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Abstract

Cyber-Physical Systems enable various modern use cases and business models
such as connected vehicles, the Smart (power) Grid, or the Industrial Internet of
Things. Their key characteristics, complexity, heterogeneity, and longevity make
the long-term protection of these systems a demanding but indispensable task.
In the physical world, the laws of physics provide a constant scope for risks and
their treatment. In cyberspace, on the other hand, there is no such constant to
counteract the erosion of security features. As a result, existing security risks can
constantly change and new ones can arise. To prevent damage caused by malicious
acts, it is necessary to identify high and unknown risks early and counter them
appropriately. Considering the numerous dynamic security-relevant factors requires
a new level of automation in the management of security risks and requirements,
which goes beyond the current state of the art. Only in this way can an appropriate,
comprehensive, and consistent level of security be achieved in the long term.

This work addresses the pressing lack of an automation methodology for the
security-risk assessment as well as the generation and management of security
requirements for Cyber-Physical Systems. The presented framework accordingly
comprises three components: (1) a model-based security risk assessment method-
ology, (2) methods to unify, deduce and manage security requirements, and (3) a
set of tools and procedures to detect and respond to security-relevant situations.
The need for protection and the appropriate rigor are determined and evaluated
by the security risk assessment using graphs and a security-specific modeling.
Based on the model and the assessed risks, well-founded security requirements
for protecting the overall system and its functionality are systematically derived
and formulated in a uniform, machine-readable structure. This machine-readable
structure makes it possible to propagate security requirements automatically along
the supply chain. Furthermore, they enable the efficient reconciliation of present
capabilities with external security requirements from regulations, processes, and
business partners. Despite all measures taken, there is always a slight risk of com-
promise, which requires an appropriate response. This residual risk is addressed by
tools and processes that improve the local and large-scale detection, classification,
and correlation of incidents. Integrating the findings from such incidents into the
model often leads to updated assessments, new requirements, and improves further
analyses. Finally, the presented framework is demonstrated by a recent application
example from the automotive domain.



Zusammenfassung

Cyber-physische Systeme ermoglichen zahlreiche moderne Anwendungsfille und
Geschiftsmodelle wie vernetzte Fahrzeuge, das intelligente Stromnetz (Smart Grid)
oder das industrielle Internet der Dinge. Ihre Schliisselmerkmale Komplexitit, He-
terogenitét und Langlebigkeit machen den langfristigen Schutz dieser Systeme zu
einer anspruchsvollen, aber unverzichtbaren Aufgabe. In der physischen Welt stel-
len die Gesetze der Physik einen festen Rahmen fiir Risiken und deren Behandlung
dar. Im Cyberspace gibt es dagegen keine vergleichbare Konstante, die der Erosi-
on von Sicherheitsmerkmalen entgegenwirkt. Hierdurch konnen sich bestehende
Sicherheitsrisiken laufend dndern und neue entstehen. Um Schéaden durch boswil-
lige Handlungen zu verhindern, ist es notwendig, hohe und unbekannte Risiken
friihzeitig zu erkennen und ihnen angemessen zu begegnen. Die Beriicksichtigung
der zahlreichen dynamischen sicherheitsrelevanten Faktoren erfordert einen neuen
Automatisierungsgrad im Management von Sicherheitsrisiken und -anforderungen,
der iiber den aktuellen Stand der Wissenschaft und Technik hinausgeht. Nur so
kann langfristig ein angemessenes, umfassendes und konsistentes Sicherheitsniveau
erreicht werden.

Diese Arbeit adressiert den dringenden Bedarf an einer Automatisierungsme-
thodik bei der Analyse von Sicherheitsrisiken sowie der Erzeugung und dem Ma-
nagement von Sicherheitsanforderungen fiir Cyber-physische Systeme. Das dazu
vorgestellte Rahmenwerk umfasst drei Komponenten: (1) eine modelbasierte Me-
thodik zur Ermittlung und Bewertung von Sicherheitsrisiken; (2) Methoden zur
Vereinheitlichung, Ableitung und Verwaltung von Sicherheitsanforderungen sowie
(3) eine Reihe von Werkzeugen und Verfahren zur Erkennung und Reaktion auf
sicherheitsrelevante Situationen. Der Schutzbedarf und die angemessene Stringenz
werden durch die Sicherheitsrisikobewertung mit Hilfe von Graphen und einer
sicherheitsspezifischen Modellierung ermittelt und bewertet. Basierend auf dem
Modell und den bewerteten Risiken werden anschlieBend fundierte Sicherheitsan-
forderungen zum Schutz des Gesamtsystems und seiner Funktionalitiit systematisch
abgeleitet und in einer einheitlichen, maschinenlesbaren Struktur formuliert. Diese
maschinenlesbare Struktur ermoglicht es, Sicherheitsanforderungen automatisiert
entlang der Lieferkette zu propagieren. Ebenso ermdglicht sie den effizienten Ab-
gleich der vorhandenen Fihigkeiten mit externen Sicherheitsanforderungen aus
Vorschriften, Prozessen und von Geschiftspartnern. Trotz aller getroffenen MaB3-
nahmen verbleibt immer ein gewisses Restrisiko einer Kompromittierung, worauf
angemessen reagiert werden muss. Dieses Restrisiko wird durch Werkzeuge und
Prozesse adressiert, die sowohl die lokale und als auch die groB3rdumige Erkennung,
Klassifizierung und Korrelation von Vorfillen verbessern. Die Integration der
Erkenntnisse aus solchen Vorfillen in das Modell fiihrt haufig zu aktualisierten
Bewertungen, neuen Anforderungen und verbessert weitere Analysen. Abschlie-
Bend wird das vorgestellte Rahmenwerk anhand eines aktuellen Anwendungsfalls
aus dem Automobilbereich demonstriert.
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1 Introduction

The advancing digitization drives industries to interconnect previously isolated control
systems, enabling countless new use cases and business models such as connected
vehicles, the Smart (Power) Grid, and the Internet of Things (IoT).

Such control systems, where computer-aided algorithms executed on an Electronic
Control Unit (ECU) interact with the physical world by steering actuators and receiving
information from sensors by communication networks, as shown in Figure 1.1, are
called Cyber-Physical System (CPS).

Physical
World

stimulate manipulate

Sensor Actuator

>

)
L ) "

L )
inform = === ECU pe====""" steer

Figure 1.1: The Cyber-Physical Control Flow

Heterogeneous systems, loose topologies, flexible dataflows, and changing entities
make the security of CPSs in critical use cases an increasingly challenging matter. The
mitigation and prevention of risks caused by malicious activities is the subject of security.

Compared to many other domains, security is subject to constant change. While the laws
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of physics provide a strong constraint in the physical realm, there is no such constraint
in cyberspace. In the safety domain, the first occurrence of an exploitable flaw has no
direct impact on other installations. In the security area, on the other hand, the risk
increases significantly from the first occurrence until the fault is corrected, as attackers

often reuse and share their knowledge and tools.

One of the biggest threats to previously secure systems are changes in infrastructure,
processes, and dependencies that affect security needs. Attacks on vehicles [1, 2, 3],
industrial sites [4, 5], and critical infrastructures like water plants [6] and power grids [7]
demonstrate the need for secure CPSs to prevent harm and losses. Most of these incidents
were caused by insecure protocols and a lack of access control mechanisms that were not
considered during the development of the attacked systems. Nonetheless, the permanent
emergence of new vulnerabilities - such as Heartbleed [8], Spectre [9], or in the key
exchange of a state-of-the-art Wi-Fi standard [10], enables new attack vectors that can
outdate security concepts at any time. Even worse, the likelihood that such a vulnerability

will be exploited in repeated attacks increases.

By conducting a Security Risk Assessment (SRA), potential risks are identified and
analyzed, highlighting the need for protection. A key challenge in securing CPSs is to
determine the appropriate level of protection regarding what needs to be done by what
effort and to recognize the need for alterations. Currently, the results of an SRA are used
as information for the manual execution of follow-up tasks. Two such important tasks
are the synthesis of appropriate security requirements and the validation if such security

requirements are fulfilled by a single or a set of CPSs, e.g., in a production line.

The systematic management of the manifold influencing factors requires a degree
of automation that exceeds the current state of the art. Currently, many CPS-based
domains undergo a paradigm change from dedicated field busses towards more dy-
namic, service-oriented architectures like the Scalable service-Oriented MiddlewarE
over IP (SOME/IP), OLE for Process Control — Unified Architecture (OPC-UA), and
the Volkswagen infotainment Web interface protocol (ViWi) [11]. This creates new
attack surfaces. Modern cars already have several hundred different security-relevant
functions, e.g., for navigation, driver assistance, and motion management. While the
number of installed ECUs starts to decrease, the growing number of provided functions

increases the complexity and performance of the remaining units. Many of these func-




tions and their hosting ECU are attractive targets for hackers, whether for tuning, denial
of service, illegal function activation, or even to harm road users, including but not

limited to the driver and passengers.

Agile production lines in the Industrial Internet of Things (IIoT), sharing infras-
tructures among different companies enable new IIoT use cases, but also introduce
unprecedented dynamics to the management of security requirements, especially re-
garding capabilities and information flows. A particular challenge in the manufacturing
industry is matching such requirements with capabilities provided by the operational
technology in production lines. Today, most production lines use industrial automa-
tion systems such as the SIMATIC S7-300, whose cybersecurity is based solely on

segmentation, i.e., the inaccessibility of their network.

Comprehensive and consistent security concepts are necessary to ensure appropriate
protection. Their effectiveness must constantly be monitored and adapted to the current
situation in order to justify the resulting costs for security controls and measures. While
traditional security concepts from the business IT were not successfully adopted to CPSs
yet, the industrial oriented ISO/IEC 62443 [12, 13, 14] series and upcoming automotive
cybersecurity standards [15, 16] receive increasing attention. All of them demand the
implementation of security management processes, including a systematic SRA for the

entire product lifecycle.

Knowing the potential risks directly influences the future course of action as it facili-
tates decisions and helps to avoid unnecessary effort. While it is practically impossible
to consider all future possibilities of impairment, it is possible to estimate the potential

impacts and make adaptable assumptions about their probabilities by an SRA.

Such an SRA plows the ground for the derivation of intrinsic security requirements
that must be met to ensure the proper and secure operation of the CPS as it enables the
identification and assessment of valuable assets, their dependencies, and corresponding
risks. Up to now, intrinsic security requirements for CPSs are usually formulated
manually by security officers, function owners, or component managers. In addition to
intrinsic requirements for the protection of the CPS itself, external entities introduce
further security requirements regarding functions, techniques, and processes that must
be processed and have their fulfillment validated. One challenge addressed by this work

is finding an appropriate security level for what needs to be done and at what cost.
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After familiarizing with the risks, it must be ensured that their occurrence and changes
in the security landscape are adequately recognized. For an appropriate response, it is
vital to recognize the signs of the times and to understand what is going on and what
consequences are possible. Thus, incident detection, analysis, and correlation are needed
to determine whether security requirements have been missed or security goals have
been violated. While network monitoring is a common practice to detect incidents in
local business networks, it is rarely performed in CPS-environments due to bandwidth
limitations, data confidentiality, and sensitive legacy components. To uncover large-scale
campaigns against entire supply chains, it is necessary to classify incidents and exchange
threat information. Thereby it is crucial to prevent the leakage of valuable business
information in order to avoid further losses and market distortion.

The main objective in the field of security is to avoid high risks and problematic
surprises. To achieve this objective, it is necessary to systematically identify potential

risks, treat them with viable measures, and recognize their materialization.

1.1 Scope

Knowing the security risks, managing the security requirements to mitigate those risks,
and assessing and responding to change are important and closely related tasks in main-
taining secure systems. In contrast to comparatively standardized enterprise Information
and Communications Technology (ICT) systems, specialized CPSs cannot yet be secured
by Commercial-off-the-Shelf (COTS) solutions but require customized measures. The
overall objective of this thesis is to improve the risk-based security requirements
management for Cyber-Physical Systems by putting academic methods into prac-
tice. The resulting semi-automation greatly supports human analysts. This objective is

addressed by the following research questions:

RQ 1 How can potential security risks for Cyber-Physical Systems be systemati-
cally identified and assessed in an automated way?
This question is addressed by a model-based security risk assessment in Chapter 4.

Thereby, the task is split into creating a suitable model and properly evaluating it.
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RQ 2

RQ3

RQ 4

How to automatically formulate security requirements that support the
achievement of the indicated level of protection?

This question addresses two major aspects: How to generally formulate machine-
readable security requirements and how to synthesize appropriate requirements,
based on the results from the SRA. The answer to this question is subject of
Chapter 5.

How to match extrinsic security requirements with the provided security ca-
pabilities?

Besides these intrinsic requirements, stakeholders often demand the implementa-
tion of external security requirements for new processes or regulations. This is
also addressed in Chapter 5.

How to detect, analyze and respond to potentially disruptive changes of the
security situation?

Changes in the security landscape must be identified, analyzed regarding their
nature, scope and impact, and reflected in an updated SRA. Tools and methods

that address this question are subject of Chapter 6.

Not in the scope of this thesis are the practical implementation of the formulated re-

quirements, their testing, and the operation of a Security Operations Center (SOC).

1.2

Impact

This work delivers methods to support the automation of security risks and requirements

management, including incident analysis. For these endeavors, the following peer-

reviewed contributions have been published.

1.

G. Hansch, P. Schneider, and G. S. Brost: Deriving Impact-driven Secu-
rity Requirements and Monitoring Measures for Industrial IoT. In 5th ACM
Cyber-Physical System Security Workshop, CPSS’19, Auckland, New Zealand,
July 2019, ACM [17].

Summary: An interactive cybersecurity impact assessment method to determine
the individual protection needs of assets as security requirements, and a catalog

of countermeasure recommendations.
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Context: This work was a contribution to the national research project [IUNO
Insec [18], in cooperation with Peter Schneider, who contributed a catalog of
implementation and configuration recommendations, tailored to the IIoT domain.
Furthermore, Gerd Brost contributed a practical use case from the Industrial Data
Space (INDS) project.

Own Contribution: As lead author, my contributions to this work are the cyber-
security impact assessment and the requirements derivation methods, which form
the basis of Section 4.3 and 5.3.

. D. Angermeier, K. Beilke, G. Hansch, and J. Eichler. Modeling Security Risk
Assessments. In /7th escar Europe — Embedded Security in Cars, ESCAR’19,
Stuttgart, Germany, October 2019, Ruhr-Universitit Bochum [19].

Summary: A graph-based security risk assessment method to systematically
assess the risk originating from (new) components and functions.

Own Contribution: My contributions to this work are primarily on the systematic
terminology of the graph meta-model, the related work, and the writing of the
manuscript, which influenced the overall security model and risk assessment

methodology in Chapter 4.

. G. Hansch, P. Schneider, K. Fischer, and K. Bottinger. A Unified Architec-
ture for Industrial IoT Security Requirements in Open Platform Commu-
nications. In 24th IEEE Conference on Emerging Technologies and Factory
Automation, ETFA’19, Zaragoza, Spain, September 2019, IEEE [20]

Summary: A security requirements data model based on OPC-UA that allows
for high and fast automation in the heavily heterogeneous landscape of IIoT. An
implementation of the data model is provided using the XML-representation
of OPC-UA.

Context: This work was a contribution to the national research project IUNO [18],
where the developed framework was deployed and evaluated within a reference
project realized by 14 industrial partners and 7 research facilities within Germany.
Own Contribution: My contributions to this work are on the design and im-
plementation of the research, the analysis of the results, and the writing of the

manuscript, which form the basis of Section 5.2 and 5.4.
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4. S. Plaga, N. Wiedermann, G. Hansch, and T. Newe. Secure your SSH Keys!
Motivation and Practical Implementation of a HSM-based Approach Secur-
ing Private SSH-Keys. In /7th European Conference on Cyber Warfare and
Security, ECCWS’ 18, Oslo, Norway, June 2018. Academic Conferences Interna-
tional Limited [21].

Summary: A comparison of state-of-the-art Hardware Security Modules (HSM)
regarding information security threats by vulnerabilities in x86-based computer
systems, which enable the extraction of private keys.

Own Contribution: My contributions to this work are research for corresponding

vulnerabilities and solutions, as well as in the preparation of the manuscript.

5. G. Hansch, P. Schneider, and S. Plaga. Packet-wise Compression and For-
warding of Industrial Network Captures. In 9th IEEE International Conference
on Intelligent Data Acquisition and Advanced Computing Systems: Technology
and Applications, IDAACS’ 17, Bucharest, Romania, September 2017. IEEE [22].
Summary: Methods to capture network records from Machine-to-Machine (M2M)
communication and forward these in a compressed and privacy supporting way
using dynamic lookup-tables.

Context: This work was a further contribution to the national research project
IUNO [18], where the developed methods were deployed and evaluated.

Own Contribution: As lead author, my contributions to this work are a chapter
on capturing, forwarding, and storing network traffic, and the concept of using
lookup-tables in order to reduce redundancy by avoiding repeated transmission of

sensitive content, which are the basis for Section 6.2.

6. J. Wolf, F. Wieczorek, F. Schiller, G. Hansch, N. Wiedermann, and M. Hutle.
Adaptive Modeling for Security Analysis of Networked Control Systems. /n
4th International Symposium for ICS & SCADA Cyber Security Research, ICS-
CSR’16, Belfast, UK, August 2016. BCS Learning & Development [23].
Summary: An ontology language specification for adaptive modeling, including
an appropriate refinement and expansion method. Based thereupon, a method to

check for known vulnerabilities from various sources during the security analysis.
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Context: This paper was a contribution to the national research project Sustain-
Grid.
Own contribution: My contributions to this work are on the adaptive ontology

and the related work, which influences Section 4.2.

. G. Hansch, M. Hutle, and W. Fitzgerald. Smart Grid Threat Analysis us-
ing an Attack Tree and Semantic Threat Graph Hybrid. Poster presented at
Workshop on European Smart Grid Cybersecurity: Emerging Threats and Coun-
termeasures, Belfast, UK, August 2016 [24].

Summary: By Attack Trees [25] threats are identified at high levels of abstraction
before delving into using Semantic Threat Graphs [26] to identify low-level infor-
mation about a particular threat under consideration, its impact on corresponding
systems, and recommended countermeasures.

Own contribution: As lead author, my contribution to this work is a multi-stage
concept for Smart Grid threat analysis and a description of how to apply this

approach.

. K. Bottinger, G. Hansch, and B. Filipovic. Detecting and Correlating Supra-
national Threats for Critical Infrastructures. In /5th European Conference
on Cyber Warfare and Security, ECCWS’16, Munich, Germany, July 2016. Aca-
demic Conferences International Limited [27].

Summary: A threat detection and correlation approach combining machine learn-
ing for fine-grained low-level information classification and semantic reasoning
for large-scale, simultaneous threat correlation at multiple sites. Unlinkability is
preserved by several layers of abstraction while necessary information is shared
on a need-to-know basis.

Context: This paper was a contribution to the ECOSSIAN EU FP7 research
project.

Own Contribution: My contribution to this work is the concept of using different
layers of granularity in a hierarchic ontology to communicate threat information,

which forms the basis for Section 6.3.
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9. P. Wagner, G. Hansch, KH. John, C. Konrad, J. Bauer, and J. Franke. Ap-
plicability of Security Standards for Operational Technology by SMEs and
Large Enterprises. In: 25th IEEE Conference on Emerging Technologies and
Factory Automation, ETFA’20, Vienna, Austria, September 2020, IEEE [28].
Summary: An analysis on the applicability of international standards for the cyber
security of operational technology systems regarding company sizes. The feasibil-
ity of these standards was analyzed, compared, and assessed by two independent
surveys on the topic. As one finding from this investigation is a gap between OT
and security experts, we introduced the relevant domain concepts to both sides.
Context: This paper was a contribution to the national OT-Sec research project.
Own Contribution: My contributions to this work are on the writing and editing
of the manuscript as well as the underlying research, with a focus on establishing

a common understanding between operational technology and security.

In addition to these peer-reviewed publications, strong contributions were made to each

of the following publications:

* M. Hutle, G. Hansch, W. Fitzgerald, T. Hecht, E. Piatkowska, and P. Smith. D2.2
Threat and Risk Assessment Methodology. Deliverable, SPARKS Consortium,
September 2015 [29].

* H. Sandberg, A. Teixeira, E. Piatkowska, M. Findrik, P. Smith, M. Hutle, and
G. Hansch. D2.3 Tools for Smart Grid Cyber Security. Deliverable, SPARKS
Consortium, March 2016 [30].

* R. Chabukswar, A. E. Mady, Y. Hamdaoui, M. Boubekeur, N. Wiedermann,
G. Hansch, M. Hutle, A. Teixeira, and H. Sandberg. D2.6 Smart Grid Vul-
nerability and Risk Assessment. Deliverable, SPARKS Consortium, March
2016 [31].
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1.3 Novelty and Contributions

The automation of security risks and requirements management, taking into account
the various threats and dynamic security requirements from different sources, is no
individual problem of the CPS domain but affects the entire ICT sector. While corporate
IT has reached a certain level of protection in recent years, there is still a long way to go
in the CPS domain due to numerous factors such as highly restricted and specialized
systems. To this end, this thesis presents a novel framework that combines model-based
security risk assessment, requirements derivation, management, and the inclusion of
incidents for CPS. The novelty thereby is the direct deduction of security requirements
from a semi-automated, model-based security risk assessment with simultaneous sup-
port of situation-specific adjustments. In doing so, the following contributions lead to
a new level of security risks and requirements management that surpasses the current

state-of-the-art.

Contribution 1: A semi-automatable, graph- and model-based security risk assessment
method, including a sustainable and machine-readable meta-model in Chapter 4
and Section 6.4.

Contribution 2: Methods for the automated deduction, prioritization, communication
and fulfillment-validation of security requirements, supporting a unified security
requirements model in Chapter 5.

Contribution 3: A set of tools and methods to support local incident detection and
classification, remote correlation and inter-organizational exchange of Indicators

of Compromise (IoC) in Chapter 6.

1.4 Structure of the Thesis

This work consists of seven chapters containing the following contents:

Chapter 1: Introduction introduces the current situation, pointing to the overall prob-
lem statement that is addressed by the research questions. Also emphasized are
the overall scientific impact in the form of scientific publications, the novelty, the

contributions, and this description of the structure of the work.
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Chapter 2: Foundations is dedicated to the background on CPS-security, security risk
assessment, requirements derivation, semantic modeling, and incident manage-
ment. Furthermore, application domain-specific security aspects and exemplary
use cases are presented and discussed.

Chapter 3: Related Work describes the state of the art and presents relevant work on
the topic and content of this thesis.

Chapter 4: Model-based Security Risk Assessment introduces a graph-based
methodology for assessing security risks, based on the systematic analysis of
the impact and probability of a threat to the identified security goals. To enable
the creation of the required models, a security-specific modeling language is
introduced. This machine-readable presentation forms the basis for subsequent
automation.

Chapter 5: Derivation and Management of Security Requirements starts with a
formalization of security requirements, supporting two different applications. First,
intrinsic security requirements are automatically derived from the assessed security
risks using patterns. Second, the propagation of extrinsic security requirements
and the validation of their fulfillment are automated.

Chapter 6: Threat Detection, Correlation, and Response deals with the semi-
automated handling of threats. First, by a method to support the remote detection of
local incidents in resource-constrained CPS, second, by a machine learning-based
method for their classification, and third, by their inter-organizational exchange for
the correlation of cyber threats on a large scale. A fourth element, which narrows
the gap between theory and practice, are recommendations for the reflection of
changes in the security landscape into the model from Chapter 4.

Chapter 7: Use Case Evaluation demonstrates the application and usefulness of the
methods and processes introduced in the preceding chapters by the evaluation of
a recent application example from the automotive domain.

Chapter 8: Conclusion and Future Work contains the conclusion of this thesis, a
discussion of the answers to the raised research questions, and an outlook on

future research directions in the field of risk-centric security automation for CPS.
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2 Foundations

This chapter introduces the terminology, definitions, and basic concepts used in this
thesis. Thus, it is dedicated to the background of CPS security, security risk assessment,
requirements derivation, semantic modeling, and incident management. Furthermore,
application domain-specific security aspects are discussed, accompanied by example
use cases.

The start makes an introduction to the Cyber-Physical System security situation and
lifecycle in Section 2.1. Continuing with the standardized and normalized process,
security risk management and sources for security-relevant information are introduced in
Section 2.2. A core element of security risk management is the risk assessment, which
is explained in Section 2.3, including threats and attack vectors on the one hand, and on
the other, their mitigation by security assumptions, controls, and measures. Models that
enable such analysis in an automated, model-based way are the subject to Section 2.4.
Security requirements are then introduced in Section 2.5, while domain specific security
priorities, in particular of the automotive, critical infrastructure, and manufacturing

domains are subject to Section 2.6.

2.1 Cyber-Physical System Security

Cyber-Physical Systems consist of an ECU that executes a computer-based algorithm,
which uses communication networks to control actuators that manipulate physical pro-

cesses, based on sensor readings (cf. Figure 1.1), which leads to the following definition:

Definition 2.1.1 (Cyber-Physical System). A control system in which a computer-based
algorithm utilizes one or multiple communication networks to connect sensors, actuators,

and ECUs in order to interact with the physical world.
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The lifecycle of systems can be divided into a development, operation, and decommission
phase, each of which can be refined into various levels of detail. For security-relevant
systems, this lifecycle process should be augmented by an initial training of the involved

humans, and a response phase, as outlined in Figure 2.1.

m peveoement >> orereer >> o

Incident Detection

Model Creation

Matchmaking of
. Security Risk Cap ab'llmes and Exc-hange of
Core Security . Requirements Indicators of Secure
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Figure 2.1: High-level Phases of the Secure System Lifecycle Process

A well-known refinement for the development phase of this process is the Security
Development Lifecycle Process, shown in Figure 2.2 [32, 33]. Deviating from the order
of this process, the threat modeling in Chapter 4 is conducted in advance of the security

risk assessment, for which it provides an essential input factor.
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Figure 2.2: Phases of the (Microsoft) Security Development Lifecycle Process [33]

Due to its durable environment, the usual lifecycle of a CPS is significantly longer
than the three-year average of ICT systems in enterprise and consumer environments.

For the automotive and industrial domains, three to six years of development time and
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ten to fifteen years of operation are no unusual assumptions [34, 35]. Concerning
operation times of CPSs in critical infrastructures, no reliable data is publicly available.

An indication may be the operation time of up to 60 years for power transformers [36].

Definition 2.1.2 (Asset). All items of tangible or intangible value for a stakeholder are

assets.

Examples of tangible assets are components, physical connections, and complete control

systems, while reputation and intellectual property are intangible.

Definition 2.1.3 (Security Objective). Security objectives are the confidentiality, in-

tegrity, availability, authenticity of assets, and the non-repudiation of actions.

Definition 2.1.4 (Security Goal). A security goal is the preservation of a security ob-

jective.

A security goal can depend on another security goal, such as the availability of data

depends on the availability of the component where it is stored.

Definition 2.1.5 (Attack Goal). An attack goal is the intended violation of a security

objective by a malicious attacker.

During operation, but also development, there is a risk of attacks leading to a compromise
of information security assets. Adapting security to the dynamics of rapid technology
changes requires reiterating time- and resource-intensive threat and risk assessments.
Nevertheless, changing business needs and the security landscape require additional
information and short-term adjustments. The long lifespan further demands a more
comprehensive view of the operating phase as opposed to comparatively short-lived
consumer devices and software. Further problems in maintaining CPSs security are
cost optimizations, avoiding spare resources, and their distribution in terms of locations,
making upgrading security functions such as encryption algorithms or replacing certifi-
cates a challenge. Besides this, high demands on availability and integrity allow only
minimal maintenance interruptions, which must not fail and result in a non-functioning
unit.

To this aim, the foundation for CPS-security should be laid as part of the system

engineering process, rather than by retrofitting them at a later date. Security engineering
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as enabler for the construction of dependable distributed systems is subject of an increas-
ingly amount of standardization for both CPS specific technologies [37] and application
domains [12, 16]. These standards provide the formal ground for a continuous security
management of connected vehicles, the Smart (power) Grid, and the IIoT. Among the
first tasks of security engineering are the identification of assets, assessment of their

security objectives, and derivation of their relevant security goals.

2.2 Security Risk Management

Security Risk Management is the process of identifying, analyzing, and managing
security risks. An introduction and overview on this topic are provided by the ISO/IEC
27000:2018 “Information technology — Security techniques — Information security
management systems — Overview and vocabulary” standard [38]. It introduces a basic
process model, a common taxonomy, and the further ISO 27000 series. The process
to manage information security risks intentionally caused by malicious attackers is
subject of the ISO/IEC 27005:2018 “Information technology — Security techniques —
Information security risk management” standard [39]. The risk management process
described there is illustrated in Figure 2.3. Considering risk management on an abstract
level, principles and guidelines that can be used within these process models are subject
of the ISO 31000:2018 “Risk management — Guidelines” standard [40], which defines
risk management as “coordinated activities to direct and control an organization with
regard to risk”. Focal points of the defined process are the assets that are critical to the
operation of an organization.

The ISO/IEC 27005:2018 specifies the following output for the individual steps of a

risk management process:

Context Establishment The specification of basic criteria, the scope and boundaries,
and the organization for the information security risk management process.
Information Security Risk Assessment A list of assessed risks prioritized according

to risk evaluation criteria.
Information Security Risk Treatment Risk treatment plan and residual risks subject

to the acceptance decision of the organization’s managers.
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Figure 2.3: Risk Management Process from ISO/IEC 27005:2018 [39]

Information Security Risk Communication and Consultation Continual understand-
ing of the organization’s information security risk management process and results.

Information Security Risk Monitoring and Review Continual alignment of the man-
agement of risks with the organization’s business objectives, and with risk accep-

tance criteria.

A fundamental part of most security management strategies is the information security
risks identification during development and operation [39, 41, 42]. The practical identi-
fication and assessment of valuable assets is an interdisciplinary challenge that requires

the collaboration of application and security experts.
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Sources of Security-related Information

Public databases and targeted information exchange of security-relevant content make

valuable contributions to cross-organizational CPS security.

Common Attack Pattern Enumeration and Classification (CAPEC)

The CAPEC [43] is a comprehensive dictionary and classification taxonomy of
known attacks, maintained by MITRE. It can be used by analysts, developers,
testers, and educators to advance community understanding and enhance defenses.

Vulnerability Databases Typically maintained by a SOC, vulnerability databases pro-
vide information about known vulnerabilities in products. While many orga-
nizations, domains, and nations maintain private databases, prominent public
examples are the NIST National Vulnerability Database (NVD) [44], and the
SecurityFocus Vulnerability Database [45] that is based on the Bugtraq mailing
list. When searching for vulnerabilities of programs and components, it is essential
to have references to their corresponding entries in related databases.

Common Weakness Enumeration (CWE) The CWE [46] is an enumeration of soft-
ware weaknesses that might result in the vulnerability of a product. Just as for
vulnerabilities, the creation and linking of such databases [47] support various
forms of automated security analysis and penetration tests [48].

Common Platform Enumeration (CPE) The CPE [49] provides a structured naming
scheme, based upon the generic syntax for Uniform Resource Identifiers (URI),
for information technology systems, software, and packages. Maintained by NIST,
it provides a formal name and description format as well as methods for checking
names against a system, and to bind text and tests to a name. Although it is not
primarily focused on security, it provides valuable assistance in mapping vulnera-
bilities and weaknesses to the relevant products. It can be used as a standardized
method of describing and identifying classes of applications, operating systems,
and hardware devices present among computing systems.

Threat Intelligence Another potent source of security-relevant information is threat
intelligence. Platforms such as conferences, forums, repositories, and unpublished
documents [50] provide further valuable information about vulnerabilities and

threats.
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Targeted Information Exchange Beside the public databases, further security infor-
mation exchange processes such as limited disclosure, including early warnings,
are common for critical infrastructures.

Security Best-Practice List Best-Practice lists, as the OWASP Application Security
Verification Standard Project [51] and the Proactive Controls [52] provide up-
to-date recommendations to avoid common mistakes and maintain a high level
of security. While exemplary recommendations for security controls are given
in Chapter 5, these projects should be preferred for more detailed and up-to-date

recommendations.

2.3 Security Risk Assessment

As part of the security risk management, a Security Risk Assessment (SRA) provides
qualified information about the security risks of a System under Evaluation (SuE).
Knowing the potential risks strongly supports various further security-related activities
like the derivation of requirements (cf. Section 5.3) and systematic testing, e.g., by
fuzzing [53, 54].

Risk is usually calculated as the product of likelihood and impact, as shown in Equa-
tion 2.1. Likelihood thereby refers to the implementation of a threat triggering the

impact.

Definition 2.3.1 (Risk). The likelihood of the occurrence of a negative event and the

amount of potential damage that can be caused thereby.

Risk = Likelihood - Impact 2.1)

An SRA should be performed early in the design process but is also strongly advisable
for existent systems. As the handling of identified threats often causes changes to the
design or operation, it is beneficial to find them as early as possible. Typical ways
therefore are catalog- and model-based assessments.

Catalog-based analysis methods typically provide checklists, constraints, and scoring
spreadsheets to evaluate a system deterministically. A formerly accepted checklist-

based method for evaluating ICT systems was to quantify the risk by a comparison
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of recommended and implemented controls [55], i.e., if a virus scanner, a mechanical
disk lock, or patches are installed. The increasing number of potential attack vectors,
combined with fast software update cycles, made such enumerative lists no longer
maintainable. Instead, the requirements are formulated more abstractly, such as “ensure
access control” or “effectively deactivate interfaces”.

A model-based analysis is an efficient and systematic way to identify and assess risks
and threats. As models are only an abstraction of real systems, they cannot contain
all details. Nonetheless, it is essential to hold all information that is required for their
designated purpose. A problem with graph-based modeling is the tension triangle of
expressiveness, correctness, and simplicity in terms of usability. Simplification can
be achieved by abstractions and modularization, respectively encapsulation. While
abstractions cause a loss of information, modularization is susceptible to the loss of
cross-references.

In contrast to simple systems that can be assessed as one, complex systems require
proper scoping and abstraction. Often there are significant differences between the
domains. While entire business use cases in the Smart Grid [29] and IIoT [17] domains
could be successfully assessed all at once, analyses in the automotive sector greatly
benefit from scoping to individual functions or components due to the required level of
detail.

2.3.1 Threats and Attack Vectors

An important part of continuous security risk management is the connection between

threat, risk, and vulnerability analysis.

Definition 2.3.2 (Threat). Any circumstance or event with the potential to adversely
impact an asset through unauthorized access, destruction, disclosure, modification, or

denial of service.

This threat definition is a slightly generalized version of the ENISA definition [56],
with a lift of the limitation of modification from data, because functions and physical

components might also be altered.
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Definition 2.3.3 (Threat Actor). The source of security threats, also called an attacker
that may have a malicious intention to violate a security goal. This entity can be an

individual but also an organization.

Definition 2.3.4 (Threat Factor). A characteristic, which a threat actor must provide to

perform a specific task.

Common threat factors are the required time, expertise, knowledge of the SuE, window
of opportunity, and equipment required for exploitation [41].

A threat analysis aims to identify (and assess) the causes of malicious incidents that
may harm a system or organization. Identification and assessment of potential security
risks are subject to risk analysis. A vulnerability analysis is used to identify and evaluate
weaknesses that can be used by a threat actor to trigger a risk. It can be conducted during
the risk analysis, but also be a downstream task. Since vulnerabilities become known
after the release, they are an essential factor that can change the required potential to
trigger a risk, leading to an updated risk assessment. Conventional methods to find
vulnerabilities are audits, dedicated scanners for known vulnerabilities, and penetration
testing, including fuzzing and reverse engineering.

The threat actor exploits a weakness to violate a security goal. The likelihood of such
an attack can be calculated by a comparison of costs and benefits, where costs represent
the required effort. According to [57], the choice of an attacker to commit such an action

can be calculated by Equation 2.2.
M,+ PR >0,,+0,-P,-P, (2.2)

The left side of this equation covers the monetary benefits M, and psychic benefits P,
of the attacker, while the right side covers the costs for the monetary opportunity O,,,,

the psychic opportunity O_, the probabilities of apprehension P,, and of conviction P..

ps

Security-domain speciﬁcpproblems are thereby the disruptive changes in terms of costs,
especially between first and repeated compromise, and the unpredictability of benefits
from the attacker’s point of view. While finding and exploiting a vulnerability can take
a significant amount of time, require expensive equipment, and specialized knowledge,
following a tutorial to execute a published exploit is an easy and cost-effective way. Even

more challenging is the quantification of benefits. While benefits from fraud, espionage,
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and denial of a competitor might be quantified to some degree, immaterial motivations
such as fame and “fun by causing mayhem”, which were claimed by the hacking group
“LulSec” for highly sophisticated attacks [58], cannot be rated reasonably. In practice,
this situation is often solved by restricting the considered attack models to those with
likely benefits, such as the owner of a vehicle for manipulations requiring physical access

to the inside of the vehicle.

Definition 2.3.5 (Attack Vector). A path or combination of actions taken by an attacker
to violate a security goal.

The systematic enumeration of potential attack vectors supports the understanding of
interdependencies between different attacks and allows the identification of relevant

weaknesses.

Attacker Models

Attacker models can be differentiated into attacker- and capability-centric models.

Attacker-centric Models consider a set of different attackers, each with a fixed set
of properties and (immutable) capabilities [59, 60], e.g., that the attacker is a
legitimate user of the network and can initiate a communication. In times of video
guides, publicly available exploits, and inexpensive devices such limitations are
rarely maintainable.

Capability-centric Models estimate the capabilities an attacker must have to execute
a threat successfully. Typically considered capabilities are the required time,
expertise, equipment, and knowledge of the attacker [41]. These capabilities can
be standardized in an organization-specific assessment model and used as input

constants for the automated generation of security requirements [19].

Weakness, Vulnerability, and Indicator of Compromise

Security relevant mistakes in the design of a system are considered weaknesses.

Definition 2.3.6 (Weakness). A weakness is a type of mistake in a design that, under
appropriate conditions, could contribute to the introduction of vulnerabilities within
its implementation. This term applies to mistakes regardless of the phase they are

introduced.
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Vulnerabilities represent a materialization of design weaknesses and can significantly
reduce the effort required by an attacker to violate a security goal. Discovered vulnera-

bilities typically require a reassessment of the current risk situation.

Definition 2.3.7 (Vulnerability). A vulnerability is the occurrence of one or more weak-

nesses in an implementation that enables a threat to compromise its security objectives.

Definition 2.3.8 (Indicator of Compromise). An Indicator of Compromise (IoC) is
forensic evidence of intrusion by exploiting a weakness or vulnerability that can be

identified on a host or network, e.g., by a log-file entry.

The granularity of possible IoCs ranges from low-level field signals to an incident report

filed by a security analyst.

2.3.2 Threat Mitigation - Assumption, Measure, and Control

To mitigate threats, various approaches are possible. Basically, they are divided into

assumptions, measures, and controls.

Definition 2.3.9 (Security Assumption). A security assumption is an expectation that a

specific fact, supporting a security goal is and stays true.

A common security assumption is that stare-of-the-art encryption algorithms provide a
proper level of security. This assumption is no longer valid and considered broken if

decryption without the proper key is made possible by exploiting a weakness.

Definition 2.3.10 (Security Measure). A security measure is an (organizational) pre-

caution against the violation of a security goal.

Definition 2.3.11 (Security Control). A security control is a (technical) practice, proce-

dure or mechanism that aims to avoid, detect, counteract, or minimize security risks.

A key philosophy of the security product lifecycle is the defense-in-depth strategy [61],
as it defends the system against any particular attack using several independent methods.
It implies different layers of protection and detection, based on the idea that the effort
and risk of detection increases as each layer must and might be defeated during an attack.

Thereby, flaws on a single level can be mitigated by capabilities on deeper levels.
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2.4 System Modeling for Automated Security Analysis

System models are widely used for the development and analysis of non-trivial systems.
Their quality directly frames the performance of further processes. Achieving high
accuracy and completeness in practice is often the hardest part of the analysis due to
incomplete or inaccurate information about the SuE. Thereby, not all parts of the system
need to be modeled on the same level of detail.

A good starting point for technical models that can be adapted for security management
are component and sequence diagrams. The combination of such diagrams often enables
the creation of an overall system model that can be augmented with security-specific
information, such as security objectives. Most organizations today use a Domain Specific
Modeling Language (DSML) to model systems in their daily business. These DSML are
in many cases based on the Unified Modeling Language (UML) (cf. Section 3.1.1), or
ontologies, expressed in Web Ontology Language (OWL). Domains that make heavy use
of ontologies are, e.g., medicine [62], linked web data [63], and knowledge organization
systems. The common purpose and object-orientation of both UML and OWL for
knowledge representation lead to numerous syntactical similarities [64]. Managing the
complexity of the resulting model, to avoid inconsistencies and flaws, requires a certain
degree of automation and can be supported by usage of a machine-readable knowledge
representation language. A valid system model in such a machine-readable language
opens a multitude of different application possibilities. The resulting knowledge-graph
makes implicit relations explicit by definitions of the classes, properties, and their
relationships.

To allow experts in the application domain to describe their systems more intuitively,
to simplify the integration of existing models, and to infer facts, OWL is used as the
modeling language in this thesis. In the language of OWL, statements about resources
are typically formatted using the Resource Description Framework (RDF), while the
Resource Description Framework Schema (RDFS) is used as a (hierarchical) class
schema. The Web Ontology Language (OWL) in its decidable description logic variants
(e.g., OWL-DL) supports the creation of formal correct descriptions, their processing,
and understanding. Although a separate program can conclude heterogeneously grained
information, it is frequently more efficient and less prone to errors to use a semantic

reasoner [65, 66] that finds and highlights inconsistencies. Thus, conclusions can be
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drawn using ontologies with a determined taxonomy and semantic relations enabling
entailment relations and to request facts by a semantic query language like SPARQL.
To formalize models of SuE, the following formalization based on [23, 67] is used:
An ontology in the formal description language OWL 2 DL is expressed in terms of
‘concepts’, ‘roles’, and ‘individuals’. The membership of an individual I to a concept
C is denoted by C(I). Roles are partial functions on individuals. A role r(x, y) can
be interpreted as a relation between individuals x and y, meaning x has a property r
to y. The domain and range of roles are defined by writing them as partial functions
(r : (domain) + (range)). If C, is a sub-concept of C, (i.e. Vx : C,(x) = C,(x)), this
is denoted by C, C C,, and analogue for sub-roles. This hierarchy of concepts is used by
a semantic reasoner to infer and extend the model. The operators =, LI, and N are concept
equality, concept union, and concept intersection, respectively. The concept containing
all individuals is denoted by T while the empty concept is denoted by L. For a role R
and a class C, the class-expression IR.C denotes the set of all individuals connected
via R to another individual, which is an instance of C. Furthermore, VR.C describes the
class of all individuals for which all via R related individuals must be instances of C.
Number restrictions (like 3,,) are used to describe the number of individuals, related to
arole. Also, expressions are provided in predicate logic. Variables in predicate logic are
written as ?x. Expressions about classes allow the machine-based reasoner to deduce
implicit knowledge that is not explicitly stated. Assume for instance that a concept
C, C C,. Then any individual I that is in C, is by definition also in C,, and therefore
any statement made on the more general concept C, holds also for I. In particular, the

operations =, LI, and 1 allow construction of new concepts.
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2.5 Security Requirements

Security Engineering is the dedicated engineering discipline for the development of
secure systems. It is up to this discipline to formulate suitable intrinsic requirements in
order to design and operate secure systems. Good requirements are often characterized
by the acronym SMART [68], meaning they are Specific, Measureable, Achievable,
Reasonable and Time bond.

The formal ground for process requirements for the secure development of products
used in industrial automation and control systems is the IEC 62443 “Industrial com-
munication networks — Network and system security” standard series that promotes a
holistic approach [12, 13, 14, 61].

Since security is a hygiene factor whose absence has negative consequences, but
whose presence rarely provides a marketable benefit, costs must be in a reasonable
relation to the sum of potential losses. Protection is only adequate if the possible direct
or indirect damage outweighs its costs.

In the course of this thesis, security requirements are subject to Chapter 5, where they
are distinguished into intrinsic and extrinsic security requirements. Intrinsic security
requirements are derived by security engineering, typically based on a security risk
assessment, and target the protection of the SuE. Extrinsic security requirements, in
contrast, originate from external entities and target to protect processes or implement
regulations. While overlaps are advantageous, there may also be contradictions between

intrinsic and extrinsic requirements, which must be resolved accordingly.

Definition 2.5.1 (Intrinsic Security Requirement). Intrinsic Security Requirements must

be met to maintain the security goals of the implementation system itself.

Definition 2.5.2 (Extrinsic Security Requirement). Extrinsic Security Requirements
originate from external influences such as processes and regulations that are introduced
in the interest of an external entity. Non-compliance endangers the external interest but

not necessarily the intrinsic security goals of the implementation system itself.
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2.6 Domain-Specific Security Priorities

Most CPS-using domains share a common set of security goals. They typically aim
to prevent damage to life and limb, financial losses, and to preserve property. Severe
deviations often exist regarding domain-specific languages, effective regulations, the
weighting of security objectives, and operating environments. An essential factor is
usually the difference in the respective roles and rights. In particular, it makes a severe
difference whether the roles of owner and user of a CPS coincide as with a customer-
owned car, or not, as with an operator-owned but customer-used infrastructure. In
addition, cultural, regulatory, and geopolitical differences often need to be taken into
account, particularly with regard to privacy and communications.

The different weighting of security objectives, concluded from personal experiences
during numerous industrial and research security-risk related projects in the course of
this work, is sketched in Figure 2.4.

For the automotive sector, these weightings are the conclusion of more than 100 de-
velopment projects to assess security risks and develop protection concepts for functions
and components, carried out for various German automotive OEMs and suppliers.

The basis for the weightings of Critical Infrastructures (CI) and the IIoT originate,
primarily from the collaboration in several research projects. For the critical infrastruc-
tures, these are the EU FP7 projects SPARKS - Smart Grid Protection Against Cyber
Attacks (Grant Ne 607577) and ECOSSIAN - European COntrol System Security Inci-
dent Analysis Network (Grant Ne 607577), as well as the national TuK-Bayern research
project SustainGrid (Grant Ne [uK423). For the IIoT, they base (in addition to the other
sources) on the participation in the [IUNO - National reference project for IT-Security in
Industry 4.0 (Grant Ne 16KI1S0324), its successor [IUNO Insec (Grant Ne 16KIS0933K)
and the national TuK-Bayern research project IT-Sec (Grant Ne TuK585).
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Figure 2.4: Domain Specific Prioritization of Security Objectives

2.6.1 Automotive

Increasing connectivity exposes modern vehicles to cyber-attacks [1]. So far, the imple-
mentation of automotive cybersecurity has been based on national and company-specific
regulations with strong ties to safety concerns and know-how protection. Emerging
harmonized international regulations, especially the UNECE WP.29 GRVA [15] and
the ISO/SAE 21434 [16], cause emancipation of cybersecurity as an own discipline
besides safety. Among the joint demands of these regulations is the implementation
of a systematic security risk assessment and a security management process for the
development, production, and post-production phases. A national approach of German
automotive manufacturers to improve their supply chain security is the Trusted Informa-
tion Security Assessment Exchange (TISAX) certification [69], by which suppliers must

provide unified security assessment audit results, assessed and certified by a trustworthy
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auditor. Following this approach, the exchange of achieved audit levels shows that
appropriate action is taken without revealing abusive attack information in case of a
leak. Nonetheless, a valid TISAX certification can indicate a basic level of security.
Typical considerations in the automotive domain are the safety of road users, financial
and legal aspects for both the manufacturer and the driver, operational safety concerning
reliable, trouble-free operation, confidentiality, privacy, and the image of the brand.
Usually considered attackers in the sense of vehicle security are tuners, saboteurs,
thieves, and competitors. The use case presented below from the automotive sector will

be referred to in the following chapters.

2.6.2 Critical Infrastructures

In critical infrastructures, such as water and power plants, CPSs control processes by
pumps, tap-changers, inverters, and robots, making availability and integrity primary
security objectives. A major challenge when performing a risk assessment for this
domain is the identification of potential physical consequences of a cyber-attack. Such
attacks could result in safety-related incidents, but also cascading effects to dependent
infrastructures. In addition to the risks posed by enabled cyber-attacks, the connection
of legacy systems, some of which have existed for decades, to modern ICT creates
additional risks when new security controls are introduced into existing legacy systems.

Usual attackers in this domain are thieves, vandals, saboteurs, and competitors.

2.6.3 Industrial Internet of Things

Industrial production line devices are often expensive, long-term investments requir-
ing decades of support and maintenance. The introduction of CPSs into industrial
installations means a fundamental shift from isolated production to demand-specific
reconfigurations of data flows and production lines, often called the fourth industrial
revolution.

While many findings from the discussion about cybersecurity and privacy risk for
consumer Internet of Things (IoT) devices [70] are transferable to the industry, the
increased life cycles, infrastructures, and values of IIoT require additional planning and

efforts.
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[ToT-operators demand the ability to propagate security requirements along the supply
chain, to validate the compliance of a production line with specified security requirements

and to verify in retrospect whether products were manufactured in a compliant process.

Regarding security risk management for Operational Technology (OT), three main

aspects can be distinguished.

1. Static installations, where only the threat situation with regard to exposure needs
to be regularly re-evaluated, but the impact remains constant.

2. Dynamic installations, where changes to the OT-infrastructure may alter expo-
sure and impact. Changes should be considered here in advance and must only be
implemented if the resulting risk situation is acceptable.

3. Product-centricity, in which impacts depend on the goods produced. In this case,

threats are constant, but the potential impact vary.

Conventional networked devices serve a specific purpose and have a limited number of
communication partners and data flows. Contrary to this, the number of communication
links and flows in a dynamic IloT-network can grow rapidly and significantly with the
addition of new sensors, actuators, and ECUs. While recent industrial CPS often already
support updating their software and hardware, they still lack appropriate protection for
service-oriented architectures (SoA), software-defined networking (SDN), and support
for the spontaneous addition or removal of components. The resulting rerouting can
suddenly change the current threat situation due to shifting dependencies or exposures.
This increases the challenge of ensuring compliance with the security requirements of
an infrastructure used jointly by more and more communication partners. It demands
an automatism to quickly assess the current situation and provide appropriate security

strategies for each new configuration.

The Industrial Internet of Things Reference Architecture [71] and the Reference
Architecture Model Industrie 4.0 [72] are two reference architectures, each presenting
numerous concepts and methods from different perspectives. Their common goal is to
support their users in creating implementation concepts [73] by reaching a common
understanding. While [71] concentrates on vertical cross-domain and interoperability,

[72] focuses on the horizontal value chain of manufacturing.

Another challenge in assessing IIoT cybersecurity risks are globally distributed, cross-

company supply chains. Besides the question on how to handle impairments that affect
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up- and downstream partners, there is a problematic lack of information as suppliers
seldom share ICT security-related information with their customers, which states a
significant uncertainty for operational, tactical, and strategic planning. Although this is
understandable to protect against attackers and competitors, it complicates the exchange
of IoCs and incident information. The ISO 28000 [74] is the normative framework for
security management systems for the supply chain. It identifies the establishment and
maintenance of procedures for adequate security risk analysis as part of a dedicated
security management system. The factors mentioned there are considered to be part
of information security within the ISO 27000 series. Taking into account the relevant
international standards [38, 40, 74], and domain-specific practices [75], a practical
system to assess the probability of different types of threats is required. Inputs for this
assessment are (among others) an analysis of publicly available information, supplier-
specific attack surfaces, and attack attractiveness.

Usual attackers in this domain are competitors, thieves, and saboteurs.
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3 Related Work

This chapter introduces the state of the art and presents relevant work on the topic and

content of this thesis.

3.1 Security Risk Assessment

The objective of each security management strategy [38] is dealing with security risks [39,
42]. Conducting an SRA enables the systematic identification of such security risks,
from which security requirements can be derived in a subsequent step, as described in
Chapter 5. The SRA is typically done either by a model-based risk analysis or for simple
systems by spreadsheets. In their survey, the authors of [76] examine and evaluate ten
current methods of security engineering regarding their validity, compliance, costs, and
usefulness. Similarly, the author of [77] assesses the different metrics of such techniques.
A dedicated comparison of SRA methods is provided by [78].

As the name correctly suggests, model-based security risk assessment consists of
a modeling and a subsequent assessment phase. Tools to perform attack graph-based
security risk assessments are described by [79, 80, 81, 82]. For methods analyzing
systems during their operation phase, the collection of information for the model creation
can be supported by a network security scanner, i.e., Nessus, and combined with available
topology information in a pre-defined class model, in particular, information about how
devices are interconnected. A survey of attack and defense modeling approaches that

are based on directed acyclic graphs is given by [83].

3.1.1 System Modeling

Model-engineering and ontology-engineering are currently two competing paradigms for

the creation of machine-readable system models. While both approaches are comparable
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regarding the modeling and analysis capabilities relevant in this thesis, the practical
application showed that while model-engineering using UML is more common for a
computer engineer, experts from non-IT domains find it easier to model systems in
a semantic description language like OWL, based on a domain-specific ontology. A
detailed comparison of UML and OWL is provided by [64]. In this thesis, most practical
implementations and listings are formulated in OWL but visualized as UML diagrams

in favor of better readability.

Unified Modeling Language (UML)

The most prevalent and widespread modeling-centric language in the field of computer
science is the UML [84], which is not designed for automated, machine-based secu-
rity analyses but supports language extensions to such aims. Common extensions are
SecureUML [85] for the definition of access control rules, and UMLSec [86] for their
analysis. SysML focuses on the support of the specification, analysis, design, verification,
and validation of systems and systems-of-systems. While these model languages are
suitable for the design and development phases, they lack methods to successively refine
individual components and to freely describe individual object relationships. Detailed
knowledge about the critical components, their parts, and relations is, however, crucial

for the analysis.

Ontologies for Security Analyses

A common approach to model systems for subsequent machine-based analysis, avoiding
inconsistencies, is to use description logic in the form of an appropriate ontology [79, 87,
88]. Security-centric ontologies are presented by [89, 90]. A good overview of further
risk assessment ontologies is provided by [91], whose authors compare 13 ontologies
to synthesize an own meta-ontology, combining several high-level security concepts,
axioms, and attributes. Targeting requirements engineers as their audience, the authors
specify their models in the Web Ontology Language (OWL), reaching a certain level
of automation with SQWRL queries [92] and semantic reasoners [65, 66]. Work on
machine-based reasoning introduced some degree of automation that can effectively
be used as part of an interactive systems engineering process [93], to generate network
rules [26], and to locate known vulnerabilities [23, 79] in SuE.
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An approach for the automated search for known vulnerabilities in incomplete or
inconsistent described systems is described by [23]. The authors, therefore, introduce
and demonstrate an ontology-based method to adaptively model and analyze CPS from a
security perspective. By using machine-based reasoning on a semantic model of a SuE,
further security-relevant information is inferred. They further provide a formalism to
handle incomplete information by applying iterative extension and refinement of the
model where necessary. Based on this model, non-obvious attack vectors are identified
and linked with vulnerability information. This approach allows focusing the modeling
on those parts of the system that are relevant for the security analysis, and is partially

taken up and further developed in Section 4.2.3.

3.1.2 Threat Modeling

In the context of this thesis, threat modeling is considered the process of identifying
potential threats and evaluating their feasibility. The following enumeration describes

relevant threat modeling methods in the context of this work.

Attack Trees and Graphs

The canonical example of a structured security risk analysis by a directed graph is
the Attack Tree (AT) [25], as shown in Figure 3.1. An AT provides a semi-formal and
cost-effective way of structuring the various threats that an asset may encounter. It enables
the identification and evaluation of attack vectors by combining several vulnerabilities
in one analysis and identifying the most likely attack vector. In practice, these trees
are used for threat elicitation and analysis — representing threats at a high-level of
abstraction — and have tended not to be used to capture low-level or concrete security
configuration detail. However, such an approach suffers from several shortcomings, as
they tend to state explosions when rather simple goals are split up in a large subset of
intermediate steps, and the risk of missing potential attack vectors or entry points an
attacker could use increases. An alternative avoiding such shortcomings, often at the
cost of intuitive readability, are graph-based approaches [19, 94], as shown in Figure 3.2.
A comprehensive survey of security-related trees and graphs is provided by [83]. One
approach to overcome the mutual problems of graphs and trees is the refinement of an

initially high-level tree using graphs for reoccurring and complex blocks [24].
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Misuse Cases

A common software engineering method for threat modeling, especially when it comes to
securing user interfaces, are misuse cases. Developers and analysts, therefore, consider
what an attacker’s goals might be and by which combination of actions he can achieve
them, contrary to the intended system functionality. According to [41], potential reasons
for misuse are incomplete or unreasonable guidance, unintended misconfiguration, and

forced exception behavior.

As a threat modeling method, misuse cases have an inherent risk of overlooking
potential cases due to lack of information, experience, or imagination. Furthermore,
attack vectors that are unknown or found impossible at the time of the risk analysis
remain unconsidered. While analyzes of vulnerabilities in existing systems can draw
on existing data, this is not an option during early development, as only the targeted
function is clear at this phase. At the same time, the final use cases and resulting misuse

cases are not.

STRIDE

The name of this threat analysis method is an acronym of the six considered threat
classes Spoofing, Tampering, Repudiation, Information disclosure, Denial of service
and Elevation of privilege that can be used to threaten security objectives [95]. At
present, STRIDE is considered to be the state-of-the-art threat analysis method. Each
threat class antagonizes at least one security objective. Spoofing a false identity violates
the authentication property of entities, tampering threatens the integrity of data and
processes, repudiating a responsibility interferes with non-repudiation e.g. of process
interaction, information disclosure the confidentiality of data and processes, denial of
service the availability of components, data, and processes, and elevation of privileges

enables the unauthorized execution of actions.

A prominent refinement of STRIDE is STRIDE-per-Element, which considers that
certain threats are more prevalent with certain elements of a model, which facilitates

threat identification in general by focusing on the most relevant threats [96].
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3.1.3 Security Risk Analysis Methods

In a security risk analysis, the negative impacts and their likelihood are analyzed and
evaluated. However, there are serious differences between the established methods used
to determine and evaluate the individual factors. The following enumeration describes

relevant security risk analysis methods in the context of this work.

CORAS

CORAS [97] is a model-driven IT Security risk assessment method using a graphical
notation. The used domain-specific language (called the CORAS language) provides
a scheme for graphical-based risk modeling. Furthermore, a method for identification
and evaluation of risks as well as an appropriate modeling tool are available. The
generated diagrams are analyzed by human analysts, in contrast to the computer-aided
approach presented here. The overall risk assessment process consists of eight steps:
(1) Preparations for the analysis, (2) Customer presentation of the target, (3) Refining
the target descriptions using asset diagrams, (4) Approval of target description, (5) Risk
identification using threat diagrams, (6) Risk estimation using threat diagrams, (7) Risk
evaluation using risk diagrams, (8) Risk treatment using treatment diagrams. A typical

illustration of this method is the eight footprints shown in Figure 3.3.

Figure 3.3: The Eight Steps of the CORAS Method [97]
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Cyber Security modeling Language (CySeMol)

CySeMol [98] and its extension P2CySeMoL [99] combine UML-based information
system modeling with Bayesian attack graphs to assess attack probabilities for a modeled
system. The use of the relational model and the thereupon built inference engine allows
the evaluation of "what-if” scenarios. Networks consisting of well-known components
can be evaluated efficiently due to the predefined granularity of the components. While
this approach enables modifications of the model during analysis, it does not include iter-
ative dissection, refinement, or a way to model a lack of knowledge about the components

of the system.

Factor Analysis of Information Risk (FAIR)

The proprietary FAIR [100] is a framework method for simulation-based information
risk analysis. It uses a mathematical simulation model, based on a basic information
risk taxonomy. Therefore, it includes a method for measuring the driving risk factors
and a computational engine for the mathematical simulation of relationships between
the measured factors. Key factors in determining risks are the Loss Event Frequency
based on the Threat Event Frequency and the Vulnerability, and the Loss Magnitude,
reflecting the impact. Due to the reliance on measurable factors, initial holistic risk
assessments and non-metric environments pose severe problems for users. In contrast to
the presented approach that focuses on the overall impact, FAIR is limited to risks for

information assets.

Modular Risk Assessment (MoRA)

As a state-of-the-art method in the automotive domain, Modular Risk Assessment
(MoRA) [19, 101, 102] is characterized by a modular structure, supporting a uniform
method framework, well-defined work products as interfaces between activities, and
different guidelines and catalogs for domain-specific implementation. The need for pro-
tection is determined based on individual security objectives. Threats are methodically
analyzed and assessed regarding the SuE in a way to allow their interaction to determine
a probability level together with countermeasures. Risks result from the combination of

possible damage caused by the need for protection and the feasibility of corresponding




3.1 Security Risk Assessment 39

Model the Target of
Evaluation

Determine Protection Needs Analyze Risks

Security

+
Assets Attributes

\
|

Functions

— : Damage
Security Goals |:> e
Data N
Risk level
Components <—— Analyze Threats
Connections ~ +—— Threats «  Controls/
g Assumptions
Required Attack

Potential //

Figure 3.4: Main Activities of the MoRA Risk Assessment Process [19]

threats. Figure 3.4 shows the four core activities of the method framework: Model the
Target of Evaluation, Determine Protection Needs, Analyze Threats, and Analyze Risks.
MOoRA relies on an assessment model and a set of catalogs to homogenize assessments
within the domain of application. Thus, the assessment model and the catalogs represent
a common basic understanding of all stakeholders regarding critical aspects of risk
assessment. In the context of this thesis, the main activities of the MoRA process, shown
in Figure 3.4, are the framework for the SRA-method described in Chapter 4.

Risk-Tree Based Method for Assessing Risk in Cyber Security (RISKEE)

RISKEE [103] is a practice-oriented, probabilistic risk assessment approach, with strong
safety-influences from (S)HARA, FM(V)EA and FAIR. It combines risk calculation
with attack trees. Similar to the FAIR approach, the considered factors for the risk
calculation are frequency, vulnerability, and magnitude of vulnerabilities. So far, the
approach is limited due to bad scalability regarding the available tools [103]. A specialty
of the RISKEE approach is the relation and visualization of the calculated and the

acceptable risk as a loss-exceeding curve.
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Commercial Tools

Recent commercial tools for SRA in the automotive domain are the Yakindu Security
Analyst!, which implements the MoRA method, and the Ansys Medini Analyze?. The
Microsoft Threat Modeling Tool? and fortisee SecuriCAD* focus on the identification
and assessment of threats to cloud and enterprise IT-environments. Both provide a
graphical interface for modeling current and abstract SuE, and assessing their potential
security issues. While the Threat Modeling Tool focuses the STRIDE method, described
in Section 3.1.2, SecuriCAD also supports simulation-based evaluation of possible attack
vectors by Monte Carlo simulation. As dedicated threat assessment tools, both regard

coarse-grained attack paths, but lack risk factor propagation or damage transformation.

3.2 Modeling of Security Requirements

Identification, assessment, reuse, and propagation of security requirements are subject to
recent research [17, 29, 101, 102, 104]. Requirements are typically expressed in natural
language or requirements specification documents, which represent hardly machine-
readable and interchangeable notations. Existing definition-languages and formats for
general requirements engineering and communication are not tailored to the specific
needs of security requirements management in CPS domains.

The Requirements Modeling Language (RML) [105] is based on the idea that a re-
quirements specification should embody a conceptual world model, and that the language
for expressing it should provide facilities for organizing and abstracting details, yet at the
same time have qualities such as precision, consistency, and unambiguity. Reviewing
and evaluating their prior work, the inventors of RML, pointed out that object-oriented
representations provide a sound basis for modeling and abstractions, and that refine-
ments are inevitable for modeling large environments [106]. A machine-readable format
using such object-oriented representations based on AutomationML for the modeling of

network protocols was recently presented by [107].

lhttps://www.itemis.com/de/yakindu/security-analyst/
2https://www.ansys.com/products/systems/ansys-medini-analyze-for-cybersecurity
3https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
4https://www.foreseeti.com/securicad/
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As a state-of-the-art method for requirements modeling, the Requirements Interchange
Format (ReqlIF) [108] is supported by the Eclipse Requirements Modeling Framework
ProR and IBM DOORS. It defines an interchangeable XML-based format, which can be
used to transfer software engineering requirements between different business partners
to simplify and streamline the development process. Both approaches, RML and ReqlF,
concentrate on intrinsic software engineering requirements to be implemented during
development. Accordingly, the format they use is tailored to be interpreted by software
developers and not to be incorporated into algorithm-based decisions, as it is required

in evolving self-organizing and adapting production systems.

3.3 Network Monitoring and Incident Detection

Network monitoring for incident detection is a security control that can trigger short-term
adjustments to the security risk assessment and indicate the need for an appropriate
response to sudden changes in the security landscape. A basic taxonomy, classifications
as well as reviews on different concepts are provided by surveys on Intrusion Detection
Systems (IDS) for Industrial Control Systems (ICS) and Supervisory Control and Data
Acquisition (SCADA) [109, 110].

Anomaly detection for CPSs needs to incorporate different data sources and types.
Hence, many research projects focus on methods to detect anomalies in specific data
types [111, 112, 113, 114, 115]. For a holistic monitoring and detection system however,
all data types must be aggregated and monitored. A challenge to this task is the secure
transmission of network traces from remote sources with constrained communication
capabilities, which is addressed in Section 6.2. The aggregation and analysis are typically
done by Security Information and Event Management (SIEM) systems, for which [116]
provides an overview of existing systems. Typical approaches for incident detection and
classification within ICSs [117, 118, 119] detect local incidents at isolated sites but do
not relate the results to remote (previous or present) impairments on a large scale, which
is addressed in Section 6.3.

While the network packets are subject to analysis by Network Intrusion Detection Sys-
tems (NIDS), logs of regular operation are required to identify malicious patterns [117,
120, 121], and to train algorithms to detect anomalies [117, 122, 123]. Consequently,




42 3 Related Work

determining factors for the quality of the classification are the algorithm as well as
the amount, quality, and composition of the used training data. A viable source of
recorded, labeled, and documented network intrusion test data gathered from enterprise
networks are the DARPA challenge datasets from 1998 to 2000 [124]. They contain
conventional office IT traffic, including some well-described attacks but no CPS-specific
communication. A more recent, CPS-specific Modbus dataset, including attacks and
labels, is provided by [125]. Covering the traffic of an industrial test lab for hands-on
testing captured during the 4SICS conference in Sweden is provided by [126]. Despite
its size, this dataset does not contain labels or information about included attacks. An

alternative way to acquire training data are generators [127].

3.4 Incident Classification and Management

In Section 6.3, different concepts for system resilience [128] and incident manage-
ment [129] are combined to construct a knowledge-graph as a Body of Knowledge
(BOK) for current threats, and indicators of compromise. A comprehensive overview of
possible network features in ICS that might indicate compromises is provided by [117].
A clear taxonomy and classification of incidents are required for adequate incident re-
sponse, as well as the exchange of incident information. To this aim, significant efforts
by ENISA and the European Commission related to pan-European critical infrastructure
protection and incident handling are provided by [130, 131, 132, 133]. Approaches
for the behavior-based clustering of malware are presented by [134, 135]. A language
and serialization for the exchange of cyber threat intelligence (CTI), among critical
infrastructures in a consistent and machine-readable manner, is the Structured Threat
Information Expression (STIX) [136]. Consistent relations and classes that support an
automated analysis can be received by using machine learning technologies to fit such
information into an incident management ontology like CIMBOK [129], the ENISA
Ontology [128], or ONTOSEC [90]. Approaches using semantic reasoning on high-
level threat information have been presented by [137]. The concept to use a layered
architecture of Security Operations Centers at organizational, national, and European
levels as the basis for a staged exchange of IoCs was introduced by [138]. Furthermore,
the NIST identified several major SCADA-related security aspects [139].
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4 Model-based Security Risk
Assessment

This chapter addresses the first research question RQ 1, for systematic and automat-
able identification and assessment of security risks for CPSs. The presented approach
to address this question is a graph-based security risk assessment method based on
a security-specific modeling language. This modeling language supports automated
security analysis by descriptions of the System under Evaluation (SuE) in a formal,
machine-readable way. Drawing on this modeling, methods for the systematic assess-
ment of potential impacts and threats are presented, whose results are finally merged
into a list of assessed risks. In the subsequent Chapter 5, these assessed risks form the

basis for the derivation of intrinsic security requirements.

To enable a systematic, automated, model-based security risk assessment, concepts
from my following earlier publications are adopted and improved.

The basic system model (cf. Section 4.2) and the impact assessment method (cf. Sec-
tion 4.3) were published in the paper “Deriving Impact-driven Security Requirements
and Monitoring Measures for Industrial IoT” [17], which I presented at the 5th ACM
Cyber-Physical System Security Workshop in 2019. For this thesis, I extended this model,
revised the process to propagate impacts along the dependencies, and extended the
concept to cover not only the information security triad of confidentiality, integrity, and
authenticity but also availability and non-repudiation.

The initial concept of demand-driven model refinement and expansion (cf. Sec-
tion 4.2.3) was published in the conference paper “Adaptive Modeling for Security
Analysis of Networked Control Systems” [23], which I presented at the 4th International
Symposium for ICS & SCADA Cyber Security Research in 2016.

The concept of the graph-based security assessment considering a correlation of

threats and mitigations (cf. Sections 4.2.2 and 4.5) was contributed as paper “Modeling
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Security Risk Assessments” [19] to the 17th escar Europe — Embedded Security in Cars
in 2019. For this work, the presented risk graph is adapted to the current model.

4.1 Introduction

Protecting CPS against cyberattacks is a challenging task that requires targeted and
efficient actions. Awareness of potential risks directly influences the future course of
action as it facilitates decisions and helps to avoid unnecessary effort. Since an SRA is
simultaneously the cornerstone and the benchmark for a security architecture, it should
be conducted as early as possible. Assessments based on checklists are suitable to
determine the overall security relevance and to assess simple systems without critical
dependencies. While checklists are efficient for simple assessments, detailed assessments
of sophisticated systems typically use a formal model to make implicit correlations and
dependencies explicit and thus facilitate the overall understanding. The first and already
most challenging task in performing an SRA is to understand and model the SuE. In
particular, incomplete information on the functionality, connectivity, and parts of the SuE
is a challenge often encountered in practice. Nonetheless, an overall and sufficiently
detailed model is needed to perform model-based security analysis. While several
domain-specific models exist, such as the Smart Grid Architecture Model [140] for the
digitized electricity grid, they are suitable for a dependency analysis, but miss SRA-
specific relations for relevant information such as security goals, threats, risk mitigations,
and uncertainties about specific parts. One approach to improve this situation without
the need for entirely new models is to augment the existing domain-specific models with
the needed relations and information.

The introduced graph-based process enables the creation of easy-to-build and machine-
readable models of the reviewed CPSs, highlighting the relevant assets. Subsequently,
such a model enables derivation of abstract intrinsic security requirements in a semi-
automatic way (cf. Section 5.3), which is crucial to make complex and highly dynamic
critical systems manageable. By formalizing SRAs, best-effort estimates about security
risks can be replaced by qualified statements. Where a machine-readable model is
available, several parts of the threat analysis can be automated by using well-established
approaches such as STRIDE or ATs.
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4.2 System Model for Security Risk Assessment
“All models are wrong, but some are useful” G. Box, 1979 [141]

This section addresses the generation of useful CPS models for assessing security risks

and deriving requirements.

4.2.1 Basic System Model

The creation of a useful model requires a suitable modeling language. Given the dynamic
communication behavior of CPSs, assets and dependencies are subject to spontaneous
change, which means that the virtualized model of a SUE must be easy to maintain.
Often, the required information is incomplete or inconsistent, which makes model
creation a major challenge. Some of the security risk assessment methods introduced
in Section 3.1.3 provide modeling languages that enable highly expressive models.
In practice, however, it turned out that complex modeling often causes an inhibition
threshold by complicating the modeling process. A well-proven way to unify and relate
heterogeneous information is a formal model with an appropriate ontology, including
class-hierarchies. The presented Security-specific Modeling Language (SSML) consists
of a small set of base classes and relations, as defined in Listing 4.1 on page 47 and
shown in Figure 4.1 on the next page. For the sake of brevity, the listings in this work
do not include individual namespaces.

Information typically used for threat modeling are data-flow, control-flow, and se-
quence diagrams, as well as network plans, inventory lists, and use-case scenarios. Due
to domain-specific description differences, the acquisition of further information can be
a real challenge, requiring some mutual understanding between application experts and
security analysts. Reaching such an understanding is crucial to comprehend, reuse, and
enhance existing domain-specific models with the needed information.

Targeted augmentation of hierarchical refinements and implementation details en-
ables downstream applications, such as requirements derivation and automated incident

assessment.
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Figure 4.1: Meta-model of the Security-specific Modeling Language

Classes

The following base classes are introduced for a machine-readable modeling of a SuE:

Function: An operation that consumes an input to produce some output. It can be a
sophisticated data app but also a simple media converter. A function consuming
input from outside the model to produce data is called a Source, while a function
only consuming data from the model to act outside is a Sink. A third special type
is a cyber-physical function (CPF), which consumes and produces data within the
model but also operates outside of it.

Component: A (physical or virtual) instance that hosts functions or stores data. It may
consist of several sub-components.

Connection: Enables functions to exchange data with each other. This includes inter-
process-communication within the same component, as well as communication
to distant components via networks. Where necessary, each connection can in
turn be iteratively refined to a function between two new connections in order to
model several communication jumps.

Data: Any type of information that can be consumed or produced by a function, stored

at a component, or transmitted via a connection.

The declaration of these classes is shown in lines 2-9 of Listing 4.1.
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Listing 4.1: Definition of Classes and Relations of the Basic System Model

# Classes

Asset type Class .

Function subClassOf Asset .

Component  subClassOf Asset .

Connection subClassOf Asset .

Data subClassOf Asset .

Sink subClassOf Function .

Source subClassOf Function .

CPF subClassOf Function .

# Relations

hosts a ObjectProperty ; domain Component ; range Function .

connects a ObjectProperty ; domain Connection ; range Function .

controls a ObjectProperty ; domain Function ; range Function .

stores a ObjectProperty ; domain Component ; range Data .

transmits a ObjectProperty ; domain Connection ; range Data .

produces a ObjectProperty ; domain Function ; range Data .

consumes a ObjectProperty ; domain Function ; range Data .
Relations

Linking the introduced classes with each other is facilitated by the following relations.

Their declaration is shown in lines 12—18 of Listing 4.1.

hosts relates a Function to the Component by which it is executed.

connects describes by which Connection a Function can communicate.

controls enables logical Connections between two Functions in terms that an attacker
can use a controlling Function (A) to manipulate a controlled Function (B). This
way, the attacker does not need to compromise the Connection between these
Functions or the Component hosting the controlled Function B.

stores indicates at which Component a Data is stored.

transmits describes by which Connection a Data is transmitted.

produces indicates the Function sending a Data.

consumes indicates the Function receiving a Data.
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4.2.2 Extension for Security Management

By augmenting the system model with security-relevant information, including secu-
rity goals, threats, and threat mitigations, it becomes usable for the assessment and
management of security risks.

To this aim, the following security-specific classes and relations are introduced, as

shown in Figure 4.2 on the next page and Listing 4.2 on page 50.

SecGoal Security goals are described as elements of the class SecGoal. The objects of
this class are generated for each combination of relevant security objective and
basic system model, i.e. function, component, connection, and data, to which
they are related by an isAsserOf relation. They hold the individual Cybersecurity
Impact Level, and the Required Attack Potential, derived by the impact and threat
assessments.

Threat Derived during threat assessment, instances of this class hold the attacker type
specific Provided Attack Potential for each combination of threat and basic system
model class. They are assigned to the relevant security goals by a threatens
relation.

SecMitigation Threat Mitigations encompass the three sub-classes, security controls
(SecControl), assumptions (SecAssumption)and measures (SecMeasure) (cf. Sec-
tion 2.3.2 on page 23). Elements of the SecMitigation class are assigned to
Threats they mitigate by a mitigates relation. In contrast to the other two sub-
classes, SecControl objects have a further dependsOn relation to the SecGoal
of the function and data that are required for proper operation of the protection.
Based in their influence on the mitigated threats, they hold a A of the Required
Attack Potential (RAP) or Cybersecurity Impact Level (CIL).
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Figure 4.2: Extensions for Security Modeling

4.2.3 Systematic Refinement and Namespaces

Combining hierarchical refinement and namespaces enables a progressive modeling.
An optimal way to make sure all aspects of a SuE are covered is to model it during
the design stage and to continuously refine it during ongoing development. However, a
model can be created at any phase of the system lifecycle.

Initially, the SuE is regarded as a monolithic component with a single function and
connections to the outside world. As soon as implementation details become known, a
first refinement round is started by decomposing the functions and adding individual
connections. Functions, connections, components, and data are iteratively extended to a
refined model. After their decomposition, functions can be relocated from the initial
monolithic component to newly refined sub-components. Each refinement round thereby
provides a higher level of detail.

In addition to the structural expansion of entities, sub-concepts of the used namespace
provide further implicit information. The purpose of these sub-concepts is twofold: first,
the implementation-specific knowledge required for an in-depth security analysis can
be stored implicitly for the specified subtypes. Second, the recognition and reuse of

previously refined structures become possible. Where no implementation information
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Listing 4.2: Definition of Security relevant Subclasses and Relations

# Classes

Threat a Class

SecGoal a Class

Mitigation a Class

SecControl subClassOf Mitigation .

SecAssumption subClassOf Mitigation .

SecMeasure subClassOf Mitigation .

# Relations

dependsOn a ObjectProperty ; domain SecControl ; range SecGoal
hasAsset a ObjectProperty ; domain SecGoal ; range Asset
implementedBy a ObjectProperty ; domain SecGoal ; range SecControl .
mitigates a ObjectProperty ; domain Mitigation ; range Threat
threatens a ObjectProperty ; domain Threat ; range SecGoal

is available, the according super-class has to be used to model an instance. This often
happens due to incomplete documentation or uncooperative vendors. Occasionally, the
required knowledge can still be obtained by reasoning or reverse engineering, which is a
clearly preferable solution.

To avoid deviations from the practical implementations, it is reasonable to follow the
implementation hierarchy and keep parts together. To this purpose, the introduction
of sub-classes as parts of individualized namespaces significantly improves the clarity
of descriptions and makes the modeling process more intuitive. As an example, a
layer of sub-classes for functions might be firmware, operating system, and application.
Implementation information can be used to reasonably assess threat vectors and exclude
weaknesses and vulnerabilities that can reliably be denied (e.g., the embedded firmware
of a Programmable Logic Controller (PLC) is not affected by a vulnerability in a printer
spooler). This approach further allows a model to be fine-grained at sensitive areas and
made coarser where only limited information is available or required. Sensitive areas
are typically those with a high cybersecurity impact (cf. Section 4.3). While the impact
assessment presented in the following Section 4.3 does not consider the implementation
details, they are essential for the threat assessment in Section 4.4 and the derivation of
intrinsic security requirements (cf. Section 5.3). A detailed description of the successive

refinement steps is presented and demonstrated in [23].
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While refinement to a basic level of granularity is necessary for a certain expressiveness
of the analysis, it often occurs that components and functions cannot or need not to be
refined beyond a certain level. These items are then considered black boxes. Typical
reasons for missing details are uncertainty during development, and the unwillingness
of suppliers to provide information about their products.

Refinement of the abstract system model towards a detailed model of the implemented
system, including resource identifiers for product and version information, enables
automated references to security-specific databases (cf. Section 2.2).

A major advantage of semantic modeling is that in addition to the explicitly gathered
information, further correlations can be expressed by axioms. Even in large systems,
where it would be difficult to keep track of consequences if done manually, an automated
reasoner can reveal inconsistencies and evaluate models using queries.

Due to uncertainty about the specifics that might enable the exclusion of potential risks,
usage of high-level descriptions leads to worst-case assumptions during assessments, as

all potential vulnerabilities for that instance’s super-class must be considered.

4.2.4 Modeling Systems for Analysis

The first step of creating a valid system model is the acquisition phase, during which the
necessary information is gathered. Depending on the information available, there are
different ways of doing this. For well-described systems, it may be sufficient to merge the
information from existing diagrams. Interviews with architects, experts, and operators
are often necessary to achieve the desired results. Occasionally, an automated inventory
can also be carried out for running systems using network scanners such as Nessus.

The acquisition phase is succeeded by the modeling phase. Here, the analyst starts
with the creation of a basic system model of the SuE. This model is later augmented
with the relevant security information regarding impacts for the security objectives.
Clustering the static and dynamic instances during modeling is recommended as it
improves maintainability. In many cases, it is necessary to refine the model to increase
information about the system. Avoiding unnecessary effort and preferring a simple,
maintainable model, a detailed specification of the instances can be added later where
necessary. This expansion needs not to be done evenly; that is, some parts of the system
can be described more in detail than others. An exemplary model of an SuE is shown in
Listing 7.1 on page 104 as part of the Use Case Evaluation in Chapter 7.
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4.3 Impact Assessment

To devise the impact of a potential risk by violated security goals, it is necessary to
assess their worth, meaning that aspects such as injuries, financial losses, and legal
infringements must be put in relation to each other. To this purpose, the security objec-
tives of each instance are rated regarding their cybersecurity impact in a Cybersecurity
Impact Level (CIL). While the levels can be defined for each organization individually,
a scale ranging from level O, no relevance, to level 4, very high relevance, as suggested
in IEC 62443-4-2 [14] has proven to be well suited. The individual impact levels are
assigned based on potential damage regardless of its cause. As a starting point, it is
necessary to provide some initial ratings from historical values, expert opinions, ground
truth, or similar, in order to systematically propagate them along the model. In the

following, a description of the individual impact levels if provided.

Confidentiality Impact Level (CIL ): The impact of cases in which a confidential
information is disclosed. This includes know-how, intellectual property, but also
cryptographic keys.

Integrity Impact Level (CIL,,): The impact of cases in which the integrity of the in-
stance is compromised. This can be an altered component or function, as well as
a manipulated connection or data.

Availability Impact Level (CIL,,,): The impact of cases in which the instance is un-
available. This can be a broken component, function, connection, or unavailable
data.

Authenticity Impact Level (CIL, ): The impact of cases in which the authenticity of
the instance is compromised. The relevance of CIL, , depends on the nature of
the overall system. A typical discussion that should be initially clarified is whether
inauthentic instances can be valid data in terms of integrity. Usually, fake data
such as spoofed instructions or manipulated values are relevant here. Besides,
counterfeit components can cause damage in certain application environments.

Non-Repudiation Impact Level (ClL): The impact of cases in which one party can
successfully dispute to be the sender or editor of a data. The relevance of CILyy
depends on the nature of the overall system. It is particularly important for orders

on virtual marketplaces and affects functions, data, and connections.
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4.3.1 Impact Propagation

Looking at the dependency tree, CILs can be propagated up- and downwards through the
model. Guides on creating such trees are provided by [29] and [83]. With the following
propagation method, the CIL of all instances of the models is calculated iteratively.
Note that only a small set of initial data D, (for confidentiality) and sink-functions F,
(for all other security objectives) must be rated manually in order to propagate the CIL
through the remaining model. To cope with special cases, further manual assessments
before or after propagation can also be reasonable. The process to evaluate the impact
of the security objectives integrity, availability, authenticity, and non-repudiation for
all instances, propagates upwards from the sink to the source. The only exception of
this direction is the evaluation of the confidentiality-specific CIL,, which requires
a manual rating of the sources D,, and propagation down to the sinks. An exemplary
application of this process is shown in Section 7.3.1 as part of the use case evaluation in
Chapter 7.

Top-Down Propagation Based on the initial assessed CIL; of a source and special
instances, the confidentiality levels are propagated top-down from their initial
manually rated source data. First, the CIL of a function is evaluated to be the
maximum CIL. . of the source data D,, that are consumed by this function and,
if applicable, an intrinsic value (e.g., a valuable sophisticated algorithm). Second,
the CIL s of a connection is evaluated to be the maximum CIL . of data that are

transferred through this connection. Third, the CIL; of a component is evaluated

Con
to be the maximum CIL,; of functions that are hosted by this component. Fourth,
the CIL ¢ of previously unrated data is evaluated to be the CIL,; of connections
they are transmitted through, functions they are produced by, or components they
are stored at, respectively.

Bottom-Up Propagation To determine the levels for the other security objectives,
the bottom-up propagating objective relevance levels CIL,,,, CIL,, CIL,.
and CILy, are propagated from their initial manually rated sink functions Fj.
Be CIL, the rating for a security objective X from this enumeration. First,
the CIL y of the data consumed by sink function F;, is evaluated to be the max-
imum CIL of the function that consumes this data. Second, the CIL, of a

connection is evaluated to be the maximum CIL of data that are transferred
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through this connection. Third, the CIL of a component is evaluated to be the
maximum CIL , of functions that are hosted by this component. Fourth, the CIL
of previously unrated functions is evaluated to be the level of data they produce.
Cross-class Inheritance for Security Measures A special case of inheritance ap-
plies to security measures that inherit the level of the instance they protect. Thereby,
the class of the inherited security objective changes while its level remains, typi-
cally towards integrity or availability of the security control (function). An example
of such a security control is a sanitizing function, which lowers the confidential-
ity level of a data by removing sensitive information. Thereby the integrity of
the function inherits the confidentiality level of the unsanitized data for its own
integrity, while the sanitized data can have a lower CIL ;. Such relationships

must be described in advance of further propagation.

4.3.2 Instance-specific Impact Aggregation

The output of the propagation process is a list of assessed security objectives, indicating
the potential impact on violating the associated security goals. The aggregation of
these levels per instance leads to an overall rating, comparable to the Safety Integrity
Level (SIL) [142]. It creates comparability between impairments and thus indicates
the appropriate attention and severity that should be given to the instance. In order to
aggregate the overall effect of an instance, various situation-specific approaches can
be applied. Intuitive approaches are to determine the maximum of its intrinsic CIL, as
shown in Equation 4.1, to use a discrete aggregation matrix, or a classification scheme
similar to the Automotive Safety Integrity Levels (ASIL) [143].

Impact = max(CILg,, CIL,,, CIL,,, CIL,,, CILyg) (4.1)
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4.4 Threat Assessment

Assessing threats after the impact assessment can be advantageous, when violations of
security goals without consequences may be omitted. Depending on the type of access,
a threat may directly threaten a specific security goal, or require a series of previously
successful threats as an attack vector, as described by [19]. For each threat and attack
vector, the RAP and threat factors must be determined. A potential basis for this, based
on the [41] is show in Table 4.1. The used deviations from the standard are printed
in italics. While the requirements and their values should be adapted individually, the
threat factors and the differentiated levels can often be adopted. This determination
can be either done manually, using sources like expert knowledge, historical data, and
ground truth, or automatically, based on a threat assessment catalog.

While utilizing such a catalog requires standardized implementations and sufficient
granularity of the model, it allows for a consistent, unbiased assessment and a high
degree of automation. An exemplary application of this process is shown in Section 7.3.2

as part of the use case evaluation in Chapter 7.

Table 4.1: Rated Threat Factors for the Attack Potential Calculation, based on [41]

Threat Factor Requirement Value Threat Factor | Requirement | Value
Public 0 < one day 0
Knowledge Restricted 3 < one week 1
of the TOE Sensitive 7 < two weeks 2
Critical 11 < one month 4
Standard 0 Elapsed Time < two months 7
Equipment Specialized 4 < three months 10
Bespoke 7 < four months 13
Multiple bespoke 9 < five months 15
Unnecessary / unlimited 0 < six months 17
Remote (added) 1 > six months 19
Window of Easy (adjusted) 1->3 Layman 0
Opportunit Moderate (adjusted) 4->6 . Proficient 3
P ’ Difﬁculjt 10 Expertise Expert 6
None - Multiple experts 8
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4.4.1 Threat Elicitation

A simple and effective way to elicitate all potential threats is to map the base model
instance classes to their relevant threat classes, as shown in Table 4.2. Depending on
whether the asset is a data, a component, a function, or a connection, only certain threat

classes apply.

Table 4.2: Threatened Security Objectives by Threat- and Instance-Classes

. . Information | Denial of | Elevation of
Class Spoofing Tampering Repudiation Disclosure Service Privilege
. Integrity
Function ) Confidentiality - Authenticity
Component Integr%t}_/ Integrity Non-repudiation - s Integrity
Data Authenticity Availability Confidentiality | Availability —————
Connection Authenticity

4.4.2 Estimation of Required and Provided Attack Potentials

For the ability to successfully execute a threat, the Provided Attack Potential (PAP) of
an attacker must equal or exceed the Required Attack Potential (RAP). The estimation
of this RAP is done in a standardized and normalized form, based on an agreed set of

categories, as shown in Equation 4.2.
AP = [Time|Expertise| Knowledge|Type of Access|Equipment] 4.2)

Common factors for the characterization of attack potential are the elapsed time, specialist
expertise, knowledge of the SuE, window of opportunity, and equipment required for
exploitation [41]. Here, each of the factors are vectors, including their ratings as depicted
in Table 4.1. Examples for such threat specific estimations are shown in Table 4.3 for
the RAP, and in Table 4.4 for the attacker type specific Provided Attack Potential (PAP).
Depending on the individual circumstances, further factors and refinements can be
necessary, such as the differentiation of the type of access.

Threats can often be aggregated, e.g., when multiple data elements are stored in

the same component, transmitted over the same connection, or identical technologies
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Table 4.3: Exemplary Estimated Required Attack Potential per Threat

Identifier | Expertise Knowledge Equipment Time  Type of Access

Threat 1 Layman Public Standard Days Easy

Threat 2 Proficient  Restricted  Specialized  Weeks Moderate

Threat 3 Expert Sensitive Bespoke  Decades Remote

Threat 4 Multiple Critical Specialized  Weeks Easy
experts

Table 4.4: Exemplary Estimation of the Provided Attack Potential per Attacker Type

Attacker Type H Expertise Knowledge Equipment Time Type of Access

Script Kiddy Layman Public Standard Days Remote
Hackivist Proficient Public Specialized  Weeks Remote
Ofga.n ized Expert Sensitive Bespoke = Months Remote
criminal

Intel.ll gence Multiple Critical Multiple Years Difficult
service experts bespoke

are used. An important question, thereby, is if each factor must be provided for each

execution of the threat or only once, e.g., to extract a master key [2].

Vulnerabilities can significantly reduce the RAP by lowering threat factors. A vulner-
ability caused by a faulty Hardware Security Module (HSM) can, for example, greatly
reduce the entropy and thus the time required for an attack from years to days [21].
Mitigations, in contrast either reduce the CILs, or increase the RAP by increasing a

threat factor, such as adding the need for bespoke equipment.

A common way to avoid ambiguities is to classify and evaluate the RAP by a score
system, based on a discrete scale, and the possible types of access to the SuE. The
estimated probability of a successful attack is then determined from the calculated effort.
The result of the assessment is an estimate of the potential that an attacker is likely to

expend to achieve his objective in violating a security goal.

In summary, the RAP can be regarded as the capability an attacker has to possess to

execute a threat.
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4.4.3 Attacker Motivation - Costs and Benefits

While the ability to execute an attack is determined by the RAP and PAP, the attrac-
tiveness may be assessed by the benefits and costs from an attacker’s perspective. The
expected benefits usually define the effort an attacker is willing to expend. In contrast to
estimating the RAP, which is possible with a certain degree of uncertainty, estimating
the cost-benefit-ratio is rarely more than a vague suspicion and omitted by most SRA
methods. While the ratio cannot be used to reliably nullify a risk, it may highlight
extraordinary cheap or expensive attacks.

A basis for this analysis is the Equation 4.3 for the choice to commit a crime [57],

previously described in Section 2.3.1 on page 20.

Mb+Pb>Ocm+Ocp'Pa'Pc (4.3)
N—— “ “ v
Benefits Costs

As pointed out, estimating the psychic benefits P, psychic opportunity costs O,,, the

cp?
probabilities of apprehension P, and conviction P, is, in contrast to the monetary benefits
M, and costs O, rarely possible in a meaningful way. In such cases where a qualified
assumption about the costs and benefits is possible, they can be formulated in the same

categories as the required attack potential and directly compared.

4.4.4 Attack Vector Identification and Assessment

Similar to the dependency on other security goals, attacks can either consist of a threat
targeting a singular security goal, or attack vectors consisting of a series of threats. A
standard approach to identify attack vectors is to create an individual attack tree for each
attack goal.

The attack vector identification starts with the identification of each potentially targeted
security goal. Approaches can be differentiated according to the potential point of entry
by which an attacker reaches or accesses his target system. While a tuner has physical
access to the components of, e.g., a car, tampering their functionality in terms of software
is often protected by restrictive security controls, such as Access-Control Lists (ACLs)

and HSMs. Where the attacker has no direct access to his target, he must perform a
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multi-stage attack. Dependency trees, indicating the potential attack vectors for each
relevant security goal, can be derived by systematical querying the system model [29].
Each traverse of a node and edge in such a tree may require specific attack factors
and potentials. The resulting graph is then analyzed using methods of graph theory
for directed graphs, taking into account the required capabilities and in place threat
mitigations. To avoid inconsistencies, this graph should always be freshly generated
from the current model. Furthermore, a regression analysis is performed after each

iteration of the system model.

While an abstract model leads to generic results in the development phase, a more
specific picture of the security situation can be derived from detailed implementation
information. Predicting the motivation or precise movement pattern of an attacker is
hardly possible. A common way is to assume that he chooses the “easiest path”, which
is rarely known to the attacker. Therefore, it is not unusual that a less probable, often

less monitored vector is chosen.

4.4.5 Probability Estimation

A threat must be considered possible, whenever the PAP of an attacker matches the RAP.
If further the benefits outweigh the costs, as described by Equation 4.3, it is considered
attractive. To determine a value for the probability, the attractiveness and the possibility

are related as captured in Equation 4.4.

] — RAP . Cost if RAP < PAP and Costs < Benefits
Probability = PAP Benefits (4.4)

0 ,if RAP > PAP or Costs > Benefits

This probability might be shifted by considering mitigations increasing the required
effort, and by vulnerabilities reducing it. While the material costs might be high for the
initial development of tools and methods, the repetition of many attacks may be easy,
especially when no expensive or bespoke equipment is required. Methods to recognize

and manage such situations are subject of Chapter 6.
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4.5 Risk Determination and Aggregation

The individual risk rating for each security goal can be determined as shown in Equa-

tion 4.5, as product of the CIL and the probability value from Equation 4.4.
Risk = Impact - Probability 4.5)

Where applicable, these risk ratings may be affected by threat mitigations and vulner-
abilities that shift the required attack potential, or decrease the impact, as shown in
Figure 4.3. This process is demonstrated in Section 7.3.3, as part of the use case evalua-
tion in Chapter 7. The derivation of technical security measures and the management of

security requirements, in general, are subject of the following Chapter 5.

. Threat Mitigation Vulnerability
Security weakens
—> <
Control - Changed RAP o.n 0..n | - Changed RAP
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Figure 4.3: The Security Risk Graph

For a better comprehensibility, the identified security goal specific risks can be aggregated
into damage scenarios [16]. These scenarios combine all security goal violations that
result to the identical consequences. The probability of each damage scenario is inherited

from the security goal with the highest probability resulting in this scenario.
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4.6 Discussion

This chapter presented a method for the systematic assessment of security-risks. The
basis for this analysis is an introduced basic, machine-readable model that stores the
necessary information. For the systematic evaluation of potential damage resulting
from the violation of security objectives, these are assessed concerning their effects and
propagated by the model according to their dependencies. The likelihood depends on
the attractiveness of the attack for the considered attacker models and the comparison of

expected and required attack potential.

Spontaneous risk assessments are part of everyday life. This often simple task becomes
difficult at the latest when it comes to providing well-founded assessments of complex
subjects that must be comprehensible to others and can be used by them as a basis for
strategic decisions. The presented model-based security risk assessment process prevents
misjudgments through normalized criteria and systematic procedures. Impact and threat
assessments are conducted independently of each other on the common basis of a jointly
developed and agreed model. The combination of both assessments as qualified factors

leads to a systematic SRA.

The presented modeling method is a tool to describe a SuE properly for security
analysis in a machine-readable way. Although several alternative modeling approaches
are also valid, the presented one proved to be intuitive, manageable, and capable. While
the modeling of data and component objects is common to most of the related SRA-
approaches (cf. Section 3.1.3), the explicit modeling and annotation of security properties
to function and connection objects are subject to continuous discussion. The implemen-
tation of functions is often considered as (sub-)components, or directly differentiated
into more detailed sub-classes. Modeling connections as threatenable instances, in
contrast to the alternative of annotations to functions or as (directed) interfaces, en-
ables them to have individual object-properties. This makes connection objects suitable
both for describing the inter-process communication between two processes on the
same ECU as well as for a remote connection across several remote networks. Fur-
thermore, the produces, consumes, and transmits relations simultaneously enable the
modeling of individual end-to-end communication and sender-subscriber models on

shared or redundant communication media.
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This modeling supports consideration of attacks that are otherwise difficult to integrate,
such as the addition of an interface or function by an attacker. The first case is considered

a manipulation of the producing function, the second of the hosting component.

For the impact assessment, a common understanding between domain and security
experts can usually be achieved in a short time. In contrast, threat assessment and its
discussion with function or component managers are often challenging tasks because
threats introduce a dynamic that they are not yet used to from other areas. When assessing
threats, it is examined separately whether an attacker is able to implement them and
whether the execution could be attractive for him. In most cases, the assessment of
attractiveness can be treated as an attacker model specific binary decision. If an attacker
might benefit from executing a specific threat, assessing the attractiveness is particularly

valuable for the prioritization of security measures.

The aggregation of security goal specific risks into damage scenarios at risk provides a
comprehensible representation of the overall situation. However, a security goal specific
granularity is required for mitigation and requirements derivation. The sole number
of security goal specific risks gives an impression on the overall complexity of risk

assessment, but not necessarily of the SuE due to frequent overlap.

While adequate consideration of the numerous impact and threat factors pushes
manual analyses to the limits of their complexity, the systematic, iterative process can be
mostly automated. Catalogs and object-orientation further enable the reuse of elements

once analyzed and evaluated.

Risk scaling and accumulation often differ significantly depending on the domain and
business model. Considering all threat mitigations, the number of residual risks should
usually be negligible, especially for safety risks. The derivation and management of

such threat mitigation are subject of the following Chapter 5.

Apart from operational systems whose shutdown leads to higher losses, severe residual
risks are usually a reason to stop the use or further development of a system until the
situation can be resolved. Dealing with the dynamics of evolving threats requires the
manufacturers and operators of CPSs to develop new processes and ways of thinking, to
keep their products at a continuous level of security, which is a subject of Chapter 6. A
use case example for the successive execution of the introduced modeling and security

risk assessments processes is provided at Section 7.3.
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Knowledge of the risks indicates the need for action and enables targeted measures
to be demanded and their effects to be anticipated. The formalization, derivation and

coordination of such measures is the subject of the following chapter.
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5 Derivation and Management of
Security Requirements

This chapter addresses the second and third research questions. RQ 2, on formulating
security requirements to support the achievement of the indicated level of protection,
is approached by utilizing the work product of the previously described security risk
assessment to derive and prioritize intrinsic security requirements. For RQ 3, on match-
ing extrinsic security requirements demanded by external entities with the implemented
capabilities, an approach for their management by means of formalization and automated

fulfillment validation is presented.

To this purpose, concepts from my following earlier publications are adopted and
improved.

The process to derive intrinsic security requirements (cf. Section 5.3) from a model-
based impact assessment was published in the paper “Deriving Impact-driven Security
Requirements and Monitoring Measures for Industrial IoT” [17], which I presented at
the 5th ACM Cyber-Physical System Security Workshop in 2019.

The methods for the formalization, hierarchic structuring, and communication of se-
curity requirements (cf. Section 5.2), as well as matchmaking with the capabilities of the
existing system (cf. Section 5.4), were published at the 24th IEEE Conference on Emerg-
ing Technologies and Factory Automation in 2019, as paper “A Unified Architecture for

Industrial IoT Security Requirements in Open Platform Communications” [20].
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5.1 Introduction

“Real threats violate requirements.”, Adam Shostack, 2014 [96]

Knowledge of the potential risks alone is necessary, but not sufficient. As secure opera-
tion requires reliable operation within the expected boundaries, requests for effective
threat mitigations must be made and implemented.

The therefore used security requirements must be precisely formulated, prioritized, and
validated, which is subject of Section 5.2. Two general types of security requirements are
to be distinguished. Intrinsic security requirements are indicated by an SRA, as described
in the previous Chapter 4, and are subject of Section 5.3. Extrinsic security requirements
originate from external entities, such as regulators, customers, and suppliers. Their
management is subject of Section 5.4. An evaluation of the Security Requirements Data
Model is provided in Section 5.2.4, followed by a discussion of the exposed methods in
Section 5.5.

A common problem for the management of security requirements are different lan-
guages, formats, and granularity used for their specification. To enable automatic
validation, whether an implemented capability meets a new security requirement, they
must become comparable. Besides misunderstandings caused by foreign languages,
the various presentations, such as user stories, use case diagrams, and spreadsheets,
significantly complicate an automated validation. In particular, free-text-based descrip-
tions lack the ability to be machine-readable but require additional, error-prone natural
language processing. A compromise are human-readable, list-based formats, which
allow the comparison between demanded and implemented requirements by itemizing
them. Assuming that everyone uses the same wording for the same requirements, these
would also be machine-readable. However, if implementation details of a requirement,
such as the minimum length of an RSA key, are embedded in sentences, significant
processing is required to retrieve this information for further automated processing. In
a table-based format, these parameters can be listed in additional columns yielding a
more machine-readable representation for automation while still being human-readable.
In contrast, an object-oriented security requirements data model is only human-readable
An effective method that supports a uniform level of security is the use of patterns that

map appropriate threat mitigations from a catalog to each security objective at risk,
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provided a suitable visualization application exists. On the other hand, the format is
fixed and does not contain natural language’s variance. This allows for much easier
comparison between the requirements of different companies or with implementation
descriptions.

Formulating security requirements and implemented capabilities in a unified language
yields the ability to compare them against each other for business ICT systems down to
embedded devices. The subsequently presented machine-readable security requirements
data model enables the fully automatable communication of security requirement along a
supply chain. Thus, it allows for higher and faster automation in the heavily heterogeneous
landscape of CPSs in the field.

Developing an effective security concept for a specific, sensitive CPS or parts of
it is a responsible and challenging task. Automating the process of deriving intrinsic
security requirements from the identified threats and prioritizing them according to their
individual risk can significantly support this task. An effective method that supports a
consistent level of security is the use of patterns that map appropriate threat mitigations
from a catalog to each security objective at risk. Thereby, all potential mitigations are
initially presented but then pruned according to their impact and effect. Monitoring
the compliance and effectiveness of implemented requirements, as well as the proper

response to incidents, are the subject of Chapter 6.

5.2 Processable Security Requirements

Data models provide several ways to manage security requirements. Common practice
for communicating security requirements relies on textual forms that are hardly machine-
readable. Internationally acknowledged certification methods like the Common Criteria
for Information Technology Security Evaluation [41] use checklists and spreadsheets to
represent their requirements. For the widespread text-based forms, the primary advantage
is their human readability. However, they lack the possibility to be machine-readable and
cannot easily be compared. A list-based format enables a basic comparison of demanded
and implemented security requirements by both machines and humans. This can be
further improved by an object-oriented data model, including hierarchical categories,

and attribute sets.
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Table 5.1: Feature Comparison of Requirement Enumeration Techniques

Feature | running text | lists | tables | object-oriented
human readability v v v )
comparability V)| V) 4
machine readability ) v v

5.2.1 Object-Orientation

An object-oriented model can be used to automatically derive a hierarchical representa-
tion of security requirements. To transform the enumerations of security requirements
to such an object-oriented data model, a set of requirement classes is developed, which
describes the possible security requirements space. Each requirement then becomes an
instance of such a class, whereas the definition of attributes contains required implemen-
tation details for the requirement. The inheritance in the object-oriented representation
allows incorporating abstract or vague requirements. Such an abstract requirement can
later be augmented with implementation details. Therefore, the data model is extendable
by the introduction of new subclasses. This definition of a class hierarchy automatically
leads to a hierarchy of security requirements, which enables the comparison of vague
requirements with precise implementation details. By referencing instances of other
requirement classes, it is also possible to relate supporting or implied requirements. As
the object-oriented design is a widespread paradigm, the model can be used at any phase
of the CPS-lifecycle.

5.2.2 Categorization

To develop a unified data model for the different types of security requirements they are
clustered into high level categories. Some security requirements describe the internals of
the systems, like hard drive encryption for confidentiality or load balancing for enhanced
availability. Further, a central point of security requirements is the implementation
of interfaces. However, several requirements cannot be classified with these rather
technical, internal or communication, functional groups. Many of the requirements
consider the way updates to software or hardware should be treated and how the product

itself should be developed, e.g., if penetration testing or audits must be carried out during
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Figure 5.1: Relations for Extrinsic Requirements

the development phase. These types of requirements refer to the manufacturing process

of the product.

Therefore, three main categories are defined: Technical (Non-functional), functional,
and process security requirements.

Technical Security Requirements directly refer to device inherent, technical proper-
ties, the internal processing, or the system itself. In contrast to operation specific
functional- and non-function requirements, they are mostly transparent to the out-
side during operation. Figure 5.2 shows a hierarchy of requirement classes within
this category. Each node in the tree resembles a class of security requirements,
whereas child nodes refer to subclasses in the object-oriented representation. As
indicated in the tree, each abstract class can define global attributes for all require-
ment classes in the same branch. The Encryption requirement type, for example,
defines the attribute Algorithm, which should be used to note the name or identifi-
cation of an implemented or required encryption algorithm. As all subclasses need

this parameter, the attribute can be defined already on their common superclass.
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Figure 5.2: Technical Security Requirements Hierarchy [20]
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Figure 5.3: Functional Security Requirements Hierarchy [20]

Functional Security Requirements define the behavior of connections to and within
the system, including all applied protocols, Application Programming Interfaces
(API), and user interfaces. They thereby specify the behavior between outputs and
inputs. Figure 5.3 shows a hierarchy of requirement classes within this category.

Process Requirements describe the development process and product lifecycle. They
can be initially implemented but hardly retrofitted. A hierarchy of requirement

classes within this category is shown in Figure 5.4.

5.2.3 Attributes

The presented data model enables the assignment of global security requirements to the
three requirement classes described above. These attributes refer to the base class of a
requirement and indicate whether a specific requirement must be certified according
to a given standard and how these requirements should be prioritized. For example, as

the security objectives in automation industries vary between different scenarios, it is
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Figure 5.4: Process Security Requirements Hierarchy [20]

possible that the importance of requirements does so, too. An attribute Priority can be
used to state the priority in which requirements should be met in case of contradicting
or not fulfill-able requirements. Similarly, an attribute CertificationRequired can
indicate whether the fulfillment of this requirement needs to be certified according to the
given standard. In addition to these two attributes, further definitions of more specific

attributes depending on the domain and field of application are recommended.

5.2.4 Evaluation of the Security Requirements Data Model

A substantial part of the German National Reference Project for IT Security in Industry
4.0 (IUNO) was the development of prototypes for IIoT-specific implementations. The
prototypes differ significantly in their applications ranging from customer-tailored pro-
duction (PT1), technology marketplaces (PT2), remote administration of production
sites (PT3), to visual security control centers (PT4). During the evaluation of the fol-
lowing IIoT use cases on these prototypes, a total of 416 different security requirements

were identified and mapped within the unified security requirements data model [20].
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Propagation of Security Requirements in Distributed Supply Chains It is com-
mon practice in the manufacturing industry that customers require their suppliers to
comply with certain security requirements. Passing on such requirements to the vari-
ous sub-suppliers along a distributed supply chain is complicated, prone to errors, and
causes delays. Each link, respectively sub-supplier, must analyze, implement (where
applicable), and forward the received and consolidated requirements from the different
customers as a new bundle to their own suppliers. Thereby, each iteration may represent
a significant delta to the existing representations that again require manual validation,

reconciliation, and merging.

Production Compliance with Given Sets of Process Requirements Security-
critical parts of an integrated product, such as the security module of an ECU, must only
be manufactured by machines and production sites that meet a bundle of specific security
requirements. In the setting of fully interconnected production infrastructures, such a
compliance check must be processed in a fully automated way. Only a machine-readable
requirement specification allows a production site to autonomously check if it complies
with the given set of process-specific security requirements. Therefore, each machine of
the manufacturer must present a set of process requirements that it complies with, and
further a set of requirements that are fulfilled by the corresponding suppliers, serving the
different machines at possibly different production sites. By comparison of the requested
security requirements and the implemented capabilities, a managing system must be

able to decide whether the manufacturing of the considered product is possible at all.

Automated Product Quality Verification A product that claims to fulfill a particular
set of requirements should be validated in a fully automated manner. Such a process
enables automated requirements testing as a dedicated service of machines without
human interaction. Such an automated requirements verification is further required for
standardized verification procedures of given sets of technical and functional security
requirements. Therefore, a production line must support automated quality testing of
produced parts, as the implemented capabilities are directly compared to the initial
requirement sheets like it is common in the software engineering scenarios described
in [106, 108]. The number and distribution of identified and mapped security require-

ments per second-level abstraction class and prototype is shown in Table 5.2.




74

5 Derivation and Management of Security Requirements

Table 5.2: Distribution of Security Requirements in the [UNO Prototypes (PT) [20]

Category | PT1 | PT2 | PT3 | PT4 | total
Technical Requirements 71 26 23 56 | 176
Crypto 11 8 3 5 27
Key Storage 4 3 2 1 10
PKI 1 0 0 1 2
IDS /1PS 1 1 1 6 9
Auvailability 11 6 8 6 31
Hardening 0 0 0 28 28
Storage 39 5 7 7 58
Secure Time Base 2 2 1 1 6
Random Number Generation 2 1 1 1 5
Tamper Resistance 0 0 0 0 0
Functional Requirements 61 16 36 21 134
Identity Management 30 5 19 12 66
Input Validation 1 0 4 1 6
Interface Security 26 10 8 7 51
Secure Logging 4 1 5 1 11
Update Mechanisms 0 0 0 0 0
Process Requirements 27 39 14 26 | 106
Engineering 8 21 6 6 41
Operation 19 18 8 20 65
Total Requirements | 159 | 81 | 73 | 103 | 416

Finally, the evaluation showed that the security requirements model is suited to incorpo-
rate all so far identified security requirements of state-of-the-art prototypes from the

industrial domain, eliminating the need for human interaction.
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5.3 Derivation of Intrinsic Security Requirements

Based on the assessed risks, identified threats, and the organization-specific risk appetite,
appropriate intrinsic security requirements are synthesized using patterns, formulated in
the unified security requirements data model, and prioritized based on the associated

security risks.

While the derivation of high-level requirements such as “Confidentiality of the Com-
ponent Key-storage must be ensured” is straight-forward, the selection of specific imple-
mentations, considering the overall structure, is a more delicate task. The first step to
automate this process is to develop a threat mitigation catalog that assigns a mitigation

to each relevant combination of threat and the base system model object classes.

While an experienced security expert balances the impacts of the risk with possible
security measures, an automated activation of security controls bears the risk of mis-
judgments. Therefore, decisions to take active measures that could negatively affect
the functionality of the system shall remain the responsibility of a human controller.
However, actions without such risks and preparations to support the decision of the
controller should be implemented immediately. The shown approach proposes such
measures based on a model of the SuE and pattern for recommendations to support
the operator in making proper decisions. In contrast to static networks where it was
sufficient to assess the infrastructure once and then inherit security goals from the data,
this process should be triggered on each update of the model. Especially for dynamic
structures, attack, and impact vectors from which a specific risk was derived should be

considered when choosing and prioritizing an appropriate security risk mitigation.

5.3.1 Implementations per Security Objective

The type of appropriate implementation depends on the relevant threat and object classes.
In addition to the following description of possible measures and their interaction,
Table 5.3 provides exemplary security controls for each of the four basic system object
model classes. Furthermore, sets of hierarchical ordered threat mitigations are provided
in the Figures 5.2, 5.3 and 5.4.
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Table 5.3: Examples of Security Controls and Measures against a targeted Asset

Threat ‘ \ Function Component Connection Data
Cryptographic . Cryptographic
Spoofing Signatures Segmentation Signatures
Encapsulation, . .
Tampering Obfuscation, ACL, . Segmen.t at19n, Cry.p tographic
o Tamper Protection — Authentication Signatures
Monitoring
Repudiation Logging Digital Identity Logging Logging
Information . . . .
Disclosure Obfuscation, ACL ~ Storage Encryption ~ Encryption  Encryption, ACL
Denial of Watchdog, Redundancy, Redundanc Redundancy,
Service Error Management Recovery Y Fall Back Values
Elevation of . . .
Privilege Hardening, Testing ~ACL, Sandboxing

Supplementing security controls with specific information enables the automated gener-
ation of rules for network- or host-based monitoring that may be applied immediately
by an Intrusion Prevention System (IPS). However, while ACLs are recommendable in
most cases, further firewall rules and active intrusion handling measures should only be

automatically prepared and suggested to the operator.

Confidentiality: Confidentiality is threatened by information disclosure. For data, this
is avoided by encryption on the producing functions, the transferring connections,
and the storing components. Functions containing valuable know-how also have
inherent protection needs that can be maintained by obfuscation, by controlling
access to binaries and preventing runtime analysis, e.g., via encapsulation. Simi-
larly, protection of the operating parameters and details about components can
be achieved by access control or sandboxing. Information about routes, technolo-
gies, and performance of connections can be obfuscated, e.g., by making them
transparent to high layer applications, or by hiding them in side-channels.

Integrity: The integrity of connections can be ensured by network monitoring [144].
Validation can ensure the integrity of data [127]. For functions, performing reviews
and software tests can be a viable measure to initially ensure their integrity. At
runtime, their correct execution can be protected by isolation or hardening, which

is also a measure to protect the integrity of components.
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Availability: The availability of data can be ensured by fallback values, or redundancy in
terms of a secondary connection. Therefore, information about the availability of
a connection can also be gained by link detection. For functions and components
watchdogs, and timeouts are technical controls, while Service Level Agreements
(SLA) are administrative measures, especially for functions provided by third-
parties.

Authenticity: The authenticity of data is typically ensured by signatures or by appropri-
ate asymmetric encryption. To validate the authenticity of connections, certificate-
based authentication methods, as well as Virtual Private Networks (VPN) are
widely used. The authenticity of specific functions might be initially validated
by functional tests and by appropriate fingerprints during startup and runtime.
Similarly, components can use HSMs to validate their authenticity.

Non-repudiation: Non-repudiation of data is typically ensured by asymmetric cryp-
tography, especially cryptographic signatures, and by tamper-secure protocols

like a blockchain.

5.3.2 Selection and Prioritization of Security Controls

Cataloging and rating of security controls enables their automated assignment to security
goals that exceed a defined security risk threshold. In addition to the applicability as
per se, their effects on the RAP and CILs as well as the dependencies introduced by the
security control must be considered. Common dependencies are for example a secure
keys management, secure implementations, and a secure network configuration.

Since the automated intrinsic security requirements deduction process considers
the protection of each security goal individually, it fully supports the defense-in-depth
principle. In practice, this can be appropriate for critical assets, but should, usually be
adjusted to the delta of the risk level between protected and unprotected implementations.
Practically speaking, adding content encryption for a data that is solely transmitted by
an end-to-end encrypted TLS connection between secure components rarely provides a
substantial increase of security. While the additional content data encryption complicates
the execution of confidentiality threats, the resulting marginal delta in the RAP hardly
justifies the resulting costs for more powerful components. Furthermore, each additional

function increases complexity and may in turn allow for attacks.
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5.4 Management of Extrinsic Security Requirements

Extrinsic security requirements originate from external entities. Their automated man-
agement includes checking whether they are already fulfilled or whether they need to be
implemented in addition to the existing capabilities.

New processes and regulations can entail additional requirements that must be met
by the systems involved. In contrast to intrinsic security requirements, which ensure
the development and continuous operation of secure systems, this section focuses on
extrinsic requirements from external sources.

Identifying combinations of systems that are capable of satisfying complex require-
ments, like a production line that provides full data encryption along all ECUs is a
challenging, yet hardly solvable task. To this purpose, a unified architecture for security
requirements, capabilities, and their matchmaking is required. Such a unified architecture
for security requirements enables several new use cases.

During the implementation phase, mandatory extrinsic security requirements should
be considered before intrinsic requirements are deduced and implemented, as they may
mitigate threats that need no longer to be addressed by additional measures. During
operation, they either can be fulfilled by already implemented capabilities or must be
added as additional security requirements to the design of according CPS.

Ideally, extrinsic security requirements are received in a machine-readable form. If
this is not the case, they must initially be formalized.

A common distribution problem in producing domains is to find production lines
capable of specific combinations of security requirements that must be met in order
to produce or handle specific sensitive information and components. To address and
automate this complex task, an integration into middleware protocols like OPC-UA is

required and demonstrated in Section 5.4.2.

5.4.1 Fulfillment Verification

Numerous use cases, such as those for the I1oT outlined in Section 5.2.4 on page 72
require the ability to evaluate whether a given requirement is implemented by a single or
combination of multiple CPSs, e.g., by a production line. These process-requirements
may relate to the targeted product itself but can also be constituted by the requirements of

involved supplied parts. In the setting of fully interconnected production infrastructures
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such a compliance check must be processed in a fully automated way. Only a machine-
readable requirement specification allows a production site to autonomously check if it
complies with the given set of process requirements. The process requirements may relate
to the targeted product itself but can also be constituted by the requirements of involved
supplied parts. Each machine of the manufacturer has a set of process capabilities that it
complies with and further a set of capabilities that are fulfilled from the corresponding
suppliers serving the different machines at possibly different production sites, as depicted
in Figure 5.5 on page 82. Such a verification mechanism can be implemented based on
the proposed security requirements data model, using off-the-shelf tools as described
in detail in [20]. An exemplary system architecture initially designed for the IloT-
specific OPC-UA is shown in Figure 5.6 on page 83. The server holds the security-
requirements data model and a special Implementations object holding instances of
every implemented capability on the corresponding system or machine. The client does
not require any additional data. By browsing the object data type definitions of the server
with off-the-shelf clients, the whole security requirement space can be explored. In the
next step, the operator generates a list of all needed requirements. As the implemented
capabilities of the server are published under the Implementations object, the client can
retrieve all implementation details. By comparison of the demanded requirements and
the implemented capabilities, a managing system can decide whether the manufacturing
of the considered product is possible at all, as demonstrated by Algorithm 5.1.

For each initial requirement r out of R, every implementation detail ¢ of C is tested
whether ¢ is an implementation of a (sub-)class of r. This allows for both specifications -
requirements and implementations - being on different abstraction levels. A requirement
is assumed to be fulfilled if one of its possible (sub-)implementations is available. For
example, while the requirement could be Symmetric Encryption (cf. Figure 5.2), the
implementation could be as detailed as symmetric encryption with AES-256 and using
CBC-mode. By leveraging the hierarchical structure of the object-oriented data model,
the check is possible with standard methods (like instanceof) available in most modern
programming languages. Additionally, the production planning system (PPS) is now
able to choose the best site and machine to use to produce the specific product by
comparing the requirement sheet with the fulfilled requirements and considering the
global Priority attribute. The execution of the described algorithm then answers the

question whether the specific requirements can be met.
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Algorithm 5.1: Security Requirement Verification
Input: List of Requirements R
Input: List of implemented Capabilities C
Output: True if all requirements are met, False otherwise
1 Let x instanceof y return True if and only if x is an implementation of a
(sub-)class of y;
2 foreach requirement r in R do

3 found = False;
4 foreach candidate c in C do
5 ‘ found = found V (c instanceof r);
6 end
7 if = found then
8 | return False;
9 end
10 end

11 return 7True;

5.4.2 Integration with Middleware Protocols

Mapping the unified security requirements data model to middleware protocols provides
full integration into existing communication stacks from ICT mainframes down to the
chip level of embedded controllers. A state-of-the-art middleware protocol for M2M
communication is the OPC-UA, which is expected to play a major role in future IIoT
production scenarios. Providing the data model in this language enables the communi-
cation of security requirements horizontally between distributed production sites and
vertically through all layers of production.

To this purpose, the security requirements data model outlined in Section 5.2 is imple-
mented using the OPC-UA language. This implementation enables OPC-UA clients
and servers to compare requirements and their implementations as described in Sec-
tion 5.4.1. OPC-UA provides an abstract base class type called BaseObjectType. A base
class RequirementType be defined as the central starting point for the trees depicted in
Figures 5.2 to 5.4 by subclassing the general BaseObjectType. From there, all child
nodes of the security requirements data model are placed in a subclass of their direct

parent node.
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Listing 5.1: Exemplary XML-representation in OPC-UA for AESEncryptionType [20]

O 00 J1 O W

10
11
12
13

14
15
16
17

18
19

20
21

22
23
24

<UAObjectType NodeId="ns=1;i=1005" BrowseName="AESEncryptionType">
<DisplayName>AESEncryptionType</DisplayName>
<References>
<Reference ReferenceType="1i=45" IsForward="false">ns=1;1=1004</
Reference>
<Reference ReferenceType="i=47">ns=1;1=6005</Reference>
<Reference ReferenceType="i=47">ns=1;i=6006</Reference>
</References>
</UAObjectType>
<UAVariable BrowseName="Mode" DataType="1i=12" Nodeld="ns=1;i=6005"
ParentNodeId="ns=1;i=1005">
<DisplayName>Mode</DisplayName>
<Description>The operation mode the AES is using.</Description>
<References>
<Reference ReferenceType="1i=47" IsForward="false">ns=1;1=1005</
Reference>
<Reference ReferenceType="1=40">i=63</Reference>
</References>
</UAVariable>
<UAVariable BrowseName="Key Length" DataType="i=5" NodeId="ns=1;i=6006"
ParentNodeId="ns=1;i=1005">
<DisplayName>Key Length</DisplayName>
<Description>The (maximal) key length the requirement supports.</
Description>
<References>
<Reference ReferenceType="i=47" IsForward="false">ns=1;1i=1005</
Reference>
<Reference ReferenceType="1=40">i=63</Reference>
</References>
</UAVariable>
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Figure 5.5: Security-related Dependencies in Production Lines [20]

An example of a leaf definition is shown in Listing 5.1. Lines 1-8 define the new
object type while the Lines 5-6 refer to the attributes of this object type definition using
the OPC-UA reference type HasComponent (i=47). Lines 9-16 then describe one
attribute in detail. Each attribute can have a different data type, which is referenced by
the DataType attribute in Line 9. The data type i=12 of the Mode attribute corresponds to
the string base type. An addition to those leaf attributes, the AESEncryptionType further
inherits all attributes of its ancestor classes and as such has quite a detailed description.
Being specified in the OPC-UA XML-language, the data model can easily be extended
and edited with off-the-shelf OPC-UA data model editors like the OPC-UA Modeler
provided by [145].
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Figure 5.6: System Architecture for Requirement Verification using OPC-UA [20]

5.5 Discussion

This chapter introduced methods for deriving and managing intrinsic and extrinsic
security requirements. The hierarchical, object-oriented security requirements data
model, introduced at the beginning of this chapter, enables the automated derivation

and management of such security requirements.

Documenting, propagating, and tracking requirements for software and systems are
common practice now; however, reconciling with requirements from external sources
involves regularly considerable manual effort. In particular, manufacturers and suppliers
across the supply chain require a unified data model to document and communicate

security requirements.

The automated, pattern-based derivation of security requirements supports the creation
of uniform requirements and measures catalogs. This method ensures that no risks are
missed, avoids the proliferation of non-consolidated ad-hoc solutions, and helps to focus
efforts on developing effective remedies. For many cases, several different security
controls are proposed, from which the optimal cannot automatically be selected yet, but
still rely on expert knowledge. This is owed to the fact that the provided SSML is not
sufficiently expressive to describe specific situations. However, this approach seems

preferable since the alternative would be an inapplicable and complex ontology. The
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included exemplary catalog of security measures is meant as a starting point that must
be adopted to the needs, capabilities, and use cases of each organization.

In contrast to most other requirements purposes, security requirements to be imple-
mented or already implemented can and should be systematically cataloged in order to
reach and maintain a consistent level of protection. Such a consistent level of protection
leads to a corporate security culture and can be achieved by a pattern-based inferring
from security goals at risk to high-level requirements. This is possible during the system
development, following the security-by-design principle, but also for retrofitting.

A problem yet hardly resolvable by automation are conflicting requirements. A real-
world example of this is a Chinese national requirement that all Electronic Vehicles (EV)
must continuously report their battery status to a remote data center [146]. As this
includes personal data, the method infers that this data must be adequately protected,
meaning that a connection must only be established after authentication of the data
center. In case of authentication problems, this leads to a conflict between the protection
of sensitive data on the one hand and the fulfillment of monitoring obligations on the
other, which cannot be solved without legal expertise.

While the presented security measures effectively decrease the risks to the SuE, their
monitoring for potential anomalies and handling of incidents, which violate the set

requirements and demand an iteration of the SRA are subject of the following chapter.
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6 Threat Detection, Correlation, and
Response

When incidents are detected, vulnerabilities disclosed, or IoC received, their impact
on the overall security situation must be determined, and an appropriate response im-
plemented. Since such events can mean a change in the risk landscape, they require
a short-term update of the security risk assessment. Addressing the question on how
to detect, analyze and respond to potentially disruptive changes of the security situ-
ation (RQ 4), this chapter introduces a set of appropriate tools to detect, categorize
and correlate incidents, and to reflect the resulting insights into the model for the SRA,
introduced in Chapter 4. This leads to a semi-automated pipeline from incident and

vulnerability detection to automated risk reevaluation.

For this purpose, concepts from my following earlier publications are adopted and
improved.

The concept of CPS-optimized acquisition and forwarding of network captures was
published as paper “Packet-wise Compression and Forwarding of Industrial Network
Captures” [22], which I presented at the 9th IEEE International Conference on Intelligent
Data Acquisition and Advanced Computing Systems: Technology and Applications in
2017.

The concept of combining machine learning with a hierarchic ontology for incident
classification, forwarding, and correlation to form a pan-European early warning system
for large-scale cross-company attack campaigns was published as paper “Detecting and
Correlating Supranational Threats for Critical Infrastructures” [27], which I presented
at the 15th European Conference on Cyber Warfare and Security in 2016.
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6.1 Introduction

“No plan survives contact with the enemy.”, Helmuth von Moltke the Elder

Since CPSs within critical infrastructures have become strategic targets for advanced
cyber-attacks, the provision of new defense techniques for their protection is a severe
challenge. Despite all taken measures, there is always a residual risk of successful
compromise, resulting in a critical situation. Interconnection across multiple networks
make CPSs vulnerable to network threats like an intrusion, exploitation, data extrusion,
or malware. Thereby, the main challenges are to detect related incidents, analyze them,
and draw reasonable conclusions.

The detection of anomalies in network traffic requires making network traces available
to the monitoring system. The analysis of detected incidents is necessary, primarily to
determine their full extent, and secondary to identify IoCs that may be present in other
affected systems but have not yet been recognized there. In a meshed ecosystem, it is
further essential to identify and prevent further compromises, within but also outside
one’s own organization. The detection of large-scale campaigns is, in particular, essential
for critical infrastructures and distributed CPSs.

Unfortunately, the absence of detected incidents does not imply that there is none.
One way to improve overall security is to exchange 10Cs to look for, such as (small)
time deviations in the network traffic that may point to a third-party device altering
values in a vehicle, or hard to detect but easy to spot deviations in the performance of a
specific CPS like a centrifuge [147]. Problems in the exchange of such 10Cs are the fear
of organizations to suffer disadvantages by publishing incidents and disclosing valuable
information about their technologies to competitors. Therefore, the unlinkability and
limited release of incident information on the need-to-know principle are essential for
organizations to provide detailed incident information. In particular, a limited release
of incident information is required to avoid market distortions but enable large-scale
correlation on the extend of campaigns.

A common practice to detect cybersecurity incidents in enterprise environments
are SIEM and NIDSs that monitor and validate transmitted packets but hardly meet
the specific requirements of CPS environments. To generally improve this situation, a

distributed supranational architecture supporting the automation of detection, classifica-
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tion, and mitigation of highly sophisticated cyber-attacks, targeted simultaneously at
multiple infrastructures, is presented. Upgrading IDS and SIEM solutions to better sup-
port CPS enables orchestrated incident management and correlation by a three-layered
architecture comprised of SOCs at organizational, national, and European level. The
approach combines machine learning and semantic reasoning: First, methods from the
field of machine learning are applied to analyze threat indicators of different granularity,
providing a classification of very specific observables collected at compromised sites.
Second, an analysis is performed to identify large scale correlations within an incident
knowledge graph, yielding insight into ongoing attack campaigns, especially regarding
the extent and expected impact. While optimized handling of network traces improves
local anomaly detection, the distributed incident communication architecture counters
advanced threats targeted against critical infrastructures by allowing the identification
of potential targets, which are likely to be affected or already compromised.

6.2 Packet-wise Compression and Forwarding of
Network Captures

While there are plenty of generic and domain specific NIDS, providing them with the
relevant data for proper analysis is a further challenge. Techniques for extracting and
providing this data are discussed in the following Section 6.2.1. The required bandwidth
and the amount of incoming data make transmitting all network records from CPSs in the
field, e.g., for a fleet of more than a million vehicles, to a remote NIDS an extraordinary
challenge. The thereby introduced side-channel further facilitates eavesdropping attacks
since the attacker can choose the more convenient channel for tapping, direct between
the functional sender and receiver, or on the connection to the NIDS. An approach to
significantly reduce the amount of exchanged data and provide some level of protection

is presented in Section 6.2.2.

6.2.1 Network Traffic Capturing, Forwarding, and Storing

Network capturing is the first step in acquiring useful datasets for further processing. To

maintain sufficient quality, it must be ensured that all networks of the monitored nodes
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are recorded. To protect integrity, the monitoring system should be passive, i.e., it should
have a write restriction to the line, so that the operation of monitored systems could
not be impaired at any time. Depending on the media and the connected components,
additional hardware interfaces might be required for the capturing. Ethernet oriented
communication systems can be tapped using standard network capturing software like
Wireshark, tcpdump, or scapy. In the case of serial network protocols, a conversion to a
packet-based format is required for IP-based forwarding. On the hardware side, network
probing, port mirroring, or software modules can be used at the communication endpoints
to probe the network. A Network Wiretap Device (TAP) is a probing device that enables
recording of the data transmitted across a network cable. Placed in front of a monitored
device, it can capture all sent or received packets but should not be able to actively
interfere with the monitored communication. Generally, TAPs are a viable choice to
integrate a monitor feature into legacy devices and infrastructure, as no modification
of existing components is required. Port mirroring is another technique, which can be
applied either at the network switch (in a star-topology) that connects the monitored
device or at the port of the device itself. While wiretapping is often easier to implement,
mirroring the receiving port guarantees that all packets are recognized precisely as the
machine receives them. Due to the required modifications, port mirroring is viable for
modern infrastructures or new devices but rarely an option for legacy environments. A
technique similar to port mirroring is to tap the data by a software implementation. In
this case, a specialized library aware of every network API call could be used to collect
the communication packets and send them to an aggregator. This option is viable for
the outgoing traffic of a control system where only specific packets have to be captured.
To allow forwarding of all incoming data, the monitoring network should be faster than
the monitored one, as the captured data is enriched by additional meta-information
like timestamps and system-conditions. As the captures are by now in a packet-based
state, they can be forwarded via standard TCP/IP communication, using state-of-the-art
encryption libraries where needed. The deduplication described in the following section
needs to be done before any encryption. While it can be necessary to restore captures to
their original form for further analysis, it is also a memory friendly option to store them
in a (time series) database in the compressed form, together with the decompression

scheme.
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6.2.2 Data Minimization by Deduplication

One approach to reduce the size of the captured data and minimize the transmission of
potentially confidential information is to replace frequent and critical content with IDs
from a lookup-table. This causes the network traffic to decrease over time because all
frequent network packets should become known in the lookup-table. When a new packet
is detected at the sensor, variable sections are determined and transmitted unchanged,

while the rest of the packet is merged into one sequence.

6.2.3 Private Encoding

A positive side effect of the deduplication method is the concealment of the retransmitted
data. More important, an eavesdropping attacker could not identify the original sender
and recipient of the packets, as the IP header deduplication covers this information and
omits them from the transmission in over 99% of the packets. An example for this
method is shown by Figure 6.1. The upper part of the figure shows the original packet,

while the deduplicated version, which may be eavesdropped, is shown below.

#0000 |45 00 |®® 5A 44 AA |4® 00 40 06 |AC 3C [Co A8 64 64 |[E..ZD.@.@..<..dd

#0010 |CO A8 64 02 |00 15 @7 7F |F3 E8 F4 19 C3 49 C5 59 ..d..........I.Y
#0020 50 18 44 70 |2D B4 |00 0@ 32 32 37 20 45 6E 74 65 [P.Dp-...227 Ente
#0030 |72 69 6E 67 20 50 61 73 73 69 76 65 20 4D 6F 64 |[ring Passive Mod
#0040 |65 20 28 31 39 32 2C 31 36 38 2C 31 30 30 2C 31 |[E (192,168,100,1
#0050 |30 30 2C 34 2C 32 35 29 @D OA 00,4,25)..

#o000 |18 2A 10 00 5A 44 AA AC 3C F3 E8 F4 19 C3 49 . |»..ZD..<..... I
#e01@ |Cb 59 2D B4 48 |07 .Y-.H.

Figure 6.1: Example of the Deduplication Effect on an FTP Packet [22]

The marked parts resemble the original data and their substitution by an ID. Most
valuable information, i.e., sender and recipient addresses, ports, and actual payload,
cannot be derived directly from the deduplicated packet. Using this online deduplication
approach, an attacker is not directly able to infer the meaning of the transmitted IDs. As

the IDs are only once transmitted with their corresponding byte sequence, an attacker is
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only able to reassemble the original packets if he already captured this packet during
the learning phase. In practice, this leads to a system that is vulnerable during start-up
and becomes highly specialized to the needs of the sender and receiver over time while
building up a customized protocol of IDs, which are private only to the sending and

receiving node.

6.2.4 Discussion on the Packet-forwarding Approach

Since the majority of industrial network captures consist of frequent, low-entropy status
messages, connection specification deduplication enables significant traffic reduction
while providing additional privacy by preventing content information from repeated
transmission. As shown in Table 6.1 of [22], deduplication in combination with zlib or

alone performed better than the traditional, stateless zlib compression.

Table 6.1: Data Reduction Evaluation for Different Datasets [22]

Number of | Original | zlib | Deduplication | Combined

Dataset . . . .

packets size ratio ratio ratio
Modbus [125]
run8.pcap 72186 5008499 | 0.96 0.88 0.86
channel_2d_3s.pcap 383312 17449820 | 1.17 0.71 0.90
runl1.pcap 72498 4955264 | 0.96 0.87 0.87
runl_3rtu_2s.pcap 305932 15870003 | 1.05 0.69 0.81
4SICS - S7 [126]
151020.pcap 246137 18000708 | 0.91 0.36 0.46
151021.pcap 1253100 | 101191303 | 0.85 0.55 0.53
151022.pcap 2274747 | 139975880 | 1.02 0.71 0.78
Office Network [124]
KDD’99 Day 1 1362869 \ 280299459 \ 0.81 0.93 0.76
Self Recorded Robot
lab.pcap 10120 \ 3227398 \ 0.39 \ 0.95 \ 0.36

The reason for this is that industrial network protocols, unlike office network protocols,
use small but very frequent packets. Thereby, the limited set of header field combinations,
like source, destination and parameters, but also frequent payload are efficiently substi-
tutable parts. For high entropy data like encrypted network traffic, or the fast-changing

position reports of a production robot, deduplication of packet payload is hardly effective.
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Even in such cases, the reliable savings through deduplication of packet headers prevents
an overhead in the long term.

While the usage of offline compression algorithms can achieve a much higher reduction
of data size, these require knowledge of all data to be processed, i.e. they rely on
processing the data in blocks. Doing an online data deduplication only based on prior
packets allows for removing redundancy between packets while future data is still
unknown. In cases where adequate protection is required due to confidentiality of the
captured data, the concealment substitution of process specific parameter to unspecific
identifiers is often not sufficient, as an attacker that monitors the connection from
the beginning can also create the corresponding lookup-table. Instead, conventional
measures like TLS encryption are necessary and applicable, as they do not interfere

each other.

6.3 Incident Categorization and Threat Correlation

The increasing levels of interconnection and interdependency of CPSs have significantly
enlarged their attack surface. Disruptions of vital systems such as energy, communication,
or transportation may substantially affect modern society. While there has been research
effort for protection of isolated domains within single nation states, it is still an open
question how to effectively implement a pan-European incident management system
handling threat detection, large-scale attack correlation, and early warning. This becomes
even more challenging in the light of multistage attacks exploiting interdependencies.
Advanced threats such as Emotet [148], Stuxnet [147], and Dragonfly [149] are on the
rise while the extent and full impact of future similar attacks are not predictable at present
time. Only performing large-scale threat detection on a, e.g., pan-European level will
provide full situational awareness regarding cyber incidents. Threat information highly
varies in granularity and completeness. Noisy and low-level threat information gathered
within single sites provides detailed local information but misses the relationship to the
overall threat situation. In contrast, large-scale correlation technologies are not suited to
process the vast amount of detailed and noisy threat information data collected locally.
To fit local information into the overall context, machine learning classification for low-
level data is combined with semantic reasoning, facilitating situational awareness, early

warning to possibly affected critical infrastructures and optimal mitigation strategies.
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6.3.1 Feature Diversity

In this section, the diversity of fine-grained and coarse-grained features for threat analysis

are exemplary highlighted. Potential feature sources are described in [150].

Fine-Grained Features

There is a magnitude of low-level features that would be suited for decision tree classifi-
cation. While the features for a real-world implementation need to be selected according
to evaluation of the running detection system, some exemplary features are presented

here for illustration.

Non-Executable File Features Features for the classification of non-executable files
may include meta-data and detailed characteristics of the file. The choice of
features strongly depends on the specific deployment of the classification module.
For example, if the malicious file is an instruction list for a field level PLC, features
could be identifier, input, mode, time basis, programmed value, actual value, and
modifiable flag of specific sections.

Executable File Features Features for executable files may include characteristic fea-
tures such as Application Binary Interface (ABI), system calls, type of subroutines
(File I/O, Threat, Network, GUI, Registry), number of branches in specific sections,
exported functions, or mutexes.

Network Traffic Samples Features of network captures may include information about
packet sizes, throughput, session frequency, flow direction (depending on the
initiating system of the communication), protocol and protocol settings, and
entropy of messages.

Sensor/Actor Features Typical features for sensor and actor communication are con-
trol message frequency and set values (e.g. temperature values in a predefined

time, liquid level, or voltage).
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Coarse-Grained Features

Similar to selecting low-level features, there is a multitude of choices for high-level
features that can be selected for reasoning. The following features are exemplarily

chosen, motivated by [119] and shall give an impression about the various possibilities.

Attack Vector and Line of Action Based on the incident analysis, it is important to
reconstruct the initial attack vector as part of the overall line of action the attacker
used. While most incident reports provide only the initial attack vector of an attack,
the exact line of action supports the attacker recognition as they often follow an
individual procedure (same moving pattern, tools, and methods) to perform their
tasks across different victims.

Infection and Stealth Mechanisms Infection and stealth mechanisms such as Mas-
ter Boot Record (MBR) infection, hiding in partitions, or interrupt and message
hooks can also be considered. Further features for large-scale correlation are en-
crypted network communication, number of distinct IP addresses, steganographic
capabilities (e.g. DNS tunneling), and fast-flux exfiltration.

Injection Targets Injection Targets may include specific servers and services, infected
databases, targeted sensor and actor components, and network infrastructure (e.g.
connection to Enterprise Resource Planning (ERP) systems).

Target Environment The target environment features of an attack may include informa-
tion about the domain and zone where it is installed and operates, the connectivity
and the surrounding ICT infrastructure.

Time and Periodicity Attacks often follow a characteristic timing behavior. Malicious
programs for example communicate to their command and control servers in
predefined time frames. The periodicity and timing can reveal valuable unique
patterns. Another example is given by the timing of multi-stage attacks. If there are
several local IoCs in a row, the timing of such a sequence may reveal a particular
already known threat pattern.

Impact The impact features include information about the local impact on the affected
machine(s) like a loss of functionality, manipulation of processed or displayed
values, remote control, malware spreading, or a permanent destruction of the
component. The observation of several known [oCs at different devices within

one group may also reveal an already known threat pattern.
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Interdependencies to Critical Infrastructures This feature includes information about
relations of parts or services on which other critical infrastructures depend. This is
necessary to correlate attacks and identify the direct and indirect affected victims.
It is especially important, as it is possible that the attack was just a single step of
a large-scale campaign with the aim to disturb the operation of another critical

infrastructure by breaking its supply chain.

6.3.2 Feature Harmonization

To get overall situational awareness data from low-level sources must be fused with
abstract and general environment data. For example, if a malicious executable is found
by a locally installed SIEM system and this local information is to be fitted in the
pan-European context, fine-grained information about the malicious executable must
be combined with high-level information data: Where has this file has been sighted
in the past? Under which facility environment? Which mitigation strategies where
applied in reaction? In a twofold approach to the analysis of threat information, low-level
data is first processed and classified locally using methods from the field of machine
learning. Second, semantic thinking is used to understand how to integrate the results
of this classification into the overall threat landscape. Classifying a given sample means
assigning predefined labels. If there are multiple labels to be assigned to the sample, the
approach is referred to as multi-label classification, while for more than two possible
classes that can be assigned to the sample, multi-class classification methods are used.
In a supervised learning setting, the classifier is given a set of training samples together
with corresponding labels. In the learning step, the classifier processes this training
set to adapt its parameters. When given an unknown sample not in the training sample
set, the trained classifier assigns a label to the sample based on the preceding training
step. This way, unknown and noisy samples can be classified. There is a diversity of
classification methods that suit the purposes of handling noisy fine-grained features, e.g.,
linear classifiers, support vector machines, kernel methods, neural networks, decision
trees, or random forests. Regardless of which method is applied, the classifier takes
as input a set of fine-grained features and a sample threat to be classified and outputs
a set of classes. Such a mapping from fine-grained features to class labels provides a

common level of abstraction for the IoCs, which is necessary for subsequent semantic




6.3 Incident Categorization and Threat Correlation 95

reasoning. In general, classification of low-level features of suspicious files or network
traffic can detect labels of a predefined set. The detected classes are then redirected to

the semantic correlation module (OM).

6.3.3 Threat Correlation

The threat labels gained from fine-grained feature classification are now on a comparable
level of abstraction with other [oCs gathered from SIEM and IDS solutions. This
enables correlations with previous threats by semantic reasoning. To correlate threats,
coarse-grained features as presented in Section 6.3.1 must be aggregated and processed.
Knowledge graphs archive and relate the detected class labels, coarse-grained feature
vectors, and IoCs. This enables the formulation of a variety of queries to search for
connections and patterns.

A BOK hosted and maintained by the Security Operations Center at European Level (E-
SOC) serves as a growing repository of technical information about incidents, samples,
coarse- and fine-grained features, and the relations between them. All information is
stored in a unified manner using a hierarchical incident ontology, extended with [oCs and
system feature classification schemes. The BOK serves search requests from each SOC
where required. The identity of the information source (the affected operator) and all
related references are stored pseudonymized and only get disclosed when a substantial
interest is justified. By accessing the BOK, previously identified attack patterns are
recognized, correlated and conclusions about the expected attacker behavior and their
final target can be drawn. For example, an operator recognizing an attack can send
requests to the BOK regarding the expected next steps of the attacker, the impact to be
expected, or the potential final aim of the attack. An individual Local Knowledge Graph
(LKG) is hosted and maintained by each SOC. It serves as a memory for restricted or
sensitive individual information like detailed system descriptions and configurations,
business dependencies, and organizational structures. Security Operations Center at
National Level (N-SOC) and E-SOC particularly are aware of interdependencies of
supervised CPSs and know their respective technical services. While direct relations
between two operators are rather obvious, it becomes complex to identify linkages across
a whole supply chain. This is because dependencies between operators can appear not

only in directed forms like supplier-consumer or service-provider, but also include cases
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where two or more operators depend on each other. Therefore, it is necessary to track

and solve interdependency information across all SOC layers.

By using machine learning technologies to fit information into an incident manage-
ment ontology, consistent relations and classes that enable an automated analysis can
be received. Further, implicit information in the knowledge graph is made explicit by
inference reasoning and can then be retrieved using a semantic query language. Auto-
mated reasoning results trigger Computer Security Incident Response Team (CSIRT)
on incidents that would otherwise stay undetected, like e.g. accumulation of incidents
sharing a minor common feature. This solution includes different threat detection and
correlation steps to be performed at each SOC level. The necessary information is
exchanged using STIX [136] messages in combination with RDF/XML triples in the

common ontology.

In order to derive context information, the semantic reasoning module performs an
inference from the detected features and the information from the LKG and BOK. During
all phases of the analysis, each new information is submitted to the N-SOC, including
all IoC, classes, performed measures, and information about the affected systems and
services. This processing enables a more efficient local incident handling compared to a
sole CSIRT that tries to handle the actual situation.

The correlation module supports the N-SOC with a correlation of incidents on a
national level, identification of expected impacts, and issuing of specific warnings
to operators of critical infrastructures. To find common patterns between distributed
incidents, the features labeled by the classifier and reported by the Security Operations
Center at Organizational Level (O-SOC) are matched with those of prior and current
situations using the semantic reasoner. By correlating the received incident notifications
from multiple O-SOCs, the N-SOC can gain insight regarding the severity and extent of
the campaign, further potentially vulnerable systems, and reveal hints about possible
attackers. Operators of potentially vulnerable CPSs are immediately alerted by the N-
SOC to watch out for the found IoC and to take appropriate actions as described by [94].
Beside the incident management support, the N-SOC also serves as a filter for messages
between the E-SOC and the O-SOC. It forwards information about features, classes,
and relations detected by the O-SOC to be added to the BOK by the E-SOC. During

this process, it generalizes sensitive features such that they reveal no sensitive business
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information about the O-SOC. In the other direction, the N-SOC forwards warnings from
the E-SOC to the O-SOCs where required. Further, the correlation module supports
the E-SOC on its task to monitor and coordinate the activities of the N-SOCs. Therefore,
it supports the detection of (large-scale) attack campaigns and the issuing of specific
warnings to operators of critical infrastructures. Additionally, the correlation module
resolves dependencies between different critical infrastructure domains. As the N-SOCs
submit only non-sensitive and generalized (the classes of sensitive context) information
due to privacy reasons, the E-SOC operates on coarser-grained information. The E-SOC
searches large-scale attack indicators by correlating input from the N-SOCs, the LKG, as
well as the common BOK. Thereby, accumulations of striking patterns such as domains,
areas, and timings, as well as targeted supply chains can be detected. The STIX alert
messages sent from the E-SOCs to the N-SOC include a list of classes and 1oCs that
are assumed to be at risk. This leads to a situation specific early warning for operators
of similar or dependent systems across borders without revealing sensitive information

about threats or operators.

6.3.4 Architecture and Data Flows

The overall architecture of the correlation module (CM) is depicted in Figure 6.2,
Monitoring modules (M) of each system forward the recorded samples to the feature
aggregator (FA). Coarse-grained feature values are directly extracted and forwarded
to the semantic reasoning (SR) module. Fine-grained features are first classified in
the Fine-grained Feature Classification (FFC) module. The resulting class labels are
then forwarded to the OR module. The coarse-grained features values as well as the
class labels for the reported incident are then correlated to the LKG and the BOK. As
depicted in Figure 6.3, each SOC deploys its own CM. The correlation modules share
one BOK. In practical implementations, this BOK is mirrored, to provide backup and
recovery in order to minimize the risk of a potential outage of this central component.
The O-SOC CMs forward both, suspicious and confirmed [oCs to the respective N-SOC,
which takes the received data to perform correlation of national threats. The N-SOC
then forward correlation results to both, the E-SOC and the related O-SOC. In case
the FFC of an O-SOC cannot label a given sample to a predefined class, it forwards
the monitored sample to the N-SOC. Similarly, if the N-SOC FFC cannot find a fitting
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label, it forwards the sample to the E-SOC. This way the N-SOC and the E-SOC are
capable of finding and defining new class labels for anomaly patterns that are unknown
to the O-SOC. The O-SOC FFC parameters for classification and class label lists are
regularly updated with the findings of the N-SOC, and analogue the N-SOC FFC receive
updates from the E-SOC.

6.3.5 Discussion on the Incident Correlation Approach

The proposed method includes a definition of common, machine-readable levels of
abstraction by transforming fine-grained features into coarse-grained classes. This
classification pre-processing allows correlating threat information to potential attack
patterns. Correlation is done at operational, national, and European levels, and local
and global knowledge graphs are defined in order to provide separation of sensitive
information and sharing of correlation insights with potentially affected operators. While
classification is provided by methods from the field of machine learning, semantic
reasoning is used to correlate and detect new attack patterns. The knowledge graphs
store [oCs, which enables the formulation of a diversity of queries in order to search
for correlations and patterns. As new correlation insights are directly propagated to
the N-SOC and E-SOC, the system provides a basis to cast early warnings to dependent

critical infrastructures.

6.4 Reflecting Changes in the Security Landscape

A proper response to security-relevant insights requires a short-term examination and
assessment of their influence on the current situation. From a risk perspective, changes
in the security landscape may affect either the impact or the likelihood of risks. The
first step thereby, is to determine its particular relevance for the SuE. An automated
determination requires unified identifiers, such as provided by the Common Platform
Enumeration (CPE).

Changes to the impact are typically not bound to a specific implementation, but occur
due to updated ratings, new use cases, or processes that impose penalties. A usual reason

for changed ratings in the automotive and industrial domains are carry-on-parts, that
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are used in a platform concept for different products, such as car models. Updating
the impact ratings in the model is straightforward by modifying the affected CILs and
propagating the changes along the dependency tree.

The likelihood can change due to deviations in the attacker model, the system model,
or the threat mitigations. Additional attacker capabilities can cause severe distortions,
e.g., by disclosed information, when expensive, bespoke tools can be substituted cheaply,
or a vulnerability can be exploited. Depending on the individual situation either the
affected threat capabilities, or (more likely) threat factors of the modeled implementations
must be adjusted. In the second case, it is necessary to reassess the relevant threats
to consider the individual effect on each affected security goal. Given a sufficiently
detailed model, this process can be automated by inferring the effect to each affected
implementation [23]. Alteration of the overall SuE can create or eliminate potential
attack vectors. In such cases, the model must be updated to reflect the new structure and
the individual assessments of the changed implementations. The impact propagation is
thereby performed like for a new model. While the practical effects of invalidated threat
mitigations can be manifold, the required alterations of the model are comparatively
simple. In case of a complete ineffectiveness, the mitigates relation between the Threat
the Threat Mitigation has to be removed. In the more common case of changes of the
capabilities required to implement a threat, the relevant risk factors must be adjusted. A
demonstration for such an adjustment is shown in Section 7.4.3 of the following chapter

on the evaluation of the presented methods and processes by a realistic use case.
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7 Use Case Evaluation

This chapter demonstrates the application of the security risk assessment and require-
ments derivation methods and procedures introduced in Chapter 4 and 5, by a simplified
but recent use case from the automotive domain.

Initially, the context of the use case, a regenerative vehicle brake, is established by
an overall introduction to the SuE in Section 7.1. Next, a model of the brake system is
created in Section 7.2 and analyzed for security risks in Section 7.3, both as described
in Chapter 4. Subsequently, the application of the methods and processes described
in Chapter 5 for deriving and managing security requirements, and in Section 6.4 for
the mapping of vulnerabilities, is demonstrated using the work product of the SRA in
Section 7.4.

7.1 Introduction: Regenerative Vehicle Brake

Regenerative brakes are a homogeneous part of the energy management of electric and
hybrid vehicles, including buses.

By converting kinetic energy into storable electricity, regeneration significantly re-
duces fuel consumption and brake pad wear. In contrast to conventional braking systems
where the torque is converted into unwanted and wasted heat due to friction in the brakes,
itis used here to reload the batteries. This concept is taken to the extreme by regenerative
commercial vehicles such as the Swiss eDumper dump truck [151], which uses the energy
collected during a loaded downhill run to drive back up again unloaded. Unfortunately,
regenerative brakes in regular vehicles neither work with a fully charged or hot battery
nor is their braking torque usually sufficient to ensure the necessary driving stability
under traffic conditions. A detailed discussion of this technique is provided by [152]. In
addition to deceleration, the braking system can release additional acceleration torque

reserved for traction control.
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Figure 7.1: Use Case - Regenerative Brake Architecture

From a security perspective, the regenerative brake is a quite interesting example of
a sensitive CPS. It attracts technically interested vehicle owners, professional tuners,
saboteurs, and competitors alike despite severe consequences. Vehicle owners and tuners
want to unlock torque or increase energy recovery, both at the expense of driving stability.
Saboteurs target the integrity as a brake can decelerate, but even worse, accelerate as
part of the stabilization program. Besides, competitors may be interested in reverse-
engineering the braking system to gain valuable know-how about optimal configurations
for comfortable and efficient motion management.

Based on the architecture shown in Figure 7.1, the use case sequence of a typical
braking situation is illustrated in Figure 7.2. The brake trigger, i.e., the pedal, lever, or a
driving assistance program, sends a signal to the Electronic Stability Control (ESP)-ECU,
which orchestrates the conventional and the regenerative brakes (C-Brake and R-Brake).
The further relevant signals, such as the current speed, battery status, and friction are
received via a communication gateway (GW) from the residual vehicle.

In addition to the presented parts, modern braking systems include several feedback
signals, programs for driving stability, dynamics and motion management, effect chains,

communication and failure paths as well as distance and error memories.
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Although considering these things would emphasize the need for automation, they

are omitted here for the sake of clarity.
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Figure 7.2: Use Case - Braking Sequence Diagram
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Listing 7.1: Use Case - Basic System Model

# Compon
CGW a

C ESP a
CRB a
CCB a
CPT a
# Functi

FGW a
F ESP a

F_RB
F CB
F PT

Q QO Q

# Data

D GW-ESP
D ESP-RB
D ESP-CB
D ESP-PT

# Connec
N_GW-ESP
N_ESP-RB
N ESP-CB
N_ESP-PT

ents

Component ;

Component
Component
Component
Component

ons
Source
Function

Sink
Sink
Sink

Data
Data
Data
Data

Q0 O Q

tions

a Connection ; transmits D GW-ESP ;
a Connection ; transmits D _ESP-RB ;
a Connection ; transmits D ESP-CB ;
a Connection ; transmits D_ESP-PT ;

’

label "Gateway"

label "ESP ECU"

label "Regenerative Brake"
label "Conventional Brake"

label "Engine"

produces
consumes
produces
consumes
consumes
consumes

D GW-ESP .
D GW-ESP ;

; stores D GW-ESP ;

hosts
; hosts
; hosts
; hosts
; hosts

F GW
F ESP .
F RB
F CB
F PT

D_ESP-CB, D _ESP-PT, D ESP-RB .

D_ESP-RB .
D ESP-CB .
D ESP-PT .

label "Vehicle Status"
label "Deceleration Torque"
label "Deceleration Torque"
label "Acceleration Torque"

’

’

’

’

connects
connects
connects
connects

F oW ,
F ESP ,
F ESP ,
F ESP ,

F ESP .
F RB
F CB
F PT

7.2 Model of the System under Evaluation

As described in Section 4.2.4, the first step of an assessment is the development of a

usable model from the available information. Using the provided SSML, the architecture

of the SuE, shown in Figure 7.1, is described in Listing 7.1. To support clarity, the label

properties in the listing refer to those used in the figure. The security-relevant extensions

are subsequently derived and augmented by the impact and threat analyses.
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7.3 Security Risk Assessment

In this section, the SRA process, specified in Chapter 4 is demonstrated. In line with the
quest for a high degree of automation, the majority of the analysis is based on assessment

catalogs for the relevant criteria and ratings.

7.3.1 Impact Assessment

The impact assessment involves the initial rating, propagation, and annotation of the CILs
to the security goals, as specified in Section 4.3. Therefore, two tables are created from
the basic system model. Table 7.1 describes the propagation of inputs to the SuE
and their top-down propagating security objective confidentiality. The results of the
bottom-up propagated security objectives, i.e. integrity, availability, authenticity, and
non-repudiation, are then displayed in Table 7.2. The derived CILs are annotated to
the corresponding security goals, with the initially provided ratings printed in bold.
Since logging functions are not in the scope of this use case, the security objective

non-repudiation is left unconsidered in the further assessments.
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Table 7.1: Use Case - Top-Down Propagating Impact Ratings

Instance || Description CILcyy | Vector  Rationale
Fow Routing Function 1 max(1, Dgw_gsp)
Cow Gateway 1 Fow
. . .. Personal data
Dgw_gsp || Residual Vehicle Data 1 Intrinsic (speed, traction)
Transmits Dy _gsp
New-gsp from Fy t0 Fegp 1 Dew-gsp
F Calculates the individual 3 Intrinsic: Intellectual
ESP commands from Dgy_gsp " property
Cisp ESP ECU 3 Frop
) . Intellectual
Dgep_gp || Signal to regenerative brakes 3 Frop property
Transmits Dggp_pp
Nesp-rp from Figp t0 Fg 3 Dgsp_rp
Frp Regenerative brakes function 3 Disp_rp
Crs Regenerative brakes ECU 3 Fyg
Dggp_cp || Signal to conventional brakes 0 Intrinsic ~ No damage
Transmits Dggp_cp
Nesp-cp from Figp t0 Fg 0 Dgsp_cp
Feg Conventional brakes function 0 Disp_cp
Ces Conventional brakes ECU 0 Fg
. . .. Intellectual
Dggp_pr || Signal to powertrain 2 Intrinsic property
Nesp_pr Fransmits Desp.pr Dgsp_pr
from Figp to Fpp
For Engine Control Function 2 Dgsp_pr
Cor Powertrain ECU 2 For
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Table 7.2: Use Case - Bottom-Up Propagating Impact Ratings
Instance | CIL, CIL,, CIL,, CILyg | Vector  Rationale

Cow 4 3 4 2 Fow
Fow 4 3 4 2 Dgw_gsp
Ngw_gsp 4 3 4 2 Dgw_gsp
Dgw_gsp 4 3 4 2 Fesp
Crsp 4 3 4 2 Fyop
Fesp 4 3 4 2 max(Dgsp_rp: Desp_cr> Desp—pr)
Nesp_rs 3 1 3 1 Dgsp_rp
Dgsp_rp 3 1 3 1 Fre
Crp 3 1 3 1 Fyg
Aut: Self-braker
Frp 3 1 3 1 Intrinsic ﬁl\?'BlztErake failure
NR: Forensic
Ngsp_c 3 3 3 2 Dgsp_cs
Dggp_cg 3 3 3 2 Feg
Cep 3 3 3 2 Feg
Aut: Self-braker
Feg 3 3 3 2 Intrinsic ﬁ:?'BitErake failure
NR: Forensic
Ngsp_pr 4 3 4 2 Dggp_pr
Dggp_pr 4 3 4 2 For
Cor 4 3 4 2 For
Aut: Self-accelerator
For 4 3 4 2 Intrinsic ﬁl\‘zaB]f)Itl}% ine failure
N-R: Forensic
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7.3.2 Threat Assessment

The threat assessment takes place after the impact assessment, as described in Section 4.4.
Itinvolves the assessment of the relevant attacker models, which define the expected PAPs,
the derivation of the security goal-specific RAP, and the costs-benefits ratio from an

attacker’s point-of-view.

Attacker Model and Motivation

Deemed relevant attacker types for this use case are the vehicle owner, the professional
tuner, the (remote-)saboteur, and the competitor. Their individual estimated PAP, based

on historical data, expert knowledge, and ground truth, is shown in Table 7.3.

Table 7.3: Use Case - Attacker Model Specific Attack Potential
Attacker Model H Expertise Knowledge Equipment Time  Type of Access

Vehicle Owner Layman Public Standard Days Easy

Professional Tuner || Proficient Restricted Specialized Weeks Moderate

Competitor Multiple Restricted Multiple Months Difficult
experts bespoke

Saboteur Proficient Public Specialized Weeks Remote

Attractive targets for the vehicle owner and the tuner are performance-tuning by access
to acceleration reserved for the exclusive use by the ESP, and efficiency-tuning by
shifting deceleration torque from conventional to regenerative braking, whereby the
safety-relevant deceleration stability is sacrificed in favor of energy recovery. Both, the
tuner and the owner intend to manipulate the regenerative brake and engine (powertrain)
functionality by manipulation of components, connections, and data, or by injection of
commands. The tuner shares the interests of the vehicle owner, but has considerably
higher capabilities, including access to a fully equipped workshop where he can replace
and manipulate components. Factors for apprehension and conviction are here not
considered despite a serious risk of accidents in case of improper manipulation. The
assumed monetary and psychological benefit of a vehicle owner by disclosing information
about his braking signals is rather small, as the value is not the individual signals but

the underlying control-algorithm. Assuming costs of several hundred Euros for the
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equipment, training, and time for the extraction, compared to a quantified psychological
benefit of at best a thousand Euros, the probability is low, according to Equation 4.4 on
page 59. The reverse-engineering required to make attractive use of this data (e.g., for
in-vehicle displays) increases costs by several thousand Euros, reducing attractivity for
the vehicle owner and tuner to a negligible value.

Reverse-engineering of the novel regenerative brake control-algorithm is of particular
interest for the competitor attacker model, who intends to acquire valuable know-how for
the improvement of his products. To this end, he makes considerable efforts, including
the provision of specially equipped laboratories and experts in various fields.

The immobilization or impairment of the vehicle to the detriment of the vehicle owner
is solely the intention of the saboteur attacker model. Therefore, he intends to affect the
availability and integrity of the overall SuE. Since these intentions diametrically oppose
the vehicle owner, the saboteur is limited to a remote, occasionally external access to
the vehicle, while the owner, tuner, and competitor have unlimited physical access.

The motivation of the different attacker models to violate a security goal is indicated

in Table 7.5 on the next page by bullets ().

Required Attack Potential

The generic RAPs that an attacker has to expend to violate a security goal is taken from
a prepared catalog, as shown in Table 7.4, and annotated to each corresponding security
goal. In practice, these estimations strongly depend on the used technologies and should
be refined according to the implementation details. The individual capability of each
considered attacker model to impair a particular security goal of the SuE is visualized
in Table 7.5 by squares ([]).
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Table 7.4: Use Case - Required Attack Potential per Threat and Instance Class

Threat InCs;zI::e Expertise Knowledge Equipment  Access Time | Example
Function Layman Public Standard Remote  Days | Manipulate input
Spoofing Component || Proficient Public Specialized Moderate Hours nstall mqnlpulated or
counterfeit component
Data Proficient Public Standard Remote  Days Manip ula.te stored
or transmitted data
Function Expert Restricted ~ Specialized Easy Hours | Software manipulation
. Component Expert Restricted ~ Specialized Moderate Days | Hardware manipulation
Tampering Manipulate
Data Proficient  Restricted Standard Remote Days P
stored data
Connection || Proficient Restricted Standard ~ Moderate Hours Man{pulate .
data in transit
o Function Expert Restricted Standard Remote  Hours | Manipulate logging
Repudiation . . L .
Component || Proficient Restricted  Specialized Easy Hours | Manipulate stored log
ftwe se-
Function Expert Public Specialized Remote  Weeks So .ware. reverse
. engineering
Information Hardware reverse
Disclosure | Component Expert Public Specialized Moderate Weeks . .
engineering
Data Layman Public Standard Remote  Hours | Data extraction
Connection || Layman Public Standard Easy Hours | Eavesdropping
Function Layman Public Standard Remote  Hours | Disrupt computation
Denial of Component | Layman Public Standard Easy Hours | Break component
Service Data Layman Public Standard Remote  Hours Delete or damage
stored data
Connection || Layman Public Standard Easy Hours | Disrupt connection
Elevation of | Function Proficient  Restricted Standard Remote  Weeks Unautho.rlzed use
Privilege of Functions
g Component || Proficient Restricted Standard Remote  Weeks | Add functions

Table 7.5: Use Case - Attractive () and Capable ([J) Security Objectives

R.l sk . Vehicle Owner Tuner Competitor Saboteur
Situation

Instance || Conf Int Ava Aut | Conf Int Ava Aut | Conf Int Ava Aut | Conf Int Ava Aut
Cow 0 O [ 0 0 0 . .
Fow O O . [*] O O O o [ [
NGw_gsp O . O O . O O O O . .
Dgw_gsp [ 0 O [« O 0 0 O O 0 0 e [ [
Cisp 0 . O [ [*] 0 0 . .
Fesp ° U [*] * U [*] [] U O * o] [
Nisp_rp [ . 0 [ . 0 [« O O . .
Dgsp_gs g ® O * g [«] O [*] [*] | O O n ° ] [
Crp O . O [ [*] O O . .
Frp o U [ « O [ o O [ [
Nesp_cn [ 0 [ 0 0 O O . .
Dgsp_cy [ 0 [ 0o O 0 0 O O 0 0 e [] [
Cep O O O O O O . .
Fep 0 0 0 0 0 0 0 e [ [
Ngsp_pr [ . 0 [ . 0 0 O O . .
Dggp_pr O . O . O [ O [ [« O O O O o [ [
Cor U - O [ O O O o« e
Fyr . O [ . O [¢| O 0o O o [ [
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7.3.3 Risk Calculation

The individual risk to each security goal is calculated from the probability and impact
values, as described in Section 4.5, and shown in Table 7.6. The capable but unattractive
risks are considered to be low since there is always the possibility that an attacker might
inadvertently execute even unattractive threats. Materializing these risks by carrying
out the relevant threats is comparatively simple. To reach their goals, the vehicle owner
and tuner simply have to inject their own commands for the engine and the brake
control function into the vehicle bus network. The competitor could simply download
the functions and study the components and signals to learn about the functionality.
As practically all modern vehicles have at least one remote connection, also remote
manipulation is possible by the saboteur.

To reduce the identified risks, some of which are very high, appropriate threat mit-
igation is necessary. A demonstration of the methods introduced for this purpose in

Chapter 5 is the subject of the following section.
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Table 7.6: Use Case - Security Risks (unmitigated)

R,l sk . Vehicle Owner Tuner Competitor Saboteur
Situation
Instance Conf Int Ava Aut |Conf Int Ava Aut Conf Intt Ava Aut | Conf Int Ava Aut
Cow Low Low ;llegrl}l/ Low Low Low Low Low
Very . Very
Fow Low Low Low Low high Low Low Low Low High high
Now_gsp Low Low Low Low Low Low Low Low Low Low Low
Very . Very
Dgw_gsp Low Low Low high Low Low Low Low Low Low | Low Low High high
Very .
Cgsp Low Low Low high High Low Low Low Low
Very Very . . Very
Fgep Low Low high Low Low high High Low Low Low High high
Nisp_grp Low Low Low Low Low Low High Low Low Low Low
Dgsp_rp Low Low Low Low | Low High Low High High Low Low Low | Low Low Low High
Crp Low Low Low High High Low Low Low Low
Fyg Low Low High Low Low High High Low Low Low Low High
Nisp_cn Low Low Low Low Low Low Low Low Low
Dggp_cp Low Low Low Low Low Low Low Low Low Low | Low Low High High
Cep Low Low Low Low Low Low Low Low
Feg Low Low Low Low Low Low Low Low High High
Nesp_pr Low Low Low Low Low Low Low Low Low Low Low
Very Very . Very
Dggp_pr Low Low Low Low | Low high Low high Moderate Low Low Low | Low Low High high
Very
Cor Low Low Low high Low Low Low Low Low
Very Very . Very
For Low Low high Low Low high Low Low Low Low High high
O No
B Low
O Moderate
@ High
W Very high
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7.4 Derivation and Management of Security

Requirements

This section encompasses the derivation of intrinsic security requirements, as described
in Section 5.3, under consideration of an extrinsic requirement, as described in sec-
tion 5.4.

7.4.1 Extrinsic Security Requirements

The example of the extrinsic security requirement of this use case is a regulation that
requires brake signals to be authenticated, while encryption is prohibited. According to
the unified security requirements data model, described in Section 5.4, in particular Fig-
ure 5.3 on page 71, this translates to an extrinsic security requirement for the functional
security requirement authentication, that demands use of a null cipher suite [153] for

the relevant connection.

7.4.2 Intrinsic Security Requirements

The risks, previously shown in Table 7.6, implicitly indicate the need for proper mitigation
at an abstract level, such as the integrity of Dg¢p_rp must be protected due to a high
risk. To refine these abstract requirements in an actionable way, security controls from a
catalog are recommended and presented in Table 7.7. Specific dependencies that need
to be considered when implementing the recommended security controls are indicated.
For this use case, these are Secure Key Management (KM), Secure Implementation (SI)
and Secure Network Configuration (SNC).

To reduce the remaining risks for the confidentiality of data and connections to an
acceptable level, either encryption or access control can be used to increase the RAP.

With regard to the extrinsic requirement, the encryption-based security controls are
not applicable. This leads to the less effective security controls of network segmentation
and access control for stored data.

Performing this process for the different attacker models, based on their individ-
ual SRA, allows the establishment of some overlapping security controls, providing an

appropriate level of security with a minimized residual risk.
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Table 7.7: Use Case - Recommended Security Controls

. o Affected Minimum
Security Control Objective Instance Class Factor Effort Dependency
C'r yptographic Int, Aut Function, Data Expertlse Expert SI, KM
Signature Time Years
Function, Data, Expertise Proficient
Network . Cont, Int, Aut Connection  Type of Access Moderate SNC
Segmentation -
Ava Function, Data, Type of Access Easy
Component
HSM Aut Component Expertlse Expert SI, KM
Time Years
Expertise Expert
Hardening Equipment Bespoke
(HW) Conf, Int Component Time Months SI
Type of Access Hard
Hardening . Expertise Expert
(SW) Conf, Int Function Time Years SI, KM

The recommended security controls for this use case are introduced below.

Cryptographic Signatures are an efficient security control to prevent tampering of
functions by manipulated and injected input data. As most data and connections
in this use case inherit their damage from their destined function (except for
confidentiality), their risks are also mitigated by this control.

Network Segmentation prevents unauthorized access to sensitive parts of the vehi-
cle network by virtually dividing it into separate networks between which only
predefined signals are routed. Here, this control prevents the transmission of
remote signals from other segments, like infotainment, to the safety-relevant brake
segment. For this use case, it further includes some basic physical protection
by making the communication lines hardly accessible, e.g., inside a reinforced
chassis frame.

Hardware Security Module (HSM) is a physical device as a part of a component that
provides cryptographic functionalities, including the storage of key materials
in a secure way. By effective prevention of private key material extraction, it

guarantees the authenticity of a component.
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Software Hardening is, in the scope of this use case, an aggregation of various methods
to prevent manipulation and analysis of functions. It includes in particular secure
boot, encapsulation, runtime monitoring, and prevention of unauthorized updates.

Hardware Hardening aggregates in this use case measures to protect components from
tampering and information disclosure. This includes, among others, closed debug
interfaces, and physical tamper protection.

By these security controls, the capable threats list is updated, as shown in Table 7.8,

which leads to the new risk situation, shown in Table 7.9.

Table 7.8: Use Case - Updated Attractive (») and Capable (L]) Security Objectives

R.l sk . Vehicle Owner Tuner Competitor Saboteur
Situation

Instance || Conf Int Ava Aut | Conf Int Ava Aut | Conf Int Ava Aut | Conf Int Ava Aut
Cow O [ . O O . .

Faw O e O . 0 . e .
Now-gsp . | O . O O O 0O . .
Dgw_gsp O O . O O O . . D
Cesp 0 ° 0 * [*] t * *

F, ESP . D . . D . . D . . °
Nesp_rp « U t « U ] 0O O . .
Disp_rp « U . O e O . [¢] O . . .
Cre O . | . [°] O . .

Fig e O e O . 0 . e .
Nesp_cB O O O O o O . .
Dgop_cp O O O O O . . .
Cep O O O O . .

Feg O O O . . .
Ngsp_pr - O O o [ O O O . .
Desp_pr « U . U - O . [e] O . . .
Cpr O . O .« | O 0 .«

FPT . O . . O . O . . .
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Table 7.9: Use Case - Security Risks (mitigated)

R.l sk . Vehicle Owner Tuner Competitor Saboteur
Situation

Instance Conf Int Ava Aut | Conf Int Ava Aut Conf Intt Ava Aut| Conf Int Ava Aut
Cow Low Low Low Low Low Low Low

Fow Low Low Low Low Low Low Low Low
Ngw_gsp Low Low Low Low Low Low Low Low Low Low
Dgw_gsp Low Low Low Low Low Low Low Low Low
Cgsp Low Low Low Low High Low Low Low

Figp Low Low Low Low Low Low Low Low Low Low Low
Ngsp_rp Low Low Low Low Low High Low Low Low Low
Dggp_rp Low Low Low | Low Low Low Low High Low Low Low Low
Crp Low Low Low Low High Low Low Low

Fyp Low Low Low Low Low Low Low Low Low Low Low
Ngsp_cs Low Low Low Low Low Low Low Low
Dggp_cp Low Low Low Low Low Low Low Low
Cep Low Low Low Low Low Low

Fep Low Low Low Low Low Low
Ngsp_pr Low Low Low Low Low Low Low Low Low Low
Dggp_pr Low Low Low | Low Low Low Low | Moderate Low Low Low Low
Cor Low Low Low Low Low Low Low Low

Fpr Low Low Low Low Low Low Low Low Low Low
O No

@ Low

O Moderate

@ High

W Very high
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7.4.3 Reflection of Vulnerabilities into the Model

The reflection of incidents into the model, as described in Section 6.4, is illustrated
by means of two actually occurred vulnerabilities that each required updates of exist-
ing SRAs.

The first vulnerability is a broken signature validity check that reported all provided
signatures as valid. The reason for this flaw was a mistranslation of the requirement
“The signature validation must confirm the validity of the signature before processing
of the data” by the supplier as “The signature validation must report valid before it
processes the data”, which led to an implementation of the checkSignature function call
that simply always returned TRUE.

The second vulnerability was introduced by a widely used aftermarket ECU, which
retrofits features like remote diagnosis, climate control, unlocking, ignition, etc. via a
smartphone app. Therefore, the ECU must be connected to several vehicle bus segments.
Unfortunately, the interface to the smartphone app was implemented as an insecure http
connection that allows direct read and write access to the connected bus segments, thus

removing the protective effects of network segmentation.

Table 7.10: Use Case - Vulnerabilities Mapping

Vulnerability g;sﬁit]es Objective Target Affected Factor Effort Old Effort New
Broken Signature || Cryptographic Int. Aut Function, Expertise Expert *Qriginal
Validation Signature ’ Data Time Years *QOriginal
Insecure Remote Network Int, Ava  Function, Pata, Expertise Proficient ~ *QOriginal
. Aut Connection Type of
Interface Segmentation Moderate Remote
Access
Type of P
Conf Component Access Easy Original
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8 Conclusion and Future Work

In this final chapter, the previous chapters’ results are summarized by a discussion of
the initially formulated research questions, followed by a general conclusion. Turning to
the future, an outlook is given on how the provided contributions can be continued and

improved by future work.

8.1 Discussion of Answers to the Research Questions

The overall objective of this work is the sustainable increase of CPS security. Therefore,
security risk assessment and requirements management have to be automated wherever
possible. Answering the research questions raised in the course of this research led to a
semi-automatic workflow with new and significantly improved methods that strongly

support security risk management throughout the CPS lifecycle.

The first question RQ 1 on ‘“How can potential security risks for Cyber-Physical
Systems be systematically identified and assessed, in an automated way?” is ap-
proached by a model-based security risk assessment. A vital point for the successful
identification and assessment of security risk is the tight cooperation of security analysts
and domain experts. Jointly creation of organization- and domain-specific catalogs
and the transformation of existing descriptions into machine-readable models enable
the automation of security risk assessment. An appropriate model for this purpose is
presented in Section 4.2.4, followed by a graph-based risk assessment methodology that
enables the individual assessment of risks for each security goal. For simple cases, the
modeling may appear exaggerated. However, with a high number of individual instances
in complex CPSs, the semi-automated approach has clear advantages. While the creation

of the basic system model and the assessment of potential impacts to sinks, sources,
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and special cases require human effort, large parts of the analysis can be efficiently
automated by the methods described in Chapter 4.

The second question RQ 2 reads as “How to automatically formulate security
requirements that support the achievement of the indicated level of protection?”.
Answering this question implies questions about the correct formulation of security
requirements and for the derivation of appropriate security requirements. A hierar-
chic taxonomy and machine-readable data model for the formulation are presented in
Section 5.2. Their successful implementation and insights from the evaluation by sev-
eral industrial partners are described in Section 5.2.4. The process to automatically
synthesize appropriate intrinsic security requirements from the identified risks by a
pattern-based mapping of threat mitigations to the security goals at risk is described in
Section 5.3.

The answer to the third question RQ 3, ‘““How to match extrinsic security require-
ments with the provided security capabilities?”’ also benefits from the introduced
taxonomy. The uniform formulation of extrinsic and intrinsic security requirements
enables the automated validation of compliance between requested and implemented
capabilities, as described in Section 5.4. A still open challenge is the translation of the
natural language extrinsic requirements into the data model. Successful automation of
this task requires in-depth practical experience of manual translation and validation of
automated translations into the data model.

The fourth question RQ 4, “How to detect, analyze and respond to potentially
disruptive changes of the security situation?”’, calls for proper incident detection,
correlation, and management. Approaching these calls locally, on the one hand, a CPS-
specific method to record and forward network data for the detection of local incidents
is introduced in Section 6.2. On the other hand, large-scale attack campaigns against
distributed supply chains are dealt with by a method to classify and exchange indicators
of compromise in Section 6.3. The consideration of changing risk situations is achieved
by means of targeted updates of the system and threat models, which is described in
Section 6.4.
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8.2 Conclusion

The work at hand is motivated by the need for appropriate security management for
long-lasting CPSs. As initially stated, the mitigation and reduction of risks caused by
malicious activities are subject to constant change. Appropriate situational awareness
requires knowledge of current risks, their mitigation, and the ability to recognize the
signs of the times in order to make timely adjustments. For this very reason, the main
objective of this research was to improve the general security level of CPSs in the field
by automating complex and time-consuming process steps.

The presented semi-automated methods and processes are the result of conducting
more than a hundred security risk assessments and security concept development projects
in various fields, with a strong focus on the automotive sector (cf. Section 2.6). The
preceding chapters show how a high degree of automation of security risk assessment
and requirements management is achievable in practice.

The respective degree of automation strongly depends on whether individual assess-
ments and measures are required, or catalogs of standardized assessments and solutions
can be reused. Their applicability was demonstrated by a simplified use case, which is
based on a real-world implementation.

The presented framework accordingly comprises three main components: A model-
based security risk assessment methodology, methods to unify, deduce and manage
security requirements, and a set of tools and procedures to detect and respond to security-
relevant situations. The SRA part includes a semantic meta-model, by which the SuE
can be described as a machine-readable model. Based on such a model, a graph-based
analysis is performed, considering several factors including the relevant threats, their
expected impact, the attacker’s motivation and potential, and protective measures. The
work product of this process is an enumeration of rated security risks. Compared to most
other security risk assessment processes, the method is clearly structured and supports a
high degree of automation. Based on the enumerated security risks, intrinsic security
requirements protecting the system and its intended functionality can be deduced. For
automatic processing and validation of such requirements, an object-oriented security
requirements data model is introduced. By such structured security requirements, it
becomes possible to validate automatically if existing structures match with new extrinsic
requirements. Upcoming IIoT use cases, such as identifying suitable production lines

for security-critical processes that require specific security capabilities, are successfully
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evaluated. Knowing the potential risks and appropriate security measures in place,

monitoring their validity is the next step towards long-term security.

For an appropriate response, threats must be identified, assessed, and correlated
where necessary. If the overall situation changes, it must be re-assessed and, if required,
corrective action must be taken. A common way to detect attacks on CPSs is anomaly
detection. As CPS are typically constrained in their capabilities, this detection is done
by a remote anomaly detection system that monitors the network communication. The
substantial amounts and the confidentiality of the transmitted data often prevent them
from being forwarded to such anomaly detection systems. To counter this situation, a
bandwidth- and privacy-preserving protocol for M2M-communication was introduced,
supporting network traffic anomaly detection by various systems. While network anomaly
detection and analysis is an exciting, own field of research, it is not in the scope of this
work. Information about detected incidents must be assessed and ideally exchanged
with further potential targets. These can be within but also outside the own organization.
The process presented to analyze, categorize, report and correlate incident information
combines machine learning with semantic reasoning to enable selective sharing of 1oCs,
which is, in particular, necessary and common for critical infrastructures, to prevent
market distortions and to correlate large-scale attack campaigns. Since threat information
such as vulnerabilities or incidents means a change in the overall security situation,
the final point on this topic is to update the model, initiating a further evaluation of
the security situation. Based on the updated security risk assessment, the already

implemented security capabilities can be matched with new requirements.

Unified catalogs of security risk mitigations are necessary, while catalogs and rating
schematics for the assessment of impacts should be individual for the domains and
organizations. The manifestation of security as a cross-sectional discipline is long
overdue, given the severe influences of critical CPSs on modern life. As digitization
progresses, the need for practical, systematic, and justified security requirements is

growing.

The presented risk assessment and requirements generation methods were evaluated
by a practical example. In the absence of suitable evaluation criteria for the quality of
analyses and generated requirements, it is not yet possible to measure the quality of the
applied approach beyond that. The development of such evaluation criteria is the subject

of ongoing research.
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8.3 Future Work

Drawing on the work presented and a couple of decisions that might be challenged, there
are plenty of opportunities for further improvements waiting to be explored.

The presented graph-based models provide an intuitive and straightforward structure
that has been used for practical modeling and analysis of SuE. Nevertheless, creating an
initial model remains a complicated, error-prone, manual task that should benefit from
further automation. So far, the focus has been on the methodology of risk assessment
and risk management. The addition of model checking techniques and axioms, which
ensure the consistency of the created models and prevent flaws, are undoubtedly useful.
In favor of further automation to improve efficiency, an appropriate balance must be
found between increased complexity, modeling confidence, and practical applicability.

Another critical issue is the further meaningful use of the work products of the security
risk assessments and requirements generation as input for downstream quality manage-
ment processes, like automated test management and situational anomaly detection.

Attacks following the cyber-kill-chain [154] will increase, as CPSs keep becoming
strategic targets. One of the primary reasons for overhead in security risk management
is the lack of consolidated and structured methodologies among the different application
domains. While security implementation catalogs enable an automated implementation
of derived security requirements, they must continuously be updated and extended.
While harmonization of threat mitigation techniques helps to establish a consistent
minimum level of security, off-the-shelf protection also supports advanced attackers,
as they have to develop fewer different exploits. The diversification of CPSs and their
protection is so far one of the most remarkable factors in the prevention of large-scale
attacks, which is threatened by ongoing harmonization. Currently, there is a lack of
techniques to simultaneous standardize security implementations while tailoring them
to the specific characteristics of individual CPS networks.

A further future research topic is the processing of the presented methodologies into
small and medium-sized enterprises. The catalogs for model-based methods presented
in this thesis have so far been primarily aimed at large organizations that can create and
maintain such catalogs themselves. Small manufacturers and operators usually lack the
capacity to establish such methods in their daily business. Standardized catalogs may
facilitate applicability in this area but lead to the vulnerable monocultures mentioned

above.
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However, the initially pointed out paradigm shift in the CPS domain from dedicated,
insecure fieldbuses to more dynamic, service-oriented architectures is a rare opportunity
to implement reliable and maintainable security from the very beginning. Although it
will take decades for the current dark shadows over the insecure CPSs to dissolve, risk-
based security management helps to reduce the feasibility and damage of cyberattacks

in the long run.
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