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ABSTRACT 

Transpiration is a central flux in the terrestrial water cycle and is considered an important 

ecosystem service for atmosphere and hydrosphere regulation. Transpiration is strongly 

affected by land cover and land-use changes, which are currently very pronounced in 

tropical regions. It is thus important to better understand transpiration in near-natural and 

in human-modified ecosystems. This includes aspects of spatio-temporal variation and 

scaling. The main objectives of this study were (1) to test scaling approaches from 

individual plants to stand transpiration by using crown metrics, (2) to analyze spatial 

variation in plant transpiration, and (3) to assess multi-level temporal dynamics of water 

circulation in a given plant. The study was implemented in the lowlands of Sumatra, where 

natural rainforests have been converted to oil palm and rubber plantations on a large scale. 

The actual study sites were a tropical rainforest, an oil palm agroforest and oil palm 

monocultures. We used drones for assessing crown and stand structures and sap flux 

measurements for measuring transpiration. 

In study 1, we tested scaling approaches from individual plant to stand-level transpiration. 

At the stand level transpiration is often estimated from water use measurements on a limited 

number of plants and then scaled up by predicting the remaining plants of a stand by plant 

size‐related variables. Today, drone‐based methods offer new opportunities for plant size 

assessments. We tested crown variables derived from drone‐based photogrammetry for 

predicting and scaling plant water use. In an oil palm agroforest and an oil palm 

monoculture plantation in lowland Sumatra, Indonesia, tree and oil palm water use rates 

were measured by sap flux techniques. Simultaneously, aerial images were taken from an 

octocopter equipped with a Red Green Blue camera. We used the structure from motion 

approach to compute several crown variables such as crown length, width, and volume. 

Crown volumes explained much of the observed spatial variability in water use for both 

palms (69%) and trees (81%); however, the specific crown volume model differed between 

palms and trees and there was no single linear model fitting for both. For trees, crown 

volume explained more of the observed variability than the conventional scaling variable 

stem diameter; consequently, uncertainties in stand-level estimates that result from scaling 

were largely reduced. For oil palms, an appropriate whole‐plant, size‐related predictor 

variable was thus far not available. Stand-level transpiration estimates in the studied oil 

palm agroforest were lower than those in the oil palm monoculture, probably due to the 

small‐statured trees and the reduced oil palm stand density. In conclusion, we consider 
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drone‐derived crown metrics very useful for the scaling from single plant water use to 

stand‐level transpiration. 

In study 2, we extended the testing of scaling approaches and analyzed predicted spatial 

variability in transpiration in a rainforest. Tropical rainforests comprise complex 3D 

structures and encompass heterogeneous site conditions. The objectives of our study were 

to further test the relationship between tree water use and crown metrics and to predict 

spatial variability of canopy transpiration across sites. In a lowland rainforest of Sumatra, 

we measured tree water use with sap flux techniques and simultaneously assessed crown 

metrics with drone-based photogrammetry. We observed a close linear relationship 

between individual tree water use and crown surface area (R2 = 0.76, n = 42 trees). 

Uncertainties in predicting stand-level canopy transpiration were much lower using tree 

crown metrics than the more conventionally used stem diameter. 3D canopy segmentation 

analyses in combination with the crown surface area–water use relationship predict 

substantial spatial heterogeneity in canopy transpiration. Among our eight study plots, there 

was a more than two-fold difference, with lower transpiration at riparian than at upland 

sites. In conclusion, we regard drone-based canopy segmentation and crown metrics to be 

very useful tools for the scaling of transpiration from tree- to stand-level. Our results 

indicate substantial spatial variation in crown packing and thus canopy transpiration of 

tropical rainforests. 

In study 3, we assessed multi-level temporal dynamics of water circulation in a given plant. 

For oil palm, a potentially significant contribution of stem water storage to transpiration 

has been discussed in previous studies. We assessed water use characteristics of oil palms 

at different horizontal and vertical positions in the plant by using three sap flux techniques. 

In a radial profile of the stem, sap flux densities were low at the outer margin, increased to 

2.5 cm under the bark and remained high to the innermost measured depth at 7.5 cm. In a 

vertical profile of the stem and with further sensors in leaf petioles, we found only small 

time lags of sap flux densities. Time lags along the flow path are often used for analyzing 

the contribution of water storage to transpiration. Thus, the small observed time differences 

in our study would leave only little room for a contribution of water storage to transpiration. 

However, water storage might still contribute to transpiration in ways that are not detected 

by time lag analysis. Such mechanisms may be explored in future studies.  

In conclusion, the temporal analyses of oil palm water use suggest that the contribution of 

stem water storage to transpiration is not yet fully understood. The spatial analyses of 
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transpiration indicate considerable variation of canopy transpiration in oil palm agroforests 

and particularly in rainforest. Drone-based crown and canopy assessments offer suitable 

opportunities for predicting such spatial variation.  
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ZUSAMMENFASSUNG 

Transpiration ist ein wichtiger Fluss im terrestrischen Wasserkreislauf und wird als 

Ökosystemleistung in Bezug auf eine Regulation der Atmosphäre und der Hydrosphäre 

betrachtet. Die Transpiration wird stark durch Veränderungen der Landbedeckung und der 

Landnutzung beeinflusst. Diese sind derzeit in den Tropen besonders ausgeprägt. Es scheint 

daher wichtig, die Transpiration von naturnahen und anthropogen modifizierten tropischen 

Ökosystemen besser zu verstehen. Dies beinhaltet Aspekte der raum-zeitlich Variation 

sowie der Skalierung. Die Hauptziele dieser Studie waren (1) die Skalierung der 

Transpiration von der Pflanzen- auf die Bestandesebene mittels Kronenmaßen zu testen, 

(2) die räumliche Variation der pflanzlichen Transpiration zu analysieren, und (3) die 

zeitliche Dynamik der Wasserflüsse innerhalb einer Pflanze auf mehreren räumlichen 

Ebenen zu bestimmen. Die Feldarbeiten zu diesen Studien fanden im Tiefland von Sumatra 

statt. Die Standorte waren ein tropischer Regenwald, ein Ölpalmen-Agroforst sowie 

Ölpalmenmonokulturen. Wir setzten Drohnen für die Analyse der Kronen- und 

Bestandesstrukturen ein und bestimmten die pflanzliche Wassernutzung mit 

Saftflussmessungen.     

In der ersten Studie testen wir Möglichkeiten der Skalierung von der Pflanzen- auf die 

Bestandesebene mittels Kronenmaßen. Transpirationsraten auf Bestandesebene werden 

oftmals aus Wassernutzungsmessungen an Einzelpflanzen und einer anschließenden 

Skalierung mithilfe von Variablen zur Pflanzengröße geschätzt. Wir untersuchten 

Kronenmaße ermittelt mit drohnenbasierter Photogrammetrie für die Vorhersage und 

Skalierung pflanzlicher Wassernutzungsraten. Kronenvolumen erklärten einen erheblichen 

Anteil der beobachteten Variabilität der Wassernutzung für Palmen und Bäume, und waren 

anderen Techniken und Variablen darin überlegen. Das führte auch dazu, dass die 

Unsicherheiten bei der Schätzung der Bestandestranspiration, die durch die Skalierung 

entstehen, erheblich reduziert wurden. Wir halten drohnen-basierte Ermittlungen der 

Kronenstrukturen deshalb für wertvoll, um die Transpiration von Einzelpflanzen auf die 

Bestandesebene zu skalieren.   

In Studie 2 führten wir die Untersuchungen zur Skalierung fort und analysierten die 

räumliche Variation der pflanzlichen Transpiration in einem Regenwald. Wiederum 

beobachteten wir eine enge lineare Korrelation zwischen individueller Wassernutzung der 

Bäume und Kronenvariablen. Die resultierenden Unsicherheiten bei der Skalierung vom 

Einzelbaum auf den Bestand waren deshalb auch viel geringer als mit konventionellen 
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Methoden. Kronensegmentierungen deuten auf eine erhebliche kleinräumige Variation und 

klare standörtliche Unterschiede hin. Wir ziehen den Schluss, dass die drohnen-basierte 

Kronenraumanalyse wertvolle Information liefert und die räumliche Variation der 

Transpiration im tropischen Regenwald erheblich ist.  

In Studie 3 untersuchten wir die zeitliche Dynamik der Wassernutzung an verschiedenen 

Positionen im Stamm und in Blattstielen von Ölpalmen. Es gab aus vorhergehenden 

Untersuchungen den Hinweis, dass der pflanzeninterne Wasserspeicher bei Ölpalmen 

erheblich zur Transpiration beiträgt. Eine konventionelle Methode zur Abschätzung dieses 

Beitrags ist eine Analyse der zeitlichen Unterschiede der Saftflussgeschwindigkeiten in 

verschieden Positionen in der Pflanze. In unsere Studie fanden wir nur sehr geringe 

zeitliche Unterschiede zwischen den Saftlussgeschwindigkeiten im unteren Stamm, im 

oberen Stamm und in Blattstielen. Das lässt nur wenig Raum für einen signifikanten Beitrag 

des internen Wasserspeichers, der auf zeitlichem Versatz beruht. Es ist natürlich möglich, 

dass bei der Ölpalme Mechanismen im Spiel sind, die zu einem nennenswerten Beitrag des 

Speichers zur Transpiration führen und nicht auf zeitlichem Versatz beruhen. Das könnte 

in zukünftigen Studien untersucht werden.    

Daraus schlussfolgere ich, dass der Beitrag  des pflanzeninternen Wasserspeichers zur 

Transpiration bei Ölpalmen noch nicht umfassend verstanden ist. Darüber hinaus zeigen 

unsere Studien an, dass die räumliche Variation der Transpiration in Ölpalm-Agroforsten 

und insbesondere in Regenwälder erheblich ist. Drohnen-basierte Kronenanalysen bieten 

interessante Möglichkeiten diese räumlichen Variationen vorherzusagen.  
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CHAPTER 1 
 

GENERAL INTRODUCTION 
 

1.1 Tree and oil palm water use 

Transpiration (Et) is a central flux in the terrestrial water cycle and is considered an 

important ecosystem service for atmosphere and hydrosphere regulation. Transpiration is 

strongly affected by land cover and land-use changes, which are currently very pronounced 

in tropical regions. In the lowland of Sumatra, large transformation of rainforest into 

monoculture oil palm plantations are widespread (FAO, 2016; Drescher et al. 2016) and 

have been associated with changes in the hydrological cycle; especially the transpiration 

(Merten et al. 2016; 2020). Also, higher transpiration rates from commercial oil palm were 

reported and may surpass the remaining forests (Meijide et al. 2018; Röll et al. 2019). Thus, 

it is important to understand the transpiration in oil palm monoculture and natural 

rainforest. Transpiration is commonly measured by sap flux techniques in the individual 

tree or palm (Granier 1985; Wullschleger, Meinzer, and Vertessy 1998). Sap flux method 

such as the heat dissipation method (Granier 1985) requires species-specific calibration to 

estimate the individual tree water use Lu et al. 2004). For oil palm, Niu et al. (2015) 

previously calibrated the specific constant to quantify oil palm water use and reported high 

transpiration rates from commercial oil palm plantations. Prior to our study, Röll et al., 

(2019) reported the trajectory of transpiration differences along with the land-use change 

where the transpiration rates decrease by 43 ± 11 % from forest to rubber monoculture but 

rebound with conversion to smallholder oil palm plantations and commercial oil palm 

plantation exceed high transpiration rates more than natural forest. Over the age gradients 

in oil palm plantations, the water use rates increase from 2 years old to 10 years old and 

then remained constant upto 22 years old (Röll et al., 2015). The tropical lowland area 

consists of undulating terrain and leads to upland and valley sites (Miettinen et al., 2014) 
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and substantial heterogeneity of oil palm water use between riparian, partly flooded and 

upland sites were observed (Hardanto et al., 2017). In this dissertation, we further extend 

the study  of tree or palm water use in terms of scaling approach with the application of 

new drone technology, spatial heterogeneity of transpiration in tropical rainforest and 

temporal dynamics of palm water use for better understanding the transpiration patterns in 

near-natural and in human-modified ecosystems. 

1.2 Scaling of water use from tree or palm level to stand level 

Tree or palm water use is commonly measured by sap flux techniques, but the number of 

replicates is limited to cover a larger area (Granier, 1985; Wullschleger, Meinzer, & 

Vertessy, 1998). Later, individual tree water use is scaled up to stand transpiration through 

biometric variables. Thus, scaling is an essential step to estimate transpiration at stand level 

and with reduced uncertainties (Hatton and Wu 1995; Jarvis 1995; Moore et al. 2017). Tree 

diameter and tree density in the stand are the most common scaling variable since they are 

easy to assess through ground-based inventories (Wullschleger, Meinzer, & Vertessy, 

1998). However, tree diameter has some limitations due to unexplained variability relating 

to water use and induced high uncertainties while scaling up the stand transpiration (Moore 

et al. 2017). In the case of oil palm, there may be a low intra-specific diameter variation 

but water use variations occur. Moreover, focus on transpiration studies in other monocot 

species such as bamboos have been increased in recent times (Mei et al. 2016). On the other 

hand, tree crown structure would be a potential candidate variable irrespective of monocot 

or dicot and also it is the interface of water exchanges with the atmosphere. It has been 

reported that the crown dimension scaled up well in a mature oak forest (Čermák 1989). 

Other studies also reported the very close relationship between crown structure and tree 

water use in Taxodium distichum forest and olive orchard (López-Bernal et al. 2010; Oren 

et al. 1999). In the premontane forest of Costa Rica, the transpiration was indirectly affected 

by crown exposure by influencing leaf wetness or dryness (Aparecido et al. 2016). 

However, it is difficult to measure crown dimensions through field inventory, particularly 

in dense and heterogenous tropical forest. 

Modern applications of the drone in ecological studies have provided the feasibility to 

measure crown dimensions in the forest. A drone equipped with LiDAR (Lin, Hyyppä, and 

Jaakkola 2011; Wallace et al. 2012) or optical camera (Asner et al. 2002; Mlambo et al. 

2017) has shown promising and new directions in forest inventories, particularly in 
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assessment of crown and canopy structure (Barnes et al. 2017; Díaz-Varela et al. 2015; 

Thiel and Schmullius 2016). In recent times, a drone equipped with optical camera become 

popular due to low cost and high resolution imageris and capability to construct 3D point 

clouds through photogrammetry technique called Structure from Motion (SfM) (Dandois 

and Ellis 2010; Lowe 2004; Westoby et al. 2012) and further can compute tree crown 

structural metrics for relatively large area in a short time. Using this technique, several 

studies have computed various crown variables such as crown length (Kallimani, 2016), 

crown diameter (Lim et al. 2015; Panagiotidis et al. 2016), crown volume (Torres-Sánchez 

et al. 2015) or canopy cover (Khokthong et al., 2019) but few studies have reported in 

ecohydrological studies (Vivoni  et al., 2014). The applicability of drone-based tree crown 

metrics as a scaling variable in stand transpiration estimates has not been explored yet. In 

our study, we derived several crown metrics based on drone photogrammetry techniques 

and tested against tree/palm water use to scale up the stand transpiration.  

1.3 Spatial heterogeneity of tree and oil palm water use 

Tropical rainforests comprise the dense and complex 3D structure, high tree species 

richness and diversity and covers heterogeneous site conditions (Whitmore 1998; Whitten 

and Damanik 2000). The overlapping and dense canopy structure may translate variable 

transpiration across the forest. Also, the quantification of canopy transpiration (Et) in 

tropical forests may address the spatial heterogeneity of Et and may increase the better 

understanding of the relationship between the structure and function of the tropical 

rainforest. Variability in site conditions also potentially reflects the spatial heterogeneity in 

rainforest Et. Studies in boreal forest observed the differences in Et by analysing the 

significance of site conditions for tree and stand Et along the upland-to-wetland gradients 

(Angstmann et al. 2013; Loranty et al. 2008; Mackay et al. 2010). Thus, it is necessary to 

incorporate the heterogeneity due to topographic positions for landscape-level assessments. 

Such information about the heterogeneity are rare in tropical rainforest regions, but the 

control of water table on transpirations was only reported in few studies in northern 

Australia (McJannet et al. 2007) and in Hawaii (Santiago et al. 2000). In lowland of 

Sumatra, previous study reported substantial differences in Et between upland and riparian 

sites for oil palm and rubber tree stands which is due to flooding (long-term and short-term) 

and topography (Hardanto et al. 2017); however no information is available for rainforest 

in the same region. 
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Predicing Et across sites and at larger scales in such complex tropical rainforest would be 

facilitated from drone-based photogrammetric techniques as well as automatic tree crown 

detection since ground-based inventory would be labour intensive and difficult for crown 

assessments. Tree crown detection based on canopy height model (CHM) is common but 

difficult to implement in dense tropical rainforest. In a recent study, AMS3D (Adaptive 

MeanShift 3D, a multimodal point-cloud-based ITC detection algorithm), was reported to 

be suitable for heterogeneous tropical rainforest stands (Ferraz et al. 2016) and to perform 

better than other ITC detection methods in a lowland tropical rainforest in French Guiana 

(Aubry-Kientz et al. 2019). Our study aimed at addressing the spatial heterogeneity of 

canopy transpirations across and among the sites in tropical rainforest by predicting the 

canopy transpirations using drone-based crown metrics and automatic tree crown detection 

approach. 

On the other hand, oil palm monoculture are more homogeneous and less complex as 

compared to tropical forest. A biodiversity enrichment experiment, Efforts-BEE, was set 

up in a commercial oil palm plantation by planting native tree species and establishing oil 

palm agroforests in-order to alleviate the ecological impacts of oil palm cultivation in 

Sumatra (Teuscher et al. 2016). Our study also aimed at addressing the Et heterogeneity 

between such oil palm agroforest and oil palm monoculture; which may provide a better 

understanding about the water use patterns of the experimental site.  

1.4 Multi-level temporal dynamics 

The diurnal pattern of oil palm water use and its influence on environmental drivers is 

important to understand the water use characteristics. Previous studies observed a 

pronounce hysteresis while assessing the influences of environmental drivers on oil palm 

water use; which possibly link to other mechanisms such as stem water storage, stomatal 

conductivity or hydraulic conductance in oil palm (Niu et al. 2015). Similar studies on oil 

palm water fluxes also discussed the possible existence of stem water storage in matured 

oil palms, due to early peaks of sap flux density (Röll et al. 2015). Understanding the 

temporal dynamics (at higher resolution) of oil palm water use would eventually provide 

detailed information about such hysteresis and may explain mechanisms such as the role of 

the stem of water storage in oil palm daily water use. The role of internal water storage 

have been studied and recognized previously in tropical trees (Goldstein et al. 1998; 

Meinzer, James, and Goldstein 2004), subtropical trees (Oliva Carrasco et al. 2015), 
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temperate trees (Cermák et al. 2007; Köcher, Horna, and Leuschner 2013); but not yet 

studied in oil palm (Elaeis guineensis Jacq.). While there had been evidence of the 

importance of internal water storage in the arborescent palm (Sabal palmetto; and reported 

that the stem water storage maintained the leaf water content for 100 days in 4 m tall palm 

when soil water supply was prevented (Holbrook and Sinclair 1992). Time lag analysis is 

one of the common approaches where estimates of stem water storage based on the time 

lag between the sap fluxes at different heights and are a function of the amount of water 

that is extracted from storage tissues to canopy transpiration losses (Pfautsch, Hölttä, and 

Mencuccini 2015). Several studies have been compared the time lag duration between the 

canopy transpiration and base stem sap flow in-order to estimates the stem water storage 

(Goldstein et al. 1998; Köcher et al. 2013; Phillips et al. 1999). For woody species, time 

lag depends on buffering capacitances associated between stem water and canopy fluxes 

(Edwards et al. 1986; Hunt and Nobel 1987) and also positively associated with plant size 

(Goldstein et al. 1998; Oren, Werk, and Schulze 1986; Phillips et al. 1999). The time lags 

between stem and branch may also be dependent on anatomical characteristics of the 

vascular system (Čermák, Kučera, and Penka 1976). 

For oil palm, measurements of sap flux techniques were conducted at leaf petioles and the 

specific parameter was calibrated for oil palm previously (Niu et al, 2015). However, 

measurements on the stem of the oil palm have not been done and the stem with radial 

profile consideration yet can explore. In recent times, the radial sap flux gradient in the tree 

stem has been reported in many studies (Čermák et al. 1992; Delzon et al. 2004; Edwards 

and Booker 1984; Link et al. 2020; Phillips, Oren, and Zimmermann 1996) and assuming 

uniform sap flux across the radial direction leads to high errors and uncertainties while 

estimating whole-tree water use (Čermák and Nadezhdina 1998; Ford et al. 2004; Kumagai 

et al. 2005). It would be interesting to understand the nature of sap flux across the radial 

profile of the oil palm stem.  

1.5 Outline and Objectives of the study 

This study was conducted within the framework of an interdisciplinary project, the CRC 

990 (Collaborative Research Centre 990: Ecological and Socioeconomic Functions of 

Tropical Lowland Rainforest Transformation Systems on Sumatra, Indonesia; www.uni-

goettingen/crc990), and Sub-Project A02 (‘Tree and palm water use characteristics in 

rainforest transformation systems’). The study was conducted in Jambi province, Sumatra, 

https://www.uni-goettingen.de/en/310995.html
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Indonesia, covering sites of oil palm monoculture plantation, oil palm agroforest and 

tropical rainforest. We conducted sap flux measurements in oil palm monocultures, oil 

palm agroforest and tropical rainforest using three different types of sap flux methods; 

according to the study objectives. At the same time, drone multi-copter equipped with the 

digital camera was used to capture images in all the sites and further used to construct a 3D 

model of the stand and subsequently, delineate the tree and oil palm crown structure. We 

extend further to apply automatic crown delineation in forest sites using the AMS3D 

method. Detail methodology and measurement schemes are provided in the respective 

chapters.  

The main objectives of the study were: 

(1) To test scaling approaches from individual plants to stand transpiration using drone-

based photogrammetry derived crown metrics 

I. To test drone derived crown variables for the prediction of tree and palm water use 
II. To analyze uncertainties resulting from scaling plant water use to stand-level 

transpiration  
III. To compare transpiration rates of an oil palm monoculture to an oil palm agroforest. 

(2) To analyze spatial variation in plant transpiration 

I. To test the relationship between tree water use and crown metrics 
II. To predict spatial variability of rainforest canopy transpiration within and across 

plots, including differences between riparian and upland plots 

(3) To assess multi-level temporal dynamics of water circulation in oil palm 

I. To assess the radial profile of sap flux density in the stem of oil palm  
II. To analyse the hysteresis between sap flux densities and environmental drivers, and  

III. To analyse the role of stem water storage 

This dissertation comprises five chapters, with the first chapter being a general 

introduction, chapters two to four comprises three manuscripts (two published and one final 

draft); which addresses the above-mentioned objectives and final chapter provides 

synthesize and future scope of this work.  
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Abstract 
Transpiration at the stand level is often estimated from water use measurements on a limited 

number of plants and then scaled up by predicting the remaining plants of a stand by plant 

size related variables. Today, drone-based methods offer new opportunities for plant size 

assessments. We tested crown variables derived from drone-based photogrammetry for 

predicting and scaling plant water use. In an oil palm agroforest and an oil palm 

monoculture plantation in lowland Sumatra, Indonesia, tree and oil palm water use rates 

were measured by sap flux techniques. Simultaneously, aerial images were taken from an 

octocopter equipped with an RGB camera. We used the structure from motion approach to 

compute several crown variables such as crown length, width and volume. Crown volumes 

for both palms (69%) and trees (81%) explained much of the observed spatial variability in 

water use; however, the specific crown volume model differed between palms and trees 

and there was no single linear model fitting for both. Among the trees, crown volume 

explained more of the observed variability than stem diameter, and in consequence, 

uncertainties in stand level estimates resulting from scaling were largely reduced. For oil 

palms, an appropriate whole-plant size related predictor variable was thus far not available. 

Stand level transpiration estimates in the studied oil palm agroforest were lower than those 

in the oil palm monoculture, which is probably due to the small-statured trees. In 

conclusion, we consider drone-derived crown metrics very useful for the scaling from 

single plant water use to stand-level transpiration.  

 

Key words: Agroforest, bootstrapping, sap flux, scaling, structure from motion, 

transpiration, uncertainty  
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2.1 Introduction 

Transpiration is a central flux in the ecosystem water cycle. In forests or similar vegetation 

types, it is often estimated from individual plant water use assessments, for example with 

sap flux techniques (Granier, 1985; Wullschleger, Meinzer, & Vertessy, 1998). In most 

studies, the number of plants directly analyzed for water use is lower than the number of 

plants in the stand. The individual plant water use rates are then scaled to stand-level 

transpiration by biometric variables. Scaling is thus a critical issue that needs to be 

optimized in order to improve transpiration estimates and to reduce associated uncertainties 

(Hatton & Wu, 1995; Jarvis, 1995; Moore, Orozco, Aparecido, & Miller, 2017).  

Candidate variables for scaling include tree diameter, crown metrics and leaf area. Among 

these, tree diameter and the number of trees (stand density) are often used, as they are easy 

to assess and often available from forest inventories. The relationships between tree water 

use and tree diameter often have R² values around 0.66 (Yue et al., 2008; Schiller, Cohen, 

Ungar, Moshe, & Herr, 2007), but closer (Wang, Xing, Ma, & Sun, 2006) and less close 

correlations (Kume et al., 2009) have also been observed. Stem diameter has some 

limitations that include a potentially slow response to concurrent dynamics in the stand 

such as crown damages or crown expansions into gaps. In addition, recently increasingly 

monocot species such as bamboos and palms came into the focus of transpiration studies 

(Röll et al., 2015; Mei et al., 2016), in which intra-specific diameter variation may be low 

but nonetheless variation in water use occurs. Leaf area index can be a very powerful 

variable for scaling (Hatton & Wu, 1995; Vertessy, Benyon, O’Sullivan, & Gribben, 1995; 

Medhurst, Battaglia, & Beadle, 2002), but it is often only available at the stand level and 

not at the tree level. In contrast, crown dimensions are easier to measure and thus more 

commonly available and yielded good results in mature oak (Quercus robur) forest 

(Čermák, 1989). Similarly, in Taxodium distichum forest and olive orchard, crown structure 

correlated closely with tree water use (Oren, Phillips, Ewers, Pataki, & Megonigal, 1999; 

López-Bernal, Alcántara, Testi, & Villalobos, 2010). Crown exposure also indirectly 

affected transpiration by influencing leaf wetness and dryness in a premontane forest of 

Costa Rica (Aparecido, Miller, Cahill, & Moore, 2016). 

Despite the long-recognized potential of crown variables for scaling up from tree water use 

to stand transpiration, diameter based approaches remain popular, as crown variables are 

more difficult and time consuming to assess in ground-based stand inventories. With the 
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recent development of drone technologies and their application in ecological studies this 

might change. Drones equipped with optical detectors such as cameras capturing specific 

light wave lengths or laser-based approaches offer new opportunities for crown and canopy 

assessments (Díaz-Varela, de la Rosa, León, & Zarco-Tejada, 2015; Thiel & Schmullius, 

2016; Barnes et al., 2017). Crown variables such as crown length (Kallimani, 2016), crown 

diameter (Lim et al., 2015; Panagiotidis, Abdollahnejad, Surový, & Chiteculo, 2016) or 

crown volume (Torres-Sánchez, López-Granados, Serrano, Arquero, & Peña, 2015) were 

calculated using photogrammetric techniques. Even though drone technologies have 

previously been applied in ecohydrological studies (Vivoni et al., 2014), the applicability 

of drone-based photogrammetry for scaling up tree water use to stand-level transpiration 

has to our knowledge not yet been explored.  

Uncertainties associated with sap flux measurements and stand level estimates of 

transpiration are manifold and include the assessment of sap flux variation in a given tree, 

the number of trees sampled, and the scaling (Peters et al., 2018). For a better understanding 

of ecohydrological consequences with land-use and land-cover change, it will be important 

to produce stand-level transpiration estimates with a high accuracy and thus, a low 

associated uncertainty. The basis for this is the further optimization of current sampling 

and scaling schemes, potentially also by employing innovative drone-based methods. 

In our study, we assessed relationships between crown metrics and the water use of oil 

palms and trees in lowland Sumatra, Indonesia. In this region, natural forests have largely 

been converted and monoculture oil palm plantations are widespread (Drescher et al., 

2016). The land cover change and the expansion of oil palm plantations are associated with 

losses of biodiversity and impaired ecosystem functions (Barnes et al., 2014; Clough et al., 

2016; Dislich et al., 2017). Transpiration rates from commercial oil palm plantations can 

be high and may exceed those of remaining forests (Röll et al. 2015, Meijide et al. 2018). 

To test possibilities of alleviating the ecological impacts of oil palm cultivation, a 

biodiversity enrichment experiment, Efforts-BEE, was set up in a commercial oil palm 

plantation by planting native tree species and establishing oil palm agroforests (Teuscher 

et al., 2016). Within Efforts-BEE, we conducted our study on plant water use and scaling 

by crown variables. The objectives were (1) to test drone derived crown variables for the 

prediction of tree and palm water use, (2) to analyze uncertainties resulting from scaling 

plant water use to stand-level transpiration, and (3) to compare transpiration rates of an oil 

palm monoculture to an oil palm agroforest.  
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2.2 Methods 

2.2.1 Study area and sites 

The study was conducted in Jambi province, Sumatra, Indonesia. The region is tropical 

humid, with mean annual precipitation of 2235 mm yr-1 and average annual temperature of 

26.7° C (Drescher et al., 2016). The study sites were located just south of the equator 

(01.95° S and 103.25° E), within the commercial oil palm plantation PT Humusindo, near 

Bungku village. Mean elevation is 47 m asl. The biodiversity enrichment experiment 

(EFForts-BEE) was established in monoculture oil palm plantations. Oil palms were 

planted in a 9 m x 9 m triangular grid resulting in approx. 143 oil palms per hectare; the 

age of the oil palms at the time of study was approx. 9-15 years (Teuscher et al., 2016). The 

broad age range refers to the entire experiment with 56 plots that covers an area of about 

150 ha. After thinning of oil palms, six native tree species were planted in a 2 m x 2 m grid. 

The tree species were mixed in a way to maximize the number of hetero-specific neighbors 

(i.e. no con-specific rows or groups) (Teuscher et al., 2016). There are 52 experimental 

plots varying in plot size and in tree species diversity level. In addition, there are also 4 

control plots with oil palm management as usual, and no enrichment planting. Our main 

study site was at a 40 m by 40 m plot with six tree species planted (figure 1) and a nearby 

monoculture control plot of the same size. The agroforest plot was selected based on the 

criteria plot size (as big as possible, i.e. 40 m by 40 m) and highest tree diversity level (six 

tree species). The monoculture control plot was located approx. 60 m away from the 

agroforest plot. At the selected agroforest and monoculture study plot, oil palms were of 

similar age. In the agroforest, the studied oil palms had an average meristem height of 6.8 

± 0.2 m (mean ± SD), while the sample trees had an average height of 4.7 ± 0.6 m 

(Appendix A). The reported measurements were conducted between September and 

November 2016, which was the beginning of the rainy season.  
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Figure 1: Aerial view of a studied oil palm agroforestry plot. Three years prior to the study, 
the stand was thinned with reduction in oil palm stems by 40% and six tree species were 
planted 

 
 

2.2.2 Sap flux measurements  

Eight palms and 16 trees were equipped with sap flux sensors. Selected tree species were 

Archidendron pauciflorum, Parkia speciosa, Peronema canescens and Shorea leprosula. 

As Shorea leprosula did not perform well on the multi-species plot, it was measured on a 

nearby single tree species enrichment plot, under otherwise very similar conditions. One 

further tree species, Dyera polyphylla, was not included in the measurements because 

almost all individuals had died on the multi-species plot and no plot with well performing 

Dyera polyphylla trees was available nearby. Archidendron pauciflorum, Parkia speciosa 

and Peronema canescens are early successional and light demanding species 

(Aumeeruddy, 1994; Lee, Wickneswari, Clyde, & Zakri, 2002; Orwa et al., 2009; 

Lawrence, 2001); Shorea leprosula is considered a gap opportunist (Ådjers, Hadengganan, 

Kuusipalo, Nuryanto, & Vesa, 1995; Bebber, Brown, Speight, Moura-Costa, & Wai, 2002). 
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Sap flux sensors were installed in four trees for each tree species and on four oil palms in 

an oil palm agroforest, and additionally on four oil palms in the oil palm monoculture. 

For trees, we used heat ratio method sensors (HRM, Burgess et al., 2001; ICT International, 

Australia). One HRM sensor per tree was installed radially into the xylem at breast height. 

To process raw data we used the software Sap Flow Tool, version 1.4.1 (ICT International, 

Australia). The mean sap velocity output data was converted into ‘sap flow’ (cm3 h-1) by 

multiplying it with the cross-sectional water conductive area Ac (cm²). As the studied trees 

were rather small (diameter at breast height, DBH < 11 cm), we considered Ac to be equal 

to the cross-sectional area at breast height. Estimation errors associated with assuming fully 

conductive cross-sectional areas of the relatively small trees for the up-scaling to tree water 

use are likely to be small; for similar sized trees Delzon, Sartore, Granier, & Loustau (2004) 

found a difference of approx. 4% with this assumption.  

For oil palms, we used thermal dissipation probes (TDP, Granier, 1985) as this method had 

previously been tested on oil palm and a sampling scheme had been developed (Niu et al., 

2015), which we followed closely. Like Niu et al. (2015), we installed the TDP sensors in 

leaf petioles rather than the stem of oil palms due to presumably higher vessel density and 

homogeneity in vascular bundle distribution (Madurapperuma, Bleby, & Burgess, 2009; 

Renninger, Phillips, & Hodel, 2009). Niu et al. (2015) also tested the influence of leaf 

characteristics such as leaf orientation, inclination and horizontal shading on leaf water use 

for 56 oil palm leaves, but no statistically significant effects were observed. The authors 

argued that the examined factors partly counteract (Niu et al. 2015). We followed their 

suggested scheme in our study and selected four leaves per palm in the cardinal directions. 

Sap flux density Js (g cm-2 h-1) was calculated using the equation derived by Granier (1985), 

but with oil palm specific, calibrated equation parameters (Niu et al., 2015). Zero-flux 

conditions were examined following Oishi et al. (2008); it was found that zero-flux 

conditions were met during the early morning hours during our entire sap flux measurement 

period. Individual leaf water use rates (kg day-1) were calculated by multiplying Js daysums 

by Ac of the according leaf petioles. Those were derived from a previously presented linear 

relationship between petiole baseline length (which was measured with a caliper) and Ac at 

the location of the sensor (Niu et al. 2015). Individual daily leaf water use rates were 

averaged for each palm and multiplied by the number of leaves per palm to derive palm 

water use rates (kg day-1). Water use rates were based on averages of three sunny days on 
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which soil moisture was non-limiting in order to minimize the effects of varying 

environmental conditions; this approach is in accordance with previous research on oil 

palm water use (e.g. Hardanto et al., 2017; Niu et al., 2015; Röll et al., 2015). In the 

nomenclature across the applied sap flux methods, we follow Edwards, Becker, & Cermák 

(1997) in expressing individual tree and oil palm water use as mass per time (kg day-1) and 

stand-scale transpiration in ‘mm day-1’. 

 

2.2.3 Drone image acquisition and processing 

At the time of the sap flux measurements, drone flights were conducted using an octocopter 

(MikroKopter OktoXL, HiSystems GmbH, Germany) equipped with a digital RGB camera 

(Nikon D5100, Japan). Flight routes were planned with MikroKopter-Tool V2.14b. Flight 

altitude was 39 m above ground, flight speed was 7.2 km h-1 and one picture was taken per 

second (Appendix B).   

The flight missions were performed in circular and grid pathways to get different 

perspectives and an overlap of 70% for the construction of 3D maps. After eliminating 

blurry pictures, 3D point clouds were created from an average of 600 geo-referenced 

images per study site with Agisoft Photoscan Professional 1.2.6 software (Agisoft LLC, 

Russia). The achieved point cloud density was 3 points cm-2. In the analysis, we used the 

pictures from one single flight to construct the 3D models. 

The workflow included image alignment, georeferencing, building dense point clouds, the 

generation of digital elevation models (DEM) and orthomosaic generation. Ground-control 

points printed as 8-Bit barcodes and laid out during the flight campaigns were used to 

determine the overall positional accuracy of orthomosaic images. The 3D point clouds were 

generated using the Structure from Motion (SfM) technique (Westoby, Brasington, Glasser, 

Hambrey, & Reynolds, 2012; Lowe, 2004). Orthomosaic and digital elevation models 

(DEM) were created for each plot for further visualization and interpretation.  

In order to create canopy height models (CHM), digital terrain models (DTM) were 

generated from the point cloud data. For this, the three main parameters (maximum angle, 

maximum distance and cell size) were defined with Agisoft’s ground point classifier tool 

and used to differentiate ground and non-ground points. The classified ground points were 

converted to raster format as DTM. Further, we overlaid the DEM and DTM and applied 
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smooth filters to derive the canopy height model. Subsequently, crown polygons were 

delineated for target trees and oil palms through visual interpretation and tree location 

information. One major challenge of using aerial imagery for delineating individual tree 

canopies is the overlapping of crowns. It was not major issues in our study as the studied 

trees are young and located in gaps created by the previous thinning of oil palms. The 3D 

crown models of the studied palms and trees (extracted from the SfM point clouds) were 

derived from multiple shots at different angles and positions, thus allowing to delineate 

even overlapping canopies. Additionally, the very high point cloud density of 3 points cm-

2 allowed modeling the crown structures in great detail. However, for some sample trees 

we experienced difficulties with automatic 3D segmentation, e.g. when branches from 

different trees connect (Tao et al. 2015). In such a case, we performed additional manual 

segmentation and processing and added clusters for the automatic approach (Trochta, 

Kruček, Vrška, & Kraâl, 2017). The individual canopy height of trees and meristem height 

of oil palms were obtained by overlaying individual crown polygons with the CHM. For 

trees, the highest point in CHM within the individual crown polygon was considered as the 

canopy height of trees (Birdal, Avdan, & Türk, 2017), while the lowest point was taken as 

the meristem height of oil palms. As a ground-based reference, canopy height of each 

individual was measured using a pole, and canopy width and projection area were 

established with the vertical sighting method (Preuhsler 1979, also see Pretzsch et al. 2015) 

in the eight cardinal directions. The heights obtained by the drone-based and the ground-

based methods were well correlated along a 1:1 line (R2 = 0.69, P < 0.001; Appendix C). 

Also, the canopy diameter obtained by terrestrial measurements and drone based analyses 

were highly correlated along a 1:1 line (R2 = 0.95, P < 0.001), suggesting the applicability 

of the drone based approach. The PolyClip function in Fusion software v3.6 (USDA, USA) 

was used to extract individual point clouds for each tree and oil palm crown. Crown 

variables of each individual were obtained using measurement marker functions in the same 

software. For crown volume and planar area, the point clouds were interpolated in R 

software v3.4.3 (R Development Core team, 2016) using the Alphashape3D (Lafarge & 

Pateiro-Lopez, 2014) and rLiDAR (chullLiDAR2D, Silva et al., 2017) packages, 

respectively.  

There are several different ways to compute crown volumes including convex hull and 

alpha shape algorithms (Colaço et al., 2017). In convex hull, it constructs an envelope by 

considering the number of input points belongs to the convex hull to represent the outward 
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curving shape of tree crowns. In the alpha shape approach, a predefined and reduced alpha 

value serves as size criterion to construct more details, thus shrinking the corresponding 

convex hull closer down to the 3D point cloud (Pateiro-Lopez and Rodriguez-Casal, 2010; 

Colaço et al., 2017). In our study, we calculated the crown volumes for both trees and oil 

palms with a convex hull algorithm and alpha shape algorithms, the latter using the alpha 

values 0.75, 0.50 and 0.25 (Appendix D). Two contrasting models (convex hull and alpha 

shape 0.25) are illustrated in figure 2 for a studied oil palm and a studied tree.  

 

2.2.4 Statistical analyses 

To test for differences in tree water use among species, and for differences in oil palm water 

use between oil palm agroforest and oil palm monoculture, we used ANOVAs, followed 

by Posthoc Tukey’s HSD; differences were assumed as significant at P < 0.05.  

Plant size related variables such as crown volumes as predictor of plant water use were 

tested by linear regressions. We tested the variance of residuals for normal distribution by 

the Shapiro-Wilk test and homoscedasticity with residual plot analysis. The null hypothesis 

of normality was rejected at P < 0.05.  

The linear regressions served as the basis for subsequent scaling of tree- and palm-level 

water use to stand-level transpiration. To compare the uncertainties associated with 

different scaling variables, we performed parametric bootstrapping with the linear 

relationships between water use and the predictor variables with 50,000 iterations using the 

R package ‘boot’ (Canty & Ripley., 2017; Davison & Hinkley, 1997). This yielded 

estimates of means and corresponding standard deviations as measures of uncertainty.  

All statistical analyses and plotting were performed with R version 3.4.3 (R Development 

Core team, 2016). 
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Figure 2: Canopy of an oil palm and a tree (Shorea leprosula) using point clouds from the 
drone missions and convex hull and alpha shape algorithms. Other tree species are shown 
in appendix D. 

 

2.3 Results 

2.3.1 Plant water use  

On sunny days, the daily water use per palm ranged between 158 and 249 kg day-1, and on 

average was by 32% higher in the agroforest than in the monoculture (ANOVA, P < 0.01). 

Daily water use of the inter-planted trees was much lower and per tree ranged from 1.1 to 

Oil palm  Tree: Shorea leprosula 

Convex hull  
 
 
 

Convex hull  
 

 

Alpha 0.25  Alpha 0.25  
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19.8 kg day-1. There were species-specific differences among the trees (P < 0.001) 

(Appendix A). 

 

2.3.2 Drone-derived crown metrics and their relation with plant water use 

Crown volumes (convex hull) for the eight oil palms with sap flux measurements ranged 

between 332 and 831 m3, and on average were by 79% higher in the agroforest than in the 

monoculture. Crown volumes (convex hull) of the trees were much lower and ranged 

between 0.95 and 81.0 m3. There were species-specific differences among the trees 

(Appendix A).  

Crown metrics were highly correlated with tree and palm water use (table 1). For oil palm, 

crown volume convex hull explained 69% of the observed palm-to-palm variability in daily 

water use (P = 0.01). For trees, crown volume models with an alpha level 0.25 (see 

Appendix D) explained 81% of tree-to-tree variability (P < 0.001) (figure 3) across the 

studied species. Due to violated quality criteria (Shapiro-Wilk test, P = 0.000042), there 

was however no single linear crown volume model that fit both oil palms and trees. 

Nonetheless, the single linear relationship crown volume alpha 0.75 to tree/palm water use 

is depicted in Appendix E.  

For trees, stem diameter as measured in ground-based inventories explained 65% of the 

variability observed in daily tree water use (P < 0.01), while for oil palms no significant 

ground-based explanatory variables were available for comparison  

 

2.3.3 Transpiration estimates and uncertainties 

Based on scaling with crown volumes, the stand-level transpiration estimate in the oil palm 

agroforest is 1.9 mm day-1 and 3.0 mm day-1 in the oil palm monoculture (table 2). Scaling 

with ground-based DBH measurements in trees resulted in only minor differences in stand 

transpiration estimates. For trees, bootstrapping suggests that the estimate based on crown 

volume is associated with an uncertainty due to scaling of 28%. In contrast, using diameter 

for scaling results in an uncertainty of 100%. For the oil palms in the agroforest and the 

monoculture, the uncertainty estimates associated with crown volume scaling were 37% 

and 35%, respectively. 
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Table 1. Linear regressions between daily water use (kg day-1) and different aerial and 
ground based variables of oil palms (n=8) and trees (n=15). Only those linear regressions 
which satisfy normality and homoscedasticity conditions are presented. 

  

 
 

 
Equation 
b0 - water use 
b1 - variables 

P value R2 

Drone based      
Crown volume (m3) Oil palms convex hull b0 = 0.14  b1 + 122 P = 0.010 0.69  

 alpha 0.75 b0 = 0.74  b1 + 49.1 P = 0.038 0.53  
Trees alpha 0.75 b0 = 0.39  b1 + 2.12 P < 0.001 0.73  
 alpha 0.5 b0 = 0.51  b1 + 1.84 P < 0.001 0.77  
 alpha 0.25 b0 = 0.82  b1 + 1.70 P < 0.001 0.81 

      
Ground based      
DBH (cm) Oil palms  - - - 

 Trees  b0 = 2.46  b1 - 8.42 P < 0.01 0.65 
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Table 2. Transpiration of the oil palm agroforest and monoculture plot with uncertainties 
for the scaling from individual plants to the plot level by bootstrapping linear relationships. 
For uncertainty estimates from ground-based scaling in oil palm we used an approach by 
Niu et al. (2015), which is based on the number of leaves that measurements were 
performed on and the resulting cumulative coefficient of variation (marked with an *).  
 

  
 

 Transpiration  
(mm day-1) 

Estimate ± uncertainty 
Drone-based   
Agroforest Trees 0.28 ± 0.08 
 Oil palms 1.61 ± 0.61 
 Total 1.89 ± 0.69 

 
Monoculture Oil palms 3.04 ± 1.05 
   
 
Ground-based 

  

Agroforest Trees 0.38 ± 0.38 
 Oil palms 1.67 ± 0.88* 
 Total 

 
2.05 ± 1.26 

Monoculture Oil palms 2.96 ± 0.78* 
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Figure 3: Daily water use of (a) oil palms and (b) trees versus crown volumes. Note the 
different crown volume models and scales 

 

2.4 Discussion 

In our study, we found that drone-based assessments of oil palm and tree crowns predicted 

individual plant water use quite well and better than e.g. diameter in trees, and thus led to 

reduced uncertainties in spatial scaling and stand-level estimates of transpiration.  

A popular variable for the prediction of plant water use is stem diameter. In our study, DBH 

yielded an R2 of 0.65, which is quite similar to several recent studies (Yue et al., 2008; 

Schiller, Cohen, Ungar, Moshe, & Herr, 2007; Granier, Biron, & Lemoine, 2000). In our 

study as in many others, the relationship between DBH and tree water use was found to 

hold across species. In contrast, in a premontane forest in Costa Rica the correlation of 

water use to DBH showed differences among species (Moore et al., 2017). Likewise, 

species-specific trajectories were suggested from reforestations in the Philippines (Dierick 

& Hölscher, 2009). There are further general concerns in using diameter for scaling. As 

such, diameter integrates over large time spans and a tree may have achieved its diameter 

under conditions that no longer prevail at the time of study. Cases in point are damages by 

storm or lightning, or in the other direction crown expansion into a gap that was formed by 

the dieback of a neighbor.  
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Our study also included oil palm, a monocot plant which lacks secondary diameter growth. 

Consequently, significant correlations between stem diameter and water use can hardly be 

expected. Thus far, to our knowledge no scaling scheme from an individual oil palm to the 

stand level had been established. Based on leaf level measurements in 56 oil palm leaves, 

Niu et al (2015) tested for relationships between leaf characteristics (e.g. orientation, 

inclination, horizontal shading) and leaf water use but did not find significant relationships. 

In contrast, the approach of our study with crown volume and whole plant water use 

resulted in an R2 of 0.69 (P = 0.01). Based on their results, Niu et al. (2015) suggested a 

non-stratified sampling scheme. Our results would suggest that a sampling scheme in oil 

palm would benefit from representing different crown dimensions.  

For trees and palms the best fitting (as based on high R2 and low P) crown volume model 

differed with alpha 0.25 for trees and convex hull for palms. There was however one single 

intermediate crown volume model, alpha 0.75, that appears suitable for both trees and 

palms (table 1). However, applying this model for the pooled dataset of all trees and palms 

resulted in non-normality and too high heteroscedascity to be accepted (Shapiro-Wilk test, 

P = 0.000042), even though R2 was very high and the P value was low (Appendix E). Our 

dataset certainly lacks values in the mid-range of crown volume and water use for a further 

examination of this ‘universal’ crown model. Also, it can be seen that crown alpha 0.75 is 

not the best predictor for oil palm water use. However, the universal model may indicate 

that trees and oil palms do not differ significantly in water use per crown volume, even 

though more and more equally distributed data will be needed to further test this contention. 

On the other hand, it may also well be that a universal crown volume to plant water use 

relationship does not exist. As such, across (tree) species, e.g. when comparing early 

successional and late successional species, substantial differences regarding crown shape, 

the occurrence of sun and shade leaves and leaf stomatal conductance exist (Bazzaz, 1979; 

Poorter, Bongers, & Bongers, 2006).  

Sap flux measurements and subsequent scaling up to the stand level are associated with a 

multitude of uncertainties, including the positioning and number of a sensor in a given 

plant, methods of zero-flow conditions and sensor calibration (Peters et al., 2018), as well 

as the number of plants studied. Our study addresses the spatial scaling from the individual 

plant to the stand. The uncertainty estimates as the result of the applied bootstrapping are 

directly related to the explained variance in the linear relationships with water use. They 
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suggest that for trees the uncertainty of the stand-level estimate is 28% with drone-based 

imagery, whereas it is 100% with ground-based diameter measurements. The drone-based 

approach thus has at least one clear advantage. For oil palms, our reported uncertainty of 

37% is the first estimate that to our knowledge addresses whole-plant to stand scaling. 

However, Niu et al. (2015) estimated that counting leaves per oil palm and oil palms per 

stand, and scaling based on sap flux measurements in 12 leaves, would result in uncertainty 

of stand-level transpiration of 14%. For oil palms it thus seems that the previously proposed 

ground-based method has an advantage. Nonetheless, the crown dimension approach is still 

valuable, as it may also allow to estimate water use across different conditions. For 

example, in our case an oil palm stand was thinned and trees were inter-planted in gaps 

three years prior to the study (agroforest), whereas the control stand remained untreated 

(monoculture). We found significant differences in crown volume and water use of the 

studied oil palms, but the two variables were significantly related to each other across 

treatments. The ground-based leaf-count approach, on the other hand, was previously only 

tested in one single stand with homogenous conditions. Their applicability will have to be 

tested further in follow-up studies focusing on how to best assess (and reduce) such 

estimation uncertainties.  

The crown volumes in our study were derived from RGB images and a photogrammetric 

approach. Other drone-derived structural variables such as height and projected crown area 

show a high correlation with ground-based reference measurements along a 1:1 line, 

suggesting the applicability of the aerial method. The point cloud density in our study was 

3 points cm-2, which can be regarded as quite high and compares to or is even higher than 

those that result from laser scanning (Vauhkonen, Næsset, & Gobakken, 2014). Drone-

based imagery performs particularly well for the upper part of the canopy, which is also 

where a large part of the transpiration takes place. So far, we only tested this method in a 

relatively simply structured monoculture and an oil palm agroforest with relatively young 

trees. As we regard the results as promising, it will be interesting to test it in more 

heterogeneous stands in next step.  

Oil palm water use in the studied monoculture and the agroforest ranged between 158 and 

249 kg day-1. The studied monoculture is relatively intensively managed, with fertilizer 

application including 230 kg N ha-1 year-1 (Teuscher et al., 2016). The observed water use 

rates exceed those of small-holder plantations of similar age (108 ± 8 kg day-1, mean ± SE 

among eight sites) and compare to values from another intensively managed, commercial 
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oil palm monoculture plantation in the region (178 ± 5 kg day-1) (Röll et al., 2015; Meijide 

et al., 2018). Thus, our data indicates that intensive oil palm management leads to high 

water use rates.  

The water use per oil palm in the agroforest was 31% higher than in the monoculture. This 

is likely due to the reduction of oil palm stand density by previous thinning in the 

agroforest, which leads to increases in light, soil water and nutrient availability for the 

remaining oil palms in the stand. This is also in line with a previous study showing 36% 

higher per-palm fruit yield in thinned agroforests than in untreated monocultures (Gérard 

et al., 2017). The mean individual tree water use in agroforest, on the other hand, was very 

low (1.1 - 19.8 kg day-1) compared to the water use of the surrounding oil palms. The large 

difference in tree water use is likely due to the substantial differences in tree size (4.2 cm 

vs 11 cm) and canopy volume (1.1 m3 vs 24 m3). However, tree size also coincides with 

species identity in our case, so ’ultimate reasons’ cannot be disentangled. However, these 

low absolute rates of the inter-planted trees of relatively small-diameter (DBH range 4.2 – 

11.0 cm) compare well to values provided for rubber trees of similarly small diameter in a 

previous study in the lowlands of Sumatra (Niu, Röll, Meijide, Hendrayanto, & Hölscher, 

2017). The general observation of high water use per palm also corresponds with data from 

Amazonian fruit plantations, where it was found that palms consumed 3.5 times more water 

than trees (Kunert, Aparecido, Barros, & Higuchi, 2015).  

Scaled to the stand-level based on our aerial approach, stand transpiration of the oil palm 

agroforest (1.9 mm day-1) was 37% lower than in the oil palm monoculture (3.0 mm day-

1). The higher per-palm water use in the oil palm agroforest thus did not compensate for 

the reduction in oil palm stand density when scaled to the stand level. The 3-year old, 

comparably small inter-planted trees in the agroforestry plot contributed rather little to 

overall stand transpiration (15%). The oil palm agroforestry experiment EFForTS-BEE was 

designed and established to test possibilities of reducing the impact of oil palm cultivation 

on biodiversity and ecosystem functioning. Oil palm monocultures are associated with 

ecohydrological problems arising from high transpiration rates and low soil water 

infiltration capacities (Merten et al., 2016). At the time of study, transpiration rates from 

the agroforest were substantially reduced in comparison to the commercial monoculture, 

which may help to alleviate some of the ecohydrological problems. However, restoring the 

integrity of the local hydrological cycle by means of oil palm agroforestry will also largely 
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depend on whether soil infiltration capacities will increase due to the presence of the inter-

planted trees.   

  

2.5 Conclusions       

Crown volumes derived from drone-based imagery predicted tree and palm water use quite 

well. For oil palms, such a scaling variable at the whole-plant level was previously not 

available. For predicting individual water use, tree crown volumes performed better than 

the more conventionally used variable stem diameter. In consequence, stand-level 

transpiration estimates based on crown volumes were associated with reduced 

uncertainties. We therefore see great potential for future applications of our aerial method 

in studies scaling plant water use from individual plants to the stand level. 
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Appendix 
Appendix A: Drone derived crown metrics for oil palm and four studied tree species. Tree height as derived from the canopy height model and 
diameters as measured at breast height are further provided. Means ± standard deviations of the palms and trees where sap flux measurements 
were done, sample size n=4 for all groups. Crown volume was derived using convex hull and alpha shape algorithm for oil palms and trees, 
respectively.  

 DBH 
 

Height  Crown 
length  

Crown 
diameter 

Crown 
volume  

Crown 
projection area   

Crown 
surface area  

Daily water 
use  

 (cm) (m) (m) (m) (m3) (m2) (m2) (kg day-1) 

Oil palms 
(agroforest) 

90.1 ±8.6 6.8 ± 0.2 4.7 ± 0.2 11.3 ± 1.1 665.7 ± 162.8 92.3 ± 14.4 392.2 ± 65.0 223.0 ± 20.0 

Oil palms 
(monoculture) 

85.2±7.3 5.9 ± 0.6 3.8 ± 0.3 10.2 ± 0.8 371.1 ± 33.2 77.5 ± 12.0 274.0 ± 18.4 168.9 ± 15.4 

Trees         

Archidendron 
pauciflorum 

8.8 ± 1.2 7.9 ± 1.0 5.5 ± 1.2 4.2 ± 0.6 15.5 ± 5.5 12.0 ± 3.2 65.2 ± 21.5 16.2 ± 2.9 

Parkia 
speciosa 

7.2 ± 1.6 7.5 ± 1.0 4.0 ± 0.8 4.0 ± 0.9 6.6 ± 3.4 8.8 ± 3.5 52.6 ± 28.3 6.6± 4.3 

Peronema 
canescens 

9.2 ± 1.1 7.1 ± 0.9 4.9 ± 0.6 3.8 ± 0.3 9.9 ± 2.6 9.6 ± 1.3 56.5 ± 8.1 15.0 ± 6.3 

Shorea 
leprosula 

5.1 ± 0.6 1.9 ± 0.3 1.7 ± 0.3 1.8 ± 1.0 2.2 ± 1.0 21.6 ± 5.9 2.4 ± 1.1 4.2 ± 0.6 
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Appendix B: Equipment and flight details. 

  

Camera Nikon D5100  

Drone MikroKopter OktoXL 

Flight altitude 39 m 

Image overlap 70%  

Number of images 995 ha-1 

Focal length  35 mm 

Ground resolution 5 mm/pixel 

Point density 3 points cm-2 
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Appendix C: Validation of drone-derived canopy heights and widths with ground reference 
measurements (n=99 trees and palms).  
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Appendix D: 3D visualization of oil palm and tree (four tree species) crowns derived from 
different crown volume models (convex hull and different alpha levels). 

Oil palm (Elaeis guineensis Jacq.) 
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Archidendron pauciflorum 
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Parkia speciosa 
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Peronema canescens     
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Shorea leprosula 
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Appendix E: Daily water use across trees and oil palms versus crown volumes alpha 
shape 0.75. The quality criterion of normality and homeoscedascity was however violated 
(Shapiro Wilk test, P = 0.000042).   
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Abstract 

Tropical rainforests comprise complex 3D structures and encompass heterogeneous site 

conditions; their transpiration contributes to climate regulation. The objectives of our 

study were to test the relationship between tree water use and crown metrics and to predict 

spatial variability of canopy transpiration across sites. In a lowland rainforest of Sumatra, 

we measured tree water use with sap flux techniques and simultaneously assessed crown 

metrics with drone-based photogrammetry. We observed a close linear relationship 

between individual tree water use and crown surface area (R2 = 0.76, n = 42 trees). 

Uncertainties in predicting stand-level canopy transpiration were much lower using tree 

crown metrics than the more conventionally used stem diameter. 3D canopy segmentation 

analyses in combination with the tree crown–water use relationship predict substantial 

spatial heterogeneity in canopy transpiration. Among our eight study plots, there was a 

more than two-fold difference, with lower transpiration at riparian than at upland sites. In 

conclusion, we regard drone-based canopy segmentation and crown metrics to be very 

useful tools for the scaling of transpiration from tree- to stand-level.  Our results indicate 

substantial spatial variation in crown packing and thus canopy transpiration of tropical 

rainforests. 

Keywords: AMS3D, 3D structure; drone; photogrammetry; riparian sites; sap flux; 

scaling; structure from motion; Sumatra; unmanned aerial vehicle (UAV); upland sites; 

water use 
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3.1 Introduction 

Tropical rainforests comprise a complex 3D structure, rich tree species diversity and 

encompass heterogeneous site conditions [1,2]. Transpiration (Et) is a central flux in 

hydrological cycles and contributes to cloud formation, turbulence and atmospheric cooling 

[3], and is thus an ecosystem service related to climate regulation. The prediction of canopy 

Et by tropical rainforests including its spatial heterogeneity may be fostered by a better 

understanding of the linkage between structure and function and forest structure variability 

across sites.  

Rainforest Et can be derived from sap flux measurements in individual trees. Therein, 

tree-level Et is scaled-up to the stand-level by using allometric relationships with stand 

inventory variables such as tree diameter at breast height (DBH) [4]. Due to often relatively 

high unexplained variability in the DBH to water use relationship, resulting uncertainties 

of Et at the stand-level are also relatively high. In a tropical agroforest, Ahongshangbam et 

al. [5] found that drone-derived crown metrics correlated much better with tree water use 

than DBH. In consequence, uncertainties associated with the scaling to stand-level Et were 

reduced considerably. However, the studied stands were relatively simply structured and 

the trees were small in stature. The reported crown metrics vs. water use relationship cannot 

be applied to other vegetation types such as more heterogeneous tropical forest without 

further testing. Airborne tree crown assessments are also potentially promising for reducing 

Et scaling uncertainties in tropical forests, but there are no studies confirming this yet.  

The spatial heterogeneity in rainforest Et is potentially related to variability in site 

conditions. In North-America, several upland-to-wetland gradients were analysed in order 

to evaluate the significance of site conditions for tree and stand Et [6–8]; pronounced 

differences in Et were observed and it was concluded that it is necessary to include plots in 

different topographic positions for landscape-level assessments. For tropical rainforest 

regions, such studies are rare, but the influence of the water table on Et of certain species 

was analysed in northern Australia [9] and on Hawaii [10]. In lowland Sumatra, topography 

and flooding resulted in differences in Et between upland and riparian oil palm and rubber 

tree stands [11]. 

Rainforest structure assessments with conventional ground-based techniques face 

difficulties in reliably estimating key variables such as crown dimensions, which influence 

forest-atmosphere water exchange. Drones equipped with LiDAR [12,13] or optical 
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cameras [14,15] appear more suitable for crown assessments. The latter produce high 

resolution images, from which 3D point clouds can be computed with the Structure from 

Motion technique (SfM) [16–18]. Once a certain crown assessment methodology is 

established, relatively large areas can be assessed in a short time [19–21]. 

Rainforest canopy heterogeneity analyses for predicting Et across sites and at larger 

scales would benefit from an automated delineation of individual tree crowns. Individual 

tree crown (ITC) detection algorithms often use canopy height model (CHM) based tree 

segmentations derived from local maxima in the CHM [22–24]. However, CHM-based 

approaches have limitations in dense stands and multi-layered forests as they tend to merge 

crowns and fail to detect understory trees with narrow crowns [25,26]. More recently, ITC 

detection based on 3D point clouds showed promising results, with more accurate tree 

segmentation in intermediate canopy strata compared to CHM-based approaches 

[27,25,28]. However, many of these studies were carried out in boreal and temperate forests 

[29,30] which tend to be less complex in structure than tropical rainforests. In a recent study 

AMS3D (Adaptive MeanShift 3D), a multimodal point-cloud-based ITC detection 

algorithm, was reported to be suitable for heterogeneous tropical rainforest stands [25] and 

to perform better than other ITC detection methods in a lowland tropical rainforest in 

French Guiana [31]. AMS3D was further reported to be able to detect even suppressed or 

smaller trees with narrow canopies [32]. 

The present study was conducted in the Harapan rainforest in the lowlands of Sumatra, 

Indonesia. The forest landscape is undulating with upland and riparian regions. We 

conducted sap flux measurements and drone-based crown and canopy assessments at four 

upland and four riparian forest plots. The objectives of our study were (1) to test the 

relationship between tree water use and crown metrics, and (2) to predict spatial variability 

of rainforest canopy Et within and across plots, including differences between riparian and 

upland plots. 

3.2 Materials and Methods  

3.2.1 Study region and sites 

The study was conducted in the lowlands of Jambi province, Sumatra, Indonesia 

(Figure 1). The region is tropical humid, with a mean annual precipitation of 2235 mm yr-

1 and an average annual temperature of 26.7° C [33]. The study sites were located in the 
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Harapan rainforest, approx. 50 km south-west of the province capital Jambi. The Harapan 

rainforest was previously selectively logged but is now a protected area [33]. The region is 

characterised by mixed dipterocarp-dominated lowland rainforest [34]. A previous 

assessment in the Harapan rainforest covering four upland study plots (2500 m² each) found 

a total of 201 tree species with a DBH ≥ 10 cm [35]. The terrain is undulating, dividing the 

landscape into upland and riparian valley sites. The soil characteristics at upland and 

riparian sites are sandy loam Acrisols [36] and acidic clay-loam Stagnosols [37], 

respectively. 

 

Figure 1. Location of the four upland and four riparian study plots in Jambi 

Province in the lowlands of Sumatra, Indonesia. 

3.2.2 Study plots and stand characteristics 

Four study plots were established at upland sites (plot codes HF1, HF2, HF3, HF4) and 

four at riparian sites (HFr1, HFr2, HFr3, HFr4) within the Harapan rainforest as part of the 

EFForTs project [33]. The plots were 50 x 50 m2 in size. Mean elevation at the upland and 

riparian plots is 65 m and 52 m asl., respectively. At upland plots, the mean tree height was 

21.8 ± 0.8 m; at riparian plots, the mean tree height was 18.9 ± 0.8 m (for trees with a DBH 

≥ 10 cm; Table 1). Among the upland plots the mean nearest distance to neighboring plots 

was 2.1 km, among riparian plots it was 1.7 km. The mean nearest distance between upland 

and riparian plots (‘plot pairs’) was 0.3 km, only for one pair the distance was larger (2.5 

km) (Figure 1). 

Harapan rainforest Sumatra, Indonesia 
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Table 1. Trees per plot, diameters at breast height (DBH, ≥ 10 cm) and tree heights 

at the eight study plots (50 x 50 m2).   

Plot  Trees per plot  

(n) 

DBH  

(cm) 

Height  

(m) 

  mean min max mean min max 

HF1 125 21.9 10.1 67.9 19.7 8.3 52.2 

HF2 172 20.1 10.4 67.5 18.4 7.8 48.0 

HF3 146 22.6 10.2 80.2 21.1 4.3 44.5 

HF4 143 22.5 10.0 76.8 21.0 2.5 48.2 

HFr1 135 17.8 10.0 67.0 16.9 1.1 42.5 

HFr2 136 20.1 10.0 56.3 18.3 1.4 34.4 

HFr3 160 17.9 10.1 51.0 19.9 5.2 36.7 

HFr4 140 20.7 10.1 108.1 20.4 4.6 44.0 

3.2.3 Sap flux measurements 

To assess tree water use, we measured sap flux with thermal dissipation probes (TDP) 

[38]. We selected one upland plot (HF2) and all four riparian plots (HFr1, HFr2, HFr3, 

HFr4) for these measurements; the remaining three upland plots had already been measured 

in a previous sap flux study [39]. The three plots not studied with sap flux methods served 

as independent tests for stand-scale transpiration derived from two different methods. In 

each plot, 15 trees were equipped with two TDP sensors each, with the exception of HFr1, 

where only 12 trees were equipped due to a lack of sap flux instrumentation, as this plot 

was measured at the end of the field campaign. Installation of sap flux sensors and 

calculation of sap flux density (JS, g cm-2 h-1) followed the methods described in [39] for 

lowland rainforest in the same region; therein, the original Granier’s [38] equation for 

deriving JS was applied. Nighttime zero-flux conditions, as described in Oishi et al. [40], 

were met during the early morning hours. Tree-level water use was derived by considering 

the water conductive area (AC, cm2) of trees and radial sap flux patterns measured by the 

heat field deformation technique [39]. 
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3.2.4 Remote sensing 

3.2.4.1 Drone image acquisition  

Drone flights were conducted within the sap flux measurement period between August 

and December 2016. An octocopter drone (MikroKopter EASY Okto V3, HiSystems 

GmbH, Germany) equipped with a RGB camera (Sony Alpha 5000 with Sony E PZ 16-

50mm lens) was used to capture the images. The drone was additionally equipped with 

GPS (MKBNSS V3 GPS/Glonass, HiSystems, Germany); the accuracy of the GPS 

measurements was ± 5 m. Flight routes were planned with MikroKopter-Tool V2.14b and 

the flight path followed superposing circular and grid patterns. Images were taken at an 

altitude of 80 m above ground (i.e. 30 - 40 m above canopy). Further flight specifications 

are provided in Table A1. 

 

3.2.4.2 3D point cloud generation, individual tree crown detection and crown metrics 

An average of 209 images per plot were used to build 3D point clouds and derive 

orthomosaics. Images of insufficient quality (e.g. blurry images) were removed from the 

datasets. Each image was aligned and geo-referenced with the drone GPS logs using 

Agisoft Photoscan Professional 1.2.6 [41]. The drone-based GPS measurements provide 

higher accuracy than ground-based measurements under the dense canopies; we used more 

than 200 GPS points at each study plot from the geo-tagged images for georeferencing the 

whole plot map. The workflow included building dense point clouds, creating a mesh from 

the clouds, generating digital elevation models (DEM) and then generating the 

orthomosaics. 3D point clouds were generated using the Structure from Motion (SfM) 

technique [18,17] in Agisoft Photoscan Professional 1.2.6 software. An example of such 

an orthomosaic is depicted in Figure 2. 
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Figure 2. RGB orthomosaic image of one of the riparian study plots (HFr2). 

Based on ground inventories, tree location information with tree ID and plot corner 

GPS coordinates were available. The tree location maps were in local Cartesian 

coordinates; they were georeferenced in UTM WGS 84 using the GPS points of the plot 

corners. The georeferenced location maps were overlain with the RGB orthomosaic images 

to manually identify the sap flux sample trees. The identification of the sample trees was 

based on the visible tree crowns with respect to the tree location points in the RGB 

orthomosaic image. To analyse the tree crown to water use relationship, the corresponding 

tree crowns were delineated manually through visual interpretations using QGIS 3.6 

software [42] and cloud compare v.2.9 software [43]. Overall, the crowns of 42 out of the 

72 sap flux sample trees could clearly be identified in the images, 5 in the upland plot and 

3, 9, 13 and 12, respectively, in the four riparian plots. Due to this limited sample size for 

testing crown metrics vs. water use relationships, we pooled the data across all plots. The 

crown polygons were used for extraction of the point clouds with the lasclip function of the 

lidR R package [44]; for computing different crown metrics, the rLIDAR R package was 

used [45]. We extracted the metrics crown volume, crown projection area and crown 

surface area for the identified sap flux trees. 
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3.2.4.3 Automatic crown detection using AMS3D 

In contrast to the manually delineated crowns of the 42 clearly identified sap flux trees, 

we followed an automated tree segmentation approach to detect and delineate the tree 

crowns of all other trees in the plots for scaling-up to stand transpiration; the time-

consuming manual delineation for the hundreds of trees within a given stand would not be 

feasible. For all eight study plots, dense point clouds were extracted and the automated 

individual tree crown (ITC) detection algorithm AMS3D was applied [25]. AMS3D 

follows a non-parametric approach independent of pre-defined crown shape models and 

uses a multi-scale bandwidth technique that does not rely on single biophysical parameters. 

Due to its self-adaptive approach, which calibrates kernel bandwidth as a function of local 

tree allometric models, the segmentation process has the ability to characterize complex 

dense crowns and can deal with different crown shapes and multiple layers in the tropical 

forest [25]. As the AMS3D was previously only used with LiDAR, we adapted our high-

resolution SfM point clouds to LiDAR standards by reducing the point density from 198 to 

58 points m-2. The point cloud density was reduced based on minimum distance between 

points as threshold criteria using the cloud compare v.2.9 software [43]. We cleared all 

points from the point clouds that lay below the minimum tree height of the respective plot 

to filter out non-canopy points and avoid interferences of single ground points in crown 

modelling. We then used the meanshiftR R package [46] which allows individual tree 

crown segmentation using the Adaptive Mean Shift 3D (AMS3D) clustering algorithm 

[25]. In our study, we calibrate the kernel bandwidth value based on the ratio of crown 

diameter and tree diameter as observed from ground inventories. In contrast, the original 

AMS3D approach uses local allometric models constructed from CHM to further calibrate 

kernel bandwidth. In our case, a CHM could not reliably be constructed from the point 

cloud data at our study plots due to the lack of clearly identifiable ground points. After ITC 

segmentation, we removed all crowns that comprised relatively low point cloud densities 

(fewer than 40 points per crown) in order to avoid irrelevant crowns (also see Aubry-Kientz 

et al. [31]). All individually segmented crowns of a given study plot were vectorised and 

crown metrics were computed analogously to the previously described methodology for 

manually selected trees.  

We compared the number of segmented crowns per plot to ground stem counts (trees 

≥ 10 cm DBH) and performed accuracy assessments by matching the ground-recorded stem 

locations of each tree to the centroid of delineated crowns. Matching was performed by 
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finding the nearest neighbour distance within threshold criteria, i.e., a distance to nearest 

ground measured tree location below the segmented crown diameter of the tree (Figure 

A1). The threshold distance thus varied depending on the crown diameter. The accuracy 

assessment defines True Positives (TP), i.e., the detected trees match the actual trees in 

terms of tree location and threshold nearest neighbour distance, False Positives (FP) or 

commission error and False Negatives (FN) or omission error. From TP, FP and FN, the 

accuracy metrics precision (Pr), recall (Re) and F-score were calculated. Re indicates the 

tree detection rate, Pr indicates the correctness of the detected trees and the F-score is the 

overall accuracy considering both commission and omission errors [47]. 
 

3.2.5 Drone-based scaling, uncertainties and heterogeneity assessment of transpiration 

To test the relationship between tree water use and different crown metrics, we used 

linear regressions, followed by residual plot analysis for normality and homoscedasticity 

tests. The allometric relationships from the linear regression served as the basis for scaling-

up from individual tree water use to stand-level canopy Et. The uncertainties associated 

with the scaling to stand Et were compared among the different crown metrics and 

conventional ground-based approaches. Uncertainties in stand Et estimates were assessed 

by bootstrapping the linear relationships between water use and the according predictor 

variables with the R package ‘boot’ (50,000 iterations) [48,49]. This yielded estimates of 

means for slope and intercept, as well as corresponding standard deviations as measures of 

uncertainty. For deriving stand Et, the best performing crown metric (i.e. the metric with 

the lowest uncertainty) was applied to the stand-level crown datasets from the automated 

delineation algorithm. To test for differences in stand-level canopy Et between upland and 

riparian plots, we performed an ANOVA. All statistical analyses were performed with R 

version 3.4.3 [50]. Plotting was performed using the Seaborn library [51]. 

3.3 Results 

3.3.1 Tree water use vs. crown metrics 

Out of the initial 72 sap flux sample trees 42 could clearly be identified and delineated 

in the aerial images and thus constituted the sample for further analyses. Their daily water 

use ranged from 8.5 to 95.7 kg day-1 (average of three sunny days). Crown volume and 

crown surface area ranged from 36 to 1604 m3 and from 57.5 to 724.5 m2, respectively. 
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Linear regression models between sap flux-derived daily tree water use and drone-derived 

crown metrics (Table A2) suggest highly significant linear relationships (P < 0.001) that 

explain 64% (crown volume) and 76% (crown surface area) of the observed variability in 

tree water use (Figure 3). For the conventionally applied ground-based inventory variable 

DBH, the regression model explained 38% of the observed variability (P < 0.001).  

 

  
 

Figure 3. Tree water use vs. (a) crown volume and (b) crown surface area. Water 

use rates were estimated with sap flux techniques; 42 sap flux sample trees could 

be clearly identified in the aerial images (pooled data from upland and riparian 

plots). Crown metrics were derived from simultaneously carried out drone-based 

surveys. 

3.3.2 Individual tree crown segmentation 

The AMS3D algorithm produced between 140 and 181 segmented crowns per study 

plot. The difference between crown counts of the automated AMS3D approach and stem 

counts from the ground was 7% on average (Table 2). The F-score, which indicates the 

overall tree identification accuracy of the aerial method, had a moderate value of 60%, 

wherein a recall and precision of 65% and 56% were achieved, respectively (Table 2). The 

subsequently derived crown surface areas of the automatically segmented trees ranged from 

7.7 to 1578.0 m2, respectively (Table 3). A visualization of segmented crowns is shown as 

an example in Figure A2. 

(a) (b) 
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Table 2. Accuracy assessment of the automatically segmented trees by the 

AMS3D individual tree crown delineation method. Tree counts from the ground 

vs. aerial assessments, relative differences and accuracy metrics for each of the 

eight study plots.  
 

Ground- 

based 

counted 

trees  

Drone- 

based 

detected 

trees  

Difference 

(%) 

True 

Positive 

False 

Positive 

False 

Negative 

Precision Recall F-

index 

HF1 125 162 22.8 78 84 40 0.48 0.68 0.56 

HF2 172 181 5.0 82 99 65 0.45 0.60 0.52 

HF3 146 159 8.2 96 63 44 0.60 0.59 0.60 

HF4 142 151 6.0 85 66 51 0.56 0.56 0.56 

HFr1 135 140 3.6 74 66 31 0.53 0.68 0.60 

HFr2 136 155 12.3 86 69 11 0.56 0.86 0.68 

HFr3 157 140 12.1 101 39 33 0.72 0.54 0.62 

HFr4 140 152 7.9 88 64 29 0.58 0.69 0.63 

Mean 144 155 7.0 86 68 38 0.56 0.65 0.60 
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Table 3. Tree counts at the eight study plots based on automated crown 

segmentation using the AMS3D individual tree crown delineation method. 

Subsequently, the crown metrics volume, surface area and projection area were 

derived for all segmented trees.  

3.3.3 Canopy transpiration: scaling, uncertainties and spatial heterogeneity 

The bootstrapping method suggests large differences in the uncertainties associated 

with the respective stand Et estimates derived from crown metrics vs. conventional ground-

based methods. As such, uncertainties when using crown surface area for Et scaling were 

much smaller (17%) than when using the conventional DBH-based approach (51%) (Table 

4). The drone-based Et estimates ranged from 1.82 to 2.1 mm day-1 at the four upland plots 

and from 0.81 to 1.60 mm day-1 at the four riparian plots. Mean Et was significantly higher 

(44%) in upland plots (1.9 ± 0.1 mm day-1, mean ± SE) than in riparian plots (1.0 ± 0.2 mm 

day-1, mean ± SE) (ANOVA, P = 0.004) (Table A3). 

  

Plot 

ID 

Drone-

based 

detected 

trees 

Crown volume  

 

(m3) 

Crown surface area  

 

(m2) 

Crown projection 

area  

 

(m2) 
  

mean min max mean min max mean min max 

HF1 162 409.1 5.4 2817.0 311.9 18.6 1217.0 30.5 3.3 165.0 

HF2 181 338.9 3.9 3659.0 260.1 18.6 1292.0 35.6 2.5 249.6 

HF3 159 512.1 1.7 4826.0 337.5 10.9 1578.0 39.3 2.2 299.5 

HF4 151 610.3 1.4 4702.0 393.2 12.0 1493.0 45.9 2.5 251.9 

HFr1 140 121.0 0.9 843.6 141.0 7.7 588.1 12.5 1.7 49.0 

HFr2 155 61.6 0.7 427.6 90.8 7.8 353.2 10.0 2.3 38.4 

HFr3 140 153.9 1.3 1068.0 155.9 10.1 562.7 21.4 2.3 126.6 

HFr4 152 370.5 1.6 4221.0 275.7 9.9 1376.0 35.9 1.7 298.5 



Chapter 3 
 

61 

Table 4. Uncertainties associated with the scaling of transpiration from tree-level 

to stand-level based on different ground and drone-based methods. R² and P-

values of linear regressions between plant water use and the according scaling 

variables. Uncertainties associated with scaling-up to stand transpiration based on 

these relationships, derived from parametric bootstrapping (with 50,000 

iterations). N is the sample size of trees with sap flux measurements. 

1no bootstrapping possible, instead CV-based approach Granier [52] 

Based on the scaling variable with the lowest uncertainty (crown surface area, Table 

4), we further assessed the spatial heterogeneity of Et at different scales. Plot-to-plot 

heterogeneity of Et was much higher among the four riparian plots (28.0% coefficient of 

variation, CV) than among the four upland plots (5.3% CV). In contrast, the relative within-

plot variability of Et was similar for riparian and upland plots (ANOVA, P = 0.72), with 

respective mean CV values of 30.1 % and 31.2%; however, the absolute within-plot 

variability of Et was higher at the upland plots (Figure 4). 

 Scaling 

approach 

R² P 

value 

Mean tree 

water use 

(WUmean) 

Bootstrapped 

scaling uncertainty 

    kg day-1 % 

Ground-based 

measurements 

 

N x WUmean - - 27.63 

(measured) 

67.51 

 

 

 DBH (cm) 0.38 <0.001 27.52 50.6 

Drone-based 

crown metrics 

Crown volume 

(convex hull, m3) 

0.63 <0.001 27.63 19.9 

 Crown surface 

area (m2) 

0.76 <0.001 27.55 

 

17.0 

 

 Crown projection 

area (m2) 

0.68 <0.001 27.51 21.6 
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3.4 Discussion 

Airborne tree crown detection in the studied tropical rainforest reduced the 

uncertainties in estimating canopy transpiration considerably. The newly established work 

flow resulted in scaling uncertainties from tree to stand of 17%, which is considered a great 

improvement compared to conventional DBH-based scaling (51% uncertainty). The 

predicted canopy transpiration suggests high stand-level differences between upland and 

riparian plots, with a 31% lower mean value at riparian plots, but higher plot-to-plot 

variation; these differences are driven by differences in crown packing among the plots. 

Likewise, the considerable variation of transpiration within plots is driven by local small-

scale differences in crown packing. Overall, our study demonstrates the great potential of 

new drone-based methods for ecohydrological research, but it also points to some 

challenges.  

Identifying the 72 sap flux sample trees in the aerial images proved to be difficult due 

to the dense and multi-layered canopy; only 42 of the sampled trees could be clearly 

identified to be used for further analyses. The 30 unidentifiable sap flux trees were 

uniformly distributed in terms of DBH. Therein, due to the linear relationship between 

crown surface area (or crown volume) and water use, all unidentified trees matter 

proportionally to their respective crown surface area (or volume). This seemingly stands in 

contrast to a previous study reporting over-proportional contributions of large emergent 

trees to stand Et in old-growth tropical lowland forest [56]; however, this divergence is 

likely due to the lack of considerable emergent trees within our study plots in previously-

logged lowland tropical forest. In previous studies applying airborne remote sensing 

approaches, the detection of small-statured trees was also reported to be particularly low 

and difficult [53,54]. For tree identification, we used tree location maps in local Cartesian 

coordinates drawn in ground surveys. These maps were georeferenced with the respective 

corner coordinates of the plots and subsequently overlain with their orthomosaics to locate 

the targeted trees from above. A clear identification was partially hindered by the lack of 

ground control points or tree markers, which would have likely facilitated the identification 

of smaller sub-canopy crowns within the dense forest canopy. Our attempts of letting 

helium balloons rise to the top of selected tree crowns (following [55]) were unsuccessful 

due to the high, dense and multi-layered canopies, wind and difficulty in controlling the 

balloons.  
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The high canopy closure of tropical forest canopies makes it difficult to classify ground 

points as a prerequisite for deriving CHMs from SfM point clouds. Thus, we opted for an 

exclusively point-cloud-based tree segmentation approach due to the reported enhanced 

performance in structurally diverse stands such as tropical forests [31]. We applied the self-

adaptive approach called AMS3D, which calibrates kernel bandwidth as a function of local 

tree allometric models (Ferraz et al., 2016). Before applying this algorithm, we reduced the 

initial high density of our SfM point clouds (198 points m-2) to the density (58 points m-2) 

in order to increase the speed and quality of the clustering process [57]. Our adapted 

approach resulted in an overall moderate accuracy of tree detection (60%); however, the 

number of detected crowns at the plot-level was similar to ground stem counts, with a mean 

difference of less than 7%. Previous studies achieved higher detection rates, e.g., 69% in 

multi-layered Mediterranean forest [58] or 74% in French Guianian tropical rainforest [31], 

which is the best performance of an automated segmentation algorithm in a tropical forest 

so far. Other point cloud based methods such as Li2012 [27] performed well in woodlands 

dominated by few tree species, with accuracies over 81%; however, lower accuracy (<60%) 

was achieved in stands characterized by a dense canopy [59]. We further compared the 

automatically segmented crowns with the manually delineated crowns of the sap flux 

sample trees with respect to crown metrics. A linear regression model of automatically vs. 

manually derived crown surface area of the sap flux trees (forced through origin, R²=0.50, 

P<0.001 has a slope of 1.25, suggesting that the automated algorithm on average 

overestimates the crown surface area of individual trees by 25% compared to manual 

delineation. However, due to the linear relationship between water use and the applied 

scaling variable, crown surface area, individual segmentation accuracy is not a constraint 

when assessing stand Et: the sum of individual over- or under-segmented crowns within the 

plot boundaries will inevitably equal stand crown surface area and thus the predicted stand 

transpiration value.  

Among the 42 identified sap-flux trees, we found close correlations between tree water 

use and crown metrics (best: crown surface area, R2 = 0.76). Such a relationship has already 

been indicated for trees and palms in an agroforest [5]. Pooling these data suggests that a 

universal scaling may apply for trees but palms are different, and seem to follow another 

scaling factor (Figure A3). However, these relationships still need further exploration. In 

accordance with our results, several previous studies also explained variability in tree water 

use with crown or leaf area metrics [39,60–62]. Further studies from related ecological 
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fields have also pointed to the high potential of using drone-derived crown metrics as 

predictors and scalars, e.g., for above ground biomass and canopy biomass [63].   

Using crown surface area to scale-up from tree water use to stand-level Et resulted in 

a substantial reduction of Et estimation uncertainties compared to conventional ground-

based approaches. In conventional approaches, DBH or DBH-derived sapwood area are 

used for scaling to Et (e.g. [4,64], but associated uncertainties can be substantial when 

estimating Et in heterogeneous stands [65]. Compared to the DBH approach (51% 

uncertainty), our crown-metric-based approach reduced scaling uncertainties (17%). This 

finding is in line with a previous study, where drone-derived crown volume substantially 

reduced Et uncertainties in oil palm agroforests and monocultures [5].  

The three upland plots with previous sap flux measurements were used for testing the 

quality of predictions. Although the sap flux was not measured concurrently, the results 

indicated low divergence of stand-scale means, with a much-reduced uncertainty (Table 

A3). Plotting stand Et derived from crown metrics vs. Et derived from conventional 

ground-based approaches for the eight study plots shows a significant linear relationship 

(R²=0.56, P<0.001) and also suggests low divergence among the two methods (Figure. A4). 

The stand-level canopy Et estimates derived from the new drone-based methodology were 

significantly higher for the four upland than the four riparian study plots. One may have 

expected that Et at riparian sites is higher than at upland sites. However, a previous sap 

flux-based study at the same four upland plots showed no indications of soil water 

limitation of tree water use, in 2013 and 2014 (non-ENSO years) [39]. Further in 

accordance with our results, rubber and oil palm plantations in the lowlands of Sumatra had 

lower Et at riparian sites than at upland sites [11]. Heterogeneity in Et among sites at 

different topographic positions was also observed in other previous studies [6,7]. A study 

of Japanese cypress (Chamaecyparis obtusa) found Et to be higher in valleys than at upland 

sites [66], while being similar for Japanese cedar (Cryptomeria japonica) [67]. In our study, 

the observed much lower Et in riparian than in upland plots may be due to several factors. 

Rainforest species indicating disturbance (e.g. genus Macaranga) were more abundant in 

the riparian plots [68], and aboveground biomass was 43% lower than in upland plots [69]. 

The trees in the riparian plots were also smaller than in upland plots, which may go along 

with less turbulent energy exchange at the canopy level. Additionally, the position of the 

riparian study plots in moist landscape depressions probably induces higher air humidity at 

the canopy level and thus reduced atmospheric evaporative demand.   
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In addition to this spatial Et variation between riparian sites and upland sites, we found 

varying plot-to-plot variation of Et within each of the two categories. Relative Et variation 

was low among the upland plots (5% CV) and more pronounced among the riparian plots 

(28% CV). These findings are in line with biomass assessments at these same sites that also 

point to a larger relative variability in the riparian sites than in upland sites [69]. 

Furthermore, our findings are in line with a previous study in an oil palm and rubber 

monoculture plantation in the same region, where Et variability was enhanced by factors 

between 2.4 and 4.2 at (partially flooded) valley sites compared to adjacent upland sites 

[11].  

We further used the new method to analyse spatial variability of transpiration within 

the plots. The canopy of the rainforest shows different degrees of crown packing, which we 

assessed with 3D canopy analyses; individually segmented trees would not be necessary 

but were used for calibration. The depicted differences in predicted transpiration per 9 m² 

tile of ground area (Figure 4) are driven by these local differences in crown packing. The 

minimum and maximum values of a derived ‘crown surface area index’ across the eight 

study plots were 0.18 and 32 m2 m-2, respectively. The strong differences in canopy packing 

result in the observed substantial small-scale variability of Et; whether such small-scale 

differences can be considered realistic requires further investigation. Overall, our study 

underlines that topography and differences between riparian and upland forest sites exhibit 

Et heterogeneity. 

3.5 Conclusions 

Crown surface area derived from drone-based imagery was a well-suited predictor of 

tree water use. In its application for scaling tree water use to stand-level transpiration, 

uncertainties were largely reduced compared to conventional diameter-based scaling 

approaches. The scaling was facilitated by an automated tree crown segmentation 

algorithm, which yielded moderately accurate results. Applying the method to the studied 

tropical rainforest in lowland Sumatra suggests large variations in spatial transpiration, both 

among and within study plots. Overall, we see great potential and improvement in drone-

based methods for better understanding canopy structure and related ecohydrological 

responses in tropical forests and beyond. 
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Appendix 

Table A1. Specifications of the drone flight campaigns.  

  

Camera Sony A5000 

Drone MikroKopter OktoXL V3 

Flight altitude 80 m 

Number of images 220 per 50x50 m2 plot 

Focal length  16 mm 

Ground resolution 1.8 cm/pixel 

Point density 198 points m-2 

Table A2. Linear regression models between tree water use and different drone-

derived crown metrics and ground-based variables. 

 Equation 

Y = tree water use 

X = variables 

R2 P value 

Drone-based    

Crown surface area (m2) Y = 0.07 * X + 6.65 0.76 P < 0.001 

Crown volume (m3) Y = 0.04 * X + 12.44 0.64 P < 0.001 

Crown projection area 

(m2) 

Y = 0.25 * X + 7.33 0.69 P < 0.001 

Ground-based    

DBH (cm) Y = 0.94 * X - 1.17 0.38 P < 0.001 

Sapwood area (cm2) Y = 0.08 * X + 0.25 0.37 P < 0.001 
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Table A3. Stand transpiration and uncertainty estimates using drone-based and 

ground-based methods. 

    Transpiration 

(mm day-1) 

Estimate ± uncertainty 

Plot type Plot ID Drone-based Ground-based Divergence % 

Upland 

plots 

HF1 1.87 ± 0.36 2.16 ± 1.23 13 

HF2 1.82 ± 0.35 1.71 ± 0.98 6 

HF3 1.95 ± 0.37 1.83 ± 1.04 7 

HF4 2.10 ± 0.40 1.43 ± 0.82 46 
    

Riparian 

plots 

HFr1 0.94 ± 0.18 0.67 ± 0.38 39 

HFr2 0.81 ± 0.15 1.14 ± 0.65 29 

HFr3 1.00 ± 0.19 0.79 ± 0.45 27 

HFr4 1.60 ± 0.30 0.94 ± 0.54 70 
    

Mean 13 
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Figure A1. Distance matrix between ground-based tree locations and locations of 

the centroid of automatically segmented crowns (with the AMS3D individual tree 

crown delineation method) at one of the riparian study plots (HFr2).  

 

 

Figure A2. 3D RGB point cloud (left) and segmented tree crown map (with the 

AMS3D individual tree crown delineation method, right) of one of the riparian 

study plots (HFr2). 
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Figure A3. Relationship between water use and crown surface area. 

 

Figure A4. Linear relationship between stand transpiration (Et, mm day-1) estimates based on drone-derived 
crown surface area and ground-measured sapwood area in eight plots. 
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Abstract 

Oil palms are increasingly cultivated throughout the humid tropics and were reported to 

have high transpiration rates. A potential contribution of stem water storage to transpiration 

was discussed in previous studies. We assessed water use characteristics of oil palms at 

different horizontal and vertical positions in the plant by using three sap flux techniques. 

In a radial profile of the stem, sap flux densities were low at the outer margin, increased to 

2.5 cm under the bark and remained high to the innermost measured depth at 7.5 cm. In a 

vertical profile of the stem and with further sensors in leaf petiole, we found only small 

time lags of sap flux densities. Time lags along the flow path are often used for analyzing 

the contribution of water storage to transpiration. Thus, the small observed time differences 

in our study would leave only little room for a contribution of water storage to transpiration. 

However, water storage might still contribute to transpiration in ways that are not detected 

by time lag analysis. Such mechanisms may be explored in future studies.  

Keywords:  heat field deformation; heat ratio method, hysteresis, leaves, radial profile, 

stem, thermal dissipation probes, transpiration, vertical profile, water storage 
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4.1 Introduction 
Palms are diverse and abundant in both natural and in man-made ecosystems (Muscarella 

et al. 2020). Oil palm (Elaeis guineensis Jacq.) plantations have increased rapidly in recent 

decades, mostly in Southeast Asia (FAO, 2016). The transformation of tropical forest to 

monoculture plantations such as oil palm was reported to lead to biodiversity loss and 

substantial changes in productivity and biogeochemical cycles (Clough et al. 2016; 

Drescher et al. 2016; Röll et al. 2019). Severe changes in the hydrological cycle, e.g. 

increased periodical water scarcity and flooding, were also reported as a consequence of 

such land-use transformations (Merten et al. 2016, 2020). It is thus of general importance 

to better understand the water use characteristics of oil palms. 

Studies on plant water use are often conducted with sap flux techniques. Niu et al. (2015) 

measured sap flux density in leaf petiole of oil palms using a heat dissipation sap flux 

method (Granier 1985) and presented calibrated, oil palm-specific parameters for the 

according sap flux equation. Measurements on stems of oil palms have, to our knowledge, 

not yet been performed. Therein, it would be of particular interest to examine the spatial 

variation of sap flux density across the radial and vertical profile of oil palm stems and to 

compare temporal dynamics at different levels, e.g. to sap flux patterns in leaf petiole. For 

trees, several previous studies reported strong radial sap flux gradients (Edwards and 

Booker 1984; Čermák et al. 1992; Phillips et al. 1996; Delzon et al. 2004; Link et al. 2020); 

assuming uniform sap flux density over the cross-section of the whole stem introduces 

substantial errors and uncertainties when estimating whole-tree water use (Čermák and 

Nadezhdina 1998; Ford et al. 2004; Kumagai et al. 2005). For oil palms, a scheme for 

scaling from sap flux point measurements in leaf petiole to whole plant water use and stand 

transpiration was proposed by Niu et al. (2015), but the option of scaling based on radial 

stem sap flux profiles is yet to be explored. Applying the leaf-based scheme, Röll et al. 

(2015) found that oil palm water use increases with increasing plantation age to approx. 8 

years and then remains stable until the end of the rotation cycle (commonly 25 years). Oil 

palm water use of mature plantations was found to increase with increasing management 

intensity, and highly managed commercial plantation were found to surpass the 

transpiration rates of nearby forests (Röll et al., 2019). Hardanto et al., (2017) observed 

substantial heterogeneity in oil palm water use among partly flooded riparian sites and non-

flooded upland sites. Even though many studies have added to a better understanding of 
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the water use characteristics of oil palms in recent years, many of the underlying 

ecophysiological mechanisms remain unknown.  

A previous study examined diurnal pattern of sap flux density in oil palms in relation to 

environmental drivers such as radiation and vapor pressure deficit and reported pronounced 

hysteresis, i.e. a decoupling of transpiration from environmental drivers. This was 

interpreted as a potential contribution of stem water storage to transpiration, resulting in 

early peaks of transpiration and a decline once the storage is depleted (Niu et al. 2015). 

Follow-up studies encompassing oil palm plantations of various ages (Röll et al. 2015) as 

well as simultaneous sap flux measurements and energy flux assessments with the eddy 

covariance technique (Meijide et al. 2017) also suggested a potential involvement of stem 

water storage mechanisms in oil palm transpiration. Important contributions to 

transpiration by internal water storage were previously described for some tropical tree 

species (Goldstein et al. 1998; Meinzer et al. 2004), subtropical trees (Oliva Carrasco et al. 

2015) and temperate trees (Cermák et al. 2007; Köcher et al. 2013). For the arborescent 

palm species Sabal palmetto [(Walt,) Lodd, ex J, A, & J, H, Schult,], evidence of internal 

water storage was presented, and it was reported that the leaf water content was maintained 

by stem water storage up to 100 days when the soil water supply was depleted  (Holbrook 

and Sinclair 1992). For oil palm, no studies focusing on stem water storage are available 

yet.  

There are several ways of estimating the contribution of internal water storage to whole-

tree water use. Asides from water balance approaches or cutting experiments, time lag 

analysis is one of the commonly applied approaches. Therein, sap flux density is measured 

at different vertical levels in the plant, usually along the stem; the timing of beginning 

transpiration in the morning, diurnal peak and transpirational decline (below a certain 

threshold) can subsequently be compared. Therein, the time lags allow calculating the 

amount of water that is removed from storage for transpiration (Pfautsch et al. 2015). 

Several previous studies compared time lags between canopy transpiration and sap flow in 

the base of the stem to estimates stem water storage (Goldstein et al. 1998; Phillips et al. 

1999; Köcher et al. 2013). For woody species, it was reported that time lags are positively 

related to plant size (Oren et al. 1986; Goldstein et al. 1998; Phillips et al. 1999) and further 

depend on  species-specific buffering capacitances (Edwards et al. 1986; Hunt and Nobel 
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1987) and on anatomical characteristics of the vascular system (Čermák et al. 1976). For 

oil palms, time lags along the stem have not yet been analyzed.  

In our study, we conducted sap flux measurements in mature oil palms in lowland Sumatra, 

Indonesia. Sap flux density was simultaneously measured at different horizontal and 

vertical positions in the stem and near the base of leaf petiole. The main objectives of the 

study were 1) to assess the radial profile of sap flux density in the stems of oil palms, 2) to 

analyse hysteresis between sap flux densities and environmental drivers at different vertical 

levels, and 3) to evaluate the role of stem water storage for oil palm transpiration. 

4.2 Materials and methods 

4.2.1 Study area 

The study was conducted in a commercial oil palm plantation (PTPN6, 1°41′35.0′′S, 

103°23′29.0′′E) located in the lowlands of Jambi province, Sumatra, Indonesia. The terrain 

is flat with some small elevations; altitude is 76 m a.s.l. (Meijide et al, 2017). Annual mean 

precipitation and mean air temperature are 2235 mm yr-1 and 26.5°C, respectively 

(Drescher et al., 2016). The predominant soil type in the plantation are loam Acrisols 

(Guillaume et al. 2015). At the time of the field campaign in August 2018, the plantation 

was 16 years old; average palm height was 14.3 m with a stem density of 140 palms ha-1. 

Leaf area index had been estimated to be 3.64 m2 m-2 (Fan et al. 2015), with likely similar 

values at the time of our study.  

4.2.3 Sap flux measurements 

We conducted sap flux measurements in oil palms using three different sap flux methods: 

thermal dissipation probes (TDP, Granier 1985), the heat ratio method (HRM, Burgess et 

al. 2001) and the heat field deformation (HFD, Nadezhdina et al. 2012). TDP is based on a 

constant heating method (Granier 1985) and requires species-specific calibration (Lu et al. 

2004); for oil palm petiole, this was performed by Niu et al. (2015), and new parameters 

for the sap flux equation were derived. The HRM is an improved modification of 

compensation heat pulse methods and, unlike the TDPs method, is capable of measuring 

very low and reverse fluxes (Burgess et al. 2001); when applied correctly, the method does 

not require species-specific calibration (Fuchs et al. 2017); however not tested for oil palm. 

HFD sensor use continuous heating and a combination of symmetrical and asymmetrical 
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temperature measurements; they measure sap flux density at multiple depths into the xylem, 

thus allowing to derive radial sap flux profiles (Nadezhdina et al. 2012).   

The measurement campaign was conducted from August to October 2018. Five mature oil 

palms were selected for the sap flux assessment. Their stem diameter at breast height 

(without bark and fronds) was 42.5 ± 3.3 cm (mean ± SE), their meristem height was 6.4 ±  

0.3 m. TDPs were installed in four leaf petiole (approx. 30 cm from the base of the petiole, 

see Niu et al., 2015) of each oil palm. Two HRM sensors per measurement height were 

installed at the base (stem base) and the top of the stem (stem high). For the radial sap flux 

measurements we installed one HFD sensor per palm in the middle of the stem (stem mid) 

(at approx. 2.8 ± 0.4 m) Later during the experiment, two out of five oil palms were 

additionally equipped with HRM sensors in leaf petiole (four leaves per palm) and with 

HFD at the stem base and the top of the stem, always with enough circumferential distance 

to not interfere with the measurements of other sensors. A schematic diagram of a fully 

equipped oil palm is depicted in figure 1. 

 

Figure 1: Multi-level sap flux measurement scheme on oil palms. Different types of sensors 

(TDP: thermal dissipation probe, HRM: heat ratio method, HFD: heat dissipation 

deformation) and their number per equipped palm are indicated below.  
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4.2.3 Data analysis and statistical methods 

For TDP measurements, sap flux density Js (g cm-2 h-1) was calculated using the equation 

derived by Granier (1985), but with oil palm specific, calibrated equation parameters (Niu 

et al., 2015). Sap flux data from HRM and HFD sensors were processed using the software 

provided by the manufacturer (SapFlow Tool V. 1.4.1 ICT, Australia); thermal diffusivity 

as the only further input requirement for both sensors type was derived from the fresh 

weight and dry weight of an oil palm sapwood sample (n=15) (extracted from a depth of 

1.5 cm into the stem). For all three sap flux methods, Js are provided in 10 min intervals 

for further analysis.  

For radial profiles of Js as derived from mid-stem HFD measurements, data from four oil 

palms were used (one palm omitted due to sensor problems). Therein, the averaged values 

of Js between 11:00 to 14:00 on a single sunny day were used. Js data were normalized by 

setting the highest observed value for each palm to one, and the lowest to zero. Means and 

standard errors of Js among the four palms were calculated for each measurement depth 

(0.5 to 7.5 cm, 1 cm steps).  

To assess diurnal patterns of Js at different vertical levels, Js data recorded by HRM at the 

stem base, the top of the stem and in leaf petiole were normalized by setting the respective 

highest observed value to one, and the lowest to zero; data from a single sunny day was 

used for the analysis. Potential environmental drivers, i.e. vapor pressure deficit (VPD) and 

solar radiation (Rg) data, were also normalized. Normalized VPD and Rg were plotted 

against normalized Js at different vertical levels to assess potential differences in drivers of 

Js by examining hysteresis. Further, the respective areas of the hystereses were calculated. 

Quantitative time lag analysis was conducted based on the timing of the onset (Tonset, peak 

(Tpeak) and decline (Tdecline) of the diurnal pattern of Js. Tonset, Tpeak and Tdecline were defined 

as the points in time where the normalized Js data surpassed 0.1 in the morning, surpassed 

the near-maximum of 0.9 and fell back below 0.9 in the afternoon, respectively.  

All statistical analyses and plotting were performed with R version 3.4.3 (R Development 

Core Team, 2016). 
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4.3 Results and discussion 

Following the TDP scheme for oil palm leaf petiole by Niu et al. (2015), average daily palm 

water use was 194 ± 24 kg day-1 (mean ± SE, n=4 palms). This estimate agrees well with 

the overall high water use rates provided in previous studies in the same region, ranging 

from 158 to 249 kg day-1 (Ahongshangbam et al. 2019; Röll et al. 2019).  

The multiple radial Js measurements with HFD sensors in the mid-sections (stem mid) of 

four oil palms suggest that Js is marginal in the outer stem (at 0.5 cm depth), reaches about 

40% of its radial maximum at 1.5 cm depth and (near) maximum values at 2.5 depth. From 

4.5 to 7.5 cm depth, values reach 30-60% of the maximum (Figure 2). Sap flux likely 

remains at non-zero levels deeper into the stem. To our knowledge, this is the first reporting 

of the radial sap flux profile of oil palm stems. For dicot trees, radial Js patterns are typically 

highest at the outer edges of the stem and then gradually decline along the xylem radius 

(Phillips et al. 1996; Nadezhdina et al. 2002; Delzon et al. 2004; Granier et al. 1994; 

Wullschleger and King 2000; James et al. 2003). It was reported that this decline is stronger 

in larger trees compared to smaller trees (Čermák and Nadezhdina 1998). However, some 

studies on dicot trees also reported more variable radial sap flux patterns for certain tree 

species (Edwards and Booker 1984; James et al. 2002; Nadezhdina et al. 2002). In general, 

given the vast differences in the anatomy of monocot (oil) palms vs. dicot trees, e.g. in 

terms of xylem distribution, the contrasting radial Js patterns do not come as a surprise. Our 

results show that Js in oil palms was still substantial (~60% of its radial maximum) at a 

depth of 7.5 cm into the stem. It can thus well be that the whole cross section of oil palm 

stems is comprised of water conductive tissue (Killmann and Koh 1988). 
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Figure 2. Radial sap flux density profile in the stem of oil palms, measured with HFD 
sensors at stem mid-level (2.8 ± 0.4 m). Normalization was performed by setting the 
respective highest observed value to one, and the lowest to zero. Points and bars represent 
means and standard errors of normalized Js among four palms. Average stem radius 
(without bark) of the palms was 21.3 ± 1.7 cm. 

Pronounced hysteresis was observed in the diurnal course of normalized Js as measured 

with HRM vs. both VPD and Rg and at all three vertical levels, i.e. leaf petiole, stem high 

and stem base (Figure 3). Peak times of Js generally coincided relatively closely with peak 

times of VPD and Rg (around 1:20 PM, refer table 1). Our results somewhat stand in 

contrast to previous studies that assessed the diurnal course of oil palm transpiration versus 

environmental drivers in the same study region; they reported an early peak of Js (10 - 11 

AM), i.e. before Rg and VPD; this resulted in large hysteresis of Js, particularly to VPD 

(Niu et al. 2015, Röll et al. 2015). In our study, differences between VPD and Rg hysteresis 

were observed; where the areas within the hysteresis loop were larger for VPD than for Rg, 

indicating a closer coupling of Js to Rg. This difference between VPD and Rg hysteresis 
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varied substantially at the leaf-level (24% larger VPD hysteresis) and the stem (stem high 

(3%) and stem base (6.5%)). Also, the differences of the areas within the hysteresis loop 

were larger for VPD (26%) when compared between base stem and leaf level, but only 4% 

differences for Rg; suggesting VPD are more sensitive than Rg at the vertical levels of the 

oil palm.  Large hysteresis in the water use response to environmental drivers are not scarce 

in existing literature; as such, earlier Rg peaks than Js peaks have been described for several 

tree species (Zeppel et al. 2004; Dierick et al. 2010; Horna et al. 2011). For tropical bamboo 

species, the area of the hysteresis to VPD was 32% larger than for tropical trees while it 

was 50% smaller for Rg (Mei et al. 2016). Based on our hysteresis analysis, VPD are more 

sensitive than Rg and influenced more at the leaf level than stem of the oil palm. 
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Figure 3. Normalized sap flux density at three different vertical level in oil palms (n=2 oil 
palms) plotted against (a) normalized VPD and (b) normalized Rg. 10 min averages on a 
single sunny day. Arrows indicate the direction in which the next observation in time 
occurred. 

Time lag analysis of Js at different vertical levels is a commonly applied tool to study the 

contribution of stem water storage to transpiration, the reasoning being that lags in onset, 



Chapter 4 
 
 

89 

peak and decline of Js represent water that is removed from or added to stem storage. In 

our study, we installed multiple sensor types at multiple vertical positions (stem base, stem 

mid, stem high, leaf petiole) to analyze the occurrence of time lags in the normalized Js 

data of high temporal resolution (10 min steps). Generally, the diurnal course of Js in oil 

palms followed the course of the environmental drivers VPD and Rg relatively closely 

(Table 1). All three applied sensor types (HRM, TDP, HFD) and vertical levels have a 

similar onset of Js in the morning (7:40 to 8:20) (Figure 4, Table 1). The HRM 

measurements at the leaf-level show the earliest onset (7:40) while the TDP measurements 

on adjacent leaves show the latest onset (8:20am), indicating a possible methodological 

bias for the TDP measurements, which diverge from all other applied methods and levels. 

The same can be seen for the peak times: for all sensor types and vertical levels except the 

leaf-level TDP measurements (10:30), peak times start at 13:20 to 13:30 and thus 

correspond to the peaks of VPD and Rg. However, early peak of Js  measured by TDP were 

also observed in the previous studies at the same study site and same TDP sensors (Niu et 

al. 2015, Röll et al. 2015). Based on our results, care should be taken when using petiole-

level TDP measurements for interpreting diurnal Js patterns on (oil) palms, as they showed 

an early peak that two further methods did not detect; TDP-based estimates of daily 

transpiration rates, on the other hand, are only marginally affected by this methodological 

bias.  

Near-zero Js is reached at a similar time for leaf-level TDP and all levels of HRM (15:30 

to 16:00), but it occurs much later (18:30 to 19:40) based on the HFD measurements (Figure 

3, Table 1), which reached much deeper into the stem. These fluxes after sunset, which are 

not driven by VPD or Rg, potentially indicate refilling of stem water storage at night; both 

HRM and TDP leaf-level measurements indicate near-zero Js at the time. The HFD 

recorded nighttime fluxes  account for 9% of accumulated daily Js. Considering only one 

method (HRM) and comparing normalized Js in the stem base, the top of the stem and in 

leaf petiole, we found only small time lags and the diurnal curves largely overlapped 

(Appendix 1, Table 1). Our time lag analysis results thus leave only little room for a 

contribution of water storage to oil palm transpiration. They do not confirm previous 

speculations of strong contributions of stem water storage mechanisms to transpiration in 

oil palms (Niu et al., 2015; Röll et al. 2015). Other aspects of quantifying stored water in 

stem was to estimate the change in mass storage or balance difference between the base 
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and top of the stem; however in our case absolute sap flow cannot be rely due to lack of 

calibration of the sap flux sensors, particularly measurements at the stem of the oil palm.  

 

Figure 4. Diurnal pattern of normalized sap flux density in oil palms on a single sunny day 

(2nd-October-2018). Three different sap flux methods were applied at different vertical 

levels on the stem: heat ratio method (HRM) in stem base, top of the stem and in leaf 

petiole, thermal dissipation probes (TDP) in leaf petiole and heat field deformation sensors 

(HFD) at mid-stem. 
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For other palm species, previous studies reported strong contributions of stem water storage 

to transpiration. For the arborescent palm species Sabal palmetto, tree cutting experiments 

and water content measurements directly in the stem showed that 21-43% of the transpired 

water was withdrawn directly from the stem during imposed drought, and that the internal 

water storage had a significant role in maintaining leaf water content (Holbrook and 

Sinclair 1992). A study on the palm species Washingtonia robusta (H. Wendl.) found 28 

min (8 m tall palm) to 44 min time lags (28 m tall palm) between boles and petiole based 

on TDP measurements (not calibrated); this was interpreted as a withdrawal of water from 

stem storage, which increases with stem size (Renninger et al. 2009). These studies stand 

in contrast to our results, which may indicate that the role and functioning of internal stem 

water storage may also differ substantially among different palm species. Substantial time 

lags between stem sap flow and canopy transpiration were further reported for several 

temperate tree species (Schulze et al. 1985; Zweifel and Häsler 2001; Cermák et al. 2007; 

Köcher et al. 2013) and savanna trees (Scholz et al. 2008). For tropical forest trees, 

Goldstein et al. (1998) observed large time lags in large individuals (4 to 5 hours) but 

concurrent sap flux in smaller trees. In contrast, time lags smaller than 20 minutes were 

observed between the stem and top branches of 50 m tall emergent trees in Bornean tropical 

forest (Kume et al. 2008). Likewise, Chen et al., (2016) reported no time lags between basal 

and crown sap flux in tropical lianas. Looking at these partially contradictory results, it 

should be kept in mind that time lags in sap flux at different vertical levels are a mere 

indication of a potential contribution of stem water storage to transpiration. Therein, the 

lack of observed time lags does not necessarily indicate the absence of stem water storage.  

Time lags, or the lack thereof, may be influenced by several factors such as axial hydraulic 

resistance, wood density, environmental controls, stomatal openings or tree size (Holbrook, 

1995; Cermák et al. 2007). In our study, we add to this by providing first insights on time 

lags among multiple vertical levels in oil palms. The time lag analysis suggests that stem 

water storage does not have a substantial contribution to transpiration in oil palms. 

However, other stem water storage mechanisms that do not translate into time lags at 

different vertical positions may be at play, which makes an interesting subject for future 

inquiry.  
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Table 1: Temporal variation of sap flux densities (Js) at different vertical levels in stem and 

leaf petiole of oil palm. Data from one single sunny day (see Fig. 3); all data were 

normalized. Tonset is the time it takes for normalized Js to rise from 0.1 to 0.9 of the 

maximum, Tpeak is the time when Js is over 0.9 and Tdecline is the period it takes for Js to fall 

from 0.9 to 0.1. Start and end times and durations of the respective periods are displayed 

for all vertical levels and sensor types.  

 
 Tonset Tpeak Tdecline 

 Start-end time 
(hh:mm) 

Duration 
(hh:mm) 

Start-end time 
(hh:mm) 

Duration 
(hh:mm) 

Start-end time 
(hh:mm) 

Duration 
(hh:mm) 

VPD 8:10 to 13:30 5:20 13:40 to14:30 0:50 14:40 to 18:20 3:00 

Rg 7:10 to 13:20 6:10 13:30 to 14:10 0:40 14:20 to 17:00 2:40 

Stem base (HFD) 8:00 to 13:10 5:10 13:20 to14:30 1:10 14:40 to 19:40 5:00 

Stem mid  (HFD) 7:50 to 13:10 5:20 13:20 to 14:20 1:00 14:30 to 18:30 4:00 

Stem high (HFD) 7:50 to 13:20 5:30 13:30 to 14:20 0:50 14:30 to 19:30 5:00 

Stem base (HRM) 8:00 to 13:20 5:20 13:30 to 14:20 0:50 14:30 to 15:50 1:20 

Stem high (HRM) 7:50 to 13:10 5:20 13:20 to 14:20 1:00 14:30 to 16:00 1:30 

Leaf petiole (HRM) 7:40 to 13:10 5:30 13:20 to 14:00 0:40 14:10 to 15:30 1:20 

Leaf petiole (TDP) 8:20 to 10:20 4:00 10:30 to 14:10 2:40 14:20 to 16:00 1:40 
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4.4 Conclusion 

To our knowledge, this study provides first insights on horizontal and vertical patterns of 

sap flux densities in oil palms. The radial profile shows lower at the outer margin, increased 

to 2.5 cm under the bark and remained high to the innermost measured depth at 7.5 cm. 

The temporal dynamics of sap flux densities at different vertical levels in the stem and in 

petiole show relatively small time lags. Based on time lag analysis there is thus little room 

for a contribution of stem water storage to oil palm transpiration. However, other stem 

water storage mechanisms that do not translate into time lags at different vertical positions 

may be at play, which may be the subject of future inquiry.   
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Appendix 
 

Appendix 1 Diurnal patterns of sap flux densities as measured by HRM in stem base, stem 
high and leaf petiole of two oil palms. Normalization was performed by setting the 
respective highest observed value to one, and the lowest to zero. 
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CHAPTER 5  
 
SYNTHESIS AND OUTLOOK  
 

5.1 Overview 

This dissertation provides more insights about the tree and oil palm water use in terms of 

scaling scheme, spatial heterogeneity and multi-level temporal dynamics in the lowland of 

Sumatra, Indonesia. We conducted sap flux measurements in oil palm monoculture, oil 

palm agroforest and tropical rainforests. Simultaneously, drone imageries were taken to 

create the 3D structure of the stands and further, delineate the individual tree or palm crown 

metrics. We tested the different crown metrics to predict the stand transpiration (Et) in oil 

palm, agroforest trees and tropical trees and associated uncertainties were estimated 

(Chapter 2 & 3). We further assessed the heterogeneity of Et between oil palm agroforest 

and oil palm monoculture (Chapter 3). In a tropical forest, heterogeneity of Et 

between/among upland and riparian sites was assessed based on drone-based crown metrics 

with the addition of automatic tree crown detection approach (Chapter 3). We addressed 

the radial pattern of sap flux density of oil palm and multi-level temporal dynamics of oil 

palm water use to understand the role of stem water storage in oil palm water use (Chapter 

4).  

5.2 Scaling variable and its associated uncertainties 

We tested different crown metrics to predict tree and palm water use. For oil palm, crown 

volume convex hull explained 69% (P = 0.01) of the observed palm-to-palm variability in 

daily water use For agroforest trees, crown volume models with an alpha level 0.25  

explained 81% (P < 0.001) of tree-to-tree variability across the studied species. While, for 

tropical trees, the crown surface area explained 76% (P < 0.001) of the observed variability 

in tree water use. There was no single linear crown volume model that fit both oil palms 

and agroforest trees; however, combining these data with tropical trees suggests that a 
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universal scaling may apply for trees but palms follow different scaling factor (Figure 5.1). 

But, these relationships still need further exploration. 

 

Figure 5.1 Relationship between water use and crown surface area for all the 

pooled datasets (oil palms, agroforest trees and tropical forest trees). 

 

For the conventional DBH, the linear regression model explained 65% (P < 0.001) and 38% 

(P < 0.001) of the observed variability of the agroforest trees and tropical trees respectively. 

While for oil palms, no significant ground-based explanatory variables were available for 

comparison. In several studies, DBH yielded an R2 of 0.65, which is quite similar to our 

agroforest trees and also the relationship between DBH and tree water use was found to 

hold across species (Granier et al., 2000; Schiller et al., 2007; Yue et al., 2008). Whereas 

in a premontane forest in Costa Rica, the correlation of water use to DBH showed 

differences among species (Moore et al., 2017). Likewise, species-specific trajectories were 

suggested by reforestation in the Philippines (Dierick & Hölscher, 2009). There are further 

general concerns in using the diameter for scaling. 

The bootstrapping method suggests large differences in the uncertainties associated with 

crown metrics vs. conventional ground-based methods while scaling up the stand 

transpiration (Et). For agroforest trees, the crown volume is associated with an uncertainty 
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of 28% whereas uncertainty of 100% is associated when using DBH for scaling. For the oil 

palms in the agroforest and the monoculture, the uncertainty estimates associated with 

crown volume scaling were 37% and 35%, respectively. In the case of tropical trees, 

uncertainties when using the crown surface area for Et scaling were much smaller (17%) 

than when using the conventional DBH-based approach (51%). From our results, we 

understand that the crown metrics are suitable scaling variable and reduced uncertainties 

largely for stand transpiration estimations. Several other studies also explained variability 

in tree water use with crown or leaf area metrics (Hatton & Wu, 1995; Oren et al., 1999; 

Röll et al., 2019). Also, our study showcases the applicability of low-cost drone imageries 

in the deriving 3D structure of the forest and delineating individual tree crown metrics; 

which will support the forest inventory in the future. Further studies from related ecological 

fields have also pointed to the high potential of using drone-derived crown metrics as 

predictors and scalars, e.g., for above-ground biomass and canopy biomass (Vauhkonen et 

al., 2014).  We thus found that the crown metrics derived from drone-based 

photogrammetry are suitable variable for scaling stand transpirations. 

5.3 Spatial heterogeneity of tree and oil palm water use  

We applied the drone-based approach to estimates Et in the tropical rainforest where it is 

more complex, heterogeneous and undulating terrain site conditions (upland and riparian) 

and assessed the spatial heterogeneity of Et between upland and riparian sites. The stand-

level canopy Et estimates were significantly higher (44%, ANOVA, P = 0.004) for the four 

upland (1.9 ± 0.1 mm day-1, mean ± SE) than the four riparian study plots (1.0 ± 0.2 mm 

day-1, mean ± SE). Our result observed much lower Et in riparian than in upland plots; 

which may be due to several factors such as more disturbance (e.g. genus Macaranga) 

(Rembold et al., unpublished), and lower aboveground biomass (43%) in the riparian plots 

lower than in upland plots (Kotowska et al., unpublished). Rubber and oil palm plantations 

in the lowlands of Sumatra had lower Et at riparian sites than at upland sites (Hardanto et 

al., 2017); which is in agreement with our results. Other studies also observed the spatial 

heterogeneity of Et among sites at different topographic positions (Kume et al., 2016; 

Loranty et al., 2008; Mackay et al., 2018) 

We further assessed the spatial heterogeneity of Et at plot-to-plot scale and within-plot 

scale. Plot-to-plot heterogeneity of Et was much higher among the four riparian plots 

(28.0% coefficient of variation, CV) than among the four upland plots (5.3% CV). This is 
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in agreement with biomass assessments and a variability at these sites (Kotowska et al., 

unpublished). Also, in oil palm and rubber plantation in the same region, Et variability was 

enhanced by factors between 2.4 and 4.2 at (partially flooded) valley sites compared to 

adjacent upland sites (Hardanto et al., 2017), which is similar with our results. 

Assessing the relative within-plot variability, Et was similar for riparian and upland plots 

(ANOVA, P = 0.72), with respective mean CV values of 30.1 % and 31.2%; however, the 

absolute within-plot variability of Et was higher at the upland plots. The observed 

heterogeneity within the plot is mainly due to the local differences in crown packing. Such 

small-scale variability of Et would require further assessments related to crown structure 

and packing. 

On the other hand, we also assessed the differences of transpiration between oil palm 

monoculture and oil palm agroforest (EFForTS-BEE) at the individual and stand level. At 

the individual level, the daily water use per palm was higher (32%) in the agroforest than 

in the monoculture (ANOVA, P < 0.01), ranged between 158 and 249 kg day-1; which is 

mainly due to the thinning of oil palm in agroforest while setting up the experimental site 

(Teuscher et al., 2016) and thus provides less competition for light, soil water and nutrients 

for the remaining oil palms. Previously, 36% higher per-palm fruit yield in thinned 

agroforests than in untreated monocultures was reported (Gérard et al., 2017), which agrees 

well with our result. While, the studied monoculture is relatively intensively managed, with 

fertilizer application including 230 kg N ha-1 year-1 (Teuscher et al., 2016). Comparing with 

small-holder oil palm plantation of similar age (108 ± 8 kg day-1, mean ± SE among eight 

sites), the observed water use rates of oil palms was higher and compare well with 

commercial oil palm monoculture plantation (intensively managed) in the region (178 ± 5 

kg day-1) (Meijide et al., 2018; Röll et al., 2015). Thus, our data indicate that management 

intensity leads to variability of oil palm water use rates.  

At the stand level, the stand transpiration (Et) of the oil palm agroforest (1.9 mm day-1) was 

37% lower than in the oil palm monoculture (3.0 mm day-1), which is contrast at individual 

palm level. The higher per-palm water use in the oil palm agroforest thus did not 

compensate for the reduction in oil palm stand density when scaled to the stand level. The 

3-year old, comparably small inter-planted trees in the agroforestry plot contributed rather 

little to overall stand transpiration (15%). Future studies, particularly with the full grown 

trees, would definitely provide more detail information about the water use pattern of such 
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an oil palm agroforestry experiment and thus, would support in reducing the impact of oil 

palm cultivation on biodiversity and ecosystem functioning. 

5.4 Radial flux and temporal variations of oil palm water use 

Our study provides the first data of the radial sap flux profile in the stem of oil palm. We 

found that the sap flux density was lower at the outer part and peaked at 2.5 cm depth and 

remained high until the end of the sensor depth (7.5 cm), which is in contrast with dicot 

trees where higher sap flow was observed at the outer edges of the stem and gradually 

decline towards the centre (Delzon et al., 2004; Nadezhdina et al., 2002; Phillips et al., 

1996). Commonly, the sap flux decline gradually along the entire xylem radius, as reported 

on other studies on trees (softwood or hardwood) (Granier et al., 1994; James et al., 2003; 

Wullschleger & King, 2000) or varies across the sapwood area (Edwards & Booker, 1984; 

James et al., 2002; Nadezhdina et al., 2002). While estimating whole-tree water use, 

assuming uniform sap flux across the radial direction leads to high errors and uncertainties 

(Čermák & Nadezhdina, 1998; Ford et al., 2004; Kumagai et al., 2005). In the case of oil 

palm, estimation of individual oil palm water use was setup and calibrated based on leaf-

level measurements in previous studies (Niu et al., 2015); the possibility of the stem with 

radial sap flux profile consideration may benefit the accurate estimation of palm water use. 

Also, it would be interesting to understand more about the stem anatomical structure of oil 

palm and its relationship to radial water use patterns. 

We assessed the influence of environmental drivers against the diurnal course of sap flux 

density (Js) and compared between different vertical levels of the oil palm. A pronounced 

hysteresis was against both VPD and Rg but different hysteresis of Js against VPD and Rg 

was observed, more clearly at leaf level with an area of hysteresis difference of 24%. While 

comparing the hysteresis of Js at stem base and leaf level, we found that large difference in 

the area of hysteresis against VPD (26%) and less difference against Rg; indicating that 

VPD was more sensitive at the vertical levels of the oil palm. Previous studies also reported 

a pronounced hysteresis but with an early peak of Js (10 - 11 AM) before Rg and VPD (Niu 

et al. 2015, Röll et al. 2015), which is in contrast with our observations. In the case of 

tropical bamboo species, the area of the hysteresis to VPD was 32% larger in bamboos than 

in trees while 50% smaller against Rg (Mei et al., 2016). Large hysteresis in the water use 

response to environmental drivers was observed in many dicot tree species; where the Rg 

peaks first than Js (Dierick et al., 2010; Horna et al., 2011; Zeppel et al., 2004). Such 



Synthesis  

104 

hysteresis may link to other mechanisms such as stomatal sensitivity, hydraulic 

conductance. Internal stem water storage of the stem of oil palm may also play a certain 

role in oil palm water use but no information available for oil palm.  

We further assessed the time lag analysis of the diurnal patterns of Js at the different vertical 

levels of the oil palm. We found no or little time lag differences in the sap flux pattern 

between the stem base, stem mid, stem high and leaf petiole in oil palm. Our results 

suggested that the small observed differences based on different timing of sap fluxes; thus, 

would leave little space for a contribution of water storage to transpiration and do not 

confirm the previous speculations of strong contributions of stem water storage 

mechanisms to transpiration in oil palms (Niu et al., 2015; Röll et al. 2015; Meijide et al. 

2017). Commonly, mass balance between the base and top of the trees was also analysed 

along time lag analysis for stem water storage estimations; but in our case, absolute sap 

flow cannot be used due to lack of sensors calibration; thus require further investigations 

for detailed understanding of the role of stem water storage in the oil palm. In case of other 

palm species, a significant role of internal water storage was reported e.g. in arborescent 

palm Sabal palmetto, the transpiration loss was directly withdrawn (21 to 43% of the total 

loss) from the stored stem water during imposed drought (Holbrook & Sinclair, 1992) while 

in palm (Washingtonia robusta), the time lag difference between petiole-bole was 44 min 

and 28 min respectively in 28 m tall palm and 8 m tall palm (Renninger et al., 2009). Our 

results in comparison with these palms indicate that the role and functioning of the stem 

internal water storage may differ among palms. Moreover, palms are diverse and they are 

abundant in natural and man-made ecosystems (Muscarella et al., 2020). In the dicot tree, 

larger time lags between the stem and leaf-level transpiration were reported (Cermák et al., 

2007; Goldstein et al., 1998; Scholz et al., 2008; Schulze et al., 1985; Zweifel & Häsler, 

2001). Our results thus provide the first sights information about the stem water storage in 

oil palm based on time lag analysis but further studies incorporating other factors such as 

stomatal conductance, stem anatomical structure, hydraulic pathway and tree size would 

provide detailed information on oil palm stem water storage studies. 

In conclusion, our study highlights that the crown metrics derived from drone-based 

imagery predicted tree and palm water use quite well. Such a scaling variable at the whole-

plant level was previously not available in the case of oil palms. Associated uncertainties 

while scaling up also reduced largely as compared to conventional DBH approaches. Large 
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differences in individual palm water use and stand transpiration between oil palm 

agroforest and oil palm monoculture clearly witnessed. In a tropical rainforest, spatial 

heterogeneity of stand transpiration exhibit between upland and riparian sites and also both 

among and within study plots. Radial sap flux pattern at the stem of oil palm was 

encouraging and firstly reported in our study. Diurnal patterns of oil palm water use were 

influenced by environmental drivers, more at the leaf level and time lag differences 

suggested that there is the little role of stem water storage in oil palm water use; however 

there might be other underlying mechanisms which may be subject to future investigations. 

5.5 Future scope 

We explored the potential and applicability of drone imageries (RGB) in construction of 

the forest 3D structure using photogrammetric techniques and uses in scaling plant water 

use from individual plants to the stand level. Additionally, the automatic tree segmentation 

in the 3D structure provides a new aspect of tree crown delineation in the tropical forest. 

Overall, we see great potential and improvement in drone-based methods for a better 

understanding of canopy structure and related ecohydrological studies in tropical forests 

and beyond. 

Furthermore, a drone equipped with thermal imageries provides the canopy or land surface 

temperature data of the vegetation or forest. Based on surface energy models, such a drone-

based approach showed recently a great potential in estimating the evapotranspiration of 

the relatively larger area in oil palm plantation (Ellsäßer et al., 2020). Developing and 

optimizing such methods would support measuring the ecohydrological responses of the 

forest or vegetation at larger scales in the future.  

The Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station 

(ECOSTRESS, https://ecostress.jpl.nasa.gov) is one of the aspects where we can look into 

it for the future ecohydrological studies at a larger scale. It provides a range of datasets 

ranging from LST, Evapotranspiration (ET), Evaporative stress index and water use 

efficiency at a spatial resolution of 70 m x 70 m. This newly launched data would ultimately 

help in ecohydrological studies; particularly in the lowland of Sumatra where large land-

use transformations were evident. However, available of datasets in this area is limited due 

to cloud cover throughout the year. Here, one sample example of the ET map in Indonesia 

is provided (Figure 5.2) from the Evapotranspiration PT-JPL model (Fisher et al., 2020); 

one of the ECOSTRESS products (Hook, S. & Fisher, J., 2019). These dataset has great 

https://ecostress.jpl.nasa.gov/
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potential to estimate or scale-up large scale ET or understand the spatial heterogeneity on 

the different land-use type (as shown in Figure 5.3) and can assess temporal dynamics of 

ET, may be seasonal, not diurnal. On the other hand, LST product (Hook, S. & Hulley, G., 

2019) can be input and optimized other independent surface energy model to estimate ET 

for large scale, as similar in  (Ellsäßer et al., 2020) but with this satellite data (if available). 
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