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Abstract

Clinical drug development is the process of investigating potential pharmaceutical
therapies in clinical trials. The clinical investigation of drugs consists of four phases.
The aim is bringing a candidate drug from early phase trials to a product approved
for public use by the drug regulatory agencies. Clinical drug development is highly
expensive and highly time consuming enterprise with very low probability of suc-
cess. Thus, increasing the efficiency of clinical trials is critical, especially in the early
phases of clinical drug development.

One way to improve efficiency of the clinical trials is to utilize (or borrow) rele-
vant information from external sources. Bayesian statistics is the mathematical pro-
cedure to update our prior distributions of the unknown parameters given the avail-
able data. The recursive nature of Bayesian statistics provides a promising frame-
work for borrowing information. Another advantage of Bayesian statistics is to en-
able us to built more complicated models with the help of Markov chain Monte Carlo
computation techniques. This helps to include, for instance, hierarchical structures
in the model, when they are supported by the data. However, complicated models
must be calibrated well, especially in the presence of sparse data, such as in early
phase trials.

The first aim of this dissertation is to investigate phase I trials involving multiple
treatment schedules. A treatment schedule refers to a frequency of administration.
There are two possible types of such trials: simultaneous and sequential investiga-
tions of multiple schedules. In a simultaneous design, doses and schedules are var-
ied simultaneously in the same trial. In a sequential design, the information from
a completed phase I design stage of a trial is used to inform a new phase I design
stage with a different treatment schedule. To design and analyze both types of tri-
als, I develop a Bayesian time-to-event pharmacokinetic (TITE-PK) model. The de-
veloped model uses PK principles to borrow information from different treatment
schedules explicitly. Furthermore, TITE-PK makes use of an adapted escalation-
with-overdose-control criterion to control the number of patients administered with
overly toxic doses. For both types of investigations of multiple schedules, simula-
tion results of TITE-PK yield desirable performance in terms of the common metrics
such as the correct maximum tolerated dose declarations and the mean number of
required patients in the trial.

The second aim of this dissertation is to investigate phase II dose-finding trials
involving multiple schedules, which is motivated by a phase II trial in atopic der-
matitis. A common approach to estimate the dose-response function in such trials is
pooling doses from different schedules after re-scaling them based on the frequency
of administration. Recently, a partial pooling approach has been suggested, in which
certain parameters are treated as schedule specific fixed-effects. As an alternative, I
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propose to use a Bayesian hierarchical model in which certain parameters are treated
as random-effects, while others are assumed to be shared between schedules. Esti-
mates of the dose-response function for each schedule are obtained by borrowing. In
simulations, the proposed method yields better performance compared to complete
pooling and partial pooling with fixed-effects in terms of the investigated metrics
such as the mean absolute error and the mean coverage probability of interval es-
timates. I develop a publicly available R package, ModStan, to automate the imple-
mentation.

The third aim of this dissertation is to study meta-analyses of few studies involv-
ing rare safety events. Meta-analysis is using statistical methods to combine multiple
trials. Trials with no or very rare events, which can produce considerable bias in the
estimation, are a major challenge. To overcome this, I suggest the use of a weakly
informative prior (WIP) for the treatment effect parameter in a binomial-normal hi-
erarchical model as a penalization technique. A WIP is constructed by assuming
a normal prior with zero mean and an a priori interval for plausible values. Fur-
thermore, the suggested WIP is verified empirically using the Cochrane Database of
Systematic Reviews. The proposed method is assessed in simulations. It displays
better or similar performance in terms of the accuracy of point estimates and the
coverage probability of interval estimates compared to standard methods. The pro-
posed method is illustrated by a meta-analysis dataset in pediatric transplantation.
I implement the proposed method as a publicly available R package, MetaStan.
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1 Introduction

1.1 Phases of clinical drug development

Drug development is the process of investigating pharmaceutical therapies which
may eventually be used as therapies. After the preclinical phase is completed, the
clinical investigation of drugs consists of four phases: namely phases I, II, III, and
IV (Chuang-Stein and Kirby, 2017, Chapter 1). Phase I or first-in-human trials are
conducted to assess the PK profile and the safety of the potential therapy. In phase
II trials, the relationship between the dose and the response of the drug are inves-
tigated. Phase III trials are confirmatory trials, which aim to determine the efficacy
and safety of the drug. Typically, larger numbers of patients are recruited for phase
III trials compared to the previous phases. After regulatory approval, phase IV tri-
als are performed in order to evaluate rare and/or long-term risks. Since I focus
on phase I and II trials in this dissertation, I introduce them in more detail in the
following.

In phase I trials, the main purpose of phase I trials is to determine the maximum
tolerated dose (MTD), that is, the highest dose without generating unacceptable ad-
verse effects. The trial is, usually, conducted through dose-escalation steps, hence
it is called a phase I dose-escalation trial. The observed adverse effects are classi-
fied into dose-limiting toxicities (DLT) and non-DLT. Based on the number of DLT
from small cohorts of patients, the dose recommendation for the next cohort is deter-
mined (Le Tourneau, Lee, and Siu, 2009). Because the identification of the MTD will
influence the final product, a reliable and efficient MTD identification is essential for
drug development (Le Tourneau, Lee, and Siu, 2009). In phase II dose-finding trials,
patients usually are randomized to different dose levels or the control, or sometimes
more than one control, e.g. placebo and active control. There are two main goals:
(1) establishing the dose-response signal and (2) characterizing the dose-response
relationship (Ruberg, 1995). Since the understanding of the dose-response relation-
ship is fundamental to the drug development, phase II trials are a crucial part of
development program.

Any treatment plan of a phase I or II trial includes the amount of dose given to
the patients and how often it will be given, in other words, a treatment schedule.
A treatment schedule can be defined as the frequency of administration within a
treatment cycle, for instance a weekly or a daily schedule. Traditionally, statistical
methods for phase I or II trials involve merely one treatment schedule. In recent
years, multiple schedules are investigated in phase I or II trials, for instance in on-
cology (de Lima et al., 2010; Besse et al., 2014), in atopic dermatitis (Thaçi et al., 2016;
Galapagos NV, 2020), or in hypercholesterolemia (Pfizer, 2017). In such trials, the
identification of MTD in a phase I trial or the dose-response relationship in a phase
II trial may also be influenced by the schedule. However, very limited literature



2 Chapter 1. Introduction

exists on the the statistical methods for phase I and II trials involving multiple treat-
ment schedules (Guo, Li, and Yuan, 2016). For instance, it has been shown in some
clinical trials that the toxicity (Shah et al., 2008) or the efficacy (Wagner et al., 2010)
may depend on the treatment schedule. These suggest that the safety and/or effi-
cacy of a drug is not only a function of the dose, but also the schedule. Therefore,
different types of statistical methods are required to make use of relevant informa-
tion, in other words to reliably borrow information from different schedules (Wages,
2017).

1.2 Meta-analysis

Meta-analysis is using statistical methods to combine multiple studies to address
a question of interest, for example to estimate the safety profile of a drug. Popu-
lar meta-analysis models include a fixed-effect model and a random-effects model,
for instance DerSimonian-Laird method (DerSimonian and Laird, 1986). In the latter,
the potential heterogeneity in treatment effects between trials are taken into account.
The heterogeneity may stem from the fact that trials can have some important dif-
ferences, e.g., different patient populations or types of administrations of drugs etc.
Hence, random-effects models are regarded as more reliable for many application
areas (Higgins, Thompson, and Spiegelhalter, 2009).

When a safety event is not specified as the primary outcome in a trial and include
sample size accordingly, the trial may not have enough subjects to detect safety
events (U.S. Food and Drug Administration, 2018). Thus, for such trials, a meta-
analysis of clinical trials is of greater importance (Higgins and Green, 2008, Chapter
10). The Cochrane Database of Systematic Reviews (CDSR) is one of the most com-
prehensive databases of systematic reviews in health care (Cochrane, 2020). Based
on a random sample of meta-analyses from the CDSR, more than 50% of meta-
analyses of safety events contained trials with event probabilities smaller than 5%
(Vandermeer et al., 2009). Thus, safety events are typically rare events meaning that
zero or a very small number of events are observed in the case of count outcomes.
Since popular meta-analysis methods, for instance DerSimonial-Laird method, are
suitable for the meta-analysis of common events, special methods for the meta-
analysis of rare events are required. When the number of studies which are meta-
analyzed is small (five or less), the investigation of the potential heterogeneity be-
tween trials becomes harder (Gelman, 2006). Based on an analysis of the CDSR, half
of the meta-analyses from the CDSR include two or three trials (Turner, Davey, et
al., 2012). Thus, statistical models for random-effects meta-analysis of few studies
involving rare events is required to reliably obtain an overall treatment effect for the
outcome of interest.

1.3 Bayesian methods in clinical drug development

In Bayesian statistics, model parameters are treated as random quantities, while data
is treated as fixed. This is in contrast to the frequentist statistics, in which treatment
is the other way around. The basis for Bayesian statistics is the Bayes’ theorem. The



1.4. Research questions 3

posterior distribution of the unknown parameter θ given the observed data x is

f (θ|x) ≈ f (x|θ) f (θ)

where f (x|θ) is the likelihood function and f (θ) is the prior distribution (Gelman,
Carlin, et al., 2013, Chapter 1). The necessity to specify a prior distribution for model
parameters is another important difference between Bayesian and frequentist statis-
tics. Statistical inference in Bayesian statistics is based on the posterior distribution.
However, computing the posterior distributions of the parameters can be a chal-
lenge. Since analytical approaches are limited to some set of prior distributions and
likelihood functions, stochastic approximations such as Markov chain Monte Carlo
(MCMC) methods (Gelman, Carlin, et al., 2013, Chapter 11) are commonly used.
In the dissertation, I use a modern MCMC engine called Stan, which employs the
Hamiltonian Monte Carlo with No-U-Turn Sampler (Carpenter et al., 2017).

Bayesian statistical methods are commonly used in the early phases of drug de-
velopment (Price and LaVange, 2014). One of the first uses of Bayesian methods goes
back to the Continual Reassessment Method (CRM) for phase I dose-escalation tri-
als by O’Quigley, Pepe, and Fisher (1990). In the past years, many early phase trials
used Bayesian methods as the primary analysis, including phase I trials (Demetri et
al., 2009; de Lima et al., 2010; Angevin et al., 2013; Besse et al., 2014; Esaki et al., 2019;
Naing et al., 2020) and phase II trials (Baeten et al., 2013; Murphy et al., 2017; Am-
gen, 2019). In addition to the early phase trials, Bayesian methods are recommended
by the regulatory agencies for trials involving rare diseases (European Medicines
Agency, 2006; U.S. Food and Drug Administration, 2014). Additionally, U.S. Food
and Drug Administration issued a guideline for the use of Bayesian statistics in
medical device clinical trials (U.S. Food and Drug Administration, 2010). Bayesian
methods are also mentioned in the guidelines for adaptive designs for clinical tri-
als (U.S. Food and Drug Administration, 2019). For the meta-analysis of clinical
trials, Bayesian approaches have been suggested, especially for the random-effects
meta-analysis of few trials (Smith, Spiegelhalter, and A. Thomas, 1995; Sutton and
Abrams, 2001). In the guideline for meta-analysis of clinical trials issued by the U.S.
Food and Drug Administration, Bayesian methods are mentioned as an alternative
to frequentist methods (U.S. Food and Drug Administration, 2018).

Bayesian statistics provides a suitable framework to exploit similarity and bor-
row relevant information across strata, for example across schedules in a phase II
dose-finding trial (Viele et al., 2014). Borrowing information can be implemented in
meta-analysis models by investigating the corresponding shrinkage estimate (Röver
and Friede, 2020). Borrowing information can improve the frequentist properties,
including the accuracy of the point estimates and the coverage probabilities of the
interval estimates.

1.4 Research questions

In this dissertation, I propose Bayesian methods for clinical drug development and
for meta-analyses in the sparse data situations. The application areas include phase I
dose-escalation trials and phase II dose-finding trials, in which the trials are of small
to moderate size, thus borrowing information is crucial. Furthermore, I consider
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meta-analysis of rare events, for instance safety events, where the individual studies
usually do not include enough subjects to detect differences between event rates.
These three areas are introduced in three sections.

1.4.1 Phase I dose-escalation trials with multiple schedules

There are two different designs of phase I dose-escalation trials with multiple sched-
ules, namely simultaneous and sequential designs. In the simultaneous design, the
dose and schedule are varied simultaneously, and a dose-schedule combination is
recommended for the next cohort of patients. Finally, the maximum tolerated dose
and schedule combination (MTC) is calculated. The sequential design consists of k
design stages, which equals the number of schedules investigated in the trial. As-
sume that the schedules are denoted by Si where i = 1, 2, . . . , k. Patients are admin-
istered with the schedule S1, and the maximum tolerated dose (MTD) is declared for
S1 in the first step. Then, patients are administered with schedule S2, the decision
for the next cohort is based on the data from both schedules S1 (completed trial) and
S2 (ongoing trial). Finally, the MTD is declared for the schedule S2. This sequential
approach can continue for schedule S3 and so on.

The literature on simultaneous designs is very limited (Wages, 2017). One exam-
ple of a simultaneous investigation of multiple schedules in a phase I dose-escalation
trial is the Vidaza trial (ClinicalTrials.gov identifier: NCT01080664) (de Lima et al.,
2010). Vidaza is a cytotoxic drug used to treat asmyelodysplastic syndrome, a blood
cell disease. In the Vidaza trial, four different schedules and three doses are inves-
tigated simultaneously. A Bayesian time-to-event model (Braun et al., 2007) was
used to determine dose and schedule decisions in the trial. However, this model
requires approximately 60 patients as the total sample size, which is not feasible for
many trials. Alternatively, Wages, O’Quigley, and Conaway (2014) introduced the
partial ordered continual reassessment method (POCRM), which has been shown
to require approximately 25 patients. Furthermore, POCRM relaxes the assumption
of complete ordered schedules, that is, DLT probabilities increase with schedules of
more frequent administration given the same cumulative dose. Other methods de-
veloped for the simultaneous design jointly model efficacy and toxicity (Thall et al.,
2013; Guo, Li, and Yuan, 2016; Cunanan and Koopmeiners, 2017), thus they have a
different focus.

A sequential phase I trial with multiple strata, where strata may refer to subpop-
ulations, route of administrations, or treatment schedules is called a bridging phase
I trial. Different statistical methods to analyze bridging trials include the bridging
continual reassessment method (B-CRM) (Liu et al., 2015), the Bayesian Logistic Re-
gression Model using a meta-analytic-predictive prior (Neuenschwander, Matano,
et al., 2015), and the continual reassessment method using an adaptive power prior
approach (Ollier et al., 2020).

As opposed to the existing methods, we explicitly model different treatment
schedules by considering an exposure-response model instead of a dose-response
model. The exposure measure of the drug is calculated using a pharmacokinetic (PK)
model in which the frequency of administration is taken into account. To this end,
I developed a Bayesian time-to-event pharmacokinetics (TITE-PK) model. TITE-PK
models time-to-first DLTs using the planned schedule in a fully Bayesian framework.
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TITE-PK can be used for dose-schedule decisions of both simultaneous and sequen-
tial designs of phase I dose-escalation trials with multiple schedules.

1.4.2 Phase II dose-finding trials with multiple schedules

A simple approach to analyze a phase II trial with multiple schedule is estimating
separate dose-response functions for each schedule. However, this method ignores
potential similarities of dose-response functions between schedules. As an alter-
native, one can re-scale all doses by converting the doses into a reference sched-
ule using their corresponding frequency of administrations. Hence, one can pool
all re-scaled doses to estimate the dose-response functions of different schedules.
This is considered as complete pooling. For instance, if the trial involve weekly and
monthly schedules, the complete pooling assumes that x mg dose with a monthly
schedule equals to x/2 mg dose with a weekly schedule. Thus, this method does not
take into account potential heterogeneity in dose-response models between sched-
ules.

A middle ground between two approaches above is assuming some parameters
of the dose-response model are shared between schedules, while others are allowed
to be different, that is, partial pooling proposed by Feller et al. (2017) and Möllenhoff,
Bretz, and Dette (2020). They proposed to treat the unshared parameters as schedule
specific fixed-effects in a partial pooling approach. To borrow information between
schedules, I propose to use schedule specific random-effects for some parameters of
the dose-response function, while others are assumed to be shared. Shrinkage esti-
mation is used to obtain schedule specific random-effects for certain parameters. It
has been shown that shrinkage estimates improve the long-run properties of the es-
timates, for instance the mean squared error, in comparison to a stratified analysis or
complete pooling (Neuenschwander, Wandel, et al., 2016). Shrinkage estimation has
been proposed for clinical trials with multiple strata, for instance to estimate a re-
sponse rate in the presence of multiple patient populations (Jones et al., 2011). Here,
I consider shrinkage estimates of certain parameters of a dose-response model. To
the best of my knowledge, this has not been investigated. The proposed method is
illustrated using a phase II trial with multiple schedules in atopic dermatitis. The
long-run properties including the mean bias of the dose-response function are stud-
ied in simulations.

1.4.3 Meta-analysis of rare events with few studies

Data sparsity in meta-analysis is commonly reflected by the number of studies with
no events either in one arm (single-zero study) or in both arms (double-zero study).
Furthermore, the data sparsity problem is amplified, when the number of studies
included in a meta-analysis is low. Standard meta-analysis methods rely on large-
sample properties. For example, they usually depend on the computation of in-
dividual log-odds ratio estimates, which are not available in case of single-zero or
double-zero studies. Therefore, they are not very suitable to conduct meta-analyses
of few studies involving rare events (Bradburn et al., 2007). Many methods have
been proposed for the meta-analysis of rare events in the literature, including the
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Mantel-Haenszel method (Mantel and Haenszel, 1959), a Poisson-normal hierarchi-
cal model (Böhning, Mylona, and Kimber, 2015), and a beta-binomial model (Kuss,
2015), among others.

In a logistic regression, if one covariate perfectly predicts the response, the maxi-
mum likelihood estimate (MLE) of the corresponding regression coefficient does not
exist (Albert and Anderson, 1984). This so-called separation problem occurs in a
meta-analysis if all trials include zero events for the same treatment arm. This can
be seen as the most extreme example of data sparsity in a meta-analysis of few stud-
ies involving rare events. One way to deal with the separation problem in logistic
regression is penalization (Greenland and Mansournia, 2015). This is achieved by
adding a penalty term to the likelihood in a frequentist framework to penalize es-
timates of regression coefficients, for example Firth’s penalization (Firth, 1993). In
a Bayesian framework, one can use a weakly informative prior (WIP) for the same
purpose (Gelman, Jakulin, et al., 2008).

The parameter which controls the heterogeneity between trials in a random-
effect meta-analysis model is hard to estimate, if the number of studies is low. This
is because the heterogeneity parameter is informed by the number of studies which
are meta-analyzed. To solve this, the use of WIPs for the heterogeneity parameter
has been proposed (Gelman, 2006; Friede et al., 2017). Here, I consider a doubly
challenging problem, that is meta-analysis of few studies involving rare events. In-
spired by the penalization ideas, I propose to use WIPs both for the treatment effect
parameter and the heterogeneity parameter. To my knowledge, our proposal is the
only method suggested specifically for meta-analyses of few studies involving rare
events. As a data model, I choose the binomial-normal hierarchical model (BNHM)
originally introduced by Smith, Spiegelhalter, and A. Thomas (1995). The baseline
risks are treated as fixed-effects and relative treatment effects are modeled in this
BNHM. I construct a WIP for the treatment effect parameter by assuming priori the
expected range for the odds ratio values. Moreover, I re-analyze a large set of meta-
analysis datasets from the CDSR to empirically investigate a plausible default WIP
for the treatment effect parameter. The proposed method is assessed in a simulation
study in terms of some performance measures, namely the mean bias of the treat-
ment effect parameter, the mean coverage probability and the mean length of the
interval estimates. To illustrate the proposed methods, I consider a meta-analysis in
paediatric liver transplantation.

1.5 Outline

I consider the aforementioned research questions introduced in Chapter 1.4. My re-
search on these questions are published (Günhan, Röver, and Friede, 2020; Günhan,
Weber, and Friede, 2020) or accepted for publication (Günhan, Meyvisch, and Friede,
2020) or currently under review (Günhan, Weber, Seroutou, et al., 2020) in peer re-
viewed journals. I will summarize my investigations in Chapter 2. Chapter 2 in-
cludes three sections, each one dealing with one of the research questions introduced
in Chapter 1.1. Lastly, I will critically discuss my findings in Chapter 3 and give some
thoughts for future research.
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2 Proposed Bayesian methods for
clinical drug development

2.1 Phase I dose-escalation trials with multiple schedules

In the following, I will summarize my proposed method TITE-PK for phase I dose-
escalation trials with multiple schedules. Two types of designs, simultaneous and
sequential investigations of multiple schedules are published (Günhan, Weber, and
Friede, 2020) or under review (Günhan, Weber, Seroutou, et al., 2020).

A time-varying Poisson process is utilized to model time-to-first dose limiting
toxicities (DLT). Hence, the hazard function h(t) is given by

h(t) = β E(t) (2.1)

where E(t) is the exposure measure of the drug and β is the only parameter in the
model.

The exposure measure E(t) is calculated using a pseudo-PK model. The pseudo-
PK model consists of two models, (1) a central compartment model and (2) an effect
compartment model (Kallen, 2007, Chapter 2). The former is characterized by

dC(t)
dt

= −ke C(t)

where ke is the elimination rate constant and C(t) is the drug concentration in the
central compartment. Then, the effect compartment model is used to take into ac-
count the potential delay between the concentration in the central compartment and
the concentration during the pharmacodynamic effect:

dCeff(t)
dt

= keff (C(t)− Ceff(t))

where keff is the PK parameter which governs the delay and Ceff(t) is the drug con-
centration in the effect compartment. The exposure measure is assumed to be equal
to the drug concentration in the effect compartment, that is E(t) = Ceff(t). The model
is conditioned on the PK parameters ke and keff, meaning that the PK parameters are
assumed to be known.

If both sides of equation (2.1) are integrated, the cumulative hazard function H(t)
is obtained, i. e.

H(t) = β AUCE(t) (2.2)

where AUCE(t) is the area under the curve of the exposure measure. In order to
write the likelihood function by taking into account the censored patients, the prob-
ability density function f (t) and the survivor function S(t) are required. From the
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fundamental relationships of survival analysis, f (t) and S(t) are given by (Kalbfleisch
and Prentice, 2002)

f (t) = h(t) exp(−H(t))and
S(t) = P(T > t) = exp(−H(t)). (2.3)

Patients with DLT are censored at the time of DLT. The remaining patients are
censored at the end of cycle 1, that is Cj = t∗ where Cj refers to the censoring time
for patient j and t∗ denotes the end of cycle 1. Let δj be an event indicator, which
is 0 for censored events and 1 for DLT events. The likelihood function then can be
written as

L(T, C|β) =
J

∏
j=1

f (Tj|β)δj S(Cj|β)(1−δj)

where J is the total number of the patients.
As a measure for the dose-schedule decisions, the probability that a patient ex-

periences a DLT within the first cycle given the dose d and the frequency of adminis-
tration f , P(T ≤ t∗|d, f ), or, in short, the end-of-cycle 1 DLT probability is used. This
is similar to the use of DLT probabilities in a standard method like the Continual Re-
assessment Method (CRM) (O’Quigley, Pepe, and Fisher, 1990). From equation (2.3),
it follows that

P(T ≤ t∗|d, f ) = 1− exp(−H(t∗|d, f )). (2.4)

TITE-PK uses an adapted escalation with overdose control (EWOC) (Babb, Ro-
gatko, and Zacks, 1998) criterion in order to inform dose-schedule decisions. For this
purpose, the end-of-cycle 1 DLT probabilities P(T ≤ t∗|d, f ) are divided into three
categories:

(i) P(T ≤ t∗|d, f ) < α1 Underdosing (UD)

(ii) α1 ≤ P(T ≤ t∗|d, f ) ≤ α2 Targeted toxicity (TT)

(iii) α2 < P(T ≤ t∗|d, f ) Overdosing (OD)

If the overdosing probability P(P(T ≤ t∗|d, f ) > α2) of the dose-schedule com-
bination is higher than a pre-specified feasibility bound a, the corresponding dose-
schedule combination is regarded as overly toxic based on the EWOC criterion (Babb,
Rogatko, and Zacks, 1998).

Since TITE-PK is fitted in a Bayesian framework, the prior specification for the
parameter β is crucial. To inform the prior specification, I establish a relationship
between the model parameter β and the end-of-cycle 1 probability P(T ≤ t∗|d, f ).
By combining equations (2.2) and (2.4), I obtain the following relationship between
the end-of-cycle 1 probability and the parameter β:

cloglog(P(T ≤ t∗|d, f )) = log(β) + log(AUCE(t∗|d, f )) (2.5)

where cloglog(x) = log(−log(1− x)).
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The exposure measure E(t|d, f ) is re-scaled using a reference dose d∗ and a ref-
erence frequency of administration f ∗ such that∫ t∗

0
E(t|d∗, f ∗)dt = AUCE(t∗|d∗, f ∗) = 1.

For the reference dose d∗ and the reference frequency of administration f ∗, equa-
tion (2.5) becomes cloglog(P(T ≤ t∗|d∗, f ∗)) = log(β). Using this relationship, the
prior in TITE-PK is specified on the end-of-cycle 1 probability which has an easier
interpretation compared to the parameter β.

In standard methods like the CRM, the underlying assumption is the monotonic-
ity of the DLT probability in the dose. Similar to this assumption, TITE-PK assumes
the monotonicity of the end-of-cycle 1 DLT probability in the exposure measure.

2.1.1 Simultaneous investigation of multiple schedules

In this section, I will summarize the TITE-PK method for the simultaneous investi-
gation of multiple schedules in a phase I dose-escalation trial, which was published
in Günhan, Weber, and Friede (2020). As described in Chapter 1.4.1, both doses and
schedules are allowed to vary in the simultaneous investigation of multiple sched-
ules. TITE-PK is able to account for multiple schedules using a pseudo-PK model.
In the trial, the dose-schedule combination for the next cohort is chosen as the com-
bination with the lowest AUCE(t∗) among the combinations which are not overly
toxic based on the EWOC criterion.

To assess the long-run properties of the TITE-PK method in a simultaneous de-
sign and compare it to the POCRM (Wages, O’Quigley, and Conaway, 2014), I con-
duct a simulation study. The simulation settings are inspired by the Vidaza trial.
Three doses (8, 16, and 24 mg/m2) and four schedules (A, B, C, and D) are investi-
gated in the simulations as in the Vidaza trial. In the Vidaza trial, schedules refer to
the number of treatment cycles included in the trial. However, I use another defi-
nition of the schedule in my research, that is the frequency of administration. This
definition is seen as more practical by Guo, Li, and Yuan (2016), among others. For
this reason, I assume that schedules A, B, C, and D refer to the dosing frequencies of
192, 96, 48, and 24 hours in the simulations, respectively.

In the simulations, different curves of dose-DLT probabilities are investigated.
They are displayed in Figure 2.1. In Scenario 1, there is no dose-schedule combi-
nation in the overdosing interval. In contrast, all combinations are in the overdos-
ing interval in Scenario 2. Scenarios 3-5 include curves of dose-DLT probabilities
which are spread across underdosing, targeted toxicity and overdosing intervals. In
Scenarios 1-5, the underlying assumption is that DLT probabilities are monotoni-
cally increasing with the more frequently administered schedule, in other words the
schedules are ordered completely. Scenario 6 is similar to Scenario 1 with the dif-
ference that the DLT probabilities of Schedules B and C are switched. Hence, the
assumption of the completely ordered schedules is violated in Scenario 6.

To implement TITE-PK, the PK parameters ke and keff must be specified in the
pseudo-PK model. It is reported that the elimination half-life of Vidaza is 4 hours,
and its absorption is rapid (Celgene, 2018). Consequently, I specify ke = log(2)

4
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FIGURE 2.1: Simulation scenarios: Each scenario consists of four dose-DLT probability
curves for each schedule. Targeted toxicity intervals (0.2 - 0.4) are shown by the horizon-
tal dashed lines. This interval is used to categorize the DLT probabilities of the simulation
scenarios. Schedules A, B, C, and D correspond to the frequency of administration of 192,
96, 48, and 24 hours, respectively.

(1/hours). The parameter keff is determined by assuming a log-normal distribu-
tion with the 0.025 and 0.975 quantiles of the absorption rate and the cycle length,
resulting in keff = 0.295. As the prior distribution for the end-of-cycle 1 probability
P(T ≤ t∗|d∗, f ∗), a normal distribution with mean 0.30 and standard deviation 1.75
is used. This prior distribution suggests that a priori the end-of-cycle 1 probability
of the reference dose and the reference frequency of administration is 0.30. As the
comparator, I used the POCRM method. For both POCRM and TITE-PK, cohorts of
size 1 are assumed.

In the following, I will explain the decision criteria used in the simulations for
TITE-PK. Before the MTC declaration, a minimum of 9 patients should be treated at
the declared MTC. Also, one of two following conditions must hold (1) the proba-
bility of the targeted toxicity of the declared MTC must be higher than 50% or (2) at
least 21 patients must be treated in the trial. The trial is stopped without any MTC
declaration, if the EWOC criterion is not met for any combination. The maximum
sample size is set to 60. After exhausting 60 patients, the MTC must be declared or
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the trial has to be stopped without any MTC declaration. For TITE-PK implemen-
tation, α1 = 0.16, α2 = 0.33, and a = 0.50 are used as boundaries of the targeted
toxicity interval and the feasibility bound, respectively. Here, the boundaries of the
targeted toxicity interval are different than the values used to categorize DLT proba-
bilities of the simulation scenarios. Thus, I use more conservative EWOC criteria for
dose-schedule decisions. See Wages, O’Quigley, and Conaway (2014) for the criteria
of the dose-schedule decisions of POCRM. 1,000 replications are generated for each
scenario.

TABLE 2.1: Six metrics to assess the simulations results obtained by TITE-PK and POCRM.
The values of MTC U, MTC T, MTC O, and Stopped are sum up to 100.

Metric Definition

MTC U Percentage of trials with MTC in the underdosing interval.
MTC TT Percentage of trials with MTC in the targeted toxicity interval
MTC O Percentage of trials with MTC in the overdosing interval.
Stopped Percentage of trials which are stopped without declaring MTC.
Mean DLT Mean number of DLT occurred.
Mean N Mean number of patients in the trial.

Six popular metrics are used to assess the simulation results obtained by TITE-PK
and POCRM, which are listed in Table 2.1. Higher values of MTC TT mean a higher
accuracy of the method, while higher values of MTC O result in more patients ad-
ministered with more toxic combinations. Therefore, higher values for MTC TT and
lower values for MTC O, Mean N, and Mean DLT are desirable.

The results obtained by TITE-PK and POCRM are displayed in Figure 2.2. In Sce-
nario 1, there is no dose-schedule combination in the overdosing interval. TITE-PK
(0.76) outperforms POCRM (0.65) in terms of the MTC declared in the targeted tox-
icity interval. In Scenario 2, all combinations are in the overdosing interval. Hence,
higher values for the percentage of trials which are stopped without MTC declara-
tion are desirable. TITE-PK results in superior performance in terms of the metric
“Stopped” in comparison to POCRM (TITE-PK 0.72 vs POCRM 0.50). In terms of the
MTC recommendation in the targeted toxicity interval, TITE-PK produces slightly
better results than POCRM in Scenarios 3 and 6. In contrast, POCRM yields slightly
better results in Scenarios 4 and 5 in terms of the MTC recommendation in the tar-
geted toxicity interval.

In all scenarios, TITE-PK yields lower percentages compared to POCRM in terms
of the MTC recommendation in the overdosing interval, that is the metric MTC O.
TITE-PK produces lower mean number of DLT in comparison to POCRM. This is
more pronounced in Scenario 2, where the corresponding values for TITE-PK and
POCRM are 8.7 and 17.6, respectively. Furthermore, TITE-PK requires lower mean
number of total patients compared to POCRM. In Scenario 1, the corresponding val-
ues are 18.8 and 25.9 for TITE-PK and POCRM, respectively.

In summary, the proposed method TITE-PK can be used for phase I dose-escalation
trials with simultaneous design of multiple schedules. The dose-schedule decisions
are based on the EWOC criterion, which controls the number of patients who are
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FIGURE 2.2: Simulation results of six scenarios obtained by TITE-PK and POCRM. For each
scenario, six metrics are shown as bar plots. Definition of the metrics are given in Table 2.1
and scenarios are demonstrated in Figure 2.1.

exposed to overly toxic dose-schedule combinations. The simulation study demon-
strated that TITE-PK outperforms the comparator POCRM in terms of the MTC rec-
ommendation in the targeted toxicity and the overdosing intervals in most of the
investigated scenarios. Stan is used to implement the proposed method TITE-PK.
The R and Stan code to run the described simulations are publicly available from
my personal Github account (https://github.com/gunhanb/TITEPK_code). One
can adapt the R and Stan code based on the application to implement the TITE-PK
method.

2.1.2 Sequential investigation of multiple schedules

In this chapter, I will review another application of the TITE-PK method, that is the
sequential investigation of multiple schedules in phase I dose-escalation trials. The
corresponding manuscript is currently under review (Günhan, Weber, Seroutou, et
al., 2020). As explained in Chapter 1.4.1, I assume that there is an ongoing trial
and a completed trial with different treatment schedules. The main aim is using
the data from both the completed and the ongoing trial to inform dose-escalation
decisions in the ongoing trial. For this purpose, TITE-PK is a natural solution, since
it is able to integrate multiple schedules. More specifically, after the MTD declaration

https://github.com/gunhanb/TITEPK_code


2.1. Phase I dose-escalation trials with multiple schedules 13

TABLE 2.2: The everolimus trial: For each dose-schedule combination, the corresponding
doses, treatment schedules, the sample sizes and the number of DLT occurred are listed.

Dose Schedule Sample size Number
(mg/m2) of DLT

20.0 Weekly 5 0
30.0 Weekly 13 4
2.5 Daily 4 2
5.0 Daily 6 3

of the stage with the first schedule, the ongoing trial with another schedule can be
informed using both information from the completed and the ongoing trial with
TITE-PK.

I used a phase I dose-escalation trial of everolimus as an illustrative application
for the use of TITE-PK in the sequential investigation of multiple schedules (Besse
et al., 2014). Everolimus was administered to patients together with the standard of
care to find a suitable dose and schedule in the treatment of small lung cancer (Clin-
icalTrials.gov identifier: NCT00466466). In the everolimus trial, daily and weekly
schedules were investigated. The final dataset is listed in Table 2.2. All DLT occurred
on the 15th day. The length of one cycle of the treatment is 21 days. Doses in two
schedules were escalated separately and no information from the other schedule was
used to inform dose-escalation decisions. The elimination half-life of everolimus is
30 h and the absorption rate is 2.5 1/h (Novartis, 2012).
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FIGURE 2.3: The everolimus trial: The posterior distribution of DLT probabilities of daily
doses obtained by TITE-PK and B-CRM approaches. Horizontal dashed lines [0.20, 0.40] are
the boundaries of the targeted toxicity interval. For each DLT probability, the median, the
50%, and the 95% credible intervals are investigated.

To illustrate the proposed TITE-PK method, I analyze the everolimus trial as if it
was conducted sequentially. More precisely, I assume that first the weekly schedule

https://clinicaltrials.gov/ct2/show/NCT00466466?cond=NCT00466466&draw=2&rank=1
https://clinicaltrials.gov/ct2/show/NCT00466466?cond=NCT00466466&draw=2&rank=1
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was investigated and then the daily schedule. The idea is to borrow from the data
with the weekly schedule when estimating DLT probabilities for the daily sched-
ule. The prior distributions must be specified for the parameters of the bridging
CRM (B-CRM) and TITE-PK methods. For TITE-PK, I specify a normal WIP for the
end-of-cycle 1 probability, namely N (0.30, 1.252). As the reference combination, I
use 5 mg/m2 as the reference dose and 24 hours (daily schedule) as the reference
frequency. Based on the elimination half-life and the absorption rate, the PK param-
eters are specified as follows: ke = log(2)

30 and keff = 1.45. As the boundaries of the
targeted toxicity interval (α1 and α1), [0.20, 0.40] are used. Also, 0.25 is used for the
feasibility bound. The B-CRM is based on a one-parameter power model. A normal
prior with mean 0 and standard deviation 2 is used as the prior for the power param-
eter α in B-CRM. The target probability is 0.30 for B-CRM. The following stopping
rule for B-CRM is used: P(π1 > 0.30) < 0.90 where π1 is the DLT probability of the
lowest dose (Liu et al., 2015).

In Figure 2.3, the summaries of the posterior distributions of DLT probabilities
for each daily dose obtained by B-CRM and TITE-PK are shown. The horizontal
dashed lines correspond to the boundaries of the targeted toxicity interval. The
points, thick lines, and thin lines refer to the medians, 50% and 95% credible in-
tervals, respectively. For all four doses, B-CRM produces higher DLT probabilities
than TITE-PK. For TITE-PK, only 2.5 mg/m2 is eligible based on the EWOC criterion
(P(P(T ≤ t∗|d = 2.5, f = 24) > 0.40) = 0). Also, B-CRM concludes that 2.5 mg/m2

is not an overly toxic dose based on its stopping criterion (P(π1 > 0.30) = 0.67).
Thus, both methods suggest that 2.5 mg/m2 can be declared as the MTD, confirm-
ing the conclusion of the original everolimus trial.

In the following, I will summarize the simulation study conducted to assess the
performance of TITE-PK in the sequential investigation of multiple schedules. The
settings are inspired by the everolimus trial. Doses of 2.5, 5, 7.5, 10, 12.5, and 15
mg/m2 are investigated in two schedules, first a schedule of 48 h dosing intervals
and then a schedule of 24 h intervals. The investigated scenarios are displayed in
Figure 2.4. In Scenario 1, most of the dose-schedule combinations are in the under-
dosing interval, whereas all combinations are in the overdosing interval in Scenario
5. Scenarios 2-4 are more spread across underdosing, targeted toxicity, and overdos-
ing intervals. Scenario 6 violates the monotonicity assumption between the exposure
and the DLT probabilities. This means that given the same dose, the more frequent
schedule has lower DLT probability. 1,000 replications are generated for each sce-
nario.

The results obtained by TITE-PK and B-CRM are displayed in Figure 2.5. The
metrics from Chapter 2.1.1 are used to assess the performance of the methods, see
Table 2.1 for the definitions. In Scenarios 1-4, TITE-PK outperforms B-CRM in terms
of the MTD declaration in the targeted toxicity interval. TITE-PK achieves this by
selecting the MTD in the targeted toxicity interval in 7%, 20%, 30%, 24%, and 10%
more simulated trials. In Scenario 2, TITE-PK yields lower percentage in terms of
the MTD declaration in the overdosing interval compared to B-CRM (38% vs 22%).
In Scenario 5, TITE-PK stops the trial in 98% of the time, while B-CRM only stops
the trial in 75% of the time. In Scenario 6, B-CRM clearly outperforms TITE-PK in
terms of the MTD declaration in the targeted toxicity interval (77% vs 17%). Recall
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FIGURE 2.4: Simulation scenarios: Each scenario consists of two dose-DLT probability
curves for the weekly and the daily schedule. Weekly dose levels are 20, 30, 40, 50, 60,
and 70 mg/m2 and daily dose levels are 2.5, 5, 7.5, 10, 12.5, and 15 mg/m2. Targeted toxicity
intervals (0.20 - 0.40) are shown by the horizontal dashed lines.

that in Scenario 6, the monotonicity assumption between the exposure and the DLT
probabilities is violated. In half of the scenarios, the mean number of DLT occurred
in the trial is lower in TITE-PK compared to B-CRM. In Scenarios 1-4 and 6, the mean
number of sample sizes are slightly higher in TITE-PK in comparison to B-CRM.

In conclusion, the proposed method TITE-PK can be used as an alternative to
the B-CRM approach to design and analyze a sequential phase I dose-escalation
trial with multiple schedules. A phase I trial involving daily and weekly sched-
ules was used to illustrate the use of TITE-PK. In simulations, TITE-PK displays
better performance than the comparator B-CRM in most of scenarios in terms of the
declaring MTD in the targeted toxicity interval. These results come with slightly
larger mean number of DLT and sample sizes, while the MTD declaration is less of-
ten in the overdosing interval (except for Scenario 4), thus safer for the patients in
the long term compared to the B-CRM. However, when the monotonicity assump-
tion between exposure and DLT probabilities does not hold (Scenario 6), B-CRM
yields better results. Hence, I suggest the use of the TITE-PK method, if a heavy
violation of the monotonicity assumption is not expected. The Stan and R code
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FIGURE 2.5: Simulation results of six scenarios obtained by TITE-PK and B-CRM. For each
scenario, six metrics are shown as bar plots. Definition of the metrics are given in Table 2.1
and scenarios are demonstrated in Figure 2.4.

to analyze the everolimus trial using TITE-PK is publicly available from Github
(https://github.com/gunhanb/TITEPK_sequential), facilitating the application of
the proposed method.

https://github.com/gunhanb/TITEPK_sequential
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2.2 Phase II dose-finding trials with multiple schedules

In this chapter, I will briefly describe my research on phase II dose-finding trials
with multiple schedules, which is accepted for publication (Günhan, Meyvisch, and
Friede, 2020). I propose the use of schedule-specific random effects in a partial pool-
ing approach to model heterogeneity in the model parameters between schedules
in a phase II dose-finding trial. I will review a simulation study to compare the
proposed method to several alternatives. A phase II trial in atopic dermatitis is re-
analyzed to illustrate the proposed method.

For the data model, I assume that the response yijk for schedule i, dose j, and
patient k is normally distributed (Feller et al., 2017), i.e.

yijk ∼ N ( f (d(i)j , θ), σ2
i )

where θ is the vector of the model parameters (E(i)
0 , E(i)

max and ED(i)
50 ) and σi is the stan-

dard deviation of the error terms. The f (d(i)j ) characterizes the relationship between

the dose and the response for each schedule. For f (d(i)j ), I use the popular Emax
model (N. Thomas, Sweeney, and Somayaji, 2014), i.e.

f (d(i)j , θ) = E(i)
0 + E(i)

max
d(i)j

ED(i)
50 + d(i)j

where E(i)
0 and E(i)

max represent the placebo effect and the maximal effect attributable
to the drug, respectively. ED(i)

50 is the dose providing 50% of the maximal effect.
My aim is estimating dose-response curves for each schedule. One way is to

assume that all parameters are shared between different schedules, hence conduct-
ing a complete pooling approach. This means that assuming E(1)

0 = E(2)
0 = . . .

and E(1)
max = E(2)

max = . . . . For ED(i)
50 , I use the re-scaled ED(i)

50 parameters. For this
reason, I specify a reference schedule (iref). The re-scaled parameters are given by

ED∗(i)50 = ED(i)
50

f (i)

f (iref)
where f (iref) and f (i) are the frequency of administration of the

reference schedule iref and the schedule i, respectively. However, complete pooling
ignores the potential heterogeneity in parameters between schedules.

Alternatively, Feller et al. (2017) suggested the use of schedule specific fixed-
effects for the parameters E(i)

max and/or ED(i)
50 , while assuming a common parameter

for the E(i)
0 . In other words, this is partial pooling with fixed-effects (PP - FE). In

this method, the rescaling of ED(i)
50 is not needed, since fixed-effect parameters ED(i)

50
for each schedule are estimated. Instead of the schedule specific fixed-effects like
in PP - FE, I suggest the use of schedule specific random-effects for the parame-
ters E(i)

max and/or ED(i)
50 , while assuming a common parameter for the E(i)

0 . Hence,
my proposed model is partial pooling with random-effects (PP - RE). The schedule
specific random-effects can be obtained by assuming exchangeable random-effects
around an overall mean. Different ED(i)

50 parameters are transformed into the same
scale by using a reference schedule. The re-scaled parameters can be obtained by
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ED∗(i)50 = ED(i)
50 ( f (i)/ f (iref)) as in the complete pooling. Using the log transformation,

I assume that

log(ED∗(i)50 ) ∼ N (µED50 , τ2
ED50

) (2.6)

where µED50 and τED50 refer to the overall mean and the heterogeneity in log(ED∗(i)50 )

between schedules. To model schedule specific random-effects of the E(i)
max, a re-

scaling or the log transformation is not required.
I implement the proposed model in a Bayesian framework. Hence, the choice of

prior distributions is very crucial. Noninformative priors are used for the param-
eters E(i)

0 and E(i)
max, namely N (0, 1002), and also for σi, that is a half-normal prior

with scale 100 HN (100). It has been shown that the prior choice for ED(i)
50 can have

significant influence on the posterior distributions (Bornkamp, 2014). As the prior of
ED(i)

50 , I use the functional uniform prior, developed by Bornkamp (2012). Instead of
putting a uniform prior directly on the ED(i)

50 , the functional uniform prior assumes
uniformity on the different shapes of the underlying Emax model. The heterogeneity
parameter is mainly informed by the number of the schedules in the trial, which is
typically low. Hence, this problem is similar to estimating the heterogeneity in treat-
ment effects between trials in the meta-analysis of few studies (Friede et al., 2017).
Therefore, for the heterogeneity parameter τED50 , I use a weakly informative prior
(WIP), namely HN (1), following the suggestions for a meta-analysis model, when
log odds ratio (or log hazard ratio) is used as the effect measure (Friede et al., 2017).

TABLE 2.3: Dupilumab trial: Schedule, dose per administration, and sample size for each
arm.

Arm Schedule Dose (mg/m2) Sample size

1 Weekly 0 61
2 Weekly 300 63
3 Biweekly 200 61
4 Biweekly 300 64
5 Monthly 100 65
6 Monthly 300 65

I consider a phase II trial of dupilumab in atopic dermatitis to illustrate the pro-
posed method (ClinicalTrials.gov identifier: NCT01859988). The dupilumab trial in-
volves three schedules, weekly, biweekly, and monthly schedules. The design of the
trial is given in Table 2.3. The primary endpoint of the trial is the percentage change
from baseline in Eczema Area and Severity Index (EASI) score at the 85th day. The
EASI has values between 0 and 72, which indicates the severity of the eczema. The
higher EASI score means higher severity in eczema. The dataset is reported as the
least square means and the standard errors for each arm by Thaçi et al. (2016), which
is displayed in Figure 2.6A. For each schedule, information from only two arms are
available, thus suggesting some data sparsity issue. I analyze the dupilumab trial
by using the complete pooling (CP), the partial pooling with fixed-effects (PP - FE),
and the partial pooling with random-effects (PP- RE) in a Bayesian framework. For

https://clinicaltrials.gov/ct2/show/NCT01859988
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both partial pooling approaches, the parameters E(i)
0 , E(i)

max, and σi are assumed to be
shared between schedules. The ED(i)

50 are treated as fixed-effects in PP - FE and as
random-effects in PP - RE.
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FIGURE 2.6: Dupilumab trial: A) The least square means and 95% confidence intervals of
the percentage change from baseline in EASI score at the 85th day for each arm, and B)
the estimated dose-response function f obtained by the complete pooling (CP), the partial
pooling approach with schedule specific fixed-effects (PP - FE), and the partial pooling ap-
proach with schedule specific random-effects (PP - RE) are displayed. Dashed lines in plot B
refers to 95% credible intervals of the estimated dose-response function f obtained by three
methods.

The estimated dose-response functions of the biweekly dose obtained by three
methods are demonstrated in Figure 2.6B. The lines and the colored areas corre-
spond to the posterior medians and the 95% pointwise credible intervals evaluated
at a grid. The posterior medians of complete pooling and the partial pooling with
random-effects look very similar, while the partial pooling with fixed-effects yields
slightly different posterior medians. I also computed the approximate leave-one-out
cross-validation information criteria (LOO-IC) (Vehtari, Gelman, and Gabry, 2017) to
compare the three models. The corresponding LOO-IC values are 37.0, 37.5, and 39.4
for the complete pooling, the partial pooling with random-effects, and the partial
pooling with fixed-effects, respectively. The lower value of LOO-IC indicates better
model performance. The reason of the relatively worse performance of the partial
pooling with fixed-effects can be explained by data sparsity in the dupilumab trial,
hence the simpler models are preferred. Furthermore, the complete pooling displays
the shortest credible intervals, that is also observed in the simulations, which I sum-
marize in the following.

To assess the performance of the the proposed method PP - RE and compared to
some alternatives, I conducted a simulation study. The simulations are inspired by
the dupilumab trial and the MOR106 trial (ClinicalTrials.gov identifier: NCT03568071).

https://clinicaltrials.gov/ct2/show/NCT03568071?cond=NCT03568071&draw=2&rank=1
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Like the dupilumab trial, the MOR106 trial is a phase II trial in atopic dermatitis, but
involves two schedules, biweekly and monthly. In simulations, a trial involves seven
arms including a placebo arm, and 1, 3, 10 mg/kg for biweekly and monthly sched-
ules. Note that these doses are doses per administration. As primary outcome, the
percentage change in baseline of EASI score is used. As the data-generating process
for the dose-response model, an Emax model is used. The values for the parame-
ters E(i)

0 = −20%, E(i)
max = −60%, EDbiweekly

50 = 2 mg/kg, and σi = 35% are used.
The value for the EDmonthly

50 is varied, namely EDmonthly
50 ∈ {1, 2, 3, 3.5, 4, 4.5, 5, 6, 10

(mg/kg)}. The scenario of EDmonthly
50 = 4 mg/kg corresponds to zero heterogeneity

in EDi
50, since 2× EDweekly

50 = 4 mg/kg. 1 000 replications are generated for each
scenario.
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FIGURE 2.7: Simulation results: The mean absolute error (A) and the mean coverage prob-
ability (B) for the dose-response function obtained by the complete pooling (CP), schedule
specific fixed-effects in a partial pooling approach (PP - FE), and schedule specific random-
effects in a partial pooling approach (PP - RE) are displayed. Also, the ratio of the credible
interval estimates (C) obtained by the PP - RE and the PP - FE are shown. The denominator
of the ratio is the estimates by the PP - RE.

Three methods are compared in a Bayesian framework: the complete pooling,
the partial pooling with random-effects, and the partial pooling with fixed-effects.
The mean absolute error and the mean coverage probabilities for the three methods
are displayed in Figure 2.7A and B. When EDmonthly

50 is close to 4, in other words
in case of low heterogeneity, the complete pooling outperforms other methods in
terms of the mean absolute error and the mean coverage probability. However, par-
tial pooling approaches yield more robust performance against the change in the
EDmonthly

50 compared to the complete pooling. Furthermore, partial pooling with
random-effects results in smaller mean absolute errors and higher coverage prob-
abilities compared to the partial pooling with fixed-effects in most of the scenarios.
The complete pooling produces the shortest credible intervals in all of the scenarios
(results not shown). Figure 2.7C displays the mean ratio of 95% credible intervals by
the partial pooling with fixed-effects and the partial pooling with random-effects,
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while the latter is the denominator of the ratio. The partial pooling with random-
effects yields shorter credible intervals than the partial pooling with fixed-effects in
most of the scenarios, hence it is more preferable.

In summary, I propose to use schedule specific random-effects in a partial pool-
ing approach to deal with potential heterogeneity in model parameters for phase II
trials with multiple schedules. The proposed method is illustrated with a phase II
trial in atopic dermatitis. In simulations, I showed that the use of random-effects
exhibits more robust results in terms of the mean absolute error and the coverage
probability compared to the complete pooling, while gaining efficiency in compar-
ison to separate analyses of different schedules. Moreover, the proposed method
results in smaller mean absolute errors than the partial pooling with fixed-effects in
most of the investigated scenarios. I implement the proposed method in an R pack-
age, ModStan, made publicly available in Github (https://github.com/gunhanb/
ModStan).

2.3 Meta-analysis of few studies involving rare events

As described in Chapter 1.4.3, meta-analysis of few studies involving rare events is
challenging due to the sparsity of the data. Detailed results of my research on this
topic can be found in Günhan, Röver, and Friede (2020), and will be summarized in
this section.

The data model has been originally introduced by Smith, Spiegelhalter, and A.
Thomas (1995). The number of events rij are assumed to be binomially distributed
rij ∼ Bin(πij, nij) for each trial i and treatment arm j ∈ {0, 1}. Using the logit link,
event probabilities πij are transformed onto the log odds scale

logit(πij) = µi + θi xij (2.7)

where xij is a treatment indicator coded as +0.5 for experimental arm (j = 1) and
−0.5 = control arm (j = 0). The baseline risks µi are treated as trial specific fixed-
effects. The relative treatment effects θi are assumed to be trial specific random-
effects, more specifically θi ∼ N (θ, τ2) where θ is the mean treatment effect and τ is
the heterogeneity in treatment effects between trials. The heterogeneity parameter
τ gives the information about the degree of the heterogeneity between trials. This
model is called the binomial-normal hierarchical model (BNHM).

In a Bayesian framework, the prior distributions for the model parameters (µi, θ,
and τ) must be specified. A normal distribution with mean 0 and standard deviation
10 is used as the prior for the baseline risks µi (Gelman, Jakulin, et al., 2008). The
prior choice of the heterogeneity parameter τ has crucial influence on the posterior
estimates, especially when the number of studies is small. Following the suggestions
given by Friede et al. (2017), I used a WIP for τ, that is a half-normal distribution
with scale 0.5, HN (0.5). The median value of HN (0.5) is 0.337 with an upper 95%
quantile of 0.98, covering plausible values for the heterogeneity parameter τ.

Instead of using a noninformative prior for the treatment effect parameter θ, I
propose to use a WIP for θ which is on the log odds ratio scale. The derivation of
a WIP for the parameter θ is explained in the following. I assume that the prior
distribution is a normal distribution with mean 0 and standard deviation σprior,

https://github.com/gunhanb/ModStan
https://github.com/gunhanb/ModStan
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N (0, σ2
prior), resulting in equal event probabilities for positive and negative treat-

ment effects. Hence, only the prior standard deviation σprior needs to be determined
to construct the WIP. Assume that a priori the odds ratio exp(θ) is within the interval
[1/δ, δ] with 95% probability where δ is a pre-specified value, which can be written
as:

P(1/δ < exp(θ) < δ) = 95%.

Using the 97.5% quantile of the standard normal distribution, the prior standard
deviation can be calculated as follows:

σprior =
log(δ)
1.96

. (2.8)

Conservatively specifying δ = 250, the corresponding WIP becomesN (0, 2.822).
In other words, the priorN (0, 2.822) for θ means that a priori the odds ratio is within
the intervals [1/250, 250] with 95% probability.

To empirically investigate a plausible default prior distribution for the treat-
ment effect parameter θ, I re-analyzed meta-analyses from the Cochrane Database
of Systematic Review (CDSR). For this purpose, I downloaded all meta-analysis
datasets with dichotomous endpoints available on March 2018 from the Cochrane
Library website (https://www.cochranelibrary.com). This is done using the pro-
gram Cochrane scraper (Springate, 2018). This procedure results in 37 773 meta-
analysis datasets. I re-analyzed the downloaded datasets using the BNHM in a fre-
quentist framework via the lme4 R package (Bates et al., 2015). Figure 2.8 demon-
strates the histogram of the estimates for θ. The 2.5% and 97.5% quantiles of the
estimates of θ are -1.94 and 2.06, respectively. These results can be considered as an
informal validation of our proposed WIP for θ, that is N (0, 2.822).

The long run properties of the use of WIP for the treatment effect parameter
θ in a meta-analysis of few studies involving rare events is assessed in a simula-
tion study. As data-generating process, the BNHM is used. The number of tri-
als included in a meta-analysis is taken as three. The sample size of each trial is
generated from the log-normal distribution with mean 5 and standard deviation 1,
LN (1, 5). The parameter values of LN (5, 1) is obtained by fitting a log-normal
distribution to the sample sizes obtained from the CDSR (Kuss, 2015). Note that
the median value of LN (5, 1) is exp(5) ≈ 148. Once the sample size of a trial is
determined, the sample sizes for control and treatment arms are generated accord-
ing to a binomial probability of 0.5. Since I focus on the meta-analysis involving
rare events, baseline risks on the probability scale are assumed to be in the interval
[0.005, 0.05]. To reflect the moderate heterogeneity in treatment effects, the hetero-
geneity parameter τ is assumed to be 0.28. The value of 0.28 is the median value
of the predictive distribution for τ calculated by Turner, Jackson, et al. (2015) us-
ing the CDSR. Eleven scenarios are generated by varying the true treatment effect
θ, namely θ ∈ {−5,−4,−3,−2,−1,−0.5, 0, 0.5, 1, 2, 3, 4, 5}. For each scenario, 10 000
replications are generated. As mentioned in Section 1.4.3, the data sparsity in a meta-
analysis involving rare events is usually reflected in the proportion of the zero stud-
ies. Figure 2.9 displays the mean proportion of single- and double-zero studies in
a simulated meta-analysis dataset in our simulations. The proportion of the single-

https://www.cochranelibrary.com
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FIGURE 2.8: The distribution of the estimated treatment effect parameter θ̂, obtained
from the re-analysis of meta-analysis datasets in Cochrane Database of Systematic Reviews
(CDSR). For the analysis, the binomial-normal hierarchical model via maximum likelihood
estimations was used.

and double-zero studies decreases with the increase of true value of the treatment
effect.
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FIGURE 2.9: The mean proportion of zero studies (single- and double-zero studies) in a
simulated meta-analysis dataset in our simulations.

In the simulations, I investigated three methods: (1) “WIP”, BNHM using a WIP
(N (0, 2.822)) for θ, (2) “Vague” , BNHM using a vague prior (N (0, 1002)) for θ and (3)
“MLE”, BNHM using the MLE. The WIP and Vague are fitted in a Bayesian frame-
work using Stan, while the MLE is fitted in a likelihood framework using the lme4

R package. For the WIP and Vague, a WIP (HN (0.5)) is used for the heterogene-
ity parameter τ. 2 000 MCMC iterations including 1 000 iterations of burn-in were
used with three chains to obtain posterior estimates in the WIP and Vague mod-
els. These MCMC settings were tested in some replications in terms of convergence
diagnostics, namely R̂ and traceplots. I assumed that convergence is reached for
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all 10 000 replications for each scenario. For the MLE, the replications in which the
convergence is not reached were excluded from the calculation of the performance
measures.
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FIGURE 2.10: Simulation results: The mean bias for θ, mean coverage probability of the
interval estimates, and the log mean length of the interval estimates for θ obtained by the
WIP, Vague, and MLE methods. See the text for the description of the methods.

Three performance measures are used: (1) mean bias, 1
N ∑N

i=1(θ̂ − θ), (2) mean
coverage probability of the interval estimates for θ, and (3) mean length of the in-
terval estimates θ. The mean bias is based on the posterior median for the WIP and
Vague approaches, and the maximum likelihood estimate for the MLE. Lower bias,
95% of coverage probability, and shorter interval length are desirable. Simulation
results are displayed in Figure 2.10. The WIP outperforms the Vague and the MLE
in terms of bias. All three methods improve in terms of bias, when true log odds ra-
tio increases. This is because the data sparsity decreases with the increase of the true
log-odds ratio (see Figure 2.9). In terms of the coverage probability of the interval
estimates for θ, the Vague and the WIP result in probabilities higher than 0.95, while
the MLE shows lower coverage than the nominal value for most of the scenarios.
This behaviour of the MLE was also observed by Friede et al. (2017). The WIP dis-
plays shorter interval estimates than the Vague and the MLE in all of the scenarios.
Overall, the proposed method (WIP) shows superior performance in comparison to
the Vague and the MLE in terms of the investigated measures.

To illustrate the proposed method, I re-analyzed a meta-analysis dataset in pedi-
atric liver transplantation (Crins et al., 2014). The dataset includes trials in which the
Interleukin-2 receptor antibodies basiliximab and daclizumab are used to decrease
the risk of acute rejection of liver transplants. For illustrative purposes, I focus on the
outcome post-transplant lymphoproliferative disease (PTLD). The PTLD counts and
the sample sizes are given in the top panel of Figure 2.11. The dataset includes three
trials including one single-zero trial, one double-zero trial. The results obtained by
the WIP, the Vague and the MLE are shown in the bottom panel of Figure 2.11. Point
estimates of the three methods are very close. The WIP results in shorter interval
estimates compared to the Vague. This behaviour was also observed in the simula-
tions. The MLE yields zero heterogeneity, whereas the WIP and the Vague produce
0.32 and 0.34 (posterior median), respectively. Since, the WIP and the Vague uses
same weakly informative prior for τ, similar estimates for τ are expected.
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FIGURE 2.11: The post-transplant lymphoproliferative disease (PTLD) counts and sample
sizes for three trials are given at the top panel. In the bottom panel, the results obtained by
three methods (the WIP, the Vague, and the MLE) are displayed. Moreover, the heterogeneity
estimates from the three methods are shown on the left.

The Bayesian version of the BNHM was implemented using Stan. To make
it accessible for practitioners, I developed an R package, MetaStan, which imple-
ments the BNHM using Stan. MetaStan is available from CRAN (https://CRAN.
R-project.org/package=MetaStan). More detailed explanations about the pack-
age are available from the vignette of the package, which can be obtained running
the command vignette("MetaStan BNHM") in an R console.

In summary, I propose to use a WIP for the treatment effect parameter of the
BNHM for the meta-analysis of few studies involving rare events. An empirical in-
vestigation from the CDSR confirmed the proposed WIP, that is N (0, 2.822). In a
simulation study, the proposed method displayed desirable performance in terms
of the investigated measures in comparison to fitting BNHM with a vague prior or
using MLE. With the help of the MetaStan, the proposed method is easy to imple-
ment in R. In conclusion, I suggest the use of a WIP to deal with data sparsity in
meta-analysis of few studies involving rare events.

https://CRAN.R-project.org/package=MetaStan
https://CRAN.R-project.org/package=MetaStan
https://cran.r-project.org/web/packages/MetaStan/vignettes/MetaStan_BNHM.html
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3 Discussion

The idea of borrowing relevant information across different strata has a long history
(Efron and Morris, 1975). Bayesian methods have been recommended for borrowing
information in different phases of drug development (Davis and Leffingwell, 1990;
Dixon and Simon, 1992) and in meta-analysis (Smith, Spiegelhalter, and A. Thomas,
1995; Sutton and Abrams, 2001). Besides trials themselves, different schedules in
phase I or phase II trials can be treated as different strata. Borrowing information
from different schedules in phase I or II trials is of great importance, since the sample
sizes are small to moderate size and the number of strata is small in these trials.
In this dissertation, I emphasize Bayesian methodology to analyze phase I and II
trials with multiple schedules and the meta-analysis of few studies involving rare
events. Here, I will outline the limitations of the proposed methods and provide
some guidance for future work.

A novel Bayesian time-to-event model (TITE-PK) model for phase I dose-escalation
trials with multiple schedules was introduced. One definition of the treatment sched-
ule is the number of treatment cycles in the trial, which was used by Braun et al.
(2007). I used an alternative definition of treatment schedules, that is the frequency
of administration as suggested by Guo, Li, and Yuan (2016). The latter seems more
relevant, since usually doctors will continue to administer a drug to the patients as
long as patients benefit from the drug (Guo, Li, and Yuan, 2016). TITE-PK can also
be used for phase I dose-escalation trials with multiple schedules using this defini-
tion of a schedule. To achieve this, the time point t∗ must vary based on the num-
ber of treatment cycles, while assuming the frequency of administration f is shared
between schedules. An important limitation of TITE-PK is the assumption of mono-
tonicity of the exposure and the end-of-cycle 1 DLT probabilities. The monotonicity
assumption implies completely ordered schedules, meaning that end-of-cycle 1 DLT
probabilities increase with more frequent administrations given the same cumula-
tive dose. The comparator POCRM relaxes the assumption of completely ordered
schedules. However, TITE-PK yields robust performance against the violation of
the completely ordered schedules by producing better or similar results in terms of
the investigated metrics. For the sequential investigation of multiple schedules, we
expect that the monotonicity assumption holds between schedules of the completed
and the ongoing trials. In contrast, the comparator B-CRM approach explicitly mod-
els the heterogeneity between the completed and the ongoing trials. In the simu-
lations, TITE-PK underperforms compared to B-CRM, when the scenario includes
considerable heterogeneity between the completed and the ongoing trials in dose
and DLT probability curves. Therefore, when there is a clear conflict of exposure
and DLT probability relationships between the completed and the ongoing trials, B-
CRM is a better choice than TITE-PK. One might consider an extension of TITE-PK
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by including a meta-analytic-predictive (MAP) component to directly model hetero-
geneity between the completed and the ongoing trials. However, such extensions
should be carefully investigated, since there might be identification problems due
to data sparsity present in phase I trials. Another limitation of TITE-PK is that in
the current implementation, only phase I trials with schedules of equal frequency
of administrations can be analyzed. The model itself allows very different types of
schedules, for instance a schedule with one day on, two days off etc. However, the
Stan implementation of TITE-PK must be adapted for such schedules. Another im-
portant point is that TITE-PK is currently only suitable for a single drug, whereas
combinations of drugs are becoming more and more popular. To extend TITE-PK
for this purpose, possible drug interactions may need to be modeled.

I considered the estimation of dose-response models in phase II trials with mul-
tiple schedules. For this purpose, I propose a Bayesian hierarchical model in which
certain parameters are treated as schedule specific random-effects, while others are
assumed to be shared between schedules. Thus, the proposed model allows bor-
rowing from different schedules instead of a static borrowing, that is using fixed
weights to obtain schedule specific dose-response curves. The dynamic borrowing
improves the accuracy of point estimates, while providing some robustness against
the considerable heterogeneity in certain parameters between schedules. One disad-
vantage of the proposed model might be the parametrization of the model, since the
overall mean parameter µED50 in Equation (2.6) does not have any meaningful inter-
pretation. This is because the mean of schedules is not properly defined. To solve
this, an alternative parametrization based on an asymmetric treatment of the sched-
ule specific parameters can be used (Röver and Friede, 2020). Another disadvan-
tage of the proposed model is that for some applications, there might be too much
shrinkage, when it is not warranted. This may happen, when there exists an extreme
schedule, thus the borrowing information for this schedule is not desirable. To over-
come this, Neuenschwander, Wandel, et al. (2016) suggested the exchangeability-
nonexchangeability (EXNEX) models, which avoid too much shrinkage for extreme
strata (such as treatment schedule) in the dataset. EXNEX assumes that each strata
is either exchangeable with some strata or nonexchangeable with any other strata,
that is, an outlier. However, an EXNEX approach in our context must be tested well
due to potential identification and convergence problems.

I proposed the use of weakly informative priors (WIP) for the treatment effect
parameter in a binomial-normal hierarchical model (BNHM) for the meta-analysis
of few studies involving rare events. The construction of a WIP for the treatment
effect parameter was shown by assuming a normal prior with mean zero and as-
suming a priori interval for possible values. The constructed WIP is consistent
with a re-analysis of Cochrane Database of Systematic Reviews (CDSR). In simu-
lation studies, the proposed model has shown to have better performance in terms
of accuracy of the point estimate and coverage of the interval estimate compared
to alternatives. A main limitation of the simulation study is that the underlying
data-generating process is also BNHM. Hence, the proposed model was not tested
against the model misspecification. One might consider alternative parameteriza-
tions of the BNHM (Jackson et al., 2018) or a Poisson-normal hierarchical model as
the data model. However, the main idea is still applicable for such models in which
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relative treatment effects are modeled. A possible extension of the proposed method
is network meta-analysis (NMA) involving rare events (Efthimiou et al., 2019). NMA
is a generalization of the standard meta-analysis, which enables us to evaluate mul-
tiple treatments, even though they are not compared directly in a trial. The use of
WIP for the treatment effect parameter in NMA can be especially useful, since in
many NMA datasets, some treatment effect parameters are informed by only few
trials. Although overall the number of trials can be considerably large, it does not
guarantee that each treatment effect is informed by an adequate number of trials.
This situation is similar to the standard meta-analysis of few trials. For example,
for the BNHM model of NMA which was described in Günhan, Friede, and Held
(2018), WIP of the treatment effect parameters for each treatment in the network can
be constructed.

The use of Stan facilitates the implementation of the complicated Bayesian mod-
els which were proposed in the dissertation through MCMC methods. However, in
order to use the developed R packages (ModStan and MetaStan), the user needs some
knowledge about the convergence diagnostics of MCMC and Stan. Many practition-
ers are more familiar with the frequentist methods compared to MCMC methods.
The novelty of MCMC diagnostics can be a barrier for some people to apply the pro-
posed methods. For a gentle introduction to Stan, I refer to Sorensen, Hohenstein,
and Vasishth (2016).
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Günhan, BK, Röver, C, and Friede, T (2020). “Random-effects meta-analysis of few
studies involving rare events”. In: Research Synthesis Methods 11.1, pp. 74–90. DOI:
10.1002/jrsm.1370.

Günhan, BK, Weber, S, and Friede, T (2020). “A Bayesian time-to-event pharmacoki-
netic model for phase I dose-escalation trials with multiple schedules”. In: Statis-
tics in Medicine 39.27, pp. 3986–4000. DOI: 10.1002/sim.8703.

Günhan, BK, Weber, S, Seroutou, A, et al. (2020). A Bayesian time-to-event pharmacoki-
netic model for sequential phase I dose-escalation trials with multiple schedules. Up-
dated August, 2020. Accessed August, 2020. URL: https://arxiv.org/abs/
1811.09433.

Guo, B, Li, Y, and Yuan, Y (2016). “A dose-schedule finding design for phase I-II
clinical trials”. In: Journal of Royal Statistics Society: Series C 65.2, pp. 259–272. DOI:
10.1111/rssc.12113.

Higgins, JPT and Green, S (eds) (2008). “Cochrane handbook for systematic reviews
of interventions”. In: Chichester: UK: Wiley. DOI: 10.1002/9780470712184.

https://doi.org/10.1214/16-AOS1520
https://doi.org/10.2307/2336755
https://doi.org/10.1002/jrsm.1217
https://clinicaltrials.gov/ct2/show/NCT03568071?cond=NCT03568071&draw=2&rank=1
https://clinicaltrials.gov/ct2/show/NCT03568071?cond=NCT03568071&draw=2&rank=1
https://doi.org/10.1214/06-BA117A
https://doi.org/https://doi.org/10.1201/b16018
https://doi.org/10.1214/08-AOAS191
https://doi.org/10.1002/sim.6537
https://doi.org/10.1002/jrsm.1285
https://doi.org/10.1002/jrsm.1285
https://doi.org/https://doi.org/10.1080/19466315.2020.1850519
https://doi.org/https://doi.org/10.1080/19466315.2020.1850519
https://doi.org/10.1002/jrsm.1370
https://doi.org/10.1002/sim.8703
https://arxiv.org/abs/1811.09433
https://arxiv.org/abs/1811.09433
https://doi.org/10.1111/rssc.12113
https://doi.org/10.1002/9780470712184


34 Bibliography

Higgins, JPT, Thompson, SG, and Spiegelhalter, DJ (2009). “A re-evaluation of random-
effects meta-analysis.” In: Journal of Royal Statistical Society Series A (Statistics in
Society) 172.1, pp. 137–159. DOI: 10.1111/j.1467-985X.2008.00552.x.

Jackson, D et al. (2018). “A comparison of seven random-effects models for meta-
analyses that estimate the summary odds ratio”. In: Statistics in Medicine 37.7,
pp. 1059–1085. DOI: 10.1002/sim.7588.

Jones, HE et al. (2011). “Bayesian models for subgroup analysis in clinical trials”. In:
Clinical Trials 8.2, pp. 129–143.

Kalbfleisch, JD and Prentice, RL (2002). The Statistical Analysis of Failure Time Data.
New York, NY: John Wiley & Sons. DOI: 10.1002/9781118032985.

Kallen, A (2007). Computational Pharmacokinetics. Boca Raton, Florida: CRC Press.
DOI: 10.1201/9781420060669.

Kuss, O (2015). “Statistical methods for meta-analyses including information from
studies without any events–add nothing to nothing and succeed nevertheless”.
In: Statistics in Medicine 34.7, pp. 1097–1116. DOI: 10.1002/sim.6383.

Le Tourneau, C, Lee, JJ, and Siu, LL (2009). “Dose escalation methods in phase I
cancer clinical trials”. In: Journal of the National Cancer Institute 101.10, pp. 708–
720. DOI: 10.1093/jnci/djp079.

Liu, S et al. (2015). “Bridging continual reassessment method for phase I clinical
trials in different ethnic populations”. In: Statistics in Medicine 34.10, pp. 1681–
1694. DOI: 10.1002/sim.6442.

Mantel, N and Haenszel, W (1959). “Statistical aspects of the analysis of data from
retrospective studies of disease”. In: Journal of the National Cancer Institute 22.4,
pp. 719–748. DOI: 10.1093/jnci/22.4.719.
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Phase I dose-escalation trials must be guided by a safety model in order to avoid
exposing patients to unacceptably high risk of toxicities. Traditionally, these tri-
als are based on one type of schedule. In more recent practice, however, there
is often a need to consider more than one schedule, which means that in addi-
tion to the dose itself, the schedule needs to be varied in the trial. Hence, the
aim is finding an acceptable dose-schedule combination. However, most estab-
lished methods for dose-escalation trials are designed to escalate the dose only
and ad hoc choices must be made to adapt these to the more complicated setting
of finding an acceptable dose-schedule combination. In this article, we intro-
duce a Bayesian time-to-event model which takes explicitly the dose amount and
schedule into account through the use of pharmacokinetic principles. The model
uses a time-varying exposure measure to account for the risk of a dose-limiting
toxicity over time. The dose-schedule decisions are informed by an escalation
with overdose control criterion. The model is formulated using interpretable
parameters which facilitates the specification of priors. In a simulation study, we
compared the proposed method with an existing method. The simulation study
demonstrates that the proposed method yields similar or better results compared
with an existing method in terms of recommending acceptable dose-schedule
combinations, yet reduces the number of patients enrolled in most of scenarios.
The R and Stan code to implement the proposed method is publicly available
from Github (https://github.com/gunhanb/TITEPK_code).

K E Y W O R D S

multiple schedules, pharmacokinetic models, phase I dose-escalation trials, Stan

1 INTRODUCTION

In a phase I trial, a treatment plan includes the amount of drug to be given a patient, known as the dose, and the times
when it is given, known as the schedule. Phase I dose-escalation trials traditionally include only one schedule while
varying the dose among patients. However, in medical practice, there is often a need to consider different schedules, for
example, a dose given once a day or once a week, within a phase I trial. Many established methods1,2 are only designed for
varying the drug amount since time is not taken into account in the models. These approaches require ad hoc adjustments
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like scaling the dose to accommodate these more complex designs. However, varying treatment schedules necessitates
to take time into account in the model as the pharmacokinetic (PK) properties of a drug become relevant whenever the
treatment schedule is varied.

The aim of a phase I dose-escalation trial with multiple schedules is finding an acceptable dose and schedule combi-
nation. The dose-escalation must be guided by a safety model in order to avoid exposing patients to unacceptably high
risk of toxicities. What defines an acceptable dose-schedule combination depends on the drug development strategy. In
oncology, the efficacy is sought to be maximized at the cost of tolerating safety events, referred to as dose-limiting toxici-
ties (DLTs). Therefore, one seeks in oncology a so-called maximum tolerated dose-schedule combination (MTC) at which
an acceptable rate of DLT events is expected to occur.

Different definitions of treatment schedule have been used in the literature.3,4 When the aim is to optimize the number
of cycles to treat patients, the schedule is defined as the number of treatment cycles. An alternative definition is the
frequency (timing) of administration within a cycle with a given total dose per cycle. Guo et al3 argued that this definition
of schedule seems more relevant in practical terms, since physicians will usually continue to treat patients as long as
patients appear to benefit from the treatment. A more interesting point for the physicians is how frequently the treatment
should be administered. We agree with this reasoning and hence adopted this second definition of schedule in the article.

There are different methods suggested for determining the MTC. Using the definition of a schedule as the num-
ber of treatment cycles, Braun et al5 developed a time-to-event model which simultaneously optimizes the dose and
the schedule. Zhang and Braun6 extended this method to incorporate adaptive variations to dose-schedule assignments
within patients as the trial proceeds. Wages et al7 introduce a dose-schedule finding design, the partial order continual
reassessment method (POCRM), which relaxes the assumption of completely ordered schedules, that is, for a given dose,
DLT probabilities are completely ordered in terms of different schedules. Wages et al7 used the second definition of the
schedule.4 Furthermore, Li et al,8 Thall et al,9 Guo et al,3 and Cunanan and Koopmeiners10 suggested dose-schedule
finding methods that jointly models efficacy and toxicity in the context of dose-schedule combination designs.

We introduce an alternative model, a time-to-event pharmacokinetic (TITE-PK) model henceforth referred as TITE-PK,
that uses PK principles to introduce an exposure measure. Consequently, TITE-PK is an exposure-response model11

which usually uses more information than a standard dose-response model, such as kinetic drug properties. For-
mally, a pseudo-PK model is used to define a time-varying exposure measure, which constitutes a time-varying
Poisson process describing the DLT event process. TITE-PK utilizes data on the exact treatment schedule and
time-to-first DLT in a fully Bayesian model-based approach following the spirit of Cox et al12 To inform dose-schedule
decisions, TITE-PK uses an adapted escalation with overdose control (EWOC)13 criterion. This requires that for
a given dose-schedule combination, the probability for a DLT occurred within the first cycle must not exceed
the maximal admissible DLT probability by a prespecified feasibility bound. In the proposed model, PK analy-
sis and safety analysis are not combined as is done, for example, by Ursino et al14 Instead we use a pseudo-PK
model in TITE-PK which can be seen as a kinetic-pharmacodynamic model, see, for example, Jacqmin et al15 and
Jacons et al16

We provide simulations comparing the performance of our proposed model to the POCRM method, which is in the
spirit of the continual reassessment design (CRM).1 POCRM was originally developed for drug combination trials,17 and
later extended to phase I trials with multiple schedules.7 The simulation study is motivated by the Vidaza trial.18 Vidaza
is a cytotoxic drug that is used for the treatment of a blood cell disease, known as myelodysplastic syndrome, that often
develops into acute myelogeneos leukemia. The Vidaza trial (ClinicalTrials.gov identifier: NCT01080664) investigated
four different schedules and three doses, and thus, is an example of a dose-schedule finding problem.5 The R and Stan
code for the implementation of the proposed TITE-PK model is available from Github (https://github.com/gunhanb/
TITEPK_code).

This article is structured as follows. In Section 2, we introduce the proposed TITE-PK model. In Section 3,
the performance of TITE-PK and POCRM are compared in a simulation study. We close with a discussion and
a conclusion.

2 THE PROPOSED MODEL: TITE-PK

The time-to-first DLT is modeled using a time-varying (nonhomogeneous) Poisson process. A time-varying Poisson pro-
cess can be defined using the instantaneous hazard function (h(t)) for a DLT occurring at time t. The hazard function
corresponds to the probability that a patient experiences a DLT in the time interval (t, t + 𝛿t] given that they did not
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experience a DLT until time t. The hazard is modeled as a time-dependent function directly proportional to an exposure
measure of the drug (E(t)) as Reference 12

h(t) = 𝛽 E(t), (1)

where 𝛽 is the proportionality parameter to estimate. Here, the exposure measure refers to the drug concentration as in
an exposure-response model,11 and the calculation of E(t) will be explained in Section 2.1. Furthermore, if we integrate
both sides of Equation (1) from time 0 up to time t, we obtain

H(t) = 𝛽 AUCE(t), (2)

where AUCE(t) is the area under the curve of the exposure measure over time and H(t) is the cumulative hazard function,
respectively. From event history analysis,19 we know that the probability density for an event to occur at time-point t is

f (t) = h(t) exp(−H(t)) (3)

and the survivor function for the event to occur past some time-point t is given by

S(t) = P(T > t) = exp(−H(t)), (4)

where T denotes the event time. In the following, we use Cj to denote the censoring time of patient j. Accordingly, TITE-PK
is able to account for the partial information from subjects still in the follow-up (censored patients) like TITE-CRM.20 By
contrast to TITE-CRM, we restrict the follow-up period for all patients to cycle 1 only, which is a conventional approach.
Thus, all patients without a DLT up to the end of cycle 1 will be censored at the end of cycle 1, Cj = t*. Furthermore, we
denote with 𝛿j an event indicator which is set to 0 for censored events and 1 for DLT events. The overall likelihood can be
written as

L(T,C|𝛽) =
J∏

j=1
f (Tj|𝛽)𝛿j S(Cj|𝛽)(1−𝛿j), (5)

where J is the total number of the patients. Now, we discuss the exposure measure of the drug.

2.1 Pseudo-PK model

The proposed exposure model in the TITE-PK model does not rely on measured drug concentration data, as this data is
not routinely available in a form that it may be used directly in the model to support dose-schedule decisions in a timely
manner. For this reason, PK is considered as latent variable which we refer to pseudo-PK. The pseudo-PK is used to
account for the dosing history and the expected accumulation in exposure over time that ultimately drive pharmacological
responses, including safety. The main purpose of the proposed pseudo-PK model is to account for the natural “waxing
and waning” of exposure observed after dosing of drug. This pseudo-PK model has a central compartment into which
the drug is administered and accounts for drug elimination as a linear first-order process; that is, the elimination rate is
proportional to the amount of drug in the compartment21

dC(t)
dt

= −ke C(t), (6)

where C(t) is the concentration of drug in the central compartment and ke is the elimination rate constant, which is given
by log(2) divided by the elimination half-life. As the volume of the central compartment cannot be identified for a latent
pseudo-PK, we set it by convention to unity.

To account for delays between the instantaneous drug concentration in the central compartment and the concentra-
tion during the pharmacodynamic effect, we use a so-called effect compartment21

dCeff(t)
dt

= keff (C(t) − Ceff(t)). (7)



GÜNHAN et al. 3989

Here, Ceff(t) is the drug concentration in the effect compartment and keff is the PK parameter which governs the delay
between the concentration in the central compartment (C(t)) and the concentration in the effect compartment (Ceff(t)).
Note that the solutions of Equations (6) and (7) are the same up to reparametrization for a one compartment model
with first-order absorption, which would be one way to model oral absorption. The parameters ke and keff are assumed
to be known from previous PK analyses, for example, from preclinical experiments. The model is conditioned on the PK
parameters from previous analyses, thus uncertainty of the PK parameters in the estimation is ignored. A procedure to
calculate an estimate for keff using the cycle duration and the absorption rate is described in Section 3.1 for the Vidaza
trial.

The ordinary differential equations (ODE) (6) and (7) account for dosing over time through administration into the
central compartment. The analytical solution to the ODE system for multiple doses is obtained through the use of the
superposition principle which holds for linear ODE systems (see, eg, Reference 22). This model in principle can account
for the history of any treatment schedule over time. In order to simplify the notation, we restrict ourselves here to regular
treatment schedules which have a dosing frequency f (in units of 1/h), start at time t = 0h and use the same dose amount
d for all dosing events. With these simplifications (in notation) the solution to the above ODE system is

Ceff(t|d, f ) = d
∞∑

i=0
Θ
(

t − i
f

)
keff

keff − ke

(
e−ke

(
t− i

f

)
− e−keff

(
t− i

f

))
, (8)

where Θ denotes the Heaviside step function (or unit step function).
To facilitate meaningful interpretation of the parameter 𝛽 and hence to help prior specification, the exposure measure

E(t) is obtained by scaling Ceff(t) using a reference dose-schedule combination including a reference dose (d*) and a
reference dosing frequency (f *) at the end of cycle 1 (t*) such that

E(t|d, f ) =
Ceff(t|d, f )

∫ t∗
0 Ceff(t|d∗, f ∗) dt

AUCE(t∗|d∗, f ∗) = ∫
t∗

0
E(t|d∗, f ∗) dt = 1.

This is analogous to using a reference dose in the Bayesian Logistic Regression Model2 which is a two parameter
version of the CRM design and uses the EWOC criterion for dose-escalation decisions.

2.2 Informing dose-schedule decisions

To inform dose-schedule decisions, TITE-PK uses an adapted EWOC criterion. The probability that a patient experiences
at least one DLT within the first cycle (shortly the end-of-cycle 1 DLT probability) given the dose-schedule combination
with dose d and frequency f , P(T ≤ t*|d,f ), is our measure of interest.

The end-of-cycle 1 DLT probabilities are classified into three categories as follows

(i) P(T ≤ t*|d,f )< 0.16 Underdosing (UD)
(ii) 0.16≤P(T ≤ t*|d,f )≤ 0.33 Targeted toxicity (TT)

(iii) P(T ≤ t*|d,f )> 0.33 Overdosing (OD)

Dose-schedule decisions are informed using the OD probability of the dose-schedule combination d and f . The EWOC
criterion is fulfilled, if P(P(T ≤ t*|d,f )> 0.33) is smaller than the prespecified feasibility bound a. Among the dose-schedule
combinations which fulfill the EWOC criterion, the combination which has the lowest AUCE(t*) is recommended by
TITE-PK. This is analogous to recommending the lowest dose amount in the “standard” phase I dose-escalation meth-
ods. When AUCE(t*) of eligible combinations are exactly the same, one of the dose-schedule combinations can be chosen
randomly. In this article, we use a= 0.25, which was suggested by Babb et al,13 and also a= 0.50 to investigate the sen-
sitivity of the results to the choice of a in our simulations. The higher (lower) value of the feasibility bound make it
easier (harder) to escalate to the next dose and schedule combinations, resulting in more (less) aggressive dose-schedule
decisions.
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By using the relationship between P(T ≤ t*|d,f )= 1−P(T > t*|d,f ) and combining Equation (4) with (2) it follows that

P(T > t∗|d, f ) = exp(−H(t∗|d, f )) = 1 − P(T ≤ t∗|d, f )
⇔ log(H(t∗|d, f )) = log(− log(1 − P(T ≤ t∗|d, f ))) = cloglog(P(T ≤ t∗|d, f )), (9)

where cloglog(x)= log(− log(1− x)).
Since the cumulative hazard H(t|d,f ) is set proportional, see Equation (2), to the area under curve of the exposure

metric AUCE(t|d,f ) this leads to

cloglog(P(T ≤ t∗|d, f )) = log(𝛽) + log(AUCE(t∗|d, f )). (10)

For the reference dose-schedule combination with dose d* and dosing frequency f * the AUC of the exposure mea-
sure up to the reference time-point is unity, AUCE(t*|d*,f *)= 1, such that cloglog(P(T ≤ t∗|d∗, f ∗)) = log(𝛽) holds. This
highlights the importance of the reference dose-schedule combination to specify the prior for the parameter 𝛽.

As is apparent from Equation (2), TITE-PK assumes that the end-of-cycle 1 DLT probability is a monotonic function
of the exposure measure. Moreover, the pseudo-PK model assumes a linear first-order process (linear PK), meaning that
increases in drug exposure are linearly related to increases in administered doses. Consequently, AUCE(t*|d,f ) is directly
proportional to d. Thus, the assumption of the monotonicity of the exposure and the end-of-cycle 1 DLT probability
implies the assumption of the monotonicity of the dose and the end-of-cycle 1 DLT probability. However, we will see in
the simulations that the performance of the model is robust to some extent to violations of the monotonicity assumption.

2.3 Software implementation

The proposed model TITE-PK is implemented in Stan23 via rstan R package. The corresponding code for the implemen-
tation of the TITE-PK model is available from Github (https://github.com/gunhanb/TITEPK_code). Four parallel chains
of 1000 MCMC iterations after warm-up of 1000 iterations are generated. Convergence diagnostics are checked using the
Gelman-Rubin statistics24 and traceplots.

3 SIMULATION STUDY

In order to assess the performance of the TITE-PK and to compare with the POCRM under different true dose-DLT profiles
with multiple schedules, various scenarios are investigated in a simulation study.

3.1 Simulation settings

The scenarios considered in the article were also investigated by Wages et al7 These are motivated by the Vidaza example.18

As in the Vidaza trial, the scenarios investigated four different schedules (A, B, C, D) and three doses (8, 16, 24 mg/m2).
In the Vidaza trial, different treatment schedules correspond to the number of cycles the drug is administered with a
prespecified frequency of administration. More specifically, four schedules are 1, 2, 3, or 4 cycles, each with 5 days of drug
administration and 25 days of rest. As explained in the introduction, here we use another definition of the schedule, the
timing of the administration within the first cycle only. To mimic the nested schedules of the Vidaza trial, we chose the
four schedules A, B, C, and D as dosing frequency of 192, 96, 48, and 24 hours, respectively. The cycle length is taken as
28 days (t* = 28 days). The reference dose and the reference dosing frequency are determined using 24 mg (d* = 24 mg)
and Schedule B (f * = 1/96 1/h).

The scenarios were carefully chosen to reflect a range of clinically relevant scenarios. These are summarized in Table 1
and illustrated by Figure 1. Scenario 1 does not include any dose-schedule combination in the OD interval, whereas all
combinations are in the OD interval in Scenario 2. Scenarios 3 and 4 are scenarios in which DLT probabilities are spread
across UD, TT, and OD intervals. Five and three dose-schedule combinations are in the TT interval in Scenarios 3 and 4,
respectively. In Scenario 5, there is only one dose-schedule combination in the TT interval. In addition, there is a heavy
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T A B L E 1 Toxicity scenarios for the dose-schedule
combination in the simulation study

Doses in mg/m2

Schedule 8 16 24 8 16 24

Scenario 1 Scenario 2

A 0.05 0.07 0.11 0.50 0.54 0.58

B 0.09 0.12 0.18 0.53 0.60 0.65

C 0.16 0.18 0.23 0.55 0.65 0.75

D 0.22 0.26 0.30 0.57 0.73 0.78

Scenario 3 Scenario 4

A 0.03 0.14 0.28 0.03 0.15 0.30

B 0.09 0.21 0.40 0.12 0.30 0.50

C 0.18 0.32 0.54 0.30 0.50 0.60

D 0.31 0.45 0.62 0.50 0.60 0.75

Scenario 5 Scenario 6

A 0.01 0.10 0.50 0.05 0.07 0.11

B 0.03 0.30 0.55 0.16 0.18 0.23

C 0.05 0.50 0.60 0.09 0.12 0.18

D 0.10 0.60 0.70 0.22 0.26 0.30

Scenario 7

A 0.10 0.26 0.35

B 0.45 0.50 0.62

C 0.30 0.32 0.50

D 0.55 0.62 0.72

Note: Combinations in the targeted toxicity interval (0.20-0.40) are in boldface. Schedules
A, B, C, and D have dosing frequency of 192, 96, 48, and 24 hours, respectively.

violation of the monotonicity assumption of DLT probabilities with increasing exposure in Scenario 5. Moreover, Scenar-
ios 1 to 5 assume completely ordered schedules, that is, DLT probabilities increase monotonically with schedules involving
more frequent administration given the same dose. By contrast, Scenarios 6 and 7 relax this assumption, and assume
partially ordered schedules. Scenario 6 correspond to Scenario 1 with DLT probabilities for Schedules B and C switched.
Similarly, Scenario 7 corresponds to a scenario which spread across different intervals, but DLT probabilities for Schedules
B and C are switched. In addition, we considered more scenarios to assess the performance of TITE-PK, which are listed
in Table B1.

The elimination half-life of Vidaza is reported as 4 hours.25 Thus, we specify the elimination rate constant ke = log(2)
4

1/hours. In order to choose a meaningful value for the PK parameter keff, we sought for a sensible prior to model the
parameter as random. A log-normal distribution constrains keff to positive values and allows for specification of a plau-
sible range of values for the parameter. Consequently, we chose a log-normal distribution defined by the 0.025 and 0.975
quantiles reflecting the fastest and slowest time-scales of the experiment which are the absorption half-life and the cycle
duration. It is reported that the Vidaza has a rapid absorption after subcutaneous administration,25 which we interpret
as a small value for the absorption rate, say 2 1/h. A log-normal distribution is specified by matching the inverse of
cycle length 1/672 1/h and the absorption rate 2 1/h to the 0.025 and 0.975 quantiles, respectively. We can calculate the
mean of the corresponding log-normal distribution by using the relationship between log-normal and normal distribu-
tions. Accordingly, the mean of the corresponding normal distribution 𝜇 is given by log(1∕672)+log(2)

2
≈ −2.91. The standard

deviation of the corresponding normal distribution 𝜎 is given by log(2)−log(1∕672)
2×1.96

≈ 1.84. Then, the mean of the derived
log-normal distribution can be calculated with the formula exp(𝜇 + 𝜎2

2
). Hence, the PK parameter keff is given by the mean

of the log-normal distribution, that is, keff = 0.295. The calculated E(t|d,f ) and AUCE(t|d,f ) of the Vidaza trial for combi-
nations of the 8 mg-Schedule D and the 24 mg-Schedule B are displayed in Figure 2. Notice that the AUCE(t|d,f ) of the 24
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F I G U R E 1 Toxicity scenarios for the dose-schedule combination in the simulation study. The horizontal dashed lines represent the
boundaries of the targeted toxicity interval. Schedules A, B, C, and D have dosing frequency of 192, 96, 48, and 24 hours, respectively [Colour
figure can be viewed at wileyonlinelibrary.com]

mg-Schedule B at week 4 is 1, since this dose-schedule combination is taken as the reference dose-schedule combination
and the length of cycle 1 is 4 weeks.

For TITE-PK model, a normal weakly informative prior is chosen for log(𝛽) with a standard deviation of 1.75 and a
mean which corresponds to P(T ≤ t*|d*,f *) of 0.3. We used true values of ke and keff for the estimation. The comparison
of the prior DLT probabilities used by TITE-PK and the prior skeletons used by POCRM are displayed in Figure A1 in
Appendix A.

We did not consider the method by Braun et al5 in the simulations, since this method mostly requires a mean of approx-
imately 60 patients to be enrolled which is not practical for many phase I trials. POCRM assumes that DLT probabilities
increase monotonically with dose within each schedule. For different schedules, it specifies multiple possible order-
ings of dose-schedule combinations and uses model selection techniques to select the most appropriate model.4 POCRM
with partially ordered schedules relaxes the assumption of completely ordered schedules. This is done by specifying
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F I G U R E 2 Illustration of the exposure measure
of the drug (E(t|d,f )) and the AUC over exposure
measure (AUCE(t|d,f )) for the 8 mg-Schedule D and the
24 mg-Schedule B combinations of the Vidaza trial,
respectively. The reference dose-schedule combination is
the 24 mg-Schedule B and the length of cycle 1 is 4 weeks

appropriate possible orderings. In the simulations, two versions of the POCRM, one assuming complete order schedules
and one with partial order schedules, are considered. Computations of the POCRM were carried out using the publicly
available R code provided by Wages et al7 (see http://faculty.virginia.edu/model-based_dose-finding). We refer to Wages
et al7 for more information about the POCRM.

In the simulations, data for 1000 trials were generated per scenario. For all methods, patients were assigned one at a
time until the trial was stopped, the MTC was identified or the maximum number of patients per trial of 60 were used.
For the TITE-PK, if all dose-schedule combinations are in the OD interval based on the adapted EWOC criterion, the trial
is stopped without selecting any combination as the MTC. Otherwise, the trial continues until the recommendation of
the MTC. The recommended MTC must meet the following conditions:

(i) At least nine patients have been treated at the MTC.
(ii) The recommended MTC satisfies one of the following conditions:

• The probability of TT at the MTC exceeds 50%: P(0.16≤P(T ≤ t*|d,f )≤ 0.33)≥ 0.50.
• A minimum of 21 patients have already been treated in the trial.

We consider two values for the feasibility bound, namely, a= 0.25 and a= 0.50. Increasing the feasibility bound results
in the more aggressive dose-schedule decisions, that is, increasing the percentage of trials with the MTC declared in the
TT interval, while increasing the percentage of trials with the MTC declared in the OD interval.

3.2 Results

Table 2 shows the summary statistics for the performance of the methods under the seven scenarios. In Scenario 1,
TITE-PK with a= 0.50 outperforms both POCRM methods in terms of recommending the MTC in the TT interval.
The corresponding percentages are 76%, 62%, and 65% for TITE-PK (a= 0.50), POCRM (complete), and POCRM (par-
tial), respectively. However, TITE-PK with a= 0.25 yields the worst performance according to the same measure, the



3994 GÜNHAN et al.

Scenario

1 2 3 4 5 6 7

Probability of selecting MTC in the targeted toxicity interval

POCRM (complete) 0.62 n/a 0.74 0.65 0.42 0.57 0.52

POCRM (partial) 0.65 n/a 0.74 0.63 0.44 0.66 0.57

TITE-PK (a = 0.25) 0.44 n/a 0.58 0.38 0.25 0.39 0.31

TITE-PK (a = 0.50) 0.76 n/a 0.79 0.60 0.40 0.76 0.57

Probability of selecting MTC in the overdosing interval

POCRM (complete) 0.00 0.49 0.08 0.20 0.36 0.00 0.26

POCRM (partial) 0.00 0.50 0.10 0.21 0.36 0.00 0.26

TITE-PK (a = 0.25) 0.00 0.07 0.01 0.03 0.04 0.00 0.04

TITE-PK (a = 0.50) 0.00 0.28 0.10 0.14 0.20 0.00 0.24

Probability of selecting no combination as MTC

POCRM (complete) 0.05 0.51 0.03 0.03 0.01 0.06 0.09

POCRM (partial) 0.05 0.50 0.03 0.03 0.01 0.02 0.10

TITE-PK (a = 0.25) 0.10 0.93 0.13 0.15 0.07 0.11 0.37

TITE-PK (a = 0.50) 0.04 0.72 0.03 0.03 0.01 0.05 0.08

Mean number of patients enrolled in the overdosing interval

POCRM (complete) 0.0 17.0 2.5 6.1 9.3 0.0 8.1

POCRM (partial) 0.0 17.6 3.2 7.0 10.1 0.0 8.2

TITE-PK (a = 0.25) 0.0 3.8 1.2 2.7 5.1 0.0 4.0

TITE-PK (a = 0.50) 0.0 8.7 4.5 7.1 10.1 0.0 8.3

Mean number of patients enrolled in total

POCRM (complete) 25.6 17.0 24.5 24.2 24.6 25.2 22.2

POCRM (partial) 25.9 17.6 25.7 25.3 25.8 25.9 23.6

TITE-PK (a = 0.25) 21.5 3.8 19.1 18.6 19.0 21.1 14.2

TITE-PK (a = 0.50) 18.8 8.7 20.5 20.8 21.7 18.3 19.9

Mean number of DLT observed

POCRM (complete) 4.6 8.9 6.6 7.2 7.1 4.5 7.6

POCRM (partial) 4.7 9.3 6.9 7.8 7.7 4.7 8.3

TITE-PK (a = 0.25) 3.8 2.0 4.6 4.7 4.8 3.8 4.3

TITE-PK (a = 0.50) 4.2 4.9 6.6 7.1 7.6 4.1 7.6

Abbreviations: MTC, maximum tolerated dose-schedule combination; POCRM, partial order continual
reassessment method; TITE-PK, time-to-event pharmacokinetic.

T A B L E 2 Simulation results
for two applications of POCRM
with complete and partial order
schedules and two applications of
the proposed method TITE-PK
with a feasibility bound of a= 0.25
and a= 0.50

corresponding percentage is 44%. Scenario 1 includes no dose-schedule combinations in the UD interval, hence proba-
bility of selecting no combination as the MTC is 0 for all methods. In Scenario 2, all combinations are in the OD interval.
TITE-PK with a= 0.25 and a= 0.50 stop the trial without the MTC selection in 93% and 72% of the time, respectively. How-
ever, both POCRM methods stop the trial around 50% of the time. Subsequently, the percentages of the MTC selection in
the OD interval of POCRM methods are higher than both TITE-PK models. Moreover, TITE-PK with a= 0.50 is superior
to POCRM with partial ordering in terms of mean number of patients enrolled in the OD interval (8.7 vs 17.6) and mean
number of DLT observed (4.9 vs 9.3). An advantage of TITE-PK is that, due to early stopping and a small mean number
of patients, the design expose approximately half of the sample size to toxic combinations in comparison to POCRM with
partial order (given above).
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In Scenario 3, TITE-PK with a= 0.50 gives higher percentage for recommending a combination in the TT interval than
both POCRM methods. The corresponding percentages are 79% for TITE-PK (a= 0.50), 74% for POCRM (complete), and
74% for POCRM (partial). TITE-PK with a= 0.25 selects the MTC in the OD interval in about 1% of the time for Scenario
3, while it yields the worst performance with 58% in terms of recommending a combination in the TT interval. In Scenario
4, both POCRM methods yield higher percentages than TITE-PK with a= 0.50 for the selection of the MTC in the TT
interval. The corresponding percentages are 60%, 65%, and 63% for TITE-PK (a= 0.50), POCRM (complete), and POCRM
(partial), respectively. However, both POCRM methods yield slightly higher percentages than TITE-PK with a= 0.50 for
the selection of the MTC in the OD interval. TITE-PK with a= 0.50 recommends the MTC in the OD interval in 14% of
the trials, while POCRM with complete ordering and POCRM with partial ordering do this in 20% and 21% of the trials.

Scenario 5 needs special consideration, since all methods perform poorly in terms of the MTC selection in the TT
interval. Consistent with other scenarios, TITE-PK (a= 0.25) results in the lowest probability for the MTC selection in the
TT interval. However, both TITE-PK methods display superior performance in terms of selecting MTC in the OD interval.
The corresponding percentages are 20% for TITE-PK (a= 0.50) and 36% for POCRM with partial ordering. Scenario 6
corresponds to Scenario 1 but with DLT probabilities for Schedules B and C switched. In Scenario 6, TITE-PK (a= 0.50)
displays better performance compared with POCRM methods as in Scenario 1. In Scenario 7, TITE-PK (a= 0.50) yield
lower percentages than POCRM methods in terms of selecting the MTC in the OD interval. Although Scenarios 6 and 7
assume partial orderings, our method performs relatively well showing robustness against the violation of the complete
ordering assumption.

We also examined which schedules are recommended by TITE-PK (a= 0.50) and POCRM with partial ordering as
part of the MTC. These results are listed in Table 3. In many scenarios, the schedules recommended by POCRM are more
spread across four schedules compared with the schedules recommended by TITE-PK. For example, in Scenario 5 the
MTC selection in the TT interval is similar for two methods (the only combination in the TT interval is in Schedule B).
However, the selected schedules by two methods are quite different. This results in inferior performance of POCRM in
terms of the MTC selection in the OD interval. This is because Schedule A of Scenario 5 which was selected by TITE-PK
in 45% of the time has less toxic dose-schedule combinations than Schedules C and D. The fact that TITE-PK selects the
schedules more precisely is reflected in its superior performance in terms of the MTC selection in the TT and/or OD
intervals. One possible reason is that the EWOC criterion used by TITE-PK does not allow to escalate to the schedules
with higher toxicity in comparison to POCRM, hence improving the overall performance.

Overall, TITE-PK with a= 0.25 yields more conservative behavior in terms of the MTC selection in the TT and the OD
intervals in comparison to TITE-PK with a= 0.50, as it is expected. In all scenarios, TITE-PK with a= 0.25 does not select

T A B L E 3 Simulation results for
schedules recommended by TITE-PK (a =
0.50) and POCRM (partial) as part of the MTC

Scenario

1 2 3 4 5 6 7

Probability of selecting Schedule A as part of MTC

TITE-PK 0.00 0.27 0.10 0.31 0.45 0.01 0.52

POCRM 0.02 0.45 0.17 0.28 0.16 0.02 0.36

Probability of selecting Schedule B as part of MTC

TITE-PK 0.06 0.02 0.47 0.59 0.47 0.07 0.19

POCRM 0.19 0.04 0.30 0.34 0.45 0.27 0.20

Probability of selecting Schedule C as part of MTC

TITE-PK 0.22 0.00 0.34 0.07 0.08 0.13 0.19

POCRM 0.23 0.01 0.29 0.29 0.27 0.15 0.33

Probability of selecting Schedule D as part of MTC

TITE-PK 0.67 0.00 0.06 0.00 0.00 0.74 0.01

POCRM 0.51 0.00 0.20 0.06 0.10 0.50 0.02

Note: Schedules A, B, C, and D have dosing frequency of 192, 96, 48, and 24 hours, respectively.
Abbreviations: MTC, maximum tolerated dose-schedule combination; POCRM, partial order
continual reassessment method; TITE-PK, time-to-event pharmacokinetic.
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Scenario

1 2 3 4 5 6 7

Probability of selecting MTC in the targeted toxicity interval

TITE-PK 0.76 0.00 0.79 0.60 0.40 0.76 0.57

Uniform 0.77 0.00 0.80 0.59 0.45 0.78 0.55

Exponential 0.74 0.00 0.79 0.57 0.45 0.76 0.54

Early/late 0.74 0.00 0.80 0.57 0.44 0.76 0.53

Mean number of patients enrolled in the overdosing interval

TITE-PK 0.0 8.7 4.5 7.1 10.1 0.0 8.3

Uniform 0.0 9.9 4.8 8.2 10.3 0.0 8.6

Exponential 0.0 9.3 4.9 7.7 10.0 0.0 8.7

Early/late 0.0 9.4 5.2 8.3 9.8 0.0 8.7

Mean number of patients enrolled in total

TITE-PK 18.8 8.7 20.5 20.8 21.7 18.3 19.9

Uniform 18.5 9.9 20.4 21.0 21.2 18.4 19.7

Exponential 18.6 9.3 20.3 20.9 21.3 18.4 19.9

Early/late 19.2 9.4 20.4 20.9 21.0 18.7 19.4

Abbreviations: DLT, dose-limiting toxicity; MTC, maximum tolerated dose-schedule combination;
TITE-PK, time-to-event pharmacokinetic.

T A B L E 4 Simulation results under
different time-to-DLT distributions:
TITE-PK, uniform and exponential
distributions, and time-to-DLT occurring
with higher probability at the early
(between time 0 and t∗

5
) or late (between

time 4 t∗

5
and t*) stage within the first cycle

the MTC in the OD interval more than 7% of the time. Furthermore, TITE-PK with a= 0.25 induces the lowest number
of DLT in all scenarios and enroll the lowest number of patients to the OD interval. However, this conservative behavior
consistently results in a weaker performance in terms of selecting the MTC in the TT interval. The main reason of this
poor behavior is related to the EWOC criterion and the choice of a= 0.25. TITE-PK with a= 0.50 yields superior or similar
performance compared with the POCRM methods in terms of selecting the MTC in the TT interval with the exception
of Scenario 4. In terms of the MTC selection in the OD interval, TITE-PK with a= 0.50 performs consistently better than
POCRM methods. Furthermore, POCRM (partial) does not display clear benefit over TITE-PK with a= 0.50 for Scenario
6 and 7 in which the assumption of complete ordering is relaxed. Finally, both TITE-PK models enroll lower number
of patients compared with both POCRM methods in all scenarios. One reason of the desirable performance of TITE-PK
may stem from the use of EWOC criterion, which reduces the risk of recommending toxic dose-schedule combinations
as the MTC.

With the proposed method TITE-PK, time-to-DLT is modeled using a nonhomogeneous Poisson distribution which
has been used to simulate the timing of the events in the previously discussed scenarios. To examine the robustness
of the Poisson process assumption following the exposure metric in TITE-PK, we generated datasets from different
time-to-DLT models, namely, uniform and exponential distributions, under each scenario. Furthermore, we considered a
third data-generating process, that is, assuming time-to-DLT occurring with higher probability at the early (between 0 and
t∗

5
) or late (between time 4 t∗

5
and t*) stages within the first cycle. For the uniform distribution, the occurrences of DLT are

determined using the true DLT probabilities. The timing of DLT is sampled uniformly within the first cycle. For the expo-
nential distribution, the rate parameter of the exponential distribution is calculated by 𝜆 = − log(1 − P(T ≤ t∗|d, f ))∕t∗
where P(T ≤ t*|d,f ) corresponds to a true DLT probability.26 Then, the timing of DLT is sampled using the exponential
distribution with the specified rate parameter within the first cycle. For the third data-generating process, the occurrences
of DLT are determined using the true DLT probabilities as in the uniform distribution. The timing of DLT is sampled
assuming with the probability of 0.4 for the interval 0 and t∗

5
(early) and the probability of 0.4 for the interval 4 t∗

5
and

t* (late). These give that within the interval t∗

5
and 4 t∗

5
, the corresponding probability is 0.2. We only considered the fea-

sibility bound of a= 0.50. Table 4 gives the results of three performance measures. The first rows of each performance
measure replicate the values displayed in Table 2 of TITE-PK (a= 0.50) values. Table 4 indicates that the performance of
TITE-PK varies little with the time-to-DLT distribution in terms of investigated measures.
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4 DISCUSSION AND CONCLUSIONS

We propose a Bayesian adaptive model, a TITE-PK model, to support design and analysis of phase I dose-escalation trials
with multiple schedules to provide guidance for the dose-schedule decisions. TITE-PK has an interpretable parameter
which facilitates the prior specification. It uses PK principles to combine different treatment schedules in a model-based
approach. An adapted EWOC criterion can be used with TITE-PK. In the simulations, for six of seven scenarios consid-
ered, TITE-PK with a feasibility bound of 0.50 shows superior or similar performance in terms of identifying the MTC in
the TT interval compared with the POCRM. In terms of the recommendation of the MTC in the OD interval, TITE-PK
yields lower percentages in all seven scenarios considered. For all scenarios, the TITE-PK model required lower numbers
of patients enrolled compared with POCRM.

Here, we considered simultaneously finding a suitable dose-schedule combination within a phase I trial as in Wages
et al7 Another useful design would investigate multiple schedules, say Schedules 1 and 2, sequentially. That is, enrolling
dose cohorts of patients with Schedule 1 and estimating the maximum tolerated dose (MTD) for the Schedule 1. Then,
patients are enrolled into dose cohorts using Schedule 2 and the MTD is estimated for Schedule 2 by utilizing data coming
from both schedules. TITE-PK can be used to design such sequential phase I trials or a phase I trial involving only one
schedule. As such designs are beyond the scope of this article, they are not investigated here.

Here, we considered the cohort size of 1. However, there is no restriction in TITE-PK regarding the cohort size.
We defined the schedule as the frequency of administration within a cycle. Nevertheless, TITE-PK can be used to
design trials with the other definition of the schedule, that is, the number of cycles to treat patients. This can be
achieved by assigning different reference time point t* for different dose-schedule combinations based on the num-
ber of treatment cycles. Frequency of administrations f for different dose-schedule combinations will be assumed to be
the same.

One limitation of the proposed method is the assumption of monotonicity of the exposure-DLT probability relation-
ship. Moreover, this monotonicity assumption implies a monotonic dose-DLT curve, since a linear PK is used in the
pseudo-PK model. Violation of the linear PK assumption can be informed using the external PK data from the ongo-
ing trial. To relax the assumption of linear PK, one can consider more complicated PK models including a nonlinear PK
model which may not have an analytical solution. Such extensions may be implemented in Stan which has a built-in
differential equation solver. However, more complicated modeling approaches always need to be calibrated well given the
sparseness of the phase I dose-escalation datasets. Alternatively, one can consider an ad hoc extension of the TITE-PK
model. For instance, by introducing a nonlinearity factor 𝛾 ,27 a pseudo-dose as ( d

d∗ )𝛾 can be used instead of dose d in the
model which may be helpful to relax the linear PK assumption.

When relevant historical information or data from a different study population exists, it is desirable to include such
information in the analysis of the phase I trial, for example, using a meta-analytic-predictive (MAP) prior.28 TITE-PK can
be extended to use a MAP approach. Another crucial aspect of the methods for phase I trials is the ability to analyse the
combination of drugs. Although we only consider the single agent case here, it is possible to extend TITE-PK to analyse
drug combinations which is complicated by the need to model possible drug interactions. Another extension of TITE-PK
is considering a two-parameter version in which one of the PK parameters keff is also estimated in the model jointly with
the regression coefficient 𝛽.
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APPENDIX A. PRIOR PROBABILITIES FOR TITE-PK AND PRIOR SKELETONS FOR POCRM

Figure A1 shows the comparison of the prior DLT probabilities used by TITE-PK and the prior skeletons used by
POCRM.
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F I G U R E A1 Prior DLT probabilities obtained by TITE-PK (as triangles) and the prior skeletons used by POCRM (as circles). The
horizontal dashed lines represents the boundaries of the targeted toxicity interval. Schedules A, B, C, and D have dosing frequency of 192, 96,
48, and 24 hours, respectively. DLT, dose-limiting toxicity; POCRM, partial order continual reassessment method; TITE-PK, time-to-event
pharmacokinetic [Colour figure can be viewed at wileyonlinelibrary.com]

APPENDIX B. ADDITIONAL SIMULATION RESULTS

We also conducted simulations to investigate further toxicity scenarios. The scenarios and the results are shown in
Tables B1 and B2, respectively.

T A B L E B1 Additional simulation scenarios:
Toxicity scenarios for the dose-schedule combination in
the simulation study

Doses in mg/m2

Schedule 8 16 24 8 16 24

Scenario 8 Scenario 9

A 0.10 0.26 0.35 0.10 0.28 0.45

B 0.30 0.32 0.50 0.12 0.30 0.48

C 0.45 0.50 0.62 0.14 0.32 0.55

D 0.55 0.62 0.72 0.30 0.48 0.70

Scenario 10

A 0.01 0.10 0.50

B 0.05 0.50 0.60

C 0.03 0.30 0.55

D 0.10 0.60 0.70

Note: Combinations in the targeted toxicity interval (0.20-0.40) are in boldface. Schedules
A, B, C, and D have dosing frequency of 192, 96, 48, and 24 hours, respectively.
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Scenario

8 9 10

Probability of selecting MTC in the targeted toxicity interval

POCRM (partial) 0.62 0.63 0.44

TITE-PK (a = 0.50) 0.69 0.75 0.22

Probability of selecting MTC in the overdosing interval

POCRM (partial) 0.22 0.17 0.33

TITE-PK (a = 0.50) 0.12 0.13 0.31

Probability of selecting no combination as MTC

POCRM (partial) 0.10 0.10 0.01

TITE-PK (a = 0.25) 0.11 0.08 0.01

Mean number of patients enrolled in the overdosing interval

POCRM (partial) 7.9 5.7 10.0

TITE-PK (a = 0.50) 6.5 7.0 11.5

Mean number of patients enrolled in total

POCRM (partial) 24.0 24.8 25.7

TITE-PK (a = 0.50) 19.5 19.5 21.9

Mean number of DLT observed

POCRM (partial) 8.4 7.4 7.7

TITE-PK (a = 0.50) 7.1 7.1 8.0

Abbreviations: DLT, dose-limiting toxicity; MTC, maximum tolerated
dose-schedule combination; POCRM, partial order continual
reassessment method; TITE-PK, time-to-event pharmacokinetic.

T A B L E B2 Additional simulation results of POCRM with partial
order schedules and the proposed method TITE-PK with a feasibility
bound of a= 0.50
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A.2 Sequential phase I dose-escalation trials with multiple
schedules
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A Bayesian time-to-event pharmacokinetic model for sequential
phase I dose-escalation trials with multiple schedules

Burak Kürsad Günhan,1 2 Sebastian Weber,3 Abdelkader Seroutou,3 Tim Friede1

Phase I dose-escalation trials constitute the first step in investigating the safety of potentially
promising drugs in humans. Conventional methods for phase I dose-escalation trials are based on a
single treatment schedule only. More recently, however, multiple schedules are more frequently in-
vestigated in the same trial. Here, we consider sequential phase I trials, where the trial proceeds
with a new schedule (e.g. daily or weekly dosing) once the dose escalation with another schedule
has been completed. The aim is to utilize the information from both the completed and the ongoing
dose-escalation trial to inform decisions on the dose level for the next dose cohort. For this purpose,
we adapted the time-to-event pharmacokinetics (TITE-PK) model, which were originally developed
for simultaneous investigation of multiple schedules. TITE-PK integrates information from multiple
schedules using a pharmacokinetics (PK) model. In a simulation study, the developed appraoch is
compared to the bridging continual reassessment method and the Bayesian logistic regression model
using a meta-analytic-prior. TITE-PK results in better performance than comparators in terms of
recommending acceptable dose and avoiding overly toxic doses for sequential phase I trials in most of
the scenarios considered. Furthermore, better performance of TITE-PK is achieved while requiring
similar number of patients in the simulated trials. For the scenarios involving one schedule, TITE-PK
displays similar performance with alternatives in terms of acceptable dose recommendations. The R
and Stan code for the implementation of an illustrative sequential phase I trial example is publicly
available (https://github.com/gunhanb/TITEPK_sequential). In sequential phase I dose-escalation
trials, the use of all relevant information is of great importance. For these trials, the adapted TITE-PK
which combines information using PK principles is recommended.

Keywords: Phase I dose-escalation trials, multiple treatment schedules, PK models, Bayesian
statistics

1 Background
Phase I dose-escalation trials constitute the first step in investigating the safety of potentially promising
drugs in humans1. In oncology, such trials focus on identifying the maximum tolerated dose (MTD)
through a series of dose-escalation steps. Dose-escalation trials traditionally enroll small cohorts of
patients who are treated in cycles. Typically, the estimation of the MTD is based on the toxicity data
of the first cycle only. The observed toxicities are classified into dose-limiting toxicities (DLT) and
non-DLT. Each time a cohort completes the first cycle at a given dose level, the available data are
assessed to decide how the trial proceeds. A commonly accepted target for the MTD in oncology is
to allow for a DLT probability of 33% per cycle of treatment.

Standard statistical methods include adaptive model based approaches such as the continual re-
assessment method (CRM)2 or the Bayesian logistic regression model (BLRM)3. The BLRM is a
two-parameter version of the CRM which utilizes the escalation with the overdose control (EWOC)4
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criterion. The EWOC criterion aims to reduce the risk of overdosing patients by choosing doses with
a posterior probability of being above the true MTD lower than a feasibility bound.

In addition to the dose administered, the frequency of administration, known as the schedule,
is a crucial part of a treatment plan of any phase I trial. In practice, sometimes it is required to
investigate multiple schedules, e.g. a dose given once a day or an adequately larger dose given once a
week. Hence, the probability of DLT for each patient is a function of both the dose and the schedule.
Simultaneous investigation of dose and schedule within a phase I trial has gained some attention in the
literature. In such trials, the doses and the schedules are altered for different cohorts of patients within
the same trial. Methods for simultaneous investigation of dose and schedule combination include a
Bayesian time-to-event model by Braun et al5 and the partial order continual reassessment method
by Wages et al6. Recently, Günhan et al7 proposed an alternative dose-schedule finding method,
a Bayesian time-to-event pharmacokinetics model (TITE-PK), which uses pharmacokinetics (PK)
principles. Unlike other phase I methods, TITE-PK makes use of an exposure-response model that
is often more informative than a standard dose-response model. TITE-PK models the relationship
between time-to-first DLT and an exposure measure of the drug obtained by a pseudo-PK model in a
Bayesian model-based approach. TITE-PK has been shown to have desirable operating characteristics
in terms of finding an acceptable dose and schedule simultaneously in simulation studies7.

In this paper, we consider an alternative phase I design in which multiple treatment schedules
are investigated sequentially, rather than simultaneously. The schedules are denoted by Si where
i = 1, 2, . . . , k. The sequential multiple schedule design proceeds as follows. In the first step, cohorts
of patients are enrolled with S1 and the trial is continued until the MTD is declared for S1. In the
second step, the trial continues with schedule S2 and the starting dose can be informed from the S1.
Dose-escalation decisions are informed by utilizing information from both schedules S1 and S2. That
is, data from both the completed schedule S1 and the ongoing schedule S2 are integrated. Once the
MTD for the Schedule S2 is determined, the trial can continue with schedule S3 and so on.

A sequential phase I trial with different strata, where strata may correspond to different patient
populations, formulations, or treatment schedules etc., also called as a bridging trial, was considered
by Liu et al8 among others9,10,11. Liu et al8 introduced the bridging CRM to borrow information from
different strata. B-CRM takes into account potential heterogeneity between different strata using a
Bayesian model averaging approach. Neuenschwander et al9 suggest the use of BLRM with a meta-
analytic-predictive (MAP) prior12 approach (BLRM-MAP) to take advantage of the completed trial
with different strata.

Borrowing approaches are based on discounting the existing information at the cost of increasing
the needed saample size to achieve an acceptable performance in a new trial. Here we suggest the
use of a modelling approach based on PK principles in order to increase the statistical efficiency.
Therefore, we adapted the TITE-PK to design and analyze sequential phase I trials with multiple
schedules. In the first step, TITE-PK is used to inform dose-escalation decisions for schedule S1 until
the MTD is declared or the trial is stopped. In the next step, TITE-PK models the data from both
the completed (S1) and the ongoing (S2) trial directly, but only recommending doses for Schedule S2.
TITE-PK can be used for any number of schedules. We investigate the operating characteristics of
TITE-PK for phase I trials with one schedule and sequential phase I trials with multiple schedules
through simulations. We provide simulation results comparing the performance of TITE-PK to CRM
and BLRM for phase I trials involving one schedule and to B-CRM and BLRM-MAP for sequential
phase I trials involving multiple schedules.

This paper is organized as follows. In the following section, we describe an illustrative phase
I trial example from oncology which investigated daily and weekly treatment schedules. Then, we
describe the adapted TITE-PK for sequential investigation of multiple schedules. The performance
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Table 1: Data of the everolimus trial. The treatment schedules which are used, the doses
which are administered in mg/m2, number of patients, and number of DLT are given.

Schedule Dose Number Number
(mg/m2) of patients of DLT

Weekly 20.0 5 0
Weekly 30.0 13 4
Daily 2.5 4 2
Daily 5.0 6 3

of TITE-PK and comparators are studied in simulations. Later, different methods are applied to the
illustrative example. We close with discussion and conclusions.

1.1 Illustrative example: Everolimus trial
Everolimus (RAD001) is an oral inhibitor of mammalian target of rapamycin, that has been devel-
oped as an antitumor agent13. Everolimus is approved by the US FDA to treat various conditions
including certain types of pancreatic cancer and gastrointestinal cancer13 and certain type of tuber-
ous sclerosis14. The elimination half-life and the absorption rate of everolimus for cancer patients
were reported as 30 (hours) and 2.5 (1/hours), respectively15. Everolimus was included in a phase
Ib trial in combination with standard of care (etoposide and cisplatin chemotherapy) to identify a
feasible dose and schedule in the treatment of small cell lung cancer (ClinicalTrials.gov identifier:
NCT00466466)16. The trial was open-label and multi-centered. Patients were assigned alternately to
either weekly or daily schedules of everolimus in treatment cycles of 21 days. In the everolimus trial,
doses in both schedules were escalated simultaneously and analysed separately from one another. A
Bayesian time-to-event model17 was used to inform the dose-escalation decisions. The final data can
be obtained from the supplementary material of Besse et al16. The dataset is displayed in Table 1.
All DLT were reported at day 15. Based on investigator and medical monitor opinion, 2.5 mg/m2

with daily schedule was identified as the MTD16.
We used this trial to illustrate the TITE-PK approach for sequential designs, because (1) the trial

evaluated two different schedules (weekly and daily dosing) and (2) the large number of DLT allows a
good assessment on the performance of the TITE-PK. We will analyse the final dataset as if the trial
had been conducted sequentially, specifically assuming S1 is weekly schedule and S2 is daily schedule.

2 Methods
2.1 TITE-PK for sequential phase I trials
TITE-PK for simultaneous investigation of multiple schedules in phase I trials were introduced in
Günhan et al7, here we adapt it for sequential investigation of multiple schedules. The time-to-
first DLT events are modeled using a time-varying (non-homogeneous) Poisson process. The hazard
function is assumed to depend on an exposure measure of the drug (E(t)):

h(t) = β E(t) (1)

where β is the only parameter to estimate in the model.
The exposure measure is calculated using a pseudo-PK model which consists of two ordinary
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differential equations:

dC(t)
dt

= −keC(t) and C(0) = 0

dCeff(t)
dt

= keff (C(t)− Ceff(t)) and Ceff(0) = 0.

where C(t) and Ceff(t) are the concentrations of drug in the central compartment and in the so-called
effect compartment, respectively. Due to non-identifiability, the volume in both compartments is set
to unity by convention here. Furthermore, ke is the elimination rate constant and keff is the PK
parameter which governs the delay between the concentration in the central compartment and the
concentration in the effect compartment. The parameter ke is parametrized using the elimination
half-life Te, that is ke = log(2)

Te
. The parameters ke and keff are assumed to be known from previous

analyses, for example from another previously studied indication or pre-clinical data.
TITE-PK uses an adapted EWOC criterion. For this purpose, the measure of the interest is the

probability of a patient experiencing at least one DLT within the first cycle (shortly the end-of-cycle
1 DLT probability), P (T ≤ t∗|d, f), where d and f refer to the dose and frequency of administration,
respectively. Using basic event history analysis18, we have the following equation

P (T ≤ t∗|d, f) = 1− e−H(t∗|d,f), (2)

which describes the relationship between the end-of-cycle 1 probabilities and the cumulative hazard
function H(t). All patients without a DLT up to the end of cycle 1 will be censored at the end of
cycle 1, and patients with a DLT are censored at the time of a DLT. Using Equation (2), it can be
shown that

cloglog(P (T ≤ t∗|d, f)) = log(β) + log(AUCE(t∗|d, f)) (3)

where cloglog(x) = log(−log(1−x)) and AUCE(t) is the area under the curve of the exposure measure
over time.

To help prior specification, E(t) is obtained by scaling Ceff(t) using a reference schedule (reference
dose d∗ and frequency f∗) at the end of the first treatment cycle (cycle 1: t∗) such that

AUCE(t∗|d∗, f∗) = 1. (4)

By combining Equation (3) and Equation (4), it follows that for the reference schedule cloglog(P (T ≤
t∗|d∗, f∗)) = log(β), which we use for the prior specification of the β parameter. This relationship
suggest to constrain β to be positive, which ensures that h(t) ≥ 0, since E(t) ≥ 0 for all t (see
Equation (1)).

The posterior distributions of end-of-cycle 1 DLT probabilities are classified into three categories
in order to inform dose-escalation decisions:

(i) P (T ≤ t∗|d, f) < 0.20 Underdosing (UD)

(ii) 0.20 ≤ P (T ≤ t∗|d, f) ≤ 0.40 Targeted toxicity (TT)

(iii) P (T ≤ t∗|d, f) > 0.40 Overdosing (OD)

The EWOC criterion is fulfilled, if the overdosing probability P (P (T ≤ t∗|d, f) > 0.40) is smaller
than the feasibility bound a. As the feasibility bound, we use 0.25, which is recommended by Babb
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Table 2: Scenarios 1-6 in the simulation study. Doses with dose limiting toxicities in the
targeted toxicity interval (0.20 - 0.40) are in boldface. Scenarios 1-6 represent phase I trials
with one schedule, that is daily schedule.

Doses in mg/m2

Scenario 2.5 5 7.5 10 12.5 15
1 0.05 0.10 0.20 0.30 0.50 0.70
2 0.30 0.40 0.52 0.61 0.76 0.87
3 0.05 0.06 0.08 0.11 0.19 0.34
4 0.06 0.08 0.12 0.18 0.40 0.71
5 0.10 0.22 0.31 0.45 0.60 0.72
6 0.50 0.55 0.61 0.69 0.76 0.87

et al4. Analogous to the monotonicity of dose-DLT probability assumption of CRM, TITE-PK as-
sumes the monotonicity of the exposure measure and the end-of-cycle 1 DLT probability. That is,
AUCE(t∗|d, f) is proportional to the end-of-cycle 1 DLT probabilities.

In the case of sequential investigation of multiple schedules, initially TITE-PK is used to conduct
the phase I trial with S1 until the MTD is declared or trial is stopped since all doses are found to be
too toxic. In this step, the frequency of administration is the same for dose-escalation decisions. Then,
cohorts are recruited with Schedule S2. For dose-escalation decisions, the information from the phase
I trial with S1 is treated as data together with the new information generated from the phase I trial
with S2. Since TITE-PK is an exposure-response model, there is no need to re-scale the doses from
different schedules to make them comparable. As opposed to BLRM MAP and B-CRM methods, data
from the completed trials is treated as part of the data instead of as part of the prior distribution.

2.2 Software implementation
We implemented TITE-PK in Stan19 via rstan R package, which employs a modern Markov chain
Monte Carlo engine. For the application and simulations, four parallel chains of 1,000 MCMC itera-
tions after warm-up of 1,000 iterations are generated. Convergence diagnostics are checked using the
Gelman-Rubin statistics and traceplots in the application. There were no divergences reported for
the implementation of the application. The R and Stan code to analyze the everolimus application is
publicly available from Github (https://github.com/gunhanb/TITEPK_sequential). The main pro-
gramming code is the Stan code from the linked folder, which conducts the Bayesian computation
to calculate posterior distributions. The method can be applied by changing R-code based on the
application, for example different doses or schedules, while keeping the Stan code.

3 Results
3.1 Simulation study
We compared the operating characteristics of TITE-PK and alternative methods in a simulation study.
The simulation study follows the clinical scenario evaluation framework introduced by Benda et al20
and it is inspired by the everolimus trial. Firstly, we considered scenarios only involving one schedule
to compare the performance of TITE-PK to CRM and BLRM. For the CRM implementation, we used
a one-parameter power model via the R package bcrm21. Both TITE-PK and BLRM recommends
the highest dose among the doses which satisfy the EWOC criteria, while CRM recommends the
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Table 3: Scenarios 7-13 in the simulation study. Daily doses with dose limiting toxicities in
the targeted toxicity interval (0.20 - 0.40) are in boldface.

Doses with Schedule S1 Doses with Schedule S2

Scenario Schedule 2.5 5 7.5 10 12.5 15 2.5 5 7.5 10 12.5 15
7 S1 0.05 0.07 0.09 0.10 0.13 0.18

S2 0.08 0.12 0.16 0.18 0.23 0.27
8 S1 0.08 0.12 0.16 0.20 0.23 0.27

S2 0.18 0.26 0.34 0.45 0.49 0.55
9 S1 0.03 0.12 0.28 0.40 0.54 0.62

S2 0.20 0.30 0.45 0.50 0.60 0.75
10 S1 0.10 0.20 0.34 0.40 0.49 0.55

S2 0.35 0.40 0.45 0.57 0.67 0.80
11 S1 0.05 0.07 0.09 0.15 0.22 0.28

S2 0.30 0.35 0.48 0.52 0.61 0.70
12 S1 0.45 0.50 0.55 0.65 0.75 0.85

S2 0.48 0.56 0.62 0.70 0.80 0.88
13 S1 0.18 0.26 0.34 0.45 0.49 0.55

S2 0.08 0.12 0.16 0.18 0.23 0.27

dose which has a DLT probability closest to the target probability. TITE-PK and CRM have one
parameter, while BLRM has two parameters in the model. Daily doses of 2.5, 5, 7.5, 10, 12.5, and
15 (mg/m2) are investigated. The starting dose is 2.5 mg/m2 for all methods. Scenarios 1-6 are
summarized in Table 2. Doses within the targeted toxicity intervals (0.20 - 0.40) are varied based on
the scenarios. Scenario 6 is an extreme scenario, where all doses are in the overdosing interval.

We also consider Scenarios 7-13 representing sequential phase I trials with two schedules. In the
first step, doses of 2.5, 5, 7.5, 10, 12.5, 15 (mg/m2) with the dosing frequency of 48 hours (S1) and
in the second step, doses of 2.5, 5, 7.5, 10, 12.5, 15 (mg/m2) with daily dosing (S2) are administered.
The starting dose for Schedule S1 is 2.5 mg/m2. For Schedule S2, the MTD declared for S1 is used
as the starting dose. Scenarios 7-13 are summarized in Table 3 and displayed in Figure 1. Doses
from Schedule S2 with DLT probabilities within the targeted toxicity intervals (0.20 - 0.40) and
discrepancy between DLT probabilities of two schedules are varied based on the scenarios. Scenario
11 is a scenario in which the discrepancy of dose-toxicity curve between the schedules is higher than
other scenarios. All doses are in the overdosing interval in Scenario 12. Scenario 13 is Scenario 8 with
DLT probabilities for Schedules 1 and 2 switched. Hence, the monotonicity assumption of the exposure
and DLT probabilities is violated in Scenario 13. In other words, for the same dose, toxicity is higher
with the lower frequent administration. Note that the weekly doses from everolimus are not chosen
in the simulations in order to better investigate the monotonicity assumption of DLT probability and
exposure. This is because, with the described doses and schedules in the simulations, we can easily
vary the order of DLT probability of the same dose with different schedules in the scenarios.

We consider three methods for sequential phase I trial scenarios (Scenarios 7-13): TITE-PK,
Bridging CRM (B-CRM), BLRM using MAP prior (BLRM MAP). As explained in the introduction,
a sequential phase I trial consists of two steps. In B-CRM, the first step is conducted using the
CRM, whereas BLRM is used for the first step of BLRM MAP. In B-CRM, multiple skeletons are
constructed using the data from Schedule S1. The Bayesian model averaging is used to estimate
toxicity probabilities with multiple skeletons and to inform the dose-escalation decisions. We used
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the publicly available R-code which is provided as the supplementary material of Liu et al8. Dose
skipping is not allowed in B-CRM. We refer to Liu et al8 for more details of B-CRM. In BLRM MAP,
a meta-analytic-predictive (MAP) prior is created based on the data from Schedule S1. The MAP
prior is used to construct the prior for the parameters of the BLRM. BLRM MAP uses the EWOC
criterion to avoid to impose more patients to the overly toxic doses. For BRLM and BLRM MAP,
the feasibility bound of 0.25 is used, as recommended in Neuenschwander et al3. Full description
of BLRM MAP is given in Neuenschwander et al9. In TITE-PK and BLRM MAP, dose-escalation
by more than 100% mg/m2 is not allowed. The R package OncoBayes222 can be used to implement
BLRM MAP.

For TITE-PK, we need to determine PK parameters. By mimicking the everolimus trial, PK
parameters are chosen as follows. The elimination rate constant is taken as ke = log(2)

30 (1/h). For
keff, an estimate is derived using the cycle length and the absorption rate. Specifically, a log-normal
distribution is constructed by matching the inverse of cycle length 1/504 (1/h) and the absorption
rate 2.5 (1/h) as the 0.025 and 0.975 quantiles, respectively. This gives a log-normal distribution with
mean parameter 0.37, hence we assume that log(keff) = 0.37.

Prior skeletons and distributions are constructed so that prior DLT probabilities from different
methods are similar. For TITE-PK model, reference dose and reference dosing frequency are deter-
mined using 7.5 mg/m2 (d∗ = 7.5 mg/m2) and 24 hours (f∗ = 1/24 1/h). A normal weakly informative
prior (WIP) is chosen such that log(β) ∼ N (cloglog(P (T ≤ t∗|d∗, f∗) = 0.30), 1.252). This implies
that prior median of DLT probability at the reference dose and frequency is 0.30. For BLRM MAP,
we choose a WIP assuming median DLT probability of 0.30 at dose 7.5 mg/kg. More specifically, we
choose a bivariate normal distribution (log(α1), log(α2)) ∼ BVN(m,Σ) with means m1 = logit(0.30)
and m2 = 0, standard deviations σ1 = 2 and σ2 = 1, and correlation ρ = 0. The target probability for
the CRM is 0.30, that is the midpoint of the targeted toxicity interval (0.20 - 0.40). For the CRM, the
prior skeleton is calculated using the method of Lee and Cheung23 assuming an indifference interval
of 0.10, which produces (0.02, 0.12, 0.30, 0.50, 0.68, 0.80). A normal prior with mean 0 and standard
deviation 2 is used as the prior for the power parameter α in the CRM and B-CRM (α ∼ N (0, 22)),
as suggested by Liu et al8.

The following simulation settings and decision rules are used for TITE-PK, BLRM and BLRM
MAP. The maximum number of patients per trial was set to 60. If all doses are in the overdosing
interval based on the EWOC criterion, the trial is stopped without selecting any dose as the MTD.
Otherwise, the trial continues until the recommendation of the MTD. The recommended MTD must
meet the following conditions:

(i) At least 6 patients have been treated at the MTD.

(ii) A minimum of 21 patients have already been treated in the trial.

For the CRM and B-CRM, the trial is terminated for safety, if the following rule is satisfied:
P (π1 > 0.30) < 0.90 where π1 is the DLT probability of the lowest dose. The sample size of 21
patients is used unless the trial is stopped due to the safety. For all methods in the simulations,
cohort sizes of 3 are used and data for 1,000 trials were generated per scenario.

3.2 Simulation results
The simulation results for Scenarios 1-6 are summarized in Table 4. We calculated six different
metrics to evaluate the performance of different methods. Scenarios 1-6 represent phase I trials with
one schedule investigated. In Scenario 1, TITE-PK slightly outperforms other methods in terms of
recommending the MTD in the targeted toxicity interval. The corresponding percentages are 78% for
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Table 4: Simulation results for TITE-PK, CRM, and BLRM in Scenarios 1-6.

Scenario
1 2 3 4 5 6

Probability of selecting MTD in the targeted toxicity interval
TITE-PK 0.78 0.52 0.75 0.36 0.71 n/a
CRM 0.73 0.61 0.24 0.22 0.79 n/a
BLRM 0.75 0.49 0.64 0.14 0.78 n/a

Probability of selecting MTD in the overdosing interval
TITE-PK 0.11 0.03 n/a 0.06 0.17 0.11
CRM 0.09 0.04 n/a 0.04 0.10 0.14
BLRM 0.06 0.02 n/a 0.04 0.10 0.07

Probability of selecting no combination as MTD
TITE-PK 0.01 0.42 0.00 0.01 0.04 0.87
CRM 0.01 0.36 0.01 0.01 0.03 0.86
BLRM 0.01 0.48 0.01 0.01 0.04 0.92

Mean number of patients enrolled
TITE-PK 24.7 15.4 23.3 27.0 22.8 8.1
CRM 20.9 15.7 20.9 20.8 20.5 8.9
BLRM 23.6 14.9 24.2 24.8 21.9 7.3
Proportion of patients enrolled in the overdosing interval

TITE-PK 0.28 0.15 n/a 0.13 0.27 1.00
CRM 0.05 0.05 n/a 0.01 0.06 1.00
BLRM 0.10 0.08 n/a 0.11 0.11 1.00

Proportion of DLT observed
TITE-PK 0.28 0.38 0.21 0.25 0.30 0.52
CRM 0.18 0.33 0.11 0.15 0.22 0.51
BLRM 0.21 0.35 0.15 0.20 0.24 0.50
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TITE-PK, 75% for BLRM and 73% for CRM. Also, BLRM yields slightly lower percentage for the
MTD selection in the overdosing interval compared to TITE-PK and CRM. BLRM selects the MTD
in the overdosing interval in 6% of the time, while TITE-PK and CRM do this in 11% and 9% of the
time, respectively. In Scenario 2, CRM yields higher percentage for the MTD selection in the targeted
toxicity interval compared to the TITE-PK and BLRM. CRM recommends the MTD in the targeted
toxicity interval in 61% of the time, while TITE-PK and BLRM do this in 52% and 49% of the time,
respectively. Three methods perform similarly in terms of recommending the MTD in the overdosing
interval. In scenario 3, TITE-PK results in the best performance in terms of the MTD selection in
the targeted toxicity interval. TITE-PK recommends the MTD in the targeted toxicity interval 75%
of the time, while BLRM and CRM do this in 64% and 24% of the time, respectively.

In scenario 4, all methods perform poorly in terms of selecting the MTD in the targeted toxicity,
while TITE-PK results in the best performance. TITE-PK yields 36% percentage for the MTD
selection in the targeted toxicity interval, while CRM and BLRM yields 22% and 14%, respectively.
In scenario 5, CRM (79%) and BLRM (78%) produces slightly higher percentages than TITE-PK
(71%) in terms of the selecting MTD in the targeted toxicity interval. In scenario 6, all doses are in
the overdosing interval. BLRM (92%) stops the trial with slightly higher percentages compared to
CRM (86%) and TITE-PK (87%).

In Scenarios 1, 3, 4 and 5, TITE-PK and BLRM enrolls slightly higher number of patients and
results in slightly higher proportions of DLT observed in comparison to CRM. Overall, none of the
methods shows superior performance in terms of the investigated metrics. The results depend on
the scenarios. Similar results from the comparison of BLRM and CRM was also obtained by the
simulation studies in Neuenschwander et al3.

We continue with Scenarios 7-13 in which sequential phase I trials are investigated. The simulation
results under Scenarios 7-13 are summarized in Table 5. In Scenario 7, BLRM MAP produces the
best performance in terms of the MTD selection in the targeted toxicity interval, while TITE-PK
is the second. The corresponding percentages are 95%, 90%, and 83% for BLRM MAP, TITE-PK,
and B-CRM respectively. In Scenarios 8-11, TITE-PK demonstrates superior performance in terms of
selecting the MTD in the targeted toxicity interval. TITE-PK selects the MTD in the targeted toxicity
interval in 14%, 17%, 16%, and 10% more simulated trials in comparison to the second best performed
method in Scenarios 8-11, respectively. In Scenarios 8 and 9, TITE-PK produces lower percentages in
terms of the MTD selection in the overdosing interval, selecting MTD in 16% and 3% less simulated
trials compared to BLRM MAP. In Scenario 11, CRM (28%) displays superior performance in terms
of the MTD selection in the overdosing interval in comparison to other methods. In Scenario 12,
TITE-PK and BLRM MAP displays better performance than B-CRM by stopping the trial in 98%
and 97% of the time, while requiring less patients than other methods. The monotonicity assumption
of the exposure and DLT probabilities is violated in Scenario 13. In Scenario 13, B-CRM outperforms
other methods by selecting MTD in the targeted toxicity interval in 22% more trials compared to the
BLRM MAP. TITE-PK (17%) displays the worst performance in terms of the MTD selection in the
targeted toxicity interval.

In Scenarios 7-13 except 12, different methods enrolls similar number of patients. In Scenarios 7-13
except 12, in terms of the proportion of DLT observed, all methods perform similarly. In Scenarios
7-12, TITE-PK displays the best or the second best performance in terms of the MTD selection in
the targeted toxicity and overdosing intervals. However, TITE-PK clearly shows poor performance in
Scenario 13, which is expected, as the monotonicity assumption between exposure and DLT probability
is violated.
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Table 5: Simulation results for TITE-PK, B-CRM, and BLRM-MAP in Scenarios 7-13.

Scenario
7 8 9 10 11 12 13

Probability of selecting MTD in the targeted toxicity interval
TITE-PK 0.90 0.70 0.94 0.84 0.62 n/a 0.17
B-CRM 0.83 0.50 0.64 0.60 0.52 n/a 0.77
BLRM MAP 0.95 0.56 0.77 0.68 0.46 n/a 0.55

Probability of selecting MTD in the overdosing interval
TITE-PK n/a 0.22 0.05 0.02 0.37 0.02 n/a
B-CRM n/a 0.38 0.08 0.00 0.28 0.25 n/a
BLRM MAP n/a 0.40 0.21 0.10 0.41 0.03 n/a

Probability of selecting no combination as MTD
TITE-PK 0.00 0.02 0.01 0.14 0.00 0.98 0.15
B-CRM 0.00 0.02 0.02 0.28 0.20 0.75 0.00
BLRM MAP 0.00 0.02 0.02 0.22 0.12 0.97 0.01

Mean number of patients enrolled
TITE-PK 21.7 21.7 21.4 19.4 21.8 3.7 19.7
B-CRM 21.0 21.0 21.0 18.0 19.0 9.0 21.1
BLRM MAP 21.5 23.6 21.6 20.0 22.8 4.8 23.4
Proportion of patients enrolled in the overdosing interval

TITE-PK n/a 0.39 0.17 0.12 0.61 1.00 n/a
B-CRM n/a 0.46 0.15 0.06 0.72 1.00 n/a
BLRM MAP n/a 0.59 0.40 0.26 0.70 1.00 n/a

Mean number of of DLT observed
TITE-PK 5.3 8.2 6.2 7.5 10.2 1.8 2.4
B-CRM 4.5 7.0 7.3 7.5 8.5 4.0 3.0
BLRM MAP 5.7 9.7 7.7 8.2 11.1 2.4 3.9
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3.3 Revisiting the everolimus trial
Returning to the data set described before, consider the everolimus trial shown in Table 1. Firstly,
we analyse the data only from the daily schedule using the BLRM, the CRM, and the TITE-PK.
Secondly, we analyse it as if the trial is conducted sequentially, specifically S1 is weekly schedule and
S2 is daily schedule using BLRM MAP, B-CRM, and TITE-PK. The reference schedule is determined
using dosing amount of 5 mg/m2 (d∗ = 5 mg/m2) and dosing frequency of 24 hours (f∗ = 1/24 1/h).
For TITE-PK, PK parameters are chosen such that Te = 30 (hours) and log(keff) = 0.37 as explained
in the simulation study.

Figure 1: Everolimus trial: Prior medians (A), posterior medians daily (B), and sequential (C),
50% equi-tailed credible intervals (thick lines), and 95% equi-tailed credible intervals (thin
lines) of daily doses for DLT probabilities obtained by BLRM (BLRM-MAP for Sequential),
CRM (B-CRM for Sequential), and for end-of-cycle 1 DLT probabilities obtained by TITE-PK.
Prior skeletons are shown for CRM in the plot A. “Sequential” refers that analysis is done
by assuming the trial is conducted sequentially, namely firstly weekly schedule, secondly daily
schedule. Also, “Daily” means data only from daily schedule is considered. Vertical dashed
lines (0.20-0.40) are the boundaries of the targeted toxicity interval.

To compare BLRM, CRM and TITE-PK models, priors are constructed so that prior DLT prob-
abilities are similar. To define a WIP for BLRM, we choose a bivariate normal prior with following
parameters (m1 = logit(πd∗ = 0.30),m2 = 0, σ1 = 1.25, σ2 = 1, ρ = 0). For the CRM, we use the
target probability of 0.30. The prior skeleton is, then, calculated assuming an indifference interval
of 0.10, which produces (0.12, 0.30, 0.50, 0.68). For TITE-PK, a normal WIP is chosen such that
log(β) ∼ N (cloglog(P (T ≤ t∗|d∗, f∗) = 0.30), 1.252). The summaries of prior DLT probabilities of
BLRM and TITE-PK, and prior skeletons of CRM are shown in Figure 2A. Points, thick lines and thin
lines correspond to median estimates, the 50% and the 95% equi-tailed credible intervals, respectively.
Vertical dashed lines (0.20-0.40) are the boundaries of the targeted toxicity interval. Recall that, in
TITE-PK and BLRM, eligible doses are determined based on the EWOC criterion, whereas CRM
selects the dose closest to the target probability.

Figure 2B displays the posterior estimates of DLT probabilities, when we only consider daily
schedule data. BLRM suggests that all doses are in the overdosing interval, meaning that the trial
should be stopped without any dose declared as the MTD. The estimated overdosing probability of
2.5 mg/m2 is 0.40, which is higher than 0.25. For TITE-PK, only 2.5 mg/m2 is not in the overdosing
interval. The overdosing probability of 2.5 mg/m2 is 0.14, P (P (T ≤ t∗|d = 2.5, f = 24) > 0.40) =
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0.14, which is smaller than 0.25. Although median DLT probability estimate of CRM is higher than
the median DLT probability estimate of BLRM, CRM does not conclude that the trial should be
stopped. This is because, P (π1 > 0.30) = 0.80, which is smaller than 0.90. Furthermore, credible
intervals obtained by the CRM is getting shorter with the increasing dose, which was also observed by
Neuenschwander et al3. Overall, high overdosing probabilities for all doses seem reasonable, since 2
DLT were observed in the 4 patients with 2.5 mg/m2, and 3 DLT were in the 6 patients with 5 mg/m2

dose.
We continue by treating the data from the weekly schedule as the completed trial in a sequential

phase I trial. We estimate the DLT probabilities of daily doses, but also taking into consideration the
data coming from the weekly data. To implement BLRM-MAP, the MAP prior is calculated based on
the weekly data. Later, the BLRM is fitted and posterior estimates of DLT probabilities are obtained.
In the B-CRM, prior skeletons are calculated using the weekly data. Then, CRM via a Bayesian model
averaging method is used to estimate DLT probabilities. TITE-PK, naturally, combines information
from different schedules. Figure 2C displays the estimated posterior summaries of DLT probabilities
of daily doses obtained by TITE-PK, BLRM-MAP and B-CRM approaches. For both TITE-PK
and BLRM-MAP, the overdosing probability of dose 2.5 mg/m2 is decreased substantially, namely
from 0.40 to 0.18 for BLRM-MAP, and from 0.14 to 0.00 for TITE-PK. For CRM, the probability
P (π1 > 0.30) is also decreased from 0.80 to 0.67. The reduction of the overdosing probabilities of 2.5
mg/m2 seems reasonable, since in the weekly schedule data, no DLT were observed in the 5 patients
with 20 mg/m2 and 4 DLT were in the 13 patients with 30 mg/m2. The interval estimates of 2.5
mg/m2 and 5 mg/m2 obtained by TITE-PK are shorter, hence more precise estimates compared to
BLRM-MAP and B-CRM. All three methods suggest that daily 2.5 mg/m2 is sufficiently safe, hence
it can be declared as the MTD which was the conclusion of the original phase I trial.

Figure 2: Misspecification of elimination half-life Te and different timing of DLT. Using different
values of Te, posterior median, 50% and 95% equi-tailed credible intervals for end-of-cycle 1
DLT probabilities obtained by TITE-PK for two hypothetical datasets (early DLT and late
DLT) and the original everolimus trial dataset are shown. Early DLT dataset and late DLT
dataset are created by changing timing of DLT from day 15 to day 1.5 and to day 20.5,
respectively. Data from both weekly and daily schedules are included in the analysis.

As pointed out in Methods Section, by construction of TITE-PK, the elimination half-life Te is
treated as known. To investigate the influence of misspecification of the Te parameter, we fit TITE-
PK using Te ranging from 5 to 50 hours. The timing of all DLT (in total 9 DLT) were reported at
day 15. To examine what would be the influence of the timing of DLT, we also fit TITE-PK to two
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hypothetical datasets. Early DLT dataset and late DLT dataset are created by changing timing of
DLT from day 15 to day 1.5 and to day 20.5, respectively. Posterior estimates of DLT probabilities for
different Te values and for different timing of DLT are shown in Figure 3. The middle plot corresponds
to the original everolimus trial data. Firstly, the posterior medians and credible intervals obtained by
different Te values look very similar. In practice, a reliable estimate of elimination half-life is often
not available. Hence, these results are reassuring for the practicality of TITE-PK. Secondly, timing
of DLT has a crucial affect on the posterior estimates, and hence the overdosing probabilities. Having
the same number of DLT, the earlier the DLT happened, the higher the overdosing probability of the
corresponding dose estimated. This makes sense, since one would expect the drug to be more toxic if
DLT happened earlier than later.

4 Discussion
In this manuscript, we have adapted TITE-PK for efficiently estimating the maximum tolerable dose
in sequential phase I trials involving multiple schedules. To integrate data from different schedules,
TITE-PK makes use of exposure-response modelling considering kinetic drug properties. Moreover,
we have demonstrated that TITE-PK can be used as an alternative to the standard methods like the
BLRM or CRM to conduct phase I trials with only one schedule. In these trials, we have demon-
strated that TITE-PK displays similar performance compared to CRM and BLRM. In scenarios with
sequential phase I trials, TITE-PK mostly displays superior performance in terms of acceptable dose
recommendations in comparison to the bridging CRM and BLRM using MAP approach. An applica-
tion involving weekly and daily schedules is used to illustrate TITE-PK. Also, using the application,
we have shown that TITE-PK is robust against the misspecification of the PK parameter elimination
half-life.

Here, we considered a sequential trial in which trial with schedule S1 is already competed. Another
type of a sequential trial can be designed to use the so-called concurrent co-data9. That is, the trial
with Schedule S1 is still ongoing, and we would like to utilize the information from the Schedule S1
to inform dose-escalation decisions with Schedule S2 (and vice versa). TITE-PK can be used for such
designs as well. We did not investigate these situations, since these are beyond the scope of the paper.

In a sequential phase I trial, strata sometimes refer to other than schedules, e.g. patient popula-
tions. In such situations, the integration of different strata can be achieved using a MAP approach.
Since TITE-PK is parametrized by mimicking the interpretable parameters of the BLRM, it can be
extended to use a MAP approach like the BLRM. A key strength of the TITE-PK approach is its
ability to integrate the data from different treatment schedules in a model based approach. This
makes ad-hoc approaches like dose re-scaling obsolete which reduces the need for strong discounting of
historical data from different schedules. However, discounting may still be needed to account for other
sources like different patient populations. Recently, Li and Yuan11 introduced a method to find the
MTD for paediatric dose-escalation trial by incorporating information from the concurrent adult data.
Their method is based on the CRM and uses Bayesian model averaging to control discounting from
the adult data. The BLRM MAP approach makes the assumption of the exchangeability between
different schedules. Instead of using a MAP prior, one can use exchangeability/non-exchangeability
(EX-NEX)24,22 approach for phase I trials with multiple schedules, which relaxes the exchangeability
assumption.

The monotonicity assumption of the exposure and DLT probabilities is often very reasonable
but could be considered a limitation of TITE-PK. Similarly, the BLRM and the CRM assumes the
monotonicity of the doses and DLT probabilities. Since, we have used a linear PK model within
TITE-PK, the monotonicity of the exposure and DLT probabilities implies the monotonicity of the
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dose and DLT probabilities. In the simulations where we investigated phase I trials with one schedules
(Scenarios 1-6), we assumed the monotonicity of dose and DLT probabilities. When there is a heavy
violation of the assumption of the monotonicity (as in Scenarios 13), the operating characteristics are
expected to be weaker compared to bridging CRM or BLRM MAP. The violation of the assumptions
occurred, since there is a clear conflict in exposure and DLT profiles between different schedules. Such
violations can be informed using the external PK data from the ongoing trial. An extension combining
TITE-PK with MAP could be more useful for such situations.

Conflict of interest
S.W. and A.S. own Novartis stakes and are employees of Novartis. T.F. is a consultant to Novartis and
has served on data monitoring committees for Novartis. Novartis is the manufacturer of everolimus,
an everolimus trial was used to motivate and illustrate the investigations presented here (see Section
1.1 and 3.3).

14



References
[1] Le Tourneau, C., Lee, J., Siu, L.: Dose escalation methods in phase i cancer clinical trials. J Natl

Cancer Inst 101(10), 708–720 (2009)

[2] O’Quigley, J., Pepe, M., Fisher, L.: Continual reassessment method: A practical design for phase
1 clinical trials in cancer. Biometrics 46(1), 33–48 (1990)

[3] Neuenschwander, B., Branson, M., Gsponer, T.: Critical aspects of the Bayesian approach to
phase I cancer trials. Stat Med 27(13), 2420–2439 (2008)

[4] Babb, J., Rogatko, A., Zacks, S.: Cancer phase i clinical trials: Efficient dose escalation with
overdose control. Stat Med 17(10), 1103–1120 (1998)

[5] Braun, T., Thall, P., H, N., De Lima, M.: Simultaneously optimizing dose and schedule of a new
cytotoxic agent. Clin Trials 4(2), 113–124 (2007)

[6] Wages, N., O’Quigley, J., Conaway, M.: Phase i design for completely or partially ordered treat-
ment schedules. Stat Med 33(4), 569–579 (2014)

[7] Günhan, BK and Weber, S and Friede, T. A Bayesian time-to-event pharmacokinetic model for
phase I dose-escalation trials with multiple schedules. Stat Med. 2020. 1-15. http://dx.doi.org/
10.1002/sim.8703.

[8] Liu, S., Pan, H., Xia, J., Huang, Q., Yuan, Y.: Bridging continual reassessment method for phase
i clinical trials in different ethnic populations. Stat Med 34(10), 1681–1694 (2015)

[9] Neuenschwander, B., Roychoudhury, S., Schmidli, H.: On the use of co-data in clinical trials. Stat
Biopharm Res 8(3), 345–354 (2016)

[10] Ollier, A and Morita, S and Ursino, M and Zohar, S. An adaptive power prior for sequential
clinical trials - Application to bridging studies. Stat Methods Med Res. 2019. https://doi.org/
10.1177/0962280219886609.

[11] Li, Y and Yuan, Y. PA-CRM: A continuous reassessment method for pediatric phase I oncology
trials with concurrent adult trials. Biometrics. 2020; 1–10. https://doi.org/10.1111/biom.
13217.

[12] Schmidli, H., Gsteiger, S., Roychoudhury, S., O’Hagan, A., Spiegelhalter, D., Neuenschwander,
B.: Robust meta-analytic-predictive priors in clinical trials with historical control information.
Biometrics 70(4), 1023–1032 (2014)

[13] National Cancer Institute. Everolimus. https://www.cancer.gov/about-cancer/treatment/
drugs/everolimus. Updated April, 2018. Accessed September, 2018.

[14] U.S. Food & Drug Administration. FDA approves everolimus for tuberous sclerosis
complex-associated partial-onset seizures. https://www.fda.gov/Drugs/InformationOnDrugs/
ApprovedDrugs/ucm604351.htm. Updated April, 2018. Accessed September, 2018.

[15] O’Donnell, A., Faivre, S., Burris III, H., Rea, D., Papadimitrakopoulou, V., Shand, N., Lane, H.,
Hazell, K., Zoellner, U., Kovarik, J., Brock, C., Jones, S., Raymond, E., Judson, I.: Phase i phar-
macokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor
everolimus in patients with advanced solid tumors. J Clin Oncol 26(10), 1588–1595 (2008)

15



[16] Besse, B., Heist, R., Papadmitrakopoulou, V., Camidge, D., Beck, J., Schmid, P., Mulatero, C.,
Miller, N., Dimitrijevic, S., Urva, S., Pylvaenaeinen, I., Petrovic, K., Johnson, B.: A phase ib
dose-escalation study of everolimus combined with cisplatin and etoposide as first-line therapy in
patients with extensive-stage small-cell lung cancer. Ann Oncol 25(2), 505–511 (2014)

[17] Cheung, Y., Chappell, R.: Sequential designs for phase i clinical trials with late-onset toxicities.
Biometrics 56(4), 1177–1182 (2000)

[18] Kalbfleisch, J., Prentice, R.F.t.m.: The statistical analysis of failure time data, pp. 31–52. New
York, NY: John Wiley & Sons, ??? (2002)

[19] Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M.,
Guo, J., Li, P., Riddell, A.: Stan: A probabilistic programming language. J Stat Softw 76(1),
1–32 (2017)

[20] Benda, N., Branson, M., Maurer, M., Friede, T.: Aspects of modernizing drug development using
clinical scenario planning and evaluation. Drug Inf J 44(3), 299–315 (2010)

[21] Sweeting, M., Wheeler, G.: Bcrm: Bayesian Continual Reassessment Method for Phase I Dose-
Escalation Trials. (2019). R package version 0.5.4. https://CRAN.R-project.org/package=
bcrm

[22] Weber, S., Bean, A., Widmer, L.: OncoBayes2: Bayesian Logistic Regression for Oncology Dose-
escalation Trials. (2019). R package version 0.6-5. https://CRAN.R-project.org/package=
OncoBayes2

[23] Lee, S., Cheung, Y.: Model calibration in the continual reassessment method. Clinical Trials 6(3),
227–238 (2009)

[24] Neuenschwander, B., Wandel, S., Roychoudhury, S., Bailey, S.: Robust exchangeability designs
for early phase clinical trials with multiple strata. Pharm Stat 15(2), 123–134 (2016)

16



70 Appendix A. Original articles

A.3 Shrinkage estimation for dose-response modeling in phase
II trials with multiple schedules

The paper is published online in Statistics in Biopharmaceutical Research. It is avail-
able from https://doi.org/10.1080/19466315.2020.1850519. Moreover, preprint
version (08.05.2020) is publicly available from https://arxiv.org/abs/2005.04261.

https://doi.org/10.1080/19466315.2020.1850519
https://arxiv.org/abs/2005.04261


Shrinkage estimation for dose-response modeling in phase II trials
with multiple schedules

Burak Kürsad Günhan,1 2 Paul Meyvisch,3 Tim Friede1

Recently, phase II trials with multiple schedules (frequency of administrations) have become more
popular, for instance in the development of treatments for atopic dermatitis. If the relationship of
the dose and response is described by a parametric model, a simplistic approach is to pool doses
from different schedules. However, this approach ignores the potential heterogeneity in dose-response
curves between schedules. A more reasonable approach is the partial pooling, i.e. certain param-
eters of the dose-response curves are shared, while others are allowed to vary. Rather than using
schedule-specific fixed-effects, we propose a Bayesian hierarchical model with random-effects to model
the between-schedule heterogeneity with regard to certain parameters. Schedule-specific dose-response
relationships can then be estimated using shrinkage estimation. Considering Emax models, the pro-
posed method displayed desirable performance in terms of the mean absolute error and the coverage
probabilities for the dose-response curve compared to the complete pooling. Furthermore, it outper-
formed the partial pooling with schedule-specific fixed-effects by producing lower mean absolute error
and shorter credible intervals. The methods are illustrated using simulations and a phase II trial
example in atopic dermatitis. A publicly available R package, ModStan, is developed to automate the
implementation of the proposed method (https://github.com/gunhanb/ModStan).

Keywords: Shrinkage estimation, multiple schedules, Bayesian inference, phase II trials.

1 Introduction
In phase II of any clinical development program, the investigations of the dose-response relationship
of a compound is crucial. Usually, there are two main goals of these investigations: (a) establishing a
dose-response signal and (b) estimating the dose-response function (Ruberg, 1995). In addition to the
dose, a treatment plan of a phase II trial includes the schedule (or dose regimen), that is the frequency of
the administration, for instance a weekly or biweekly schedule. Recently, phase II trials with multiple
schedules have become more popular, for instance in the development of monoclonal antibodies as
treatments for a variety of diseases including hypercholesterolaemia (Giugliano et al., 2012) and atopic
dermatitis (Thaçi et al., 2016). Eichenfield and Stein Gold (2017) reviewed many therapies for atopic
dermatitis which were in phase II or III of clinical development. Multiple schedules were investigated
in phase II trials of almost half of the investigated therapies (Eichenfield and Stein Gold, 2017).
However, standard methods for dose-response estimation cannot account for multiple schedules.

Estimating separate dose-response curves for each schedule by a parametric model is a one way
to tackle this problem, that is full stratification of the dose-response curves. However, this method
ignores the information shared between different schedules. Alternatively, one can completely pool
doses from different schedules. The main problem with complete pooling is that it does not take into
account the potential heterogeneity between different schedules. A more reasonable approach is the
partial pooling, that is certain parameters of the dose-response curves are shared, while others are

1Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
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allowed to vary. A placebo effect parameter can be, reasonably, assumed shared between schedules,
whereas this may not be true for the ED50 parameter, the dose at which half of the maximum effect
is reached. Feller et al. (2017) proposed a partial pooling approach in which unshared parameters are
treated as schedule-specific fixed-effects (Möllenhoff et al., 2019).

We consider trials with (very) few schedules of small to moderate size. Here, borrowing available
information is of great interest. Rather than using schedule-specific fixed-effects, we propose a Bayesian
hierarchical model with random-effects to model the between-schedule heterogeneity with regard to
certain parameters. schedule-specific parameters can be estimated using shrinkage estimation. The
basic idea of the shrinkage estimation is that stratified parameter estimates can be improved by
shrinking towards the population mean. It has been shown that the shrinkage estimation improves the
estimation accuracy in comparison to estimates obtained by pooling or stratification (Efron and Morris,
1975). Shrinkage estimation in the context of clinical trials were investigated by Jones et al. (2011) and
Freidlin and Korn (2013) among others. A popular application is the estimation of the treatment effect
in the presence of subgroups, for example estimating response rate in a phase II trial with multiple
patient populations (Neuenschwander et al., 2016). Here, we are interested in parametric dose-response
models in the presence of multiple schedules, hence shrinkage estimators of the parameters of a dose-
response model, for example the ED50 parameter of an Emax model. Shrinkage estimation allows
dynamic borrowing (Viele et al., 2014), in which the weights for each schedule depend on the data
instead of using fixed weights. Dynamic borrowing results in considerable gain in efficiency, while being
a robust method against the heterogeneity between schedules. A theoretical justification for shrinkage
can be established through the concept of exchangeability of the parameters between schedules. This
means that finding no systematic reason to distinguish schedule-specific parameters, in other words,
they are similar, but not identical (Greenland, 2000). Usually, the assumption of exchangebility
indicates the schedule-specific parameters come from a common distribution with an overall mean.
For the ED50 parameter, we assume the re-scaled and log transformed ED50 parameter estimates
(using the corresponding frequency of each schedule) are exchangeable.

In this manuscript, we propose a Bayesian hierarchical model which utilizes shrinkage estimation
for certain parameters of the dose-response model in order to dynamically borrow strength across
schedules in a phase II trial. Another contribution is the introduction of a publicly available R
package, ModStan. In Section 2, two phase II trials with multiple schedules for the treatment of atopic
dermatitis are described. We introduce the proposed method to analyze phase II trials with multiple
schedules in Section 3. We also describe partial pooling with assuming schedule-specific fixed-effects
for certain parameters, discuss the choice of priors and implementation of the proposed method. We
evaluated the long-run properties of different methods in a simulation study in Section 4. One of the
illustrative applications is revisited to display the proposed method and compare it to the alternatives
in Section 5. We close with some conclusions and outlook.

2 Illustrative applications
Atopic dermatitis, the most common form of eczema, is a chronic inflammatory disease that is char-
acterized by skin rash and itching (Mayo Clinic, 2018). Recently, there is an increasing number
of clinical trials investigating novel systemic agents for the treatment of atopic dermatitis (Alexan-
der et al., 2019). We consider phase II trials of two human monoclonal antibodies, dupilumab and
MOR106, for the treatment of atopic dermatitis. Designs of two trials are listed in Table 1. For both
trials, patients were randomized into six arms including a placebo arm. We consider these two trials,
since they were both designed to investigate multiple schedules. The dupilumab trial contains three
schedules (weekly, biweekly, and monthly), whereas the MOR106 trial contains two (biweekly and
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monthly). The placebo doses were administered with the highest frequencies including a weekly and
a biweekly schedule for dupilumab and MOR106, respectively. The primary endpoint of both trials
is the percentage change from baseline in Eczema Area and Severity Index (EASI) score at Day 85.
The EASI scoring system is used to grade the severity of the signs of eczema. EASI scores take values
between 0 and 72 and higher EASI score means higher severity. Dupilumab and MOR106 trials are
used to motivate our simulation studies in Section 4. The dupilumab trial was completed in September
2014. Multiple comparisons procedure was used as the primary statistical analysis in the dupilumab
trial (Thaçi et al., 2016). For the purpose of illustration, we will analyze the dupilumab trial using
different modeling approaches in Section 5. In October 2019, the MOR106 trial was terminated due
to lack of efficacy in the interim analysis (MorphoSys AG, 2019).

Table 1: Designs of two phase II trials in atopic dermatitis (Dupilumab and MOR106) involving
different schedules. Clinicaltrial.gov identifiers are displayed for two trials.

Dupilumab: NCT01859988 MOR106: NCT03568071

Arm Schedule Dose Planned Schedule Dose Planned
(mg/m2) sample size (mg/kg) sample size

1 Weekly 0 40 Biweekly 0 45
2 Weekly 300 40 Biweekly 1 45
3 Biweekly 200 40 Biweekly 3 45
4 Biweekly 300 40 Biweekly 10 45
5 Monthly 100 40 Monthly 1 30
6 Monthly 300 40 Monthly 3 30

3 Statistical methods
Assume that a response yijk (an efficacy or a safety outcome) is observed for schedule i, dose j and
patient k. Following Feller et al. (2017), we assume a normal likelihood for a continuous outcome:

yijk ∼ N (f(d(i)
j ,θ), σ2

i ) (1)

where θ refers to the model parameters and σi to the error standard deviation. The f(d(i)
j ,θ) represents

the functional form of the dose-response relationship for schedule i. Other outcome types, for instance
dichotomous or count, can be modeled by specifying appropriate likelihood (e. g. Binomial or Poisson)
and the link function (e. g. logit or log transformation).

There are a number of candidate models for the functional form including the popular Emax model
(Thomas et al., 2014), that is

f(d(i)
j ,θ) = E(i)

0 + E(i)
max

d
(i)
j

ED(i)
50 + d

(i)
j

(2)

where E(i)
0 is the placebo response and E(i)

max is the maximum effect attributable to the drug. The ED(i)
50

parameter represents the dose at which half of the maximum effect is reached. In the manuscript, we
exclusively use the Emax model, see Bretz et al. (2005) for different candidate models.

As explained in the introduction, one way of modeling the dose-response curves is to treat all
model parameters as schedule-specific fixed-effects. However, such an analysis is not the most efficient,
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when certain aspects of the dose-response curves in different schedules are similar. Alternatively, one
can consider a complete pooled analysis in which all model parameters from different schedules are
assumed to be the same. This approach is also problematic, since it ignores the potential heterogeneity
between dose-response curves of different schedules. A more reasonable approach is the partial pooling
(Feller et al., 2017), which strikes a balance between efficiency and robustness. It is often reasonable
to assume that placebo effect E(i)

0 is the same for different schedules, that is, E(1)
0 = E(2)

0 = . . . .
This is especially the case, when there is only one placebo arm investigated in the trial as in the
illustrative trials described in Section 2. In some situations, it might also make sense to assume that
the maximum efficacy for high doses is same, E(1)

max = E(2)
max = . . . . However, it might not be reasonable

to assume the dose providing half of the maximum efficacy is the same for different schedules, that
is ED(1)

50 6= ED(2)
50 6= . . . . Feller et al. (2017) suggested to treat the unshared parameters, for example

E(i)
max and/or ED(i)

50 , as schedule-specific fixed-effects in the partial pooling approach.

3.1 Proposed method: Partial pooling with random-effects
Rather than using schedule-specific fixed-effects, we propose a Bayesian hierarchical model with
random-effects to model the between-schedule heterogeneity with regard to certain parameters in
the partial pooling approach. In other words, we suggest partial pooling with assuming schedule-
specific random-effects for certain parameters of the dose-response model. To be concrete, assume
that we want to obtain schedule-specific random-effects for ED(i)

50 . Firstly, we need to re-scale ED(i)
50

parameters. For this reason, we specify a reference schedule (iref). The re-scaled parameters are given
by ED∗(i)

50 = ED(i)
50 (f (i)/f (iref)) where f (iref) and f (i) are the frequency of administration of the ref-

erence schedule iref and the schedule i, respectively. The ED(i)
50 is modeled on the log-scale, since it

is necessarily positive as a dose. We assume that the re-scaled schedule-specific ED∗(i)
50 estimates are

exchangeable

log(ED∗(i)
50 ) ∼ N (µED50 , τ

2
ED50) (3)

where µED50 is the overall mean and τED50 is the between-schedule heterogeneity in log(ED∗(i)
50 ). Our

main interest is in the schedule-specific estimates, ED(i)
50 . If the heterogeneity τED50 is zero, then the

model reduces to a model assuming shared ED∗(i)
50 parameters. Note that the results are invariant to

the choice of the reference schedule. Furthermore, similar to the ED50 parameter, shrinkage estimates
of Emax parameter can be obtained. There is no need to use the re-scaling or the log transformation for
the Emax parameter. Treating Emax and/or ED50 parameters differently, assuming either one or both
of them shared between schedules or assuming schedule-specific random-effects, results in a variety of
alternative models.

Complete pooling and partial pooling approaches can be fitted using likelihood estimation. For
example, Möllenhoff et al. (2019) demonstrated the likelihood implementation of the partial pooling
with assuming schedule-specific fixed-effects for ED(i)

50 using constrained nonlinear optimization via
alabama (Varadhan, 2015) R package. Alternatively, Bayesian approaches can be used, which we
consider in this paper.

3.2 Prior distributions
For the Bayesian implementation, we need to specify prior distributions for the model parameters
E0, Emax µED50 , τED50 and σ for the partial pooling assuming schedule-specific random-effects for
ED(i)

50 . We use vague (non-informative) priors, N (0, 1002), for the parameters E0 and Emax, and
a half-normal prior with scale 100 for σ, HN (100). The parameters µED50 and τED50 need special
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attention, since the priors of both parameters have strong influence on the posterior estimates. The
difficulty of the estimation of the τED50 stems from the small number of the schedules. For example,
in our two illustrative trials, there are only two and three schedules available. This is similar to the
meta-analysis of few studies, in which the estimation of the between-trial heterogeneity has gained
considerable attention in the literature (Gelman, 2006). Friede et al. (2017) suggested the use of weakly
informative priors (WIP) for the heterogeneity parameter in the case of meta-analysis of few studies,
specifically half-normal priors with the scale of 0.5 or 1, when relative measures such as odds ratios,
relative risks or hazard ratios (on the logarithmic scale) are used to describe the effect. Inspired
by these, we can also construct a WIP for the τED50 to represent plausible range of ED∗(i)

50 values
(Spiegelhalter et al., 2004). The 95% of values of log(ED∗(i)

50 ) will lie in the interval µED50±1.96 ·τED50 ,
hence the 97.5% and 2.5% values of log(ED∗(i)

50 ) are 2 · 1.96 · τED50 apart. Accordingly, the ratio of
the 97.5% to the 2.5% point of the distribution of ED∗(i)

50 values is exp(3.92 · τED50). Table 2 lists the
“range” of ED∗(i)

50 values based on different τED50 . In order to cover typical τED50 values conservatively,
we will use half-normal priors with scale 1, i.e. HN (1). When we are interested in the shrinkage
estimates of Emax, the construction of the WIP for τEmax is slightly different. This is because Emax
is computed on the original scale, not on the logarithmic scale. Here, the difference (instead of the
ratio) between the 97.5% and the 2.5% point of the distribution of Emax values is 3.92 · τEmax. To
cover plausible τEmax values, we will use half-normal priors with the scale 10, HN (10).

Table 2: Between-schedule heterogeneity τED50 in log(ED∗(i)
50 ): τED50 referring small to very

large heterogeneity. The “range”, exp(3.92 · τED50), refers to the ratio of the 97.5% to the
2.5% point of the distribution of ED∗(i)

50 .

τED50 “range” of ED∗(i)
50

0.125 (small) 1.63
0.25 (moderate) 2.66
0.5 (substantial) 7.10
1 (large) 50.40
2 (very large) 2540.20

The parameter ED50 is different from E0 and Emax in the sense that it is the only parameter that
enters the model non-linearly. In the frequentist framework, it is a common practice to impose bounds
(lower and upper bounds) on the space for ED50, since the maximum likelihood estimator (MLE)
often does not converge (Bornkamp, 2014). However, the estimate will often exactly equal to the
specified upper bound, which is unacceptable. In a Bayesian framework, simple prior choice for the
ED50 are uniform distributions with finite bounds. However, uniform prior distributions on ED50 are
problematic, since they strongly depend on the parametrization: One may end up with completely
different implied prior distributions for the dose-response curve. A better prior for ED50 is the Jeffreys
prior, which is invariant to parametrization. It is defined as p(θ) ∝

√
|I(d,w,θ)| where

√
|I(d,w,θ)|

is the Fisher information, and w is the vector of proportion of patients allocated at dose d. Hence,
Jeffreys prior depends on the observed design (x,w). One cannot state the Jeffreys prior before data
collection, which is crucial in many applications, e.g. in the presence of missing data or two stage
designs.

Bornkamp (2012) introduced the functional uniform prior which is a modified version of the Jef-
freys prior. Functional uniform priors are uniformly distributed on the potential different shapes of the
underlying nonlinear model function. These priors are also invariant with respect to parametrization
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of the model function and typically result in rather non-uniform prior distributions on the parameter
scale. Instead of the actual observed design, functional uniform priors are calculated using a grid of
doses as x and equal weights for w. More specifically, say, the gradient function of the Emax model
is given by Jx(θ) = (1, x/(x + ED50),−x/Emax/(x + ED50)2). Let x be a grid of doses and F (θ) be
the matrix with Jx(θ), x in the rows. Then, the functional uniform prior is proportional to

√
|Z∗(θ)|

where Z∗(θ) = F T (θ)F (θ) (see Bornkamp (2014) for more detailed explanations). An approxima-
tion of the functional uniform prior for ED50 is given as the log-normal distribution with mean -2.5
and standard deviation 1.8, when the ED50 is re-scaled with the maximum available dose D, that is
ED50/D (Bornkamp, 2014). For the simulations and the application, we used the approximation of
the functional uniform prior, since it is computationally cheaper. In all models, we use the bounds [0,
1.5 ·D] for the space of ED50 (or µED50) parameter.

3.3 Implementation of the proposed method
In a Bayesian framework, we fitted the described statistical models using the probabilistic program-
ming language Stan which employs a modern Markov chain Monte Carlo (MCMC) algorithm, namely,
Hamiltonian Monte Carlo with the No-U-Turn Sampler (Carpenter et al., 2017). The parametrization
used for the statistical model influences the MCMC performance. A centered parametrization such as
Equation (3) may cause some computational difficulties such as difficulty in convergence in the presence
of data sparsity such as meta-analysis of few studies (Betancourt and Girolami, 2015) or dose-response
modeling of phase II trials with few schedules. An alternative parametrization, that is a non-centered
parametrization, overcomes these computational difficulties. To be more precise, by the reparametriza-
tion of the location and scale parameters, Equation (3) becomes log(ED∗(i)

50 ) = µED50 +ui ·τED50 where
ui ∼ (0, 1) (Günhan et al., 2020). The Stan code defining the partial pooling with schedule-specific
random-effects for ED(i)

50 is shown in Listing 1.
To facilitate the implementation of our proposed method for the practitioners, we have developed an

R package, ModStan (https://github.com/gunhanb/ModStan). ModStan is a purpose-build package
defined on top of the rstan, the R interface for Stan. We show how to install and use ModStan in
Appendix A.

4 Simulation study
In order to evaluate the long-run properties of the proposed method and compare it with some alter-
native methods, a simulation study was conducted.

4.1 Simulation settings and implementation
The scenarios considered are motivated by the dupilumab and MOR106 trials described in Section 2.
Each generated trial consists of seven arms: one placebo arm and 1, 3, and 10 mg/kg for both biweekly
and monthly schedules. The primary outcome is the percentage change from baseline in EASI score.
Hence, the datasets are generated under the assumption of normally distributed outcomes, specifically
Equation (1). The underlying dose-response function is assumed to be an Emax model, that is
Equation (2). True values for E(i)

0 , E(i)
max and σi are taken as −20%, −60%, and 35% for both schedules,

respectively. Furthermore, EDbiweekly
50 is assumed to be 2 mg/kg. A total of 27 scenarios are obtained

by varying the EDmonthly
50 (EDmonthly

50 ∈ {1, 2, 3, 3.5, 4, 4.5, 5, 6, 10 (mg/kg)}) and sample sizes of each
arm (N ∈ {30, 45, 60}). EDmonthly

50 values are chosen to investigate the influence of the difference
between true values of EDbiweekly

50 and EDmonthly
50 on the performance. Figure 1 displays different dose-

response curves for the monthly schedule investigated in the simulations. When EDmonthly
50 corresponds
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1

2 data {
3 int<lower=1> N_obs; // num of observations
4 int<lower=1> N_schedule; // num of schedules
5 int<lower=1> N_pred; // num of predicted doses
6 real resp[N_obs]; // responses
7 real<lower=0> dose[N_obs]; // doses
8 int schedule[N_obs]; // schedule indicator
9 real<lower=0> freq[N_obs]; // frequency of administration (hrs)

10 }
11 parameters {
12 real E0; // placebo effect (shared)
13 real Emax; // Emax parameter (shared)
14 real log_ED50_raw[N_schedule]; // re-scaled log(ED50) parameters
15 real<lower=0> sigma; // standard deviation for errors
16 real<lower=0, upper=1.5> mu_ED50_raw; // mean of log(ED50) random-effects
17 real<lower=0> tau_ED50; // between-schedule heterogeneity
18 }
19 transformed parameters{
20 real mu_ED50;
21 real log_ED50[N_schedule];
22 real<lower=0> ED50[N_schedule];
23 vector[N_obs] resp_hat;
24

25 mu_ED50 = log(mu_ED50_raw * max(dose));
26 for(i in 1:N_schedule)
27 log_ED50[i] = mu_ED50 + log_ED50_raw[i] * tau_ED50;
28 // Taking exponentials and rescaling ED50 parameters
29 for(i in 1:N_schedule)
30 ED50[i] = exp(log_ED50[i]) * (freq[i]/ freq_ref);
31

32 // Dose-response: Emax model
33 for(i in 1:N_obs)
34 resp_hat[i] = E0 + (Emax * dose[i]) / (ED50[schedule[i]] + dose[i]);
35 }
36 model {
37 // random-effects
38 log_ED50_raw ~ normal(0, 1); // implies log(ED50) ~ normal(mu_ED50, tau_ED50)
39 // likelihood
40 resp ~ normal(resp_hat, sigma);
41 // prior distributions
42 sigma ~ normal(0, 100);
43 E0 ~ normal(0, 100);
44 Emax ~ normal(0, 100);
45 // approximation to the functional uniform prior
46 mu_ED50_raw ~ lognormal(-2.5, 1.8);
47 tau_ED50 ~ normal(0, 1);
48 }

Listing 1: Stan code defining the partial pooling with schedule-specific random-effects for ED50
parameter. The parameters E0, Emax and σ are assumed to be shared between schedules.
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to 4 mg/kg, there is no heterogeneity in ED50 parameters between schedules. This is because if we
re-scale EDmonthly

50 to transform on the biweekly scale (simply dividing by two), we obtain 2 mg/kg,
which is the true value of EDbiweekly

50 . Accordingly, when the true value of EDmonthly
50 deviates from 4

mg/kg, the heterogeneity between schedules in ED50 increases. The simulations were carried out with
1 000 replications per scenario.

Figure 1: Dose-response curves for the monthly schedule investigated in the simulation study.
Different curves are generated by varying EDmonthly

50 parameter value.

In the proposed method, we assume that E(i)
0 , E(i)

max and σi are shared between schedules, while
ED(i)

50 are assumed to be schedule-specific random-effects. In other words, the proposed method
corresponds to the partial pooling with assuming schedule-specific random-effects for ED(i)

50 (“PP -
RE”). As a comparator, we use the model in which ED(i)

50 are assumed to be schedule-specific fixed-
effects, while other parameters are shared (“PP - FE”). Both partial pooling approaches (PP - RE
and PP - FE) are fitted via a Bayesian approach. We also consider the complete pooling method via
a frequentist and a Bayesian approach (“CP (Frequentist)” and “CP (Bayesian)”). For the partial
pooling with schedule-specific random-effects, we used the biweekly schedule as the reference schedule
to re-scale the ED(i)

50 parameters. To implement the complete pooling approaches, all doses should be
re-scaled into the same schedule. For this purpose, we transform the doses from the monthly schedule
into the biweekly schedule. Accordingly, the new set of doses becomes {0, 0.5, 1, 1.5, 3, 10 (mg/kg)}
for complete pooling approaches.

The complete pooling (Frequentist) is fitted using fitMod function from the DoseFinding (Bornkamp
et al., 2018) R package. All Bayesian methods are fitted using Stan and the prior distributions from
Section 3.2 are used. Three MCMC chains were run in parallel for a total of 4 000 iterations including
2 000 iterations of burn-in. Convergence diagnostics are evaluated in some replications, these MCMC
settings are chosen accordingly. The ED50 parameter is assumed to be within the bounds of [0.001,
1.5 · 10] to ensure identifiability for all methods.
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4.2 Simulation results
For each simulation run, we calculated point estimates (f̂) for the dose-response function (f) (the
pointwise posterior median or the maximum likelihood estimate) at some pre-specified dose levels.
For this purpose, ten dose levels are chosen between 0 and 10 mg/kg equidistantly, namely dosel ∈
{0.00, 1.11, . . . , 10.00}. Additionally, interval estimates (95% confidence interval or 95% equi-tailed
credible intervals) are derived at each dosel. These computations are done for the dose-response
function of the biweekly schedule. The following three performance measures are calculated:

• MAE: Mean absolute error for the dose-response function, 1/10 Σ10
dosel=0|f(dosel)− f̂(dosel)| at

each dosel.

• Coverage probability: Mean coverage probability of the interval estimates evaluated at each
dosel.

• Mean length: Mean length of the interval estimates at each dosel.

The lower MAE for the point estimates, the shorter interval estimates, and the coverage probability
of 95% for the interval estimates are desirable. The MAE obtained by the four methods is displayed
in the first row of Figure 2. Different columns of Figure 2 correspond to different sample sizes N
which are investigated in the simulations. Across different sample sizes, the relative performances of
the four methods remain similar. The scenario of EDmonthly

50 = 4 corresponds to the scenario without
heterogeneity in the re-scaled ED(i)

50 between biweekly and monthly schedules, which is shown by a
vertical dashed line. The heterogeneity increases, when EDmonthly

50 deviates from 4. Both complete
pooling approaches display better performance than both partial pooling approaches in terms of
the MAE, when the EDmonthly

50 is 4. However, the partial pooling approaches result in more robust
performance across EDmonthly

50 values in comparison to the pooling approaches. The partial pooling
with random-effects uses the prior HN (1) for the heterogeneity parameter τED50 . If we increase
the value of the prior standard deviation (that is 1), then the performance of the partial pooling
with random-effects will get closer to the partial pooling with fixed-effects. Similarly, if we assume
that τED50 equals to zero, the partial pooling with random-effects reduces to, effectively, the complete
pooling (Bayesian). The partial pooling with random-effects yields better performance than the partial
pooling with fixed-effects in terms of the MAE across different EDmonthly

50 values and sample sizes except
the most extreme scenarios, namely EDmonthly

50 = 1 or 10. Note that the main difference between the
complete pooling (Bayesian) and complete pooling (Frequentist) is that in the former, functional
uniform priors used for ED(i)

50 parameters. The small discrepancy between the MAE obtained by
the complete pooling (Bayesian) and the complete pooling (Frequentist) can be explained by this
difference. Furthermore, when the sample sizes increase, the MAE decreases in the four methods as
expected.

Figure 2 also shows coverage probabilities of the interval estimates obtained by the four methods.
The complete pooling approaches result in a concave shape and display unacceptably low coverage
when EDmonthly

50 deviates from 4. This undesirable performance of the complete pooling approaches is
more pronounced, when the sample size increases. As in the MAE, both partial pooling approaches
show more robust performance in terms of the coverage probabilities in comparison to the complete
pooling approaches. The partial pooling with random-effects yields superior performance in terms of
the coverage probability compared to the partial pooling with fixed-effects across different EDmonthly

50
values and sample sizes except when EDmonthly

50 = 1. Figure 3 illustrates the ratios of lengths of credible
intervals for the dose-response functions obtained by the partial pooling approaches. The denominator
of the ratio is the length of the credible interval obtained by the partial pooling with random-effects.
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The partial pooling with random-effects results in slightly shorter credible intervals, while it produces
slightly higher coverage probability compared to the partial pooling with fixed-effects in most of the
scenarios.

To examine the influence of the potential heterogeneity in E(i)
max between schedules, we conducted

additional simulations. True values for E(i)
0 and σi are taken as -20% and 35% for both schedules,

respectively. The EDbiweekly
50 and EDmonthly

50 are assumed to be 2 and 4 mg/kg, respectively. This
corresponds to assuming no heterogeneity in ED(i)

50 parameters between schedules, since we focused on
E(i)

max in these simulations. The Ebiweekly
max is assumed to be -60%. Sample size for each arm is 45. Three

scenarios are generated by varying Emonthly
max values (Emonthly

max ∈ {−70%,−60%,−50%}). Notice that
when Emonthly

max = −60%, there is no heterogeneity in E(i)
max values. In the partial pooling with fixed-

effects, both E(i)
max and ED(i)

50 parameters are treated as schedule-specific fixed-effects. In the partial
pooling with random-effects, both parameters E(i)

max and ED(i)
50 are assumed to be schedule-specific

random-effects. The simulation results are listed in Table 3. In the scenario of Emonthly
max = −60%, the

complete pooling approaches result in lower MAE in comparison to the partial pooling approaches,
while reaching the coverage probability of 95% for the confidence intervals. However, in other scenarios,
complete pooling approaches yield worse performance in terms of the MAE and coverage probabilities
compared to the partial pooling approaches. The partial pooling with random-effects results in smaller
MAE and the shorter credible intervals compared to the partial pooling with fixed-effects in all three
scenarios.

When we take into account all simulation results, the partial pooling approaches are more robust
in terms of the MAE and the coverage probabilities across scenarios compared to the complete pooling
approaches. The partial pooling with random-effects yields better performance than the partial pooling
with fixed-effects in terms of the MAE and the mean length of the credible intervals with the exception
of highly heterogeneous scenarios.

5 Revisiting the Dupilumab trial
We return to the dupilumab trial which was described in Section 2. The least square means and
standard errors for different arms of the trial are listed in Table 4 as reported in Thaçi et al. (2016).
In total, 379 patients completed the trial. We analyzed the dataset assuming normal distribution for
least square means with the given standard errors. Note that this is different than assuming normality
for the observations as described in Equation (1) as reported in the reference paper for convenience
(Thaçi et al., 2016). This will show that the proposed method also works with weaker assumption,
as we only use an arm-level data instead of an observation-level data. Five different models were
fitted in a Bayesian framework. We compare them via the approximate leave-one-out cross-validation
information criteria (LOO-IC) (Vehtari et al., 2017). Note that LOO-IC has the same purpose as the
Akaike Information Criteria (AIC) used in the frequentist framework and similar to the AIC, the lower
value indicates the better model. All models assume an Emax model for the dose-response relationship.
We use prior distributions described in Section 3.2. The model descriptions are listed in Table 5. Model
1 corresponds to the complete pooling. In Models 2-5, the E(i)

0 are assumed to be shared between
schedules, while ED(i)

50 and E(i)
max are treated differently in each model. Hence, Models 2-5 are partial

pooling approaches. In Models 2 and 3, E(i)
max are assumed to be shared between schedules. Model 2

assumes schedule-specific fixed-effects for ED(i)
50 , while Model 3 uses schedule-specific random-effects

for ED(i)
50 . Model 4 assumes schedule-specific fixed-effects both for ED(i)

50 and E(i)
max, whereas Model 5

uses schedule-specific random-effects both for ED(i)
50 and E(i)

max. For the complete pooling, the doses
are transformed into the biweekly scale, thus the new set of doses are {0, 50, 150, 200, 300, 600}. For
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Table 3: Simulation results for varying Emonthly
max scenarios. The mean absolute error (MAE) for

the dose-response function, coverage probabilities and mean length of the interval estimates
for the dose-response function obtained by the four methods. Four methods include complete
pooling approaches using frequentist, CP (Frequentist), and Bayesian methods, CP (Bayesian),
and partial pooling approaches using schedule-specific fixed-effects (PP - FE) and schedule-
specific random-effects (PP - RE) for ED(i)

50 .

Emonthly
max

-60% -70% -50%

Mean absolute error

CP (Frequentist) 1.63 2.44 2.51
CP (Bayesian) 1.62 2.23 2.87
PP - FE 2.04 2.03 2.03
PP - RE 1.88 1.90 2.02

Coverage probability

CP (Frequentist) 0.95 0.87 0.84
CP (Bayesian) 0.95 0.87 0.84
PP - FE 0.96 0.96 0.96
PP - RE 0.96 0.96 0.95

Mean length

CP (Frequentist) 5.78 5.77 5.82
CP (Bayesian) 5.53 5.48 5.47
PP - FE 6.96 6.96 6.95
PP - RE 6.59 6.64 6.71

Models 3 and 5, we use the biweekly schedule as the reference schedule.
Table 5 displays the LOO-IC values for the five models. The complete pooling results in the

best model in terms of the LOO-IC. The second and third best models are the partial pooling with
schedule-specific random-effects for ED(i)

50 and the partial pooling with schedule-specific fixed-effects
for ED(i)

50 , respectively. Apparently, the model complexity is heavily penalized by LOO-IC for this
dataset, hence LOO-IC results in lower values for the simpler models. One possible reason is the data
sparsity, numbers of dose levels available for different schedules are 2, 3, and 3 (by including placebo
arm for all schedules). Based on these results, hereafter, we focus on Models 1-3.

The posterior estimates obtained by Model 1 (Complete Pooling), Model 2 (PP - FE), and Model
3 (PP - RE) are shown in Table 6. Recall that for Models 2 and 3, the Emax parameters are shared
between schedules. The estimates EDweekly

50 and EDmonthly
50 of the complete pooling are calculated by

re-scaling the estimate of EDbiweekly
50 . Across three methods, estimates of E0 are quite similar. For

Emax and ED(i)
50 , however, the partial pooling with fixed-effects yields different results compared to

the complete pooling and the partial pooling with random-effects. The heterogeneity parameter τED50

results in high uncertainty (posterior mean 0.5 with standard deviation of 0.5), indicating the complete
pooling is adequate. The estimated dose-response functions f̂ by the complete pooling, the partial
pooling with fixed-effects, and the partial pooling with random-effects are displayed in Figure 4.
The f̂(t) are the posterior medians for the dose-response function f(t) evaluated at each i where
i ∈ {0, 20.7, . . . , 600 (mg/m2-biweekly)}, equidistant sequence between 0 and 600 with 30 elements.
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Table 4: The dupilumab trial: Sample sizes, least square (LS) means, and standard errors for
each arm in the trial.

Arm Schedule Dose (mg/m2) Sample size LS mean Standard error

1 Weekly 0 61 -18.1 5.2
2 Weekly 300 63 -73.7 5.2
3 Biweekly 200 61 -65.4 5.2
4 Biweekly 300 64 -68.2 5.1
5 Monthly 100 65 -44.8 5.0
6 Monthly 300 65 -63.5 4.9

Table 5: Analyzing the dupilumab trial: The approximate leave-one-out information criterion
(LOO-IC) obtained by five different models. In all models, E(i)

0 are assumed to be shared be-
tween schedules. The first model is the complete pooling, thus effectively all model parameters
are assumed to be shared.

Model ED(i)
50 E(i)

max LOO-IC

Model 1 Shared Shared 36.0
Model 2 Fixed-effects Shared 39.8
Model 3 Random-effects Shared 37.4
Model 4 Fixed-effects Fixed-effects 41.7
Model 5 Random-effects Random-effects 41.1

Similarly, 95% equi-tailed credible intervals evaluated at each i are displayed in Figure 4. The median
dose-response curve obtained by the complete pooling and the partial pooling with random-effects
are very similar, which is in alignment with the posterior estimates shown in Table 6. The median
dose-response curve estimated by the partial pooling with fixed-effects is slightly different from the
complete pooling and the partial pooling with random-effects. As expected, the complete pooling
produces the shortest 95% credible intervals around f̂ , whereas the partial pooling with fixed-effects
gives the widest. Such behaviour was also observed in the simulations. The dupilumab trial is
similar to the scenarios when the sample size for each arm is 60, and both EDbiweekly

50 and EDmonthly
50

do not deviate much from EDbiweekly
50 , meaning that low heterogeneity in ED(i)

50 between schedules.
Additionally, Figure 5 (Appendix B) demonstrates the marginal posterior density estimates of ED(i)

50
obtained by three methods alongside with the priors used for ED(i)

50 in the partial pooling with fixed-
effects. The posterior and prior distribution for the EDbiweekly

50 parameter are very similar in the partial
pooling with fixed-effects. Recall that other than the placebo arm, there is only one arm with weekly
schedule, hence indicating the data sparsity problem. In conclusion, although the complete pooling
may be sufficient for this particular application, we obtain very similar dose-response estimates by
using the partial pooling with random-effects.

6 Conclusions and outlook
An assumption of the homogeneity between schedules can be considered unrealistic, hence a partial
pooling is more reasonable than the complete pooling. Rather than using schedule-specific fixed-effects
in a partial pooling approach, we have proposed to use schedule-specific fixed-effects for the certain
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Table 6: The estimates obtained by analyzing the dupilumab trial. Posterior means and
standard deviations obtained by the complete pooling, the partial pooling with fixed-effects
(PP - FE), and the partial pooling with random-effects (PP - RE) are shown. See the main
text for the descriptions of the methods.

CP PP - FE PP - RE

Mean SD Mean SD Mean SD

E0 -18.5 4.9 -18.1 5.0 -18.2 5.1
Emax -61.0 7.4 -56.9 8.0 -60.0 8.6
EDweekly

50 32.3 15.1 20.4 27.0 30.0 29.2
EDbiweekly

50 64.6 30.3 37.4 35.3 56.9 40.6
EDmonthly

50 129.1 60.6 100.0 46.2 116.7 58.7
τED50 0.5 0.5

parameters such as ED50, allowing dynamically borrowing information in a fully Bayesian framework.
In simulation studies, the proposed method displayed more robust performance in terms of the mean
absolute error and coverage probabilities for the dose-response function f(t) compared to the complete
pooling. Furthermore, the proposed method produces lower mean absolute error and shorter interval
estimates for f(t) across most of the scenarios compared to using schedule-specific fixed-effects in a
partial pooling approach.

In this paper, we focused on the Emax model for the dose-response function. To account for the
model uncertainty, it is important to consider alternative functions, such as log-linear or exponential.
The shrinkage estimation can be applied to such alternative dose-response models, as well. One way
of dealing with the model uncertainty is using a model selection criteria (e.g. AIC in the frequentist
context) to decide the right functional form. Hence, by using a criteria such as LOO-IC, one can utilize
the proposed approach to analyze data from a phase II trial with multiple schedules. Alternatively, a
Bayesian model averaging approach (Schorning et al., 2016) can be used to deal with uncertainty of
dose-response models. Here, we consider phase II trials with multiple schedules. Instead of multiple
schedules, one may investigate phase II trials with multiple subgroups, for example multiple patient
populations. The proposed method is still applicable for such situations.

The parametrization used in the proposed method, Equation (3), can be considered hard to mo-
tivate, since an overall mean of schedule-specific estimates does not have a meaningful interpretation.
This can be overcome by adopting an asymmetric parametrization of schedule-specific estimates in
terms of a reference schedule as follows

ED(k∗)
50 ∼ N (αED50, 0) (i.e. ED(k∗)

50 = αED50)

ED(k)
50 ∼ N (αED50, β

2
ED50)

where αED50 and βED50 are the location and scale parameters, respectively (Röver and Friede, 2020).
Although the partial pooling with random-effects is an improvement to complete pooling and the

partial pooling with fixed-effects, the exchangeability assumption bears the risk of too much shrinkage.
Perhaps, it is not very desirable to allow borrowing information for the extreme schedule. To overcome
this, the exchangeability-nonexchangeability (EXNEX) models (Neuenschwander et al., 2016) can be
considered. EXNEX models can be used to share information across similar schedules, while avoid too
much borrowing for the extreme schedule. However, such complicated models should be calibrated
well, due to sparse data available in a typical phase II trial.
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Figure 2: Simulation results for different sample sizes H per arm. The mean absolute error
(MAE) and coverage probabilities for the dose-response curve obtained by four methods with
different sample sizes. Four methods include complete pooling approaches using frequentist,
CP (Frequentist), and Bayesian methods, CP (Bayesian), and partial pooling approaches using
schedule-specific fixed-effects (PP - FE) and schedule-specific random-effects (PP - RE) for
ED(i)

50 . The vertical dashed line indicates the scenario without heterogeneity in the re-scaled
ED(i)

50 between biweekly and monthly schedules. EDbiweekly
50 is assumed to be 2 mg/kg.
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Figure 3: Simulation results for different sample sizes. Ratios of lengths of credible intervals for
the dose-response curves obtained by the partial pooling with random-effects and the partial
pooling with fixed-effects with different sample sizes. The denominator of the ratio is the length
of credible interval obtained by the partial pooling with random-effects. The vertical dashed
line indicates the scenario without heterogeneity in the re-scaled ED(i)

50 between biweekly and
monthly schedules. EDbiweekly

50 is assumed to be 2 mg/kg.

Figure 4: Dose-response curve and credible intervals for biweekly schedule obtained by the
complete pooling (CP), the partial pooling with fixed-effects (PP - FE), and the partial pooling
with random-effects (PP - RE) are shown. See the main text for the descriptions of the
methods.
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A How to use the ModStan R package?
The development version of ModStan is available on Github (https://github.com/gunhanb/ModStan)
and can be installed as follows:

library("devtools")
install_github("gunhanb/ModStan")

The dupilumab trial described in the text is available in the package, and it can be loaded as
follows:

library("ModStan")
data("dat.Dupilumab")

See ?dat.Dupilumab for the description of the dataset.
The mod_stan is the main fitting function of the package. The main computations are executed via

the rstan package’s sampling function. We can fit the partial pooling method with schedule-specific
random-effects for the ED(i)

50 parameter as follows:

PP.RE.Dupilumab.stan = mod_stan(dose = dose,
resp = resp,
sigma = sigma,
schedule = schedule,
freq = freq,
freq_ref = 24 * 7 * 8,
data = dat.Dupilumab,
model = "PP-RE",
tau_prior_dist = "half-normal",
tau_prior = 1,
chains = 3,
stan_seed = 111,
iter = 4000,
warmup = 2000)

Convergence diagnostics and the results can be very conveniently obtained using the shinystan
package as follows:

library("shinystan")
launch_shinystan(as.shinystan(PP.RE.Dupilumab.stan$fit))

The posterior summary statistics can be obtained using the following command:

PP.RE.Dupilumab.stan

B Marginal posterior density estimates of ED50 (dupilumab trial)
The marginal posterior density estimates obtained by the three methods (CP, PP - FE, PP - RE) are
demonstrated in Figure 5. Also, the prior distribution used for the PP - FE is shown.
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Figure 5: Marginal posterior density estimates of ED50 for weekly, biweekly, and monthly
schedule obtained by the CP, the PP - FE, and the PP - RE. Also, shown is prior distributions
used for the PP - FE.
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Meta-analyses of clinical trials targeting rare events face particular challenges
when the data lack adequate numbers of events for all treatment arms. Espe-
cially when the number of studies is low, standard random-effects meta-analysis
methods can lead to serious distortions because of such data sparsity. To over-
come this, we suggest the use of weakly informative priors (WIPs) for the treat-
ment effect parameter of a Bayesian meta-analysis model, which may also be
seen as a form of penalization. As a data model, we use a binomial-normal hier-
archical model (BNHM) that does not require continuity corrections in case of
zero counts in one or both arms. We suggest a normal prior for the log-odds ratio
with mean 0 and standard deviation 2.82, which is motivated (a) as a symmet-
ric prior centered around unity and constraining the odds ratio within a range
from 1/250 to 250 with 95% probability and (b) as consistent with empirically
observed effect estimates from a set of 37 773 meta-analyses from the Cochrane
Database of Systematic Reviews. In a simulation study with rare events and few
studies, our BNHM with a WIP outperformed a Bayesian method without a WIP
and a maximum likelihood estimator in terms of smaller bias and shorter inter-
val estimates with similar coverage. Furthermore, the methods are illustrated by
a systematic review in immunosuppression of rare safety events following pedi-
atric transplantation. A publicly available R package, MetaStan, is developed
to automate a Bayesian implementation of meta-analysis models using WIPs.

KEYWORDS
Bayes, few studies, random-effects meta-analysis, rare events, weakly informative priors

1 INTRODUCTION

Individual clinical studies are often underpowered to
detect difference of probabilities or rates of rare events,
for example, safety events, and thus, meta-analysis may
be the only way to obtain reliable evidence of treatment
differences with regard to the rare events.1 On the other
hand, meta-analysis of clinical studies for rare events
faces particular challenges, since the numbers of events
might be very small in some treatment arms. The problem

is even more pronounced when some studies have no
events either in one or in both treatment arms (so-called
single-zero or double-zero studies).

The exclusion of the double-zero studies from the anal-
ysis can bias the treatment effect parameter estimate away
from the null (especially for the unbalanced design)2 and
also causes loss of information, since double-zero studies
contain information through their sample sizes.3 Hence,
we consider methods that do not remove double-zero
studies from the analysis. Two established fixed-effect
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original work is properly cited.
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meta-analysis methods exist for rare events, namely, Peto's
method4 and the Mantel-Haenszel (MH) method.5 On the
other hand, an assumption of homogeneity, that is, a single
common parameter for all studies, is typically unrealis-
tic for studies in the biomedical sciences.6-8 Therefore, we
focus on random-effects methods in this paper.

Standard (approximate) random-effects meta-analysis
methods, for example, the normal-normal hierarchical
model,9 require a continuity correction in case of single-zero
or double-zero studies, that is, the addition of a fixed value
(typically 0.5) to all cells of the contingency table
for studies with no events or with 100% events (no
nonevents). Such simple approaches have been found
problematic for meta-analyses involving rare events.10

Therefore, statistical models based on exact distribu-
tional assumptions have been suggested. These include
different parametrizations of the binomial-normal hier-
archical model (BNHM),11 a mixed effects conditional
logistic model,12 a Poisson-normal hierarchical model,13 a
Poisson-Gamma hierarchical model,14 or a beta-binomial
model (BBM).3 In this paper, we focus on a parametrization
of the BNHM that was suggested by Smith et al.15

Consider an extreme case of meta-analysis of rare events,
where all studies include no events for the same treatment
arm. These data sparsity problem in a meta-analysis can
be seen as a separation problem in the logistic regression
context16 in which case a maximum likelihood estimate
(MLE) for the treatment effect parameter does not exist.
A very useful way to deal with separation problems, or,
more generally, data sparsity in logistic regression is penal-
ization, that is, adding a penalty (adjustment) term to the
original likelihood function to regularize (or stabilize) the
estimates.17 In a frequentist framework, penalty terms may
be specified so that these nudge the MLE into a desired
direction if the maximum is not or poorly defined; one
such example is Firth penalization.17-19 From a Bayesian
viewpoint, penalization may often be motivated as weakly
informative priors (WIPs) that are multiplied to the likeli-
hood function.20

Numbers of studies included in meta-analyses are typ-
ically small, posing additional challenges.21 For Bayesian
meta-analysis of few studies, different WIPs have been sug-
gested for the heterogeneity parameter; see Chung et al22

for penalized MLE approach and also see Gelman23 and
Friede and Röver24 for Bayesian inference. Here, we con-

sider the meta-analysis of few studies targeting rare events.
To deal with data sparsity present in the meta-analysis of
few studies with rare events, we suggest the use of WIPs for
the treatment effect parameter in a fully Bayesian context
inspired by penalization ideas.17,20 We use a BNHM that is
parameterized in terms of baseline risks and a treatment
effect for the data. Note that this is a contrast-based model
meaning that relative treatment effects are assumed to be
exchangeable across trials.25 Our suggested default WIP for
the treatment effect parameter is motivated via the con-
sideration of the prior expected range of treatment effect
values. Furthermore, it is consistent with effect estimates
empirically observed in a large set of meta-analyses from
the Cochrane Database of Systematic Reviews (CDSR) with
binary endpoints.

The main contribution of this paper is the introduction
of default WIPs as penalization for treatment effect param-
eters to deal with data sparsity in the meta-analysis of few
studies involving rare events. Another contribution is the
introduction of an R package, MetaStan (https://CRAN.
R-project.org/package=MetaStan), which is developed to
automate a Bayesian implementation of meta-analysis
models using WIPs as described in the paper and which
is publicly available from CRAN. In Section 2, we describe
a systematic review concerning rare safety events associ-
ated with immunosuppressive therapy following pediatric
transplantation. In Section 3, we describe the application
of WIPs for the treatment effect parameter. We review a
BNHM for meta-analysis, discuss the derivation of WIP,
and an empirical investigation of treatment effect parame-
ter estimates from the CDSR. Long-run properties of differ-
ent methods including the proposed one are investigated
in the simulation studies in Section 5. In Section 6, the
example is revisited to illustrate the proposed method and
its implementation. We close with some conclusions and
provide a discussion.

2 AN APPLICATION IN
PEDIATRIC TRANSPLANTATION

Several rare pediatric liver diseases can nowadays be
successfully treated by liver transplantation with good
long-term outcomes. Crins et al26 conducted a system-
atic review of controlled but not necessarily random-

TABLE 1 Data on patient deaths and
posttransplant lymphoproliferative
disease (PTLD) from the meta-analysis in
pediatric transplantation conducted by
Crins et al26

Outcome: Death Outcome: PTLD
Control Experimental Control Experimental
Events Total Events Total Events Total Events Total

Heffron et al29 3 20 4 61 - - - -
Schuller et al30 - - - - 0 12 0 18
Ganschow et al31 3 54 1 54 0 54 1 54
Spada et al32 3 36 4 36 1 36 1 36
Gras et al33 3 34 2 50 - - - -
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ized studies of the Interleukin-2 receptor antibodies
(IL-2RA) basiliximab and daclizumab in pediatric liver
transplantation. Primary outcomes were acute rejections
(ARs), steroid-resistant rejections (SRRs), graft loss, and
death. Their analyses were based on a random-effects
meta-analysis using a restricted maximum likelihood
approach(REML).27 Crins et al26 used risk ratios as effect
measures, while we use the odds ratios here. With rare
events, however, these should be very similar. Heterogene-
ity was assessed using Cochrane's Q test.28 Secondary out-
comes included renal dysfunction nt lymphoproliferative
disease (PTLD). For illustrative purposes, here, we focus
on death and PTLDs, and these outcomes are displayed in
Table 1.

The specific problems with meta-analyses concerning
rare events outlined in the introduction are prominent
here. Firstly, the numbers of events are very small. For
the PTLD dataset, there is one single-zero study and one
double-zero study. Secondly, there are few studies avail-
able, only four for deaths and three for PTLD. Empirical
event rates are lower in three of the four experimen-
tal groups in the data on patient deaths. For PTLD, the
data appear inconclusive for Schuller et al30 and Spada
et al,32 and only a single event observed in the experi-
mental group suggests an increased risk in the study by
Ganschow et al.31

3 WIPS FOR THE TREATMENT
EFFECT

In this section, we present the usage of WIPs for the
treatment effect parameter to conduct random-effects
meta-analysis of rare events with few studies. As a data
model, we review a BNHM and then show how to derive a
WIP for a treatment effect parameter. Then, empirical evi-
dence obtained from the CDSR supporting the choice of
WIPs is illustrated.

3.1 Data model
The BNHM has been introduced by Smith et al.15 In the
BNHM, for each trial i ∈ {1, … , k} and treatment arm j ∈
{0, 1}, the event counts rij are modeled using a binomial
distribution, that is, rij ∼ Bin(𝜋ij,nij). The logit link is used
to transform 𝜋ij onto the log odds scale where effects can
be assumed to be additive

logit(𝜋i𝑗) = 𝜇i + 𝜃i xi𝑗

𝜃i ∼  (𝜃, 𝜏2), (1)

where xij is a treatment indicator, namely, +0.5 = experi-
mental (j = 1) and −0.5 = control (j = 0). The 𝜇i are fixed
effects denoting the baseline risks of the event in each
study i, 𝜃 is the mean treatment effect, and 𝜏 is the het-

erogeneity in treatment effects between trials. The BNHM
belongs to the family of generalized linear mixed mod-
els (GLMMs); this family also includes models for other
types of data including continuous or count outcomes.
It is important to note here that by treating the baseline
risks 𝜇i as fixed effects, the analysis effectively stratifies
the risk by study, as pooling of risks might compromise
the studies' randomization. In this sense, it constitutes a
contrast-based model.25 Unlike the normal-normal hier-
archical model, the BNHM does not rely on a normal
approximation, since it builds on the binomial nature of
the data directly.

The BNHM can be fitted using frequentist approaches,
for example, via maximum likelihood estimation (MLE).11

Alternatively, Bayesian methods are commonly used. In a
fully Bayesian approach, prior distributions for parameters
𝜃, 𝜇i, and 𝜏 need to be specified. Note that the parameter 𝜃
is on the log-odds ratio scale whereas𝜇i are on the log-odds
scale. Baseline risks (𝜇i) may be seen as intercept parame-
ters in a standard logistic regression model. For 𝜇i, we use
a vague normal prior with mean 0 and standard deviation
10, following the recommendation by Gelman et al.20 The
prior choice for 𝜃 is our main focus and will be discussed in
Section 3.2. The prior choice for the heterogeneity param-
eter 𝜏, which is a standard deviation parameter, has gained
much attention in the literature as discussed in the intro-
duction. Friede et al24 have shown that for meta-analysis
of few studies, the use of WIPs for 𝜏 displays desirable
long-run properties in comparison with frequentist alter-
natives. Following their suggestions, we use a half-normal
prior with scale of 0.5 ( (0.5)) for 𝜏 which has the
median of 0.337 with an upper 95% quantile of 0.98. Values
for 𝜏 of 0.25, 0.5, 1, and 2 represent moderate, substan-
tial, large, and very large heterogeneity.34 Thus, a (0.5)
prior captures heterogeneity values for log-OR typically
seen in meta-analyses of log-ORs and will therefore be a
sensible choice in many applications.

3.2 Derivation of a WIP for the treatment
effect
A common prior choice for the treatment effect parameter
𝜃 is a noninformative (vague) prior such as normal distri-
bution with a large variance, for example,  (0, 1002). One
way of constructing a WIP works via consideration of the
prior expected range of treatment effect values.35 Before
the derivation of the WIP for treatment effect parameter
𝜃, recall that 𝜃 is on the log-odds ratio scale. Thus, a value
of 𝜃 = 0 means an odds ratio of 1, ie, no effect, and a
value of 𝜃 = 1 means that odds differ by a factor (ratio) of
exp(1) = 2.7.

We assume a symmetric prior centered around zero,
implying equal probabilities for positive or negative
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treatment effects. Symmetry then implies (on the log-odds
ratio scale) that

P(𝜃 > q) = P(𝜃 < −q), (2)
where (on the odds ratio scale)

exp(−q) = 1
exp(q)

. (3)

The prior's scale parameter 𝜎prior then may be set such
that a priori the odds ratio is with 95% probability confined
to a certain range:

P(1∕𝛿 < exp(𝜃) < 𝛿) = 95%. (4)

In case of a normal prior with standard deviation 𝜎prior,
we can then simply specify

𝜎prior =
log(𝛿)
1.96

. (5)

We conservatively specify 𝛿 as 250, meaning that we con-
sider it unlikely that the odds ratio will be larger than 250
or smaller than 1/250. By plugging in this number into (5),
we obtain 𝜎prior = 2.82.

Another way to motivate the prior standard deviation
is by using the idea of unit information priors.36,37 When
the treatment effect parameter is on the log-odds ratio
scale (as in the BNHM), then the standard error is given
by

√
1
a
+ 1

b
+ 1

c
+ 1

d
. Assuming equal allocation, a neutral

effect, and equal counts of events and nonevents, we can
simply set the table allocation to a = b = c = d = N

4
. There-

fore, if we (heuristically) reverse the argument, a prior

for the log-odds ratio with zero mean and 2.82 standard
deviation gives37

2.82 ≈
√

8 =
√

1
N
4

+ 1
N
4

+ 1
N
4

+ 1
N
4

. (6)

Hence, N = 2. In other words, in terms of prior's effec-
tive sample size, the choice of 𝜎prior = 2.82 is equivalent
to adding two patients to the dataset. From this, it follows
that  (0, 2.822) is a reasonable choice as a WIP for 𝜃.

Note also the analogy between this WIP and commonly
used continuity corrections: Zero entries in a contingency
tables are commonly fixed by adding a correction term of
0.5 to each table cell of the single-zero or double-zero study,
which also amounts to a total of two patients added to
the data. This way of conducting continuity correction
adds two patients to each single-zero or double-zero study,
while the use of WIP is equivalent to adding two patients
to the whole dataset.

3.3 Empirical evidence supporting
the WIP for the treatment effect
For an empirical investigation of the WIP for treatment
effect parameter, we consider the meta-analysis datasets
archived in the CDSR. All systematic reviews in the CDSR
are available on the Cochrane Library website,38 and
personal or institutional access is required. For down-
loading the data from the CDSR and converting to CSV
files, we use the program Cochrane_scraper (version
1.1.0).39 We were able to access all Cochrane systematic
reviews available in March 2018 (CD000004 to CD012788).

FIGURE 1 The distribution of numbers of studies included in each meta-analysis obtained from the Cochrane Database of Systematic
Reviews (CDSR). The category labelled 19+ corresponds to meta analyses of size 19 or larger [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 2 The distribution of the estimates of the mean treatment effect parameter 𝜃 A, and the distribution of the estimates of the
(nonzero) heterogeneity standard deviation parameter ⊤ B, obtained from the reanalysis of meta-analysis datasets in Cochrane Database of
Systematic Reviews (CDSR) when the binomial-normal hierarchical model (BNHM) via maximum likelihood estimate (MLE) is used for
estimation. In A, two red lines (−1.94 and 2.06) show the 2.5% and 97.5% quantiles of the 𝜃 estimates, respectively. In B, the solid red line
(1.05) and the dashed red line (1.51) indicate the 95% quantiles of the ⊤ estimates including zero-estimates and excluding zero-estimates,
respectively. The fraction of zero-estimates of ⊤ is 63% [Colour figure can be viewed at wileyonlinelibrary.com]

Meta-analyses were excluded if they included only one
study, if the analysis was labelled as a subgroup or sensitiv-
ity analysis or there was insufficient information for clas-
sification, or if all data within the meta-analysis appeared
to be erroneous. Finally, we only consider meta-analyses
with dichotomous outcomes. In total, 37 773 meta-analysis
datasets from 4712 reviews are included. Note that we did
not distinguish regarding efficacy or safety analyses.

The frequency of the number of studies k considered for
each meta-analysis is illustrated in Figure 1. The percent-
age of the meta-analyses including five or less studies is
66%. This figure is consistent with other re-analyses of the
CDSR (see, eg, previous works8,21,40). We re-analyzed the
meta-analysis datasets from the CDSR using the BNHM
via an MLE approach. This procedure is implemented
using the R package lme4.41 A histogram of the estimates
of 𝜃 is illustrated in Figure 2A; 2.5% and 97.5% quantiles of
the estimates of 𝜃 are −1.94 and 2.06, respectively. By fol-
lowing Turner et al,40 we exclude the zero heterogeneity
estimates; nonzero estimates of 𝜏 are shown in Figure 2B.
The fraction of nonzero heterogeneity estimates is 63%,
which is also consistent with previous findings.40 The 95%
quantile of nonzero estimates of 𝜏 is 1.51, while the 95%
quantile of 𝜏 estimates including zeroes is 1.05. The under-
lying distribution of the estimates of 𝜃 and 𝜏 and their
variability are useful to see how large these estimates are
in some general population, in this case the CDSR. Thus,
these give us a rough sense of what would be a reasonable

default prior distribution. Therefore, we suggest the use of
WIPs,  (0, 2.822) for 𝜃 and  (0.5) for 𝜏, which are con-
sistent with estimates of 𝜃 and 𝜏 empirically observed in
the CDSR, meaning that both indicate odds ratios within
reasonable ranges, and heterogeneity mostly below 1.0.

4 IMPLEMENTATION OF THE
PROPOSED PROCEDURE IN R
USING STAN

The Bayesian implementation of the BNHM can be fit-
ted with the probabilistic programming language Stan,42

which employs a modern Markov chain Monte Carlo
(MCMC) algorithm, namely, Hamiltonian Monte Carlo
with the No-U-Turn Sampler.43 It is known that the
parametrization of the model can affect the performance of
an MCMC algorithm. In the presence of sparse data such
as in the meta-analysis of few studies involving rare events,
Betancourt et al44 showed that centered parametrization of
a hierarchical model (such as the BNHM) brings compu-
tational issues compared with a noncentered parametriza-
tion. Thus, we use the noncentered reparametrized
version of the BNHM for our implementations. Specifi-
cally, applying both location and scale reparametrization,
(3.1) becomes 𝜇i + 𝜃xij + ui 𝜏 where ui ∼  (0, 1) and
xij = +0.5 (experimental) or xij = −0.5 (control). (Correction

xij

added on 06 January 2020, after first online publication:
The preceding equation has been updated from

.to𝜇i + 𝜃i xij + ui 𝜏2 𝜇i + 𝜃xij + ui 𝜏xij“ ” “ ” )
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For practical applications, learning Stan's syntax and
the required knowledge of available features in Stan
might present a hurdle preventing application of Stan.
To this end, we developed a new R package MetaS-
tan which is a purpose-built package defined on top of
Rstan, the R interface for Stan. Our package MetaS-
tan (https://CRAN.R-project.org/package=MetaStan)
includes the precompiled Stan model of the BNHM,
which eliminates the compilation time and the need of

learning Stan's syntax. The Stan code for the BNHM
is shown in Listing 1. MetaStan includes different
options for WIPs of the model parameters of the BNHM.
MetaStan syntax is similar to the syntax of the popu-
lar meta-analysis package metafor27 so that it should
be easy for a metafor user to utilize our package. The
syntax of MetaStan is displayed for the pediatric trans-
plantation example in Section 6, and in Appendix A, we
show how to install and use MetaStan.
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5 SIMULATION STUDY

In order to assess the long-run properties of the proposed
approach and compare it with some alternatives, we con-
ducted a simulation study.

5.1 Simulation setup
The simulation scenarios are similar to those consid-
ered by Friede et al,24 but with the important difference
that we focus on rare events. The datasets are gener-
ated under the BNHM, more specifically (3.1). Numbers
of studies (k ∈ {2, 3, 5}) and true treatment effects
(𝜃 = {−5,−4,−3,−2,−1,−0.5, 0, 0.5, 1, 2, 3, 4, 5}) are var-
ied, resulting in a total of 39 simulation scenarios. To
reflect the rare-event cases, true baseline risks on the prob-
ability scale are taken uniformly between 0.005 and 0.05.
Following Kuss,3 a log-normal distribution is fitted to the
sample sizes obtained from the CDSR data, resulting in a
log-normal distribution with parameters 𝜇 = 5 and 𝜎 =
1. Hence, sample sizes are generated from  (5, 1), the
minimum sample size is restricted to two patients (val-
ues below 2 are rounded up to 2), and at least one patient
in each treatment arm is assumed. The degree of hetero-
geneity (𝜏) is taken as 𝜏 = 0.28 (moderate heterogeneity),
which is the median value of the predictive distribution
for between-study heterogeneity in a meta-analysis in a
general setting as estimated by Turner et al.40 According
to a binomial probability of 0.5, patients were allocated
to the treatment groups, thus mimicking randomization.
The simulations were carried out with 10 000 replications
per scenario. The data sparsity is reflected in the average
fractions of single-zero or double-zero studies in a simu-
lated meta-analysis dataset, which are shown in Figure 3A.
Notice that the fractions of the single-zero and double-zero
studies are the highest when true treatment effect is −5,

and they are decreasing with the increase of the treatment
effect.

The proposed approach (BNHM using a WIP, that is (0, 2.822), for 𝜃: WIP ) and four comparators are
included in the analysis, namely, BNHM using a vague
prior ( (0, 1002)) for 𝜃 ( Vague ), BNHM using MLE
( MLE ), the Mantel-Haenszel ( MH ) method5 and
a Bayesian implementation of the beta-binomial model
( BBM ).3 It is important to note the differences of the MH
and BBM from the BNHM methods. MH is a fixed-effect
meta-analysis method, and BBM has a different under-
lying data generating process than the BNHM. For both
Vague and WIP approaches, the prior for 𝜏 and 𝜇 are
taken as  (0.5), and  (0, 102), respectively. The MH
estimator of the treatment effect parameter is given by

𝜃̂MH =

∑k
i=1

ri1(ni0−ri0)
ni∑k

i=1
ri0(ni1−ri1)

ni

,

where ni = ni0 + ni1. In the BBM, the event counts rij are
modeled using a binomial distribution, rij ∼ Bin(𝜋ij,nij), as
in the BNHM. The probabilities of event are assumed to be
beta distributed: 𝜋ij ∼ Beta(𝛼j, 𝛽 j) where both arms share
the same correlation parameter 𝜌 = 1

𝛼0+𝛽0+1
= 1

𝛼1+𝛽1+1
,

implying 𝛼0 + 𝛽0 = 𝛼1 + 𝛽1. It is common to reparametrize
the model using mean parameters Φj such that Φ𝑗 =

𝛼𝑗
𝛼𝑗+𝛽𝑗

.
Finally, the linear predictor can be written as logit(Φj) =
𝜇 + 𝜃 xj where 𝜃 is the parameter for the treatment effect,
and xj is a treatment indicator, 1 = experimental (j = 1) and
0 = control (j = 0). Vague priors are chosen for all parame-
ters, namely, uniform priors across the interval [0,1] for all
three parameters: Φ0, Φ1, and 𝜌.

Three MCMC chains were run in parallel for a total
of 2000 iterations including 1000 iterations of burn-in.
These values are tested in some replications; convergence

FIGURE 3 The average fraction of single-zero or double-zero studies in a simulated meta-analysis dataset A, and the fraction of the
estimation failure for maximum likelihood estimate (MLE) and Mantel-Haenszel (MH) with different numbers of studies k used in the
simulations (B and C) are shown [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 The bias for the mean treatment effect 𝜃, coverage probabilities, and log mean length of the interval estimates for 𝜃 obtained by
five methods (beta-binomial model [BBM], Mantel-Haenszel [MH], maximum likelihood estimate [MLE], Vague, and weakly informative
prior [WIP]) are shown [Colour figure can be viewed at wileyonlinelibrary.com]

diagnostics are assessed and chosen accordingly. All
chains were assumed to have reached convergence (no
estimation failure). We used the package lme4 for the
MLE (using the adaptive Gauss-Hermite approximation
to the maximum log-likelihood) and metafor for the
MH (without using any continuity corrections) whereas
the Vague, WIP, and BBM methods were fitted with our
MetaStan package. Note that we use highest density inter-
vals (HDI), which are the shortest credible intervals, as
opposed to the commonly used equal-tailed credible inter-
vals. The HDI were obtained using the HDInterval45 pack-
age. All computations were performed using R.46 The code
for the computations for all methods used in the simula-
tions is provided in Appendices A to D.

5.2 Simulation results
For the MLE and the MH, the fractions of estimation fail-
ures are shown in Figure 3B and 3C. Estimation failure
occurred for the MLE when the Gauss-Hermite approxi-
mation does not converge to the maximum log-likelihood,
or when the MH estimator is not defined. The MLE and
MH methods show very similar behavior of the estima-
tion failure. Estimation failure is closely related to the
fraction of meta-analysis datasets including single-zero or
double-zero studies in the dataset, which can be seen by
comparing Figure 3A and 3B,C. This is because when the
data are highly sparse, estimation becomes more challeng-
ing for both MLE and MH. As a performance measure, we
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FIGURE 5 The bias for the heterogeneity parameter ⊤ obtained by three methods (maximum likelihood estimate [MLE], Vague, and
weakly informative prior [WIP]) is shown. True heterogeneity standard deviation is assumed to be ⊤=0.28 [Colour figure can be viewed at
wileyonlinelibrary.com]

use the bias ( 1
N

∑N
i=1(𝜃̂ − 𝜃)) based on the MLE, the MH

estimator, and posterior medians. The direction of the bias
is also important, since depending on the nature of the
outcome (safety or efficacy), a positive or a negative bias
may be considered conservative . Moreover, the coverage
probability and the mean length of interval estimates for 𝜃
are reported. The coverage probability of 95% for interval
estimates and shorter interval estimates are desirable.

The bias of posterior medians from the Vague, the WIP
and the BBM, and for MLEs from the MLE and for the MH
estimator from the MH across scenarios is displayed in the
first row of Figure 4. Note that failed runs were excluded
from the calculation of performance measures that is rele-
vant only for MLE and MH. The MLE shows unacceptably
high bias for the scenarios with 𝜃 ≤ 0, corresponding to
the scenarios in which the fraction of zero studies is also
very high. On the other hand, the MH estimator clearly
outperforms the MLE and exhibit bias very close to the
WIP. The WIP displays somewhat positive bias whereas
the Vague shows negative bias for the scenarios with 𝜃 ≤
0. This behavior of WIP is expected, since the WIP shrinks
the posterior towards zero. For safety analyses, a positive
bias commonly means a more conservative behavior and
may hence be considered less harmful than a negative bias.
It is important to note that the results of the bias behave
similar to the fraction of zero studies and the fraction of
estimation failure of the MLE, meaning that the bias is
higher in scenarios with more sparse data. Since the Vague
approach uses a vague prior on 𝜃, one might expect a some-
what similar behavior of bias from the Vague and the MLE
approaches. However, the fact that the Vague approach
includes a WIP for 𝜏 and that estimation is based on inte-

gration rather than maximization may be explanations of
the better performance of the Vague method in compar-
ison with the MLE. The WIP and the MH outperforms
the BBM in terms of bias across all scenarios. Performance
in terms of bias is improving for all methods when the
number of studies k is increasing. For Figures 3 and 4, the
curves are not symmetric around zero. This asymmetry is
due to the fact that while the true treatment effect (log-OR)
is varied between −5 and +5, the true baseline risk (prob-
ability) is drawn uniformly between 0.005 and 0.05 in the
simulations.

Figure 4 also shows coverage probabilities and log mean
lengths for 95% HDI obtained by the Vague, the WIP,
the BBM, and for 95% Wald confidence intervals (CIs)
obtained by the MLE and the MH. The CI and HDI
obtained by the MH and the BBM show unacceptably low
coverage especially for 𝜃 < −2. However, the undercover-
age of the BBM and somewhat relative poor performance
in terms of bias may stem from the fact that data are gen-
erated under the BNHM. Also, the CI obtained by the
MLE displays low coverage especially for k = 5. We will
revisit the coverage of the MLE in the discussion. The WIP
method shows higher coverage than nominal level across
all different true treatment effects except for 𝜃 = −5.
On the other hand, the HDI obtained by WIP are shorter
in comparison with HDI obtained by the Vague and CI
obtained by the MLE approaches.

Lastly, the bias for the heterogeneity parameter 𝜏
obtained by three methods (the MLE, the Vague, and the
WIP) are demonstrated in Figure 5. For Bayesian meth-
ods, posterior medians are used as the point estimates.
Recall that the prior used for 𝜏 both in the Vague and the
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FIGURE 6 The motivating pediatric transplantation application when the outcome is death: Top panel displays the observed log-odds
ratios (computed using a continuity correction in case of zero counts). The bottom panel shows mean treatment effect estimates of 𝜃 obtained
by beta-binomial model (BBM), Mantel-Haenszel (MH), maximum likelihood estimate (MLE), Vague, and weakly informative prior (WIP).
Heterogeneity parameter estimates ⊤ are also given on the left [Colour figure can be viewed at wileyonlinelibrary.com]

WIP is weakly informative ( (0.5)). The MLE underes-
timates the true heterogeneity, whereas the Vague and the
WIP methods slightly overestimate it. The Vague and the
WIP produce very similar bias. These observations are in
alignment with the conclusions made by Friede et al.24

6 EXAMPLE REVISITED
Returning to the dataset described in Section 2, we con-
sider the data on death and PTLD outcomes shown in
Table 1. The observed log-odds ratios are displayed in
Figures 6 and 7. To be able to visualize the observed
log-odds ratios when there is a single-zero or double-zero
study, a continuity correction of 0.5 is added to all cells of
the single-zero or double-zero study's contingency table.
The wide CI for observed log-odds ratios reflect the rather
small sample sizes in the datasets. Furthermore, the vari-
ability in the point estimates may be reflected upon to
assess the degree of heterogeneity between trial estimates.

We analyze the datasets using the five methods investi-
gated in the simulation studies, namely, the Vague, WIP,
MLE, MH, and BBM approaches. The code to implement
the MLE and the MH are given in Appendix B. Recall that
the only difference between Vague and WIP is the prior
used for the treatment effect parameter 𝜃 in the model,
namely,  (0, 1002) for the former and  (0, 2.822) for the
latter. WIP can be implemented in a routine data analysis
using our MetaStan package as follows:

The argument delta corresponds to 𝛿 from (5) and
thus is used to calculate the WIP for 𝜃. Alternatively,
one can directly specify the prior parameters for 𝜃,
in our case, equivalently, we can have theta_prior
= c(0, 2.82). The Vague method is simply imple-
mented by omitting the argument delta and specify-
ing theta_prior = c(0, 100). The BBM is also
implemented in MetaStan, and the required syntax is
shown in Appendix C. To check MCMC convergence, we
use the Gelman-Rubin statistics and traceplots. For the
WIP approach, the corresponding traceplots are shown in
Figures A1 and A2 for death and PTLD outcomes, respec-
tively. There was no divergence reported for both datasets.
The MLE fit and the MH estimation for the dataset where
death is the outcome does not cause any warning from
lme4 and metafor, respectively. For the PTLD outcome,
lme4 gives a warning suggesting that the estimates may
not be reliable. Nevertheless, it produces the MLE estimate
and CI for treatment effect parameter, and we report them.
For PTLD outcomes, when computing the MH estima-
tor, metafor gives a warning due to double-zero studies
(double-zero studies are removed from the analysis by
default) but still returns an estimate. Note that both MLE
and MH ignore the double-zero study (Schuller et al30);
hence, the analyses are based on two studies only.

The results for the death and PTLD outcomes from the
five methods are shown in Figures 6 and 7, respectively.
For MLE and MH, the estimates and 95% CI are given. For
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FIGURE 7 The motivating pediatric transplantation application when the outcome is posttransplant lymphoproliferative disease (PTLD):
Top panel displays the observed log-odds ratios (computed using a continuity correction in case of zero counts). The bottom panel shows
mean treatment effect estimates of 𝜃 obtained by beta-binomial model (BBM), Mantel-Haenszel (MH), maximum likelihood estimate (MLE),
Vague, and weakly informative prior (WIP). Heterogeneity parameter estimates ⊤ are also given on the left [Colour figure can be viewed at
wileyonlinelibrary.com]

Vague, WIP, and BBM, posterior medians and 95% HDI
are shown. Both for PTLD and death outcomes, apart from
the BBM, the point estimates of 𝜃 from the four meth-
ods look quite similar. The differing behavior of the BBM
was also observed in the simulations. The PTLD data are
similar to the scenarios when the number of studies is
three, and the true treatment effect is in the range from
0 to 1. Negative bias obtained by the BBM can be seen in
Figure 5 (in the corresponding scenario). The death data
are similar to the scenarios when number of studies is five
(since it is not highly sparse), and true treatment effect
is in the range from −1 to 0. Here, positive bias obtained
by the BBM can be seen in Figure 5 (in the correspond-
ing scenario). Furthermore, the point estimates obtained
by the WIP and the MH are very close as in the simula-
tions. MLE gives shorter interval estimates compared with
Bayesian alternatives, this is (partly) because 𝜏 was esti-
mated as 0. In the original paper, Crins et al26 fitted a
normal-normal hierarchical model using REML,27 and the
risk ratio was used as the measure of the treatment effect.
They concluded that treatment IL-2RA failed to show sta-
tistically significant result for reducing death. We obtained
similar point estimates with somewhat wider interval esti-
mates to Crins et al,26 specifically their risk ratio estimate
was 0.61 (CI, 0.27-1.37), and we obtained the odds ratio
estimate 0.58(HDI 0.20-1.49) using the WIP method. Con-
cerning the PTLD, the risk ratio was estimated as 1.60 (CI,
0.20-12.67) by Crins et al, the odds ratio is estimated 1.9826

(HDI 0.18-25.18) using the WIP method. The wider inter-
val estimates obtained by WIP may stem from the fact that
the uncertainty in 𝜏 is taken into account.

The estimates of the between-trial heterogeneity 𝜏 are
also included in the figure, which are only available for
the Vague, WIP, and MLE. Considering death as outcomes,
the heterogeneity parameter 𝜏 is estimated 0.29, 0.29, and
0.00 using WIP, Vague, and MLE, respectively. Similarly
for the PTLD outcomes, for 𝜏, we obtained 0.33, 0.33, and

0.00 using WIP, Vague, and MLE, respectively. The hetero-
geneity parameter of the BBM 𝜌 is estimated as 0.34 and
0.03 for PTLD and death outcomes, respectively. Moreover,
Crins et al26 concluded that there is no evidence for het-
erogeneity between trials using using Cochrane's Q test for
both death and PTLD outcomes. Since the prior used for 𝜏
is the same for WIP and Vague, similar heterogeneity esti-
mates are expected. The similar 𝜏 estimates by WIP and
Vague were also observed in the simulations (Figure 5). On
the other hand, the MLE estimate (𝜏 = 0.00) is most prob-
ably underestimating the actual amount of heterogeneity.
The underestimation of 𝜏 by MLE and slightly lower bias
of the WIP compared with the Vague was observed in the
simulations (Figure 5).

7 CONCLUSIONS AND
DISCUSSION

An assumption of the homogeneity is often consid-
ered unrealistic for meta-analyses in biomedical sci-
ences; hence, random-effects meta-analysis models are
suggested.6 Furthermore, as can be seen in the CDSR, a
substantial fraction of published meta-analyses is based
on few studies only. On the other hand, fitting a
random-effects models based on only few studies often
poses problems for inference, as certain asymptotics can-
not be relied upon.47 Additional issues arise for binary
outcomes when only few or no events are observed in
some of the studies or study arms. To deal with such data
sparsity in the meta-analysis, we have proposed the use of
WIPs for the treatment effect parameter 𝜃 in a BNHM. We
demonstrated how a normal WIP for 𝜃 can be derived by
considering an a priori interval for the treatment effect on a
log-odds ratio scale. Also, the empirical evidence obtained
from 37 773 meta-analyses with binomial outcomes from
the CDSR supports the proposed WIP. In simulation stud-
ies, the suggested method displays lower bias for 𝜃 and
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substantially shorter interval estimates for 𝜃 with some-
what higher coverage than nominal level in comparison to
alternative methods.

The use of a Bayesian approach exhibits analogy of some
degree to the use of continuity corrections. While conti-
nuity corrections might to some extent be perceived as
ad hoc makeshift fixes, they have also quite doubtlessly
proven very useful in practice. A Bayesian approach tack-
les the problem from a very different angle, but it is not
so surprising that the resulting procedure again exhibits
some similarity to continuity corrections. The relation to
current common practice may in fact also be seen as some-
what comforting. Use of an (informative) prior within a
Bayesian analysis on the other hand is not a desperate
measure; it is rather an integral part of a coherent model
specification that may also be subjected to checks of plau-
sibility and operating characteristics; this is what we have
tried to demonstrate in the present paper.

The simulation results displayed in Figure 4 are some-
what in contrast to the results given by Friede et al,24 who
observed lower coverage than nominal level of MLE meth-
ods in a similar setting, but not based on rare events. We also
investigated a scenario closer to their setup by considering
higher baseline risks between 0.05 and 0.20. The results are
shown in Figure D1, and indeed, here, the MLE method
exhibits lower coverage than nominal level, as reported by
Chung et al22 and Friede et al.24 The high bias and too
wide interval estimates obtained by the Vague and the MLE
are still present, but not as high as in the results of the
simulations in which true baseline risks are lower.

Jackson et al11 investigated seven random-effects
meta-analysis models including the BNHM which we
consider in this paper (model 4 in Jackson et al11) and
another parametrization of the BNHM (model 2 in
Jackson et al11). The only difference in the specification
between the two models is that in their Model 2, the
treatment indicator xik of (3.1) is +1 for the experimental
arm, and 0 for the control arm. Note that commonly used
network meta-analysis models, for example,48 are gener-
alizations of Model 2 in Jackson et al.11 As reported by
Jackson et al,11 we also observe the underestimation of
the heterogeneity parameter 𝜏 and hence decided to only
consider their model 4. On the other hand, it is important
to note that the usage of a WIP for 𝜃 also improves the
performance in model 2, as we have seen for the model 4.

This investigation has some limitations. One crucial
limitation is that we only considered the BNHM as a
data-generating process in our simulation study. Hence,
we did not investigate the robustness of the BNHM under
model misspecification. Also, the design of the simula-
tion study constitutes a model misspecification problem
for the MH method, which is a fixed-effect model, and
for the BBM, which assumes a different underlying

data-generating process. Moreover, we did not consider
other parametrizations of the BNHM as described, eg, in
Jackson et al.11 Lastly, one may find it too restrictive to have
a normal prior for 𝜃 as we have in our proposed model, it
may be worth exploring alternatives like Cauchy or log-F
distributions17,20 for penalization.

The proposed approach is not restricted to the BNHM;
similar approaches may analogously be defined in other
models, eg, a Poisson-normal hierarchical model. How-
ever, a crucial point is that the treatment effect parameter
is explicitly parameterized in the model, so that it can
directly be penalized via the prior specification. Hence,
so-called contrast-based models25 (in which relative treat-
ment effects are assumed to be exchangeable across trials)
are suitable for this purpose unlike arm-based models.
Note that this is also related to the inclusion of baseline
risks as fixed effects with vague priors. This was on pur-
pose as we consider this closest to the idea of stratifying
the analyses by study, a common feature of meta-analyses
regardless of fixed or random-effects. Furthermore, the
contrast-based models such as the BNHM preserve the
randomization, in contrast to the arm-based models as
explained in Dias and Ades.25

The BNHM can be extended to a network meta-analysis
model,49 which is desirable if there are multiple treat-
ments, and/or multiarm trials in the dataset. Even if the
dataset in a network meta-analysis consists of many stud-
ies overall, some of the treatment effects may still be
informed by few studies only. Thus, the use of WIPs for
treatment effect parameters in the context of network
meta-analysis with rare events can be very helpful. Differ-
ent distributions as WIP for 𝜃, different parametrizations
of BNHM, or different data models can be implemented in
Stan or MCMC methods in general. Although, currently,
our package MetaStan is restricted to use a BNHM and
BBM for pairwise meta-analysis, we will consider to extend
it to conduct meta-analysis and network meta-analysis
with flexible data model and prior options in the future.
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HIGHLIGHTS

What is already known: Standard random-effects
meta-analysis methods are not suitable for meta-analysis
of few studies with rare events.
What is new: To deal with data sparsity present in
the random-effects meta-analysis of few studies with rare
events, we suggest the use of weakly informative priors as
penalization for the treatment effect parameter.
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Potential impact for RSM readers outside the
authors' field: To make it more accessible to
meta-analysts, a publicly available R package, MetaStan,
is developed for fitting Bayesian meta-analysis models
using weakly informative priors.
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APPENDIX A: HOW TO USE THE METASTAN R
PACKAGE

The stable version of MetaStan is avail-
able on CRAN (https://CRAN.R-project.org/
package=MetaStan) and can be installed as follows:

The example described in the text (Crins dataset) is
available in the package, and it can be loaded as follows:

Additional information can be obtained by typing
?dat.Crins2014 (for any dataset and function in the
package).
meta_stan is the main fitting function of this package.

The main computations are executed via the rstan pack-
age's sampling function. We can fit the binomial-normal
hierarchical using a WIP for treatment effect as follows:

87ET AL.Ü G NHAN



FIGURE A1 Traceplots for the estimated parameters 𝜃 and ⊤ including burn-in for death outcomes [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE A2 Traceplots for the estimated parameters 𝜃 and⊤including burn-in for posttransplant lymphoproliferative disease (PTLD)
outcomes [Colour figure can be viewed at wileyonlinelibrary.com]

88 ET AL.Ü G NHAN



Convergence diagnostics and the results can be very
conveniently obtained using the shinystan package as
follows:

Traceplots for the estimated parameters 𝜃 and 𝜏 includ-
ing burn-in are shown in Figures A1 and A2 for death and
PTLD outcomes, respectively.

Lastly, the posterior summary statistics can be obtained
using the following command:

APPENDIX B: R CODE TO IMPLEMENT
BNHM USING THE MLE AND THE MH
METHODS

Firstly, the BNHM using the MLE:

Secondly, the MH method:

APPENDIX C: R CODE TO IMPLEMENT THE
BBM METHOD

APPENDIX D: ADDITIONAL SIMULATION
RESULTS

We also conducted simulations using the same settings
as described in Section 5 under BNHM, but using higher

baseline risk probabilities, specifically, baseline risks (𝜇i)
are uniformly taken between 0.05 and 0.2. Results are
illustrated in Figure D1 (analogous to Figure 5).
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FIGURE D1 Simulations with high baseline risks: The bias for the mean treatment effect 𝜃, coverage probabilities, and log mean length of
the interval estimates for 𝜃 obtained by three methods (maximum likelihood estimate [MLE], Vague, and weakly informative prior [WIP])
are shown [Colour figure can be viewed at wileyonlinelibrary.com]
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