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1 Introduction

The topic of this thesis is cavitation: the rupture of liquids due to tension or energy deposition.
The most important liquid is
Water – the most peculiar liquid known. The simple triatomic molecule, the basis of life.
The adult human has a water content of 65 %-70 % and water stabilises the helix structure
of the DNA molecule (Franks 1972). The annual turnover of water on earth is estimated to
3.5 · 105 km3 = 3.5 · 1014 tons. Only 0.027 % of the total water is fresh and immediately
available. Most of the fresh water is locked in the Arctic and Antarctic ice caps. Ironically, in
Franks (1972) a calculation has been posed that from an iceberg of size (2700×2700×250) m3

from the Antarctic Amery ice shelf 30 % would arrive intact at Australia, worth 5.5 million $,
10 % of the cost of desalinated water back then. With the current climate change and the polar
amplification effect, that phenomenon might occur naturally. The polar amplification effect
refers to the phenomenon that the average local temperature rise due to climate change is highest
at the polar regions (see e.g. Stuecker et al. (2018)).

The well known physical and chemical anomalies of water have significant impact, rarely
fully realized. The large heat capacity of water ensures that the oceans, making up 97 % of
the earth’s water, act as thermostats. This is also the reason why the energy imbalance of the
climate change is buffered by 93 % into the oceans (Cheng et al. 2019, for example). The
density extremum at 4◦ ensures life persistence by letting the earth’s water only freeze on the
surface. The compressibility 5.1 · 10−10 Pa−1 reduces the ocean height by 40 m compared to
incompressibility. The expansion upon freezing in combination with very high surface ten-
sion leads to penetrating smallest gaps in stones and cracking them, forming the basis of soil.
Furthermore, water acts as an almost universal solvent. Almost every chemical compound is
dissolved in water, at least to a slight extent. Very peculiar is the ability of the water molecule
to form hydrogen bonds, meaning structured partnering of water molecules. These structures
may maintain during thermal fluctuations at and below ambient temperatures (Chaplin 2019).
This led to the term of water being a “structured” liquid (Franks 1972). The particle hydration
shell of dissolved or dispersed particles can markedly be affected by the subtle altering of the
water-water interactions due to presence of other molecules, substances, microorganisms or e.g.
by heating, cooling, agitation, changes in pH and ionic strength (Franks 1972).

Cavitation – The topic of this thesis is rather connected to the ability of water (and also
other liquids not investigated here) to mechanically erode even the hardest materials at the pres-
ence of cavitation bubbles. A cavitation bubble is understood as a millimeter or sub-millimeter
sized bubble that undergoes explosive expansion and/ or rapid collapse dynamics due to short
time, extreme events in temperature or pressure. Young (1999) states that Reynolds investigated
cavitation bubbles in 1873 already. At the time, ship propellers were fast enough to produce cav-
itation clouds and dissipate energy into cavitation rather than into propulsion (see Fig. 1.1a,f).
When the propeller cuts through the liquid, it produces low pressure regions, mainly at the
tip of the blade and at the rotational axis, with values below vapour pressure (2337 Pa at 20◦).
This leads to explosive evaporation of the liquid parcels into vapour cavities, which then col-
lapse again, and produce liquid jets towards the solid blade, potentially eroding it. Stronger
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1 Introduction

cavitation even occurs when the pressure falls below 0 Pa, turning into tensile stress on the
aforementioned hydrogen bonds. Impurities in the water then act as seeds of sudden rupture
of the liquid. The cavity formed is then considered to only contain vacuum for a very short
time until evaporation of water leads to filling with it vapour. Cavity formation in water due to
static, low pressure is called hydrodynamic cavitation. Generating the low pressure acoustically
creates acoustic cavitation. Cavitation by locally depositing energy by laser light is called optic
cavitation and by detonation is called particle cavitation. This classification has been done by
Lauterborn (1980) after the first cavitation conference in Göttingen in 1979. Furthermore, spark
induced cavitation is known, where the bubble is induced by electrical discharge between two
electrodes.

Apart from industrial occurences of cavitation, natural occurrences exist, too. The most pro-
nounced example is that of the pistol shrimp (Synalpheus parneomeris) that has one claw much
larger than the other, equipped with the ability to produce a cavitation bubble when clapping.
Au and Banks (1998) measured the energy flux density of the clap shockwaves of 40 different
shrimps. They found values between 127 dB and 135 dB, corresponding to source energies of
17 µJ to 40 µJ. Sperry et al. (1996) report on cavitation occuring in plants in the water conduct-
ing tissue (xylem) when it’s partly dehydrated. When air enters the xylem, it gets compressed
and may dissolve into neighbouring, water filled capillaries, where a cavitation bubble then is
formed. Noblin et al. (2012) reported about a cavitation mechanism in fern when it ejects the
spores.

Cavitation has found its way into a lot of different application fields such as, for instance,
cleaning (Reuter et al. 2017b), food industry (Asaithambi et al. 2019), chemistry and biochem-
istry for enhancing reactions or waste water treatment (Gogate and Kabadi 2009) and medicine
(Vogel and Venugopalan 2011; Brennen 2015; Pishchalnikov et al. 2019).

It is known since the beginning of discovery that cavitation is an erosive phenomenon. As
stated later in Sec. 2.3, pressures of several hundred megapascal are necessary to erode alloys
which e.g. ship propellers are made of. When exactly and how these pressures develop and
which situations provoke higher pressures than others, is still to be clarified, although several
decades of research have passed. On this way, cavitation has been found to include the topics
of compressible fluid flow, non-linear acoustics, phase transition thermodynamics, non-linear
optics and even nuclear physics. (see e.g. books and reviews: Leighton (1994), Brennen (1995),
Young (1999), and Lauterborn and Kurz (2010)). Erosion happens on the sub-microsecond time
scale and micrometer length scale, tempting experimental observation methods. The key point
here is to understand the dynamics and processes of one single bubble. Usually, experiments
comprise high-speed photography, laser induced or spark induced single bubbles and high in-
tensity illumination for short camera shutter times (Lauterborn 1974; Lindau and Lauterborn
2003; Geisler 2004; Reuter and Mettin 2016; Supponen et al. 2016; Rosselló et al. 2018; Koch
et al. 2020). The plasma formation due to laser light focusing into the liquid is called optical
breakdown (Lauterborn and Kurz 2010; Köhler 2010).

Numerical methods using computational fluid dynamics (CFD) only roughly within the last
decade evolved to simulate one single cavitation bubble with the sufficient inclusion of most
relevant physics. Chahine (2014) and Chahine and Hsiao (2015) employ the linking of CFD
and computational solid mechanics to find the stresses induced to solids by a single bubble.
Pressures of adequate erosive values are found with inviscid fluids by applying sudden jumps
of the atmospheric pressure of several magnitudes. Other authors (Johnsen and Colonius 2008;
Johnsen and Colonius 2009; Müller et al. 2010; Ochiai et al. 2011; Lauer et al. 2012; Hsiao et al.
2014; Pishchalnikov et al. 2019) apply CFD for different bubble models and initial conditions of
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1 Introduction

(initially) spherical, cylindrical or planar bubbles, axisymmetric bubbles and three-dimensional
bubbles in a constant external pressure field to shock-induced bubble collapse near boundaries
as in lithotripsy.

The CFD solver of this thesis has a background of almost seven years of research (Han et al.
2015; Koch 2014; Lechner et al. 2015; Koch et al. 2016; Lechner et al. 2017; Lechner et al.
2018; Lauterborn et al. 2018; Lechner et al. 2019; Lechner et al. 2020; Koch et al. 2020). The
solver intends to elucidate the fluid dynamics, especially that hidden to the experiment, of one
single or few cavitation bubbles close to rigid objects. The idea behind the investigation of
single cavitation bubbles in the laboratory and numerically is to clarify the dynamics of the
smallest part of a cavitation erosion system. Fig. 1.1 sketches this idea.

t

courtesy H. Söhnholz

t

R

Rn

A)
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Fig. 1.1: Demonstration of the idea behind single bubble investigation: A) a rotating ship
propeller with cavitation clouds at the blade tips (Wikimedia: Davidhv22 2011),
where one bubble is extracted (B) that expands and collapses with shockwave
emission (red) and liquid jet formation (blue arrow). The equivalent bubble radius
Requiv. over time behaves like the curve drawn in C) where it expands to the
maximum radius, collapses and undergoes several rebounds till it rests at equilibrium
radius Rn. In the moment of jetting and minimum volume the bubble again emits
shockwave patterns and the gas is split into tori fractions (D). An experimental
image of the situation D) is shown in E) (Söhnholz 2016). After having studied
single bubbles, the erosion damage on propeller (Wikimedia: Erik Axdahl (Liftarn)
2007) F) may be explainable.

(The following text part is similar but not identical to parts of Koch et al. (2020)):
Liquid jets and their experimental observation – A cavitation bubble in the vicinity of

an object has a complicated two-phase, three-dimensional topology (see, e.g., Lindau and
Lauterborn (2003)). Of special interest is the formation of fast liquid jets that appear in non
spherically-symmetric environments (see e.g. for experimental photographs other than those of
this thesis: Supponen et al. (2016) and Rosselló et al. (2018)). These jets are considered to be
one of the reasons for erosion. They are formed in either of two ways: either by involution of

3



1 Introduction

the bubble interface (Plesset and Chapman 1971; Lauterborn and Bolle 1975) due to restricted
flow by the nearby object, or by impact of an annular inflow that then squeezes out the liquid
in the respective orthogonal direction (Voinov and Voinov 1976; Lechner et al. 2019). After
formation, the jet traverses the interior of the bubble and impacts onto the opposite bubble wall.

To follow this phenomenon it is necessary to have optical access to the interior of the bubble.
Up to now, this is mostly done by diffuse illumination from the back (shadowgraphy) or multiple
light sources to better show the topography of the deformed bubble surface. In shadowgraphy,
smooth bubbles then appear black on a bright background with a bright center, where the light
can pass undeflected (e.g., Lauterborn (1980), Reuter and Mettin (2016), and Rosselló et al.
(2018)). The dark view of the rest of the bubble interior is due to the light being deflected off
the surface of the bubble and not being able to reach the photographic film or the CCD chip of
an electronic camera. An iconic, historic example of a laser generated bubble jet (Lauterborn
1980) is presented in Fig. 1.2a. The bubble is in its re-expansion phase (rebound) after the first
collapse. The jet is due to the asymmetry introduced by a solid boundary below the bubble in
the direction of the jet. Because only part of the interior of the bubble is optically accessible, the
motion of the jet through the bubble can not be followed in its entirety. Lindau and Lauterborn
(2003) could photograph the very formation of the jet by involution of the top of the bubble by
applying special illumination and observation.

Overlay of numerical and experimental results – Regarding cavitation bubble dynamics,
most publications focus either on numerical or on experimental results, and very few are known
that compare experimental and numerical results directly (Lauterborn and Bolle 1975; Ohl and
Ory 2000; Blake et al. 2015; Han et al. 2015; Koch et al. 2016; Pishchalnikov et al. 2019). This
might be due to historical reasons, but with nowadays technological advancement it became
possible to simulate the whole experiment.

Pursuing the goal to illuminate the whole volume of a small, air-filled sphere in water, a
simple ray-tracing calculation based on Snell’s law (code: Koch (2020)) would give the graphic
in Fig. 1.2 b. Here, a case is considered, where the real experiment makes use of a long-distance
microscope observing a tiny bubble. Thus it can be assumed that only parallel rays will enter
an objective to the left of the bubble in the graphic. It is seen that the objective is hit by rays
coming from a conical region behind (to the right) of the bubble. The cone has an aperture angle
of about 90◦. Therefore, in order to illuminate most of the bubble interior an illumination from
behind the spherical bubble with the size of the base of that cone would be necessary. Still,
the interior would be mapped towards the center region in the image seen by the microscope,
leaving a thick dark outline at the bubble rim. However, this dark rim of the bubble might again
be lightened by oblique incidence of light rays due to total reflection, such that the real interface
position may become blurred or unclear (compare top and lowermost three rays of Fig. 1.2 b).

Analytical investigations of Snell’s law for a circular interface have been used for a droplet
(Kobel et al. 2009) and also for cylindrical or spherical glass vessels filled with sulfuric acid
(Rosselló et al. 2016). In the latter, this method was combined with stereo camera recording
and iterative triangulation to determine the position of a bubble inside the vessel. It is important
to note that the previous analytic methods are useful only in cases with very simple geometries,
and thus cannot be applied to a strongly aspherical bubble.

As a general rule, when the shape of the bubble under analysis becomes increasingly com-
plex, it is almost impossible to reconstruct the shape by simple observation. Fig. 1.2 c and
Fig. 1.2 d are supposed to show the same bubble in experiment and in numerics, generated in
direct vicinity to a solid surface, but it is evident that it is left to the eye of the observer whether
the shapes are similar or not. The experimental bubble in Fig. 1.2 c was illuminated from the

4



1 Introduction

back, as well as from the right side to give it a more 3D appearance. As stated before, the
background illumination is distorted strongly by refraction in the experimental image due to the
interface of the bubble.

To determine the speed and shape of the liquid jets, a clear view into the interior of the bubble
is required and more sophisticated illumination schemes must be implemented. In this thesis,
as well as in Koch et al. (2020), the overlay method is presented, which makes use of the ray-
tracing method to analyse complex scenarios. The optically relevant parts of the experiment are
digitally reconstructed so that numerical results can be ray-traced and put to a similar image as
gained in the respective real experiment.

Fig. 1.2: a) Bubble with jet photographed in backlight (shadowgraphy). b) Applying Snell’s
law to a spherical air bubble in water for a bundle of parallel light rays. c,d) Standard
comparison of an experimental, photographic image of a collapsing bubble in water
(c) and a color coded visualization of the pressure in a corresponding numerical
simulation as a cut through the bubble (d).

Recently, the ray-tracing method was used in the same sense as presented here, but for single-
phase fluid dynamics: A Schlieren image from Large Eddy simulations was compared with
experiments of a supersonic gas flow by Luthman et al. (2019). The authors implemented a
ray-tracing engine themselves and found very good agreement of the resulting images between
experiment and simulation for several flow features, e.g., jet–shock interaction and inferred
velocity fields.

Ray-tracing of the two-phase flow of a single cavitation bubble was briefly introduced twenty
years ago by Ohl and Ory (2000). Applying nowadays computational tools allow for investi-
gations in much higher detail. Here blender is used, a free and open-source 3D animation
tool with a python scripting interface, but the same technique can be also implemented by any
optical ray-tracing software. Apart from the enhanced readability of scientific results, it can
serve as an alternative validation method of any newly developed (two-phase) computational
fluid dynamics simulation code by comparison with the experiment. Another possibility is to
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1 Introduction

redesign experiments in order to optimize the visualization of specific expected phenomena.
Jet speed illusion and the fast jet – In this thesis, the overlay method is used to infer the

shape of a strongly aspherical bubble close to a solid boundary and show that refraction leads to
the optical illusion of a wrong liquid jet speed. The method furthermore aids to consolidate the
arguments that the so called fast jet truly exists. The fast jet is predicted in Lechner et al. (2019)
and Lechner et al. (2020) to reach a speed in the order of 1000 m/s within 20 nanoseconds,
yielding an astronomical acceleration one would not expect to meet in an ordinary lab. Since
this type of jet only happens in a time window of less than one microsecond when the bubble
is generated very close to, if not touching the solid boundary, and when it is already almost
collapsed, it is no wonder that the jet has escaped observation for so long. It is still hard to
fundamentally prove its existence by direct observation, yet indirect arguments are plentiful. To
the thorough numerical investigations in axial symmetry in Lechner et al. (2020) in this thesis
numerical results in full 3D, as well as experimental results are added and complemented with
the overlay comparison.

Other publications showing the fast jet without explicitly paying higher attention to it are
Benjamin and Ellis (1966), showing experimental results, and Pishchalnikov et al. (2019) show-
ing numerical results with a completely different code.

This work is organized as follows: First the theoretical background of the bubble dynamics,
erosion and numerical solver are explained in chapter 2. In chapter 3 the experimental and nu-
merical arrangements are described. For the experiment three different setups were employed.
One extra setup was used to validate the ray-tracing engine of blender by a static bubble
attached to a syringe. Concerning the numerics, essential logical steps such as grid convergence
studies or other validation investigations are put into the appendix in order to leave a clear
story-line in the main body of the thesis. The appendix is understood as a rich compendium of
resources needed to reproduce the results of this thesis. The links for the permanent storage of
the resources are given there, too.

In chapter 4, 5 and 7 the results are reported. The vortices generated by a bubble close to
a solid boundary are investigated in Ch. 4 and compared to the experimental data of Reuter
and Mettin (2016) as a means to give a validation for the solver for long term fluid motions
around a bubble. The aforementioned optical jet speed illusion is investigated here as well. The
phenomenon of the fast jet is investigated in Ch. 5 with numerical, experimental and overlay
methods. In Ch. 7 bubbles on top of a rigid cylinder of comparable radius are investigated both
numerically and experimentally showing interesting shape dynamics reminding of mushrooms.
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2 Theory

In this chapter the relevant equations and relations are stated. If the detailed derivation can be
found in Koch (2014) or in subsequent papers, only the result is stated here with a reference
annotation.

2.1 Laser generation of bubbles
Following the tradition of my predecessors (Ohl 1998; Lindau 2001; Geisler 2004; Söhnholz
2016; Reuter and Mettin 2016), as well as the founders (Lauterborn 1974; Lauterborn 1980;
Vogel 1987), the bubbles under investigation in this thesis are laser induced. This is consid-
ered non-invasive, to a certain extent, in contrast to spark induced bubbles where electrodes
influence the dynamics. The deposition of energy is preferred, since the generation of a single
bubble via tensile stress is very difficult to realize. The theoretical background of the non-
linear optical breakdown of the focused laser light in water is given in Köhler (2010). The
absorption of photons in water is modeled with the model of semiconductors of a band gap
of ∆E = 6.5 eV. At high photon densities, an electron can absorb many photons instead of
only one and the molecule may be ionized. The free electron then can absorb bremsstrahlung
when hitting another molecule, thus inducing a cascade ionization and plasma growth. Vo-
gel and Lauterborn (1988) measured the energy ratio of a laser pulse that is converted into
shockwave generation from breakdown. With an Nd:YAG laser and their focusing optics, bub-
ble formation started at 1 mJ laser pulse energy. Geisler (2004) calculated that an intensity of
2.8 · 1017 W/m2 = 2.8 · 1013 W/cm2 is needed for breakdown for femtosecond pulses. Vogel
et al. (2005) calculated the threshold spectrum for several pulse durations for the main wave-
lengths used for femto- and nanosecond lasers (1064 nm,800 nm and 532 nm) and found thresh-
old values of Ithr ≈ 1012 W/cm2 for pulse lengths > 10−11 s using a critical electron density of
ρcr = 1021/cm3. This is the same order of magnitude confirmed by Köhler (2010).

2.2 Bubble dynamics
(This section is similar to parts in Koch et al. (2016). Details have been updated.)
The standard model for a cavitation bubble dominated by inertial forces is selected for the
present investigations (Brennen 1995). It neglects mass and heat diffusion across the bubble
interface as well as phase change effects and is valid for cavitation bubbles in water at normal
ambient temperatures. Neglecting heat diffusion is justified taking into account the experiments
in Söhnholz (2016), where no evidence of measurable temperature effects onto the liquid by the
bubble could be found. Mass diffusion neglect is justified retroactively by showing that the bub-
ble dynamics are well captured. Phase change effects are neglected owing to their complicated
nature. Ishiyama et al. (2013) investigated the non-equilibrium kinetic boundary conditions at
the bubble interface with molecular dynamics, intending to find the thermal accommodation
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2 Theory

coefficient, as well as evaporation and condensation coefficients for the interface boundary con-
dition. Including these findings into a numerical solver for 3D bubble dynamics is a research
project of its own.

The dynamics of the cavitation bubbles considered here is dominated by inertia and com-
pressibility effects. Compared to the latter, heat diffusion effects are negligible. This has been
found experimentally by Vogel and Lauterborn (1988) by measuring the energy of the shock
wave radiated upon strong bubble collapse. More than 80% of the bubble energy may be radi-
ated away upon collapse. Similarly, gas diffusion through the bubble wall can be neglected, as
the time scale of diffusion is much larger than the time scale of the bubble oscillations consid-
ered here.

Evaporation and condensation on the other hand are fast processes with respect to bubble
motion as considered here. This leads to a quick equilibration of the vapor pressure in the
bubble, the saturation vapor pressure at the given temperature. In a cold liquid, i.e. a liquid far
from its boiling point, this pressure is small with respect to the ambient pressure and therefore
can be neglected to first approximation.

Altogether it can be stated that in the cases to be considered, thermodynamic effects play a
minor role for the dynamics of the bubble as a whole. To a good approximation the bubble
interior – the content of the bubble – can be modeled as a non-condensable gas of constant mass
undergoing adiabatic changes of state.

The bubble exterior – the surrounding liquid – is taken to be (nonlinearly) compressible.
Both, viscosity of the liquid and surface tension of the interface are included in the present inves-
tigations. Their effect on the bubble dynamics in a spherically symmetric collapse is marginal
for the bubbles considered here. In the asymmetric collapse close to a solid wall they may have
an influence on the dynamics and jet formation, as stated in Lechner et al. (2017). For distinct
cases in this thesis, the difference will be shown. Also, viscosity of the liquid is needed to
capture the boundary layer next to the solid wall. This is especially important for bubbles very
close to the solid boundary, because it is the reason for the development of a fast jet of speed in
the order of 1000 m/s.

The effect of gravity is small for the size and lifetime of the bubbles calculated here, so
gravity is neglected.

2.2.1 Equations of motion

p(ρ  )

gas (bubble)p(ρ )

σ

µ  , ρ ,

µ  , ρ  ,

l       l

g      g g 

l

liquid

α=1 α=0
n

S(t)

Fig. 2.1: Sketch of the bubble model.

The two fluids liquid and gas are considered to be separated by an interface of finite thickness.
The equations of motion are formulated for a single fluid with a density field ρ (x, t), velocity
field U (x, t) and pressure field p (x, t) satisfying the continuity equation Eq. 2.4 and the mo-
mentum equation Eq. 2.3 given below. The standard values for the fluid properties are stated in
the appendix in table A.1.
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In order to distinguish between liquid (l) and gas (g), volume fractions αi (x, t) with i = l, g
are introduced: αl = 1 in the liquid phase and αl = 0 in the gas phase, whereas αg = 1 in the
gas phase and αg = 0 in the liquid phase. The position of the interface is then given implicitly
by the transition of αl from 1 to 0. The volume fraction of the gas is related to αl by

αg (x, t) = 1− αl (x, t) . (2.1)

The overall density and viscosity fields can be written as

ρ (x, t) = αl (x, t) ρl (x, t) + αg (x, t) ρg (x, t) ,

µ (x, t) = αl (x, t)µl + αg (x, t)µg ,
(2.2)

with ρl and ρg the densities of liquid and gas, respectively. The dynamic viscosities µl, µg are
taken to be constant. The model is sketched in Fig. 2.1.

As phase transitions are neglected, there is no mass transfer between the fluids which is
reflected in the continuity equations Eq. 2.5 for the individual fluids. Only two equations out of
Eq. 2.4 and Eq. 2.5 are necessary, the third one is satisfied identically by virtue of the algebraic
condition Eq. 2.1. The Navier-Stokes equation Eq. 2.3 and the continuity equations read

∂(ρU)

∂t
+∇ · (ρU⊗U) =−∇p+

∫
S(t)

σ κ(x′) n̂(x′)δ(x− x′)dS ′ +∇ · T, (2.3)

∂ρ

∂t
+∇ · (ρU) =0 , (2.4)

∂(αiρi)

∂t
+∇ · (αiρiU) =0 , i = l, g . (2.5)

∇ denotes the gradient,∇· is the divergence and ⊗ the tensorial product. The surface tension σ
is taken to be constant. The surface integral in Eq. 2.3 represents the surface force acting at the
liquid/gas interface, see Tryggvason et al. (2001). κ is twice the mean curvature of the interface
and n̂ the unit normal to the interface, taken to point from the gas into the liquid here. δ(x−x′)
denotes the Dirac delta in three dimensions, with x′ ∈ S(t) a point on the interface and x the
point at which the equation is evaluated.

T is the part of the viscous stress tensor Tv of a Newtonian fluid without bulk viscosity:

Tv :=µ

(
∇U + (∇U)T − 2

3
(∇ ·U) I

)
, (2.6)

T :=µ
(
∇U + (∇U)T

)
, (2.7)

with I the unit tensor. Mind that

(∇µ) · (∇U)T = (∇U) · (∇µ) (2.8)

and
∂

∂xj
∂uj

∂xi
=

∂

∂xi
∂uj

∂xj
(2.9)

with exchanging the derivation order in the tensor notation of∇ · (∇U)T . This leads to

∇ · T = ∇ · (µ∇U) + (∇U) · (∇µ) + µ∇(∇ ·U) (2.10)

9
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The complete∇ · Tv is derived in Koch (2014) and would read

∇ · Tv = ∇ · (µ∇U) + (∇U) · (∇µ) +
1

3
µ∇(∇ ·U)− 2

3
∇(µ)(∇ ·U). (2.11)

Omitting the bulk viscosity is generally justified because i) the prefactor 2/3 varies among dif-
ferent authors and ii) it is negligible in the problems under investigation even in strong compres-
sion cases. This was tested for a calculation with pressures up to 300 MPa and by C. Lechner
for the calculations in Lechner et al. (2020). Therefore the following analogy holds (with4 the
Laplace operator):

∇ · T :=∇ · (µ∇U) + ∇U · ∇µ︸ ︷︷ ︸
= 0∀x /∈ S(t)

+µ∇(∇ ·U) (2.12)

→ ∇ · T =µ4U + µ∇(∇ ·U) ∀x /∈ S(t) (2.13)

Eqs. 2.3 to 2.5 are closed by the barotropic equations of state (EoS) ρi(p) given below. For
negligible heat conduction and viscous dissipation energy then is automatically conserved.

EoS for the gas Upon strong (spherically symmetric) collapse, that brings the bubble size
down to a few micrometer, the finite size of the gas molecules may play a role (Löfstedt et
al. 1993). This is accounted for by including the co-volume in the equation of state, i.e. the gas
in the bubble is described by the co-volume EoS (sometimes also called Noble-Abel EoS)

Rspec ϑ = p

(
1

ρ
− β

ρn

)
. (2.14)

Rspec denotes the specific gas constant, ϑ the temperature and ρn the equilibrium density of the
bubble. β is the co-volume de-dimensionalized with the molar volume at equilibrium. Common
practice is to set β = 0, though, for aspherically collapsing bubbles. The changes of state in
the bubble are assumed to be adiabatic (an approximation often used for cavitation bubbles in
liquids near normal conditions), therefore

p

(
1

ρ
− β

ρn

)γ
= const, (2.15)

with γ the ratio of specific heats. The polytropic exponent γ = 1.4 is used for air or any
two-atomic molecule gas.

EoS for the liquid For the liquid the Tait equation of state for water is used (see Li (1967),
Fujikawa and Akamatsu (1980) and Cole (1948), p. 39 Eq. 2.30 for origin, as well as the book
dedicated to the Tait equation itself: Aitken and Foulc (2019))

p(ρ) = (p∞ +B)

(
ρ

ρ∞

)nT
−B , (2.16)

with p∞ the atmospheric pressure and ρ∞ the equilibrium density, the Tait exponent nT = 7.15
and the Tait pressure B = 305 MPa. The Tait equation Eq. 2.16 models isentropic water based
on data in the range of 0 ≤ ϑ ≤ 45◦ and 1 bar ≤ p ≤ 1000 bar.

10
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EoS derivatives ψi The compressibility

ψi =
dρi
dp

=
1

c2
i

, (2.17)

with c being the speed of sound, of the respective i-th phase enters many equations. It has been
found in Koch (2014) and Koch et al. (2016) that a special treatment has to be applied in order
to stabilize the interface:

ψl,corr = αlψl + αgψmin, ψg,corr = αgψg + αlψmin, ψ = αlψl,corr + αgψg,corr (2.18)

with ψmin = 10−16 s4/m2.

2.2.2 Bubble energy
As declared in the previous section, the bubble is assumed to be adiabatic, exchanging no heat
or mass with the surrounding liquid. Wang (2016) then states that the local potential energy
ELP of an infinitely slowly and adiabatically expanding and collapsing bubble is the sum of (i)
the work done on the liquid by the gas pressure pg at the bubble interface and (ii) the power
transmitted across a closed hyperplane around the bubble:

ELP = −
∫ V

V0

pg dV︸ ︷︷ ︸
(i)

+ p∞ (V − V0)︸ ︷︷ ︸
(ii)

. (2.19)

Here, surface tension, vapour pressure and gravity are neglected, in contrast to Wang (2016).
Using the adiabatic relation (Eq. 2.15 with β = 0)

pV γ = const. = p0V
γ

0 , (2.20)

the term (i) transforms to

−
∫ V

V0

(
p0

(
V0

V

)γ)
dV = −p0V

γ
0

[
V 1−γ

1− γ

]V
V0

= − p0V
γ

0 V
1−γ − p0V0

1− γ

=
p0V0

γ − 1

((
V0

V

)γ−1

− 1

)
. (2.21)

Accordingly, the total energy at t = 0 of a bubble hypothetically compressed from its equi-
librium volume Vn to the volume V = V0 and put into a liquid of zero velocity and constant
ambient pressure p∞ is given by

Etot = −pnV
γ
n V

1−γ
0 − pnVn
1− γ

=
p0V0 − pnVn

γ − 1
, (2.22)

where the term ii) of Eq. 2.19 is omitted because at t = 0 no volume work has been performed
yet (V = V0). Without energy dissipation by viscous or acoustic effects, we can calculate the
theoretical maximum radius by setting Etot equal to the sum of the gas pressure work from the
bubble equilibrium to maximum extension and the liquid volume work for the full expansion:

Etot
!

= −
∫ Vmax

Vn

pg dV + p∞ (Vmax − V0)

pnVn
γ − 1

(
Vn
V0

)γ−1
!

=
pnVn
γ − 1

(
Vn
Vmax

)γ−1

+ p∞ (Vmax − V0) (2.23)
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The asymmetry in the limits of the terms roots from the quasi-static assumption of the expansion
process applied onto a non-equilibrium problem. If the bubble would expand quasi-statically,
it would asymptotically approach the equilibrium volume. This can be verified by solving the
simplified force balance equation (ordinary differential equation)

mR̈ = (pb − p∞) · S = p∞

((
Rn

R

)3γ

− 1

)
4πR2, (2.24)

with S the bubble surface area and pb the homogeneous, adiabatic bubble pressure. The next
step towards non-equilibrium is the Rayleigh-Plesset equation:

RR̈ +
3

2
Ṙ =

1

ρl
(pb − p∞). (2.25)

For a bubble in unbounded liquid with equilibrium radius Rn = 184.1 µm, equilibrium pressure
pn = p∞ = 101315 Pa and starting radius R0 = 20.063 µm a theoretical maximum radius of
Rmax,th = 602.989 µm is found with Eq. 2.23 or by solving the Eq. 2.25.

In the full CFD simulation of the same bubble a maximum radius of Rmax = 471.4 µm is
attained. With this value the ratio of emitted and dissipated energy to the total energy can be
calculated:

Ecomp,visc/Etot =

Etot − pnVn
γ−1

((
Vn

V (Rmax)

)γ−1

− 1

)
− p∞ (V (Rmax)− V0)

Etot
. (2.26)

For the numerical bubble 54.58 % is found. The three solutions are shown in Fig. 2.2.
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Fig. 2.2: Bubble radius over time curves, comparing the different concepts of energy
conversion of the quasi-static, simple force balance Eq. 2.24, the
Rayleigh-Plesset-Eq. 2.25 and the full CFD simulation (explained in the remainder
body of the thesis).
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For the full CFD simulation all quantities can be directly extracted. The acoustical energy of
the liquid is

Eac(t) =

∫
Ω

αl (x, t)
(p (x, t)− p∞)2 ψl (x, t)

ρl (x, t)
dx, ψl =

dρl
dp

=
1

cl (x, t)
2 , (2.27)

with Ω the volume of the computational domain, x the coordinate vector, ψl the compressibility
and cl the acoustic phase velocity in the liquid. The term of the gas pressure work of Eq. 2.19
according to Eq. 2.23 reads:

Epot,gas(t) =

∫ t

t(R=Rn)

∫
Ω

αg(x, t
′) p(x, t′) dx dt′ (2.28)

while the volume work term reads

Epot,liq(t) = p∞

(∫
Ω

αg (x, t) dx−
∫

Ω

αg(x, t = 0) dx

)
(2.29)

and the kinetic energy reads

Ekin(t) =

∫
Ω

αl (x, t)
1

2
ρl (x, t) |U (x, t)|2 dx. (2.30)

The quantities are plotted into Fig. 2.3. It is seen that the acoustic radiation of the bubble
generation amounts to only about 25 % which is then damped due to the computational grid.
However, from the total amount of initial energy, the bubble turns 54 % into volume work,
yielding a loss of 21 % somewhere. In contrast to the simulations in the following chapters, the
bubble gas amount was kept constant here.
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Fig. 2.3: Energies plotted for the full CFD simulation of a bubble with Rn = 184.1 µm,
equilibrium pressure pn = p∞ = 101315 Pa and starting radius R0 = 20.063 µm.
Viscosity is set to zero. Compared to the potential energy of the Rayleigh-Plesset
solution.

This 21%-issue has been discovered shortly before publishing and remains to be solved by the
research community.
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2.3 Erosion
Metal alloys are and have to be flexible to some extent, otherwise products of those materials
would immediately break under loading. Fig. 2.4 shows the schematic stress properties of most
metal alloys. If the stress exerted on the material stays below the yield stress, it will fall back into
original shape after stress release. Applying higher stresses leads to permanent deformation and
exceeding the ultimate strength (German Zugfestigkeit) will break the probe. The yield strength
is considered to be a value to judge cavitation erosion (Peters 2019, references therein). The
standardized tensile test (European Committee for Standardization 2020) is used world wide to
determine yield strength and ultimate strength. The strain rate at which the stress is measured
is prescribed to maximum 0.002 1/s in the norm, mimicking a quasi static experiment. At this
condition, copper alloys used for ship propellers offer ultimate strengths of 450 MPa (CC330G)
to maximum 750 MPa (CC333G) (Kupferinstitut 2010). The respective alloys are deformed
by 0.2 % at stresses of 160 MPa (CC330G) and 380 MPa (CC333G). As stated in Minuth-Hadi
(2017), the stress increases by a factor of ≈ 1.1 at a strain rate of 0.05 1/s and up to a factor of
1.8 at a strain rate of 400 1/s. This still does not fully explain the exceptionally high ultimate
strength of 1000 MPa Carnelli et al. (2011) measured with the nano-indentation method for the
alloy C95800 applying a strain rate of 0.05 1/s, intending to mimic cavitation forces. This alloy
has an ultimate strength of 586 MPa (Key to Metals AG 2020) in normal testing.

strain (%)

stress
[N/mm²
=MPa]

~14~4

~300

~600

break

ultimate strenght

strain

stress

material
probe

yield strenght

A) B)

Fig. 2.4: Typical stress-strain curve of an alloy used e.g. for ship propellers (A) and the sketch
(B) of the corresponding norm experiment using a probe. Exceeding the yield stress
results into permanent deformation. If the ultimate strength is exceeded, the probe
will will break.

Another phenomenon concerning alloys is the hardening effect, when the material is de-
formed. In this case both the stress needed for breaking is increased and the material loses
flexibility. This effect attributes to the complexity of the erosion issue.

To conclude, for simplification, it can be said that cavitation induces damage to alloys when
pressures of several hundred Megapascal are exerted to the solid surface.

Chahine and Hsiao (2015) predicted pressures of 1500 MPa by a simulation of a single cavi-
tation bubble with structure interaction. The authors employed the Euler-equations for the fluid,
thus neglecting viscous damping, and used an instantaneous atmospheric pressure jump from
0.01 bar to 100 bar to induce bubble collapse.

In Lechner et al. (2017) we calculated maximum pressures of ≈ 95 MPa for a bubble at nor-

14



2 Theory

malized distance to the solid boundary of 1.42 in viscous, compressible water at 1 bar ambient
pressure due to shockwave emission of the first collapse.

Erosion patterns of repeated single bubble measurements were investigated by Philipp and
Lauterborn (1998) on pure aluminum (yield strength of 16 MPa) for normalized distances be-
tween 0.3 and 3, as well as materials of yield strengths 235 MPa and 483 MPa for γd = 1.28.
It was found that for γd ≥ 2.2 no damage to the aluminum probe happens, while for lower dis-
tances different damage patterns occur, indicating that erosive forces can mainly be attributed to
shockwaves or direct bubble collapse at the solid boundary. Only for γd < 0.9 a central smooth
indent is observed.

In Sec. 6.3 the numerical simulations of this thesis will be investigated concerning the pres-
sure at the solid boundary.

2.4 Numerics
The numerical solver and the discretization procedure is described in a very detailed manner in
Koch (2014). The reader is furthermore referred to Koch et al. (2016), Lechner et al. (2017),
Lauterborn et al. (2018), and Lechner et al. (2019) for more information and application. The
key points are stated in this section as well as the relevant updates including the new local
mass correction method. In Sec. 2.4.2 the numerical implementation of the Lagrangian inkmap
(Reuter et al. 2017a) is described.

2.4.1 Bubble simulation code
The Navier-Stokes equation 2.3 and continuity equation 2.4 of the compressible, two-phase
flow of a single, laser-generated cavitation bubble are discretized with the finite volume method
(FVM) and the interface of the two fluids is treated with the volume of fluid (VoF) approach
(Weller 2008). The solver is written within the OpenFOAM framework (Weller et al. 1998),
precisely with the foam-extend-fork (Gschaider et al. 2017). The two compressible fluid phases
are solved on the basis of the fields U, p, αl via the PISO algorithm (pressure implicit with
splitting of operators). All other fields are derived from the main three, complemented by the
equations of state 2.15 and 2.16. The flow charts in Figs. 2.5 and 2.6 visualize the steps of
the solver. These are updated figures from the ones in Koch (2014). The solver is described
top-down in the following paragraphs.

Time step initialization and time stepping – Before the outer correction loop starts (see
Fig. 2.5), the time step is initialized and the control parameters are read in, so that they can be
altered during run time. The Courant number for the global flow, interface flow and acoustic
radiation is calculated, determining the time step size for adaptive time stepping. Not only the
flow Courant number but also the acoustic Courant number and the flow Courant number of
the bubble interface had to be considered. The flow Courant number is defined as the ratio of
the flow speed U (x) at location x to the maximum resolvable flow speed by the spatial and
temporal discretization (∆x (x) , ∆t):

Co (x) =
∆t

∆x (x)
· |U| (x) = ∆t · Cf (x) · φ (x, i)

|Sf (x, i)|
, Cf (x) =

n̂ (x, i) · δ (x)

|δ (x)|2
, (2.31)

where n̂ (x, i) is the cell surface normal of cell at location x on its i-th cell face, δ (x) is the
cell-to-cell distance vector, φ (x, i) is the interpolation of U onto the i-th cell face multiplied
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with the surface vector Sf on that face. Usually, the maximum flow Courant number is set to

Co (x) ≤ Comax
!

= 0.2 . (2.32)

The acoustic Courant number is defined as:

CoAc (x) = ∆t Cf ·

(
αl (x, i)√
ψl (x, i)

+
αg (x, i)√
ψg (x, i)

+
φ (x, i)

|Sf (x, i)|

)
, (2.33)

with αl = 1− αg the volume phase fraction and ψk/ρk = 1/(ρk c
2
k) the compressibilities in the

k-th phase with speed of sound ck. Usually, the maximum acoustic Courant number is set to

CoAc (x) ≤ CoAc,max|∀t
!

= 8 , (2.34)

and for times where R < rcritRn it is set to

CoAc (x, t(R < rcritRn)) ≤ CoAc,max
!

= 1 , rcrit = 0.3 . (2.35)

For explicit, fully coupled solvers, the maximum acoustic Courant number would be required
to be less than 1 for all time.

The flow Courant number of the interface is defined as the Courant number of any flow in
the interface region (not only the orthogonal one), but discretized with a volumetric method,
skipping the cell-to-cell calculation:

Coα (x) = P (αl (x)− 0.01) P (0.99− αl (x))
1

2

∑
i |φ (x, i)|
Vcell

·∆t , (2.36)

P(x) =

{
0 x < 0

1 x ≥ 0
,

with Vcell the volume of the cell. Since φ is the integration of U over a surface, the unit is
m3/s. Now assuming a cubical cell with U of same direction and magnitude on opposite faces,
the contribution to

∑
i |φ (x, i)| would be 2Un̂Sf , which is the reason for the half before the

fraction. Assuming a cubical cell with U of opposite direction and same magnitude on opposite
faces, the contribution to

∑
i φ (x, i) would be zero, which is why the absolute value is taken in

the sum. Eq. 2.36 has been implemented by C. Lechner (first author of Lechner et al. (2018)).
Usually, the maximum Courant number for the interface is set to

Coα (x) ≤ Coα,max
!

=

{
0.08 CoAc,max � 100

0.2 CoAc,max . 15
. (2.37)

There is also the restriction for the size of the time step for all times. The maxmimum size of
the time step is usually set to 50 ns.

Updating the equilibrium quantities, the model for condensation – Still before the outer
correction loop, the equilibrium quantities of the bubble Rn, pn, ρn are updated. The bubble
gas content is defined by the equilibrium radius Rn. In order to model both the strong first
expansion and collapse, a very high gas content is chosen, that is linearly reduced in a specified
time interval to one third approximately. The standard value for the initial equilibrium radius
Rn,1 is 184.1 µm, because this is the gas content needed for an expansion to Rmax = 495 µm in
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unbounded liquid, starting at Rinit = 20 µm. Usually this equilibrium radius is linearly reduced
to Rn,2 = 64 µm in the interval 60 µs to 75 µs. This directly influences the mass correction
algorithm explained later, thus reducing the density of the bubble. If Rn is changed, pn and ρn
that enter the equation of state 2.15 have to be changed accordingly:

Rn = Rn(t) =


Rn,1 t < ta

(t− ta) · (Rn,2 −Rn,1)/(tb − ta) +Rn,1 ta ≤ t < tb

Rn,2 t > tb

, (2.38)

pn = pn(t) = p∞ + 2
σ

Rn(t)
,

ρn = pn(t)
1− β

Rspecϑ0

,

with Rspec the specific gas constant, ϑ0 the ambient temperature and β the de-dimensionalized
co-volume of the gas.

A transport equation for the volume fraction field αl – is obtained when formulating the
continuity Eq. 2.5 for the liquid phase in terms of the pressure:

∂αl
∂t

+∇ · (αlU + αlαgUic) = αlαg
dg

dt
+ αl∇ ·U, (2.39)

where αlαgUic is an artificial interface compression term included to counteract numerical
diffusion of the interface, acting only on the interface. Details for this term are stated in Koch
(2014), equation 3.10. dg/dt is defined as

dg

dt
=

{(
ψ2

ρ2
− ψ1

ρ1

)
dp
dt
∀x : 0.001 ≤ αl (x) ≤ 0.999

0 else
, (2.40)

with ψk/ρk the compressibilities according to Eqs. 2.17 and 2.18. The case differentiation has
been introduced for stability reasons. dp/dt was calculated in the last time step and thus will
be explained further downwards (Eq. 2.42).

The velocity matrix – firstly comprises only the lefhand side of Eq. 2.3 and∇ · T:

∂(ρU)

∂t
+∇ · (ρU⊗U)−∇ · T = 0 (2.41)

If the predictor step is performed, too, then this equation is solved once with the source terms
of the Navier-Stokes Eq. 2.3 on the right hand side by using old values for the pressure field.

PISO loop – In the PISO-loop the most complex part of the solver is concentrated, since the
solver is pressure based. First, the compressible part of the pressure equation is set up. The
compressible part refers to dp/dt:

d p

d t
=
∂p

∂t
+ (U∇)p =

∂p

∂t
+∇ · (pU) + p∇ ·U (2.42)

When discretizing the Eq. 2.41, a matrixM is formed for the equation system

M ·U (x) = 0.
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This matrix can be expressed in terms of diagonal entries and off-diagonal entries. This is the
same as saying that it can be expressed as the sum of the contribution by terms Ap from the
same cell and terms from the neighbouring or related Ar cells:

ApUp +
∑
r

ArUr = 0. (2.43)

Temporarily, the field Up is stored: (in the code called phiU):

Up ≡ −A−1
p

∑
r

ArUr. (2.44)

where in OpenFOAM the so calledH-operator is

H = −
∑
r

ArUr, (2.45)

at least for this solver. Another field Up,phi field is stored (in the code called phi):

Up,phi ≡ Up +A−1
p fσ. (2.46)

fσ refers to the surface tension force term in Eq. 2.3, which reads (Koch 2014; Brackbill et al.
1992):

fσ = −σ∇ ·
(
∇αl
|∇αl|

)
∇αl (2.47)

PISO loop – Non-orthogonal correction loop – The incompressible part (pincomp) of the pres-
sure equation with its matrix representation Pincomp is set up within the non-orthogonal loop,
using the Up,phi from Eq. 2.46:

pincomp ≡ ∇ ·Up,phi −∇ · (A−1
p ∇p). (2.48)

The equation now being solved iteratively is(
αl
ψl
ρl

+ αg
ψg
ρg

)
d p

d t
+ Pincomp = 0 (2.49)

In the last iteration step the quantity dg/dt is calculated (Eq. 2.40) and the velocity U is updated
as

U ≡ Up,phi + flux (Pincomp) , (2.50)

where it remains obscure how the flux of the matrix Pincomp is computed and converted into a
velocity. The respective code is far below the top level of OpenFOAM programming.

In the above description of the algorithm the steps are omitted where the velocity fields are
transformed from midpoint to surface representation or the other way round.
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initialize all neccessary cfd tools

initialize the case, mesh, time
fields, transport properties
and control parameters

read control parameters for 
interactive changes

Outer corrector loop

create matrix "UEqn" :

create velocity matrix 

PISO loop

end of time?
yes no

end

Main

Time step loop

solve equation for 
subcycling within one time step
(only if outer corrector loop only
once)

"create velocity matrix"

optional: predict new velocity by
the Navier-Stokes equation with
old pressure and new l

solve:

calculate Courant numbers

set time step and new time

update equilibrium quantities

End PISO loop

iteratesolve pressure equation

End Outer Corrector loop

iterate

set new density

apply mass correction algorithm (GMC/LMC)

advect passive scalar (for inkmaps)

write out fields to hard disc drive

Fig. 2.5: Flow chart of the top level of the CFD solver. The blue boxes are explained in more
detail elsewhere. The PISO loop flow chart is given in Fig. 2.6.

19



2 Theory

store U    and  U

setup matrix 

solve the pressure equation

final iteration step?
yes no

calculate "Dg/Dt"

update U by U       
and the flux of
P              

update bubble and liquid
densities from the new 
pressure

iterate

iterate

calculate EOS derivative
fields:

non-orthogonal correction loop

invert diagonal part of the velocity U
matrix M

setup matrix Pincomp

correct U boundary
conditions

p p,phi

incomp

p,phi

PISO -Loop

Fig. 2.6: Flow chart of the PISO loop of the CFD solver. The steps are explained in the text.

Mass conservation correction: Global versus local – In Koch (2014) and Koch et al. (2016)
it was found that there is a huge error in the mass conservation of the gas phase (see figure 7 in
the latter publication), when the bubble pressure increases. This was counteracted by a simple
means, namely to just reset the gas density in every cell each time step by the factor of mass
loss.

ρg,corr (x, t) =

∫
Ω
ρg(x, t = 0) dx∫
Ω
ρg (x, t) dx

ρg (x, t) , (2.51)

with Ω the volume of the computational domain. This method is called global mass correction
(GMC) because this is done for the whole gas phase of the computation. It was shown to work
very well in Koch et al. (2016). This method was applied in all the subsequent publications
Koch (2014), Koch et al. (2016), Lechner et al. (2017), Lauterborn et al. (2018), and Lechner
et al. (2020).

The main drawback of this method comes into play when the bubble is split geometrically
from one connected domain to multiple domains. Because the error in mass is related to the
bubble pressure, gas domains of high pressure can cause other gas domains of equilibrium
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pressure to lose mass and thus collapse again. Therefore, for multiple gas domains, the GMC is
expected to yield wrong results.

The research on finding a formulation of a local mass correction (LMC) took quite long. In
the end, C. Lechner was the first who found a stably working algorithm with a long term mass
error of less than 1 %. It has not been reported since then, even though all results presented
in this thesis are produced with the LMC. Therefore, it will be reported here for the first time,
though the method finding credits are owned by C. Lechner:

After the PISO loop, an extra continuity equation for the gas phase density αgρg is solved with
the following algorithm. First, a third phase parameter field α̃g aiding for temporary storage, is
updated in the following way:

α̃g =

{
αg ∀x : αg > 0.001

0.001 else
. (2.52)

This accounts for boundedness when the matrix is inverted, preventing dividing by zero. My
contribution to the method was to find out that the field α̃g necessarily has to be declared before
the time iteration routine as a full IOobject volScalarField, not only as a volScalarField. Now
the implicit extra continuity equation can be solved with α̃g:

∂α̃gρg
∂t

+∇ · (α̃gρgU) = 0 (2.53)

When the simulation time is in the time interval of theRn-reduction, then after solving Eq. 2.53,
a GMC step (Eq. 2.51) is performed with the new Rn(t) (Eq. 2.38). To be safe for stability, the
ρg (x) field is limited to the minimum density corresponding to the minimum gas pressure, that
is user-specified to a value usually of 2.5 Pa. When correcting ρg, also the gas pressure has to
be updated by the Eq. 2.15. The corrected pressure field afterwards reads:

pcorr (x) = αgpg,corr + αlp.

When correcting p, also the liquid density has to be corrected again by Eq. 2.16. Afterwards
the mass fluxes which are called rhoPhi, rho_lPhi and rho_gPhi are updated and finally the
ψk-fields are re-evaluated, too (Eq. 2.17).

Validation of the LMC – The local mass correction method is validated indirectly by the
following arguments:

• C. Lechner kept running the simulations with the GMC only. The results of both codes
match since the invention of the LMC in early 2017.

• The grid convergence studies in the appendix Sec. B.1.1 shown in Fig. B.2 are tested with
the GMC, too, yielding the same results.

• The striking results of Ch. 5 are shown to match concerning the results from C. Lechner
and the ones obtained with the code for this thesis using the LMC.

• The LMC results of this thesis match with the experiments shown.
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2.4.2 Lagrangian Inkmap
Reuter et al. (2017a) measured the flow field in the cross section through a bubble close to a
solid boundary. They invented the method they called Lagrangian inkmap, where the flow field
is interpolated and numerically filled with a lot of particles that are then advected with a Runge-
Kutta scheme. The particles are colored, so that the time integrated movement of the liquid can
be made visible, just as if a layer of ink was put above the solid boundary in the experiment.
This way they found that the bubble creates vortices that either float orthogonally away from the
solid boundary, or spread alongside it. These findings are reproduced by CFD simulation in this
thesis, Sec. 4.1. This can be considered a validation of the code for long term phenomena, since
the vortices develop only in the millisecond time scale when the bubble has already vanished.

In order to produce a numerical inkmap, the Lagrangian approach has to be formulated in an
Eulerian way. The field Γ (x, t) that has a color gradient in the y-direction (orthogonal to the
solid boundary) while being constant in the other

Γ (x, t) =

{
xey

1.5Rmax
∀xey < 1.5Rmax

1 else
(2.54)

is introduced. The origin x = (0, 0, 0) is in the center of the bubble at time zero. The field is
advected by the incompressible continuity equation formulation:

∂Γ

∂t
+∇ · (ΓU)− (∇ ·U)Γ = 0. (2.55)

The compressible formulation would result into color compressibility and thus the limits of Γ
would not be maintained and the color of the Lagrangian particle would change. In order to
validate the approach of Eq. 2.55, a post-processing utility was written which uses the velocity
field of any foam-extend simulation to advect a number of Lagrangian color particles with an
Euler step, just as was done in Reuter et al. (2017a) for the experiments. The average color per
cell is mapped onto the grid and the result is compared to solving Eq. 2.55. The standard tutorial
case of foam-extend called depthCharge was taken for testing because of the low computation
times (sketch in Fig. 2.7). Fig. 2.8 shows the comparison result.

gas

liquid

1 cell thickness

2D tutorial case

compressed gas
at 10 bar

1 bar

1 bar
side boundary
conditions: wall

interface

Fig. 2.7: Sketch of the standard OpenFOAM 2D depthCharge tutorial case used for the
inkmap validation.
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Fig. 2.8: Passive scalar advection (left) using Eq. 2.55 and Lagrangian color particles (right).
Solving the depthCharge tutorial case. Movie online via QR-code or:
https://doi.org/10.25625/RBZGLA

Fig. 2.9: Standard deviation of left and right frame of Fig. 2.8 showing clearly only the cells
which are not filled with Lagrangian color particles.

2.4.3 Boundary conditions
The following set of boundary conditions is applied.
solid boundary:

∇p = 0, |U| = 0, αl = 1.

αl = 1 makes sure, the bubble will not touch the solid boundary, even for under-sampling the
boundary layer. The same results are obtained with a boundary condition of zero gradient for
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the volume fraction for higher resolution at the solid boundary (Lauterborn et al. 2018).
Geometrical:
The OpenFOAM inherent wedge boundary condition is applied for the boundaries facing the
angular direction for calculations in axial symmetry, to convert a 3D mesh of 1 cell thickness
into an axisymmetric one. For the quarter 3D case in Ch. 5 the cyclic boundary condition is
applied for the angular directions.
Outer boundary far from the bubble:
The waveTransmissive-boundary condition is applied to the outer boundary of the computa-
tional domain for the pressure p. The purpose is to approximate a non-reflective boundary with
a relaxation to the value of p∞. The implementation seems to be done in the source code named
waveTransmissive, advectiveFvPatch and mixedFvPatch.

w = max
(
U · nb +

√
1/ψ, 0

)
(2.56)

k1 =
w ·∆t

lInf
, k2 =

w ·∆t
δ (x)

(2.57)

r1 =
p+ k1 · p∞

1 + k1

, r2 =
3
2

+ k1

3
2

+ k1 + k2

(2.58)

pnew = r1 · r2 + (1− r2) · p (2.59)

where w is understood as the wave speed which is set to 0 for “incoming waves” – at least in an
incompressible case –, k as a normalized wave-traveling distance with user-input parameter lInf,
k2 as the ratio of the wave-traveling distance to the grid spacing, r1 as the so-called refValue
and r2 the so-called valueFraction. The vector nb is understood as the normal vector at the
boundary pointing out of the computational domain. The speed of sound is c =

√
1/ψ. The

cell-to-cell distance δ (x) has been introduced in Eq. 2.31. This is how the boundary condition
is understood here. In the official source code the following explanation is given:

This boundary condition provides a wave transmissive outflow condition, based
on solving

d(w · p)
dt

at the boundary[.] w is the wave velocity and [p] is the field to which this boundary
condition is applied.

For the velocity the pressureInletOutletVelocity is applied at the outer boundary. In the official
OpenFOAM-API guide (OpenCFD-team and Nagy 2017) the boundary condition is described
to adjust the velocity in the following way:

Flow out of the domain: assigns a zero gradient condition
Flow into the domain: assigns a velocity based on the flux in the patch-normal
direction
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3 Setup, methods and preparations

The numerical methods of simulation and ray-tracing, as well as the experimental methods are
described in this chapter.

3.1 Bubble numerics
In this section the way a simulation is set up is described. Most of the code is available online,
the repositories of the code and scripts are given in Appendix B.3.

3.1.1 Initial data
To classify the initial data of a bubble in terms of unique parameters is not trivial. Only recently,
in Lauterborn et al. (2018) the notions of the energy deposit bubble/ energy deposit case (EDC)
(see Fig. 3.1b) and the dimensionless distance D∗ to the flat, solid boundary were first defined
and standardized. Till then, most authors defined their own dimensionless numbers and defini-
tions to categorize their findings for bubble dynamics. The finding that led to the introduction
of the EDC is that the bubble dynamics differ to a significant extent depending on whether the
bubble expansion phase is included in the simulation or the simulation is started right away
from the bubble at maximum expansion (the latter being the so called Rayleigh case (Lauter-
born et al. 2018) (see Fig. 3.1a)). Energy deposit literally means that a bubble with a certain
energy due to compression is put into the liquid bulk. This resembles a laser generated bub-
ble few nanoseconds after generation, when the plasma of the laser-breakdown has vanished.
Throughout this thesis, only energy deposit bubbles are studied.

a)

bubble

R

d

bulk liquid

max

b)

compressed
bubble with
radius R

D

bulk liquid

init

init

solid boundary

Fig. 3.1: Correction of initial data for a bubble close to a solid boundary (Lauterborn et al.
2018). The bubble starting from maximum radius (a) yields non-physical dynamics
(Rayleigh case). For correct modeling the Energy Deposit Case (EDC) (b) is
adopted, where the compressed bubble first expands and deforms.
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The normalized distance of the bubble to the flat, solid boundary is an important quantity to
classify bubble dynamics phenomena. Historically, it was defined as

the distance of the bubble centre to the boundary divided by the maximum radius

(see e.g. Lauterborn and Kurz (2010), Eq. 34). Rarely, however, it was stated when to take
the distance, even though the bubble travels during its lifetime towards the solid boundary.
This is because most evaluations employed the Rayleigh case, where the distance is simply
the distance at t = 0, being then the same as the distance at maximum expansion. For small
distances, however, firstly the bubble expands aspherically, secondly it travels towards the solid
boundary and thirdly the maximum bubble radius differs compared to the one in the unbounded
liquid, thus making the historical definition obsolete for small values. The unique definition
defined in Lauterborn et al. (2018) is

D∗ ≡ Dinit/Rmax,unbound, (3.1)

with Dinit denoting the distance at bubble generation, which would be the plasma center in
the experiment, and Rmax,unbound denoting the maximum radius the bubble would attain in an
unbounded liquid. This definition is unique but implies difficulties for a pure experimental
study, since the very same bubble cannot be put the into an unbounded liquid in reality. For this
thesis this is of no issue because every experiment is followed by a numerical simulation.

So far the theory behind D∗ is clarified. In this thesis, however, a new difficulty is found,
when it comes to numerical precision. When the simulation is set up, a tiny gas bubble has to
be resolved spatially by the mesh. The more cells are used to resolve the bubble, the higher
the total amount of the cells in the mesh, the higher the computation time. The less cells are
used, the more castellated the initial bubble shape looks and therefore the volume differs from
the expected one. At that stage the value of the gas pressure pg is in the range of Megapascal,
hence small changes in the bubble volume result into a noticeable change in the bubble energy,
hence in the maximum radius, hence into D∗. The question arises, what initial data defines the
course of the bubble, meaning the volume over time, usually expressed in terms of the volume
equivalent radius Requiv. over time. Three approaches are used in this thesis, given in Tab. 3.1.
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3 Setup, methods and preparations

input pa-
rameters

D∗;Rinit;Rn1;Rn2 < Rn1; time interval whereRn1 7−→ Rn2;Rmax,unbound known
from simulation in unbounded liquid with same parameters;Dinit is calculated from
D∗ and Rmax,unbound.
algorithm 0 algorithm 1 algorithm 2

step 1 pg = pn

(
R3

init − βR3
n1

R3
init − βR3

n1

)γ
step 2 setup mesh
step 3 make gas phase where

mesh cell centers are
in theoretical sphere
with radius Rinit

make gas phase where mesh cell
centers are in cylinder that aligns
with cell edges and has volume
similar to theoretical sphere with
radius Rinit

make gas phase where
mesh cell centers are in
theoretical sphere with
radius Rinit

step 4 - calculate cylinder volume Vc and
from there the new Rinit

-

step 5 - re-calculate pg with Eq. from step
1 with new Rinit

-

step 6 - get true volume Vt of discretized
gas phase from mesh and from that
the true Rinit

get true volume Vt of
discretized gas phase
from mesh and from that
the true Rinit

step 7 - re-calculate pg with Eq. from step
1 with new Rinit

re-calculate pg with
Eq. 2.22 with new Rinit

step 8 - - adapt Rn1 such that
Etot,new = Etot,step1 with
an iterative Newton
stepping

step 9 apply pg to gas phase
during
simula-
tion

during specified time interval linearly reduce Rn1 to Rn2 via global
mass correction to ensure strong collapse

Table 3.1: Specification of the three approaches used in this thesis intended to ensure that the
same input parameters yield the same bubble dynamics roughly independent of
mesh resolution.
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3.1.2 Meshes
Simulating a cavitation bubble is very demanding for the mesh used. As partly stated in Koch
et al. (2016) already, the mesh has to satisfy the following criteria:

Criteria 3.1. Demands for a mesh

1. resolve the initial bubble (R0 ≈ 20 µm)

2. resolve the dynamics in the bubble region (R ∈ [0 mm, 1 mm])

3. keep the outer boundary approximately 100Rmax away from the bubble for unbounded
and semi-unbounded simulations because of the far reaching influence of the pressure
profile generated by the bubble

4. resolve the shockwave in the bubble region but dissipate it further outwards, so that least
possible reflections occur

5. areas of different resolution seem to need a smooth transition (this is a qualitative con-
clusion from experience and still needs to be quantified – it limits the application of e.g.
dynamic/ static mesh refinement)

6. the cells need to be aligned as good as possible with the bubble interface, especially at
maximum bubble volume, when surface tension is set non-zero in order to avoid amplifi-
cation of parasitic currents (Harvie et al. 2006).

7. mesh quality criteria have to be fulfilled as good as possible, meaning that

• the edge aspect ratio of each of the cells needs to be close to 1,

• the connecting line between the centroids of neighbouring cells needs to pass through
a point on the face the cells share that is close to the face center, i.e. the cells must
not be skew

Point 3 and 4 are quantified in Sec. B.1.1 concerning the convergence of the solution.

In the following sections the meshes used in this thesis are presented and stated how the above
criteria are incorporated.

3.1.2.a Axial symmetry, polar cell orientation, unbounded liquid and bubble
close to a solid boundary

A similar type of mesh has been introduced already in Koch et al. (2016). The parameters and
details since then have constantly been adapted with further experience. The idea is to align
the cells as good as possible to the bubble interface (Crit. 3.1, point 6), i.e. a polar orientation
with apex at the initial bubble center, while at the same time dissipate the shockwave in the
outer regions and avoid a high total cell amount for the whole mesh. A sketch of the mesh is
given in Fig. 3.2. The mesh center core region (C = {x ∈ [0,Xi], y ∈ [−Xi,Xi]}) consists of
a rectangular block with cells in Cartesian orientation and homogeneous minimum cell size.
This cell size is also the criterion the convergence of the solution is tested on in the Sec. B.1.1
and Sec. B.1.3. The follow-up region (Xii = {r < Xii} \C) serves as the transition region from
Cartesian to polar cell orientation. Usual values are 1.2 ·

√
2Xi ≤ Xii ≤ 2Xi. The next region
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(X = {r < X} \ (C ∪ Xii)) consists of cells with edge aspect ratio almost equal to 1. Because
of the spreading in ϕ-direction, the cell closest to X must have an edge length δxX that is by a
factor of gf1 = X/Xii larger than the edge length δxXii of the cell closest to Xii (Koch 2014).
gf1 is called grading. In the last region (XF = {X ≤ r ≤ XF}) the grading is exaggerated by
a user defined grading factor gf , usually chosen to be 5.2. Standard parameters for this mesh
would be:

Xi = 50 µm, Xii = 2 · Xi, X = 1.05Rmax, XF = 100Rmax, gf = 5.2

θ

φr

Xii
Xi X

 
XF

x

y

y=0

x=0

axis of symmetry

p

p

p

c

cell orientation
p = polar
c = cartesian

f

gr
ad

in
g

fa
ct

or
 g

wave transmissive
boundary

initial
bubble

Fig. 3.2: Sketch of the mesh with axial symmetry and polar cell orientation. Not true to scale.

For a bubble close to a solid boundary this mesh is also used. The lower part below the bub-
ble can be cut away at the preferred distance by applying the snappyHexMesh-tool to the
mesh, defining the cut-away part by a box covering it (sketch see Fig. 3.3). snappyHexMesh
is a parameter-rich tool. The configuration file that does the rather simple task of cutting the
lower part of the mesh is provided in the Repos. B.3, too.

apply snappyHexMesh

wall boundary
condition

Fig. 3.3: Cutting the mesh for unbounded liquid to a mesh with a solid boundary.
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3.1.2.b Spherical symmetry

In order to be able to calculate an unbounded bubble with the least computational effort, a
mesh with spherical symmetry was created (sketch in Fig. 3.4). The amount of cells in both z
and y-direction is only 1 and the top, bottom, front and back boundaries are given the wedge
boundary condition. Only the outermost side at x = XF in version A) and x = XFFF in ver-
sion B) is given the wave transmissive boundary condition. Mesh version B) includes a region
(XFFF = {XFF ≤ x ≤ XFFF}) for stronger dissipation of the shockwave emitted by the bub-
ble. X in version A) and XF in version B) are chosen such that their values are bigger thanRmax.
The same parameters for the Mesh 3.1.2.a can be used for this mesh version A), too.

X XF XFF XFFF

maximum
bubble radius

block of 
equidistant cells

block of 
cells with aspect ratio 1 in x-direction

block of cells with higher 
grading

block with very high
grading

x

C X XF

maximum
bubble radius

block of 
equidistant cells

block of 
cells with aspect ratio of cells = 1 in x and y-direction

block of cells with higher 
grading

xhalf opening
angle θ such that aspect ratio of cells = 1

A)

B)

half opening
angle θ = 1°

Fig. 3.4: Sketch of the mesh with spherical symmetry in two different versions A) and B). Not
true to scale.

3.1.2.c Axial symmetry, Cartesian cell orientation, concentric refinements
towards bubble region

Recently, static mesh refinement was rediscovered as a meshing means in the working group.
Static refinement is the process of doubling the spatial resolution in defined areas/volumes of
the already set-up mesh, before starting the simulation. These refinements can be cascaded.

Static refinement was discarded years ago because pressure wave reflections at the resolution
jump were observed. Since then a lot of work and experience on and with the solver and solu-
tion control parameters, as well as software updates have passed. Nowadays, static refinement
doesn’t seem to show pressure wave reflections or interface deviations as clearly as back then
anymore. Whether these issues are fully or partly gone is still to be extensively tested. If it turns
out to be as useful as the polar mesh approaches, thereby making Crit. 3.1 point 5 unnecessary,
it would be very helpful, because setting up a mesh with static refinement needs a lot less effort
than other types of meshes. A sketch is given in Fig. 3.5. One more advantage is that all cells
are aligned in a Cartesian way and have an edge to edge aspect ratio of close to 1, which is not
the case in most other meshes (Crit. 3.1 point 7). The aspect ratio is an important measure for
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error estimation. One disadvantage is that spurious/ parasitic currents (small numerically in-
duced vortices (Harvie et al. 2006)) at the bubble interface may occur during maximum bubble
expansion where the interface velocity is temporarily low, because the interface is less aligned
with the mesh than it would be in a polar mesh (Crit. 3.1 point 6).

axis of symmetry

wall boundary condition

wave transmissive BC

cell size
n times
concentric
refinement
towards 
bubble

apply makeAxialMeshcascade refineMeshone block of huge cells

Fig. 3.5: Sketch for the setup procedure of the axisymmetric mesh with concentric cell
refinement areas. Not true to scale.

Two ways of defining the refine n radii, rrefine,j , have been employed. The first one, following
the ambition to automatize the meshing process for any value of n, a formula has been created
with the minimum and maximum refine radius, rrefine,min and rrefine,max, as input parameters:

rrefine,j = (rrefine,max − rrefine,min) ·
(

(n+ 1)− j
n

)2

+ rrefine,min, j ∈ [1, 2, ..., n] (3.2)

The second one fixes n = 10 and scales the rrefine,j with Rmax:

rrefine,j = ajRmax, j ∈ [1, 2, ..., 10] (3.3)
a1 = 55, a2 = 15, a3 = 9, a4 = 6, a5 = 3,

a6 = 2, a7 = 1, a8 = 0.8, a9 = 0.5, a10 = 0.2

3.1.2.d Full 3D bubble close to the solid boundary

The full 3D mesh was created for a few trials in 3D. Since the energy deposit bubble needs
to be calculated including the expansion phase, calculation in 3D takes massive computation
resources. Aligning the cells to the bubble interface is a lot more complex in 3D than in axial
symmetry. The sketch is given in Fig. 3.6.
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Fig. 3.6: Sketch for the mesh for the calculation in full 3D. Not true to scale.

In contrast to the axisymmetric polar mesh, the Cartesian core is rectangular (H > C) rather
than cubic, in order to increase the resolution at y ≈ 150 µm, where the fast jet is generated for
D∗ ≤ 0.2.
Standard parameters are:

C = 40 µm, H = 180 µm, Xii = 1.1dH , X = 1.2Rmax, XF = 80Rmax, gf = 1

with dH =
√

Xi2 + H2 the diagonal from bottom center to top corner of the Cartesian core.
Strictly speaking, XF = 80Rmax is too less comparing Crit. 3.1 point 3, but the fact that the
angular resolution in polar and azimuthal direction is maintained throughout the mesh, led to
choosing a lesser value for saving cells. A cell size of δxmin = 1.8 µm in the Cartesian core
leads to a total amount of cells with these parameters of 6,407,940. gf could be increased still,
but with an azimuthal resolution of

resazi =
2C
δxmin

per 180◦ (3.4)

the cell number in radial direction in the interval X ≤ r ≤ XF becomes quite low, producing
excessive cell edge ratios when over-driving gf .

3.1.2.e Quarter cake – 3D with cyclic boundaries

In order to calculate quasi 3D but save time, a quarter 3D mesh was created using cyclic bound-
aries. With this mesh it was possible to approach a quarter-3D convergence study. A sketch is
given in Fig. 3.7.
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Fig. 3.7: Sketch for the quarter 3D calculation with cyclic boundaries. Not true to scale. Note
the distances labeling is different to the other meshes in the inner part.

The standard parameters employed for this mesh were:

C = 80 µm, Xii = 1.6
√

3C, X = 1.2Rmax, XF = 80Rmax, gf = 5.25

The reason for the outer boundary distance of 80Rmax again violating Crit. 3.1 point 3 is that the
value was taken over by the studies in full 3D. However, here the azimuthal resolution (Eq. 3.4)
is doubled compared to the full 3D simulation because of Cqc = 2C3D, hence the amount of
cells in radial direction also increases. That is why gf could be increased again.

3.1.3 Time stepping
The time stepping is explained in Sec. 2.4.1. The standard values for the calculations are given
there, too.

3.1.4 Grid convergence study and best practice meshing
After having described the numerical method, the initial data and the meshes, the next logical
step is to make sure that the solution converges. Numerous investigations with varying solu-
tion control parameters have been performed on the single bubble in unbounded liquid in both
spherical and axial symmetry. However, in order to keep the story-line of the thesis, these have
been put into the appendix Sec. B.1. Here, only the results are given, which lead to solution
convergence of a bubble in unbounded liquid with initial data:

Rinit = 20 µm, Rn,1 = 184.1 µm, Rn,2 = 64 µm, Rn reduction in interval [60 µs, 75 µs]

The time from bubble generation (t = 0) and the first minimum bubble volume (t(Vmin)) is
taken as the criterion for convergence. In unbounded liquid and for laser generated bubbles
the duration for expansion and collapse is the same, thus the convergence criterion is called
2Tc. This quantity behaved in an unexpected way with resolution refinement in the first place.
Numerous solution control parameters have been studied until finally the solution converged.
The following criteria for solution convergence could be deduced from the studies, in addition
to the Crit. 3.1:
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Criteria 3.2. best practice guidelines for solution convergence

1. Adapt the initial data (p0, Rn) by the bubble volume (V0) resulting from the initial dis-
cretization such that either i) the initial potential Energy of the theoretical values is main-
tained, or ii) the adiabatic relation p0R

γ
init = pnR

γ
n is fulfilled (see algorithms in Tab. 3.1)

2. Smearing out the interface over 3 cells in the initial data already doesn’t seem to have a
positive effect for low resolutions, therefore keep the interface sharp

3. The resolution is highest in the bubble region and is coarsened succesively towards a
distance to the bubble of ≥ 100Rmax

4. Consider the traveling time of the shockwave from bubble generation from the bubble to
the outer boundary and back. Setting the outer boundary too close, the broadened wave
reflection will hit the bubble maybe during its maximum expansion phase and thus influ-
encing the bubble. The influence then becomes stronger with better resolution because the
shockwave is less damped. For a bubble of Rmax ≈ 500 µm it is advisable to set the outer
boundary ≥ 100Rmax apart from the bubble. In the study cases for the convergence it has
been found out that setting it only 80Rmax apart from the bubble leads to non-convergence
of the solution. In Koch et al. (2016) it was shown that for the sake of resolving the static
pressure profile, a distance ≥ 100Rmax irrespective of the value of Rmax is necessary, too,
in order to simulate an unbounded bubble.

The two reference solutions are summarized in Fig. 3.8.
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Fig. 3.8: Time from bubble generation till first minimum volume for different resolutions for
the two reference solutions for the unbounded bubble. Axisymmetric calculation
(green) of Fig. B.1 and converged spherical calculation (red) of Fig. B.3

3.1.5 Correlate Rn and Rmax,unbound

The bubble in unbounded liquid with initial data

Rinit = 20 µm, Rn,1 = various, Rn,2 = 64 µm, Rn reduction in interval [60 µs, 75 µs] ,
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is investigated in spherical symmetry with the Mesh 3.1.2.b (version A) with the properties

δxmin = 1 µm, C = 80 µm, X = 1.2 · 500 µm, XF = 100 · 500 µm, gf = 5.25.

With this configuration the direct link betweenRn,1 andRmax,unbound can be calculated (Fig. 3.9).
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Fig. 3.9: Correlation between Rn,1 and Rmax,unbound.

The fitted relation reads:

Rmax,unbound [ µm] = 3.2290Rn,1 [ µm]− 95.8 (3.5)

3.2 Overlay method: ray-tracing to bring numerics and
experiments to an overlay

(This section is similar to parts in Koch et al. (2020). An updated, more detailed and more
quantitative investigation is found there.)
Designing advanced experiments needs substantial planning and also knowledge of what results
to expect. Testing different configurations can be costly and time consuming, and methods to
help in this respect may be welcome. When simulations of two-phase flows and experiments
with imaging cameras are involved, a special blend of the visualization of numerical results and
the images from the experiment may substantially improve the outcome by taking into account
the omnipresent refraction at phase boundaries. Vice versa, the experimental observations could
be optimized by analyzing optical ray paths in the arrangement and by later inserting numerical
simulations into the ray-tracing engine used. Then the experimental photograph can directly
be compared with the simulated image. The abstract concept will become more clear by an
example: a bubble in water.

The idea is to generate an image from the results of a (two-phase) computational fluid dy-
namics simulation that looks most alike the one obtained from the experiment in order to bring
both to an overlay. Assuming that the geometry and dimensions of the experiment including
the illumination devices are known, the procedure for the numerical side would then be the
following:

Firstly, the closed interface iso-plane of the two fluid phases from the numerical CFD sim-
ulation has to be extracted to a standard 3D format. For example, most programs are suited
with an import/export function to the stl format. Secondly, the stl file obtained can be
imported into a program with a realistic, light-ray-tracing engine. A variety of specialized ray-
tracing programs might exist. Here, the free, open-source project blender is taken because
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it incorporates a very realistic and physical lighting engine, standard stl import compatibility,
a python-language application programming interface (API) and a large variety of 3D editing
tools. The latter become important when it comes to modelling the experimental setup, and the
API is handy for batch operations on many simulation time steps and parameter scans. Note that
the aim is to produce a realistic image from the CFD simulations rather than perform scientific
analyses of optics. Thus interference can be neglected, but the intensity and diffusivity of the
refraction and reflection at objects matter. The following steps were performed with blender
in order to achieve a realistic image:

The cycles render engine is used (Blender Foundation and Community v. 2.82). This
engine emits the light rays from the camera into the 3D scene and distinguishes between so
called camera rays, reflected rays, transmission rays and shadow rays. After importing the stl
geometry object, its surface is both smoothed and reduced in complexity by applying the limited
dissolve algorithm. This algorithm accounts for reducing the amount of faces while keeping the
same shape. This stl geometry is then given a material with an index of refraction (IOR). The
so called GlassBSDF material with an index of refraction of 0.75 suits best for an air bubble in
water. Depending on the direction of the face normal of the edited stl geometry object, the
IOR ratio either has to be set to 1.333 or 1/1.333 = 0.75.

The optically relevant geometries of the experiment then are created around the bubble geom-
etry along with their optical properties of, e.g., glossiness, light transmission or light emission.
Simple diffusive, glossy, glass-like or emissive materials do the work in most cases to mimic
optically relevant lab equipment. The water of the cuvette is mimicked by a block given the
GlassBSDF material with an index of refraction of 1.333. This block can be seen in 3.11 and
Figs. 3.16b,c. The solid boundary made of glass, where the bubble collapses to in the experi-
ment, is modelled by a simple block object of the GlassBSDF material with an index of refrac-
tion with respect to water of 1.333/1.45 = 0.92. The flash tube geometries can be designed
adequately and a simple emissive material can be attached to them. The ray-tracing camera
can be set up essentially with the same properties as in the experiment concerning focal length,
sensor size and pixel resolution.

3.2.1 Validation of the ray-tracing engine
(This section is similar to parts in Koch et al. (2020). An updated, more detailed and more
quantitative investigation is found there.)
Experimental setup: Static bubble – In order to validate the blender ray-tracing engine, an
experiment was chosen, where a bubble of less than a millimeter in diameter rests fixed on a
microliter syringe needle (Fig. 3.10). This static bubble then has a very low contact area to the
needle and is therefore almost perfectly spherical in shape. This scene can be mimicked in the
blender software as shown in Fig. 3.10, right.
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Fig. 3.10: Comparison of the experimental arrangement (photograph), left, and corresponding
numerical configuration for blender, right, of a static, spherical bubble to
validate the blender ray-tracing engine.

The complete experimental setup consists of essentially six elements, as shown in Fig. 3.11:
(i) A water filled glass cuvette with inner dimensions 5 cm × 1 cm × 4 cm in width, depth and
height; (ii) a background illumination xenon flash Mettle MT-600DR (see also Sec. C.1) with
distance to the bubble of 5.2 cm. (iii) A side illumination xenon photo flash Mecablitz 36CT2
(see also Sec. C.1) with a distance to the bubble ≈ 8.5 cm; (iv) a microliter syringe and needle
producing a bubble of about 300 µm to 500 µm in diameter inside the cuvette; (v) a K2 Infinity
microscope objective with a magnification yielding about 2 µm/pixel; (vi) and a high speed
camera Imacon 468. The items are used in the main experiments, too and are described in more
detail in Sec. 3.3.

Results of the comparison – In Fig. 3.12 the comparison of the images of two bubbles from
the experiment (left) and the ray-traced sphere in blender (right) is shown. Row a) shows
the setup with the Mecablitz in the same position as in Fig. 3.11, while row b) shows the setup
with its position rotated clockwise by 45◦ in the plane of the setup sketch around the axis of the
syringe needle. Clearly seen in in each of the bubbles is the distorted image of the background
ring flash tube, as well as the bright line on the outer right rim, caused by total reflection. Due
to the asymmetry in the setup this total reflection line is emphasized on the right side of the
bubble. Also the influence of the position of the side flash is captured correctly by blender:
the rotated position of the flash enhances double refraction. It is seen now as two white lines
near the left rim of the bubble. Comment: The picky reader might not agree that the comparison
is precise enough. A new, quantitative comparison has been made and published in Koch et al.
(2020).
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objective
Mecablitz
flash

cuvette with water

needle with bubble
200 Joule
Mettle
flash with
flash tube ring

cuvette holder

Fig. 3.11: Setup for the static bubble experiment. Sketch of the elements of the experimental
arrangement (left) transferred into blender elements (right) from the perspective
indicated by the eye in the sketch. Needle and water block are modeled as well in
blender.

Experimental bubble blender-ray-traced bubble

Fig. 3.12: Comparison of the experimentally obtained images (left) of a static, sub-millimeter
bubble and their blender-ray-traced representation (right). Top and bottom rows
differ by the position of the side flash and bubble size. The bar indicates a length of
250 µm.
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3.3 Experiments
Three different setups were used to gain the experimental results presented in this thesis. From
the numerics it is known that the boundary has a strong influence when it’s put too close
to the bubble. Therefore, in the first place, a setup was created with a very large cuvette
(10 cm × 10 cm × 30 cm). Using this cuvette, results with kiloframes per second time reso-
lution were obtained with the Photron APX-RS high speed camera, showing the full bubble
lifetime. Illumination was done by a pulsed, overdriven 100 W LED. However for higher time
resolution it was found that there is no suitable, technical possibility in the world to illuminate
the bubble with enough intensity over such a distance. Therefore, the second setup comprised
a much smaller cuvette, a Xenon flash and the IMACON 468 camera that takes 8 images at
ultra high-speed. This produced valuable results already close to megaframes per second. It
was found, however, that the energy jitter of the bubbles was still too high to manage manual
triggering to microsecond precision into a certain part of the bubble dynamics. Thus, the third
and final setup comprised the second setup including a He-Ne laser beam running through the
bubble and hitting a terminal high-speed photodiode. This triggering method was found to date
back to Lauterborn and Bolle (1975). With this trigger circuit it was possible to repeatably
capture certain dynamics for the so called mushroom bubbles close to a rigid cylinder.

Laser – The single bubble is generated by optical breakdown of a nanosecond laser pulse in
water. The laser pulse of wavelength 532 nm is generated by a Q-switched, frequency doubled
Nd:YAG laser (Litron Nano PIV). It is operated with an external triggering circuit at 15 Hz and
a single light pulse out of 20 subsequent pulses is selected by a manual button. The laser pulse
duration tp = 10 ns FWHM was measured with a high speed photodiode (Thorlabs SV2-FC)
via manually fitting the following function to the photodiode signal

u(t) = A exp

− (t− τ)2

2
(
σFWHM/

√
8 ln 2

)2

 (3.6)

and taking the full-width-half-maximum as tp. The result is shown in Fig. 3.13a. A little vari-
ation is found, however that may result from manual fit. Averaging over measurements and
automatic fitting was not performed because the intention was only to get an estimate of the
pulse duration. In Fig. 3.13b the impulse response of the photodiode is given and manually fit
with the same fit function, obtaining a pulse duration of 0.8 ns. The impulse response was mea-
sured by exposing the photodiode to a femtosecond laser with 5 MHz repetition rate (courtesy
Dr. Ingo Gregor) and the signal was recorded with a 40 Gigasamples per second (≡ 40 S/ns),
2.5 GHz (≡ 0.4 ns) bandwidth oscilloscope.

The plasma cross sectionAplasma of one of the experiments (see later Fig. 4.17) in the direction
of the laser is approximated by taking the half width of the bright plasma as the cross section
radius. The cross section then amounts to Aplasma ≈ π(12 µm)2 ≈ 450 µm2 = 4.5 · 10−7 cm2.
For now it is assumed that the plasma cross section is comparable in all experiments conducted
and the laser energy is chosen close to the breakdown threshold, then the laser energyEl leading
to breakdown is roughly

El ≈ Ithr · Aplasma · tp = 44.5 mJ ≡ (22.25 % of 200 mJ), (3.7)

the 200 mJ being the specified total energy of one laser beam pulse. This can be confirmed with
the experience that the knob adjusting the laser energy was usually set around 20 % for lowest
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energy producing a bubble.
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Fig. 3.13: A) Laser pulse duration measured with a high speed photodiode. Percentage refers
to the approximate laser energy in terms of 200 mJ. B) Impulse response of the
photodiode measured by exposing it to a 5 MHz femtosecond laser (courtesy Dr.
Ingo Gregor)

Cameras – With the FASTCAM-APX RS (model 250K) it was possible to record with a min-
imum shutter time of 1 µs and frame rates of 21 kfps at 384 ×272 pixels, 100 kfps at 244×222
pixels and up to 400 kfps at 112×58 pixels. More than 1000 images per record would be possi-
ble, but only up to 60 were necessary.

The Imacon 468 camera has the capability to record up to 100 Mfps at 385×575 pixels.
However, only 8 images in total are captured for any time resolution. Each of the 8 images can
be set arbitrarily in start time, exposure time and voltage gain.

The camera objective – used is the K2 Infinity long distance microscope (Infinity-USA
2016) with the CF-2 and CF-4 modules, allowing for resolutions down to 4 µm/pixel and about
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2 µm/pixel respectively, with large working distances of 200 mm down to 54 mm.

Other measurement tools – The high-speed photodiode SV2-FC from Thorlabs was used as
a main tool to, for instance, characterize the light output of the illumination devices (Sec. C.1),
to measure the duration of the laser pulse or trigger the camera. Its response spectrum is given
in Sec. C.1 and the impulse response is given in Fig. 3.13.

The laser intensity profiles were measured with the Metrolux profiler and Raylux Software.

Illumination – Illumination for high speed photography is always an issue. The predecessors
of the lab mostly used the nostalgic photo flash Mecablitz 60 CT-4 using a manufactured 5 V
TTL-pulse trigger. This flash broke in the early stages of this research and Metz nowadays does
not produce such powerful flashes anymore1, probably because camera sensors have become
much more sensitive. The necessity of the situation led to the quest for a proper illumination
device and also to the ray-tracing overlay method (Sec. 3.2) as a positive side effect.
To summarize the outcome of the illumination research:

Criteria 3.3. Illumination sources

1. For kiloframes per second recording frequencies, overdriven high-power LEDs can be
used with pulse durations of ≈ 1 µs, synchronized with the camera.

2. For Megaframes per second the LED solution is still 3 orders of magnitude too less light
and the only choice is xenon flash tubes of minimum 30 J light emission in combination
with reflector and Fresnel lens. The light emission duration is in the range 500 µs to 8 ms,
depending on output energy. As a thumb rule, xenon flash tubes emit 1 J of light per
millimeter tube length at maximum power.

3. Arc discharge lamps with less than 1 µs emission duration are less practical and were not
investigated thoroughly. Quick trials with the Kraftblitz of the lab were done revealing no
more light gain but more setup effort.

Concerning point 1, a warm-white 100 W LED (Chanzon) was mounted onto a cooling block.
For the setup shown in this thesis, the first version of the device was still in use, operating with
pulses of ≈ 1 µs FWHM duration at driving voltage of 40 V. Nominal voltage for constant
illumination is stated as between 20 V and 24 V. The circuit diagram (Bahl and Schönekeß
2020) for the driving is given in Fig. C.7.

The final version of LED illumination device comprises 2 LED chips, manually variable
pulse duration, capability of overdriving up to 200 V and built-in AND circuit for TTL trigger
logic.

The following findings were measured2: The LEDs were found to be thermally endangered
for pulse durations & 3 µs or pulse repetition periods in the order of two times the pulse duration.
However, the system was quite complex, because long term illumination drains the power from
the capacitors and the LED is driven by the power supply which usually cannot provide enough
current at high voltages (200 V at 40 A needed approximately). Limiting voltage for the red
LEDs is estimated to be between 180 V and 200 V at 1 µs pulse duration and stable driving
circuit.

1oral communication with sales manager
2in cooperation with J. Eisener
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The Xenon flashes used were the i) Mettle MT-600DR emitting about 200 J of light over about
8 ms by a ring flash tube and ii) an old photo flash (Mecablitz 36CT2) with a straight flash tube
of 35 mm length and Fresnel lens. More details are given in Sec. C.1.

It is found that unexpectedly, the smaller Mecablitz 36CT2 is the best choice for illumination
at Megaframes per second, because the flash beam is focused by a Fresnel lens. The Mettle flash
beam opening angle is still too broad, even when the reflector shield is attached. Furthermore,
the geometry and non-diffuseness of the ring flash tube makes post processing of the data gained
a tedious, if not impossible task.

3.3.1 Setup 1: Large cuvette setup – kfps range
Setup 1 (Fig. 3.14) comprises a large cuvette (10 cm × 10 cm × 30 cm) filled with filtered, de-
ionised and de-gassed water. Inside the cuvette a polished aluminium, 90◦ off-axis parabolic
mirror (Edmund optics #37-307) with focal length 101.60 mm and 2 ” diameter is mounted. The
intention was to create a point focus with high numerical aperture (NA = 0.32). The high speed
camera Photron APX-RS is used at recording frequencies of 100 kfps to 400 kfps. Attached is
the K2 infinity long distance microscope with the CF-2 objective, resulting in approximately
4 µm/pixel. The CF-4 objective could not be applied because of the necessary long focal dis-
tance between cuvette wall and bubble. Illumination was performed with the overdriven 100 W
LED. A circuit was built (see Fig. C.7) to discharge high voltage capacitors over the LED for
1 µs. Later it was found that this kind of illumination is best for applications where the min-
imum shutter time of the camera is too long to capture sudden bubble phenomena. For high
speed imaging, especially for Megaframes per second, overdriven LEDs are too dim by a factor
of 1000 compared to xenon flash lights. Also, the trigger circuit becomes increasingly complex
since the camera and the LED must be synchronized, but only for recording. The LED must not
fire when not recording, because the capacitors last for only 1000 shots. The LED device was
improved until an overdriving factor of 6 (see Sec. C.1), however the light yield was only 26 µJ
per pulse.

In this setup the first version of LED illumination was used. The color was warm white,
because the camera system including objective and notch filter was found to be most sensitive
in the red regime. Warm white spectra are generated with UV-LEDs and a fluorescence screen
glued on top. This was also favourable because of the diffusing properties of the screen. The
notch filter is supposed to filter out any laser stray light.
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Fig. 3.14: Sketch of setup 1. a) 3D CAD representation of the objective and cuvette with
parabolic mirror, mirror holder and metal object table. Laser entrance window on
the left. b) 2D side view with sketched laser path. The parabolic mirror both
reflects in 90◦ direction and focuses. Numerical aperture is 0.32. c) 2D top view
including the illumination LED (pulsed, overdriven 100 W LED)

The trigger circuit is shown in Fig. 3.15. The delay 1 device constantly produces the laser
flash lamp TTL trigger pulse at 15 Hz. One of 20 of the pulses is extracted and can be “let
through” by a hardware button to the next delay generator 2. This delay generator produces a
pulse of zero delay for an optional flash (assuming its warm-up time to be around 160 µs) and
a 600 µs long pulse with 160 µs delay for the Q-Switch of the laser and camera record trigger.
This pulse is also put into one of the two inputs of an AND-logic for the LED flash trigger. The
camera itself has an output with a high-signal when the shutter is open. This signal is put into
delay 3 where the pulse is delayed by 8.1 µs for 100 kfps record speed. The result is fed into
the second input of the AND-logic, thus opening the trigger for the LED. This accounts for the
delays in the LED circuit, as well as skipping illumination of the first record frame to be able to
record the plasma breakdown, too. Lastly, the photodiode helps to adjust the triggering.
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Fig. 3.15: Setup 1: Block circuit diagram and schematic oscilloscope diagram of the
synchronization setup of laser, illumination and camera

3.3.2 Setup 2: Small cuvette setup – close to Mfps range
This setup (Fig. 3.16) is designed for ultra-high-speed (mega frames per second) photography3.
The camera used is the IMACON 468 capable of recording 8 images with maximum 100 Mfps
time resolution. Attached to it is the K2 long distance microscope with the 90◦ mirror element
put to close to the cuvette-side of the microscope. Two cuvette sizes are used, both much smaller
than the one in setup 1 in Sec. 3.3.1: Cuvette A has dimensions 1 cm × 1 cm × 4 cm (width,
depth, height) and is made of a plastic but with glass window for laser entrance and cuvette B
has dimensions 5 cm× 1 cm× 4 cm and a wall thickness of 2 mm.

The light from the Nd:YAG laser is focused by a lens with a short focal length (35 mm) di-

3in cooperation with J. Rosselló
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rectly onto the surface of a planar glass object, located at the rear side of cuvette A and in the
middle of cuvette B.
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Fig. 3.16: Sketch (a and a.1) and blender-ray-traced representation (b),(c) of the
experimental setup 2. The bubble is generated with a nanosecond pulse of a
frequency doubled Nd:YAG laser with pulse energy of about 30 mJ. The bubble is
produced on a glass surface put vertically into the cuvette. Illumination is done by
the Mettle flash with ring xenon tube.

3.3.3 Setup 3: Small cuvette setup – Mfps range
This setup was designed to investigate the bubbles on a rigid cylinder, but can be extended
to any investigations with a small, or transparent object. The setup 2 is modified by omitting
the ring flash tube and only using the Mecablitz, furthermore combining both the Imacon and
Photron high speed cameras and adding a continuous wave He-Ne laser beaming through the
bubble site hitting the photodiode for trigger usage. The Photron camera is supposed to capture
the whole bubble life time at a lower frame rate and larger frame size. The Imacon is used for
the Megaframes per second frame rate and high zoom into the bubble site. This posed again
illumination difficulties because the Photron camera has a much longer shutter time and a differ-
ent viewing angle. The small rectangular mirror, however, simply compensates the difficulties
by reflecting only light from outer part of the flash beam towards the Photron objective.

The path of the He-Ne-laser beam goes through the bubble site, various mirrors and pinholes
onto the photodiode, that is shaded against any stray light from the flash. Depending on the size
of the bubble, the light is more or less deflected, yielding a photodiode signal that is highest
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when the bubble is absent. It turned out that the intensity of the He-Ne laser has a strong high-
frequency modulation, which is why the signal had to be low-pass filtered by an analog device
before detection by the oscilloscope. The oscilloscope is equipped with a hardware trigger TTL
output. This output is set to give a TTL-high when the photodiode voltage crosses a certain
level with positive slope. The TTL-high then triggers the Imacon camera. This way the trigger
accuracy could be increased to approximately 1 µs precision onto certain bubble dynamics parts.
This is enough to gain 10 Mfps resolution with one single measurement skipping weeks of
unlucky shots.
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Fig. 3.17: Sketch of the setup 3 used to investigate the bubbles on a rigid cylinder. The
He-Ne-laser allows for triggering onto bubble dynamics parts with approximately
1 µs precision. The xenon flash tube refers to the Mecablitz already introduced in
the previous setups.
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4 Bubble dynamics at the planar,
solid boundary

4.1 Vortex generation and the Lagrangian Inkmap
Reuter et al. (2017a) developed an experimental µ-particle tracking velocimetry method to fol-
low the flow field around a collapsing bubble in the vicinity of a solid boundary. It was found
that the bubble generates a vortex that, depending on D∗, travels either outwards alongside the
solid boundary (wall vortex) or orthogonally away from the solid boundary (free vortex). The
authors used a light-sheet generated by a continuous-wave laser to stimulate the velocity track-
ing particles, thus they got a cross-section of the flow field and assumed its rotational symmetry.
Due to the limited time and spatial resolution and the opaqueness of the bubble in the exper-
iment, these data nearly provoke to be interpolated by numerical simulations, to get a clear
understanding of how the vortices are formed.

Figure 4.1 shows the classification of the directions. The quantity γd is defined as the ratio
of the distance of the bubble center from the solid boundary d to the radius of the bubble R.
As discussed in Sec. 3.1.1, to be precise with the definition is crucial. In oral communication
with the first author, for the work Reuter et al. (2017a) the folloing definition for γd could be
achieved:

γd =
d (t ≈ 4 µs)

R (t = t(Vmax))
(4.1)
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Fig. 4.1: Classification of vortex direction, data taken from Reuter et al. (2017a).

The 4 µs time is an approximate value because the distance was taken from the first image of the
record, which was done with 250 kfps. The radius at maximum expansion R (t = t(Vmax)) was
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said to be extracted from the bubble volume. Now depending on which conversion from D∗ to
γd is taken, the simulations represent the data in Fig. 4.1 very well or are off in the region below
γd = 0.6. In that region, the pure numerical results can provoke discussion by themselves. That
is why, in Sec. 4.1.1 first the perfectly fitting results are shown and afterwards in Sec. 4.1.2
they are discussed. However, the general result of both the experimental work and this thesis
stays untouched, namely that the vortex flow changes direction at about γd ≈ D∗ ≈ 1.3. The
discussion focuses more on the lower values of the dimensionless distance.

4.1.1 Results for different normalized bubble distances D∗

The simulations shown here are carried out with the axisymmetric, polar Mesh 3.1.2.a that
was tested in Sec. B.1.3. The algorithm 1 of Tab. 3.1 is applied for the initial data, following
the idea to use a gas cylinder as initial bubble that fits perfectly into the mesh, aligned with
the edges of the cells, in order to avoid discretisation errors during setup. The volume of the
cylinder is then re-evaluated and the gas pressure pg is adjusted according to the adiabatic law.
The assumption behind adjusting the pressure this way instead of keeping the bubble energy
constant is that obeying the adiabatic law for a fixed Rn results into the same Requiv.(t)-curve.
To give this assumption a concrete base, the very same simulation that is going to be made in
this section has been preformed in unbounded liquid, too, with both the axisymmetric mesh and
also the spherical mesh. The double collapse-time is then compared to the reference solutions
of Fig. 3.8, given in Fig. 4.2.
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Fig. 4.2: Simulations of the mesh parameters and initial data for this section, but in
unbounded liquid. Compared to the reference solutions of Fig. 3.8.

It is seen that the cylinder approach is the only approach so far, reaching the convergence value
obtained with the spherical reference solution, already at a resolution of 1 µm. The spherical
calculation with adiabatic pressure adjustment also suggests that there is no clear disadvantage
in either of the two pressure adjustment algorithms. To show that the cylindrical shape vanishes
quickly, aligning well with the spherical shape, the contour plots of the bubble interface for the
cylinder approach and the spherical approach, used in the discussion Sec. 4.1.2 later, are given
in Fig. 4.3.

The geometric parameters for the investigation were chosen as given in Tab. 4.1.
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∆xmin Xi Xii X XF grading factor gf initial data

2 µm 80 µm 1.2 ·
√

2 · Xi 1.2 ·Rmax 80Rmax 5.25 cylinder,
pV γ = const.
algorithm 1

Table 4.1: Setup parameters of the simulations of the vortices of a collapsing bubble close to a
solid boundary.

Fig. 4.3: Contour lines of the bubble interface for the cylinder approach (algorithm 1, box
start, blue lines, equivalent starting radius of 19.73 µm) and the sphere approach
(algorithm 2, sphere start, red lines, equivalent radius of 20.06 µm). Times:
10−10 s, 1 µs, 4 µs, 6 µs

Since the vortices develop very late in the bubble process, the calculation needs to run for a
long time for each value of γd. Therefore, a script was written to supervise the calculation and
change the time stepping when the fast bubble dynamics is over. The changes made are given
in Tab. 4.2:

time maxCo maxAlphaCo maxAcCo maxAcCo = 1
for R/Rn <

maxDeltaT

0 s – 120 µs 0.2 0.2 8 0.3 5 · 10−8 s
120 µs– 200 µs 0.2 0.2 30 0.01 5 · 10−7 s
200 µs– end 0.4 0.4 100 0.01 5 · 10−7 s

Table 4.2: Time stepping of the calculations in Sec. 4.1.1 to save calculation time. maxCo:
maximum flow Courant number, maxAlphaCo: maximum Courant number for the
interface, maxAcCo: maximum acoustic Courant number, maxDeltaT: maxmimum
size of the time step

The Lagrangian ink map is calculated as described in Sec. 2.4.2 and colored in a way that
produces good contrast between the liquid layers. The initial data for the passive scalar Γ (x, t)
that is advected with the flow is a clipped linear ramp in direction of the axis of symmetry
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(y-direction):

Γ (x, t = 0) =


y

1.5Rmax
∀y < 1.5Rmax;

1 ∀y ≥ 1.5Rmax

(4.2)

The values of D∗ investigated here are:

D∗ ∈ [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8] (4.3)

In order to get an idea of the bubble volume over time compared to the time of vortex gener-
ation, the equivalent radius over time is given for D∗ = [0.2, 1.8] in Fig. 4.4. It is seen that
with the applied bubble model, the bubble closer to the solid boundary exhibits more rebound
oscillations than the bubble further away from the solid boundary.
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Fig. 4.4: Equivalent radius over time for D∗ = [0.2, 1.8] with the cylinder approach.

The results for the Lagrangian inkmap figures are given in Figs. 4.5 to 4.8. One has to keep
in mind that the spatial resolution is highest in the area of the initial bubble, thus vortices far
from that region become under-resolved regarding the winding of liquid layers.
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Fig. 4.5: Free vortex generated by the D∗ = 0.2 bubble. Left: Lagrangian-ink map. Right:
vorticity∇×U in s−1 including arrows for flow direction. The yellow cylinder
denotes the initial bubble size and position, whereas the larger, transparent sphere
denotes the maximum volume the theoretical bubble would attain in an unbounded
liquid. The black contour lines, mostly seen at the axis of symmetry, mark the areas
of remnant gas. Here for D∗ = 0.2 it is seen that liquid of the upper part (marked
with colors pink to turquoise) is already pushed upwards out of sight near the axis of
symmetry. The main vortex rotation is clockwise.

Fig. 4.6: No moving or spreading vortex generated by the D∗ = 0.4 bubble for a late time and
a very late time instant to show the almost positional stability of the vortex. More
details see text and Fig. 4.5.

Figure 4.6 shows a bubble which within a long time won’t shed a vortex. The vortex rotation
is seen in the flow field and the direction (clockwise) indicates a free vortex, but the velocity is
too slow.
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a)

b)

Fig. 4.7: a) Free vortex/ free vorticies generated by the D∗ ∈ [0.6, ..., 1.2] bubbles. More
details see text and Fig. 4.5. b) The evolution of the flow field (m/s) around the
bubble for D∗ = 1.2 during the second collapse. The inwards, sideways fluid motion
at 180 µs is responsible for the change of the flow direction at the center axis after
bubble minimum volume.

All bubbles at D∗ ∈ [0, ≈ 10] produce a jet towards the solid boundary, so the main fluid
motion is expected to be directed towards the solid boundary. However, for the D∗-values
shown in Fig. 4.7 a, the bubbles generate an axially symmetric vortex that lifts upwards from
the solid boundary. The reason is found in the dynamcis of the second bubble collapse. This
is depicted in Fig. 4.7 b for D∗ = 1.2: the bubble torus sitting at the solid boundary collapses
fastest from the outer rim, towards the axis (180 µs). After the second minimum volume of the
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bubble at about 185 µs the shockwave inverts the flow direction for a short moment (190 µs).
The momentum generated by the initial inward flow then produces an upward flow at the axis
(210 µs).

For the values of D∗ higher or equal than 1.4 the turning direction of the vortex changes, as
well as the motion direction, resulting into a wall vortex (Fig. 4.8). The under-resolved wall
vortex (black) can be seen when the position of highest vorticity is compared to the colored
ink-map. At least in the simulations, there is also a noticeable part of the top liquid pushed
upwards. One supposes a numerical fragment due to the higher resolution region at the position
of the initial bubble. However, when looking at Figure 3 in Reuter et al. (2017a), the bubble for
γd = 1.42 exhausts a slow gas remnant upwards, too.

Fig. 4.8: Wall vortices generated by the D∗ ∈ [1.4, ..., 1.8] bubbles. More details see text and
Fig. 4.5.

So the criteria for deciding whether a free vortex, a wall vortex or no vortex/ stationary vortex
is created, are as follows:

Criteria 4.1. Vortex classification

• A free vortex clearly pushes blue or black liquid layers through the purple layer and
globally exhibits a clockwise fluid rotation

• A wall vortex clearly pushes liquid from the turquoise layer to the solid boundary and
globally exhibits a counter-clockwise fluid rotation

• No vortex/ a stationary vortex is created when after 1000 µs none of the above points
applies.
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When the vortex direction findings of the Figs. 4.5 to 4.8 are put into the diagram 4.1, consid-
ering these criteria and using the simplestD∗ to γd conversion rule γd = Dinit/Rmax (t = t(Vmax)),
perfect agreement is found between numerics and experimental data. The result is given in the
Fig. 4.9. This perfect agreement is discussed in the next section.
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Fig. 4.9: Left: Fit for converting D∗ → γd. Right: Comparison of the simulated vortex
direction to experiments (Reuter et al. 2017a).

4.1.2 Discussion of the vortex results
The simulations in the previous section have been re-made obeying the best practice guidelines
for solution convergence (Crit. 3.2 mentioned in Sec. 3.1.4). Special care was taken to reduce
the amount of cells while putting the outer boundary from 80Rmax to a distance of 100Rmax.
The time interval of the reduction of Rn, which was coinciding with the time of minimum
bubble volume in the previous section (90 µs to 105 µs), is now put well before the time of
minimum volume, namely to 60 µs to 75 µs. The basis for the mesh is the axisymmetric, polar
Mesh 3.1.2.a that is tested in Sec. B.1.3 and was used in the previous section, too. In the previ-
ous section the resolution was 2 µm, which is now reduced to 1 µm. The resolution is taken as
the name tag for the two kinds of respective parameter sets, which compare as given in Tab. 4.3.

Xi Xii X XF grading factor gf refinement at wall initial data

2 µm calc. 80 µm 1.2 ·
√

2 · Xi 1.2 ·Rmax 80Rmax 5.25 no cylinder,
pV γ = const.
algorithm 1

1 µm calc. 50 µm 2 · Xi 1.05 ·Rmax 100Rmax 5.2 yes,
D∗ = 0.4: both
D∗ = 0.42: no

sphere, E = const.,
adapt Rn
algorithm 2

Table 4.3: Setup and initial data of the two approaches to calculate the vortices of a collapsing
bubble close to a solid boundary.

The term refinement at wall refers to whether the cell size was halfed in a rectangular region at
the wall (x ∈ [0; 0.7875Dinit], y ∈ [−Dinit; −0.875Dinit], with y = −Dinit at the solid bound-
ary). This was done in order to better resolve wall shear flows. It turned out, however, that
parasitic currents occur, when the bubble interface is in that region. This is the case at times
of maximum expansion for D∗ . 0.4, as well as during rebound in all the studied values of
D∗. Therefore, in this dataset, the data point D∗ = 0.2 is omitted due to spurious currents. For
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D∗ = 0.4 and 0.42 the simulations were repeated without the refinement at the wall.
Cylinder and sphere in initial data in Tab. 4.3 refer to the the shape and algorithm the bubble

initial data is set up. The 2 µm-approach was set up with algorithm 1 of Tab. 3.1, while the 1 µm
approach makes use of algorithm 2.

The time stepping procedure is the same as in the previous Sec. 4.1.1.
It is left to evaluate the influence of the choice of time interval for the reduction of Rn, before

going on with the 1 µm calculations. A small convergence study with the same simulation as in
the previous Sec. 4.1.1, including the boundary distance at 80Rmax, but in unbounded liquid was
carried out with both Rn-reduction intervals (60 µs to 75 µs and 90 µs to 105 µs). The resulting
values for 2Tc are given in Fig. 4.10 compared to the reference solutions of Fig. 3.8.
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Fig. 4.10: Same diagram as Fig. 4.2, but including the distinguishing of the Rn-reduction
interval times in the cylinder bubble approach.

It can be seen that more gas content inside the bubble prolongs the collapse time a bit and
eventually pushes it more to the convergence value. Since the axisymmetric calculations are too
time consuming for cell sizes lower than 1 µm, no statement about solution convergence can be
done here, but it can be deduced that the time interval of Rn-reduction does not play a major
role.

Figures 4.11 to 4.14 show the results for the 1 µm calculation. Some more data points were
added to the transition region from free vortex to wall vortex. Figure 4.15 then shows the vortex
direction data points plotted with the data of Fig. 4.1. A qualitative comparison of the main
differences can be summarized like the following:

stationary vortex vortex pureness free vortex appar-
ent speed

2 µm, Sec. 4.1.1 at D∗ = 0.4 mainly one major stays in sight
1 µm, Sec. 4.1.2 at D∗ = 0.42 sometimes twofold out of sight

Table 4.4: Summarizing qualitatively the differences between the 2 µm and 1 µm calculations.
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Without wall refinement:

Without wall refinement:

From here including wall refinement:

D∗ = 0.8: 1000 µs n.a.

Fig. 4.11: Free and stationary vortices generated by the D∗ ∈ [0.4, 0.42, 0.6, 0.8] bubbles,
simulated with the 1 µm-approach for two very late time instants: 550 µs (left) and
1 ms (right). In this approach, the Stationary vortex is more generated at D∗ = 0.42
than at D∗ = 0.4. The D∗ = 0.8 simulation crashed before reaching the limiting
time.
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Transition from free vortex to wall vortex, without wall refinement:

Fig. 4.12: Free vortices and the transition to wall vortex generated by the
D∗ ∈ [1.0, 1.2, 1.29, 1.30] bubbles.
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Fig. 4.13: Wall vortices generated by the D∗ ∈ [1.32, 1.33] bubbles and a transition vortex at
D∗ = 1.31.
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From here again including wall refinement:

Fig. 4.14: Wall vortices generated by the D∗ ∈ [1.4, 1.6, 1.8] bubbles.

The evaluation of the vortex direction is not as clear with the 1 µm calculation as with the
2 µm calculation. Therefore, a floating point criterion is introduced:

vd =


1 clear free vortex
0.5 stationary vortex till 1000 µs
0 clear wall vortex
else gradual variation between the three

(4.4)

The cases where it is not fully clear are the bubbles at D∗ ∈ [0.4, 1.29, 1.30]. Their values have
been decided to be:

vd (D∗ = 0.4) = 0.75, vd (D∗ = 1.29) = 0.4, vd (D∗ = 1.3) = 0.1 (4.5)
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At this point it is also discussable how to convert D∗ to γd. As stated in the introduction
of Sec. 4.1, the authors determined the distance d of the bubble from the solid boundary with
the first available recorded image from the camera and the maximum radius is taken from the
maximum bubble volume. From the numerical calculations the maximum volume is determined
precisely and the distance from the solid boundary is taken either at 4 µs or at 10 µs to stress the
influence of the time instant here. The values are fit with the function

γd = a (D∗)b + c. (4.6)

The results are plotted in Fig. 4.15. It is seen that the two different conversion rules mainly
influence the data points where D∗ ≤ 1. However, the main result that the vortex direction
changes with D∗ ≈ 1.29 remains untouched. Furthermore the following conclusions can be
consolidated:

1. The vortex phenomenon is well captured by the solver, thus long-term dynamics can be
resolved as well.

2. The vortex phenomenon does not necessitate a full 3D calculation, hence the main, global
aspect of the dynamics of the phenomenon is axisymmetric.
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Fig. 4.15: Left: Non-linear fit for converting D∗ → γd with rules
γd = d(t = 4 µs)/Rmax (t = t(Vmax)) (top) and
γd = d(t = 10 µs)/Rmax (t = t(Vmax)) (bottom). Data for vortex experiments from
(Reuter et al. 2017a). Depending on the D∗(γd)-rule, the data points for low
normalized distances shift in γd-direction.
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4.2 The jet-illusion bubble
(This section is similar to parts in Koch et al. (2020). An updated, more detailed and more
quantitative investigation is found there.)

The jet-illusion bubble serves as an example to show that refraction can be deceiving and
apparently triplicate the jet velocity. The overlay-method can be used to infer the precise shape
of a strongly aspherical bubble and correct the jet velocity value, even though the underlying
simulation disregards 3D effects that might result from the small confinement of the cuvette.

As an example of the expected dynamics, distinct time steps of a simulation performed with
the code described in Sec. 2.4.1 are shown in Fig. 4.16. The laser-induced breakdown creates
an elongated plasma which is modelled by an initial gas cylinder of high internal pressure
at a distance of 216 µm to the wall, resulting into a dimensionless distance of D∗ = 0.332
(Eq. 3.1). Afterwards the bubble expands and collapses including an involution of its surface
because of the hindered water inflow from the boundary side. The cross-section of the bubble
is shown in Fig. 4.16, together with the refraction of a pattern of 17 straight illumination stripes
of alternating color (white, yellow and pink) behind the bubble. Each stripe has dimensions of
50.8 mm × 1 mm in length and width. The stripe-to-stripe distance is 1.6 mm and the pattern
is put in a distance of 10 mm behind the bubble, ergo 5 mm behind the cuvette. The overall
size of the pattern is 50.8 mm × 26.8 mm. In one of the plots the pattern is put in vertical,
in the other frame in horizontal orientation. The vertical and horizontal pattern alignment is
ray-traced and compared to the cross-section of the bubble. Illumination grids or patterns are
used for example to correct lens aberration (Nobach 2012). The pattern deformation gives
insight into the refraction distortion. In contrast to lenses, the distortion here is beyond linear
approximations. It can be seen that for the time of interest, i.e., the jetting phase around 139 µs to
142.6 µs, it is challenging to get an illumination configuration where the jet and bubble interior
appear clearly separated. That is why the illumination device has to be designed and placed
accurately. The circular geometry of the flash tube in the experiment fulfilled this requirement
by chance.

With the Imacon 468 camera the involution (liquid jet) was recorded. One can obtain 8
images only, but at very high frame rate (down to 10 ns inter-frame time). Hence, the higher the
frame rate, the better the triggering circuit must be. Here, some of the best results are shown
that could be obtained by manually varying the delay time until the camera trigger happens to
exactly match the time of jet formation during the bubble collapse phase.

The results in Fig. 4.17 were obtained with 150 ns exposure time and an inter-frame time of
500 ns between the end of the previous frame and start of the next frame. The glass surface
wall is located at the bottom of the frames, indicated by the red line in the first frame, so the
image is rotated by 90◦ compared to the setup sketch in Fig. 3.16. The first frame shows the
plasma formation at the beginning. The times and spatial scale are indicated within the frames.
The jet formation is seen clearly by a dark shadow piercing the bubble from top to bottom and
widening over time. There seem to be two windows of the outer bubble interface where the jet
is seen through. One big window in the middle and a narrower at the bottom. In the latter, the jet
only is visible from frame 6 (t = 112.1 µs ) onward, although it has pierced the bigger window
already in frame 3. To conclude, there is some nonlinear distortion of the apparent jet speed by
refraction. If the experiment was evaluated only by pixel counting, the following minimum jet
speed would be found, taking the time between the end of the third frame and the end of the
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Fig. 4.16: Ray-tracing of a regular, symmetric illumination pattern with alternating color (pink
and white – yellow next to the center) behind the small cuvette shown here with
darker glass and lighter bubble for better contrast (first row). Note that the cuvette is
rotated by 90◦ to the left compared to Fig. 3.16. Simulated bubble with illuminating
rectangle in horizontal alignment (second row) and in vertical alignment (third row).
The bubble is mirrored in the glass surface. Fourth row shows the bubble
cross-section (not ray-traced). Frame width of the ray-traced bubbles is 1162 µm, the
one of the cross-section is 1600 µm.
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Fig. 4.17: Liquid jet piercing the bubble, captured at 1.538 Mfps. The first frame shows she
plasma of the laser-induced breakdown. The red line in the first frame indicates
where the solid boundary (glass) is located in the frames.

second frame of the top row:

500 µm/352 px
110.3 µs− 109.65 µs

· 80 px ≈ 175 m/s

The appearance of light and shadow features highly depends on slightest changes of the
interface curvature due to the nonlinearity in Snell’s law.

For determining the correct bubble shape from the photographs in Fig. 4.17, the bubble con-
tour from the numerical simulation in Fig. 4.16 is taken as a basis. The simulation gives a
bubble involution dynamics as shown in Fig. 4.18. The contour now is imported into blender
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Fig. 4.18: The contour lines of half of the cross-section of the numerical bubble in Fig. 4.16 for
several instants of time during jetting. Axis of symmetry is located on the left side.

and reduced in grid complexity while keeping the shape. It is then rotated and extruded around
the axis of symmetry. The curvature of the contour profile curve determines the curvature of
the resulting object, the bubble probe. The shape of the bubble probe can be adopted such that
it resembles the experimental one to high level of detail by manually altering parts of the pro-
file curve while watching the ray-tracing image outcome. This process has been applied to the
bubble contour from Fig. 4.18 and is shown in Fig. 4.19.

Taking all light and shadow features into account, the bubble shape to obtain highest corre-
lation becomes quite definite. In some parts of the profile curve even a change in inclination
by only a fraction of a degree results, e.g., into a fully light or half dark bubble interior. An
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Fig. 4.19: The jet-speed illusion. Top row: experimental photographs. Second row: ray-tracing
of the manually adjusted profile that is defined by the curve shown in the third row.

Fig. 4.20: Example of the effect of a slight change of the bubble interface shape. The black
contour line produces the second ray-tracing frame, whereas the original orange line
produces the first frame.

example of the sensitivity of the shape is given in Fig. 4.20, where the effect of a slight change
in the interface curvature changes the image.

Now the jet velocity can be recalculated using the bubble contours in the bottom row of
Fig. 4.19:

250 µm/246 px
110.3 µs− 109.65 µs

· 87 px ≈ 57 m/s,

giving approximately one third of the value that was derived from the photographs.
It is the first time known to the author that the shape of a jetting cavitation bubble was in-

ferred from the experiment with such high precision. With the successful application of the
overlay-method, many more possibilities arise. One could think of, e.g., a specialized setup
with an illumination grid in order to deduce the bubble shape automatically via an algorithm.
Furthermore, it opens up the possibility to validate CFD codes to an unprecedented level of
detail.
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5 The quest for the fast jet

As mentioned before, a peculiar jetting dynamics was found numerically in the studies by Lech-
ner et al. (2019) and Lechner et al. (2020) for D∗ ≤ 0.2. While the bubbles for D∗ ≥ 0.24
exhibit a “normal” microjet by involution of the top bubble wall, these ones exhibit jets that are
one order of magnitude faster and are produced by an annular inflow of liquid towards the axis
of symmetry. The latter work with the complete numerical investigation of this phenomenon
(Lechner et al. 2020) has been published in September 2020 after a long review process since
the 20th June 2019 because the community was hard to be convinced that the findings should
be reported. Since 100 years it is known that bubbles erode even hardest materials but till now
there is little evidence of forces in that magnitude. Over the years it got silently accepted. The
fast jet accelerates to about 1000 m/s within 20 ns. For the first time these are numbers that
seem plausible for erosion and yet the fact is rejected by fellow scientists. Before going on,
a philosophical question has to be posed concerning the basic scientific practice of numerical
simulation:

After performing successful convergence studies and interpolation of existing ex-
perimental results, numerical simulations are there to extrapolate experiments and
gain knowledge in parameter sub-spaces where experimental results don’t exist.
How scientifically correct or incorrect then is it to reject the publishing of the re-
sults of the extrapolation (incl. rejection of the possibility of a rebuttal process) or
to claim for an experimental validation again?

In this thesis simulations in full 3D and experimental investigations, partly used in Koch et al.
(2020), are added to the work of Lechner et al. (2020). The results are:

1. the fast jet phenomenon also occurs in a full 3D simulation, thus falsifying the possibility
of it being a numerical artefact of axial symmetry

2. the experimental data alone is not convincing but

3. using the overlay method gives strong indication of its existence

5.1 Bubble dynamics at D∗ = 0

In Figs. 5.1 and 5.3, a simulation in axial symmetry is performed for a D∗ = 0 bubble with
parameters

Rinit = 20 µm, Dinit = 0 µm, Rmax = 575 µm, Rn,1 = 220 µm, Rn,2 = 64 µm.

At Dinit = 0 half of the initial bubble volume is lost, which is automatically accounted for by
using algorithm 2 of Tab. 3.1 for the initial data. The bubble parameters are chosen such that
the collapse time fits the experimental bubble of Fig. 5.2. The Mesh 3.1.2.a is used, but without
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the lower half in the beginning already, skipping the snappyHexMesh part. The geometric
parameters are:

δxmin = 1.5 µm, Xi = 121.5 µm, Xii = 2Xi, X = 1.2Rmax, gf = 5,XF = 100Rmax. (5.1)

The distance Xi had to be set further outwards compared to standard 80 µm, in order to increase
the angular resolution of the mesh. This is necessary to have enough resolution to resolve the
curvature of the bubble at R = Rmax. In Fig. 5.1 the pressure (left) and liquid velocity (right)
are plotted for the times of the experimental recording in Fig. 5.2.
Note: The evaluation of the absolute values of the jet velocities is done later in Ch. 6.

Fig. 5.1: Simulation of a D∗ = 0 bubble in axial symmetry. Bubble expansion and collapse at
time instants fitting the images from the experiment in Fig. 5.2. Left side of the
frames is pressure in Pascal (Pa), right side liquid velocity in m/s.
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Fig. 5.2: Overlay of the simulation of Fig. 5.1 (even rows) and experimental recordings (odd
rows) using setup 1 (Sec. 3.3.1) for a D∗ = 0 bubble. The experimental images with
a time annotation belong to the same measurement, the remaining 16 experimental
frames are from 15 different measurements. Frame width is 1048 µm.
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Fig. 5.3: Simulation of a D∗ = 0 bubble in axial symmetry. Zoom into the time of jetting of
the bubble in Fig. 5.1. Left is pressure in bar, right liquid velocity in m/s

a)

b)

c)

Fig. 5.4: Zoom into experimental frames (a) from Fig. 5.2, last row and the respective
ray-traced simulation (b). (c): From 51 measurements using setup 1 (Sec. 3.3.1) with
400 kfps, 4 measurements showed a jet shadow.

In Fig. 5.2, the experimental recordings using setup 1 (Sec. 3.3.1) with 100 kfps recording
speed are compared to the ray-traced images of the simulation of Fig. 5.1. The measurements
were quite repeatable, so the images of different measurements could be stacked. The illumi-
nation timing was synchronised to the 1 µs shutter of the camera such that less than the full
LED flash time (1 µs) matches the shutter time and therefore reducing the illumination time
below 1 µs to approximately 500 µs. The frame width has not been noted down or measured,
but because the simulation fits very well in size and time, it could be calculated retrospectively.
The height of the numerical bubble at t = 99.666 µs is 670 µm and therefore the frame width
is 1048 µm. The plasma was generated directly on the metal surface, the laser entering from
the top of the frames. These measurements had been discarded for long since the experimental
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bubble shows an asymmetry in the dynamics and 100 kfps were found to be too less. How-
ever, knowing the results further down in this chapter, the match in the overlay is much more
apparent than was at the time of experiment conduction. The jet shadow back then was consid-
ered to be non-distinguishable from illumination inhomogeneities and jokingly called a ghost.
However, when looking at the magnifications in Fig. 5.4, a) and b), the overlay shows that even
for a perfectly sharp image, the pixel resolution and perspective of viewing does not produce a
high contrast jet. In Fig. 5.4c four out of 51 different measurements of the same setup but with
400 kfps recording speed are shown that in one frame show a jet shadow. The frames show the
full resolution and frame size of the camera at that recording speed.

5.2 Full 3D simulation
The full 3D simulation was performed for a bubble with standard parameters

Rinit = 20 µm, Rn,1 = 184.1 µm, Rn,2 = 64 µm, Rmax,unbound = 495 µm,
Rn reduction in interval [30 µs, 40 µs] , Dinit = 20.295 µm

and with initial data algorithm 0 from Tab. 3.1 on the polar 3D Mesh 3.1.2.d with standard
parameters

C = 40 µm, H = 180 µm, δxmin = 1.8 µm, X = 1.2Rmax, XF = 80Rmax

resulting into the total amount of 6,407,940 cells. The time stepping was set such that the
maximum flow Courant number is 0.1, the maximum Courant number for the interface is 0.1,
the maximum acoustic Courant number is 8.0, and 1 for R/Rn = 0.3, and the maximum time
step size is 50 ns. With these parameters the simulation took 597,938 seconds ≈ 6.9 days for
114.008 µs of virtual time on 30 threads on the Xeon-E5 machine (list of calculation machines
and benchmarking see Sec. B.4). The continuation until 122.647 µs took another 500369 sec-
onds ≈ 5.8 days. The calculation was done in order to verify the existence of the fast jet in 3D
as well. Figure 5.5 shows the moment of fast jet (t = 113.52 µs) in a scientific visualization.
The left frame shows the 3D bubble contour together with the pressure field at the solid surface.
The right frame shows the velocity field in the liquid at a cross sectional plane through the bub-
ble. With the spatial resolution of δxmin = 1.8 µm the numerical simulation predicts a fast-jet
velocity of 732.2 m/s at that instant of time.

Fig. 5.5: Full 3D simulation of the fast-jet bubble. Left: contour plot of the bubble interface with the
pressure in Pascal plotted in the plane of the solid boundary. Middle: Cross-section through
the same bubble, plotted with the liquid velocity in m/s. Right: QR code to the URL
https://doi.org/10.25625/1KJL3S of the movie of this simulation
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With the solution obtained, a pseudo-convergence study concerning the fast jet speed (Eq. B.2)
was made using the state of the bubble at t = 109.864 µs as initial data for the following cases:

δxmin C H X gf calculation time till
1.6 µm 30 µm 160 µm 0.6Rmax 5 113.79 µs: 30, 826 s ≈ 8.6 h
1.7 µm 30 µm 160 µm 1.0Rmax 5 113.79 µs: 33, 333 s ≈ 9.3 h
1.8 µm 30 µm 160 µm 1.0Rmax 5 113.79 µs: 22, 959 s ≈ 6.4 h
1.9 µm 30 µm 160 µm 1.0Rmax 5 113.79 µs: 19, 427 s ≈ 5.4 h
2.0 µm 30 µm 160 µm 1.0Rmax 5 114.66 µs: 41, 931 s ≈ 11.6 h

Table 5.1: Parameters and calculation times with 16 threads on the Ryzen machine for the
convergence study cases in Fig. 5.6.

More than just δxmin had to be varied in order to make computation times feasible. That is why
only qualitative conclusions can be drawn. The original calculation accidentally included the
sampling of the gas velocity for vj as well and is not included in the convergence study. None of
the algorithms of Tab. 3.1 is applied, because the interpolated fields of (p,U, α1) of the original
calculation at t = 109.864 µs were taken. The quantity vj in Fig. 5.6 is evaluated on the line
defined by the endpoints (0.1 µm,0,0) and (0.1 µm,495 µm,0) with cell-mid-point interpolation.
It can be seen that for all resolutions tested the maximum speed of the liquid during fast jetting
exceeds 900 m/s. The fastest velocity of ≈ 1000 m/s is observed for the resolution fitting the
original one (1.8 µm).
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Fig. 5.6: Fast-jet speed vj (Eq. B.2) pseudo-convergence test with full 3D mesh 3.1.2.d,
starting at t = 109.864 µs

5.3 Quarter 3D simulation convergence study
A quarter 3D simulation convergence study was done, too, starting at t = 0 for all cases, because
the amount of cells was much lower. The bubble has the same standard properties again:

Rinit = 20 µm, Rn,1 = 184.1 µm, Rn,2 = 64 µm, Rmax,unbound = 495 µm,
Rn reduction in interval [30 µs, 40 µs] , Dinit = 20.295 µm.

The Mesh 3.1.2.e is used with the geometric parameters described in the same Sec. 3.1.2.e. The
initial data were set with the algorithm 0 from Tab. 3.1. Figure 5.7 shows the simulation with
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δxmin = 1.8 µm during jetting and the following Fig. 5.8 shows vj for three different resolutions
including the R(t) curve. Time stepping was the same as for the full 3D simulation.

When comparing Fig. 5.6 and Fig. 5.8, it is seen that the evolution is qualitatively similar but
there are major differences in the details:

2Tc ≈ 2Tc - time of jetting minδxmin (mint(vj)) maxδxmin (mint(vj))
full 3D 114.1 µs 0.7 µs -1001 m/s -905 m/s
quarter 3D 112.9 µs 0.35 µs to 0.5 µs -950 m/s -678 m/s

Table 5.2: Comparing the results of Fig. 5.6 and Fig. 5.8.

Whether having had the far boundary at only 80Rmax was the reason for non-convergence of the
jet speed cannot be said. However, the same conclusion that was already stated in Lechner et al.
(2020) can be drawn: Simulating the fast jet needs enormously high resolution.

The quest to find a more solid evidence for the fast jet existence was pursued on the experi-
mental side again, but with Megaframes per second, as explained in the following paragraph.

Fig. 5.7: Quarter 3D simulation of a bubble at D∗ = 0.041 during jetting with δxmin = 1.8 µm.
Pressure colored on the solid boundary, the liquid velocity given on a translated
cross-section plane through the bubble including arrows for flow direction. Right:
QR-code to the link for the movie of the simulation
(https://doi.org/10.25625/KHO2SD).
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Fig. 5.8: Fast-jet speed convergence test with the quarter 3D Mesh 3.1.2.e

The cases ran for the following time on 30 threads on the Xeon-E5 machine:

δxmin calculation time from 0 s till
1.8 µm 150 µs: 174, 718 s ≈ 48.5 h
1.9 µm 140 µs: 116, 019 s ≈ 32.2 h
2.0 µm 140 µs: 101, 818 s ≈ 28.3 h

Table 5.3: Calculation times of the cases in Fig. 5.8

5.4 Overlay with Mfps experiments
Overlay with Megaframes per second experiments was performed, shown in Fig. 5.9. The
odd rows show the photographs of the experiment with setup 2 (Sec. 3.3.2) and the even rows
show the ray-tracing of a simulation in axial symmetry with the Mesh 3.1.2.a without the lower
half, skipping the snappyHexMesh part. The geometric mesh parameters are the same as the
parameters 5.1 for the simulation for the experiment with setup 1. The bubble parameters are:

Rinit = 20 µm, Rn,1 = 142 µm, Rn,2 = 64 µm, Rmax,unbound = 430 µm,
Rn reduction in interval [60 µs, 75 µs] , Dinit = 21.5 µm.

The value for Rmax,unbound is not necessarily the true one, but the mesh was created with this
value. The bubble parameters were chosen such that the timing of the frame “(4) 80.0 µs” fits to
a good extent, so that the numerical times can be regarded as an estimate of the time resolution
thus gained.

The frames again are rotated so that the glass surface boundary is located in the lower part
and the laser entered from the top of the frames. The first frame shows the plasma of the laser-
induced breakdown, and from the second frame onward the collapse phase of the bubble is
shown. The sequence is a montage of 7 measurements in total, the measurement number is
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denoted by the number in brackets in each experimental frame heading. The exposure time was
the same for all measurements (150 ns) while the inter-frame time varied from 1 µs to 350 ns.
By stacking/ interleaving the single frames of the reproducible measurements together, a time
resolution down to 34 ns

∧
≈ 29.4 Mfps could be achieved in the time of jetting. Here, the times

of the simulation are taken to indicate the time progression.
The typical bell shape is seen, which was already reported in Benjamin and Ellis (1966) and

predicted in Lechner et al. (2019). The ray-tracing shows most light and shadow features of
the experiment. The bubble is magnified, so that it can be seen that the bubble was indeed
pierced. However, the viewing perspective permits only a slim glimpse into the bubble, so it is
not suitable for speed detection.

To sum up, the investigations concerning the fast jet together prove that a) the bubble shape
including the fast jet is not an artefact of axial symmetry, but a full 3D feature and b) the bubble
shape is well captured by the CFD simulations. This shows that the overlay-method multiplies
scientific interpretation possibilities for (two-phase) fluid flows, even reaching out to hardly
measurable phenomena. Taking these arguments together, it is most likely that there was a
fast jet occurring also in the real experiment. Apparently, the slim window to look through the
bubble at this viewing perspective makes the possibility likely to miss it. The simulation shows
that there is a window of 96 ns to film it and determine a velocity.
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Fig. 5.9: Top: Bubble generated directly at the solid boundary. Odd rows are experimental
recordings with measurement number denoted in brackets, even rows are ray-tracing
images of the numerical simulation in Fig. 5.10. Exposure time of the experimental
frames is 150 ns, except for the first frame with the plasma, which has an exposure
time of 500 ns and is enhanced in contrast. The width of the frames is 664.5 µm.
Bottom: magnification
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Fig. 5.10: Simulation of a D∗ ≈ 0 bubble in axial symmetry. Top: bubble expansion and
collapse at time instants fitting the images from the experiment in Fig. 5.9. Left
side of the frames is pressure in pascal, right side liquid velocity in m/s. Bottom:
zoom into the time of jetting. Left is pressure in bar, right liquid velocity in m/s
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boundary and maximum radius,
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6.1 Jet velocity
This section summarizes the jet velocities of a bubble close to the solid boundary found in
Philipp and Lauterborn (1998), Lechner et al. (2020) and in this thesis. The jet speed in the
range D∗ ∈ [0; 3] is investigated. The values found are given in Fig. 6.4 and the values of this
thesis are plotted into the same diagram. It has to be noted that the code C. Lechner uses and
the code used in this thesis don’t share the same syntax because both authors maintained their
own versions of code and only compared the results. The jet-speed is defined in Lechner et al.
(2020) as:

In the case of the standard axial jet by involution of the top of the bubble the velocity
of the jet tip is taken shortly before impact onto the opposite bubble wall. That
is, because already shortly before impact the gas in the gap decelerates the jet by
compression. As to the fast jet, the definition has been adopted to take the average
velocity from annular jet collision up to jet impact. This quantity is unambiguously
defined.

These definitions are adopted here. The times have been found by analyzing the bubble shape
with Paraview, which limits the precision to the hard-disk write interval of 30 timesteps. This,
however, is still precise enough because of the adaptive time step size. The timings are indicated
by black dotted lines in Figs. 6.2 for the microjet of the calculations from Ch. 4 and in Fig. 6.3
for one D∗ = 0 example in axial symmetry for the fast jet. The time-averaged velocity for the
fast jet was found by integrating min(Uy) with the trapezoid rule between the two time marks
and then divide by the time full interval length.

The experimental data from Philipp and Lauterborn (1998) are given in terms of γd:

γd = Dinit/Rmax, (6.1)

with Rmax taken from the measurement. From the numerical data both γd and D∗ can be ob-
tained. An almost perfect linear correlation is found, shown in Fig. 6.1:

D∗ = 0.9798γd − 0.0073. (6.2)

If the data points from Philipp and Lauterborn (1998) are modified considering the above re-
lation, a slightly better agreement with the numerical data in Fig. 6.4 is apparent. However, it
is seen that experimental and numerical data do not fit over the whole spectrum of D∗. Three
assumptions are investigated why this may be the case. The first assumption (I) is that there are
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refraction issues deviating the true value of jet velocity. The authors assumed a linear distortion
of the position of the jet tip inside the bubble due to refraction. As stated in Sec. 4.2, there may
be more complex distortions involved. For a spherical bubble, however, the distortion might
not be as dramatic. The authors stated that they multiplied the jet speed visually obtained by
a factor of 1.33. This factor can be verified again by measuring the distances of the rays in
Fig. 1.2b to the optical axis i) to the left of the bubble and ii) in the middle. This yields a factor
of 1.372 ± 0.014 when fitting the distances with a simple linear function. To be sure, the sim-
ulation of the bubble for the data point at D∗ = 3 is rendered with blender and the Fig. 6.5 is
obtained.
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Fig. 6.5: Rendered results of the calculation for D∗ = 3, used to show the much too low jet
speed value obtained by simple observation.

With the sequence in Fig. 6.5 the same procedure as would be done with experimental data is
applied. The traveling distance of the jet tip is taken and multiplied by 1.33. In Fig. 6.6 the sci-
entific representation of the numerical simulation is given for the same time instants. Tab. 6.1
summarizes the different measures one would obtain if only two of the rendered frames were
available, compared to the average jet speed obtained by the scientific representation. It turns
out that in this way, the pseudo-experimental data even slightly over-estimates the jet speed.

frames
1998

approach
(incl. 1.33)

numerical
average

4 to 8 260 m/s 247 m/s
5 to 8 295 m/s 252 m/s
6 to 8 337 m/s 258 m/s
7 to 8 392 m/s 261 m/s
6 to 9 337 m/s 267 m/s
9 to 10 231 m/s 296 m/s

Table 6.1: Evaluation of the jet speeds from Figs. 6.5 and 6.6.
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Fig. 6.6: Velocity field of the water of the underlying simulation of Fig. 6.5.

Another issue not taken into account here is that the jet speed is given as absolute value in
Fig. 6.4, while the distance to the solid boundary is given in normalized values. The second
assumption (II) is that a bubble of 1.45 mm size (Philipp and Lauterborn 1998) has different
jet speeds than a 499.08 µm bubble as investigated in the numerical case. In order to clarify
this, the simulation for D∗ = 3 has been repeated for a bubble with Rmax = 1464 µm, yielding
however a very similar result (see Fig. 6.7).

Fig. 6.7: Velocity field of a bubble at D∗ = 3 shortly before jet impact, Rmax = 1464 µm.

The only conclusion is that Philipp and Lauterborn (1998) underestimated their errors in the
higher γd data points. Their frame interval was 17.7 µs and especially in the measurement for
γd = 3 the time interval from onset of jet formation till jet impact is photographically missed.
In the measurement for γd = 2.5 only one frame with a jet is seen shortly before impact.
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6.2 Maximum radius
The values for Rmax(D

∗) were extracted from the calculations shown in the Figs. 6.2, 6.3 and
6.6. The normalized data Rmax (D∗) /Rmax,unbound is plot into Fig. 6.8
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k(D∗) = 1− (1− a) · exp (−bD∗)
l(D∗) = c+ (1− c) · exp (−d (D∗ − 0.04))

m(D∗) = 0.968 +
1− 0.968

0.04
·D∗

Rmax (D∗) /Rmax,unbound =


m(D∗) ∀D∗ ∈ [0, 0.04]

l(D∗) ∀D∗ ∈ (0.04, 0.4]

m(D∗) ∀D∗ ∈ (0.4,∞)

(6.3)

a = 0.95958± 0.00071, b = 0.614± 0.018, c = 0.96798± 0.00080, d = 14.0± 1.4

The way the data points are arranged, ironically reminds of a Lennard-Jones potential function.
However, the curvatures of a Lennard-Jones function do not fit well, which is why the step-wise
arbitrary function 6.3 was defined. For values of D∗ < 0.042 the initial spherical bubble of
Rinit = 20 µm is cut by the solid boundary. For the data point D∗ = 0 algorithm 2 of Tab. 3.1
accounted for adjusting the pressure even when bubble volume is lost. However, a jump in
Rmax (D∗) /Rmax,unbound is to be expected.
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6.3 Pressure on the solid boundary
In Sec. 2.3 the erosion potential was theoretically correlated with the yield stress of the material
of several hundred Megapascal. In this section, the axisymmetric simulations of this thesis are
evaluated concerning their pressure signal on the solid boundary in the center below the bubble
(at the axis of symmetry). Again, the values for the bubbles are:

Rinit = 20 µm, Rn,1 = 184.1 µm, Rn,2 = 64 µm, Rn reduction in interval [60 µs, 75 µs] ,

and the Mesh 3.1.2.a is used in combination with snappyHexMesh to induce a cut at Dinit below
the bubble. The time resolution is equal to the time step size. Figures 6.9 and 6.10 show the
pressure signal in the time domain of the first collapse. The main stress happens during this
time, the rebounds can be neglected. The shockwave of the bubble formation is disregarded
here, too, because for the main erosive D∗ values its peak value was less than one third of the
collapse shockwave.
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Fig. 6.9: Pressure in Megapascal (MPa) at the the solid boundary in the symmetry point below
the bubble over time in Microseconds for the lower values of D∗ (0 to 0.6), evaluated
during the collapse time domain.
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Fig. 6.10: Pressure in Megapascal (MPa) at the the solid boundary in the symmetry point
below the bubble over time in Microseconds for the higher values of D∗ (0.8 to
1.8), evaluated during the collapse time domain.

The transition can be seen from strong shockwave focusing due to toroidal collapse at the
solid boundary for lower values of D∗ (Fig. 6.9) towards higher emphasis on the jet impact for
medium values of D∗ and lastly a decay of erosive potential for higher values of D∗(Fig. 6.10).

The curves have been processed to get the average stress on the solid boundary, as well as the
peak stress. The average has been found the following way:

pavg =

∫
$p dt∫
$dt

, $ =

{
0 ∀p < 1 MPa
1 ∀p ≥ 1 MPa

. (6.4)

The results are given in the two diagrams of Fig. 6.11.

83
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Fig. 6.11: Peak and average stresses in Megapascal over D∗, evaluated from Figs. 6.9 and
6.10. Linear in top diagram and logarithmic in bottom diagram.

From these plots it can be deduced that it is most likely that the main erosion happens around
D∗ = 0.1, where peak values of close to 4 GPa are observed. A first evaluation for the reason of
this pressure peak is given in Fig. 6.12 for D∗ = 0.1. The fast jet has already impacted onto the
solid boundary before the main pressure peak at 111.65 µs, contributing to a stagnation point
pressure signal. The main peak roots from the focusing of the toroidal shockwave from the first
collapse of the bubble directly on the solid boundary. To conclude, it can be said that one single,
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6 Jet velocity, pressure on the solid boundary and maximum radius, dependent on D*

laser generated bubble of Rmax ≈ 500 µm can erode any alloy when generated at a distance of
D∗ = 0.1.
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Fig. 6.12: Temporal evolution of the pressure field around and after fast-jet impact for a
bubble at D∗ = 0.1. Simulation done in axial symmetry. The diagram shows the
pressure signal in the symmetry point below the bubble at the solid boundary. It is
identical to the one in Fig. 6.9, but with a linear y-axis. The pressure peak roots
from shockwave focusing.
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7 Bubble dynamics close to a rigid
cylinder – mushroom shape

equiv. spherical
bubble with Rmax

l  >> r
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Dinit
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p

(axis of symmetry)

Fig. 7.1: Parameters for classification of bubbles close to a rigid cylinder. The equivalent
spherical bubble is understood as the bubble with same energy in unbounded liquid.

The bubble close to a rigid cylinder has interesting dynamics – with strong association to mush-
room shapes. Here, the case where the bubble is generated at a point on the axis of symmetry
of the cylinder is investigated. Fig. 7.1 shows the parameters of the case. There is one more
parameter compared to the case of a bubble close to a planar, solid boundary, which is the radius
of the cylinder. D∗ is now defined the following way:

D∗ =
Dinit

Rmax,unbound
+
Rmax,unbound +Dinit

rp
. (7.1)

This definition i) ensures comparability to theD∗ of the bubble close to a planar, solid boundary
for rp →∞; ii) for rp → 0, D∗ tends to infinity giving the unbounded case; iii) it is asymmetric
in the three parameters; and iv) it is scale invariant.

In Sec. 7.1 the experimental results, using setup 3 (Sec. 3.3.3), are given for one specific
laser energy. At the time of experiment conduction, a lot of effort has been made to film the
moment of neck closure. The numerics afterwards revealed, however, that the neck never closes,
because it is pierced by a fast jet. Again, its existence was indirectly shown. In Sec. 7.2 the
measurements for three different laser energies are shown.

In Sec. 7.3.1, the numerics will be tested for convergence, which is a demanding task, since
a lot of small splashing phenomena occur that are likely to alter the solutions very much with
altering the grid. In Sec. 7.3, the parameter space is investigated. The fast-jet happens at the
axis of symmetry for all bubbles presented. There is a parameter sub-space where the fast jet
happens inside a nearly cylindrical bubble. This could be another candidate to investigate the
fast-jet phenomenon experimentally. This is interesting for future projects. In most of the cases
presented however, the real 3D bubble does not have a smooth cylinder surface to see through.
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7 Bubble dynamics close to a rigid cylinder – mushroom shape

Again, the existence of the fast-jet phenomenon was indirectly measured by numerical inter-
polation and numerical interpretation.

In this chapter, the overlay method is skipped because the bubbles are rather thin than volu-
minous and their shape is also clearly seen in the experiment.

7.1 Constant bubble energy
As an introduction to the interesting dynamics of a bubble on top of a rigid cylinder the sequence
in Fig. 7.2 is given, depicting a stacking/ interleaving of 4 measurements from the Photron APX-
RS view, each recorded at 21 000 fps with a resolution of 384 ×272 pixels. By interleaving the
measurements of the repetitive bubbles, an approximate time resolution of 84 kfps is obtained.
The needle was indeed a sewing pin needle, which was ground to flat-top by diamond grinding
by the workshop of the institute. The needle top has a diameter of (545.6± 5.9) µm.

Fig. 7.2: Experimental images of a bubble generated at the center of the top surface of a metal
cylinder. Exposure time is 1 µs. Stacked sequences of 4 recordings with the Photron
camera at 21 kfps each. Frame rate for frames 1–7: ≈ 42 kfps; for frames 7–12:
≈ 84 kfps; for frames 12–15: ≈ 42 kfps. Raw video of one measurement online via
QR code or: https://doi.org/10.25625/3R8KTX

The main aspects of the dynamics are already visible here, e.g. the bubble being put over
the cylinder edge during expansion. Before final collapse, a neck is formed, together with
the mushroom’s head. The bubble collapse turns the mushroom shape into a blurred one, but
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7 Bubble dynamics close to a rigid cylinder – mushroom shape

the neck seems to persist. In the rebound the former mushroom head gets very large again
and detaches from the needle like a projectile. When viewing the raw video of one of the
experiments (link in Fig. 7.2), the shaking of the needle due to the momentum can be observed,
too.

Fig. 7.3: Experimental images of a bubble similar to Fig. 7.2, but with higher frame rate
recorded with the IMACON camera. Exposure time is 150 ns. Sequences of 3
recordings are stacked together. Frame rate for frames 1–3: 317 kfps (2150 ns
interval time); for frames 4–end: 870 kfps (1150 ns interval time). Background of the
images was subtracted.

The corresponding Imacon camera recordings allow for a more detailed insight into the tem-
poral dynamics of the peculiar collapse dynamics (Fig. 7.3) at a frame rate of mainly 870 kfps
and 150 ns exposure time. In the first row, the observer expects a violent neck closure in the
middle of the neck of frame 7, where it is narrowest. The more peculiar is the apparent, per-
fectly straight cylindrical neck in frame 8 and the mushroom cap thin like a jellyfish. In the early
rebound in frame 10, supposedly secondary cavitation leads to tiny bubbles around the neck,
ironically reminding of the mushroom annulus in real mushrooms. Afterwards the mushroom
turns into a cloudy projectile. What happens in the very collapse moment, where the bubble
showed us its miraculous shape? In Fig. 7.4, five frames of 5 prominent measurements are put
together which show the moment of collapse. Assuming again repetitivity of the measurements,
it seems that the bulk gas “under the roof” of the mushroom shrinks to the top below the roof
while the neck becomes more tapered homogeneously on the full length.
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7 Bubble dynamics close to a rigid cylinder – mushroom shape

Fig. 7.4: Extracted experimental images – from recordings similar to Fig. 7.3 – where the
mushroom shape is thinnest.

Therefore, more insight into the very moment before the first frame of Fig. 7.4 is needed. In
Fig. 7.5, the record sequences of the subsequent experiment are stacked to elucidate the dynam-
ics of neck formation. The exposure time has been reduced to 30 ns and partly 10 Mfps could
be used. This is the highest time resolution gained in this thesis, even per measurement, proving
that the experiment setup 3 works very well. It is observed that in frame 8 the neck closure is
expected to happen but somehow the neck just becomes more translucent. In the further frames,
the “bottom stand foot” is formed and its peak seems to “slide down” the neck. The bottom
stand foot further decreases its height while the top mushroom collapses first in the upper part,
subsequently in the lower part. The bottom stand foot has not reached zero height yet, when the
upper mushroom parts are already expanding again cloudly in their rebound phases.

These observations are to be kept in mind over the next section, where different bubble ener-
gies are investigated, until the numerics will tell what actually is going on.

89



7 Bubble dynamics close to a rigid cylinder – mushroom shape

Fig. 7.5: Experimental images of a bubble similar to Figs. 7.2 and 7.3, but with ultra high
frame rate. Exposure time is 30 ns. Frame rate and interval times (int) are as follows:
Frames 1–13: 10 Mfps = int 100 ns; Frames 14–19: 5.6 Mfps = int 180 ns; Frames
20–27: 10 Mfps = int 100 ns; 5 recordings stacked together: Frame 1–5, 6–13,
14–17, 18–19, 20–27
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7 Bubble dynamics close to a rigid cylinder – mushroom shape

7.2 Different bubble energies
In this section, three different laser energies are investigated. It is found that the mushroom
analogy is not persistent to a wide range of energies, at least not as clear. For each energy two
to three Imacon measurements are complemented with the respective photodiode signal and
Photron recording of one of the bubbles.

It seems that this series was recorded with the plasma breakdown location slightly off-axis of
the cylinder needle. This can be seen in the Photron views for late time instants. Even with this
slight asymmetry, however, the differences in the dynamics are evident to the eye.

Starting with the higher energy than in the previous section, shown in Fig. 7.6, it is seen
that the dynamics are more easily affected by asymmetry. This is intuitive in the sense that
the degrees of freedom of liquid inflow increase when the cylinder diameter becomes smaller
compared to the maximum radius, while at the same time the position of the cylinder axis
relatively matters more. The former mushroom cap turns into a mere ring at the top of the
bubble and a larger amount of bulk gas is pushed into the upper half of the collapsing conga-
drum-shaped bubble.

The mushroom shape could be reproduced sufficiently by applying a similar energy as in the
previous section (Fig. 7.7). The perspective is more orthogonal to the cylinder this time, but
the straight neck is seen again and the bulk gas that is pushed into the top below the mushroom
cap. The mushroom annulus is not seen, though, which is supposed to happen around the sixth
frame of the bottom measurement, compared to the Fig. 7.3. Therefore, it may be guessed that
the annulus formation is sensitive to perfect symmetry.

The bubble with lower energy (Fig. 7.8) than the one in the previous section was recorded
with ultra-high speed framerates. The dynamics are extremely fast and the shape reminds of
a tree stub. The gas bulk this time is thinnest under the former mushroom cap and the neck
remains thick.

The time from bubble generation to collapse is about 195 µs for the highest energy, 160 µs for
the middle and 100 µs for the lowest energy.
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Fig. 7.6: Mushroom bubble with more energy to the ones in Sec. 7.1. The two Imacon
measurements (bottom) were recorded with 2.5 Mfps (400 ns interval time) and
exposure time 150 ns. The photodiode signal (middle) of the two recordings has time
zero at the moment of triggering. Top: corresponding Photron view.
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Fig. 7.7: Mushroom bubble with similar energy to the ones in Sec. 7.1. The two Imacon
measurements (bottom) were recorded with 650 ns interval time (1,538,461.5 Mfps)
and 150 ns exposure time. The middle diagram shows the photodiode signal of the
two measurements with trigger time at t = 0 and the top row shows the Photron view
of one of the bubbles.
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Fig. 7.8: Mushroom bubble with less energy to the ones in Sec. 7.1. The top two Imacon
measurements (bottom) above the black line were recorded with 650 ns interval time
(1,538,461.5 Mfps) and 150 ns exposure time of each frame. The bottom
measurement was recorded with 4 Mfps (250 ns interval time) and 150 ns exposure
time. The middle diagram shows the photodiode signals of the measurements with
the trigger time at t = 0. Top row shows the Photron record of one of the bottom row
bubbles.
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7 Bubble dynamics close to a rigid cylinder – mushroom shape

7.3 Simulations
The CFD simulations are performed in axial symmetry and for distinct cases in full 3D. For all
simulations, the surface tension was set to zero because instabilities arose in the symmetry point
at the top of the cylinder and the axis of symmetry (see Sec. B.2). The reason is most probably
an unresolved incompatibility with snappyHexMesh. For three cases (Dinit = 250 µm) the
results are compared to the ones obtained with σ = 0.0725, showing that until the nonphysical
part the results match. For the investigations in axial symmetry the Mesh 3.1.2.a is used with
an additional snappyHexMesh step to cut out the cylinder. The radius rp of the cylinder was
set to 200 µm, a little bit smaller than in the experiment. Therefore, the simulations and the
experiment cannot be compared 1:1, unless the same D∗ is applied, assuming same dynamics
for same D∗ for this type of boundary. The mesh parameters are

δxmin = 1 µm, Xi = 80 µm, Xii = 1.2
√

2 Xi, X = 1.04 mm, gf = 5.25,XF = 80Rmax. (7.2)

The bubble parameters studied are:

Dinit ∈ [30 µm, 90 µm, 150 µm, 250 µm], Rn,1 ∈ [184.1 µm, 201.5 µm, 240 µm].

The maximum radii in unbounded liquid are found to be 498.66 µm 554.84 µm and 679.16 µm
for the respective Rn,1 by Eq. 3.5. Therefore, the investigated spectrum is D∗ ∈ [2.70, 5.01].

This is visualized in Fig. 7.9 where the 3D function Eq. 7.1 is plotted for fixed rp and the
above data points are put in, too. Some of the D∗ values are quite similar. Therefore, a state-
ment about the applicability of Eq. 7.1 will be done.
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Fig. 7.9: Color plot of Eq. 7.1 is plotted for fixed rp = 200 µm and the data points for the
investigated cases.
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7.3.1 Convergence test numerics
A small convergence test of the bubble shape is given in Fig. 7.10 before the results are pre-
sented. The bubble parameters are:

Rinit = 20 µm, Rn,1 = 201.57 µm, Rn,2 = 64 µm, (7.3)
Rn reduction in interval [60 µs, 75 µs] , Dinit = 30 µm (7.4)

It is observed that the shape is captured well at a resolution of 1 µm, assuming the resolution
of 0.65 µm as the converged solution. Figure 7.11 shows the calculation times in hours on a
logarithmic scale. The D∗ investigations were performed with 1 µm resolution which is why
the set of data points is highest there.

Fig. 7.10: Contours of the bubble shape of axisymmetric calculations of a bubble on a the
rigid cylinder for 4 resolutions and 3 time instants. Times for each contour taken at
the time of same equivalent radius.
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Fig. 7.11: Calculation times for the bubbles of this chapter for 109 µs.
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7.3.2 General dynamics
Here, the general dynamics process is explained in Fig. 7.12 and 7.13. It was found to be similar
for all D∗ cases investigated, as will become clear in the next section. Therefore, the questions
that arose from the experimental data, are answered here, too.

Fig. 7.12: During expansion, when the bubble interface crosses the cylinder edges, it swirls
around them, ejecting liquid droplets (in axial symmetry torus ring drops) into the bubble body
(5.37 µs, 27.193 µs). Once passed, these droplets hit again the outer bubble wall, inducing ran-
dom surface waves there (27.193 µs). Due to the boundary layer around the cylinder, the bubble
never touches the solid, but “swims” on the boundary layer. This is evident from the numer-
ics close to any solid boundary, but cannot be easily observed in the experiment. When the
bubble starts collapsing, the outer waist is lifted almost parallel to the cylinder (51.857 µs and
70.116 µs). This flow produces a) the neck and b) the extreme curvatures at the mushroom cap
rim. The phenomenon of flow focusing comes into play again here, generating strongest accel-
eration where curvatures are highest.

Fig. 7.12: General dynamics of the mushroom bubble, part 1, plotted with the liquid velocity
field. Explanation see text. A few flow directions and patterns are indicated by red
arrows.
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7 Bubble dynamics close to a rigid cylinder – mushroom shape

So an annular jet is formed that runs along the inside of the mushroom cap, leaving trails of dim
remnant gas that form a thin umbrella (80.157 µs, 82.423 µs). Numerically, this results into a
tearing of the interface, leaving areas where 0.9 < αl < 1. In the end, this umbrella jet impacts
in the zenith of the umbrella, producing – again – a fast jet. This fast jet is actually the reason
why the neck closure won’t happen. This can be seen in Fig. 7.13: The fast jet here easily
reaches values over 1000 m/s. The liquid inflow from the top now makes all sideways inflows
negligible, changing the dynamics to an axial jet. The neck is tapered from inside rather than
from outside flows. The experimentalist observes the aforementioned “bottom stand foot” here,
because the outside bubble surface has too many wrinkles to see the jet inside. The minimum
volume happens from top-down, thus the top gas fragments are already in the rebound phase
when the lower ones collapse and emit shockwaves. Therefore, the upper bubbles are “kicked”
and squeezed upwards.

Fig. 7.13: General dynamics of the mushroom bubble, part 2, plotted with the liquid-velocity
field. Explanation see text.

7.3.3 Several D∗

All prerequisites are fullfilled to study the D∗-dependence. In the following Figs. 7.14 and
Figs. 7.15 the bubbles are plotted with their liquid velocity field, sorted according to the D∗-
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Eq. 7.1, for four prominent times each: 1 - lifting the hips above the cylinder edge, 2 - annular
jet impact, 3 - fast-jet impact on the top of the cylinder and 4 - about bubble minimum volume.

D∗ = 2.703, Rn,1 = 184.1 µm, Dinit = 30 µm

D∗ = 2.978, Rn,1 = 201.5 µm, Dinit = 30 µm

D∗ = 3.124, Rn,1 = 184.1 µm, Dinit = 90 µm

D∗ = 3.386, Rn,1 = 201.5 µm, Dinit = 90 µm

D∗ = 3.544, Rn,1 = 184.1 µm, Dinit = 150 µm

D∗ = 3.590, Rn,1 = 240.0 µm, Dinit = 30 µm

Fig. 7.14: Mushroom bubble D∗-dependence part 1. Sorting according to Eq. 7.1.
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D∗ = 3.795, Rn,1 = 201.5 µm, Dinit = 150 µm

D∗ = 3.978, Rn,1 = 240.0 µm, Dinit = 90 µm

D∗ = 4.245, Rn,1 = 184.1 µm, Dinit = 250 µm

D∗ = 4.367, Rn,1 = 240.0 µm, Dinit = 150 µm

D∗ = 4.475, Rn,1 = 201.5 µm, Dinit = 250 µm

D∗ = 5.014, Rn,1 = 240.0 µm, Dinit = 250 µm

Fig. 7.15: Mushroom bubble D∗-dependence part 2. Sorting according to Eq. 7.1.

To conclude, judging the bubble shape at annular jet impact (each second frame) the sorting
according to Eq. 7.1 works reasonably well, except for the bubbles at D∗ = 3.544 and D∗ =
3.978, whose positions in the sorting should be exchanged.
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7.3.4 Two distinct simulations in full 3D
The following images show a montage of two simulations in full 3D, revealing that the axisym-
metric calculations capture the main dynamics very well. The contour surfaces of αl = 0.9
(light gray, transparent) and αl = 0.5 (green, transparent) are plotted. The higher value for αl
accounts for the dim gas remnants that are sub-resolution. The mesh used violated many of
the best practice meshing guidelines of this thesis, but the intention was to show the qualitative
perfect agreement with i) the results in axial symmetry and ii) the experimental observations.

Fig. 7.16: Full 3D simulation for D∗ = 1.88, rp = 320 µm, Rn,1 = 201.57 µm, Dinit = 30 µm,
showing the “tree stub” dynamics.
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Fig. 7.17: Full 3D simulation for
D∗ = 2.979, rp = 200 µm, Rn,1 = 201.57 µm, Dinit = 30 µm, showing the
“mushroom dynamics” including the projectile.
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8 Conclusion

The main body of this thesis deals with the existence of the so called fast jet that develops when
a single, laser generated cavitation bubble expands and collapses close to a flat, solid boundary
at normalised distances of D∗ ∈ [0, 0.2]. One reason for this focus is that even after 100 years
of research on cavitation erosion, the precise mechanism of damage of hardest materials by
cavitation bubbles still is not fully clear. Philipp and Lauterborn (1998) measured the erosion
pit volume of a single cavitation bubble on a soft material of 16 MPa yield strength (aluminum)
in a range of the normalised distance γd ∈ [0.3, 3] to the solid boundary. In this thesis it is
shown in Sec. 6.3 that exactly in the range γd ≈ D∗ ∈ [0, 0.3] the main pressure peak takes
place in the symmetry point at the solid boundary below the bubble.

In order to arrive at this conclusion, both the numerical two-phase compressible solver for
the Navier-Stokes equation had to be developed to an elaborate extent and the experimental
methods had to be designed for high precision records of the bubble collapse instant. The solver
has been described in Sec. 2.4.1. It covers non-linear, isentropic compressibility of bubble and
liquid at sub-, trans- and supersonic flow speeds, as well as gas phase splitting. It is based on the
compressibleInterFoam solver of OpenFOAM. The experiments have been described in
Sec. 3.3. A complex trigger circuit was established to repeatedly film the collapse moment of a
single, laser generated bubble at Megaframes per second.

One extra step that was further necessary, was to compare numerical and experimental results.
The ray-tracing method, shipped with the 3D-software blender, made it possible to transform
the numerical results into images that look very similar to the ones obtained from the high speed
photography experiments. This way the interpretation of the experimental results could reach
beyond optical limits. The validation of the method has been given in Sec. 3.2.1. A more
detailed and quantitative validation has found its way into the open-access publication of Koch
et al. (2020).

In order to give trust into the results of the code, experimental results from Reuter et al.
(2017a) for the long-term fluid motions around a bubble have been reproduced numerically
with success in Ch. 4. The authors measured vortices that either travel alongside or away from
the solid boundary, depending on the normalised distance.

By coincidence, the investigation of bubbles above a solid cylinder (shown in Ch. 7) supports
the opinion that a fast jet should exist in general. The bubbles were generated directly on the
flat top of a long, solid cylinder with diameter comparable or less than the maximum radius
of the bubble. Interestingly, the shape of the bubbles that forms during collapse reminds of
a mushroom. Moreover, the stem/ neck of the mushroom narrows rapidly before minimum
bubble volume, but does not impact onto itself. A clear stem remains. This could be explained
by the simulations: A fast jet piercing the stem from top to bottom suddenly changes the flow
characteristics.

To conclude, it can be said that the fast jet most probably exists. The arguments are:

• The bubbles of the ray-traced simulation and the experiment look very alike. The time
interval, where the fast jet can be filmed is about 100 ns, thus it is likely to be missed.
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8 Conclusion

• The neck (stem) of the mushroom shaped bubbles above a solid cylinder does not self-
impact. The numerics reveal that instead the neck is penetrated by a fast jet and subse-
quently disintegrated.

A first evaluation of the pressure peak of nearly 4 GPa that a bubble produces onto a flat, solid
boundary in the range D∗ ∈ [0, 0.2] reveals that it is actually not produced by the fast jet (see
Sec. 6.3). It is rather produced by focusing of the torus shockwaves of the second collapse.

This observation shows once more that the intriguing phenomena of the bubble collapse at
objects still have to be explored further in the future, and that the present work represents one
more step on the way towards a complete understanding of cavitation erosion.
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A Appendix – Fluid properties

The standard values applied in this thesis are given in the following table:

Symbol meaning value value used unit
air:
pV vapour pressure 2337 0 Pa
Rgeneral general gas const. 8.3144621 8.3144621 J/(K · mol)
Rspec gas const. 287.058 287.0 J(K · kg)
σ surface tension 0.0725 0.0725 Pa · s
β normalized co-volume ≈ 0.00154 0 –
γ polytropic exponent 1.4 1.4 –
µg dynamic viscosity 18.6 0 µPa · s
water:
ϑ0 ambient temperature 293.15 293.15 K
µl dynamic viscosity 0.001002 0.001002 Pa · s
B Tait parameter 3050 3050 bar
p∞ ambient pressure 101325 101315 Pa
ρ∞ ambient density 998.20608789369 998.20608789369 kg/m3

nT Tait exponent 7.15 7.15 –

Table A.1: Standard fluid properties of water and air.
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B.1 Grid convergence study and best practice meshing
Here the grid convergence studies are given that lead to the Crit. 3.2 in Sec. 3.1.4. The bubble
in unbounded liquid with initial data

Rinit = 20 µm, Rn,1 = 184.1 µm, Rn,2 = 64 µm, Rn reduction in interval [60 µs, 75 µs] ,

is investigated. The time from bubble generation (t = 0) and the first minimum bubble vol-
ume (t(Vmin)) is taken as the criterion for convergence. In unbounded liquid the duration for
expansion and collapse is the same, thus the convergence criterion is called 2Tc. This quantity
behaved in an unexpected way with resolution refinement in the first place. Numerous solution
control parameters have been studied until finally the solution converged. The Crit. 3.2 derive
from the following investigations.

B.1.1 Bubble in unbounded liquid – generating a reference
solution

The necessity to resolve a very steep pressure gradient at t = 0, when an EDC bubble is set up,
makes grid convergence studies for axisymmetric calculations an everlasting task. Therefore,
in order to show the convergence of the method, the grid study was performed for a bubble in
unbounded liquid, which can also be done in spherical symmetry, thus reducing computational
cost even at very high resolutions. All investigations were done with adapting the initial bubble
energy according to Eq. 2.22: After discretization, the true bubble volume V0 is determined
and the values of p0 and Rn are adapted accordingly to have the same energy as a bubble of
Rinit = 20 µm, Rn = 184.1 µm. All investigations are carried out with a maximum flow Courant
number of 0.2, a maximum Courant number for the interface of 0.08 and maximum acoustic
Courant numberof 8 for the whole time domain. The maximum acoustic Courant number is
reduced to 1 if the bubble equivalent radius is below 30 % of Rn. The upper size of the time
step is ∆t = 5 · 10−8 s and the time step size at t = 0 is set to ∆t0 = 10−11 s.

Figure B.1 shows the first attempt with a boundary distance of XF = 80Rmax. The spatial
resolution is varied in the initial bubble domain for both axisymmetric and spherically symmet-
ric calculations with Mesh 3.1.2.a and Mesh 3.1.2.b (version A), respectively. For t = 0 the
bubble interface (int.f.) was either set up with a thickness of 3 cells or sharp with approximately
zero thickness in theory. Both meshes use the same dimensional parameters. The core size C of
both meshes was set to 80 µm and X is set to 1.2Rmax. It is seen that the bubble shows the same
collapse time for the same method in each of the applied mesh symmetries. But for very high
resolutions a random behaviour seems to occur. The shockwave of the bubble generation travels
to the boundary, located at a distance of 80Rmax = 80 · 495 µm = 39.6 mm, and a reflected part
travels back to the bubble within approximately 54.6 µs, assuming a uniform sound speed of
1450 m/s. During this time, the bubble reaches maximum expansion and a state of low pressure
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and low interface velocity. In this state it is supposed that it is influencable by impinging waves.
The higher the resolution, the sharper the shockwave is resolved, thus leading to higher influ-
ence.
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Fig. B.1: Time from bubble generation till first minimum volume for different resolutions for
an unbounded bubble in both spherical and axial symmetry with a outer boundary
distance of 80Rmax. For very high resolutions suddenly a non-converging, random
behaviour appears, irrespective whether the bubble interface is smeared over 3 cells
at t = 0 or not. The lower curves are the ones with smeared interface. The upper
curves use a sharp interface in the beginning. Left and right diagrams are the same
but linear or logarithmic x-axis.

In order to show that most probably no other parameter than the boundary distance is capa-
ble of enhancing convergence, the global mass correction (GMC) and also zero surface tension
(sigma=0) were tested in Fig. B.2, thereby validating that the local mass correction (LMC) pro-
duces the same collapse times as the global mass correction. The GMC was tested and validated
in Koch et al. (2016).
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Fig. B.2: Same investigation as Fig. B.1 but including investigations where the global mass
correction (GMC) was applied to check for better convergence. This, however is not
the case. Also, the surface tension σ was supposed to have an influence, which
turned out negligible.
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Fig. B.3: Same investigation as Fig. B.1 finally having found convergence for setting the outer
boundary from 80Rmax to 100Rmax apart from the bubble. Mesh 2 refers to
Mesh 3.1.2.b (version B) with parameters: X = 20 µm = Rinit, XF = Rmax,
XFF = 20Rmax, XFFF = 200Rmax, θ = 1◦.

Finally in Fig. B.3, convergence was found by testing the spherical Mesh 3.1.2.b version
B (mesh 2) with a boundary distance of XFFF = 200Rmax. This led to testing Mesh 3.1.2.b
version A with a boundary distance of XF = 100Rmax, improving convergence for almost every
resolution for the case of an initially sharp interface (red curve). Indeed, it can be seen in
comparison with Fig. B.1, that even with a boundary distance of only 80Rmax the axisymmetric
case with a sharp interface at t = 0 is congruent with the spherical solution that converges. The
congruence is best in the resolution interval from 1 µm to 3 µm.

The curves of the equivalent Radius over time for the converged and non-converged series
are given in Fig. B.4. It is seen that the rebound radius is underestimated for the resolutions
3 µm and 2 µm. So it can be expected that the solution converges fully from 1.35 µm onward.

The axisymmetric calculation (green curve in Fig. B.1) is in congruence with the converged
spherical calculation even though the boundary distance was 80Rmax. This is not a contradiction,
because the resolutions where non-convergence is observed are higher than the ones that could
be tested within reasonable time.

One has to note, too, that the above grid convergence study aims at extremely high precision.
Even the worst non-converging solution of Fig. B.1 has roughly a maximum deviation in twice
the collapse time of 4 µs from the value of 92 µs, which is considered the true one. This results
in a maximum relative error εr,max of

εr,max =
4 µs
92 µs

= 4.3 %.

This is still below 5.5 % which was the precision considered sufficient in Koch et al. (2016) for
similar studies.

The two reference solutions are summarized in Fig. B.5.
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Fig. B.4: Equivalent radius over time for the converged series (top) of Fig. B.3 and
non-converged series (bottom). Both with sharp interface.
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the two reference solutions for the unbounded bubble. Axisymmetric calculation
(green) of Fig. B.1 and converged spherical calculation (red) of Fig. B.3. This
Figure is the same as Fig. 3.8

B.1.2 Words on saving calculation time
Calculation time is an issue. The following considerations concern the software side and hold
for 1D, 2D and also 3D. The hardware side is covered in the Appendix Ch. B.4.

Figure B.6 (left) shows the calculation times in logarithmic scale over the resolution for the
axisymmetric reference solution of Fig. B.5. Considering the convergence studies of Sec. B.1.1,
a resolution of 1 µm would be preferred for axisymmetric calculations, but approximately one
and a half hour calculation time on a 16 core AMD Ryzen machine still limits the parameter
space of inquiry. At this point, the space is open for optimization. Regarding the mesh, one
can now play with the geometric parameters. That means the grading values or the positions
of the XFi for the polar mesh of the reference solution. The aim is to reduce the amount of
cells in a most clever way and save calculation time by matrix size reduction. The geometric
configuration of the reference bubble studied was:

Xi = 80 µm, Xii = 1.2 ·
√

2 · Xi, X = 1.2Rmax, XF = 80Rmax, g = 5.25.

The other possibility is to go for a different meshing approach, e.g. the static refinement
Mesh 3.1.2.c. The latter has been rediscovered only recently and therefore still needs a lot
of validation work. In principle, it was found to be able to reduce the calculation time by a fac-
tor of 2.51 as shown in Fig. B.6 (right), when the maximum Courant number for the interface is
set to 0.2 rather than 0.08, too. However, in the case of a bubble close to a solid boundary it was
found to be responsible for a very different jet shape at resolutions of 1 µm and coarser. This
will be shown in Sec. B.1.3. The conclusion is that the influence of the borders between the
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concentric refinements, where the resolution jumps by a factor of two within one cell distance,
is not yet fully understood.
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Fig. B.6: Calculation times (16 threads on Ryzen machine) for left: the axisymmetric
reference solution in Fig. B.5, and right: same calculation but on a mesh with static
refinement.

This conclusion persists for another time saving approach: The adaptive mesh refinement.
Thanks to Luca Cornolti (presumably author of Cornolti et al. (2013), user Luca Cornolti on cfd-
online.com) this method is also available and working stably for calculations in axial symmetry.
According to user-defined thresholds of a chosen field the mesh is refined every n-th time-
step in the area where the thresholds are crossed. The method was found to drastically reduce
calculation time, because only the interface is kept at high spatial resolution, however it also
challenges numerical stability. There is still a lot of validation work to be done since it was
found to lead to different solutions than a static mesh in some tryouts.

After optimizing the mesh, the time stepping can be optimized: As mentioned above, it is
possible to raise the maximum Courant number for the interface to 0.2 rather than 0.08. How-
ever, it requires to restrict the maximum acoustic Courant number for the whole time domain. A
value of 8 guarantees stability in most of the cases, while from about a value of 30 instabilities
may occur. The values were not tested explicitly, but got consolidated on the way.

B.1.3 Bubble close to a planar solid boundary
In Sec. B.1.1 it was shown that using the bubble collapse time of an unbounded bubble as
the criterion for studying solution convergence, simulating a cavitation bubble becomes very
demanding. The solution converges earliest from a resolution of 1.35 µm in the initial bubble
area onward if the best practice guidelines for the mesh are fulfilled. The conclusion was that
for simulations in axial symmetry the preferred resolution is a cell size of 1 µm.

In this section however, it is shown that taking the bubble shape as a convergence criterion,
loosening the temporal precision claims, convergence is found much earlier. This will be ex-
plained with a bubble close to a solid boundary, with the following theoretical parameters:

Rinit = 20 µm, Rn,1 = 184.1 µm, Rmax,unbound = 495 µm, Dinit = 792 µm→ D∗ = 1.6

Rn,2 = 64 µm, Rn reduction in interval [60 µs, 75 µs] (B.1)

This bubble is simulated with the axisymmetric, polar Mesh 3.1.2.a of the following parameters:

Xi = 50 µm, Xii = 2 · Xi, X = 1.05Rmax, XF = 100Rmax, gf = 5.2
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The cell size is sampled with values:

∆x ∈ [0.75 µm, 1 µm, 1.35 µm, 2 µm, 3 µm]

The initial data is corrected by algorithm 2 of Tab. 3.1.
Figure B.8 shows the bubble interface contours for three subsequent times before the jet

impacts onto the opposite bubble surface. It is seen that the bubble shape is quite correct even
for the 3 µm resolution and perfectly matching from 2 µm on.

If the spatial convergence is that good, the question arises how well quantities converge that
are time dependent, too. Therefore, the maximum liquid jet velocity vj (= minimum liquid
velocity due to negative values) into the direction towards the solid boundary along the y-axis
(= axis of symmetry) is investigated.

vj = min (α1 U · ey)|x=0 (B.2)

The time dependence of this quantity is shown in Fig. B.7. It is seen that the magnitude of
the jet velocity increases from 90 µs to approximately 98 µs in similar manner irrespective of
resolution. However, during the time of minimum vj peaks and jumps occur, so that it seems to
be a matter of taste which single value of min (vj) to choose. Therefore it is necessary to define
what is understood as jet velocity:

Jet velocity is understood here as the maximum magnitude of the y-component of
the liquid velocity directed towards the solid boundary along the axis of symme-
try during the jetting time of the bubble, excluding pressure wave and shockwave
contributions.

With this definition it is necessary to know whether the peak velocity in the graphs of Fig. B.7
truly roots from plain liquid flow.
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Fig. B.7: Grid convergence of the liquid jet velocity vj (Eq. B.2) for the bubble with
properties B.1. Left and right show the same curves for different time intervals
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Fig. B.8: Convergence of the bubble shape for a bubble of D∗ = 1.6 shown for three time
instants before jet impact. Axisymmetric, polar Mesh 3.1.2.a. Top: same times for
all resolutions: ti = 97 µs, 98 µs, 99 µs; Bottom: corrected times for 3 µm:
t = ti − 1.2 µs, for 2 µm and 1.35 µm: t = ti − 0.3 µs
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Fig. B.9: Temporal evolution of the liquid jet in the 0.75 µm calculation. Left part of the
frames shows the color coded pressure in pascal re-scaled for every frame, the right
part shows the clipped y-component of the liquid velocity (α1 U · ey ∈ [−140, 0] m/s)

Figure B.9 shows the time evolving of the liquid jet at 0.75 µm resolution with the pressure in
pascal on the left and the y-component of the liquid velocity on the right of each frame. The ve-
locity is clipped and given a green color at the lower boundary of the values in order to visualize
the region of highest velocity. Mind that vj is evaluated along the axis of symmetry only. One
can see that the green area of velocity touches the axis of symmetry in a short period between
99.94 µs and 100.01 µs. This is clearly the peak seen in B.7, e.g. left figure inset. After that the
lighter green area touches the axis of symmetry with a decay in green color until the last frame.
This is identified as the local minimum (=maximum of magnitude) of vj after the peak. To
conclude, the global peak of the vj magnitude stems from the torus shockwave emission, while
the local extreme afterwards seems to be a value of pure liquid flow. Therefore, the values for
min(vj) are chosen as shown in Fig. B.10.
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Fig. B.10: Left: repeated diagram of Fig. B.7 but with indicated time values for choosing vj .
Right: minimum values for vj were extracted within an interval of 0.1 µs around
the chosen values from left diagram.

Interesting to see is that even though the bubble shape of the 1 µm and 0.75 µm calculation per-
fectly match in time (see again Fig. B.8), the resulting jet velocity still differs by approximately
2 %. All in all, the jet velocity values differ by maximum 3.5 %. Whether that is sufficient, is a
matter of taste of the scientist.
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B.2 Influence of the surface tension on the mushroom
bubbles

SnappyHexMesh was found to provoke problems for the bubble dynamics in some cases. In the
cases of the mushroom investigations, surface tension could not be used, because of instabilities
in the velocity in the very cell in the corner between solid surface and axis of symmetry. U got
unstable after about 550 time-steps (Fig. B.11).

Fig. B.11: SnappyHexMesh induced issue with the surface tension. Velocity instabilities in
the corner between axis of symmetry (left edge) and solid surface (lower edge).

The reason could not be found, but it is evident that it has to do with snappyHexMesh because
of experience with other cases, too.

The contours of the three Rn,1 of Ch. 7 are compared for calculations with and without sur-
face tension:

t = 1, 4.5, 25 µs t = 65, 82, 88, 90 µs
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Fig. B.12: Contours of the bubble Rn = 184.1 µm, Dinit = 250 µm, rp = 200 µm. No severe
difference is found with or without surface tension up to jet impact.
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Rn = 201.57 µm:
t = 1, 4.5, 20 µs t = 88, 96.2, 98.8, 99.5 µs
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Rn = 240 µm:
t = 0.5, 3, 14.5 µs t = 105, 115, 118, 120.2 µs
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Fig. B.13: Contours of the bubble Rn = 201.57 µm (top) and Rn = 240 µm (bottom) with
both Dinit = 250 µm, rp = 200 µm. The issue shown in Fig. B.11 induces a
numerical upwards jet.

B.3 Master-thesis, code and data availability
Repository B.1. The Master’s thesis (Koch 2014) is available here

https://doi.org/10.25625/JVCJVW

In that 175 pages long thesis the equations derivation is very detailed.

This thesis is understood as open source friendly. Most of the source code is available and
maintained under the following repositories. The official mirrors offer the versions used for this
thesis, maintenance is only done in the private mirrors (github):

Repository B.2. Solver for a cavitation bubble on a static mesh: You can become a collaborator
on our github project. If you like to do so, please mail to me
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max.koch@phys.uni-goettingen.de or niob@gmx.li

Repository B.3. many[!] relevant scripts for setting up/ running/ and post-processing a bubble
calculation

https://github.com/ma-tri-x/scripts_for_cases

Repository B.4. notes on how to set up ubuntu for foam-extend-4.0 and benchmarking template

https://github.com/ma-tri-x/setup_ubuntu

The benchmark has been executed by many users in the thread

https://www.cfd-online.com/Forums/hardware/198378-openfoam-benchmarks-various-hardware-14.html

and thus the results are comparable to a lot of other hardware setups

Scripting Paraview and blender with python In order to batch render a bubble over many time-
steps it was necessary to apply python scripting to both Paraview and blender. Examples
how to do this are found in repository B.3 in the scripts named render_timestep_via_pvsm.py,
render_bubble_inside_cuvette_V4.py and run_blender.sh.

B.3.1 Bubble case setup
The scripts for setting up a bubble case are found in the repository B.3. The main file in a case
is the rerun.sh file which is started with

bash rerun.sh -par

and the main config file is conf_dict.json. Most other files have copy with extension “.template”
and are automatically created from this template. Variables declared in the conf_dict.json can
be used in the template files via capital letters.

Schemes and solver controls The standard schemes and solver controls used can be found in
the cases files of repository B.3.

AMR – Adaptive mesh refinement Has been implemented for 3D and also axial symmetry thanks
to the library of Luca Cornolti. However, since it didn’t contribute to this thesis and it hasn’t
been tested sufficiently, it will not be described here. Mail to me (see repository B.2) if you’re
interested.

B.4 Appendix - Benchmarking different machines
Summary: The winner of all “low-budget” systems is Berlin, a dual Xeon CPU machine at
2.0 GHz because it exhibits 100GB/s CPU to RAM connection. Tested systems were:

• Kinkade: 16 cores AMD Ryzen 9 3950X, 51.2 GB/s memory bandwidth

• Berlin: 2× 8 cores Xeon E5-2650 1st gen., 2× 54.98 GB/s memory bandwidth
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• Berlin GPU: Nvidia Tesla K20M, 5 GB RAM, 208.0 GB/s memory bandwidth

• Dali: 8 cores Intel i7-9900, 69.148 GB/s memory bandwidth

• Kirchner: 4 cores Intel i7-2600, 21 GB/s memory bandwidth

• Spitzweg: 57 cores at 1.1 GHz Intel Xeon Phi Mic Coprocessor 31S1P, 8 GB RAM,
320 GB/s memory bandwidth

• GWDG Cluster: tested up to 300 cores spread over 26 nodes

Dual Xeon E5-2650 vs i7-9900 vs AMD Ryzen 3950X The three most important workstations
of this project were tested with the motorbike test case described in repository B.4. The calcula-
tion times can be compared to the ones obtained by the community (link given in the repository
description). Results are given in Figs. B.14 and B.15.
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Fig. B.14: Calculation time of the motorbike benchmarking case for different machines.

The same conclusion can be drawn as was found in the community: Computational Fluid Dy-
namics has its main bottleneck in the memory bandwidth because huge matrices have to be
iterated over and over for each time-step. The Xeon-E5 machine has a maximum clock speed
of 2.0 GHz while the AMD Ryzen machine has about 4.2 GHz (measured while calculating)
and both have the same amount of cores and threads. The reason why the Xeon-E5 machine is
still slightly faster, is that the memory bandwidth is twice as high as the one of the AMD Ryzen
machine. Furthermore, it can be seen that only the core amount counts, the hyper-threading
does not contribute to speedup.
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Fig. B.15: Zoom into Fig. B.14.

Scientific Cluster The full 3D Mesh 3.1.2.d mesh was tested on a scientific cluster, too. The
Cartesian core of the mesh had dimensions of 40 µm × 180 µm with 1.8 µm smallest cell size.
This amounted to 6,407,940 cells in total. Tab. B.1 shows the results of calculation time com-
parison to the Xeon-E5 machine.

machine cores cells/core virtual time execution time timesteps
Cluster 300 21360 1.393645005e-05 78476.62 s 5114 timesteps
berlin 30 213600 1.376547079e-05 119459.32 s 5114 timesteps
berlin 30 213600 1.393914729e-05 120100.27 s 5141 timesteps
speedup:
same time 1.53
same timesteps 1.52

Table B.1: Scientific cluster calculation-time properties.

This reveals a calculation time speedup of 1.52 for a tenfold amount of cores. If the waiting
time of the queue of 1h04min09sec = 3849 s and the time for data withdrawal from the cluster
to the home workstation (6.3 h = 22680 s) are taken into account, too, then the speedup factor
reduces to 1.144.

In another test case the calculation was spread over 26 nodes and the total speedup resulted
into 0.79. Thus it can be deduced that the same conclusion for the bottleneck of CFD holds for
a cluster as well.

RapidCFD – Tesla K20M There exists a fork of OpenFOAM which is written in CUDA for
graphics cards, called RapidCFD. First of all, the major draw-back of calculating on a GPU
– except for the smaller community – is the limited RAM on the graphics card. With 5 GB
RAM only small cases can be set up that can also easily be solved on a normal CPU. For testing
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the Tesla card, the interFoam damBreak tutorial case of OpenFoam 2.3.0 was taken,
because the compressibleInterFoam did not compile. The results are shown in Tab. B.2.

cells Tesla K20M 2x Xeon E5-2650 Core i7-2600
2000 89 s - (1 core) 4 s
1M 558.05 s (32 threads) 309.28 s (4 threads) 1687.29 s

Table B.2: Calculation times of the interFoam damBreak tutorial case, small and large
amount of cells, on an Nvidia Tesla K20M and a Xeon i7-2600 machine.

Even though the Tesla GPU has twice as much memory bandwidth as the Xeon-E5 machine it
is still slower for the test case with 1 000 000 cells.

Xeon Phi Mic PCI card Intel developed but discontinued the Xeon Phi Coprocessor Cards as
an answer to Nvidia’s scientific GPUs. At first it seemed promising, because it was said that
the programming language of usual CPUs could be used but the amount of cores was consid-
erably larger. However, it turned out that the coprocessor cards from Intel needed special care
for programming as well. Also, setting up the card on an Ubuntu system was not straight for-
ward. Fig. B.16 shows that the Ryzen machine outperforms the Xeon Phi coprocessor easily.
Therefore, the effort to set up foam-extend for the Intel coprocessor card does not pay off.
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C.1 Illumination

C.1.1 Overdriven 100 W LED
A second, more elaborate version of the device to overdrive a 100 W LED was tested concerning
the light output (Joule per microsecond). It was even a double LED (red) arrangement, but the
light yield amounted only to 26.6707 µJ/ µs.

The flash pulse duration was set to 1 µs and was powered with 166 V (overdriving factor of
6). The triggering was done with 60 pulses of a 100 kHz square signal. For detecting light
intensity, the Thorlabs SV2-FC high speed photodiode was used. The following calculation
was done without error estimation, just to estimate the magnitude of light yield:

The formula to obtain the incident light power P is given in the data sheet of the photodiode
as

P =
Vout

R(λ) ·Rload
(C.1)

where Vout is the voltage produced by the photodiode, R(λ) is the spectral responsiveness given
in the manual and Rload is the 50 Ω load resistance of the BNC connection. The first trigger
pulse of the trigger burst was observed with the oscilloscope. The maximum height of the pulse
was measured by the oscilloscope’s cursor function. With the red LEDs the waveform of the
pulse was found to be the one in Fig. C.1.

 0

 50

 100

 150

 200

 250

 300

 350

 1.4  1.6  1.8  2  2.2  2.4  2.6  2.8

p
h
o
to

d
io

d
e
 v

o
lt
a
g
e
 [
m

V
]

time [µs]

read via imagej

Fig. C.1: Pulse characteristics of the photodiode voltage when using red LEDs.

The setup to measure the intensity was kept simple and run manually. A ruler was attached
to the leading of the photodiode as shown in Fig. C.2.
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device
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LED1         LED2

devices top view:
LED double flash

x

y

Mettle flash
with ring tube

Fig. C.2: Sketch of the setup. The ruler is parallel to the leading and the tip of the
photodiode. For the LED the distance of the photodiode tip to the tip of the lenses is
set to 8 cm± 0.2 cm.

The flash was measured along the axis of the LEDs (“x-axis”), as well as orthogonal to it above
one of the LEDs (“y-axis”).

The measurement values obtained for the two directions are shown in Fig. C.3.
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Fig. C.3: Raw measurement values

In order to correlate the voltage of the maximum height of the flash pulse with the emitted
energy, first of all the value ofR(λ) of Equation C.1 had to be determined. For this, the spectrum
of the data-sheet was digitalized (see Fig. C.4). A value of R(λ = 635 nm) = 0.4 was taken.

128



C Experiments

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 300  400  500  600  700  800  900  1000  1100

R
e

s
p

o
n

s
iv

it
y
 R

λ
 [

A
/W

]

wavelenght [nm]

read via imagej

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 570  580  590  600  610  620  630  640  650  660

R
e

s
p

o
n

s
iv

it
y
 R

λ
 [

A
/W

]

wavelenght [nm]

read via imagej

Fig. C.4: Spectrum of the SV2-FC photodiode.

By Eq. C.1 the waveform U(t) of the pulse of Fig. C.1 was then transformed into values of light
power per photodiode active area (Ø 4 mm)

e =

∫
P (U(t)) dt ≈ 12.74

nJ
π(0.2 mm)2

and correlated to the maximum voltage of the waveform (integration of the waveform by mid-
point rule)

e ∝ Umax ≈ 327.34 mV.

As a thumb rule, the energy per photodiode active area was assumed to scale with the maxi-
mum voltage of the waveform:

cU2E =
e

Umax
= 30.97

nJ
mV cm2

(C.2)

This conversion factor was used to convert the raw measurement values of Fig. C.3 to energy
values. The results including Gaussian fit functions are shown in Fig. C.5.
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Fig. C.5: Converted measurement values and Gaussian fit functions

The fit functions for the two measurement directions are:

f(x) = e
− (x−xs1)

2

σx1 · A1 + e
− (x−xs2)

2

σx2 · A2 (C.3)

g(y) = e
− (y−ys)2

σy · Ay, (C.4)
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where the xi and the ys are the offsets towards the local intensity maxima, the σi are the squared
widths of the Gaussian packages and the Ai are the amplitudes. Fit parameters are shown in
Table C.1.

value error unit
σx1 4.88536 0.2445 cm2

σx2 6.36906 0.2903 cm2

A1 1.04863·10−5 1.879·10−7 J/cm2

A2 1.09307·10−5 1.71·10−7 J/cm2

xs1 9.94261 0.03587 cm
xs2 16.0116 0.0352 cm
σy 5.97806 0.214 cm2

Ay 1.0263·10−5 1.471·10−7 J/cm2

ys 9.05388 0.03153 cm

Table C.1: Fit parameters for Gaussian fits.

With these very good fits, a two-dimensional intensity function I(x, y) was created from
Eqs. C.3,C.4 to extrapolate to the whole field of flash emission (with ys = 0, Ay = 0):

I(x, y) =

(
e
− (x−xs1)

2

σx1 · A1 + e
− (x−xs2)

2

σx2 · A2

)
· e−

y2

σy (C.5)

The plot is shown in Fig. C.6.
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Fig. C.6: Plot of the fit function I(x, y) of Eq. C.5.
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In order to finally receive the Joule output, Eq. C.5 was numerically integrated. The python
script is given in the repository B.3 in the “exp” folder. It was run with

python integrate.py -a 4 -b 22 -c "-3" -d 3 -s 100 -e 10000 -t 1e-5

To find the final result:

I1 µs,166 V = 26.67 µJ
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C.1.2 METTLE flash
The energy output (Joule per microsecond) of the 600 Ws METTLE flash is measured. For
detecting light intensity, the Thorlabs SV2-FC high speed photodiode was used. The light yield
amounts to 31.55 mJ per 1 µs. This is a factor of 1182 higher than the 6 times overdriven LED.

The formula to obtain the incident light power P for the photodiode is stated in Eq. C.1
Because the METTLE flash emits a spectrum, the formula has to be written as

Vout = Rload · P ·
∫
P (λ)R(λ)dλ, (C.6)

where ∫
P (λ)dλ = 1, such that

∫
PP (λ)dλ = P.

A normalized black body spectrum of daylight temperature (5777 K) was assumed for P (λ) of
the METTLE flash lamp:

s(λ) =
2πhc2

λ5

1

e
hc
λkT − 1

,

1050 nm∫
305 nm

s(λ)dλ = N

P (λ) = s(λ)/N (C.7)

The flash was set to highest power ("6.0"). It was triggered via a TTL signal that made a
FET-transistor close circuit the two poles of the "sync" connection. The maximum voltage of
the photodiode pulse was measured by the oscilloscope’s cursor function. The waveform of the
pulse was found to be the one in Fig. C.8.
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Fig. C.8: Pulse characteristics of the photodiode voltage when using METTLE flash at
highest power.

The setup was kept as simple as in Fig. C.2 and run manually. The light emission was
measured along the diameter of the reflector shield, approximately 8.5 cm ± 0.3 cm above the
reflector rim.

The measurement values obtained are shown in Fig. C.9.
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In order to correlate the voltage of the maximum height of the flash pulse with the emitted
energy, first of all the value of the integral of Eq. C.6 had to be determined. For this, the
spectrum R(λ) of the data-sheet of the photodiode was multiplied with P (λ) of Eq. C.7. The
result is shown in Fig. C.10. The integral values to∫

P (λ)R(λ)dλ = 0.29956, (C.8)
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Fig. C.10: Spectra of the SV2-FC photodiode, the normalized daylight black body radiation
and the two multiplied together.

which is slightly lower than the value for the red LEDs. With this value and Eq. C.1 the wave-
forms Ui(t) of the pulses of Fig. C.8 were then transformed into values of light power per
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photodiode active area (Ø 0.4 mm)

e1 =

∫
P (U1(t)) dt ≈ 621.248

nJ
π(0.2 mm)2

e2 =

∫
P (U2(t)) dt ≈ 12.1209

nJ
π(0.2 mm)2

.

Those energies were correlated to the maximum voltage of the respective waveform (integration
of the waveform by midpoint rule)

e1 ↔ U1,max = 2385.67 mV ⇒ e1

U1,maxπ(0.2 mm)2
= 2.07227 · 10−4 J

mV cm2

e2 ↔ U2,max = 70.88 mV ⇒ e2

U2,maxπ(0.2 mm)2
= 1.36091 · 10−4 J

mV cm2

The second factor of value 1.36091 seems to be reasonably lower because the second pulse
was not recorded till the end (Fig. C.8 - green line). That is why the first conversion factor of
2.07227 · 10−4 J

mV cm2 was taken.
This conversion factor was used to convert the raw measurement values of Fig. C.9 to energy

values. The results including a triple Gaussian fit function are shown in Fig. C.11.
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Fig. C.11: Converted measurement values and Gaussian fit functions

The fit function is:

f(x) = e
− (x−10 cm)2

σ2x1 · A1 + e
− (x−10 cm)2

σ2x2 · A2 + e
− (x−10 cm)2

σ2x3 · A3 (C.9)

where the offset of all terms is fixed to 10 cm, the σi are the widths of the Gaussian packages
and the Ai are the amplitudes. Fit parameters are shown in Table C.2.
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value unit
σx1 4.30323 cm
σx2 4.02335 cm
σx3 3.67499 cm
A1 47.4406 J/cm2

A2 -76.5306 J/cm2

A3 29.5822 J/cm2

Table C.2: Fit parameters for Gaussian fits.

Assuming rotational symmetry, a two-dimensional intensity function I(x, y) was created from
Eq. C.9 to extrapolate to the whole field of flash emission:

I(x, y) =
3∑
i=1

e
−x

2+y2

σ2
x,i · Ai (C.10)

The plot is shown in Fig. C.12.

intensity [J/cm
2
]

f(x,y)

-10 -5  0  5  10

x-axis [cm]

-10

-5

 0

 5

 10

y
-a

x
is

 [
c
m

]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Fig. C.12: Plot of the fit function I(x, y) of Eq. C.10.

In order to finally receive the Joule output, Eq. C.10 was numerically integrated. The python
script is found again in the repository B.3. It was run with

python integrate.py -a "-12" -b 12 -c "-12" -d 12 -s 100 \
-e 10000 -t 1e-5

to find the final result:

IMETTLE = 122.86 J

In order to compare the Energy output of the METTLE-Blitz to the LED DOPPEL-Blitz, a
1 µs window was taken out of each pulse signal where the amplitude is highest. The maximum
of the pulse lasts about 78 µs, so we can assume power stability over the 1 µs window. This
leads to a conversion factor of

e3 = 1.59279 · 10−7 J
π(0.2 mm)2

↔ U3,max = 2385, 67 mV

⇒ e3

U3,maxπ(0.2 mm)2
= 5.31297 · 10−8 J

mV cm2 . (C.11)
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The new fit parameters are shown in Tab. C.3. The final result is:

IMETTLE,1 µs = 31.55mJ

which is still by a factor of 1,000 higher than the Energy from the LEDs.

value unit
σx1 4.09533 cm
σx2 4.07853 cm
σx3 3.83306 cm
A1 0.447996 J/cm2

A2 -0.475446 J/cm2

A3 0.0275761 J/cm2

Table C.3: Fit parameters for the 1 µs Gaussian fits.
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