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Abstract

The Internet was designed primarily for sharing expensive resources through es-
tablishing point-to-point connection using dedicated IP addresses. However, it has
since evolved both in complexity and its number of users. Subsequently, various
heterogeneous networking architectures and protocols have emerged to fulfill the
growing needs of users. Information-Centric Networking (ICN) is a promising new
networking paradigm which treats content as the first-class entity. In ICN, nodes
exchange information based on the Names of the content instead of the IP addresses
of the end points that request or provide the information. Internet of Things (IoT)
has gained popularity in recent years and billions of devices are expected to connect
in the near future. With advancements in technology and availability of Big data,
Artificial Intelligence is producing promising new applications and services. Addi-
tionally, many new architectures and services like data centers, Cloud computing,
Edge/Fog computing, etc., have also emerged to enhance the Internet by providing
cost-effective, flexible and scalable computing platforms for the growing number of
applications. However, nowadays, users are more interested in retrieving content(s)
of their interest irrespective of its location. While, devices in the Sensor Networks
need a larger address space and low communication overhead due to constrained re-
sources. In addition, machine learning applications demand high computing power
and often applications have to find a trade-off between resource consumption and de-
sired accuracy. Moreover, these heterogeneous networks have different requirements
and hence, they operate with dissimilar protocols. Additionally, there are many
important open issues within these heterogeneous networks like naming and mobil-
ity in ICN, pub/sub and protocol translation in IoT, optimizing resource-accuracy
trade off with machine learning, etc., that need to be resolved.

This dissertation analyzes the heterogeneous and evolving Internet architectures
research space and identifies six main open issues and reinforces the Internet with
efficient and optimal solutions. In particular, the dissertation analyzes the two most
important naming schemas in ICN: hierarchical and flat names through examining
the various interlinked metrics and proposes the optimal choices for efficient nam-
ing schemas at the application and network layers in ICN. This is followed by a
proposal for a gateway and additional functions to seamlessly integrate the hetero-
geneous Sensor Networks to the Internet to realize IoT. Additionally, we study the
requirements of resource-constrained IoT devices and provide an efficient lightweight
pub/sub system to optimize the resource utilization in IoT networks. We further
provide a comprehensive and robust solution to support the network mobility in ICN
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through a distributed Mobility Agent service architecture followed by two distinct
frameworks to address the open issues in deep learning 1) EVA: which provides a
distributed architecture to optimize the resource-accuracy tradeoff associated with
supervised deep learning and 2) ADA: which provides an architecture to detect
security breaches in real-time using unsupervised deep learning.

The performance of the proposed solutions and architectures in PHOENIX are
evaluated via relevant applications with detailed observations. For each application,
we meticulously device the suitable experiments to measure the overall performance
of the proposed solution. Overall, the results obtained from the various experiments
show that proposed solutions effectively resolve the open issues and reinforce the
heterogeneous architectures in the Internet with efficient solutions. Furthermore, the
results from the evaluations also show significant improvements in comparison with
state-of-the-art approaches along with considerable enhancement in the performance
of the network and the respective applications.
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Chapter1
Introduction

The prevalent architecture of today’s Internet has undergone a massive change in
the requirements since its inception. The initial requirement was mainly to support
resource sharing. This formed the basis for the current design of Open Systems
Interconnection model (OSI) model and the TCP/IP protocol suite [4]. The com-
munication in a TCP/IP network necessitates a binding association of what the
user wants to where it is located. The resulting communication pattern involves
a point-to-point connection between two entities identified with their respective IP
addresses. Internet has attracted the interest of larger population and an estimated
4.1 Billion people across the world are using the Internet today [5] (5.3% increase
compared to 2018). Thus, the current utilization of Internet and its services continue
to evolve beyond its initial requirements to accommodate the needs of users.

However, users are increasingly becoming interested in receiving the content they
desire irrespective of its location. This shift in the use of Internet has resulted in
many research efforts towards designing architectures and applications that caters
to the present needs. Accordingly, many new architectures like Information-Centric
Networking (ICN), Internet of Things (IoT), Wireless Sensor Networks (WSN), 5G,
Cloud and Edge computing have emerged. Further, newer applications and ser-
vices like video streaming, data analysis, Artificial Intelligence (AI), smart cities,
autonomous driving, data centers, SDN, SFC, NFV, etc., are developed to operate
in these heterogeneous networks. However, many of these applications are expected
to operate across the heterogeneous networks to widen their scope and reach con-
sumers across these networks. Nevertheless, these networks operate with different
protocols and enabling seamless communication across them is an on-going research
challenge. Moreover, there are many open problems within these heterogeneous net-
works that are yet to be resolved so they can evolve and thereby accommodate the
requirements of existing and upcoming applications. Therefore, PHOENIX analyzes
the heterogeneous and evolving Internet architectures with exemplary applications
to discuss open problems and devise efficient solutions to resolve them.



Introduction 2

1.1 Evolution of Internet architectures

Users seek information available in the network regardless of its location, provider or
the mechanism of retrieval. The process of information retrieval can be considered
to comprise two steps in an IP-based network: 1) name resolution: which maps the
identifier of the content such as the Uniform Resource Locator (URL) to its current
location (IP address), and 2) location based forwarding: which involves forwarding in
the network to reach the object or to retrieve the data. The name resolution (usually
a DNS lookup) is performed in the application layer prior to forwarding. This early
binding potentially wastes network resources if there are alternate sources for the
content. It may also result in poor user experience since consumers cannot get the
content even if there is a nearby copy available. In addition, such an approach
may not be able to take advantage of in-network caching as the network has no
understanding of the request for a content that has multiple copies.

To address the above mentioned shortcomings, ICN treats content as a first-class
entity. Many new networking architectures have been proposed under the framework
of ICN, including Named Data Networking (NDN) [3,6], MobilityFirst (MF) [2] and
eXpressive Internet Architecture (XIA) [7]. They share the same goal of name
based, location independent communication but with different approaches. The
quintessential part of these architectures is the use of identifier of content to seek
the content of interest. With the ability of the network to understand the content,
these solutions are able to integrate name resolution in the network layer either
in-path (NDN) or off-path (MF). Since each router can understand and decide the
direction to forward the requests (also known as late binding), the network is able to
find better sources for the content. This reduces the latency and load on network and
providers. ICN solutions also integrate in-network caches which further optimizes the
efficiency of the network due to its content awareness. Further, security is enhanced
in ICN since it embeds security in the content rather than on the communication link.
Moreover, ICN also supports multicast and broadcast features without additional
overhead. Hence, ICN is a more suitable candidate to address the current needs of
users in the Internet.

In recent years, IoT has become a growing topic of interest and has drawn the at-
tention of academia and Industry. IoT refers to a network of devices like machines,
vehicles, electronic appliances, and also wearables like Radio Frequency IDentifi-
cation tags (RFID), Step-counter, etc. These devices are usually embedded with
sensors, actuators, memory and network connectivity. They are mainly used for
sensing, monitoring and controlling various applications. It is important to under-
stand the difference between IoT and Sensor Networks. There are various heteroge-
nous Sensor Networks that operate in their own private network. The goal of IoT is
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to provide the Sensor Networks access to the Internet to realize IoT [8]. From their
inherent design we can observe that in IoT, the devices are interested in the content
and not their location i.e., IoT is information centric in nature; hence, the design
of ICN suits fairly well for IoT. Therefore, many ICN architectures like NDN [6],
MF [2], etc., are focusing on how IoT could benefit with ICN. Additionally, it is
feasible for ICN architectures to be deployed in a closed domain like IoT compared
to a full-fledged deployment in the Internet.

In addition, nowadays the mobile Internet access has become prevalent with 6.38
billion mobile broadband subscriptions in 2019 [9]. Recent advancements in tech-
nology have allowed the hand-held/portable devices to dominate the market. These
devices introduce mobility that in turn raises challenges for the underlying network
to support them. The recent advancements in IoT and trend towards 5G [10] are
expected to increase the demand and challenges for supporting mobility. Further,
Billions (50 Billion by 2020 [11]) of IoT devices are expected to be connected in the
near future to realize many future applications including smart cities, smart indus-
tries, etc., and many of these nodes could be mobile. Hence, mobile traffic will soon
dominate majority of traffic in the Internet and is introducing new challenges for
efficient data transmission in and across the networks.

Due to the availability of advanced networks, low-cost computer hardware and
storage along with virtualization and new business models, Cloud computing (i.e.,
network of data centers) has emerged to provide flexible, low-cost storage and com-
puting power to its end users. Cloud can be used to run complex analysis and provide
services to fulfill the requirements of many businesses and applications. However,
due to is inherent design and the rapidly increasing traffic that contends for the core
network bandwidth, Cloud is unable to fulfill the requirements for low latency and
low response delay [12] that are crucial for many applications like, video streaming.
Thus, an increasing trend is to push the processing to the Edge/Fog [13] to effi-
ciently utilize the network and fulfill applications requirements. Further, Edge/Fog
computing improves the Quality of Service (QoS) experienced by users through de-
ploying the required storage and computing at the edge of the network close to the
users. Many applications, including but not limited to smart grids, sensor networks
and industrial automation have been realized with Edge/Fog computing. Moreover,
deployment of the future architectures like ICN can greatly benefit with Edge/Fog
computing as it expedites the process of integration with the existing technologies
and exploits the heterogeneity of the devices available at the edge.

In addition, with advancements in computing power and availability of Big data,
the branch of AI has gained increasing momentum in recent years. AI is the in-
terdisciplinary field which is redefining the landscape of existing architectures and
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generating opportunities for developing new applications and services. Hence, many
new applications are emerging through employing the machine learning and deep
learning algorithms [14–16]. Furthermore, deep learning has revolutionized the field
of computer vision applications and is used in a wide range of applications including
speech and image recognition, language processing, video analysis, text analysis etc.
With recent advancements in the field of computer vision and deep neural networks,
highly accurate models are now available to classify and detect objects in images
and videos. Thus, research and business institutions have realized the potential
for applying the AI principles to evolve existing networks and thereby support the
creation of newer and more efficient applications and services.

1.2 Open research problems

This section discusses the high level open research problems and challenges that are
addressed in PHOENIX.

1.2.1 Impact of naming schema on the performance of ICN

ICN treats content as the first-class entity and nodes exchange information based on
the identity of the content irrespective of the location. There is an increased avail-
ability of data in ICN due to in-network caching and security is also enhanced since
ICN embeds security in the content rather than on the communication link. The
naming schema is the primary differentiator among the recently proposed ICN archi-
tectures like NDN which uses hierarchical names compared to MF and XIA which use
(self-certifying) flat names for naming the content. Intuitively, hierarchical names
provide the benefit of aggregation potentially leading to a smaller routing table size
and reduced storage and computation requirements on the router (scalability). Hier-
archical names also provide rich semantics. E.g., a user can request the first packet
of the latest version in a file by specifying /fileName/_maxVer/_minSeg where the
_maxVer and _minSeg are indicators to routers on how to forward the data. In a
publish/subscribe (pub/sub) system with hierarchical names, users can also indicate
the granularity of the subscription. E.g., a subscriber subscribing to /sports can
receive content which is a descendant of this name, such as /sports/football/...,
/sports/ basketball/..., etc. On the other hand, the lookup of flat names
is more efficient compared to hierarchical names. A simple hashtable/bloomfilter
lookup can determine the next hop for a content request. Backbone routers can
also take advantage of parallel processing by partitioning the name (or hash) space
based on the number of cores. Nonetheless, supporting the content identity space
is not easy even in modern routers with memory of up to several gigabytes. The
number of contents is estimated to be one to two orders of magnitude larger than
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the current IP address space [17] but the name space can be even larger. The choice
of a naming schema is an intrinsic and fundamental aspect of each ICN solution, as
it can affect the forwarding efficiency, scalability, manageability and other aspects of
the overall architecture. There is a need to analyze the performance of hierarchical
vs. flat names in an ICN environment to better understand the impact of naming
schema in the network and address the resulting challenges.

1.2.2 IoT: seamless integration of heterogeneous Sensor Networks
to the Internet

The IoT devices are deployed extensively in smart buildings, smart offices, smart
homes, autonomous vehicles, industrial automation, environmental monitoring, etc.
Billions of IoT devices are expected to be connected in the near future to commu-
nicate, sense and gather data. Currently, IoTs are designed to operate with the IP
architecture [18]. However, IoT networks often contain many resource constrained
devices with smaller memory, limited computational capacity and power supply
(mostly a battery). Many IoT applications require devices to operate for longer
periods in remote locations with no facilities e.g., forests. Due to constraints, IoT
devices are equipped with Layer 2 technologies like IEEE 802.15.4 and Bluetooth LE;
hence, they operate with a much smaller Maximum Transmission Unit (MTU)(127
bytes) than the current MTU used in the Internet (1500 bytes). They also incur sev-
eral other challenges like limited IP address space, while point-to-point connectivity
is heavy for these resource constrained devices. Additionally security is another criti-
cal aspect in many IoT applications and it is expensive (induces overhead) to achieve
with IP leading to complexity in operation and resource consumption. Therefore,
there is a need for an efficient design for connecting the various heterogeneous Sensor
Networks to the Internet to realize IoT. The design should provide a scalable, effi-
cient and secure mechanism for communication across the heterogeneous networks
to gather data for monitoring and/or controlling purposes [19].

1.2.3 Light-weight publish/subscribe system for IoT

Pub/sub systems have acquired a substantial portion of the Internet traffic with
steady increase in popularity. In a pub/sub system, the publishers produce content
and classify them into categories. Publishers merely produce the content and do
not have any knowledge of the receivers called subscribers interested in the content.
Similarly, the subscribers do not have any knowledge of the publishers or when
the content of their interest will be published. Subscribers express their interest in
receiving content from certain categories of their interest and receive the content as
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and when it is published. Interestingly, the communication in IoT environments also
mostly follows the pub/sub paradigm where the sensor devices periodically sense and
produce the data while an interested node like the Base Station (BS) collects this
data. The sensor devices are only interested in producing the sensed data. These
devices are not aware of whom this data is targeted for or how it is used. Similarly
the BSs are not aware of the devices that are producing the data; they are merely
interested in the data.

The pub/sub systems have been known to provide greater network scalability,
large scale information dissemination and dynamic network topology. Although,
ICN is suitable for IoT and the design of ICN proposals like NDN supports effi-
cient query/response capability, authors in COPSS [3] point out its limitation to
support pub/sub efficiently. They propose a content oriented publish/subscribe sys-
tem called COPSS to enhance NDN with an efficient pub/sub capability. However,
IoT does not need the full CCN/NDN+COPSS stack. Some other works like CCN-
lite/NDN-lite [20] support more specifically the resource constrained IoT devices.
However, like NDN, CCN-lite/NDN-lite lack support for pub/sub capability. There
is a need for a light-weight, efficient and scalable pub/sub system for supporting the
communication in IoT environments.

1.2.4 Network mobility in ICN

During mobility, a change in the physical location in IP leads to a change in the IP
address with the additional pit-fall of breaking on-going sessions. Intensive research
has been made and is on-going in the networking community to support mobility.
As a result, in recent years, many overlay solutions involving complex and less-
efficient techniques comprising dedicated resources, anchors and tunnels have been
proposed. However, as discussed earlier, the recent advancements in IoT and trend
towards 5G [10] are expected to increase the demand and challenges for support-
ing mobility in the network. Hence, mobile traffic will soon dominate the majority
of traffic in the Internet. For ease of management, the networking infrastructure
is usually organized into segments/domains. It is not un-common for a segment
of the network to experience mobility. E.g., a moving car equipped with numer-
ous sensor/IoT nodes or a moving passenger train with WiFi connectivity for its
passengers. The challenges associated with mobility are further compounded with
such scenarios where the network/domain itself is in motion. In these scenarios,
the end-nodes/users within these networks could behave both as the producer and
consumer of the content. In principal, a moving train/car constitutes a network-on-
the-move1. This dissertation envisions that domain mobility will be a norm in the

1network-on-the-move refers to a mobile network in PHOENIX.
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near future. With network-on-the-move, the network will incur increased signalling
traffic and global updates could consume a large portion of the network traffic.
Global updates, anchor-based and anchorless solutions generate ~0.215B mobility
updates (see §8.4.2) during deterministic network mobility for a dataset with 1M
names and 243340 mobility update during non-deterministic mobility update with
just 200 cars. The resulting global updates might be too slow for latency sensitive
applications resulting in increased loss of connectivity and packets. Overall, increase
in network mobility could lead to poor performance and below par user experience.

Many recent works like [21–23] propose various solutions for addressing producer
mobility in ICN. Nonetheless, support for network-on-the-move remains a largely
untouched area of work. A network-on-the-move also differs from a mobile host
that advertises multiple prefixes. The mobile host advertising multiple prefixes will
produce the same content, but with many names. Hence, duplicate copies of the
content will be stored in the caches but with different names, which is not exactly
aligned with the ICN principles. Further, such solutions also affect aggregation in
the network [24]. Although there are IP based network-on-the-move solutions such
as Nemo [25] and MobileIP [26], they cannot be directly adopted in content centric
ICN [27] environments. Therefore, there is a need to support network-on-the-move
in ICN to address the challenges incurred due to mobility.

1.2.5 Resource-accuracy optimization with supervised deep
learning models

Nowadays, data analysis such as video analysis, image analysis, text analysis, etc.,
have become popular applications due to recent advancement in technology, AI and
widespread availability of Big data. These applications demand high computing
resources and storage. Hence, Cloud computing environments have become a com-
mon platform to host such analysis applications to provide the necessary services
like storage, analysis and cost-effective scalability. Studies [28, 29] have shown that
video analysis is fundamental, but a time consuming, resource demanding, expensive
and latency sensitive component of the video analysis applications.Videos contain
complex temporal information, and hence, they are significantly more difficult to
collect, store and analyze than static images and text documents. However, many
of the recent works [14,28,30–32] mainly focus on static image analysis for detecting
objects in an image. Therefore, they cannot be directly applied for complex video
analysis operations like video classification where a given video is classified into sev-
eral classes based on its content. During video analysis the network must process
several frames at a time while maintaining the temporal relationship with respect to
each frame in the video. Thus, video analysis, especially, classification is non-trivial
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and demands more computational resources than object detection in static images
or text-based analysis. Hence, deep Neural Networks (DNN) is increasingly used
during video analysis to improve the accuracy of predictions. However, DNNs are
computationally intensive and expensive. During analysis, there is always a trade-off
between the resource demand and prediction accuracy i.e., highly accurate DNNs
also demand higher computing resources [14]. Therefore, profiling is used exten-
sively to improve the performance of video analysis [28, 30, 31] and achieve better
resource-accuracy trade off. Profiling refers to an operation of selecting the opti-
mal configurations empirically for the DNNs to improve the inference/prediction
accuracy during video analysis. Whereas, a configuration refers to a combination of
knobs like, the frame rate, resolution, and detection model.

Many previous works [28, 30, 31] profile the configurations at the beginning of
video analysis. While recent approaches [14, 32] use dynamic re-profiling during
on-going video analysis to further improve the accuracy. However, profiling is an
additional overhead incurred by video analysis applications besides the complexity
of DNNs. The associated complexity of profiling grows exponentially with the in-
creasing number of knobs in the configuration [14,32] and their corresponding values.
For instance, analyzing a simple video with few knobs could result in thousands of
possible configurations. Zhang et al. [32] also showed that, cost of profiling was 52x
for a one second video and they used 5 GPU’s with parallelization and sampling to
speed up analysis. Nonetheless, optimizing profiling to improve the accuracy is not
enough. There are many other aspects to video analysis and DNNs such as process-
ing, resource, latency, bandwidth utilization and storage that needs to be examined
for improving the performance and optimize the resource-accuracy trade off.

1.2.6 Real-time security with unsupervised deep learning models

To ensure the security of any online application, it is essential for organizations to
detect and mitigate malicious activities on their networks such as, unauthorized ac-
cess, malwares, port scanning, etc. These attacks may allow unauthorized access
to the network and inflict further damages like compromising credentials, violating
intellectual property rights, etc. Furthermore, such attacks may even expose busi-
ness sensitive information including confidential documents of government agencies,
resulting in serious security breaches [33]. The reported losses incurred due to se-
curity breach in 2011 by RSA and Target corporation in 2013 were $66 and $248
million [34, 35]. Therefore, system logs are commonly used to periodically record
states of the systems and any significant events at various points. Nearly all com-
puter systems today collect and maintain such system-wide log data. These logs
are used by system experts to diagnose suspicious behaviours like system failures,
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unauthorized authentication, etc. Analyzing the system logs is essential to discover
the root cause of any problem and potential security breaches. Hence system logs
are a valuable source of information and they are crucial for monitoring online ap-
plications and detecting anomalies. However, even though operations like log data
analysis and storage are essential, they tend to be expensive, especially in large scale
networks. Due to the rapidly increasing number of Internet applications and users,
the size of log data collected by a system running on even a medium-sized network
can grow beyond terabytes per day. Until recently, about 500 MB of logs per day
was considered a normal volume in small businesses; today, 5 GB per day is not
unusual for such environments. Large organizations can easily produce logs that
are orders of magnitude larger than this. Hence, such vast amount data generated
everyday necessitates the need for an efficient strategy to store, analyze and manage
the system logs.

Studies in [36] show that an application running on 51,000 Amazon EC2 instances
and publishes five custom metrics will incur a charge of $31,646.40 per month [37].
Therefore, it is challenging and nearly impossible to do manual analysis in real-time
and traditional approaches such as mining are proven to be in-effective. Besides,
since log data mainly follows a time-series distribution, it is subject to rapid up-
dates. Therefore, obtaining labelled log data for any applications area of interest
is often difficult and it is mostly unbalanced or system specific; hence, it needs to
be pre-processed before analysis. In addition, obtaining a large-scale log anomaly
dataset with high-quality ground truth has been an on-going challenge [38–40]. La-
belling log anomalies in a dataset requires expert’s assistance and therefore it is
labor intensive and often expensive. Hence, supervised machine learning strategies
like [38–40] that depend on prior patterns of normal and abnormal behaviours are
not suitable for real-time anomaly detection systems. Many recent works like [33,41],
propose unsupervised machine learning algorithms for detecting anomalies. How-
ever, these unsupervised machine learning approaches train the models offline and
hence, they cannot effectively adapt to the rapidly changing network behaviours
over time and learn new threats and vulnerabilities. With the increasing arrival
of newer and innovative threats, the models trained offline can soon become out-
dated and put the system at risk. Therefore, recently, Du et al. [36] proposed online
log anomaly detection to generate sequences leveraging Long Short-Term Memory
(LSTM) [42] or clustering algorithms for detecting Denial of Service attacks. Some
others [43–45] leveraged LSTM networks to pre-process the sequence of API calls as
components in order to detect malwares in the system. However, these approaches
also suffer from increased latency and pre-processing overhead and thus are not suit-
able for detecting anomalies rapidly. Therefore, there is a need for efficient online
log-anomaly detection system that addresses the above mentioned challenges and
detects anomalies in real-time with high accuracy.
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Figure 1.1: Architecture of PHOENIX.

1.3 Dissertation contributions

This dissertation provides the following contributions to address the research prob-
lems discussed in Section 1.2. In order to consolidate the contributions, this dis-
sertation also provides an architecture named PHOENIX: A Premise to Reinforce
Heterogeneous and Evolving Internet Architectures with Exemplary Applications
shown in Figure 1.1 that maps the contributions to their corresponding layers in the
TCP/IP protocol suite [4].

1.3.1 Comparison of Naming Schema in ICN

To analyze the impact of naming schema and the resulting challenges that affect
the performance of ICN networks (problem 1.2.1), we study the two most popular
naming schemas among the ICN architectures — hierarchical names and flat names.
Architectures like MF [2] and XIA [7] use (self-certifying) flat names whereas NDN [3,
6] adopts human-readable hierarchically structured names. The effectiveness of the
network architectures using flat names and hierarchical names can be measured
using a number of metrics: forwarding efficiency, aggregate-ability and semantics.
However, in PHOENIX, we discovered that these metrics are interdependent. The
forwarding efficiency might be affected by the lack of aggregate-ability since the
size of the routing table can be large. Replication and mobility of content in the
network can affect the aggregate-ability and increase the routing table size even with
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a hierarchical name space. The semantics and communication patterns can affect
name space management and result in different table sizes. Therefore, a deeper
study at the choice of these naming schemas is desirable, as this can be a key to the
performance of ICN. To answer these questions, PHOENIX looks deeper into these
metrics both qualitatively and quantitatively. In addition, the dissertation tries to
understand the relationship among these metrics and provides some hints for the
choice of the optimal naming schema in ICN.

1.3.2 ISI: Integrate Sensor Networks to Internet with ICN

Even though the recent works like [46,47], etc. have focused on solving many differ-
ent problems of IoT, they have not considered the crucial aspect of the need for an
architecture to integrate the SensorNetworks running lighter version of ICN protocol
with the Internet in order to realize IoT. Therefore, to address the problem of seam-
less integration of heterogeneous Sensor Networks to the Internet (problem 1.2.2),
PHOENIX provides an architecture named ISI. Essentially, PHOENIX studies the
various requirements for realizing an ICN based – IoT = Internet+SN architecture.
Subsequently, PHOENIX proposes to introduce Gateways to integrate the Sensor
Networks with the Internet. We identify the explicit functions, responsibilities and
services of such a Gateway in an IoT environment. In addition, a suitable design
for naming schema is provided to efficiently support the Sensor Networks operating
with ICN protocols. Moreover, PHOENIX also analyzes the various communica-
tion patterns, mobility and security requirements of IoT devices to allow seamless
communication across the heterogeneous networks.

1.3.3 Application - FOGG: A Fog Computing Based Gateway to
Integrate Sensor Networks to Internet

Traditional Cloud based architectures direct user requests for storage and computing
to nearby data centers. However, with increased focus towards low-latency and
high bandwidth requirements form applications like high definition video streaming,
technologies like Fog computing [13] have emerged. Fog computing is a promising
new architecture that utilizes the multitude of end-user/edge-devices to carry out
various operations like, storing, computing, controlling, etc. Fog computing can
improve the QoS experienced by users through deploying the required storage at the
edge of the network close to the users. Many applications, including but not limited
to smart grids, sensor networks, industrial automation have been realized with Fog
computing. Deployment of the future architectures like ICN can also greatly benefit
with Fog computing as it expedites the process of integration with the existing
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technologies. In this work, exploit the benefits provided by Fog computing to connect
the multitude of heterogeneous Sensor Networks to the Internet using the gateway
designed in §1.3.2. This application studies the requirements for realizing such a Fog
based – IoT = Internet+ SN design. Subsequently, FOGG: A Fog Computing Based
Gateway to Integrate Sensor Networks to Internet is proposed. The primary focus of
FOGG is to bridge the Internet (running on IP, ICN or other future protocols) with
the IoT domains running ICN protocols. FOGG is designed to provide Fog based
services such as name/protocol translation, security (secure onboarding), controller
functionality and etc. and in this preliminary extension, the dissertation focuses on
a Fog based name/protocol translation service.

1.3.4 COPSS-lite: A Lightweight ICN based Pub/Sub System for
IoT Environments

There are many recent works that focus on exploiting the features of CCN/NDN
and COPSS for Internet and recent Interest towards supporting IoT environments
with CCN/NDN. However, in PHOENIX we argue that IoT devices cannot support
and does not need the full CCN/NDN stack. CCN-lite [20] is a recent effort by the
research community towards producing a lightweight implementation for supporting
IoT devices. However, like CCN/NDN, CCN-lite also faces the limitation to support
efficient pub/sub features. Therefore, to address the need for a light-weight pub-
lish/subscribe system for IoT (problem 1.2.3) PHOENIX enhances the initial design
of COPSS to provide COPSS-lite: a Lightweight ICN based Pub/Sub system for IoT
Environments. Essentially, COPSS-lite implements the features of COPSS along
with the IoT related enhancements with CCN-lite for enabling efficient pub/sub
communication in the IoT environments.

1.3.5 NeMoI: Network Mobility in ICN

To address the network mobility in ICN (problem 1.2.4) PHOENIX proposes NeMoI:
Network mobility in ICN, a comprehensive ICN based solution to support end-points
that are within network-on-the-move. These end-points could be producers and/or
consumers. Moreover, NeMoI is designed to seamlessly support the mobility of con-
sumers and producers not located inside a moving network to avoid the need for
multiple protocols for different scenarios. NeMoI also encompasses several optimiza-
tion strategies that make it an efficient solution to support mobility in ICN. To
the best of our knowledge, we believe that NeMoI is the first work to address net-
work mobility in ICN. Through extensive evaluations on the RocketFuel1221 Telstra
Australia [48] topology with 1M names PHOENIX shows that with NeMoI can re-
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duce signalling traffic and routing updates from ~0.215B to ~4.6M in deterministic
mobility scenario and 243,340 to 3,767 in non-deterministic mobility scenario. In
addition, NeMoI also minimizes path inflation and packet loss in various scenarios
and provides effective route optimization strategies.

1.3.6 Application - Network Mobility in Train and Car

In PHOENIX, we build deterministic and non-deterministic mobility scenarios using
Train and Cars to evaluate the performance of NeMoI. Through a simulation of the
RocketFuel AS1221 topology we construct realistic routes and study the effects of
mobility and measure the benefits with NeMoI. Further, we also compare NeMoI
with state-of-the-art approaches like, global updates, anchor-based and anchor-less
based solutions. The evaluations show that, overall, NeMoI is dynamic and reac-
tive to both micro and macro mobility. It also ensures reachability, reliability and
connectivity during mobility and significantly improves the performance and user
experience in ICN during mobility.

1.3.7 EVA: A Distributed Optimization Architecture for Efficient
Video Analysis

To address the resource-accuracy optimization with supervised deep learning mod-
els (problem 1.2.5), PHOENIX proposes a 2-stage deep learning and rate adaption
technique. This dissertation proposes EVA: A Distributed Optimization Architec-
ture for Efficient V ideo Analysis which eliminates profiling and optimizes video
analysis with a distributed architecture with the following characteristics:

• No profiling: We observed that, Frame rate, resolution and the number of
layers in a DNN are the dominant metrics that influence the performance of
video analysis [31]. Therefore, we propose a 2-stage deep learning process
where we exploit the existing and newer incoming video data to train and
build robust DNNs and eliminate the need for profiling. Specifically, we use
Google’s pre-trained InceptionV3 [42] Convolutional Neural Networks (CNN);
These CNNs were trained on Imagenet’s large visual recognition challenge
dataset. We then use transfer learning to build efficient Recurrent Neural
Networks (RNN) [49] with LSTM. Through exploiting the RNNs, we maintain
the necessary temporal relationships among frames in a video during analysis
and effectively identify events and actions; unlike current techniques which only
use CNNs and thus, fail to acknowledge the temporal relationships among the
frames and therefore can only analyze static images for identifying objects.
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In 2-stage deep learning, during the first stage, termed as the “offline” stage
we train and build DNNs by incrementally increasing the DNN layers until
we obtain DNNs with high accuracy [50]. During the second stage termed as
the “online” stage, we deploy these DNNs in their respective environment and
continue training them with newer incoming videos in parallel to analyzing the
videos.

• Adaptive tuning: We observed that, most of the suspicious/abnormal activ-
ities such as robbery, car accidents, etc., are infrequent and occur for a very
short duration in a video [51]. This insight formulated the desire in EVA to
optimize and efficiently utilize the bandwidth and the scarce resources at the
Edge. Therefore, we propose two rate adaption algorithms: Adaptive Frame
Rate (AFR) and Adaptive Resolutions (ARR) to optimize the video analysis
process to optimize the use of available computing resources and bandwidth.

• Bandwidth reduction: Through literature survey, we identified the minimal
set of services in EVA for efficiently supporting VMS applications. Essentially,
we propose a distributed architecture wherein the services [52] for caching,
coding, video analysis and pub/sub are provided at the Edge while the long-
term storage and streaming services are provided in the Cloud. Leveraging this
distributed architecture, EVA efficiently steers the surveillance video traffic
towards the Edge [53–56], and thereby alleviates it from consuming bandwidth
in the core network [53]. In addition, EVA proposes to exploit the outcome of
rate adaption during video analysis with AFR and ARR to efficiently utilize
the available bandwidth in the first-hop to Edge in comparison to existing
approaches as shown in our experiments in §10.2.

• Storage cost reduction: Incidentally, we also observed that since AFR and
ARR can optimize the frame rate and resolution of the videos during analysis,
they can also influence the frame rate and resolution at which these videos can
be stored in the Edge and Cloud. As seen in our experiments (see §10.2), we
greatly reduce the estimated storage cost [57–60] of the videos.

1.3.8 Application - Video Analysis

In PHOENIX, the performance EVA framework is measured with a video analysis
application. We leverage the UCF-Crime dataset [61] and its corresponding ground-
truth for normal and abnormal events like shoplifting to evaluate the benefits offered
in EVA. Essentially, we measure the performance of the DNNs w.r.t. their predic-
tion accuracy and latency during video analysis followed by comparing the proposed
rate adaption algorithms: AFR and ARR with the recently proposed baseline pro-
filing technique named Awstream from Zhang et al. [32]. Our evaluations show that,
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AFR and ARR significantly outperform the state-of-the-art profiling approach and
Awstream. Overall, we observe that, AFR improves the performance of the whole
system by reducing the consumption of computational resources by 71% and la-
tency of prediction by 69%; While, ARR reduces the consumption of computational
resources by 36%, and latency of prediction by 56%. In comparison, the baseline
profiling scheme Awstream, reduces the consumption of the computational resources
by only 14% and latency by 13% when it profiled the videos at multiple frame rates
and reduces consumption of computational resources by 9% and latency by 18%
when it profiled the videos with different resolutions. Furthermore, the results also
show that, with AFR we consumed 71% less bandwidth and 74% less storage whilst
61% less bandwidth and storage with ARR in comparison to Awstream which con-
sumed 14% less storage and bandwidth when profiled at different frame rates and
21% less storage and 12% less bandwidth when profiled with different resolutions.
We analyzed different rate adaption techniques [62] in AFR and ARR to select the
optimal DNN. However, due to ease of understanding, we only show the best and
least performing rate adaption techniques where we select the DNNs in an additive
(best performance) and multiplicative fashion (least performance). We compare the
rate adaption with Awstream and show that AFR and ARR outperform Awstream
with not only their best rate adaption scheme but also with their least rate adaption
technique. Moreover, we also compare the AFR and ARR algorithms and observe
that AFR performs significantly better than ARR in all aspects (see §10.2). Hence,
we deduce that AFR is a better candidate for current video analysis applications.
However, with an increasing trend toward high-resolution video [63], ARR is suitable
for improving the performance of many upcoming HD video analysis applications.

1.3.9 ADA: Adaptive Deep Log Anomaly Detector

To address the need for real-time security with unsupervised deep learning models
(problem 1.2.6) PHOENIX provides ADA: Adaptive Deep Log Anomaly Detector,
an efficient unsupervised online learning approach for detecting anomalies in system
logs. Unlike recent works, we exploit the online deep learning [64] to build deep
neural networks on the fly with LSTM using unlabelled log data collected from Los
Alamos National Laboratory (LANL) Cyber Security Dataset [65]. Further, we also
propose an adaptive prediction strategy where the pareto-optimal neural network
configurations are selected for the current model from the set of all models obtained
by online deep learning. In addition, since the patterns in log data are unstable, we
develop a dynamic threshold algorithm which uses the recent predictions from the
models to dynamically adapt the threshold for detecting abnormal events using the
log-normal distribution. Utilizing adaptive strategy and dynamic threshold, ADA
always selects the pareto-optimal neural network model with minimal configurations
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and current threshold based on system environment to predict every event in the
system logs. The pareto-optimal policy first learns from the predictions obtained
for earlier events. Then, it selects a model that optimizes the needed computational
resources. The predictions also drive the decision for selectively storing the log data.
Since we utilize the online deep learning, any system built using the ADA framework
can effectively synchronize with any newly discovered log-patterns. Moreover, the
system will use models with minimal configurations and predict anomalies with
highest possible accuracy using optimal thresholds. To the best of our knowledge,
we are first to propose online deep learning for detecting anomalies in log data with
pareto-optimal models and dynamic thresholds.

1.3.10 Application - Cyber Security Data Analysis

In PHOENIX, we build an anomaly detection system based on the ADA framework
and perform evaluations using the Los Alamos National Laboratory (LANL) Cyber
Security Dataset [65] to measure the performance of ADA. Through extensive eval-
uation, PHOENIX shows that online deep learning produces highly accurate models
where we obtain F1-scores in the range of 0.91 - 0.95 with the latency to predict
in the range of 14 ms - 37 ms. We further observed that frequency of abnormal
events are far less than normal events in the system logs, so we propose to store
only abnormal events after prediction in order to optimally utilize the storage and
reduce the overall storage cost.

1.4 Dissertation outline

The remainder of the dissertation is organized as follows: in Chapter 2, a compre-
hensive review of the background and relevant related research work is discussed.
A comparison of the naming schema in ICN is presented in Chapter 3, followed by
the architecture for integrating Sensor Networks to the Internet in Chapter 4 and
an application of this architecture with Fog computing is presented in Chapter 5.
Leveraging the publish/subscribe model for communication in IoT, the COPSS-lite
architecture is presented in Chapter 6 and in Chapter 7, a proposal is made for
enhancing the existing ICN architecture with network mobility followed by a perfor-
mance evaluation of NeMoI with a deterministic (Train) and non-deterministic (Car)
mobility application in Chapter 8. In Chapter 9, the framework EVA for optimizing
resource-accuracy trade off with deep learning at Edge is presented followed by the
performance evaluation of EVA with a video analysis application in Chapter 10.
In Chapter 11, the framework ADA with adaptive method and dynamic threshold
is presented to provide real-time security with unsupervised deep learning followed
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by its performance evaluation with anomaly detection in system-logs in Chapter
12. Chapter 13 summarizes the dissertation and provides future prospects and the
impact of the research performed in PHOENIX.





Chapter2
Background and Related Work

This chapter initially introduces the fundamental concepts of ICN and pub/sub
communication model to provide the necessary background knowledge for the con-
tributions provided in the remainder of this dissertation. A comprehensive study of
the state-of-the-art research is then provided w.r.t. the open research problems ad-
dressed in PHOENIX. The study mainly identifies the issues in the state-of-the-art
approaches and reveals the need for the solutions provided in the dissertation.
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Figure 2.1: CCN packet types [1].

2.1 Background

ICN treats content as the first-class entity. It optimizes the data distribution and
retrieval by integrating name resolution and routing in the network. Unlike IP,
in ICN, nodes exchange information based on the identities of contents instead of
the location. Each router in ICN can understand and decide where to forward the
requests and hence, the network can find better sources for retrieving the content.
This in turn reduces the latency and load on the network and content providers. In
addition, ICN provides in-network caches which further optimizes the efficiency of
the network due to its content awareness. ICN also enhances security by embedding
the security in the content rather than on the communication link compared to IP.
Moreover, ICN can easily support multicast and broadcast features for delivering the
content to multiple users without additional overhead. In this section, we discuss
the fundamentals of the representative ICN architectures used in PHOENIX.

2.1.1 NDN architecture

CCN also known as NDN [6] is the most popular ICN architecture to this date. It
uses human-readable and hierarchically structured names similar to URLs as the
content name. In NDN, producers of the content announce prefixes of their sources
globally to advertise the content. To deliver the data efficiently, NDN introduces
two new packets for query/response: Interest (i.e., request) and Data (i.e., content)
shown in Figure 2.1. The CCN forwarding engine model used for data delivery is
shown in Figure 2.2. Every router uses the three data structures from the forward-
ing engine model as follows: 1) Forwarding Information Base (FIB): stores content
names and their outgoing faces. 2) Pending Interest Table (PIT): stores all the pend-
ing Interests and their incoming faces. 3) Content Store (CS): caches the content
received from upstream.
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Figure 2.2: CCN forwarding engine model [1].

The NDN communication protocol usually begins when a user generates an Inter-
est with the content name. The Interest is satisfied either by the producer or any
intermediate node in the network with a copy of the content. When the Interest
arrives at a CCN router, CS in the forwarding engine of the router is checked to see
if the content with the same name already exists, in which case the content is re-
turned to the user. In case of a CS miss, the PIT is checked to see if an Interest with
the same name has already been forwarded upstream in the network. If yes, then
the incoming face of the Interest is recorded in the PIT. If not, an entry is added
to the PIT with the content name and incoming face. The FIB is then queried to
find the forwarding face (next hop) and the Interest is forwarded to the next hop
router. Similarly, when a Data packet arrives at a router, the CS is checked, and if
a matching entry is present then the Data packet is discarded (as it is an unsolicited
content) otherwise, the CS stores the Data and PIT is checked. If an entry is found
in the PIT then the Data is forwarded to all the incoming faces recorded in the PIT
for this content name. Otherwise the Data packet is discarded.

2.1.2 MobilityFirst architecture

Mobility First (MF) [2] is a recently proposed ICN architecture (shown in Figure 2.3)
which tries to optimize the performance when the mobile devices are the majority
in the network. Each entity, either a device, an application, or a content is assigned
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Figure 2.3: MobilityFirst architecture [2].

a 20-byte flat Globally Unique IDentifier (GUID) which is essentially a public key
assigned by a Name Certification Service (NCS). The GUIDs have no relationship
with their Network Address (NA). The key component of the MF architecture is a
name resolution service called the Global Name Resolution Service (GNRS). It is
a distributed network layer service adopted to maintain the dynamic relationship
between GUID and NA(s). Different from DNS, the query for a NA is sent by the
routers instead of the sender (late binding). During forwarding any intermediate
router can query the GNRS to get the current NA mapping(s) to enable dynamic
binding of the GUID to the NA(s) during mobility. Thereby, the MF routers can
easily redirect a packet locally to the destination. Similar to NDN, MF also uses
in-network caching when possible and establishes trust and security by leveraging
self-certifying names.

The communication protocol in MF for exchanging data can begin after the as-
signment of GUID from a NCS. Once, the GUIDs are assigned, a user A who wishes
to send data to another user B will first obtains the GUID of B from either a NCS
service are directly from B. The user A then invokes the MF service API through
a command like (GUID, option, data) where the option can indicate the type of
data delivery service like, multi-cast, broadcast or anycast. The user A’s host com-
puter then generates the MF packet (shown in Figure 2.3) and queries the GNRS
with the GUID to get the corresponding NA to forward the packet. The GNRS
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Figure 2.4: CCN forwarding engine model [1] with COPSS [3] subscription table.

lookup returns the current set of NAs which represents the point of attachment in
the network. The NA are added to the packet by the host computer and forwarded
in the network. Each router in the network uses the NA in the packet to find the
next-hop router to forward the packet. When a packet delivery fails due to mobility,
the respective intermediate router queries the GNRS to get the current set of NAs
to account for mobility. The packet is eventually delivered to the user B.

2.1.3 COPSS architecture

COPSS drew special attention to the popular pub/sub systems running over IP in
the Internet through studying the additional responsibility/burden that is incurred
with the IP based solutions. In [66, 67] authors show that IP based pub/sub solu-
tions tend to waste network resources. Similarly, COPSS identified the shortcoming
of NDN to support pub/sub in an ICN environment. In principle, NDN requires
the subscribers to either know the publisher or the precise name of the published
content. However, this is not a mandatory requirement in pub/sub environment; as
they wish to eliminate temporal dependency. Thus, NDN fails to support this fun-
damental requirement. Hence, a Content-Oriented Pub/Sub System (COPSS) [3]
was proposed by Chen et al. to enhance the initial design of CCN by integrating
it with an efficient and scalable pub/sub capability. COPSS based its pub/sub ar-
chitecture on utilizing the concept of Content Descriptors (CD). In general, CD’s
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Figure 2.5: COPSS packet types [3].

can be described as the features that can represent the content like keywords, date
of publication, identity of the publisher, etc. Further, COPSS also expanded the
scope of CD’s to support ontologies, content hierarchies and context based content
identification.

In principal, COPSS adds a Subscription Table (ST) to the initial CCN forward-
ing engine shown in Figure 2.4. Every COPSS router maintains the ST for enabling
pub/sub in a distributed and aggregated manner. COPSS also introduces two new
packets shown in Figure 2.5: Subscribe and Publish. The Subscribe packet is used
by the users to subscribe to a certain CD while the Publish packet is used by the
publisher to publish content for a single or group of CD’s i.e., a piece of content can
be associated with multiple CD’s. Each CD is assigned to a respective Rendezvous
Point (RP) node in the network. Subscribers can subscribe to the content of their
interest by subscribing to the associated CD’s, resulting in a join. When a router
receives a subscription request, it adds an entry in its ST with the CD and the in-
coming face of the request before forwarding the request upstream. The subscription
request is forwarded towards the RP with each intermediate router adding an entry
for the subscription in their ST. When the publisher generates any content, she/he
associates the content with the relevant CDs. Whenever the content is published, it
travels along the multicast tree towards the responsible RP and then downstream
to towards the subscribers. When a router receives a publication packet, it checks
the ST for any one of the CD’s in the publication packet. If a match is found then
the router forwards the publication along the matched interfaces. However, only
a single copy of the publication is forwarded on each interface, irrespective of the
number of subscribers downstream. This avoids, unnecessary traffic and duplicate/-
multiple copies delivered to the subscribers of more than one CD in the publication.
In addition, COPSS also provides a two-step communication process which allows
the publishers to exercise control over the access and policy of the published con-
tents. In a two-step communication process, the publishers generate a snippet of the
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original content with the associated CD’s and send it to the subscribers. Interested
subscribers can then use these CD’s to subscribe to the full-length original content.
The publishers then publish the original content which is forwarded to the interested
subscribers as explained earlier.

2.2 Related work

2.2.1 Impact of naming schema on the performance of ICN

With the proposals of different ICN solutions, there are also many comparisons to
show the benefits and issues with each solution. They can be generally classified
into 3 categories: 1) compare the different design choices of each solution 2) evaluate
each design choice with different applications and 3) look at a specific module in the
solution.

Bari et al. [68] performs a qualitative comparison of naming and routing mecha-
nisms in various ICN architectures. It compares security and data integrity in flat
vs. hierarchical names and suggests a multilayer naming scheme. It also compares
the in-path vs. off-path name resolution and provides a list of desired properties
for routing in ICN. Ahlgren et al. [69] compares the basics of several ICN architec-
tures with a main focus on the choices these architectures make for naming, security,
routing, transport, caching and API.

Work in [70,71] compares NDN and MF with different applications. In [70] appli-
cations like content retrieval, unicast and mobility are compared and observations
reveal that MF scales better than CCN and [71] builds an architecture for IoT in
NDN and MF and compares them for service discovery and pub/sub models by mea-
suring delay, throughput and control overhead. Observation reveal that MF incurs
less overhead in terms of routing table size and control messages.

Work in [72, 73] compares several modules in various ICN architectures. In [72]
modules like FIB size, path stretch and cost of routing updates are assessed quan-
titatively revealing that mobility affects routing updates in ICN. In [73] NDN and
HTTP are compared with the level of caches and number of clients as metrics re-
vealing that CCNx is 10 times slower than HTTP.

We find that none of the aforementioned works examine the choice of naming
schema — a fundamental design choice that can affect and be affected by all the
other components and use cases — in depth. The choice of naming schema draws the
boundary between the application layer and the network layer, and different choices
implicitly result in different functionality separations. Therefore, in PHOENIX,
we focus on the naming schema alone in Chapter 3 and try to understand how the
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various components are interlinked and their impact on the choice of naming schema
in ICN.

2.2.2 IoT: seamless integration of heterogeneous Sensor Networks
to the Internet

The relevant recent works that focus on leveraging ICN for IoT and compute envi-
ronments can be broadly classified into the following five categories:

2.2.2.1 Architecture

Authors in [46] propose an initial high-level design for IoT using NDN architecture.
It divides the NDN layer into two planes: data plane and management & control
plane. The data plane handles query/response while the control plane re-engineers
the current NDN routing plane. In [19], authors analyze the current TCP/IP solu-
tions for supporting IoT. They argue that existing TCP/IP solutions are inefficient
and propose that IoT can benefit by using ICN. In [74], authors experiment with two
ICN architectures namely, MF and NDN for IoT environment. They name these ar-
chitectures MF-IoT and NDN-IoT and compare their performance. Whereas in [75],
authors propose to use ICN for IoT to realize service oriented communication. They
use MF as an example ICN architecture and modify it to support the service oriented
communication in IoT.

2.2.2.2 Routing/Caching

Authors in [47] discuss the shortcomings of CCN protocol for IoT and propose a
routing protocol with a complexity of O(1) and almost no control traffic. They
exploit the caching and data path in ICN to support the IoT requirements. They
also show that CCN-lite uses 80% less memory compared to IP. Whereas in [76],
authors study the benefit of caching with ICN for IoT in terms of energy consumption
and bandwidth utilization in comparison with IP.

2.2.2.3 Protocol

Authors in [77] focus on a specific type of data retrieval pattern called multi-source
data retrieval. They argue that current NDN architecture does not support this
type of communication and propose a solution where consumers use multi-source
Interest to retrieve data from multiple producers. They also propose to delete the
PIT entry based on Interest life time (i.e., TTL) instead of deleting when the data
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is received the first time. Whereas in [78], authors study the potential for using ICN
based solutions for Wireless Sensor Area Networks (WSAN) and discuss how ICN
for WSAN is different from ICN for Internet. Essentially, they use flat names and
continuous Interest to receive data sensed by multiple sensors; as multiple sensors
in WSAN sense the same data and respond to the Interest.

2.2.2.4 Securtiy

Authors in [79] propose a protocol for authenticating and authorizing new devices
joining the IoT mesh networks in ICN. They show 87% improvement in communica-
tion and 66% improvement in energy consumption compared ZigBee and IP based
solutions. While authors in [80] compare two approaches based on Asymmetric and
Symmetric key encryptions for deploying new IoT devices in existing ICN deploy-
ments. They report that although the Asymmetric key based solutions incur lower
traffic they impose higher demands on energy and time consumption.

2.2.2.5 Computing in ICN

In [81], authors show that Cloud computing needs a stable infrastructure and net-
working. They explore the ICN protocol NetInf [82] for supporting networking and
storage in the Cloud. They analyze the benefits that could be offered to Cloud
computing environments through utilizing a name based networking infrastructure
especially for management, storage and deployment in dynamic networking environ-
ments. While Authors in [83] show that with the increased amount of information
exchange in modern day devices, Fog computing and ICN can help in managing the
Cloud environment. They propose a framework with ICN as an API for ubiquitous
computing and leverage the caching from ICN and utilize Fog computing with names
instead of IP addresses. The authors in [84] explore Fog computing for supporting
IoT applications and services. While, authors in [85] discuss the need for edge com-
puting with the increasing popularity of IoT and Cloud services. Whereas in [86],
authors propose the architecture NetFATE to place VNF at the edge of the network.

The above mentioned related works propose to leverage the benefits of either
Edge/Fog or ICN or both for supporting IoT networks; however, they fail to ac-
count for the heterogeneity of the Sensor Networks and the need for seamless inte-
gration of Sensor Networks for efficient data delivery. Similar to the recent works,
in Chapter 4&5 we exploit the benefits of ICN and Fog computing to support the
IoT networks. However, we also provide an avenue to connect the heterogeneous
Sensor Networks to the Internet to realize IoT through a dedicated Gateway with
improved functionality.
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2.2.3 Light-weight publish/subscribe system for IoT

While several ICN frameworks like NDN [6], MF [2], XIA [7], PSIRP [87] have been
proposed for the Internet, they cannot directly be employed in an IoT environment
due to constrained device requirements. The relevant recent works that focus on
leveraging ICN to support IoT environment are discussed below:

Many recent works that propose to use ICN for IoT focus on major areas like data
retrieval patterns [77], routing [47], benefits of caching [76], security [88], disaster
relief [89] and architectural changes [46]. While [90] provides a comprehensive review
of the data delivery mechanisms in the ICN environment. In [91], authors perform
experiments with NDN in an IoT environment to identify the feasibility and chal-
lenges of ICN for supporting IoT environment. They perform an indoor experiment
with numerous NDN enabled IoT devices and identify the shortcomings of ICN for
IoT like data freshness vs. caching and overhead of in-network forwarding. While
authors in [92] utilize the ICN slicing framework to build services at the Edge for
IoT. In [93], authors propose a protocol named MobCCN which creates opportunis-
tic content-centric networks for IoT devices to access nearby data whereas in [94],
authors create opportunistic context-virtual networks to create virtual groups of in-
terested nodes in a network to optimize the resource utilization. Authors in [95,96]
propose ICN based architectures for IoT environments. In [95] authors propose
an overlay ICN architecture for M2M communication in IoT, while in [96] authors
identify the high-level requirements and ICN based architecture for IoT. Whereas
in [88] authors propose attribute based encryption for providing security in resource
constrained environments and in [97] authors provide a convergence layer with NDN
for 6LoWPAN along with compression schemes.

In [98] authors devise a proposal to use NDN in mobile ad hoc network (MANET)
scenarios and in [99] authors evaluate the MANETS in IP and NDN while in [100],
authors use NDN and Bluetooth Low Energy (BLE) in constrained environments
to enable robust communications to reuse existing BLE applications. In [101, 102]
authors propose to push the data in ICN. In [101], authors use sampling optimization
to reduce the traffic and propose to ask the produces to add the data inside the
Interest packet and forward it to the destination without storing the Interest in the
routers PIT and further disable the caching. In [102], authors propose a pub/sub
mechanism for IoT, but use IP as the underlay instead of ICN. Whereas in, CCN-
lite [20] authors provide an inter-operable implementation of the CCNx and NDN
protocol to support IoT.

The above mentioned recent works propse to exploit the features of ICN (and
IP) for supporting efficient communication in IoT environments. However, they
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leverage the standard CCN/NDN representation and hence they lack support for
an efficient pub/sub communication model which is an essential requirement in the
IoT environments. Even though COPSS enhances NDN with pub/sub, there is still
a need for a lighter version of COPSS for supporting pub/sup in the IoT networks.
Therefore, in PHOENIX, we provide a lighter implementation of COPSS named
COPSS-lite in Chapter 6 for enabling pub/sub based communication in the IoT
environments.

2.2.4 Network mobility in ICN

ICN inherently supports consumer mobility. However, producer mobility on the
other hand is still an open issue. In CCN, since routers in the network maintain
information about how to reach the producers/sources, whenever a producer moves
to a new location, every router in the network requires an update. In the mean-
time, the network is incapable of satisfying any requests until the mobility updates
are propagated in the network. Hence, we studied the relevant producer mobility
literature and broadly classified them into the following four categories:

2.2.4.1 Anchors

In anchor based methods, a dedicated anchor is used to manage the mobility of the
producers. A mobile producer notifies the anchor whenever it changes its point of
attachment in the network. The request for content are re-directed to the anchor
which then forwards it to the current location of the mobile producer. Mobile IP [26]
and ICN solutions like Lee et al. [103] use such anchor based approaches to handle
mobility. Essentially a tunnel is established between the Home Access Router (HAR)
of the mobile producer and the Foreign Access Router (FAR) where the producer
currently resides. When the producer moves, the requests are redirected towards
the HAR which encapsulates the packets and forwards it to the producer. In [22],
authors proposed a solution similar to an actual Kite to support producer mobility.
Essentially, when producers move, they notify a dedicated immobile anchor about
their new location using a Traced Interest. The Traced Interest is not deleted from
the PIT and will be used to forward the Interests towards the current location of
the producers.

Anchor based solutions are reactive in nature and have minimal service interrup-
tion time. However, they increase the signalling traffic and induce path stretch in
the network. Moreover, tunneling changes the content name and hence, affects the
caching and aggregation in ICN.
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2.2.4.2 Anchorless

In anchorless methods, every mobile node is responsible to notify the network about
its mobility related information. In [21], authors use Interest Update (IU) and
Temporary FIB (TFIB) to propagate the mobility updates. The producers send IU
to their previous point of attachment whenever there is a change in their physical
location due to mobility. The intermediate routers that forward the IU also update
their TFIB. Similarly, authors in [104,105] also propose anchorless based approaches
for supporting mobility in ICN.

Anchorless solutions are more reactive compared to anchor based solutions and
also support frequent location changes. However, they also incur path stretch and
signalling traffic as producers generate update for every prefix during mobility.

2.2.4.3 Resolution

In resolution based methods, several dedicated nodes in the network resolve the
names to their respective current locations. In IP, the traditional DNS is used to
resolve URL’s to their respective IP addresses which are subsequently used to reach
the producers. However, mobility in IP results in a new IP address. In LISP [106], an
additional resolution step is needed to resolve the identifiers to locators. In MF [2],
a 20-bit GUID is assigned to every entity and a distributed resolution architecture
is used to resolve the GUIDs to the current location of the users. In [23], authors
proposed OPRA where they place route resolvers at multiple points on the path to
a content for reaching the source.

The resolution based approaches scale well and also produce less signalling traffic
compared to anchor and anchorless based approaches. However, they also incur path
stretch and hence, they are not suitable for supporting frequent mobility scenarios
especially, for latency-sensitive applications.

2.2.4.4 Locator/Identifier split

Many solutions like [27, 106] propose to separate locator from Identifer. They use
an immobile anchor in the home domain but unlike Mobile IP, they do not use
encapsulation. The anchor receives Interests on behalf of the producer and gener-
ates a new Interest with the name of the mobile producer at the new location and
sends the content back to the consumer. Upon receiving the content the Anchor
sends the content to the consumer. Whereas in [107], authors propose a service
driven architecture where mobility is an on-demand service provided by the network.
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They leverage the ID/Locator split to maintain persistent names and avoid name
reconfiguration due to mobility

The locator/identifier split based solutions include topology dependant informa-
tion in the name or in the payload. However, mobility changes the locator and
hence, such solutions will also result in changing the content object.

Overall, many of the above mentioned solutions address only static producer mo-
bility (i.e., nodes move from one point to another and remain there for a consider-
able time period [21]). Moreover, the IP based network mobility solutions cannot
be directly adopted in ICN. Therefore, in PHOENIX we provide a comprehensive
solution named NeMoI in Chapter 7 to support mobile end points and end points
in network-on-the-move.

2.2.5 Resource-accuracy optimization with supervised deep
learning models

We studied the relevant recent works that focus on optimizing the performance of
video analysis applications with deep learning to achieve desired resource-accuracy
trade off and broadly classifying them into the following two categories:

2.2.5.1 Video analysis

Chen et al. [29] investigate computing platforms for high-performance applications
and show that video surveillance is a widely used and very resource demanding
application. Similarly, Karimaa et al. [108], through an analysis of dependability
characteristics of video surveillance and safety-critical applications like: availability,
security, reliability and maintainability, provide insight for moving video surveillance
from traditional systems to Cloud based systems. While Hamida et al. [109] study
the effects of scalability with increasing number of surveillance cameras and propose
a scalable framework with spatio-temporal filtering. Kumar et al. [63] highlight
the increasing demand for high-performance video surveillance algorithms due to
increasing popularity of HD videos and Feng et al. [110] identify the challenges for
hosting large-scale video analysis applications for a futuristic artificially intelligent
city and propose a framework for anomaly detection.

The above mentioned recent works focus mainly on additional functionalities like
profiling, filtering, parallelization, etc., to improve the performance of video anaylsis.
However, such operations induce overhead and consume additional resources beside
the resources required by video analysis algorithms. Therefore, in PHOENIX we
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provide a solution named EVA in Chapter 9 where we study the current limitations
of video analysis and its effect on response time. Unlike the recent works, we take a
different approach by leveraging the accuracy of prediction during video analysis as
a feedback to optimize the resource-accuracy trade off and improve the performance
of video analysis algorithms.

2.2.5.2 Profiling

Mcdnn [28], Noscope [111] and Focus [112] train specialized DNNs to improve the
accuracy of detection during video analysis. Similarly, authors in [30, 31] try to
improve the performance of video analysis by profiling the configurations such as
DNN layers, frame rate, etc. However, these solutions depend on initial profiling to
improve the accuracy and do not change configurations during analysis to account
for changing content in the video during analysis. Therefore, these solutions cannot
be used to improve the performance during analysis. Jiang et al. [14] presens a
profiler to dynamically choose the best configurations for improving DNN based
analytic’s performance. While, Zhang et al. [32] propose Awstream which uses a
generalized API with maybe operators to dynamically fine-tune application knobs
during profiling to match application’s data-rate to the bandwidth.

Although, dynamic profiling in [14,32] can improve the performance during anal-
ysis, they still focus on mainly optimizing profiling to improve the performance.
However, Zhang et al. [32] show that profiling adds additional overhead and de-
mands increased computational resources in addition to the resources required by
DNNs during video analysis [32]. Hence, unlike the above mentioned recent works,
in EVA, we propose to eliminate the overhead of profiling during video analysis. In
summary, we propose a 2-stage deep learning technique with rate adaption to achieve
the desired resource-accuracy trade off with DNNs during video analysis.

2.2.6 Real-time security with unsupervised deep learning models

We studied the relevant recent works that focus on improving security through
anomaly detection in system-logs with deep learning and broadly classify them into
the following three categories:

2.2.6.1 Rule-based approaches

Many recent works such as [113–116] use rule-based approaches to detect anomalies.
Rule-based approaches tend to detect anomalies with great accuracies. However,
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they depend heavily on expert domain knowledge and hence they cannot be gener-
alized to detect logs from multiple different systems. Moreover, employing experts
to build rules is expensive, labor intensive and time consuming.

2.2.6.2 Supervised learning approaches

Supervised learning techniques like [38, 39, 117, 118] have been widely explored for
network anomaly detection. For example, [38] employs a tree model based on the
random forest method to detect anomalies in the data in crowd sourced networks.
In these methods, both normal and abnormal vectors are required to train a binary
classifier to detect future anomalies. The main disadvantage of such approaches is
that they heavily depend on an experts’ experience to label the log data. However,
even for an expert it is challenging to distinguish and define anomalies. In addition
such operations are often expensive and labor intensive. Another downside of such
approaches is there inability to detect newer anomalies that were not part of the
training data.

2.2.6.3 Unsupervised learning approaches

Du et al. [36] propose an online log anomaly detector where customized parsing
methods are employed on the logs to generate sequences for LSTM or clustering
algorithms to detect DoS attacks. However they require pre-define and customized
parsing methods for detection. In [43,119] authors employ RNN and LSTM attention
algorithms to improve the performance of anomaly detection in logs. However, they
are defined from a user’s perspective, where each user’s behaviour is trained on a
separate LSTM network and hence the number of LSTM networks increases with
the increase in the number of users over time. Mirsky et al. [120] present the kitsune
framework by using an ensembles of autoencoders for network anomaly detection.
However, kitsune adds a separate feature extraction step which requires a basic
understanding of the underlying network protocols. In [41], authors use adversarial
training of VAE to detect anomalies in key performance monitors of the network
however, it unsuitable for online systems as the adversarial training is unstable and
difficult to converge. Khatuya et al. [121] propose ADELE, with an aim to select
features from system logs in order to create groundwork for a proactive, online
failure prediction system. However, this system can perform only short-term failure
predictions in the current environment. Moreover, it needs to be trained for at least
a month to compute the anomaly score. Authors from [122] highlight that, anomaly
detection is time sensitive and decisions have to be made in streaming fashion. This
enables the system administrators to intervene in an on-going attack or fix a system
performance issue. In this regard, offline learning strategies like [38, 41, 44, 117],
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that require the knowledge of prior pattern of normal and abnormal events are
not suitable for the new detection systems and also for existing systems trained on
outdated events.

Unlike the aforementioned recent works, in PHOENIX we propose an efficient
framework named ADA in Chapter 11 to build efficient real-time anomaly detection
systems using unsupervised online deep learning. By leveraging the adaptive strat-
egy ADA computes thresholds dynamically to improve the F1-score and accuracy of
anomaly detection. In addition the proposed framework further reduces the latency
during analysis and improves the storage requirements of the system log data.



Chapter3
Comparison of Naming Schema in ICN

ICN treats content as a first-class entity — each content has a unique identity and
ICN routers forward traffic based on content identity rather than the locations of the
content. This provides benefits like dynamic request routing, caching and mobility
support. The choice of naming schema (flat vs. hierarchical) is a fundamental design
choice in ICN which determines the functional separation between the network layer
and the application layer. With hierarchical names, the network layer is cognizant of
the semantics of hierarchical names. Name space management is also part of network
layer. ICN architectures using flat names leave these to the application layer. The
naming schema affects the performance and scalability of the network in terms of
forwarding efficiency, routing table size and name space size. This chapter provides
both qualitative and quantitative comparison on the two naming schemas using these
metrics, noting that they are interdependent. We seek to understand which naming
schema would be better for a high-performance, scalable ICN architecture.

The key contributions in this work include:

• We start with the basic metric — the forwarding efficiency with hierarchical vs.
flat names. The forwarding engine of NDN and the Global Name Resolution
Service (GNRS) of MF are benchmarked in this evaluation.

• The FIB size is then studied under the assumption of data movement/replica-
tion. The aggregate-ability of hierarchical names is evaluated with a million
content names, with realistic mobility of the content in a real-world topology.

• The size of the name space is further examined in different application se-
mantics and name space manageability to show the benefits and costs of using
hierarchical vs. flat names.

• Based on the evaluations, we provide our observation and thoughts on hierar-
chical vs. flat names.
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3.1 Comparison 1: name lookup efficiency

We start our comparison with the key metric in the network for performance —
forwarding efficiency. Forwarding performance affects throughput and latency of
the network, especially in the backbone. If we abstract routers (forwarding engines)
as an object containing multiple (routing) tables, the efficiency of lookups is key.

Since ICN uses the identity (name) of the content as the routing label, routers
have to lookup and manage the routing tables based on names as well. In NDN,
each content name is formed by multiple components connected using “/”, similar to
URLs in the current Internet. Since there is no bound on the length of each compo-
nent, or the number of components, content names can be of arbitrary length which
makes the existing hardware optimizations for fixed-length lookups ineffective [123].
For flat names, solutions like MF use constant length (20-byte) strings as content
identifiers (GUIDs). Therefore, the name table lookup is equal to a (distributed)
hash table lookup and can result in relatively small lookup time.

3.1.1 Microbenchmark: NDN forwarding vs. MF GNRS

To better understand the lookup efficiency of hierarchical vs. flat names, we first
perform measurements, to obtain a microbenchmark on the data structure used by
the NDN (CCNx) forwarding engine and the GNRS in MF.

We acknowledge that the utility of these two entities are not equivalent — the
NDN forwarding engine performs on-path name resolution while GNRS does it off-
path. However the functionality of the two entities are similar — name resolution.
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We believe that this comparison is useful for both architectures: it can shed some
light on the performance of the NDN forwarding engine if it uses flat names (similar
to GNRS) and the performance of GNRS if it uses hierarchical names.

We also realize that the performance in CCNx implementation is affected by the
use of locks and the pull model in socket programming. The pull-based implementa-
tion is efficient when there are a lot of packets going through the forwarding engine
since less time will be wasted for context switching between the kernel and user.
However, the implementation makes it difficult for us to study the lookup efficiency
in isolation. To make a fair comparison, we use an alternative implementation in the
CCNx Java version, called InterestTable. It provides add and getMatch function,
similar to the FIB.

For populating the data structures, we take the top 1M websites ranked by the
Alexa.com [124] based on average traffic in November 2015 as the data set of names.
Since the original names are in the form of domain names (e.g., commsec. com.au),
to translate them into the NDN format, we reverse the domain name components
and join them with a “/” (e.g., the name would become /au/com/commsec). For
flat names, MD5 hash is directly used as content name.

We observe that the lookup efficiency in both NDN and MF is affected by the
size of FIB. Therefore, we measure the lookup time with different FIB sizes ranging
from 0.1, 0.2 to 1M. For each FIB size, we perform 1M random lookups among the
names already inserted and get the average latency with 95% confidential interval.
The results are shown in Figure 3.1. We can see that with flat names, GNRS
implementation achieves much lower lookup latency (within 1.5ms) compared to
InterestTable. The lookup time with flat names shows a logarithmic growth vs. FIB
size while hierarchical name solution has a linear increase with the FIB size.

We acknowledge that results may vary with implementation, name structure and
hardware. However, we argue that for hierarchical names, the time used to decode
the name components and find proper entries in the name tree (LPM) is inevitably
more complex compared to flat name lookup. Moreover, flat names can be easily
compressed by data structures like BloomFilters without losing lookup efficiency,
but it is not easy to do the same thing in a hierarchical name tree.

3.1.2 Discussion

In addition to the benchmarked implementations, there are other solutions that
have sought to accelerate the lookup speed for hierarchical names. E.g., work
in [125] tries to use GPU to perform the lookup at line speed and So et al. [] use
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Figure 3.1: Lookup time (ms) vs. FIB size on MF vs. NDN.

2 Xeon processors (24-logical cores) to achieve 20Gbps forwarding speed. Inter-
estingly, neither one of these implementation follow the original name hierarchy
within the network. The GPU solution breaks names into 3-strides (e.g., break
/com/yahoo/www into com, /, yah, oo/ and www) noting that “3” is the maximum
size of the stride that can be supported in the GPU memory (3GB). Similarly, the
CPU (Xeon) solution computes the hash of the full name before it performs the
lookup in the FIB. In these solutions, it is very difficult to examine the semantics of
hierarchical names in the network (e.g., find the latest version of a file) since they
treat them as flat names. From these implementations, we can see that the bounded
flat name space is preferred by hardware implementations to achieve high-speed
lookup. Nonetheless, with either flat or hierarchical names, the size of the FIB is
still the key factor in routing table management and lookup efficiency. When the
routing table becomes too large, distributed solutions will inevitably be used to
make the table management feasible, but this increases the memory consumption
(redundancy) and the time for lookup (communication latency).
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3.2 Comparison 2: aggregate-ability

To reduce the size of FIB, solutions with hierarchical names can aggregate based
on the name hierarchy similar to IP. E.g., on a router (R), if all the names un-
der /sports (/sports/ football, /sports/basketball, . . . ) are served on a
same outgoing (inter)face (f), R can aggregate these names as only one FIB en-
try: {/sports 7→ f}. These solutions will also use longest prefix matching (LPM)
for the name lookup. On seeing a request with name /sports/football/ games,
the FIB would forward the request towards f since /sports is the longest prefix
match. If there is another entry {/sports/football 7→ f ′}, the same name will be
forwarded to face f ′ since the new entry becomes the LPM.

Such solutions have performed well in IP network since the address space is as-
signed by network managers. In the routing table, one entry can be used to represent
a large address space, e.g., 134.76.0.0/16 7→ f . However, in ICN, the name of the
content is usually not assigned by the network provider. Even if the content follows
the domain hierarchy like IP when it is created, such a systematic allocation can be
easily violated by data mobility and/or replication. Cisco [126] predicts that WiFi
and mobile devices will account for 61 percent of network traffic by 2016. When a
mobile device with content moves from one domain to another, it is very difficult
to rename each content name in that device. Data replication (especially through
caching) has the potential to reduce the load on the network and content provider.
It is one of the major benefits provided by ICN. When the data is replicated in an-
other domain, changing it to another name with the domain prefix would diminish
the benefits of naming the content to achieve aggregate-ability. The potential of
achieving a smaller FIB size with hierarchical names is thus conflicted by the fact
that the names are no longer easily aggregate-able.

3.2.1 Simulation: name aggregation on content mobility

To study the effect of data mobility on the FIB size, we perform a simulation on a
real world topology (RocketFuel1221, Telstra, Australia [48]) with the same name
data set studied in §3.1. According to [48], Telstra has hubs in major cities (Sydney,
Melbourne, Perth, etc.) with spokes elsewhere. To make the topology more like a
typical customer edge/provider network, with customer edge networks multi-homed,
we added several links between the spoke cities and the routers at their original hub
compared to the aggregate representation in [48].

We use the “hub” cities as first-level domains (e.g., Sydney would have do-
main prefix /Sydney) and the “spoke” cities as second-level domains (e.g., New-



Comparison of Naming Schema in ICN 40

Table 3.1: Different aggregation algorithms can yield different FIB size. Example of /a,
/b, /c going to f1 and /d going to f2, both FIB can get the correct result with
LPM.

(a) FIB aggregation 1
Prefix Outgoing Face

/ f1
/n4 f2
— —
— —

(b) FIB aggregation 2
Prefix Outgoing Face

/ f2
/n1 f1
/n2 f1
/n3 f1

castle, which has links only to Sydney, would have domain prefix /Sydney/
Newcastle). Each router in the topology has a unique sub name space in
the form of /CityPrefix/RouterPrefix (e.g., router “Sydney,+Australia4208”
uses prefix /Sydney/ 4208 and router “Newcastle,+Australia 3930” uses prefix
/Sydney/Newcastle/3930).

At the beginning of the evaluation, we place the 1M names randomly on each
router and rename them using the form /RouterPrefix/Name (e.g., /com/google is
placed on Sydney 4208 router and it is renamed as /Sydney/4208/ com/google).
To study the effect of data replication on aggregate-ability of hierarchical names,
we start to replicate the names into other domains while keeping the original name.
The FIB size is measured at each replication percentage from 10%, 20% to 200%
(in which case, each name has 2 replicas in some other domain).

The algorithm for FIB aggregation is also a key factor that can affect the FIB
size when content moves. E.g., on a router R, 3 names (/n1, /n2, /n3) are going
to one interface f1, while the 4th (/n4) goes to a second interface f2. Both FIBs
shown in Table 3.1 can get the correct outgoing interface for each name, but the size
of the FIBs is different. The aggregation gets even more complicated when there
are multiple levels in the name tree and multiple outgoing interfaces for each name.
For our calculation, we used a recursive program to try every possible outgoing
interface combination (including no aggregation) at each level of the name tree to
get the optimal result in all the situations. The process is accelerated by dynamic
programming which stores the optimal result for the chosen aggregation earlier.

Since there are 2 basic ways of implementing the FIB (whether we treat multiple
outgoing interface for the same name as one entry or multiple entries), we study
2 different metrics for this evaluation: the total number of names, and the sum
of outgoing face counts for each name (referred to as the number of entries). The
number of names and number of entries among all the FIBs in the topology as the
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Figure 3.2: Total FIB size (M) vs. data replication proportion.

name replication percentage increases is shown in Figure 3.2. We see that when all
the content follow the domain hierarchy (similar to IP), the aggregation performs
well and the total FIB size in the network is only 2,078 (∼20 entries per router on
average). But the FIB size is affected significantly even when a small portion of
data is replicated — the total number of entries reaches around 400,000 even when
there is 10% replication. When the replication reaches 200%, the total number of
names reaches 1.5×106 while the total number of entries reaches 2.5×106.

We can also see that the FIB size (either # of names or # of entries) grows
linearly with the percentage of replication (marked as dashed and dotted lines in
the figure). With content being replicated more in the network (which is a common
trend and a desirable feature in ICN), the aggregate-ability of hierarchical names
drops significantly. Note that we are using a relatively small data set compared to
the amount of content available at Internet scale. With such a large number of con-
tent names, it is almost impossible to perform the algorithm to calculate “optimal”
FIB size (off-line solution that tries all the combinations). For the online solution
which adds entries when a content item is replicated, the number of names in the
FIB can easily approach the number of total names, even with small replication
percentage. In our evaluation, the average number of names in each FIB reaches
5.4×105 (54% of the name space) when each data is replicated once.

3.2.2 Discussion

To deal with the lack of aggregate-ability, SNAMP [127] has been proposed as a way
to scale the forwarding in NDN. It divides the network into zones (similar to what
we did here at the beginning of the evaluation) and use a distributed name mapping
system NDNS (similar to DNS in IP and GNRS in MF) to store the mapping of
content names to the zones that have the content. When the routers do not know
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how to forward an Interest packet, they first send a NACK to the consumer. The
consumer then requests the NDNS for the name of zones containing the content,
and attaches the response (a set of zones) in the Interest packet. The intermediate
routers can then forward the Interest based on either the name or the zones (as
hints).

With SNAMP, the routers only need to have FIB entries for the zones, which is
much smaller than the name space size. However, there are still several issues with
the solution: 1) it creates higher burden on each router to lookup both the content
name and the zone name(s); 2) the end hosts will now have to perform an extra
lookup for the content; 3) the lookup on the end hosts is similar to a DNS lookup in
IP which is essentially an early binding. Such a mechanism poses difficulties when
dealing with content mobility; 4) the scalability of NDNS itself can be difficult since
it has to store each name and the zones serving the name.

Therefore, the benefit of aggregate-ability with hierarchical names cannot be fully
exploited in an ICN, at least with existing solutions.

3.3 Comparison 3: semantics & manageability

Other than the aggregate-ability, hierarchical names also embeds the hierarchical
semantics and the logic of hierarchical name space management in the network
layer. In this section, we examine the benefits and the issues with this choice.

3.3.1 Hierarchical semantics

Placing the hierarchical semantics in the network layer can get benefit in
some applications and use cases. E.g., a data consumer can query ABC
sports news using name /ABC/sports, he can also give a more detailed query,
say /ABC/sports/football/superbowl/2016. In a publish/subscribe (pub/-
sub) system [3], a publication containing name /ABC/sports/football can
be disseminated to all the subscribers subscribing to /ABC, /ABC/sports and
/ABC/sports/football. The hierarchical names can reduce the load in the net-
work since one packet can be disseminated to multiple groups.

However, the applications will face dilemma when the relationship among the
contents are not following the hierarchy. E.g., in a building management system,
a light L in room 302 can be named as: /building/lights/floor3/room- 302/L or
/building/floor3/lights/room302/L, or /building/floor3/room302/lights/L.
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Figure 3.3: Number of names per category in Wikipedia with hierarchical names.

Similar situation is seen in the communication system among the first respon-
ders of emergency. Should a police station in area A use name /areaA/police or
/police/ areaA? With the first naming schema, we can enable the commander to
send messages to all the first responders in area A (using /areaA directly), while
the second naming schema enables the top police department to send message to all
the police departments in different areas (using /police). It is also quite common
for ABC to publish a piece of news covering both sports and financial topics.

One might say that we can create different names for these content objects to
optimize the reach-ability of them. However, this solution can cause the expan-
sion of the name space and yield lower aggregate-ability and larger FIB size. To
study the effect of the expansion, we took a representative of knowledge base,
which is believed to follow a hierarchy, Wikipedia (a dump created on 2014.04.02)
as our data set. Wikipedia has a category system which maintains the “IsA”
relationship among different concepts. E.g., page “NDN” belongs to category
“Computer networking” which further belongs to 3 categories: “Telecommunica-
tions”, “Computing”, and “Data transmission”. All these categories are rooted at
a category called “Main topic classifications”. To ensure the reach-ability of all the
categories, we trace the category relationships from each category to main topic
classifications. Each path (avoiding loops) will be translated into a name. E.g.,
“NDN” can have names /.../Telecommunications/Computer- networking/NDN,
/.../Computing/Computernet- working/NDN, and /.../Datatransmission/Com-
puternetworking/NDN since people who are interested in telecommunications, com-
puting, etc., should also be able to reach the page of NDN.

The CDF of names per category is shown in Figure 3.3. Due to the complex
relationship, the categories can have a lot of paths towards the top classification
category. Although we only have 989,468 categories in the data set, the average
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names per category is 5.5× 1048, and the maximum even reaches 3.06× 1051. The
size of the name space is expanded to 6.07× 1054, much larger than the 106 “flat”
name space.

From the result, we can see that the name space would expand a lot while trying
to convert a mesh-like name space to a hierarchical one. Similar examples can be
found in any “tag-based” applications or data pools powered by search engines.
With the advent of the tags, hyper-links, and powerful search engines, we can
see that the semantics of the contents are no longer following strict hierarchies.
The relationship among them can be more complex and form a directed graph.
Therefore, we start to wonder, if it is still a good choice to place the hierarchical
semantics in the network layer? Or should we leave them in the application layer so
that different applications can have different choices of their own naming schema.

3.3.2 Hierarchical name space management

Another feature the hierarchical name provides is the hierarchical name space man-
agement. In this schema, each entity can have a name space and distribute a sub
name space to an entity that belongs to it. E.g., IEEE can have a name space /IEEE
and give a sub name space to LANMAN (/IEEE/LANMAN) who can further distribute
sub name spaces (/IEEE/LANMAN/papers/...) to each paper. With the hierarchical
name space management, the network can also enforce policy on some prefixes, e.g.,
give priority to content under /emergency will allow prioritization for the commu-
nication among emergency management authorities. However, this schema can also
cause “suffix hole” [128] problem when using with LPM in forwarding. We assume
that a person has a name space /P, and he gives a sub name space /P/photos to store
his pictures. This person has a desktop at home and a laptop that he carries.The
desktop serves most of his documents including some of the photos therefore it will
propagate the prefix /P. But the laptop only serves some of his photos and therefore
it will propagate prefix /P/photos. When there is a request to a photo, it will be
forwarded to the laptop due to the LPM no matter if the photo is stored on the
laptop or desktop. The problem affects the reach-ability of the contents since the
desktop cannot get requests on photos even if it has the data.

To ensure the content reach-ability, the desktop in our example has to propagate
both /P and /P/photos explicitly so that the LPM can return 2 sources on photos.
But we argue that for a name space with many levels, and shared among multiple
end hosts, it is very difficult to synchronize the name space propagation. Even
if the applications find a way to synchronize the propagation, the solution would
result in a lot more FIB entries being propagated in the network and affect the
aggregate-ability of hierarchical names.
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3.4 Chapter summary

In this chapter, we compared hierarchical vs. flat naming schema for ICN across
several important metrics, some of which are interdependent. Our comparison
show that: 1) The complexity of performing lookups of hierarchical names is much
higher due to the need to parse each component of the name and then lookup for
individual entries to determine the outgoing interface; 2) With aggregate-ability,
hierarchical names reduce the FIB size. However, aggregate-ability is diminished
by content movement/replication, thus making the heavy-weight LPM forwarding
inefficient; 3) Enforcing hierarchical name semantics might still not satisfy all the
applications. Content relationships with mesh-like structures (e.g., Wikipedia) can
still cause name space explosion; 4) The suffix hole problem caused by hierarchical
names results in more complicated name space management, resulting in more FIB
entries being propagated in the network;

We do appreciate the expressiveness of hierarchical semantics, better name space
management. These are all desired by applications and supporting them in the
network layer has the potential to reduce the network traffic and improve caching
efficiency. However, information structures are much more complex nowadays than
just strict hierarchies. Especially as reflected in the graph based structures that
come from social networks, communities of interest and the relationships of data in
information bases such as Wikipedia. When these are represented by hierarchies, it
results in multiple different hierarchies to represent each possible relationship. As
a consequence the name space explodes very quickly, as reflected in our analysis of
the name space for the Wikipedia dataset. However, a naming framework that is
agnostic to these relationships, potentially by uniquely identifying each independent
data item distinctly, results in a much more limited growth in the name space. A flat
naming framework is agnostic to the structure of the data. Since most approaches
for accessing information over the network involve a mapping from a user requested
name to a name appropriate to the network, a flat naming framework is likely to be
much more scalable at the network layer, even though clearly at the user and data
organization involves relationships and hierarchies.
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Chapter4
ISI: Integrate Sensor Networks to
Internet with ICN
IoT is a growing topic of interest and Billions of IoT devices are expected to connect
to the Internet in the near future. IoT devices generally operate with constrained
resources and hence, they differ from the traditional devices operated in the Internet.
In this chapter, we show that ICN, a new networking paradigm, is a more suitable
architecture for the IoT environment compared to the currently prevailing IP based
network. We observe that recent works which propose to use ICN for IoT, either
do not cover the need to integrate Sensor Networks with the Internet to realize IoT
or do so inefficiently. There is a need to understand effective ways to integrate the
various heterogeneous Sensor Networks with the Internet without affecting their cur-
rent mode of operation. Therefore, this chapter studies the essential requirements
for integrating Sensor Networks to the Internet. Essentially, this chapter provides
an architecture with Gateways for paving a way for the Sensor Networks to become
a part of the IoT family. We further provide a naming schema for efficient operation
of the resource constrained Sensor Networks, and discuss mobility, security, com-
munication patterns and propose the most suitable choices for efficient operation of
the IoT networks with ICN.

The key contributions in this work include:

• Analysis of the requirements for an architecture to integrate Sensor Networks
with the Internet.

• Architecture ISI : to integrate Sensor Networks to the Internet with ICN.
• Naming schema for the IoT networks operating with ICN.
• Communication protocol for the IoT networks.
• Discussion on the aspect of Mobility and Security for IoT.
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4.1 Use case formalization

In this section, we formalize some essential use cases that will help derive the re-
quirements for integrating Sensor Networks to the Internet. These requirements
form the basis for building the proposed ISI architecture.

We take the example of a smart city as shown in Figure.4.1 with many buildings
equipped with Sensor Networks to build our use cases. Let us consider an application
that monitors the temperature of all the rooms in a smart building as a representative
Sensor Network. The smart building has several rooms equipped with temperature
sensitive machinery e.g., servers and hence each room is equipped with a temperature
sensing sensor device. There is a Base Station (BS) that gathers the temperature
from each room every 30mins and raises an alarm when abnormalities occur. Several
such scenarios can be gathered in a smart city e.g., in Industrial units, offices, smart
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Figure 4.1: Use cases scenarios.

houses for controlling fire, etc. Let us consider that, Sensor Network 1 (SN1) is
operating in the building 1 which is a Computer Science building in a university,
and Sensor Network 2 (SN2) is operating in the building 2 which is a Mathematics
building in the same university.

Scenario 1: A user (U1) (e.g., a system administrator) in the Internet is in-
terested in the temperature of room 1 in the building 1. U1 is using the Internet
operating with an ICN protocol like NDN [1]. However the building 1 is located in
SN1 that runs a lighter version of an ICN protocol like CCN-lite [20]. Besides, U1
is interested in the temperature of room1 sensed by the sensor device S1 which is
not awake all the time in order to save its constrained resources like power. U1 is
not aware of the time at which S1 will be available to serve the requested content,
nor the exact protocol used in the SN1.

Scenario 2: A user (U2) in the Internet is interested in receiving the cumulative
temperature of the building 1 every 30mins. Similar to scenario 1, U2 is in the
Internet but would like to receive the content collected and computed by the BS
located in the Sensor Network.

Scenario 3: The Base Station 1 (BS1) in SN1 needs some content e.g., the GPS
location of the Mathematics building in the smart city. The mathematics building is
located in SN2 of the smart city. The SN2 might be running the same or a different
ICN protocol from SN1. BS1 is unaware of the location of the content or the protocol
used in the SN2.
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Scenario 4: Let us consider the operation of SN1. The sensor devices sense the
temperature in each room periodically every 30mins. The BS1 is interested in the
content produced by these sensing devices. The BS1 will gather the content and
compute the cumulative temperature of the entire building and will raise an alarm
when it observes abnormalities. BS1 wants to collect this information efficiently
so as to ensure the maximum utilization of available resources in the constrained
sensing devices in the SN1.

With the help of the above mentioned use cases we show the need for a protocol
translation between the heterogeneous networks: Internet and Sensor Network, in-
cluding communication between Sensor Networks operating different protocols. We
also identify the lack of information regarding the nature of the Sensor Network for
the users in the Internet, the different types of content requested by the users from
Internet and different types of Sensor Networks and the vital issue of efficient uti-
lization of the constrained resources to gather information within a Sensor Network.
Although we use these four use cases here to derive the requirements for ISI , we can
derive many more requirements and even different requirements based on the nature
of the Sensor Network used as a representative. However, these basic use cases can
be applied/extended to all Sensor Networks and ISI can easily support additional
use cases.

4.2 Requirement analysis

In this section we build on our use cases to derive the various requirements for
integrating the Sensor Networks with the Internet. We assume that Sensor Net-
works are operating with a lighter version of the ICN protocol like CCN-lite [20]
(or NDN-lite) while the Internet operates with the full ICN stack like complete
CCN/NDN [6] stack. We choose these architectures as representative for ICN,
similar requirements will apply to other ICN architectures like MF [2], etc.

Gateway: We observe from use case 1, 2 and 3 that there are multitude of users
scattered across hybrid Sensor Networks and Internet. However these networks
don’t use the same protocol. There is a need for protocol translation among these
networks for communicating with each other. An efficient way to interface networks
operating different protocols is via aGateway. TheGateway should run the protocols
of all the networks that it serves. The Gateway should be equipped with necessary
intelligence and data structures to perform near transparent flow of traffic between
the two networks to seamlessly integrate the networks.

Naming: ICN is a name based protocol and supports, unbounded and any length
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namespace. We observe from all the four use cases a need for a naming schema that
is catered towards the operation of the constrained devices in the Sensor Networks.
The rationale for this requirement is the MTU in the Sensor Networks is much
smaller (127B) when compared to the MTU (1280B) used by the devices in the
Internet. Hence, there is a need for smaller ICN names that can not only fit into the
MTU of the Sensor Networks devices but also requires less storage on the forwarding
engines of the sensing devices. Such a naming schema will ensure that IoT networks
resources are used efficiently and will further ease their scalability.

Communication Protocol: All the four use cases present a different form of
communication model: query/response (1&3) or pub/sub (2&4). In many Sensor
Networks, there is usually a Base Station (BS) that collects the data sensed by the
sensors in the network. Another common pattern is when a Base Station Controller
(BSC) controls the sensor devices/actuators by sending control messages to them.
We can notice that, unlike IP, the users in these networks are interested in the con-
tent similar to ICN irrespective of their location. With an efficient communication
protocol we can ensure efficient utilization of the constrained resources in the Sensor
Networks. E.g., in use case 2&4, the user U2 and BS can use pub/sub to collect the
data periodically. Additionally, with ICN in Internet we can benefit with the caching
as it not only reduces the traffic in the core network, but will also reduce the traffic
entering the resource constrained IoT networks. This ensures maximum availability
of the content even when the sensing devices are sleeping to save resources.

Mobility: In addition to the usecases mentioned in Section 4.1, another and a more
important aspect to consider is the mobility of sensor devices. The IoT networks
should also be able to handle the mobility of sensor devices from one domain to
another. Mobility may affect the naming, reachability and many other aspects of
the moving devices.

Security: Security is a greater concern in many if not all of the Sensor Networks and
the Internet. There is a growing concern that IoT’s are designed without addressing
many of the associated security concerns [129]. However, security induces additional
overhead especially in the Sensor Networks. Hence, there is a need to analyze and
provide security measures that meet the security requirement of the Sensor Networks
and will not be an overkill with regards to their constrained resources.

4.3 Architecture

In this section we describe the proposed ISI architecture shown in Figure. 4.2 for
integrating the various hybrid Sensor Networks to the Internet.
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Figure 4.2: The ISI architecture.

4.3.1 Components

NDN network: We choose NDN as a representative ICN architecture. In principal
it could be any ICN architecture. The underlying network is capable of retrieving
Content from publishers in both the Internet as well as the IoT network. The
network is also capable of delivering control messages to the Sensor Networks.

Sensor Networks: There are many hybrid Sensor Networks that represent nu-
merous applications. Further, the Sensor Networks usually contain hybrid devices.
The devices can have wireless or wired access. They can operate for the purpose of
monitoring, controlling, etc. As discussed earlier, in this chapter, we propose that
Sensor Networks should operate with the ICN protocols. Hence, we use a lighter
version of the CCN called CCN-lite [20] for communication in the Sensor Networks.
The Sensor Networks usually contain a BS or a BSC that collects the data sensed
by the devices in the network for monitoring purpose or to control their operation.
The BS/BSC are usually powerful machines and not constrained in resources unlike
the sensing devices.

Gateway: This is the most essential piece of the proposed design. The Gateway
sits between the Internet operating with the NDN protocol and the Sensor Networks
operating with the CCN-lite protocol. All the traffic to/from the Internet and
Sensor Networks has to pass through the Gateway. The main function of Gateway
is to perform protocol translation between the two networks. The Gateway is also
responsible for mapping functions (discussed shortly). It is clear that since the
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IPv6 MTU is 1280B while the IEEE 802.15.4 can support only 127B, the authors
in the IETF standard [18] suggest that header compression in IPv6 is unavoidable.
However, the content generated in the Sensor Network is assumed to be small.
We believe that with efficient designs of ICN names in the Sensor Network the
Gateway does not have to compress the headers. Although we speak about one
Gateway between the Internet and each Sensor Network, there is no restriction on
the number of Gateways. As the traffic exchange between the Internet and Sensor
Networks increases, the burden on a single Gateway also increases. Hence, multiple
Gateways should be used to distribute the load.

4.3.2 Description

As said earlier, we assume that Internet is operating with the NDN protocol. While
various Sensor Networks that represent applications like environmental monitoring,
smart houses, etc., are operating with the CCN-lite protocol. The users are spread
across both the Internet as well as the Sensor Networks. The aim of this design is to
let the applications operate in the Sensor Networks as they desire but extend their
availability and control by integrating them with the Internet. The design allows
the users in the Internet to access/control the IoT devices using the Internet. A key
to achieve this integration is through Gateways.

The Gateway is a powerful component that has many roles to play. Every Sensor
Network is associated with one or more Gateways that is responsible for seamlessly
integrating the respective Sensor Network with the Internet. The entire traffic be-
tween these two worlds will flow through the Gateway transparent to the users in
both the networks.

The Gateway runs both the NDN protocol and the CCN-lite protocol. The Gate-
way maintains a mapping table which maps the lengthy, unbounded names form the
Internet running the NDN protocol to their equivalent short names in the Sensor
Networks running the CCN-lite protocol.

The Gateway provides a registration procedure for every device in the Sensor Net-
work. Each device upon entering the network must register itself with the Gateway.
The Gateway provides an ID to each newly added device. The device then registers
the short name and long name of the Content that it wishes to serve. These entries
will be added to the mapping table maintained in the Gateway. The mapping table
should be updated whenever there are any changes in the content served by the
Sensor Network.

We will use the term Inbound traffic for the traffic entering the Sensor Network
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and the term Outbound traffic for the traffic going out of the Sensor Network. The
inbound traffic from the users can be either a request for data or a request containing
a control message. There are two possible outbound traffics: 1) the reply to the
inbound traffic and, 2) the request/subscription traffic generated inside the Sensor
Network. The two types of outbound traffics should be distinguished form one
another as the reply traffic needs a name change through a mapping table lookup.
This can be achieved by using any one bit available field in the packets.

When the Gateway receives inbound traffic it is basically a NDN Interest packet.
The Gateway scans the mapping table to find the equivalent short name. The
Gateway creates a CCN-lite Interest packet with the short name and forwards it
to the Sensor Network. Upon receiving a CCN-lite Data packet from the Sensor
Network, the Gateway performs a lookup in the mapping table to find the long name
and creates a NDN Data packet with the long name, extracts the Content from the
CCN-lite Data packet and inserts it into the NDN Data packet and forwards it in
the Internet.

Another type of out bound traffic is basically a CCN-lite Interest for content lo-
cated either in the Internet or in other IoT network. The Gateways also support
inter IoT network communication. When an IoT network running a certain appli-
cation needs information from outside its network, it simply generates a CCN-lite
Interest and forwards it to the Gateway. Since this is an outbound request traffic
the Gateway simply translates it to a NDN Interest and forwards it in the network.
It eventually reaches the intended publisher in the Internet or the Gateway associ-
ated with the target Sensor Network. When the publisher is located in Internet, it
follows the standard NDN protocol and reply with the corresponding data packet. If
the Interest reaches a Gateway associated to another Sensor Network, the Gateway
performs a mapping table lookup to fetch the equivalent short name and prepares a
CCN-lite Interest and forwards it to the Sensor Network. Upon receiving the Data
packet it prepares the NDN Data packet as explained earlier and forwards it to the
Internet. The data packet eventually reaches the Gateway of the Sensor Network
that initiated the request. The Gateway performs a mere protocol translation and
generates the CCN-lite Data packet as described earlier and forwards it to user in
the Sensor Network.

4.4 Naming schema for Sensor Networks

4.4.1 Naming in IoT
The IoT devices are usually equipped with the Ethernet technology like IEEE
802.15.4 and Bluetooth LE. This results in a much smaller MTU (127B) compared
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to the traditional layer-2 technologies adopted in the Internet. This raises a concern
on the size of the packets that traverse the IoT network. One way to reduce the
packet size is to have smaller names that are relevant to the IoT networks. The
any length, unbounded hierarchically structured names defined by many ICN archi-
tectures do not suit the IoT networks. The naming schema for IoT should create
precise names to serve the purpose of the application and yet be specific and small.

We describe our naming schema using the same example of the smart city with
Sensor Networks as shown in Figure. 4.2. Let us consider the same application of
monitoring the temperature of all the rooms in a smart building from our use cases
in §4.1. We know that each room in the smart building is equipped with temperature
sensing sensor devices and BS collects the data generated by the sensing devices.

We propose a naming structure of the form Metric/ID/Area/Date/Time. The
first component Metric specifies what kind of data is generated by the sensing device
e.g., temperature, pressure, humidity, etc. The second component ID represents the
unique identifier assigned to the device in the Sensor Network. The third component
Area specifies the location/geographic range covered by the sensing device e.g., room,
building, GPS location, etc. The fourth component Date specifies the day at which
the readings are measured and the fifth component Time specifies the time at which
the reading was captured by the device. The granularity of each component can be
application dependant e.g., the time can vary from hours to seconds to minutes or
more. Applying this naming schema to our smart building example the temperature
sensed by a device with the id 01 in the room1 on 3rd November 2016 at 12:30
could be retrieved with a name /temp/01/r1/03-11-16/12:30. This name is only
26B, leaving the rest of the packet for the content.

In most Sensor Networks the BS usually collects the data periodically from the
sensing devices in the network. To distinguish the data retrieved from the BS we
can use a naming schema of the form /Metric/BS/Area/Date/Time. Note that the
component Area in the naming schema for IoT represents individual rooms whereas
it represent the whole building in case of the BS. Thus, a user in NDN network
can request for temperature of the whole building or for the individual rooms. This
naming schema is fairly general and similar names can be created for different IoT
networks based on specifics of the area or application of the IoT devices used in the
network.

4.4.2 Naming in the Internet

Recent ICN proposals such as NDN [6] and COPSS [3] adopt human-readable, hier-
archically structured Names and Content Descriptors (CDs). Continuing our smart
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building example, a possible name structure for renaming the content for the In-
ternet could be /temperature/UNI/ComputerScience/Building1/03-11-16/12:30 for
the temperature of the Computer Science building in the university on 3rd Novem-
ber 2016 at 12:30 and /temperature/UNI/ComputerScience/Building1/room1/03-
11-16/12:30 for the temperature of room1 at 12:30. We allow the availability of
data sensed in every room in the Internet as some rooms might be sensitive to tem-
perature and would have to be monitored e.g., the temperature of a server room.

4.5 Communication protocol for IoT and Internet

In this section we discuss the current communication protocols and propose the
suitable communication protocol for IoT and ICN based Internet.

4.5.1 Query/Response (Q/R) communication

This is a dominant mode of communication in current networks (both IP and ICN).
A user interested in some content simply queries the network with the request for
data. Any producer of the content (or also a node with an available copy of the data
in case of ICN) responds to the request with the data.

4.5.1.1 Q/R communication in IoT

In Sensor Networks the BS can query the sensing devices to retrieve the sensed data.
The BS simply generates a request with the respective content name and forwards
it to the network. Upon reaching the producer, the sensing device responds with the
requested content. The BS can also send control messages using the query/response
mode where the query can contain the control command while the response can
contain an acknowledgement of the action taken. The IoT devices can also query for
content located in the Internet or other IoT networks. The Gateway should assist
in retrieving the content in this case.

4.5.1.2 Q/R communication in the Internet

A user in the Internet generates an ICN request (Interest) with the content name of
the desired content and forwards it in the network. If the content is located in the
caches of any intermediate forwarding node then the cached copy is returned to the
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user. Otherwise the Interest eventually reaches the producer who replies with the
requested content. If the producer is located in an IoT network, then the Gateway
will assist in retrieving the content however, this will be transparent to the user.

4.5.2 Publish/Subscribe (pub/sub) communication

In a pub/sub scenario, there are essentially two roles: publisher and subscriber.
The publishers usually generate some data that could be of interest to subscribers.
The subscribers maintain a long term subscriptions to the content published by the
publishers (refer to COPSS [3] for detail). Whenever a piece of content is published
by the publishers, the network will deliver it to all of its subscribers.

4.5.2.1 Pub/sub communication in IoT

In IoT, the sensing devices that periodically sense the data can take up the role
of publisher and publish the sensed data periodically. The BS is the subscriber
interested in these contents and hence it will subscribe to these contents and will
receive them as and when they are published.

4.5.2.2 Pub/sub communication in the Internet

Similar to IoT, publishers and subscribers exist in the ICN based Internet too. The
users in the Internet can not only subscribe to the content published inside the
Internet but also to the content published in the IoT networks.

4.5.3 Communication protocol for IoT

There are two possible types of communication that can take place in the IoT net-
works: 1) within the Sensor Networks. 2) with Internet/other Sensor Networks.
The nature of communication in these networks is different and can greatly affect
the design choices of an efficient communication protocol for the Sensor Networks.

In Sensor Networks, the devices usually sense the respective data periodically
while the BS gathers the sensed data and analyzes it to take necessary actions.
Therefore, the pub/sub communication model seems more suitable in this scenario.
The devices can behave like publishers and publish the data periodically. While the
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BS can behave like the subscriber that subscribes to the data published by all the
devices in its Sensor Network. This design choice allows the resource constrained
sensor devices to efficiently utilize their battery power by waking up only to sense
and publish the data. We agree, that there are chances for the packets to get lost.
Hence, for reliability reason we propose the BS to resume to Q/R to retrieve only
the data that was lost during the next periodic cycle when the sensing device is
awake to sense the next reading. However, during Q/R we expect the sensor device
to wait for an acknowledgement before going back to sleep to ensure that BS has
received the packet this time. This also means that a sensing device should retain
some of its previously sensed data, which we believe can be configured based on the
applications requirement e.g., three most recent readings for reliability.

In the Internet, Q/R is the dominant form of communication (both in IP and ICN).
However, for communicating with the Sensor Networks we can choose between Q/R
and Pub/Sub based on the needs of the user. If a user (or any other application
or Sensor Network) is interested in periodically receiving the data collected by the
Sensor Networks, then Pub/Sub is the ideal choice for communication. To reduce
the burden on resource constrained sensing devices in the Sensor Network, we believe
that caching can be enabled on the BS. Other sensing devices can choose to retain
or turn off caching based on their available resources. Since the BS gathers the data
from all the sensors, it can act as a publisher to the subscribers in the Internet. Please
note that the subscribers in the Internet will subscribe to the longer names and
not the shorter names used for publishing inside the Sensor Networks. Hence, the
Gateway has to create new publication data packets with their equivalent long names
from the mapping table and then forward it to the users in the Internet. Another
and most likely a common scenario is when users in the Internet are interested in
some particular data generated in the Sensor Networks or if they would like to send
some control message to the Sensor Networks. Intuitively, Q/R seems ideal for
such scenarios. When a user is interested in some data he/she can generate a CCN
Interest with the longer content name and the network will forward the packet to the
Gateway. Once the Gateway receives the packet it performs a protocol translation
from CCN to CCN-lite and generates a CCN-lite Interest with the equivalent short
name from the mapping table and forwards it to the BS/BSC. Based on the type
of the request received the BS/BSC either replies with the requested data or an
acknowledgement for the action taken by the BS/BSC.

4.6 Use case realization

This section describes the ISI architecture by leveraging the use cases from §4.1.
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Figure 4.3: Smart city use cases with ISI architecture.

Consider the example network topology of a smart city with ISI architecture as
shown in Figure. 4.3. There is a BS in each Sensor Network that collects the tem-
perature sensed by the devices periodically every 30mins. Each network is attached
to a Gateway that runs both the NDN and CCN-lite protocols for interconnecting
the Sensor Networks and the Internet.

Scenario 1: A user (U1) in the Internet is interested in the temperature of
room1 in the building1. So, U1 will generate a NDN Interest with the name
/temperature/UNI/ComputerScience/Building1/room1/03-11-16/12:30. The net-
work will forward the Interest to Gateway1 (GW1). GW1 will check its mapping
table for the name. When no match is found, the GW1 behaves like a router and
the NDN module running inside the GW1 will handle this packet by forwarding it
to the appropriate router in the Internet. If there is a match, the GW1 will generate
a CCN-lite Interest with the equivalent short name /temp/01/r1/03-11-16/12:30
and forward it to the CCN-lite module which in turn will forward it to the BS1.
Since the BS1 periodically collects all the data, it will generate the CCN-lite data
with the requested content and forward it to GW1; otherwise it is forwarded to the
device S1 in the Sensor Network1. Upon receiving a CCN-lite data, the Gateway
will scan its mapping table to find the respective short name. If there is a match
the GW1 will extract the content from the CCN-lite data packet, generate a CCN
data packet with the equivalent long name with the extracted content and forward
it in the Internet. When there is no match found in the mapping table the GW1
will discard the data packet.
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Scenario 2: A user (U2) in the Internet is interested in receiving the temper-
ature of the Computer Science building every 30mins. U2 will subscribe to the
Content Descriptor (CD) /temperature/UNI/ComputerScience/Building1/. Every
30mins, when BS1 has received the temperature of each room in the building, it
will calculate the temperature of the building and publish a CCN-lite data with
the name /temp/BS/Building1/Date/Time (the parameter Date and Time should
be replaced with the respective values). When the GW1 receives this packet it will
check its mapping table and generate a CCN publication packet with the equivalent
long name and the content and forward it to the subscribers in the Internet.

Scenario 3: The BS1 in the SN1 needs some content say the GPS location of
the Mathematics building in the smart city. It generates a CCN-lite Interest with
the content name /GPS/Location/UNI/Mathematics/Building2/ and forwards it
to GW1. Please note that since this is an outbound traffic for content located
outside the Sensor Network this should be indicated by setting any available bit
in the Interest packet. For CCN-lite the EXCLUDE field can be used to indicate
this. Upon receiving this Interest, the GW1 identifies it as an outbound traffic by
inspecting the one bit field. The Gateway will only perform a protocol translation
by generating a CCN Interest with the same name and forward it to the Internet.
The content may be located in the Internet or also in another Sensor Network. The
publisher either from the Internet or any other Sensor Network (with the help of its
Gateway similar to scenario1) will reply with the content. Upon receiving a data
packet the GW1 will again perform a protocol translation by extracting the content
from the CCN data packet and generate the CCN-lite data packet with the content
and forward it to BS1.

Scenario 4: Scenario4 consideres the internal operation of Sensor Network1.
The sensor devices are sensing the temperature of the room every 30mins. They are
the publishers and will publish a packet every 30mins with the name /temp/id/-
room_no/Date/Time, e.g., /temp/01/r1/03-11-16/12:30. The BS1 has subscribed
to the prefix /temp and hence will receive the data sensed by all the sensors as and
when it is published.

There are chances for the packets to get lost. If there is any packet loss, then the
BS1 will generate a CCN-lite Interest with the specific name. E.g., if the packet
from the S2 was lost then the BS1 will send a CCN-lite Interest with the name
/temp/02/r2/03-11-16/12:30 at the next 30mins cycle when the S2 will wake up to
sense the next temperature reading. For reliability reasons we require the sensors
to store their latest three readings. When S2 receives an Interest, it will reply with
the requested content. We suggest the device S2 to stay awake for at least 1RTT for
the acknowledgement from BS1 to ensure that BS1 has received the data this time.
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4.7 Discussions

4.7.1 Mobility

Nowadays mobility has become a norm and IoT devices will bear no exception to
fulfill this requirement, especially with emerging new-generation applications like
smart-city, smart-home, etc. A simple example is when a smart car in a smart
city moves from building 1 to building2. During this mobility, the smart car is
detaching from the Sensor Network in building1 and is attaching to Sensor Network
in building 2.

In order to support mobility, the Gateway must handle the devices that move
from one domain to another. The Gateway can either offer a Time To Live (TTL)
during registration and/or offer a de-registration process. During de-registration,
the smart car sends an Interest with the de-registration request to Gateway and the
Gateway responds with an acknowledgement. The car can choose to wait for the
acknowledgement or not. When the car moves to another domain it again registers
itself with the associated Gateway of the new domain. Even if the de-registration
packet was lost, since the car has registered to anther Gateway the network will
synchronize with the routing updates.

4.7.2 Security

4.7.2.1 Security in IoT

IEEE 802.15.4 provides the capability for some link-layer security. The authors in
IETF standard [18] urge users to make use of it. A majority of the sensor devices
in Sensor Networks are expected to operate within their networks. Acknowledging
resource constraints in the IoT devices, we believe they should be equipped with the
minimum level of security features necessary for their operation. The asymmetric
key encryption is computationally complex for the Sensor Networks [80], so we
suggest the devices in the Sensor Networks can use the features provided at the link
layer for encryption and if additional security is desired then opt for symmetric key
encryption.

Moreover, the Sensor Networks will benefit with the content based security pro-
vided by the ICN solutions. Interestingly, authors in [130] discuss Attribute Based
Encryption (ABE) for ICN networks. However, the current ABE solution are heavy
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for the IoT networks. The Internet on the other hand can benefit greatly with ABE
while the Gateway can assist in encryption and decryption of the content using
light-weight security measures suitable for the IoT networks.

4.7.2.2 Security in the Internet

The devices in the Internet are subject to more attacks compared to devices in
the Sensor Networks. Moreover, the devices in the Internet are relatively powerful
compared to the devices in Sensor Networks. These devices are capable of handling
complex computation and hence can opt for asymmetric key encryption. Although it
is computational heavy, it is harder to decipher the content. ICN solutions inherently
provide security by securing the content unlike securing the communication link as
in IP. E.g., NDN uses the digital signature of the publisher for authenticating all
the content and also uses encryption for protecting private content.

4.8 Chapter summary

In this chapter, we discussed the shortcomings of current IoT designs with a proposal
for leveraging ICN for realizing IoT; we observed that ICN is more suitable for
supporting the requirements of IoT compared to IP. We discussed in detail the
importance and requirements for incorporating Sensor Networks into the Internet,
thus paving a way for them to join the IoT family. We also observed that IoT
devices do not need the full NDN stack and can work with lighter versions like
CCN-lite/NDN-lite. We analyzed the various requirements for an architecture to
integrate the Sensor Networks to the Internet and proposed ISI architecture with
Gateways. We described in detail the responsibilities of such a Gateway and further
proposed a naming schema and communication protocol along with some possible
mobility and security considerations for the IoT networks. With the help of several
use cases we described the functionality of ISI architecture for realizing IoT with
ICN.
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Chapter5
Application - FOGG: A Fog
Computing Based Gateway to
Integrate Sensor Networks to Internet

Fog computing is a promising technology that brings computing closer to the end-
users of the network. It offers numerous benefits especially, for IoT networks and
hence, needs further investigation. Therefore, in this chapter, we employ the ISI
architecture from Chapter 4 with Fog computing to propose an application named
FOGG: A Fog Computing Based Gateway to Integrate Sensor Networks to Internet.
FOGG uses the benefits of Fog computing with a dedicated device to function
as an IoT gateway to provide the needed integration. In addition, FOGG also
provides essential services like name/protocol translation, security and controller
functionalities for IoT, close to the end-users.
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5.1 Fog computing

Traditional Cloud based applications and services direct users requests to the nearby
data centers for storage and computing. However, with increasing number of users
and focus towards low-latency and high bandwidth requirements from applications
like high definition video streaming, technologies like Fog computing [13] have
emerged. Fog computing is a promising new architecture that utilizes the multitude
of end-user/edge-devices to carry out various operations like, storing, computing,
controlling, etc. Fog computing can improve the QoS experienced by users through
deploying the required storage at the edge of the network i.e., close to the end-users.
Many applications like smart grids, sensor networks and industrial automation have
already been realized with Fog computing. In PHOENIX, we argue that deployment
of the future architectures like ICN can also greatly benefit with Fog computing as
it expedites the process of integration with the existing technologies and exploits
the heterogeneity of the devices available at the edge.

As discussed in Chapter 1&2, even though many recent works like [46, 47], etc.,
focus on addressing different problems of IoT, they do not highlight the need to
integrate the Sensor Networks with the Internet to realize IoT. Hence, in Chapter 4,
we provided the ISI architecture to fulfill this vital need. The main goal of this
chapter is to employ the ISI architecture to exploit the benefits provided by Fog
computing. Accordingly, we propose FOGG: A Fog Computing Based Gateway to
Integrate Sensor Networks to Internet. The primary focus of FOGG is to bridge
the Internet (running on IP, ICN or other future protocols) with the IoT domains
operating with ICN protocols. In the remainder of this chapter, we derive the
various requirements for realizing such a Fog based – IoT = Internet + SN design
and introduce FOGG which provides Fog Gateways to integrate the Sensor Networks
with the Internet. To this end, FOGG is designed to provide Fog based services such
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as name/protocol translation, security (secure onboarding), controller functionality
and etc. However, in this preliminary work, we mainly focus on the Fog based
name/protocol translation service.

5.2 Use cases and requirements

In this section, similar to Chapter 4, we formalize the essential use cases and derive
the requirements for integrating Sensor Networks to the Internet with Fog comput-
ing. These requirements will further assist in building FOGG.

5.2.1 Use case formalization

We consider the example of a smart industry with many divisions equipped with Sen-
sor Networks to build our use cases. Let us consider the various applications that an
industry can house e.g., monitoring the temperature of equipments like boilers, tak-
ing readings, sensor based actuators, etc., as representative Sensor Networks. The
smart industry has several equipments, wherein each equipment is equipped with a
specific sensor device. There is a Base Station Controller (BSC) that gathers the
inputs like temperature readings and gives instructions for operating the actuators
from each room every 30mins. The BSC raises an alarm or notifies the administra-
tor when abnormalities occur. Further, the Sensor Network1 (SN1) constitutes the
sensor devices operating in the division1 and Sensor Network2 (SN2) constitutes
the sensor devices operating in the division2 of the industrial unit.

Scenarios: We can consider three important use case scenarios in the above
mentioned smart industry example. In the first scenario, A user in the Internet is
interested in the temperature of equipment1 in division1. In the second scenario,
a sensor equipment E3 in SN1 needs some content e.g., the accurate viscosity of
the liquid it boils from the equipment E3 in division2 in SN2. Finally, in the third
scenario, all the sensor devices need to transfer their readings periodically to the
Cloud for storage and further processing.

5.2.2 Requirement analysis

We assume that Sensor Networks operate with a lighter version of the ICN protocol
like the CCN-lite (or NDN-lite) [20] while the Internet can operate with IP and/or
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ICN protocols like NDN. We choose NDN as a representative for ICN, similar re-
quirements will apply to other future architectures like MF [2], XIA [7], etc. In
addition to the requirements for a Gateway, Naming, Communication Protocol and
Security in Chapter 4 (§4.2), in this chapter, we identify the necessary requirements
for a controller in FOGG.
Controller: The Sensor Networks generate a lot of raw data that needs further
processing. However, the sensor devices are heavily constrained in resources and
cannot perform such operations. Additionally, transferring this raw data for com-
putation and storage in Cloud is necessary but time consuming. This can prove to
be expensive for the sensor devices as the Cloud might be operating with another
protocol. Further, for latency sensitive applications such as in the industry, if the
computation has to be carried out in the Cloud to raise an alarm for a fire it might
lead to heavy damages and even risk lives. Additionally, the increasing amount of
data generated by the Billions of hybrid IoT devices is already a concern in the Big
Data community [131] along with the increasing amount of mobile data traffic [132].
However, most of the data generated by these devices is redundant and hence can
be eliminated with some pre-processing before storing in the Cloud. There is a need
for a dedicated controlling node equipped with the necessary intelligence, processing
capability and associated data structures that can handle complex operations on be-
half of the resource-constrained Sensor Networks. The controller node should also
perform a near transparent flow of traffic between the Sensor Networks and Cloud.

5.3 FOGG design

In this section we describe the design of FOGG shown in Figure. 5.1 for integrating
the various hybrid Sensor Networks with the Internet using Fog computing.

We assume that, Internet could be operating on IP or future protocols such as
ICN while the different Sensor Networks that represent various applications like
environmental monitoring, smart houses, etc., could run on lighter versions of IP,
ICN or other protocols. The users are spread across both the Internet as well as
the Sensor Networks. The aim of FOGG is to let the devices operate in the Sensor
Networks as they desire but extend their availability and control by integrating
them with the Internet by introducing a Fog Gateway in the Sensor Networks that
provides the necessary intelligence and processing capability. The design allows
the users in the Internet to access/control the IoT devices using the Internet. A
key to achieve this integration is through Fog Gateways at the edge of the Sensor
Networks. Below, we provide details on how FOGG could leverage the computing
provided by Fog nodes to better support the integration of various heterogeneous
Sensor Networks with the Internet.
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Figure 5.1: The FOGG design.

5.3.1 Controller functionality

In FOGG, we envision a powerful node that provides the functionalities of a Gate-
way (similar to the gateway in Chapter 4). We call this node the Fog Gateway. In
addition to the functionalities of the gateway discussed in Chapter 4, the Fog Gate-
way is also capable of performing the tasks similar to that of a controller. FOGG
can collect the data periodically from the sensor devices in the Sensor Network and
can respond to the queries from Internet and other Sensor Networks. Similarly, Fog
Gateway can also receive control messages from other networks and authorize and
carry out the execution of controlling the devices in the Sensor Network.

5.3.2 Protocol translation

The Fog Gateway is a powerful component and provides various functionalities.
Every Sensor Network is associated with one (or more) Fog Gateway that sit at the
edge of the Sensor Network. This gateway is responsible for seamlessly integrating
the respective Sensor Network with the Internet. The entire traffic between these
two worlds will flow through the Fog Gateway transparent to the users in both the
networks. The Fog Gateway runs the protocols used by both the Internet and the
Sensor Networks in order to optimally translate between the two and in some cases
behave transparent to the communication.
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The Fog Gateway maintains a mapping table to map the source/destination ad-
dresses or content names (in case of ICN) to facilitate the communication between
the participating networks. Moreover, even when both the Internet and Sensor Net-
works run the same protocol, e.g., ICN, FOGG will support the mapping of the
lengthy, unbounded names that could be used in the Internet operating with an
ICN protocol such as NDN to their equivalent short names in the Sensor Networks
operating with a lighter version of ICN such as the CCN-lite protocol. It is clear
that since the IPv6 MTU is 1280B while the IEEE 802.15.4 can support only 127B,
the authors in the IETF standard [18] suggest that header compression in IPv6 is
unavoidable. However, the content generated in the Sensor Network is assumed to
be small. FOGG could therefore play an active role in header compression too.

5.3.3 Communication techniques

There are two important modes of communication in the Internet and IoT:
Query/Response (Q/R) and Publish/Subscribe (pub/sub). The Fog Gateway can
support both forms of communications. For Q/R the Fog Gateway will perform the
protocol translation between Internet protocol like NDN to the CCN-lite protocol in
Sensor Networks. Whereas for pub/sub, the Fog Gateway can assist in maintaining
long term subscriptions. When a publication packet reaches the Fog Gateway it will
perform the protocol translation into respective protocol of the target network and
forward the publication packet to the subscribers.

5.3.4 Secure onboarding

The Fog Gateway speeds up the deployment of new devices in the Sensor Network
by automating the configuration to a large extent. The Fog Gateway uses a reg-
istration procedure for every device in the Sensor Network for secure-onboarding.
Each sensor device upon entering the Sensor Network must register itself with the
Fog Gateway. The Fog Gateway provides an ID to each newly added sensor device.
Since in many applications the devices tend to sleep, based on the location of the
device, the controller in the Fog Gateway sends information about sleeping patterns
to the device for configurations to ensure a stable network at all times. This is
essential as in a multi-hop network, all the intermediate devices should be awake
simultaneously to ensure successful communication. In case of ICN, the sensor
device also registers the short name and long name of the content that it wishes
to serve. These entries will be added to the mapping table maintained in the Fog
Gateway. The mapping table should be updated whenever there are any changes
in the content served by the sensor devices.
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5.3.5 Data: pre-fetching, caching, filtering

Further, the applications interested in the data generated by the sensor devices need
the data to be processed before use. Due to the controller intelligence available at
FOGG, it could proactively pre-fetch and cache content that would be required in
the near future. Further, the Fog Gateway could perform complex operations on
the data such as filtering of raw data and storage of the processed data on behalf
of the resource constrained sensor devices. The enormous amount of data produced
by the IoT devices [133] is already a concern for Big Data. However, not all of the
data generated by the sensor devices is important to be transmitted and stored.
e.g., the devices that periodically sense the temperature of an equipment need to
store only the abnormalities. Fog Gateway can greatly reduce the required storage
by pre-processing the data to filter only the important data for storage.

5.3.6 Security

Since, security is also a major concern, FOGG satisfies this requirement by utilizing
ICN security features which provides data-centric security instead of securing the
end to end communication channel like in IP. If the devices cannot handle the
computational complexity of generating a signature for the content they produce,
during registration the devices can receive a signature from Fog Gateway for the
content they produce.

Although we speak about one Fog Gateway between the Internet and each Sensor
Network, there is no restriction on the number of Fog Gateways. As the traffic
exchange between the Internet and Sensor Networks increases, the burden on a
single Fog Gateway also increases. Hence, multiple Fog Gateways have to be used
to form a Fog network and distribute the load.

5.4 Realization of use-cases with FOGG

In this section, we present examples of how FOGG could support the various use-
cases resulting from the scenarios we defined in §5.2.1. Consider the example of a
smart industry with the FOGG shown in Figure. 5.2. There is a Fog Gateway in
each Sensor Network that collects the readings sensed by the devices periodically
every 30mins. The Fog Gateway also receives control messages and forwards it to
devices in the Sensor Network. Let us assume that the Internet is running on top
of NDN and the IoT network is running on top of CCN-lite. The Fog Gateway
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Figure 5.2: Smart industry use cases with FOGG.

therefore runs both the NDN and CCN-lite protocols for interconnecting the Sensor
Networks and the Internet.

5.4.1 Operation

As discussed in Chapter 4, we use the term Inbound traffic for the traffic entering
the Sensor Network and the term Outbound traffic for the traffic leaving the Sensor
Network. The inbound traffic from the users can be either a request for data or
a request containing a control message. There are two possible kinds of outbound
traffic. One containing the reply to the inbound traffic and the other is the request
traffic generated inside the Sensor Network. The two types of outbound traffic
should be distinguished from one another as the reply traffic needs a name change
through a mapping table lookup. This can be easily achieved by using any one bit
available field in the packets.

When the Fog Gateway receives inbound traffic it is basically a NDN Interest
packet. The Fog Gateway scans the mapping table to find the equivalent short name.
Since the Fog Gateway periodically collects the data from the sensing devices, the
Fog Gateway checks if it already has the data and returns the data if available.
Otherwise, the Fog Gateway creates a CCN-lite Interest packet with the short name
and forwards it to the Sensor Network. Upon receiving a CCN-lite Data packet
from the Sensor Network, the Fog Gateway performs a lookup in the mapping table
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to find the equivalent long name and creates a NDN Data packet with the long
name, extracts the content from the CCN-lite Data packet and inserts it into the
NDN Data packet and forwards it in the Internet. In case of the outbound traffic
generated inside the Sensor Network, the Fog Gateway merely performs a protocol
translation by generating a NDN Interest with the same content name as in the
CCN-lite Interest. Upon receiving the data it converts it to a CCN-lite Data packet
and forwards it to the Sensor Network.

5.4.2 Example of FOGG with caching and periodic-fetching

A user (U1) in the Internet is interested in the temperature of equipment1 in the
division1 at 12:30. So, U1 will generate an NDN Interest with the long name
e.g., /temperature/industry/building1/division1/equipment1/16-5-17/12:30. The
network will forward the Interest to Fog Gateway1 (FGW1). FGW1 will check its
mapping table for the name. When no match is found, the FGW1 behaves like
a router and the NDN module running inside the FGW1 will forward it to the
appropriate router in the Internet. If there is a match, since FGW1 periodically
collects all the data, if the FGW1 has the content then it will generate the NDN data
with the requested content and forward it to the Internet. Otherwise, it generates
a CCN-lite Interest with the equivalent short name e.g., /temp/b1/d1/e1/16-5-
17/12:30 and forwards it to the device E1 in the Sensor Network1. Upon receiving
a CCN-lite data, the Fog Gateway will scan its mapping table to find the short
name. If there is a match, the FGW1 will extract the content from the CCN-lite
Data packet, generate an NDN Data packet with the equivalent long name with the
extracted content and forward it to the Internet. When there is no match found in
the mapping table the FGW1 will discard the Data packet.

5.4.3 Example of FOGG performing protocol translation

The sensor device E3 in the SN1 needs the viscocity of the liquid it boils from the
sensor device E3 in SN2 operating in division2. It generates a CCN-lite Interest
with the long name e.g., /viscocity/industry/building2/division2/equipment3 and
forwards it to FGW1. Please note that since this is an outbound traffic for content
located outside the Sensor Network this should be indicated by setting any available
bit in the Interest packet. For CCN-lite the EXCLUDE field can be used to indicate
this. Upon receiving this Interest, the FGW1 identifies it as an outbound traffic
by inspecting the one bit field. The Fog Gateway will only perform a protocol
translation by generating an NDN Interest with the same name and forward it to
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the Internet. The content may be located in the Internet or also in another Sensor
Network. The producer either from the Internet or any other Sensor Network will
reply with the content. Upon receiving a Data packet the FGW1 will again perform
a protocol translation by extracting the content from the NDN Data packet and
generate the CCN-lite Data packet with the content and forward it to E3.

5.4.4 Example of FOGG performing pre-filtering

All the sensor devices in the Sensor Network 1 & 2 sense some data and send this
raw data immediately to the Fog Gateway. The Fog Gateway filters the raw data
and performs the necessary computations desired by the application that uses this
data. If abnormalities are identified, the Fog Gateway immediately notifies the
administrator and raises an alarm in case of emergencies like fire.

5.4.5 Example of FOGG performing controlling

An equipment E2 in division1 has an actuator connected to it which opens and
closes the lid for controlling the air pressure inside the equipment. The sensor
device attached to E2 sends periodic readings of the pressure to Fog Gateway for
monitoring. The Fog Gateway monitors the reading and when the readings are above
a threshold, the Fog Gateway sends a control message to the actuator fitted with
the E2 to open the lid for exact amount of time computed by Fog Gateway. The
actuator upon receiving the control message performs the required operation and
sends an acknowledgement of the action performed. If the action was unsuccessful,
the Fog Gateway will notify the administrator as a technical error has occurred and
a human intervention is necessary to avoid risks.

5.5 Chapter summary

In this chapter, we discussed the shortcomings of current IoT designs and introduced
Fog computing with ICN. We observed that ICN is more suitable for supporting IoT
compared to IP in Chapter 4 and proposed the ISI architecture to integrate Sensor
Networks to the Internet. In this Chapter, we utilized the ISI architecture and
leveraged the benefits of Fog computing to realize a Fog computing based Gateway.
We analyzed the various requirements to integrate the Sensor Networks and pro-
posed FOGG with Fog Gateways. We described in detail the responsibilities of such
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a Fog Gateway and further described the communication protocol for IoT networks.
With the help of use cases we described the functionality of FOGG and showed the
benefits of such a Gateway to realize IoT.
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Chapter6
COPSS-lite: A Lightweight ICN based
Pub/Sub System for IoT
Environments

Traditional query/response based communication establishes point-point connection
for data exchange. However, this limits the possibility of obtaining content avail-
able at multiple different sources. Moreover, the receivers are expected to know
in advance when the content is generated in order to request the content. There-
fore, in recent years, publish/subscribe (pub/sub) systems have gained popularity
as they dismiss the need for users to request every content of their interest. In-
stead, the content is supplied to the interested users (subscribers) as and when it
is published by the producers. CCN/NDN [6] are popular ICN proposals that are
widely accepted in the ICN community; however, they do not provide an efficient
pub/sub mechanism. Hence, a content oriented pub/sub system named COPSS [3]
was developed to enhance the CCN/NDN protocols with efficient pub/sub capa-
bilities. Internet houses powerful devices like routers and servers that can operate
with the full-fledged implementation of such ICN protocols. However, Internet of
Things (IoT) has become a growing topic of interest in recent years with billions of
resource constrained devices expected to connect to the Internet in the near future
to realize many emerging new applications. The current design to support IoT relies
mainly on IP which has limited address space and hence cannot accommodate the
increasing number of devices. Even though, IPv6 provides a large address space, IoT
devices operate with constrained resources and hence, IPv6 protocol and its headers
will induce additional overhead for their operation. Interestingly, we observed that
IoTs are information centric in nature and therefore, ICN could be a more suitable
candidate to support IoT environments. Although NDN and COPSS are designed
for the Internet, their current full fledged implementations cannot be used by the
resource constrained IoT devices. Therefore, CCN-lite [20] was designed to provide
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a light weight, inter-operable version of the CCNx protocol to support the IoT de-
vices. However, CCN-lite like its ancestors (CCN/NDN) lacks the support for an
efficient pub/sub mechanism. Therefore, in this chapter, we develop COPSS-lite,
an efficient and light weight implementation of pub/sub to support the informa-
tion centric IoT networks. Essentially, COPSS-lite enhances CCN-lite with pub/sub
capability with minimal overhead and further enables multi-hop connections by in-
corporating the popular RPL [134] protocol for low power and lossy networks. This
chapter also provides evaluations using the real world sensor devices from the IoT
Lab, to demonstrate the benefits of COPSS-lite in comparison with stand alone
CCN-lite. Our results show that COPSS-lite is compact, operates on all platforms
that support CCN-lite and significantly improves the performance of constrained
devices in the IoT environments.

The key contributions in this work include:

• Analysis of the requirements of IoT environments.
• COPSS-lite: enhancements to the initial COPSS design to support IoT environ-

ments.
• Incorporating COPSS-lite with CCN-lite to provide efficient pub/sub capability

to CCN-lite.
• A prototype of COPSS-lite developed in the IoT lab2 using real sensor devices

on RIOT3 OS.
• Evaluation to demonstrate the benefits offered by COPSS-lite.
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6.1 ICN architecture

In this section, we briefly describe the ICN proposals that necessitated the need for
proposing COPSS-lite for the IoT environments.

6.1.1 CCN-lite

The CCN-lite [20] project is a step towards supporting resource constrained devices
to leverage the benefits provided by ICN protocols. CCN-lite is essentially a light
weight implementation of the CCN [6] protocol resulting from the project. The
rationale for developing CCN-lite was by 2011, PARC’s CCNx routers had acquired
wide acceptance and were growing in popularity. The CCN-lite project aimed at
designing a lighter version to mainly support educational needs and experiments
without needing the full fledged implementation of the complete CCNx protocol
and all its features.

CCN-lite is an inter-operable implementation of the CCNx and NDN protocol that
supports CCN, NDN, Named Function Networking (NFN [135]) and IoT. Essentially,
CCN-lite provides the core CCNx functionalities with less than 2000 lines of code in
C language and hence it has a low memory footprint. It supports multiple platforms
like Linux, Android, Arduino, RFduino and OMNET++. Further, RIOT the free,
open source operating system designed especially for IoT has incorporated CCN-lite
in its implementation to allow various IoT devices to run ICN protocols.

6.1.2 COPSS

As explained in Chapter 2, COPSS adds a Subscription Table (ST) to the initial CCN
forwarding engine. Every COPSS router maintains a ST for enabling the pub/sub
communication in a distributed and aggregated manner. COPSS also introduces
two new packet types: Subscribe and Publish to enable pub/sub in ICN. Unlike
NDN, COPSS uses Content Descriptors (CD) which are essentially some features
of the content like keywords, date of publication, identity of the publisher, etc. as
content identifiers for managing the pub/sub communication. The Subscribe packet
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is used by the users to subscribe to a certain CD while the Publish packet is used
by the publisher to publish the content for a single or group of CD’s i.e., a piece of
content can be associated with multiple CD’s. Each CD is assigned to a respective
Rendezvous Point (RP) node in the network.

At the onset of the pub/sub communication, subscribers will subscribe to the con-
tent of their interest by subscribing to the associated CD’s, resulting in a join. When
a router receives a subscription request, it adds an entry in its ST with the CD and
the incoming face of the request and subsequently forwards the request upstream
towards the RP. The intermediate routers also add an entry for the subscription in
their ST and forward the subscription packet towards the designated RP for the
CD(s) in the subscription packet. When the publisher generates any content, (s)he
associates the content with their respective CD(s). Whenever the content is pub-
lished, it travels along the multicast tree towards the responsible RP. When a router
receives a publication packet, it checks the ST for any one of the CD’s in the pub-
lication. If a match is found then the router forwards the publication packet along
the matched interfaces. However, only a single copy of the publication is forwarded
on each interface, irrespective of the number of subscribers in the downstream. This
avoids, unnecessary traffic and duplicate/multiple copies delivered to the subscribers
of more than one CD in the publication packet.

6.2 IoT requirements

IoT environment allows numerous physical devices in the sensor networks to inte-
grate with the Internet. Such an integration of the physical world into the software
based Internet enables the possibility to expedite automation in many areas. The
design of IoT environments varies greatly compared to the design of the Internet
irrespective of the traditional IP or the ICN based networks. The nature of the
devices operating in the IoT environment is also very different and especially con-
strained in resources like computational capacity, memory, power, etc. Even though,
the IP based designs are emerging for supporting the IoT networks, in PHOENIX,
we argue that IoT environments are content centric in nature and hence, ICN based
solutions are more suitable for IoT networks. We therefore identify the following
important requirements that should be met by the underlying network protocol for
efficiently supporting the IoT environments.

Communication Protocol: In an IoT environment, since most of the IoT ap-
plication tend to operate in a publish/subscribe fashion the pull based mechanism
to retrieve the data can turn out to be a huge disadvantage especially in terms
of the network load, processing capacity and power consumption. It is desired for
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the underlying network to provide an efficient platform for pub/sub to enable these
devices to operate optimally.

Timeliness: Many IoT applications are sensitive to time e.g., emergency applica-
tions, environmental monitoring, disaster notifications, industrial alarming systems,
etc. Hence, the underlying communication protocol should be reactive and must
ensure a timely delivery of the messages for latency sensitive applications in the IoT
environment.

Power Consumption: Many IoT devices operate with limited power supply,
mostly a battery. Some devices are expected to operate in remote locations without
any human intervention/supervision for longer periods of time. Hence, it is cru-
cial for these devices to save power to increase their operational life time. Many
devices also tend to sleep during most of their life to save power. The underlying
network protocol should support such behaviour and efficiently form the network
with available devices and ensure connectivity and data availability at all times.

6.3 COPSS-lite architecture

In this chapter, we designed COPSS-lite mainly to support the IoT environments.
The IoT environments are usually composed of hybrid devices that mostly sense and
produce data of interest for applications that intent to gather, control or monitor
the sensed data. The IoT devices tend to operate in a pub/sub paradigm where
we can identify the various sensor devices that periodically sense some data as the
publishers. While the nodes, usually Base Stations (Sinks) are interested in receiving
such data as the subscribers. A reverse scenario is where a Base Station Controller
(BSC) sends some messages/instructions to control the operation of other devices
in the network. In this scenario, the BSC behaves like a publisher while the devices
that receive the control messages and act on it behave like the subscribers.

The pub/sub models are very popular in the prevailing IP based Internet. How-
ever, the current pub/sub systems in the Internet are supported mainly via the client
side applications and servers to deliver the published content to the subscribers.
This entails additional responsibility/burden for the IP based solutions. In [66, 67]
authors show that IP based solutions tend to waste network resources. Hence a
content-oriented pub/sub system like COPSS is necessary to enhance the initial de-
sign of CCN by integrating it with an efficient and scalable pub/sub capability not
only for the devices in Internet but also for the IoT environments (COPSS-lite).

We discern that most of the IoT devices are heavily constrained in their avail-
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Table 6.1: Code size estimations.
RIOT 51540 KB
CCN-lite 18212 KB
COPSS-lite 192 kB

able resources compared to their Internet counterparts. COPSS-lite architecture is
designed to add the IoT related enhancements to the original COPSS architecture.
Thereby, COPSS-lite adds an efficient pub/sub model to the CCN-lite protocol for
IoT environments. COPSS-lite also aims to add several additional features that can
support the resource constrained IoT devices. One of the main requirement we iden-
tified is the timely delivery of the information without cutting down the operational
lifetime of the devices. Therefore, COPSS-lite proposes to use the pub/sub commu-
nication model to reduce the latency of information retrieval (see §6.5) compared to
the pull based mechanism in CCN-lite. To support the other important requirement
of reducing the power consumption we develop COPSS-lite as a compact version of
COPSS with CCN-lite. CCN-lite is currently implemented using UDP or TCP en-
capsulation for exchanging the CCN-lite packets. The COPSS-lite implementation
is written purely in C and hence, it is backward compatible with the CCN-lite code.
We understand that having a smaller code base is necessary for the IoT devices
and can greatly benefit not only in reducing the consumption of power but also in
terms of memory and reduced computational overhead. Hence, COPSS-lite adds
only 334 lines of code to the original CCN-lite code base to provide the necessary
functionalities for pub/sub (necessary details are shown in the Table 6.1).

Since many IoT devices show an inclination towards sleeping, it raises a concern
on the effective placement of the RP. Since RP is crucial to enable the pub/sub
communication in COPSS-lite, we believe the need to identify the responsible node
is imminent. However, there is no one best answer to this question as the nature
of sensor networks varies greatly from one application to another. We believe that
pointing out the need is essential. Therefore, we suggest to assign RP to nodes that
are either awake all the time (enabled with continuous power supply) or if they are
awake when any other node is awake in the network. The selection of the RP node
in an IoT network should ensure that RP is reachable by any node that is awake in
the network.

Further, an effective pub/sub solution should also address the necessity to limit
data loss, especially in a network where most of the nodes are sleeping and hence not
operational at all times. We propose to utilize a powerful node like the ISI Gateway
from Chapter 4 or to equip the sensor networks with a controller node similar to
Software Defined Networking (SDN). The controller maintains information about all
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the devices in its sensor network. The controller node is aware of the sleeping pattern
of the devices and hence can efficiently create ad-hoc networks. Such a network will
allow reactive forwarding of the content effectively utilizing the network and ensures
maximum packet transmission with minimal loss. The controller also stores the
state information of all the nodes like their ST, and computes routing tables (FIB)
for the current duration. The controller can also store the publications while the
nodes are sleeping and propagate it when the nodes wake-up. Every node has a
logical one-hop connection to the controller. Whenever a node wakes up it contacts
the controller and retrieves its state information and joins the network. Once the
network is created, the messages can flow seamlessly.

A two-step communication process in COPSS allows the publisher to exercise
control over the access and policy of the published contents. In a two-step commu-
nication process, the publishers generate a snippet of the original content with the
associated CD’s and send it to the subscribers. Interested subscribers can then use
these CD’s to subscribe to the full-length original content. The publishers then pub-
lish the original content which is forwarded to the interested subscribers as explained
previously. Similarly, COPSS-lite also provides the two-step communication process
for the IoT environment. Whenever a new device joins the network, it can send a
snippet of the data that it wishes to publish along with the CD’s to the controller.
The controller will disseminate the publication advertisement in the network and the
interested users can subscribe to it. The controller in COPSS-lite ensures minimum
overhead on the constrained devices, minimizes loss of publications/subscriptions
and maximizes the utilization of the network.

6.4 Implementation

6.4.1 CCN-lite with RIOT OS

The RIOT networking interface follows the GNRC network stack. The entire imple-
mentation runs on link layer. The RIOT OS has incorporated the CCN-lite features
on to its OS by building a dedicated RIOT-CCN adapter. The adapter integrates
CCN-lite with RIOT and creates a loop back interface between the RIOT network
interface and the CCN-lite code. During operation, all the GNRC packets are first
forwarded to the RIOT-CCN adapter. If the adapter finds that packets have arrived
from the GNRC link layer or from the CCN-lite callback, it parses the GNRC pack-
ets to CCN-lite packets and forwards them to CCN-lite via the callback interface.
Upon processing, CCN-lite forwards the packets to the outside network or to the
local RIOT application. Whereas, if the packets arrived from local applications,
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Figure 6.1: Components and message exchange.

then CCN-lite receives the packets via the adapter interface, processes the packets
and sends them back. The packets are parsed to GNRC packets and then forwarded
to the outside network.

6.4.2 Challenges

Even though our choice for OS (RIOT) [136] and CCN (CCN-lite) implementation
were clear, developing COPSS-lite from COPSS was not straight forward. We faced
several challenges mainly:

• CCN-lite works with RIOT on layer 2, whereas COPSS was implemented to work
in transport layer with UDP.

• IoT networks are unstable and need multi-hop routing support without any layer
3 devices.

• CCN-lite has reduced some original features of NDN that are needed in COPSS
like registering prefixes, etc.

6.4.3 Design

We developed COPSS-lite with the latest versions of RIOT OS, CCN-lite and the
GCC compiler (details are shown in Table 6.2(a)). In COPSS-lite, we use the
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Table 6.2: Development platform and hardware details.

(a) Development platform
OS RIOT,Linux
ICN CCN-lite0.3.0
Compiler GCC4.8.4
Hardware M3,A8

(b) M3 and A8 node
MCU ARM CORTEX M3, 32-bits
Radio 802.15.4
Power 3.7VLiPo battery
OS M3{FreeRTOS, Contiki, RIOT} A8{Linux}
ICN CCN-lite

Type-Length-Value format for the subscription and publication packets to ensure
compatibility and consistency with CCN-lite implementation on RIOT. Further, we
developed a design that loosely couples the interaction of CCN-lite and COPSS-lite
models with the underlying RIOT system.

Figure 6.1 shows the components and the message exchange between CCN-lite,
RIOT and COPSS-lite. We add an intermediate layer called COPSS-lite Virtual
Interface to build a bridge between the CCN-lite and COPSS-lite models. The
CCN-lite module refers to the current CCN-lite implementation in RIOT while the
COPSS-lite module refers to the implemented COPSS-lite logic. The COPSS-lite
virtual link layer interface is the adapter between the CCN-lite and COPSS-lite.
The CCN-lite works on the link layer in RIOT and the packets are transmitted
using the MAC addresses. In the COPSS-lite component, each time a user creates
a face, the COPSS-lite creates an associating face in CCN-lite and assigns a unique
virtual MAC address to it. The COPSS-lite virtual link layer interface is created
to replace the default RIOT link layer interface for CCN-lite so that the CCN-lite
packets will be forwarded to the COPSS-lite virtual interface instead. COPSS-lite
module is the main pub/sub component added by the COPSS-lite implementation.
The COPSS-lite module has one main thread and two sub modules: COPSS-lite core
and COPSS-lite forwarder. The Main thread receives all the packets and determines
which submodule should process the packet. The COPSS-lite module deals with the
subscribe and publish packets while the COPSS-lite forwarder forwards the CCN-
lite Interest and Data packets to the CCN-lite module via the COPSS-lite virtual
link layer interface.

6.5 Evaluation

To evaluate the performance of COPSS-lite, we used real sensor devices in the IoT
Lab4 to conduct our tests. IoT lab provides a large scale infrastructure facility

4https://www.iot-lab.info/

https://www.iot-lab.info/


COPSS-lite: A Lightweight ICN based Pub/Sub System for IoT Environments 84

N2 

N7 
RP 

N4 

N6 

N9 

N3 

N1 

N8 

N5 

Pub 

S1 

S3 

S2 

S4 

S7 

S5 

 S8 

S6 

S9 

Link to RP 
Physical Link 
COPSS-lite + CCNlite Node 
Publisher 
Subscriber 

IoT Lab M3 Node 

IoT Lab A8 Node 

Figure 6.2: Topology.

with real sensor devices for experimentation. It offers three development boards for
experimentation: WSN430, M3 and A8 nodes. We used the M3 and A8 nodes to
run our evaluations as they offer a 32-bit system and support CCN-lite (WSN430
is 16-bit). The development platform and hardware specifications are shown in
Table 6.2(b). Figure 6.2 shows the multi-hop topology used for evaluation. In this
evaluation, we measure the aggregated network load and latency experienced by the
users with pub/sub in COPSS-lite and query/response in CCN-lite.

We comprehend that there are numerous different IoT applications, each with
their own respective traffic pattern. Hence, we determined that it would be reason-
able to test with different distributions that mimic the traffic pattern in the IoT
environments. We used the popular distributions of Zipf, Geometric, Uniform and
Binomial to represent the various traffic patterns in the IoT environments for the
evaluation. The Zipf distribution shows that most popular content with the highest
rank is published more often than the content with the lower ranks. Whereas, in the
Geometric distribution, the probability sequence for publishing a piece of content
follows a geometric sequence. The Uniform distribution shows a traffic pattern with
constant probability for publishing the content. While the Binomial distribution
shows the number of success in n independent trails with the probability of p. Fur-
ther, we generated a small dataset with 10 different kinds of content to mimic the
data generated by the sensor devices. As shown in the topology in Figure 6.2, we
configured nine nodes to run the CCN-lite and COPSS-lite software with the RIOT
OS. For the experiments, we increased the number of subscribers starting form 1 to
9 with a single producer who published the content.
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Figure 6.3: Latency in seconds.

Figure 6.4: Network load with different traffic patterns.

To test the effectiveness, we published the data with Zipf, Geometric (p=0.25),
Uniform and Binomial (p= 0.2, 0.5, and 0.8) distributions. The resulting latency
experienced by the user is shown in Figure 6.3 and the corresponding network load
is shown in the Figure 6.4. We observe from the results that network load an
latency experienced by the users are significantly less in IoT environment with the
pub/sub based COPSS-lite system compared to the query/response based CCN-lite
system. Hence, we conclude that COPSS-lite based IoT devices operate efficiently
and optimally with their constrained resources in the ICN environment.

6.6 Chapter summary

In this chapter, we focussed on the IoT environments highlighting their imminent
growth in the near future. We discussed the potential problems that resource con-
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strained IoT devices face with IP and emphasized the inherent content centric nature
of the IoT environments and subsequently, suggested ICN for supporting IoT en-
vironments. We then discussed CCN-lite which provides just enough features to
run the ICN protocol in IoT environments. However, we studied that CCN-lite
like its predecessors does not provide an efficient pub/sub mechanism for the IoT
environments. Moreover, we observed that pub/sub is the more preferred commu-
nication protocol in IoT environments. Hence, we developed COPSS-lite, a light-
weight, inter-operable version of pub/sub for IoT and incorporated it with CCN-
lite. Additionally, with real world sensor devices from the IoT Lab we evaluated the
performance of COPSS-lite and showed that IoT devices can greatly benefit with
COPSS-lite.
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Chapter7
NeMoI: Network Mobility in ICN

With the advancement in technology, mobility has become a norm. Recent trend
towards 5G and increasing popularity of IoT is expected to demand increased mo-
bility support in the network. ICN treats content as the first class entity and nodes
exchange information based on the identity of the content rather than the location of
the content. ICN inherently supports consumer mobility and there are many recent
works on producer mobility. However, an untouched area of work is ICN’s support
for network mobility. Network-segments/domains comprising of various networking
nodes, consumers and producers can also experience mobility and can aggravate
the problems associated with supporting mobility. This chapter proposes NeMoI:
Network Mobility in ICN, a full fledged ICN based mobility solution with a special
focus on network mobility including the case of producers and consumers present
within such mobile networks.

The key contributions in this work include:

• An enhanced architecture to support network-on-the-move in ICN.
• Distributed Mobility Agents service for name resolution.
• A distributed deployment model for realizing Mobility Agents.
• A new field “Time Stamp” in the Binding Interest packet.
• Logically multi-layered Forwarding Information Base.
• Proactive and Reactive solutions to synchronize mobility updates.
• Enhanced Security features.
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7.1 Scenario and Objectives

7.1.1 Mobility scenario

Let us consider a scenario where a person P has a mobile phone and is walking
towards a train station. If P uses his/her phone to watch a video or read some
news, then he/she becomes a consumer of that content. Whereas if P is uploads
some photos/videos or any other type of content then P becomes the producer of
that respective content. Once P reaches the train station, he/she decides to board
a train and subsequently connect to the WiFi access point available in the train.
When the train starts to move, it represents a network-on-the-move. Further, during
the journey, P can change the train resulting in a shift from one network-on-the-
move to another. Let us also consider a nested network-on-the-move scenario where
P is in a moving train and he/she is using the Internet by connecting to the WiFi
in the train. P decides to connect his laptop to the Internet via the mobile phone
which is already connected to the WiFi access point in the train. In this scenario,
mobility will trigger updates from all the connected devices, and thereby, escalating
the problem. In the near future, especially with increasing popularity of IoT and
5G, we believe such mobility will most likely be a norm and is a matter of concern
that demands attention.
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Figure 7.2: Second mobility update.

7.1.2 Objectives

Based on the above mobility scenario, we derive the following objectives that should
be met by a mobility solution in ICN.

Mobility support: There are basically three kinds of mobility: consumer, pro-
ducer and network-on-the-move. An efficient mobility solution should support all
three kinds of mobility.
Synchronization: The solution should ensure that mobility updates are syn-

chronized in the network especially with the previous location of the mobile entity.
Signalling traffic: Increased mobility will cause signalling traffic to consume

majority of the traffic in the network. The solution should try to minimize such
signalling traffic.
Mobility update: Mobility updates should be propagated throughout the net-

work. However, the updates should not overwhelm the network especially with
continuous mobility. A routers main task is to forward request/data traffic, hence,
routers should not be overloaded with control traffic and frequent updates to their
routing tables.
Path Inflation: The solution should try to minimize the path inflation experi-

enced by users due to mobility.
Packet Loss: The solution should try to minimize the packet loss experienced

by users due to mobility.

7.2 NeMoI: design

A mobility solution should meet certain objectives like, supporting consumer, pro-
ducer and network-on-the-move mobility, synchronize mobility updates, minimize
signalling traffic, routing updates, path inflation and packet loss experienced by
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consumers. In this section, we describe the design of NeMoI architecture with the
topology in Figure 7.1 and show how NeMoI meets these objectives.

7.2.1 NeMoI components

End-point: The term end-point is used to refer to any end-user/IoT node that
attaches to the network. The end-point can be within network-on-the-move or static.
It can represent consumers and producers. Figure 7.1 shows some end-points in a
network-on-the-move.

Point of Attachment (PoA): They are the dedicated nodes in the network that
end points use to connect to the network i.e. the access routers. Figure 1a shows
three such PoAs. In NeMoI, every PoA has an ICN routable name, e.g. PoA1.

Mobility Agent (MA): The network is composed of numerous Mobility Agents.
Figure 7.1 shows three MAs in the sample topology. Every MA is responsible for
maintaining information about the current location of the producer(s) associated
with the MA and resolve the prefixes in the received Interests. Similar to PoA every
MA also has an ICN routable name e.g., MA1.
Domain/Network Segment: A network segment5 is basically a small part of the
original network composed of numerous networking nodes, consumers and producers.
E.g., the moving network n1 with end-point e1 in Figure 7.1. Every domain is
capable of mobility and must ensure connectivity to nodes located in the domain
with the rest of the network.
Binding Interest: We introduce a logical packet type called Binding Interest (BI)
shown in Figure 7.4 to propagate mobility update information in the network. For
implementation, Interest packets could be enhanced with the fields in Figure 7.4 to
function as mobility update packets.

7.2.2 NeMoI architecture

7.2.2.1 Mobility agents

Many anchor based (See §2.2.4) solutions [22, 26, 103] use Home Agents to support
producer mobility. Similarly, NeMoI proposes Mobility Agents (MAs) to assist in
both network-on-the-move and end-point mobility in ICN. Despite various anchorless
proposals for source mobility, we realized that dedicated nodes to perform name

5Domain & network segment is used interchangeably in this chapter.
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Figure 7.3: Mobility Agent tables.

resolution for mobile nodes can increase reliability and robustness of the network.
We however, provide optimization techniques to increase the propagation of mobility
updates and by pass the MAs. Therefore, NeMoI is in fact a hybrid solution.

In NeMoI, a MA is a normal ICN forwarder with added functionality of NeMoI
and has a routable name e.g., MA1. The MAs are deployed in a distributed manner
in the network. Each MA is responsible for resolving a set of primary prefixes and
a set of secondary prefixes served by the producers. For reliability and robustness,
the primary MA is a logical MA, while one or more physical MAs can share the
associated tasks. The MAs maintain two tables, a primary table containing all the
primary prefixes and their current location and a secondary table containing all the
secondary prefixes and their current location. Figure 7.3 shows the internal structure
of a MA where a producer p1 generates a content with the prefix /p and is located
in a network-segment identified with the prefix /n1. Hence, /n1 is used as a routable
component to reach p1. The figure also shows the secondary table for the prefix /a
for which this MA is a secondary MA. As shown in Figure 7.1 the MAs maintain
a logical one-hop connection with their neighbouring MAs in the network forming
an overlay network for synchronizing the mobility updates. For load balancing MAs
can drop some of their secondary prefixes.

The functionality ofMAs is provided as a network service and it is managed by the
network administrators. Based on our study, we provide the following two different
options for realizing the MAs service.

• Option1: There are numerous MAs in the network, each tasked with managing
a set of dedicated prefixes. When a new MA needs to be added to this overlay
network, the network administrator identifies a network node and configures the
MA on it. As part of the configuration, the network administrator assigns a name
to the MA, its neighbouring MAs and the set of primary and secondary prefixes
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that this MA is responsible for resolving. The administrator also modifies the
neighbours list of the respective MAs that are neighbours of the newly added MA.
Similar to the producers, the newly added MA will leverage the NDN routing
protocol such as NLSR to inform the routers of its presence.
Every router that receives the update from the newly added MA can check the
number of hops to this MA and decide if it is in its shortest path and add it to
its routing table before forwarding it to its neighbours. If the MA is not in the
shortest path, then the update will be discarded. Similarly, when aMA is removed
from a router, the network administrator assigns the prefixes (if required) to other
MAs and update the neighbour list of the affected MAs. The affected MAs use
the NDN routing protocols to inform the changes by indicating the name of the
MA that has been removed. The routers that receive this information can check
if their shortest path MA is in the list of removed MA, if yes then they update
their routing information.

• Option 2: The MAs can be realized as a network service with a single MA
that is implemented with distributed servers in the network. Where the network
has numerous dedicated nodes configured to function as MAs. This is again a
overlay network, where the MAs communicate with each other and synchronize
the mobility update. The difference from the first option is that all the MAs will
store the record for all the prefixes, similar to DNS servers. This type of service
may incur influx of updates to some servers while others remain idle, and hence
a load balancing mechanism needs to be in place, but this is out of scope of this
chapter.

In this chapter, we will refer to the first design while describing the functionality
of NeMoI. It is possible for the MAs to fail due to various reasons e.g., hardware
failure, crash due to increased load, etc. However, since the MA is a service that is
managed separately by the network administrator, there are several possibilities for
recovery. Like instantiating the service on a new node in the network and updating
the existing MAs with this information. However, there is a need to transfer the
states from the crashed MA to the newly instantiated MA. One possible solution
is for the MAs to periodically store a snapshot of their states in a server that is
administered by the network administrator. The newly instantiated MA can then
be initialized with the state information of the crashed MA.

The allocation of prefixes to MAs can be achieved by network administrators or
a dedicated Registrar responsible for allocating unique prefixes to producers. At
the time of allocating prefixes, the respective MA can also be allocated. The MAs
can delegate prefixes to one another or decide to be in synchronization for a set of
prefixes. We only provide some suggestion about the allocation of prefixes to MAs
in this chapter.
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7.2.2.2 Binding Interest

In order to carry out the mobility updates we introduce a new packet type called the
Binding Interest (BI ) in NeMoI as shown in the Figure 7.4 . The first field in the BI is
used to specify one or more Prefix served by the producer. The second field specifies
the routable component that can be used to reach the producer at the new location.
The routable component is basically the name of the new PoA in the network. The
third field is the Sequence Number used to distinguish between multiple mobility
updates generated during continuous mobility e.g., during a train journey. It is the
responsibility of the mobile node to increment the sequence number in every new
BI forwarded in the network. The fourth field is the Time Stamp, which indicates
the duration for which the routable component is valid for routing. This is set by
the mobile entity and stored in both the MAs tables and in the FIB. This field is
added to prevent the reuse of out-dated routing components and to maintain a clean
FIB and MAs record. However, this necessitates that all the entities that use the
time stamp should have an accurate clock for synchronization. Therefore, in NeMoI,
we suggest the participating entities to utilize the Network Time Protocol [137] to
synchronize their clocks. The next two fields namely, Reverse Update (RU ) and
Reverse Update Received (RUR) are used to update the old location about the new
PoA. While the following field contains the old routable component used to reach
the previous PoA. The last field contains the Signature of the mobile node that
generated the BI.

Every producer in the network is associated to at least one logical primaryMA and
many secondary MAs. Every PoA in the network has a routable name e.g., PoA1.
Whenever a producer moves to a new location and attaches to a PoA in the network,
the producer can obtain the name of the PoA similar to obtaining access point names
in IP. The producer then sends a Binding Interest (BI ) containing the prefixes served
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Figure 7.7: Multi-level FIB in NeMoI.

by the producer and the name of its PoA. The BI can be forwarded to any MA
located on the shortest path from the producers current location. It should be noted
that, non-NeMoI routers can simply forward the BI as an Interest. Once a BI reaches
aMA, it updates its primary/secondary table accordingly. Since theMAs maintain a
logical one hop connection with each other (overlay network), the receiving MA then
forwards this BI to the router on the path to its neighbouring MA. This routing of
BI continues till all the MAs are updated with the new location. The MA also sends
an Interest to the producer with a special flag marked to acknowledge the receipt
of the mobility update. During forwarding, the NeMoI aware routers update their
routing information with the mobility update to widen the scope of propagation.
Unlike a dedicated single resolver, in NeMoI the network uses a distributed set of
MAs. Further, a single prefix is maintained by many MAs to ensure robustness and
reduce the path inflation.

7.2.3 Multiple logical FIB tables

In NeMoI, we made a design choice to use logically multi-level tables to represent
FIB similar to the multi-level forwarding tables used in [138,139]. This choice helps
in reducing the number of updates required in the routers, especially when an entire
network segment moves. Since the network is organized hierarchically into layers,
each level in the FIB can represent the hierarchical layers in the network, with the
lower layers pointing to entries in the higher layer tables for lookup i.e., a prefix in a
lower layer contains an indirection to a prefix in the next higher layer. E.g., the first
level FIB contains prefixes served by the producers and the next face to reach the
producer at their current PoA or the routable component located in the next level.
The second level in the FIB contains prefixes associated with PoA in the network
and other prefixes that can be used as the routable component by the first level.

Figure 7.6 and 7.7 illustrates the difference between current solutions and the
advantage of using multi-level tables like in NeMoI. Let us assume that there are 100
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producers associated with their respective prefixes ranging from /p1 to /p100 and
these producers are travelling in a train connected to PoA1. As shown in Figure 7.6,
the FIB entry for these 100 producers would point to face-1 which is the outgoing
face for PoA1. When the train moves and connects to PoA2, all these 100 entries
would have to be changed to point to face-2 which is the outgoing face for PoA2.
In NeMoI, due to logical multi-level tables, only the entry in the “level-2” table is
changed from face-1 to face-2 as shown in Figure 7.7. This is because the outgoing
face of the prefix /p1 contains the prefix of the train /t1 as the routable component.
When the prefix /p1 is looked up in the first level, it leads to an indirection to the
level-2 table for the prefix /t1 and the outgoing face for /t1 is used for forwarding
the Interest towards the producer. Therefore, this design choice for multi-level tables
effectively reduces the number of updates required in the routers, especially during
continuous mobility. Moreover, the producers/consumers within the network-on-
the-move need not be informed about the different PoA’s they attach to thereby,
limiting the signalling traffic and changes to the FIB tables.

The number of tables required is relative to the level of segregation desired in the
network and the corresponding implementation strategy involved. Moreover, these
are logical tables and can in fact be implemented as one unified table wherein an
indirection entry in row ‘a’ points to another entry in row ‘x’ in the same table.
Similar to [21], we also use a temporary FIB to store the mobility updates in the
routers until the control plane synchronizes these update in the data plane of the
router. The motivation to use a temporary FIB is similar to that of [21], i.e.,
only certain nodes with administrative access periodically verify and update the
FIBs in the routers in their control. In theory, every change to any of the logical
tables in the multi-level table would require a temporary FIB entry. However, in
practice, temporary FIBs would exist only for nodes that are continuously moving.
For instance, in case of the train scenario, as and when the train changes its PoA,
it will create a temporary FIB entry for /t1 present in the “level-2” logical table
depicted in Figure 7.7. Only when the producer with the prefix /p1 gets out of
the train, a temporary FIB entry is created for /p1 in the “level-1” of logical table
shown in Figure 7.7.

7.2.4 Synchronization

In NeMoI, the routers on the path from the consumers to producers current location
also get updated once an Interest flows through that path. However, there still
remain the question about updating the old location and the non updated routers
on the path to the old location of the mobile producer as shown in Figure 7.8.
Therefore, in this section, we describe the two approaches deigned in NeMoI to



NeMoI: Network Mobility in ICN 96

MA1 MA2 

POA1 POA2 

? 

Not updated 
Updated to POA1 
Updated to POA2 
 

Figure 7.8: Old location unsynchronized with the mobility update.

synchronize the old PoA and the intermediate NeMoI aware routers on the path to
the old PoA of the mobile producers with the current mobility update.

7.2.4.1 Proactive version

In the proactive version, when a router receives a BI, it not only forwards the BI to
the MAs but will also forward it to the old PoA of the mobile producer. The first
router which forwards the BI towards the old PoA sets the RU flag to true in the
original BI, in order to avoid the downstream routers from sending further updates
to the old location. The router makes a copy of the original BI and adds the old
routable component to the copy. The router then forwards the original BI towards
the MA and the copied BI to the previous location of the mobile producer using
the old routable component. As this BI is forwarded towards the old location, all
the intermediate NeMoI aware routers on the path to the old location update their
routing information. When the BI reaches the old location, the RU flag is flipped
to false and RUR flag is set to true and forwarded towards the router that sent the
update as an acknowledgement.

7.2.4.2 Reactive version

In the reactive version, when an Interest reaches the old location, the access router
at the old location forwards the Interest towards the MA just like any other router
in the network. The PoA at the old location also sets an error flag in the Interest to
notify the MA and the routers on the path to MA that the producer has moved but
mobility update is not yet synchronized in the network. The intermediate NeMoI
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aware routers update their entries for the prefix and forward the Interest towards the
MA. When a MA receives an Interest with the error flag, it stores the Interest until
the mobility update reaches the MA or the Interest times out. After receiving the BI
with the mobility update, the MA sets the error flag in the Interest to false and adds
the new routable component to the Interest and forwards the Interest towards the
new location of the producer and thereby reduces the number of packet losses during
mobility. In addition to mobility, there are instances when a producer attached to a
PoA in the network enters in to inactive/sleeping state for some specified duration.
In order to not mistaken a sleeping producer for a mobile producer, we recommend
the use of technologies like Wake-on-LAN [140], so that the PoA can wake up a
sleeping producer when an Interest is received.

7.2.5 Security

In NeMoI, we inherit the security features of ICN. Similar to RFC 2845 [141], a
mobile entity can share the secret keys with the MAs for authentication and use
one way hash for integrity. However, this implies that intermediate routers cannot
update their routing tables. Therefore, in NeMoI, every BI is signed by the endpoint
generating the BI e.g., by using the private key of the endpoint. Every intermediate
NeMoI aware router and the MAs verify the BI using the public key of the end-
point before updating their tables. When the verification is unsuccessful, the BI is
dropped to avoid forwarding malicious information and prevent attacks like DOS
and FIB pollution. Further, the MAs only forward the BI’s to their neighbouring
MAs for synchronizing the mobility updates, they do not modify them. Since the
BI is actually signed by the private key of the endpoint, if a rouge MA tries to send
false BI’s or tries to modify and forward the BI, it can be detected during verifi-
cation. Hence, the availability of MAs don’t add additional security risk. Further,
any security measures designed for controlling Interest related attacks (e.g., Interest
flooding) can be applied to prevent similar attacks using the BI. During synchro-
nization of mobility updates, a MA can add its name in the list of MAs that are
already updated and perform a one way hash of the list for security. This prevents
any malicious user/node from modifying the BI and polluting the MAs tables. This
ensures integrity of the BI and the synchronization can finish elegantly.

7.3 NeMoI: support for mobility scenarios

We explain network mobility in NeMoI using the below scenarios with the example
of a train travelling with passengers as network-on-the-move (see Figure 7.1, 7.2 and
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Figure 7.9: Train mobility.

Figure 7.9). The passengers in the train can be both consumers and producers. The
train itself can also be viewed as a producer associated with a prefix /t1. When
the train starts to move, the consumers and producers in the train are also under
mobility. To ensure connectivity, the train, consumer and producer must propagate
their mobility information. However, if all the entities under mobility start sending
mobility updates for every prefix served by them, the resulting signalling traffic might
overwhelm the network. Further, this will result in increasing the number of routing
updates. With increased mobility, the signalling traffic might start competing with
data traffic for bandwidth.

7.3.1 Producer in network-on-the-move

Let us consider that passengers in the train are producers and they are generating
contents via uploading images or video’s of their surrounding. In NeMoI, to reduce
the signalling traffic, when a producer enters the train and connects to the WiFi
access point in the train, the producer sends only a single BI with all the prefixes
served by the producer and the prefix of the train /t1 as the routable component.
This BI is forwarded to the nearest MA which in turn updates its neighbours and
subsequently the whole network gets updated.

When the train starts moving, it propagates mobility updates by generating a
BI at every new PoA in the network and the PoA forwards the BI to the nearest
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MA. Please note that, none of the producers travelling inside the train will send
further mobility updates as the train continues to move. During mobility, only
the train’s mobility update is propagated in the network even though there could
be 1000’s of producers travelling inside the train each with >=1 prefix. The MAs
of the train and the intermediate NeMoI aware routers on their path get updated
with the current location of the train. Due to our multi-level FIB, the number
of updates also reduces as the routers only update the /t1 prefix and not all the
prefixes that use it as a routable component. For any Interest generated for the
producers travelling inside the train, the routers will use the routable component /t1
and forward it to the current location of the producers. Since the train can be used
as the routable component by other prefixes in the network, if multiple tables are
used for representing FIB, then we recommend the prefix /t1 to be located in the
second level FIB of the routers to minimize the updates required in the router. The
prefixes of the producers travelling in the train can simply point to the prefix of the
train in the next higher level in the FIB as shown in Figure 7.7.

In Figure 7.9, the train is travelling from PoA1 to PoA4. The producer P1 is a
passenger seated in the train. P1 sends a mobility update with BI containing /p1
as the prefix and /t1 as the routable component. This BI reaches the MAs of the
producer. While the train sends multiple mobility updates one each at PoA1, PoA2,
PoA3 and PoA4 with BI containing the prefix /t1 and PoAx as the routable com-
ponent. This design choice of NeMoI, dramatically reduces the signalling traffic and
the number of updates required in the routers. At the same time NeMoI propagates
the mobility updates to majority of the routers, reduces the path inflation, packet
loss and ensures connectivity. Further, since a single BI can carry all the prefixes
served by a producer, it significantly reduces the signalling traffic due to mobility.

7.3.2 Consumer in network-on-the-move

Let us consider that passengers in the train are consumers and they are surfing
the Internet to download various contents like news, images, videos, etc. When a
consumer enters the train, they connect to the train’s WiFi access point, hence its
PoA is /t1. When the train starts moving, it propagates the mobility updates by
generating a BI at every new PoA it attaches to. The consumer continues to use
the Internet. However, the train network is mobile and the network should be able
to route the data towards the current location of the consumer. Since the network
is updated with the current location of the train and the consumer is using train’s
WiFi as the PoA, the network simply forwards the data towards the train and the
consumer receives it from the train’s WiFi.

In Figure 7.9, the train is travelling from PoA1 to PoA4. The consumer C1 is
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a passenger in the train. When C1 generates an Interest, the Interest is forwarded
by the train’s WiFi access router into the network. In NeMoI, since the train is
already propagating the mobility update information and the consumers PoA is /t1,
the data is successfully re-routed towards the current location of the consumer in
the train. The consumer experiences seamless data transfer while reducing the need
for resending Interests for unsatisfied content.

7.3.3 Consumer and producer in network-on-the-move

Let us consider that producer and consumer of a content with the prefix /p1 are
travelling in the same train as shown in Figure 7.9. The producer and consumer
connect to the WiFi access point in the train and the producer sends a BI with the
prefix /p1 and /t1 as the routable component. The consumer generates an Interest
with the prefix /p1 and sends it to the WiFi access router of the train. Since the
train’s router has already updated its entry for /p1 with the routable component
as /t1, the Interest is immediately forwarded to the producer in the train. This
scenario clearly demonstrates that NeMoI effectively eliminates path inflation.

7.3.4 Nested network-on-the-move

Let us consider a nested network mobility scenario where a passenger travelling the
train represents a consumer. The passenger connects his/her mobile phone to the
Internet using the WiFi available on the train. Further, the consumer also connects
his/her laptop to the WiFi in the mobile phone (via hotspot) to access the Internet
forming a nested mobile network.

When the train starts moving, it propagates the mobility update by generating a
BI at every PoA. When the train is moving, the consumer uses his/her mobile phone
and generates an Interest to download some content from the Internet. The content
is successfully routed back to the consumer using the mobility update generated by
the train as discussed in earlier scenarios. When the consumer uses his laptop to
access the Internet, the consumer uses the WiFi access point on the mobile phone.
The Interest is forwarded by the mobile phone to the WiFi access router of the train
which in turn forwards it to the network. Upon receiving the content, the WiFi
access router in the train will forward it to the WiFi access point of the mobile
phone which in turn forwards it to the consumer’s laptop. Although the train and
consumer’s mobile and laptop are in mobility, in NeMoI the consumer’s mobile phone
and laptop are treated as stationary as the mobility update is taken care by the train.
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7.3.5 Travelling from one to another network-on-the-move

Let us consider a passenger in the train as the producer of a content with the prefix
/p1. The producer connects to the WiFi access point in the train and sends a BI
with the prefix /p1 and /t1 as the routable component. When the train starts
moving, it propagates the mobility update by generating a BI at every PoA. These
BI’s are forwarded to the nearest MA which in turn updates its neighbours and the
network gets updated. As the train continues to move, the producer does not send
any further mobility updates. The network uses the prefix of the train /t1 as the
routable component to forward any Interest to the producer. The producer decides
to change his/her train at a designated stop and enters another train with the prefix
/t2 to continue the jorney. The producer connects to the WiFi access router in the
second train and generates a new BI with the prefix /p1 and routable component
/t2 and forwards it to the network. In NeMoI, the old location i.e., the first train
with the prefix /t1 is also notified with this change.

7.3.6 Continuous requests

If a train is moving fast, consumers might not receive the content they request. Ac-
cording to ICN principle, the consumers have to re-initiate the requests, but since
the train is changing its PoA so fast, the content might not reach the consumers
in time. Therefore, in NeMoI, we suggest to use proactive caching similar to PeR-
CeIVE [142]. Consumers can include route related information in the Interest like
the train’s current location, speed, etc. Using this information, the data source
can pro-actively cache the data at the respective road side units on the path of the
consumer.

7.4 Chapter summary

In this chapter, we focused on the need for ICN based architectures to support
mobility of the network. We proposed NeMoI, an efficient, robust, reliable and secure
full fledged mobility architecture that is specifically designed to handle network-on-
the-move. NeMoI is designed with distributedMAs and logical multi-level FIB tables
to reduce the number of routing updates during mobility. We further optimized
NeMoI to by-pass MAs by reactively updating the routers in the path of the request
flow. We also discussed proactive and reactive solutions for synchronizing mobility
updates.



NeMoI: Network Mobility in ICN 102

Acknowledgment

The research leading to these results has received funding from the joint EU
H2020/NICT ICN2020 Project (Contract No. 723014. and NICT No. 184).



Chapter8
Application - Network Mobility in
Train and Car

In Chapter 7, we proposed NeMoI to provide support for network mobility in ICN.
NeMoI is a comprehensive solution to support end-points that are within network-
on-the-move. These end-points could be producers and/or consumers in network-
on-the-move. Moreover, NeMoI is designed to seamlessly support the mobility of
consumers and producers who are not located inside a moving network to avoid
the need for multiple protocols to support different scenarios. NeMoI encompasses
several optimization strategies that make it an efficient solution to support mobility
in ICN. In this Chapter, we demonstrate the benefits of NeMoI during determinis-
tic and non-deterministic mobility through journeys in Train and Car. Leveraging
the RocketFuel AS1221 topology and a C# simulator we measure the five main
network characteristics: signalling traffic, routing updates, effective route optimiza-
tion, path inflation, and packet loss during network mobility. Evaluations show that
NeMoI significantly reduces the amount of signalling traffic, routing updates and
path inflation compared to existing solutions while ensuring connectivity for mobile
nodes with minimum packet loss for users during mobility. Through various tests,
we also establish the effective placement strategy for MAs to provide efficient route
optimization in NeMoI.
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8.1 Signalling traffic and routing updates

8.1.1 Experimental setup

To demonstrate the effectiveness of NeMoI, we evaluate two types of network mo-
bility patterns: deterministic and non-deterministic. For deterministic network mo-
bility experiment, we introduced network mobility by using the earlier example of
a moving train that carried producers and consumers as passengers. To mimic a
real train journey, we simulated the famous Australian Indian Pacific train route
(the longest train route in Australia) for our evaluation. In the experiment, the
train travels from Perth to Sydney covering a distance of 4,325KM. Whereas for
the non-deterministic network mobility experiment, we introduced network mobility
with 200 cars, each with a capacity to seat 4 persons. In the experiment, the cars
travel from Perth to Sydney. To make this journey non-deterministic, a random
number of cars chose path1 that covers a distance of 3935km while the rest choose
path2 which covers 4135km. In order to introduce some more randomness, the cars
had several stops along the way.

We assume that at each stop the train and cars have access routers to connect
to the Internet and there are numerous Base Stations (BS) between the intermedi-
ate cities and stops to provision connection to the Internet. We approximate the
coverage area of each BS to 25Miles (40KM) to resemble real world scenario.

For the Dataset, we used the top one Million web site names ranked by the
Majestic million website [143] on 04 April 2017. We reversed the website names
to resemble hierarchical names in NDN and replaced the ‘.’ in the names with ‘/’.

For the train and cars along the path1, there were seven stops between Perth and
Sydney while for the cars along the path2, there were eight stops. Accordingly, we
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Figure 8.1: Signalling traffic and routing
updates in Train.
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Figure 8.2: Signalling traffic and routing
updates in Cars.

placed seven access routers between the stations/stops in each city for train and
path1 and eight access routers for path2. Based on the distance between these
cities/stops we introduced 110 BS for the train and 98 BS for path1 and 103 BS
for path2 for the cars. To mimic a real mobility scenario and show the impact of
mobility, for the train journey, at every stop, 0.16M producers board the train while
a random number of producers exit the train. In the car scenario, at each stop in the
car’s journey 50 passengers enter the cars while random number of passengers exit
the cars. This is similar to a Taxi service that picks up and drops off passengers along
the journey but the stops and the route taken are not as deterministic as the train.
Additionally, we also examined a scenario where a random number of producers were
fixed while the rest were mobile. In all of the above mentioned scenarios, during
mobility, at every stop and at every BS there is a re-connection to the network.

8.1.2 Deterministic mobility (Train mobility)

We measure the signalling traffic and number of updates in the routing tables in-
curred due to mobility of the train with three scenarios. In the first scenario, every
producer along with the train, produces a BI to notify the network with its mobility
update, similar to the global updates, anchor-based and anchor-less solutions [21]
(See §2.2.4). In the second scenario, we measure the signalling traffic with NeMoI
where the producers notify the network with a mobility update only once when they
board the train. In the third scenario, we introduce a mixed set of fixed and mobile
producers in NeMoI. The number of BI’s generated in these scenarios are equivalent
to the number of routing updates. The train continues to notify the network at every
point where it re-connects. When the train re-connects to the network through a
PoA, the PoA sends the BI to any MA on the shortest path and the MAs route this
update among themselves.
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We observe from the results in Figure 8.1 that NeMoI generated ~4.6M mobility
updates in scenario 2 and ~3.7M mobility updates in scenario 3. Whereas other
standard solutions like global updates, anchor-based, anchor-less based solutions
and without the logical multi-level FIB optimization in NeMoI ~0.215B mobility
updates were generated. The results show that with NeMoI, there is a dramatic
decrease in the signalling traffic and the routing updates compared to the existing
solutions. We also observe that, NeMoI ensures reachability and faster updates
compared to global updates. It should be noted that in these results, we assigned
only a single prefix to each producer. If the producers serve more than one prefix
and generated a mobility update for every prefix then signalling traffic and routing
updates would be even higher.

8.1.3 Non-deterministic Mobility (Car mobility)

In this experiment, we measure the signalling traffic and number of updates in the
routing tables incurred due to mobility of the 200 cars with a random number of cars
travelling on path1 and the rest travelling on path2 with three scenarios. We treat
all passengers and drivers in the cars as producers in this experiment. In the first
scenario, every producer along with the cars, produce a BI to notify the network
with their mobility update. This behaviour is similar to the current state of the
art global updates, anchor-based and anchor-less solutions [21] (See §2.2.4). In the
second scenario, we measure the signalling traffic with NeMoI where the producers
notify the network with a mobility update only once when they enter the car. In the
third scenario, we introduce a mixed set of fixed and mobile producers in NeMoI.
Similar to the train scenario, the number of BI’s generated in these scenarios are
equivalent to the number of routing updates. The cars continue to notify the network
at every point in the network where it re-connects to the network. When a car re-
connects to the network through a PoA, the PoA sends the BI to any MA on the
shortest path and the MA’s will synchronize this update among themselves.

We observe from the results in Figure 8.2 that NeMoI generated 3,767 mobility
updates in scenario 2 and 3,245 mobility updates in scenario 3. Whereas other state
of the art solutions like global updates, anchor-based, anchor-less based solutions and
without the logical multi-level FIB optimization in NeMoI 243,340 mobility updates
were generated. Similar to the train scenario, we see from the results that with
NeMoI there is a significant decrease in the signalling traffic and routing updates
compared to the existing solutions. We also observe that, NeMoI ensures reachability
and faster updates compared to global updates. Similar to the train scenario, we
assigned only a single prefix to each producer in these experiments. Since producers
use a single BI packet for all of their prefixes (deterministic or non-deterministic),
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Figure 8.3: Mobility updates with Core
MA placement strategy.
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Figure 8.4: Mobility updates with Edge
MA placement strategy.
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Figure 8.5: Mobility updates with
Random MA placement

strategy.

the number of packets is reduced to 1 for each producer in comparison to a design
where each prefix has to be carried in a separate BI (i.e., no. of prefixes = no. of
BI’s).

8.2 Effective route optimization

We realized that with NeMoI, the effective placement ofMAs is a key to achieve effec-
tive route optimization and to gain maximum performance benefit. So we used the
network mobility with train as an example to evaluate the effect of MA placements,
we choose three different placement strategies namely: Core, Edge and Random for
placing the MAs respectively at the core, edge and random locations in the Rocket-
Fuel AS1221 topology. Placing the MAs at the edge of the network could result in
reduced path inflation. However, it can affect the propagation of mobility updates
and in turn contribute to increasing the overall path inflation. Placing the MAs at
the core of the network seems to provide more promising results as it can increase
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Figure 8.6: Path inflation in Anchor
and NeMoI with Core
placement strategy.
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Figure 8.7: Path inflation in Anchor
and NeMoI with Edge
placement strategy.
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Figure 8.8: Path inflation in Anchor
and NeMoI with Random

placement strategy.

the propagation of mobility updates. However, there is also a possibility that the
placement of MAs might not be a significant factor so, even a random placement of
MAs would be sufficient.

Hence, we investigated the behaviour of NeMoI with all three placement strategies
and with different number of MAs. We begin with one MA and gradually increased
the number of MAs to five. We placed a single producer in Adelaide. The producer
generated a BI after attaching to the router1737 in Adelaide. Further, we also mea-
sured for each placement, the percentage of intermediate routers that were updated
and the time to update them. We observe from the results in Figure 8.3, 8.4 and
8.5 that Core MA placement performs the best out of the three choices and updates
maximum number of routers in the network with the least amount of time. We
also observed that the percentage of routers updated increased with increase in the
number of MAs.
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8.3 Path inflation

Path inflation is an unavoidable consequence of indirection. In NeMoI, since Inter-
ests are redirected towards MAs for resolution, a concern emerges for path inflation
experienced by the consumers. The design choices in NeMoI try to minimize path
inflation if not eliminate it entirely. It is a trade-off we believe that has to be made
to ensure connectivity and reachability with mobility. Since we use MAs similar
to anchor-based solutions, we compare the path inflation in NeMoI with that of
anchor-based solutions.

8.3.1 Experimental setup

For this experiment, we placed a producer in Adelaide and associated 101 consumers,
one each to every router in the topology (1:1). The consumer arrival process followed
a normal distribution.

8.3.2 Experiment

First, we measured the path inflation experienced by consumers in NeMoI and com-
pared it to anchor-based solutions by leveraging the three different MA placement
strategies described earlier with five MAs. The consumers arrived and generated
Interests accordingly. We then measured path inflation by counting the number of
hops the Interest traveled to reach the producer. For this experiment, in NeMoI,
when the producer sent a BI, the MAs and the intermediate routers that forward
the BI were updated. We observe from the results in Figure 8.6, 8.7 and 8.8 that
path inflation in NeMoI is considerably lower compared to anchor-based solutions.
Further, consumers experienced the lowest path inflation with Core MA placement.

Second, we measured the path inflation in NeMoI using two different scenarios. In
the first scenario, we measured cumulative path inflation by counting the number of
hops the Interest traveled when the producer sent a BI and only MAs were updated.
In the second scenario, we measured the same, but along with MAs the intermediate
routers that forward the BI were also updated.

We observe from the results in Figure 8.9, 8.10 and 8.11 that NeMoI reduces path
inflation by allowing the intermediate routers to update their routing information
when they forward BI to the MAs. Again we observe that Core MA placement
strategy outperforms Edge and Random placements. Further, NeMoI also allows
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increasing MA in NeMoI
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rest of the network to gradually update reactively as they forward Interest towards
the producer via the MAs.

Third, we analyzed the effect of increasing the number of MAs in NeMoI. We
measured the cumulative path inflation in the Core placement strategy with two
scenarios. In the first scenario, whenever the producer sent a BI, the intermediate
routers were allowed to update their routing tables while in the second scenario
the intermediate routers were not allowed to update their routing tables. For the
same consumer arrival process described earlier, we increased the number of MAs
from 1 to 5 and measured the cumulative path inflation for the consumers. We
observe from the results in Figure 8.12 that as we increased the number of MAs, the
path inflation started to decrease. Further, we observe that path inflation reduced
when the intermediate routers were allowed to update their routing information.
Therefore, with the right number of MAs, we can significantly minimize the path
inflation in NeMoI.
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Figure 8.13: Path inflation in Train.
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Figure 8.14: Path inflation in Car.
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optimization in NeMoI
during network mobility.

Last, we measure the path inflation experienced by consumers travelling in the
train and the cars. At each stop, consumers travelling in the train and cars generated
an Interest for the content produced by an immobile producer located in Adelaide.
In the first scenario, we measured the cumulative path inflation experienced by the
consumer in NeMoI and compared it with anchor-based solutions. In the second
scenario, we measured the cumulative path inflation experienced by the consumer
in NeMoI when the intermediate routers were allowed to update their routing infor-
mation with the mobility update and compared it to the case when the routers were
not allowed to update.

We observe from the results in Figure 8.13 and Figure 8.14 that total path infla-
tion experienced by consumers in NeMoI is only 24 hops, compared to 68 hops in
anchor-based solutions. Further, Figure 8.15 also shows that path inflation decreases
considerably when intermediate routers are also updated.

8.4 Packet loss

Since the producers in the train and cars are constantly moving during their journey
from Perth to Sydney they are re-connecting to the Internet at every access router
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and BS in the network. As a result during every re-connection the train and cars
send a mobility update (BI) to the network to propagate the information of their
current PoA. However, there is an unavoidable synchronization delay involved until
the information is propagated to all the nodes in the network. During this time, if
any user sends an Interest for the data served by the train, cars or any producer
travelling in these moving network, the Interest cannot be satisfied if there were no
cached copies. This is a direct consequence of mobility, which is aggravated with
the increasing number of mobility update as the network is unstable. Hence we
measured the amount of packet loss in NeMoI during mobility.

8.4.1 Experimental setup

During the journey from Perth to Sydney the train is reconnecting at 110 BS, simi-
larly, the cars travelling in path1 reconnects at 98 BS while those on path2 reconnects
at 103 BS and send BI during each reconnection. We configured the simulator to
assume the delay of 1ms for propagating the mobility information to the nearest
MA. We used five routers as MAs and assigned 101 consumers to each remaining
router in the network.
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Figure 8.16: Packet loss in Train in
NeMoI during network

mobility.
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Figure 8.17: Packet loss in Car in
NeMoI during network

mobility.

8.4.2 Experiment

For the deterministic and non-deterministic scenarios, the train/cars started their
journey from Perth to Sydney. The 101 consumers generated Interests according to
a normal distribution and non-uniform arrival pattern. In the non-mobility case all
the Interests would be satisfied by the network. However since during the mobility
update the network is unstable, as a consequence, some Interests will be dropped
and this results in packet loss. The packet loss at the onset of mobility update
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propagation is inevitable unless the Data was already cached in some routers. For
this experiment, we turned off caching to measure the amount of packet loss during
mobility. The results are shown in Figure 8.16 and 8.17. We observed from the
results that NeMoI tried to minimize packet loss with faster propagation of mobility
update. Please note that at stop 3 users experienced maximum packet loss because
there were 48 reconnections (BS) between stop2 and stop3 compared to other stops
where reconnections ranged between 8 to 22.

Through these evaluations we demonstrate the effects of mobility in the net-
work. We evaluated NeMoI with standard state-of-the-art solutions and showed
that NeMoI significantly reduced the signalling traffic and path inflation. We also
evaluated effective route optimizations with three placement strategies for MA and
showed that Core placement provides maximum benefits. In NeMoI, there is no
need for a MA in every users Home Network like in Mobile IP, but the MAs is
an additional function of the nodes in the network. With just 5 MAs we showed
a reduction in the number of network updates and increase in the propagation of
mobility updates. With a careful design of the MA service it is possible to choose
the suitable number of MAs to achieve the desired performance. Intuitively, it can
be seen that since NeMoI greatly reduces the signalling traffic w.r.to the state-of-
the-art solutions, the energy consumption in NeMoI is proportional to the signalling
traffic. We observe from the evaluations that NeMoI reduced the total traffic from
0.215B to 4.6M and total number of hops from 68 to 24. Such reduction also has
energy related benefits [144].

8.5 Chapter summary

In this chapter we evaluated the performance of NeMoI, the architecture for network
mobility in ICN proposed in Chapter 7. Leveraging a real world topology with one
million dataset we showed that NeMoI performs 47times better than global updates
and other existing solutions. The results show that NeMoI dramatically reduced
the signalling traffic, routing updates, path inflation and minimized packet loss
in both deterministic and non-deterministic mobility scenarios. We also examined
three important placement strategies for MAs and established an effective placement
strategy to provide efficient route optimization.
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Chapter9
EVA: A Distributed Optimization
Architecture for Efficient Video
Analysis

Deep Neural Networks (DNN) are popularly used to improve the prediction accuracy
of video analysis. However, DNNs are computationally expensive as they demand
higher resources. Moreover, video analysis applications require low latency, high
bandwidth and storage. Hence, video traffic is increasingly pushed to the Edge
to improve network performance and reduce the load on the Cloud. This chapter
tackles the resource-accuracy optimization issues associated with DNN applications
through a distributed architecture named EVA and understands the video analy-
sis application’s requirements. We noticed that timeliness of anomaly detection is
crucial in many video analysis applications along with minimal resource utilization.
Therefore, this chapter studies the overhead of profiling techniques which are com-
monly used to find optimal DNN configurations during video analysis to achieve
good resource-accuracy trade-offs. To minimize this overhead, we propose the 2-
stage deep learning approach which eliminates the need for profiling by building
efficient and robust DNNs and produces better resource-accuracy trade-offs. We
further propose two rate adaption algorithms: Adaptive Frame Rate (AFR) and
Adaptive Resolutions (ARR) to optimize the video analysis and resource consump-
tion, bandwidth and storage during video analysis with DNN.

The key contributions in this work include:

• A distributed optimization architecture called EVA for efficient video analysis
using DNNs.

• 2-stage deep learning to build robust DNNs with high accuracy for eliminating
profiling.
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• Adaptive Rate algorithms: AFR and ARR to optimize the performance of
video analysis.

• Reduce the bandwidth and storage consumption.
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Figure 9.1: EVA design and system overview.

9.1.1 EVA architecture

The proposed distributed architecture of EVA is shown in Figure 9.1 (a) while a
detailed functional overview of a system implementing the services is shown in Fig-
ure 9.1 (b). Through literature survey, we identified the minimal set of services in
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EVA for efficiently supporting the requirements of Video surveillance and Manage-
ment System (VMS) applications. Essentially, we provide the services for caching,
coding, video analysis and pub/sub at the Edge while utilizing the long-term stor-
age and streaming services of the Cloud. We choose the caching and coding services
at the Edge since studies in [52] have shown that caching has the potential to in-
crease revenue for the service provider. Further, many VMS applications require
timely delivery of event notification and mostly rely on human support for constant
monitoring. Therefore, we provide video analysis and pub/sub services at the Edge
to eliminate such temporal dependency and deliver the notifications in time when
an event of interest occurs, and thereby minimize the need for human monitoring.
With the help of these services, we aim to steer the surveillance video traffic towards
Edge [53–56], and alleviate it from consuming bandwidth in the core network and
further fulfill the low latency requirement of many video analysis applications.

Through the management interface in EVA, the Edge service provider advertises
the services for video analysis, processing, transcoding, pub/sub, storage, etc. The
customers can opt for any/all of these services. The pricing and Service Level
Agreement (SLA) for the services offered at the Edge is out of scope of this chapter,
however, they can be provided on the management interface. For security, we assume
that standard requirements will be met by the Edge service provider. For further
readings about security at Edge we refer the readers to recent works [145–147]. Once
an agreement is concurred between the customer and the Edge service provider,
the applications can start using the services shown in Figure 9.1. Essentially, the
surveillance cameras start to monitor their surroundings and simultaneously upload
their videos to the Edge for analysis. Since the Edge is located close to the user, the
latency to upload the video is dramatically reduced, and the video traffic in the core
network is also avoided. Edge provides the 2-stage deep learning (see §9.2) video
analysis algorithms to detect interested anomalies in the uploaded videos. Once the
video is uploaded, it is stored in the cache temporarily for a duration selected by the
client at the time of buying the service. The video is then sent to the pre-processing
module which splits it into individual frames. These frames are then fed into the
DNNs for detecting anomalies.

During analysis we use one of the two adaptive rate algorithms: AFR or ARR
(see §9.4) based on the application and Edge’s requirements to optimize the perfor-
mance of video analysis, bandwidth and storage. Even though, EVA is capable of
detecting many different abnormal activities during video analysis, in this chapter
for simplicity, we analyze the surveillance videos to detect normal and abnormal
behaviours such as shoplifting, car accidents, robbery, etc., provided in the UCF-
Crime dataset [61]. The result from the video analysis process will contain the class
of the video from the UCF-Crime dataset e.g., Normal, Shoplifting, Car accidents,
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etc. The video analysis also outputs the percentage of normal and abnormal activ-
ity found in the video alon with the frame rate and resolution used to analyze the
respective video. The results are then forwarded to the pub/sub module.

In order to avoid re-inventing the wheel, we refer to existing pub/sub architectures
in IP and future Internet architectures such as ICN [6] and COPSS [3] to offer a
controlled and efficient pub/sub service. In this work, we leverage COPSS as the
exemplary pub/sub architecture. The pub/sub module maintains a subscription
table with the list of anomalies such as Shoplifting and Robbery that subscribers
are interested in along with the outgoing ports that publisher should use to send
the notification messages to the subscribers. The consumers (authorities, security
agents, etc.) interested in receiving notifications upon detecting anomalies subscribe
to this service via the management interface. We use a pub/sub model specifically
to avoid the temporal dependency between the subscriber and publisher for the
abnormal events. Since it is not known when an abnormal activity takes place, the
pub/sub model is a good candidate to send event notifications to the subscribers
in time when an activity of interest is detected. Additionally, we use the pub/sub
module to send feedback information from video analysis to the subscribers to dictate
the frame rate or resolution for uploading the videos to the Edge for optimizing the
bandwidth utilization.

Transcoding is a standard operation used to generate videos with different bit
rates (quality) for streaming the videos to viewers with different available download
bandwidth [148, 149]. Parallel to video analysis, the transcoding module codes the
videos in the cache to different bitrates as per the QoS indicated by the producer.
For the surveillance videos, after the video analysis, the frame rate and the resolution
used to analyze the video is forwarded to the transcoding module via the delivery
module. The transcoding module uses this feedback and directs the storage module
to store the video in the Cloud at this frame rate and resolution. The storage module
opportunistically stores the video in the Cloud whenever the bandwidth is available.
The video is stored in the Cloud for long-term storage and streaming.

9.1.2 Video analysis in EVA

During video analysis, the video is classified in to Normal or Abnormal class based
on its content. The resulting classification, prediction accuracy, frame rate and res-
olution of every video is forwarded to the pub/sub module. The resulting frame rate
and resolution is also forwarded to the storage module. Upon detecting anomalies
during video analysis such as when a video is classified as Abnormal, the video anal-
ysis module also sends an event notification request to the pub/sub module with
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the video details (e.g., ID or name) and the obtained classification and prediction
accuracy. Once the publisher in the pub/sub module receives this request, it gener-
ates an event notification with a publication packet containing the video ID and the
observed abnormal behaviour (e.g., Shoplifting) and looks up the subscription table
to obtain the ports to forward the packet. The publication packet is forwarded to
the delivery module. The delivery module forwards the publication packet to the
respective outgoing port(s) and sends a wait packet with the duration set by the
application (e.g., 24hrs) to the Transcoding module with the details of the video
to retain it in the cache as it is most likely to be requested by the subscribers for
inspection. A trade off here is to retain multiple copies in caches at the Edge and at
the Cloud, however, Pang et al. [52] show that caching at the Edge has the potential
to increase payoff for service providers. The delivered notification appears on the
management interface, and the subscriber can request to download the video for in-
spection using standard streaming protocols offered by the Edge (e.g., DASH [150])
that is embedded in the management interface. Subsequently, the video is deliv-
ered to the subscribers via the delivery module. The resulting frame rate/resolution
for the next video segments is sent as a feedback from the pub/sub module to the
subscribers to control the video upload to the Edge in order to efficiently utilize
the bandwidth. Optionally, when normal activity is detected, the publisher in the
pub/sub module can send a periodic update notification to the subscribers with a
status OK message using the same publication packet. Simultaneously, the frame
rate/resolution that were used during the video analysis are forwarded to the stor-
age module, which uses this feedback to store the videos in the Cloud with the
frame rates and resolution used during video analysis. The underlying principle is
to store the videos with normal content at lower frame rates and lower resolutions
while videos with anomalous content are stored at higher frame rates and higher
resolutions and, thereby reduce the overall storage requirement.

9.2 2-stage deep learning

Video analysis is the core component of surveillance applications. During analy-
sis, there is always a trade-off between resource demand and prediction accuracy.
In other words, highly accurate DNNs consume higher resources [14]. For in-
stance, DNNs need about 30 Gflops to process a single frame when detecting an
object [28]. Hence, most video analysis approaches use profiling to find optimal
configurations [14,32] to achieve better resource-accuracy trade off.

Profiling is usually performed either at the start of the analysis or periodically at
regular intervals, and studies show that periodic re-profiling delivers an improved
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performance [14, 32]. However, profiling is an expensive operation and adds ad-
ditional overhead during video analysis [32]. Zhang et al. [32] show that profiling
needs specialized hardware such as GPU’s along with parallelization and sampling to
speed up the process of selecting optimal configurations for video analysis. Usually,
the Edge delivers low latency requirements demanded by many applications such
as VMS and hence, the overhead of profiling may hinder fulfilling this requirement.
Further, video also consumes a lot of bandwidth along with storage which is an
expensive component of the video analysis applications [58–60].

In order to eliminate the need for profiling in video analysis, we propose a 2-stage
deep learning approach to build efficient and robust DNNs in the respective offline
and online stages. Essentially, during the offline stage we build efficient DNNs by
exploiting the vast amount of already existing video data from the video analysis
applications. It is well known that, performance of any machine learning model
including deep learning with DNNs is highly dependent on the type and amount
of available training data. Therefore, it is important to train the DNNs with all
possible scenarios that it is expected to identify when it is deployed in the real
world. However, newer scenarios such as threats/crimes during video surveillance
are introduced constantly and it is difficult to capture all possible scenarios during
training. Therefore, in EVA, we propose to train the DNNs initially with available
data in the offline stage and continue training the DNNs with newer incoming video
data on the fly in the online stage in parallel to video analysis. Thus, we build
robust DNNs, that improve the performance and overall accuracy of detection.

In EVA, we want to optimize the complex operation of classifying the videos into
their respective categories (Normal, Shoplifting, etc.) during analysis to improve the
accuracy of detecting incidents; rather than simple object detection which has lower
accuracy and does not consider temporal information which exists between frames in
the video. Many traditional video analysis applications that perform object detection
utilize CNNs. However, standard CNNs can only extract spatial features from static
images. Extensions such as from Karpathy et al. [151] which extend the standard
CNNs to extract temporal features from the videos produce lower accuracies with
increased complexity. Moreover, Karpathy et al. also mention that RNNs are more
powerful than CNNs and they wish to explore RNNs in the future. Hence, we
realized that CNNs are not enough and we explored the combination of transfer
learning, CNN, and RNN to build robust and highly accurate DNNs. Essentially,
we utilize the Google’s InceptionV3 CNN network that was pre-trained using the
Imagenet’s dataset. We leverage this CNN and transfer learning with the UCF-
Crime dataset to build efficient RNNs. The RNNs are built using the Long Short
Term Memory (LSTM) architecture as it can maintain the temporal relationship
between the frames in a video and significantly improve the accuracy of detection.
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In this chapter, we leverage the UCF-Crime dataset along with its ground truth
to build the RNNs for video analysis. We divide the UCF-Crime dataset into 3 cat-
egories: training, validation and online dataset. We build the DNNs with commer-
cially used [152,153] frame rates (6fps, 8fps, 10fps, 15fps and 30fps) and resolutions
(240p, 480p, 720p).

As, the required depth i.e., the layers in any DNN is not known a priori, similar
to Sahoo et al. [50], we begin by building a shallow DNN during offline stage with
just one layer and one video segment. We then validate the performance of the DNN
with the ground truth from the UCF-Crime dataset using the videos in the validation
dataset. Subsequently, we increase the layers of the DNNs to 12, 16, 20, 30, 128 and
so on when we observe a degradation in the resulting F1 score (prediction accuracy)
of the DNN [50]. F1 score is the harmonic mean between precision and recall and it
is commonly used in machine learning to determine the outputs of analysis. The F1
score usually lies between 0 and 1, where 0 represents the lowest and 1 represents the
highest measured qualities. Please note that except the DNN layers, frame rate and
resolution, we fixed the remaining DNN configuration knobs such as loss, optimizer,
regularizer, activation, etc., during the training. We continue the offline training
process until we build accurate and deep enough DNNs (e.g., 1024 layers) that can
efficiently analyze the videos and produce results with higher accuracies. We repeat
this process for building a DNN for each selected frame rate and resolution. The
DNN is then trained with all the remaining offline training videos in the dataset.
During the offline training, every DNN is assigned a benchmark threshold value for
the normal content that it can detect based on the data used to train the DNN. We
noticed that every DNN (for each selected frame rate and resolution) had a separate
threshold value based on its accuracy of prediction. This is due to the possible
and yet, acceptable degradation in the prediction accuracy of the DNNs with lesser
frames and resolutions as they have less data points to learn.

In the online stage, we continue to use the DNNs built in the offline stage, to
predict newer incoming videos. Additionally, we re-train the DNNs in parallel with
the new incoming videos. We continue to use these DNNs until a degradation in
the accuracy below an established threshold (e.g., 75%) is detected for any of the
DNNs. The threshold is an application specific tunable parameter and is subject
to the type of videos under analysis. Once a degradation is detected, we re-train
that DNN’s configurations by increasing the number of its DNN layers to improve
its prediction accuracy/F1 score. Since we use F1 score as a metric to improve the
performance of the DNNs we can avoid the need for periodic re-profiling during video
analysis. Instead, in EVA, we use the prediction accuracy of each video segment to
find the DNNs with the best configurations for analyzing the next video segment
and thereby, eliminate the overhead of profiling.
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Table 9.1: System environment.
Environment Parameter Description

Current
environment

xt % of normal content in vt
pt Threshold for normal content at t
lt Length of vt
rt Frame rate selected for vt
ρt Resolutions selected for vt
Mt RNN selected for vt

Next video
segment

lt+1 Length of vt+1
Ft+1 Original Frame count in vt+1
Rt+1 Original Resolution of vt+1−→n M available DNNs for v

Adaptive
Rate
Decision

rt+1 Frame rate selected for vt+1
ρt+1 Resolution selected for vt+1
Mt+1 DNN for vt+1
pt+1 Threshold for normal content

Algorithm 1: AdaptiveRate
1 Function AdaptiveRate(Svt,AFR,ARR,c1,c2):
2 if AFR then
3 Function AFR (Svt , c1, c2)
4 else
5 Function ARR (Svt , c1, c2)
6 end
7 return Svt+1

8 return

9.3 System model

We studied that frame rate and resolution are the most dominant video metrics [14,
31] during analysis. The idea behind our approach to optimize video analysis is to
build robust DNNs that eliminate profiling by utilizing rate adaption with different
frame rates and resolutions. The motivation for rate adaption is the insight that,
most of the videos captured during surveillance tend to have normal content and
suspicious/abnormal activities such as robbery, shoplifting, car accidents, etc., are
infrequent and occur for a very short duration [51]. However, the timely detection of
these abnormal events with high accuracy is a crucial requirement [51] of surveillance
applications.
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In the next section, we propose two rate adaptive algorithms for optimizing the
video analysis process. As the prerequisite, in this section, we extract the corre-
sponding system environment required by the rate adaptive algorithms in EVA. In
a video analysis environment, let vt be the current video segment (chunk), where a
segment refers to a small portion of the entire video stream, e.g., 2min segments of
a 2hr long video stream. Let `t, Ft and Rt be the length (video duration), frame
count and resolution of the video segment vt respectively. Let xt be the percent-
age of normal content present in the video vt based on the ground truth from the
existing videos/golden configuration [31]. Golden configurations are generally used
in the absence of ground truth to validate the output of machine learning algo-
rithms. They are usually expensive as they demand high resources and use the
best configurations but, they are known to produce highest accuracies and hence
desired for cross-validation. In our prediction model, pt is the benchmarked normal
video threshold value of the DNN selected for vt, wherein each DNN has a separate
threshold. The threshold is based on the observed normal content during the offline
testing. Similarly, rt and ρt are the frame rate and resolutions of vt respectively.
Finally, Mt is the DNN selected for analyzing vt and −→n t is the number of available
DNNs for rate adaption. The complete system environment for rate adaptive algo-
rithms is listed in Table 9.1. During analysis, after the prediction of every video
segment vt, the following state information Svt+1 is collected.

Svt+1 =
[
xt,pt, rt,ρt, `t+1,Rt+1,Ft+1, rt+1,ρt+1,pt+1,Mt+1,

−→n t+1
]
.

9.4 EVA algorithms

A pseudocode of the AdaptiveRate algorithm in EVA is shown in algorithm1. Given
the state Svt with the current system environment, and the selection between AFR
or ARR, the algorithm will select an optimal DNN for the next video segment vt+1
such that,

π : π
(
Svt+1 ,Mt+1

)
→ [0,1] ,

where π
(
Svt+1 ,Mt+1

)
is the probability that a DNN Mt+1 is chosen for the state

Svt+1 . Essentially, with rate adaption using AFR, a video analysis algorithm anal-
yses every Xth frame in a video segment vt instead of all the frames in every video
segment in the video stream. While, with ARR, the video analysis algorithm anal-
yses every video segment vt with low to high resolution instead of analyzing the
whole video stream at a constant high quality. Subsequently, the resulting frame
rate and resolution used to analyze the current video segment dictates at what frame
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Algorithm 2: AFR
1 Function AFR (Svt,c1,c2):
2 Input video segment for analysis;
3 if xt ≥ pt then
4 rt+1 = FrameRateArray [rt− c1]
5 else
6 rt+1 = FrameRateArray [rt+ c2]
7 end
8 Mt+1 =DictionaryNeuralNetworks [rt+1] /* Key:FrameRate, Val:Mt+1 */

9 pt+1 =DictionaryThresholds [Mt+1] /* Key:Mt, Val:pt+1 */

10 PredictandUpdate(Mt+1,Sv) return Svt+1

11 return

Algorithm 3: ARR
1 Function ARR (Svt,c1,c2):
2 Input video segment for analysis;
3 if xt ≥ pt then
4 ρt+1 =ResolutionsArray [ρt− c1]
5 else
6 ρt+1 =ResolutionsArray [ρt+ c2]
7 end
8 Mt+1 =DictionaryNeuralNetworks [ρt+1] /* Key:Resolution, Val:Mt+1 */

9 pt+1 =DictionaryThresholds [Mt+1] /* Key:Mt, Val:pt+1 */

10 PredictandUpdate(Mt+1,Sv) return Svt+1

11 return

rate and resolution the video segment should be stored to optimally use the storage
resources and reduce the cost of storage. The resulting frame rate and resolution
used during analysis of the current video segment also dictates the frame rate and
resolution of the next video segment to be uploaded to the Edge. In EVA, the video
stream uploading module in the camera/device’s API requests the frame rate and
resolution for the next video segment to the video analysis module operating in the
Edge. The resulting frame rate and resolution used during analysis of the current
video segment (feedback) is sent back as the reply. This ensures an efficient use of
the available bandwidth.

We assume that DNNs are stored in an increasing order of their complexity. There-
fore, the DNNs can be easily accessed similar to accessing values in an array with
the help of a reference index. We propose to adapt the frame rates and resolutions in
AFR and ARR with the help of two counters c1 and c2 referred to as the decrement
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and increment indexes. We propose to use two counters to accommodate distinctive
behaviours that need to be applied in selecting the DNNs when normal and abnor-
mal activities are found in the videos. The rate adaption using these counters is
described as follows:

The decrement counter is ‘c1’ where (0< c1< n) and increment counter is ‘c2’
where (0< c2< n). The DNN Mt+1 for the video segment vt+1 is selected as follows:

M t+1 (vt+1) =
{
ri− c1,ρi− c1 if xt ≥ pt
ri + c2,ρi+ c2 Otherwise.

Essentially, upon finding normal activity in the current video segment, we decrease
the frame rate/resolution for the next upcoming segment and select a DNN with the
decrement counter ‘c1’. Whereas, when abnormal activity is found, we increase the
frame rate and the resolution for the next video segment and select a DNN with the
increment counter ‘c2’.

The basic idea of the rate adaption with AFR and ARR during video analysis is
based on the prediction accuracy during the analysis of the previous video segment
in time as shown in the Algorithms 2 and 3. Every video segment is basically
a collection of frames that are at a specific resolution with temporal dependency
among the frames. Based on the analysis of current video segment, with AFR
the resolution remains constant, but the frame rate is increased for the next video
segment if suspicious activity was detected in the current video segment (line 6:
algorithm 2), and decreased if the detected (line 4: algorithm 2) normal content
was above an acceptable threshold (e.g., 75%). Similarly, with ARR the frame rate
remains constant, while the resolution is increased for the next video segment if
suspicious activity was detected in the current video segment (line 6: algorithm 3),
and decreased (line 4: algorithm 3) if the detected normal content was above an
acceptable threshold (e.g., 75%).

As shown in the algorithm 1, we first select either AFR or ARR and then select
the values for the counter c1 and c2 at the onset of the video analysis process and
this remains constant during the analysis of the current video segment of a specified
length used by the video analysis algorithm. If AFR is selected, then according
to algorithm 2 and the counters c1 and c2, we find the frame rate rt+1 and the
corresponding DNN Mt+1 for the current video segment and perform predictions to
classify the video segment into its respective category, e.g., normal, shoplifting, etc.
Similarly, if ARR is selected, then according to algorithm 3, and the counters c1
and c2, we find the resolution ρt+1 and the corresponding DNN Mt+1 and perform
prediction. After the analysis, the resulting frame rate (rt+1) and resolution (ρt+1)
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can be used by the storage module in Edge to decide the frame rate and resolution
at which the current video segment will be stored in the Edge/Cloud. Subsequently,
this feedback is used to dictate the upload frame rate and resolution of upcoming
video segments as discussed earlier to efficiently utilize the bandwidth. In this
chapter, the values for the counters ‘c1’ and ‘c2’ are set with an assumption that
available DNNs can be accessed similar to an array as shown in line 4 and 6 in
algorithm 2 and 3. Please note that, this can be changed (to suit) as per the needs of
the implementation of the algorithm. The aim is to efficiently select a DNN from the
set of available DNNs that can be accessed with the counters as reference indexes.
The rationale to increase the frame rates in AFR and resolutions in ARR when the
prediction degraded below the threshold is that DNNs with higher frame rates and
resolutions process more data points and hence have more features to consider during
analysis; thereby, improve the accuracy of prediction. Even though, this increases
the resource consumption during video analysis, it is essential when abnormal ac-
tivities are detected. This is also reflected by the results obtained with the baseline
profiler from Awstream in §10.2 where, the profiler selected higher frame rates and
resolutions as the optimal configurations to increase the accuracy of prediction.

9.5 Chapter summary

In this chapter, we studied video analysis application’s requirements and observed
that video analysis is the most time consuming, resource demanding and expensive
operation. We proposed a distributed architecture named EVA to exploit the ben-
efits of Edge and Cloud through identifying the minimum set of services needed to
support the video surveillance applications at the Edge. Further, we also noticed
that profiling adds additional overhead during video analysis. Hence, we proposed
2-stage deep learning to build efficient and robust DNNs that produced higher ac-
curacies with minimal configurations and thereby, eliminated the need for profiling.
We also proposed two rate adaptive algorithms: AFR and ARR to optimize the
video analysis at Edge and efficiently utilize the available bandwidth and storage.
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Chapter10
Application - Video Analysis

With the technological advancements, cameras have become indispensable and have
given rise to many new applications. One such prevalent application is the Video
surveillance and Management Systems (VMS). The VMS applications store and
analyze video sequences and their meta-data information associated with safety
events. They detect potential and on-going security breaches like robbery and crime
and take timely actions to prevent incidents like vehicular accidents, fire hazards,
etc. These systems require many different services such as transcoding, video
streaming, storage, analysis, etc. Since VMS usually record videos round the clock,
they demand massive storage and bandwidth requirements. Further, analysis of
such large data requires high-performance computing, which is expensive although
essential. Therefore, in this chapter, we leverage the UCF-Crime dataset [61] to
measure the performance of the DNNs built using the 2-stage deep learning and the
rate adaption algorithms proposed in EVA from Chapter 9. The evaluations show
that, EVA considerably outperforms the baseline Awstream algorithm with 71%
improvements in resource consumption and 69% in CPU utilization whilst reducing
the bandwidth consumption by 70% and storage by 61%.
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10.1 Preliminary evaluation

In the preliminary evaluation we measured the performance of DNNs that were built
using the proposed 2-stage deep learning technique.

10.1.1 Dataset

The UCF-Crime [61] dataset consists of real world surveillance videos representing 13
different anomalies: Normal, Shoplifting, Arrest, Burglary, Road Accident, Fighting,
Explosion, Robbery, Arson, Stealing, Abuse, Shooting, Vandalism and Assault. The
dataset also supplies the associated ground-truths for the videos. It was sufficient
for us to just identify normal and abnormal activities in the videos during analysis
to show the applicability of our solution and measure its benefits. Therefore, to
reduce the overhead of the experiments we classified the videos into their individual
respective classes and further into two broad classes namely: Normal and Abnormal.
Please note that for simplicity, we only show the results with Normal and Abnormal
classes. Since the videos in the original dataset were of uneven length, we merged
them using a video joiner tool and split them into equal length videos of 1 minute
segments. Subsequently, we created a dataset with 40 Normal and 90 Abnormal
videos for evaluation. We further split the dataset into three smaller datasets for
training (80%) and validating (10%) the DNNs in the offline stage and testing (10%)
in the online stage.

10.1.2 Experimental setup

The training and experiments were performed on an Intel quad core based server
with 100GB RAM and 350GB hard disk. The server located in the server room in a
building was used to represent the Edge. A client camera with 100Mb/s link to the
Edge was used for uploading the videos to the Edge for analysis. We envision that
our solution can also be deployed on resource restrictive IoT Edge environments,



129 10.1 Preliminary evaluation

hence, we performed the experiments with only CPU. However, we observed that,
even without GPU, our proposed rate adaptive algorithms have outperformed the
existing profiling techniques that demand expensive and additional computational
resources. Therefore, we envision that our solution is also compatible for deployment
on normal servers and even smaller network of embedded computing boards.

For the experiments, we selected five frame rates [152]: 6fps, 8fps, 10fps, 15fps and
30fps and three resolutions [153]: 240p (320x240p-Mobile quality), 480p (640x480p-
TV quality) and 720p (1280x720p-HD) that are most commonly used in commercial
applications [152,153]. The frame rates indicate the number of frames used per sec-
ond while the resolutions indicate the number of pixels in every frame in the video.

10.1.3 2-stage deep learning

We implemented the DNNs in python and initially used the Keras [42] API version
of Google’s pre-trained InceptionV3 CNN network, which was trained using the
Imagenet dataset. We used transfer learning to re-train the CNN network with its
existing weights using Tensorflow framework to generate the sequences. We then
used these sequences to build deep RNNs with LSTM architecture using the videos
in the dataset.

While testing the DNNs, we computed accuracy of a video segment by comparing
it against the ground truth if it is available such as in the offline case or by comparing
it with the accuracy of the most expensive DNN configuration, i.e., the golden
configuration [31]. As discussed earlier in Chapter 9 §9.3, golden configurations are
expensive, but they are known to produce high quality results. In this chapter,
the golden configuration is built using DNNs with deepest layers that produced
higher accuracy during training with all the frames in the videos at highest available
resolution. During evaluation, we measure the prediction accuracy by leveraging the
F1 score metric which is computed as the harmonic mean of precision and recall;
where an F1 score of 0 represents the lowest and 1 represents the highest prediction
accuracy. F1 scores are more commonly used in machine learning applications and
our evaluations are consistent with prior works that use this metric [14,31,32]. Please
note that, the proposed approach can also be used with other accuracy metrics.

10.1.3.1 Offline stage

During the offline training, we built a DNN for each selected frame rate and reso-
lution. For DNNs with different frame rates, we maintained a constant resolution
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of 240p for the videos. Whereas, for building DNNs with different resolutions, we
maintained a constant frame rate of 30fps for the videos. We used deep learning to
build DNNs for each selected frame rate and resolution by starting with 1 layer and
incrementally increasing it to 12, 16, 20, 30, 128, 256, 512 and 1024 layers. During
training we split the 1min video segments into frames and passed the frames to the
CNN model to extract features at the final pool layer. We then built a sequence
from these extracted features and passed them to the LSTM RNN for training and
subsequently predicted the class of the video segment i.e., Normal or Abnormal. We
started the training with a shallow DNN and increased its layers whenever there was
a degradation in the observed prediction accuracy. We continued this process until
we found a stable and deep enough DNN (1024 layer in our experiments) that pro-
duced higher accuracies. We validated the results from these DNNs with the ground-
truth from the UCF-Crime dataset before deploying them in the online stage.

10.1.3.2 Online stage

During online stage, we sequentially uploaded the test videos to the Edge that were
previously unseen by the DNNs during their offline training. Similar to the offline
stage, the DNNs continuously trained themselves with the newer incoming videos
and simultaneously analyzed them for any abnormal content. In online stage, to
mimic a real world situation, we validated the prediction accuracy with the golden
configuration as the ground truth for new videos would not be available. Since the
ground truth from UCF-Crime dataset was also available, we further cross verified
the prediction accuracy with the ground truth.

10.1.4 Prediction accuracy

Video analysis is expected to perform with high accuracy [14] especially when peoples
lives are at risk such as in VMS. Hence, it is crucial to build DNNs that accurately
classify videos as Normal or Abnormal based on their content. Further, in EVA, our
goal is to eliminate the overhead of profiling. Therefore, we used a 2-stage approach
to build DNNs with existing data in offline stage followed by continuous training in
online stage to improve the performance of the DNNs.

We needed to ensure these DNNs produced predictions with high accuracy in both
offline and online stage. Hence, we measured the prediction accuracy of these DNNs
with the test data in offline stage using the ground truth. However, to measure the
prediction accuracy, during online stage, we initialized the cameras with the videos
from the dataset and started uploading them sequentially to the Edge for analysis.
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Figure 10.1: Prediction accuracy of DNNs.

For each incoming video, we trained the DNN with the video and then predicted
the class of the video as Normal or Abnormal. The prediction accuracy in online
stage was validated using the golden configuration and further cross-validated with
the ground-truth in the UCF-Crime dataset. The same experiment was repeated
with all DNNs with different frame rates and resolutions. The resulting class and
prediction accuracy for each video segment was recorded.

To select an optimal DNN for each selected frame rate and resolution, we compared
the performance of DNN’s with different number of layers and plotted a graph with
the 99 percentile prediction accuracy as shown in Figure 10.1 (a) & (b). While, the
F1 score for the deepest 1024 layer DNNs that were selected for AFR and ARR are
shown in Figure 10.1 (c) & (d). We noticed from the results that with less layers the
DNNs were too shallow and hence the predictions varied greatly and produced false
positives. However, as we reached 128 layers, the predictions stabilized and steadily
started to increase until we reached 1024 layers where we achieved higher accuracies
of 93% - 98% with different frame rates and 83% - 97% with different resolutions.
Moreover, the results show that DNN’s with 1024 layers produced considerably high
accuracies with high F1 scores for all frame rates and resolutions i.e., even with just
6fps we obtained 96% accuracy and 240p produced 97% accuracy with ≈0.91 F1
score. We conclude from these results that with the 2-stage deep learning approach



Application - Video Analysis 132

1 12 16 20 30 128 256 5121024
Deep Neural Network Layers

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y 

in
 se

co
nd

s
6fps
8fps
10fps
15fps
30fps

(a) AFR Latency

1 12 16 20 30 128 256 5121024
Deep Neural Network Layers

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y 

in
 se

co
nd

s

240p
480p
720p

(b) ARR Latency
Figure 10.2: Latency.

we were able to build robust DNNs with high accuracies. Further, we used the actual
data that needed to be inspected to continually train the DNNs during the online
stage and the resulting DNNs were able to produce high accuracies and learn newer
threat patterns instantly.

10.1.5 Latency

Cloud service providers are moving to the Edge in order to reduce latency [154].
Hence, it is crucial to evaluate the latency of prediction during video analysis.
Therefore, we measured the prediction latency once the DNNs stabilized at 1024
layers. For this experiment, we randomly chose a video segment (1min length) from
the dataset and placed it in the cameras. The cameras uploaded the video segment
to the Edge for analysis. In the Edge, we analyzed the video segment with the
DNNs built for the five different frame rates and three resolutions. We recorded the
execution time for the prediction function during the experiments to represent the
latency.

The results are shown in Figure 10.2. We observed from the results that, execution
time of the prediction function increased linearly with increase in frame rates and
resolutions i.e., lower the frame rate and resolution, lower the latency of prediction.
Combining the findings from Figure 10.1 and Figure 10.2, we conclude that DNNs
with smaller frame rates (e.g., 6fps) and low resolution (240p) can also produce
accurate results ( 98%). Therefore, in EVA we propose to use lower frame rates
and resolutions to analyze the videos when it has normal content and utilize higher
frame rates and resolutions at the onset of discovering abnormal content. Conse-
quently, leading to faster execution time; thereby, we can dramatically reduce the
consumption of computing resources and speed up video analysis. This was a key
finding that motivated us to propose the rate adaption algorithms.
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10.2 Evaluation

The DNNs built using the proposed 2-stage deep learning in the preliminary evalua-
tion (§10.1) are used in the remainder of this section to evaluate and compare AFR
and ARR to the baseline Awstream approach. We especially measured the benefits
achieved with the rate adaption algorithms w.r.t. resource utilization, bandwidth
and storage.

10.2.1 Baseline

For comparing the performance of EVA with a baseline profiling technique, we con-
sider the recently proposed Awstream approach by Zhang et al. [32]. Awstream,
provides an API for the profiler to find the configurations that optimizes the WAN
bandwidth and improves the accuracy of prediction. However, Awstream essentially
fine tunes the application knobs during object detection in images. Therefore, we
implemented the Awstream profiling techniques for video analysis with DNNs.

10.2.2 Experimental setup

After ensuring that DNNs predicted with the desired accuracy (§10.1.4) and latency
(§10.1.5), we used the 1024 layer DNNs to analyze and compare AFR and ARR with
the best and least performing settings dictated by the counters c1 and c2 (See §9.4).
For simplicity we name the best performing setting as additive where c1 and c2 select
the available DNNs in an increment and decrement fashion sequentially. While the
least performing setting is named as multiplicative since the counter c2 increments in
a multiplicative fashion upon detecting anomalies while c1 decrements sequentially.
For the baseline profiling technique with Awstream, we allowed the profiler to select
the most optimal DNN configurations from the available set of configurations with
different frame rates and resolutions for analyzing each video segment.

For the following experiments, we prepared a combination of 11 Normal video
segments (NV) and Abnormal video segments (AV) in the following order 1-NV,
2-4AV, 5-7NV, 8-9AV, 10-11NV and the cameras uploaded them in the given order
to the Edge for analysis. During analysis, we selected 8fps DNN for AFR and 240p
DNN for ARR as the benchmarks since they had high prediction accuracy with lower
latency. We set the threshold for normal content in the video to 75% based on our
testing during the offline stage and following the recommendation from Loewenherz
et al. [155] where they found that F1 score of ≥ 0.7 (70%) was a good indicator in
analytic applications.
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(a) AFR-additive
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(b) AFR-multiplicative
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(c) ARR-additive
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(d) ARR-multiplicative
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(e) Awstream-Frame rate
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Figure 10.3: Comparison of AFR, ARR and Awstream.

10.2.3 Adaptive rate algorithms

We used the AFR and ARR algorithms (algorithm 2 & 3 from Chapter 9 §9.4) and
selectively initialized the video analysis with additive variant followed by multiplica-
tive variant. We also set the rate adaption counters c1 and c2 to 1 in additive stage
and c1=1 and c2=n-a, in multiplicative stage where n is the number of available
DNNs; one DNN for each frame rate in AFR and each resolution in ARR and ‘a’ is
the index of the current DNN. During the experiment, for each of the 11 videos, we
recorded the frame rates and resolutions used during their analysis and the result-
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ing prediction accuracy of the normal content detected in the video. The results for
AFR are shown in Figure 10.3(a) & (b) and the results for ARR are shown in Fig-
ure 10.3(c) & (d) while the results for the baseline profiling technique in Awstream
are shown in Figure 10.3(e) & (f)

10.2.3.1 AFR

Essentially, the AFR algorithm decreased the frame rate during success (normal)
and increased the frame rate during failure (abnormal activities like, shoplifting).
Whereas, the baseline profiling technique in Awstream, picked the most optimal
DNN configuration for analyzing each video segment. As seen from the results in
Figure 10.3(a) & (b), during the experiment, the AFR algorithm with both addi-
tive and multiplicative modes analyzed the first video segment with 8fps DNN, and
predicted that normal content was 80% (≥75%). Since the prediction passed the
threshold with normal content ≥75%, the algorithm assumed there was no abnor-
mal activity. Hence, AFR decreased the frame rate as indicated by the sequential
decrement counter ‘c1’ and predicted the second video segment with 6fps DNN with
both additive and multiplicative modes. However, since the second video segment
was an abnormal video segment, the algorithm predicted only 11% normal content.
Since the prediction accuracy failed to achieve ≥75% normal content, the algorithm
increased the frame rate as indicated by the counter ‘c2’ with sequential increment
in additive stage and multiplicative increment in multiplicative stage. Therefore the
third video segment was analyzed with 8fps DNN with additive stage and 30fps DNN
with multiplicative stage. This continued until AFR processed the 5th video segment
where it predicted normal content was 91% and started decreasing the frame rate
by the counter ‘c1’ and subsequently analyzed 6th video segment with 10fps DNN
with additive stage and 15fps DNN with multiplicative stage and so on.

The results for the baseline Awstream profiler for selecting the optimal DNN con-
figuration at multiple frame rates are shown in Figure 10.3(e). The same experiment
as AFR was repeated with the Awstream profiler, which selected the deepest DNN
with 1024 layers with the highest available frame rate of 30fps for eight out of 11 video
segments and second highest frame rate of 15fps for the remaining 3 video segments.

10.2.3.2 ARR

Similar to AFR, the ARR algorithm decreased the resolutions during success (nor-
mal) and increased the resolution during failure (abnormal events like shoplifting).
As seen from the results in Figure 10.3(c) & (d), during the experiment, the ARR
algorithm with both additive and multiplicative modes, analyzed the first video seg-
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(a) AFR-additive
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(b) AFR-multiplicative
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(c) ARR-additive
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(d) ARR-multiplicative
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(f) Awstream-Resolution
Figure 10.4: Resources used in AFR, ARR and Awstream.

ment with 240p DNN, and predicted that normal content was 99% (≥75%). Since the
prediction passed the threshold with normal content ≥75%, the algorithm assumed
there was no abnormal activity. Hence, ARR decreased the resolution as indicated
by the sequential decrement counter ‘c1’, but since 240p is the lowest available reso-
lution, the algorithm predicted the second video segment with 240p DNN with both
additive and multiplicative modes. However, since the second video segment was an
abnormal video segment, the algorithm predicted only 6% normal content. Since the
prediction accuracy failed to achieve ≥75% normal content, the algorithm increased
the resolution as indicated by the counter ‘c2’ with sequential increment in additive
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(a) AFR vs. Awstream
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(b) ARR vs. Awstream
Figure 10.5: Comparison of bandwidth.

stage and multiplicative increment in multiplicative stage. Therefore, the third video
segment was analyzed with 480p DNN with additive stage and 720p DNN with mul-
tiplicative stage. This continued until ARR processed the 5th video segment where
it predicted normal content was 84% and started decreasing the resolution as indi-
cated by the sequential decrement counter ‘c1’ and subsequently analyzed 6th video
segment with 480p DNN with additive and multiplicative stage and so on.

The results for the Awstream profiler for selecting the optimal DNN configuration
with different resolutions are shown in Figure 10.3(f). The same experiment as ARR
was repeated with the Awstream profiler, which selected the deepest DNN with
1024 layers with the highest available resolution of 720p for eight out of 11 video
segments and second highest resolution of 480p for the remaining 3 video segments.

As observed from the results in Figure 10.3(a)-(d), in EVA, AFR and ARR used
higher frame rate and higher resolution DNNs only when abnormal activity was de-
tected, and lower frame rate and lower resolution DNNs were used whenever normal
activity was detected. However, in comparison, the results in Figure 10.3(e)&(f)
show that baseline Awstream profiler used the DNNs with best configurations and
ended up with higher frame rates and resolutions as a trade-off for improving ac-
curacy. Moreover, in both AFR and ARR, we noticed a much smoother transition
among DNNs with the best settings for counter values ‘c1’ and ‘c2’ in additive stage
in comparison to multiplicative stage. Therefore, multiplicative stage was more com-
putationally intensive than additive stage. However, even with the least optimal con-
figuration, rate adaption algorithms performed better than the baseline Awstream.

10.2.4 Resource consumption

Authors in [14,32] show that substantial amount of resources are needed to host the
DNNs and speed up video analysis. Therefore, we used the same experiment for AFR
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(b) ARR vs. Awstream
Figure 10.6: Comparison of storage.

(§ 10.2.3.1) and ARR (§ 10.2.3.2) to measure the benefits w.r.t. processing, storage
and bandwidth in comparison to the baseline profiling technique in Awstream. A
summary of these findings are given in the Table 10.1.

10.2.4.1 Processing

To verify the resource consumption w.r.t. processing, we measured the percentage of
CPU time used for prediction. In addition, we measured the number of frames pro-
cessed for each video segment in AFR and Awstream with different frame rates and
the resolution of the video segments processed in ARR and Awstream with different
resolutions. The results for AFR with additive and multiplicative modes are shown
in Figure 10.4 (a) & (b) and the results for ARR with additive and multiplicative
modes are shown in Figure 10.4 (c) & (d) while the results for profiling with Aw-
stream are show in Figure 10.4 (e) & (f) respectively. We observed from the figures
that, DNNs with lower frame rates and lower resolutions noticeably consumed less
resources. Since with additive and multiplicative modes we were able to efficiently
utilize the optimal DNNs for every video segment, we unmistakably saved a lot of
computational resources in comparison to the resources consumed by Awstream.
Further, we also compared additive stage with multiplicative stage and observed
that rate adaption in additive stage performed better than multiplicative stage and
provided greater savings in terms of CPU utilization, frame rates and resolution.

10.2.4.2 Bandwidth

To examine the bandwidth consumption, we measured the amount of bandwidth
used by each video segment that was uploaded to the Edge for analysis. The up-
loading frame rates and resolutions were based on the feedback received from the
analysis of prior video segments in time using AFR and ARR. In Figure 10.5 (a)
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Table 10.1: Improvements with AFR, ARR and Awstream.
Method Processing CPU Storage Bandwidth
AFR-additive 71.36% 69.45% 73.88% 70.60%
AFR-multiplicative 30.06% 35.12% 36.06% 35.75%
ARR-additive 36.36% 55.54% 61.41% 61.22%
ARR-multiplicative 30.30% 43.45% 47.27% 47.09%
AFR vs. ARR 66.66% 86.23% 91.11% 90.66%
Awstream-Frame 13.63% 13.31% 13.64% 13.63%
Awstream-Resolution 9.09% 18.13% 21.21% 12.20%

& (b) we summarized the bandwidth consumed by AFR and ARR with additive
and multiplicative modes in comparison to baseline Awstream respectively. We ob-
served that, there was an exponential increase in the bandwidth consumption as we
increased the frame rates and resolutions of the DNNs. Further, we also compared
additive and multiplicative modes and observed that additive stage consumed far
less bandwidth than multiplicative stage. However, both additive and multiplicative
modes outperformed the bandwidth consumed by the baseline Awstream.

10.2.4.3 Storage

In order to monitor the storage, we measured the size of each frame in each video
segment as they were uploaded to the Edge for analysis with AFR, ARR and Aw-
stream. Using the feedback for the frame rate and resolution obtained during video
analysis with multiplicative and additive modes for each video segment, we gathered
the amount of storage needed for that video segment with the frame rate selected by
AFR and Awstream and resolution selected by ARR and Awstream. The resulting
storage for the videos are shown in Figure 10.6 (a) & (b). It is evident from the
results that whenever lower frame rate and lower resolution were used during video
analysis, the corresponding demand for the needed storage also reduced in compar-
ison to existing approaches that store full size videos. Once again we observed that
additive stage demanded far less storage compared to multiplicative stage and both
additive and multiplicative modes outperformed the baseline Awstream.

In this Chapter, with extensive evaluations we demonstrated the benefits of AFR
and ARR in comparison to stae-of-the-art baseline profiling techniques like Aw-
stream. A summary of the evaluations is listed in the Table 10.1. The following are
the key takeaways from the evaluations:

(i) Overall, we were able to improve the resource consumption (i.e., overall pro-
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cessed frames and resolutions) by 71%, CPU utilization by 69% and bandwidth
utilization by 71% with 74% less storage in comparison to the existing profiling
techniques. It is noticeable that AFR and ARR performed better with additive
stage in comparison to multiplicative stage. This is because with multiplica-
tive stage, AFR and ARR drastically raise their frame rates and resolution
but have a smoother degradation and hence the improvements are relatively
low compared to rate adaption using additive stage. However, both addi-
tive and multiplicative modes significantly outperformed the baseline profiling
techniques.

(ii) AFR performed overwhelmingly better than ARR. This is intuitive as in ARR
the DNNs adapt among resolutions whereas in AFR they adapt among frame
rates i.e., videos with multiple frame rates but a constant resolution are smaller
in size and hence require less resources in comparison to videos with multiple
resolutions.

(iii) AFR and ARR with multiplicative stage are more suitable for safety-critical
applications like surveillance in airports, traffic-accidents, etc. Whereas, AFR
and ARR with additive stage are more suitable for monitoring warehouses,
factory floors, etc. Further, AFR is the obvious choice among the two rate
adaption algorithms as it produced the best results w.r.t all metrics in this
study.

(iv) Even though AFR is the obvious choice, with an increasing trend toward high
resolution videos [63], we believe that based on applications requirements,
ARR will also serve as a good candidate and can substantially contribute
towards reducing the overall cost of operation during video analysis in com-
parison to existing profiling based approaches.

10.3 Chapter summary

In this chapter, we evaluated the 2-stage deep learning and rate adaptive algorithms
proposed in EVA in Chapter 9 using the UCF-Crime dataset. With preliminary
evaluations we demonstrated that, DNNs built using 2-stage deep learning produced
higher accuracies with minimal latency. In addition, through evaluations of AFR
and ARR we demonstrated 71% improvement in resource consumption whilst using
69% less CPU and 71% less bandwidth with 74% less storage compared to the
state-of-the-art baseline solutions. Thus with a distributed architecture and 2-stage
deep learning with rate adaption in EVA, we not only optimized the performance
of video analysis using DNNs with EVA but also reduced the cost of the overall
system through efficient utilization of the resources at the Edge and the available
bandwidth.
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Chapter11
ADA: Adaptive Deep Log Anomaly
Detector

Large private and government networks are often subjected to attacks like data
extrusion and service disruption. Existing anomaly detection systems use offline
supervised learning and employ experts for labeling. Hence they cannot detect
anomalies in real-time. Even though unsupervised algorithms are increasingly
used nowadays, they cannot readily adapt to newer threats. Moreover, many such
systems also suffer from high cost of storage and require extensive computational
resources. In this chapter, we propose ADA: Adaptive Deep Log Anomaly Detec-
tor, an unsupervised online DNN framework that leverages LSTM networks and
regularly adapts to newer log patterns to ensure accurate anomaly detection. In
ADA, an adaptive model selection strategy is designed to choose pareto-optimal
configurations to efficiently utilize the resources. Further, a dynamic threshold
algorithm is proposed to dictate the optimal threshold based on recently detected
events to improve the detection accuracy. In addition, we use the predictions to
guide the storage of abnormal data and effectively reduce the overall storage cost.

The key contributions in this work include:

• A novel unsupervised anomaly detection framework ADA: Deep Adaptive
Anomaly Detector, which utilizes online deep learning to build highly accu-
rate models on the fly. ADA also incorporates new log patterns instantly in
order to improve anomaly detection.

• An adaptive prediction strategy for selecting the pareto-optimal ADA Event
Model (ADA-EM) to optimize the computational resources and improve the
latency during anomaly detection.

• A dynamic threshold computation technique for re-examining and improving
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the threshold of DNN models for detecting anomalies.
• A proposal to leverage the insight from event predictions to redirect storage

decisions in order to reduce the overall cost of storage.
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11.1 System design

In this section, we introduce the design goals and rationale for design choices in
ADA followed by the framework.

11.1.1 Design goals

The design of ADA is driven by the following main goals:

1) Heterogeneous data: System logs from various applications and systems
are heterogeneous in nature and vary significantly in terms of their format and
collected information. A generalized anomaly detection system should be able
to process and analyze any log format.

2) Supervision and Data drift: System behavior and potential threats evolve
over time. As a consequence, the system logs and attack models also change.
An anomaly detection system should be able to learn newer event patterns
automatically even in the absence of experts input and labelled dataset.

3) Accuracy and Threshold: Anomaly detection systems should correctly
predict the abnormal events with high accuracy. In addition, it should adapt
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Figure 11.1: ADA architecture.

system thresholds based on recently observed events and system behaviour
to clearly distinguish between normal and abnormal events and reduce false
negatives.

4) Resource utilization: Since many anomaly detection systems are based on
DNNs, they demand high computational resources to produce higher accuracy
and use parallelization to reduce latency. An efficient anomaly detection
system should be able to use modern and established algorithms with minimal
resources.

5) Cost: System logs are generated everyday and hence the storage cost for these
logs also increases with time. An efficient strategy for storage can greatly
reduce the overall storage cost. Further, many offline algorithms also use
increased computational resources to improve the accuracy. An anomaly de-
tection system should be able to produce results with good resource-accuracy
trade-off.

11.1.2 Architectural components

Figure 11.1 shows the ADA framework in detail. The components of this framework
are described as follows:
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Figure 11.2: ADA Event Model.

– System Logs: This module stores and feeds the logs to the Feature Vector
Generator module. The logs are collected from multiple sources in the system
and contains information about different system states and events of interest
defined by the system administrators.

– Feature Vector Generator: This module uses the Language Model Processing
(LMP) [156] to process incoming log streams and generates feature vectors.
The resulting features are stored in the feature vector database.

– Models: This module generates online DNNs using the ADA-EM shown in
Figure 11.2 for detecting anomalies in system logs.

– Predictor: This module initially uses the benchmark model mi for predicting
the incoming log event and sends the prediction results to the decision module.
Based on the prediction and adaptive principle shown in algorithm 4 (see
§11.1.5), the corresponding next model will be loaded and used for predicting
the next event.

– Decision: This module uses the prediction from the predict module and decides
whether the predicted event is a normal or abnormal event using algorithm 4.

– Threshold Generator: This module stores the recent normal event losses
{l1N , l2N , · · · , lHN} and abnormal event losses {l1A, l2A, · · · , lKA } for each model mi.
Using the dynamic threshold computation (see §11.2), we obtain the current
threshold for every model.
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11.1.3 Tokenization

In order to readily use the arbitrary log formats, we treat every line in the log file as a
sequence of tokens. In this chapter, we consider word-level tokenization granularity
in log files. For tokenizing the words, we assume that the tokens in every line in the
log are delimited by some known characters (e.g., a space, a comma or a period). We
split every ine in the log file based on the delimiter and define a shared vocabulary
of “words” over all fields in the log file. Essentially, the vocabulary is composed
of the most frequently appearing tokens in the system logs. Further, we treat any
missing data as a single feature and use the character “?” to represent it.

11.1.4 ADA Event Model (ADA-EM)

In order to efficiently implement the ADA framework, we also propose ADA-EM
shown in Figure 11.2 leveraging LSTM networks. The LSTM architecture was first
introduced for machine translation in [157] and since then it has been extensively
applied in language processing applications. Therefore, we train the LSTM-based
ADA-EM to process instances of normal time-series in the system logs. Specifi-
cally, ADA-EM takes the embedded sequences of tokens as input and outputs the
distribution for the next token.

We begin with one-hot embedding, which produces unique embedding vectors for
every token in the vocabulary set. More specifically, suppose we have a line in the
log file with T tokens, and we can describe it as W = {w0,w1, · · · ,wT } where w0
represents the starting flag 〈b〉 followed by T tokens of the log line. The layer of
one-hot embedding processes the time-series log-line input with T +1 tokensW into
one-hot vectors X = {x0,x1, · · · ,xT+1}.

The one-hot embedding is followed by the sequence encoding. Among such large
amount of normal events in logs, there exists potential sequential information for
language models. To capture this sequential information, an improved LSTM is used
in ADA-EM, which is well suited for this task. When applying LSTM recursively to
a line in the event log from left to right, the sequence representation will be enhanced
progressively with the information from subsequent tokens in this sequence.

Based on the input one-hot vectors, LSTM produces the summary of the past
input sequences through the cell state vector ct. Given X , yt is the hidden state
of the LSTM cell at time t, which can help to achieve the desired log event pre-
diction. After T times of recursive updates from Eqs. (11.1) to (11.5), the hidden
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representation at token t namely yt gives a better representation of each token.

yt = ot ◦ tanh(ct), (11.1)

ct = ft ◦ct−1 + it ◦ tanh(Wxcxt+Wycyt−1 +bc), (11.2)

ot = σ(Wxoxt+Wyoyt−1 +bo), (11.3)

it = σ(Wxixi+Wyiyt−1 +bi), (11.4)

ft = σ(Wxfxf +Wyfyt−1 +bf ). (11.5)

After that, a fully connected layer with final output unit of vocabulary
size produces the output of the model. Once the hidden representations
Y = {y1,y2, · · · ,yT+1} is obtained, we input these vectors into a Multi-Layer
Perception (MLP) [158] and get the final probability distribution of the next token.
Please note that we use two layers of MLP to achieve better representation capacity
in ADA-EM. We use the ReLU activation function for the first layer in order to avoid
over-fitting while the softmax function is used for the second layer to normalize the
output of MLP layer and get the target output. Given the weight metrics Wr,Ws

and bias vectors br,bs for these two layers, the target output pt can be formulated
as follows:

pt = softmax(bs+Ws(Relu(br +Wr(yt)))).

We use 1
T

∑T
t=1H(xt+1,pt) as the cross-entropy loss function along with resources

in ADA-EM for two important purposes: for obtaining an anomaly score for every
log line and as the training objective to update the model weights.

11.1.5 ADA design

ADA is basically an event driven anomaly detection framework that detects abnor-
mal events in system logs. With an assumption that initial training logs at the first
hour represents normal behavior we begin the online training to build DNN models
similar to Doyen et. al [64]. We start by building a shallow LSTM model using the
normal log data from the 1st hour. As the time progresses, the number of models
also increase with each model having deeper layers than the previous model in time.
The goal is to build a DNN model from the captured logs in real-time and at the
same time use the model to predict any anomalies in the logs. We acknowledge
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Algorithm 4: Adaptive decision making algorithm
1 Input: Initialize Pareto-optimal model mi with its configuration ci and

threshold τi
2 Output: Decision, loss
3 Decision = unknown
4 for Each log event d ∈D do
5 loss = Predict(mi, d)
6 if loss ≤ τi then
7 select mi−1
8 Decision = Normal
9 else

10 select mn

11 Decision = Abnormal
12 end
13 end
14 return Decision, loss

that at the beginning when the model is not trained well, high false positives are
observed, however, as we build deeper models, the accuracy gets better over time.
Further, models can be added or updated according to the variations observed dur-
ing predictions. For instance, during the first four hours, we generated a model m1
with 128 LSTM layers and this model produced a F1-score of ~91% (see §12.1).
With the increasing number of log samples, the number of layers was also increased
and we generated a second model m2 with 258 layers which produced an F1-score of
~93%. This process is repeated until a deep enough model that produces the desired
highest accuracy is obtained. We sort all the generated models based on their depth
and represent them as a set {m1,m2, · · · ,mn} hereafter.

In ADA, every model in the model set is assigned a corresponding threshold
value (see §11.2) for distinguishing the normal events from abnormal events. During
decision making we use the algorithm 4, and every prediction is measured against the
threshold for normal events established for the model. When an abnormal event is
detected, the system immediately raises an alarm. The resulting decision drives the
next model that should be used for predicting the next event in the log. By virtue
of the adaptive principle as described in algorithm 4, whenever a normal event is
found we select a model that is shallower than the current model and a deeper model
otherwise. The resulting prediction loss is forwarded to the threshold generator for
any required updates.

In this chapter, we define an event as the operational unit of work for any system
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(a) Normal distribution.
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(b) Abnormal distribution.
Figure 11.3: Loss distribution fit.

process which has a finite set of action sequences. Suppose that we have a set of DNN
models where each model mi has nx layers. Each model mi has one configuration
ci, i ∈ n. C is the set of all possible configurations of the models, C = {c1, c2, · · · , cn}.
For each configuration of ci, we have two interested mappings: a mapping from ci to
its computation resource R(ci) and to its latency measure T (ci). ADA searches for
Pareto-optimal set P, such that there is no alternative model m′i with a configura-
tion c′i that requires less computational resources (R) and offers lower latency (T).
Formally, P is defined as follows:

P = {ci ∈ C : {c′i ∈ C :R(c′i)<R(ci),T (c′i)< T (ci)}= ∅}

As mentioned before, we treat log-lines as sequence of tokens and ADA learns
normal behavior for a set of users who produced a stream of system logs as follows:

1) When a log stream arrives, the language processing model (LMP) is first uti-
lized to abstract the tokens and build the log feature vector.

2) The above discussed pareto-optimal policy is used to select the optimal model
mi for the current system state.

3) The next model is selected by the feedback of prediction results from the
current model following the algorithm 4. If the prediction result is normal, we
select mi−1 which is the pareto-optimal model as it is shallower than current
model and hence uses less computation and incurs less latency. Otherwise,
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Figure 11.4: ADA dynamic threshold.

the model mn which is the deepest available model is chosen as it provides
higher accuracy and is desired when an abnormal event is detected at the cost
of increased computation.

4) The threshold τ is selected for each model based on the loss distribution of
normal and abnormal data processed by the model and is discussed in the
following section.

11.2 Threshold computation

The behavioural patterns in system logs change over time as newer threats and at-
tacks are introduced to the system. Thus, predetermined threshold for normal and
abnormal behaviours become inadequate and need to be updated regularly. There-
fore, in this chapter we introduce a new dynamic threshold computation technique
that automatically learns from the on-going behaviours in the system and adjusts
the corresponding threshold for detecting anomalies.

Essentially, we inspect the loss distribution of logged events to automatically
determine the threshold for every ADA-EM model. During the initial phase, for
instance, the first hour, we only have normal log loss distribution and hence in order
to compute the initial threshold we use a small number of abnormal events ground
truth from the LANL dataset. Subsequently, once the models are introduced to
more incoming events, the initial threshold and the loss distribution of normal and
abnormal events are updated dynamically to reflect the observed behaviour in the
log stream.

We studied several classical loss distributions and employed the Probability-
Probability (P-P) plot to assess the appropriate fit for LANL dataset and find the
optimal distribution for determining the threshold. In Figure 11.3, we plot the em-
pirical distribution of losses obtained from the ADA-EM models against the best



ADA: Adaptive Deep Log Anomaly Detector 152

fitting theoretical distributions. From this figure, we can clearly see that for both
normal and abnormal loss distributions, log normal is the best fit. Therefore, in
ADA, we consider that log loss data follows the log normal distribution. In Fig-
ure 11.4(a) we show the losses with log-normal distribution for randomly chosen
10000 normal and 200 abnormal log events from the dataset. It is clear that point
of intersection of both fits yields the best threshold choice in Figure 11.4(a), as the
sum of True Positive Rate (TPR) and False Positive Rate (FPR) are minimum (see
Proposition 1).

Definition 1. For both normal and abnormal losses obtained by the ADA-EM mod-
els, the loss distributions are fitted by log normal distribution. Hence, the probability
density function of real log data ploss(x) can be estimated by log normal density
function fµ,σ(x):

ploss(x)≈ fµ,σ(x),

where,

fµ,σ(x) = 1√
2πσx

exp(−(log(x)−µ)2

2σ2 ),x > 0.

The parameter µ and σ are estimated via maximum likelihood estimation based
on the loss dataset. The challenge now is to find an optimal threshold based on the
fits of losses. The loss threshold finding problem can be cast as the optimization
problem formulated below,

min
x
L(x) = (1−FNX (x))+FAX (x),x > 0, (11.6)

where FNX (x) and FAX (x) are the Cumulative Distribution Function (CDF) of log-
normal distribution [159] andX is the variable while x is the loss value of the variable
X.

Proposition 1. Two different log-normal densities always have an overlapping sec-
tion with the condition that β2− 4αγ ≥ 0, where α = 1

2σ2
2
− 1

2σ2
1
, β = µ2

2σ2
2
− µ1

2σ2
1
and

γ = µ2
2σ2

2
− µ1

2σ2
1
− log(σ1

σ2
). The loss threshold x ∈ {x1,x2} that satisfies the Eq. (11.6)

is the optimal loss threshold x∗, where x1 and x2 are intersections of both log normal
fits fµ1,σ1

N (x) and fµ2,σ2
A (x).

Proof 1. Let µ1,σ1 and µ2,σ2, where σ1,σ2 > 0, be the corresponding parameters
of the density functions. Then

1√
2πσ1x

exp(− (log(x)−µ1)2

2σ2
1

) = 1√
2πσ2x

exp(− (log(x)−µ2)2

2σ2
2

).
(11.7)
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Applying the logarithm to Eq. (11.7), we have,

log(σ1
σ2

)− (−(log(x)−µ2)2

2σ2
2

)+(−(log(x)−µ1)2

2σ2
1

) = 0. (11.8)

Eq. (11.8) can be written in terms of a quadratic function in log(x),

α(log(x))2 +βlog(x)+γ = 0, (11.9)

where α= 1
2σ2

2
− 1

2σ2
1
, β = µ2

2σ2
2
− µ1

2σ2
1
and γ = µ2

2σ2
2
− µ1

2σ2
1
− log(σ1

σ2
).

Now, according to Definition 1, L(x) can be written in,

L(x) = (1−FNX (x))+(FAX (x))
= PN (X ≥ x)+PA(X ≤ x) (11.10)

=
∫ ∞
x

fµ1,σ1
N (x)+

∫ x

0
fµ2,σ2
A (x).

Since fµ,σ(x) is the continuous function in interval (0,+∞), the first order partial
derivative of L(x) with respect to x, for x > 0, is given as,

∂L(x)
∂x

=−fµ1,σ1
N (x)+fµ2,σ2

A (x)

=− 1√
2πσ1x

exp(−(log(x)−µ1)2

2σ2
1

)

+ 1√
2πσ2x

exp(−(log(x)−µ2)2

2σ2
2

).

Let ∂L(x)
∂x = 0, then we get x1 and x2 as given in Eq. (11.9) are candidates loss

points. We observe that Eq. (11.9) can have at most 2 solutions. Furthermore, it
can be shown that two different x1 and x2 fulfill,

x1 = e
−
√
β2−4αγ−β

2α , x2 = e

√
β2−4αγ−β

2α ,

where β2−4αγ ≥ 0. The optimal threshold is computed as the intersection at x= x∗

that fulfills Eq. (11.6), which concludes the proof of Proposition 1.

The variations for the proposed dynamic threshold depend on the recently ob-
served log patterns. In this chapter, during experiments, we record the most recent
10,000 normal event losses and 200 abnormal event losses. We update the threshold
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whenever more than 20% of the recorded losses change. As such, the loss for model
m1 ranges from 0.1 - 3.1 and the threshold ranges from 0.41 - 0.46. Since normal
log data occupied the majority in the whole dataset, more than 80% of the log event
losses are clustered between 0.1 - 0.4. Correspondingly, the loss for model m2 ranges
from 0.1 - 3.0 and the threshold ranges from 0.34 - 0.35. Whereas the loss for model
m3 ranges from 0.1 - 2.0 and the threshold ranges from 0.23 - 0.24. In ADA, as the
time increases, threshold for each model is updated to adapt to newly observed log
patterns.

In Figure 11.4(b) we provide a detailed illustration of the thresholds updated
for three different models over a span of 50 time steps where each time step is a
composition of 200 log events. Since we employ the proposed adaptive strategy
from algorithm 4 during the decision making, the pareto-optimal policy selects the
less computationally intensive shallower model m1 to predict more than 80% of
the whole test data. Essentially, we use shallow models for predicting normal data
and switch to deeper models only when we detect abnormal data. Therefore m1’s
threshold is subjected to more changes than other models. Subsequently, since the
observed abnormal events are small, the deeper model m3 is rarely used and hence,
its threshold remained almost stable during testing.

11.3 Chapter summary

In this chapter, we studied the importance of system logs and anomaly detection
systems. Essentially, we studied the limitations of existing anomaly detection ap-
proaches such as increased computational overhead, latency, failure to detect new
threats, etc. We then presented ADA, an adaptive deep log anomaly detection frame-
work for efficiently detecting anomalies in system logs. To overcome the limitations
of existing works, we proposed to build online unsupervised models with adaptive
model selection and dynamic thresholds for improving latency, reduce computational
overhead and dynamic updates. Using pareto-optimal policy we always selected the
optimal DNN model with best configurations for anomaly detection and thereby,
optimally utilized the resources whilst improving the prediction accuracy.
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Chapter12
Application - Cyber Security Data
Analysis

In Chapter 9, we proposed ADA for efficiently detecting anomalies with online un-
supervised deep learning and adaptive model selection strategies. It is paramount
for any organization that operates online or uses online services to detect malicious
activities such as unauthorized access, malwares, port scanning, etc. Many of the
attacks allow unauthorized access to the network and could inflict further damages
like compromising credentials, violating intellectual property rights, etc. Further,
such attacks may even expose business sensitive information including confidential
documents of government agencies and could result in serious security breaches [33].
Therefore, system logs are generally used to periodically record states of the systems
and any significant events at various significant points to ensure security and detect
any potential threats. Nowadays, many computer systems and applications collect
and maintain system-wide log data. Analyzing these system logs is essential to dis-
cover any potential security breaches and anomalies. Therefore, in this chapter, we
analyze the system logs for detecting anomalies as an application to evaluate the
performance of the proposed ADA framework. We leverage the Los Alamos National
Laboratory (LANL) Cyber Security Dataset [65] to represent the system-log data
for evaluating the ADA framework. In particular, we measure the performance of
the proposed adaptive model and dynamic threshold and further compare it with
the respective state-of-the-art approaches. Evaluations show that ADA accurately
detects anomalies with high F1-score (~95%) and it is 97 times faster than existing
approaches and incurs very low storage cost.
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12.1 Evaluation

12.1.1 Dataset

The LANL dataset [65] consists of Windows-based system authentication event logs
from LANL’s internal computer network. These logs were collected over a period
of 58 consecutive days. The dataset contains over one Billion log entries comprising
of authentication, network flow, DNS lookup events and processes. Privacy related
fields such as users, computers, and processes are anonymized in the dataset.

The network activities recorded in the system logs include both normal operational
network activities as well as a series of abnormal activities termed as the red team
activities. The red team activities mainly represent compromised account credentials
over a period of 30 days. In this evaluation, we used the authentication events from
the dataset, and the corresponding statistics are summarized in the Table 12.1.

Table 12.1: LANL dataset statistics.

Datasets Events Source Computer Destination Computer
Authentication 1,051,430,459 16,230 15,895

Red team 749 4 301

12.1.2 Experimental setup

In ADA, using the online deep learning similar to the algorithm described by Sahoo
et al. [64], we build multiple ADA-EM DNN models using LSTM and generate
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features with LMP [156].

For evaluation, we build four models in ADA with 128, 256, 512 and 1024 LSTM
layers and compare them to the state-of-the-art approaches. In order to demonstrate
the performance of the models, we limit the scope of the LANL dataset to events
recorded on day 8, as it contains the largest number of abnormal events (261) in over
seven million system log events. All experiments are performed on a MacBook Pro
laptop, with Intel Core i5 CPU at 2.9 GHz and 8 GB (LPDDR3 2133 MHz) of RAM.

12.1.3 Baselines

In this chapter, the proposed ADA framework with the strategies for adaptive
model selection and dynamic threshold are employed to build an online unsupervised
anomaly detection system. Further, the model m3 performs optimally in terms of
F1-score and latency and hence we select m3 as the benchmark model in ADA when
applying the adaptive algorithm. We compare the performance of this ADA system
to the following baselines.

State-of-the-art unsupervised deep learning approaches:

1) NO-ADA: The NO-ADA system is a variant of the ADA framework with online
training and unsupervised learning, however, without the adaptive algorithm
and dynamic thresholds. The performance of this baseline is obtained with
the benchmark model m3.

2) Fixed-ADA: The Fixed-ADA system is also a variant of the ADA framework
with online training and unsupervised learning. In addition, it uses the adap-
tive strategy shown in algorithm 4 but the threshold of each model is kept
constant like NO-ADA.

3) RNNA [119]: The RNNA system uses the state-of-the-art online and unsu-
pervised learning approach where an anomaly detection system is constructed
using the LSTM networks with attention algorithm.

4) Kitsune [120]: The Kitsune system uses the state-of-the-art online and un-
supervised learning approach that uses the Autoencoder algorithm [160] to
differentiate between normal and abnormal events.

5) DAGMM [161]: The DAGMM system uses the state-of-the-art offline unsuper-
vised learning approach called the deep autoencoding gaussian mixture model.
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State-of-the-art unsupervised classical learning methods:

1) Isolation Forest (IF) [162]: It is an ensemble-based method for detecting out-
liers in the dataset.

2) One-class SVM (OCSVM) [163]: It is a max-margin based [164] incremental
unsupervised outlier detection model.

3) Self Organizing Maps (SOM) [165]: The SOM networks aim at dividing p-
dimensional input space into a finite number of partitions. The whole process
is unsupervised and carried out by presenting vectors to all encompassing
neurons.

4) Angle-Based Outlier Detection (ABOD) [166]: ABOD detects anomalies by
the variance of angles between pairs of data samples.

12.1.4 Metrics

The following metrics are used to evaluate the performance of ADA and the baseline
state-of-the-art approaches.

1) F-measure (F1-score): It is the harmonic mean of precision and recall [167]
and is given as follows:

F1-score = 2
1

Precision + 1
Recall

,

2) Precision: It is a measure of how many positive instances were identified and
it is given as follows:

Precision = TP

TP +FP
,

where TP is True Positives and FP is False Positives.

3) Recall: It is a measure of how many instances were identified correctly and it
is given as follows:

Recall = TP

TP +FN
,

where FN is False Negatives.
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4) Accuracy: It is a measure of how correctly an anomaly detection system op-
erates by measuring the percentage of TP and True Negatives (TN) along
with the number of false alarms in terms of FP and FN that the system pro-
duces [168] and is given as follows:

Accuracy = TP +TN

TP +FN +FP +TN
.

5) Latency: The latency is measured from when a log event is sent as input to
the model and until the output prediction is obtained.

12.1.5 Online model performance

To evaluate the performance of ADA, we built four ADA-EMmodels for the following
experiments using online deep learning algorithm similar to sahoo et al. [64]. We
begin by training the first model m1 with 128 LSTM layers followed by the model
m2 with 256 LSTM layers, model m3 with 512 LSTM layers and the model m4 with
1024 LSTM layers.
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Figure 12.1: ADA online model performance.

To ensure that models built using online deep learning operated efficiently before
applying the adaptive strategy from algorithm 4 and dynamic threshold discussed
in §11.2 we measured the latency and F1-score of the models. For determine the
latency, we measured the execution time incurred by the models for predicting an
event and the results are shown in Figure 12.1(a). Noticeably, model m1 had the
lowest latency of 14ms as it had only 128 LSTM layers while model m4 with 1024
LSTM layers had the highest latency of 87 ms. We noticed that as the number of
layers increased, latency increased exponentially.

Further, we also measured the F1-score of the models and results are shown in
Figure 12.1(b). We observed that, as the number of layers increased, the depth of
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Figure 12.2: Adaptive strategy with dynamic threshold.
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Figure 12.3: Latency with ADA vs. NO-ADA.

the model also increased and hence the deeper models produced a better F1 score
than their shallower counterparts. However, the deeper models have higher latency
and demand more computational resources than shallower models. Therefore we
only consider models m1 - m3 for the evaluation as they had lower latency and
produced acceptable F1-scores. Before proceeding further, the proposed adaptive
strategy shown in algorithm 4 needed a benchmark model to begin with. Therefore,
we selected the model m2 as our benchmark model by considering the trade-off
between accuracy and latency of the three models.

12.1.6 ADA performance

We evaluated the performance of ADA by applying the adaptive strategy from algo-
rithm 4 and dynamic threshold from §11.2 to the models built in the above section.
For these experiments, we randomly selected 10 log events and simulated an attack
scenario where the events 1-2 show normal authentications and events 3-5 show
unauthorized authentications followed by event 6 which is a normal authentication
attempt and events 7-8 again perform unauthorized login attempts and finally the
events 9-10 display normal authentications. Following the adaptive principle and
dynamic threshold, the resulting model used for predicting every event and the
corresponding threshold used for distinguishing normal and abnormal events are
shown in Figure 12.2 and the normal and abnormal events are indicated on the
x-axis with the letters N and A next to events 1-10.



163 12.1 Evaluation

NO-ADA ADA
Methods

0

20

40

60

80

St
or
ag
e(
G
B
)

74GB

49KB

Figure 12.4: Storage with ADA vs. NO-ADA.

As shown in Figure 12.2, during the initial stage, the benchmark model m2 was
selected for predicting the first event. If this log event was normal, then according to
the algorithm 4, the next pareto-optimal model m1 was selected for predicting the
second log event. However, the computationally intensive model m3 was selected
to predict the fourth event to produce high accuracy as the third event was found
to be abnormal. The threshold of the model used for prediction is updated and
recalculated according to §11.2. Since the number of log events was very small in
this experiment, the threshold values did not change that frequently. The results
clearly show the benefit of applying the adaptive strategy as the pareto-optimal
policy selected shallower models every time a normal event was observed without
compromising the identification of abnormal event which were effectively predicted
with deeper models to produce higher accuracy.

We also compared the performance of ADA with NO-ADA variant and the results
are shown in Figure 12.3. We observed from the results that in NO-ADA, there was
no adaptive strategy and hence the pareto-optimal policy selected the deepest DNN
model m3 as it produces the highest accuracy at the cost of increased computational
resources and latency. Therefore, with NO-ADA, we achieved an accuracy of 94%
at the expense of increased computational resources and latency of 37 ms per log
event. However, ADA achieved the accuracy of 91% which is close to m3 but with
less computational resources and 57.6% lower latency.

12.1.7 Storage

Further, we also analyzed that in system logs, the percentage of abnormal events
are very low in comparison to normal events. However, due to the necessity to train
the anomaly detection models, organizations usually store the data for prolonged
periods. Therefore, in Chapter 11, we proposed to store only abnormal data and



Application - Cyber Security Data Analysis 164

Table 12.2: Fixed threshold vs. adaptive threshold.

Model F1-score (%)Accuracy (%)Recall (%) Latency (ms)
NO-ADA 94 94 93 37
Fixed-ADA 91 83 92 18.8

ADA 95 91 92 15.7

the most recently observed loss values for the normal data and abnormal data. This
is sufficient for ADA to accurately predict the behaviours in the system logs and
dynamically compute thresholds based on current behaviours. The resulting storage
required with ADA in comparison to existing methods which for simplicity we refer
to as NO-ADA is shown in Figure 12.4. It is evident that with ADA we incur far
less storage cost as we consume just 48 KB of storage for the LANL dataset in
comparison to storing the entire 74 GB of the dataset.

For the above mentioned experiments, in Table 12.2 we list the F1-score, accuracy,
recall and latency of NO-ADA, Fixed-ADA and ADA variants. We observed that
NO-ADA has a good performance in terms of F1-score, accuracy and recall, but
at the cost of increased latency due to increased model complexity. Noticeably,
ADA achieved the highest F1-score of 95% with the lowest computational latency of
15.7ms among the three variants. Further, the performance of ADA is very close to
NO-ADA in terms of accuracy and recall and much better in terms of latency. This
is because normal log events occupied a higher percentage in the system log events.

In ADA, due to adaptive strategy shown in algorithm 4, during normal log events
the pareto-optimal policy tends to select the model with less computational cost
and latency but still produces acceptable accuracy. In ADA, the best model which
produces highest accuracy is only employed when abnormal log event appears; as
these models demand increased computational resources. The adaptive strategy
with fixed threshold also decreases the latency in Fixed-ADA variant. In addition,
since the threshold in ADA is updated continuously to adapt to newly observed log
patterns in online systems, ADA can achieve higher F1-score compared to that in
NO-ADA and Fixed-ADA. Moreover, in Fixed-ADA, we observed that the number
of False Positives increased during testing and therefore we used the deeper models
more often than in ADA.

12.1.8 Performance comparison

Studies by Mirsky et al. [120] show that offline machine learning algorithms perform
considerably better than online machine learning algorithms. Since they have access



165 12.1 Evaluation

to the entire dataset during the training, offline algorithms perform multiple passes
over the data to build a good model that has learned well. However, constructing
neural network models using online algorithm is useful when resources, like the
training data, computation and/or memory are limited. Since we utilize online
algorithms [64] and enhance the anomaly detection with adaptive model selection
and dynamic thresholds, we compared the performance of ADA to both state-of-
the-art online and offline algorithms.

In Table 12.3 we summarize the experimental results for the state-of-the-art classi-
cal unsupervised machine learning algorithms along with ADA for anomaly detection
in system logs. As these classical algorithms use offline learning to train and build
the models we used 80% of normal events from day 8 in LANL dataset [65] to train
and build models for these algorithms. For testing we used 10,000 normal events
from the remaining 20% logs and 200 abnormal events.

Overall, we observed that classical unsupervised machine learning methods de-
manded very low computational resources and produced results with very less la-
tency of ~0.8 ms. However, due to unbalanced and complex nature of the logged
events, their F1-scores are very low in comparison to ADA even though they were
pre-trained with the ground-truth.

Table 12.3: Comparison of machine learning models.

Model F1-score (%)Accuracy (%)Recall (%) Latency (ms)
SOM [165] 48 92 33 0.03
IF [162] 47 88.3 84.5 0.17

OCSVM [163] 37 60 95 0.35
ABOD [166] 25 95 27 0.8

ADA 95 91 92 15.7

Table 12.4: Comparison of deep learning models.

Model F1-score (%)Accuracy (%)Recall (%) Latency (ms)
RNNA [119] 86 76 78 530
Kitsune [120] 39 64 55 8.6
DAGMM [161] 44 70 47 0.5

ADA 95 91 92 15.7

Since ADA is based on unsupervised deep learning, we also compared the perfor-
mance of ADA with other state-of-the-art deep learning algorithms and the results
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are given in Table 12.4. Overall, the results presented in Table 12.4 clearly show that
ADA outperforms RNNA, Kitsune and DAGMM in terms of F1-score, accuracy and
recall. Specifically, the F1-score achieved by ADA is about 11% higher compared
to RNNA and 144% higher compared to Kitsune and 116% higher compared to
DAGMM, respectively. With regards to accuracy, RNNA, Kitsune and DAGMM’s
accuracies are lower than ADA by nearly 16%, 30% and 23%. Whereas, the recall of
RNNA, Kitsune and DAGMM are nearly 15%, 40% and 49% less than ADA. As for
the latency, RNNA performed the worst since it needed 530ms to predict just one
event. This is due to the design of RNNA where they employ user perspective and
use a separate LSTM for each user in the dataset. As the number of users increase
the overall latency of the system also increases. Although Kitsune and DAGMM had
lower latency compared to ADA and RNNA, they did not perform well w.r.t. other
metrics. Overall, the evaluations show that ADA efficiently utilizes the available
resources, produces highly accurate DNN models and consumes far less resources
compared to the state-of-the-art approaches.

12.2 Chapter summary

In this chapter, we evaluated the performance of the ADA framework proposed
in Chapter 11. With experiments using the LANL dataset, we demonstrated that
ADA significantly improves the performance of anomaly detection in the system logs.
In particular, the ADA framework improves the F1-score and latency of anomaly
detection in comparison with the state-of-the-art approaches. The experiments also
show that ADA decreased the overall storage requirements by efficiently filtering
only the abnormal logs for storage.
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Chapter13
Conclusion & Future Prospects

This dissertation presented an analysis of the various heterogeneous and evolving
Internet architectures and identified several vital open issues that need to be ad-
dressed. The dissertation studied the identified open issues in detail and reinforced
the heterogeneous and evolving Internet architectures with efficient solutions. The
key contributions of PHOENIX addressed the issues at the application and network
levels and has improved the performance, scalability, reliability and optimization
challenges accompanying the Internet architectures and their respective application
and services.
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13.1 Dissertation summary

In PHOENIX, we first analyzed the two most popular naming schemas in ICN: hi-
erarchical vs. flat and compared them across interdependent metrics like lookup
efficiency, aggregate-ability, semantics and manageability. Our results show that
complexity of lookup is higher in hierarchical names, and aggregate-ability looses its
benefits with mobility; while mesh-like name spaces can lead to names space explo-
sion. Therefore, we suggested to combine the best-of-both-worlds through leveraging
hierarchical semantics at the application layer as it offers benefits of the expressibil-
ity and flexibility without the downside of complex name lookups in the network
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layer. While leveraging flat names at the network layer as they are more suitable
for lookups in the FIB to obtain better forwarding efficiency.

We then identified the key requirements of IoT environments and the suitability of
ICN architectures to fulfill such requirements in comparison to IP. We also discussed
the need for seamless integration of Sensor Networks to the Internet to realize IoT
and proposed the ISI architecture with Gateways to offers the necessary function-
ality. We further explored Fog computing as an application to implement the ISI
architecture with a FOGG gateway and showed the benefit of proposed architec-
ture with several IoT use cases. We then analyzed the communication patterns in
IoT environments and showed that pub/sub is the more common/dominant mode
of communication in IoT environments. We discussed the shortcomings of exist-
ing ICN solutions like CCN-lite and COPSS to offer the pub/sub capability to IoT
and provided a lightweight, inter-operable version of pub/sub named COPSS-lite for
IoT environments. Through evaluation in a real IoT testbed we showed that IoT
environments can significantly benefit with COPSS-lite.

We followed this with identifying the need for supporting network mobility in ICN
and proposed NeMoI to provide an efficient, robust and reliable mobility architecture
to handle network-on-the-move. With distributed MAs and logical multi-level FIB,
we significantly reduced the routing updates and provided further optimizations
to by-pass MAs through reactive updates on the path of request flow. Through
evaluation on a real world topology we showed that NeMoI significantly reduced the
signalling traffic, routing updates, path inflation and packet loss.

We further studied the supervised and unsupervised deep learning models and the
need for resource-accuracy optimization. Subsequently, we proposed the architecture
EVA with 2-stage deep learning and adaptive strategies for supervised deep learning
analysis applications to achieve the desired resource-accuracy trade off and improve
performance. Through extensive evaluation with real world surveillance videos, we
measured the performance benefits of EVA against state-of-art profiling approaches.
The results showed that DNN models created with EVA produced higher accuracies
and significantly improved the resource consumption whilst using less bandwidth
and storage compared to the state-of-the-art solutions.

Finally, we studied the importance of anomaly detection through unsupervised
deep learning models and proposed ADA to use the adaptive strategy and online
deep learning with unsupervised deep learning. We further enhanced the detection
through deriving a dynamic threshold strategy to account for the uncertainty and
evolving threat patterns. Through evaluation of real world cyber security dataset
we compared the performance of ADA with the state-of-the-art supervised and un-
supervised machine learning approaches. The results showed that ADA significantly
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improved the prediction accuracy and latency whilst reducing the computational
overhead and storage compared to state-of-the-art solutions.

13.2 Future prospects

In PHOENIX, we have observed the evolution of Internet architectures from IP
towards IPv6, ICN and IoT and we provided efficient solutions to address the many
identified problems. However, the growing number of Internet users introduces many
new challenges like scalability, latency, traffic, limited bandwidth, congestion, cost,
etc. The traffic in the core network is already a concern and hence there is a
growing consensus to utilize Edge/Fog computing to bring the computation closer
to the source and limit the bandwidth in the core network. The emerging new
applications and technologies like AI, Big Data, Data Analytic, HD videos, etc.,
generate TeraBytes of data/day and rely on computing services like data analysis
provided in the Cloud. The current design of Internet and the future architectures
like ICN and IoT are not equipped to handle such large volumes of data. The
benefits like caching offered by ICN, will soon be rendered ineffective by transmitting
such large amount of data in the network, IoT devices cannot store/transmit such
continuous and large volumes of data, the current design of IP is already facing
congestion with the traffic from video applications (60% of total Internet traffic),
the data traffic from AI applications will aggravate the problems.

Therefore, we need to expedite the research in this field and implement the solu-
tions to match the rate of emerging new applications and the growing needs of users.
However, this is not an easy task, as current technologies and architectures were not
designed for such bandwidth and resource hungry applications. Further, the rapid
increase in the number of users and intelligent devices (mobile, IoT) that use Inter-
net have shed the light on the inability of the existing networking infrastructure to
fulfill the needs of the users and the applications. We need to rethink the design of
networking architectures and protocol to provide efficient solutions and not overlay
solutions as quick fixes. We believe that there is a great room for progress and many
new innovative research challenges like naming schema, global time synchronization
in IoT domain, mobility, security, communication protocol, etc., are still open to
the research community to tackle. In this regard, we will continue to explore this
field of research and extend the work done in Chapter 3 with structural analysis, the
work done in Chapter 4 with performance evaluations and discuss our observations.
Further, we also wish to focus on optimizing the bandwidth utilization during video
transmission in mobile environments like 5G to improve the QoE of the users and
achieve fairness w.r.t. competing flows. We also wish to apply our rate adaptive
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strategies to WSN and IoT applications to explore the limitations of these networks
and devices w.r.t DNNs and optimize their performance and resource utilization.

13.3 Dissertation impact

The contents in PHOENIX have been published in the following peer-reviewed jour-
nals and conference proceedings:

The analysis on the impact of naming schema on the performance of ICN protocols
in Chapter 3 was published in the following conference proceedings:

(i) Comparison [169]- Adhatarao, S., Chen, J., Arumaithurai, M., Fu, X.
and Ramakrishnan, KK. Comparison of naming schema in ICN. In Pro-
ceedings of the IEEE international symposium on local and metropolitan
area networks (LANMAN’16), Rome, Italy, Jun 13-15, 2016. Accessible at:
https://ieeexplore.ieee.org/abstract/document/7548856

The proposal for seamless integration of heterogeneous Sensor Networks to the
Internet in Chapter 4&5 were published in the following journal and conference
proceedings:

(ii) ISI [170]- Adhatarao, S., Arumaithurai, M., Kutscher, D. and Fu, X. ISI:
Integrate sensor networks to Internet with ICN. In Proceedings of the IEEE
Internet of Things Journal (IoT’18), Aug 18, 2017. Accessible at: https:
//ieeexplore.ieee.org/abstract/document/8013033

(iii) FOGG [171]- Adhatarao, S., Arumaithurai, M. and Fu, X. FOGG: A fog
computing based gateway to integrate sensor networks to Internet. In Proceed-
ings of the IEEE International Teletraffic Congress (ITC’17), Genoa, Italy,
Sep 4-8, 2017. Accessible at: https://ieeexplore.ieee.org/abstract/
document/8065709

The proposal for a light-weight publish/subscribe system for IoT in Chapter 6 is
under review in the following conference proceedings:

https://ieeexplore.ieee.org/abstract/document/7548856
https://ieeexplore.ieee.org/abstract/document/8013033
https://ieeexplore.ieee.org/abstract/document/8013033
https://ieeexplore.ieee.org/abstract/document/8065709
https://ieeexplore.ieee.org/abstract/document/8065709
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(iv) COPSS-lite [172]- Adhatarao, S., Wang, H., Arumaithurai, M. and Fu, X.
COPSS-lite: A Lightweight ICN based Pub/Sub System for IoT Environments.
In Proceedings of the IEEE International Conference on Mobility, Sensing and
Networking (MSN’20), Tokyo, Japan, Dec 17-19, 2020.

The proposal to provide network mobility in ICN in Chapter 7&8 were published
in the following journal and conference proceedings:

(v) NeMoI: Extended [173]- Adhatarao, S., Arumaithurai, M., Kutscher, D.
and Fu, X. NeMoI: Network mobility in ICN. In Proceedings of the Springer
Lecture Notes in Computer Science (LNCS’18), December 31, 2018. Accessible
at: https://link.springer.com/bookseries/558

(vi) NeMoI [174]- Adhatarao, S., Arumaithurai, M., Kutscher, D. and Fu, X.
NeMoI: Network mobility in ICN. In Proceedings of the IEEE International
Conference on Communication Systems & Networks (COMSNETS’18), Ben-
galuru, India, Jan 3-7, 2018. Accessible at: https://link.springer.com/
chapter/10.1007/978-3-030-10659-1_10

The proposal to provide resource-accuracy optimization with supervised deep learn-
ing models in Chapter 9&10 is under submission (under re-submission after 1st
round of reviews) in the following journal:

(vii) EVA [175]- Adhatarao, S., Prasad, A., Arumaithurai, M. and Fu, X. EVA:
A Distributed Optimization Architecture for Efficient Video Analysis. In Pro-
ceedings of the IEEE Transactions on Mobile Computing (TMC’20). Under
2nd round revision.

The proposal to provide real-time security with unsupervised deep learning models
in Chapter 11&12 was published in the following journal and conference proceedings:

(viii) ADA [176]- Yuan, Y. *, Adhatarao, S. *, Lin, M., Yuan, Y., Liu, Z. and
Fu, X. ADA: Adaptive Deep Log Anomaly Detector. In Proceedings of the
IEEE Conference on Computer Communications (INFOCOM’20), Toronto,
Canada, July 6-9, 2020. * Joint First Author. Accessible at: https:
//ieeexplore.ieee.org/abstract/document/9155487

https://link.springer.com/bookseries/558
https://link.springer.com/chapter/10.1007/978-3-030-10659-1_10
https://link.springer.com/chapter/10.1007/978-3-030-10659-1_10
https://ieeexplore.ieee.org/abstract/document/9155487
https://ieeexplore.ieee.org/abstract/document/9155487




Bibiography





Bibliography

[1] L. Zhang, D. Estrin, J. Burke, V. Jacobson, and J.D. Thornton. Named Data
Networking (NDN) Project. Tech. report ndn-0001, PARC, 2010.

[2] Dipankar Raychaudhuri, Kiran Nagaraja, and Arun Venkataramani. Mobili-
tyfirst: a robust and trustworthy mobility-centric architecture for the future
internet. ACM SIGMOBILE Mobile Computing and Communications Review,
16(3):2–13, 2012.

[3] Jiachen Chen, Mayutan Arumaithurai, Lei Jiao, Xiaoming Fu, and K. K.
Ramakrishnan. COPSS: An Efficient Content Oriented Pub/Sub System. In
ANCS, 2011.

[4] Robert Braden. Rfc1122: Requirements for internet hosts-communication lay-
ers, 1989.

[5] International Telecommunication Union. Ict facts and figures 2019, 2019.
https://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.
aspx.

[6] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and
R. L. Braynard. Networking Named Content. In CoNEXT, 2009.

[7] Ashok Anand, Fahad Dogar, Dongsu Han, Boyan Li, Hyeontaek Lim, Michel
Machado, Wenfei Wu, Aditya Akella, David G Andersen, John W Byers, et al.
XIA: An Architecture for an Evolvable and Trustworthy Internet. In HotNets,
2011.

[8] Geoff Mulligan. The 6lowpan architecture. In Proceedings of the 4th workshop
on Embedded networked sensors, pages 78–82. ACM, 2007.

[9] International Telecommunication Union. Ict statistics and figures 2019, 2019.
https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx.

https://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx
https://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx
https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx


Bibliography 176

[10] NGMN Alliance. 5g white paper. Next generation mobile networks, white
paper, 2015.

[11] Dave Evans. The Internet of Things: How the Next Evolution of the Internet
Is Changing Everything. In Cisco, 2011.

[12] M.S. Hossain, M.M. Hassan, M. Al Qurishi, and A Alghamdi. Resource allo-
cation for service composition in cloud-based video surveillance platform. In
ICMEW, pages 408–412. IEEE, 2012.

[13] Jonathan Bar-Magen. Fog computing: introduction to a new cloud evolution.
In Escrituras silenciadas: paisaje como historiografía, pages 111–126. Servicio
de Publicaciones, 2013.

[14] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen, and
Ion Stoica. Chameleon: scalable adaptation of video analytics. In Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data Commu-
nication, 2018.

[15] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.
In Computer Vision (ICCV), 2017 IEEE International Conference on, pages
2980–2988. IEEE, 2017.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[17] Diego Perino, Matteo Varvello, Leonardo Linguaglossa, Rafael Laufer, and
Roger Boislaigue. Caesar: A Content Router for High-Speed Forwarding on
Content Names. In ANCS, 2014.

[18] G Montenegro and N Kushalnagar. Transmission of ipv6 packets over ieee
802.15. 4 networks. RFC 4944, September 2007.

[19] Wentao Shang, Yingdi Yu, Ralph Droms, and Lixia Zhang. Challenges in iot
networking via tcp/ip architecture. Technical report, NDN Project, Tech. Rep.
NDN-0038, 2016.

[20] CCN-lite. http://www.ccn-lite.net/.

http://www.ccn-lite.net/


177 Bibliography

[21] Jordan Augé, Giovanna Carofiglio, Giulio Grassi, Luca Muscariello, Giovanni
Pau, and Xuan Zeng. Anchor-less producer mobility in icn. In Proceedings of
the 2nd International Conference on Information-Centric Networking, pages
189–190. ACM, 2015.

[22] Yu Zhang, Hongli Zhang, and Lixia Zhang. Kite: A mobility support scheme
for ndn. In Proceedings of the 1st international conference on Information-
centric networking, pages 179–180. ACM, 2014.

[23] Hidenori Nakazato, Siran Zhang, Yong Jin Park, Andrea Detti, Dariusz Bursz-
tynowski, Zbigniew Kopertowski, and Ioannis Psaras. On-path resolver archi-
tecture for mobility support in information centric networking. In Globecom
Workshops (GC Wkshps), 2015 IEEE, pages 1–6. IEEE, 2015.

[24] Sripriya Adhatarao, Jiachen Chen, Mayutan Arumaithurai, Xiaoming Fu, and
KK Ramakrishnan. Comparison of Naming Schema in ICN. In LANMAN.
IEEE, 2016.

[25] Vijay Devarapalli, Ryuji Wakikawa, Alexandru Petrescu, and Pascal Thubert.
Network mobility (nemo) basic support protocol. Technical report, 2004.

[26] Charles E Perkins. Mobile ip. IEEE communications Magazine, 35(5):84–99,
1997.

[27] Frederik Hermans, Edith Ngai, and Per Gunningberg. Global source mo-
bility in the content-centric networking architecture. In Proceedings of the
1st ACM workshop on Emerging Name-Oriented Mobile Networking Design-
Architecture, Algorithms, and Applications, pages 13–18. ACM, 2012.

[28] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krishnamurthy.
Mcdnn: An approximation-based execution framework for deep stream pro-
cessing under resource constraints. In Proceedings of the 14th Annual Inter-
national Conference on Mobile Systems, Applications, and Services, 2016.

[29] Trista P Chen, Horst Haussecker, Alexander Bovyrin, Roman Belenov, Kon-
stantin Rodyushkin, Alexander Kuranoc, and Victor Eruhimov. Computer
vision workload analysis: Case study of video surveillance systems. Intel Tech-
nology Journal, 2005.



Bibliography 178

[30] T. Zhang, A. Chowdhery, P. Bahl, K. Jamieson, and S. Banerjee. The design
and implementation of a wireless video surveillance system. In Conference on
Mobile Computing and Networking, 2015.

[31] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and M.J.
Freedman. Live video analytics at scale with approximation and delay-
tolerance. In NSDI, 2017.

[32] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E.A.Lee. Awstream:
Adaptive wide-area streaming analytics. In Conference of the ACM Special
Interest Group on Data Communication, 2018.

[33] Atul Bohara, Mohammad A Noureddine, Ahmed Fawaz, and William H
Sanders. An unsupervised multi-detector approach for identifying malicious
lateral movement. In 2017 IEEE 36th Symposium on Reliable Distributed Sys-
tems (SRDS), pages 224–233. IEEE, 2017.

[34] N.E. Weiss and R.S. Miller. The Target and other financial data breaches:
Frequently asked questions, 2015 (last accessed July 20, 2019). https://fas.
org/sgp/crs/misc/R43496.pdf.

[35] TrendMicro. APT myths and challenges, 2012 (last accessed July 20, 2019).
http://blog.trendmicro.com/trendlabs-security-intelligence/
infographic-apt-myths-and-challenges/.

[36] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog: Anomaly
detection and diagnosis from system logs through deep learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications
Security (CCS), pages 1285–1298. ACM, 2017.

[37] Amazon. CloudWatch pricing, 2019 (last accessed July 30, 2019). https:
//aws.amazon.com/cloudwatch/pricing/?nc1=h_ls.

[38] Yang Li, Jiachen Sun, Wenguang Huang, and Xiaohua Tian. Detecting
anomaly in large-scale network using mobile crowdsourcing. In IEEE IN-
FOCOM 2019-IEEE Conference on Computer Communications, pages 2179–
2187. IEEE, 2019.

[39] Batiste Le Bars and Argyris Kalogeratos. A probabilistic framework to
node-level anomaly detection in communication networks. In IEEE INFO-

https://fas.org/sgp/crs/misc/R43496.pdf
https://fas.org/sgp/crs/misc/R43496.pdf
http://blog.trendmicro.com/trendlabs-security-intelligence/infographic-apt-myths-and-challenges/
http://blog.trendmicro.com/trendlabs-security-intelligence/infographic-apt-myths-and-challenges/
https://aws.amazon.com/cloudwatch/pricing/?nc1=h_ls
https://aws.amazon.com/cloudwatch/pricing/?nc1=h_ls


179 Bibliography

COM 2019-IEEE Conference on Computer Communications, pages 2188–
2196. IEEE, 2019.

[40] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and Shankar
Pasupathy. Sherlog: error diagnosis by connecting clues from run-time logs.
In ACM SIGARCH computer architecture news, volume 38, pages 143–154.
ACM, 2010.

[41] Wenxiao Chen, Haowen Xu, Zeyan Li, Dan Peiy, Jie Chen, Honglin Qiao, Yang
Feng, and Zhaogang Wang. Unsupervised anomaly detection for intricate kpis
via adversarial training of vae. In IEEE INFOCOM 2019-IEEE Conference
on Computer Communications, pages 1891–1899. IEEE, 2019.

[42] Keras. Google InceptionV3 Model, 2019 (last accessed Dec 12, 2019). https:
//keras.io/applications/.

[43] Aaron Randall Tuor, Ryan Baerwolf, Nicolas Knowles, Brian Hutchinson,
Nicole Nichols, and Robert Jasper. Recurrent neural network language models
for open vocabulary event-level cyber anomaly detection. In Workshops at the
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[44] Nengwen Zhao, Jing Zhu, Rong Liu, Dapeng Liu, Ming Zhang, and Dan Pei.
Label-less: A semi-automatic labelling tool for kpi anomalies. In IEEE IN-
FOCOM 2019-IEEE Conference on Computer Communications, pages 1882–
1890. IEEE, 2019.

[45] Aaron Randall Tuor, Ryan Baerwolf, Nicolas Knowles, Brian Hutchinson,
Nicole Nichols, and Robert Jasper. Recurrent neural network language models
for open vocabulary event-level cyber anomaly detection. In Workshops at the
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[46] Marica Amadeo, Claudia Campolo, Antonio Iera, and Antonella Molinaro.
Named data networking for iot: an architectural perspective. In Networks and
Communications (EuCNC), 2014 European Conference on, pages 1–5. IEEE,
2014.

[47] Emmanuel Baccelli, Christian Mehlis, Oliver Hahm, Thomas C Schmidt, and
Matthias Wählisch. Information centric networking in the iot: experiments
with ndn in the wild. arXiv preprint arXiv:1406.6608, 2014.

https://keras.io/applications/
https://keras.io/applications/


Bibliography 180

[48] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. Inferring Link Weights
using End-to-End Measurements. In IMW, 2002.

[49] TensorFlow. Recurrent Neural Network, 2019 (last accessed Dec 12, 2019).
https://keras.io/layers/recurrent/.

[50] D. Sahoo, Q. Pham, J. Lu, and Ch. S. Hoi. Online deep learning: Learning
deep neural networks on the fly. arXiv preprint arXiv:1711.03705, 2017.

[51] U.S. National Research Council. National Academies Press. Un-
derstanding Crime Trends: Workshop Report, 2009 (last ac-
cessed Dec 12, 2019). https://www.nap.edu/catalog/12472/
understanding-crime-trends-workshop-report#toc.

[52] Haitian Pang, Lin Gao, Qinghua Ding, Jiangchuan Liu, and Lifeng Sun. Com-
petitive analysis of data sponsoring and edge caching for mobile video stream-
ing. In Proceedings of the 28th ACM SIGMM Workshop on Network and
Operating Systems Support for Digital Audio and Video, pages 37–42. ACM,
2018.

[53] O. Abari, D. Bharadia, A. Duffield, and D. Katabi. Enabling high-quality
untethered virtual reality. In Symposium on Networked Systems Design and
Implementation ({NSDI} 17), 2017.

[54] Ariel Rabkin, Matvey Arye, Siddhartha Sen, Vivek S Pai, and Michael J
Freedman. Aggregation and degradation in jetstream: Streaming analytics in
the wide area. In 11th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 14), pages 275–288, 2014.

[55] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies.
The case for vm-based cloudlets in mobile computing. IEEE pervasive Com-
puting, (4):14–23, 2009.

[56] Tan Zhang, Aakanksha Chowdhery, Paramvir Victor Bahl, Kyle Jamieson, and
Suman Banerjee. The design and implementation of a wireless video surveil-
lance system. In Proceedings of the 21st Annual International Conference on
Mobile Computing and Networking, pages 426–438. ACM, 2015.

[57] DJ Neal and Shawon Rahman. Video surveillance in the cloud? arXiv preprint
arXiv:1512.00070, 2015.

https://keras.io/layers/recurrent/
https://www.nap.edu/catalog/12472/understanding-crime-trends-workshop-report#toc
https://www.nap.edu/catalog/12472/understanding-crime-trends-workshop-report#toc


181 Bibliography

[58] Google Cloud. Ai and machine learning products pricing, 2018 ( last accessed
Dec 12, 2019). https://cloud.google.com/video-intelligence/pricing.

[59] Microsoft Azure. Cognitive services pricing - video indexer, 2018 (last accessed
Dec 12, 2019). https://azure.microsoft.com/en-us/pricing/details/
cognitive-services/face-api/.

[60] Amazon aws. Amazon rekognition pricing, 2018 (last accessed Dec 12, 2019).
https://aws.amazon.com/rekognition/pricing/.

[61] UCF-Crime. Dataset, 2019 (last accessed Dec 12, 2019). http://crcv.ucf.
edu/projects/real-world/.

[62] Cui-Qing Yang and Alapati VS Reddy. A taxonomy for congestion control
algorithms in packet switching networks. IEEE network, 9(4):34–45, 1995.

[63] Praveen Kumar, Ayush Singhal, Sanyam Mehta, and Ankush Mittal. Real-
time moving object detection algorithm on high-resolution videos using gpus.
Journal of Real-Time Image Processing, 11(1):93–109, 2016.

[64] Doyen Sahoo, Quang Pham, Jing Lu, and Steven CH Hoi. Online deep learn-
ing: learning deep neural networks on the fly. In Proceedings of the 27th Inter-
national Joint Conference on Artificial Intelligence, pages 2660–2666. AAAI
Press, 2018.

[65] Alexander D Kent. Cyber security data sources for dynamic network research.
In Dynamic Networks and Cyber-Security, pages 37–65. World Scientific, 2016.

[66] K.V. Katsaros, G. Xylomenos, and G.C. Polyzos. MultiCache: an Overlay Ar-
chitecture for Information-Centric Networking. Elsevier, Computer Networks,
55(4):936–947, 2011.

[67] Venugopalan Ramasubramanian, Ryan Peterson, and Emin Gün Sirer.
Corona: a high performance publish-subscribe system for the world wide web.
In NSDI, 2006.

[68] Md Faizul Bari, Shihabur Rahman Chowdhury, Reaz Ahmed, Raouf Boutaba,
and Bertrand Mathieu. A Survey of Naming and Routing in Information-
Centric Networks. Communications Magazine, pages 44–53, 2012.

https://cloud.google.com/video-intelligence/pricing
https://azure.microsoft.com/en-us/pricing/details/cognitive-services/face-api/
https://azure.microsoft.com/en-us/pricing/details/cognitive-services/face-api/
https://aws.amazon.com/rekognition/pricing/
http://crcv.ucf.edu/projects/real-world/
http://crcv.ucf.edu/projects/real-world/


Bibliography 182

[69] Bengt Ahlgren, Christian Dannewitz, Claudio Imbrenda, Dirk Kutscher, and
Börje Ohlman. A Survey of Information-Centric Networking. Communications
Magazine, pages 26–36, 2012.

[70] Akash Baid, Tam Vu, and Dipankar Raychaudhuri. Comparing Alternative
Approaches for Networking of Named Objects in the Future Internet. In
NOMEN, 2012.

[71] Sugang Li, Yanyong Zhang, Dipankar Raychaudhuri, and Ravishankar Ravin-
dran. A Comparative Study of MobilityFirst and NDN based ICN-IoT Archi-
tectures. In QShine, 2014.

[72] Z Guo, A Venkataramani, J Kurose, and S Heimlicher. Towards a Quantitative
Comparison of the Cost-Benefit Trade-Offs of Location-Independent Network
Architectures. Technical report, School of Computer Science, University of
Masachusetts, Amherst MA 01003, 2014.

[73] Haowei Yuan and Patrick Crowley. Performance Measurement of Name-
Centric Content Distribution Methods. In ANCS, 2011.

[74] Sugang Li, Yanyong Zhang, Dipankar Raychaudhuri, and Ravishankar Ravin-
dran. A comparative study of mobilityfirst and ndn based icn-iot architectures.
In Heterogeneous Networking for Quality, Reliability, Security and Robustness
(QShine), 2014 10th International Conference on, pages 158–163. IEEE, 2014.

[75] Jiachen Chen, Sugang Li, Haoyang Yu, Yanyong Zhang, Dipankar Raychaud-
huri, Ravishankar Ravindran, Hongju Gao, Lijun Dong, Guoqiang Wang, and
Hang Liu. Exploit icn for realizing service-oriented communication in iot.
IEEE Communication Magazine (submitted for publication), 2016.

[76] José Quevedo, Daniel Corujo, and Rui Aguiar. A case for icn usage in iot
environments. In 2014 IEEE Global Communications Conference, pages 2770–
2775. IEEE, 2014.

[77] Marica Amadeo, Claudia Campolo, and Antonella Molinaro. Multi-source
data retrieval in iot via named data networking. In Proceedings of the 1st in-
ternational conference on Information-centric networking, pages 67–76. ACM,
2014.

[78] Ngoc-Thanh Dinh and Younghan Kim. Potential of information-centric wire-
less sensor and actor networking. In Computing, Management and Telecom-



183 Bibliography

munications (ComManTel), 2013 International Conference on, pages 163–168.
IEEE, 2013.

[79] Alberto Compagno, Mauro Conti, and Ralph Droms. Onboardicng: a secure
protocol for on-boarding iot devices in icn. In ICN, 2016.

[80] Marcel Enguehard, Ralph Droms, and Dario Rossi. Poster: On the cost of
secure association of information centric things. In ICN, 2016.

[81] B. Ohlman, A. Eriksson, and R. Rembarz. What networking of information
can do for cloud computing. In IEEE International Workshops on Enabling
Technologies: Infrastructures for Collaborative Enterprises, 2009.

[82] B. Ahlgren, M. D’Ambrosio, C. Dannewitz, M. Marchisio, I. Marsh,
B. Ohlman, K. Pentikousis, R. Rembarz, O. Strandberg, and V. Vercellone.
Design Considerations for A Network of Information. In ReArch, 2008.

[83] I. Abdullahi, S. Arif, and S. Hassan. Ubiquitous shift with information centric
network caching using fog computing. In INNS Symposia Series on Computa-
tional Intelligence in Information Systems (INNS-CIIS), 2015.

[84] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its role in
the internet of things. In Workshop on Mobile Cloud Computing, 2012.

[85] W. Shi and S. Dustdar. The promise of edge computing. Computer, 49(5),
2016.

[86] Alfio Lombardo, Antonio Manzalini, Giovanni Schembra, Giuseppe Faraci,
Corrado Rametta, and Vincenzo Riccobene. An open framework to enable
netfate (network functions at the edge). In Network Softwarization (NetSoft),
2015 1st IEEE Conference on, pages 1–6. IEEE, 2015.

[87] C. Esteve, F. Verdi, and M. Magalhaes. Towards A New Generation of
Information-Oriented Internetworking Architectures. In ReArch, 2008.

[88] Adeel Mohammad Malik, Joakim Borgh, and Börje Ohlman. Attribute-based
encryption on a resource constrained sensor in an information-centric network.
In Proceedings of the 3rd ACM Conference on Information-Centric Network-
ing, pages 217–218, 2016.



Bibliography 184

[89] Cenk Gündoğan, Peter Kietzmann, Thomas C Schmidt, and Matthias Wäh-
lisch. Your message rescues me: Enhancing ndn communication quality in
disaster scenarios. In Proceedings of the 6th ACM Conference on Information-
Centric Networking, pages 173–174, 2019.

[90] Pooja Patel, Hiren B Patel, and Bela Shrimali. Data delivery techniques in
content centric routing for iot: a systematic review. International Journal of
Advanced Technology and Engineering Exploration, 5(48):445, 2018.

[91] Emmanuel Baccelli, Christian Mehlis, Oliver Hahm, Thomas C Schmidt,
and Matthias Wählisch. Information centric networking in the iot: Experi-
ments with ndn in the wild. In Proceedings of the 1st ACM Conference on
Information-Centric Networking, pages 77–86, 2014.

[92] Asit Chakraborti, Syed Obaid Amin, Aytac Azgin, Satyajayant Misra, and
Ravishankar Ravindran. Using icn slicing framework to build an iot edge
network. In Proceedings of the 5th ACM Conference on Information-Centric
Networking, pages 214–215, 2018.

[93] Eleonora Borgia, Raffaele Bruno, and Andrea Passarella. Making opportunis-
tic networks in iot environments ccn-ready: A performance evaluation of the
mobccn protocol. Computer Communications, 123:81–96, 2018.

[94] Jaime Galán-Jiménez, Javier Berrocal, Jose Garcia-Alonso, and Manuel Jesús
Azabal. A novel routing scheme for creating opportunistic context-virtual
networks in iot scenarios. Sensors, 19(8):1875, 2019.

[95] Luigi Alfredo Grieco, Mahdi Ben Alaya, Thierry Monteil, and Khalil Drira.
Architecting information centric etsi-m2m systems. In 2014 IEEE Interna-
tional Conference on Pervasive Computing and Communication Workshops
(PERCOM WORKSHOPS), pages 211–214. IEEE, 2014.

[96] Yanyong Zhang, Dipankar Raychadhuri, Ravi Ravindran, and G Wang. Icn
based architecture for iot. IRTF contribution, October, 2013.

[97] Cenk Gundogan, Peter Kietzmann, Thomas C Schmidt, et al. Icnlowpan–
named-data networking for low power iot networks. In 2019 IFIP Networking
Conference (IFIP Networking), pages 1–9. IEEE, 2019.

[98] Yu-Ting Yu, Raheleh B Dilmaghani, Seraphin Calo, MY Sanadidi, and Mario
Gerla. Interest propagation in named data manets. In 2013 International



185 Bibliography

Conference on Computing, Networking and Communications (ICNC), pages
1118–1122. IEEE, 2013.

[99] Raaid Alubady, Mohammed Al-Samman, Suhaidi Hassan, Suki Arif, and Adib
M Monzer Habbal. Internet protocol manet vs named data manet: A critical
evaluation. 2015.

[100] Hauke Petersen, Peter Kietzmann, Thomas C Schmidt, and Matthias Wäh-
lisch. Ndn meets ble: A transparent gateway for opening ndn-over-ble net-
works to your smartphone. In Proceedings of the 6th ACM Conference on
Information-Centric Networking, pages 175–176, 2019.

[101] Jérôme François, Thibault Cholez, and Thomas Engel. Ccn traffic optimization
for iot. In 2013 Fourth international conference on the network of the future
(NOF), pages 1–5. IEEE, 2013.

[102] Antonio Carzaniga, Michele Papalini, and Alexander L Wolf. Content-based
publish/subscribe networking and information-centric networking. In Proceed-
ings of the ACM SIGCOMM workshop on Information-centric networking,
pages 56–61, 2011.

[103] Jihoon Lee, Sungrae Cho, and Daeyoub Kim. Device mobility management in
content-centric networking. IEEE Communications Magazine, 50(12), 2012.

[104] Do-hyung Kim, Jong-hwan Kim, Yu-sung Kim, Hyun-soo Yoon, and Ikjun
Yeom. Mobility support in content centric networks. In Proceedings of the
second edition of the ICN workshop on Information-centric networking, pages
13–18. ACM, 2012.

[105] Liang Wang, Otto Waltari, and Jussi Kangasharju. Mobiccn: Mobility support
with greedy routing in content-centric networks. In Global Communications
Conference (GLOBECOM), 2013 IEEE, pages 2069–2075. IEEE, 2013.

[106] Dino Farinacci, Darrel Lewis, David Meyer, and Vince Fuller. The locator/id
separation protocol (lisp). 2013.

[107] Aytac Azgin, Ravishankar Ravindran, Asit Chakraborti, and G Wang. Seam-
less producer mobility as a service in information centric networks. In ACM
ICN 2016, IC5G Workshop, 2016.



Bibliography 186

[108] Aleksandra Karimaa. Video surveillance in the cloud: Dependability anal-
ysis. In Proceedings of the fourth international conference on dependability,
DEPEND, pages 92–95, 2011.

[109] Amal Ben Hamida, Mohamed Koubaa, Henri Nicolas, and Chokri Ben Amar.
Video surveillance system based on a scalable application-oriented architec-
ture. Multimedia Tools and Applications, 75(24):17187–17213, 2016.

[110] Weitao Feng, Deyi Ji, Yiru Wang, Shuorong Chang, Hansheng Ren, and Wei-
hao Gan. Challenges on large scale surveillance video analysis. In CVPR
Workshop on the AI City Challenge, 2018.

[111] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia.
Noscope: optimizing neural network queries over video at scale. Proceedings
of the VLDB Endowment, 2017.

[112] K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkataraman, P. Bahl,
M. Philipose, P. Gibbons, and O. Mutlu. Focus: Querying large video datasets
with low latency and low cost. In Symposium on Operating Systems Design
and Implementation, 2018.

[113] Marcello Cinque, Domenico Cotroneo, and Antonio Pecchia. Event logs for
the analysis of software failures: A rule-based approach. IEEE Transactions
on Software Engineering, 39(6):806–821, 2012.

[114] Sudip Roy, Arnd Christian König, Igor Dvorkin, and Manish Kumar. Perfau-
gur: Robust diagnostics for performance anomalies in cloud services. In 2015
IEEE 31st International Conference on Data Engineering, pages 1167–1178.
IEEE, 2015.

[115] Kenji Yamanishi and Yuko Maruyama. Dynamic syslog mining for network
failure monitoring. In Proceedings of the eleventh ACM SIGKDD international
conference on Knowledge discovery in data mining, pages 499–508. ACM, 2005.

[116] Ting-Fang Yen, Alina Oprea, Kaan Onarlioglu, Todd Leetham, William
Robertson, Ari Juels, and Engin Kirda. Beehive: Large-scale log analysis
for detecting suspicious activity in enterprise networks. In Proceedings of
the 29th Annual Computer Security Applications Conference, pages 199–208.
ACM, 2013.



187 Bibliography

[117] Yali Yuan, Georgios Kaklamanos, and Dieter Hogrefe. A novel semi-supervised
adaboost technique for network anomaly detection. In Proceedings of the 19th
ACM International Conference on Modeling, Analysis and Simulation of Wire-
less and Mobile Systems, pages 111–114. ACM, 2016.

[118] Ron Bitton and Asaf Shabtai. A machine learning-based intrusion detection
system for securing remote desktop connections to electronic flight bag servers.
IEEE Transactions on Dependable and Secure Computing, 2019.

[119] Andy Brown, Aaron Tuor, Brian Hutchinson, and Nicole Nichols. Recurrent
neural network attention mechanisms for interpretable system log anomaly
detection. In Proceedings of the First Workshop on Machine Learning for
Computing Systems, page 1. ACM, 2018.

[120] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. Kitsune:
an ensemble of autoencoders for online network intrusion detection. arXiv
preprint arXiv:1802.09089, 2018.

[121] Subhendu Khatuya, Niloy Ganguly, Jayanta Basak, Madhumita Bharde,
and Bivas Mitra. Adele: Anomaly detection from event log empiricism.
In IEEE INFOCOM 2018-IEEE Conference on Computer Communications,
pages 2114–2122. IEEE, 2018.

[122] Raghavendra Chalapathy and Sanjay Chawla. Deep learning for anomaly
detection: A survey. arXiv preprint arXiv:1901.03407, 2019.

[123] Pankaj Gupta, Steven Lin, and Nick McKeown. Routing Lookups in Hardware
at Memory Access Speeds. In INFOCOM, 1998.

[124] Alexa. Does Alexa have a list of its top-ranked web-
sites? https://support.alexa.com/hc/en-us/articles/
200449834-Does-Alexa-have-a-list-of-its-top-ranked-websites-.

[125] Yi Wang, Yuan Zu, Ting Zhang, Kunyang Peng, Qunfeng Dong, Bin Liu, Wei
Meng, Huicheng Dai, Xin Tian, Zhonghu Xu, et al. Wire Speed Name Lookup:
A GPU-based Approach. In NSDI, 2013.

[126] Cisco Visual Networking Index. Global mobile data traffic forecast update,
2011–2016. white paper, 2014.

https://support.alexa.com/hc/en-us/articles/200449834-Does-Alexa-have-a-list-of-its-top-ranked-websites-
https://support.alexa.com/hc/en-us/articles/200449834-Does-Alexa-have-a-list-of-its-top-ranked-websites-


Bibliography 188

[127] Alexander Afanasyev, Cheng Yi, Lan Wang, Beichuan Zhang, and Lixia
Zhang. SNAMP: Secure Namespace Mapping to Scale NDN Forwarding. In
Global Internet Symposium, 2015.

[128] Hang Liu, Xavier De Foy, and Dan Zhang. A Multi-Level DHT Routing
Framework with Aggregation. In ICN, 2012.

[129] Jatinder Singh, Thomas Pasquier, Jean Bacon, Hajoon Ko, and David Eyers.
Twenty security considerations for cloud-supported internet of things. IEEE
Internet of Things Journal, 3(3):269–284, 2016.

[130] Adeel Mohammad Malik, Joakim Borgh, and Börje Ohlman. Attribute-based
encryption on a resource constrained sensor in an information-centric network.
In ICN, 2016.

[131] Min Chen, Shiwen Mao, and Yunhao Liu. Big data: A survey. Mobile Networks
and Applications, 19(2):171–209, 2014.

[132] Cisco visual networking index: Global mobile data traffic fore-
cast update. http://www.cisco.com/c/en/us/solutions/
collateral/service-provider/visual-networking-index-vni/
mobile-white-paper-c11-520862.html.

[133] Big data problem with iot. http://www.networkworld.com/article/
3147892\protect\discretionary{\char\hyphenchar\font}{}{}/
internet/one-autonomous-car-will-use-4000-gb-of-dataday.html.

[134] Tim Winter, Pascal Thubert, Anders Brandt, Jonathan W Hui, Richard
Kelsey, Philip Levis, Kris Pister, Rene Struik, Jean-Philippe Vasseur, Roger K
Alexander, et al. Rpl: Ipv6 routing protocol for low-power and lossy networks.
rfc, 6550:1–157, 2012.

[135] Named function networking. http://named-function.net/.

[136] RIOT: The friendly Operating System for the Internet of Things. http://
www.riot-os.org/.

[137] David L Mills. Internet time synchronization: the network time protocol.
IEEE Transactions on communications, 39(10):1482–1493, 1991.

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.networkworld.com/article/3147892\protect \discretionary {\char \hyphenchar \font }{}{}/internet/one-autonomous-car-will-use-4000-gb-of-dataday.html
http://www.networkworld.com/article/3147892\protect \discretionary {\char \hyphenchar \font }{}{}/internet/one-autonomous-car-will-use-4000-gb-of-dataday.html
http://www.networkworld.com/article/3147892\protect \discretionary {\char \hyphenchar \font }{}{}/internet/one-autonomous-car-will-use-4000-gb-of-dataday.html
http://named-function.net/
http://www.riot-os.org/
http://www.riot-os.org/


189 Bibliography

[138] Andrea Sgambelluri, Alessio Giorgetti, Filippo Cugini, Gianmarco Bruno,
Francesco Lazzeri, and Piero Castoldi. First demonstration of sdn-based seg-
ment routing in multi-layer networks. In Optical Fiber Communications Con-
ference and Exhibition (OFC), 2015, pages 1–3. IEEE, 2015.

[139] Kapil Bakshi. Considerations for software defined networking (sdn): Ap-
proaches and use cases. In Aerospace Conference, 2013 IEEE, pages 1–9.
IEEE, 2013.

[140] Philip Lieberman. Wake-on-lan technology, 2010.

[141] P Vixie, O Gudmundsson, D Eastlake, and B Wellington. Rfc 2845: Secret
key transaction authentication for dns (tsig), 2000.

[142] Dennis Grewe, Marco Wagner, and Hannes Frey. Perceive: Proactive caching
in icn-based vanets. In Vehicular Networking Conference (VNC), 2016 IEEE,
pages 1–8. IEEE, 2016.

[143] Majestic.Com. Dataset, 2017 (last accessed April 11, 2017). https://blog.
majestic.com/development/majestic-million-csv-daily/.

[144] Mayutan Arumaithurai, Kadangode K Ramakrishnan, and Toru Hasegawa.
Information-centric networking: The case for an energy-efficient future inter-
net architecture. Green Communications: Principles, Concepts and Practice,
pages 361–376, 2015.

[145] Rodrigo Roman, Javier Lopez, and Masahiro Mambo. Mobile edge computing,
fog et al.: A survey and analysis of security threats and challenges. Future
Generation Computer Systems, 78:680–698, 2018.

[146] Liang Xiao, Xiaoyue Wan, Canhuang Dai, Xiaojiang Du, Xiang Chen, and
Mohsen Guizani. Security in mobile edge caching with reinforcement learning.
arXiv preprint arXiv:1801.05915, 2018.

[147] Seyed Yahya Nikouei, Ronghua Xu, Deeraj Nagothu, Yu Chen, Alexander
Aved, and Erik Blasch. Real-time index authentication for event-oriented
surveillance video query using blockchain. arXiv preprint arXiv:1807.06179,
2018.

https://blog.majestic.com/development/majestic-million-csv-daily/
https://blog.majestic.com/development/majestic-million-csv-daily/


Bibliography 190

[148] Thomas Stockhammer. Dynamic adaptive streaming over http–: standards
and design principles. In Proceedings of the second annual ACM conference
on Multimedia systems, pages 133–144. ACM, 2011.

[149] Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay Rao, Jessica Chen,
Ethan Katz-Bassett, Bruno Ribeiro, Jibin Zhan, and Hui Zhang. Oboe: auto-
tuning video abr algorithms to network conditions. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication, 2018.

[150] Iraj Sodagar. The mpeg-dash standard for multimedia streaming over the
internet. IEEE MultiMedia, (4):62–67, 2011.

[151] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul
Sukthankar, and Li Fei-Fei. Large-scale video classification with convolutional
neural networks. In Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, pages 1725–1732, 2014.

[152] IPVM. Report, 2011 (last accessed Dec 12, 2019). https://ipvm.com/
reports/recording-frame-rate--whats-actually-being-used.

[153] C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu, P. Bahl, and
M. Philipose. Videoedge: Processing camera streams using hierarchical clus-
ters. In IEEE/ACM Symposium on Edge Computing, pages 115–131. IEEE,
2018.

[154] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young.
Mobile edge computing-a key technology towards 5g. ETSI white paper,
11(11):1–16, 2015.

[155] F. Loewenherz, V. Bahl, and Y. Wang. Video analytics towards vision zero.
ITE Journal, 87(3):25, 2017.

[156] Taku Kudo and John Richardson. Sentencepiece: A simple and language
independent subword tokenizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 66–71, 2018.

[157] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using rnn encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078, 2014.

https://ipvm.com/reports/recording-frame-rate--whats-actually-being-used
https://ipvm.com/reports/recording-frame-rate--whats-actually-being-used


191 Bibliography

[158] D E Rumelhart, G E Hinton, and R J Williams. Learning Internal Represen-
tations by Error Propagation. 1988.

[159] Wilfrid J Dixon and Frank J Massey Jr. Introduction to statistical analysis.
1951.

[160] Pierre Baldi. Autoencoders, unsupervised learning, and deep architectures. In
Proceedings of ICML workshop on unsupervised and transfer learning, pages
37–49, 2012.

[161] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu,
Daeki Cho, and Haifeng Chen. Deep autoencoding gaussian mixture model
for unsupervised anomaly detection. ICLR, 2018.

[162] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation-based anomaly
detection. ACM Transactions on Knowledge Discovery from Data (TKDD),
6(1):3, 2012.

[163] Yunqiang Chen, Xiang Sean Zhou, and Thomas S Huang. One-class svm for
learning in image retrieval. In ICIP (1), pages 34–37. Citeseer, 2001.

[164] Yu Kong and Yun Fu. Max-margin action prediction machine. IEEE transac-
tions on pattern analysis and machine intelligence, 38(9):1844–1858, 2015.

[165] Leonardo Aguayo and Guilherme A Barreto. Novelty detection in time series
using self-organizing neural networks: A comprehensive evaluation. Neural
Processing Letters, 47(2):717–744, 2018.

[166] Hans-Peter Kriegel, Arthur Zimek, et al. Angle-based outlier detection in high-
dimensional data. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 444–452. ACM,
2008.

[167] Ali A Ghorbani, Wei Lu, and Mahbod Tavallaee. Network intrusion detec-
tion and prevention: concepts and techniques, volume 47. Springer Science &
Business Media, 2009.

[168] Stefan Axelsson. The base-rate fallacy and the difficulty of intrusion detection.
ACM Transactions on Information and System Security (TISSEC), 3(3):186–
205, 2000.



Bibliography 192

[169] Sripriya S Adhatarao, Jiachen Chen, Mayutan Arumaithurai, Xiaoming Fu,
and KK Ramakrishnan. Comparison of naming schema in icn. In 2016 IEEE
international symposium on local and metropolitan area networks (LANMAN),
pages 1–6. IEEE, 2016.

[170] Sripriya Srikant Adhatarao, Mayutan Arumaithurai, Dirk Kutscher, and Xi-
aoming Fu. Isi: Integrate sensor networks to internet with icn. IEEE Internet
of Things Journal, 5(2):491–499, 2017.

[171] Sripriya Srikant Adhatarao, Mayutan Arumaithurai, and Xiaoming Fu. Fogg:
A fog computing based gateway to integrate sensor networks to internet. In
2017 29th International Teletraffic Congress (ITC 29), volume 2, pages 42–47.
IEEE, 2017.

[172] Sripriya Adhatarao, Haitao Wang, Mayutan Arumaithurai, and Xiaoming Fu.
COPSS-lite: A Lightweight ICN based Pub/Sub System for IoT Environ-
ments. The 16th International Conference on Mobility Sensing and Networking
(MSN 16), 2020.

[173] Sripriya Adhatarao, Mayutan Arumaithurai, Dirk Kutscher, and Xiaoming Fu.
Nemoi: Network mobility in icn. In Communication Systems and Networks:
10th International Conference, COMSNETS 2018, Bangalore, India, January
3-7, 2018, Extended Selected Papers, volume 11227, page 220. Springer, 2019.

[174] Sripriya Adhatarao, Mayutan Arumaithurai, Dirk Kutscher, and Xiaoming
Fu. Nemoi: Network mobility in icn. In International Conference on Commu-
nication Systems and Networks, pages 220–244. Springer, 2018.

[175] Sripriya Srikant Adhatarao, Abhinandan Prasad, Mayutan Arumaithurai,
Dirk Kutscher, and Xiaoming Fu. Eva: A distributed optimization archi-
tecture for efficient video analysis. IEEE Transaction on Mobile Computing
(under re-submission, 2nd round), 2020.

[176] Yali Yuan, Sripriya Adhatarao Adahatarao, Mingkai Linz, Yachao Yuan, Zheli
Liu, and Xiaoming Fu. Ada: Adaptive deep log anomaly detector. In INFO-
COM. IEEE, 2020.



Curriculum Vitae

Sripriya Srikant Adhatarao
Robert Koch Straße 38
37075 Göttingen
sripriya.sripriya@gmail.com

Contact
Information

Born on March 19th 1989 in Bangalore, IndiaPersonal
Information Indian Citizen

Marital Status: Single

University of Göttingen, Göttingen, GermanyWork
Experience

Technical Coordination, Project Management Since 10/2015
& Senior Scientific Researcher
Institute of Computer Science, Computer Networks Group, University of Göttingen

• Project: EU NICT ICN2020 (07/2016 - 06/2019)
• Project: EU FP7 GreenICN (10/2015 - 06/2016)

Website Administrator 02/2014–09/2015
Institute of Computer Science, Software Engineering for Distributed Systems,
University of Göttingen

Industrial Experience

Lead Technical Associate 11/2010–10/2013
Tech Mahindra LTD, India

• Project: British Telecom BTcom-Dev-eComm Ecommerce

University of Göttingen, Göttingen, GermanyEducation

PhD Student, 11/2015–10/2020
PCS Programme in Computer Science (PCS),
Georg-August University School of Science (GAUSS),
Institute of Computer Science, Computer Networks Group

• Thesis Topic: PHOENIX: A Premise to Reinforce Heterogeneous and Evolv-
ing Internet Architectures with Exemplary Applications

• Advisors: Prof. Dr. Xiaoming Fu, PD. Dr. Mayutan Arumaithurai

Master of Science, 11/2010
Institute of Computer Science, Computer Networks Group

• Thesis Topic: ORICE: An Architecture for Object Resolution Services in
Information-Centric Environment

• Advisor: Prof. Dr. Xiaoming Fu
• Thesis Grade: 1.0
• Degree Grade: 1.4, Graduated with honors

Bachelor of Engineering, 07/2007
Visvesvaraya Technological University

• Project Topic: Flexible Deterministic Packet Marking
• Advisor: Mrs. Hina Nazneen
• Project Grade: 1.0
• Degree Grade: 1.9, Graduated with honors



Publications Yuan, Y.*, Adhatarao, S.*, Lin, M., Yuan, Y., Liu, Z. and Fu, X. ADA: Adap-
tive Deep Log Anomaly Detector. In Proceedings of the IEEE Conference on
Computer Communications (INFOCOM’20), Toronto, Canada, July 6-9, 2020.
*Joint First Author.

Yuan, Y.*, Tasik, R.*, Adhatarao, S., Yuan, Y., Liu, Z. and Fu, X. RACE: Rein-
forced Cooperative Autonomous Vehicle Collision AvoidancE. In Proceedings of
the IEEE Transactions on Vehicular Technology (TVT’20), Feb 14, 2020. *Joint
First Author.

Adhatarao, S., Arumaithurai, M., Kutscher, D. and Fu, X. NeMoI: Network mo-
bility in ICN. In Proceedings of the Springer Lecture Notes in Computer Science
(LNCS’18), December 31, 2018.

Adhatarao, S., Arumaithurai, M., Kutscher, D. and Fu, X. NeMoI: Network mo-
bility in ICN. In Proceedings of the IEEE International Conference on Communi-
cation Systems & Networks (COMSNETS’18), Bengaluru, India, Jan 3-7, 2018.

Adhatarao, S., Arumaithurai, M. and Fu, X. FOGG: A fog computing based
gateway to integrate sensor networks to Internet. In Proceedings of the IEEE
International Teletraffic Congress (ITC’17), Genoa, Italy, Sep 4-8, 2017.

Adhatarao, S., Arumaithurai, M., Kutscher, D. and Fu, X. ISI: Integrate sensor
networks to Internet with ICN. In Proceedings of the IEEE Internet of Things
Journal (IoT’18), Aug 18, 2017.

Adhatarao, S., Chen, J., Arumaithurai, M., Fu, X. and Ramakrishnan, KK. Com-
parison of naming schema in ICN. In Proceedings of the IEEE international sym-
posium on local and metropolitan area networks (LANMAN’16), Rome, Italy, Jun
13-15, 2016.

Adhatarao, S., Chen, J., Arumaithurai, M., Fu, X. and Ramakrishnan, KK. Pro-
totype of an Architecture for Object Resolution Services in Information-Centric
Environment. In Proceedings of the ACM Conference on Information-Centric
Networking (ICN’15), Demo Session, San Francisco, USA, Sep 30 - Oct 02, 2015.

Adhatarao, S., Chen, J., Arumaithurai, M., Fu, X. and Ramakrishnan, KK.
ORICE: An architecture for object resolution services in information-centric en-
vironment. In Proceedings of the IEEE international symposium on local and
metropolitan area networks (LANMAN’15), Beijing, China, Apr 22-24, 2015.

Adhatarao, S., Alfandi, O., Bochem, A. and Hogrefe, D. Smart parking system for
vehicles. In Proceedings of the IEEE Vehicular Networking Conference (VNC’14),
Poster Session, Paderborn, Germany, Dec 03-05, 2014.

Adhatarao, S., Wang, H., Arumaithurai, M. and Fu, X. COPSS-lite: A Lightweight
ICN based Pub/Sub System for IoT Environments. In Proceedings of the IEEE
International Conference on Mobility, Sensing and Networking (MSN’20), Tokyo,
Japan, Dec 17-19, 2020.

Adhatarao, S., Prasad, A., Arumaithurai, M. and Fu, X. EVA: A Distributed
Optimization Architecture for Efficient Video Analysis. In Proceedings of the
IEEE Transactions on Mobile Computing (TMC’20). Under 2nd round revision.

Yuan, Y., Adhatarao, S., Wang, W., Ren, B. Wang, Y., Zheng, K., and Fu, X.
VSiM: Improving QoE Fairness for Video Streaming in Mobile Environments.
In Proceedings of the IEEE Conference on Computer Communications (INFO-
COM’21), Toronto, Canada, May 10-13, 2021.



Honors and
Awards

• 01/2018: IEEE COMSNETS Student travel grant
• 09/2015: Graduated with honors, Master of Science, Applied Computer Science
• 05/2014: India-EU NAMASTE Mobility Project Masters Scholarship
• 05/2013: Honored with PAT ON THE BACK award in Tech Mahindra LTD
• 05/2012: Nominated for the RISING STAR award in Tech Mahindra LTD
• 07/2010: Graduated with honors, Bachelor of Computer Science & Engineering

Organization
Committee
Memberships

• 03/2017: Local organizing committee of 20th international conference on Net-
worked Systems (NetSys 2017)

• 09/2017: Local organizing committee of 4th ACM conference on Information-
Centric Networking (ICN 2017)

• 09/2017: Member of the Technical Program Committee of Demos and Posters
tracks of ACM ICN 2017

Computer Networks Group, University of Göttingen, Göttingen, GermanyReferee
Service

Journals

• 2020: IEEE Transactions on Mobile Computing
• 2018: Elsevier Computer Communications Journals

Conferences

• 2019: IEEE MSN, IEEE NetSoft, IEEE ICIN, IEEE INFOCOM
• 2017: IEEE ICCCN, ACM ICN
• 2016: ACM ICN

Computer Networks Group, University of Göttingen, Göttingen, GermanyTeaching
Experience

Teaching Experience Since 04/2016

• Advanced Computer Networks (Master level)
• Summer 2016/2018/2019

• Seminar on Internet Technologies (Bachelor/Master level)
• Summer 2016–present

• Practical Course Networking Lab (Bachelor level)
• Winter 2016/2017, Summer 2017, Winter 2017/2018

Thesis &
Project
Supervision

Bachelor and Master Thesis Since 11/2015

• Janosch Ruff. Development of a Gateway for Protocol Translation in IoT
with ICN. Bachelor Thesis, 2017.

• Haitao Wang. COPSS-lite: Lightweight ICN Based Pub/Sub for IoT Envi-
ronments. Master Project, 2017.

• Md. Toufiqul Islam. Measuring video retrieval time in Named Data Net-
working Caching enabled & disabled scenario. Master Project, 2017.

• Ander Schiavella. Gateway Implementation Heavy Part. Master Project,
2017.

• Fabio Sortino. Gateway Implementation Lite Part. Master Project, 2017.


	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Evolution of Internet architectures
	Open research problems
	Impact of naming schema on the performance of ICN
	IoT: seamless integration of heterogeneous Sensor Networks to the Internet
	Light-weight publish/subscribe system for IoT
	Network mobility in ICN
	Resource-accuracy optimization with supervised deep learning models
	Real-time security with unsupervised deep learning models

	Dissertation contributions
	Comparison of Naming Schema in ICN
	ISI: Integrate Sensor Networks to Internet with ICN
	Application - FOGG: A Fog Computing Based Gateway to Integrate Sensor Networks to Internet
	COPSS-lite: A Lightweight ICN based Pub/Sub System for IoT Environments
	NeMoI: Network Mobility in ICN
	Application - Network Mobility in Train and Car
	EVA: A Distributed Optimization Architecture for Efficient Video Analysis
	Application - Video Analysis
	ADA: Adaptive Deep Log Anomaly Detector
	Application - Cyber Security Data Analysis

	Dissertation outline

	Background and Related Work
	Background
	NDN architecture
	MobilityFirst architecture
	COPSS architecture

	Related work
	Impact of naming schema on the performance of ICN
	IoT: seamless integration of heterogeneous Sensor Networks to the Internet
	Light-weight publish/subscribe system for IoT
	Network mobility in ICN
	Resource-accuracy optimization with supervised deep learning models
	Real-time security with unsupervised deep learning models


	Comparison of Naming Schema in ICN
	Comparison 1: name lookup efficiency
	Microbenchmark: NDN forwarding vs. MF GNRS
	Discussion

	Comparison 2: aggregate-ability
	Simulation: name aggregation on content mobility
	Discussion

	Comparison 3: semantics & manageability
	Hierarchical semantics
	Hierarchical name space management

	Chapter summary

	ISI: Integrate Sensor Networks to Internet with ICN
	Use case formalization
	Requirement analysis
	Architecture
	Components
	Description

	Naming schema for Sensor Networks
	Naming in IoT
	Naming in the Internet

	Communication protocol for IoT and Internet
	Query/Response (Q/R) communication
	Publish/Subscribe (pub/sub) communication
	Communication protocol for IoT

	Use case realization
	Discussions
	Mobility
	Security

	Chapter summary

	Application - FOGG: A Fog Computing Based Gateway to Integrate Sensor Networks to Internet
	Fog computing
	Use cases and requirements
	Use case formalization
	Requirement analysis

	FOGG design
	Controller functionality
	Protocol translation
	Communication techniques
	Secure onboarding
	Data: pre-fetching, caching, filtering
	Security

	Realization of use-cases with FOGG
	Operation
	Example of FOGG with caching and periodic-fetching
	Example of FOGG performing protocol translation
	Example of FOGG performing pre-filtering
	Example of FOGG performing controlling

	Chapter summary

	COPSS-lite: A Lightweight ICN based Pub/Sub System for IoT Environments
	ICN architecture
	CCN-lite
	COPSS

	IoT requirements
	COPSS-lite architecture
	Implementation
	CCN-lite with RIOT OS
	Challenges
	Design

	Evaluation
	Chapter summary

	NeMoI: Network Mobility in ICN
	Scenario and Objectives
	Mobility scenario
	Objectives

	NeMoI: design
	NeMoI components
	NeMoI architecture
	Multiple logical FIB tables
	Synchronization
	Security

	NeMoI: support for mobility scenarios
	Producer in network-on-the-move
	Consumer in network-on-the-move
	Consumer and producer in network-on-the-move
	Nested network-on-the-move
	Travelling from one to another network-on-the-move
	Continuous requests

	Chapter summary

	Application - Network Mobility in Train and Car
	Signalling traffic and routing updates
	Experimental setup
	Deterministic mobility (Train mobility)
	Non-deterministic Mobility (Car mobility)

	Effective route optimization
	Path inflation
	Experimental setup
	Experiment

	Packet loss
	Experimental setup
	Experiment

	Chapter summary

	EVA: A Distributed Optimization Architecture for Efficient Video Analysis
	EVA overview
	EVA architecture
	Video analysis in EVA

	2-stage deep learning
	System model
	EVA algorithms
	Chapter summary

	Application - Video Analysis
	Preliminary evaluation
	Dataset
	Experimental setup
	2-stage deep learning
	Prediction accuracy
	Latency

	Evaluation
	Baseline
	Experimental setup
	Adaptive rate algorithms
	Resource consumption

	Chapter summary

	ADA: Adaptive Deep Log Anomaly Detector
	System design
	Design goals
	Architectural components
	Tokenization
	ADA Event Model (ADA-EM)
	ADA design

	Threshold computation
	Chapter summary

	Application - Cyber Security Data Analysis
	Evaluation
	Dataset
	Experimental setup
	Baselines
	Metrics
	Online model performance
	ADA performance
	Storage
	Performance comparison

	Chapter summary

	Conclusion & Future Prospects
	Dissertation summary
	Future prospects
	Dissertation impact

	Bibliography
	Curriculum Vitae

