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Abstract

Standard clinical magnetic resonance imaging uses data sampled at the Nyquist
rate which limits it to frame rates of 1-4 frames per second. Over the past decade
different methods for the reconstruction of images from sub-Nyquist sampled
data have been proposed, raising frame rates beyond 30 frames per second and
opening the door to real-time cardiac imaging, the study of speech and many
more. Practically all such methods exploit spatio-temporal structure in the data
as prior knowledge to an inverse problem.
This work combines the method of non-linear inversion reconstruction and mo-
tion estimation by an optical flow, a model for in-plane motion that is frequently
used in computer vision tasks. The model is quantitatively compared against sim-
pler methods based on temporal finite difference schemes in simulations and real
cardiac data.
Adding an optical flow constraint to the reconstruction’s cost functional is shown
to be advantageous in situations with purely in-plane motion while failure of the
model is observed in the form of artifacts and blur during through-plane motion.
A point that got little attention in related literature. The model’s limits are exam-
ined in detail and pointers to possible extensions to overcome themare given. Fur-
ther, a simple centered finite temporal difference constraint for a batch of frames
is shown to provide better image quality than a previously established scheme
that considers only the backward temporal difference at a single frame.
As in previous works, non-linear inversion reconstruction considers at most a
small batch of frames for every time point. The method does not require availabil-
ity of the entire image data series at any point during computation. It is thus con-
ceptually capable of providing images in real-time simultaneously with the data
acquisition, a prerequisite for interactive MRI.
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1Introduction

Magnetic resonance imaging (MRI) offers non-invasive patient scanning with a
large field of view (FOV), deep sample penetration and without damaging radia-
tion. A rich set of contrasts allows for highlighting different soft tissue types de-
pending on their fat and water content as well as visualizingmetabolic activity. On
the other hand, MRI suffers from low frame rates on the order of one frame per
second (fps), depending on spatial resolution, which leads to long imaging times.
Patients may be required to lie still for several minutes and sometimes hold their
breath for an extended interval, lest motion artifacts render the images useless.
Low patient throughput and associated higher costs per exam have spurred re-
search in accelerating MRI. As MRI hardware reached electronics- and physiology
related optimization limits data undersampling below the Nyquist rate in conjunc-
tion with advanced image reconstructionmethods emerged as a route for further
acceleration [1].
In recent years, MRI has been demonstrated at frame rates upward of 30 fps [2],
allowing imaging of the heart in real-time. Established methods thus far relied on
ECG synchronized data sorting after acquisition (gating) to form synthetic heart
beats (cine imaging [3]), whereby aperiodic data is discarded which in turn pre-
cludes examinations of heart arrhythmia. Use of ECG or finger pulse triggers for
data sorting also lengthens and complicates MRI exams and is not always accu-
rate [4]. Methods for self-gating using only the acquired signal are still an active
field of research.
The leading idea in real-time MRI (rt-MRI) is that data of anatomic motion exhibits
strong redundancy along the time dimension. That is, neighboring frames differ
little from each other. Consequently, updating information on an imaged object’s
motion state should require only a subset of the data that constitutes a whole
frame. The situation bears resemblance to data compression and decoding in
online video streaming. Unlike streaming, however, MRI is hardware constrained
to encode 2D data as a set of lines in an incompletely filled 2D Fourier-space in-
stead of using efficient, layered spatio-temporal sparsity transforms [5]. Another
challenge is that artifacts from flawed decoding must not mislead diagnosis.
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Image reconstruction methods that exploit temporal continuity can be divided
into those processing the entire series in one large computation after acquisition
was finished and those that start immediately and simultaneously with the acqui-
sition and use only a limited amount of the most recent data to complement the
current frame’s incomplete data. The former method category is referred to as
offline-reconstructions. It greatly benefits from the fact that long signal trains
have a richer temporal structure than short ones. This work deals with the lat-
ter category of online-reconstructions which in principle enables interactive MRI,
provided image reconstruction with little delay to the acquisition is feasible.

Another key point of this work is to combine the use of the temporal continuity
property with parallel imaging, which refers to exploitation of data redundancy
between multiple parallel receive coil channels. To that end, non-linear inversion
reconstruction (NLINV) [6] is complemented with different motion priors. A focus
here is to compare the quality of reconstructions from undersampled data with
regard to image artifacts and temporal fidelity in a quantitative fashion against
fully sampled reference images in simulated and human data. The applicability
of an optical flow prior - a popular concept in computer vision [7] - to connect
neighboring frames is of special interest. While a first effort to combine NLINV
with optical flow in the context of cardiac imaging has previously been reported
[8], an assessment of robustness of this motion prior to model violations is still
missing and potential improvements remained unexplored.
Another focus of the present work is to compare the optical flow prior to simpler
temporal finite difference schemes, an established and a proposed one. The effort
to improve and confirm temporal fidelity ismotivated by the fact that temporal and
spatial resolution are inherently traded against each other in MRI.

The structure of this thesis is as follows: Chapter 2 revisits the signal generation
mechanism in MRI - without detailing on contrast generation - and why it is slow.
It then goes on to parallel imaging and how different undersampling schemes
influence image quality before reviewing iterative image reconstruction from un-
dersampled data. Chapter 3 covers the integration of motion priors, notably opti-
cal flow, in the cost functional of the reconstruction problem, while the remaining
chapters cover methods, results and a discussion wrapped up at the end by a
summary.
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2Parallel Magnetic Resonance
Imaging

2.1 Basic Data Acquisition and -Description

Signal and Image Formation

MRI extends the technique of nuclear magnetic resonance spectroscopy (NMR)
with a 3D spatial encoding mechanism. The principle of NMR and its extension
to MRI is extensively covered in Brown et al. [9]. Following is a short summary
of the points most relevant to this work. in brief, NMR probes the spin magnetic
dipole moment - or simply, spin - of protons in atomic nuclei with a series of radio
frequency pulses (rf-pulses). By virtue of the Pauli-exclusion-principle this quantity
is non-zero in chemical elements with an odd proton count.
An ensemble of spins subjected to an external magnetic field will align with it in
two energy states - parallelly (ground state) and anti-parallelly (excited state) to the
field lines. Each spin is in a quantum superposition of both. The two Eigenstates
are separated by an energy gap in the radio-frequency regime calculated as

Δ𝐸 =  h𝜔𝐿 =  h𝛾𝐵0, (2.1)

where 𝛾 is the element-dependent gyromagnetic ratio, 𝐵0 the external magnetic
field’s strength and 𝜔𝐿 - the Larmor frequency - is the resonance frequency of the
spins associated with the energy gap. An incident 𝜔𝐿-pulse will excite spins from
the ground state and create phase-coherence amongst all ensemble spins. The
phase coherent ensemble then acts as a macroscopic magnetic dipole moment
- referred to as magnetization - whose behavior can be understood in terms of
classical physics. In clinical MRI 𝜔𝐿 is tuned to the resonance frequency of hydro-
gen (≈42.58 MHz/T in bulk water) - the most abundant element with odd proton
count in human tissue as well as the one most sensitive to external fields, owed
to a lack of shielding electrons.
Classical theory formalized in the Bloch equations now describes the magnetiza-
tion as rotating with frequency 𝜔𝐿 in a plane transverse to the external magnetic
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field while the rf-pulse is on. By virtue of Faraday’s law this induces a voltage sig-
nal in nearby receive coils that is proportional to the proton spin density. After
the rf-pulse is switched off the signal starts to decay. First, because phase coher-
ence is lost amongst the spin ensemble on a time scale 𝑇2 as individual spins drift
in Brownian motion into slightly different chemical environments (fat, bulk water)
with different local field strengths. Also, scanner field inhomogeneities further
add to spin dephasing on a time scale 𝑇 ∗

2 < 𝑇2. Second, spins relax back into the
equilibrium ground state through random collisions on a time scale 𝑇1 > 𝑇2. 𝑇 ∗

2
can lie below ten milliseconds while 𝑇2 and 𝑇1 range from tens of milliseconds to
seconds. The duration depends on tissue composition and thus opens a door to
tissue specific image contrast.
Given that spins have no long-range interaction with each other the received time
dependent signal 𝑠(𝑡) is a linear superposition of all rf-wave responses of spin
ensembles from all positions 𝑟𝑟𝑟 in the sampled volume Ω

𝑠(𝑡) ∝ ∫
Ω

𝑑𝑟𝑟𝑟𝑐(𝑟𝑟𝑟)𝜌(𝑟𝑟𝑟)e𝑖(𝜔𝐿𝑡+𝜙(𝑟𝑟𝑟,𝑡)) + 𝜂(𝑡) . (2.2)

Here 𝑐 is the receive coil sensitivity field, 𝜌 is the anatomic image and 𝜂 is Gaussian
white noise. Signal decay has been neglected in eq. 2.2 assuming signal readout
time is short compared to 𝑇 ∗

2 which is the case when using a fast low angle shot
(FLASH) pulse sequence [10].
The rf-pulse played out over a finite interval 𝜏 will not have a 𝛿 frequency distri-
bution and spin ensembles in different chemical environments will have slightly
shifted Larmor frequencies. Spins may thus acquire an additional phase 𝜙 with
respect to the reference phase

𝜙(𝑟𝑟𝑟, 𝑡) = −
𝑡

∫
0

d𝑡′ 𝜔(𝑟𝑟𝑟, 𝑡′). (2.3)

Spatial variation of the phase is the key to spatial encoding. The simplest way is
to introduce linear magnetic field gradients𝐺𝐺𝐺 so the Larmor frequency is linearly
varied

𝜔(𝑟𝑟𝑟, 𝑡) = 𝜔𝐿 +𝛿𝜔(𝑟𝑟𝑟, 𝑡) 𝑒𝑞.2.1= 𝛾(𝐵0 +𝛿𝐵(𝑟𝑟𝑟)) (2.4)

𝛿𝐵(𝑟𝑟𝑟, 𝑡) = 𝑥𝐺𝑥(𝑡)+𝑦𝐺𝑦(𝑡)+𝑧𝐺𝑧(𝑡). (2.5)

Writing the gradient trajectory sampled by the scanner as

𝑘𝑘𝑘(𝑡) = 𝛾
2𝜋

𝑡

∫
0

d𝑡′𝐺𝐺𝐺(𝑡′) (2.6)
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the phase term in eq. 2.2 can be re-expressed to yield the finalMRI signal equation
for a FLASH sequence in following convenient form

𝑠(𝑘𝑘𝑘(𝑡)) ∝ ∫
Ω

𝑑𝑟𝑟𝑟𝑐(𝑟𝑟𝑟)𝜌(𝑟𝑟𝑟)e−2𝜋𝑖𝑘𝑘𝑘(𝑡)𝑟𝑟𝑟 + 𝜂(𝑡). (2.7)

For slice-wise imaging signal generation can be reduced to a slice Ω𝑆 by switch-
ing on a gradient along the slice selection direction during excitation and before
signal acquisition. This way only spins from the slice where 𝛿𝐵 = 0 get excited.

In essence reading out the signal over period 𝑡 with the gradients fixed along
a certain direction corresponds to sampling a line of frequencies in the spatial
frequency domain. Sampling an entire image entails repeated NMR experiments
with different gradient settings each time. Once the entire𝑘𝑘𝑘-space (Fourier-space)
of a frame has been sampled, the product 𝜌 ⋅𝑐 can be obtained by inverse Fourier
transformation of the signal. Owed to the smoothness of the coil sensitivity field
𝑐 this already reveals the anatomic structure.
It is important to note that even though the spin density is in principle real valued,
image 𝜌 and coil 𝑐 are complex valued quantities. Aforementioned phase inhomo-
geneities due to different chemical environments could be factored out to sepa-
rate maps but are here considered as part of 𝜌. Apart from physical processes,
phase is also created as signal reception in the coil happens simultaneously on
two orthogonal channels for better signal to noise ratio (SNR).

FLASH is a gradient echo sequence (GRE), and while not the only technique it
is the fastest and therefore preferred where high frame rates are desired. GRE
means spin coherence is destroyed following the excitation pulse and refocused
to a signal echo at echo time TE which is determined by the gradient timing. The
gradients remain on after TE until phase coherence is again destroyed.
Each 𝑘𝑘𝑘-space line acquisition follows the same pattern and takes upward of 2 ms.
For an image of size 1282-2562 px this adds up to ≈0.3-1 seconds.
Further acceleration of line-samplingmeans even less sampling time will be spent
per 𝑘𝑘𝑘-space pixel and consequently, the SNR will deteriorate. Coarser binning of
𝑘𝑘𝑘-space pixels while sampling time stays constant will increase the SNR but at the
expense of spatial resolution. SNR, spatial and temporal resolution are intrinsically
traded against each other.
Another limiting factor for the scanning speed is that too fast magnetic field gradi-
ent switching will cause patient discomfort through peripheral nerve stimulation
and thus lower acceptance in clinical practice.
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Parallel Imaging

One way to increase SNR while circumventing a trade-off in resolution is through
receiver coil design. Early designs used a single receive coil that is easy to manu-
facture and collects signals from depth as far as its diameter. Deep reception of
large coils also means a lot of background noise will enter the image.
A more sophisticated alternative is to use an array of smaller coils [11] that fit
closer to the sample to combine better surface SNR with good volume coverage.
Coil electronics are setup to decouple the individual channels asmuch as possible.
Noise is approximately independent but the signal is overlapping and redundant
between channels. Combining the individual channel images - for instance in a
root sum square sense - then yields a better quality image.

Figure 2.1: Illustration of parallel imaging: Three simulated channels of a Shepp-Logan phantom
(radially sampled) and root sum squares composition from a total of eight channels.

By introducingmultiple channels the coil sensitivity map 𝑐(𝑟𝑟𝑟) in eq. 2.7 becomes a
vector 𝑐𝑐𝑐(𝑟𝑟𝑟). Modern receive coils in clinical use have up to 128 channels. SNRmay
vary from less than 1 to double digits depending on the exact position of the coil.
To make data amounts manageable on a computer data compression by PCA into
virtual channels is common.

2.2 Data Undersampling

As sequence and hardware optimization has reached electronics- and physiology
related limits further acceleration for motion capture relies on 𝑘𝑘𝑘-space undersam-
pling. Measuring only every 𝑛th 𝑘𝑘𝑘-space line with respect to the Nyquist limit ([9],
ch. 12) yields a speed up of a factor 𝑛. However, any image sampled below the
Nyquist rate and reconstructed via direct Fourier inversion will suffer from image
artifacts that depend on the geometry of the sampling trajectory. For successful
reconstruction of diagnostic quality images additional prior knowledge needs to
be incorporated into the reconstruction to fill the 𝑘𝑘𝑘-space gaps (section 2.3).

Cartesian Sampling

Cartesian sampling as of now is the clinical standard. The samples are collected in
parallel lines by adding a phase shift in image space (eq. 2.7) corresponding to a
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spatial shift in Fourier space between subsequent lines. Any sampling inaccuracy
caused by electronics delays will be the same for all lines and therefore will not be
noticeable in the image. The samples also map directly onto the Cartesian pixel
grid without interpolation and the Nyquist limit is simply given by the number of
lines. Leaving out parallel lines results in ghost copies of the object along the
undersampling direction. Undersampling in this way by a factor 2 corresponds
to a multiplication of the object 𝑘𝑘𝑘-space with a 2 pixel periodic 𝛿-comb along the
undersampling direction or, equivalently, to a convolution in image space with a
comb that has a period of half the image size.

Figure 2.2: Vertically undersampled Cartesian Shepp-Logan phantom with (left) two-fold, (mid-left)
three-fold and (mid-right) three-fold undersampling plus 20 center lines as well as (right)
the 𝑘𝑘𝑘-space sampling pattern of the mid-right image with the 𝑘𝑘𝑘-origin in the center.

Generally, low spatial frequencies correspond to low resolution details while high
spatial frequencies correspond to fine details, including edges. Most signal en-
ergy of the image 𝜌 is concentrated in the 𝑘𝑘𝑘-space center. And this is even more
true for the image-coil-product 𝜌⋅𝑐 since the smooth coil sensitivity field is entirely
captured in very low frequencies. Image reconstruction procedures for Cartesian
data therefore usually rely on densely sampled central lines [12],[13] as shown in
Fig. 2.2.

Radial Sampling

Image reconstruction from radial data usually involves an additional conversion
frompolar coordinates onto a Cartesian grid via interpolation, called gridding [14].
The Nyquist limit is also 𝜋/2 times higher compared to Cartesian sampling. Here,
not the line increment has to be one pixel in size but the azimuthal increment
between the ends of neighboring radial lines (spokes) [15]. It is also more diffi-
cult to realize a trajectory in hardware where all radial lines meet exactly in the
𝑘𝑘𝑘-space center point which mandates a gradient delay correction [16] as a further
preprocessing step.
These disadvantages are offset by a high tolerance to oversampling. As in every
tomographic imaging method all spokes have an equal share of high and low
frequencies, thus it is irrelevant which ones are left out given a half-ways isotropic
object and isotropic undersampling. The fact that all spokes go through the center
alsomeans that the central part of𝑘𝑘𝑘-space can be considered densely sampled up
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to 𝑠/𝜋 samples away from the center, where 𝑠 is the number of sampled spokes.
Even though the Nyquist limit is higher, objects remain recognizable at low spoke
counts where they would no longer be in Cartesian sampling.

Figure 2.3: Radially undersampled Shepp-Logan phantom reconstructed by Filtered Back-
Projection from (left) 7 and (middle) 15 spokes as well as (right) the 𝑘𝑘𝑘-space sampling
pattern for the middle image. The artifacts extend beyond the shown field of view which
is cropped to one third of the original matrix size (see section 4.1 Data Preprocessing).

By virtue of the Projection-slice theorem [9] each spoke corresponds to the 1D
Fourier transform of a projection of the 2D object onto a line. The projection
direction is perpendicular to the spoke angle. The most basic reconstruction al-
gorithm for tomographic imaging is Filtered Back-Projection [9]. It first reweights
the Fourier data spokes with a ramp filter, linearly decreasing the weight of low fre-
quencies with respect to high frequencies, then transforms back to image space
which corresponds to smearing the 1D projection over the 2D grid and finally
sums over all projections.
The initial reweighting compensates the redundant sampling in the𝑘𝑘𝑘-space center
and provided that as many back-projections as mandated by the Nyquist criterion
have been sampled, individual projections and their directions can no longer be
discerned. Filtered Back-Projection is accurate in that case. Otherwise, streak
artifacts appear and are amplified as the weight of central 𝑘𝑘𝑘-space lines is lowered
toomuchwith respect to the higher frequencies. Removal of these streak artifacts
is the core task in this Thesis.

Spiral Sampling

Spiral sampling is not considered in this thesis, yet an interesting polar-coordinate
alternative. Its main benefit is a longer readout time per excitation. Depending
on the curvature a few spirals can cover the same number of 𝑘𝑘𝑘-space samples
as many radial spokes would. The ratio of low to high frequency sampling density
can also be varied by varying the number and curvature of the spirals. In principle,
since more time is spent in readout, better coverage and sharper images can be
achieved in the same time as compared to radial sampling as long as the readout
time is kept short enough to avoid off-resonance artifacts and signal decay. How-
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ever, as in radial imaging, gradient delays occur and require more sophisticated
corrections.

2.3 Image Reconstruction

2.3.1 Linear Problem

Let 𝑦𝑦𝑦 ∈ C𝑍×𝑁2 be the measured multi-channel data with 𝑁2 pixels and 𝑍 chan-
nels and 𝜌 ∈ C𝑁2 , 𝑐𝑐𝑐 ∈ C𝑍×𝑁2 again the unknown anatomic image and the receive
coils. Assuming an estimate for the coils exist and can be used as a parameter
the reconstruction problem is to solve

𝒜𝜌 = 𝑦𝑦𝑦, 𝒜 ∶= 𝒫ℱ𝐶 (2.8)

for the unknown 𝜌. In this operator notation 𝐶𝜌 = (𝑐1 ⋅𝜌, ..., 𝑐𝑍 ⋅𝜌), ℱ is the Fourier
transform and 𝒫 is the sampling operator. When 𝒫 is invertible and 𝑐𝑐𝑐 has support
in the entire spatial domain, then 𝒜 has an inverse and eq. 2.8 can be solved
directly. If samples are omitted, however, 𝒫 is not invertible and neither is 𝒜. In
that case the reconstruction task can still be posed as an inverse problem where
additional constraints ℛ are added to improve the problem condition

𝜌⋆ = argmin
𝜌

||𝒜𝜌 −𝑦𝑦𝑦||2 +𝛼ℛ(𝜌). (2.9)

The reference used for the remaining chapter on the theory of inverse problems
and solution strategies is found in [17]. A penalty term ℛ weighted by 𝛼 ∈ R

adds to the cost of undesired solutions in the functional minimization. Setting
ℛ = ||𝜌||2 (Tikhonov regularization) penalizes solutions with amplified noise and
outliers, thus stabilizing variance at the cost of an introduced bias (blur in this
case). With𝛼 = 0 the analytic solution to eq. 2.9 boils down to applying the pseudo-
inverse of 𝒜 to 𝑦𝑦𝑦 which again will not work numerically on undersampled data. A
regularized iterative approach such as the conjugate gradient method [18] on the
other hand will converge to a solution close to the true 𝜌.

From a signal processing point of view eq. 2.8 is a deconvolution problem in 𝑘𝑘𝑘-
space with known filters 𝑐𝑖 as well as a deconvolution in image space with regard
to the product 𝑐𝑐𝑐𝜌 and the sampling pattern 𝒫. Deconvolving data 𝑦𝑦𝑦 and coils 𝑐𝑐𝑐 to
yield 𝜌will recover non-measured𝑘𝑘𝑘-space frequencies located beside the sampled
spokes to the extent of the coil support. Even though the coils are smooth they do
have a spatial structure and thus finite extended support in 𝑘𝑘𝑘-space. It increases
with the number of independent coil channels in the coil array arrangement.
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Figure 2.4: Radial Shepp-Logan phantom with 15 spokes with (left) one constant coil channel, (mid-
dle) 8 coil channels as shown right and (bottom) the corresponding 𝑘𝑘𝑘-spaces (4-fold
zoom on center). The phantom images are cropped to half of the original matrix size
(see section 4.1 Data Preprocessing).

Carrying out theminimization in eq. 2.9 with a Tikhonov penalty leads to following
normal equations

(
𝑍

∑
𝑖=1

𝑐∗
𝑖 ℱ−1𝒫𝐻𝒫ℱ𝑐𝑖 +𝛼1)𝜌 =

𝑍
∑
𝑖=1

𝑐∗
𝑖 ℱ−1𝒫𝐻𝑦𝑖, (2.10)

where 𝑐∗
𝑖 are the complex conjugated coil channels. Iterative solution of eq. 2.10 is

referred to as sensitivity encoding (SENSE) [19]. Contrary to FilteredBack-Projection
image quality no longer suffers from over-amplified high frequencies. A techni-
cal issue to note is that oversampling of the object by a factor 2 is necessary for
artifact-free deconvolution since the process involves repeated convolutions of
the form ℱ−1[𝒫𝐻𝒫] ∗ [𝐶𝜌] (carried out in Fourier space) the output of which ex-
tends to twice the image support. As a consequence the object support occupies
only the inner half of the compute matrix which allows the introduction of a trun-
cation in image space [20] (used in Fig. 2.4) as an additional constraint. In the
absence of noise the minimization now will converge even if 𝛼 = 0.

SENSE type reconstructions that deconvolve estimated coils from the image are
one of two main brands of reconstructions. An alternative 𝑘𝑘𝑘-space based ap-
proach [12] iteratively estimates - in what is referred to as calibration - a linear
correlation kernel mostly from densely sampled 𝑘𝑘𝑘-space area that is assumed to
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consistently connect samples throughout the entire 𝑘𝑘𝑘-space. The estimated ker-
nel is then applied to all other samples in a calibration consistency constraint intro-
duced to the cost functional. The automatic occurrence of densely sampled parts
of𝑘𝑘𝑘-space for coil estimation or kernel calibration required in linearmethods adds
another advantage to polar sampling schemes.
Recently, image space based coil deconvolution and the𝑘𝑘𝑘-space based calibration
approach have been unified in a common framework [13].

2.3.2 Non-Linear Problem

Parallel imaging based reconstruction crucially relies on accurate estimates of 𝑐𝑐𝑐.
Especially image space based approaches tend to suffer from artifacts due to coil
mismatches or failed deconvolution due to a too small FOV relative to the object
size [13].

In real-time imaging patient breathing may alter coil positions during the scan.
Further, internal motion of the heart or blood inflow will alter the dielectric prop-
erties of the sample which has an interaction with the coil sensitivity field [21],[6].
Coil sensitivity estimates thus need updating as soon as the object changes.
Joint image and coil estimation in alternating linear reconstructions has been pro-
posed [22] but a more accurate simultaneous minimization

𝑥𝑥𝑥⋆ = argmin
𝑥𝑥𝑥

||𝒜𝑥𝑥𝑥−𝑦𝑦𝑦||2 +𝛼ℛ(𝑥𝑥𝑥), 𝑥𝑥𝑥 = (𝜌,𝑐𝑐𝑐)𝑇 (2.11)

can be achieved via the iteratively regularized Gauss-Newton method [6] that will
be used in this work. The reconstruction is also referred to as non-linear inversion
(NLINV) and is a blind deconvolution generalizing SENSE type methods. An exten-
sion of NLINV to add the advantages of calibration methods such as robustness
to insufficient matrix support has recently been proposed [23].

Instead of solving eq. 2.11 in one step, NLINV approximates the jointminimization
by a series of linear problems each defined by a first order Taylor expansion of the
measurement 𝒜𝑥𝑥𝑥 given as

𝑥𝑥𝑥𝑛+1 = 𝑥𝑥𝑥𝑛 +𝑑𝑥𝑥𝑥

𝒜𝑥𝑥𝑥𝑛+1 ≈ 𝒜𝑥𝑥𝑥𝑛 +𝐷𝒜(𝑥𝑥𝑥𝑛)𝑑𝑥𝑥𝑥, (2.12)

where 𝐷𝒜(𝑥𝑥𝑥𝑛) is the Jacobian of 𝒜 around 𝑥𝑥𝑥𝑛. Starting from an initial guess 𝑥𝑥𝑥0 =
(𝜌 = 1, 𝑐𝑐𝑐 = 0) the joint variable 𝑥𝑥𝑥 is updated in every Newton step by an increment
𝑑𝑥𝑥𝑥. Inserting eq. 2.12 into eq. 2.11 yields the update rule with parameter 𝑥𝑥𝑥𝑛

𝑑𝑥𝑥𝑥⋆ = argmin
𝑑𝑥𝑥𝑥

||𝐷𝒜(𝑥𝑥𝑥𝑛)𝑑𝑥𝑥𝑥−(𝑦𝑦𝑦 −𝒜𝑥𝑥𝑥𝑛)||2 +𝛼𝑛||𝑥𝑥𝑥𝑛 +𝑑𝑥𝑥𝑥||2. (2.13)
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The definition of 𝐷𝒜 and its adjoint 𝐷𝒜𝐻 is given in [6]. In eq. 2.13 𝜌 and 𝑐𝑐𝑐
are tied into a product by 𝒜 and 𝐷𝒜, thus additional regularization is required
to separate the two variables. Subjecting 𝑐𝑐𝑐 to a Sobolev penalty ̂𝑐𝑐𝑐 = 𝒲−1𝑐𝑐𝑐 with
𝒲−1 = (1+𝑢||𝑘𝑘𝑘||2)𝑙/2ℱwhile leaving 𝜌 unchanged will penalize all but the center 𝑘𝑘𝑘-
space frequencies of 𝑐𝑐𝑐 in accordance with the coil smoothness assumption. Here
𝑢 = 440 and 𝑙 = 32 are used. Solving eq. 2.13 for the transformed variables ̂𝑥 ̂𝑥̂𝑥 and
𝑑 ̂𝑥̂𝑥̂𝑥 in conjunction with the modified operators 𝒢 = 𝒜𝒲 and 𝐷𝒢 = 𝐷𝒜𝒲 will avoid
large numbers and is numerically more convenient.
An important ingredient to themethod is that the penalty weight shrinkswith𝛼𝑛 =
(𝛼0/2)𝑛, where typically 𝛼0 = 1, but lower start values often also work. Decay rates
slower than 0.5 will slow down convergence and necessitate more Newton steps
while faster decaymay lead to diverging solutions. The algorithm implementation
is conceptually simple

1 inputs:
2 Y = data, P = sampling_pattern
3 init:
4 𝜌 = 1, c = 0, 𝛼 = 1
5
6 for n = 1:newton_steps
7
8 //solve eq. 2.13 (e.g. with conjugate gradient method)
9 (d𝜌,dc) = calc_image&coil_update(Y,P,𝜌,c,𝛼)

10
11 (𝜌,c) = (𝜌,c) + (d𝜌,dc)
12 𝛼 = 𝛼/2
13

Algorithm 2.1: Iteratively regularized Gauss-Newton method for Non-linear inversion reconstruc-
tion.

While optimization in the inner, linear problem will be stopped according to some
fixed stopping rule, for instance when a fraction of the initial residual has been
reached [18], the outer loop runs a predetermined number of iterations [6]. Too
few iterations will result in blur and - in the case of undersampling - more remain-
ing artifacts, whereas toomany iterations result in increased noise and computing
cost. Typically, good image quality is reached after 10 Newton steps. Availability
of a better initial estimate, such as a body coil image or a previous frame in an
image series may allow for earlier stopping.
When starting from a constant initial guess, images in early Newton steps will look
blurry and the intensity distribution will likely be incorrect since the coil estimate is
still inadequate. It has also been observed here that energy is exchangedbetween
image and coils in a kind of swing phase until a stable distribution is reached from
the 6th step onward. From there convergence proceeds more steadily.
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Figure 2.5: Anatomy and coil sensitivity of third virtual channel at different Newton steps recon-
structed with NLINV. Shown is a four chamber view of the heart with 75 spokes per
frame obtained by resorting and rebinning undersampled data (see section 4.2.2). In-
tensity is windowed identically in an absolute sense for the image and relative sense for
the coils.

Another point to stress is that NLINV only recovers the parts of the coil sensitivity
field that overlaps with the object, not the physical coils. The part that extends
beyond into the background cannot be recovered from the signal void.
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3Real-time MRI

Rt-MRI refers to themeasurement and display of anatomic motion in frame series
with high temporal fidelity at rates of 30 fps or even 50 fps [2]. Applications of
interest include amongst others arrhythmic cardiac motion, human speech, joint
movement, dynamic contrast enhanced MRI for tumor detection in abdominal
scans and MRI of pediatric patients that otherwise require anesthesia to prevent
motion artifacts.
Methods proposed in the literature can broadly be divided into either online or
offline reconstructions. The former is in principle capable to output the recon-
structed images simultaneously with the data acquisition or with a minimal - sub-
second - delay. The latter requires the acquisition of the entire series to be finished
before the start of reconstruction. Offline methods can exploit space-time struc-
ture in the signal as prior knowledge to the reconstruction. Proposed procedures
usually follow the same pattern of finding some suitable transform along the time
dimension under which the object becomes sparse and then add an 𝐿1-penalty
term involving the transformed object to the cost functional to be minimized. The
methods then differ mostly by the transform or set of transforms chosen which
include discrete time differences (total variation regularization) [24], discrete time
differences plus a data reordering to separate cardiac and breathing components
[25], temporal Fourier-transform [26] (in combination with a low rank constraint
on the data term), or one of several motion estimation based transforms [27],
[28]. The great flexibility to realize temporal regularization, however, does not au-
tomatically safeguard against temporal blur [29] which requires careful parameter
tuning. Online methods are far more limited as they cannot draw on information
from future frames yet enable interventional MRI applications such as operator
subject communication in speech studies.
The exact distinction between rt-MRI and non-rt-MRI is still subject to debate and
sometimes the qualifying requirement is added that image reconstruction frame
rates should also be real-time - or close to - with present day computing hardware
[30]. This work targets an online approach. However, the definition of rt-MRI is
relaxed to include reconstructions that conceptually allow real-time viewing with
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a constant delay of a few frames even if this is not quite within the capacity of
present day hardware yet.

3.1 Dynamic Sampling

Parallel imaging with non-Cartesian sampling is considered sufficient to restore
images to acceptable quality at undersampling factors of 2-4 [31] in 2D. Higher
factors of 7 [12],[32] to 12 [33] are only considered in conjunction with additional
priors such as sparsity in dynamic contrast enhanced imaging, MR angiography or
brain imaging. Compressed sensingmethods that are used to exploit spatial spar-
sity, however, work best with randomly undersampled 3D data. Normal, regular
breathing at a frequency of 0.2 Hz in abdominal scans may still be well captured
with an undersampling factor of 3-5. Heart beats, however, reach rates of 1-1.8
Hz and heart contraction during the systolic interval lasts for less then 40% of the
beat period, usually about 350 ms in total [34].
For an FOV of size 2002 px the Nyquist rate is≈314 spokes. Thus, realizing a frame
rate of 30 fps with 2.2 ms per spoke or 15 spokes per frame requires undersam-
pling by a factor of ≈21 in radial imaging, well beyond the capacity of parallel
imaging alone. In a series of frames temporal continuity of anatomic motion can
be added as a powerful prior. It assumes that most pixels in image space will not
change much from one frame to the next given sufficiently small time steps.

Temporal continuity is exploited by splitting a “full” 𝑘𝑘𝑘-space sampling pattern into
components withminimal overlap and spreading these out in time to form several
undersampled frames.

Figure 3.1: Schematic of a rotating sampling pattern with 15 spokes per frame and a finite repetition
period of length 5. The angle increment with respect to the first pattern is indicated in
red. The total k-space coverage after a full period is shown in the bottom right.
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Most of the information held in one frame will still be up to date with that in the
next frame and can be copied directly. The rest should require only minor ad-
justments to be incorporated into neighboring frames without causing temporal
blur given sufficiently small time steps. Data sharing among frames is realized by
adding a motion model to the cost function.
A natural way of splitting in radial imaging is to rotate the sampling pattern from
frame to frame (Fig. 3.1). The pattern rotation period can be finite with a regular
pattern and constant angle increment in between frames [35],[2] or infinite with
an irregular pattern following a golden angle progression [36]. A larger repetition
period results in better 𝑘𝑘𝑘-space coverage. Infinite periods are especially popular
in offline reconstructions [24].
The accuracy of the motion model determines the amount of motion blur. An-
other consequence of an inaccurate model may be an uneven weighting of pat-
terns of different frames, such that the samples of the current frame will have sys-
tematically higher energy than samples stemming from neighboring time points.

Figure 3.2: Four chamber view of the heart (magnitude image) reconstructed with NLINV with an
affine time constraint (see section 3.2.1). Streak artifacts are less visible than without
temporal regularization (see f. i. Fig. 4.3) but are still of similar intensity as the heart
motion as shown in time difference images (real part of image ). The arrows follow the
clock-wise rotation of undersampling artifacts.
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As a result, radial streak artifacts (Fig. 3.2) appearmarkedly less intense thanwhen
no temporal regularization is used but similar in shape and very visible due to their
fast rotating motion driven by the pattern rotation. Their intensity is on a par with
the intensity of the anatomic motion.

Returning to the example of a 2002 px FOV with 15 spokes per frame, a motion
model that correctly connects neighboring frames within a 5-frame time window
can recover 𝑘𝑘𝑘-space frequencies for any frame to 75 spokes. Adding the indepen-
dent effect of parallel imaging will restore another factor 3-4 which rounded up
brings frames close to the Nyquist rate of 314 spokes.

3.2 Temporal Regularization

3.2.1 Time Difference Regularization

The simplest temporal regularization scheme adds an affine penalty term to the
cost function [2] which in the linear problem for the frame at time point 𝑡 reads as

𝜌⋆
𝑡 = argmin

𝜌𝑡

||𝒜𝜌𝑡 −𝑦𝑦𝑦𝑡||2 +𝛼||𝜌𝑡 −𝜆𝜌𝑡−1||2, (3.1)

where 𝜆 ∈ [0,1] and the formulation for the non-linear problem is analogous. In
the linear problem 𝜆 = 1 maximizes the connection between the current frame 𝜌𝑡
and the preceding one, whereas in the non-linear problem for values 𝜆 > 0.9 an
undesired steady - approximately linear - increase in image energy is observed
from frame to frame. For online reconstructions this simple scheme is a common
choice [37],[38],[39].
It borrows from “view sharing” and related ideas [1],[35]. On the pros’ side, it
does not introduce additional complexity or computing cost as compared to sim-
ple non-temporal Tikhonov regularization. In fact, in the non-linear case fewer
Newton steps are required to obtain sharp images (8 in [2] vs. 10 in [6]). Thus
temporal regularization even speeds up computation, possibly because it effec-
tively lowers the undersampling factor, thereby improving the problem condition.
Also, the sole artifact introduced by temporal affine regularization is time blur.
Spatial artifacts that may resemble pathologies are not introduced.
The downside, as in any view sharing method, is degraded temporal resolution.
With a pattern repetition period of 5 frames and a temporal binning of 33 ms the
frame update rate is still every 33 ms but each frame now has a footprint several
times longer. The nominal temporal resolution is only an apparent one while the
true, lower resolution depends on 𝛼 and 𝜆.
With 𝜆 = 1, the effect of affine regularization is similar in character to a sliding
window box average applied in post-processing. The value of 𝛼, however, will
usually be too low to produce a time average with equal weights on every time
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point since the deconvolution in the data term will not be properly resolved with
a large 𝛼, which leads to a blurry image. In the affine scheme the most current
frame gets the largest weight while past frames enter the sliding window average
with decreasingly lower weights.
As a consequence undersampling artifacts will never vanish entirely (see Fig. 3.2).
Therefore, an additional median filter is used along the time dimension in a post-
processing step. Over a slowlymoving background artifacts will appear as outliers
and be filtered away. But this also holds for any movement faster than half the
filters width, which is matched to the pattern repetition period. Another drawback
of this scheme is that it reaches only into the past, thus the center of the average
is not the current frame.
A straight forward way to extend the affine regularization that did not yet get
much attention in MRI is to consider a batch of frames 𝜌 ∶= (𝜌𝑡−𝜏 , ...,𝜌𝑡+𝜏) that is
estimated simultaneously instead of a single frame 𝜌𝑡

𝜌⋆ = argmin
𝜌

𝑡′=𝑡+𝜏
∑

𝑡′=𝑡−𝜏
||𝒜𝑡′𝜌𝑡′ −𝑦𝑡′𝑦𝑡′𝑦𝑡′ ||2 +𝛽||𝜕𝑡𝜌𝑡′ ||2. (3.2)

Temporal regularization of the coils can be added, but was not observed to have
much effect. Obviously, the problem to compute is now 2𝜏+1 times as large and
costly. More importantly though it is now centered with respect to the current
frame. Therefore delays or temporal blur will not range beyond 𝜏 frames. An-
other benefit is that the time differences summarized in the 𝜕𝑡-operator do not
require a damping factor 𝜆 in the non-linear problem. Reconstruction of the entire
series can either proceed in time increments of single frames or whole batches
to avoid 2𝜏 -fold recomputation of every frame. In the latter case, however, all but
the batch’s center frame will be of poorer quality due to their asymmetric neigh-
borhood. Therefore, only the center frame is stored in the output buffer. The cen-
tricity also promises a more even weighting of the different patterns combined
in the batch’s center frame such that unlike in the affine regularization no further
post-processing is required.
As a variant, the temporal penalty in eq. 3.2 can also be put in an 𝐿1-penalty, cor-
responding to a temporal total variation constraint as in [24] but on a shorter time
interval. The outcome, however, is unlikely to match the results of corresponding
whole series offline reconstructions. Usually a sufficiently long series is regarded
as a necessity to make the undersampling artifacts appear incoherent and noise-
like in the context of the whole series [40].

3.2.2 Optical Flow

The name “optical flow“ implies the assumption that intensity or total brightness
stays constant in between two frames of a series and that only its spatial distri-
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bution changes. Like a fluid of constant volume that flows continuously and does
not jump between places. As derived in the original paper [7], the assumption of
a constant energy and application of the chain rule straight forwardly lead to the
model

𝑑
𝑑𝑡𝜌 = 0

= 𝜕𝑡𝜌 +𝑣𝑥𝜕𝑥𝜌 +𝑣𝑦𝜕𝑦𝜌, (3.3)

= 𝜕𝑡𝜌 +𝑣𝑣𝑣∇𝜌 (3.4)

𝑣𝑥,𝑦 = 𝑑𝑥,𝑦
𝑑𝑡 , (3.5)

which is a divergence-free continuity equation. Translated into image processing
terms in a discrete setting it means that the follow up to a frame is obtained by
adding to the previous frame some more intensity at the object edges

𝜌𝑡+1 = 𝜌𝑡 +𝑣𝑣𝑣 ∇𝜌⏟
edges

. (3.6)

Since eq. 3.3 is one linear equation for two variables 𝑣𝑥,𝑦 a further constraint is re-
quired. The original paper proposes a smoothness constraint ||∇𝑣𝑣𝑣||2 on the flow
field which amounts to the assumption that neighboring pixels have similar veloc-
ities enforced by blurring the flow field gradient. The operator ∇ here is meant
as a 2D-gradient applied to 𝑣𝑥 and 𝑣𝑦 respectively not a divergence operator on 𝑣𝑣𝑣.
The paper goes on to note that a smoothness penalty complicates the handling
of occlusions, which is a major concern in camera imagery but not in MRI. Putting
together the optical flow- (intensity conservation) and the smoothness constraint
yields the minimization problem

𝑣𝑣𝑣⋆ = argmin
𝑣𝑣𝑣

||𝜕𝑡𝜌 +𝑣𝑣𝑣∇𝜌||2 +||∇𝑣𝑣𝑣||2. (3.7)

Why this is expected to help with the streak artifacts can already be seen in eq. 3.6:
only values of 𝑣𝑣𝑣 that overlap with edges translate between frames. Clearly, this is
restricted to continuous deformations which is typical of anatomic motion. All
other values of 𝑣𝑣𝑣 will be suppressed to zero, especially where the abrupt, teleport-
like motion of artifacts occurs. Another way to see this is in the normal equations
to eq. 3.7 after carrying out the minimization component-wise

(𝜕𝐻
𝑥 𝜕𝑥 +|𝜕𝑥𝜌|2)𝑣𝑥 = −(𝜕𝑥𝜌)𝐻𝜕𝑡𝜌 −𝑣𝑦(𝜕𝑥𝜌)𝐻𝜕𝑦𝜌 (3.8)

and similarly for 𝑣𝑦. In an iterative procedure where 𝑣𝑥 is computed before 𝑣𝑦
and that is initialized with 0 the solution is build successively on the correlation
between the spatial and temporal derivative of the object 𝜌. For jumping arti-
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facts this correlation should be considerably smaller than for an expanding heart
muscle- or chest wall.
The combination of flow estimation with image reconstruction could be realized in
one joint minimization over three variables 𝜌,𝑐𝑐𝑐,𝑣𝑣𝑣. However, alternating minimiza-
tion between image reconstruction and flow estimation facilitates debugging and
output analysis. It is therefore common to implement a two step minimization.

In this work an approach used by Dirks [41] in camera footage and Burger [42] -
linear CT imaging - is adapted to NLINV (compare eq. 2.13)

̂𝑥̂𝑥̂𝑥𝑛+1 = ̂𝑥̂𝑥̂𝑥𝑛 + argmin
𝑑𝑥̂̂𝑥̂𝑥=(𝑑𝜌,𝑑 ̂𝑐 ̂𝑐 ̂𝑐)

𝑡′=𝑡+𝜏
∑

𝑡′=𝑡−𝜏
||𝐷𝒜𝑡′( ̂𝑥̂𝑥̂𝑥𝑡′,𝑛)𝑑 ̂𝑥̂𝑥̂𝑥𝑡′ −(𝑦𝑦𝑦𝑡′ −𝒜𝑡′ ̂𝑥̂𝑥̂𝑥𝑡′,𝑛)||2

+𝛼𝑛|| ̂𝑥̂𝑥̂𝑥𝑡′,𝑛 +𝑑 ̂𝑥̂𝑥̂𝑥𝑡′ ||2 + 𝛾𝑛||(𝜕𝑡 +𝑣𝑣𝑣𝑡′+1
𝑡′,𝑛 ∇)(𝜌𝑡′,𝑛 +𝑑𝜌𝑡′)||2 (3.9)

𝑣𝑣𝑣𝑛+1 = argmin
𝑣𝑣𝑣

𝑡′=𝑡+𝜏
∑

𝑡′=𝑡−𝜏
||𝜕𝑡𝜌𝑡′,𝑛+1 +𝑣𝑣𝑣𝑡′+1

𝑡′ ∇𝜌𝑡′,𝑛+1||2 + 𝛽𝑛
𝛾𝑛

||∇𝑣𝑣𝑣𝑡′+1
𝑡′ ||2

+ 1
𝛾𝑛

ℛ(𝑣𝑣𝑣), (3.10)

where 𝑣𝑣𝑣𝑡+1
𝑡 designates flow from 𝜌𝑡 to 𝜌𝑡+1 with 𝑣𝑣𝑣𝑡+𝜏+1

𝑡+𝜏 = 0 and ̂𝑥 ̂𝑥̂𝑥 = (𝜌,𝒲−1𝑐𝑐𝑐) is
again the joint variable with Sobolev-weighted coils. The coils are not subjected to
the optical flow constraint since their edges are already smoothed by the Sobolev
regularization. Omitting the flow estimation and keeping 𝑣𝑣𝑣 = 0 at its initial value
leads to the batch time difference regularization of the previous section, again
avoiding extra coil regularization. All penalty norms except the data term in the
𝑥𝑥𝑥-problem may also be changed into 𝐿1. As will be explained in section 4.3.1 the
computation starts as regular NLINV without temporal regularization and adds
optical flow only after a few Newton steps.
By splitting the problem into two alternating parts it is easier to separate the shap-
ing of the flow field as a variable in the 𝑣𝑣𝑣-problem from the application of the flow
field as a parameter in the𝑥𝑥𝑥-problem. ℛ summarizes further regularization terms.
Here, an additional 𝐿1 smoothness penalty is considered and/or masking of the
flow field where either |𝜌| or |𝜕𝑡𝜌| lies below noise level. Another idea is to penal-
ize the field where |𝜕𝑡𝜌| was large at step 𝑛 and considerably lower at 𝑛 + 1. This
assumes that most of the intensity change before frames are connected stems
from artifacts which are reduced after applying the motion model

ℛ(𝑣𝑣𝑣) = 𝛽2,𝑛||∇𝑣𝑣𝑣||1 (3.11)

∧ ℛ(𝑣𝑣𝑣) = 𝛿𝑛1(|𝜕𝑡𝜌𝑡,𝑛|>3𝜎) ⋅1(|𝜌𝑡,𝑛|>3𝜎) ⋅ ||𝑣𝑣𝑣||2 (3.12)

∧ ℛ(𝑣𝑣𝑣) = 𝛿𝑛| |𝜕𝑡𝜌𝑡,𝑛|− |𝜕𝑡𝜌𝑡,𝑛−1| |2 ⋅ ||𝑣𝑣𝑣||2. (3.13)

21



In eq. 3.12 1 denotes the support of values above noise level, whereby the stan-
dard deviation 𝜎 is estimated using the median absolute deviation value of a
wavelet-high-pass filtered 𝜌 [43]. For large values of 𝛿 this constraint acts like
a hard thresholding operation and will be referred to as such in the later part.
The approach in eq. 3.9-3.10 estimates an entire batch at once 𝑥𝑥𝑥 ∈ C𝑁2×𝑍×(2𝜏+1),
all of which could be saved as output but, again, as in the batch time difference
regularization only the center frame will be used.
An important point to note is that only differences between nearest neighbors
matter in this approach. As long as these are small for all frame pairs the motion
model should hold irrespective of the total batch size and the total time difference
between the first and last frame in the batch.

Li et al. [8] presented an alternative combination of optical flowwithNLINVdubbed
aggregated motion estimation. First, they reconstructed initial images in a batch
by NLINV without temporal regularization. The batch size again matched the pat-
tern repetition period. They then used the obtained estimates of 𝜌𝑡+𝜏 , 𝜏 ∈ [−2,2]
to compute the flow field 𝑣𝑣𝑣. In their case all penalty terms were in 𝐿1 and they
added an auxiliary regularized variable to eq. 3.7 to model undersampling ar-
tifacts. Importantly, and contrary to the approach chosen in the present work,
their flow modeled displacements between frames more than a frame apart. This
somewhat strains the assumption that temporal connections between frames are
restricted to the support of the image edges (eq. 3.6). The deformation of 𝜌𝑡 to
𝜌𝑡+𝜏 is denoted as

Φ𝑡+𝜏
𝑡 (𝜌𝑡) ∶= 𝜌𝑡 +𝑣𝑡+𝜏

𝑡𝑣𝑡+𝜏
𝑡𝑣𝑡+𝜏
𝑡 ∇𝜌𝑡 ≈ 𝜌𝑡+𝜏 . (3.14)

It is included in the minimization problem over a single frame at time 𝑡 to map to
other frames in the batch

̂𝑥̂𝑥̂𝑥𝑡,𝑛+1 = ̂𝑥̂𝑥̂𝑥𝑡,𝑛 + argmin
𝑑𝑥̂̂𝑥̂𝑥

(
𝑡′=𝑡+𝜏
∑

𝑡′=𝑡−𝜏
||𝐷𝒜𝑡′(Φ𝑡′

𝑡 ( ̂𝑥̂𝑥̂𝑥𝑡,𝑛))𝑑 ̂𝑥̂𝑥̂𝑥−(𝑦𝑦𝑦𝑡′ −𝒜𝑡′Φ𝑡′
𝑡 ( ̂𝑥̂𝑥̂𝑥𝑡,𝑛))||2

+ 𝛼𝑛|| ̂𝑐 ̂𝑐 ̂𝑐𝑡′,𝑛 +𝑑 ̂𝑐 ̂𝑐 ̂𝑐𝑡′,𝑛 − ̂𝑐 ̂𝑐 ̂𝑐𝑡′,0||2)

+ 𝛼𝑛||𝜌𝑡,𝑛 +𝑑𝜌𝑡,𝑛 −𝜌𝑡,0||2, (3.15)

whereby ̂𝑥 ̂𝑥̂𝑥𝑡,𝑛 = (𝜌𝑡,𝑛, ̂𝑐 ̂𝑐 ̂𝑐𝑡−𝜏,𝑛, ..., ̂𝑐 ̂𝑐 ̂𝑐𝑡+𝜏,𝑛) is nowone anatomic image jointly with a time
batch of (Sobolev-weighted) coils.
Yet another difference between the two approaches is that flow estimation here
happens only once based on images reconstructed without temporal regulariza-
tion and with strong artifacts. The first approach on the other hand re-estimates
the flow field repeatedly in every newton step expecting an improved flow field at
each further step.
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Lastly, in this work, similar to Li et al. the most basic form of optical flow is con-
sidered since deformations between frames are expected to range on the order
of a few pixels in cardiac imaging at 30 fps. More sophisticated forms can be em-
ployed such as affine or locally affine optical flow [44] for higher accuracy as well
as multiscale- and patch-based versions to cover larger displacements [45],[46].
However, it is not expected that these would better deal with the challenge of
inflowing intensity which would be avoided with a matching source term in the
optical flow continuity equation or if the measurement was 3D or multislice.
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4Materials and Methods

4.1 Setup and Data Acquisition

Scanning Hardware

All human heart data in this work was acquired with a 3T scanner (Magnetom
Prisma fit, Siemens Healthcare, Erlangen) using a standard 32-channel spine coil
and 18-channel thorax coil. Written informed consent by the subject (healthy vol-
unteer) according to the recommendations of the local ethics committee was ob-
tained prior to MRI.

Pulse Sequence

The pulse sequence used was a single-shot radial FLASH [10] with 1.44 ms echo
time, 2.22 ms repetition time, 1.6 mm2 in-plane resolution, 6 mm slice thickness,
8∘ flip angle and an FOV of 200 px. Each image frame comprised 15 radial spokes,
with the pattern rotated between frames as illustrated in Fig. 3.1. This results in
a frame rate of (2.22×15 ms)−1 =̂ 30 fps and a total Fourier-space coverage of
75 spokes. To counter aliasing an oversampling ratio of a factor 2 was applied,
doubling the number of pixels per spoke. Imaging parameters were identical
across all measurements.

Data Simulation

Phantom multi-channel data was simulated as the analytical Fourier-transform of
a grid of ellipses, again with two-fold data oversampling. Its corresponding 8-
channel coil sensitivities were simulated with a Biot-Savart model [47]. Data was
simulated both noiseless and with additive white Gaussian noise with a standard
deviation of five percent of the mean intensity.

Data Preprocessing

The raw radial NMR data was interpolated onto a Cartesian grid using a Kaiser-
Bessel kernel appropriate for an oversampling factor of 2 [14]. To reduce interpo-
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lation errors the Cartesian pixel grid was stretched by a factor 1.5, yielding an over-
all image matrix size three times that of the FOV. Human data was compressed
by PCA into 10 virtual coil channels and a magnetic field gradient delay correc-
tion [16] was performed prior to gridding to account for deviations between the
desired and the traversed sampling trajectory, induced by eddy currents and scan-
ner electronics delays. The data was then multiplied by a factor of 100 divided by
the𝐿2-norm of the first frame. Hence, all parameter settings here are with respect
to a fixed scale.

Reconstruction Soft- and Hardware

Data Preprocessing scripts and simulation software were written in MatLab and
the reconstruction framework in C++ using an in-house library of the BiomedNMR
workgroup for multi-GPU support. Reconstructions were run on 4 NVIDIA GTX Ti-
tan Black with Cuda 9.2, whereby inter-GPU parallelization was along the channel
dimension and inner-GPU parallelization over pixels. Runtime depended on im-
age size, number of run iterations, and reconstruction type (known/unknown coils,
with/without flow constraint, frame batch size) and ranged between ≈100ms and
30 seconds per frame.

4.2 Test Data

4.2.1 Numerical Phantoms

Numerical phantom data has been created to simulate the effect of pure in-plane
and pure through-plane motion and each motion model’s response to it. It is less
suited to assess structural blur. The phantoms show a grid of circles, either blink-
ing or pulsating, whereby the blinking/pulsation frequency 𝜔 increases linearly
from the bottom right (𝜔 = 0, static) to the top left circle (𝜔 = 2𝜋/60 frames−1).

Figure 4.1: Noiseless numerical phantom simulated with 75 spokes for (left) through-plane and
(mid) in-plane motion as well as an undersampled in-plane phantom with 15 spokes
per frame. Images were reconstructed with known coils calculated by a prior NLINV re-
construction. Parameters see Tab. A.2 first row. Left is a real-valued image with negative
values in black and positive in white while right are magnitude images.
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A phantom simulated with 75 spokes per frame is referred to as a “fully” sampled
reference even though it is still below the Nyquist sampling rate of 256×𝜋/2≈ 403
spokes for a field of view of 2562 px [15]. This is to be consistent with the human
data which has 15 spokes per frame and visits 75 different spoke angles in total
(Fig. 3.1). For the same reason, the simpler, linear reconstruction with known coils
is always computed with coils estimated from a previous NLINV reconstruction
instead of the original simulated coils (compare Fig. 2.4 top right) that have no
analogue in human data. Since the coils are known to be static, only the first frame
where the circles are all of equal size and the grid is most regular is considered
and these coils used for the entire image series.

Figure 4.2: The 8 complex valued coil sensitivities estimated by NLINV for the circle grid phantom
in Fig. 4.1. Complex phase is color coded.

4.2.2 Surrogate Data

Heart data was synthesized from measured data to assess structural blur and
to rate its compliance with optical flow within the scale set by above phantoms.
In cardiac imaging, unlike other applications such as joint movement or speech,
creating ground truth reference images is greatly simplified by the periodicity of
the motion. As in standard clinical cardiac cine imaging [3] the volunteer was
asked to hold her breath during theMRI exam for 15 seconds to reduce all motion
but that of the heart.
In cine an ECG trigger or a biomarker derived from the raw data is used to elimi-
nate irregular heart beats - those too long or short or with abnormal heart motion
- from the series. The rest is averaged into one synthetic heart beat. Provided that
enough data remains after discarding, and the remaining frames form a periodic
series no artifacts will appear.
Data time stamps from a finger pulse trigger have been recorded alongside MRI,

27



but reconstructions from cine data always turned up with at least slight artifacts
that resembled ghosting edges on both sides of the heart wall, probably due to
slight movements, such as chest expansion, by the volunteer.

Figure 4.3: (Left) magnitude images reconstructed from surrogate heart data (75 spokes per frame)
obtained by resorting and combining MR data of an undersampled acquisition with 15
spokes per frame (corresponding images on the right).
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Therefore, instead data was reconstructed by NLINV with affine temporal regular-
ization + median filter first, assuming that any introduced temporal distortions
would be the same among all frames showing the same heart phase. Subse-
quently, every frame of 15 spokes was combined with those frames in the series
that were the most similar in a mean square error sense (MSE) - indicating the
same motion state - yet had a different sampling pattern orientation. The result
was a full frame for every time point. The sorting order obtained that way was
then applied to combine the raw MR data before gridding interpolation. Subse-
quent reconstruction from that data yielded largely artifact free heart movies with
naturally appearing motion.

4.2.3 Image Quality Assessment

Quality assessment of reconstructed images with respect to a reference by a
scalar score conveniently allows for comparing different methods at a glance. A
fair comparison of different temporal regularization types, however, requires the
coil deconvolution part in the inverse problem to be identical amongst the com-
pared methods. Therefore, only the simpler, linear problem with known coils as a
parameter is open to such a comparison. In the non-linear problem temporal reg-
ularization influences the coil sensitivity estimate and thus indirectly the intensity
distribution in the low spatial frequency regime. Consequently, temporal fidelity
will no longer be the determining factor in the calculation of any quality score.
Thus, quality assessment of non-linear reconstructions in this work will be limited
to a qualitative visual comparison.
It must be noted that quantitative assessment in the simpler linear reconstruc-
tion is always with respect to a certain set of reconstruction parameters, as the
reference must first be reconstructed itself. In the case of a noiseless phantom
no bias-variance trade-off has to be made and an ideal reference - the one with
least bias (small 𝛼 in eq. 2.10) - is obtained. Yet in the presence of noise too many
iterations with a small 𝛼 will yield a result with crisp edges but excessively ampli-
fied noise. Parameter selection thus has to be done upon visual inspection for
the phantoms and heart images and the optimal choice will vary with image noise
level. The corresponding parameter sets are listed in the appendix (Tab. A.2-A.12).
Another issue with noise is that while the simple mean square error (MSE) be-
tween a ground truth and different reconstructed results may adequately rank
the performance of the tested methods in a noiseless case, it may put methods
with better noise suppression above those with better feature preservation when
that is not desired.
Quality metrics with an emphasis on feature similarity include the well established
structural similarity index (SSIM) [48] as well as the more elaborate feature simi-
larity index (FSIM) [49]. For simplicity the former will be used in quantitative com-
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parisons. After all, both indicate only to what extend feature fidelity with respect
to the ground truth was missed and not how. Therefore, comparisons between
different image reconstructions must still include a qualitative visual comparison
on typical examples. SSIM has been designed for camera imagery with values
between 0 and 255 and is therefore calculated on rescaled magnitude images.

4.3 Reconstruction Algorithm

4.3.1 Framework and Parameters

The reconstruction algorithm developed here extends the non-linear inversion
reconstruction algorithm of section 2.3.2 by adding the optical flow estimation as
a separate subproblem as described in section 3.2.2.

1 for t = 1:frame_count
2
3 //repeat frames on boundary
4 tw := current_time_window = [t-2:t+2]
5
6 inputs:
7 Y = data(tw), P = sampling_pattern(tw)
8 init:
9 𝜌 = 1, 𝑐𝑐𝑐 = 0, 𝑣𝑣𝑣 = 0,

10 𝜂 = (𝛼0,𝛽,𝛽2,𝛾,𝛿),
11 nv = 7, if opt. flow constraint
12 = 0, else
13
14 for n = 1:newton_steps
15
16 if n < nv:
17 (d𝜌,d𝑐𝑐𝑐) = calc_image&coil_update(𝜌,𝑐𝑐𝑐,𝜂)
18
19 else: //only when optical flow is used
20 𝑣𝑣𝑣 = calc_flow(𝜌)
21 (d𝜌,d𝑐𝑐𝑐) = calc_image&coil_update(Y,P,𝜌,𝑐𝑐𝑐,𝑣𝑣𝑣,𝜂)
22
23 (𝜌,𝑐𝑐𝑐) = (𝜌,𝑐𝑐𝑐) + (d𝜌,d𝑐𝑐𝑐)
24 𝜂 = reduce_parameters(𝜂,n) //𝛼 → 𝛼/2
25

Algorithm 4.1: Non-linear inversion reconstruction with optical flow constraint. The flow estima-
tion subproblem alternates with the image reconstruction subproblem. At each time
point t a whole batch of frames is considered with a repeating frame boundary con-
dition (constant time derivative). Solvers for the subproblems in line 17, 20 and 21
are explained in the next section.

Using an optical flow constraint is optional in this framework and can be replaced
by a 𝜕𝑡-operator (batch time difference), affine temporal regularization or no tem-
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poral regularization. It is further possible to change the regularization type and
the penalty norm in the subproblem solvers (section 4.3.2) betweenNewton steps.

When the optical flow 𝑣𝑣𝑣 is used, no temporal regularization is applied during the
first newton steps (𝑛 < 𝑛𝑣) and the focus is entirely on deconvolving 𝜌 and 𝑐𝑐𝑐, corre-
sponding to standard NLINV. In principle optical flow estimation and application
from the first newton step on should work. For the first step 𝜌 is the constant initial
guess, flow estimation results in zeros and the flow constraint amounts to a batch
time difference operation. Adding the optical flow constraint early, however, was
observed to cause instability in later steps and it is therefore only enabled after
7 newton steps, whereas the affine or the batch time difference constraint start
immediately.
One possible explanation for the instability is that during the first newton steps
image and coil 𝐿2-norms vary strongly between steps, and so does the intensity
distribution in both variables. Therefore a flow field estimated from 𝜌𝑛 is likely not
to fit in the computation of 𝜌𝑛+1 in early newton steps.
Given a perfect optical flow estimate, only one further Newton step with the flow
constraint enabled is necessary (Newton steps = 𝑛𝑣) to combine information of
neighboring frames and remove undersampling artifacts. Without such an esti-
mate the first optical flow computed will stem from images with strong artifacts
and require several iterative refinements of the flow field with every Newton step
beyond 𝑛𝑣.

In order to simplify the above algorithm to the case where the flow is known 𝑛𝑣
is set to 0 and the flow estimation omitted. Likewise, if the coils are known the
number of Newton steps is set to 1. As another minor variant, it is possible to
initialize 𝜌 and c with the result of the previous frame (batch) starting from the
second frame. Especially when the affine regularization is used, this may stabilize
and speed up convergence.

Which parameter settings are best depends on the chosen reconstruction type.
For Figs. 5.1-5.22 parameters are given in Tab. A.2-A.12 (appendix). For reference,
parameters for joint image and coil reconstruction with different time constraints
are given in Tab. 4.1.

Their exact choice seemed not to be critical and best values will vary with noise
level, which depends on the data acquisition sequence. Usually, the regularization
parameters in the iteratively regularized Gauss-Newton method are supposed to
decrease with the newton step count. Yet, in the case of 𝛾, iterative reduction
merely led to gradual waning of the temporal regularization effect. Therefore it is
kept constant. The flow regularization parameters 𝛽,𝛽2 and 𝛿 are also not reduced
as they act on the image only in later Newton steps, where the image norm has
leveled.

31



joint 𝜌 +𝑐𝑐𝑐 with flow or 𝜕𝑡-op constraint: Newton steps = 13,
𝛼𝑛 = (1/2)𝑛, 𝛾𝑛 = 0.3 ∀𝑛

joint 𝜌 +𝑐𝑐𝑐 with affine constraint: Newton steps = 7,
𝛼𝑛 = (1/2)𝑛, 𝜆 = 0.9

optical flow estimation:
||∇𝑣𝑣𝑣||2: 𝛽 = 0.001,

𝛿 = 100 (hard thresholding, eq. 3.12)
||∇𝑣𝑣𝑣||2 + ||∇𝑣𝑣𝑣||1: 𝛽 = 0.0001, 𝛽2 = 0.0001
𝐿1-transport & ||∇𝑣𝑣𝑣||1: no stable convergence

Table 4.1: Recommended parameters for joint image and coil estimation with optional optical flow
constraint.

4.3.2 Numerical Functional Minimization

Along the lines of Dirks [41] and Burger et al. [42] this work used the Chambolle-
Pock algorithm [50] for minimizing functionals (lines 17, 20 and 21 in Alg. 4.1). It
solves problems of the form

Find ̂𝑥 ∈ argmin
𝑥

𝐺(𝑥)+
𝑚

∑
𝑖

𝐻𝑖(𝐾𝑖𝑥), (4.1)

which include the image reconstruction and optical flow estimation problem. Here
𝐺 and the 𝐻𝑖 may be non-smooth penalty terms, such as an 𝐿1-norm and the 𝐾𝑖
are continuous, bounded linear operators with Hermitian adjoint 𝐾𝐻

𝑖 . Originally,
the algorithm did not focus on multiple constraints (𝑖 = {1}), yet by now suitable
extensions exist ([51],[52],[53]) as recently reviewed by Komodakis and Pesquet
[54]. The algorithm follows a primal dual approach - see Boyd [55] for a reference
on duality. It is related to proximal point algorithms such as Douglas Rachford
splitting (Eckstein and Bertsekas [56]) and sub-variants including the popular al-
ternating direction method of multipliers (ADMM), a comprehensive introduction
to which is given by Parikh and Boyd [57]. Instead of solving eq. 4.1 as one large
problem, minimization is decomposed into a set of subproblems solved iteratively
starting from an initial guess by following procedure:

for k = 1 until converged do

∀𝑖 = 1...𝑚, ˷𝑦𝑖 = prox𝜎𝐻∗
𝑖
(𝑦𝑘

𝑖 +𝜎𝐾𝑖𝑥𝑘) (4.2)

𝑦𝑘+1
𝑖 = 2 ˷𝑦𝑖 −𝑦𝑘

𝑖 (4.3)

˷𝑥 = prox𝜏𝐺𝑖
(𝑥𝑘 −𝜏

𝑚
∑

𝑖
𝐾𝐻

𝑖 𝑦𝑘+1
𝑖 ) (4.4)

𝑥𝑘+1 = 2 ˷𝑥−𝑥𝑘 . (4.5)
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Eq. 4.2 holds the 𝑚 solutions to aforementioned subproblems, each referring to
a different penalty term 𝐻𝑖. These intermediate solutions are stored in the dual
variables

˷𝑦𝑖. And the primal objective 𝑥 is the variable of interest. Evaluation of
the

˷𝑦𝑖 as the solution to

prox𝜎𝐻∗
𝑖
(𝑦𝑘

𝑖 +𝜎𝐾𝑖𝑥𝑘) ∶= argmin
˷𝑦

𝜎𝐻∗
𝑖 ( ˷𝑦)+ || ˷𝑦 −(𝑦𝑘

𝑖 +𝜎𝐾𝑖𝑥𝑘)||2 (4.6)

is called the dual problem, where the “prox”-operator is a quadratic relaxation of
the minimization problem of 𝐻∗

𝑖 . 𝐻∗
𝑖 itself is the (Fenchel) conjugate of 𝐻𝑖 defined

by [57]

𝐻∗
𝑖 (𝑦) ∶= sup

𝑥∈dom𝐻𝑖

⟨𝑦,𝐾𝑖𝑥⟩−𝐻𝑖(𝐾𝑖𝑥). (4.7)

An important advantage of the dual approach beside problem splitting is that
the operators 𝐾𝑖 appear only with the parameters not the variables. The prox
evaluation (eq. 4.6) therefore will not entail furthermatrix applications or the need
to perform matrix inversions, which sometimes might be hard or impossible. Of
course, this operator splitting is of use only if evaluation of eq. 4.7 is simple. For
some of the most frequent cases look-up references exist [57],[41]. A list of the
prox functions required for this work is given in the appendix.

As in gradient based methods, convergence rates depend on the step width de-
noted here by 𝜎 for the dual ascent step in eq. 4.2 and 𝜏 for the primal descend
step in eq. 4.4 respectively. Convergence of the Chambolle-Pock algorithm is
guarantied [52] when

𝜎𝜏||
𝑚

∑
𝑖

𝐾𝐻
𝑖 𝐾𝑖|| < 1, (4.8)

thus 𝜎 = 𝜏 = 1/(1.1⋅||
𝑚
∑
𝑖

𝐾𝐻
𝑖 𝐾𝑖||1/2) is used here, and the summed operator norm

is computed using power iterations.

Lastly, eq. 4.3 and 4.5 are an optional inexpensive addition to speed up conver-
gence in many practical cases [50].

Similar to ADMM, the algorithm converges slower in most problems than the clas-
sical conjugate gradient method. Its main benefit lies in the plug-and-play fashion
in which regularization terms can be exchanged by simply replacing the prox func-
tion, which is typically one line of code. Proposed ways to speed up convergence
include using a vector of step widths with an entry 𝜎𝑖 for each operator 𝐾𝑖 instead
of an average step width [58], computing an optimal step size with a line search
[59] or adapting the step size automatically and iteratively based on the evolution
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of the residual [60]. Most methods require setting additional parameters and
while noticeable speed-ups were observed here in some examples, divergence
occasionally occurred in others. Therefore the basic Chambolle-Pock algorithm
was used.

Apart from the step size, reconstruction runtime is also determined by the itera-
tion count. That in turn depends on the stopping criterion. A common choice is
to stop optimization once the functional residual norm has fallen below a fraction
of the norm of the initial residue or once the residual norm is no longer changing
by more than a preset fraction with respect to the previous iteration.
Here, however, a fixed number of iterations was used eventually to terminate op-
timization, which may have allowed more iterations than were necessary. In the
case of image reconstruction with an optical flow constraint for instance, minor
model violations (through-plane motion) occasionally caused a slight increase of
the normof the total residual (root summed squares of residual normof all penalty
terms). This would lead to termination with a relative norm reduction criterion
while the images were still gaining sharpness, bringing them closer to the ref-
erence. A fixed number of iterations chosen through a parameter grid search
and subsequent comparison between reference and reconstruction prevented
premature termination and simplified comparisons between reconstructions with
different regularizations.
Concerning the other temporal regularizations, termination as soon as the resid-
ual norm has changed by less than 0.1% with respect to the previous iteration
seemed a sound criterion. Nevertheless, for sake of consistency again a fixed
number of iterations chosen after a parameter grid search was used.

4.3.3 Operator Discretization

The discretization scheme chosen here, largely coincides with that adopted by
Dirks [41] and Burger et al. [42]. For the time derivative operator 𝜕𝑡 a forward
finite difference is used and correspondingly a backward difference for the adjoint
operator 𝜕𝐻

𝑡 (three frame time window example)

𝜕𝑡 = ⎡⎢⎢
⎣

−1 1
−1 1

0

⎤⎥⎥
⎦

, 𝜕𝐻
𝑡 = ⎡⎢⎢

⎣

−1
1 −1

1 0

⎤⎥⎥
⎦

.

And the same discretization applies for the spatial gradient operators in the flow
smoothness penalty ||∇𝑣𝑣𝑣||𝑝 during optical flow estimation. A different choice is
made, however, with regard to the gradient discretization inside the transport
term ||𝜕𝑡𝜌 +𝑣𝑣𝑣∇𝜌||𝑝, where they propose to keep the forward difference operator
for time but use a centered gradient in space. Without any objections regarding
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the 𝜕𝑡-discretization an upwind scheme [61] is used here instead of the centered
gradient.
In its basic form it is an average of a forward difference operator in the current
frame and a backward difference in the next frame or vice versa, depending on
the direction of the optical flow. Same as for the centered gradient, the advantage
over a conventional forward or backward difference operator is the increased spa-
tial support. Coverage of a larger area per time step means larger time steps, or
equivalently, faster motion is better captured. The centered difference, however,
still has a smaller support than the upwind gradient, which considers the starting
position of an edge in one frame and its end position in the next. This also adds
to accuracy on sub-pixel sized shifts.

Figure 4.4: Noiseless in-plane motion phantom during circle expansion subjected to different gra-
dient functions. The upwind gradient has the largest support in fast motion increasing
the support area for the optical flow.

Dirks and Burger pointed to the advantages of the upwind scheme yet observed
artifacts when using it. Artifacts in the form of a blow up of optical flow values
were also observed here, but could be completely eliminated by adding a Gauss
filter with width 5 and standard deviation 1 to the transport term evaluation (and
only there) in both the image- and flow estimation problem (eq. 3.9-3.10).

The classical approach proposed by Horn and Schunck [7] - not considered here
- used centered cell gradients, which is robust but according to Dirks [41] yields
less accurate flow fields.
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5Results

This chapter is divided into two parts:

• The first part compares different temporal regularizations both quantita-
tively and qualitatively and therefore assumes that coils are known. Opti-
cal flow fields are always estimated from images with the full 75 spoke data
set. It proceeds by (i) comparing the performance of all considered tempo-
ral regularization types in a phantom compliant with the optical flow model
and without noise, (ii) considering the influence of noise in the same phan-
tom, (iii) addressing the two most likely types of optical flow model violation
in phantom data - long-range in-plane motion and through plane motion -
and (iv) comparing reconstruction types in human heart data as well as as-
sessing to what extent the data corresponds to an optical flow compliant
phantom.

• The secondpart dealswith the casewhere the coils need to be reconstructed
jointly with the image and the flow field needs to be estimated from under-
sampled instead of fully sampled data.

• A brief summary is given at the end

5.1 Image Reconstruction with Known Motion

In this part the receive coil sensitivities are assumed known and optical flow fields
are estimated from fully sampled data. It will be shown that an optical flow field
can be estimated perfectly in the absence of noise and still reasonably well when
noise is present. If the measured object is compatible with the motion model
application of the flow field can markedly improve image reconstructions from
undersampled data.
Object motion that violates the optical flow model will cause the flow field estima-
tion to converge at a slower rate and to a shallower minimum, possibly causing
blur upon application in image reconstruction.
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5.1.1 Optical Flow Compatible Data

Noiseless Data

In order to compare the effect of different temporal penalties in the cost func-
tional, the in-plane phantomwith 75 spokes in each framehas been reconstructed
as a reference without added noise. Reconstructions of a five-fold undersam-
pled (15 spokes) noiseless version of the phantom (Fig. 5.1) that were compared
against the reference used (i) no temporal penalty, (ii) an affine temporal con-

Figure 5.1: Upper left corner of the in-plane phantom (fastest area). a) Reference with 75 spokes
and b-h) different reconstructions. Reconstruction parameters see Tab. A.2.
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straint (eq. 3.1), (iii) a batch time difference constraint (eq. 3.2) and (iv) the optical
flow constraint (linear version of eq. 3.9). In addition, the effect of a temporal me-
dian filter as well as a sliding window average in post processing was also tested.
Adding a temporal regularization or a filter improved over no regularization in ev-
ery case, with the optical flow model unsurprisingly performing best in this phan-
tom. Apart from slight ring-like artifacts (Fig. 5.1b) it could well reproduce the
reference.
The temporal median filter preserved the shape of the circles surprisingly well
(Fig. 5.1d) while the affine regularization, sliding window averaging and batch-𝜕𝑡
regularization introduced visible motion blur. The difference between the affine
regularization and the rest is mostly that regularization is with respect to a history
of up to five frames - the pattern repetition period - versus a temporally centered
combination of frames in the other methods.
For a more quantitative analysis SSIM values were computed from the magnitude
part of each complex image for the image itself (Fig. 5.2a) and the temporal deriva-
tive to the next image (Fig. 5.2b). The derivative is to show the dynamic effect of
the regularization.
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Figure 5.2: SSIM values from a 30 frame sequence of the noiseless in-plane phantom for (a) image
magnitude and (b) image magnitude time derivative. Reconstruction parameters see
Tab. A.2.

As each regularization type converges slightly differently parameter settings are
not identical between different reconstructions. For each regularization type a
parameter grid search was performed and parameters selected according to the
best outcome by SSIM value. In case similar results were reached with different
parameters the smaller regularization weight and iteration count were chosen as
best parameters.
Interestingly, even though the simpler and cheaper sliding average scores a higher
SSIM then the batch-𝜕𝑡 regularization, its corresponding image is blurrier. This
may be attributed to the fact that all frames in the time window are combined
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with equal weights whereas more emphasis is put on the central frame especially
at higher spatial frequencies in the regularized approach, resulting in less motion
blur.
Looking to the dynamic behavior of each reconstruction (Fig. 5.3) the blur be-
comes more apparent as well as the fact that motion may be obliterated by the
median filter.

Figure 5.3: Upper left corner of the time derivative of the in-plane phantom image magnitude, ab-
solute intensities windowed identically among subfigures. Reconstruction parameters
see Tab. A.2.
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Parameter Influence on Optical Flow Estimation

Adding an optical flow constraint enables deeper convergence in the image recon-
struction problem of the numerical phantom albeit at a slow rate. In the absence
of noise one could go to thousands of iterations and still observe a decline of
the residual (Fig. 5.4a, blue curve). Apart from the number of iterations in the
image reconstruction problem, the number of iterations spent in the flow estima-
tion problem also influences the resulting image quality and again, convergence
is rather slow (Fig. 5.4b). The optical flow is initialized with zeros and in the ex-

0 1000 2000 3000 4000 5000

iterations

0.314

0.316

0.318

0.32

0.322

0.324

0.326

0.328

0.33

d
a

ta
 r

e
s
id

u
a

l 
/ 

||
d

a
ta

||

3.5

4

4.5

5

5.5

6

tr
a

n
s
p

o
rt

 r
e

s
id

u
a

l 
/ 

||
d

a
ta

||

×10
-3

a: image reconstruction

0 2000 4000 6000 8000

iterations

0

0.02

0.04

0.06

0.08

0.1

0.12

re
s
id

u
a
l 
/ 
||
d
t(

im
a
g
e
)|

|

rss

transport

divergence

b: optical flow estimation

Figure 5.4: Residual evolution over iteration count. The residual is normalized by the norm of a)
the data norm and b) the time derivative so the main residual obtained with the initial
guess for the image and optical flow (ones and zeros, respectively) evaluates to one. The
iteration axis starts at four for better visibility, so the y-axis does not go up to one. Black
dots in b) mark the flow fields displayed in Fig. 5.5. Parameters see Tab. A.3.

treme case of terminating after zero iterations subsequent image reconstruction
amounts to the same as batch-𝜕𝑡 regularization. Ring artifacts such as in Figs. 5.1b
and 5.3b appear as a result of too low optical flow values and vanish withmore iter-
ations of the flow estimation. These rings are no Gibbs-ringing. Rather, the spatial
gradients (edges) of the circles which are used to model the time derivative are
amplified with the wrong optical flow amplitude. In the presence of noise early
termination after 1000 iterations - ≈1 sec computing time for 3842 px - usually
sufficed to keep artifacts below noise level.

Figure 5.5: Horizontal component (𝑣𝑥) of optical flow. Flow amplitude is build up successively in the
first few hundred iterations while the effect of the smoothness penalty materializes only
in later iterations, extending the spatial reach of the flow field. Parameters see Tab. A.3.
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Plugging the flow field (Fig. 5.5) into 𝜕𝑡𝜌 = −𝑣𝑣𝑣∇𝜌 shows how well the time deriva-
tive can be approximated by the spatial derivative (Fig. 5.6).

Figure 5.6: Transport term residue computed with flow fields from Fig. 5.5 and the ground truth
reference image during circle contraction. At too few iterations the residual resembles
the time derivative. Parameters see Tab. A.3.

In the shown frame circles are contracting therefore the temporal derivative is a
subtraction of intensity from the past to the present frame (black signal = negative
values). With too few iterations the transport residue qualitatively still looks like
the temporal derivative. Only with sufficient iterations does it approach zero and
the ring artifact vanishes (Fig. 5.7).

Figure 5.7: Images reconstructed from undersampled data with the optical flow constraint and the
flow fields from Fig. 5.5. Insufficiently converged flow fields cause artifacts and slow
convergence in the image reconstruction problem. Parameters see Tab. A.3.

Convergence rates are determined by the divergence weight 𝛽 in the flow esti-
mation problem and the transport weight 𝛾 in the image reconstruction problem.
𝛽 ≈ 0.001 led to stable convergence in all tested examples, while larger values
significantly slowed down convergence and values < 0.0001 could result in blow
ups. Without noise, image reconstruction was stable on the interval 𝛾 ∈ [0.03,0.5],
where values on the upper end enforce stronger inflow of image information from
neighboring frames into the current frame. In this example, however, results with
different 𝛾 values differed little.

Noisy Data

The ground truth optical flow field fromnoiseless images also performs best when
applied to noisy data (Fig. 5.8). Among all other reconstructions the rank order
of SSIM values changed with respect to Fig. 5.2 with the introduction of noise.
Notably, batch-𝜕𝑡 regularization on average now ranks second.
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Figure 5.8: SSIM values representing the similarity scorewith respect to the noisy reference contrary
to Fig. 5.2, which results in overall lower similarity since reconstructions do not recreate
noise accurately. Parameters see Tab. A.4.

In practice the flow field obtained fromnoisy imageswill carry that noise itself even
in areas without motion. This might raise the concern that artifacts in those areas
multiplied by the noisy flow field may not get averaged out as a consequence.
Noise suppression in the flow field by additional regularization can be realized by
regularizing the smoothness term ||∇𝑣𝑣𝑣||, transport term or both terms of the cost
functional in the𝐿1-norm. This is a popularmethod for sparse signal recovery that
is well suited here as the flow field, temporal and spatial gradients are all sparse.
However, pure 𝐿1-regularization may yield patchy textures, thus a mixture of an
𝐿1 and 𝐿2 penalty can be a good compromise between patchiness and noisiness.
Alternatively, an additional term can be introduced to the cost functional masking
all values where the image magnitude and its temporal gradient lie below the
estimated noise level corresponding to hard thresholding (eq. 3.12).

Figure 5.9: (Top) Optical Flow fields estimated from noisy reference in-plane phantom (upper left
corner shown) and (bottom) phantom with added noise, reference and various recon-
structions. Parameters see Tab. A.5. Images reconstructed with 𝐿1-optical flow were
visually indistinguishable from those reconstructed with other flow fields.
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Yet, despite the change of appearance of the flow field under different regulariza-
tions the resulting reconstructed images and their dynamics change little.

With regard to noise, the choice of flow regularization has little effect on the result-
ing SSIM values (Fig. 5.10). Hard thresholding performs a little worse. The noise
present in the simply 𝐿2-regularized optical flow field seems not to interfere with
the averaging of undersampling artifacts across the reconstruction time window.
Also, as in the noiseless case, image reconstruction was stable with the transport
term weight 𝛾 ∈ [0.03,0.5] and results differed little over this interval.
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Figure 5.10: SSIM values for image reconstructions using optical flow fields obtained with different
regularization types (see Fig. 5.9), batch-𝜕𝑡- and no temporal regularization. Parame-
ters in Tab. A.5

As soon as noise is included in the data, there is no truly objective reference any-
more. The reference compared to depends on the choice of the Tikhonov-penalty
weight 𝛼 which trades noisiness against blur and has to be decided once upon vi-
sual inspection (Tab. A.4 for the noisy phantom).

5.1.2 Optical Flow Model Violation

So far the tested data has been compliant with the optical flow model. Real data
on the other hand is expected to violate the model during through-plane mo-
tion or sudden long-range motion reaching beyond the overlap region of the spa-
tial gradients between subsequent time points. The former is necessarily seen
in heart imaging and interactive applications were the imaging plane is moved
during measurement. The latter may occur in speech studies with rapid tongue
motion.

Fast, Long-range Motion

The long range motion phantom (Fig. 5.11) is identical with the noiseless in-plane
phantom except that the pulse rate has been doubled and the pulse amplitude
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increased by 60%. As a result, the time difference between neighboring frames
covers a larger area then the spatial gradients of those frames which leaves an
area where - conflicting with the continuity equation - no linear relationship be-
tween the gradients can be established and the optical flow is reduced to zero
by means of the smoothness penalty. Those areas experience averaging as if a
simple finite difference operator were used.

Figure 5.11: Noiseless in-plane phantom with doubled pulse rate and 60% increased pulse ampli-
tude. (top-left) reference image and (top-mid and -right) reconstructions with optical
flow constraint (identical iteration count in image reconstruction problem and different
iteration count in flow estimation problem). (bottom-left) time difference, and (bottom-
mid and -right) horizontal components of the flow field (𝑣𝑥), estimated with a simple
𝐿2-penalty. The topmiddle reconstruction hasmore rings than the shown flow field be-
cause of the flow fields in neighboring time points within the same batch. Parameters
see Tab. A.6

Thus, in principle, the optical flow should not do worse then the batch-𝜕𝑡 regu-
larization on fast objects. In practice, this is also true but convergence is slowed
down further such that more iterations become necessary or severe artifacts ap-
pear even after 1000 iterations (Fig. 5.11 top-middle).

Through-plane Motion

Through plane-motion has an interaction with noise. Wherever an inflow of in-
tensity can not be explained by anatomic edges the model tries to amplify noise
to explain the inflow. This is also true in the absence of actual noise, when only
minimal numeric noise is present.
As in the model violation by fast motion, convergence of the flow estimation is
slower than when the model is satisfied. The attempt to explain through-plane
motion by noise leads to amplified noise artifacts in the image reconstructed from
undersampled data. The more iterations are run, the better the noise fits the mo-
tion. However, the blown up flow values after 5000 iterations (Fig. 5.12 middle)
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cause problems during application of the flow field in image reconstruction, re-
sulting in blurrier images.

Figure 5.12: Noisy Through-plane motion phantom (real part of upper left corner shown, fastest
area). Reference, reconstructions and flow fields with negative values in black. For bet-
ter flow field contrast to noise ratio, flow fields were reconstructed with a hard thresh-
olding constraint (eq. 3.12). Parameters see Tab. A.7.

SSIM values of those reconstructions (Fig. 5.13a) are lower than where batch-
𝜕𝑡 regularization is used. In the latter case the images look exactly as the refer-
ence yet suffer from motion blur. The temporal fidelity of each reconstruction
method is assessed in Figs. 5.13b-5.13d, by comparing region of interest aver-
age intensities in three different circles (upper left, middle left and lower right
circle) each with different amounts of intensity inflow over time. Differences be-
tween reconstructions become apparent at points where the through-plane mo-
tion changes direction, rather than at zero-crossing points, which is why the mag-
nitude is shown. The noise artifact in the optical flow based solution with 1000
iterations actually has ROI-mean values closer to the reference than the batch-𝜕𝑡
regularization based solution which suffers larger motion blur.
In summary, optical flow will - contrary to the case of too fast motion - not perform
as well as batch-𝜕𝑡 regularization if too much through-plane motion takes place.
This example, however, is to be understood as a limiting case.
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Figure 5.13: SSIM values and mean intensities of three different circles in Fig. 5.12. The real part of
the phantom was used. Magnitude curves are shown in 5.13b-5.13d to highlight the
motion turning points. Parameters see Tab. A.7.

5.1.3 Applicability to Real Data

While through-plane intensity inflow will be absent or negligible in most head
imaging applications, which are less open to emulation by surrogate data, it is
always seen in heart imaging. The extent varies depending on the imaging slice
orientation. To gain insight into how well this is dealt with by the optical flow
model the transport term residual is shown for a short axis-, four-chamber- and
two-chamber-view (Fig. 5.14).
In the upper row a time point is shown where contracting motion of the myocard
is exclusively in-plane, while both lower rows also feature through-plane motion
from (mid) in- and (bottom) out-flowing blood. Yet, whereas in the mid row inflow
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Figure 5.14: Reference magnitude images, time differences of the image real part and transport
residuals for (top) a short axis (middle) four-chamber and (bottom) two-chamber view
of the heart. Shown image rows from top to bottom correspond to frames 13, 7, 10 in
Fig. 5.15. Time difference images and transport residuals are shown after application
of a Gauss-filter (width = 5, SD = 1) used by default for stability before estimation and ap-
plication of the optical flow. Transport residuals have been computed using an optical
flow with 5000 iterations and hard thresholding (not shown). Ideal model compliance
is achieved were the residual stays below the noise level. Parameters see Tab. A.8

cannot be related to edge displacements by the flow field, the bottom row residual
shows less extreme values despite considerable outflow in the aorta. The spatial
distribution of inflowing intensity appears to be at least as important as the abso-
lute amount.

In order to place the surrogate data examples between the two extremes of per-
fectly compliant motion and motion incompatible with the optical flow model the
𝐿2-norm of the transport residual for each data set is plotted with the residual
norm of the through-plane and in-plane phantom normalized by the norm of the
respective time derivative (Fig. 5.15). A value close to one indicates pure through-
plane motion as the time derivative could not at all be related to the object edges.
Likewise a value close to zero means all motion was in-plane and short-range.
Due to noise neither extreme will be reached in practice, but the in-plane and the
through-plane phantom are clearly separated from each other.
The error-bars in Fig. 5.15 quantify the motion SNR of each frame. That is, the sig-
nal to noise power ratio of the time derivative restricted to the support ofmeaning-
ful (above noise level) values of the time derivative. A supportmask is conveniently
provided by the hard-threshold regularized flow field. In essence, time points with
large error-bars belong to frames where less motion above noise level appears in
the time derivative or transport residual and uncertainty about whether it is ac-
tually through-plane motion or just noise is higher. The reciprocal motion SNR
values serve as weights in the weighted averages denoted by solid lines.
Time points tend to have higher valueswhen the transport residual ismostly noise.
The curves in Fig. 5.15 are, however, not random but follow the heart beat cap-
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Figure 5.15: 𝐿2-norm of the transport residual divided by 𝐿2-norm of the time derivative for (left)
short axis (middle) four-chamber and (right) two chamber heart series, shown with the
in-plane and through-plane phantom. Error-bars are computed as the signal to noise
power ratio (squared) (“motion SNR”) over the time derivatives support (above noise
level). Solid lines denote the weighted average over time, with the reciprocal motion
SNR asweights. Flow fields have been computedwith the hard threshold regularization
(eq. 3.12) and 5000 iterations. Parameters see Tab. A.8.

tured in the series of 30 frames. In the left plot of Fig. 5.15 (short-axis-view) a beat
starts at the 4th frame with in-plane motion followed by heart expansion - inflow
and model violation - and ends at the 28th frame. A similar pattern exists in the
other examples. Apart from the four-chamber-view, the surrogate data behaves
like a half-half mix of both phantoms.
Again, as in the phantom data (Fig. 5.10), the particular choice of the flow-field
regularization -𝐿2 (+ hard thresholding) or𝐿1 - seemed not to affect image quality
or temporal fidelity much, judging from SSIM values (not shown).

Upon inflow significant signal remains in the transport residual, irrespective of
the flow regularization. As in the phantom data this may lead to through-plane
artifacts in real human data (Fig. 5.16, comparemid- and left-bottom). The artifact
- whichmight bemisinterpreted as an actualmyocardial dysfunction - comes along
with blur due to a slower convergence rate.
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Figure 5.16: (Top) horizontal component of flow fields with different regularization, 7th frame of the
four-chamber-view as in Fig. 5.14. (Bottom) Reference and reconstructed image using
the 𝐿2-optical flow constraint. The reconstructed image has a through-plane artifact
where the flow field is abnormally bright. The frame is taken at a time point of blood
inflow into the (anatomically) left ventricle shown on the right. Parameters see Tab. A.9.

It is also possible to track the time interval where inflow occurs in a plot of SSIM
values. The through-plane artifact seen in Fig. 5.16 occurs in the 7th frame of
the series in the middle of an interval where the blue curve of SSIM values in Fig.
5.17a takes a dip when the data no longer fits the model.
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Figure 5.17: SSIM values of four-chamber-view data for several temporal regularization types. The
optical flow used again has 5000 iterations. A dip in the blue curve of Fig. 5.17a marks
an interval with blood inflow into the left (large) ventricle in violation of the optical flow
model. Parameters see Tab. A.9.
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The drop in SSIM values is not due to the artifact itself but due to the blur and in-
complete deconvolution of the coils from the anatomic object. In the time deriva-
tive of the image magnitude which is unaffected by the global intensity distri-
bution the optical flow reconstruction still scores highest throughout all frames.
Partly, because a blurry image is less noisy. Blur, however, only occurs in the dip in-
terval. Themain reason explaining the score is better handling of in-planemotion.
This is further exemplified in Fig. 5.18 in magnitude difference images between
reference and reconstructions. During inflow, the batch-𝜕𝑡 regularization keeps
spatial sharpness and suffersmotion blur, where optical flow based regularization
degrades spatial sharpness yet better keeps temporal fidelity. The affine tempo-
ral regularization + median filter has the lowest temporal fidelity, strongest back-
ground artifacts and a different intensity distribution above the heart (dark area).
During in-plane motion little difference is seen between reference and the recon-
struction with optical flow constraint, while batch-𝜕𝑡 regularization ranks second
and affine regularization clearly third.

a: through-plane motion

b: in-plane motion

Figure 5.18: Difference between reference magnitude image and different reconstructions unre-
lated to Fig. 5.17. Through-plane motion in the top row causes a temporal delay in the
𝜕𝑡-operator based reconstruction, seen as a bright residue on the heart in the differ-
ence image (top left). The residue on the heart is smaller in the optical flow constraint
reconstruction. However, violation of the optical flow model impedes convergence re-
ducing image sharpness in the reconstructed image. Therefore, all edges in the differ-
ence image (top middle) appear bright. Conversely, the optical flow model is fulfilled in
the bottom row which shows the heart during in-plane motion and the residue in the
difference image (bottom middle) is minimal. Parameters see Tab. A.9.
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5.2 Motion Estimation in the Presence of Artifacts

Up until now coil sensitivities have been assumed known and optical flow fields
were computed from images with fully sampled data sets. In the presence of
undersampling artifacts, object motion may no longer be the dominating fea-
ture in the time derivative of the image. Artifacts, despite their rapid, discontin-
uous dynamic, will still enter the optical flow field and visibly distort object move-
ment when applied during reconstruction. The artifacts are smoothed out by the
smoothness penalty in the flow estimation problem but retain their rotating dy-
namic. After applying the flawed flow field, the artifact no longer looks like streaks
moving on top of the object. Rather the object itself now looks as if its walls were
”wobbling“ because the streaks are frozen in areas with flat intensity gradients
and only move near object edges. Repeated flow estimation and application on
the same image gradually improves both flow field and image (Fig. 5.19).

Figure 5.19: In-plane phantom (top row) fully and undersampled (2nd row) corresponding horizon-
tal 𝐿2-regularized flow fields (3rd row) NLINV reconstruction with flow constraint (bot-
tom row) flow re-estimation from reconstructed image (3rd update) and resulting re-
construction. Parameters see Tab. A.10.
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The gradual improvement seen in the phantom’s flow field eventually even elimi-
nates noise and leaves no trace of artifacts. That may be owed to the phantom’s
geometric regularity and homogeneous intensity. From the very beginning the
motion of the phantom stands out from the artifacts. In anatomic images with
bright fatty tissue and less regular intensity distribution that rarely ever holds. In
fact as shown in Fig. 5.20, even though several flow estimation and application
cycles result in significant artifact reduction some will persist - especially in bright,
fatty tissue - irrespective of the cycle count. And likewise does the ”wobbling“ re-
main prominent (time difference Fig. 5.20).

Figure 5.20: (Top row) NLINV reconstruction with flow constraint (again 7th frame) and time deriva-
tive after 15th Newton step, (2nd row) 0th and 7th optical flow update (horizontal com-
ponent) started after 7th Newton step, (3rd row) flow with ||∇𝑣𝑣𝑣|| regularized by 𝐿2, 𝐿2
+ hard threshold and 𝐿1 + 𝐿2, (bottom) flow with all penalties in 𝐿1-norm. Flow fields
are windowed identically. Parameters see Tab. A.11.
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Not all regularization types performed equally but none of them did satisfyingly.
The𝐿1-𝐿1 total variation constraint as proposed by Li et al. andDirks has also been
tested here. Indeed, the support of non-zero values it leaves is the smallest of all
but still not small enough. More importantly, with 𝐿1-𝐿1, image reconstruction
diverged in a few frames of the series. No set of parameters could be found in
the grid search to yield reliable convergence for the entire series.
Experiments with further added regularization terms in the flow estimation prob-
lem, tailored to reduce the flow values where the time difference values are large
before and small after application of the flow field in several variations (eq. 3.13),
also turned out unsuccessful.

In summary, reliable discrimination between artifacts and motion near edges or
areas of extreme contrast using information from the time window of a single rep-
etition period so far has failed nomatter the regularization. A possibleworkaround,
still under investigation at the time of writing, is to add another frame to the time
window such that two interleaving sets of full patterns can each be combined into
time blurred full frames and their magnitudes be subtracted (Fig. 5.21).

Figure 5.21: (Top) Data acquired with a pattern repetition period of five combined in a sliding win-
dow average before first estimation of optical flow (e.g. 7th newton step, complex im-
ages shown) forms full frames (middle row) without artifacts but with motion blur. The
difference of two consecutive full magnitude images has much less artifacts in static
areas and still contains a temporally coarse-grained picture of motion within the batch
(bottom right, non-averaged reference time difference, spatially blurred for feature vis-
ibility).
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The time window considered would span one frame beyond the pattern repetition
period, thus artifacts in areas which are static throughout that interval could be
better recognized. On the other hand, artifacts do not vanish completely as seen
in the block average time difference in Fig. 5.21. Likewise, motion which lasts
for a mere two or three frames might be averaged to noise level and mistakenly
removed. Whether or not such issues arise in practice and impede the success of
such an approach needs further investigation.

Until the open issues of inflow and artifact propagation through the flow field are
resolved, the batch time difference regularization stands as the best reconstruc-
tion mode. It is easily integrated into the joint non-linear inversion reconstruction
of image and coils and offers higher temporal fidelity than standard affine regu-
larization + median filter (Figs. 5.17, 5.18).

Figure 5.22: Four-chamber-view reconstructed by NLINV with (left) batch-𝜕𝑡 constraint and (right)
affine temporal regularization. Images have same relative intensity windowing. Abso-
lute intensities differ due to different regularization and resulting coil estimation. There-
fore a comparison to a common reference is not possible. The affine regularization has
a background artifact. Parameters see Tab. A.12

Apart from temporal fidelity loss, affine regularization results in background arti-
facts (bright haze, Fig. 5.22) that build up more prominently during joint recon-
struction than when the coils are a known parameter. The artifact grows over
several frames as a result of inconsistent superpositions of image projections be-
tween frames while the object moves: Constraining the current frame to look like
the previous one by adding 𝛼||𝜌𝑡 − 𝜆𝜌𝑡−1||, 𝜆 ∈ [0,1] to the cost function does not
result in an equal weighting of projections. The data of the current time point will
always have a higher weight than that of the previous time point, even if 𝜆 = 1 yet
especially when 𝜆 < 1. As a consequence, the projections will not cancel out to
form a black background. In NLINV 𝜆 ≤ 0.9 (here 0.9) must be set to prevent the
haze from growing indefinitely.
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In brief:

In a comparison between the established simple affine temporal regularization,
optical flow- and batch time difference regularization the latter performs best in
general on human data.

Adding an optical flow constraint to the cost function demonstrably improves the
preservation of in-plane motion. In its traditional sourceless form, however, the
model may create artifacts or hamper overall convergence in heart imaging - blur-
ring the output images - when through-plane motion occurs.

Optical flow fields estimated from undersampled data may also be heavily dis-
torted by undersampling artifacts. Subsequent application of flawed flow fields
then results in visible distortions of object movement. As long as intensity change
in time is dominated by anatomic motion rather than artifacts an iterative cycle
of flow field estimation and image quality improvement through flow field appli-
cation may succeed in eliminating artifacts. However, this is often not the case in
real human data with high intensity signal (fat tissue). Additional regularization
did not help to purge artifacts from the flow field.

The SSIM scores of the batch time difference constraint consistently exceed those
of the affine regularization in human data. While the affine term incorporates a
long history of 𝑇 frames (the pattern repetition period) strictly from the past into
the current time point, the 𝜕𝑡-operator combines data of a batch centered around
the current time point, yielding higher temporal fidelity. In addition, affine regu-
larization itself without themedian filter suppresses artifacts inefficiently, allowing
static undersampling artifacts - which cannot be removed by the filter - to build
up in the image background.
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6Discussion

Comparison of Temporal Regularizations

This work compared and rated two reconstruction schemes for real-timeMRI: Min-
imization with respect to a single frame under an affine temporal regularization
constraint - the established approach - and simultaneous minimization of a batch
of frames centered around the current time point. The latter was found to outper-
form the former in human data in terms of temporal fidelity (Figs. 5.17, 5.18) and,
notably, artifact suppression in the image background (Fig. 5.22). It also does not
rely on an additional post-processing temporal median filter that may distort or
destroy rapid motion that lasts for half the median filter width (Fig. 5.3).

Amongst the two batch regularized reconstruction types the one constrained by
optical flow delivered higher temporal fidelity with regard to in-plane motion and
even worked on far-reaching motion. An advantage that is confounded, however,
by the method’s limited ability to process through-plane motion.

Human Data Compliance with Optical Flow

Even though optical flow constraint cardiac MRI reconstruction has been studied
before this issue has never been raised. Li et al. [8] (see section 3.2.2) made a
qualitative visual comparison to affine regularized NLINV without showing flow
fields. Zhao et al. [44] used an offline approach with a golden angle acquisition
and compressed sensing reconstruction of the entire data stack at once. Their re-
construction was (by necessity) done post-acquisition with known coils and lower
undersampling factors of 9-12. Comparisons to other motion models or the es-
timated flow fields were not shown. Burger et al. [62] who studied CT image
reconstruction used an experimental phantom with purely in-plane motion.
Heart data, however, has been shown here to lie midway between pure in- and
pure through-plane motion (Fig. 5.15). Through-plane artifacts such as in Fig.
5.16 thus are a likely occurrence that requires a solution if radiologists are to trust
the images.
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A possible route is to add a source to the continuity equation as an additional
variable with separate regularization. Inflowing blood as seen in the heart mostly
enters locally in bulk, which should be discernible in the lower spatial frequencies
of the time derivative. Through-plane sources might thus be regularized to re-
semble the time derivative under a smoothness constraint similar to the Sobolev
penalty applied to the coils. This would shift the problem from the current frame
to the boundaries of the frame batch around it beyond which there is no informa-
tion. Sudden inflow events could be captured in this way.

Regarding the second problem, how to estimate flow in the presence of artifacts,
successful utilization of flow fields estimated with an 𝐿1-𝐿1 constraint as reported
by Li et al. could not be reproduced, even though repeated flow estimations over
the course of several Newton steps were used vs only one estimation by Li. In
Zhao et al.’s work the undersampling factor of around 10 vs 27 here plus the fact
that their golden angle acquisition visited far more positions in Fourier-space and
frames were combined all at once probably improved the condition of the prob-
lem. This is, however, no option in an online reconstruction.
Since most artifacts that enter the optical flow field occur near strong contrast
lines, application of a fat saturation pulse has been tried to remove the bright fat
signal andmake intensities more uniform across the image similar to the in-plane
phantom. Fat suppression, however, proved insufficient to remove the problem
entirely and may also not always be desired.
One intended future direction toward a solution - illustrated before in Fig. 5.21 - is
temporal coarse graining within the frame batch to localize areas where intensity
changes in time stem purely from artifacts. Complementary to that, motion vector
field estimation in a pyramidal multi-resolution approach corresponding to spatial
coarse graining has been used by Rank et al. [63]. Both approaches could in
principle be combined.

Applications free of through-plane motion that could benefit from the presented
optical flow constrained reconstructionwithout furthermodifications include stud-
ies of temporomandibular joint disorder [38] or of tongue movement [37] and
swallowing [39].

Reconstruction Process, Regularization and Convergence

Combinedoptical flow estimation and image reconstruction has been implemented
here as an alternating process. It is thus not a truly “joint” reconstruction though
sometimes referred to as such [42]. Merging of the alternatingminimizations into
oneminimization over 𝜌, 𝑐𝑐𝑐 and 𝑣𝑣𝑣might enable use of the optical flow field from the
first Newton step on. In the current scheme this does not work because by virtue
of alternation there is always one Newton update step 𝑥𝑛+1 = 𝑥𝑛+d𝑥 between
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estimation and application of the flow. In early Newton steps this means flow is
computed on images with a different intensity distribution than that of those it is
applied to.
On the other hand, merging may be complicated by the fact that the optical flow
estimate initially has very low amplitudes making it effectively a time difference
operator which leads to averaging amongst images (Fig. 5.6). Further, given the
presently slow convergence of the optical flow estimation (Figs. 5.4b-5.5) it is un-
clear whether merging will improve reconstruction. One potential benefit of the
alternating approach with respect to computing time is that such strategies as
coarse-graining plus image warping can be used more easily to lay off iterations
to a smaller matrix size [45].

Another interesting finding is that 𝐿2-penalties did not perform worse than 𝐿1
penalties (Fig. 5.10a). Superior performance of 𝐿1-penalties has been observed
in camera footage, especially regarding robustness to outliers and preservation
of intensity discontinuities [64]. Yet this seems to be no issue here, possibly, be-
cause images with only 75 spokes underlying have less sharply defined edges
and motions in general. Another reason for 𝐿1-penalties performing below ex-
pectation might be due to the small batch size required for online computation.
Compressed sensing approaches such as temporal TV-reconstruction require un-
dersampling artifacts to have a high degree of incoherence. That is, in contrast
to the signal they should appear noise-like along the time dimension [40]. Con-
sequently Zhao et al. used the entire time series in time-Fourier domain where
the breathing and cardiac frequencies stand out from noise, while artifacts of a
sampling pattern in a golden angle progression have no periodicity.
From a numeric point of view using the 𝐿2-norm is advantageous as the problem
remains convex, smooth and thus open to efficient methods such as conjugate
gradients [18]. This, along with the above mentioned coarse-graining may also
bring down the computing cost of optical flow estimation from about 1 second
per Newton step in the used implementation. Currently the cost is slightly more
than the cost of the image estimation and it should be way lower given that only
finite difference operators are involved.
Lowering the number of excess iterations is another option to speed up com-
puting. A suitable stopping criterion for optical flow constrained reconstruction
where only in-plane motion is involved is to stop as soon as the total residual at
any iteration has fallen by less then 0.1% with respect to the previous iteration.
For general use of such a criterion the model should, however, first be adjusted
to properly handle through-plane motion to prevent early stopping and blurred
results.
The choice of parameters was uncomplicated as, once set, parameters did not
have to be changed between different measurements and slice orientations (see
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section 4.3.1). Surprisingly, the 𝛾 parameter that controls temporal regularization
strength in batch reconstruction was best kept constant throughout all Newton
steps. Only the Tikhonov penalty controlled by𝛼 had to be decreased successively,
whereas reduction of 𝛾 merely led to a loss of temporal regularization effect.

Better Data Exploitation: Aggregation

Batch reconstruction entails a higher computing cost that is linear in the batch
size. It also yields as many output frames per time point as fit in the batch. The
central frame is expected to be of highest quality since the fringe frames in the
batch can draw on information only from one neighbor and that neighbor in turn
will have a higher quality neighbor toward the center and a poor quality neighbor
toward the fringe. Therefore, only the center frame has been considered in this
work.
Nonetheless, every time point gets reconstructed several times with partly differ-
ent member frames in the batch each time. As each such instance of a time point
should always show the object in the same motion state, those instances could
be aggregated for instance by averaging to yield a better final image.

Figure 6.1: Data processing scheme in the used reconstruction: Data batches over a time window
of five frames are processed together resulting in five images. However, (left) only the
batch’s center frame is written to the output buffer. Since reconstructed frames referring
to the same time point (orange columns right) should show the same motion state their
average should as well. Batch overlap means the maximum number of different frames
in the average exceeds the number of different frames in a batch, potentially increasing
𝑘𝑘𝑘-space coverage.

This will be the more effective the larger the pattern repetition period and the
more spokes in Fourier-space are visited. Given an acquisition with 9 different
pattern orientations a reconstruction with a batch size of 𝑇=5 frames should still
be able to combine the information of 9 frames by virtue of aggregation as the
overlap of same motion state frames is 2𝑇 -1 (Fig. 6.1). Potential benefits in-
clude increased image sharpness and SNR without increased reconstruction time.
Whether the necessary requirement that different motion state instances of each
time point indeed do not vary visibly amongst each other is fulfilled remains to
be investigated. An optical flow model is highly likely to perform better in this
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than batch-𝜕𝑡 regularization. The assessment framework based on surrogates
presented in this work provides a good bases to continue along that direction.
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7Summary

In this thesis non-linear inversion reconstruction for joint image and coil sensitiv-
ity estimation was combined with different temporal regularization schemes. The
method was tested for 2D cardiac magnetic resonance imaging using undersam-
pled data at 30 frames per second. Comparisons to ground truth references of
numerical phantoms and human heart data showed that adding an optical flow
constraint leads to superior performance if motion is in-plane. Through-planemo-
tion which violates the optical flow model markedly slowed down reconstruction
convergence, caused blur and in some instances image artifacts at the locus of
intensity inflow. A result that contrasts with recent literature and stimulates fu-
ture model extensions for optical flow to capture local intensity inflow. Further,
flow fields estimated from undersampled data still contained artifacts, even after
iterative refinement, prompting the need for a spatio-temporal coarse graining
approach that is left for future work. Meanwhile, a proposed plain batch time dif-
ference regularization in the 𝐿2-norm yielded visibly improved image quality as
well as better temporal fidelity compared to the established temporal affine con-
straint. As another surprising finding, 𝐿2-norm penalties performed at least as
well in batch regularization as non-smooth 𝐿1-penalties which greatly simplifies
functional minimization.
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AAppendix

A.1 Prox Operators

The penalty terms used in this work are summarized in Tab. A.1. They either fall
in the linear or affine category. The prox-functions to the penalties 𝐹(𝑥) with non-
transformed variables are computed using eq. 4.6. The prox-functions involving
transformed variables 𝐹(𝒜𝑥) do not need to be computed for Chambolle-Pock’s
primal-dual scheme. Instead the prox-functions to the dualized penalties 𝐹 ∗(𝑦)
are used and computed by applying Moreau’s decomposition

𝑦 = prox𝛾𝐹 (𝑦)+𝛾prox𝐹∗
𝛾

(𝑦
𝛾 )

𝐹(𝑥) prox𝜎𝐹 (𝑦) prox𝜏𝐹 ∗(𝑦)

𝜆
2 ||𝑥||22

1
1+𝜎𝜆𝑦 1

1+𝜏/𝜆𝑦

𝜆||𝑥||1 sign(𝑦)max(|𝑦|−𝜎𝜆,0) sign(𝑦)min(|𝑦|,𝜆)

𝜆
2 ||𝑎𝑥−𝑏||22

𝑦 +𝜎𝜆𝑎∗𝑏
1+𝜎𝜆|𝑎|2 (𝑎∗𝜆) 𝑎𝑦 −𝜏𝑏

𝜏 + |𝑎|2𝜆

𝜆||𝑎𝑥−𝑏||1 sign(𝑦 − 𝑏
𝑎)max(|𝑦|−𝜎𝜆|𝑎|,0) sign(𝑦 − 𝑏

𝑎)min(|𝑦|,𝜆|𝑎|)

Table A.1: Prox functions for the Chambolle-Pock algorithm. sign(𝑥) = 𝑥/|𝑥|, |𝑥| > 0;0else is used
in the complex sense of the function. Stabilization of 𝑏

𝑎 around small values of 𝑎 is advis-
able. An in-depth derivation is given in [41].
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A.2 Parameter Tables

Figs. 5.1-5.3
Fig. 5.1a reference image: image iter. = 50, 𝛼 = 0.0001
Fig. 5.1b opt. flow constraint: image iter. = 1000, 𝛾 = 0.03
Fig. 5.1c no temp. regularization: image iter. = 50, 𝛼 = 0.0001
Fig. 5.1d no temp. reg. + median: image iter. = 50, 𝛼 = 0.0001
Fig. 5.1e affine temp. reg.: image iter. = 50, 𝛼 = 0.02, 𝜆 = 1
Fig. 5.1f aff. temp. reg. + median: image iter. = 50, 𝛼 = 0.02, 𝜆 = 1
Fig. 5.1g no temp. reg. + sliding average: image iter. = 50, 𝛼 = 0.0001
Fig. 5.1h finite diff. operator: image iter. = 200, 𝛾 = 0.1

Table A.2: Reconstruction parameters in screen-shots of noiseless pulsating
phantom. Parameters in the same order identical in Figs. 5.2 and
5.3.

Figs. 5.4-5.7
Fig. 5.4a image reconstruction convergence: image iter. = 5000, 𝛾 = 0.05
Fig. 5.4b opt. flow estimation convergence: flow iter. = 10000, 𝛽 = 0.001

reference image: image iter. = 50, 𝛼 = 0.0001

Table A.3: Reconstruction parameters in plot of convergence curve: Cost func-
tion residual of image reconstruction and optical flow estimation in
noiseless pulsating phantom. Parameters identical in Figs. 5.5-5.7.

Figs. 5.8
Fig. 5.8 reference: image iter. = 50, 𝛼 = 0.01
Fig. 5.8 no temp. reg.: image iter. = 50, 𝛼 = 0.01
Fig. 5.8 no temp. reg. + median: image iter. = 50, 𝛼 = 0.01
Fig. 5.8 no temp. reg. + sliding average: image iter. = 50, 𝛼 = 0.01
Fig. 5.8 affine temp. reg. image iter. = 50, 𝛼 = 0.07, 𝜆 = 1
Fig. 5.8 affine temp. reg. + median: image iter. = 50, 𝛼 = 0.07, 𝜆 = 1
Fig. 5.8 finite diff. operator: image iter. = 200, 𝛾 = 0.1
Fig. 5.8 opt. flow constraint: image iter. = 500, 𝛾 = 0.03

Table A.4: Reconstruction parameters in SSIM plot of noisy pulsating phantom.
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Figs. 5.9-5.10
Fig. 5.9 (top) reference flow: flow iter. = 1000, 𝛽 = 0.001
Fig. 5.9 (top) hard thresh flow: flow iter. = 1000, 𝛽 = 0.001
Fig. 5.9 (top) 𝐿1-reg. flow: flow iter. = 1000, 𝛽2 = 0.001
Fig. 5.9 (top) 𝐿2-reg. (noisy) flow flow iter. = 1000, 𝛽 = 0.001
Fig. 5.9 (bottom) reference image: image iter. = 50, 𝛼 = 0.01
Fig. 5.9 (bottom) 𝐿1-reg. flow constraint: image iter. = 500, 𝛾 = 0.05
Fig. 5.10 (bottom) other flow constraints: image iter. = 500, 𝛾 = 0.05
Fig. 5.9 (bottom) finite diff. operator: image iter. = 200, 𝛾 = 0.1
Fig. 5.9 (bottom) no temp. reg.: image iter. = 50, 𝛼 = 0.01

Table A.5: Reconstruction parameters in screen-shots of differently regularized
flow fields and reconstructed images of the noisy pulsating phantom.

Figs. 5.11
Fig. 5.9 (top) reference image: image iter. = 50, 𝛼 = 0.0001
Fig. 5.9 (top) opt. flow constraint 1000 iter.: image iter = 500, 𝛾 = 0.05
Fig. 5.9 (top) opt. flow constraint 5000 iter. image iter = 500, 𝛾 = 0.05
Fig. 5.9 (bottom) time difference image iter. = 50, 𝛼 = 0.01
Fig. 5.9 (bottom) opt. flow: flow iter. = 1000, 𝛽 = 0.001
Fig. 5.9 (bottom) opt. flow: flow iter. = 5000, 𝛽 = 0.001

Table A.6: Reconstruction parameters in screen-shots of noiseless fast long-
range phantom.

Figs. 5.12-5.13
Fig. 5.12 reference image: image iter. = 50, 𝛼 = 0.01
Fig. 5.12 opt. flow constraint 1000 iter.: image iter = 500, 𝛾 = 0.05
Fig. 5.12 opt. flow constraint 5000 iter. image iter = 500, 𝛾 = 0.05
Fig. 5.12 opt. flow 1000 iter: flow iter. = 1000, 𝛽 = 0.001
Fig. 5.12 opt. flow 5000 iter: flow iter. = 5000, 𝛽 = 0.001

Table A.7: Reconstruction parameters in screen-shots and SSIM plots of the
noisy through-plane phantom.

Figs. 5.14-5.15
Fig. 5.14 reference images (heart): image iter. = 200, 𝛼 = 0.002
Fig. 5.14 reference images (heart): image iter. = 200, 𝛼 = 0.002
Fig. 5.15 reference images (phantoms): image iter. = 50, 𝛼 = 0.01
Figs. 5.14 - 5.15 opt. flow fields: flow iter = 5000, 𝛽 = 0.001

Table A.8: Reconstruction parameters in screen-shots and transport residual
norm plots of the heart surrogate data and the noisy through- and
in-plane phantoms.
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Figs. 5.16-5.18
Fig. 5.16 𝐿2 opt. flow: flow iter. = 5000, 𝛽 = 0.001
Fig. 5.16 𝐿2 + 𝐿1 opt. flow: flow iter. = 5000, 𝛽 = 0.0001, 𝛽2 = 0.0001
Fig. 5.16 𝐿2 + hard thresholding opt. flow: flow iter. = 5000, 𝛽 = 0.001
Fig. 5.16 reference: image iter. = 200, 𝛼 = 0.01
Fig. 5.16-5.18 opt flow. constraint: image iter. = 500, 𝛾 = 0.3
Fig. 5.17 no temp. reg.: image iter. = 200, 𝛼 = 0.002
Fig. 5.17-5.18 dt-operator: image iter. = 500, 𝛾 = 0.3
Fig. 5.17-5.18 affine reg. (+ median): image iter. = 200, 𝛼 = 0.01, 𝜆 = 1

Table A.9: Reconstruction parameters for Four-chamber-view images: (5.16) Dif-
ferently regularized flow fields, through-plane artifact demonstration,
(5.17) SSIM comparison with model violation; short-axis-views: (5.18)
comparison to reference for different reconstruction types.

Figs. 5.19
Fig. 5.19 reference: known coils, img iter. = 200, 𝛼 = 0.002
Fig. 5.19 undersampled: unknown coils, 𝑛 = 7,

𝛼 = 0.5𝑛, image iter. = 40 per 𝑛
Fig. 5.19 (𝐿2) flow from reference: flow iter. = 1000, 𝛽 = 0.001
Fig. 5.19 (𝐿2) flow from undersampled: flow iter. = 1000, 𝛽 = 0.001
Fig. 5.19 reconstr. with ref. flow: unknown coils, 𝑛 = 11, 𝛼 = 0.5𝑛,

𝛾 = 0.3, image iter. = 40 per 𝑛
Fig. 5.19 reconstr. with usmp. flow: unknown coils, 𝑛 = 7, 𝛼 = 0.5𝑛,

𝛾 = 0.3, image iter. = 40 per 𝑛
Fig. 5.19 reconstr. with 3rd flow upd.: unknown coils, 𝑛 = 11, 𝛼 = 0.5𝑛,

𝛾 = 0.3, image iter. = 40 per 𝑛
Fig. 5.19 3rd flow update: flow iter. = 1000, 𝛽 = 0.001

Table A.10: Reconstruction parameters (non-linear inversion) of in-plane phan-
tom. Iterative improvement of flow fields. 𝑛 denotes newton step
index.

Figs. 5.20
Fig. 5.20 reconstr. & time diff.: unknown coils, 𝑛 = 15, img iter. = 200, 𝛼 = 0.002
Fig. 5.20 𝐿2-flow w\o hard thresh.: flow iter. = 1000, 𝛽 = 0.001
Fig. 5.20 𝐿1 +𝐿2-flow: flow iter. = 1000, 𝛽 = 0.0001, 𝛽2 = 0.0001
Fig. 5.20 𝐿1 −𝐿1-flow: flow iter. = 1000, 𝛽2 = 0.001 ⋅0.5𝑚, 𝑚 =max(𝑛−7,0)

Table A.11: Reconstruction parameters (non-linear inversion) of four-chamber-
view. Comparison of flows, flow field artifacts. 𝑛 denotes newton
step index.

Figs. 5.22
Fig. 5.22 dt-operator regularization: unknown coils, 𝑛 = 13, 𝛾 = 0.3

image iter. = 50 per 𝑛
Fig. 5.22 affine reg. + median filter: unknown coils, 𝑛 = 13, 𝛼 = 0.5𝑛,

image iter. = 20 per 𝑛, 𝜆 = 0.9

Table A.12: Reconstruction parameters (non-linear inversion) of four-chamber-
view. Comparison of finite time difference operator and affine regu-
larization. 𝑛 denotes newton step index
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Abbreviations

ECG: Electrocardiography

FLASH: Fast Low Angle Shot

FOV: Field of View

fps: frames per second

GRE: Gradient Echo

MSE:Mean Square Error

NLINV: Non-linear Inversion Reconstruction (joint estimation of anatomic
images and coil sensitivity function)

NMR: Nuclear Magnetic Resonance

PCA: Principle Component Analysis

(rt-)MRI: real-time Magnetic Resonance Imaging

rf-pulse: radio frequency pulse

SENSE: Sensitivity Encoding (image space baseddeconvolution ofmulti-channel
MRI data with a known coil sensitivity function)

SNR: Signal to Noise Ratio

SSIM: Structural Similarity (Index)

TV: Total Variation
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