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1 

Introduction 

1.1 Deforestation – an overview of a growing threat for global 

biodiversity 

Approximately 30% of the global land area is covered by forests (FAO, 2018). Forest areas 

occur in almost all climate zones and are very different. Also due to human activities, forest loss 

or deforestation has occurred for centuries. Globalization in the twentieth century lead to a 

massive increase in land demand worldwide. Especially for upscaling agriculture, an expansion 

of usable land was required in many areas to meet the global demand. This new land mostly 

originated from primary and secondary forests (Gibbs et al., 2010). In addition to permanent 

agricultural purposes, deforestation was and is also caused by logging, urbanization and 

wildfires (Curtis et al., 2018). The average area of cleared forest is drastically higher in tropical 

regions compared to temperate and boreal zones (Leblois et al., 2017). This is mainly due to 

cultivation of crops and the required circumstances for highly demanded crops (Curtis et al., 

2018). Although the amount of cleared areas is different between climate zones, the rate of 

deforestation follows the same trend (Leblois et al., 2017) (Figure 1.1).  

Depending on the climate zone, different drivers are responsible for ongoing deforestation. In 

the tropics, commodity-driven deforestation is the main reason, e.g. for cultivation of rubber, 

oil palm, coffee and cacao. Globally, 27 

± 5% of all forest disturbance between 

2001 and 2015 was associated with 

commodity-driven deforestation 

(Curtis et al., 2018). In temperate 

zones, forestry and wildfires are the 

main reason for deforestation today 

(Figure 1.2). Biodiversity is severely 

affected by these processes regardless 

of forest type. Especially the zones 

with the highest deforestations rates 

Figure 1.1: Global rates of deforestation for the three main forest 
types. Reprinted from Leblois et al. 2017, with permission from 
Elsevier (license number 4795360533577). 
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worldwide, Amazonia, Southeast Asia and Central Africa, provide evidence that biodiversity at 

all levels is highly at risk, foremost for larger organisms like birds or vertebrates (Barnes et al., 

2014; Betts et al., 2017; Darras et al., 2018; Symes et al., 2018; Gomes et al., 2019). Therefore, 

the ongoing deforestation and higher demand for wood and agricultural products poses a 

challenge for biodiversity preservation, especially in areas where products of high global 

importance such as palm oil and rubber can be produced.   

1.2 The expansion of rubber and oil palm cultivation in Southeast 

Asia 

Palm oil is a product that is of high demand, due to its usage in a variety of products, from 

cooking oil, processed foods (chocolate, biscuits) and hygiene products (soaps, washing 

powder) to consumer products like biofuels (Koh and Wilcove, 2007; Afriyanti et al., 2016). 

With depleting fossil fuel reserves, biofuel in particular is of interest. Consequently, cultivation 

of crops suitable for biofuel production like the African oil palm (Elaeis guineensis) became 

more important. Overall, oil palm cultivation became a business of global importance, with 

increasing rates of production, export and consumption (Byerlee et al., 2017). Oil palm is the 

most productive oil crop but can only be cultivated in tropical areas, which led to the 

establishment of large scale oil palm plantations in Latin America, Midwest Africa and 

Figure 1.2: Main drivers of deforestation between 2001 to 2015. Darker color intensity indicates higher total forest
loss. Adapted from Curtis et al. 2020. Reprinted with permission from AAAS (license number 4793001372025). 
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Southeast Asia, which are continuously expanding (Furumo and Aide, 2017; Ordway et al., 

2017; Taheripour et al., 2019). 

Indonesia and Malaysia provide the major part of palm oil and rubber production today 

(Taheripour et al., 2019). After mainly cultivating rice and coffee, production shifted gradually 

to rubber and oil palm in the last decades, due to drastically increased demand worldwide and 

the possibility to cultivate these climate-zone limited crops (Gatto et al., 2015). In order to 

increase production, more agricultural land was needed, resulting in deforestation and 

conversion of already used areas for establishment of large plantations, either by big state-

owned companies, or smallholder farms adjacent to the large plantations (Gibbs et al., 2010; 

Gatto et al., 2015). The area used for oil palm plantation has increased by 87% between the 

years 2000 and 2013, with varying impacts on primary forests, depending on the area and the 

extent of already cleared forests (Wilcove et al., 2013; Abood et al., 2015). In the Kalimantan 

provinces, the expansion of the plantation area came at the expense of 47% intact primary forests 

and 22% logged forests (Wilcove et al., 2013). These rates vary in different regions, e.g. in 

Jambi province, only 8% primary forest was converted to oil palm plantations between 1990 

and 2015, as already logged or otherwise used areas were converted (Gatto et al., 2015; Tarigan 

et al., 2015). Although oil palm cultivation is often mentioned as the main reason for 

deforestation in Indonesia, forest clearance mostly occurred already in the past by logging or 

fiber production and (Gatto et al., 2015).  

Oil palm cultivation has been drastically increased during the last decades, but other cash-crops 

like rubber are still dominant in Indonesia (Euler et al., 2016). Cultivation of rubber (Hevea 

brasiliensis) increased by 30% in South East Asia between 1990 and 2011 (Clough et al., 2016). 

In Jambi province, oil palm cultivation increased rapidly from 150,000 ha in 1996 to 550,000 

ha in 2011, while rubber cultivation areas were expanded from 510,000 to 650,000 ha in the 

same time period (Gatto et al., 2015). Similar to oil palm and fiber cultivation, biodiversity is 

drastically reduced in rubber plantation areas with up to six times more species of vascular 

plants in forest areas than in rubber plantations (Beukema et al., 2007; Phommexay et al., 2011; 

Drescher et al., 2016a). However, traditional agroforestry variations of rubber cultivation 

tolerate wildlife within the cultivation area. It has been shown that rubber agroforestry (often 

referred to as “jungle rubber”) has ecosystem services similar to primary forests and therefore 

might be a possibility to merge conservation and agriculture (Beukema et al., 2007; Wilcove et 

al., 2013). 
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1.3 Effects of land use conversion on soils and biodiversity 

Agricultural management not only changes the appearance and structure of the habitat, but also 

affects soil properties by application of fertilizer, liming and use of pesticides and herbicides in 

order to increase productivity. Several studies reported on how deforestation and land use 

changes affect all trophic levels and soil properties (Allen et al., 2015; Schneider et al., 2015; 

Drescher et al., 2016a; Kassa et al., 2017; Rembold et al., 2017; Brinkmann et al., 2019; 

Krashevska et al., 2019; Schulz et al., 2019). 

1.3.1 How land use management changes soil properties 

Soil is an extremely versatile habitat with different microhabitats that can vary within short 

distances (Daniel, 2005). Agricultural management by application of similar management 

practices can cause general changes of soil characteristics that are independent from the 

cultivated crop or climate. Most practices aim at optimizing nutrient levels to maximize 

yields. Fertilizers are a source of nitrogen, phosphorous and potassium, often applied as 

combination (termed “NPK” fertilizer). Nitrogen is supplied in different forms, mostly as 

ammonium (NH4
+) or less commonly as nitrate (NO3

-) (Comte et al., 2013). Depending on N 

source, soil is either acidified (with ammonium) or alkalified (with nitrate). Additionally, 

liming, often performed by supplementation with urea or dolomite alkalifies soil to 

compensate acidification by mineral fertilizer (Ballard, 2000; Comte et al., 2013). 

Furthermore, deforestation by slash and burn practices is mostly used to clear areas in 

Indonesia. This results in accumulation of cations in the soil, which are traceable for several 

decades (Tanaka et al., 2005; Sohng et al., 2017). In addition, soil pH values increase 

compared to forests, which comprise acidic soils with pH values around 4 (Ballard, 2000; 

Tanaka et al., 2005; Comte et al., 2013; Allen et al., 2015; Sohng et al., 2017).  

The applied compounds alter nutrient availability as well and thus the respective nutrient cycles 

within the soil. Nitrogen loss in form of nitrous oxide N2O (a greenhouse gas) release has been 

shown in fertilized soils of different monoculture and agroforest cash-crop systems compared 

to forest (Veldkamp et al., 2008; Allen et al., 2015). To compensate for these nutrient losses, 

further and continuous fertilization is a necessity for intensively managed plantations 

(Beauchamp, 1997; Ding et al., 2013; Corre et al., 2014; Allen et al., 2015; Kielak et al., 2016; 

Zhou et al., 2016).  

Similar to nitrogen, soil organic carbon (also referred to as SOC) and wood biomass depletes in 

the course of land use management and rainforest conversion, which has been observed in 
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several cash-crop systems including oil palm, rubber and cacao plantations (Kotowska et al., 

2015, 2016; Kassa et al., 2017; Shanmugam et al., 2018). Soil organic carbon was reported to 

deplete by ~8% during conversion of secondary forest to plantation crops and by over 18% 

following primary forest conversion to plantation crops (Shanmugam et al., 2018) A crucial 

difference between forest an cash-crops is the lack of a litter layer that stores carbon within the 

ecosystem. The carbon storage drops compared to rainforest from 4.5 to 2.9 and 1.9 Mg ha−1 

year−1 in rubber and oil palm plantations, respectively (Kotowska et al., 2016). The removal of 

litter and therefore carbon input is also represented by decreased decomposition rates, which 

are more pronounced in oil palm plantations (Guillaume et al., 2015). Additionally, carbon is 

removed by harvesting, which is tied to the productivity of the plantation. In the case of oil 

palm, the highest productivity is reached at a tree age of approximately 16 years (Shanmugam 

et al., 2018). Accordingly, carbon loss is positively correlated with the development of yield 

within a plantation (Shanmugam et al., 2018). Phosphorous levels decrease with land use 

conversion, but different rates of decline were observed for inorganic and organic P reserves 

(Maranguit et al., 2017).  

In summary, conversion of forest to agricultural land use systems or land use intensification in 

general causes major changes in soil properties and correspondingly in soil nutrient stocks and 

cycling. 

1.3.2 Aboveground biodiversity in tropical forests and converted land uses 

Ongoing deforestation is a severe threat to biodiversity at different trophic levels. In case of 

wildfires and urbanization, it seems obvious that the drastic environmental changes lead to 

biodiversity decreases. However, agricultural land use in general and less management intense 

forms of agricultural land use (like agroforestry) potentially harbour similar niches as forest 

habitats. When establishing large-scale land use systems for cash-crop monocultures, the floral 

biodiversity is drastically reduced (Vieira et al., 2008; Flynn et al., 2009; Laliberté et al., 2010; 

Wilcove et al., 2013; Rembold et al., 2017). It has been shown that the reduction of plant 

diversity in monoculture plantations of various crops, including prominent crops such as oil 

palm, rubber, rice and coffee, correlates with reduced biodiversity of ground living animals, but 

also with that of birds and bats (Flynn et al., 2009; Almeida et al., 2016; Maas et al., 2016; 

Prabowo et al., 2016; Darras et al., 2018). Furthermore, smaller organisms like insects and 

invertebrates as well as soilborne microorganisms like protists and nematodes are negatively 

affected in terms of species richness or community composition (Rubiana et al., 2015; Klarner 
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et al., 2017; Krashevska et al., 2018, 2019; Heuss et al., 2019). These effects occur also within 

amphibian communities when comparing forest and riparian areas in converted land use 

systems, highlighting the general impact of land use intensification on different soil types 

(Paoletti et al., 2018). This relationship is further visible in agriculture systems that are less 

intensive in terms of reduced plant biodiversity or management applications. Less profitable 

agroforestry systems are a compromise between intensively managed monocultures and forests. 

These show reduced biodiversity loss due to higher overall biodiversity and the availability of 

more different ecological niches compared to monoculture systems (Steffan-Dewenter et al., 

2007; Drescher et al., 2016a; Klarner et al., 2017). 

1.3.3 Prokaryotic communities and diversity in soils and their responses to 

land use conversion  

Microbial life is crucial for mediating nutrient cycling in soil (Fierer and Jackson, 2006). High 

soil heterogeneity through different particle and pore size, texture, water content and nutrient 

distribution provides many different ecological niches (Figure 1.3) (Vos et al., 2013). Due to 

the high soil heterogeneity, prokaryotic diversity is very high in soils and directly connected to 

soil properties and plant diversity (Brenzinger et al., 2015; Schneider et al., 2015; Kaiser et al., 

2016; Fonseca et al., 2018).  

In general, bulk soils in temperate and tropical regions are dominated by various members of 

Acidobacteria, Actinobacteria and Proteobacteria (Chapter 2 and 3; Lauber et al., 2009; Rousk 

Figure 1.3: Simplified schematic of the microbial habitats in soil with emphasis on bulk soil structure. 
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et al., 2010; Nacke et al., 2011; Schneider et al., 2015). The community composition varies, 

depending on soil properties such as texture, nutrient availability or oxygen concentration, 

which can be different within short distances (Daniel, 2005; Fierer, 2017). One of the main 

drivers of prokaryotic community structure is soil pH, with a strong influence especially on 

Acidobacteria and Actinobacteria (Lauber et al., 2009; Rousk et al., 2010; Schneider et al., 

2015; Zhalnina et al., 2015; Kaiser et al., 2016). Plant roots and their exudates further diversify 

the habitat and directly affect microbes in the rhizosphere (the area around roots within bulk 

soil) (Rennenberg et al., 2009; Fonseca et al., 2018). Besides the area around plant roots, 

microbes can be also located within roots as endophytes or symbionts in root nodules (Newman 

et al., 2016; Clúa et al., 2018). Endophytic or symbiotic lifestyles are commonly associated with 

specific groups of microorganisms, the most prominent members belong to the Rhizobiales, 

Burkholderiales, Klebsiella and Rhodococcus (De Meyer et al., 2016; Martínez-Hidalgo and 

Hirsch, 2017).  

Agricultural land use drastically affects soil properties and nutrient levels and correspondingly 

microbial community structure and function. The responses of microbial communities to 

agricultural management in general and effects of rainforest conversion to managed systems are 

of high interest in order to understand and predict functional shifts and ecosystem responses. 

Most related studies were conducted in Brazil or central America (Navarrete et al.; Leff et al., 

2012; Meyer et al., 2017). Although similar studies conducted in Southeast Asia are still rare, 

numbers have been growing in recent years (Chapters 2 and 3;Tripathi et al., 2012; Lee-Cruz et 

al., 2013; Schneider et al., 2015). Among the mentioned studies, bacterial β-diversity mostly 

increased with increasing land use intensity, which was accompanied with higher soil pH in 

managed land use systems. In these studies, the three phyla Acidobacteria, Proteobacteria and 

Actinobacteria were most abundant as it is typical for soils in general (Nacke et al., 2011; 

Tripathi et al., 2012; Lee-Cruz et al., 2013; Mendes et al., 2015; Schneider et al., 2015; Kaiser 

et al., 2016; Pedrinho et al., 2018). When considering the land use change from forest to 

managed land use systems, Proteobacteria were consistently decreasing in abundance (Chapter 

3; Kerfahi et al., 2016; Schneider et al., 2015; Tripathi et al., 2012). It was suggested, that taxa 

like Burkholderiales are especially affected due to their involvement in nitrogen fixation and 

the influence of fertilizer input on available nitrogen sources (Chapter 3; Schneider et al., 2015). 

However, results for some bacterial groups are inconsistent among studies: Acidobacteria were 

negatively affected in oil palm and rubber soils in Indonesia, while increasing in abundance in 

Malaysian oil palm soils (Schneider et al., 2015; Kerfahi et al., 2016). Most of these studies 

were conducted with amplicon-based marker gene analysis. Metagenomic shotgun sequencing 
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studies are rare and thus microbial functionality in these soils was rarely addressed. In direct 

sequencing-based metagenomic studies it was shown that forest conversion to arable land 

reduced microbial functional diversity, but it increased after conversion to managed wheat fields 

(Pedrinho et al., 2018; Muñoz‐Arenas et al., 2020). Still, the connection between microbial 

taxonomy and functionality is not fully investigated yet and is a knowledge gap in the efforts to 

disentangle the underlying processes of rainforest conversion to managed land use systems. 

1.4 How to analyse microbial communities – An overview 

Monitoring microbial communities in complex environments is still a challenge. The traditional 

approach is cultivation and subsequent analysis of single microorganisms from environmental 

samples. However, the complexity of the sample environment cannot be simulated in situ, 

creating a bottleneck (Streit and Schmitz, 2004). Therefore, complementation of cultivation-

based approaches and circumventing the pitfalls of these approaches by cultivation-independent 

methods and direct detection of DNA or RNA in samples are necessary to analyse 

environmental microbial communities (Daniel, 2005; Schöler et al., 2017). One possibility for 

this is Fluorescence in situ hybridization (FISH), which utilizes probes binding to DNA of the 

target organisms. These probes are then detected by fluorescence of a bound probe, caused by 

either attached fluorescing compounds or enzymes that catalyse a reaction resulting in 

luminescence. FISH can be used to monitor specific taxonomic groups but is less practical when 

trying to analyse community compositions of diverse habitats, since all detected signals by a 

probe are indistinguishable. Therefore, FISH is suitable to detect quantities of certain taxa, but 

is limited by its probe design (Huber et al., 2018).  

Other approaches to assess the entirety of communities are environmental DNA-based 

metagenomics and RNA-based metatranscriptomics. Originally, metagenomic studies relied on 

constructing clone libraries containing either functional genes for enzyme screenings or 16S 

rRNA genes for taxonomic analyses. These libraries were then function-driven or sequence-

based screened or sequenced by the Sanger method to find novel genes for a product or assess 

community taxonomy (Daniel, 2005). With the introduction of next generation sequencing, 

sequencing depth was drastically increased, allowing the analysis of complex communities. 

Metagenomic identification of microbial communities can be separated into marker gene-

focussed approaches and direct sequencing of nucleic acids also known as metagenomic 

shotgun sequencing (Figure 1.4) (Quince et al., 2017). However, these methods strongly rely 
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on databases to identify obtained sequences and available computing power to process the 

amount of data.  

Figure 1.4: Schematic of metagenomic/metatranscriptomic analysis of microbial 
communities from soil. 

1.4.1 Microbial community profiling by analysis of marker genes 

Even before large scale direct metagenome sequencing was feasible, sequencing selected genes 

was a powerful tool. In order to analyse the composition of entire microbial communities, 

focussing on marker genes is a cost efficient and reliable option.  In order to be used as a marker 

the respective gene needs to be ubiquitous and contain highly conserved as well as variable 

regions, to ensure certain flexibility and stability (Lan et al., 2016). A variety of genes is suitable 
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to be used as taxonomic marker, depending on the targeted taxonomic group. For bacteria, the 

16S rRNA gene is considered as the gold standard, while the 18S rRNA gene and ITS 

(intergenic transcribed spacer) are commonly used for fungi and micro-eukaryotes (Amann et 

al., 1995; Lindahl et al., 2013; Lentendu et al., 2014). To analyse microbial communities, 

nucleic acids are extracted from environmental samples, e.g. soil. Then, the targeted gene is 

amplified either from DNA or from reverse transcribed environmental RNA (cDNA) by using 

general primers that cover as many taxa as possible. With RNA as a template, taxonomic 

profiles are used to analyse the active communities of a sample, excluding dormant cells or cell 

remains from used samples (Chapter 2; Wemheuer et al., 2014; Zhang et al., 2014). However, 

none of the primer pairs so far designed for this purpose is perfect as the coverage can vary 

between taxa. To overcome these limitations, housekeeping genes or functional genes (e.g. nifH, 

recA, amoA) are used as an alternative for specific taxonomic groups (Torriani et al., 2001; Lan 

et al., 2016; Oton et al., 2016; Soni et al., 2016). Although some bias is introduced by marker 

gene-based analysis, microbial community profiling is reliable and one of the most frequently 

used methods (Rausch et al., 2019). Databases are needed to identify the taxonomic background 

of each sequence and therefore results are dependent on size and quality of the chosen database. 

Further, taxonomic profiles are reliable for abundant taxa, but assessing rare taxa might face 

some limitations such as insufficient survey size or lack of coverage by the used primers 

(Klindworth et al., 2013). Even frequently used primer sets do not cover all taxonomic groups 

equally, which needs to be considered during analysis (Klindworth et al., 2013). After 

sequencing, curation of obtained sequences by quality-filtering, chimera removal and denoising 

is required to avoid erroneous results (Bokulich et al., 2013).  

In addition to taxonomic identity, microbial activity and functionality is of high interest. 

Functional profiles of metagenomic communities cannot be directly investigated by marker 

gene analysis, however, functional predictions based on functional profiles are possible with 

tools like Tax4Fun2 (Wemheuer et al., 2018), PICRUSt (Langille et al., 2013) or Piphillin (Iwai 

et al., 2016). Since these predictions are based on functional profiles for known taxa, coverage 

has to be considered, especially in environments with diverse microbial communities.  

1.4.2 Metagenomic shotgun sequencing 

To fully investigate the impact of prokaryotic functionality on ecosystem functioning, 

phylogenetic characterizations by marker gene analyses have to be complemented by taking the 

entirety of functional genes into account. Metagenomic and metatranscriptomic shotgun 
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sequencing provides taxonomic information and abundances of functional genes by direct high-

throughput sequencing of environmentally derived nucleic acids. In this way, the functional 

potential and functional profiles of active genes are assessed by DNA and RNA sequencing, 

respectively (Myrold et al., 2014).  

High-throughput sequencing techniques mostly provide short fragments in high numbers which 

provides a high sequencing depth and therefore a potentially better coverage of all present 

nucleic acids in a sample. Depending on the employed sequencing system, several million short 

reads of about 150 bp to 250 bp can be obtained per sample. These sequences can be assembled 

into larger fragments and potentially full genomes (referred to as metagenome assembled 

genomes) or short reads are directly mapped on a reference dataset to assess the taxonomic and 

functional composition of whole communities (Quince et al., 2017).  

Short fragments can be a problem though, when sequencing genomes or sequences with long 

repeats, since assembling these to the correct full-length sequence is very challenging. This can 

be solved by single-molecule sequencers like Pacific Biosciences’ or Oxford Nanopore 

sequencing, which provides reads with up to two megabases (Istace et al., 2017; Jain et al., 

2018). However, higher error rates are currently a problem which can be met by 

complementation with short fragments from high throughput sequencers (Goodwin et al., 2015). 

Handling of sequence data is complex since data size and certain characteristics need to be 

considered and are still a challenge. For instance, differences in sequencing depth among 

samples of a dataset can cause a bias in results if not handled appropriately and in accordance 

to sequencing data characteristics. However, methods for sequence analyses are still under 

debate and have to be chosen carefully with awareness to not only data characteristics, but 

experimental specificities like sampling size as well (McMurdie and Holmes, 2014; Weiss et 

al., 2017; Quinn et al., 2018b, 2018a). Furthermore, identification of reads is again highly 

dependent on curated reference databases, since taxonomic classification relies entirely on 

successful matches with database entries.  

With advancing sequencing technologies and a higher availability of data processing power, 

handling these enormous datasets has become easier, allowing to study microbial communities 

from various angles in addition to marker gene analysis (Chapter 3; Tringe et al., 2005; Fierer 

et al., 2012; Xu et al., 2014; Rausch et al., 2019; Nkongolo and Narendrula-Kotha, 2020; 

Winand et al., 2020).  
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1.5 Aim and structure of this study 

This study was conducted as part of the “Collaborative Research Centre 990: Ecological and 

Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems (Sumatra, 

Indonesia)” project within the sub-project group “B – Biota and ecosystem services”. The 

general aim of the project is to investigate the effects of rainforest conversion to different 

agricultural land use systems, ranging from agroforestry with rubber (Hevea brasiliensis) to 

monoculture plantations of rubber (Hevea brasiliensis) and oil palm (Elaeis guineensis), on 

environmental processes, biota and ecosystems as well as human dimensions in Jambi province, 

Indonesia (Drescher et al., 2016a). Additionally, possibilities of alternative cultivation forms 

regarding management intensity and biodiversity enrichment are explored (Darras et al., 2019). 

1.5.1 Study sites and design 

The experimental sites are located in Jambi province on Sumatra, Indonesia (Figure 1.5). 

All experimental sites were duplicated in two regions of the province: the “Bukit 

Duabelas landscape” and the “Harapan landscape” (Figure 1.5). For each treatment, four core 

plots (50 x 50 m) were established and each of these core plots harboured five fixed sub plots 

(5 x 5 m) to streamline soil sampling throughout the project. Sub plots within the core plots 

were randomly distributed. In each landscape, four different land use systems were 

established, following a gradient of land use intensity. Sampling sites were further 

equipped with a meteorological station to measure climate data. 

As “rainforest” control, plots were established in primary degraded forest (forests showed 

signs of selective logging, hence classified as degraded). Agroforestry, as a form of 

intermediate management intensity was included as “jungle rubber”, harbouring rubber 

trees (Hevea brasiliensis) planted in forests. As highest land use intensity, plots within 

monocultures of rubber (Hevea brasiliensis) and oil palm (Elaeis guineensis) were 

established. The latter plots were established in smallholder-owned plantations in 2012. The 

used plantations varied in age, ranging from seven to sixteen years. All used areas consist of 

acrisol soils, with loam acrisol in the “Harapan” area (including fractions of sand, silt and 

clay) and clay acrisol in the “Bukit Duabelas” landscape with higher proportions of clay 

(Allen et al., 2015; Drescher et al., 2016b). 

An additional experiment located in oil palm plantations within the Harapan area was 

established to investigate possible effects of reduced fertilizer input and herbicide use 

on soilborne microbial communities. This oil palm management experiment is located in a 

state-
16



owned oil palm plantation and was established in 2015 and relies on the same plot design as the 

core plots of the rainforest conversion experiment (Figure 1.5). Four different treatments were 

included: regular fertilizer and herbicide application, regular fertilizer application with 

mechanical weeding, reduced fertilizer application with herbicide usage and reduced fertilizer 

application with mechanical weeding (Darras et al., 2019). 

1.5.2 Research objectives 

The prokaryotic communities in soil have been analysed in numerous experiments and habitats. 

Due to the importance of agriculture, communities in managed land use systems have been 

investigated as well. Most studies focussed on temperate but not on tropical regions. Microbial 

Figure 1.5: Location of the CRC990 project located in Sumatra, Indonesia (a) and Jambi province (b). All plots 
of the rainforest conversion experiment are shown as grey dots and the location of the oil palm management 
experiment as orange coloured square (c). An example of the plot design of the rainforest conversion experiment 
(d) shows distribution and size of subplots located within each core plot. The general plot design and distribution
of the oil palm management experiment (e) shows location and treatments of all plots. Each plot of the oil palm
management experiment was established with the same plot design as for the rainforest conversion experiment
(d).
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community responses to conversion of rainforest to agricultural land use systems were hardly 

studied at all prior to this study. Especially the active community, excluding dormant or dead 

cells is of high importance to understand the effects of rainforest conversion on soilborne 

communities. One part of this study aimed at investigating how the active soilborne prokaryotic 

community is affected by rainforest conversion by analysing RNA-based 16S rRNA gene 

sequences. Additionally, few studies addressed functionality of soilborne communities, despite 

the strong connection to soil properties and ecosystem functioning, which are directly affected 

by land use management practices. The connections between functional genes and the 

taxonomic origin of these genes have rarely been addressed before. To close this gap, microbial 

communities and functional genes were investigated by direct metagenomic approaches. To 

unravel the relationship between affected functional genes and the actual community, the 

relationship of taxonomy and functionality was investigated by identifying the taxonomic 

background of detected functional genes.  

Lastly, different approaches are considered to reduce land use management and herbicide usage. 

Therefore, the effect of reduced fertilizer input and herbicide use on soil bacterial communities 

in oil palm plantations was investigated by 16S rRNA gene analysis. 
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Palm oil production in Indonesia increased constantly over the last decades, which
led to massive deforestation, especially on Sumatra island. The ongoing conversion
of rainforest to agricultural systems results in high biodiversity loss. Here, we present
the first RNA-based study on the effects of rainforest transformation to rubber and
oil palm plantations in Indonesia for the active soil bacterial communities. For this
purpose, bacterial communities of three different converted systems (jungle rubber,
rubber plantation, and oil palm plantation) were studied in two landscapes with rainforest
as reference by RT-PCR amplicon-based analysis of 16S rRNA gene transcripts. Active
soil bacterial communities were dominated by Frankiales (Actinobacteria), subgroup 2
of the Acidobacteria and Alphaproteobacteria (mainly Rhizobiales and Rhodospirillales).
Community composition differed significantly between the converted land use systems
and rainforest reference sites. Alphaproteobacteria decreased significantly in oil palm
samples compared to rainforest samples. In contrast, relative abundances of taxa
within the Acidobacteria increased. Most important abiotic drivers for shaping soil
bacterial communities were pH, calcium concentration, base saturation and C:N ratio.
Indicator species analysis showed distinct association patterns for the analyzed land
use systems. Nitrogen-fixing taxa including members of Rhizobiales and Rhodospirillales
were associated with rainforest soils while nitrifiers and heat-resistant taxa including
members of Actinobacteria were associated with oil palm soils. Predicted metabolic
profiles revealed that the relative abundances of genes associated with fixation
of nitrogen significantly decreased in plantation soils. Furthermore, predicted gene
abundances regarding motility, competition or gene transfer ability indicated rainforest
conversion-induced changes as well.

Keywords: 16S rRNA gene transcripts, soil bacterial communities, rainforest conversion, active bacterial
communities, oil palm plantation, Sumatra

INTRODUCTION

Palm oil and rubber production play a crucial role for the economy in several countries. Especially
in Indonesia, as one of the top producers of palm oil and rubber, conversion of natural systems
to agricultural systems almost doubled from 2000 to 2009 (Angelsen, 1995; McCarthy, 2010;
Oosterveer, 2015; Ivancic et al., 2016). In most cases, primary and secondary rainforests were
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converted to managed cash crop systems. Since the major
part of the global biodiversity is inherited by tropical
forests, the enormous biodiversity harbored by Indonesians
rainforests was reduced drastically during this the process.
Consequently, deforestation and conversion to agricultural
systems in tropical regions is considered the biggest threat
to global biodiversity. This affects not only animal and plant
communities, but also microbial communities and tropical
ecosystem functions as well (Donald, 2004; Sodhi et al.,
2004; Koh et al., 2011; Wilcove et al., 2013; Barnes et al.,
2014).

Microbial and, in particular, bacterial communities drive
almost all biogeochemical cycles and are involved in nutrient
cycling in soils (Fierer and Jackson, 2006; Delmont et al.,
2011, 2012). Therefore, soil bacteria are closely connected to
the lifestyles of other organisms and nutrient availability itself.
Additionally, it was suggested that the community response
of soil bacteria toward changes in nutrient availability and
plant diversity follows predictable patterns (Waldrop et al.,
2000; Leff et al., 2015). In soil, the involvement of microbes
in nutrient cycling is crucial for soil fertility and therefore for
plant growth and growing cash crops (Bhardwaj et al., 2014;
Lynch, 2015). In the last years, several studies investigated the
effects of logging and land transformation on soil bacterial
communities and confirmed that rainforest conversion to oil
palm or rubber plantations has severe impacts on soil prokaryotic
diversity and composition (Lee-Cruz et al., 2013; Schneider
et al., 2015; Kerfahi et al., 2016). Soil bacterial and archaeal
diversity increased with increasing land use intensity and biomass
decreased with pH and C:N ratio, which were identified as
main abiotic drivers of bacterial community formation (Allen
et al., 2015; Schneider et al., 2015). It was also shown that
some procedures of rainforest exploitation, like logging, appear
reversible, which makes further research on the topic even more
crucial (Tripathi et al., 2012; Lee-Cruz et al., 2013; Kerfahi et al.,
2016).

The results of most previous studies were obtained
by DNA-based 16S rRNA gene analyses representing the
entire community whereas effects on activity and functional
distribution of prokaryotic groups have rarely been addressed.
Since microorganisms can be abundant while remaining
inactive or dormant and even can have different numbers
of ribosomal operons, the actual impact and importance
for the corresponding communities or ecosystem can be
biased (Urich et al., 2008; Větrovský and Baldrian, 2013;
Wemheuer et al., 2014). To avoid this issue, analyses based
on RNA are required as well. Studies that aim to analyze
bacterial activity by using 16S rRNA transcripts are well
established for marine environments (Wemheuer et al., 2012,
2014; Rodríguez-Blanco et al., 2013; Zhang et al., 2014;
Stibal et al., 2015). In soil and other terrestrial environments,
however, only a limited number of RNA-based studies are
available, which address the effects on land use conversion
and showed that entire community analysis alone can lead to
false conclusions regarding community activity (Foesel et al.,
2014; Herzog et al., 2015; Mueller et al., 2016; Ragot et al.,
2016).

As part of the “Ecological and Socioeconomic Functions
of Tropical Lowland Rainforest Transformation Systems
(Sumatra, Indonesia)” (EFForTS) collaborative research center,
we investigated the impact of rainforest conversion on the
active soil bacterial community and deduced their functional
responses. This study is one of the first that investigates the effect
of rainforest transformation to rubber and oil palm plantations
on active bacterial soil communities in Indonesia.

Three different agricultural systems comprising intensively
managed oil palm plantations, rubber plantations and jungle
rubber were studied and compared to secondary rainforest
in two different landscapes in Southwest Sumatra, Indonesia.
Based on large-scale amplicon-based analysis of 16S rRNA
transcripts, changes in the active bacterial communities were
analyzed and correlated with biotic and abiotic factors.
Besides investigating the active bacterial community composition
and diversity, we also investigated effects on functional
traits and compared our results to previous DNA-based
studies.

As a guideline we followed three hypotheses: (a) Rainforest
transformation leads to no significant changes of soil bacterial
diversity, whereas (b) active bacterial community structure
and composition is significantly affected. Furthermore, we
hypothesized that (c) for rainforest and transformed land use
systems specific indicator species can be detected and predicted
metabolic profiles show significant functional shifts of the active
bacterial community.

MATERIALS AND METHODS

Sampling and Sample Treatment
Two landscapes in southwest Sumatra (Indonesia), the Harapan
Rainforest Concession (H) and Bukit Duabelas (B), were selected
for sampling (Figure 1). Sampling was conducted on the plots
as described by Schneider et al. (2015). Soil texture differed
with primarily loam Acrisol soils in Harapan and clay Acrisol
soils in Bukit Duabelas. Both landscapes harbored secondary
rainforest (named “BF” and “HF”) and three different land use
systems representing different land use intensities, which derived
from rainforest conversion. The agricultural systems comprise oil
palm plantations (monocultures of Elaeis guineensis; designated
“BO” and “HO”), rubber plantations (monocultures of Hevea
brasiliensis; designated “BR” and “HR”) and rubber agroforest
(designated “BJ” an “HJ”). The latter represents a traditional
agroforestry system known as “jungle rubber” in which rubber
trees are planted in secondary rainforest without fertilizer or
liming input. Each land use system consisted of four core plots
in each landscape, with three subplots (five by five meters) per
core plot, resulting in 96 subplot samples out of the 32 core plots
in total. A soil corer was used to take three cores at each subplot
of the upper seven cm of top soil and a diameter of five cm.
The three soil samples per subplot were homogenized and coarse
roots and stones (>5 mm) were removed. To prevent RNAs from
degradation, RNAprotect Bacteria Reagent was applied to the
samples as recommended by the manufacturer (Qiagen, Hilden,
Germany). Samples were stored at−80◦C until further use.

Frontiers in Microbiology | www.frontiersin.org 2 October 2018 | Volume 9 | Article 2381

29

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02381 October 8, 2018 Time: 16:48 # 3

Berkelmann et al. Rainforest Conversion Affects Active Bacteria

FIGURE 1 | Sampling sites on Sumatra, Indonesia. Two landscapes within the province of Jambi were studied. Four core plots per land use system were analyzed,
with three subplots per core plot in each landscape. The landscapes Bukit Duabelas and Harapan are indicated by “B” and “H” in the Plot ID. The conservation areas
“Bukit Duabelas National Park” and “Harapan Rainforest Concession” are displayed as cross-hatched brown areas.

Age of rubber trees ranged from 15 to 40 and 6 to 16 years
in jungle rubber and rubber plantations, respectively. In oil palm
plantations, the age of the tress varied between 8 to 15 years
(Kotowska et al., 2015). Management for the two plantation types
included application of herbicides every 6 months and addition
of inorganic NPK fertilizer [100–300 kg ha−1 yr−1 in rubber
plantations and 300–600 kg ha−1 yr−1 in oil palm plantations
(Kotowska et al., 2015)]. All soil parameters [pH, P, N, C, C:N
ratio, Al, Ca, Fe, K, Mg, Mn, Na, effective cation exchange
capacity (ECEC) and base saturation] were retrieved from Allen
et al. (2015).

RNA Isolation, cDNA Synthesis, and 16S
rRNA Amplification
To analyze the active part of the bacterial communities, RNA was
isolated from all 96 samples by using the MoBio PowerSoil RNA
Isolation Kit (MO BIO Laboratories, Hilden, Germany). Isolation
was initiated by using 0.5 g sample material. Residual DNA was
removed by treatment with Turbo DNase as suggested by the
manufacturer (Applied Biosystems, Darmstadt, Germany). The
reaction mixture was subsequently purified and concentrated by
using the RNeasy MinElute Cleanup Kit as recommended by the
manufacturer (Qiagen). To verify the complete removal of DNA,
a PCR reaction targeting the 16S rRNA gene was performed
as described by Schneider et al. (2015). RNA yields were
estimated by employing a Qubit R© Fluorometer as recommended
by the manufacturer (Thermo Fisher Scientific, Waltham, MA,
United States).

RNA was converted to cDNA by using the SuperScript R©

III Reverse Transcriptase (Thermo Fisher Scientific,
Waltham, MA, United States). As described by Wemheuer
et al. (2015), a specific primer for the conserved region
downstream to the targeted bacterial 16S rRNA gene region (5′-
CCGTCAATTCMTTTGAGT-′) was used for cDNA synthesis.
The reaction mixture (20 µl final volume) contained 4 µl
of fivefold reaction buffer, 500 µM of each deoxynucleoside
triphosphate, 5 mM DTT, 1 µM reverse primer, 1 U RiboLockTM

RNase Inhibitor (Thermo Fisher Scientific, Schwerte, Germany)
and 200 U of reverse transcriptase. The solution was incubated
at 55◦C for 1 h and subsequently inactivated by incubation at
70◦C for 15 min. To remove residual RNA in the RNA/DNA
hybrids, 2.5 U RNase H (Thermo Fisher Scientific, Schwerte,
Germany) was added and incubated at 37◦ for 15 min followed
by an additional inactivation at 65◦C for 10 min. Obtained cDNA
was subsequently used for amplification of the hypervariable
V3 to V5 regions of the 16S rRNA transcript [Forward primer:
V3for_B 5′-CGTATCGCCTCCCTCGCGCCATCAG-MID-
TACGGRAGGCAGCAG-3′ (Liu et al., 2007) reverse primer:
V5rev_B 5′-CTATGCGCCTTGCCAGCCCGCTCAG-MID-
CCGTCAATTCMTTTGAGT-3′ (Wang and Qian, 2009)]. The
following thermal cycling scheme was used for amplification
of partial bacterial 16S rRNA: initial denaturation at 98◦C for
5 min, 25 cycles of denaturation at 98◦C for 45 s, annealing for
45 s at 65◦C, and extension at 72◦C for 30 s, followed by a final
extension period at 72◦C for 5 min. All amplicon PCR reactions
were performed in triplicate and pooled in equimolar amounts
for sequencing. The Göttingen Genomics Laboratory determined
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the sequences of the 16S rRNA amplicons by using a 454 GS-FLX
sequencer and Titanium chemistry following the instructions of
the manufacturer (Roche, Mannheim, Germany) for amplicon
sequencing.

Analysis of 16S rRNA Transcripts
Raw sequences were processed and analyzed using QIIME 1.9.1
(Caporaso et al., 2010). Sequences with lengths below 300
and over, 1000 bp, quality scores below 25 and homopolymer
stretches of more than 8 bp were removed by employing
split_libraries.py. Denoising was performed with Acacia (default
settings), chimera removal with UCHIME and reverse primer
removal with cutadapt (Edgar et al., 2011; Bragg et al., 2012).

Determination of operational taxonomic units (OTUs)
was performed at genetic divergence of 3% by employing
the pick_open_reference_otus.py script with the SILVA NR
SSU 128 database as reference. Taxonomic classification
was performed with the same reference database and
parallel_assign_taxonomy_blast.py script. OTU tables were
created by employing make_otu_table.py. Further polishing
including removal of singletons, chloroplast sequences,
unclassified OTUs and extrinsic domain OTUs) was carried
by employing filter_otu_table.py. Comparison of samples was
performed by creating subsamples with identical sequence
numbers (6,650 per subsample). Rarefaction estimates were
done by alpha_rarefaction.py. Diversity indices, Shannon
index and PD (phylogenetic diversity) index were calculated
by alpha_diversity.py. Statistical tests were performed in R
by employing standard functions and the “vegan” package
(R Development Core Team, 2017). Data distribution and
homogeneity of variance were determined by the Shapiro test,
implemented in R (R Development Core Team, 2017). For
determination of significant differences between treatments and
samples, PERMANOVA analysis was performed with the “vegan”
and “RVAideMemoire” packages in R. The “vegan” package was
also used for calculation of distance matrices, clustering analysis
and non-metric multidimensional scaling (NMDS) based on a
weighted UniFrac distance matrix (Lozupone et al., 2011). For
NMDS analysis, sample sequences were merged at core plot level
with a resulting subsample size of 19,950.

For statistical analysis of abundance differences of single
taxonomic groups between land use systems, normal distribution
of values was tested first with Shapiro test in R. Depending
on the result, normally distributed samples were analyzed with
an ANOVA and Tukey test as post hoc tests. Non-normally
distributed samples were tested by Kruskal–Wallis test and
Pairwise Wilcoxon test as post hoc tests. Results were interpreted
as significant with p < 0.05.

Identification of bacterial genera associated to the analyzed
land use systems was performed by using the “Indicspecies”
package in R. We calculated an abundance-based version of
the phi coefficient of association, the point biserial correlation
coefficient via the multipatt command based on abundance based
OTU data (Supplementary Table S2). Prior to analysis, all OTUs
belonging to the same genus were summarized. We visualized
the associated taxa in a network that used the analyzed land
uses as source nodes and the associated bacterial taxa as nodes,

while the correlation coefficients were used as edges. Only taxa
with significant correlation coefficients (p < 0.05) were included.
Network generation was performed with Cytoscape version 3.5.1
by using the edge-weighted spring embedded layout algorithm,
with edge width corresponding to the correlation coefficients and
taxa abundance to node size.

Analysis of activity and metabolism was performed via
functional predictions, which were calculated on version 123
of the SILVA database with the “Tax4Fun” package in R and
visualized with the “gplots” package in R (Asshauer et al., 2015).

Accession Numbers
The 16S rRNA transcript sequences were deposited in the
National Center for Biotechnology Information (NCBI) Sequence
Read Archive (SRA) under accession number PRJNA278020.

RESULTS AND DISCUSSION

Impact of Different Land Use Systems on
Active Soil Bacterial Community
Composition
We analyzed a management gradient with increasing intensity
from rainforest reference sites to jungle rubber over rubber
plantations to oil palm plantations in two landscapes. The
entire dataset comprised 1,333,275 high-quality 16S rRNA
transcript sequences, which belonged to 32,280 different OTUs
at species level (3% dissimilarity) (Supplementary Tables
S1, S2). Species richness was highest in oil palm followed by
rubber, rainforest, and jungle rubber (Supplementary Figures
S1, S2 and Table S1). Diversity indices Shannon and PD
did not show significant differences between the analyzed
land use systems (p > 0.11 and p > 0.06, respectively;
Supplementary Table S1). Similar trends were observed in
DNA-based studies targeting the conversion of rainforest to
agricultural systems in which alpha and/or beta diversity
increased as well, although the results were not completely
consistent with respect to statistical significance (Carney et al.,
2004; Tripathi et al., 2012; Schneider et al., 2015; Kerfahi et al.,
2016).

Composition of the active soil bacterial community showed
similar patterns in the corresponding land use systems of both
analyzed landscapes Bukit Duabelas and Harapan (Figure 2).
Proteobacteria decreased continuously with increasing land use
intensity in Bukit Duabelas and in Harapan (46.3 and 52.2% in
rainforest to 29 and 28.3% in oil palm plantation, respectively),
while the abundance of Acidobacteria showed a maximum in
jungle rubber (42.8% in Bukit Duabelas and 47.6% in Harapan)
and rubber systems (47.9% in Bukit and 46.7% in Harapan) before
decreasing again in oil palm (42.5% in Bukit Duabelas and 36.9%
in Harapan).

The different land use systems within the landscapes
showed significant changes in the active bacterial community
composition (p < 0.002; Supplementary Table S3). The
abundances of Rhizobiales within the Proteobacteria decreased
with increasing land use intensity (18.5% in rainforest to 10.45%
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FIGURE 2 | Community composition of active soil bacterial communities in three different land use systems and rainforest reference sites in two different landscapes.
All plots were clustered according to their respective land use and landscape. Community compositions are displayed as relative abundances at order level based on
16S rRNA sequences obtained from extracted soil RNA. Taxa with abundances below 1% in each land use system were summarized as “rare taxa.” The detected
orders are grouped to corresponding phylum (for details see Supplementary Table S2).

in oil palm for Bukit Duabelas and 17.3% in rainforest to 10.6% in
oil palm for Harapan), whereas Frankiales of the Actinobacteria
increased (13% from rainforest to 15.6% in oil palm in Bukit
Duabelas and from 8.6% in rainforest to 12.4% in oil palm
in Harapan). Interestingly, Acidobacteriales and especially the
Acidobacteria subgroup 2 showed an increase of abundance from
rainforest (13.4% in Bukit Duabelas and 13% in Harapan) to
rubber (22.6% in Bukit Duabelas and 19.6% in Harapan), which
decreased in oil palm (17.9% in Bukit Duabelas and 18.1% in
Harapan). Proteobacteria and Acidobacteria were reported to be
very abundant at DNA level in the studied sites and in other
locations (Rousk et al., 2010; Tripathi et al., 2012; Schneider
et al., 2015). Here, at RNA level, Proteobacteria and Acidobacteria
were the most abundant phyla as well. This is not a surprise,
since Acidobacteria and Alphaproteobacteria were previously
reported as generally high abundant in soils and important for

decomposition of soil carbon (Hansel et al., 2008; Leff et al.,
2012). Proteobacteria and Acidobacteria were reported to be
very abundant at DNA level in the studied sites and in other
locations (Rousk et al., 2010; Tripathi et al., 2012; Schneider
et al., 2015). Here, at RNA level, Proteobacteria and Acidobacteria
were the most abundant phyla as well. This is not a surprise,
since Acidobacteria and Alphaproteobacteria were previously
reported as generally high abundant in soils and important for
decomposition of soil carbon (Hansel et al., 2008; Leff et al.,
2012).

As mentioned before, the abundant Rhizobiales, which
constitute the major part of detected Proteobacteria, decreased
with increased land use intensity and increased fertilizer
application from rainforest to oil palm plantation. As Rhizobiales
are known to be involved in plant-associated and free-living N2
fixation, the higher availability of usable nitrogen compounds in
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fertilized systems reduce the requirement for microbial nitrogen
fixation and favors other phylogenetic groups (Yoneyama
et al., 2017). Furthermore, denitrification might be affected
as well, since several taxa within the Rhizobiales were also
reported to be involved in nirK-mediated denitrification (Bremer
et al., 2007; Yoshida et al., 2009). In contrast, nitrification-
related taxa like the Nitrosomonadales or Nitrospira increased
from rainforest to rubber and oil palm plantations (relative
abundances lower than 1%; data not shown). Additionally,
it is notable that while Proteobacteria abundance decreased,
Acidobacteria abundances (especially subgroup 2) increased,
indicating negative correlations between these groups. Despite
their high abundances in several studies, the ecological role of
Acidobacteria in soil is still poorly understood. Some studies
provide contradicting results in which positive as well as negative
correlations as response to high nutrient input are mentioned for
this taxon (Kielak et al., 2016). Interestingly, positive correlations
between Proteobacteria and Acidobacteria have been shown as
well, which is contrary to our results. This could be explained
by the differences in acidobacterial subgroups detected in the
other studies and the so far not completely understood roles of
all subgroups within the Acidobacteria (Kielak et al., 2016).

Effects of Abiotic Soil Parameters on
Active Bacterial Communities
Shape and structure of prokaryotic communities are tightly
connected with their surrounding environment and the
corresponding abiotic and biotic environmental factors (Brevik
et al., 2015). Environmental parameters are crucial factors for
investigating soil-borne bacterial communities in agricultural
systems (Rousk et al., 2010). Especially, the severe biodiversity
and nutrient content alterations in agricultural land use systems
compared to rainforest are of high importance for addressing
and understanding the impact of rainforest conversion on
microbial communities (Corre et al., 2006; Junier et al., 2010;
Rousk et al., 2010; Dam et al., 2014). Based on non-metric
multidimensional scaling (NMDS), differences in active
community composition were tightly connected to conversion of
rainforest to agricultural land use systems (Figure 3). Rainforest
samples clustered separately from the converted systems.
Additionally, clustering analysis confirmed that soil bacterial
communities from rainforest core plots are distinct from that in
almost all core plots of the converted systems (Supplementary
Figure S3). Base saturation (p < 0.001, r2 0.410) was one of
the main drivers of active bacterial communities together with
pH (p < 0.001, r2 0.780), Fe content (p < 0.018, r2 0.248), C:N
ratio (p < 0.011, r2 0.30) and Ca content (p < 0.037, r2 0.2392).
The two analyzed landscapes showed no significant difference
in this respect. Base saturation, which displays soil fertility,
exhibited a major impact on composition of active soil bacterial
communities. Additionally, another study conducted on the
same plots reported that base saturation was decreasing with
increasing land use intensities, indicating that decreasing soil
fertility has a major influence on active bacterial community
structure (Allen et al., 2015). Soil pH is known as one of the
major drivers for soil prokaryotic communities and pH changes

FIGURE 3 | Non-metric multidimensional scaling (NMDS) based on a
Weighted UniFrac distance matrix of soil bacterial community composition in
all core plots of three converted land use systems (jungle rubber, rubber, and
oil palm) and rainforest reference sites in two different landscapes. The
detected stress level was 0.1415033 (for details see Supplementary Figure
S4). The 96 subplot samples were merged to core plot level previous to
calculation of the weighted UniFrac matrix. Purple arrows show significant
correlations of abiotic measurements (carbon to nitrogen ratio (C:N), base
saturation (bases), pH, calcium (Ca) and iron (Fe) and diversity metric PD
(p < 0.05).

were described as a common indirect consequence of fertilizer
application in agricultural systems (Fierer et al., 2007; Foesel
et al., 2014; Brenzinger et al., 2015; Herzog et al., 2015; Lammel
et al., 2015; Stempfhuber et al., 2015; Zhalnina et al., 2015;
Kaiser et al., 2016; Zhang et al., 2017). In our samples pH
increased with higher land use intensity from rainforest to oil
palm plantation. As biodiversity did not change significantly,
pH might affect abundance of certain groups and consequently
be the reason for the most prominent observed abundance
changes within the Alphaproteobacteria, Acidobacteriales, and
Actinobacteria.

Allen et al. (2015) suggested that a decreasing carbon to
nitrogen ratio (C:N), which was identified as an additional
significant driver for the active bacterial communities, typically
indicates a shift toward a more bacteria-dominated system
(Foesel et al., 2014; Allen et al., 2015). We identified C:N
as a significant driver and observed for plantations compared
to rainforest a decreasing C:N ratio in Harapan whereas
the Bukit Duabelas samples showed similar values for all
studied land use systems. Fe concentrations decreased from
rainforest to the fertilized land use systems. Iron is often
a limiting factor due to high demand not only of bacteria
(Hibbing et al., 2009; Colombo et al., 2014). Thus, with
decreasing iron content, we would expect a higher degree of
bacterial competition and a community shaping effect of iron
itself. Ca concentrations exhibited significant effects on active
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communities and showed a positive correlation with increasing
land use intensity from rainforest to oil palm plantation. This
is most likely connected to liming practices and therefore to
fertilizer application to counteract soil acidification (Tripathi
et al., 2012). Therefore, it is indicated that soil bacterial
community shifts after rainforest conversion were caused by
fertilizer application, liming and reduction of plant diversity
as suggested in previous studies (Rooney and Kennedy, 2013;
Abdi et al., 2016; Val-Moraes et al., 2016; Liu et al., 2017).
Previously observed changes of soil parameters after rainforest
transformation to oil palm and rubber plantations indicated that
the availability of N and other nutrients rely on continuous
fertilization and liming (Allen et al., 2015). Thus, it is likely
that the observed active bacterial community structure is highly
dependent on ongoing treatment such as fertilizer application
and liming.

Associations Between Specific Taxa of
the Active Bacterial Community and
Analyzed Land Uses
To identify genera, which were significantly associated with the
analyzed land use systems and are suitable as indicators for
one or combinations of land use systems, we calculated the
point biserial correlation coefficient for each genus, which is the
abundance-based counterpart of the phi coefficient. We detected
for 270 (24%) of the 1,124 in total detected genera significant
biserial correlation coefficients (p < 0.05). Most of these genera
were associated to oil palm plantation (153 genera associated
in total, 113 genera exclusively to oil palm) and rainforest (95
genera in total, 62 genera exclusively to rainforest). Furthermore,
the point biserial correlation values and correspondingly the
strength of association to the respective system were highest in
oil palm plantation and rainforest compared to jungle rubber
and rubber plantation (Supplementary Figure S5). The majority
of associated genera in oil palm and rainforest belonged to
the Actinobacteria (oil palm) and Proteobacteria (rainforest)
(Figure 4). This is in accordance to our analysis of community
composition in which Proteobacteria decreased from rainforest
to oil palm plantation whereas Actinobacteria increased.

Strongest unique associations of rainforest were detected for
genera within the Rhizobiales (Beijerinckiaceae), Rhodospirillales
(Acetobacteraceae), and Caulobacterales (Caulobacteraceae).
Since members of the Rhizobiales or Rhodospirillales like
Beijerinckiaceae are associated with nitrogen fixation, the
strong association to rainforest indicates a higher importance
of nitrogen fixation for gaining usable nitrogen than in
fertilized land use systems. Associations were also detected
for Rickettsiales, which are also known for endosymbiotic
relationships with eukaryotes (Taylor et al., 2012). This could
be an indication for the higher biodiversity outside the bacterial
domain in rainforests. The association of the acidobacterial
subgroup 2 to rainforest is surprising, since its abundance
increased from rainforest toward the studied agricultural
land use systems. Except for one genus, all associations of
genera within the Clostridia were exclusively to rainforest.
Their ability to fix nitrogen in anaerobic environments might

FIGURE 4 | Association networks based on the point biserial correlation
coefficient of genera related to the analyzed land use systems. Analyzed land
use systems are displayed as hub nodes, while bacterial genera are displayed
as nodes. Edges represent the point biserial correlation coefficient. Size of
nodes and intensity of edges contribute to average abundance of genera in all
land uses and weight of the respective point biserial correlation coefficient,
respectively. Color of nodes contributes to prominent bacterial phyla. Hub
nodes and edges are colored according to analyzed land use systems
rainforest, jungle rubber, rubber, and oil palm. Only significant associations
were included in the analysis (p < 0.05).

explain this when assuming a higher demand of nitrogen
fixation in rainforest soils compared with agricultural managed
soils (Hayat et al., 2010). Nitrogen-fixing clostridia were
also reported as dominant in Amazonian rainforest soils,
but contrary results have been reported for other tropical
forest soils like the Brazilian Atlantic forest. Thus, these
results indicate a specific association to soil properties rather
than a general affiliation to tropical forest soils (Faoro et al.,
2010).

In oil palm, the majority of associated species belonged to
the Actinobacteria, followed by Proteobacteria. Actinobacteria
are reported as tolerant to higher temperatures, as well as
Chloroflexi, which were exclusively detected as associated taxa
for oil palm (Bouskill et al., 2012). It has been proposed
that higher light availability in oil palm plantations compared
to rainforest, which also results in higher soil temperatures,
affect the soil microbiome (Schneider et al., 2015). We detected
the nitrification-related genus Nitrospirales and two genera
of the Nitrosomonadales exclusively in oil palm plantations
as associated taxa (Lücker et al., 2010; Ma et al., 2013).
This indicates higher degrees of nitrification in oil palm
soils compared to rainforest, probably caused by fertilizer
application and correspondingly nitrogen input, leading to more
favorable conditions for nitrifiers (Ma et al., 2013; Quan et al.,
2016).

Interestingly, the detected genera with highest abundance
belonged to Acidobacteria and were associated with
combinations of land use systems. An uncultured genus
within the subgroup 2 with an average abundance of 14.9%
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in all land use systems was associated with a combination
of jungle rubber, rubber, and oil palm while an uncultured
genus from subgroup 1 with an average abundance of 9.8%
was characteristic for the combination of jungle rubber
and rubber. In general, Acidobacteriaceae increased in
abundance from rainforest to oil palm, with maxima in
jungle rubber and rubber, indicating specific adaptations to
these environments. The ecological role of the numerous
subgroups within the Acidobacteria is under discussion. It
was reported that the abundance of some subgroups increased
during Amazonian rainforest conversion to managed soils
whereas that of other subgroups decreased (Navarrete et al.,
2015).

Overall, we could show that patterns of associated genera
for different land use types and corresponding soil properties
are distinguishable. The observed pattern corresponded to our
other results, indicating a shift from higher abundances and
associations of nitrogen fixation-related taxa in rainforest to
conditions more favorable for groups associated with nitrification
and heat-tolerance in plantations. This indicated a general shift of
bacterial functions within these systems from higher importance
of biological nitrogen acquisition in unfertilized systems to higher
degrees of nitrification in fertilized land use systems.

Relationship Between Rainforest
Conversion and Key Functions of the
Bacterial Community
Besides shape and structures of soil bacterial communities,
functional profiles and measures of activity are necessary to

study the bacterial responses. To obtain these profiles and
activity measurements in ecological studies are often a challenge,
since metatranscriptomes and high sample numbers are needed,
which can be challenging in large scale projects and areas
with infrastructure gaps. An alternative, especially for large
sample numbers, are functional predictions based on 16S rRNA
analysis using bioinformatic tools like “Tax4Fun” (Asshauer
et al., 2015; Koo et al., 2017) or “PICRUSt” (Langille et al.,
2013). It was shown that these tools provide a sufficient
accuracy of functional profiles compared to those derived directly
from metagenomic or metatranscriptomic sequence analyses.
These tools are frequently used in various projects (Langille
et al., 2013; Asshauer et al., 2015; Mukherjee et al., 2017;
Wemheuer et al., 2017). In this study, we used Tax4Fun to
investigate bacterial metabolic activity (Figure 5) and focused
on all pathways that showed an abundance of at least 1 %
(Supplementary Table S4). Within the thereby recovered 27
KEGG categories, relative abundances ranged from 1 to 8%
(data not shown). We observed different patterns of predicted
gene abundances within the analyzed land use systems in both
landscapes, which were expected due to their different properties.
Since previous results showed relations of bacterial community
composition and fertilizer application, as well as bacterial
community associations and land use changes, we analyzed the
changes of relative abundances of predicted genes encoding
marker enzymes for selected metabolic traits, e.g., nitrogen
metabolism (Supplementary Table S5). We analyzed predicted
gene abundances of the ammonium monooxygenase subunit
A (amoA) for nitrification, nitrogenase (nifH) for nitrogen
fixation, nitrous oxide reductase (nosZ) for denitrification

FIGURE 5 | Prediction-based abundance of selected key genes in rainforest and converted land use systems. The selected genes were used as markers for genes
involved in nitrogen cycling, methane oxidation, chemotaxis, and type IV and type VI secretion systems.
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and assimilatory nitrite reductase (nasD, nirK and nirS) for
nitrate/nitrite assimilation (Hai et al., 2009; Pappu et al., 2017).
For methane-related metabolism, we analyzed the gene encoding
the methane monooxygenase (mmoY and mmoZ) (Henckel et al.,
1999; Murrell et al., 2000; Sengupta and Dick, 2017). In order
to address bacterial interactions, we analyzed the chemotaxis
related genes cheA, cheW, cheY, cheX, and cheR and for secretion
systems the type IV secretion system genes virB4 and virD4
and the type VI secretion system genes hcp and vgrG (Cascales
and Cambillau, 2012; Guglielmini et al., 2014; Briegel et al.,
2015; Jones and Armitage, 2015; Zinicola et al., 2015; Fedi et al.,
2016).

In both landscapes, predicted abundances for nitrogenase
and nitrous oxide reductase gene abundances were significantly
different between rainforest and converted systems (Figure 5).
We observed highest numbers in rainforest and lowest in
converted systems (p < 0.05). Predicted gene abundances for
nasD, nirK did not show significant differences (p > 0.05).
The predicted gene abundances for mmoA exhibited significant
higher abundances in rainforest compared to jungle rubber and
plantations (p < 0.0002).

The gene of the nitrous oxide reductase (nosZ) abundances
was significantly higher in rainforest samples compared to
transformed systems (p < 0.0001). Deduced abundances for
the nitrite reductase gene nirS showed significant decreases
from rainforest to all other studied land use systems in
Harapan landscape (p < 0.02), but no significant changes
in Bukit Duabelas Landscape. In contrast to Bukit Duabelas
landscape, amoA showed significantly higher abundance in
Harapan rainforest, while analyzed methane monooxygenases
did not show significant differences (Supplementary Table S5).

Higher abundance of nitrogenase in rainforest suggests,
that biological nitrogen uptake through nitrogen fixation is
decreased in converted systems, which are in accordance to the
recorded suppressed biological nitrogen fixation in converted
systems (Corre et al., 2006; Pajares and Bohannan, 2016). We
assume that the additional input of ready to use nutrients
in agricultural systems is less beneficial for soil bacterial
groups with the ability to fix nitrogen, resulting in lower
abundances of nitrogen fixation related taxa like Rhizobiales
in fertilized systems (Corre et al., 2006; Barron et al., 2009;
Isobe et al., 2012; Waring et al., 2014; Cong et al., 2015;
Pajares and Bohannan, 2016). Interestingly, Alphaproteobacteria,
which include the Rhizobiales, were negatively affected as
well by rainforest conversion as shown in Figure 2. In
Harapan landscape, predicted abundances for genes involved
nitrification were lower in converted systems as well. Methane
metabolism is known to be linked to nitrogen metabolism,
due to similarities between the ammonia monooxygenase and
the methane monooxygenase (Henckel et al., 1999; Murrell
et al., 2000; Sengupta and Dick, 2017). Both enzymes catalyze
similar reactions and the corresponding bacterial groups bear
the potential to outcompete each other (Akiyama et al., 2014;
Zheng et al., 2014). Accordingly, the methane monooxygenase
gene abundance was higher in rainforest than that of ammonia
monooxygenase subunit A gene. Additionally, the predicted
gene abundances for denitrification were higher in rainforest

compared to the other studied systems in both landscapes.
Therefore, we assume that in converted systems with higher
nitrogen disposition and availability, active soil bacterial
communities respond to land use management and higher
nutrient input with decreased nitrogen fixation. A decrease in
nitrification and denitrification seems unlikely though, since
previous studies demonstrated the increase of the activity of
these processes under the influence of fertilizer input (Ma
et al., 2013; Quan et al., 2016; Wang et al., 2018). Additionally,
we observed that taxa which are associated with the above-
mentioned nutrient cycling pathways underwent the most drastic
changes in relative abundance as well. Indicator species analysis
showed that genera with nitrification ability such as Nitrospira
and Nitrosomonadales were detected in oil palm soils (Figure 4).
However, since functional prediction cannot assign all taxa
with their respective functional potential due to a lack of
detailed information about certain groups (e.g., subgroups of
Acidobacteria), additional analysis is required in this specific case
(Kielak et al., 2016).

Abundances of chemotaxis genes cheW and cheR were
highest in rainforest and decreased toward higher land use
intensity (all p-values < 0.05). However, not all observed
differences of the selected chemotaxis-related genes were
highest in rainforest. The cheX gene abundance was lowest
in rainforest and highest in plantations (p < 0.05). No
significant differences were observed for sensor kinase cheA
and response regulator cheY. For all tested chemotaxis-related
genes, except cheA and cheY, we detected significant differences
between rainforest and plantations. The analyzed che genes are
part of the same operon and were shown to be connected
to swarming capacity and especially in pathogens (Lambert
et al., 2015; Fedi et al., 2016). Since we observed significant
differences between rainforest and the other studied land use
systems for almost all tested genes, we assume that rainforest
transformation not only affects nutrient recycling but also
interactions. Additionally, it is possible that due to strong
association of the analyzed che genes with pathogenic lifestyles,
community dynamics might be altered regarding pathogenicity
as well.

The abundance changes of the investigated secretion system-
related functions indicated an impact of rainforest conversion
on interspecific bacterial activity. Type IV secretion system
genes showed significant higher abundance in rainforest
compared to oil palm samples (p < 0.05). We conclude that
exchange of nucleic acids between bacteria is decreased in
nutrient-rich managed land use systems, possibly due to a
lower degree of competition resulting in a lower pressure
for adaptations and hence nucleic acid exchange. Type VI
secretion system genes showed slightly higher abundance
in rainforest compared to oil palm (p < 0.05) as well.
These results hint less negative interaction and competition
by pathogenesis via antibacterial compounds (Tripathi et al.,
2016). In contrast, we previously observed a significant
effect of iron content on the active bacterial community
composition, which is likely caused by competition for this
limiting compound. However, we did not observe similar
trends for all analyzed predicted genes regarding interaction
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and competition, indicating the need for further analysis. We
recorded several significant changes for the studied functions,
but it has to be considered that prediction-based methods only
provide indications, which have to be confirmed by additional
analysis such as full metagenome and metatranscriptome
analyses.

CONCLUSION

We confirmed our first hypothesis (a) that the diversity of the
active bacterial community was not significantly affected by
rainforest conversion. We showed that rainforest transformation
has a significant impact on active bacterial community
composition as suggested in hypothesis (b). Furthermore, we
could show that changes in soil characteristics deriving from
rainforest conversion and management are a major factor in
reshaping the active bacterial community. Additionally, we
identified that change in pH, base saturation, Fe content and
C:N ratio is significant drivers of soil bacterial community
composition. This suggests a direct connection to fertilizer
applications and liming, which affects composition and amount
of available nutrients, i.e., nitrogen-containing compounds.
Rainforest soils and converted systems revealed distinguishable
patterns of associated taxa, which illustrate the changed
requirements for bacterial life in the different land use systems as
mentioned in hypothesis (c). Furthermore, predicted functional
profiles revealed that uptake of nutrients like nitrogen through
biological fixation decreases with higher land use intensity.
It was also indicated that interactions in form of nucleic
acid exchange as well as antagonistic or competitive behavior
were reduced after rainforest conversion and it is likely that
rainforest transformation leads to soil bacterial communities
with severely altered nutrient cycling activity. Thus, active
bacterial communities are significantly affected by rainforest
transformation. In addition to the impact on active community
composition, we could show that changes of soil properties
introduced by management (e.g., fertilizer application) are the

main drivers for adaptations and probably changes in bacterial
functioning.
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Figure S1. Average Shannon and PD diversity indices. Values were summarized from all subplot
values at land use level in the corresponding landscape. 

Figure S2. Rarefaction curves for landscape level and land use systems. 
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Figure S3. Clustering analysis of used samples on core plot level. Cluster analysis was performed by using 
hclust. 
 

 
Figure S4. Stressplot for calculated NMDS shown in Figure 3 based on weighted UniFrac. 
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Figure S5. Distribution of obtained point biserial correlation coefficients. Each dot 
displays one obtained value in the respective land use systems. Only significant values 
were included (p <0.05). 

 
Table S1. Shannon and PD diversity indices and raw sequence data (sequence numbers and filtered sequences) at 
subplot level. 

Subplot treatment PD Shannon 
Sub-

sample 
size 

raw 
reads 

quality 
filtered 

sequences 
Excluded 

sequences 
Excluded 

sequences 
[%] 

BF1a rainforest 77.78397 8.9534092 6650 13354 13250 104 0.779 

BF1b rainforest 70.62199 8.871184833 6650 14728 14614 114 0.774 

BF1c rainforest 79.66874 9.140674788 6650 11736 11615 121 1.031 

BF2a rainforest 80.68331 8.546670769 6650 10262 10173 89 0.867 

BF2b rainforest 71.79895 8.32464721 6650 16350 16244 106 0.648 

BF2c rainforest 94.85922 9.336816238 6650 20670 20548 122 0.59 

BF3a rainforest 50.02743 8.432566931 6650 12615 12566 49 0.388 

BF3b rainforest 72.83071 9.089375278 6650 16695 16590 105 0.629 

BF3c rainforest 62.39849 8.612355429 6650 15172 15092 80 0.527 

BF4a rainforest 79.95485 9.25737844 6650 17844 17753 91 0.51 

BF4b rainforest 37.29744 7.451494867 6650 16972 16826 146 0.86 

BF4c rainforest 65.59762 8.767138693 6650 16554 16390 164 0.991 

BJ1a jungle rubber 54.58956 7.737533276 6650 14324 11276 3048 21.279 

BJ1b jungle rubber 59.82159 7.90235756 6650 18029 14007 4022 22.309 

BJ1c jungle rubber 60.83014 8.016156465 6650 20366 15822 4544 22.312 

BJ2a jungle rubber 73.39391 8.544248736 6650 16118 12575 3543 21.982 

BJ2b jungle rubber 60.84859 7.980631261 6650 13849 11087 2762 19.944 

BJ2c jungle rubber 58.41978 7.518356014 6650 17012 13205 3807 22.378 

BJ3a jungle rubber 59.88341 8.274874454 6650 16065 12726 3339 20.784 

BJ3b jungle rubber 60.94682 8.048837682 6650 16641 13001 3640 21.874 

BJ3c jungle rubber 62.50865 7.935060041 6650 15030 11769 3261 21.697 

BJ4a jungle rubber 87.22935 9.253845301 6650 17296 13465 3831 22.15 

BJ4b jungle rubber 85.14287 9.088407918 6650 20497 15918 4579 22.34 

BJ4c jungle rubber 91.44436 9.452870014 6650 17773 13741 4032 22.686 
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BR1a rubber 58.25818 7.376049062 6650 19741 15155 4586 23.231 

BR1b rubber 70.13153 8.246266729 6650 15804 12505 3299 20.874 

BR1c rubber 69.54557 8.597016378 6650 16581 12923 3658 22.061 

BR2a rubber 67.89795 8.224496515 6650 16425 12745 3680 22.405 

BR2b rubber 73.49165 8.418174583 6650 19175 14950 4225 22.034 

BR2c rubber 72.87183 8.781957748 6650 16216 12678 3538 21.818 

BR3a rubber 60.42499 7.902511846 6650 19384 15212 4172 21.523 

BR3b rubber 69.70397 8.794856931 6650 14031 11093 2938 20.939 

BR3c rubber 56.57903 7.175782359 6650 18442 14375 4067 22.053 

BR4a rubber 65.34713 8.720004974 6650 16755 13215 3540 21.128 

BR4b rubber 66.485 8.874448357 6650 21075 16519 4556 21.618 

BR4c rubber 81.28779 9.140134875 6650 19332 15233 4099 21.203 

BO1a oil palm 88.36238 9.538683284 6650 14759 11777 2982 20.205 

BO1b oil palm 60.41019 7.675071379 6650 16993 13279 3714 21.856 

BO1c oil palm 86.93988 9.632170981 6650 14941 11808 3133 20.969 

BO2a oil palm 71.61516 8.417503819 6650 18549 14449 4100 22.104 

BO2b oil palm 77.70757 8.930340467 6650 16965 13168 3797 22.381 

BO2c oil palm 75.69981 8.89436097 6650 15598 12245 3353 21.496 

BO3a oil palm 76.09927 8.316459091 6650 18760 14579 4181 22.287 

BO3b oil palm 83.26894 9.110372472 6650 16292 12693 3599 22.091 

BO3c oil palm 78.79737 9.114949112 6650 16489 12865 3624 21.978 

BO4a oil palm 63.99848 8.193463238 6650 16278 12768 3510 21.563 

BO4b oil palm 62.19975 8.00173587 6650 18159 14167 3992 21.984 

BO4c oil palm 58.46591 7.65196856 6650 14905 11785 3120 20.933 

HF1a rainforest 66.80867 8.834243004 6650 14683 14602 81 0.552 

HF1b rainforest 71.30142 9.020032141 6650 17268 17125 143 0.828 

HF1c rainforest 69.85548 8.893968347 6650 16002 15841 161 1.006 

HF2a rainforest 64.42587 8.653347637 6650 13991 13912 79 0.565 

HF2b rainforest 58.55292 8.806872197 6650 12637 12550 87 0.688 

HF2c rainforest 90.15538 9.471466574 6650 23437 23269 168 0.717 

HF3a rainforest 58.62191 8.579941203 6650 15717 15550 167 1.063 

HF3b rainforest 88.36131 9.217581708 6650 23899 23774 125 0.523 

HF3c rainforest 59.3511 7.965494893 6650 15160 15079 81 0.534 

HF4a rainforest 72.05893 8.783713962 6650 16810 16730 80 0.476 

HF4b rainforest 61.69076 8.304079677 6650 16449 16355 94 0.571 

HF4c rainforest 60.62107 8.316448096 6650 15917 15797 120 0.754 

HJ1a jungle rubber 68.52989 8.577754619 6650 22053 15329 6724 30.49 

HJ1b jungle rubber 69.81603 8.867475622 6650 16819 11963 4856 28.872 

HJ1c jungle rubber 49.80552 7.554602568 6650 15109 11111 3998 26.461 

HJ2a jungle rubber 75.25357 9.526280261 6650 14713 10828 3885 26.405 

HJ2b jungle rubber 67.49928 9.026316741 6650 17317 12578 4739 27.366 

HJ2c jungle rubber 58.73849 8.656274384 6650 20122 14399 5723 28.442 

HJ3a jungle rubber 46.22859 7.752660037 6650 23433 16377 7056 30.111 

HJ3b jungle rubber 52.24632 8.045664129 6650 21688 15463 6225 28.703 

HJ3c jungle rubber 48.18154 7.157237719 6650 23108 16165 6943 30.046 

HJ4a jungle rubber 58.88131 8.052721634 6650 20413 14344 6069 29.731 

46



HJ4b jungle rubber 74.7635 8.741948364 6650 18561 13260 5301 28.56 

HJ4c jungle rubber 56.85882 7.710746346 6650 16714 12129 4585 27.432 

HR1a rubber 93.86729 9.763885928 6650 19957 14200 5757 28.847 

HR1b rubber 82.35294 9.010674935 6650 19398 13799 5599 28.864 

HR1c rubber 85.55128 9.580794721 6650 18416 13141 5275 28.644 

HR2a rubber 78.18748 8.877747573 6650 18892 13382 5510 29.166 

HR2b rubber 74.06955 8.527355345 6650 16254 11721 4533 27.889 

HR2c rubber 70.79938 9.02309226 6650 23050 16187 6863 29.774 

HR3a rubber 73.11822 9.033129915 6650 15193 11041 4152 27.328 

HR3b rubber 72.10467 8.352653588 6650 15702 11439 4263 27.149 

HR3c rubber 85.3364 9.388059607 6650 17884 12600 5284 29.546 

HR4a rubber 68.87694 8.507035503 6650 14898 10757 4141 27.796 

HR4b rubber 71.7911 9.000737034 6650 16667 11994 4673 28.037 

HR4c rubber 66.52854 8.456401428 6650 19435 13682 5753 29.601 

HO1a oil palm 55.3679 8.443130522 6650 18204 13265 4939 27.131 

HO1b oil palm 86.71354 9.541979978 6650 18184 13035 5149 28.316 

HO1c oil palm 91.83263 10.05300621 6650 16424 11850 4574 27.849 

HO2a oil palm 64.89689 7.87901635 6650 17408 12545 4863 27.935 

HO2b oil palm 82.61829 8.936008951 6650 19102 13468 5634 29.494 

HO2c oil palm 67.31357 7.510464017 6650 20221 13907 6314 31.225 

HO3a oil palm 72.38518 8.618475299 6650 14161 10321 3840 27.117 

HO3b oil palm 87.63691 9.554992114 6650 14392 10539 3853 26.772 

HO3c oil palm 56.00181 7.751215499 6650 17282 12556 4726 27.346 

HO4a oil palm 53.48871 8.446879469 6650 21410 15119 6291 29.383 

HO4b oil palm 60.27255 7.268500522 6650 18467 13125 5342 28.927 

HO4c oil palm 65.00442 8.20392639 6650 17543 12633 4910 27.988 

 
 

Table S4. FTU (Fraction Taxonomy Unexplained) values obtained from Tax4Fun analysis. 
Plot name FTU Site and Treatment 

BF1 0.4741 Bukit rainforest 

BF2 0.5553 Bukit rainforest 

BF3 0.4964 Bukit rainforest 

BF4 0.4935 Bukit rainforest 

BJ1 0.4301 Bukit jungle rubber 

BJ2 0.5631 Bukit jungle rubber 

BJ3 0.4939 Bukit jungle rubber 

BJ4 0.5021 Bukit jungle rubber 

BO1 0.5108 Bukit rubber 

BO2 0.5381 Bukit rubber 

BO3 0.5506 Bukit rubber 

BO4 0.6025 Bukit rubber 

BR1 0.5475 Bukit oil palm 

BR2 0.5332 Bukit oil palm 

BR3 0.5744 Bukit oil palm 
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BR4 0.5366 Bukit oil palm 

HF1 0.5091 Harapan rainforest 

HF2 0.4702 Harapan rainforest 

HF3 0.5121 Harapan rainforest 

HF4 0.5207 Harapan rainforest 

HJ1 0.5434 Harapan jungle rubber 

HJ2 0.511 Harapan jungle rubber 

HJ3 0.5095 Harapan jungle rubber 

HJ4 0.4948 Harapan jungle rubber 

HO1 0.4914 Harapan rubber 

HO2 0.6278 Harapan rubber 

HO3 0.5666 Harapan rubber 

HO4 0.5655 Harapan rubber 

HR1 0.5334 Harapan oil palm 

HR2 0.5573 Harapan oil palm 

HR3 0.6279 Harapan oil palm 

HR4 0.5029 Harapan oil palm 
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RESEARCH ARTICLE Open Access

Unravelling the effects of tropical land use
conversion on the soil microbiome
Dirk Berkelmann1, Dominik Schneider1, Anja Meryandini2 and Rolf Daniel1*

Abstract

Background: The consequences of deforestation and agricultural treatments are complex and affect all trophic levels.
Changes of microbial community structure and composition associated with rainforest conversion to managed systems
such as rubber and oil palm plantations have been shown by 16S rRNA gene analysis previously, but functional profile
shifts have been rarely addressed. In this study, we analysed the effects of rainforest conversion to different converted
land use systems, including agroforestry (“jungle rubber”) and monoculture plantations comprising rubber and oil palm,
on soilborne microbial communities by metagenomic shotgun sequencing in Sumatra, Indonesia.

Results: The diversity of bacteria and archaea decreased whereas diversity of fungi increased in the converted land use
systems. The soil microbiome was dominated by bacteria followed by fungi. We detected negative effects of land use
conversion on the abundance of Proteobacteria (especially on Rhizobiales and Burkholderiales) and positive effects on the
abundance of Acidobacteria and Actinobacteria. These abundance changes were mainly driven by pH, C:N ratio, and Fe,
C and N content. With increasing land use intensity, the functional diversity decreased for bacteria, archaea and fungi.
Gene abundances of specific metabolisms such as nitrogen metabolism and carbon fixation were affected by land use
management practices. The abundance of genes related to denitrification and nitrogen fixation increased in plantations
while abundance of genes involved in nitrification and methane oxidation showed no significant difference. Linking
taxonomic and functional assignment per read indicated that nitrogen metabolism-related genes were mostly assigned
to members of the Rhizobiales and Burkholderiales. Abundances of carbon fixation genes increased also with increasing
land use intensity. Motility- and interaction-related genes, especially genes involved in flagellar assembly and chemotaxis
genes, decreased towards managed land use systems. This indicated a shift in mobility and interspecific interactions in
bacterial communities within these soils.

Conclusions: Rainforest conversion to managed land use systems drastically affects structure and functional potential of
soil microbial communities. The decrease in motility- and interaction-related functions from rainforest to converted land
use systems indicated not only a shift in nutrient cycling but also in community dynamics. Fertilizer application and
correspondingly higher availability of nutrients in intensively managed plantations lead to an environment in which
interspecific interactions are not favoured compared to rainforest soils. We could directly link effects of land management,
microbial community structure and functional potential for several metabolic processes. As our study is the first study of
this size and detail on soil microbial communities in tropical systems, we provide a basis for further analyses.
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Background
Conversion of natural systems to agriculturally managed
land use systems is constantly increasing worldwide [1, 2].
Indonesia is one of the world’s largest palm oil and rubber
producer and harbours a high biodiversity in tropical rain-
forests. Thus, effects of land use changes and rainforest
conversion to agriculturally managed systems on biodiver-
sity and ecosystem functions are of high interest including
conflicts and trade-offs between conservation of biodiver-
sity and economic revenue. In recent years, studies target-
ing different trophic levels as well as biogeochemical,
ecological and socioeconomical effects of the conversion
have been published [3, 4]. Soil microbial communities are
integral components of terrestrial ecosystems. Microorgan-
isms in soils comprise prokaryotes (archaea and bacteria),
fungi and protists. Ecosystem functioning depends to a
large extent on the functional diversity and activity of the
belowground microbial system [5, 6]. In addition, microor-
ganisms play a key role in decomposing soil organic matter
and mineralizing nutrients in soil [7]. It has been shown
that rainforest conversion to plantations has negative
effects on the biodiversity of fungi [8, 9], protists [10],
vertebrates [11], insects and plants [12–14], archaea [15],
but not on bacterial diversity which increased [15, 16].
Additionally, the microbial community composition was
severely affected by these conversion processes with a high
impact on Proteobacteria which showed an abundance
decrease and Actinobacteria, which showed an abundance
increase with increasing land use intensity [15, 16]. Fur-
thermore, negative effects on aboveground and below-
ground carbon stocks, CO2 fluxes and leaching in these
converted land use systems were shown before [17–21].
Management practices such as application of fertilizer,
liming, application of herbicides (e.g. glyphosate) and
harvesting in turn affect functions of microbial commu-
nities [22–24].
Previous studies targeting soil microbial communities

in the tropics often relied on the analysis of markers like
the 16S rRNA gene. This is cost-efficient, taxonomically
accurate and relatively fast but functional profiles can
only be predicted based on taxonomic information using
bioinformatic tools such as Tax4Fun2 [25], Piphillin [26]
and PiCrust [15, 27–31]. Prediction-based analysis of
microbiome functions provides first insights into envir-
onmental microbial processes such as nutrient cycling
and emission of climate gases influenced by agricultural
management [16]. While these studies provided a first
impression of the functional potential, direct sequencing
of metagenomic DNA and identification of functional
genes is needed to verify prediction-based findings [32].
However, studies covering functional analyses of
rainforest conversion to oil palm monocultures based on
direct sequencing of metagenomes are rare. To our
knowledge, only Tripathi et al. [27] analysed microbial

functioning in oil palm soils so far, but with a focus on
logging effects. Effects of rainforest conversion to jungle
rubber and rubber plantations systems on functional
gene profiles, as analysed in this study, were not ad-
dressed yet. In a previous study, which was based on
taxonomy-derived functional predictions, it was sug-
gested that nutrient cycling related processes such as ni-
trogen fixation, denitrification and methane oxidation as
well as motility- and interaction-related processes such
as chemotaxis and type IV secretion systems are nega-
tively affected by rainforest conversion to managed sys-
tems. It was hypothesized that fertilizer input and liming
in intensively managed systems such as rubber and oil
palm plantations reduces the need for nutrient acquisi-
tion, and thereby influencing interactions, mobility and
communication of soilborne bacterial communities [16].
Even if taxonomic and functional profiles are studied, it
is still not known which taxonomic group is responsible
for which processes, leaving a gap that needs to be
addressed as well.
To gain deeper insights into these processes, we analysed

rainforest conversion to jungle rubber, rubber plantations
and oil palm plantations by direct sequencing of the corre-
sponding soil metagenomes. Subsequently, taxonomic and
functional profiles in the different land use systems were
analysed and compared. We linked functional results with
their corresponding taxonomic background. Based on our
previous studies analysing the 16S rRNA marker gene se-
quences in the same sampling sites and studies on similar
systems in Southeast Asia [9, 10, 15, 16, 18, 33], we formu-
lated three hypotheses. We assume that diversity will
decrease for soilborne archaea, Eukaryotes and increase for
bacteria with increasing land use intensity (H1). Further-
more, we expect functional profiles to differ between rain-
forest and plantation monocultures, in which nitrogen and
methane metabolism as well as motility- and interaction-
related processes are negatively affected by the reduced
aboveground diversity in plantations (H2). Furthermore,
we hypothesize that strongly affected taxonomic groups
like Proteobacteria and Actinobacteria are linked to crucial
processes in nutrient cycling such as nitrogen-fixation,
nitrification and methane oxidation. In addition, some of
these affected groups are indicators for motility-related
processes like chemotaxis and quorum sensing (H3).

Results
General characteristics of the soil metagenome dataset
Metagenome sequencing and quality-filtering of the 32
Indonesian soil samples covering the land use types rainfor-
est, jungle rubber, rubber plantation and oil palm planta-
tion in two landscapes (see Methods for details, Fig. 1)
resulted in more than 1.11 billion high-quality reads in total
and approximately 33 million reads on average per sample
(Additional file 1: Table S1). The average read length per

Berkelmann et al. Environmental Microbiome            (2020) 15:5 Page 2 of 18

51



paired-end read was 146 bp with an average GC content of
60%. To get an overview of the taxonomic community
structure, reads were first clustered at domain level (Add-
itional file 2: Figure S1). Approximately 40% of all reads
could not be taxonomically classified. We recorded a bac-
terial dominance in bulk soils of all land use systems in-
cluding the rainforest controls with abundances ranging
from 48.5 to 52.5% of all reads (524,556,933 reads in total).
Highest bacterial abundances were detected in rainforest
samples (51% in Bukit and 52.5% in Harapan), which also
contained the lowest number of unclassified reads of all
sample types. Approximately 7% of all sequences were clas-
sified as Eukaryota (78,682,140 reads in total), while less
than 0.6% of all reads were classified as archaea (4,251,297
reads in total) and viruses (1,147,105 reads).

Effects of rainforest conversion on microbial diversity
We analysed taxonomic and functional diversity of the
entire soil community and separately of bacteria, archaea
and fungi and compared the results derived from all
converted land use systems with those of rainforest by
using the Shannon index for each land use type (Fig. 2).
Taxonomic diversity decreased for all prokaryotes from
rainforest to the monoculture land uses rubber and oil
palm (Fig. 2a). Lowest values for the entire community
and bacteria, and archaea were detected in rubber and
oil palm soils, respectively (with p < 0.05 compared to
rainforest). In contrast, fungi showed an opposite trend
with an increase in diversity from rainforest to converted

systems with the highest diversity in rubber (all p <
0.05). We additionally analysed functional diversity on
gene level (Fig. 2b). We observed gradual decreases in
functional diversity from rainforest over jungle rubber to
plantations for all analysed groups. As recorded for taxo-
nomic diversity of the entire community and bacteria,
lowest values for functional diversity were obtained in
rubber. For both groups, the detected decreases from
rainforest to both monoculture systems were significant
with p < 0.001. Although functional diversity decreased
for archaea as well, changes were less pronounced and
with high variance in rubber. Contrary to taxonomic
diversity, functional diversity for fungi decreased from
rainforest to converted systems with lowest values in oil
palm samples (p < 0.05).

Effects of rainforest conversion on microbial community
structures
Studying the microbial community composition at high
taxonomic resolution based solely on short metagenomic
reads is challenging. In order to provide a clear but still
detailed analysis and avoid overinterpretation at species
level, we chose order level to compare the communities.
Differential abundance analysis of the soil bacterial com-
munity composition showed that significant changes
between the different land use systems were more pro-
nounced in the Harapan landscape than in the Bukit
landscape (Additional file 3: Figure S2).

Fig. 1 Sampling sites in the province of Jambi on Sumatra, Indonesia. Four core plots with three subplots per core plot in each converted land
use system and rainforest reference sites were studied. The core plot design was established in two landscapes within the province of Jambi. The
landscapes Bukit Duabelas and Harapan are indicated by “B” and “H” in the Plot ID with “F” for rainforest, “J” for jungle rubber, “R”, rubber and “O”
for oil palm
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The most abundant bacterial orders were uncultured
acidobacterial orders, Rhizobiales, Acidobacteriales, Bur-
kholderiales and Streptomycetales (Fig. 3a, b). Abundances
of Rhizobiales and Acidobacteriales were high in general
but did not show significant changes in the converted land
use systems. Burkholderiales, which are involved in
denitrification [34] and nitrogen fixation [35], showed the
largest differences in abundances between the different
land use systems of all bacterial orders. Abundances of
Burkholderiales decreased significantly in both landscapes
from rainforest to the monoculture systems with generally
higher abundances in Harapan samples (5.2 to 2.6% in
Bukit and 8.1 to 2.5% in Harapan, p < 0.05).
The most abundant orders within the archaea belonged

to the Halobacteria and Thaumarchaeota, with the largest
fraction belonging to unclassified archaea (Fig. 3c). Halo-
feracalaes, Halobacteriales and Natrialbales of the Halo-
bacteria were detected in all land use systems with similar
abundances and without significant changes. In general,

significant changes were not detected for archaeal or-
ders in all Harapan samples whereas in Bukit soils 16
of all detected 62 orders differed significantly between
rainforest and converted land use systems.
The most abundant fungal orders were Eurotiales

and Hypocreales, which both belong to the Ascomy-
cota (Fig. 3d). Hypocreales decreased significantly in
abundance from rainforest to all converted land use
systems, except Bukit jungle rubber. Hypocreales-
decreased from 0.19% in Bukit rainforest and 0.18%
in Harapan rainforest to 0.12% in rubber of both
landscapes and 0.11 and 0.12% in oil palm planta-
tions, respectively (p < 0.05). Eurotiales showed signifi-
cant abundance changes compared to rainforest in
rubber and oil palm plantations of both landscapes.
Increasing abundances along the land use gradient
from rainforest to converted systems were also ob-
served for Chaetothyriales and Pleosporales with
p.adj < 0.05 in Bukit rubber samples.

Fig. 2 Taxonomic (a) and functional diversity (b) of the microbial communities in the land use systems. Shannon diversity indices were calculated
for the entire community as well as bacteria, archaea and fungi in each land use system. Significant changes in each land use system compared
to rainforest are indicated with * (* = p < 0.05, ** = p < 0.001, *** = p < 0.0001)
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We compared trophic groups of protists in each land
use system (0.09% of all reads) using the same functional
categories described by Schulz et al. [10] (Add-
itional file 4: Figure S3). Phagotrophs were the most
abundant group (37 to 39%) followed by photoauto-
trophs (29 to 30%) and animal parasites (27 to 31%). A
notable increase of protistan animal parasites compared
to rainforest reference sites was recorded in jungle rub-
ber soils, whereas abundances of the phagotrophs and
photoautotrophs remained rather stable. In contrast, re-
sults by Schulz et al. [10], which were based on 18S
rRNA gene amplicons, showed an increase of phago-
trophs and a decrease for animal parasites in converted
systems compared to rainforest samples.
Additionally, microbiome composition was compared

at order level based on extracted rRNA sequences (Add-
itional file 5: Figure S4). Similar community structures
were observed as in previous 16S rRNA marker gene
studies [15, 16]. Similar to the phylogenetically assigned
metagenome data, Proteobacteria and Acidobacteria
were the most abundant bacterial phyla in extracted
rRNA sequences. Notably, the fraction of unclassified
bacteria at phylum level was higher in extracted rRNA
sequences, ranging from 20.2 to 26.5% while remaining
under 2.2% in shotgun data. Pairwise PERMANOVA
analysis showed no significant differences between shot-
gun data and rRNA sequence controls.

Influence of abiotic parameters on soilborne communities
The composition of microbial communities in soil is
tightly connected with soil characteristics and nutrient
availability. These parameters are in turn connected with

land use and management practices [36–39]. In order to
investigate the impact of soil attributes on soilborne
communities with respect to rainforest conversion, we
employed nonparametric multidimensional scaling
(NMDS) on Bray Curtis dissimilarity matrices (Fig. 4).
Multivariate analysis of the entire soil microbial com-

munity composition showed a gradient along the four dif-
ferent tested land use systems corresponding to increasing
land use intensity (rainforest < jungle rubber < rubber
plantation < oil palm plantation). NMDS stress levels
ranged from 0.06 to 0.1. The parameters which correlated
with the ordination of the entire community were C:N ra-
tio, land use index (LUI), base saturation, iron content
and pH (p < 0.05) (Additional file 6: Table S2). Similar
clustering patterns were obtained for bacteria, archaea and
fungi, which are all in line with the proposed land use
gradient. Abiotic parameters that showed correlation with
the bacterial community were LUI, pH, C:N ratio, Fe, Ca,
P and base saturation (for details see, Additional file 6:
Table S2). The LUI, pH value, P content and Ca content
increased with higher land use intensity, reflecting the
effects of agricultural liming and fertilizer application [9,
18]. These factors correlated also with the fungal commu-
nity composition in addition to nitrogen, Mn, K and Mg
content, water saturation, effective cation exchange
(ECEC), and basal respiration. The only detected correla-
tions to archaea were pH and basal respiration.

Impact of rainforest conversion on microbiome functions
To assess potential functional responses related to the
conversion of rainforest, we used differential gene abun-
dance analysis. Significant differences for 7294 genes in

Fig. 3 Community composition displayed as relative abundances at order level of the entire community, bacteria, archaea and fungi. (a) The
entire community including all used sequences is shown in bars in which all orders below 1% were clustered as “rare taxa”. The five most
abundant orders within the bacteria (b), archaea (c) and fungi (d) are shown seperately. Significant differences (p < 0.05) compared to rainforest
are marked with *

Berkelmann et al. Environmental Microbiome            (2020) 15:5 Page 5 of 18

54



all land use systems compared to rainforest were de-
tected. Notably, these detected changes were stronger
(positive as well as negative) in Harapan soils compared
to Bukit soils (Additional file 7: Figure S5). In fact,
changes in Bukit jungle rubber compared to Bukit rain-
forest were minor compared to all other land uses with
only 7 significantly changed genes. One of these was the
nifD gene, which is involved in nitrogen fixation and en-
codes a subunit of the nitrogenase enzyme. Similar to
the NMDS analysis based on microbial taxonomy, the
functional profile differed between rainforest and con-
verted land use systems (Additional file 8: Figure S6).

We also analysed functional groups (at level three of the
KEGG pathway hierarchy) in each converted land use
system compared to rainforest as well as single genes
(Figs. 5, 6, 7). The majority of functional differences
were detected in Harapan soils. We detected 197 signifi-
cant abundance changes of functional groups for jungle
rubber, 221 for rubber plantation and 108 for oil palm
plantation in Harapan soils. In Bukit soils, we detected
177 significant abundance differences of functional
groups for rubber and 73 for oil palm but none for jun-
gle rubber. Functional groups covering genes involved in
nutrient cycling were analysed in detail including

Fig. 4 Non-metric multidimensional scaling of the entire (a), bacterial (b), archaeal (c) and fungal (d) community in all land use systems. The
ordinations are based on Bray Curtis dissimilarity matrices including analysis of abiotic factors by employing an environmental fit. Only abiotic
factors with p < 0.05 were included
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nitrogen metabolism, methane metabolism, carbon fix-
ation and sulphur metabolism (Fig. 5). In addition, func-
tional groups associated with interaction and
competition such as chemotaxis, flagellar assembly,
quorum sensing, secretion systems and photosynthesis
were evaluated.
Nitrogen metabolism-related genes decreased signifi-

cantly from rainforest to rubber samples with a log2fold
change of − 0.08 (p < 0.01). Carbon fixation increased from
rainforest to rubber (log2fold change 0.06 with p < 0.05)
and oil palm samples (log2fold change 0.09 with p < 0.01).
Sulphur metabolism related genes decreased from rainfor-
est to all converted land use systems, with log2fold changes
ranging from − 0.09 in jungle rubber to − 0.1 in oil palm
and − 0.15 in rubber. Genes involved in photosynthesis in-
creased from rainforest to oil palm soils with a log2fold
change of 0.09 (p < 0.01). At landscape level sulphur metab-
olism did not change in Bukit jungle rubber and oil palm.

Additionally, we did not detect changes for nitrogen metab-
olism related genes in Harapan rubber samples
(Additional file 9: Figure S7).
In order to analyse the potential for interactions, we

selected bacterial genes involved in chemotaxis and fla-
gellar assembly for motility, quorum sensing and secre-
tion systems for interactions (Fig. 5 and Additional
file 9: Figure S7). Bacterial chemotaxis, flagellar assembly
and secretion systems showed decreases in gene abun-
dances from rainforest to all converted land use systems.
For quorum sensing, we detected a decrease in
abundance only in rubber samples.

Analysis of specific gene abundances for energy
metabolism and motility
Previously analysed pathways were further investigated
based on abundances of characteristic genes. Selected
genes were divided into two categories related to energy

Fig. 5 Functional profile of selected metabolisms based on KEGG categories (level 3) displayed as log2fold changes. Negative and positive
log2fold changes indicate decreased and increased abundances in the corresponding converted land use systems compared to rainforest
samples. Values with p.adj < 0.05 are marked with *
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metabolism or motility (Figs. 6, 7 and Additional file 10:
Figure S8 and Additional file 11: Figure S9). The denitri-
fication related marker genes nirK, nirS and nosZ in-
creased significantly from rainforest to oil palm
plantation, with log2fold changes ranging from 0.5
(nirK) to 1.5 (nirS). Nitrogen fixation marker nifH in-
creased from rainforest to monoculture land use systems
(0.7 in rubber and 0.8 in oil palm, p < 0.05) and the dis-
similatory nitrate reduction marker gene narG increased
from rainforest to rubber plantations. Other marker
genes related to nitrogen or methane metabolism
showed no differences compared to rainforest, indicating
a higher potential for denitrification and nitrogen fix-
ation in converted land use systems. Since our results
suggested that Rhizobiales and Burkholderiales are of
particular importance in the studied rainforest soils due
to their connection to nitrogen cycling, the question
arose whether this is connected to symbiotic root nodule
formation or rather to an endophytic lifestyle. We there-
fore analysed the abundances of nod genes, which are
encoding nodulation factors and are crucial for the for-
mation of root nodule symbiosis. However, evidence that
rainforest conversion affects abundance of these genes
was not found (Additional file 12: Figure S10).
We did not see changes accompanying rainforest conver-

sion for methane metabolism-related genes as a group.

Consequently, we analysed marker genes for methane oxi-
dation as well (Fig. 6) but did not recorded significant
changes in abundance for all analysed genes.
The abundance of flagellar assembly markers de-

creased significantly from rainforest to all converted
systems (Fig. 7). Similar results were observed for the
type VI secretion system proteins vgrG and hcp,
which decreased from rainforest to all converted sys-
tems. However, when analysing the landscapes sepa-
rately, most significant differences were observed in
Harapan samples (Additional file 11, Figure S9).
Chemotaxis markers did not show such a clear pat-
tern. Chemotaxis gene cheY decreased in jungle rub-
ber samples and cheW decreased from rainforest to
oil palm. In contrast, cheX increased from rainforest
to rubber samples. Type IV secretion system gene
virB4 only showed significant changes in oil palm
with a minor decrease, whereas the quorum sensing
marker genes showed no significant changes in abun-
dance compared to rainforest.

Connecting taxonomy and functions – who does what?
To unravel the full scope of effects introduced by rain-
forest conversion on soil microbial community structure
and functional profiles, it is necessary to identify which
part of the present community is involved in which

Fig. 6 Log2fold changes of selected marker genes of nitrogen and methane metabolism for each analysed land use system compared to
rainforest. Significant differences (p.adj. < 0.05) are marked with *. Negative and positive log2fold changes indicate decreased and increased
abundances in the corresponding converted land use systems compared to rainforest samples
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processes. In context of our previous analysis, we fo-
cussed on nitrogen metabolism (Fig. 8a), methane me-
tabolism (Fig. 8b), bacterial chemotaxis (Fig. 9a), flagellar
assembly (Fig. 9b), type IV secretion systems (Fig. 9c)
and type VI secretion systems (Fig. 9d). Members of the
Rhizobiales were prominent within nitrogen
metabolism-related sequences in all samples with an
average abundance of 12%. Burkholderiales were espe-
cially abundant in rainforest samples with 14.6% with a
gradual abundance decrease from jungle rubber (8.4%)
to rubber and oil palm samples (5.9%) (Fig. 8a). Both or-
ders are known to be involved in various processes re-
lated to nitrogen metabolism and were previously
identified as abundant groups in rainforest soils [40].
With unclassified Acidobacteria, and unclassified bac-
teria being high in abundance as well, observed patterns
broadly reflected the general community structure as de-
scribed before. However, redundant genes, which are in-
volved in several pathways, are also present within

broader functional categories. This likely explains the re-
semblance of the categories with the general community
composition, including taxa usually not associated with
typical nitrogen metabolism-related processes like Acido-
bacteria, which were still abundant in our analysed sam-
ples. Consequently, we identified taxa which are
connected to previously analysed functional marker
genes that showed significant changes in abundance due
to rainforest conversion (Additional file 13: Figure S11,
and Additional file 14: Figure S12). The taxonomic pro-
files for the denitrification-related genes nirS and nirK
were distinct. Rhizobiales were the dominant identified
phylogenetic group in nirK sequences of all samples with
decreasing abundance from rainforest to converted land
use systems. The nirS gene sequences were mostly asso-
ciated to unidentified bacterial taxa, with a vast increase
towards managed land use systems.
Similar patterns were observed for the methane

metabolism-related taxa (Fig. 8b). However, unclassified

Fig. 7 Log2fold changes of selected marker genes of motility related genes for each analysed land use system compared to rainforest. Significant
differences (p.adj. < 0.05) are marked with *. Negative and positive log2fold changes indicate decreased and increased abundances in the
corresponding converted land use systems compared to rainforest samples
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acidobacterial sequences were more abundant in methane
metabolism-related than in nitrogen metabolism-related
taxa and showed abundance increases from rainforest to
converted land use systems of 8.9 to 14.3%.
Taxa related to bacterial chemotaxis (Fig. 9a) and flagellar

assembly (Fig. 9b) showed similar patterns in which Rhizo-
biales and Burkholderiales were the most abundant taxa.
Again, Burkholderiales showed high abundances in rainfor-
est samples. Unclassified acidobacterial orders were among
the most abundant groups with abundance increases in
converted land use systems for flagellar assembly-related
and chemotaxis-related genes. Dominance of Rhizobiales
and Burkholderiales in rainforest samples was also detected
in type IV secretion system-related taxa (Fig. 9c). A slightly
different pattern was observed for type VI secretion
systems-related taxa (Fig. 9d), with Burkholderiales showing
highest mean abundances in all samples.

Discussion
Dominant Proteobacteria and Acidobacteria are mostly
affected by rainforest conversion
Observed decreases in taxonomic biodiversity accompany-
ing rainforest conversion to managed land use systems
were reported previously for various types of organisms
[10, 11, 41, 42]. Diversity of bacteria and archaea de-
creased in plantation soils compared to rainforest. Con-
trary to these results, previous studies based on 16S rRNA
gene analysis of the same sampling sites observed a diver-
sity increase for bacteria from rainforest to converted land
use systems [15, 16]. A higher amount of unclassified
reads in shotgun datasets compared to 16S rRNA gene
datasets could be a reason for the different results. Other
studies focussing on nutrient cycling in these systems

concluded that nutrient loss by leaching processes is ele-
vated in rubber and oil palm plantation soils and affects
bacterial diversity negatively [18, 43]. Fungal diversity in-
creased with land use intensity and showed similar pat-
terns as in a previous study [9]. The major difference
between our direct metagenome sequencing-based ap-
proach and the other studies on the same sampling sites is
that these were derived from 16S rRNA gene amplicon-
based analysis. Since our study is based on metagenomic
shotgun sequencing, we avoided possible primer bias and
additionally have a higher sequencing depth, which both
could lead to deviations between results derived from dif-
ferent approaches. Another reason for differences could
be the classification of reads and the chosen tool for taxo-
nomic binning. It has been reported that deviations in
taxonomic profiles originate from false classifications ra-
ther than from sequencing errors [44]. Large-scale classifi-
cations of metagenomic short-reads are still a
challenge though. To overcome possible shortcomings of
single tools [44] and provide a higher classification effi-
ciency [45], we combined the two classification tools Kra-
ken2 and Kaiju to obtain robust results. General trends
were confirmed by extracted 16S rRNA gene sequence
controls and were similar to previous amplicon-based 16S
rRNA gene studies [15, 16]. However, the fraction of un-
classified bacterial taxa was larger in the extracted 16S
rRNA gene-based control. This is the most notable differ-
ences to metagenomic shotgun data and demonstrates the
advantage of a higher sequencing depth and consideration
of all sequences instead of extracted marker gene se-
quences only.
The soil microbial community composition changed in

the converted land use systems compared to rainforest

Fig. 8 Relative abundances of the top five detected taxonomic orders within nitrogen (a) and methane metabolism (b) KEGG level 3 categories
in each land use system are displayed
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with similar trends as in previous studies targeting these
sampling sites [9, 15, 16]. Proteobacteria were negatively
and Acidobacteria positively affected by rainforest con-
version. The sharp decrease in abundance of Rhizobiales
and Burkholderiales in converted systems suggests that
they play a key role in rainforest soils, as suggested in
previous studies [15, 16]. Streptomycetales are known for
production of bioactive secondary metabolites and are
abundant in endophytic communities [46]. Considering
the reduction of plant diversity in the converted systems,
the decrease of Streptomycetales accompanying rainfor-
est conversion corresponds to the reduction of host di-
versity in the converted systems. The reduction of this
group indicates that the overall biodiversity changes are
reflected in abundance decreases of bacterial groups
known to be involved in interspecific relationships as

endophytes [47] or root nodule-forming symbionts [35],
including the previously mentioned Rhizobiales and
Burkholderiales.
Archaeal abundances did not seem to be affected by

rainforest conversion. Haloferacales and Halobateriales
were among the most abundant taxa and are known for
their involvement in assimilatory nitrate reduction [48,
49]. However, we did not detect a significant involve-
ment of these taxa in these processes, although we re-
corded significant changes of narG gene abundance.
Based on our used methods, we could not identify a cru-
cial effect of rainforest conversion on archaea. Although
we did not find hints for functional importance in these
systems, we cannot rule out the possibility of important
archaeal activity due to the limitations of the DNA-
based study design.

Fig. 9 Relative abundances of the five most abundant taxonomic orders within bacterial chemotaxis (a), flagellar assembly (b), type IV secretion
systems (c) and type VI secretion systems (d) KEGG level 3 categories in each land use system are displayed
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Our results showed that the fungal community com-
position in the studied land use systems was similar to
an ITS-based analysis [9]. Eurotiales and Hypocreales are
described as endophytes [50, 51], further supporting the
assumption that the reduction of plant diversity also re-
duces endophyte occurrence. In addition to fungi, we
analysed protists within the eukaryotes but the obtained
trophic groups did not show significant differences in
abundance in contrast to an 18S rRNA gene-based study
[10]. This might be due to the differences between meta-
genomic shotgun sequencing and marker gene analysis
[32]. In addition, protist sequences represented only a
small portion (0.09%) in the entire metagenome dataset.
Taking the number of unclassified sequences and the
underrepresentation of protist genomes in the databases
into account, the results for protists and other similar
rare taxa should be taken with caution.

Management-related soil characteristics shape soilborne
communities
Multivariate analyses showed a similar topology for all
analysed taxonomic groups, reflecting the proposed
management and land use intensity gradient from rain-
forest over jungle rubber to rubber and oil palm. The
correlation of abiotic factors LUI, pH, C:N ratio and Fe
to the entire community as well as to bacteria is not
surprising as the communities and correspondingly our
dataset were dominated by bacterial sequences. These
results are in accordance with other taxonomic marker
gene analysis-based studies targeting bacteria, archaea
[15, 16] and fungi [9] in the same study area.
Management-related applications (e.g. fertilizer, liming
and herbicides) are known to have an impact on C:N ra-
tio and soil pH. These alterations in turn affect microbial
communities [15, 52], which is also reflected by our re-
sults. Allen et al. [18] analysed the soil parameters in the
used sampling sites and described decreases in organic
matter stocks from rainforest to converted land use sys-
tems paralleled by a decreasing C:N ratio. Furthermore,
nutrient availability for microbes is improved by
fertilizer input in plantations, but is heavily dependent
on ongoing fertilization, as these converted land use sys-
tems are more vulnerable to nutrient losses due to
changes in soil texture and soil properties introduced by
plantation of rubber and oil palm monocultures [18].
Therefore, our results regarding impact of rainforest
conversion on community structure seem to be direct
effects of the management practices in the converted
land use systems. Consequently, the modification of
the soil environment is a reason for the observed
functional alterations (e.g. in nitrogen metabolism)
caused by land use change and applied management
practices.

Functional profiles of energy and motility-related
metabolisms are affected by rainforest conversion
In general, differential gene abundance analysis showed
less changes in jungle rubber than in monoculture sam-
ples compared to rainforest. The gradually increase of
changes reflects the land use gradient with stronger in-
tensity in fertilized oil palm soils as proposed in previous
studies [9, 15, 16].
Diversity of genes decreased with increasing land use

intensity. Since most detected reads were of bacterial
origin, it is not surprising that the functional diversity of
the entire community shows similar results as bacterial
diversity. For fungi, we detected a decrease in functional
gene diversity, but an increase of taxonomic diversity, in-
dicating an increase in less versatile species in monocul-
ture soils or the presence of more different taxa
equipped with similar gene sets.
We previously recorded that pH, carbon content, nitro-

gen content and C:N ratio played an important role for
shaping the soil microbial communities. Our functional
results support hypothesis (H2) that rainforest conversion
affects metabolic reactions specific for nutrient cycling ac-
tivity, including nitrogen metabolism and carbon fixation-
related processes. As previously suggested, the change in
nutrient availability affected soil microbial interaction
and/or competition [16, 27]. Furthermore, it was hypothe-
sized that different canopy structures in the analysed land
use systems lead to higher light availability and higher
ground temperatures in the converted systems, which in
turn affect photosynthetic processes [15] and heat man-
agement of cells [16]. Detected higher abundance of
photosynthesis related genes in oil palm further support
this hypothesis.
The analysis of single functional marker genes in the

metagenome dataset showed that denitrification genes
nirK and nirS increased in abundance following rainfor-
est conversion whereas nitrate reductase narG de-
creased. Allen et al. [18] described decreases in gross N
mineralization, NH4

+ immobilization and NH4
+ pools in

converted soils and generally higher N cycling rates in
rainforest soils [18]. It was previously reported that nirK
and nirS are positively correlated with increasing soil pH
[53], which is in line with measurements conducted in
our sampling sites [18] and multivariate analysis showing
a significant influence of pH on microbial communities.
Previous studies also described distinct distributions of
the two different denitrification genes nirK and nirS
among taxa, with nirK being associated to Rhizobiales
[54]. Accordingly, most detected nirK sequences in our
dataset originated from Rhizobiales. The higher gene
abundances of denitrification-related genes in oil palm
plantations correspond to previous observations in
which higher N2O emissions, a by-product of denitrifica-
tion, were detected in oil palm plantations [18].
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We also observed higher nitrogen fixation potential in
oil palm soils, which is surprising, considering previously
reported nitrogen losses in these soils [18], although
higher gene abundance is not necessarily accompanied
by higher gene expression rates. Decreases in abundance
of marker genes for flagellar assembly, chemotaxis, and
type VI and IV secretion systems indicate that a reduc-
tion of motility and interaction in soil microbial commu-
nities accompanies rainforest conversion to intensively
managed land use systems. It is challenging to identify
the relationship of these aspects within a soil microbial
community, since specific functions/processes can be as-
sociated with specific taxonomic groups. Our results in-
dicate a shift from a dynamic community with higher
motility, interaction and communication potential in
rainforest soils to a community with less interaction po-
tential in the managed plantations. This supports previ-
ous hypotheses regarding possible impacts of rainforest
conversion towards community communication traits
[16, 28]. The higher availability of nutrients in the fertil-
ized plantation soils might lead to conditions in which
competition for nutrients and the resulting high level of
interspecific interaction and communication is not
favoured or necessary and therefore reduced. Further-
more, specific taxonomic groups, involved in nutrient
cycling, possibly show different abilities in terms of mo-
tility in the nutrient-supplemented planation soil com-
pared to rainforest soil. This supports the theory of a
less mobile community in planation soils but rather due
to changes in community composition than to direct ef-
fects of rainforest conversion on functionality.

Proteobacterial Burkholderiales are major players with
respect to motility and nitrogen metabolism
We previously hypothesized that communities in rain-
forest soils are more dynamic and motile because of
higher abundance of genes encoding flagellar assembly
and chemotaxis. It is not surprising that a considerable
number of reads belonging to these categories are
assigned to abundant members of the community and
we detected highest abundance on average for Rhizo-
biales in all samples. However, it is quite striking that
the majority of flagellar assembly-related sequences in
rainforest samples were assigned to members of Bur-
kholderiales alone (Fig. 9). The same trend occurred for
chemotaxis-related sequences. The degree of involve-
ment in flagellar assembly leads to the suggestion that
Rhizobiales and Burkholderiales are in general more cap-
able of being motile than other groups in these soils.
Additionally, significantly abundant genes connected to
type IV and VI secretion systems were mostly derived
from Burkholderiales. It was shown that members of the
Burkholderiales are involved in co-migration with fungi
in soil involving type IV pili [55]. The type VI secretion

systems are involved in prokaryotic eukaryotic interac-
tions [55–57]. Therefore, Burkholderiales and Rhizo-
biales possibly play an important functional role in soil
microbial communities in rainforest due to their involve-
ment in nutrient cycling. Their decrease in abundance in
the converted land use systems was accompanied by
various changes of the functional potential of the entire
microbial soil community, which is affected by
management-induced altered soil characteristics.

Conclusion
We could show that rainforest conversion drastically af-
fects structure and functional potential of soil microbial
communities, which were dominated by bacteria. Taxo-
nomic as well as functional diversity decreased for bac-
teria and archaea, whereas fungal biodiversity increased
and functional diversity decreased, partly confirming hy-
pothesis H1. Furthermore, functional profiles of the soil
communities shifted along the land use gradient. De-
nitrification and nitrogen fixation potential increased
with higher land use intensity, which is connected to
abundant community members of Burkholderiales and
Rhizobiales. Furthermore, we could show that pH and C:
N ratio are drivers for shaping microbial community
structure, which connects previously shown positive cor-
relations of pH with land use intensity and denitrifica-
tion potential. This is further supported by previous
studies reporting an increase of N2O effluxes with rain-
forest conversion to oil palm plantations [18].
We detected a decrease in motility- and interaction-

related functions from rainforest to converted land use
systems indicating not only a shift in nutrient cycling ac-
tivity but also in community dynamics confirming our
second hypothesis (H2). Fertilizer application and higher
short-term availability of nutrients in intensively managed
plantations lead to an environment in which interspecific
interactions apparently are less favoured compared to
rainforest soil. Microbial communities underwent a shift
in composition in which Rhizobiales, Burkholderiales and
other members of the Proteobacteria decreased from rain-
forest to plantations, whereas Acidobacteria and Actino-
bacteria increased. Additionally, the largest fraction of
sequences within analysed motility processes in rainforest
belonged to members of the Burkholderiales and Rhizo-
biales, connecting decreases in abundance with a decrease
in functions related to these processes (H3).
We could show connections between agricultural man-

agement and microbial community structure and func-
tional potential in soil. Furthermore, this study provides a
basis for further analysis on functional responses of soil-
borne microbial communities to rainforest conversion,
which need ongoing attention due to the global impacts of
large-scale land use changes in the tropics.
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Methods
Study design and sampling site description
Sampling was conducted in two landscapes around the
Harapan Rainforest Concession and the Bukit Duabelas
National Park in midwest Sumatra (Indonesia) within
the framework of the “Collaborative Research Centre
990: Ecological and Socioeconomic Functions of Trop-
ical Lowland Rainforest Transformation Systems” (EF-
ForTS). The two landscapes differ in soil texture, with
clay acrisol soils in Bukit and loam acrisol soils in the
Harapan landscape. Both landscapes harbour secondary
lowland rainforest as reference site and three different
converted land use systems: jungle rubber comprising
planted rubber trees in secondary rainforest, rubber
plantations (Hevea brasiliensis monocultures) and oil
palm plantations (Elaeis guineensis monocultures). Rain-
forest was used as reference with low anthropogenic in-
fluence, while the three converted land use systems
represent different land use intensities resulting in a land
use intensity gradient (rainforest < jungle rubber < rub-
ber < oil palm). Oil palm monoculture plantations were
fertilized with 300 kg to 550 kg NPK fertilizer ha− 1 year−
1 [18]. Additionally, liming was performed in rubber and
oil palm plantations with an average of 200 kg dolomite
ha− 1 year− 1 and chemical and manual weeding was done
by using Gramoxone and Roundup with an average of 2
to 5 L herbicide ha− 1 year− 1. Further information about
the sampling sites and management of these sites is de-
scribed by Allen et al. [18] and Brinkmann et al. [9]. Soil
sampling, preparation (root removal), transport and stor-
age was carried out as described in detail by Schneider
et al. [15] and Berkelmann et al. [16]. Each of the four
analysed land use systems (rainforest, jungle rubber, rub-
ber plantation and oil palm plantation) consisted of four
core plots per landscape, including three subplots (five
by five meters) per core plot, resulting in 96 subplot
samples and 32 core plots in total (Fig. 1). Abiotic data
of the sampling sites were obtained from Allen et al.
[18], Brinkmann et al. [9] (Additional file 15: Table S3).

Sample preparation, extraction of bulk soil DNA and
sequencing
For direct metagenome sequencing and prior to DNA
extraction, soil samples were pooled in equal amounts at
core plot level, resulting in 32 soil samples in total. DNA
extraction of soil samples was performed with the
MoBio Powersoil DNA extraction kit (MO BIO Labora-
tories Inc. Carlsbad, USA) as recommended by the
manufacturer. The shotgun metagenomic sequencing of
all DNA samples were performed on an Illumina HiSeq
4000 system with Nextera DNA Library Prep kits and
paired-end reads of 2 × 150 bp as recommended by the
manufacturer (Illumina, San Diego, USA).

Taxonomic and functional assignment of paired-end
reads
Raw sequences were quality-filtered with fastp (version
0.19.4) with a phredscore threshold of 20, overlapping
base pair correction, sliding windows of 4 bp and a mini-
mum length of 50 bp [58]. It has been shown that the
combination of different sequence classifiers leads to
more robust taxonomic assignments [44]. Therefore, we
used Kraken2 and Kaiju in combination. Taxonomy as-
signments of short reads were performed by Kraken2
(v2.0.8-beta) [57] against the BLAST nt database (as of
2019-06-08). Afterwards unclassified reads were assigned
with Kaiju (version 1.7.1) [59] against the BLAST nr
database (as of 2019-06-08). Outputs were merged and
taxonomy strings added by “addTaxonNames” by Kaiju
(Additional file 16: Table S4). Protist groups were ex-
tracted from the normalized taxonomy table with “amp_
subset_taxa” from the ampvis2 R package [60] according
to taxonomy strings described by Schulz et al. [10].
Visualization of trophic groups was performed with
ggplot2 [61]. A rRNA gene sequence-based control ana-
lysis was performed by extracting rRNA gene sequences
from quality-filtered and merged reads employing sort-
merna 2.1 with all by default available databases and set-
tings [62]. Extracted rRNA gene sequences were
classified as described above.
Assignment of read functions was done with previ-

ously quality-filtered reads (Additional file 17: Table S5).
Functional classification was carried out by employing
Kaijux [59] with default settings against the KEGG data-
base [63] (as of 2018-10-01).

Assigning the taxonomic background of identified
functional genes
To assign the taxonomic affiliation of each sequence, taxo-
nomic and functional assignments were further merged by
combining the taxonomic classification with the obtained
KEGG identifier for each sequence of the before-
mentioned taxonomic read assignment and functional ana-
lysis, resulting in a per read taxonomy and function. This
table was then filtered according to the targeted pathway,
(i.e. nitrogen metabolism). All extracted hits were then
normalized and displayed as relative abundances for the re-
spective land use system with ggplot2.

Analysis of selected functional metabolisms and
respective marker genes
In order to analyse microbial functionality regarding rain-
forest conversion, we selected metabolisms and respective
genes related to agricultural management induced
changes [64]. Groups and genes of the KEGG database
were used (KEGG level 3 for functional groups). We ana-
lysed functional pathways harbouring genes involved in
nutrient cycling, including nitrogen metabolism, methane
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metabolism, carbon fixation and sulphur metabolism. For
more detailed analyses, we picked marker genes and di-
vided them into two categories regarding energy metabo-
lism or motility. Genes selected for nitrogen metabolism
were amoA (ammonia monooxygenase A; K10944) [65],
nifH (nitrogenase protein; K02588) [40], nosZ (nitrous-
oxide reductase; KK00376) [66], nirK and nirS (both
encoding a nitrite reductase; K00368 and K15864) [40]
and narG (nitrate reductase alpha subunit; K00370) [66].
For methane related processes we used pmoA/amoA
(methane/ammonia monooxygenase subunit A; K10944)
[64], mxaF (methanol dehydrogenase; K14028) [67], mmoY
(methane monooxygenase component A beta chain;
K16158) and mmoX (methane monooxygenase component
A alpha chain; K16157) [68] and mcrA (5-methylcytosine-
specific restriction enzyme A; K07451) [69].
To investigate effects on motility and interactions we

analysed functional groups comprising flagellar assembly
[70, 71] and chemotaxis [72], quorum sensing [73], and
type IV and VI secretion systems [74, 75]. For flagellar as-
sembly, we selected genes encoding flagellar motor switch
proteins fliN (K02417), fliM (K02416) and fliG (K02410),
the flagellar hook length protein fliK (K02414) [70] and a
flagellar assembly protein fliH (K02411) [71]. Chemotaxis
was covered by the sensor kinase gene cheA (K03407)
[76], CheA response regulator cheY (KK03413) and scaf-
folding protein cheW (K03408) [77], CheY-phosphatase
cheX (K03409) [78], and cheR (K00575), encoding a pro-
tein methyltransferase [79]. For quorum sensing we se-
lected genes encoding cytoplasmic autoinducer receptors
luxR (K10913), sensor kinases luxQ (K10909), luxN
(K15850) and luxS (K07173) [80, 81]. Type IV secretion
system related genes were represented by virD4 (K03205)
[82] and virB4 (K03199) [83] and type VI secretion system
related genes by vgrG (K11904) and hcp (K11903 [75].

Statistical analyses
Diversity analysis, plotting of barplots and heatmaps were
done with R [84] and RStudio [85] by using the packages
ampvis2 [60], vegan [86], dplyr [61], stringr and ggplot2
[61]. Shannon diversity index calculation for taxonomic
diversity was performed with previously rarefied data
using ampvis2 with amp_alphadiv. Functional diversity
was calculated by summing all identical genes of the entire
community or by summing all identical genes in the
respective domain before calculating the Shannon index
with ampvis2. Statistical analysis of calculated Shannon di-
versity results was performed with the vegan package (ver-
sion 2.5–5). First, the Shapiro test was used to determine
normal distribution of the data with base R and shapiro.t-
est. All obtained values were non-normally distributed
and therefore further analysed with base R by using the
Kruskal-Wallis test (Kruskal.test) with subsequent pairwise
Wilcoxon test (pairwise.wilcox.test).

Differential abundance analysis and count
normalization of taxonomic or functional data were per-
formed by using the DESeq2 package [87]. Default set-
tings with the Benjamini and Hochberg correction were
used after removing singletons. Normalized counts were
extracted as described in the package manual and used
for data visualizations. Differential abundance analysis
was done for the entire dataset by the main DESeq func-
tion. Differential abundance results were obtained by the
“contrast” function, in which log2fold changes of rainfor-
est compared to each converted land use were extracted
in a pairwise fashion (results_dataframe <− results(dds,
contrast = c(“condition”, “reference”, “treatment”)),
resulting in positive log2fold changes when gene abun-
dances increased from reference to the respective land
use and negative values when abundances decreased.
The threshold for significant differences was set to p <
0.05. Generated tables per used condition were merged
by using the dplyr package and visualized by ggplot2.
Analysis was performed in a same manner for taxonomic
and functional classifications. Differences in abundances
between rainforest and each land use were tested at
order level. Functional profiles were tested at metabol-
ism level (level 3 of the KEGG hierarchy) and gene level.
Obtained taxonomy profiles of extracted rRNA sequences

were analysed for similarity to shotgun data by calculating
Bray Curtis dissimilarity matrices with the “adonis” function
of the vegan package in R and subsequent tests by using
pairwise PERMANOVA tests with “pairwise.perm.manova”
of the RVAideMemoire package [88] in R.
Ordination analysis was performed with the ampvis2

package [60]. Raw data was rarefied for each tested taxo-
nomic group or the entire community by ampvis2
(amp_subset_samples) before a Bray Curtis dissimilarity
matrix was calculated and visualized by Nonmetric
multidimensional scaling (NMDS). Data for soil charac-
teristics of the sampling sites were obtained from Allen
et al. [18] (Additional file 11: Table S3). In addition to
abiotic measurements, we also included the Land Use
Index (LUI) as described by Brinkmann et al. [9]
(Additional file 15: Table S3). An environmental fit was
calculated with the “amp_ordinate” function in ampvis2
with an envfit significance level of p < 0.05.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40793-020-0353-3.

Additional file 1: Table S1. Sequence counts of all samples before and
after quality-filtering with fastp.

Additional file 2: Figure S1. Relative abundances of each domain for
each analysed land use system in the respective landscape.

Additional file 3: Figure S2. Distribution of taxonomic differences
compared to rainforest at order level. Differences are displayed as
log2fold (treatment vs control) changes with p.adj < 0.05 for detected
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orders in all land use systems. Bukit jungle rubber is not depicted as no
significant changes of taxonomic orders were detected.

Additional file 4: Figure S3. Composition of different trophic protist
groups. Trophic groups were assigned according to Schulz et al. [10].
Compositions are displayed for each land use in the respective landscape
as relative abundances.

Additional file 5: Figure S4. Community composition at order level
based on extracted rRNA sequences (A) and all obtained reads by
shotgun sequencing (E). orders with relative abundances below 1%
were clustered as “rare taxa”. The five most abundant orders based
on average relative abundance of extracted 16S rRNA gene
sequences in all treatments are shown for bacteria (B), archaea (C)
and fungi (D) as well as for all obtained reads by shotgun
sequencing (F-H).

Additional file 6: Table S2. Environmental fit results for the entire
community, bacteria, archaea and fungi.

Additional file 7: Figure S5. Distribution of gene changes in each
converted land use system compared to rainforest. Detected changes are
displayed as log2fold changes (treatment vs control; p.adj < 0.05).

Additional file 8: Figure S6. Principal Component Analysis for detected
genes of all analysed land use systems and rainforest samples in the
respective landscape. PCA analysis is based on transformed counts by
using the regularized log function of DESeq2.

Additional file 9: Figure S7. Functional profile of selected metabolisms
based on KEGG categories (level 3) displayed as log2fold changes in
separated landscapes. Negative log2fold changes indicate higher
abundances in rainforest samples, whereas positive log2fold changes
indicate higher abundance in the corresponding converted land use
systems. Values with p.adj < 0.05 are marked with *.

Additional file 10: Figure S8. Log2fold changes of selected marker
genes of nitrogen and methane metabolism for each analysed land use
system compared to rainforest for each separate landscape. Significant
differences (p.adj. < 0.05) are marked with *. Negative log2fold changes
indicate higher abundances in rainforest samples, whereas positive
log2fold changes indicate higher abundance in the corresponding
converted land use systems.

Additional file 11: Figure S9. Log2fold changes of selected marker genes
motility related marker genes for each analysed land use system compared to
rainforest in each landscape. Significant differences (p.adj. < 0.05) are marked
with *. Negative log2fold changes indicate higher abundances in rainforest
samples, whereas positive log2fold changes indicate higher abundance in the
corresponding converted land use systems.

Additional file 12: Figure S10. Log2fold changes of nod genes in each
land use compared to rainforest. Significant differences (p.adj < 0.05) are
marked with *. Negative log2fold changes indicate higher abundances in
rainforest samples, whereas positive log2fold changes indicate higher
abundance in the corresponding converted land use systems.

Additional file 13: Figure S11. Relative abundances of the five most
abundant detected taxonomic orders within all detected sequences for
nitrogen related marker genes that showed significant differences
between rainforest and converted land use systems. Displayed heatmaps
show the five most abundant detected taxa for nitrite reductase gene
nirK, nitrite reductase gene nirS and nitrate reductase alpha subunit gene narG.

Additional file 14: Figure S12. Relative abundances of the five most
abundant detected taxonomic orders within all detected sequences for
motility related marker genes that showed significant differences
between rainforest and converted land use systems.

Additional file 15: Table S3. Used abiotic measurements for all samples.

Additional file 16: Table S4. Taxonomic counts of all analysed
sequences. The first column shows ID and the last column the detected
taxonomy.

Additional file 17: Table S5. Count matrix containing functional
assignments for all samples. The first column shows the ID the last
columns the function according to the KEGG database including the KO
number and the full pathway description.
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Additional file 1: Table S1. Sequence counts of all samples before and after quality-filtering with fastp. 

Sample Read count 
(before QF) 

GC content 
(before QF) 

Read count 
(after QF) 

GC content 
(after QF) 

filtered 
[%] 

remaining 
[%] 

BF1 28225958 0,598111 26716900 0,598521 5,35 94,65 
BF2 33997374 0,612474 32839798 0,612789 3,4 96,6 
BF3 39824180 0,627785 38668190 0,626831 2,9 97,1 
BF4 46215652 0,614638 44591542 0,614849 3,51 96,49 
BJ1 28294194 0,603207 27295762 0,603591 3,53 96,47 
BJ2 101699764 0,612533 98078482 0,612897 3,56 96,44 
BJ3 34460134 0,608617 33426728 0,608866 3 97 
BJ4 19425072 0,597543 18251772 0,597927 6,04 93,96 
BO1 17259182 0,608036 16529098 0,60865 4,23 95,77 
BO2 20898006 0,60109 20014412 0,601678 4,23 95,77 
BO3 18954242 0,609552 18253086 0,609942 3,7 96,3 
BO4 50890080 0,602904 49310800 0,603196 3,1 96,9 
BR1 34871830 0,599058 33666640 0,599408 3,46 96,54 
BR2 35908390 0,602978 35000026 0,603252 2,53 97,47 
BR3 35317826 0,603371 34559548 0,603582 2,15 97,85 
BR4 36124720 0,609015 35508276 0,609157 1,71 98,29 
HF1 39877524 0,61163 38538276 0,611955 3,36 96,64 
HF2 41674444 0,606638 40015006 0,606975 3,98 96,02 
HF3 37939064 0,611905 36712018 0,612145 3,23 96,77 
HF4 33304444 0,605236 31608576 0,605812 5,09 94,91 
HJ1 47999168 0,600915 46559156 0,60119 3 97 
HJ2 27810028 0,600699 26664508 0,600989 4,12 95,88 
HJ3 21144922 0,589604 20035238 0,59006 5,25 94,75 
HJ4 27225650 0,594439 26074146 0,594912 4,23 95,77 
HO1 38716600 0,604346 37370890 0,60462 3,48 96,52 
HO2 31149554 0,598075 29735514 0,598382 4,54 95,46 
HO3 33041810 0,613664 31529012 0,613984 4,58 95,42 
HO4 39562682 0,608788 38202384 0,608996 3,44 96,56 
HR1 36957590 0,599661 35492882 0,600016 3,96 96,04 
HR2 42298888 0,612423 40821394 0,612702 3,49 96,51 
HR3 40017332 0,599496 38481314 0,599745 3,84 96,16 
HR4 40042772 0,600104 38275410 0,600619 4,41 95,59 
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Additional file 2: Figure S1. Relative abundances of each domain for each 
analysed land use system in the respective landscape. 

Additional file 3: Figure S2. Distribution of taxonomic differences compared to rainforest at order level. 
Differences are displayed as log2fold (treatment vs control) changes with p.adj < 0.05 for detected orders in all 
land use systems. Bukit jungle rubber is not depicted as no significant changes of taxonomic orders were detected. 
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Additional file 4: Figure S3. Composition of different trophic protist groups. Trophic groups were assigned 
according to Schulz et al. Compositions are displayed for each land use in the respective landscape as relative 
abundances. 
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Additional file 5: Figure S4. Community composition at order level based on extracted rRNA sequences (A) and all obtained reads by shotgun sequencing (E). orders 
relative abundances below 1% were clustered as “rare taxa”. The five most abundant orders based on average relative abundance of extracted 16S rRNA gene sequence
all treatments are shown for bacteria (B), archaea (C) and fungi (D) as well as for all obtained reads by shotgun sequencing (F-H). 
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Additional file 7: Figure S5. Distribution of gene changes in each converted land use system compared to 
rainforest. Detected changes are displayed as log2fold changes (treatment vs control; p.adj < 0.05). 

Additional file 8: Figure S6. Principal Component Analysis for detected genes of all analysed land use systems 
and rainforest samples in the respective landscape. PCA analysis is based on transformed counts by using the 
regularized log function of DESeq2. 
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Additional file 9: Figure S7. Functional profile of selected metabolisms based on KEGG categories (level 3) 
displayed as log2fold changes in separated landscapes. Negative log2fold changes indicate higher abundances in 
rainforest samples, whereas positive log2fold changes indicate higher abundance in the corresponding converted 
land use systems. Values with p.adj < 0.05 are marked with *. 

Additional file 10: Figure S8. Log2fold changes of selected marker genes of nitrogen and methane metabolism 
for each analysed land use system compared to rainforest for each separate landscape. Significant differences 
(p.adj. < 0.05) are marked with *. Negative log2fold changes indicate higher abundances in rainforest samples, 
whereas positive log2fold changes indicate higher abundance in the corresponding converted land use systems. 
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Additional file 11: Figure S9. Log2fold changes of selected marker genes motility related marker genes for each 
analysed land use system compared to rainforest in each landscape. Significant differences (p.adj. < 0.05) are 
marked with *. Negative log2fold changes indicate higher abundances in rainforest samples, whereas positive 
log2fold changes indicate higher abundance in the corresponding converted land use systems. 

 

 

Additional file 12: Figure S10. Log2fold changes of nod genes in each land use compared to rainforest. Significant 
differences (p.adj < 0.05) are marked with *. Negative log2fold changes indicate higher abundances in rainforest 
samples, whereas positive log2fold changes indicate higher abundance in the corresponding converted land use 
systems. 
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Additional file 13: Figure S11. Relative abundances of the five most abundant detected taxonomic orders within 
all detected sequences for nitrogen related marker genes that showed significant differences between rainforest and 
converted land use systems. Displayed heatmaps show the five most abundant detected taxa for nitrite reductase 
gene nirK, nitrite reductase gene nirS and nitrate reductase alpha subunit gene narG. 
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Additional file 14: Figure S12. Relative abundances of the five most abundant detected taxonomic orders within 
all detected sequences for motility related marker genes that showed significant differences between rainforest and 
converted land use systems. 
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Abstract 

We provide soil bacterial 16S rRNA gene amplicon and geochemical data derived from an oil 

palm plantation management experiment. The experimental design covered two different 

intensities of fertilizer application and weeding practices. We sampled the topsoil of 80 plots 

in total and extracted DNA and RNA. The V3-V4 regions of the 16S rRNA genes and 

transcripts were amplified and sequenced with an Illumina MiSeq system. Sequences were 

quality-filtered and taxonomy was assigned using SILVA SSU NR 138 database as reference. 

One year after establishing the experiment, statistically significant differences of bacterial 

diversity or community composition between different treatments at entire (DNA-derived) and 

active (RNA-derived) community level were not detected. The most dominant taxa belonged 

to Acidobacteriota and Actinobacteriota and were more abundant at active than at entire 

community level. Similar results were obtained for the abundant genera Candidatus Solibacter 

and Haliangium. Furthermore, clustering corresponding to the different sampling site locations 

was recorded. This dataset is of interest for related studies on the effect of altered management 

practices on soilborne communities. 

Background and Summary 

Palm oil is used in a variety of products, from cooking oil to biofuel with increasing global 

demand 1. Thus, palm oil production has been scaled up dramatically in the last decades, leading 

to massive deforestation2,3. The biggest producer of palm oil is Indonesia, which also shows the 

highest rates of deforestation4. Due to the accompanying diversity loss, rainforest conversion 

and large-scale palm oil production is heavily debated and subject to research in various 

disciplines5–11. Additionally, the effects of fertilizer and herbicide applications on diversity and 

nutrient cycling in soil are considered as important factors for oil palm cultivation12–15. As 

bacteria mediate almost all nutrient cycling pathways in soils, several studies focussed on the 

impact of rainforest conversion and oil palm cultivation on soilborne bacterial communities 
6,16–18. These studies showed that certain groups, which are connected to nutrient cycling 

pathways, are affected by rainforest conversion to managed land use systems. These comprised 

the proteobacterial groups Rhizobiales and Burkholderiales as well as taxa benefitting from 

rainforest conversion such as Acidobacteriales, subgroup 2 of Acidobacteriota and 

Streptomycetales5,6. These results emphasized the effects of rainforest conversion to managed 

oil palm plantations, which are subjected to fertilizer, herbicide and/or mechanical weeding 

applications. 
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In this study, based on 16S rRNA gene and transcript sequencing and analysis, we provide data 

regarding the effects of reduced fertilizer application and mechanical weeding practices on soil 

bacterial communities. The analysis was performed in a state-owned oil palm plantation in 

Sumatra, Indonesia. Four different treatments, consisting of combinations of conventional and 

reduced fertilizer application as well as mechanical or herbicide-based weeding practices were 

analyzed (Table 1).  

Table 1: Applied management practices of the four treatment types, including the provided nutrient amounts 

per hectare and year. 

The experimental sites were established in November 2016 with four replications per treatment 

in short distance to each other (Figure 1). We extracted DNA and RNA from topsoil in all plots, 

amplified the V3-V4 region of the 16S rRNA genes and transcripts and sequenced the resulting 

amplicons. Additionally, soil attributes were measured for all soil samples to identify potential 

correlations with the corresponding soil bacterial community19.  

We obtained 6,817,019 amplicon sequences with 5,183,993 remaining sequences after quality-

filtering from DNA samples and 6,412,838 raw sequences with 3,601,637 remaining 

sequences after quality-filtering from RNA samples20. 

We analyzed community composition, diversity and correlations to abiotic soil parameters. 

Most abundant phyla in the entire dataset were Acidobacteriota (formerly known as 

Acidobacteria), Proteobacteria and Actinobacteriota (formerly Actinobacteria) (Figures 2a 

and 2b). At order level, Acidobacteriota (subgroup 2), Acidobacteriales and Ktedonobacterales 

were the most abundant groups with no significant differences in relative abundance between 

the different treatments. At genus level, the most abundant taxa belonged to Acidobaceriota 

(Candidatus Solibacter and Bryobacter), Actinobaceriota (Acidothermus) and Myxococcota 

(Haliangium) (Figure 2b). Again, we did not detect statistically significant changes between 

the treatments, but notable differences between the entire (DNA-based) and potentially active 

Treatment ID Treatment Fertilizer used Weeding (interrow) Liming

ch Conventional fertilization + 
herbicide 

260 kg N ha−1 yr−1, 
50 kg P ha−1 yr−1, 
220 kg K ha−1 yr−1

750 cm3 glyphosate ha−1 yr−1 426 kg dolomite ha−1 yr−1, 
142 kg micromag ha−1 yr−1

cw Conventional fertilization + 
mechanical weeding

260 kg N ha−1 yr−1, 
50 kg P ha−1 yr−1, 
220 kg K ha−1 yr−1

mechanical 426 kg dolomite ha−1 yr−1, 
142 kg micromag ha−1 yr−1

rh Reduced fertilization + 
herbicide 

136 kg N ha−1 yr−1, 
17 kg P ha−1 yr−1, 
187 kg K ha−1 yr−1

750 cm3 glyphosate ha−1 yr−1 426 kg dolomite ha−1 yr−1, 
142 kg micromag ha−1 yr−1

rw Reduced fertilization + 
mechanical weeding

136 kg N ha−1 yr−1, 
17 kg P ha−1 yr−1, 
187 kg K ha−1 yr−1

mechanical 426 kg dolomite ha−1 yr−1, 
142 kg micromag ha−1 yr−1
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(RNA-based) community for some genera. Especially the abundant genera Candidatus 

Solibacter and Haliangium showed higher abundances in the active communities with relative 

abundance increases from 2.3 to 7.4 % (Candidatus Solibacter) and 0.8 to 4.8 % (Haliangium). 

In contrast, Candidatus Udaeobacter and HSB OF53-F07 of the Ktedonobacterales were 

among the ten most abundant genera of the entire community (approximately 2 and 1.7 %, 

respectively) but represented only approximately 0.2 % at active community level in all 

samples. In general, the detected bacterial community composition was similar to previously 

described communities in oil palm soils5,6,21,22, which are mostly managed in a similar fashion 

with respect to conventional fertilizer and herbicide treatment5,6,22.  

Figure 1. Sampling sites and experimental design of all sampling sites in Jambi, Indonesia. The 
location of the oil palm plantation in the province of Jambi is shown in respect to Jambi City (a). 
Squares show each plot with the respective treatment indicated by colour, with four replicates per 
treatment (b). An example of the experimental design is shown for each plot (c), with squares a-e 
indicating subplots and green circles showing planted oil palm trees. 

We also analyzed the diversity at potential active and entire community level by using the 

Shannon index. Values ranged from 7.0 to 8.2 with no significant changes between the different 

treatments (Figure 3a). Ordination analysis did not show distinct clustering according to 

treatments but clustering due to geographical location was observed, emphasizing the 

importance of location over treatment. (Figure 3b). Furthermore, significant correlations 
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between the bacterial community and any measured abiotic factor were not recorded (all p > 

0.05).  

Figure 3. Detected diversity and multivariate analysis of all analyzed plots. Diversity is displayed by the Shannon 
index (a) for all sequences, DNA- and RNA-derived sequences. Principal Component Analysis (PCA) is shown for 
all sequences, DNA- and RNA-derived sequences (b). The samples were clustered at plot level, with frames and colors 
showing the four different plot locations and shapes for the different treatments. 

Figure 2. Community composition in all treatments at different taxonomic levels. The average community of the 
entire (DNA-based) and potential active (RNA-based) community at order level is shown as heat-tree (a) including 
all higher taxonomic levels for all used sequences. A separate visualization of the fifteen most abundant genera (b) 
is shown as relative abundances at genus level for the entire and the active community. 
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Methods 

Site description and soil sampling 

The experiment was established as part of the EFForTS project (Ecological and socioeconomic 

Functions of tropical lowland rainForest Transformation Systems) in the Jambi province, 

located in Sumatra, Indonesia8. The experimental sites are located in the state-owned oil palm 

plantation PTPNVI, which was planted in 2002 (Figure 1). Four different locations (referred to 

as OM1-4) harbor four treatments, which were established in November 2016. In each of these 

16 plots (50 x 50 m), five subplots were randomly established, resulting in 80 samples total.  

Fertilizer treatment was conducted in two intensities: the conventional treatment usually used 

in the entire plantation with 260 kg nitrogen, 50 kg phosphorus and 220 kg potassium ha−1 yr−1 

and reduced fertilization with 136 kg nitrogen, 17 kg phosphorous and 187 kg potassium ha−1 

yr−1. These amounts were split in half and then applied in two sessions within a year. 

Additionally, liming was conducted in all plots with equal amounts (426 kg dolomite and 142 

kg micromag (micronutrients) ha−1 yr−1). The herbicide treatment used 1,500 cm3 glyphosate 

ha−1 yr−1 sprayed within the palm circle divided into four applications per year and 750 cm3 

glyphosate ha−1 yr−1 in inter-rows divided into two applications per year. The last application 

before sampling was done in April 2017. Mechanical weeding was done by cutting vegetation 

four times per year within the palm circle and two times per year in inter-rows with a brush 

cutter. The combination of these applications resulted in four different treatments: conventional 

fertilization with herbicide spraying (ch), conventional fertilization with mechanical weeding 

(cw), reduced fertilization with herbicide spraying (rh) and reduced fertilization with 

mechanical weeding (rw) (Table 1). 

Topsoil was sampled in May 2017 from the upper seven in each subplot with a diameter of five 

cm. A soil corer was used to take three cores in each subplot with a distance of 1 m to each

other and at least 1 m distance to trees. The three soil samples per subplot were homogenized

and coarse roots and stones were removed. To prevent nucleic acids, especially RNA, from

degradation RNAprotect Bacteria Reagent (Qiagen, Hilden, Germany) was applied in a ratio of

1:1. For measurements of soil parameters, we collected an additional sample, which was not

supplemented with RNAprotect solution. All samples were transported in cooling boxes and

stored at -80°C until further use.
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Nucleic acid extraction 

Frozen samples were thawed on ice. RNAprotect was removed from all samples by centrifuging 

for 20 min at 804.96 g and 4°C and discarding the resulting supernatant. DNA and RNA were 

co-extracted from 1 g of soil by using the Qiagen RNeasy PowerSoil Total RNA kit and the 

RNeasy PowerSoil DNA Elution kit as recommended by the manufacturer (Qiagen), except 

that RNA was eluted with 50 µl elution buffer instead of 100 µl. DNA contamination was 

removed from RNA preparations by using the TurboDNAfree kit (Applied Biosystems, 

Darmstadt, Germany). For this purpose, 0.1 volume DNAse buffer and 1 µl DNAse were added 

and incubated for 30 min at 37°C. Subsequently, a second digestion cycle was performed with 

0.5 µl DNAse at 37°C for 15 min. RNA was then purified with the RNeasy MiniElute Cleanup 

kit (Qiagen). In order to verify complete DNA removal, a control amplification of the 16S 

rRNA gene was performed as described below for 16S rRNA gene amplification. Purified RNA 

was then reverse-transcribed into cDNA with the Superscript IV reverse transcriptase and a 

specific primer (5′-CCGTCAATTCMTTTGAGT-′3) as recommended by the manufacturer 

(Thermo Fisher Scientific, Schwerte, Germany). After cDNA synthesis, we removed residual 

RNA by adding 1 µl RNase H (New England Biolabs, Frankfurt am Main, Germany) to each 

reaction and incubation for 20 min at 37°C. Obtained DNA and cDNA were stored at -20°C 

until further use. 

16S rRNA gene amplification and sequencing 

For amplification of 16S rRNA sequences, we used 16S rRNA gene primers targeting the V3-

V4 region (forward primer: 5′-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′, 

reverse primer: 5′-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC

-3′) as described by Klindworth23 and added adapters for MiSeq sequencing (underlined). PCR

reactions were performed in a total volume 50 µl containing 10 µl of 5-fold Phusion GC buffer,

0.2 µl 50 mM MgCl2 solution, 2.5 µl DMSO, 200 µM of each of the four deoxynucleoside

triphosphates and 1 U of Phusion High-Fidelity DNA Polymerase (Thermo Fisher Scientific).

We used 20 to 30 ng of DNA and 1 µl cDNA per reaction. The PCR reaction was started by an

initial denaturation at 98°C for 1 min, followed by 25 cycles of denaturation at 98°C for 45 s,

annealing at 60°C for 45 s and elongation at 72°C for 30 s. The final elongation was at 72°C

for 5 minutes. Amplicons were then purified by using MagSi-NGS PREP Plus magnetic beads

following the procedure recommended by the manufacturer (Steinbrenner Laborsysteme
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GmbH, Wiesenbach, Germany) with the Janus Automated Workstation from Perkin Elmer 

(Perkin Elmer, Waltham Massachusetts, USA). Illumina MiSeq sequencing adapters were 

attached to the purified amplicons with the Nextera XT Index kit (Illumina, San Diego, USA). 

The Index PCR was done by using 5 µl of template PCR product, 2.5 µl of each index primer, 

12.5 µl of 2x KAPA HiFi HotStart ReadyMix and 2.5 µl PCR grade water. Thermal cycling 

scheme was as follows: 95 ° C for 3 min, 8 cycles of 30 s at 95 °C, 30 s at 55 °C and 30 s at 72 

°C and a final extension at 72°C for 5 min. The indexed products were purified as described 

before. Products were quantified by using the Quant-iT dsDNA HS assay kit and a Qubit 

fluorometer following the instructions of the manufacturer (Invitrogen GmbH, Karlsruhe, 

Germany). Purified amplicons were sequenced with an MiSeq instrument using dual indexing 

and reagent kit v3 (600 cycles) as recommended by the manufacturer (Illumina). 

Sequence processing 

Obtained paired-end sequences were first quality-filtered with fastp version 0.2024 using a 

minimum phred score of 20, a minimum length of 50 bases, the default sliding window size (-

-cut_window_size = 4), read correction by overlap (option “correction”), adapter removal of 

the sequencing primers (option “adapter_fasta”), and the provided index sequences of Illumina. 

Quality-filtered paired-end reads were merged with PEAR version 0.9.11 and default settings25. 

Primer sequences were clipped with cutadapt version 2.5 and default settings26. All further 

steps, except mapping of sequences to ASVs (Amplicon Sequence Variant) were performed 

with functions implemented in vsearch version 2.1.4.127. Sequences were filtered by size with 

“sortbylength” with a set minimum length of 300 bp. Dereplication of identical sequences was 

done by “derep_fulllength”. Denoising and removal of low abundant sequences with less than 

eight replicates were done with the vsearch UNOISE3 module “cluster_unoise”. Chimeric 

sequences were removed by employing the UCHIME module of vsearch. This included a de 

novo chimera removal (“uchime3_denovo”) and a reference-based chimera removal 

(“uchime_ref”) against the SILVA SSU 138 NR database28. Sequences were mapped to ASVs 

by vsearch (“usearch_global”) with a set sequence identity threshold of 0.97. Taxonomy 

assignments were performed with BLASTN29 (version 2.9.0) against the SILVA SSU 138 NR 

database28 with a minimum identity threshold of 90%30. In addition to the taxonomy identity, 

we added the taxonomy id of the database, length of fragment, query percentage identity, query 

coverage and e-value in the taxonomy string of the table. We used identity (pident) and query 

coverage (qcovs) per ASV of the blast output to exclude uncertain blast hits. As recommended 

by the SILVA ribosomal RNA database project31, we removed the taxonomic assignment for 

blast hits with
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In total, 31,987 ASVs were used for downstream analysis. 

Bacterial community analysis 

The bacterial community composition was further analysed in R32 (version 3.6.1) and RStudio33 

(version 1.1.463). ASV counts were normalized by using the Geometric Mean of Pairwise 

Ratios (GMPR) of the GMPR package version 0.1.334. Community compositions were then 

analyzed by the ampvis2 package version 2.4.11 and “amp_heatmap” at genus level35. The 

fifteen most abundant genera were displayed as relative abundance and clustered at treatment 

level. Heat-trees were displayed by the metacoder36 package (version 0.3.2.9001).  

For heat-tree calculation all counts were summed at order level and all taxa with a count-sum 

<1% of the lowest count-sum of all samples were excluded. The average abundance of all 

included taxa for all samples was calculated with:  

cbind(metacoder$data$tax_abund$taxon_id, rowMeans((metacoder$data$tax_abund)[,-1])) 

and then added to the metacoder object with:  

metacoder$data$average_taxon_abundance = average_taxon_abundance. 

For diversity and ordination analysis, we used rarefaction by “amp_subset_samples” by 

ampvis2 as normalization of the original ASV count table. We used the Shannon diversity index 

as calculated by ampvis2 (“amp_alphadiv”) for diversity analysis. Principal Component 

Analysis (PCA) was calculated with “amp_ordinate” based on Bray Curtis dissimilarity 

matrices. The environmental fit was calculated using the vegan package37 with a significance 

threshold of p ≤ 0.05. 

Soil attribute measurements 

For all abiotic measurements, soil samples were dried at 40°C for at least 10 days. We measured 

pH by adding the 2.25-fold volume distilled water to at least 5 g dried soil and incubate for at 

least 1 h prior to measurement. For C and N content determination, root fragments were 

manually removed, the soil was passed through a 2 mm sieve to obtain the fine soil fraction, 

which was ground in a ball mill (MM200, Retsch, Haan, Germany). Depending on the expected 

C and N contents, 5 g of soil were weighed into tin capsules. Measurements were performed 

by the CN analyzer vario EL cube (Elementar Analysensysteme, Hanau, Germany).  Samples 
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were combusted at 950 °C after addition of oxygen with copper oxide as the catalyst and helium 

as the carrier gas. NOx gases were reduced to N2. CO2 and N2 were separated by an adsorption 

column and were detected by a thermal conductivity detector (TCD). External certified 

standards of plant and soil material (IVA Analysentechnik, Meerbusch, Germany) were 

measured as samples for calibration validation. To account for daily variation of the room 

conditions and check for drifts, daily factors were determined. 

Na, K, Ca, Mg, Mn, Fe, Al, S and P were measured by using an iCAP 7400 ICP-OES DUO 

analyser (Thermo Fisher Scientific) and standard solutions for each analyzed element (Bernd 

Kraft GmbH, Duisburg, Germany). Prior to measurements, 50 mg dried soil of each sample 

was lysed with 2 ml 65% nitric acid at 160°C for 12 h, filtered and the volume adjusted to 25 

ml with water. 

Data records 

All obtained sequences are available at the National Center for Biotechnology Information 

under the Bioproject accession number PRJNA599149 and Sequence Read Archive (SRA) 

accession number SRP239591, containing all 160 samples (80 DNA samples and 80 RNA 

samples) as compressed fastq files38. The following files have been deposited in a figshare 

collection39 and can be also accessed separately: Details regarding quality-filtering and read 

statistics before, during and after bioinformatic processing20; ASV count table with taxonomic 

assignments30; metadata information for each sample along with abiotic soil measurements19.  

Technical Validation 

The sample from each subplot was derived from three different soil cores. The PCR reactions 

for amplification of the 16S rRNA genes transcripts and genes were performed in three 

technical replicates per sample. Negative controls without DNA or cDNA template were also 

performed. Correct amplicon size was determined on a 0.8 % agarose gel. PCR triplicates per 

sample were pooled in equimolar amounts for amplicon sequencing to minimize possible PCR 

bias. 
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Supplementary table 2. Sequence statistics regarding quality-filtering of obtained sequences. The table is also 

deposited on figshare and referenced in the text (reference nr. 20). 

SampleID Raw reads After 
quality-
filtering 

After taxonomy 
filter 

Discarded 
reads 

Discarded 
reads [%] 

OM1cha 91738 72031 71223 20515 22.36 
OM1chb 81255 64114 63579 17676 21.75 
OM1chc 70624 55798 55707 14917 21.12 
OM1chd 90760 71917 71412 19348 21.32 
OM1che 106077 84073 82896 23181 21.85 
OM1cwa 111776 84036 83470 28306 25.32 
OM1cwb 96856 73657 73161 23695 24.46 
OM1cwc 166989 128473 127507 39482 23.64 
OM1cwd 71268 55816 55422 15846 22.23 
OM1cwe 44422 32784 32632 11790 26.54 
OM1rha 136489 93998 93293 43196 31.65 
OM1rhb 74616 56500 56206 18410 24.67 
OM1rhc 129903 93075 92443 37460 28.84 
OM1rhd 78737 60292 59784 18953 24.07 
OM1rhe 105525 79603 78819 26706 25.31 
OM1rwa 87572 63938 63493 24079 27.5 
OM1rwb 90748 66524 66130 24618 27.13 
OM1rwc 151753 100826 99072 52681 34.71 
OM1rwd 62676 46070 45847 16829 26.85 
OM1rwe 79552 58269 57949 21603 27.16 
OM2cha 49064 39108 38961 10103 20.59 
OM2chb 72346 55749 55503 16843 23.28 
OM2chc 65267 50727 50207 15060 23.07 
OM2chd 50342 38519 38312 12030 23.9 
OM2che 60788 45626 45416 15372 25.29 
OM2cwa 57102 43854 43646 13456 23.56 
OM2cwb 90810 69726 68728 22082 24.32 
OM2cwc 60166 46943 46718 13448 22.35 
OM2cwd 46688 37085 36910 9778 20.94 
OM2cwe 76971 56998 56624 20347 26.43 
OM2rha 266197 203150 201707 64490 24.23 
OM2rhb 138090 106599 105939 32151 23.28 
OM2rhc 59195 46833 46593 12602 21.29 
OM2rhd 54711 40807 40439 14272 26.09 
OM2rhe 122473 96266 94739 27734 22.64 
OM2rwa 69302 55046 54669 14633 21.11 
OM2rwb 79990 63166 63032 16958 21.2 
OM2rwc 94814 75679 74952 19862 20.95 
OM2rwd 134025 106716 105220 28805 21.49 
OM2rwe 160207 129239 128390 31817 19.86 
OM3cha 55095 41212 40978 14117 25.62 
OM3chb 45724 35544 35166 10558 23.09 
OM3chc 57628 45502 45442 12186 21.15 
OM3chd 123129 97873 97617 25512 20.72 
OM3che 74900 59506 58313 16587 22.15 
OM3cwa 65707 51425 50543 15164 23.08 
OM3cwb 49168 38119 37584 11584 23.56 
OM3cwc 58918 45212 44893 14025 23.8 
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OM3cwd 74557 57734 57655 16902 22.67 
OM3cwe 54664 42648 42247 12417 22.72 
OM3rha 71335 54629 54278 17057 23.91 
OM3rhb 62537 47813 47337 15200 24.31 
OM3rhc 97425 75954 75043 22382 22.97 
OM3rhd 51926 41002 40771 11155 21.48 
OM3rhe 69292 54564 54365 14927 21.54 
OM3rwa 88271 68974 67987 20284 22.98 
OM3rwb 127018 97582 97157 29861 23.51 
OM3rwc 95191 71108 70433 24758 26.01 
OM3rwd 128745 98097 97450 31295 24.31 
OM3rwe 46805 35644 35600 11205 23.94 
OM4cha 38821 29248 29190 9631 24.81 
OM4chb 107244 79511 79289 27955 26.07 
OM4chc 63101 49720 49354 13747 21.79 
OM4chd 135609 102952 102377 33232 24.51 
OM4che 110472 85138 84017 26455 23.95 
OM4cwa 83381 65012 64775 18606 22.31 
OM4cwb 133836 104963 103305 30531 22.81 
OM4cwc 74645 58287 58070 16575 22.21 
OM4cwd 63448 49553 49071 14377 22.66 
OM4cwe 57280 42782 42455 14825 25.88 
OM4rha 56505 44890 44740 11765 20.82 
OM4rhb 131128 99137 98905 32223 24.57 
OM4rhc 69144 54262 54009 15135 21.89 
OM4rhd 49731 38409 38269 11462 23.05 
OM4rhe 84761 64515 64192 20569 24.27 
OM4rwa 61339 43572 43405 17934 29.24 
OM4rwb 80144 61905 60783 19361 24.16 
OM4rwc 55277 43175 42871 12406 22.44 
OM4rwd 66121 51604 51326 14795 22.38 
OM4rwe 59113 46173 45981 13132 22.22 

r_OM1cha 52889 33898 33792 19097 36.11 
r_OM1chb 82813 51360 51253 31560 38.11 
r_OM1chc 102773 61029 60982 41791 40.66 
r_OM1chd 51806 29370 29324 22482 43.4 
r_OM1che 68001 38265 38165 29836 43.88 
r_OM1cwa 29081 13141 13113 15968 54.91 
r_OM1cwb 120056 69624 69535 50521 42.08 
r_OM1cwc 60998 36121 36014 24984 40.96 
r_OM1cwd 102424 61947 61834 40590 39.63 
r_OM1cwe 60026 35369 35340 24686 41.13 
r_OM1rha 85013 40690 40598 44415 52.24 
r_OM1rhb 69639 38978 38838 30801 44.23 
r_OM1rhc 112051 51979 51779 60272 53.79 
r_OM1rhd 69202 38740 38514 30688 44.35 
r_OM1rhe 69883 35623 35396 34487 49.35 
r_OM1rwa 61125 30258 30119 31006 50.73 
r_OM1rwb 75548 36106 35963 39585 52.4 
r_OM1rwc 72044 31092 30886 41158 57.13 
r_OM1rwd 83879 44495 44350 39529 47.13 
r_OM1rwe 56383 32941 32869 23514 41.7 
r_OM2cha 104902 57732 57589 47313 45.1 
r_OM2chb 52063 26174 26131 25932 49.81 
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r_OM2chc 140514 80254 79996 60518 43.07 
r_OM2chd 74899 42311 42197 32702 43.66 
r_OM2che 90855 52410 52333 38522 42.4 
r_OM2cwa 73296 44672 44572 28724 39.19 
r_OM2cwb 68145 40678 40570 27575 40.47 
r_OM2cwc 45040 24905 24790 20250 44.96 
r_OM2cwd 110870 61146 61016 49854 44.97 
r_OM2cwe 61223 32399 32317 28906 47.21 
r_OM2rha 58322 33485 33368 24954 42.79 
r_OM2rhb 57539 31717 31673 25866 44.95 
r_OM2rhc 52559 30331 30205 22354 42.53 
r_OM2rhd 44325 22581 22500 21825 49.24 
r_OM2rhe 118777 68559 68170 50607 42.61 
r_OM2rwa 78233 46221 46111 32122 41.06 
r_OM2rwb 105304 58868 58818 46486 44.14 
r_OM2rwc 85325 50463 50331 34994 41.01 
r_OM2rwd 73412 49515 49295 24117 32.85 
r_OM2rwe 66371 39164 38985 27386 41.26 
r_OM3cha 134074 77359 77030 57044 42.55 
r_OM3chb 86554 51624 51303 35251 40.73 
r_OM3chc 66794 39089 39059 27735 41.52 
r_OM3chd 76907 46163 46102 30805 40.05 
r_OM3che 62095 36083 35903 26192 42.18 
r_OM3cwa 71777 39474 39122 32655 45.5 
r_OM3cwb 136339 75020 74629 61710 45.26 
r_OM3cwc 70733 40166 40065 30668 43.36 
r_OM3cwd 88791 49695 49622 39169 44.11 
r_OM3cwe 78387 47088 46968 31419 40.08 
r_OM3rha 131672 72751 72546 59126 44.9 
r_OM3rhb 86173 50412 50138 36035 41.82 
r_OM3rhc 78740 47617 47466 31274 39.72 
r_OM3rhd 83725 50908 50735 32990 39.4 
r_OM3rhe 66001 39650 39576 26425 40.04 
r_OM3rwa 56543 32315 32162 24381 43.12 
r_OM3rwb 79775 45526 45401 34374 43.09 
r_OM3rwc 61755 33154 32912 28843 46.71 
r_OM3rwd 110162 63177 62884 47278 42.92 
r_OM3rwe 78715 41953 41907 36808 46.76 
r_OM4cha 89880 46507 46418 43462 48.36 
r_OM4chb 57719 30282 30214 27505 47.65 
r_OM4chc 134088 76733 76021 58067 43.31 
r_OM4chd 99667 52223 52037 47630 47.79 
r_OM4che 104638 66965 66792 37846 36.17 
r_OM4cwa 73975 39995 39925 34050 46.03 
r_OM4cwb 61164 35431 35323 25841 42.25 
r_OM4cwc 61296 31491 31469 29827 48.66 
r_OM4cwd 96027 53911 53804 42223 43.97 
r_OM4cwe 64202 31801 31685 32517 50.65 
r_OM4rha 83377 50495 50419 32958 39.53 
r_OM4rhb 70125 37824 37788 32337 46.11 
r_OM4rhc 75123 43252 43086 32037 42.65 
r_OM4rhd 43002 24970 24898 18104 42.1 
r_OM4rhe 151822 84982 84773 67049 44.16 
r_OM4rwa 78123 38890 38822 39301 50.31 
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r_OM4rwb 94488 55329 55138 39350 41.65 
r_OM4rwc 87048 51363 51159 35889 41.23 
r_OM4rwd 61270 36067 35956 25314 41.32 
r_OM4rwe 72484 40834 40749 31735 43.78 
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Abstract: Cacao (Theobroma cacao L.) is one of the most economically important crops worldwide.
Despite the important role of endophytes for plant growth and health, very little is known about the
effect of agroforestry management systems on the endophyte communities of T. cacao. To close this
knowledge gap, we investigated the diversity, community composition, and function of bacterial
and fungal endophytes in the leaves of T. cacao trees growing in five major cacao-growing regions
in the central region of Cameroon using DNA metabarcoding. Fungal but not bacterial alpha
diversity measures differed significantly between the agroforestry management systems. Interestingly,
less managed home-garden cacao forests harbored the lowest fungal richness and diversity. Our results
suggest that the composition of bacterial and fungal endophyte communities is predominantly affected
by agroforestry management systems and, to a lesser extent, by environmental properties. The core
microbiome detected comprised important fungal phytopathogens, such as Lasiodiplodia species.
Several predicted pathways of bacterial endophytes and functional guilds of fungal endophytes
differed between the agroforest systems which might be attributed to bacteria and fungi specifically
associated with a single agroforest. Our results provide the basis for future studies on foliar fungal and
bacterial endophytes of T. cacao and their responsiveness towards agroforestry management systems.

Keywords: microbial diversity; endophytes; core microbiome; metabarcoding; agroforestry
management systems; functional predictions; Theobroma cacao

1. Introduction

Cacao (Theobroma cacao L.) is one of the most economically important crops worldwide.
To accommodate the increasing global demand, cocoa production has increased to approximately
5.2 million tons in 2017 (FAO Statistical Database; http://faostat.fao.org). Cacao trees have been
traditionally established under thinned canopies of primary or old secondary forests [1]. To enhance
their short-term income, farmers in many parts of the world have converted these shaded cacao
systems into non-shaded, high intensive monocultures [1,2]. The conversion of tropical rainforests and
agricultural homogenization, however, causes severe problems such as biodiversity loss as well as
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an increased risk of pest outbreaks [3–5]. Cacao agroforestry management systems (AMSs), such as
traditional forest gardens, may help to alleviate disease and pest problems [6,7]. Cacao AMSs include
numerous cultivated plants (e.g., cocoa and bananas) and natural forest tree species. Additionally,
they provide a wide range of benefits, including livelihoods for farmers, as well as the conservation of
natural resources [1,8]. Consequently, the relationship among different cacao AMSs and their role in
maintaining biodiversity has received more attention during the last years [1,4,9].

Endophytic fungi and bacteria have been found in all plant species investigated to date [10].
An increasing number of studies has assessed the community composition [11–14] and the diverse
functional effects of endophytes on their host plants [15,16]. Beneficial endophytes have been reported
to promote plant nutrition acquisition and growth [16,17]. Moreover, endophytes may enhance the
resistance of their host plants to plant pathogens [18–20]. This is especially important due to the wide
range of fungal pathogens attacking cacao trees [21,22]. Several of these pathogens are responsible
for severe yield losses [22,23]. As a consequence, the potential of endophytic fungi and bacteria as
biocontrol agents of important cacao pathogens such as Moniliophthora roreri or Phytophthora capsici has
been evaluated [12,15,20]. For instance, several endospore-forming bacterial endophytes isolated from
T. cacao inhibited the cacao pathogens M. roreri, M. perniciosa, and P. capsica in antagonism studies [20].
In addition, eight isolates significant inhibited P. capsici lesion formation in detached leaf assays
compared to untreated control leaves.

Given the high ecological and economic relevance of bacterial and fungal endophytes, it is crucial
to decipher endophyte communities in economically important plant species and their influencing
factors. Recent studies have shown that agricultural practices such as cropping system, fertilizer,
or fungicide application influenced fungal and bacterial endophyte diversity and/or community
structures [24–26]. In a previous study on fungal endophyte communities of Coffea arabica, region and
AMS significantly influenced endophytic communities [13]. To date, it is unclear whether foliar fungal
and bacterial endophytes of T. cacao trees differ among different AMSs as well.

The goals of the current study were to fill this knowledge gap and to obtain first insights into
functional and compositional changes in fungal and bacterial endophytes in leaves of T. cacao growing
in different AMSs. Furthermore, we aimed to identify fungal and bacterial taxa that were responsive to
AMSs. Our study was conducted in five major cacao-growing regions (Obala, Boumnyébel, Bakao,
Talba, Kédia) in the Central Region of Cameroon. The regions differed in their AMSs ranging from
less extensive to more intensively managed cacao agroforests. Foliar bacterial and fungal endophyte
communities were investigated by high-throughput Illumina (MiSeq) sequencing targeting the bacterial
16S rRNA gene and the fungal internal transcribed spacer (ITS), respectively. Additionally, we evaluated
the agricultural practices and environmental properties shaping bacterial and fungal communities.
To better understand plant–endophyte interactions with respect to AMSs, correlation-based indicator
species analyses were performed. Moreover, functional profiles were predicted from obtained
16S rRNA data, and fungal community members were classified with respect to functional guilds.
We hypothesized that the AMSs and the prevailing environmental conditions impacted microbial
colonization of T. cacao leaves and, consequently, microbial community composition.

2. Materials and Methods

2.1. Study Site and Experimental Design

The study was conducted in five major cacao-growing regions (Obala, Boumnyébel, Bakao, Talba,
Kédia) in the humid dense forest region in the Central Region of Cameroon between 4◦12′ and 4◦30′ N
and 10◦6′ and 11◦15′ E (Table 1, Supplementary Table S1). The altitude varied between 450 and 715 m
above sea level. Within the growing regions, 20 cacao plantations in seven sites were selected due to
differences in AMSs (Table 1, Supplementary Table S1). These systems were grouped as follows: (1) less
managed, home-garden cacao forest (Obala; approximately 30 years old), (2) extensively managed old
traditional cacao forest garden (Boumnyébel; approximately 50 years old); (3) extensively managed
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young traditional cacao forest garden (Bakao; approximately 30 years old); (4) the most intensively
managed mature traditional cacao forest garden (Talba; 15–20 years old); and (5) intensively managed
young traditional cacao forest garden (Kédia; 8–15 years old). In Obala (sites Nkolobang and Ekabita
Essélé), cocoa is grown near houses with a high variety of fruit trees species. In Boumnyébel (sites
Pan Makak and Simanya), cocoa is grown under a dense cover of shade tree species. The cacao trees in
Talba and Bakao are grown in larger farms and on modified savannah agroecosystems, respectively.
In Kédia, cocoa is grown under full sunlight in two villages. For further details on the growing regions,
see Bisseleua et al. 2009 [4] and Bisseleua et al. 2008 [7].

Table 1. Landscape characteristics of the five regions Boumnyébel (sites Pan Makak, Simanya),
Talba, Bakoa, Kédia and Obala (sites Ekabita Essélé, Nkolobang). See Supplementary Table S1 for
further details.

Region Plantation Trees Agroforestry Management Agricultural Land Forest Land

Boumnyébel

Pan Makak 1 4 extensively managed old
(cocoa is grown under a

dense cover of shade
tree species)

20% cocoa fields, 10%
annual crop

70% pristine
forest, with

forest reserve

Pan Makak 2 4
Simanya 1 4
Simanya 2 4

Talba

Talba 1 4 intensively managed
manure (cocoa is grown in

larger farms)

70% cocoa fields, 5%
annual field crops

25% pristine
forest, no
reserve

Talba 2 4
Talba 3 4
Talba 4 4

Bakoa

Bakoa 1 2 extensively managed young
(cocoa is grown on modified
savannah agroecosystems)

50% cocoa fields, 25%
annual field crops,

5% patchy
pasture fields

20% secondary
forest, no
reserve

Bakoa 2 2
Bakoa 3 2
Bakoa 4 2

Kédia

Kédia 1 2
intensively managed young

(cocoa is grown under
full sun)

65% cocoa fields, 25%
annual field crops,
5% pasture lands

5% secondary
forest

Kédia 2 2
Kédia 3 2
Kédia 4 2

Obala

Ekabita Essélé 1 4 home garden cacao forest
(cocoa is grown nearby

houses with a high variety
of fruit tree species)

70% cocoa fields, 25%
annual crop fields of

mixed crops,
agroforestry trees

5% secondary
forest, no forest

reserve

Ekabita Essélé 2 4
Nkolobang 1 4
Nkolobang 2 4

2.2. Sampling

At least two trees from each cacao plantation were randomly selected for sampling, resulting
in eight (Bakao, Kédia) or sixteen trees (Boumnyébel, Obala, Talba) per site (Table 1, Supplementary
Table S1). These trees were chosen based on the following criteria: healthy appearance, and overall
good physiological and nutritional state. For each tree, three mature leaves with the same age were
collected between September and October 2014. The collected leaves showed no obvious disease
symptoms, including leaf spots, chlorosis, or other types of pathogen-induced lesions. They were
immediately cooled down (below 4 ◦C) and transported to the laboratory. A total of 25 discs (50 mm2)
per leaf were stamped out from the apical, middle, and basal region of the leaf. The 75 leaf discs of
each tree were pooled prior to DNA extraction. A total of 64 T. cacao leaf samples were investigated in
this study (Supplementary Material Table S1).

2.3. Surface Sterilization and DNA Extraction

Different protocols for surface sterilization of leaf discs were tested using varying incubation
times. The protocol giving the best surface sterilization success (no microbial growth for all replicates
on the three different media types) was used for further analyses. The final surface sterilization
protocol included the following steps: consecutive washing in 70% ethanol for 20 s, 2% sodium
hypochlorite for 30 s, 70% ethanol for 20 s, followed by three times immersion in sterilized, distilled
diethyl pyrocarbonate (DEPC)-treated water for 10 s. Surface-sterilized leaf discs were subsequently
dried on tissue paper. Fresh solutions and separate, sterile collection tubes were used for each sample
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to avoid cross-contaminations. The surface sterilization of leaf discs was controlled for effectiveness as
described previously [27] by placing 5–10 sterile leaf discs per location and 50 µL aliquots of the last
washing step onto common laboratory agar plates (malt extract agar (MEA), Luria-Bertani-Agar (LB)
and potato dextrose agar (PDA)). The plates were incubated in the dark at approximately 25 ◦C for at
least 3 weeks. No growth of microorganisms was observed. In addition, water from the final washing
step was subjected to polymerase chain reaction (PCR) targeting the ITS region and the bacterial 16S
rRNA gene. No amplification was detected. These results confirmed that the surface sterilization of all
leaf discs was successful in eliminating non-cultivable and cultivable fungal and bacterial epiphytes as
well as potential DNA traces from the leaf surfaces.

Total DNA was extracted, employing the peqGOLD Plant DNA Mini kit (Peqlab, Erlangen,
Germany; now VWR) according to the manufacturer’s instructions with two modifications described
previously [27]. Briefly, all surface-sterilized leaf discs were incubated in lysis buffer at 32 ◦C for 12 h
and subsequently homogenized using ethanol-sterilized pestles. The concentration of DNA extracts
was quantified using a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington,
USA). In total, the DNA of 64 T. cacao leaf samples was subjected to PCR targeting the bacterial 16S
rRNA gene and the fungal ITS region.

2.4. Amplification and Sequencing of 16S rRNA Genes

Bacterial 16S rRNA genes were amplified using the forward primer S-D-Bact-0341-b-S-17 (5′-CCT
ACG GGN GGC WGC AG-3′; [28]) and the reverse primer S-D-Bact-0785-a-A-21 (5′-GAC TAC HVG
GGT ATC TAA TCC-3′; [28]) containing Illumina Nextera adapters for sequencing. The PCR reaction
(25 µL) contained 5 µL of five-fold Phusion HF buffer, 200 µM of each of the four deoxynucleoside
triphosphates, 4 µM of each primer, 1 U of Phusion high fidelity DNA polymerase (Thermo Scientific,
Waltham, MA, USA), and approximately 50 ng of the extracted DNA as a template. The negative
controls were performed by using the reaction mixture without a template. The following thermal
cycling scheme was used: initial denaturation at 98 ◦C for 30 s, 30 cycles of denaturation at 98 ◦C
for 15 s, annealing at 53 ◦C for 30 s, followed by extension at 72 ◦C for 30 s. The final extension
was carried out at 72 ◦C for 2 min. Each sample was subjected to three independent amplifications.
Obtained PCR products per sample were controlled for appropriate size, pooled in equal amounts,
and purified using the peqGOLD Gel Extraction kit (Peqlab). The quantification of the PCR products
was performed using the Quant-iT dsDNA HS assay kit and a Qubit fluorometer, as recommended by
the manufacturer (Thermo Scientific). The DNA samples were barcoded using the Nextera XT-Index
kit (Illumina, San Diego, USA) and the Kapa HIFI Hot Start polymerase (Kapa Biosystems, USA).
Sequencing was performed at the Göttingen Genomics Laboratory on an Illumina MiSeq Sequencing
platform (paired end 2 × 300 bp) using the MiSeq Reagent kit v3, as recommended by the manufacturer
(Illumina). All bacterial samples were sequenced on the same MiSeq run.

2.5. Amplification and Sequencing of the Fungal ITS Region

The fungal endophyte community was assessed by a nested PCR approach targeting
the ITS region, as described previously [24,29]. In the first PCR, the primers ITS1-F_KYO2
(5′-TAG AGG AAG TAA AAG TCG TAA-3′) [30] and ITS4 (5′- TCC TCC GCT TAT
TGA TAT GC-3′) [31] were used to suppress the co-amplification of plant-derived ITS
regions. Obtained PCR products were subjected to nested PCR with the primer pair
ITS3_KYO2 [30] and ITS4 [31] containing the MiSeq adaptors (underlined): MiSeq-ITS3_KYO2
(5′-TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG GAT GAA GAA CGY AGY RAA-3′)
and MiSeq-ITS4 (5′-GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GTC CTC CGC TTA
TTG ATA TGC -3′). The PCR mixture (25 µL) contained: 5 µL of 5-fold Phusion GC buffer, 200 µM of
each of the four deoxynucleoside triphosphates, 4 µM of each primer, 5% DMSO, 25 mM MgCl2, 0.5 U
of Phusion High Fidelity DNA polymerase (Thermo Scientific), and approximately 10 ng DNA and
PCR product from the first PCR as a template, respectively. The negative controls were performed
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using the reaction mixture without a template. The following thermal cycle scheme was utilized:
initial denaturation at 98 ◦C for 30 s followed by 6 cycles of denaturation at 98 ◦C for 15 s, annealing at
53 ◦C for 30 s decreasing 0.5 ◦C in each cycle, followed by extension at 72 ◦C for 30 s and 29 cycles
of denaturation at 98 ◦C for 15 s, annealing at 50 ◦C for 30 s, followed by extension at 72 ◦C for 30 s.
The final extension was carried out at 72 ◦C for 2 min. Each sample was subjected to three independent
amplifications. The negative controls were performed using the reaction mixture without template.
Obtained PCR products were pooled in equal amounts, purified, and quantified as described for
bacterial PCR products. The barcoding of purified fungal PCR products as well as sequencing were
performed as described above for bacterial PCR products. All fungal samples were sequenced on the
same MiSeq run.

2.6. Processing of Bacterial and Fungal Datasets

Obtained sequencing data were initially quality-filtered with the Trimmomatic tool version
0.36 [32]. Low-quality reads were truncated if the quality dropped below 12 in a sliding window
of 4 bp. Subsequently, all reads shorter than 100 bp and orphan (unpaired) reads were removed.
The remaining sequences were merged, quality-filtered, and further processed with USEARCH version
10.0.240 [33]. Merged bacterial reads shorter than 350 bp or longer than 550 bp were removed, while
fungal reads shorter than 300 bp and longer than 500 bp were removed. Primer sequences were
subsequently truncated using cutadapt (version 2.5). Reads without primer sequences as well as
low-quality reads (expected error > 2) and reads with more than one ambiguous base were removed.
Processed sequences of all samples were combined into a single file, and subsequently de-replicated into
unique sequences. These sequences were denoised and clustered in zero-radius operational taxonomic
units (zOTUs; i.e., sequences with 100% similarity) with the unoise3 algorithm [34] implemented
in USEARCH [33]. Chimeric sequences were removed by the UCHIME denovo algorithm during
clustering [35]. Subsequently, the remaining chimeric sequences were removed using UCHIME [35] in
reference mode with the SILVA SSU Ref NR 99 132 database [36] as a reference data set for bacteria and
the general release of the UNITE database version (Feb 2019) [37] for fungi.

To assign the taxonomy of bacteria and fungi, unique and chimera-free sequences were classified
using the sintax algorithm against the SILVA SSU Ref NR 99 132 database [36] and the UNITE utax
reference database (Feb 2019) [37], respectively. Combined sequences of all samples were mapped
on the final set of unique sequences to calculate the occurrence and abundance of each zOTU in all
samples. All non-bacterial and non-fungal zOTUs were removed based on their taxonomic classification.
Final zOTUs tables for bacteria and fungi are provided as Supplementary Tables S2 and S3, respectively.
Sequence characteristics for prokaryotic and fungal datasets are provided as Supplementary Material
Tables S4 and S5, respectively.

2.7. Data Analysis

All data analyses were conducted in R version 3.6.0 [38]. Prokaryotic and fungal communities
were analyzed separately. Differences were considered as statistically marginally significant with
p ≤ 0.05 and p ≤ 0.1, respectively. Environmental properties were correlated by Spearman rank
correlation using the cor.test function and grouped by hierarchical clustering using the hclust function.
Each cluster contained those properties with a Spearman’s rho ≥ 0.9. We selected the property with
the highest correlation to all other properties from the same cluster to represent the cluster. All data
were normalized prior to statistical analyses. Principal Component Analysis (PCA) was performed on
resemblance matrices constructed using Euclidean distance. Differences in environmental properties
among the seven sites were also evaluated by Kruskal-Wallis test, followed by Dunn’s test for multiple
comparisons with Benjamini–Hochberg correction using the R package FSA 0.8.25 [39]. The results of
the statistical analyses are provided in Supplementary Table S4.

All alpha diversity indices were calculated 10 times and the average of all iterations was
used for further statistical analyses. The zOTU tables were rarefied to 3105 (bacteria) or 2025
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(fungi) sequences per sample in each iteration using the rrarefy function in vegan version 2.5–5 [40].
The diversity was calculated using the diversity function in vegan. Sample coverage was estimated
using the Michaelis–Menten Fit calculated in R. For this purpose, richness and rarefaction curves
were calculated using the specnumber and the rarecurve function, respectively, in picante version
1.8 [41]. The Michaelis–Menten Fit was subsequently calculated from generated rarefaction curves
using the MM2 model within the drc package [42]. Good’s Coverage was calculated using the R
package entropart version 1.6–1 [43] using the coverage function. Final tables containing bacterial and
fungal alpha diversity, richness and sample-wise coverage are provided in Supplementary Tables S5
and S6, respectively.

The alpha diversity data were tested for normal distribution with shapiro function and for
homogeneity of variance with leveneTest function using the R package car version 3.0–3 [44]. As the
distribution of microbial diversity and richness significantly differed from a normal distribution,
differences in alpha diversity measures among the seven sites were evaluated by Kruskal-Wallis test.
Statistically significant results were followed up with Dunn’s test for multiple comparisons with
Benjamini–Hochberg correction using the R-package FSA. We further tested for significant correlations
between environmental properties/AMSs and alpha diversity measures by Spearman’s rank correlation
using the function cor.test.

Differences in the relative abundance of the predominant fungal (≤0.5% abundance in the entire
dataset) and bacterial orders (≤0.5% abundance in the entire dataset) were tested by pairwise t-test
with Benjamini–Hochberg correction for multiple testing. The results of the statistical analysis can
be found in Supplementary Table S7. Potential differences in community composition among sites
and regions were investigated by permutational multivariate analysis of variance (PERMANOVA)
with 1000 random permutations using the vegdist and adonis function within the vegan package [40].
Differences in community composition between the sites were tested using pairwise PERMANOVA
(https://github.com/bwemheu/pairwise.adonis; version 0.1.0). Distance-based redundancy analysis
(db-RDA) with forward selection of the explanatory variables using the R package vegan was
performed to analyze influences of environmental properties and agroforestry management on
microbial community composition. Explanatory variables were included into the model if p was ≤ 0.05.
Four different dissimilarity measures were calculated in R using the vegdist function [40] and tested
for the bacterial and fungal datasets: unweighted as well as weighted Bray-Curtis and unweighted
as well as weighted Jaccard (binary option in the vegdist function false and true, respectively).
Pre-analyses revealed that weighted Bray-Curtis dissimilarities displayed a higher environmental
sensitivity based on the higher coefficients of determination. Thus, only results for this distance
measure are shown here.

2.8. Core Community and Correlation-Based Indicator Species Analysis

To enhance the reliability of the indicator analysis, only fungal and bacterial zOTUs detected in
≥75% of the trees growing in one site and with an average relative abundance of ≥0.01% in the entire
dataset were considered, hereinafter referred to as the “core” microbiome. In addition, we applied
multipattern analyses using the multipatt function from the indicspecies package [45] to identify
zOTUs that are highly associated with each site. The biserial coefficients (R) with a particular site
were corrected for an unequal sample size using the function r.g [46]. Associated fungal and bacterial
zOTUS of each site were visualized using Cytoscape version 3.6.1 [47]. The core endophyte community
and the uniquely associated fungal and bacterial zOTUs are depicted in Supplementary Table S8.

2.9. Functional Predictions

Functional information was assigned to fungal zOTUs using FUNGuild [48]. We kept guild
assignments only to those zOTUs that could be assigned with the confidence ranking of “probable” and
“highly probable”, as recommended [48]. The sequence numbers of zOTUs assigned into the guilds
were plotted as relative abundance (the number of sequences assigned to a specific guild divided by
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the number of all assigned sequences; called sequence richness). In addition, the zOTU richness was
determined (the number of zOTUs assigned to a specific guild per sample divided by the number of
assigned zOTUs per sample). Differences in the sequence and zOTU richness were tested by pairwise
t-test with Benjamini–Hochberg correction for multiple testing. Final tables containing functional
information for fungal endophytes and results of the statistical analyses are provided as Supplementary
Tables S2 and S9, respectively. Moreover, functional profiles for bacterial communities were predicted
from obtained 16S rRNA data using Tax4Fun2 [49] in reference mode (Ref100NR) with copy number
correction enabled. Differences in the relative abundances of putative pathways of bacterial endophytes
between sites were tested by a pairwise t-test with Benjamini–Hochberg correction for multiple testing.

2.10. Nucleotide Sequence Accession Numbers

Sequence data were deposited in the sequence read archive (SRA) of the National Center for
Biotechnology Information (NCBI) under BioProject number PRJNA594470.

3. Results

3.1. General Characteristics of the Investigated Sites

In this study, we investigated T. cacao leaves from different AMSs derived from five major
cacao-growing regions (Obala, Boumnyébel, Bakao, Talba, Kédia) in the Central Region of
Cameroon. Environmental properties measured at the different sites were correlated with each
other (Supplementary Figure S1). Although some properties were significantly correlated with each
other (Spearman’s rho ≤ 0.9), we included all of them in the following statistical tests. Environmental
and agroforestry management predictors explained more than 80% of the variation among sites
(F6,57 = 39.8, p = 0.001 ***, R2 = 80.7%, 999 permutations) and more than 74% of the variation among
the five growing regions representing the five different AMSs (F4,59 = 42.9, p = 0.001 ***, R2 = 74.3%,
999 permutations).

PCA ordination (Figure 1) was used to visualize the relationship of environmental data and AMSs
with sampling region. The first two principal components (PC) explained 60.8% of total variation in
environmental data and agroforestry practices. The PCA showed a clear clustering of Boumnyébel and
Obala samples along PC1, and portioning of Boumnyébel and Talba samples from Bakoa and Obala
samples along PC2. Statistical analysis further revealed that environmental properties such as annual
mean temperature or humidity as well as shade tree diversity differed significantly among the seven
sites (Supplementary Tables S1 and S4). For instance, rainfall was significantly higher in Simanya
compared to all other sites except Pan Makak. In addition, a significantly higher temperature in Kédia
and Talba than in Ekabita Essélé, Pan Makak, Simanya and Nkolobang was recorded.
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Figure 1. Biplot of the Principal Component Analysis (PCA) based on Euclidean distances. Comparison
of the seven sampling sites in Cameroon by environmental characteristics and agroforestry management.
The first two principal components (PC) explained 60.8% of total variation in the data. For further
explanation on environmental data, see Supplementary Table S1.

3.2. Sequence Characteristics

After the removal of low-quality reads, PCR artefacts (chimeras), and plant-derived contaminations,
a total of 2468,643 and 2388,301 high-quality reads were obtained for fungi and bacteria, respectively
(Supplementary Tables S2 and S3). Obtained sequences were assigned to 5606 fungal and 21,902
bacterial zOTUs. Sequence numbers per sample varied between 2025 and 144,753 (average 38,573) for
fungi and between 3105 and 84,048 (average 37,317) for bacteria, respectively (Supplementary Tables S5
and S6). Calculated Good’s Coverage confirmed that the sampling efforts of all samples were sufficient
to represent the majority of the bacterial (91.1%) and the fungal diversity (99.5%). Species accumulation
curves further indicated that 82.5% of all fungal zOTUs (maximal number of zOTUs calculated = 6795)
and 95.1% of all bacterial zOTUs (maximal number of zOTUs calculated = 23,036) were recovered
by the surveying effort (Supplementary Figure S2). This suggests that the surveying effort was large
enough to reflect the endophytic fungal and bacterial diversity in the leaves of T. cacao.

3.3. Foliar Endophyte Communities

Fungi were represented by three abundant phyla (≥0.5% of all sequences across all samples):
Ascomycota (mean abundance across all samples: 59.5%), Basidiomycota (2.8%), and Chytridiomycota
(0.7%) (Figure 2A,B, Supplementary Table S2). More than one third of the fungi (mean abundance
across all samples: 36.7%) were classified as unknown fungi. The predominant fungal orders in our
study were Botryosphaeriales (7.7%), Pleosporales (5.3%), Capnodiales (4.3%), Hypocreales (3.1%),
Chaetothyriales (2.3%), and Glomerellales (2.0%). Lasiodiplodia (7.2%) was identified as the most
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abundant fungal genus (Figure 3A). The three most abundant fungal zOTUs were two zOTUs of the
genus Lasiodiplodia (Zotu1: L. brasiliensis; 5.9% and Zotu2: L. jatrophicola; 4.2%) as well as one
unknown fungus (Zotu6: 5.0%).Microorganisms 2020, 8, x FOR PEER REVIEW 10 of 24 
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(bacteria) or ≥ 0.5% (fungi) in the entire data set are shown. 

Figure 2. Abundant fungal (A) and bacterial (B) orders in T. cacao leaves collected in seven different
agroforestry management systems in Cameroon. Only orders with an average abundance≥1% (bacteria)
or ≥0.5% (fungi) in the entire data set are shown.
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Figure 3. Abundant fungal (A) and bacterial (B) genera in T. cacao leaves collected in seven different
agroforestry management systems in Cameroon. Only genera with an average abundance ≥1% in the
entire data set are shown.

Bacterial communities were dominated by Actinobacteria (mean abundance across all samples:
30.3%), Proteobacteria (22.8%), and Planctomycetes (19.7%) (Figure 3B, Supplementary Table S3).
Other abundant (≥ 1% of all sequences across all samples) bacterial phyla were Acidobacteria
(9.5%), Chloroflexi (6.8%), Gemmatimonadetes (2.7%), Verrucomicrobia (2.6%), and Bacteroidetes
(1.6%). Within the Proteobacteria, Alphaproteobacteria were predominant (12.3%), followed by
Gammaproteobacteria (6.0%) and Deltaproteobacteria (5.3%). The dominant bacterial orders across
all samples were Tepidisphaerales (9.7%), Rhizobiales (5.1%), Myxococcales (4.8%), Micrococcales
(3.8%), Gemmatales (3.7%), Propionibacteriales (3.5%), and Frankiales (3.5%). Nocardioides (2.3%)
Streptomyces (2.0%) were detected as the most abundant bacterial genera (Figure 3B). At zOTU level, two
zOTUs of the genera Pseudarthrobacter (Zotu1; 0.5%) and Streptomyces (Zotu2; 0.4%) were predominant.

3.4. Endophyte Diversity and Community Composition Per Site

Three of the dominant fungal orders (Eurotiales, Hypocreales and Botryosphaeriales) and
several predominant bacterial orders differed among the seven sites (Figure 2A, Supplementary
Table S7). We detected significantly higher abundances of the Botryosphaeriales in Bakoa (25.5%)
leaves compared to those from Ekabita Essélé (0.4%), Nkolobang (0.2%), and Talba (2.8%). To impact of
these factors on endophyte community composition, a distance-based redundancy analysis (db-RDA)
based on Bray-Curtis dissimilarities was performed. In addition, we analyzed the effect of site and
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type of agroforestry system on the composition of bacterial and fungal endophyte communities
by PERMANOVA.

We observed a clear clustering of fungal (Figure 4A) and, to a lesser extent, of bacterial endophyte
communities (Figure 4B), by AMS and sampling site. This is supported by the results of the
PERMANOVA. Sampling site (F(6) = 1.98, p = 0.001; R2 = 17.2%) and AMS (F(4) = 1.95, p = 0.001;
R2 = 11.7%) significantly affected the composition of bacterial communities. Similarly, the composition
of fungal endophytes differed significantly between sites (F(6) = 2.26, p = 0.001; R2 = 19.2%) and
agroforestry systems (F(4) = 2.83, p = 0.001; R2 = 16.1%). The best-fit explanatory variables for fungal
community composition were insecticide rates, fungicide rates, humidity, and shade tree height
(F5,58 = 2.31, p = 0.001; Figure 4A, Table 2). The community composition of bacterial endophytes
was significantly affected by insecticide rate, fungicide rate, shade tree height, altitude and cacao tree
density (F6,57 = 2.30, p = 0.001; Figure 4B, Table 2). Multiple comparisons revealed that the composition
of fungal communities differed significantly among all AMSs, while bacterial community composition
in leaves from Obala differed from those collected in Talba, Kédia, and Bakoa (p ≤ 0.05).
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Figure 4. Distance-based redundancy analysis (db-RDA) plot showing the relationship of environmental
properties and agroforestry management system to foliar fungal (A) and bacterial (B) endophyte
communities of T. cacao. Ordination is based on weighted Bray-Curtis distances between samples and
is color-coded by sampling region. Factors were chosen that significantly (p ≤ 0.05) contributed to the
model. Axes labelled with an asterisk are significant. The first axes explained 42.5% (bacteria) or 42.2%
(fungi), whereas the second axes explained 28.1% (bacteria) or 22.6% (fungi).
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Table 2. Results of the db-RDA that describes the effect of environmental properties and agroforestry
management systems on endophyte community composition in T. cacao leaves.

DF SumOfSqs F p Value

Bacteria
Entire Model 6 3.89 2.30 0.001 ***
Cocoa Tree Density 1 0.49 1.72 0.024 *
Altitude 1 0.70 2.47 0.002 **
Fungicides rate/Cropping Season 1 0.51 1.82 0.022 *
Fungicides 1 0.70 2.49 0.002 **
Shade Tree Height 1 0.56 1.97 0.013 *
Insecticides rate/Cropping Season 1 0.45 1.58 0.049 *
Residual 57 16.08
Fungi
Entire Model 5 4.33 2.31 0.001 ***
Humidity 1 1.05 2.78 0.001 ***
Shade Tree Height 1 0.70 1.87 0.006 **
Fungicides rate/Cropping Season 1 0.71 1.90 0.005 **
Fungicides 1 0.58 1.54 0.019 *
Insecticides rate/Cropping Season 1 0.55 1.48 0.042 *
Residual 58 21.77

For each model, forward selection was applied to identify which factors best described variation in community
composition using an inclusion threshold of α = 0.05 and Bray-Curtis distances. Marginal effects of terms are
shown (i.e., terms were not added sequentially). The number of unrestricted permutations: 999. Significance level:
* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. SumOfSps: sum of squares, DF: degrees of freedom.

In addition to changes in community composition, we analyzed differences in alpha diversity
measures among sites and AMSs. Richness (number of observed unique sequences) and diversity
(Shannon diversity index H’) for fungal communities varied between 71 and 443 and between 1.32 and
5.34, respectively (Table 3 and Supplementary Table S5). Bacterial richness and diversity ranged from
to 1206 to 2096 and from 6.13 to 7.44, respectively (Supplementary Table S6). Bacterial alpha diversity
measures did not differ among the sites (richness: p = 0.79; diversity: p = 0.43) and the agroforestry
system types (richness: p = 0.75; diversity: p = 0.32) (Table 3). In contrast, fungal richness (p < 0.001)
and diversity (p = 0.001) differed among the five agroforestry systems, with, site significantly affecting
fungal richness (p = 0.003) and diversity (p = 0.006).

Table 3. Alpha diversity measures (mean ± standard deviation) for bacterial and fungal endophytes
in leaves of T. cacao. Richness and diversity are represented by the number of observed zero-radius
operational taxonomic units (zOTUs) and Shannon diversity index H’, respectively.

Fungi Bacteria

Richness Diversity Richness Diversity

Obala 178 ± 76A 3.04 ± 0.98A 1729 ± 218 7.02 ± 0.31
- Ekabita Essélé 174 ± 72a 2.85 ± 0.98a 1672 ± 255 6.92 ± 0.4

- Nkolobang 182 ± 85a 3.24 ± 0.99 1785 ± 172 7.11 ± 0.18
Boumnyébel 279 ± 106B 4.09 ± 1.31B 1820 ± 85 7.17 ± 0.1
- Pan Makak 250 ± 110b 3.96 ± 1.47 1814 ± 88 7.16 ± 0.09

- Simanya 307 ± 101b 4.22 ± 1.23 1826 ± 87 7.19 ± 0.1
Bakoa 231 ± 82AB 3.48 ± 1.11AB 1789 ± 160 7.15 ± 0.19
Talba 292 ± 55Bb 4.44 ± 0.41Bb 1804 ± 137 7.17 ± 0.13
Kédia 330 ± 87Bb 4.42 ± 0.64B 1782 ± 101 7.12 ± 0.11

A,B Different superscript letters indicate significant differences (p≤ 0.05) between the five regions (Obala, Boumnyébel,
Bakoa, Talba and Kédia). Note that fungal diversity differed marginally (p≤ 0.1) among Bakoa and Talba/Boumnyébel.
In addition, fungal richness differed marginally between Bakoa and Kédia. a,b Different superscript letters indicate
significant differences (p ≤ 0.05) between the seven sites (Ekabita Essélé, Nkolobang, Pan Makak, Simanya, Bakoa,
Talba and Kédia). Note that there were marginally significant differences in fungal diversity between Ekabita Essélé
and Pan Makak/Simanya/Kédia, and between Nkolobang and Talba.
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Multiple comparisons revealed a significantly higher fungal diversity and richness in Boumnyébel,
Talba, and Kédia compared to Obala. Temperature and fungicide rate were positively correlated with
fungal richness and diversity, while humidity, cacao tree density, and tree height were negatively
correlated with fungal richness and/or diversity (Table 4).

Table 4. Correlation between alpha diversity measures and environmental properties/an agroforestry
management system based on Spearman’s rank correlation. Richness and diversity are represented by
the number of observed zOTUs and Shannon diversity index H’, respectively.

Tested Variable
Fungal Endophytes Bacterial Endophytes

Richness Diversity Richness Diversity

Environmental properties DF rho p rho p rho p rho p
Altitude 62 −0.11 0.37 −0.10 0.43 0.14 0.27 0.08 0.56
Temperature 62 0.34 0.006 0.26 0.04 −0.06 0.65 −0.01 0.92
Humidity 62 −0.34 0.006 −0.26 0.04 0.02 0.87 −0.11 0.41
Rainfall 62 0.12 0.34 0.24 0.052 0.04 0.77 0.04 0.73
Agroforestry management
Age 62 −0.22 0.07 −0.11 0.39 0.05 0.70 0.02 0.87
Cacao Tree Density 62 −0.26 0.04 −0.21 0.099 −0.09 0.46 −0.18 0.16
Insecticides rate * 62 −0.06 0.62 −0.05 0.70 −0.08 0.51 −0.09 0.49
Fungicides rate * 62 0.29 0.02 0.42 <0.001 0.12 0.34 0.17 0.18
Shade Tree Height 62 −0.14 0.26 0.004 0.97 −0.18 0.16 −0.17 0.18
Shade Tree Diversity 62 −0.07 0.57 0.04 0.78 0.14 0.28 0.09 0.48
Shade Cover 62 −0.18 0.16 −0.07 0.58 0.02 0.86 0.02 0.88
Tree Height 62 −0.27 0.03 −0.29 0.02 −0.03 0.83 −0.02 0.85

Statistically significant (p ≤ 0.05) and marginally significant (p ≤ 0.1) p values are written in bold and are underlined,
respectively. DF: degrees of freedom. * Fungicides and Insecticides rate/Cropping Season.

3.5. Bacterial and Fungal Taxa Associated with Agroforestry System Type

To identify bacterial and fungal core taxa associated with sites/agroforestry management systems,
we performed an indicator species analysis. The core zOTUs were selected based on their relative
frequency (≥75% occurrence in each of the seven sites) (Supplementary Table S8). The core endophyte
community was represented by ten fungal zOTUs (0.2% of all fungal zOTUs), such as L. brasiliensis
(Zotu1; mean abundance across all samples: 5.9%), Colletotrichum hymenocallidis (Zotu22; 0.8%),
and Ophionectria trichospora (Zotu29; 0.9%). Moreover, we detected 199 bacterial zOTUs (0.9% of all
bacterial zOTUs), including eleven zOTUs belonging to the genera Streptomyces and Blastococcus and
nine zOTUS of the genus Nocardioides. A total of 20.1% of all fungal and 12.6% of all bacterial sequences
were assigned to these core zOTUs.

The indicator species analysis further identified those significantly associated fungal and bacterial
zOTUs using the following threshold levels: sample prevalence (≥75% in one site) and relative
abundance (≥0.01% in the entire dataset). We detected a higher number of significantly associated
bacterial (n = 523) than fungal (n =79) zOTUs (Figure 5, Supplementary Table S8). The lowest
and highest number of significantly associated bacterial zOTUs were found in Pan Makak (n = 51)
and Simanya (n = 118), respectively. Most bacterial zOTUs belonged to the genera Pir4 lineage
(n = 19), Nocardioides (n = 12), Actinoplanes (n = 12), Candidatus Alysiosphaera (n = 11), Marmoricola
(10), Micromonospora (n = 9), Blastococcus (n = 8), and Krasilnikovia (n = 8). For fungi, the lowest and
highest number of significantly associated zOTUs were detected for Ekabita Essélé (n = 7) and Kédia
(n = 22), respectively.

112



Microorganisms 2020, 8, 405 14 of 24

Microorganisms 2020, 8, x FOR PEER REVIEW 14 of 24 

 

Shade Cover 62 −0.18 0.16 −0.07 0.58 0.02 0.86 0.02 0.88 
Tree Height 62 −0.27 0.03 −0.29 0.02 −0.03 0.83 −0.02 0.85 

Statistically significant (p ≤ 0.05) and marginally significant (p ≤ 0.1) p values are written in bold and 
are underlined, respectively. DF: degrees of freedom. * Fungicides and Insecticides rate/Cropping 
Season. 

3.5. Bacterial and Fungal Taxa Associated with Agroforestry System Type 

To identify bacterial and fungal core taxa associated with sites/agroforestry management 
systems, we performed an indicator species analysis. The core zOTUs were selected based on their 
relative frequency (≥ 75% occurrence in each of the seven sites) (Supplementary Table S8). The core 
endophyte community was represented by ten fungal zOTUs (0.2% of all fungal zOTUs), such as L. 
brasiliensis (Zotu1; mean abundance across all samples: 5.9%), Colletotrichum hymenocallidis (Zotu22; 
0.8%), and Ophionectria trichospora (Zotu29; 0.9%). Moreover, we detected 199 bacterial zOTUs (0.9% 
of all bacterial zOTUs), including eleven zOTUs belonging to the genera Streptomyces and Blastococcus 
and nine zOTUS of the genus Nocardioides. A total of 20.1% of all fungal and 12.6% of all bacterial 
sequences were assigned to these core zOTUs. 

The indicator species analysis further identified those significantly associated fungal and 
bacterial zOTUs using the following threshold levels: sample prevalence (≥ 75% in one site) and 
relative abundance (≥ 0.01% in the entire dataset). We detected a higher number of significantly 
associated bacterial (n = 523) than fungal (n =79) zOTUs (Figure 5, Supplementary Table S8). The 
lowest and highest number of significantly associated bacterial zOTUs were found in Pan Makak (n 
= 51) and Simanya (n = 118), respectively. Most bacterial zOTUs belonged to the genera Pir4 lineage 
(n = 19), Nocardioides (n = 12), Actinoplanes (n = 12), Candidatus Alysiosphaera (n = 11), Marmoricola (10), 
Micromonospora (n = 9), Blastococcus (n = 8), and Krasilnikovia (n = 8). For fungi, the lowest and highest 
number of significantly associated zOTUs were detected for Ekabita Essélé (n = 7) and Kédia (n = 22), 
respectively. 

 
Figure 5. Bipartite association network of fungal (A) and bacterial (B) zOTUs in T. cacao leaves 
significantly associated with site. The sites are color-coded as in Figure 1. Bacterial phyla and fungal 
orders, which were predominant in the dataset and/or in one site, are highlighted. 

3.6. Fungal Functionality Differs between the Agroforest Management Systems 

We also analyzed functional changes in fungal endophytes with respect to AMS. For this 
purpose, functional guilds of endophytic fungi were determined using FUNGuild [48]. In total, 
highly probable and probable life strategies for 1766 of the 5606 zOTUs (= 31.5%) were predicted 
(Supplementary Table S9). We identified more abundant (≥ 0.5% across all samples) functional guilds 
by investigating the zOTU richness (n = 21) compared to sequence richness (n = 16) (Figure 6; 

Figure 5. Bipartite association network of fungal (A) and bacterial (B) zOTUs in T. cacao leaves
significantly associated with site. The sites are color-coded as in Figure 1. Bacterial phyla and fungal
orders, which were predominant in the dataset and/or in one site, are highlighted.

3.6. Fungal Functionality Differs between the Agroforest Management Systems

We also analyzed functional changes in fungal endophytes with respect to AMS. For this purpose,
functional guilds of endophytic fungi were determined using FUNGuild [48]. In total, highly probable
and probable life strategies for 1766 of the 5606 zOTUs (= 31.5%) were predicted (Supplementary
Table S9). We identified more abundant (≥0.5% across all samples) functional guilds by investigating
the zOTU richness (n = 21) compared to sequence richness (n = 16) (Figure 6; Supplementary Table
S2). Most of the fungal sequences were classified as undefined saprotrophs (sequence richness: 24.2%
mean abundance across all samples; zOTU richness: 20.2.%). Other abundant functional guilds
were plant pathogens (sequence richness: 23.8%; zOTU richness: 13.5%) and animal endosymbionts
(sequence richness: 7.4%; zOTU richness: 14.8%). However, we observed differences in the sequence
richness among sites. Undefined saprotrophs were predominant in Simanya (28.3%), Talba (20.7%),
and Ekabita Essélé (29.5%), whereas lichenized fungi dominated in Nkolobang (21.7%) (Figure 6A).
Plant pathogens were the dominant functional guild in Pan Makak (35.8%), Kédia (26.4%), and Bakoa
(43.3%). Analysis of the zOTU richness revealed that undefined saprotrophs were the most abundant
functional guild in Kédia (24.1%), Pan Makak (25.1%), Simanya (22.1%), Bakoa (24.1%), and Ekabita
Essélé (18.0%) (Figure 6B). Animal endosymbionts were predominant in Nkolobang (19.3%) and
lichenized fungi in Talba (17.1%).

Multiple comparisons revealed that two functional guilds (animal pathogen-plant
pathogen-undefined saprotrophs and wood saprotrophs) did not differ in both sequence and zOTU
richness among sites (Figure 6). Moreover, the sequence richness of most functional guilds, including
animal pathogens, ericoid mycorrhizal, plant pathogens, or endophyte-plant pathogens did not differ
between the sites (Figure 6A). In contrast, we observed a significantly higher sequence richness of the
functional guild of arbuscular mycorrhiza in Ekabita Essélé (2.6%) and Nkolobang (3.0%) compared
to the other sites (≤0.8%). The zOTU richness showed that arbuscular mycorrhiza were significantly
more abundant in Ekabita Essélé (3.8%) and Nkolobang (4.2%) than in Bakoa (0.9%) (Figure 6B).
We also observed a significantly lower zOTU richness for animal pathogens in Ekabita Essélé (0.9%)
compared to all other sites (≥2.5%) except Nkolobang (2.1%). A significantly higher zOTU richness
of plant pathogens was observed in Bakoa (17.6%) compared to Kédia (11.5%) and Talba (11.3%).
Lichenized fungi were more abundant in Talba (17.1%) compared to all other sites (≤12.9%).
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Figure 6. Functional guilds of fungal endophytes in T. cacao leaves. The relative abundance of fungal
sequences (sequence richness) per guild (A) and the proportion of zOTUs (zOTU richness) per guild
(B) is shown for the seven sites. The analyses are based on 31.5% of the zOTUs (n = 1766 zOTUs).
The sequence richness and zOTU richness were calculated by the number of sequences assigned to a
specific guild divided by the number of all assigned sequences and by the number of zOTUs assigned
to a specific guild per sample divided by the number of zOTUs per sample, respectively. Following the
suggestion of Nguyen et al. [48], we combined both dimensions (sequence and zOTU richness) to better
reflect the relative importance of fungal life strategies in an environment. Only guilds with an average
abundance ≥0.5% in the entire data set are shown.

3.7. Predicted Functional Profiles of Bacterial Endophytes

To investigate potential changes in bacterial community function between the AMSs, functional
profiles for bacterial endophytes were predicted from 16S rRNA gene data using Taxa4Fun2 [49].
Approximately 82% of all zOTUs, representing 76.7% of all sequences obtained, were used in the
prediction (Supplementary Table S9). We focused on important pathways involved in metabolism,
environmental information processing and organismal systems, resulting in 32 abundant pathways
(≥1% of all sequences across all samples) (Figure 7). The highest abundances were observed for ABC
transporters (mean abundance across all samples: 11.1%), Valine, leucine, and isoleucine degradation
(2.8%), propanoate metabolism, fatty acid degradation, pyruvate metabolism, and butanoate
metabolism (all: 2.5%). The three pathways with the lowest mean abundance of the 32 selected
pathways across all samples (1.1%) were tyrosine metabolism, porphyrin and chlorophyll metabolism,
and the citrate cycle (TCA cycle).
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Figure 7. Predicted functional profiles of bacterial endophytes in T. cacao leaves. The color code refers
to the relative abundance of each pathway, with high predicted abundances (dark-colored) and low
predicted abundances (light-colored). The relative abundances of pathways were calculated for each
site. Only pathways with an average abundance ≥1% in the entire data set are shown.

The majority (n = 22) of the 32 abundant pathways, such as pathways involved in the metabolism
of cofactors and vitamins, pathways involved in both lipid and energy metabolism (excluding sulfur
metabolism), as well as ABC transporters, did not differ in their relative abundance among the sites
(Figure 7). In contrast, we observed significantly higher abundances of pyrimidine metabolism, purine
metabolism, glyoxylate and dicarboxylate metabolism, as well as sulfur metabolism in Ekabita Essélé
compared to Pan Makak, Simanya, and Talba. We also found significantly higher abundances of
starch and sucrose metabolism in Pan Makak, Simanya, Talba, and Kédia than in Ekabita Essélé and
higher abundances of the tyrosine metabolism in Simanya compared to all other sites. Significantly
lower abundances of arginine and proline metabolism as well as phenylalanine metabolism were
observed in Ekabita Essélé than in Simanya, whereas the opposite was detected for cysteine and
methionine metabolism.

4. Discussion

To our knowledge, this is the first metabarcoding study simultaneously investigating the bacterial
and fungal endophytes of T. cacao trees and their response towards the agroforestry system type.
The leaves were colonized by a high diversity of fungal species; however, more than one third of these
fungal zOTUs could not be further classified. These results indicate that the identity and ecology of
many fungal endophytes in these regions remain largely uncharacterized. The large proportion of
Ascomycota and comparatively few Basidiomycota generally agrees with previous studies on foliar
fungal communities from tropical and temperate trees [50–53]. Two of the dominant fungal zOTUs
belonged to Lasiodiplodia, a genus of the Botryosphaeriaceae. This family contains numerous fungal
species, which are able to infect a diverse range of host plant species or known to live as saprophytes
or endophytes within seeds and other living plant tissues [54,55].

The taxonomic composition of bacterial endophytes in T. cacao leaves differed from previous
studies on bacterial endophytes of temperate tree species [51,56]. For instance, higher abundances of
Proteobacteria were recorded in a recent study on Maple trees in Germany. Nonetheless, our results
are in line with a previous study on bacterial communities in the roots of the tropical tree species
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Eucalyptus urograndis [57] and the leaves of several woody species [58]. Two zOTUs of the bacterial
genera Pseudarthrobacter and Streptomyces (both Actinobacteria) were predominant in our samples.
This is noteworthy as members of the Actinobacteria, especially the genus Streptomyces, are known to
produce a wide range of antimicrobial compounds [59,60].

The composition of fungal and bacterial endophyte communities in T. cacao leaves differed
among the sampling sites and AMSs. The observed differences in the relative abundances of the
predominant fungal and bacterial orders most likely arose from differences in management practices and
environmental properties in the studied cacao agroforestry systems. This is in line with previous studies
investigating endophyte communities from tree species, analyzed from different locations [13,51,61].
We further recorded that fungal but not bacterial endophyte alpha diversity measures differed among
sites. Contrarily, site significantly affected bacterial but not fungal alpha diversity values in leaves
of two Acer species [51]. In addition, AMS affected fungal richness and diversity but not bacterial
alpha diversity. Köberl et al. [62] reported neither a significant impact of agroforestry type nor
biogeography on the gammaproteobacterial diversity in leaves of Musa spp. [62]. In another study on
fungal endophytes in the leaves of B. pendula grown in natural and managed boreal forests, silvicultural
practices affected the species composition and endophyte frequencies of these fungi [63]. The authors
proposed that the observed differences reflect the mode of fungal spreading and largely depend on
biotic and abiotic environmental conditions determining the abundance of infection sources and the
success of transmission and germination of specific fungal endophyte species. This hypothesis is
supported by our study as environmental properties, such as temperature and/or humidity as well
as agroforestry practices influenced alpha diversity measures and the community composition of
fungal endophytes. Previous studies on the fungal endophyte communities of trees in Hawaiian
landscapes [64], the leaves of Olea europaea in the Mediterranean area [65], and the leaves of Ficus tree
species in the Philippines [52] also found that patterns of community similarity are strongly associated
with rainfall and elevation:

Consistent with previous studies on fungicide effects on leaf-associated microbial
communities [26,66,67], insecticide and fungicide application rate affected the composition of both
fungal and bacterial endophytes in leaves of T. cacao. Interestingly, fungicide rate was positively
correlated with fungal richness and diversity. In contrast, fungicide treatment had no effect on fungal
endophyte diversity in A. altissima [26]. We speculate that the fungicide metalaxyl, used in the site
sampled is highly selective against some fungi [68]. This might have created free niches in the leaf
tissues subsequently colonized by other fungi.

Fungal and bacterial endophyte community composition as well as fungal richness and diversity
in leaves collected in Obala significantly differed from those collected in Talba, Kédia, and Bakoa,
respectively. As favorable growing conditions, such as higher humidity and temperature or lower UV
radiation, can influence the rate and extent of fungal colonization and survival on leaf surfaces [65,69],
we hypothesize that environmental conditions (e.g., microclimate and/or light intensity) in Obala have
prevented fungal endophyte colonization. Scholtysik et al. [70] found that composition of endophytes
in sun-exposed leaves from the top of full-grown Fraxinus excelsior trees differed considerably from
leaves in the shade crowns and in the understorey. Lastly, we hypothesize that our results are related
to the significantly higher cacao tree density observed in Obala or differences in shade tree height
among the sites, as shade tree height and cacao tree density were main drivers of bacterial and/or
fungal endophyte community composition.

Fungal and bacterial endophytes responded differently towards the factors investigated.
These results are consistent with previous studies on plant-associated microbial communities [14,51] and
are attributed to differences in lifestyle strategies (i.e., colonization behaviour) of fungal and bacterial
endophytes [10,71]. Another possible explanation is that fungal endophytes might be more sensitive
to agroforestry system type and/or environmental properties than bacteria. Due to the limitations in
the study design, future studies investigating more agroforests at different cacao growing regions are
needed to better understand causal factors influencing bacterial and fungal endophyte communities.
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Our analysis revealed that leaves of T. cacao formed a core endophyte microbiota of a few fungal
and 199 bacterial zOTUs, although study sites were hundreds of kilometers apart. There are several
potential explanations for this results. Firstly, it is possible that the core community bacterial and
fungal taxa colonized tree leaves across cacao plantations by dispersal through numerous vectors
(air, rain, insect vectors), homogenizing the endophyte community as suggested for the phyllosphere
communities of several tree species [72]. Another possible explanation is that some bacteria and fungi
are obligate endophytes and are thus restricted to a life inside of plant tissues [73,74]. These obligate
endophytes might constitute larger parts of the core community of T. cacao leaves. Several fungal
zOTUs identified here, such as L. brasiliensis [75] or C. hymenocallidis [76], have been observed as plant
pathogens, while O. trichospora is a relatively common species occurring on rotting wood in tropical
regions [77]. It is likely that the above-mentioned fungi are latent pathogens and latent saprotrophs [78],
as T. cacao leaves did not show any symptoms of diseases. Vega et al. [79] suggested that some
endophytic fungi, such as Colletotrichum are either ubiquitous in coffee-growing regions because of
the exchange of Coffea plants and seeds or because of intrinsic factors (i.e., the global distribution
of the fungi themselves). These reasons might also have played a role in the current study. Lastly,
it could be that the observed fungal and bacterial endophytes in the core community are seed-borne,
as described for fungi such as L. theobromae [80] or bacteria [81]. As we did not investigate the seedling
or seed endophytes of T. cacao, the transmission modes and colonization routes of fungal and bacterial
endophytes await further research.

We further recorded that the cacao agroforests showed uniquely associated fungal and bacterial
zOTUs, suggesting specific adaptions to environmental properties and agroforestry practices in the
respective sites. Another explanation is that the T. cacao trees select for beneficial microorganisms as
they provide an advantage for their host plant [73,82]. Some of the uniquely associated bacterial zOTUs,
including Streptomyces, Actinoplanes, or Micromonospora, are known to have plant growth-promoting
abilities. Actinoplanes spp. are a group of filamentous bacteria that can parasitize Pythium spp.
or related fungi [83]. As mentioned above, Streptomyces are best-known for their wide range of
produced biomolecules, which in turn might be excellent agents for controlling various fungal and
bacterial phytopathogens [59]. Similarly, some species of the Micromonospora produce antimicrobial
and antifungal compounds that act to protect plants from pathogens (reviewed in [84]). In addition,
we identified animal-associated fungal species. C. aphidis usually grows on aphids and superficially on
leaves attacked by aphids [85] and S. buchneri was isolated from the beetle Stegobium paniceum that
fed on the pulverized fruits of Capsicum [86]. The authors hypothesized that the life cycle of this
species includes a symbiotic phase in the gut of the beetle and an unknown sexual morph growing on
plant substrates.

We applied FUNGuild [48] and Tax4Fun2 to assess the functional responses of fungal and bacterial
endophytes towards agroforestry practices as well as environmental conditions. Consistent with two
recent studies on root-associated fungal communities in the Bolivian Andes [87] and aerial fungal
endophytes of three grass species in Germany [24], saprophytic fungi dominated fungal endophyte
communities. We identified more abundant functional guilds when investigating the zOTU richness
compared to sequence richness. This supports the suggestion of Nguyen et al. [48] that combining
both dimensions reflect the relative importance of fungal life strategies in an environment. The high
abundance of ABC transporters in the predicted functional profile of bacterial endophytes might be
related to the plant-associated lifestyle of endophytes, which requires the efficient uptake of plant
synthesized nutrients [88]. Similarly, Hardoim et al. [10] suggested that regulatory genes related to the
stoichiometry of carbon and nitrogen metabolism and those involved in the metabolism of vitamins
and nucleotides and in stress responses are of fundamental importance for a life inside plants.

We detected that several fungal functional guilds and predicted pathways of bacterial endophytes
differed in their relative abundances among the sites and agroforestry system types. These results
might be related to differences in agroforestry practices and environmental properties, which altered
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community composition and conseqeuntly community functioning. The functional changes of fungal
and bacterial endophytes towards agricultural practices have been observed previously [11,24,67].

It has been proposed that the core microbiome might be functionally significant for the host plant,
while the accessory microbiome is expected to contain more dispensable functions or microorganisms
whose presence is related to interactions with the surrounding environmental conditions [82]. We thus
assume that functional guilds and predicted bacterial pathways that did not differ between the sites are
related to the core microbiome, while the uniquely associated endophytes are responsible for observed
functional changes. However, only a low number of fungal and bacterial zOTUs and sequences could
be used in the analyses, as the ecological role of most microorganisms in the plant endosphere and their
functions remain still unknown [10,71]. Consequently, further studies are needed to better understand
how management regimes affect functional traits of bacterial and fungal endophyte communities and
their functioning in leaves of the economically important tree species T. cacao.

5. Conclusions

To date, studies on fungal and bacterial endophytes in T. cacao trees growing in different
agroforestry systems are lacking. In the current study, we applied large-scale metabarcoding to assess
compositional and functional responses of fungal and bacterial endophytes in the leaves of T. cacao trees
growing in five major cacao-growing regions in the Central Region of Cameroon. The diversity and
richness of fungal but not bacterial endophytes differed among the five cacao regions, suggesting that
fungal alpha diversity is more sensitive to agroforestry system type and/or environmental properties
than bacterial alpha diversity. Our results further suggest that bacterial and fungal endophyte
community composition are affected predominantly by agroforestry practices and, to a lesser extent,
by environmental properties. The correlation-based indicator species indicated that the core microbial
community forms stable associations with T. cacao across geographic scales. Functional analyses, based
only a minor part of microbial zOTUs and sequences, revealed that several predicted pathways of
bacterial endophytes and the functional guilds of fungal endophytes differed between the agroforests,
which might be attributed to several bacteria and fungi specifically associated with a single agroforest.
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Figure S1. Cluster dendrogram for environmental characteristics and agroforestry management 

systems based on Spearman rank correlation. For further explanation on environmental data see 

Supplementary Table S1. 

Figure S2. Species accumulation curves for fungal (A) and bacterial (B) endophytes in T. cacao 

leaves. The maximal number of zOTUs (nmax) was calculated based on Michaelis-Menten Fit. 

Table S1. Sample characteristics. Shade cover was measured above-ground. Shade Tree 

Diversity means number of shades per hectare. The table is deposited on the enclosed CD under 
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Table S2. Final zOTU table for the fungal endophyte community and putative life strategies of 
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Table S4. Statistical analysis of environmental data with Kruskal-Wallis test. Multiple 

comparisons were performed using the Dunn test. P-values were adjusted with the Benjamini-

Hochberg method. Statistically significant (p ≤ 0.05) and marginally significant (p ≤ 0.1) values 

are written in bold and are underlined, respectively. 

Table S5. Sequence characteristics and alpha diversity values of the fungal dataset. Alpha 

diversity values were calculated at the same surveying effort (number of sequences =  2025). 

Every value was calculated 10 times in R. The average of all 10 iterations is provided. For 

further information on the Sample ID see Supplementary Table S1. 
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Table S6. Sequence characteristics and alpha diversity values of the prokaryotic dataset. Alpha diversity 

values were calculated at the same surveying effort (number of sequences = 3105). Every value was 

calculated 10 times in R. The average of all 10 iterations is provided. For further information on the 

Sample ID see Supplementary Table S1. 

Table S7. Differences in the relative abundances of foliar endophytes between sites. Differences were 

tested by pairwise comparison using t tests with pooled SD. P value adjustment method: Benjamini-

Hochberg. Statistically significant (p ≤ 0.05) and marginally significant (p ≤ 0.1) values are written in 

bold and are underlined, respectively. 

Table S8. Microbial core community and significantly (p < 0.01) associated bacterial and 

fungal zOTUs with the seven sites. The table is deposited on the enclosed CD under 

\Chapter5_Supplement_information\ 

Table S9. Predicted pathways and unknown fraction for each sample. We focused on important 

pathways involved in metabolism, environmental information processing and organismal 

systems. The table is deposited on the enclosed CD under \Chapter5_Supplement_information\ 
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Figure S1. Cluster dendrogram for environmental characteristics and agroforestry management systems based on 
Spearman rank correlation. For further explanation on environmental data see Supplementary Table S1. 

 

 
Figure S2. Species accumulation curves for fungal (A) and bacterial (B) endophytes in T. cacao leaves. The 
maximal number of zOTUs (nmax) was calculated based on Michaelis-Menten Fit. 
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Table S5. Sequence characteristics and alpha diversity values of the fungal dataset. Alpha diversity values were 
calculated at the same surveying effort (number of sequences = 2025). Every value was calculated 10 times in R. 
The average of all 10 iterations is provided. For further information on the Sample ID see Supplementary Table 
S1. 

SeqID_Fungi Tree 
ID 

Raw 
sequences 

After 
processing 

and 
denoising 

After 
removal of 
chimeric 
and non-

fungal 
sequences 

Observed 
zOTUs 

(Richness
) 

Shannon 
diversity 
index H' 

Michael
is-

Menten 
Fit 

(MMF) 

Good's 
Coverage 

(%) 

Cocoa_Fungi_01 1 77185 63886 63145 71 1.67 99.25 99.91 

Cocoa_Fungi_02 2 35580 20260 19100 314 4.61 449.51 99.36 
Cocoa_Fungi_03 3 70469 30862 29547 276 4.60 357.35 99.79 
Cocoa_Fungi_04 4 33026 19654 18652 256 4.77 314.57 99.68 
Cocoa_Fungi_05 5 24406 13016 11944 354 4.82 493.48 99.01 
Cocoa_Fungi_06 6 5590 2340 2066 314 4.75 424.29 94.58 
Cocoa_Fungi_07 7 36553 18251 17292 332 4.98 443.32 99.66 
Cocoa_Fungi_08 8 41988 34083 33721 87 1.53 143.40 99.56 
Cocoa_Fungi_09 9 30487 13970 12537 443 5.29 651.97 99.16 
Cocoa_Fungi_10 10 35320 19645 17964 425 5.34 598.69 99.40 
Cocoa_Fungi_11 11 43472 28394 26053 287 4.44 400.56 99.55 
Cocoa_Fungi_12 12 44110 11290 11097 133 1.72 218.96 99.37 
Cocoa_Fungi_13 13 37586 25957 24622 334 4.69 474.73 99.59 
Cocoa_Fungi_14 14 26182 10394 9826 224 3.06 331.84 99.25 
Cocoa_Fungi_15 15 97452 71179 66326 307 4.78 396.02 99.82 
Cocoa_Fungi_16 16 46481 35910 32810 307 4.42 465.44 99.45 
Cocoa_Fungi_17 17 109343 86281 77684 153 3.57 187.04 99.98 
Cocoa_Fungi_18 18 54324 42368 38159 272 4.19 383.14 99.69 
Cocoa_Fungi_19 19 65758 46219 42067 332 4.67 480.92 99.69 
Cocoa_Fungi_20 20 28564 14432 13296 318 4.83 427.15 99.24 
Cocoa_Fungi_21 21 151131 106591 95436 280 4.86 346.76 99.90 
Cocoa_Fungi_22 22 123161 98067 91280 286 4.27 401.08 99.86 
Cocoa_Fungi_23 23 69604 52414 46610 207 3.59 299.95 99.71 
Cocoa_Fungi_24 24 76345 54580 47315 307 4.45 441.85 99.74 
Cocoa_Fungi_25 25 25014 18776 16905 303 4.41 428.82 99.56 
Cocoa_Fungi_26 26 42032 31100 28348 348 4.68 518.98 99.40 
Cocoa_Fungi_27 27 80988 44583 41512 258 4.10 353.80 99.80 
Cocoa_Fungi_28 28 20804 15940 13807 316 4.57 454.91 98.79 
Cocoa_Fungi_29 29 50274 34106 29197 339 4.86 475.78 99.57 
Cocoa_Fungi_30 30 116067 78718 69385 380 4.84 564.87 99.87 
Cocoa_Fungi_31 31 51942 38136 34419 296 4.65 387.97 99.70 
Cocoa_Fungi_32 32 73219 46641 38661 271 4.43 365.65 99.74 
Cocoa_Fungi_33 33 75870 63071 62259 75 1.32 121.83 99.80 
Cocoa_Fungi_34 34 123636 99417 90467 263 3.61 428.27 99.82 
Cocoa_Fungi_35 35 64260 45769 40128 309 4.58 442.62 99.63 
Cocoa_Fungi_36 36 10164 7721 3733 189 3.70 241.35 97.62 
Cocoa_Fungi_37 37 76746 52235 43640 274 4.37 375.90 99.67 
Cocoa_Fungi_38 38 116458 90327 77490 298 3.82 458.47 99.77 
Cocoa_Fungi_39 39 120528 94794 83207 281 4.13 403.75 99.70 
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Cocoa_Fungi_40 40 56492 45135 43359 161 2.30 266.18 99.65 
Cocoa_Fungi_41 41 65004 46693 40212 326 4.81 452.21 99.51 
Cocoa_Fungi_42 42 179592 139262 133391 208 3.78 286.61 99.93 
Cocoa_Fungi_43 43 210911 154730 144753 225 3.51 345.83 99.93 
Cocoa_Fungi_44 44 137396 97818 92627 322 4.35 467.78 99.88 
Cocoa_Fungi_45 45 93879 66401 62594 386 4.51 624.32 99.81 
Cocoa_Fungi_46 46 139086 93988 86952 442 5.21 679.71 99.85 
Cocoa_Fungi_47 47 106442 67270 62540 433 5.20 661.23 99.73 
Cocoa_Fungi_48 48 39302 14362 13637 300 3.96 440.04 99.65 
Cocoa_Fungi_49 49 26901 8491 8273 98 1.67 144.61 99.66 
Cocoa_Fungi_50 50 124200 38855 37944 197 2.41 319.89 99.89 
Cocoa_Fungi_51 51 32816 6078 5957 181 2.57 256.06 99.29 
Cocoa_Fungi_52 52 11118 2083 2025 106 1.92 146.19 97.98 
Cocoa_Fungi_53 53 13470 3884 3800 132 2.67 174.61 98.87 
Cocoa_Fungi_54 54 103144 45732 43658 315 4.11 492.81 99.84 
Cocoa_Fungi_55 55 21554 2617 2494 142 2.96 175.02 98.48 
Cocoa_Fungi_56 56 23858 3180 2882 223 4.47 267.77 98.54 
Cocoa_Fungi_57 57 48845 31402 28436 379 4.73 575.50 99.75 
Cocoa_Fungi_58 58 31595 9524 9111 178 2.93 258.56 99.24 
Cocoa_Fungi_59 59 68662 15356 14837 171 2.51 251.47 99.68 
Cocoa_Fungi_60 60 65023 17699 17348 173 2.33 260.42 99.82 
Cocoa_Fungi_61 61 60127 23969 23697 113 2.09 148.45 99.89 
Cocoa_Fungi_62 62 57903 39125 38687 188 3.81 231.80 99.88 
Cocoa_Fungi_63 63 49660 23564 23360 114 3.02 132.71 99.86 
Cocoa_Fungi_64 64 7390 4419 4362 141 4.47 150.22 99.54 

Table S6. Sequence characteristics and alpha diversity values of the prokaryotic dataset. Alpha diversity values 
were calculated at the same surveying effort (number of sequences = 3105). Every value was calculated 10 times 
in R. The average of all 10 iterations is provided. For further information on the Sample ID see Supplementary 
Table S1. 

SeqID_Bacteria Tree 
ID 

Raw 
sequences 

After 
processing 

and 
denoising 

After 
removal of 
chimeric 
and non-

prokaryotic 
sequences 

Observed 
zOTUs 

(Richness) 

Shannon 
diversity 
index H' 

Michaelis-
Menten Fit 

(MMF) 

Good's 
Coverage 

(%) 

Cocoa_Prok_01 1 56707 30739 25913 1874 7.26 5420.95 91.07 

Cocoa_Prok_02 2 80885 44769 34215 1788 7.06 5404.71 92.35 
Cocoa_Prok_03 3 59005 30191 23387 1684 7.06 4440.39 90.35 
Cocoa_Prok_04 4 113128 64171 50627 1785 7.14 5090.64 94.84 
Cocoa_Prok_05 5 97477 49893 38514 1785 7.14 5121.87 92.77 
Cocoa_Prok_06 6 90271 46306 34576 1943 7.28 6287.44 90.47 
Cocoa_Prok_07 7 69147 37661 28853 1911 7.23 6026.00 89.68 
Cocoa_Prok_08 8 173395 93988 69753 1739 7.07 4812.88 96.08 
Cocoa_Prok_09 9 177581 95070 69455 1786 7.12 5190.02 96.57 
Cocoa_Prok_10 10 109309 58064 44080 1877 7.22 5755.63 93.07 
Cocoa_Prok_11 11 42104 17565 13099 1774 7.11 5150.51 82.28 
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Cocoa_Prok_12 12 74073 39377 29229 1737 7.04 5030.44 91.24 
Cocoa_Prok_13 13 8768 4509 3105 1706 7.12 4360.25 64.19 
Cocoa_Prok_14 14 70293 39918 30374 1911 7.31 5622.50 92.10 
Cocoa_Prok_15 15 72960 40368 29981 1873 7.28 5317.07 91.94 
Cocoa_Prok_16 16 50514 28601 22029 1944 7.31 6027.46 88.67 
Cocoa_Prok_17 17 31991 17243 14188 1800 7.19 5055.14 84.19 
Cocoa_Prok_18 18 62820 33934 24258 1732 7.09 4747.56 89.34 
Cocoa_Prok_19 19 107706 61085 48574 1640 6.98 4287.95 94.91 
Cocoa_Prok_20 20 134924 76684 61034 1723 7.14 4453.92 95.87 
Cocoa_Prok_21 21 94915 50188 39614 1861 7.25 5381.13 93.89 
Cocoa_Prok_22 22 105891 59495 47194 1665 7.01 4394.81 95.13 
Cocoa_Prok_23 23 91331 50412 40767 1661 7.08 4151.02 94.84 
Cocoa_Prok_24 24 108172 53243 39553 1822 7.19 5232.66 93.95 
Cocoa_Prok_25 25 141582 73637 55043 1977 7.34 6298.06 94.51 
Cocoa_Prok_26 26 153371 81307 62688 2096 7.44 7375.82 94.71 
Cocoa_Prok_27 27 124230 62108 51221 1969 7.32 6297.11 94.29 
Cocoa_Prok_28 28 26283 13416 11088 1935 7.29 6095.45 77.65 
Cocoa_Prok_29 29 142790 74820 55368 1737 7.06 4953.77 95.93 
Cocoa_Prok_30 30 40763 20531 12089 1621 7.00 4071.13 84.23 
Cocoa_Prok_31 31 203439 106954 81806 1844 7.18 5594.10 97.09 
Cocoa_Prok_32 32 58985 29988 24612 1779 7.13 5121.55 89.21 
Cocoa_Prok_33 33 192038 99290 73909 1824 7.24 5013.10 97.05 
Cocoa_Prok_34 34 172808 91027 64733 1926 7.31 5794.17 96.45 
Cocoa_Prok_35 35 150678 78956 59674 2059 7.40 7133.04 94.60 
Cocoa_Prok_36 36 76009 39123 28106 1628 7.03 4019.71 92.12 
Cocoa_Prok_37 37 26668 14575 12390 1803 7.17 5140.23 82.56 
Cocoa_Prok_38 38 152580 75577 60804 1548 6.79 4090.28 95.82 
Cocoa_Prok_39 39 122524 61076 49295 1749 7.14 4736.80 94.97 
Cocoa_Prok_40 40 81432 46088 37061 1772 7.14 4967.47 92.18 
Cocoa_Prok_41 41 49801 27640 23323 1848 7.25 5225.25 89.37 
Cocoa_Prok_42 42 62675 33964 28296 1829 7.21 5221.06 90.69 
Cocoa_Prok_43 43 94321 53442 40974 1594 6.98 3945.51 94.37 
Cocoa_Prok_44 44 42563 23896 18488 1784 7.12 5125.54 87.71 
Cocoa_Prok_45 45 176270 100649 84048 1920 7.23 6187.97 96.98 
Cocoa_Prok_46 46 78037 43859 33667 1801 7.11 5385.41 92.15 
Cocoa_Prok_47 47 86545 49015 28810 1681 6.94 4763.11 92.45 
Cocoa_Prok_48 48 59905 33009 18733 1797 7.08 5336.16 88.08 
Cocoa_Prok_49 49 202967 109861 51877 1819 7.09 5771.31 94.61 
Cocoa_Prok_50 50 113407 41713 35681 1461 6.55 3759.41 94.41 
Cocoa_Prok_51 51 127576 68326 36097 1824 7.20 5171.90 93.40 
Cocoa_Prok_52 52 90323 46269 25323 1719 7.03 4664.43 91.32 
Cocoa_Prok_53 53 107248 62369 34057 1206 6.13 2794.66 94.51 
Cocoa_Prok_54 54 164248 92162 45908 1666 7.00 4337.73 95.29 
Cocoa_Prok_55 55 97065 55557 44949 1631 6.97 4253.55 95.16 
Cocoa_Prok_56 56 113080 62660 41793 2051 7.38 7100.21 92.97 
Cocoa_Prok_57 57 139117 75518 60419 2037 7.38 6905.53 95.27 
Cocoa_Prok_58 58 101102 55254 46560 1923 7.28 6040.20 94.29 
Cocoa_Prok_59 59 89443 49334 26271 1761 7.11 4860.63 91.11 
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Cocoa_Prok_60 60 42333 22828 11477 1814 7.13 5325.36 81.67 
Cocoa_Prok_61 61 27987 13870 7593 1878 7.15 6067.57 73.01 
Cocoa_Prok_62 62 61617 34004 20622 1669 7.00 4450.08 89.78 
Cocoa_Prok_63 63 33168 18702 11376 1474 6.77 3579.50 84.99 
Cocoa_Prok_64 64 32445 18242 9700 1724 7.05 4692.93 81.95 

Table S7. Differences in the relative abundances of foliar endophytes between sites. Differences were 
tested by pairwise comparison using t tests with pooled SD. P value adjustment method: Benjamini-
Hochberg. Statistically significant (p ≤ 0.05) and marginally significant (p ≤ 0.1) values are written in 
bold and are underlined, respectively. 

Tremellales 
Bakoa Ekabita Essélé Kédia Nkolobang Pan Makak Simanya 

Ekabita Essélé 0.74 - - - - - 
Kédia 0.56 0.39 - - - - 
Nkolobang 0.56 0.75 0.34 - - - 
Pan Makak 0.56 0.74 0.34 0.91 - - 
Simanya 0.74 0.56 0.74 0.39 0.39 - 
Talba 0.75 0.56 0.56 0.39 0.39 0.89 

Symbiotaphrinales 
Bakoa Ekabita Essélé Kédia Nkolobang Pan Makak Simanya 

Ekabita Essélé 0.64 - - - - - 
Kédia 0.64 0.97 - - - - 
Nkolobang 0.16 0.21 0.21 - - - 
Pan Makak 0.99 0.64 0.64 0.16 - - 
Simanya 0.21 0.51 0.49 0.64 0.21 - 
Talba 0.21 0.55 0.51 0.51 0.21 0.76 

Xylariales 
Bakoa Ekabita Essélé Kédia Nkolobang Pan Makak Simanya 

Ekabita Essélé 0.99 - - - - - 
Kédia 0.08 0.07 - - - - 
Nkolobang 0.99 0.99 0.07 - - - 
Pan Makak 0.07 0.07 0.99 0.07 - - 
Simanya 0.99 0.99 0.09 0.99 0.07 - 
Talba 0.99 0.99 0.07 0.99 0.07 0.99 

Hypocreales 
Bakoa Ekabita Essélé Kédia Nkolobang Pan Makak Simanya 

Ekabita Essélé 0.80 - - - - - 
Kédia 0.57 0.79 - - - - 
Nkolobang 0.68 0.79 0.97 - - - 
Pan Makak 0.79 0.97 0.79 0.79 - - 
Simanya 0.79 0.97 0.79 0.79 0.97 - 
Talba 0.01 0.02 0.14 0.10 0.02 0.02 
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Glomerellales 
Bakoa Ekabita Essélé Kédia Nkolobang Pan Makak Simanya 

Ekabita Essélé 0.85 - - - - - 
Kédia 0.85 0.85 - - - - 
Nkolobang 0.85 0.85 0.94 - - - 
Pan Makak 0.41 0.59 0.50 0.50 - - 
Simanya 0.54 0.79 0.66 0.67 0.85 - 
Talba 0.38 0.41 0.38 0.38 0.85 0.67 

Lecanorales 
Bakoa Ekabita Essélé Kédia Nkolobang Pan Makak Simanya 

Ekabita Essélé 0.37 - - - - - 
Kédia 0.37 0.99 - - - - 
Nkolobang 0.57 0.07 0.07 - - - 
Pan Makak 0.63 0.76 0.76 0.13 - - 
Simanya 0.63 0.76 0.76 0.13 0.99 - 
Talba 0.62 0.76 0.76 0.09 0.99 0.99 

Eurotiales 
Bakoa Ekabita Essélé Kédia Nkolobang Pan Makak Simanya 

Ekabita Essélé 0.74 - - - - - 
Kédia 0.04 0.09 - - - - 
Nkolobang 0.48 0.74 0.19 - - - 
Pan Makak 0.04 0.08 0.94 0.18 - - 
Simanya 0.48 0.74 0.19 0.97 0.18 - 
Talba 0.74 0.94 0.04 0.65 0.04 0.65 

Chaetothyriales 
Bakoa Ekabita Essélé Kédia Nkolobang Pan Makak Simanya 

Ekabita Essélé 0.52 - - - - - 
Kédia 0.40 0.78 - - - - 
Nkolobang 0.40 0.78 0.95 - - - 
Pan Makak 0.81 0.78 0.52 0.52 - - 
Simanya 0.95 0.54 0.40 0.40 0.82 - 
Talba 0.23 0.52 0.78 0.78 0.37 0.23 

Strigulales 
Bakoa Ekabita Essélé Kédia Nkolobang Pan Makak Simanya 

Ekabita Essélé 0.99 - - - - - 
Kédia 0.99 0.99 - - - - 
Nkolobang 0.99 0.99 0.99 - - - 
Pan Makak 0.99 0.99 0.99 0.99 - - 
Simanya 0.99 0.99 0.99 0.99 0.99 - 
Talba 0.27 0.27 0.27 0.27 0.27 0.27 

Pleosporales 
Bakoa Ekabita Essélé Kédia Nkolobang Pan Makak Simanya 

Ekabita Essélé 0.31 - - - - - 
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Kédia 0.98 0.31 - - - - 
Nkolobang 0.45 0.72 0.45 - - - 
Pan Makak 0.58 0.58 0.58 0.74 - - 
Simanya 0.44 0.07 0.44 0.14 0.24 - 
Talba 0.72 0.39 0.72 0.58 0.72 0.26 

Myriangiales 
Bakoa Ekabita Essélé Kédia Nkolobang Pan Makak Simanya 

Ekabita Essélé 0.30 - - - - - 
Kédia 0.30 0.89 - - - - 
Nkolobang 0.30 0.89 0.89 - - - 
Pan Makak 0.41 0.89 0.89 0.89 - - 
Simanya 0.56 0.89 0.89 0.89 0.89 - 
Talba 0.30 0.89 0.89 0.89 0.89 0.89 

Capnodiales 
Bakoa Ekabita Essélé Kédia Nkolobang Pan Makak Simanya 

Ekabita Essélé 0.50 - - - - - 
Kédia 0.81 0.81 - - - - 
Nkolobang 0.52 0.96 0.81 - - - 
Pan Makak 0.81 0.81 0.96 0.85 - - 
Simanya 0.50 0.96 0.81 0.96 0.81 - 
Talba 0.67 0.81 0.96 0.85 0.97 0.81 

Botryosphaeriales 
Bakoa Ekabita Essélé Kédia Nkolobang Pan Makak Simanya 

Ekabita Essélé 0.04 - - - - - 
Kédia 0.10 0.76 - - - - 
Nkolobang 0.04 0.98 0.76 - - - 
Pan Makak 0.78 0.09 0.32 0.09 - - 
Simanya 0.05 0.95 0.78 0.95 0.10 - 
Talba 0.04 0.93 0.78 0.93 0.09 0.96 
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6 

Discussion 

In this study, the impact of rainforest conversion and anthropogenic land use changes has been 

investigated. Conversions of forest to agroforestry and two monoculture plantation systems 

have been studied by taxonomic marker gene and direct metagenome analyses. This allows an 

evaluation of results from different perspectives and inclusion of taxonomic and functional 

potential of those microbial communities.

The importance of resource management and the impact of agriculture on the environment also 

leads to questions regarding established land use systems and possible impacts of the applied 

management practices. To assess possible effects of reduced management intensity on soilborne 

communities, different oil palm management intensities regarding fertilizer and herbicide usage 

were analysed.  

6.1 Effects of rainforest conversion on microbial community 

composition  

6.1.1 Taxonomic profiles change with increasing land use intensity 

Soil is a very heterogenous habitat and harbours a high microbial diversity (Vos et al., 2013; 

Kaiser et al., 2016; Fonseca et al., 2018). Nevertheless, general patterns of soil community 

composition are regularly found. Temperate and tropical soil is mostly dominated by 

Proteobacteria, Acidobacteria and Actinobacteria. This has been described for numerous 

environments, including grassland, peatland, and agricultural land use systems (Lauber et al., 

2009; Rousk et al., 2010; Nacke et al., 2011; Schneider et al., 2015). In this study, microbial 

communities mostly comprised of bacteria, followed by fungi and Archaea (both less than 1% 

relative abundance) (Chapter 3). Metagenomic shotgun data also showed large fractions of 

sequences that could not be classified (>30%). This could be caused by sequences belonging to 

novel organisms, which are not represented in the used database or sequences, which are not 

suitable for taxonomic classification (see 6.1.3). 
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Bacteria were dominated by the previously mentioned phyla, but relative abundances and 

proportions changed in the course of increasing land use intensity (Figure 6.1). Schneider et al. 

(2015) showed high abundances of Proteobacteria with Rhizobiales and Burkholderiales as 

very abundant in rainforest soils. Their abundance decreased with increasing land use intensity. 

Acidobacteria (Acidobacteriales and Subgroup 2 in particular) showed the opposite trend. In 

this study, metagenome analysis of samples from the same plots (Chapter 3) roughly confirmed 

these results and revealed similar community compositions. Similar patterns were observed for 

RNA-based 16S rRNA transcript analysis (Figure 6.1; Chapter 2). Most dominant orders within 

the Proteobacteria in all samples were Rhizobiales and Burkholderiales. Both taxa are 

associated with processes related to nitrogen metabolism and are involved in fixation of 

atmospheric nitrogen, nitrification and denitrification (Yin et al., 2015; Li et al., 2019). They 

exhibit very different lifestyles either as endophytes, free-living cells or symbionts in the root 

nodule (Hayat et al., 2010; Taylor et al., 2012). In the scenario of rainforest conversion, it seems 

plausible that these groups decrease in abundance upon increasing management intensity in 

form of fertilizer input and reduction of plant diversity. Nitrogen sources provided via fertilizer 

application, despite a higher susceptibility to nutrient losses, might create an environment in 

which microbial acquisition of nutrients (like nitrogen) is not favoured anymore. This might 

affect these taxa negatively or in turn support competitors of these decreasing taxa. Other groups 

seemed to benefit from land use conversion and accompanied increasing management intensity. 

Even though little is known about the ecological role of many Acidobacteria, members of the 

Acidobacteriales were suspected to be involved in nitrate reduction (Ward et al., 2009; Pickett 

et al., 2019). Some members of Acidobacteria and Actinobacteria were described as heat 

resistant (Bouskill et al., 2012). Less canopy density in oil palm and rubber plantations lead to 

more exposure to sunlight and increased topsoil temperatures (Schneider et al., 2015). 

Cyanobacteria, which are capable of photosynthesis, were another group that showed higher 

abundances in the active community of oil palm soils. This indeed points to higher availability 

of light through changes in the canopy of trees but also to a rather short-termed effect, since 

Cyanobacteria were not detected as abundant (>1% in total) in the metagenome dataset (Chapter 

3) or previous DNA-based analysis in these samples, but only in the active community as shown

in Chapter 2 (Schneider et al., 2015; Kvíderová and Kumar, 2020). Cyanobacteria are also

reported for nitrogen fixation in aquatic environments and soil crusts (Patova et al., 2016; Molot,

2017). Thus, they are studied as a possible supplement for agricultural cultivation of crops like

rice and peas, but have not been mentioned in oil palm related studies so far (Bidyarani et al.,

2016; Chittapun et al., 2018; Peng and Bruns, 2019). Approximately 5% of all detected
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nitrogenase genes in oil palm soils in the metagenome dataset originated from Cyanobacteria. 

Considering that Cyanobacteria only showed a notable increase of abundance in oil palm soils, 

it is indicated that a combination of higher light availability and fertilizer input supported 

cyanobacterial abundance.  

Figure 6.1: Changes of bacterial phyla abundances in rainforest samples and different land use systems obtained 
from metagenomic shotgun sequencing (Chapter 3) and 16S rRNA transcript derived amplicons (Chapter 2). 
Different phyla are shown as relative abundances of the respective dataset. Phyla with abundances <1% were 
clustered as “rare taxa”.  
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In the oil palm management experiment, community compositions did not differ among 

different treatments, but further supported previously observed community structures in 

managed oil palm soils of this study and previous studies (Chapter 4) (Schneider et al., 2015; 

Tripathi et al., 2016). 

6.1.2 Differences between RNA-based marker gene analysis of the active 

community and DNA-based entire community analysis by metagenomic shotgun 

sequencing 

Most community analyses are based on DNA. These analyses are easier to handle than RNA 

due to the template stability but also include sequences derived from dormant or even dead cells. 

Thus, DNA-based studies provide no information on which members of the microbial 

community are in an active state (Urich et al., 2008; Wemheuer et al., 2012). The active 

community assessed via environmental RNA could be different in structure. The provided study 

on the effects on the active bacterial community (Chapter 2) is related to the study by Schneider 

et al. (2015), which analysed the microbial communities in same plots via DNA-based 16S 

rRNA gene analysis. . It should be noted, that the study by Schneider et al. (2015) employed a 

different sequencing technology compared to this study (454 pyrosequencing), different sets of 

primers and different bioinformatic data analysis approaches. Considering these limitations of 

comparison, similarities in community structure appear stable across different methods. 

Notably, some taxa which were heavily affected by rainforest conversion at DNA level, showed 

less response at RNA level. The abundant Burkholderiales, while still decreasing in abundance 

with higher land use intensity, showed lower abundances in Chapter 2 compared to Schneider 

et al. and lower decreases in abundance in the active community. Rhizobiales were generally 

more abundant in the active community (Chapter 2) than in the DNA-based metagenome dataset 

(Chapter 3) with higher abundance decreases (from forest to land uses), indicating a higher 

activity of Rhizobiales than previously assumed. 

6.1.3 Community compositions and taxonomic assignments can differ between 

marker gene and metagenome analysis due to sequence characteristics and the 

chosen database 

The two studies regarding rainforest conversion (Chapter 2 and 3) revealed some differences in 

taxonomic community structure. Although community structures were roughly similar, some 
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groups were more affected by the two different approaches than others. Frankiales of the 

Actinobacteria are abundant in amplicon-based studies but were very rare (less than <1%) in 

the direct sequencing derived dataset. Both studies were conducted using different 

methodological approaches and databases. The active bacterial community (Chapter 2) was 

analysed by using RNA-based 16S rRNA marker gene analysis with the SILVA database (Quast 

et al., 2012) as reference. Metagenome analysis (Chapter 3) was performed by metagenomic 

shotgun sequencing and taxonomy classification with the nucleotide (nt) and non-redundant (nr) 

NCBI BLAST databases (Federhen, 2015).  

Differences in abundance between the two chapters, as mentioned for Frankiales, are caused by 

characteristics of the analysed sequences and the completeness of the chosen database. Genes 

used as markers are characterized by a mixture of conserved regions as well as variable regions 

(Nossa et al., 2010). Marker genes are amplified by PCR prior to sequencing and thus only 

contain sequences from taxa covered by the chosen primers. Additionally, amplification by PCR 

could introduce an amplification bias, as it cannot be ruled out that some sequences are less 

amplified than others. Metagenomic shotgun sequencing is not restricted to marker genes and 

sequences are not previously amplified by PCR, which poses advantages and challenges on its 

own. An advantage is that amplification biases or limitations of chosen primers, as in marker 

gene analysis, are avoided.  However, since every available sequence is included, not all match 

the criteria for marker genes and might be classified inaccurately due to similarities among 

different taxonomic groups. This was evident by the high fractions of unclassified sequences in 

Chapter 3 during analysis of metagenomic shotgun data from the rainforest conversion 

experiment. Furthermore, library construction prior to sequencing possibly introduces 

abundance biases as well, for instance by indexing steps. These indices are attached to each 

sequence prior to sequencing and multiplied by PCR in order to identify the sample origin of 

each sequence afterwards, since many samples are processed and sequenced at the same time. 

Therefore, these errors might occur in a similar manner as in PCRs for amplicon generation. 

Another fact to consider is the unequal distribution of gene copy numbers of the 16S rRNA gene 

within a genome. It has been shown that the number of gene copies within a genome differ 

between taxonomic groups, possibly causing higher counts of sequences for taxa with higher 

copy numbers (Crosby and Criddle, 2003). Copy numbers of rRNA and tRNA genes can be 

checked (for instance by rrndb (Klappenbach et al., 2001)) if complete genomes of the targeted 

taxa are available and then normalized accordingly to enable comparisons between taxonomic 

groups (Lee et al., 2008; Louca et al., 2018). The taxa Rhodospirillales, which were highly 

abundant in this study, have a higher 16S rRNA gene copy number than Rhizobiales (Table 6.1). 
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The latter were also abundant in metagenomes, whereas Rhodospirillales were less abundant 

compared to marker gene studies. However, if normalization profiles are not complete because 

of a lack of available genomes of some taxa present in the analysed community, an uneven 

normalization could not eradicate the possibly present bias. Instead, another bias would be 

introduced, further influencing the outcome of analysis. Thus, normalization of gene copy 

numbers is still a method in development that needs to be evaluated for actual effectiveness 

prior to usage for every individual case.  

Other sources of differences originate from sequence processing and analysis. It is important to 

consider that different taxonomy structures are used and available among different databases. 

Acidobacterial subgroups are organized as orders in the SILVA database taxonomy, whereas in 

the NCBI database they are not assigned to a regular taxonomic level but sorted within 

unclassified taxa of Acidobacteria, causing differences at order level as seen in the presented 

results (Figure 6.1).  

Probably the most crucial difference between the two methods is the used reference database. 

In this study, the nt and nr NCBI genome databases were used for taxonomic classification of 

metagenomic sequences (Chapter 3) and the SILVA database for marker gene analysis (Chapter 

2, 4 & 5). Full genome databases like the NCBI databases harbour information not only on 

taxonomic identities, but on functional genes as well, unlike marker gene focussed databases 

like the SILVA database. Thus, these databases can be used for functional gene analysis and 

combinations of taxonomy and functionality. However, full genomes are harder to obtain and 

curate than marker gene sequences. Consequently, specialized marker gene databases like 

SILVA (Quast et al., 2012) or Greengenes (McDonald et al., 2012) provide less sequences in 

total, but more entries per gene and organism for taxonomic classification. The before 

mentioned Frankiales are well described in the SILVA database, but only 6 genomes are 

available in the NCBI database (Table 6.1). It is possible, that sequences in the metagenome 

dataset belonging to Frankiales simply did not match a reference sequence in the database 

because of no available match in the few genomes. 

Advantages of metagenomic shotgun sequencing for taxonomic classification are sequencing 

depth, avoidance of primer and PCR bias as well as consideration of all available sequences. In 

contrast, marker gene analysis only considers sequences suitable as markers and is relying on 

more specialized databases but provides taxonomic classification with a higher resolution. 
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Table 6.1: Statistics of selected bacterial orders regarding available genomes 
in the NCBI database, 16S rRNA gene sequence entries in the SILVA database 
(version 128) as well as mean 16S rRNA gene copy numbers according to 
rrndb (accessed in March 2020). 

Taxonomic 
Order 

Genomes 
available 

Average 16S rRNA 
gene copy number 

Database 
entries 

Acidobacteriales 17 1.3 ± 0.5 3,099 
Frankiales 6 2.3 ± 0.5 3,098 
Rhizobiales 475 2.8 ± 1.4 37,547 
Burkholderiales 1,218 3.5 ± 1.7  74,711 
Rhodospirillales 119 4.5 ± 2.2 11,693 
Myxococcales 32 3.3 ± 0.8 4,390 

It is still under debate whether metagenomic shotgun sequencing or amplicon-based community 

analysis is more accurate for taxonomic classification. The ongoing development and 

improvement of databases and classification methods did not reach a point where the complexity 

of soilborne communities can be unravelled completely (Tessler et al., 2017; Breitwieser et al., 

2019; Rausch et al., 2019). This study emphasizes the possible differences when comparing 

different databases and methods but also shows that broader patterns are observed across 

different methods. 

6.2 Effects of rainforest conversion on microbial diversity 

Rainforest conversion is accompanied with drastic reductions of biodiversity at several trophic 

levels (Drescher et al., 2016; Rembold et al., 2017). Contrary to these observations, several 

studies analysing tropical forest conversion to rubber and oil palm plantations in Southeast Asia 

and Central America, based on 16S rRNA gene analysis, reported higher microbial diversity 

values or no diversity changes in converted land use systems (Carney et al., 2004; Tripathi et 

al., 2012; Lee-Cruz et al., 2013; Schneider et al., 2015). It has been suggested, that bacterial 

diversity is positively correlated with pH in soils, which has been affected by land use 

management practices. Furthermore, these proposed connections between pH and microbial 

diversity have been discussed in other studies as well (Lauber et al., 2009; Zhalnina et al., 2015). 

6.2.1 Results of biodiversity analysis are influenced by the chosen method 

In this study, effects of rainforest conversion to managed land use systems were investigated by 

analysis of the active bacterial community with RNA derived 16S rRNA gene sequences 

(Chapter 2) and the entire community by metagenomic shotgun sequencing (Chapter 3). 
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Schneider et al. (2015) previously showed a significant increase of soil bacterial diversity from 

rainforest to plantations, which could not be shown for the active community of the same plots 

in this study. These differences could be explained by dormant organisms, detected during 

DNA-based analysis, or possibly even relic DNA. However, metagenomic shotgun analysis 

showed decreasing microbial diversity from forest to rubber plantations (Chapter 3). A higher 

sequencing depth provided by metagenomic shotgun sequencing also covers a larger proportion 

of the analysed community and provides quantitative results (Jovel et al., 2016; Brumfield et 

al., 2020). In principle, metagenomic shotgun reads cover each gene within a sample, including 

genes or non-coding regions that are not well suited for taxonomic identification (as discussed 

in 6.1.3). For example, the presence of highly conserved gene regions in the metagenomic reads 

could lead to classification errors (Rausch et al., 2019). Furthermore, 16S rRNA genes work 

well as taxonomy marker, since they contain hypervariable regions that are flanked by 

conserved regions. Furthermore, marker gene databases like SILVA (Quast et al., 2012) or 

Greengenes (McDonald et al., 2012) contain sequences from millions of species, whereas 

genome databases contain genomes of tens of thousands of species (Breitwieser et al., 2019). 

Marker gene analysis provided superior results regarding diversity assessment and taxonomic 

classification, which is likely due to higher suitability of the marker gene derived sequences for 

taxonomic classification as well as a better curated marker gene database. In this study, a 

significant difference of beta diversity was not detected for the active bacterial community by 

comparing land use systems with rainforest samples (Chapter 2). The only significant bacterial 

diversity change was recorded from rainforest to rubber land use in the metagenomic shotgun 

dataset (Chapter 3). In total, comparing the datasets of Chapter 2 and 3 of this study and the 

DNA-based amplicon data from Schneider et al. (2015) the direct metagenome-based approach 

showed generally higher diversity, but contrary trends compared with 16S rRNA amplicon 

sequences (Figure 6.2). Furthermore, a correlation of diversity to increasing soil pH could not 

be identified as proposed by other studies, which were conducted in agriculture related studies 

(Lee-Cruz et al., 2013; Schneider et al., 2015), grassland (Zhalnina et al., 2015) or across 

multiple soil types (Lauber et al., 2009) investigating bacterial communities from soil with 16S 

rRNA gene analyses approaches. Therefore, a general assumption that rainforest conversion to 

intensively managed land use systems significantly affects prokaryotic diversity and/or is 

coupled to increasing soil pH cannot be supported based on the results of this study. It should 

be noted that soil pH differences were on a rather small scale in the mentioned Chapters (ranging 

from 4.09 to 4.7), which could be another reason for the lack of correlation.  
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Additionally, different intensity levels of land use management (Chapter 4) did not show any 

effect on biodiversity. It is possible that the effects of reduced land use intensity appear after a 

longer period of time than at the time of the management experiment presented here (Chapter 

4), which was less than a year.  

Figure 6.2:  Shannon diversity indices of metagenome-based sequences (functional and taxonomic genes; Chapter 
3)) and 16S rRNA amplicon sequences. RNA-based 16S rRNA gene data is taken from Chapter 2 (RNA-based) 
and DNA-based data from Schneider et al. (2015). All used data is visualized along the land use gradient (a) and 
against soil pH (b). Shaded areas indicate value of variance (a) and plot predictions based on a linear model (b) by 
geom-smooth (Wickham, 2016). 

6.2.2 Functional diversity of bacteria and fungi is reduced by rainforest 

conversion 

Taxonomic diversity and community composition are integral parts to describe microbial 

communities. However, microbial functionality and functional diversity are important factors 

for the analysis of community responses to changing environmental conditions as well. 

Functionality and functional potential can only be addressed by methods that include functional 

genes like metagenomic shotgun sequencing and have rarely been addressed in land use 

conversion related studies. 

In this study, functional diversity regarding rainforest conversion was analysed by employing 

Shannon diversity (Chapter 3). Significant decreases were detected for bacteria in all land use 

systems and for fungi in oil palm plantations. The observed effects did not or not entirely 

correspond with taxonomic diversity, emphasizing that taxonomic and functional diversity 

should be addressed separately and are not necessarily correlated. Decreases in functional 
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diversity from rainforest to converted land use systems indicate higher redundancy in forest 

microbial communities with more organism harbouring the same function. This could provide 

a higher overall functional stability in rainforest soils and make the communities in rainforest 

samples less susceptible to environmental changes. It has been suggested before that functional 

diversity is correlated to nutrient content and, unlike taxonomic diversity, not to soil pH (Paula 

et al., 2014). Complementary to that suggestion, soil analysis showed a significant decrease of 

soil iron content and N availability from forest to managed land use systems in the same 

experimental plots (Allen et al., 2015). Fungal taxonomic diversity increased with increased 

land use intensity but fungal functional diversity decreased, indicating the presence of more 

fungal taxa but with redundant functional gene sets, as previously suggested in another study, 

which investigated fungal communities in the same experimental sites by ITS-based amplicon 

analysis (Brinkmann et al., 2019). 

6.3 Affected taxa are tied to changes in soil properties and land use 

management 

Changes of community structure are connected to changes in soil properties caused by land use 

change. Multivariate analysis of the active soil bacterial community (Chapter 2) and the entire 

community (Chapter 3) showed significant correlations with pH, C:N ratio, iron content, 

phosphorous content as well as base saturation in both studies regarding land use conversion. 

Increased soil pH is probably elevated in managed systems by dolomite application (liming). 

Decreased C:N ratios and also changes in soil pH are suspected to be remnants of initial biomass 

burnings during deforestation for agricultural applications, leaving measurable traces for 

decades after the initial burning (Tanaka et al., 2005; Sohng et al., 2017). With soil pH and C:N 

ratio as drivers of the active and dormant community structure, the link between land use 

management and altered soil properties to microbial community structure indicates that the 

measured community structure changes allegedly caused by rainforest conversion were 

introduced by changes in soil properties and partly affected by the initial deforestation via 

burning.  

Additionally, similar clustering patterns were observed  for the active bacterial community 

(Chapter 2) and the metagenome based community (Chapter 3) , indicating that the active 

bacterial community is driven or influenced by the same factors, following the proposed land 

use intensity gradient (rainforest < jungle rubber < rubber < oil palm). The observed clustering 

in multivariate analyses was similar for Archaea and fungi, with soil pH again as best correlation 
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factor. This demonstrates that rainforest conversion not only has direct effects on active and 

entire bacterial communities, but on other domains as well. Furthermore, land use management 

that alters soil properties such as soil pH and C:N ratio is an important factor for the observed 

community composition changes.  

6.4 Impact of rainforest conversion on functional potential 

6.4.1 Nitrogen metabolism and community interactions are negatively affected 

by rainforest conversion 

It has been shown in Chapter 2 and 3 that rainforest conversion changes taxonomic profiles as 

well as microbial diversity and that these changes correlate with altered soil properties. 

Functional profiles were analysed by predicted gene abundances based on 16S rRNA gene data 

for the active bacterial community as well as metagenomic shotgun data for the entire microbial 

community. Due to strong effects of land use management by fertilizer application on related 

soil properties (Allen et al., 2015) and effects on abundances of microbial taxa associated to 

nitrogen and methane metabolism (Chapter 2; Schneider et al., 2015), these metabolisms were 

of particular interest for functional potential analysis (Chapter 3). Additionally, it has been 

hypothesized before that community dynamics in form of motility and interactions could be 

negatively influenced by land use management in a study that used 16S rRNA gene analysis 

and metagenomic shotgun sequencing to analyse effects of logging and conversion to oil palm 

in Borneo (Tripathi et al., 2016). Predicted functional profiles in Chapter 2 were derived from 

16S rRNA transcript-based taxonomic assessment by using Tax4Fun (Asshauer et al., 2015) 

whereas functional potential profiles for microbial communities in Chapter 3 were directly 

derived from metagenomes by employing Kaiju (Menzel et al., 2016) in combination with the 

NCBI database (Federhen, 2015). The predicted functional abundances of nitrogen metabolism-

related genes involved in nitrogen fixation and denitrification were significantly decreased in 

converted land use systems, suggesting a lower potential for nitrogen metabolism in plantations. 

Direct metagenome-derived profiles showed opposite results with higher gene abundances of 

nitrogen fixation and denitrification in oil palm and rubber plantations compared to rainforest. 

Increases in abundances of denitrification genes are supported by reports of positive correlation 

of pH with denitrification rates and higher nitrogen oxide emissions, a biproduct of 

denitrification, which were conducted in the same oil palm soils (Allen et al., 2015; Herold et 

al., 2018). Most of the nitrogen metabolism related sequences derived from Rhizobiales and 
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Burkholderiales, especially in rainforest samples. In the converted land use systems nitrogen 

metabolism related genes were mostly associated to Rhizobiales and unclassified 

Acidobacteriales. Burkholderiales are dominant in rainforest samples, suggesting a key role in 

nitrogen related processes. This pattern shifts in converted land use systems, with more 

sequences originating from Rhizobiales and Acidobacteria. This is further illustrated by 

detected sequences of denitrification genes nirK and nirS. Both genes encode enzymes, which 

are involved in the reduction of nitrite to nitric oxide as part of the denitrification process. Even 

though the function of both genes is similar, the distribution among taxa is different, with nirK 

sequences mostly originating from Rhizobiales in all samples. Similar observations were made 

in another study regarding denitrification potential under different fertilizer regimes in black 

soil (Yin et al., 2015). It was reported that monoculture plantation soils are susceptible to 

nutrient losses also by elevated nitrous gas releases as well (Allen et al., 2015). Nitrogen fixation 

gene abundances also increased and originated from symbiotic Rhizobiales, which is surprising 

as plant diversity in general is decreased in converted land use systems soils. It is indicated that 

for nitrogen metabolism related processes Rhizobiales compared to Burkholderiales play a 

bigger role in converted land use systems than in rainforest soils, which are dominated by 

members of the Burkholderiales. 

Another focus of the metagenome-based analysis of soilborne microbial communities (Chapter 

3) were motility and interaction related genes, represented by flagellar assembly, quorum

sensing, chemotaxis and secretion system related genes. Type IV and Type VI secretion systems

genes were predicted to be higher in abundance in rainforest soils of the active bacterial

community. Most chemotaxis genes showed the same pattern. Functional potential analysed by

metagenomic shotgun sequencing (Chapter 3) provided corresponding results in which the

functional categories bacterial chemotaxis, flagellar assembly, quorum sensing and secretion

systems showed significant abundance decreases with increasing land use intensity from

rainforest to oil palm plantations. Identified flagellar assembly genes mostly originated from

Burkholderiales and Rhizobiales, which decreased in abundance as well. Although a significant

decrease in functional genes can be tied to specific taxa, it seems unlikely that a change in these

genes is driven only by these two orders, since Acidobacteria, increased with land use intensity

and carry flagellar assembly genes. The reduction of present flagellar assembly and quorum

sensing genes in land use samples compared to rainforest points towards a reduction of motility

and swarming potential within the present microbial community in soil. Similar connections of

quorum sensing gene abundance and interaction potential were made in a study targeting

microbiome responses towards infections in bovines but were not made in soil before (Zinicola
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et al., 2015). The reduced motility is accompanied by reduced potential for exchange of nucleic 

acids or pathogenic behaviour, indicated by reductions of type IV and VI secretion system genes 

(Cascales and Cambillau, 2012; Walldén et al., 2012; Guglielmini et al., 2014). Type IV 

secretion systems are used to exchange nucleic acids and genes within a community. A 

decreased capability suggests higher susceptibility to environmental changes, which is 

amplified when assuming less capabilities of motility. Type VI secretion system related genes 

mostly derived from Burkholderiales. Originally, this group has been known for comprising 

pathogens but in recent years also as root nodule symbionts. These symbionts were regrouped 

as Paraburkholderia, apart from the previously known pathogens (Dobritsa and Samadpour, 

2016). This study showed that type VI secretion system genes were negatively affected by 

rainforest conversion and originate from Burkholderiales but the main detected family within 

that order was Paraburkholderia. It is possible that the Paraburkholderia harbour members, 

which are heavily involved in nitrogen metabolism related processes in rainforest soils while 

also being able of pathogenic behaviour through type VI secretion systems (Loong et al., 2019). 

This study provides evidence that functional potential is affected by management practices in 

plantations, leading to higher denitrification potential and drastic reduction of motility and 

interaction potential, mostly associated to members of Proteobacteria. 

6.4.2 Comparing functional predictions based on taxonomy and functional gene 

analysis 

Functional predictions derived from taxonomic community compositions bear some limitations. 

Especially, when a considerable part of the detected community consists of taxa with no or only 

a few available genomes, since available genomes are the basis for used functional profiles, 

which are the basis for calculating the prediction of the tested community (see 6.1.3). As 

mentioned before, soils are very heterogeneous, resulting in highly diverse microbial 

communities (Vos et al., 2013; Kaiser et al., 2016; Fonseca et al., 2018). Environments with 

highly diverse microbial communities are probably more susceptible to biases by functional 

predictions. As a result, functional predictions based on marker gene analyses need to be 

considered with caution with respect to the type of sample. 
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6.5 Effects of varying land use intensity in oil palm and cacao 

Rainforest conversion and the establishment of new agricultural areas introduce drastic changes 

to the present ecosystem. Especially deforestation and land use management practices are 

frequently discussed with respect to damages of biodiversity and the environment (Wilcove et 

al., 2013; Azhar et al., 2017; Darras et al., 2019). Consequently, it is of high interest whether 

established, potentially harmful practices are replaceable by alternative practices. Another 

aspect is whether the stability of the environmental changes and their effects on microbial 

communities are detectable or even reversible upon changes in management.  

In Chapter 4, effects of reduced management practices in oil palm plantations on the soilborne 

bacterial community were analysed. In addition to reduced fertilizer application, mechanical 

weeding instead of herbicide application was tested. DNA-based 16S rRNA gene analysis 

showed no significant differences of bacterial community composition, diversity or measured 

soil properties accompanying the different management practices. In the active (RNA-based) 

community, Candidatus Solibacter and Haliangium showed higher relative abundances 

compared to the entire (DNA-based) community composition. It has been suspected, that 

Candidatus Solibacter might be involved in nitrate reduction, which converts nitrate to nitrite 

(Ward et al., 2009; Pickett et al., 2019). Further details regarding the ecological role of 

Candidatus Solibacter are still rare though, making further evaluation very challenging.  

These results raised the question why no effect of the introduced changes was recorded. It is 

possible that the applied reduced fertilizer amounts (roughly half the amount than regular 

fertilization) were too conservatively chosen to show any effect on the soilborne communities. 

The detected missing effect of a complete lack of herbicide application on the bacterial 

community seems unlikely as an effect on microbial community composition was detected in 

other studies (Guijarro et al., 2018). The oil palm plots for the management study were 

established in November 2016 and soil sampling was done in May 2017. Possibly, the 

introduced changes do not cause measurable differences within that timeframe, since the 

previous management practices were performed for roughly 15 years while the experimental 

treatments were applied for less than a year. Assuming that a reduction of land use intensity 

initiates any sort of change of microbial community composition or diversity, it might take more 

time to produce detectable differences, since the regularly applied management caused stable 

long termed effects. This is further hinted at by detected differences between the active and 

entire community, as RNA-based results can be seen as short termed responses, compared to 

DNA-based results. Another example for how long introduced changes or events are detectable 
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are changes in soil properties after rainforest conversion to plantations by burning. These 

effects, for instance drastic increase in pH, are traceable for many years (Tanaka et al., 2005; 

Allen et al., 2015; Sohng et al., 2017).  

In addition to oil palm management variation, different management intensities in terms of 

herbicide and pesticide usage regarding endophytic bacterial and fungal communities were 

studied in agroforestry cacao cultures (Chapter 5). Similar to the oil palm management 

experiment, bacterial diversity did not change with altered management. However, fungal 

diversity was positively affected by increased management intensity. Instead of management 

intensity, the location of the sampling site was a crucial factor for differences in bacterial 

community composition, possibly connected to differences in canopy cover of the different 

sampling sites. It was hypothesized that shade intensity was a factor that influenced endophyte 

communities, which was suggested before for fungal endophytic communities (Scholtysik et 

al., 2013). This is in accordance with previous assumptions that canopy cover and therefore light 

availability might have a general effect on microbial communities in soil.  

6.6 Conclusions 

This study provided insights into how prokaryotic communities are affected by rainforest 

conversion to managed land use systems. It was shown that soil microbial community 

compositions and functional potential are significantly affected by the conversions. These 

effects diverge for different taxa. Members of the Proteobacteria are more dominant in 

rainforest soils, whereas Acidobacteria are of higher abundance in converted soils. 

Furthermore, it was shown that the active (RNA-based) and dormant (DNA-based) bacterial 

communities are differently affected. In addition to taxonomic profiles, relations between 

bacterial taxa such as Proteobacteria and Acidobacteria and functional gene occurrence were 

unravelled. Management practices and the accompanied changes in soil properties affected not 

only bacterial community composition but also their functional potential. Especially the 

functional potential of metabolisms which are connected to land use management (e.g. nitrogen 

metabolism to applied fertilizer) was affected by rainforest conversion. The taxonomic groups 

who were mostly influenced by these processes, are involved in these metabolic processes. 

Overall, this study demonstrates not only strong effects of rainforest conversion on microbial 

community structures and their functional potential, but the direct connection of land use 

management practices to specific taxa.  With these results as a basis, further research could 
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focus on potential effects of rainforest conversion on functional profiles by employing 

metatranscriptomic approaches. 
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7 

Summary 

Figure 7.1: Schematic summary of main results of the rainforest conversion experiment on bacterial communities 
(Chapter 2 & 3). Land use intensity is shown from left to right with rainforest as reference. For rainforest and 
each land use bacterial taxonomy, diversity and functional potential is shown: Bacterial taxonomy is shown for 
the three most abundant phyla (a) with bubble diameter showing relative abundance and +/- indicating abundance 
changes compared to rainforest. Bacterial diversity is displayed as Shannon diversity index (b) for the active 
community (purple) and entire community (green). Functional potential of motility and interaction related genes 
(c) are displayed by number of flagella and arrows indicating interactions, with red arrows indicating gene
abundance decreases and green arrows indicating gene abundance increases compared to rainforest. Differences
of nitrogen metabolism related processes (c) are shown as boxes containing the reaction and gene name, with
green arrows indicating gene abundance increases compared to rainforest.

In this thesis, the impact of rainforest conversion to the managed land use systems jungle rubber, 

rubber plantation and oil palm plantation on structure and function of soil microbial 

communities was investigated (Figure 7.1). The active bacterial community (RNA-based) was 

investigated by 16S rRNA marker gene analysis (Chapter 2) and the entire community (DNA-

based) by direct metagenome sequencing (Chapter 3). Additionally, different management 

practices were tested for their influence on soilborne bacterial communities in oil palm (Chapter 

4) and endophytic microbial communities in cacao plantations (Chapter 5).
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The main focus of this work was to determine the effects of rainforest conversion to agricultural 

land use systems on soilborne microbial communities by using metagenomic approaches 

(Chapter 2 & 3). The active bacterial community was analysed by 16S rRNA gene amplicon 

analysis in combination with the SILVA database. The communities in all soils were dominated 

by Proteobacteria, Acidobacteria and Actinobacteria. Compared to rainforest reference soils, 

the relative abundance of Acidobacteria and Actinobacteria increased in managed land use 

systems, while Proteobacteria decreased. Ordination analysis showed correlations between the 

detected communities and measured pH and C:N ratios in soil. Functional community predicted 

was predicted from the taxonomic composition and showed a relative abundance decrease of 

nitrogen metabolism and chemotaxis related marker genes from rainforest to the converted land 

use systems. 

In the same experimental setup, direct metagenome sequence analysis was performed in order 

to further investigate microbial community compositions and their functional potential. 

Bacterial diversity did significantly decrease from rainforest to rubber systems and functional 

diversity decreased in both plantation systems. Fungal diversity decreased from rainforest to 

converted land use systems significantly, while fungal functional diversity increased. In 

rainforest soils, Rhizobiales and Burkholderiales were the most dominant bacterial taxa. 

Towards higher land use intensity from rainforest to plantations, the communities shifted to 

Acidobacteria-dominated communities. With increasing land use intensity from rainforest to 

plantations accompanied by higher soil pH values, denitrification and nitrogen fixation potential 

increased and mostly originated from members of the bacterial orders Burkholderiales and 

Rhizobiales. The potential for motility and interaction, in form of flagellar assembly, chemotaxis 

and secretion systems, decreased towards converted land use systems. Genes involved in 

flagellar assembly were mostly connected to Burkholderiales and chemotaxis related genes to 

Acidobacteria. This study showed that community composition and functional potential is 

significantly affected by rainforest conversion. These changes are strongly tied to effects of land 

use management practices such as fertilizer input and alteration of plant diversity on soil 

properties and influence taxa involved in nitrogen metabolism.  

In addition to rainforest conversion, effects of different management practices on bacterial 

communities in oil palm and cacao plantations were analysed. The reduced fertilizer and 

herbicide use in oil palm plantations was investigated based on RNA and DNA-driven 16S 

rRNA gene amplicon analysis. Although differences in bacterial diversity or community 

composition between treatments were not recorded, notable differences in abundance were 

detected between the entire and active community, emphasizing rather short-term effects.  

157



Effects of different management intensities on endophytic bacterial and fungal communities in 

cacao leaves were tested by employing marker gene amplicon analysis. No differences in 

bacterial community composition or diversity were detected between the treatments, whereas 

fungal diversity was positively affected by increased management intensity. The communities 

were more effected by the different sampling site locations than by the treatment  

This study provides new insights into the effects of rainforest conversion to managed land use 

systems on microbial community composition and functional potential in tropical soils. It 

furthermore connected taxonomic profiles with functional potential in this scenario for the first 

time. The results presented here contributed to close the knowledge gap between soil microbial 

community structure and functions that are affected by land use change-induced altered soil 

properties. However, DNA-based functional profiles might differ from gene activity in situ. 

Community activity could be further investigated by combining the results presented here with 

RNA-based metatranscriptomic analyses. 
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