-546 PRA971 

Tc-wingless NM_001114350 B4 / Alexa-647 PRA975 

 

3.8 Mounting, Imaging and image processing 

Fluorescent HCR stainings of germbands were mounted in 90% glycerol or VectaShield 

(Vectorlabs) and documented using a Leica SP8 confocal laser scanning microscope (cLSM) 

(20x objectives with 100% glycerol as immersion medium) and the Leica LAS-X software 

(v 3.5.2). Cuticles of L1 larvae were documented using either a Leica SP5 inverted cLSM 

(10x air objective) with Leica LAS-X software or a Zeiss AxioPlan 2 (10x air objective) with 

ImagePro 6 utilizing the cuticle's autofluorescent properties. Corrections of brightness and 

contrast were performed with FIJI (Schindelin et al., 2012). 

For both pPRG stripe counting and HCR classes, see Fig. S7.12 and table S7.1 for raw data 

(high resolution images of HCR class germbands attached, see supplementary file “hcr 

classes all embryos_high.pdf” (PDF, ~130MB). For Tc-wg head stage analysis, the Fig. S7.11 

for overview of all Tc-wg head stages and table S7.1 for corresponding excel file for raw 

data. 

. 
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3.9 qPCR 

To characterize gene expression after Tc-eve RNAi and subsequent RNAi inhibition by 

hs-treatment, total RNA from embryos was isolated using the Quick-RNA Tissue/Insect Kit 

(Zymo Research) with DNase on-column digest (DNaseI Set, Zymo Research). cDNA was 

synthesized using the MAXIMA First Strand cDNA Synthesis Kit for RT-qPCR (Thermo Fisher 

Scientific) according to manufacturer’s instructions. 

qPCRs were performed using the CFX96 Real-Time PCR System (Bio-Rad Laboratories) with 

5x HOT FIREPol® EvaGreen® qPCR Mix Plus (ROX) Master mix (Solis Biodyne). Used qPCR 

primers are indicated in table 3.2 (synthesized by IDT). Reference genes (GAPDH and RPS3) 

were identified using RefFinder (Xie et al., 2012). qPCR data analysis was done in the CFX 

Manager 3.1 (Bio-Rad Laboratories) and pyQPCR7 with the delta-delta-Ct method (Livak 

and Schmittgen, 2001; Schmittgen and Livak, 2008). 

 

3.10 Statistical analysis 

Comparisons of abdominal segment numbers in cuticles and comparisons of number of 

expression stripes in germbands were done, if not stated otherwise, using unpaired, 

two-sided Mann–Whitney U tests for independent samples. All measured data points (see 

supplementary files) were included in the calculations and were not checked for being 

outliers beforehand (except by the plotting R packages (ggplot2), considering data above 

1.5 *IQR of the 75th percentile or below 1.5 *IQR of the 25th percentile as outliers, indicated 

in in the respective plots in red). Comparisons of stripe proportions in germbands were 

done using the Pearson's Chi-squared Test for Count Data with simulated p-values by 

Monte Carlo simulations (B=1000). All graphs (if not stated otherwise) and statistical 

calculations were performed using R (v3.5.2; R Core Team, 2018) and RStudio (v1.1.x; 

RStudio Team, 2015) with the following packages: dplyr (Wickham et al., 2020), ggplot2 

(Wickham, 2016), ggpubr (Kassambara, 2020), ggsignif (Ahlmann-Eltze, 2019), patchwork 

(Pedersen, 2019), readxl (Wickham and Bryan, 2019), reshape2 (Wickham, 2007). 

 

  

 
7 available at http://pyqpcr.sourceforge.net/ 
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4 Results 

4.1 Segmentation rescue by RNAi inhibition during germ-band elongation 

Segmentation in Tribolium has at its core a segmentation clock that is active in both the 

blastoderm and the germband. So far, analyses of the dynamics of posterior segmentation 

were mainly based on observations of the expression of segmentation genes and the 

resulting phenotypes after gene knockdown. Such a permanent loss of function, however, 

cannot reveal more complex regulatory processes in the segmentation clock or during 

segmentation in general. In Tribolium, tools to rescue the expression of (segmentation) 

genes at any given time were not present (see Introduction for details). However, previous 

work showed that expression of a Viral Suppressor of RNAi (VSR) (CrPV-1A) can inhibit RNAi 

gene knockdown (Ulrich, 2015), and, subsequently, often rescues phenotypes in Tribolium 

pupae and adults. I applied heat shock-inducible VSR expression and subsequent inhibition 

of RNAi to answer the question what happens when a gene necessary for posterior 

segmentation is rescued after initial knockdown (Fig. 4.1A).  

Preliminary experiments indicated that the combination of RNAi and heat shock can lead 

to further loss of segmentation (Ulrich, 2015). A rescue of abdominal segments by the 

hsVSR system could therefore be obscured by heat shock-induced loss of segments. The 

expression of the VSR is necessarily linked to hs-treatment, resulting in a confounding 

variable. This makes it difficult to distinguish between the possibly “negative effect” of the 

hs-treatment and the “positive effect” of the VSR expression (see Fig. 4.1B). To control for 

this possible downside of the system, I included a RNAi wild type control (vermilion white, 

vw; see Lorenzen et al., 2002), missing the heat-shock inducible VSR construct. This way, I 

could compare between VSR treatment (hs-treatment and VSR expression) and only hs-

treatment in the context of RNAi knockdown.  

Three time points for the expression of the VSR were chosen, with slight modifications, 

based on an earlier experimental design ((Ulrich, 2015) and schematically shown  in Fig. 

4.1A). The first time point (10-13h AEL) covers the transition from differentiated 

blastoderm to early germband and the beginning of posterior segmentation by the SAZ. 

The second time point (13-16h) coincides with the earlier stages of germ band elongation 

and further segmentation of abdominal segments. The last time point (16-19h) covers late 

germ band stages of elongation and posterior segmentation (see schematic embryos in Fig. 

4.1A, lower right).  
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Figure 4.1 – The hsVSR system 

(A) Schematic representation of hsVSR treatment. pRNAi causes gene expression to drop in injected 
animals (solid line). RNAi effect is transmitted to eggs, causing depletion of both maternal and/or zygotic 
transcripts during embryogenesis. hsVSR treatment inhibits RNAi at different time points during germband 
elongation (time window indicated above and exemplary germband shown below) and results in increase 
of gene expression of previously knocked down gene (solid and dashed lines on the right). (B) Hypothetical 
considerations about the possible influence of hsVSR treatment in embryos. RNAi will cause loss of 
segments compared to WT. RNAi combined with VSR (1), irrespective for VSR delievery would cause rescue 
of segments. RNAi and hs-treatment (2), on the other hand, could further decrease segment number (hs 
defects). Combination of all three (3) results in a possible mixture of segment number due to both rescue 
byVSR and hs defect due to hs-treatment. (C) Without RNAi, there is a “constant” increase in segment 
number (albeit not linear as schematically depicted here) until the germband is fully segmented. RNAi 
leads to breakdown of segmentation (1), the time point of break down depends on the gene in question. 
VSR expression (2) will results in rescue of segmentation, but with the possibility that wild type segment 
number cannot be achieved anymore. Panel A modified from Ulrich (2015). 

 

(Note: in the following text and figures, the system to express the heat shock-inducible VSR 

and the transgenic line carrying the respective transgene are referred to as “hsVSR” and 

“hsVSR line”, respectively. Further, “hs-treatment” will refer to heat shock treatment, 

regardless of whether this treatment will lead to expression of the VSR or not. “RNAi wild 

type controls” or “vw” indicate embryos from a wild type line (vermilion white, vw) that 

underwent RNAi, and if mentioned, hs-treatment, but cannot express the VSR. Further, 

segments patterned during the blastoderm (head and thorax, see introduction) are 
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referred to as “blastoderm segments”. Segments patterned from the posterior SAZ (see 

introduction) are referred to as “abdominal segments”. Further, “rescue” or “ability to 

rescue” is, if not stated otherwise, always a rescue of the observed phenotype. I assumed 

that if a phenotype was rescued, this rescue was based on the inhibition of the RNAi 

machinery by the VSR expression) 

 

4.1.1 hsVSR proof-of-concept and controls: Tc-paired and Tc-torso 

I chose the secondary pair-rule gene Tc-paired (Tc-prd) for a proof-of-concept experiment 

to test if the hsVSR system has the ability to rescue posterior segmentation by inhibition of 

an ongoing RNAi response. Tc-paired is required to activate Tc-engrailed (Tc-en) expression 

in odd-numbered segments in the elongating germband throughout the segmentation 

process and is itself a target of the segmentation clock (Choe et al., 2006). Knockdown of 

Tc-prd transcripts via parental RNAi leads to a classic pair-rule gene phenotype with cuticles 

missing every other segment (Choe and Brown, 2007). Tc-prd’s position downstream of the 

segmentation clock makes it a good candidate to test the hsVSR system in the context of 

segmentation and to function as a positive control.  

To ensure that the rescue effect is temporally correlating with ongoing expression of the 

candidate gene, a second gene, Tc-torso, was chosen to function as a negative control. 

Torso signaling is necessary for abdominal segmentation in Tribolium (Schoppmeier and 

Schröder, 2005), but contrary to Tc-prd, it is maternally contributed and thus active 

exclusively before the first hs-treatment time point. Hence, the hs-treatment should not 

be able to influence this early function (see Figs. 4.1A and 4.2 for schematic overview of 

hsVSR system and hs-treatment time points). Thus Tc-paired RNAi was suggested to be 

rescuable by the hsVSR system while Tc-torso RNAi should not. 
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Figure 4.2 – hsVSR rescue after pRNAi in cuticles, experimental procedure 
Parental RNAi (pRNAi) is performed in hsVSR (and wild type (vw)) animals. RNAi embryos are collected for 
3h (0-3h) and either heat shock treated at 10-13h, 13-16h or 16-19h (second hs-treatment time also 
indicated). After approx. 3-4 days, cuticles of L1 larvae (if any) had developed and were prepared for cuticle 
analysis according to material and methods.  

 

Tc-paired RNAi 

In accordance with previous findings (Choe and Brown, 2007) Tc-prd parental RNAi without 

hs-treatment resulted in cuticles missing mandibles (Md), labium (Lab), the second thoracic 

segment (T2), and a median number of four remaining abdominal segments (Fig 4.3Ai and 

Aii for exemplary cuticle and 4.3B and C for segment numbers). This specific knockdown 

phenotype was observed in both the hsVSR line and RNAi wild type controls (see Fig 4.3 B 

and C). 

Early hs-treatment resulting in expression of the VSR at 10-13h increased the median to 7.5 

abdominal segments (Fig 4.3Aiii and plot in Fig 4.3C) in the hsVSR line. Further rescue of 

more anterior segments was observed for Md (25%, “a” in Fig. 4.3Aiv), Lab (30%) and the 

second thoracic segment (80%) (Fig. 4.3Aiii/Aiv and B). The wildtype RNAi control cuticles 

showed an unchanged median number of four abdominal segments and no additional 

blastodermal segments (see “vw, 10-13h” in Fig 4.3B and C). 

Likewise, later VSR expression at the second hs-treatment time point (13-16h) increased 

the median number of abdominal segments to six segments, but also only in the hsVSR line. 

I also observed cuticles showing less than four abdominal segments. This might indicate 

the aforementioned possible downside of our system (Fig. 4.1B) where the hs-treatment 

by itself leads to further loss of segments (see “hsVSR, 13-16h” in Fig. 4.3C). In the RNAi 

wild type control, no rescue was observed, but also no significant decrease below a median 

of four abdominal segments.  

Only VSR expression at the last time point (16-19h) failed to rescue abdominal segments. 

While the median remained at four segments, the percentage of cuticles showing less than 

four segments increased for both the hsVSR and the vw wild type line. In the latter, the 

number of cuticles with less than four abdominal segments was even larger. This could 
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indicate that this time window might be more susceptible to heat shock damages than the 

earlier ones.  

It should be noted at this point that experimental outcomes showed a certain degree of 

variability. As a consequence, the results of repetitions sometimes diverged in both the 

ability to rescue and its efficiency to do so – probably due to comparably small differences 

in the hs-treatment itself. For example, in a previous iteration of the Tc-prd rescue 

experiment (see Fig. S7.1 for data), the early timepoint led to cuticles with both in- and 

decrease from the median number of segments. Only the second treatment time point 

showed a clear and statistically significant increase in median segments number.  

Hence, due to the apparent sensitivity of the system, I relied on experimental outcomes 

that were reproduced in at least two independent experiments (with only a few exceptions, 

which I will specifically mention). This also highlights the importance to include RNAi wild 

type controls to control for the confounding variable of hs-treatment and VSR expression. 
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Figure 4.3 – Proof-of-concept: Tc-paired RNAi 

pRNAi against the secondary pair-rule gene Tc-paired (Tc-prd) results in a classic pair-rule gene phenotype 
with every other segment missing. VSR expression rescued segmental phenotype and posterior 
segmentation. (A) Exemplary non-heat shocked (Ai) and heat shocked (Aiii) cuticles (line drawings of 
respective cuticles in Aii and Aiv) after Tc-prd RNAi in the hsVSR line. The number of abdominal segments 
without hs-treatment is four, while with hs-treatment, the number of abdominal segments increased to 
seven. (B) Bar chart detailing the presence of blastodermal segments after Tc-prd RNAi and different 
hs-treatment conditions in hsVSR and wild type (wv) line. While no heat shock treatment resulted in the 
classic pair-rule gene phenotype, hs-treatment rescued blastodermal segments. No rescue was observed 
in the RNAi wild type controls (vw). (C) Boxplot showing the number of abdominal segments for the cuticles 
of the corresponding conditions in B. Significant increase in abdominal segment number was observed 
after hs-treatment in the hsVSR line, but no recue was observed in the RNAi wild type controls (wv). 
Possible outliers (see material and methods) are marked in red.. 
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Tc-torso RNAi 

Similar to previously published results (Schoppmeier and Schröder, 2005), parental Tc-

torso RNAi resulted in loss of most abdominal segments (median of 1.5 segments, Fig. 4.4B) 

while the blastodermal segments were present (Fig. 4.4A). As expected, due to its maternal 

contribution and early function, no rescue of abdominal segments by hs-induced VSR 

expression was observed for neither time point. Contrary, the median number of 

abdominal segments decreased after hs-treatment compared to non-heat shocked 

cuticles, again showing the presence of hs-defects as mentioned earlier and in figure 4.1 B. 

The earliest VSR timepoint even led to a reduction of the third thoracic segment to roughly 

65%, while all other blastodermal segments at all other timepoints were unaffected.  

 

Considering these results, I was able to show that the hsVSR system can be used to 

investigate whether or not (posterior) segmentation can be re-initiated after breakdown 

by re-introduction (i.e. RNAi inhibition) of a previously knocked down component during 

germ band elongation. I showed this by rescuing the secondary pair-rule gene Tc-paired. I 

also showed, using Tc-torso RNAi, that the rescue is time-specific and correlates with the 

expression and activity window of the gene in question. 

 

Figure 4.4 – Proof-of-
concept: Tc-torso  
pRNAi against the maternal effect 
gene Tc-torso (Tc-tor) results in 
loss of most abdominal segments. 
VSR expression did not rescue any 
abdominal segments (A) Bar chart 
detailing the presence of 
blastodermal segment after Tc-
tor RNAi and different heat shock 
treatment conditions in hsVSR 
line. pRNAi did not result in loss of 
blastodermal segments, while 
early hs-treatment (“10-13h”) led 
to small decrease of the third 
thoracic segments (B) Boxplot 
showing the number of 
abdominal segments for the 
cuticles of the corresponding 

time points in A. RNAi led to loss of abdominal segments. Hs-treatment did not result in any increase (no 
rescue), but rather loss of remaining segments. Possible outliers (see material and methods) are marked 
in red. 
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4.1.2 The segmentation breakdown after Wnt pathway component knock-down is 
irreversible  

The Wnt ligand co-receptor Tc-arrow (Tc-arr) is expressed ubiquitously during 

embryogenesis (Bolognesi et al., 2009). The Wnt ligand Tc-Wnt8/D is specifically expressed 

in the SAZ during embryogenesis (Bolognesi et al., 2008a). Tc-wntless, required for the 

secretion of Wnt ligands, is expressed ubiquitously as well (Bolognesi et al., 2008b). Tc-

Wnt8/D mediated signaling as part of the “posterior signaling center” is assumed to be 

important specifically for initiation or maintenance of parts of the SAZ and abdominal 

segmentation. Both Tc-arr and Tc-wls are cofactors necessary for Wnt signaling in general 

(Bänziger et al., 2006; He et al., 2004). Fittingly, RNAi of Tc-arr or double RNAi of Tc-Wnt8/D 

and Tc-wls lead to loss of abdominal segmentation in germbands. Their cuticle phenotype, 

however, is even more drastic, most often resulting in completely unsegmented cuticle 

remnants or “cuticle balls” (Bolognesi et al., 2008b; Bolognesi et al., 2009). With the 

knowledge that the hsVSR system can be used to address the question if re-initiation of 

posterior segmentation after breakdown is possible, I asked whether the inhibition of RNAi 

of Wnt pathway component would lead to the re-initiation of segmentation and a rescue 

of the cuticle phenotype. A rescue of abdominal segments would mean that the “posterior 

signaling center” can re-initiate after RNAi-mediated breakdown. 

 

Tc-arrow 

Parental Tc-arr RNAi had two predominant phenotypes: “Empty eggs” and unsegmented 

cuticles. The “Empty eggs” phenotype literally describes an empty egg, because the 

embryos did not develop far enough to secrete a cuticle. “Empty eggs” do occur regularly 

in wild type and RNAi egg collections up to a portion of 20-30% (Posnien et al., 2009a; 

Schinko et al., 2008). For Tc-arr RNAi I observed close to 45% empty eggs (of all eggs 

collected, see Fig. 4.5a). This is less than what was previously reported (Bolognesi et al., 

2009).  

The second observed phenotype, unsegmented cuticles, describes cuticles remnants that 

show no sign of external segmentation, but are clearly cuticles, often still inside there egg 

shells. The percentage of unsegmented cuticles was very high (close to 95% of developed 

cuticles scored, see Fig. 4.5a) Their occurrence after Tc-arr RNAi was previously reported 

as well (Bolognesi et al., 2009).  



Results 
 

 40 

RNAi inhibition by VSR expression at 10-13h had multiple effects. It did lower the 

percentage of empty eggs from close to 45% to less than 30%. More dramatically was the 

rescue of unsegmented cuticles. While without VSR expression, close to 95% showed no 

segmentation, VSR expression at 10-13h lowered this number to less than 10%. 

Consequently, the percentage of cuticles with identifiable segments increased (see “hsVSR, 

10-13h” in Fig. 4.5A). The pre-gnathal segments did show a higher percentage of rescue 

than gnathal or thoracic segments (See “Lr” and “Ant” for “hsVSR, 10-13h” in Fig. 4.5A).  

A slightly different result could be observed after VSR expression at the second time point 

(13-16h). While pre-gnathal appendages were rescued to a lower extend, rescue of gnathal 

and thoracic segments increased (see “hsVSR, 13-16h” in Fig. 4.5A) when compared to the 

earlier time point.  

Figure 4.5 – RNAi of the 
“posterior signaling 
center”: Tc-arrow  
pRNAi against the Wnt pathway 
component Tc-arrow (Tc-arr) 
results in unsegmented cuticles. 
VSR expression rescues 
blastodermal segemnts, while no 
conclusive rescue of abdominal 
segmentation was observed. (A) 
Bar chart detailing the presence 
of blastodermal segment after 
Tc-arr RNAi and different 
hs- treatment conditions in 
hsVSR line. No heat shock 
treatment resulted in close to 
50% empty eggs (no cuticle). In 
those eggs with cuticles, mainly 

no segmentation could be observed. Hs-treatment rescued blastodermal segments. (B) Boxplot showing 
the number of abdominal segments for the cuticles of the corresponding conditions in A. No abdominal 
segments were observed non-heat shocked cuticles. Hs-treatment did not result in rescue of abdominal 
segments (significant comparison for “13-16h” is discussed in the text). Possible outliers (see material and 
methods) are marked in red. 

 

Abdominal rescue of hs-treated cuticles was not observed for the early time point (when 

compared to non-heat shocked cuticles), but there was a significant increase at the later 

rescue time point in one of the repetitions (compare “13-16h” in Fig. 4.5B to Fig. S7.2B). 

While the median of the number of abdominal segments remained at zero, more individual 

cuticles showed an increase in abdominal segment number ("hsVSR, 13-16h" in Fig. 4.5B). 
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If this represents a bona fide rescue of abdominal segmentation or rather just a rescue of 

the later segment polarity function of Wnt signaling is unclear, especially since no 

significant abdominal rescue was observed for any earlier time points. Also, the calculation 

of significance does include all data points, including possible outliers (as defined in the 

material and methods and shown in red in all abdominal segment box plots). While removal 

of all considered outliers still resulted in an significant increase at 13-16h, the two 

remaining data points with abdominal segments also showed rescued blastodermal 

segments. The rescue of segment polarity function would therefore explain the increase of 

both blastodermal and abdominal segments described above. 

In an earlier iteration of this experiment, the overall phenotype of the Tc-arr RNAi was 

weaker, aside from the higher percentage of empty eggs (see Fig. S7.2 A and B), with even 

non-heat shocked cuticles showing a high percentage of segmental appendages and 

abdominal segments. Yet, the same pattern of rescue of empty eggs and unsegmented 

cuticles was observed, as was the more pronounced rescue of anterior-most structures 

(Fig. S7.2A, “Lr” and “Ant”). No significant increase in the number of abdominal segments 

was observed and the increase in the third and fourth quartile (see Fig. 7.2B) for the latter 

two time points might again not represent a bona fide rescue of segmentation, but rather 

a stabilization of previously established segmental borders, which require Wnt signaling. 

 

Tc-Wnt8/D, Tc-wls 

Tc-Wnt8/D knockdown mainly causes the “Empty eggs” phenotype as well as complete loss 

of segmentation that results in small and spherical “cuticle balls”, comparable to Tc-arr 

RNAi (Bolognesi et al., 2009). Its RNAi germ band phenotype, on the other hand is described 

as rather mild (Bolognesi et al., 2008b). A double knockdown together with Tc-wntless (Tc-

wls), on the other hand, results in a much higher percentage of severe phenotypes like 

unsegmented cuticles and truncated germbands missing abdominal segments (Bolognesi 

et al., 2008b).  

Performing Tc-Wnt8/D;Tc-wls double RNAi, I observed complete penetrance of the severe, 

unsegmented cuticle phenotype. 100% of scored eggs containing cuticles were 

unsegmented. The "Empty eggs” phenotype, however, was less severe with only close to 

40% of all collected eggs (see Fig.4.6B)  
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Early VSR expression at 10-13h reduced the percentage of empty eggs (25%) and, more 

dramatically, of unsegmented cuticles (5%) while increasing the percentage of cuticles with 

labrum (Lr) and antennae (Ant) both above 80%. Other gnathal or thoracic segment 

appendages were rescued only negligibly (Fig. 4.6B, “hsVSR, 10-13h”) 

Later VSR expression at 13-16h showed a similar, yet weaker rescue of empty eggs (30%) 

while unsegmented cuticles were again rescued with high efficiency (less than 5%) and 

subsequently resulted in an increase of both labrum and antennae, 80% and 60%, 

respectively. Abdominal rescue was not observed for any hs-treatment time points (Fig. 4.6 

C). 

Similar as observed for Tc-arr RNAi, an earlier iteration of the Tc-Wnt8/D; Tc-wls RNAi 

rescue experiment showed a similar rescue pattern. The percentage of empty eggs was 

higher (Fig. 7.3A). The earliest hs-treatment time point rescued the unsegmented 

phenotype, again resulting in more cuticles with pre-gnathal appendages (Fig.S7.3A, 

“hsVSR 10-13h”). The second time point, at 13-16h, was less effective in rescue of 

blastodermal segments when compared to the results above (compare “hsVSR 13-16h” in 

Fig. 4.6B to Fig. S7.3A). Abdominal rescue was not observed for any time point. 

 

In summary all these VSR treatments did not lead to any rescue of abdominal segments for 

Tc-Wnt8/D; Tc-wls or only a minor rescue for Tc-arr. The segmentation machinery did not 

appear to re-initiate in both cases because then (more) abdominal segments would have 

been expected. Hence, the breakdown of the SAZ after loss of Wnt signaling (Beermann et 

al., 2011) appears to be irreversible, even if the knocked-down components are brought 

back to the system. 
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Figure 4.6 – RNAi of the "posterior signaling center": Tc-Wnt/D; Tc-wls 
Double pRNAi against the Wnt pathway components Tc-Wnt8/D and Tc-wntless (Tc-wls) results in 
unsegmented cuticles. VSR expression rescues blastodermal segemnts, while no conclusive rescue of 
abdominal segmentation was observed. (A) Exemplary non-heat shocked (left) and heat shocked (right) 
cuticles. (B) Bar chart detailing the presence of blastodermal segment after Tc-Wnt8/D;Tc-wls double RNAi 
and different hs-treatment time points in hsVSR line. No heat shock treatment resulted in 40% empty eggs 
(no cuticle). In those eggs with cuticles, no segmentation could be observed. Hs-treatment rescued 
blastodermal segments with prevalence of anterior over posterior ones. (C) Boxplot showing the number 
of abdominal segments for the cuticles of the corresponding conditions in B. No abdominal segments were 
observed in non-heat shocked cuticles. Hs-treatment did not result in rescue of abdominal segments. 
Possible outliers (see material and methods) are marked in red. 
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4.1.3 Early rescue of primary pair-rule gene phenotype in cuticles indicates reversibility of 
posterior segmentation breakdown 

The next class of segmentation genes to be investigated were the primary pair-rule genes 

(pPRG) Tc-even-skipped (Tc-eve), Tc-runt (Tc-run), and Tc-odd-skipped (Tc-odd). As 

mentioned in the introduction, the current model states that these pPRGs are oscillating in 

the SAZ to form the segmentation clock (El-Sherif et al., 2012; Sarrazin et al., 2012) 

Furthermore, Tc-eve probably is the first of these three genes in the loop to be activated, 

because its RNAi knockdown leads to the lowest number of pre-gnathal segments (0 for 

Tc-eve, 1 for Tc-run, and 2 for Tc-odd, see Choe et al., 2006). 

 

4.1.3.1 Tc-even-skipped 

As previously reported, Tc-eve RNAi leads to complete breakdown of segments, resulting 

in cuticles with no gnathal, thoracic or abdominal segments (Choe et al., 2006). Performing 

parental RNAi of Tc-eve transcripts resulted in cuticles with labrum (Lr) and antennae (Ant) 

remaining in both the hsVSR line and the RNAi wild type controls (vw; see “hs neg” in Fig. 

4.7Ai/ii and 4.7B). Interestingly, and in contrast to previously published results (Choe et al., 

2006), a pair of stomata posterior of the remaining labrum was almost always present 

(90%, see Fig. 4.7C, “hs neg”).  

Expression of the VSR at the earliest time point (10-13h) did rescue both blastodermal and 

abdominal segments (Fig. 4.7Aiii/iv). A strong rescue was observed for the mandibles (Md) 

and one thoracic segment (75% and 85%, respectively). This thoracic segment could be of 

T1 identity based on absence of tracheal openings and the apparent anterior-to-posterior 

rescue gradient. Also, close to 30% of maxillae (Mx) were rescued (Fig. 4.7B). The median 

number of abdominal segments increased to four segments (with individual cuticles 

showing as many as 6-7 abdominal segments) (see “hsVSR, 10-13h” darkgreen in Fig. 4.7C). 

The hs-treated RNAi wild type control did not show any increase in abdominal segments 

number nor of blastodermal segments ("vw, hs 10-13h” in Fig. 4.7B and C).  

VSR expression at the second time point (13-16h), in contrast, did not significantly rescue 

the number of abdominal segments. Few cuticles were observed with more than the 

average one abdominal segment (see “hsVSR, 13-16h” in Fig. 4.8B). This, in contrast, was 

counterbalanced by cuticles with additional loss of segments. Hence, it is possible that the 

negative effect of the hs-treatment hides a minor rescue effect. The rescue of blastodermal 



Results 
 

 45 

segments was also strongly reduced in the late treatment (see Md, Mx, and T1 in Fig. 4.7B). 

No change in segment number was observed for the RNAi wild type control ("vw” in Fig. 

4.7B and C). 

Out of three repetitions of this experiment, one experiment not only failed to show 

significant rescue of abdominal segments, but showed a significant decrease in segment 

number (Fig. 7.5B). This particular experiment still showed rescue of blastodermal 

structures like mandibles (25%) and one thoracic segment (45%) (see Fig. S7.5A), but it 

appears that the hs-treatment induced loss of segments outweighed any rescue. The other 

two experiments (see Figs. S7.4 and 4.8), however, clearly showed the rescue of both 

abdominal and blastodermal segments upon VSR expression at the transition from 

differentiated blastoderm to germband stage (10-13h). 
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Figure 4.7 – RNAi of the segmentation clock: Tc-even-skipped 
pRNAi against the pPRG Tc-eve results in loss of all gnathal, thoracic and abdominal segments. 
Hs-treatment in the hsVSR line rescues segmentation. (A) Exemplary non-heat shocked (Ai) and heat 
shocked (Aiii) cuticles (line drawings of respective cuticles in Aii and Aiv) after Tc-eve RNAi in the hsVSR line. 
No gnathal, thoracic or abdominal segments are present (Ai, Aii). Hs-treatment resulted in rescue of 
segmentation and cuticles with gnathal, thoracic and abdominal segments (Aiii, Aiv). Stomata indicative of 
abdominal segments marked by short arrows in Aiii (B) Bar chart detailing the presence of blastodermal 
segment after Tc-eve RNAi and different hs-treatment conditions in hsVSR and wild type (wv) line. While 
no heat shock treatment resulted in the classic PRG phenotype, hs-treatment rescued blastodermal 
segments. No rescue was observed in the RNAi wild type controls (vw). (C) Boxplot showing the number 
of abdominal segments for the cuticles of the corresponding conditions in B. Significant increase in 
abdominal segment number was observed after hs-treatment in the hsVSR line, but no recue was observed 
in the RNAi wild type controls (wv). Possible outliers (see material and methods) are marked in red. 
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4.1.3.2 Tc-runt 

Parental Tc-run RNAi resulted in cuticles with only one remaining gnathal segment, the 

mandibles (see “ª” in Fig. 4.8Aii and “Md” in Fig. 4.8B). This result is in line with previously 

published results (Choe et al., 2006). The observed median number of abdominal segments 

after Tc-run RNAi in the hsVSR line without hs-treatment was 0.25, while the RNAi wild type 

control median was zero. A few cuticles did show stomata openings (like the cuticle shown 

in Fig. 4.8Ai/ii, white arrows), indicating the possible presence of an abdominal segment 

(see material and methods for comments on counting abdominal segments based on 

stomata openings). Less than 15% of non-heat shocked cuticles showed other blastodermal 

segments, mainly a thoracic segment in less than 20% of cuticles (see "vw hs neg" in Fig. 

4.8B). 

Early VSR expression (10-13h) rescued the number of both blastodermal and abdominal 

segments (Fig. 4.8Aiii/iv). The latter were rescued to a median number of three abdominal 

segments, with some cuticles showing five or more rescued abdominal segments (see 

“hsVSR, 10-13h” in Fig. 4.8C). Blastodermal rescue of the Mx (55%, marked ✝in Fig. 4.8Aiv) 

and the first and second thoracic segment (65% and 45%, respectively; T1 marked in Fig. 

4.8Aiv) was observed as well (Fig. 4.8B). A few blastodermal structures decreased in 

number, like the Lr (to 60%), antennae (At, to 80%) and Md (to 75%). As indicated above, 

this is most likely due to the hs-treatment itself, since a similar decrease can also be 

observed in the RNAi wild type control (“vw hs 10-13h” in Fig. 4.8B).  

Inhibiting RNAi at 13-16h still showed significant, albeit weaker rescue of abdominal 

segments, with a median number of one abdominal segment. Also, one thoracic segment 

was rescued in 40% of cuticles (see “hsVSR, 13-16h” in Fig 4.8AB). Only the late VSR 

expression time point at 16-19h failed to rescue abdominal segments when compared to 

the RNAi wild type control. 

The Tc-run RNAi rescue experiment has been repeated three times. Only the third iteration 

(presented above) did rescue abdominal segments, while the earlier two iterations failed 

to rescue segmentation (Figs. S7.6B and S7.7B). Blastodermal segment rescue in the earlier 

two experiments was also weak with one thoracic segment being rescued, but barely above 

30% (see “T1” in Figs. S7.6A and 7.7A). I attribute the observed variation to the dual 

consequences of the heat-shock treatment: rescuing segmentation by RNAi inhibition on 

the one hand and hs-defects in cuticles on the other hand. Given this complex system, 
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minor experimental differences (as briefly mentioned in the Material and Methods) could 

lead to diverging outcomes. Another repetition is clearly needed to increase confidence 

with that data. 
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Figure 4.8 – RNAi of the segmentation clock: Tc-runt 
pRNAi against the pPRG (Tc-run) results in loss of almost all gnathal, thoracic and abdominal segments, 
except for the mandibles (Md). Hs-treatment in the hsVSR line rescues segmentation. (A) Exemplary non-
heat shocked (Ai) and heat shocked (Aiii) cuticles (line drawings of respective cuticles in Aii and Aiv) after Tc-
run RNAi in the hsVSR line. Except for the mandibles, no other gnathal, thoracic or abdominal segments 
are present, except for an occasional pair of stomata (see material and methods) (white arrows in Ai, Aii). 
Hs-treatment lead to rescue of segmentation and resulted in cuticles with gnathal, thoracic and abdominal 
segments (Aiii, Aiv). Stomata indicative of abdominal segments marked by short white arrows in Aiii (B) Bar 
chart detailing the presence of blastodermal segment after Tc-run RNAi and different hs-treatment 
conditions in hsVSR and wild type (wv) line. While no heat shock treatment resulted in cuticles with only 
the mandibles remaining, hs-treatment further rescued maxillae and one thoracic segment. No rescue was 
observed in the RNAi wild type controls (vw). (C) Boxplot showing the number of abdominal segments for 
the cuticles of the corresponding conditions in B. Significant increase in abdominal segment number was 
observed after hs-treatment in the hsVSR line, but no recue was observed in the RNAi wild type controls 
(wv). Possible outliers (see material and methods) are marked in red. 
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4.1.3.3 Tc-odd-skipped 

Tc-odd RNAi knockdown resulted in cuticles missing all segments posterior to the maxillae 

(Mx) (“✝” in Fig. 4.9Aii and B), as previously published (see Choe et al., 2006). The median 

number of abdominal segments after Tc-odd RNAi was between 1 to 1.5 segments in both 

the non-heat shocked hsVSR and RNAi wild type control line (see “hs neg” in Fig. 4.9C). This 

phenotype is slightly weaker than the complete loss of abdominal segmentation described 

in Choe et al. (2006). 

VSR expression at 10-13h is the only time point after Tc-odd RNAi at which a significant 

rescue of abdominal segments was observed in the hsVSR line when compared to the RNAi 

wild type control line. The median abdominal segment number increased to 3 with a small 

number of cuticles showing up to 8 rescued segments (Fig. 4.9C). One thoracic segment 

was the only blastodermal segment that was rescued (to 30%) (see “hs 10-13h” in Fig. 4.9B 

and C). There was no rescue of either blastodermal or abdominal segments in neither 

hsVSR nor RNAi wild type control line for the later hs-treatment time point (“hs 13-16h” in 

Fig. 4.9B and C) 

Tc-odd, like the other two pPRG RNAi rescue experiments, has been repeated three times. 

While the first rescue experiment iteration failed to rescue any segments (Fig S7.8 A and 

B), in the second repetition were a few cuticles with an increased number of abdominal 

segments. In the statistical analysis, these cuticles were counterbalanced by others that 

had lost segments (“hs 10-13h” in Fig. S7.9B), again most likely due to heat shock damage. 

While a trend was indicated, statistical analyses revealed no significant increase for the 

early treatment time point (see Fig. S7.7B). Only the last repetition (the one presented 

above) showed significant rescue of abdominal segments when compared to both non-

heat shocked hsVSR cuticles and hs-treated cuticles of the RNAi wild type control line. 

 

In summary I found that a re-initiation of segmentation after breakdown is possible. I was 

able to show for each of the three pPRGs, at least once, that segmentation can be rescued 

with the hsVSR system. Rescue, however, does only appear possible when RNAi is inhibited 

at the transition from blastoderm to germband and the early stages of posterior 

segmentation (i.e. 10-13h). The median number of rescued abdominal segments was lower 

than the total number of abdominal segments in wild type L1 larvae and I never observed 

a “full rescue” to eight abdominal segments. Either the time needed to restore the 
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machinery necessary for segmentation (i.e. the segmentation clock) and the downstream 

effectors is too long to restore segmentation or there might be a “timing system” in place 

that tracts the overall time of development. This would also explain the decreasing efficacy 

of abdominal rescue with later hs-treatment time points. 
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Figure 4.9 – RNAi of the segmentation clock: Tc-odd-skipped 

pRNAi against the pPRG Tc-odd results in loss of gnathal, thoracic and abdominal segments posterior of 
the maxillae (Mx). Hs-treatment in the hsVSR line rescues segmentation. (A) Exemplary non-heat shocked 
(Ai) and heat shocked (Aiii) cuticles (line drawings of respective cuticles in Aii and Aiv) after Tc-odd RNAi in 
the hsVSR line. Except for the Md (a) and Mx (✝), no other gnathal, thoracic or abdominal segments are 
present, except for one pair of stomata (see also material and methods) (white arrows in Ai, Aii). 
Hs-treatment resulted in rescue of segmentation and cuticles one thoracic and abdominal segments (Aiii, 
Aiv). Stomata indicative of abdominal segments marked by short white arrows in Aiii (B) Bar chart detailing 
the presence of blastodermal segment after Tc-odd RNAi and different hs-treatment conditions in the 
hsVSR and wild type (wv) line. Non-heat shocked cuticles showed Md and Mx, but no other posterior 
segments. Hs-treatment in hsVSR rescued one thoracic segment. No rescue was observed in the RNAi wild 
type controls (vw). (C) Boxplot showing the number of abdominal segments for the cuticles of the 
corresponding conditions in B. Significant increase in abdominal segment number was observed after 
hs-treatment in the hsVSR line, but no recue was observed in the RNAi wild type controls (wv). Possible 
outliers (see material and methods) are marked in red.  
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4.2 Tc-eve RNAi rescue by hsVSR restores pPRG expression 

To check whether the segmentation clock did indeed properly re-initiate after VSR rescue, 

I wanted to take a closer look at the expression of the segmentation clock genes before 

and after the expression of the VSR in pPRG RNAi germbands. Cuticle is secreted at the end 

of embryonic development and a lot of developmental processes (including potentially 

compensatory mechanisms) occur in-between VSR expression and cuticle secretion three 

days later. Hence, it was important to directly score for the re-establishment of the 

segmentation clock shortly after the hs-treatment. 

For this purpose, I repeated the Tc-eve pRNAi, hs-treated embryos at the most efficient 

time point at 10-13h , fixed germbands shortly thereafter and visualized the gene 

expression of the primary pair-rule genes by Hybridization Chain Reaction (HCR, see Choi 

et al., 2018). Tc-eve RNAi was chosen because it showed the most robust response in the 

cuticle rescue experiments and because of its proposed position as the “first” pPRG to be 

activated within the segmentation clock. 

 

4.2.1 Heat shock induced developmental delay 

First, I needed to determine the appropriate time point for germ band fixation. Heat shocks 

applied to developing embryos are known to cause a developmental delay (Boos et al., 

2018; Schinko et al., 2012). To be able to compare fixed non-heat shocked to hs-treated 

germbands, I needed to estimate that delay. This delay could be ignored when performing 

cuticle analysis because the end point of embryonic development is comparable even if 

different time was needed to reach it (L1 larvae in the case of cuticle analysis).  

To that end, I performed in-situ hybridization for the segment polarity gene Tc-wingless 

(Tc-wg) and counted Tc-wg stripes in non-heat shocked and hs-treated embryos to 

compare their developmental age. While RNAi could further increase the developmental 

delay, I did not consider it in this analysis. 

Three-hour egg lays of the hsVSR line (0-3h) were split into four groups (“hs neg 17-20h” 

representing a late segmentation stage, “hs pos 17-20h”, “hs pos 22-25h”, “hs pos 27-

30h”). The “hs pos” groups were heat shocked as in the hsVSR treatments (at 10-13h 2h 

later) and all four were fixed at the given time points (see Fig. 4.10 for schematic overview). 
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Figure 4.10 – Developmental delay after heat shock treatment, experimental procedure 
Embryos were collected for 3h (0-3h) and either not hs-treated (hs neg) or hs-treated (hs pos) at 10-13h 
(the second hs-treatment at 12-15h is also indicated). “Hs neg” and “hs pos” embryos were fixed at time 
points indicated (14-17h, 17-20h, 19-22h, 22-25h, 27-30h) and Tc-wingless (Tc-wg) in-situ hybridization 
was performed. 

 

In non-heat shocked germbands I observed a median number of 14 Tc-wg stripes (excluding 

the ocular and antennal stripes). The number of Tc-wg stripes in hs-treated embryos fixed 

at the same time was 0 (zero) and the germbands were barely elongated (not shown). This 

drastically demonstrated the introduced developmental delay by the hs-treatment at 10-

13h. Heat shocked embryos fixed at 22-25h showed a median number of 6.5 Tc-wg stripes 

while embryos fixed at 27-30h showed a median number of 9 Tc-wg stripes with few 

germbands showing more than 10-12 or more stripes (see Fig.4.11A).  

 
Figure 4.11 – Developmental delay after heat shock treatment 

(A) Boxplot showing the number of Tc-wg stripes in germbands either non-heat shocked or heat shocked 
at 10-13h and fixed at different times after hs-treatment as indicated (see Fig. 4.10). Non-heat shocked 
germbands (fixed at 17-20h) showed a median of 14 Tc-wg stripes, while hs-treated germbands fixed at 
the same time show no Tc-wg stripes (counting started at the mandibular Tc-wg stripe). Hs-treated 
embryos fixed at 22-25h showed a median of 6.5 Tc-wg stripes and embryos fixed at 27-30h showed a 
median of 9 Tc-wg stripes. (B) Boxplot showing the number of Tc-wg stripes without heat shock treatment 
(hs neg) fixed at 14-17h and with heat shock treatment (hs pos) fixed at 19-22h. There is no significant 
difference between the number of Tc-wg stripes between these two time points. Tc-wg stripes were 
visualized by hybridization chain reaction. Possible outliers (see material and methods) are marked in red. 
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Non-heat shocked germbands were already close to being fully segmented (Nagy and 

Carroll, 1994). Therefore, I chose an earlier fixation time point (14-17h) to obtain 

germbands for the following HCR stainings that still undergo segmentation. Further tests 

revealed that non-heat shocked germbands fixed at 14-17h showed no significant 

difference in Tc-wg stripe numbers compared to hs-treated germbands fixed at 19-22h. see 

Fig. 4.11B.  

In summary, I showed that the applied hs-treatment as shown in Fig. 4.12 resulted in a 

developmental delay of roughly 5h-6h compared to non-heat shocked embryos. Similar 

developmental delays after (a single) hs-treatment have been reported before (Boos et al., 

2018). Knowing the introduced developmental delay and appropriate fixation time points, 

I could continue to investigate the rescue of segmentation observed in cuticles in more 

detail. 

 

4.2.2 hsVSR treatment rescues pPRG expression in Tc-eve RNAi germ bands 

One aim of my thesis was to reveal whether the rescue of segmentation observed in 

cuticles depends on the re-initiation of segmentation clock gene expression. I therefore 

performed parental Tc-eve RNAi in the hsVSR and RNAi wild type control line. The resulting 

embryos from both hs-treated and non-heat shocked samples were fixed according to the 

scheme in Fig. 4.12.  

 
Figure 4.12 – Tc-eve RNAi for HCR/qPCR sample collection, experimental procedure 

Tc-eve pRNAi was performed in hsVSR animals. Eggs were collected for 3h (0-3h). Non-heat shocked 
embryos (hs neg) were either fixed and flash frozen in liquid nitrogen at 14-17h. Heat shock treated 
embryos (hs pos) were either fixed or frozen in liquid nitrogen at time points indicated. Embryos for HCR 
stainings were stored in MeOH at -20°C. Samples for qPCR analysis were stored at-80°C until further 
processing. 

 

In fixed germband embryos I analyzed the expression of the primary pair-rule genes Tc-eve, 

Tc-run, and Tc-odd as well as the segment polarity gene Tc-wg as a segmental marker. The 

expressions of the genes were detected by HCR. HCR utilizes a chain reaction amplification 

of signal by fluorescently labelled DNA amplifiers which can bind to amplifier-specific 
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labelled DNA probes that bind specifically to the target transcripts (Choi et al., 2018). I used 

the unaffected and dynamic Tc-wg expression in the head in order to stage germ bands 

(see Fig. S7.11 for Tc-wg staging overview). A comparison of this staging between the Tc-

eve RNAi samples showed that the germbands, both hs-treated and non-heat shocked for 

both lines (hsVSR and vw), were in a similar developmental stage (Fig. 4.13A). In a second 

head stage analysis, I compared the Tc-wg head stage between both hs-treated and non-

heat shocked non-RNAi wild type vw to eliminate the possible influence of the RNAi in the 

first analysis. This second analysis revealed that there might have been a slight age 

difference between the two chosen time points based on Tc-wg head stages (Fig. 4.12B). 

This difference, however, was not statistically significant. The non-RNAi germbands were 

also in a slightly later Tc-wg head stage than the Tc-eve RNAi germbands (despite the same 

fixation time), probably due to the RNAi itself (compare Fig. 4.13 A to B). These two head 

stage analyses confirmed that my fixation time points were chosen in a way that enabled 

me to compare non-heat shocked and heat shocked embryos. 

 

 
Figure 4.13 – Tc-wg head stage analysis in non-heat shocked and heat shocked 

germband 
Boxplots showing the Tc-wg head stage compared between germbands without (hs neg) and with 
hs-treatment (hs pos) used for HCR stainings and pPRG stripe analysis. (A) Comparisons between 
germbands from the hsVSR and RNAi wild type control (vw) lines. After Tc-eve RNAi and fixed at different 
time points to compensate for the developmental delay due to hs-treatment, they showed no significant 
differences in Tc-wg head stages. (B) Comparison between non-heat shocked and heat shocked vw 
germbands without RNAi. Comparison between Tc-wg head stages showed a non-significant difference 
between the samples. For Tc-wg head stage overview, see Fig. S7.12. Possible outliers (see material and 
methods) are marked in red. 
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In non-heat shocked Tc-eve RNAi hsVSR germbands, both the ocular and antennal Tc-wg 

stripes as well as the posterior Tc-wg domain patterned normally (see Fig.4.14 Avii). The 

same was true for non-heat shocked Tc-eve RNAi vw wildtype control germ bands (Fig. 

4.15Avii). In the trunk of both non-heat shocked hsVSR and vw germbands, I found a broad 

(i.e. not segmental) but weak Tc-wg expression domain.  

Interestingly, Tc-eve RNAi did not lead to a complete loss of Tc-eve, Tc-run, and Tc-odd 

expression, as was previously reported (Choe et al., 2006). Rather, Tc-eve expression was 

still present in the posterior of the germband, but most often failed to resolve into proper 

stripes (Figs. 4.14Ai and Fig. 4.15Ai). Also, both the anterior unsegmental Tc-wg and the 

posterior unsegmental Tc-eve expression were always non-overlapping, forming a 

boundary in the germband (see Figs. 4.14Avi and 4.15 Avi). Also noticeable was the fact that 

Tc-eve RNAi germbands did not elongate properly and sometimes developed a “bulge” or 

thickening along the AP axis (often within the broad Tc-wg domain, not shown). 

In Tc-eve RNAi germband without hs-treatment, both Tc-run and Tc-odd were expressed in 

stripes but only to some degree  (arrowheads in Figs. 4.14Aiii/Av and 4.15Aiii/Av). These 

expressional stripe of Tc-run and Tc-odd, were, compared to wild type (Choe et al., 2006), 

irregular and poorly resolved. However, if present, the relative positions of the expression 

stripes were more or less retained. There were no obvious differences in the expression of 

the pPRGs and Tc-wg when comparing non-heat shocked hsVSR germbands with the non-

heat shocked RNAi wild type control (vw) germbands, indicating that the Tc-eve RNAi had 

a very similar effect in both lines.  

Upon hs-treatment and VSR expression, the expression of Tc-wg in Tc-eve RNAi germbands 

did change dramatically. Instead of the unresolved expression domain, segmental Tc-wg 

stripes were formed along the AP axis (arrowheads Fig. 4.14Bvii). In addition, also all three 

pPRG show expression in stripes largely resembling the wildtype pattern (Choe et al., 2006) 

(arrowheads in Fig. 4.14Bi, Bii, and Bv). Furthermore, germbands after hs-treatment were 

elongating, at least in the more posterior region (Fig. 4.14B and not shown). In contrast, in 

the RNAi wild type control line, hs-treatment did not cause any change in the expression of 

Tc-wg (Fig. 4.15Bvii) nor any apparent change in the expression of the pPRGs (Fig. 4.15 Bi, 

Biii and Bv). 

The presence of remaining Tc-eve transcript in non-heat shocked Tc-eve RNAi germbands 

was surprising and contradicted published results (Choe et al., 2006). One explanation 
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might be the optimization of the dsRNA concentration to a comparably low level. With this 

optimization, the RNAi still produced a highly penetrant and strong cuticle phenotype 

(around 1 µg/µl), but did not aim for complete removal of transcripts. Higher 

concentrations might have led to a stronger reduction of residual mRNA. A second 

explanation could be that in RNAi only cytoplasmic mRNA is destroyed while nuclear 

pre-mRNA remains intact. The observed Tc-eve signal in Tc-eve RNAi germ bands might 

thus well be nuclear (pre-)mRNA. 
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Figure 4.14 –pPRGs and Tc-wg expression after Tc-eve in hsVSR germbands 

Anterior to the left. Morphology of germbands visualized by DAPI staining (A, B). Non-heat-shocked (A-Avii) 
and heat shocked (B-Bvii) germbands of the hsVSR line after parental Tc-eve RNAi. HCR staining was 
performed for the three pPRGs Tc-eve (eve; Ai and Bi), Tc-run (run; Aiii and Biii) and Tc-odd (odd; Av and Bv) 
and the segmental marker Tc-wg (wg; Avii and Bvii). Without hs-treatment, both the pair-rule stripes of Tc-
eve (Ai) and the segmental stripes of Tc-wg (Avii) are lost, indicating the breakdown of segmentation, while 
expression of run and odd (Av) still appear somewhat striped (arrowheads in Aiii and Av). Expression of Tc-
eve and Tc-wg portion the embryo into an anterior and posterior half and never overlap (Avi). Upon 
hs-treatment, pPRG stripes of Tc-eve, Tc-run and Tc-odd returned (arrowheads in Bi, Biii, Bv), as did the 
segmental stripes of wg (arrowheads in Bvii), indicating the proper re-initiation upon VSR expression. See 
text for further details. Scale is 100µm. 
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Figure 4.15 – pPRGs and Tc-wg expression after Tc-eve RNAi in vw germbands 

Anterior to the left. Morphology of germbands visualized by DAPI staining (A, B). Non-heat-shocked (A-Avii) 
and heat shocked (B-Bvii) germbands of the vw line after parental Tc-eve RNAi. HCR staining was performed 
for the three pPRGs Tc-eve (eve; Ai and Bi), Tc-run (run; Aiii and Biii) and Tc-odd (odd; Av and Bv) and the 
segmental marker Tc-wg (wg; Avii and Bvii). Without hs-treatment, expression patterns are comparable to 
the non-heat shocked germbands Tc-eve RNAi germbands in Fig. 4.14. Both the pair-rule stripes of Tc-eve 
(Ai) and the segmental stripes of Tc-wg (Avii) are lost, indicating the breakdown of segmentation. Upon 
hs-treatment, the expression of pair-rule stripes of all three pPRGs and of the segmental marker was 
unchanged. See text for further details. Scale is 100µm. 
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4.2.3 Significant increase in Tc-wg stripe number reflects rescue of segmentation  

To quantify the rescue of segmentation by VSR expression, I counted the number of Tc-wg 

stripes for all conditions and treatments in all documented embryos (see Fig. S7.12). 

Comparing the number of Tc-wg stripes by Mann-Whitney U tests revealed a significant 

increase in Tc-wg stripes expressed in hs-treated Tc-eve RNAi hsVSR germbands (“hs pos” 

in Fig. 4.16D) compared to Tc-eve RNAi wild type control germbands. Comparison of non-

heat shocked germ bands of both lines did not show any significant differences (“hs neg” 

in Fig. 4.16D). The significant increase in segmental Tc-wg stripes is an early reflection of 

the increase in segments in hs-treated Tc-eve RNAi cuticles of the hsVSR line (see Fig.4.7C). 

 

 

Figure 4.16 – Quantification of pPRG stripes after Tc-eve RNAi in germbands 
Boxplots showing the number of pair-rule (A-C) and segmental Tc-wg (D) stripes. Comparisons of  stripes 
between heat shocked hsVSR and RNAi wild type control germbands showed a significant increase in the 
number of both pair-rule and segmental stripes, further supporting the re-initiation of segmentation after 
VSR expression. No significant changes between hsVSR and RNAi wild type control (vw) germbands without 
heat shock treatment were seen. Possible outliers (see material and methods) are marked in red.  
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4.2.4 Re-initiation of segmentation is further supported by pPRG stripe numbers and 
rescue classes 

I also performed quantification of pPRG stripes in non-heat shocked and hs-treated 

germbands of both the hsVSR and RNAi wild type control lines. Quantification and 

comparisons by Mann-Whitney U tests revealed a significant increase of their number in 

hsVSR germbands after hs-treatment when compared to hs-treated RNAi wild type controls 

(Figs. 4.16A, B and C). This further explains both the increase in Tc-wg stripes (Fig 4.16D) as 

well as the subsequent rescue of segmentation in cuticles (Fig. 4.7C). 

Because quantifying the low number of pPRG stripes might obscure the signal, I 

complemented the analysis with a second method to compare pPRG expression of non-

heat shocked to hs-treated germbands. I sorted all well documented germbands into three 

different classes: “Close to WT” (WT), “intermediate” (+/-) and “all stripes lost” (-) for each 

of the three pPRGs (see Figs. S7.12 for all documented germ bands in their respective 

classes). Germ bands in the “WT” class were those that showed pPRG expression that 

appeared close to normal (hence “wild type”) (e.g. Tc-eve pattern in embryo “1a” in Fig. 

S7.12A). The “intermediate” class contained all germ bands whose pPRG expression was 

clearly not wild type, but they still showed some sort of striped pattern (e.g. Tc-eve pattern 

in embryo “4b” in Fig. S7.12A). The “all stripes lost” class contained all those germ bands in 

which the pPRGs had lost their striped expression pattern altogether (e.g. Tc-eve pattern 

in embryo “3a” in Fig. S7.12A). This classification was done for each of the pPRGs 

individually. Comparisons of the proportions of the three classes for each treatment and 

gene by Chi-Square tests (with Monte Carlo simulations, see material and methods) were 

performed. They revealed a significant difference for the Tc-eve stripe classes between 

heat shocked hsVSR germbands and heat shocked vw germ bands. The “intermediate” class 

increased in proportion, mainly at the expense of the “all stripes lost” class (see Fig. 4.17A). 

For the other two pPRGs, Tc-run and Tc-odd, a respective trend appears to be present. I 

observed a decrease in the proportions of the “all stripes lost” class upon hs-treatment in 

the hsVSR line, but the p-values (0.08 for Tc-run and 0.1 for Tc-odd) did not reach 

significance levels (Fig. 4.17B and C). The result for the Tc-eve stripes, however, further 

supports the result that segmentation is rescued after RNAi breakdown due to proper 

re-initiation of pPRG and subsequent segmental Tc-wg expression  
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Figure 4.17 – pPRG rescue classes after Tc-eve RNAi in germbands 
Stacked car charts showing the proportions of each rescue class (Close to WT (“WT”), intermediate (“+/-“) 
and all stripes lost (“-“) within each treatment condition for the three pPRGs after Tc-eve RNAi. Rescue 
classes are colour-coded and indicated to the right. Treatment conditions are indicated below each bar. 
Germbands used for rescue classification were the same germbands used for the analysis in Fig. 4.16. 
Significant differences were observed in the proportion of the rescue classes for Tc-eve stripes after 
hs-treatment in the hsVSR line when compare to the RNAi wild type control (A). All other comparisons 
were non-significant, but a general trend was observable. Increase of the “intermediate” often at the 
expense of the “all stripes lost” class can be observed for hs-treated hsVSR germbands (B and C). See Fig. 
S7.12 for all imaged and classified germbands. 

 

4.2.5 Tc-eve RNAi does not cause breakdown of the SAZ 

The re-initiation of segmentation indicated that the SAZ itself might be unaffected by pPRG 

RNAi-mediated breakdown of segmentation. I asked whether Tc-eve RNAi caused loss of 

segmentation “only” due to loss of regular pPRG expression (i.e. breakdown of the 

segmentation clock) or if Tc-eve RNAi also had a reciprocal influence on the SAZ itself. 

Therefore, I detected the expression of the SAZ marker genes Tc-cad and Tc-wg in Tc-eve 

RNAi embryos using HCR to visualize the SAZ and score SAZ independent gnathal and thorax 

and SAZ dependent abdominal segmentation.  

Tc-wg expression was not segmental in any of the screened Tc-eve RNAi germbands but 

expressed in a broad domain anterior of the SAZ. The non-segmental posterior Tc-wg 

expression was present (Fig. 4.18). The expression of Tc-cad was still present in the 

posterior of screened germbands and similar to the expression in wild type germbands 

(Copf et al., 2004). (Fig. 4.18). Thus, the SAZ itself, judged by the expression of Tc-cad and 

eve run odd

hs
VS

R
, h

s 
ne

g

hs
VS

R
, h

s 
po

s

vw
,h

s 
ne

g

vw
, h

s 
po

s

hs
VS

R
, h

s 
ne

g

hs
VS

R
, h

s 
po

s

vw
,h

s 
ne

g

vw
, h

s 
po

s

hs
VS

R
, h

s 
ne

g

hs
VS

R
, h

s 
po

s

vw
,h

s 
ne

g

vw
, h

s 
po

s

0

20

40

60

80

100

Genotype / treatment

Pr
op

or
tio

n

eve run odd

hs
VS

R
, h

s 
ne

g

hs
VS

R
, h

s 
po

s

vw
,h

s 
ne

g

vw
, h

s 
po

s

hs
VS

R
, h

s 
ne

g

hs
VS

R
, h

s 
po

s

vw
,h

s 
ne

g

vw
, h

s 
po

s

hs
VS

R
, h

s 
ne

g

hs
VS

R
, h

s 
po

s

vw
,h

s 
ne

g

vw
, h

s 
po

s

0

20

40

60

80

100

Genotype / treatment

Pr
op

or
tio

n

eve run odd

hs
VS

R
, h

s 
ne

g

hs
VS

R
, h

s 
po

s

vw
,h

s 
ne

g

vw
, h

s 
po

s

hs
VS

R
, h

s 
ne

g

hs
VS

R
, h

s 
po

s

vw
,h

s 
ne

g

vw
, h

s 
po

s

hs
VS

R
, h

s 
ne

g

hs
VS

R
, h

s 
po

s

vw
,h

s 
ne

g

vw
, h

s 
po

s

0

20

40

60

80

100

Genotype / treatment

Pr
op

or
tio

n
-

+/-

WT

classes
Pr

op
or

tio
n

Genotype / Treatment

** 0.08 0.1A CB



Results 
 

 64 

Tc-wg, appeared intact and restricted to the posterior region of the elongating embryo. 

Therefore, Tc-eve RNAi did not lead to breakdown of the SAZ. This is in line with a model 

where Tc-eve (and the segmentation clock) acts downstream of the SAZ genes Tc-cad and 

Tc-wg / ”posterior signaling center” (Fig. 2.5A). 

 

 
Figure 4.18 – Tc-cad and Tc-wg expression after Tc-eve RNAi 

Anterior to the left. HCR staining for Tc-cad and Tc-wg in a non-heat shocked germband after Tc-eve RNAi. 
Tc-cad is still expressed in the posterior in the SAZ. Counterstaining with Tc-wg shows loss of segmental 
stripes and breakdown of segmentation. Tc-wg expression in the head and the SAZ was unaffected. Scale 
is 100µm 

 

4.3 qPCR reveals possible autoregulation of Tc-eve 

While Tc-eve RNAi was effective enough to cause a severe and highly penetrant phenotype 

in both cuticles and in the germband (Figs. 4.7, 4.14 and 4.15), I still wanted to quantify 

both the RNAi knockdown and VSR rescue efficiencies in greater detail. To that end, I 

performed q PCR for the three pPRGs Tc-eve, Tc-run and Tc-odd, the VSR open reading 

frame, and intronic Tc-eve transcripts. The latter was included because of the HCR results 

that suggested that I might have uncovered autoregulation of Tc-eve, causing upregulation 

of Tc-eve transcripts (including pre-mRNA still containing intronic sequences) upon its RNAi. 

I used the same time points as in in the HCR experiment (see schematic in Fig. 4.12) for the 

sample collection of both non-heat shocked and hs-treated hsVSR and vw wildtype RNAi 

control embryos. Unfortunately, due to the nature of the hsVSR experiments I was only 

able to secure one biological replicate for the most important and interesting time points: 

non-heat shocked and treated Tc-eve RNAi in hsVSR.  

As expected, the VSR expression was increased in the hs-treated but not in the non-heat 

shocked samples of the hsVSR line. Also, no VSR signal was detected in the wild type 
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controls upon hs-treatment since they did not contain the heat shock reactive transgene 

(not shown). Heat shock treatment alone (no RNAi) reduced the amount of transcript for 

all three pPRGs (see “xxx, pos” in Fig. 4.19 or Tbl. 4.1) in both the hsVSR and wild type 

control.  

Surprisingly, Tc-eve RNAi did reduce the amount of Tc-eve transcript only slightly more 

efficiently than the hs treatment alone (without RNAi) (compare “xxx, neg” to “eve, neg” in 

Fig. 4.19 or Tbl. 4.1). Tc-eve RNAi did also, however, reduce the amount of transcript of the 

other two pPRGs, Tc-odd and Tc-run. Given the strong phenotype and the clear rescue upon 

hs-VSR treatment, it was surprising that Tc-eve itself was neither strongly downregulated 

nor rescued by hs-VSR treatment. However, gene regulation acts in the nucleus while RNAi 

acts in the cytoplasm. If the gene is upregulated in the nucleus by an autoregulatory loop 

it could happen that Tc-eve mRNA in the cytoplasm is reduced (inducing the phenotype) 

while its transcript abundance in the nucleus is enhanced (obscuring the cytoplasmic 

reduction). In order to test this, we included an intronic probe for Tc-eve, which would 

report nuclear pre-mRNA but not cytoplasmic mRNA. Indeed, I observed that the amount 

of intronic Tc-eve transcript upon Tc-eve RNAi was strongly increased. This increase was 

detected in all Tc-eve RNAi samples except for where the RNAi effect had been inhibited 

by hsVSR treatment (“hsVSR, eve, pos” in “eve intron” in Fig.4.19 and Tbl.4.1). These results 

are in line with a scenario where Tc-eve RNAi first caused a decrease in Tc-eve mRNA, 

eventually resulting in upregulation (or de-repression) of Tc-eve transcription, resulting in 

more pre-mRNA. Since mature transcripts were degraded upon nuclear export, only 

premature transcripts remained. This is further supported by the fact that RNAi rescue by 

VSR expression in the hsVSR line returned the intronic expression signal to normal. That is 

because a rescue of Tc-eve expression would cause a return to a more normal Tc-eve 

regulatory situation. It would also explain the Tc-eve HCR signal observed in Tc-eve RNAi 

germbands (see Fig. 4.14 and 4.15). 

 

In summary, the qPCR results hints to an unexpected (and as of yet unpublished) 

autoregulation of Tc-eve transcription, which compensates for the cytoplasmic RNAi 

mediated Tc-eve decay. 
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Figure 4.19 – qPCR gene expression fold changes after Tc-eve RNAi and hsVSR rescue 

qPCR analysis of Tc-eve RNAi (eve) and non-RNAi (xxx) embryos showing fold changes in gene expression 
with and without hs-treatment in the hsVSR and wild type (vw) line. Samples conditions are indicated in 
the upper right corner. qPCR analysis was performed for coding regions of the three pPRGs Tc-eve (eve), 
Tc-run (run), and Tc-odd (odd), the expressed VSR (VSR), and intronic Tc-eve (eve intron). Normalization 
was performed using two house-keeping genes (rps3 and gapdh). See text for details. 

 

Table 4.1 – qPCR gene expression fold changes after Tc-eve RNAi 
and hsVSR rescue 

 
 (values indicated are corresponding to bar charts in Fig. 4.19) 

 

 

4.4 Gap genes are unlikely a timing factor for the segmentation clock 

Another observation of the cuticle rescue in section 4.1.3 was that the time point of the 

VSR expression (i.e. hs-treatment) after Tc-eve RNAi appeared to have a strong influence 

on the number of rescued abdominal segments. Since the blastodermal structures are 

pattered early i.e. during the blastoderm stages, the rescue of blastodermal structures is 

logically linked to the early expression of the VSR. It was, however, unclear if the 

line RNAi treatment eve odd run
eve 
intron VSR

hsVSR xxx neg 1 1 1 1 1
hsVSR xxx pos 0.73 0.69 0.74 0.52 2.99
hsVSR eve neg 0.64 0.71 0.59 2.44 1.1
hsVSR eve pos 0.75 0.76 1.05 0.85 3.72

vw xxx neg 1 1 1 1 x
vw xxx pos 0.49 0.57 0.81 0.67 x
vw eve neg 0.48 0.66 0.51 2.43 x
vw eve pos 0.69 0.63 0.82 2.6 x
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breakdown of segmentation by Tc-eve RNAi and subsequent rescue would restart 

abdominal segmentation from the “beginning” or if after the rescue segmentation resumes 

from a place in time defined by an unknown timing  mechanism that is not the 

segmentation clock itself. Since segmentation has to stop at some point, a mechanism is 

necessary that detects this point in time during development. I already shortly discussed 

that the time needed to restore the genetic machinery necessary for segmentation might 

take too long to restore abdominal segments after a late hs-treatment. Another, possibly 

complementary explanation could be the presence of an overall timing mechanism to track 

development and/or patterning time, and to provide a “stop signal” for said processes. 

I showed that the SAZ itself does not seem to be impacted by Tc-eve RNAi (Fig. 4.18), 

meaning that other processes requiring the SAZ could still function. This assumption is 

based on the continued expression of Tc-cad, the putative “speed regulator” molecule (see 

introduction). It is known that the gap gene cascade, the sequential expression and 

posterior-to-anterior propagation of the gap genes from the SAZ, is controlled by Tc-cad 

(Boos et al., 2018). The gap gene network is also considered a candidate to convey the 

information necessary for segmentation timing and termination (Andrew Peel, personal 

comm.; Clark et al., 2019).  

 

 

 
Figure 4.20 – Reset of the putative patterning timing factor, experimental procedures 
For both experiments, Tc-eve pRNAi was performed in the hshb line and crossed to the hsVSR line. Embryos 
were collected for 3h (0-3h) and either heat shock treated (hs pos) or not (hs neg). (A) Influence of early 
rescue and putative timer reset at later time point. All embryos (except hs neg) received the first 
hs-treatment at 10-13h. The second hs-treatment was given as indicated in the A (no 2nd hs-treatment to 
7h after first hs-treatment). (B) Influence of later rescue and putative timer reset. All embryos (except hs 
neg) received hs-treatment once as indicated in B. 
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Recently, it was shown that the ectopic expression of the Tribolium gap gene Tc-hunchback 

(Tc-hb) (hs-hb, see Distler, 2012) is resetting (or restarting) the gap gene cascade in 

Tribolium (Boos et al., 2018). Utilizing this restart of the gap gene cascade, I wanted to test 

the hypothesis that the gap gene network might be the aforementioned timing mechanism 

that acts independently of the segmentation clock. 

I made use of the fact that both the VSR expression and the ectopic expression of Tc-hb 

necessary for the gap gene cascade restart require heat shock treatment. The idea was to 

perform Tc-eve RNAi (i.e. disrupting segmentation) in a cross of the both lines 

(hsVSR×hshb) and, by hs-treatment, both rescue the Tc-eve RNAi while simultaneously 

restart the gap gene cascade at different time points during germ band extension.  

In the first experiment (Fig. 4.20A), embryos in total received two heat-shocks. A first early 

heat shock at 10-13h and then a second heat shock after different intervals (from 2h to 

ca.7.5h after the first one). The idea behind this was that the first heat shock at 10-13h 

rescues the Tc-eve RNAi (as previously shown, see section 4.1.3) and also restarts the gap 

gene cascade (Boos et al., 2018). A second heat shock would, for a second time, inhibit 

Tc-eve RNAi and restart the gap gene cascade, this time during rescued segmentation. This 

second hs-treatment would reset the putative segmentation timer and results in cuticles 

with more abdominal segments compared to cuticles from “normal” hsVSR rescue 

experiments (section 4.1.3). 

In the second experiment (Fig. 4.20B), only a single heat shock treatment was applied at 

three different time points (13-16h, 16-19h, or 19-22h) to rescue both Tc-eve RNAi and 

reset the gap gene cascade (i.e. the timing mechanism) at the same time. These three time 

points are later than the time point for which efficient rescue of Tc-eve RNAi by the hsVSR 

system was shown (section 4.1.3). If the gap gene cascade does act as a timer for 

segmentation, one would expect rescue of segmentation after Tc-eve RNAi at later time 

points than previously shown. 

Unexpectedly, Tc-eve RNAi in the cross hsVSR×hshb was much less efficient than in 

homozygous hsVSR (compare “hs neg“ in Fig. 4.21 to Fig. 4.7C). Non-heat shocked cuticles 

showed an average of 4.5 and 3.75 abdominal segments, in the first and second 

experiment, respectively (see “hs neg” Fig 4.21A and B). A less efficient RNAi was also 

observed for the blastodermal segments (compare “hs neg” in Figs. S7.10A and B to Fig. 

4.7B). 
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In the first experiment (Fig. 4.21A), the single heat shock treatment at 10-13h significantly 

increased the median number from 4.5 to 6 abdominal segments (Fig. 4.21A, “hs pos 

(once)”). In cuticles with two hs-treatments, 2h apart, the efficacy of the rescue further and 

significantly increased (this hs-treatment conditions are comparable to the hs-treatment in 

the previous pPRG rescue experiment, section 4.1.3). However, these rescued cuticles 

already showed eight abdominal segments (which is the wild type number of abdominal 

segments of L1 larvae). A comparison between this rescue experiment and the one in Fig. 

4.7 (Tc-eve RNAi in the homozygous hsVSR line) showed a similar number of rescued 

abdominal segments (3-3.5 segments, median to median). Whether this was due to a 

similar rescue efficacy or because the maximum number of abdominal segments is eight 

and therefore the rescue in this experiment couldn’t get more efficient remains unclear. 

Interestingly, the rescue efficacy for samples with an increased time between 

hs-treatments did not immediately decline, but remained stable for hs-treatment intervals 

up to 5h (Fig. 4.21A). Only if the interval between hs-treatment was more than 5h the 

median efficacy of abdominal segment rescue declined. But it never dropped below the 

median of the sample that received only a single heat shock treatment. Importantly, only 

few cuticles showed supernumerical numbers of abdominal segments (~3% (n=30) in “6h 

apart”,~6% (n=30) in “4h apart” and “6h apart”, ~8% (n=26) in “7.5h apart” and ~13% 

(n=30) in “3h apart”, see Fig. 4.21A). For homozygous hshb cuticles additional trunk 

segments were reported in 30-40% of the analyzed cuticles after hs-treatment at 10-13h 

AEL, (Distler, 2012). I observed even less additional segments. Therefore, I did not consider 

those few to be an example of resetting the segmentation clock and timer. Given the weak 

Tc-eve phenotype these experiments, however, remain preliminary and need to be 

repeated. 

In the second experiment (Fig. 4.21B), where samples were given only a single heat-shock, 

the median number of abdominal segments in non-heat shocked cuticles, as mentioned 

above, was 3.75 segments (and therefore again higher than the number of abdominal 

segments in homozygous hsVSR cuticles after Tc-eve RNAi, see Fig. 4.7C). Neither rescue 

nor supernumerary abdominal segments could be observed for any of the hs-treatment 

time points (Fig. 4.21B). I already knew from the Tc-eve RNAi rescue experiments in 

homozygous hsVSR embryos (section 4.1.3) that hs-treatment later than 10-13h AEL was 

unlikely to rescue abdominal segmentation (Figs .4.7C, S7.4B). The fact that the reset of the 
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gap gene cascade in combination with the Tc-eve RNAi rescue did also not result in an 

increase of abdominal segments, compared to non-heat shocked embryos, can mean two 

things: either the gap gene cascade is not involved in a “patterning timing system” or that 

a reset of the gap gene cascade later that 10-13 AEL might not be possible. This would also 

explain the absence of any effect in the first gap gene reset experiment (Fig. 4.21A) and 

that a second, at a later interval applied reset might actually not work. 

The number of blastodermal segments after Tc-eve RNAi without heat shock treatment in 

the cross hsVSR×hshb was also higher than after Tc-eve RNAi in homozygous hsVSR 

animals (compare “no treatment” in Fig. S7.10A and B to “hs neg” in Fig. 4.7B). Again, one 

thoracic segment, probably T1, was more likely to remain than the other two thoracic 

segments after Tc-eve RNAi. Heat shock treatment increased the percentages of 

blastodermal segments. Interestingly it appears that a second hs-treatment applied later 

(>5h) can results in a stronger rescue of blastodermal segments than an earlier applied, 

second hs-treatment. However, this observation does not hold true for all segments nor all 

second hs-treatment time points (Fig. S7.10A). 

 

Taken together, these two pilot experiments could not confirm that the gap gene cascade 

is or is part of the elusive “patterning timing system”, providing temporal information to 

the segmentation clock. Further studies including what effect the gap gene cascade reset 

has on Tc-eve RNAi without the VSR background would be helpful. Further, some more 

controls to validate the negative nature of these results are needed. 
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Figure 4.21 – Abdominal segments after Tc-eve RNAi and heat shock treatment in 
hsVSR×hshb 

Boxplot showing the number of abdominal segments after Tc-eve RNAi in the cross hsVSR×hshb for the 
indicated hs-treatment conditions. For experimental procedure, see figure 4.20 and text. (A) Tc-eve RNAi 
without hs-treatment resulted in a median of 4.5 abdominal segments. Heat shock treatment at 10-13h 
(applied to all conditions except “hs neg”) did increase (i.e. rescue) abdominal segmentation and two 
hs-treatment (“2h apart”) were more effective then only one hs-treatment (“hs pos (once)”). For 
hs-treatment 3h to 5h apart, the efficacy of rescue did not decrease. Only if 5h or more lay between the 
first and second hs-treatment did the efficacy decrease. Only few cuticles with supernumerical segments 
were observed (see text). Rescue of Tc-eve RNAi and later reset of the putative timing system did not result 
in further increase in rescue.. Brackets indicate statistical significances between samples. If no bracket is 
present, comparison was done with the “2h apart” sample and significance is indicated above the sample. 
(B) A combination of late (≧13-16h) VSR expression (i.e. rescue of Tc-eve) and reset of the putative timing 
system did not result in any rescue of abdominal segmentation. A late reset of the timer, if possible, does 
not influence the rescue of abdominal segmentation. Possible outliers (see material and methods) are 
marked in red.  
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5 Discussion 

In this thesis, I could demonstrate that the rescue of segmentation after RNAi-induced 

breakdown by RNAi inhibition via the hsVSR system is possible. In a proof-of-concept 

experiment I showed that rescue of gene function from RNAi knock-down is possible in a 

time-specific way. A re-initiation of the segmentation clock in both the blastoderm and SAZ 

after knock-down of the pair rule oscillator (i.e. “early or “upper” fate specification) is 

possible, while restoring abdominal segmentation on the level of the posterior organizer 

(i.e. Wnt signaling) seems not possible. In the following sections, I will first give some 

general remarks about the tool and my proof-of-concept experiments. I will then discuss 

the results of my rescue experiments and put them into the context of already published 

results. Lastly, since I was able to show that VSRs have the ability to work in a complex 

genetic network, I will point out the great potential of VSRs to overcome longstanding 

challenges of Tribolium research. 

 

5.1 hsVSR: RNAi can be inhibited in a time dependent manner 

The use of RNAi as a functional tool in developmental biology has increased the scope of 

species in which reverse genetics can be performed. In the second-best established insect 

model organism for functional genetics, Tribolium castaneum, parental RNAi (pRNAi) is so 

efficient that a genome-wide RNAi screen was successfully initiated (iBeetle screen) and is 

being finished (G. Bucher, personal comm.). So far, this screen has led to the discovery of 

new gene functions in many aspects of Tribolium development (e.g. Ansari et al., 2018; 

Kitzmann et al., 2017; Schmitt-Engel et al., 2015; Schultheis et al., 2019; Siemanowski et 

al., 2015; Ulrich et al., 2015). Using a more traditional Drosophila candidate gene approach, 

these genes and their functions would probably not have been identified. Parental RNAi, 

however, results in knockdown of gene function in all tissues of both the mother and the 

embryo. More answer specific questions of gene function in complex genetic networks or 

the reveal the function of genes with temporally different or pleiotropic roles were difficult. 

Only recently, Viral suppressors of RNAi (VSR) have emerged as a functional tool in the life 

sciences. VSR inhibit specific steps in the RNAi machinery and therefore enable a 

modulation of the RNAi response. Using VSRs, a more nuanced application of RNAi in 

Tribolium became possible (Ulrich, 2015). Our newly established “heat shock VSR” system 

(hsVSR) is a novel and unpublished system to control the expression of the VSR of the 
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Cricket Paralysis Virus (CrPV-1A) in Tribolium castaneum at a specific time by heat-shock 

treatment. It can thus inhibiting RNAi at any developmental stage, except for very early 

blastodermal stages, where heat-shock mediated expression does not work (Schinko et al., 

2012).  

In a previous thesis from our lab (Ulrich, 2015), multiple viral suppressors of RNAi (incl. 

CrPV-1A) were tested as transgenic constructs for their ability to inhibit RNAi and rescue 

RNAi phenotypes. In these initial tests, body colour markers (i.e. enzymes) or transgenic 

GFP were used to access rescue ability of the VSRs. As mentioned earlier, “rescue” or 

“ability to rescue” is, if not stated otherwise, always a rescue of the observed phenotype. 

I assumed that if a phenotype was rescued, this rescue was based on the inhibition of the 

RNAi machinery by the VSR expression. Both body colour enzymes and GFP are 

“downstream” factors in the respective developmental or regulatory network (i.e. they do 

provably not feed back to the network but just function) Therefore, a “downstream” gene 

function is more likely to be rescuable than more “upstream” gene function. This is based 

on the assumption that if a more downstream factor is knocked down via RNAi and, 

subsequently, the RNAi is inhibited via VSR, there will be a more direct link from re-initiated 

expression to function. In the case of knockdown and subsequent RNAi inhibition of a more 

upstream situated factor, the regulatory network as a whole needs to be re-initiated to 

fulfil its ultimate function. The expectation would be: the more “downstream” a factor is 

(or the lower the level), the more likely is a successful rescue of the phenotype, while the 

more “upstream” a factor is, the phenotypic rescue becomes less likely. The “timing factor” 

model proposed by Clark, Peel and Akam (2019) does define some useful “levels” within 

the segmentation process. Also, segmentation in Tribolium is not only scientifically 

interesting but also represents a complex developmental process with various levels. So, it 

is well suited to test the expectation from above and reveal the functionality of the hsVSR 

system to study complex developmental processes. 

 

5.1.1 Proof of concept using segmentation 

The process of segmentation has the purpose to establish the (para-)segment boundaries 

and thereby define and delimit the segments themselves.  

The overall aim of my thesis was to answer the question whether the breakdown of 

segmentation after RNAi of the segmentation clock or upstream factors is irreversible or if 
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a re-initiation of segmentation is possible. But before I could start to test my candidate 

genes, I needed to ensure whether rescue of RNAi segmentation phenotypes using the 

hsVSR system is in principle possible. I also needed to ensure that a possible rescue of gene 

function by hs-treatment correlates with the expression time of the gene in question, i.e. I 

needed to ensure that the rescue is time-specific.  

For that purpose, I chose the genes paired (Tc-prd) and torso as a proof-of-concept and 

negative control, respectively (see section 4.1.1). During segmentation, Tc-prd acts as a 

secondary pair-rule gene that is expressed in cells shortly after they left the SAZ. Its function 

is necessary to express segment polarity genes in odd-numbered (para-)segments (Choe 

and Brown, 2007) and importantly, it is a zygotically expressed gene. Its rescue should test 

whether segmentation in general is rescuable by the hsVSR system. Torso signaling, on the 

other hand, is provided maternally (therefore much earlier than the first rescue time point) 

and is, necessary for the initiation of the SAZ (Schoppmeier and Schröder, 2005). Its 

function in establishing the SAZ has ceased before the blastoderm became sensitive to 

heat-shock mediated expression. Hence, rescue of its function was not expected and was 

meant to act as the negative control to confirm that the time point of RNAi inhibition 

needed to correlate with the time window of expression and function of the gene of 

interest. Both criteria to use the hsVSR system were successfully met. My results could 

clearly show that there was a rescue of the number of abdominal segments after Tc-prd 

RNAi (Fig. 4.3C), but no rescue after Tc-tor RNAi (Fig. 4.4B). 

During Tribolium segmentation, Tc-prd expression can be seen as a mere transient 

(downstream) read-out of the initial (and also transient, but more upstream) pPRG pattern 

(see Fig. 2.2D). It therefore makes sense that the extent of observed segmental rescue by 

hsVSR in Tc-prd RNAi cuticles is time-dependent (compare timepoints in Fig. 4.3 C). After 

Tc-prd RNAi, the segmentation clock continues to oscillate in the SAZ and patterns the 

elongating germ-band in a two-segment periodicity (Maderspacher et al., 1998). Since Tc-

prd is missing, only every other segmental border can be established (those not dependent 

on Tc-prd expression). Early RNAi inhibition (10-13h) leads to early rescue of the transient 

Tc-prd expression and function, and therefore more anterior segmental borders can be 

rescued. Later RNAi inhibition (13-16h) only rescues those more posterior segmental 

borders (or segments) where the transient Tc-prd expression can still perform its function. 

The more anterior borders, which were patterned before the RNAi inhibition, are lost 
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because Tc-prd function was missing in the respective time window. In summary, rescue of 

RNAi is possible in a time dependent manner with the hsVSR system. 

The Tc-tor RNAi further confirmed that the time window of gene function to be 

rescued has to temporally correlating with the VSR expression. While the role of Tc-tor 

function in segmentation becomes apparent during germband elongation, its actual 

function in Torso signaling is active much earlier during the early blastoderm (Schoppmeier 

and Schröder, 2005).  

 Another important observation was the loss of segments due to the heat shock 

treatment itself (see Figs. 4.3 C and 4.4 C, compare “hs neg” to hs-treatment timepoints; 

schematically shown in Fig. 4.1B). This means that in this work and in future applications of 

this system, it is essential to separate the heat-shock effect from the RNAi-inhibition effect. 

Thus, it is necessary to include an RNAi wild type control that is heat-shocked as well, to 

better distinguish hs-defects from non-rescue and to control the resulting confounding 

variables. 

 

In summary, the proof-of-concept and the negative control experiments confirmed the two 

necessities for successful application of the hsVSR system to investigate segmentation and 

probably also other complex developmental processes: rescue of gene function during 

segmentation and time-specificity of the rescue.  
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5.2 Re-initiation of the segmentation clock is possible 

The initial question I wanted to answer using the hsVSR system was whether the 

breakdown of segmentation after RNAi is irreversible or if re-initiation (i.e. rescue) of 

segmentation is possible.  

In Tribolium, all stages (or levels) of segmentation, in stark contrast to Drosophila, are 

occurring at once, but spatially separated in the developing germband (see Fig. 2.2C-E and 

Fig. 2.5). The rescue of segmentation on the level of the sPRGs (Fig. 4.3 and section 5.1) 

showed that rescue of segmentation by hsVSR is in general possible. This led me to ask the 

following questions regarding the rescue of segmentation:  

 

(1) Does re-initiation of segmentation depend on the level in the segmentation 

process? 

(2) Is the extent of re-initiation of segmentation and the rescue of specific structures 

(e.g. head/thorax vs. abdomen) time-dependent  

(3) What do these results contribute to the segmentation models currently proposed 

for Tribolium? 

 

5.2.1 Is a rescue of segmentation possible at any level above the secondary PRGs? 

The upstream-most components in the segmentation process provide the conditions 

required for establishment and maintenance of the posterior SAZ. These can be further 

divided into the actual „initiation factors” (e.g. Tc-tor) (Schoppmeier and Schröder, 2005) 

and other factors functioning as the “posterior signaling center”, both in the blastoderm 

and germband (mainly Wnt signaling components like Tc-wg, Tc-Wnt8/D and co-factors like 

Tc-arrow and Tc-wntless) (Beermann et al., 2011; Bolognesi et al., 2008b; Bolognesi et al., 

2009; Oberhofer et al., 2014) (Fig. 2.5A). Some of the Wnt signaling components (mainly 

the ligands) play a role in both blastoderm and germband (mutual regulation of Wnt and 

Tc-cad (Ansari et al., 2018; Beermann et al., 2011; Oberhofer et al., 2014)). The function of 

the co-factors in segmentation appears to be limited to the germband/SAZ (Bolognesi et 

al., 2009). Downstream, the “spatiotemporal regulation” and the “fate specification” 

occurs (according to the model proposed by Clark et al., 2019). The spatiotemporal 

regulation is represented by the timing factor network (Clark and Peel, 2018) and includes 

Tc-cad, the proposed speed regulator (Zhu et al., 2017). The spatiotemporal regulation 



Discussion 
 

 77 

provides input for the fate specification, represented by the pPRGs, ( early or „upper“ fate 

specification [Tc-eve, Tc-run and Tc-odd]) (Choe et al., 2006; El-Sherif et al., 2012; Sarrazin 

et al., 2012), the sPRGs (later or “lower” fate specification like Tc-prd) (Choe and Brown, 

2007) and the segment polarity genes (Choe and Brown, 2009) (see Fig. 2.5A).  

The expectation, as stated above would be: the more “downstream” a factor (or its level) 

is, the more likely is a successful rescue of the phenotype, while the more “upstream” a 

factor (or level) is, the phenotypic rescue becomes less likely8.  

 

5.2.1.1 The rescue of the pPRGs consolidates their role in the segmentation clock 

Rescue of the “downstream” Tc-prd phenotype (lower fate specification) was expected and 

I could also experimentally proof this expectation. It was, however, unclear in how far the 

system built by the oscillating primary pair rule genes (upper fate specification) could re-

initiate and whether this would also be possible for the genes constantly expressed in the 

SAZ (partially “spatiotemporal regulation” and “posterior signaling center”). 

The next level above the sPRGs are the pPRGs, namely Tc-eve, Tc-run and Tc-odd. These 

genes most likely make up a segmentation clock that patterns the AP axis during both the 

blastoderm and germband stages (Choe et al., 2006; Clark et al., 2019; El-Sherif et al., 2012; 

Sarrazin et al., 2012). I was able to show that a rescue of segmentation after RNAi of the 

segmentation clock genes Tc-eve, Tc-run, or Tc-odd is possible. A statistically significant 

increase in abdominal segments in cuticles was observed in comparing hsVSR rescues to 

RNAi wild type controls (Figs. 4.7C, 4.8C, 4.9C). To test if a proper re-initiation of 

segmentation via a restored segmentation clock had occurred, I further analyzed the 

germband expression of the segment polarity gene Tc-wg and all three pPRGs in hs-treated 

Tc-eve RNAi germbands. These results show that in Tc-eve RNAi germbands after RNAi 

inhibition, the pPRGs and the segment polarity gene Tc-wg are expressed in stripes again 

(Figs. 4.14, 4.16 and 4.17). Thus, I could confirm that proper re-initiation of segmentation 

by the segmentation clock had occurred. In non-heat shocked Tc-eve RNAi or RNAi wild 

type control germbands, in contrast, the striped pattern of the pPRGs and especially the 

 
8 This simplification ignores genes that are involved in multiple different processes at different times, like e.g. 
Tc-wg. As a segment polarity gene, it is situated downstream in the segmentation process (lower “fate 
specification). Its expression in the posterior during both blastoderm and germband stages, however, also 
makes it part of the “posterior signaling center”. This, of course, complicates things and narrows down the 
possible selection of genes testable by RNAi inhibition with hsVSR. 
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segmental stripes of wg remained (mostly) lost (Figs. 4.15, 4.16), reflecting the breakdown 

of segmentation on the genetic and cuticular level.  

The oscillation of both Tc-eve and Tc-odd had been individually demonstrated in 

germbands before (El-Sherif et al., 2012; Sarrazin et al., 2012). If and how their oscillations 

are depending on each other, however, was not fully known. I could clearly show that a re-

initiation of segmentation after RNAi-induced breakdown for all three pPRGs is possible. 

This analysis further confirms that these three genes belong to one functional group: RNAi 

of any of them leads to complete breakdown of segmentation while for all of them, hsVSR 

mediated RNAi inhibition restores segmentation. Hence, they are distinct from Tc-prd 

(which does not lead to breakdown) and Wnt signaling (which appears to lead to an 

irreversible breakdown). 

 

5.2.1.2 Rescue of the putative posterior organizer is unlikely 

On the next higher levels of the segmentation process, genes are active that are either 

required for the spatiotemporal regulation (“timing factors”) or the maintenance of 

segmentation (“posterior signaling center”) (Bolognesi et al., 2008b; Bolognesi et al., 2009; 

Clark et al., 2019; Copf et al., 2004; Oberhofer et al., 2014). Tc-cad was considered a 

candidate gene for the “spatiotemporal regulation” level. The “posterior signaling center” 

is represented by Tc-Wnt8/D in combination with Tc-wls and Tc-arr.  

 

Unfortunately, Tc-cad itself, a gene highly interesting due to its prominent role in the SAZ 

and as a putative timing factor in the segmentation process could not be tested with the 

hsVSR system for technical reasons. Parental RNAi (both pupal and adult) of Tc-cad in 

Tribolium leads to severe sterility of the injected individuals (Gregor Bucher & Michalis 

Averof, pers. communication). I performed small-scale tests to optimize the pRNAi 

procedure for Tc-cad knockdown. Specifically, I tried to reduce the concentration of dsRNA 

to prevent sterility after pRNAi, but still produce phenotypes – this was unsuccessful (data 

not shown). Since a large number of embryos is required for the rescue experiment and its 

subsequent analysis (limited time window per egg collection), I also decided against 

embryonic RNAi (which has previously successfully been used to investigate Tc-cad 

function during embryogenesis, see Benton et al., 2013). Also, embryonic RNAi is much 

more labor-intense and affected by technical variation due to injection compared to pRNAi 
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and was not established in combination with the hsVSR system. However, the expression 

of Tc-cad is closely linked to posterior Wnt signaling (Ansari et al., 2018; Beermann et al., 

2011; Oberhofer et al., 2014). Similar feedback between cad and Wnt signaling (Wnt8 in 

particular) is also known from spiders (McGregor et al., 2008; Schönauer et al., 2016). 

For the tested Wnt pathway components at the level of the “posterior signaling 

center” (Tc-arr and Tc-Wnt8/D with Tc-wls), no clear rescue of posterior segmentation 

could be observed. Rescue of (anterior) blastodermal segments (Fig. 4.5 A and Fig. 4.6), 

however, acted as an “internal control” and showed that RNAi inhibition had taken place 

(Figs. 4.5B, 4.6B, S7.2A and S7.3A). This indicates that once the segmentation/patterning 

signaling center in the posterior is lost due to RNAi, it cannot be re-initiated or restored to 

continue patterning the AP axis. It was previously shown that there is autoregulatory 

feedback of Wnt signaling (Beermann et al., 2011; Oberhofer et al., 2014) as well as 

feedback between Tc-cad and Wnt signaling (Ansari et al., 2018). Breakdown of these 

feedback loop via Wnt pathway component RNAi appears irreversible and once they are 

lost, they cannot re-initiate. On the other hand, if the signaling center was restored, it is 

situated so far “upstream” in the segmentation process that the “downstream” 

components necessary to facilitate its function might not be activated quickly enough.  

 

The observed rescue of anterior segments (Fig. 4.5B and Fig. 4.6B) after Wnt pathway RNAi 

is most likely not a rescue of early segmentation. I rather reflects independent effects of 

later Wnt signaling on the segment polarity level. This assumption is based on data from 

Tc-arr and Tc-Wnt8/D;Tc-wls RNAi germbands (Bolognesi et al., 2009). The cuticle 

phenotype after RNAi appears rather severe and most often shows no visible 

segmentation. However, in early germbands anterior primary pair-rule and segment 

polarity gene expression can still be found, but quickly fade during further development. 

This fading is especially pronounced in Tc-wls RNAi germbands, that show no loss of 

(abdominal) segments (Bolognesi et al., 2008b; Bolognesi et al., 2009). These Wnt pathway 

component RNAi therefore not only disrupt the “posterior signaling center” necessary for 

(posterior) segmentation (via Tc-cad), but also disrupt the conserved feedback loop of the 

segment polarity genes that involves Wnt signaling and is necessary for segmental 

boundary maintenance (Brown et al., 1994; Choe and Brown, 2009; Farzana and Brown, 

2008; Heemskerk et al., 1991; Ingham et al., 1991; Mohler and Vani, 1992). RNAi inhibition, 
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especially in Tc-arr RNAi animals (Fig. 4.5A), could rescue this later function, resulting in 

rescued anterior segments, while the earlier function (posterior signaling center) involved 

in abdominal patterning cannot re-initiate. 

To confirm the segment boundary stabilization hypothesis, stainings of segment polarity 

genes Tc-arr or Tc-Wnt8/D; Tc-wls RNAi germbands would be necessary.  

It was repeatedly shown that the knockdown of Wnt signaling leads to breakdown 

of segmentation in arthropods, probably due to autoregulation of Wnt signaling and its 

positive feedback loop with cad (e.g. Beermann et al., 2011; Bolognesi et al., 2008b; 

Bolognesi et al., 2009; McGregor et al., 2008; Schönauer et al., 2016; reviewed in McGregor 

et al., 2009). For the first time, my experiments asked the question whether this network 

and its function ("spatiotemporal regulation” in posterior segmentation) can re-initiate 

after RNAi inhibition. My data suggests that it cannot re-initiate, meaning that 

autoregulation of Wnt signaling and feedback to and from (Tc-)cad are necessary for its 

maintenance.  

 

5.2.1.3 Other examples for rescue of oscillatory systems 

So far, oscillations of a segmentation clock during segmentation in arthropods were only 

shown in Tribolium (El-Sherif et al., 2012; Sarrazin et al., 2012). Similar mechanisms, 

however, are assumed to be a common feature in arthropod segmentation (Clark et al., 

2019; Peel and Akam, 2003; Peel et al., 2005). The concept of a segmentation clock, 

however, was first formulated and experimentally shown during vertebrate somitogenesis 

(Palmeirim et al., 1997b). In a publication from Riedel-Kraus and colleagues (2007), a rescue 

experiment similar to the ones presented in this work was performed in the zebrafish Danio 

rerio. In the publication, the authors show that Delta-Notch signaling is necessary to 

synchronize the oscillation between cells in the PSM during somitogenesis. Chemical 

treatment with a known Delta-Notch antagonist perturbated somite formation by unlinking 

the oscillation between cells and resulted in perturbated somitogenesis. After removal of 

the antagonist the linked oscillation was rescued and normal somitogenesis in the same 

individual continued (Riedel-Kruse et al., 2007). While this study demonstrated that 

desynchronized oscillation in zebrafish perturbates segmentation, which can be rescued to 

properly segment the zebrafish AP axis, this study did not stop the oscillation itself and 

restarted it. Also, as mentioned earlier, while Delta-Notch signaling has been proposed to 
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be involved in Tribolium segmentation (Clark et al., 2019), no functional data proving this 

hypothesis has been published so far (Aranda, 2006; Aranda et al., 2008). Nevertheless, in 

other arthropods the involvement of Delta-Notch signaling (often together with Wnt 

signaling) has been shown (Chipman and Akam, 2008; Schönauer et al., 2016; Stollewerk 

et al., 2003). Hence, to the best of our knowledge, this work is the first experiment where 

posterior segmentation was rescued after a breakdown. 

 

5.2.1.4 Rescue of the segmentation clock by a permissive upstream factor? 

The segmentation clock is a dynamic process and its breakdown via RNAi of the pPRG stops 

the clock from oscillating properly. Since RNAi inhibition after pPRGs RNAi in Tribolium 

rescues the clocks oscillation (this work), the question remains how exactly the upstream 

factors re-initiate the clock. In Tc-eve RNAi germbands, the posterior expression of the 

upstream factor Tc-cad is unaffected (Fig. 4.18). The return to oscillation in the presence of 

a permissive upstream factor is, for example, observed in in-vitro differentiated induced 

presomitic mosoderm-like (iPSM) cells that are cultured with GSK3β antagonists (i.e. Wnt 

signaling activated, which is the permissive factor for PSM oscillation) (Matsumiya et al., 

2018).  

iPMS cells self-organized into a presomitic mesoderm-like tissue and, under the right 

culture conditions, oscillatory expression waves were observable along a self-organized 

axis using a transgenic Hes7 reporter (hes/hes genes are orthologues of hairy). Even signs 

of forming segments along this axis were present (Matsumiya et al., 2018). This shows that 

tissue capable of oscillatory gene expression tends to (re-)start oscillating if a permissive 

upstream factor is present.  

In Tribolium, Tc-cad is probably not only a permissive factor regulating the spatiotemporal 

expression dynamics of Tc-eve (and subsequently the whole segmentation clock). It is, at 

least in the blastoderm, also required for the continued expression of Tc-eve, judged by 

in-situ stainings (El-Sherif et al., 2015). It therefore seems likely that the oscillator in pPRG 

RNAi is actually (re-)started after RNAi inhibition due to an activating signal from Tc-cad.  

In summary, my results show that a re-initiation of segmentation is indeed possible at the 

level of the pPRGs during germband elongation of Tribolium. This work demonstrates for 

the first time that the segmentation oscillator can be stopped and re-initiated. 
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5.2.2 Gap gene network as part of elusive “patterning timing system” could not be 
confirmed 

As described above, I showed that segmentation can be re-initiation via hsVSR at the level 

of the pPRGs (upstream “fate specification”), the genetic components of the segmentation 

clock (section 4.1.3). The experimental setup also allowed ask the question whether there 

is a “patterning timing system” during patterning of the germband and axial elongation. It 

is still unknown how segmentation (and axial elongation and patterning in general) is 

terminated. While not impossible, it seems unlikely that these processes just stop because 

the SAZ “runs out of cells”. Furthermore, there is as of yet no signal known in Tribolium 

that would measure and indicate an emptying pool of cells. Clark and collogues (2019) 

propose a possible "inhibitory“ influence of the gap gene network on the “spatiotemporal 

regulation” of germband patterning to convey information about the duration of 

segmentation or even provide a sort of “stop signal” via a posterior gap gene. 

RNAi of the three pPRGs leads to complete breakdown of the segmentation process as 

indicated by both cuticles and Tc-wg stainings in germbands (sections 4.1.3 and 4.2.2). This 

in turn leads to elongation defects (Choe et al., 2006). If the elusive “patterning timing 

system” would be linked to either axial elongation or the segmentation clock itself, it 

should slow down or stop upon breakdown of segmentation. A re-initiation of 

segmentation by hsVSR should therefore also restart or continue the timer since a rescue 

of segmentation necessarily also results in further axial elongation. In that scenario, the 

time point of rescue would not matter – it should always lead to the same degree of 

abdominal rescue. 

As my results from the pPRGs rescue experiments (section 4.1.3) show, the hs-treatment 

time point has a great influence on the degree of segmental rescue. Most of the re-

initiations of segmentation, meaning the significant increase of abdominal segment 

number, occurred only for the earliest hs-treatment time point (10-13h). For later 

hs-treatment time points, in contrast, the effect was strongly reduced or absent (compare 

“10-13h” to “13-16h” (and 16-19h) in Figs 4.7C and S7.4B). The fact that only early hsVSR 

treatment can rescue could be because of the temporal delay between hs-treatment, VSR 

translation and VSR function, and the time required until gene function is rescued 

sufficiently. Maybe, the later treatments are just too late to rescue a significant number of 

abdominal segments. Or that the “patterning timing system” is independent of 
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segmentation and continues to run in the background, even without segmentation or the 

segmentation clock. The proposed influence of the gap gene network (Clark et al., 2019) 

might be responsible for such a “patterning timing system”.  

 

I provide some preliminary data that would suggest little to no involvement of the gap gene 

network (or cascade) in this “timing system. The gap cascade in Tribolium proceeds 

simultaneously and independently with the segmentation clock during axis elongation (Fig. 

2.2 C and D) (Marques-Souza et al., 2008) and they share the same upstream regulation by 

the “speed regulator” molecule Tc-cad (Zhu et al., 2017). Ectopic misexpression of the gap 

gene Tc-hunchback (Tc-hb) by the Tribolium heat-shock promoter (hs-hb, see Distler, 2012) 

during germband elongation is able to restart the gap gene cascade (Boos et al., 2018). 

Accordingly, after Tc-eve RNAi in a cross of the hsVSR line with the hs-hb line 

(hsVSR×hshb), such a reset should result in a restart of the “patterning timing system” and 

re-initiation the segmentation clock. This should lead to a similar extent of abdominal 

rescue at any hs-treatment time point. Two hs-treatments might even increase the total 

number of abdominal segments beyond the wild type number. A first hs-treatment would 

rescue the Tc-eve RNAi (and reset the timer for a first time). A second hs-treatment would, 

during already rescued segmentation, reset the timer a second time, starting the timing 

anew, resulting in more than the usual number of segments  

However, my preliminary results showed no increase in total abdominal segment number 

after Tc-eve RNAi in the cross hsVSR×hshb after the application of two heat shocks with 

varying time intervals (Fig. 4.22A). However, two hs-treatments increased the extent of 

abdominal segment rescue compared to single hs-treatment. Increasing the time interval 

between the hs-treatments, also did not lead to significant supernumerical segments, 

which was a prediction of the involvement of the gap gene cascade in a “patterning timing 

system”. Two hs-treatment means that Tc-eve RNAi is inhibited twice and thus two Tc-eve 

“pulses” happen during germband elongation. In the initial pPRG rescue experiments 

(section 4.1.3), the time interval between the two hs-treatments was uniformly 2h. I have 

also shown that two hs-treatments are more effective to rescue abdominal segmentation 

than only one hs-treatment (compare “hs pos (once)” to “2h apart” in Fig. 4.21A). This 

means that the second hs-treatment and the resulting Tc-eve “pulse” have a functional 

relevance for the extent of rescue of abdominal segmentation.  
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If this second pulse is delivered too late, it will lose its influence in the rescue, either due 

to the time passed in the “patterning timing system” or simply because it is too late to 

rescue abdominal segments. However, if the timer is reset, the second, later (>5h) Tc-eve 

“pulse” should regain influence in the rescue. There is, however, no significant difference 

between samples that received two heat-shock treatments more than 5h apart to samples 

with a single hs-treated. This means that while the time interval between Tc-eve pulses to 

have an influence matters, this interval is not increased by the gap gene cascade reset.  

Also, if the first (and only) hs-treatment in hsVSR×hshb crosses after Tc-eve RNAi is applied 

later than 10-13h AEL, there is no rescue effect for abdominal segmentation (Fig. 4.22B). 

This hs-treatment should have not only inhibited the Tc-eve RNAi, but also reset the 

putative “patterning timing system”, therefore resulting in segmentation rescue beyond 

the time window that was seen in homozygous hsVSR embryos (Fig. 4.7C).  

Because of the inability to increase either the extent of abdominal rescue or the time 

window in which abdominal rescue via RNAi inhibition is possible, a role of the gap gene 

network to function as an overall “patterning timing system” could not be confirmed. 

However, these experiments where only preliminary and had some technical difficulties. 

Thus, further studies are necessary to validate these findings and interpretations. Especially 

the unexpectedly weak phenotype of the Tc-eve RNAi in the hsVSR×hshb cross (see “hs 

neg” Fig. 4.22) needs to be optimized to enable a more meaningful rescue experiment.  

 

5.2.3 Does blastodermal patterning differ from SAZ mediated patterning? 

Head and Thorax segments are pre-patterned during late blastoderm stage early in 

Tribolium development. During this blastoderm stage the first three Tc-eve stripes emerge 

from the posterior in a two-segment periodicity and pattering the three gnathal and three 

thoracic segments (El-Sherif et al., 2012). However, at the same stage only one Tc-prd stripe 

emerges, patterning the anterior gnathal segments, mandibles (Md) and maxillae (Mx). The 

second Tc-prd stripe emerges later when the early germband is formed (Choe and Brown, 

2007). The segment polarity gene pattern during the blastoderm stage is only formed by 

the first segmental Tc-engrailed stripe corresponding to the mandibular segment. Later 

coinciding with the blastoderm-to-germband transition the second Tc-engrailed stripe 

emerges (Brown et al., 1994). Interestingly, the first Tc-wg stripe in the blastoderm 

corresponds to the future ocular/antennal segment, while the corresponding Tc-engrailed 
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stripe emerges later (Nagy and Carroll, 1994; Oberhofer, 2014; Schinko et al., 2008)). 

During the blastoderm, on the “upper” fate specification level (pPRGs), all six gnathal and 

thoracic segments are (pre-)patterned. On the “lower” fate specification level, only the 

anterior-most two (sPRGs) or one gnathal segments (segment polarity genes) are (pre-

)patterned. 

The earliest hs-treatment time point was at 10-13h AEL coinciding with the transition from 

blastoderm to germband. RNAi inhibition of the pPRGs (especially Tc-eve) should therefore, 

if at all, only affected the posterior most pPRG patterned segments (T2 or T3). RNAi 

inhibition of the sPRGs (Tc-prd) at the same time point, however, could still affect the 

posterior most gnathal (labium) and all three thoracic segments. Reasoned by the temporal 

delay between hs-treatment and effect on segmentation, the more posterior a 

(blastodermal) segment is, the more likely is a rescue by hsVSR.  

However, RNAi of the pPRGs and subsequent hs-treatment at 10-13h rescued mainly 

(anterior) head segments and one thoracic segment. The rescued head segment was 

predominantly, but not exclusively, the posterior-next to the “normally” remaining head 

segment (after untreated RNAi) (Figs. 4.7B, 4.8B and 4.9B). Interestingly, the posterior-

most head segment, the labium, was hardly rescued. The identity of the rescued thoracic 

segment was difficult to determine (identification was easy if two leg-bearing segments 

were present, since one of them often carried the characteristic pair of stomata, but as 

seen in the Tc-prd RNAi cuticles, these stomata can potentially shift position). It was insofar 

a surprise to see that more anterior segments of the head (and thorax) were rescued 

instead of the predicted more posterior blastodermal structures (like the posterior thoracic 

segments).  

One possible explanation for the observed yet unexpected rescue of anterior over posterior 

blastodermal segments might be an influence of the Hox genes. Mutants or RNAi 

knockdowns of the gap genes Tc-Krüppel (Tc-Kr) and Tc-giant (Tc-gt) result in homeotic 

transformations and segment identity shifts of gnathal and thoracic segments with double-

segment periodicity (Bucher and Klingler, 2004; Cerny et al., 2005). These findings were 

interpreted as evidence for a possible regulation of anterior Hox genes (like Tc-Deformed 

(Tc-Dfd), Tc-Sex-combs reduced (Tc-Scr), and possibly Tc-Antennapedia (Tc-Antp) and Tc-

Ultrathorax (Tc-Utx)) by the pair-rule genes. For two gap genes (Tc-gt and Tc-knirps), there 

is support of pair-rule regulation (Bucher and Klingler, 2004; Peel et al., 2013). Rescueing 
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(p)PRG expression during transition from blastoderm to germband might (directly or 

indirectly) influence the expression of anterior Hox genes. These Hox genes could then give 

the rescued blastodermal segments an anterior identity, regardless of their “original” 

identity. To examine the possible influence of rescued PRG expression after Tc-eve RNAi on 

anterior Hox gene expression, their expression should be analyzed in hs-treated Tc-eve 

RNAi embryos. This could shed light on a possible homeotic transformation of rescued 

segments. 

 

Similar to the findings from the pPRG rescue, rescueing of Wnt pathway components 

showed a much higher degree of rescue for the anterior-most segments (labrum and 

antennae) than for any other segment (Fig.4.5B and 4.6B). These results, however, are also 

explainable by the proposed stabilization of established but slowly fading (para-)segmental 

borders after rescue of Wnt pathway RNAi (as mentioned in section 5.2.1.2). The 

stabilization of segmental borders (instead of actual rescue of segmentation) is further 

supported by the Tc-arrow RNAi rescue at the later time point at 13-16h which “rescued” 

more blastodermal segment borders than the earlier time point (“hsVSR, 13-16h” in Fig. 

4.5B and C). Only the latest time point at 16-19h seems too late to properly stabilize 

segmental borders, because cuticles without any segmentation and empty eggs are 

increasing (Fig. S7.2A). The observation that the hs-tratment at 13-16h increased the 

amount of stabilized segmental borders compared to hs-treatment at 10-13h was not 

observed for the Tc-Wnt8/D; Tc-wls double RNAi rescue (Fig. 4.6B and S7.3). This might be 

explained by the fact that Tc-arrow is a co-receptor of canonical Wnt signaling, while Tc-

Wnt8/D is rather specific to the posterior germband. Tc-wls, however, is necessary for Wnt 

ligand secretion (Bänziger et al., 2006; Das et al., 2012), and therefore plays a role in 

canonical Wnt signaling as well. Why rescue of Tc-wls was not comparable to the rescue of 

Tc-arr remains unclear. 

The only gene which met the expectation to rescue posterior over anterior segments was 

the sPRG Tc-prd. Here not only the abdominal segments, but also the second thoracic 

segment were rescued to a higher degree than the more anterior head segments, the 

mandibles and the labium (Figs. 4.3B and S7.1A). 

In conclusion, anterior “blastodermal” segments can be rescued to a higher degree than 

posterior segments using pPRG RNAi rescue experiments, for as of yet unknown reasons. 
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Hypothetical influence of anterior Hox genes in this phenomenon were discussed, but 

would require further studies. 

 

5.2.4 Consequences for current models of Tribolium/short-germ insect segmentation 

There currently are several, mostly complementary models explaining segmentation in 

Tribolium (described in detail in the introduction). The first model is mainly based on the 

earlier publications of Choe and colleagues stating a simple pPRG circuit with an activation-

based regulation, mainly based on single-gene in-situ hybridizations in WT and pPRG RNAi 

Tribolium germbands (Choe and Brown, 2007; Choe and Brown, 2009; Choe et al., 2006). 

Later, oscillating gene expressions of the pPRGs were shown (El-Sherif et al., 2012; Sarrazin 

et al., 2012). However, the idea that a segmentation clock-like mechanism might be 

responsible for Tribolium or short-germ insect segmentation is older (Maderspacher et al., 

1998; Peel and Akam, 2003). Both the “speed regulator” (Zhu et al., 2017) and “timing 

factor” (Clark et al., 2019) model are based on inhibition-based regulation of the 

segmentation clock oscillation. They come to this conclusion by different approaches. The 

former was concerned with finding a regulatory relationship between genes that could be 

used to facilitate patterning in both blastoderm- and germband like tissues (Zhu et al., 

2017). The latter derived from the regulation of the pPRGs from the Drosophila PRG 

regulatory network, modified to pattern in a sequential segmentation mode, and a limited 

number of double stainings in PRG RNAi and wild type Tribolium germbands and other 

insects (Clark, 2017; Clark and Peel, 2018; Clark et al., 2019). 

In this study I could reveal that Tc-eve still showed a weak (and mainly unstriped) 

expression pattern after RNAi knockdown. I also found that both Tc-run and Tc-odd were 

still expressed and even formed some posterior stripes in these Tc-eve knockdowns (Figs. 

4.14Aiii and Aiv, 4.16B and C, and 4.17B and C). However, qPCR analysis showed that both 

Tc-run and Tc-odd transcripts were slightly reduced after Tc-eve RNAi, while the intronic 

signal of Tc-eve was upregulated (Fig. 4.19 and tbl 4.1). My work therefore provides 

another data point, that might help to further test the proposed models. In respective 

simulations, Tc-eve RNAi should lead to its own upregulation. It also should separate the 

germband into a posterior Tc-eve and an anterior Tc-wg expression domain (Fig. 4.14Avi). 

More importantly, simulations need to reflect the breakdown of segmentation after Tc-eve 
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RNAi and the re-initiation of the system upon the rescued expression of the pPRGs, but not 

(posterior) Wnt signaling. 

 

5.2.5 Auto-regulation of even-skipped during segmentation 

RNAi has proven to be a useful tool for functional gene analysis, but is never 100% efficient 

in knocking down the targeted gene. In Tribolium, however, it has been shown multiple 

times that RNAi can phenocopy mutants with very high penetrance (compare itchy and 

scratchy mutants cuticles (Maderspacher et al., 1998) to Tc-prd or Tc-sloppy-paired RNAi 

cuticles (Choe and Brown, 2007) or the jaws phenotype to Tc-Krüppel RNAi cuticles (Cerny 

et al., 2005)). Nevertheless, a certain percentage of targeted transcript will always remain 

(G. Bucher, pers. communication; Kitzmann et al., 2017). Choe and collogues (2006) had 

previously reported that they did not detect Tc-eve transcripts in Tc-eve RNAi germbands 

using NBT/BCIP in-situ stainings. Contrary, I did find Tc-eve transcripts in Tc-eve RNAi 

germbands (Fig. 4.14Ai, 4.15Ai, Bi) using HCR staining. Enzymatic detection via AP-

conjugated secondary α-DIG antibodies (as used in standard in-situ stainings) do offer a 

potentially greater amplification of the initial mRNA “signal”. Therefore, such stainings are 

not well suited for quantification of gene expression, especially since its outcome can vary 

depending on fixation procedure, RNA probe binding or degradation and the time until 

ultimate termination of the reaction. 

The remaining Tc-eve mRNA observed in my stainings could either represent transcripts 

not yet targeted by RNAi, or nuclear pre-mRNA, not yet accessible by the RNAi machinery. 

My data indeed indicates that the signal stems from nuclear pre-mRNA. A preliminary 

analysis using software-based background reduction of the HCR Tc-eve signal (using a build-

in feature of the LAS-X software from Zeiss) showed that the strongest Tc-eve signal was 

often located in the nucleus in non-heat shocked Tc-eve RNAi germbands (not quantified, 

see Fig S7.13). Further, qPCR revealed a strong upregulation of intronic Tc-eve signal after 

Tc-eve RNAi, which returned to normal upon RNAi inhibition (Fig. 4.19, Tbl. 4.1). My 

controls could also indicate that the hs-treatment itself is not causing this decrease/return 

to normal of Tc-eve-intron signal (“vw, Tc-eve” in Tbl 4.1). Therefore, the increase of Tc-eve 

transcripts and subsequently, Tc-EVE protein, upon RNAi inhibition led to the decrease of 

transcription (i.e. pre-mRNA). Such negative auto-regulatory behavior could make sense in 

the light of oscillatory gene expression in the segmentation clock.  
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Similar negative autoregulatory behavior is for example a known of hairy genes (Lewis, 

2003; Schröter et al., 2012), which is also proposed to be part of Tribolium segmentation 

(Clark, 2017; Clark and Peel, 2018; Clark et al., 2019)). In contrast, for Drosophila a positive 

autoregulation of Tc-eve during segmentation was reported (Harding et al., 1989; Jiang et 

al., 1991). 

The autoregulative behavior of eve and the evolved context-dependency (positive vs. 

negative autoreguation) makes it rather interesting and should be studied in more detail. 

The suggested negative autoregulation of Tc-eve could be interpreted as a way to increase 

or maintain its oscillation in the segmentation clock, but further work is necessary to 

untangle its possible involvement in the pPRG oscillation.  

 

5.3 Possible Application of VSRs and hsVSR in developmental biology. 

In this work, I have shown that a VSRs (hsVSR, see Ulrich, 2015) can successfully be used to 

rescue the function of genes after knocked-down during segmentation. This rescue showed 

that the segmentation clock that patterns the AP axis of Tribolium and probably many other 

arthropods can be re-initiated after RNAi-induced breakdown. The hsVSR system is useful 

since it is target-gene independent. Theoretically, any gene knocked-down by RNAi could 

be rescued by hs-treatment in combination with the hsVSR line. Currently, its limitations 

are mainly the earliest target gene expression time point due to the Tribolium heat shock 

promoter used (Schinko et al., 2012)). However, an actual rescue of its function and any 

resulting phenotype depends on more criteria, like the context in which the target gene is 

functioning (e.g. Wnt signaling as a “posterior signaling center”, see section 4.1.2) or 

possible pleiotropy of the target gene. 

Using different genetic methods to express VSR could potentially increase its usefulness 

and circumvent some of these limitations. One important use of the VSR is overcoming 

pupal or adult lethality and sterility after parental RNAi. Many genes causing such dramatic 

effects after pRNAi are known, for example the already mentioned Tc-cad. Any work 

involving Wnt signaling components also often leads to sterility of injected pupa (this work, 

not shown; G. Bucher, pers. communication), increasing the necessary work load to 

produce sufficient numbers of individuals for analysis. Further, such collected eggs could 

originate from inefficiently affected animals reflecting a hypomorphic situation. 
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Ubiquitous, but low-level expression of the VSR in (homozygous) adult tissue could 

suppress sterility and other negative effects in the mother by a possible accumulation of 

the inhibitor over time. In early embryos, no or low-level expression of the inhibitor (due 

to low number of cells and possibly modulated by heterozygosity) could allow the RNAi to 

occur. This strategy, however, might only work with genes active very early in development 

because the VSR will eventually be zygotically expressed by the embryo at some point and 

show an effect. The VSR system used in this study (CrPV-1A) antagonizes the very last step 

in the RNAi pathway, Ago2 (Nayak et al., 2010; Nayak et al., 2018). Therefore, the actual 

processing and spread of dsRNA into the eggs by the injected mother would be unaffected. 

Tc-cad, which could not be tested with the hsVSR system in this study due to the severe 

sterility its pRNAi causes, would be a good example to test such a system. It would remain 

to be tested if only its earlier blastoderm function or also the later germband function 

would be influenced.  

Another application could be the disentangling of maternal from zygotic effects. 

Since pRNAi will disturb the maternal function which often masks any later zygotic function 

or phenotype, it is difficult to study genes with both maternal and zygotic functions. In a 

recent publication from our lab, Tc-germ cell-less (Tc-gcl) was identified as a maternal 

component necessary in breaking AP axis symmetry by loading Tc-axin mRNA into the 

developing egg (Ansari et al., 2018). This early function and the phenotype caused by its 

knockdown, hinders the analysis of its possible zygotic function. Inhibition of maternal RNAi 

by ubiquitous RNAi inhibition in the mother could circumvent such problems. The maternal 

gene effect can occur, even after pRNAi. The dsRNA, however, is still processed and 

“inherited” to the offspring. Since there is likely little to no accumulation and, at least 

during early embryogenesis, also little to no expression of the VSR, embryonic (i.e. zygotic) 

gene function is inhibited and a phenotype might be recovered after pRNAi. A possibly 

lower zygotic expression of the VSR in the embryo could further be achieved by 

heterozygosity.  

A more precise and targeted approach would be the expression of the VSR via the 

GAL4/UAS system (Schinko et al., 2010), that would enable blocking RNAi in specific tissue 

while RNAi could occur in all other tissues. Tests with GFP and body colour enzymes using 

the GAL4/UAS system were already successfully performed (Ulrich, 2015). The 

effectiveness of this approach is depending on the availability of GAL4 (enhancer trap) 
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lines. In Tribolium, the GEKU screen (Trauner et al., 2009) produced a large number of GAL4 

enhancer traps lines that can be screened for suitable candidates with expression (or lack 

of) in specific tissue or over time. A gene with a known and desired expression pattern, 

could be engineered to a GAL4-line via CRISPR/Cas9 (Farnworth et al., 2020; Gilles et al., 

2015). To screen for lines that do show GAL4 expression at a specific time and/or tissue is 

much more convenient than screening for lines that do not. Therefore a reversal of the 

above mentioned strategy is currently pursued in our lab. In this (as of yet) theoretical line, 

ubiquitous expression of the VSR would block RNAi in all tissues during development, 

including maternal tissues. To enable the removal of the RNAi inhibitor from the genome 

by tissue-specific expression of the Cre recombinase, the transgenic element could be 

flanked by LoxP sites (Metzger and Feil, 1999; Nagy, 2000). This would allow RNAi to 

function in only those cells that express the Cre recombinase while RNAi would remain 

blocked in all Cre recombinase-negative cells. The tissue-specificity of the Cre recombinase 

could easily be accomplished by GAL4 enhancer trap lines or engineered via CRISPR/Cas9 

(Farnworth et al., 2020; Gilles et al., 2015). Research into the function of Tc-wingless (Tc-

wg) during leg development (or many other processes that involve Tc-wg or Wnt signaling 

for that matter) would greatly benefit from such a system. For example, Grossmann and 

colleagues (2009) had to resort to embryonic RNAi applied at different time point during 

embryonic development, which is very time consuming and not applicable to all 

developmental processes or genes (as demonstrated by the failed application of Tc-prd 

“RNAi pulses”, see Ulrich, 2015). Using a system as described above would enable tissue-

specific RNAi in Tribolium, which has been utilized with great success in Drosophila 

research. 

While the expression of the VSR via the endogenous heat-shock promoter of Tribolium 

offers easy and reliable expression, more nuanced ways to express an VSR with less “side 

effects” could even increase its usefulness. The genetic toolkit available in Drosophila is, 

compared to Tribolium, much more sophisticated. Especially the use of optogenetic-like9 

manipulation and photoconversion of proteins, which has only begun to be used in 

Tribolium research (Benton et al., 2013; Kitzmann, 2016), is ideal for rescue experiments. 

 
9 The word “optogenetic-like“ is chosen as a compromise since there is no clear consensus on what 
“optogenetics” actually encompasses. By choosing this phrase, I hope to highlight the precise nature of 
optogenetical applications without assuming the mentioned references are using optogenetics. 
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For example, in a not yet peer-reviewed preprint (Johnson et al., 2019), the terminal 

patterning system of Drosophila, that is lost in Torso signaling mutants and results in loss 

of both anterior and posterior structures, was rescued by the use of an optogenetically 

activated Ras/Erk activity (being the intracellular signaling component of Torso signaling) 

(Johnson et al., 2017). This approach allowed for a more nuanced modification of Torso 

signaling both temporally and locally. Similar experiments in Drosophila using optogentic 

tools enabled for example a more detailed examination of the concentration dependence 

of bcd targets genes by modulation of bcd expression via varying illumination duration 

(Huang et al., 2017).  

I used the hsVSR system in a sort of “all-or-nothing” approach to achieve the maximum 

amount of VSR expression balanced with survivability of embryos into L1 larvae. The VSR 

expression and therefore its RNAi inhibition and subsequent rescue effect could be 

adjusted by modulating length and, to a lesser degree, strength (i.e. temperature) of the 

heat shock treatment. Our hsVSR system is also applicable for RNAi of any gene (with the 

few limitations listed above), while many optogenetic approaches are gene specific. With 

the advancement of light-sheet live-imaging in Tribolium (Strobl and Stelzer, 2014; Strobl 

et al., 2015), an opto-genetically driven RNAi inhibition system, that might even be more 

“tunable” by light impulses, might b possible. Such a system could be used to directly 

observe rescue of the segmentation clock and its consequences in a developing germband 

and would be a much-welcomed tool. This in combination with the other described ideas 

of modulating VSR expression could increase the precision of gene function studies and the 

usefulness of Tribolium as a model organism. 
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7 Appendix 

7.1 Supplementary figures 

A 

 
B 

 
Figure S7.1 – Repetition of Tc-prd RNAi 

 

Repetition of Tc-prd RNAi in hsVSR and hs-treatment at indicated time points. (A) Bar chart 

of remaining blastodermal segments. (B) Boxplot of remaining abdominal segments. 

Possible outlier (see material and methods) in red. See text for further details 
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Figure S7.2 – Repetition of Tc-arrow RNAi in hsVSR 

Repetition of Tc-arr RNAi in hsVSR. Hs-treatment at indicated time points. (A) Bar chart 

of remaining blastodermal segments. (B) Boxplot of remaining abdominal segments. 

Possible outlier (see material and methods) in red. See text for further details. 
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Figure S7.3 – Repetition of Tc-Wnt8/D; Tc-wls RNAi 

Repetition of Tc-Wnt8/D; Tc-wls RNAi in hsVSR with hs-treatment as indicated. (A) Bar 

chart of remaining blastodermal segments. (B) Boxplot of remaining abdominal 

segments. Possible outlier (see material and methods) in red. See text for further details. 
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A 

 
B 

 
Figure S7.4 – Repetition of Tc-eve RNAi I 

Repetition of Tc-eve RNAi in hsVSR and hs-treatment as indicated. (A) Bar chart of 

remaining blastodermal segments. (B) Boxplot of remaining abdominal segments. 

Possible outlier (see material and methods) in red. See text for further details. 
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A 

 
B 

 
Figure S7.5 – Repetition of Tc-eve RNAi II 

Repetition of Tc-eve RNAi in hsVSR. (A) Bar chart of remaining blastodermal segments. (B) 

Boxplot of remaining abdominal segments. Possible outlier (see material and methods) in 

red. See text for further details. 
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A 

 
B 

 
Figure S7.6 – Repetition of Tc-run RNAi I 

Repetition of Tc-run RNAi in hsVSR and hs-treatment as indicated. (A) Bar chart of 

remaining blastodermal segments. (B) Boxplot of remaining abdominal segments. Possible 

outlier (see material and methods) in red. See text for further details. 
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A 

 
B 

 
Figure S7.7 – Repetition of Tc-run RNAi II 

Repetition of Tc-run RNAi in hsVSR and vw, hs-treatment as indicated. (A) Bar chart of 

remaining blastodermal segments. (B) Boxplot of remaining abdominal segments. Possible 

outlier (see material and methods) in red. See text for further details. 
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A 

 
B 

 
Figure S7.8 – Repetition of Tc-odd RNAi I 

Repetition of Tc-odd Rnai in hsVSR and hs-treatment as indicated. (A) Bar chart of 

remaining blastodermal segments. (B) Boxplot of remaining abdominal segments. Possible 

outlier (see material and methods) in red. See text for further details. 
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A 

 
B 

 
Figure S7.9 – Repetition of Tc-odd RNAi II 

Repetition of Tc-odd RNAi in hsVSR, hs-treatment as indicated. (A) Bar chart of remaining 

blastodermal segments. (B) Boxplot of remaining abdominal segments. Possible outlier 

(see material and methods) in red. See text for further details. 
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Figure S7.10 – Blastodermal segments after Tc-eve RNAi in hsVSR X hshb 

Remaining blastodermal segments after Tc-eve RNAi and hs-treatment as indicated (see 

Fig. 4.20A for experimental procedure related to A; see Fig. 4.20B for experimental 

procedure related to B). Segments of cuticles in A correspond to abdominal segments 

shown in Boxplot 4.21A, while Segments of cuticles in B correspond to abdominal segments 

shown in Boxplot 4.21B. 
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Figure S7.12 – pPRG rescue classes – overview 

Images of all documented germbands used for the pPRG stripe and HCR rescue class 

analyses. Line and hs-treatment status (“hs pos” for heat shocked, “hs neg” for no heat 

shock) indicated above each panel. For higher quality images, see digital supplementary 

files. 
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Figure S7.13 - Nuclear signal of Tc-eve transcripts after Tc-eve RNAi 

Anterior to the left. Software-based reduction of Tc-eve HCR signal revealed a possible 

nuclear localization of remaining Tc-eve transcripts after Tc-eve RNAi. After hs-treatment 

in the hsVSR line, Tc-eve transcripts can be found in the cytoplasm. Scale is 100µm 
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7.2 Supplementary files 

Cuticle analysis and HCR data can be found in Excel file “Cuticles and HCR data.xlsx”. 

Corresponding Excel file sheet names and figures are indicated in the following table: 

 

Table S7.1 – Supplementary Excel sheet names and corresponding figures 

Excel sheet Figure Excel sheet Figure 

empty eggs 4.5, 4.6, S7.4 Eve (2018-10) 4.7 

Arr (2018-12) 4.5 Prd (2017-09) S7.1 

Arr (2018-04) S7.2 Prd (2019-10) 4.3 

Wnt8d.wls (2018-03) S7.3 Eve (hsVSR+vw, 2019-

07) cuticle 

 

Wnt8d.wls (2018-12) 4.6 EveRNAi HCR (2019-07) 

stripe# 

4.13, 4.16 

Tor (2017-09) 4.4 EveRNAi HCR (2019-07) 

HCR class 

4.17 

Odd (2019-10) 4.9 hsVSR, uninj hs_neg + 

hs_pos 

 

Odd (2018-06) S7.9 Eve (hshb x hsVSR, 

2019-06) 

4.21A and S7.10A 

Odd (2016-09) S7.8 Eve (hshbXhsVSR 2019-

10) 

4.21B and S7.10B 

Run (2018-08) S7.7 Dev-delay-wg 4.11A 

Run (2018-03) S7.6 Dev_delay_HCR data 4.11B 

Runt (2019-12) 4.8   

Eve (2018-07) S7.5   

Eve (2018-04) S7.4   

 

Higher quality images of all HCR data germbands (as shown in Fig. S7.12) are attached (“hcr 

classes all embryos_high.pdf”, (158MB)) 
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