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1 Introduction 

 

1.1 Allergic contact dermatitis 

Allergic contact dermatitis (ACD) is an inflammatory skin disorder caused by a type IV delayed 

hypersensitivity reaction (Coombs and Gell classification) directed against certain molecules, so 

called contact allergens, at the site of skin exposure. Clinically, ACD typically manifests in the 

form of eczematous lesions. An acute form and a chronic form can be differentiated. The acute 

form features erythema, itching and in more severe cases blisters and pain, whereas chronic 

eczema shows lichenification (thickening of skin folds), hyperkeratosis and rhagades. The 

chronic form is the consequence of continuous and repetitive exposure to the triggering contact 

allergen (Brasch et al. 2014). The hands are the most commonly affected body part, followed by 

the face (Uter et al. 2009; Reduta et al. 2013). Diagnosis of ACD is based on the clinical presen-

tation, the medical history and epicutaneous testing to identify the allergen. ACD must be dis-

tinguished from other causes of eczema such as atopic dermatitis and irritant contact dermatitis. 

ACD has a tremendous societal relevance, due to its high prevalence and its enormous role in 

occupational health. The German health survey from 1998 estimates the lifetime prevalence of 

actual diagnosed ACD at 15% and the 1-year prevalence at 7% (Brasch et al. 2014). This trans-

lates to almost 6 million patients a year diagnosed with ACD in Germany. The prevalence of 

sensitization to at least one allergen in western European countries is even higher at about 20% 

(Thyssen et al. 2007). In Germany, occupational skin diseases are by far the most frequently 

reported occupational disease with a proportion of 30% of all reported occupational diseases 

(Bundesanstalt für Arbeitsschutz und Arbeitsmedizin 2016). A study conducted in Bavaria 

found ACD to be the root cause of 57.5% of occupational skin disease cases (Dickel et al. 2001).  

 

1.2 Pathophysiology of allergic contact dermatitis  

ACD is generally regarded to be driven mainly by the adaptive immune system. However, this 

exclusive and simplified perspective does not hold up to closer scrutiny because innate and 

adaptive immune mechanisms contribute to the pathophysiology of ACD in a closely inter-

twined manner. Based on different underlying immune events, two phases are usually distin-

guished and discussed separately. The sensitization phase follows the first encounter of the im-

mune system with the contact allergen. The effector phase refers to the inflammatory response 

initiated by re-exposure to the allergen. The latter phase is also called elicitation or challenge 
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phase. While the sensitization phase is clinically largely inapparent, the effector reaction elicits a 

dermatitis. The experimental model of ACD is commonly referred to as contact hypersensitivity 

(CHS) model, as is the case in this thesis. 

 

1.2.1 Sensitization phase 

1.2.1.1 Penetration of the skin barrier 

The first step in sensitization is the penetration of the skin barrier by the contact allergen. The 

skin barrier is made up of several defense lines. The main defense against chemicals is the stratum 

corneum (Madison 2003), in which the intercellular space is filled with lipids that serve as a hy-

drophobic seal (Proksch et al. 2008). Tight junctions in the stratum granulosum are another im-

portant defense mechanism, restricting the passage of larger molecules through the tight inter-

connection of cells (Furuse et al. 2002; Baroni et al. 2012; Bäsler and Brandner 2017). Contact 

allergens overcome these defenses through lipophilicity and small size (Bos and Meinardi 2000). 

The vast majority of sensitizing agents have a molecular weight of less than 500 Dalton (<500 

Dalton rule) (Bos and Meinardi 2000). In fact, the sensitization potential of chemicals can be 

predicted based upon their hydrophobicity and reactivity (Chipinda et al. 2011). 

 

1.2.1.2 The haptenic nature of contact allergens  

As a consequence of their small size, contact allergens are haptens by nature, meaning they are 

too small (<500 Dalton) to be directly recognized as antigens. To become immunogenic, they 

must first bind to proteins or peptides, a process termed haptenation (Figure 1, step 1) (Land-

steiner and Jacobs 1936). Haptens are generally electrophilic and form hapten-protein conju-

gates through covalent binding to nucleophilic residues through electrophilic attack (Divkovic 

et al. 2005; Chipinda et al. 2011). The resulting hapten-protein conjugates act as foreign antigens 

and consecutively elicit an adaptive immune response (Figure 1, step 2). It has been firmly well 

established that haptens are part of the antigenic determinant recognized by the T-cell receptor 

(TCR) (Griem et al. 1996; Weltzien et al. 1996). The exact mechanisms of how dendritic cells 

(DCs) take up, process and eventually present hapten-protein conjugates are not entirely clear. 
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Figure 1: Early events in the sensitization phase 
Haptens react with skin resident proteins to form hapten-protein conjugates (1). These hapten-protein 
conjugates are recognized as foreign antigens by dendritic cells (DCs), taken up, processed and loaded 
onto major histocompatibility complex (MHC) molecules (2). At the same time, haptens induce the 
formation of danger-associated molecular patterns (DAMPs) (3). These DAMPs activate both keratino-
cytes (KCs) and DCs through pattern recognition receptors (PPRs) (4). DC activation initiates emigra-
tion to the draining lymph node. Activated KCs contribute to DC activation through release of proin-
flammatory cytokines, mainly interleukin (IL)-1β and tumor necrosis factor (TNF) α (5). Mast cells (MCs) 
are directly activated by haptens and are another source of IL-1β and TNFα. (6) Additionally, MCs 
release histamine (7), which induces dilation of cutaneous blood vessel and promotes neutrophil recruit-
ment. In the lymph node (8), DCs present MHC-bound antigens to naïve T-cells (9). The necessary 
costimulatory signal is provided by cluster of differentiation (CD) 80/CD86 and CD28 interaction. The 
polarization of the T-cell response is determined by the cytokine cocktail released by DCs during this 
DC/T-cell interaction.  
 

1.2.1.3 Dendritic cells require activation 

Generally, the loading of a suitable antigen onto major histocompatibility complex (MHC) mol-

ecules on DCs alone does not suffice to elicit an adaptive response (Martin et al. 2008). DCs 

must receive an additional activation stimulus (Figure 1, step 4). Activation initiates both a mat-

uration process, required to attain full T-cell priming capability, and the migration process to 

the draining lymph node (Alvarez et al. 2008; Dalod et al. 2014).  
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For a long time, it has been unclear which skin-residing DC subset mediates sensitization. Re-

cent studies suggest that each of the skin-residing DC subsets (Langerhans cells, cluster of dif-

ferentiation (CD) 103+ dermal DCs and CD103- dermal DCs) has the potential to prime T-cells 

in contact hypersensitivity and that the degree of involvement of the different subsets is highly 

contextual (Honda and Kabashima 2016; Honda et al. 2013). 

 

1.2.1.4 Hapten-induced innate inflammation drives dendritic cell activation 

Contact allergens activate DCs through pattern recognition receptors (PRRs), such as the P2X7 

purinergic receptor, receptors of the nucleotide-binding oligomerization domain-like receptor 

family and the Toll-like receptor (TLR) family among others (Martin et al. 2008; Esser et al. 

2012; Weber et al. 2010). With the exception of nickel and cobalt, which are direct ligands for 

human TLR4 (Schmidt et al. 2010; Raghavan et al. 2012), contact allergens generally activate 

PPRs indirectly through danger-associated molecular patterns (DAMPs). DAMPs are endoge-

nous PPR ligands associated with tissue damage, such as adenosine triphosphate (ATP), deox-

yribonucleic acid (DNA), high mobility group box 1, formed in the skin upon exposure to the 

contact allergen (Figure 1, step 3) (Schaefer 2014).  

Engagement of PPRs activates DCs both directly and  indirectly, through the activation of other 

skin resident innate immune cells, which release proinflammatory cytokines, that in turn con-

tribute to DC activation (Figure 1, step 5) (Honda et al. 2013). This ability of contact allergens 

to induce innate inflammation and create a proinflammatory milieu is described with the term 

“irritancy” and refers to a critical link between innate and adaptive immunity. The strength of 

the initial irritancy and therefore the initial inflammation facilitates DC activation and thus the 

entire adaptive immune response (Bonneville et al. 2007; Grabbe et al. 1996; Lass et al. 2010). 

The mechanisms of how contact allergens generate DAMPs are characteristic for each contact 

allergen. For example, oxazolone (OXA) causes ATP release in the exposed skin, thus activating 

DCs through the P2X7 receptor and downstream inflammasome activation (Weber et al. 2010). 

Inflammasome activation is a common denominator of PRR signaling and crucial for the in-

duction of CHS (Watanabe et al. 2008; Sutterwala et al. 2006). Inflammasome assembly facili-

tates the release of interleukin (IL)-18 and IL-1β. These cytokines are thought to be the main 

inflammatory cytokines driving DC activation (Antonopoulos et al. 2001; Antonopoulos et al. 

2008; Shornick et al. 1996). Tumor necrosis factor (TNF) α is another crucial cytokine secreted 

by keratinocytes (Cumberbatch et al. 1997; Cumberbatch et al. 1999; Cumberbatch and Kimber 

1995). Mast cells degranulate upon contact allergen exposure releasing histamine in the process, 

causing dilatation and increased permeability of skin vessels (Figure 1, step 6) (Dudeck et al. 
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2011). Neutrophil recruitment to the exposed skin, another requirement for successful sensiti-

zation, also depends on mast cells (Figure 1, step 7) (Weber et al. 2015). 

 

1.2.1.5 Activated dendritic cells prime naïve T-cells in the draining lymph node 

DC activation initiates both a maturation process and at the same time the emigration from the 

skin to the draining lymph node (Figure 1, step 8) (Alvarez et al. 2008). The maturation process 

entails the upregulation of co-stimulatory surface molecules required for full T-cell priming ca-

pability, such as CD80, CD86 and MHC II (Dalod et al. 2014). The mechanisms of DC emigra-

tion from the skin to the draining lymph node are a complex topic nicely reviewed by Alvarez 

et al. (Alvarez et al. 2008).  

Upon arrival in the lymph node, DCs encounter naïve T-cells in the paracortical area of the 

lymph node (Figure 1, step 9). The priming of these naïve T-cells requires three signals (Peiser 

2013). The first signal is provided by the interaction between TCR and the antigen loaded MHC 

molecule. The second signal is provided by the interaction of the co-stimulatory molecules 

CD86 and CD80 with CD28 (Kondo et al. 1996; Reiser and Schneeberger 1996). The third 

signal is provided by the cytokines released by DCs during T-cell/DC interaction. The compo-

sition of the cytokine cocktail determines the T-cell polarization (Walsh and Mills 2013). While 

the factors determining the cytokine cocktail are largely unclear, there is evidence that the cyto-

kine environment in the skin is relevant here (Walsh and Mills 2013). 

 

1.2.2 Effector phase 

1.2.2.1 Innate activation precedes and shapes the antigen specific T-cell response 

The predominant concept is that the effector phase is initiated by an antigen-independent acti-

vation of the innate branch of the immune system triggered through the “irritancy” of the re-

spective contact allergen (Figure 2) (Honda et al. 2013). This initial innate inflammation pro-

motes the subsequent influx of antigen specific T-cells which as the main effector cells convey 

the bulk of the skin inflammation (Honda et al. 2013).  

Many of the mechanisms behind the initial innate inflammation in the sensitization phase also 

apply during the effector phase. DAMP formation and subsequent activation of innate immune 

cells through PPR engagement is again an important step (Figure 2, step 1) (Honda et al. 2013). 

For example, ATP again stimulates keratinocytes to secrete TNFα and IL-1β through the acti-
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vation of P2X7 (Watanabe et al. 2007; Sutterwala et al. 2006). Mast cells again degranulate, re-

leasing histamine in the process, which induces dilatation and increased permeability of skin 

vessel and thus promotes neutrophil recruitment (Dudeck et al. 2011). Additionally, mast cells 

release TNFα and the neutrophil attracting chemokine (C-X-C motif) ligand 2 (CXCL2) (Bieder-

mann et al. 2000). TNFα and IL-1β stimulate keratinocytes to further release an array of neu-

trophil  and T-cell attracting chemokines (Sebastiani et al. 2002; Homey et al. 2002; Tohyama et 

al. 2001). Furthermore, TNFα and IL-1β stimulate endothelial cells to upregulate surface mole-

cules required for leukocyte extravasation (Figure 2, step 3) (Kish et al. 2011; McHale et al. 1999; 

Harari et al. 1999). The chemokines work together with the endothelial activation to first recruit 

neutrophils and afterwards T-cells (Figure 2, step 4). Interestingly, the initial neutrophil recruit-

ment was found to control the subsequent T-cell recruitment (Figure 2, step 5) (Engeman et al. 

2004; Weber et al. 2015).   

 

 

Figure 2: Innate and adaptive inflammation during the effector phase 
Analogous to the sensitization phase, the effector phase starts off with activation of skin resident innate 
immune cells through danger-associated molecular patterns (DAMPs) and direct hapten effects (1). 
Keratinocytes (KCs) and mast cells (MCs) release a plethora of proinflammatory cytokines and chemo-
kines (2). Among these are interleukin (IL)-1β and tumor necrosis factor (TNF) α, which activate endo-
thelial cells to upregulate surface molecules required for leucocyte extravasation (3). The endothelial 
activation in conjunction with the chemokines facilitates recruitment of neutrophils and T-cells (4). An 
initial wave of neutrophils adds to the proinflammatory milieu (5) creating a positive feedback loop that 
is crucial for the subsequent T-cell recruitment. Recruited T memory cells recognize their cognate antigen 
(Ag) (6), releasing effector cytokines in the process (7), which in turn further activate keratinocytes (8). 
 

It has been discovered recently that dendritic cells do not only play a pivotal role during sensi-

tization, but also during the effector phase (Egawa et al. 2011). IL-1α released by keratinocytes 
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induces the formation of so called “perivascular leucocyte cell clusters” in the hapten-exposed 

dermis (Honda and Kabashima 2016; Egawa et al. 2011; Natsuaki et al. 2014). M2 macrophages 

located around postcapillary venules respond to IL-1α stimulation with CXCL2 release, which 

attracts dermal dendritic cells (Natsuaki et al. 2014). The accumulated dermal DCs present an-

tigens to newly recruited T effector cells, allowing for local activation and proliferation of T-

cells (Natsuaki et al. 2014). 

It should be noted that there is evidence for an alternative concept, in which antigen specific T-

cell recruitment and activation precede the neutrophil influx (Kish et al. 2011; Kish et al. 2009). 

Moreover, there is evidence for an involvement of B-cells and the complement system in the 

initial inflammation (Campos et al. 2003; Campos et al. 2006; Tsuji et al. 2002). 

 

1.2.2.2 CD8+ T-cells are the main effector cells 

For years there had been a debate about the nature of the effector T-cell in CHS due to con-

flicting experimental findings. Depletion of CD4+ cells was found to cause an exacerbated CHS 

response, whereas depletion of CD8+ cells abrogated the CHS response (Xu et al. 1996; Gocin-

ski and Tigelaar 1990; Bour et al. 1995). Mice that were depleted of both CD8+ and CD4+ cells 

display a diminished CHS response compared to the sole depletion of CD8+ cells, suggesting a 

partial effector function for CD4+ cells (Gocinski and Tigelaar 1990). Due to discovery of CD4+ 

regulatory T-cells, it has become clear that CD4+ cells comprise both anti-inflammatory regula-

tory cells as well as proinflammatory T helper cells. The current concept is that CD8+ T-cell are 

the main effector cell type for most contact allergens and that in some cases CD4+ helper cells 

may exhibit effector functions (Vocanson et al. 2009). 

The polarization of these CD8+ cytotoxic T-cells (Tc) is highly variable and depends on many 

factors, such as the genetic background of the mouse strain and the contact allergen used 

(Honda et al. 2013). Tc1, Tc2 and Tc17 cells can all fulfill the effector role (Vocanson et al. 

2009). Tc1 cells, however, are considered the most important. Upon recognition of their cognate 

antigen Tc1 cells release their signature cytokines interferon γ and TNFα, which in turn stimu-

late keratinocytes and mast cells to release another wave of chemokines and proinflammatory 

cytokines (Figure 2, step 6-8) (Vocanson et al. 2009). This secondary wave provides a feedback 

loop augmenting the inflammation and recruiting more T-cells and neutrophils (Honda et al. 

2013). Another key factor is the direct damage to keratinocytes (Kehren et al. 1999). Cytotoxic 

T-cells induce apoptosis of keratinocytes through the Fas/Fas ligand pathway (Akiba et al. 2002; 

Traidl et al. 2000; Trautmann et al. 2000).  
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1.3 Regulatory T-cells 

Regulatory T-cells (Tregs or Treg cells) maintain self-tolerance and regulate immune responses 

(Sakaguchi et al. 2010). They are crucial for keeping autoimmunity in check as highlighted by 

the occurrence of a fatal autoimmune disease in Treg deficient humans and mice (Bennett et al. 

2001; Brunkow et al. 2001). Numerous Treg cells have been identified, however, CD4+ Tregs 

are considered to be the main regulators of peripheral immune responses. CD25, the α chain of 

the high affinity IL-2 receptor, is constitutively expressed by the majority of CD4+ Tregs (~90%) 

and is widely used as a marker (Sakaguchi et al. 1995). Forkhead Box P3 (FoxP3) has been 

identified as the master transcription factor controlling Treg development, maintenance and 

function (Fontenot et al. 2003; Hori et al. 2003).  

The mechanisms of how Tregs control immune responses can be classified into four modes of 

action (Figure 3) (Vignali et al. 2008). First, Tregs can disrupt T-cell responses through interfer-

ing with DC/T-cell interaction in a cell contact dependent fashion (Figure 3A). For example, 

cytotoxic T lymphocyte-associated protein 4 (CTLA-4) expressed by Tregs has a higher affinity 

towards CD80/CD86 compared to CD28, thus outcompeting CD28 in binding to the shared 

ligand (Walunas et al. 1994). The lack of CD28 signaling during TCR/MHC interaction renders 

T-cells anergic (Harding et al. 1992). Similarly, lymphocyte activation gene 3 (LAG-3) binds 

MHC II with a higher affinity than CD4 preventing T-cells from recognizing their MHC II 

bound cognate antigen (Andrews et al. 2017). Another mode of action is the secretion of inhib-

itory cytokines by Tregs, mainly IL-10 and transforming growth factor (TGF) β (Figure 3B) 

(Vignali et al. 2008). In particular IL-10 has broad anti-inflammatory effects on various immune 

cells, e.g. effector T-cells and antigen presenting cells (Moore et al. 2001). Importantly, these 

soluble factors allow Tregs to control immune responses without the need for co-localization 

of Tregs and the target cells. In a process termed “metabolic disruption” Tregs can clear proin-

flammatory molecules, such as ATP and IL-2 (Vignali et al. 2008). Specifically, Tregs degrade 

ATP to the anti-inflammatory adenosine through the ectonucleotidases CD39 and CD73 

(Deaglio et al. 2007). Through their high affinity IL-2 receptor Tregs consume IL-2, which is a 

required proliferation stimulus for CD8+ T-cells (Chinen et al. 2016). Lastly, Tregs control a T-

cell response by lyzing effector T-cells through the granzyme pathway (Figure 3D) (Gondek et 

al. 2005). The exact contribution of each mode of action to the regulatory function of Tregs is 

specific to the context. 
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Figure 3: Mechanisms of Treg-mediated suppression 
Regulatory T-cells (Treg cells) can disrupt the interaction between T-cells and dendritic cells (DCs) dur-
ing T-cell priming in a cell contact dependent manner. Cytotoxic T-lymphocyte-associated protein 
(CTLA) 4 and lymphocyte activation gene (LAG) 3 expressed by Tregs bind cluster of differentiation 
(CD) 80/CD86 and major histocompatibility complex (MHC) II with a higher affinity than their T-cell 
counterparts, CD28 and CD4 (A). Tregs release inhibitory cytokines, mainly interleukin (IL)-10 and 
transforming growth factor (TGF) β (B). In a process termed “metabolic disruption” Tregs clear proin-
flammatory molecules (C). The high affinity IL-2 receptor on Tregs consumes IL-2 depriving T effector 
cells (TEFF) of a proliferation stimulus. The ectonucleotidases CD39 and CD73 degrade the proinflam-
matory adenosine triphosphate (ATP) to the immunosuppressive adenosine. Tregs lyze T effector cells 
directly through the granzyme pathway (D).  
 

1.3.1 Regulation of the sensitization phase by Tregs 

The importance of CD4+ CD25+ FoxP3+ regulatory T-cells for the regulation of both sensitiza-

tion and effector phase in ACD have been shown in many studies (Kish et al. 2005; Tomura et 

al. 2010; Honda et al. 2011; Vocanson et al. 2006; Ring et al. 2006; Ring et al. 2010b). During 

the sensitization phase, the regulatory function of Tregs phase depends on Treg presence in the 

skin-draining lymph node. Impaired Treg homing to the draining lymph node due to CD62L 

deficiency abrogated any suppressive effect (Ring et al. 2010b). The exposure to the contact 

allergen during sensitization causes ATP release in the respective draining lymph nodes (Ring 

et al. 2010a; Mahnke et al. 2017). ATP activates Tregs through their purinergic receptors and 

simultaneously provides the substrate for the ectonucleotidases CD39 and CD73 (Ring et al. 
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2010b; Ring et al. 2010a). CD39 and CD73 are constitutively expressed on the surface of Tregs 

and are further upregulated upon activation (Ring et al. 2009; Deaglio et al. 2007). Together, 

they facilitate the degradation of ATP to adenosine (Deaglio et al. 2007). The activated Tregs 

form gap junctions with DCs, which facilitates the downregulation of CD86 and thereby dis-

rupts T-cell priming (Ring et al. 2010b). At the same time, the Treg derived adenosine directs 

DC migration towards Tregs, further promoting DC/Treg interaction (Ring et al. 2015). More-

over, through ATP degradation Tregs interfere with the emigration of T-cells from the lymph 

nodes (Mahnke et al. 2017). Normally, ATP released upon sensitization binds to P2X7 purinergic 

receptors on T-cells activating a disintegrin and metalloproteinase (ADAM) with a thrombos-

pondin type 1 motif, member 13, which sheds CD62L from T-cell surfaces and thus enables 

their egress from the lymph node. The degradation of ATP  through CD39 and CD73 prevents 

the necessary CD62L shedding (Mahnke et al. 2017).  

 

1.3.2 Regulation of the effector phase by Tregs 

In the effector phase, Tregs attenuate the ear-swelling response in mice by blocking the recruit-

ment of leucocytes to the challenged skin (Ring et al. 2006). This is primarily achieved through 

the secretion of IL-10 and again adenosine (Ring et al. 2006; Ring et al. 2009). The presence of 

Tregs in the challenged skin is obsolete (Ring et al. 2009). The reapplication of the contact 

allergen during the challenge phase induces ATP release in the skin and in the blood (Ring et al. 

2010a). As is the case in the sensitization phase, ATP activates Tregs and simultaneously pro-

vides the substrate for CD39 and CD73. The resulting adenosine downregulates E- and P-se-

lectin on endothelial cells, thereby inhibiting leucocyte extravasation (Ring et al. 2009). Further-

more, Tregs have been shown to constantly circulate between the skin and the skin-draining 

lymph nodes both in the steady-state and under inflammatory conditions (Egawa et al. 2011). 

Tregs that migrated from challenged skin to the lymph node display an activated effec-

tor/memory phenotype with high expression levels of CD25, CD103, CD44, CD69 and show 

particularly strong immunosuppressive activity in vitro and in vivo (Egawa et al. 2011). These 

migratory Tregs retain the ability to reenter the skin (Egawa et al. 2011). However, their contri-

bution towards the regulation of the effector phase is unclear.  
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1.4 The αE(CD103)β7 integrin 

1.4.1 Structure and distribution of αE(CD103)β7 integrin 

CD103 is the designation of the αE subunit of the heterodimeric integrin αE(CD103)β7 (Figure 

4) (Micklem et al. 1991). While the β7 chain can also pair with α4 (CD49d), forming the 

α4(CD49d)β7 integrin, αE(CD103) exclusively heterodimerizes with β7. CD103 is often used to 

refer to the entire integrin αE(CD103)β7. 

CD103 shows a restricted expression pattern on immune cells in both mice and humans. Major 

CD103 expressing cell populations include innate-lymphoid cells (ILC), DCs, Tregs, tissue-res-

ident memory T-cells, cytotoxic T-cells and mast cells (Hardenberg et al. 2018). The only iden-

tified ligand to this day is E-cadherin (Cepek et al. 1994; Karecla et al. 1995; Higgins et al. 1998), 

though there is strong evidence of another yet unidentified ligand (Brown et al. 1999; Strauch 

et al. 2001; Jenkinson et al. 2011).  

 

 

Figure 4: Domain structure of the αE(CD103)β7 integrin 
Domain structure of the αE(CD103)β7 integrin. The propeller, calf, and thigh domains of the αE(CD103) 
chain are shared with all known integrin α-subunits, whereas the α-I-domain is found in eight others. 
The X-domain containing a proteolytic cleavage site is unique to αE(CD103). From Hardenberg et al. 
2018.  
 

The function of CD103 has been studied most extensively in T lymphocytes. For a long time, 

the main function of CD103 was assumed to be the retention of T-cells within epithelial com-

partments (Pauls et al. 2001; Schlickum et al. 2008). Recently, however, a major role of CD103 

in tumor immunity has emerged. CD103 does not only facilitate the retention of CD8+ cytotoxic 
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T-cells to tumor tissue, it also contributes directly to the lysis of these tumor cells (Corgnac et 

al. 2018; Duhen et al. 2018). In fact, CD103 expression by tumor infiltrating CD8+ cytotoxic T-

cells is a predictive marker for favorable prognosis in several neoplasms (Duhen et al. 2018). 

Murine dermal ILC2s uniformly express CD103 (Roediger et al. 2013). However, nothing is 

known about the exact function of CD103 for these cells yet. While CD103 is an important 

marker for several murine dendritic cell subsets in different tissues (del Rio et al. 2010), its 

function on dendritic cells is not clear yet. 

 

1.4.2 CD103 expressing regulatory T-cells 

CD103 marks a distinct Treg subset throughout several tissues. About 90% of dermal Tregs, 

about 25% of lymphoid Tregs and about 80% of Tregs in the lamina propria of the small intes-

tine express CD103 (Yuan et al. 2015; Braun et al. 2015; Lehmann et al. 2002; Suffia et al. 2005; 

Banz et al. 2003). However, only one study so far has shown a direct relevance of CD103 for 

Treg function (Belkaid et al. 2002). The dermal retention of CD4+ Tregs in a model of cutaneous 

leishmaniasis was found to be mediated by CD103 (Suffia et al. 2005). These CD103+ Tregs 

suppressed the immune response enabling the persistence of the pathogens in the skin. Analysis 

of activation markers show that CD103+ Tregs display an activated effector/memory pheno-

type, as demonstrated by increased levels of CTLA-4, inducible T-cell co-stimulator, CD44, 

glucocorticoid-induced TNF-receptor-related protein, CD69, granzyme B, Fas ligand, C-C 

chemokine receptor (CCR) 3, and CCR5 (Chang et al. 2012; Lin et al. 2009; Siewert et al. 2008). 

A number of studies revealed the CD103 expressing subset to have greater immunosuppressive 

potential in vivo (Lehmann et al. 2002; Banz et al. 2003; Chang et al. 2012; Hühn et al. 2004). 

Furthermore, CD103+ Tregs feature higher FoxP3 expression levels, however, no causal relation 

between CD103 expression and FoxP3 expression has been discerned (Braun et al. 2015; Leh-

mann et al. 2002; Hühn et al. 2004). In several murine cancer models tumor infiltrating Tregs 

express CD103, however, it was found to be dispensable for Treg retention in the tumor and is 

thought to be a byproduct of a microenvironment rich in TGFβ (Anz et al. 2011). 

CD103 expression by Tregs is primarily controlled by TGFβ. Selective deletion of the TGFβ 

receptor 1 in FoxP3+ Tregs led to a heavily diminished CD103 expression on these cells 

throughout the body (Konkel et al. 2017). This TGFβ responsiveness of the integrin αE(CD103) 

gene is conveyed through a SMAD3 binding promotor site and through additional SMAD3 

enhancer elements (Mokrani et al. 2014; Robinson et al. 2001). TCR signaling can also induce 

CD103 expression through a nuclear factor of activated T-cells enhancer element. (Mokrani et 

al. 2014)  
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1.5 The role of CD103 in allergic contact dermatitis 

Evidence for a role of CD103 in inflammatory skin disease was first observed in the late 90s, 

when newly generated CD103 knockout (CD103-/-) mice developed spontaneous inflammatory 

skin lesions (Schön et al. 2000). This prompted the idea that CD103 might be relevant for in-

flammatory skin diseases in general. 

Indeed, when CHS responses of CD103-/- mice (backcrossed on a C57BL/6J genetic back-

ground) towards OXA and dinitrochlorobenzene were investigated the ear-swelling response 

was increased (Braun et al. 2015). CD103 expressing cells relevant in the pathophysiology of 

CHS include dermal Langerin+ DCs, CD8+ cytotoxic T-cells, CD4+ CD25+ regulatory T-cells, 

and dermal ILC2. CD103 deficiency on either of these cells could have been responsible for the 

aggravated CHS response.  

Investigation of DC function in CD103-/- mice during the sensitization phase yielded no dis-

cernable abnormalities (Braun et al. 2015). Langerhans cell morphology and in situ cell counts 

and distribution were normal, as was the number of antigen-loaded DCs that migrated to the 

skin-draining lymph nodes following fluorescein isothiocyanate painting. DCs showed similar 

expression levels of common activation markers and in vitro analysis using bone marrow-derived 

DCs showed unaltered T-cell activating capacity. A possible role of CD103 for DC function in 

the effector phase was not investigated, however.  

The elevated CHS response could be transferred to wildtype (wt) mice and even to Rag1-/- mice 

in adoptive transfer experiments using draining lymph node (dLN) cell suspensions from sen-

sitized CD103-/- mice (Braun et al. 2015). Since T-cells make up the bulk of dLN cells, this 

strongly suggested T-cells as the mediators of the aggravated CHS response. Indeed, in vivo 

primed CD8+ T-cells from CD103-/- mice proliferated more strongly upon in vitro re-exposure 

to the contact allergen, indicating a dysregulation of T-cell proliferation (Braun et al. 2015). This 

could be caused either directly by the intrinsic deficiency of CD103 on CD8+ T-cells and/or by 

a disruption of regulatory mechanisms during sensitization and/or effector phase.  

Hence, CD4+ CD25+ T-cells, the main regulators of CHS, stepped into the spotlight. Indeed, 

preliminary investigations yielded evidence for altered Treg function in CD103-/- mice. Flow 

cytometric analysis of dermal Tregs in the effector phase found the FoxP3 expression of Tregs 

in CD103-/- mice to be diminished (Braun et al. 2015). The same analysis in the steady-state 

yielded no differences, thus hinting at a role of CD103 in the upregulation of FoxP3 after acti-

vation.  
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1.6 Aim of this thesis 

The aim of this study was to further elucidate the role of CD103 for Treg function in CHS. 

More concretely this thesis aimed to answer the following questions: 

1. Are Tregs in CD103-/- mice impaired in their regulatory function during the sensitization 

phase and/or effector phase? 

2. Is CD103 involved in intradermal retention of T-cells? 

3. Is the upregulation of FoxP3 after Treg activation dependent on CD103? Are Tregs in 

CD103-/- mice impaired in their ability to be activated? 

In a first experiment, it was investigated whether Tregs in CD103-/- mice are equally capable of 

suppressing sensitization compared to Tregs in wt mice. For that purpose, Tregs were isolated 

from wt mice (wt Tregs) and CD103-/- mice (CD103-/- Tregs) and injected intravenously into 

groups of naïve wt mice. Sensitization was performed the next day, and CHS was elicited on the 

right ears after 5 more days. The ear-swelling measured over a 96-hour timespan served as the 

readout parameter.  

Next, the ability of CD103-/- Tregs to suppress the effector phase was examined, again com-

pared to wt Tregs. Rag-1-/- mice were injected either with wt Tregs or CD103-/- Tregs prior to 

elicitation of the effector phase. The impact on the resulting ear-swelling response was studied. 

Since Rag-1-/- mice are devoid of endogenous mature lymphocytes, using these mice allowed 

the selective analysis of donor cells. These mice were reconstituted with draining lymph node 

cells parallel to Treg transfers and CHS was subsequently induced.  

To study the role of CD103 for the dermal retention of T-cells, CD103 competent and CD103 

deficient lymphocytes were injected intradermally into the ears of mice and their presence was 

tracked over time by flow cytometry.  

Last, to answer whether Tregs in CD103-/- mice are impaired in the ability to be activated and 

to upregulate FoxP3, CD103-/- mice and wt mice were treated with the super agonistic CD28 

antibody (aCD28SA), clone D665. This antibody is a potent and preferential activator of Treg 

cells (Gogishvili et al. 2009). The effect of aCD28SA on Tregs was assessed in the lymph nodes 

through analyzing the frequency of CD4+ CD25+ FoxP3+ cells and the expression levels of 

CD25 and FoxP3. 
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2 Material  

 

2.1 Animals 

An overview of the mouse strains used in this thesis is provided in Table 1. Mice were housed 

in the animal care facility of the University of Göttingen. All mice were held in individually 

ventilated cages with a 12 h light/dark cycle and unrestricted access to food and water. Only 

mice between the age of 8 and 12 weeks were used in experiments. The experiments were per-

formed in accordance with the institutional, state and federal guidelines and were approved by 

local institutional animal care advisory committees and the respective permit authorities 

(Tierversuchsantrag 15/1789). 

 

Table 1: Mouse strains used in experimental procedures 

Animals Origin 
C57BL/6  Charles River, Germany  
CD103-/-  (Schön et al. 1999) 
DEREG  (Lahl et al. 2007) 
Rag-1-/- Charles River, Germany  

 

2.2 Chemicals, solutions, buffers and media 

Table 2: Chemicals 

Chemical Manufacturer 
Acetone Th. Geyer GmbH & Co. KG, Renningen, Germany 

β-Mercaptoethanol Carl Roth GmbH + Co. KG, Karlsruhe, Germany 

Carboxyfluorescein succinimidyl 
ester (CFSE) 

Sigma-Aldrich Corporation, Munich, Germany   

Dimethylsulfoxid (DMSO) Carl Roth GmbH + Co. KG 

Ethanol absolut Carl Roth GmbH + Co. KG 

Ethylenediaminetetraacetic acid 
(EDTA) 

Thermo Fisher Scientific, Dreieich, Germany 

Glutamin Fisher Scientific GmbH, Schwerte, Germany 

Hydroxyethylpiperazineethanesul-
fonic acid (HEPES) 

Thermo Fisher Scientific  

Isoflurane AbbVie GmbH & Co. KG, Ludwigshafen, Germany 

Oxazolone Sigma-Aldrich Corporation 

Sodium pyruvate Thermo Fisher Scientific  
Trypan blue Sigma-Aldrich Corporation  
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Table 3: Solutions, buffers and media 

Solution Recipe Manufacturer 
Ear digestion en-
zyme coctail 

66% Liberase  Hoffmann-La Roche (Roche), Basel, Switzer-
land 

10% DNAse Hoffmann-La Roche (Roche) 
AppliChem GmbH, Darmstadt, Germany 

24% RPMI 1640 Lonza Group, Basel, Switzerland 
FACS cleaning 
solution 

 
Becton Dickinson GmbH, Heidelberg, Ger-
many 

FACS sheath 
fluid   

 
Becton Dickinson GmbH 

FACS shutdown 
solution 

 
Becton Dickinson GmbH 

FoxP3 Fix/Perm 
buffer Set 

 BioLegend GmbH, Koblenz, Germany 

MACS buffer PBS Lonza Group, Basel, Switzerland 
 2-mM EDTA Thermo Fisher Scientific 
 0.5% FCS Biochrom GmbH, Berlin, Germany 
RPMI complete 
medium 

RPMI 1640 Lonza Group 

 10% FCS Biochrom GmbH 
 2 mM Glutamin Fisher Scientific GmbH 
 100 U/ml Penicillin Fisher Scientific GmbH 
 100 µg/ml Streptomycin Fisher Scientific GmbH 
 50 µM β-Mercaptoethanol Carl Roth GmbH + Co. KG 
 25 mM HEPES Thermo Fisher Scientific 
 1.1 mM Sodium pyruvate Thermo Fisher Scientific 
 
 

0.1 mM Non-Essential 
Amino Acids (NEAA) 

Thermo Fisher Scientific 

 

2.3 Kits  

Table 4: Kits 

Kits Manufacturer 
CD4+CD25+ Regulatory T-cell Isolation Kit, 
Mouse 

Miltenyi Biotec GmbH, Bergisch Gladbach, 
Germany 

CellTrace™ Far Red Cell Proliferation Kit Thermo Fisher Scientific 
Zombie NIR™ Fixable Viability Kit  BioLegend GmbH 

 

2.4 Antibodies and toxins used for in vivo use 

Table 5: Biochemicals used in animal experiments 

Name Clone Manufacturer 
Diphtheria toxin   Sigma-Aldrich Corporation 
Mouse CD28 antibody D665 Bio-Rad AbD Serotec GmbH, Puchheim, Germany 
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2.5 Antibodies used in flow cytometry 

Table 6: Mouse antibodies 

Antigen Conjugate Clone Vol-
ume 
per 106 

cells 

End con-
centration 
in [µg/ml] 

Isotype Manufacturer 

CD4 Peridinin-
Chlorophyll-
protein 
(PerCP) 

RM4-5 5 µl 0.1  Rat 
IgG2a, κ 

Becton Dickin-
son GmbH 

CD8 Phycoerythrin 
(PE) 

53-6.7 0.05 µl 0.01 Rat 
IgG2a, κ 

BioLegend 
GmbH 

CD16/32 
 

93 2 µl 0.1 Rat 
IgG2a, λ 

BioLegend 
GmbH 

CD25 Brilliant Violet 
421™ 

PC61 0.5 µl 0.1 Rat IgG1, 
λ 

BioLegend 
GmbH 

CD103 Alexa Fluor® 
488 

2E7 5 µl 0.25  Arme-
nian 
Hamster 
IgG 

BioLegend 
GmbH 

FoxP3 Alexa Fluor® 
647 

MF-14 2 µl 1 Rat 
IgG2b, κ 

BioLegend 
GmbH 

TCRβ 
chain 

Brilliant Violet 
510™ 

H57-
597 

5 µl 0.1 Arme-
nian 
Hamster 
IgG 

BioLegend 
GmbH 

 

Table 7: Corresponding isotype control antibodies 

Conjugate Clone Isotype Manufacturer 
PerCP A95-1 Rat IgG2b, κ Becton Dickinson GmbH 
PE TBE15 Rat IgG2b ImmunoTools, Friesoythe, Germany 
Brilliant Violet 421™ RTK2071 Rat IgG1, κ BioLegend GmbH 
Alexa Fluor® 488 HTK888 Ar Ham IgG BioLegend GmbH 
Alexa Fluor® 647 RTK2758 Rat IgG2a, κ BioLegend GmbH 
Brilliant Violet 510™ HTK888 Ar Ham IgG BioLegend GmbH 
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2.6 Laboratory equipment and consumables 

Table 8: Laboratory equipment 

Equipment Model Manufacturer 
Anesthesia system VisualSonics VevoTM Com-

pact Anesthesia System 
VisualSonics, Toronto, Canada  

Biosafety cabinet LabGard® ES NU-540 Class 
II, Type A2 Biosafety Cabinet 

NuAire, Plymouth, MN, USA  
 

Safe 2020 Class II Biological 
Safety Cabinets 

Thermo Fisher Scientific 

Camera Fujifilm FinePix HS20 EXR Fujifilm, Tokyo, Japan 
Centrifuge Heraeus Megafuge 1.0 Thermo Fisher Scientific  

Heraeus Megafuge 16R  Thermo Fisher Scientific  
Sprout Mini centrifuge Biozym Scientific GmbH, Hes-

sisch Oldendorf, Germany 
CO2 incubator Heracell™ 150i CO2 Incubator Thermo Fisher Scientific 
Drying chamber 

 
Thermo Fisher Scientific 

External measuring 
gauge 

Kroeplin C220T Kroeplin GmbH, Schlüchtern, 
Germany 

Flow cytometer BD FACSCanto II Flow Cy-
tometer 

Becton Dickinson GmbH 

Freezer -20°C  
 

Liebherr-International GmbH, 
Biberach an der Riß, Germany 

Freezer -80°C Sanyo Biomedical Freezer Panasonic Corp., Kadoma, Ja-
pan  

Fridge 4°C  Liebherr-International GmbH 
Hair clipper Panasonic ER-1411 Hair Clip-

per  
Panasonic Corp. 

Counting chamber Neubauer Improved Laboroptik Ltd, Lancing, UK 
 

Inverse microscope Axiovert 40C Carl Zeiss, Göttingen, Germany 
Laboratory water bath   Memmert GmbH + Co. KG, 

Schwabach, Germany 
MACS MultiStand MACS MultiStand Miltenyi Biotec GmbH 
MidiMACSTM Separator  Miltenyi Biotec GmbH 
MiniMACSTM Separator  Miltenyi Biotec GmbH 
Pipettor PIPPETBOY acu Integra Biosciences GmbH, 

Biebertal, Germany 
Precision scale AccuLab ALC-210.4 Sartorius, Göttingen, Germany 
Pipettes Eppendorf Research® plus 

(100-1000 µl) 
Eppendorf AG, Hamburg, Ger-
many  

Transferpette® S (2-200 µl) Brand GmbH, Wertheim, Ger-
many  

Eppendorf Research® plus 
(0.5-10 µl) 

Eppendorf AG 

Ultrasonic bath Bandelin SONOREX™ 
RK100 Ultrasonic bath 

Bandelin electronic GmbH & 
Co. KG, Berlin, Germany 

Vortex mixer Vortex-Genie 2 Scientific Industries, Inc., Bohe-
mia, New York, USA 
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Table 9: Consumables 

Consumable Type Manufacturer 
Cannula Sterican® Insulin G 30 B. Braun Melsungen AG, Melsungen, Ger-

many 
Centrifuge 
tubes  
 

CELLSTAR® Centrifuge 
Tubes 15, 50 ml 

Greiner Bio-One GmbH, Frickenhausen, 
Germany 

Coverslip 
 

Thermo Fisher Scientific 
Culture plates 24 Well Cell Culture Multi-

well Plate 
Greiner Bio-One GmbH 

 
96 Well Polystyrene Cell 
Cultur microplate 

Greiner Bio-One GmbH 

FACS tubes 5 ml Round Bottom Poly-
styrene Test Tube 

Becton Dickinson GmbH 

Gloves Gentle Skin® sensitive Meditrade GmbH, Kiefersfelden, Germany 
Graduated 
tips   

TipOne® Tips 10, 200, 
1000 µl 

STARLAB GmbH, Hamburg, Germany 

MACS col-
umns 

LD columns Miltenyi Biotec GmbH 
 

MS Columns Miltenyi Biotec GmbH 
Parafilm PARAFILM® M Bermis, Neenah, Wisconsin, USA 
Reaction 
tubes  

1.5, 2 ml Sarstedt AG & Co., Nümbrecht, Deutsch-
land 

Serological pi-
pettes  

5, 10, 25 ml Sarstedt AG & Co. 

Strainers Falcon® 70µm Cell Strainer Becton Dickinson GmbH  
50 µm Filcon, Non-sterile, 
Cup-Type   

Corning, Corning, New York, USA 

Syringe B Braun Omnifix Syringes 
10 ml Sterile 

B. Braun Melsungen AG 
 

Injekt®-F Solo B. Braun Melsungen AG 
 

2.7 Software 

Table 10: Software 

Software Manufacturer 
Adobe Photoshop CC 2017 Adobe, San Jose, CA, USA 
BD FACSDiva Software Version 8.0.1 Becton Dickinson GmbH 
Microsoft Office 2016 Microsoft, Redmont, USA 
Prism 6 for Windows V. 6.07 GraphPad Software Inc., La Jolla, CA, USA 
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3 Methods 

 

3.1 Mouse handling and anesthesia 

All animal handling was carried out in a biosafety cabinet. Mice were anaesthetized prior to all 

experimental procedures, using an isoflurane vaporizer. The anaesthesia was performed as fol-

lows: Mice were transferred from their individually ventilated cages into an air tight box, which 

was then ventilated with a mixture of isoflurane and oxygen. For intravenous and intradermal 

injections mice were ventilated with a small snout mask, allowing for continuous anesthesia 

during these procedures. Retroorbital injection technique was used for intravenous injections 

(Yardeni et al. 2011). Mice were killed either through cervical dislocation or by CO2 asphyxia-

tion. CO2 asphyxiation was preferred when draining lymph nodes of the neck area were to be 

harvested post mortem.  

 

3.2 Contact hypersensitivity model 

The CHS model is the murine equivalent of allergic contact dermatitis and is used to study the 

pathophysiology of ACD (Honda et al. 2013). If not otherwise stated, the following protocol 

(Figure 5) was used to induce and elicit contact hypersensitivity. One day prior to sensitization 

(d-1) the lower backs of mice were shaved with an electric hair clipper. On d0, sensitization was 

achieved by applying 3 µg OXA dissolved in 100 µl ethanol with a 200 µl pipette on the shaved 

area. The mice were kept under anaesthesia until the alcohol was completely evaporated.  

The OXA solutions were generated as follows: A small amount of OXA was spooned into 

a  2ml reaction tube. The exact quantity was then determined with a precision scale. Next, an 

appropriate volume of 100% ethanol was added to reach the desired concentrations of 3 µg 

OXA (3% OXA) or 1 µg OXA (1% OXA), respectively, per 100 µl ethanol. For complete 

dissolution, the mixture was then placed into an ultrasound bath for 5 minutes. After 5 days (on 

d5), the effector phase was initiated by reapplying the contact allergen, a process termed “chal-

lenge”: 20 µl of the 1% OXA solution was applied onto the right ear. The left ear was treated 

with 20 µl ethanol to provide a vehicle control. From challenge onwards, the ear thickness was 

measured using an electronic external caliper. Each ear was measured in a standardized way at 

three measuring points (anterior, medial and posterior), and the average thickness was calcu-

lated. The increase in ear-swelling was determined as the normalized difference between the 
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OXA-treated and the vehicle-treated ear of the same mouse. Data were collected at the follow-

ing time points: 0 h, 8 h, 24 h, 32 h, 48 h, 56 h, 72 h, 96 h. Importantly, the 0 h values were 

measured prior to challenge.  

 

 
Figure 5: Contact hypersensitivity protocol 

 

3.3 Preparation of single cell suspensions and Treg isolation 

3.3.1 Ear tissue 

For flow cytometry, skin cells must first be removed from their tissue and brought into a single 

cell suspension. Towards that end, donor mice were killed by CO2 asphyxiation. The ears were 

then cut off at the base with scissors followed by removal of the remaining fur. Next, using two 

forceps, each ear was separated into two layers. The layers were put separately into wells of a 24 

well plate. Each well had been filled beforehand with 500 µl of an enzyme cocktail (Table 3), 

which serves to break up the extracellular matrix as well as cell-cell contacts. Within these wells, 

the ear layers were cut into small pieces with scissors, and incubated at 37°C and 5% CO2 for 

90 min. Thereafter, the enzyme reaction was stopped through addition of 50 µl FCS to each 

well. The content of each well was further homogenized by agitating with a 500 µl pipette tip a 

hundred times per well. The cell suspensions were then strained through a 50 µm cell strainer. 

Both wells and cell strainer were rinsed twice with 500 µl PBS. The resulting suspension was 

centrifuged at 1300 rounds per minute (RPM) for 7 min. The pellet was resuspended in 1 ml 

PBS. Trypan blue-stained cells were counted using a Neubauer chamber.  

3.3.2 Lymph node tissue preparation 

Donor mice were killed by CO2 asphyxiation. Mice were then pinned belly upwards on polysty-

rene. The belly was disinfected with 70% ethanol and the skin was cut from symphysis to chin 

using scissors. The skin was then peeled back, using forceps to reveal the skin-draining lymph 
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nodes. Lymph nodes were harvested from the inguinal, axillary and brachial, submental and 

cervical regions. Lymph nodes were collected in a 15 ml tube filled with sterile PBS and put on 

ice. Under a sterile bench a lymphocyte cell suspension was prepared by squashing the lymph 

nodes with a syringe plunger through a 70 µm strainer into a 50 ml tube, followed by repeated 

rinsing with sterile PBS. Afterwards, the suspension was centrifuged at 1300 RPM for 7 minutes. 

One ml of 0.5% DNAse (10% DNAse diluted to 0.5% with H2O) was added to the pellet 

together with 4 ml of PBS. After mixing, the suspension was transferred into an CO2 incubator 

for 5 minutes. After incubation, the cells were washed, centrifuged and counted as above. 

 

3.3.3 Treg isolation by magnetic cell separation 

Treg isolation was performed using the CD4+ CD25+ regulatory T-cell isolation kit according 

to the manufacturer’s instructions. The kit is based on the principle of magnetic cell separation 

(MACS). A negative selection step, in which non-CD4 cells are magnetically labelled and de-

pleted, is followed by a positive selection step, in which magnetically labelled CD25+ cells are 

enriched. All centrifugation was done at 300 x g for 10 min in a cooled centrifuge (4°C). All 

incubation steps were done at 4°C and protected from light. The volumes for buffer and anti-

body solutions provided in this paragraph are indicated for 107 cells and were scaled upwards 

according to actual cell numbers. Antibody incubation was performed in 15 ml tubes. For wash-

ing cells, were transferred to 50 ml tubes. MACS buffer was generated as depicted in Table 3. 

Prior to use, the buffer was degassed by placing the tubes with partially opened lids into an 

ultrasound bath for 5 min. Aliquots of 10 µl were kept at all stages of the isolation process to 

later determine the purity through flowcytometry. Tregs from CD103-/- and wt mice were iso-

lated simultaneously with two MiniMACSTM and MidiMACSTM separators.  

The single cell suspension was centrifuged, followed by resuspension of the pellet in 40 µl 

buffer. 10 µl Biotin-Antibody-Cocktail was added and the mix was incubated for 10 minutes. 

Now, 30 µl buffer, 20 µl Anti-Biotin MicroBeads and 10 µl CD25-PE antibody were added, 

followed by incubation for 15 minutes. Afterwards cells were washed with 2 ml buffer. At the 

same time, the MACS Multistand was set up by placing a LD column in the appropriate Mi-

diMACSTM separators. The LD column was rinsed with 2 ml buffer before the cell suspensions 

were applied. The centrifuged cells were resuspended in 90 µl buffer and then applied onto the 

column. The flow-through was collected in 15 ml tubes. The column was rinsed twice with 1 ml 

buffer. The flow-through was centrifuged and afterwards suspended in 90 µl buffer. 10 µl Anti-

PE MicroBeads were added, followed by incubation for 15 minutes. Parallel to incubation the 

MS column was placed into the MiniMACSTM separator and rinsed with 500 µl buffer. The flow-
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through of the first column was then applied onto the MS column. The column was rinsed two 

times with 500 µl buffer. After emptying of the reservoir, column was removed from the sepa-

rator and placed onto a 15 ml tube. Next, 1 ml buffer was added, and the column was flushed 

using the plunger. This final effluent contained the purified CD4+ CD25+ Tregs. The number 

of vital Tregs was counted using trypan staining and a Neubauer counting chamber. Only Tregs 

with a purity >90% were used in experiments. For Treg adoptive transfer experiments the cells 

were washed one more time and resuspended at a concentration of 0.5*106 Tregs per 150 µl 

PBS. 

 

3.4 Treg depletion, recovery kinetics and CHS model in DEREG mice 

To establish the efficacy and duration of Treg depletion, DEREG mice were injected intraper-

itoneally with freshly thawed 1 µg diphtheria toxin (DT) dissolved in 500 µl of PBS. After var-

ying time intervals, the mice were killed, skin-draining lymph nodes harvested and Tregs ana-

lyzed by flow cytometry (see 3.7 for the staining protocol). All handling with DT toxin was 

performed under the required safety regulations. In order to test the impact of Treg depletion 

on the CHS response, the standard CHS protocol with the modified lag time of 12 days was 

carried out. Treg depletion was achieved through DT injection the day before sensitization (d-

1). Using the same protocol, the standard concentrations of 3%/1% OXA for sensitiza-

tion/challenge were compared with the lowered concentrations of 0.1%/1%. 

 

3.5 Adoptive transfer experiments 

3.5.1 Treg transfers prior to sensitization in wt mice 

This protocol was designed to compare the suppressive effects of wt Tregs and CD103-/- Tregs 

on sensitization (Figure 6). Tregs were isolated from skin dLNs of naive wt C57BL/6 mice (wt 

Tregs) as well as CD103-/- mice (CD103-/- Tregs) (3.3.3). The freshly isolated Tregs were sus-

pended separately in PBS at a concentration of 0.5*106 per 150 µl PBS. A third tube filled with 

an equal volume of PBS and was used as a vehicle control. Naïve wt mice were then intrave-

nously injected in three separate groups (retroorbital injection technique): One group received 

150 µl of the vehicle, another group 0.5*106 wt Tregs, and a third group 0.5*106 CD103-/- Tregs.  

A technician replaced the labels on the tubes containing the Treg cell suspensions and the ve-

hicle control with a color marking, thus blinding the experimenter. The treatment regimen 

matching the chosen color was recorded, sealed in a letter and opened after the final ear-swelling 
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measurement. The backs of all treated mice were shaved on the same day. On the next day, 

mice were sensitized according to the standard CHS protocol (3.2).  

 

 

Figure 6: Treg transfer in wt mice prior to sensitization 

 

3.5.2 Treg transfers prior to sensitization phase in DEREG Mice 

It was first tested if Treg-depleted DEREG mice sufficed as recipients and showed a suppres-

sive effect of adoptively transferred wt Tregs. DEREG mice were injected with either 1*106 wt 

Tregs, 0.5*106 wt Tregs or an equal volume of vehicle (PBS). DT was administered 2-4 hours 

prior to Treg transfers. The lower backs were shaved on the same day. Sensitization was carried 

out on the next day. The modified CHS with a 12-day lag time and the lowered OXA concen-

trations of 1%/0.1% for sensitization/challenge was performed. Treg isolation and injection 

were performed as described in 3.5. 1.  

Since 0.5*105 wt Tregs successfully suppressed sensitization (4.1.3), wt and CD103-/- Tregs were 

compared in an identical experimental setup. Treg-depleted DEREG mice were injected either 

with 0.5*106 wt Tregs, 0.5*106 CD103-/- Tregs or an equal volume of PBS (Figure 7). 
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Figure 7: Treg transfer in Treg-depleted DEREG mice prior to sensitization 

 

3.5.3 Treg transfer prior to effector phase in Rag-1-/- mice 

This experiment was designed to compare the suppressive effect of transferred wt Tregs and 

CD103-/- Tregs on the effector phase. Reconstituted Rag-1-/- mice were chosen as recipients for 

adoptive transfers. Rag-1-/- mice lack functional endogenous lymphocytes (Mombaerts et al. 

1992), thus precluding “intrinsic” T-cell biases. Rag-1-/- mice were reconstituted with draining 

lymph node cells from previously sensitized wt C57BL/6 mice (OXA dLN cells) and at the 

same time with either wt or CD103-/- Tregs (Figure 8). OXA dLN cell donor mice had their 

entire backs shaven, instead of only the lower back, and 200 µl of 3% OXA was applied for 

sensitization, instead of the usual 100 µl. This assured that all skin-draining lymph nodes re-

moved (inguinal, axillary, brachial and cervical) contained OXA primed lymphocytes. The OXA 

dLN cells were harvested after 5 days. On the same day, Tregs were harvested from naive wt 

mice and CD103-/- mice. The isolated wt and CD103-/- Tregs cell were resuspended with the 

OXA dLN cells at a concentration of 2*107 OXA dLN cells and 0.5*106 Tregs per 150 µl PBS. 

This allowed reconstitution and Treg treatment to be performed in a single intravenous injec-

tion. A vehicle control with only 2*107 OXA dLN cells in 150 µl PBS was also prepared. 

Groups of Rag-1-/- mice were treated as follows: Group 1 was treated with 2*107 OXA dLN 

cells. Group 2 was treated with 0.5*106 wt Tregs and with 2*107 OXA dLN cells. Group 3 

received 0.5*106 CD103-/- Tregs and 2*107 OXA dLN cells. Injection and “blinding” of the 

experimenter were done as described in 3.5.1.  On the next day (d6), the mice were challenged 

twice, once at the 0h mark and again 8h later. This double challenge was established in prelimi-

nary experiments and was necessary in order to elicit a strong enough ear-swelling response in 

reconstituted Rag-1-/- mice.  
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Figure 8: Treg transfer in reconstituted Rag-1-/- prior to the effector phase 

 

3.6 Treatment protocol CD28 antibody, clone D665 

The CD28-directed antibody (aCD28SA), clone D665, causes antigen-independent T-cell acti-

vation through crosslinking of CD28 molecules on the cell surface (Dennehy et al. 2006). It 

preferentially expands and activates murine Tregs (Gogishvili et al. 2009). We used this antibody 

to compare the activation capacity of Tregs in CD103-/- and wt C57BL/6 mice. 

On d0, 200 µg of aCD28SA diluted with 300 µl PBS to a final volume of 500 µl was injected 

intraperitoneally in male CD103-/- and wt mice. Vehicle controls received 500 µl PBS. On d4, 

single cell suspensions of all skin-draining lymph nodes were prepared and analyzed by flow 

cytometry. 

 

3.7 Flow cytometry 

For fluorescence-activated cell scanning (FACS) the BD FACSCanto II Flow Cytometer and 

the BD FACSDiva Software Version 8.0.1were used. An unstained cell sample was used in every 

experiment to determine autofluorescence. All antibodies were tested against an appropriate 

isotype control to allow proper compensation (tables 5 and 6).  

 

3.7.1 Intracellular FoxP3 staining protocol 

The FoxP3 Fix/Perm Buffer Set from BioLegend was used for intracellular FoxP3 staining 

according to the manufacturer’s protocol. All incubation steps were done under protection from 

ambient light to reduce the bleaching of fluorescent molecules. Cell viability was evaluated using 

the Zombie NIR™ Fixable Viability Kit. When lymph node samples were analyzed, 5*105 cells 
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per sample were stained. For isotype controls, 2.5*105 were stained. All centrifugation was done 

at 1800 RPMI for 10 minutes at room temperature.  

Initial transfer of the cells to FACS tubes was followed by centrifugation. After the removal of 

the supernatant, 100 µl per 1*106 cells of 1 µg Zombie NIR™ in 100 µl PBS was added to the 

cells. The samples were then incubated at room temperature for 30 min. Afterwards, 2 ml of 

0.1% FCS in PBS were added, followed by centrifugation. After partial aspiration of the super-

natant (100 µl remained) and vortexing of the pellet, 1 µg per 1*106 cells of a CD16/32-directed 

antibody were added and incubated for 5 minutes at 4°C. Thereafter, cells were incubated for 

30 minutes at 4°C with antibodies against the following targets: murine TCRβ chain, CD4, CD8, 

CD25 and CD103 (Table 5). This was followed by two washing steps with 2 ml PBS each. 

During the last centrifugation, the fixation solution was prepared by diluting the fixation buffer 

at a ratio of 1:20 with cold PBS. After removal of the supernatant, under vortexing, 2 ml of the 

fixation solution per 106 cells were added, followed by incubation for 30 min at 4°C. Two more 

washing steps were performed. Next, the permeabilization solution was prepared by diluting the 

permeabilization buffer at a ratio of 1:5 with 37°C warm PBS. Again, while vortexing, 2 ml per 

106 cells of permeabilization buffer were added. The samples were immediately centrifuged, and 

the permeabilization buffer was added one more time. Samples were then put into the drying 

oven at 37°C for 30 minutes. Afterwards tubes were washed two times. After vortexing, 1 µg 

per 106 cells of the CD16/32-blocking antibody were added to all samples and incubated for 5 

min at 4°C. Now, the FoxP3 antibody was added and incubated for 30 min at 4°C (table 5). 

Two more washing steps concluded the staining. 

 

3.8 Intradermal retention 

In order to investigate whether CD103 is required for lymphocyte retention in the skin, we 

injected ears of Rag1-/- mice intradermally with a mix of wt and CD103-/- dLN cells. Prior to 

injection, the donor cells were stained with different cell-tracing dyes, either carboxyfluorescein 

succinimidyl ester (CFSE) or CellTraceTM Far Red. These dyes have non-overlapping emission 

spectra allowing the simultaneous tracing of two cell populations. Stainings were performed 

under protection from ambient light to minimize bleaching of fluorescent dyes. To guarantee a 

homogeneous staining, no more than 40*106 cells were stained at a time. 

CFSE staining was performed as follows: The wt dLN cell suspension was centrifuged and 

resuspended in PBS at a concentration of 20*106 cells per 500 µl of PBS. Simultaneously, CFSE, 

which was stored at -20°C at a concentration of 10 mM, was freshly thawed and diluted with 
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PBS down to a concentration of 5 µM. Equal volumes of the wt dLN cell suspension and the 

CFSE solution were mixed, further lowering the CFSE concentration to the final concentration 

of 2.5 µM. The CFSE/cell mix was then placed into a water bath (30°C) for 8 minutes. The 

staining process was quenched through addition of twice the total staining volume of FCS. After 

two washing steps, live (trypan blue excluding) cells were counted in a Neubauer chamber.  

CellTraceTM Far Red staining was carried out in parallel: The stock solution of 1 mM was freshly 

thawed. Per 20*106 cells, 1 µl of stock solution was added to 1 ml of warm PBS. The dLN cells 

were centrifuged and the pellet was resuspended in the dye solution (1 ml per 20*106 cells). The 

cell/dye mix was gently agitated for 2 min and then incubated for 20 min at room temperature. 

Quenching was achieved through addition of five times the staining volume of FCS. After two 

washing steps, the vital cells were counted in a Neubauer chamber. Next, equal numbers of both 

CFSE and CellTraceTM Far Red stained cells were mixed (1:1 ratio) and centrifuged. The pellet 

was resuspended at a concentration of 20*106 per 100 µl PBS. The staining success and the exact 

ratio were determined by flow cytometry (CFSE was measured in the AmCyan channel and 

CellTraceTM Far Red in the allophycocyanin (APC) channel). 

Using this cell mix, the right ears of Rag-1-/- mice were injected intradermally several times. A 

1 ml syringe equipped with a 30-gauge cannula was used. The left ears were injected similarly 

with vehicle (PBS). The mice were killed the next day, and both ears were processed into single 

cell suspensions. The cell suspensions were analyzed by flow cytometry. A gate was set on po-

tential lymphocytes based on the forward and sideward scatter. CFSE and CellTraceTM Far Red 

positive cells were then gated and the ratio between events of both populations calculated.  

 

3.9 Data analysis and statistics 

Microsoft Excel was used for basic data collection and statistical analysis. Student’s T-test was 

used to test for statistical significance. A p value of less than 0.05 was considered to be signifi-

cant. Graphs were created with Prism 6 for Windows V. 6.07. Microsoft PowerPoint was used 

to create figures. FACS analysis was performed using BD FACSDiva Software Version 8.0.1. 

Overlays of FACS Plots were created by using Adobe Photoshop.  
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4 Results 

 

4.1 The role of CD103 for Treg regulation during sensitization 

The research leading up to this thesis suggested that CD4+ CD25+ Tregs are impaired in their 

regulatory function in CD103-/- mice, thus causing increased CHS susceptibility (Braun et al. 

2015). Generally, the importance of Tregs for the regulation of both sensitization and effector 

phase has been well established (see 1.3). We hypothesized that this regulatory function depends 

at least in part on CD103. We tested this hypothesis by comparing the suppressive effect of 

adoptively transferred wildtype and CD103-deficient CD4+ CD25+ Tregs either during sensiti-

zation or the effector phase (See 4.2). 

 

4.1.1 Treg transfer prior to sensitization in wt mice 

Transfer of wt Tregs prior to sensitization has been shown to suppress sensitization in a dose-

dependent manner (Ring et al. 2010b). In order to examine if Tregs of CD103-/- mice are equally 

capable of suppressing sensitization, we injected groups of naive wt mice with either 0.5*105 

CD103-/- Tregs or 0.5*105 wt Tregs prior to sensitization. The ear-swelling in the subsequent 

effector phase was used as an indicator for the sensitization success.  

It was found that the ear-swelling responses of neither wt Treg or CD103-/- Treg treated groups 

differed significantly from the vehicle control (Figure 9). All groups displayed a similar degree 

of ear inflammation, indicating that neither wt nor CD103-/- Tregs suppressed sensitization. 

This result was surprising, since the findings of Ring et al. could not be reproduced. Transfer of 

0.5*105 wt Tregs should have at least partially suppressed sensitization according to their study. 

In order to increase the suppressive impact of transferred Tregs without increasing the numbers 

of transferred Treg cells, DEREG mice were used as recipients of Treg transfers for all further 

studies on the sensitization phase. This was done in analogy to the approach of Ring et al., which 

aimed to deplete the endogenous Treg pool to better detect the effect of the transferred Tregs. 

For detailed discussion of the pros and cons of these approaches see 5.1.  
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Figure 9: Transfer of wt Tregs failed to suppress sensitization. 
wt mice were injected with either 0.5*106 wt Tregs, 0.5*106, CD103-/- Tregs, or PBS (vehicle) on day -1. 
The next day, the standard CHS protocol with 3%/1% OXA for sensitization/challenge and a 5-day lag 
time was initiated. Data points represent normalized differences in ear thickness between OXA- and 
vehicle-treated ears from 3 independent experiments (n = 5-11 mice per data point; mean ± standard 
error of the mean (SEM); see supplemental data (Figure A1) for the results of the individual experi-
ments). 
 

4.1.2 Treg-depleted DEREG mice as recipients of Treg transfers  

DEREG (DEpletion of REGulatory T-cells) mice are a bacterial artificial chromosome (BAC) 

transgenic mouse line on a C57BL/6 background expressing a diphtheria toxin receptor (DTR) 

– enhanced green fluorescent protein (eGFP) fusion protein under the control of a FoxP3 pro-

moter (Lahl et al. 2007). Therefore, all FoxP3-expressing cells inevitably coexpress the diphthe-

ria toxin receptor, rendering these cells selectively vulnerable to diphtheria toxin. Administration 

of DT to these mice depletes all FoxP3-expressing cells. By using these Treg-depleted DEREG 

mice as recipients of Treg transfers we attempted to augment the impact of the transferred 

Tregs without having to increase the Treg cell numbers. The limitations of this approach are 

discussed in 5.1.1.  

 

4.1.2.1 Treg depletion efficacy and Treg-recovery kinetics 

First, the depletion kinetics of CD25+ FoxP3+ Tregs following a one-time DT application was 

analyzed. For that purpose, DEREG mice were injected intraperitoneally with 1 µg of DT, and 

the skin-draining lymph nodes were analyzed for CD4+ CD25+ FoxP3+ regulatory T-cells after 

varying time intervals (3 hours up to 15 days). 
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Treg depletion started rapidly within hours after DT injection and peaked after about 24 hours 

(supplemental figure A2). The depletion efficacy at that point reached about 95%, with a reduc-

tion of CD25+ FoxP3+ cells amongst all CD4+ cells from about 11% to about 0.5% (Figure 10).  

When the duration of this depletory effect was investigated, Treg depletion in DEREG mice 

was found to be temporary. By day 5 after DT injection Treg counts recovered to about 60% 

of the status quo and normalized fully by day 12 (Figure 10).  

This data helped us to set both the timing of sensitization after DT injection and the interval 

between sensitization and challenge (lag-time). Sensitization at the point of peak depletion (24 

hours post DT injection) allowed for the strongest possible sensitization, because of the almost 

complete lack of Treg regulation. At the same time, the fact that Treg counts normalized by day 

12 meant that initiation of the effector phase with a 12-day lag time would allow the effector 

phase to be unaffected by the preceding Treg depletion. This allowed selective investigation of 

the impact of Treg depletion on the sensitization phase independent from the effector phase. 

 

 
Figure 10: Treg long-term recovery kinetics after a single-shot DT application. 
DEREG mice were injected with 1 µg of DT i.p. (d0). After different time intervals the mice were 
sacrificed and the frequency of CD25+ FoxP3+ on living CD4+ cells in the draining lymph nodes was 
analyzed by flow cytometry. A vehicle-treated DEREG mouse was used to establish the baseline value. 
The frequency of CD25+ FoxP3+ cells on living CD4+ cells is depicted (n = 1 per timepoint).  
 

4.1.2.2 Adaptation of the CHS model in DEREG mice 

After establishing the timing of sensitization after DT injection (d-1) and the length of the lag-

time (12 d), the CHS model was tested with these parameters. Consistent with other studies, 

(Honda et al. 2011; Lehtimäki et al. 2012), the ear inflammation in Treg-depleted DEREG mice 

was strongly increased (Figure 11A). The ear inflammation was so severe that no resolution 

towards the later stages of the effector phase became apparent. In fact, the ear thickness kept 
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increasing over the entire course of the effector phase. This was mostly the result of excessive 

ear scaling, which appeared even at very early time points after challenge (Figure 11B). Further-

more, mice showed visible signs of distress throughout the effector phase. In light of the early 

and excessive ear scaling and the lack of resolution, the CHS response was deemed to be too 

severe. In order to decrease the severity, lower OXA concentrations were tested for sensitization 

and challenge. 

 

 

Figure 11: Sensitization/challenge with 3%/1% OXA causes severe inflammation in DEREG 
mice. 
CHS was elicited in Treg-depleted DEREG mice using 3% OXA for sensitization and 1% OXA for 
challenge. A lag time of 12 days was chosen. Treg depletion was achieved through intraperitoneal injec-
tion of 1 µg DT in PBS 1 day prior to sensitization. The vehicle controls received only PBS. A) Data 
points represent normalized differences in ear thickness between the OXA-treated and the vehicle-
treated ears (n = 10-12; mean ± SEM). *** p < 0.001 (unpaired Student’s t test). B) Representative 
images of ear inflammation and scab formation 32 h post challenge. 
 

In the following experiment the CHS responses towards the standard OXA concentrations of 

3%/1% OXA for sensitization/challenge were compared with the reduced concentrations of 
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0.1%/1% (Figure 12). The 0.1%/1% group displayed the same numerical ear-swelling as the 

3%/1% group, without the ear scaling (Figure 12). Furthermore, a significant resolution of the 

ear inflammation became apparent in later stages of the effector phase. Therefore, 1%/0.1% 

OXA were used for all further experiments with DEREG mice. 

 

 

Figure 12: 0.1%/1% OXA allows for a strong ear-swelling response without scaling. 
0.1%/1% OXA for sensitization/challenge was compared with the standard 3%/1% in Treg-depleted 
DEREG mice. Depletion was achieved through injection of 1 µg DT 1 day prior to sensitization. A 12-
day lag time between sensitization and challenge was chosen. A) Data points represent normalized dif-
ferences in ear thickness between the OXA-treated and the vehicle-treated ears (n = 3; mean ± standard 
deviation (SD)). B) Representative images of ear inflammation and scab formation 72 h post challenge. 
  

4.1.3 Treg transfer prior to sensitization in Treg-depleted DEREG mice 

Next, we determined whether 0.5*105 wt Tregs were able to suppress sensitization in DEREG 

mice. For that purpose, groups of Treg-depleted DEREG mice were injected with either 

0.5*106, 1*106 Tregs or vehicle (PBS), followed by the adapted CHS model (see 3.5.2 for the 

detailed experimental setup).  
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Indeed, from 24 h to 56 h post challenge both Treg treatment regimens significantly attenuated 

the ear-swelling response compared to the control group (Figure 13). These findings were fur-

ther confirmed macroscopically (Figure 13B). The ears of Treg recipients were much less in-

flamed, as indicated by less erythema and less prominent vascularization. Most importantly, 

0.5*106 Tregs proved to be non-inferior to 1*106 Tregs. Thus, using Treg-depleted DEREG 

mice as recipients of Treg transfers in conjunction with an adapted CHS model were able to 

reproduce and confirm the findings of Ring et al.  

 

 

Figure 13: Transferred wt Tregs suppress sensitization in Treg-depleted DEREG mice.  
DEREG mice were injected with either 0.5*106 Treg, 1*106 Tregs or vehicle (PBS). 2 hours earlier Treg 
depletion was achieved through intraperitoneal injection of 1 µg DT. The next day, the adapted CHS 
model with 0.1%/1% OXA for sensitization/challenge and a 12-day lag time was initiated. A) Data 
points represent normalized differences in ear thickness between the OXA and the vehicle-treated ear 
(n = 3: mean ± SEM). *, # p < 0.05; **, ## P < 0.01; (unpaired Student’s t test, *comparing the recip-
ients of 0.5*106 Tregs with recipients of vehicle, # comparing the recipients of 1*106 Tregs with recipi-
ents of vehicle). B) Representative images of ear inflammation at 32 h post challenge. 
 

After establishing a suitable experimental setup, it was investigated if CD103-/- Tregs were 

equally capable of suppressing sensitization as wt Tregs. For that purpose, wt Tregs and CD103-

/- Tregs were transferred into Treg-depleted DEREG mice prior to sensitization (see 3.5.2 for 
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the detailed experimental setup). As expected (Figure 13), 0.5*106 wt Tregs suppressed sensiti-

zation (Figure 14). The key finding was that DEREG mice injected with CD103-/- Tregs dis-

played an ear-swelling response indistinguishable from vehicle-treated mice, without any trend 

towards an attenuative effect of the CD103-/- Tregs. Thus, Tregs isolated from CD103-/- are not 

able to suppress sensitization. The ear-swelling-responses of wt Tregs and CD103-/- Tregs 

treated groups differed without reaching statistical significance (P of 0.13). Macroscopic images 

also suggested that CD103-/- Tregs failed to attenuate the ear inflammation, while wt Tregs 

clearly succeeded in doing so (Figure 14B). In conclusion, while Tregs from wt mice suppressed 

sensitization, Tregs from CD103-/- mice failed to do so. The regulatory function of Tregs during 

the sensitization phase seems to be impaired in CD103-/- mice. 

 

 
Figure 14: Transferred CD103-/- Tregs fail to suppress sensitization. 
DEREG mice were injected with either 0.5*106 wt Tregs, CD103-/- Tregs or vehicle (PBS). Two hours 
earlier, Endogenous Tregs were depleted through intraperitoneal injection of 1 µg DT. The next day, the 
modified CHS model with 0.1%/1% OXA for sensitization/challenge and a 12-day lag time was initi-
ated. Photos taken documented the macroscopic ear inflammation. A) Data points represent normalized 
differences in ear thickness between the OXA challenged and the vehicle-treated ear (n = 3; mean ± 
SEM). B) Representative photos of ear inflammation 48 h post challenge. 
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4.2 The role of CD103 for Treg regulation during the effector phase 

Tregs isolated from CD103-/- mice were not able to suppress sensitization. At least part of the 

aggravated CHS response observed in CD103-/- mice could be attributed to dysfunctional Treg 

regulation during the sensitization phase. This, however, does not rule out an additional impair-

ment of Treg function during the effector phase. The general importance of Tregs during the 

effector phase has been established. Treg transfer before the effector phase has a suppressive 

effect on the ear-swelling response (Ring et al. 2006). In order to test whether this effect is 

abrogated in CD103-/- mice, the suppressive effect of wt Tregs was compared with CD103-/- 

Tregs transferred before challenge. 

 

4.2.1 Treg transfer prior to the effector phase 

Immunodeficient Rag1-/- mice were chosen as recipients of Treg transfers because they lack 

endogenous B and T-cells (Mombaerts et al. 1992). This trait creates a controlled environment 

inasmuch as T-cell-related findings can be attributed unambiguously to the transferred lympho-

cytes. However, this also meant that Rag-1-/- mice had to be reconstituted with dLN cells of 

previously OXA sensitized wt mice prior to the challenge (see 3.5.3 for the detailed experimental 

setup). The respective protocol had already been established in our lab.  

In confirmation of previous studies (Ring et al. 2006), transfer of wt Tregs showed a suppressive 

effect on the ear-swelling response, particularly in the later stages of the effector phase (Figure 

15), despite transferring only one tenth of the Treg numbers Ring et al transferred (0.5*106 vs 

5*106). By contrast, the CD103-/- Treg recipient group displayed an ear-swelling response indis-

tinguishable from the control group. This indicated that CD103-/- Tregs failed to suppress the 

effector phase. In fact, the ear-swelling response of wt Treg recipients differed significantly from 

the CD103-/- treated group as early as 24 h after challenge. This indicated that Tregs in CD103-

/- mice are also impaired in their regulatory role during the effector phase in addition to the 

sensitization phase. 



Results  37 

 

 

Figure 15: CD103-/- Tregs fail to suppress the ear-swelling response during the effector phase. 
Draining lymph node cells from previously sensitized wt mice (OXA dLN cells) were isolated on d5. 
20*106 OXA dLN cells together with either 0.5*106 wt Tregs or CD103-/- Tregs were injected into Rag-
1-/- mice. A control group received only 20*106 OXA dLN cells (no Tregs group). On the next day, Rag-
1-/- mice were challenged twice (0 h and 8 h) with 1% OXA and the ear thickness was measured as usual. 
Data points represent normalized differences in ear thickness between the OXA and the vehicle-treated 
ear from two independent experiments (n = 8: mean ± SEM). **, ## P < 0.01; ***, ### P < 0.001 
(unpaired Student’s t test, *comparing the recipients of CD103-/- Treg cells with recipients of wt Treg 
cells, # comparing the recipients of wt Treg cells with no Tregs). 
  

4.3 The role of CD103 for intradermal retention 

A possible mechanism behind CD103 deficiency and the apparent dysfunction of CD103-/- 

Tregs is suggested by a murine model of Leishmaniasis, in which the dermal retention of CD4+ 

CD25+ near the site of infection was directly dependent on CD103 (Belkaid et al. 2002). Block-

ade of CD103 caused a marked decrease in the number of dermal Tregs. 

It was conceivable that the regulatory role of Tregs during CHS could be similarly dependent 

on their dermal retention, which in turn could depend on CD103 expression. In order to test 

this hypothesis, the following experimental approach was devised: dLN cells from naïve wt and 

CD103-/- mice were stained with CFSE (wt dLN cells) or CellTraceTM FarRed (CD103-/- dLN 

cells) and the right ears of Rag-1-/- were injected intradermally with a 1:1 mix of these cells (see 

3.8 for the detailed experimental setup). The exact baseline ratio of the injection solution was 

determined through flow cytometry (Figure 16A). The left ears served as a control and were 

injected with vehicle (PBS). The next day, the ears were analyzed for the remaining CFSE+ and 

CellTraceTM FarRed+ cells. The change in ratio between two cell populations served as readout 

parameter. Superior retention of CD103 competent cells would cause a ratio shift in their favor. 

This approach has the advantage of being independent of the exact cell numbers injected. 
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Indeed, two clearly demarcated populations of CFSE+ and CellTraceTM FarRed+ cells were de-

tectable in the right ears at 24 h after injection (Figure 16B). At the same time, no CFSE+ or 

CellTraceTM FarRed+ events were detectable in the vehicle-treated ears (Figure 16C). There was 

no difference in retention between both populations at this point, as indicated by the unchanged 

ratio (Figure 16D). However, this does not preclude possible differences at later timepoints. 

These results established an elegant way of comparing in vivo retention of two different cell 

populations. 

 

 

Figure 16: Intradermal retention 
The right ears of Rag-1-/- mice were intradermally injected with a 1:1 mix of CFSE stained wt and 
CellTraceTM FarRed stained CD103-/- dLN cells. Left ears were injected with PBS (vehicle). 24 hours 
later, the ears were analyzed for residual cells through flow cytometry. The baseline ratio was determined 
prior to injection. CFSE+ events were detected in the AmCyan channel, CellTraceTM FarRed+ events in 
the APC channel. A gate was set on potential lymphocytes based on forward scatter (FSC) and sideward 
scatter (SSC). A) Pre-injection mix of CFSE+ wt cells and CellTraceTM FarRed+ CD103-/- cells B/C) 
FACS plot of an exemplary right ear (B) and a vehicle-injected left ear (C) 1 day after injection D) Cal-
culated ratios between CFSE+ and CellTraceTM FarRed+ cells (mean ± SD; n=2). 
 

4.4 Correlation of Treg activation and FoxP3 expression in CD103-/- mice 

Preceding research of our group found that the FoxP3 expression of skin-residing CD4+ CD25+ 

cells during the effector phase was decreased in CD103-/- mice compared to wt mice (see 1.5) 
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(Braun et al. 2015). However, under steady-state conditions no abnormalities in Treg FoxP3 

expression levels were observed in CD103-/- mice. Hence, it was hypothesized that the dimin-

ished FoxP3 levels indicated an impairment in the ability of CD103-/- Tregs to upregulate FoxP3 

after activation.  

To examine the ability of Tregs in CD103-/- mice to upregulate FoxP3, wt and CD103-/- mice 

were treated with the superagonistic CD28-directed antibody, D665. This antibody, through 

crosslinking surface CD28 molecules, preferentially expands and activates regulatory T-cells in 

a TCR-independent manner (Dennehy et al. 2006; Gogishvili et al. 2009). 

 

4.4.1 Treg expansion in response to aCD28SA  

Groups of wt mice and CD103-/- mice were injected intraperitoneally with vehicle (PBS) or 

200 µg of aCD28SA (see 3.6) following a previously described regimen (Gogishvili et al. 2009). 

After 4 days, the mice were killed, and skin-draining lymph nodes were removed. Single cell 

suspensions from these lymph nodes were generated and flow-cytometrically analyzed (see 3.7 

for the FACS staining protocol). First, we looked at the effect of aCD28SA on the draining 

lymph node cell numbers (Figure 17) and found the degree of cell expansion to be identical in 

both strains.  

 

 

Figure 17: Similar lymphocyte counts in wt and CD103-/- mice after aCD28SA treatment. 
Male wt and CD103-/- mice were treated with 200 µg aCD28SA. On d4, skin dLNs were sampled, pro-
cessed into single cells suspensions and cells counted using trypan blue staining and a Neubauer chamber. 
(n = 3; mean ± SD). 
 

Next, the impact of aCD28SA on the frequency of CD4+ CD25+ cells was assessed, since 

aCD28SA preferentially expands the CD4+ CD25+ cell subset (Gogishvili et al. 2009). Indeed, 

aCD28SA led to an expansion of the total percentage of CD4+ CD25+ cells in wt mice (Figure 

18A). In these mice, CD4+ CD25+ cells made up more than 8% of all dLN cells, a 200% increase 
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compared to the vehicle-treated controls. This increase was caused by an increase in the pro-

portion of CD25+ cells on CD4+ T-cells (Figure 18C). In aCD28SA-treated wt mice, 40% of 

CD4+ cells expressed CD25, compared to 15% in the vehicle controls (Figure 18C). To make 

sure that the CD25+ cells were not simply activated T-cells, FoxP3-expressing cells were assessed 

as well. And indeed, the total percentage of CD4+ CD25+ FoxP3+ cells rose equally (Figure 

18B). In fact, in wt mice, the proportion of CD4+ CD25+ cells expressing FoxP3 increased from 

80% to 90% (Figure 18D). In contrast, in CD103-/- mice, no increase in the overall frequency 

of CD4+ CD25+ FoxP3+ cells in response to aCD28SA was observed (Figure 18B). The relative 

percentage of CD25+ cells on CD4+ cells rose only to about 25% compared to the 15% of the 

vehicle controls (Figure 18C). At the same time, fewer CD4+ CD25+ cells expressed FoxP3 

(Figure 18D). Still, this should have led to an increase in total percentage of CD4+ CD25+ cells. 

However, at the same time, the size of CD4+ T-cell compartment diminished in comparison to 

wt mice (Figure 19). Of note, vehicle-treated wt and CD103-/- mice were identical in all param-

eters analyzed. 

 

 

Figure 18: Treg expansion in CD103-/- in response to aCD28SA is abrogated. 
Male wt and CD103-/- mice were injected with 200 µg aCD28SA. On d4 after treatment, dLN cells were 
prepared and stained for FACS analysis.  Single cells were gated via FSC-A and FSC-H. Dead cells were 
excluded via Zombie NIR™ Fixable Viability Kit. Data was raised in two independent experiments. 
A) Total percentage of CD4+ CD25+ cells. B) Total percentage of CD4+ CD25+ FoxP3+ cells. C) Pro-
portion of CD25+ cells on all CD4+ cells. D) Proportion of FoxP3+ cells on CD4+ CD25+ cells. (n = 5-
6; mean ± SEM; *** indicating significant difference, P < 0.001, unpaired Student‘s t test). 
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Figure 19: The CD4+ cell compartment decreases in CD103-/- mice in response to aCD28SA. 
Male wt and CD103-/- mice were injected with 200 µg aCD28SA. On d4 after treatment, dLN cells were 
prepared and stained for FACS analysis.  Single cells were gated via FSC-A and FSC-H. Dead cells were 
excluded via Zombie NIR™ Fixable Viability Kit. Data was raised in two independent experiments. (n 
= 5-6; mean ± SEM; ** indicating significant difference, P < 0.01, unpaired Student‘s t test). 
 

To summarize the above findings: flow cytometric analysis of the lymph nodes showed that 

aCD28SA treatment in wt mice led to a doubling of the Treg frequency. This translates to a 

doubling of the absolute Treg cell numbers, since total lymphocyte numbers were identical be-

tween treated CD103-/- mice and wt mice (Figure 17). In stark contrast, there was no increase 

in the frequency of CD4+ CD25+ FoxP3+ cells in CD103-/- mice.  

 

4.4.2 Expression level of CD25 and FoxP3 in response to aCD28SA 

Next, the expression levels of CD25 and FoxP3 were investigated. There is evidence that CD103 

expression is linked to higher FoxP3 expression levels (Lehmann et al. 2002; Hühn et al. 2004). 

Previous analysis of CD4+ CD25+ cells in lymph nodes and skin of CD103-/- mice under steady-

state condition revealed no difference in FoxP3 and CD25 expression compared to wt mice (see 

1.5) (Braun et al. 2015). However, CD4+ CD25+ cells in the challenged skin of CD103-/- mice 

showed diminished FoxP3 expression.  

In this setting, it was found that aCD28SA treatment led to an almost twofold increase in the 

CD25 mean fluorescence intensity (MFI) of CD4+ CD25+ cells in wt mice (Figure 20A). 

aCD28SA caused more CD4+ cells to express CD25, and these cells expressed CD25 much 

more strongly (Figure 20B). A similar observation was made looking at the FoxP3 MFI of CD4+ 

CD25+ FoxP3+ Tregs. The expression of FoxP3 doubled upon aCD28SA treatment, as indi-

cated by a twofold increase in MFI (Figure 20C/D). In stark contrast, no such findings were 

made in aCD28SA-treated CD103-/- mice. The increase in CD25 MFI was negligable (Figure 

20A). The FoxP3 upregulation was also much less pronounced. FoxP3 MFI increased only by 
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a factor of 1.3 (Figure 20C). Vehicle-treated mice from both strains were indistinguishable from 

each other in all regards. Differences became apparent only after Treg activation.  

The diminished FoxP3 upregulation of CD103-/- Tregs in response to aCD28SA supported the 

hypothesis that FoxP3 upregulation after Treg activation is impaired in CD103-/- mice. This 

finding is in line with the previous finding that FoxP3 expression was diminished in the skin of 

challenged CD103-/- mice (Braun et al. 2015). However, the fact that the overall response to 

aCD28SA was almost completely abrogated, suggested that not only the FoxP3 upregulation 

was impaired, but Treg activation itself.  

 

 

Figure 20: Tregs in CD103-/- mice fail to upregulate CD25 and FoxP3 in response to aCD28SA. 
Male wt and CD103-/- mice were injected with 200 µg aCD28SA. On d 4 after treatment, dLN cells were 
prepared and analyzed by FACS. Single cells were gated via FSC-A and FSC-H. Dead cells were excluded 
via Zombie NIR™ Fixable Viability Kit. Data was raised in two independent experiments.  
A) Ratio of CD25 MFI of CD4+ CD25+ cells from treated mice and vehicle control B) Overlay showing 
CD25 histograms of treated CD103-/- and wt mice in direct comparison. C) Ratio of FoxP3 MFI of 
CD4+ CD25+ FoxP3+ cells from treated mice and vehicle controls D) Overlay showing FoxP3 histo-
grams of treated CD103-/- and WT mice in direct comparison.  (n = 5-6; mean ± SEM; *** indicating 
significant difference, P < 0.001, unpaired Student‘s t test). 
 

4.4.3 aCD28SA preferentially expands CD103+ Tregs in wt mice 

CD103 is commonly viewed as a marker for Treg of an effector/memory phenotype (Chang et 

al. 2012; Hühn et al. 2004; Lin et al. 2009). In accordance, treatment with aCD28SA led to an 

increase in the proportion of CD103 expressing CD4+ CD25+ FoxP3+ cells in wt mice (Figure 

21 A). Thus, CD103 induction corresponds to an activated phenotype, as was expected after 

aCD28SA treatment. 
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Figure 21: aCD28SA treatment expands CD103+ Tregs in wt mice. 
Male wt and CD103-/- mice were injected with 200 µg aCD28SA. On d4 after treatment, dLN cells were 
prepared and stained for FACS analysis.  Single cells were gated via FSC-A and FSC-H. Dead cells were 
excluded via Zombie NIR™ Fixable Viability Kit. Data was obtained in two independent experiments.  
A) Proportion of CD103+ cells on CD4+ CD25+ FoxP3+ cells (n = 5-6; mean ± SEM; ** indicating 
significant difference, P < 0.01, unpaired Student‘s t test).
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5 Discussion 

 

5.1 Treg regulation of the sensitization phase 

5.1.1 Treg transfer prior to the sensitization phase  

In the first part of this thesis, the hypothesis was tested that part of the increased CHS suscep-

tibility of CD103-/- mice is caused by an impairment in the regulatory function of Tregs in the 

sensitization phase. Indeed, Tregs from CD103-/- mice were unable to suppress sensitization 

(4.1.3). 

The general importance of Tregs for the regulation of the sensitization phase has been well-

established. Antibody-mediated depletion of CD4+ T-cells prior to sensitization, which inevita-

bly includes depletion of CD25+ Tregs, aggravates the CHS response (Gocinski and Tigelaar 

1990; Kish et al. 2005). More selective targeting, either by CD25-directed antibodies or through 

the even more selective usage of hCD52 reporter mice, delivered similar findings (Kish et al. 

2005; Honda et al. 2011; Lehtimäki et al. 2012). In fact, Treg depletion enables the sensitization 

towards “weak” contact allergens, normally unable to elicit CHS, thus highlighting the im-

portance of Tregs for immunotolerance during sensitization (Vocanson et al. 2006). The re-

search so far suggests that this regulatory effect is mainly conveyed by Tregs located in the 

respective skin-draining lymph nodes, through cell contact-dependent mechanisms (Ring et al. 

2010b). A large subset  of Tregs in skin-draining lymph nodes (about 30%) actually expresses 

CD103 (Braun et al. 2015; Banz et al. 2003). Transfer of Tregs isolated from these lymph nodes 

has been shown to suppress sensitization in a dose-dependent manner (Ring et al. 2010b).  

We tested whether this suppressive effect depends on CD103 expression comparing the sup-

pressive effect of wt Tregs and CD103-/- Tregs transferred into wt mice previous to sensitization 

(4.1.1). Unexpectedly and in contradiction to a previous report (Ring et al. 2010b), the suppres-

sive impact of transferred wt Tregs could not be reproduced. This apparent discrepancy might 

be explained by the fact that Ring et al. (2010b) treated recipients of Treg transfers 4 days pre-

viously with a depletory CD25 antibody. This antibody leads to the depletion of the endogenous 

CD25+ Treg pool, which augmented the CHS response and at the same time amplified the 

impact of the 0.5*105 transferred wt Tregs. It is reasonable to assume that in the setup of the 

present study with the endogenous Treg pool intact 0.5*105 Tregs were too few cells to signifi-

cantly affect sensitization. This meant that either more cells have to be injected or the effect of 

0.5*105 Tregs would have to be augmented, analogous to the depletory CD25 antibody ap-

proach. 
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5.1.2 DEREG mice as recipients of Treg transfers 

The depletory CD25 antibody approach utilized by Ring et al. has some limitations in terms of 

specificity and efficacy. While CD25 is an excellent surface marker for regulatory T-cells, it is 

neither 100% sensitive nor completely specific (Chen and Oppenheim 2011). Regulatory T-cells 

are much better characterized by the transcription factor FoxP3 (Fontenot et al. 2003). Moreo-

ver, CD25 is not selectively expressed by regulatory T-cells, but also by activated cytotoxic CD8+ 

T-cells (Boyman and Sprent 2012), leading to co-depletion of these cells and, consecutively, a 

broader manipulation of the immune system. Furthermore, the depletion efficacy of the CD25 

antibody approach is fairly low, with a drop in the frequency of splenic CD4+ CD25+ cells from 

about 15% to only about 5% (Couper et al. 2007). This translates to a depletion rate of only 

66%. In light of these limitations, DEREG mice were chosen for the present study. 

BAC transgenic DEREG mice possess an additional modified FoxP3 gene locus with the gene 

for a DTR–eGFP fusion protein inserted into exon 1 (Lahl et al. 2007). Consequently, cells 

expressing FoxP3 inevitably coexpress the DTR-eGFP construct, rendering them selectively 

vulnerable to the cytotoxic effects of DT. Thus, administration of DT to these mice allows 

targeted and efficient depletion of FoxP3+ regulatory T-cells, which resulted in the use of these 

mice in many studies (Klages et al. 2010; Teng et al. 2010; Chenna Narendra et al. 2018).  

However, there are clear limitations to this approach as well: A small percentage of FoxP3+ cells 

(2-5%) is DT resistant, limiting the depletion efficiency (Lahl and Sparwasser 2011; Mayer et al. 

2014). The present study confirmed these findings (4.1.2). While a high depletion efficacy of 

about 95% was reached, about 5% of FoxP3-expressing cells were DT resistant. It can be argued 

that the incomplete Treg depletion is actually an advantage, since complete depletion causes a 

devastating autoimmune disease (Kim et al. 2007), which would limit the practicability of such 

a mouse model.  

In terms of timing, the depletion efficacy peaked at about 24 h after DT injection (4.2.2). Since 

the impact of transferred Tregs should in theory be greatest when the endogenous Treg num-

bers are at their lowest, sensitization should best be carried out 24 hours after DT administra-

tion. Furthermore, Treg migration to the draining lymph nodes peaks at 24 hours after injection 

into the bloodstream (Ring et al. 2006). Hence, carrying out DT injection and Treg transfer 

about 24 hours before sensitization should ensure maximal suppressive impact. 

In confirmation of a study by Lehtimäki et al. (2012), Treg depletion prior to sensitization caused 

a massively increased CHS response (4.2.2). In contrast to Lehtimäki et al. (2012) however, the 

transiency of the depletory effect was exploited and the time interval between sensitization and 
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challenge was stretched to 12 days (4.2.2). This allowed endogenous Tregs to recover before 

elicitation of the effector phase. Lehtimäki et al. (2012) initiated the effector phase 6 days after 

DT application. At that point the CD4+ FoxP3+ were still down by more than 50% (Lehtimäki 

et al. 2012), meaning that Treg depletion potentially affected not only sensitization, but also the 

effector phase. Whether this had a measurable effect cannot be discerned from the data. The 

ear-swelling responses in the present and their study cannot be directly compared because of 

methodological differences. Lehtimäki et al. depicted absolute ear thicknesses in contrast to the 

difference in ear thickness between a vehicle-treated and a challenged ear. 

Strikingly, using the standard CHS protocol the resulting ear inflammation was so severe that 

the decline of the ear-swelling response disappeared (See 4.2.2). No resolution of the inflamma-

tion towards the end of the effector phase was observed. Contrary to this, in the study by 

Lehtimäki et al. the ear-swelling response decreased visibly at the 96 h mark. This discrepancy 

can be explained by lower OXA concentration of 1% for sensitization and 0.3% for challenge 

utilized by Lehtimäki et al. (Lehtimäki et al. 2012). Because of this lack of resolution, and the 

excessive ear scaling which prevented reliable ear thickness measurement, the OXA concentra-

tions for both sensitization and challenge were lowered (4.2.2). Indeed, the CHS response to-

wards 0.1%.1% OXA, while still being strongly aggravated, showed the normal bell-like shape, 

indicative of resolving inflammation. Furthermore, the excessive ear scaling disappeared. 

 

5.1.3 Tregs in CD103-/- mice fail to suppress sensitization 

By using Treg-depleted DEREG mice to augment the impact of 0.5*106 transferred Tregs, in 

conjunction with the adapted CHS protocol (see 3.5.2), the suppressive effect of wt Tregs on 

sensitization was confirmed (Ring et al. 2006; Ring et al. 2009). At the same time, with wt Tregs 

as positive control, Tregs from CD103-/- mice were unable to suppress sensitization (4.2.3).  

Going back to the initial observation that prompted this thesis:  This result shows that part of 

the increased CHS susceptibility of CD103-/- mice can be attributed to an impairment in the 

regulation of the sensitization phase by Tregs. These findings are not totally surprising and 

without precedent. In a murine model of inflammatory bowel disease only CD103+ CD25+ 

Tregs were able to control the disease, whereas CD103- CD25+ Tregs did not show any protec-

tive effects whatsoever (Banz et al. 2003). Other studies similarly support a model in which the 

CD103 expressing CD25+ Tregs convey the bulk of the regulatory function in vivo and in vitro 

(Lehmann et al. 2002; Hühn et al. 2004). These studies, however, all presented circumstantial 

evidence only. Lehmann et al. and Banz et al. compared the suppressive capacities of sorted 

CD103+ Tregs and CD103- Tregs, therefore not showing a direct functional relevance of CD103 
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(Banz et al. 2003; Lehmann et al. 2002). As a matter of fact, in a murine colitis model CD103-/- 

Tregs ameliorated the colitis of recipient mice as proficiently as wt Tregs, implying that CD103 

expression is actually dispensable for Treg function, at least in this context (Annacker et al. 

2005). This gave rise to the concept that CD103 is merely a marker for an activated Treg phe-

notype. CD103+ Tregs in skin-draining lymph nodes have emigrated from the skin (Tomura et 

al. 2010). These migratory CD103+ Tregs displayed particularly strong suppressive activity both 

in vitro and in vitro, further suggesting that CD103 is acquired upon activation in the periphery.   

This study provides evidence that CD103 is not simply a marker for activated Tregs, but also 

relevant for their regulatory function during sensitization. Interestingly, a recent study found 

that CD103-/- mice displayed aggravated airway inflammation in an asthma model (Fear et al. 

2016). Unfortunately, this study did not investigate Treg functions in this context.  

A causal link between CD103 deficiency and impaired function of Tregs has not been proven. 

Treg dysfunction could, in principle, be caused indirectly by other ramifications of CD103 de-

ficiency, such as altered Treg development. Again, CD103-/- Tregs have been shown in other 

contexts to be fully functional (Annacker et al. 2005). Establishing a causal relation would re-

quire functional inhibition of CD103. For example, an inhibitory antibody could be adminis-

tered to isolated wt Tregs prior to transfer. If CD103 inhibition is able to abrogate the suppres-

sive effect of wt Tregs, this would underscore a causal link between CD103 expression and 

impaired suppression. CD103 knockdown in isolated wt Tregs would be another option.  

Assuming that CD103 is directly involved in Treg regulation during sensitization, what are pos-

sible mechanisms? A role for CD103 in the retention of T-cells in general has been shown in 

several studies (Hardenberg et al. 2018). For Tregs, however, it has only been shown in leish-

mania skin infection (Suffia et al. 2005). Still, altered retention is an obvious candidate. As 

CD103 is almost uniformly expressed on dermal Tregs, a role for dermal retention appears 

likely. However, no differences in the frequencies of dermal CD4+ CD25+ Tregs between wt 

and CD103-/- mice under both steady-state and inflammatory conditions were found (Braun et 

al. 2015). Importantly, involvement of dermal Tregs in the regulation of the sensitization phase 

has not been described. The research so far shows that Treg regulate sensitization primarily 

through cell contact-dependent mechanisms in the dLN (See 1.3). Accordingly, impaired or 

delayed accumulation of CD103-/- Tregs in the dLN could mediate the impaired function. As 

the suppression of sensitization directly depended on the numbers of Tregs within the lymph 

nodes (Ring et al. 2010b), decreased accumulation would result in decreased suppressive capac-

ity. However, no alterations in Treg counts in the skin dLN of CD103-/- mice were detected in 

both steady-state and inflammatory conditions (Braun et al. 2015). Furthermore,  lymph node 
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engraftment of wt Tregs and CD103-/- Tregs after injection into SCID mice was found to be 

identical, albeit in a model of chronic leishmania skin infection (Suffia et al. 2005). This left only 

the possibility that, while CD103-/- Tregs eventually settle equally well in the draining lymph 

nodes, they might do so at a slower pace. This could be investigated in future studies by com-

paring the draining lymph node migration kinetics of wt and CD103-/- Tregs. 

 

5.2 Treg regulation during the effector phase 

Similar to the sensitization phase, Tregs are generally relevant for the regulation of the effector 

phase. Their depletion in the effector phase aggravated ear inflammation (Tomura et al. 2010; 

Lehtimäki et al. 2012). Vice versa, transfer of exogenous Tregs prior to challenge suppressed the 

ear-swelling response (Ring et al. 2006). The role of CD103 in this respect was studied by com-

paring the capacity of transferred wt and CD103-/- Tregs to suppress the challenge reaction. 

Indeed, as seen in the sensitization phase, transferred wt Tregs exerted this function while 

CD103-/- Tregs did not (4.3).  This suggested that Treg dysfunction in both phases contributes 

to the increased CHS susceptibility of CD103-/- mice.  

The research so far found that Tregs regulate sensitization and effector phase through funda-

mentally different modes of action. The regulation of the sensitization phase was shown to be 

mediated mainly through cell contact-dependent mechanisms (Ring et al. 2010b), whereas the 

regulation of the effector phase was mediated by soluble factors (Ring et al. 2010a). The present 

study suggests that CD103-dependent suppression is relevent in both phases. Once again, this 

must be interpreted with caution, since no direct causal link between CD103 deficiency and 

Tregs function was established. Moreover, the fact that Tregs from CD103-/- mice were dys-

functional in both phases could be seen as evidence for a broader CHS-independent dysfunction 

of Tregs in CD103-/- mice. This will be discussed in 5.4. 

How could CD103 mediate the suppressive effect of Tregs in the effector phase? In this and 

other studies (Tomura et al. 2010; Lehtimäki et al. 2012), wt Tregs were primarily involved in 

the regulation of the later stages of the effector phase. This coincides with a higher frequency 

of FoxP3+ cells in the skin (Lehtimäki et al. 2012). Lehtimäki et al. found that 24 h after challenge 

about 15% of T-cells in the skin stained positive for FoxP3, whereas this number increased to 

more than 40% at 96 h after challenge. This suggests that Tregs facilitate the resolution of in-

flammation by accumulating in the challenged skin during the effector phase. 

Of note, so far the investigations on the mechanisms of Treg regulation in the effector phase 

have shown no necessity for direct Treg presence in the skin. Instead, they showed that the 
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suppressive effect is independent of Treg localization and is rather mediated by soluble factors, 

most importantly IL-10 (Ring et al. 2006). Ring et al. examined whether transferred Tregs infil-

trate the inflamed skin in order to exhibit their regulatory function in situ (Ring et al. 2006). 

They tried tracing injected Tregs with the PKH26 dye but failed to detect any PKH26+ cells in 

the ears at up to 48 h post challenge. However, the observation that transferred Tregs home to 

the skin questions the sensitivity of their approach (Dudda et al. 2008; Suffia et al. 2005).  

 

5.3 The role of CD103 for dermal Treg accumulation  

Impaired accumulation would plausibly explain the inability of Tregs in CD103-/- mice to sup-

press the effector phase. In general, CD103 could control Treg accumulation through regulating 

either recruitment to or retention within the skin. Skin resident Tregs almost uniformly express 

CD103, suggesting that it does play some role (Braun et al. 2015; Banz et al. 2003). For CD8+ 

T-cells, experimental evidence argues against a role of CD103 for cell recruitment (Hardenberg 

et al. 2018). Rather, CD103 was crucial for long-term retention of cells in tissues. Mackay et al. 

conclusively showed this in herpes simplex skin infection (Mackay et al. 2013). CD103 compe-

tent and CD103 deficient T-cells infiltrated the epidermis equally well, but over time the ratio 

of cells started to skew heavily towards the CD103 competent population. 

The present study investigated whether cutaneous Tregs numbers were diminished in CD103-/- 

mice under steady-state and inflammatory conditions in the effector phase, but found no ab-

normalities up to 24 hours after challenge (Braun et al. 2015). However, based on the findings 

of Lethämkäi et al., later timepoints might have yielded different results. 

In the same study, our group proposed a role of CD103 for Treg accumulation in challenged 

skin (Braun et al. 2015). When CHS was elicited in radiated Balb/c mice reconstituted with a 

1:1 mixture of bone marrow from wt (Thy1.1+) and CD103-/- (Thy1.2+) donors, the ratio of 

Thy1.1+ and Thy1.2+ was skewed significantly towards wt Tregs at 96 h post challenge (Braun 

et al. 2015). Thus, Tregs in CD103-/- mice are impaired in their accumulation in challenged skin. 

However, this being a correlation does not prove whether it is a direct consequence of CD103 

deficiency. This aspect needs to be addressed in future studies.  

A direct role of CD103 for the retention of Tregs in the dermis has been shown in chronic 

leishmania infection (Suffia et al. 2005). It was unclear whether these findings hold true in the 

context of CHS. The previous study examined the role of CD103 for dermal retention by in-

jecting CFSE stained CD4+ lymphocytes directly in the dermis (Suffia et al. 2005). After 24 h, 

CD4+ lymphocytes from CD103-/- mice were not retained in the dermis, neither in the steady-
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state nor during chronic leishmania skin infection. Furthermore, retention of CD4+ lymphocytes 

from wt mice was abrogated in the presence of a CD103-blocking antibody, showing that 

CD103 is required for intradermal retention of CD4+ cells. However, this approach was based 

on multiple intradermal injections of precise cell numbers. In our experience, reliably injecting 

precise cell numbers intradermally is very difficult and prone to errors. Thus, in the present 

study a 1:1 mix of CD103-/- and wt cells stained with different tracing dyes was injected. This 

allowed to analyze change of the ratio of the two cell types. No difference in dermal retention 

was detected after 24 h. Future investigations should address later time points. A role of CD103 

for dermal retention always raises the question of the interaction partner, since E-cadherin as 

the only known CD103 ligand is not expressed in the dermis. Indeed, there is evidence for 

another yet unidentified CD103 ligand, not only on keratinocytes (Jenkinson et al. 2011; Brown 

et al. 1999), but also with the dermal compartment  

 

5.4 Impaired Treg activation in CD103-/- mice 

Research preceding this thesis found the FoxP3 expression levels of dermal Tregs in CD103-/- 

mice to be diminished during the effector phase compared to wt mice, while no such discrep-

ancies were observed in the steady-state (Braun et al. 2015). CD103 expression and FoxP3 ex-

pression have long been known to be correlated. CD103+ Tregs express higher FoxP3 levels 

than their CD103- counterparts (Hühn et al. 2004; Lehmann et al. 2002). The increased FoxP3 

and CD103 expression levels are commonly regarded to be part of an activated Treg phenotype. 

It is possible that CD103 is involved in FoxP3 upregulation after Treg activation. Alternatively, 

decreased FoxP3 expression could be evidence of impaired Treg activation. Since the level of 

FoxP3 expression is linked to their suppressive function (Wan and Flavell 2007), this could 

provide another explanation for the increased CHS susceptibility of CD103-/- mice. This hy-

pothesis was investigated by comparing the response of Tregs towards a superagonistic CD28 

antibody both in wt and CD103-/- mice (4.4). This aCD28SA antibody induces TCR-independ-

ent T-cell activation through bivalent crosslinking of CD28 molecules, (Dennehy et al. 2006). 

This TCR-independent activation causes preferential activation and expansion of the CD25+ 

Treg subset (Lin and Hunig 2003). It does not induce conversion of CD25- T-cells, but rather 

proliferation of preexisting CD25+ cells (Gogishvili et al. 2009). This unique ability to preferen-

tially manipulate the Treg compartment led to its application in several murine autoimmune 

disease models (Hunig and Dennehy 2005). Promising preclinical results led to a phase 1 trial, 

which unfortunately ended in a fatal cytokine storm in all six volunteers (Suntharalingam et al. 

2006).   
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First, it was confirmed here that there were no differences in Treg frequency and Treg pheno-

type between naive wt and CD103-/- mice (4.4). Likewise, the proposed effect of aCD28SA in 

wt mice was confirmed. The Treg compartment in wt mice expanded massively and at the same 

time Tregs upregulated CD25 and FoxP3. Contrary to that, Tregs in CD103-/- mice did not only 

fail to upregulate FoxP3, as was the hypothesis, but also failed to upregulate CD25 and to pro-

liferate (4.4). Strikingly, response to aCD28SA was almost completely abrogated in CD103-/- 

mice. Once again, it was not proven that CD103 deficiency is causally linked to the abrogated 

aCD28SA response. For example, CD103 deficiency could have led to compensatory changes 

in other molecules which mediate the abrogated response. To show a direct role of CD103, the 

response of wt mice to aCD28SA could be tested in the presence of a blocking CD103 antibody. 

The abrogated aCD28SA response in CD103-/- mice was viewed as a failure of the antibody to 

fully activate Tregs. It is conceivable that aCD28SA on its own only partly activates Tregs and 

that full activation requires CD103 signaling as a second (costimulatory) signal, as has been 

suggested in a previous study (Russell et al. 1994). In general, outside-in signaling has been 

described for CD103 on T-cells in a variety of settings (Hardenberg et al. 2018). For example, 

CD103/E-cadherin interaction has been shown enhance the cytolytic ability of cytotoxic T-cells 

through triggering the polarization of lytic granules to the immunological synapse (Le Floc'H et 

al. 2007). Similarly, CD103/E-cadherin interaction could enhance Treg activation. However, so 

far is merely a hypothesis derived from correlative evidence. This proposed function of CD103 

for Treg activation would not be limited to aCD28SA stimulation, as it was found in the present 

study that dermal Tregs in CD103-/- mice show diminished FoxP3 expression during the effector 

phase. As mentioned before FoxP3 expression correlates with Treg activation. This diminished 

FoxP3 expression could also be explained through the proposed impairment in Treg activation. 

Impaired Treg activation would also provide a mechanism for the Treg dysfunction during both 

the sensitization and the effector phase in CD103-/- mice. As a matter of fact, Treg activation 

was shown to be crucial for the regulation of the sensitization phase and the effector phase by 

Tregs (Ring et al. 2010a). It must be noted that other studies found that Tregs from CD103-/- 

mice are fully capable of suppressing T-cell proliferation in vitro (Annacker et al. 2005; Suffia et 

al. 2005). Moreover, Tregs from CD103-/- mice suppressed autoimmune colitis to the same de-

gree as Tregs from wt mice (Annacker et al. 2005). However, based on our findings the detri-

mental effects of CD103 deficiency on Treg function would only become apparent in the con-

text of in vivo activation. Experiments that examine the functionality of in vivo activated CD103-

/- Tregs might shed further light on this. Tregs isolated from aCD28SA-treated wt and CD103-

/- mice could be compared in an in vitro suppression assay.
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6 Summary 

Research leading up to this study found CD103-/- mice to display an increased susceptibility to 

allergic contact dermatitis. The aim of this study was to determine whether CD103 deficiency 

causes an impairment in the regulatory function of Tregs and to investigate possible mecha-

nisms.  

At first it was studied whether Treg function was impaired during the sensitization phase. For 

that purpose, Tregs from wt and from CD103-/- mice were injected into Treg-depleted DEREG 

mice prior to sensitization. It was found that Tregs from wt mice successfully suppressed sen-

sitization, whereas Tregs from CD103-/- mice failed to do not.   

Next, CD103-/- Tregs were examined in the effector phase. Tregs from wt mice and from 

CD103-/- mice were transferred into Rag-1-/- mice which were simultaneously reconstituted with 

OXA draining lymph node cells to allow the induction of ACD. After elicitation of the effector 

phase, Tregs from CD103-/- mice were found to be unable to suppress the effector phase, par-

ticularly the later stages.  

Impaired Treg retention in the skin due to CD103 deficiency is a possible mechanism that could 

mediate the observed dysfunction. When investigating T-cell retention in the dermis no differ-

ence in dermal retention between CD103 competent and CD103 deficient lymphocytes was 

found 24 hours after intradermal injection. However, this does not exclude an effect at later 

time points, which were not investigated in this thesis.  

In the last part of this thesis it was investigated whether FoxP3 upregulation after Treg activation 

is disrupted in CD103-/- mice. Wildtype and CD103-/- mice were treated with the superagonistic 

CD28-directed antibody, D665, a known activator of regulatory T-cells. Strikingly, not only 

FoxP3 upregulation, but the overall response to the antibody was abrogated in CD103 -/- mice. 

In CD103-/- mice lymph node Tregs failed to expand and adequately upregulate CD25 and 

FoxP3. This suggests that Treg activation in CD103-/- mice is more broadly impaired.  

Taken together, this study showed that Tregs from CD103-/- are dysfunctional in both the sen-

sitization and the effector phase explaining the aggravated CHS response of CD103-/-mice. Fur-

thermore, evidence for an impairment of the ability of Tregs in CD103-/- mice to be activated 

was found. These findings imply that Tregs in CD103-/- mice are fundamentally dysfunctional. 

Further experiments are needed to elucidate how CD103 controls Treg function. This study 

shows that CD103 is not only a marker for a Treg subset, but also of significance for Treg 

function in the context of allergic contact dermatitis.  
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7 Appendix 

 

7.1 Supplementary data 

 

Figure A1: Treg transfers in wt mice prior to sensitization, results of three independent experi-
ments.  
CD4+ CD25+ regulatory T-cells (Tregs) were isolated from skin-draining lymph nodes (skin dLN) of wt 
(wt Tregs) and CD103-/- mice (CD103-/- Tregs) and injected into recipient wt mice (0.5*106 Tregs per 
mouse). The standard CHS protocol was initiated the next day through sensitization with 100 µl 3% 
OXA. After 5 days, the right ears were challenged with 20 µl 1% OXA, while the left ears were treated 
with 20 µl of vehicle (ethanol). Ear thickness measurements were performed by a blinded experimenter. 
Data points represent normalized differences in ear thickness between the OXA-treated and the vehicle-
treated ears (mean ± SD). A) vehicle n = 3; wt Tregs n = 6; CD103-/- Tregs n = 2 B) vehicle n = 3; wt 
Tregs n = 3; CD103-/- Tregs n = 1 C) vehicle n = 3; wt Tregs n = 2; CD103-/- Tregs n = 2. 
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Figure A2: Short-term Treg-recovery kinetic after a single injection of DT 
DEREG mice were injected with 1 µg of DT. After different time intervals the mice were killed and the 
frequency of CD25+ FoxP3+ on living CD4+ cells in dLN cell suspensions was analyzed by flow cytom-
etry. A vehicle-treated DEREG mouse was used to determine the baseline value. The CD25+ FoxP3+ 
cell frequency of the CD4+ subset is depicted (n=1 per timepoint). A pre-gate was set on living cells.
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