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1. General introduction 

 

1.1. The origin, species characterization, distribution and economic 

importance 

 
Coffee is one of the most popular beverages in the world. It is easily found 

at groceries, coffee shops and at home. There is a variety of coffee products such 

as green beans, roasted beans, ground coffee or coffee drink on the market. 

Drinking coffee has become the world culture since centuries and it’s still 

progressing (Adams, 2012; Kjeldgaard and Ostberg, 2007).   

Coffee spread around the world starting from Ethiopia, which is known as 

the origin of the wild coffee species. Ethiopia has a great diversity of coffee 

species with regard to morphological, ethnobotany, and DNA based marker data. 

There are more than 5,000 accessions conserved in the main gene bank 

(Labouisse et al., 2008). Nevertheless, gene erosion can be observed in 

commercial coffee cultivars. Approximately 103 species and seven intraspecific 

coffee genera (Rubiaceae) were recorded in taxonomy, still, the coffee species 

traded most frequently are Coffea arabica, also known as Arabica and Coffea 

canephora which is known as Robusta (Davis et al., 2006).Arabica and Robusta 

have different species characterization. Arabica is tetraploid species (2n = 4x = 

44 chromosomes) and Robusta is diploid with 2n = 2x = 22 chromosomes. The 

leaves of the Arabica plant are slender and more delicate than Robusta. Arabica 

is usually cultivated above 1300 m above sea level (asl) and Robusta below 100 

m asl (Wintgens, 2004).  

Arabica and Robusta have distinct taxonomic classification (Davis et al., 

2006); chemical composition (Alves et al., 2009; Carrera et al., 1998; Casal et al., 
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2000; González et al., 2001; Ky et al., 2001; Martı́n et al., 1998, 2001); and 

sensory attributes (Gimase et al., 2014; Maeztu et al., 2001). There are several 

analytical methods to determine between species, such as physical, chemical, 

and biological approach. Nevertheless, it is still a challenge to discriminate green 

coffee beans species in terms of the accuracy of the method, time duration to 

perform analysis and the samples varieties (Toci et al., 2016). 

 As an alternative, NIR spectroscopy is potential to discriminate among 

green beans species. NIR spectroscopy discriminates between pure Arabica and 

Robusta and also blends of these species, with an accuracy of up to 96.2% 

(Downey et al., 1994). Another study also demonstrated NIR spectroscopy is 

reliable to identify Arabica and Robusta of green beans from different producing 

countries, up to 100% accuracy (Buratti et al., 2015). 

Coffee plantation can be found in the regions located between latitudes 

30°N and 30°S (Anderson and Smith, 2002). Hence, the origin of coffee refers to 

coffee growing region at the present time. Whereas, the origin related to a certain 

quality or characteristics, that can be used as a product differentiation (Teuber, 

2010). 

Ensuring the authenticity of the origin of the green coffee beans is still a 

challenge. Traders usually depend on the certificates of the origin to authenticate 

the beans. A certificate of origin contains information regarding the quality 

parameter of coffee, such as the origin, species, defects, beans size, color and 

sensory attributes (Feria-Morales, 2002; Van Hilten et al., 2011). This information 

is based on trust and needs validation. 

Several chemical compositions of the green beans, such as chlorogenic 

acids, cinnamoyl amides, cinnamoyl glycosides, free phenolic acids, and 
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methylxanthines, are potential as a marker to determine the origin by using 

multivariate analysis, but it still need further studies with a larger representative 

sample set at different location (Alonso-Salces et al., 2009). Chemical 

composition in the beans depended on post-harvest treatment, which could lead 

to variations even in the same location (Duarte et al., 2010). Therefore, chemical 

analysis as a reference method to determine the origin needs to be taken with 

precaution. 

Another promising method to identify the origin is stable isotope analysis 

(Rodrigues et al., 2009). There is still limited information regarding stable isotope 

analysis for the determination of the origin of the green beans. Stable isotope 2H 

and 18O are potential as marker with an error rate using linear discrimination 

analysis (LDA) of 5.1% and cross-validation error rate of 7.7%, proved qualified 

to determine whether coffee beans originated from Africa or Central-South 

America but could not reliably determine an Indonesian, Jamaican or Hawaiian 

origin (Weckerle et al., 2002). Other stable isotopes 11B and 87Sr were a feasible 

assessment for origin determination (Liu et al., 2014). 

NIR spectroscopy showed as a potential tool to identify between 

Nicaraguan and Costa Rican coffee origins (Bertrand et al., 2005). However, it is 

unclear, whether NIR spectroscopy is a good tool for origin determination due to 

genotype differences or due to other factors in that study. There is an information 

gap regarding the origin determination by NIR spectroscopy and thus more 

experiments in this area are necessary. Indonesia, as one of coffee exporting 

country, is the third biggest coffee producing country after Brazil and Vietnam 

(Baroh et al., 2014). In 2014, Indonesia produces 643,857 ton of green beans 

(7.2% of world production) and most of the coffee plantation is owned by the small 
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farmer (96.19%). Robusta (73.57%) is produced more than Arabica (26.43%). 

From the total production, Indonesia export green coffee beans of 384,816 ton 

with trading value US$ 1,039,341, which 9.49% of this quantity is exported to 

Germany (Triyanti, 2016).  

1.2. Quality parameters and authentication of green coffee beans 

 
The perception of quality in coffee has a broad spectrum of understanding. 

It can be started from the quality of the green beans that include several 

parameters e.g. origin, moisture content, defects, bean size and shape, color, 

roasting characteristic and sensory attributes (Feria-Morales, 2002). The quality 

of coffee can also be related to how the beverage is served (Chen and Hu, 2010). 

Species and origin authentication of green beans is also a concern in the 

coffee industry.  Adulteration between Arabica and Robusta as the most traded 

coffee species is a problem (Toci et al., 2016). Consumer preference also varies 

on different coffee origin. Fraud can occur due to price variability on different 

species and origin (Sepúlveda et al., 2016). Therefore, authentication is important 

to avoid potential adulteration and fraud. 
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Table 1.1. Quality attributes and authentication parameter of green coffee beans. 

Parameters Attributes* Author(s)/year 

Quality   
Moisture content The safety range is 8.0-12.5%. There 

are several methods to determine 
moisture content: ISO 1446, 1447 and 
6673 

(Reh et al., 2006) 

Defects Indonesia categories defect beans 
such as fully or partially black beans, 
faded beans, crushed beans, moldy 
beans, immature beans. Grade 1 
considered as the best quality with a 
maximum score of 11 defect beans 
from 300 g sample of green coffee. 

(Indonesian National 
Standard, 2008) 

Bean size and 
shape 

bean shape: round, long; bean size: 
small (<14 mm), medium (14 - 16 mm), 
bold (>17 mm) (Kathurima et al., 2009) 

Sensory test 
Fragrance/aroma, flavor, aftertaste, 
balance, preference, acidity, body (Gimase et al., 2014) 

Authentication   

Species Arabica and Robusta (Górnaś et al., 2014) 

Origin Brazil, Kenya, Ethiopia, Indonesia (Rodrigues et al., 2011b) 

*Different countries have their own regulations on determination methods. 

Despite the complexity of coffee quality and authentication issues under 

different parameters (Table 1.1.), it is still very important to have a method to 

assess the quality and authenticate that is fast, reliable and accurate for practical 

applications. One of the methods that meet this requirement is near infrared (NIR) 

spectroscopy (Toci et al., 2016). However, research on its applicability for green 

coffee beans analysis is still lacking. Therefore, this study is focused on this 

theme.  

1.3. NIR spectroscopy as an alternative method to determine quality 

 The reference methods used to determine the quality of coffee underlie 

different regulations in each country. These differences in regulation can become 

a barrier for trading. Furthermore, the reference method usually consumes a lot 

of time, labor and chemicals. NIR spectroscopy, as an alternative to the reference 

method, has the advantages of saving time and resources. NIR spectroscopy 

requires minimal sample preparation and for a particular quality does not need 
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sample preparation at all. The whole green beans or roasted beans can be used 

as a sample without any beforehand treatment. The quality measurement using 

NIR can potentially be used as a non-destructive analysis and real time analysis 

(Barbin et al., 2014). 

The implementation of NIR spectroscopy in coffee industry still faces the 

challenge of building a sufficient database for robust and reliable prediction. 

Coffee beans are organic matter and therefore influenced by several factors such 

as climate, genotype, agricultural practice and postharvest treatment (Decazy et 

al., 2003; Joët et al., 2010; Kitzberger et al., 2014; Läderach et al., 2011; Oberthür 

et al., 2011). This variability has to be covered in the prediction model. A wide 

variability of coffee samples is important in order to obtain a better calibration. 

Another challenge is the requirement of specific skills in statistical data 

analysis. Chemometrics is employed in order to understand the correlation 

between NIR spectral data and the beans quality. Multivariate analysis is normally 

used to simplify the complex data (Barbin et al., 2014).  

There are several steps to perform NIR spectroscopy. The first 

recommended step after acquiring the NIR wavelength data is an outlier 

detection. The identification of correct outlier is important to prevent an inaccurate 

model (Shabbak and Midi, 2012). Afterward, pre-processing data is needed to 

reduce unrelated data information (Esteban-Díez et al., 2004). The next step is 

to analyze data using multivariate analyses such as principal component analysis 

(PCA) and partial least square regression (PLS) through calibration and 

prediction model (Craig et al., 2012; Wold et al., 2001). 
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1.4. Objectives of the studies 

 NIR spectroscopy has been utilized to predict quality and authenticate 

green coffee beans. However, to what extent NIR spectroscopy examine green 

beans origin from Indonesia is still lacking. Indonesia has a lot of variety of coffee 

and needs to be evaluated in the term of quality and authentication. Therefore, 

the present study was performed to achieve the following objectives:  

a. Predict moisture content in intact green coffee beans of Arabica and Robusta 

by NIR spectroscopy and chemometrics. 

b. Evaluate the applicability of UV-Vis and NIR spectroscopy to discriminate 

between green coffee beans of Arabica and Robusta. 

c. Examine the potential of NIR spectroscopy and stable isotope analysis of 

oxygen, hydrogen, and strontium to identify the origin of the green coffee 

beans from Java Island, Indonesia.  

 The result of the present studies will be presented in the following 

chapters. Rapid prediction of moisture content in intact green coffee beans will 

be investigated in chapter 2. Discrimination of Arabica and Robusta will be 

evaluated in chapter 3, while in chapter 4, the origin of Java green coffee beans 

will be identified. Finally, a general discussion and conclusion will be presented 

in chapter 5, followed by a summary in chapter 6.   
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2. Rapid prediction of moisture content in intact green coffee 

beans using near infrared spectroscopy 

 

Citation: Adnan, A., Hörsten, D. von, Pawelzik, E., and Mörlein, D. 2017. Rapid 

Prediction of Moisture Content in Intact Green Coffee Beans Using Near Infrared 

Spectroscopy. Foods 6, 38. doi:10.3390/foods6050038 
 

2.1.  Abstract 

Moisture content (MC) is one of the most important quality parameters of 
green coffee beans. Therefore, its fast and reliable measurement is necessary. 
This study evaluated the feasibility of near infrared (NIR) spectroscopy and 
chemometrics for rapid and non-destructive prediction of MC in intact green 
coffee beans of both Coffea arabica (Arabica) and Coffea canephora (Robusta) 
species. Diffuse reflectance (log 1/R) spectra of intact beans were acquired using 
a bench top Fourier transform NIR instrument. MC was determined 
gravimetrically according to The International Organization for Standardization 
(ISO) 6673. Samples were split into subsets for calibration (n = 64) and 
independent validation (n = 44). A three-component partial least squares 
regression (PLSR) model using raw NIR spectra yielded a root mean square error 
of prediction (RMSEP) of 0.80% MC; a four component PLSR model using scatter 
corrected spectra yielded a RMSEP of 0.57% MC. A simplified PLS model using 
seven selected wavelengths (1155, 1212, 1340, 1409, 1724, 1908, and 2249 nm) 
yielded a similar accuracy (RMSEP: 0.77% MC) which opens the possibility of 
creating cheaper NIR instruments. In conclusion, NIR diffuse reflectance 
spectroscopy appears to be suitable for rapid and reliable MC prediction in intact 
green coffee; no separate model for Arabica and Robusta species is needed. 

Keywords: quality; rapid methods; infrared spectroscopy; Coffea arabica 
(Arabica); Coffea canephora (Robusta); chemometrics 

 

2.2.  Introduction 

 
Moisture content (MC) is one of the most important quality parameters of 

green coffee beans. Most importing and exporting countries regulate MC as one 

of the quality standards for green coffee beans. The safety range for MC is 8.0–

12.5%, based on fresh matter (International Coffee Organization, 2013; Pittia et 

al., 2007; Reh et al., 2006). MC outside the safety range impairs the bean quality 

and safety. Beans with a MC above 12.5% are not allowed to be shipped and 

traded (Van Hilten et al., 2011). MC below 8% causes shrunken beans and an 
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unwanted appearance (Gautz et al., 2008), whereas MC above 12.5% facilitates 

fungal growth and mycotoxin production (e.g., ochratoxin A) that are risks to 

human health (Palacios-Cabrera et al., 2004; Pardo et al., 2005). 

Coffee is harvested in the form of ripe berries and has a MC of more than 

60% (Finzer et al., 2003). These ripe berries are processed through several steps 

of (wet or dry) postharvest treatments resulting in green coffee beans. Farmers 

generally dry the beans under the sun. The dried beans often do not meet the 

standard requirements for MC, resulting in a lower price (Subedi, 2011). For 

example, green beans obtained in the Bengkulu Province of Indonesia had a MC 

of 10.1–18.6% (Yani, 2008) and those in West Nusa Tenggara Province had a 

MC of 11.0–14.1% (Aklimawati et al., 2014). 

MC control is also important for the storability of the beans. An inappropriate 

storage environment (e.g., non-aerated silos and bag storage) affects MC 

fluctuation. The MC of green coffee beans stored in non-aerated silos increased 

up to 15.4% during rainy season. This moisture increase leads to the 

accumulation of glucose and an unpleasant taste in the beverage (Bucheli et al., 

1998). 

Furthermore, MC is crucial before the roasting process. The same roasting 

temperature and time with different MCs can result in different quality attributes—

like color, density, and aroma—of the end product (Baggenstoss et al., 2008). 

Consequently, an identical MC of green coffee beans is important for the roasting 

procedure in order to produce a consistent quality of roasted beans. 

Therefore, a fast and accurate determination of MC in green coffee beans is 

vital. Up to date, the standard method for determining MC is the gravimetric 

method, where a drying chamber with a certain temperature and time is used to 
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dry the beans and afterwards the mass loss is calculated. International standards 

for MC measurement of green coffee beans are The International Organization 

for Standardization  (ISO) 1446, 1447, and 6673 (Mendonça et al., 2007; Reh et 

al., 2006). Thereof, ISO 6673 which requires less preparation and the shortest 

drying time (105 °C for 16 h) is widely accepted as a reference method among 

importing and exporting countries. Apparently these gravimetric methods do not 

suffice when the information on MC is needed instantly (Gautz et al., 2008) which 

is why we researched alternative methods. 

Near infrared (NIR) spectroscopy has been widely investigated for rapid, 

often non-destructive, determination of the compositional and quality traits of 

agricultural products. For example, previous work in our group predicted rapid 

and non-destructive analysis of mango quality attributes using NIR spectroscopy 

and chemometrics (Munawar et al., 2016). NIR spectroscopy makes use of the 

fact that NIR radiation in the range of 780–2500 nm predominantly interacts with 

hydrogen bonds—e.g., O–H, C–H, N–H, S–H. NIR radiation that hits a sample 

may be transmitted, absorbed, or reflected, this depends on the chemical 

composition and physical factors of the sample. The intensity of transmitted, 

absorbed, or reflected radiation is then recorded by NIR spectroscopy (Blanco 

and Villarroya, 2002; Nicolaï et al., 2007). 

Specific wavelengths (1450 and 1940 nm) were identified to be highly 

correlated with water content (Isengard, 1995; Reh et al., 2006). Predicting MC 

using NIR spectroscopy in any agricultural product is more complex and should 

not be based on wavelengths limited to 1450 and 1940 nm. MC does not only 

reflect water, but also loss of volatile compounds during drying (Reh et al., 2006). 

In fact, NIR has some disadvantages, e.g., overlapping of wavelengths that 
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correspond to specific organic compounds, and scattering problems (Barbin et 

al., 2014; Blanco and Villarroya, 2002). It is therefore necessary to carefully 

develop calibration models for NIR based predictions (Isengard, 2001, 1995). 

Prediction of MC by NIR spectroscopy has been developed over years for 

many agricultural products (Büning-Pfaue, 2003). A regression model was 

developed to predict MC in (ground) green coffee bean (Coffea arabica from 

Brazil) based on NIR diffuse reflectance (log 1/R) spectra (Morgano et al., 2008). 

To the best of our knowledge, this is the first study investigating the prediction of 

moisture content in intact green coffee beans of both Coffea arabica (Arabica) 

and Coffea canephora (Robusta) species by NIR spectroscopy and 

chemometrics. The main goal of this paper was to study the feasibility of NIR 

spectroscopy to predict moisture content (MC) in intact green coffee beans. We 

developed and validated calibration models based on diffuse reflectance spectra 

which were obtained using a benchtop near infrared instrument. Our decision to 

involve both Arabica and Robusta species stems from the fact that both species 

are commercially important but vary in their chemical composition. Furthermore, 

we used intact green beans such as no sample preparation would be needed—

yet such an approach has not been documented. The results are especially 

relevant for those involved in coffee trading, production, and quality control. We 

also demonstrate the possibility of creating a simple NIR instrument which only 

uses a few important wavelengths to predict MC, rather than employing the full 

NIR spectrum. 
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2.3.  Materials and methods 

2.3.1.  Materials 

 
Green Arabica and Robusta coffee beans that were harvested in 2013 were 

obtained from a local trading company in Indonesia. The materials were divided 

into separate sample sets for calibration and validation purposes (Table 2.1). The 

beans were placed in an open plastic box with the size of 15.5 × 11 × 6 cm, and 

were stored in a climatic chamber (Rumed® type 1301, Rubarth Apparate GmbH, 

Laatzen, Germany) at 25 °C and a relative humidity range of 30–85%, in order to 

obtain a broad range of MC within 6–22%. Upon equilibration, samples were 

removed from the climatic chamber to record diffuse reflectance (log 1/R) data. 

Immediately thereafter, MC of the beans was determined. 

Table 2.1. Characteristics of the coffee samples including species and origin 

No. Purpose Species Origin 

1 

Calibration 

Arabica 
West Nusa Tenggara 

2 South Sulawesi 
3 Aceh 

4 

Robusta 

South Sumatera 
5 Bali 
6 East Java 
7 North Sumatera 

8 

Validation 

Arabica 
West Java 

9 North Sumatera 

10 
Robusta 

South Sumatera 
11 East Java 
12 Bengkulu 

 

2.3.2.  NIR spectroscopy 

 
A bench top Fourier transform near infrared (FT-NIR) instrument with sample 

cup rotation (Thermo Nicolet Antaris MDS, Thermo Fisher, Waltham, MA, USA) 

was used to acquire diffuse reflectance spectra (log 1/R) of bulk samples of green 

coffee beans (40 g) on a Petri dish with a diameter of 7 cm. 
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Spectra were collected according to a workflow developed using the software 

Result Integration Software (ResultTM version 3.0, Thermo Fisher, Waltham, MA, 

USA). Internal background spectra were collected once every hour. High 

resolution diffuse reflectance (log 1/R) spectra at a wavelength range of 1000 to 

2500 nm with 2 nm intervals were recorded as the averages of 64 scans. Thus, 

the spectra consisted of 1557 data points. Three replicates were acquired per 

sample and the spectra were averaged before further calculations. In total, this 

resulted in 108 spectra of 12 samples differing in moisture content, species, and 

origin. 

2.3.3.  Moisture content determination 

 
MC (% wet basis) was determined was based on ISO 6673 (Reh et al., 2006). 

A forced air electrical oven (Thermicon P® type UT6120, Heraeus Instruments 

GmbH, Hanau, Germany) was used to dry approximately 10 g whole green coffee 

beans in open glass petri dishes (diameter: 14 cm, height: 2.3 cm) at 105 ± 1 °C 

for 16 h. Samples were limited to six origins with two replications per drying cycle 

in order to maintain an equal amount of mass loss during drying. The petri dishes 

were closed with glass lids immediately after drying had completed, and then they 

were stored in desiccators for 1 h in order to cool down the samples to ambient 

temperature. Finally, samples were weighted (Type LP 620 S, Sartorius AG, 

Göttingen, Germany) to calculate MC based on weight loss; data are given as 

the average from two replications (Equation 2.1). Across all samples, average 

standard deviation of replicate MC determinations was 0.21% MC (Median: 

0.08% MC). 

MC =
Ww − Wd

Ww
 (2.1) 
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where MC is the moisture content (%) of green coffee beans (wet basis), WW is 

the wet weight of the sample, and Wd is the weight of the sample after drying. 

2.3.4.  Data processing 

 
The statistical software (The Unscrambler® X version 10.2 Network Client, 

CAMO software AS, Oslo, Norway) was used for further processing of the 

spectral data. Regression models to predict MC in green coffee beans were 

developed with a subset of calibration samples (n = 64), and then the models 

were tested using the subset of validation samples (n = 44) to evaluate the 

accuracy. 

Firstly, spectral outliers were identified using Principal Component Analysis 

(PCA) and Hotelling’s T2 ellipse 5% plot, based on all samples’ (n = 108) raw 

spectra. Afterwards, several pre-processing methods were applied to 

compensate the disadvantages of NIR, e.g., the scattering and material size 

(Blanco and Villarroya, 2002; Esteban-Díez et al., 2004). In detail, smoothing 

(moving average, Gaussian filter, median filter) window size of 3, 7, 11, 15, 19; 

Savitsky–Golay derivative (First derivative, two polynomial order; second 

derivative, two polynomial order; third derivative, three polynomial order) window 

size of 3, 7, 11, 15, 19; normalization (area, mean); baseline correction (baseline 

offset, linear baseline correction); standard normal variate (SNV); orthogonal 

signal correction (OSC) (non-linear iterative partial least squares algorithm, 

number of component 1); multiplicative scatter correction (MSC) (full MSC 

model); and extended multiplicative scatter correction (EMSC) were applied. 

Subsequently, the models were compared in terms of prediction accuracy and 

model robustness (number of latent variables). MSC and EMSC were applied to 
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the calibration data. Upon model validation, the processing was also applied to 

the validation data set prior to prediction. 

Calibration models were developed using both partial least squares 

regression (PLSR) and multiple linear regression (MLR). For PLSR, the full 

spectra (1557 wave numbers, mean centered) were used. Full cross validation 

was applied to estimate calibration errors. Regression coefficients were obtained 

from PLSR to determine the important wavelengths, i.e., those that correlated 

most to MC. A subset of selected wavelengths was then used as an input for full 

rank MLR and PLS regression to identify the most parsimonious yet robust model. 

Leverage correction was applied with MLR to estimate calibration errors. The 

calibration models derived from PLSR and MLR were evaluated by the number 

of latent variables (LVs), R2 of calibration, R2 of cross validation, root mean 

square error of calibration (RMSEC), and root mean square error of cross 

validation (RMSECV). Finally, all models were validated in terms of their 

prediction accuracy using a separate validation data set. Parameters used were 

R2 of prediction, root mean square error of prediction (RMSEP), standard error of 

prediction (SEP), bias, and residual predictive deviation (RPD) (Fearn, 2002; 

Morgano et al., 2008). 

2.4.  Results 

2.4.1. Spectral properties, outliers, and effect of pre-processing 

 
According to an initial PCA using all raw spectra and projection of the 

Hotelling’s T2 ellipse, four samples were suspected as spectral outliers (Figure 

2.1). Subsequent modeling with and without these potential outliers, respectively 

revealed that model accuracy was not significantly affected. Thus, the suspected 

outliers were not excluded. 
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Inspection of the raw data also revealed that the NIR diffuse reflectance 

spectra of intact green coffee beans are influenced by scatter (Figure 2.2a). 

Several pre-processing methods were applied to eliminate the scatter. 

Application of EMSC proved to improve the prediction accuracy; the EMSC 

corrected spectra are shown in Figure 2.2b. Inspection of EMSC corrected 

spectra indicated that several wavelength regions reflect the chemical information 

regarding moisture content. 

 

Figure 2.1. Score plot of principal component analysis (PCA) using raw NIR spectra (log 
1/R) with Hotelling’s T2 ellipse for outlier inspection. Calibration samples 
(squares) and validation samples (circles) are marked accordingly. PC: 
principal component. 
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Figure 2.2. Diffuse reflectance spectra (log 1/R) of calibration model. (a) Raw spectra;); 

(b) EMSC (extended multiplicative scatter) corrected spectra 

 

 

2.4.2. Prediction of moisture content from NIR reflectance spectra 

Several preprocessing methods were applied to build the model (see Section 

2.3.4). Nevertheless, none of the preprocessing methods yielded a better 

accuracy than models using raw data (Appendix 1). Selected results of the 

various chemometric approaches to predict MC from NIR reflectance spectra are 

given in Table 2.2. The most parsimonious PLSR model on the full spectral range 

was achieved using raw spectra and three latent variables. Its prediction accuracy 

was, however, somewhat compromised when using the independent validation 

data set. Using the EMSC corrected spectra instead of the raw spectra yielded a 

similar R² while the prediction errors were comparably low both for the calibration 

and the validation data set. Yet, this model used four latent variables, e.g., it was 

less parsimonious compared to the model based on raw data. 
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Table 2.2. Statistical parameters of the developed prediction models for moisture content 
(MC) in green coffee beans using near infrared spectra. 

Model Parameter 

Full Spectral Range  
PLSR 

Spectral Subset 

Raw EMSC Raw (MLR) 
Raw 

(PLS) 

Calibration 

LVs 3 4 n/a 3 

R2 calibration 0.9834 0.9850 0.9839 0.9743 

R2 cross validation 0.9802 0.9811 0.9779 0.9698 

RMSEC (% MC) 0.52 0.49 0.51 0.65 

RMSECV (% MC) 0.58 0.56 0.60 0.71 

Prediction 

R2 prediction 0.9641 0.9817 0.9632 0.9669 

RMSEP (% MC) 0.80 0.57 0.93 0.77 

Bias (% MC) 0.42 0.28 0.45 0.39 

RPD 6.21 8.53 3.47 6.39 

PLSR: partial least squares regression using full spectral range (1000 to 2500 nm, 1557 data 
points); MLR/PLS: multiple linear and partial least squares regression using selected 
wavenumbers (1155, 1212, 1340, 1409, 1724, 1908, and 2249 nm); LVs: Latent variables (for 
PLS only); R2: the coefficient of determination; RMSEC: root mean square error of valibration; 
RMSECV: root mean square error of cross validation; RMSEP: root mean square error of 
prediction; SEP: standard error of prediction; RPD: residual predictive deviation; n/a: not 
applicable; MC: moisture content. 

 

Principal components (PC) 1 and 2 of the PLSR model based on raw spectra 

explain 99% of spectral data variance and 51% of MC variance; a clear 

separation of Arabica and Robusta species is to be seen (Figure 2.3a). PC 2 and 

3 together explain 94% of MC variance (Figure 2.3b). 
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Figure 2.3. Score plots of PLSR for moisture content prediction based on raw diffuse 
reflectance (log 1/R) near infrared spectra. (a) A distinct clustering of 
Arabica and Robusta coffee samples is observed; (b) Sample allocation is 
following moisture content indicating the importance of PC 2 and 3 for 
moisture prediction; (c) Weighted regression coefficients obtained from 
PLSR using raw spectra. 

 

Weighted regression coefficients obtained from PLSR on raw data (Figure 

2.3c) were then used to study whether the model could be even simplified. Note 

that weighted and raw regression coefficients are the same as long as spectral 

data are not scaled but only mean centered; this was applied here. Seven 

wavelengths were selected due to their regression weights. That is, the intensities 

of 1155, 1212, 1340, 1409, 1724, 1908, and 2249 nm were used as input data to 
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develop a MLR calibration model. Thus, a similarly accurate model was obtained 

(Table 2.2); the prediction error for the validation test set was significantly lower 

(p < 0.05) for the MLR model (0.93% MC) as compared to the EMSC model using 

raw data (0.57% MC). The resulting MLR model is given in Equation 2.2. 

MC (%) = −4.20 + 115.02 (V1) +  0.40 (V2)–  116.18 (V3) +

 76.16 (V4)–  97.72 (V5) +  63.76 (V6)–  17.59 (V7)  
(2.2) 

where, V1 to V7 are the intensities of the wavelengths 1155, 1212, 1340, 1409, 

1724, 1908, and 2249 nm, respectively. When subjecting this spectral subset to 

PLS, the predictive ability of a three LV model was even improved as compared 

to the full-rank MLR model (Table 2.2); its prediction error (0.77% MC) was 

significantly lower than the MLR model (p = 0.015). It is, however, not significantly 

different from the PLSR model using raw data (p > 0.05). 

 

 

 

 

 

 

 

 

Figure 2.4. Predicted vs. measured moisture content of green coffee beans based on 
raw diffuse reflectance (log 1/R) near infrared spectra. (a) PLSR; (b) MLR. 
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PLSR and MLR using raw spectral data yielded a good correlation of 

reference versus predicted MC (Figure 2.4a,b). Also, the model’s bias is close to 

the error of the reference method (0.21% MC, see 2.3.3). 

2.5.  Discussion 

2.5.1.  Outliers and effect of pre-processing 

 
For outlier detection, PCA and subjection of the Hotelling’s T2 ellipse along 

with residuals and influence plot, and Q-residuals plot, were used which are 

common approaches in multivariate analysis. Identifying true outliers is important 

to prevent false inferences (Shabbak and Midi, 2012). In this experiment, four 

samples were suspected to be outliers (Figure 2.1). Explained spectral variance 

(PC1 + PC2) based on diffuse raw data reflectance (log 1/R) was 99%. 

Elimination of suspected outliers did not increase the explained variance. Further 

comparisons of PLSR with and without the suspected outliers yielded only very 

slight improvement in R2 which indicates that the suspected outliers were no real 

outliers. Similarly, Morales-Medina and Guzmán (2012) examined multivariate 

data using Hotelling’s T2 ellipse. They also decided to not exclude the suspected 

outliers because they did not significantly affect the explained variance found 

through PCA. 

Various pre-processing methods were applied to the raw spectra. This aims 

at reducing noise and improving the accuracy of the prediction model (Pizarro et 

al., 2004). EMSC was effective to remove scatter which was shown also in other 

studies (Sørensen et al., 2012). Accordingly, the prediction errors were the lowest 

when using EMSC corrected data for PLSR (Table 2.2). The resulting model, 

however, was surprisingly less parsimonious, i.e., it needed one more latent 

variable. Pizarro et al. (2004) also reported that none of the pre-processing 



22 

 

methods studied (first and second derivation, MSC, standard normal variate) 

improved the prediction for ash and lipid content in roasted coffee significantly as 

compared to using raw data; only OSC and direct orthogonal signal correction 

(DOSC) enhanced the model performance remarkably.  

2.5.2.  Prediction of moisture content using NIR spectra 

Raw spectra were selected as an input to build the final PLSR model because 

this resulted in the lowest number of latent variables, the highest R2 and lowest 

root mean square error compared to other pre-processing methods (Table 2.2). 

A model with these criteria is preferable. Kamruzzaman et al. (2012) also 

considered the number of latent variables together with R2 and prediction errors 

to select the most appropriate model for prediction of water, fat, and protein 

content in lamb meat. Both the robustness and the predictive ability of a given 

model are of importance. If one considers only R², RMSEP, or RPD, which reflect 

the predictive ability, likely models using more latent variables would be preferred 

over models using less latent variables. In terms of robustness, however, a model 

using less latent variables is less prone to overfitting than a model using more 

latent variables.  

Further examination of the PLSR score plots (based on raw spectra) revealed 

a distinct clustering of Arabica and Robusta samples on the first latent variable, 

explaining 98% in the spectral data variance but only 4% of moisture variance 

(Figure 2.3a). To understand this clustering, the loading weights of the first LV 

were inspected. As a result, important wavelengths are related to several 

chemical compounds, e.g., caffeine, chlorogenic acid, lipids, protein and amino 

acids, sucrose, carbohydrates, trigonelline and, of course, water (Ribeiro et al., 

2011). These compounds were shown to vary between species which is why their 
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spectral contributions can be used to discriminate between species  (Ky et al., 

2001; Martı́n et al., 2001). Using PC 2 and 3 which together explain 94% of 

moisture variance, samples are allocated according to moisture content levels 

(Figure 2.3b). Thus, a three component PLSR model allows prediction of moisture 

content on both Arabica and Robusta species. The advantages of inputting raw 

spectra rather than pre-processed spectra, firstly reduces the complexity of 

calculations and therefore secondly reduces the computation time. These 

advantages will be useful for online and real time prediction in the future. 

The statistical parameters of calibration and prediction accuracy were similar 

for the developed PLSR models, especially for the model based on EMSC 

corrected spectra. This indicates that the PLSR model is robust in terms of 

predicting unknown samples accurately. We also investigated PLSR models 

based on raw spectra within individual species. However, the results were not 

better than the PLSR model which was developed across species. The PLSR 

model obtained in this experiment resulted in a similar accuracy compared to 

what was reported by Morgano et al. (2008). That study predicted the MC of 

green Arabica coffee beans, based on smoothed spectra, which yielded an R2 of 

calibration = 0.507, R² of validation = 0.669, and RMSEV of 0.55% MC (R2 

recalculated from r). 

Even simplified MLR and PLS models were built using selected wavelengths 

based on their relative importance in the PLSR model. This experiment showed 

that near infrared diffuse reflectance intensities at 1155, 1212, 1340, 1409, 1724, 

1908, and 2249 nm highly correspond to MC (Figure 2.3c). According to Ribeiro 

et al. (2011), these wavelengths are related to the absorbance of the second 

overtone of C–H, first combination overtone of C–H, first overtone of O–H and N–
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H, second overtone of C=O, and combination of O–H and N–H, respectively. 

Obviously, these wavelengths are not exactly located at the water bands which 

indicate that it may well be useful to apply indirect relationships in prediction 

models. Plus, it was shown that the degradation of organic components during 

drying for MC determination needs to be considered. Reh et al. (2006) proved 

that, using ISO 6673, the beans lose 0.39% of their mass besides water. Thus, 

MC is calculated as a sum of extracted water and mass losses of other 

compounds. Similarly, Pan et al. (2015) found that MC in beet slices highly 

corresponded to spectral intensities at 968, 1078, and 1272 nm, i.e., not exactly 

located at the water bands. 

The MLR model, as well as the PLS model based on the spectral subset, 

yielded a good accuracy both for calibration and validation thus proving their 

robustness (Figure 2.4b). The biases measured by PLSR and MLR were close to 

the method error of determining moisture content based on ISO 6673. Moreover, 

the ratio of the standard deviation of the target variable and the SEP of a given 

model, commonly referred to as RPD (residual predictive deviation), is often used 

to assess the performance of prediction models; higher RPD values indicate a 

better predictive performance (Fearn, 2002). Here, the models yielded RPD 

values of about 3 to 8 (Table 2.2) which is considered good (Williams, 2006). This 

shows the potential of near infrared spectroscopy to replace the reference 

method when a fast and non-destructive prediction is needed, e.g., when trading 

or for in-line process control. 

Finally, the remarkable reduction of variables without a relevant loss of 

accuracy opens the possibility of creating a simple NIR instrument which only 

uses a few important wavelengths to predict MC, rather than employing the full 
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NIR spectrum. Specific LED light sources emitting only selected wavelengths can 

potentially reduce the costs of an NIR instrument. 

2.6. Conclusion 

The results indicate that a fast, non-destructive prediction of moisture content 

in intact green coffee beans is feasible using near infrared diffuse reflectance 

spectroscopy. EMSC effectively reduces scatter apparent in raw spectra. Thus, 

the prediction accuracy using EMSC corrected spectra is improved at the cost of 

a somewhat less parsimonious model. A simplified model based on only seven 

selected wavelengths points to the possibility of a cheaper instrumentation. The 

calibration model can be applied for both Arabica and Robusta species. In 

conclusion, NIR is deemed feasible to replace gravimetric methods for routine 

applications where a timely result may outweigh the loss of accuracy as 

compared to the drying methods. 
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3.1. Abstract 

Species adulteration is a common problem in the coffee trade. Several attempts 
have been made to differentiate among species. However, finding an applicable 
methodology that would consider the various aspects of adulteration remains a 
challenge. This study investigated an ultraviolet–visible (UV-Vis) spectroscopy-
based determination of caffeine and chlorogenic acid contents, as well as the 
applicability of non-targeted near-infrared (NIR) spectroscopy, to discriminate 
between green coffee beans of the Coffea arabica (Arabica) and Coffea 
canephora (Robusta) species from Java Island, Indonesia. The discrimination 
was conducted by measuring the caffeine and chlorogenic acid content in the 
beans using UV-Vis spectroscopy. The data related to both compounds was 
processed using linear discriminant analysis (LDA). Information about the 
diffuse reflectance (log 1/R) spectra of intact beans was determined by NIR 
spectroscopy and analyzed using multivariate analysis. UV-Vis spectroscopy 
attained an accuracy of 97% in comparison to NIR spectroscopy’s accuracy by 
selected wavelengths of LDA (95%). The study suggests that both methods are 
applicable to discriminate reliably among species. 

Keywords: Arabica; Robusta; caffeine; chlorogenic acid; linear discriminant 
analysis; food fraud 

 

3.2. Introduction 

The adulteration of Coffea arabica (Arabica) and Coffea canephora 

(Robusta) is a common problem in the coffee trade (Toci et al., 2016). It results, 

among others, from the price difference between the species. Arabica receive 

more than 50% higher market price compared with Robusta. From 1990 to 2017, 

the average annual price of green beans of Arabica (US $2.51 per kg) was higher 

than that of Robusta (US $1.63 per kg). Arabica takes up approximately 58% of 

the global production of coffee compared with Robusta’s 42% global share. This 
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implies that the consumption of Arabica is more preferable than Robusta 

(International Coffee Organization., 2018). Consequently, trade fraud involving 

the substitution of Arabica with Robusta cannot be avoided. Such fraud includes 

the addition of low-cost materials like coffee beans from different geographical 

regions or species without stating that in the product label (Martins et al., 2018). 

Arabica and Robusta differ in several aspects—for example, taxonomic 

classification, morphology, bean size and color, chemical compounds, and 

sensory evaluation (Davis et al., 2006; Feria-Morales, 2002; Keidel et al., 2010). 

For example, the mean liking scores in a consumer test based on aroma, flavor, 

and mouthfeel led to significantly higher values for Arabica (6.0) in comparison 

with Robusta (4.4) based on a nine-point category scale where “1” means “not at 

all vivid” and “9” means “very vivid” (Kim et al., 2016). The results of this study 

support the view that many consumers prefer Arabica to Robusta. For these 

reasons, Robusta is considered an adulterant for Arabica. 

The conventional procedure to discriminate among species is based on a 

visual inspection of the size, shape, and color of the beans (Mendonça et al., 

2009). The limitation of this approach is that the physical characteristics of the 

beans differ considerably between species and variety due to various genotypes 

and environmental factors (Keidel et al., 2010). Another common method for 

differentiating among species is sensory testing (Kim et al., 2016; Salamanca et 

al., 2017). The disadvantages of this approach are that trained panels are not 

always available and they are expensive (Di Donfrancesco et al., 2014). A third 

disadvantage is that certain varieties of Arabica have sensory properties similar 

to those of Robusta—in terms of mouthfeel and bitterness; this would distort the 

test results (Esteban-Dı́ez et al., 2004). 
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Caffeine and chlorogenic acid play important roles for flavor formation and 

health effects on humans (Jeszka-Skowron et al., 2016). Caffeine consumption 

has well-known effects on the stimulation of brain functions and improvement in 

mood and physical performance; it is also associated with the reduction of the 

development of chronic degenerative diseases. However, excessive caffeine 

consumption may expose the drinker to cardiovascular disease and blood 

pressure problems (dePaula and Farah, 2019). Chlorogenic acid is a major 

component of green coffee beans and an important dietary polyphenol with 

potential health benefits, including anti-inflammatory, antidiabetic, anti-obesity, 

and anticarcinogenic effects (Tajik et al., 2017). 

Chromatographic techniques (e.g., high-performance liquid chromatography 

(HPLC) and gas chromatography (GC)) are commonly applied successfully to 

discriminate between coffee beans species (Górnaś et al., 2014; Toci et al., 

2016). Chemical compounds, for example, trigonelline, tocopherol, caffeine, and 

chlorogenic acid, are used to differentiate between Arabica and Robusta 

(Oestreich-Janzen, 2013). Trigonelline levels and the sum of α-, β-, and γ-

tocopherols vary depending on the species. About 0.8% of the dry weight (dw) is 

composed of trigonelline and 0.028% of the sum of tocopherols in Arabica, which 

is higher than in Robusta (0.7% dw and 0.011%, respectively) (Górnaś et al., 

2014; Oestreich-Janzen, 2013). Conversely, the caffeine (1.3% dw) and 

chlorogenic acid (8.1% dw) content in Arabica are lower than in Robusta (2.3% 

dw and 9.9% dw, respectively) (Oestreich-Janzen, 2013). 

Despite their accuracy, these chromatographic techniques involve 

equipment-intensive and time-consuming processes. Out of the different 

chemical compounds present in coffee, caffeine and chlorogenic acid were 
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selected as key compounds in the present study; as mentioned, the 

concentrations of these compounds tend to differ across green coffee beans 

species. 

An alternative to chromatographic techniques is ultraviolet–visible (UV-Vis) 

spectroscopy, which provides simplified measurement procedures that are time- 

and cost-effective (Tomaszewska et al., 2013). To date, UV-Vis spectroscopy has 

been applied to measure the caffeine and chlorogenic acid content of coffee 

beans (Belay et al., 2008; Belay and Gholap, 2009; Dankowska et al., 2017; 

Navarra et al., 2017), and it has also been used to discriminate species on ground 

and roasted coffee. However, no previous study has so far used these 

compounds measured by UV-Vis spectroscopy to discriminate among green 

coffee beans species. We, therefore, investigated this approach as an alternative 

method to discriminate between Arabica and Robusta to help prevent fraud within 

the global coffee beans trade. 

Previous studies have reported the applicability of NIR spectroscopy to 

discriminate between species (Buratti et al., 2015; Esteban-Díez et al., 2007). 

However, they rarely covered aspects such as altitude or genotype that can 

cause considerable differences within species and variety (Kitzberger et al., 

2014). In this study, we have therefore evaluated the capability of NIR 

spectroscopy to discriminate among the species of intact green beans from a 

different origin, variety, and altitude, in comparison with the UV-Vis-based 

determination of caffeine and chlorogenic acid. These methods allow high 

throughput and low involvement of labor—faster examination at a lower cost to 

discriminate species is preferable. Thus, the application of these methods may 



30 

 

help prevent fraud in a desirable manner for the coffee industry, as compared 

with other existing methods. 

 

3.3. Materials and Methods 

3.3.1. Samples 

Seventy-four green coffee beans samples from various locations on Java 

Island, Indonesia, were used in this study. The samples set of green beans 

represented different environmental factors, agricultural practices, and genetic 

characteristics, and were sourced from 38 processing facilities on Java Island 

during the harvesting season from July to August 2014. Of these 74 samples, 32 

samples belonged to Arabica and 42 to Robusta. To ensure the authenticity of 

the samples, the coffee species were validated by agricultural extension officers 

and farmers. 

The first step to obtain green beans was the harvest of the red coffee cherries 

from the coffee plantation surrounding the processing facility. After harvesting, 

the red cherries were processed (e.g., pulping, washing, drying) into green beans 

and stored in 60 kg bags. From these bags, the samples under study were 

collected randomly at 250 g per sample and were then transported using double-

sealed plastic bags for analysis. 

3.3.2. Determination of Caffeine and Chlorogenic Acid Content by UV-Vis 
Spectroscopy 

The samples (n = 74) were prepared in line with the procedures used by Belay et 

al. and Navarra et al. (Belay et al., 2008; Navarra et al., 2017). First, the beans 

were freeze-dried (Epsilon 2-40, Christ, Germany) and ground into a powder 

using a ball mill (Schwingmühle MM 400, Retsch, Germany). Next, the powder 
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was screened through a 0.355 mm sieve. A total of 10 mg of sieved coffee powder 

was dissolved in 10 mL of distilled water. The solutions were stirred (550 rpm, 35 

°C, 1 h) using a stirrer (Eppendorf ThermoMixer® comfort, Eppendorf, Germany) 

and then passed through a paper filter (MN 615 1/4, Macherey-Nagel, Germany). 

Caffeine extraction from the sample solution was performed by mixing 5 mL 

of filtrate with 5 mL of dichloromethane and stirring the liquid for one minute using 

a vortex mixer. Finally, the absorbance of caffeine in dichloromethane was 

measured by the UV-Vis spectrophotometer (HP 8453, Hewlett Packard, 

Germany) within the range of 200–500 nm against the corresponding blank 

reagent (dichloromethane) and—as per to the Beer‒Lambert law—at a maximum 

wavelength of λ = 276 nm (Appendix 2). The standard solutions were prepared 

by dissolving caffeine (anhydrous ≥98.5%, Carl Roth, Germany) in 

dichloromethane (Rotipuran ≥99.5%, Carl Roth, Germany) ranging from 10 to 35 

ppm; the calibration yielded an R2 of 0.9974. The caffeine content was calculated 

in percent on a dry weight (dw) basis (Appendix 2). Each measurement was 

replicated twice. The average standard deviation of the replicated caffeine 

determination was 0.1% dw. 

The chlorogenic acid content was determined using a method similar to the 

one outlined for caffeine measurement, excluding the extraction step using 

dichloromethane (Belay and Gholap, 2009; Navarra et al., 2017). The samples 

(n = 74) were prepared as follows: First, 1 mg of sieved coffee was dissolved in 

10 mL of distilled water. The solutions were stirred for one minute and passed 

through a paper filter (MN 615 1/4, Macherey-Nagel, Germany). The chlorogenic 

acid was measured using UV-Vis spectroscopy against the corresponding blank 

reagent (distillate water), according to the Beer‒Lambert law at a maximum 
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wavelength of λ = 324 nm (Appendix 2). Dissolved chlorogenic acid (≥97% Carl 

Roth, Germany) in distilled water was used to prepare standard solutions in the 

range of 20 to 150 ppm (R2 of the calibration curve = 0.9999). The chlorogenic 

acid content was calculated in percent of dw based on two replications; the 

average standard deviation of duplicate measures was 0.9% dw (Appendix 2). 

3.3.3. Determination of Species by Near-Infrared Spectroscopy 

The samples were analyzed using the NIR spectroscopy method, as 

previously reported (Adnan et al., 2017). A bench-top Fourier transform (FT-) NIR 

instrument with a rotating sample cup (Thermo Nicolet Antaris MDS, Thermo 

Fisher, USA) was used to acquire the diffuse reflectance spectra (log 1/R) of bulk 

samples of green coffee beans (40 g per sample) (n = 74) in a rotating sample 

cup (petri dish made of Schott Duran glass). The internal background spectra 

were collected once every hour. High-resolution diffuse reflectance (log 1/R) 

spectra at a wavelength range of 1000‒2500 nm at 2 nm intervals were recorded 

as the averages of 64 scans. Each sample was replicated three times. Before 

conducting further calculations, the spectra were averaged. 

3.3.4. Statistical Procedures 

Statistical analysis was performed using R software (R Foundation, Austria) 

for the UV-Vis spectroscopy method. The linear discriminant analysis (LDA) was 

carried out using Unscrambler® X version 10.2 Network Client (CAMO software 

AS, Norway). The box plot and Welch’s unequal variances t-test were used to 

explore the variability of caffeine and chlorogenic acid content among species 

(Krzywinski and Altman, 2014; Puth et al., 2014). The data of both compounds 

were then analyzed using LDA to discriminate among species. Cross-validation 

was performed to validate the results and stated as classification accuracy (in 
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percent) (Dankowska et al., 2017). The correlation between the altitude and the 

chemical compound was tested using Pearson’s product-moment correlation 

coefficient (r). 

Multivariate analysis was carried out using the following procedure (Adnan et 

al., 2017). The first step in this analysis was to detect spectral outliers using 

principal component analysis (PCA) and Hotelling’s T2 ellipse 5% plot, based on 

the raw spectra of all samples (n = 74). Following the detection of spectral 

outliers, several preprocessing methods were applied (e.g., smoothing, the 

Savitsky–Golay derivative, normalization, baseline correction, orthogonal signal 

correction (OSC), multiplicative scatter correction (MSC), and extended 

multiplicative scatter correction (EMSC)). On the preprocessed spectral data, 

calibration (n = 49) and validation (n = 23) models were developed using partial 

least squares discriminant analysis (PLS-DA). Finally, all models were verified 

with regard to their prediction accuracy—that is, the number of latent variables 

(LVs), the coefficient of determination (R2), the root mean square error of 

calibration (RMSEC), and the root mean square error of prediction (RMSEP) 

(Appendix 2) (Bassbasi et al., 2014). 

LDA was applied to the selected wavelengths of raw spectra. These selected 

wavelengths were derived from PLS-DA. The accuracy (in percent) was 

calculated using a full cross-validation procedure. 
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3.4. Results 

3.4.1. UV-Vis Spectroscopy 

3.4.1.1. Caffeine Content 

As shown in Figure 3.1a, the median and range values for caffeine content 

differed among species. The caffeine content in Arabica was significantly lower 

than that in Robusta (Welch’s unequal variances t(67.9) = −17.8, p-value < 

0.001). On average, Arabica had a caffeine content of 1.8% dw, while Robusta 

contained 2.9% dw. The 95% confidence interval for the differences in the 

caffeine content among the species was between −1.3% dw and −1.0% dw. 

 

 

 

 

 

 

 

 

Figure 3.1. Caffeine content (a) and chlorogenic acid content (b) of green Arabica and 
Robusta beans obtained using UV-Vis spectroscopy (n = 74). 

 

3.4.1.2. Chlorogenic Acid Content 

The mean value of chlorogenic acid content in Arabica was 7.0% dw and in 

Robusta was 9.5% dw (Figure 3.1b). Arabica and Robusta differed significantly 

in their chlorogenic acid content according to Welch’s t-test (t(66.2) = −11.1, p < 
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0.001; 95% CI of mean difference: −2.0% dw and −1.9% dw), although few 

samples (5.4%) displayed similar levels of chlorogenic acid for both species. 

3.4.1.3. Discrimination among species on the basis of caffeine and 
chlorogenic acid content (by UV-Vis spectroscopy) 

As shown in the previous sub-section, discrimination among species on the 

basis of only a single chemical component (caffeine or chlorogenic acid) is 

unreliable. To discriminate among species, both compounds were used for a 

linear discriminant analysis (LDA). As shown in Figure 3.2, LDA discriminates 

between Arabica and Robusta with an accuracy of 97.3%. Only two samples of 

Arabica were mistakenly identified as Robusta samples. This shows that using 

both caffeine and chlorogenic acid content is a reliable method for discriminating 

among species. 

 

Figure 3.2. Discrimination among coffee species by linear discriminant analysis 
(LDA) using caffeine and chlorogenic acid derived from UV-Vis as 
predictor variables. 
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3.4.2. Discrimination among species using NIR spectroscopy 

The following section examines the applicability of NIR spectroscopy. Raw 

diffuse reflectance (log 1/R) spectra (n = 74) were inspected to detect outlier data 

using principal component analysis (PCA) and projection of the Hotelling T2 

ellipse (Figure 3.3a,b). Data points located outside the ellipse were considered to 

be spectral outliers and were removed. Two samples were spoiled microbially. 

Hence, they were deleted due to their potential negative influence on the model, 

though they may have contained valuable information regarding species variation 

(Bylesjö et al., 2006). 

 

 

 

 

 

 

 

 

Figure 3.3. Mean diffuse reflectance (log 1/R) of raw spectra (a); score plot of 
principal component analysis using raw near-infrared spectra (log 1/R) 
with Hottelling’s T2 ellipse for outlier inspection. Samples outside the 
Hottelling’s T2 ellipse are considered spectral outliers (b). 

 

Preprocessing methods were applied to raw spectra (n = 72) before using 

PLS-DA to discriminate among species. Table 3.1 shows that several PLS-DA 

models based on preprocessing methods produced fairly high R2. The PLS-DA 

models based on EMSC, normalization (area and mean), smoothing (moving 

average, three segments), and MSC yielded R2 of the validation model of 
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81.3−90.5%; however, using various numbers of latent variables (LVs). Those 

models yielded higher accuracy compared with the validation model based on 

raw spectra of 71.5%. The details pertaining to the other PLS-DA models are 

presented in Appendix 3. 

Table 3.1. Statistical parameters of partial least squares discriminant analysis 
models discriminate green coffee beans species using near-infrared 
spectra 

Preprocessing 
Method 

LVs 
R2 of 

Calibration 
Model (%) 

RMSEC 
R2 of 

Validation 
Model (%) 

RMSEP 

Raw 7 89.0 0.3266 71.5 0.6005 
EMSC 6 91.4 0.2884 90.5 0.3641 
Normalization 
(area) 

7 
93.2 0.2570 90.3 0.3745 

Normalization 
(mean) 

6 
93.2 0.2570 90.3 0.3745 

Smoothing 
(Moving average, 
3 segments) 

7 
89.0 0.3266 88.9 0.3270 

MSC 3 85.3 0.3774 81.3 0.4734 

R2: the coefficient of determination; LVs: latent variables; RMSEC: root mean square 
error of calibration; RMSEP: root mean square error of prediction; MSC: multiplicative 
scatter correction; EMSC: extended multiplicative scatter correction. The results of the 
best functioning models are displayed in Appendix 3. 

 

Another significant aspect of the multivariate analysis is the ability to disclose 

wavelengths that are causative for discrimination and considered to be related to 

chemical compounds present in the sample. The weighted regression coefficient 

plot shows that several wavelengths (1212 nm, 1342 nm, 1465 nm, 1674 nm, 

1929 nm, 2021 nm, and 2227 nm) contributed to the discrimination among coffee 

species (Figure 3.4a,b). These wavelengths are related to caffeine, chlorogenic 

acid, carbohydrates, sugars, trigonelline, lipids, water, proteins, and amino acids 

(Ribeiro et al., 2011). 
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Figure 3.4. Weighted regression coefficient plot of the partial least squares 
discriminant analysis (PLS-DA) model based on multiplicative scatter 
correction (MSC) spectra of intact green beans (number of latent 
variables = 3) (a); mean diffuse reflectance (log 1/R) of MSC spectra 
(b). 

 

Subsequently, wavelengths identified to contribute to the PLS-DA 

discrimination among coffee species (Figure 3.4a,b) were used for LDA, which 

resulted in a classification accuracy of 95% (95% CI (87%, 98%)) (Figure 3.5). 

The LDA method using selected wavelengths performs with higher accuracy than 

the full spectra of PLS-DA. This result suggested that the selected wavelengths 

of 1212 nm, 1342 nm, 1465 nm, 1674 nm, 1929 nm, 2021 nm, and 2227 nm are 

satisfactory to discriminate between coffee species. When Arabica is considered 

the positive case to be detected, sensitivity and specificity of the test were 100% 

and 91%, respectively. Using MSC corrected spectra and the above seven 

wavelengths, the classification accuracy improved slightly to 97%. 
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Figure 3.5. Discrimination among coffee species by linear discriminant analysis 
(LDA) using selected wavelengths derived from NIR spectroscopy as 
predictor variables (n = 74 samples). 

 
 
3.5. Discussion 

3.5.1. UV-Vis Spectroscopy 

3.5.1.1. Caffeine Content 

A closer inspection of Figure 3.1a shows that one sample of Arabica exhibited 

caffeine levels similar to those in Robusta. These species have an overlapping 

range of 4.1% samples. Thus, merely relying on caffeine content to discriminate 

among species can lead to false classifications. 

In accordance with the present results, a previous study has demonstrated 

that the caffeine content ranged from 0.8% to 1.8% dw (mean = 1.3% dw) in 

Arabica as compared with a range of 1.2% to 2.5% dw in Robusta (mean = 1.8% 

dw) (Tran et al., 2017). This study also showed that the caffeine content values 

overlapped among species, which is consistent with other studies (Babova et al., 
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2016; Couto et al., 2019). Taken together, this confirms that caffeine content is 

unsuitable as a single factor to discriminate between Arabica and Robusta. 

A correlation test was conducted to obtain more insight whether the altitude 

as an environmental factor is responsible for the variability of caffeine content in 

the present study. The results showed a slightly negative but not significant 

correlation for Arabica of r = −0.25, (p = 0.17) and for Robusta of r = −0.11 (p = 

0.50) (Appendix 4). Other studies confirmed that environmental factors such as 

total irradiance, rainfall, temperatures, and potential evapotranspiration at various 

altitudes do not affect the caffeine content (Barbosa et al., 2012; Joët et al., 2010). 

3.5.1.2. Chlorogenic Acid Content 

This result suggested that chlorogenic acid cannot be used as the only trait 

to discriminate among coffee species (Figure 3.1b). Accordingly, previous studies 

have demonstrated that the chlorogenic acid content values overlapped among 

species. In general, the chlorogenic acid content of green beans ranged between 

4.0% dw and 8.4% dw in Arabica, and between 7.0% dw and 14.4% dw in 

Robusta (Farah and Donangelo, 2006). 

Finding a correlation between chlorogenic acid and altitude is interesting 

because altitude may affect chlorogenic acid. A previous study showed lower 

chlorogenic acid on higher altitude (Barbosa et al., 2012). The results of the 

present study showed that the chlorogenic acid content did not correlate with the 

altitude for Arabica (r = −0.25, p = 0.17) and Robusta (r < 0.01, p = 0.99) 

(Appendix 5). 

The multivariate statistical tools, that is, PCA and PLS-DA based on 

chlorogenic acid constituents (caffeoylquinic acid, feruloylquinic acid, and p-

coumaroylquinic acid isomers), can be used for determining three coffee 
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agricultural practices (organic, conventional, and biodynamic), but not for 

geographical identification of roasted coffee. The 5-caffeoylquinic acid and 4-

caffeoylquinic acid were higher than 3-caffeoylquinic acid in all agricultural 

practices. Chlorogenic acid constituents are assumed to result from the absence 

of pesticide and pest-defense compounds (Badmos et al., 2020). 

3.5.1.3. Discrimination among Species on the basis of Caffeine and 
Chlorogenic Acid Content (by UV-Vis Spectroscopy) 

Another advantage of measuring the caffeine and chlorogenic acid contents 

is that they are key compounds indicating the coffee flavor. Caffeine and 

chlorogenic acid are related to bitterness (Cheng et al., 2016). Thus, a higher 

level of these compounds may produce a more bitter coffee taste (Ribeiro et al., 

2011) and, subsequently, contribute to lower cup quality as determined by trained 

panelists (Farah et al., 2006). This may explain why Arabica obtained a higher 

consumer liking than Robusta (Kim et al., 2016). 

The present study indicates that UV-Vis spectroscopy can be used as an 

alternative approach to discriminate among species of green coffee beans on the 

basis of caffeine and chlorogenic acid content. The discrimination accuracy in our 

study is comparable to a previous study using caffeine, chlorogenic acid, 

trigonelline, total polyphenols, total free amino acids, and aqueous extract as 

determined by liquid chromatography (HPLC) for species discrimination (Martıń 

et al., 1998). A K-nearest neighbors’ classification resulted in an accuracy of 

92.7‒97.6%. The error rate occurred because some Arabica samples had an 

unusually high and some Robusta samples had an uncharacteristically low 

caffeine content (Martıń et al., 1998). As the present study uses less compounds, 

it can be considered comparable. 
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Recent research has shown that PLS-DA differentiated 100% of ground 

Arabica and blends. Caffeine, total soluble solids, quercetin-3-rutinoside, the 

Folin–Ciocalteu reducing capacity, and antioxidant capacity (DPPH assay) were 

the most discriminating variables. The classification of ground Arabica and blends 

was also obtained with 100% accuracy using LDA. Total flavonoids, Fe2+ 

chelating ability, quercetin-3-rutinoside, and total phenolic content were the 

analytical responses that discriminated between groups (Monteiro et al., 2019). 

3.5.2. Discrimination among Species Using NIR Spectroscopy 

The results show that the PLS-DA model based on MSC preprocessed 

spectra needed the lowest number of LVs. While the number of LVs was the 

lowest, the calibration and validation models based on MSC obtained neither the 

highest R2 nor the lowest RMSEC and RMSEP compared with the other 

preprocessing methods. Simultaneously, the EMSC and normalization of the 

area and mean method yielded the highest R2 (>90%) and the lowest RMSEC 

and RMSEP (<0.40), but the number of LVs is high (Table 3.1). 

Selecting the ideal model is challenging because none of the models fit the 

criteria for the best model—that is, highest R2, lowest number of LVs, lowest 

RMSEC, and lowest RMSEP (Westad and Marini, 2015). However, a low number 

of LVs is considered to produce a more robust model (Munawar et al., 2016). If a 

model is selected on the basis of different LV numbers, the R2 value should be 

examined closely to avoid an overoptimistic model (Brereton, 2006). 

Thus, the PLS-DA model based on MSC processed spectra is selected here 

as the ideal model using full-range spectra for discriminating among green coffee 

beans species (Table 3.1). MSC (LVs = 3) reduces the number of LVs in the 

respective discrimination model compared with the model based on raw spectra 
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data (LVs = 7). This indicates the presence of scattering and simultaneously 

shows that MSC can reduce the noise (Esteban-Dı́ez et al., 2004). Scattering in 

NIR spectroscopy can be influenced by the sample traits and the measuring 

conditions (Barbin et al., 2014). Species variety can lead to different sizes and 

shapes (Severa et al., 2012; Tran et al., 2017). As shown in Appendix 6, the 

present study used green coffee beans samples of different species, and variety 

may lead to scattering problems. The beans were not screened to be of the same 

size—the aim was to create the actual sample conditions that prevail during 

trading. 

However, using only selected wavenumbers and an LDA approach yielded a 

superior classification performance. This model was built using authentic sample 

conditions including samples with different sizes and shapes. The percent of 

correctly classified samples by the validation model was 95.5%. The classification 

performance based on selected wavelengths is more accurate than those of a 

previous study. Downey et al. (Downey et al., 1994) reported that the accuracy 

of NIR spectroscopy in discriminating among green coffee beans species ranges 

from 86.5% to 88.6%. The validation models were built using a factorial 

discriminant analysis with eight LVs, which is potentially an overfit model. 

Recent study has demonstrated NIRS data using the typical band of the 

spectra, and the PLS-DA classifier predicts farming system (organic and 

conventional) of roasted coffee and provides results with 89% accuracy. The 

NIRS classification model, which is much simpler to develop and deploy, can 

provide good prediction with less instrumentation complexity and at a lower cost 

than proton transfer reaction mass spectrometry (PTR-MS) does. However, 

geographic identification was somewhat complex. The PTR-MS models using 
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PLS-DA performed with slightly better accuracy than NIRS models (69% vs. 61%, 

respectively) (Monteiro et al., 2018). 

According to the literature, wavelengths of 1209 nm, 1466 nm, 1726 nm, 1758 

nm, 1904 nm, 2308 nm, and 2348 nm—relating to pure water and lipids—can be 

used to differentiate among green coffee beans species (Downey et al., 1994). 

Another study suggested different selected wavelengths to discriminate among 

species of green beans. The wavelengths of 1671 nm, 1673 nm, and 2154 nm 

are associated with caffeine, and the wavelengths of 1778 nm, 1834 nm, and 

2251 nm are associated with cellulose (Buratti et al., 2015). Two previously 

identified wavelengths (i.e., 1671 nm and 1673 nm) [16] are close to the 

wavelength selection of the experiment resulting model (1674 nm), which are 

associated with caffeine. 

Buratti et al. (Buratti et al., 2015) demonstrated that NIR spectroscopy offers 

100% accuracy in discriminating between Arabica and Robusta. However, this 

study did not clarify the chemical composition of the beans. Hence, as shown in 

our study, accuracy may be compromised due to partly overlapping levels of 

caffeine and chlorogenic acid in both species. 

Despite the potential of NIR spectroscopy, it is still a challenge to develop an 

applicable and sensitive method for discriminating among green coffee beans. 

As in the present study, the samples generally display variations among species 

and variety. Here, even samples from one particular location consist of several 

varieties because the farmers planted multiple batches at the same times. In 

addition to variety, models for species recognition could benefit from taking 

various environmental factors into account (Appendix 6). 
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3.6. Conclusions 

This study evaluated the applicability of UV-Vis spectroscopy and NIR 

spectroscopy to discriminate between the green coffee beans of Arabica and 

Robusta from Java Island, Indonesia. The results showed that both approaches 

are acceptable in terms of their classification accuracy. UV-Vis spectroscopy-

based determination of two important compounds—that is, caffeine and 

chlorogenic acid—attained a slightly higher classification accuracy of 97.3%. NIR 

spectroscopy using seven selected wavelengths and LDA yielded a similarly high 

classification accuracy (95.5%). The findings suggest that, given both the speed, 

nondestructiveness and low involvement of labor of NIR spectroscopy, it is 

superior for on-site species discrimination. This study was limited by the 

environmental conditions and varieties of the beans samples. Thus, further 

research should include samples of different species and varieties from various 

coffee-producing locations worldwide in order to evaluate the robustness of NIR-

based species discrimination. 
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4. Identifying the origin of Java green coffee beans using near 

infrared spectroscopy and stable isotope analysis of oxygen, 

hydrogen, and strontium 

 
4.1. Abstract 

Java coffee is one of the famous single origins and has different coffee 
production areas on the west, central, and east part of the Island. No known 
empirical study has focused on identification of the green coffee beans from those 
locations using verifiable methodology. This present study aims to examine the 
potential of near infrared (NIR) spectroscopy and stable isotope analysis of 

oxygen (18O), hydrogen (2H), and strontium (Sr) to identify the origin of the 
green coffee beans from Java Island. The results indicate that NIR spectroscopy, 

as well as 18O and 2H, are not suitable for identifying the sample's origin. The 

Sr in green beans, reflecting Sr of host rocks can potentially be used as a tracer 
to identify between two distinct locations of Java Island. This study implies that 
strontium analysis is prominent identifying the origin of Java green coffee beans. 

Keywords: green coffee beans, origin, NIR spectroscopy, stable isotope, 
strontium. 

 

4.2. Introduction 

The issue of the green coffee (Coffea spp.) beans origin has received 

considerable an increasing attention recently, including in Indonesia (Durand and 

Fournier, 2017). The origin of the beans relates to several aspects such as 

specialty coffee and geographical indication. The first aspect is more to quality 

nuances and the second one is according to the law (Rahmah, 2017; Vellema et 

al., 2015). Eventually, those aspects determine green coffee price (Wilson and 

Wilson, 2014). 

It has previously been observed that origin affects the beans quality. Each 

origin has their unique characteristics, e.g. annual precipitation, diurnal 

temperature range, number of dry months, altitude, latitude, soil type, and 

cultivated variety (Barbosa et al., 2012; Figueiredo et al., 2013; Oberthür et al., 
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2011). The unique coffee quality of a certain origin may have caused it is favored 

than the others (Sepúlveda et al., 2016). 

To protect and authenticating the origin, the certification has been applied 

on coffee trading (Barjolle et al., 2017; Offermans et al., 2015). However, If a 

dispute regarding origin validation occurs, the verifiable methodologies to identify 

green coffee beans are imperative (Burns et al., 2017). Previous studies have 

demonstrated several methodologies to identify the beans origin, e.g. near 

infrared (NIR) spectroscopy, stable isotope analysis, multi-element analysis, 

chromatographic techniques, and nuclear magnetic resonance (Arana et al., 

2015; Liu et al., 2014; Marquetti et al., 2016; Mehari et al., 2016). 

We are interested to identify the green coffee beans from Java Island, 

Indonesia by using NIR spectroscopy and stable isotope analysis. The 

advantages of NIR spectroscopy are for being rapid measurement, while stable 

isotope analysis can be related to the environmental coffee growing condition (Liu 

et al., 2014; Marquetti et al., 2016). 

Java coffee is one of the famous single origins and it contributes to around 

8% of the total national coffee production. Java origin has been referred to East 

Java production location (Wahyudi and Jati, 2012). However, there are other 

coffee production locations on West and Central Java and each location has been 

protected by regulation on geographical indication registration  (Rahmah, 2017). 

This circumstance raises the intriguing issue regarding how to identify the green 

beans from each location using verifiable methodology. 

No known empirical study has focused on identification of the green coffee 

beans originated from the west, central, and east part of Java Island. The aim of 

this study is to examine the potential of NIR spectroscopy and stable isotope 
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analysis of oxygen, hydrogen, and strontium to identify the origin of the green 

coffee beans from Java Island.  

4.3. Materials and methods 

4.3.1. Sites and sampling 

The green beans samples (n = 74) of Coffea arabica (Arabica) and Coffea 

canephora (Robusta) were obtained from 38 coffee processing facilities on Java 

Island, Indonesia during the harvesting season from July to August 2014 

(Appendix 6). The red cheery from surrounding coffee plantation were processed 

(e.g. wet/semi/dry processing, pulping, washing, and drying) into the green beans 

on these facilities. After drying, the beans were stored in 60 kg bags and the 

samples were collected randomly from these bags. Each sample was weighed 

250 g and finally was placed in double sealed plastic bags for transportation. The 

processing facilities of sampling location were in the west, the central and the 

east area of Java Island. To date, the coffee beans from these areas have been 

regulated under geographical indication protection, indicate that each area has 

unique characteristic (Rahmah, 2017). 

4.3.2. NIR spectroscopy 

NIR spectroscopy procedures were done according to Adnan et al. (2017). 

Diffuse reflectance spectra (log 1/R) of bulk samples of green coffee beans (40 

g) were acquired using a bench top Fourier transform near infrared (FT-NIR) 

instrument with rotating sample cup (Nicolet Antaris®, type Antaris MDS). High-

resolution diffuse reflectance (log 1/R) spectra at a wavelength range of 1000 to 

2500 nm with two nm intervals were recorded as an average calculated from the 

64 scans. Due to the damage of one sample, only 73 samples could be acquired 
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for the spectra. Three replicates were acquired per sample and the spectra were 

averaged before conducting further calculations. 

The spectra of the samples were analyzed by statistical software (The 

Unscrambler® X version 10.2 Network Client, CAMO software AS, Norway) to 

identify the origin of the beans. To begin this analysis, spectral outliers were 

detected using principal component analysis (PCA) and Hotelling’s T2 ellipse 5% 

plot, based on all samples’ (n = 73) raw spectra. Three data were determined as 

outliers based on this technique. Afterwards, several pre-processing methods 

were applied to raw spectra (n = 70), i.e. smoothing, normalization, baseline 

correction, orthogonal signal correction (OSC), multiplicative scatter correction 

(MSC), and extended multiplicative scatter correction (EMSC). Finally, partial 

least square discriminant analysis (PLS-DA) was applied to the processed 

spectral data. Regression models were developed with a subset of calibration 

samples (n = 52) and thereafter the models were tested using the subset of 

validation samples (n = 18) to evaluate their accuracy. The number of latent 

variables (LVs), the coefficient of determination (R2) of calibration, root mean 

square error of calibration (RMSEC), R2 of prediction, and root mean square error 

of prediction (RMSEP) were functioned as parameters for the evaluation of 

accuracy. 

4.3.3. Stable isotope 

4.3.3.1. Determination of stable isotope 18O and 2H 

Stable isotope 18O and 2H analysis was conducted at the Centre for Stable 

Isotope Research and Analysis, Georg August University, Göttingen. The first 

step in this analysis was to freeze dried the green coffee beans. The beans were 

then ground using a ball mill (Schwingmühle MM 400, Retsch, Germany), and 
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they were screened through a 0.355 mm sieve to obtain a uniform particle size. 

Subsequently, about 0.2 mg of powdered material was weighted in a silver tin 

cups for each sample. After this preparation, the samples were analyzed by using 

an isotope ratio mass spectrometer (Delta V Plus, Thermo Electron Cooperation, 

Germany) coupled to a Total Combustion Elemental Analyzer (TC/EA, Thermo 

Fisher Scientific, Germany) via a Conflo IV interface. Cellulose was used as 

reference material after every 10 samples to ensure the reproducibility of the 

measurement (SDmean = 0.32‰ for delta ()18O and 1.62‰ for 2H). Finally, 

isotope ratios 18O and 2H were calculated as delta-values ( ‰) (Equations. 4.1 

and 4.2). The Vienna-Standard Mean Ocean Water (V-SMOW) was applied as 

the international standard for oxygen and hydrogen isotopes. 

 

 18O (‰)  =  
RSample−RStandard

RStandard
 × 1000 (4.1) 

with RSample  =  
18O

16O
; Rstandard  =  the Vienna − Standard Mean Ocean Water (V −

SMOW) 

 

 2H (‰)  =  
RSample−RStandard

RStandard
 × 1000 (4.2) 

with RSample  =  
2H

1H
; Rstandard  =  the Vienna − Standard Mean Ocean Water (V −

SMOW) 

In addition, the annual values of 18O and 2H in precipitation water from 

the location of the examined green beans samples were acquired from the online 

isotopes in precipitation calculator (Bowen, 2016). These data were needed to 
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find the relation between 18O and 2H in the green beans and environmental 

condition. 

 The calculation of means and standard deviations (SD) values were 

performed with Microsoft Excel 2007 (Microsoft, USA). The correlation between 

18O and 2H in the green beans and precipitation water was tested using the 

Pearson's product-moment correlation coefficient (r) (R Software, Austria). Linear 

discriminant analysis (LDA) was performed to identify origin using the 

Unscrambler the Unscrambler® X version 10.2 Network Client (CAMO software 

AS, Norway). 

4.3.3.2. Determination of stable isotope strontium (87Sr/86Sr) 

Powdered samples (see 4.3.3.1) of the green coffee beans (n = 16) were 

analyzed to understand their isotopic composition of 87Sr/86Sr. The strontium was 

separated using ion exchange chromatography with Sr spec resin (Eichrom 

Technologies). Nitric acid (3M) was used as eluent. All analyses were carried out 

with the Thermo-Finnigan Triton© thermal ionization mass spectrometry (TIMS) 

at the Isotope Geology Department of the University of Göttingen. The 

measurements were carried out using the re-double filament technique. Prior to 

digestion, all samples were mixed with a tracer solution enriched in 84Sr. 

Concentrations were calculated using the isotope dilution technique. 

Reproducibility for NBS SRM 987 (n = 4) were at 0.71025±0.00003 and 

0.05649±0.00001 for 87Sr/86Sr and 84Sr/86Sr. The analytical mass bias was 

corrected with 88Sr/86Sr at 0.1194 using exponential law. The Sr isotope ratios 

were expressed as -values according to bulk earth (87Sr/86Sr) at 0.7047. The 

calculation of -values is presented in Equation 4.3. 
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 Sr (‰ ) =  
RSample−RStandard

RStandard
 × 1000 (4.3) 

With RSample  =  
87Sr

86Sr
 , Rstandard  =   bulk earth 

87Sr

86Sr
 at 0.7047 

 

4.4. Results and discussion 

4.4.1. Identifying the origins using NIR spectroscopy 

The first step to analyze the diffuse reflectance (log 1/R) of intact beans 

spectra were outlier data detection. The outlier detection purpose was to locate 

the presence of outlier data as shown in the score plot using the principal 

component analysis (PCA) and projection of the Hotteling T2 ellipse. The outlier 

detection was applied to raw spectra and the result was shown in Figure 4.1. Data 

points located outside the ellipse were considered outliers and were removed. 

Following data outliers detection, pre-processing methods were applied to 

the raw spectra. The calibration model for the prediction of the origins of green 

coffee beans was developed using partial least square discriminant analysis 

(PLS-DA). From those pre-processing methods, the second derivative which 

applied the Savitsky-Golay algorithm (second polynomial order) achieved the 

lowest values in latent variables and R2 calibration, thus this model was used to 

predict the origin of the green beans (Table 4.1). The other pre-processing 

methods did not achieve any better results (Appendix 7). 
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Figure 4.1. Score plot and the Hotteling T2 ellipse showing raw infrared spectra (log 1/R) 
for outlier inspection. Data outside Hotelling’s T2 ellipse were considered 
outlier data. 

The calibration model predicted origins, based on the second derivative 

using the Savitsky-Golay algorithm (second polynomial order), yielded a low LVs, 

low RMSEC and a high output in R2. In contrast to these results, the prediction 

model yielded high RMSEP values and low R2 (Table 4.1). Overall, the prediction 

model yielded low accuracy. 

Table 4.1. Statistical parameters of PLS-DA models discriminate the origin of the green 
coffee beans using NIR spectroscopy 

Pre-
processing 
method 

Origin LVs R2 of the 
calibration 
model 

RMSEC R2 of the 
prediction 
model 

RMSEP 

Raw spectra 
  

West Java 7 0.6276 0.2903 0.1614 1.0633 

Central Java  0.3875 0.3723 0.0243 0.7488 

East Java  0.3930 0.3596 0.0182 0.6256 

Savitsky-Golay 
(2nd derivative, 
2nd Polynomial 

order) 

West Java 3 0.8400 0.1903 0.0749 1.3266 

Central Java  0.8589 0.1787 0.7860 1.1282 

East Java  0.7458 0.2327 0.1276 1.1523 

Baseline 
(Linear Baseline 

Correction) 

West Java 4 0.6176 0.2941 0.238 0.464 

Central Java  0.4226 0.3615 0.0522 0.4845 

East Java  0.3204 0.3805 0.2417 0.4396 

LVs: the number of latent variables, R2: the coefficient of determination, RMSEC: root mean 

square error of calibration, RMSEP: root mean square error of prediction. 
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Further analysis showed that the principal components (PC)1 and PC2 of 

the PLS-DA model, based on the second derivative using the Savitsky-Golay 

algorithm (second polynomial order), explained only 12% of the spectral data 

variance as the independent variable. However, PC1 and PC2 of this model 

explained 70% of origin variance as the dependent variable (Figure 4.2). This 

result shows that the calibration model was neither sufficiently robust nor reliable 

to predict the origin of the examined samples. 

 

Figure 4.2. Score plot of the partial least square discriminant analysis calibration model 
for discriminating origins based on the 2nd derivative Savitsky-Golay method 
with two polynomial diffuse reflectances (log 1/R) spectra. 

The robust model will be obtained if the covariance between the 

independent variables and dependent variable are maximized (Gromski et al., 

2015). In other words, a few first PC of the model should explain a major 

proportion of the dependent and the independent variance. In addition, there 

should be only slightly different between the statistical parameter of the 

calibration with the prediction model (Pizarro et al., 2004). This was not the case 

for the present study. 
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 The prediction model to identify the origin of this present study yielded a 

low accuracy of 32.95%. This low prediction accuracy is somewhat surprising, 

given the fact that other previous research shows near infrared discriminate the 

origin of the green coffee beans that cultivated in Brazil with high accuracy 

(Marquetti et al., 2016). This previous study presented that PLS-DA with pre-

process method of MSC plus second-derivative and six LVs yielded an accuracy 

of 87.8%. One of the possible explanations for this might be that the differences 

of sample preparation. The present study used the whole beans while the 

previous study by Marquetti et al. (2016) used powdered samples. To date, there 

is little published information on identifying the origin of the green coffee beans 

using NIR spectroscopy on other specific regions (Burns et al., 2017). Future 

studies are needed to evaluate the sample preparation on different specific origin 

to investigate the ability and the limitation of NIR spectroscopy. 

4.4.2 Stable isotope 

4.4.2.1. Identifying origins using the stable isotopes 18O and 2H 

Figure 4.3a displays an overview of 18O value of examined samples in 

West, Central, and East Java Island. The 18O values in the beans are 

22.12±0.67‰ in West Java, 22.44±0.67‰ in Central Java and 23.35±0.88‰ in 

East Java. The range of 18O value between origins is narrow; indicate that this 

value is not reliable to serve as tracer to identify the origins of the examined 

samples. In comparison, the 18O value of the green beans from Sumatera Island, 

an Island near to Java Island, is 24.9‰, and are in the range of globally 18O 

values in the green beans from 18.7‰ to 34.8‰ (Rodrigues et al., 2011b). 

These 18O values in the beans are likely to be related to 18O values in 

the precipitation water (Figure 4.3a.). The correlation between 18O values in 
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Java beans and precipitation water is positive and significantly different (r = 0.44, 

p <0.001). This finding supports the work of other studies that there is a positive 

correlation between 18O values in Hawaiian coffee and local precipitation (r = 

0.56; p < 0.05) (Rodrigues et al., 2011a).This previous study has demonstrated 

that 18O values in green coffee beans from Hawaii Island is different than other 

four Island, which can be related to 18O values in local precipitation. Therefore, 

it seems that 18O values can be used to identify coffee origins if 18O values in 

precipitation water between those origins are significantly different.  

 

 

 

 

 

 

 

Figure 4.3. (a) 18O and (b) 2H value of green coffee beans of Java Island.  

 The differences of 18O value between the green beans and the 

precipitation water because of fractionation (Figure 4.3a and 4.4b). The soil 

water, contain the 18O from the precipitation water, is taken up through plant 

roots which lead to the fractionation of 18O in the leaf during photosynthesis and 

respiration processes. However, the 18O also can be also sourced from 

groundwater sources, atmospheric vapor and atmospheric CO2 (Barbour, 2007; 

Yakir and Sternberg, 2000). 
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Figure 4.4. (a) 18O and (b) 2H value of precipitation water of Java Island. The 18O and 

2H value of the precipitation water were obtained from (Bowen, 2016).  

  As shown in Figure 4.3b, a similar range of 2H value between regions 

indicates this value is not suitable to identify origins. The beans contain 2H value 

of -58.75±7.58‰, -58.46±5.84‰, and -56.07±6.08‰ in West, Central and East 

Java, respectively. In accordance with the present results, previous study has 

demonstrated that 2H value (range from -83‰ to -20‰) was not considered for 

predicting origins (Santato et al., 2012). 

 The present study shows a positive and significantly different correlation 

between 2H values in the beans and precipitation water (r = 0.29, p <0.05) 

(Figure 4.3b and 4.4b). However, little information is known about the correlation 

between 2H values in the green beans and precipitation water in the previous 

studies. The 2H is highly depleted during photosynthesis, which makes 

correlations between delta 2H in plant material and precipitation water more 

complex (Yakir, 1992).  

Despite 18O and 2H seems not reliable as single tracer to identify origins, 

further examination of both tracers to identify origins was performed using LDA. 
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The LDA yielded an accuracy of 54.29% prediction of the examined samples. 

This result shows that the combination of 18O and 2H value is also not reliable 

to predict origin for Java green coffee beans. As can be seen from Figure 4.5, the 

beans from West, Central and East Java are not clearly divided into different 

groups on scatter plot. 

 The 18O and 2H analysis has a good potential to identify the origins of 

green coffee beans if 18O and 2H values in precipitation water vary among the 

origins and if there is a distinct correlation between the isotope ratios in 

precipitation water and its corresponding plant material; however, the uncertainty 

remains a challenge (Bowen et al., 2005). For example, the previous study 

analyzed 18O and 2H values in caffeine of green coffee beans to predict the 

origin (Weckerle et al., 2002). The LDA of 18O and 2H values in caffeine can 

differentiate whether coffee originates from Central/ South America or Africa at 

error rates of 5.7% when using calibration and of 7.7% when cross validation is 

applied.  

 

 

 

 

 

 

 

Figure 4.5. Scatter plot of 18O and 2H value in green coffee beans from West, Central, 
and East Java. 
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 In addition, it seems that the potential of 18O and 2H value yield a high 

accuracy to predict the origin of the beans if those tracers are combined with 

other stable isotope and elemental analysis. For example, green beans from four 

continental areas (Central America, South America, Africa, and Asia) were 

identified using 13C, 15N, 18O, Li, Mg, P, K, Mn, Co, Cu, Se, Y, Mo, Cd, La and 

Ce yielded an accuracy of 98% (Santato et al., 2012).  

4.4.2.2. Identifying the origins of green coffee beans using the stable 

isotope strontium 

The Sr value in green beans and the host rocks surrounding the sampling 

locations are presented in Figure 4.6. Generally, the Sr value of green beans is 

close to that of their host rocks. According to the literature, Sr value in green 

beans is either slightly lower or slightly higher than that of its corresponding host 

rock. Plant metabolism does not fractionate strontium isotopes significantly, thus 

Sr value in green beans is reflected by its host rocks and can potentially be used 

as an origin tracer (Rodrigues et al., 2011b). 

 

 

 

 

 

 

 

 
Figure 4.6. The Sr value in green coffee beans and their host rocks in Java Island. The 

Sr value of the host rocks was obtained from (EarthChem, 2011).  
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The examined green beans samples from East Java showed lower Sr 

value than those from West and Central Java (Figure 4.6). Thus, it seems more 

practical to divide coffee origins from Java Island into two rather than into three 

origins. Based on this finding, the green beans in western and eastern part of 

Java Island contain Sr value of 0.5887±0.3376 and -0.1204±0.3087, 

respectively. Additionally, Java is part of a volcanic island arc situated in the 

Indonesian archipelago at the southern margin of the Eurasian Plate along which 

the Muria-Progo lineament (Figure 4.7), a major fault system, divides it into two 

distinct structural regions (Clements et al., 2009). Both regions exhibit different 

characters along the deeper crusts resulting in varying contents of Sr in the 

respective rocks (Whitford, 1975). 

 

 

Figure 4.7. Simplified geological map of Java Island according to Clements et al. (2009). 

Sample locations represent Sr analysis of green coffee beans. 

The 87Sr/86Sr isotope ratio is one of the most popular among the isotopic 

systems because it provides fingerprint data that can be traced back to its 

geographical origin. Strontium has four naturally occurring isotopes. The isotopes 

84Sr, 86Sr, and 88Sr are non-radiogenic, whereas 87Sr develops, in part, out of the 

natural β-decay of 87Rb. Its concentration in the minerals reflects the age of the 
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rock as well as the Rb/Sr ratio. This makes the 87Sr/86Sr isotope ratio an important 

parameter in geochronology. The 87Sr/86Sr isotope ratio was demonstrated not to 

change during biological processes and mirrors the growth environment of 

bedrock, soil, and soil–water in plants (Capo et al., 1998). It reflects the ranges 

of delta Sr for country rocks and their respective soils (Horn et al., 1998, 1993). 

The Identification of origins using the analysis of stable isotope 

composition is dependent on environmental variables such as precipitation, 

altitude, distance from the coast, and host rock. Therefore, information on 

environmental factors that influence the isotopic signatures of plant materials is 

essential (Rodrigues et al., 2011b). Identifying the origins of green coffee beans 

origins from a limited geographical area is possible, however, if a combination of 

different tracers such as an isotope abundance of strontium (87Sr/86Sr), carbon 

(13C), nitrogen (15N), sulfur (34S), oxygen (18O), and the concentrations of 30 

multi elements are utilized (Rodrigues et al., 2011a).  

4.5. Conclusion 

The purpose of the present study was to examine the potential of NIR 

spectroscopy and stable isotope analysis of 18O, 2H, and Sr to identify the 

origin of the green coffee beans from Java Island. The results of this study show 

that NIR spectroscopy did not produce a precise prediction for the examined 

sample. The 18O and 2H also did not prove to be good tracers for origin 

distinction, as a single or in a combination. Analyzing the content of Sr in green 

beans turned out to be a promising tracer for identifying between origins of green 

coffee beans from Java Island and supports the evidence that Java Island is 

divided into two distinct structural regions. Although the present study is based 

on a limited examined sample, the findings suggest that identifying the origin of 
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the green beans should consider environmental factor. More research using a 

larger number of coffee production areas under various environmental conditions 

is needed to represent the origin of the green coffee beans. 
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5. General discussion and conclusion 

5.1.  General discussion 

The present study focuses on evaluating near infrared (NIR) spectroscopy 

as a method for predicting quality attributes and authenticating the green coffee 

beans. The application of NIR spectroscopy in the coffee industry is still 

challenging (Barbin et al., 2014). The challenge occurs because of the variation 

in genetic and growing condition of the green beans samples (Toci et al., 2016). 

As consequences, the evaluation of NIR spectroscopy accuracy on the different 

origin of the beans is important in order to establish this method as a reference 

procedure in the coffee industry. 

Several studies have been published regarding predicting quality 

attributes and authenticating the green coffee beans using NIR spectroscopy 

from several origins such as Brazil, Colombia, Costa Rica, Ethiopia, and Yemen 

(Bertrand et al., 2005; Morgano et al., 2008). Until now, not much is known about 

the reliability of NIR spectroscopy to assess the green beans quality from 

Indonesia. Therefore, green coffee beans from different origins in Indonesia were 

used as examined samples. 

Prior to the experimental studies, the literature review in chapter 1 was 

performed to summarize the knowledge about the quality parameters of the green 

coffee beans, the standard methods for quality determination, and to review the 

literature about the reliability of NIR spectroscopy to measure the beans quality 

in comparison to the standard method. The previous studies have reported NIR 

spectroscopy has the potential to predict moisture content (MC), discriminate the 

beans species and identify the origin of the beans. Therefore, the experimental 

studies were conducted on those quality parameters. 
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In chapter 2, NIR spectroscopy was evaluated to predict MC in intact green 

beans of the Coffea arabica (Arabica) and Coffea canephora (Robusta) species. 

The results showed that a three-component partial least squares regression 

(PLSR) model using raw NIR spectra yielded a root mean square error of 

prediction (RMSEP) of 0.80% MC; a four component PLSR model using scatter 

corrected spectra yielded a RMSEP of 0.57% MC and a simplified PLS model 

using seven selected wavelengths (1155, 1212, 1340, 1409, 1724, 1908, and 

2249 nm) yielded a RMSEP of 0.77% MC. These models were feasible to predict 

MC in Arabica and Robusta species. A previous study predicted MC only in intact 

the green beans of Arabica species (Morgano et al., 2008). 

The reliability of NIR spectroscopy to predict MC is lower than the 

gravimetric method (ISO 6673) (SDmean = 0.21% MC). However, NIR 

spectroscopy is feasible to replace the gravimetric method for a routine 

application if time is a limiting factor. The advantage of NIR spectroscopy is that 

MC can be obtained in few minutes whereas the determination with the 

gravimetric method needs 16 hours. A simplified model based on only seven 

selected wavelengths also opens the possibility of creating a simple NIR 

instrument for MC prediction.   

The following study shown in chapter 3 aimed at comparing ultraviolet-

visible (UV-Vis) and NIR spectroscopy analysis as methods for differentiating 

between Arabica and Robusta. The adulteration of Arabica and Robusta is a 

typical issue in coffee trading (Toci et al., 2016). The price differences among 

those species are a risk factor for the adulteration (International Coffee 

Organization., 2018). 
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UV-Vis spectroscopy has been utilized to measure the caffeine and 

chlorogenic acid contents in coffee beans (Belay et al., 2008; Belay and Gholap, 

2009; Dankowska et al., 2017; Navarra et al., 2015). The present study examines 

the potential of the caffeine and chlorogenic acid contents in the green beans that 

were measured using UV-Vis spectroscopy to discriminate among coffee 

species. The result shows that UV-Vis spectroscopy-based determination of two 

important compounds—i.e. caffeine and chlorogenic acid—attained a slightly 

higher classification accuracy of 97.3%. Therefore, we propose UV-Vis 

spectroscopy as a new approach to discriminate between Arabica and Robusta 

species of green coffee beans. 

 NIR spectroscopy is a potential non-destructive analyzing method for the 

discrimination among species. NIR spectroscopy using 7 selected wavelengths 

and LDA yielded a similarly high classification accuracy (95.5%). A low number 

of LVs model is considered to produce a robust model and avoid an over-

optimistic model (Brereton, 2006; Munawar et al., 2016).  

The findings suggest that, given both the speed, non-destructiveness and 

low involvement of labor of NIR spectroscopy, it is superior for on-site species 

discrimination. This study was limited by the environmental conditions and 

varieties of the bean samples. Various methods have been proposed to 

differentiate among beans species (Toci et al., 2016). Each procedure has its 

own merits based on the accuracy, rapidity, simplicity, and cost. 

Green beans from Java Island, Indonesia were identified using NIR 

spectroscopy and stable isotope analysis of oxygen (18O), hydrogen (2H), and 

strontium (Sr) during the third study (chapter 4). The results indicate that NIR 

spectroscopy was not reliable to identify the origins of the green beans. The 
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calibration model predicted origins, based on the second derivative using the 

Savitsky-Golay algorithm (second polynomial order), yielded a low RMSEC and 

a high output in R2. In contrast to this result, the prediction model yielded high 

RMSEP values and low R2. Further analysis showed that the principal 

components (PC)1 and PC2 of the PLS-DA model, based on the second 

derivative using the Savitsky-Golay algorithm (second polynomial order), 

explained only 12% of the spectral data variance as the independent variable but 

explained 70% of origin variance as the dependent variable. This finding shows 

that the calibration model was neither sufficiently robust nor reliable to predict the 

origin of the examined samples. 

The 18O and 2H value is also not suitable to determinate the origin of the 

examined samples. The 18O and 2H analysis has a good potential to identify 

the origins of green coffee beans if the 18O and 2H values in precipitation water 

vary between origins, which is not the case for the samples from Java Island 

(Bowen et al., 2005). The Sr value is a potential tracer because the Sr value in 

the green beans reflects its respective host rocks (Clements et al., 2009). The 

findings suggest that it seems more practical to divide coffee origins from Java 

Island into two rather than into three origins. 

Further work is required to establish NIR spectroscopy as a standard 

method to examine quality parameters of the green coffee beans in the coffee 

industry. The NIR spectroscopy is able to predict quality and authenticate the 

green beans in the simultaneous times, which provide time and cost-effective 

procedures. Large databases consist of samples from different genetic 

characteristic and growing condition are required to overcome the complexity of 
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the issue. The appropriate multivariate analysis is also needed to be considered 

to build the model that yielded high prediction accuracy.  

5.2. Conclusion 

NIR spectroscopy has the potential to predict moisture contents and 

discriminate between Arabica and Robusta but it cannot be recommended as a 

tool to identify the origin of examined samples. It is possible that this conclusion 

is  limited to the origin and number of examined samples. The green coffee beans 

from different origins may have differences in their quality attributes. Therefore, 

further studies are still necessary to evaluate the potential of NIR spectroscopy 

to predict quality and authentication of green coffee beans from other origins, in 

order to establish this rapid and non-destructive method as a routine analysis in 

the coffee industry. 

 

 

 

 

 

 

 

  



68 
 

6.  Summary 
 

Coffee is one of the most popular beverages in the world as well as an 

important commodity for several exporting and importing countries, including 

Indonesia. There are several quality parameters of the green beans that are 

generally used for trading, e.g., moisture content (MC), species, origin, and defect 

beans. There are no general agreements on the definitions and methods for the 

quality measurement. However, there is a variety of analytical methods for the 

determination of quality parameters—for example, physical, chemical, and 

biological approaches. Among these approaches, near infrared (NIR) 

spectroscopy has the potential to serve as an alternative method for the 

determination of green coffee beans quality because it is fast, reliable, and 

accurate. 

Therefore, the main focus of the present study lay on the evaluation of NIR 

spectroscopy for its capacity to predict quality attributes and authenticity of green 

coffee beans. The study was divided into three parts: prediction of MC, 

discriminating among species, and identifying the origins of intact green coffee 

beans using NIR spectroscopy.  

The green coffee bean samples used for prediction of MC were taken from 

different islands in Indonesia, while the samples used for discriminating among 

species and identifying origins were taken from Java Island to consider the variety 

of environmental factors, agricultural practices, and postharvest treatments. 

The results of the first study showed that a three-component partial least 

squares regression (PLSR) model using raw spectra can fairly accurately predict 

MC in intact green coffee beans. It furthermore demonstrated that a simplified 

model based on only seven selected wavelengths opens the possibility of 
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creating a more affordable NIR instrumentation. The second study showed that 

UV-Vis spectroscopy-based determination of two important compounds—i.e. 

caffeine and chlorogenic acid and NIR spectroscopy using 7 selected 

wavelengths and LDA are applicable to discriminate reliably among species. The 

third study showed that neither NIR spectroscopy nor 18O and 2H values were 

suitable for origin determination. The Sr value in the green beans, however, can 

potentially be used as a tracer. It may, hence, be concluded that a combination 

of NIR spectroscopy and multivariate analysis can predict the moisture content in 

intact green beans and discriminate among coffee species but is not suitable for 

the identification of Java coffee origins in the examined samples. 
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Appendix 1. Statistical parameters of calibration and prediction models for moisture content prediction 

Step 
Statistical 
Parameter 

Pre-processing method 

Raw OSC MSC EMSC SNV 

 LV 3 2 3 4 3 

Calibration R2 calibration (%) 98.34 98.17 98.25 98.51 98.43 

 

R2 cross validation 
(%) 97.97 98 97.86 98.11 98.15 

 RMSEC (%) 0.52 0.55 0.53 0.49 0.51 

  RMSECV (%) 0.52 0.59 0.59 0.57 0.55 

 R2 prediction (%) 96.41 NA 97.78 98.18 97.79 

 RMSEP (%) 0.8 5.53 0.63 0.57 0.63 

Prediction SEP (%) 0.69 0.65 0.57 0.5 0.55 

  Bias (%) 0.42 5.5 0.28 0.28 0.31 

LV: latent variables; R2: the coefficient of determination; RMSEC: root mean square error of calibration; 
RMSECV: root mean square error of cross validation; OSC: orthogonal signal correction; MSC: multiplicative 
scatter correction; EMSC: extended multiplicative scatter correction; SNV: standard normal variate.  
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Appendix 1. Continue 

Pre-processing 
method 

Step 
Statistical 
Parameter 

3 
segments 

7 
segments 

11 
segments 

15 
segments 

19 
segments 

  LV 3 3 3 3 3 

 Calibration R2 calibration (%) 98.34 98.34 98.34 98.34 98.35 

  

R2 cross validation 
(%) 97.93 98.06 98.01 97.73 98.12 

Smoothing  RMSEC (%) 0.52 0.52 0.52 0.52 0.52 

Moving average   RMSECV (%) 0.59 0.58 0.57 0.63 0.56 

  R2 prediction (%) 96.4 97.4 96.23 96.1 95.9 

  RMSEP (%) 0.8 0.81 0.82 0.83 0.85 

 Prediction SEP (%) 0.69 0.69 0.69 0.69 0.69 

    Bias (%) 0.42 0.43 0.45 0.48 0.52 

  LV 3 3 3 3 3 

 Calibration R2 calibration (%) 98.34 98.34 97.88 98.34 98.35 

  

R2 cross validation 
(%) 98.03 98.13 97.23 98.12 97.86 

Smoothing  RMSEC (%) 0.52 0.52 0.62 0.52 0.52 

GaussianFilter   RMSECV (%) 0.57 0.56 0.72 0.56 0.59 

  R2 prediction (%) 96.41 96.38 0.98 96.26 96.16 

  RMSEP (%) 0.8 0.8 0.62 0.82 0.83 

 Prediction SEP (%) 0.69 0.69 0.62 0.69 0.69 

    Bias (%) 0.42 0.43 0.01 0.45 0.47 

LV: latent variables; R2: the coefficient of determination; RMSEC: root mean square error of calibration; 
RMSECV: root mean square error of cross validation.  
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Appendix 1. Continue 

Pre-processing method Step 
Statistical 
Parameter 

3 
segments 

7 
segments 

11 
segments 

15 
segments 

19 
segments 

  LV 3 3 3 3 3 

 Calibration R2 calibration (%) 98.34 98.34 98.34 98.35 98.35 

  

R2 cross validation 
(%) 98.09 97.93 98.03 97.9 98.03 

Smoothing  RMSEC (%) 0.52 0.52 0.52 0.52 0.52 

MedianFilter   RMSECV (%) 0.57 0.6 0.57 0.61 0.57 

  R2 prediction (%) 98.34 96.41 96.41 96.4 96.41 

  RMSEP (%) 0.52 0.8 0.8 0.8 0.8 

 Prediction SEP (%) 0.52 0.69 0.69 0.69 0.69 

    Bias (%) 0.42 0.42 0.41 0.41 0.42 

  LV 5 5 5 5 5 

 Calibration R2 calibration (%) 99.38 99.21 99.2 99.22 99.21 

  

R2 cross validation 
(%) 98.31 98.77 98.83 98.78 98.7 

SavitskyGolay  RMSEC (%) 0.32 0.36 0.36 0.36 0.36 
1st derivative, 2 Polinomial 

order   RMSECV (%) 0.53 0.46 0.43 0.45 0.46 

  R2 prediction (%) NA NA NA NA NA 

  RMSEP (%) 6.2 6.09 5.62 5.15 4.78 

 Prediction SEP (%) 4.05 4.01 4.02 4.04 4.05 

    Bias (%) 4.7 4.63 3.97 3.25 2.6 

LV: latent variables; R2: the coefficient of determination; RMSEC: root mean square error of calibration; 
RMSECV: root mean square error of cross validation.  
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Appendix 1. Continue 

Pre-processing method Step 
Statistical 
Parameter 

3 
segments 

7 
segments 

11 
segments 

15 
segments 

19 
segments 

SavitskyGolay 
2st derivative, 2 
Polinomial order  

 LV 4 4 5 5 6 

Calibration R2 calibration (%) 99.15 97.8 99.04 98.99 99.44 

 

R2 cross validation 
(%) 81.6 91.5 96.9 98.4 99.02 

 RMSEC (%) 0.37 0.6 0.4 0.41 0.3 

 RMSECV (%) 1.74 1.19 0.72 0.53 0.41 

 R2 prediction (%) NA NA 97.13 NA NA 

 RMSEP (%) 10.99 4.52 0.72 6.8 4.94 

Prediction SEP (%) 11.97 4.48 0.71 4.28 4.28 

  Bias (%) 2.53 0.93 0.16 5.32 2.54 

SavitskyGolay 
3st derivative, 3 
Polinomial order  

 LV NA 4 3 6 3 

Calibration R2 calibration (%) NA 97.97 92.97 99.33 92.98 

 

R2 cross validation 
(%) 

NA 
74.37 82.3 90.51 82.3 

 RMSEC (%) NA 0.58 1.07 0.33 1.07 

  RMSECV (%) NA 2.06 1.72 1.29 1.72 

 R2 prediction (%) NA NA NA NA NA 

 RMSEP (%) NA 6.27 4.3 4.23 4.23 

Prediction SEP (%) NA 10.16 4.62 4.33 4.28 

  Bias (%) NA 4.53 0.87 0.39 0.09 

LV: latent variables; R2: the coefficient of determination; RMSEC: root mean square error of calibration; RMSECV: root mean 
square error of cross validation.  
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Appendix 1. Continue 

Pre-processing 
method Step 

Statistical 
Parameter area mean 

  LV 4 4 

 Calibration R2 calibration (%) 98.25 98.25 

  

R2 cross validation 
(%) 96.86 97.82 

Normalization  RMSEC (%) 0.53 0.53 

   RMSECV (%) 0.71 0.61 

  R2 prediction (%) 96.3 96.3 

  RMSEP (%) 0.81 0.81 

 Prediction SEP (%) 0.74 0.75 

    Bias (%) 0.34 0.34 

LV: latent variables; R2: the coefficient of determination; RMSEC: root mean square error of calibration; RMSECV: root mean 
square error of cross validation.  
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Appendix 1. Continue 

Pre-processing 
method Step 

Statistical 
Parameter 

Baseline 
Offset 

Linear Baseline 
Correction 

  LV 4 3 

 Calibration R2 calibration (%) 98.17 97.02 

  

R2 cross validation 
(%) 97.58 96.56 

Baseline  RMSEC (%) 0.55 0.70 

   RMSECV (%) 0.63 0.75 

  R2 prediction (%) 96.31 97.29 

  RMSEP (%) 0.81 0.70 

 Prediction SEP (%) 0.79 0.66 

    Bias (%) 0.22 0.25 

LV: latent variables; R2: the coefficient of determination; RMSEC: root mean square error of calibration; RMSECV: root mean 
square error of cross validation.  
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Appendix 2. Equations 

 

No Parameter Equation 

1 Beer-Lambert 𝐴 =  Ɛ ∗ 𝑐 ∗ 𝑙  

 

Where: 

 A = absorbance 

ε = the molar decadic absorption coefficient, 

c = the concentration of the absorbing compound. 

l = distance in the absorbing medium 

 

2 Caffeine content (% dw) C ∗ V

cf ∗ S
∗ 100% 

Where: 

C = measured concentration (ppm) 

V = sample volume (ml) 

S = dry weight of sample (mg) 

cf = conversion factor (0.001 mg ml-1 ppm-1) 
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Appendix 2. Continue 

 

No Parameter Equation 

3 Chlorogenic content (% dw) C ∗ V

cf ∗ S
∗ 100% 

Where: 

C = measured concentration (ppm) 

V = sample volume (ml) 

S = dry weight of sample (mg) 

cf = conversion factor (0.001 mg ml-1 ppm-1) 

 

4 Root mean squared error of 

prediction (RMSEP) 

 

√
1

𝑁
∑(ỹ𝑖 − 𝑦𝑖,𝑟𝑒𝑓)2 

 

 

where  

N= the size of the test set 

ỹi and yi,ref = the prediction and reference value for sample i, respectively 
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Appendix 3. Statistical parameters of several pre-processing method on diffuse reflectance (log 1/R) spectra by partial 
least squares discriminant analysis (PLS-DA) for species discrimination 

No Pre-processing method LV R2 of the 
calibration 
model 

RMSEC R2 of the 
prediction 
model 

RMSEP 

1 Raw 7 0.8896 0.3266 0.7151 0.6005 
       

2 Smoothing 7 0.8896 0.3266 0.8893 0.327 

 (Moving average 3 segments)      
3 Smoothing 7 0.8896 0.3265 0.7148 0.6162 

 (Moving average 7 segments)      
4 Smoothing 7 0.8897 0.3265 0.7146 0.6276 

 (Moving average 9  segments)      
5 Smoothing 7 0.8896 0.3266 0.7144 0.6426 

 (Moving average 11 segments)      
6 Smoothing 7 0.8895 0.3268 0.7137 0.6837 

 (Moving average 15 segments)      
7 Smoothing 7 0.8891 0.3273 0.7127 0.7375 

 (Moving average 19 segments)      
8 Smoothing 7 0.8895 0.3268 0.7148 0.6014 

 (Gaussian filter 3 segments)      
9 Smoothing 7 0.8891 0.3273 0.7136 0.609 

 (Gaussian filter 7 segments)      
10 Smoothing 7 0.8889 0.3277 0.7121 0.623 

 (Gaussian filter 11 segments)      
11 Smoothing 7 0.8886 0.3281 0.7101 0.6441 

 (Gaussian filter 15 segments)      

LV: latent variables; R2: the coefficient of determination; RMSEC: root mean square error of calibration; RMSEP: root mean square 
error of prediction.  
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Appendix 3. Continue 

No Pre-processing method LV R2 of the 
calibration 
model 

RMSEC R2 of the 
prediction 
model 

RMSEP 

12 Smoothing 7 0.8882 0.3286 0.7077 0.6729 

 (Gaussian filter 19 segments)      
13 Savitsky-Golay 4 0.9727 0.8829 0.0129 1.0143 

 (1st derivative, 2 Polinomial order)      
14 Savitsky-Golay 2 0.85916 0.3689 0.0687 1.557 

 (2st derivative, 2 Polinomial order)      
15 Savitsky-Golay 2 0.8371 0.3967 0.1772 2.003 

 (3st derivative, 3 Polinomial order)      
16 OSC 6 0.8877 0.3295 0.5615 8.305 

17 MSC 3 0.8526 0.3774 0.8134 0.4734 

18 EMSC 6 0.9139 0.2884 0.9049 0.3641 

19 Normalization 7 0.9317 0.257 0.903 0.3745 

 (area)      
20 Normalization 6 0.9317 0.257 0.903 0.3745 

 (mean)      
21 Baseline 6 0.9422 0.2364 0.7071 0.5933 

 (Baseline offset)      
22 Baseline 6 0.8977 0.3144 0.5519 0.778 

 (Linear baseline correction)      
23 Baseline 7 0.894 0.32 0.7152 0.6338 

  
(Baseline offset + linear baseline 

correction)           
LV: latent variables; R2: the coefficient of determination; RMSEC: root mean square error of calibration; RMSEP: root mean square 
error of prediction; OSC: orthogonal signal correction; MSC: multiplicative scatter correction; EMSC: extended multiplicative 
scatter correction. 
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Appendix 4.  The correlation between caffeine content and altitude. (a) Arabica. (b) Robusta. 
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Appendix 5.  The correlation between chlorogenic acid content and altitude. (a) Arabica. (b) Robusta. 
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Appendix 6. Caffeine and chlorogenic acid content in different species and origin of green coffee beans samples. 

 

Location Origin Species Variety Altitude 
(m) 

Longitude Latitude Caffeine 
(% dw) 

Chlorogenic 
acid (% dw) 

1 West Java Robusta Wild 548 106.92 -6.59 2.88 9.73 

2 West Java Arabica Java Preanger 1243 107.68 -6.82 1.62 5.93  
West Java Arabica Tim-tim 1243 107.68 -6.82 1.57 6.37  
West Java Arabica Linie S 795 1243 107.68 -6.82 1.77 6.71 

3 West Java Arabica Sigararutang 1140 107.5 -7.11 2.36 10.29  
West Java Robusta Wild 1140 107.5 -7.11 2.58 9.50  
West Java Robusta Wild 1140 107.5 -7.11 1.88 6.37  
West Java Arabica Sigararutang 1140 107.5 -7.11 1.76 7.04 

4 West Java Arabica Sigararutang + Linie S 
795 

1315 107.4 -7.06 1.20 7.04 

 
West Java Arabica Sigararutang + Linie S 

795 
1315 107.4 -7.06 1.85 6.93 

5 West Java Arabica Tim-tim 1490 107.59 -7.17 1.58 7.27  
West Java Arabica Sigararutang 1490 107.59 -7.17 1.74 6.71  
West Java Arabica Linie S 795 + 

Sigararutang + 
Andungsari 

1490 107.59 -7.17 1.78 7.49 

 
West Java Arabica Sigararutang 1490 107.59 -7.17 1.65 6.15  
West Java Arabica Sigararutang 1490 107.59 -7.17 1.73 7.83 

6 West Java Arabica Linie S 795 + 
Sigararutang + 
Andungsari + Ateng 

1409 107.56 -7.18 1.67 7.60 
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Appendix 6. Continue 

 
Location Origin Species Variety Altitude 

(m) 
Longitude Latitude Caffeine 

(% dw) 
Chlorogenic 
acid (% dw) 

7 West Java Arabica Linie S 795 + Ateng + 
Tim-tim + Preanger 

1165 107.56 -7.11 2.72 10.18 

 West Java Arabica Linie S 795 + Ateng + 
Tim-tim + Preanger 

1165 107.56 -7.11 2.82 9.62 

 West Java Robusta Wild 1165 107.56 -7.11 2.69 7.27 

 West Java Robusta Wild 1165 107.56 -7.11 2.74 9.39 

 West Java Robusta Wild 1165 107.56 -7.11 1.67 7.27 

 West Java Robusta Wild 1165 107.56 -7.11 1.81 6.37 

 West Java Arabica Wild 1165 107.56 -7.11 1.82 6.26 

8 West Java Arabica Na 1217 107.69 -6.85 1.91 7.04  
West Java Arabica Na 1217 107.69 -6.85 1.76 7.16  
West Java Arabica Na 1217 107.69 -6.85 1.96 6.93 

9 Central Java Arabica Na 1200 Na Na 3.04 9.06  
Central Java Arabica Na 1200 Na Na 3.21 9.62 

10 Central Java Robusta Na 663 110.07 -7.18 1.82 7.16  
Central Java Robusta Na 663 110.07 -7.18 2.00 7.60 

11 Central Java Robusta BP409 650 110.09 -7.14 3.00 9.28  
Central Java Robusta BP534 650 110.09 -7.14 3.53 8.16 

12 Central Java Robusta BP534 804 110.07 -7.19 3.38 10.51  
Central Java Robusta BP409 804 110.07 -7.19 2.24 9.17 

13 Central Java Robusta BP534 585 110.13 -7.18 3.21 7.27  
Central Java Robusta Wild 585 110.13 -7.18 3.23 11.29  
Central Java Robusta BP42 585 110.13 -7.18 3.09 10.96 

14 Central Java Robusta Wild 609 110.16 -7.18 3.11 7.04 

15 Central Java Robusta BP42 687 110.18 -7.18 3.40 11.07 

16 Central Java Robusta BP534 652 110.17 -7.33 3.22 9.06  
Central Java Arabica Linie S 795 Na Na Na 2.23 8.83 
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Appendix 6. Continue 

 
Location Origin Species Variety Altitude 

(m) 
Longitude Latitude Caffeine 

(% dw) 
Chlorogenic 
acid (% dw) 

17 Central Java Robusta Wild 754 110.12 -7.22 2.85 10.06 

 Central Java Robusta BP42 + BP534 754 110.12 -7.22 2.63 6.37 

18 Central Java Robusta BP42 804 110.08 -7.21 2.83 10.18 

 Central Java Robusta BGN371 804 110.08 -7.21 3.02 9.39 

19 Central Java Robusta Wild 778 110.11 -7.21 3.31 9.62 

 Central Java Robusta BGN371 778 110.11 -7.21 3.39 9.17 

20 Central Java Robusta BP534 709 110.13 -7.23 3.21 12.64 

21 Central Java Arabica Kartika 1248 110.05 -7.33 1.77 6.04  
Central Java Arabica Linie S 795 1248 110.05 -7.33 1.68 6.60 

22 East Java Robusta BP534 473 112.77 -8.22 3.01 10.73  
East Java Robusta BP534 473 112.77 -8.22 2.02 9.06  
East Java Robusta BP534 473 112.77 -8.22 3.06 9.95  
East Java Robusta BP534 473 112.77 -8.22 2.80 9.28 

23 East Java Robusta Umbulsari + Wild 466 112.77 -8.22 2.84 8.27  
East Java Robusta Malamsari 466 112.77 -8.22 2.78 9.28  
East Java Robusta BP534 466 112.77 -8.22 3.15 8.27 

24 East Java Robusta BP534 436 112.77 -8.23 2.82 9.50  
East Java Robusta Excelsa 436 112.77 -8.23 1.95 8.05 

25 East Java Robusta BP534 441 112.77 -8.23 2.81 10.40 

26 East Java Robusta BP534 436 112.77 -8.23 2.74 9.17 

27 East Java Robusta Grembyong + 
BP534 

469 112.77 -8.22 2.75 10.62 

28 East Java Robusta Umbulsari 464 112.77 -8.22 2.95 8.83 
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Appendix 6. Continue 

 
Location Origin Species Variety Altitude 

(m) 
Longitude Latitude Caffeine 

(% dw) 
Chlorogenic 
acid (% dw) 

29 East Java Robusta BP534 467 112.77 -8.22 2.97 9.62 

 East Java Robusta BP534 467 112.77 -8.22 3.05 10.29 

30 East Java Arabica Linie S 795 808 112.83 -8.17 1.61 7.16 

31 East Java Arabica Linie S 795 874 112.83 -8.17 1.73 7.94 

32 East Java Arabica Linie S 795 857 112.84 -8.17 1.73 8.05 

33 East Java Arabica Linie S 795 1190 112.86 -8.14 1.72 6.82 

34 East Java Arabica Linie S 795 1201 112.86 -8.14 1.79 6.82 

35 East Java Arabica Na 968 112.84 -8.15 1.91 8.05 

36 East Java Arabica Na 999 112.84 -8.15 2.37 6.93 

37 East Java Arabica Linie S 795 1277 113.69 -7.93 1.91 6.49 

38 East Java Robusta BP 42 + 
BP358 

562 112.69 -8.28 2.90 9.84 

  +: there are several cultivated varieties in one plantation; Na: no available data; dw: dry weight. 
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Appendix 7.  Statistical parameters of calibration and prediction models to identify the origin of Java green coffee beans 

No Origin Pre-processing method LV R2 of the 
calibration 
model 

RMSEC R2 of the 
prediction 
model 

RMSEP 

1 West Java  7 0.6276 0.2903 0.1614 1.0633 

 Central Java Raw  0.3875 0.3723 0.0243 0.7488 

 East Java    0.393 0.3596 0.0182 0.6256 

2 West Java Smoothing 7 0.6271 0.2905 0.1622 1.0676 

 Central Java (Moving average  0.387 0.3725 0.0245 0.7511 

 East Java 3 segments)  0.3928 0.3596 0.019 0.6267 

3 West Java Smoothing 7 0.6267 0.2907 0.1616 1.0613 

 Central Java (Moving average  0.3863 0.3727 0.0247 0.7486 

 East Java 7 segments)  0.3928 0.3596 0.0181 0.6251 

4 West Java Smoothing 7 0.6266 0.2907 0.1617 1.059 

 Central Java (Moving average  0.3861 0.3728 0.0248 0.7489 

 East Java 11 segments)  0.3928 0.3596 0.0179 0.6243 

5 West Java Smoothing 7 0.6265 0.2908 0.1625 1.0615 

 Central Java (Moving average  0.3858 0.3728 0.025 0.7532 

 East Java 15 segments)  0.3928 0.3596 0.0179 0.624 

6 West Java Smoothing 7 0.6263 0.2908 0.1621 1.0545 

 Central Java (Moving average  0.3855 0.3729 0.0252 0.7535 

 East Java 19 segments)  0.3929 0.3596 0.0173 0.622 

7 West Java Smoothing 7 0.6274 0.2904 0.162 1.0669 

 Central Java (Gaussian filter  0.3873 0.3724 0.0245 0.7508 

 East Java 3 segments)  0.3929 0.3596 0.01844 0.6265 

LV: latent variables; R2: the coefficient of determination; RMSEC: root mean square error of calibration; RMSEP: root mean square error of prediction.  
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Appendix 7.  Continue 

No Origin Pre-processing method LV R2 of the 
calibration 
model 

RMSEC R2 of the 
prediction 
model 

RMSEP 

8 West Java Smoothing 7 0.627 0.2906 0.1618 1.0633 

 Central Java (Gaussian filter  0.3866 0.3726 0.0246 0.7493 

 East Java 7 segments)  0.3928 0.3597 0.0182 0.6255 

9 West Java Smoothing 7 0.6268 0.2906 0.1616 1.0605 

 Central Java (Gaussian filter  0.3864 0.3727 0.0247 0.7483 

 East Java 11 segments)  0.3927 0.3597 0.0181 0.6245 

10 West Java Smoothing 7 0.6267 0.2907 0.1631 1.0682 

 Central Java (Gaussian filter  0.3863 0.3727 0.0248 0.7536 

 East Java 15 segments)  0.3927 0.3597 0.0185 0.626 

11 West Java Smoothing 7 0.6265 0.2907 0.1621 1.059 

 Central Java (Gaussian filter  0.3862 0.3727 0.0249 0.7505 

 East Java 19 segments)  0.3927 0.3527 0.0178 0.6237 

12 West Java Smoothing 7 0.6274 0.2904 0.1619 1.0665 

 Central Java (Median filter  0.3873 0.3724 0.0244 0.7504 

 East Java 3 segments)  0.3929 0.3596 0.0184 0.6265 

13 West Java Smoothing 7 0.6273 0.2905 0.1618 1.0663 

 Central Java (Median filter  0.3868 0.3726 0.0244 0.7499 

 East Java 7 segments)  0.3931 0.3596 0.0184 0.6268 

14 West Java Smoothing 7 0.6274 0.2904 0.1619 1.0644 

 Central Java (Median filter  0.3869 0.3725 0.0246 0.7494 

 East Java 9 segments)  0.3931 0.3595 0.0183 0.626 

LV: latent variables; R2: the coefficient of determination; RMSEC: root mean square error of calibration; RMSEP: root mean square error of prediction.  
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Appendix 7.  Continue 

No Origin Pre-processing method LV R2 of the 
calibration 
model 

RMSEC R2 of the 
prediction 
model 

RMSEP 

15 West Java Smoothing 7 0.6276 0.2903 0.1616 1.0617 

 Central Java (Median filter  0.3869 0.3725 0.0246 0.7479 

 East Java 11 segments)  0.3933 0.3595 0.0181 0.6256 

16 West Java Smoothing 7 0.628 0.2902 0.1626 1.0718 

 Central Java (Median filter  0.3873 0.3724 0.0245 0.7538 

 East Java 15 segments)  0.3934 0.3595 0.0185 0.6276 

17 West Java Smoothing 7 0.6282 0.2901 0.1621 1.0706 

 Central Java (Median filter  0.3874 0.3724 0.0244 0.7538 

 East Java 19 segments)  0.393 0.3596 0.0183 0.6268 

18 West Java Savitsky-Golay 
(1st derivative, 2 
Polynomial order) 

6 0.9161 0.1378 0.06 1.301 

 Central Java  0.8679 0.1729 0.1665 0.6457 

 East Java  0.7952 0.2088 0.1486 1.66 

19 West Java Savitsky-Golay 
(2st derivative, 2 
Polynomial order) 

3 0.84 0.1903 0.0749 1.3266 

 Central Java  0.8589 0.1787 0.786 1.1282 

 East Java  0.7458 0.2327 0.1276 1.1523 

20 West Java Savitsky-Golay 
(3st derivative, 3 

Polynomial order)  

3 0.8323 0.1948 0.1408 0.9867 

 Central Java  0.8673 0.1733 0.0135 0.4796 

 East Java  0.7736 0.2196 0.1405 0.9829 

21 West Java  7 0.3067 0.3961 0.0195 4.24 

 Central Java OSC  0.4660 0.3477 0.0000 6.3691 

 East Java    0.2061 0.4112 0.0665 4.26 

LV: latent variables; R2: the coefficient of determination; RMSEC: root mean square error of calibration; RMSEP: root mean square error of prediction; 
OSC: orthogonal signal correction.  
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Appendix 7.  Continue 

No Origin Pre-processing method LV R2 of the 
calibration 
model 

RMSEC R2 of the 
prediction 
model 

RMSEP 

22 West Java  4 0.4816 0.3425 0.1655 0.4734 

 Central Java MSC  0.3102 0.3951 0.0102 0.5413 

 East Java    0.347 0.373 0.222 0.449 

23 West Java  5 0.5567 0.3168 0.3372 0.4074 

 Central Java EMSC  0.3831 0.2244 0.0046 0.5269 

 East Java    0.4183 0.352 0.2252 0.464 

24 West Java  7 0.6468 0.2827 0.3186 0.4394 

 Central Java Normalization  0.3552 0.382 0.0094 0.553 

 East Java (area)  0.4207 0.3513 0.2595 0.4606 

25 West Java  7 0.6468 0.2827 0.3186 0.4393 

 Central Java Normalization  0.3552 0.382 0.009 0.553 

 East Java (mean)  0.4207 0.3513 0.2595 0.4606 

26 West Java  4 0.4354 0.3575 0.1147 0.468 

 Central Java Baseline  0.3269 0.3903 0.0016 0.5108 

 East Java (Baseline Offset)  0.2987 0.3865 0.1641 0.4553 

27 West Java Baseline 
(Linear Baseline 

Correction) 

4 0.6176 0.2941 0.238 0.464 

 Central Java  0.4226 0.3615 0.0522 0.4845 

  East Java  0.3204 0.3805 0.2417 0.4396 

 

LV: the number of latent variables; R2: the coefficient of determination; RMSEC: root mean square error of calibration; RMSEP: root mean square 

error of prediction; MSC: multiplicative scatter correction; EMSC: extended multiplicative scatter correction. 


