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Chapter Ⅰ: Introduction 

 

1.1 Maize cultivation  

 

Maize (Zea mays L.), along with wheat (Triticum aestivum L.) and rice (Oryza sativa L.), belongs 

to the most important crops worldwide grown on approx. 194 M hectares [1]. Maize is not 

only one of the most important food crop, but also one of the world's most important animal 

feeds [2]. In Germany, maize is the second most important crop grown on 2.6 M hectares 

with a total harvest in 2019 of around 90.4 M tons, which is only exceeded by wheat [3]. 

The introduction of modern silage preparation techniques in the first half of the 20th century, 

can be considered as a milestone, which led to the initial cultivation increase in the late 1960s. 

Further increase in the economic importance of maize is primarily caused by breeding 

success, i.e. better adapted varieties, which allowed cultivation in cooler climatic regions in 

Germany, improved sowing and harvest techniques as well as advances in chemical control 

of weeds [4].  

The main types of use in Germany are silage maize and grain maize, as well as corn-cob mix 

(CCM). In 2019, approximately 2.2 M hectares were harvested as silage maize and 416,000 

hectares as grain maize and corn-cob mix [3]. Grain maize and CCM-maize is mainly 

produced in the southern regions of Germany, especially Bavaria and Baden-Wuerttemberg 

as well as in the Rhine valley for animal feed production (swine and poultry). In contrast, 

silage maize is mainly produced in central to northern regions of Germany used as feed for 

ruminants and as substrate for biogas production. In the last decades, silage maize 

cultivation increased in particular due to the Renewable Energy Law (EEG) in Germany to 

promote the use of renewable resources for energy and biogas production [5]. Especially 

after the adoption of the guideline in 2004, the production area increased by about 70% 

between 2000 and 2014 due to federal subsidies. 

In grain maize production, only the grains are harvested, while corn-cob-mix (CCM) 

contains the grounded grains and spindles. Grain maize is harvested at a dry matter content 

of 60-65%. To produce silage maize, the whole plant is chopped and harvested and serves as 

basis for maize silage to be fed to ruminants. In contrast to grain maize, the optimal silage 
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maize ripeness is around 30-35% DM. A good silage maize variety is also characterized by a 

high biomass yield and a high energy density in the dry matter content [4]. 

Due to the increasing maize cultivation, the subsequent increase of this crop within the crop 

rotation and the spread of insects that promote infestation such as the European corn borer 

(Ostrinia nubilalis)  [6], the infestation pressure and the importance of Fusarium infections on 

maize have increased in Germany [7,8]. 

 

1.2 Ear rot diseases in maize 

Ear rots, caused by fungi, are among the most important maize diseases worldwide with 

high potential yield losses and a reduction of grain quality [9]. The largest damage is caused 

by their ability to produce toxicogenic secondary metabolites, so called mycotoxins [10]. The 

most important diseases in maize due to their mycotoxin production are Aspergillus ear rot 

mainly caused by Aspergillus flavus, Penicillium ear rot and Fusarium ear rot caused by various 

species of the genus Penicillium and Fusarium [9,11]. Several other fungi are known to cause 

ear rots in maize, however, usually less harmful with minor incidence and severity, such as 

Cladosporium ear rot (Cladosporium spp.), Diplodia ear rot (Stenocarpella maydis and 

S. macrospora), Nigrospora ear rot (Nigrosspora oryzae), Trichoderma ear rot (Trichoderma spp.) 

and corn smut (Ustilago maydis) [8,12]. Fungal toxins of most concern are produced by species 

within the genera of Aspergillus, Fusarium and Penicillium. Among these mycotoxins, 

aflatoxin B1 (AFB1), fumonisin B1 (FB1), and ochratoxin A (OTA) (Figure 1) are the most 

toxic to mammals, causing a variety of toxic effects including hepatotoxicity, teratogenicity, 

and mutagenicity, resulting in diseases such as edema, immunosuppression, hepatic 

carcinoma, esophageal cancer, and kidney failure [10,13,14]. Aflatoxin B1 has been classified 

as a class I human carcinogen, while fumonisin B1 and ochratoxin A have been classified as 

class 2B carcinogens by the international agency for research on cancer (IARC) (2002) [15].  

 

1.2.1  Fusarium ear rot 

The fungi of the genus Fusarium are widespread pathogens causing economically important 

diseases, ranging from root and stem rot to ear rot on maize in temperate and semi-tropical 

areas [16]. Several toxigenic Fusarium species are known to cause yield losses and reduction 

of grain quality, thus endangering the safety of both animal feed and human food products 
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[15,17]. Among the most important Fusarium species in pre- and post-harvest ear rots of 

maize are F. graminearum and F. verticillioides [4–6], but also other species, such as F. poae 

[7,8], F. proliferatum [1], F. subglutinans [9] and F. temperatum [10], are frequently reported. 

Infections are typically characterized by the growth of fungal white or reddish mycelium 

with rotting symptoms on the cob and on stored grains. They are associated with the 

production of numerous, chemically diverse mycotoxins such as deoxynivalenol, nivalenol, 

zearalenon and fumonisin [18,19]. 

Fusarium infected ears develop a white, salmon to cinnamon-colored or pink-purple 

colored mycelium, which covers the cob and the husk leaves [20]. The Fusarium ear rot can 

be differentiated into two distinct diseases that differ in their epidemiological characters: red 

ear rot (Gibberella ear red, GER) and pink ear rot (Fusarium ear rot, FER) [21,22]. GER is caused 

by species of the Discolor section, mainly F. graminearum and F. culmorum, however, pink ear 

rot is caused by representatives of the Liseola section, mainly F. verticillioides, F. proliferatum 

and F. subglutinans sp. In addition to the species already mentioned, there is a large number 

of Fusarium species, which are associated with both types of infestation, but isolated less 

frequently like F. equiseti, F. poae, F. sporotrichioides, F. avenaceum and F. cerealis [22]. 

Pathogens of the pink fusariosis colonize the ear from the tip by external infections, which 

appear either as randomly scattered or as groups of infected kernels. In contrast, red ear rot 

covers a large proportion of the entire ear. The distribution and prevalence of the different 

Fusarium species within the two kinds if ear rot disease is primarily affected by 

environmental conditions like temperature and precipitation as well as other factors 

including agrotechnical practices [23]. Infection with F. graminearum is favored by frequent 

rainfall and low temperatures during summer typically found more common in Central to 

Northern European areas [24,25]. FER is commonly observed in Southern to Central 

European areas, associated with drier and warmer climates during the grain filling period 

[26,27]. Root and stem infections are associated with light brown to black discolorations and 

the death of the heart blade with rotted stem marrow with white-pink mycelium [28,29]. 

Root and stalk rot are favored by dry summer, followed by a rainy autumn [30,31].  

Fusarium spp. produce a large number of chemically diverse mycotoxins, which can 

cause considerable reduction of germination capacity of the seeds, loss of yield and loss of 

product quality. Species associated with FER produce various toxins including fumonisin 
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(FB1/ FB2/ FB3), and fusaric acid, however, trichothecenes like deoxynivalenol (DON) and 

nivalenol (NIV) as well as zearalenone (ZEN) are mostly detected in samples from ears 

infected with red ear rot [22,32–35]. Among all Fusarium toxins discovered, trichothecenes 

are the most toxigenic substances, strongly associated with acute and chronic symptoms of 

intoxication for humans and animals [32,34]. Trichothecenes are divided into three groups: 

type A trichothecenes, which include T-2 toxin and its derivatives (HT-2 toxin, T-2 triol, T-2 

tetraol), and type B trichothecenes, which include DON and NIV and type C. Type B 

trichothecenes are less toxic compared to type A trichothecenes but occur more frequently 

[7,36,37]. If contaminated grain is fed to livestock, especially swine, DON contamination 

results in vomiting, feed refusal, decreased weight gain and fertility problems [15]. 

Zearalenone is produced by various Fusarium species, as shown in Table 1. This toxin is the 

most widespread Fusarium toxin in agriculture and is predominantly found in maize in high 

concentrations [10]. Zearalenone has an estrogen-like effect, which causes reproductive 

disorders including reduced litter size, estrogenic symptoms and male formation in 

particular in pigs as well as immunosuppression in humans [22,34,38]. Fumonisins are 

divided into 28 different types within four groups, A, B, C and P series [39]. Fumonisin B1 

and B2 are the most important fumonisins in maize cultivation causing equine 

leukoencephalomalacia, porcine pulmonary oedemas, liver cancer in rats and are also 

associated with human esophageal cancer [19,40–42]. Due to these risks, the European 

Commission has set up a maximum tolerable daily intake for the most important Fusarium 

toxins, which are deoxynivalenol, zearalenone, fumonisin, as well as T-2 and HT-2 toxins. In 

addition, the legal limit in maize food and maize based products for human consumption 

and guidelines for the maximum levels in feed for deoxynivalenol, zearalenone and 

fumonisin B1 + B2 were established (Table 1).  

The type of usage can therefore play an important role for feed contaminated with 

Fusarium mycotoxins. To produce silage maize, the whole maize plant is harvested, i.e. the 

total plant biomass contributes to the contamination with mycotoxins [43].  Maize plants 

used for grain maize production stay longer in the field, which subsequently leads to higher 

accumulation of mycotoxins in the ear. In addition, contamination is more critical when 

grains are used for human consumption, to feed swines and poultry due to their higher 

sensitivity to toxins. 



Introduction 

5 

 

 

Table 1: Fusarium species associated with ear rot in maize and their legal mycotoxin thresholds 

according to tolerable daily intake and limits for human food and feed contamination 

 Fusarium 

species 
 

TDI1 

[μg/kg 

BW2] 

Maize products 

for direct human 

consumption3 

[μg/kg] 

Maize 

feed for 

pigs4 

[μg/kg] 

T-2 Toxin 

F. tricinctum, 

F. solani, F. poae, 

F. sporotrichioides, 

F. acuminatum,  

F. sambucinum  

haemorrhages and necrosis of the 

epithelium of stomach and intestine, bone 

marrow, pulmonary adenocarcinomas, 

suppression and stimulation of 

immunoglobulin production 

0.06 - - 

HT-2 Toxin 

F. culmorum,  

F. poae,  

F. sporotrichioides,  

F. acuminatum  

Humans: vomitting, abdominal pain and 

diarrhea, leukopenia, bleeding from the 

nose and throat, depletion of the bone 

marrow and fever 

0.06 - - 

Nivalenol (NIV) 

F. nivale,  

F. graminearum, 

F. cerealis,  

F. culmorum,  

F. equiseti, F. poae  

haemolytic disorder, impairment of both 

humoral and cellular immune responses, 

haemorrhagic and emetic syndromes, 

human toxicosis, depletion of the bone 

marrow 

0.7 - - 

Deoxynivalenol (DON) 

F. graminearum, 

F. culmorum  

Vomiting (swine), feed refusal, weight loss 

and diarrhea, necrosis in various tissues 
1 500 900 

Zearalenone (ZEN) 

F. graminearum,  

F. culmorum, 

F. cerealis, 

F. equiseti,   

hyper-estrogenism (swine), infertility and 

poor performance (cattle and poultry), 
reproductive disorder, male formation 

(swine), immunosuppression (human)  

0.25 100 100 

Fumonisin (FUM) 

F. verticillioides,  

F. proliferatum,  

F. nygamai,  

Leukoencephalomalacia (horse), 

pulmonary edema and hepatic syndrome 

(swine), alteration in hepatic and immune 

function (cattle), esophageal cancer 

(human) 

2 800 5000 

1 TDI = tolerable daily intake; European Commission, Option of the scientific committee on food on 

Fusarium toxins, 
2 BW = body weight, 
3 European Union, EG 1126/2007; 4 European Union, 2006/576/EG 

 

There are three main modes of fungal entry by which fungal pathogens may enter 

the ear; (i) by silk channel, (ii) through wounding by insects and birds or (iii) through 

systemic growth from the stalk [44–47]. Which infection pathway is more important depends 
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on the predominant Fusarium spp. and the insect population in the geographical location 

[16].  

Fusarium species survive well on maize crop residues as mycelium or through 

formation of survival structures like chlamydospores or thickened hyphae [48–51]. In 

addition, species can colonize senescent maize tissue and other crops or weed species [49] 

that are not considered as hosts for these pathogens [52]. From there, Fusarium spp. can infect 

the plant through the formation of ascospores or conidiospores which are dispersed by wind, 

insect vectors or through rain splashes [53]. The primary infection pathway by 

F. graminearum is via the silk during the first six days after silk emergency [54,55]. Fungal 

spores reach the silks by rain splashes or wind dispersal, germinate and grow down the silk 

to infect the kernels through the stylar canal [56]. Insects play a key role in the dispersal and 

infection of F. verticillioides. Severity of FER and symptomless kernel infection are closely 

correlated with insect injuries, primarily due to infestation with O. nubilalis, offering a point 

of entry for the pathogen [57–59]. Systemic transmission from infected stalks and seeds 

seems to be of lower importance and has only been reported for F. verticillioides [60–63] and 

F. subglutinans in maize.  
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Figure 1: The Fusarium verticillioides disease cycle, centered on the life cycle of maize. A Seed 

germination in Fusarium-infested soils may develop an aggressive rot and seedling blight. B 

Endophytic colonization occurs under non disease-promoting conditions. C Stalk wounds from 

mechanical damage or insect feeding become infection courts for F. verticillioides and may result in 

stalk rot. D At silk stage, the fungus can colonize maize kernels via the stylar canal, giving rise to the 

“starbust” pattern on kernels. E Larvae of the European corn borer moth feed on leaves, stalks, ears, 

and collar tissue, providing courts for F. verticillioides stalk and ear rot., F After harvest, the fungus is 

capable of surviving and sporulating on crop residues, providing inoculum for subsequent infections 

[64].  

 

Disease development and mycotoxin production is affected by several factors like 

genetic resistance of maize hybrids, weather conditions and agronomic factors. Since the 

European Union released legal limits for mycotoxin content in maize grains for foodstuff (EC 

No. 1126/2007) [65,66] and animal feed [67] (Table 1), breeding for resistance against ear rots 

has become an important trait for breeders, i.e. to select less susceptible inbred lines [16]. 

Two types of resistance have so far been identified in maize, silk channel resistance prevents 

the fungus from invading through the silk channel down to the kernel and kernel resistance 

blocks the spread of the fungus from kernel to kernel [68–70]. Different morphological factors 

such as pericarp thickness [71,72], surface wax layer [73] and husk covering as well as 

chemical factors, such as phenolic compounds, especially ferulic acid [74], have been 

identified to be resistance factors. Thus control of the European corn borer (O. nubilalis) by 

genetically engineered maize hybrids, containing one of the Bt-genes are known to 

significantly reduce Fusarium infection and mycotoxin concentration in maize ears and stalks 

[6,20,75,76]. 

Cultural practices such as crop rotation and tillage have been reported to influence 

the disease incidence and severity of Fusarium infection in wheat and maize [77]. Residues 

of previous crops serve as source of inoculum for subsequent infection [45,49] and also 

promote the survival of O. nubilalis, which may further enhance the risk of infection with 

Fusarium spp. [46,78]. Controversial effects of tillage and crop residues have been reported 

in previous studies. Some reports indicated no effect of alternating corn tillage practices on 

the incidence of ear rot pathogens [79–82], whereas others found a significant decrease in the 

diversity of Fusarium spp. in soil after conventional ploughing as compared to reduced tillage 

[83–85]. Other factors like the harvest date, potassium deficiency, excessive N fertilization 

[81], as well as the type and amount of crop residues [77,86] can affect ear rot infection. The 
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success of these strategies has, however, been limited owing to the broad range of Fusarium 

species and large variation in host species and their genotypes. 

1.2.2 Trichoderma ear rot 

Members of the genus Trichoderma are classified as imperfect fungi in the division 

Ascomycota and are ubiquitous in various types of soil. Some species of Trichoderma have 

biocontrol potential and can suppress pathogen growth by direct and indirect mechanisms 

[87–90]. The success of Trichoderma in the rhizosphere is due to their high reproduction and 

ability to survive under unfavorable conditions, efficiency in the utilization of nutrients, 

capacity to modify the rhizosphere and strong aggressiveness against plant pathogenic fungi 

[91,92]. Five modes of action are associated with biocontrol mechanism of Trichoderma; (i) 

competition and rhizosphere competence, (ii) antibiotic production, (iii) mycoparasitism (iv) 

induced defense responses in plants and (v) enzyme production [91].  

They can thereby control and antagonize a broad range of economically important plant 

parasitic pathogens [92–94]. Several Trichoderma species are known with mycoparasitic 

potential against Alternaria alternata, Botrytis cinerea, Rhizoctonia solani, Sclerotinia sclerotiorum, 

Pythium spp. and Fusarium spp. [95,96]. Mycoparasitism by Trichoderma results in 

penetration of the cell wall of the host fungus and utilization of its cellular contents. Apart 

from the control of root and foliar pathogens, Trichoderma spp. enhance nutrient 

solubilization and uptake as well as enhanced root and root hair development [97]. This 

implies the increase in plant resilience against dry conditions and promotes shoot and root 

growth [98]. Harman et al. (2004) [95] reported a significant yield increase in maize due to 

Trichoderma treatments.  
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Figure 2 Overview on different modes of action of Trichoderma spp. antagonisms against 

pathogens and for plant growth improvement [99].  

 

Trichoderma spp. produce several secondary metabolites that have different functions and 

potential applications in agriculture, biotechnology and medicine. Some are known to have 

antifungal activity like ergokonin A, trichodermin, alkylated pyranones, harzianopyridone, 

viridin and β-1,6-glucanases against well known pathogens like Botrytis, Rhizoctonia, 

Sclerotinia, Penicillium and Aspergillus and Fusarium [91]. Although Trichoderma species have 

been described as opportunistic, basically avirulent plant symbionts in soil [100], however, 

a few reports have mentioned Trichoderma as an ear rot pathogen on maize in the US [8,101–

103]. Trichoderma ear rot infection is characterized by the occurrence of dark, blue-green 

layers of conidia on and between the kernels of infected ears causing premature germination 

of the kernels [102]. In addition, the dry matter content of ears infected with Trichoderma was 

strongly reduced compared to uninfected ears.  
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1.3 Aims of the study 

 

The present study has four research objectives: 

 

I. To determine the impact of environmental conditions and agronomic practices on the 

prevalence of Fusarium species associated with ear and stalk rot in maize. For this purpose, 

we evaluated the effect of weather conditions (air temperature and precipitation) and 

cultural practices (tillage and previous crop) on the frequency of local Fusarium species 

from naturally infected maize cobs and stalks in Germany from 2016 to 2018.  

 

II. To determine the occurrence, the mycotoxin production and the pathogenicity of Fusarium 

temperatum from maize in Germany. For this purpose, we focused on (i) the occurrence of 

F. temperatum and F. subglutinans in Germany in 2017 and 2018, (ii) compared the 

aggressiveness to other common Fusarium species on maize ears and stalks, (iii) 

investigated the potential pathogenicity on winter wheat, (iv) determined the effect of 

temperature on disease severity induced by F. temperatum in comparison to F. subglutinans 

and (v) assessed the mycotoxin production.  

 

III. To investigate (i) the aggressiveness of F. graminearum, F. verticillioides and F. temperatum 

on twenty maize hybrids in four locations in Germany, (ii) to correlate genotype resistance 

towards the respective Fusarium species and (ii) to determine genotype resistance to 

different inoculation methods (silk channel vs. kernel stab inoculation).  

 

IV. To identify and verify Trichoderma as a new pathogen causing ear rot disease on maize in 

Europe. For this purpose, cobs infected with Trichoderma were sampled from ten locations 

in Germany and France. Isolates were cultured, microscopically examined and analyzed 

by sequencing the gene for translation elongation factor-1α. Furthermore, pathogenicity 

of Trichoderma isolates and the impact of infection on dry matter content of maize cobs was 

tested after artificial inoculation in the greenhouse at flowering. 
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Abstract:  

 Fusarium species are common pathogens on maize and reduce the product quality through 

contamination with mycotoxins thus jeopardizing safety of both animal feed and human food 

products. Monitoring of Fusarium infected maize ears and stalks was conducted in Germany to 

determine the range of Fusarium species present in the field and to assess the impact of tillage, crop 

rotation and weather conditions on the frequency of Fusarium species. From 2016 till 2018, a total of 

387 infected ears and 190 stalk segments from 58 locations in Germany were collected. For each sample 

location, site-specific agronomic data on tillage and previous crops as well as meteorological data on 

precipitation, air temperature and relative humidity during the vegetation period were recorded. The 

most frequent Fusarium species detected in maize ears were Fusarium graminearum, F. verticillioides and 

F. temperatum, whereas, F. graminearum, F. equiseti, F. culmorum and F. temperatum were the species 

prevailing on maize stalks. Differences in the local species composition were found to be primarily 

associated with weather variations between the years and the microclimate at the different locations. 

The results indicate that mean temperature and precipitation in July, during flowering, has the 

strongest impact on the local range of Fusarium spp. on ears, whereas the incidence of Fusarium species 

on stalks is mostly affected by weather conditions during September. Ploughing significantly reduced 

the infection with F. graminearum and F. temperatum, while crop rotation exerted only minor effects. 

Keywords: Fusarium spp., ear rot, stalk rot, maize, monitoring, weather conditions, agronomic 

practice 
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1. Introduction 

 

 Fusarium spp. in maize occur worldwide and can cause various diseases in different growth stages of 

maize, such as root and seedling rot as well as stalk and ear rot [1]. Fusarium ear rot (FER) and Fusarium 

stalk rot (FSR) are characterized by a white or reddish discoloration with rotting symptoms on the ears 

and inside the stalk [2,3]. Several toxigenic Fusarium species are known to cause yield losses, reduction 

of grain quality, thus endangering the safety of both animal feed and human food products [4,5]. The 

dominant Fusarium species causing ear and stalk rot in temperate climate zones are Fusarium 

graminearum, F. verticillioides and F. subglutinans, producing numerous, chemically diverse mycotoxins, 

among which the most important are deoxynivalenol, zearalenon and fumonisin [6,7]. 

Previous studies demonstrated, that the local Fusarium species composition is influenced by weather 

conditions as well as cultural practices [8–10, 11-13]. Several routes are known by which the fungus 

may enter the kernels and the stalk including wounds by insects [14,15], silk infection and systemic 

spread after root penetration [1,16]. The major infection pathway for the infection of maize ears by most 

Fusarium species is via the silk channel with highest severity occurring at early stages of silk 

development [17,18]. In contrast, infection with F. verticillioides is often associated with injury by insects, 

primarily due to the feeding of the European corn borer (Ostrinia nubilalis), at 10-15 days after silk 

emergence. Stalk colonization has been reported to increase late in the season [19,20] due to an increase 

in tissue susceptibility when carbohydrates and other nutrients are redirected towards developing 

kernels [21]. The importance of infection pathways and timepoints of infection may vary among 

geographical regions due to differences in weather conditions and the occurrence of insects. 

Temperature and moisture appear to be the most important factors affecting the range of Fusarium 

species of ear and stalk rot infection. Favorable weather conditions for an infection of Gibberella ear rot, 

mainly caused by F. graminearum and F. culmorum are low temperatures and high precipitation, 

whereas infection with F. verticillioides, F. subglutinans and F. proliferatum ( Fusarium ear rot) is promoted 

at high temperatures and dry conditions [22,23].  

Likewise, cultural practices such as crop rotation and tillage have been reported to influence 

the disease incidence and severity of Fusarium infection in wheat and maize [24]. Residues of previous 

crops serve as source of inoculum for subsequent infection [25,26] and also promote the survival of 

Ostrinia nubilalis, which may further enhance the risk of infection with Fusarium spp. [1,16]. 

Controversial effects of tillage and crop residues have been reported in previous studies. Some reports 

indicated no effect of alternating corn tillage practices on the incidence of ear rot pathogens [10,27–29], 

whereas others found a significant decrease in the diversity of Fusarium spp. in soil after conventional 

ploughing as compared to reduced tillage [9,30,31].  

Prevention of Fusarium infection focuses on cultural practices such as crop rotation and ploughing as 

well as improving host resistance. The success of these strategies has, however, been limited owing to 

the broad range of Fusarium species and large variation in host species and their genotypes. In addition, 

maize growing areas with short rotations of wheat and maize increased in recent years resulting in a 

higher risk of Fusarium ear and stalk infection and mycotoxin contamination [23,32]. The complex of 

Fusarium species may also have extended and shifted due to climate variations and more intense maize 

cultivation [33].  

Therefore, the objective of this study was to determine the actual Fusarium species 

composition of maize fields in Germany and to estimate how the frequency of local Fusarium species is 

affected by cultural practices (tillage and previous crop) and weather conditions (air temperature and 

precipitation) under natural infection from 2016 to 2018.  
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2. Results 

2.1 Fusarium species involved in ear and stalk infections. 

In the three years of field investigations, a total number of 11,610 kernels and 3,483 rachis and stalk 

samples were analyzed to determine the local Fusarium spp. composition. In the years 2017 and 2018, 

twelve Fusarium species were identified. In 2016, F. verticillioides and F. proliferatum as well as 

F. temperatum and F. subglutinans were treated as a species complex of F. proliferatum sp. and 

F. subglutinans sp., respectively (Tab. 1).  

In 2016 and 2017, F. graminearum was the predominant species in maize ears and detected in 

over 60% of all tested samples. The detection frequency of F. graminearum differed from year to year, 

with 79% in 2016, 71% in 2017 and 30% in 2018. F. verticillioides was the prevailing species in 2018 and 

detected in 39% of all ears. In total, F. verticillioides colonized 24% of all tested ears from 38 locations. 

Detection frequency of F. temperatum ranged from 15% in 2017 up to 33% in 2016. In total, 23% of all 

ears analyzed were infected with F. temperatum. F. poae colonized 14% of all tested ears followed by 

minor species such as F. cerealis (9%), F. proliferatum (6%), F. tricinctum (5%), F. avenaceum (5%), 

F. culmorum (4%), F. subglutinans (2%), F. equiseti (2%) and F. sporotrichioides (2%). Similar to ears, 

F. graminearum was also prevailing on maize stalks where; it was detected in 62% of all tested samples. 

In 2017, F. graminearum was present in more than 80% of the stalks and occurred at almost each 

sampling location. F. equiseti colonized a total of 22% of the samples within two years of investigation, 

however, the percentage of infected stalks containing F. equiseti was much higher in 2018 (34%) 

compared to 2017 (11%). F. culmorum was the third most frequent species isolated from 22% of the stalks 

in 2017 and 16% in 2018. Infection with F. temperatum and F. cerealis was found in 17% of the stalk 

samples, however, F. cerealis was more frequent in 2017 (19%) and F. temperatum in 2018 (20%). 

F. verticillioides, F. avenaceum, F. tricinctum, F. poae F. subglutinans and F. sporotrichioides were detected 

less frequently.  

 

Tab. 1 Percentage of ears and stalks infected with Fusarium species  

 

 Ears infection   Stalk infection 

 Fusarium species 

Frequency [%] Sample sites 

 Fusarium species 

Frequency [%] Sample sites 

2016 2017 2018 
Total 

2016 2017 2018 2017 2018 
Total 

  

2017 2018 

n= 94 n= 180 n=113 n=18 n=42 n=18 n=110 n=80 n=21 n=14 

 F. gramineaum 79 71 30 60 17 41 15  F. graminearum 81 43 62 20 11 

 F. verticillioides 192 13 39 24 11 11 16  F. equiseti 11 34 22 10 9 

 F. temperatum 331 15 21 23 11 21 15  F. culmorum 22 16 19 14 11 

 F. poae 11 15 12 14 6 11 12  F. temperatum 15 20 17 7 13 

 F. cerealis 11 12 3 9 6 13 2  F. cerealis 19 15 17 9 10 

 F. proliferatum ** 4 13 6 ** 3 12  F. verticillioides 7 9 8 6 3 

 F. tricinctum 4 7 2 5 3 8 3  F. avenaceum 6 5 5 5 3 

 F. avenaceum 10 5 1 5 4 8 1  F. tricinctum 5 8 6 4 5 

 F. culmorum 1 5 4 4 1 9 3  F. proliferatum 3 11 6 3 5 

 F. subglutinans * 2 2 2 * 3 3  F. poae 3 5 4 3 3 

          F. subglutinans 1 3 2 1 2 

 F. sporotrichioides 4 1 5 2 3 1 4  F. sporotrichioides 1 0 1 1 0 

 1 In 2016, there was no differentiation between F. subglutinans and F. temperatum 
2 In 2016, there was no differentiation between F. verticillioides and F. proliferatum 
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2.2 Effect of previous crop 

 

The abundance of the three most frequent species on ears (F. graminearum, F. verticillioides, 

F. temperatum) and the four species prevailing on stalks (F. graminearum, F. equiseti, F. culmorum and 

F. temperatum) after different pre-crops is shown in Figure 1. Crop rotation had no significant effect on 

ear and stalk infection with F. graminearum, F. temperatum, F. equiseti and F. culmorum. The frequency of 

F. graminearum on ears was slightly reduced in maize after maize as compared to wheat, sugar beet and 

non-host crops like potato, strawberries or cabbage. The highest frequency of stalk infection with 

F. graminearum was observed on maize after other crops, followed by wheat, maize and sugar beet. No 

effects of pre-crops were found for ears infected with F. temperatum. Maize as previous crop slightly 

favored stalk infection with F. equiseti (30%) while colonization with F. culmorum was slightly increased 

after wheat (27%). Only F. verticillioides indicated strong differences in frequency of ear infection. 

Colonization of F. verticillioides was significantly favored by maize after maize in comparison to maize 

after sugar beet. 

 

Fig. 1. Percentage of ears (left) infected with F. graminearum, F. verticillioides and F. temperatum and stalks 

(right) infected with F. graminearum, F. equiseti, F. culmorum and F. temperatum depending on the 

previous crop (maize, wheat, sugar beet, others). Vertical bars represent standard deviations. Different 

letters indicate significant differences (p≤0.05) within species. 

2.3 Effect of tillage. 

 

Ear and stalk infection with F. graminearum, F. verticillioides and F. equiseti were significantly affected by 

the type of soil tillage as shown in Figure 2. Apart from F. verticillioides and F. equiseti, reduced tillage 

(chisel ploughing and rotary harrow) favored infection with most Fusarium species compared to 

moldboard ploughing. Hence, colonization with F. graminearum in ear and stalk samples was 

significantly higher at reduced tillage compared to moldboard ploughing. Similarly, ear infection with 

F. temperatum was reduced after ploughing (30%) compared to reduced tillage (17%). Ploughing also 

reduced the frequency of Fusarium species in maize stalks, however, it led to higher frequencies in 

observations with F. equiseti. The percentage of ears colonized with F. verticillioides was significantly 
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higher after ploughing (24%) than after reduced tillage (12%). F. equiseti was equally favored by 

ploughing (28%) as compared to reduced tillage (7%). The type of tillage had no significant effect on 

stalk infection with F. culmorum and F. temperatum.  

 

Fig. 2. Percentage of ears (left) infected with F. graminearum, F. verticillioides and F. temperatum and stalk 

(right) infected with F. graminearum, F. equiseti, F. culmorum and F. temperatum depending on tillage 

(reduced tillage vs. ploughing). Vertical bars represent standard deviation. Different letters indicate 

significant differences (p≤0.05) within species.  

 

2.4 Effect of environmental conditions.  

 

The relationship between the frequency of Fusarium species on ears (F. graminearum, F. verticillioides, 

F. temperatum) and stalks (F. graminearum, F. equiseti, F. culmorum and F. temperatum) and weather 

conditions after flowering was analyzed using Pearson correlation. While temperature and 

precipitation in June had no significant effect on the occurrence of the most frequent Fusarium species 

(Fig .3), temperature and precipitation during flowering in July had a medium to strong effect on the 

frequency of the prevailing species. Colonization of F. graminearum negatively correlated (r= -0.42) with 

temperature in July and positively correlated (r= 0.70) with precipitation in July. F. temperatum was 

favored by low precipitation (r= -0.71) and F. verticillioides was found to be more frequent at high 

temperatures (r= 0.69) and low precipitation (r= -0.71). Temperature and precipitation during August 

and September had minor effects on frequencies of Fusarium species. The correlations described above 

demonstrate the critical impact of temperature and precipitation in July on ear infection with the most 

frequent Fusarium species (Fig. 4). Frequency of F. graminearum was inversely related to temperature 

(r= -0.42) and positively correlated with precipitation in July (r= - 0.71). Ear infection with 

F. verticillioides significantly increased with temperature (r= 0.67) and low precipitation (r= 0.72). The 

temperature in July had no effect on colonization with F. temperatum, however, dry conditions 

promoted (r2= -0.57) infections of the ear.  
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Fig. 3. Coefficients of correlation of temperature and precipitation during June, July, August and 

September with ear infection by F. graminearum, F. temperatum and F. verticillioides. Bars represent 

coefficients of correlation between percentage of sampled ears per location infected with F. graminearum, 

F. temperatum and F. verticillioides and weather data at the sampling sites recorded in 2016, 2017 and 2018 

(n=387). Asterisk (*) indicates statistically significant correlation (p≤0.05).  
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Fig.4. Relationship between ear infection [%] and temperature (left) or precipitation (right) in July of 

F. graminearum, F. equiseti, F. culmorum and F. temperatum. Solid line indicates a statistically significant 

(p≤0.05) least squares linear relationship.  

 

 

In contrast to ear infection, the abundance of the most frequent Fusarium species on stalks 

(F. graminearum, F. equiseti, F. culmorum and F. temperatum) displayed significant correlation with 

temperature and precipitation during the month of September (Fig. 5). F. graminearum was significantly 

enhanced at low temperature (r= 0.38) and low precipitation (r= -0.54). However, F. temperatum (r= 0.63) 

and F. culmorum (r= 0.46) were favored by high temperature. Temperature and precipitation had no 

effect on the frequency of stalk infection with F. equiseti. The specific relationship between temperature 

and precipitation in September on one hand and stalk infection with the most frequent Fusarium species 

on the other hand revealed increased frequency of F. graminearum at low temperatures (r= -0.38) and 

dry conditions (r= -0.54). In turn, the percentage of ears infected with F. temperatum (r= 0.70) and 

F. culmorum (r= 0.46) increased at higher temperatures. Precipitation in September had no effect on stalk 

infection neither with F. temperatum nor F. culmorum. Stalk infection with F. equiseti was not influenced 

by temperature or precipitation during ripening.  
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Fig. 5. Coefficients of correlation of temperature and precipitation during June, July, August and 

September with stalk infection by F. graminearum, F. temperatum, F. culmorum and F. equiseti. Bars 

represent coefficients of correlation between percentage of stalks sampled per location infected with 

F. graminearum, F. temperatum, F. culmorum and F. equiseti and weather data recorded at the sampling 

sites in 2017 and 2018 (n=190). Asterisk (*) indicates statistically significant (p≤0.05) correlation.  
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Fig. 6. Relationship between stalk infection [%] with F. graminearum, F. equiseti, F. culmorum and 

F. temperatum and temperature (left) or precipitation (right) in September. Solid lines indicate a 

statistically significant (p≤0.05) least squares linear relationship.  

 

2.5 Relative impact of main effects.  

 

The effects of tillage, previous crop, year and location on the percentage of ears and stalks infected with 

the most frequent Fusarium species were compared using the variance components of each factor (Fig. 

7). The strongest effect was found for the sampling location, which affected the infection of maize ears 

with F. graminearum (34.9% of variance), F. verticillioides (26.3%), and F. temperatum (28.5%). 
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Furthermore, the frequency of F. graminearum was influenced by the year of sampling (24%), less by the 

type of tillage (3.9%) and the previous crop (1%). Similarly, the occurrence of F. verticillioides and 

F. temperatum were most strongly determined by the location, followed by year, previous crop and 

tillage. Tillage and previous crop had minor effects on ear colonization with any of the tested Fusarium 

species.  

Stalk infection with F. graminearum, F. equiseti, F. culmorum and F. temperatum was mainly 

affected by the year and location. Stalk infection with F. graminearum (26.3%) strongly differed between 

the years, while stalk infection with F. equiseti (27.1%), F. culmorum (26.4%) and F. temperatum (11.8%) 

was mainly affected by the location. The previous crop had almost no effect on Fusarium species 

composition and tillage only slightly influenced the colonization with F. graminearum (6.2%), F. equiseti 

(8.9%) and F. culmorum (4.4%).  

 

 

Fig.7. Relative impact of main effects (year, location, tillage, previous crop) expressed as percentage of 

variance of the total variance estimated with the restricted maximum likelihood model. Ear infection 

(left) calculated for F. graminearum, F. temperatum and F. verticillioides. Stalk infection (right) calculated 

for F. graminearum, F. equiseti, F. culmorum and F. temperatum.  

 

3. Discussion 

 

Within the three years of investigations of maize ears and stalks, twelve Fusarium species were isolated 

and identified. All the species detected are known to frequently occur on maize ears and stalks in 

Central Europe [34]. High year to year variability was observed for the frequency of Fusarium spp., 

which indicated a major impact of temperature and precipitation during the vegetation period. The 

growing seasons in 2016 and 2017 were characterized by moderate temperatures (18.8°C) and high 

precipitation in July (110 mm), while in 2018 high mean temperatures (20.6°C) and dry conditions (40 

mm in July) prevailed. This might explain the high frequency of F. graminearum and F. culmorum in 2016 

and 2017 when more than 70% of all tested ears and 80% of all tested stalks were colonized with these 
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two species. In contrast, F. verticillioides was the prevailing species in 2018, colonizing almost 40% of all 

ears analyzed. 

Numerous studies confirm that moderate temperature and high level of moisture increases 

infection rates of F. graminearum, F. culmorum and F. avenaceum (Gibberella ear rot) [22,25,35], while Pink 

ear rot pathogens such as F. verticillioides, F. proliferatum and F. temperatum have often been reported 

from southern European regions where dry and warm conditions prevail [36]. These patterns 

correspond to different temperature optima of the species. The optimal growth rate for F. graminearum 

was reported 24-26°C [37] and higher moisture level, whereas optimal conditions of F. verticillioides are 

30°C and 0.97 water activity [2,38]. The primary infection pathway for ear infection is via the silk 

channel (during the first 6 to 10 days after silk emergence) or insect injury of kernels (during grain 

filling). Under mid European conditions, silk emergence takes place between beginning of July and 

mid-July. At this time, weather conditions as well as insect populations strongly affect Fusarium spp. 

infection [1,16]. Gibberella ear rot pathogens are favored by high levels of moisture during silking, 

followed by moderate temperatures and high precipitation during cob maturation [25]. Shelby et al. 

[39] demonstrated that fumonisin levels and the occurrence of Fusarium ear rot pathogens were 

inversely correlated with rainfall in June and July. In particular, drought stress is associated with an 

elevated infection with F. verticillioides [40]. The present study confirmed that a dry period with high 

temperatures before and during grain filling favors ear infection with F. verticillioides and F. temperatum, 

while the frequency of F. graminearum was higher at lower temperatures and high precipitation. While 

temperature, precipitation and relative humidity during flowering were incorporated into forecasting 

models for Fusarium head blight on wheat [41], available risk assessment models for Fusarium ear rot 

disease were not sufficiently detailed to maize and cannot be extrapolated from the existing risk 

assessment models for Fusarium head blight [42]. Only Stewart et al. [74] were able to develop a 

mechanistic model relating the growth rates of F. graminearum and F. verticillioides to temperature, 

relative humidity and precipitation which effectively predicted ear rot severity after artificial 

inoculation.  

In contrast to ear infection, stalk infection was mainly influenced by temperature during 

ripening in August and September. Fusarium species can enter the stalk during the whole vegetation 

period by systemic spread after colonization of the root [1,43], through young leaf sheaths, by seed 

transmission [44] and via wounds caused by hail or feeding of insects [3]. Consequently, stalk rot 

infection is not restricted to a specific time point and fungal infection does not correlate with seasonal 

weather conditions. However, temperature substantially affected the extent of invasion of Fusarium 

pathogens during ripening [30,45]. Murillo-Williams and Munkvold [45] suggested that higher 

temperatures in particular lead to faster maturity of the plants promoting systemic infections of species 

which are adapted to warmer temperature such as F. verticillioides. Stalk rot usually occurs at 

physiological maturity, in August and September, when storage products in stalks are depleted and 

most carbohydrates are translocated to the cob [46]. Accordingly, Dodd [21] reported that at maturity 

stages the root and lower stalk tissues lose their metabolic activity and thus their defense potential 

against stalk infection. In addition, further stresses such as drought, high plant density, leaf diseases 

and corn borer attacks may also favor stalk rot due to decreasing photosynthesis rate [21]. 

F. temperatum, a species recently separated from F. subglutinans based on its phylogeny and mycotoxin 

production, colonized up to 20% of all analyzed ear and stalk samples. The frequency of F. subglutinans 

within the three years of investigation was low (2%); F. subglutinans therefore played only a minor role 

in ear and stalk infection. A higher incidence of F. temperatum in comparison to F. subglutinans was also 

reported from maize in Belgium [47], Poland [48], France [49] and Italy [50] as well as North America 

[51], Korea, [52], China [53], Mexico [54] and Argentina [55]. The data of the present study demonstrate 

that kernel colonization with F. temperatum was significantly favored by low precipitation during 
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flowering in 2018. Moretti et al. (2018) [56] suggested that isolates belonging to group 1 (F. temperatum) 

are more frequent in cooler regions like Germany, Poland and Austria while group 2 (F. subglutinans) 

prevails in warmer and dryer regions such as Slovakia, Italy and Serbia. Czembor et al. [48] reported a 

similar trend of F. temperatum occurring more often in environments with mean temperatures of 18°C 

or lower in June, like in Germany.  

In the present study, only low or no impact of crop rotation on ear and stalk infection with 

Fusarium spp. was observed. These findings correspond with the results from investigations by Dill-

Macky and Jones [24] and Schaafsma et al. [57] indicating that similarly high disease levels caused by 

F. graminearum are found in maize grown after maize and wheat, compared to sugar beet and other 

pre-crops like rape seed, potato or strawberries. A similar tendency was observed by Schlüter and 

Kropf [29] and Gödecke [58], who reported a high disease incidence by F. culmorum and F. graminearum 

on wheat after non-host crops like oilseed rape and sugar beet. Mansfield et al. [9] also reported no 

effect of crop rotation with broadleaf crops on DON contamination of maize stalks. The most important 

source of inoculum for Fusarium spp. are plant debris, especially maize stalks. However, these fungi 

are also pathogenic in cereals such as wheat, barley, oats and rye as well as sugar beet. Fusarium spp. 

can survive as mycelium and other structures on residues of these crops as well as on senescent tissue 

of other crops or weed species, which may later serve as primary inoculum for infection [59]. Resting 

structures such as chlamydospores and thick-walled hyphae can survive up to ten years breaks 

between host crops on plant residues buried at 30 cm depth or left on the soil surface [25,60]. Long-

term survival studies by Cotton and Munkvold [26] indicate an equal survival of Fusarium species in 

buried residues and surface residues after 343 days and suggest that surface residues may act as a 

reservoir of recolonization and spore production for airborne inoculum and spread into the next 

vegetation period. 

Therefore, management of surface residues by tillage and deep burial are suggested as an 

important strategy to control ear and stalk rot diseases [61]. The results of this study indicate that, the 

incidence of local Fusarium species on ears and stalks is highly affected by conventional ploughing 

compared to chisel ploughing or no tillage. In particular, the frequency of F. graminearum, F. temperatum 

and F. culmorum was reduced after conventional ploughing, however, F. verticillioides and F. equiseti 

were enhanced by ploughing. Our study confirms the results reported by Dill-Macky and Jones [24] 

and Steinkellner and Langer [62], which demonstrated that most Fusarium species were reduced after 

moldboard ploughing as compared to reduced tillage. Covering crop residues with soil accelerates their 

decomposition by enhancing microbial activity and this reduces inoculum density [63,64]. However, 

investigations by Byrnes and Carroll [73] confirmed higher severity of F. equiseti infection after 

conventional tillage, whereas the concentration of DON produced by F. graminearum and the 

population density of F. subglutinans were reduced by conventional tillage [30,11,13]. Steinkellner and 

Langer [62] emphasized that ploughing compared to chisel plough and rotary tiller treatments reduced 

the number of colony forming units (CFU) per g of soil and the frequency of Fusarium species in upper 

soil layers. However, Fusarium species composition differed between different soil layers due to 

different survival structures of the species [31]. Especially F. verticillioides survived best in maize stalks 

at 30 cm depth due to higher moisture content and poor decomposition of plant tissue [60]. According 

to this study and previous research, weather conditions had the largest influence on the local Fusarium 

species composition and disease incidence in maize, however, prevention and management practices 

including crop rotation and tillage types may also affect ear and stalk rot diseases and mycotoxin 

accumulation [2,9,12,65,75].  

In the three years of investigation (2016-2018), F. graminearum, F. verticillioides and 

F. temperatum were the most frequent Fusarium species on maize in Germany. A high year-to-year 

variability was observed in the shift of species composition towards a high occurrence of 
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F. verticillioides. Increasing temperatures and dry periods in summer can affect the Fusarium species 

complex and increase the risk of contamination with fumonisin-producing species such as 

F. verticillioides and F. temperatum [48]. In addition, feeding of the European corn borer (Ostrinia 

nubilalis) and the Western corn rootworm (Diabrotica virgifera) in Germany will likely further enhance 

disease incidence and mycotoxin contamination of ears and stalks as well as root rots in maize 

[11,16,66]. The current expansion of maize acreage and shorter crop rotations with other small grain 

cereals due to renewable energy policy will further increase the risk of Fusarium infection and 

mycotoxin contamination.  

The current results emphasize the importance of further studies of the impact of changing climatic 

conditions and its interplay with cultural practices on the development of Fusarium population and the 

mycotoxin contamination of maize crops.  

 

4. Materials and Methods  

4.1 Sampling and isolation. 

 

Naturally Fusarium-infected maize ear and stalk samples were collected from silage and grain maize 

fields in Germany in 2016 (94 ears from 18 locations), 2017 (180 ears from 42 locations and 110 stalks 

from 21 locations) and 2018 (113 ears from 18 locations and 80 stalks from 14 locations). For each sample 

site agronomic data like soil tillage and previous crop as well as meteorological data such as 

precipitation, air temperature and humidity during the vegetation period were recorded. Five to nine 

Fusarium-infected ears or stalks per location were placed in paper bags and sent to the Plant Pathology 

and Plant Protection Division in Göttingen, Germany for further analysis. Disease severity on kernels 

and rachis was scored according to EPPO Guidelines [67]. 

Thirty randomly chosen kernels of each ears were surface sterilized for 10 min with 0.1% silver nitrate 

and incubated on moist sterile filter paper for two days at room temperature. Afterwards, kernels with 

outgrowing Fusarium mycelium were placed on potato dextrose agar (PDA). The rachis was cut in nine 

slices, three from the base, three from the middle part and three from the tip of the ears. The slices were 

surface sterilized as described above and placed directly on PDA plates. The stalk samples were cut in 

nine slices, three from the lower nodium, three from the internodium and three from the upper nodium. 

The samples were surface sterilized and placed on PDA plates as the rachis slices. After two days, 

presumed Fusarium mycelium outgrown from the samples was transferred to synthetic low nutrition 

agar (SNA) to produce single spore cultures. The isolates were stored as single spore cultures on 

synthetic SNA plates at 4°C.  

The ear and stalk infection were calculated by the following equation:  

 

Ear infection [%]=

Number of Fusarium
 infected kernels per cob

 Number of kernels 
(n=30)

 ÷ Cobs per location 

 

Stalk infection [%]=

Number of Fusarium 
infected slices per stalk

Number of slices 
(n=9)

 ÷ Stalks per location 
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4.2 Species identification. 

 

In-vitro cultures of Fusarium were identified macroscopically by colony characters on PDA and 

microscopically on SNA [68]. Total DNA was extracted from lyophilized mycelium from single spore 

cultures by using a CTAB-based protocol as described previously [69]. Standards of genomic DNA 

were obtained from F. temperatum MUCL52463 and F. subglutinans CBS215.76 [44]. The quality and 

quantity of extracted DNA were assessed after electrophoretic separation in agarose gels (0.8% (w/v) 

stained with ethidium bromide. The electrophoresis was carried out for 60 min at 4.6V/cm. 

Partial translation elongation factor 1-alfa (tef1α) nucleotide sequence was used to 

differentiate between F. temperatum and F. subglutinans. Amplification was performed in a peqSTAR96 

thermocycler (PEQLAB, Erlangen, Germany) using 1:100 dilutions of DNA extracts in a total reaction 

volume of 25µl.  

The tef1α gene was amplified using primers EF1 (ATGGGTAAGGARGACAAGAC) and EF2 

(GGARGTACCAGTSATCATGTT) [70] in a PCR reaction consisting of Taq reaction buffer (10 mM Tris-

HCl, 50 mM KCl, 1.5 mM MgCl2, pH 8.3 at 25°C), 100 µM of each deoxyribonucleoside triphosphate, 

0.3 µM of each primer, 0.62 U HotStart-polymerase (NEB) and 1 µL template DNA solution. The final 

MgCl2 concentration was adjusted to 2 mM. The PCR cycling conditions for the amplification of tef1α 

included an initial denaturation for 30s at 95 °C; 30 cycles consisting of 30 s at 94 °C, 30 s at 58 °C, and 

1 min at 68 °C; and final extension for 5 min at 68 °C. Fusarium species were identified by multiple 

alignment of each sequence with the sequences of standard strains and other reference sequences using 

ClustalW [71] in MEGA version 7.0.2 [72]. 

4.3 Meteorological and agronomical data. 

 

The meteorological data were obtained from the closest weather stations (<10 km) to the sample 

location. In Bavaria, meteorological data were received from AgrarMeterologie of the Bavarian state 

research center for agriculture (https://www.wetter-by.de). The air temperature and the relative air 

humidity were recorded as daily means and precipitation as monthly sum from May to September. The 

agronomical field data of tillage and previous crop were obtained from breeding companies and 

farmers. The previous crop was assigned to four categories, in maize (silage maize and grain maize), 

wheat (winter wheat), sugar beet and other crops (potato, cabbage, strawberry, rye, barley). Soil tillage 

was differentiated into two groups; ploughing (moldboard ploughing) and no ploughing or reduced 

tillage including chisel ploughing and rotary harrow.  

4.4 Statistical analyses. 

 

Statistical analyses were performed using Statistica version 13.3 (TIBCO® Data Science, California, 

USA). Non-parametric data of average infection, tillage treatments and previous crop were statistically 

analyzed using Mann-Whitney-U-Test and Kruskal-Wallis-ANOVA. Tests were performed at a 

probability level of 95%. Pearson´s correlation coefficients were used to examine the relationship 

between temperature and precipitation in June, July, August and September and infection with 

predominant Fusarium species occurring on ear and stalk samples. In addition, a multiple regression 

was performed to determine the relationship of ear and stalk infection with temperature and/ 

precipitation in July for each sample location. The impact of weather conditions, soil tillage or pre-crops 

on the occurrence of Fusarium species was analyzed by variance components derived from the overall 

variance estimated with the restricted maximum likelihood model. 
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Supplementary Materials:  

Table S1: Mean monthly air temperature [°C] (AT), mean relative humidity [%] (RH) and cumulative 

monthly precipitation [mm] (PP) in June, July, August and September in the year 2016, 2017 and 2018 

within the sampling locations. 

2016 June July August September 

Location 
AT 

[°C] 

RH 

[%] 

PP 

[mm] 

AT 

[°C] 

RH 

[%] 

PP 

[mm] 

AT 

[°C] 

RH 

[%] 

PP 

[mm] 

AT 

[°C] 

RH 

[%] 

PP 

[mm] 

Altötting 16.8 86 132 19.1 74.3 153.6 17.6 85.8 65.1 15.9 90.1 149.6 

Braunau am Inn 18 77 163 19.9 75.1 140 18.9 75.3 92.5 17.5 77.3 103.6 

Bad Lauchstädt        17.8 71.2 52.2             

Einbeck       18.57 75.71 65.2             

Frankendorf       18.9 77 70.6             

Fraunberg-

Grucking  

      18.9 77 71             

Grucking 16.5 79 104 18.8 77.2 70.6 17.7 75.6 61.1 15.5 79.8 58.8 

München/Bockhorn 16.8 78 98.4 19.1 74.8 88.2 17.8 76.8 101 15.7 80.9 70.8 

Löningen       18.5 76 33             

Osterhofen 17.5 80 123 19.0 77.35 80.4 18.4 78.3 47 16.9 80.3 82.5 

Ostbevern       18.8 77 78             

Reith       19.5 76.4 129.3             

Pocking 1 17.9 85 194 19.7 84.5 168 18.2 86.9 76 16.1 89.1 121.7 

Pocking 2  17.9 85 194 17.9 76.5 129.3 18.2 86.9 76 16.1 89.1 121.7 

Rustenhard       16.4 78.7 87.2             

Tönisvorst       19.5   35.9             

Thenn 16.5 79 104 19.1 74.8 88.2 17.7 75.6 61.1 15.5 79.8 58.8 

Unterneukirchen        19.4 74 153             

Wadersloh 17.4 78 130 19.31 71.7 43 18.6 70.4 55 18.9 64.4 16.2 

Weihmörting 17.9 85 194 19.6 76 129 18.2 86.9 76 16.1 89.1 121.7 

Wesel       19.2   62.8             

MEAN 17.3 80.8 138.1 18.9 76.1 91.8 18.1 79.1 70.5 16.5 81.2 87.1 

             

2017 June July August September 

Locations 
AT 

[°C] 

RH 

[%] 

PP 

[mm] 

AT 

[°C] 

RH 

[%] 

PP 

[mm] 

AT 

[°C] 

RH 

[%] 

PP 

[mm] 

AT 

[°C] 

RH 

[%] 

PP 

[mm] 

Altötting 20 66 59 19.2 82.2 166.4 20 74 84 13 83 31 

Bad Lauchstädt 18 68  19 73  19 72  14 80  

Bernburg 19.1 63.4 67.5 19.2 70.5 89.7 19.2 70.2 99.8 14.7 73.7 39.7 

Borken 18 69.8 46.8 18 78.1 121.2 22.9 81.4 55.7 18.9 82.6 115.1 

Cloppenburg 17.5 70.6 93.2 17.5 77.0 150.4 17.4 75.9 58.8 13.7 82.3 85 

Dinkelsbühl 18 67.3 119.9 18 73.4 134.5 19 75.1 77.4 12 81.7 71 

Einbeck     18.2 80.2 174       

Geldern 18.9 69.8 68.5 18.9 75.8 109.7 18.1 79.7 67 14.3 85.3 85.4 

Giebelstadt 18.5 67.2 70.5 18.9 72.2 105.9 18.7 74.0 71.5 13.0 78.1 74.6 

Gondelsheim     20.5 74.1 109.3       

Greven    18.3 79        

Grucking  19 68  18.7 74.5 140 19 76  12 81  

Haselünne  18 69  17.8 83.4 89.2 17 77  13 84  

Heilbronn 20 64  20.1 73.7 114.2 19 76  13 82  

Herzlake    17.8 83.49 89.2 17 77  13 84  

Ichenhausen    18.2 82.4 113.3       

Kleinwanzleben    19.1  98.6       

Löningen 17.7 73.1 73.1 18 78.3 100.6 17.4 78.9 65.6 13.4 88.4 83.9 

Moosham  19 64.4 56.1 19 70.9 80.4 19.2 74.6 103.2 12.1 84.1 41.1 
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Möttingen 18.9 66.2 62.8 19.1 71.1 99.1 19.0 75.5 116 12.8 78.9 72.3 

Münzesheim  23 54  20.5 74.6 109.3 22 66  16 73  

Neumarkt (St.Veit)  70.2 65.7 18.8 72.3 96.6  78.3 91.5  84.1 56.9 

Neupotz     20.7 75.8 61.8       

Neuhaus am Inn  64 47.6 19 72.4 93.3 19.2 75.1 112.9 12.3 85.2 55.9 

Ostbevern     18.8  119.7 18 77  14 84  

Osterhofen  67  18.9 76 93.5 19 75  12 82  

Plessa  64.9 64.7 19.5 70.9 90.7  70.9 65.9  78 31.1 

Pocking  21 58  19.5 81.8 94.3 21 67 126 13 77 32 

Pritzwalk  77.3 113.5 17.1 79.8 84.6  77.6 29.9  83.4 54.8 

Reith    19.5 72.8 101.2   81   60 

Rheine  18.3 66.3 71 18.2 74.7 142.9 17.7 75.1 71.5 13.8 81.9 93.3 

Saerbeck             

Sankt Peter am Hart    19.5 82.8 121.6       

Soest-Epsingen    18.5 74.7 109       

Tönisvorst    18.1         

Ulm   75 18.3 82.4 113.4   92   56 

Wadersloh- 

Liesborn 
18.6 66.8 55.7 18.6 74.4 144.4 18.0 76.9 94.2 13.9 81.1 108 

Welbhausen   69 18.9 75.4 112.2   53.1   60.4 

Wesel    18 82.4 90.1       

MEAN 19.0 66.8 71.1 18.8 76.5 110.4 19.0 75.1 80.9 13.6 81.6 65.4 

 

2018 June July August September 

Location 
AT 

[°C] 

RH 

[%] 

PP 

[mm] 

AT 

[°C] 

RH 

[%] 

PP 

[mm] 

AT 

[°C] 

RH 

[%] 

PP 

[mm] 

AT 

[°C] 

RH 

[%] 

PP 

[mm] 

Altötting 17.9  118.9 19.9 71 68.5 19.2  146.7 14.9  76.7 

Braunau 18.3  63.2 21.1 - 79 20.4  86.4 15.2  55.7 

Bernburg             

Einbeck    22.6 63.4 56.2       

Gondelsheim 19.4 75.1 60.8 22 64.6 46.9 21.7 66.8 38.3 16.6 71.6 23.9 

Grucking 17.7 78.6 123 19.3 76.65 57.9 19.8 78.3 66.7 14.7 85.2 56.9 

Hohenheim    21 - -       

Kleinwanzleben    22.2 - 29.4       

Künzing 18.2 75.2 68.3 19.3 71.0 30.9 20.4 70.2 38.7 14.8 81.0 64.2 

Löningen    20.3 - 14.4       

Mariaposching 18.9 71.5 90.5 20.4 67.7 24.3 21.3 67.1 46 15.5 80.5 71.7 

Mintraching 18.9 69.2 80.2 20.5 66.9 38.6 21.2 67.2 43.4 15.2 79.8 52.7 

Neuhaus am Inn 18.9 77.4 85.2 20.0 77.1 35.3 21.0 77.7 87.4 15.3 85.7 79.2 

Ostbevern    21.5 - 8.9       

Osterhofen 19.6 66.9 37.7 19.2 76 74.8 19.1 77.3 79.7 12.5 86.2 30.4 

Pocking 18.9 77.4 85.2 20 77.1 35.3 21 77.4 87.4 15.3 85.7 79.2 

Prenzlau 18.0  43.1 20.4  61.9 20.8  17.3 16  11.3 

Reith 16.5 85.1 124.2 18.9 79.2 69.8 19.6 80.0 111.8 14.7 88.5 112.4 

St. Andreas-berg    - - -       

Tönisvorst    22.2 - 5.8       

Triftern 18.3 76.2 63.2 19.5 75.8 79 20.4 77.6 86.4 15.2 86.8 55.7 

Ulm 17.4 83.1 47.1 19 79.3 40.9 19.4 79.2 46 14.9 83.4 29.8 

Wesel             

MEAN 18.3 75.8 81.7 20.6 72.1 40.4 20.3 73.7 71.9 14.9 82.4 59.4 
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Abstract: Fusarium subglutinans is a plant pathogenic fungus infecting cereal grain crops. In 2011, 

the species was divided in Fusarium temperatum sp. nov. and F. subglutinans sensu stricto. In order to 

determine the occurrence and significance of F. temperatum and F. subglutinans on maize, a 

monitoring of maize ears and stalks was carried out in Germany in 2017 and 2018. Species 

identification was conducted by analysis of the translation elongation factor 1α (TEF-1α) gene. 

Seventy-nine isolates of F. temperatum and seven isolates of F. subglutinans were obtained during 

two years of monitoring from 60 sampling sites in nine federal states of Germany. Inoculation of 

maize ears revealed a superior aggressiveness for F. temperatum, followed by F. graminearum, 

F.  verticillioides and F. subglutinans. On maize stalks, F. graminearum was the most aggressive species 

while F. temperatum and F. subglutinans caused only small lesions. The optimal temperature for 

infection of maize ears with F. temperatum was 24 °C and 21 °C for F. subglutinans. All strains of 

F.  temperatum and F. subglutinans were pathogenic on wheat and capable to cause moderate to 

severe head blight symptoms. The assessment of mycotoxin production of 60 strains of 

F.  temperatum cultivated on rice revealed that all strains produced beauvericin, moniliformin, 

fusaric acid, and fusaproliferin. The results demonstrate a higher prevalence and aggressiveness of 

F. temperatum compared to F. subglutinans in German maize cultivation areas. 

Keywords: Fusarium temperatum; Fusarium subglutinans; pathogenicity; maize ear rot; Fusarium head 

blight; beauvericin; translation elongation factor 1α 
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1. Introduction 

Fusarium ear and stalk rot are ubiquitous diseases of maize with high economic impact in 

agriculture [1]. Several Fusarium species infecting maize are known to produce toxic secondary 

metabolites, called mycotoxins, which impair grain quality and threaten the safety of animal feed and 

food products [2,3]. Among the most important Fusarium species inciting pre- and post-harvest ear 

rot of maize are F. graminearum and F. verticillioides [4–6], but also other species such as F. poae [7,8], 

F. proliferatum [1], F. subglutinans [9] and F. temperatum [10] are frequently reported. Ear infection is 

typically characterized by the growth of white or reddish mycelium with rot induced on the cob and 

on stored grains. 

F. subglutinans, which is a member of the Fusarium fujikuroi species complex (FFSC), 

predominantly occurs in temperate climate regions. F. subglutinans was elevated to the species level 

in 1983 by Nelson et al. [11], after separation from F. verticillioides. Later on, in 2002 Steenkamp et al. 

[12] reported two cryptic species within a set of isolates of F. subglutinans, obtained from several 

locations, based on phylogenetic concordance analyses of six nuclear regions, and suggested that 

both subspecies justify separation into two individual taxa. Phylogenetic separation was further 

supported by mycotoxin analyses revealing the production of beauvericin (BEA), which was 

exclusively produced by European isolates belonging to the so-called group 1 of F. subglutinans [13]. 

Furthermore, separation of strains was based on differences in climatic requirements, since isolates 

of F. subglutinans group 1 were frequently collected in cooler regions like Germany, Poland and 

Austria while F. subglutinans group 2 prevailed in warmer and dryer regions such as Slovakia, Italy 

and Serbia [13]. Several other studies also reported the detection of mycotoxins, such as beauvericin 

(BEA) [14,15], fusaproliferin (FUSA) [16], moniliformin (MON) [17] and rarely fumonisin B1 [18], 

produced by the subgroup of F. subglutinans, presumably F. subglutinans group 1. In 2011, this cryptic 

subgroup was classified as a novel species, establishing F. temperatum as species nova, corresponding 

to the formerly known group 1 of F. subglutinans [10]. The mycotoxin profile of F.  temperatum is not 

yet fully clarified. While the production of beauvericin was consistently found in all strains of 

F. temperatum, moniliformin and fumonisin was produced only by a single isolate of F. temperatumas 

reported by Scauflaire et al. [19]. Similarly, production of beauvericin, moniliformin, fusaproliferin 

and fumonisins was reported for F. temperatum strains from Argentina [20]. Further studies report on 

F. temperatum infection on maize causing seedling blight and root rot [21] and ear rot, as well as head 

blight on wheat [22].  

The aim of the study was to determine the occurrence of F. temperatum and F. subglutinans on 

maize ears and stalks in Germany and to assess their pathogenicity relative to each other and to other 

common Fusarium ear rot and head blight pathogens. In addition, the mycotoxin profiles of 

F.  temperatum and F. subglutinans were compared.  

2. Results 

2.1. Occurrence of Fusarium species on Cobs and Stalks 

In 2017 and 2018, ninety isolates of F. temperatum and seven isolates of F. subglutinans (Table S1) 

were obtained from diseased cobs collected across eight federal states of Germany (Figure S1). 

F.  temperatum was isolated from 17 % of all analyzed samples, making it the third most often 

occurring Fusarium species following F. graminearum (57 %) and F. verticillioides (22 %) in cobs (n=293) 

and the fourth most often isolated species on stalks (n=190) (Table 1). The frequency of F. temperatum 

isolated from ears ranged from 15 % in 2017 to 21 % in 2018. F. subglutinans was only detected in 2 % 

of all analyzed cobs, at two locations, and in 3 % of the stalk samples, at one location.  
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Table 1. Relative occurrence of F. temperatum, F. subglutinans, F. graminearum and F. verticillioides on 

naturally infected cobs and stalk samples in the field in 2017 and 2018. 

 Cobs Stalks 

Fusarium 

species 

Infected [%] Sample sites Infected [%] Sample sites 

2017 2018 
Mean1 

2017 2018 2017 2018 
Mean1 

2017 2018 

n=180 n=113 n=42 n=18 n=110 n=80 n=21 n=14 

 F. temperatum 15 21 17 21 15 15 20 17 7 13 

 F. subglutinans 2 2 2 3 3 1 3 2 1 2 

 F. graminearum 71 30 57 41 15 81 43 65 20 11 

 F. verticillioides 13 39 22 11 16 22 16 19 14 11 

1 Mean of the percentage of infections in the years 2017 and 2018. 

2.2. Pathogenicity on Maize cobs under Field Conditions  

Weather conditions in both years of investigation were conducive for the development of 

Fusarium ear rot infection at the five field sites. Disease severity was strongly affected by pathogen 

species, year, inoculation method, location and maize variety as well as the interactions of all factors. 

According to the mean of squares, pathogen species effects had the highest impact on disease severity 

(DS), followed by variety and the interaction of both (Table S2). On the average of field experiments, 

F. temperatum was the most aggressive species (31 % DS), followed by F. graminearum (20 % DS), 

F.  subglutinans (15 % DS) and F. verticillioides (11 % DS) (Table 2). On the average of the four Fusarium 

species tested, disease severity was favored by silk channel inoculation (26 %) compared to needle 

pin inoculation (13 %).  

Table 2. Disease severity (%) on maize cobs after inoculation with F. graminearum, F. temperatum, and 

F. verticillioides in 2018 and 2019 at five locations in Germany and France as well as with F. subglutinans 

in 2019 in Goettingen using needle or silk channel inoculation. 

 
Disease severity [%]  

F. graminearum F. temperatum F. verticillioides F. subglutinans 

2018 28 ±1 30 a2B3 40 ± 34 aC 12 ± 15 aA - 

2019 15 ± 22 bC 25 ± 26 bD 11 ± 20 bA 15 ± 19 B 

Needle pin 19 ± 26 aB 19 ± 14 aB 5 ± 8 aA 10 ± 7 aA 

Silk channel 22 ± 26 aA 44 ± 37 bB 18 ± 22 bA 20 ± 25 bA 

Bernburg 25 ± 28 cB 30 ± 31 bC 9 ± 19 aA - 

Kuenzing 21 ± 25 bcB 37 ± 30 bC 13 ± 19 aA - 

Liesborn 18 ± 22 bB 37 ± 35 bC 11 ± 19 aA - 

Rustenhart 27 ± 29 cB 32 ± 27 bC 12 ± 14 aA - 

Goettingen 14 ± 24 aA 21 ± 27 a B -4 15 ± 19 A 

MEAN 20 ± 26 B 31 ± 31 C 11 ± 18 A 15 ± 19 A 

1Plus-minus sign (±) represents variation according to standard deviation. 2Small letters indicate 

significant differences between treatments (p≤ 0.05). 3Capital letters indicate differences (p≤ 0.05) 

between Fusarium species. 4No data has been collected. 

2.3. Pathogenicity on maize stalks under greenhouse conditions 

Under greenhouse conditions, F. graminearum, F. crookwellense (syn. F. cerealis), F. culmorum,  

F. temperatum, and F.  subglutinans were able to induce necrotic lesions in the stem tissue and on the 

surface of the stalks after needle pin inoculation. F. graminearum was the most aggressive species on 
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stalks, according to the internal and external lesion length, followed by F. crookwellense and 

F. culmorum. Severity of infection, recorded as lesion length, was significantly higher with 

F. graminearum than with F. temperatum and F. subglutinans (Table 3).  

Table 3. Lesion length inside the stalk and on the stalk surface of maize at BBCH 80, 35 days post 

inoculation with F. graminearum, F. crookwellense, F. culmorum, F. temperatum, F. subglutinans and 

control. Different letters indicate significant differences between treatments (p≤0.05). 

Inoculated species 
Lesion length inside the 

stalk [mm] 

Lesion length on the stalk 

surface [mm] 

F. graminearum 78.3 ±1 4.1 c 57.7 ± 2.5 c 

F. crookwellense 75.5 ± 3.7 bc 43.6 ± 1.6 bc 

F. culmorum 65.7 ± 3.6 bc 40.9 ± 1.7 b 

F. temperatum 55.5 ± 1.4 b 38.0 ± 1.3 b 

F. subglutinans 53.0 ± 1.9 b 32.7 ± 0.9 b 

Control 17.7 ± 0.6 a 15.0 ± 1.1 a 

MEAN 58 ± 3.4 B 37 ± 2.0 A 

1Values after plus-minus sign (±) represents standard deviation. 

All F. temperatum and F. subglutinans isolates were able to cause typical symptoms of stalk rot in 

maize after toothpick inoculation on 49-days old plants (Table 4). Necrotic lesions caused by 

individual isolates significantly differed from the control treatment. Lesion lengths inside the stalk 

ranged from 15 mm to 45 mm and outside the stalk from 10 mm to 20 mm. Lesions induced by 

infection with F. temperatum were significantly longer than after inoculation with F. subglutinans. 

Table 4. Lesion length inside the stalk and on the surface of maize stalks 14 days post inoculation in 

the greenhouse with eight strains of F. subglutinans and fourteen strains of F. temperatum compared to 

a water control. Different letters indicate significant differences between treatments (p≤0.05). 

Isolate 

Lesion length inside the 

stalk 

[mm] 

Lesion length on the stalk 

surface 

[mm] 

Control 

Water 3.4 ±1 0.4 aA 3.6 ± 0.4 aA 

F. subglutinans 

Fs 187.1 15.5 ± 1.1 b 10.3 ± 0.5 b 

Fs 262.1 16.3 ± 0.5 abc 10.3 ± 0.5 ab 

Fs 126.2 22.9 ± 1.1 bc 13.0 ± 0.8 b 

Fs 215.6 24.3 ± 0.5 bc 11.2 ± 0.2 b 

Fs 209.4st 25.7 ± 0.8 bc 11.5 ± 0.2 b 

Fs 261.2 27.8 ± 1.3 c 11.8 ± 0.2 b 

Fs 28.4sp 28.0 ± 1.2 c 20.8 ± 0.6 c 

MEAN 22.7 ±1.5 B 13.1 ± 0.6 B 

F. temperatum 

Ft 18.5 19.6 ± 1.4 b 8.8 ± 0.4 ab 
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Ft 22.4st 25.5 ± 1.7 bc 8.8 ± 0.3 ab 

Ft 184.2 28.2 ± 1.5 bc 20.8 ± 1.3 c 

Ft 106.4st 30.2 ± 1.5 bcd 14.2 ± 0.9 bc 

Ft 98.4st 30.4 ± 1.4 bcd 16.7 ± 0.8 bc 

Ft 65.2 30.5 ± 1.3 bcd 15.8 ± 0.5 bc 

Ft 188.2 30.8 ± 1.5 bcd 17.7 ± 1.2 bc 

Ft 91.1st 32.3 ± 1.3 bcd 16.2 ± 0.7 bc 

Ft 81.4st 33.3 ± 1.7 bcd 16.1 ± 0.3 bc 

Ft 127.2sp 33.2 ± 1.2 bcd 18.8 ± 0.9 c 

Ft 99.3st 39.0 ± 1.9 cd 19.9 ± 0.9 c 

Ft 100.3st 41.1 ± 1.3 cd 12.9 ± 0.7 bc 

Ft 50.2 45.4 ± 1.4 d 20.8 ± 1.0 c 

MEAN 32.3 ± 1.6 C 15.9 ± 0.9 C 

1Plus-minus sign (±) represents variation according to standard deviation. 

2.4. Effect of Temperature on Ear Infection  

The temperature had a significant (p≤0.05) effect on disease severity of both, F. temperatum and 

F. subglutinans. The highest contribution to the variance of disease severity originated from the 

varieties, followed by the interaction of temperature and fungal isolate (Table S3). Inoculation with 

F. subglutinans caused the highest disease severity on kernels (23 %) and rachis (46 %) at 21 °C. 

However, the highest disease severity caused by F. temperatum on kernels (24 %) and rachis (20 %) 

occurred at 24 °C (Figure 1).  

  
(a) (b) 

Figure 1. Disease severity induced by F. subglutinans and F. temperatum at 12 °C, 15 °C, 18 °C, 21 °C 

and 24 °C on kernels (a) and rachis (b) of maize cobs. Vertical bars represent standard deviations. 

Different letters indicate significant differences (p ≤ 0.05). 

2.5. Pathogenicity on wheat under greenhouse conditions 

All F. subglutinans and F. temperatum isolates were able to infect winter wheat and to cause 

symptoms of Fusarium head blight (Table 5). The highest disease severity was caused 21 days after 
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infection by F. graminearum (52 %), followed by F. temperatum (44 %) and F. subglutinans (40 %). 

However, no significant differences were observed between F. graminearum and F. temperatum 

regarding disease severity and kernel weight.  

Table 5. Disease severity and thousand-kernel weight (TKW) of winter wheat inoculated in the 

greenhouse at flowering stage with three different Fusarium species. Different letters indicate 

significant differences within the columns (p≤0.05). 

Species 
Disease severity [%] 

TKW [g] 
7 dpi1 14 dpi 21 dpi 

Control 3 ±2 6 a 10 ± 11 a 17 ± 15 a 33 ± 10 a 

F. subglutinans 7 ± 8 ab 19 ± 15 b 40 ± 23 b 34 ± 7 a 

F. temperatum 7 ± 6 b 18 ± 12 bc 44 ± 24 bc 33 ± 7 ab 

F. graminearum 12 ± 11 b 28 ± 18 c 52 ± 29 c 27 ± 5 b 

1 Days post inoculation (dpi). 2Plus-minus sign (±) represents variation according to standard deviation. 

2.6. Differential Identification of F.temperatum and F. subglutinans 

Differential identification of species in the Fusarium fujikuroi species complex (FFSC) 

(F.  temperatum, F. subglutinans, F. verticillioides and F. proliferatum,) was performed by species-specific 

PCR. A total number of 161 single-spore cultures isolated from naturally infected maize cobs and 

stalk samples in 2018 and grown in PDB were used to extract genomic DNA. The specificity of 

primers was validated in the studies in which they were designed (references in Table S6). Primers 

specific for F. temperatum allowed amplification of the expected DNA fragments in 44 samples of 

F. temperatum, while samples obtained from pure cultures of F. subglutinans, F. verticillioides, and 

F. proliferatum did not show amplification. Primers SUB1/SUB2 (Table S7), designed for the 

amplification of DNA from F. subglutinans [23], also generated amplicons in all samples of 

F. temperatum but did not amplify F. verticillioides or F. proliferatum. Three samples were identified as 

F. subglutinans, as they showed no amplification with primers specific for F. temperatum but were 

positive in the species-specific assay for F. subglutinans. Primers for F.  verticillioides and 

F. proliferatum, the specificity of which has been extensively validated [24], enabled the differential 

identification of these species in 66 and 48 isolates, respectively.  

Following amplification and sequencing of TEF-1α, partial nucleotide sequences (601 bp) from 

pre-identified isolates of F. temperatum and F. subglutinans were aligned with additional references of 

F. verticillioides, F. proliferatum and F. pseudograminearum using ClustalW [25] in MEGA7 [26] (Figure 

2). All sequences of F. temperatum (n=72) and F. subglutinans (n=7) clustered into two groups. The 

separation between F. temperatum and F. subglutinans was based on 20 single nucleotide 

polymorphisms (SNP) within TEF-1α. We found 30 isolates of F. temperatum with 100 % sequence 

identity with the reference strains MUCL52436, 24 isolates with the same TEF-1α sequences as 

MUCL52450, 5 isolates with TEF-1α identical with MUCL52445 and 4 isolates with TEF-1α sequence 

identical with MUCL52454. These sequences formed a separate clade in the phylogenetic tree (Figure 

2). Only 6 samples, identical in their sequence to MUCL52462, were grouped in a further separate 

clade. The assignments of isolates to individual reference strains are presented in more detail in Table 

S4. The differentiation among the isolates of F. temperatum was mostly based on single SNPs. Thus, 

despite resampling a relatively uniform population, the phylogenetic analysis showed that isolates 

of F. temperatum can be further divided into two subgroups, which was strongly supported by 

bootstrap values. Group 1 included the majority of 68 sequences, sharing a high sequence similarity 

with the reference strains MUCL52436 and MUCL52450. Group 2 is represented by only 7 sequences, 

including MUCL52462. Sequence variation was observed at five positions within the segment of 

TEF-1α, further dividing the species in 6 genotypes. The grouping within the F. subglutinans clade 

was not supported by bootstrapping.  
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Analysis of partial RPB2 was performed for a subset of six isolates, representing the two clades 

that were observed during investigation of TEF-1α. All tested isolates were assigned to a single 

phylogenetic group, together with reference strain MUCL52463 (Figure S2). Newly obtained 

sequences were submitted to Genbank; the accession numbers are provided in Tables S1 and S5. 
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Figure 2. Molecular phylogenetic analysis of translation elongation factor 1 alpha (TEF-1α) by the maximum 

likelihood method (1000 bootstrap replicates) [27]. Analysis was performed with ClustalW [25] in MEGA version 

7.0.26 [26] with partial TEF-1α sequences of 72 isolates of F. temperatum and 7 isolates of F. subglutinans (Table 

S3), and references for F. temperatum MUCL52436, MUCL52450, MUCL52462 and F. subglutinans MUCL52468 
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[10]. We added additional references for F. proliferatum NRRL32155, F. verticillioides FRCM3125 and 

F. pseudograminearum NRRL26062 to scale phylogenetic separation. The tree is drawn to scale, with branch 

lengths measured in the number of substitutions per site. Bootstrap values are presented next to the nodes. 

Nucleotide sequences have been subjected to Genbank, the accession numbers are presented in Table S1 and S5. 

2.7. Mycotoxin analysis 

We tested 61 isolates of F. temperatum and six isolates of F. subglutinans, obtained from 67 

naturally infected maize cobs or stalk samples (limited to a single isolate per sample to prevent 

repeated isolation of the same strains), in cultures of polished rice for the production of the following 

mycotoxins: fumonisin B1 (FB1), fumonisin B2 (FB2), beauvericin (BEA) fusaric acid (FA), 

moniliformin (MON), enniatin B (ENNB), enniatin A1 (ENNA1), and fusaproliferin (FUSA). 

Furthermore, the reference strain MUCL52463 (F. temperatum) and isolates of F. verticillioides and 

F.  proliferatum, identified by sequencing of partial nucleotide sequence of TEF-1α (section 3.6), were 

included because they have distinct mycotoxin profiles. The results are summarized in Table 6. 

F. temperatum isolates only produced BEA, FA, MON and FUSA. In F. subglutinans, FA, MON and 

FUSA but no BEA were detected in all cultures. One isolate of F. temperatum and one isolate of 

F. subglutinans produced FB1 and FB2, similarly to F. verticillioides and F. proliferatum, but the results 

likely resulted from a contamination because the strains did not possess the fumonisin biosynthetic 

gene FUM1 [28] (see below). Rice cultures of F. verticillioides and F. proliferatum accumulated FB1, FB2 

and FUSA, while BEA, FA and MON were only produced by F. proliferatum. No enniatins (ENNB, 

ENNA1) were detected in any of the analyzed cultures. 

Table 6. Mycotoxin production in rice cultures of F. temperatum, F. subglutinans, F. verticillioides, and 

F. proliferatum, isolated from naturally infected maize cobs and stalk samples. 

 No. of 

isolates 

Toxins  

Species FB1  FB2  BEA  FA3 MON FUSA4 ENNs5 

F. temperatum6 60 -1 - ++2 ++ ++ yes - 

F. subglutinans6 5 - - - +2 + yes - 

F. verticillioides 4 +++ +++ - - - yes - 

F. proliferatum 4 +++ +++ + + ++ yes - 

1Metabolite could not be detected (values were below LOD, Table S6). 2Average concentration of 

mycotoxins (FB1, FB2, BEA, MON, ENNB, ENNA1): +++ more than 1 g/kg, ++ 0.1 to 1.0 g/kg, + less 

than 100 mg/kg. 3Average for FA concentration: +++ more than 10 mg/kg, ++ 1 to 10 mg/kg, + less than 

1 mg/kg. 4FUSA was qualitatively evaluated; yes, indicates the presence of FUSA in the tested sample. 
5ENNB and ENNA1. 6Fumonisins were detected in a single culture of each F. temperatum and 

F. subglutinans (see main text). 

2.8. Search for FUM1-analogues in F. temperatum and F. subglutinans  

The capacity to produce fumonisins was investigated by the amplification and sequencing of a 

segment of the FUM1 gene. In a set of isolates, including one isolate of F. temperatum and one isolate 

of F. subglutinans that appeared to produce fumonisinsin-vitro, we sequenced the DNA fragment 

amplified using primers FUM1F1 and FUM1R2, designed by Stepien et al. for the FUM1 gene [28]. 

The amplicons were approximately 860 bp long. Amplification of DNA from two randomly chosen 

isolates of F. verticillioides and F. proliferatum yielded a single fragment of about 1.1 kb from each 

isolate. Sequencing and BLAST-analysis revealed the identity of the latter with the gene FUM1 in 

F. verticillioides (KC188787.1) and F. proliferatum (KU180047.1), encoding a polyketide synthase. No 

similarity at nucleotide or amino acid sequences level could be found between the amplicons 

generated from F. temperatum F. subglutinans DNA with the primers FUM1F1/FUM1R2 [28] and the 
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genomes of F.  verticillioides or F. proliferatum. We also tried out primers Rp32: 

5′-ACAAGTGTCCTTGGGGTCCAGG-3′ and Rp33:5′-GATGCTCTTGG AAGTGGCCTACG-3′, 

specific for the amplification of the FUM1 gene from F. verticillioides [29], but we could not amplify 

the gene from F. temperatum or F. subglutinans. 

Multiple alignment of the sequences revealed high similarity between the genes from 

F. subglutinans and F.  temperatum, yet no obvious similarity with the FUM1 gene (Fig. 3). Search of 

NCBI database (BLASTX [74]) with the combined nucleotide data set for four isolates of F. temperatum 

(50.2c, 93.2c, 202.1st and 264.1st) and one isolate of F. subglutinans (262.1c) as a query yielded a single 

hit in the recently published whole genome shotgun of F. anthophilum (strain NRRL 25214). The 

respective gene of F. anthophilum was assigned to a hypothetical protein FANTH_8583. The newly 

sequenced gene loci in F. temperatum and F. subglutinans, amplified with primers FUM1F1 and 

FUM1R2, designed by Stepien et al. [28], were tentatively named FTEMP8583 and FSUBG8583, 

respectively. Following translation, the amino acid sequences were tested for similarity to known 

protein domains using the SMART-tool [75]. No similar protein domain was found but a putative 

coiled coil region was identified. The region started at position 32 and ended at position 68 in the 

sequences of F. temperatum, and started at position 11 and ended at position 47 in the sequences of 

F. subglutinans. The alignment of amino acid sequences is presented in Figure 3. All nucleotide 

sequences have been subjected to Genbank; the accession numbers are presented in Table S1. 

 

Figure 3. Comparison of the amino acid sequence of a putative FUM1 analogous gene locus in 

F. anthophilum (FANTH8583), F. temperatum (FTEMP8583) and F. subglutinans (FSUBG8583). 

Alignment of amino acid sequences and reference with highest nucleotide sequence similarity after 

BLASTx search: F. anthophilum NRRL25214 (Accession: JABEVY010000206.1). Light grey was used to 

highlight a coiled coil region, inferred from SMART-analysis [75]. Dark grey highlights amino acid 

residues differing among the sequences. The alignment was made with ClustalOmega [76]. Symbol* 

below the alignment indicates identical amino acids residues. Nucleotide sequences were submitted 

to Genbank; accession numbers are provided in Tables S1 and S5. 

3. Discussion. 

In the monitoring of 2017 and 2018, F. temperatum was found to be the third most often occurring 

Fusarium species on maize cobs in Germany. Among all samples, 17 % of cob and 17 % of stalk 

samples were infected with F. temperatum while only 2 % samples were infected with F. subglutinans. 
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Similar findings have recently been reported from several European countries, including Poland [30], 

France [31] and Belgium [10], as well as China [22] and South Korea [32].  

Environmental factors like precipitation and humidity are known to strongly affect the 

occurrence and disease severity of several Fusarium species [1,11,33,34]. During the two years of 

monitoring, weather conditions in July differed considerably. In 2017, high precipitation (110.4 mm) 

occurred and mean temperatures were around 18.8 °C, while in 2018 precipitation was low (40.4 mm) 

and temperatures were high (20.6 °C). Nonetheless, the frequency of F. subglutinans did not change 

between the years, while the occurrence of F. temperatum slightly increased in 2018, suggesting 

warmer temperatures and low precipitation to be favorable for the latter. Similar tendencies were 

observed in the inoculation experiments in climate chambers. Disease severity on ears inoculated 

with F. temperatum was highest at 24 °C, while infection with F. subglutinans peaked at 21 °C. Even 

before F. temperatum and F. subglutinans were defined as individual species, Moretti et al. [13] 

suggested that a separation into two subgroups may be based on different temperature and humidity 

requirements, which may have resulted from physiological changes in their sites of origin. Similarly, 

numerous studies related the occurrence of F. temperatum and F. subglutinans to temperature and 

humidity conditions. Moretti et al. [13] observed that F. subglutinans occurred more often in warmer 

and drier regions such as Italy, Slovakia and Serbia, while F. temperatum was reported more often 

from Germany, Poland, Austria and Switzerland. These findings correspond to several studies from 

Belgium [10], China [22] and Argentina [20] indicating higher frequencies of F. temperatum in 

moderate to cool and moist regions with mean temperatures of 18 °C or lower, while other studies 

reported F. temperatum more often in Poland [30] and Germany [35] following dry conditions. Marin 

et al. [36] demonstrated that the growth rate of most Fusarium ssp. increased with increasing water 

activity (aw value), however the growth rate of F. proliferatum and F. subglutinans decreased at 25 °C 

when the aw value increased from 0.980 to 0.995. Further studies are needed to clarify the effect of 

temperature and precipitation on the occurrence of and disease incidence caused by F. temperatum 

and F. subglutinans.  

Field inoculation studies at five locations in Germany in 2017 and 2018 showed F. temperatum to 

be the most aggressive Fusarium species in maize, even as compared to F. graminearum and 

F. verticillioides. However, no significant differences in pathogenicity were observed between 

F. temperatum and F. subglutinans at a field site in 2018. This observation confirms the particular 

importance of F. temperatum as an ear rot pathogen in maize cultivation in Germany and other 

locations with similar climate. The low visual infection rate of F. verticillioides may be explained by 

symptomless infection and endophytic colonization of maize ears; therefore disease symptoms may 

not reflect plant colonization and mycotoxin concentration accurately [37–40].  

Inoculation of maize stalks with toothpicks showed that F. temperatum and F. subglutinans are 

pathogenic on the stalks. However, compared to common stalk rot pathogens like F. graminearum, 

F. culmorum, and F. crookwellense, disease severity was relatively low. This corresponds to the results 

of Levic et al. [41] and Scauflaire et al. [19], who reported the formation of necrotic lesions and 

symptoms like wilting, stunting, rotting on stalks and leaf sheaths by F. temperatum and 

F. subglutinans yet lower disease severity as compared to F. crookwellense, F. verticillioides, F. culmorum 

and F. graminearum [21]. 

Crop residues of maize infected with Fusarium spp. are considered a major inoculum source for 

Fusarium diseases in small grain cereals in Europe, such as seedling and root rot at the seedling stage 

and Fusarium head blight during anthesis [42,43]. Fusarium head blight of wheat is mainly caused by 

F. graminearum, F. culmorum, F. poae, F. tricinctum, and F. avenaceum [45,46]. In addition, 

F. subglutinans was reported to rarely infect wheat, causing contamination with MON in small grain 

cereals from central to north-east European countries [45,47]. F. proliferatum occasionally infects 

wheat, causing contamination with fumonisins and BEA [72,73]. In our study, all F. temperatum and 

F. subglutinans isolates were able to infect winter wheat and cause Fusarium head blight at anthesis. 

The severity of disease caused by F. graminearum was highest and the colonization of the plant 
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advanced with the highest rate, while 21 days post infection no significant differences between 

F. temperatum and F. graminearum were found with regard to disease severity and thousand-kernel 

weight. In line with our results, the investigations of Wang et al. [22] demonstrated pathogenicity of 

F. temperatum and F. subglutinans on wheat, however, the aggressiveness of tested strains was 

significantly lower than the aggressiveness of a control strain of F. asiaticum.  

Identification of F. temperatum and F. subglutinans was carried out by species-specific PCR assays 

[23,48] and strengthened by the analysis of the marker gene TEF-1α, as previously reported [10]. 

Phylogenetic analysis enabled the assignment of all obtained isolates to their respective species, as 

supported by bootstrap values. Separation of isolates and references suggest a rather uniform 

population of F. temperatum, when compared with phylogenetic investigations recently published 

[9,31,33,49–51]. The analysis showed that the isolates of F. temperatum are genetically divided into 

two groups, as supported by a high bootstrap values. This has also been reported by Shin et al. [50] 

for isolates of F. temperatum from Korea, even though the isolates were obtained from a single 

location. We were unable to link this grouping to morphological characteristics nor to mycotoxin 

profiles of the respective isolates. The analysis of TEF-1α is highly recommended for taxonomical 

identification of species in the genus Fusarium but reliable separation shall be verified by the 

investigation of additional informative loci [52]. Hence, we selected the gene for the DNA-directed 

RNA polymerase II subunit (RPB2) for verification of distinct groups that we observed in the analysis 

of TEF-1α. The formation of clades could not be reproduced with RPB2 amplified according to 

Lofgren et al. [53], using a 763 bp portion of the gene located at the 5’ end. The associated phylogram, 

based on multiple sequence alignments for a small set of isolates and reference strains, is provided 

in Figure S6. Therefore, we assume that the grouping of nucleotide sequences of TEF-1α does not 

reflect the genetic relatedness among the strains. 

In order to evaluate the risk of mycotoxin contamination upon infection with F.  temperatum and 

F.  subglutinans, in-vitro cultures were screened for the presence of eight mycotoxins (BEA, MON, FA, 

FUSA, ENNB, ENNA1, FB1, FB2), selected according to Scauflaire et al. [19] and others [14,17,18]. We 

detected BEA in 58 cultures exclusively of F. temperatum, supporting the suitability of BEA 

production for the separation of F. temperatum from F. subglutinans, similarly as BEA production 

separated F. verticillioides from F. proliferatum [24]. The production of MON, FA, and FUSA was 

confirmed in almost all tested cultures of F.  temperatum and F. subglutinans. Previous studies 

suggested that MON may not be produced universally by F. temperatum [19]. Based on our results, 

both F. temperatum and F. subglutinans produced MON but the amounts varied among isolates. The 

production of MON and FA by some isolates was so low that it could escape detection. As we found 

only single isolates showing low production of MON and FA, further studies need to be conducted 

to clarify this finding. The amounts of FA were low, as reported from other studies [54]. Even though 

FA exerts low toxicity at levels normally detected in natural infections, synergistic effects have been 

reported between DON and FA in pigs and FB1 and FA in chicken eggs [55]. Although DON is not 

produced by the species of the FFSC, both DON and FB1 are common in maize grains and 

contamination with multiple mycotoxins may occur. FA thus potentially increases the risk of 

mycotoxin exposure via maize consumption.  

In the present study, all strains of F. temperatum and F. subglutinans were FUSA-producers. Even 

though contamination with FUSA and also BEA are rarely reported in literature [56], a significant 

role of these toxins in the natural toxicity of the producing species, also in association with other 

toxins, such as MON, was suggested [16]. The biological activity of FUSA remains to be fully 

elucidated. We were not able to detect ENNB or ENNA1 in any analyzed rice culture; however, low 

amounts of ENNB were detected in three maize cobs naturally infected with F. temperatum, harvested 

in 2017 (data not shown). These maize cobs were co-infected with F. temperatum and F. avenaceum, 

which were likely responsible for the production of ENNB [6]. Production of any enniatins has shown 

to be a rare event among isolates of F. temperatum so it may not be considered a mycotoxin 

characteristic of F.  temperatum [19]. Even though the ability to synthesize enniatins is a common 
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feature of some trichothecene producing species of Fusarium, such as F. avenaceum, [6,57] it has rarely 

been observed for any species of the GFSC [13]. Enniatins are less toxic than trichothecenes, such as 

deoxynivalenol. Their function in pathogenesis on maize is still unknown.  

The production of fumonisins has been reported in a few cases for both F. temperatum and 

F. subglutinans, even though the associated FUM-cluster could not be detected in their genomes. The 

production of these toxins by both species in maize plants [32] can be explained by spontaneous 

infection of the plants with other species. Wang at al. [22] reported production of fumonisins by 

F. temperarum but because they analyzed grains from the field rather than axenic cultures and have 

not described the analytical method adequately, their results have not been considered here. We 

detected fumonisins in only one culture of F. temperatum, likely due to contamination, supporting the 

current view that F. temperatum does not produce fumonisins. FB1 and FB2 were also detected in one 

culture of F. subglutinans. Even though F. subglutinans was occasionally reported to produce 

fumonisins [58], which is a common feature among members of the FFSC, both classical [18] as well 

as modern studies [62-65] convincingly showed that F. subglutinans does not produce fumonisins. 

Mycotoxin production found in a small set of cultures of F. verticillioides and F. proliferatum confirmed 

the established mycotoxin spectra of these species [54,59–61].  

Gene clusters required for synthesis of sphinganine-analog metabolites, such as fumonisins, in 

Fusarium spp. are conserved [63-65]. Sequence analysis of the gene amplified from F. subglutinans and 

F. temperatum with primers for the gene FUM1 revealed that the product was unrelated to FUM1. 

Interestingly, a gene with a high sequence similarity to the product was found to the genome of a 

closely related species F. anthophilum. The amino acid sequence predicted a coiled coil region (Figure 

2), possibly indicating involvement of a hypothetical protein in the regulation of gene expression. 

F. anthophilum is a member of the American clade of the FFSC, which includes fumonisin-

nonproducing species F. temperatum and F. subglutinans and fumonisin-producing species 

F. anthophilum and F. bulbicola [63].The authors assume a combination of loss of the respective genes 

during species divergence and horizontal gene transfer, leading to the loss or retention of fumonisin 

synthesis.  

The results obtained in the present study indicate a high degree of variability in BEA, MON, FA, 

and FUSA production among isolates of F. temperatum. We found isolates with a comparably low 

toxicity, producing low amounts of FA, BEA, MON and FUSA, and highly toxic isolates. Our results 

support the assumption of lower toxigenic risk due to infection of maize with F. subglutinans as 

compared to F. temperatum, especially regarding the production of BEA.  

In conclusion, the present investigations indicate that F. temperatum occurs more frequently on 

maize cobs and is more aggressive than previously known and thus represents an elevated threat of 

food and feed contamination to growers, processing industries and consumers. In addition, 

F. temperatum may enhance the risk of head blight on wheat if grown in rotation with maize.  

4. Materials and Methods  

4.1. Fungal isolation and cultivation 

Fusarium isolates were obtained from 293 naturally infected maize cobs and 190 stalk samples, 

which were collected from silage and grain maize at 72 field sites in Germany in 2017 and 2018. Thirty 

randomly chosen kernels of each cob were surface sterilized for 10 min with 0.1 % silver nitrate and 

incubated on moist sterile filter paper for two days at room temperature. Afterwards, kernels with 

outgrowing Fusarium mycelium were placed on potato dextrose agar (PDA) [77]. The rachis was cut 

in nine slices, three from the base, three from the middle part and three from the tip of the cob. The 

slices were surface sterilized as described above and placed directly on PDA plates. The stalk samples 

were cut in nine slices, three from the first nodium, three from the internodium and three from the 

second nodium. The samples were surface sterilized and placed on PDA plates. After two days, 

Fusarium mycelium outgrown from the sample was transferred to synthetic low nutrition agar (SNA) 
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[77] to produce single spore cultures. The isolates were stored as single spore cultures on synthetic 

SNA plates at 4 °C. Reference strains of Fusarium (Table S7) were grown at 25 °C in the dark.  

4.2. Inoculum preparation  

Spore suspension was produced according to Reid et al. [66] in liquid media containing 2 g 

KH2PO4, 2 g KNO3, 1 g MgSO4, 1 g KCL, 1 g glucose, 2 mg FeCl3, 0.2 mg MnSO4 and 0.2 mg ZnSO4 in 

1 l of water. A plug of agar medium (PDA or SNA) with a diameter of 1 cm overgrown with mycelium 

was added to 200 ml of the autoclaved medium in a 500 ml Erlenmeyer flask. The medium was placed 

on a shaker and shaken slowly for 10 days under Near-UV-light (λ = 440-400 nm). The spore 

suspension was filtered through gauze and spore concentration was determined with a Thoma 

haemocytometer. For F. graminearum, spore density was adjusted to 1x104 spores per ml. For 

F. temperatum, F. subglutinans, F. crookwellense, F. culmorum and F. verticillioides, the inoculum was 

adjusted to a density of 1x106 spores per ml. 

4.3. Pathogenicity test on maize cobs under field conditions  

The field trials in 2018 and 2019 were located in five locations in Germany and France, i.e. 

Liesborn (North Rhine-Westphalia, Germany), Bernburg (Saxony, Germany), Kuenzing (Bavaria, 

Germany) and Rustenhart (Gran Est, France). In 2019, an additional field trial was set up in 

Goettingen. At each location, maize plants of four susceptible varieties were inoculated by silk 

channel injection and needle pin stabbing with F. graminearum, F. temperatum and F. verticillioides. 

Maize plants in Goettingen were inoculated with F. subglutinans instead of F. verticillioides. Plants 

were grown in a randomized complete block design, with 75 cm between rows and 13.3 cm between 

plants (9 plants/m²) in two repetitions. The primary ear of ten plants per row was inoculated with the 

pathogen, whereas another ten cobs were inoculated with water (control). The time point of 

inoculation was determined individually based on the time point of flowering. Silk channel 

inoculation was performed by a self-refilling syringe (Socorex 173, Ecublens, Swiss) seven days after 

50 % silk emergence in a row. Two ml of spore suspension were injected into silk channels between 

the cob tip and the point where silks emerge [66]. Needle pin inoculation was conducted 15 days after 

silk emergence. Prior to wounding, the four stainless steel needles (18 mm long, 10 mm wide) were 

dipped into the spore suspension and stabbed in the center of the ear through the husk leaves. At 

physiological maturity, husk leaves of ten Fusarium-inoculated and ten control ears were removed, 

and disease severity was rated. Disease severity on primary ears was assessed visually as percentage 

(0-100 %) of surface covered with mycelium based on the EPPO Guidelines (PP 1/285) [67]. Ten 

Fusarium inoculated and five water inoculated ears per row were harvested, dried and shelled 

(Almaco, Iowa, USA). Temperature and rainfall data were obtained during the whole vegetation 

period from a weather station close to the field site (< 5 km).  

4.4. Pathogenicity test on maize stalks under greenhouse conditions 

Pathogenicity on maize stalk was tested at two plant growth stages in two separate experiments, 

after seven weeks (BBCH 13) by toothpick inoculation, and at flowering (BBCH 65) by needle pin 

inoculation. Toothpick inoculation was adapted from Scauflaire et al. [19]. Six wooden toothpicks per 

treatment were autoclaved (three times for 15 min at 121 °C) and preserved in 15 ml tubes with 5 ml 

of 2 % malt extract broth medium (Merck, Darmstadt, Germany). Afterwards, 1 ml of spore 

suspension of 13 isolates of F. temperatum and seven isolates of F. subglutinans was added to the 

preserved toothpicks. Following inoculation, toothpicks were incubated for two weeks at 23 °C in the 

dark.  

Seeds of one maize hybrid were surface sterilized with 0.1 % sodium hypochlorite for 10 min 

and sown in 12 cm diameter pots filled with a mixture of potting soil, compost and sand (3/1/1). Pots 

were placed in growth chambers at 22 °C, 50 % relative humidity and a day-/night light cycle of 14/10 
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h. After seven weeks, stalks were inoculated by piercing a with toothpick overgrown with Fusarium 

10 cm above the soil surface. The toothpick was cut at both sides of the stalk surface and the 

inoculation site sealed with Parafilm®. Six plants were inoculated per isolate. After 14 days, plants 

were collected and the length of necrotic lesions around the inoculation point was measured. Lesion 

length was measured from the stark surface, then stalk was cut in two halves and necrosis were 

measured inside the stalk  

Pathogenicity testing on maize stalks by needle pin inoculation was conducted at the flowering 

stage. Maize seeds of four susceptible hybrids were seeded in a mixture of potting soil in 20 cm 

diameter pots. Pots were placed in the greenhouse at 23 °C at a seasonal day-/night light cycle. Stalks 

were inoculated with F. graminearum, F. crookwellense, F. culmorum, F. subglutinans and F. temperatum 

by dipping the needle pin into the spore suspension and stabbing in the middle of the first elongated 

internode of the stalk. The insertion point was sealed with Parafilm M (VWR International, 

Darmstadt, Germany). Ten plants per treatment were inoculated in two repetitions. Six weeks (42 

dpi) after inoculation, disease severity was assessed as mentioned earlier. 

4.5. Effect of temperature on ear infection  

In order to assess and compare the effect of temperature on the aggressiveness of F. subglutinans 

and F. temperatum on maize, a climate chamber trial was performed. Plants of a susceptible maize 

hybrid were sown in 16 cm diameter pots filled with a mixture of potting soil, compost and sand 

(3/1/1) and placed in the greenhouse at seasonal temperature and a day-/night light cycle until 

flowering. Plants were inoculated by a syringe (Braun, Melsungen, Germany) with two isolates of 

F. temperatum (50.2c and 22.4st, Table S1 and Table 12), differing in the mycotoxin profile, and one 

isolate of F. subglutinans (28.4sp, Table S1 and Table 12), by silk channel inoculation. Inoculation was 

carried out ten days after silk emergence by injection of 1 ml spore suspension into the silk channel 

between the cob tip and the point where silks emerge from the husk. Plants were maintained in 

separate climate chambers at 12 °C, 15 °C, 18 °C, 21 °C and 24 °C, with a relative humidity of 70 % 

and day/night light cycle of 14/10 h. Experiments were carried out in duplicates; five plants and 

temperature were inoculated with sterile water and served as control. Plants were harvested six 

weeks after inoculation and disease severity was scored visually as mentioned before. 

4.6. Pathogenicity test on wheat under greenhouse conditions 

The pathogenicity of F. temperatum and F. subglutinans in comparison to F. graminearum was 

examined on two highly susceptible and one less susceptible winter wheat variety. Seedlings were 

vernalized for seven weeks at 4 °C and planted in 7 cm diameter pots filled with potting soil and 

compost (1/1). Pots were placed in the greenhouse at seasonal temperature and day-/night light cycle. 

Plants were inoculated with four isolates of F. temperatum, three isolates of F. subglutinans and one 

isolate of F. graminearum by spray and point inoculation. Ten plants in two repetitions were 

inoculated with the pathogen and five plants per variety were inoculated with sterile water, which 

served as control. Point inoculation was conducted with a syringe (Braun, Melsungen, Germany) 

injecting 25 µl of spore suspension into the center of two florets at anthesis. Spray inoculation was 

conducted at the beginning of anthesis by spraying 2 ml spore suspension (same densities as 

described above) from two sides on cereal heads. Ears were covered with plastic bags for 48 

hours/days post inoculation. Severity of infection was scored visually as percentage (0-100 %). 

4.7. DNA Extraction, PCR, sequencing and bioinformatic analysis 

Mycelium was carefully scrubbed from the surface of PDA culture plates, inoculated with 

Fusarium sp. obtained from naturally infected maize cobs or reference strains (Table S4), and 

incubated at 25 °C in the dark for 5-7 days. DNA was extracted from lyophilized mycelium, using a 

CTAB-based protocol as described by Brandfass & Karlovsky [68]. Quality and quantity of the 
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extracted DNA were assessed on agarose gels (0.8 % (w/v) in 1 × Tris-acetate-EDTA buffer) stained 

with ethidium bromide. Gel electrophoresis was carried out for 60 min at 4.6 V/cm.  

Species-specific PCR analysis was performed in a CFX384 Thermocycler (Biorad, Ruedigheim, 

Germany) in 384-well microplates (SARSTEDT AG & Co. KG, Nuembrecht, Germany) using a total 

reaction volume of 4 μl. Reactions were composed of 1 μl template DNA or ddH2O for negative 

controls and 3 μl of reaction mixture (Table 8 and ddH2O; 0.1X SYBR Green I solution (Invitrogen, 

Karlsruhe, Germany); 1 mg/mL bovine serum albumin (BSA); 0.025 u of DNA polymerase (Table 8). 

Individual cycler conditions are summarized in Table 9. All standards as well as the negative control 

were amplified in duplicates. Following amplification, melting curves were obtained. Samples were 

heated to 95 °C for 60 s and cooled to 55 °C for 60 s. Afterwards, the temperature was increased from 

55 °C to 9 °C by 0.5 °C per cycle with continuous fluorescence measurement. Fluorescent data were 

obtained during the annealing phase to construct a melting curve at the end of assay. The PCR was 

completed by running a melting curve analysis. 

Table 7. Primers used in this study. 

Name Sequence (5‘-3‘) Gene 
Amplicon 

length (bp) 
Reference 

SUB 1 CTGTCGCTAACCTCTTTATCCA 
cal1 631 [23] 

SUB 2 CAGTATGGACGTTGGTATTATATCTAA 

FtempF AAGACCTGGCGGGC 
TEF-1α 296 [69] 

FtempR TCAGAAGGTTGTGGCAATGG 

VER 1 CTTCCTGCGATGTTTCTCC  
cal 578 [23] 

VER 2 A ATTGGCCATTGGTATTATATATCTA 

Fp3-F CGGCCACCAGAGGATGTG 
igs2 230 [48] 

Fp4-R CAACACGAATCGCTTCCTGAC 

EF1αF  ATGGGTAAGGARGACAAGAC 
TEF-1α 694 [70] 

EF1αR GGARGTACCAGTRATCATGTT 

RPB2-5F2 GGGGWGAYCAG AAGAAGGC 
RPB2 1200 [53] 

RPB2-7CR CCCATRGCTTGYTT RCCCAT 

FUM1F1 CACATCTGTGGGCGATCC 
FUM1 1118 [28] 

FUM1R2 ATATGGCCCCAGCTGCATA 

1calmodulin gene. 2intergenic spacer of rDNA. 

Table 8. Reaction mixtures for species-specific PCR assays. 

Target species 
MgCl2 

(mM) 

Primer (μM) dNTP1 (μM) DNA-

Polymerase2 

Reaction buffer1 

F. temperatum 2 0.3 150 HotStart Taq Standard Taq 3 

F. subglutinans 3.5 0.3 100 Taq ThermoPol®4 

F. verticillioides 2.5 0.3 100 Taq ThermoPol® 

F. proliferatum 2 0.3 125 Taq ThermoPol® 

1deoxyribonucleosides (Bioline, Luckenwalde, Germany). 2purchased from New England Biolabs, 

Beverly, Massachusetts, USA; 3 standard Taq reaction buffer (10 mM Tris-HCl, 50 mM KCl, 1.5 mM 

MgCl2, pH 8.3 at 25 °C). 4ThermoPol reaction buffer (20 mM Tris-HCl, 10 mM (NH4)2SO4, 10 mM KCl, 

2 mM MgSO4, 0.1 % Triton® X-100, pH 8.8 at 25 °C). 

Table 9. Cycler conditions for species-specific PCR assays. 

Target species 
Initial 

denaturation 

Denaturation Annealing Extension No. of cycles 

F. temperatum 95 °C, 120 s 94 °C, 30 s 63 °C, 30 s 68 °C, 30 s 35 

F. subglutinans 95 °C, 120 s 94 °C, 30 s 65 °C, 30 s 68 °C, 40 s 35 
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F. verticillioides 95 °C, 120 s 94 °C, 40 s 62,5 °C, 30 s 68 °C, 40 s 35 

F. proliferatum 95 °C, 120 s 94 °C, 35 s 64 °C, 30 s 68 °C, 35 s 35 

 

Amplification of partial genes TEF-1α (694 bp), RPB2 (ca. 763 bp) and FUM1 (1118 bp) were 

performed in a peqSTAR 96 universal gradient thermocycler (PEQLAB, Erlangen, Germany) using 

1:100 (v/v) dilutions of the DNA extract in a total reaction volume of 25 µl. The TEF-1α gene was 

amplified using the primers EF1 and EF2 (Table 7). Partial RPB2 region was amplified with the 

primers RPB2-5F2 and RPB2-7CR, according to Lofgren et al. [53]. For amplification of the FUM1 

gene, we used the primers FUM1F1 and FUM1R2 (Table 1), originally designed for amplification of 

FUM1 sequences in F. proliferatum [28]. PCR mixtures were composed of Standard Taq reaction buffer 

(10 mM Tris-HCl, 50 mM KCl, 1.5 mM MgCl2, pH 8.3 at 25 °C; NEB), 100 µM of each 

deoxyribonucleoside triphosphate, 0.3 µM of each primer, 0.62 u HotStart-polymerase (NEB) and 

1 µL template DNA solution. Final MgCl2 concentration was adjusted to 2 mM. PCR conditions for 

amplification of TEF-1α were: initial denaturation for 30 s at 95 °C; 30 cycles consisting of 30 s at 94 °C, 

30 s at 58 °C, and 1 min at 68 °C; and final extension for 5 min at 68 °C. PCR conditions for 

amplification of FUM1 were: initial denaturation for 30 s at 95 °C; 35 cycles consisting of 30 s at 94 °C, 

30 s at 60 °C, and 90 s at 68 °C; and final extension for 5 min at 68 °C. The PCR cycling conditions for 

amplification of RPB2 included an initial denaturation for 30 s at 95 °C; 10 cycles consisting of 30 s at 

94 °C, a gradual decrease from 62 °C to 53 °C (-1 °C/cycle) for 40 s, and 1 min at 68 °C; 30 cycles of 30 

s at 94 °C, 40 s at 56 °C, and 1 min at 68 °C; and final extension for 5 min at 68 °C. All PCR products 

were purified and sent for Sanger-sequencing to Macrogen Europe (Amsterdam, The Netherlands). 

Amplicons generated for the FUM1 gene were purified from an agarose gel by using the FastgeneTM 

Gel/PCR Extraction kit (Nippon Genetics Europe GmbH, Düren, Germany). Results were evaluated 

with Chromas version 2.6.6 (South Brisbane, Australia) and used for comparative BLAST analysis. 

Multiple sequence alignment was then performed by using ClustalW [25] in MEGA version 7.0.26 

[26]. 

4.8. Mycotoxin extraction and HPLC-analysis 

Rice cultures [24] were inoculated with single-spore isolates (SNA, agar plugs of 0.5 cm 

diameter) of F. temperatum and F. subglutinans, obtained from naturally infected maize cobs, and 

references strain MUCL52463 (Table S4), kindly provided by Dr. Jonathan Scauflaire (Earth and Life 

Institute, Louvain-la-Neuve, Belgium). Controls were inoculated with blank culture medium. Tubes 

were incubated in the dark for 28 days, at 21 °C. Mycotoxins were extracted in 30 ml 

acetonitrile/water/acetic acid (84/15/1 (v/v/v)), following evaporation and sample preparation in 

methanol/water (20/80 (v/v)) for HPLC-MS/MS, as described elsewhere [71].  

Toxin quantification was performed on an Agilent 1290 Infinity II HPLC system coupled to an 

Agilent 6460 QQQ (Agilent Technologies, Waldbronn, Germany). Samples were analyzed on a 

Phenomenex Kinetex C18 column with a particle size of 2.5 µm, 100 Å pore size and 50 x 2.1 mm 

(Phenomenex Ltd., Aschaffenburg, Germany). A 12-point calibration ranging from 3.9 to 2000 µg/l 

was used. Final analysis was performed with MassHunter B.0.8.00 (Agilent, Waldbronn, Germany). 

The MS/MS transitions, limits of detection (LODs) and limits of quantification (LOQs) are listed in 

Table S4. 

4.9. Statistical analysis 

Statistical analysis was conducted using STATISTICA version 13 (Statistica GmbH, Germany). 

Means of lesion length were estimated for inside and outside of the stalk for each Fusarium species 

and isolates using the non-parametric Kruskal-Wallis ANOVA and Mann-Whitney-U-Test by 5 % 

probability. Disease severity of ears and wheat heads were log (x+1) transformed to normalized data. 

Analysis of variance (ANOVA) for field and greenhouse experiments were carried out by Tukey-
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HSD-test at 5 % probability. Thousand-kernel-weight (TKW) was analyzed by ANOVA and Tukey-

Test at 5 % probability.  

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1. Figure S1: Sampling 

locations. Figure S2: Molecular phylogenetic analysis of DNA-directed RNA polymerase II subunit (RPB2). Table 

S1: List of isolates of F. temperatum and F. subglutinans and selected isolates of F. proliferatum, and F. verticillioides 

Table S2: Analysis of variance from maize cob inoculation under field conditions. Table S3. Analysis of variance 

from maize cob inoculation at greenhouse conditions at five different temperatures. Table S4: Sequence 

variations of partial TEF-1α gene in isolates of F. temperatum. Reference strains of Fusarium used in this study. 

Table S5: Accession numbers of reference sequences used in phylogenetic analysis of TEF-1α, RPB2 and FUM1. 

HPLC-MS/MS analysis. Table S6: Specification of HPLC-MS/MS analysis. Table S7: Reference strains of Fusarium. 
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Supplementary Materials:  

 

Figure S1 Sampling sites in Germany, where isolates were obtained from maize cobs with infection of 

F. subglutinans and/or F. temperatum. 

 

Figure S2. Molecular phylogenetic analysis of DNA-directed RNA polymerase II subunit (rpb2) by 

maximum likelihood method (1000 bootstrap replicates) [25]. Analysis was performed with ClustalW 

[25] in MEGA version 7.0.26 [26] with partial rpb2 sequences of 6 isolates of F. temperatum, representing 
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phylogenetic group 1 (55.1st, 210.4c, 223.1sp, 272.1c) and group 2 (264.1st, 288.1c) (Figure 1 & Table S5) 

and references for F. temperatum MUCL52463 and F. subglutinans CBS215.76 (Table S4). We added 

additional references DSM62261 F. proliferatum, NRRL20956 F. verticillioides and DSM62423 

F. sporotrichioides to scale phylogenetic separation. The tree is drawn to scale, with branch lengths 

measured in the number of substitutions per site. Bootstrap values are presented next to the nodes. 

Individual accession numbers are presented in Table SX. Sequence alignment and phylogenetic tree are 

available at TreeBASE (X). 

Table S1 List of isolates of F. temperatum and F. subglutinans and selected isolates of F. proliferatum, and 

F. verticillioides, obtained from naturally infected maize cobs, during the present study. 

Isolate1 

 

Year Location 

Morphological 

characteristics Sequencing of tef-1α 

Maize 

organ 

Ft 18.1 rachis 2017 Greven F. subglutinans s. lat F. temperatum 

Ft 18.5 kernel 2017 Greven F. subglutinans s. lat F. temperatum 

Ft 21.3 kernel 2017 Greven F. subglutinans s. lat F. temperatum 

Ft 21.10 kernel 2017 Greven F. subglutinans s. lat F. temperatum 

Ft 22.4 stalk 2017 Gondelsheim F. subglutinans s. lat F. temperatum 

Ft 50.2 kernel 2017 Muenzesheim F. subglutinans s. lat F. temperatum 

Ft 51.1 rachis 2017 Muenzesheim F. subglutinans s. lat F. temperatum 

Ft 51.6 stalk 2017 Nossen F. subglutinans s. lat F. temperatum 

Ft 55.1 stalk 2017 Nossen F. subglutinans s. lat F. temperatum 

Ft 61.2 kernel 2017 Pocking F. subglutinans s. lat F. temperatum 

Ft 62.1 stalk 2017 Borken F. subglutinans s. lat F. temperatum 

Ft 65.2 kernel 2017 Ostbeven F. subglutinans s. lat F. temperatum 

Ft 78.2 stalk 2017 Osterhofen F. subglutinans s. lat F. temperatum 

Ft 81.4 stalk 2017 Osterhofen F. subglutinans s. lat F. temperatum 

Ft 91.1 stalk 2017 Reith F. subglutinans s. lat F. temperatum 

Ft 93.2 kernel 2017 Lauchstaedt F. subglutinans s. lat F. temperatum 

Ft 98.4 stalk 2017 Wesel F. subglutinans s. lat F. temperatum 

Ft 99.3 stalk 2017 Wesel F. subglutinans s. lat F. temperatum 

Ft 104.3 stalk 2017 Loenningen F. subglutinans s. lat F. temperatum 

Ft 100.3 stalk 2017 Wesel F. subglutinans s. lat F. temperatum 

Ft 106.4 stalk 2017 Loenningen F. subglutinans s. lat F. temperatum 

Ft 115.2 rachis 2017 Moosham F. subglutinans s. lat F. temperatum 

Ft 117.1 rachis 2017 Moosham F. subglutinans s. lat F. temperatum 

Ft 127.2 rachis 2017 Borken F. subglutinans s. lat F. temperatum 

Ft 130.2 rachis 2017 Westum F. subglutinans s. lat F. temperatum 

Ft 160.4 kernel 2017 Osterhoven F. subglutinans s. lat F. temperatum 

Ft 161.2 kernel 2017 Osterhoven F. subglutinans s. lat F. temperatum 

Ft 170.1 kernel 2017 Wesel F. subglutinans s. lat F. temperatum 

Ft 172.2 kernel 2017 Wesel F. subglutinans s. lat F. temperatum 

Ft 175.1 kernel 2017 Loenningen F. subglutinans s. lat F. temperatum 

Ft 178.1 kernel 2017 Toenisvorst F. subglutinans s. lat F. temperatum 

Ft 180.4 rachis 2017 Toenisvorst F. subglutinans s. lat F. temperatum 

Ft 184.2 kernel 2017 Plessa F. subglutinans s. lat F. temperatum 

Ft 185.6 rachis 2017 Plessa F. subglutinans s. lat F. temperatum 

Ft 188.2 kernel 2017 Pritzwalk F. subglutinans s. lat F. temperatum 
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Ft 202.1 stalk 2018 Goettingen F. subglutinans s. lat F. temperatum 

Ft 205.1 stalk 2018 Mintraching F. subglutinans s. lat F. temperatum 

Ft 208.2 rachis 2018 Braunau F. subglutinans s. lat F. temperatum 

Ft 208.3 kernel 2018 Braunau F. subglutinans s. lat F. temperatum 

Ft 208.5 kernel 2018 Braunau F. subglutinans s. lat F. temperatum 

Ft 208.6 kernel 2018 Braunau F. subglutinans s. lat F. temperatum 

Ft 208.1 rachis 2018 Braunau F. subglutinans s. lat F. temperatum 

Ft 209.6 kernel 2018 Hohenheim F. subglutinans s. lat F. temperatum 

Ft 210.4 kernel 2018 Hohenheim F. subglutinans s. lat F. temperatum 

Ft 210.7 stalk 2018 Pocking F. subglutinans s. lat F. temperatum 

Ft 211.1 kernel 2018 Hohenheim F. subglutinans s. lat F. temperatum 

Ft 212.1 kernel 2018 Hohenheim F. subglutinans s. lat F. temperatum 

Ft 213.2 kernel 2018 Hohenheim F. subglutinans s. lat F. temperatum 

Ft 213.6 stalk 2018 Pocking F. subglutinans s. lat F. temperatum 

Ft 223.1 rachis 2018 Pocking F. subglutinans s. lat F. temperatum 

Ft 224.2 kernel 2018 Pocking F. subglutinans s. lat F. temperatum 

Ft 224.5 kernel 2018 Pocking F. subglutinans s. lat F. temperatum 

Ft 232.1 stalk 2018 Einbeck F. subglutinans s. lat F. temperatum 

Ft 235.3 rachis 2018 Frauenberg F. subglutinans s. lat F. temperatum 

Ft 238.3 stalk 2018 Frauenberg F. subglutinans s. lat F. temperatum 

Ft 240.4 kernel 2018 Ulm Langenau F. subglutinans s. lat F. temperatum 

Ft 244.5 stalk 2018 Ulm Langenau F. subglutinans s. lat F. temperatum 

Ft 245.1 stalk 2018 Ulm Langenau F. subglutinans s. lat F. temperatum 

Ft 246.1 kernel 2018 Ulm Langenau F. subglutinans s. lat F. temperatum 

Ft 247.2 kernel 2018 Ulm Langenau F. subglutinans s. lat F. temperatum 

Ft 247.1 rachis 2018 Ulm Langenau F. subglutinans s. lat F. temperatum 

Ft 247.1 stalk 2018 Mintraching F. subglutinans s. lat F. temperatum 

Ft 251.3 stalk 2018 Wesel F. subglutinans s. lat F. temperatum 

Ft 252.1 stalk 2018 Wesel F. subglutinans s. lat F. temperatum 

Ft 261.1 stalk 2018 Toenisvorst F. subglutinans s. lat F. temperatum 

Ft 263.5 stalk 2018 Ostbevern F. subglutinans s. lat F. temperatum 

Ft 264.1 stalk 2018 Ostbevern F. subglutinans s. lat F. temperatum 

Ft 270.3 stalk 2018 Osterhofen F. subglutinans s. lat F. temperatum 

Ft 272.1 kernel 2018 Pocking F. subglutinans s. lat F. temperatum 

Ft 272.1 rachis 2018 Pocking F. subglutinans s. lat F. temperatum 

Ft 274.1 kernel 2018 Wesel F. subglutinans s. lat F. temperatum 

Ft 275.1 kernel 2018 Wesel F. subglutinans s. lat F. temperatum 

Ft 275.1 rachis 2018 Wesel F. subglutinans s. lat F. temperatum 

Ft 275.3 kernel 2018 Wesel F. subglutinans s. lat F. temperatum 

Ft 280.2 kernel 2018 Toenisvorst F. subglutinans s. lat F. temperatum 

Ft 280.4 kernel 2018 Toenisvorst F. subglutinans s. lat F. temperatum 

Ft 280.2 stalk 2018 Altoetting F. subglutinans s. lat F. temperatum 

Ft 281.2 kernel 2018 Loeningen F. subglutinans s. lat F. temperatum 

Ft 281.2 rachis 2018 Loeningen F. subglutinans s. lat F. temperatum 

Ft 282.1 kernel 2018 Loenningen F. subglutinans s. lat F. temperatum 

Ft 282.1 rachis 2018 Loeningen F. subglutinans s. lat F. temperatum 

Ft 282.2 kernel 2018 Loenningen F. subglutinans s. lat F. temperatum 

Ft 285.1 kernel 2018 Ostbevern F. subglutinans s. lat F. temperatum 

Ft 285.1 rachis 2018 Ostbevern F. subglutinans s. lat F. temperatum 

Ft 286.1 rachis 2018 Ostbevern F. subglutinans s. lat F. temperatum 

Ft 287.1 kernel 2018 Ostbevern F. subglutinans s. lat F. temperatum 
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Ft 287.1 rachis 2018 Ostbevern F. subglutinans s. lat F. temperatum 

Ft 288.1 rachis 2018 Ostbevern F. subglutinans s. lat F. temperatum 

Ft 288.2 kernel 2018 Ostbevern F. subglutinans s. lat F. temperatum 

Ft 298.1 kernel 2018 Altoetting F. subglutinans s. lat F. temperatum 

Fs 28.4 rachis 2017 Bernburg F. subglutinans s. lat F. subglutinans s.str. 

Fs 126.2 kernel 2017 Borken F. subglutinans s. lat F. subglutinans s.str. 

Fs 187.1 kernel 2017 Kleinwanzleben F. subglutinans s. lat F. subglutinans s.str. 

Fs 209.4 stalk 2018 Pocking F. subglutinans s. lat F. subglutinans s.str. 

Fs 215.6 kernel 2018 Kleinwanzleben F. subglutinans s. lat F. subglutinans s.str. 

Fs 261.2 kernel 2018 Mintraching F. subglutinans s. lat F. subglutinans s.str. 

Fs 262.1 kernel 2018 Pocking F. subglutinans s. lat F. subglutinans s.str. 

Fp 201.1 kernel 2018 Mintraching F. proliferatum F. proliferatum 

Fp 209.2 stalk 2018 Pocking F. proliferatum F. proliferatum 

Fp 239.6 kernel 2018 Grucking F. proliferatum F. proliferatum 

Fp 273.1 stalk 2018 Osterhofen F. proliferatum F. proliferatum 

Fv 207.2 rachis 2018 Braunau F. verticillioides F. verticillioides 

Fv 232.3 rachis 2018 Grucking F. verticillioides F. verticillioides 

Fv 236.2 stalk 2018 Grucking F. verticillioides F. verticillioides 

Fv 263.2 kernel 2018 Pocking F. verticillioides F. verticillioides 
1 Abbreviations of species: Ft = F. temperatum, Fs = F. subglutinans, Fp = F. proliferatum, and Fv = F. verticillioides.

  

 

Table S2. Multiple variance analyses (year, location, method, variety) and interactions on disease 

severity of Fusarium species on maize cobs under field conditions in 2018 and 2019. 

Effect Degr. of Freedom F-value p-value 

Year 1 68,751 0,000000 

Location 3 32,382 0,000000 

Method 1 318,813 0,000000 

Variety 19 114,409 0,000000 

Year x Location 3 11,160 0,000000 

Year x Method 1 15,651 0,000076 

Location x Method 3 97,979 0,000000 

Year x Variety 19 12,207 0,000000 

Location x Variety 57 4,285 0,000000 

Method x Variety 19 43,685 0,000000 

Year x Location x Method 3 21,903 0,000000 

Year x Location x Variety 57 3,876 0,000000 

Year x Method x Variety 19 9,093 0,000000 

Location x Method x Variety 57 4,942 0,000000 

Year x Location x Method x Variety 57 3,048 0,000000 

Error 33705   

  

Table S3. Multiple variance analyses (temperature, isolate, variety) and interactions on disease severity 

of F. temperatum and F. subglutinans on maize cobs under greenhouse conditions at five different 

temperatures. 

 Effect on kernels infection Effect on rachis infection 
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Effect SS FG p-value SS FG p-value 

Temperature 4,3380 4 0,008151 18,4010 4 0,000000 

Isolate 4,2537 2 0,000892 2,8193 2 0,010587 

Variety 5,3634 1 0,000035 5,9246 1 0,000016 

Temperature*Isolate 6,8303 8 0,005027 5,6802 8 0,019797 

Temperature*Variety 1,4350 4 0,313567 2,7728 4 0,061330 

Isolate*Variety 2,4368 2 0,018560 1,4574 2 0,093004 

Temperature*Isolate*Variety 2,0514 8 0,555614 2,8282 8 0,321599 

Table S4. Reference strains of Fusarium used in this study.  

Strain ID1 Formae specials Isolated from 
Country 

of origin 

NRRL13383 F. graminearum Schwabe Zea mays Iran 

DSM62261 F. proliferatum (Matsushima) Nirenberg Cymbidium hybrid Germany 

DSM62423 F. sporotrichioides Sherbakoff Pinus nigra Germany 

CBS215.76 F. subglutinans (Wollenw. & Reinking) Zea mays Germany 

MUCL52463 F. temperatum Scauflaire J. & Munaut F. Zea mays Belgium 

NRRL20956 F. verticillioides (Saccardo) Nirenberg Zea mays USA 
1Fungal strains were obtained from German Collection of Microorganisms and Cell Cultures, Braunschweig, 

Germany (DSM); Westerdijk Fungal Biodiversity Institute, Baarn, Holland (CBS); ARS culture collection, Peoria, 

IL, USA (NRRL); and Dr Jonathan Scauflaire, Earth and Life Institute, Louvain-la-Neuve, Belgium (MUCL). 

Table S5. HPLC-MS/MS analysis  

Toxin Obtained from  

Molecular 

ion 

Parent 

ion 

Product 

ions 

LODA 

[mg/kg] 

LOQA 

[mg/kg] 

BEA 
Merck (Darmstadt, 

Germany) 
[M+H]+ 784.4 

244.0 

262.2 
2.5 20 

MON 
Enzo Life Sciences 

(Lörrach, Deutschland) 
[M+H]+ 97 41.1 1 2 

FA 
Enzo Life Sciences 

(Lörrach, Deutschland) 
[M+H]+ 180.1 

162.1 

134.1 
0.02 0.1 

FUSA 
Dr. Franz Berthiller 

(BOKU, Vienna, Austria) 
[M+H]+ 445.3 

367.3 

385.4 
-B - 

FB1 
Merck (Darmstadt, 

Germany) 
[M+H]+ 722.4 

352.2 

334.2 
3 6 

FB2 
Enzo Life Sciences 

(Lörrach, Deutschland) 
[M+H]+ 706.4 

318.3 

336.3 
5 10 

ENNA1 
Merck (Darmstadt, 

Germany) 
[M+H]+ 668.4 

228.2 

210.2 
1,5 2 

ENNB 
Merck (Darmstadt, 

Germany) 
[M+H]+ 640.4 

527.3 

196.1 
1 2,5 

ALOD and LOQ were estimated according to blank samples of polished rice, inoculated with pure culture medium. 
BNo LOD and LOQ were estimated for Fusaproliferin.  

Table S6. Sequence variations of partial tef-1α gene in isolates of F. temperatum.  

tef-1α 

Genotypes Isolates 

SNPs Identical reference 

and accession3 

Phylogenetic 

group4 Position2 Nucleotide 

1 281 136 G MUCL52436 

HM067684  

1 

  142 A  



Occurrence, pathogenicity and mycotoxin production of Fusarium temperatum in relation to other 

Fusarium species on maize in Germany 

   

62 

  325 A   

  390 C   

  455 T   

  550 C   

2 3 136 A MUCL52454 1 

  142 G HM067689  

  325 A   

  390 C   

  455 T   

  550 C   

3 6 136 A MUCL52462 

HM067690 

2 

  142 G  

  325 T   

  390 C   

  455 A   

  550 T   

4 5 136 A MUCL52445 

HM067686 

1 

  142 G  

  325 A   

  390 A   

  455 T   

  550 C   

5 24 136 A MUCL52450 

HM067687 

1 

  142 A  

  325 A   

  390 C   

  455 T   

  550 C   

13 isolates were excluded here, due to low coverage at nucleotide position 136, but matched the first genotype at 

further SNP positions. 2Nucleotide Positions in 705 bp PCR product after amplification with EF-1αF and EF-1αR, 

and sequencing with EF-1αF. 3Selected reference were described by Scauflaire et al., 2011. 4Phylogenetic groups 1 

and 2 were defined according to the phylogenetic tree presented in Figure 2.   
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Chapter Ⅳ: Fusarium ear rot infection in maize in relation to 

inoculation method, maize variety and Fusarium species 

 

Abstract 

 Fusarium species are common pathogens on maize and can lead to contamination with toxic 

metabolites which reduces the quality and safety of both animal feed and human food 

products. Fusarium ear rot is caused by a complex of different Fusarium species, however 

F. graminearum, F. verticillioides and F. subglutinans are the prevailing species in Central 

Europe. Breeding for resistant genotypes is the most promising approach to reduce yield 

losses and minimize the risk of mycotoxin contamination. In 2018 and 2019, maize hybrids 

were tested in four locations (Bernburg, Rustenhart, Kuenzing and Liesborn) in Germany and 

France. In each location, twenty hybrids were inoculated with F. graminearum, F. verticillioides 

and F. temperatum using two inoculation methods, injection into the silk channel and kernel 

wounding by kernel stab inoculation. Disease severity was assessed visually as the percentage 

of plant tissue overgrown with mycelium tissue at harvest time point according to the EPPO 

guidelines. Our results showed that F. temperatum was the most aggressive Fusarium species 

in both years followed by F. graminearum and F. verticillioides, however, the prevalence 

differed between locations. Significant differences in genotypic resistance depending on the 

inoculation method and Fusarium species were found in all locations. Silk channel inoculation 

resulted in higher disease severity of F. temperatum and F. verticillioides while disease severity 

following kernel stab inoculation was higher with F. graminearum. Correlation between 

Fusarium species was medium to high, however, only low to medium correlation was 

observed between inoculation method within the Fusarium species.  

 

Keywords: Fusarium ear rot, ear rot resistance, F. graminearum, F. verticillioides, F. temperatum, 

maize, inoculation method  

 

1. Introduction 

 

 Fusarium ear rot in maize is caused by a complex of Fusarium species with two distinct 

diseases that differ in their epidemiological characteristics: red ear rot (Gibberella ear rot, GER) 

and pink ear rot (Fusarium ear rot, FER) [1,2]. Red ear rot is caused by species of the Discolor 

section, mainly F. graminearum and F. culmorum, however, pink ear rot is caused by 

representatives of the Liseola section mainly F. verticillioides, F. proliferatum and F. subglutinans 

sp. [2–4]. Infection with F. graminearum is more common in Central to Northern European 

areas for silage maize production due to frequent rainfall and low temperatures [5,6]. Pink ear 

rot is commonly observed in Southern to Central European areas associated with grain maize 

production due to drier and warmer climates [7,8]. Fusarium spp. can cause significant yield 

loss, and downgrade grain quality due to contamination with mycotoxins [4,9–11]. Species 
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associated with pink ear rot produce various toxins including fumonisin (FB1/ FB2), fusarin 

and fusaric acid, however, trichothecenes like deoxynivalenol (DON) and nivalenol (NIV) as 

well as zearalenone (ZEN) are most often detected from ears infected with red ear rot [2,4,12–

14], associated with immunosuppression, hypoestrogenism in pigs or esophageal cancer in 

humans [14–17]. Therefore, it is of major importance to minimize the risk of feed and food 

contaminations by preventing ear rot disease development. As fungicidal application is not 

feasible due to plant height during flowering and the need of special machinery, planting 

resistant maize hybrids is one of the best control strategies [18]. Since the European Union 

released legal limits for mycotoxin content in maize grain for foodstuff (EC No. 1126/2007) 

[19,20] and animal feed [21], breeding for resistance to ear rots has become an important 

criterion for breeders to select less susceptible inbred lines [22]. Disease development and 

mycotoxin production is affected by several factors like genetic resistance of maize hybrids, 

weather conditions and agronomical factors. Two types of resistance have so far been 

identified in maize, silk channel resistance which prevents the fungus from invasion through 

the silk channel down to the kernel and kernel resistance blocks the spread of the fungus from 

kernel to kernel [18,23,24]. Different morphological factors such as pericarp thickness [25,26], 

surface wax layer [27] and husk covering as well as chemical factors, such as phenolic 

compounds especially ferulic acid [28] have been identified as being resistant mechanisms. 

Breeding for ear rot resistance in maize is complicated by the fact that it is only quantitative, 

based on several genes and that there are many different Fusarium species which can infect 

the maize plant [22,29]. Natural infection is usually caused by a mixture of local Fusarium 

species, however, most breeding programs focus either on F. graminearum or F. verticillioides 

and reports involving both or other Fusarium species are rare [24]. In addition, considering of 

the two major modes of fungal entry, the inoculation method may have an impact on the 

response of different genotypes. Therefore, our objective was (i) to investigate the 

aggressiveness of F. graminearum, F. verticillioides and F. temperatum on twenty maize hybrids 

in four locations in Germany, (ii) to study the correlation of genotype resistance to different 

Fusarium species and (iii) to determine the aggressiveness and genotype resistance in relation 

to different inoculation methods (silk channel vs. kernel stab inoculation).  
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2. Material and Methods 

 

2.1 Field site location, experimental design and plant material 

 

The field trials in 2018 and 2019 were 

located in Germany and France, in Liesborn 

(North Rhine-Westphalia), Bernburg (Saxony), 

Kuenzing (Bavarian) and Rustenhart (Alsace, 

France) (Figure 1). Plants were grown in a 

randomized complete block design, with 75 cm 

between rows and 13.3 cm between plants 

(9 plants/m²) in two repetitions. Sixteen 

registered maize hybrids from early to mid-late 

German grain maize set (FAO 210-270) were 

selected. Additionally, four highly susceptible 

hybrids were selected (Variety 1 to Variety 4) . 

For further experimental details see Table 1. 

 

 

2.2 Inoculum preparation  

Spore suspensions were produced according to Reid et al. (1992) [30] in a liquid media 

culture containing 2 g KH2PO4, 2 g KNO3, 1 g MgSO4, 1 g KCL, 1 g C6H12O6, 2 mg FeCl3, 0.2 

mg MnSO4 and 0.2 mg ZnSO4 diluted in 1 l tap water. A plug of agar medium (PDA or SNA) 

with a diameter of 1 cm overgrown with a Fusarium strain was added to 200 ml of the 

autoclaved medium in a 500 ml Erlenmeyer flask. The medium was placed on a shaker and 

shaken slowly for 10 d under Near-UV-light (λ = 440-400 nm). Afterwards, the spore 

suspension was filtered through gauze and the spore density was assessed with a Thoma 

haemocytometer. For F. graminearum, it was adjusted to 1x104 spores per ml and for 

F. temperatum and F. verticillioides to 1x106 spores per ml. 

 

2.3 Inoculation and disease assessment 

 

The primary ear of ten plants per row was inoculated, whereas another ten cobs of the 

remaining plants per row were inoculated with water (control). The time point of inoculation 

was determined individually based on the timepoint of female flowering of each row. Silk 

channel inoculation was performed by a self-refilling syringe (Socorex 173, Ecublens, Swiss) 

seven days after 50% silk emergence per row. A 2 ml volume of spore suspension was injected 

Figure 1 . Location of field sites  

Liesborn 

Bernburg 

Kuenzing 

Rustenhart 
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into the silk channel in the area between the cob tip and the point where silks emerge [30]. 

Kernel stab inoculation was conducted 15 days after silk emergence by stabbing in the center 

of the ear from the side through the husk leaves. At physiological maturity, husk leaves of ten 

Fusarium-inoculated and ten control ears were removed, and disease severity was rated. The 

disease severity of the primary ears was assessed visually as the percentage (0-100%) of 

surface covered with mycelium based on the EPPO Guidelines (PP 1/285) [31]. Ten Fusarium 

inoculated and five water inoculated ears per row were harvested, dried and shelled (Almaco, 

Iowa, USA). Temperature and rainfall data were obtained during the whole vegetation period 

from weather stations close each field site (< 5 km).  

2.4 Statistical analysis 

 

Statistical analysis was conducted using STATISTICA version 13 (Statistica GmbH, 

Germany). Disease severity of ears was log (x+1) transformed to normalized data. Analysis of 

variance (ANOVA) for field experiments were carried out by Tukey-HSD-test at 5% 

probability. Thousand-kernel-weight (TKW) was analyzed by ANOVA and Tukey-Test at 5% 

probability.  

 

3. Results 

 

3.1 Field site management and weather conditions 

 

Both years of investigations were characterized by dry conditions compared to the 

longtime average especially during flowering and grain filling, in all locations. In 2018, two 

locations and in 2019 three out of four were irrigated (Table 1). Disease assessments took place 

six to seven weeks after inoculation in all locations, however, sampling of infected cobs was 

only conducted in Bernburg and Rustenhart.  

 

 

Table 1: Field site management and weather conditions in Bernburg, Liesborn, Kuenzing 

and Rustenhart in 2018 and 2019. 

Location Liesborn Bernburg Kuenzing Rustenhart 

2018 

Pre-crop Winter wheat Maize Winter wheat Maize 

Tillage Plough Plough Cultivator Plough 

Plot size [cm] 300 x 150 300 x 75 300 x 150 300 x 75 

Plants per m² 9 9 9 9 

Sowing (Date) 25.04.2019 26.04.2018 08.05.2018 28.04.2018 

Sampling (Date) - 20.09.2018 - 28.09.2018 

Disease assessment (Date) 18.09.2018 19.09.2018 05.10.2018 27.09.2018 

Irrigation - 100 mm - 326 mm 

Ø Temperature [°C] * 18 18.5 18.0 18.6 

Ø Precipitation [mm]* 145 172 279 208 
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2019 

Pre-crop Wheat/greening Maize Winter wheat Maize 

Tillage Cultivator Plough Cultivator Plough 

Plot size [cm] 300 x 75 300 x 75 300 x 150 300 x 75 

Plants per m² 9 9 9 9 

Sowing (Date) 18.04.2019 26.04.2019 15.04.2019 25.04.2019 

Sampling (Date) - 20.09.2019 - 26.09.2019 

Disease assessment (Date) 24.09.2019 19.09.2019 16.09.2019 25.09.2019 

Irrigation - 120 mm 80 mm 265 mm 

Ø Temperature [°C] * 16.3 16.6 16.7 16.9 

Ø Precipitation [mm]* 164 189 280 287 

* April – September  

 

3.2 Disease severity 

 

Both years of investigation were conducive for the development of Fusarium ear rot 

infection. Disease severity induced by the Fusarium species was significantly affected by the 

year, inoculation method, location and variety as well as the interactions of these factors. 

According to the mean squares, ear rot rating was found to vary more among years than 

among locations. In 2018, disease severity was significantly higher (17.4%) than in 2019 

(12.9%). In contrast, infection rates were relatively consistent from location to location and 

ranged from 12.4% in Kuenzing to 16.7% in Rustenhart (Table 2). Infection of F. temperatum 

was highest in Kuenzing (27.3%) followed by Bernburg (23.7%), Rustenhart (23.1%) and 

Liesborn (21.4%), however, infection of F. graminearum was enhanced in southern field 

locations (Kuenzing and Rustenhart). In general, mean disease severity was significantly 

higher after silk channel inoculation (18%) compared to kernel stab inoculation (12.3%). This 

also applies for F. temperatum, however, infection of F. graminearum was higher after kernel 

stab wounding (17.2%) compared with injection into the silk channel (12.3%). In general, 

disease severity of fungal species was mostly affected by variety and the interaction of variety 

and inoculation method, according to their mean squares.  

 

Table 2: Diseases severity [%] and standard deviation of maize ears artificially infected 

with F. graminearum, F. temperatum and F. verticillioides according to year, inoculation 

method, location, variety and maturity group. Different letters indicate significant 

differences within the columns (p≤0.05). 

Treatment 
Disease severity [%]  

F. graminearum F. temperatum F. verticillioides MEAN 

Year 

2018 18.0 ± 25.9 b 27.0 ± 28.4 b 7.3 ± 10.7 b 17.4 ± 24.4 b 

2019 11.5 ± 16 a 20.9 ± 23.3 a 6.2 ± 12.1 a 12.9 ± 18.7 a 

Method 

Kernel stab 17.2 ± 24 b 15.9 ± 13.2 b 3.9 ± 7.2 a 12.3 ± 17.4 a 
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Silk channel 12.3 ± 19.1 a 32.1 ± 32.6 a 9.6 ± 13.9 b 18 ± 25.3 b 

Location 

Bernburg 16.0 ± 21.9 c 23.7 ± 27.4 b 5.8 ± 11.2 a 15.2 ± 22.5 a 

Kuenzing 13.6 ± 19.3 b 27.6 ± 26.4 c 7.8 ± 12.4 b 16.4 ± 21.8 ab 

Liesborn 9.9 ± 16.3 a 21.4 ± 27.3 a 5.8 ± 11.2 a 12.4 ± 20.5 a 

Rustenhart 19.5 ± 27.0 d 23.1 ± 23.0 ab 7.5 ± 10.6 b 16.7 ± 22.4 b 

Variety 

Variety 1 20.0 ± 25.1 de 32.6 ± 29.5 gh 5.6 ± 7.0 cde 19.4 ± 25.3 gh 

Variety 2 16.8 ± 21.2 de 20.7 ± 21 bcd 5.1 ± 7.7 bcde 14.0 ± 18.9 de 

Variety 3 27.4 ± 28.1 g 45.6 ± 35.6 i 24.7 ± 26.9 j 32.7 ± 31.9 j 

Variety 4 26.5 ± 28.7 fg 35.2 ± 30.8 h 10.4 ± 13.6 gh 24.2 ± 27.6 i 

Variety 5 (210)1 8.2 ± 13.9 a 13.7 ± 14.5 ab 4.0 ± 6.7 abcd 8.7 ± 12.9 bc 

Variety 6 (210) 10.0 ± 15.9 ab 24.5 ± 25.9 cdef 6.4 ± 8.8 def 13.7 ± 19.9 de 

Variety 7 (220) 15.9 ± 21.3 bcde 28.2 ± 27.5 efg 9.0 ± 11.1 fg 17.7 ± 22.6 fgh 

Variety 8 (220) 6.6 ± 11.9 a 9.7 ± 12.2 a 3.3 ± 7.5 abc 6.5 ± 11.1 ab 

Variety 9 (220) 19.9 ± 22.9 de 29.7 ± 27 fgh 7.7 ± 11.1 efg 19.0 ± 23.2 gh 

Variety 10 (230) 20.6 ± 26.5 ef 27.7 ± 19.4 defg 10.2 ± 11.7 gh 19.5 ± 21.3 gh 

Variety 11 (230) 21.7 ± 25.5 efg 30.0 ± 25.8 fgh 6.3 ± 7.7 def 19.3 ± 23.5 gh 

Variety 12 (240) 17.8 ± 20.4 de 33.5 ± 21.3 gh 12.1 ± 13.0 hi 21.2 ± 24.5 hi 

Variety 13 (240) 20.3 ± 27.9 de 31.1 ± 28.6 fgh 5.6 ± 7.7 cde 18.9 ± 25.7 gh 

Variety 14 (240) 7.0 ± 13.5 a 12.2 ± 17.0 a 2.3 ± 4.9 ab 7.1 ± 13.4 ab 

Variety 15 (250) 8.0 ± 16.1 a 14.4 ± 16.2 ab 3.3 ± 4.2 abc 8.6 ± 14.1 b 

Variety 16 (250) 15.8 ± 19.1 cde 31.6 ± 31.2 fgh 4.0 ± 7.0 17.1 ± 24.4 efg 

Variety 17 (260) 4.2 ± 11.1 a 8.7 ± 12.5 a 1.4 ± 2.5 a 4.8 ± 10.2 a 

Variety 18 (260) 10.1 ± 16.7 abc 20.5 ± 26.7 bc 5.5 ± 9.4 cde 12.1 ± 20.0 cd 

Variety 19 (260) 14.3 ± 21.5 bcd 22.5 ± 18.6 cde 7.2 ± 7.5 ef 14.7 ± 18.1 def 

Variety 20 (270) 4.8 ± 9.8 a 7.8 ± 10.2 a 1.7 ± 3.4 a 4.7 ± 8.8 a 

Maturity group 

Early (210-220) 12.1 ± 18.4 b 21.1 ± 23.7 b 6.0 ± 9.5 b 13.1 ± 19.2 b 

Mid-early (230-250) 16.0 ± 22.7 c 25.7 ± 26.1 c 6.2 ± 9.2 c 15.9 ± 22.1 c 

Mid-late (260-270) 8.3 ± 15.9 a 14.9 ± 19.4 a 3.9 ± 6.8 a 9.1 ± 15.7 a 

Species 

MEAN 14.8 ± 21.8 b 24.0 ± 26.3 c 6.8 ± 11.4 a 12.0 ± 20.0 

1 FAO numbers of grain maize hybrids 

 

The effect of the variety was significant (p≤0,001) and ranged from 6.5% (Variety 8) to 

32.7% (Variety 3). Varieties could be grouped in highly susceptible, (Variety 3), susceptible 

(Variety 4, Variety 12, Variety 10, Variety 1, Variety 11, Variety 13, Variety 9), moderately 

susceptible (Variety 7, Variety 16, Variety 19, Variety 2, Variety 6, Variety 18,) and moderately 

resistant (Variety 15, Variety 14, Variety 5, Variety 8, Variety 17, Variety 20). Varieties stayed 

within these groups in both years (Figure 2). The effect of the maturity group on infection rate 

was significant over all Fusarium species. Mid-late matured plants (FAO 260-270) significantly 
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lower disease severity (9.1%) followed by early maturity (FAO 210-220) (13.1%) and mid-early 

maturity (FAO 230-250) (15.9%) groups.  

 

Figure 2: Disease severity [%] of maize varieties tested in 2018 and 2019 (means of four 

locations and three Fusarium species). Vertical bars represent standard deviation. Different 

letters indicate significant differences (p≤0.05) of mean disease severity. Dashed lines 

subdivide varieties in moderately resistant, moderately susceptible, susceptible and highly 

susceptible. 

 

(a)           (b)  

Figure 3. Disease severity [%] on infected cobs in Liesborn, Bernburg, Rustenhart and 

Kuenzing depending on the inoculation method in 2018 (a) and 2019 (b). Vertical bars 

represent standard deviations. Different letters indicate significant differences (p≤0.05) 

within the location.  

 

Disease severity was highest after kernel stab inoculation in most locations, however 

silk channel inoculation lead to highest infection rate in Rustenhart (Figure 3). Silk channel 
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inoculation lead to higher infection by F. temperatum and F. verticillioides. Kernel stab 

inoculation resulted in higher disease severity of F. graminearum (Figure 4). 

 

(a)           (b)  

Figure 4 Disease severity [%] of cobs infected with F. verticillioides, F. graminearum and 

F. temperatum depending on the inoculation method in 2018 (a) and 2019 (b). Vertical bars 

represent standard deviations. Different letters indicate significant differences (p≤0.05) 

within the species.  

 

3.2.1 Responses of maize hybrids to different Fusarium species  

  

In general, responses of maize to inoculation with F. graminearum, F. verticillioides and 

F. temperatum correlated with each other (Figure 5). Correlation was moderate (r=0.65) 

between F. verticillioides and F. graminearum. However, a strong correlation was found 

between F. temperatum and F. verticillioides (r=0.73) as well as between F. temperatum and 

F. graminearum (r=0.83) 

 

 

 

b
a

b

a

a

b

a

b

0

20

40

60

80

D
is

ea
se

 s
ev

er
it

y
 [

%
]

2018

Needle pin

Silk channel

Kernel stab

Silk channel

a

a
b

b

0

20

40

60

80

D
is

ea
se

 s
ev

er
it

y
 [

%
]

2019

Needle pin

Silk channel

Kernel stab

Silk channel



Fusarium ear rot infection in maize in relation to inoculation method, maize variety and Fusarium 

species  

  

75 

  

  (a)    

 

F.verticillioides vs. F.graminearum

0 10 20 30 40 50

F.graminearum [%]

0

10

20

30

40

50

F
.v

er
ti

ci
ll

io
id

es
 [

%
] y = 0,6696 + 0,4126*x;

r = 0,6541. p = 0,00000; r2 = 0,4279

 
(c) 

Figure 5. Correlation of disease severity levels of twenty maize hybrids to inoculation 

with F. temperatum and F. graminearum (a), F. verticillioides and F. temperatum (b) as well as 

F. verticillioides and F. graminearum (c) on tested in 2018 and 2019.  

  

3.2.2 Effect of inoculation method on disease severity 

 

The correlation between disease severity induced by kernel stab and silk channel 

inoculation over all Fusarium species tested was moderate (r=0.66), however, this correlation 

was only moderate to low for individual Fusarium species (Figure 6). Correlation was 

moderate between silk channel and kernel stab inoculation for F. temperatum (r=0.56) and low 

after inoculation with F. graminearum (r=0.48) and F. verticillioides (r=0.44). 
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 (c)          (d)  

Figure 6: Correlation of disease severity level between silk channel and kernel stab 

inoculation with the mean of inoculations with all Fusarium species (a), with F. graminearum 

(b), F. temperatum (c) and F. verticillioides (c) on all genotypes tested in 2018 and 2019. 

 

4. Discussion 

 

4.1 Inoculation method 

 

Two inoculation methods were compared according to the two main modes of fungal 

entry and genotype resistance, silk channel inoculation and kernel stab inoculation. Both 

inoculation methods were successful in causing significant ear rot infection in all locations 

and both years. However, natural infection of non-inoculated control plants was very low in 

most locations. Rustenhart was characterized by high infestation with the European corn 

borer (Ostrinia nubilalis) promoting Fusarium infection in control plants and additional 

infections on inoculated cobs. Therefore, Mesterházy et al. (2011) [22] suggest to carefully 
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determine which mode of fungal entry is predominant in a particular experimental site and 

point out that genotypic resistance could be influenced by the mode of fungal entry and the 

Fusarium species prevailing in the area. Hence, numerous studies [18,32–34] suggest the use 

of both inoculation methods, especially, if varieties are developed for areas in which the 

European corn borer occurs more frequently.  

Silk channel inoculation resulted in higher disease severity compared to kernel stab 

inoculation especially after inoculation with F. temperatum and F. verticillioides. Only 

F. graminearum lead to higher infection after kernel stab inoculation. Similar results were 

obtained by Reid et al (2002) [35] in which F. subglutinans, a closely related species of 

F. temperatum, lead to similarly high level of disease severity after silk channel inoculation, 

however, the infection rate of F. graminearum was highest after kernel stab inoculation.. In 

contrast, infection of Fusarium ear rot (FER) (F. verticillioides and F. temperatum, respectively) 

is closely related with insect injury such as caused by the European corn borer (O. nubilalis) 

[34,36]. This infection pathway appears the most important one in those areas [37–39]. 

Comparatively few data are available on the relationship between genotype resistance and 

inoculation method. Only, one report by Lemmens (1999) [33] provides a low correlation (r = 

0.12) in Austrian hybrids and a moderate to high correlation (r= 0.77– 0.89) was found by 

Chungu et al. (1996) [34] after inoculation with F. graminearum. In the later study, a moderate 

correlation (r=0.66) between both inoculation methods was found for the mean of all Fusarium 

species, however, a lower correlation was estimated for individual Fusarium species especially 

for F. verticillioides and F. graminearum. Löffler et al. (2010) [32] reported a similar relationship 

of silk channel and kernel stab inoculation (r=0.66) indicating that at least some resistance QTL 

are acting against both modes of fungal entry. Therefore, we also recommend to use both 

inoculation methods, especially for genotypes grown in regions with high European corn 

borer infections.  

 

4.2 Location and environmental conditions 

 

Both years of investigations were characterized by very dry conditions at flowering 

and during maturity stages. In 2018, two locations and in 2019, three out of four locations had 

to be additionally irrigated. Monthly mean temperature did not differ much between 

locations, however, water availability estimated from precipitation and irrigation varied 

between locations. F. verticillioides and F. temperatum, members of the FER complex are 

favored by distinctly different conditions. FER is more common in warmer areas with dry 

conditions during grain-filling [1,8,40], however, GER, especially F. graminearium, is favored 

by high moisture level around silking, followed by moderate temperature and high 

precipitation during maturation [10]. Highest precipitation (>500 mm, from May to October) 

around silking and grain filling and additional irrigation was recorded in Rustenhart which 

may explain the high infection rate with F. graminearum. In contrast, F. temperatum was 

favored in Kuenzing and Bernburg due to dryer conditions (~300 mm). Lowest disease 

severity and fungal growth of all Fusarium species was observed in Liesborn. In both years of 
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investigations, no additional irrigation was applied in Kuenzing and low precipitation (~150 

mm) resulted in limited fungal growth and disease development of all species.  

Additional irrigation is necessary to ensure plant growth and reliable disease 

development for hybrids assessment, however, it distorted the effect of weather conditions on 

disease severity in different locations in Germany. Therefore, further studies are needed to 

gain a better understanding of the effect of changing temperature and precipitation on disease 

severity and mycotoxin concentration induced by individual Fusarium species in maize cobs.  

 

4.3 Maize hybrids 

 

Disease severity in all locations ranged from 0% to 86% between the hybrids resulting 

in a sufficient level of infection for differentiation. Seven varieties ranged as moderately 

resistant seemed to have multiple resistance against several Fusarium species, whereas other 

varieties reacted differently to individual species. Several quantitative mechanisms of 

resistance are considered to play a role for initial kernel penetration and spread between 

infected kernels acting against multiple species and both modes of fungal entry [41,42]. Husk 

covering [43] plays an important role for epidemiology and disease development. Kernel 

penetration and spread can be affected by morphological traits like pericarp thickness and 

pericarp wax layers [25] as well as biochemical traits like kernel water content, content of (E)-

ferulic acid and dehydrodimers of ferulic acid [28,44,45]. In addition, certain traits are known 

to implicate the resistance of maize silks such as long-chain alkanes and silk flavonoids 

[23,46,47]. Therefore, Ali et al (2005) [48] found eleven active QTLs after silk channel 

inoculation and 18 QTLs after kernel inoculation for GER resistance. However, only two QTLs 

across environment could be detected for silk resistance and only one for kernel resistance, 

indicating a strong influence of the environment. FER resistance is determined polygenically 

[44] with at least 15 QTLs identified for FER and 17 for fumonisin B1 production [49]. 

However, QTLs have relatively small effects and are not consistent between populations 

[50,51] 

Overall Fusarium species, mid-late maturity varieties (FAO 260-270) lead to the 

significantly lower disease severity compared to early (FAO 210-230) and mid-early (230-250) 

varieties. All hybrids were inoculated individually according to their silking date within ten 

days but harvested and scored at the same time point, seven to eight weeks later. Hybrids of 

the early maturity group reached already physiological maturity six to seven weeks after 

flowering, however, late maturing hybrids were still at late dent stage. Actually, we expected 

that late maturity varieties are stronger infected than early varieties due to slower maturity 

and longer period from inoculation to physiological maturity which would imply that the 

fungus would have more time to infect and grow, develop symptoms and higher DON levels. 

However, the opposite results were obtained in our study. One reason for lower disease levels 

in later maturing hybrids might be, that environmental conditions at the later flowering 

timepoint and during maturity stage in September were not favorable for fungal growth. Reid 

and Sinha (1998) [52] observed no significant differences of disease development and DON 

concentration between late and early maturity hybrids inoculated with F. graminearum. 
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For further assessments on genotypic resistance, maturity groups should by studied 

separately or disease ratings should be adjusted by the flowering time point.  

 

 

4.4  Fusarium species 

 

Inoculation with F. temperatum resulted in the highest severity of ear rot infection in 

both years of investigation, followed by F. graminearum and F. verticillioides. The lower visual 

infection rate by F. verticillioides might be caused from symptomless endophytic infection and 

does not reflect the absolute infestation of the cob and mycotoxin production [53–55].  

Significant correlation between the three Fusarium species indicate a medium to high 

relationship of hybrid resistance towards F. graminearum, F. temperatum and F. verticillioides. 

Lowest but moderate correlation was found between F. graminearum and F. verticillioides, 

however, correlation between F. temperatum and F. verticillioides as well as between 

F. temperatum and F. graminearum were stronger. Löffler et al. (2010) [32] and Presello et al. 

(2004) [56] reported also a moderate correlation between F. graminearum and F. verticillioides 

in flint and dent pools. Several studies of Mesterházy on maize hybrids inoculated with 

F. graminearum, F. culmorum, F. verticillioides and F. avenaceum indicated a close correlation 

between the members of GER (F. graminearum and F. culmorum, respectively), however, no 

correlation was observed towards the species causing FER (F. verticillioides and F. avenaceum) 

[18,22,57]. In addition, moderate to strong correlation was observed for the disease severity of 

Fusarium infection and common smut (Ustilago zeae) [58] as well as Aspergillus ear rot 

(Aspergillus flavus) [59,60]. This moderate correlation between different Fusarium species and 

other ear rot pathogens might be explained by some general unspecific resistance mechanism 

such as surface wax layers and pericarp thickness [25,27]. However, it is not known whether 

the same resistance genes in maize genotypes or the interaction between the environment are 

responsible for this [18]. In addition, there is no clear relation between visible infection and 

mycotoxin concentration for all Fusarium species, which makes breeding for reduced 

mycotoxin contamination more difficult. Several studies indicated a high correlation of 

disease severity and toxin concentration for GER which suggests that visual scoring can be 

sufficient in resistance selection [42,52,61]. In contrast, low or moderate correlations were 

found between fumonisin production and infection rate of F. verticillioides in maize [62,63]. 

Breeding programs mostly rely on visible symptom evaluation because it is rapid and can be 

applied to hundreds of genotypes, while toxin analysis is time consuming and cost intensive 

[18]. Depending on the strength of these correlations, phenotypic selection maybe conducted 

either directly by mycotoxin analysis or indirectly by ear rot evaluations.  

Our results indicate that breeding programs should focus on different Fusarium species 

to enhance genotype resistance and be aware of new emerging species like F. temperatum.  
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Abstract 

Trichoderma species are widespread filamentous fungi in soils, on plant roots and decaying 

plant residues. Due to their strong competitiveness and mycoparasitic activity against other 

fungi, particular strains of Trichoderma sp. are used in agriculture as biocontrol agents against 

plant pathogens. Commercial products based on strains of T. harzianum or T. afroharzianum 

have been applied to control Rhizoctonia spp., Fusarium spp. and Phytophthora spp. in various 

crops. In 2018, however, severe infections of Trichoderma on maize ears were recorded for the 

first time in a field in Southern Germany. Infected maize cobs were sampled, the fungus was 

isolated in pure culture and preliminarily identified microscopically as Trichoderma 

harzianum. After silk channel inoculation in the greenhouse, ear rot disease of high severity 

was observed. In addition to fungal colonization, the dry matter content in cobs was 

significantly reduced compared to water inoculated cobs. In 2018 and 2019, a total of 13 T. 

harzianum isolates from maize cobs and maize stalks were isolated and tested, for 

pathogenicity on maize plants in the greenhouse, compared to several reference isolates. Four 

isolates proved to be highly aggressive, two biocontrol isolates, Trichodex (T39) and strain 

T12, induced slight infection and eleven isolates were non-pathogenic. After sequencing of the 

translation elongation factor-1α (tef-1α) and internal transcribes spacers (ITS), the four highly 

aggressive isolates were reassigned to T. afroharzianum, while the commercial biocontrol 

isolates Trichodex (T39) and T12, as well as the other non-pathogenic strains belonged to 

T. harzianum, T. atroviride or T. tomentosum. This, to our knowledge, is the first report on 

Trichoderma sp. as a pathogen causing ear rot disease in maize in Europe with the potential to 

incite significant yield losses. We therefore propose to name this disease as ‚Trichoderma ear 

rot on maize‘.  

Keywords: Trichoderma harzianum, Trichoderma afroharzianum, pathogenicity, 

Trichoderma ear rot on maize 
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1 Introduction 

Members of the genus Trichoderma are classified as imperfect fungi in the division 

Ascomycota and are ubiquitous in various types of soil. Some species of Trichoderma have 

biocontrol potential and can suppress pathogen growth by direct and indirect mechanisms 

including mycoparasitism, antibiosis, induction of host resistance and competition for nutrients 

and space (Ghazanfar et al.,2018; Kubicek et al., 2008; Jaklitsch & Voglmayr, 2015; Samuels 

and Hebbar, 2015). Especially, the ability to detoxify zearalenone protects Trichoderma spp. 

from the chemical defense of Fusarium spp. (Popiel et al., 2014). They can thereby control and 

antagonize a broad range of economically important plant parasitic pathogens (Harmann, 2005; 

Gupta et al., 2014; Ferrigo et al., 2014). In addition, they may increase plant resilience against 

drought conditions and promote shoot and root growth (Arora et al., 2003). Harman et al. 

(2004) reported a significant yield increase in maize due to Trichoderma treatments. Apart 

from the control of root and foliar pathogens, Trichoderma spp. enhance nutrient solubilization 

and uptake as well as enhanced root and root hair development (Herrera-Estrella & Chet, 2004; 

Schuster & Schmoll, 2010).  

Trichoderma species have been described as opportunistic, basically avirulent plant symbionts 

in soil (Harman et al., 2004); however, a few reports have mentioned Trichoderma as ear rot 

pathogen on maize in the US (Iowa State University; Munkvold & White, 2016; Wise et al., 

2016). Trichoderma ear rot infection has been characterized by the occurrence of dark, blue-

green layers of conidia on and between the kernels of infected ears causing premature 

germination of the kernels (Wise et al., 2016). In addition, the dry matter content of ears 

infected with Trichoderma was strongly reduced compared to uninfected ears. The occurrence 

of Trichoderma ear rot was associated with injuries caused by feeding birds or other 

mechanical damage in Kentucky and Ohio (Vincelli, 2014).   

Surprisingly, in 2018 a severe occurrence of Trichoderma on the maize cobs was recorded at a 

field site in Southern Germany. Cobs sampled from 20 maize varieties were overgrown with 

mycelium producing green layers of conidia between the kernels and on the outside of the husk 

leaves. Similar disease symptoms have been previously observed in Southern Bavaria, after 

warm and dry summers.  

The aim of the present study was to identify and verify Trichoderma as a new pathogen causing 

ear rot disease on maize. Therefore, Trichoderma-infected cobs from four locations in 

Germany and France were sampled, cultured and microscopically examined as well as analyzed 

by sequencing the gene for translation elongation factor-1α (tef-1α) and internal transcribes 

spacers (ITS). Furthermore, pathogenicity of Trichoderma isolates and the impact of infection 

on dry matter content of maize cobs were tested after artificial inoculation at flowering in the 

greenhouse. 

2 Materials and Methods  

2.1 Fungal isolation and cultivation 

Maize cobs and stalks were collected from naturally infected silage and grain maize in 

Germany in 2018 and 2019. Thirty randomly chosen kernels from each cob were surface 

sterilized for 10 min with 0.1% silver nitrate and placed on potato dextrose agar (PDA). The 

stalk samples were cut in nine slices, surface sterilized as described above and placed on PDA 
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plates. After two days, mycelium outgrown from the sample was transferred to PDA plates. 

Single conidia cultures were produced, and isolates were stored on synthetic low nutrition agar 

(SNA) plates at 4°C. 

2.2 Inoculation procedure 

Spores from single spore cultures were transferred to PDA plates containing antibiotics (400 

µg/ml streptomycin, Duchefa Biochemie, Haarlem, The Netherlands;30 µg/ml rifampicin, 

AppliChem, Darmstadt, Germany) and incubated under Near-UV-light (λ = 340-400 nm) at 

23°C in a growth chamber. After two weeks, sterile water was added to plates and conidia were 

scraped off with a microscope slide. The conidia suspension was then filtered through gauze 

and cell density was measured with a Thoma haemocytometer and adjusted to 1x106 conidia 

per ml. Primary ears of maize plants were inoculated seven days after silk channel emergence 

(BBCH 65). For this purpose, one ml of conidia suspension was injected with a syringe (Braun, 

Melsungen, Germany) into the silk channel between the cob tip and the point where silks 

emerge from the husk.  

2.3 Plant cultivation and pathogenicity assessment on maize ears  

Maize seeds of two varieties were sown in a mixture of soil (potting soil/compost/ sand mixture 

of 1:2:1) in 20 cm diameter pots. Pots were placed in the greenhouse at 23°C under a seasonal 

day-/night light cycle. Five plants per isolate were inoculated by silk channel injection and five 

additional plants were inoculated with water, as control. Thirteen Trichoderma isolates 

originally isolated from maize cobs in the field were compared to four reference strains of 

T. harzianum (IPP0318, IPP0319, IPP0320, T12), one type strain of T. afroharzianum (CBS 

124620) and one strain of T. atroviride (IPP0316) obtained from different fungal collections 

(see Table 1). In addition, one commercial biocontrol isolate, T39 (Trichodex), and one isolate, 

T12, with potential biocontrol activity (provided by the Department for Phytopathology of 

Justus-Liebig-University, Gießen, Germany) were tested. Four weeks (28 dpi) after 

inoculation, husk leaves of inoculated and control ears were removed, and disease severity was 

assessed visually as the percentage (0-100%) of the cob surface covered with fungal mycelium 

(Fig. 1). Finally, cobs were weighed and dried for five days at 60°C to assess the dry matter 

content. In addition, isolates were re-isolated and cultured on PDA to confirm the Koch´s 

Postulate.   
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Figure 3.  Disease rating scale for cob infection according to EPPO Guidelines (PP 1/285). 

 

Table 1. Host, geographic locations and year of isolation of Trichoderma isolates used in this 

study. 
Isolates Species Year Location Host 

Tri1 Trichoderma afroharzianum 2018 Croix de Pardies (F) Zea mays (cob)! 

Tri2 Trichoderma afroharzianum 2018 Kuenzing (D) Z. mays (cob) ! 

Tri3 Trichoderma afroharzianum 2018 Pocking (D) Z. mays (cob) ! 

Tri4 Trichoderma tomentosum 2018 Altoetting (D) Z. mays (cob) ! 

Tri5 Trichoderma afroharzianum 2019 Bernburg (D) Z. mays (cob) ! 

IPP0316 Trichoderma atroviride 1976  Baby food 

IPP0318 Trichoderma harzianum 1992 Mae Hia (T) Soil 

IPP0319 Trichoderma harzianum 1992 Chiang Mai (T) Soil 

IPP0320 Trichoderma harzianum  1992 Mae Hia (T) Soil 

Tri6 Trichoderma harzianum 2019 Kleinwanzleben (D) Z. mays (cob) 

Tri7 Trichoderma harzianum 2019 Grucking (D) Z. mays (cob) 

Tri8 Trichoderma harzianum 2019 Loeningen (D) Z. mays (cob) 

Tri9 Trichoderma harzianum 2019 Loeningen (D) Z. mays (cob) 

Tri10 Trichoderma harzianum 2019 Großumstadt (D) Z. mays (cob) 

Tri11 Trichoderma harzianum 2019 Pfaffenhofen (D) Z. mays (cob) 

Tri12 Trichoderma harzianum 2019 Pfaffenhofen (D) Z. mays (stalk) 

Tri14 Trichoderma harzianum 2019 Pfaffenhofen (D) Z. mays (stalk) 

T12* Trichoderma harzianum - - - 

T39 (Trichodex) Trichoderma harzianum - Tel Aviv (ISR) - 

CBS 124620 Trichoderma afroharzianum - Peru T. cacao 

F=France; D=Germany; T=Thailand; ISR=Israel; IPP-fungal collection of the Plant 

Pathology Division, University of Goettingen; CBS-fungal collection of the Westerdijk 

Fungal Biodiversity Institute, Utrecht, NL; * provided by the Department of Phytopathology 

of Justus-Liebig-University, Gießen, Germany; ! (exclamation mark) indicating samples with 

Trichoderma disease symptoms 

0% 1-3% 4-10% 11-25% 26-50% 51-75% 76-100% 
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2.4 DNA extraction and phylogenetic analysis 

Total DNA was extracted from lyophilized mycelium of single spore cultures by using a 

CTAB-based method described by Karlovsky and Brandfass (2008). Quality and quantity of 

the extracted DNA was assessed by agarose gel electrophoresis (60 min at 4.6V/cm) and 

stained with ethidium bromide. Partial translation elongation factor-1α (tef-1α) and internal 

transcribed spacer (ITS) were used to differentiate within the Trichoderma harzianum 

complex. Amplification was performed in a peqSTAR96 universal gradient thermocycler 

(PEQLAB, Erlangen, Germany) using 1:100 dilution of DNA extract in a total reaction volume 

of 25 µl. Marker genes tef-1α and ITS were amplified with the primers EF1 

(ATGGGTAAGGARGACAAGAC) and EF2 (GGARGTACCAGTSATCATGTT) 

(O´Donnell et al., 1998) and ITS1 (CTTGGTCATTTAGAGGAAGTAA) and ITS4 

(TCCTCCGCTTATTGATATGC) (White et al. 1990), respectively. Reactions were carried 

out in a mixture of standard Taq reaction buffer (10 mM Tris-HCl, 50 mM KCl, 1.5 mM MgCl2, 

pH 8.3 at 25°C; NEB), 100 µM of each deoxyribonucleoside triphosphate, 0.3 µM of each 

primer, 0.62 U HotStart-polymerase (New England Biolabs) and 1 µL template DNA solution. 

The final MgCl2 concentration was adjusted to 2 mM. The PCR cycling conditions for 

amplification of tef-1α included an initial denaturation for 30 s at 95°C; 30 cycles consisting 

of 30 s at 94°C, 30 s at 58°C, and 1 min at 68°C; and final extension for 5 min at 68°C. The 

PCR cycling conditions for amplification of ITS included an initial denaturation for 30 s at 

95°C; 10 cycles consisting of 30 s at 94°C, a gradual decrease from 62°C to 53°C (-1°C/cycle) 

for 40 s, and 1 min at 68°C; 30 cycles of  30 s at 94°C, 40 s at 56°C, and 1 min at 68°C; and 

final extension for 5 min at 68°C. Species were identified by multiple alignment of each 

sequence with reference sequences using ClustalW (Thompson et al., 1994) in MEGA Version 

7.0.2 (Kumar et al., 2016). 

 

2.5  Statistical analysis 

Statistical analysis was conducted with STATISTICA version 13 (Statistica GmbH, Germany). 

Differences between means of disease severity was analysed using the non-parametric Kruskal-

Wallis ANOVA by 5% probability. Analysis of variance (ANOVA) for dry matter content was 

carried out, followed by Tukey's-HSD-test at the 5% probability level.  

3 Results 

3.1 Geographic origin of samples 

In 2018, four isolates from four locations (Altoetting, Pocking, Kuenzing and Croix de Pardies) 

were obtained from maize cobs in Germany and France and subjected to further identification. 

In 2019, ten cobs from six locations, mainly from southern Germany, especially Bavaria and 

along the Rhine valley (Bernburg, Kleinwanzleben, Grucking, Loeningen, Großumstadt and 

Pfaffenhofen), were examined. In addition, two isolates from maize stalks from a single 

location (Pfaffenhofen) were obtained. Isolates Tri1, Tri2, Tri3 and Tri5 were isolated from 

maize cobs displaying strong Trichoderma infection, whereas the other Trichoderma isolates 

isolated from cobs or stalks did not induce any visual disease symptoms.  
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3.2 Species identification 

 

Figure 2. Molecular phylogenetic analysis of translation elongation factor 1 alpha ( tef-

1α) by maximum likelihood method (1000 bootstrap replicates) (Tamura & Nei, 1993).  
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The analysis was performed with MEGA version 7.0.26 (Kumar et al., 2016) with partial 

tef-1α sequences. The strains are listed in Table 1; GeneBank accession numbers of the 

sequences are shown in brackets. The tree is drawn to scale, with branch lengths 

measured in the number  of substitutions per site. Bootstrap values are presented next to 

the nodes. Individual accession numbers are presented in Table S1. Sequence alignment 

is available at TreeBASE (http://purl.org/phylo/treebase/phylows/study/TB2:S26786).  

 

A molecular phylogenetic analysis was performed with thirteen Trichoderma isolates from 

maize cobs and six isolates obtained from fungal culture collections, based on partial tef1α 

(Figure 2) and ITS (Figure S1). Sequences of 17 species in the T. harzianum complex Chaverri 

et al. (2015) were selected from GenBank. Multiple gene alignments assigned eight isolates 

(Tri6-Tri12, Tri14) to T. harzianum, four isolates (Tri1-Tri3, Tri5) to the clade 

T. afroharzianum, one isolate (Tri4) to T. tomentosum. Strains IPP0318-0320 were verified as 

T. harzianum and IPP0316 as T. atroviride. Isolates designated as T. harzianum clustered in 

two separate groups highly supported by bootstrap values. This result was largely confirmed 

by analysis of ITS sequences. Isolates Tri6-Tri12 an Tri14 showed high similarity to the 

selected references of T. harzianum, however, two isolates (T12 and T39) formed a separate 

clade, together with reference sequence of T. harzianum CBS 226.95 (AY605833). All 

obtained sequences of T. afroharzianum clustered in one phylogenetic group highly supported 

by bootstrapping and showed 99.4% (523 out of 526) nucleotide similarity to the tef-1α 

sequence of T. afroharzianum CBS124620 (FJ463301). Newly obtained sequences were 

deposited at Genbank under the accession numbers MT793725 to MT793743 for tef-1α and 

MT793744 to MT793762 for ITS, and sequence alignments were lodged at TreeBASE 

(http://purl.org/phylo/treebase/phylows/study/TB2:S26786). 

3.3 Disease symptoms and severity on maize ears 

Trichoderma strains obtained from maize cobs displayed typical characteristics of this genus 

on PDA plates, such as initial growth of white mycelium, soon turning into green and grey-

green colonies, while the reverse side of the Petri plates stayed uncoloured or light yellow. 

Trichoderma ear rot infection is characterized by white mycelium growing between the kernels 

and on the husk leaves with massive production of green to grey-green conidia. Under natural 

infection in the field, symptoms occurred from the base to the middle part of the cob, covered 

all kernels and all layers of husk leaves (Fig. 3 A-C). No mechanical damage or injuries by 

birds or insects were observed on infected cobs. After inoculation of ears in the greenhouse, 

the whole cob, inside and outside of the husk leaves was covered with mycelium and a green 

layer of conidia (Fig.3. D-F). Some infected cobs in the field as well as in the greenhouse 

showed premature ripening of the kernels (Fig.3. C, E).  
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Figure 3. Disease symptoms of natural infection with Trichoderma sp. on maize 

cobs in the field, (A) at Künzing, (B) at Bernburg, (C) and at Altoetting; (A -C); 

and after silk channel inoculation in the greenhouse (D-F).  

After artificial inoculation of the cob in the greenhouse, six isolates were pathogenic on maize 

ears and ten isolates did not induce any infection. The highest disease severity was observed 

with T. afroharzianum isolates Tri5 (96.0%), Tri1 (94.0%), Tri2 (91.1%) and Tri3 (78.0%), 

which overgrew the kernels and husk leaves (Table 2). Isolates T12 and T39 (Trichodex) lead 

to greenish discoloration only at the tip of the cob. The reference strains of T. afroharzianum 

(CBS 124620), T. harzianum (IPP0320, IPP0318) and the two remaining strains (IPP0316 and 

Tri4) as well as the T. harzianum isolates from maize cobs (Tri6, Tri7, Tri8, Tri10 and Tri11) 

were non-pathogenic on maize. Non-pathogenic strains did not cause any significant reduction 

in dry matter content compared to water treated, non-infected control cobs. However, the three 

most aggressive strains Tri2, Tri1 and Tri5 of T. afroharzianum caused significant losses in dry 

matter content of cobs 28 days after inoculation (Table 1).   

Table 2. Disease severity (%) and dry matter content (%) of maize cobs, 28 days after 

inoculation. Means are given with standard deviation. Letters indicate significant differences 

between the isolates (α≤0.05). 

Isolate Disease severity [%] Dry matter content [%] 

Water 

Control 0.0 ± 0.0 a 47.9 ± 4.6 a 

T. harzianum 

IPP0320 0.0 ± 0.0 a 48.5 ± 2.5 a 

Tri6 0.0 ± 0.0 a 46.5 ± 13.5 a 

IPP0318 0.0 ± 0.0 a 46.2 ± 6.7 a 

A B C 

D E F 
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Tri7 0.0 ± 0.0 a 41.6 ± 4.7 a 

T39 11.0 ± 6.5 b 40.4 ± 12.4 a 

Tri11 0.0 ± 0.0 a 39.1 ± 12.9 a 

Tri8 0.0 ± 0.0 a 37.2 ± 6.1 a 

Tri10 0.0 ± 0.0 a 36.7 ± 7.9 a 

T12 14.0 ± 10.8 b 36.7 ± 5.8 a 

T. afroharzianum 

CBS 124620 0.0 ± 0.0 a 39.7 ± 6.0 a 

Tri1 94.0 ± 5.4 d 26.6 ± 4.1 b 

Tri2 91.1 ± 10.5 d 20.9 ±7.7 b 

Tri3 78.0 ± 22.8 c 34.3 ± 6.8 ab 

Tri5 96.0 ± 8.9 d 20.3 ± 6.0 b 

others 

IPP0316 (T. atroviride) 0.0 ± 0.0 a 49.9 ± 15.0 a 

Tri4 (T. tomentosum) 0.0 ± 0.0 a 45.7 ± 13.2 a 

 

4 Discussion 

Although Trichoderma is known as a plant symbiont or antagonist of fungal phytopathogens, 

our findings support previous observations in the US (Munkvold and White, 2016; N.N, 2018; 

Wise et al., 2016) that Trichoderma can infect maize cobs and cause ear rot diseases. 

Molecular-phylogenetic analysis of  partial translation elongation factor-1α (tef-1α) and 

internal transcribes spacer (ITS) genes revealed pathogenic isolates as T. afroharzianum. To 

the best of our knowledge this is the first report on T. afroharzianum as an ear rot pathogen in 

Europe. The disease symptoms described in this study are in agreement with the observations 

by Wise et al. (2016) indicating that infection of Trichoderma appeared as white mold 

associated with massive production of green or grey-green conidia mass between the kernels 

and husk leaves, often involving the entire ear and causing premature ripening of the kernels. 

In contrast to the report by Munkvold and White (2016), T. afroharzianum infection, in the 

present study, did not require any previous damage on husk leaves and was not associated with 

injuries from birds or insects. Furthermore, artificial inoculation studies in the greenhouse 

confirmed that high disease severity occurred without any mechanical wounding after silk 

channel injection. Therefore, we conclude that Trichoderma ear rot infection is not a result of 

or promoted by mechanical injuries. This new pathogen cannot be regarded as a wound or 

opportunistic pathogen, as it is clearly able to infect kernel and husk leaf tissue and cause 

disease without any previous damages. We therefore propose to use the name ‚Trichoderma 

ear rot on maize‘ for this disease.  

Highest disease severity and highest losses of dry matter content were observed after 

inoculation with three T. afroharzianum (Tri1, Tri2, Tri3 and Tri5) strains; however, the 

reference type strain of T. afroharzianum CBS 124620 did not induce any disease symptoms 

on maize but may have lost its pathogenicity during cultivation for over 15 years. Otherwise, 

this may indicate a phylogenetic separation on the species or subspecies level of pathogenic 

and non-pathogenic strains. Further research is required to clarify the genetic differences 

between these strains within the T. afroharzianum cluster. Surprisingly, a low-level 

pathogenicity of the two T. harzianum strains which were considered for use as biocontrol 

agents was recorded. Although these strains are usually applied to the soil for control of 

soilborne diseases, the pathogenicity found in our greenhouse experiment with cob inoculation 
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cannot be ignored with regard to risk analysis in the registration of Trichoderma strains as 

biocontrol agents. The question whether beneficial Trichoderma strains could mutate into 

aggressive plant pathogens is difficult to determine at this stage and requires further research.  

Besides these findings, several epidemiological aspects about Trichoderma ear rot remain to 

be elucidated. Firstly, it is not known how the conidia of Trichoderma reach and infect the 

maize ears under natural conditions in the field, which sources of inoculum exist, and whether 

there are any alternative hosts. Secondly, there are no reports so far about the effect of weather 

conditions or agronomic practices possibly favoring infection with Trichoderma. The 

aggressive strains of T. afroharzianum were restricted to warmer regions with enhanced maize 

production in Southern Germany and along the Rhine valley. This is consistent with our 

previous observations indicating enhanced Trichoderma infection in the field in years with 

high mean temperatures and low precipitation such as in 2018 and 2019 in Germany. 

Furthermore, the potential production of mycotoxins by aggressive strains of Trichoderma 

awaits examination. Finally, field monitoring to explore the spread of the disease in Europe 

and yield loss analyses under field conditions are required to assess the economic significance 

of Trichoderma ear rot disease in maize production.  
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Abstract: Maize plants are often infected with fungal pathogens of the genus Fusarium. Taxonomic 

characterization of these species by microscopic examination of pure cultures or assignment to mating 

populations is time-consuming and requires specific expertise. Reliable taxonomic assignment may 

be strengthened by the analysis of DNA sequences. Species-specific PCR assays are available for most 

Fusarium pathogens, but the number of species that infect maize increases the labor and costs required 

for analysis. In this work, a diagnostic assay for major Fusarium pathogens of maize based on the 

analysis of melting curves of PCR amplicons was established. Short segments of genes RPB2 and TEF-

1α, which have been widely used in molecular taxonomy of Fusarium, were amplified with universal 

primers in a real-time thermocycler and high-resolution melting (HRM) curves of the products were 

recorded. Among major Fusarium pathogens of maize ears, F. cerealis, F. culmorum, F. graminearum, 

F. equiseti, F. poae, F. temperatum, F. tricinctum, and F. verticillioides, all species except for the pair 

F. culmorum/F. graminearum could be distinguished by HRM analysis of a 304 bp segment of the RPB2 

gene. The latter two species could be differentiated by HRM analysis of a 247 bp segment of the TEF-

1α gene. The assay was validated with DNA extracted from pure cultures of fungal strains, 

successfully applied to total DNA extracted from infected maize ears and also to fungal mycelium 

that was added directly to the PCR master mix (“colony PCR”). HRM analysis thus offers a cost-

efficient method suitable for the diagnosis of multiple fungal pathogens. 

Keywords: Fusarium; high-resolution melting (HRM) curves, HRM analysis; maize ear rot; fungal 

colony PCR; RPB2; TEF-1α 
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1. Introduction 

Infection of crop plants with Fusarium spp. causes yield losses and leads to contamination of grains 

with mycotoxins [1]. Fusarium ear rot and ear mold are cosmopolitan diseases of maize, caused by 

Fusarium species producing secondary metabolites toxic to mammals, which are called mycotoxins. The 

most important mycotoxins found in maize grains are trichothecenes, zearalenone, and fumonisins. 

These contaminants impair grain quality and pose a risk to food safety [2,3]. Pre-harvest ear rot disease 

of maize is characterized by the appearance of white or reddish fungal mycelium with rotting 

symptoms on the cob. The disease is classified into two groups: Gibberella ear rot, also known as red ear 

rot, which is caused predominantly by F. graminearum, and Fusarium ear rot, also known as Fusarium 

ear mold and pink ear rot, which is caused by F. verticillioides. The most important infection route of 

maize cobs for both pathogens is colonization of silks [4,5], while F. verticillioides can also systemically 

colonize plants [6–9]. Other Fusarium species such as F. temperatum, F. subglutinans, F. poae, F. cerealis, 

F. tricinctum, and F. culmorum have also been reported to infect maize plants [10–15]. In the past decade, 

mycotoxins primarily known from maize and their producers have been reported also in other crops. 

The infection of wheat [16,17] and asparagus [18] with fumonisin-producing species of the Gibberella 

fujikuroi species complex is well established. Other species, not previously known to be infected by 

F. verticillioides in the field, such as rice and sugar beet, were shown to be susceptible to the pathogen 

when artificially infected [19]. In addition, weeds in maize fields were found to be heavily colonized by 

Fusarium spp., which are pathogenic on maize [20]. Residues of these plants might be the source of 

infection of maize in the next season. Infestation of the ears [21] and roots [22] of maize by herbivores 

facilitates infection by breaking mechanical barriers and disseminating inoculum. Due to the 

multiplicity of sources of inoculum and the complexity of factors affecting infection, the contamination 

of maize with Fusarium toxins is highly variable and difficult to predict [11,14]. 

Identification of Fusarium species can be achieved via a combination of phenotypic 

characterization (micro-/macromorphology) [23], assignment to mating populations [24,25], and 

analysis of selected gene loci [26–28]. Furthermore, production of specific secondary metabolites can 

support taxonomic assignments of Fusarium spp. [29–31]. Phenotypic traits alone are often not sufficient 

for taxonomical classification at the species level, especially regarding members of species complexes 

such as the F. fujikuroi species complex (FFSC) [13] or the F. oxysporum species complex (FOSC) [32]. 

Molecular tools are, therefore, widely used. Species-specific PCR primers [33–35] and real-time PCR 

assays [31,36–39] have been developed for all economically important Fusarium species. Previous 

studies have reported that sequencing of several marker genes, such as the RNA polymerase II second 

largest subunit (RPB2), translation elongation factor 1 alpha (TEF-1α), and beta-tubulin (β-TUB) 

[26,28,40,41], enables reliable distinction at the species level. However, only minor nucleotide variations 

or single nucleotide polymorphisms (SNPs) may distinguish between closely related species, as was 

observed for the differentiation of F. temperatum from F. subglutinans [13]. Therefore, for robust 

taxonomical classification, the use of additional marker genes is recommended. 

Species-specific PCR assays are available for all economically relevant Fusarium species, but 

carrying out numerous assays for each sample multiplies the costs. Multiplexing reduces the costs of 

polymerase and nucleotides (not the costs of primers), but it adds the need to separate the signals. 

Electrophoretic separation of PCR products is not scalable; therefore, fluorescence-based species-

specific detection is used, but minisequencing [27] and double-labeled hybridization probes [36] 

significantly increase the costs of such assays.  

Melting curve analysis is a closed-tube technique for the characterization of genetic variation in 

DNA amplicons based on the dissociation of double-stranded DNA with increasing temperature [42]. 

The amount of double-stranded DNA in each step is determined by the fluorescence of DNA-

intercalating dye. High-resolution melting (HRM) curves generated with small temperature increments 

(commonly 0.1–0.2 °C) allow DNA fragments differing by as little as a single nucleotide to be 

distinguished. The entire analysis is carried out in the real-time PCR thermocycler that was used for 

the amplification. SYBR Green® is the standard dye used in real-time PCR, but EvaGreen® is used 



Co-author publications as part of the present investigation  

   

98 

Pathogens 2020, 9, 270; doi:10.3390/pathogens9040270 

instead in melting curve analysis because it binds to all DNA base pairs [43]. Melting curves reflect not 

just GC composition, but also the sequence of the amplicon, and can therefore differentiate among 

amplicons with identical GC content. The analysis of DNA melting curves has successfully been 

applied in clinical medicine [44], virology [45], and in the identification of plants [46], insects [47], and 

phytopathogenic fungi [48,49]. 

In the present study, the suitability of melting curve analysis of short variable subsections of RPB2 

and TEF-1α genes for the differentiation of eight major Fusarium pathogens infecting maize ears in 

Germany [50] was established.  

2. Results 

2.1. HRM Analysis of sRPB2 and sTEF-1α for the Identification of Fusarium Species 

Primers commonly used for the amplification of RPB2 and TEF-1α in taxonomy amplify fragments 

that are too long for HRM analysis. Therefore, new primers were developed for the identification of 

eight major Fusarium species that cause ear rot in maize, namely F. cerealis, F. culmorum, F. graminearum, 

F. equiseti, F. poae, F. temperatum, F. tricinctum, and F. verticillioides, via HRM analysis (Table 1, Figure 

S1). Taxonomically characterized reference strains were used as standards (Table S1). Short variable 

segments of RPB2 and TEF-1α genes, which we refer to herein as sRPB2 (shortRPB2, 304 bp) and sTEF-

1α (shortTEF-1α, 247 bp), respectively (Table 1), were used. sRPB2 reliably distinguished F. cerealis, 

F. equiseti, F. poae, F. temperatum, F. tricinctum, and F. verticillioides (Figure 1, Figure 2C,E). The melting 

curves allowed secure discrimination of DNA of these pathogens extracted from pure culture as well 

as from naturally infected maize ears. sRPB2 amplicons of F. culmorum and F. equiseti had similar 

melting temperatures but could be distinguished with an additional melting domain of the amplicon 

of F. equiseti, which caused a shoulder in the melting curve (Figure 2C). The differentiation between 

F. culmorum and F. graminearum was more difficult, due to highly similar melting curves. However, the 

melting curves of the sTEF-1α fragment allowed reliable differentiation between F. culmorum and 

F. graminearum DNA extracted from pure cultures as well as from infected maize cobs (Figure 2D,F). 

Therefore, HRM for the sTEF-1α fragment was included in the assay. Both sRPB2 and sTEF-1α were 

amplified using identical PCR conditions. The simultaneous amplification within the same PCR run 

enabled the identification of all eight tested Fusarium species in a single HRM analysis (Figure 2C–F).  

 

Figure 1. Workflow of high-resolution melting (HRM) curve analysis of eight major Fusarium pathogens 

of maize ears. (A) Identification of Fusarium species in infected maize ear samples; (B) identification or 

pure cultures using fungal colony PCR. sRPB2 and sTEF-1α are short and variable subsections of RPB2 
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and TEF-1α, suitable for HRM analysis (Table 1). Fusarium species in brackets were not well 

distinguishable using the sRPB2 assay. 

Melting temperatures of PCR products of the reference strains are listed in Table S2. The GC 

content ranged from 49% to 54% for sRPB2 and 49% to 50% for sTEF-1α (Table S2, Figure S1). No primer 

dimers or unspecific products were observed for the reference strains. Nucleotide sequences obtained 

for both sRPB2 and sTEF-1α showed high similarity (≥ 85%) across the reference strains (Figure 2A,B, 

Figure S1). In total, 73 SNPs were found in sRPB2 and 4 SNPs in sTEF-1α (Figure S1). Nucleotide 

polymorphisms were relatively evenly distributed across the length of sRPB2 (Figure S1A), but 

clustered in sTEF-1α (Figure S1B). Comparing the number of DNA polymorphisms with the melting 

curves, we concluded that the minimum number of nucleotide differences sufficient for differentiation 

between two Fusarium species by melting curve analysis was four. In the reference strains of 

F. graminearum and F. culmorum, these differences occurred at nucleotide positions 102, 158, 188, and 

190 of sTEF-1α (Figure S1B). In sRPB2, only two distant nucleotide positions differed between the 

reference strains of these species (nucleotide positions 104 and 275). Based on sRPB2, no reliable 

separation of F. graminearum and F. culmorum by HRM was possible. A maximum number of 46 SNPs 

were observed in sRPB2 sequences of the reference strains for F. temperatum and F. poae (Figure S1A). 
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Figure 2. Maximum likelihood analysis of the DNA sequences used for HRM analysis. (A) sRPB2 

sequences (1000 bootstrap replications) (B) sTEF-1α (without bootstrapping due to a low number of 

sequences (n = 3)). We included partial sequences of RPB2 of Trichoderma istrianum CBS130539 

(Accession KJ665281.1) and TEF-1α of F. pseudograminearum CBS131261 (Accession JX118971.1) as 

outgroup references. Melting curves using normalized relative fluorescence unit (RFU) data of sRPB2 

(C) and sTEF-1α (D). Melting curves were generated as negative first derivative (-d(RFU)/d(T)) of 

relative fluorescence. Difference curves of the reference strains and a naturally infected maize ear for 

sRPB2 (E) and sTEF-1α (F) are shown. The difference curves were obtained by subtracting melting curve 

data of each reference strain or environmental sample from the mean melting curves of all reference 

strains (dashed horizontal line). Vertical dashed lines indicate the maximum and minimum for each 

reference strain. sRPB2 and sTEF-1α are short subsections of RPB2 and TEF-1α (Table 1). 

The specificity of the assay was assessed by determining the melting temperatures of sRPB2 and 

sTEF-1α amplicons for an additional 12 Fusarium species (Table S4). Except for four species, melting 

temperatures of sRPB2 amplicons differed from the melting temperatures of sRPB2 of all target species 

(Table S2) by more than 0.15 °C. Only F. redolens, F. proliferatum, F. fujikuroi, and F. avenaceum could not 

be differentiated from some of the target species by the melting temperature of sRPB2. The 

amplification of sTEF-1α failed for F. redolens and F. avenaceum (Table S4), distinguishing them from the 

target species. F. proliferatum and F. fujikuroi could not be distinguised from F. temperatum by melting 

temperatures of sRPB2 or sTEF-1α amplicons; it has to be noted that F. fujikuroi does not infect maize.  

Both amplicons, used to generate melting curves, were generated with primer pairs consisting of 

a well-established primer (RPB2-5F2 and EF1αR) and a new primer designed for this study (RPB2-5R1s 

and TEF-1aFs2). The presence of binding sites for the established primers in all Fusarium spp. has been 

documented in numerous studies but the robustness of the newly designed primers was unknown. 

Nucleotide variation in binding sites might lead to a failure of the method with field isolates. To assess 

primer binding to DNA from other strains, 64 sequences of RPB2 or TEF-1α from isolates of target 

species were retrieved and aligned with the sequences of newly designed primers. Not a single 

mismatch was found; the list of the sequences is provided in Table S5. Regarding F. graminearum 

Schwabe, many genetic lineages of this traditional species have been defined as species, although the 

boundaries of the new species are incongruent with the biological species concept and remain 

controversial [23]. To check for binding of newly designed primers to target sequences from these 

lineages, we retrieved 28 sequences of RPB2 and TEF-1α from members of seven phylogenetic lineages 

of F. graminearum sensu lato. Aligning the sequences with primers RPB2-5R1s or TEF-1aFs2 did not 

reveal any mismatch (Table S6).  

2.2. Identification of Fusarium Species in Naturally Infected Maize Ears 

The HRM assay was evaluated by screening DNA samples extracted from 100 maize ears naturally 

infected with Fusarium spp. (Figure 1A), which were sampled from across Germany (Figure S2). 

Morphological examination of fungal strains isolated from these ears prior to DNA extraction revealed 

that most ears were infected with several Fusarium species. HRM analysis successfully identified the 

most abundant Fusarium species in 80% of the ears (Table S3). The majority of maize ears (62%) were 

infected with F. graminearum, followed by F. verticillioides (10%), F. temperatum (6%), and F. poae (2%). 

2.3. Fungal Colony PCR 

All eight reference strains of Fusarium were successfully identified via HRM analysis after colony 

PCR (Figure 3). Boiling a small piece of mycelium picked from an agar plate for 10 min in 100 μL H2O 

released sufficient amounts of DNA for amplification. The use of larger amounts of mycelium for DNA 

preparation by boiling occasionally led to the inhibition of PCR; thus, a very small piece of mycelium 

(just visible by the naked eye) was sufficient. The inhibition of PCR by mycelial extracts was particularly 

pronounced for F. poae: Extracts of 100 µg mycelium (dry weight) boiled in 100 µl water always 

inhibited PCR, while extracts of 10 µg mycelium reliably generated the desired amplicons.  
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Figure 3. Fungal colony PCR followed by high-resolution melting (HRM) curve analysis of (A) sRPB2 

and (B) sTEF-1α. Difference curves were obtained by subtracting melting curves of each reference strain 

from the mean melting curve data of all reference strains (dashed horizontal line). Vertical dashed lines 

indicate the maximum and minimum of the curve for each reference strain. sRPB2 and sTEF-1α are short 

subsections of RPB2 and TEF-1α (Table 1). 

3. Discussion 

Analysis of melting curves of PCR products has been used previously to diagnose pathogens 

[51,52], including a duplex assay for two Fusarium species [37] and intraspecific differentiation within 

a Fusarium species complex [49]. In this work, the analysis of melting curves of PCR amplicons was 

exploited for the development of a multiplex diagnostic assay. Fusarium species commonly infecting 

maize ears in Germany [50] were selected for the implementation of the concept, but disease diagnosis 

in many crops faces the same challenge: numerous pathogens can infect the crop, though only a single 

pathogen or a few pathogens are typically found in each sample. For instance, many Fusarium 

pathogens can be isolated from ears of small grain cereals afflicted with Fusarium Head Blight [53]. To 

overcome the limit of multiplexing species-specific PCR, detection of PCR products by hybridization 

to an array of DNA targets has been suggested. The concept has been successfully implemented for 

several systems, including the differentiation among members of the Fusarium solani species complex 

of pathogens of solanaceous plants [54] and identification of numerous Pythium spp. [55]. Detection by 

hybridization allows high-level multiplexing, but the specificity of hybridization is lower than the 

specificity of PCR or melting curve analysis; careful optimization of hybridization conditions is 

required to prevent the hybridization of DNA of a single pathogen with several targets. A powerful 

PCR-based diagnostic system with high-level multiplexing and quantitative detection has been 

developed by BioTrove [56]. The method requires a complex proprietary instrumentation, which seems 

to no longer be available since the acquisition of BioTrove by Life Technologies in 2009 and the 

acquisition of Life Technologies by Thermo Fisher in 2014. 

Among the molecular sequences used in Fusarium taxonomy, RPB2 and TEF-1α have been used 

most frequently [57,58]. The distinction between similar sequences by HRM relies on differences in GC 

content, amplicon length, and the sequence [44]. In order to maximize the specificity of HRM analysis, 

short and highly polymorphic regions are used as amplicons [45,49,50]. The sequences of RPB2 and 

TEF-1α genes used in the molecular taxonomy of Fusarium are too long for HRM; therefore, segments 

of the genes flanked by an established primer on one end and a new primer on the other end were 

amplified (Table 1). The location of both primers in highly conserved regions reduces the chance that 

the assay may fail for new isolates because of the lack of primer binding. 

The assay fulfilled the purpose of detecting and distinguishing all eight major Fusarium pathogens 

infecting maize ears in Germany. DNA from some minor pathogens or saprophytes might generate 

indistinguishable melting curves, causing false positive signals. Due to their low abundance, however, 

the impact of these false positives on decisions about crop protection is expected to be negligible. To 
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assess the specificity of the assay, melting temperatures of sRPB2 and sTEF-1α amplicons were 

determined for an additional 12 Fusarium species (Table S4). Only F. fujikuroi and F. proliferatum could 

not be differentiated from the target species. F. fujikuroi does not colonize maize. F. proliferatum infects 

maize in some growing areas [5,11,12,15], but recent studies reported the species to be at a low 

abundance on maize in Poland [14], and essentially missing from maize in Germany [50]. Because the 

melting curves of sRPB2 and sTEF-1α cannot distinguish between F. proliferatum and F. temperatum, an 

additional amplicon would be needed for the extension of the assay to F. proliferatum.  

In addition to the identification of eight Fusarium species by HRM analysis of sRPB2 and sTEF-1α 

amplicons, the assay proved suitable for the identification of dominant pathogens in DNA extracted 

from naturally infected maize ears and for the identification of fungal colonies without DNA extraction 

by HRM followed by colony PCR. This shows that the technique is sufficiently robust to be used in 

routine diagnosis. Two of the eight species could not be discriminated by HRM analysis of a single 

amplicon, but were reliably distinguished by the melting profiles of another amplicon. An extension of 

the assay to further Fusarium species may require the integration of further amplicons, which could 

originate from the same gene or from other genes. The relatively high level of multiplexing and the 

simplicity of HRM assays, which work with universal primers and consist of a single run on a real-time 

thermocycler without further sample processing, truly compensates for the need to integrate additional 

amplicons with growing numbers of target species. The costs of HRM assays are lower than the costs 

of multiplex PCR with species-specific primers, TaqMan probes, hybridization of PCR products to 

immobilized species-specific targets, or DNA sequencing, let alone advanced technologies such as 

BioTrove’s OpenArray. 

Field samples are often infected with multiple pathogens. The fact that our HRM assay is based on 

PCR primers that amplify DNA from multiple Fusarium species leads to two potential problems. First, 

amplicons in DNA extracted from samples infected with multiple pathogens will compete for primers, 

nucleotides, and DNA polymerase. The amplification of abundant pathogens may thus suppress the 

amplification of minor pathogens, preventing their detection. For the use of the assay in crop 

production, this does not pose a problem, because plant protection focuses on major pathogens. The 

second issue is that co-amplification of multiple amplicons may lead to the formation of hybrids, which 

melt at lower temperatures than the parent molecules. The presence of hybrids in amplification 

products will complicate the HRM patterns. Whether, and to what extent these hybrids may interfere 

with the assignment of amplicons/curves to taxa has to be further investigated. In the analysis of 100 

naturally infected maize ears reported here, melting curves of hybrid amplicons were not detected. We 

suggest that this can be accounted for by the unequal abundance of pathogens in ears with mixed 

infection. Extrapolating the frequency of detection of dominant pathogens (see Section 2.2) to mixed 

infections, 6% of ears were likely infected concomitantly with the two most dominant pathogens, 

F. graminearum and F. verticillioides. If the abundance of pathogens in the infected ears was unequal, the 

melting curve of the less abundant pathogen and the melting curves of hybrid amplicons likely escaped 

detection. This will not pose a problem when the assay is used to guide crop protection against major 

pathogens.  

In monitoring programs that include isolation of fungal strains, melting curve analysis of 

amplicons generated by colony PCR might be used to identify minor pathogens or resolve ambiguous 

results of melting curve analysis of samples with mixed infection. The advantage of this approach is 

that the same technique is used for both the original analysis and the follow-up analysis of problematic 

samples. If melting curves are used in a routine diagnostic pipeline, the products of colony PCR can 

simply be inserted into the pipeline to be analyzed with the next sample batch.  

4. Material and Methods 

4.1. Reference Strains, Sample Collection, and DNA Extraction 

We selected eight Fusarium species (F. cerealis, F. culmorum, F. equiseti, F. graminearum, F. poae, 

F. temperatum, F. tricinctum, and F. verticillioides) for identification via HRM analysis. For each species, 
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a reference strain (Table S1) was cultivated on potato dextrose agar plates for 5 to 7 days at 25 °C in the 

dark. For the comparison of melting temperature of amplicons, strains of 12 additional Fusarium spp. 

(Table S4) were grown in the same way. Mycelium was carefully scrubbed from the surface of the plates 

and lyophilized. In addition to reference strains, 100 naturally Fusarium-infected ears were collected 

from silage and grain maize, harvested at 30 field sites (one to nine ears per site) in seven federal states 

across Germany in 2017 (Figure S2). Ears were crushed, lyophilized, and finely ground to 1 mm using 

an ultra-centrifugal mill (ZM 200, Retsch, Haan, Germany). DNA from 30 mg naturally infected maize 

ears, as well as lyophilized mycelium of the reference strains, was extracted using a 

cetyltrimethylammonium bromide (CTAB)-based protocol [37]. Quality and quantity of the extracted 

DNA were assessed on agarose gels (0.8% (w/v) in 1 × Tris-acetate-EDTA buffer) stained with ethidium 

bromide. Gel electrophoresis was carried out for 60 min at 4.6 V/cm. 

4.2. Fungal Colony PCR 

Reference strains of Fusarium were cultivated as described above (see Section 4.1.), and aerial 

mycelium was carefully scrubbed from the surface of the plates using sterilized toothpicks and placed 

into a 1.5 mL tube containing 100 μL double-distilled water (ddH2O). For F. cerealis, F. culmorum, 

F. graminearum, F. equiseti, F. temperatum, F. tricinctum, and F. verticillioides, the mixture was incubated 

at 100 °C for 10 min and subsequently centrifuged at 16,000 × g for 30 s to pellet the mycelium. The 

obtained supernatant was transferred into a new 1.5 mL tube and directly used for PCR. For F. poae, the 

mycelium was briefly (approximately 10 s) introduced to the ddH2O. The mycelium was largely 

removed using the toothpick and colony PCR was performed from the remaining ddH2O without any 

further processing. 

4.3. Primer Design and Maximum Likelihood Tree Analysis 

We selected the RPB2 and TEF-1α region for HRM analysis. In order to design primers flanking 

short and variable subsections of RPB2 and TEF-1α, we first amplified both regions for the eight 

reference strains of Fusarium (Table S1), as described by Lofgren et al. [59] for RPB2 and O’Donnell et al. 

[60] for TEF-1α. PCR products were purified and sent to Macrogen Europe for Sanger sequencing 

(Macrogen Europe B.V., Amsterdam, the Netherlands). The results were evaluated with Chromas 

version 2.6.6 (Technelysium Pty Ltd, South Brisbane, Australia). Multiple sequence alignment was then 

performed using ClustalW [61] in MEGA version 7.0.26 [62]. Alignments were processed in T-Coffee 

version 11.00 [63] and ESPript version 3.0 [64] (Figure S1). Two new primers suitable for HRM analysis 

were designed based on multiple gene alignments using the sequences of our eight reference strains 

(Table 1). Primer binding sites were conserved among species. We hereinafter refer to the selected 

subsections as sRPB2 and sTEF-1α. The amplicon length was 304 bp for sRPB2 and 247 bp for sTEF-1α 

(Table 1). Finally, a maximum likelihood analysis was conducted for sRPB2 (1000 bootstrap 

replications) and sTEF-1α (without bootstrapping due to low sample size (n = 3)) using MEGA 7.0.26. 

Table 1. Primers used in this study. 

Name Sequence (5‘–3‘) Gene 
Amplicon Length 

(bp) 
Reference 

RPB2-5F2 GGGGWGAYCAGAAGAAGGC 
RPB2 1200 [59] 

RPB2-7CR CCCATRGCTTGYTTRCCCAT 

EF1αF ATGGGTAAGGARGACAAGAC 
TEF-1α 694 [60] 

EF1αR GGARGTACCAGTRATCATGTT 

RPB2-5R1s TCAACVACTTCCATACCTC sRPB2* 304 (with RPB2-5F2) This study 

TEF-1aFs2 CAATAGGAAGCCGCYGAG sTEF-1α* 247 (with EF1αR) This study 

* Short and variable subsections of RPB2 and TEF-1α, which were selected for high-resolution melting 

(HRM) curve analysis. 
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4.4. HRM Analysis  

PCR conditions were optimized using gradients of annealing temperature and final MgCl2 

concentration. Amplification was performed in a CFX384 Thermocycler (Biorad, Rüdigheim, Germany) 

in 384 well microplates (SARSTEDT AG & Co. KG, Nümbrecht, Germany) with a total reaction volume 

of 4 μL. Reaction mixtures were composed of 1 μL template DNA or ddH2O for negative controls and 

3 μL of reaction mixture (reaction buffer (20 mM Tris-HCl, 10 mM (NH4)2SO4, 10 mM KCl, 2 mM 

MgSO4, 0.1% Triton® X-100, pH 8.8 at 25 °C); 0.5 mM MgCl2, 200 µM of each deoxyribonucleoside 

triphosphate (Bioline, Luckenwalde, Germany), 0.3 µM of each forward and reverse primer (Table 1); 

3.3-time diluted EvaGreen® solution (Jena Bioscience, Jena, Germany); 1 mg/mL bovine serum albumin, 

and 0.03 U Taq DNA Polymerase (New England Biolabs, Beverly, MA, USA)). Template DNA of the 

reference strains was adjusted to 100 pg μL-1 in ddH2O using gel densitometry [31]. DNA from naturally 

infected maize ears was diluted 1:100 in ddH2O before use in PCR. For fungal colony PCR, DNA was 

obtained as described in Section 4.2. Thermocycling conditions were as follows: 95 °C for 2 min (initial 

denaturation), 30 cycles of 94 °C for 30 s, 57 °C for 30 s, and 68 °C for 30 s. Final elongation was 

performed at 68 °C for 5 min. Following this, samples were heated to 95 °C for 30 s and cooled to 55 °C 

for 60 s. For fungal colony PCR, 35 cycles were performed. Fluorescence data for HRM analysis was 

obtained by increasing the temperature step-wise from 65 °C to 95 °C at 0.1 °C for 5 s per step with 

continuous fluorescence measurement. Reference strains of Fusarium species and negative controls 

(ddH2O) were amplified in triplicate. 

4.5. Fluorescence Data Processing and Taxonomic Assignment 

Relative fluorescence unit (RFU) data were obtained from CFX Maestro™ Software (Bio-Rad CFX 

Maestro 1.1 version 4.1.2433.1219) Biorad, Rüdigheim, Germany and analyzed in the R environment 

(version 3.6.1) [65]. RFU data were normalized by scaling all RFU values of each sample between 0 and 

1. The negative first derivative (-d(RFU)/d(T)) was calculated employing the “diffQ2”-function in the 

R-package “MBmca” (version 0.0.3-5) and plotted to obtain normalized melting curves. The melting 

curves of the reference strains were generated from the mean fluorescence of the three technical 

replicates. Difference curves were obtained by subtracting the melting curve data of each reference 

strain or environmental sample from the mean melting curve data of all reference strains. Taxonomic 

identification was performed manually by carefully comparing the difference curves of the 

environmental samples against the reference strains. 

5. Conclusions 

Analysis of high-resolution melting (HRM) curves for the identification of Fusarium pathogens in 

plant material is an attractive technique for routine diagnostics in plant protection because it is cost-

efficient, does not require any post-thermocycle sample processing, and allows multiplexing. 

Supplementary Materials: The following materials are available online at www.mdpi.com: Figure S1: Multiple 

sequence alignment of sRPB2 and sTEF-1α, Figure S2: Sampling sites of naturally Fusarium-infected maize ears 

across Germany, Table S1: Reference strains of Fusarium spp. used in this study, Table S2: Melting temperature and 

GC-content of sRPB2 and sTEF-1α amplicons of reference strains, Table S3: Species identification in naturally 

infected maize ears, Table S4: Melting temperature of sRPB2 and sTEF-1α amplicons of additional Fusarium species, 

Table S5 and Table S6: Target sequences checked for binding of newly designed primers. 
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Chapter Ⅶ: General discussion 

 

Maize is one of the most important crops in Europe, covering a production area of 

approximately 17 M hectares in 2018 [1]. Maize is cultivated for different purposes, such as 

grain production for food and feed, and as green maize for silage feed or as substrate for 

biogas production. Grain maize production dominates in Central and Southern Europe, while 

maize in Northern Europe is typically grown to produce maize silage [2].  

Fungal ear rot diseases of most concern are caused by species of the genera Aspergillus, 

Fusarium and Penicillium producing various mycotoxins like aflatoxin, fumonisin and 

ochratoxin [3–6]. Fusarium spp. causing ear, stalk and root rot were rated as the economically 

most significant diseases worldwide [7]. Savary et al. (2019) [8] estimated the future global 

yield loss in maize caused by Fusarium stalk rot to be approximately 5% and Fusarium ear rot 

at around 2.5%. The primary mycotoxins produced by these Fusarium spp. are fumonisin, 

trichothecenes (e.g., deoxynivalenol, nivalenol, T-2, HT-2), and zearalenone, which lead to the 

contamination of both, human food and animal feed [9–11].  

 

Main conclusions  

 

I Continuous research on the range of Fusarium species occurring on maize and on the 

impact of agronomical practices and changing weather conditions is important to prevent 

mycotoxin contamination in food and feed products.  

 

Agronomical practices such as crop rotation and tillage as well as other practices of 

integrated pest managemen, can affect survival and dispersal of the above mentioned 

pathogens and potentially minimize the risk of mycotoxin contamination [12–14].  

The results of our study indicate that the incidence of local Fusarium species on ears and stalks 

is highly affected by conventional ploughing compared to chisel ploughing or no tillage. In 

particular, most Fusarium species causing ear and stalk rot were reduced through 

conventional ploughing. These findings have been confirmed by several previous reports 

[12,15], which demonstrated that most Fusarium species were reduced after moldboard 

ploughing as compared to reduced tillage. In contrast, we observed no or only little impact of 
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crop rotation on the frequency of Fusarium species on ears and stalks. Fusarium spp. can 

survive as mycelium and clamydospores on residues of these crops as well as on senescent 

tissue of other crop or weed species, which may later serve as primary inoculum for infection 

[16]. The most important source of inoculum for Fusarium spp. is plant debris, especially maize 

stalks. Covering crop residues with soil  enhances their decomposition by promoting 

microbial activity which reduces inoculum density [17,18]. Therefore, management of surface 

residues of previous crops by tillage and wide crop rotations with non-host crops are 

suggested as important strategies to control ear and stalk rot diseases [19]. Although 

integrated pest management strategies are important for disease control, the current maize 

cultivation practices in Europe shows that the opposite is the case. Intensification of 

agricultural production as well as expansion of maize acreage in Europe lead to short crop 

rotations with maize and wheat dominated rotation systems [2,20]. The current status of 

maize production in Europe and the effect on pests and diseases was evaluated by Meissle et 

al. (2010) [20]. They collected data from eleven European maize growing regions on the use of 

(i) integrated pest management methods (IPM), (ii) crop rotation range and (iii) soil tillage. 

Guidelines for IPM exist in all considered regions, however, the fulfillment of guidelines 

varied strongly between countries. Denmark reported to conduct 100% IPM whereas other 

countries like Germany, Spain and Italy implement IPM strategies on less than half of their 

maize production area and even no IPM was reported from Poland. Crop rotation ranged 

from continuous growth of maize (80%) in southwest Poland, Spain and Hungary, to well-

planned rotation systems. Short crop rotation with winter wheat and even mono-maize 

systems were also reported from Vasileiadis et al. (2011) in Europe [19]. Ploughing was the 

most often reported soil tillage method. More than 80% of all maize production areas were 

cultivated by conventional tillage.  

Fusarium ear and stalk rot were evaluated as the economically most important diseases 

in maize in Europe with particular importance in Italy, Spain, Germany, Netherlands and 

Poland [20]. While Fusarium severity remains unchanged in France, Denmark and Hungary, 

disease severity and significance of Fusarium infections increased in Germany and Southwest 

Poland [20]. However, ear rot infection in Spain decreased in recent years due to the fact that 

almost 30-35% acreage (115.246 ha in 2018) is cultivated with Bt-maize [21–23]. This prevents 

plants from feeding of the European corn borer wich is often associated with secondary 
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infection with Fusarium spp. The increase of Fusarium infection in Germany could result from 

an increase of silage maize production of about 70% (2000 to 2014) in the last two decades due 

to the renewable energy law (EEG) [24,25]. This lead to shorter maize and wheat-dominated 

rotation systems, which enhance the risk of infection with Fusarium spp. in wheat and maize 

as well as infestation with the European corn borer [21,26,27].  

In addition to agronomical practices, weather conditions, particularly precipitation and 

temperature have a major impact on disease severity and the incidence of Fusarium spp. High 

incidence of F. graminearum and F. culmorum was observed in 2016 and 2017 due to moderate 

average temperatures (18.8°C) and high precipitation in July (110 mm). In contrast, 

F. verticillioides was the prevailing species in 2018 and 2019 (unpublished data), most likely 

due to higher mean temperatures (20.6°C) and dry conditions (40 mm in July). We assume 

that increasing temperatures and dry periods in summer can shift the prevalence of Fusarium 

species and increase the risk of contamination with fumonisin-producing species such as 

F. verticillioides and F. temperatum [28]. In addition, feeding by the European corn borer 

(Ostrinia nubilalis) and the Western corn rootworm (Diabrotica virgifera) in Germany will likely 

further enhance disease incidence and mycotoxin contamination of ears and stalks as well as 

root rots in maize [26,29,30]. 

The occurrence and significance of pests and diseases are affected by the shift of warming and 

other climatic conditions resulting in (i) range expansion or retreat, (ii) coincidence of 

pathogen life cycle stages with host plant stages and (iii) changes in population dynamics such 

as over-wintering or the number of generations per year [3,31–34]. The two most important 

factors which affect the life cycle of all microorganisms including ear rot pathogens are water 

availability and temperature [35,36]. Both factors influence the infection and colonization in 

different ways, which could lead to a shift in the comparative abundance of the species [31] 

and appearance of new species with higher levels of aggressiveness and altered mycotoxin 

profiles [37].  

Therefore, knowledge about the impact of environmental factors on the ability of fungi 

to grow, survive and interact with plants is important in order to better understand the 

variation in the population dynamic of Fusarium species and their ability to produce 

mycotoxins [33]. Ear rot of maize can be caused by several different species with different 

environmental optima. Considering this, individual species can be easily replaced by others, 
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which are better adapted to the certain environment [3,4]. Thereby, no change of the overall 

disease symptoms are observed, however, it results in a dramatic shift towards more harmful 

mycotoxins in maize grain [38–40]. Europe is characterized by a wide range of diverse climatic 

conditions leading to differences in the occurrence of Fusarium species associated with 

Fusarium head blight (FBH) of cereals [41,42]. During the last decades, F. culmorum was the 

dominant Fusarium species in FHB complex in cooler temperate climates like Finland, UK, 

Germany and Poland. However, F. graminearum occurred more often in Central and Southern 

Europe, especially Northern Italy, Spain, Portugal and Southern France [41,43,44]. This 

situation changed significantly in the early 2000s, when F. graminearum became the most 

abundant species on wheat and oats in the Netherlands and UK [37,45] as well as Poland 

[28,46] due to slightly increasing temperatures in Northern Europe [42,47]. Such overall shift 

in the Fusarium species complex has not yet been observed in maize from Europe, however, 

the present study indicates a high year to year variability of the individual species and a recent 

shift towards F. verticillioides and F. temperatum. 

The present results emphasize the importance of further studies on the impact of changing 

climatic conditions and their interplay with cultural practices on the development of Fusarium 

populations and the mycotoxin contamination of maize. This becomes even more important 

as the maize acreage is further expanded, often in combination with shorter crop rotations 

with other small grain cereals. The key factor to reach this goal is the implementation of 

integrated pest management (IPM) schemes, including the choice of varieties and the 

development of more specific pesticides treatments [2,19]. Another strategy to lower the risk 

of Fusarium infection is to prevent feeding damage by the European corn borer through the 

cultivation of Bt maize, use of chemical insecticides or biological control with Trichogramma 

spp. [48–53]. In addition, the exposure of maize cobs to humid conditions in autumn can be 

reduced by early planting and harvesting or the use of early maturing varieties [54,55]. 

Balanced fertilizing (200 kg/ha) resulted in lower mycotoxin contamination in an Italian study 

[56]. However, the most important measure remains reducing the amount of initial inoculum 

by wide crop rotations with non-host crops and deep ploughing of infected residues 

[12,54,57]. 
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II Reliable taxonomic assignments are fundamental for differentiatiing Fusarium species 

on the species level to better estimate virulence and toxicological risks of individual 

species.  

 

Results obtained in this study indicate a higher toxigenic risk by an infection with 

F. temperatum compared to F. subglutinans based on the production of beauvericin, fumonisin, 

fusaric acid and fusaproliferin by the former species. Considering this, infection with 

F. temperatum is particularly important for growers, processing industries and consumers due 

to its prevalence in Germany, its higher aggressiveness on maize cobs and the ability to cause 

FHB in wheat. The correct identification of the Fusarium species contaminating maize in 

different areas in Germany is important, not only to be able to study the interaction between 

Fusarium pathogens and maize, but also to evaluate the toxicological risks for maize 

consumption by humans and animals. The taxonomic characterization and identification of 

Fusarium species by microscopic or species-specific PCR is expensive, time-consuming and 

requires specific expertise as the number of described species increases continuously. 

Therefore, thorough taxonomic identification and assignment of the major Fusarium 

pathogens on maize was conducted in the present study. This assignment was based on the 

analysis of melting curves of PCR amplicons to develop modern, easy and fast tools for correct 

identification of toxigenic Fusarium species in relation to different environmental conditions 

in Europe.  

The Fusarium taxonomy concept has been changed several times by taxonomists during the 

past 100 years with more than 1,000 species being described [58]. In general, three different 

species concepts have been employed: the morphological, biological and phylogenetic 

concept [59]. The morphological species concept is based on primary characters like spore size 

and shape of micro- and macroconidia as well as secondary characters like pigmentation, 

presence or absence of sporodochia [60]. The biological concept requires that species are 

sexually crossing, and progenies are viable and fertile. The phylogenetic species concept 

indicates that species with same DNA sequences belong to the same monophyletic group [59]. 

The most common errors resulting from morphological species description is to group isolates 

that should be separated into different species by their phylogenetic characters and mycotoxin 
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production. However, the most common error with classification due to phylogenetic criteria 

is splitting species into more groups than biologically meaningful [58]. 

F. subglutinans belongs to the Gibberella fujikuroi species complex (GFSC) and is descripted 

mainly on morphological and biological species recognition by diagnostic sexual crosses and 

DNA sequence polymorphism. Within this species complex, F. subglutinans is included in the 

American clade, according to phylogeographic studies by O´Donnel et al. (1998) [61]. Later in 

2002, Steenkamp et al. [62] mentioned for the first time a cryptic speciation within the species 

by showing distinct PCR-RFLP patterns of six nuclear regions of F. subglutinans isolates from 

South Africa, North America and Mexico. The phylogenetic separation was further 

strengthened by the production of beauvericin (BEA), exclusively in group 1 (later named 

F. temperatum) present in European isolates [63]. In 2011, those cryptic subgroups were 

classified as individual species, establishing F. temperatum as a new species, formerly known 

as group 1, and separating it from F. subglutinans sensu stricto (F. subglutinans), formerly 

known as group 2, due to different phylogenetic positions and distinct mycotoxin profiles.  

Although, BEA is a well-known mycotoxin causing apoptosis in cell lines, no risk assessment 

strategies or limits for daily intake are established for food and animal feed worldwide. BEA 

belongs to the cyclic hexapeptide inducing reactive oxygen species (ROS). Additionally, it is 

responsible for cytotoxicity to mammalian cells causing apoptosis [64]. BEA has been 

frequently reported almost worldwide, contaminating especially wheat, rye, oat, barley and 

rice [65,66]. Contamination with BEA is a serious problem in grains and wheat-based products 

like pasta, infant food, breakfast cereals, and biscuits, especially in Southern Europe [67–70]. 

However, BEA contamination is less frequently reported in grains from cooler climates, 

higher contamination levels are usually observed in Italy and Morocco [67]. Although BEA is 

regularly found in these products, especially in cereal-based food and feed [71–74], the EFSA 

Panel (CONTAM Panel, 2014) concluded that acute exposure to BEA does not indicate 

concern for human health [75]. Therefore, one approach to prevent mycotoxin contamination 

in grain is to screen fungal species for their abilities to produce beauvericin.  

While F. subglutinans is mostly associated with ear rot in maize, results of our study 

indicate that F. temperatum and F. subglutinans were both able to infect winter wheat and cause 

symptoms of Fusarium head blight at anthesis. Fusarium infected maize crop residues are 

considered as the primary inoculum source for the most important Fusarium species causing 



General discussion   

115 

 

different diseases in small grain cereals in Europe [76,77]. They survive in stalk and cob 

residues of maize and can cause several diseases like seedling and root rot at the seedling 

stage as well as Fusarium head blight during anthesis [78]. However, F. subglutinans sp. which 

is not commonly found as an FHB causing species [79–81], is responsible for moniliformin and 

beauvericin contamination in small grain cereals from central to north-east European 

countries [80,82]. Because of further expansion of maize production in short crop rotations 

with wheat and other small grain cereals, we expect that FHB in wheat following infection 

with F. temperatum will increase and lead to increasing BEA contamination in feed and food 

products.  

 

III Understanding host-pathogen interactions and resistance modes is essential for 

breeding maize genotypes improved in resistance to Fusarium infection and mycotoxin 

contamination.  

 

Several strategie are suggested to reduce ear rot infection and mycotoxin contaminations in 

food and feed. Among other agronomical control mechanisms, the use of resistant cultivars is 

one of the most important control strategies to prevent Fusarium ear rot infection on maize. 

Ear rot resistance and host-pathogen interaction are influenced by several contrasting factors. 

The findings of our study confirm the results of other authors that genotype resistance is 

affected by environmental conditions, the mode of fungal entry, the susceptibility level of the 

genotype and the aggressiveness of the isolate. 

There are three main modes of fungal entry by which Fusarium may enter the ear; (i) 

by silk channel, (ii) after wounding of insects and/or birds or (iii) through systemic growth 

from the stalk into the ear [78,83–85]. The first two infection pathways, via the silk channel 

and via infection through wounds, seem to be the most important pathways for infection with 

most Fusarium species [86,87]. Results of the present study indicate a moderate correlation 

(r=0.66) between both inoculation methods with highest disease severity of F. temperatum and 

F. verticillioides after silk channel inoculation and highest severity for F. graminearum after 

kernel stab inoculation. This indicates, that genotype resistance is dependent on the 

inoculation method simulating different infection modes, in particular, silk channel resistance 

prevents the penetration along the silk channel and kernel resistance inhibits the spread from 
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kernel to kernel.In addition, Fusarium species appear to differ in their preferred mode of 

penetration in to the cob [88–90]. The third infection pathway, systematic growth from the 

stalk, often remains unnoticed, however, systemic transmission from infected stalks and seeds 

has been reported for F. verticillioides and F. subglutinans in maize [91–94]. Therefore, breeding 

for ear rot resistance should not only focus on resistance mechanisms on the cob itself, but 

also consider stalk resistance to prevent systemic infection of the cob from the stalk. Which 

infection pathway is more important depends on the prevalence of Fusarium spp. and the 

presence of insect pests in the particular location [7]. The inoculation technique should 

therefore be selected based on the major mode of fungal entry in a given geographical area.  

Inoculation with F. temperatum in both years of investigation resulted in stronger ear rot 

infection than with F. graminearum and F. verticillioides. Respective isolates were previously 

selected in the greenhouse based on similar disease severity and high mycotoxin production. 

For artificial inoculation, concentration of inoculum was adjusted considering spore 

production and aggressiveness of isolates to obtain isolates with similar pathogenicity. The 

high levels of disease severity due to F. temperatum in the field is most likely resulted from 

weather conditions favoring the infection with this species. The lower visual infection rate of 

F. verticillioides may be caused by a symptomless endophytic infection and may not reflect the 

real colonization of the cob [26,92,95]. This implies that disease assessment of F. verticillioides 

infection should not only rely on symptom expression but should also assess endophytic 

colonization by quantitative molecular methods. In addition, there is no clear relation between 

visible infection and mycotoxin concentration for all Fusarium species, which makes breeding 

for low mycotoxin levels more difficult. Several studies indicate a high correlation of GER 

resistance and toxin concentration, which suggests that simultaneous selection for both traits 

may be possible [96–98]. In contrast, low or moderate correlation was found between 

fumonisin production and visible infection with F. verticillioides in maize, due to symptomless 

and endophytic colonization [99,100]. Regarding these findings, phenotypic selection for 

resistance to F. verticillioides should be conducted directly by mycotoxin analysis even though 

toxin analysis is more time consuming and cost intensive.  

Results of our study also indicate a medium to strong relationship of genotype resistance to 

F. graminearum, F. temperatum and F. verticillioides. This supports the idea of multiple 

resistance for several species, however, it is not clear whether individual QTL are effective to 
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all species, or if they secure the broad sense resistance [7,88]. Many breeders inoculate with 

either a single isolate of F. graminearum or F. verticillioides to evaluate more precisely the 

resistance in a single epidemic situation [7]. Considering the high correlation between 

resistance found   Fusarium species in our study, the assessment of genotype resistance could 

also be done by inoculation with a mixture of all three Fusarium species. Resistance level of 

the genotype reflects the mean susceptibility to different species and lower additionally the 

effect of the environment to individual species. Unfortunately, mixed infection leads to 

interactions between the species effecting fungal development and mycotoxin accumulation 

[98,101,102]. In general, Gaikpa et al. (2019) [103] point out that phenotyping maize for ear rot 

resistances is influenced by numerous factors. Firstly, field trials have to be conducted in 

several environments and years due to the large genotype x environment interactions of the 

disease resistances. High variation in flowering time among genotypes makes it very time 

demanding to inoculate at the right time point. Secondly, relationships among different 

species occurring on a particular field may compromise the accuracy of phenotypic results. 

Thirdly, it is difficult to identify and score accurately the particular symptom on the ear [103]. 

Therefore, the use of modern and fast-track phenotyping technologies like thermal imaging 

and hyperspectral reflectance by drones or structural and chlorophyll vegetation indices 

could be a future perspective for field evaluation [104,105]. Breeding for ear rot resistance is 

difficult because resistance in maize is only quantitatively inherited, based on several genes 

and many different Fusarium species can infect the maize plant at highly different 

environmentally conditions [7,28]. So far, only a few putative genes have been discovered 

across environments which are directly linked to ear rot resistance in maize [106–108]. It is 

certain that Fusarium spp. have virulence factors, but it is not known whether the different 

Fusarium spp. possess common and/or different virulence factors [7]. For example, 

F. graminearum possesses different pathogenesis related (PR) genes but these are not 

necessarily virulence genes and they cannot be used in breeding programs [109]. Phenotypic 

analyses from conventional breeding methods contributing immensely to the understanding 

of ER resistances in maize but selection of resistant genotypes, are slow, time-consuming and 

labor intensive [103]. To improve precise assessments of ear rot resistances in maize, data from 

new breeding methods such as genetic mapping, genomic profiling and bioinformatic should 
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be transferred into a simpler but robust strategy to improve maize and reduce mycotoxin 

contamination. 

 

 

IV Besides changing environmental conditions,  increasing global trade and traffic are 

likely to cause more problems in the future through introduction of new diseases like 

Trichoderma ear rot.  

 

Although Trichoderma species have been described as opportunistic, basically 

avirulent plant symbionts in soil [110], our findings support previous observations from the 

US, where Trichoderma spp. has been reported to cause ear rot symptoms in maize [111–113]. 

The incidence of pathogens and pests has noticeably increased in recent years [114]. 

With the continuously high or even increasing global traffic of humans and commodities, 

frequency of introduction events of new hosts and pathogens and the spread of diseases and 

vectors has increased [115]. Anderson et al. (2004) [115] described emerging infectious 

diseases which either (i) increased in incidence, geographical or host range; (ii) changed in 

pathogenesis; (iii) or have newly evolved, discovered or newly recognized. These changes are 

driven by anthropogenic introduction of pathogens and changing climate conditions [116, 

132]. Espacially plant diseases, are affected by global trade, land use and severe weather 

events [117]. Climate change is most likely a strong driver of evolutionary changes in plant 

and pathogen population by interfering with the host-pathogen interactions, gene expression 

and population dynamics [118]. Changing weather conditions can lead to disease through 

altering the distribution of pest and diseases or increasing water or temperature stresses on 

plants and a greater frequency of unusual weather events [119]. Harvell et al. (2002) [118] 

suggested that milder winters and higher overall temperatures will increase winter survival 

of plant pathogens, accelerate life cycles as well as increase sporulation and aggressiveness of 

foliar fungi. Another important driver for disease emergence is simplification of agricultural 

ecosystems in which biological diversity has been reduced due to socioeconomic development 

and technical advances. Intensification of agricultural practices such as irrigation leads to the 

increases of the plant pathogen populations and has replaced diverse agroecosystems with 

increased vulnerability to pest attacks [120,121]. In addition,  genetically uniform host plants, 
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often lacking in natural defense to their wild reletives, promoting population growth and 

rapid establishment of new pests and diseases [132]. 

Hence, several factors could have caused Trichoderma species to emerge in Europe inducing 

Trichoderma ear rot in maize. Previously, Trichoderma was only described as an ear rot 

pathogen with minor importance in the United States occurring predominantly in the “corn 

belt” regions (Kentucky, Ohio and Iowa), which are characterized by intensive maize 

production, largely planted in short corn-soybean rotations [111,112,122–124]. The present 

study reports the occurrence of Trichoderma ear rot for the first time in Southern Germany in 

2018 and 2019. However, Trichoderma ear rot was observed to a lower extend already since 

several years in Germany, France, Italy and Poland (personal communication, Silvia Mueller 

04th October 2018). Noticeably, its incidence increased in recent years which were associated 

with higher temperatures and longer drought periods.  

One factor potentially driving the emergence of Trichoderma ear rot in Europe could be 

antropogenic movement by international trade of plant products especially infected maize 

seeds. For example, it has been estimated that at least 2,400 different plant pathogens were 

contained in the seeds of 380 plant genera [125], and that up to one third of the plant 

pathogenic viruses are transmissible through seeds [126,127]. Several maize leaf pathogens 

such as Bipolaris zeicola and Colletotrichum graminicola have been confirmed also to be 

seedborne [128,129]. This mechanism of transmission could also explain the arrival and 

distribution of the maize leaf pathogen Kabatiella zeae to areas like New Zealand [130]. 

Therefore, seedborne dispersion through commercial seed production in the United States 

could have contributed to the dispersal of Trichoderma ear rot. In addition, environmental 

conditions may have been favorable to cause ear rot diseases in maize in Central to Southern 

regions of Europe. Therefore, each step of the infection cycle such as inoculum sources and 

survival, infection, latency period, production and release of new spores needs specific 

environmental requirements. As the Trichoderma ear rot incidence in Germany appears to be 

higher in years with temperatures above average and precipitation below average, years with 

higher temperature und lower humidity may favor infection and spread of the disease. 

However, the impact of weather conditions is difficult to determine because it is not yet 

known whether higher temperature and drought are favorable weather conditions for 

Trichoderma infection or whether drought and temperature stress enhance the susceptibility 
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of maize plants. Future research is needed to examine the complete life cycle of Trichoderma 

ear rot and the impact of temperature and humidity on inoculum survival, infection pathway 

and time point of infection. 

Although T. harzianum and T. afroharzianum are known as plant symbionts or 

antagonists of fungal phytopathogens, we discovered pathogenic strains of both species being 

able to infect maize cobs. This led to the question whether beneficial Trichoderma strains could 

mutate and become aggressive plant pathogens or whether aggressive strains, presumably 

from the US, were introduced. Five evolutionary forces were described by McDonald and 

Linde (2002) [131] which can change the pathogenicity of microorganisms, (i) mutation, (ii) 

population size and genetic drift, (iii) gene and genotype flow, (iv) reproduction and mating 

system as well as (v) selection imposed by resistance genes. It remains unclear, which of those 

factors may have led to the observed changes in pathogenicity of T. harzianum and 

T. afroharzianum  and this question requires further research. A key aspect is,  whether 

pathogenic species have been introduced from the US or whether aggressive strains in Europe 

developed independently. This requires an in-depth population genetic analysis based on a 

sufficiently large number of isolates from different regions. In such a study, pathogenic 

Trichoderma isolates from US should be compared with strains from Europe in order to explore 

phylogenetic differences between populationsfrom different geographic origin. Such studies 

on this relatively novel pathogen on maize should also expand on potential impact of 

Trichoderma ear rot on food and feed quality associated with the production of secondary 

metabolities with antifungal activity like ergokonin A, trichodermin, pyrone, 

harzianopyridone, viridin and β-1,6-Glucanases. Finally, yield loss analyses under field 

conditions are required to assess the economic significance of Trichoderma ear rot disease in 

European maize production. 
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Summary 

Ear rots, caused by fungi, are among the most important maize diseases worldwide causing 

severe yield losses and a reduction of grain quality. Several toxigenic Fusarium species are 

known to cause yield losses and reduce grain quality, thus endangering the safety of both 

animal feed and human food products.  

For this purpose, we investigated the occurrence and significance of Fusarium 

and Trichoderma ear rot on maize in Germany. Within this framework, we evaluated the 

impact of environmental conditions and agronomic practices on the prevalence of Fusarium 

species associated with ear and stalk rot. Therefore, we conducted a monitoring of maize ears 

and stalks in Germany infected with Fusarium to determine the range of Fusarium species 

present in the field and to assess the impact of tillage, crop rotation and weather conditions. 

From 2016 to 2018, a total of 387 infected ears and 190 stalk segments were collected from 58 

locations in Germany. For each sampling location, site-specific agronomic data on tillage and 

previous crops as well as meteorological data on precipitation, air temperature and relative 

humidity during the vegetation period were recorded. The most frequent Fusarium species 

detected in maize ears were Fusarium graminearum, F. verticillioides and F. temperatum, while F. 

graminearum, F. equiseti, F. culmorum and F. temperatum were the species prevailing on maize 

stalks. Differences in the local species composition were found to be primarily associated with 

weather variations between the years and the microclimate at the different locations. The 

results indicate that mean temperature and precipitation in July, during flowering, has the 

strongest impact on the local range of Fusarium species on ears, whereas the incidence of 

Fusarium species on stalks is mostly affected by weather conditions during September. 

Ploughing significantly reduced the infection with F. graminearum and F. temperatum, while 

crop rotation exerted only minor effects.  

Another aim of the present study was to determine the occurrence, mycotoxin 

production and pathogenicity of Fusarium temperatum from maize in Germany. For this 

purpose, a Germany-wide monitoring of maize ears and stalks was carried out in 2017 and 

2018. Within this monitoring, 79 isolates of F. temperatum and seven isolates of F. subglutinans 

were obtained. Inoculation of maize ears revealed the highest aggressiveness of F. temperatum, 

followed by F. graminearum, and F. verticillioides and F. subglutinans. On maize stalks, 

F. graminearum was the most aggressive species while F. temperatum and F. subglutinans caused 

only small lesions. The temperature optima for infection of maize ears with F. temperatum and 

F. subglutinans were 24 °C and 21 °C, respectively. Artificially induced infection of wheat ears 

with all strains of F. temperatum and F. subglutinans caused head blight symptoms, thus 

indicating wheat as an alternative host. In rice cultures, 60 strains of F. temperatum produced 

beauvericin, moniliformin, fusaric acid, fusaproliferin, and one strain also produced 

fumonisins B1 and B2. The results demonstrate the increasing importance of F. temperatum in 

German maize cultivation areas. 

Thirdly, we investigated the aggressiveness of several Fusarium species in maize 

in relation to inoculation method, maize variety and location. Therefore, in 2018 and 2019, 

maize hybrids were tested in four locations (Bernburg, Rustenhart, Kuenzing and Liesborn) 

in Germany and France. In each location, twenty hybrids were inoculated with 

F. graminearum, F. verticillioides and F. temperatum using two inoculation methods, injection 
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into the silk channel and kernel wounding by kernel stab inoculation. Disease severity was 

assessed visually as the percentage of plant tissue colonized with mycelium at harvest time 

according to the EPPO guidelines. Our results showed that F. temperatum was the most 

aggressive Fusarium species in both years followed by F. graminearum and F. verticillioides, 

however, the prevalence differed between locations. Significant differences in genotypic 

resistance depending on the inoculation method and Fusarium species were found in all 

locations. Silk channel inoculation resulted in higher disease severity of F. temperatum and 

F. verticillioides while disease severity following kernel stab inoculation was higher with 

F. graminearum. Correlation between Fusarium species concerning disease severity induced on 

different maize cultivars was medium to high, however, only low to medium correlation was 

observed between inoculation methods within the Fusarium species. 

In 2018,  massive infections with Trichoderma on maize ears were recorded for the first 

time in a field in Southern Germany. Within this study, first investigations were conducted to 

identify and verify Trichoderma as a new pathogen causing ear rot disease on maize in Europe. 

For this purpose, Trichoderma-infected cobs from four locations in Germany and France were 

sampled, cultured and isolates microscopically examined as well as analyzed by sequencing 

the gene for translation elongation factor tef-1α. Furthermore, the pathogenicity of Trichoderma 

isolates and the impact of infection on dry matter content of maize cobs were tested after 

artificial inoculation at flowering stages in the greenhouse. In 2018 and 2019, a total of 13 T. 

harzianum isolates from maize cobs and maize stalks were isolated and tested, compared to 

several reference isolates. Four isolates proved to be highly aggressive, two biocontrol isolates, 

Trichodex (T39) and strain T12, induced slight infection and eleven isolates were non-

pathogenic. After sequencing of the pathogeneic Trichoderma isolates based on the translation 

elongation factor 1α (tef-1α), the four highly aggressive isolates were assigned to 

T. afroharzianum, while the commercial biocontrol isolates Trichodex (T39) and T12, as well as 

the other non-pathogenic strains belonged to T. harzianum, T. atroviride or T. tomentosum. This, 

to our knowledge, is the first report on Trichoderma sp. as a pathogen causing ear rot disease 

in maize in Europe with the potential to incite significant yield losses. We therefore propose 

to name this disease as ‚Trichoderma ear rot on maize‘.  
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