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Abstract

In this thesis, we propose to use generalized fixed point algebras as an approach
to the pseudodifferential calculus on filtered manifolds.

A filtered manifold is a manifold M with a filtration of its tangent bundle which
is compatible with the Lie bracket. This filtration allows to define a new notion
of order for the differential operators on M . As a result, the highest order part
of a differential operator is a family of right-invariant model operators acting on
certain nilpotent Lie groups. These groups form the bundle of osculating groups of
the filtered manifold. The new order can be encoded by a dilation action of R>0
on this bundle.

The tangent groupoid THM of the filtered manifold M describes the relation
between the operators acting on M and their model operators on the osculating
groups. It is equipped with a “zoom” action of R>0 that extends the dilations. In
this thesis, we build the generalized fixed point algebra for the zoom action on a
certain ideal J in the groupoid C∗-algebra of THM . This generalized fixed point al-
gebra FixR>0(J) is a C∗-subalgebra of the bounded operators on L2(M). Moreover,
there is a “principal symbol map” SH which induces a short exact sequence

K(L2M) FixR>0(J) FixR>0(J0).SH

Here, the principal symbol map takes values in another generalized fixed point
algebra FixR>0(J0), where J0 is an ideal in the C∗-algebra of the bundle of oscu-
lating groups. This symbol algebra is, in general, noncommutative. It is unital if
M is compact. In this case, call P ∈ FixR>0(J) elliptic if its principal symbol is
invertible. We show that P is elliptic if and only if all model operators satisfy the
Rockland condition.

Furthermore, it is shown that the sequence above coincides with the C∗-comple-
tion of the order zero pseudodifferential extension by van Erp and Yuncken [vEY19].
When viewing a graded Lie group as a filtered manifold, we show that the same
holds for the calculus by Fischer, Ruzhansky and Fermanian-Kammerer developed
in [FR16,FFK17].

We prove that FixR>0(J0) is KK-equivalent to the usual principal symbol alge-
bra of functions on the cosphere bundle of M . Lastly, we present an index theorem,
up to inverting the Connes–Thom isomorphism, for order zero pseudodifferential
operators on a compact filtered manifold that are elliptic in this calculus.

In this thesis, we propose to use generalized fixed point algebras as an approach
to the pseudodifferential calculus on filtered manifolds.

A filtered manifold is a manifold M with a filtration of its tangent bundle which
is compatible with the Lie bracket. This filtration allows to define a new notion
of order for the differential operators on M . As a result, the highest order part
of a differential operator is a family of right-invariant model operators acting on
certain nilpotent Lie groups. These groups form the bundle of osculating groups of
the filtered manifold. The new order can be encoded by a dilation action of R>0
on this bundle.

The tangent groupoid of a filtered manifold M describes the relation between
the operators acting on M and their model operators on the osculating groups. It is
equipped with a ”zoom” action of R>0 that extends the dilations. In this thesis, we
build the generalized fixed point algebra for the zoom action on a certain ideal J in
the groupoid C∗-algebra of the tangent groupoid. This generalized fixed point alge-
bra FixR>0(J) is a C∗-subalgebra of the bounded operators on L2(M). Moreover,
there is a ”principal symbol map” which takes values in another generalized fixed
point algebra FixR>0(J0), where J0 is an ideal in the C∗-algebra of the bundle of
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osculating groups. The kernel of the symbol map consists of the compact operators.
The symbol algebra is, in general, noncommutative. It is unital if M is compact. In
this case, call P ∈ FixR>0(J) elliptic if its principal symbol is invertible. We show
that P is elliptic if and only if all model operators satisfy the Rockland condition.

Furthermore, it is shown that the sequence above coincides with the C∗-comple-
tion of the order zero pseudodifferential extension by van Erp and Yuncken. When
viewing a graded Lie group as a filtered manifold, we show that the same holds for
the calculus by Fischer, Ruzhansky and Fermanian-Kammerer.

We prove that FixR>0(J0) is KK-equivalent to the usual principal symbol alge-
bra of functions on the cosphere bundle of M . Lastly, we present an index theorem,
up to inverting the Connes-Thom isomorphism, for order zero pseudodifferential op-
erators on a compact filtered manifold that are elliptic in this calculus.
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Zusammenfassung

In dieser Dissertation schlagen wir verallgemeinerte Fixpunktalgebren als Zu-
gang zu Pseudodifferentialkalkülen auf filtrierten Mannigfaltigkeiten vor.

Eine filtrierte Mannigfaltigkeit ist eine Mannigfaltigkeit mit einer Filtrierung
des Tangentialbündels, die kompatibel mit der Lieklammer ist. Diese Filtrierung
ermöglicht es, einen neuen Begriff von Ordnung für die Differentialoperatoren auf
M zu definieren. Daraus resultiert, dass der Teil mit der höchsten Ordnung als eine
Familie von rechts-invarianten Modelloperatoren auf gewissen nilpotenten Liegrup-
pen aufgefasst werden kann. Diese Gruppen bilden das Bündel der oskulierenden
Gruppen der filtrierten Mannigfaltigkeit. Die neue Ordnung kann durch eine Stre-
ckungswirkung von R>0 auf diesem Bündel beschrieben werden.

Der Tangentialgruppoid THM der filtrierten Mannigfaltigkeit M beschreibt die
Beziehung zwischen den Operatoren, die auf M wirken, und ihren Modelloperato-
ren auf den oskulierenden Gruppen. Die Streckungen können zu einer Zoomwir-
kung auf THM erweitert werden. In dieser Arbeit konstruieren wir die verallgemei-
nerte Fixpunktalgebra für die Zoomwirkung auf einem Ideal J in der Gruppoid-
C∗-Algebra von THM . Diese verallgemeinerte Fixpunktalgebra FixR>0(J) ist eine
C∗-Unteralgebra der beschränkten Operatoren auf L2(M). Außerdem gibt es eine
Hauptsymbolabbildung SH , die eine kurze exakte Folge induziert

K(L2M) FixR>0(J) FixR>0(J0).SH

Hierbei nimmt die Hauptsymbolabbildung Werte in einer weiteren verallgemeiner-
ten Fixpunktalgebra FixR>0(J0) an, wobei J0 ein Ideal in der C∗-Algebra des Grup-
penbündels ist. Diese Symbolalgebra ist im Allgemeinen nicht kommutativ. Sie ist
unital, wenn M kompakt ist. In diesem Fall nennen wir P ∈ FixR>0(J) elliptisch,
wenn das Hauptsymbol invertierbar ist. Wir zeigen, dass P genau dann elliptisch
ist, wenn alle Modelloperatoren die Rocklandbedingung erfüllen.

Zudem zeigen wir, dass die obige Folge die C∗-Vervollständigung der Pseudo-
differentialerweiterung nullter Ordnung von van Erp und Yuncken [vEY19] ist.
Wenn eine graduiert nilpotente Liegruppe als filtrierte Mannigfaltigkeit aufgefasst
wird, erhalten wir das gleiche Ergebnis für den Kalkül von Fischer, Ruzhansky und
Fermanian-Kammerer, der in [FR16,FFK17] entwickelt wurde.

Es wird gezeigt, dass FixR>0(J0) KK-äquivalent zu der gewöhnlichen Haupt-
symbolalgebra von Funktionen auf dem Cosphärenbündel ist. Zuletzt beweisen wir,
bis auf Invertieren des Connes–Thom-Isomorphismus, einen Indexsatz für Pseudo-
differentialoperatoren nullter Ordnung auf kompakten filtrierten Mannigfaltigkeit,
die elliptisch in diesem Kalkül sind.
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Resumé

I denne afhandling foresl̊ar vi at bruge generaliserede fikspunkt-algebraer som
en tilgang til pseudodifferentielle kalkyler p̊a filtrerede mangfoldigheder.

En filtreret mangfoldighed er en mangfoldighed M med en filtrering p̊a dens
tangentbundt, der er kompatibel med dens Lie-parentes. En s̊adan filtrering til-
lader os at definere et nyt ordensbegreb for differentialoperatorer p̊a M , hvor
højesteordensdelen er en familie af højre-invariante modeloperatorer. Disse virker
p̊a særlige nilpotente Liegrupper, som udgør bundtet af oskulerende grupper p̊a den
filtrerede mangfoldighed. Denne nye orden kan udstyres med en R>0-virkning p̊a
bundtet.

Tangentgruppoiden THM af en filtreret mangfoldighed M beskriver relatio-
nen mellem operatorer virkende p̊a M og deres modeloperatorer p̊a de oskulerende
grupper. Denne er udstyret med en “zoom”-virkning fra R>0, som udvider dilata-
tionerne. I denne afhandling, konstruerer vi den generaliserede fikspunkt-algebra til
zoom-virkningen ud fra et bestemt ideal J i C∗-algebra gruppoiden af THM . Denne
generaliserede fikspunkt-algebra FixR>0(J) er en C∗-subalgebra af de begrænsede
operatorer p̊a L2(M). Ydermere er der en “ledende symbol afbildning” SH , som
inducerer en kort eksakt følge

K(L2M) FixR>0(J) FixR>0(J0).SH

Den ledende symbol afbildning tager værdier i en anden generaliseret fikspunkt-
algebra FixR>0(J0), hvor J0 er et ideal i C∗-algebraen af bundtet af oskulerende
grupper. Generelt vil denne symbolalgebra være ikke-kommutativ. Den har enhed
s̊afremt M er kompakt. I dette tilfælde, siger vi at P ∈ FixR>0(J) er elliptisk hvis
dens ledende symbol er invertibelt. Vi viser at P er elliptisk hvis og kun hvis alle
modeloperatorerne opfylder Rockland-betingelserne.

Det vises derudover at ovenst̊aende følge er sammenfaldende med C∗-fuldstæn-
diggørelsen af nulteordens pseudodifferential-udvidelsen fra van Erp og Yuncken
[vEY19]. S̊afremt vi anskuer en gradueret nilpotent Liegruppe som en filtreret
mangfoldighed, viser vi at det samme gør sig gældende for den kalkyle der er ud-
viklet af Fischer, Ruzhansky og Fermanian-Kammerer [FR16,FFK17].

Vi beviser desuden at FixR>0(J0) er KK-ækvivalent med den almindelige le-
dende symbolalgebra af funktioner p̊a kosfærebundtet af M . Slutteligt præsenterer
vi en indekssætning, op til inversion af Connes–Thom isomorfien, for nulteordens
pseudodifferentialoperatorer p̊a en kompakt filtreret mangfoldighed der er elliptiske
i denne kalkyle.
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CHAPTER 1

Introduction

If the kernel and cokernel of a bounded operator P : H1 → H2 between two
Hilbert spaces are finite-dimensional, it is called a Fredholm operator. Its Fredholm
index is

indP = dim(kerP )− dim(cokerP ) ∈ Z.

The dimension of the cokernel describes how many constraints f ∈ H2 has to fulfil
to have a solution x ∈ H1 of the equation Px = f . The uniqueness of this solution
is described by the dimension of the kernel. The difference of these integers turns
out to be a useful invariant as it is, for example, stable under compact perturbations
of the operator.

An elliptic differential operator on a closed manifold is Fredholm. This follows
from the properties of the classical pseudodifferential calculus. The famous Atiyah–
Singer Index Theorem [AS68] states that its Fredholm index, which is also called
the analytical index in this context, equals the more easily computed topological
index.

However, there are differential operators that are Fredholm but not elliptic (see
[BvE14, 2.3]). Consider the 3-dimensional Heisenberg group H whose Lie algebra h
is generated by X,Y, Z with the relations [X,Y ] = Z and [X,Z] = [Y,Z] = 0. Let
M be the quotient of the Heisenberg group by the integer lattice Γ in H. Then the
right-invariant differential operator

P = −X2 − Y 2 + iµZ (1)

is Fredholm on M if and only if µ ∈ C\2Z+1. It is not elliptic, because the Z-part
is not considered in the principal symbol as it does not belong to the highest order
part. This changes if we attach different orders to the differential operators that
generate h. If Z has order 2 and X,Y have order 1, all parts of P contribute to the
highest order part. This highest order part can be understood as a right-invariant
differential operator on H and satisfies the Rockland condition. To formulate it,
recall that each unitary, irreducible representation π : H→ U(Hπ) of the Heisenberg
group induces an infinitesimal representation dπ of h on the smooth vectors H∞π ⊂
Hπ. It extends to a representation dπ of the universal enveloping algebra of h,
which can be identified with right-invariant differential operators on H.

Definition 1.1. A right-invariant differential operator P on the Heisenberg group H
satisfies the Rockland condition if dπ(P ) is injective on H∞π for all unitary, irre-
ducible representations π 6= πtriv of H. Here, πtriv denotes the trivial representation
πtriv(g) = 1 for all g ∈ H.

The representation theory of the Heisenberg group is well-known. One can
show that the operator above satisfies the Rockland condition, see [Eps99]. From
this one can deduce that P is Fredholm.

The idea that certain operators can be better understood when using a highest
order part that acts on a nilpotent Lie group, like the Heisenberg group, goes back to
Folland, Rothschild and Stein [FS74,RS76,Fol77]. It is the underlying concept of

1



2 1. INTRODUCTION

several calculi like the ones developed in [Mel82,Tay84,BG88,CGGP92,FR16,
vEY19].

We may encode the different orders of the generators of h by an R>0-action
on h that scales the generators by different powers of r, say r ·X = rX, r · Y = rY
and r · Z = r2Z. Then the operator above is homogeneous of degree 2. This
thesis proposes to use generalized fixed point algebras of such R>0-actions to build
pseudodifferential calculi.

Generalized fixed point algebras were defined by Rieffel as a noncommutative
analogue of the orbit space for a proper group action H y X on a locally compact
Hausdorff space X. In this case, the orbit space is again locally compact and
Hausdorff. Following a well-known paradigm in noncommutative geometry, one
attaches to a space its C∗-algebra of functions. In this case, consider C0(H\X), the
continuous C-valued functions on the orbit space H\X which vanish at infinity.

For example, if H = R>0 acts on Rn\{0} by scaling, the C∗-algebra of functions
on the orbit space is C(Sn−1) where Sn−1 denotes the unit sphere. Equivalently,
one could understand these as continuous functions that are constant along rays.
Except for the zero function, they do not vanish at infinity. So they are not fixed
points of the action on C0(Rn \ {0}). However, one could understand them as
generalized fixed points as they are invariant under R>0 and still act on C0(Rn\{0})
by multiplication.

To generalize this to an H-action on a noncommutative C∗-algebra A, note
that elements of F ∈ C0(H\X) can be obtained by averaging functions f ∈ Cc(X)
over the group action by setting

F (Hx) =
∫
H

f(h−1 · x) dh for x ∈ X.

Therefore, one seeks a subset R ⊂ A such that averaging elements a ∈ R as above
yields well-defined multipliers of A. These generate the generalized fixed point
algebra FixH(A) inside the multiplier algebra of A. The precise construction will
be recalled in this thesis. At this point, we remark that R can fail to exist or to be
unique. Furthermore, there is a built-in Morita equivalence between FixH(A) and
an ideal in the reduced crossed product C∗-algebra C∗r (H,A).

For classical pseudodifferential operators on a manifold M , the C∗-algebra of
principal symbols is C0(S∗M). Here, S∗M denotes the cosphere bundle. Extending
the example above, this is the C∗-algebra corresponding to the orbit space of the
R>0-action λ · (x, ξ) = (x, λξ) on T ∗M \ (M × {0}). Thus, it is a generalized
fixed point algebra. Moreover, Debord and Skandalis observed in [DS14] that
the pseudodifferential operators themselves can be obtained as averages of certain
elements of the C∗-algebra of the tangent groupoid of M .

Connes’ tangent groupoid TM of a manifold M (see [Con94]) is a continuous
field of groupoids over [0,∞) given by

TM = (TM × {0}) ∪ (M ×M × (0,∞)).

Its groupoid structure is given by addition of tangent vectors in the fibres of TM ,
whereas the pair groupoid structure is used for t > 0. These two components are
glued together in a continuous, even smooth, way. For M = Rn the topology is
such that (xn, yn, tn) converges to (x,X, 0) if and only if xn, yn → x, tn → 0 and
the “difference quotient” satisfies (xn − yn)/tn → X.

As for groups, one can attach to a groupoid G a C∗-algebra C∗(G) if G admits
a Haar system. The starting point is a convolution algebra structure on Cc(G). For
the tangent groupoid, the C∗-algebra of TM is a continuous field of C∗-algebras that
deforms the commutative C∗-algebra C∗(TM) at t = 0 to C∗(M ×M) = K(L2M)
at t = 1.
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Note that C∗(TM) is isomorphic to C0(T ∗M) via fibrewise Fourier transform.
This allows to extend C0(T ∗M\(M × 0)) to an ideal J in C∗(TM), namely the one
generated by f ∈ Cc(TM) such that f̂0(x, 0) = 0 for all x ∈M . Here f̂0 denotes the
Fourier transform of f0. One can extend the scaling action on T ∗M to the “zoom”
action on TM by setting for λ > 0

λ · (x,X, 0) = (x, λX, 0) for x ∈M , X ∈ TxM,

λ · (x, y, t) = (x, y, λ−1t) for x, y ∈M , t > 0.
The C∗-algebra generated by the pseudodifferential operators of order zero is iso-
morphic to FixR>0(J) for the zoom action of R>0.

In this thesis, we extend this generalized fixed point algebra construction to
the situation when different orders are attached to vector fields. Filtered manifolds
constitute a general framework where this is possible.

Definition 1.2. Let M be a smooth manifold with a filtration of its tangent bundle
0 = H0 ⊆ H1 ⊆ H2 ⊆ . . . ⊆ Hr = TM by smooth subbundles Hi. The manifold is
called a filtered manifold if the Lie bracket of vector fields satisfies[

Γ∞(Hi),Γ∞(Hj)
]
⊆ Γ∞(Hi+j) for all i, j.

Here, we set Hi = TM for all i ≥ r.

Examples of filtered manifolds are graded Lie groups, foliations or Heisenberg
manifolds, in particular, also contact manifolds. There is an associated graded
vector bundle

tHM =
∞⊕
i=1

Hi/Hi−1.

The condition on the Lie bracket above allows to equip each fibre with the structure
of a nilpotent Lie algebra. Using the Baker–Campbell–Hausdorff formula, they
integrate to nilpotent Lie groups, called the osculating groups. The graded vector
bundle with this group structure in the fibres is denoted by THM . Following the
conventions in the literature, we call it the bundle of osculating groups, even though
it cannot be understood as a fibre bundle of groups in the usual sense. The reason
is that the isomorphism type of the osculating groups may vary from point to point.

In the example M = H/Γ from the beginning, one obtains a filtration where
H1 is generated by X,Y and H2 = TM . In this case, all osculating groups are
isomorphic to the Heisenberg group H.

Extending the given example, there is a well-defined dilation action of R>0
on tHM given by λ · X = λiX for X ∈ (Hi/Hi−1)x and x ∈ M . The part of a
differential operator which is homogeneous of the highest degree with respect to
these dilations is called the highest order part. It can be understood as a family
of right-invariant operators on the osculating groups. In the classical pseudodif-
ferential calculus, these correspond to the model operators obtained by “freezing
coefficients” at x ∈ M . These can be understood as right-invariant operators on
TxM ∼= Rn. Therefore, the bundle of osculating groups THM is the right replace-
ment for TM .

As in the case without a filtration, THM fits into a tangent groupoid, which
is adapted to the filtered structure. This tangent groupoid was constructed using
different approaches in [vEY19, CP19b, SH18, Moh18]. It is a continuous field
of groupoids over [0,∞) given by

THM = (THM × {0}) ∪ (M ×M × (0,∞)).
Here, the groupoid structure is such that group multiplication is used in the fibres
of THM . Again, there is a zoom action of R>0 where we use the dilations at t = 0.
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To define the generalized fixed point algebra one needs an appropriate ideal J
in C∗(THM). Observe that in the case without a filtration,

f̂(0) = 0⇐⇒
∫
f(x) dx = 0⇐⇒ f ∈ ker(πtriv : C∗(Rn)→ C)

for f ∈ S(Rn). Here, πtriv : Rn → C is the trivial representation πtriv(x) = 1 for
all x ∈ Rn. It induces a representation of C∗(Rn) given by f 7→

∫
Rn f(x) dx for

f ∈ S(Rn).
Therefore, we define J0 to be the ideal in C∗(THM) consisting of elements that

restrict at all x ∈M to elements that lie in the kernel of the trivial representation
of the osculating group at x. This will replace C0(T ∗M \ (M × 0)). The ideal J in
C∗(THM) consists of all elements whose restriction to t = 0 lies in J0.

In this thesis, it is shown that the generalized fixed point algebra construction
can be applied to the zoom action on J. That is, we prove that a subset R ⊂ J with
the necessary properties exists. In order to do so, we define a Schwartz type algebra
A(THM), similar to the one in [CR08], by adapting the construction to filtered
manifolds. It is a subalgebra of C∗(THM) which consists of f = (ft) ∈ C∞(THM)
such that ft are compactly supported in M×M for t > 0 and f0 has rapid decay in
the fibres of THM . For the generalized fixed point algebra construction, we could
also work with R = C∞c (THM) ∩ J. However, it will become apparent in later
proofs that it is better to use the larger subset R = A(THM) ∩ J.

The generalized fixed point algebra approach yields a short exact sequence

K(L2M) FixR>0(J) FixR>0(J0).SH (2)

Moreover, FixR>0(J) can be faithfully represented as bounded operators on L2(M).
The sequence above can be understood as an abstract order zero pseudodifferential
extension. The compact operators are the C∗-completion of the operators of neg-
ative order. The algebra FixR>0(J) is the completion of the order zero operators.
There is a principal symbol map SH taking values in the C∗-algebra FixR>0(J0). In
general, this algebra is noncommutative. It is unital if M is compact. An operator
P ∈ FixR>0(J) is called elliptic, if its principal symbol is invertible. In this case, P
is Fredholm.

We show that FixR>0(J0) is a continuous field of C∗-algebras over M . Its
fibres are the generalized fixed point algebras FixR>0(Jx). Here, Jx is the kernel of
the trivial representation of the osculating group G(x) at x ∈M . The elements of
FixR>0(Jx) act as right-invariant operators on L2(G(x)). We prove that FixR>0(Jx)
is the C∗-algebra generated by the convolution operators with kernels of type 0 that
were studied in the context of homogeneous groups. For this proof, it is essential
that R consists of Schwartz functions at t = 0. It will be used that rapid decay
is preserved by the Euclidean Fourier transform and its inverse. The generalized
fixed point algebra approach yields a new proof of the result by Knapp and Stein
[KS71] that these operators extend to bounded operators on L2(G(x)).

It is shown in this thesis that the sequence in (2) is the C∗-closure of the order
zero extension of van Erp and Yuncken [vEY19], when restricting to compactly
supported kernels. Their calculus is already very close in spirit as it is also built on
the tangent groupoid and the zoom action. They define a notion of H-ellipticity
for their calculus. For a compact manifold, we show that an order zero opera-
tor P in their calculus is H-elliptic if and only if SH(P ) is invertible in FixR>0(J0).
Moreover, this is equivalent to SH(P )(x) and SH(P ∗)(x) satisfying the Rockland
condition at each x ∈ M . The generalized fixed point algebra construction allows
to understand the Rockland condition in a natural way by describing the spectrum
of FixR>0(Jx).
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Fischer and Ruzhansky developed in [FR16] a pseudodifferential calculus for
graded Lie groups G. It is a symbolic calculus, which uses the operator-valued
Fourier transform defined in terms of the representations of G. In [FFK17] homo-
geneous expansions for their symbols were defined. We show that the C∗-completion
of their order zero pseudodifferential extension is the sequence (2) for M = G.

By the generalized fixed point algebra construction, the algebras of pseudodif-
ferential operators and principal symbols, FixR>0(J) and FixR>0(J0), are Morita
equivalent to ideals in C∗r (R>0,J) and C∗r (R>0,J0), respectively. Using the repre-
sentation theory of nilpotent Lie groups, in particular, Kirillov theory [Kir62] and
Pukánszky’s stratification [Puk67], we show that they are, in fact, Morita equiv-
alent to the whole reduced crossed products. This allows us to prove, using the
Connes–Thom isomorphism, that FixR>0(J0) has the same K-theory as the usual
C∗-algebra of symbols C0(S∗M).

An index theorem for contact manifolds was accomplished by van Erp and
Baum in [BvE14], extending work in [vE10a,vE10b]. Recently, Mohsen proved an
index theorem for filtered manifolds in [Moh20]. In this thesis, we prove a theorem
for H-elliptic pseudodifferential operators of order 0 on a compact filtered manifold,
which reduces the index problem to inverting the Connes–Thom isomorphism.

Note that parts of this thesis, in particular the results for graded Lie groups,
are contained in [Ewe20].

This thesis is organized as follows. Chapter 2 gives an overview on generalized
fixed point algebras. Some new results regarding their behaviour under C∗-algebra
extensions are proved. In Chapter 3, graded Lie groups are defined. Moreover,
analysis on these groups and their representation theory is discussed. Chapter 4 is
concerned with filtered manifolds. In particular, the bundle of osculating groups is
defined. The construction of the tangent groupoid of a filtered manifold is recalled in
Chapter 5. In Chapter 6, the C∗-algebra of the tangent groupoid and the Schwartz
type algebra are defined. We prove in Chapter 7 that the generalized fixed point
algebra construction applies to the zoom action of R>0 on the ideal J in C∗(THM).
We obtain the sequence in (2). The relation between generalized fixed point algebras
and kernels of type 0 is examined in Chapter 8. In Chapter 9, we compare the
generalized fixed point algebra construction to the calculus of van Erp and Yuncken
and the calculus of Fischer, Ruzhansky and Fermanian-Kammerer. The Morita
equivalence to the reduced crossed products is proved in Chapter 10. In Chapter 11,
H-ellipticity is discussed, and we describe the results towards index theory for
filtered manifolds. Chapter 12 consists of a short conclusion and an outlook.



CHAPTER 2

Generalized fixed point algebras

Let H be a locally compact group and X a locally compact Hausdorff space. If
H acts properly on X, the orbit space H\X is again locally compact and Hausdorff.
Hence, one can consider the corresponding algebra of functions C0(H\X), which
consists of continuous functions f : H\X → C vanishing at infinity.

These are not necessarily fixed points of the induced H-action on C0(X), as
functions f : X → C that are invariant under H might not vanish at infinity. How-
ever, one can regard functions in C0(H\X) as “generalized” fixed points as they act
as H-invariant multipliers on C0(X). Moreover, C0(H\X) is Morita–Rieffel equiv-
alent to an ideal in the reduced crossed product C∗r (H,C0(X)) of the corresponding
C∗-dynamical system. This interesting property was observed in [Gre77].

To generalize this to noncommutative situations, Rieffel proposed a notion of
proper group actions on C∗-algebras in [Rie04,Rie90]. For these, it is possible to
build a generalized fixed point algebra as an analogue to the functions on the orbit
space. If H acts properly on a C∗-algebra A, the generalized fixed point algebra
FixH(A) is a subalgebra of the H-invariant multipliers of A. Moreover, there is a
built-in Morita–Rieffel equivalence between FixH(A) and an ideal in C∗r (H,A).

We follow the approach to generalized fixed point algebras of [Mey01]. In
the first section of this chapter, we recall the notation used there and explain the
construction. The following sections are concerned with some results regarding
extensions of C∗-algebras and continuous fields. These will be convenient in the
later chapters, where we consider actions of H = R>0 on certain C∗-algebras arising
from groupoids.

2.1. The construction

For this chapter, let H be a locally compact group and A a C∗-algebra with a
strongly continuous action α : H → Aut(A). The following definition and results
are taken from [Mey01].

Denote by Cb(H,A) and Cc(H,A) the continuous and bounded, respectively
continuous and compactly supported, A-valued functions on H. The group H acts
diagonally on both spaces via (h · f)(x) = αh(f(h−1x)) for h, x ∈ H.

Definition 2.1. For a ∈ A define the following bra and ket operators
〈〈a| : A→ Cb(H,A), (〈〈a|b) (x) := αx(a)∗b,

|a〉〉 : Cc(H,A)→ A, |a〉〉f :=
∫
H

αx(a)f(x) dx,

where dx denotes a fixed Haar measure on H.

Both operators are H-equivariant and adjoint to each other with respect to the
pairings 〈a | b〉 = a∗b for a, b ∈ A and 〈f | g〉 =

∫
H
f(x)∗g(x) dx for f ∈ Cb(H,A)

and g ∈ Cc(H,A).
The underlying idea of the following is to restrict to a subset R ⊂ A, such that

for a, b ∈ R the operators 〈〈a| ◦ |b〉〉 and |a〉〉 ◦ 〈〈b| yield well-defined operators in
C∗r (H,A) and the multiplier algebra of A, respectively. Then R is completed into

6
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a Morita equivalence bimodule between an ideal in C∗r (H,A) and the C∗-algebra
generated by |a〉〉〈〈b| for a, b ∈ R inside the multiplier algebra. The latter will be
defined to be the generalized fixed point algebra.

To make this precise, first recall the definition of the crossed product C∗r (H,A).
There is a covariant representation (ρA, ρH) of the C∗-dynamical system (A,H,α)
on the right Hilbert A-module L2(H,A) given by

(ρAa ψ)(x) = αx(a)ψ(x) for a ∈ A, x ∈ H,
(ρHy ψ)(x) = ψ(xy) for x, y ∈ H,

for ψ ∈ Cc(H,A). Equip Cc(H,A) with the convolution and involution

(f ∗ g)(x) =
∫
H

f(y)αy(g(y−1x)) dy,

f∗(x) = αx(f(x−1))∗

for x ∈ H. The I-norm is defined by

‖f‖I = max
{∫

H

‖f(x)‖ dx,
∫
H

‖f∗(x)‖ dx
}
.

The representation (ρA, ρH) integrates to a ∗-representation ρ of Cc(H,A) with

(ρfψ)(x) =
∫
H

αx(f(x−1y))ψ(y) dy for f, ψ ∈ Cc(H,A),

which satisfies ‖ρf‖ ≤ ‖f‖I for all f ∈ Cc(H,A).

Definition 2.2. The reduced crossed product C∗r (H,A) is the norm closure of
ρ(Cc(H,A)) inside B(L2(H,A)).

Lemma 2.3. The representation ρA maps to the multiplier algebra of C∗r (H,A).
If (uλ) is an approximate identity for A, then ‖F − ρAuλ ◦ F‖ → 0 for each F ∈
C∗r (H,A).

Proof. The first claim follows from the identity ρAa ◦ ρf = ρaf for all a ∈ A
and f ∈ Cc(H,A). For the second claim note that

‖ρf − ρAuλ ◦ ρf‖ = ‖ρf−uλf‖ ≤ ‖f − uλf‖I ,

which converges to zero for compactly supported f . As Cc(H,A) is dense, the same
holds for arbitrary elements of C∗r (H,A) by continuity. �

To understand 〈〈a| : A → Cb(H,A) as an adjointable operator A → L2(H,A)
for suitable a ∈ A, we use the following definition.

Definition 2.4. Let {χi : H → [0, 1]}i∈I be a net of continuous, compactly sup-
ported functions with χi → 1 uniformly on compact subsets. Call f ∈ Cb(H,A)
square-integrable if and only if (χif) converges in L2(H,A).

Suppose f ∈ Cb(H,A) is square-integrable and {χ̃j : H → [0, 1]}j∈J is another
net of continuous, compactly supported functions with χ̃j → 1. It is shown in
[Mil17, 1.13, 1.15] that (χ̃jf) converges in L2(H,A) as well and that lim(χif) =
lim(χ̃jf). Consequently, being square-integrable does not depend on the chosen
net.

Definition 2.5. An element a ∈ A is called square-integrable if 〈〈a|b ∈ Cb(H,A) is
square-integrable for all b ∈ A.
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In this case, we understand 〈〈a| as an operator A → L2(H,A). By [Mey01],
a ∈ A is square-integrable if and only if |a〉〉 extends to an adjointable operator
L2(H,A) → A. We also denote it by |a〉〉. Its adjoint is 〈〈a|. Let Asi be the
vector space of all square-integrable elements in A. It becomes a Banach space
with respect to the norm

‖a‖si := ‖a‖+ ‖〈〈a| ◦ |a〉〉‖1/2 = ‖a‖+ ‖|a〉〉‖.
Definition 2.6. A subset R ⊂ Asi is called relatively continuous if for all a, b ∈ R
the operator 〈〈a | b〉〉 := 〈〈a| ◦ |b〉〉 ∈ B(L2(H,A)) is contained in the reduced crossed
product C∗r (H,A) ⊂ B(L2(H,A)). It is called complete if R is a closed linear
subspace of Asi with respect to ‖ · ‖si and satisfies |a〉〉(Cc(H,A)) ⊂ R for all a ∈ R.
Definition 2.7. A continuously square-integrable H-C∗-algebra is a C∗-algebra A
with a strongly continuous action of a locally compact group H and a dense subset
R ⊂ A which is relatively continuous and complete.
Example 2.8. If H acts properly on a locally compact Hausdorff space X, the
subset Cc(X) of C0(X) consists of square-integrable elements and is relatively con-
tinuous. Defining R to be the closure of Cc(X) with respect to the ‖ · ‖si-norm
yields a continuously square-integrable H-C∗-algebra.

For an arbitrary C∗-algebra A, it can happen that there is no R ⊂ A satisfying
the requirements above or that there are several ones [Mey01]. However, there is
a sufficient condition that guarantees that there is a unique subset R.
Definition 2.9. Equip the primitive ideal space of A with the Jacobson topology.
There is a continuous H-action on Prim(A) defined by x · P = αx(P ) for x ∈ H
and P ∈ Prim(A). The H-C∗-algebra A is called spectrally proper, if this action on
the primitive ideal space is proper.

Theorem 2.10 ([Mey01, 9.4]). Let A be a spectrally proper H-C∗-algebra.
Then there is a unique dense, relatively continuous and complete subset.
Definition 2.11. Let (A,R) be a continuously square-integrable H-C∗-algebra.
Let FH(A,R) be the closure of |R〉〉 ⊂ B(L2(H,A), A). The generalized fixed point
algebra FixH(A,R) is defined as the closed linear span of |R〉〉〈〈R| in the H-invariant
multiplier algebra MH(A).

Since R is complete, there is a right Cc(H,A)-module structure on R defined
by a ∗ f = |a〉〉(f̆) for a ∈ R and f ∈ Cc(H,A), where ˘: Cc(H,A) → Cc(H,A) is
given by f̆(h) := αh(f(h−1)) for h ∈ H. Because of the identity |a〉〉 ◦ ρf = |a ∗ f〉〉
for a ∈ R and f ∈ Cc(H,A), this can be extended continuously to a right Hilbert
C∗r (H,A)-module structure on FH(A,R).

For a, b, c, d ∈ R the operator 〈〈b | c〉〉 ∈ C∗r (H,A) can be approximated by a
sequence (ρfn) with fn ∈ Cc(H,A). Therefore, the product

(|a〉〉〈〈b|) (|c〉〉〈〈d|) = lim
n→∞

|a〉〉 ◦ ρfn ◦ 〈〈d| = lim
n→∞

|a ∗ fn〉〉〈〈d|

lies again in the generalized fixed point algebra. As (|a〉〉〈〈b|)∗ = |b〉〉〈〈a|, this shows
that FixH(A,R) is a C∗-subalgebra of MH(A).

Now, we describe the elements of FixH(A,R) more explicitly. In the commu-
tative case H y X, functions on the orbit space can be obtained by averaging
functions in Cc(X) over the action:
Example 2.12. For a proper action H y X and f ∈ Cc(X) there is a function
F ∈ C0(H\X) defined by

F (Hx) :=
∫
H

f(h−1 · x) dh for Hx ∈ H\X.
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The following lemma suggests to also think of elements of FixH(A,R) for a
noncommutative A as averages over the group action of certain elements of A.

Lemma 2.13 ([Mey01, (19)]). Let (χi)i∈I be a net of continuous, compactly sup-
ported functions on H that converges uniformly to 1 on compact subsets as above.
Let a, b ∈ R. The net ∫

H

χi(x)αx(a∗b) dx

converges to |a〉〉〈〈b| with respect to the strict topology as multipliers of A.

Returning to the construction, FH(A,R) is a full left Hilbert FixH(A,R)-
module. Let JH(A,R) denote the closed linear span of 〈〈R |R〉〉 ⊂ C∗r (H,A), which
is an ideal. Then FH(A,R) is a FixH(A,R)-JH(A,R) imprimitivity bimodule.

The ideal JH(A,R) need not be the whole reduced crossed product. The
following definition is due to Rieffel [Rie90].

Definition 2.14. Let (A,R) be a continuously square-integrable H-C∗-algebra.
Call (A,R) saturated if JH(A,R) = C∗r (H,A).

Example 2.15. For a proper action H y X, Rieffel observed in [Rie82] that
(C0(X),Cc(X)) is saturated if the action of H on X is free. We will argue in
Lemma 2.23 that the converse is true as well.

The next lemma, proved already in [Mil17], gives a criterion when a set R ⊂
Asi can be completed to a dense, relatively continuous and complete subset of A.

Lemma 2.16. Let R ⊂ A be a dense subalgebra. Suppose R consists of square-
integrable elements, is relatively continuous and H-invariant. Denote by R the
closure of R ⊂ Asi with respect to the ‖ · ‖si-norm.

Then (A,R) is a continuously square-integrable H-C∗-algebra and FixH(A,R)
is the closed linear span of |R〉〉〈〈R|.

Proof. The inclusion Asi ↪→ A is continuous. Since R is dense in A, also R
is a dense subspace of A. As ‖〈〈a|‖ = ‖|a〉〉‖ ≤ ‖a‖si for all a ∈ Asi, elements of
〈〈R |R〉〉 can be approximated with respect to the operator norm on L2(H,A) by
elements of 〈〈R |R〉〉. This shows that R is relatively continuous as well.

It remains to verify that R is complete. First, we show that R · A ⊂ R holds.
Let r ∈ R and a ∈ A and choose sequences (rn), (an) in R such that ‖r− rn‖si → 0
and ‖a−an‖ → 0. Then ra ∈ Asi because |ra〉〉 = |r〉〉◦ρAa and r is square-integrable.
By assumption, rnan ∈ R holds for all n ∈ N. We estimate using [Mey01, (17)]
that

‖ra− rnan‖si ≤ ‖r‖si‖an − a‖+ ‖r − rn‖si‖an‖.

This converges to zero. Furthermore, R is also H-invariant, which follows from the
invariance of R and [Mey01, (18)]. This implies that |R〉〉(Cc(H,A)) ⊂ R.

Using similar arguments as for the relative continuity of R, one obtains that
any |a〉〉〈〈b| with a, b ∈ R is a norm limit of elements in |R〉〉〈〈R|. �

Remark 2.17. Suppose R ⊂ A is a dense, H-invariant ∗-subalgebra such that
〈〈a|b is bounded with respect to the I-norm for all a, b ∈ R as required in the
original definition in [Rie90]. Then by [Mey01, 6.8] R is relatively continuous
and square-integrable. Therefore, Lemma 2.16 shows that (A,R) is a continuously
square-integrable H-C∗-algebra.
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2.2. Extensions of C∗-algebras

Let I be an H-invariant ideal in A such that the sequence

C∗r (H, I) C∗r (H,A) C∗r (H,A/I) (3)

is exact. If H is an exact group, this is true for all H-invariant ideals I / A. For
example, this holds in our applications in the later chapters where H = R>0 ∼= R.

Let R ⊂ A be a subset such that (A,R) is a continuously square-integrable
H-C∗-algebra. Consider R∩I ⊂ I and the image of R under the projection q : A→
A/I. We are going to show that the generalized fixed point algebra construction
can be applied to (I,R∩I) and (A/I, q(R)), and to relate the respective generalized
fixed point algebras to each other.

In particular, we are interested in what can be said about saturatedness in
this case. This is inspired by the simple observation that if an H-space X can be
partitioned into two H-invariant subsets X = X1tX2, then the action on X is free
if and only if it is free on X1 and X2.

Lemma 2.18 ([Mil17]). Let R ⊆ A be a relatively continuous, complete subspace
of A. If I / A is an H-invariant ideal such that (3) is exact, then R ∩ I = R · I
holds.

Proof. Because I is an ideal in A and R · A = R by [Mey01, Cor. 6.7],
R · I ⊆ R∩ I follows. The other inclusion uses exactness in (3). Let r ∈ R∩ I. As

〈〈r | r〉〉(L2(H,A)) ⊆ L2(H, I)
and (3) is exact, we have 〈〈r | r〉〉 ∈ C∗r (H, I). Now, let (uλ)λ∈Λ be an approximate
unit for I, satisfying u∗λ = uλ and ‖uλ‖ ≤ 1 for all λ ∈ Λ. One computes
‖|r〉〉 − |ruλ〉〉‖2 = ‖〈〈r − ruλ | r − ruλ〉〉‖

≤ ‖〈〈r | r〉〉 − ρIu∗
λ
◦ 〈〈r | r〉〉‖+ ‖〈〈r | r〉〉 ◦ ρIuλ − ρ

I
u∗
λ
◦ 〈〈r | r〉〉 ◦ ρIuλ‖

≤ 2 · ‖〈〈r | r〉〉 − ρIuλ ◦ 〈〈r | r〉〉‖.
By Lemma 2.3 this converges to zero. Furthermore, ‖r − ruλ‖ → 0 holds. Hence,
r ∈ R · I follows from Cohen’s Factorization Theorem applied to (R, ‖ · ‖si) as a
right I-module. �

Lemma 2.19. Let (A,R) be a continuously square-integrable H-C∗-algebra and let
I / A be an H-invariant ideal such that the sequence of the reduced crossed products
in (3) is exact. Let q : A→ A/I be the quotient map. Then the following holds:

(i) (I,R∩ I) is a continuously square-integrable H-C∗-algebra.
(ii) (A/I, q(R)) is a continuously square-integrable H-C∗-algebra. Here, q(R)

denotes the closure of q(R) ⊂ (A/I)si in the ‖ · ‖si-norm.

Proof. We prove (i). The linear subspace R∩ I = R · I is dense in I because
any element i ∈ I can be factorized as i = a · j for some a ∈ A and j ∈ I.
Since R is dense in A, there is a net (rλ)λ∈Λ ⊂ R with rλ → a and hence i =
limλ rλ · j. The square-integrability of elements in R ∩ I is inherited from R, and
|R ∩ I〉〉(Cc(H, I)) ⊆ R ∩ I holds. Then 〈〈R ∩ I |R ∩ I〉〉 ⊂ C∗r (H, I) follows from
the same argument as in the proof of Lemma 2.18 using that (3) is exact. Note
that ‖〈〈i | i〉〉‖C∗r (H,I) = ‖〈〈i | i〉〉‖C∗r (H,A) for i ∈ R ∩ I. Because I / A is closed and
R is closed with respect to ‖ · ‖si,A, this means that R∩ I is closed with respect to
‖ · ‖si,I . Hence, (I,R∩ I) is a continuously square-integrable H-C∗-algebra.

To prove (ii) we show that Lemma 2.16 can be applied to q(R) ⊂ A/I. As
R ⊂ A is a dense linear subspace, the same holds for q(R) ⊂ A/I. For a ∈ R and
i ∈ I their product ai ∈ R · I = R ∩ I lies in R. All elements q(a) for a ∈ R are
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square-integrable because the quotient map L2(H,A)→ L2(H,A/I) is continuous.
Let Q : B(L2(H,A))→ B(L2(H,A/I)) be the canonical map. We have

〈〈q(a) | q(b)〉〉 = Q(〈〈a | b〉〉) for a, b ∈ R.
The relative continuity of q(R) follows as Q maps C∗r (H,A) to C∗r (H,A/I). By
[Mey01, 6.7], R is H-invariant and an essential right A-module, that is, R · A =
R. This implies that q(R) is also H-invariant and satisfies q(R) · q(R) ⊂ q(R).
Therefore, the claim follows from Lemma 2.16. �

Remark 2.20. The restricted map q : Asi → (A/I)si is continuous with respect to
the respective ‖ · ‖si-norms as for a ∈ Asi

‖q(a)‖+ ‖〈〈q(a) | q(a)〉〉‖1/2 = ‖q(a)‖+ ‖Q(〈〈a | a〉〉)‖1/2 ≤ ‖a‖+ ‖〈〈a | a〉〉‖.
If R ⊂ A is the closure of some R0 ⊂ A with respect to the ‖ · ‖si-norm, then
q(R) = q(R0) = q(R0) because q is continuous with respect to the ‖ · ‖si-norms.

In the situation of Lemma 2.19, FH(I,R∩ I) is a closed FixH(A,R)-JH(A,R)
submodule of FH(A,R). Under the Rieffel correspondence (see for example [RW98,
3.22]), FH(I,R ∩ I) corresponds to the ideals FixH(I,R ∩ I) in FixH(A,R) and
JH(I,R∩ I) in JH(A,R).

To study saturatedness, we relate the corresponding ideals in the reduced
crossed products for I, A and A/I.
Lemma 2.21. Let (A,R) be a continuously square-integrable H-C∗-algebra and
I / A an H-invariant ideal such that (3) is exact.

The restrictions of C∗r (H, I) → C∗r (H,A) and Q : C∗r (H,A) → C∗r (H,A/I) to
JH(I,R ∩ I) and JH(A,R), respectively, yield a commutative diagram with exact
rows

JH(I,R∩ I) JH(A,R) JH(A/I, q(R))

C∗r (H, I) C∗r (H,A) C∗r (H,A/I).Q

(4)

Proof. The ideal JH(I,R ∩ I) is mapped into JH(A,R) under the inclu-
sion. As Q(〈〈a | b〉〉) = 〈〈q(a) | q(b)〉〉 for a, b ∈ R, it follows that JH(A,R) maps
to JH(A/I, q(R)). Moreover, the linear span of elements of this form is dense in
JH(A/I, q(R)) so that the restriction is onto. Hence, the claim follows from exact-
ness of the bottom row in (4) once we show that JH(I,R∩I) = JH(A,R)∩C∗r (H, I).

As JH(A,R) and C∗r (H, I) are both closed ideals in C∗r (H,A),
JH(A,R) ∩ C∗r (H, I) = JH(A,R) · C∗r (H, I)

holds. Consequently, the linear span of 〈〈a | b〉〉 ◦ ρf = 〈〈a | b ∗ f〉〉 for a, b ∈ R and
f ∈ Cc(H, I) is dense in JH(A,R) ∩ C∗r (H, I). Let (uλ)λ∈Λ be a approximate unit
for I consisting of self-adjoint uλ. Lemma 2.3 implies that 〈〈a | b ∗ f〉〉 is the limit of
ρuλ ◦ 〈〈a | b∗ f〉〉 = 〈〈auλ | b∗ f〉〉. This net lies in JH(I,R∩ I) as auλ ∈ R· I = R∩ I
and b ∗ f ∈ R∩ I. Thus, the inclusion JH(A,R)∩C∗r (H, I) ⊆ JH(I,R∩ I) follows.
The converse inclusion is clear. �

Corollary 2.22. Let (A,R) be a continuously square-integrable H-C∗-algebra and
I / A an H-invariant ideal such that (3) is exact. Then (A,R) is saturated if and
only if (I,R∩ I) and (A/I, q(R)) are saturated.

Proof. Suppose first that (A,R) is saturated. In the proof of Lemma 2.21 we
showed that JH(I,R ∩ I) = JH(A,R) ∩ C∗r (H, I). Hence (I,R ∩ I) is saturated.
Because (4) has exact rows, this implies that (A/I, q(R)) is saturated as well. If
(I,R∩I) and (A/I, q(R)) are saturated, (A,R) is saturated because (4) is exact. �
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As an application we show the following result for actions on spaces.

Lemma 2.23. Let H act properly on a locally compact Hausdorff space X and
assume (C0(X),Cc(X)) is saturated. Then the action H y X is free.

Proof. Let x ∈ X and let Hx ⊆ X be its orbit. Since the action is proper,
Hx is H-equivariantly homeomorphic to H/Hx. Here Hx is the stabilizer of x,
which is a compact subgroup of H. Hence, C0(Hx) is a quotient of C0(X) by an
H-invariant ideal. Because C0(Hx) is spectrally proper, Cc(Hx) is the unique rela-
tively continuous, complete and dense subset by Theorem 2.10. By Corollary 2.22,
(C0(Hx),Cc(Hx)) is saturated. Hence, FixH(C0(Hx),Cc(Hx)) is Morita–Rieffel
equivalent to C∗r (H,C0(Hx)). By the Imprimitivity Theorem, C∗r (H,C0(H/Hx)) is
Morita–Rieffel equivalent to C∗(Hx).

On the other hand, FixH(C0(Hx),Cc(Hx)) is isomorphic to the functions on
the orbit space. As Hx consists of a single H-orbit, this generalized fixed point
algebra is isomorphic to C. Hence, C and C∗(Hx) are Morita–Rieffel equivalent.
This can only be true if Hx = {e}. Therefore, the H-action on X is free. �

Not only the ideals in the crossed product algebras fit into an exact sequence.
The same is true for the corresponding generalized fixed point algebras. The sur-
jective homomorphism q : A → A/I has a unique strictly continuous extension
M(A)→M(A/I). Let q̃ be its restriction to FixH(A,R).

Proposition 2.24. Let (A,R) be a continuously square-integrable H-C∗-algebra
and I / A an H-invariant ideal such that (3) is exact. There is an extension of
generalized fixed point algebras

FixH(I,R∩ I) FixH(A,R) FixH(A/I, q(R)).q̃

Proof. For a, b ∈ R ∩ I, we can view |a〉〉〈〈b| as a multiplier of I or A. As
|a〉〉〈〈b|(A) ⊂ I it follows that ‖|a〉〉〈〈b|‖I = ‖|a〉〉〈〈b|‖A. Hence, by extending contin-
uously we obtain an injective ∗-homomorphism FixH(I,R∩ I)→ FixH(A,R).

Denote by β the inducedH-action onA/I. Strict continuity of q̃ and Lemma 2.13
imply

q̃(|a〉〉〈〈b|) = lim
s

∫
H

q(αx(a∗b)) dx = lim
s

∫
H

βx(q(a∗b)) dx = |q(a)〉〉〈〈q(b)|

for a, b ∈ R. This shows that the image of q̃ is contained in FixH(A, q(R)). More-
over, the linear span of elements of this form is dense in FixH(A, q(R)). So q̃ is
onto.

It remains to show that the kernel of q̃ is FixH(I,R ∩ I). The computation
above yields q̃(|a〉〉〈〈b|) = |q(a)〉〉〈〈q(b)| = 0 for a, b ∈ R ∩ I. Thus, FixH(I,R∩ I) is
contained in ker(q̃). Let T ∈ FixH(A,R) be such that q̃(T ) = 0. By the C∗-identity
in FixH(A,R)/FixH(I,R∩I) it will suffice to show that T ∗T ∈ FixH(I,R∩I). By
[Mey01, (13)], T ∗|a〉〉〈〈b| = |T ∗a〉〉〈〈b| holds for a, b ∈ R. As T ∗a is square-integrable
and |T ∗a〉〉 = T ∗|a〉〉 ∈ FixH(A,R) · FH(A,R) ⊆ FH(A,R), [Mey01, 6.5] implies
T ∗a ∈ R. Moreover, q(T ∗a) = q̃(T ∗)q(a) = 0 shows that T ∗a ∈ R ∩ I. The
equalities R ∩ I = R · I and I = I2 imply that there are c ∈ R and i, j ∈ I with
T ∗a = cij. The computation

|cij〉〉〈〈b| = (|ci〉〉 ◦ ρj) ◦ 〈〈b| = |ci〉〉(|b〉〉 ◦ ρj∗)∗ = |ci〉〉〈〈bj∗|

shows that T ∗|a〉〉〈〈b| ∈ FixH(I,R∩ I). By definition of the generalized fixed point
algebra, T is the limit of a sequence in the linear span of |R〉〉〈〈R|. Hence, it follows
that T ∗T ∈ FixH(I,R∩ I). �
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2.3. Continuous fields of C∗-algebras

We end this chapter with some results on generalized fixed point algebras of con-
tinuous fields of C∗-algebras. Recall the definition of continuous fields of C∗-algebras
and C0(X)-algebras.

Definition 2.25. Let X be a locally compact Hausdorff space. A C0(X)-algebra
is a C∗-algebra A with a non-degenerate injective homomorphism θ : C0(X) →
ZM(A) into the centre of the multiplier algebra of A.

Definition 2.26. Let X be a locally compact Hausdorff space and (Ax)x∈X a
family of non-zero C∗-algebras. A family a = (ax)x∈X of ax ∈ Ax is called a section.
An upper semi-continuous of field of C∗-algebras is a triple (X, (Ax)x∈X , A), where
A consists of sections and satisfies

(i) A is a C∗-algebra with respect to the pointwise operations and the norm
‖a‖ = supx∈X‖ax‖,

(ii) Ax = {ax | a ∈ A} for all x ∈ X,
(iii) for each a ∈ A the map x 7→ ‖ax‖ vanishes at infinity and is upper semi-

continuous,
(iv) for each f ∈ C0(X), the section f · a defined by (f · a)x = f(x)ax is in A.

It is called a continuous field of C∗-algebras if the maps x 7→ ‖ax‖ in (iii) belong to
C0(X) for all a ∈ A.

It is well-known that every upper semi-continuous field of C∗-algebras over X
is a C0(X)-algebra using (iv). Conversely each C0(X)-algebra defines an upper
semi-continuous field of C∗-algebras with fibres Ax = A/Ix ·A, where Ix is the
ideal of functions in C0(X) that vanish at x ∈ X (see [Nil96, 2.3]).

Definition 2.27 ([Kas88]). Let H act on a locally compact Hausdorff space X.
Denote by τh(f)(x) = f(h−1 ·x) for h ∈ H and x ∈ X the induced action on C0(X).

A C0(X)-algebra A with θ : C0(X) ↪→ ZM(A) and an H-action α : H y A is
called an H-C0(X)-algebra if the actions are compatible in the following sense

αh(θ(ϕ)a) = θ(τh(ϕ))αh(a) for all h ∈ H, ϕ ∈ C0(X) and a ∈ A.

Recall that the spectrum Â of a C∗-algebra A is the set of unitary equivalence
classes of irreducible representations π : A→ B(H). It becomes a topological space
when pulling back the Jacobson topology on Prim(A) to Â using the map [π] 7→
ker(π). If H y A is a strongly continuous action, there is a continuous action
H y Â given by (x · π)(a) = π(αx−1(a)) for [π] ∈ Â, x ∈ H and a ∈ A.

Let (A,R) be a continuously square-integrable H-C∗-algebra. Every non-
degenerate representation π of A can be extended to M(A). Denote its restriction
to FixH(A,R) by π̃.

In the commutative case, this procedure allows to completely describe the rep-
resentation theory of the generalized fixed point algebra. By Gelfand duality, the
spectrum of the commutative C∗-algebra C0(X) is X. If H y X is a proper ac-
tion and (A,R) = (C0(X),Cc(X)), the map π 7→ π̃ induces a homeomorphism
between H\Â = H\X and ̂FixH(A,R).

This generalizes to H-C0(X)-algebras as follows. We summarize some results
concerning H-C0(X)-algebras proved in [Mey01,aHRW00,Rie04,aHRW02].

Proposition 2.28. Let H y X be a proper action on a locally compact Hausdorff
space X and A an H-C0(X)-algebra with θ : C0(X)→ ZM(A).

(i) The subset R := θ(Cc(X))A is dense, relatively continuous and complete.
Moreover, it is the unique such subset.
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(ii) If the action of H on X is free, the map π 7→ π̃ induces a homeomorphism
H\Â→ ̂FixH(A,R) and (A,R) is saturated.

Proof. An H-C0(X)-algebra where the action H y X is proper is spectrally
proper as argued in [Mey01, Sec. 9]. The R above is the unique, dense, relatively
continuous and complete subset constructed in [Mey01, 9.4]. The first claim in (ii)
is proved in [aHRW00, 3.9], the second in the preprint version of [Rie04] and in
[aHRW02, 4.1]. �

The following result applies to trivial continuous fields C0(X,A), where the
action is taking place on the base space X.

Lemma 2.29 ([Rie90, 2.6], [RW85, 3.2]). Let H y X be a proper action and
A a C∗-algebra. Let H act on C0(X,A) by (τhf)(x) = f(h−1 · x) for h ∈ H,
f ∈ C0(X,A) and x ∈ X. There is an isomorphism

Ψ: FixH(C0(X,A),Cc(X,A))→ C0(H\X,A),

Ψ(|f〉〉〈〈g|)(Hx) =
∫
H

(f∗ · g)(h−1 · x) dh for Hx ∈ H\X and f, g ∈ Cc(H,A).

In particular, for A = C the generalized fixed point algebra is isomorphic to
C0(H\X) as claimed before.

In contrast to the situation above, consider now what happens if the H-action
only takes place in the fibres of a field of C∗-algebras.

Theorem 2.30 ([Rie90, 3.2]). Let A be a continuous field of C∗-algebras
over X with fibre projections px : A → Ax for x ∈ X. Suppose that (A,R) is a
continuously square-integrable H-C∗-algebra such that ker(px) is H-invariant for all
x ∈ X. Furthermore, assume that H is a σ-compact, exact group. Then FixH(A,R)
is a continuous field of C∗-algebras over X with fibre projections

p̃x : FixH(A,R)→ FixH(Ax, px(R)).

Remark 2.31. The above theorem in [Rie90] requires that the field A is Hilbert
continuous and that C∗r (H,Ax) = C∗(H,Ax) for all x ∈ M . These assumptions
are only needed to show that C∗r (H,A) defines a continuous field of C∗-algebras
over X with fibres C∗r (H,Ax). But this is true for any σ-compact, exact group H
by [KW99, 4.2].

Now we study what can be said about saturatedness in this case.

Lemma 2.32. Let A be an upper semi-continuous field of C∗-algebras over X with
fibre projections px : A→ Ax. If I �C A is a proper ideal, then there is x ∈ X such
that px(I) / Ax is a proper ideal.

Proof. By Lee’s Theorem (see [Lee76] or [Nil96, 3.3]) there is a continuous
map ψ : Prim(A)→ X satisfying

ψ(P ) = x ⇔ P ⊆ Kx = {a ∈ A | px(a) = 0}
and Ax ∼= A/Kx for all x ∈ X. As I can be written as the intersection of primitive
ideals, it follows that there is a primitive ideal P ∈ Prim(A) with I ⊆ P ( A.
Let x = ψ(P ). The homeomorphism {Q ∈ Prim(A) | Kx ⊆ P} → Prim(A/Kx) =
Prim(Ax) maps P to px(P ). Then px(I) ⊆ px(P ) ⊆ Ax, and px(P ) 6= Ax as
otherwise px(P ) would correspond to A under this homeomorphism. �

Corollary 2.33. In the situation of Theorem 2.30, (A,R) is saturated if and only
if (Ax, px(R)) is saturated for all x ∈ X.
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Proof. Suppose first that (A,R) is saturated. By Corollary 2.22 (Ax, px(R))
is saturated for all x ∈ X.

Assume now that all (Ax, px(R)) are saturated. By assumption on H, C∗r (H,A)
is a continuous field of C∗-algebras over X with fibre projections (px)∗ : C∗r (H,A)→
C∗r (H,Ax) for x ∈ X. Because

(px)∗(〈〈a | b〉〉) = 〈〈px(a) | px(b)〉〉 for a, b ∈ R,
it follows that (px)∗(JH(A,R)) = C∗r (H,Ax) for all x ∈ X. Now Lemma 2.32
implies that JH(A,R) = C∗r (H,A). �



CHAPTER 3

Graded and homogeneous Lie groups

In this chapter, we discuss graded and homogeneous Lie groups. These are Lie
groups which are equipped with a dilation action of R>0 and, therefore, allow to
define homogeneity with respect to the dilations. Detailed studies of these groups
can be found in [FS82] or [FR16].

Definition 3.1. A graded Lie group is a simply connected Lie group whose Lie
algebra g admits a grading

g =
∞⊕
j=1

gj with only finitely many gj 6= {0}

which is compatible with the Lie bracket, that is, [gj , gk] ⊆ gj+k for all j, k ∈ N.
The graded Lie group is of step r if gr 6= 0 and gj = 0 for all j > r.

Note that the condition on the bracket forces the Lie algebra to be nilpotent.
Consequently, also the Lie group is nilpotent.

Example 3.2. The simplest example of a non-Abelian graded Lie group is the
(2n + 1)-dimensional Heisenberg group Hn. Its Lie algebra h is generated by
{X1, . . . , Xn, Y1, . . . , Yn, Z} satisfying [Xi, Yi] = Z and [Xi, Z] = [Yi, Z] = 0 for
i = 1, . . . , n. Hence, h1 = span{X1, . . . , Xn, Y1, . . . , Yn}, h2 = span{Z} and hj = 0
for j > 2 defines a grading of step 2 on h.

Example 3.3. For n ≥ 2, the group of unitriangular (n× n)-matrices is a graded
Lie group of step n−1. The strictly upper triangular matrices n are its Lie algebra.
Let Ekl be the matrix with entry 1 at (k, l) and 0 otherwise. Then a grading is
defined by nj = span{Ekl | l − k = j} for j = 1, . . . , n− 1 and nj = 0 for j ≥ n.

Graded Lie algebras can be equipped with an action of R>0. Set λ·X = λjX for
X ∈ gj and λ > 0. This extends to an R>0-action by Lie algebra automorphisms.

Instead of starting with a grading, one can consider certain R>0-actions on Lie
algebras. This yields the slightly more general class of homogeneous Lie groups.

Definition 3.4. For a Lie algebra g and a diagonalizable, linear map A : g → g
with positive eigenvalues q1 ≤ q2 ≤ . . . ≤ qn, set Dλ := Exp(A ln(λ)). Here, Exp
denotes the matrix exponential. If all Dλ are Lie algebra homomorphisms, {Dλ}λ>0
is called a family of dilations.

A homogeneous Lie group is a simply connected Lie group G whose Lie algebra g
is equipped with a family of dilations {Dλ}λ>0. The eigenvalues {q1, . . . , qn} are
called weights.

Folland and Stein assume in [FS82] that q1 = 1. This can be achieved by
scaling appropriately. We shall also assume this in the following. In particular, all
weights satisfy qj ≥ 1.

We fix a basis of eigenvectors {X1, . . . , Xn} corresponding to the weights. Then
Dλ(Xj) = λqjXj holds for 1 ≤ j ≤ n.

16
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Example 3.5. A Lie algebra may admit different dilations. For example, let
{X1, . . . , Xn} denote a basis for the Lie algebra of the Abelian group G = Rn.
Then for all (q1, . . . , qn) ∈ Rn>0 there is a dilation defined by DλXj = λqjXj . The
standard dilation on Rn is given by scalar multiplication, that is, qj = 1 for all
j = 1, . . . , n.

Lemma 3.6 ([FS82, 1.3]). Homogeneous Lie groups are nilpotent.

Proof. Let G be a homogeneous Lie group with dilations Dλ and weights 1 =
q1 ≤ q2 ≤ . . . ≤ qn. Suppose X,Y are eigenvectors corresponding to the eigenvalues
qi, qj > 0 of A, respectively. Then Dλ[X,Y ] = [Dλ(X), Dλ(Y )] = λqi+qj [X,Y ].
Therefore, either [X,Y ] = 0 holds or [X,Y ] is an eigenvector of A corresponding
to the eigenvalue qi + qj . Using that A has only finitely many eigenvalues, one can
deduce that g – and therefore G – is nilpotent. �

Consequently, the exponential map exp: g → G is a diffeomorphism. In the
following, we often identify (x1, . . . , xn) ∈ Rn with its image exp(x1X1 + · · · +
xnXn) ∈ G under this global coordinate chart. In particular, 0 ∈ G denotes
the neutral element in a homogeneous Lie group and x−1 = −x is the inverse.
Moreover, the multiplication in G is determined by the Lie bracket on g by the
Baker–Campbell–Hausdorff Formula (see, for example, [CG90, 1.2.1]).

Proposition 3.7 (Baker–Campbell–Hausdorff Formula). Let G be a nilpotent Lie
group and X,Y ∈ g. Then there is a unique Z ∈ g be such that expX · expY =
expZ. It is given by

Z = X + Y + 1
2 [X,Y ] + 1

12 ([X, [X,Y ]]− [Y, [X,Y ]])
− 1

48 ([Y, [X, [X,Y ]]]− [X, [Y, [X,Y ]]])
+(commutators of order ≥ 4).

(5)

As the Lie algebra is nilpotent only finitely many commutators up to a certain
order appear in the formula above.

Because Dλ◦Dµ = Dλµ for λ, µ > 0, the dilations define an action D : R>0 y g
by Lie algebra automorphisms. Denote by δ : R>0 y G the corresponding action
by Lie group automorphisms. We shall also use the notation δλ(x) = λ ·x for x ∈ G
and λ > 0.

Remark 3.8. If all weights of a homogeneous Lie group are rational numbers,
it is a (scaled) graded Lie group (see [FR16, 3.1.9]). Hence, one can construct
examples of homogeneous Lie groups that are not scaled graded Lie groups as in
[FR16, 3.1.11]. Also note that there are nilpotent Lie groups that do not admit a
family of dilations (see [Dye70]).

3.1. Analysis on homogeneous Lie groups

In this section we recall some definitions like homogeneous quasi-norms that
proved to be useful to do analysis on homogeneous groups. The dilations induce
new notions of homogeneity for functions and of the order for differential operators.
We also consider Schwartz functions and (tempered) distributions on homogeneous
groups.

Definition 3.9. The homogeneous dimension of a homogeneous Lie group G with
weights 1 = q1 ≤ q2 ≤ . . . ≤ qn is defined as Q = q1 + q2 + . . . + qn. A function f
on G\{0} is called w-homogeneous for w ∈ C if f(δλ(x)) = λwf(x) for all x 6= 0.

Lemma 3.10. Let G be a homogeneous Lie group of homogeneous dimension Q.
The pullback of the Lebesgue measure under the exponential map defines a Haar
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measure on G. The group G is unimodular and the Haar measure is Q-homogeneous,
that is, ∫

G

f(δλ(x)) dx = λ−Q
∫
G

f(x) dx

for each λ > 0 and f ∈ L1(G).

For simply connected nilpotent Lie groups the pullback of the Lebesgue measure
defines a left and right Haar measure [FS82, 1.2]. The Q-homogeneity follows from
the behaviour of the Lebesgue measure under scaling.

Because the Euclidean norm does not behave well with respect to the dilations
in general, we replace it by a homogeneous quasi-norm.

Definition 3.11 ([FR16, 3.1.33]). A homogeneous quasi-norm on a homogeneous
Lie group G is a continuous function ‖ · ‖ : G→ [0,∞) with

(i) ‖x‖ = 0 if and only if x = 0,
(ii) ‖−x‖ = ‖x‖ for all x ∈ G,
(iii) ‖δλ(x)‖ = λ‖x‖ for all x ∈ G and λ ∈ R>0.

In the following, we fix a homogeneous quasi-norm on G, for instance,

‖x‖ :=
n∑
j=1
|xj |1/qj for x ∈ G. (6)

In fact, by [FR16, 3.1.35] all homogeneous quasi-norms on a given homogeneous
Lie group are equivalent. There is an analogue of the triangle inequality for a
homogeneous quasi-norm:

Lemma 3.12 ([FS82, 1.8, 1.10]). Let G be a homogeneous Lie group. There is a
constant γ ≥ 1 such that ‖xy‖ ≤ γ(‖x‖+ ‖y‖) for all x, y ∈ G.

For R > 0 we define R-balls around x ∈ G with respect to the quasi-norm by
B(x,R) = {y ∈ G | ‖xy−1‖ < R}.

Using the dilations and the continuity of the quasi-norm one checks that the closure
of B(x,R) in the Euclidean topology is {y ∈ G | ‖xy−1‖ ≤ R}. Furthermore, the
B(x,R) are bounded as the Euclidean 1-norm ‖ · ‖1 satisfies ‖x‖1 ≤ n + ‖x‖qn for
x ∈ G and the quasi-norm in (6). Hence, closed balls with respect to a homogeneous
quasi-norm are compact and, in particular, have finite Haar measure.

Remark 3.13. Let G be a graded Lie group and let q be a common multiple of the
weights q1, . . . , qn ∈ N. For the Euclidean norm ‖ · ‖2, we have that x 7→ ‖x‖22 =∑n
j=1 x

2
j is smooth. As this is not necessarily true for homogeneous quasi-norms,

it is sometimes convenient to use

Φ(x) :=
n∑
j=1

x
2q/qj
j

instead. It is a smooth (2q)-homogeneous function G→ [0,∞). Moreover, one can
estimate ‖x‖ ≤ Φ(x) ≤ n‖x‖2q for all x ∈ G and the homogeneous quasi-norm
above.

We will use the following integrability criterion for functions on a homogeneous
Lie group later on.

Lemma 3.14 ([FS82, 1.17]). Let a ∈ R and let f be a measurable function
on a homogeneous Lie group G of homogeneous dimension Q. Suppose |f(x)| =
O(‖x‖a−Q). If a > 0 then f is integrable near 0. If a < 0, then f is integrable near
infinity.
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Definition 3.15. For a multi-index α ∈ Nn0 its homogeneous degree is defined as
[α] := α1q1 + · · · + αnqn, while its Euclidean degree is |α| := α1 + · · · + αn. A
function P on G is called polynomial if P ◦ exp is polynomial.

Example 3.16. The polynomials xα for α ∈ Nn0 are [α]-homogeneous functions.

Using the Baker–Campbell–Hausdorff formula (5) and the homogeneity of the
coordinate functions, the following is proved in [FR16, 3.1.24]:

Proposition 3.17. For a homogeneous Lie group G with weights q1 ≤ . . . ≤ qn
and a corresponding basis of eigenvectors X1, . . . , Xn ∈ g there are constants cj,α,β
for j = 1, . . . , n such that for all x, y ∈ G with respect to this basis

(x · y)j = xj + yj +
∑

α,β∈Nn0 \{0}
[α]+[β]=qj

cj,α,βx
αyβ . (7)

The Poincaré–Birkhoff–Witt Theorem identifies the universal enveloping alge-
bra U(g) with the left-invariant, respectively right-invariant, differential operators
on G.

Definition 3.18. For the basis of eigenvalues fixed above, define the left- and right-
invariant differential operators X1, . . . , Xn and Y1, . . . , Yn by setting for f ∈ C1(G)

(Xjf)(x) = d
dtf(x · exp(tXj))

∣∣
t=0,

(Yjf)(x) = d
dtf(exp(tXj) · x)

∣∣
t=0.

Left, respectively right-invariant, means that they commute with the left reg-
ular representation πL, respectively right regular representation πR, given by

(πL(x)f)(y) = f(x−1y),
(πR(x)f)(y) = f(yx)

for f : G→ C and x, y ∈ G. For a multi-index α ∈ Nn0 set

Xα = Xα1
1 Xα2

2 · · ·Xαn
n ,

Y α = Y α1
1 Y α2

2 · · ·Y αnn .

The operators Xα and Y α for α ∈ Nn0 form a basis for the left-, respec-
tively right-invariant, differential operators on G. Let U(g) be equipped with the
R>0-action induced by the dilations on g. For a differential operator P define

δ∗λ(P )f(x) := P (f ◦ δλ)(λ−1 · x) for λ > 0 and x ∈ G. (8)

Assigning to an element of U(g) its left-invariant or right-invariant differential op-
erator is R>0-equivariant for these actions. We say that a differential operator P is
homogeneous of order q if δ∗λ(P ) = λqP . In particular, Xα and Y α are homogeneous
of order [α].

The triangular form of the group law allows to express Xj and Yj in terms of
the partial differential operators with respect to the coordinate functions as follows:

Proposition 3.19 ([FR16, 3.1.28]). Let G be a homogeneous Lie group with
weights q1 ≤ . . . ≤ qn. For j = 1, . . . , n and k > j there are (qk − qj)-homogeneous
polynomials Pjk and Qjk such that the vector fields Xj and Yj defined above can be
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written as

Xj = ∂

∂xj
+
∑
qk>qj

Pjk
∂

∂xk
= ∂

∂xj
+
∑
qk>qj

∂

∂xk
Pjk,

Yj = ∂

∂xj
+
∑
qk>qj

Qjk
∂

∂xk
= ∂

∂xj
+
∑
qk>qj

∂

∂xk
Qjk.

The polynomials Pjk and Qjk only depend on (x1, . . . , xk−1) because otherwise
they would be homogeneous of a higher order than qk − qj . Hence, they commute
with the partial derivatives ∂

∂xk
.

Identifying G with Rn using the exponential map, one can consider the Schwartz
space S(G). One can replace the partial derivatives in the usual definition of the
Schwartz seminorms by the operators Xj or Yj or vice versa because of Propo-
sition 3.19. Furthermore, polynomials in ‖x‖2 for the Euclidean norm can be
estimated by polynomials in ‖x‖ for a homogeneous quasi-norm and the other
way around. Therefore, one may use the following family of seminorms defined
in [FS82].

Definition 3.20. For a fixed homogeneous quasi-norm ‖ · ‖ and N ∈ N0 define
‖f‖N := sup

[α]≤N , x∈G
(1 + ‖x‖)N |(Xαf)(x)| for f ∈ C∞c (G).

The Schwartz space S(G) is the completition of C∞c (G) with respect to the semi-
norms ‖ · ‖N for N ∈ N.

Lemma 3.21 ([FS82, 1.46, 1.47]). The involution and convolution with respect to
the group multiplication on G given by

f∗(x) = f(x−1),

(f ∗ g)(x) =
∫
G

f(y)g(y−1x) dy

define continuous maps S(G)→ S(G) and S(G)× S(G)→ S(G).

The following lemma shows how Xα and Y α interact with the convolution.

Lemma 3.22. For f ∈ S(G), define f̃ ∈ S(G) by f̃(x) = f(x−1). Then the left-
and right-invariant differential operators are related by

Ỹ αf = (−1)|α|Xαf̃ and X̃αf = (−1)|α|Y αf̃
for f ∈ S(G). Moreover, they behave as follows with respect to the convolution:
Xα(f ∗ g) = f ∗ (Xαg), Y α(f ∗ g) = (Y αf) ∗ g, (Xαf) ∗ g = f ∗ (Y αg) (9)

for f, g ∈ S(G).

We denote by S ′(G) the space of tempered distributions, the continuous dual
of the Schwartz space. We recall some facts on distributions that are well-known
for G = Rn (see for example [Rud91]), and that carry over to homogeneous groups.
First, the convolution of a tempered distribution and a Schwartz function is defined:

Lemma 3.23. There are well-defined, bilinear, separately continuous maps
∗ : S ′(G)× S(G)→ S ′(G), 〈u ∗ f, g〉 := 〈u, g ∗ f̃〉,
∗ : S(G)× S ′(G)→ S ′(G), 〈f ∗ u, g〉 := 〈u, f̃ ∗ g〉,

for u ∈ S ′(G) and f, g ∈ S(G). They satisfy the following associativity properties
(f ∗ g) ∗ u = f ∗ (g ∗ u), (u ∗ f) ∗ g = u ∗ (f ∗ g) and (f ∗ u) ∗ g = f ∗ (u ∗ g)
for u ∈ S ′(G) and f, g ∈ S(G).
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Moreover, the action of Xα ∈ U(g) for α ∈ N as a left-invariant or right-
invariant operators on S(G) can be extended to S ′(G) by setting for u ∈ S ′(G) and
f ∈ S(G)

〈Xαu, f〉 := (−1)|α|〈u,Xαf〉,

〈Y αu, f〉 := (−1)|α|〈u, Y αf〉.

Let E ′(G) denote the continuous dual of E(G) = C∞(G). For the delta distribution
u = δ ∈ E ′(G) defined by 〈δ, f〉 = f(0), set Xα := Xαδ = Y αδ ∈ E ′(G), slightly
abusing notation.

Note that for u ∈ S ′(G) and f ∈ S(G) the convolution u∗f belongs to C∞(G).
Therefore, the convolution of a compactly supported distribution v ∈ E ′(G) and
u ∈ S ′(G) is well-defined by setting

〈v ∗ u, f〉 := 〈v, f ∗ ũ〉.

Here, ũ ∈ S ′(G) is defined by 〈ũ, f〉 = 〈u, f̃〉 for f ∈ S(G).

Lemma 3.24. Let Xα ∈ U(g), u ∈ S ′(G) and f ∈ S(G). Then the following holds:
(i) Xα ∗ u = Y αu and u ∗Xα = Xαu,
(ii) f ∗ (Xα ∗ u) = (f ∗Xα) ∗ u.

Proof. For (i) note first that for f ∈ S(G) and u ∈ S(G), Xα(f ∗ u) =
f ∗ (Xαu) and Xαũ = (−1)|α|Ỹ αu. These follow from the corresponding properties
on S(G). Hence, for all f ∈ S(G)

〈Xα ∗ u, f〉 = (−1)|α|〈δ,Xα(f ∗ ũ)〉 = 〈δ, f ∗ Ỹ αu〉 = 〈Y αu, f〉

holds. The second claim is proved analogously. For (ii) note that the left hand side
is well-defined as Xα ∗u ∈ S ′(G) by (i). It remains to show f ∗ (Y αu) = (Xαf) ∗u.
One computes for g ∈ S(G)

〈f ∗ (Y αu), g〉 = 〈Y αu, f̃ ∗ g〉 = (−1)|α|〈u, Y α(f̃ ∗ g)〉 = (−1)|α|〈u, (Y αf̃) ∗ g〉

= 〈u, X̃αf ∗ g〉 = 〈(Xαf) ∗ u, g〉. �

Lemma 3.25. Let φ : H → G be an injective, R>0-equivariant, smooth homomor-
phism between homogeneous Lie groups H,G. It induces continuous linear maps

φ∗ : S(G)→ S(H), f 7→ f ◦ φ,
φ∗ : S ′(H)→ S ′(G), 〈φ∗(u), f〉 = 〈u, φ∗(f)〉.

They satisfy
(i) φ∗(δ) = δ,
(ii) φ∗(ũ) = φ̃∗(u) for u ∈ S ′(H),

(iii) φ∗(u) ∈ E ′(G) for u ∈ E ′(H),
(iv) φ∗(u ∗ v) = φ∗(u) ∗ φ∗(v) for all u ∈ E ′(H) and v ∈ S ′(H).

Proof. Pick homogeneous quasi-norms on H and G. As x 7→ ‖φ(x)‖ is con-
tinuous, it attains a minimum C on the anisotropic sphere S = {x ∈ H | ‖x‖ = 1}.
Because φ is an injective homomorphism, C > 0 must hold. For x ∈ H arbitrary,
set λ = ‖x‖. As φ is equivariant for the dilations,

‖φ(x)‖ = ‖λ · φ(λ−1 · x)‖ = λ‖φ(λ−1 · x)‖ ≥ C‖x‖. (10)
For X ∈ h, X(f ◦ φ) = ( dφ(X)(f)) ◦ φ holds. Therefore, one obtains constants CN
for N ∈ N such that ‖φ∗(f)‖N ≤ CN‖f‖N for all f ∈ S(G). This norm estimate
implies that for fk → f in S(G) also φ∗(fk) → φ∗(f), which means that φ∗ is
continuous.
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For u ∈ S ′(H), φ∗(u) is a linear functional. It is continuous as fj → 0 in S(G)
implies that φ∗(fj) → 0, so that 〈φ∗(u), fj〉 = 〈u, φ∗(fi)〉 → 0. Moreover, φ∗ is
linear and continuous, because if uj → u in S ′(H), then for f ∈ S(G)

〈φ∗(uj), f〉 = 〈uj , φ∗(f)〉 → 〈u, φ∗(f)〉 = 〈φ∗(u), f〉.
As φ(0) = 0, (i) is clear. Property (ii) follows as φ is a homomorphism. For (iii)

we need that φ is proper. This follows from continuity of φ and (10). In particular,
the right hand side of (iv) is well-defined. Let u ∈ E ′(H), v ∈ S ′(H) and f ∈ S(G).
Then

〈φ∗(u ∗ v), f〉 = 〈u, (f ◦ φ) ∗ ṽ〉,

〈φ∗(u) ∗ φ∗(v), f〉 = 〈u, (f ∗ φ̃∗v) ◦ φ〉.

Using (ii), it remains to show
(f ◦ φ) ∗ v = (f ∗ φ∗(v)) ◦ φ for all v ∈ S(H).

This follows from
πR(x−1)f̃ ◦ φ =

(
πR(φ(x)−1)f̃

)
◦ φ

for all f ∈ S(G), which uses again that φ is a homomorphism. �

3.2. Representation theory and Kirillov’s orbit method

Now, we recall some facts about the representation theory of nilpotent Lie
groups and their group C∗-algebras. For homogeneous Lie groups, the dilations
induce actions on the respective spaces of representations.

The vector space of continuous compactly supported functions Cc(G) becomes a
∗-algebra when equipped with the same involution and convolution as in Lemma 3.21.

Definition 3.26. For a homogeneous Lie group G denote by Ĝ the set of equiv-
alence classes of irreducible, unitary representations π : G → U(Hπ). For such a
representation π and f ∈ Cc(G) define the operator

π̂(f) =
∫
G

f(x)π(x) dx ∈ B(Hπ) for f ∈ Cc(G). (11)

This defines a *-representation π̂ : Cc(G)→ B(Hπ). The full group C∗-algebra
C∗(G) is defined as the closure of Cc(G) with respect to ‖f‖ = sup

π∈Ĝ‖π̂(f)‖. It
contains the Schwartz space S(G).

By [Dix59] homogeneous Lie groups are liminal, so that all representations π̂
map onto the compact operators K(Hπ).

The homogeneous structure allows to define an R>0-action on Ĝ. For an irre-
ducible, unitary representation π set (λ · π)(x) = π(δλ−1(x)) for λ > 0 and x ∈ G.
It is easy to see that λ · π is again an irreducible, unitary representation and that
the action is well-defined on the equivalence classes.

Furthermore, we define a strongly continuous action σ : R>0 y C∗(G) by

σλ(f)(x) = λQf(δλ(x)) for λ > 0, f ∈ Cc(G) and x ∈ G.

It is not hard to check using the homogeneity of the Haar measure in Lemma 3.10
that each σλ is a ∗-homomorphism and an isometry with respect to the C∗-norm.

This action on C∗(G) induces in turn an action on the spectrum of C∗(G) by
(λ · ρ)(f) = ρ(σλ−1(f)) for a ∗-representation ρ : C∗(G) → B(Hπ). Again, it is
well-defined on the equivalence classes of irreducible representations.

Proposition 3.27. For a homogeneous Lie group G the map Ĝ→ Ĉ∗(G) induced
by π 7→ π̂ is an R>0-equivariant bijection.
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Proof. It is well-known that the map above is a bijection for each locally
compact group G. The equivariance under the R>0-action follows because the
Haar measure is Q-homogeneous, so that

(λ · π̂)(f) =
∫
G

(σλ−1f)(x)π(x) dx =
∫
G

f(x)π(δλ−1(x)) dx = λ̂ · π(f)

for λ > 0 and f ∈ Cc(G). �

In particular, Ĝ becomes a topological space with respect to the topology on
Ĉ∗(G) under the bijection above. Kirillov’s orbit method [Kir62] allows to describe
Ĝ as the orbit space of the coadjoint action of G on g∗, the dual of its Lie algebra.

Recall that the adjoint representation Ad: G → Aut(g) is given by Ad(x) =
d(αx)0 : T0G→ T0G, where αx(y) = xyx−1 is given by conjugation. The coadjoint
action is defined by

〈co-Ad(x)l,X〉 := 〈l,Ad(x−1)X〉
for l ∈ g∗, x ∈ G and X ∈ g. The corresponding infinitesimal representation co-ad
of g on g∗ is given by 〈co-ad(X)l, Y 〉 = 〈l, [Y,X]〉 for l ∈ g∗ and X,Y ∈ g.

The orbit space G\g∗ is equipped with the quotient topology. For each l ∈ g∗,
one can construct a unitary representation πl of G as described in the following.
Define a skew-symmetric bilinear form bl : g× g→ R by

bl(X,Y ) = 〈l, [X,Y ]〉 for X,Y ∈ g.

Denote by gl its radical. A subspace V ⊂ g is isotropic with respect to bl if
bl(X,Y ) = 0 for all X,Y ∈ V . A maximal isotropic subspace has codimen-
sion 1

2 dim(g/gl). A polarizing subalgebra for l is a subalgebra hl ⊂ g that is an
isotropic subspace of codimension 1

2 dim(g/gl). Such a polarizing subalgebra always
exists (see [CG90, 1.3.3, 1.3.5]).

The formula χl(expX) = ei〈l,X〉 for X ∈ hl defines a one-dimensional repre-
sentation of Hl = exp(hl). It is multiplicative, because if expX · expY = expZ for
X,Y ∈ hl, then Z is given by the Baker–Campbell–Hausdorff formula (5) as
Z = X + Y + 1

2 [X,Y ] + 1
12 ([X, [X,Y ]]− [Y, [X,Y ]]) + (commutators of order ≥ 3),

so that all higher terms lie in [hl, hl] ⊂ ker l. Denote by πl = IndGHlχl the induced
representation of χl from Hl to G.

Let R>0 act on g∗ by 〈λ · l,X〉 = 〈l,Dλ−1(X)〉 for λ > 0, l ∈ g∗ and X ∈ g.
This action descends to the orbit space of the coadjoint action as Dλ ◦ Ad(x) =
Ad(λ · x) ◦Dλ for λ > 0 and x ∈ G.

Lemma 3.28 ([CG90, 2.1.3]). Let H be a subgroup of a locally compact group G
and let α be an automorphism of G and π a unitary representation of H. Then
α−1(H) is also a subgroup and

IndGα−1(H) (π ◦ α) '
(

IndGHπ
)
◦ α.

Lemma 3.29. Kirillov’s map G\g∗ → Ĝ induced by l 7→ πl is an R>0-equivariant
homeomorphism.

Proof. Kirillov proved in [Kir62] that the map is well-defined. In particular,
the equivalence class of πl does not depend on the choice of the polarizing subal-
gebra hl. Two representations πl1 and πl2 are equivalent if and only if l1 and l2 lie
in the same coadjoint orbit. Moreover, he proved that the map is continuous and
onto. The continuity of the inverse map is due to [Bro73]. To see that the map
is equivariant, note that χλ·l = χl ◦ δλ−1 and that δλ(H) is a polarizing subalgebra
for λ · l. Hence, Lemma 3.28 yields that πλ·l ' λ · πl. �
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Note that all l ∈ g∗ that vanish on [g, g] induce one-dimensional represen-
tations πl. In particular, l = 0 induces the trivial representation on C. If the
polarizing subalgebra is not all of g, the corresponding Hilbert space is infinite-
dimensional.

3.3. Stratification of the representations

The goal of this section is to use Kirillov theory and the coarse stratification by
Pukánszky [Puk67] to find a sequence of increasing, open, R>0-invariant subsets

∅ = V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vm = Ĝ\{πtriv} (12)

such that all Λi := Vi \ Vi−1 are Hausdorff and the R>0-action on each of these
subsets is free and proper. This sequence will play an essential role in Chapter 10.

Note that the following construction to find such a sequence of open subsets
works for all simply connected nilpotent Lie groups. However, a dilation action is
only defined for homogeneous Lie groups.

We start by describing Pukánszky’s stratification of g∗. Recall that we fixed
a basis {X1, . . . , Xn} of g such that Dλ(Xj) = λqjXj for all 1 ≤ j ≤ n. By the
triangular form of the group law (7) all

ki = span{Xi+1, . . . , Xn} for i = 0, . . . , n
form an ideal in g. In particular, {X1, . . . , Xn} is a strong Malcev basis of G as
defined in [CG90, 1.1.13], which is also called a Jordan–Hölder basis in [Puk67].
Note that they require span{X1, . . . , Xi} to be ideals. We stick to the reversed
ordering of the basis as this is standard for homogeneous Lie groups.

Let {X∗1 , . . . , X∗n} denote the corresponding dual basis of g∗ and let k⊥i =
span{X∗1 , . . . , X∗i } for i = 0, . . . , n. An element l ∈ g∗ is contained in k⊥i if and
only if 〈l, ki〉 = 0. As the ki are ideals and are, therefore, invariant under the
adjoint action, the k⊥i are invariant under the coadjoint action. Hence G acts on
each g∗/k⊥i .

Write pi : g∗ → g∗/k⊥i for the projection. By [CG90, 3.1.4] the orbits G · pi(l)
of pi(l) under the coadjoint action are closed. Hence, they define submanifolds of
g∗/k⊥i . Following [CG90], make the following definition.

Definition 3.30. For l ∈ g∗ let d(l) = (d0(l), d1(l), . . . , dn−1(l)) denote the se-
quence of orbit dimensions di(l) = dim(G · pi(l)).

The entries of d(l) are decreasing. The corresponding stabilizer subgroupsGpi(l)
form an increasing sequence

Gp0(l) ⊆ Gp1(l) ⊆ . . . ⊆ Gpn−1(l).

The same is true for their Lie algebras gpi(l). By [CG90, 3.1.1] they are given by

gpi(l) = {X ∈ g | co-ad(X)l ∈ k⊥i }
= {X ∈ g | 〈l, [X,Xk]〉 = 0 for k = i+ 1, . . . , n}.

Example 3.31. The computation in [CG90, 3.1.11] of the coadjoint action on the
3-dimensional Heisenberg group H1 yields

co-Ad(x, y, z)αX∗ + βY ∗ + γZ∗ = (α+ yγ)X∗ + (β − xγ)Y ∗ + γZ∗

for (x, y, z) ∈ H1 and α, β, γ ∈ R. This shows for X1 = X, X2 = Y and X3 = Z
that

d(αX∗ + βY ∗ + γZ∗) = (2, 1, 0) if γ 6= 0,
d(αX∗ + βY ∗) = (0, 0, 0).
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With the help of the next lemma an argument by Pukánszky [Puk71, p. 70]
shows that the definition of d(l) as above coincides with the one given, for example,
in [BBL16], by jump indices.

Lemma 3.32. Let b : V ×V → R be a skew-symmetric bilinear form, V ⊥ its radical
and W ⊂ V a subspace. Then

dim(W ) + dim(W⊥) = dim(V ) + dim(W ∩ V ⊥).

Lemma 3.33. The dimensions in d(l) decrease by steps of zero or one. There is
a jump, that is, di−1(l) = di(l) + 1 if and only if

Xi /∈ gl + span{Xi+1, . . . , Xn}.

Proof. The orthogonal complement of gl + span{Xi+1, . . . , Xn} with respect
to the bilinear form bl is gpi(l). Hence, by Lemma 3.32 there is a change of dimension
if and only if the dimension of the orthogonal complement decreases. This is the
case if and only if Xi /∈ gl + span{Xi+1, . . . , Xn}. �

Let D denote the finite set of all dimension sequences that occur for G. As-
semble all l ∈ g∗\{0} with the same sequence to

Ωd = {l ∈ g∗\{0} | d(l) = d}

for d ∈ D. The sets Ωd are G-invariant because the projections pi are equivariant.
As gl = gλ·l for all λ ∈ R>0, Lemma 3.33 implies that they are also invariant under
the dilation action. For d = (d1, . . . , dn) ∈ D set dn+1 = 0 and define

S(d) = {i ∈ {1, . . . , n} | di = di+1 + 1},
T (d) = {i ∈ {1, . . . , n} | di = di+1},
g∗S(d) = span{X∗i | i ∈ S(d)},
g∗T (d) = span{X∗i | i ∈ T (d)}.

The following theorem is due to Pukánszky [Puk71] and is also proved in [CG90].

Theorem 3.34 ([CG90, 3.1.14]). There is an ordering d1 ≥ d2 ≥ . . . ≥ dm
of D such that all Wi =

⋃
d≥di Ωd for i = 1, . . . ,m are G- and R>0-invariant and

open. Each G-orbit in Ωd meets g∗T (d) in exactly one point.

This allows to find a sequence as in (12) using Kirillov’s map by setting Vi =
G\Wi for i = 1, . . . ,m. It remains to check that the Vi\Vi−1 = G\Ωdi are Hausdorff
and that the corresponding R>0-action is free and proper.

Proposition 3.35. For d ∈ D let Λd := Ωd ∩ g∗T (d). The map Λd → G\Ωd
induced by the inclusion is an R>0-equivariant homeomorphism. The corresponding
R>0-action on Λd is free and proper.

Proof. In [CG90, 3.1.14] it is proved that there is a birational, nonsingular
map ψd : Λd× g∗S(d) → Ωd. Furthermore, π1 ◦ψ−1

d is G-invariant, where π1 denotes
the projection to Λd. Hence, it induces a continuous map G\Ωd → Λd. It is inverse
to the map induced by the inclusion. Thus, the two spaces are homeomorphic.
As Ωd and g∗T (d) are invariant under the dilation action, so is Λd. Therefore, the
inclusion is equivariant. Since 0 ∈ g∗ is not contained in any Ωd, the Λd are
subsets of some Rl \{0} equipped with the Euclidean subspace topology. Hence
they are Hausdorff and the R>0-action, which is given for λ > 0 by multiplying the
coordinate entries by different powers of λ, is free and proper. �
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Example 3.36. From the computations for the Heisenberg group in Example 3.31
we get as in [CG90, 3.1.15], up to the reversed order,

Ω(2,1,0) = {αX∗ + βY ∗ + γZ∗ | α, β ∈ R and γ 6= 0},
Ω(0,0,0) = {αX∗ + βY ∗ | (α, β) 6= (0, 0)},

T (2, 1, 0) = {3},
T (0, 0, 0) = {1, 2, 3},

Λ(2,1,0) = {γZ∗ | γ 6= 0},
Λ(0,0,0) = {αX∗ + βY ∗ | (a, b) 6= (0, 0)}.

Therefore, the desired sequence is ∅ ⊂ G\Ω(2,1,0) ⊂ Ĝ \ {πtriv}. The dilation
action on Λ(2,1,0) ∼= R \ {0} is multiplication with λ−2 for λ > 0, whereas on
Λ(0,0,0) ∼= R2 \ {0} it is scalar multiplication with λ−1.

3.4. Plancherel theory

For a locally compact group G, the operator-valued Fourier transform f 7→ f̂
is defined for f ∈ L1(G). It is given by

f̂(π) =
∫
G

f(x)π(x) dx ∈ B(Hπ)

for an irreducible, unitary representation π : G → U(Hπ). We recall some re-
sults from Plancherel theory for locally compact, separable groups G of type I (see
[Dix77, 18.8], [CG90, 4.3] and [FR16, Appendix B]).

In this case, the topological space Ĝ can be equipped with a certain Borel
measure µ, which is called the Plancherel measure. For a simply connected nilpotent
Lie group G, it is supported within the orbits with maximal dimension sequence,
these are the orbits in Ωd1 ⊂ g∗ with notation as in Theorem 3.34 (see [CG90,
p. 154]).

By [Dix77, 8.6.1] there is a subspace Γ ⊂
∏
π∈ĜHπ that turns ((Hπ)

π∈Ĝ,Γ)
into a µ-measurable field of Hilbert spaces over Ĝ as defined in [FR16, Def. B.1.3].
The elements of Γ are called the measurable sections.

For a Hilbert space H denote by HS(H) the Hilbert space of Hilbert–Schmidt
operators onH. IdentifyingH⊗H∗ with HS(H), one obtains for a simply connected
nilpotent Lie group G the µ-measurable field ((HS(Hπ))

π∈Ĝ,Γ ⊗ Γ∗) over Ĝ (see
[FR16, B.1.3]).

Define L2(Ĝ,HS(Hπ)) to be the direct integral of the Hilbert spaces HS(Hπ).
It consists of sections x ∈ Γ⊗Γ∗ such that (π 7→ ‖x(π)‖) ∈ L2(Ĝ, µ). It is a Hilbert
space with respect to 〈x, y〉 :=

∫
Ĝ
〈x(π), y(π)〉HS dµ(π).

The Plancherel Theorem [FR16, B.2.32] states that the Fourier transform de-
fined above yields an isometric isomorphism̂: L2(G)→ L2(Ĝ,HS(Hπ)).

The (left) group von Neumann algebra VNL(G) of G consists of bounded, right-
invariant operators on L2(G). The Plancherel Theorem yields that the Fourier
transform extends to a ∗-isomorphism̂: VNL(G)→ L∞(Ĝ,B(Hπ)). (13)

Here, L∞(Ĝ,B(Hπ)) consists of a = (a(π))
π∈Ĝ with a(π) ∈ B(Hπ) such that

(i) (a(π)x(π))π ∈ Γ for all (x(π))π ∈ Γ,
(ii) (π 7→ ‖a(π)‖) ∈ L∞(Ĝ, µ).
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It is a von Neumann-algebra with the pointwise operations and the norm given by
‖a‖ = sup

π∈Ĝ
‖a(π)‖B(Hπ).

The inverse Fourier transform maps a field a ∈ L∞(Ĝ,B(Hπ)) to the operator
Ta ∈ VNL(G) determined by

T̂aψ(π) = a(π)ψ̂(π) for ψ ∈ L2(G), π ∈ Ĝ.
This operator-valued Fourier transform is essential for the definition of the symbolic
pseudodifferential calculus of Fischer–Ruzhansky described in Section 9.2 and will
also be useful at some other places in the following.



CHAPTER 4

Filtered manifolds

For a differential operator P of order m on an ordinary smooth manifold, its
highest order part Σ(P ) is independent of the choice of coordinates. If (x1, . . . , xn)
are local coordinates on M one can write

P =
∑
|α|≤m

cα∂
α

with smooth coefficients cα ∈ C∞(M). In these coordinates, the highest order part,
or principal part, at x ∈M is

Σ(P )x =
∑
|α|=m

cα(x)∂α.

For a fixed x ∈ M , the “model operator” Σ(P )x can be understood as a constant
coefficient operator on Rn. Usually, it is more convenient to apply Fourier transform:
Σ̂(P )x is acting by multiplication with the polynomial∑

|α|=m

cα(x)(−iξ)α.

Using Fourier transform, it becomes easy to say when Σ(P )x is invertible and to
construct an inverse in this case. On a compact manifold M , P is called elliptic if
Σ̂(P )x(ξ) 6= 0 for all ξ 6= 0 and x ∈M .

Folland, Rothschild and Stein realized in the 1970s [FS74,RS76,Fol77] that
certain non-elliptic, but still hypoelliptic, differential operators could be analysed
using graded Lie groups. By attaching different integer weights to vector fields
viewed as differential operators, one obtains a new notion of order. Then the model
operators of the highest order part act no longer on Rn but on graded Lie groups
instead. The Kohn-Laplacian �b and operators of the type of Hörmander’s sum of
squares are examples studied by Folland, Rothschild and Stein.

Filtered manifolds, which are also called Carnot manifolds, offer a framework to
study this behaviour. The tangent bundle of a filtered manifold admits a filtration
by subbundles. This notion goes back to [Tan70]. It allows to attach different
weights to vector fields in a well-defined way. In the last years, filtered manifolds
were used in the realm of noncommutative geometry in [vEY19,vEY17,CP19b,
SH18,Moh18,Moh20].

In this chapter, we recall the definition of a filtered manifold and give some
examples. For each point of a filtered manifold, the filtration yields a graded
nilpotent Lie group, the so called osculating group. In the last section, we consider
certain coordinates defined in [CP19a]. These give a better understanding how
the osculating groups approximate the manifold in a suitable sense.

Definition 4.1. A filtered manifold (M,H) is a smooth manifold with a filtration
of its tangent bundle 0 = H0 ⊆ H1 ⊆ H2 ⊆ . . . ⊆ Hr = TM consisting of smooth
subbundles such that[

Γ∞(Hi),Γ∞(Hj)
]
⊆ Γ∞(Hi+j) for all i, j. (14)

28
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Here, we set Hi = TM for all i ≥ r. A manifold is filtered of step r, if Hr = TM
and Hr−1 6= TM .

We consider some examples. For a broader overview on different types of filtered
manifolds appearing in various areas of mathematics see [CP17, Section 2.3].

Example 4.2. A filtered manifold of step r = 1 is just the data of an ordinary
smooth manifold.

Example 4.3. By the Frobenius Theorem a foliated manifold is a manifold with a
subbundle 0 ⊆ H ⊆ TM such that [Γ∞(H),Γ∞(H)] ⊂ Γ∞(H). In particular, this
defines a filtered manifold of step 2.

Example 4.4. A manifold with a step 2 filtration 0 ( H ( TM such that H has
codimension 1 is called a Heisenberg manifold. A contact manifold is a (2k + 1)-
dimensional Heisenberg manifold such that for all local 1-forms θ with ker(θ) = H
the (2k + 1)-form θ( dθ)k is nowhere zero on its domain.

Example 4.5. Each graded Lie group G of step r can be understood as a filtered
manifold of step r. Suppose T0(G) = g = ⊕ri=1gi and let nk =

∑k
i=1 dim gi for

k ≥ 1 and n0 = 0. Choose a basis {X1, . . . , Xn} of g by subsequently picking a basis
{Xni−1+1, . . . , Xni} of gi. Extend these to left-invariant vector fields {X1, . . . , Xn}
on G and define Hi to be the subbundle spanned by {X1, . . . , Xni}. This defines a
filtration of the tangent bundle of G.

4.1. The osculating groupoid

The filtration of the tangent bundle allows to define the graded vector bundle
∞⊕
i=1

Hi/Hi−1

over M . Note that Hi/Hi−1 = 0 for i > r, where r is the step of the filtration.
The graded bundle can be equipped with the structure of a Lie algebroid over M ,
which we will denote by tHM . For the general theory of Lie algebroids and Lie
groupoids see, for example, [Mac05]. The bracket

[ · , · ] : Γ∞(tHM)× Γ∞(tHM)→ Γ∞(tHM)
is induced by the Lie bracket of vector fields on TM . Let X ∈ Γ∞(Hi) and
Y ∈ Γ∞(Hj) be representatives of 〈X〉 ∈ Γ∞(Hi/Hi−1) and 〈Y 〉 ∈ Γ∞(Hj/Hj−1)
and set

[〈X〉, 〈Y 〉] = 〈[X,Y ]〉.
The condition (14) ensures that this is well-defined. The anchor tHM → TM is
given by the zero map. Therefore, the bracket restricts to each fibre (tHM)x for
x ∈M and turns (tHM)x into a graded Lie algebra.

The Lie algebroid tHM integrates to a Lie groupoid THM over M (see [vEY17,
Sec. 3, Sec. 8]). As a manifold, it is the graded vector bundle

⊕∞
i=1H

i/Hi−1. Its
source and range map are the base projection.

Definition 4.6. For x ∈ M denote by G(x) the graded Lie group of (tHM)x and
call it the osculating group at x ∈M .

The group multiplication of G(x) is uniquely determined in terms of the Lie
bracket by the Baker–Campbell–Hausdorff formula (5). The groupoid multiplica-
tion in THM is given by the group product in the fibres. As the brackets vary
smoothly along M , this defines a Lie groupoid multiplication. The Lie groupoid
THM is called the osculating groupoid or the bundle of osculating groups in [vEY17].
In [CP19b] it is called the tangent group bundle. However, THM is in general not
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a group bundle in the sense of principal bundles as the group structure might vary
from point to point.

Example 4.7. Let M = R3 and define three vector fields
X = ∂x + y2∂z, Y = ∂y and Z = ∂z.

Let H ⊂ TR3 be the subbundle spanned by X,Y . One computes [X,Y ] = −2yZ.
Therefore, the osculating groups are Abelian whenever y = 0, while they are iso-
morphic to a Heisenberg group for y 6= 0.

Example 4.8. For step r = 1 and x ∈M , the osculating group G(x) is the tangent
space TxM with group operation being the addition of tangent vectors. Hence, all
osculating groups are isomorphic to the Abelian group Rn.

Example 4.9. The osculating groups of a foliated manifold are also Abelian as
[Γ∞(H),Γ∞(H)] ⊂ Γ∞(H) holds.

Example 4.10. For a Heisenberg manifold M , despite the name, the osculating
groups are not necessarily Heisenberg groups. In fact, each osculating group G(x) is
isomorphic to a product Rl(x)×Hk(x) with l(x)+2k(x)+1 = dim(M) [BG88, 1.15].
Note that l(x) and k(x) might vary along M . For a contact manifold of dimension
2k + 1 all osculating groups are isomorphic to the Heisenberg group Hk.

Example 4.11. For a graded Lie group G, understood as a filtered manifold as in
Example 4.5, all osculating groups are isomorphic to G.

Definition 4.12. The dilation action of R>0 on the graded Lie algebras (tHM)x
extends to an action on tHM given by Dλ(〈X〉) := λi〈X〉 for X ∈ Hi

x/H
i−1
x . It

integrates to an action on THM , which we denote by δλ(ξ) = λ · ξ for ξ ∈ G(x).

From now on, we will always assume that the bundles Hi of the filtration of a
filtered manifold (M,H) have constant rank, which is automatic if M is connected.

Definition 4.13. The homogeneous dimension of a filtered manifold (M,H) is

dH :=
n∑
i=1

i
(
rank

(
Hi
)
− rank

(
Hi−1)).

The weight sequence for (M,H) is
(q1, . . . , qn) = (1, . . . , 1, 2, . . . , 2, . . . , r, . . . , r)

where each 1 ≤ i ≤ r occurs (rank(Hi)− rank(Hi−1))-times.

Remark 4.14. The homogeneous dimension of the filtered manifold is the homo-
geneous dimension of all osculating groups G(x) for x ∈M as in Definition 3.9.

Assigning to a filtered manifold (M,H) its osculating groupoid THM is func-
torial, when considering the following morphisms.

Definition 4.15. A filtered manifold map or Carnot map f : (M1, H1)→ (M2, H2)
is a smooth map between filtered manifolds (M1, H1) and (M2, H2) such that

df(Hi
1) ⊂ Hi

2 for all i ∈ N. (15)

A Carnot diffeomorphism is a diffeomorphism f : M1 → M2 such that f and f−1

are filtered manifold maps.

Let f : (M1, H1) → (M2, H2) be a Carnot map. Condition (15) ensures that
there is a well-defined induced vector bundle morphism tf : tH1M1 → tH2M2, which
satisfies

[tf(X), tf(Y )] = tf([X,Y ]) for X,Y ∈ Γ∞(tH1M1).
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Consequently, using the exponential maps, one obtains a Lie groupoid homomor-
phism Tf : TH1M1 → TH2M2 which restricts in each fibre to a homomorphism
of graded Lie groups Txf : G(x) → G(f(x)). The map Tf is equivariant for the
dilation actions, that is,

Txf(λ · ξ) = λ · Txf(ξ) for x ∈M , λ > 0 and ξ ∈ G(x).

We will consistently use the notation df : TM1 → TN1 for the usual differen-
tial, whereas Tf : TH1M1 → TH2M2 is the homomorphism between the osculating
groupoids, which is called the Carnot differential in [CP19b].

Proposition 4.16 ([CP19b, 5.5]). The assignment (M,H) 7→ THM and f 7→ Tf
defines a functor from the category of filtered manifolds with filtered manifold maps
to the category of Lie groupoids with Lie groupoid homomorphisms.

4.2. Anisotropic analysis

In this section, let Rn be equipped with dilations δ : R>0 y Rn of integer weights
1 = q1 ≤ . . . ≤ qn, that is,

δλ(v1, . . . , vn) = λ · (v1, . . . , vn) := (λq1v1, . . . , λ
qnvn) for λ > 0, v ∈ Rn.

We will recall some facts and notions on anisotropic analysis for Rn equipped with
these dilations. They were introduced in [CP17,CP19a] to define certain coordi-
nates on filtered manifolds, which we will describe in Section 4.3.

Fix a homogeneous quasi-norm ‖ · ‖ as in Definition 3.11 for the dilations above.
Note that one only needs dilations and does not need to specify an underlying group
structure to define them. This is a key observation as the group product in the
osculating groups can change along the manifold, whereas the dilations stay the
same. For a multiindex α ∈ Nn0 we denote by [α] the homogeneous degree as in
Definition 3.15.

Definition 4.17 ([CP17, 4.4]). Let U ⊂ Rn be an open neighbourhood of 0 ∈ Rn

and m ∈ N0. A function f ∈ C∞(U) has weight ≥ m at 0 if ∂αf(0) = 0 for all
α ∈ Nn0 with [α] < m.

By [CP17, 4.12] f ∈ C∞(U) has weight ≥ m at 0 if and only if f has the
asymptotic behaviour f = O(‖v‖m) near v = 0. To deal with vector-valued maps,
the following definition is useful.

Definition 4.18 ([CP17, 4.18]). Let U ⊂ Rn be an open neighbourhood of 0 ∈ Rn

and let Rk be equipped with dilations with integer weights 1 = q′1 ≤ . . . ≤ q′k. A
function f = (f1, . . . , fk) ∈ C∞(U,Rk) belongs to Oq(‖v‖q

′+m) for m ∈ N0 if

fi = O(‖v‖q
′
i+m) near v = 0 for all i = 1, . . . , k.

The following lemma will be used later for computations on the tangent groupoid
of a filtered manifold.

Lemma 4.19 ([CP19b, 3.9]). Let W is an open subset of Rp × Rn such that
W ∩ (Rp × {0}) = U × {0} for a non-empty U ⊆ Rp. Let Θ ∈ C∞(W,Rn) satisfy
Θ(x, v) = Oq(‖v‖q+m) near v = 0 for all x ∈ U . Then there are smooth maps
Ri,α ∈ C∞(W ) such that for i = 1, . . . , n(

t−1 ·Θ(x, t · v)
)
i

=
∑

|α|≤qi+m≤[α]

t[α]−qivαRi,α(x, t · v).
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Proof. For a function f ∈ C∞(W,R) and N ∈ N0 the anisotropic Taylor
formula [CP17, 4.7] yields functions RN,α ∈ C∞(W,R) such that

f(x, v) =
∑

[α]<N

1
α!v

α∂αv f(x, 0) +
∑

|α|≤N≤[α]

vαRN,α(x, v)

for all (x, v) ∈W . If f(x, v) = O(‖v‖N ) near v = 0 for all x ∈ U , it follows that

f(x, t · v) =
∑

|α|≤N≤[α]

t[α]vαRN,α(x, t · v).

The claim follows by considering for i = 1, . . . , n the components Θi ∈ C∞(W,R)
and N = qi +m. �

As in (8), the dilations act on differential operators on Rn and, in particular,
on vector fields. For a differential operator P on Rn set

δ∗λ(P )f(v) = P (f ◦ δλ)(λ−1 · v) for λ > 0, f ∈ C∞(Rn) and v ∈ Rn.

Definition 4.20. A differential operator P on Rn is q-homogeneous with respect
to the dilations δ : R>0 y Rn if δ∗λ(P ) = λqP .

4.3. Coordinates

As already remarked, for a filtered manifold the osculating groups may vary
from point to point. Therefore, it is not always possible to identify M locally with
open subsets of a fixed graded Lie group. This can only be done in particular cases,
for example for contact manifolds using Darboux coordinates.

However, there are special kinds of coordinates on filtered manifolds that give
a relation with the group structure of the osculating groups. Using H-charts the
bundle THM can be locally trivialized in a way that is compatible with the graded
structure.

Definition 4.21. An H-frame X = (X1, . . . , Xn) over an open subset V ⊂ M
consists of vector fields Xi : V → TM , such that (X1, . . . , XrankHi) defines a frame
for Hi for all i = 1, . . . , r.

An H-chart is a local chart κ : V → U between open subsets V ⊂ M and
U ⊂ Rn together with an H-frame X over V .

For an H-chart κ : V → U with H-frame X, the frame {κ∗(X1), . . . , κ∗(Xn)}
induces a filtration over U we denote by κ∗H. Therefore, κ can be understood
as a Carnot diffeomorphism. The Carnot differential Tκ gives an isomorphism of
bundles of graded groups

Tκ : THM |V → Tκ∗HU.

We define a fibrewise homogeneous quasi-norm on Tκ∗HU as in (6) by

‖(x, v)‖ :=
n∑
j=1
|vj |1/qj for x ∈ U , v ∈ Rn. (16)

For a fixed point p ∈M , we consider now the privileged and Carnot coordinates
at p. See also [SH18, 6.21, 6.22, 6.23] for a different description of these.

Definition 4.22 ([CP17, 3.8, 3.10]). Let κ : V → U be an H-chart around p ∈M
with coordinate functions xj : V → R and H-frame X. The H-chart is linearly
adapted to p if κ(p) = 0 and the H-frame coincides with the coordinate vector
fields at p, that is,

Xj(p) = ∂

∂xj
(p) for j = 1, . . . , n.
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For an H-chart κ : V → U , equip Rn with the dilations induced by Tκ. Then
one can speak of vector fields on U ⊂ Rn that are homogeneous with respect to the
dilations in the sense of Definition 4.20.

Definition 4.23 ([CP17, 5.6]). An H-chart κ : V → U with H-frame X which is
linearly adapted to p ∈ V defines privileged coordinates at p if for all j = 1, . . . , n
there is a qj-homogeneous vector field X

[p]
j on U such that

tqjδ∗t−1(κ∗(Xj)) = X
[p]
j +O(t) in Γ∞(U) as t→ 0. (17)

Here, Γ∞(U) is equipped with the smooth structure under the identification with
C∞(U,Rn) using the coordinate vector fields.

Using an H-chart κ : V → U with H-frame X, Tκ identifies THM |V with a
bundle of graded Lie groups over U . The frame (κ∗(X1), . . . , κ∗(Xn)) yields a basis
of the graded Lie algebra over κ(p) ∈ U . Let Xp

j for j = 1, . . . , n denote the
left-invariant vector fields associated to this basis as in Definition 3.18 using the
multiplication over κ(p). Then each Xp

j is a qj-homogeneous vector field on U .

Definition 4.24 ([CP19a, 7.7]). An H-chart κ : V → U with H-frame X which
is linearly adapted to p ∈ V defines Carnot coordinates at p if for all j = 1, . . . , n

tqjδ∗t−1(κ∗(Xj)) = Xp
j +O(t) in Γ∞(U) as t→ 0.

Therefore, Carnot coordinates are the privileged coordinates at p for which the
“blow up” in (17) yields the left-invariant differential operators obtained by the
H-frame X on the osculating group at p. This explains why these coordinates will
be important for the construction of the tangent groupoid.

Choi and Ponge give in [CP19a] an explicit construction how to turn any local
coordinates into Carnot coordinates. The result can be summarized as follows.

Proposition 4.25 ([CP19b, 4.17]). Let κ : V → U be an H-chart around p ∈ M
with H-frame X. Then there is a unique change of coordinates εκκ(p) : Rn → Rn

such that εκκ(p) ◦ κ are Carnot coordinates at p with respect to the H-frame X.

Moreover, the map εκp : Rn → Rn for p ∈ U can be described as follows. Write
the vector fields κ∗(Xj) for j = 1, . . . , n in terms of the coordinate vector fields as

κ∗(Xj) =
n∑
k=1

bjk
∂

∂xk
with bjk ∈ C∞(U).

Let BX(x) := (bjk(x))nj,k=1 for x ∈ U and define the affine linear map

Ap(x) := (BX(p)t)−1(x− p).
Then one can write εκp by [CP19a, 10.1]

εκp = ε̂ κp ◦Ap, (18)
where ε̂ κp is a polynomial map given by

ε̂ κp(x)j = xj +
∑

[α]<qj ,
|α|≥2

cjα(p)xα for j = 1, . . . , n.

The cjα are universal polynomials in the entries of (BX(p)t)−1 and ∂βxBX(p) for
[β] < [α] − 1. Varying p inside U we obtain the ε-Carnot map εκ : U × Rn → Rn

with (p, x) 7→ εκp(x).

Corollary 4.26 ([CP19a, 10.4]). The maps U ×Rn → Rn given by (p, x) 7→ εκp(x)
and (p, x) 7→ (εκp)−1(x) are smooth.
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The ε-Carnot maps approximate the group multiplication of the osculating
groups in the following sense.

Proposition 4.27 ([CP19a, 10.7]). Let κ : V → U be a Carnot coordinate chart
around p ∈ V with respect to the H-frame X. Then for (x, y) near (0, 0)

εκx(y) = (−x) ·p y +Oq(‖(x, y)‖q+1),
(εκx)−1(y) = x ·p y +Oq(‖(x, y)‖q+1).

Here, ·p denotes the group product in the osculating group at κ(p).



CHAPTER 5

The tangent groupoid of a filtered manifold

The tangent groupoid of a filtered manifold and its smooth structure were
constructed in [vEY19, CP19b, SH18, Moh18] using different approaches. It
generalizes Connes’ tangent groupoid [Con94], which plays an important role in
Connes’ proof of the Atiyah–Singer Index Theorem. It is a smooth field of groupoids
over [0,∞) where the fibres are the osculating groupoid THM at t = 0 and the pair
groupoid of M for t > 0. In case of a step r = 1 filtration, one recovers Connes’
tangent groupoid.

5.1. The Lie groupoid structure

Before defining the tangent groupoid of a filtered manifold, recall that the
bundle of osculating groups THM can be understood as a Lie groupoid over M .

Example 5.1. The bundle of osculating groups is a Lie groupoid with the following
structure maps. The range and source map are given by the bundle projection
THM →M . The unit map is the embedding M ↪→ THM as the zero section. The
inverse and multiplication are given by the group operations in the fibres.

Another important groupoid attached to M is its pair groupoid.

Example 5.2. For a set M , the pair groupoid of M is the groupoid with arrow
space M ×M and unit space M . The range and source r, s : M ×M →M and unit
u : M →M ×M are given by

r(x, y) = x, s(x, y) = y, u(x) = (x, x).
The inverse and multiplication are defined by

(x, y)−1 = (y, x) and (x, y) · (y, z) = (x, z).
If M is a smooth manifold, the pair groupoid of M is a Lie groupoid.

The two groupoids THM and M ×M can be glued together in a smooth way,
yielding the tangent groupoid of M . We first discuss its groupoid structure.

Definition 5.3. The tangent groupoid THM of a filtered manifold (M,H) consists
of the arrow space

THM = (THM × {0}) ∪ (M ×M × (0,∞))
and the unit space M×[0,∞). The range and source maps r, s : THM →M×[0,∞)
are given by

r(x, ξ, 0) = (x, 0), s(x, ξ, 0) = (x, 0) for ξ ∈ G(x),
r(x, y, t) = (x, t), s(x, y, t) = (y, t) for x, y ∈M and t > 0.

The unit u : M × [0,∞)→ THM and the inverse i : THM → THM are defined by
u(x, 0) = (x, 0, 0) for x ∈M, u(x, t) = (x, x, t) for x ∈M and t > 0,

i(x, ξ, 0) = (x, ξ−1, 0) for ξ ∈ G(x), i(x, y, t) = (y, x, t) for x, y ∈M and t > 0.

35
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The multiplication m : THM (2) → THM is given by
(x, ξ, 0)(x, η, 0) = (x, ξ · η, 0) for ξ, η ∈ G(x),
(x, y, t)(y, z, t) = (x, z, t) for x, y, z ∈M and t > 0.

At t = 0, the multiplication and inversion in the osculating groups are used.

The range fibres are given by

THM
(x,t) =

{
{(x, ξ, 0) | ξ ∈ G(x)} for x ∈M and t = 0,
{(x, y, t) | y ∈M} for x ∈M and t > 0.

Example 5.4. Let M = G be a graded Lie group with the filtration H as in
Example 4.5. The tangent groupoid THG is isomorphic to the transformation
groupoid

G = (G× [0,∞))oG
of the action (G× [0,∞)) x G given by (x, t).v = (xδt(v), t). Here, we set δ0(v) =
limt→0 δt(v) = 0 for all v ∈ G.

The unit map u : G0 := G×[0,∞)→ G, the range and source maps r, s : G → G0,
the inverse and the multiplication are given by

u(x, t) = (x, t, 0), r(x, t, v) = (x, t), s(x, t, v) = (xδt(v), t),
(x, t, v)−1 = (xδt(v), t, v−1), (x, t, v) · (xδt(v), t, w) = (x, t, vw),

for x, v, w ∈ G and t ∈ [0,∞).
The isomorphism φ : THG → G is given by φ(x, y, t) = (x, t, δt−1(x−1y)) for

t > 0 and φ(x, ξ, 0) = (x, 0, ξ) when identifying G(x) with G. The inverse is given
by (x, t, v) 7→ (x, xδt(v), t) for t > 0 and (x, 0, v) 7→ (x, v, 0).

A crucial feature of the tangent groupoid of a filtered manifold is that it defines
a Lie groupoid:

Theorem 5.5 ([vEY19, CP19b]). The tangent groupoid THM of a filtered
manifold (M,H) admits a smooth structure such that it becomes a Lie groupoid.

We recall the construction of coordinate charts in [CP19b]. For an H-chart
κ : M ⊇ V → U ⊆ Rn, Choi and Ponge construct in [CP19b, (9.5)] a chart
φκ : THM ⊇ V→ U, where

V = (THM |V × {0}) ∪ (V × V × (0,∞)),

U =
{

(x, v, t) ∈ U × Rn × [0,∞) | (εκx)−1 (t · v) ∈ U
}
.

Here, εκ is the ε-Carnot map U × Rn → Rn associated with the H-chart κ. The
map φκ is given by

φκ(x, ξ, 0) = (κ(x), Txκ(ξ), 0) for ξ ∈ G(x),

φκ(x, y, t) =
(
κ(x), t−1 · εκκ(x)(κ(y)), t

)
for x, y ∈ V and t > 0.

Its inverse is

φ−1
κ (x, v, t) =

{
(κ−1(x), (Txκ)−1(v), 0) for (x, v) ∈ U × Rn and t = 0,(
κ−1(x), (εκx ◦ κ)−1 (t · v), t

)
for (x, v, t) ∈ U and t > 0.

The smooth structure of THM is uniquely determined by the charts φκ for all
H-charts κ of M and by requiring that the inclusion M ×M × (0,∞) ↪→ THM is
a smooth embedding (see [CP19b, 9.7]). To shorten notation, we will sometimes
denote V∞ = M and V∞ = M ×M × (0,∞) in the following.

For each H-chart κ : V → U , the open subset V is a subgroupoid of THM .
Hence, the structure maps from Definition 5.3 can be transported to U and one
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can check that they are smooth. Moreover, the unit map is a smooth embedding,
the source and range maps are submersions and the inversion is a diffeomorphism.
Hence, THM is a Lie groupoid.

Example 5.6. Let G be a graded Lie group G and let κ : G → Rn be the global
coordinate chart obtained from the exponential map. Then the ε-Carnot map
is εκx(y) = x−1 · y, see [CP19a, 9.12]. Therefore, φκ is the isomorphism from
Example 5.4.

5.2. Smooth field structure

Often, it will be useful to understand THM as a smooth field of groupoids over
the space [0,∞) in the sense of [LR01, 5.2].

Lemma 5.7. The tangent groupoid THM of a filtered manifold (M,H) is a smooth
field of groupoids over [0,∞) with fibres isomorphic to the pair groupoid of M for
t > 0 and osculating groupoid THM for t = 0. All these subgroupoids are amenable.

Proof. The projection θ : THM → [0,∞) is a smooth submersion. It satisfies
θ = pr2 ◦r = pr2 ◦s where pr2 : M × [0,∞)→ [0,∞) is the projection to the second
coordinate. Restricting the structure maps of THM to t ≥ 0, it is clear that the
groupoids θ−1{t} are the pair groupoid of M for t > 0 and THM for t = 0.

As all fibres of THM are nilpotent Lie groups, thus amenable, it follows from
[ADR00, 5.3.4] that THM is amenable. The pair groupoid of M is amenable as
well. �

5.3. The zoom action

The following zoom action of R>0 on THM by Lie groupoid automorphisms
was defined in [vEY19, Def. 17] and [SH18, 5.3]. It plays an essential role for the
definition of the pseudodifferential calculus in [vEY19]. We will use it to construct
a generalized fixed point algebra.

Definition 5.8. The zoom action of R>0 on THM is defined for λ > 0 by
αλ(x, y, t) =

(
x, y, λ−1t

)
for (x, y, t) ∈M ×M × (0,∞),

αλ(x, ξ, 0) = (x, δλ(ξ), 0) for (x, ξ) ∈ THM.

Lemma 5.9. The zoom action of R>0 on the tangent groupoid of a filtered manifold
(M,H) is a smooth action by Lie groupoid automorphisms.

Proof. It can be checked easily that all αλ are groupoid morphisms with
underlying maps of the unit space

M × [0,∞)→M × [0,∞), (x, t) 7→ (x, λ−1t).
They satisfy αλµ = αλ ◦ αµ for all λ, µ > 0 and α1 = id. The smoothness on
M ×M × (0,∞) is clear. Let κ : V → U be an H-chart for M and φκ : V→ U the
corresponding chart for THM . Then one computes for λ > 0 and (x, v, t) ∈ U

βλ(x, v, t) :=
(
φκ ◦ αλ ◦ φ−1

κ

)
(x, v, t) =

(
x, λ · v, λ−1t

)
, (19)

where λ · (v1, . . . , vn) = (λq1v1, . . . , λ
qnvn). Hence, the action is smooth. �

It will be useful to extend the notion of homogeneous quasi-norms on the os-
culating groups to U for H-charts V → U . Let ‖ · ‖ : U→ R≥0 be given by

‖(x, v, t)‖ =
n∑
j=1
|vj |1/qj . (20)
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It satisfies ‖βλ(γ)‖ = λ‖γ‖ for all λ > 0 and γ ∈ U, where β is the zoom action in
coordinates as in (19). As opposed to homogeneous quasi-norms on homogeneous
groups, ‖γ−1‖ 6= ‖γ‖ is possible for γ ∈ U.

5.4. Functoriality

For a filtered manifold map f : (M1, H1)→ (M2, H2), we already saw in Propo-
sition 4.16 that it induces a Lie groupoid morphism Tf : TH1M1 → TH2M2. It can
be extended to a map of the corresponding tangent groupoids f : TH1M1 → TH2M2
with

f(x, y, t) = (f(x), f(y), t) for (x, y, t) ∈M1 ×M1 × (0,∞),
f(x, ξ, 0) = (f(x), Txf(ξ), 0) for (x, ξ) ∈ TH1M1.

Note that the induced map f is equivariant for the respective zoom actions.

Proposition 5.10 ([CP19b, 9.17, 9.18]). Let f : (M1, H1)→ (M2, H2) be a filtered
manifold map. Then f : TH1M1 → TH2M2 is a Lie groupoid homomorphism with
underlying map (x, t) 7→ (f(x), t) of the unit spaces.

The assignments (M,H) 7→ THM and f 7→ f define a functor from the category
of filtered manifolds to the category of Lie groupoids.



CHAPTER 6

Convolution algebras for the tangent groupoid

To apply the generalized fixed point algebra construction to the zoom action,
we need to attach a C∗-algebra to the tangent groupoid. In this chapter we re-
call the construction of groupoid C∗-algebras. Furthermore, we define a certain
Schwartz type algebra for the tangent groupoid by adapting [CR08] to the filtered
manifold setting. This algebra will be convenient to obtain a relatively continuous
and complete subspace for the R>0-action.

6.1. Haar system

As THM is a Lie groupoid, it admits a smooth left Haar system (see for example
[Pat99, 2.3.1]). In the following, we explicitly describe a left Haar system.

Fix an atlas of H-charts (κi : M ⊇ Vi → Ui ⊆ Rn)i∈I for M . Let (ρi)i∈I be a
partition of unity which is subordinate to the open cover (Vi)i∈I of M . One can
define a measure ν on M by setting∫

M

f dν =
∑
i∈I

∫
Ui

(f · ρi)(κ−1
i (x)) dx for f ∈ Cc(M),

where dx denotes the Lebesgue measure on Ui ⊆ Rn. Furthermore, the atlas of
H-charts gives rise to a smooth family of measures on the osculating groups. Each
H-chart κ : V → U induces a local trivialisation

Tκ : THM |V
∼=→ U × Rn.

The Lebesgue measure on Rn can be pulled back using the graded isomorphism

Txκ : G(x)
∼=→ Rn for all x ∈ V.

Recall that dH denotes the homogeneous dimension of M . Define for f ∈ Cc(THM)∫
f dν(x,0) :=

∑
i∈I

∫
Rn
ρi(x)f(x, (Txκi)−1(v), 0) dv for x ∈M,∫

f dν(x,t) := t−dH
∫
M

f(x, y, t) dν(y) for x ∈M , t > 0.

Lemma 6.1. The family of measures {ν(x,t)}(x,t)∈M×[0,∞) defines a smooth left
Haar system on THM .

Proof. For (x, t) ∈M × [0,∞) the support of ν(x,t) is contained in THM (x,t).
The left invariance follows for t > 0 as in the pair groupoid case. For t = 0, this is
due to the fact that the Lebesgue measure induces a bi-invariant Haar measure on
the osculating groups. For f ∈ C∞c (THM), we show that the map

(x, t)→
∫
f dν(x,t)

is smooth. Using the partition of unity, f can be written as a finite sum

f = f∞ +
∑
i∈I

fi

39
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with fi ∈ C∞c (Vi) for i ∈ I and i =∞. As smoothness for t > 0 is clear, it suffices
to prove for all H-charts κ : V → U and f ∈ C∞c (U) that

(x, t) 7→ t−dH
∫
U

(f ◦ φκ)(x, κ−1(y), t) dy for t > 0,

(x, 0) 7→
∫

Rn
(f ◦ φκ)(x, (Txκ)−1(v), 0) dv =

∫
Rn
f(κ(x), v, 0) dv,

is smooth. For x ∈ V and t > 0 consider the diffeomorphism

φ̃(x,t)
κ : U → U(x,t) := {v ∈ Rn | (εκκ(x))−1(t · v) ∈ U},

y 7→ t−1 · εκκ(x)(y).

Because εκκ(x) = ε̂κκ(x) ◦ Aκ(x) as in (18) and the differential d(ε̂κκ(x))(y) is of upper
triangular form with ones on the diagonal and Ak(x)(y) = (BX(κ(x))t)−1(y−κ(x)),
it follows that |det(dφ̃(x,t)

κ (y))| = t−dH for all y ∈ U . Therefore, we obtain

t−dH
∫
U

(f ◦ φκ)(x, κ−1(y), t) dy = t−dH
∫
U

f(κ(x), t−1 · εκκ(x)(y), t) dy

=
∫

U(x,t)
f(κ(x), v, t) dv.

Thus the Haar measure is smooth. �

6.2. The groupoid C∗-algebra

Using the left Haar system {ν(x,t)}(x,t)∈M×[0,∞), the linear space Cc(THM) can
be equipped with the following involution and convolution:

f∗(γ) = f(γ−1), (21)

(f ∗ g)(γ) =
∫
f(γη)g(η−1) dνs(γ)(η) =

∫
f(η)g(η−1γ) dνr(γ)(η) (22)

for f, g ∈ Cc(THM) and γ ∈ THM . More explicitly, the involution is given by

f∗(x, y, t) = f(y, x, t) for t > 0, f∗(x, ξ, 0) = f(x, ξ−1, 0).

The convolution can be written as

(f ∗ g)(x, y, t) = t−dH
∫
M

f(x, z, t)g(z, y, t) dν(z) for t > 0,

(f ∗ g)(x, ξ, 0) =
∫
f(x, η, 0)g(x, η−1ξ, 0) dν(x,0)(x, η, 0).

Let the I-norm on Cc(THM) be given by ‖f‖I = max{‖f‖I,r, ‖f‖I,s}, where

‖f‖I,r = sup
(x,t)

∫
|f |dν(x,t)

and ‖f‖I,s = ‖f∗‖I,r. The (full) groupoid C∗-algebra of THM is defined as the
C∗-completion of Cc(THM) with respect to representations that are bounded by
the I-norm as in [Ren80, II,1.12].

Example 6.2. Let G be a graded Lie group. By the description of THG as a
transformation groupoid in Example 5.4, C∗(THG) is isomorphic to the crossed
product C∗(G,C0(G× [0,∞)) (see [Ren80]).
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6.3. Continuous field structure

As the tangent groupoid THM is a continuous field of amenable groupoids, its
C∗-algebra admits a continuous field structure. The same is true for the bundle of
osculating groups THM viewed as a continuous bundle of groups over M .

Proposition 6.3. The C∗-algebra of the tangent groupoid THM is a continuous
field of C∗-algebras over [0,∞) with fibres isomorphic to C∗(THM) for t = 0 and
the C∗-algebra of compact operators K(L2M) for t > 0.

Proof. Recall that THM is a continuous field of groupoids by Lemma 5.7.
As all groupoids θ−1{t} are amenable, C∗(THM) defines a continuous field of
C∗-algebras with fibres C∗(θ−1{t}) by [LR01, 5.6]. For t > 0 the groupoid θ−1{t}
is isomorphic to the pair groupoid of M . The Haar measure on θ−1{t} is given by∫

K(γ) dµxt (γ) = t−dH
∫
M

K(x, y) dν(y) for K ∈ Cc(M ×M).

There is a well-known isomorphism Φt : C∗(M ×M,µt)→ K(L2M) with

(Φt(K)ψ)(x) = t−dH
∫
M

K(x, y)ψ(y) dν(y)

for K ∈ Cc(M ×M) and ψ ∈ Cc(M). Hence, for t > 0 we obtain epimorphisms
pt : C∗(THM)→ K(L2M) given by

(pt(f)ψ) (x) = t−dH
∫
M

f (x, y, t)ψ(y) dν(y) (23)

for f ∈ Cc(THM), ψ ∈ Cc(M) and x ∈M . �

Now consider the C∗-algebra of the osculating groupoid at t = 0.

Lemma 6.4. The C∗-algebra C∗(THM) is a continuous field of C∗-algebras over M
with fibre projections

qx : C∗(THM)→ C∗(G(x)) for x ∈M.

Proof. As THM is a continuous field of amenable groups over M , [LR01, 5.6]
applies again. Therefore, C∗(THM) is a continuous field of C∗-algebras, where
the fibre over x ∈ M is isomorphic to the group C∗-algebra of the osculating
group G(x). �

Lemma 6.5. Denote by p0 : C∗(THM)→ C∗(THM) the ∗-homomorphism induced
by restricting to t = 0. There is a short exact sequence

C0(R>0)⊗ K(L2M) C∗(THM) C∗(THM).p0 (24)

Proof. The subset M×(0,∞) ⊂M×[0,∞) is open and invariant. By [HS87],
the kernel of p0 is C∗(THM |M×(0,∞)). The fibre projections pt from (23) for t > 0
combine to an isomorphism

p : C∗(THM |M×(0,∞))→ C0(R>0,K(L2M)), (25)

which is induced by p(f)(t) = pt(f) for f ∈ Cc(THM |M×(0,∞)). �

Remark 6.6. If the filtration is of step r = 1, the C∗-algebra C∗(THM) is isomor-
phic to C0(T ∗M). Namely, the fibrewise Fourier transform yields an isomorphism
C∗(TM)→ C0(T ∗M). If the osculating groups are not Abelian, C∗(THM) is non-
commutative.
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6.4. A Schwartz type ∗-algebra

The goal of this section is to define a ∗-subalgebra A(THM) ⊂ C∗(THM)
consisting of f ∈ C∞(THM) such that restricting to each t > 0 gives a compactly
supported function ft ∈ C∞c (M ×M), whereas f0 has rapid decay in the fibres
of THM . This follows the construction of the Schwartz type algebra in [CR08] for
deformations to the normal cone.

First, the Schwartz type algebra will be defined locally as in [CR08, 4.1] using
the charts φκ : V → U of THM obtained from H-charts κ : V → U . We use the
homogeneous quasi-norm on U from (20). Consider the continuous function

k : U × Rn × [0,∞)→ U × Rn

given by k(x, v, t) = (x, t ·v). Recall that θ : THM → [0,∞) denotes the projection.

Definition 6.7. Let A(U) consist of all functions f ∈ C∞(U) satisfying
(i) there is T > 0 and a compact subset K ⊂ k(U) such that (k(γ), θ(γ)) /∈

K × [0, T ] implies f(γ) = 0,
(ii) for all p ∈ N0 and α = (α1, α2, α3) ∈ Nn0 × Nn0 × N0 there is a constant

Dp,α > 0 such that

sup
γ∈U

(1 + ‖γ‖)p|∂α1
x ∂α2

v ∂α3
t f(γ)| ≤ Dp,α.

We check first that this space is invariant under Carnot diffeomorphisms.

Proposition 6.8 ([CR08, 4.2]). Let F : U1 → U2 be a Carnot diffeomorphism and
F : U1 → U2 the induced map as in Proposition 5.10. Then f ◦ F ∈ A(U1) for all
f ∈ A(U2).

Proof. As the induced map F : U1 → U2 is smooth, it is clear that f ◦ F is
smooth for all f ∈ A(U2). In fact, as in the proof of [CP19b, 9.15] we have

F(x, v) =
{

(F (x), t−1 · (εF (x) ◦ F ◦ ε−1
x )(t · v), t) for t > 0,

(F (x), TxF (v), 0) for t = 0,

for (x, v, t) ∈ U1 and the respective ε-Carnot maps Ui × Rn → Rn for i = 1, 2. To
show condition (i), define Fk : k1(U1)→ k2(U2) by

(x, v) 7→
(
F (x),

(
εF (x) ◦ F ◦ ε−1

x

)
(v)
)
.

It is a diffeomorphism with inverse (F−1)k. The following diagram commutes

U1 U2

k1(U1) k2(U2).

F

k1 k2

Fk

Let K2 ⊂ k2(U2) be a compact subset for f as in (i). Then K1 := (Fk)−1(K2) is
a compact subset such that (f ◦ F)(γ) = 0 if k1(γ) /∈ K1. If f vanishes for t ≥ T ,
also f ◦ F vanishes for t ≥ T .

For the rapid decay property, write F(x, v, t) = (F (x), w(x, v, t), t). Because of
this structure of F, one can write for γ = (x, v, t), η = F(γ) and α ∈ Nn0 ×Nn0 ×N0

∂αγ (f ◦ F)(γ) =
∑
|δ|≤|α|

∂δηf(η) · Pδ(γ),

where Pδ is a finite sum of products of the form

∂δ1
x Fi(x) · ∂δ2

γ wj(x, v, t).



6.4. A SCHWARTZ TYPE ∗-ALGEBRA 43

We only need to estimate each Pδ for γ = (x, v, t) such that k(x, v, t) ∈ K1 as
otherwise ∂δηf(F(γ)) = 0. In particular, x is contained in a compact subset, so that
∂δ1
x Fi(x) is bounded. By [CP19b, 6.7],

εF (x) ◦ F ◦ ε−1
x (v) = TxF (v) +Oq(‖v‖q+1).

holds near v = 0. Hence, Lemma 4.19 implies that there are smooth Rj,α for
j = 1, . . . , n such that

wj(x, v, t) = (TxF (v))j +
∑

|α|≤qj+1≤[α]

t[α]−qjvαRj,α(x, t · v).

For all (x, v, t) ∈ k−1(K1) the components x and (x, t · v) are in compact sets.
Moreover, we only need to consider t ≤ T . It follows that one can find Cδ2,j > 0
and mδ2,j such that

|∂δ2
γ wj(γ)| ≤ Cδ2,j(1 + ‖γ‖)mδ2,j for all γ ∈ k−1(K) ∩ θ−1[0, T ].

Together, this means that there are Cδ > 0 and mδ ∈ N such that |Pδ(γ)| ≤
Cδ(1 + ‖γ‖)mδ for all such γ. As F is a Carnot diffeomorphism, one can find
likewise D > 0 and l > 0 such that for all γ with k(γ) ∈ K1

1 + ‖γ‖ ≤ D(1 + ‖F(γ)‖)l.

Let p ∈ N0. Because f satisfies the rapid decay condition (ii), there are constants
Dl(mδ+p),δ > 0 such that for all η ∈ U2

|∂δηf(η)| ≤ Dl(mδ+p),δ(1 + ‖η‖)−l(k+mδ).

It follows that supγ∈U(1 + ‖γ‖)p|∂αγ F(γ)| <∞. �

The invariance under Carnot diffeomorphisms allows to define the Schwartz
type algebra in the following way. For an H-chart κ : V → U let

A(V) := {f ∈ C∞(V) | f ◦ φ−1
κ ∈ A(U)}.

We will denote by r1, s1 : THM →M the maps given by r1 = pr1 ◦r and s1 = pr1 ◦s.

Definition 6.9 ([CR08, 4.4]). The Schwartz type algebra A(THM) is the space of
functions f ∈ C∞(THM) such that

(i) there are T > 0 and a compact subsetK ⊂M×M such that (r1, s1, θ)(γ) /∈
K × [0, T ] implies f(γ) = 0,

(ii) f has rapid decay at t = 0, that is, for all H-charts κ : V → U and
χ ∈ C∞c (V × V × [0,∞)), the function fχ belongs to A(V), where

fχ(γ) = (χ ◦ (r1, s1, θ))(γ)f(γ) for γ ∈ V.

We will verify later that A(THM) is indeed an algebra.

Lemma 6.10 ([CR08, (5)]). Let (κi : Vi → Ui)i∈I be an atlas of H-charts for M .
The space A(THM) can be decomposed as

A(THM) =
∑
i∈I
A(Vi) + C∞c (V∞).

Proof. Let f ∈ A(V) for an H-chart κ : V → U . We claim that f ∈ A(THM).
There is a diffeomorphism κk : V × V → k(U) given by

(x, y) 7→
(
κ(x), εκκ(x)(κ(y))

)
.
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It makes the following diagram commute

V U

V × V k(U).

φκ

(r1,s1) k

κk

Let KU ⊂ k(U) be a compact subset for f ◦φ−1
κ as in Definition 6.7. Then ϕ−1(KU)

is compact and f(γ) = 0 whenever (r1, s1)(γ) /∈ ϕ−1(KU). In fact, condition (i)
from Definition 6.9 for f ∈ C∞(V) is equivalent to (i) from Definition 6.7 for
f ◦ φ−1

κ ∈ C∞(U). Moreover, f has rapid decay at t = 0 by the invariance un-
der Carnot diffeomorphisms from Proposition 6.8. Clearly, A(THM) contains all
smooth function with compact support in M ×M × R>0 and is closed under finite
sums.

For the converse inclusion, let f ∈ A(THM) and let K ⊂M ×M be a compact
set and T > 0 as in (i). Note that Vi × Vi × [0,∞) for i ∈ I and M ×M × (0,∞)
define an open cover of K × [0, T ]. Therefore, there is a finite partition of unity
(ρi)i∈I∪{∞} consisting of smooth, compactly supported functions subordinate to
this open cover. By (ii), fi := fρi are in A(Vi) for i ∈ I and f∞ ∈ C∞c (V∞). This
yields a decomposition of f as above. �

For a vector bundle E →M consider functions that have uniform rapid decay
in the fibres.

Definition 6.11 ([CR08, 4.6]). Let π : E → M be a smooth vector bundle. A
function f ∈ C∞(E) has uniform rapid decay in the fibres, if for all local trivial-
izations ϕ : E|V → V × Rm, p ∈ N0 and α = (α1, α2) ∈ Nn0 × Nm0 and all cutoff
functions χ ∈ C∞c (V )

sup
(x,v)∈V×Rm

(1 + |v|)p|∂α1
x ∂α2

v χ(x)f(ϕ−1(x, v))| <∞.

Let S(E) be the space of functions with uniform rapid decay in the fibres. Let
Scp(E) consist of all f ∈ S(E) such that π(supp f) is compact.

Lemma 6.12. The restrictions et : f 7→ ft for t ∈ [0,∞) yield surjections

et : A(THM)→ C∞c (M ×M) for t > 0,
e0 : A(THM)→ Scp(THM).

Proof. Let f ∈ A(THM). Condition (i) ensures that ft is compactly sup-
ported for each t > 0. For t = 0 it implies compact support in the M -direction.
Moreover, f0 belongs to Scp(E) as any locally defined norm on the fibres of THM
is equivalent to the homogeneous quasi-norm.

For t > 0, surjectivity is easily seen by extending a function in C∞c (M×M×{t})
smoothly to a function in C∞c (M ×M × R>0).

At t = 0, it suffices to show that e0 : A(U)→ Scp(U ×Rn) is surjective for each
H-chart κ : V → U . Let f0 ∈ Scp(U×Rn) and let K0 ⊂ U be a compact subset such
that f(x, v) = 0 whenever x /∈ K0. As K0 is compact there is a 1 > δ > 0 such that
(εκx)−1(v) ∈ U for all x ∈ K0 and Φ(v) ≤ δ, where Φ is the smooth function defined
in Remark 3.13. Choose a smooth function 0 ≤ χ ≤ 1 on [0,∞) which satisfies
χ(0) = 1 and χ(t) = 0 whenever t ≥ δ. Define f(x, v, t) := f0(x, v)χ(t)χ(Φ(t · v)).
The following set is compact and contained in k(U)

K := {(x, v) ∈ U × Rn | x ∈ K0 and Φ(v) ≤ δ} .
Then f(x, v, t) = 0 whenever k(x, v, t) /∈ K or t ≥ δ. Moreover, f satisfies the rapid
decay condition and e0(f) = f0. �
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We proceed by showing that the Schwartz type algebra is a ∗-algebra with
respect to the operations in (21) and (22). First, we prove the following estimates
for the groupoid inversion i : U→ U and product m : U(2) → U with respect to the
homogeneous quasi-norm.

Lemma 6.13. Let K ⊂ k(U) be compact, T > 0 and α ∈ N2n+1
0 .

(i) There are Ci,α,K,T > 0 and li,α ∈ N such that for all γ ∈ U with k(γ) ∈ K
and θ(γ) ≤ T

|∂αγ i(γ)j | ≤ Ci,α,K,T (1 + ‖γ‖)li,α

for j = 1, . . . , 2n+ 1.
(ii) There are Cm,α,K,T > 0 and lm,α ∈ N such that for all (γ, η) ∈ U(2) with

k(γ), k(η) ∈ K and θ(γ) ≤ T

|∂αγm(γ, η)j | ≤ Cm,α,K,T (1 + ‖γ‖)lm,α(1 + ‖η‖)lm,α

for j = 1, . . . , 2n+ 1.

Proof. For (i) the inversion is given in local coordinates as i : U→ U with

i(x, v, t) =
{(

ε−1
x (t · v), t−1 · εε−1

x (t·v)(x), t
)

for t > 0,
(x,−v, 0) for t = 0,

for (x, v, t) ∈ U by [CP19b, 9.9]. As noted there, near v = 0

εε−1
x (v)(x) = −v +Oq(‖v‖q+1)

holds. So Lemma 4.19 and the compactness of K × [0, T ] can be used, similarly as
in the proof of Proposition 6.8, to derive bounds of the desired form.

We proceed similarly for (ii) and write for ((x, v, t), (ε−1
x (t · v), w, t)) ∈ U(2)

m((x, v, t), (ε−1
x (t · v), w, t)) =

{(
x, t−1 ·

(
εx ◦ ε−1

ε−1
x (t·v)

)
(t · w), t

)
for t > 0,

(x, v · w, 0) for t = 0,

as in [CP19b, 9.11]. By their argument, for all x ∈ U

εx ◦ ε−1
ε−1
x (v)(w) = v ·x w +O(‖(v, w)‖q+1)

holds for (v, w) near (0, 0). As K × [0, T ] is compact and the group multiplication
is polynomial and depends continuously on x, one obtains estimates of the claimed
form using again Lemma 4.19. �

Corollary 6.14. For K ⊂ k(U) compact and T > 0 there are CK,T > 0 and l ∈ N
such that

(i) for all γ ∈ U with k(γ) ∈ K and θ(γ) ≤ T

1 + ‖γ−1‖ ≤ CK,T (1 + ‖γ‖)l,

(ii) for all γ, η ∈ U with (η−1, γ) ∈ U(2), k(η), k(η−1 · γ) ∈ K and θ(η) ≤ T

1 + ‖γ‖ ≤ CK,T (1 + ‖η‖)l(1 + ‖η−1 · γ‖)l.

Theorem 6.15. The Schwartz type algebra A(THM) is a ∗-algebra with respect
to the involution and convolution defined in (21) and (22). Moreover, there are
inclusions of ∗-algebras

C∞c (THM) ⊂ A(THM) ⊂ C∗(THM).
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Proof. For the involution, note that if K ⊂ M ×M is a compact subset for
f ∈ A(THM) as in Definition 6.9, i(K) ⊂M ×M is a compact subset for f∗. Here
i : M ×M → M ×M is the inversion on the pair groupoid. By Lemma 6.10 and
linearity, it suffices to show that f∗ ∈ A(Vj) for f ∈ A(Vj) for j ∈ I. For j = ∞,
it is clear that f∗ lies again in C∞c (V∞).

Suppose now that f ∈ A(U) for an H-chart κ : V → U . Denote by Kf ,Kf∗ ⊂
k(U) the compact subsets for f, f∗ respectively. As f∗(γ) = f ◦ i(γ), the derivatives
of the inversion i can be bounded by powers of 1 + ‖γ‖ as in Lemma 6.13 with
K = Kf∗ and T such that f vanishes for t ≥ T . By Corollary 6.14, 1 + ‖γ‖ ≤
CKf ,T (1 + ‖i(γ)‖)l holds for all γ ∈ k−1(Kf ) with θ(t) ≤ T . Then the Schwartz
seminorms for f can be used to show that f∗ has the rapid decay property.

For the convolution, note that f ∗g for f, g ∈ A(THM) is a well-defined smooth
function as f, g are Schwartz functions at t = 0 and compactly supported otherwise.
If Kf ,Kg ⊂M ×M are compact subsets for f, g, it follows that K := m(Kf ,Kg) is
a compact subset for f ∗g, where m denotes the multiplication in the pair groupoid.

To prove the rapid decay, we decompose g as in Lemma 6.10 into a finite sum
of gj ∈ A(Vj), j = 1, . . . ,m, and g∞ ∈ C∞c (V∞) and use linearity to write

f ∗ g =
∑

j∈{1,...,m,∞}

f ∗ gj .

Let T > 0 be such that f and g vanish for t ≥ T . As there is a compact subset
Kgj ⊂ Vj × Vj for each gj , it follows that

Kf∗gj × [0, T ] = m(Kf ,Kgj )× [0, T ]

is openly covered by Vj × Vj × [0,∞) and M ×M × (0,∞) as for t = 0 the source
and range maps coincide. Let {χ, 1− χ} be a corresponding compactly supported
partition of unity. Let t0 > 0 be such that 1 − χ vanishes for t < t0 and choose a
bump function ω ∈ C∞(R>0) with ω(t) = 1 for t ≥ t0 and ω(t) = 0 for t < t0/2.
Then we can write

(f ∗ gj)(1−χ) = (f · (ω ◦ θ) ∗ gj · (ω ◦ θ))(1−χ) . (26)

This is a convolution of functions in C∞c (M×M×R>0), so that the result is clearly
contained in A(THM).

Consider now (f ∗ gj)χ. Let ωi ∈ C∞c (Vj) for i = 1, 2 be such that ω1(x) = 1
for all x ∈ r1(suppχ) and ω2(x) = 1 for all x ∈ r(Kgj ). For each γ ∈ THM

(f ∗ gj)χ(γ) = χ ◦ (r1, s1, θ)(γ)
∫
f(γη)gj(η−1) ds(γ)(η)

= χ ◦ (r1, s1, θ)(γ)ω1(r1(γ))
∫
f(γη)ω2(r1(η−1))gj(η−1) ds(γ)(η)

= χ ◦ (r1, s1, θ)(γ)
∫
ω1(r1(γη))f(γη)ω2(s1(γη)))gj(η−1) ds(γ)(η)

= (f · (ω1 ◦ r1) · (ω2 ◦ s1) ∗ gj)χ
holds. In conclusion, we obtained a finite decomposition

f ∗ g =
m∑
j=1

(fj ∗ gj)χj +
∑

j∈{1,...,m,∞}

f∞j ∗ g∞j (27)

with f∞j , g∞j ∈ C∞c (V∞), fj , gj ∈ A(Vj) and χj ∈ C∞c (Vj ×Vj × [0,∞)). Therefore,
it is left to show that A(U) ∗ A(U) ⊆ A(U).

Let f, g ∈ A(U) and denote by Kf ,Kg,Kf∗g ⊆ k(U) the respective compact
subsets, and let T > 0 be such that f, g vanish for t ≥ T . To show rapid decay, we
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must estimate the derivatives
∂αγ g(η−1γ) =

∑
∂δη−1γg(η−1γ) ·M δ(η−1, γ) for η−1γ ∈ k−1(Kg) and t < T,

where Mδ(η−1, γ) is a product of ∂δiγ mj(η−1, γ). The bounds from Lemma 6.13 for
the multiplication and inverse allow to estimate |Mδ| for all γ ∈ k−1(Kf∗g) and
η ∈ k−1(Kf ) with t < T by C(1 + ‖η‖)r(1 + ‖γ‖)s for some C > 0 and r, s ∈ N0.
Therefore, we can use the rapid decay of f and g to estimate for p ∈ N using
Corollary 6.14

(1 + ‖γ‖)p
∫
|f(η)||∂δη−1γg(η−1γ) ·Mδ(η−1, γ)|dνr(γ)(η)

. (1 + ‖γ‖)p+s
∫
|f(η)|(1 + ‖η‖)r|∂δη−1γg(η−1γ)|dνr(γ)(η)

. (1 + ‖γ‖)p+s
∫
|f(η)|(1 + ‖η‖)r(1 + ‖η−1γ‖)−l(p+s) dνr(γ)(η)

.
∫
|f(η)|(1 + ‖η‖)r+l(p+s) dνr(γ)(η)

.
∫

(1 + ‖η‖)−dH−1 dνr(γ)(η) <∞

for all γ ∈ U. This finishes the proof that A(THM) is a ∗-algebra.
Clearly, C∞c (THM) is contained in A(THM). For f ∈ A(U), we can construct

a sequence fm ∈ C∞c (U) which converges to f in the I-norm. This will imply
that A(THM) ⊂ C∗(THM). This can be done by choosing a sequence of functions
χm ∈ C∞c (Rn) with 0 ≤ χm ≤ 1, supp(χm) ⊂ B(0,m) and χm|B(0,m−1) ≡ 1. Then
fm(x, v, t) := f(x, v, t)χm(v) is such a sequence. �

6.5. The zoom action on the convolution algebras

The zoom action on the tangent groupoid, introduced in Definition 5.8, induces
an action on the convolution algebras.

Lemma 6.16. The maps σλ : Cc(THM)→ Cc(THM) defined by

(σλf)(γ) = λdHf(αλ(γ)) for λ > 0 and f ∈ Cc(THM)
extend to a strongly continuous R>0-action on C∗(THM). Moreover, A(THM) is
invariant under the action.

Proof. Note that the Haar system {ν(x,t)}(x,t)∈M×[0,∞) satisfies∫
σλf dν(x,t) =

∫
f dν(x,λ−1t) for all f ∈ Cc(THM). (28)

Using this one can show σλ(f ∗g) = σλ(f)∗σλ(g) for f, g ∈ Cc(THM). Furthermore,
all σλ are linear and satisfy σλ(f∗) = (σλ(f))∗ for all f ∈ Cc(THM). As each σλ
is an isometry with respect to the I-norm, it follows that σ extends to a strongly
continuous action on C∗(THM).

To see that A(THM) is invariant, note that it suffices to show this for f ∈ A(U),
as C∞c (M×M×R>0) is invariant. Because k(βλ(x, v, t)) = (x, t·v) = k(x, v, t) for all
λ > 0, one can take the compact set Kf for f for all σλ(f). Furthermore, for fixed
λ > 0 the function σλ(f) has compact support in the t-direction and satisfies the
rapid decay condition. This follows from the homogeneity of the quasi-norm. �

Lemma 6.17. The ideal ker(p0) / C∗(THM) is invariant under the zoom action.
Under the isomorphism from (25)

p : ker(p0)→ C0(R>0)⊗ K(L2M)
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the zoom action corresponds to the action τ ⊗ 1, where τ is induced by the free and
proper scaling action of R>0 on itself, namely,

(τλf)(t) = f(λ−1t) for f ∈ C0(R>0) and λ, t > 0.

Proof. The homomorphism p0 is equivariant for the zoom action and the
action on C∗(THM) induced by the dilations in Definition 4.12. The second claim
follows from the computation that p ◦ σλ = (τλ ⊗ 1) ◦ p for all λ > 0. �



CHAPTER 7

The fixed point algebra construction for filtered
manifolds

For an ordinary manifold M , the C∗-algebra generated by the principal sym-
bols with compact support in the M -direction are the continuous functions on the
cosphere bundle C0(S∗M). This algebra is the generalized fixed point algebra of
the action of R>0 on C0(T ∗M \(M × {0})) which is induced by the scalings

λ · (x, ξ) = (x, λ−1ξ) for x ∈M , ξ ∈ T ∗xM.

Here, it is essential to take out the zero section of the cotangent bundle as otherwise
the action is not proper.

In the case of a filtered manifold, we will not apply Fourier transform on THM
as the osculating groups are not necessarily Abelian. Therefore, we trace back what
C0(T ∗M\(M ×{0})) corresponds to under inverse Fourier transform. Let f̂ denote
the Euclidean Fourier transform of f ∈ S(Rn). Recall that the trivial representation
of the group Rn induces a representation π̂triv : C∗(Rn)→ C as in (11). Then

f̂(0) = 0⇐⇒
∫

Rn
f(x) dx = 0⇐⇒ f ∈ ker(π̂triv).

This observation motivates the following definition of an analogue of the ideal
C0(T ∗M \(M × {0})) for filtered manifolds.

7.1. The ideals J and J0

Definition 7.1. Let J0 be the ideal in C∗(THM) defined as

J0 =
⋂
x∈M

ker(π̂triv ◦ qx).

Here, π̂triv : C∗(G(x))→ C denotes the representation induced by the trivial repre-
sentation of the osculating group G(x).

The ideal J0 can be extended to an ideal J in C∗(THM) as follows.

Definition 7.2. Let J denote the ideal in C∗(THM) given by

J =
⋂
x∈M

ker(π̂triv ◦ qx ◦ p0).

Both ideals J and J0 are invariant under the zoom action σ of R>0. In the
following, the generalized fixed point algebra construction will be applied to this
R>0-action on J. In order to do so, consider the following ∗-subalgebra of J.

Definition 7.3. Let R ⊂ J consist of all f ∈ A(THM) such that∫
f dν(x,0) = 0 for all x ∈M. (29)

49
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7.2. Proof of continuous square-integrability

We show first the following lemma, which will replace an application of the
mean value theorem in the Euclidean case.

Lemma 7.4. Let g ∈ A(U) and K1,K2 ⊂ k(U) be compact subsets. For all a ∈ N
there are D > 0 and b ∈ N such that for all (γ, η) ∈ U(2) with k(γ) ∈ K1, k(η) ∈ K2

|g(γ−1η)− g(γ−1)| ≤ D (1 + ‖η‖)b
(1 + ‖γ‖)a

n∑
j=1
‖η‖qj .

Proof. It suffices to show the claim for real-valued g ∈ A(U). Let γ−1 =
(x, v, t) and η = (ε−1

x (t · v), w, t). Define the function G : [0, 1]× U(2) → R by
G(x, v, t, w, h) = g((x, v, t) · (ε−1

x (t · v), h · w, t)).
Hence, we obtain

g((x, v, t)(ε−1
x (t · v), w, t))− g(x, v, t) =

∫ 1

0
∂hG(x, v, t, w, s) ds.

To estimate |∂hG| note that G = g ◦m ◦ (id × δ), where δ(w, h) = h · w. Writing
ηh = (ε−1

x (t · v), h · w, t), one calculates that

∂hG(γ−1, η, s) =
n∑

i,j=1
∂vig(γ−1 · ηh) · ∂wjmi(γ−1, ηh) · ∂hδj(w, s).

By the structure of U we can find a compact subset K2 ⊂ K̃ ⊂ k(U) that is star-
shaped in the sense that for (x, v) ∈ K̃ also (x, h · v) ∈ K̃ holds for all h ∈ [0, 1].
Let T > 0 be such that g vanishes for t ≥ T . Lemma 6.13 applied to i(K1) ∪ K̃
and T gives C > 0 and l ∈ N with

|∂wjmi(γ−1, ηh)| ≤ C(1 + ‖γ−1‖)l(1 + ‖ηh‖)l ≤ C(1 + ‖γ‖)l
2
(1 + ‖η‖)l

for all γ, η with k(γ) ∈ K1, k(η) ∈ K2 and t < T . For these γ, η use the rapid decay
condition for g to estimate using Corollary 6.14

|∂vig(γ−1 · ηh)| . (1 + ‖γ−1 · ηh‖)−l
2(a+l2) . (1 + ‖η−1

h · γ‖)
−l(a+l2)

.
(1 + ‖ηh‖)l(a+l2)

(1 + ‖γ‖)a+l2 ≤ (1 + ‖η‖)l(a+l2)

(1 + ‖γ‖)a+l2 .

As δj(w, h) = hqjwj , it follows that |∂hδj(w, s)| . |wj | ≤ ‖η‖qj . Together, these
estimates imply the claim. �

Lemma 7.5. Let (M,H) be a filtered manifold. Consider the restricted zoom
action σ : R>0 y J. For f ∈ R the operator 〈〈f | as in Definition 2.1 satisfies
〈〈f |g ∈ L1(R>0,J) for all g ∈ R.

Proof. We show that (λ 7→ ‖σλ(f∗)∗g‖I) ∈ L1(R>0,
dλ
λ ) holds for all f, g ∈ R.

Because σλ for λ > 0 is an isometry with respect to the I-norm
‖σλ−1(f∗) ∗ g‖I = ‖f∗ ∗ σλ(g)‖I = ‖σλ(g∗) ∗ f‖I

holds for all f, g ∈ R. Therefore, and as R is invariant under involution, it will
suffice to show ∫ ∞

1
‖σλ(f) ∗ g‖I dλ

λ <∞ for all f, g ∈ R. (30)

We decompose f as in Lemma 6.10 and write

σλ(f) ∗ g =
∑

j∈{1,...,m,∞}

σλ(fj) ∗ g
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with fj ∈ RVj := R ∩ A(Vj) and f∞ ∈ C∞c (V∞). We proceed to decompose this
further as in (27). Let Kfj ,Kg be compact subsets for fj , g and let T > 0 be
such that fj and g vanish for t ≥ T . As before, let {χ, 1 − χ} be a compactly
supported partition of unity subordinate to the open cover Vj × Vj × [0,∞) and
V∞ of m(Kfj ,Kg)× [0, T ]. As noted in Lemma 6.16 we can take the same compact
subset Kfj ⊂ k(U) for all σλ(fj). For λ ≥ 1, let χλ be the scaled version of χ
defined by χλ(x, y, t) = χ(x, y, λ−1t). As λ ≥ 1, {χλ, 1 − χλ} is still a partition of
unity for the above cover of

m(Kfj ,Kg)× [0, T ] = m(Kσλ(fj),Kg)× [0, T ].
As before, we have a decomposition

σλ(fj) ∗ g = (σλ(fj) ∗ g)χλ + (σλ(fj) ∗ g)(1−χλ).

Inspecting the argument for the first summand in Theorem 6.15, we can find a
gj ∈ RVj that does not depend on λ such that

(σλ(fj) ∗ g)χλ = (σλ(fj) ∗ gj)χλ .
For the second summand, recall the construction of ω ∈ C∞([0,∞)) in Theo-
rem 6.15. It follows as in (26) that for ωλ(t) := ω(λ−1t)

(σλ(fj) ∗ g)(1−χλ) = (σλ(fj) · (ωλ ◦ θ) ∗ g)(1−χλ)

= (σλ(fj · (ω ◦ θ)) ∗ g)(1−χλ) .

Note that fj · (ω ◦ θ) ∈ C∞c (V∞). As |χλ|, |1 − χλ| ≤ 1 for all λ ≥ 1, it suffices to
prove (30) for the two cases f ∈ C∞c (V∞) and g ∈ R, and f, g ∈ RU. Here, RU

denotes all functions f ∈ A(U) with f ◦ φκ ∈ RV for an H-chart κ : V → U .
Suppose first that f ∈ C∞c (V∞) and g ∈ R. Let T, t0 > 0 be such that

f(x, y, t) = g(x, y, t) = 0 whenever t > T and f(x, y, t) = 0 for t < t0. For x ∈ M
and t > 0 we have

(σλ(f) ∗ g) (x, y, t) = λdH t−dH
∫
M

f(x, z, λ−1t)g(z, y, t) dν(z),

which is only non-zero for t ≤ T . Moreover, it vanishes if λ > Tt−1
0 because then

λ−1t < t0 holds for t ≤ T , so that f(x, z, λ−1t) = 0. As λ ≥ 1, only t ≥ t0 have
to be considered. As g restricted to t ≥ t0 is a compactly supported function, we
can find a compact subset K ⊂ M such that f(x, y, t) = 0 if (x, y) /∈ K ×K and
g(x, y, t) = 0 if t ≥ t0 and (x, y) /∈ K × K. Moreover, there is a constant C > 0
such that |g| ≤ C for t ≥ t0 and |f | ≤ C. We obtain∫ ∞

1
‖σλ(f) ∗ g‖I dλ

λ ≤ T
2dHC2ν(K)2

∫ T/t0

1
λdH−1 dλ <∞.

Consider now the case that f, g ∈ RU. For γ ∈ U with r(γ) = (x, t), write

(σλ(f) ∗ g∗) (γ) = λdH
∫

U(x,t)
f(x, λ · z, λ−1t) g∗((x, z, t)−1γ) dz

=
∫

U(x,t)
f(x, z, λ−1t) g∗((x, λ−1 · z, t)−1γ) dz.

Let Kf ,Kg be compact subsets for f and g as in Definition 6.7. As Kf is a compact
subset for all σλ(f), we only need to consider γ ∈ K := m(Kf ,Kg) by Theorem 6.15.
Moreover, we only need to consider z ∈ U(x,t) with (x, (λ−1t) · z) ∈ Kf . Define two
functions R1, R2 by

R1(γ, η) :=g∗(η−1 · γ)− g∗(γ),
R2(x, z, t) :=f(x, z, t)− f(x, z, 0).
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We write

(σλ(f) ∗ g) (γ) = g(γ)
∫
f(x, z, 0) dz +

∫
f(x, z, 0)R1(γ, (x, λ−1 · z, t)) dz

+
∫
R2(x, z, λ−1t)g∗((x, λ−1 · z, t) · γ) dz.

The first term vanishes as f ∈ RU. The mean value theorem in Lemma 7.4 applied
to i(K), Kf , g and a = dH + 1 yields D > 0 and b ∈ N such that

|R1(γ, (x, λ−1 · z, t))| ≤ D (1 + ‖λ−1 · z‖)b
(1 + ‖γ‖)dH+1

n∑
j=1
‖λ−1 · z‖wi

= D
(1 + λ−1‖z‖)b
(1 + ‖γ‖)dH+1

n∑
j=1

λ−wi‖z‖wi

≤ Dλ−1 (1 + ‖z‖)b+dH
(1 + ‖γ‖)dH+1

for γ ∈ K and z ∈ U(x,t) with (x, (λ−1t) · z) ∈ Kf . For the last inequality we used
that λ ≥ 1. The usual mean value theorem and the rapid decay of f allow to find
C > 0 such that

|R2(x, z, λ−1t)| ≤ λ−1tC(1 + ‖z‖)−(l2+1)(dH+1).

As f has rapid decay, one can estimate

|f(x, z, 0)| . (1 + ‖z‖)−b−2dH−1.

As g∗ is rapidly decaying, as well, and using Corollary 6.14 and λ ≥ 1, we find

|g∗((x, λ−1z, t) · γ)| . (1 + ‖(x, λ−1z, t) · γ‖)−l(dH+1)

.
(1 + ‖(x, λ−1z, t)−1‖)l(dH+1)

(1 + ‖γ‖)dH+1

.
(1 + ‖(x, λ−1z, t)‖)l2(dH+1)

(1 + ‖γ‖)dH+1 ≤ (1 + ‖z‖)l2(dH+1)

(1 + ‖γ‖)dH+1 .

Therefore, we obtain for all (x, t) ∈M × [0,∞)∫
|σλ(f) ∗ g∗|dν(x,t) =

∫
|(σλ(f) ∗ g∗) (x, v, t)|dv . λ−1(1 + t).

As there is a T > 0 such that g∗ vanishes for t ≥ T this implies ‖σλ(f)∗g∗‖I,r . λ−1.
For ‖ · ‖I,s, replace γ by γ−1 in the estimates above and use Corollary 6.14 to derive
similar estimates. The convergence of

∫∞
1 λ−2 dλ finishes the proof of (30). �

Theorem 7.6. For a filtered manifold (M,H) the ∗-subalgebra R ⊂ J is square-
integrable with respect to the zoom action of R>0.

Denote by R its closure with respect to the ‖ · ‖si-norm. Then (J,R) is a
continuously square-integrable R>0-C∗-algebra.

Proof. The Schwartz type algebra A(THM) is a ∗-subalgebra of C∗(THM)
by Theorem 6.15. Condition (29), which is that the Haar integrals vanish at t = 0,
is preserved when taking the involution or convolution of functions in R. Therefore,
R is a ∗-subalgebra of J. Moreover, it is invariant under the zoom action of R>0, as
A(THM) is invariant by Lemma 6.16 and the dH -homogeneity of the Haar system
at t = 0, which follows from (28).
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To see that R is dense in J, let f ∈ J and ε > 0. There is a g ∈ C∞c (THM)
with ‖f − g‖ < ε/2. To adjust g to have vanishing integrals at t = 0, define the
function h ∈ C∞c (M) by

h(x) =
∫
g dν(x,0)

for x ∈M . It satisfies |h(x)| = |π̂triv(qx(p0(g)))− π̂triv(qx(p0(f)))| ≤ ‖f − g‖ < ε/2
for all x ∈ M . Choose a function k ∈ C∞c (THM) such that

∫
k dν(x,0) = 1 for

all x ∈ r(p0(supp g)) and ‖k‖I ≤ 1. This can be done by defining such a function
locally on the charts Vi and pasting them together with a smooth partition of unity.
Let g̃ := (h ◦ r1) · k. It is a smooth, compactly supported function on THM , and
‖g̃‖ ≤ ε/2. As g − g̃ ∈ R and ‖f − (g − g̃)‖ ≤ ε, this finishes the proof that R is
dense in J.

Now, the estimate in Lemma 7.5 together with Lemma 2.16 and Remark 2.17
imply that (J,R) is a continuously square-integrable R>0-C∗-algebra. �

Hence, the generalized fixed point algebra FixR>0(J,R) is defined as in Defini-
tion 2.11. By Lemma 2.13, it is the closed linear span in MR>0(J) of

|f〉〉〈〈g| = lim
i,s

∫ ∞
0

χi(λ)σλ(f∗ ∗ g) dλ
λ with f, g ∈ R.

Here, (χi)i∈I consists of smooth, compactly supported functions χi : R>0 → [0, 1]
that converge uniformly on compact subsets to 1. We can arrange that χi(λ) =
χi(λ−1) for all i ∈ I and λ > 0, which we will assume from now on.

7.3. The extension of generalized fixed point algebras

Recall that J0 = p0(J). The C∗-algebra extension for the tangent groupoid
in (24) restricts to the short exact sequence of R>0-C∗-algebras

C0(R>0)⊗ K(L2M) J J0.
p0 (31)

Proposition 7.7. Let R0 := p0(R). The zoom action of R>0 on the extension
in (31) gives rise to a short exact sequence of generalized fixed point algebras

K(L2M) FixR>0(J,R) FixR>0(J0,R0).p̃0 (32)

Proof. Proposition 2.24 gives an extension of generalized fixed point algebras

FixR>0(ker(p0),R∩ ker(p0)) FixR>0(J,R) FixR>0(J0, p0(R)).p̃0

By Remark 2.20 the completion of p0(R) with respect to the ‖ · ‖si-norm on the right
hand side is R0. The isomorphism p from Lemma 6.17 induces an isomorphism

p∗ : FixR>0(ker(p0),R∩ ker(p0))→ FixR>0(C0(R>0)⊗ K(L2M), R̃). (33)

where R̃ := p(R ∩ ker(p0)). By the description of the zoom action on C0(R>0) ⊗
K(L2M) in Lemma 6.17, it follows that R̃ is the unique relatively continuous,
complete and dense subset by Theorem 2.10. Lemma 2.29 gives an isomorphism

Ψ: FixR>0(C0(R>0)⊗ K(L2M), R̃)→ K(L2M). (34)

Therefore, we obtain the extension (32). The inclusion of K(L2M) into FixR>0(J,R)
is given by (Ψ ◦ p∗)−1. �

Proposition 7.8. The generalized fixed point algebra FixR>0(J0,R0) is a contin-
uous field of C∗-algebras over M with fibre projections

q̃x : FixR>0(J0,R0)→ FixR>0(Jx,Rx).
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Here Jx := ker(π̂triv) / C∗(G(x)) and Rx consists of all f ∈ S(G(x)) with vanishing
integral with respect to the Haar measure on G(x).

Proof. This follows from Theorem 2.30. �

7.4. A faithful representation on L2(M)

The ∗-homomorphisms pt : C∗(THM)→ K(L2M) defined in (23) for t > 0 can
be restricted to the ideal J. The restrictions are still surjective. Therefore, they
yield strictly continuous representations

p̃t : FixR>0(J,R)→M(K(L2M)) = B(L2M) for all t > 0.

Lemma 7.9. The representation p̃1 : FixR>0(J,R)→ B(L2M) is faithful.

Proof. To show that the representation is faithful, observe the following re-
lation between the homomorphisms pt for t > 0

pt ◦ σλ = ptλ−1 for all t, λ > 0. (35)

This equality still holds for the corresponding extensions to the multiplier algebras.
As each T ∈ FixR>0(J,R) is invariant under σ, it follows that p̃t(T ) = p̃1(T ) for
all t > 0. Therefore, T ∈ ker(p̃1) implies p̃t(T ) = 0 for all t > 0. For all f ∈ J it
follows that pt(Tf) = p̃t(T )pt(f) = 0 for all t > 0. As C∗(THM) is a continuous
field of C∗-algebras this implies by continuity that Tf = 0. Since this holds for all
f ∈ J, it follows that T = 0. �

Lemma 7.10. As before, let (χi)i∈I be a net of χi ∈ C∞c (R>0) that converge
uniformly on compact subsets to 1 and satisfy χi(λ−1) = χi(λ) for all λ > 0. Let
f, g ∈ R and h = f∗ ∗ g. Then the operators Ti(h) given by

Ti(h)ψ(x) =
∫ ∞

0
χi(λ)λ−dH

∫
h(x, y, λ)ψ(y) dν(y) dλ

λ (36)

for ψ ∈ L2(M), x ∈M , converge strictly to p̃1(|f〉〉〈〈g|) as multipliers of K(L2M).

Proof. Strict continuity of p̃1 together with (35) imply that

p̃1 (|f〉〉〈〈g|) = lim
i,s

∫ ∞
0

χi(λ)p1(σλ(f∗ ∗ g)) dλ
λ = lim

i,s

∫ ∞
0

χi(λ)pλ(f∗ ∗ g) dλ
λ .

The operators Ti(h) above are obtained by inserting the definition of pλ. �

Lemma 7.11. Let p∗ and Ψ be the isomorphisms from (33) and (34). Then fol-
lowing diagram commutes, where the horizontal maps are the inclusions:

ker(p̃0) FixR>0(J,R)

FixR>0
(
C0(R>0)⊗ K(L2M), R̃

)
K(L2M) B(L2M).

p∗∼=

p̃1

Ψ∼=
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Proof. Let ψ1, ψ2 ∈ Cc(R>0,K(L2M)). Since p̃1 is strictly continuous,
p̃1((p∗)−1(|ψ1〉〉〈〈ψ2|)) = p̃1(|p−1(ψ1)〉〉〈〈p−1(ψ2)|)

= p̃1

(
lim
s

∫ ∞
0

χi(λ)σλ(p−1(ψ∗1ψ2)) dλ
λ

)
= lim

s

∫ ∞
0

χi(λ)pλ−1(p−1(ψ∗1ψ2)) dλ
λ

=
∫ ∞

0
ψ1(λ−1)∗ψ2(λ−1) dλ

λ = Ψ(|ψ1〉〉〈〈ψ2|)

holds. As the linear span of |ψ1〉〉〈〈ψ2| with ψ1, ψ2 ∈ Cc(R>0,K(L2M)) is dense in
Fix

(
C0(R>0)⊗ K(L2M), R̃

)
the claim follows. �

Lemma 7.12. Let h ∈ R ∩ ker(p0) and let Ti(h) be defined as in (36). Then
(Ti(h)) converges in norm in K(L2M). In particular, its strict limit as multipliers
of K(L2M) exists and is contained in p̃1(FixR>0(J,R)).

Proof. As h ∈ R ⊂ A(THM) vanishes for t = 0, it can be written as h = tf
with f ∈ A(THM). By definition of the representation pλ in (23), it follows that
pλ(h) = λpλ(f) for all λ > 0. Hence, for all λ > 0

‖pλ(h)‖ ≤ λ‖pλ(f)‖ ≤ λ‖f‖.
We show that (Ti(h)) is Cauchy. Let T > 0 be such that h vanishes for t ≥ T . For
j ≥ i, we estimate

‖Tj(h)− Ti(h)‖ ≤
∫ ∞

0
(χj(λ)− χi(λ))‖pλ(h)‖ dλ

λ ≤ ‖f‖
∫ T

0
(1− χi(λ)) dλ.

As χi → 1 on compact subsets, the claim follows. As K(L2M) is complete, it
follows that (Ti(h)) converges in norm. The second claim follows as convergence in
norm implies strict convergence and K(L2M) is contained in p̃1(FixR>0(J,R)) by
Lemma 7.11. �

In conclusion, the generalized fixed point algebra construction for the zoom
action on the tangent groupoid of a filtered manifold (M,H) yields an extension

K(L2M) FixR>0(J,R) FixR>0(J0,R0)

B(L2M).

p̃1

p̃0

(37)

Remark 7.13. In particular, this generalized fixed point algebra construction for
the zoom action applies to graded Lie groups. In [Ewe20] we showed that it works,
in fact, also for homogeneous Lie groups. For these groups the tangent groupoid
can be defined as a transformation groupoid as in Example 5.4. The zoom action
is defined analogously using the dilations on G.



CHAPTER 8

Homogeneous distributions and generalized fixed
points

In the classical pseudodifferential calculus on a smooth manifold M , the prin-
cipal symbols of order 0 are smooth functions on the cosphere bundle S∗M , or,
equivalently, smooth 0-homogeneous functions on T ∗M \(M × {0}).

They act on C0(T ∗M \(M × {0})) by multiplication. Under the inverse of the
Fourier transform C∗(TM)→ C0(T ∗M), they act on J0 / C∗(TM) by convolution.

We proceed by showing that also in case of a non-trivial filtration, certain
homogeneous convolution operators on the bundle of osculating groups THM are
generalized fixed points of the dilatations on J0.

For an ordinary manifold, it is easy to represent a 0-homogeneous symbol F
on a local chart V as in the generalized fixed point algebra construction. First, one
writes

F (x, ξ) =
∫ ∞

0
f(x, λξ) dλ

λ

for some smooth, compactly supported function f that vanishes with all derivatives
at the zero section. In this case, f can be written as a product f = f1 ·f2 of smooth,
compactly supported f1, f2 with f1(x, 0) = f2(x, 0) = 0 for all x ∈ V .

In case of a non-trivial filtration, these factorizations are not so straightforward.
We cannot apply the Euclidean Fourier transform as it does not behave well with
the group product in the osculating groups. This is why we need a result by Dixmier
and Malliavin, which shows that every Schwartz function on a nilpotent Lie group G
can be factorized as f = f1 ∗ f2 with f1, f2 ∈ S(G). In the following we recall the
proof to obtain a bundle version for THM and to ensure that f1, f2 ∈ R0 if f
satisfies certain conditions.

8.1. Fibred distributions on the bundle of osculating groups

As a preparation, consider smooth families of distributions on the osculating
groups. We will use tempered fibred distributions on THM (see also [vEY19]).
Definition 8.1. For a smooth vector bundle π : E → M , a tempered fibred dis-
tribution with compact support in the M -direction is a continuous C∞c (M)-linear
map u : S(E) → C∞c (M). Denote by S ′cp(E) the linear space of tempered fibred
distributions.

For u ∈ S ′cp(E) and each x ∈ M there is a tempered distribution ux ∈ S ′(Ex)
such that 〈u, f〉(x) = 〈ux, fx〉 for all f ∈ S(E). For E = THM , there is a well-
defined convolution

∗ : S ′cp(THM)× S(THM)→ S ′cp(THM),
which restricts in the fibres to the convolution on the osculating groups. It satisfies
analogous properties as in Lemma 3.23, Lemma 3.24 and Lemma 3.25. To define
homogeneity of fibred distributions, recall that the dilations yield an R>0-action on
S(THM) given by

(σλf)(x, ξ) = λdHf(x, δλ(ξ)) for λ > 0, f ∈ S(THM) and ξ ∈ G(x).

56
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This action can be extended to S ′cp(THM) by

〈σλ∗u, f〉 := λdH 〈u, σλ−1f〉
for u ∈ S ′cp(THM), f ∈ S(THM) and λ > 0. These allow to extend the notion
of kernels and operators of type ν on homogeneous Lie groups (see for example
[FR16, 3.2.9]) to the bundle of osculating groups.
Definition 8.2. Let G be a homogeneous Lie group and let ν ∈ R. A tempered
distribution u ∈ S ′(G) is called a kernel of type ν if it is smooth away from zero
and σλ∗(u) = λνu for all λ > 0. Denote by Kν(G) the space of kernels of type ν.
Remark 8.3. Let Q be the homogeneous dimension of a homogeneous Lie group.
The kernels of type ν are also called (ν − Q)-homogeneous distributions in the
literature. This is because they coincide with (ν−Q)-homogeneous functions outside
zero.
Definition 8.4. Let ν ∈ R. A fibred distribution u ∈ S ′cp(THM) is called a kernel
of type ν if it is smooth away from the zero section and σλ∗(u) = λνu for all λ > 0.
Denote by Kν(THM) the space of kernels of type ν. The corresponding continuous
operator Tu : S(THM) → S ′cp(THM) given by Tu(f) = u ∗ f is called an operator
of type ν.

In particular, Tu restricts at x ∈ M to the right-invariant continuous linear
operator S(G(x))→ S ′(G(x)) given by f 7→ ux ∗ f for f ∈ S(G(x)). Moreover, one
calculates that an operator T of type ν satisfies

T (σλ−1f) = λνσλ−1(Tf) for all λ > 0 and f ∈ S(THM),
see also [FR16, 3.2.7].
Example 8.5. Let κ : V → U be an H-chart with H-frame X. The differential
operators 〈X〉α for α ∈ Nn0 can be understood as in Section 3.1 as an element of
S ′cp(THV ) when multiplied by a function f ∈ C∞c (V ). It is a kernels of type −[α].
The corresponding operator Tf ·〈X〉α restricts at x ∈ M to the right-invariant dif-
ferential operator f(x) · 〈Y 〉(x) on G(x) defined as in Definition 3.18. To simplify
notation, we will write Xj for the equivalence class 〈Xj〉 ∈ Γ∞(tHM) in the follow-
ing.

As an analogue under Fourier transform of the functions in Scp(T ∗M) that
vanish with all derivatives at the zero section, define the following subspace of
Scp(THM).
Definition 8.6. For a filtered manifold (M,H), let the space S0(THM) consist of
all f ∈ Scp(THM) such that for all H-charts κ : V → U∫

vα(f ◦ Tκ−1)(x, v) dv = 0 for all α ∈ Nn0 and all x ∈ U.

This is well-defined as for a Carnot diffeomorphism f : U1 → U2, the Carnot
differential Tf : THU1 → THU2 preserves polynomials in the fibres.

The Euclidean Fourier transform F : Scp(tHM) → Scp(t∗HM) maps S0(THM)
onto the subspace of functions vanishing with all derivatives at the zero section.
Definition 8.7. For a homogeneous Lie group, let S0(G) consist of all functions
f ∈ S(G) with

∫
G
vαf(v) dv = 0 for all α ∈ Nn0 .

The space S0(G) was defined in [CGGP92] and plays an important role in
their calculus. The restrictions give surjective maps qx : S0(THM)→ S0(G(x)) for
all x ∈M .
Lemma 8.8. The space S0(THM) has the following properties:
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(i) S0(THM) is a ∗-subalgebra of Scp(THM),
(ii) S0(THM) is closed in Scp(THM) with respect to the Schwartz semi-norms,
(iii) u ∗ f ∈ S0(THM) for all u ∈ Kν(THM), ν ∈ R and f ∈ S0(THM),
(iv) X ∗ f ∈ S0(THM) for all smooth, compactly supported sections X : M →

tHM and f ∈ S0(THM).

Proof. It is clear that S0(THM) is a linear subspace of Scp(THM). It is
left to show for (i) that S0(THM) is closed under involution and convolution. In
H-coordinates and for v ∈ G(x)

(v−1)α = (−v)α = (−1)|α|vα.
Moreover, by the polynomial group law in Proposition 3.17 one can write v · w for
x,w ∈ G(x) as a finite sum of cβ,γ(x)vβwγ with smooth functions cβ,γ .

We show (ii) on an H-chart V . Pick a homogeneous quasi-norm on THV as in
(16) and let the Schwartz seminorms be defined analogously to Definition 3.20. For
f ∈ Scp(THV ) and α ∈ Nn0 , we estimate∣∣∣∣∫ vαf(x, v) dv

∣∣∣∣ ≤ ‖f‖[α]+dH−1

∫
(1 + ‖v‖)−dH+1 dv for all x ∈ V.

The integral converges by Lemma 3.14. It follows that for a sequence (fk)k∈N in
S0(THV ) which converges in Scp(THV ), the limit lies in S0(THV ) as well.

The property (iii) is the bundle version of [Gel83, Lemma 4]. For (iv) let
X ∈ Γ∞c (tHV ) for anH-chart V . Then one can writeX =

∑
cjXj with cj ∈ C∞c (V )

with respect to the H-frame {X1, . . . , Xn}. The cjXj define kernels of type −qj by
Example 8.5. Hence, (iii) implies the claim. �

8.2. The Theorem of Dixmier and Malliavin

The theorem was proved in [DM78], see also [Cas16]. The following is the
foundation for the factorization theorem.

Theorem 8.9 ([DM78, 2.5]). Let (βk) be a sequence of positive real numbers.
Then there is a sequence (αk) with αk ≤ βk for all k ≥ 1 and a function h ∈ S(R)
such that

p∑
k=0

(−1)kαkδ(2k) ∗ h→ δ in S ′(R) as p→∞.

In the following we show a bundle version of the Dixmier and Malliavin Theo-
rem. Note that we do not obtain a factorization with two functions but as a finite
sum of convolutions, as we do a construction in local coordinates. However, this is
good enough for the generalized fixed point algebra construction.

Theorem 8.10 ([DM78, 7.2]). Let (M,H) be a filtered manifold. For each
f ∈ Scp(THM) the following holds:

(i) There are finitely many gi, hi ∈ Scp(THM) such that f =
∑
gi ∗ hi.

(ii) If f ∈ S0(THM), one can find a factorization as in (i) with gi ∈ S0(THM).

Proof. Consider an open cover of M by H-charts κi : Vi → Ui. As f has
compact support in the M -direction, there are ρi ∈ C∞c (Vi) for i = 1, . . . ,m such
that

f(x, v) =
m∑
i=1

ρi(x)f(x, v).

Therefore, it will suffice to show the claim for f ∈ Scp(THV ) for an H-chart κ : V →
U . Let (X1, . . . , Xn) denote the H-frame on V . For x ∈ V , the equivalence classes
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of {X1(x), . . . , Xn(x)} form a strong Malcev basis for all osculating groups G(x)
with x ∈ V . Therefore, by [CG90, 1.2.8]

Φ: V × Rn → THV

(x, t1, . . . , tn) 7→ (x, exp(tn〈Xn〉(x)) · · · exp(t1〈X1〉(x)))

defines a diffeomorphism. Moreover, by [CG90, 1.2.11] it transports the Lebesgue
measure on Rn to the Haar measure induced by the corresponding exponential
coordinates in each fibre.

Denote by Yi for j = 1, . . . , n the family of right-invariant differential operators
on the osculating groups corresponding to Xj . For k,m ∈ N0, α ∈ Nn0 let

Mk,m,α := sup
(x,v)∈THV

|vmY α(Y 2k
1 f)(x, v)|, (38)

which are finite as f belongs to the Schwartz space. Choose a sequence of positive
real numbers (βk) such that

∞∑
k=0

βkMk,m,α <∞ for all m ∈ Nn0 , α ∈ Nn0 , (39)

see also [Cas16, 4.4]. Now by Theorem 8.9, there is a sequence αk ≤ βk for k ≥ 1
and a function h1 ∈ S(R) with

p∑
k=0

(−1)kαkδ(2k) ∗ h1 → δ in S ′(R) as p→∞.

Consider the map Φ1 : V × R → THV given by (x, t1) 7→ (x, exp(t1X1)). It is a
polynomial homomorphism in the fibres. Note that (Φ1(x))∗(δ(k)) = X1(x)k ∈
S ′(G(x)) for all x ∈ V . By Lemma 3.25 it follows that for a function ω ∈ C∞c (V )
which is constant 1 on r(supp f)

p∑
k=0

(−1)kαkX2k
1 ∗ (Φ1)∗(ω ⊗ h1)→ ω ⊗ δ in S ′cp(THM) as p→∞.

holds. It follows that

f ∗

(
p∑
k=0

(−1)kαkX2k
1 ∗ (Φ1)∗(ω ⊗ h1)

)
→ f in Scp(THM) as p→∞.

Note that for each p ∈ N by Lemma 3.24

f ∗

(
p∑
k=0

(−1)kαkX2k
1 ∗ (Φ1)∗(ω ⊗ h1)

)
=
(

p∑
k=0

(−1)kαkY 2k
1 f

)
∗ (Φ1)∗(ω ⊗ h1).

By the choice of βk in (39) and the definition of Mk,m,α in (38), the sequence∑p
k=0(−1)kαkY 2k

1 f is Cauchy with respect to all semi-norms. Therefore, it con-
verges to a function g1 ∈ Scp(THV ). It follows that f = g1 ∗ (Φ1)∗(ω ⊗ h1).

Now, the same procedure is applied to g1 and Φ2(x, t2) := (x, exp(t2X2)).
Subsequently, we obtain

f = (. . . (gn ∗ (Φn)∗(ω ⊗ hn)) ∗ . . .) ∗ (Φ1)∗(ω ⊗ h1)
for a function gn ∈ Scp(THV ) and h1, . . . , hn ∈ S(R). Define h ∈ Scp(V × Rn) by
h(x, t) := ω(x)h1(t1) · · ·hn(tn). One computes that

gn ∗ (Φn)∗(hn) ∗ · · · ∗ (Φ1)∗(h1)(x, v) =
∫

Rn
h(x, t)gn((x, v)Φ(x, t)−1) dt.

As the Lebesgue measures on Rn is transferred to the Haar system by Φ, it follows
that f = gn ∗ (Φ∗h). This finishes the proof of (i).
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If f ∈ S0(THV ), note that g1 ∈ S0(THV ) by (iv) and (ii) of Lemma 8.8.
Inductively, it follows that gn ∈ S0(THV ). �

8.3. Operators of type 0 as generalized fixed points

In this section, we show that FixR>0(J0,R0) is isomorphic to the C∗-algebra
generated by the operators Tu for kernels u ∈ S ′cp(THM) of type 0.

Proposition 8.11 ([FS82, 1.65]). Let f ∈ R0. Then∫ ∞
0

χi(λ)σλ(f) dλ
λ

converges in S ′cp(THM) to a kernel of type 0.

We will show that, conversely, every u ∈ K0(THM) can be written as an average
over the dilation action as above. First, this is proved for u = ω⊗δ, where δ denotes
the delta distribution in the fibres and ω ∈ C∞c (M), which is a kernel of type 0.

Lemma 8.12. For every ω ∈ C∞c (M) there are finitely many fj ∈ R0 and gj ∈
S0(THM), j = 1, . . . , l, such that

l∑
j=1

∫ ∞
0

χi(λ)σλ(f∗j ∗ gj) dλ
λ → ω ⊗ δ in S ′cp(THM).

Proof. It suffices to show this for ω ∈ C∞c (V ) for an H-chart V of M . As
noted in [CGGP92], one can find a φ ∈ S0(THV ) with

ω ⊗ δ = lim
i

∫
R>0

χi(λ)σλ(φ)(x) dλ
λ .

For example, take a function h ∈ C∞c (R>0) with
∫∞

0 h(λ−1) dλ
λ = 1. Define ψ ∈

S(t∗HV ) with ψ(x, ξ) = ω(x)h(‖ξ‖), where ‖ · ‖ is a homogeneous quasi-norm on
t∗HV which is smooth outside the zero section. The invariance of the Haar measure
on R>0 implies that

∫∞
0 ψ(x, αλ−1(ξ)) dλ

λ = ω(x) for all x ∈ V and ξ 6= 0. Therefore,
φ ∈ S0(THV ) can be taken as the inverse Euclidean Fourier transform of ψ.

Now, φ needs to be factorized appropriately. By the proof of the Dixmier
Malliavin Theorem in 8.10 one can find k ∈ S0(THV ) and l ∈ S(THV ) such that
φ = k ∗ l. Following [FS82, 1.60] and using the H-frame {X1, . . . , Xn} on V , k can
be written as k =

∑n
j=1Xjkj with k1, . . . , kn ∈ S0(THV ). Therefore, using (9)

φ =
n∑
j=1

(Xjkj) ∗ l =
n∑
j=1

kj ∗ (Yj l)

holds. Using Proposition 3.19 one obtains that
∫

(Yj l)(x, v) dv = 0 for all x ∈ V
holds. Consequently, the claim holds with fj := k∗j ∈ S0(THV ) and gj := Yjg ∈ R0
for j = 1, . . . , n. �

Corollary 8.13. Every u ∈ K0(THM) can be written as a finite sum of

lim
i

∫ ∞
0

χi(λ)σλ(f∗ ∗ g) dλ
λ

with f ∈ S0(THM) and g ∈ R0.

Proof. Choose ω ∈ C∞c (M) with χ|r(suppu) ≡ 1. Let fj ∈ S0(THM) and
gj ∈ R0 for j = 1, . . . , l be functions as in Lemma 8.12. Then use the homogeneity
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of κ to compute for h ∈ Scp(THM)

u ∗ h = u ∗ (ω ⊗ δ ∗ h) = lim

 l∑
j=1

∫ ∞
0

χi(λ)u ∗ (σλ(fj ∗ gj) ∗ h) dλ
λ


= lim

 l∑
j=1

∫ ∞
0

χi(λ)σλ((u ∗ fj) ∗ gj) ∗ h dr
r


=

l∑
j=1

(
lim
∫ ∞

0
χi(λ)σλ((u ∗ fj) ∗ gj) dλ

λ

)
∗ h

Here we used that u∗ (f ∗g) = (u∗f)∗g for all φ, ψ ∈ Scp(THM). The last equality
holds as u ∗ fj lies in S0(THM) for all j = 1, . . . , n by Lemma 8.8, so that the
expression in the bottom line converges in S ′cp(THM) by Proposition 8.11. �

Example 8.14. Suppose G is a homogeneous Lie group of homogeneous dimension
Q equipped with a smooth homogeneous quasi-norm. Let k ∈ C∞(G) be a (−Q)-
homogeneous function with vanishing mean value, that is,∫

G

k(x)u(‖x‖) dx = 0

for all u ∈ L1(R>0,
dλ
λ ). By [FS82, 6.13, 6.19] its principal value distribution

PV(k) ∈ S ′(G) is defined by

〈PV(k), ψ〉 = lim
ε→0

∫
‖x‖>ε

k(x)ψ(x) dx for ψ ∈ S(G).

Let ω ∈ C∞c (R>0) be a function with
∫

R>0
λQω(λ) dλ

λ = 1. Then we can define a
function g ∈ S(G) by g(x) = ω(‖x‖)k(x/‖x‖) for x ∈ G. Its integral vanishes by
the vanishing mean value condition for k:∫

G

ω(‖x‖)k(x/‖x‖) dx =
∫
G

ω(‖x‖)‖x‖Qk(x) dx = 0.

Moreover, for x 6= 0,∫ ∞
0

σλ(g)(x) dλ
λ =

∫ ∞
0

λQω(λ‖x‖)k(x/‖x‖) dλ
λ = ‖x‖−Qk(x/‖x‖) = k(x)

holds. By [FS82, 6.13] this implies that PV(k) = limi

∫∞
0 χi(λ)σλ(g) dλ

λ + c · δ for
some c ∈ C. Writing δ as in Lemma 8.12, one obtains a representation of PV(k) as
an average over the dilations.

Remark 8.15. Let ν > 0 and f ∈ S0(THM). Then∫ ∞
0

χi(λ)λ−νσλ(f) dλ
λ

converges to a smooth (ν−dH)-homogeneous function outside the zero section. By
Lemma 3.14 it is locally integrable at the zero section. It follows that it defines
a tempered fibred distribution. It is in fact a kernel of type ν. Conversely, every
kernel of type ν > 0 can be written in this form by a similar argument as in the
proof of Corollary 8.13.

Remark 8.16. Suppose L is a right-invariant ν-homogeneous differential operator
on a homogeneous Lie group G, such that L and Lt are hypoelliptic. Then by
[Fol75, 2.1] and [Gel83, Thm. 3], L admits a fundamental solution κ ∈ S ′(G),
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that is L ∗ κ = δ. Let Q denote the homogeneous dimension of G. If ν < Q, κ is a
kernel of type ν and is uniquely determined. If ν ≥ Q, κ is of the form

κ = κ0 + p(x) ln(‖x‖) (40)
where κ0 is a kernel of type ν, p a polynomial which is homogeneous of degree
ν − Q and ‖ · ‖ denotes a homogeneous quasi-norm on G. Convolution operators
with kernels of this form are still homogeneous when their domain is restricted to
S0(G).

Because of this structure of the fundamental solutions, pseudodifferential oper-
ators of order m in the calculus of Christ, Geller, G lowacki and Polin [CGGP92]
are defined to have a homogeneous expansion of their convolution kernel of the
form

∑∞
j=−m κj with κj kernels of type j for j < Q and κj of the form in (40)

for j ≥ Q. In the calculus of van Erp and Yuncken this is reflected by considering
essentially homogeneous distributions and not only homogeneous distributions (see
[vEY19, Example 26]).

The description of the kernels of type 0 above is already very close to the
generalized fixed point algebra construction. We compare now the corresponding
convolution operators to elements of FixR>0(J0,R) ⊂ MR>0(J0). The latter is a
continuous field of C∗-algebras with fibres FixR>0(Jx,Rx) by Proposition 7.8. To
understand these fixed point algebras better, note that the restrictions of the left
regular representations λx : C∗(G(x)) → B(L2G(x)) to Jx are still non-degenerate
for all x ∈M .
Lemma 8.17. For each graded Lie group G, the restriction of the left regular repre-
sentation λ : C∗(G)→ B(L2G) to J = ker(π̂triv) is a non-degenerate representation.

Proof. Suppose ψ ∈ L2(G) is such that f∗ψ = 0 holds for all f ∈ J . As C∗(G)
acts by right-invariant operators on L2(G), this is equivalent to f̂(π)ψ̂(π) = 0 for
all f ∈ J and for almost all π ∈ Ĝ by the Plancherel Theorem, see (13). The ideal
J / C∗(G) is liminal. Hence for π ∈ Ĵ = Ĝ\{πtriv} we have that f̂(π)ψ̂(π) = 0
for all f ∈ J is equivalent to K(Hπ)ψ̂(π) = 0. But as ψ̂(π) is Hilbert–Schmidt,
this means that ψ̂(π) = 0 for π 6= πtriv. The Plancherel measure is supported
within the representations corresponding to orbits of maximal dimension sequence.
In particular, {πtriv} has measure zero and, therefore, ψ = 0 must hold. �

Consequently, as the restriction is also faithful, the multiplier algebras M(Jx)
can be identified with the idealizer of λ(Jx) in B(L2G(x)). Therefore, elements of
the generalized fixed point algebra FixR>0(Jx,Rx) can be viewed as bounded, right-
invariant operators on L2(G(x)). This allows us to reprove the following theorem
of [KS71].

Theorem 8.18. Every operator T of type 0 extends uniquely to a family Tx of
bounded operators L2(G(x))→ L2(G(x)).

Proof. Note that if such an extension exists, it is unique as S(G(x)) ⊂
L2(G(x)) is dense for each x ∈ M . Let f, g ∈ R0 and consider the kernel of
type 0 given by

u = lim
i

∫ ∞
0

χi(λ)σλ(f∗ ∗ g) dλ
λ .

If we can show that Tu,x : ψ 7→ ux ∗ ψ defined on S(G(x)) extends to an operator
in B(L2G(x)), the claim follows as every kernel of type 0 is a finite sum of kernels
of this form by Corollary 8.13. Let h ∈ Rx and ψ ∈ S(G(x)). The description of
|qx(f)〉〉〈〈qx(g)| as a strict limit as in Lemma 2.13 shows that

λ̃x (|qx(f)〉〉〈〈qx(g)|) (λx(h)ψ) = Tu,x(λx(h)ψ).
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As the restricted left regular representation is non-degenerate by Lemma 8.17,
{λx(h)ψ | h ∈ Rx and ψ ∈ S(G(x))} is dense in L2(G(x)). Hence, the opera-
tor λ̃x (|qx(f)〉〉〈〈qx(g)|) is the unique continuous extension of Tu,x. �

Proposition 8.19. The generalized fixed point algebra FixR>0(J0,R0) is the C∗-
closure of the operators of type 0.

Proof. This follows from the one-to-one correspondence between the opera-
tors of type 0 and the linear span of |f〉〉〈〈g| with f, g ∈ R0 obtained from Proposi-
tion 8.11, Corollary 8.13 and Theorem 8.18. The latter is dense in the C∗-algebra
FixR>0(J0,R0). �

Corollary 8.20. Let G be a homogeneous Lie group, JG = ker(π̂triv) and let RG
consist of all f ∈ S(G) with

∫
G
f(v) dv = 0. The generalized fixed point algebra

FixR>0(JG,RG) is the C∗-completion of the operators of type 0 on G.



CHAPTER 9

Comparison to calculi on filtered manifold

In Chapter 7, we obtained for a filtered manifold (M,H) and the zoom action
an extension of generalized fixed point algebras

K(L2M) FixR>0(J,R) FixR>0(J0,R0).p̃0

In this chapter, it is proved that it coincides with the C∗-completion of certain order
zero pseudodifferential extensions defined in the literature. Namely, we will compare
it to the calculus by van Erp and Yuncken in [vEY19] for filtered manifolds and
the calculus of Fischer, Ruzhansky and Fermanian-Kammerer in [FR16, FFK17]
for graded Lie groups.

Let us mention that there are also other calculi related to filtered manifolds, for
example, the calculus of Melin for filtered manifolds in the unpublished manuscript
[Mel82], the calculus of Beals and Greiner for Heisenberg manifolds in [BG88],
the calculus of Taylor for contact manifolds in [Tay84], or the calculus of Christ,
Geller, G lowacki and Polin in [CGGP92] for homogeneous Lie groups.

9.1. Van Erp and Yuncken’s calculus

The pseudodifferential calculus for filtered manifolds developed by van Erp and
Yuncken is also based on the tangent groupoid and the zoom action. Note that they
use a version of the tangent groupoid which is a field over R and not [0,∞). In this
section, we outline of their construction and compare it to the generalized fixed
point algebra approach.

Recall the theory of fibred distributions on Lie groupoids and their convolutions
as in [vEY19, Section 2], see also [LMV17].

Definition 9.1 ([vEY19, 6]). Let G be a Lie groupoid with unit space G(0) and
range and source r, s : G → G(0). An r-fibred distribution, respectively an s-fibred
distribution, is a continuous C∞(G(0))-linear map u : C∞(G) → C∞(G(0)), where
the C∞(G(0))-module structure on C∞(G) is induced by the range, respectively the
source map. The spaces of r- and s-fibred distributions are denoted by E ′r(G) and
E ′s(G).

There are well-defined convolution products ∗ : E ′π(G) × E ′π(G) → E ′π(G) for
π = r, s that turn E ′π(G) into an associative algebra [LMV17, 20].
Definition 9.2. A subset X ⊂ G is proper if the restricted range and source maps

r|X : X → G(0) and s|X : X → G(0)

are proper. For π = r, s, let Ωπ be the bundle of smooth densities tangent to the
range fibres, respectively source fibres, of G. Let C∞p (G; Ωπ) denote the space of
smooth sections f such that supp(f) is proper.

Then C∞p (G; Ωr) is a right ideal in E ′r(G), whereas C∞p (G; Ωs) is a left ideal in
E ′s(G) (see [vEY19, 9] and [LMV17, 21]).

The zoom action from Definition 5.8 induces an R>0-action α∗ on E ′r(THM)
by automorphisms. Each αλ∗ restricted to C∞c (THM ; Ωr) coincides with σλ−1 as

64



9.1. VAN ERP AND YUNCKEN’S CALCULUS 65

in Lemma 6.16 when identifying C∞c (THM ; Ωr) with C∞c (THM) using the left
invariant Haar system.

Definition 9.3 ([vEY19, 18, 19]). A properly supported P ∈ E ′r(THM) is essen-
tially homogeneous of weight m ∈ R if

αλ∗(P)− λmP ∈ C∞p (THM ; Ωr) for all λ > 0.
The space of these distributions is denoted by 	mH(M).

A distribution P ∈ E ′r(M ×M) is an H-pseudodifferential kernel of order ≤ m
if there is a P ∈ 	mH(M) that restricts to P at t = 1. Denote by Ψm

H(M) the space
of these kernels. For P ∈ Ψm

H(M), the operator

Op(P ) : C∞(M)→ C∞(M), Op(P )f(x) =
∫
M

P (x, y)f(y)

is the corresponding H-pseudodifferential operator.

Moreover, they define the principal cosymbol of P ∈ Ψm
H(M) by extending it

to a P ∈ 	mH(M) and restricting P to t = 0. To make this independent of the choice
of the extension, the space of cosymbols is defined as follows.

Definition 9.4 ([vEY19, 34, 35]). For m ∈ R, let EssmH(M) consist of all properly
supported u ∈ E ′r(THM) such that

δλ∗(u)− λmu ∈ C∞p (THM ; Ωr) for all λ > 0.
Here, δ∗ is induced by the dilations in the fibres of THM . Define

ΣmH(M) := EssmH(M)/C∞p (THM ; Ωr).
The principal cosymbol of P ∈ Ψm

H(M) is defined by extending P to P ∈ 	mH(M)
and setting

smH(P ) := [P0] ∈ ΣmH(M).

Van Erp and Yuncken show in [vEY19, 47] that the wave front set of P ∈
	mH(M) is contained in the conormal to M × [0,∞). This implies by [vEY19, 48]
that P belongs, in fact, to the space of proper r-fibred distributions E ′r,s(THM)
as defined in [vEY19, 11]. As C∞p (THM ; Ωr) is a two-sided ideal in E ′r,s(THM),
it is then easy to see that

⋃
m∈Z Ψm

H(M) is a Z-graded algebra, see [vEY19, 49].
Moreover, there is a well-defined involution on E ′r,s(THM) by [LMV17, 20]. We
summarize now the main properties of the calculus.

Proposition 9.5 ([vEY19, 36, 37, 38, 49, 50, 52, 53], [DH17, 3.6]). The pseudo-
differential calculus on a filtered manifold (M,H) satisfies:

(i) For m ∈ Z there is a short exact sequence

Ψm−1
H (M) Ψm

H(M) ΣmH(M).smH (41)

The inclusion is well-defined, which can be seen by considering the map
	m−1
H (M) → 	mH(M) with P 7→ tP for P ∈ 	m−1

H (M), which does not
change the kernel at t = 1.

(ii) For P ∈ Ψm
H(M) and Q ∈ Ψl

H(M) with m, l ∈ R, the convolution is in
Ψm+l
H (M) and sm+l

H (P ∗Q) = smH(P ) ∗ slH(Q).
(iii) For P ∈ Ψm

H(M) and m ∈ R, the formal adjoint P ∗ is in Ψm
H(M) and

smH(P ∗) = smH(P )∗.
(iv) For k ≥ 0 and r the step of the filtration, the following regularities hold

Ψ−dH−kr−1
H (M) ⊂ Ckp(M ×M ; Ωr),⋂
m∈Z

Ψm
H(M) = C∞p (M ×M ; Ωr).
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Remark 9.6. Dave and Haller extend in [DH17] the pseudodifferential calculus
to operators acting between sections of vector bundles E,F over M . In this case,
distributions in E ′r(THM ; hom(s∗(E), r∗(F))⊗ Ωr) are used, where E = E × R and
F = F × R are the vector bundles over the unit space M × R.

Frequently, global exponential coordinates as in [vEY17, 15] are used. They
identify an open subset W̃ of tHM × R, the Lie algebroid of THM , with an open,
zoom invariant neighbourhood W of

THM × 0 ∪∆M × (0,∞) ⊂ THM.

Here, ∆M denotes the diagonal in M ×M .
Suppose ϕ1 ∈ C∞(M × M) is constant 1 on ∆M and vanishes outside W1.

Then ϕ ∈ C∞(THM) defined by ϕ := ϕ1 ◦ (r1, s1) is called an exponential cutoff
in [vEY19, 27]. It is invariant under the zoom action. It is shown in [vEY19, 27]
that each P ∈ 	mH(M) differs from a Q ∈ 	mH(M) supported on W by an element of
C∞p (THM ; Ωr), namely, set Q = ϕP for an exponential cutoff ϕ.

As we used the Schwartz type algebra in the construction of the generalized
fixed point algebra FixR>0(J,R), the corresponding operators on L2(M) as in
Lemma 7.10 have compactly supported kernels. Therefore, we compare it to the
following variant of van Erp and Yuncken’s calculus with compact instead of proper
supports.

Definition 9.7. Let 	mH,c(M) consist of all P ∈ 	mH(M) such that there is a compact
subset K ⊂ M × M such that all Pt for t 6= 0 are supported in K. Likewise,
EssmH,c(M) denotes all u ∈ EssmH(M) with compact support in the x-direction and

ΣmH,c(M) := EssmH,c(M)/C∞c (THM ; Ωr).

Lemma 9.8. Let m ∈ Z. The pseudodifferential extension of order m in (41)
restricts to a short exact sequence

Ψm−1
H,c (M) Ψm

H,c(M) ΣmH,c(M)smH (42)

Proof. This can be shown analogously to [vEY19, 36, 37, 38]. For surjectiv-
ity of the principal cosymbol map, extend a compactly supported u ∈ EssmH,c(M)
as in [vEY19, 36] to the constant distribution ũ ∈ E ′r(tHM × R) given by ũt = u.
Using an exponential cutoff ϕ for a ϕ1 ∈ C∞c (M × M) that is constant 1 on a
neighbourhood of ∆r(suppu) ⊂ M × M and zero outside of W1, one obtains an
u ∈ 	mH,c(M) that extends u. �

We will first compare the space of principal cosymbols of order 0 to the gener-
alized fixed point algebra at t = 0, namely, FixR>0(J0,R0). Consider the following
bundle version of the space of approximately homogeneous distributions defined
in [Tay84, 2].

Definition 9.9. A tempered fibred distribution u ∈ S ′cp(THM) is approximately
0-homogeneous if

(i) u is smooth outside the zero section,
(ii) u = u1 + u2 for some u1 ∈ Scp(THM) and u2 ∈ E ′cp(THM),
(iii) σλ(u)− u ∈ Scp(THM) for all λ > 0.

Denote by H0
cp(THM) the space of approximately 0-homogeneous distributions.

By [Tay84, 2.2, 2.4] they are closely related to kernels of type 0, defined in
Definition 8.4.

Proposition 9.10. There is a surjective linear map Φ: H0
cp(THM) → K0(THM)

with ker(Φ) = H0
cp(THM) ∩ C∞cp(THM).
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Proof. By the bundle version of [Tay84, 2.4] every u ∈ H0
cp(THM) can be

written as u = f + w with f ∈ C∞cp(THM) and w ∈ K0(THM). In fact, it
is shown in [Tay84, 2.2], that û ∈ C∞(t∗HM) admits a radial limit w̃(x, ξ) :=
limλ→∞ u(x, λξ), which defines a smooth, 0-homogeneous function w̃. Therefore,
w̃ extends to a tempered fibred distribution and w is its inverse under Fourier
transform. The above decomposition of u is unique as kernels of type 0 coincide
with smooth (−dH)-homogeneous functions outside the zero section. Therefore,
C∞cp(THM) ∩ K0(THM) = {0} and u 7→ w is a well-defined linear map.

For surjectivity, let w ∈ K0(THM) be a kernel of type 0. The Euclidean Fourier
transform ŵ ∈ S ′(t∗HM) is smooth and 0-homogeneous outside the zero section
M × {0}. Take a smooth cutoff function χ ∈ C∞(t∗HM) which vanishes near the
zero section and is constant 1 outside an r-compact set. Then u = F−1(χŵ) is an
approximately 0-homogeneous distribution by [Tay84, 2.2] and one can write

u = w −F−1((1− χ)ŵ).
The latter is smooth as (1 − χ)ŵ ∈ E ′cp(tHM), so that Φ(u) = w. The claim
concerning the kernel follows from the uniqueness of the decomposition above and
the definition of Φ. �

Note that H0
cp(THM) is larger than the space Ess0

H,c(M) we consider. However,
the following result holds. See [DH17, 3.8] for a more general result for ΣmH(M).

Lemma 9.11. There is a linear bijection Θ: Σ0
H,c(M)→ K0(THM).

Proof. The map Φ in Proposition 9.10 induces a bijective, linear map
H0

cp(THM)/ ker(Φ)→ K0(THM).
We show that there is a linear bijection Σ0

H,c(M) → H0
cp(THM)/ ker(Φ). The

inclusion ι : Ess0
H,c(M) ↪→ H0

cp(THM) induces a linear map to the quotient

ψ : Ess0
H,c(M)→ H0

cp(THM)/ ker(Φ).
To see that it is surjective, let u ∈ H0

cp(THM) and choose a function ω ∈ C∞c (THM)
which is constant 1 in a neighbourhood of r(suppu) × {0} and consider ωu ∈
E ′cp(THM). It is essentially 0-homogeneous as for all λ > 0

σλ(ωu)− ωu = −σλ((1− ω)u) + σλ(u)− u+ (1− ω)u
is smooth. It is also compactly supported as the left hand side is. Moreover,
u− ωu = (1− ω)u is smooth, so that ψ(ωu) = [u].

Finally, we show that ker(ψ) = C∞c (THM). If u ∈ Ess0
H,c(M) is contained

in the kernel of ψ, it is smooth by the description of the kernel of Φ. It is also
compactly supported. So it must lie in C∞c (THM). As C∞c (THM) ⊂ C∞cp(THM)
the converse inclusion holds, too. �

By the description of K0(THM) inside a generalized fixed point algebra in
Proposition 8.19, we obtain a linear map

Θ: Σ0
H,c(M)→ FixR>0(J0,R)

with dense image. However, it is not clear from the proof that it is a ∗-homomorphism
for the convolution and involution of distributions. This will be shown later.

It was observed in [DS14, Theorem 3.7] that classical pseudodifferential oper-
ators on a manifold M can be written as averages over the zoom action of functions
f ∈ A(TM) with f0 ∈ S0(TM). We will show this for filtered manifolds for the
order zero case.

Lemma 9.12. Let g ∈ C∞c (t∗HM × R) vanish at all points (x, 0, 0) for x ∈ M .
Then

∫∞
0 χi(λ)g(x, λ · ξ, λ) dλ

λ converges in S ′cp(t∗HM).
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Proof. We show that for each (x, ξ) ∈ t∗HM

K(x, ξ) := lim
i

∫ ∞
0

χi(λ)g(x, λ · ξ, λ) dλ
λ

converges and satisfies for all α ∈ Nn0

sup
(x,ξ)
|∂αxK(x, ξ)| <∞.

As g vanishes at all points (x, 0, 0), it can be written as

g(x, ξ, t) =
n∑
j=1

ξjgj(x, ξ, t) + tgt(x, ξ, t)

with gj , gt ∈ C∞c (t∗HM × R) for j = 1, . . . , n. Since they are compactly supported,
there are R, T > 0 such that gj(x, ξ, t) = gt(x, ξ, t) = 0 for j = 1, . . . , n whenever
‖ξ‖ > R or t > T . It follows that |K(x, ξ)| ≤ T (R + 1) maxj=1,...,n,t‖gj‖∞. This
shows the claim for α = 0. Derivatives in the x-direction give an expression of the
same form so it holds for all α ∈ Nn0 . �

Proposition 9.13. Let Θ be the map from Lemma 9.11. For P ∈ 	0
H,c(M) there

is f ∈ R with f0 ∈ S0(THM) such that

P1 −
∫ ∞

0
p1(σλ(f)) dλ

λ ∈ C∞c (M ×M) and Θ([P0]) =
∫ ∞

0
σλ(f0) dλ

λ .

Proof. By [vEY19, Lemma 27 and Lemma 42] P differs by a kernel in
C∞p (THM) from an element Q ∈ 	0

H(M) which is supported in the global ex-
ponential coordinate patch and is homogeneous on the nose outside [−1, 1]. Using
that P has a uniform compact support K ⊂ M ×M for t 6= 0, one can arrange
that the same holds for the kernel in C∞p (THM) and that Q ∈ 	0

H,c(M). So as-
sume, without loss of generality, that P has is supported in the global exponential
coordinate patch and is homogeneous on the nose outside [−1, 1].

Let P̃ ∈ E ′r(tHM × R) be the pullback under the exponential map and P̂ =
F(P̃) ∈ C∞(t∗HM × R). Here, F is the fibrewise Euclidean Fourier transform
F : S ′r(tHM×R)→ S ′r(t∗HM×R). As remarked in [vEY19, 7.3], P̂ is approximately
homogeneous for the R>0-action βλ(x, ξ, t) = (x, λ · ξ, λt) on t∗HM × R. This is a
dilation action when considering t∗HM ×R

π→M as a graded vector bundle over M
with the original dilations on t∗HM and the usual scaling on R as observed in
[vEY19, 7.3].

Now we use [vEY19, Prop. 43], which is based on the bundle version of
[Tay84, 2.2]. It allows to find an A ∈ C∞cp(t∗HM × R \M × 0× 0) homogeneous of
degree 0 such that P̂−χA ∈ Scp,π(t∗HM ×R) for any smooth cutoff function χ that
vanishes in a neighbourhood of the zero section M ×0×0 and is constant 1 outside
a π-compact set. Now choose g ∈ C∞c (t∗HM × R) vanishing with all derivatives at
all points (x, 0, 0) such that for all (ξ, t) 6= (0, 0)

A(x, ξ, t) =
∫ ∞

0
g(x, λξ, λt) dλ

λ .

Then
∫∞

0 g(x, λξ, λt) dλ
λ converges in S ′cp(t∗HM) for t = 0 by Proposition 8.11 and

for t > 0 by Lemma 9.12. We write for all t ≥ 0 and a cutoff function χ as above

P̂t −
∫ ∞

0
g(x, λξ, λt) dλ

λ =
(
P̂t − χ(ξ, t)At

)
− (1− χ(ξ, t))

∫ ∞
0

g(x, λξ, λt) dλ
λ .
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The first part lies in Scp(t∗HM) and the second in E ′r(t∗HM) with compact support
in the x-direction. So that we obtain under inverse Fourier transform

P̃t −
∫ ∞

0
(σ̃λ ◦ F−1(g))(t) dλ

λ ∈ C∞cp(tHM).

Here, σ̃ denotes the zoom action on tHM × R.
As P has uniform compact support, there is an exponential cutoff ϕ built from

a compactly supported ϕ1 ∈ C∞c (M ×M) such that ϕP = P. Let f := ϕF−1(g),
which is an element of R with f0 ∈ S0(THM). We obtain for all t ≥ 0, using that
ϕ is invariant under the zoom action,

Pt −
∫ ∞

0
pt(σλ(f)) dλ

λ = ϕt

(
Pt −

∫ ∞
0

pt ◦ σλ ◦ F−1(g) dλ
λ

)
.

For t > 0, this is contained in C∞c (M ×M). For t = 0, note that ϕ0 = 1 on the
support of P0 and g in the x-direction. As P0 ∈ Σ0

H,c(M) ⊆ H0
cp(THM), the claim

follows from Proposition 9.10. �

Lemma 9.14. For f ∈ R with f0 ∈ S0(THM)∫ ∞
0

χi(λ)σλ(f) dλ
λ

converges strictly to an element Q ∈ FixR>0(J,R). Moreover,

p̃0(Q) = lim
i

∫ ∞
0

χi(λ)σλ(f0) dλ
λ ∈ FixR>0(J0,R0).

Proof. As f0 ∈ S0(THM), the same argument as in the proof of Lemma 8.12
gives fj , gj ∈ R0 with f0 =

∑n
j=1 f

∗
j ∗ gj . Let Fj , Gj ∈ R be extensions of fj , gj to

t > 0, which can be obtained as in the proof of Lemma 6.12. As h := f−
∑
j=1 F

∗
j ∗

Gj ∈ A(THM) vanishes at t = 0, it follows from Lemma 7.12 that∫ ∞
0

χi(λ)σλ(h) dλ
λ

converges strictly to an element of the generalized fixed point algebra. As∫ ∞
0

χi(λ)σλ(f) dλ
λ =

∫ ∞
0

χi(λ)σλ(h) dλ
λ +

n∑
j=1

∫ ∞
0

χi(λ)σλ(F ∗j ∗Gj) dλ
λ

and the operators on the right converge to |Fj〉〉〈〈Gj |, it follows that the left hand
side converges strictly to a Q ∈ FixR>0(J,R). As h ∈ ker(p0), the decomposition
above also shows that

p̃0(Q) =
n∑
j=1
|f∗j 〉〉〈〈gj | = lim

i

∫ ∞
0

χi(λ)σλ(f0) dλ
λ . �

Theorem 9.15. The pseudodifferential extension of order zero from (42) for a
filtered manifold (M,H) embeds into the generalized fixed point algebra extension
from (37) such that the following diagram commutes

Ψ−1
H,c(M) Ψ0

H,c(M) Σ0
H,c(M)

K(L2M) p̃1(FixR>0(J,R)) FixR>0(J0,R0),

s0
H

Θ

SH

(43)

with SH = p̃0 ◦ (p̃1)−1.
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Proof. For the inclusion of Ψ0
H,c(M) in the generalized fixed point algebra, let

P ∈ Ψ0
H,c(M). By Proposition 9.13, there is a function f ∈ R with f0 ∈ S0(THM)

and
P −

∫ ∞
0

p1(σλ(f)) dλ
λ ∈ C∞c (M ×M).

By Lemma 9.14,
∫∞

0 χi(λ)σλ(f) dλ
λ converges to an element Q of the generalized

fixed point algebra FixR>0(J,R). Its image p̃1(Q) in B(L2M) is the unique bounded
extension of the convolution operator associated with

∫∞
0 p1(σλ(f)) dλ

λ . Convolu-
tion by the kernel in C∞c (M×M) extends to a compact operator K. It follows that
K +Q is the unique continuous extension of Op(P ) and belongs to the generalized
fixed point algebra. Moreover, Lemma 9.14 also implies

Θ(s0
H(P )) =

∫ ∞
0

σλ(f0) dλ
λ =

n∑
j=1
|fj〉〉〈〈gj | = SH(Q) = SH(Op(P )).

Hence, the right square in (43) commutes. For P ∈ Ψ−1
H,c(M) the commutativity of

the right square and exactness of the rows yields that Op(P ) extends to a compact
operator on L2(M). �

Remark 9.16. In particular, we recover the result in [DH17, 3.9] that H-pseudo-
differential operators of order 0 extend to bounded operators on L2(M), while the
ones of order −1 define compact operators.

As the left and middle vertical arrows in (43) are inclusions of ∗-algebras,
the quotient map Θ: Σ0

H,c → FixR>0(J0,R0) must be a ∗-homomorphism, too.
Therefore, FixR>0(J0,R0) is the C∗-completion of Σ0

H,c(M).

Corollary 9.17. Let C∗(Ψ0
H,c(M)) be the C∗-closure of Ψ0

H,c(M) inside B(L2M).
Then C∗(Ψ0

H,c(M)) is isomorphic to FixR>0(J,R). There is a short exact sequence
of C∗-algebras

K(L2M) C∗(Ψ0
H,c(M)) C∗(Σ0

H,c(M)),SH

where SH extends the principal cosymbol map s0
H : Ψ0

H,c(M)→ Σ0
H,c(M).

Proof. We show that C∗(Ψ0
H,c(M)) = p̃1(FixR>0(J0,R)). The C∗-algebra

of H-pseudodifferential operators of order 0 is contained in p̃1(FixR>0(J0,R)) by
Theorem 9.15.

For the converse, note first that K(L2M) ⊂ C∗(Ψ0
H,c(M)). This holds as

Ψ0
H,c(M) contains the kernels in C∞c (M × M) and these generate the compact

operators on L2(M). Now, let f, g ∈ R. Let u ∈ Σ0
H,c(M) be the inverse of

|f0〉〉〈〈g0| ∈ K0(THM) under the map Θ in Lemma 9.11. Since the principal cosym-
bol map is surjective, there is a P ∈ Ψ0

H,c(M) with s0
H(P ) = u. Then the operator

p̃1(|f〉〉〈〈g|) = p̃1(|f〉〉〈〈g|)−Op(P ) + Op(P )
is contained in C∗(Ψ0

H,c(M)). This is because Op(P ) is and p̃1(|f〉〉〈〈g|)−Op(P ) ∈
K(L2M) as the diagram in (43) commutes. The C∗-algebra FixR>0(J,R) is gener-
ated by |f〉〉〈〈g| with f, g ∈ R. Thus, the result follows. �

The convolution algebra Ess0
H,c(M) can be completed into a C∗-algebra. Con-

sider the ∗-representations λx for x ∈ M given by the corresponding convolution
operators, that is,

λx(u)f = ux ∗ f for u ∈ Ess0
H,c(M) and f ∈ S(G(x)).
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To see that these extend to bounded operators on L2(G(x)), recall that by Proposi-
tion 9.10 there is a w ∈ K0(THM) such that u−w ∈ C∞cp(THM). Let χ ∈ C∞c (THM)
be such that χ · u = u. Then one can write u = χ(u−w) +χw. The first part is in
C∞c (THM), so convolution with it extends to a bounded operator. As wx extends
to a continuous operator L2(G(x))→ L2(G(x)) by Theorem 8.18, also convolution
with χxwx extends to a bounded operator by [Chr88, 2.10]. In fact, using the
compact support in the base space, the proof of [Chr88, 2.10] yields a C > 0 with

‖λx(u)‖ ≤ ‖χ(u− w)‖+ C‖w‖ for all x ∈M.

Thus, one can take the completion of Ess0
H,c(M) with respect to the norm

‖u‖ := sup
x∈M
‖λx(u)‖ for u ∈ Ess0

H,c(M).

Denote the resulting C∗-algebra by C∗(Ess0
H,c(M)). The homomorphism

Θ: Ess0
H,c(M)/C∞c (THM) = Σ0

H,c(M)→ FixR>0(J0,R)
has dense image. Therefore, one obtains an extension of C∗-algebras

C∗(THM) C∗(Ess0
H,c(M)) FixR>0(J0,R) (44)

Remark 9.18. For a step 1 filtration, the short exact sequence above corresponds
under Fourier transform to the disk bundle extension

C0(T ∗M) C0(B∗M) C0(S∗M).

Denote by 	0
H,c(M)|[0,1] the ∗-algebra obtained by restricting to [0, 1]. It can

be completed into a C∗-algebra using the left regular representations Opt for t > 0
in the following way. Let P ∈ 	0

H,c(M)|[0,1]. Using Proposition 9.13 one can find
an element T ∈ FixR>0(J,R) with associated distributions K = (Kt) such that
P −K ∈ C∞(THM |[0,1]). Furthermore, there is a cutoff function χ ∈ C∞c (THM)
that is 1 in a neighbourhood of the unit space such that χP = P. Then χ(P−K) ∈
C∞c (THM |[0,1]). Moreover, χtKt extends to bounded operator for each t > 0 as Kt

does and (1−χt)Kt is supported away from the diagonal and is, therefore, smooth
and compactly supported. For t = 0, this was discussed above. It follows that

‖Opt(P)‖ ≤ ‖χ(P−K)‖+ ‖χK‖ for all 0 < t ≤ 1.
Thus, one can complete 	0

H,c(M)|[0,1] with respect to

‖P‖ := max
{

sup
0<t≤1

‖Opt(P)‖, ‖P0‖
}

for P ∈ 	0
H,c(M)|[0,1].

We will denote the C∗-completion by C∗(	0
H,c(M)). As elements of 	0

H,c(M) are
continuous families of distributions, C∗(	0

H,c(M)) is a continuous field of C∗-algebras
over [0, 1]. Note that C∗(THM |[0,1]) is an ideal in C∗(	0

H,c(M)).

Lemma 9.19. The kernel of the homomorphism
S0
H : C∗(	0

H,c(M))→ FixR>0(J0,R0)
induced by P 7→ [P0] is C∗(THM |[0,1]).

Proof. Since C∗(THM |[0,1]) is generated by C∞c (THM |[0,1]) which is contained
in the kernel of S0

H , the first inclusion follows. For the converse inclusion, note that
the kernel is generated by 	−1

H,c(M)|[0,1]. Let P ∈ 	−1
H,c(M)|[0,1]. Tracing back

the construction in Proposition 9.13 one can take f ∈ R such that f vanishes
at t = 0. It follows that the corresponding element T ∈ FixR>0(J,R) defines a
compact operator. Therefore, Op(Pt) ∈ K(L2M) for all t > 0. By assumption
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P0 ∈ C∞c (THM) ⊂ C∗(THM) holds, so that P belongs pointwise to C∗(THM). As
C∗(	0

H,c(M)) is a continuous field, it follows P ∈ C∗(THM) by [Dix77, 10.4.2]. �

9.2. The calculus of Fischer, Ruzhansky and Fermanian-Kammerer

Recall the operator-valued Fourier transform for a nilpotent Lie group G de-
scribed in Section 3.4. It maps a right-invariant operator on L2(G), like the model
operators on the osculating groups, to a field of operators {a(π) ∈ B(Hπ) | π ∈ Ĝ}.
For an arbitrary filtered manifold, it might be inconvenient to work with it as the
osculating groups and, therefore, their representation theory can change from point
to point.

However, when viewing a fixed graded Lie group G as a filtered manifold as
in Example 4.5, the operator-valued Fourier transform can be used to define a
symbolic pseudodifferential calculus. This was carried out in [FR16]. In [FFK17],
homogeneous expansions for the symbols were defined. We give a short introduction
to their calculus. The symbols in their calculus are fields of operators

{a(x, π) : H∞π → Hπ | x ∈ G, π ∈ Ĝ}.
Here, H∞π are the smooth vectors in Hπ.

Remark 9.20. Note that [FR16] uses a different convention for the Fourier trans-
form

F(f)(π) =
∫
G

f(x)π(x)∗ dx for f ∈ L1(G).

This leads to F(f ∗ g)(π) = F(g)(π)F(f)(π) for π ∈ Ĝ and f, g ∈ L1(G). In this
case, L∞(Ĝ,B(Hπ)) is identified with the right von Neumann algebra VNR(G). In
particular, their operators have right convolution kernels.

The pseudodifferential calculus is defined in [FR16] using a positive Rockland
operator. Each π ∈ Ĝ yields an infinitesimal representation dπ of U(g) on H∞π
(see [FR16, 1.7.3]). As in [FR16] we will write π(P ) := dπ(P ) for right-invariant
differential operators P on G.

Definition 9.21 ([FR16, 4.1.1, 4.1.2]). Let G be a homogeneous Lie group. A
right-invariant differential operator P on G satisfies the Rockland condition if π(P )
is injective on H∞π for all π ∈ Ĝ \ {πtriv}.

A right-invariant differential operator P which is homogeneous of positive de-
gree and satisfies the Rockland condition is called a Rockland operator.

Example 9.22. For G = Rn the Laplace operator ∆n =
∑n
j=1 ∂

2
j is a Rockland

operator. There is an isomorphism Rn → R̂n, ξ 7→ πξ, given by πξ(x) = e−i〈ξ,x〉.
One computes that πξ(∂j) = −iξj . Hence, πξ(∆n) = −‖ξ‖2 6= 0 for ξ 6= 0.

Example 9.23 ([FR16, 4.1.8]). Let G be a graded Lie group with weights q1 ≤
q2 ≤ . . . ≤ qn and corresponding basis X1, . . . , Xn of g. Let q be a common multiple
of the weights. Then the following operator is a Rockland operator

n∑
j=1

(−1)q/qjX2q/qj
j .

Example 9.24. Let G = Hn be the Heisenberg group with generators Xj , Yj , Z
for j = 1, . . . , n as in Example 3.2. The following operators and variants of them
were also considered in [Eps99,vE10a,vE10b,BvE14]. For µ ∈ C let

Pµ =
n∑
j=1
−X2

j − Y 2
j + iµZ.
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In particular, we obtain for µ = 0 the sub-Laplacian P0 =
∑n
j=1−X2

j − Y 2
j on the

Heisenberg group. For n = 1, this is the operator (1) considered in the introduction.
The computation of the coadjoint orbits in Example 3.31 yields representatives

of the coadjoint orbits
∑n
j=1 αjX

∗
j +βjY ∗j for (α, β) ∈ R2n and γZ∗ for γ 6= 0. Note

that (α, β) = (0, 0) corresponds to the trivial representation under the Kirillov map.
In the first case, the corresponding representation χα,β of Hn is one-dimensional

and given by χα,β(x, y, z) = ei(〈α,x〉+〈β,y〉) for (x, y, z) ∈ Hn. One computes that
χα,β(Pµ) = ‖α‖22 + ‖β‖22 6= 0 whenever (α, β) 6= (0, 0).

The representation of Hn associated to γZ∗ with γ 6= is unitarily equivalent to
a representation πγ : Hn → L2(Rn) as in [FR16, Sec. 6.2.1]. The smooth vectors
are S(Rn). It is computed in [FR16, 6.2.1] that infinitesimal representations are
given by

πγ(Xj) =
√
|γ| ∂
∂uj

for j = 1, . . . , n,

πγ(Yj) = ±
√
|γ|iuj for j = 1, . . . , n,

πγ(Z) = iγ.

Here, ± corresponds to the sign of γ. Consequently, Pµ satisfies the Rockland
condition if and only if

πγ(Pµ) = γ(−∆n + |u|2 ± µI)
is injective on S(Rn). It was already observed in [Eps99, Sec. 8] that the quantum
harmonic oscillator −∆n + |u|2 shows up. In [Eps99, Sec. 9] it is proved that it
has pure point spectrum and its spectrum is given by {n + 2l | l ∈ N0}. The
corresponding eigenfunctions are Schwartz. Therefore, Pµ satisfies the Rockland
condition if and only if µ /∈ {n+ 2l | l ∈ N0} ∪ {−n− 2l | l ∈ N0}.

Remark 9.25. The existence of a positive Rockland operator on a homogeneous
Lie group is equivalent to the group being (up to rescaling) graded (see [FR16,
4.1.3, 4.1.8]).

Remark 9.26. The Helffer–Nourrigat Theorem [HN79] states that a right-invariant
homogeneous differential operator on a graded Lie group satisfies the Rockland con-
dition if and only if it is hypoelliptic.

From now on, let R be a fixed positive Rockland operator of homogeneous
degree q on G. It will play the role of the Laplace operator on Rn.

Using the positive Rockland operator and its functional calculus, the Sobolev
spaces L2

s(G) for s ∈ R are defined in [FR16, 4.4.2]. Moreover, the operator-
valued Fourier transform extends to a Fourier transform between right-invariant
operators in B(L2

a(G), L2
b(G)) for a, b ∈ R to a space of fields denoted by L∞a,b(Ĝ),

see [FR16, 5.1.21, 5.1.24]. The spaces of corresponding convolution kernels in
S ′(G) are denoted by Ka,b(G).

The derivatives in the cotangent direction in the Euclidean calculus are replaced
with difference operators ∆α for α ∈ Nn0 , which are defined in the following. This is
based on the observation that the Euclidean Fourier transform intertwines ∂α and
with multiplication by xα. For u ∈ S ′(G) denote by xαu for α ∈ Nn0 the tempered
distributions defined by

〈xαu, f〉 = 〈u, xαf〉 for f ∈ S(G).
Let u ∈ Ka,b(G) be a kernel such that xαu ∈ Ka′,b′(G) for some a′, b′ ∈ R. Then
the difference operator ∆α is defined as in [FR16, 5.2.1] by

∆αû(π) := x̂αu(π) for π ∈ Ĝ.
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The following symbol classes are adapted to the notion of order induced by the
dilations. Hence, the homogeneous degree [α] for α ∈ Nn0 as in Definition 3.15 is
used.

Definition 9.27 ([FR16, 5.2.11]). A field {a(x, π) : H∞π → Hπ | x ∈ G, π ∈ Ĝ} is
a symbol of order m ∈ R if for all α, β ∈ Nn0 , the field of operators Xβ

x∆αa(x, π) is
defined on the smooth vectors and satisfies

sup
(x,π)∈G×Ĝ

‖Xβ
x∆αa(x, π)π(I + R)

[α]−m
q ‖B(Hπ) <∞.

Denote the class of symbols of order m by Sm. For a ∈ Sm and α, β ∈ Nn0 set

‖a‖Sm,α,β = sup
(x,π)∈G×Ĝ

‖Xβ
x∆αa(x, π)π(I + R)

[α]−m
q ‖B(Hπ).

The smoothing symbols are S−∞ =
⋂
m∈R S

m.

One can form asymptotic expansions of these symbols in the following sense.

Proposition 9.28 ([FR16, 5.5.1]). Let {aj}j∈N0 be a sequence of symbols aj ∈ Smj
with mj strictly decreasing to −∞ as j → ∞. Then there is a symbol a ∈ Sm0 ,
unique modulo S−∞, such that

a−
M∑
j=0

aj ∈ SmM+1 for all M ∈ N.

In this case, one writes a ∼
∑∞
j=0 aj .

Proposition 9.29 ([FFK17, 5.2.12, 5.2.17]). The symbol classes have the follow-
ing properties:

(i) Sm1 ⊂ Sm2 for m1 < m2.
(ii) Each differential operator

∑
cα(x)Xα with coefficients cα ∈ C∞(G) is

contained in Sm, where m = max{[α] | cα 6= 0}.
(iii) For a ∈ Sm and α, β ∈ Nn0 the symbol Xβ∆αa is contained in Sm−[α].

For a ∈ Sm the following quantization formula is well-defined and yields a
continuous operator Op(a) : S(G)→ S(G) by [FR16, 5.2.15]

Op(a)ϕ(x) =
∫
Ĝ

tr (π(x)a(x, π)ϕ̂(π)) dµ(π) for ϕ ∈ S(G), x ∈ G. (45)

Let κx ∈ S ′(G) be the convolution kernel of the right-invariant operator whose
Fourier transform is {a(x, π) | π ∈ Ĝ}. Then Op(a)ϕ(x) = κx ∗ϕ holds. Denote by
Ka ∈ S ′(G × G) the integral kernel of Op(a). It is formally given by Ka(x, y) =
κx(yx−1).

In the following, we will consider operators with compactly supported integral
kernels. Let Smcp consist of all symbols a ∈ Sm such that Op(a) has a compactly
supported integral kernel. Set S−∞cp =

⋂
m∈R S

m
cp.

The following properties for the symbols with compactly supported integral
kernels follow from the respective properties for the symbol classes Sm shown in
[FR16, 5.5.8, 5.5.12, 5.7.2, 5.4.9, 5.2.21].

Proposition 9.30. The pseudodifferential calculus has the following properties:
(i) Let m1,m2 ∈ R. For A ∈ Op(Sm1

cp ), B ∈ Op(Sm2
cp ) the composition AB

lies in Op(Sm1+m2
cp ).

(ii) Let m ∈ R. For A ∈ Op(Smcp) the formal adjoint A∗ lies in Op(Smcp).
(iii) A ∈ Op(Smcp) extends to a bounded operator L2

s(G)→ L2
s−m(G) for s ∈ R.

(iv) A ∈ Op(S−∞cp ) if and only if its integral kernel lies in C∞c (G×G).
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For the following lemma, see also [FFK17, 4.24].

Lemma 9.31. Let A ∈ Op(Smcp) for m < 0. Then A extends to a compact operator
on L2(G).

Proof. By Proposition 9.30, A extends to a bounded operator A : L2(G) →
L2
−m(G). Let χ ∈ C∞c (G) be constant 1 on the support of A in the x-direction

and be supported in a compact subset K ⊂ G. The map f 7→ χ · f extends to a
bounded operator L2

−m(G)→ H
−m
qn (K) by [FFK17, 2.17], where H

−m
qn (K) denotes

the Euclidean Sobolev space. By Rellich’s Theorem the embedding

H
−m
qn (K) ↪→ L2(Rn) = L2(G)

is compact as −m/qn > 0. Therefore, the composition A : L2(G) → L2(G) is
compact. �

Moreover, in [FFK17] classical pseudodifferential operators, which admit a
homogeneous expansion of their symbol, are defined.

Definition 9.32 ([FFK17, 4.1, 4.20]). Let m ∈ R. A field {a(x, π) : H∞π → Hπ |
x ∈ G, π ∈ Ĝ} is a regular m-homogeneous symbol if

(i) a(x, λ · π) = λma(x, π) for all x ∈ G and almost all π and λ > 0,
(ii) for all α, β ∈ Nn0 , the field of operators Xβ

x∆αa(x, π) is defined on smooth
vectors and satisfies

sup
(x,π)∈G×Ĝ

‖Xβ
x∆αa(x, π)π(R)

[α]−m
q ‖B(Hπ) <∞,

Denote by Ṡm the class of all regular m-homogeneous symbols and by Ṡmc the ones
with compact support in the x-direction.

Example 9.33 ([FFK17, 4.3, 4.4]). For each c ∈ C∞c (G) and multi-index α ∈ Nn0 ,
the symbol c(x)π(X)α belongs to Ṡ[α]

c .

In the Euclidean case, homogeneous symbols are cut off in a neighbourhood of
the zero section to obtain actual elements of the symbol classes. This corresponds
to the following procedure for graded Lie groups.

Proposition 9.34 ([FFK17, 4.6]). Let ψ ∈ C∞([0,∞)) be a cutoff function with
0 ≤ ψ ≤ 1 and ψ|[0,1] ≡ 0 and ψ|[2,∞) ≡ 1. For all m ∈ R there is a linear map
cm : Ṡm → Sm given by a(x, π) 7→ a(x, π)ψ(π(R)).

This allows to define a homogeneous expansion of symbols.

Proposition 9.35 ([FFK17, 4.14]). Let {aj}j∈N0 be a sequence of homogeneous
symbols aj ∈ Ṡmj with mj strictly decreasing to −∞ as j → ∞. Then there is a
symbol a ∈ Sm0 , unique modulo S−∞, such that

∀M ∈ N a(x, π)−
M∑
j=0

aj(x, π)ψ(π(R)) ∈ SmM+1 .

Moreover, if a ∈ Sm for m < m0, it follows that a0 = 0.

In this case, we also write a ∼
∑
aj . There is a well-defined principal symbol

for these operators.

Definition 9.36 ([FFK17, 4.17, 4.20]). Let a ∈ Sm be a symbol that admits a
homogeneous expansion a ∼

∑∞
j=0 aj as above with aj ∈ Ṡm−j . The principal part

of Op(a) is defined as princm(Op(a)) := a0.
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A symbol a ∈ Smcp is a classical pseudodifferential symbol of order m if it admits
a homogeneous expansion a ∼

∑∞
j=0 aj with aj ∈ Ṡm−j . Denote by Smcl the classical

pseudodifferential symbols of order m and by Ψm
cl = Op(Smcl ) the corresponding

operators.

Proposition 9.37 ([FFK17, 4.19]). Let A ∈ Op(Sm) and B ∈ Op(Sl) be operators
whose symbols have a homogeneous expansion as above. Then the symbols of AB
and A∗ admit homogeneous expansions as well. Moreover, the following holds

princm+l(AB) = princm(A) · princl(B).
princm(A∗) = princm(A)∗.

On the right hand side, the pointwise operations are used.

In particular, princ0 is a ∗-homomorphism.

Lemma 9.38. For m ∈ Z, there are short exact sequences

Ψm−1
cl Ψm

cl Ṡmc .
princm (46)

For m = 0, it is a short exact sequence of ∗-algebras.

Proof. Except for surjectivity of the principal symbol map, exactness is clear.
Let a0 ∈ Ṡmc and a(x, π) := a0(x, π)ψ(π(R)) ∈ Sm as in Proposition 9.34. Then
princm(Op(a)) = a0 holds. We need to adjust a in a way such that its integral
kernel Ka is compactly supported. Let R > 0 be such that the support of a in
the x-direction in contained in B(0, R). Pick a c ∈ C∞c (G) which is constant 1 on
B(0, 2γR2). Here, γ is the constant from the homogeneous triangle inequality in
Lemma 3.12. Denote by Mc : L2(G)→ L2(G) the multiplication operator ϕ 7→ c ·ϕ.
It belongs to Ψ0

cl with symbol given by c(x)idHπ . Let Q := Op(a)Mc. Its integral
kernel Ka(x, y)c(y) is compactly supported. Moreover, Q belongs to Ψm

cl and
princm(Q) = princm(Op(a))− princm(Op(a)−Q).

We show that last term is zero. Let κ denote the convolution kernel of Op(a).
The convolution kernel of Op(a) −Q is κx(y)(1 − c(y−1x)). This is only non-zero
if ‖y−1x‖ ≥ 2γR2 and ‖x‖ < R. The homogeneous triangle inequality implies
that ‖y‖ ≥ R. But the κx are smooth outside zero by [FR16, 5.4.1]. Therefore,
Op(a)−Q is a smoothing operator and its principal symbol vanishes. �

We compare the extension in (46) for m = 0 to the short exact sequence of
generalized fixed point algebras. First, we show that the C∗-algebra C∗(Ṡ0

c ) gener-
ated by regular 0-homogeneous symbols defined as in [FFK17] is FixR>0(J0,R0).
Recall that this generalized fixed point algebra is a continuous field of C∗-algebras
over G with fibres FixR>0(JG,RG) by Proposition 7.8.

Definition 9.39. [FFK17, 5.1, 5.5] The ∗-algebra of invariant, 0-homogeneous
symbols S̃0 consists of all {a(π) : H∞π → H∞π | π ∈ Ĝ} that satisfy

(i) a(λ · π) = a(π) for almost all π ∈ Ĝ and λ > 0,
(ii) sup

π∈Ĝ‖∆
αa(π)π(R)

[α]
q ‖B(Hπ) <∞ for all α ∈ Nn0 .

The C∗-algebra of invariant 0-homogeneous symbols C∗(S̃0) is the closure of S̃0

with respect to
‖a‖ = sup

π∈Ĝ/R>0

‖a(π)‖.

Lemma 9.40. The ∗-algebra K0(G) of kernels of type 0 is isomorphic to S̃0 under
Fourier transform. Moreover, FixR>0(JG,RG) is isomorphic to C∗(S̃0).
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Proof. By [FFK17, 5.3] the kernels of type 0 correspond exactly to the in-
variant, 0-homogeneous symbols under Fourier transform. By uniqueness of the
C∗-completion, C∗(S̃0) is isomorphic to the C∗-algebra generated by kernels of
type 0. This is FixR>0(JG,RG) by Corollary 8.20. �

Identifying the space of 0-homogeneous symbols with compact support in the
x-direction Ṡ0

c with C∞c (G, S̃0) as in the proof of [FFK17, 5.9], yields the following
result.

Corollary 9.41. The ∗-algebra of 0-homogeneous symbols Ṡ0
c is isomorphic under

inverse Fourier transform to a dense ∗-subalgebra of FixR>0(J0,R0).

To compare the sequence of generalized fixed point algebras to the order zero
pseudodifferential extension from (46), we show that operators in p̃1(FixR>0(J,R))
can be written as in (45) in terms of a symbol. By Lemma 7.10 and Lemma 9.14,
for f ∈ R with f0 ∈ S0(THG) the operators Ti(f) given by

Ti(f)ϕ(x) =
∫ ∞

0
χi(λ)λ−Q

∫
f(x, y, λ)ϕ(y) dν(y) dλ

λ for ϕ ∈ L2(G), x ∈ G,

converge strictly to an element T (f) ∈ p̃1(FixR>0(J,R)).
We start by considering a slightly different generalized fixed point algebra.

The reason for this is that one has to understand the convolution kernels κx as
a family of right-invariant operators in order to take their Fourier transform. Let
B := C∗(THG)⊗ C0([0,∞)) with R>0-action given by

βλ(h)(x, v, t) = λQh(x, λ · v, λ−1t) for λ > 0 and h ∈ Cc(THG× [0,∞)).
For t ≥ 0 let evt : B → C∗(THG) be the homomorphism induced by the restriction.
Define an R>0-invariant ideal JB with a dense subset R ⊂ JB by

JB =
⋂
x∈G

ker(πtriv ◦ qx ◦ ev0),

RB =
{
h ∈ C∞c ([0,∞),Scp(THG))

∣∣∣∣ ∫
G

h(x, v, 0) dv = 0 for all x ∈ G
}
.

Similar arguments as in Lemma 7.5 and Theorem 7.6 show:

Lemma 9.42. The ∗-subalgebra RB ⊂ JB is square-integrable for the action β of
R>0. Furthermore, (JB ,RB) is a continuously square-integrable R>0-C∗-algebra.

Hence, FixR>0(JB ,RB) is defined. The evaluations at t = 1 and x ∈ G com-
posed with the left regular representation C∗(G)→ B(L2G), yield strictly continu-
ous representations

λ̃x : FixR>0(JB ,RB)→ VNL(G).

Lemma 9.43. For h ∈ RB with h0 ∈ S0(THG)∫ ∞
0

χi(λ)βλ(h) dλ
λ

converges strictly to an element of FixR>0(JB ,RB). Its image under λ̃x is given by

λ̃x(h)ϕ = lim
i

(∫ ∞
0

χi(λ)λ−Qh(x, λ−1( · ), λ) dλ
λ ∗ ϕ

)
for ϕ ∈ L2(G).

Proof. The first claim is proved as in Lemma 9.14. This uses that there is an
isomorphism

Ψ: ker(ev0)→ C0(R>0)⊗ C∗(THG)
which is induced by Ψ(h)(t) = t−Qevt(h). The action β corresponds to τ ⊗ 1 under
the isomorphism. Here, τ is induced by the action of R>0 on itself by scaling.
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The second claim follows from strict continuity of λ̃x and the computation
evt ◦ βλ(h) = λQevλ−1t(h) for λ, t > 0. �

Corollary 9.44. For f ∈ R with f0 ∈ S0(THG), there is a symbol {af (x, π) ∈
B(Hπ) | x ∈ G, π ∈ Ĝ} such that T (f) = Op(af ).

Proof. We show that one can write T (f)ϕ(x) = κx ∗ϕ for a smooth family of
kernels κx ∈ S ′(G) such that ϕ 7→ κx ∗ ϕ extends to a bounded operator on L2(G)
for all x ∈ G. This implies that one can apply Fourier transform to κx and one
obtains a symbol as above with af (x, π) = κ̂x(π).

Let g := f ◦ φ−1 where φ is the global chart from Example 5.4. Then for each
i ∈ I, one can write Ti(f)ϕ(x) = κi,x ∗ ϕ with

κi,x(v) =
∫ ∞

0
χi(λ)λ−Qg(x, λ−1 · v, λ) dλ

λ .

We claim that the κi,x converge to distributions κx ∈ S ′(G) whose convolution
operators are bounded. Note that g can be understood as an element of RB with
g0 ∈ S0(THG). It follows from Lemma 9.43 that κi,x converges in S ′(G) to the
convolution kernel of λ̃x(g). In particular, af (x, π) is the strict limit of∫ ∞

0
χi(λ)ĝ(x, λ · π, λ) dλ

λ

as multipliers of K(Hπ). �

Let a0 ∈ Ṡ0
c . It was discussed in Proposition 9.34 that a0ψ(π(R)) is in S0.

Lemma 9.43 yields a different way to attach a symbol to a0. By Corollary 9.41,
there is a h0 ∈ S0(THG) such that a0 is the Fourier transform of∫ ∞

0
σλ(h0) dλ

λ ∈ K
0(THG).

Let ω ∈ C∞c ([0,∞)) be a function with ω|[0,1] ≡ 1 and ω|[2,∞) ≡ 0. Define
h ∈ RB by h(x, v, t) := ω(t)h0(x, v). By Lemma 9.43 this yields a symbol ah ∈
C0(G,L∞(Ĝ)). We compare now the symbols a0ψ(π(R)) and ah. As a preparation,
the following lemma is proved.

Lemma 9.45. Let h0 ∈ S0(THG) and let ω ∈ C∞c ([0,∞)) be a function with
ω|[0,1] ≡ 1 and ω|[2,∞) ≡ 0. Define h ∈ RB by h(x, v, t) := ω(t)h0(x, v). Let
ah(x, π) be the Fourier transform of λ̃x(h) and a0(x, π) the Fourier transform of∫ ∞

0
σλ(h0) dλ

λ .

Then for all m > 0, there exists a constant Cm > 0 with

‖(a0(x, π)− ah(x, π))ψ(π(R))(1 + π(R))
m
q ‖ ≤ Cm‖ĥ0‖S−m,0,0

for all x ∈ G and almost all π ∈ Ĝ.

Proof. The symbols can be written as strict limits

a0(x, π) = lim
s

∫ ∞
0

χi(λ)ĥ0(x, λ · π) dλ
λ ,

ah(x, π) = lim
s

∫ ∞
0

χi(λ)ω(λ)ĥ0(x, λ · π) dλ
λ ,

as multipliers of K(Hπ) for almost all π ∈ Ĝ. This implies that

bi(x, π) :=
∫ ∞

0
χi(λ−1)(1− ω(λ))ĥ0(x, λ · π) dλ

λ ψ(π(R))(1 + π(R))
m
q
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converges strongly to b(x, π) := (a0(x, π)− ah(x, π))ψ(π(R))(1 + π(R))
m
q on H∞π .

We show that bi(x, π) is a Cauchy sequence. As H∞π is dense, this will imply that
bi(x, π) converges to b(x, π) in norm. For j > i we estimate
‖bj(x, π)− bi(x, π)‖

=
∥∥∥∫ ∞

0
(χj(λ)− χi(λ))(1− ω(λ))ĥ0(x, λ.π)ψ(π(R))(1 + π(R))

m
q dλ

λ

∥∥∥
≤ sup

t≥1

(
1 + t

t

)m
q
∫ ∞

0
(χj(λ)− χi(λ))(1− ω(λ)) sup

(x,π)

∥∥∥ĥ0(x, λ · π)π(R)
m
q

∥∥∥ dλ
λ

.
∫ ∞

0
(1− χi(λ)) 1− ω(λ)

λm
sup
(x,π)

∥∥∥ĥ0(x, λ · π)(λ · π)(R)
m
q

∥∥∥ dλ
λ

. sup
t≥0

(
t

1 + t

)m
q
∫ ∞

0
(1− χi(λ))1− ω(λ)

λm
sup
(x,π)

∥∥∥ĥ0(x, λ · π)(1 + (λ · π)(R))
m
q

∥∥∥ dλ
λ

.
∥∥ĥ0
∥∥
S−m,0,0

∫ ∞
0

(1− χi(λ))1− ω(λ)
λm+1 dλ.

The integral converges to 0 as the dominated convergence theorem can be applied
due to the assumptions on ω. Note that ĥ0(x, π) is a smoothing symbol by [FR16,
5.2.21], so that ‖c‖S−m,0,0 < ∞ for all m > 0. Using the same estimates there
is a constant Cm > 0 such that ‖bi(x, π)‖ ≤ Cm‖ĥ0‖S−m,0,0 for all i ∈ I and
(x, π) ∈ G× Ĝ. As b(x, π) is the norm limit of this net, the claim follows. �

Remark 9.46. The same result holds when ψ(π(R))(1 + π(R))
m
q is replaced

by π(R)
m
q .

Lemma 9.47. Let h0 ∈ S0(THG), h ∈ RB, a0 and ah be as in Lemma 9.45. Then
a0ψ(π(R))− ah ∈ S−∞ holds.

Proof. Write a0ψ(π(R))− a = (a0 − a)ψ(π(R))− a(1− ψ)(π(R)). We claim
that both summands are smoothing symbols. Recall that a symbol b is smoothing
if for all m > 0 and α, β ∈ Nn0

sup
(x,π)

∥∥∥Xβ
x∆α{b(x, π)}(1 + π(R))

[α]+m
q

∥∥∥ <∞.
For (a0 − a)ψ(π(R)) consider first the case α = 0. Then the result follows by
applying Lemma 9.45 to Xβ

xh0 ∈ S0(THG). For arbitrary α ∈ Nn0 , the Leibniz rule
for difference operators [FFK17, (3.1)] yields

∆α{(a0 − a)(x, π)ψ(π(R))} =
∑

[α1]+[α2]=[α]

[∆α1(a0 − a)(x, π)] [∆α2ψ(π(R))].

For α2 6= 0, it is shown in [FFK17, 4.8] that

sup
π

∥∥∥π(R)
−m−[α1]

q ∆α2ψ(π(R))(1 + π(R))
m+[α]
q

∥∥∥ <∞.
Applying Remark 9.46 and Lemma 9.45 to Xβ

x v
α1h0 yields

sup
(x,π)

∥∥∥Xβ∆α1(a0 − a)(x, π)π(R)
m+[α1]

q

∥∥∥ <∞.
For α2 = 0, Lemma 9.45 is applied to Xβ

x v
αh0 ∈ S0(THG).

Consider now the symbol a(1−ψ)(π(R)). As (1−ψ) is supported in [0, 2] and
(1 + t)

[α]+m
q is bounded on this subset, it suffices to show for all α, β ∈ Nn0 that

sup
(x,π)

∥∥∥Xβ
x∆αa(x, π)

∥∥∥ <∞.
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For α = 0, this follows from Corollary 9.44 applied to Xβ
xh. For α 6= 0, the net∫ ∞

0
χi(λ)ω(λ)λ[α] ̂(Xβ

x vαh0)(x, λ · π) dλ
λ

is Cauchy in C0(G,L∞(Ĝ)). This follows from ω(λ)λ[α] ≤ ω(λ)2[α] and Corol-
lary 9.44 applied to Xβ

x v
αh0. Then Xβ

x∆α is the limit of this net as the respective
convolution kernels converge in S ′(G). �

Theorem 9.48. Let G be a graded Lie group. The order zero pseudodifferential
extension from Lemma 9.38 embeds into the generalized fixed point algebra extension
for G such that the following diagram commutes

Ψ−1
cl Ψ0

cl Ṡ0
c

K(L2G) FixR>0(J,R) FixR>0(J0,R0).

princ0

p̃0

(47)

Proof. Every operator in Ψ−1
cl extends to a compact operator on L2(G) by

Lemma 9.31. Let A be a classical pseudodifferential operator of order zero with
principal symbol a0 ∈ Ṡ0

c . Let Q ∈ Ψ0
cl be the element constructed in the proof

of Lemma 9.38 with princ0(Q) = a0. Recall that Q = Op(a0(x, π)ψ(π(R)))Mc

for a certain c ∈ C∞c (G). In the following we show that there is an element T ∈
p̃1(FixR>0(J,R)) with p̃0(T ) = a0 and Q − T ∈ K(L2G). Once is this established,
writing

A = A−Q+Q− T + T

shows that A lies in p̃1(FixR>0(J,R)) as A − Q has order −1 since its principal
symbol vanishes. In particular, A − Q is compact by Lemma 9.31. The above
decomposition also shows that

p̃0(A) = p̃0(T ) = a0 = princ0(A)
so that the diagram in (47) commutes. To construct T , let h0 ∈ S0(THG) be such
that a0 is the Fourier transform of∫ ∞

0
σλ(h0) dλ

λ .

Let h ∈ RB and ah be as in Lemma 9.45 and g(x, v, t) := h(x, v, t)c(t · v). Then
f := g◦φ−1 belongs to R, where φ is the global coordinate chart from Example 5.4.
It satisfies f(x, y, t) = (h ◦ φ)(x, y, t)c(y) for t > 0. Corollary 9.44 implies that

Q− T (f) = Op(a0ψ(π(R))− ah)Mc.

This is a compact operator as its convolution kernel is smooth by Lemma 9.47 and
compactly supported. �

Denote by C∗(Ψ0
cl) the closure of the ∗-algebra Ψ0

cl in B(L2G). The same
arguments as in the proof of Corollary 9.17 give the following result.

Corollary 9.49. The C∗-algebra C∗(Ψ0
cl) generated by classical order zero pseudo-

differential operators on a graded Lie group G is isomorphic to FixR>0(J,R). There
is an extension of C∗-algebras

K(L2G) C∗(Ψ0
cl) C∗(Ṡ0

c ),SH

such that SH extends the principal symbol map princ0 : Ψ0
cl → Ṡ0

c .



CHAPTER 10

Saturatedness and Morita equivalence

In this section, we will show that (J,R) and (J0,R0) are saturated for the zoom
action of R>0. Therefore, for each filtered manifold (M,H) the C∗-algebras of order
zero pseudodifferential operators FixR>0(J,R) and principal cosymbols Fix(J0,R0)
are Morita–Rieffel equivalent to C∗r (R>0,J) and C∗r (R>0,J0), respectively. For the
Euclidean scalings this is a result of [DS14].

10.1. Graded Lie groups

First, consider a homogeneous Lie group G. Recall the sequence of open, dila-
tion invariant subsets of Ĝ\{πtriv} found in (12):

∅ = V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vm = Ĝ\{πtriv},

where Λi = Vi \ Vi−1 are Hausdorff for all i = 1, . . . ,m. Moreover, the induced
R>0-action on each Λi is free and proper by Proposition 3.35. There is a corre-
sponding increasing sequence of closed, dilation invariant ideals in C∗(G)

0 = J0 / J1 / J2 / . . . / Jm = JG (48)
which is given by

Ji = {f ∈ C∗(G) | π̂(f) = 0 for π ∈ Ĝ \ Vi}.
In this section, it will be shown that the subquotients Ji/Ji−1 of the filtration in (48)
define continuous fields of C∗-algebras over Λi, respectively. This will allow us to
prove, using Corollary 2.22, that the generalized fixed point algebra of the dilation
action on JG is Morita–Rieffel equivalent to the crossed product C∗r (R>0, JG).

In [BBL16] Pedersen’s fine stratification [Ped89] is used to obtain a similar
sequence of increasing ideals, where the respective subquotients are even isomor-
phic to trivial fields C0(Λ̃i,K(Hi)) for some finite- or infinite-dimensional Hilbert
spaces Hi. For our purposes the coarse stratification suffices.

Proposition 10.1. Each subquotient Ji/Ji−1 for i = 1, . . . ,m is isomorphic to a
continuous field of C∗-algebras over Λi with a unique dense, relatively continuous
and complete subset Ri for the induced R>0-action. Furthermore, (Ji/Ji−1,Ri) is
saturated.

Proof. The subquotient Ji/Ji−1 has Hausdorff spectrum as
̂Ji/Ji−1 ∼= Ĵi \ Ĵi−1 ∼= Vi \ Vi−1 = Λi.

Therefore, Ji/Ji−1 is isomorphic to a continuous field of C∗-algebras over Λi, see
[Nil96, 3.3]. The isomorphism takes [f ] ∈ Ji/Ji−1 to the section f̂ defined by

f̂(π) = π̂(f) =
∫
G

f(x)π(x) dx ∈ B(Hπ) for π ∈ Λi.

The dilation action on Ji/Ji−1 satisfies σ̂λ(f)(π) = f̂(λ−1 · π) for all λ > 0. De-
note by αλ(f̂) the section given by αλ(f̂)(π) = f̂(λ−1 · π). Let θi : C0(Λi) ↪→

81
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ZM(Ji/Ji−1) denote the non-degenerate homomorphism which is given by point-
wise multiplication when Ji/Ji−1 is viewed as a continuous field. It satisfies the
compatibility condition

αλ(θi(φ)f̂) = θi(τλφ)αλ(f̂) for φ ∈ C0(Λi) and [f ] ∈ Ji/Ji−1,

where τ denotes the R>0-action on C0(Λi) given by τλ(φ)(π) = φ(λ−1·π). Therefore,
Ji/Ji−1 is an R>0-C0(Λi)-algebra. The dilation action on Λi is free and proper by
Proposition 3.35. By Proposition 2.28 Ji/Ji−1 is saturated with respect to the
subset

Ri := θi(Cc(Λi))(Ji/Ji−1).
It is the unique dense, complete, relatively continuous subset by Theorem 2.10 as
Ji/Ji−1 is spectrally proper. �

Using Corollary 2.22 and an inductive argument for the sequence in (48), we
obtain as a consequence:

Corollary 10.2. For a homogeneous Lie group G the R>0-C∗-algebra (JG,RG)
is saturated for the dilation action of R>0. The generalized fixed point algebra
FixR>0(JG,RG) is Morita–Rieffel equivalent to C∗r (R>0, JG).

Recall that it was shown in Corollary 8.20 that for a graded Lie group G,
FixR>0(JG,RG) is the C∗-algebra generated by kernels of type 0. As an application
of the above results, we give a different proof of the description of its spectrum
obtained in [FFK17, 5.5].

Proposition 10.3. Let G be a homogeneous Lie group. Then FixR>0(JG,RG) is
of type I. Furthermore, there is a homeomorphism(

Ĝ\{πtriv}
)
/R>0 → ̂FixR>0(JG,RG)

induced by π 7→ (π̂)∼ for π ∈ Ĝ\{πtriv}.

Proof. The ideals in (48) yield short exact sequences of generalized fixed point
algebras for i = 1, . . . ,m by Proposition 2.24:

FixR>0(Ji−1,RG ∩ Ji−1) FixR>0(Ji,RG ∩ Ji) FixR>0(Ji/Ji−1,Ri).
q̃

Each quotient Ji/Ji−1 is an R>0-C0(Λi)-algebra with a free and proper R>0-action
on Λi by Proposition 10.1. Therefore, the spectrum of FixR>0(Ji/Ji−1,Ri) is
Λi/R>0 by Proposition 2.28. In particular, the spectrum is Hausdorff and, thus, T0.
As FixR>0(Ji/Ji−1,Ri) is separable, this implies that it is of type I by [Dix77, 3.1.6,
9.1]. If an ideal I of a C∗-algebra A and the quotient A/I are of type I, it follows
that A is of type I. Thus, one can use an inductive argument for the sequences
above to show that FixR>0(JG,RG) is of type I.

We proceed by showing the second claim. The spectrum of JG is given by
ĴG = Ĝ\{πtriv} = Λ1 ∪ . . . ∪ Λm.

By Proposition 3.35, R>0 acts freely on Λi for all i = 1, . . . ,m. Hence, the action
of R>0 on the spectrum of JG is free. As JG and FixR>0(JG,RG) are of type I
and separable, their spectra can be identified with their primitive ideal spaces. We
show that there is a homeomorphism

ψ : Prim(JG)/R>0 → Prim(FixR>0(JG,RG))

with ψ([ker(π)]) = ker(π̃) for π ∈ ĴG. By [KM20, 6.3, 6.4] there is a continuous,
open and surjective quasi-orbit map

ρ : Prim(C∗r (R>0, JG))→ Prim(JG)/R>0.
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As the action of the amenable group R>0 on Prim(JG) is free, the quasi-orbit map
is also injective by [GR79, 3.3]. Hence, it is a homeomorphism. In particular, JG
separates ideals in C∗r (R>0, JG). We describe now the inverse of ρ. First, there is
a homeomorphism φ : Prim(JG)/R>0 → Prime(IR>0(JG)) by [KM20, 6.3], which
is induced by mapping a primitive ideal P of JG to the largest R>0-invariant ideal
contained in P :

P 7→
⋂

λ∈R>0

λ · P.

It follows from [KM20, 2.11, 6.1, 6.3] that ρ−1 = i ◦ φ with
i : Prime(IR>0(JG))→ Prim(C∗r (R>0, JG)),

Q 7→ C∗r (R>0, Q).

By Corollary 10.2, C∗r (R>0, JG) is Morita–Rieffel equivalent to FixR>0(JG,RG).
Therefore, the Rieffel correspondence gives a homeomorphism

r : Prim(C∗r (R>0, JG))→ Prim(FixR>0(JG,RG)).
Together, we obtain a homeomorphism

ψ := r ◦ ρ−1 : Prim(JG)/R>0 → Prim(FixR>0(JG,RG)).

It is left to show that ψ([ker(π)]) = ker(π̃) for π ∈ ĴG. Let Q = φ([ker(π)]). Using
that the action on JG is saturated, Lemma 2.21 implies
ρ−1([ker(π)]) = C∗r (R>0, Q) = C∗r (R>0, Q) ∩ C∗r (R>0, JG) = JR>0(Q,RG ∩Q).

This ideal is mapped to FixR>0(Q,RG ∩Q) under the Rieffel correspondence.
We show that FixR>0(Q,RG ∩ Q) = ker(π̃). Let a, b ∈ RG ∩ Q. Then

π(a) = π(b) = 0 and, consequently, π̃(|a〉〉〈〈b|) = |π(a)〉〉〈〈π(b)| = 0. It follows
that FixR>0(Q,RG ∩Q) ⊆ ker(π̃).

Now let T ∈ ker(π̃). As elements of the generalized fixed point algebra are
invariant under the R>0-action, (λ · π)∼ (T ) = π̃(T ) = 0 holds for all λ > 0.
We use a similar argument as in the proof of Proposition 2.24 and show that
T ∗T ∈ FixR>0(Q,RG ∩Q). For each a ∈ RG, we obtain

(λ · π)(T ∗a) = (λ · π)∼ (T ∗)(λ · π)(a) = 0 for all λ > 0.
It follows that T ∗a ∈ RG∩Q. Now the same argument as in Proposition 2.24 shows
that T ∈ FixR>0(Q,RG ∩Q). �

10.2. Filtered manifolds

We deduce saturatedness for the respective ideals in the C∗-algebras of the
osculating groupoid and the tangent groupoid.

Proposition 10.4. Let (M,H) be a filtered manifold. The C∗-algebra of order 0
principal cosymbols FixR>0(J0,R0) is Morita–Rieffel equivalent to C∗r (R>0,J0).
The C∗-algebra of order 0 pseudodifferential operators FixR>0(J,R) is Morita–
Rieffel equivalent to C∗r (R>0,J).

Proof. As all (Jx,Rx) are saturated by Corollary 10.2, (J0,R0) is saturated
by Corollary 2.33. Therefore, the generalized fixed point algebra construction gives
the Morita–Rieffel equivalence between FixR>0(J0,R0) and C∗r (R>0,J0).

The second claim follows from Corollary 2.22 applied to the sequence in (31)
if saturatedness for the ideal C0(R>0) ⊗ K(L2M) is shown. By Lemma 6.17 the
R>0-action is given by τ ⊗ 1, where τ is induced by the action of R>0 on itself
by multiplication. Then R ∩ (C0(R>0) ⊗ K(L2M)) is the unique dense, relatively
continuous and complete subspace and τ is free and proper. Therefore, the action



84 10. SATURATEDNESS AND MORITA EQUIVALENCE

is saturated by Proposition 2.28. The Morita–Rieffel equivalence follows again from
the generalized fixed point algebra construction. �



CHAPTER 11

K-Theory and index theory

Let M be a compact, smooth manifold and let E,F be smooth vector bundles
over M . The Atiyah–Singer Index Theorem [AS68] states that the analytical and
topological index of an elliptic (pseudo)differential operator P : Γ∞(E) → Γ∞(F )
coincide. The analytical index is the Fredholm index of P when considered as a
bounded operator between suitable Sobolev spaces.

Definition 11.1. A bounded operator P : H1 → H2 between two Hilbert spaces
H1,H2 is Fredholm if its kernel and cokernel are finite-dimensional. In this case,
its Fredholm index is defined as

ind(P ) = dim(kerP )− dim(cokerP ) ∈ Z.

The properties of the classical pseudodifferential calculus on a compact man-
ifold imply that elliptic operators are Fredholm. However, there are differential
operators that are not elliptic but still admit a Fredholm index, see [BvE14, 2.3].
As a first step towards index theory, it is helpful to find a pseudodifferential calculus
in which the considered operator is “elliptic” in a suitable sense.

Van Erp and Baum studied index theory for contact manifolds in [vE10a,
vE10b,BvE14]. They solved the index problem for (pseudo)differential operators
that are Heisenberg-elliptic. In [Moh20], Mohsen proved an index theorem for
filtered manifolds.

In this section, we describe some consequences of the generalized fixed point
algebra construction regarding K-theory and index theory. Let (M,H) be a filtered
manifold. If M is compact, the C∗-algebra FixR>0(J0,R0) is unital by Lemma 8.12.
We treat the generalized fixed point algebra extension

K(L2M) FixR>0(J,R) FixR>0(J0,R0)

B(L2M)

p̃1

p̃0

(49)

from (37) as an abstract pseudodifferential extension.

Definition 11.2. An operator P ∈ FixR>0(J,R) is C∗-H-elliptic if its principal
symbol p̃0(P ) is invertible.

Since the sequence above is exact, P is C∗-H-elliptic if and only if there is
a Q ∈ FixR>0(J,R) such that 1 − PQ, 1 − QP ∈ K(L2M). In particular, P is
Fredholm in this case by Atkinson’s Theorem [Atk51]. As p̃0(P ) is invertible, it
defines a class in K1(FixR>0(J0,R0)). The same arguments as in the unfiltered case
yield the following lemma.

Lemma 11.3. The short exact sequence in (49) induces a 6-term exact sequence
in K-theory. Let

∂ : K1

(
FixR>0(J0,R0)

)
→ K0(K(L2M))

85
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denote the corresponding index map. For a C∗-H-elliptic P ∈ FixR>0(J,R) the
Fredholm index of P is given by ∂([p̃0(P )] under the identification K0(K) ∼= Z.

In particular, the Fredholm index just depends on the K-theory class of the
principal symbol.

11.1. H-Ellipticity and the Rockland condition

The goal of this section is to understand C∗-H-ellipticity better. Moreover,
C∗-H-ellipticity is compared to H-ellipticity, which was defined by van Erp and
Yuncken. We also discuss the relation to the Rockland condition.

Definition 11.4 ([vEY17, 54]). An operator P ∈ Ψm
H(M) on a compact fil-

tered manifold (M,H) is H-elliptic if its principal cosymbol smH(P ) is invertible
in E ′r(THM)/C∞c (THM).

If P ∈ Ψm
H(M) is H-elliptic, it admits a two-sided parametrix Q ∈ Ψ−mH (M),

that is, PQ − 1, QP − 1 ∈ C∞c (M ×M), see [vEY17, 60]. If P is an H-elliptic
differential operator, this implies that P is hypoelliptic [vEY17, 61].

For m = 0, P is H-elliptic if and only if s0
H(P ) is invertible in Σ0

H(M). This
follows from [vEY17, 55].

The C∗-algebra of principal cosymbols FixR>0(J0,R0) is a continuous field of
C∗-algebras over M with fibres FixR>0(Jx,Rx) by Proposition 7.8.

Lemma 11.5. Let A be a unital C∗-algebra. Suppose A is a continuous field of
C∗-algebras over a compact Hausdorff space X with fibre projections qx : A → Ax.
Then a ∈ A is invertible if and only if ax := qx(a) is invertible for all x ∈ X.

Proof. Clearly, invertibility of a implies that qx(a) is invertible for all x ∈M .
Conversely, suppose that qx(a) is invertible at every point x ∈ M . Fix x ∈ X and
let bx ∈ Ax be an inverse of ax. As qx is surjective, there is a b ∈ A with qx(b) = bx.
Let c := 1 − ab. Because qx(c) = 0, one can find an open neighbourhood Ux of x
such that ‖qy(c)‖ ≤ 1/2 for all y ∈ Ux by continuity. By the von Neumann series
ab is locally invertible on Ux. Therefore, b(ab)−1 is right inverse to a on Ux. Using
a continuous partition of unity which is subordinate to the open cover Ux of X, one
can glue together the local inverses to a global right inverse of a. Similarly, one can
construct a left inverse of a. It follows that a is invertible. �

Therefore, C∗-H-ellipticity is a pointwise condition.

Corollary 11.6. Let (M,H) be a compact filtered manifold. A principal cosymbol
u ∈ FixR>0(J0,R0) is C∗-H-elliptic if and only if ux ∈ FixR>0(Jx,Rx) is invertible
for all x ∈M .

Consider now the Rockland condition as described in [Pon08, Sec. 3.3.2] and
[DH17, Sec. 3.4]. It generalizes the Rockland condition for differential operators
in Definition 9.21. Let G be a graded Lie group of homogeneous dimension Q and
m ∈ Z. Let u ∈ E ′(G)/C∞c (G) be m-homogeneous. It was shown in [DH17, 3.8]
that the class u ∈ E ′(G)/C∞c (G) can be uniquely represented by a kernel a of
type −m if −m−Q /∈ N0. For m = 0 this is Lemma 9.11. If −m−Q ∈ N0, it can be
represented by a = k+ p log(‖x‖) with k ∈ K−m(G) and a (−m−Q)-homogeneous
polynomial p. This representation is not necessarily unique. However, the map
S0(G) → S0(G) given by f 7→ a ∗ f does not depend on the chosen representative
a of u (see [DH17, Sec. 3.4]). Here, S0(G) is as in Definition 8.7.

For a unitary, irreducible representation π : G→ U(Hπ), let H0
π be spanned by

π̂(f)v for f ∈ S0(G) and v ∈ Hπ. The operator π(u) defined on H0
π by

π(u)(π̂(f)v) := π̂(a ∗ f)v for f ∈ S0(G), v ∈ Hπ,
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is closable. Denote its closure by π(u).
Definition 11.7. Let G be a graded Lie group and let u ∈ E ′(G)/C∞c (G) be
homogeneous. Then u satisfies the Rockland condition if π(u) is injective on H∞π
for all π ∈ Ĝ\{πtriv}. Here, H∞π denotes the space of smooth vectors.
Example 11.8. Recall that for a usual compact manifold of dimension n the
osculating groups are isomorphic to Rn. Let P be a pseudodifferential operator
on M with model operators Σ(P )x for x ∈M . Then Σ(P )x satisfies the Rockland
condition if and only if Σ̂(P )x(ξ) 6= 0 for all ξ 6= 0. Therefore, P is elliptic if and
only if Σ(P )x satisfies the Rockland condition for all x ∈M .

For a homogeneous Lie group G, FixR>0(JG,RG) is the C∗-algebra of kernels of
type 0 by Corollary 8.20. The spectrum of FixR>0(JG,RG) is (Ĝ\{πtriv})/R>0 by
Proposition 10.3. This allows to describe invertibility in FixR>0(JG,RG) in terms
of the representations of G.
Definition 11.9. An element u ∈ FixR>0(JG,RG) satisfies the C∗-Rockland con-
dition if π̃(u) is invertible for all π ∈ Ĝ\{πtriv}.

Proposition 11.10. Let u ∈ FixR>0(JG,RG). Then u is invertible if and only if
u satisfies the C∗-Rockland condition.

Proof. Suppose u ∈ FixR>0(JG,RG) is invertible. As π̃ for π 6= πtriv is an
irreducible representation of the unital C∗-algebra FixR>0(JG,RG), it follows that
π̃(u) is invertible.

Now assume that u satisfies the C∗-Rockland condition. As FixR>0(JG,RG) is
a C∗-subalgebra of the group von Neumann algebra of G, it suffices to show invert-
ibility in this larger C∗-algebra. The group von Neumann algebra is isomorphic to
L∞(Ĝ,B(Hπ)) via Fourier transform. As u is invariant under R>0 and {πtriv} is a
null set, we show that the essential infimum of the function

(Ĝ\{πtriv})/R>0 → [0,∞] π 7→ ‖π̃(u)‖,

is strictly greater than zero. The domain is the spectrum of FixR>0(JG,RG), thus
the function is lower semi-continuous, see [RW98, A.30]. As (Ĝ\{πtriv})/R>0 is
compact as the spectrum of a unital C∗-algebra, the function attains its minimum.
It must be strictly greater than zero since u satisfies the C∗-Rockland condition. �

Now, one deduces that P ∈ Ψ0
H(M) is C∗-H-elliptic if and only if it isH-elliptic.

Proposition 11.11. Let (M,H) be a compact filtered manifold. For P ∈ Ψ0
H(M)

the following are equivalent:
(i) P is C∗-H-elliptic,
(ii) s0

H(P )x satisfies the C∗-Rockland condition for all x ∈M ,
(iii) s0

H(P )x and s0
H(P )∗x satisfy the Rockland condition for all x ∈M ,

(iv) P is H-elliptic.

Proof. The equivalence of (i) and (ii) follows from Corollary 11.6 and Propo-
sition 11.10. By the results of G lowacki in [G lo91, 4.3 and 4.9], (ii) and (iii) are
equivalent for all x ∈ M . The arguments in [DH17, 3.11, 3.12], which follow
[CGGP92] and [Pon08], show that (iii) and (iv) are equivalent. �

Remark 11.12. The Rockland condition is also defined for operators acting be-
tween vector bundles E,F over M (see [Pon08, Sec. 3.3.2] or [DH17, Sec. 3.4]).
In this case, the model operators map S0(G(x), Ex)→ S0(G(x), Fx). It is shown in
[DH17, 3.11, 3.12] that H-ellipticity is again equivalent to satisfying the Rockland
condition at all points.
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11.2. Deformation to the step 1 case

For a filtered manifold (M,H), consider the restriction of the short exact se-
quence in (24) to [0, 1]

C0((0, 1])⊗ K(L2M) C∗(THM |[0,1]) C∗(THM).evH0

The C∗-algebra on the left is contractible and C∗(THM) is nuclear as a bundle of
nilpotent Lie groups. Therefore, the class [evH0 ] ∈ KK(C∗(THM |[0,1]),C∗(THM))
is invertible. As described in [DL10] one can define a deformation element

[evH0 ]−1 ⊗ [evH1 ] ∈ KK(C∗(THM),K)

associated to the short exact sequence above. Likewise, there is a deformation
element [ev0]−1⊗ [ev1] ∈ KK(C0(T ∗M),K) for the short exact sequence of Connes’
tangent groupoid

C0((0, 1])⊗ K(L2M) C∗(TM |[0,1]) C0(T ∗M).ev0

Connes showed that this class is the analytical index (see [Con94]).
Using the adiabatic groupoid of THM one can relate these deformation classes

in KK(C∗(THM),K) and KK(C0(T ∗M),K). This construction was carried out in
[vE10a] for contact manifolds, see also [Moh18,Moh20] for the filtered manifold
case. In the following, we recall the argument.

The Lie algebroid tHM of THM is described in [vEY17]. Denote by ρ : tHM →
T (M × [0, 1]) its anchor map and let

[ · , · ] : Γ∞(tHM)× Γ∞(tHM)→ Γ∞(tHM)

be the bracket. Let THMa be the adiabatic groupoid of THM . It is easier to
describe it in terms of its Lie algebroid (see [DS14, 2.1]). It is the vector bundle
tHM × R over M × R× R with anchor

ρa : tHM × R→ T (M × R)× TR
ρa(x, t, U, s) = (ρ(x, t, sU), s, 0)

for x ∈M , t, s ∈ R and U ∈ tHM(x,t). The bracket is defined by

[X,Y ]a(x, t, s) = s[X,Y ](x, t) for X,Y ∈ Γ∞(tHM × R).

The resulting Lie groupoid can be viewed as a continuous field of groupoids over
each copy of R and over R2. The fibre over s = 1 is the tangent groupoid THM of
the filtered manifold.

For s = 0, the anchor and bracket are zero. One obtains a bundle of Abelian
groups. It is isomorphic to TM × [0, 1] via a splitting as defined in [vEY17, 9]. A
splitting is a vector bundle isomorphism tHM → TM , which restricts on Hj/Hj−1

to a right inverse of Hj → Hj/Hj−1 for j = 1, . . . , r.
For t = 0 the anchor is zero. Therefore, all fibres over (0, s) for s ∈ R are

bundles of nilpotent groups. The bundle of osculating groups THM at s = 1 is
deformed into a bundle of Abelian groups at s = 0. The latter can be identified
with TM using the splitting above. Denote the subgroupoid at t = 0 by G.

Note that the fibre at (1, 1) is the pair groupoid of M . Its adiabatic groupoid
is Connes’ tangent groupoid TM . It is the fibre at t = 1 of THMa.

Therefore, all edges of [0, 1]2 can be understood as deformation groupoids and
one can associate corresponding deformation classes in the respective KK-groups.
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Denote the restriction to the edges by rt=1, rt=0, rs=1, rs=0. The following
diagram commutes

THMa TM

THM M ×M.

rs=1

rt=1

ev1

evH1

Therefore, the following KK-classes coincide:

[rt=1]⊗ [ev1] = [rs=1]⊗ [evH1 ]. (50)

Denote by b0 and b1 the restrictions to t = 0 and t = 1 on the trivial bundle at
s = 0. The deformation class [b0]−1 ⊗ [b1] is the identity. It follows that

[rt=1]⊗ [ev0] = [rt=0]⊗ [b1] = [rt=0]⊗ [b0]. (51)

Denote by c0 and c1 the respective restrictions on G. We obtain

[rs=1]⊗ [evH0 ] = [rt=0]⊗ [c1] = ([rt=0]⊗ [c0])⊗ ([c0]−1 ⊗ [c1]). (52)

Let r00 be the restriction to t = 0, s = 0. One can show that it induces a
KK-equivalence as in [vE10a, 21]. This is done by writing it as a composition of
the restriction to the union of t = 0 and s = 0 and further restriction to t = s = 0.
Both maps have contractible kernels. Using (51) and (52), one obtains

[r00]−1 ⊗ [rt=1] = [ev0]−1,

[r00]−1 ⊗ [rs=1] = ([c0]−1 ⊗ [c1])⊗ [evH0 ]−1.

Inserting this into (50) shows that the deformation classes for THM and TM are
related by

[ev0]−1 ⊗ [ev1] = ([c0]−1 ⊗ [c1])⊗ ([evH0 ]−1 ⊗ [evH1 ]).

The class Ψ :=
(
[c0]−1 ⊗ [c1]

)
∈ KK(C0(T ∗M),C∗(THM)) is a KK-equivalence.

This is a well-known consequence of the Connes–Thom isomorphism, see [Con81,
Corollary 7] and [Nis03, Corollary 1] for the bundle version. We show that the
KK-equivalence Ψ restricts to the ideals used in the generalized fixed point algebra
construction.

Lemma 11.13. The KK-equivalence Ψ ∈ KK(C0(T ∗M),C∗(THM)) restricts to a
KK-equivalence Ψ| ∈ KK(C0(T ∗M \(M × 0)),J0).

Proof. Define the ideal JG ⊂ C∗(G) that consists of all sections (as) ∈ C∗(G)
such that all as,x for s ∈ [0, 1] and x ∈ M lie in the kernel of the trivial represen-
tation of the nilpotent Lie group over (s, x). The trivial representations induce a
commuting diagram

J0 C∗(THM) C0(M)

JG C∗(G) C([0, 1],C0(M))

C0(T ∗M \(M × 0)) C0(T ∗M) C0(M).

i1 q1

i

e1

e0

q

c1

c0

f1

f0

i0 q0

(53)

As ker(e0) is contractible, one can build the deformation class Ψ| := ([e0]−1 ◦ [e1]) ∈
KK(C0(T ∗M \ (M × 0)),J0). Similarly, there is a class α := ([f0]−1 ◦ [f1]) ∈
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KK(C0(M),C0(M)). Because (53) commutes, there is a commuting diagram in KK:

J0 C∗(THM) C0(M)

C0(T ∗M \(M × 0)) C0(T ∗M) C0(M).

i1 q1

Ψ|

i0

Ψ
q0

α

The KK-classes in the middle and on the right are KK-equivalences. The long exact
sequences in KK-theory and the Five Lemma yield that

⊗Ψ| : KK(A,C0(T ∗M \(M × 0)))→ KK(A,J0)
Ψ| ⊗ : KK(J0, B)→ KK(C0(T ∗M \(M × 0)), B)

are isomorphisms for all separable, nuclear C∗-algebras A,B. Taking A = J0 and
B = C0(T ∗M \(M × 0)), one obtains a class in KK(J0,C0(T ∗M \(M × 0)) that is
the KK-inverse of Ψ|. �

As a consequence, the C∗-algebra of principal cosymbols of order 0 has the
same K-theory as its unfiltered counterpart.

Theorem 11.14. Let (M,H) be a filtered manifold. The C∗-algebra of principal
cosymbols FixR>0(J0,R0) and C0(S∗M) are KK-equivalent.

Proof. It was shown in Proposition 10.4 that FixR>0(J0,R0) is Morita–Rieffel
equivalent to C∗r (R>0,J0). Therefore, they are KK-equivalent. As (R>0, · ) ∼=
(R,+) and by the Connes–Thom isomorphism, C∗r (R>0,J0) is KK-equivalent to
C0(R) ⊗ J0. This C∗-algebra is KK-equivalent to C0(R) ⊗ C0(T ∗M \ (M × 0)) by
Lemma 11.13. The converse argument, applied to the step 1 filtration case, yields
that C0(R)⊗ C0(T ∗M \ (M × 0)) is KK-equivalent to C0(S∗M). �

11.3. Connections to index theory

In this section, let (M,H) be a compact filtered manifold. Following the expla-
nation in [BvE14, 5.3] (see also [Con94, §II.9.α]), one can attach to an H-elliptic
H-pseudodifferential operator P of order m a class in K0(C∗(THM)). Let P be a lift
of P to 	mH(M). By definition, the equivalence class [P0] ∈ E ′r(THM)/C∞c (THM)
is invertible. So there is a Q0 ∈ E ′r(THM) with S0 := 1−Q0 ∗ P0 ∈ C∞c (THM) and
S1 := 1− P0 ∗ Q0 ∈ C∞c (THM).

Let σH(P ) := [e]−[e0] ∈ K0(C∗(THM)) be the formal difference of idempotents

e =
(

1− S2
1 P0 ∗ S0

S0 ∗ Q0 ∗ (1 + S1) S2
0

)
and e0 =

(
1 0
0 0

)
.

The same construction works for operators that act on a vector bundles over M .

Lemma 11.15. Let (M,H) be a compact filtered manifold. Consider the short
exact sequence from (44) given by

C∗(THM) C∗(Ess0
H(M)) C∗(Σ0

H(M)). (54)

For an H-elliptic P ∈ Ψ0
H(M) the class σH(P ) ∈ K0(C∗(THM)) above is the image

of [s0
H(P )] ∈ K1(C∗(Σ0

H(M))) under the boundary map in K-theory of (54).

Proof. Let Q0 ∈ E ′r(THM) satisfy 1−Q0 ∗P0 ∈ C∞c (THM) and 1−P0 ∗Q0 ∈
C∞c (THM) as above. By [vEY19, 55] Q0 is contained in Ess0

H(M). Hence, P0 and
Q0 are lifts of [P0] and [P0]−1 in Ess0

H(M). Computing the image of [s0
H(P )] under

the index map as in [CMR07, 1.46] gives exactly the class above. �
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Up to inverting the Connes–Thom isomorphism, we prove an index theorem for
H-elliptic pseudodifferential operators of order zero. For contact manifolds, this is
[vE10b, Prop. 12] in the scalar-valued case or [BvE14, Thm. 5.4.1] for operators
acting on vector bundles. Mohsen recently proved an index theorem for filtered
manifolds in [Moh20]. His construction involves a “larger” bundle of graded Lie
groups over M to obtain an index theorem that does not contain the Connes–Thom
isomorphism anymore.

Theorem 11.16. Let (M,H) be a compact filtered manifold and let P be an
order zero H-elliptic H-pseudodifferential operator acting on vector bundles E,F
over M . Then

ind(P ) = indt(Ψ−1(σH(P )))
holds. Here, Ψ: K0(T ∗M) → K0(C∗(THM)) denotes the Connes–Thom isomor-
phism and indt : K0(T ∗M)→ Z is the topological index.

Proof. Choose hermitean metrics on E and F . Using polar decomposition
and that the Fredholm index is invariant under homotopies, we can assume without
loss of generality that the principal cosymbol of P is unitary.

We follow the arguments in [vE10a,vE10b,BvE14] closely. Let E := E×[0, 1]
and F := F × [0, 1] denote the vector bundles over the unit space M × [0, 1] of
THM |[0,1] and extend P to P ∈ 	0

H(M,E,F).
As in [BvE14] construct a class [D] ∈ KK(C(M),C∗(THM |[0,1])) from P as

follows. Define the Z2-graded right Hilbert C∗(THM |[0,1])-module

E = Γ0(E)⊗C(M×[0,1]) C∗(THM |[0,1])⊕ Γ0(F)⊗C(M×[0,1]) C∗(THM |[0,1])

and let
D =

(
0 P∗

P 0

)
∈ C∗(	0

H(M))⊗ End(E⊕ F).

Note that elements of C∗(	0
H(M)) act as multipliers on C∗(THM |[0,1]). By [vEY19,

25] there is a homomorphism C(M) → C∗(	0
H(M)), f 7→ f, where ft is the multi-

plication operator Mf on L2(M) for t > 0 and f0 is the fibred distribution given
by (f(x)δx)x∈M . Therefore, there is a diagonal representation φ : C(M) → L(E).
Moreover, D acts as an odd operator on E . We verify that φ(f)(D2−1) and [φ(f),D]
lie in K(E) for all f ∈ C(M). Compute

φ(f)(D2
t − 1) = φ(f)

(
P∗tPt − 1 0

0 P∗tPt − 1

)
.

At t = 0, this defines a matrix over C∗(THM). Then the claim follows from
Lemma 9.19. For [φ(f),D], note that this vanishes at t = 0 as functions in C(M)
define central multipliers of C∗(THM). Therefore, Lemma 9.19 applies, too. Note
that one can restrict (E , φ,D) to t ≥ 0 and denote the restricted classes by [Dt].
The long exact sequence in KK-theory implies that

evH0 : KK(C(M),C∗(THM |[0,1]))→ KK(C(M),C∗(THM))

is invertible. Similar to before, one obtains a map

evH1 ◦ (evH0 )−1 : KK(C(M),C∗(THM))→ KK(C(M),C).

It satisfies evH1 ◦(evH0 )−1([D0]) = [D1]. Let [u] ∈ KK(C,C(M)) be the class induced
by the unital embedding C→ C(M). It is well-known that [u]⊗ [D1] ∈ KK(C,C) ∼=
Z is the class representing the Fredholm index of P (see [CMR07, (12.7)]).

Similarly, there is a corresponding map for Connes’ tangent groupoid

ev1 ◦ (ev0)−1 : KK(C(M),C0(T ∗M))→ KK(C(M),C).
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The arguments in Section 11.2 involving the adiabatic groupoid can be adapted to
show that there is a Connes–Thom isomorphism Ψ such that the following diagram
commutes

KK(C(M),C0(T ∗M)) KK(C(M),C∗(THM))

KK(C(M),C).

Ψ

ev1◦(ev0)−1

evH1 ◦(evH0 )−1
(55)

As in [BvE14], one can use the natural transformation αM that maps KK(C, A)
to KK(C(M), A) for C(M)-algebras A. It makes

KK(C,C0(T ∗M)) KK(C,C∗(THM))

KK(C(M),C0(T ∗M)) KK(C(M),C∗(THM))

Ψ

αM αM

Ψ

commute. Since the principal cosymbol of P was assumed to be unitary, we can
take Q0 = P∗0 to construct σH(P ) ∈ K0(C∗(THM)). This class can be represented
in KK(C,C∗(THM)) using the Fredholm module given by

E0 = Γ0(E)⊗C(M) C∗(THM)⊕ Γ0(F )⊗C(M) C∗(THM),

D0 =
(

0 P∗0
P0 0

)
.

Its class is mapped to [D0] by αM . Together with the commutativity of (55), this
shows that [indP ] = ev1 ◦ (ev0)−1 ◦ αM ◦ Ψ−1(σH(P )). Therefore, the claim is
reduced to the Atiyah–Singer Index Theorem. �



CHAPTER 12

Conclusion and outlook

In this thesis, we showed that the generalized fixed point algebra construction
can be applied to the zoom action on the tangent groupoid of a filtered manifold. It
recovers the order zero pseudodifferential extension of known calculi in this context.
Many properties of the calculus follow from the generalized fixed point algebra
construction in a natural way. Moreover, it allows to compute the K-theory of the
algebra of principal cosymbols and to proceed towards index theory.

In the following, we sketch some related questions and situations to which this
approach could be applied as well.

The generalized fixed point algebra corresponds to the operators of order zero.
This leads to the question what can be said about operators of different order. It
is a result of [DS14], that every classical pseudodifferential operator of order m on
a manifold M can be written as an average∫ ∞

0
λmσλ(f) dλ

λ with f ∈ R and f0 ∈ S0(TM).

It was not shown yet that this could also be done in the filtered manifold case.
Understanding this in a systematic way would be also important for cases where
no pseudodifferential calculus is available yet and one wants to define it via a
generalized fixed point algebra construction.

The Shubin calculus on Rn (see [Shu01]), can be understood using an R>0-
action on the tangent groupoid of Rn. It is defined for λ > 0 by

λ · (x,X, 0) = (λx, λ−1X, 0) for X ∈ TxRn

λ · (x, y, t) = (λx, λy, λ2t) for x, y ∈ Rn and t > 0.

The induced action on C∗(TRn) corresponds under Fourier transform to the scalings
λ · (x, ξ) = (λx, λξ) on T ∗Rn. The generalized fixed point algebra of an ideal
J / C∗(TRn) yields a sequence

K FixR>0(J) C(S2n−1).

It is the C∗-completion of the order zero extension of the Shubin calculus. As a
natural continuation, one can replace Rn by a graded Lie group and the scalings by
the dilations. In the case where Rn is equipped with different dilations, this should
be compared to the anisotropic Shubin classes defined in [BN03]. For Rn there
is an index theorem by Callias (see [Cal78, BS78]). For non-Abelian groups one
could study the index theory of the resulting operators. In particular, it should be
possible to compute the K-theory of the resulting symbol algebra.

All groupoids were equipped with R>0-actions so far. To expand this, one could
consider multiparameter actions of Rk>0 on Rn of the form

λ · x = (λa11
1 · · ·λa1k

k x1, . . . , λ
an1
1 · · ·λankk xn) for λ ∈ Rk and x ∈ Rn,

for a fixed matrix (aij) with certain properties. Ricci and Stein considered in
[RS92] convolution operators with kernels that are homogeneous for these dilations.
It would be interesting to understand if these are generalized fixed points of the

93
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action above. If this is possible, one can consider corresponding variable coefficient
operators as in [NRSW18] and try to relate them to a generalized fixed point
algebra attached to an appropriate tangent groupoid.
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Société Mathématique de France, No. 2, Dunod, Paris, 1967 (French). MR0217220

[Puk71] , Unitary representations of solvable Lie groups, Ann. Sci. École Norm. Sup.(4)
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