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Abstract 

 

The microtubule-associated protein tau is involved in several neurodegenerative diseases 

including Alzheimer’s disease (AD), Pick’s disease (PiD), Progressive Supranuclear Palsy 

(PSP) and others. The aggregation and fibrillization of hyperphosphorylated tau are 

considered disease-causing agents in these diseases, which are therefore termed 

tauopathies.  

A major physiological activity of tau is its interaction with microtubules and the 

regulation of their dynamic rearrangement. Tau phosphorylation regulates its affinity to 

microtubules and is linked to pathological conditions when aberrant. Phosphorylation is 

mediated by several kinases and occurs in the proline-rich region as well as in the pseudo-

repeat domain of the tau sequence. In cryo-electron microscopy studies of tau fibrils 

purified from patients with AD and PiD, as well as in vitro studies of tau bound to 

microtubules, structural information regarding the pseudo-repeats was obtained. In 

contrast, little is known about the structural properties of the proline-rich region when 

tau is bound to microtubules or aggregated into amyloid fibrils. In this work both 

physiological and pathological aspects of the structure of tau have been addressed, with 

a specific focus on the proline-rich region sequence of tau. 

In the first project reported in this work, solid-state nuclear magnetic resonance 

(ssNMR) was used to investigate the contribution of the proline-rich region to the 

structure of tau fibrils. In vitro fibrils obtained from the tau construct K32, comprising the 

P2 domain and the R1, R2, R3, R4 and R’ domains of the pseudo-repeat region, and from 

two simplistic models, the peptides P2R2 and P2R3, were studied using a combination of 

13C-13C correlation experiments and INEPT-based transfer experiments, which probe the 

flexible regions of the fibrils. The use of simplistic models, such as the peptides P2R2 and 

P2R3, improved the quality of the ssNMR spectra and facilitated the identification of 

residues partially recruited into the core of the fibrils. The analysis of the ssNMR spectra 

indicated a partial recruitment of the P2 domain within the fibrils, especially of the most 

hydrophobic patch of the domain, i.e. the225KVAVVRT231 sequence. In the INEPT 

spectra,the absence of cross peaks from this region suggested a loss of flexibility, most 
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likely due to the formation of hydrophobic interactions between the 225KVAVVRT231 

sequence and the hexapeptides in the R2 and the R3 domains. 

Liquid-liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs) into 

compartments without surrounding membranes is implicated in the regulation of 

biological processes. However, little is known regarding the molecular mechanisms that 

influence biological processes in condensed phases. In the second project, I therefore 

studied LLPS of tau and its connection to the polymerization of tubulin into microtubules. 

The studies showed that LLPS of tau, its phosphorylation, and conformational changes 

upon binding to microtubules are functionally linked. Tau phosphorylated at disease-

associated epitopes condensed into liquid-like compartments, tubulin partitioned into 

these drops, but it was unable to grow into microtubules. The functional link between 

LLPS and tubulin polymerization was provided by a conformational change in the proline-

rich region of tau upon binding to tubulin. Phosphorylation blocks the functionally 

required conformational change through formation of salt bridges between phosphate 

groups and conserved arginine residues in the proline-rich region of tau. The data 

established a mechanistic framework in which LLPS and conformational changes in tau 

cooperate to drive formation of cytoskeletal tracks.  
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1 Introduction 
 
1.1 Neurodegeneration and neurodegenerative diseases 
 

Neurodegeneration is the pathological process which causes the loss of structure and/or 

function of neuronal cells and ultimately their death. In neurodegenerative diseases, such 

as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington disease (HD), 

amyotrophic lateral sclerosis (ALS) and many others, a specific area of the central nervous 

system (CNS) is affected by neuronal cell death (Figure 1.1). The neuronal loss is 

responsible for the progressive decline of cognitive and physical functions of the patients1. 

 

 

 

Figure 1.1 Brain areas affected by neuronal loss in selected neurodegenerative diseases. The 

misfolding and aggregation of specific proteins are considered pivotal events triggering neurodegeneration 

in different areas of the brain. In AD, accumulation of Neurofibrillary Tangles (NFTs) and Senile Plaques (SPs) 

is observed in the frontal cortex, cerebral cortex and in the hippocampus (regions marked in pink); these 

proteinaceous aggregates are mainly constituted of tau and A protein. In ALS, many proteins, including 
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FUS and TDP-43, are found in intracellular inclusions in neurons of the motor cortex. Brains from patients 

affected by HD show accumulation of mutated forms of the huntingtin protein in the striatum and the basal 

ganglia regions. The substantia nigra and the cerebral cortex are affected in PD, where aggregated forms of 

-synuclein are found in Lewy bodies. Adapted from Shamsi et al., Int J Biol Macromol, 2017. NFTs taken 

from Kovacs, Handb Clin Neurol, 2017; SPs taken from Savastano et al., J Alzheimers Dis, 2015; FUS and TDP-

43 protein inclusion taken from Droppelmann et al., Amyotroph Lateral Scler Frontotemporal Degener, 

2014; Lewy bodies taken from Wakabayashi et al., Neuropathology, 2007; Huntingtin inclusion taken from 

Sieradzan et al., Exp Neurol, 1999. 

 

The etiology of neurodegeneration is still a matter of debate. Many mechanisms 

have been identified as causing neuronal dysfunction and cell death, including oxidative 

stress, protein misfolding, mitochondrial dysfunction, DNA damage and many more2,3. 

Protein misfolding, by which a protein loses its normal three-dimensional structure4, and 

aggregation are considered key events in the onset of neurodegenerative diseases5. Many 

neurodegenerative diseases are associated with the misfolding and/or aggregation of 

specific proteins, e.g. the huntingtin protein (in HD)6, the microtubule-

associatedproteintauand the amyloid-peptide (in AD)7, -synuclein (in PD) 8(Figure 

1.1).For this reason many of them are also described as proteinopathies2. 

Aging is considered an important risk factor, because at a late stage of life neurons 

are more susceptible to death3. In the twenty-first century, lifespan has increased due to 

the improved health conditions, with the unintended consequence of increasing the 

chances for the onset of neurodegenerative diseases. Other risk factors, such as genetic 

hereditability, obesity, traumatic brain injuries, gender, and many othersmust not be 

excluded1,9. According to the latest Alzheimer's disease report, the economic impact of 

Alzheimer and other dementias will account for $ 290 billion in 201910. This and the big 

impact on society's health turned neurodegenerative diseases into one of the most 

stricking illnesses among the human diseases11,12. Up to now, there is no cure for 

neurodegenerative diseases and the current therapies only act as a palliative of the clinical 

symptoms13. For this reason, a deep understanding of the molecular mechanisms involved 

in the onset of neurodegeneration is necessary. 
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Figure 1.2. Global distribution of neurodegenerative diseases and dementia. A constantly increasing 

number of people is affected by neurodegenerative disorders. a) In the U.S., AD and PD are the most 

common neurodegenerative diseases (adapted from Somnath, US pharmacist, 201214). b) All over the world, 

dementia is having a big impact on life expectancy of the population and it represents a socio-economic 

burden (adapted from the World Alzheimer´s disease report 2018). 

 

1.2 Tau and Tauopathies 
 

This work has focused on the study of selected physiological and pathological aspects of 

the microtubule-associated protein tau, whose intracellular aggregation is a common 

hallmark of several neurodegenerative diseases, classified as tauopathies15. 

Tau belongs to the family of microtubule-associated proteins (MAPs) and displays 

intrisically disordered properties16,17. In physiological conditions, the protein is localized 

in the axons of neuronal cells and interacts with microtubules, assisting their dynamic 

rearrangements18-21. Post-translational modifications regulate tau activities in the cell. 

The aberrant phosphorylation occurring under pathological circumstances induces tau 

detachment from microtubules and their disruption22,23. As the hyperphosphorylated tau 

detaches from the microtubules, it further aggregates into fibrils24(Figure 1.3). After its 

detachment from the microtubules, free tau in the cytoplasm can be mislocated to 

dendrites, where it interacts with actin. This causes the formation of F-actin bundles and 

synaptic toxicity 25. 
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Figure 1.3. Tau in physiological and pathological conditions. a) In healthy neurons, tau interacts with 

microtubules and assists their dynamic rearrangements in the axons; b) in pathological conditions, neuronal 

functions are impaired by the misfolding and aggregation of hyperphosphorylated tau proteins, which are 

detached from the microtubules. Adapted from Sarkar, J Genet, 2018. 

 

Tau aggregation is a common feature in AD, Pick's disease (PiD), Frontotemporal 

dementia and parkinsonism linked to chromosome 17 (FTDP-17), Progressive 

Supranuclear Palsy (PSP) and Corticobasal Degeneration (CBD) and other diseases (Table 

1)26. The term “tauopathies” has been coined to classify neurodegenerative disorders in 

which cognitive impairments are correlated to the accumulation of aggregated tau in 

diverse areas of the brain15,27. Tau fibrils accumulate in intracellular inclusions, e.g. NFTs, 

Neuropil Treads (NT), Pick´s Bodies (PB) or other forms of deposits26. Tauopathies can be 

very heterogeneous in terms of which isoform of tau is aggregated, which 

neuropathological phenotypes are present and which areas of the brain are affected 

(Table 1.1). Primary and secondary tauopathies can beclassified according to how many 

proteins are found aggregated in the inclusions. While in primary tauopathies, tau is the 

only protein found aggregated in the brain, in secondary tauopathies other proteinaceous 

deposits are also present28. 
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Table 1.1 Tauopathies. (Adapted from Lebouvier et al., Curr Opin Neurol (30), 2017) 

 

 

 

1.2.1 Tau in Alzheimer´s disease 

In 1907, Alois Alzheimer described a case of senile dementia accompanied by specific 

anatomical changes in the brain observed post-mortem29. Today, the majority of people 

affected by dementia are diagnosed with Alzheimer´s disease30 and any effort in finding a 

way to prevent or halt the disease have not succeeded31-33.  

The disease is described as a multifactorial syndrome where clinical symptoms, e.g 

memory loss, cognitive decline, depression and in late stages motor dysfunctions27 are 

associated with neuropathological features. Tau pathology in AD is characterized by the 

formation of NFTs and NTs, described as intracellular inclusions of tau protein fibrils in the 

neuronal somata and in the dendrites, respectively34,35, and it is combined with 

extracellular deposition of −amyloid plaques7 (Figure 1.1 and Figure 1.4a). NFTs and NTs 

are mainly composed of fibrils of misfolded, hyperphosphorylated forms of tau35-38, which 
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have either a twisted or straight appearance and are thus named Paired Helical Filaments 

(PHFs) and Straight Filaments (SFs). Once the tau fibrils are formed, they spread in the 

brain following six stages, previously characterized by Braak and collaborators and known 

as Braak stages (Figure 1.4b)39. These stages are also correlated to the disease 

progression, indicating that more than 20 years can separate the onset of the 

neuropathology of the disease from its phenotypical manifestation.  

 

 

Figure 1.4. Tau pathology in AD. a) Neuropathological hallmarks of AD: tau aggregation in NFTs is found in 

the brain of AD patients together with amyloid plaques composed of mainly the A protein. NFTs taken from 

Kovacs, Handb Clin Neurol, 2017; SPs taken from Savastano et al., J Alzheimers Dis, 2015. b) Schematic 

reproduction of the Braak stages, which show the spread of tau pathology through the brain. Adapted from 

Scholl et al., Mol Cell Neurosci, 2019. 

 

1.3 The microtubule-associated protein tau 
 

1.3.1 Tau isoforms and domain organization 

First characterized as a microtubule-associated protein40,41, tau became an interesting 

target once its presence in PHFs/SFs was confirmed35-38. In particular, tau started to be 

considered as a disease-causing agent after the identification of tau mutations in 

frontotemporal dementia42.  
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The tau sequence is encoded by the MAPT gene on the chromosome 1743. Six 

isoforms are expressed in the neurons as a result of alternative splicing of exons 2, 3 and 

1044. Each isoform differs in sequence composition and their nomenclature is based on 

the domains that are present in the primary sequence44 (Figure 1.5). 

 

Figure 1.5. Tau isoforms expressed in the brain. Exons 2, 3 and 10 are included or not in the tau sequence 

via alternative splicing. The exons 4a and 6, indicated with asterisks, are only included in the sequence of 

tau isoforms expressed in the peripheral nervous system. Adapted from Martin et al., Neurochem Int 2011. 

 

The isoform htau40, is a protein of 45.9 kDa comprising two insertions of 29 amino 

acids each (N1 and N2), a proline-rich region, five pseudo-repeats (from R1 to R4 and R') 

and a C-terminal tail. The shortest isoform of tau, the embryonal htau23, comprises only 

three repeats and lacks the N-terminal domain. Isoforms containing all pseudo-repeats 

are conventionally indicated as 4R, while those lacking the R2 domain are defined as 3R16. 

Tau is equally distributed in different areas of the brain37and the expression of the six 

isoforms is regulated according to the development of the nervous system20,45: the 

expression of htau23 is up-regulated in the fetal human brain44, while at mature stages of 

development it is down-regulated in favour of the 4R isoform26. 

The different regions of tau sequence are shown in figure 1.6, together with a 

description of their activities. The N-terminal region interacts with the neuronal 

membrane and acts as a phosphatase-activating domain (PAD)46. With respect to the 
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interaction with microtubules, the domain is defined as a projection domain (PD), because 

it is not directly engaged in the interaction.  

 

 

 

Figure 1.6. Tau sequence regions and their role in tau activity. Schematic representation of the tau 

sequence including the N-terminal projection domain, the proline-rich region (PRR), the microtubule-

binding region (MTBR) and the C-terminal tail. For each domain, some of its activities are schematically 

shown. The projection domain interacts with neuronal membranes and activates phosphatases. The PRR is 

involved in interactions with other proteins and in microtubule polymerization. This region is rich in serine 

and threonine residues, which are targeted by proline-directed kinases: the phosphorylation of this region 

is important for the regulation of protein-protein interactions and tau functions, it can also have a negative 

effect on tau physiological activity. The MTBR interacts with microtubule and actin filaments and under 

pathological conditions it is involved in the fibril formation. The C-terminal tail contributes to the 

polymerization of tubulin. 

 

Following this domain, the proline-rich region (PRR), which can be subdivided into 

the P1 and the P2 regions, plays an important role for the interaction of tau with tubulin 

and is involved in signaling pathways: the prolin-rich motifs (PRM, i.e. PxxPxxP motif) 

within the sequence are recognized by proteins containing prolin-rich motifs binding 

modules (PRM-binding modules) like the SH3 domain47. In addition, the presence of 

numerous serine and threonine residues makes the proline-rich region a target of several 

kinases, some of which are also related to the pathological aggregation of tau48,49. The C-

terminus comprises four pseudo-repeats(from R1 to R4) plus a weakly homologous repeat 

region termed R´. Together these domains constitute the microtubule binding region 

(MTBR), responsible for the interaction with tubulin and microtubules, actin and 14-3-3 

proteins and involved in the pathological formation of tau fibrils. The C-terminal tail 
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contributes, together with the proline-rich region, to the polymerization of 

microtubules16,50,46. Several artificial tau constructs have been produced in the past years, 

in order to better study its physiological and pathological aspects50: K18 (residues Q244-

K369) comprises the four pseudo-repeats (from R1 to R4) while K19 lacks the R2 repeat51; 

K32 comprises the pseudo-repeats, the flanking P2 domain and R´ (residues S198-S400)52. 

Figure 1.7 shows the domain organization of tau and the mentioned constructs, which 

have also been used in this work. 

 

 

Figure 1.7. Tau constructs. The domain organization of three tau constructs is represented together with 

that of the full-length protein. K32 comprises the P2 domain of the proline-rich region and the MTBR 

(domains from R1 to R´); K18 comprises all the four pseudo-repeats regions while K19 comprises only the 

domains R1, R3 and R4. 

 

1.3.2 The intrinsically disordered properties of Tau 

Intrinsically disordered proteins (IDPs) are characterized by the lack of a defined 

secondary structure and preferentially adopt random coil conformationsin solution53. 

IDPs are heat stable and resistant to acidic treatments, their sequence is characterized by 

a small number of hydrophobic residues and by low complexity of the amino acid 

composition54. Tau displays intrinsically disordered properties55,56. In NMR studies, tau 

spectra are characterized by little chemical shift dispersion56, typical of unfolded proteins 

and IDPs57. The protein is rapidly exchanging between different conformations, with some 

distinct regions temporarily adopting -helical or -sheet-like conformations56. According 

to its aminoacidic composition, the protein is hydrophilic with a basic character and an 
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isoelectric pointof around 9-1016. Serine, threonine and positively charged residues, e.g. 

lysine, are the most represented in the sequence. Overall, the protein is positively charged 

while the N-terminal domain carries a negative net charge at neutral pH (Figure 1.8)16,56. 

 

Figure 1.8. Charge distribution in the tau sequence. The values were obtained by dividing the sequence into 

sub-peptides of 10 amino acids and calculating their net charges at pH 7.0 (blue histograms) and pH 6.8 

(orange line). The figure shows that the N-terminus is negatively charged while the rest of the sequence is 

mainly positively charged. The organization of tau domains is also included, in order to correlate the net 

charge to each domain. The PPR and the MTBR are positively charged, while the last portion of the C-terminal 

tail has a negative net charge. 

 

1.4 Biomolecular liquid-liquid phase separation 
 

Liquid-liquid phase separation (LLPS) is a phenomenon which describes the de-mixing of 

the components in a complex fluid into two phases58. For simplicity, if a system composed 

by a solute, e.g. a polymer, and a solvent is taken into consideration, the free energy 

associated to its mixing will be defined by the entropy of the mixing, which will favor the 

formation of a homogenous phase, and by the interactions established in the system, e.g. 
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solute-solute and solute-solvent interactions58,59. From the entropic point of view, the 

mixing to a single phase is energetically favored while the de-mixing represents a 

penalty60. If the interactions, e.g. electrostatic, hydrophobic interactions, established 

between the molecules of the solute, or between solute-solvent molecules, 

counterbalance the entropic penalty deriving from the de-mixing, then the separation into 

two phases occurs. As an effect of this, one phase will contain high concentration of the 

phase-separated solute while the other phase will contain the solvent.  

 

1.4.1 LLPS in the cellular environment 

LLPS has started to be considered a phenomenon at the base of the regulation of many 

biological processes58.The cellular environment is rich in membraneless compartments, 

containing different proteins and nucleic acids, which regulate many cellular processes, 

e.g. DNA damage repair, splicing and cellular signaling61. Phase-separation drives the 

formation of these compartments, which are also named biomolecular condensates62, 

e.g. nucleoli, P-granules, stress granules and Cajal bodies63,64. In vivo, LLPS is driven by 

multivalent interactions between different cytoplasm components, e.g. DNA, RNA and 

proteins.The proteins which undergo phase separation exhibit low complexity domains 

within the sequence and/or intrinsically disordered properties. Intrinsically disordered 

regions promote phase-separation via homotypic interactions, while negatively-charged 

molecules, e.g. RNA, contribute to the process through electrostatic interactions59. The 

amino acid composition of phase-separating proteins also contributes to different 

extents, e.g. the side chains of aromatic residues interact with basic ones via cation- 

interactions, charged residues contribute to the establishment of electrostatic 

interactions65,66. Biomolecular condensates have a liquid-like behaviour, which is 

described as (i) acquisition of a spherical shape, (ii) fusion after interaction of two 

condensates and (iii) internal rearrangement, observed by photobleaching and recover of 

the signal58.  

Many proteins, some of them related to neurodegeneration, phase-separate in the 

cytoplasm, e.g. the ALS-related protein FUS67, RNA-binding proteins68 and the protein 

Ddx4 present in the stress granules 69.  
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1.4.2 LLPS in vitro 

In order to study this phenomenon, phase-separation of proteins has been reproduced in 

vitro and analysed using optical microscopy techniques, e.g. differential interference 

contrast (DIC) and fluorescence microscopy, and biophysical approaches, e.g. the 

fluorescence recovery after photobleaching (FRAP) technique66,68,70. In order to promote 

phase separation of a certain protein and to mimic the crowding of the cellular 

environment, crowding agents like polyethylene glycol (PEG) or dextran are employed71. 

Also charged molecules like RNA are often employed in LLPS studies, due their presence 

in many biomolecular condensates in vivo as well as the electrostatic interactions they 

can establish with other proteins59. Temperature, critical concentration and other 

conditions at which phase separation occur change according to the protein 

characteristics. 

 

1.4.3 Tau LLPS 

Tau displays intrinsically disordered properties and shows low complexity in its amino acid 

composition. Positively charged residues such as lysines drive tau LLPS and regulate the 

formation of liquid-like droplets, suggesting that intra-molecular electrostatic interactions 

are an important factor in tau LLPS65,66. On top of that, tau post-translational 

modifications, e.g. serine and tyrosine phosphorylation and acetylation of lysine residues, 

play a role in modulating tau phase-separation, most likely by changing the charge 

distribution65,70,71. 

In vitro studies on tau phase separation reported that the K18 construct, 

comprising the MTBR, self-coacervates at high protein concentration and at 37-45 °C 

without additional cofactors. The addition of heparin to the self-coacervated K18 droplets 

resulted in fibril-like structures, suggesting that the combination of high concentration 

and aberrant phase separation might initiate fibrillization of tau70. Thus, in pathological 

conditions the combination of tau hyperphosphorylation, high concentrations of tau in 

droplets and the recruitment of polyanions, e.g. heparin, might favor its aggregation into 

fibrils70 (Figure 1.9, left side of the panel). LLPS of htau40 has also been observed at room 

temperature and in presence of either crowding agents or negatively charged molecules, 
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e.g. poly-U RNA 66,70,71. Recently, tau LLPS has been correlated to its physiological function 

of interaction with tubulin and microtubules71,72(Figure 1.9, right side of the panel). 

Fluorescence microscopy has shown that tau interacts withthe microtubules surface 

forming condensates: these condensates share some of the liquid-like properties 

observed in the droplets and are considered to be involved in the interaction with motor 

proteins located on the microtubules surface72,73.On top of that, Hernandez-Véga recently 

reported that droplet formation is related to its ability to regulate tubulin 

polymerization71, while Wegmann and collaborators reported the phase separation of 

htau40 expressed in primary cortical mouse neurons74. The authors proposed a model in 

which tau phase separation of phosphorylated and/or mutated forms might represent an 

initial step of its aggregation. 

 

Figure 1.9. Tau LLPS in physiological and pathological conditions. Upon formation of tau droplets, 

microtubule filaments polymerize due to the interaction between tau and -tubulin; the recruitment of 

heparin into a high-tau-concentrated environment and tau hyperphosphorylation might favour the 

formation of fibrils, leading to the deposition of NFTs and other sort of inclusions in the neurons. 

 

1.5 Tau fibrils 
 

One of the first neuropathological features described by Alois Alzheimer was the presence 

of aggregates in brain tissue29. This fibrillated material was later discovered to be the 

NFTs, agglomerates of PHFs of tau35,36. A wide range of studies has since then been 

performed, in order to characterize tau fibrils with the hope that understanding their 

molecular and structural basis could lead to a cure for AD and other tauopathies.  
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1.5.1 Amyloid fibrils and their polymorphism 

Amyloid fibrils are insoluble filamentous aggregates of misfolded proteins, biophysically 

characterized by an X-ray cross- fiber pattern of diffraction, i.e. an inter-strand distance 

of 4.8 Å and a space between two -sheets of 10 Å75(Figure 1.10a). Fibrils are composed 

of two or more protofilaments held together by weak interactions; each protofilament 

consists of two -sheets extending perpendicularly along the fibril growth axes75. The 

strands within the -sheet are tightly bound by hydrogen bonds between the amide and 

carboxyl groups in the backbone with a parallel orientation4 (Figure 1.10b).  

 

Figure 1.10. Cross- structure of amyloid fibrils. a) The X-ray diffraction pattern shows an inter-strand 

spacing of 4.8 Å and an inter-sheet spacing of 10 Å. Adapted from Einsenberg and Sawaya, Annu Rev 

Biochem, 2017. b) Parallel orientation of -sheets viewed from the top and from the side. Taken from 

Lehninger Principles of Biochemistry. 

 

The way in which protofilaments arrange to give amyloid fibrils, the type of 

bonding established between the strands, the conditions under which the growth occurs 

and other factors can generate different cross- structure. This phenomenon has been 

described as fibril polymorphism76,77, by which the same misfolded protein can generate 

fibrils of different and heterogeneous structure. The fibril polymorphism is starting to be 

correlated with different pathologies and neurodegenerative disease types78, for example 

in AD and PiD two different three-dimensional structures of tau fibrils could be defined 

via cryo-EM79,80. Although a physiological role for many amyloid fibrils has been 

reported76, the focus has been centered on the study of those amyloidogenic proteins 

involved in neurodegenerative diseases.  
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1.5.2 Tau aggregation 

One of the unexplained aspects regarding tau is why it aggregates at all: tau is a very stable 

protein, with heat and acid treatment resistance55 and it has a very low aggregation 

propensity in vitro.  

In vitro aggregation of tau has been traditionally achieved using polyanions like 

heparin51,81 and arachidonic acid51. Negative charges play an essential role in the 

aggregation process by neutralizing the positive charges on tau (Figure 1.8), thus favoring 

tau self-assembly. Several studies have been directed towards the identification of the 

protein domains responsible for its aggregation82-86.  

Tau fibrils are characterized by a solvent inaccessible rigid core and a fuzzy coat, 

which can be removed by protein digestion35. Biochemical studies showed that the rigid 

core of the fibrils is composed by the pseudo-repeat region and that the hexapeptide 

306VQIVYK311 at the beginning of the R3 domain represents the minimal sequence able to 

self-assemble into fibrils85. Studies with small tau constructs evidenced a similar role for 

the hexapeptide 275VQIINK280 in the R2 domain to form bona fide fibrils51,87(Figure 1.11). 

NMR analysis of tau secondary structure in solution reported residual -sheet structure 

for the two hexapeptides82: these were hypothesized to provide hydrophobic 

contributions that in pathological conditions can enhance protein aggregation. The fuzzy 

coat, composed by the N-terminal domain, the proline-rich region and the C-terminal 

domain, maintains a higher degree of flexibility in the fibrils. Nevertheless transient 

contacts between the proline-rich region and the core of the fibrils could be detected 

using NMR spectroscopy83 supporting its possible roles in tau aggregation88. 

 

Figure 1.11. PHF of tau.The electron micrograph shows negatively stained fibrils of tau with twisted 

morphology (scale bar 100 nm, adapted from Wischik et al., Proc natl Acas Sci U S A, 1988). The fibril edges 

are blurry due to the presence of the fuzzy coat, which can be removed by pronase treatment. A schematic 

representation of tau domains is shown, with the sequence of the two hexapeptides in R2 and R3: these 

amino acid stretches have been considered to be important for the aggregation process56,85. 
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The factors that induce tau aggregation are not clearly understood yet. Post-translational 

modifications alter tau affinity to microtubules by altering its charges. In early studies 

concerning the composition of NFTs, hyperphosphorylated tau was extracted from PHFs 

therefore a major contribution to enhanced aggregation propensities was attributed to 

aberrant phosphorylation on serine and threonine residues23,89, e.g. phosphorylation is 

considered to favour aggregation90 by detachment of tau from microtubules and 

increasing the concentration of unbound tau in the cytosol. Among the post-translational 

modifications increasing tau tendency to aggregate, single-point mutations leading to the 

loss of K280 facilitates self-assembly and provokes toxicity91,92. In addition, oxidation of 

C291 in R2 and C322 in R3, occurring both in vivo and in vitro, allows for the formation of 

intermolecular disulfide bridges between tau molecules, thus enhancing self-assembly 

93,94. It became clear that the characterization of the three-dimensional structure of tau 

fibrils would have had an essential impact for a better understanding of the mechanisms 

driving tau aggregation in the brain. 

1.5.3 The structure of tau fibrils 

Solid-state NMR (ssNMR) spectroscopy, electron microscopy, X-ray diffraction, electron 

paramagnetic resonance (EPR) and other biophysical techniques have been employed to 

gain insight into the structure of tau fibrils75,79,80,82-84,86,95. One of the challenging aspects 

that has made the structural characterization difficult is the observation that tau fibrils 

are heterogeneous77,96. 

Recently three-dimensional structures for fibrils of tau purified from patients 

pathologically confirmed with AD and PiD were determined using cryogenic EM (cryo-

EM)79,80(Figure 1.12): different ultra-structures were observed for the two diseases, 

leading to the consideration that a pathological phenotype might be linked to the 

molecular structure of the fibrils78. Tau fibrils purified from the brain of an AD patient 

exhibited two morphologies, PHFs displayed a periodical twist of 80 nm 16 while SFs did 

not. Both types of fibril are composed by two C-shaped protofilaments composed of the 

R3 and R4 domains, whose amino acids form eight -sheets in total. The hexapeptide 

306VQIVYK311 is engaged in the formation of a cross- sheet structure with residues in the 

R’ region. The inter-repeat PGGG motif at the end of the R3 domain forms a turn, which 

gives the C-shape to the structure. The PGGG motif at the end of R4 creates the interface 



Introduction 

 17 

by which the two protofilaments interact with each other: the interaction between the 

identical PGGG motifs is symmetrical in the PHFs and it is asymmetrical in SFs (Figure 12a), 

thus the different arrangement of two protofilaments is the source of the two distinct 

polymorphs. 

 

 

Figure 1.12. Cryo-EM structures of tau fibrils purified from AD and PiD brain. a) Alzheimer fold of PHFs and 

SFs. Two C-shaped protofilaments, composed of the R3 and the R4 domains, constitute the fibrils: the 

different morphology originates from the way the protofilaments interface with each other. Information 

regarding the rest of the tau sequence could not be obtained, thus suggesting that the most rigid core of 

the fibrils is composed of the R3 and the R4 domains79. b) Pick´s disease fold of the NPFs. The fibrils are 

composed of a single protofilament made of -sheets of residues from the R1, R3 and R480. The -sheets 

have a different arrangement with respect to the AD fold (d) although the sequence involved in the fibrils 

formation is the same (c), thus suggesting that the heterogenous morphologies originate from different 

rearrangements of the -sheets (taken from Fitzpatrick et al., Nature 201779 and Falcon et al., Nature 2018). 

 

The resolution quality up-stream to the R3 repeat and downstream to the R4 

repeatprevented insights into other parts of the protein. Indeed, additional electron 
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density at the N- and C-termini of the cross- structure suggested that additional amino 

acids from the R1/R2 and R´ pseudo-repeats, respectively, could contribute to the 

structure of tau fibrils. On the other hand, the R2 domain was not considered part of the 

core because of its cleavage by pronase. Although there is evidence supporting contacts 

with the core of the fibrils83,the cryo-EM analysis also did not provide information about 

the structural properties of the proline-rich region79. 

Fibrils purified from the brain of a PiD patient were composed of the tau 3R 

isoform, which lacks the R2 domain. Two morphologies defined as Narrow Pick filaments 

(NPFs) and Wide Pick filaments (WPFs) could be distinguished. The NPFs are composed of 

a single protofilament, whose core is made of nine -sheets provided by the R1, R3 and 

R4 repeats. The filament adopts a hairpin-like shape via hydrophobic interactions 

between the strands80 (Figure 1.12b). The WPFs are composed of two NPFs associated 

together. In PiD, tau isoforms containing three pseudo-repeats are the most expressed 

(Table 1.1), therefore the R2 domain was not modeled in the cryo-EM structure.  

Again with the use of cryo-EM, three-dimensional structures of heparin-induced in 

vitro tau fibrils have also been characterized97. The resulting structures differed from the 

AD and PiD structures and included the R2 domain in the core of the fibrils 79,80. In any of 

the structures resolved by cryo-EM, the proline-rich region has never been observed and 

no information could be provided, leaving open questions regarding the contribution of 

this domain to the formation and structure of tau fibrils. 

1.6 Tau interaction with the cytoskeleton 
 

In section 1.1.1, tau has been introduced as a member of the MAP family, consistent with 

its function to bind microtubules and regulate their polymerization40,41. In AD, 

microtubule disruption results in axonal transport impairments and can induce neuronal 

cell death3. For this reason, the nature of tau interaction with microtubules, and recently 

with soluble tubulin, has been investigated using different approaches, including 

biochemical studies, nuclear magnetic resonance (NMR) spectroscopy, cryo-EM and 

others19,50,52,56,98-101. The following sections summarize some of the findings regarding the 

involvement of tau in polymerizing tubulin and binding to microtubules. 
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1.6.1 Tubulin and microtubules 

The family of eukaryotic tubulin is composed by α-, β-, and γ-tubulin (55 KDa each). The 

γ-tubulin is organized in rings, which form the microtubule-organizing centers (MTOC). 

The α- and β- tubulin isoforms create a heterodimer which constitutes the basic unit of 

the microtubule protofilaments102. Tubulin monomers have a GTP-binding site and exhibit 

GTP catalytic activity, which is necessary for polymerization102. Heterodimers of α- and β-

tubulin polymerize into protofilaments, which further assemble into hollow and 

cylindrical microtubules102,103(Figure 1.13). Microtubule filaments are in a constant 

dynamic polymerization and depolymerization equilibrium, termed “Dynamic instability” 

104. This allows them to assist the cell in processes, which require fast rearrangements in 

the cytoskeleton102. In neurons, microtubules are responsible for trafficking of 

neurotransmitters, synaptic vesicles and catabolites via anterograde transport. Their 

interaction with tau in the axons is considered important for a correct functioning.  

 

 
 

 

 

Figure 1.13. Schematic representation of the 

microtubule filament organization. -tubulin 

heterodimers polymerize into protofilaments 

upon GTP hydrolysis. Microtubules are formed by 

the assembly of 13 protofilaments and are in a 

dynamic equilibrium of polymerization and 

disassembly. Because of the head-to-tail 

polymerization of α- and β-tubulin, 

microtubules show a polarity, with a minus-end 

exposing the α-tubulin and a plus-end exposing 

the β-tubulin. Of the two extremities, the plus-

end is the one showing dynamic behavior103. 

Taken from Vleugel et al., Cell Adh Migr, 2016.
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1.6.2 Tau regions involved in the interaction with tubulin and microtubules 

The pseudo-repeats, the proline-rich region and the C-terminal tail of tau are important 

for the interaction of tau with tubulin and microtubules50,99,105-107. The ability of the 

pseudo-repeats to bind to microtubules has been observed in biochemical 

studies19,50,90,105 and by NMR spectroscopy56,98,108. Using a combination of biochemical 

assays and light scattering experiments, Gutske et al. reported that in full-length tau the 

repeat region exhibits a high affinity for microtubules50. At the same time, in constructs 

comprising only 4 or 3 pseudo-repeats, the binding was relatively weak50. In the same 

work, the Mandelkow group also reported that the presence of the proline-rich region in 

different constructs enhanced tau affinity to microtubules19. This effect was extended to 

the C-terminal tail as well. Following this, a model was proposed, in which the flanking 

regions act as “claws” facilitating tau docking on the microtubules surface while the 

pseudo-repeats act as a catalytic domain, regulating microtubule polymerization19,52. In 

1H-15N HSQC NMR experiments, the repeat region shows a loss of intensity in presence of 

microtubules, indicating their involvement in the interaction56. Because of their amino 

acid composition, the interaction between the repeats and microtubules include 

hydrophobic interactions56. The two hexapeptides, 275VQIINK280 and 306VQIVYK311, present 

in the repeats R2 and R3 , respectively, are also involved in tau fibril formation (see section 

1.4.2), suggesting a link between physiological and pathological roles of tau. 

The proline-rich region is not only involved in the interaction with microtubules 

but is also considered to play a major role in tubulin polymerization105. The 

225KKVAVVRT231 sequence, in the P2 domain of the proline-rich region, provides important 

hydrophobic contributions52,56. 

 

1.6.3 Tau-induced tubulin polymerization 

The first evidence that tau can polymerize tubulin was reported by Weingarten et al.109. 

Biochemical studies support a central role of the proline-rich region in tubulin 

polymerization46,48,49,52,105. Goode and co-workers reported N-terminal truncation studies 

performed on tau, which indicated that the microtubule-binding activity of the proline-

rich region is located between the residues K215 and the N246, with the 225KVAVVRT231 
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sequence strengthening the interaction105. Despite the weak binding affinities to 

microtubules reported for the proline-rich region, when this was combined with at least 

one domain from the pseudo-repeat region microtubule assembly was enhanced105. 

Consistent with these observations, Mukrasch et al. reported NMR studies indicating that 

the 225KVAVVRT231 sequence is involved in the binding of tau to microtubules 56,52.  

Importantly, the proline-rich region is the target of serine and threonine kinases, 

which have been connected to AD110-112. Amniai et al. reported that phosphorylation of 

the T231in the P2 domain, inhibits tau’s ability to induce tubulin polymerization48. 

Phosphorylated T231 is found in the cerebrospinal fluid (CSF) of patients, which were 

affected by dementia and who further developed AD113,114, and is related to early stages 

of neurodegeneration115. NMR studies on the structural impact of phosphorylation of 

T231 showed that this residue forms a salt bridge with the preceding R230, potentially 

interfering with the formation of intermolecular contacts with soluble tubulin49. The 

understanding of the physiological activity of tau, especially regarding the regulation of 

the cytoskeleton structure, represents a key step for the progress of research in AD. 

Hernández-Vega and collaborators recently reported that tubulin is recruited into 

tau droplets and can polymerize from them into microtubules71 (schematically 

represented in Figure 1.9). Tau droplets, formed in the presence of dextran, deformed 

right after the addition of tubulin and GTP as the microtubules formed. The authors 

proposed that the droplets, where tau concentration is increased, might act as nucleating 

centers for the organization of the microtubules within the axons, where no MTOC are 

present. 

 

1.6.4 The role of charges in tau-tubulin/microtubule interaction 

The tau protein is mainly positively charged due to the presence of many lysines and other 

positively charged residues (Figure 1.8, section 1.2.2). On the other side, microtubules 

have a negative net charge. Thus, electrostatic interactions play an important role for the 

interaction of tau with tubulin and with microtubules: it has been reported that the C-

terminal tail of tubulin provides important contribution to the tau/tubulin interaction due 

to its negative charge116,117. Post-translational modifications of tau, which alter the charge 

distribution, can impair its interaction with microtubules and/or with soluble tubulin. The 
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microtubule affinity-regulating kinase (MARK) 2 mediates phosphorylation on serine 

residues within the pseudo-repeat region, which has drastic effects on the affinity of tau 

to microtubules90,118. In addition, phosphorylation ofT231 in the proline-rich region, 

impaired tau’s ability to polymerize tubulinbut did not affect its binding to microtubules48. 

Acetylation of lysine residues also decreases the amount of positive charge in the 

sequence, negatively affecting tau’s ability to bind microtubules119. 

 

1.6.5 Structural insights into the binding of tau to tubulin and microtubules 

Due to the important role of tau bindingto and promoting tubulin polymerization, and the 

pathological consequences of the loss of such functions, the structure of tau in complex 

with tubulin and microtubules is a long thought aim. Indeed, several models for the 

interaction between tau and tubulin/microtubules have been proposed98,100,101,120. 

As a consequence of its intrinsically disordered character, tau binds to 

microtubules in a dynamic fashion99. NMR studies showed that tau contact with 

microtubules occurs at the interface of α-β-tubulin heterodimers98. In complex with 

microtubules, a locally stable structure is formed in tau, in which the PGGG motifs at the 

end of the R1 and the R2 acquire a hairpin-like conformation100. Using single-molecule 

Förster resonance energy transfer, it was also observed that the tau repeats expand upon 

binding to soluble tubulin and long-range contacts between both termini and the 

microtubule-binding region are diminished121. 

Cryo-EM in combination with molecular modeling (using the modeling software 

Rosetta) has also been used to obtain structural information about the microtubule-

bound state of tau. Kellogg and co-workers characterized the structure of synthetic tau 

constructs, which comprise four copies of either R1 or R2, respectively, in complex with 

microtubules101. In the structural model, the repeat domains are positioned on the tubulin 

protofilaments and interact in tandem with the microtubule surface (Figure 1.14).  
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Figure 1.14. Modelling of tau bound to the microtubule surface. a) The PGGG motifs at the end of the R1 

(green structure) and R2 (orange structure) adopt a hairpin fold when tau is bound to microtubules. Taken 

from Kadavath et al.,Angew. Chem. Int. Ed. 2015. b) Tau R1x4 and R2x4 synthetic constructs were used to 

obtain a three-dimensional cryo-EM model of tau’s repeat region bound to microtubules. In this model, the 

repeats bind at the interface between -tubulin heterodimers. The PGGG motifs at the end of each 

pseudo-repeatas well as the proline-rich regioncould not be identified in the electron density. Taken from  

Kellogg et al., Science 2018. 

 

Due to their sequence homology, the pseudo-repeats are supposed to bind in a modular 

fashion. In particular, S262, conserved in the KXGS motif, was suggested to form a 

hydrogen bond with E434 of α-tubulin in the cryo-EM/Rosetta model. This observation 

might explain why the phosphorylation of this residue has a negative impact on the 

binding to microtubules. However, the structure of the proline-rich region could not be 

defined in the model, despite its relevance for binding to microtubules and soluble 

tubulin. In addition, the PGGG motif at the end of each pseudo-repeat as well as the C-

terminal tail remained unresolved in this model101. 
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1.7 Tau phosphorylation 
 

Due to the presence of hyperphosphorylated tau in PHFs122, many studies have focused 

on the molecular and cellular consequences of tau phosphorylation48,115,123-126. In addition, 

increasing evidence shows that other post-translational modifications (PTMs) contribute 

to the regulation of tau’s physiological activityas well as to its pathological aggregation89.  

Monoclonal antibodies recognize phosphorylated epitopes in PHFs in AD brain: the 

antibody AT8 recognizes phosphorylated S199, S202,T205127,128 and S208 129; the antibody 

AT180 recognizes phosphorylated T231 and S235130; the antibodies AT100 and PHF1 

identify the epitopes pT212/pS214 and pS396/pS404, respectively48. The tau sequence is 

rich in serine (45), threonine (35) and tyrosine (5) residues, which make it an ideal target 

for many kinases26. Proline-directed protein kinases (PDPK) phosphorylate serine and 

threonine residues in the proline-rich region16,23. Non-proline-directed kinases (non-

PDPK) are responsible for the phosphorylation of serines and tyrosines in the pseudo-

repeats region and at the C-terminus23. Some of them are described in the following 

sections but for a more exhaustive reading the review from Martin et al. is 

recommended23. Kinases are identified as key players in the aberrant phosphorylation of 

tau and are considered promising candidates for therapeutic treatments, but because so 

many kinases are involved in tau phosphorylation, finding the correct target is 

challenging131. On top of that, the same kinases which are acting on tau phosphorylate 

many other proteins, so modulating their activity often causes side effects.  

 

Figure 1.15. Tau residues phosphorylated by Cdk2, Cdk5/GSK3 and MARK2. Schematic representation of 

tau domain organization and the sites of phosphorylation in the proline-rich region, mediated by Cdk2 or 

Cdk5/GSK3 (blue marks), and in the MTBR, mediated by MARK2 (black circles) based on Martin et al., 

Ageing Res Rev, 2013. 
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1.7.1 Tau phosphorylation mediated by PDPK 
 

PDPKs add a phosphate group to serine or threonine preceding a proline residue (Ser/Thr-

Pro motif). They target primarily tau´s proline-rich region, which is rich in serine and 

threonines residues. 

Among these, the cyclin dependent kinase (Cdk) 5 and the glycogen synthase 

kinase (GSK) 3 act in a sequential manner to phosphorylate tau in the proline-rich 

region22,23,132. As reviewed by Martin et al. (2013), the major sites reported to be 

phosphorylated in vitro by the combination of Cdk5 and GSK3 are S202, T205, T231, 

S235, S396 and S404. These phosphorylated residues can be recognized by the AT8, 

AT180, AT100 and PHF-1 monoclonal antibodies (see section 1.6). 

Cdk5 is a pivotal regulator of several signaling pathways during neuronal 

development. It is also linked to abnormal phosphorylation of tau, e.g. residues found 

phosphorylated in tau fibrils are targets of this kinase, and its co-activator p25 is found 

overexpressed in AD brain132. Cdk5 priming phosphorylation on S235 is necessary for the 

phosphorylation of T231 mediated by GSK3112,133. 

GSK3 is an important regulator of neuronal growth and development through its 

involvement in several signaling pathways134. Recent findings, linked GSK3 to the 

regulation of tau alternative splicing by colocalization in nuclear speckles and 

phosphorylation of the SC35 protein111,135. In AD brain, approximately 29 of the 

phosphorylated amino acid residues are targeted by GSK389. On top of that, the kinase 

colocalizes with tau fibrils together with Cdk5136, indicating a tight correlation with the 

disease. Tau phosphorylation in vitro is also mediated by the cyclin dependent kinase 2 

(Cdk2)22,48,130. Unlike Cdk5, no correlations with AD have been reported for Cdk2. This 

kinase is responsible for the cell cycle regulation and is not present at high concentrations 

in mature neurons22. Nevertheless, Cdk2 alone produces the AT180 epitope without the 

need of additional kinases, which makes this enzyme usefull for in vitro studies48,130. 
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1.7.2 Tau phosphorylation mediated by non-PDPKs 

Several tau-relevant kinases belong to this group, e.g. tau-tubulin kinases 1/2 (TTBK1/2), the 

microtubule affinity-regulating kinase (MARK), the Ca2+/calmodulin-dependent protein kinase 

II (CaMKII), C-abl and many others. The TTBK1/2 kinases are involved in the phosphorylation 

of tubulin and tau and are reported to enhance tau aggregation into fibrils 23. Mice models 

overexpressing these kinases display tau aggregation as well as an enhanced activation of 

Cdk5 and GSK3 suggesting an interplay of different kinases in AD 23. This group of kinases is 

involved in the regulation of microtubule rearrangement, important during neuronal growth, 

cellular polarity and neuron migration137. The family of microtubule affinity-regulating kinases 

(MARK 1-4) isinvolved in the formationof axons and the regulation of tau’s affinity to 

microtubules. Target sites are S262, S293, S324 and S356, which are located in the KXGS 

consensus motifs in the R1, R2, R3 and R4 repeats, respectively23,118. Tau fibrils in AD brains 

are phosphorylated on S262 and S356, which links MARK2 to pathological events90. Other non-

PDPKs involved in tau phosphorylation are CaMKII and C-Abl. CaMKII phosphorylates 

threonine and serine residues in the tau sequence, some of which are found in AD brains23. C-

Abl belongs to the family of the non-receptor tyrosine kinases, it is a ubiquitously expressed 

protein, highly active during cell differentiation and involved in cytoskeleton remodeling and 

neuronal differentiation138. This kinase phosphorylates residues Y18 (N-terminal domain), 

Y197 (PRR), Y310 (R3) and Y394 (R´) and it is known to phosphorylate the fetal isoform of tau, 

htau23, during neuronal development139. In a normal adult brain, C-Abl is quiescent but an 

aberrant activation has been linked to AD140: phosphorylation activated forms of C-Abl and 

tyrosine-phosphorylated forms of tau have been co-stained in PHFs of AD brain and other tau 

inclusions141.It has been suggested that phosphorylation on Y18 and Y394 could be relevant 

for tau fibril formation138. 
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1.8 Aims of this work 
 

Tau is the object of intense research due to its intimate connection with several 

neurodegenerative disorders35-38. Recent cryo-EM analysisprovided structural insights 

into tau fibrils purified from the brains of patients with different tauopathies. In addition, 

NMR spectroscopy and cryo-EM have started to characterize the structural details of the 

tau/microtubule interaction79,80,98,100,101. From these studies, increasing information is 

available for the structural properties of the pseudo-repeats in complex with 

microtubules and within amyloid fibrils. In contrast, little is known about the structure of 

the proline-rich region in these two states. The proline-rich region plays an important role 

in establishing protein-protein interactions and is involved in the polymerization of 

tubulin into microtubules. In addition, its high content of serine and threonine residues, 

makes the proline-rich region a target of numerous kinases, which act on tau in 

physiological and pathological conditions. Because hyperphosphorylated tau is linked to 

a decreased affinity to microtubules as well as an increased propensity to form fibrils, a 

deeper knowledge of the roles played by the proline-rich region is necessary to better 

understand these events90,118.  

The focus of this work is on tackling the involvement of the proline-rich region in 

the microtubule polymerization process and in its contribution to the formation of tau 

fibrils in vitro and is divided into two projects.  

In the first part, in vitro aggregated amyloid fibrils of tau constructs containing 

both the proline-rich region and the pseudo-repeats are investigated using ssNMR.  

In the second part, the molecular mechanism of the interaction between the 

proline-rich region and soluble tubulin/microtubules is studied. Using solution-state NMR, 

LLPS assays, differential interference contrast (DIC) and fluorescence microscopy the 

effect of phosphorylation in the proline-rich region is addressed.
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2 Materials and methods 

 
2.1 Preparation of K32: protein expression and purification 
 

The K32 construct comprises the P2 region (residues S198-Q244) and the complete 

pseudo-repeat domain, including repeats R1, R2, R3, R4 and R’ (residues Q244-S400) of 

full-length htau40 and is schematically represented in the introduction section, figure 1.7. 

The plasmid carrying the K32 coding sequence was kindly provided by the laboratory of 

Prof. Dr. Eckhard Mandelkow.  

 

2.1.2 E. coli transformation 

XL2Blue ultracompetent cells (Agilent technologies) were used to store the plasmid. 

BL21™ DE3 competent cells (Novagen) were used for protein overexpression. 25 l of cells 

stored at -80 °C were thawed on ice for 25 minutes. Subsequently, 1 l of each DNA 

sample was added to the cells and equilibrated for 30 minutes. Heat-shock transformation 

was performed for 30 seconds at 42 °C on a thermo block, cells were afterwards put back 

on ice. Cells were incubated without antibiotics for one hour after addition of 1 mL LB 

medium, then harvested by centrifugation at 4000 rpm for five minutes. Subsequently, 

50l of the harvested cells were streaked onto LB-agar plates supplemented with 5 mg/ml 

kanamycin and cloramphenicol, respectively. Plates were incubated overnight at 37 °C. 

 

2.1.3 Protein expression 

Quantities refer to protein purification from 1 L of LB.  BL21™ (DE3) E. coli cells carrying 

the K32 coding sequence were grown in 25 ml LB medium containing kanamycin antibiotic 

overnight. This volume was transferred to 1 L LB medium and allowed to grow until an 

OD600 of 0.7 was reached. Protein expression under the T7 promoter was induced with 

IPTG at a final concentration of 0.5 mM. Cells were harvested after 3 hours of induction 

by centrifugation at 7500 rpm in a JLA-8.1 rotor in a Beckman Coulter Avanti centrifuge 

for 30 minutes. Cell pelletswerestored at -20 °C for further purification. 
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2.1.4 Purification protocols and procedure 
 

The pellet of K32, harvested from 1 L of cell culture, was resuspended in 35 mL lysis 

buffer, with the following composition: 

20   mM MES, pH 6.8 
1     mM EGTA 

625 l Lysozyme (100mg/ml stock) 

625 l DNase I (100mg/ml stock) 

1     Tablet EDTA-free Protease inhibitor 
1.0  mM PMSF 
5.0  mM DTT 
0.2 mM MgCl2 

 

After complete resuspension of the pellet in the lysis buffer, cell membrane disruption 

was achieved using a French press (Emulsiflex-C3). Sodium chloride was added to the 

solution to reach a final concentration of 500 mM. Samples were boiled in a water bath 

at 98 °C for 20 minutes. Sedimentation of insoluble particles and precipitated protein was 

achieved by ultra-centrifugation in a 45Ti Ultra Rotor at 127,000 g for 30 minutes in 

Beckman Coulter centrifuge (Optima XPN 80). 20 mg/ml of streptomycin sulfate (Carl 

Roth®) were added to the supernatant to induce nucleic acid precipitation142. After 

incubation for 15 minutes the samples were centrifuged (Eppendorf Centrifuge, 5810 R) 

at 15,000 g at 4 °C for 30 minutes. 0.361 g/ml of ammonium sulfate (Carl Roth®) were 

added to the retrieved supernatant to induce K32 precipitation143. Another cycle of 

incubation (15 minutes) and centrifugation (15,000 g at 4 °C for 30 minutes) followed this 

procedure. The pellet was resuspended in buffer and dialysed overnight against the buffer 

prepared as follows: 

20   mM MES, pH 6.8 
150 mM NaCl 
1.0  mM EDTA 
2.0  mM DTT 
0.1  mM PMSF 

 

After dialysis, samples were loaded on a MonoS® 10/100 GL column for ion-exchange 

chromatography. The protein elution resulted from a combination of Buffer A and B 

achieved with a gradient between 0 and 60 % over 15 column volumes.  
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The buffers presented the following composition: 

Buffer A  
20   mM MES, pH 6.8 
150 mM NaCl 
1.0  mM EDTA 
2.0  mM DTT 
0.1  mM PMSF 

Buffer B  
20   mM MES, pH 6.8 
1.0     M NaCl 
1.0  mM EDTA 
2.0  mM DTT 
0.1  mM PMSF 

To achieve maximal purity of the sample, size exclusion chromatography was performed. 

K32 sample was concentrated up to a volume of 1 ml and loaded on a HiLoad™ 26/200 

Superdex 75 pg (GE Healthcare Life Sciences). The buffer for the size exclusion 

chromatography was prepared as follows: 

PBS pH 7.4 
500 mM NaCl 
1.0  mM DTT 

 

2.2 P2R2 and P2R3 peptides preparation 
 

2.2.1 Peptide sequence design 

The peptides P2R2 and P2R3 combine the amino acid sequences of the P2 domain 

(residues S198-Q244) with either the R2 domain (residues V275-S305) or the R3 domain 

(residues V306-Q336) of htau40, respectively (Figure 2.1). Plasmids encoding the DNA 

sequence of either P2R2 or P2R3 were purchased from GeneArt® gene synthesis from 

Invitrogen, Thermo Fisher Scientific. The two native cysteine residues C291 and C322 of 

htau40, which are located in the R2 and R3 domains respectively, were replaced by 

alanine in the P2R2 and P2R3 peptides. Codon optimization of the DNA sequence for the 

E. coli expressing system was also included in the requirements of the designed plasmids. 
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Figure 2.1. P2R2 and P2R3 domain organization and sequence. a) The domain organization of the peptides 

P2R2 and P2R3 is represented together with that of htau40. The residues delimiting the domains combined 

in P2R2 and P2R3 are indicated. b) The sequences of P2R2 and P2R3 comprise the P2 domain and either the 

R2 or the R3 sequence.The substitution of C291/C322 to alanine is indicated for each peptide. 

 

2.2.2 PCR 

Prior to cloning, P2R2 and P2R3 optimized sequences were screened for restriction 

enzyme type I and II using the online NEB cutter V 2.0 (http://www.labtools.us/nebcutter-

v2-0/) tool to avoid restriction of the coding sequences. After this, sequences were 

amplified using PCR. Primers for the reaction were designed in order to allow future 

cloning of the inserts into the pET28a plasmid vector between BamHI and HindIII 

restriction sites. For P2R2, the following forward (F) and reverse (R) primers where used: 

F 5’-AATTGGATCCAGCAGTCCGGGTTCTCCG-3’ (BamHI) 

R 5´-CCCAAGCTTCTAGCTACCACCACCCGGAAC-3’ (HindIII) 
 

For the P2R3 peptide the following forward (F) and reverse (R) primers where used: 

 

F 5’-AATTGGATCCAGCAGTCCGGGTTCTCCG-3’ (BamHI) 

R 5´-CCCAAGCTTCTACTGACCACCACCCGGTTT-3’ (HindIII) 
 

Lyophilized primers where ordered from Sigma-Aldrich Chemie GmbH.  

  



Material and methods 

 32 

Each PCR reaction mixture was prepared as follows:                         

22.5 l  ddH2O 

0.5   l DMSO 

0.5   l Forward primer 

0.5   l Reverse Primer 

25.0 l  Phusion Polymerase (New England Biolabs®) 

1.0   l Templates 

50    l Total Volume 

 

The following PCR cycles were used: 

 

Double strand denaturation 98 °C for 1 min 
Primer annealing 83 °C for 30 s 
Elongation 72 °C for 10 min 
Cycles repetition 32 times 
Storage of the amplified sequences  4 °C 

 

The successful outcome of the PCR amplification was controlled by agarose gel. Plasmids 

were purified from gel using the PCR-clean up® kit from MACHEREY-NAGEL. 

 

2.2.3 Restriction enzyme double digestion and ligation reaction 

P2R2 and P2R3 optimized sequences were cloned into the pET28a vector between BamHI 

and HindIII restriction sites. The expression vector had an additional Z domain of 

staphylococcal protein A, expressed as protein fused to either P2R2 or P2R3, and a TEV 

consensus motif for cleavage of His-tag sequences. The pET28 vector and DNA sequences 

of either P2R2 or P2R3, were incubated with BamHI and HindIII restriction enzimes (New 

England Biolabs®). For the restriction reaction of pET28 the following mixture was used:  

10 l pET28_Z2 

1   l BamHI 

1   l HindIII 

5   l CutSmart® buffer (New England Biolabs®) 

33 l ddH2O (for the purpose autoclaved) 

50 l Total volume 
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The incubation time was two hours at 37 °C. After one hour and 30 min of incubation, 

alkaline phosphatase (CIP, New England Biolabs®) was added to the mixture to 

dephosphorylate the 5´ and 3´ ends. For P2R2 and P2R3 inserts, the following mixture was 

used:  

35l Insert 

1   l BamHI 

1   l HindIII 

5   l CutSmart® buffer  

8  l ddH2O (for the purpose autoclaved) 

50 l Total volume 
 

Reactions were incubated for twohours at 37 °C.  

The ligation was performed in a water bath at 16 °C overnight. The required amount of 

expression vector and insert was calculated according to: 

1: 𝑎 =
µ𝑔 vector

𝑏𝑝 vector
:
µ𝑔 insert

𝑏𝑝 insert
 (1) 

 

Where 1:a represents the ratio between the amount of vector to use and “a” is the 

amount of insert, bp is the length in base pairs of the expression vector and the insert, 

respectively.  

A reaction mixture for 3-fold excess of insert, was used: 

0.09  l Insert 

2.23l Expression vector 

1.0    l T4 DNA Ligase (New England Biolabs®) 

1.0    l T4 DNA Ligase reaction buffer (New England Biolabs®) 

5.68 l ddH2O (for the purpose autoclaved) 

10 l Total volume 

 

After ligation, Rosetta 2 (DE3) E. coli cells were transformed and streaked on LB agarose 

plates supplemented with 5 mg/ml of kanamycin. DNA extracted from positive clones was 

sequenced by Microsynth SEQLAB. 

2.2.4 E. coli transformation 

XL2Blue ultracompetent cells (Agilent technologies) were used for amplification of the 

expression vector and Rosetta™ 2 (DE3) Singles™ competent cells (Novagen) were used 
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for protein overexpression. The protocol for cell transformation is reported in section 

2.1.4. 

2.2.5 Protein expression 

Protein expression and purification protocols were optimized for both P2R2 and P2R3 

peptides. Protein amount and buffer solutions refer to protein purification from 1L of LB. 

Rosetta™ 2 (DE3) Singles™ containing pET28a plasmid carrying either P2R2 or P2R3 

sequences were grown overnight in 25 ml LB medium, supplemented with 5 mg/ml of 

kanamycin and cloramphenicol. The starter culture was transferred to 1 L LB medium and 

allowed to grow until an OD600 of 0.7 was reached. Protein expression was induced with 

a final concentration 0.5 mM IPTG. Cells were harvested after 4 hours of induction by 

centrifugation at 7500 rpm in a JLA-8.1 rotor in a Beckman Coulter Avanti centrifuge for 

30 minutes. Cell pellets were stored at -20 °C for further purification. 

2.2.6 Purification protocols and procedure 

Pellets of the P2R2 and P2R3 peptides were resuspended in 40 mL lysis buffer: 

20   mM Tris-HCL, pH 8 

500 mM NaCl 

500 l   Lysozyme (100 mg/ml stock) 

1 Tablet EDTA-free Protease inhibitor mix (Roche®) 

250 l DNase (1 mg/ml final concentration) 

5     mM DTT 

0.2 mM MgCl2 

 

Subsequently, cell membranes were disrupted by sonification cycles of 5 minutes using 

30 % power and 5 minutes at 60 % power with 30 seconds of pause between each pulse 

(SONOPULS Ultraschall, Bandelin). Sedimentation of insoluble particles was achieved by 

centrifugation at 20,000 rpm for 30 minutes in a JA 25.50 in a Beckman Coulter Avanti 

centrifuge. The purification steps were performed using Qiagen Ni-NTA Agarose for 

gravity-flow chromatography. The resin beads were washed with water, packed into a 

PierceTM disposable column of 10 ml and equilibrated with lysis Buffer prior use, following 

the manual (The QIAexpressionist, from QIAGEN). The supernatant from the 
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centrifugation of sonicated cells was further incubated for 30 minutes with Ni-NTA 

Agarose at 4 °C to allow interaction of the His-tagged protein with the nickel ions in the 

agarose. Washing steps were performed with a buffer containing increasing 

concentration of imidazole (20 mM Tris-HCL, pH 8, 500 mM NaCl, and 10 to 50 mM 

imidazole) in order to remove impurities and non-specific binding products. Proteins 

were eluted from the Ni-NTA Agarose with an elution buffer containing 20 mM Tris-HCL, 

pH8, 500 mM NaCl, 200 mM imidazole. An SDS-PAGE gel sample was prepared for each 

washing step and elution fraction. To remove the His-tag from the eluted protein, 0.5 mg 

of TEV protease was added. Subsequently, samples were transferred to dialysis 

membranes (8-10 kDa cut-off) and incubated overnight at 4 °C in a TEV buffer, prepared 

as follows: 

20   mM Tris-HCL, pH 8 
500 mM NaCl 
0.3  mM  EDTA 

 

After the removal of the His-Tag, a second cycle of gravity-flow chromatography using  

Ni-NTA agarose was performed. P2R2 and P2R3 eluted in the first washing step as flow 

through.  

To achieve maximal purity of the sample an additional size exclusion 

chromatography step was included into the protocol. P2R2 and P2R3 samples were 

concentrated up to a volume of 2 ml and loaded on a HiLoad™ 16/200 Superdex 75 pg 

(GE, Healthcare Life Sciences). The buffer for the size exclusion chromatography was 

prepared as follows: 

20   mM Tris-HCl, pH 8 
250 mM NaCl 
1     mM  EDTA 

 

2.3 Uniform isotope labeling of proteins for solution and solid-
state NMR 

 

In order to label P2R2, P2R3 and K32 uniformly with 15N and 13C isotopes, the protocols 

described in sections 2.1.5 and 2.2 were used, substituting the LB medium for M9-minimal 

medium. A 1 L of culture with M9 medium composition is described as follows: 
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200 ml 5x M9 salts * 
2.0  ml MgSO41M 
1.0  ml CaCl2    1M 
6.0  ml Thiamine (5 mg/ml) 
10   ml 100x Trace elements ** 
1     g 15NH4Cl 
2     g 13C-glucose 
880 ml ddH2O 

 

 

2.4 Determination of protein concentration 
 

Because of the lack of tryptophans, the concentration of P2R2 (7 kDa) and P2R3 (7 kDa) 

was estimated using a sequence-specific extinction coefficient for Abs205 nm144. For P2R2 

and P2R3 205 was 225,230 M-1 cm-1 and 235,710 M-1 cm-1, respectively. The protein 

concentration was calculated using the Lambert-Beer law: 

𝑐 =  𝐴/(𝜀 ∙ 𝑙) (2) 

Where A is the absorbance at 205 nm, and l is the pathlength of the quartz cuvette (cm). 

The concentration of K32 (25 kDa) was also confirmed with bicinchoninic acid (BCA) Assay 

kit (Sigma-Aldrich).  

 

 

 

* 5x M9 salts  
16.95  g Na2HPO4 
7.5      g KH2PO4 
1.25    g NaCl 
  
** 100x Trace elements 
5         g EDTA 
0.8      g FeCl3 
0.05    g ZnCl2 
0.01    g CuCl2 
0.01    g  CoCl2 
0.01    g H3BO3 
1.6   mg MnCl2 
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2.5 Circular dichroism of P2R2 and P2R3 peptides in the 
monomeric form 

 

CD spectroscopy allows detection of secondary structure elements present in an optically 

active molecule, based on the deviation of polarized light that this can induce145. 

Measurements of protein CD in the far UV range (260-190 nm) is a useful tool to estimate 

secondary structure content, as each structural rearrangement is contributing with a 

typical absorption profile146. CD spectra of monomeric P2R2 and P2R3 peptides were 

acquired on a Chirascan (Applied Photophysics, UK) spectrometer. Samples in sodium 

phosphate buffer 50 mM, pH 6.8, 50 mM NaCl were diluted in ddH2O to reach a final 

protein concentration of 25 M. Measurements were performed in a 0.1 cm light path 

quartz cuvette. 

General settings for the spectra acquisition were: 

Temperature  20 °C 
Start wavelength 260 nm 
End wavelength  190 nm 
Scanning speed 100 nm/min 
Bandwidth   1.0 
Steps 0.1 
Sampling (time-per-point) 0.5 s 
Repeats per spectrum 3 

 

Baseline correction was performed subtracting the spectrum of the buffer acquired with 

the same parameter settings. Data are expressed as mean residue ellipticity (MRE)146 

according to 

[𝜃] = 𝑀𝑅𝑊 ∙
𝜃𝜆

10
∙ 𝑑 ∙ 𝑐 (3) 

Here, Mean Reside Weight (MRW) of P2R2 and P2R3 was 104.36  0.07,  the observed 

ellipticity at 260 nm (in degrees), d the pathlength (cm) and c the protein concentration 

(g/ml)c. The deconvolution of secondary structure information contained in the spectra 

was performed using the Dichroweb online calculation tool145.  

 

 



Material and methods 

 38 

2.6 Fibril formation and characterization 
 

2.6.1 Fibrillization protocol 

The fibrillization of unlabeled and 15N/13C-labeled P2R2, P2R3 and K32 proteins was 

induced using heparin salt (Mr 2x104 g/mol, Carl Roth®) in a heparin-to-protein molar ratio 

of 1:4. Either P2R2 or P2R3 (200 M) were incubated with heparin (50 M) in a buffer 

containing Tris-HCl 25 mM, pH 7.4, 0.02 % sodium azide. In the case of K32, 100 M of 

final protein concentration were incubated with heparin (25 M) in a buffer containing 

Tris-HCl 25 mM, pH 7.4, 0.02% sodium azide and 2 mM DTT freshly added just before 

starting the reaction. Samples were incubated for three days at 37 °C.During this time, 

ThT measurements of each sample were performed to monitor the fibrillization process. 

The reaction was then stopped by ultracentrifugation at 200 000 g, at 37 °C for 1 hour in 

a TLA 100.3 rotor in a bench ultracentrifuge (Beckman Coulter, Optima MAX XP). The 

composition of the supernatant and the pellet was monitoredby SDS-PAGE.  

 

2.6.2 ThT fluorescence 

Fibril formation was constantly monitored performing a Thioflavin T (ThT) binding 

assay147. The measurements were carried on a 96 well plate in a Cary Eclipse fluorescence 

spectrophotometer with the following parameters:  

Excitation wavelength 440 nm 
Emission wavelength 482 nm 
Emission slit 10   nm 
Room Temperature  

 

1 l of protein sample reaction mixture was thoroughly pipetted into 180 l of ThT 

working solution (glycine 50 mM, pH 8 and 5 M ThT). Experiments were done in 

triplicates and a negative control of ThT working solution was always included. 
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2.6.3 Electron microscopy 

The morphology of the fibrils was analyzed by negative-stain transmission electron 

microscopy (TEM). For each sample the fibrils were harvested by ultracentrifugation 

discarding the supernatant followed by resuspension in fresh fibrillization buffer (50-60 l). 

Analysis of the samples were performed by Gudrun Heim at the facility of Transmission 

Electron Microscopy at the Max Planck Institute for Biophysical Chemistry, in Göttingen. 

Samples were transferred onto a continuous carbon coated copper grid and buffer removal 

was achieved using a filter paper. Negative staining was performed by adding 1 % of aqu. 

uranyl acetate solution followed by drying process with a filter paper. The EM pictures were 

taken using a FEI CM 120 electron microscope with Tietz F416 CMOS camera. 

 

2.6.4 Circular dichroism of fibrils obtained from K32 and the P2R2 and P2R3 

peptides 

Fibrils were pelleted by ultracentrifugation at 200,000 g, at 37 °C for onehour in a TLA 

100.3 rotor in a bench ultracentrifuge (Beckman Coulter, Optima MAX XP) and 

resuspended in ddH2O to a final concentration of 20 M. Measurements were performed 

in a 0.1 cm light path quartz cuvette, using general settings for the spectra acquisition as 

described in section 2.5. 

 

2.7 In vitro tau phosphorylation with kinases 
 

In vitro phosphorylation of htau40 was performed by incubation of 50-100 M of the 

protein with 0.4 M of Cdk2/CycA2 in a buffer containing sodium phosphate 50 mM, pH 

6.8, 2 mM DTT, 4 mM ATP, 2 mM EGTA, 0.5 mM PMSF, 5 mM MgCl2. In vitro htau40 

phosphorylation using MARK2 was performed by incubation of 50-100 M of the protein 

with 0.4 M of kinase in a buffer containing sodium phosphate 50 mM, pH 6.8, 2 mM DTT, 

4 mM ATP, 2 mM EGTA, 0.5 mM PMSF, 5 mM MgCl2. 

The mixtures were incubated in a thermo block shaking at 300 rpm, for 12 hours (MARK2) 

and for 24 hours (Cdk2/CycA2) at 30 °C and 25 °C, respectively. The kinases were 

inactivated by boiling the samples for 20 minutes followed by centrifugation at 13,000 
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rpm for 30 minutes. The phosphorylated tau samples used for droplet formation were 

dialysed overnight at 4 °C against a BRB80 buffer containing 100 mM PIPES, pH 6.9, 1 mM 

MgCl2, 1 mM EGTA, 1 mM GTP, 1 mM DTT. The degree of phosphorylation was performed 

by analysis of the cross peaks in the 1H-15N HSQC spectra acquired after phosphorylation 

(see section 2.11.2.2).  

2.8 Phase-contrast and fluorescence microscopy 
 

2.8.1 Fluorescent labeling of tau and tubulin 

HTau40 as well as pTau(Cdk2) and pTau(MARK2) proteins were fluorescently labeled using 

the Alexa 488 Microscale Protein Labeling Kit (Thermo Fisher Scientific, #A30006). Porcine 

brain purified tubulin was fluorescently labeled using the Alexa 594 Microscale Protein 

Labeling Kit (Thermo Fisher Scientific, #A30008). Subsequently, 

hTau40/pTau(Cdk2)/pTau(MARK2) was mixed with small amounts of Alexa 488-

fluorescently labeled hTau40/pTau(Cdk2) pTau(MARK2) in BRB80 buffer. 

 

2.8.2 Tau droplet formation 

LLPS was induced by addition of 10 % dextran (Dextran T500, Cat. No. 40030, 

Pharmacosmos) at room temperature (final protein concentration: 25 M). 10 µL of 

samples were loaded onto glass slides, covered with a 18 mm coverslip. Differential 

interference contrast (DIC) and fluorescent images were acquired on a Leica DM6000B 

microscope with a 63× objective (water immersion) and processed using Fiji software 

(NIH). 
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2.9 Tubulin polymerization 
 

2.9.1 Assembly of paclitaxel-stabilized microtubules 

Microtubules used for NMR spectroscopy were obtained through incubation at 37 °C for 

a total of 45 min of 25 μM tubulin in BRB80 buffer (80 mM PIPES, pH 6.9, 1 mM MgCl2, 1 

mM EGTA, 1 mM GTP, 1 mM DTT) to which equimolar paclitaxel (Sigma-Aldrich) was 

added. The suspensions of the samples were fractionated by ultracentrifugation at 40,000 

g for 15 min. For NMR measurements, the microtubule pellet was resuspended in 50 mM 

phosphate buffer, pH 6.8. 

2.9.2 Tubulin polymerization from tau droplets 

Tubulin polymerization assays in the presence of pre-formed tau droplets were performed 

in BRB80 buffer at room temperature. After formation of tau droplets, tubulin and GTP 

were added to a final concentration of 10 M and 1 mM, respectively. 

 

2.10 Synthetic peptides 

The following synthetic peptides have been used for NMR experiments described in the 

result sections.  

Tau(P2) Residues 211-242 Ac-RTPSLPTPPTREPKKVAVVRTPPKSPSSAKSR-NH2 
Tau(P2)short Residues 224-238 Ac-KKVAVVRTPPKSPSS-NH2 
Tau(P2-R3) Residues 224-313 Ac-KKVAVVRTPPKSPSSVPGGGSVQIVYKPV-NH2 
Tau(R3)short Residues 300-313 Ac-VPGGGSVQIVYKPV-NH2 
2pTau(225-246) Residues 225-246 Ac-KVAVVRTPPKSPSSAKSRLQTA 
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2.11 Nuclear magnetic resonance  
 

Nuclear Magnetic Resonance (NMR) spectroscopy is a non-invasive method to study 

protein structure and dynamics in near-native conditions57,148. NMR observes the 

behaviour of the nuclear spins of a molecule when these are subjected to an external 

magnetic field. When an external magnetic field is applied, the nuclear spin states are split 

into different energy levels (Figure 2.2). The size of the energy gap is directly proportional 

to the strength of the external magnetic field. The energy levels are not equally populated, 

which in a simplified way means that the probabilities for a nuclear spin to be in one state 

or another are different149. This difference in populations between the energy levels is the 

source of macroscopic magnetization and the NMR signal149. Transitions between the 

nuclear spin states are possible only when they take place at a frequency corresponding 

to the energy gap149,150. This can be observed by irradiating the spins with electromagnetic 

radiation having that frequency and observing the electromagnetic response of the spins. 

This response is a frequency defined by the nature of the nuclei and their chemical 

environment. The chemical shift is the position on a scale of parts per million (ppm) of this 

frequency and yields important structural information for the NMR spectroscopist150. 

 

 

 

Figure 2.2. Schematic 

representation of the energy 

level splitting in an external 

magnetic field. When a nuclear 

spin is in an external magnetic 

field (B0) its states are split into 

different energy levels. The 

energy difference (E) 

separates one level from the 

other and is proportional to the 

size of the magnetic field. A 

transition between these levels 

is only possible when the 

frequency matches the energy 

difference between them. 
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The nuclei commonly observed in protein NMR experiments are 1H, 13C and 15N, their 

characteristics are summarized in Table 2.1. 

Table 2.1 Gyromagnetic ratios, NMR frequencies (in a 9.4 T field = 400 MHz) and natural 

abundancies of the nuclei commonly observed in protein NMR experiments151. 

Isotope /107 T-1 s-1 NMR/MHz Natural Abundance (%) 

1H 26.752 400.0 99.985 

2H 4.107 61.4 0.015 

13C 6.728 100.6 1.108 

15N -2.2713 40.5 0.37 

 

2.11.1 One- and two-dimensional NMR 

The simplest NMR experiment is a one-dimensional (1D) 1H experiment, where the 

frequencies of the 1H nuclei in a molecule are observed (Figure 2.3a). In protein NMR such 

an experiment is very complex to analyze due to the overlap of the 1H signals. One way to 

solve this problem is to add a second dimension, which is achieved by two-dimensional 

(2D) NMR experiments. In a 2D NMR experiment two frequencies, 1 and 2, are observed. 

The frequencies 1 and 2 become the coordinates of the cross-peaks arising in the 

spectrum (Figure 2.3b). A similar approach is employed in three-dimensional (3D) NMR 

experiments, in which a third dimension is added (section 2.11.4).

 

Figure 2.3. One- and two-dimensional NMR. a) A 1D 1H NMR spectrum is displayed; the regions of the 

spectrum where it is expected to find signals from the functional groups of the amino acid are indicated. b) 

Schematic representation of the basic principle of a two-dimensional NMR spectrum150. 
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2.11.2 2D heteronuclear single quantum coherence (HSQC) 

 

2D heteronuclear single quantum coherence (HSQC) experiments are commonly used to 

study proteins. In a 1H-15N HSQC, the two dimensions observed correspond to the 

frequencies of the 1H and the 15N in the amide group of each amino acid, which are 

coupled across one bond. The amide group (NH) cross-peaks will appear with a specific 

chemical shift in the spectrum, according to their chemical environment. Thus, the 1H-15N 

HSQC experiment provides a fingerprint of the protein. In a 1H-13C HSQC, information 

regarding all the CH spin-systems present in the protein, i.e. CαH in the backbone and CH 

moieties in the side chains, are obtained152. As shown in Table 1.2, 1H, 15N and 13C do not 

have the same natural abundance: for this reason, in order to perform 1H-15N or 1H-13C 2D 

experiments, recombinant proteins are enriched with 15N and 13C isotopes, a strategy 

known as isotopic labeling.Figure 2.4 shows the pulse sequence of a standard 1H-15N HSQC 

experiment. A pulse sequence consists of a series of short irradiations designed to encode 

the frequency information of the observed nuclei in the NMR signal. The pulse sequence 

of a 2D experiment consists of four periods, preparation, evolution (t1), mixing and 

detection (t2). During the preparation period of an HSQC experiment, transfer of 

magnetization from the 1H to 15N is achieved by a sequence of pulses, called Insensitive 

Nuclei Enhancement by Polarization Transfer (INEPT)153.  

 

Figure 2.4. Simplified 2D HSQC pulse sequence.The HSQC pulse sequence starts with equilibrium 

magnetization on 1H. Magnetization is transferred to the insensitive nucleus X (15N or 13C) via INEPT (light-

blue box): 90°x - 180°y - 90°y rf pulses are applied on 1H; the delay  is set to ~2.7 ms for 1H-15N HSQC and 

to 1.7 ms for 1H-13C HSQC. The chemical shift of the coupled spin evolves during t1. Using a reverse-INEPT 

sequence, magnetization is transferred back to 1H, where the signal is detected. 
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With this sequence, magnetization is transferred from a sensitive (i.e. 1H) to a 

comparatively insensitive nuclei (i.e. 13C or 15N) using scalar J-coupling. The result is an 

enhancement of the intensity of the insensitive nuclei. After magnetization has been 

transferred to the 15N, its chemical shift evolves during the evolution period. In the mixing 

period, the magnetization is transferred back to the 1H, on which the signal is detected. 

The pulse sequence of an HSQC can also be combined with other NMR experiments to 

obtain more complex and sophisticated experiments.  

 
2.11.2.1 HSQC experiment settings and data analysis for the project I 
 

In the first project, 2D HSQC experiments have been used to study the K32 construct. 2D 

1H-13C and 1H-15N HSQC of 200M uniformly 13C-15N labeled K32 in 50 mM sodium 

phosphate buffer, pH 6.8, 10 % D20, 0.02 % sodium azide and 2 mM DTT, added freshly 

before the measurement, were recorded at 5 °C. Spectra were acquired on a 700 MHz 

spectrometer equipped with a cryogenically-cooled triple resonance probe (Bruker). 

In order to characterize the P2R2 and P2R3 tau peptides, 2D 1H-13C and 1H-15N 

HSQCs were recorded at 5 °C on 1 mM concentrated samples of uniformly 13C/15N 

labeled peptides in 50 mM sodium phosphate buffer, pH 6.8, 10 % D2O and 0.02 % 

sodium azide. Spectra of P2R2 were acquired on Bruker Avance III HD spectrometers 

operating at 600 MHz (Bruker) and spectra of P2R3 were acquired on a 600 MHz Bruker 

spectrometer equipped with a triple-resonance cryogenically-cooled NMR probe. The 

pulse program used for the acquisition of 1H-15N HSQC is a user modified pulse sequence 

(see Appendix: hsqc15N.dl) while for the 1H-13C HSQC a standard Bruker (Appendix: 

hsqcetgpsi) pulse program was used. Experimental parameters are summarized in Table 

2.2. All spectra were processed using Topspin 3.5pl7 (Bruker) and further analysed using 

the Sparky154 and ccpNMR software155.  

 

2.11.2.2 HSQC experiment settings and data analysis for the project II 
 

In the second project, 2D 1H‐15N HSQC experiments were used to characterize the 

phosphorylated state of pTau(Cdk2/CycA2)/pTauMARK2 and to study the interaction of 

htau40/pTau(Cdk2/CycA2)/pTauMARK2 with tubulin/microtubules.  
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To study the temperature dependence of the interaction between htau40 and 

microtubules, 2D 1H‐15N HSQ spectra were acquired at 5 °C, 25 °C and 37 °C on 50 M 

htau40 alone or in presence of 25 M of paclitaxel-stabilized microtubules. The NMR 

samples were prepared in 50 mM sodium phosphate buffer 50 mM, pH 6.8, 10 % D2O and 

0.02 % sodium azide. Experiments were performed on a 700 MHz spectrometer (Bruker) 

equipped with a cryogenically-cooled triple resonance probe.  

For the interaction between htau40/pTau(Cdk2/CycA2) and soluble tubulin, 2D 1H‐

15N HSQ spectra were acquired at 5 °Con 10 M htau40/ pTau(Cdk2/CycA2) alone or in 

presence of 5 M of paclitaxel-stabilized microtubules. The NMR samples were prepared 

in 50 mM sodium phosphate buffer 50 mM, pH 6.8, 10 % D2O and 0.02 % sodium azide. 

Experiments were recorded at 5 °C on a Bruker 900 MHz spectrometer equipped with a 

cryoprobe.  

For characterization of the phosphorylation state of 

htau40/pTau(Cdk2/CycA2)/pTauMARK2, HSQC spectra of 10 M protein were recorded 

in 50 mM sodium phosphate buffer, pH 6.8, 10 % D2O and 0.02 % sodium azide. 

Experiments were recorded at 5 °C on a Bruker 800 MHz spectrometer equipped with a 

cryoprobe. The quantification of the unphosphorylated and phosphorylated forms of each 

selected residue was performed by analysis of the cross peaks in the 1H‐15N HSQC spectra. 

The intensity of the cross peaks in the unphosphorylated (𝐼𝑢𝑛𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑡𝑒𝑑 ) and 

phosphorylated (𝐼𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑡𝑒𝑑) form were summed to give a total intensity (𝐼𝑇𝑂𝑇).  

The calculation of the degree of phosphorylation was then performed using: 

 

𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑢𝑛𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑡𝑒𝑑 =
𝐼𝑢𝑛𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑡𝑒𝑑

𝐼𝑇𝑂𝑇
 

 

𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑡𝑒𝑑 =
𝐼𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑦𝑙𝑎𝑡𝑒𝑑

𝐼𝑇𝑂𝑇
 

The error propagation was calculated using the estimated mean error of each spectrum 

as provided by the Sparky software154. 

The NMR measurements to detect the guanidium protons of arginine side chains 

were performed on 80 M htau40/pTau(Cdk2/CycA2) at 5 °C on a Bruker 900 MHz 
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spectrometer. In order to decrease the exchange of the labile protons with bulk solvent, 

a sodium phosphate buffer at pH 6 was used. The pulse program used for the acquisition 

of 1H-15N HSQC is a user modified pulse sequence (see Appendix: hsqc15N.dl). 

Experimental parameters are summarized in Table 2.3. Spectra were processed using 

Topspin 3.5pl7 (Bruker) and NMRpipe156. Further analysis wasperformed using the Sparky 

software154. Identification of the phosphorylated residues was achieved by chemical shift 

perturbation analysis. 1H and 15N normalized weighted average chemical shifts were 

calculated using: 

∆𝛿𝑁𝐻 = √[(∆𝐻2) + (∆𝑁
5⁄ )

2
] /2 (4) 

 

where ∆𝐻 and ∆𝑁 correspond to the 1H and 15N chemical shift differences between 

hTau40 and pTau(Cdk2)/pTau(MARK2). Resonance assignments of htau40 and 

phosphorylated residues were reported previously 48,49,56.  

 

Table 2.2. Parameters for 1H-15N HSQC and 1H-13C HSQC experiments related to the 

project I. 

Protein 
Type of 

experiment 

Spectrometer 

(MHz) 

SW (ppm) 

NS TD 
1H 15N/13C 

P2R2 1H-15N HSQC 600 12.02 23.00 8 2048 (1H), 128 (15N) 

 
1H-13C HSQC 600 13.02 75.00 8 1024 (1H), 256 (13C) 

P2R3 1H-15N HSQC 600 12.02 23.00 8 2048 (1H), 128 (15N) 

 
1H-13C HSQC 600 13.02 75.00 8 1024 (1H), 256 (13C) 

K32 1H-15N HSQC 700 12.02 28.00 64 2048 (1H), 512 (15N) 

 
1H-13C HSQC 700 14.00 149.47 64 1024 (1H), 512 (13C) 
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Table 2.3 Selected parameters for 1H-15N HSQC experiments related to the project II 

Protein 

Spectrometer 

(MHz) 

SW (ppm) 

NS TD 

1H 15N 

hTau40 700 12.02 24.00 128 2048 (1H), 512 (15N) 

hTau40 + 

microtubules 

700 12.02 24.00 128 2048 (1H), 512 (15N) 

pTau(MARK2) 800 12.02 24.00 128 2048 (1H), 512 (15N) 

pTau(MARK2) + 

microtubules 

800 12.02 24.00 128 2048 (1H), 512 (15N) 

pTau(Cdk2/CycA2) 800 12.02 24.00 32 2048 (1H), 512 (15N) 

pTau(Cdk2/CycA2) + 

microtubules 

800 12.02 24.00 32 2048 (1H), 512 (15N) 

hTau40 

(Arginine side chain) 

900 8.5 2 8 2048 (1H), 128 (15N) 

pTau(Cdk2/CycA2) 

(Arginine side chain) 

900 8.5 2 8 2048 (1H), 128 (15N) 

hTau40 + 

tubulin 

900 12.02 24.00 160 2048 (1H), 256 (15N) 

pTau(Cdk2/CycA2) + 

tubulin 

900 12.02 24.00 160 2048 (1H), 256 (15N) 
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2.11.3 Transverse relaxation-optimized spectroscopy (TROSY) 

For large molecules, the NMR signal is affected by the short transverse relaxation rate (T2), 

which causes a fast signal decay and broad peaks150. Transverse relaxation-optimized 

spectroscopy (TROSY)157 is used for the study of large proteins, where due to the increased 

molecular weight resolution would be poor and peaks would be broad in a HSQC 

spectrum158. The TROSY experiment gives the same information as the HSQC but mitigates 

this problem by selecting those signal components, which are relaxing more slowly and 

cancelling those that are relaxing more quickly. Generally, the selection of these signal 

components halves their intensity to ½ in each dimension. Nevertheless, the application 

of TROSY experiments on large proteins has the net effect of improving resolution and 

sensitivity158. Its principle can be extended to 3D experiments, in order to facilitate the 

assignment of large proteins159. 

 
2.11.3.1 TROSY experiment settings and data analysis 
 

2D 1H-13C and 1H-15 TROSY experiments were performed on 15N-labeled full-length tau 

(441 residues) in presence and absence of paclitaxel-stabilized microtubules on a 700 MHz 

spectrometer equipped with a cryogenically-cooled triple resonance probe (Bruker). 

Samples of 50 M htau40 in sodium phosphate buffer 50 mM, pH 6.8, 0.02 % sodium 

azide were measured at 5 °C, 20 °C and 37 °C to observe differences in the interaction 

depending on temperature. For the experiment, a standard Bruker sequence (see 

Appendix: trosyf3gpphsi19) was used; for each experiment 512 points were acquired in 

the 15N dimension for a total of 32 scans. Spectra were processed using Topspin 3.5pl7 

(Bruker) and were further analysed using the Sparky software154. 

 

2.11.4 3D NMR experiments for resonance assignment 

Triple-resonance experiments enable the assignment of uniformly 13C/15N-labeled 

proteins and overcome the problem of signal overlap, observed in 2D experiments for 

large proteins (MW > 30 kDa). In this case, the position of the cross-peaks in the spectrum 

are defined by three different coordinates with offsets ΩH, Ωc and ΩN. 
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2.11.4.1 3D experiments settings and data analysis  
 

For the sequential backbone assignment of P2R2 and P2R3, a suite of triple-resonance 

experiments (HNCA, HNCACB, HNCACO, HNCO) was recorded on a 600 MHz Bruker 

Avance III HD spectrometer equipped with a room temperature triple resonance probe as 

well as on a 600 MHz Bruker spectrometer equipped with a triple-resonance 

cryogenically-cooled NMR probe. Experiments for sidechain assignment ((H)CC(CO)NH- 

and H(CC)(CO)NH-TOCSY) were acquired on a 700 MHz spectrometer equipped with a 

cryogenically-cooled triple resonance probe (Bruker).  

For the K32 construct, HNCA, HNCACB and HNCO spectra for backbone assignment 

and ((H)CC(CO)NH- and H(CC)(CO)NH-TOCSY) spectra for side chain assignment were 

recorded on a 700 MHz spectrometer equipped with a cryogenically-cooled triple 

resonance probe (Bruker).  

Pulse programs from the Bruker catalogue were used for the experiments 

described in this section (Table 2.4). Spectra were processed using Topspin 3.5pl7 

software and assignments was performed with ccpNMR software 155. In addition, a full-

length human tau assignment (BMRB entry doi:10.13018/BMR17920) was used to 

validate the assignment of each construct.  
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Table 2.4. List of 3D experiments recorded on K32, P2R2 and P2R3. 

Protein 

Type of 

experiment 

Spectrometer 

(MHz) 

Pulse  

sequence 

TD 

P2R2/ 

P2R3 

HNCA 600 hncagp3d 2048 (1H), 48 (13C), 128 (15N) 

 HNCO 600 hncogp3d 2048 (1H), 48 (13C), 128 (15N) 

 HNCACB 600 hncacbgp3d 2048 (1H), 48 (13C), 128 (15N) 

 HN(CO)CACB 600 hncocacbgp3d 2048 (1H),50 (13C), 114 (15N) 

 

H(CC)(CO)NH-

TOCSY 
700 hccconhgp3d2 2048 (1H), 64 (13C), 176 (15N) 

 

(H)CC(CO)NH-

TOCSY 
700 hccconhgp3d3 2048 (1H), 40 (13C), 128 (15N) 

K32 HNCA 700 hncagp3d 2048 (1H), 64 (13C), 128 (15N) 

 HNCO 700 hncogp3d 2048 (1H), 64 (13C‘), 200(15N) 

 HNCACB 700 hncacbgp3d 2048 (1H), 64 (13C‘), 200 (15N) 

 

H(CC)(CO)NH-

TOCSY 
700 hccconhgp3d2 2048 (1H), 64 (13C‘), 200 (15N) 

 

(H)CC(CO)NH-

TOCSY 
700 hccconhgp3d3 2048 (1H), 80 (13C‘), 136 (15N) 

Abbreviations: TD, time domain. 
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2.11.5 The Nuclear Overhauser Effect 

 

The Nuclear Overhauser Effect (NOE) causes the through space transfer of magnetization 

between two or more spins. In the NMR spectrum, it causes a change in the intensity of a 

peak when another nearby peak (distance < 5-6 Å) is saturated150. Saturation is the 

process by which the irradiation of a spin equalizes its population difference and leads to 

the disappearance of the peak in the NMR spectrum160.  

The NOE is directly correlated to the distance between the two spins, which makes 

it a powerful technique to obtain structural information160. By measuring nuclear 

Overhauser effect spectroscopy (NOESY) experiments intra- and intermolecular restraints 

are obtained.  

 

2.11.6 The transferred NOE (Tr-NOE) 

NOESY experiments can also be performed to understand the conformation acquired by 

a target protein/peptide binding to a partner as in the case of transferred-NOE (Tr-NOEs) 

experiments160. It is a specific case of NOE in which the information of the bound state is 

detected on the ligand in its free form. It is based on the assumptions, that when chemical 

exchange between two interacting proteins occurs on the fast-exchange limit of the NMR 

time scale, the structural information of the bound-state remains encoded once the ligand 

returns to its free state161.  

 

2.11.6.1 2D NOE experiments for the structure determination of Tau(P2) 
 

All the NOESY experiments described in this section, as well as the structure calculation 

that derived from them were performed by Dr. Harindranath Kadavath. Tr‐NOESY 

spectra162 were recordedat 5 °C on a Bruker 900 MHz spectrometer equipped with a 

cryoprobe. Samples contained 1.0 mM peptide and 50 μM of paclitaxel-stabilized 

microtubules. The tau-to-microtubule molar ratio was 20:1. The buffer contained 50 mM 

sodium phosphate, pH 6.8, 10 % D2O. NOE mixing times used for the experiments were 

50 and 100 ms. For the structure calculation, distance restraints were obtained from tr‐
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NOE contacts observed in 2D 1H‐1H NOESY spectra acquired with 100 ms mixing time. 

Initial structure calculations were performed using CYANA 3.0 and 200 conformers were 

calculated using the standard simulated annealing schedule with 10,000 torsion angle 

dynamics steps per conformer. Subsequently, the structures derived from CYANA were 

refined in XPLOR‐NIH using a restrained simulated annealing protocol.163 Default values 

were used for force constants and molecular parameters unless otherwise indicated. 200 

conformers were calculated and the 20 lowest‐energy conformers were selected for 

further analysis using iCing (https://nmr.le.ac.uk/icing/#file). Visualization was performed 

using MOLMOL164 and PYMOL (The PyMOL Molecular Graphics System, Version 1.5.0.4 

Schrödinger, LLC).  

 

2.11.7 Saturation transfer difference (STD) 

Saturation transfer difference (STD) NMR spectroscopy is a robust ligand-based screening 

method for studying protein-ligand interactions at an atomic level165-167. This method can 

be applied to a wide range of molecules and requires low amount of sample, therefore it 

is a very useful tool for NMR-based screening168.  

The experiment is based on the acquisition of two spectra, called on-resonance 

and off-resonance spectra. During acquisition of the on-resonance spectrum, the protein 

is irradiated for a defined saturation time (Tsat) at a specific frequency, often between 0.0 

and -1.0 ppm.This is done to ensure that only resonances belonging to the protein, and 

not to the ligand, are saturated. During the acquisition of the off-resonance spectrum the 

offset of the irradiation is set far from any protein resonance, for instance 30-60 ppm, 

therefore no signals are perturbed and the spectrum is used as reference for further 

analysis. When the protein is irradiated, magnetization is quickly transferred to all its 

protons via spin diffusion, due to the large size of the protein (>30 kDa). When the ligand 

binds, saturation is transferred to it via intermolecular NOE, causing an intensity 

attenuation of protons in close contact with the protein surface. 
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Figure 2.5. Schematic representation of the STD NMR experiment.a) The protein is selectively irradiated 

for a fixed interval of time (Tsat) and magnetization is transferred via spin diffusion among its protons. When 

the ligand binds the protein, protons at close distance (< 5-6 Å) are saturated. Because of the fast-exchange 

regime, the ligand returns to the free-state before magnetization is lost and saturation is conserved due to 

its small relaxation rate, giving rise to the STD effect (Adapted from Yu et al., 2015). b) An off-resonance 

experiment is acquired, setting the irradiation frequency far from protein resonances, the signal intensity 

(I0) is not perturbed; an on-resonance experiment instead selectively irradiates the protein (Isat). The STD 

spectrum is obtained from the difference of the off- and on-resonance spectra. Adapted from Krishnan, 

Current Analytical Chemistry, 2005. 

 

In the fast-exchange NMR limit, the ligand dissociates from the protein before it loses 

magnetization and its saturated state persists also when the ligand is free in solution165 

(Figure 2.5a). The STD spectrum, is the difference of the off- and on-resonance spectra 

and the STD intensity for each proton, 𝐼𝑆𝑇𝐷, is the difference of its signal intensity in the 

off-resonance and the on-resonance spectra, 𝐼0 − 𝐼𝑠𝑎𝑡 . STD signals thus belong to the 

ligand protons, which were saturated in the on-resonance spectrum165,166,169(Figure 2.5b).  

2.11.7.1 STD NMR experiments settings and data analysis 
 

All STD NMR samples were prepared in BRB80 buffer (80 mM PIPES, pH 6.8, 1 mM MgSO4, 

1 mM EGTA, 1 mM DTT) supplemented with 50 mM KCl and 5 mM CaCl2 to achieve non-

polymerizing condition. Porcine brain tubulin samples used for the experiments were 

purchased from Cytoskeleton, Inc. In addition, porcine tubulin was kindly provided by the 

laboratory of Prof. Dr. Eckhard Mandelkow. Tubulin concentration was kept fixed at 5 M, 

while tau(P2) concentrations varied from 50 Mto 1.5 mM. The spectra were acquired on 



Material and methods 

 55 

a 700 MHz spectrometer equipped with a cryogenically-cooled triple resonance probe 

(Bruker). A standard pseudo-2D pulse sequence (appendix: stdiffgp19.2) was used. Figure 

2.6 represents the stdiffgp19.2 Bruker sequence used for the STD experiment: selective 

irradiation of tubulin is achieved using a train of 50 ms gaussian-shaped pulse, at a power 

level of 46 dB and a 3-9-19 WATERGATE is used for solvent suppression before the 

detection. The on-resonance frequency was set to -0.5 ppm and the off-resonance to 60 

ppm. One advantage of using this pulse sequence is that the on- and off-resonance 

spectra are acquired in an alternate fashion for the duration of the entire experiment 

giving an internal reference. 

 

Figure 2.6. STD standard Bruker pulse sequence.The stddiffgp19.2 avance-version of the standard STD 

pulse program is a pseudo-2D sequence where the two channels are both targeting proton resonances. A 

train of selective gaussian-shaped 90° pulses of the duration of 50 ms at 46 dB is saturating the protein: 

duration and power level of this pulse are adjusted to obtain selectivity and efficient saturation at the same 

time. Resonance frequencies are defined in the FQ2LIST of the acquisition parameters for the on- and off-

resonance irradiation. A 90° pulse brings magnetization to the transverse plane and is followed by a 3-9-19 

sequence to suppress the water signal. 

 

For the determination of binding profiles, 1D 1H STD experiments were acquired at 5 °C 

using 5 M of tubulin and 800M of either K32 or peptides. Increasing irradiation times 

(0.5, 1, 1.5, 2, 3, 4, 5 and 7 sec) were used to obtained a signal buildup curve. Spectra were 

processed and analyzed using Topspin 3.5 pl7 (Bruker): sharp and isolated peaks from the 

amide or methyl region of 1D 1H spectra were selected for analysis. For each selected 

region, the absolute integral values from the on- and off-resonance spectra were used for 

the calculation of the STD effect (𝜂𝑆𝑇𝐷) as shown in eq (5). 

 

𝜂𝑆𝑇𝐷 =
𝐼0 − 𝐼𝑆𝑇𝐷

𝐼0
 (5) 
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The intensity of each selected peak for different irradiation times, 𝐴 𝑆𝑇𝐷(𝑡𝑠𝑎𝑡)
, was 

calculated by multiplying its 𝜂𝑆𝑇𝐷 value for the ligand excess. For each peak, the obtained 

 𝐴 𝑆𝑇𝐷(𝑡𝑠𝑎𝑡)
 was plotted as a function of the irradiation time. The 𝑆𝑇𝐷𝑚𝑎𝑥 was the STD 

amplification factor at the plateau of the curve. The experimental values were fitted using 

eq (6), from which 𝑘𝑠𝑎𝑡  were obtained. 

 

𝐴𝑆𝑇𝐷(𝑡𝑠𝑎𝑡)
= 𝑆𝑇𝐷𝑚𝑎𝑥 ∙ (1 − exp(−𝑘𝑠𝑎𝑡 ∙ 𝑡𝑠𝑎𝑡)) (6) 

 

For the quantification of the KD values of Tau(P2), 1D 1H STD spectra were acquired at 5 °C 

using 5M of tubulin and50M, 100 M, 200 M, 300 M, 400 M, 800 M, 1 mM and 

1.5 mM of peptide. An irradiation time of 2 s was selected as optimal interval. Spectra 

were processed and analyzed using Topspin 3.5 pl7 (Bruker): the same sharp and isolated 

peaks which were selected for the binding profiles were analysed. The STD effect, 𝜂𝑆𝑇𝐷, 

was calculated using eq (5) in a similar way as mentioned before: the 𝐴𝑆𝑇𝐷 was calculated 

as the product of 𝜂𝑆𝑇𝐷 and the ligand excess. 𝐴𝑆𝑇𝐷 obtained for each selected peak were 

plotted as a function of the ligand concentration. The KD was determined by fitting the 

obtained values to eq (7): 

 

𝑨𝑺𝑻𝑫 =  
(𝜶𝑺𝑻𝑫 ∙  [𝑳])

(𝑲𝑫 +  [𝑳])
 (7) 

 

where for [𝐿] each ligand concentration used was considered. Error bars where calculated 

using: 

𝒆𝒓𝒓𝒐𝒓 = 𝑨𝑭 ∙ √(
𝑵

𝑺
)

𝑰𝑺𝑻𝑫

𝟐

+ (
𝑵

𝑺
)

𝑰𝟎

𝟐

 (8) 

 

Here, 
𝑁

𝑆
 was calculated as the reciprocal of the signal-to-noise ratio, 

𝑆

𝑁
 , of each peak 

selected in the on- and off- resonance spectra: the noise region was the integral of a 

region spacing from 10 to 9.5 ppm, where no protein signal was detected, while the signal 

region was the integral of each peak for which the analysis was performed. The standard 

error for KD values was obtained using Graph Prism version 8.0 (GraphPad Software, La 

Jolla California USA, www.graphpad.com). 
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2.11.8 Characterization of protein diffusion via NMR  

Diffusion NMR experiments are often used to investigate the diffusional properties of 

molecules in solution. The quantification of the self-diffusion coefficient provides 

information about the size of a given molecule and can be related to its structural 

organization170,171. The self-diffusion coefficient is obtained by the measurement of the 

diffusion rate of a given molecule in the presence of a gradient magnetic field and can be 

related to the molecule hydrodynamic radius (rH). The effect of the gradient magnetic field 

is different for molecules diffusing at faster or slower rates and is observed in NMR in 

terms of signal attenuation172.  

 

2.11.8.1 NMR diffusion experiment settings and data analysis  
 

The self-diffusion coefficients of P2R2 and P2R3 were obtained by performing pulse 

gradient stimulated echo (PGSTE) WATERGATE experiments173 on a 600 Avance III HD 

(Bruker). A user-modified pulse sequence (see Appendix: PGSTE_WATERGATE_2D.nare) 

was used to perform the experiments. Experiments were performed at 5 °C on samples 

of either P2R2 or P2R3 at 1 mM concentration, in a sodium phosphate buffer 50 mM, pH 

6.8. Additional 1 mM of DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid) was added to 

each NMR sample as standard for the calculation of the hydrodynamic radii. Parameters 

 and  were optimized according to the samples to 500 ms and 3 ms, respectively, while 

the gradient strength was gradually increased up to 70 %. Processing and analysis of the 

spectra was performed usingTopspin 3.5pl7 (Bruker). The signal of the DSS was used as 

reference to monitor the attenuation of signal intensity. A sharp peak, for either P2R2 or 

P2R3, was selected and used to observe signal intensity attenuation as a function of 

gradient strength. The analysis was done by integrationof selected peaks. In conditions 

where>>>2 and , the self-diffusion coefficient, D, was obtained according to the 

equation174: 

l n(𝐸) =  −𝛾2𝐷𝛿2 [(∆ − 2𝛿2) −
4

3
𝛿] (𝑔2 − 𝑔1)2 (9) 
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Where E is the diffusion-based signal intensity attenuation, D is the diffusion 

coefficient, is the gyromagnetic ratio of protons (g 1
H = 267,52221900·10-6 rad·s-1·T-1), 2 

was 2 ms and g1,  and  were constant. The calculation for the hydrodynamic radius (rH) 

of P2R2 and P2R3 was done using the DSS self-diffusion coefficient (3.7·1010 m2·s-1), which 

was experimentally determined in a separate diffusion NMR experiment, and the rH (3.8 ± 

0.01 Å) of DSS. The following relation was used 170: 

𝑅ℎ
𝑝𝑟𝑜𝑡 =

𝐷𝑟𝑒𝑓

𝐷𝑝𝑟𝑜𝑡
(𝑅ℎ

𝑟𝑒𝑓
) (10) 

 

with Dref and Dprot the self-diffusion coefficients of DSS and P2R2 or P2R3, respectively. 

 

2.11.9 Solid-state NMR of tau fibrils 

 

Solid-state NMR (ssNMR) allows the study of proteins, which are not in solution including 

membrane proteins and amyloid aggregates. Although the basic principles of solid-state 

and solution-state NMR are the same, the way the information is obtained differs slightly.  

 

2.11.9.1 Differences between liquid-state and solid-state NMR  
 

In ssNMR, the tumbling of the molecule is slower when compared to a molecule in 

solution. In the spectra this causes broadening of the peaks and decreases spectral 

resolution175. Magic angle spinning (MAS) is a method implemented to improve the 

resolution of the signals by elimination of chemical shift anisotropy contributions57,175: the 

sample is inserted into a small rotor (from 4.0 to 0.7 mm) and spun at high frequencies on 

an angle tilted with respect to the B0 magnetic field57. Similar to solution-state NMR 

experiments, the insensitivity of 13C and 15N nuclei can be increased by transfer of 

magnetization from the more sensitive 1H. The cross-polarization (CP) technique allows 

transfer of magnetization from 1H to insensitive nuclei using RF pulses, by equalizing the 

energy level between the two different nuclei175. The Hartmann-Hahn matching condition 

requires the rotation frequencies of the spinning sample to be equal to the frequencies of 
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two spins for successful transfer of magnetization175. By this technique, an enhancement 

of sensitivity is 4-fold and 10-fold for 13C and 15N, respectively. Like in the case of the INEPT 

block in solution, the CP is included in many multidimensional ssNMR experiments as 

initial step in order to obtain magnetization transfer from 1H to 13C or 15N. 

 

2.11.9.2 13C-13C correlation obtained via proton-driven spin diffusion (PDSD)  
 

Proton-driven spin diffusion (PDSD) experiments are often performed to observe 13C-13C 

correlation through dipolar coupling. Equilibrium magnetization is first transferred from 

1H to its coupled 13C using cross-polarization (CP) then, during a mixing time period, 

magnetization is spread via spin diffusion among carbons and protons (figure 2.7) 176. 

Depending on the length of the mixing time intra-residual or inter-residual correlation 

cross-peaks are observed177. 

 

 

Figure 2.7. Transfer of magnetization in a PDSD 

experiment.Type of atoms observed in a PDSD 

experiment together with the path of transferred 

magnetization. During the mixing time, 

magnetization is transferred between 13C atoms 

close in space; protons are also involved in this 

transfer (black arrows). At longer mixing times, 

inter-residue transfer of magnetization occurs 

(grey arrows).
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2.11.9.3 2D INEPT transfer-based 1H-13C through-bond correlation  
 

The strong dipolar coupling between 1H and insensitive nuclei (i.e. 13C and 15N) is exploited 

in CP-based pulse sequences (see section 2.11.9.1) to increase the signal of insensitive 

nuclei175. In contrast, the INEPT sequence (see section 2.11.2) uses scalar couplings to 

transfer magnetization between coupled spins. Although mostly used in solution-state 

NMR, the INEPT also finds applications in ssNMR experiments178. INEPT-based 

experiments allow the observation of flexible regions in solid biological samples84,179-181: 

proton transverse relaxation within rigid regions of solids samples (i.e. in absence of 

tumbling motion) is faster than the typical delay in the INEPT sequence, therefore only 

regions maintaining flexibility are detected. 

 

2.11.9.4 Preparation of solid-state NMR samples and experimental settings  
 

Prior to MAS rotor filling, 15N/13C-labeled fibrils of P2R2 (~ 20 mg), P2R3 (~ 20 mg) and K32 

(~ 12 mg) where ultra-centrifuged in a 45 Ti Ultra Rotor at 127,000 g, at 37 °C for onehour 

(Beckman Coulter, Optima MAX XP). This procedure was repeated several times in order 

to remove residual monomeric protein. DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid) 

in powder (Sigma-Aldrich) was added to each sample as internal chemical shift reference. 

PDSD and INEPT experiments were recorded on 15N/13C-labeled K32 fibrils packed into a 

1.3 mm rotor. Spectra were acquired at 5 °C and 11 kHz spinning speed on a Bruker 850 

MHz wide bore spectrometer (Bruker, Germany). The temperature of the spinning sample 

was calculated from the chemical shift of the bulk water according to the following 

equation158: 

T = 7.83 − δ(H20) ∙ 96.9 ppm (11) 

 

A mixing time of 20 ms was set to obtain intra-residue correlations. The 2D INEPT transfer-

based 1H-13C experiments were performed on the same instrument at 5 °C and 8 kHz.  

For P2R2 and P2R3, fibrils of uniformly 15N/13C-labeled peptides were packed into 

a 3.2 mm rotor. PDSD and INEPT spectra were recorded at 5 °C and a spinning speed of 

12.5 kHz and 8 kHz, respectively, on a Bruker 850 MHz wide bore spectrometer (Bruker, 

Germany). A mixing time of 20 ms was set to obtain intra-residue correlations in the PDSD 

spectra. The parameters referring to the ssNMR experiments are reported in table 2.5. 
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Spectra were processed using TopSpin 3.5 pl 7 (Bruker, Germany) and analyzed with 

Sparky 154 and ccpNMR 155 software. 

 

Table 2.5. Selected parameters for ssNMR experiments performed on tau fibrils. 

Protein 
Type of 

experiment 
Rotor 

SW 

(ppm) 
NS TD 

Spinning speed 

(kHz) 

P2R2 

/P2R3 PDSD 3.2 

13C 13C 

48 

1274(13C), 

1274 (13C) 11 299 299 

 

INEPT 3.2 

1H 13C 

160 

2048 (1H), 

204 (13C) 8 199 14 

K32 PDSD 1.3 

13C 13C 

64 

1274 (13C), 

1274 (13C) 12.5 299 299 

 

INEPT 1.3 

1H 13C 

208 

2048 (1H), 

204 (13C) 8 199 14 
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3 Results: project I 

3.1 Solution-state NMR of the K32 construct 

The K32 construct comprises the P2 domain and the pseudo-repeat region (from R1 to R4, 

including the flanking R’ domain) of the full-length htau40 (Figure 1.7)52. In order to obtain 

the backbone and side-chain assignment, NMR 2D and 3D experiments were performed 

on 200 M K32 in 50 mM sodium phosphate buffer at pH 6.8. The 1H-15N HSCQ spectrum 

of K32 displayed little chemical shift dispersion, as previously reported52,56 (Figure 3.1a). 

The resonance assignment of the 2D 1H-15N HSQC (Figure 3.1a) was validated using the 

assignment previously reported by Mukrasch and collaborators52. For the assignment of 

the C and C resonances in the 1H-13C HSQC spectrum (Figure 3.1b), 3D H(CC)(CO)NH-

TOCSY and (H)CC (CO)NH-TOCSY experiments were performed.  

 

Figure 3.1. Backbone and side chain assignment of K32 in solution. a) 1H-15N HSCQ spectrum recorded on 

the K32 construct at 5 °C in 50 mM sodium phosphate buffer (2 mM DTT, 0.02% NaN3) at pH 6.8. b) 1H-13C 

HSQC spectrum of K32 measured at 5 °C in 50 mM sodium phosphate buffer (2 mM DTT, 0.02% NaN3) at pH 

6.8. 

3.2 Characterization of in vitro K32 fibrils 
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As previously introduced in section 1.4.2, tau is an IDP and shows little tendency to 

aggregate in vitro. Polyanions, e.g. heparin, induce in vitro tau aggregation by 

neutralization of the positive charges and thus allow the establishment of hydrophobic 

interactions between residues from different tau molecules82,182. Four independent 

aggregation assays were performed using 50 M of K32 in 25 mM Tris-HCl buffer, at pH 

7.4 to give a ssNMR sample. Heparin (Mr 2x104 g/mol, Carl Roth®) was added to each 

reaction mixture to a final concentration of 12.5 M (tau-to-heparin molar ratio 4:1). The 

samples were incubated at 37 °C for three days to ensure completeness of the reaction. 

The formation of fibrils was confirmed by measurement of the ThT fluorescence, as shown 

in figure 3.2a (dark green bar). A reaction mixture containing only the monomeric form of 

the protein, and no heparin, was also incubated in the same conditions, in order to provide 

a negative control (Figure 3.2a, light green bar). 

 

Figure 3.2. Characterization of K32 fibrils. a) ThT fluorescence intensities of the in vitro fibrils obtained from 

the aggregation of the K32 construct (dark green) in presence of heparin.The ThT intensity for K32 in the 

monomeric form (light green) was used as control. Error bars indicate the standard deviation over three 

replicates. b) SDS-PAGE gel of the fibrils of K32 after centrifugation (ctrl, negative control containing only 

K32 in the monomeric form; SN, supernatant removed after centrifugation). In the right panel, an electron 

micrograph of the K32 fibril sample, for which ThT fluorescence measurements and SDS-PAGE gel 

electrophoresis were performed, is shown. Scale bar, 500 nm. c) CD spectrum of the in vitro K32 fibrils; a 

minimum at ~ 220 nm for -sheet secondary structure was observed. 
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To quantify the amount of formed fibrils, the samples were ultracentrifuged, 

followed by separation of the pellet from the supernatant. Each fraction was subsequently 

loaded onto an SDS-PAGE gel to check the protein composition. After the gel 

electrophoresis run, ~90% of the protein was present in the pellet, and ~10% remained in 

the supernatant (Figure 3.2b, left panel).  

Next, the pellet retrieved after ultracentrifugation was resuspended in deionized 

water and used for acquisition of a CD spectrum. The CD spectrum showed a minimum at 

~ 220 nm, indicative of -sheet structure (Figure 3.2c). The presence of fibrils in the pellet 

was further confirmed by electron microscopy: twisted fibrils were observed in the 

electron micrograph (Figure 3.2b, right panel).  

 

3.3 Proton Driven Spin Diffusion (PDSD) experiment on K32 fibrils 

The focus of this project was to understand the involvement of the proline-rich region in 

the formation of tau fibrils and/or their structural rearrangement. To this end, ssNMR 

Proton Driven Spin diffusion (PDSD) experiments were performed on uniformly 13C/15N-

labeled in vitro K32 fibrils using 20 ms mixing time. Prior to the measurement, the fibrils 

had been ultracentrifuged (to remove residual monomeric protein) and were packed into 

a 1.3 mm magic angle spinning (MAS) rotor.  

As shown in figure 3.3, the resulting spectrum displayed signal overlap and few 

isolated cross peaks. Using the chemical shift values for amino acids in -sheet 

conformation183, the residue type could be identified for some cross peaks, e.g. serine, 

threonine and proline residues, but no specific assignment could be performed. To more 

specifically determine the identity of some of the cross peaks, the spectrum obtained for 

the fibrils of K19 were superimposed on the spectrum of K32 fibrils (Figure 3.4b, K19 in 

black). The resonances assignment of the spectrum of K19 was previously reported by 

Xiang and collaborators96.  

The K19 sequence contains the R1, R3 and R4 pseudo-repeats of tau (Figure 3.4a), 

while the native cysteine residue in R3, C322, had been mutated to alanine in order to 

avoid the formation of intra-molecular disulfide bridges. This mutation is not present in 

the sequence of the K32 construct, thus the cross peak of C322A, which in K19 appears 
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separated from the rest of the resonances, was not matching with any of the cross peaks 

in the PDSD spectrum of K32 (Figure 3.4b).  

 

 

Figure 3.3. PDSD spectrum of K32 fibrils. Regions corresponding to the 13C resonances of selected amino 

acids types in -sheet conformation reported by Fritzsching et al., J Biomol NMR 2013.  

 

Figure 3.4 shows that a larger number of cross peaks is visible in the 2D PDSD spectrum of 

K32 when compared to that of K19. In particular, more C/C cross peaks are present in 

the threonine and serine region of the K32 spectrum. The higher number of cross peaks in 

these regions is consistent with the relative abundance of these amino acid types: K32 

contains 12 threonine and 22 serine residues, while K19 only contains 4 threonine and 8 

serine residues. Because only rigid residues are detected in the PDSD spectrum, the 

comparison shown in figure 3.4 further indicates that the K32 fibrils contains more cross- 

structure when compared to K19 fibrils. This interpretation is based on the assumption that 

the larger number of cross-peaks is not purely caused by a much larger structural 

heterogeneity of K32 fibrils when compared to K19 fibrils. 

For several residues belonging to the repeats R1 and R3, cross peaks between the 

two spectra matched (Figure 3.4). For example, the cross peaks assigned to S262 (R1) and 
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S316/S320 (R3) in K19 matched with cross peaks in the spectrum of K32. A similar 

observation was made for the cross peaks assigned to I260 (R1), as well as I308 and I328 

(R3). The comparison suggests that residues belonging to the repeats R1 and R3 are 

rigidified upon fibrillization of both K19 and K32.  

 

Figure 3.4. Analysis of the PDSD spectrum of K32 fibrils. a) Schematic representation of htau40, K32 and 

K19 domain organization. K19 has the mutation C322A to avoid intermolecular disulfide bond formation. b) 

Superposition of PDSD spectra of K32 (green) and K19 (black) fibrils. 

 

K19 contains a single tyrosine, Y310, which is located in repeat R3. In the 2D PDSD 

spectrum, the C/C cross peak of Y310 is well separated from other signals, as shown in 

figure 3.4. For K32, two cross peaks appeared in the spectrum in the same region, but could 

not be unambiguously assigned since two tyrosine residues, Y310 (in R3) and Y394 (in R'), 

are present in its sequence. In addition, the two potential tyrosine cross peaks could 

originate from a single tyrosine in two different fibril conformations. Nevertheless, the 

crowding in the K32 spectrum and the lack of 3D experiments suggested that a different 

approach was needed to better understand to which extent the proline-rich region 

contributes to the fibrils. 
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3.4 Detection of the flexible regions in K32 fibrils 

 

Approaching the issue from a different perspective, a 2D INEPT-based 13C-13C correlation 

experiment was recorded on the sample of K32 fibrils. As previously mentioned in the 

methods section 2.11.9.3, this experiment allows the detection of the flexible regions in 

a solid sample based on their different mobility181. 

In the transition from random coil to -sheet conformation, the amino acid 

residues included in the fibril core lose flexibility and become invisible in an INEPT-based 

13C-13C correlation experiment. Thus, the ssNMR INEPT and the solution state 1H- 13C HSQC 

spectra were superimposed, with the purpose to reveal the tau residues that are not part 

of the rigid core of K32 fibrils. Upon superposition of the spectra, the cross peaks 

corresponding to the C/C resonances of proline, glycine, threonine and serine residues 

matched (Figure 3.5). Most of these residues are located in the proline-rich region, which 

is considered to be part of the fuzzy coat of the fibrils83. Thus, their visibility in the INEPT 

spectrum could be explained by their higher degree of mobility. The analysis of the 

domains considered to be in the rigid core of the fibrils was complicated by the signal 

overlap of the ssNMR INEPT spectrum, as well as the clustering of the C/C resonances 

in the 1H-13C HSQC. In the C region of the INEPT spectrum, the signal intensity of the 

residues in the two hexapeptides 275VQIINK280 and 306VQIVYK311 in R2 and R3, respectively, 

was attenuated (Figure 3.6b). In the C region of the spectrum, more isolated cross peaks, 

e.g. those of N265, Q276 and H299 located in the R1 domain, D314, N327 and Q336 in the 

R3 domain, as well as H338, F346, D348, Q351 and H362 in the R4 domain, were 

broadened beyond detection in the ssNMR INEPT spectrum (Figure 3.6a). Consistent with 

the PDSD spectrum, this suggested that the R1, the R3 and the R4 domains are included 

in the core of K32 fibrils. 
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Figure 3.5 Detection of the flexible regions in K32 fibrils. Superposition of the 1H-13C HSQC (light green) and 

the INEPT (dark green) of monomeric and fibrillized K32, respectively. Regions adopting a -sheet 

conformation as a result of the fibril formation cannot be detected in the INEPT-based ssNMR 

experiment.The assignments shown refers to the C and C  atoms in the monomeric form of the peptide. 
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Regarding the P2 domain and the 225KVAVVRT231 sequence, signal intensity loss 

was observed for V226, A227, V228 and V229 (Figure 3.6c), although the cross peaks did 

not completely disappear. Thus, a partial recruitment of the P2 domain in the fibrils of 

K32 is likely. 

 

Figure 3.6. Selected regions of the ssNMR INEPT spectrum of K32. Superposition of the 1H-13C HSQC (light 

green) and the INEPT (dark green) of monomeric and fibrillized K32, respectively. a) Portions of the C region 

of the spectra showing disappearing residues belonging to the R1 (green labels), the R2 (red labels) and the 

R3 (blue labels) domains. b) Portions of the C region showing residues of the R2 (red labels) and R3 (blue 

labels) experiencing signal intensity attenuation. c)Portion of the C region showing the alanine cluster with 

signal intensity attenutation: A227 and A239 in the P2 domain (purple labels) are also affected. 
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3.5 Preparation of the P2R2 and the P2R3 polypeptides for a 

simplistic model of tau fibrils 

The sequences P2R2 and P2R3 were used as simplified models of tau, because they 

combine one proline-rich region (P2: residues S198-Q244) with one pseudo-repeat (R2: 

residues V275-S305; or R3: residues V306-V336) and thus represent two important 

sequence properties of the full-length htau40 protein (Figure 2.1, material and methods). 

To avoid formation of intermolecular dimers, the native cysteine residues, i.e. C291 (R2) 

and C322 (R3), were substituted by alanine. 

The peptides where produced recombinantly in E.coli as described in section 2.2.5. 

Optimal purity of the samples was achieved with a final size exclusion chromatography: 

fractions free from contaminants (Figure 3.7) were selected to achieve very high sample 

purity.  

 

Figure 3.7 Purification of P2R2 and P2R3 polypeptides by size exclusion chromatography. SDS-PAGE gels 

of a) P2R2 and b) P2R3 size exclusion chromatography fractions. Indicated in the red box are the fractions 

with the highest purity, which were selected. Lane BM, protein marker (Benchmark TM); lane input, sample 

before the size exclusion chromatography. 

 

3.6 Characterization of the intrinsically disordered properties of 

P2R2 and P2R3 

2D 1H-15N HSCQ spectra were acquired on either P2R2 or P2R3 in 50 mM sodium 

phosphate buffer at pH 6.8. The resulting spectra displayed little chemical shift dispersion, 

ranging from ~8.0 to ~8.8ppm (Fig. 3.8a and b).  
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Figure 3.8. Intrinsically disordered properties of the P2R2 and P2R3 polypeptides. a-b) 1H-15N HSCQ spectra 

of P2R2 (red) and P2R3 (blue) with their respective resonance assignments. c) Circular dichroism spectra of 

100 M P2R2 (red) and 100 M P2R3 (blue) in the monomeric form: a minimum ~ 200 nm is indicative of 

random coil conformation. 

 

Next, 3D NMR experiments were performed, in order to obtain the backbone resonance 

assignment of P2R2 and P2R3 (Figure 3.8a and b). The assignment was further validated 

through comparison with the backbone resonance assignment of htau40 (BMRB entry 

doi:10.13018/BMR17920).  

Calculation of the C chemical shift difference (C) between htau40 and either 

P2R2 or P2R3 (Figure 3.9a and b) showed differences < ~ 0.4 ppm, with the exception for 

the region surrounding the substitutions C291A (P2R2) and C322A (P2R3) and the residues 

at the C- and N-terminus of each sequence. The analysis demonstrated that the local 

conformational properties within each of the domains (P2, R2, R3) of the two peptides in 

solution are similar to those of full-length tau. 
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Figure 3.9. C chemical shift 

difference between htau40 

and P2R2 or P2R3. The C 

chemical difference was 

calculated for htau40 and 

either P2R2 (panel a, red) or 

P2R3 (panel b, blue). The 

strongest chemical shift 

perturbation occured in the 

regions surrounding the 

cysteine residues substituted 

with alanine, C291A and 

C322A respectively. 

 

The intrinsically disordered properties of P2R2 and P2R3 were further investigated 

using CD and diffusion NMR. CD spectra, acquired on 100 M of P2R2 and P2R3 displayed 

a minimum at ~200 nm, indicative for random coil conformation (Figure 3.8c). Next, 

diffusion NMR experiments were performed to obtain molecular size information171,174. 

Hydrodynamic radii (RH) were obtained by measuring the self-diffusion coefficients (D) on 

1 mM P2R2/P2R3 in 50 mM sodium phosphate buffer at pH 6.8 (Figure 3.10a and b). For 

spectral referencing and calculation of hydrodynamic radii, 1 mM DSS was added freshly to 

the samples.  

Diffusion coefficient values obtained for P2R2 and P2R3 were 5.2637 ± 1.95 x 10-11 m2 s-1 

and 5.4929 x 10-11± 1.96 m2 s-1, respectively. Using equation 10 (see material and methods, 

section 2.11.8.1), values of 27.2 ± 0.24 Å and 25.9 ± 0.33 Å were calculated for P2R2 and 

P2R3, respectively. The RH values obtained for P2R2 and P2R3 were consistent with values 

obtained for peptides in random coil conformation or highly denatured proteins reported 

in literature174,184. In a study reporting predicted values of RH for intrinsically disordered 

proteins of different lengths, peptides of ~ 70-80 amino acids displayed similar values to 

those obtained for P2R2 and P2R3171. This suggested that the two peptides maintain their 
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monomeric form in solution. The combined data indicated that P2R2 and P2R3 display 

intrinsically disordered properties similar to full-length htau40. 

 

 

Figure 3.10. Decay of NMR signals of P2R2 and P2R3 in NMR diffusion experiments. NMR diffusion 

experiments recorded on 1 mM of either P2R2 (a, red) or P2R3 (b, blue) at 5 °C, in 50 mM sodium phosphate 

buffer, pH 6.8. For either P2R2 or P2R3 a sharp signal at 0.89 ppm was selected. The relative intensity for 

the selected signal is plotted against the gradient field strength, (g2-g1)2, and is compared to the diffusion 

rate of 1 mM of DSS (black). 

 

3.7 In vitro P2R2 and P2R3 fibrillization 

In order to produce in vitro fibrils, heparin was added to 200 M P2R2/P2R3 in 25 mM 

Tris-HCl buffer at pH 7.4 to a final concentration of 50 M (1:4 heparin:peptide ratio)182. 

Similar to K32, ThT fluorescence measurements were used to monitor the fibrillization 

reaction (Figure 3.11a). Fibrils of P2R2 and P2R3 displayed differences in the ThT 

fluorescence intensities, suggesting either that the P2R2 peptide had a decreased 

efficiency in the fibrils formation or that its fibrils interacted differently with the amyloid 

dye. The amount of protein which aggregated into fibrils was similar for the two peptides, 

as shown in the picture of the SDS-PAGE gel of the pellet and the supernatant fractions 

(Figure 3.11c). This observation indicated that the weaker ThT intensity observedin case 

of P2R2 was not caused by inefficient fibrillization. Because the intensity of ThT 

fluorescence is influenced by the conformation of the fibrils with which it interacts185, it 

rather suggested that the fibrils of P2R2 have a different conformation when compared 

to P2R3 fibrils. 
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After resuspension in deionized water, the pellet was used for CD measurements. 

The resulting spectra showed minima indicative for -sheet structure, however this was 

more pronounced for P2R3 than for P2R2, which displayed minima at ~220 nm and ~210 

nm, respectively (Figure 3.11b). Consistent with the ThT fluorescence data, the CD spectra 

highlighted a difference in the conformation of P2R2 and P2R3 fibrils. This was further 

supported by electron microscopy performed on the fibrils: a more twisted morphology 

was observed for P2R3 fibrils, while in P2R2 fibrils resembled straight filaments (Figure 

3.11d).  

 
 

Figure 3.11. Characterization of the in vitro fibrils of P2R2 and P2R3. a) ThT fluorescence intensities of P2R2 

(red), P2R3 (blue) fibrils. Data for the peptides in the monomeric form are also shown: P2R2 (orange) and 

P2R3 (light blue). Error bars indicate the standard deviation over three sample replicates. b) CD spectra of 

the in vitro fibrils of P2R2 (red) and P2R3 (blue). c) SDS-PAGE gel of the fibrils of P2R2 and P2R3 after 

centrifugation (ctrl, negative control containing only P2R2 or P2R3 in the monomeric form; SN, supernatant 

removed after centrifugation). d) Electron micrographs of P2R2 (right) and P2R3 (left) fibrils. Scale bars, 500 

nm. 

 

3.8 PDSD experiments on P2R2 and P2R3 fibrils 

 
Following a similar approach as for the K32 construct, 2D PDSD experiments were 

performed on uniformly 13C/15N-labeled P2R2 and P2R3 fibrils. Because the amount of 
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fibrils was higher when compared to K32, a 3.2 mm rotor was used for the measurements. 

The resulting spectra displayed good resolution and the cross peaks were more isolated, 

most likely because of the decreased number of residues in the peptides when compared 

to K32 (Figure 3.12a and b).  

 

 

Figure 3.12. PDSD spectra of P2R2 and P2R3 fibrils. a-b) PDSD spectra of in vitro fibrils of P2R2 (red) and 

P2R3 (blue). The 13C chemical shifts of the different amino acid types in -sheet conformation reported by 

Fritzsching et al., J Biomol NMR 2013 are indicated in different colors. 

 

In the spectra of both peptides, signals appeared in the region corresponding to 

the C/C resonances of threonine residues. Moreover, one of the P2R2 cross peaks 

observed in the threonine C/C region above the diagonal superimpose with cross peaks 

of P2R3 fibrils, suggesting that they originate from the same two threonine residues 

(Figure 3.13). Notably, only one threonine residue is present in the R3 domain, i.e. T319, 

while the R2 domain contains none. Thus, the two superimposing cross peaks in the PDSD 

spectra of P2R2 and P2R3 respectively might originate from the P2 domain, which 

contains five threonine residues. 
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Figure 3.13. The 

threonine resonance 

region in the PDSD 

spectra of P2R2 and 

P2R3.a) Superposition of 

the threonine C/C and 

b) C/C regions of the 

K19 (black), P2R2 (red) 

and P2R3 spectra. Signals 

arising in this region in 

the spectra of P2R2 (red) 

and P2R3 ( blue) suggest 

that residues in P2 are 

rigidified upon 

fibrillization of 

P2R2/P2R3. 

 

Given the presence of the R3 domain in both P2R3 and K19, the PDSD spectrum of 

K19 fibrils was superimposed onto that of P2R3. Comparison of the PDSD spectra of P2R3 

fibrils and K19 fibrils demonstrated that many cross peaks superimposed. Based on this 

superposition, a number of P2R3 resonances were tentatively assigned (Figure 3.14a). 

This included the only aromatic residue, Y310. In addition, the cross peak of T319 overlaid 

with a cross peak in the threonine C/C region of P2R3 fibrils, which was not observed 

in P2R2 fibrils (Figure 3.13 and 3.14b). This further supports the assignment of the two 

threonine cross peaks, which are observed in P2R2 fibrils (Figure 3.13), to the P2 domain.  

In the PDSD spectrum of P2R2, a few cross peaks of the R2 domain were tentatively 

assigned using a recently reported resonance assignment of htau40 fibrils (Figure 

3.14b)186. The comparison suggested that the R2 domain is part of the rigid cross- 

structure in P2R2 fibrils, i.e. it is able to be part of the rigid core of amyloid fibrils. Such a 

similar observation is reported in the recent cryo-EM structure of heparin-induced tau 
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fibrils97. On the contrary, in the cryo-EM structureof the amyloid fibrils purified from the 

brain of a patient with AD, the R2 domain was excluded from the rigid core79. 

The data shown in this section indicate that both P2R2 and P2R3 were able to form 

fibrils, which could be investigated by ssNMR. The presence of signals in the threonine 

C/C region of the PDSD spectra, as well as the comparison of these spectra with that of 

K19, provided evidence for a contribution of the proline-rich region to the rigid cross- 

structure core of amyloid fibrils.  

 

 

 

 

Figure 3.14. 

Comparison of the 

P2R2 and the P2R3 

PDSD spectra with a 

previously reported 

spectrum of K19 and 

resonance assignments 

of htau40 fibrils. a) The 

assignment of K19 

(black) reported by 

Xiang et al., 201796 is 

shown on top of the 

PDSD spectrum of K19. 

The PDSD spectrum of 

P2R3 (blue) fibrils is 

superimposed on that 

of K19. b) Selected 

resonance assignments 

of htau40 fibrils 

(reported by Dregni et 

al., PNAS 2019186) 

mapped onto the PDSD 

spectrum of P2R2

. 

3.9 Detection of the flexible regions in P2R2 and P2R3 fibrils 



Results: project I 

 78 

 
The flexible regions of P2R2 and P2R3 fibrils were probed by measuring 2D INEPT 1H-13C 

through-bond correlation experiments. In such experiments, residues that are part of the 

rigid core of amyloid fibrils will not be observed. In the INEPT spectra of both P2R2 and 

P2R3 fibrils several cross peaks were observed (Figure 3.15 and 3.16). In addition, the 

INEPT spectra of the two fibrils were similar to each other, suggesting that similar regions 

remain flexible in P2R2 and P2R3 fibrils.  

Using the strategy described above for K32, the INEPT spectra of P2R2 and P2R3 

fibrils were compared to the respective 1H-13C HSQC spectra of the monomeric peptides 

(Figures 3.15 and 3.16). In contrast to the spectra of K32, the C and C resonances in the 

1H- 13C HSQC spectra of P2R2 and P2R3 fibrils were more dispersed. This simplified their 

analysis and showed that resonances from proline, glycine and serine residues are present 

in the 2D INEPT spectra of P2R2 and P2R3 fibrils. Notably, the P2 region contains several 

proline and serine residues. In contrast, a number of cross peaks were only present in the 

1H-13C HSQC spectra of the monomeric peptides, but were not observed in the ssNMR 

INEPT spectra. Detailed analysis of the intensities of C resonances in the fibrillated (Ifibrils) 

and monomeric (Imonomeric) spectra identified the regions that remain flexible upon 

aggregation into amyloid fibrils (Figures 3.17 and 3.18).  



Results: project I 

 79 

 

Figure 3.15. Detection of the flexible regions in P2R2 fibrils. a) Superposition of the 
1
H-

13
C HSQC (purple) 

and the ssNMR INEPT (red) spectra of monomeric and fibrillized P2R2, respectively. Regions adopting a -

sheet conformation as a result of the fibrils formation cannot be detected in the INEPT-based ssNMR 

experiment.The assignments shown refers to the C and C  atoms in the monomeric form of the peptide. 

The alanine residues in position 291, which is substituting the native cysteine residue, is marked in red. 
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Figure 3.16. Detection of the flexible regions inP2R3 fibrils. a) Superposition of the 1H-13C HSQC (light blue) 

and the ssNMR INEPT (dark blue) spectra of monomeric and fibrillized P2R3, respectively. Regions adopting 

a -sheet conformation as a result of the fibrils formation cannot be detected in the INEPT-based ssNMR 

experiment. The assignments shown refers to the C and C atoms in the monomeric form of the peptide. 

The alanine residues in position 322, which is substituting the native cysteine residue, is marked in red. 
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Figure 3.17. Residue-specific mobility in P2R3 fibrils. a) Superposition of the 1H-13C HSQC (light blue) and 

the ssNMR INEPT (dark blue) of monomeric and fibrillized P2R3, respectively. Two selected regions of the 

spectra are shown, corresponding to the regions in the P2 and the R3 domains experiencing loss of NMR 

signal intensity in the ssNMR INEPT spectrum of the fibrils. b) NMR signal intensity ratios between the 

fibrillized and the monomeric forms of P2R3. Ifibrils and Imonomeric are cross peak intensities of the fibrils in the 

ssNMR INEPT spectrum and the monomeric protein in the 1H-13C HSQC spectrum, respectively. Error bars 

were calculated on the basis of signal-to-noise ratios in the spectra. The domain organization of P2R3 is 

represented on top. Asterisks mark residues not assigned in the 1H13C HSQC. The dashed line shows a three-

residue average. 

 

The residue-specific analysis of P2R3 demonstrated that several residues from the 

R3 repeat including V306, I308, V309, D314, N327 and I328 were not observed in the 2D 

ssNMR INEPT spectrum (Figure 3.17). In addition, K224, V226, A227, V228 and V229, which 

are part of the 225KVAVVRT231 sequence in the P2 region were broadened beyond detection 

in the 2D ssNMR INEPT spectrum of P2R3 fibrils (Figure 3.17a-b). In the case of P2R2 (Figure 

3.18), the cross peaks of the R2 residues I278, D283 and I297 were severely attenuated 

when compared to the HSQC of the monomeric peptide. In addition, the cross peaks of 

the residues T220, R221, E222 and R230, which are flanking the hydrophobic stretch 

225KVAVVRT231 in P2, were strongly attenuated (Figure 3.18). The residues V226, A227, 
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V228 and V229, located in the 225KVAVVRT231 sequence, were completely missing from the 

2D ssNMR INEPT spectrum of P2R2 fibrils (Figure 3.18). The analysis further supports a 

contribution of the P2 domain to the cross- core of amyloid fibrils of P2R2 and P2R3, 

consistent with the observation of cross peaks in the 2D PDSD spectra of these fibrils that 

can only be attributed to residues of P2 (Figure 3.14). The linker between the -strand in 

R2 (or R3) and the rigid residues in P2 (at least residues 225KVAVVRT231) comprises residues 

236PSS238 (Figures 3.17 and 3.18). Assuming that all residues that are broadened beyond 

detection form -structure, the analysis suggests the presence of two -strands in P2R3 

(one in P2 and one in R3; Figure 3.17). In case of P2R2, an additional short -strand might 

be present at the C-terminus of R3 (296NIK298) (Figure 3.18). 

 

Figure 3.18. Residue-specific mobility inP2R2 fibrils. a) Superposition of the 
1
H-

13
C HSQC (purple) and the 

ssNMR INEPT (red) of monomeric and fibrillized P2R2, respectively. Two selected regions of the spectra are 

shown, corresponding to the regions in the P2 and the R2 domains experiencing loss of NMR signal intensity 

in the INEPT spectrum of the fibrils. b) NMR signal intensity ratios between fibrillized and monomeric P2R2. 

I
fibrils

 and I
monomeric

 are cross peak intensities of the fibrilis in the INEPT and the monomeric protein in the 
1
H-

13
C HSQC spectra, respectively. Error bars were calculated on the basis of signal-to-noise ratios in the 
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spectra. The domain organization of P2R2 is represented on top. Asterisks mark residues not assigned in the 

1H13C HSQC. The dashed line shows a three-residue average.  

 

3.10 Comparison of the PDSD spectra of P2R2, P2R3 and K32 

The P2R2 and P2R3 polypeptides proved to be useful models to probethe contribution of 

the P2 domain to the cross‐ structure of heparin‐induced tau fibrils. Especially, the smaller 

number of residues facilitated a residue‐specificanalysis of the ssNMR spectra. The 

comparative analysis of the PDSD spectra of K19, P2R2 and P2R3 suggested that the signals 

arising in the C/C threonine region of the spectra belong to the P2 domain. Then, the K32 

PDSD spectrum was superimposed on the PDSD spectra of P2R2 and P2R3 for a similar 

comparison. As shown in figure 3.19, the cross peaks, which had been assigned to threonine 

residues in the P2 domain of P2R2 and P2R3, partially matched with cross peaks in the K32 

spectrum. This suggested ‐ although the severe signal broadening in the K32 spectrum made 

further analysis challenging ‐that the P2 domain might also be contributing to the cross‐ 

structure of K32 fibrils.  

 

Figure 3.19. Superposition of the threonine region of K19, K32, P2R2 and P2R3 PDSD spectra.The 

threonine C/C and C/C region of PDSD spectra of K19 (black), K32 (green), P2R2 (red) and P2R3 (blue) 

is shown. The dashed lines connect the cross-peaks of the C/C and C/C region. 
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4 Discussion: project I 

 

4.1 The relevance of theproline-rich region of tau in pathological 

conditions 

The proline-rich region of tau is linked to the protein´s role in neurodegenerative 

diseases36. Phosphorylation of the proline-rich region can be detected by several 

antibodies and is associated with neurodegeneration48,123,125. In addition, immuno-

chemistry and X-ray crystallographic studies reported that antibodies present in the blood 

of healthy individuals recognize epitopes in the P2 domain187,188. Despite its importance 

for tau pathology, however, the proline-region region was not observed in cryo-EM 

structures of tau fibrils purified from the brains of patients with AD and PiD79,80. In 

addition, the proline-rich region was missing in the cryo-EM structures of amyloid fibrils 

of htau40 aggregated in vitro in the presence of heparin97. The structural role of the 

proline-rich region in amyloid fibrils of tau is therefore unknown. 

 

4.2 Structural properties of the rigid core of K32 fibrils 

The use of smaller tau constructs proved to simplify the study of the interaction of tau 

with microtubules as well as the contribution of different regions to tau aggregation and 

fibril formation19,50,52. For NMR studies, this approach furthermore decreases the signal 

overlap in the spectra and thus allows a more reliable analysis52. 

The tau construct K32 was selected, because it contains the P2 domain of the 

proline-rich region, the four imperfect repeats and the downstream region R’ of htau4052. 

It thus contains all the parts of tau that were observed in the cryo-EM structures of amyloid 

fibrils purified from patient brains. Because tau is a highly soluble protein with little 

tendency to aggregate, heparin and other polyanions are commonly used to induce tau 

aggregation in vitro. The strong negative charge of these cofactors neutralizes positive 

charges in tau, thus favoring self assembly51,55,85,86. Indeed, fibrils of K32 were obtained 

upon addition of heparin and subsequently characterized using different biophysical 

approaches, e.g. ThT fluorescence, CD and electron microscopy (Figure 3.2). Quantification 
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of the secondary structure content145 detected by CD resulted in the following distribution: 

~ 8 % -helix, ~ 63 % -sheet and ~ 28 % turn-like/random-coil conformation (Table 3.1). 

Because the sequence of K32 comprises 194 residues, the CD analysis suggested that more 

than 100 residues fold into cross- structure upon aggregation into amyloid fibrils. In the 

cryo-EM structure of amyloid fibrils of htau40 aggregated in the presence of heparin, i.e. 

in similar conditions as used here for K32, residues from the C-terminus of R1 and all the 

residues locatedin R2 (31 residues) and R3 (31 residues) folded into rigid cross-  structure, 

thus in total ~ 65 residues. 

 

Table 3.1 Secondary structure content calculated with the Dichroweb software189 from 

experimental CD spectra. 

 

 

 

 

In order to gain further insight into the structure of K32 fibrils, ssNMR experiments 

were performed. The superposition of the PDSD spectra of K32 and K19 suggested that 

residues belonging to the R1 and R3 domains are part of the rigid cross- structure of 

amyloid fibrils formed by both of these tau constructs in vitro in presence of heparin.  

Severe signal overlap in the spectra of K32 precluded a more detailed analysis. At 

the current stage, it therefore remains unknown if the tau chain folds into a similar 

conformation in amyloid fibrils of K32 and K19. Because K19 lacks repeat R2 and thus can 

be regarded as a model for amyloid fibrils formed by three-repeat isoforms of tau, it 

indeed is more likely that K19 and K32, which contains four imperfect repeats display a 

different amyloid fold. Consistent with this hypothesis, the cryo-EM structures of amyloid 

fibrils purified from patients with AD, in which both three-repeat and four-repeat isoforms 

are detected in insoluble protein deposits79, differ from the cryo-EM structure of amyloid 
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fibrils purified from PiD80 i.e. a disease that is characterized by the pathological 

aggregation of three-repeat isoforms of tau190. A further factor influencing the structural 

properties of tau fibrils, is the oxidation of tau’s two native cysteine residues C291 and 

C322. C291 and C322 are located in the R2 and R3 domain, respectively, and can form 

inter- and intra-molecular disulfide bridges in oxidizing conditions93. In the K19 construct 

used in the current study, the single cysteine residue of K19 was substituted by alanine 

(C322A). Substitution of cysteine residues to alanine were previously shown to improve 

the quality of the ssNMR spectra of tau fibrils84,86. In the 2D PDSD spectrum of K19, the 

cross peak of C322A is well isolated from the rest of the resonances (Figure 3.4). In the 

sequence of K32, the two native cysteines were maintained and might have contributed 

to more structural heterogeneity and thus a decreased resolution of its PDSD spectrum.  

 

4.3 The flexible regions in K32 fibrils 

A 2D INEPT transfer-based 13C-13C correlation experiment was used to probe the flexible 

regions of the fibrils, instead of their rigid core181. This approach has been previously 

applied to K19 fibrils to identify resonances which did not belong to the core of the 

fibrils84. The superposition of the ssNMR INEPT and the assigned 1H-13C HSQC spectrum of 

K32 revealed that proline, glycine and serine residues maintained high flexibility. Residues 

belonging to the R3 domain, which have been reported to be part of the rigid core of the 

fibrils79,80, the R2 domain, observed in the core of the heparin-induced fibrils97, and to the 

P2 domain, e.g. V226, A227, V229 and A239, experienced a decrease in their intensity 

(Figure 3.6b and c). Due to the small chemical shift dispersion, many of the amino acids’ 

C/C resonances in the 1H- 13C HSQC of K32 clustered in the same region, thus the use 

of this assignment for the identification of the residues in the INEPT spectrum became 

challenging. On top of that, residual monomeric K32 in the rotor might have contributed 

to the signal in the spectrum, making the identification of the residues involved in the 

fibrils formation difficult. For some few isolated resonances in the C region of the 

spectrum a complete loss of signal intensity could be observed (Figure 3.6a). The missing 

peaks belonged to residues located in the R1, the R3 and the R4 domains. The analysis of 

the PDSD spectrum of K32 therefore suggested that the R1 and the R3 domain are 
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involved in the formation of the rigid core of K32 fibrils. Because of the partial loss of 

signal intensity observed for the residues in the P2 domain, a partial rigidification of the 

P2 region in amyloid fibrils of K32 is likely. 

 

4.4 The use of simplistic models for the study of tau fibrils 

The P2R2 and P2R3 peptides displayed intrinsically disordered properties in solution. The 

1H-15N HSQC spectra of the peptides showed little chemical shift dispersion (Figure 3.7a 

and b). As in the case of full-length htau40, the lack of a distinct secondary structure allows 

all the amino acids to experience a similar chemical environment56. Similar to htau40, the 

P2R2 and P2R3 peptides retained random coil conformations observed by CD 

spectroscopy191,192 (Figure 3.8c). Their hydrodynamic radii and diffusion rates were 

determined by diffusion NMR experiments (Figure 3.10). The values obtained (section 3.6) 

were comparable to previously reported values for unfolded peptides of the same 

molecular weight171,193. Comparison of carbon chemical shifts further showed that 

residues located in the interior of the P2, R2 and R3 domains have similar conformational 

properties in the peptides and in htau40 (Figure 3.9). Together the data show that P2R2 

and P2R3 are valid models for the study of tau structure. 

 

4.5 Biophysical characterization of P2R2/P2R3 fibrils  

The P2R2 and P2R3 peptides formed fibrils upon addition of heparin (Figure 3.11). The 

P2R3 peptide showed a stronger ThT intensity in comparison to P2R2. The intensity of the 

ThT fluorescence can be influenced by the conformation of the fibrils with which it 

interacts185. Thus, the difference observed for P2R2 and P2R3 fibrils was suggestive of 

distinct conformations. Consistent with this, the CD spectra of the fibrils of P2R2 and P2R3 

displayed minima for -sheet structure at ~ 210 nm and ~ 220 nm, respectively, and the 

minimum in the spectrum of P2R2 was less pronounced (Figure 3.11b). The quantification 

of secondary structure content189 resulted in a major contribution from -strand (~ 60 %) 

followed by unordered structure (~ 30 %) and -helical elements (~10 %) (Table 3.1). 

Electron microscopy further revealed different morphologies of P2R2 and P2R3 fibrils 
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(Figure 3.11b): P2R2 fibrils were predominantly straight, while P2R3 fibrils displayed a 

twisted morphology. This suggests that the absence/presence of R2 in three-repeat/four-

repeat tau might influence the morphology of amyloid fibrils in different diseases. 

The shorter sequences of P2R2 and P2R3 when compared to K32 or full-length 

htau40 improved the resolution and decreased the crowding of the ssNMR spectra. 

Superposition of the ssNMR spectra of P2R3 and K19 further showed good match of many 

cross peaks, confirming the contribution of the R3 domain in the formation of tau fibrils. 

 

4.6 The contributionof the P2 domain to the cross- structure of 

P2R2 and P2R3 fibrils 

The PDSD and INEPT ssNMR spectra of P2R2 fibrils were informativefor two reasons: (i) 

they showed that the R2 domain isable to form amyloid fibrils, and (ii) the threonine cross 

peaks observed in the PDSD spectrum demonstrated that part of the P2 domain is 

contributing to the rigid cross- core of the fibrils. The R2 region is part of the cross- core 

observed in the cryo-EM structures of heparin-induced htau40 fibrils97, but is not present 

in the cross- core of tau fibrils purified from AD brains101. Because both three-repeat and 

four-repeat isoforms aggregate into insoluble deposits in AD, it is currently unclear if the 

lack of R2 in tau fibrils purified from AD brains is connected to a mixture of different tau 

isoforms. Notably, an antibody recognizing the hexapeptide in R2 can decreasetau 

fibrillization, supporting a role of the R2regionin tau aggregation194. 

Detailed analysis of the INEPT ssNMR spectrum of P2R2 and P2R3 fibrils showed 

that resonances of residues 225KVAVVRT231 of the P2 domain were strongly attenuated 

when compared to the monomeric state of the peptides. The 225KVAVVRT231 sequence is 

rich in hydrophobic residues and is homologue to the hexapeptide located in the R2 

repeat46. The clustal omega 195 alignment in table 3.2 highlights the similarities of the 

sequences 225KVAVVRT231, 275VIIQNK280 , 306VQIVYK311: the asterisk indicates the fully 

conserved valine, while the colon and the dot stand for strong and weak similarities, 

respectively. Residues marked in red are defined by the program as small and 

hydrophobic, those in magenta are basic and the amino acids marked in green have a 
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hydroxyl group and/or an amine in their side chains. It is clearly visible that the three 

sequences share a high number of hydrophobic residues, e.g. valine, alanine and/or 

isoleucine residues. Thus, the establishment of hydrophobic interactions between the 

225KVAVVRT231 sequence in the P2 domain and the hexapeptides 275VIIQNK280 (R2) and 

306VQIVYK311 (R3) is likely to be responsible for the recruitment of the proline-rich region 

into the core of P2R2 and P2R3 fibrils. 

 

Table 3.2 Clustal omega sequence alignment. 

P2(residues 225-231) K V A V V R T 

R2(residues 275-280) K V Q I I N K 

R3(residues 306-311) S V Q I V Y K 

 . *  : :  . 

 

Sequence alignment of the P2, R2 and the R3 domains. The alignment has been performed using the Clustal 

omega software195. Symbol legend: * indicates conserved residues, : indicates high similarity and · indicates 

weak similarity between amino acids. The colors in the table refer to hydrophobic residues (red), basic 

amino acids (magenta) and amino acid residues with hydroxyl group and/or an amine (green). 

 

Recently, a ssNMR study on heparin-induced fibrils of the four-repeat tau 

construct 0N4R was published186. The assignment reported in this publication was used 

to identify some of the resonances in the PDSD spectrum of P2R2 fibrils. The authors 

reported that the R2 and the R3 domains form the rigid core of the fibrils, while the R1 

and R4 domains are semi-rigid. In addition, the proline-rich region showed fast anisotropic 

motions and was defined as semi-mobile by the authors. This supports the evidence 

reported in this work, where the P2 domain shows partial mobility and the 225KVAVVRT231 

sequence is contributing to the rigid fibril core.  

At the same time, the data suggest that the semi-mobility of the proline-rich region 

might be necessary for the regulation of processes at the beginning or right after the 

aggregation of tau. It might be for example involved in the recruitment of other tau 

moieties during the aggregation process. Notably, the proline-rich region is an important 

site of post-translational modifications, i.e. phosphorylation on serine and threonine 

residues110, and is recognized by an anti-tau antibody in the fibrils188. Therefore, the 

partial flexibility and solvent exposition of this region might be involved in aberrant 
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phosphorylation events enhancing tau aggregation. A particular attention is given to the 

T231 comprised in the 225KVAVVRT231 sequence, which has been found to be 

phosphorylated in the CSF of AD patients113,114. Therefore, further investigations on the 

structural properties of the proline-rich region within tau amyloid fibrils and its regulation 

by phosphorylation might provide insights into the molecular mechanisms of tau 

aggregation and disease progression. 
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5 Results:project II 

 

5.1 Tau interaction with microtubules at different concentrations 

and temperatures 

 

Previous NMR studies highlighted four localized regions showing strong signal 

broadening: 225KVAVVRT231, 245TAPVPMPDL253, 275VQIINKKLDLSNV287 

306VQIVYKPVDLSKV318 56,98. Additionally, significant signal broadening and chemical shift 

perturbations were reported for the P1 and the R´domains56,98. 2D 1H-15N HSQC spectra 

of 15N-labeled full-length htau40 were recorded in the presence of paclitaxel-stabilized 

microtubules. Measurements at 5 °C and at htau40 and microtubule concentrations of 10 

M and 5 M, respectively, showed signal broadening induced in the central domain of 

htau40 (Figure 5.1a). The P2 domain of the proline-rich region and the pseudo-repeats 

showed the strongest broadening, in agreement with previously reported NMR data56,98. 

To gain insight into the temperature dependence of this interaction, 2D 1H-15N 

HSQC spectra of 15N-labeled htau40 were recorded in presence of paclitaxel-stabilized 

microtubules at 5 °C, 25 °C and 37 °C. The htau40 concentration used for these 

experiments was increased to 50 M while the tau to microtubule ratio was kept at 1:0.5. 

In figure 5.1b, the intensity plots obtained by measurement of 2D 1H-15N HSQC spectra at 

5 °C, 25 °C and 37 °C are shown. At 5 °C, the signal broadening started from the N-

terminus, where 60 % of the signal intensity was lost: a local minimum in signal intensity 

could be observed in the region comprising residues from L114 and T123, right before the 

start of the P1 domain (Figure 5.1b, grey bar). This region was reported to adopt transient 

-helical structures with amphipatic characteristics in the unbound state56. From the N-

terminus, the signal broadening gradually strengthened towards the proline-rich region 

and the pseudo-repeats region, where the intensity decreased below 40 % of the value in 

the absence of microtubules. Signal intensity was gradually recovered towards the C-

terminal region of the sequence (Figure 5.1b). Similar binding profiles were observed at 

25 °C and 37 °C. The differences in the profiles, which were observed at different 

temperatures, can be due to the temperature-dependence of hydrophobic interactions 
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and changes in the exchange rate between the unbound and MT-bound state of tau 

residues.

 

Figure 5.1. NMR profile of tau interacting with paclitaxel-stabilized microtubules at different 

concentrations and temperatures. a) NMR intensity ratio of htau40 signals in the presence and absence of 

MTs measured at 5 °C; htau40 concentration of 10 M, microtubules 5 M (1:0.5 molar ratio). The binding 

hot spots reported in previous NMR studies56,98 are indicated by color-coded boxes. b-c) Temperature 
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dependence of 50 M tau binding to paclitaxel-stabilized microtubules (molar ratio 1:0.5) followed using 

2D 
1
H-

15
N HSQC (b) and 2D 

1
H-

15
N TROSY (c). Temperatures of 5°C, 25°C and 37 °C were used. The region 

comprising residues L114 to T123, which experiences signal intensity loss, is indicated by the grey bar. 

 

To gain insight into the influence of the transverse relaxation properties of htau40 

on the MT-binding profiles, 2D 1H-15N TROSY experiments were performed at 

temperatures from 5 °C to 37 °C at identical tau/microtubule concentrations (50 M 

htau40 and 25 M of microtubules), respectively. Similar to the HSQC experiments, the 

signal intensity loss started from the N-terminus and expanded towards the middle region 

of the sequence (Figure 5.1c). At 5 °C and 25 °C the P2, the R1, the R2 and the R3 domains 

exhibited signal broadening resulting in ~ 40% of the intensity in the free form. Also in the 

set of TROSY spectra, the stretch of amino acid residues from L114 to T123 displayed a 

local minimum in signal intesity (Figure 5.1c). 

At 37 °C, 60 % of the signal intensity was lost, except for the P2, the R1 and the R3 

repeats, whose residues intensities were below 40 % of their values in absence of 

microtubules. The R2 domain displayed also in this case a loss of ~ 50 % of the intensity. 

Overall, the HSQC- and TROSY-broadening profiles are similar at the different 

temperatures, supporting the previously reported location of microtubule-binding hot 

spots in tau. Notably, microtubule-induced broadening in the P1 region of tau was 

consistently weaker when compared to the P2 region, suggesting a more pronounced 

contribution of P2 of tau to binding to microtubules. 

Differences in the binding profile at the same temperature, i.e. 5°C, but different 

protein concentration, i.e. 10 M and 50 M emerged, indicated that at higher 

tau/microtubules concentrations more tau regions are involved in the interaction. 

 

5.2 Tau interaction with soluble tubulin  

 
In order to investigate the influence of the polymerization state of tubulin on tau binding, 

we recorded 2D 1H-15N HSQC spectra of 10 M 15N-labeled htau40 in the absence and 

presence of non-polymerized tubulin heterodimers. The experiments were performed in 

non-polymerizing conditions, i.e. at 5 °C, and in the absence of GTP. Addition of soluble 

tubulin caused changes in NMR signal intensities and positions. At a 1:0.5 molar tau-to-
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tubulin ratio, the strongest signal broadening was observed in the P2, the R1, the R2 and 

the R3 regions (Figure 5.2). The P1 and the R´ domains also displayed signal loss. At a 1:1 

tau to tubulin ratio, the signal intensity in the P1 domain was below 60 % of its original 

value, consistent with an increased fraction of tubulin-bound tau. The data shown in this 

section confirm tau ability to bind both soluble tubulin and microtubule. Tau engages the 

proline-rich region and the R1, the R2 and the R3 domains of the repeat region to bind to 

both microtubules and soluble tubulin. 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. NMR profile of htau40 interacting with soluble tubulin. NMR intensity ratio of htau40 signals in 

the absence and presence of soluble tubulin, measured at 5 °C. The concentration of htau40 was kept at 10 

M, while the tubulin concentration was increased from 5 M (1:0.5 ratio, dark blue) to 10 M (1:1 ratio, 

light blue). The binding of hTau40 to microtubules at a 1:0.5 molar ratio is shown (black line) for comparison. 

The binding hot spots suggested in previous NMR studies56,98are indicated by the color-coded boxes. 

 

5.3 Tau phosphorylation byCdk2/CycA2 

As introduced in section 1.6, phosphorylation is an important post-translational 

modification, which regulates the cellular activity of tau89,132. To gain insight into the effect 

of phosphorylation on tau interaction with soluble tubulin/microtubules, htau40 was 

incubated for 24 hours at 30 °C with catalytic amounts of the proline-directed kinase 

Cdk2/CycA2 and in presence of ATP (section 2.7). Cdk2/CycA2 phosphorylates serine and 

threonine residues in the proline-rich region48,130. After removal of the kinase, 2D 1H-15N 

HSQC experiments were recorded on 10 M pTau(Cdk2/CycA2) (Figure 5.3a). Upon 

phosphorylation, the cross peaks of serine and threonine residues appeared downfield 

shifted. The cross peaks corresponding to the unmodified residues disappeared or 
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partially lost intensity. Based on previously established resonance assignments48,49,56, the 

analysis demonstrated phosphorylation of T153, S202, T205, S210, T220, T231, S235 

situated in the proline-rich region and S404 in the R' domain. In addition, the R230 cross 

peak disappeared from its original position in unmodified tau (Figure 5.3a). In order to 

further validate this analysis, mass spectrometry was performed on the sample and 

suggested up to nine phosphorylation sites (Figure 5.3b). On the SDS-PAGE gel, 

pTau(Cdk2/CycA2) exhibited an increased molecular weight due to the addition of the 

phosphate groups (Figure 5.3b). 

 

Figure 5.3. Phosphorylation of the proline-rich region of tau by CDK2/CycA2.a) Superposition of 1H-15N 

HSQC spectra of unmodified (black) and phosphorylated htau40 (pink). Targeted serine and threonine 

residues in the proline-rich region show the typical downfield shift of phosphorylated residues and are 

shown in the boxes. b) Mass spectrometry of pTau(Cdk2/CycA2) together with SDS PAGE gel analysis. Due 

to the addition of phosphate group (ca. 80 Da per group), the tau band is shifted upwards. 

 

In order to calculate the degree of phosphorylation in the pTau(Cdk2/CycA2) 

spectrum, the intensities of the cross peaks for the unphosphorylated and phosphorylated 

state for each selected residue were determined. For residues S202, T220, S235 and S404, 

the anaylsis demonstrated nearly complete phosphorylation. For T205 and T220, the 

degree of phosphorylation was approximately 85-90%, while ~ 60% phosphorylation was 

calculated for T231 and T153. Phosphorylated S202 and T205 are recognized by the AD 

diagnostic antibody AT8, while phosphorylated T231 is detected by the monoclonal 
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antibody AT180196. In conclusion, Cdk2/CycA2 phosphorylates the proline-rich region of 

tau and results in phosphorylated tau that is recognized by AD diagnostic antibodies. 

 

 

 

 

 

 

 

Figure 5.4. Quantification of tau 

phosphorylation mediated by Cdk2/CycA2. 

Normalized intensity values of the cross peaks of 

the unmodified (black bars) and phosphorylated 

(pink bars) tau residues. Calculation was 

performed by dividing each cross-peak intensity 

by the total intensity for any given residue. The 

total intensity was calculated as the sum of the 

unmodified and the phosphorylated cross peaks 

intensities. Error bars where calculated by 

propagation of the error obtained by the Sparky 

software. 

 

5.4 Interaction of phosphorylated tau with tubulin/microtubules  

As shown in the result sections 5.1 and 5.2, tau engages the P2 domain and the pseudo-

repeat region to interact with both soluble tubulin and microtubules. In order to 

understand whether phosphorylation in the proline-rich region could interfere with these 

interactions, 2D 1H-15N HSQC were recorded on 10 M of pTau(Cdk2/CycA2) in the 

absence and presence of soluble tubulin heterodimers. Experiments were performed at 5 

°C in non-polymerizing conditions. At a pTau(Cdk2/CycA2)-to-tubulin molar ratio of 1:0.5, 

the strongest signal broadening was observed in the P2 domain and in the pseudo-repeat 

region (Figure 5.5a-b). Besides, some differences in the P2 and R1 domains could be 

observed comparing the binding profiles of pTau(Cdk2/CycA2) and unmodified htau40 

(Figure 5.5b). The region in which these differences occurred corresponded to the region 

where the phosphorylated residues cluster (Figure 5.5b).  
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Figure 5.5. Interaction of tau phosphorylated by Cdk2/CycA2 with soluble tubulin. a) Selected region 

from1H-15N HSQC spectra of unmodified htau40 in the absence (black) and presence (cyan) of soluble tubulin 

heterodimers is shown in the upper panel.In the lower panel, a selected region from the 1H-15N HSQC 

spectrum of pTau(Cdk2/CycA2) in its free (pink) and tubulin-interacting state (blue) is shown. Notably, the 

cross peak of R230 is perturbed upon Cdk2/CycA2phosphorylation. b) Residue-specific tubulin-interaction 

profile of unmodified hTau40 (black line) and pTau(Cdk2) (pink bars). I-tubulin and Itubulin are cross peak 

intensities in 1H-15N HSQC spectra of tau alone and in presence of tubulin, respectively. The grey line shows 

the difference values between the interaction profile of phosphorylated and unmodified hTau40. On top, 

the domain organization of tau is shown. Residues phosphorylated in pTau(Cdk2) are marked by blue 

diamonds. 

 

Similar results were obtained from the analysis of 2D 1H-15N HSQC recorded on 10 M of 

pTau(Cdk2/CycA2) in the absence and presence of paclitaxel-stabilized microtubules 

(Figure 5.6a and b). Together the data show that pTau(Cdk2/CycA2) is still able to interact 

with soluble tubulin and with microtubules. 
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Figure 5.6. Microtubule-interaction of tau phosphorylated by Cdk2/CycA2. a) NMR binding profile of 

hTau40 (black line) and pTau(Cdk2) (pink bars) in the presence of microtubules. I-MT and I+MT are cross peak 

intensities in 1H-15N HSQC spectra of tau alone and in presence of microtubules, respectively. The grey line 

shows the difference values between the interaction profile of phosphorylated and unmodified hTau40. On 

top, the domain organization of tau is shown. Residues phosphorylated in pTau(Cdk2) are marked by blue 

diamonds. b) A selected portion of the 1H-15N HSQC spectra of htau40 in the free (black) and MT-interacting 

state (cyan) is shown in the upper panel. Residues disappearing upon interaction are labeled. In the lower 

panel, a selected portion of the 1H-15N HSQC spectrum of pTau(Cdk2/CycA2) in its free (pink) and MT-

interacting state (blue) is shown. 

 

5.5 Tau LLPS and tubulin polymerization 

To gain insight into the contribution of the proline-rich region of tau for tubulin 

polymerization, an assay based on tubulin polymerization from pre-formed tau droplets 

was used71. Tau droplets were produced by mixing 25 M of htau40 with 10 % dextran in 

BRB80 buffer (80 mM Pipes, pH 6.8, 1 mM MgSO4, 1 mM EDTA, 1 mM DTT). A small 

concentration of fluorescently labeled htau40 (Alexa 488) was added to the reaction to 

visualize the presence of tau within the droplets (Figure 5.7a-b). Upon addition of 10 M 

of tubulin and 1 mM of GTP to the droplets, their immediate deformation could be 

observed under the microscope(Figure 5.8a). Droplets deformed longitudinally in a 

bidirectional way and within 30 minutes long microtubule filaments had formed. Red 

fluorescently labeled tubulin (Alexa 594) was mixed to unlabeled tubulin in order to obtain 

labeled microtubules. Colocalization of tau on polymerized microtubules was observed by 

merged red and green fluorescence (Figure 5.8).  



Results: project II 

 99 

 

 

 

Figure 5.7. Differential interference contrast 

(DIC) microscopy and fluorescence microscopy 

of tau droplets.a) In the absence of dextran, tau 

is homogeneously distributed in solution. b) In 

presence of 10% dextran,htau40 (25 M) 

undergoes liquid-liquid phase separation as 

evidenced by the formation of liquid-like 

droplets. c) Liquid-like droplets formed by 

Cdk2/CycA2-phosphorylated htau40. Small 

amounts of Alexa 488-labelled hTau40 and Alexa 

594-labelled tubulin were mixed with unlabeled 

protein. Scale bar, 20 m. 

 

 

Figure 5.8. Differential interference contrast (DIC) microscopy and fluorescence microscopy of tau 

droplet-induced tubulin polymerization. Microtubules growth can be observed over time after the addition 

of tubulin and GTP to htau40 droplets. Small amounts of Alexa 488-labelled htau40 and Alexa 594-labeled 

tubulin were mixed with unlabeled protein. Superposition of fluorescent htau40 (green) and tubulin (red) 

images in the merge-column demonstrates colocalization of the two proteins in droplets and for 

microtubules. Scale bars 20 m. 
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5.6 Impact of phosphorylation of tau’s proline-rich region on LLPS-

mediated tubulin polymerization  

Next, the ability of pTau(Cdk2/CycA2) to undergo LLPS and to polymerize tubulin was 

addressed. After mixing pTau(Cdk2/CycA2) at room temperature in 10% dextran, liquid-

like droplets were observed by DIC and fluorescent microscopy (Figure 5.7c). This 

indicated that the phosphorylation did not inhibit tau phase separation. After the addition 

of tubulin and GTP, fluorescently labeled tubulin was recruited into the droplets but no 

polymerization of tubulin was observed (Figure 5.9). This showed that phosphorylation of 

tau in the proline-rich region does neither interfere with tau phase separation in crowded 

conditions nor recruitment of tubulin to tau condensates, but inhibits tubulin 

polymerization within the condensed tau phase. 

 

Figure 5.9 Differential interference contrast (DIC) microscopy and fluorescence microscopy of pTau 

(Cdk2/CycA2) droplets upon addition of tubulin. Upon addition of tubulin and GTP to pTau(Cdk2/CycA2) 

droplets, polymerization into microtubules was inhibited although tubulin was still recruited into the 

droplets. Small amounts of Alexa 488-labelled pTau(Cdk2/CycA2) and Alexa 594-labeled tubulin were mixed 
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with unlabeled protein. Superposition of fluorescent pTau(Cdk2/CycA2) (green) and tubulin (red) images in 

the merge-column demonstrates colocalization of the two proteins in droplets. Scale bars, 20 m. 

 

5.7 Tau phosphorylation by MARK2 and interaction with 

microtubules 

To better interpret the results so far described, phosphorylation of tau in a region 

different from the proline-rich region was performed. To this extent, htau40 was 

incubated over night with catalytic amounts of MARK2 and in presence of ATP. MARK2 

phosphorylates serine residues in the KGXS motif, conserved in each pseudo-repeat, and 

attenuates the binding of tau to microtubules 90,118(see section 1.6). After removal of the 

kinase, 2D 1H-15N HSQC experiments were performed on 10 M tau phosphorylated by 

MARK2 (pTau(MARK2)). New cross peaks appeared downfield shifted in the spectrum of 

pTau(MARK2) (Figure 5.10a). Their identification was possible using the previously 

reported resonance assignment118. From the analysis, the cross peaks of phosphorylated 

S262, S305, S324, S356 and S416 were identified (Figure 5.10a, zoomed in box). The 

degree of phosphorylation was calculated as for pTau(Cdk2/CycA2). Residual intensity for 

the cross peaks in the unphosphorylated state suggested that the phosphorylation 

reaction was incomplete. As shown in the histogram plot of Figure 5.11, S356 yielded the 

highest degree of phosphorylation (~ 80%), S262 and S324 were phosphorylated ~ 50% 

and ~ 60%, respectively. S302 and S416 exhibited the lowest degree of phosphorylation, 

below 20 %. Besides, mass spectrometry suggested up to 10 phosphorylation sites (Figure 

5.10c), consistent with previous observations118. Other serine residues, e.g. S293, S352 

and S413 for which no unambiguous assignment could be found, might have been 

phosphorylated as well. Next, 2D 1H-15N HSQC spectra were recorded on 10 M of 

pTau(MARK2) in presence of paclitaxel-stabilized microtubules (1:0.5 molar ratio). The 

NMR binding profile revealed signal broadening in the P2 domain and the pseudo-repeat 

region (Figure 5.12), with intensities below 80 % of the values in the free form. When 

compared to the NMR binding profile of unmodified htau40 (Figure 5.12, black line) the 

signal broadening in the pseudo-repeats region was attenuated, i.e. the signal intensities 

in the absence and presence of microtubules were more similar, in particular in proximity 

to the strongly phosphorylated residues S262, S324 and S356 (Figure 5.12, dashed grey 
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line). This observation together with the quantification of the degree of phosphorylation, 

suggested that although the binding to the microtubules was weakened by the 

phosphorylation with MARK2, residual unphosphorylated htau40 might have contributed 

to the interaction with the microtubules. In contrast, signal broadening in the P2 region 

remained unaffected by MARK2-phosphorylation, suggesting that the P2 region and the 

pseudo-repeats bind in a largely independent manner to microtubules (Figure 5.12, 

dashed grey line). 

 

Figure 5.10. Phosphorylation of tau mediated by the kinase MARK2.a) Superposition of 1H-15N HSQC 

spectra of htau40 (black) and pTau(MARK2) (green); phosphorylated serine residues are shown in the box. 

b) Chemical shift perturbation plot together with tau domain organization. The phosphorylation in the 

pseudo-repeat region is indicated by black circles. c) Electrospray mass spectrum of the phosphorylated tau 

indicating one population of 9 to 10 times phosphorylated protein. Next to it, SDS PAGE electrophoresis gel 

of htau40 (control) and pTau(MARK2). 
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Figure 5.11. Quantification of tau 

phosphorylation mediated by MARK2. 

Histogram plot with intensity values for the cross 

peaks of the unmodified (black bars) and 

phosphorylated (green bars) selected residues. 

Calculation was performed by dividing each 

cross-peak intensity by the total intensity for any 

given residue. The total intensity was calculated 

as the sum of the unmodified and the 

phosphorylated cross peak intensities. Error bars 

where calculated by propagation of the error 

obtained from the SPARKY software. 

 

 

 

5.8 Impact of phosphorylation of tau’spseudo-repeat region on 

LLPS-mediated tubulin polymerization. 

The ability of pTau(MARK2) to undergo LLPS and to polymerize tubulin was investigated 

and compared to that of pTau(Cdk2/CycA2). For this purpose, 25 M of pTau(MARK2) was 

mixed at room temperature in 10 % dextran. Liquid-like droplets were observed by DIC 

and fluorescent microscopy (Figure 5.13a), demonstrating that the MARK2-

phosphorylated protein can phase separate in conditions of molecular crowding. After the 

addition of tubulin and GTP, microtubules filaments started to appear under the 

microscope and werevisualizedwith fluorescent microscopy (Figure 5.13b). This suggested 

that despite the phosphorylated state, pTau(MARK2) could still promote tubulin 

polymerization. This result further supported the relevance of the proline-rich region in 

the regulation of tubulin polymerization. 
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Figure5.13. Differential interference contrast (DIC) microscopy and fluorescence microscopy of 

pTau(MARK2) droplet-induced tubulin polymerization.a) In absence of dextran tau is homogeneously 

distributed in solution; in presence of 10 % dextran the protein phase separates at a concentration of 25 

M. Upon MARK2 phosphorylation, tau maintains its ability to phase separate. b) Microtubule growth can 

be observed over time after the addition of tubulin and GTP to pTau(MARK2) droplets. Small amounts of 

Alexa 488-labeled hTau40 and Alexa 594-labeled tubulin were mixed with unlabeled protein. Superposition 

of fluorescent pTau(MARK2) (green) and tubulin (red) images in the merge-column demonstrates 

colocalization of the two proteins in droplets and on microtubules. Scale bars, 20 m. 

 

5.9 Binding of tau’sproline-rich region to soluble tubulin 

As shown so far, the phosphorylation mediated by Cdk2/CycA2 in the proline-rich region 

impaired tubulin polymerization from tau droplets, while phosphorylation in the pseudo-

repeat region mediated by MARK2 did not. To gain further insight into the involvement of 

the proline-rich region in the process of tubulin polymerization, a peptide corresponding 

to the P2 region of tau, was prepared by solid-phase synthesis. As shown in figure 5.14, 
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the peptide Tau(P2) comprises residues R211-R242 of the P2 region, including the 

sequence 225KVAVVRT231 involved in the binding to tubulin/microtubules56. Saturation-

transfer difference (STD) NMR167was used to quantify the interaction strength of Tau(P2) 

with unpolymerized tubulin. As introduced in section 2.11.7, STD-NMR is a powerful NMR 

method to study ligand/protein-interactions and depends on the fast off-rate of a ligand 

from the protein (or high molecular weight binding partner) (Figure 2.5). STD NMR 

experiments were recorded on 800 M Tau(P2) at different irradiation times, in order to 

create a build-up curve for the STD signal (Figure 5.14b and c). The magnetization transfer 

from tubulin to several residues of Tau(P2), including T220, A227, A239 and T231 (Figure 

5.14b), indicates that these residues get in direct contact with tubulin residues upon 

binding of Tau(P2) to tubulin. 

 

Figure 5.14. STD NMR measurements on Tau(P2). a) Schematic representation of Tau(P2) and its sequence. 

b) Superposition of 1H 1D STD spectra for different irradiation times, showing the buildup of the STD signal 

for Tau(P2): 0.5 s (light blue), 1.0 s (green), 1.5 s (blue), 2 s (purple), 3 s (light green), 4 s (orange), 5 s (yellow) 

and 7 s (red). The proton assignment is indicated. c) STD buildup curves obtained by measurement of 1H 1D 

STD spectra at different irradiation times. Measurements were performed at 5 °C in a non-polymerizing 

BRB80 buffer (80 mM Pipes, pH 6.8 , 1 mM MgSO4, 1 mM EDTA, 1 mM DTT). Error bars were calculated 

according to the spectral signal-to-noise ratio. 

 

Next, the saturation transfer was quantified as a function of Tau(P2) concentration 

and KD values of ~ 1-2 mM were obtained (Figure 5.15 and Table 5.1). Previous studies 

showed that isolated, individual pseudo-repeats bind with an affinity of ~ 200-500 M to 

tubulin108. The affinity of the P2 region of tau for unpolymerized tubulin is thus a factor of 

2-10 lower when compared to the four pseudo-repeats. 
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Figure 5.15. Tau(P2) binding affinity to soluble tubulin. a) Superposition of the1H 1D spectrum (red) and 1H 

1D STD spectrum (black) of Tau(P2). The proton resonance assignments for the selected residues are 

indicated. b) Quantification of Tau(P2) saturation transfer as a function of peptide concentration. The KD 

values were calculated by titrating increasing concentrations of Tau(P2)to a fixed concentration of tubulin 

(5 µM). Measurements were performed at 5 °C in non-polymerizing BRB80 Buffer (80 mM Pipes, pH 6.8 , 1 

mM MgSO4, 1 mM EDTA, 1 mM DTT). Error bars were calculated on the basis of the spectral signal-to-noise 

ratio. 

 

Table 5.1. KDvalues for selected residues of the proline-rich region. 

 

 

5.10 Structural insights into the interaction of Tau(P2) with 

microtubules 

 

To gain insight into the structural basis of the interaction of the proline-rich region with 

tubulin and thus the mechanistic basis of LLPS-mediated tubulin polymerization, two-

dimensional transfer Nuclear Overhauser Effect (trNOE) experiments (see section 2.11.5) 

were performed. Similar to STD-NMR, the trNOE effect depends on the fast release of a 

ligand/protein from a high-molecular binding partner, but can additionally provide insight 

into the structure of the bound ligand162. The intensity of trNOE signals strongly depends 

on the excess of ligand over protein and the molecular weight of the protein, therefore 

trNOE experiments were performed on Tau(P2) in presence of microtubules. 2D NOESY 
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spectra have been measured on 1 mM Tau(P2) in the absence and presence of 

microtubules. In the absence of microtubules, mostly intra-residual and sequential 

contacts were present (Figure 5.16a, yellow spectrum). Upon addition of microtubules, 

new cross peaks appeared due to the formation of medium and long-range NOE contacts 

(Figure 5.16a, black spectrum).  

 

Figure 5.16. Structure of the proline-rich region of Tau bound to MTs.a) Superposition of 2D NOESY spectra 

of 1 mM tau(P2) in the absence (yellow) and presence of 50 μM microtubule (black). The NOE mixing time 

was 100 ms. b) Distribution of distance constraints as a function of residue number in tau(P2) upon addition 

of microtubules; at the bottom of the plot are the residue numbers, on the top is the amino acidic sequence 

of the peptide. Distance constraints were classified as medium-range (1 < |i-j| ≤ 4; grey) and long-range (|i-

j| ≥ 5; black), respectively. c) Statistics for the final conformers of microtubules-bound tau(P2). d) 

Conformation adopted by tau(P2) upon binding to microtubules: ensemble of the 10 lowest-energy 

conformers, residues 225-231 aligned, is shown; conformers were calculated on the basis of transferred 

NOEs observed within tau(P2) in the presence of microtubules (schematically shown in the background). 

 

This demonstrates that upon binding of Tau(P2) to microtubules the 

conformational heterogeneity of the peptide is decreased. The structure-specific 

contacts between protons, which are less than ~ 0.6 nm apart, are stable on the NOE 

time scale. Residue-specific analysis showed that the intra-molecular long-range 

contacts in presence of microtubules connected V229 with P233-S235 of Tau(P2) (Figure 

5.16b). The medium- and long-range NOEs observed within Tau(P2) in presence of 
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microtubules (Figure 5.16b and Table 5.2) were further used to calculate the structural 

ensemble adopted by Tau(P2) in the microtubule-bound state (Figure 5.16c). A single 

conformation for Tau(P2) could not be identified, which was not surprising, since 

previous NMR binding studies and mutational analysis reported that only part of the P2 

region contributes to the interaction with tubulin/microtubules56,105. Within the 

functionally important region 224-237, however, the NMR-based structures clustered 

around a common conformation (Figure 5.16c). The data shown here indicate that the 

P2 domain in the proline-rich region of tau locally adopts a stable conformation upon 

binding to tubulin molecules. 

 

Table 5.2 Structural statistics for the conformation of Tau(P2) bound to microtubules. 

 

5.11 Effect of Tau(P2) phosphorylation atT231 on the interaction 

with tubulin/microtubules 

As shown in the result section 5.3, the residues S202, T205, S210, T220, T231 and S235 in 

the proline-rich region P2 of tau are phosphorylated by Cdk2/CycA (Figure 5.3a). The 

phosphorylation in this region blocked LLPS-mediated tubulin polymerization (Figure 5.9). 

The residues T231 and S235 are located in the region that folds into a stable structure 

upon binding to microtubules (Figure 5.16c). The phosphorylation on T231 is recognized 

by the monoclonal antibody AT18048 and has been found in the CSF of AD patients113. To 

gain insight into why Cdk2/CycA-phosphorylation blocks LLPS-mediated tubulin 

polymerization, a Tau(P2) peptide that is phosphorylated at T231 was prepared by solid-

phase synthesis (Figure 5.17a).  
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STD NMR experiments recorded on Tau(P2)-T231p revealed that magnetization 

transfer was less efficient (Figure 5.17b and c), indicative of a slight decrease in tubulin 

affinity of Tau(P2)-T231p. The quantification of the saturation transfer as a function of 

Tau(P2)-T231p concentration showed a change in KD values, which were of ~ 5 mM ( Figure 

5.18b and Table 5.1).  

 

 

Figure 5.17.STD NMR on Tau(P2)-T231p.a) Schematic representation of the amino acid sequence of Tau(P2), 

the phosphorylation of threonine 231 is marked in red. b) STD NMR buildup curve performed at 5 °C on 

Tau(P2)-T231p (800 M) in presence of 5 µM of soluble tubulin in non-polymerizing BRB80 buffer (80 mM 

Pipes, pH 6.8, 1 mM MgSO4, 1 mM EDTA, 1 mM DTT); irradiation times of 0.5, 1, 1.5, 2, 3, 4, 5 and 7 seconds 

were used. Measurements were performed at 5 °C and in non-polymerizing BRB80 buffer (80 mM Pipes, pH 

6.8, 1 mM MgSO4, 1 mM EDTA, 1 mM DTT). c) STD buildup curves obtained by measurement of 1H 1D STD 

spectra at different irradiation times. Measurements were performed at 5 °C in a non-polymerizing BRB80 

buffer (80 mM Pipes, pH 6.8, 1 mM MgSO4, 1 mM EDTA, 1 mM DTT). Error bars were calculated according to 

the spectral signal-to-noise ratio. 

 

Despite the only modest change in affinity, the acquisition of 2D trNOE 

experiments on Tau(P2)-T231p in presence of microtubules revealed no appearance of 

additional NOE cross peaks (Figure 5.18c). This lead to the conclusion that the 

phosphorylation at T231 does not inhibit binding of tau to tubulin, consistent with the 

ability of Cdk2/CyCA-phosphorylated tau to bind to tubulin and microtubules. Instead 

phosphorylation at T231 blocks a conformational change in the proline-rich region P2 that 

is required for LLPS-mediated nucleation of microtubule bundles. 
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Figure 5.18.Effect of the phosphorylation of T231 on Tau(P2).a) Superposition of 1H 1D spectrum (red) and 

1H 1D STD spectrum (black) of Tau(P2)-T231p, the proton resonances assignment for the selected residues 

is indicated. b) Quantification of tau(P2) saturation transfer as a function of the peptide concentration. The 

KD values were calculated by titrating increasing concentration of Tau(P2)-T231p to a fixed concentration of 

tubulin (5 µM). Measurements were performed at 5 °C in non- polymerizing BRB80 Buffer (80 mM Pipes, 

pH 6.8, 1 mM MgSO4, 1 mM EDTA, 1 mM DTT). Error bars were calculated on the basis of the spectral signal-

to-noise ratio. c) Superposition of 2D NOESY spectra of 1 mM tau(P2) in the absence (yellow) and presence 

of 50 μM microtubule (black). The NOE mixing time was 100 ms. 

 

5.12 Structural changes induced by phosphorylation in the 

proline-rich region of tau 

 

It has been previously reported that upon phosphorylation of T231 a salt bridge with its 

preceding R230 is formed49. To observe whether this salt bridge was also present in 

pTau(Cdk2/CycA2) a 2D 1H-15N HSQC was acquired on 80 M of unmodified htau40 and 

pTau(Cdk2/CycA2). To probe the changes in the arginine side chain region of the 

spectrum, a spectral width of 8.5 ppm and 2 ppm for 1H and 15N, respectively, was used. 

In order to mitigate the exchange of the labile side-chain guanidinium protons, a buffer at 

pH 6 instead of the usual pH 6.8 was used. In the spectrum of htau40, a large cluster of 
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unresolved signals together with a broad, slightly-downfield shifted signal was detected 

(Figure 5.19b).  

In addition to the cluster of unresolved signals, new sharp, downshifted signals 

appeared in the spectrum of pTau(Cdk2) (Figure 5.19b). In order to determine the identity 

of these new peaks, a tau peptide phosphorylated at T231 and S235 and comprising 

residues 225-246 was used. 2pTau(225-246) comprises the sequence 

225KVAVVRTPPKSPSSAKSRLQTA246 of the proline-rich region. This peptide was selected, 

because it contains the tubulin-binding region and only two arginine residues, i.e. R230 

and R242, which facilitated their identification. By superposition of the spectrum of 

2pTau(225-246) withthat of pTau(Cdk2/CycA2) the two arginine residues present in 

2pTau(225-246) were located in the broad cluster of guanidinium proton resonances, 

which are not involved in salt bridges, and in the sharp signal at ~ 7.5 ppm, respectively 

(Figure 5.19). Residue-specific assignment identified this signal as that of the H of 

R23049. In conclusion, the observation that only R230 but not R242 is involved in a salt 

bridge suggests that the htau40, salt bridges are preferentially formed between 

phosphorylated residues and directly preceding arginine residues such as R230/T231. The 

combined data demonstrate that phosphorylation of serine/threonine residues in the 

proline-rich region of tau results in formation of intramolecular salt bridges between the 

phosphate groups and the side-chain guanidinium protons of arginine residues. 

 

Figure 5.19. Structural impact of tau phosphorylation mediated by Cdk2/CycA2.a) Amino acid sequence 

of htau40 with domain organization. Serine and threonine residues phosphorylated by Cdk2/CycA2 are 

indicated by blue diamonds. The arginine residues (four in total) located in the P2 domain are highlighted 

in green. b) Superposition of the selected region of the 1H-15N HSQC spectra of htau40 (black), 

pTau(Cdk2/CycA2) (pink) and 2pTau(225-246) (blue) for the guanidinium region of arginine residues. 
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Depicted is the appearance of additional peaks for the guanidinium group of arginine residues due to the 

formation of a salt bridge with phosphorylated of threonine residues. 
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6 Discussion: project II 

The IDP tau has been intensively studied over the last decades due its direct connection 

with the onset with neurodegenerative diseases35,36,125. Because of its intrinsically 

disordered nature in solution, tau can interact with different partners (e.g. tubulin and 

actin) by adopting different conformations19,25. Regarding tau interaction with tubulin and 

the microtubules, it has been reported that the protein engages the P2 domain in the 

proline-rich region as well as the R1, R2 and the R3 pseudo-repeats52,56,98. The recent 

model obtained by cryo-EM of simplified tau constructs bound to microtubules could 

provide information regarding the pseudo-repeat region but no information on either the 

proline-rich region northe interrepeat PGGG motifs was provided101. A unified model to 

explain tau interaction with tubulin and microtubules is yet to be found. 

 

6.1 Tau interaction with paclitaxel-stabilized microtubules and 

soluble tubulin 

The loss of intensity upon addition of paclitaxel-stabilized microtubules/tubulin indicates 

that the exchange between tau microtubules/tubulin-bound and unbound conformation 

is intermediate on the NMR time scale197. In agreement with previously reported 

evidences, the NMR data presented in this work show that residues belonging to the P2 

domain, the R1, R2 and R3 domains are engaged in the interaction with 

microtubules52,56,98 (Figure 5.1a). These regions are similarly involved in the binding to 

soluble tubulin (Figure 5.2). 

The temperature dependence of the tau-microtubule interaction was investigated 

by measuring 2D 1H-15N HSQC and 2D 1H-15N TROSY experiments at three different 

temperatures, i.e. 5 °C, 25 °C and 37 °C. 2D NMR experiments were performed on 50 M 

htau40 in absence and presence of paclitaxel-stabilized microtubules. The NMR binding 

profiles obtained from the measurement of 2D 1H-15N HSQC and 2D 1H-15N TROSY (Figure 

5.1b and 5.1c) displayed loss of signal intensity for the same regions.  

In both sets of experiments, the increase in htau40 concentration caused an 

expanded signal broadening, which involved regions in the N- and C-terminal regions in 

addition to the P2, R1, R2 and R3 domains. For example, the residues S114-T123 in the N-
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terminal region and G164-G186 in the P1 domain displayed a significant loss of signal 

intensity. This observation suggested that at high tau-microtubule concentrations more 

tau regions are engaged in the binding. In particular, the -helix formed by the residue 

patch from L114 to T123, located before the proline-rich region, could provide additional 

contacts via its hydrophobic residues56 

 At 37 °C, the P2, the R1 and the R3 domains, remained involved in the interaction 

while the R2 domain exhibited an attenuated signal broadening, suggesting that upon 

increase of temperature its interaction with the microtubules is attenuated. Mukrasch et 

al., reported hydrophobicity values for the tau sequence56, according to which the 

residues 225KVAVVRT231 (in P2), 245TAPVPMPDL253 (in R1), 275VQIINKKLDLSNV287 (in R2) and 

306VQIVYKPVDLSKV318(in R3) showed positive values. These amino acid stretches 

contribute to the interaction with microtubules via hydrophobic interactions56,98. Since 

the hydrophobic force has a peak between 30 °C and 80 °C 198, these regions remain 

involved in the interaction with microtubules even as the temperature increases. 

Compared to the others, the 275VQIINKKLDLSNV287 sequence, in the R2 domain, is the least 

hydrophobic, which would explain the weakening of its interaction at 37 °C. It is 

noteworthy that these regions are positively charged (Figure 1.8), thus electrostatic 

interactions play together with hydrophobic interactions an important role in maintaining 

the binding with the microtubules. 

 

6.2 Tau phosphorylation in different regions of the sequence 

In this work it has been shown that phosphorylation of the proline-rich region of tau mediated 

by Cdk2/CycA2 is responsible for the inhibition of the tubulin polymerization in tau phase-

separated conditions. Cdk2 is a member of the family of cyclin-dependent kinases like the AD-

related Cdk5 (see section 1.6)22. So far, no direct involvement of Cdk2 in AD has been 

reported, but via phosphorylation of serine and threonine residues in the proline-rich region 

it recreates the epitope recognized by the antibody AT180. To obtain a similar 

phosphorylation pattern, Cdk5 and GSK3 need to operate in a sequential manner48,112. This 

makes Cdk2 a practical enzyme for in vitro studies and it has been reported that tau 

phosphorylation with this kinase does not impair its binding to microtubules48. 

Phosphorylation of htau40 by incubation with Cdk2/CycA2 was validated using NMR 
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spectroscopy, SDS-PAGE electrophoresis and mass spectrometry. The binding of 

pTau(Cdk2/CycA2) to microtubules/soluble tubulin was not inhibited and involved the P2 

domain as well as the pseudo-repeats region (Figure 5.5b and 5.6b). Nevertheless, slight 

differences in the regions targeted by the kinase could be noted in the NMR binding profiles 

of htau40 and pTau(Cdk2/CycA2) in presence of microtubules/soluble tubulin.  

In order to compare different phosphorylation patterns, tau was additionally 

phosphorylated using MARK2, which phosphorylates serine residues in the pseudo-repeat 

region118. Phosphorylation of htau40 by MARK2 is considered to inhibit the binding to 

microtubules and has been correlated to aggregation of tau90,118. In presence of paclitaxel-

stabilized microtubules, the NMR binding profile of pTau(MARK2) showed a weakened 

signal intensity loss, with major effects in the pseudo-repeats region. Mass spectrometry 

analysis further suggested a total of 9-10phosphorylation sites (Figure 5.10c), but only five 

cross peaks appeared with downfield shifts indicating the addition of the phosphate 

group. Despite the NMR and mass spectrometry analysis confirmed the phosphorylation, 

~ 50% of the targeted residues remained unphosphorylated (Figure 5.12). Consistent with 

a previous study by Schwalbe and collaborators118, the residues S262, S324 and S356 

showed the highest degree of phosphorylation (Figure 5.11), and the regions surrounding 

these residues exhibited the strongest signal intensities in the NMR binding profile, as 

shown in figure 5.12. The residues S305 and S416 identified in the spectrum of 

pTau(MARK2) had a significant lower degree of phosphorylation (Figure 5.11), which 

might be explained by the fact that these residues are not located in the canonical 

consensus motif (KXGS) for MARK2. The residues S293, S352 and S416, which are in vitro 

phosphorylated by MARK2118, could not be identified. Consistent with what so far 

discussed, it is possible that the phosphorylation reaction conditions, e.g. amounts of the 

kinase used, incubation time, might have not been sufficient to phosphorylated these 

residues. 

 

6.3 Tubulin polymerization in tau phase separation conditions 

The previous work by Ambadipudi and co-workers reported tau’s ability to undergo LLPS 

in vitro70. This is due to the intrinsically disordered properties of tau, as well as the rich 

composition in positively charged residues. Arginine and lysine residues are important for 
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the establishment of important interactions driving tau phase separation70,199. 

Hernández-Vega and co-workers reported that tubulin can be recruited into droplets of 

phase-separated tau and that in this environment tubulin efficiently polymerizes into 

microtubules71. In pTau(Cdk2/CycA2) phase separation conditions, tubulin polymerization 

did not occur, indicating that the recruitment in high tau-concentrated environment is not 

sufficient for the polymerization process to happen (Figure 5.9).  

Such an effect was not observed when tau was phosphorylated with MARK2 

(Figure 5.13). Because the phosphorylation mediated by MARK2 is located in the pseudo-

repeat region, this observation further supports the relevance of the proline-rich region 

in tubulin polymerization occurring under tau phase separation conditions.  

 

6.4 Interaction between the proline-rich region of tau and 

tubulin/microtubules 

In the models so far proposed to describe tau interaction with tubulin and 

microtubules, not much information is provided for the proline-rich region101,200. Being an 

IDP, tau adopts a wide spectrum of conformations and can interact with different partners. 

STD NMR and TrNOE are NMR methods optimized for the observation of dynamic protein 

interactions166. STD NMR experiments performed on Tau(P2), comprising the 

225KVAVVRT231, reported binding affinity to tubulin with KD values ~ 1-2 mM (Table 5.1). 

Despite this weak affinity, TrNOE experiments performed on Tau(P2) indicated that the 

proline-rich region adopted a stable structure upon binding to microtubules. In particular, 

residues belonging to the 225KVAVVRT231 sequence were included in the structure. This 

amino acid stretch is the most hydrophobic in the P2 domain56 and is important for the 

binding to tubulin/microtubules 56,105. 

By comparison of the structure presented in this work and other structures 

calculated for tau/tau constructs interacting with cytoskeleton elements, it is clear that 

different conformational rearrangements of the tau regions are responsible for the protein 

multivalency. The structure calculation for tau(267-312) peptide (PDB: 2MZ7) evidenced 

that residues 269-284 in the R2 and residues 300-311 in the R3 domains maintain flexibility 

when contacting microtubules100. This highlights the importance of transient interactions 
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for supporting fast cytoskeleton rearrangements when tau contacts the microtubule 

surface. Cabrales et al. reported a three-dimensional structure of the residues 254-290 in 

the R2 domain bound to filamentous actin (F-actin) 25(PDB: 3J0S). In order to efficiently 

bind F-actin, this region adopts an -helical conformation.  

 

6.5 Effect of T231 phosphorylation on tau interaction with 

tubulin/microtubules 

T231 is located in the P2 domain, right at the end of the 225KVAVVRT231sequence. The 

phosphorylation atthis site has been correlated with early onset AD and was found 

elevatedin CSF-tau113. The phosphorylation ofT231 did not drastically change the affinity 

of Tau(P2) for soluble tubulin (Figure 5.17 and table 5.1) but upon interaction with the 

microtubules the acquisition of the stable structure, observed in absence of 

phosphorylation, was inhibited (Figure 5.18).  

Schwalbe and co-workers reported that upon phosphorylation of T231, a salt 

bridge is formed with the preceding R23049. Consistent with this, in the 2D 1H-15N HSQC 

spectrum of tau phosphorylated by Cdk2/CycA2, the appearance of additional cross peaks 

was indicative of conformational changes (Figure 5.19b). It is possible that upon 

phosphorylation of htau40, the residues R230 and T231 form an intramolecular salt 

bridge, engaging the guanidinium side chain protons of R230 and the phosphate group of 

T231. The formation of this salt bridge is then responsible for restraining the conformation 

of residues 224-237, which become no longer available to establish contacts with soluble 

tubulin. In addition, the formation of a tau-tubulin complex might require the side chain 

of R230 for the formation of a salt bridge with residues on the tubulin surface. It is not to 

exclude that intermolecular salt bridges might be relevant for tau interaction with tubulin 

and that the arginine residues located in the P2 domain (Figure 5.19a) could serve for the 

establishment of more intermolecular salt bridges. Thus, the formation of intramolecular 

salt bridges could hamper the conformational transition of tau required for binding to 

tubulin and its polymerization into microtubules.  
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9 APPENDIX 
 

9.1 Tau parameters 
 
Table 9.1Tau Fasta sequence (from the uniprot entry: P10636). 

        10         20         30         40         50 

MAEPRQEFEV MEDHAGTYGL GDRKDQGGYT MHQDQEGDTD AGLKESPLQT  

        60         70         80         90        100 

PTEDGSEEPG SETSDAKSTP TAEDVTAPLV DEGAPGKQAA AQPHTEIPEG  

       110        120        130        140        150 

TTAEEAGIGD TPSLEDEAAG HVTQARMVSK SKDGTGSDDK KAKGADGKTK  

       160        170        180        190        200 

IATPRGAAPP GQKGQANATR IPAKTPPAPK TPPSSGEPPK SGDRSGYSSP  

       210        220        230        240        250 

GSPGTPGSRS RTPSLPTPPT REPKKVAVVR TPPKSPSSAK SRLQTAPVPM  

       260        270        280        290        300 

PDLKNVKSKI GSTENLKHQP GGGKVQIINK KLDLSNVQSK CGSKDNIKHV  

       310        320        330        340        350 

PGGGSVQIVY KPVDLSKVTS KCGSLGNIHH KPGGGQVEVK SEKLDFKDRV  

       360        370        380        390        400 

QSKIGSLDNI THVPGGGNKK IETHKLTFRE NAKAKTDHGA EIVYKSPVVS  

       410        420        430        440  

GDTSPRHLSN VSSTGSIDMV DSPQLATLAD EVSASLAKQG L 

 

9.1.1 htau40 physical and chemical parameters 

 

These values can be obtained using the ExPAsy protparam software201. 
 

 
9.2 P2R2 and P2R3 polypeptide parameters 
 
Table 9.2 P2R2 FASTA sequence. 

        10         20         30         40         50 

SPGSPGTPGS RSRTPSLPTP PTREPKKVAV VRTPPKSPSS AKSRLQVQII 

        60         70          

NKKLDLSNVQ SKCGSKDNIK HVPGGGS 

 

Table 9.3 P2R3 FASTA sequence. 

        10         20         30         40         50 

SPGSPGTPGS RSRTPSLPTP PTREPKKVAV VRTPPKSPSS AKSRLQVQIV 

        60         70          

YKPVDLSKVT SKCGSLGNIH HKPGGGQ 

 

Number of amino acids 441 
Molecular weight (Da) 45849.91 
Theoretical pI 8.24 
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Table 9.4 P2R2 and P2R3 physical and chemical parameters. 

 
 

 

 

 

These values have been obtained using the ExPAsy protparam software201.The molar 

absorptivity at 205 nm has been calculated using the method presented by Anthis and 

Clore144 

 
9.3 K32 construct parameters 
 
Table 9.5 K32 FASTA sequence. 

        10         20         30         40         50 

MSSPGSPGTP GSRSRTPSLP TPPTREPKKV AVVRTPPKSP SSAKSRLQTA 

        60         70         80         90        100 

PVPMPDLKNV KSKIGSTENL KHQPGGGKVQ IINKKLDLSN VQSKCGSKDN  

       110        120        130        140        150 

IKHVPGGGSV QIVYKPVDLS KVTSKCGSLG NIHHKPGGGQ VEVKSEKLDF  

       160        170        180        190        

KDRVQSKIGS LDNITHVPGG GNKKIETHKL TFRENAKAKT DHGAEIVY 

 
 

9.3.1 K32 physical and chemical parameters 

 

 

 

9.4 STD NMR of tau peptides binding to soluble tubulin 
 

Here are reported additional STD NMR experiments performed on tau peptides, shown in 

Figure 9.1. The affinity of the Tau(P2) peptide has been reported and discussed in the 

previous section 5.9. The peptides Tau(P2)short, Tau(P2-R3) and Tau(R3)short have been 

used to study the contribution of different tau domains in the interaction with tubulin. 

Their sequences are indicated below: 

 P2R2 P2R3 
Number of amino acids 77 77 
Molecular weight (Da) 7939.89 7919.9 
Theoretical pI 11.14 11.14 
Extinction coefficient at 205 nm 225,230 M-1cm-1 235,710 M-1cm-1 

Number of amino acids 198 
Molecular weight (Da) 21030.11 
Theoretical pI 10.09 
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Tau(P2)short. (K224-S238) Ac-KKVAVVRTPPKSPSS-NH2 
Tau(P2-R3) (K224-V313) Ac-KKVAVVRTPPKSPSSVPGGGSVQIVYKPV-NH2 

Tau(R3)short. (V300-V313) Ac-VPGGGSVQIVYKPV-NH2 
 

 

 

 

Figure 9.1. Tau peptides used for additional STD NMR experiments. Schematic representation of the 

domain organization of the four peptides, which combine residues from the P2 and the R3 domain. For 

comparison, the domain organization of htau40 and Tau(P2) is represented on top. 

 

1H 1D STD-NMR experiments have been recorded at 5 °C for each peptide using a fixed 

tubulin concentration of 5 M. For the general parameter settings of the STD experiment 

see section 2.10.6.1. The quantification of the binding affinities has been performed by 

integration ofselected isolated peaks in the amide and methyl region of the 1H 1D spectra, 

similar to Tau(P2) (section 5.9). Integrals of the cross peaks assigned to T231 (0.97 ppm) 

and A227 (1.06 ppm) were taken into consideration for the binding affinity of the P2 

domain. For the R3 domain, the integral of the unique Y310 (6.71 ppm) in the sequence 

was selected (Figure 9.2). 
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Figure 9.2.Selection of peaks in the1H 1D STD-NMR spectra for the analysis of the binding affinites. 

Superposition of the methyl region (a) and amide region (b) of the 1H 1D spectrum (red) and 1H 1D STD 

spectrum (black) of Tau(P2-R3) to indicate the signals used for the analysis of the spectra. 

 

As already reported in section 5.9, the P2 domain binds weakly to soluble tubulin. The 

Tau(P2)short, which comprises the residues K224-S238 flanking the hydrophobic 

225KVAVVRT231 stretch, also displayeda similar weak binding. The KD values calculated for 

the A227 and T231 resonances in this peptide were ~ 1 mM and ~ 1.5 mM (Table 9.6). In 

combination with the R3 domain, i.e. in Tau(P2-R3), the affinity of the P2 domain 

remained weak, displaying a KD value of ~ 2-3 mM. This suggested that the P2 domain 

interacted weakly with soluble tubulin, independently from the presence of an element 

of the pseudo-repeat region. In contrast, the affinity of Y310 in the R3 domain was ~ 363.3 

±135.7 M and ~ 268.8 ± 80.4 M for Tau(R3)short and for Tau(P2-R3), respectively (Table 

9.2 and Figure 9.3). This observation was consistent with what was previously reported by 

biochemical analyses on different tau constructs, that the repeat regions can bind tubulin 

in a modular way, but the presence of the P2 domain enhances their affinity 50. In tubilin 

polymerization assays,they showed to have small effect in absence of the proline-rich 

region as well. This suggests that a combination of at least one pseudo-repeat domain and 

the proline-rich region is necessary for efficient microtubule formation50,52,117. The KD 

values reported for the R3 domain, alone or in combination with the P2 domain, were 

weaker when compared to binding affinities reported for tau constructs, e.g. K19 and K18, 

measured by co-sedimentation assays50. Nevertheless, Kadavath and co-workers studied 

the binding of the R’ domain of htau40 using peptides of similar length to the peptides 

used in this study, i.e. 15-30 residues. The KD values reported for F378 and Y394 in the R’ 
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domains were of 381.7 M and 356.3 M respectively and were comparable to those 

reported for the R3 domain in Tau(R3)short and Tau(P2-R3) 108.  

 

 

Figure 9.3. Binding affinities of selected aminoacid residues in Tau(P2)short and Tau(P2-R3).Quantification 

of saturation transfer as a function of the Tau(P2)short/Tau(P2-R3) concentration. Binding curves are shown 

for A227 and T231, located in the proline-rich region, and Y310, located in the R3 domain. The KD values 

were calculated by titrating increasing concentration of each peptide to a fixed concentration of tubulin (5 

µM). Measurements were performed at 5 °C in non- polymerizing BRB80 Buffer (80 mM Pipes, pH 6.8, 1 

mM MgSO4, 1 mM EDTA, 1 mM DTT). Error bars were calculated on the basis of the spectral signal-to-noise 

ratio. 

 

Table 9.6 KD values reported for selected residues located in two different domains of 

tau. 
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9.5 1H-15N HSQC pulse program 
;hsqc15N.new 
;D. Lee. Nov. 2002 
 
;15N-1H HSQC correlations without water saturation 
;The delay for 3-9-19 watergate (d5) should be matched 
;with 1/d;d=distance of next null point (in Hz). 
 
;S. Mori et al. JMR B108. 94-98 (1995) 
 
;pl1   : power for 1H 
;pl2   : power for 13C 
;pl3   : power for 15N 
;pl13  : power for 15N waltz16 decoupling 
 
;p1    : 90 degree hard pulse 1H 
;p3    : 90 degree hard pulse 13C 
;p4    : 180 degree hard 13C pulse (225d for 5/600) 
;p5    : 90 degree hard pulse 15N 
;pcpd3 : 90 deg cpd-pulse15N(waltz16.160u) 
;d1    : relaxation delay 
;d2    : INEPT delay (~2.7m) 
;d5    : delay for 3-9-19=1/(Hz between nulls) 
;in0   : 1/(2 SW) (Hz) 
 
;p21   : 500u (Gradient in first INEPT) 
;p22   : 500u (Gradient for z-filter) 
;p23   : 1m (Gradient for second INEPT) 
;gpz1  : 19% 
;gpz2  : 30% 
;gpz3  : 65% 
 
;$CLASS=HighRes Incl 
;$COMMENT= 
 
;$Id: Avance3.incl.v 1.6.2.1 2007/09/14 16:17:35 ber Exp $ 
 
define delay INEPT_W 
define delay INEPT_D 
"p2=2*p1" 
"p6=2*p5" 
"in0=inf1/2" 
"d0=in0/2-p5*2/3.14159" 
"d3=d5/2-p5" 
"INEPT_D=d2-p21-210u"                      
"INEPT_W=d2-(p23+210u+p1*2.3846+d5*2.5)"    
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"acqt0=0" 
baseopt_echo 
 
define delay MCWRK 
define delay MCREST 
define loopcounter ST1CNT 
"ST1CNT = td1 / 2" 
"MCREST = 1m - 1m" 
"MCWRK = 0.333333*1m" 
 
    dccorr 
1  10u ze 
2 MCWRK  do:f3 
LBLSTS1. MCWRK  
LBLF1. MCWRK  
MCREST 
   d1 pl1:f1  
   20u pl3:f3  
   20u setnmr3|0 setnmr0|34|32|33 ctrlgrad 0 
;----------------------------------------first INEPT 
   (p1 ph20):f1 
   10u p21:gp1 200u 
   INEPT_D  
   (center(p2 ph21):f1 (p6 ph1):f3)  
   10u p21:gp1 200u 
   INEPT_D 
   (p1 ph21):f1 
   10u p22:gp2 200u 
;----------------------------------------15N evolution 
;   (p5 ph1):f3 
   (refalign (p5 ph1 d0 d0 p5 ph20):f3 center (p3 ph23 1.5u p4 ph20 1.5u p3 ph23):f2 
center(p2 ph23):f1) 
;   (p5 ph20):f3  
   10u p22:gp2 200u 
;----------------------------------------second INEPT 
   (p1 ph22):f1  
   10u p23:gp3 200u 
   INEPT_W 
   (p1*0.2308 ph21 d5 p1*0.6923 ph21 d5 p1*1.4615 ph21):f1  
   (d3 p6 ph1 d3):f3 
   (p1*1.4615 ph23 d5 p1*0.6923 ph23 d5 p1*0.2308 ph23):f1  
   10u p23:gp3 200u 
   INEPT_W pl13:f3 setnmr3^0 setnmr0^34^32^33 ctrlgrad 7 
;----------------------------------------acquisition 
   go=2 ph31 cpd3:f3 
  MCWRK  do:f3 wr #0 if #0 zd ip1 
  lo to LBLSTS1 times 2 
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  MCWRK id0 
  lo to LBLF1 times ST1CNT 
  MCWRK 
10u do:f1 
10u do:f2 
10u do:f3 
10u setnmr3^0 setnmr0^34^32^33 ctrlgrad 7 
exit 
 
ph1 =0 2 
ph31=2 0 
 
ph20=0 
ph21=1 
ph22=2 
ph23=3 
;##/($P[1].$PL[1])= &SetPulse(f1.HP.90); 
;##/($P[5].$PL[3])= &SetPulse(f3.HP.90); 
;##/($P[3].$PL[2])= &SetPulse(f2.HP.90); 
;##/if ($BF1>650) {$P[4]=2.*$P[3]} else {$P[4]=2.5*$P[3]}The  
;##/$D[5]=&round(1/(10*$BF1)..00001); 
;##/($PCPD[3].$PL[13])= &SetPulse(f3.0.000160.90); 
 

 
 

9.6 1H 1D STD NMR experiment pulse program 
 
;stddiffgp19.2 
;avance-version (13/11/08) 
;pseudo 2D sequence 
;   for saturation transfer difference 
;with shaped pulse train for saturation on f2 channel 
;alternating between on and off resonance 
;   to be defined by fq2list 
;with spoil sequence to destroy unwanted magnetization 
;water suppression using 3-9-19 pulse sequence with gradients 
;(use parameterset STDDIFFGP19.2) 
 
;M. Mayer & B. Meyer. Angew. Chem. Int. Ed. 38. 1784-1788 (1999) 
;M. Mayer & B. Meyer. Angew. Chem. 111. 1902-1906 (1999) 
;M. Piotto. V. Saudek & V. Sklenar. J. Biomol. NMR 2. 661 - 666 (1992) 
;V. Sklenar. M. Piotto. R. Leppik & V. Saudek. J. Magn. Reson..  
;   Series A 102. 241 -245 (1993) 
 
;$CLASS=HighRes 
;$DIM=2D 
;$TYPE= 
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;$SUBTYPE= 
;$COMMENT= 
 
#include <Avance.incl> 
#include <Grad.incl> 
#include <Delay.incl> 
 
define list<frequency> stdlist=<$FQ2LIST> 
 
"d11=30m" 
 
"l5=d20/p42" 
"d31=p42*l5" 
 
"DELTA1=d1-d31" 
 
"TAU=p1*2/3.1416-(p0-p27)*0.231-de+46u" 
 
"acqt0=0" 
baseopt_echo 
 
1 ze 
  3m stdlist:f2 st0 
2 6m 
3 6m 
4 d11 
  6m 
 
5 50u UNBLKGRAD 
4u pl10:f1 
(p17 ph2) 
  (p17*2 ph3) 
  4u 
  p30:gp1 
  10m pl1:f1 
  4u BLKGRAD 
 
DELTA1 
 
6 (p42:sp9 ph4):f2 
  4u 
lo to 6 times l5 
 
p1 ph1 
 
50u UNBLKGRAD 
  p16:gp2 
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d16 pl18:f1 
p27*0.231 ph5 
  d19*2 
  p27*0.692 ph5 
  d19*2 
  p27*1.462 ph5 
  d19*2 
  p27*1.462 ph6 
  d19*2 
  p27*0.692 ph6 
d19*2 
  p0*0.231 ph6 
TAU 
  p16:gp2 
d16 
  4u BLKGRAD 
 
goscnp ph31 
 
  3m stdlist.inc 
  3m stdlist:f2 st 
  lo to 3 times nbl 
  3m ipp1 ipp5 ipp6 ipp31 
  3m stdlist.res 
  lo to 4 times ns 
  d11 wr #0  
  3m rppall 
  3m zd 
  lo to 5 times l4 
exit 
 
ph1=0 2 
ph2=0 
ph3=1 
ph4=0 
ph5=0 0 1 1 2 2 3 3 
ph6=2 2 3 3 0 0 1 1 
ph31=0 2 2 0 
 
;pl1 : f1 channel - power level for pulse (default) 
;pl2 : f2 channel - power level for pulse (default)       [120 dB] 
;pl10: f1 channel - power level for TOCSY-spinlock 
;pl18: f1 channel - power level for 3-9-19-pulse (watergate) 
;sp9 : f2 channel - shaped pulse  for saturation          [40 - 60 dB] 
;p0 : f1 channel -  90 degree pulse at pl18 
;                      use for fine adjustment 
;p1 : f1 channel -  90 degree high power pulse 
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;p16: homospoil/gradient pulse 
;p17: f1 channel - trim pulse                             [2.5 msec] 
;p27: f1 channel -  90 degree pulse at pl18 
;p30: gradient pulse                                      [3 msec] 
;p42: f2 channel -  shaped pulse for saturation           [50 msec] 
;d1 : relaxation delay; 1-5 * T1 
;d11: delay for disk I/O                                  [30 msec] 
;d16: delay for homospoil/gradient recovery 
;d19: delay for binomial water suppression 
;     d19 = (1/(2*d)). d = distance of next null (in Hz) 
;d20: saturation time 
;d31: saturation time as executed 
;l4: l4 = number of averages = (total number of scans) / NS 
;l5: loop for saturation: p42 * l5 = saturation time 
;ns: 8 * n 
;ds: 4 
;td1: number of experiments 
;NBL: NBL = number of irradiation frequencies 
 
;define FQ2LIST (irradiation frequencies) 
;               (list has to be stored in "/u/exp/stan/nmr/lists/f1") 
 
;use gradient ratio:    gp 1 : gp 2 
;                         40 :   30 
 
;for z-only gradients: 
;gpz1: 40% 
;gpz2: 30% 
 
;use gradient files: 
;gpnam1: SMSQ10.100 
;gpnam2: SMSQ10.100 
 
;this pulse program produces a ser-file (PARMOD = 2D) 
 
;The STD experiment is protected by international patents owned by: 
;Alepharma Licensing. Raamfeld 67. 22397 Hamburg. Germany. 
;For commercial use (direct or indirect) please contact the company for 
;licensing information at: 
;E-mail: info@alepharma-licensing.com. 
;Fax: +49 4060847812. 
;Tel: +49 1701685158 or +49 1712788867. 
 
;$Id: stddiffgp19.2.v 1.9.2.1 2014/01/17 15:19:20 ber Exp $ 
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9.7 NMR diffusion PGSTE-WATERGATE pulse program 
 
;PGSTE WATERGATE 2D 
;set up by sebi (March 2010) 
;modified by nare 
;2D sequence for diffusion measurement with  
;water suppression using watergate W5 pulse sequence with gradients 
 
;G. Zheng. T. Stait-Gardner. P.G. Anil Kumar. A.M. Torres and W.S. Price 
;J. Magn. Reson. 191 (2008). pp. 159163 
 
;d1: 7 to 10 seconds (avoid sample heating) 
;p30: little delta 
;delta2 is fixed at 2ms 
;gpz5: around 20%  
;gpz6: incremented from 25-95% 
;gpz7: 6.66% 
;d20: specifies big Delta (around 100ms) 
;d19: delay for binomial water suppression 
;     d19 = distance of next null (200us ~ 5000 Hz) 
;ns=4*n 
;use "Difftrap" as gradient pulses 
;type "difftrap" before the start of the experiment 
;use AU-program dosy to calculate gradient ramp-file Difframp 
 
;$CLASS=HighRes Incl 
;$COMMENT= 
 

9.8 ssNMR PDSD pulse program 
 
;hxinept2D 
 
;2D heteronuclear shift correlation 
;with refocussing of chem. shifts 
;phase sensitive 
 
;A. Bax & G.A. Morris. J. Magn. Reson. 42. 501 (1981) 
 
;sewe 31.01.2013 
;TS 3.X Version 
 
;pl1 : f1 channel - power level for pulse  
;pl2 : =0W. not used 
;pl12: f2 channel - power level for Decoupling and p3 
;p1 : f1 channel -  90 degree high power pulse 
;p2 : f1 channel - 180 degree high power pulse 
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;p3 : f2 channel -  90 degree high power pulse 
;p4 : f2 channel - 180 degree high power pulse 
;d0 : incremented delay (2D) 
;d1 : relaxation delay; 1-5 * T1 
;d3 : 1/(6J(XH))  XH. XH2. XH3 positive 
;     1/(4J(XH))  XH only 
;     1/(3J(XH))  XH. XH3 positive. XH2 negative 
;d4 : 1/(4J(XH)) 
;cnst2: = J(XH) 
;cnst11: = 6  XH. XH2. XH3 positive 
;          4  XH only 
;          3  XH. XH3 positive. XH2 negative 
;inf1: 1/SW(H) = 2 * DW(H) 
;in0: 1/(2 * SW(H)) = DW(H) 
;nd0: 2 
;ns: 2 * n 
;td1: number of experiments 
;FnMODE: States-TPPI. TPPI. States or QSEQ 
;cpd2: decoupling according to sequence defined by cpdprg2 
;pcpd2: f2 channel - 180deg on 1H 
;cpdprg2: decoupling sequence. e.g spinal64_12 
 
;$CLASS=Solids 
;$DIM=2D 
;$TYPE=Heteronucelar correlation 
;$SUBTYPE= 
;$COMMENT=use hxinept1Dopt for setup 
 
 
# 1 "/opt/topspin3.5pl6/exp/stan/nmr/lists/pp/Avance.incl" 1 
;Avance3.incl 
;   for AV III 
 
;avance-version (13/06/17) 
 
;$CLASS=HighRes Incl 
;$COMMENT= 
# 169 "/opt/topspin3.5pl6/exp/stan/nmr/lists/pp/Avance.incl" 
;$Id: Avance3.incl.v 1.10.2.2 2013/08/30 09:43:33 ber Exp $ 
 
# 1 "/opt/topspin3.5pl6/exp/stan/nmr/lists/pp/Delay.incl" 1 
;Delay.incl  -  include file for commonly used delays 
 
;version (13/08/07) 
 
;$CLASS=HighRes Incl 
;$COMMENT= 



Appendix 

 141 

 
# 9 "/opt/topspin3.5pl6/exp/stan/nmr/lists/pp/Delay.incl" 
;general delays 
 
define delay DELTA 
define delay DELTA1 
define delay DELTA2 
define delay DELTA3 
define delay DELTA4 
define delay DELTA5 
define delay DELTA6 
define delay DELTA7 
define delay DELTA8 
define delay DELTA9 
define delay DELTA10 
define delay DELTA11 
define delay DELTA12 
define delay DELTA13 
define delay DELTA14 
define delay DELTA15 
define delay DELTA16 
 
define delay TAU 
define delay TAU1 
define delay TAU2 
define delay TAU3 
define delay TAU4 
define delay TAU5 
define delay TAU6 
define delay TAU7 
define delay TAU8 
define delay TAU9 
# 40 "/opt/topspin3.5pl6/exp/stan/nmr/lists/pp/Delay.incl" 
define delay INCR1 
define delay INCR2 
define delay INCR3 
define delay INCR4 
define delay INCR5 
define delay INCR6 
 
 
;delays for centering pulses 
# 50 "/opt/topspin3.5pl6/exp/stan/nmr/lists/pp/Delay.incl" 
define delay CEN_HN1 
define delay CEN_HN2 
define delay CEN_HN3 
define delay CEN_HC1 
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define delay CEN_HC2 
define delay CEN_HC3 
define delay CEN_HC4 
define delay CEN_HP1 
define delay CEN_HP2 
define delay CEN_CN1 
define delay CEN_CN2 
define delay CEN_CN3 
define delay CEN_CN4 
define delay CEN_CP1 
define delay CEN_CP2 
 
 
;loop counters 
# 69 "/opt/topspin3.5pl6/exp/stan/nmr/lists/pp/Delay.incl" 
define loopcounter COUNTER 
define loopcounter SCALEF 
define loopcounter FACTOR1 
define loopcounter FACTOR2 
define loopcounter FACTOR3 
define loopcounter FACTOR4 
define loopcounter FACTOR5 
define loopcounter FACTOR6 
 
 
# 80 "/opt/topspin3.5pl6/exp/stan/nmr/lists/pp/Delay.incl" 
;$Id: Delay.incl.v 1.14.2.1 2013/08/30 09:43:33 ber Exp $ 
 
 
"p2=p1*2" 
"p4=p3*2" 
"d3=1s/(cnst2*cnst11)" 
"d4=1s/(cnst2*4)" 
"d11=30m" 
"d12=20u" 
 
 
"d28=3u" 
"d0=d4" 
"d20=d4+p2+d28" 
"in0=inf1/2" 
 
 
"DELTA=d3+(p1*2/PI)-de-1u" 
"FACTOR1=d20*10000000*2/td1" 
"in20=FACTOR1/10000000" 
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"if ( in20 > in0 ) { in28= 0; } else { in28=in0-in20; }" 
"if ( in20 > in0 ) { in20=in0; }" 
 
"acqt0=0" 
baseopt_echo 
 
; dimension 2D; AQ_mode  (F1) States-TPPI 
define delay MCWRK 
define delay MCREST 
define delay d0orig 
"d0orig=d0" 
define delay d20orig 
"d20orig=d20" 
define delay d28orig 
"d28orig=d28" 
define loopcounter t1loop 
"t1loop=0" 
define loopcounter ph1loop 
"ph1loop=0" 
define loopcounter ST1CNT 
"ST1CNT = td1 / 2" 
"MCREST = 10m - 10m" 
"MCWRK = 0.200000*10m" 
 
    dccorr 
1 ze 
LBLAV. MCWRK 
      "d0=d0orig + t1loop * in0 " 
      "d20=d20orig - t1loop * in20 " 
      "d28=d28orig + t1loop * in28 " 
      "phval3 = (ph1loop % 4) * 90" 
      MCWRK ip3 + phval3 
2 MCWRK  * 2 do:f2 
LBLF1. MCWRK  * 2 
LBLST1. MCWRK  
MCREST 
3 d1 
  (p3 pl2 ph1):f2 
  d0 
  (p2 pl1 ph4):f1 
  d28 
  (p4 pl2 ph2):f2 
  d20 
  (p3 pl2 ph3):f2  
  (p1 pl1 ph5):f1 
  d3 
  (center (p4 pl2 ph2):f2 (p2 pl1 ph6):f1 ) 
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  DELTA  
  1u pl12:f2 
  go=2 ph31 cpds2:f2 
  MCWRK  do:f2 wr #0 if #0 zd  
 
  "ph1loop+=1" 
      "d0=d0orig + t1loop * in0 " 
      "d20=d20orig - t1loop * in20 " 
      "d28=d28orig + t1loop * in28 " 
      "phval3 = (ph1loop % 4) * 90" 
      MCWRK ip3 + phval3 
  lo to LBLF1 times 2 
  MCWRK  
 
  "t1loop+=1" 
      "d0=d0orig + t1loop * in0 " 
      "d20=d20orig - t1loop * in20 " 
      "d28=d28orig + t1loop * in28 " 
      "phval3 = (ph1loop % 4) * 90" 
      MCWRK ip3 + phval3 
  lo to LBLST1 times ST1CNT 
  MCWRK  
  "t1loop=0" 
  "ph1loop=0" 
  MCWRK rf #0 
  lo to LBLAV times tdav 
 
exit 
 
ph1=0 
ph2=0 0 2 2 
ph3=1 3 
ph4=0 0 2 2 
ph5=0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 
ph6=0 0 2 2 1 1 3 3 
ph31=0 2 0 2 1 3 1 3 2 0 2 0 3 1 3 1 
 
;$Id: hxinept2D.v 1.1.4.1 2014/02/11 09:04:53 ber Exp $ 
 

9.8 INEPT-based 1H13C correlation pulse program 
 
;2D heteronuclear shift correlation 
;with refocussing of chem. shifts 
;phase sensitive 
 
;A. Bax & G.A. Morris. J. Magn. Reson. 42. 501 (1981) 
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;sewe 31.01.2013 
;TS 3.X Version 
 
 
;pl1 : f1 channel - power level for pulse  
;pl2 : =0W. not used 
;pl12: f2 channel - power level for Decoupling and p3 
;p1 : f1 channel -  90 degree high power pulse 
;p2 : f1 channel - 180 degree high power pulse 
;p3 : f2 channel -  90 degree high power pulse 
;p4 : f2 channel - 180 degree high power pulse 
;d0 : incremented delay (2D) 
;d1 : relaxation delay; 1-5 * T1 
;d3 : 1/(6J(XH))  XH. XH2. XH3 positive 
;     1/(4J(XH))  XH only 
;     1/(3J(XH))  XH. XH3 positive. XH2 negative 
;d4 : 1/(4J(XH)) 
;cnst2: = J(XH) 
;cnst11: = 6  XH. XH2. XH3 positive 
;          4  XH only 
;          3  XH. XH3 positive. XH2 negative 
;inf1: 1/SW(H) = 2 * DW(H) 
;in0: 1/(2 * SW(H)) = DW(H) 
;nd0: 2 
;ns: 2 * n 
;td1: number of experiments 
;FnMODE: States-TPPI. TPPI. States or QSEQ 
;cpd2: decoupling according to sequence defined by cpdprg2 
;pcpd2: f2 channel - 180deg on 1H 
;cpdprg2: decoupling sequence. e.g spinal64_12 
 
 
;$CLASS=Solids 
;$DIM=2D 
;$TYPE=Heteronucelar correlation 
;$SUBTYPE= 
;$COMMENT=use hxinept1Dopt for setup 
 
 
# 1 "/opt/topspin3.5pl6/exp/stan/nmr/lists/pp/Avance.incl" 1 
;Avance3.incl 
;   for AV III 
 
;avance-version (13/06/17) 
 
;$CLASS=HighRes Incl 
;$COMMENT= 
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# 169 "/opt/topspin3.5pl6/exp/stan/nmr/lists/pp/Avance.incl" 
;$Id: Avance3.incl.v 1.10.2.2 2013/08/30 09:43:33 ber Exp $ 
 
# 1 "/opt/topspin3.5pl6/exp/stan/nmr/lists/pp/Delay.incl" 1 
;Delay.incl  -  include file for commonly used delays 
 
;version (13/08/07) 
 
;$CLASS=HighRes Incl 
;$COMMENT= 
 
# 9 "/opt/topspin3.5pl6/exp/stan/nmr/lists/pp/Delay.incl" 
;general delays 
 
define delay DELTA 
define delay DELTA1 
define delay DELTA2 
define delay DELTA3 
define delay DELTA4 
define delay DELTA5 
define delay DELTA6 
define delay DELTA7 
define delay DELTA8 
define delay DELTA9 
define delay DELTA10 
define delay DELTA11 
define delay DELTA12 
define delay DELTA13 
define delay DELTA14 
define delay DELTA15 
define delay DELTA16 
 
define delay TAU 
define delay TAU1 
define delay TAU2 
define delay TAU3 
define delay TAU4 
define delay TAU5 
define delay TAU6 
define delay TAU7 
define delay TAU8 
define delay TAU9 
# 40 "/opt/topspin3.5pl6/exp/stan/nmr/lists/pp/Delay.incl" 
define delay INCR1 
define delay INCR2 
define delay INCR3 
define delay INCR4 
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define delay INCR5 
define delay INCR6 
 
 
;delays for centering pulses 
# 50 "/opt/topspin3.5pl6/exp/stan/nmr/lists/pp/Delay.incl" 
define delay CEN_HN1 
define delay CEN_HN2 
define delay CEN_HN3 
define delay CEN_HC1 
define delay CEN_HC2 
define delay CEN_HC3 
define delay CEN_HC4 
define delay CEN_HP1 
define delay CEN_HP2 
define delay CEN_CN1 
define delay CEN_CN2 
define delay CEN_CN3 
define delay CEN_CN4 
define delay CEN_CP1 
define delay CEN_CP2 
 
 
;loop counters 
# 69 "/opt/topspin3.5pl6/exp/stan/nmr/lists/pp/Delay.incl" 
define loopcounter COUNTER 
define loopcounter SCALEF 
define loopcounter FACTOR1 
define loopcounter FACTOR2 
define loopcounter FACTOR3 
define loopcounter FACTOR4 
define loopcounter FACTOR5 
define loopcounter FACTOR6 
 
# 80 "/opt/topspin3.5pl6/exp/stan/nmr/lists/pp/Delay.incl" 
;$Id: Delay.incl.v 1.14.2.1 2013/08/30 09:43:33 ber Exp $ 
 
"p2=p1*2" 
"p4=p3*2" 
"d3=1s/(cnst2*cnst11)" 
"d4=1s/(cnst2*4)" 
"d11=30m" 
"d12=20u" 
 
 
"d28=3u" 
"d0=d4" 
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"d20=d4+p2+d28" 
"in0=inf1/2" 
 
 
"DELTA=d3+(p1*2/PI)-de-1u" 
"FACTOR1=d20*10000000*2/td1" 
"in20=FACTOR1/10000000" 
 
"if ( in20 > in0 ) { in28= 0; } else { in28=in0-in20; }" 
"if ( in20 > in0 ) { in20=in0; }" 
 
"acqt0=0" 
baseopt_echo 
 
; dimension 2D; AQ_mode  (F1) States-TPPI 
define delay MCWRK 
define delay MCREST 
define delay d0orig 
"d0orig=d0" 
define delay d20orig 
"d20orig=d20" 
define delay d28orig 
"d28orig=d28" 
define loopcounter t1loop 
"t1loop=0" 
define loopcounter ph1loop 
"ph1loop=0" 
define loopcounter ST1CNT 
"ST1CNT = td1 / 2" 
"MCREST = 10m - 10m" 
"MCWRK = 0.200000*10m" 
 
    dccorr 
1 ze 
LBLAV. MCWRK 
      "d0=d0orig + t1loop * in0 " 
      "d20=d20orig - t1loop * in20 " 
      "d28=d28orig + t1loop * in28 " 
      "phval3 = (ph1loop % 4) * 90" 
      MCWRK ip3 + phval3 
2 MCWRK  * 2 do:f2 
LBLF1. MCWRK  * 2 
LBLST1. MCWRK  
MCREST 
3 d1 
  (p3 pl2 ph1):f2 
  d0 
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  (p2 pl1 ph4):f1 
  d28 
  (p4 pl2 ph2):f2 
  d20 
  (p3 pl2 ph3):f2  
  (p1 pl1 ph5):f1 
  d3 
  (center (p4 pl2 ph2):f2 (p2 pl1 ph6):f1 ) 
  DELTA  
  1u pl12:f2 
  go=2 ph31 cpds2:f2 
  MCWRK  do:f2 wr #0 if #0 zd  
 
  "ph1loop+=1" 
      "d0=d0orig + t1loop * in0 " 
      "d20=d20orig - t1loop * in20 " 
      "d28=d28orig + t1loop * in28 " 
      "phval3 = (ph1loop % 4) * 90" 
      MCWRK ip3 + phval3 
  lo to LBLF1 times 2 
  MCWRK  
 
  "t1loop+=1" 
      "d0=d0orig + t1loop * in0 " 
      "d20=d20orig - t1loop * in20 " 
      "d28=d28orig + t1loop * in28 " 
      "phval3 = (ph1loop % 4) * 90" 
      MCWRK ip3 + phval3 
  lo to LBLST1 times ST1CNT 
  MCWRK  
  "t1loop=0" 
  "ph1loop=0" 
  MCWRK rf #0 
  lo to LBLAV times tdav 
exit 
ph1=0 
ph2=0 0 2 2 
ph3=1 3 
ph4=0 0 2 2 
ph5=0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 
ph6=0 0 2 2 1 1 3 3 
ph31=0 2 0 2 1 3 1 3 2 0 2 0 3 1 3 1 
 
;$Id: hxinept2D.v 1.1.4.1 2014/02/11 09:04:53 ber Exp $ 



 

 150 

 

 


	List of Tables
	Abbreviations
	1 Introduction
	1.1 Neurodegeneration and neurodegenerative diseases
	1.2 Tau and Tauopathies
	1.2.1 Tau in Alzheimer´s disease

	1.3 The microtubule-associated protein tau
	1.3.1 Tau isoforms and domain organization
	1.3.2 The intrinsically disordered properties of Tau

	1.4 Biomolecular liquid-liquid phase separation
	1.4.1 LLPS in the cellular environment
	1.4.2 LLPS in vitro
	1.4.3 Tau LLPS

	1.5 Tau fibrils
	1.5.1 Amyloid fibrils and their polymorphism
	1.5.2 Tau aggregation
	1.5.3 The structure of tau fibrils

	1.6 Tau interaction with the cytoskeleton
	1.6.1 Tubulin and microtubules
	1.6.2 Tau regions involved in the interaction with tubulin and microtubules
	1.6.3 Tau-induced tubulin polymerization
	1.6.4 The role of charges in tau-tubulin/microtubule interaction
	1.6.5 Structural insights into the binding of tau to tubulin and microtubules

	1.1
	1.7 Tau phosphorylation
	1.1.1
	1.7.1 Tau phosphorylation mediated by PDPK
	1.7.2 Tau phosphorylation mediated by non-PDPKs

	1.8 Aims of this work

	2 Materials and methods
	2.1 Preparation of K32: protein expression and purification
	2.1.2 E. coli transformation
	2.1.3 Protein expression
	2.1.4 Purification protocols and procedure

	2.2 P2R2 and P2R3 peptides preparation
	2.2.1 Peptide sequence design
	2.2.2 PCR
	2.2.3 Restriction enzyme double digestion and ligation reaction
	2.2.4 E. coli transformation
	2.2.5 Protein expression
	2.2.6 Purification protocols and procedure

	2.3 Uniform isotope labeling of proteins for solution and solid-state NMR
	2.4 Determination of protein concentration
	2.5 Circular dichroism of P2R2 and P2R3 peptides in the monomeric form
	2.6 Fibril formation and characterization
	2.6.1 Fibrillization protocol
	2.6.2 ThT fluorescence
	2.6.3 Electron microscopy
	2.6.4 Circular dichroism of fibrils obtained from K32 and the P2R2 and P2R3 peptides

	2.7 In vitro tau phosphorylation with kinases
	2.8 Phase-contrast and fluorescence microscopy
	2.8.1 Fluorescent labeling of tau and tubulin
	2.8.2 Tau droplet formation

	2.9 Tubulin polymerization
	2.9.1 Assembly of paclitaxel-stabilized microtubules
	2.9.2 Tubulin polymerization from tau droplets

	2.10 Synthetic peptides
	2.11 Nuclear magnetic resonance
	2.11.1 One- and two-dimensional NMR
	2.11.2 2D heteronuclear single quantum coherence (HSQC)
	2.11.2.1 HSQC experiment settings and data analysis for the project I
	2.11.2.2 HSQC experiment settings and data analysis for the project II

	2.11.3 Transverse relaxation-optimized spectroscopy (TROSY)
	2.11.3.1 TROSY experiment settings and data analysis

	2.11.4 3D NMR experiments for resonance assignment
	2.11.4.1 3D experiments settings and data analysis

	2.11.5 The Nuclear Overhauser Effect
	2.11.6 The transferred NOE (Tr-NOE)
	2.11.6.1 2D NOE experiments for the structure determination of Tau(P2)

	2.11.7 Saturation transfer difference (STD)
	2.11.7.1 STD NMR experiments settings and data analysis

	2.11.8 Characterization of protein diffusion via NMR
	2.11.8.1 NMR diffusion experiment settings and data analysis

	2.11.9 Solid-state NMR of tau fibrils
	2.11.9.1 Differences between liquid-state and solid-state NMR
	2.11.9.2 13C-13C correlation obtained via proton-driven spin diffusion (PDSD)
	2.11.9.3 2D INEPT transfer-based 1H-13C through-bond correlation
	2.11.9.4 Preparation of solid-state NMR samples and experimental settings


	3.1 Solution-state NMR of the K32 construct
	3.2 Characterization of in vitro K32 fibrils
	3.3 Proton Driven Spin Diffusion (PDSD) experiment on K32 fibrils
	3.4 Detection of the flexible regions in K32 fibrils
	3.5 Preparation of the P2R2 and the P2R3 polypeptides for a simplistic model of tau fibrils
	3.6 Characterization of the intrinsically disordered properties of P2R2 and P2R3
	3.7 In vitro P2R2 and P2R3 fibrillization
	3.8 PDSD experiments on P2R2 and P2R3 fibrils
	3.9 Detection of the flexible regions in P2R2 and P2R3 fibrils

	4 Discussion: project I
	4.1 The relevance of theproline-rich region of tau in pathological conditions
	4.2 Structural properties of the rigid core of K32 fibrils
	4.3 The flexible regions in K32 fibrils
	4.5 Biophysical characterization of P2R2/P2R3 fibrils
	4.6 The contributionof the P2 domain to the cross- structure of P2R2 and P2R3 fibrils

	5 Results:project II
	5.1 Tau interaction with microtubules at different concentrations and temperatures
	5.2 Tau interaction with soluble tubulin
	5.3 Tau phosphorylation byCdk2/CycA2
	5.4 Interaction of phosphorylated tau with tubulin/microtubules
	5.5 Tau LLPS and tubulin polymerization
	5.6 Impact of phosphorylation of tau’s proline-rich region on LLPS-mediated tubulin polymerization
	5.7 Tau phosphorylation by MARK2 and interaction with microtubules
	5.9 Binding of tau’sproline-rich region to soluble tubulin
	5.10 Structural insights into the interaction of Tau(P2) with microtubules
	5.11 Effect of Tau(P2) phosphorylation atT231 on the interaction with tubulin/microtubules
	5.12 Structural changes induced by phosphorylation in the proline-rich region of tau

	6 Discussion: project II
	6.1 Tau interaction with paclitaxel-stabilized microtubules and soluble tubulin
	6.2 Tau phosphorylation in different regions of the sequence
	6.3 Tubulin polymerization in tau phase separation conditions
	6.4 Interaction between the proline-rich region of tau and tubulin/microtubules
	6.5 Effect of T231 phosphorylation on tau interaction with tubulin/microtubules

	7 Bibliography
	9 APPENDIX
	9.1 Tau parameters
	9.1.1 htau40 physical and chemical parameters

	9.2 P2R2 and P2R3 polypeptide parameters
	9.3 K32 construct parameters
	9.3.1 K32 physical and chemical parameters

	9.4 STD NMR of tau peptides binding to soluble tubulin
	9.5 1H-15N HSQC pulse program
	9.6 1H 1D STD NMR experiment pulse program
	9.7 NMR diffusion PGSTE-WATERGATE pulse program
	9.8 ssNMR PDSD pulse program
	9.8 INEPT-based 1H13C correlation pulse program


