
Cholesterol metabolism in mouse models of Multiple 
Sclerosis 

 
 
 
 
 

Dissertation 
 
 
 
 

for the award of the degree 
 “Doctor rerum naturalium” 

of the Georg-August-Universität Göttingen 
 

within the doctoral program Molecular Medicine 

of the Georg-August University School of Science (GAUSS) 

 

 

submitted by 
Stefan Alfons Berghoff 

 
from Munich 

 
 
 
 
 
 
 
 
 

 
Göttingen, 2020 

 
 

 
  



Thesis Committee 
 
Dr. Gesine Saher (1st Reviewer) 

Department of Neurogenetics  

Max-Planck-Institute of Experimental Medicine 

 

Prof. Dr. Christine Stadelmann-Nessler (2nd Reviewer) 

Institute for Neuropathology 

University Medical Center 

 

Prof. Dr. Alexander Flügel 

Institute for Neuroimmunology and Multiple Sclerosis Research 

University Medical Center 

 

Further members of the Examination Board 

Prof. Dr. Dr. Hannelore Ehrenreich 

Clinical Neuroscience 

Max-Planck-Institute of Experimental Medicine 

 

Prof. Dr. Till Ischebeck 

Department of Plant Biochemistry 

Albrecht-von-Haller-Institute 

 

Prof. Dr. Tiago Fleming Outeiro 

Department of Experimental Neurodegeneration 

University Medical Center 

 

 

 

Date of oral examination: 02.03.2020 



Declaration 
 

I hereby declare that the Ph. D. thesis entitled, “Cholesterol metabolism in mouse 

models of Multiple Sclerosis”, was written independently and with no other sources 

and aids than quoted. 

 

Göttingen, 15.01.2020 

                                                                                                    Stefan Alfons Berghoff 
 



Table of content 

I 
 

Table of content 
List of abbreviations……………………………………………………………………. II 

Summary………………………………………………………………………………... 1 

1. Introduction……………………………………………………………………….. 2 

 1.1 Cholesterol in the CNS………………………………………………….. 2 

  1.1.1 Cholesterol synthesis pathway……………………………...... 2 

  1.1.2 Regulation of cholesterol metabolism………………………... 6 

  1.1.3 Cholesterol transport in the CNS……………………………... 8 

  1.1.4 Neuronal and glial contributions to brain cholesterol……….. 10 

 1.2 Blood-brain barrier………………………………………………………. 13 

  1.2.1 The Neurovascular Unit, Tight junctions and CNS transport 13 

  1.2.2 Blood-brain barrier during neuroinflammation……………..... 17 

 1.3 Multiple sclerosis………………………………………………………… 19 

  1.3.1 Multiple Sclerosis Pathology………………………………....... 20 

  1.3.2 Remyelination in Multiple Sclerosis…………………………… 22 

  1.3.3 Animal models in Multiple Sclerosis research……………….. 24 

2. Publications/Manuscripts………………………………………………………... 30 

 
2.1 

 
Publication 1: Dietary cholesterol promotes repair of demyelinated 
lesions in the adult brain (Berghoff et al., 2017a)…………………..... 30 

 
2.2 

 
Publication 2: Blood-brain barrier hyperpermeability precedes 
demyelination in the cuprizone model (Berghoff et al., 2017b)…….. 58 

 
2.3 

 
Manuscript: Phase and cell-type specific post-squalene sterol 
synthesis coordinates inflammation and remyelination……………… 76 

3. Discussion………………………………………………………………………… 131 

4. References……………………………………………………………………….. 136 

5. Acknowledgements…………………………………………………………….... 160 

6. Publications and presentations…………………………………………………. 162 

7. Own contribution…………………………………………………………………. 164 

8. Curriculum vitae…………………………………………………….................... 173 



Abbreviations 

II 
 

Abbreviations 
ABCA1 ATP Binding Cassette Subfamily A Member 1 

AIF1 Allograft Inflammatory Factor 1 (Iba1) 

ApoE Apolipoprotein E 

AQP4 Aquaporin 4 

BBB Blood-brain barrier 

BEC Brain Endothelial Cell 

CAII Carbonic Anhydrase II 

CC Corpus Callosum 

cKO Conditional Knockout 

Cldn5 Claudin 5 

CNS Central Nervous System 

CX3CR1 C-X3-C Motif Chemokine Receptor 1 

CXCR3 C-X-C Motif Chemokine Receptor 3 

DHCR24 24-Dehydrocholesterol Reductase 

DMHCA N,N-dimethyl-3β-hydroxycholenamide 

EAE Experimental Autoimmune Encephalomyelitis 

FDFT1 Farnesyl-Diphosphate Farnesyltransferase 1 

FGF Fibroblast Growth Factor 

GFAP Glial Fibrillary Acidic Protein 

GFP Green Fluorescent Protein 

HMGCR HMG-CoA reductase 

i.p. Intraperitoneal 

i.v. Intravenous 

IFNβ-1b Interferon beta 

IIDD Idiopathic Inflammatory Demyelinating Disorder 

Il1b Interleukin 1 beta 

LDLR Low Density Lipoprotein Receptor 

LPS Lipopolysaccharide 

LXR Liver X Receptor 



Abbreviations 

III 
 

Mac3 Lysosome-associated membrane protein 2 (CD107b) 

MOG Myelin Oligodendrocyte Glycoprotein 

MRI Magnetic Resonance Imaging 

mRNA Messenger Ribonucleic acid 

MS Multiple Sclerosis 

NOS2 Nitric Oxide Synthase 2 

NVU Neurovascular Unit 

Ocln Occludin 

OL Oligodendrocyte 

OLIG2 Oligodendrocyte Transcription Factor 2 

OPC Oligodendrocyte Precursor cell 

qPCR Quantitative polymerase chain reaction 

scRNA seq. Single-cell RNA sequencing 

SEM Standard error of the mean 

SQS Squalene Synthase 

TC Total Cholesterol 

Tnf Tumor Necrosis Factor 

v/v Volume percent 

w/v Weight per volume 

wt Wildtype 

ZO-1 Zonula Occludens 1  
 



Summary 

 
1 

 

Summary 
The primary origin of brain cholesterol is de novo synthesis due to limited entry 

peripheral cholesterol across the blood-brain barrier (BBB). Most if not all brain cells 

contribute to central nervous system (CNS) cholesterol homeostasis. During 

development, oligodendrocytes produce the majority of cholesterol which is rate-

limiting for myelin biogenesis while in the adult brain the role of individual cell-types in 

cholesterol homeostasis is not well-known. In demyelinating diseases such as 

multiple sclerosis (MS), CNS cholesterol homeostasis is disturbed likely contributing 

to disease. However, limited numbers of studies have addressed the relationship 

between cholesterol availability, cholesterol synthesis, inflammation and 

remyelination. In this study, I could demonstrate that the disruption of the BBB in the 

cuprizone intoxication model of de- and remyelination allows for entry of peripherally 

supplemented cholesterol which supports oligodendrocyte precursor cell (OPC) 

proliferation and differentiation, restores the balance of growth factors and thereby 

creates a permissive environment for remyelination. Further, I could show that 

persistent BBB impairment precedes demyelination characterized by induction of 

inflammatory mediators mainly of astroglial origin. In addition, I assessed the 

contribution of individual cell-types to CNS cholesterol metabolism during 

remyelination. Therefore, cholesterol metabolism during remyelination by tissue 

based and cell type specific sterol gene expression profiling was comprehensively 

analyzed and remyelination efficiency of cell type specific conditional cholesterol 

synthesis mutants during acute and chronic remyelination evaluated. Here, it could 

be shown that (I) chronic remyelination is driven by the capability of oligodendroglia 

to synthesize cholesterol, (II) cholesterol synthesis ablation in phagocytes prevents 

accumulation of the Liver X receptor (LXR) ligand desmosterol leading to chronic 

activation and lipid export deficiency thereby preventing remyelination, (III) 

exogenous cholesterol precursor therapy reduces disease severity by inducing LXR 

activation through increased abundance of desmosterol suppressing inflammation, in 

addition to directly supporting myelination in oligodendroglia and (IV) cholesterol 

precursor administration can be integrated in combination therapy. Together, my 

studies shed light on cholesterol metabolism during remyelination and provide 

evidence for lipid based therapy in promoting repair after demyelinating episodes. 
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1. Introduction 
1.1  Cholesterol in the CNS 
The brain is the most cholesterol rich organ and harbors around 20-25 % of the total 

amount of body cholesterol (Bjorkhem and Meaney, 2004). Within the brain, 70 to 

80% of cholesterol is located in myelin that is formed by oligodendrocytes and 

insulates axons to facilitate fast nerve conduction velocity (Saher et al., 2011). 

Cholesterol metabolism in the CNS is essentially independent from the periphery due 

to the blood brain barrier (BBB), which is established around embryonic day 14 in 

mice (Hagan and Ben-Zvi, 2015). Hence, most of the brain cholesterol is synthesized 

locally by de novo synthesis, a complex and resource-intense process with highest 

rates of about 250 μg per day during postnatal myelination (Dietschy, 2009). 

Following brain maturation cholesterol synthesis remains at a low stable production 

rate of 25-35 μg per day with a low turnover rate, resulting in a half-life of around 6 

month in rodents and up to 5 years in humans (Bjorkhem et al., 1998; Dietschy, 

2009). Most if not all brain cells contribute to the CNS cholesterol homeostasis by cell 

autonomous synthesis. Importance of physiologic brain cholesterol metabolism is 

highlighted by defects related to cholesterol synthesis and processing pathways 

leading to maturation defects and life threatening disorders (Bjorkhem et al., 2010; 

Dietschy, 2009; Martin et al., 2014; Orth and Bellosta, 2012; Saher and Stumpf, 

2015; Segatto et al., 2019). In addition, several studies have linked pathology in 

neurodegenerative diseases to altered brain cholesterol metabolism. However, in the 

adult brain and during neurodegeneration, the cell type specific extent of cholesterol 

synthesis still remains largely unknown. 

 

1.1.1 Cholesterol synthesis pathway 
Cholesterol synthesis is an energy expensive anabolic process consuming 18 ATP 

and 25 reduction equivalents (e.g. NADPH) that involves over 20 enzymes  

(Cerqueira et al., 2016; Kovacs et al., 2007; Liscum, 2002; Mazein et al., 2013; Saher 

et al., 2011). In all mammalian nucleated cells synthesis of the 27 carbon compound 

cholesterol starts from acetyl-CoA that is generated by cytoplasmic, mitochondrial, or 

peroxisomal oxidation (Chakrabarti et al., 2017) (Figure 1). HMG-CoA synthase 

(HMGCS) encoded by cytosolic Hmgcs1, catalyze the irreversible condensation of 
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acetyl-CoA and acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) 

which is the first reaction of the isoprenoid biosynthesis pathway. HMG-CoA dictated 

to cholesterol synthesis is mainly formed by cytosolic HMGCS1, although functional 

relevance for sterol synthesis by HMGCS1 in peroxisomes has been suggested 

(Faust and Kovacs, 2014; Olivier and Krisans, 2000). Mitochondrial HMGCS2 is the 

rate-limiting enzyme for ketogenesis in liver cells that provides fuel for extrahepatic 

tissues (Grabacka et al., 2016; Kovacs et al., 2007). However, mitochondrial 

HMGCS2 mediated cholesterol-convertible HMG-CoA production could be shown in 

cell culture (Ortiz et al., 1994). Rate-limiting for sterol synthesis is the conversion of 

HMG-CoA to mevalonate by HMG-CoA reductase (encoded by Hmgcr), mainly 

anchored to the endoplasmic reticulum or in lesser abundance to peroxisomes 

(Breitling and Krisans, 2002; Kovacs et al., 2007). HMG-CoA reductase is one of the 

most regulated enzymes and can be targeted by competitive inhibitors (statins) which 

have become a breakthrough in the management of dyslipidemia (Endo, 2010; 

Goldstein and Brown, 1990). Following mevalonate synthesis, ATP dependent 

conversion by mevalonate kinase (MVK) leads to the formation of mevalonate 5-

phosphate that is further converted to the isoprenoid geranylgeranyl pyrophosphate 

(Geranyl-PP) via Phosphomevalonate kinase (PMVK), Diphosphomevalonate 

decarboxylase (MVD), Isopentenyl-diphosphate delta-isomerases (IDI1, IDI2) and 

Geranylgeranyl pyrophosphate synthase (GGPS1) or Farnesyl diphosphate synthase 

(FDPS). GGPS1 and FDPS catalyze two reactions that ultimately lead to the 

formation of the isoprenoid farnesyl diphosphate. Synthesized pre-squalene 

isoprenoid precursors (isoprenoid lipids) are important for post-translational 

modification of proteins (protein prenylation), facilitating protein-protein interaction, 

protein stability and thereby localization of proteins to membranes e.g. small GTP-

binding proteins (Park et al., 2014; Wang and Casey, 2016). In addition, FDPS leads 

to the formation of essential precursors for synthesis of dolchiols and ubiquinone 

(Coenzym Q10) (Cantagrel and Lefeber, 2011; Faust et al., 1979) (Figure 1). Of note, 

there is conflict about the subcellular localization of enzymes converting mevalonate 

to farnesyl pyrophosphate (Farnesyl-PP). Although data suggest peroxisomal 

localization, cytosolic localization especially for the three ATP dependent enzymes 

MVK, PMVK and MPD are established (Biardi et al., 1994; Hogenboom et al., 2004a, 

b; Kovacs et al., 2007; Wang et al., 2016b). Giving the possibility of shared 
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localization, loss of PEX5 in mice leading to absence of functional peroxisomes, does 

not affect cholesterol synthesis (Hogenboom et al., 2002). The first committed step to 

cholesterol synthesis is catalyzed by farnesyl-diphosphate farnesyltransferase 1 

(FDFT1, Squalene synthase) forming the 30 carbon terpene squalene by two-step 

dimerization of two farnesyl diphosphate molecules. FDFT1 is highly regulated and 

the promoter region of the encoding gene harbors multiple binding sites for sterol 

regulatory element-binding proteins (SREBPs). Targeting FDFT1 has been 

suggested as alternative lipid lowering strategy, circumventing side effects induced 

by blocked synthesis of isoprenoid precursors by inhibiting HMG-CoA reductase 

(Charlton-Menys and Durrington, 2007). To date, only one FDFT1 inhibitor has been 

tested in humans and failed in clinical trials, due to hepatic safety issues (Stein et al., 

2011). By two-step cyclization via squalene epoxidase (SQLE) and lanosterol 

synthase (LSS), squalene is converted to lanosterol which is a branching point of the 

cholesterol biosynthesis pathway (Buhaescu and Izzedine, 2007). Conversion of 

lanosterol to the final product cholesterol is a complex multistep process (Figure 1). 

Two pathways separated by the intermediate that undergoes C24 double bound side 

chain reduction via 24-dehydrocholesterol reductase (DHCR24), have been 

proposed. Therefore, conversion of lanosterol by lanosterol 14 alpha-demethylase 

(CYP51) is termed Bloch pathway, forming a series of intermediates with unsaturated 

side-chain  resulting in the final reduction of the intermediate desmosterol to 

cholesterol (Bloch, 1965). Alternatively, the Kandutsch-Russel pathway has been 

proposed, starting with formation of dihydrolanosterol via DHCR24 mediated 

reduction of lanosterol, creating several intermediates with saturated side chain and 

proceeding by the final conversion of 7-dehydrocholesterol to cholesterol through 7-

dehydrocholesterol reductase (DHCR7) (Kandutsch and Russell, 1960a, b). 

Importantly, recent studies support tissue and cell-type specific use of these two 

pathways or even alternative branching points. Therefore, within brain tissue a hybrid 

pathway termed modified Kandutsch-Russel pathway has been proposed starting 

from side-chain reduction of zymosterol (Mitsche et al., 2015) (Figure 1). However, 

cholesterol formation from lanosterol requires the terminal cholesterol synthesis 

enzymes DHCR7 and DHCR24 that potentially even interact forming a “cholesterol 

metabolon” (Luu et al., 2015).  



Cholesterol in the CNS 

 
5 

 

 
Figure 1: Schematic representation of cholesterol synthesis pathway.  
Diagram depicting most of the enzymes involved in isoprenoid and sterol 
biosynthesis and their intracellular localization (colors).  Isoprenoid lipids important 
for post-translation protein modification and generation of dolichols and ubiquinone 
are highlighted. Bloch, Kandutsch–Russell and modiefied Kandutsch–Russell 
pathway for the enzymatic conversion of squalene to cholesterol are indicated (sterol 
synthesis pathway) as well as enzymes mediating oxysterol synthesis and the LXR 
ligand function of desmosterol both involved in regulation of cholesterol metabolism.  
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1.1.2 Regulation of cholesterol metabolism  
End-product inhibition of cholesterol synthesis has been already described in 1933 

(Schoenheimer and Breusch, 1933). Since then, a complex regulatory machinery not 

only targeting the rate-limiting enzyme HMG-CoA reductase but also other enzymes 

of the cholesterol synthesis pathways have been described. Cholesterol metabolism 

is controlled by several mechanisms including regulation of mRNA transcripts, protein 

degradation and enzyme activity of important cholesterol homeostasis proteins (Luo 

et al., 2019). For instance, this combination can impact several hundred fold 

differences on protein abundance of HMG-CoA reductase (Nakanishi et al., 1988). 

The identification of a conserved motif regulating HMG-CoA reductase stability 

termed sterol-sensing domain (SSD) has led to the discovery of several sterol-related 

proteins (Goldstein et al., 2006; Theesfeld et al., 2011).  

 

One important master regulator controlling sterol synthesis is the sterol regulatory 

element-binding protein 2 (SREBP-2), an ER membrane anchored inactive 

transcription factor that binds the SSD harboring SREBP cleavage-activating protein 

(SCAP) (DeBose-Boyd, 2008; Goldstein et al., 2006; Ye and DeBose-Boyd, 2011) 

(Figure 2). SREBP-SCAP complex is locked in the ER by the retention proteins 

INSIG-1 and INSIG-2 (Insulin Induced Gene 1 and 2) that bind to SCAP when ER 

cholesterol levels exceed 5mol% of total ER lipids  (Radhakrishnan et al., 2008). In 

contrast to SCAP, binding of INSIGs to HMG-CoA reductase induces ubiquitination 

and degradation. Under low cholesterol conditions, INSIG interaction with SREBP-

2/SCAP complex is lost leading to coatomer II (COPII) vesicle mediated translocation 

of the SREBP-2-complex to the Golgi where SREBP-2 undergoes proteolytic 

cleavage by site-1 protease (S1P) and site-2 protease (S2P). Soluble NH2-terminal 

fragments are able to enter the nucleus and bind to sterol regulatory elements (Biardi 

et al., 1994)  of target genes inducing expression of several cholesterol synthesis 

genes (Sharpe and Brown, 2013) (Figure 2).  Beside transcriptional control of 

cholesterol synthesis via SREBP2, a family of transcription factors, namely the Liver 

X receptors (LXRs) have been implicated as major regulators of cholesterol 

metabolism (Baranowski, 2008; Courtney and Landreth, 2016; Dietschy, 2009). Of 

those ligand-activated transcription factors, LXRα (NR1H3) and LXRβ (NR1H2) have 

been shown to induce expression of genes harboring LXR response elements 
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Figure 2. Master sterol synthesis regulator SREBP2. 
Sterol regulatory element- binding protein 2 (SREBP2) localized to the ER, interacts 
with SREBP-cleavage activating protein (SCAP). Under cholesterol starvation, 
coatomer II (COPII) binds SCAP allowing ER exit of the SCAP–SREBP complex that 
is anchored to the Golgi. SREBP2 undergoes proteolytic cleavage by site 1 protease 
(S1P) and S2P in the golgi, releasing the soluble N-terminal domain that enters the 
nucleus, binds to the sterol regulatory element (Biardi et al., 1994) in the promoter of 
target genes thereby inducing gene transcription of e.g. cholesterol synthesis genes 
(modified from Luo et al., 2019).  
 
(LXREs) after heterodimerization with isoforms of the retinoid X receptor (RXR).  

When cholesterol levels increase, natural LXR ligands are formed by conversion of 

cholesterol to mono-oxygenated cholesterol derivates (Oxysterols) via several 

hydroxylases (CYP46A1, CH25H, CYP7b1, CYP27a1) (Figure1) (Huang, 2014). 

Following ligand binding to LXR, corepressors are released and coactivators 

recruited (Hu et al., 2003). LXR activation induces expression of genes, regulating 

cholesterol efflux e.g. ATP binding cassette subfamily A member 1 (ABCA1) 

(Sparrow et al., 2002) and leads to degradation of the cholesterol uptake low density 

lipoprotein receptor (LDLR) (Zelcer et al., 2009). In addition, suppression of 

cholesterol synthesis genes such as FDFT1 and CYP51 (Wang et al., 2008) and 

SREBP signaling in cell specific manner has been reported (Muse et al., 2018). In 

addition to oxysterols, the cholesterol intermediate desmosterol exhibits LXR agonist 

activity, indicating additional regulatory levels of cholesterol metabolism by sterol 

intermediates (Yang et al., 2006). Cholesterol in the metabolic active pool can 

alternatively be controlled by esterification via acyl-CoA cholesterol acyltransferase 1 

(ACAT1, also named SOAT1) (Chang et al., 2009; Fujimoto and Parton, 2011). In 
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cells with excess cholesterol, SOAT 1 mediates formation and lipidation of lipid 

droplets that emerge from the ER thereby forming a storage organelle for lipids 

(Olzmann and Carvalho, 2019; Walther and Farese, 2012). Lipid droplets are highly 

dynamic organelles in close contact with other cellular organelles and can be used as 

a source for cholesterol by mobilization of cholesterol esters via different lipases e.g. 

hormone-sensitive lipase (LIPE), hydrolases e.g. neutral cholesterol ester hydrolase 

(NCEH1) or esterases e.g. carboxylesterase 1 (CES1) (Sakai et al., 2014; Walther 

and Farese, 2009; Xu et al., 2018). 

1.1.3 Cholesterol transport in the CNS 
Within the CNS, cholesterol is transferred via HDL-like lipoprotein particles composed 

of a lipid core of esterified cholesterol and triglycerides (TG), surrounded by 

phospholipids, unesterified cholesterol, and apolipoproteins.  The major 

apolipoprotein forming lipoprotein particles produced in the CNS is apolipoprotein E 

(ApoE). In cerebrospinal fluid (CSF), distinct lipoprotein classes have been 

suggested, that are distinguished  by their different abundance of apolipoproteins 

such as ApoE, ApoJ, ApoD, ApoH and ApoA1I/II, their size (10-22nm) and lipid-

protein composition (Koch et al., 2001). It has been proposed, that ApoA1 is not 

synthesized within the brain and transferred from the plasma via scavenger receptor 

class B type 1 (SR-BI) in addition to being involved in active lipid transfer at the 

blood-brain barrier (BBB) via phospholipid transfer protein (PLTP) (Balazs et al., 

2004; Chirackal Manavalan et al., 2014; Linton et al., 1991). Similar to peripheral 

cholesterol traffic, CNS lipoprotein metabolism involves classical proteins like 

lipoprotein lipase (LPL), lecithin-cholesterin-acyltransferase (LCAT), cholesterol ester 

transfer protein (CETP), ABCA1 and LDL receptor family members. Lipidation of 

ApoE-containing lipoprotein particles is mediated by ATP-binding cassette 

(Rabchevsky et al.) transporters like ABCA1 which is essential for normal CNS 

functioning (Karasinska et al., 2009; Wahrle et al., 2004). Maturation of secreted 

lipoprotein particles involves remodeling enzymes like LCAT and CETP, responsible 

for cholesterol esterification and lipid transfer between particles, leading to formation 

of larger spherical HDL particles (Albers et al., 1992; Vance and Hayashi, 2010). 

Several receptors, transporters and enzymes mediate cellular uptake of lipoprotein 

lipids within the CNS (Mahley, 2016; Wang and Eckel, 2014). In the brain, members 
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of the LDL receptor family orchestrate receptor-mediated endocytosis of lipid-rich 

lipoprotein particles. This family consists of several receptors including the well-

established LDLR that led to the discovery of an internalization and degradation 

pathway following binding of low density lipoprotein (LDL) in peripheral tissue 

(Goldstein and Brown, 2009; Strickland et al., 2002). Incorporation of lipoprotein 

derived lipids is mediated by LPL facilitating uptake via the LDL receptors and 

necessary for TG hydrolysis (Loeffler et al., 2007).  

Within the CNS several members of the LDL receptor family like LDLR, very low 

density lipoprotein receptor (VLDLR) and low density lipoprotein receptor related 

protein 1 (LRP1) have been described with important functions for normal brain 

development (Zhao et al., 2007). In addition, members of the scavenger receptors 

SR-BI, SR-BII and SR-BIII (CD36) as well as the ApoB-receptor (APOBR) have been 

identified. Interestingly, lipoprotein receptors are also involved in signaling pathways 

independent of lipid uptake. For instance, reelin induces downstream signaling by 

binding to the VLDLR and APOE receptor 2 (APOER2) and interference impacts 

neuronal development of the cerebral cortex (Herz and Chen, 2006; Trommsdorff et 

al., 1999). Following lipid receptor mediated endocytosis, lipid receptors are recycled 

to the plasma membrane and lipoprotein particles shuttle to the endo/lysosome 

where cholesterol esters are hydrolyzed (Brown and Goldstein, 1979; Fazio et al., 

2000). Two cholesterol binding proteins, Niemann-Pick, Type C1 (NPC1) and NPC2 

are critically involved in sorting of endosomal cholesterol (Carstea et al., 1997; 

Pfeffer, 2019). Genetic mutations of either of these proteins causes Niemann-Pick 

type C (NPC) a fatal neurodegenerative lysosomal storage disorder most commonly 

diagnosed during childhood and histopathologically characterized by deposits of 

lipids, including sphingomyelin, cholesterol, and gangliosides (Carstea et al., 1997; 

Evans and Hendriksz, 2017). NPC1 and NPC2 are thought to act together in a two-

step mechanism, enabling egress of cholesterol from the lysosomal compartment to 

the ER, plasma membrane or other cell organelles (Chu et al., 2015; Infante et al., 

2008; Kanerva et al., 2013; Subramanian and Balch, 2008). In addition, ABCA1 

mediated efflux of cholesterol seems to be connected to functional NPC-protein, 

underlining the importance of these traffic proteins (Boadu and Francis, 2006; Boadu 

et al., 2012; Subramanian and Balch, 2008).  
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1.1.4 Neuronal and glial contributions to brain cholesterol 
Of the entire pool of unesterified brain cholesterol 70% locates to myelin, while 20% 

are attributed to glia cells and 10% to neurons (Bjorkhem and Meaney, 2004; 

Dietschy and Turley, 2004). Astrocytes have been considered to be the major 

producers of cholesterol in the adult brain (Petrov et al., 2016) (Figure 3) indicated by 

high basal mRNA transcript levels of cholesterol synthesis genes in vivo (Zhang et 

al., 2014), being the major brain cell population positive for ApoE-EGFP in transgenic 

mice (Xu et al., 2006), shuttling cholesterol to neurons in cell culture (Mauch et al., 

2001) and rescuing cholesterol deficient neurons by upregulating cholesterol 

synthesis and transport (Funfschilling et al., 2012). In addition, disruption of astrocyte 

cholesterol metabolism in Huntington disease limits the supply to neurons thereby 

contributing to pathology (Valenza et al., 2015). The importance of astrocyte lipid 

metabolism could be shown, by genetically interfering with lipid and cholesterol 

synthesis deleting SCAP or SREBP-2 in astrocytes during development (Camargo et 

al., 2012; Camargo et al., 2017; Ferris et al., 2017; van Deijk et al., 2017). For 

instance, SCAP deficiency in astrocytes results in impaired brain development and 

hypomyelination that could be rescued by a lipid enriched diet (Camargo et al., 2012; 

Camargo et al., 2017). However, SCAP and SREBP-2 signaling is in addition to 

cholesterol metabolism involved in fatty acid homeostasis (Espenshade, 2006; Ye 

and DeBose-Boyd, 2011). Therefore, studies specifically targeting cholesterol 

metabolism in astrocytes are needed to unravel cholesterol contribution not only in 

the adult brain, but also during development.  

It has been shown, that neuronal cholesterol synthesis is indispensable during 

maturation, although horizontal transfer either by microglia or astrocyte supports 

cholesterol synthesis deficient neurons (Funfschilling et al., 2012). In addition to that, 

astrocytes support neurons by transferring ApoE-cholesterol  in vitro, although 

conclusive in vivo data under heathy conditions are missing (Mauch et al., 2001). 

Although controversial, opposing to astrocytes that seem to synthesize cholesterol 

via the Bloch pathway indicated by high levels of desmosterol, neuronal cholesterol 

synthesis has been linked to the Kandusch-Russel pathway (Dietschy, 2009; Nieweg 

et al., 2009; Pfrieger and Ungerer, 2011). Given the high metabolic rate of neurons, it 

has been suggested that constant cholesterol turnover via the neuron specific 

cholesterol-24-hydroxylase (CYP46A1) converting cholesterol to  24S-
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hydroxycholesterol (24OHC) which is able to pass the BBB, accounts for the 

elimination of the majority of brain cholesterol (Bjorkhem et al., 2019; Dietschy and 

Turley, 2004; Lund et al., 1999; Xie et al., 2003) (Figure 3). Although direct in vivo 

evidence of neuronal cholesterol elimination is still missing, correlation of serum 24-

OHC levels and neuronal pathology under neurodegenerative conditions may 

support this model (Bjorkhem et al., 2019; Hughes et al., 2013). Interestingly, 

cholesterol synthesis as well as 24-OHC conversion seems to be restricted to the 

neuronal somata and is not found in the narrow ER of axons (Ramirez et al., 2008; 

Ramirez and Couve, 2011; Terasaki, 2018; Vance et al., 1994). Supporting this, 

sciatic nerve crush induces an ER generated retrograde injury signal that is 

transported to the nucleus, initiating axon regeneration by increasing cholesterol 

synthesis (Ying et al., 2015). During early postnatal development, cholesterol 

synthesis in oligodendrocytes is rate-limiting for myelination. Loss of cholesterol 

synthesis in oligodendrocytes seems to be partially compensated by other glial cells 

but leads to persistent reduction of myelin cholesterol (Saher et al., 2005). During this 

critical period, CNS cholesterol synthesis rate closely correlates with cholesterol 

content of the brain. In addition, postnatal oligodendrocytes selectively express LDLR 

and VLDLR during myelination suggesting additional import of cholesterol from glia 

cells e.g. astrocytes (Zhao et al., 2007). In the adult brain, oligodendrocytes show 

second highest mRNA transcript levels of genes related to cholesterol synthesis and 

transfer (Zhang et al., 2014). Therefore, it has been suggested that oligodendrocytes 

rely on their own cholesterol synthesis for myelin maintenance although direct in vivo 

evidence is missing (Martin et al., 2014). The contribution of other glial cells to CNS 

cholesterol metabolism remains enigmatic. In the adult brain, Microglia express 

ApoE, likely contributing to horizontal cholesterol transfer (Zhang et al., 2014) (Figure 

3). Interestingly, high cholesterol in vitro conditions are essential for microglial 

survival and homeostatic resting phenotype, indicating that microglia are important 

sensors for CNS cholesterol homeostasis (Bohlen et al., 2017). Brain endothelial 

cells (BECs), forming a barrier for CNS lipid entry during healthy conditions, have 

been suggested to be involved in HDL generation at the brain parenchymal site 

although direct in vivo evidence is lacking (Andreone et al., 2017; Balazs et al., 2004; 

Chirackal Manavalan et al., 2014). In addition, these cells might be involved in 

ABCA1-ApoE mediated cholesterol export from the brain (Dietschy, 2009; Hirsch-
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Reinshagen et al., 2004) (Figure 3). In principle, BECs could be involved in active 

import of cholesterol into the CNS, which might be relevant during disease conditions 

(Abbott and Friedman, 2012; Abbott et al., 2010; Stefani and Liguri, 2009). In 

summary, data from cell-specific knock-out mice indicate the essential need of 

oligodendroglial, astroglial and neuronal cholesterol synthesis and limitations of 

horizontal transfer during early development. However, studies targeting cholesterol 

synthesis and metabolism in the adult brain with cellular specificity are needed to 

understand cholesterol homeostasis in the mature CNS.  

 
Figure 3: Model of cholesterol metabolism in the CNS  
Peripheral cholesterol (Zhang et al.) entry into the brain is largely precluded by the 
BBB which is formed by endothelial cells. In the brain, cholesterol is synthesized de 
novo by all cells. Cholesterol synthesis starts from acetyl-CoA, the rate-limiting step 
is catalyzed by HMG-CoA reductase (HMGCR gene). SREBP (sterol regulatory 
element-binding protein) transcription factors induce cholesterol synthesis. 
Apolipoprotein E (ApoE) containing lipoproteins that are generated by ABC 
transporter (ABCA1) mediated secretion and lipidation, facilitate the horizontal 
transport of cholesterol. Lipoproteins are endocytosed by receptors of the low-
density lipoprotein receptor (LDL-R) family.  During myelination, cholesterol is 
integrated into the myelin sheath. One excretion route for cholesterol out of the brain 
is achieved by conversion to 24(S)-hydroxycholesterol (24-OHC) catalyzed by 
cholesterol 24-hydroxylasldle (CYP46). 24-OHC can pass the BBB into the blood 
stream where it gets transported for degradation. About one third of cholesterol is 
excreted by another route, potentially involving ApoE. Dashed arrows point to yet 
unknown pathways (modified from Saher and Stumpf, 2015). 
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1.2  Blood-brain barrier 
The Blood-brain barrier (BBB) has been experimentally observed by Paul Ehrlich in 

the late 19th century, following intravenous injection of a water-soluble dye that 

stained all peripheral organs except the structures of the CNS (Ehrlich, 1885). This 

phenomenon led to the depiction of a “capillary wall that must block the entrance of 

certain molecules” (Lewandowsky, 1900) followed by the designation as blood brain 

barrier (Barrière hématoencéphalique) by Stern and colleagues (Stern and Gautier, 

1921). Later, specialized brain endothelial cells (BECs) forming the BBB were 

characterized by presence of unique belt-like tight junctions (Reese and Karnovsky, 

1967), higher mitochondrial volume fraction (Oldendorf et al., 1977), low pinocytic 

and transcytosis activity (Coomber and Stewart, 1985; Peters et al., 1991), no 

fenestration (Fenstermacher et al., 1988), the presence of specialized transport 

systems (Abbott et al., 2010; Abbott et al., 2006), decreased expression of leukocyte 

adhesion molecules (Daneman et al., 2010), and a narrow paracellular cleft (inter-

endothelial space) between adjacent endothelial membranes (Vorbrodt and 

Dobrogowska, 2003) (Figure 4). 

1.2.1 The Neurovascular Unit, Tight junctions and CNS transport 
BBB properties are orchestrated by cellular interaction of BECs with pericytes, 

perivascular glial cells, astrocytes and neurons, together establishing the 

Neurovascular Unit (NVU) (Alvarez et al., 2013; Iadecola, 2017; Maoz et al., 2018; 

Muoio et al., 2014; Sa-Pereira et al., 2012). In the brain, microvessels are 

ensheathed by astrocyte end-feet, forming the glial limitans that covers almost the 

complete CNS surface. In CNS capillaries, BECs and astrocytes form two 

distinguishable basement membranes with pericytes and perivascular cells 

embedded into the endothelial basement membrane. The formed basement 

membrane, is characterized by classical extracellular matrix proteins like collagen, 

proteoglycans, laminin and fibronectin, secreted by cells of the NVU (Baeten and 

Akassoglou, 2011). The importance of cellular constituents of the NVU regulating 

BBB permeability may be highlighted by genetically induced pericyte deficiency, 

which results in increased transcytosis of tracer molecules and lipids into the CNS 

parenchyma by interfering with astrocyte end-feet polarization in the presence of 

intact tight junctions (Armulik et al., 2010; Saeed et al., 2014).  
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Figure 4: Anatomical structure of the neurovascular unit.  
(A) Schematic diagram of different anatomic regions in the brain penetrated by 
vessels [11]. Superficial vessels of the brain [6] located in the subarachnoid space 
[7]. This compartment is delineated by the arachnoid mater [4] and the pia mater [3]. 
The surface of the brain is completely covered by the astrocytic endfeet of the glia 
limitans [2]. Toward the subarachnoid space, these endfeet are designated as glia 
limitans superficialis [A]. Inside the brain this coverage is termed glial limitans 
perivascularis [B]. Perivascular space still connected to the subarachnoid space. 1 
indicates perikaryon of an astrocyte; 2, glia limitans superficialis; 3, connective tissue 
of the pia mater (inner layer of the leptomeninges); 4, arachnoid mater (outer layer of 
the leptomeninges); 5, subarachnoid connective tissue (trabeculae arachnoideae); 6, 
subarachnoid vessel; 7, subarachnoid space; 8, dura mater (pachymeninges); 9, 
neurothelium; 10, perivascular space; 11, penetrating vessel; 12, capillary; 13, glia 
limitans perivascularis. (B) “Corresponding to black bar”. In capillaries (12) in (A), the 
basement membranes are merged to form a ‘‘fused gliovascular membrane’’ that 
occludes the perivascular space. (Upper right) Higher magnification of the field 
depicted (B). The capillary wall consists of endothelium E, endothelial basement 
membrane (dotted line), and pericytes Pe. The fused gliovascular membrane is 
shown by a continuous black line. It is directly opposed to the glia limitans. Black 
arrow point to overlap of adjacent endothelial cells with tight junctions in between 
(paracellular cleft). Figure reprinted from Radivoj V. Krstic: Die Gewebe des 
Menschen und der Säugetiere (Human and Mammalian Tissues), 1988, (adapted 
from Owens et al., 2008). (C) Astrocyte (glial fibrillary acidic protein, GFAP) with 
end-feet polarization at brain microvessel (CD31, PECAM1) colocalizing with 
monocarboxylat-transporter 1 (MCT1), enabling CNS influx of polar nutrients like 
pyruvate. 
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In contrast, loss of astrocyte derived laminin impacts pericyte maturation leading to 

BBB breakdown accompanied by reduced expression of tight junction proteins in 

BECs (Yao et al., 2014). Tight junction proteins between adjacent endothelial cells 

are critically involved in maintaining BBB functioning by restricting paracellular 

passage of ions and small molecules (Abbott et al., 2010; Bazzoni and Dejana, 2004; 

Vorbrodt and Dobrogowska, 2003). Within CNS vasculature, family members of the 

claudin proteins (Claudin-1, -2, -5 and -12) with claudin-5 being the most abundant 

one (Greene et al., 2019; Morita et al., 1999), occludin (Morcos et al., 2001) and 

junctional adhesion molecules (JAMs) interact with scaffold proteins like zonula 

occludens-1 (ZO-1) (Jia et al., 2013). Together with adherens junction proteins, like 

vascular endothelial cadherin (VE-cadherin) or platelet and endothelial cell adhesion 

molecule 1 (PECAM-1) (Li et al., 2018; Stamatovic et al., 2008), these molecules 

determine BBB tightness, evaluated by loss of function in vivo and in vitro (Nitta et 

al., 2003; Umeda et al., 2006; Van Itallie et al., 2010; Wimmer et al., 2019). Several 

signaling molecules with barrier promoting properties have been identified. For 

instance, astrocyte dependent Wnt/β-catenin and sonic hedgehog (Shh) signaling is 

directly involved in regulating the expression of tight junction proteins in BECs 

(Alvarez et al., 2011b; Daneman et al., 2009; Zhou et al., 2014). In addition, astrocyte 

derived factors like angiopoietin-1 (ANG1) (Saharinen et al., 2017), vascular 

endothelial growth factor (VEGF) (Rosenstein et al., 2010), transforming growth 

factor beta (TGF-β) (Dobolyi et al., 2012), glial-derived neurotrophic factor (GDNF) 

(Igarashi et al., 1999), and fibroblast growth factors (FGFs) (Reuss et al., 2003) have 

been linked to BBB maintenance. Recent attention has also focused on the 

erythropoietin producing hepatocellular carcinoma receptors-ephrin (EphR/Ephrin) 

system linked to BBB pathology in neurovascular and neuropsychiatric disorders 

(Malik and Di Benedetto, 2018). Together, these factors also enable regulated 

transport into the brain and allow only small lipophilic molecules and gases to freely 

enter the CNS (Abbott, 2013; Nag and Begley, 2005; Omidi and Barar, 2012). 

Metabolic supply of the brain that is connected to neuronal activity via neurovascular 

coupling involving astrocytes (Figley and Stroman, 2011; Petzold and Murthy, 2011), 

is essential for normal CNS functioning. Several transporters mediate shuttling of 

polar nutrients like glucose and amino acids at the BBB (Figure 4).  Expression of 

transports of the solute carrier (SLC) superfamily by BEC, such as GLUT1 (Slc2a1) 
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shuttling glucose, or monocarboxylate transporters like MCT1 (Slc16A1) transporting 

lactate, ketone bodies and pyruvate are critically involved maintaining CNS nutrient 

demands (Bergersen, 2015; Chiry et al., 2006; Halestrap, 2013; Tang et al., 2017). In 

addition, energy dependent luminal export via ABC-family transports such as P-

glycoprotein (MDR1, Multidrug Resistance Protein 1) enables efficient removal of 

xenobiotics and natural lipophilic products that could be harmful for the brain 

(Loscher and Potschka, 2005). Transport of intact macromolecules, avoiding the 

lysosomal compartment, is coordinated by receptor-mediated or adsorptive-mediated 

transcytosis (Abbott et al., 2010; Nag and Begley, 2005) (Figure 5). These 

internalization routes involve several membrane domains including lipid rafts, 

caveolae and clathrin-coated pits resulting in a variety of traffic pathways like 

caveolae or clathrin-mediated endocytosis, fluid phase endocytosis and 

micropinocytosis to allow entry of macromolecules like insulin, transferrin or albumin 

(Omidi and Barar, 2012). BECs are characterized by an unusually low rate of 

transcytosis (see above). In a recent work, it has been suggested that endothelial cell 

lipid composition determined by the luminal lipid transporter major facilitator 

superfamily domain containing 2a (Mfsd2a), specifically inhibits the caveolae-

mediated internalization pathway, highlighting regulated BBB permeability by 

controlled transcytosis (Andreone et al., 2017).  
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Figure 5: Transport pathways at the blood-brain barrier.  
(1) Lipophillic small substrates (<500 Da) are able to diffuse across the membrane.  
(Marchiando et al.) Carrier-mediated transport machineries (e.g. Glut1, MCT1). (3) 
Paracellular pathway of some small hydrophilic agents. (4) and (5) 
Endocytosis/Transcytosis mediated transport routes of either large molecules via 
insulin receptor (Ins-R), albumin receptor (Alb-R), ceruloplasmin receptor (CP-R); 
transferrin receptor (Tf-R) or adsorptive-mediated endocytosis/transcytosis of e.g. 
albumin (adapted from Omidi and Barar, 2012). 
 

1.2.2 Blood-brain barrier during neuroinflammation 
Blood brain barrier breakdown and altered vascular permeability have been identified 

in several disorders affecting the CNS. In neurodegenerative diseases, including 

Multiple sclerosis (MS), pathological alteration of tight junctions and increased 

vascular permeability have been demonstrated (Rosenberg, 2012). However, BBB 

dysfunction in CNS diseases not only differs by extent but also by being a primary 

cause or evolving secondary to the primary insult. In MS, increased permeability of 

the BBB is an early occurring phenomenon during formation of new white matter 

lesion and can even be detected in inactive lesions and normal appearing white 

matter (Cramer et al., 2014). By studying MS tissue and experimental models, 

vascular hyperpermeability in MS has been shown to occur via several mechanisms: 

(1) Glial activation and secretion of proinflammatory factors, (Marchiando et al.) BBB-

EC activation and downregulation or disorganization of tight junction proteins and (3) 

perivascular infiltration and secretion of inflammatory products. Interestingly, 

increased vascular permeability appears to occur even before onset of symptoms as 

shown by MRI studies in patients and using the experimental autoimmune 

encephalomyelitis (EAE) mouse model (Davalos et al., 2014; Kermode et al., 1990; 

Kirk et al., 2003; Kirk and Karlik, 2003; Schellenberg et al., 2007). Further, increased 

glial fibrillary acidic protein (GFAP) expression before onset of EAE symptoms 

suggests early astrocyte activation and may indicate their importance in the context 

of vascular hyperpermeability (Luo et al., 2008). Astrocytes have been identified as 

important mediators of BBB integrity (see above) via release of growth factors, 

morphogens, cytokines and enzymes, regulation of blood flow in response to 

neuronal activity and control of water homeostasis by expressing the water-selective 

channel aquaporin 4 (AQP4) (Abbott et al., 2010; Abbott et al., 2006; Alvarez et al., 

2011a; Luissint et al., 2012). In case of a neuroinflammatory event, astrocytes display 
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a phenotype marked by hypertrophy and increased expression of GFAP, termed as 

reactive astrogliosis. Due to the close interaction of astrocytes and brain endothelia 

cells, reactive gliosis is accompanied by dysregulation of several BBB homeostasis 

mechanisms. For instance, increased vascular permeability during brain inflammation 

seems to be associated with an increase in intestinal fluid (edema) (Nag et al., 2009). 

In MS and corresponding animal models (EAE, Lysolecithin) increased astrocytic 

AQP4 expression is thought to counterbalance edema formation and BBB 

hyperpermeability. However, studies in AQP4 deficient animals have revealed a 

proinflammatory role of AQP4 expression in astrocytes (Li et al., 2011). Wosik and 

colleagues identified another mechanism of BBB dysregulation caused by disruption 

of angiotensin signaling in astrocytes. Therefore, astrocytic angiotensinogen 

expression seems to be crucial in maintaining occludin stability, that is downregulated 

in MS tissue most probably by inflammatory cytokines (Wosik et al., 2007). Several 

astrocyte derived inflammatory mediators and inducers of increased vascular 

permeability have been identified in experimental models and MS samples. Some of 

these, like vascular endothelial growth factor (VEGF) (Argaw et al., 2012; Argaw et 

al., 2009), tumor necrosis factor alpha (TNFA) (Marchiando et al., 2010), Interleukin-

1β (IL-1ß) (Ferrari et al., 2004; Wang et al., 2014), Interleukine-6 (IL-6) (Paul et al., 

2003) and C-C motif chemokine ligand 2 (CCL2) (Stamatovic et al., 2003) have been 

shown to directly affect endothelial cell permeability in vivo and in vitro (Camire et al., 

2015; Rochfort et al., 2014). Interestingly, astrocyte derived CCL2 has been shown to 

disrupt tight junction expression even before disease expression in EAE (Paul et al., 

2014). In addition the inflammatory milieu is capable of inducing the expression of 

iNOS in reactive glia cells and eNOS in endothelial cells thereby downregulating tight 

junction proteins (Argaw et al., 2012; Fabis et al., 2007; Wang et al., 2016a). 

Together, these observations show that the inflammatory milieu, likely orchestrated 

by several brain cells, seems to closely correlate with altered vascular permeability 

and BBB breakdown. In MS, several mentioned inflammatory mediators affecting 

BBB integrity have been also attributed to activated microglia or invading 

macrophages (da Fonseca et al., 2014; Mahad and Ransohoff, 2003). BBB 

disruption mediated by activated microglia seems to depend on the interaction with 

other glial cells e.g. astrocytes via different cytokines/chemokines in an in vitro BBB 

model (Shigemoto-Mogami et al., 2018). Of note, besides disease specific pathways 
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affecting BBB function, recent data indicate a core blood-brain barrier dysfunction 

module that is shared between different neurological disease entities, shifting BECs 

to a peripheral endothelial cell-like state (Munji et al., 2019).  

1.3 Multiple Sclerosis 
Multiple sclerosis (MS) is a chronic inflammatory, demyelinating and 

neurodegenerative autoimmune disease of the CNS, most commonly affecting young 

adults (Dobson and Giovannoni, 2019; Filippi et al., 2018; Goldenberg, 2012; 

Thompson et al., 2018). MS is the most common variant of broad spectrum idiopathic 

inflammatory demyelinating disorders (IIDDs) that range pathologically from highly 

localized forms to multifocal or diffuse variants. Although overlap with pathological 

characteristics of other IIDDs exist,  MS has to be clinically diagnosed and separated 

from reminiscent acute disseminated encephalomyelitis (ADEM), acute MS (Marburg 

variant), Balo´s concentric sclerosis (BCS) and Schilder’s disease as well as 

monosymptomatic IIDDs e.g. optic neuritis or  IIDDs with a restricted topographical 

distribution, such as neuromyelitis optica (NMO) (Canellas et al., 2007). Worldwide, 

over 2 million people are affected by MS with increasing prevalence since 1990 

(Collaborators, 2019) and a higher incidence rate in females in contrast to males 

(2.3-3.5:1) that has also risen during the last decades (Harbo et al., 2013). Although 

the underlying diseases mechanisms still remain incomplete, causative 

environmental, genetic, and epigenetic factors likely interacting with modifiable risk 

factors have been identified. Of those environmental risk factors, low serum levels of 

vitamin D, smoking, early life obesity and infection with the Epstein–Barr virus are 

connected to disease development (Dobson and Giovannoni, 2019; Thompson et al., 

2018). Genetic evidence for diseases cause was supported by familial forms of MS 

(increased heritability within families) and correlation of decrease MS risk with degree 

of relatedness (Harirchian et al., 2018; Thompson et al., 2018). Of the >200 risk 

genes identified (Parnell and Booth, 2017), MS genetic susceptibility and disease 

severity are associated with variants of the human leukocyte antigen (HLA) encoding 

the major histocompatibility complex (MHC) (Moutsianas et al., 2015), in addition to 

immune cell phenotypes induced by genetic variants of e.g. interleukin receptors 

(IL2RA and IL7RA), Lymphocyte function-associated antigen 3 (LFA-3), TNF receptor 

superfamily member 1A (TNFRSF1A), Nuclear Factor Kappa B Subunit 1 (NFKB1) 
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and Tyrosine kinase 2 (TYK2) (International Multiple Sclerosis Genetics et al., 2007; 

Sawcer et al., 2014). Furthermore, genetic variants affecting cholesterol metabolism 

such as variants of nuclear receptor subfamily 1 Group H Member 3 (NR1H3 or 

LXRα) (Wang et al., 2016c), apolipoprotein E (APOE) (Pinholt et al., 2006), variants 

on chr8p23 near farnesyl-diphosphate farnesyltransferase 1 (FDFT1) (Smets et al., 

2018) and cytochrome P450 family 27 subfamily B member 1 (CYP27B1) 

(Ramagopalan et al., 2011; Ross et al., 2014) are connected to MS disease. 

However, future studies have to implement environmental and genetic risk factors 

with focus on disease progression, disease phase and even subvariants of IIDDs, 

which may not only be relevant to identify diseases mechanisms but also for 

therapeutic management of MS.  

1.3.1 Multiple Sclerosis Pathology 
Clinically, MS patients are grouped into four major disease courses. Relapsing-

remitting MS (RR-MS) accounting for 85% of MS patients that is marked by phases 

of diseases exacerbation and improvement, secondary progressive MS (SP-MS) a 

diseases phase which 15-30% of RR-MS patients will enter (Lorscheider et al., 

2016), primary progressive MS (PP-MS) affecting around 10% of patients, 

characterized by continuous symptom worsening and progressive-relapsing MS (PR-

MS), a rare severe MS manifestation with gradual symptom worsening and diseases 

exacerbation without remission that 5% of patient develop (Goldenberg, 2012). First 

clinical presentation of a patient with an inflammatory demyelinating single attack is 

termed clinically isolated syndrome (CIS) that converts to MS in a range between 

10%-85%, depending on anatomical lesion location up to 41%-61% and has been 

suggested to be a result of a pre-clinical stage that triggers diseases establishment 

(Efendi, 2015; Miller et al., 2012). MS pathology is characterized by focal lesions that 

exhibit hallmarks like BBB breakdown, inflammatory cell infiltration (lymphocytes and 

macrophages), oligodendrocyte loss, demyelination, reactive gliosis, and axonal 

degeneration that allows separation from other CNS disorders. However, 

heterogeneity of MS pathology especially during early, usually perivascular lesion 

establishment has been reported. In biopsy studies, 50% of patients display pattern I 

lesions, characterized by immunoglobulin and complement deposits, whether T cell 

and phagocyte mediated demyelination (pattern II) and distal oligodendrogliopathy 
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(pattern III) account for most of the remaining lesion characteristics in addition to rare 

cases of primary periplaque oligodendrocyte degeneration (Lucchinetti et al., 2000; 

Stadelmann et al., 2011). Histopathologic lesion pattern classification seems not to 

correlate with clinical presentation (Pittock et al., 2005) leading to the assumption of 

stage-dependent heterogeneity (Barnett and Prineas, 2004) or even the concept of a 

general homogenous mechanism that associates with defined MS (Breij et al., 2008). 

However, supporting a concept of distinct entities, imaging studies could show well 

defined lesion characteristics in pattern classified patients (Lucchinetti et al., 2008; 

Stadelmann et al., 2011), therapeutic intervention by plasmapheresis seem to 

depend on pattern classification (Keegan et al., 2005), pattern I and II MS results in a 

defined antibody serum profile to lipids and CNS derived peptides (Quintana et al., 

2008) and within MS samples from cerebrospinal fluid (CSF), patients with pattern II 

or III MS differ significantly from patients with pattern I MS (Jarius et al., 2017). 

Interestingly, patient-dependent immunopathological heterogeneity, might be of 

relevance for personalized therapeutic intervention (Konig et al., 2008; Metz et al., 

2014). 

MS lesions are located in white matter tracts as well as in grey matter tissue. Cortical 

demyelination that is observable at all stages of disease, can be extensive and 

correlates with physical disability and cognitive impairment in MS (Calabrese et al., 

2010). Nonetheless, detection of cortical lesions within living patients is limited 

ranging between 10-15% and although likely present during early stages of MS, they 

are most extensive in patients with progressive disease (Lassmann, 2018). In early 

disease, classical active focal white matter plaques are most numerous and decline 

in number by entering progressive phase of disease (Frischer et al., 2015). Acute 

active lesions are characterized by massive lymphocyte invasion and infiltration of 

myelin phagocytosing myeloid cells (Microglia/Macrophages) (Figure 6). Temporal 

staging of white matter lesions is possible by analysis of phagocyte activation profile 

and myelin components within macrophage lysosomes, allowing subgrouping of early 

active (acute), chronic active slowly expanding and inactive lesions (Frischer et al., 

2015; Lassmann, 2013) (Figure 6). In addition, smoldering rim lesions can be 

identified by an inactive center surrounded by active microglia/macrophages 

(Frischer et al., 2015) (Figure 6). Lesion expansion of chronic active lesions is 

characterized by active phagocytosis and appearance of foamy phagocytes that have 
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been suggested to promote MS disease progression (Hendrickx et al., 2017) (Figure 

6). However, recent studies indicate anti-inflammatory, neurotrophic and repair 

promoting properties of foamy phagocytes (Grajchen et al., 2018).  

 
 
Figure 6: Pathology in Multiple Sclerosis 
(A) Forebrain section of a MS patient stained with luxol fast blue (Albers et al.) to 
label myelin. Green arrows indicate demyelinated lesions. Red arrows indicate 
shadow plaques suggesting remyelination (adapted from Adams, 1989) (B) MS white 
matter lesion staging according to the topographical distribution of immunoreactive 
phagocytes and their myelin degradation products leading to foamy appearance. 
Acute active lesions are hypocellular with regularly distributed phagocytes containing 
myelin debris. Chronic active lesions with decreased phagocyte number in and 
around the inactive center with immunoreactive foamy phagocytes containing myelin 
degradation products clustered at the expanding lesion edges. Smoldering rim 
lesions are characterized by an inactive lesion center surrounded by 
microglia/macrophages rarely with myelin degradation products. Chronic inactive 
lesion are hypocellular but may still present inflammatory cells without early or late 
myelin degradation products (Grajchen et al., 2018; Popescu et al., 2013). (C) LFB 
stained white matter lesion with demyelinated center. Detection of active phagocytes 
within lesion center by CD68 labeling allows differentiation of lesion type/stage.  
 

1.3.2 Remyelination in Multiple Sclerosis 
In MS lesions, remyelination can be observed during all disease stages by the 

appearance of shadow plaques (Lassmann, 2013) (Figure 6). Remyelination can be 

extensive and has been suggested to rapidly follow demyelination but varies between 

patients (Patrikios et al., 2006; Prineas et al., 1989; Raine and Wu, 1993). It is 

assumed, that in 40%-50% of white matter lesions and up to 90% of grey matter 

lesions, remyelination occurs (Filippi et al., 2018). Newly generated myelin sheaths 
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are thinner and remyelinated axons are marked by shortened internodal length 

despite the fact that remyelination enables axons to partially regain proper 

conduction properties (Duncan et al., 2017; Filippi et al., 2018; Scurfield and Latimer, 

2018; Smith et al., 1979, 1981). Remyelination of lesions and functional 

reorganization of myelin components correlates with clinical remissions or recovery 

from relapses as well as with resolution of inflammation in MS (Mahad et al., 2008; 

Prineas et al., 1993a; Raine and Wu, 1993). Therefore, the number of myelin protein 

expressing oligodendrocytes correlate with degree of newly formed myelin 

(Lucchinetti et al., 1999). While in early MS, biopsy studies indicate extensive 

remyelination and an estimated proportion of failed remyelination of 20%, this 

drastically decreases to only 15% remyelinated lesions in chronic MS with an 

increased proportion of 40% of failed remyelinated lesions (Goldschmidt et al., 2009; 

Nakahara, 2017). Thus, remyelination failure and decreased remyelination capacity 

that correlates with axonal loss, contributes to persistent disability in MS (Chari, 

2007; Kornek et al., 2000). Myelin reestablishment has been suggested to rely on 

oligodendrocyte progenitor cell (OPC) repopulation, proliferation and differentiation in 

MS lesions (Franklin and Ffrench-Constant, 2008). In some MS patients, reduced 

numbers of OPCs have been reported, indicating either recruitment failure or 

depletion that gives rise to the concept of an exhausted pool of OPCs due to 

recurrent demyelination and age (Boyd et al., 2013; Brown et al., 2014; Franklin, 

2002; Prineas et al., 1993b; Sim et al., 2002). However, a considerable number of 

OPCs within demyelinated lesions have been observed, pointing to a block of OPC 

differentiation (Chang et al., 2002; Franklin, 2002; Kuhlmann et al., 2008; Sim et al., 

2002). Many extrinsic and intrinsic factors have been proposed that affect 

oligodendrocyte recruitment, proliferation and differentiation in MS lesions. 

Nonetheless, by analyzing lesion expression profiles, it was not possible to identify a 

clear oligodendrogliogenesis promoting or inhibiting expression pattern, arguing for 

temporal and mechanistic heterogeneity of MS lesions (Zeis et al., 2018).  In addition, 

several studies using experimental model systems have underlined OPC 

heterogeneity with regards to their origin, location and response to demyelination in 

the adult brain (Crawford et al., 2016; Falcao et al., 2018; Marques et al., 2016; 

Vigano et al., 2013) that is further supported by identification of a different distribution 

of OPC subsets in MS patients (Jakel et al., 2019). Furthermore, it has been 
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suggested that in addition to newly generated oligodendrocytes, adult surviving 

oligodendrocytes within lesions participate in remyelination (Duncan et al., 2018; 

Yeung et al., 2019) which is in contrast to the concept raised by  experimental 

evidence, that post-mitotic, differentiated oligodendrocytes do not contribute to 

remyelination of demyelinated axons (Keirstead and Blakemore, 1997). These 

studies highlight the complexity of targeting remyelination in MS lesions to restore 

neurological disabilities. To date, limited remyelination in MS is still challenging and 

despite a wide range of anti-inflammation therapies, medication efficiently targeting 

remyelination is not available although over 88 different compounds in preclinical 

therapies, with 25 entering clinical trials, have been tested (Hooijmans et al., 2019). 

1.3.3 Animal models in Multiple Sclerosis research 
Several model systems to study MS have been introduced, however in general 

mimicking only aspect of the human disease (Bjelobaba et al., 2018; Kipp et al., 

2012; Lassmann and Bradl, 2017; Procaccini et al., 2015; Ransohoff, 2012) this is 

supported by the limited success to transfer therapeutic candidates to human 

patients. Especially model systems that allow research with regards to inflammation, 

demyelination, axonal pathology and remyelination have been exploited, coming 

along with their advantages and disadvantages. Two major groups of rodent MS 

models may be separated by their pathologic entity: Toxin induced demyelination 

models and inflammatory demyelination models.  

 

Several toxic compounds that generate demyelination have become an important 

tool to specifically study de-and re-myelination. Of those, cuprizone and lysolecithin 

induced lesions are extensively used in MS research. In mice, the oral administration 

of the copper chelator cuprizone (bis-cyclohexanone oxaldihydrazone) leads to a 

highly reproducible consistent demyelination of distinct brain regions, among them is 

the most investigated callosal white matter tract (corpus callosum; CC) (Carlton, 

1967; Gudi et al., 2014; Kipp et al., 2009; Matsushima and Morell, 2001; Steelman et 

al., 2012; Torkildsen et al., 2008) (Figure 7). Although there is a lack of knowledge 

considering the exact molecular cause of cuprizone induced pathology, the cuprizone 

model exhibits some similarities to pattern III MS lesions (Gudi et al., 2014; Kipp et 

al., 2009; Lucchinetti et al., 2000; Praet et al., 2014). It has been assumed that 
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copper chelation induces dysfunction of mitochondrial enzymes that selectively leads 

to caspase-3-dependend apoptosis of oxidative stress sensitive oligodendrocytes, 

already detectable after two to three days following cuprizone administration, 

mediated by activated glial cells (Clarner et al., 2015; Goldberg et al., 2013; Hesse et 

al., 2010). However, prominent myelin loss is only evident after 3 weeks of cuprizone 

intoxication that irreversibly initiates complete demyelination, accompanied by 

microgliosis, astrogliosis, axonal stress and OPC proliferation (Buschmann et al., 

2012; Doan et al., 2013; Gudi et al., 2014; Gudi et al., 2009). Usually young adult 

C57BL/6 mice are fed 0.2% (w/w) cuprizone to induce demyelination, avoiding 

increasing mortality rate from <5 % with 0.2% cuprizone  to 10-15% with 0.3% 

cuprizone, with the drawback of higher variability between animals but less side 

effects like anorexia, ataxia, and tremors (Stidworthy et al., 2003; Torkildsen et al., 

2008). Matsushima and Morell first characterized today’s standard protocol over 

different administration periods and characterized the “acute demyelination-

remyelination” time point following 6 weeks cuprizone exposure with observable 

complete remyelination after cuprizone removal from the diet, and the “chronic” 

demyelination phase for up to 16 weeks compound application, that can be 

interrupted by cuprizone removal inducing partial remyelination e.g. 12 weeks 

cuprizone followed by 2 weeks normal diet (Matsushima and Morell, 2001) (Figure 7). 

In addition to human pattern III MS lesion similarity, repeated cuprizone 

demyelination results in less efficient remyelination due to OPC depletion (Johnson 

and Ludwin, 1981; Mason et al., 2004), persistent disability (Irvine and Blakemore, 

2006) and in aged animals, a decreased remyelination efficiency as well as axonal 

loss which is of relevance for chronic MS disease phase (Doucette et al., 2010; 

Manrique-Hoyos et al., 2012). Although cuprizone has been reported to lack major 

features like inflammatory infiltration of T cells and macrophages or blood brain 

barrier breakdown (Bakker and Ludwin, 1987; Boretius et al., 2012; Kondo et al., 

1987; McMahon et al., 2002), several studies indicate that T cell subpopulation are 

involved in de- and re-myelination and vascular functioning might be affected 

(Dombrowski et al., 2017; Harsan et al., 2008; Kang et al., 2012; Thiessen et al., 

2013). In addition, a novel modified cuprizone model in combination with EAE termed 

Cup/EAE model, leading to immune cell mediated demyelination has enormous 

potential for future studies (Ruther et al., 2017; Scheld et al., 2016).  



Multiple Sclerosis 

 
26 

 

 

In contrast to cuprizone feeding, lysolecithin microinjection induced demyelination is 

applied in different selectable CNS tissues (Bjelobaba et al., 2018; Procaccini et al., 

2015). Injection of the detergent-like lysophosphatidylcholine (lysolecithin) solubilizes 

myelin membranes, resulting in pronounced focal demyelination (Hall, 1972). Similar 

to cuprizone, lesion resolution and remyelination follows temporal predictability with 

remyelination occurring after phagocyte mediated removal of myelin debris 

(Bjelobaba et al., 2018). Although not extensive, following spinal cord induced 

lesions, Schwann cell remyelination has to be considered (Harrison, 1985). Like other 

toxic models, injection of lysolecithin does not induce an immune-mediated pathology 

although BBB is experimentally disrupted. Nonetheless, early extensive invasion of T 

and B cells is present (Bieber et al., 2003; Yazdi et al., 2015). In comparison to the 

cuprizone model, aged animals show reduced remyelination (Franklin et al., 2012; 

Shen et al., 2008), but repeated demyelination does not result in limited 

remyelination and reduced number of OPCs in the presence of constant degree of 

Schwann cell remyelination (Penderis et al., 2003).  

 

One of the most established MS models accounting for the autoimmune component 

of MS is experimental autoimmune encephalomyelitis with all its different paradigms. 

There are several extensive reviews that critically evaluate EAE pathology available 

(Behan and Chaudhuri, 2014; Constantinescu et al., 2011; Glatigny and Bettelli, 

2018; Gold et al., 2006; Robinson et al., 2014). In general, EAE is based on 

immunization of animals with myelin specific antigens, either by vaccination (active 

EAE), adoptive transfer with antigen specific T cells (passive EAE) or myelin specific 

T cell receptor transgenic mice that spontaneously develop EAE (Krishnamoorthy et 

al., 2006; Litzenburger et al., 1998; Pollinger et al., 2009; Waldner et al., 2004). 

Depending on the EAE model, acute and/or chronic, monophasic and/or relapsing-

remitting inflammatory demyelinating diseases is achieved. 

 

Active immunization of susceptible animals can be performed by subcutaneous 

injection of antigen such as myelin basic protein (MBP), proteolipid protein 1 (PLP), 

myelin oligodendrocyte glycoprotein (MOG) or most widely used MOG35-55 peptide, 

emulsified in Complete Freund's Adjuvant (CFA) a mineral oil-based adjuvant 
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containing heat-inactivated mycobacteria (Bjelobaba et al., 2018; Ransohoff, 2012). 

Immunization with CFA results in a strong delayed type hypersensitivity immune 

response characterized by CD4+ T helper 1(Th1) lymphocytes (Billiau and Matthys, 

2001; Laman et al., 1998). In contrast, immunization without bacterial components 

shifts immune response to Th2 profiles with strong antibody response (Billiau and 

Matthys, 2001). This has to be considered with regards to the classical concepts of 

Th1/Th2 dysregulation in MS (Jankovic and Feng, 2015; Laman et al., 1998; Oreja-

Guevara et al., 2012). To elicit pathology with clinical presentation, immune response 

is boosted by Bordetella pertussis toxin (PTX) injection post immunization, leading to 

T cell expansion, CNS immune cell entry and cytokine production (Richard et al., 

2011; Waldner et al., 2004). Induction of EAE via CFA also affects BBB functioning 

likely contributing to the CNS pathology induction (Rabchevsky et al., 1999; Reiber et 

al., 1984). Following immunization, myelin specific T cells are primed in secondary 

lymphoid organs leading to clonal expansion and differentiation to effector cells that 

egress lymphoid organs entering blood circulatory system through passing efferent 

lymphatic vessels (Rossi and Constantin, 2016). CNS entry is determined by 

adhesion molecules, cytokines/chemokines as well as their receptors and 

reactivation in the perivascular space by antigen-presenting cells, such as dendritic 

cells, microglia/macrophages and/or astrocytes (Engelhardt, 2006; Engelhardt and 

Coisne, 2011). Finally, infiltration of encephalitogenic effector T cells and 

activation/recruitment of mononuclear cells induces demyelination and tissue 

damage, in classical C57BL/6 MOG-EAE is more pronounced in spinal cord tissue 

than in brain, accompanied by clinical presentation with ascending paralysis staring 

from the tail that can in severe cases, lead to complete hind and front limp paralysis 

(Bjelobaba et al., 2018; Kipp et al., 2012; Ransohoff, 2012) (Figure 7). Although 

clinical onset of disease coincides with lumbar infiltration of T cells, mononuclear 

cells and white matter plaque formation that correlates with clinical disease severity, 

ascending paralysis is not solely attributed to axon sparing demyelination (Recks et 

al., 2011; Simmons et al., 1983). Therefore, several factors such as edema and 

perivascular inflammatory infiltrates likely contribute to disability. Nonetheless, clinical 

signs of EAE are dependent on the entry of inflammatory cells to CNS parenchyma 

passing both the BBB and the glial limitans (Engelhardt et al., 2016; Engelhardt and 

Coisne, 2011). During EAE, two phases are generally separated: An acute phase 
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following diseases initiation with gradual clinical worsening reaching a peak after 

several days and a chronic phase with persistent disability or in case of 

monophasic/relapsing-remitting EAE a remission phase (Figure 7). During the 

chronic disease phase, inflammatory infiltrate differs from acute phase and has been 

linked to either differences in the inflammatory profile of a homogenous 

microglia/macrophage population or different phase specific contribution of microglia 

and macrophages to pathology (Yamasaki et al., 2014; Zorzella-Pezavento et al., 

2013). In contrast to active EAE, adoptive transfer of encephalitogenic myelin specific 

effector T cells results in a fast, monophasic and less severe disease, with minimal 

myelin destruction. This model has become an elegant research tool for principal 

mechanisms involved in the pathogenesis of T cell mediated inflammation during 

effector phase of the disease providing insight into T cell traffic, activation and CNS 

infiltration (Engelhardt et al., 2016; Lodygin et al., 2019; Lodygin et al., 2013; Mundt 

et al., 2019). However, it has to be considered that EAE neither actively nor passively 

induced, provides insights into progressive phase of MS disease and lacks certain 

inflammatory players even leading to the assumption that EAE is a model for ADEM 

and not for MS (Constantinescu et al., 2011). In addition, remyelination cannot be 

studied well, due to simultaneous de- and remyelination events that are considered 

to be minor (Constantinescu et al., 2011; Ransohoff, 2012).     
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Figure 7: Mouse model in Multiple Sclerosis  research 
(A) Cuprizone de- and remyelination model. Scheme depicting the time course of 
demyelination and remyelination (upper panel) indicated by myelin labeling (Gallyas, 
lower panel) during cuprizone. During acute remyelination extensive number of 
remyelinated fibers can be observed, in contrast to decreased remyelination 
efficiency after chronic demyelination even after cuprizone removal (own data and 
Matsushima and Morell, 2001). (B) Clinical disease of chronic MOG35-55 EAE. (Upper 
panel) Animals usually start to show clinical symptoms (loss of tail tip tonus) 10 days 
following immunization. Maximum diseases expression (peak) with hind limp 
paralysis is reached within the following days with partial recovery leading to a 
persistent chronic disease phase. (Lower panel) Classical EAE lesions in the lumbar 
spinal cord at peak of disease visualized by co-labeling of microglia/macrophages 
(IBA-1), astrocytes (GFAP) and T cells (CD3). 
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Graphical Abstract 

 
 
Highlights 
 
 Profiling of cell type specific cholesterol metabolism during remyelination 

 
 Phagocytes accumulate the LXR ligand desmosterol following myelin uptake  

 
 Desmosterol accumulates in phagocytes of Multiple Sclerosis lesions 

 
 Squalene therapy reduces inflammation by boosting desmosterol-LXR signaling 
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3. Discussion 
Cholesterol in the CNS is synthesized locally and cholesterol metabolism is 

essentially independent of the periphery due to restricted entry of molecules at the 

BBB. During development, genetically induced ablation of cholesterol/lipid synthesis 

in glial cells, neurons or neural stem cells impairs normal brain maturation (Camargo 

et al., 2012; Camargo et al., 2017; Ferris et al., 2017; Funfschilling et al., 2012; Saher 

et al., 2005; Saito et al., 2009; van Deijk et al., 2017). By specifically eliminating 

cholesterol synthesis in oligodendrocytes it has been shown, that cholesterol 

availability is a prerequisite for developmental myelination (Saher et al., 2005). 

Therefore, studies targeting brain cell specific cholesterol/lipid synthesis during this 

critical period have revealed important insights into developmental CNS cholesterol 

metabolism. Several experimental observations have linked neurodegenerative 

diseases to altered brain cholesterol metabolism (Anchisi et al., 2012; Hung et al., 

2013; Hussain et al., 2019; Valenza et al., 2015). Especially, during de- and 

remyelinating diseases like MS, disruption of lipid metabolism likely contributes to 

pathology. However, the role of cholesterol availability, the contribution of individual 

cell-types to CNS cholesterol metabolism and the relevance of the capability of 

different cell types to synthesize cholesterol during de- and remyelination are largely 

unknown. In my Ph.D. study, I analyzed blood brain barrier permeability during 

demyelination , cell type specific and tissue related cholesterol metabolism during de- 

and remyelination, remyelination efficiency of cholesterol synthesis mutants and 

therapeutic potential of sterols in several MS mouse models (Berghoff et al., 2017a; 

Berghoff et al., 2017b).  

 

Blood brain barrier in demyelinating diseases. It is widely accepted that cuprizone 

induced demyelination of the corpus callosum accompanied by pronounced gliosis 

occurs, while the BBB remains intact (Bakker and Ludwin, 1987; Boretius et al., 

2012; Kondo et al., 1987; Matsushima and Morell, 2001). However, by applying 

sensitive techniques, my study showed that tight junctions are destabilized leading to 

increased vascular permeability (Berghoff et al., 2017b) which has been confirmed by 

others (Wang et al., 2020). Further, the data presented here indicate that BBB 

disruption is mediated by astroglial secretion of several BBB destabilizing cytokines 

such as IL6, IL1β, TNF or CCL2 even before the onset of demyelination. In addition, 
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influx of tracers with different biochemical properties (NaFl, EB, FITC-Dextran and 

BODIPY-Cholesterol) is accompanied by raised brain water content and enhanced 

expression and mislocalization of astrocytic AQP4, both characteristics of vasogenic 

edema that is also observed in MS and inflammatory models of MS (Balashov et al., 

2011; Roemer et al., 2007; Stokum et al., 2016; Wolburg-Buchholz et al., 2009). It 

has been suggested that BBB leakage precedes white matter lesion establishment in 

human pathology (Cramer et al., 2015). Further, restoration of BBB integrity 

independent of inflammation ameliorates clinical symptoms in MS mouse models 

(Klicek et al., 2013; Luhder et al., 2017; Pfeiffer et al., 2011). Therefore, we suggest 

that early BBB dysfunction preceding demyelination might have prospective value for 

disease activity. In addition, our data support a concept, in which demyelinating 

pathologies that involve glial activation are characterized by BBB disruption.  

 

Despite the contribution to pathology, increased vascular permeability may serve as 

an entry route for therapeutic compounds. In a mouse model with impaired blood 

brain barrier, increased lipid influx into the brain following peripheral lipid 

supplementation could be shown (Saher et al., 2012). In addition to hydrophilic 

tracers, increased influx of the lipophilic tracer BODIPY-Cholesterol in MS mouse 

models and therapeutic success of dietary cholesterol is observed (Berghoff et al., 

2017a). However, during MS disease progression, decreased blood-brain barrier 

permeability and compartmentalization of inflammation has been shown (Correale et 

al., 2017). Therefore, it has been suggested that the relatively intact BBB limits 

therapy success of monoclonal antibodies (MAbs) such as natalizumab (146kDa) 

during chronic disease phase (Avasarala, 2017). Several strategies have been 

proposed to overcome BBB restricting including the use of nanoparticles, 

immunoliposomes, peptide vectors, and influx transporter. Combination therapy of 

MAbs with BBB crossing drugs, are under evaluation. In addition to size and 

lipophilicity, BBB penetration is restricted by the charge of the molecule, the tertiary 

structure and protein-binding properties. Although we provide evidence of cholesterol 

entry into CNS parenchyma, the exact entry route remains unknown. Cholesterol 

transport to peripheral organs occurs via apolipoprotein B-100 (apoB-100) containing 

LDL-particles. ApoB-100 with a molecular mass of 550 kDa accounts for more than 

95% of the total LDL protein mass and likely limits entry of whole lipoproteins into the 
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brain (Segrest et al., 2001). In isolated endothelial cells from demyelinated corpus 

callosum samples, no increase of classical lipoprotein receptors such as LDLR could 

be detected. Nonetheless, BBB dysfunction seems to be a prerequisite for sterol/lipid 

entry (Saher et al., 2005). Therefore, future studies are needed, to elucidate the 

exact sterol entry route into the CNS taking several possible import routes into 

account such as paracellular influx, transcytosis and endocytosis.   

 

Oligodendrocytes during remyelination. The here presented data support the 

possibility of different endogenous repair strategies during acute and chronic 

remyelination. During acute remyelination, oligodendroglia did not rely on 

autonomous cholesterol synthesis and peripheral cholesterol supplementation did not 

affect remyelination efficiency. It is possible, that efficient recycling of cholesterol by 

phagocytes following myelin clearance serves as a delivery route for cholesterol 

(Lavrnja et al., 2017; Olah et al., 2012), supporting oligodendrocyte differentiation 

and myelination (Berghoff et al., 2017a). Leaving the incorporation route of 

cholesterol enigmatic, we did not observe upregulation of classical LDL or VLDL 

receptors in oligodendrocytes that have been linked to developmental myelination 

(Zhao et al., 2007). Possibly, there is involvement of one, out of several other 

cholesterol receptor families that have not been analyzed (Lane-Donovan et al., 

2014) or direct incorporation of cholesterol into myelin membranes as previously 

shown (Saher et al., 2012). 

Conversely and in agreement with previous studies, cholesterol synthesis in 

oligodendroglia is indispensable during chronic remyelination (Voskuhl et al., 2019). 

Accordingly, peripheral cholesterol supply supported oligodendrocyte proliferation, 

differentiation and remyelination following chronic demyelination (Berghoff et al., 

2017a). In MS, remyelination seems to be extensive during early disease phase while 

it often fails during chronic phase of disease (Goldschmidt et al., 2009; Nakahara, 

2017). Several models have been suggested including OPC recruitment failure, 

reduced OPC proliferation  and block of differentiation following repeated 

demyelination (Franklin and Ffrench-Constant, 2008). These processes are 

influenced by many extrinsic and intrinsic factors (Rodgers et al., 2013). In our study, 

increased cholesterol availability in addition to directly targeting oligodendrocytes, 

balances the expression of growth factors in surrounding glial cells thereby 
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supporting remyelination. It might be possible that several factors following repeated 

demyelination and lesion chronification limit cholesterol availability and lipid synthesis 

in oligodendroglia. Failed upregulation of lipid synthesis genes in oligodendroglia 

during chronic disease phase might be associated with age, imbalanced signaling or 

environmental factors as previously suggested (Baror et al., 2019; Franklin, 2002; Li, 

2019; O'Gorman et al., 2012). On the other hand, reduced cholesterol availability 

during chronic diseases phase could be caused by reduced horizontal transfer to 

oligodendroglia. In line with previous studies (Itoh et al., 2018), astrocytes 

downregulate cholesterol synthesis genes following experimental demyelination (this 

study). In MS white matter lesions, astrocytes eventually form a glial scar in the 

lesion center (Haindl et al., 2019). Although CNS protective features of glial scar 

formation have been described, it is possible that hypertrophic astrocytes limit 

cholesterol availability for oligodendroglia participating in chronification of lesions 

beyond physical barrier establishment. In addition, repeated demyelination and aging 

may impact recycling efficiency of cholesterol in phagocytes e.g. microglia. In a 

recent study, inefficient cholesterol efflux of aged microglia has been connected to 

limited remyelination supporting the possibility of sufficient cholesterol availability as 

important driver of remyelination (Cantuti-Castelvetri et al., 2018). Together, these 

data also question the use of statins in MS therapy.  Although statins may have 

beneficial effects due to their anti-inflammatory mode of action during early disease 

phase (Togha et al., 2010; Vollmer et al., 2004), inhibition of cholesterol synthesis 

especially during chronic phase of disease can be deleterious for remyelination, as 

previously shown in MS mouse models (Miron et al., 2009).  

 

Phagocyte cholesterol synthesis during demyelination. In this study, inactivation 

of cholesterol synthesis in CNS phagocytes induced persistent activation and 

cholesterol export deficiency following demyelination. By specifically targeting the 

cholesterol transporters ABCA1 and ABCG1 in phagocytes during demyelination, 

cholesterol export deficiency has been linked to limited remyelination (Cantuti-

Castelvetri et al., 2018) that was also observed in cholesterol synthesis deficient 

microglia (this study). However, in contrast to primary export deficient phagocytes, 

we also observed persistent microgliosis simultaneously with foam cell formation 

following cholesterol synthesis ablation during remyelination. In line with previous 
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studies, foam cell formation has been attributed to inefficient LXR activation (Cantuti-

Castelvetri et al., 2018; Schuster et al., 2002). Integrating post squalene cholesterol 

synthesis and LXR activation, sterol intermediates with LXR receptor ligand function 

have been identified in phagocytes (Shibata and Glass, 2009; Spann et al., 2012; 

Yang et al., 2006). In particular, lipid loading in atherosclerosis has been suggested 

to specifically reduce expression of the terminal cholesterol synthesis gene Dhcr24 

leading to accumulation of the LXR ligand desmosterol thereby inducing cholesterol 

efflux and limiting inflammation (Spann et al., 2012). The data presented here 

support this presumptively conserved phagocyte program in mouse models of MS 

and active human MS lesions. Although appearance of foamy phagocytes has been 

thought to promote MS disease progression, our and other support a model in which 

phagocytes adopt a beneficial phenotype following myelin phagocytosis (Grajchen et 

al., 2018). 

 

Squalene therapy in mouse models of Multiple Sclerosis. To date, a wide range 

of anti-inflammatory treatments are available for therapeutic management of MS (The 

Lancet, 2019; Torkildsen et al., 2016). However, no medication efficiently targeting 

remyelination is available, even though several candidates have been tested 

(Hooijmans et al., 2019). In this study, we identified the cholesterol precursor 

squalene as potential candidate for therapeutic intervention in demyelinating disease. 

Squalene feeds into the synthesis of the LXR ligand desmosterol in phagocytes (anti-

inflammatory mode of action) and directly supports myelination in oligodendrocytes 

(remyelinating mode of action). Although remyelination therapy targeting 

oligodendroglia, has become a major objective in MS (Franklin and Ffrench-

Constant, 2008; Rodgers et al., 2013), the overwhelming inflammatory response 

during acute phase of disease requires potent anti-inflammatory therapy (Berkovich, 

2013; Lassmann, 2017). Thus, combining therapeutic strategies have been 

suggested with the attempt to avoid transition to chronic disease phase (Rodgers et 

al., 2013). With these data we provide evidence that lipid based therapy can be 

combined with first-line anti-inflammatory MS medication. Therefore, these findings 

highlight therapeutic potential of squalene, limiting inflammation and promoting repair 

after demyelinating episodes. 
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Animal treatment, perfusion, staining and imaging  
Quantification 
 

Figure 4 
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Gesine Saher and Stefan Berghoff  
Experimental procedure and quantification 
Animal treatment, tissue isolation qPCR and quantification 
Animal treatment, tissue isolation qPCR and quantification 
RNA isolation and cDNA synthesis by Lena Spieth 
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Table continued  

Figure 5 

 
a-c) 

 
d-f) 
j)  

 
 

 
Animal treatment, tissue isolation, qPCR and quantification 
RNA isolation and cDNA synthesis by Lena Spieth 
Experimental procedure and quantification 
Animal treatment, tissue isolation, qPCR and quantification 
Cell isolation  by Tim Düking 
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Figure 1 
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Animal treatment, perfusion, staining and imaging  
Quantification 
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Figure 2 
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Animal treatment, perfusion, imaging and quantification 
Sectioning and contrasting was performed by EM facility 
Scheme: Gesine Saher 
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Figure 3 

 
a-d) 
i)  
 
j)  
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Nina Gerndt performed experiments 
qPCR and quantification 
Cell culture experiments by Nina Gerndt 
Cell culture, qPCR and quantification 
Cell culture, qPCR and quantification 
Cells were provided by Dept. Clinical Neuroscience 
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Figure 4  Animal treatment, perfusion, staining and imaging 
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E) 
F) 
G) 
 
H) 

Scheme design 
Animal treatment, perfusion, staining and imaging 
Scheme design 
Scheme design 
Cell isolation qPCR and quantification 
Animal treatment, tissue isolation qPCR and quantification 
qPCR and quantification 
Cell isolation was performed by Tim Düking and Lena Spieth 
Animal treatment, perfusion, staining and imaging 

Figure 2 

 
A) 
B) 
C) 
D) 
E) 
F) 
 
G) 
 
H) 
 
I) 
J) 
 
K) 
 
 

 
Scheme design 
Animal treatment, perfusion, staining and imaging 
Animal treatment, tissue isolation, qPCR and quantification 
Cell culture experiment performed by Lennart Schlaphoff 
Animal treatment, perfusion, staining and imaging 
Animal treatment, perfusion, staining and imaging 
Sectioning and contrasting was performed by EM facility  
Animal treatment  and tissue isolation 
Western Blot  was performed by Jonathan Neuber 
qPCR and quantification 
Cell isolation was performed by Lena Spieth 
Cell culture experiment performed by Lennart Schlaphoff 
Animal treatment, perfusion, staining and imaging 
Lysolecithin induction was performed by Ludovico Cantuti-Castelvetri 
EAE induction and tissue isolation 
Scoring was performed by Lena Spieth 
FACS analysis was performed by Leon Hosang 

Figure 3 

 
A) 
B) 
 
C) 
           

 
Scheme design 
EAE induction and tissue isolation 
Scoring was performed by Lena Spieth 
EAE induction and tissue isolation 
FACS analysis was performed by Leon Hosang 
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Table continued  

Figure 3 

 
D) 
 
E) 
 
F) 
G) 
 
H) 
 

 
EAE induction and tissue isolation 
Scoring was performed by Lena Spieth 
EAE induction and tissue isolation 

FACS analysis was performed by Leon Hosang 
Animal treatment, tissue isolation qPCR and quantification 
qPCR and quantification 
Cell isolation was performed by Lena Spieth 
Analysis 

 

Figure 4 

  
A-H) 
 
I-J) 
 
 
K) 
 
L) 

 
qPCR and quantification 
Cell culture experiment performed by Lennart Schlaphoff 
Samples preparation and lyophilization  
Cell culture experiment performed by Lennart Schlaphoff 
Lipid Mass spectrometry performed by Till Ischebeck 

qPCR and quantification 
Cell culture experiment performed by Lennart Schlaphoff 
Scheme design 

Figure 5 

 
A-D) 
 
 
 
E) 
F) 
 
 
G) 
 
H) 
 I) 
 
 
 

 
Cuprizone treatment /EAE induction, qPCR and quantification 
Cell isolation was performed by Lena Spieth 
Lysolecithin induction was performed by Ludovico Cantuti-Castelvetri 
MBPcKO induction performed by Martin Meschkat 

Scheme design 
Cuprizone treatment /EAE induction, tissue isolation and lyophilization 
Lipid Mass spectrometry performed by Till Ischebeck 
Lysolecithin data provided by Mikael Simons 
Cuprizone treatment, sample preparation and lyophilization 
Cell isolation was performed by Lena Spieth 
Single cell human RNAseq. reanalysis together with Ting Sun 
Samples preparation, imaging and lyophilization 
Histopathological classification and sample preparation by  
Christine Stadelmann-Nessler and Franziska Paap 
Lipid Mass spectrometry performed by Till Ischebeck 

Figure 6 
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D) 
 
E) 
 
F) 

 
Imaging and quantification 

Cell culture experiment performed by Julia M. Edgar 
Animal treatment, perfusion, staining and imaging 

Lysolecithin induction was performed by Ludovico Cantuti-Castelvetri 
EAE induction, treatment and tissue isolation 
Scoring was performed by Lena Spieth 

EAE induction, treatment and tissue isolation 
FACS analysis was performed by Leon Hosang 
qPCR and quantification 

Cell isolation was performed by Lena Spieth 
Scheme design 
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Table continued 

Supplementary 
Figure 1 

 
A) 
B) 
 
C) 
 
D) 
 
 
E) 
F) 
 

 
Cuprizone treatment, tissue isolation, qPCR and quantification 
qPCR and quantification 
Cell isolation was performed by Lena Spieth 
Scheme design, qPCR and quantification 
Cell isolation was performed by Tim Düking and Lena Spieth 
Bodyweight monitoring, blood collection, serum  preparation and  
quantification 
Serum cholesterol was measured by UMG Göttigen (Zentrallabor) 
Scheme design 
Cuprizone treatment , perfusion, histological staining, imaging and  
quantification 

Supplementary 
Figure 2 

 
A) 
 
B) 
 
 
C) 
 
D) 
 
 
E) 
 

 
EAE induction, qPCR and quantification 
Cell isolation was performed by Lena Spieth 
Scheme design, qPCR and quantification 
MBPcKO induction performed by Martin Meschkat 
Cell isolation was performed by Lena Spieth 
Bodyweight monitoring, blood collection, serum  preparation, qPCR and    
quantification 
Cuprizone treatment , perfusion, histological staining, imaging and  
quantification 
Together with Jan Winchenbach 
Beam testing and quantification 
Together with Lena Spieth 

Supplementary 
Figure 3 

 
A) 
B) 
 
C) 
D) 
 
E) 
F) 
 
G) 
 
H) 
 
I) 
 
J) 
K) 
 

 
Scheme design 
Cuprizone treatment , perfusion and imaging  
Sectioning and contrasting was performed by EM facility  
Cell culture experiment performed by Lennart Schlaphoff 
qPCR and quantification 
Cell culture experiment performed by Lennart Schlaphoff 
Cell culture experiment performed by Lennart Schlaphoff 
Cuprizone treatment , perfusion, histological staining, imaging and  
quantification 
Cuprizone treatment , perfusion and imaging  
Sectioning and contrasting was performed by EM facility  
qPCR and quantification 
Cell culture experiment performed by Lennart Schlaphoff 
Perfusion, histological staining, imaging and quantification 
Lysolecithin induction was performed by Ludovico Cantuti-Castelvetri 
Scheme design 
EAE induction, treatment and tissue isolation 
FACS analysis was performed by Leon Hosang 
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Figure 4 

 
A) 
 
 
B-C) 
 
D) 
 
E) 
 
 

 
EAE induction and  treatment  
Scoring was performed by Lena Spieth 
FACS analysis was performed by Leon Hosang 
EAE induction, blood collection, serum  preparation and quantification 
Serum cholesterol was measured by UMG Göttigen (Zentrallabor) 
EAE induction, blood collection, serum  preparation and quantification 
Serum cholesterol was measured by UMG Göttigen (Zentrallabor) 
EAE induction, blood collection, serum  preparation 
Squalene measurement performed by David Ewers 
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Supplementary 
Figure 4 

F) 
G) 
 
H) 
 
I) 

Scheme design 
Cuprizone treatment,serum  preparation and quantification 
Serum cholesterol was measured by UMG Göttigen (Zentrallabor) 
Cuprizone treatment, blood collection, serum  preparation 
Squalene measurement performed by David Ewers 
Cuprizone treatment , perfusion, staining, imaging and quantification 

Supplementary 
Figure 5 

 
A-E) 
 
F-G) 
H-I) 
 
J-K) 

 
qPCR and quantification 
Cell culture experiment performed by Lennart Schlaphoff 
Cell culture experiment performed by Lennart Schlaphoff 
qPCR and quantification 
Cell culture experiment performed by Lennart Schlaphoff 
Cell culture experiment performed by Lennart Schlaphoff 

Supplementary 
Figure 6 

 
A) 
 
B) 
C) 
 
D) 
 
E) 
 
 
 
F) 
 

 
Cuprizone treatment , tissue preparation and lyophilization 
Cell isolation was performed by Lena Spieth 
Data provided from Mikael Simons 
Cuprizone treatment , tissue isolation and lyophilization 
Lipid Mass spectrometry performed by Till Ischebeck 
EAE induction , tissue isolation and lyophilization 
Lipid Mass spectrometry performed by Till Ischebeck 
EAE induction, qPCR and quantification 
Cell isolation was performed by Lena Spieth 
Lysolecithin induction was performed by Ludovico Cantuti-Castelvetri 
MBPcKO induction performed by Martin Meschkat 
EAE induction , tissue isolation and lyophilization 
Lipid Mass spectrometry performed by Patricia Scholz 
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Figure 7 

 
A-D) 
E-G) 
 
 
 

 
Single cell human RNAseq. reanalysis together with Ting Sun 
Samples preparation, imaging and lyophilization 
Histopathological classification and sample preparation by  
Christine Stadelmann-Nessler and Franziska Paap 
Lipid Mass spectrometry performed by Till Ischebeck 

Supplementary 
Figure 8 

 
A) 
 
B) 
 
C) 
 
D) 
 
 
E) 
F) 
 
G-I) 
 
 
      
          

Animal treatment, blood collection, serum  preparation and quantification 
Serum cholesterol was measured by UMG Göttigen (Zentrallabor) 
Lysolecithin induction was performed by Ludovico Cantuti-Castelvetri 
Animal treatment, blood collection, serum  preparation 
Squalene measurement performed by David Ewers 
EAE induction and treatment 
Scoring was performed by Lena Spieth 
EAE induction and treatment 
Scoring was performed by Jan Winchenbach 
EAE induction, tissue isolation, qPCR and quantification 
EAE induction and treatment 
Scoring was performed by Jan Winchenbach 
Tissue isolation 
FACS analysis was performed by Leon Hosang 
qPCR analysis was performed by Leon Hosang 
EAE induction,  treatment,  qPCR and quantification 
Cell isolation was performed by Lena Spieth 

Supplementary 
Figure 9  Scheme design 


