
Universal Workload-based Graph Partitioning
and Storage Adaption for Distributed RDF

Stores

Dissertation

zur Erlangung des Doktorgrades
Doctor of Philosophy (Ph.D.)

der mathematisch-naturwissenschaftlichen Fakultäten
der Georg-August-Universität zu Göttingen

im Promotionsprogramm Computer Science (PCS)
der Georg-August-University School of Science (GAUSS)

vorgelegt von

Ahmed Imad Aziz Al-Ghezi
aus Baghdad

Göttingen
im October 2020

Printed with the support of the German Academic Exchange Service.

Betreuungsausschuss

Erster Betreuer Prof. Dr. Lena Wiese

Institut für Informatik, Goethe-Universität Frankfurt

Zweiter Betreuer Prof. Dr. Ramin Yahyapour

Institut für Informatik, Georg-August-Universität Göttingen

Prüfungskommision

Referent Prof. Dr. Lena Wiese

Institut für Informatik, Goethe-Universität Frankfurt

Koreferent Prof. Dr. Ramin Yahyapour

Institut für Informatik, Georg-August-Universität Göttingen

weitere Mitglieder

Prof. Dr. Dagmar Krefting

Institut für Medizinische Informatik, Georg-August-Universität Göttingen

Prof. Dr. Burkhard Morgenstern

Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen

Prof. Dr. Ulrich Sax

Institut für Medizinische Informatik, Georg-August-Universität Göttingen

Prof. Dr. Armin Schmitt

Department für Nutztierwissenschaften Züchtungsinformatik,

Georg-August-Universität Göttingen

Tag der mündlichen Prüfung: 03.12.2020

Acknowledgment

I do thank God for enlightening my way. I would like to thank my family who

supported, encouraged, and motivated my PhD works in the long days especially

my wife and parents. I thank all my colleagues and friends who always provided me

with their generous support.

I would like to thank the German Academic Exchange Service (DAAD) for granting

a scholarship that provided the fund for my PhD study.

v

Abstract

The publication of machine-readable information has been significantly increasing

both in the magnitude and complexity of the embedded relations. The Resource

Description Framework(RDF) plays a big role in modeling and linking web data and

their relations. In line with that important role, dedicated systems were designed

to store and query the RDF data using a special queering language called SPARQL

similar to the classic SQL. However, due to the high size of the data, several federated

working nodes were used to host a distributed RDF store. The data needs to be

partitioned, assigned, and stored in each working node. After partitioning, some of

the data needs to be replicated in order to avoid the communication cost, and balance

the loads for better system throughput. Since replications require more storage space,

the important two questions are: what data to replicate? And how much? The

answer to the second question is related to other storage-space requirements at each

working node like indexes and cache. In order to efficiently answer SPARQL queries,

each working node needs to put its share of data into multiple indexes. Those indexes

have a data-wide size and consume a considerable amount of storage space. In this

context, the same two questions about replications are also raised about indexes.

The third storage-consuming structure is the join cache. It is a special index where

the frequent join results are cached and save a considerable amount of running time

on the cost of high storage space consumption. Again, the same two questions of

replication and indexes are applicable to the join-cache.

In this thesis, we present a universal adaption approach to the storage of a dis-

tributed RDF store. The system aims to find optimal data assignments to the differ-

ent indexes, replications, and join cache within the limited storage space. To achieve

this, we present a cost model based on the workload that often contains frequent

patterns. The workload is dynamically analyzed to evaluate predefined rules. Those

rules tell the system about the benefits and costs of assigning which data to what

structure. The objective is to have better query execution time.

Besides the storage adaption, the system adapts its processing resources with the

queries’ arrival rate. The aim of this adaption is to have better parallelization per

query while still provides high system throughput.

List of Figures

2.1 RDF graph example by [42] . 12

2.2 Query graph example . 23

2.3 Query plan based on sort-merge join 25

2.4 Query plan based on hash-index join 26

2.5 METIS output example . 32

2.6 1-hop guarantee example . 34

2.7 2-hop guarantee example by [42] . 35

2.8 The hash-based partitioning of graph in Figure 2.1 37

3.1 Chapter’s scope . 46

3.2 Components of the adaption model 49

3.3 Average number of hits per day versus the DBpedia version, as ap-

peared on [78] . 51

3.4 Percentages of queries exhibiting a different number of triples (in col-

ors) for each dataset for Valid (left hand side of each bar) and Unique

queries (right-hand side of each bar) as appearing in [12] 54

3.5 Heat query evolving from four queries 63

3.6 Heat join map evolving from four queries 64

3.7 Workload rules’ maps . 66

4.1 Chapter’s scope . 70

4.2 Average hard disk price through the years 1980-2019 as appeared in [52] 71

4.3 Average hard disk price through the years 2015-2019 as appeared in [52] 71

4.4 The map of indexes’ rules . 80

4.5 The map of cache index rule . 82

4.6 The Running times of adaptable indexes and join cache vs fixed ap-

proaches under storage capacity of 6 84

4.7 The Running times of adaptable indexes and join cache vs fixed ap-

proach under storage capacity of 3 85

iii

5.1 Chapter’s scope . 92

5.2 The map of replications’ rules . 102

6.1 Chapter’s scope . 108

6.2 Abstract system architecture . 110

6.3 The process of storage space adaption 111

7.1 The systems’ performance comparison of the 12 runs 127

7.2 Short heterogeneous queries vs capacity 129

7.3 Short non-heterogeneous queries vs capacity 130

7.4 Long heterogeneous queries vs capacity 130

7.5 Long non-heterogeneous queries vs capacity 131

7.6 The response of the systems towards non-uniform workload access

with respect to capacity . 132

8.1 Speedup of bounded-queries execution with respect to working threads 141

8.2 Speedup of unbounded-queries execution with respect to working threads142

8.3 The systems’ performance comparison of queries stream 145

List of Tables

2.1 Basic index types notations . 20

2.2 Basic hashed indexes notations . 21

2.3 The most related systems which employ workload adaption 42

4.1 The running time of a single-triple query that uses SPo index with

respect to different data sizes . 87

4.2 The running time of a single-triple query that uses PSo index with

respect to different data sizes . 87

4.3 Bounded chain query behavior with data set size 88

4.4 Unbounded chain query behavior with data set size 88

7.1 Parameters of runs 1-4 with systems’ running times 123

7.2 storage distribution of runs 1-4 (in millions of triples) 123

7.3 Storage distribution of runs 5-7 . 125

7.4 Parameters of runs 5-7 with systems’ running times 125

7.5 Storage distribution of runs 8-11 . 126

7.6 Parameters of runs 8-11 with the systems’ running times 126

7.7 Workload Properties of The Non-uniform Workload 132

8.1 Bounded-queries speedup with respect to working threads 141

8.2 Unbounded-queries speedup with respect to working threads 142

8.3 The speedup with respect to border triples 144

8.4 The speedup with respect to border triples with full replication . . . 144

8.5 The query streams runs specifications 145

v

Contents

1 Introduction 1

1.1 Problem and Motivations . 2

1.2 Our Solution . 5

1.3 Thesis Contributions . 6

1.4 Thesis Structure . 6

2 Background 9

2.1 Resource Description Framework (RDF) 10

2.1.1 Overview . 10

2.1.2 The Data Model Object Types 10

2.1.3 Resources and Objects Naming 10

2.1.4 RDF Graph . 11

2.1.5 RDF Vocabularies . 12

2.1.6 Serialization Format . 13

2.2 SPARQL . 14

2.3 Triples Stores . 16

2.3.1 Non-Native DBMS-based Approaches 16

2.3.2 Native RDF Storage Approaches 17

2.4 RDF Indexing . 17

2.4.1 Key-value indexes . 18

2.4.2 Graph-based indexes . 19

2.5 Index Notation . 20

2.6 SPARQL Queries Processing . 20

2.6.1 The Bounding of Queries . 21

2.6.2 Conceptual Execution . 22

2.6.3 Data Access Paths . 22

2.6.4 Join Evaluation . 24

2.7 Distributed Triples Store . 27

i

2.7.1 Distributed Storage and Indexing 28

2.7.2 Data Partitioning . 30

2.7.3 Graph-based Partitioning . 30

2.7.4 Hash-based Partitioning . 34

2.7.5 Data Partitioning Summary and Conclusion 36

2.7.6 Discussion . 38

2.8 Most-Related Work . 38

2.9 Summary . 41

3 Workload Analysis 45

3.1 Why Adaption? . 46

3.2 Universal Adaption . 47

3.2.1 The Cost Model . 49

3.2.2 The Resources’ Access Rate 50

3.3 The Role of the Workload . 51

3.3.1 Real-world Workload Analysis 53

3.3.2 Evaluation Locality . 54

3.4 Workload Rules . 56

3.4.1 Basic Measurements for The General Rules 58

3.5 Heat Queries . 59

3.5.1 Heat Query Generation . 59

3.5.2 Implementation Notes . 60

3.5.3 Generalized Rules . 61

3.5.4 Heat Query Anonymization 1 62

3.5.5 Triples Access Rate By Heat Queries 2 63

3.6 Heat Query Specific Rule . 65

3.7 Summary . 66

4 Local Storage 69

4.1 Storage Scarceness . 70

4.2 System Storage Hierarchy . 72

4.3 Indexes . 72

4.4 Problem of fixed Indexes . 73

4.5 Dynamic Indexes . 74

4.6 Indexes in The Cost Model . 75
1Part of this subsection appeared in our publication [3].
2This derivation is also given in our publication [3].

4.6.1 Index Cost . 75

4.6.2 Index Benefit . 76

4.6.3 Index Access Rate . 77

4.7 Index Rules . 78

4.7.1 Index General Rules . 78

4.7.2 Index Specific Rules . 78

4.8 Index Rules Aggregation . 79

4.8.1 Finalizing Index Rules . 79

4.9 Cache Index . 80

4.9.1 Cache-index Specific Rules . 81

4.10 Dynamic Indexes Evaluation . 82

4.10.1 Detectable workload and High storage space availability . . . 83

4.10.2 Scalability of Queries Processing 84

4.11 Summary . 88

5 Distributed Storage and Replication 91

5.1 Replication Motivations . 92

5.2 Distributed RDF Storage . 93

5.3 Initial Graph Partitioning . 94

5.3.1 METIS based Partitioning . 95

5.4 Border Region . 98

5.5 Border Replication . 99

5.5.1 General Border Access Rule 99

5.5.2 Specific Access Rule . 100

5.5.3 Aggregating Border Replication Rules 101

5.6 Load-balancing Replication . 101

5.6.1 Load-balancing Replication in The Cost Model 102

5.6.2 Load-balancing Replication Rules 103

5.7 Replication Aggregated Rules . 104

5.8 Summary . 104

6 Universal Adaption 107

6.1 System Architecture . 108

6.2 Storage Space Optimizer . 109

6.2.1 Universal Adaption . 110

6.2.2 Better Algorithm: Rules-based Space Adaption Algorithm . . 114

6.3 Creating The Proposed and Assigned Rules 116

6.4 Summary . 117

7 Universal Adaption Evaluation 119

7.1 Generation of Data-sets and Queries 120

7.2 Data-set size . 120

7.2.1 System Capacity . 121

7.3 Universal Adaption . 121

7.3.1 Starting point . 121

7.3.2 Adaption Parameters . 122

7.3.3 Non-frequent Workload . 127

7.3.4 Non-uniform Workload to Partitions Access 129

7.4 Summary . 131

8 Threading 135

8.1 Adaption to Queries Arrival Rate . 136

8.2 Queries Queuing Model . 136

8.3 Adaption of The Processing Resources 139

8.4 Evaluation . 139

8.4.1 Working Threads . 140

8.5 Distributed Working Nodes . 142

8.5.1 Queries Stream . 144

8.6 Summary and Conclusion . 146

9 Conclusion and Future Work 147

9.1 Points of Strength . 148

9.2 Limitations/Points of Weakness . 149

9.2.1 Overheads . 149

9.2.2 Worst Cases Scenarios . 150

9.2.3 Partitioning Limitations . 151

9.3 Future Works . 151

9.3.1 Partitioning . 151

9.3.2 Workload Analysis . 152

9.3.3 Optimization’s Overheads . 152

9.4 Summary . 152

A Basic Theoretical Foundations 155

A.1 Queries Shape . 155

A.1.1 Star Queries . 155

A.1.2 Chain Queries . 156

A.1.3 Tree Queries . 156

A.1.4 Cyclic Queries . 156

A.1.5 Queries Length, Size, and Evaluation Size 156

A.2 Workload Quality . 157

A.2.1 The Basic of The Adaption Algorithm 158

A.3 Index on Hard Disk . 159

A.3.1 Access Time . 159

A.4 Triples in Main Memory . 160

B Mathematical Symbols 163

B.1 Mathematical Symbols Used in Chapter 3 163

B.2 Mathematical Symbols Used in Chapter 4 165

B.3 Mathematical Symbols Used in Chapter 5 166

Chapter 1

Introduction

This chapter introduces the Resource Description Framework (RDF), presents the

thesis’s problem statement, and summarizes its contributions. It ends with outlining

the main structure of the thesis.

Contents
1.1 Problem and Motivations 2

1.2 Our Solution . 5

1.3 Thesis Contributions . 6

1.4 Thesis Structure . 6

1

2

1.1 Problem and Motivations

The Resource Description Framework (RDF) [34] has been widely used to model the

data on the web. Despite its simple triple-based structure, RDF showed a high abil-

ity to model the complex relationships between the web entities and preserve their

semantic. It provided the scalability that allowed the RDF data to grow big from

the range of billions [19] to the range of trillions of triples [62]. The naming rules of

Tim Berners-Lee [11] defined the methodology to provide a unique URI-based name

to each thing modeled by an RDF data-set. This allowed data from different sources

to be linked into one big cloud of linked RDF data [79] and enabled querying this

cloud. Accompanied with Web Ontology Language (OWL), the RDF graph repre-

sents a big knowledge graph [8]. That enables the web to build an “understanding”

of human knowledge, and evolve its applications. The medical and health semantic

knowledge graphs are important examples in this regard [73, 1, 20]. As a result,

RDF data experienced a rapid increase both in the size and complexity of the em-

bedded relationships [22]. To keep up with that increase, specialized and dedicated

systems have appeared to store the RDF triples and provide the service of querying

them. However, these systems had to deal with many challenges regarding the man-

agement of such big data, and efficiently process their queries. This management

operation requires many data structures including multiple data-wide indexes, repli-

cations, dictionary, statistics, and materialized queries results. In the context of the

huge RDF data size, these structures put the RDF system in extreme storage space

requirements which become even more challenging in a main memory environment.

RDF Indexing

One of the most important challenges is how the data should be indexed to provide

the required efficiency of query answering, while at the same time, trying to avoid

the high storage overhead coming from data redundancy in indexes. The indexing

in RDF triple stores emerges as a hot research topic as the queries evaluation was

feasible only with the existence of the required indexes. However, the objective of

indexing is always to decrease the query execution time, and the constraint is the

extra storage space. The system’s index needs are tightly related to the workload

trends, and the storage constraint is related to the ratio of space availability to data-

size, besides the space needs of other data structures in the system. Unfortunately,

all the known triple stores made a fixed design choice regarding the objective and

constraint of the indexes and thus used a fixed design scheme which the system had

to live with. Some of them were very space conservative like Stratustore [75] who

3

used only one index, and others were very federated like RDF-3X [56] and Hexastore

[81] that used more than six indexes, while others preferred to stay average and use

three indexes like Rya [64], MAPSIN [69], and AMADA [15]. However, it is only

suitable to evaluate the performance of these systems under fixed circumstances of

workload and space. For example, the single index of Stratustore could show enough

performance if the workload is merely single-type such that it only requires the SPO

index. On the other hand, a diverse workload might need the comprehensives indexes

of RDF-3X to provide the expected performance, but only if the system can assign

the required space. Space availability is highly related to the data size and the

system’s space requirements which are far from being fixed parameters.

Data Replication

As the size of RDF sources is rapidly increasing, the resources of the centralized

systems have been facing difficulties in maintaining such big data and efficiently

querying them. This highly motivated the move toward a distributed RDF triple

store where several working nodes are cooperating in storing and querying the global

RDF data set. However, this move has marked more challenges. The RDF data set

which is also modeled as a graph needs to be partitioned such that each working

node receives at least one partition. In this case, a query that needs data from more

than one working node needs to pay the communication cost, which is the network

cost required to move data across the physical network. This data can be relatively

big and may overwhelm most of the total query execution time. There exist two

main directions to overcome the cost of these intermediate results:

1. Performing better partitioning to decrease the size of queries’ cross-nodes in-

termediate results.

2. Supporting the initial partitioning by replications.

Recalling the complexity and linkage of the RDF data-sets, performing an optimal

partitioning as mentioned in the first point is a difficult task. For this reason, Partout

[26] proposed to adapt the partitioning with workload using initial workload-sample

at system startup. Unfortunately, the performance badly degrades when the work-

load does not keep the same trend as the used sample. Thus, the attention shifted

towards supporting the initial partitioning with replication. Instead of moving the

queries’ intermediate results across the network, a working node may find the needed

data in replications and avoid the expensive communication cost. However, repli-

cation consumes more storage space, and there should be a wise decision about the

4

triples to be replicated in order to increase the ratio of replication utilization. Since

the replication is performed to support the partitioning, the utilization of the repli-

cation depends on the strategy of the used partitioning (e.g graph partitioning or

hash-based partitioning). Moreover, the replication is highly related to the work-

load, because the shape, length, locality, and arrival rate of the queries determine

which triples are highly needed for replication. Considerable work has been done to

utilize the replication (works are reviewed in Chapter 2), where part of the works

considered using a workload history to identify the more important data for replica-

tion and aim to save storage space. However, all of the related works either assume

the existence of some initial workload, or fixed parameters and thresholds which are

not clearly connected or calculated from the workload. In spite of that the storage

space is already identified as the replication constraint, non of the related work has

implemented the adaption as a function such that it is dynamically delimited by the

space. In this context, if the data size happens to be small or big compared to the

available storage size, the given systems have no ability to replicate more or fewer

data accordingly.

Universal Adaption

Assume that a working node has a given limited amount of unused space, should the

node employ it in building more replications or use it to support its local indexes?

The objective function of the replication is to decrease the queries execution time by

avoiding the communication cost of the intermediate results as well as balancing the

load between the working nodes. The constraint is again the storage space. Recalling

what we have introduced earlier about the indexes objective and constraint, we can

identify that the indexes and the replication share the same objective and constraint.

As a matter of fact, building more indexes can be seen as replicating data locally

for faster processing, while replication is replicating remote data for faster access.

This makes a clear baseline for a single optimization operation that considers both

of them in the same domain. Moreover, replications and indexes are not the only

storage consumers in an RDF triple store. Materializing queries results or caching

some of the join operations provides considerable benefit under the usual workload

environment. These cached results share also the same objective and constraint of

the indexes and replications, and thus they can flexibly fit in the universal adaption

model.

5

Workload Analysis

As was earlier pointed out by [26, 37, 60, 31], the historical workload can be an effec-

tive tuning subject for the system resources to have a more efficient future workload.

However, there should be no fix assumptions about the RDF workload [12] as the

workload properties change values with many practical factors like the data-sets, the

applications and the temporal factors. To deal with this dynamic workload status,

the system should adapt its analysis to the workload and measure its effectiveness

in order to increase the impact of the effective parameters and obliterate the impact

of those with low effectiveness.

1.2 Our Solution

Workload Analysis

Our system collects the queries, normalizes them to remove outliers, and transfers

them into a set of queries graphs where common items are shared and connected.

The system keeps the frequency values of these common items within each structure

which we call heat query. The heat query keeps also the count of each index usage

at each item. An anonymization process is used to generalize a heat query to more

data within the RDF graph. The effectiveness of this generalization is measured and

tuned to avoid bad influence. The workload analysis assumes no fixed thresholds

or setting. The set of heat queries provides the probability of access to the RDF

triples inspired by the workload. The system keeps a set of predefined rules. The

rules are well designed and formalized such that any new rule can easily be plugged

into the optimization system. Moreover, to allow the workload adaptability, the

rules have two types: general rules which are based on the statistics of the average

behaviour, and specific rules which are based on the specific behaviour drawn by the

heat queries. The general rules represent a backline to support the system in case of

that the workload was on low-quality levels.

Universal Adaption

The optimization process divides the storage space into units such that each unit is

seen as a resource. Each resource can be utilized (consumed) by a block of triples

with the same size, which is located either locally or remotely, and this utilization

can be on one of the different indexes options. The workload is analysed and used

to assign a benefit to each consumer-option pair. Since this pair has a known space

cost, we result in a concrete cost model that can utilize each storage unit with the

6

best option of structured data.

The above cost model can be directly extended to include another storage consumer

which is the materialized queries results or cached join results. These cached data

might give an extreme benefit to the total throughput of the system and the queries

execution time, especially in the case of the existence of small and hot frequent

patterns. Such case is detected for instance in a real-world scenario where more than

90% of the queries target only 163 frequent sub-graphs [60]. However, the storage

cost and performance benefit of such cached data are integrated into the cost model

and optimized with the indexes and replication.

1.3 Thesis Contributions

This thesis presents the problem of universal adaption in distributed RDF triple

stores and its impact on the performances of queries execution. This main contribu-

tion is composed of the following points:

1. We formulate a dynamic and integrated cost model for indexes, replication,

and cached join results, where the benefits and costs of each structure are

comparable in the same domain.

2. We provide a workload analysis approach that is adaptable with the workload

quality and requires no fixed thresholds.

3. We present UniAdapt, a distributed triple store that implements the universal

adaption of its storage layer with both of the workload and storage space.

4. The thesis provides diverse practical evaluations to the universal adaption fo-

cusing on the areas where this approach is highly performing as well as the

areas where this adaption is difficult to show differences.

1.4 Thesis Structure

The thesis is structured as follows. Chapter 1 is this introduction. Chapter 2 starts

with the foundations. We introduce RDF structure, maintenance, and processing.

We review the related works focusing on the distributed approaches that considered

the problem of RDF graph partitioning and replications. We then focus the review

on the most related works that considered adaption. Chapter 3 considers the anal-

ysis of the workload, the formulation of the adaption problem, and its cost model.

7

The workload is structured and analyzed by the concept of heat query and average

statistics. We present the concept of access and operational rules. In Chapter 4,

we consider the local storage adaption in terms of the indexes and join cache. We

define their benefit and cost functions and transfer the cost model into operational

rules. The chapter concludes with a practical evaluation of the dynamic indexes and

cache join approaches. In Chapter 5, we present the distributed system architec-

ture and the replications problem. We consider two types of replications and define

their access rules. The two rules are aggregated into one operational rule that rep-

resents the replication. That rule is comparable with the operational rules of both

the indexes and join cache. The optimization process based on the three rules is

carried out in Chapter 6. An efficient rules-based universal adaption algorithm is

presented. Chapter 7 shows our evaluation results to the universal storage adaption

and its impact on the performance under varying workload environment parameters

and scenarios. Chapter 8 considers the adaption of the local and processing resources

with the queries arriving rates, aiming for a better query execution time. Chapter

9 concludes the thesis, discusses the points of strength as well as weaknesses, and

provides the directions of future works.

8

Chapter 2

Background

This chapter presents the foundations of the thesis. It provides the essential back-

ground knowledge on which the following considerations are based. We provide an

overview about RDF as a data model and the specifications of its standard query

language SPARQL. We then introduce the requirements and structure of RDF-triples

stores, giving special focus on their storage layer, where the RDF indices are built

and where the main part of query processing takes place. We then state the main

challenges of moving the storage layer towards a distributed environment. While we

provide a review of the literature and related works during the chapter’s sections,

we provide more detailed descriptions and issues of the works which considered the

workload adaption.

Contents
2.1 Resource Description Framework (RDF) 10

2.2 SPARQL . 14

2.3 Triples Stores . 16

2.4 RDF Indexing . 17

2.5 Index Notation . 20

2.6 SPARQL Queries Processing 20

2.7 Distributed Triples Store 27

2.8 Most-Related Work . 38

2.9 Summary . 41

9

10

2.1 Resource Description Framework (RDF)

2.1.1 Overview

The RDF in general is a model to represent data. Its basic idea is to make statements

about resources using a triple based format. Each triple is in the form of (subject,

predicate, object). The subject represents a certain resource given by a textual iden-

tifier that is unique within a data set. The object either denotes another resource

or a constant, while the predicate states a certain relationship between the subject

resource and the object resource/constant. As an example, the piece of information

that is embedded in the following phrase: “Newton was born in England”, can be

modeled using RDF by the following triple (:newton, :was_born, :england). The

given triple states one fact about the resource :newton; however, since the object

:england is also a resource, it can have triples on its own, where it appears as a

subject, and further facts can be related. For instance (:england, :located, :europe).

This methodology of stating information about resources makes the RDF very suit-

able to represent web resources and their relations, in a way that is compact and

efficient in terms of storing, exchange and querying.

2.1.2 The Data Model Object Types

The basic RDF data model consists of three data types:

• Resource: which is the “thing” described by any RDF statement. It can be a

web page, a part of a web page, a certain file resource, an entire website, or

not directly accessible resources such as a printed book. In the triple format,

the resource can be placed as Subject or as Object.

• Properties: is a specific aspect, characteristic, attribute, or relation used to

describe a resource. It reflects this role in the predicate position of triple

format.

• Statements: is a resource plus the property describing it, and a value. The

value can be either another resource or a literal. A statement represents an

RDF triple in the form subject, predicate, object.

2.1.3 Resources and Objects Naming

One of the important specifications of RDF as a data model, is how resources are

represented or identified and characterized. The W3C in the 1999 RDF recommen-

11

dation1 uses the Universal Resource Identifier or URI to clearly and uniquely identify

any resource within any domain. However, it is directly possible to use the URLs

(Uniform Resource Locators) for the same purpose as they are essentially a subset

of URIs and each URL is ensured to be unique within the web as the domain name

part within a URL is globally unique. Using URLs for resources naming enabled the

move one step further by introducing the concept of Linked Data, where RDF triples

from different sources can be combined, stored and queried.

Besides the resources, the data model allows Literals to be used as values in a

triple’s object. They are either plain (with an optional language tag) or typed.

A typed literal is annotated with a datatype URI, e.g. the commonly used XML

Schema datatypes.

The third type of value might be found within an RDF data set which is the Blank

Nodes. They represent anonymous resources that are used if an entity is only used

in a local context, e.g. a relation between two entities is modeled as a blank node

with specific attributes that specify the relationship in more detail. The identifiers

of blank nodes are only defined for the local scope of an RDF graph. Therefore, they

are not unique and cannot be used in a global context.

2.1.4 RDF Graph

Since a triple represents a semantic relationship between two resources, a set of triples

can be directly modeled as a graph, where each resource is modeled as a vertex, and

each edge represents a labeled relationship between two vertices if a corresponding

triple exists in the triples set. The edge’s label is the triple’s predicate. We can

formally state the definition of the RDF graph as follows:

Definition 2.1 (RDF Graph) Let G = {V,E, P} be a graph representing the RDF

data set. V is a set of all the subjects and objects in the set of RDF triples D;

E ⊆ V × V is a set of directed edges representing all the triples in the data set; P

is a set of all the edges’ labels in the RDF data, and we denote pe as the property

associated with edge e ∈ E. The RDF data set is then defined as D = {(s, pe, o) |
∃e = (s, o) : e ∈ E ∧ pe ∈ P}

The mapping of an RDF data set to a mathematical graph is a very important step

with respect to the methods of the data management since all the graph algorithms

can be directly applied. For example, the problem of RDF partitioning can be

mapped to a graph partitioning problem.
1https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

12

Figure 2.1: RDF graph example by [42]

From Definition 2.1, each e ∈ E can be mapped to exactly one triple d ∈ D.

Moreover, each v ∈ V can be mapped to a list of edges, and that can be mapped to a

list of corresponding triples. We define the functions which perform these mappings

in the following definition.

Definition 2.2 (Mapping of Graph Elements to Triples) We definemapToTriple(e)

as the function that maps any given edge e ∈ E to its corresponding triple d ∈ D. In

addition, we define mapToTriples(v) as the function that maps any vertex v ∈ V to

its corresponding list of triples.

2.1.5 RDF Vocabularies

The ability of RDF to represent the semantic of information is one of the most

important properties that makes it heavily used to model web data. The RDF de-

pends on its standard vocabulary to simplify the storing and extracting of hidden

relations that build the semantic. Such vocabularies are basically defined by the

RDF Vocabulary Description Language (RDF Schema) [13] and the Web Ontol-

ogy Language (OWL) [51], as classes, properties, and the relations between them.

13

The RDF schema (RDFS) allows the user community to extend the vocabulary by

adding a set of predefined classes, where any new class is an instance of a previously

given class similar to the Object-Oriented Paradigm. The rdfs:class is the parent

of all classes, and any class in the schema is eventually rooted to it by the property

rdfs:subClassOf. Any class that describes the relation between two RDFS classes

or the relation between a resource and an RDFS class is called property, and it must

be a subclass of rdfs:property. For instance, rdfs:type is very important property

used to state that a certain resource is an instance of a defined class. Consider in this

regards the RDF triple: ex:JeffPollock rdf:type ex:Person, which states that the

resource ex:JeffPollock is a person.

Some of the well known RDF vocabularies used to describe RDF documents are:

Friend Of A Friend (FOAF) 2 and Dublin Core 3. FOAF is used to describe peo-

ple and their personal information and provides vocabularies for things like name,

address, and occupation. Dublin Core defines necessary vocabularies for describing

metadata of documents like the title of publication, date of publication, and author

related information.

The RDFS is directly mapped into a graph that is connected to the main RDF

graph. However, it is often necessary for the user to understand the basic shape of

the RDFS related to the target RDF data set in order to write correct SPARQL

queries. Thus, it is a requirement that each RDF data set is accompanied by a

well-structured and a small-sized RDF schema graph.

2.1.6 Serialization Format

The RDF data set can be conceptually represented as a graph. However, in order to

maintain the data set in a textual format that is suitable to be stored as files, the

W3C has different standards to serialize RDF triples. We survey the most popular

serialization types in the following:

RDF/XML

The first serialization format defined by W3C [27] followed the well-known XML

format. Although XML is widely used to serialize documents on the web and easily

interpreted by different platforms and tools, it is hard to read by humans, and the

XML-tree is not naturally compact enough when used to represent the RDF graph.

An example of an RDF/XML document is shown in Listing 2.1.

2http://www.foaf-project.org/
3http://dublincore.org/

14

Listing 2.1: RDF/XML Example

<?xml version=" 1 .0 "?>
<rdf:RDF xmlns : rd f=" ht tp : //www.w3 . org /1999/02/22− rdf−syntax#"
xmlns:exterms=" ht tp : //www. example . org / terms/">
<rd f :D e s c r i p t i o n rd f : about=
" ht tp : //www. example . org / index . html">
<exte rms : c r ea t i on−date>August 16 ,1999</ exte rms : c r ea t i on−date>
</ rd f :D e s c r i p t i o n>
</rdf:RDF>

Turtle

Another RDF serialization format is called by W3C as Turtle [10]. It is more suitable

to represent the concept of triples. It is highly compact, such that a human can

easily interpret the triples by directly investigating the documents. Also, the format

is easily interpreted by a turtle parser. The header of a turtle document contains

the list of prefix name-spaces defined by the keyword @prefix. Each prefix defines a

short name-space for a long URL, which allows the use of the name-space as prefix

anywhere in the document. This highly saves space and simplifies document reading

by humans. An example of a turtle document is shown in Listing 2.2. The example

shows the header of the document and three triples separated by semicolons. Turtle

is derived from a more general notation called N34. Thus the turtle file is usually

ended with the extension .n3.

Listing 2.2: RDF Turtle Example

@pref ix rd f : <http : //www.w3 . org /1999/02/22− rdf−syntax#>.

@pref ix dc : <http : // pur l . org /dc/ e lements /1.1/#>.

@pref ix exterms : <hhttp : //www. example . org / terms/>.

<http : //www. example . org / index . html>

exterms : c r ea t i on−date "August␣ 16 , ␣1999" ;

dc : language "en" ;

dc : c r e a t o r <http : //www. example . org / s t a f f i d /85740>.

2.2 SPARQL

SPARQL [63] is the W3C official language used to query RDF-based data. It was

designed conceptually to the semantic web, where it hides the details of internal data
4https://www.w3.org/TeamSubmission/n3/

15

management. “Trying to use the Semantic Web without SPARQL is like trying to use

a relational database without SQL.”, explained Tim Berners-Lee, W3C Director. The

general shape of the SPARQL is inspired by the shape of the classical SQL, starting

with the query keyword, the attributes, and the test or condition tail given by the

keyword WHERE. However, while the shapes of SPARQL and SQL are similar, there

are essential differences :

• The SPARQL query is expected to run against the whole data set, thus there

is no table name field.

• The attributes’ names projection in the SQL query takes place within the

WHERE clause in the SPARQL query while the variable list is only a selection

from the variables that appear in the WHERE clause.

The WHERE clause in a SPARQL query is a set of so-called triple patterns. This

part of the query is the important part where most of the query evaluation is carried

out. In the context of this thesis, we refer to the SPARQL query as a set of triple

patterns. Each triple pattern is composed of three elements; each element is either

a variable or a constant. The variable is recognized by the prefix ? followed by

the variable name. Each triple in the data set can be checked against a query triple

pattern and return a binary result of either true, if the constants of the triple pattern

exactly match the value and order of the checked triple, or false otherwise. A variable

in the triple pattern may match any value in its position within the checked triple.

For a set of n triple patterns, we get respectively n sets of matching triples. Since

the triple patterns contain variables, then for any two triple patterns that share the

same variable name but with different locality, we need to perform join between

their set of matching triples on the location of shared variables. For instance, if

t1 = {c1, c2, ?a} and t2 = {?a, c3, c4} are two triple patterns in the same query, and

if we have the sets A1, A2 of matching triples for t1 and t2 respectively, we need to

further join A1 and A2 and produce the triples that have a match on the value of

the variable ?a. We further detail the SPARQL execution in Section 2.6.

16

Listing 2.3: SPARQL Query Example

SELECT ?name ? c i t y

WHERE {

?who <Person#fname> ?name ;

<Person#addr> ?adr .

? adr <Address#c i ty> ? c i t y ;

<Address#state> "Ber l i n "

}

2.3 Triples Stores

An RDF triple store is a specialized database for storing, processing and retrieval of

the RDF triples. There are two general groups of triple store systems: DBMS based

approaches and Multiple indexing frameworks.

2.3.1 Non-Native DBMS-based Approaches

The typical ground for any data storage system is the well-known relational database

management systems, because such systems are heavily studied, researched, and

optimized for high performance of queries that target relation data maintained in

tables. Thus, the initial RDF stores relied on a classical relational DBMS such

as MYSQL and ORACLE. SPARQL processing layer is built on the top of these

systems, where it maps the user SPARQL queries to classical SQL queries. The data

is physically stored in tables and indexed by the systems’ classical indexes. Such

approach is called Triple Table. However, a lot of work aimed to provide methods to

enhance the efficiency, robustness, and scalability of these systems. The enhancement

works mainly fall in two aspects: property table and vertical partitioning. We briefly

describe the triple table and both of its relating approaches.

Triple table

The data schema is simply one table that has three columns: subject, predicate, and

object. Each triple could then directly fit in the table. Indexes are built on top, to

make the self join on the single table less expensive. Since there is only one table, the

system can’t make use of its most optimization techniques originally ready to serve

multiple relational tables. As a result, such systems may be feasible either to run

simple statement-queries, or to host small data set size; since the size of the single

table may easily grow very large, and the query with multiple triple patterns would

17

require a lot of costly self-joins.

However, multiple systems used this approach like 3store [32], Redland [9], rdfDB

[67], and commercial systems like Oracle [17].

Property table

Instead of the single table system explained above, some systems like Sesame [14],

Jena2 [82], RDFSuite [4] and 4store [33] define a property table, in which subjects

that have similar properties are clustered into tables, where the fixed properties are

defined as columns, and the stored values are the objects. The direct advantage

of having these properties tables is to avoid the expensive joins of triple patterns

on the subject. However, the drawbacks are to have many NULL values as not all

subjects have values for all the properties in a table. Another problem is when a

triple pattern has the property as a variable; such a case would require the scan of

all tables. Moreover, costly unions and joins might be required for the processing of

queries that target several property tables.

Vertical partitioning

swStore [2] suggested to have one table per property in the data set, where each table

has two columns for the corresponding subject and object. The vertical tables are

maintained in column store [77] to speedup processing of all subjects or objects of

some given property. This approach is more compact and flexible than the property

table, however, we would see in the next section that the SPO index outperforms

both of the property table and vertical partitioning approaches.

2.3.2 Native RDF Storage Approaches

To overcome the shortcomings of using the classical database management systems

to handle the RDF data, native RDF triple stores were developed. The native stores

are specifically designed for storing RDF data and its special structure. The storage

layer and query processing engine are optimized to serve the RDF needs. The rest

of this chapter focuses on the methods of indexing and query processing used in the

native RDF system while paying special attention to the native distributed systems.

2.4 RDF Indexing

As we have earlier mentioned, the initial systems that dealt with the RDF mod-

eled data used the classical relational DBMS. However, it was soon found that the

18

efficiency of such systems would be feasible only with the support of well designed

indexes. The later native RDF stores were basically classified by their indexes struc-

ture, and to some extent, it is not possible to differentiate between the indexes, the

tables, or any other data container in the system, as the whole RDF data are ac-

tually stored in indexes. The RDF indexing approaches can be classified here into:

key-value indexes and Graph-based indexes.

2.4.1 Key-value indexes

The main objective of the index design is to speed up the query processing by de-

creasing the cost of joins and providing fast triple data retrieval. The SPARQL query

in section 2.2 is defined as a set of triple patterns. The system should be able to

provide the answer to any triple pattern using its indexes. Each triple pattern is

a set of exactly three elements, where each element can be either a constant or a

variable, given that we have at least one constant and at least one variable (exclud-

ing rare cases where a triple pattern may have zero variables). An optimal index

would receive a triple pattern and return all the triples in the data set that matches

it. For this purpose, the constant, or a combination of two constants in the triple

pattern are used as the index’s key, and the index should deliver the triples that

match as output. Consider for instance the following triple pattern: t1 = (:newton,

?y, ?x). This pattern has one constant that is in the location of the subject, and

two variables in the locations of the predicate and object. In order to evaluate t1,

we need an index that has the subject as key (it is usually called S index). We per-

form a lookup on that index using the key “:newton” expecting the index to return

a list of all triples that have “:newton” as subject. However, if the t1 =(:newton,

:was_born, ?x), then we need an index that has both the subject and predicate as

key (usually called SP index). In an extreme case, the triple patten may have three

constants as t1 =(:newton, :was_born, :england). In this case, the required index

should use subject, predicate and object as key (usually called SPO). Depending on

the implementation, the SPO index may answer all the three triple patterns.

The implementing of the index preformed using two main approaches: sorted list

and hash table. The sorted index is a list that contains all the triples such that they

are sorted in the order of the key. The SPO index is then sorted on the subject,

then on the predicate and finally on the object. In this manner, the SPO index may

answer all the three triple patterns about Newton. The behaviour of the lookup

operation in such index is logarithmic on the data size.

19

The hash index is performed by using a hash table that contains all the triples hashed

on the key. In such a case, the SP index uses a key that is a combination of the

subject and the p, and both of them must be given to perform a lookup operation.

Thus, we need three hashed indexes to answer the given three triple patterns about

Newton. However, the hashed index is faster and in average has a constant time-

behaviour with respect to the data size. To have the benefits of the fast data access

and low storage space, a hybrid indexes are used. This index is hashed on the first

element of the key and sorted on the second and the third. An SPO index of such

type can answer the Newton’s three triple patterns. The index is hashed on the

subject and thus may lookup any subject in constant time, and any of its predicates

in logarithmic time since it is sorted on the predicates.

Depending on which of the triple’s elements are the key, we may have 6 indexes

types (Assuming hash-sort index): SPO, SOP, OPS, OSP, POS, and PSO. RDF-

3X [56] builds all the given six types of indexes, allowing high index efficiency and

flexibility in answering any triple pattern. However, due to the high storage overheads

of having full-set indexes, some systems preferred to only build the most referenced

indexes, identified as SPO, POS, and OSP which are maintained by typical key-value

stores in separate containers. As a contrast to the hashed-based indexes, fully sort-

based indexes can be used to enable the process of range queries more efficiently. As

an example, the sort-based SPO index is built by sorting the triples on S then on P

and O.

2.4.2 Graph-based indexes

Another method of RDF storage is by holistically storing an RDF data set as a graph.

Each unique subject or object in the data set is a vertex that is associated with one

adjacency list for the outgoing edges, and another list for the incoming edges. Each

property edge in this regard is listed in the outgoing edges of its subject, and in the

incoming edge of its object. This allows the literal graph processing of queries as is

shown in Section 2.6.

However, on the practical aspect, the system still needs a general hash index that

looks up the vertex of any subject and object in the data set. Thus, we can still

consider the two lists besides the general index equivalent to the SPO and OPS

indexes which were explained in the previous section. Such a storage approach is

followed by Trinity.RDF [85] which is built on Trinity [72], a key-value store that

serves as a distributed graph processing system.

20

2.5 Index Notation

In this section, we fix our notation to the different index types that the system may

use. The notation should provide information about which combination of the triple’s

elements (S,P,O) should be used as the key, and what is the index type (i.e. sorted

or hashed). In this context, any index type is given three letters, each letter can be

either S, P, or O. The letter that is part of the index key is written in the capital

form, and written in the left side of the index type. The index is always hashed on

the first letter of the key. However, if the key contains more than one letter, it can

be either sorted or hashed on them. In order to enable the notation of differentiating

the hashing or sorting state, we insert the character ‘-’ at the end of the key part in

the notation. Table 2.1 shows the notation of the basic six index types which hashed

on the first element and sorted on the second, besides one example of the notation

in case the index is also sorted on the third element. Table 2.2 shows the notation of

the basic indexes in case the index is hashed on both of the first and second elements.

SPo
The index is hashed on S and sorted on P. A key requires a constant

value for S and optionally for P.

SOp
The index is hashed on S and sorted on O. A key requires a constant

value for S and optionally for O.

PSo
The index is hashed on P and sorted on S. A key requires a constant

value for P and optionally for S.

POs
The index is hashed on P and sorted on O. A key requires a con-

stant value for P and optionally for O.

OPs
The index is hashed on O and sorted on P. A key requires a con-

stant value for O and optionally for P.

OSp
The index is hashed on O and sorted on S. A key requires a constant

value for O and optionally for S.

SPO
Similar to SPo except that the index is sorted also on O. A key

requires a constant value for S and optionally for P and O.

Table 2.1: Basic index types notations

2.6 SPARQL Queries Processing

In this section, we state the general methods of SPARQL query evaluation in cen-

tralized systems, as a basis for describing in more detail, the methods of queries

21

SP-o
The index is hashed on S and P. A key requires constant values for

both S and P.

SO-p
The index is hashed on S and O. A key requires constant values

for both S and O.

PS-o
The index is hashed on P and S. A key requires constant values

for both P and S.

PO-s
The index is hashed on P and O. A key requires constant values

for P and O.

OP-s
The index is hashed on O and P. A key requires constant values

for O and P.

OS-p
The index is hashed on O and S. A key requires constant values

for both O and S.

PP-x
A special cache index. The index is hashed on two P values. A

key requires two constant values for two predicates.

Table 2.2: Basic hashed indexes notations

evaluation in a distributed environment. As has been shown in Section 2.2, the core

of a basic SPARQL query execution resides in the execution of its WHERE clause.

As this clause is seen as a set of triple patterns (Definition 3.2), the execution of this

set can be classified into two levels, the first is the execution on level of a single triple

pattern, which is called data access path, and the second is on the level of joining

data access paths’ results, which is referred as join evaluation.

We consider first the execution on the conceptual level, as an introduction to detail

the execution of both the data access path and join evaluation. Then both of the

execution levels are seen with respect to a further classification that is related to the

underlying storage and indexing structure. This classification goes as seen before in

section 2.4, into: key-value indexing, and graph-based indexing.

2.6.1 The Bounding of Queries

As was introduced in Section 2.2, we refer to the query by its WHERE clause which

is a set of triple patterns. This set is mapped into a graph and the query evaluation

is the process of finding all the sub-graphs in the RDF graphs that match the query

graph. The answer of some queries can be no more than one sub-graph which we

called the bounded queries, while the unbounded queries may produce many disjoint

sub-graphs. We present the properties of each type in the following:

22

• Bounded queries: the query graph has at least one constant vertex within its

structure. Since that we know from Definition 2.1, that a vertex is guaranteed

to be unique within the RDF graph, then if a query graph contains at least

one constant in any of its vertices, and given that the query graph is connected

(Definition 3.2), there must be no more than one connected sub-graph within

the RDF graph that answers the query. Thus, such query execution is going to

stick within a limited locality in the RDF graph, which is the location of the

constant vertex and its neighbours.

• Unbounded queries: if the query graph contains no constants in any of its

vertices, but has constants within its predicates (which stand for the edges’

label within the graph structure), the number of sub-graphs that may match

the query graph is unlimited; because, the predicates are not unique, and

usually frequent within the data set or the RDF graph.

The bounding type of the query can be detected only by simple check of the query;

however, it has a strong impact on how the query is handled and processed.

2.6.2 Conceptual Execution

On the conceptual level, we model the SPARQL query as a graph as was mathemati-

cally defined in section 2.2. A SPARQL query example with its graph representation

is shown in Figure 2.2. Each triple pattern in the query is transferred into two

vertices, the first models the subject while the second represents the object, with

a directed edge from the subject to the object. The label of the edge represents

the predicate of the modeled triple pattern. Some of the vertices are variables, and

the variables which are shared between triple patterns share the same vertex in the

query graph. This graph-based model is defined in Definition 3.2. The evaluation of

this query graph is the process of finding all the sub-graphs in the RDF graph that

match the query graph and substituting its variables. This operation is subdivided

into data access paths and join evaluation.

2.6.3 Data Access Paths

The evaluation of a single triple pattern is conceptually the process of finding all

the triples in the data set that are matching it. For a database physical layer, this

level of triple processing is implemented in a dedicated scan operator. The efficiency

of the scan process is directly related to the complexity of looking up the triples

in the system using the available indexes structures. If the appropriate indexes are

23

?x

:artist ?y :italy

?z

:france

:type :paints :nationality

:exhibits

:located_in

select ?x,?y

where{

?x :type :artist.

?x :paints ?y.

?x :nationality :italy.

?z :exhibits ?y.

?z :located :france

}

Figure 2.2: Query graph example

available, the scan operator complexity could be mapped to the complexity of a hash

table, which requires in average constant time for a lookup operation 5. We are going

to review the process of data access path from two main system perspectives. The

first is the key-value indexes, and the second is the graph exploration.

Key-Value Indexes

Given a triple pattern t = {S, P, ?O}, the fastest way for a key-value store to find

all the triples in the data set that match t, is to use SPo index. The constants S and

P would be used as the first and second keys, while all of the returned triples from

the SPo index represent the direct answer to triple pattern t. More about indexes

notations are mentioned in Section 2.5.

Systems like RDF-3X [56] and Hexastore [81] have the full flexibility in triple pattern

evaluation, since they implement the six possible indexes types, and are thus able

to directly evaluate any triple pattern independent of the triple pattern’s variables

counts or locations. However, if the system that is executing t, doesn’t have the SPo

index, but has the SOp index instead, it would only be able to use the constant S

as a key. Extra filter operation is required to filter out the triples that do not have

constant P as a predicate. The worst-case happens, when the system doesn’t have
5Depending on the implementation, the worst-case lookup time could drop to linear

24

an index that uses S or P as keys, as this would require a full scan to the whole data

set. To avoid this problem, most RDF key-value stores have at least three indexes

such that we have always subject, object, or predicate used as a key in one of the

indexes.

Graph Exploration

If the system has graph-based indexes like Trinity.RDF [85, 72], the evaluation of

a triple pattern t would start by finding a vertex, either from a constant subject

or constant object in t. This can be directly achieved by using a global hash-based

index that returns a starting vertex. From this starting vertex, the system can check

either the incoming in case of that the starting vertex is an object in t, or checks

the outgoing adjacency list, in the case of the starting vertex is a subject in t. The

evaluating system then outputs the answer of t by filtering only the triples that have

P as a predicate (or edges’ label). This filtering operation is also optimized by sorting

(or hashing) the adjacency list on the predicates.

If neither the subject nor the object are constant in the triple pattern, the system

needs to use a separate POS or PSO indexes to answer the triple pattern efficiently.

2.6.4 Join Evaluation

The execution of a single triple pattern takes place in the scan operator and feeds its

result to a join operator. The join process is dependent on the storage and indexing

structure available in the system.

Key-Value Stores

Given the SPARQL query6 q = {t1, t2}, where t1 and t2 are having one common

vertex. The query planner of a typical key-value store has two options to join t1

and t2. The first option is to use a scan operator on both t1 and t2, and look-up

the matching triples using the available indexes, then join the results of the two

scans by using sort-merge join. This approach is shown in Figure 2.3. The second

option would be to use one scan operator on either t1 or t2, and then for each of

the triples that are delivered by the scan operator, the join operator would look for

matching triples using again one of the indexes, following the method of hash join.

This approach is shown in Figure 2.4.

Assume for instance that t1 = (c1, c2, ?a1), and t2 = (?a1, c3, c4). The execution plan

6The query is defined as set of triple patterns as given later in definition 3.2

25

Figure 2.3: Query plan based on sort-merge join

may have a scan operator for t1 that would use the SPO index, and another scan

operator for t2 that would use the OPS index. The triples resulted from both scans

would be joined on a1 using a sort-merge join operator. Now, assume further that

the scan operator of t1 produces only 4 triples, while the scan of t2 produces 100

triples. Instead of the merge-join, it would be more efficient for the join operator to

take the 4 triples of t1 and use the SPO index to look directly for matching triples.

The selectivity estimation and the availability of indexes in the system are the factors

that play the biggest role in determining the more optimized choice in this regard

and can save huge computations.

The join evaluation of q in the above example was straight forward since there

are only two triple patterns, and thus there is one possible order of join. However, if

q is composed of three triple patterns: q = {t1, t2, t3}, then there are three possible

orders of joining:

(t1 on t2) on t3,

(t1 on t3) on t2,

(t2 on t3) on t1.

From the rich literature of the classical relational database, we know the following

points: the number of join plans grows exponentially with the number of relations

(the number of triple patterns in our context), the cost of each plan is related to the

selectivity of each relation (the data access path size of each pattern), and the cost

estimation depends on collecting statistics in the form of a histogram. Moreover, the

error in cost estimation at some level of the join tree propagates exponentially to the

26

Figure 2.4: Query plan based on hash-index join

higher levels [40].

The problem becomes more challenging in SPARQL queries due to the high varia-

tion in selectivity between elements that compose the triple patterns [76], and the

schema-free nature of RDF data.

To deal with the selectivity estimation problem, the authors of RDF-3X [56] sug-

gested to have two kinds of statistics: histograms and join paths. The histograms are

basically the count of occurrence of each predicate in the data set. However, since

this way of selectivity estimation does not tell how two predicates count in the data

set, RDF-3X calculates some frequent join paths and their counts in the data set. It

should be clear that those frequent paths are found in the data set and not in any

workload. For any query, the system tries to look first in its join paths to estimate

the selectivity, then moves to the use of the generic histograms. Finding join paths

in the RDF data set is also studied by [29, 50, 81], and even used to inspire the RDF

data partitioning in [84].

Why too many indexes?

In spite of the storage overhead, RDF-3X [56] and Hexastore [81] proposed to use all

possible six indexes in order to have the full flexibility and query execution efficiency.

However, for the part where we would like to answer a single triple pattern (data

access path), we need at most the following set of indexes: {SPo,OPs, POs,OSp}.
This set makes it possible to answer any triple pattern where the number of variables

27

is at least one. However, when we need to perform join evaluation, we may also need

PSo and SOp. consider for example the query q = {t1, t2}, where t1 = (?a0, c2, ?a1),

and t2 = (?a1, c3, ?a2). Assume that the optimizer decided to have the following

evaluation plan: evaluate both t1 and t2, then perform a sort-merge join on the

results. The evaluation of t1 should be carried out using the POs index in order to

have the result sorted on the object. On the other hand, the evaluation of t2 should

be carried out using the PSo index in order to have the result sorted on the subject.

This allows the merge join to take place directly without having to perform the sort

step, which would be necessary if one of the indexes is not available in the system.

Having more indexes provides the benefit of fewer queries execution time at the cost

of more storage space. We study and formalize this relation further in Chapter 4 and

show how it fits in our space adaption model where we consider other things that

require space like replication and cache.

Graph-based Stores

In a system with graph-based indexes, the query execution follows the graph explo-

ration algorithms.

Recalling our previous query example q = {(c1, c2, ?a1), (?a1, c3, c4)}, the query exe-

cution would either begin from the vertex of c1 or from the vertex of c4. The graph

exploration continues as it was explained in the data access path evaluation in section

2.6.3. Obviously, the selection of a good starting point would dramatically affect the

query execution efficiency. Trinity.RDF [85] suggested the use of dynamic program-

ming to solve such optimization problem. The authors also proposed a selectivity

estimation technique by considering the correlation between pairs of triples.

2.7 Distributed Triples Store

A distributed database is a concept applied to any database that resides on multiple

machines communicating by a network. Usually, this distribution should be trans-

parent to the user who issues queries and expects unified, correct, complete answers.

The reasons for having a database to be distributed are similar to the general reasons

of having distributed systems:

• Resources sharing. The most important shared resource for a distributed

database, is the storage space on all of its levels. For example, sharing the

main memory between 10 working nodes is more scalable and feasible than

increasing the main memory of a single node by a factor of 10.

28

• Reliability. Given the fact that any hardware is associated with a probability

of failure, the ability of the system to keep a high availability ratio is related

to the design of a backup system that can replace any failed part. This is

reflected in a distributed database system by making replication of data. Each

piece of data should reside on at least two physical machines or working nodes.

However, these replications create another challenge to the system in terms

of keeping the data consistency and employing these replications in queries

processing.

• Processing speedup. The database management system needs processing

power to answer users’ queries. A distributed system has generally more pro-

cessing power; however, the challenge is to design the system such that the

queries execution speedup behaves linearly with respect to the number of pro-

cessors.

The scale of current RDF triples is in the range of tens of billions, while some

commercial RDF data sets have already reported going beyond 1 trillion triples

[26]. This big scale clearly justifies the needs of having distributed triple stores to

provide resources sharing and system reliability, while trying to achieve considerable

processing speedup. We present next the main methods of storing the big RDF data

in a distributed environment.

2.7.1 Distributed Storage and Indexing

This section focuses on the main distributed storage approaches, which can be

grouped and classified into the following categories:

• systems which are built on Distributed File Systems;

• systems which are built on “NoSQL” key-value stores;

• systems which use a native centralized RDF store (Section 2.3.2) at each work-

ing node.

We briefly present each approach and discuss its performance as well as its chal-

lenging issues.

Relying on Distributed File Systems (DFS)

Distributed file systems are designed to support scalable and reliable storage of data

across a cluster of working nodes. Systems like Hadoop [24] automatically take care

29

of replicating the data to provide fault tolerance, and directly support scalable and

parallel query engine based on the Map-Reduce paradigm. However, the DFS stores

the data in files, and thus provides very poor grained data access. To overcome

this problem, some systems [39, 65, 87] vertically partition the triples into files upon

their predicates. However, a linear scan is needed on every file in order to search for

matching subject or object for a given predicate. Under this approach, some files that

represent frequent predicate within the data set, would end up to be very big files

which amplify the linear scan problem. HadoopRDF [39] suggested to detect such

files and further split them. Another approach would be to perform the partitioning

by subject or object, but it would end up facing the problem of having a high number

of small files.

Relying on distributed key-value stores

Key-value stores provide efficient non-relational storage of data with fine-grained

access suitable to the level of RDF indexing. Systems like HBase [25], Cassandra

[23], SimpleDB [7], and DynamoDB [70] work in clustered distributed environment.

The data model requires typically to define key-value indexes, which is specified for

the RDF data by choosing one or two7 of the triple elements as the index key, as

explained in section 2.4. The access to the data is fined-grained to the level of the

index key; however, the partitioning and assignment on the cluster is also performed

on the level of index-key. This makes the system pay considerable communication

cost to shuffle the data across the cluster, and perform the required join especially

in queries that have many connected triple patterns.

Relying on federated triple stores

This approach generally divides the system into set of working nodes, where each

node is responsible on its share of the RDF data in terms of indexing and query

processing. The partitioning and assignment is carried out by a master node. The

key point is that the partitioning is not done on the level of indexes as was the case

in the previous distributed key-value stores, but on chunks of connected data, or

by graph partitioning. For this purpose, METIS [45] is widely used. It contains a

collection of graph partitioning tools that follow the min-cut algorithm, with various

configuration parameters.

When the RDF data is considered as a graph, and is partitioned on this basis, the

working nodes would receive a connected bunch of data. This gives each node a better
7in some rare cases the index key may contain the three triple elements as key

30

chance to execute SPARQL queries locally, while decreasing the communication cost

of moving the intermediate triple pattern results across the cluster. We explain this

problem and its proposed solutions in the next section.

2.7.2 Data Partitioning

For a typical distributed RDF triple store, the underlying distributed storage ap-

proach determines how the data is distributed. For a distributed file system and

NoSQL key-value stores, the underlying system handles the task of the data par-

titioning, assigning, and synchronization. On the other hand, the federated triple

stores need to take the responsibility of the data partitioning themselves. As was

already introduced, a general federated triple store composed of n working nodes,

such that each node hosts an independent triple store that manages its own share

of data and handles the queries execution. The system needs to generate at least n

partitions out of the global RDF graph. In spite of that several methods exists to

handle RDF data partitioning, two main directions got more researchers attention

which are: Graph-based partitioning and Hash-based partitioning. We review both

directions in the next subsections.

2.7.3 Graph-based Partitioning

This direction of data partitioning makes use of the natural mapping of an RDF data

set to a graph by using one of the general purpose graph partitioning algorithms. The

behaviour of these algorithms is well known and highly researched. In this context,

the widely used algorithms for the purpose of RDF graph partitioning are the min-

cut algorithms. Such algorithm divides a graph into n partitions aiming to have a

minimum number of edges between the resulted partitions. The basic hypothesis

that justifies why such division could work for RDF graphs comes from the idea

that the most related parts of an RDF graph should be also highly connected with

a bigger number of edges. Thus, the partitioning objective when using a min-cut

algorithm is to keep the most related parts of the data in a single partition. Moreover,

since the query execution has been mapped to a subgraph matching problem, the

number of queries that require a flow from one partition to another is expected

to be reduced when there is a minimum number of edges between the partitions,

under the assumptions of uniform data access by the workload, and the uniform

partitions size in term of the number of vertices. In this context, the required min-

cut algorithm is expected to produce equal in size partitions that have a minimum

number of edges in between. Since such algorithm is known to be NP-complete [44],

31

an approximation algorithm is used that tries to achieve the best approximation for

both of the optimization objectives. METIS [45] is a collection of algorithms and

software tools that are known to give good results in this regard. Huang et al. [38]

were the first known to use METIS for this purpose. However, METIS is also used

by multiple works for the same purpose [37, 86, 28]. According to the authors of

METIS it requires O(|E| + |V | + k · log(k)), where k is the number of partitions.

However, the practical performance of METIS is highly dependent on parameters

like the required balance of the partitions’ sizes, the required accuracy of the min-

cut between partitions, and the edges density distribution of the graph. Setting strict

conditions would result in slow performance as noted by [80, 31].

Border Region

Applying the METIS partitioner on the example RDF graph in Figure 2.1 and setting

the required partitions number to 4 would result in the output shown in Figure 2.5.

Consider the queries shown in Listing 2.4 below:

Listing 2.4: Sample Queries

q1 : { : rod in ?p ?o}
q2 : { : rod in ?p ?o . ?o : exhibted ? s }
q3 : {? s : exhibted ?o}
q4 : {? s : exhibted ?o . ?o : l o ca t ed ? s }

The first query q1 is a single pattern query and only Partition 3 processes it to

output the triple: :rodin :create :thethinker. However, q2 contains another pattern,

and its execution requires some data that exist in both Partition 3 and Partition 4. If

we assume that each partition is assigned to one machine, then processing q2 requires

data synchronization from two machines which are connected over a network, and

communication cost needs to be considered when evaluating the query performance.

Taking into consideration the big size of the RDF graph and diversity in its relations

and connections, the intermediate results of a SPARQL query can be considerably

big. This motivates the use of the min-cut algorithm to partition the RDF graph in

the first place. However, since METIS represents an approximation algorithm which

is required to produce balanced partitions in term of their sizes, we still have a border

region at each of the output partitions. This border region contains vertices that have

edges coming or going to other partitions. We define this border region in the context

of this thesis in Chapter 5, Definition 5.2. This border region exists in Figure 2.5 for

the four partitions and composed of one vertex. Partition 1: {:guernica}, Partition

2: {:reinasofia}, Partition 3: {:thethinker}, and Partition 4: {:museerodin}. Every

32

Figure 2.5: METIS output example by [42]

time a query like q2 touches a border region, we should expect the communication

cost of moving intermediate results across the network.

Another point that makes this border region require special attention is that the

min-cut algorithm assumes uniform data access by the queries. This means each

vertex and edge in the data set have equal probability to contribute in the queries.

However, this is not true about a typical RDF workload, where some parts of the

data are more frequently accessed by the workload. This is more explained in Section

3.3. Thus, if some vertex that happens to be part of the border region is also part of

the most frequent workload, high communication costs are going to be paid in term

of the query execution performance.

Border Region Solutions

To overcome the problem of the METIS border region, several solution approaches

are proposed. First approach proposed by Huang[38] is to replicate the border region

to all the concerned partitions. A similar approach is also followed by [55, 47, 37].

Figure 2.6 shows how can this be applied on the METIS output of Figure 2.5. This

replication approach is called 1-hop guarantee since it is now assured that any query

can be locally answered if it is requiring vertices which are located no more than

one hop from the border. We refer to this hop measure as the distance from the

border as given later in Chapter 5. Considering the 1-hop guarantee partitioning, q2

can now be answered locally using only Partition 3. A 2-hop guarantee increases the

33

replication’s depth one step further as seen in Figure 2.7 allowing the local answering

of longer queries with no need for network communication.

The obvious drawback of the above solution is its storage space requirement which

is showing exponential growth with the increasing depth or number of hops. The

second drawback of fixed replication distance, is the lack of a systematic method-

ology to determine the appropriate distance value that the system should consider

for replication. To overcome these issues WARP [37] suggested looking to the work-

load. All the initial steps of partitioning and assignment followed by Huang are still

followed by WARP. However, WARP proposed to perform limited fixed replication

from the border region as Huang suggested but only to a small number of hops Hr,

then use the workload to perform further replication for more important triples. The

process of workload analysis is based on Partout [26]. It sees the workload as a set

of given queries that represent a sample of historical queries. Each query is a set

of triple patterns, each triple pattern is a set of exactly three items, and each item

can be a constant or a variable. The operation of workload analysis starts with a

process called normalization. It counts the number of occurrences per item within

all the triple patterns. Then, a certain threshold γ is assumed to exist such that an

item with a number of occurrences that is fewer than γ is considered non-frequent.

All non-frequent items and all the variables within the triple patterns are now re-

placed with a single variable α. The process creates a single set of normalized triple

patterns pn, where each pattern is associated with a frequency value. The WARP

uses the information provided by this set to detect the most important triples that

are located at the partitions border, and replicates them. Those most important

triple are determined when they match one or more patterns in pn such that the

frequencies summation of the matching patterns is above a certain threshold Crep.

As WARP provided a good methodology of solving the border problem depending

on the workload, it didn’t provide any clear approach to detect or calculate the two

thresholds γ and Crep, beside the initial static Huang replication distance Hr, which

is described by WARP as small distance. Setting the values of these thresholds and

constants represents open challenges to the applicability of the approach. Another is-

sue with the WARP approach is that it presents a binary importance function to the

triples, such that a triple that has an importance greater than Crep is considered hot;

however, all hot triples are treated with the same level of importance. This doesn’t

simulate the practical workload trend which has continuous behaviour. Thus, the

binary importance decision would give a weak performance, and goes weaker in case

the workload is varying, the storage space available for replication is limited, and

34

Figure 2.6: 1-hop guarantee example by [42]

there are other storage requirements by the system. We will show in Chapter 6 that

our universal adaption system provides more advanced solutions to all of these issues.

Our important function to the border region is continuous and is derived within the

same domain and relativity of other storage requirements such as indexes. The sys-

tem adapts itself with the workload and has no fixed threshold that needs to be set

at run time.

2.7.4 Hash-based Partitioning

The second direction of RDF data partitioning is by applying a hash function to

decide to which partition the triple should be assigned. The hash is typically applied

to the subject of each triple in AdPart[31]. However, some systems like TriAD [28]

perform another hash assignment on the object. There are three basic advantages of

hash-based partitioning which are:

1. Fast and lightweight process since it requires only one round of hashing that is

linear with the number of triples. In term of the graph measures, this operation

requires O(|E|) steps.

2. The locality of any triple can be easily determined by direct applying of the

hash function on the subject.

35

Figure 2.7: 2-hop guarantee example by [42]

3. Achieving high parallelization of some queries is possible. These queries are

mostly the short in length unbounded queries.

However, the main disadvantage of hash-based partitioning is that it may cause

high communication costs for most types of queries other than those mentioned by

point 3 above.

A possible hash-based partitioning of the RDF graph in Figure 2.1 is shown in

Figure 2.8. Any star query that is bounded on the subject can be evaluated by

a single machine; however, there is no distributed parallelization in this case. An

example of such a query is q1 given by Listing 2.4 which will be answered by the

machine hosting Partition 2. However, q2 needs both Partition 2 and Partition 4.

Generally, the more hops a query performs, the more the probability of hopping to

another node (machine), because of the hash-based assignment of subjects. If the

query is not bounded, which means that it has no constant at any subject or object,

then there is a better chance for parallelization. Consider for example q3 in Listing

2.4, the query is only bounded by the predicate :exhibited. Since we are performing

a hash on the subject, we may assume the subjects who have the predicate :exhibited

are fairly distributed around the partitions (working nodes). Thus, the system can

evaluate this query by all nodes in parallel. However, the results of this query

could have strong dependency on the selectivity of the predicate :exhibited in the

36

big data set. The results need to be unified at some node and would still need the

communication cost. If q3 is extended to q4, which is still unbounded, but requires

a second round of execution that performs the exchange of the intermediate results

between Partition 3 and Partition 4 then joins them. The longer the query, the more

probability of the indeterminate results exchange; and the more the selectivity of the

predicates the bigger the size of the moved data.

Applying the hash of the subject of any triple pattern would directly locate where

the triples that match this pattern or in which partition they are. For instance, if

the triple pattern of q1 is been processed by the node hosting Partition 1, it can

directly know that only Partition 2 has the related triples, and thus may directly

route it to the designated node. Such a strategy has been employed by AdPart [31]

to route the intermediate results only to the hosting node. However, the METIS-

based partitioning faces the problem of intermediate results synchronization only

when it touches the border area. Since this area is cut with edges that go to(or come

from) other partitions, and each node can know exactly to which node each edge is

connected (by having 1-hop guarantee), it can easily route the intermediate result

only to the designated node. Moreover, any destination node can determine if any

subject exists within its partition by one call to the SPo index, which is a hash-based

index on the subject of each triple. This operation would cost similar or comparable

time with respect to applying the hash function on the subject at the source node.

2.7.5 Data Partitioning Summary and Conclusion

The applicability of each partitioning strategy is highly related to the type of the

data graph and the type of queries that are expected to be evaluated on it.

The hash partitioning is generally faster, easier, and more deterministic. On the other

hand it, causes higher communication costs for longer and more complex queries.

The graph partitioning is more sophisticated and thus it is less deterministic in

terms of the size-balance between resulted partitions and the density of edges that

cross the cut or what we called the border region. However, in terms of queries

evaluation, it requires communication costs only when the evaluation touches the

border region. Thus, graph partitioning can more efficiently process longer and

more complex queries, if the border region is small or limited compared to the total

data graph.

In both approached, the problem of communication costs can be overcome with

replications; however, for graph partitioning it is easier to handle, manage, and

measure since it is only related and limited to the border region. In hash partitioning,

37

:guernica :reinasofia
:exhibited

:reinasofia
:located

:madrid

“Auguste”

:rodin :thethinker
:creates

:name

:thetinker :muserodin
:exhibited

:muserodin
:located

:paris

“Pablo”

:picaso :guernica
:paints

:name

Partition 1 Partition 2

Partition 3 Partition 4

Figure 2.8: The hash-based partitioning of graph in Figure 2.1

it is more difficult and challenging to decide which data to replicate.

Another point of comparison is the distributed speedup or the ability of the system

to process a single query by multiple nodes. Since the graph-based partitioning aims

to increase the chance of local query execution, it is more difficult to utilize all of

the system processing resources during the evaluation of a single query. The hash

partitioning has more balanced data distribution and thus we may expect better

load balancing. The benefit of speedup may overtake the increasing communication

cost, in case of short unbounded queries. However, when we consider the general

queries arrival trend in a practical server [78], the system has many queries in its

queue, and thus utilizing the system resources with multiple queries gives better

throughput than trying utilizing the processing resources with a single query bearing

the communication cost. In this context, [41] showed different cases where the queries

perform better on hash-based partitioning compared to graph based partitioning.

However, the authors used single queries (total 20), one at a time, and measured

their performance.

We will show in Chapter 7, the impact of each of the above points, and the practical

effect of each partitioning approach on the query performance, system throughput,

and the adaptation of the system.

38

2.7.6 Discussion

From the different approaches that have been presented in this section, we can iden-

tify that when the RDF management system is relying on existing general tech-

nologies, it inherits their optimized scalable performance and the simplification of

implementation, but lacks enough flexibility to tune the RDF system towards its

specific and customized needs. For example, a system may gain benefits by relying

on distributed file systems but looses the fine-grained data access. On the same

regard, using a general key-value store to store RDF data, makes the system show-

ing high performance when querying a record by its key which is called data access

path in our used terminology. However, the RDF system has lost the control of

data partitioning and replication which is handled by the underlying key-value store.

Giving that, except for short SPARQL queries, the system may require several in-

dexes access to evaluate a single query, the high performance of the data access path

would be ruled out by the cost required to move the intermediate results across the

distributed nodes and join them.

From the given analysis of used RDF management approaches, a native RDF storing

system provides the ability to handle the special challenges emerging by storing RDF

data in a distributed system, optimize the performance of SPARQL query specifi-

cally, and adapt the system with workload and storage capacity. This provides the

basis we used to construct our decision of using a native RDF system where we have

a cluster of federated triple stores or working nodes, such that each working node

has its own share of the data that it should store, manage and query.

2.8 Most-Related Work

In this chapter, we have presented so far the techniques, and the approaches used

to store, manage and query RDF data, which are related to our work in this thesis.

In this section, we review and summarize the works that are closely related to the

main contribution of our thesis, although some of them were already mentioned and

discussed within the sections of this chapter.

RDF-3X[56] is one of the first native centralized systems that was specifically

designed to store and manage RDF triples. RDF-3X uses an excessive index scheme

by implementing all the 6 possible indexes arrangements. To decrease the storage

overhead, RDF-3X uses a dictionary, where each textual element in the RDF data

set is mapped to a small integer code. The query needs to be translated using the

dictionary before the execution, while its result needs also to be translated using a

39

dictionary to print the final textual results. The six-indexes scheme is used before

RDF-3X by Hexastore [81]. However, besides the six indexes, RDF-3X uses aggregate

indexes where it does not store the actual triples but the number of its occurrence

for a certain key. These aggregate indexes are used for selectivity estimation and

the generation of an optimal query evaluation plan. RDF-3X is used as the base

of multiple federated distributed triple stores such as Huang [38], WARP [37], and

Partout [26]. We use RDF-3X as the baseline of the part that provides the hard disk

support to UniAdapt.

The H-RDF-3X system by Huang et al. [38] was the first distributed system

that used a grid of centralized systems, such that each node is hosting an RDF-3X

triple store. At each node, there is an add-on that handles the partitioning and dis-

tributed query processing. The data is partitioned using METIS such that each node

receives a partition. To reduce the communication cost, H-RDF-3X forces k-hops

replication performed equally on all the vertices in the border region that are located

within k-hops from the border. Any query that is shorter than k is guaranteed to

be locally executed. However, for longer queries, they may require joining interme-

diate results from different partitions. H-RDF-3X performs this using MapReduce

joins over Hadoop. Unfortunately, the storage overhead of the replication increases

exponentially with k, and H-RDF-3X did not provide any systematic method to prac-

tically calculate the value of k. Given the RDF workload behaviour (Section 3.1), it

could leave most of the replicated data unused despite its high communication cost.

Partout [26] was the first system that implements workload awareness on the

level of partitioning. It uses the minterms principle to horizontally partition the

data set into fragments inspired by the classical approaches of partitioning relational

tables [16, 57, 48]. The system tries to assign fragments to partitions such that the

most related fragments are assigned to the same partition. The fragments are more

related when they contain triples that appear more frequently in the workload. The

main problem of this partitioning is that its result is highly affected by the quality

of the used workload in terms of its queries’ frequency of appearance and whether

the prospected queries are still going to follow the same trend of the used workload.

As a result, it could end up with small fragments representing the workload and a

big single fragment containing everything else.

WARP [37] proposed to use a combination of Partout and H-RDF-3X aiming

to overcome their problems and emphasis their benefits. Initially, the system is

partitioned and replicated using H-RDF-3X approach and with a small value of k.

40

Then, the workload is used to decide on making more replications from the border

by recognizing the most important triples. The workload analysis is basically similar

to that of Partout. The workload is normalized 8 and its items are aggregated

on the frequency. An item is considered frequent when its frequency exceeds a

certain threshold. Unfortunately, there is no specific method given in [37] to calculate

this threshold. Moreover, WARP uses initial static replication of k-hops, but lack

the specification of determining it. Another issue with WARP is that it treats the

frequent items equally even if they are very various.

Peng [60] proposed a partitioning and assignment approach inspired by Partout

[26]. It detects frequent patterns in the workload and uses them to generate two

types of fragments. The first is vertical fragments which are basically similar to

the Partout horizontal fragments. The objective of this vertical fragmentation is to

decrease communication costs during queries evaluation. The other type of fragmen-

tation is called by the authors: horizontal fragmentation. This fragmentation process

tries to distribute data matching frequent patterns to many fragments such that the

working nodes in the system may process them in parallel when a related query

is evaluated. As a result, the first fragmenting operation aims to increase the sys-

tem throughput, while the second aims to increase the system distributed speedup.

While the workload analysis process is similar to Partout and WARP, Peng has a

continuous benefit function to sort the fragments by their importance. However, the

approach amplifies Partout’s problem of workload dependability. If the system has

very limited frequent patterns or the queries happen to come in different trends of

the frequent patterns, the system may behave very badly.

AdPart [31] is an in-memory distributed triple store. It aggressively partitions

the data set by hashing the subject of each triple. As this is known to produce

high communication costs, AdPart proposes two solutions. The first solution is by

updating the dynamic programming algorithm [56, 53, 85, 28] that is used to find the

optimal query execution plan, to include the cost of communication. The objective

of the algorithm becomes to find the optimal plan to reduce both the join cost

and the communication cost. However, this algorithm depends on the accuracy of

the cost estimation which is already a challenging issue regarding calculating the

optimal join plan in a centralized system like RDF-3X [56]. The second solution

to the communication cost problem is by adding workload-driven replications. As

the basic idea of workload analysis still similar to Partout [26] in term of frequent

patterns, normalization, and global items graph, AdPart does not assume the existing

8More details about the normalization process is given in Section 2.7.3

41

of any workload at the system startup, but instead collects, builds the workload,

and adapts its replications with time dynamically. Similar to the previous systems

Partout and WARP, AdPart requires the hard setting of a frequency threshold that

is used to differentiate between frequent and non-frequent items, making it a non

fully automated system.

We propose UniAdapt as an in-memory distributed triple store. It increases

the level of system adaption to include both the workload and storage space. The

system looks to the workload and adapts the structures used to employ its storage

space. Initially, the system starts with METIS base partitioning, which provides a

solid ground in case the workload comes in lower quality and its trends were not

well recognizable. UniAdapt proposes a cost model to estimate the relative benefits

of replications as well as the local indexes and caches. The benefit functions are

continuous and on a single domain which enables the system to always fill the storage

space with the best-known employment option. As a contrast to other systems,

UniAdapt does not need fixed settings or thresholds, and shows better immunity

to bad quality of the workload due to its unique layering of workload rules. It has

three types of rules: specific, general, and generalized. Each rule is factorized with

a ratio of impact that goes down when the rule is less effective. The whole workload

adaption is working within the area of space adaption. Thus, when the storage space

becomes abundant, the workload adaption constraints are automatically relaxed, and

this is translated with more replication, more indexes, and more caches.

Table 2.3 states the abstract, specifications, main advantages, and drawback of

related RDF triple stores, most of them employ workload for some level of adaption.

2.9 Summary

We presented in this chapter, the principles of Resource Description Framework

(RDF) as a complete and standalone data model that has its specification, vocab-

ulary, and serialization format. The RDF model is directly mapped into a graph,

and thus can be queried in a graph-based querying language like SPARQL. The

performance of query processing is highly related to how well the triples-data are

structured and indexed. In this context, some systems proposed to use an extensive

number of indexes to reach enough flexibility in query evaluation aiming to enhance

the performance. However, this requires a lot of storage space.

The RDF data model is used for web-scale data, which forces the storing system to

be designed on big-data principles. The move towards a distributed RDF storage

system is seen as vital in this regard. However, this imposes new challenges to keep

42

Partitioning M.Memory Adaption Advantages Disadvantages

Huang METIS No No Lower communi-

cation cost

High storage over-

head

WARP METIS No Replication

with work-

load

Decreased Stor-

age overhead

Fixed thresholds,

poor workload

adaption

Partout Horizontal No Partitioning

with work-

load

Presented the

base of workload

analysis

Fixed Thresholds,

requires high

workload quality

Peng Horizontal,

vertical

No Partitioning

with work-

load

Tries to Increase

throughput and

parallel speedup

Fixed Thresholds,

requires high

workload quality

AdPart Hash Yes (no

H.D.)

Replication

with work-

load

Fast partition-

ing, decreased

communication

cost and high

parallelization in

short unbounded

queries

High communica-

tion cost in long

queries and low

workload quality,

fixed threshold

needed.

UniAdapt METIS Yes+H.D. Replication+

Indexes+

processing

resources,

with work-

load and

space

Flexible, continu-

ous, and univer-

sal adaption, no

fixed thresholds,

high throughput,

lower communica-

tion cost

Slower startup,

may show lim-

ited distributed

speedup on the

scale of single

query.

Table 2.3: The most related systems which employ workload adaption

the system scalable and optimized in terms of the storage space, which should in

this case, not only host many indexes but also replications from the distributed par-

titioned data, keeping in mind that these replications on their turn need to be well

indexed.

The methods to manage the RDF graph partitioning were considered by many re-

search works. However, two important directions are graph partitioning and hash

partitioning. While both have their points of strength and weakness, some works

43

suggested to look for the workload and have workload-aware partitioning. Since

this can create non-stable behavior in case the workload is not good enough, other

works suggested having workload-aware replication to support the static partitioning

(graph or hashed). We identified the storage space as the common constraints that

should tune the workload adaption for replication and indexes. In this thesis, we will

propose and describe in the upcoming chapters a universal adaption concept where

the indexes, replication, and join cache are competing for the limited storage space

aiming to increase the system performance.

44

Chapter 3

Workload Analysis

In this chapter, we formulate the adaption system and its related cost model. Ini-

tially, we define our cost model that is used to enable the system’s universal adaption.

We detail the role and effect of the workload and how we structure and analyse a

collection of workload queries in order to estimate the resources access rates which

represents the moving heart of the cost model triangle. This cost model is used to

adapt the storage space in terms of the: indexes, replication, and join cache. We

provide for each option the necessary formulas of cost, benefit, and access rate. For a

summary and description of all the mathematical symbols used in this chapter please

refer to Appendix B.2.

Contents
3.1 Why Adaption? . 46

3.2 Universal Adaption . 47

3.3 The Role of the Workload 51

3.4 Workload Rules . 56

3.5 Heat Queries . 59

3.6 Heat Query Specific Rule 65

3.7 Summary . 66

45

46

Replications engine

Indexes engine

Join-cache engine

Workload

Analysis

Module

Operational

Rules

Access

Rules
Operational

Rules

Operational

Rules

Uni.

Adapt

Chapter 3

Figure 3.1: Chapter’s scope

3.1 Why Adaption?

Database tuning is already a well-known concept in database management systems;

it refers to the directive change in system parameters towards better optimization of

available system resources. The effect of applying such tuning has a deeper impact

on RDF management systems, where the indexes are very vital, and the storage

space is very precious. Consider for a case example, the SPARQL online service of

dbpedia.org1. The service is hosted on two CentOS 6 virtual machines. Each one

has 8 Intel Xeon 2.30 GHz cores, SSD of 200 GB, and 64 GB main memory [78].

Assuming we run two federated RDF stores on each working node, and each node

receives its partition of the RDF data set using a graph partitioning tool like METIS

[45]. The system needs further to decide at each node about the replication’s size and

type, the number and type of indexes, the main memory and/or hard disk allocation,

and the number of threads to be used for each query, given that each node has 8

hardware threads. According to an analytic study of a big of real users’ queries log

[12], about 80% of the queries that targeted a certain data set which is DBpedia were

short queries. Moreover, the access rates of the given online service were suddenly

doubled within a period of three months. Given only these two measurements, the

1Available at: http://dbpedia.org/sparql/

47

system may perform important adaption steps to substantially enhance its total

execution time considering the following points:

• The ratio of 80% short queries means that the system does not need to have

replication at the border of the partitions (needed to support long queries as

shown in Section 5.1), unless it is able to recognize the size and locality of the

20% percent longer queries.

• The high number of arriving queries could mean that there are waiting queries

in the queue most of the time. This means that the system should focus on

having better throughput (i.e. executing more queries) rather than having

high parallelization rate per query. By this, the system avoids the threads

synchronization cost2 which typically increases with the number of used threads

per query in single working node. Moreover, the distributed nodes should try

to locally execute each query and avoid any network communication cost (See

details in Section 8.2).

• Given that the system does not need border replication for most queries, the

storage space can still be employed by replications to enhance the load balance

between working nodes on the cluster scale, and reflect this on the number of

waiting queries within the queue of each working node.

From the above example, we see the system’s ability to perform adaption steps

to increase the performance, by the knowledge of only two or three measurements

which are relatively easy to measure and maintain. However, we can also notice an

overlap between the storage optimization decisions with respect to the replications,

indexes, and the queries’ arrival rate. This is clearly motivating the needs of universal

adaption decisions that considers the overlapping measures.

3.2 Universal Adaption

In the previous section, we have shown the importance of optimizing the system’s

resources which can be classified into space resources and processing resources. Our

adaptable system aims to make its resources adaptable with its knowledge of the

environmental parameters that affect the performance. These environment parame-

ters include workload, queries arriving trend, and data-sets types. We denote these

parameters as adaption subjects. The storage space is divided into a set of space

resources, such that each resource is the smallest unit of storage that the system
2Details on the threading cost are given in Chapter8

48

considers for optimization. Each resource can be filled with a unit of data equal

to its size which we refer to as the consumer. The storage resource may maintain

the unit of data in one of multiple indexes where each index represents a potential

option.

Each resource can be assigned to one consumer and one option which forms the

adaption triangle shown in Figure 3.2. As different triangles can contain the same

resource and may deliver different benefits to the system, the optimizer may select

the most optimal triangle for each resource. In this context, we can now set our

optimization problem as the following:

Given a set of resources, a set of consumers, a set of employment options, and a

current knowledge of adaption subjects, what is the best assignments of consumers to

resources and in which options such that we gain the best query execution time?

In order for the system to answer the above optimization problem, it needs to have

a cost model that can anticipate the benefits of the potential triangles associated with

each resource, and this is what the adaption subjects are used for. The system builds

its knowledge about these subjects and uses it to anticipate the benefit of employing

the system’s resources with different choices. For space resources, these choices are:

the unit of data and the chosen type of index. The selected unit of data should exist

in another source index prior to the optimization process, and it must be different

in place(e.g. memory, hard disk, or remote) or type from the destination index.

This difference generates a performance benefit to the system which the optimizer

considers when deciding which unit of data to assign for each available storage space

resource.

From the above context, we can describe the space-adaptable system as the system

that is able of making optimized decisions about how to employ each of its storage

units in order to achieve the best query execution performance within the current

knowledge of the workload. At the same time, these accumulative decisions make the

whole layer of indexes dynamically changeable in size, and the different local indexes

are competing for space aiming to maintain more data. Moreover, looking from a

higher level, we see the distributed system able to dynamically set its replications

and local indexes, and the triples are moving around the nodes in the direction of

achieving lower queries execution times.

In order for the system to have the required level of universal adaption, it needs

to have a unified cost model considering all of the data sources and storage options.

The cost model should set both benefit and cost values to the proposed decision

options, while keeping in mind that these cost and benefit values need to be relative

49

Figure 3.2: Components of the adaption model

and on single measurement scale, in order to make them comparable on a single

selection line.

The space-adaptable method can be generalized to the adaption of the processing

resources in the system keeping in mind that it is related to the queries arriving

trends more than the workload knowledge.

3.2.1 The Cost Model

In order to achieve the universal adaption objective that has been described in the

previous section, we aim to have a generalized cost model, in which we keep its input

on the level of a single resource unit r. Please refer to Appendix B.2 for clarification

of any used mathematical symbol.

We assume that each resource unit can be consumed by any of c consumer units.

As it was mentioned earlier, there are multiple options op(r, c) to utilize resource unit

r with the selected consumer c. We refer to these options here as a function op(r, c)

which returns for each resource and consumer a set of available unique options’ iden-

tifiers. Each option opi ∈ op(r, c) is going to deliver a benefit to the performance

that we denote η(opi), and this is more precisely described as the ratio of the maxi-

mum execution time that could be saved when the system uses the option opi, to the

execution time under the case of option opi is not available to the system. However,

the effective system benefit of having option opi is related to the system’s needs to

50

use the resource r, which we denote as the resource’s access, and that is in turn

mapped to the probability of this access ρ. The general benefit formula of exploiting

a certain resource unit with a certain option can be defined in the following:

benefit(opi) = η(opi) · ρ(opi) (3.1)

opi ∈ op(r, c)

Besides a unified and generalized benefit formula, the system needs to find a

generalized cost of each option within each resource unit. A suitable and measurable

value is the ratio of resource consumption needed to employ this option.

In order to apply this model to the storage space, we need to have the following

three points:

• define the storage employment options per single storage unit;

• derive a method of evaluating the benefit of each option, given that the cost of

each option is easily measured by the space size needed for each option with

respect to the total available size; and

• derive a method to evaluate the probability of accessing of each option depend-

ing on the analysis of adaption subjects, as we explain in the next subsection.

3.2.2 The Resources’ Access Rate

According to the cost model of the previous section, the benefit of utilizing some

resource r with a certain consumer c is not used in the optimization process until it

is related to the extent of its future usage. We derive this future usage which is stated

in Formula 3.1 from the system previous knowledge of the performance parameters

which we have previously called adaption subjects. Those subjects are related to the

workload and the queries arriving trends. The system collects the history of those

subjects, analyses them towards deriving a resource’s access value. That access value

represents the system’s usage to that resource when employed by certain data that

is structured in certain option.

The workload analysis process aims to derive resources’ access value. It can be

classified into three categories:

• General analysis, by gathering general statistical metrics measured over the

entire collected history without specifying certain data parts. This includes

for example the average query’s length, the average query’s shape, and the

average query arriving rate per time unit. That kind of analysis simulates the

51

Figure 3.3: Average number of hits per day versus the DBpedia version, as appeared

on [78]

hard observations used to make the fixed assumptions about the workload by

non-adaptable systems.

• Specific analysis, which targets specific data parts that play the role of a con-

sumer c in Formula 3.1. An example is the count of (frequency of) specific

data vertex in the workload.

• Generalized analysis, which is originally specific analysis that have been gen-

eralized to give expectations about other parts of the data or other consumers.

An example is when generalizing a specific vertex’s frequency to other vertices

that have an edge with the same predicate. The motivation behind having

this generalization approach is to make the system able to work with a smaller

amount of collected adaption subjects. However, we treat such generalized

analysis with more caution by measuring their effectiveness to decrease the

impact of bad generalization.

3.3 The Role of the Workload

The ultimate objective of the RDF triple store is to run users’ queries. The metric to

measure the system performance is related to the query response time, or to queries-

set total response time. In this context, we refer to the workload as a set of queries

at a certain time period within the system’s life span. If the workload’s time is in the

past, the query set is considered a history workload. Otherwise, the future workload

is referred to as set of queries that the system is expected to receive at some points of

52

time in the future. The expectation is recognized by a numerical probability value.

The system’s adaption with the workload is the steps that the system takes in order

to make use of its history workload aiming to increase the performance of future

workload. In order to give a precise definition of the workload, we state first the

definitions of the basic concepts that are used within this thesis. We have defined

the RDF graph in Chapter 2, Definition 2.1.

The basic element of a SPARQL query is the triple pattern which we define in the

following:

Definition 3.1 (Triple Pattern) A triple pattern t is defined as triple t = (ŝ, p̂, ô);

each element is either a constant or variable. The triple pattern answer is defined as

ta = {dt ∈ D | match(t, dt) = 1}; and

match(ta, dt) =



1, if ∀xi ∈ ta, ∀yi ∈ dt, i = {0, 1, 2} :

(xi = yi) or xi is a variable

0, otherwise .

The SPARQL query and its answer can now be precisely defined:

Definition 3.2 (Query, Query Answer) We refer to a query q as a set of triple

patterns {t1, t2, ..., tn}. This set composes a query graph qG = {qV , qE}; qV is a set

of graph vertices given by qV = {v | ∃t ∈ q : t = (v, p̂, ô) ∨ t = (ŝ, p̂, v)} The query

answer qa is the set of all the sub-graphs in an RDF graph G that are matching

the query graph qG and substituting the corresponding variables. A query graph qG
matches G1 = {V1, E1} that is a connected sub-graph of G if |qE | = |E1|, |qV | = |V1|
and the following condition holds:

∀e1 ∈ E1,∃!e2 ∈ qE : match(t, d) = 1, t = mapToTriple(e1), d = mapToTriple(e2),

where mapToTriple(e) is the function that maps a data graph edge e to the corre-

sponding triple as given by Definition 2.2.

The query length is an important measurement of a query and given by the

following definition:

Definition 3.3 (Query length) Given query q and its query graph qG = {qV , qE};
and let q̂G be the undirected version of gG. The distance between any two vertices

v1, v2 ∈ qV which we denote as: d(v1, v2) is the count of vertices in the shortest

53

path from v1 to v2 in q̂G. The length of q is the maximum distance between any two

vertices in its graph which is given by:

ql = max
{∀v1,v2∈qV ,d(v1,v2)6=∞}

d(v1, v2) (3.2)

ql = max
∀vi,vj∈v

dist(vi, vj)

We can now state a clear definition of the workload:

Definition 3.4 (Queries Workload) A collected workload up to time t is defined

as a set: Qt = {(q1, f1), (q2, f2), ..., (qm, fm)}, where qi is a SPARQL query, and fi
is the frequency of its appearance in the workload. The workload answer Qta is the

set of the query answers of Qt.

Q(t1, t2) refers to the workload collected in the time period [t1, t2).

3.3.1 Real-world Workload Analysis

There are many live services that provide SPARQL endpoints allowing users to run

their own queries on RDF data-sets. However, the users’ queries logs are not available

publicly, but there are multiple research works [12, 30, 68, 61] that deeply analyzed

the real queries logs and produced their properties such that testing queries that are

simulating the real log, can be relatively easy generated.

• Frequent patterns often exist with different levels of distribution and impact.

Some of these patterns are frequent in a very limited time period [12]. These

limited periods are justified by users tuning their queries until getting satisfying

results.

• There is a detectable correlation between the used data sets and the complexity

distribution among the issued queries. See Figure 3.4.

• A correlation between the queries’ shapes and both of the evaluation time and

the result size.

From the above points, a workload aware system in which a workload is used

as a measurement subject to adapt the storage structure, should not assume fixed

trends. Instead, the system should adapt also with the workload itself. This implies

evaluating the workload properties dynamically at run time and measure their ef-

fectiveness. These measurements are further used to increase the impact of highly

54

Figure 3.4: Percentages of queries exhibiting a different number of triples (in colors)

for each dataset for Valid (left hand side of each bar) and Unique queries (right-hand

side of each bar) as appearing in [12]

.

effective properties and obliterate the impact of those with low effectiveness. Hav-

ing this functionality allows the system to apply the adaption in different levels of

workload quality.

3.3.2 Evaluation Locality

In this subsection, we consider how workload queries are projected and interacted

with an RDF graph. From Section 2.6 and Definition 3.2, we have seen that the query

execution is the process of finding all the subgraphs in the main RDF graph which

match the given query’s graph. The way of how those subgraphs are widespread in

terms of locality has a big effect on the execution complexity and performance. From

an analytical point of view, we classify this locality interaction between the query

and the data-set into the following two aspects:

• The data-set aspect.

• The query-graph aspect.

Locality with respect to the data-set

The RDF data sets that form a big graph have usually non-equal access rate. This

also means that some parts of the graph show heavy access, while most parts of the

55

graph are been accessed with a much lower access rate [66]. In a set of real-world

queries that were targeting DBpedia, more than 90% of the queries target only 163

frequent sub-graphs [60]. Detecting these hot parts of the RDF graph is one of

the fundamental methods to make the systems more adaptable to the workload.

However, there are different methods and approaches to detect those frequent parts,

and there are different strategies to employ them for the sake of system benefits.

Some systems use the detected frequent patterns to recognize which parts of the

data-graph are more relevant to replication [37, 31], others consider those parts

when doing the data partitioning [26, 60], and others use them to detect the most

important pieces of data for caching in main memory [59]. Those methods with their

challenges were reviewed in Chapter 2. One of the most challenging factors that

affect the outcomes of these approaches, is their flexibility to cope with different

workload heterogeneity levels, and their ability to tune themselves dynamically when

the workload changes over time.

Locality with respect to the Query-graphs

The shape of the query itself and its layout has a very important effect on the

amplitude of its spread within the RDF graph. In most cases, this can be estimated

merely by observing the query graph, and the distribution of variables and constants

within its structure. That was already introduced earlier in Section 2.6.1, in which

a query can be classified into bounded and unbounded and each type has its own

localization impact:

• Bounded queries: the query graph has at least one constant vertex within its

structure. The query execution is going to stick within a limited locality in

the RDF graph, that is the location of the constant vertex and its neighbours,

given that the system has the appropriate index to locate that vertex within

its indexing structure, as was explained in Section 2.4.

• Unbounded queries: if the query graph contains no constants in any of its

vertices, but has constants within its predicates, the number of the sub-graphs

that may match the query graph is unlimited. The only possible way to define

an answer for such query is to follow how the constant-edges are connected

within the query-graph and find matching sub-graphs in the RDF graph. Thus,

the execution in this case is widespread in terms of the data locality.

56

3.4 Workload Rules

In Section 3.2.2, we classified the workload analysis used to generate resources access

rate into general, specific, and generalized. The basic purpose of that analysis is to

find resources access rates under certain employment options. However, we could

have multiple access functions each is derived from a certain analysis. Moreover,

some of the access functions are targeting the same vertices, which creates multiple

access values. In order to systematically deal with these issues, each independent

access function is encapsulated within an access rule. An access rule has its source,

access function, and set of affected vertices.

Definition 3.5 (Access Rule) An access rule $ is defined as the following ele-

ment:

$ = (s, V̂ , a)

where a is a function that assigns an access rate value 3 to each v ∈ V̂ , and s is

a set of pattern functions that defines a set of vertices V̂ ⊆ V as the following:

s = {s1, s2, .., sn} such that ∀si ∈ s there exist function f(si) = Vs, Vs ⊆ V , and

V̂ = f(s1) ∪ f(s2)... ∪ f(sn).

Mapping the workload analysis into access rules enables the power of comparing

and aggregating different rules. It also makes it quiet easy to plug new rules into

the adaptable system. For example we define in Chapter 5, two rules about the

border replication. The first include a general access function, while the second has

a specific access function. The two access rules are aggregated into one rule that

sketches the net access values of the data in the border region.

The access rule draws the resources access rates under given employment options.

However, the cost model needs further the benefit and cost functions. For that, we

define the operational rule. An access rule can be converted into an operational rule

for the storage adaption purpose by providing the performance benefit function as

well as a destination index. The performance benefit is measured relative to the cost.

Definition 3.6 (Operational Rule) An operation rule is composed by associating

an access rule $, by a destination index χ and a relative performance gain function

∆:

$op = ($,χ,∆)

By applying Formula 3.1, a benefit function for each operational rule can be defined:

b(v) = ∆(v) · a(v)
3The access rate is explained further in Section 3.2.1.

57

A rule targets a set of vertices that is part of the RDF graph. However, there

are cases when more than one rules target the same vertex. That requires stating

the method of aggregating the rules such that each vertex has a net rule targeting

it and represents its net access rate. For that purpose, we state in the following

the aggregation properties for access and operational rules. Moreover, we state two

other properties which are the projection and source ordering, which will be used

later when stating the rules about indexes, replication, and join cache.

• Property 1 (Rules Aggregation). For two access rules $1 and $2, if V̂1∩V̂2 6= ∅,
then a new rule $g can be defined, that is the aggregation of $1 and $2 as

$g = aggregate($1, $2, e1, e2) = (sg, V̂g, ag), such that sg = s1 ∪ s2, V̂g =

V̂1 ∪ V̂2, and ag is defined as the following:

ag(v) =


a1(v) · e1(v) + a2(v) · e2(v), ∀v ∈ V̂1 ∩ V̂2

a1(v) · e1(v), ∀v ∈ V̂1 ∧ v /∈ V̂2

a2(v) · e2(v), ∀v ∈ V̂2 ∧ v /∈ V̂1

where e1 and e2 are weighting functions representing the effectiveness of $1

and $2 respectively.

We also refer to the function aggregate($1, $2, e1, e2) as aggregate($1, $2)

to indicate e1 = e2 = 1.

• Property 2 (Operation Rules Aggregations). For two operations rules $op1 and

$op2, if V̂1 ∩ V̂2 6= ∅, and if they share the same destination index χ, then

a new rule $g can be defined, that is the aggregate of $op1 and $op2 as

$g = aggregateop($op1, $op2) = ($,χ,∆), such that $ = aggregate($1, $2),

and ∆ is defined as the following:

∆(v) =


∆1(v) + ∆2(v), ∀v ∈ V̂1 ∩ V̂2

∆1(v), ∀v ∈ V̂1 ∧ v /∈ V̂2

∆2(v), ∀v ∈ V̂2 ∧ v /∈ V̂1

• Property 3 (Rule Projection). For an access rule $1, if there exist a pattern

function sp such that it defines V̂p ⊆ V̂1, then a new rule $p can be defined,

that is the projection of $1 on sp as $p = proj$1(s1) = {sp, V̂p, a1}

• Property 4 (Source Ordering). For an access rule $ = {s, V̂ , a}, where s =

{s1, s2, ..sn}, then the following elements of $ can be ordered:

58

1. vertices by their access.

2. source pattern functions s by their average access values aavg(s). There

is no loss in accuracy if for each si ∈ s, the access function a assigns the

same access value to each v ∈ f(si).

3. for an operational rule $op = ($,χ,∆), its sources can be ordered by

their average benefit values b(s) = aavg(s) · ∆avg(s). where ∆(s) is the

average performance gain for each source in the source set. There is no

loss in accuracy in the case of a(v) assigns the same access value to each

v ∈ f(si), and ∆(v) assigns the same performance gain value to each

v ∈ f(si) for each si ∈ s.

After ordering the sources set s, the head source that stands at the top of the

sources set is referred to as s̄.

We explain next the basis used to derive the general rules based on the collected

workload, then describe the concept of heat query map in order to use it for finding

the access values of the specific rules.

3.4.1 Basic Measurements for The General Rules

We mention in the following points, the average measurements that represent the

basis to build general rules about indexes and replications in the next two chapters.

• The average query length. Given a query q, its length ql is defined by

Definition 3.3. For a collected workload Q, we can find the average length qlm
by calculating the arithmetic means for all the queries it contains. This value

represents the expected length of the next query the system receives.

• The average query size. Definition A.4 determines a query size in terms

of its graph, evaluation, and result. Similar to the previous point, we extend

the measurement from the query level to the level of a collected workload, by

calculating the arithmetic mean for each of the given measurements. The mean

values serve as the general expectation of the system’s next query size.

• The average indexes usage. The execution of a query is carried out by

using indexes (Section 2.6). The system observes the execution of the collected

workload on the level of each index, and record for each index χ the count of

usage or frequency of access. The relative value of this frequency with respect

to the total system’s indexes usage represents the general rank of importance

of that index.

59

3.5 Heat Queries

In Definition 3.4, we have defined the workload as a set of pairs where each pair

represents a query with its frequency. However, we need to store the workload in a

structure that keeps the relationships between the queries as well as their frequencies.

That will provide the following advantages:

• It helps following up the workload shape development over time.

• It measures the access rate of specific part of the data-set, thus it fits within

the concept of the specific rules.

• It Allows the generalization of the workload to other areas in the data set.

The heat query has a concept inspired from the heat map but instead of the matrix

of heat values in the heat map, we have a graph of heat values in the heat query.

The workload is then seen as a set of heat queries. While the heat query extends

the original concept of global queries graph originally proposed by Partout [26], it

provides better generalization approach as we explain in Section 3.5.4.

The heat query are divided into two types: the main heat query graph which

simulates the structure of the query graph, and the secondary heat join map that

simulates the structure of the join across queries triple patterns. Before going into

the method of heat queries and heat join maps generation, we formally define both

of them.

Definition 3.7 (Heat Queries sets) We define the following two sets:

• set of main heat queries: H = {h|h = (qG, F,X)}, where qG is a query graph

as given by Definition 3.2, F is a function that assigns frequency values to each

vertex in qG, and X = {x|x = (χ, a, b)} is a set of the indexes types used to

evaluate h with their access and benefits values given by a and b respectively.

• set of heat join maps: Hj = {hj |hj = {Pj , Ej , l}}, where Pj ⊆ P , P is the

RDF graph predicates set (Definition 2.1), E ⊆ Pj × Pj, and l assigns a heat

value to each e ∈ E.

3.5.1 Heat Query Generation

We explain in this subsection the generation of the heat queries set out of a workload

Q and an RDF graph G. During the accumulative building of the workload, each

time a query q is executed, it forms a new heat query h as by Definition 3.7, with

60

heat frequency set to 1. Next, h is either added to the heat queries set H or combined

with H, if there is a heat query hi ∈ H that has at least one shared element. The

shared element is either a non-variable vertex or one or more triple pattern(s).

Combining two heat queries creates a bigger one, such that the shared vertices would

be hotter by getting the summation of heats of both heat queries. The combining

process is shown in Figure 3.5. When Q2 is received, it makes some part of the

previous heat query hotter by increasing its frequency. The same applies for Q3 and

Q4. Any variable in the query is replaced by a single variable x to allow the variables

to be directly combined. This is because the heat value in the heat query should

eventually reflect the frequencies of the data-set vertices. This also happens when

Q4 is combined. It increases the heat value of C1 in Figure 3.5 by one degree, and

create a node of variable x with a heat value equal to 1. By this process, a heat query

would be bigger in size with more workload queries getting combined regardless of

their order. The vertices of a heat query hq record two pieces of information: the

count of this query as frequency or heat value, and the count of each index used (or

to be used if the system doesn’t have yet the optimal index for executing this query).

The heat query shown in Figure 3.5 keeps a record of the queries vertices which can

be directly mapped to the data graph vertices by finding the answer of the heat query.

However, the heat query does not provide direct heat values about the predicates.

For instance, we cannot directly tell from 3.5 how many times p1 is joined with p2.

This is especially important for queries that have only predicates as constants. To

overcome this problem, the system keeps a set of heat join maps beside the set of

main heat query graphs. Figure 3.6 shows how a single join map is evolving.

3.5.2 Implementation Notes

Similar to the normal RDF graph, the heat queries are stored into its own indexes.

However, we only need one basic operation on these indexes which is the lookup of

any stored query by any of its constants. In this context, we need one index that is

hashed on the constants of the vertices and one index that is hashed on the predicates.

Each time a query is added, references to it (or pointers) are stored accordingly in

the two indexes. For instance, if Q3 in Figure 3.5 is received, two references are

stored in the constants-index on C4 and C5, and further two references are stored

in the predicate index on P2 and P3. A lookup operation on any constant would

return a list of all heat queries that this constant appears in it at least once. For

each triple pattern in the heat query, there is one value for the heat, one value for

the effect (explained in Section 3.5.4), and references to two vectors. Each vector

61

has one entry value corresponding to each index type in the system. The first vector

contains the access values, while the second contains the benefit values.

Whenever a query q is received, lookup operations are performed on its constants

and then on its predicates. One or two of the following cases will happen.

1. No match is found, then a new heat query is created and added to the indexes

accordingly.

2. A matching heat query h is found on one constant vertex. The found vertex

heat is increased by one. A further match check is performed on the triple

patterns of q and h, the heat values of the matching patterns are increased.

Any non-matching patterns in q are added to h and to both of the constants

and predicates indexes.

3. If Point 1 is fulfilled, and another heat query h2 is found, h2 is combined with

h, and the heat of shared vertices are increased accordingly. The operation is

repeated if further matching heat queries are found.

Upon the execution of q, the indexes’ access rates and benefits in h are updated.

A lookup of heat queries that are matching a vertex or pattern is a straight forward

operation using the indexes. Finding the heat queries that are matching a given

triple pattern is performed in two steps. The first step is to perform a lookup using

either a constant vertex from the pattern or a constant predicate. The second step

is to scan the triple patterns of the matched heat queries looking for a match to the

input triple pattern.

3.5.3 Generalized Rules

A heat query reflects the impact of the workload on specific parts of the data, which

are the parts that have been processed in order to find the answer of the queries

which are composing the heat query. However, in many cases, the workload is small

and requires a considerable amount of queries to be collected over time. Thus, there

is a big need to detect how the workload is composing over time, and generalize its

trend to predict future behaviour. The concept of generalization is also implemented

by [26, 37, 60]. However, the generalization in those works needs fixed thresholds

and settings. Moreover, it is very vulnerable to the bad workload or the workload

that changes its trends. Thus, it is very important to measure the effectiveness of

the generalized rule in order to relieve the impact of bad generalization and amplify

the effect of good generalization. We provide next, our method of generalization that

62

pays attention to the effectiveness of the generalization and avoids the drawback of

the previous given works in this regard.

3.5.4 Heat Query Anonymization 4

The triple pattern t is defined in Definition 3.1 as an ordered triple of items such

that each item can be either constant or variable. If t contains variable at either the

subject or object places, the triple pattern answer is tight to a certain vertex in the

data-set that matched one of the t constants. However, if t contains one constant

which is only on its predicate, and has variables elsewhere, the triple pattern can

be projected to all the vertices that have that constant as a predicate on one of

their edges. In this context, the anonymization process of t is the replacement of

the constants on its subject and object places with a single variable x, while it keeps

the constant at the predicate place. Moreover, the anonymization process ensures

that it also replaces all the variables within the workload with the same replacement

variable x, such that it allows the union of the matching heat queries according to

the process explained earlier in the heat query generation process. If t contains a

variable at its predicate place, it is excluded from the anonymization process.

The anonymization process generalizes a specific heat query and increases the

number of triples it targets; however, we need now to measure the effectiveness of this

generalization. The first thing to do in this regard, is to look again at the workload

and observe how the anonymized heat query could have performed. For example,

given a heat query h and its anonymized version h̀. Due to the generalization, h̀

naturally targets more vertices in the RDF graph than h. If the generalization is

good, we would expect a future query to target those extra vertices, or we could

instead rely on how the already received queries have been targeting those vertices.

This can be achieved by looking at how the anonymized heat queries are getting

unified. If h̀ has been combined with other anonymized heat queries and its total

heat has been greater than h, this indicates a more probable access rate for the extra

vertices targeted by h̀. On the other hand, if h̀ still has the same heat and shape of

h, this indicates that the generalization of h has not been seen yet in the workload.

Thus, we can set the effect of anonymized heat query by the following formula:

effect(h̀) =
heat(h̀)− heat(h)

heat(h)
(3.3)

Where, heat(h) is a function that returns for the heat query h the summation of all

of its heat values. The effect(h̀) is a factor that is always taken into consideration
4Part of this subsection appeared in our publication [3].

63

C1 ?x C3

C4 C5

P1 P2

P3P3

Q1:

?y C3

C5

P2

P3

Q2:

C6 ?z

C5

P2

P3

Q3:

Evolving Heat Query

C1 C3

C4 C5

P1 P2

P3P3

?x

C1 C3

C4 C5

P1 P2

P3P3

?x

C1 C3

C4 C5

P1 P2

P3P3

?x C6 ?x
P2

P3

Workload Queries

?x ?y
P1

Q4:
C1 C3

C4 C5

P1 P2

P3P3

?x

P1

C6 ?x
P2

P3

?x

Figure 3.5: Heat query evolving from four queries

when using the anonymized heat map h̀ in a related generalized workload rule.

If H represents a set of all anonymized heat queries in the system so far, then

we can define Hq(v) which returns for any v ∈ V , a list5 of heat queries that v is

associated with, or null if v does not belong to any heat query. The work of Hq(v)

can be further explained when we recall that the heat query h is a collection of one

or more queries graph. Then h can be projected and executed on the data graph

G, and the result of the execution according to Definition 3.4 is a set of sub-graphs

where v can be checked whether it belongs to it or not.

3.5.5 Triples Access Rate By Heat Queries 6

Given a query q that is to be executed on RDF graph G, the probability of a any ver-

tex v ∈ V to be part of the query answer qa, under no previous workload assumption

may be naively set to be uniform:

p(v) =
|qa|
|V |

5In most case each vertex is associated with one heat query due to the process of heat queries

combination on the shared items.
6This derivation is also given in our publication [3].

64

C1 ?x C3

C4 C5

P1 P2

P3P3

Q1:

?y C3

C5

P2

P3

?x
P4

Q2:

Evolving Heat Join Map

P1

P3

1

1

P2

1

Workload Queries

P1

P3

1

2

P2

1

P4

1

C6 ?z

C5

P2

P3P1

Q3:

?x

P1

P3

2

3

P2

1

P4

1

P1

P3

2

3

P2

1

P4

1?x ?y
P1

Q4:

Figure 3.6: Heat join map evolving from four queries

But when we take previous workload Q into consideration, there is a frequency of

appearance per vertex. Thus the above probability can be changed to:

pw(v) =
freq(v)∑

∀vi∈V
freq(vi)

(3.4)

To keep the math compact, we assume a length of query answer equal to one. The

value of pw(v) represents the usage factor or rate of access of v by its frequency in

the heat query. The rate of access to v as expected by the anonymized heat queries

set is then given by:

accessRatio(v) =

∑
∀hi∈Hq(v)

freq(hi, v) · effect(hi)∑
∀vi∈V

freq(vi)
(3.5)

where freq(h, v) is the frequency of v as given by the anonymized heat query h.

access(v) in Formula 3.5 can be separately specified for each certain index type,

by specifying the index type in freq(h, v, index):

accessRatio(v, index) =
freq(Hq(v), v, index) · effect(Hq(v))∑

∀vi∈V
freq(vi)

(3.6)

65

A non-relative value of the access function is given by:

access(v, index) = freq(Hq(v), v, index) · effect(Hq(v)) (3.7)

Using the set of heat join maps, we can get an access function to any two pred-

icates. This access value represents the probability of the two predicates being in a

single query with respect to the workload. This can be written as:

accessRatio(p1, p2) =
freq(Hj(p1, p2))∑
∀pi∈P

freq(pi)
(3.8)

A non-relative value of the previous function is given by:

access(p1, p2) = freq(Hj(p1, p2)) (3.9)

3.6 Heat Query Specific Rule

The main purpose of the heat query structure is to estimate the access rates of the

resources based on the workload. However, those resources have also other access

rates which are calculated based on the average behavior of the workload. Thus, the

access rates by the heat queries are considered specific rules, and the average access

rates are considered general rules. These rules can be then aggregated for each

resource using the rules’ properties explained earlier in Section 3.4. For this reason,

we transfer the heat queries into specific access rule in the following definition:

Definition 3.8 (Heat Query Specific Rule) The heat queries set (Section 3.5)

defines a single rule for each index χ ∈ X as:

$he(χ) = (she, V̂he, ahe)

where:

she = {s|s = qG∀(qG, F,X) ∈ H} the set queries graphs of all heat queries in the

system as by Section 3.5.

V̂he is the answer of H, ahe = {(v, a)|∀v ∈ V̂he,∀χ ∈ X, a = access(v, χ)}, and

access(v, χ) is given by Formula 3.7.

We define further Rhe as a set of all heat query specific rules:

Rhe = {$he|∀χ ∈ X,$he = $he(χ)}

The heat query represents an access rule for each index in the system. The source

of this rule is the heat query itself, which has a set of connected patterns and their

66

Workload

Arriving

queries

General

statistics

Heat

queries

Base of

general

rules

To derive other access rules

by projection

Heat

queries

access

rules

Heat join-

map

access rule

Figure 3.7: Workload rules’ maps

frequency of access. The access formula assigns access value to each vertex in V̂he.

However, the formula is a function of the heat query, and thus, the access function is a

function of the source, which means that we can find the access value of each pattern

in the heat query. This enables Property 4 (Source Ordering) of the rules property

(Section 3.4), which allows ordering a rule by its source’s elements without having to

maintain its exact set of the vertices. This property enables important optimization

in the universal space adaptation algorithm, as we explain later in Section 6.2.2.

3.7 Summary

This chapter presented the methods that we use to store and analyse the workload

for the purpose of deriving the data-vertices access rates.

• The analysis of Real-world queries shows that the RDF workload often contains

detectable trends and frequent patterns.

67

• We divide the storage space into resources unit. Each unit can be utilized by

one consumer which is an equal size piece of data. The consumption can be

done on one out of multiple indexes’ options. A triangle of resource, consumer,

options forms an assignment.

• For each assignment, we calculate the performance benefit and the access rate.

The product of those two values gives the effective assignment’s benefit.

• We use the workload to detect the access rates of vertices and indexes.

• The workload analysis is performed using access rules. Each rule is designed to

look for certain trend in the workload. A rule can be projected on specific region

of the data. Two rules targeting shared region of the data can be aggregated.

• The access rules that look for trends targeting specific vertices in the data

graph are called specific rules. The general rules looks for average trends.

• A heat query is composed by combining multiple queries. It records the count

of the frequent queries’ items, the stats of the used indexes to evaluate the

included queries.

• We use the heat queries set to create one specific access rule that assigns an

access value to any vertex in the data set. That rule can be projected on any

defined region in the data set.

• An access rule is transferred into an operational rule by providing a relative

benefit function.

• The methodology of the rules allows the flexible plugging of futures rules.

68

Chapter 4

Local Storage

In typical key-value RDF stores, the triple data are stored into indexes. To achieve

the required query execution performance, a triple store requires multiple data-wide

indexes. Due to the high space impact, the stores choose to have only some of

the indexes. The decision of choosing specific indexes is based on observation of

the workload, and the store’s storage-saving strategy. Instead of the fixed indexes

strategy, we let the indexes dynamically adapts to the status of the workload and the

storage space. Moreover, we integrate the indexes into the cost model and defines two

access rules which are integrated into operational rules. Those rules are comparable

to the join cache and replications allowing a universal storage adaption.

Contents
4.1 Storage Scarceness . 70

4.2 System Storage Hierarchy 72

4.3 Indexes . 72

4.4 Problem of fixed Indexes 73

4.5 Dynamic Indexes . 74

4.6 Indexes in The Cost Model 75

4.7 Index Rules . 78

4.8 Index Rules Aggregation 79

4.9 Cache Index . 80

4.10 Dynamic Indexes Evaluation 82

4.11 Summary . 88

69

70

Replications engine

Indexes engine

Join-cache engine

Workload

Analysis

Module

Operational

Rules

Access

Rules
Operational

Rules

Operational

Rules

Uni.

Adapt

Chapter 4

Figure 4.1: Chapter’s scope

4.1 Storage Scarceness

In 1965 Moore has formulated a law that was then called Moore’s law [54]. He pre-

dicted that the number of transistors per area unit will be doubled approximately

every 2 years. This rate sets accurate trends for speed, size, and price in the digital

world. The hard disk contains electromagnetic components, besides the normal elec-

tronic circuits. The average number of Gigabytes per price unit since 1982 followed

similar exponential trends by being approximately doubled every 4 years. This be-

haviour is shown in Figure 4.2 which plots the average price of hard disks since 1982.

The price data was collected by [52] from different sources. However, as it is also

clear from the plot, the exponential trend has changed towards a linear trend since

2015. This is clearer in Figure 4.3 that has a linear y-axis.

On the other hand, the size of the data in the digital world doubles every two years,

and is expected to be doubled every one year in the next decade. The ratio of data

size growth to the disk size growth was, unfortunately, greater than one, and is get-

ting much bigger.

The main memory or RAM is still small in size compared to the big-data scale. Al-

though it showed better engagement to Moore’s law, it has also deviated and failed

to catch up starting from 2015. These given trends about the hard disk, main mem-

71

Figure 4.2: Average hard disk price through the years 1980-2019 as appeared in [52]

Figure 4.3: Average hard disk price through the years 2015-2019 as appeared in [52]

ory, as well as the trend of data size increase, highly motivate all the works that aim

to the wise and optimized usage of the storage space. This should not however be

interpreted as marking the works that always try to save storage space as winners.

This is due to the following reasons:

• The ratio of RDF data-set to the available storage space could be small.

• The RDF system does not use the storage space only to store the raw data, but

there are multiple storage employment levels for the sake of query performance.

Increasing the space within RDF system does not only mean more space for

new data, but it means better query execution time.

72

4.2 System Storage Hierarchy

In a typical computer system, the memory is available to the system in a hierarchi-

cal structure. The general trend is to have slower access time with a bigger amount

whenever we move down in the hierarchy. That starts by the CPU cache which is

the fastest and the smallest, then the random access memory referred to as main

memory, and finally, the secondary storage which is usually a hard disk. Moreover,

if the system is distributed there is another storage level accessed over the network.

The access time of this level depends on the network used and on the access time of

the certain storage unit on the remote node.

The access time of a typical storage unit shows general behaviour that can be de-

scribed by the following formula:

accessT ime(bm) = randomDelaym +
f(b)

transferRatem
= (4.1)

To access a serial block of storage of size b in a certain storage unit m, an initial

cost of randomDelaym is paid given that the block b is located in a random place

within the storage unit m. Afterward, the systems would pay a cost proportional to

the size of the block and determined by the constant transferRatem, given that the

function f(b) is linear. We will show in Sections A.3, A.4, and 5.2 how this formula

is applicable on the level of a single storage unit.

4.3 Indexes

The classical model of the relational database is optimized for tables that represent

entities with a fixed schema. The same schema is also reflected in the queries and

in the tables indexing structure. As a contrast, the RDF data model falls in one big

table with enormous embedded relations 1. The indexing schema follows the triple

structure as was explained in Section 2.4. Without an appropriate index, evaluating

a single triple pattern may require scanning the whole data set, which is not feasible

in the scale of the typical RDF data set size. Moreover, without an optimal index, a

triple pattern may still require considerable scanning and filtering cost. We denote

an index type by χ and define it as a function of its key. The key is best formulated

as a triple pattern such that the index returns a set of all the triples in the data set

that match this triple pattern. The implementation of the index follows the same

basis given in Section 2.4. The index is always hashed on the first part of its key, and

either sorted or hashed on its second part of the key. For instance, the SPo index
1Please refer to Section 2.3.1 for details about the triple table.

73

is hashed on the subject and sorted on the predicate. On the other hand the SP-o

index is hashed on both the subject and predicate. The full list of indexes was given

in Table 2.1.

Definition 4.1 (Index) We define the following functions and properties for the

index structure in the context of this thesis:

• Index type. Any index is associated with a type χ, which is a bit vector of

length 3.

• The index lookup is defined as a function of its type and its key. The key is a

triple pattern that has a constant corespondent to each 1 value in the associated

type:

indexLookup(χ, key) = {d ∈ D | indexMatch(χ, key, d) = 1}

where D is the data set of triples,

indexMatch(χ, key, d) =



1, if ∀xi ∈ key, ∀yi ∈ d, χi = 1, i = {0, 1, 2} :

(xi = yi) or xi is variable

0, otherwise .

and indexLookup(χ) returns a set of all the triples in index χ.

• The index location. The index type χ may exist in any physical storage level

l, which is if specified, considered an independent index type labeled as χl.

• Access Time. Each index has an access time α(χ), which is the average time

required by an index to return the required set of triples.

• Index Collection X. The system keeps at any time a collection of indexes.

getOptimalIndex(key) is a function that returns the most optimal index type

available in the index collection X for the given key, or ∅ if no index for this

key is available.

4.4 Problem of fixed Indexes

The main factor that limits the system’s ability to build enough indexes is storage

space. That case is mostly observed when the ratio of storage space to the data

74

set size is not high enough. Increasing this ratio means more free space which the

system optimizer can use to index more data with more index types. That would

lead to a decrease in query execution time. Having a fixed indexing structure could

be either federated or conservative. Federated fixed indexing-structure like what is

followed by RDF-3X [56] and Hexastore [81] who build a full-house set of indexes, is

well known to require a higher level of storage space consumption. That may make

the system not able to receive more or bigger data set, or not able to provide space

for replication and caching. The problem is amplified when the system applies the

given strategy on main memory that is more limited in size, or when the system

receives a workload that rarely uses some types of already built indexes.

Following conservative indexing-structure like [64, 75, 58, 69, 46] would make the ex-

ecution of the queries which require non-existing indexes more expensive. Moreover,

the system could have an abundance of free storage space due to a small data set to

storage space ratio; however, it still not able to employ this storage for performance.

On the other hand, in the case of limited storage space, the workload received by

the system can target only small parts of the data set. Those parts if had been

recognized and fully indexed, it would highly optimize the total queries execution

time.

4.5 Dynamic Indexes

Our solution to the problem of fixed indexes is to follow a dynamic indexing struc-

ture by allowing the system to have a flexible set of indexes that better suit its

needs. In this context, the system decides the types of indexes to build upon an

optimization process. That process is based on the analysis of the workload as well

as the availability of the storage space. This optimization process integrates also the

replication and queries cache. Within the dynamic indexing structure, each index

does not necessarily cover the whole data set, but instead may cover any part of

it, as long as it guarantees that any indexed data are completely and fully indexed.

For instance, the SPo index can have any vertex in the data set to be indexed as

subject-key, but once the system decides to index that vertex in the SPo index, it

must assure that the full list of required triples is stored as a value. Thus, the saving

of storage space is carried out on the level of the index-key but not on the level of the

values. Failing to assure this would make the query engine unable to decide whether

more values for a certain key are still available somewhere within the indexes set,

and would substantially increase the query processing cost. Given that the number

of edges per vertex in many RDF graphs is not uniform but shows a high variation,

75

we would have different storage overheads for the used index-keys. That overheads

depend on the size of the lists of the triples that are associated with each key. This

is translated into a difference in storage costs besides the difference in performance

benefits.

Referring to our cost model that is defined in Section 3.2, we identify each index

type χ as a single resource’s option. Any vertex v ∈ V in the data set can be

employed by being indexed in any of the options. In order for the optimizer to make

its decision about the proposed options, it needs to determine the cost and effective

benefit of each option, given that according to Formula 3.1, the effective benefit is

the product of the absolute benefit and the probability of access.

4.6 Indexes in The Cost Model

The dynamic index approach allows an index to grow or shrink in size based on the

storage availability, workload as well as the integration with other storage consumers.

That requires fitting the dynamic indexes into the cost model of Section 3.2.1. For

that, we need the benefit of putting a data element in a certain index, its cost besides

its access rate.

4.6.1 Index Cost

Any triple can be indexed in any index; however, to assure index consistency, as-

signing triples to indexes are performed on the level of the vertices. For instance, if

a certain vertex v in the data graph is to be indexed in SPo index, then all of the

triples that have v as subject must be indexed. Thus, the space cost of assigning v

to SPo is the number of those indexed triples. This value can be easily measured by

the system at the time of the indexing. We refer here for that measurement with the

following function:

storageCost(v, χ)

The function indexLookup(χ, key) given in Definition 4.1 requires the key to be a

triple pattern consistent with the index type χ. For this reason, we need to transfer

a vertex v to the triple pattern that can be used as key for a given index type. For

that purpose we use the function called key(v, χ). For example if χ is SPo, the vertex

the following triple pattern is returned: (v, ?x, ?y), where ?x and ?y are variables. If

χ is OPs, the returned triple pattern has v in the location of the object.

76

4.6.2 Index Benefit

The effective benefit according to the general cost model in Formula 3.1 is the result

of multiplying the performance difference η by the probability of access ρ for the

resource that is a single indexed item in this case.

The absolute benefit η of having a vertex v ∈ V in index type χ can be recognized

by the performance difference that the system gains when it makes the employment.

From the perspective of the query execution, we look at the level of a single triple

execution, and on the level of the whole query execution. We recall from Section

2.6.3 that to evaluate a triple pattern using the available indexes, there are three

possibilities:

1. Use the optimal index if available, and directly provide the answer.

2. Use the sub-optimal index if available, plus an extra filter operation.

3. Non of the above is available, the case that requires a full data scan.

In the case of the second point, the benefit of having the optimal index available

for vertex v instead of the sub-optimal is the removal of the extra filter cost (see

Section 2.6.3 for details). In the case of the third point, the benefit will be avoiding

a full data scan. We can formulate the triple lookup time tripleLookupT ime(v, χ)

for a vertex v in an index type χl2 , given that v is currently indexed by index χl1 :

tripleLookupT ime(v, χl22) =



full-data scan time, if getOptimalIndex(key(v)) = ∅

filterT ime(χl11 , key(v)) + ∆, if getOptimalIndex(key(v)) = χl11

0, otherwise ,
(4.2)

where filterT ime(χl11 , key(v)) is the time required to filter out the extra triples

resulting from not using the optimal index2, ∆ is the difference in access time of

v in χl11 and χl22 , due to that l1 and l2 may refer to different physical media: ∆ =

α(χl11)−α(χl22), ∆ = 0 for l1 = l2, and α(χ) is the index access-time function that is

given in Definition 4.1.

The above absolute benefit function is applicable in case of the query having a

single triple pattern and thus requires only one data access path operation. However,
2See Section 2.6.3 for more details about the optimal index

77

in case of more than one triple pattern, the execution engine needs to perform a

further join evaluation phase, and that results in multiple join-trees that differ with

each other in the order of the join, the required indexes, and the performance (see

Section 2.6.4 for details). The query optimizer works similar to RDF-3X [56] and

selects the tree that is expected to show the best performance. However, in case of

some indexes are not being available, the optimizer would choose the best performing

tree which the system owns all of its required indexes. The performance difference

between the best tree and the chosen tree is considered as points of benefits to the

absent indexes for the given triple patterns. We label this tree performance difference

as treeT ime(v, χ). However, it is only feasible to be calculated on the level of the

triple patterns and not on the level of single vertices. That is because the query trees

where the performance difference is being found are composed of triple patterns. The

calculated value can be generalized to all the vertices considered in the join operation.

However, using the operation rules (Section 4.7) will remove the necessity of going

down to the level of vertices, and stay in the level of patterns instead.

The index benefit function on the level of vertex can be then given by the following

formula:

ηidx(v, χ) = tripleLookupT ime(v, χ) + treeT ime(v, χ) (4.3)

4.6.3 Index Access Rate

The last parameter to find in our cost model regarding the indexes is the access

rate. According to the cost model 3.2.1, the benefit of assigning a vertex to be

indexed in a certain index should be factorized by the access rate of that assignment.

That access rate is base on the workload. The workload analysis methods were

explained in Chapter 3. The methods resulted in two types of access rates: specific

access rates given by the heat query and general access rates based on the average

measurements. Moreover, the specific access rates are further generalized by the

anonymization process.

The specific access rate of the heat query is expressed by an access rule (Section 3.6).

We use that rule to derive the index specific rule using the projection property in

the next section.

78

4.7 Index Rules

4.7.1 Index General Rules

The main idea behind having a general rule is to provide a more robust ground for

the more specific rules. This is because the workload may not have detectable trends

or may change these trends. The general rules are more resistant to the variation in

workload quality. In this context, the storage optimizer collects basic statistic about

each index in the Index Collection X, specifically the count of usage.

Definition 4.2 (Index General Access Rule) For each index χ ∈ X we define

a general rule as:

$ge(χ) = (sx, V̂x, ax), where sx = χ, V̂x = indexLookup(χ) as given by Definition

4.1 and ax = indexAccess(χ) the access count of index χ in the workload.

By Defining $ge(χ) for each χ ∈ X, we result in a set of general rules Ridxge .

Applying Definition 4.2 on each index in system’s set of indexes creates a corre-

sponding set of general rules. A more specific rules are further generated in the next

subsection, and both sets are aggregated into single index rules set so that we have

a single access rule for each data element within an index.

4.7.2 Index Specific Rules

In most cases, the workload contains detectable trends that are more related to a

specific part of the data set. We detect those trends using the heat query that is

presented in Chapter 3. We have already given a rule in Definition 3.8 where a heat

query he forms a rule $he(χ) that assigns an access value to each vertex in V̂ the

answer of he in the index χ. The index specific rule requires setting an access value

to each vertex in a certain index that is located in a certain working node. Thus,

The index specific rule $idx,sp(χ) can be derived from the heat query rule $he(χ)

by projecting $he(χ) on a certain data partition.

Definition 4.3 (Indexes Specific Rules) For each access rule in Rhe, and for

each destination index, the system defines a set of index access rules using the pro-

jection property:

Ridxsp = {$idx,sp(χ)|∀$he(χ) ∈ Rhe, $idx,sp(χ) = proj$he(χ)(ri)}

where V̂ is the vertex set defined by each access rule $ in a certain partition, and ri
is the current partition for working node3 i as given by Definition 5.1.

3The partitioning of the RDF graph will be given in details in next chapter, Section 5.3

79

4.8 Index Rules Aggregation

The vertices within each index have so far two access rules which are a general rule

$ge(χ) and a specific rule $he(χ). In order to have a net access-value, the two

rules need to be aggregated using Property 1 of rules properties (Section 3.4). By

aggregating the two rules, a vertex that is targeted by both rules will get the average

of both access values. The remaining vertices will have the access values given by

the general rule.

Definition 4.4 (Index Aggregated Rules) The system defines one set of index-

aggregated rules given by:

Ridxas ={$idx(χ)|∀$idx,sp(χ) ∈ Ridxsp ,∀$idx,ge(χ) ∈ Ridxge ,

$idx(χ) = aggregate($idx,ge(χ), $idx,ge(χ), 0.5, 0.5)}

The effectively of both rules in the aggregation process is set to 0.5 indicating

equal weights. For instance, assume that at some point of time the SPo index has

a general access value of 10 per vertex, and some vertex has specific access value

of 50. Then that vertex will have a net access value of 30. If the workload quality

drops and the heat queries are not able to detect specific frequent patterns, then the

average index access will be the dominating value.

4.8.1 Finalizing Index Rules

The set of rules Ridxas given by Definition 4.4, states one net access-rule to each index.

However, the final optimization decision is made upon the performance benefits and

not on the mere access rates. For that reason, we transfer each access rule in Ridxas to

an equivalent operation-rule by providing the benefit function that we have already

given in Formula 4.3.

Definition 4.5 (Index Operational Rules) The index access-rules set Ridxas is con-

verted into operational rule using Definition 3.6 as in the following:

Ridxop = {($idx(χ), χ,∆)|∀$idx(χ) ∈ Ridxas }

where ∆ is a function that assigns a benefit value to each v ∈ V̂ given by ηidx(v,χ)
size(v) ,

ηidx is given by Formula 4.3 and size(v) is the storage cost of indexing v in χ.

The benefit of each vertex is relative to its storage cost and multiplied by the

access to produce the effective benefit of putting this vertex in that index. That

80

Heat

queries

access

rules

General

statistics

projection

Indexes

specific

access-

rules

Indexes

access-

rules

Indexes

general

access-

rules

Indexes

operational

rules

aggregation

Figure 4.4: The map of indexes’ rules

benefit is comparable with the other options’ benefits. However, we show in Section

6.2.2 that we don’t need to find the benefit on the level of each vertex. We set the

level of calculation on the sources of each rule. The sources are a set of patterns

which is much smaller in size than the set of the vertices.

Recalling the sources ordering property of Section 3.4, the indexes operational rules

satisfy the ordering by benefits property given that the benefit function assigns the

same benefit value to each the rule sources. The rule sources are the sources of the

general rules aggregated with the sources of the specific rule.

4.9 Cache Index

A triple pattern evaluation is know as the data access path (Section 2.6.3) is per-

formed by an index lookup. The evaluation of multiple triple patterns is then per-

formed by joining the results of the data access paths (Section 2.6.4). This normal

order of operations can be dramatically accelerated if the join result of two or more

triple patterns is cached in what is called the cache index. In this context, a lookup

in a cache index does not only perform a data access path operation, but return the

result of the join evaluation.

The key in a normal data access path index is the constants of a triple pattern, and

the index returns a set of single triples, in which every triple matches the key. In

the cache Index, the key is the constants of two triples, and the returned output is

81

a set of triple-pairs, in which each pair is matching the given key. In the same way,

the key can match more than two triple patterns.

Given that the most expensive join operation takes place when the query is un-

bounded (Section 4.10.2), we use in our system one type of cache index named PP-x.

The key is a combination of two predicates p1 and p2 and the value is a set of triples

pair, where each pair is in the form: (s, p1, x)(x, p2, o). Thus, each pair is joined on

x such that x is the object of the first triple and the subject of the second triple.

To be integrated into the index cost model, the storage cost of a cache index is found

in the same way as a typical index. However, the performance benefit for the cache

index is saving the joining time of the triple patterns that are indexed by the cache

index. That can be written as the following:

ηche(T, χ
l2
2) = joinT ime(T) (4.4)

Where, T is a set of triple patterns, and joinT ime(T) is the time required to join

them. The benefit is given as a function of the triple patterns, which directly fits

with the heat query that is used to simulate the access of the workload to the data set

(see Section 3.5). However, the benefit can also be given as a function of vertices, by

mapping the triples patterns T to the vertices set that is resulting from the joining

of T . The access rate of cache indexes within the access rules is calculated in the

same way as the typical indexes (Section 4.6.3) except that we use the join heat maps

instead of the heat queries.

4.9.1 Cache-index Specific Rules

The heat join map set Hj which is given in Definition 3.7 can be used to find the

access values to the elements of the cache index PP-x. The vertices of a heat join

map represent predicates, and each edge between two predicates mean that those

predicates have been together in a single query. In this context, the source of the

access rule is a set of all queries that can be composed out of all the heat join maps

in Hj , such that each query contains two triple patterns formed as the following:

t1 = (x1, p1, x) and t3 = (x2, p2, x), where both p1 and p2 are vertices connected

with a direct edge in a heat join map. We officially state the access rule in the

following definition:

Definition 4.6 (Cache-index Specific Rule) We use the heat join map set Hj

(Definition 3.7) to define the following access rule:

$che,sp = (sj , V̂j , aj)

82

Heat join-

map

access-rule
projection

Cache index

specific

access-rules

Cache

index

operational

rule

Figure 4.5: The map of cache index rule

where:

sj = {(t1, t2)|∀hj ∈ Hj , ∀(p1, p2) ∈ Ej , t1 = (x1, p1, x), t2 = (x, p2, x2)}, Hj is the

set of all heat join maps in the system, Ej is the edges set ∀hj ∈ Hj as given by

Definition 3.7.

V̂j is the answer of sj, aj is a function that sets access value to each (t1, t2) insj

using access(p1, p2) given by Formula 3.9, and x,x1, as well as x2 are variables.

In Section 6.2.2, we show that we don’t need to evaluate V̂j during the optimization

process but only during the assignment phase.

The access rule $che,sp is then transformed into operational rule by setting the

destination index to PP-x, and using the cache index benefit formula that was derived

previously in Formula 4.4.

Definition 4.7 (Cache-index Operational Rule) We define the following Cache-

index operational rule:

$che,op = ($che,sp, χ,∆)

where:

$che,sp is given by Definition 4.6, χ is the PP-x index, and ∆ = ηche({t1,t2},χ)
size(t1,t2) ,

ηche({t1, t2}, χ) is given by Formula 4.4, and size(t1, t2) is the storage cost of storing

(t1, t2) in the cache index.

For integration with Ridxop , we create the Cache-index Operational Rule set:

Rcheop = {$che,op}

4.10 Dynamic Indexes Evaluation

In this section, we provide practical evaluate that is limited to the dynamic indexes

and cache approaches. In Chapter 7, we provide full evaluation to the indexes adap-

tion as part of the universal adaption.

83

Since that we don’t include the replication in this evaluation, we have setup one

working node where the indexes structures are dynamic and adaptable with the

workload according to their access and operational rules given earlier. We compare

that adaptable approach to a fixed indexes approach, where indexes are initially fixed.

4.10.1 Detectable workload and High storage space availability

In the first part of the evaluation, we test the environment of high storage space

availability. We refer to the latter term as system capacity which is the number

of full indexes that the system can maintain. For example a system capacity of 6

means that the system has enough storage space to maintain 6 full indexes in its main

storage unit. The RDF-3X always needs this capacity level to work. However, for a

capacity level of 6, our system optimizes it towards both the indexes and join cache.

The operational rule of the indexes is derived from two access rules (see Figure 4.4).

The first is specific and based on heat queries. The heat queries work well in the

case of the existence of detectable frequent patterns in the workload. The second

access rule is general and based on the average access of each index. On the other

hand, the operational rules of the cache are derived only from a specific access rule

that is based on the heat queries (see Figure 4.5). As a result, in a capacity of 6,

our system would assign the highly accessed data to the cache only in the case of

the workload contains detectable trends by the heat queries, and always favours the

indexes otherwise. In this context, we start with real-world workload trends, then

we scale the workload quality down and measure the performance of the systems

in comparison. The real-world workload is given by [60], where 90% of the queries

target 160 frequent patterns. In this context, the first run in Figure4.6 has a workload

quality of 90. The run is composed of two batches of queries, and each batch is of

1000 query. The objective of the first batch is to train the system, while we measure

the performance for the second batch. All the generated queries are unbounded and

of length three (tuning the bounding type and queries length is considered in more

details in Chapter 7).

The RDF-3X has fixed six indexes residing in the secondary storage, and thus should

show constant behaviour with the workload quality. However, there is some variation

in its running time which is due to the operating system policy of managing the data

between the main memory and secondary storage. The 3-indexes system resides

totally in main memory and thus shows more stable behavior with the running time.

The adaptable system made use of the high quality of the workload at the first run,

84

Workload Quality(%)

R
un

ni
ng

 T
im

e(
m

s)

500

1000

5000

10000

50000

90 70 50 30 0

RDF-3X 3-Indexes Adaptable Indexes-cache

Figure 4.6: The Running times of adaptable indexes and join cache vs fixed ap-

proaches under storage capacity of 6

and employed its join cache. That helped answering most of the queries without

paying the cost of joining. The effect of the cache decrease with the workload quality

and reaches zero when workload quality drops to zero. At that stage, the specific rules

are no longer in effect. However, the general rules still able to measure the average

usage of the indexes and surpasses the fixed approach. Nevertheless, that is not very

obvious in the capacity level of six, because the system has already the enough space

to build most of the required indexes. To show the behaviour of the system in a

more limited storage space environment, we set the capacity level to 3, and show the

results in Figure 4.7. In the region of high workload quality, the adaptable system

highly utilized its cache despite the limited storage space. However, the effect of

the limited space was clearer as the workload quality drops to 50%. Nevertheless,

the adaptable system continue to surpass the fixed 3-index system even when the

workload quality drops to 0%.

4.10.2 Scalability of Queries Processing

In this part of the experiments, we follow the performance of the indexes for specific

operations that are the data access path and the join evaluation, and the effect of

increasing the data size. The data set was generated for this testing purpose, and

the generation details are given in Chapter 7.

Recalling Section 2.6, a query q is composed of a triple patterns set, and its process-

85

Workload Quality(%)

R
un

ni
ng

 T
im

e(
m

s)

0

1000

2000

3000

4000

5000

90 70 50 30 0

3-Indexes Adaptable Indexes-cache

Figure 4.7: The Running times of adaptable indexes and join cache vs fixed approach

under storage capacity of 3

ing is generally composed of two operations. The first is the process of finding the

answers to the individual patterns using the available indexes (data access path),

and the second is the process of joining these answers to find the answer of the query

(join evaluation).

The performance of the data access path depends on the time required by the

used index to return the requested data. We have two possibilities for the used index

in this context: either the used index is an optimal or a sub-optimal (see Section

4.3). Moreover, and depending on the implementation, the optimal index is either

hashed, sorted or hashed-sorted. For a general hashed index, we would expect that

increasing the size results in a very limited impact on the performance, as the the-

oretical average behavior of such indexes is constant for the lookup operation. The

lookup operation is done over a certain key that is composed of one, two, or three

elements based on the index type and each element represents either the subject,

predicate, or object. The lookup operation of the hashed index is performed di-

rectly by concatenation of the key’s elements to create one key used for the index’s

internal hashed-table lookup4. For a sorted index, a lookup operation is composed

of recursive three lookup operations for each of the index key’s elements, and we

would expect a logarithmic behavior with respect to each single lookup size. the

4In the graph terminology, the first key’ element is used to get to a certain vertex, while the

second element is used to get to one of the vertex’s edges.

86

index size to get to any vertex and the same behavior to get to any of its edges.

The hash-sorted index would require constant time to get the first hashed part of

the key and a logarithmic time to get the sorted part which is usually composed of

one element. On the other hand, a sub-optimal index requires a filter that has a cost

that is linearly delimited by the size of the lookup operation.

Since the most used index type is the hashed-sorted index, the performance of the

data access path, in this case, is linearly affected by the density of the graph (which

is the average number of edges per vertex in the RDF graph) only in case the used

index is sub-optimal. Otherwise, the effect of the graph density is affecting the per-

formance of the data access path only logarithmically.

To evaluate this behavior of the data access path practically, we generated several

single-triple queries, and run them on the system while changing the count of the

total maintained triples by the system. The first query uses the SPo index and has

a small result in terms of its size. Its performance is shown in table 4.1. In spite of

that the data set has rapidly increased in size, the result size of the query is approx-

imately constant as the constant subject of the query was not repeated anywhere in

the newly added data until the final round where one more triple has appeared. Both

of the index lookup time and query execution time showed approximately constant

values despite the rapid increase of the data-size. The index lookup and the total

query execution time is reasonably close as we don’t count the dictionary and print

time for this specific evaluation. Running the query using the sub-optimal index

requires clearly more time; however, the time trend follows the same trend of the

optimal index and does not rapidly change with changing the data size.

In Table 4.2, we considered running a query that requires the PSo index. The lookup

time of the hash-based index is still the same, but we have a much bigger result size.

This is a predictable measure since a predicate is expected to be much more frequent

within the data-set than a single subject. However, we can easily observe from the

query running time’s values, the correlation of the time values with the result size

values, and their stability with the data-set size. The bigger result size requires linear

work to connect the output triples to each other and deliver the final result.

The join evaluation performs in a different way from the data access path. As

was explained in Section 2.6.4, the total amount of required computations in each

join step is related to the output of the preceding data access path stages in terms

of their returned data size. The size of data from any index is again related to the

selectivity of the items in the data set and to the data set size itself.

87

data size(M Triples) lookup(ms) query(ms) result size sub-optimal(ms)

1 0.3 0.33 2 1.05

10 0.3 0.34 2 1.14

100 0.32 0.35 2 1.15

1000 0.39 0.41 3 1.15

Table 4.1: The running time of a single-triple query that uses SPo index with respect

to different data sizes

data size(M Triples) lookup(ms) query(ms) result size

1 0.3 210 3127

10 0.3 688 11510

100 0.32 711 11510

1000 0.39 705 11510

Table 4.2: The running time of a single-triple query that uses PSo index with respect

to different data sizes

To see the practical effect of data size on the join evaluation, we run a bounded

chain query5 of length 4 and list its response with respect to the data size in Table

4.3. The same response is listed for the unbounded version of the query in table 4.4.

The unbounded query generated a higher number of triples during the processing

and thus required more processing time. However, increasing the data size from 1

million to 10 million triples, increases the processing time of the unbounded query.

This is due to the presence of more triples that have the same predicates of the query

in the added data making the indexes providing more data for the join stage and

increase its overall cost. The previous behavior is not noticed in the next increase

of the data set size, due to the fact that the added data happens to not have the

predicates presented in the query.

5The descriptions of query shapes are given in Section A.1.

88

data size(M Triples) query(ms) result size

1 0.93 2

10 0.96 2

100 1.1 2

1000 1.1 2

Table 4.3: Bounded chain query behavior with data set size

data size(M Triples) query(ms) result size

1 36 4

10 66 9

100 65 9

1000 88 9

Table 4.4: Unbounded chain query behavior with data set size

4.11 Summary

This chapter presented the a dynamic index approach that can replace the fixed

indexes. We may summarize the chapter in the following points:

• Digital data increases in a faster rate than the storage space. RDF-triples stores

have heavy storage consumption due to multiple levels of space requirements.

• In a typical key-value store, RDF data are stored into indexes.

• There are six types of indexes, and each index can be hashed or sorted.

• To avoid high storage consummation impact, a typical triple store chooses to

implement some of the indexes based on hard observations to the workload.

• Dynamic indexes approach chooses the most beneficial indexes dynamically

from the workload.

• To be fit in the cost model, indexes costs, benefits and access rates are derived.

• The workload access to the indexes is structured into two types: general and

specific.

89

• The general workload access to indexes is transferred into general rules. Those

rules simulate the the hard-observation in the fixed indexes approach.

• The specific workload access to the indexes is transferred into specific rules.

They are derived from the heat queries rules by projection.

• Both of the rules are aggregated for each index and transferred into operational

rules by providing the index benefit function. The indexes set of operational

rules is comparable with the operational rules of the join cache and replications.

• While a normal index is used to index list of triples. A cache index is used to

index pairs of triples. That saves the expensive cost of joining them, but costs

more storage space

• We only defines specific rule to detect those triples that are highly beneficial

to the system.

• A cache index operational rule allows it to be comparable with indexes and

replications.

90

Chapter 5

Distributed Storage and

Replication

The previous chapter considered the indexes as the local storage of the working nodes.

This chapter gives the methods followed by the system to maintain a distributed

storage of RDF. The main approach in this regard is to replicate certain data from

the remote nodes’ storage to the storage of a local node. We state the motivations,

benefits, and types of such replication. We fit the replications in the cost model by

stating their access and operational rules. That allows the replication to be compared

against the indexes and cache, so that the system adapts its limited storage with the

best options towards better performance.

Contents
5.1 Replication Motivations 92

5.2 Distributed RDF Storage 93

5.3 Initial Graph Partitioning 94

5.4 Border Region . 98

5.5 Border Replication . 99

5.6 Load-balancing Replication 101

5.7 Replication Aggregated Rules 104

5.8 Summary . 104

91

92

Replications engine

Indexes engine

Join-cache engine

Workload

Analysis

Module

Operational

Rules

Access

Rules
Operational

Rules

Operational

Rules

Uni.

Adapt

Chapter 5

Figure 5.1: Chapter’s scope

5.1 Replication Motivations

As we have been presented in Section 2.7, a distributed database is usually supported

by replications for three main purposes: fault tolerance, workload balance, and the

decrease of communication cost. The same motivations and objectives apply to a

distributed RDF management system. However, the replication comes with the cost

of consuming more storage space, and thus its benefit competes as one option among

different options to utilize a storage resource.

Considering our cost model Section 3.2, the cost of the replication can be directly

measured by the size of the data to be replicated. On the other hand, the benefit

needs to be subdivided according to the required intent of the replication, which

should be one of the three replication aims that we have mentioned above.

1. Replicating to decrease communication cost: During the query execu-

tion, some required data may not available locally due to the data partitioning.

In order to continue the execution, the working node needs to get the data from

another remote node where the data is available. However, if such data had

been replicated from the remote node to the local node, the query execution

time would save the network transfer time, which is given by the part δ · b(m,j)

in Formula 5.1 given that the storage medium of the replicated data in the local

node remains the same as the remote node; otherwise, the benefit calculation

93

needs to count for the difference in medium access time.

It is important to point out here, that in order for the replication in this cate-

gory to work and provide the required benefit, the replicated data need to con-

tribute partially in queries execution while some of the data should be available

locally. The SPARQL query execution has obvious locality (i.e. neighboured

graph-vertices are more probable to contribute in a single query, as was detailed

in Section 2.6). If the used RDF data partitioning is a graph-based, then the

replicated RDF data needs to be connected to the partitions border [38]. This

is more precisely defined and detailed Section 5.4.

2. Replicating to have better load balancing. The system maintains a queue

of received queries. If the queries arriving rate is lower than the system through-

put, then the size of the queue is effectively zero, and the main focus of the

system would be to serve each query as fast as possible. However, if at some

point in time, a working node may receive queries more than its rate of queries

execution, then this would lead to an increasing number of waiting queries in

the queue. The problem of load unbalance between the working nodes might

now emerge to the surface, if one or more of the working nodes has non utilized

processing power. This happens if the working node can’t execute any of the

queries that are currently in the queue, because it doesn’t have the required

data locally. There are two options in this case which are either to move the

data across the network to the remote node to help with processing the queued

queries, or to perform replications for this purpose in advance.

3. Replicating for better fault-tolerance.: One of the basic motivation of

having a distributed system is the increase in system availability by keeping

multiple replicas of the same data in different hardware places within the work-

ing nodes. However, this type of replication is out of the scope of this thesis.

5.2 Distributed RDF Storage

For a system of distributed working nodes, each node has direct control over its

storage resources, and has access to the other node’s resources. However, such access

has a network delay cost. In this context, we update the general storage access-time

equation 4.1 to account for the existence of multiple working nodes. In this context,

we have an accessing thread at working node i which wants to access a block of size

94

b and stored in storage unit m at working node j:

accessT imei(b
(m,j)) = randomDelaym +

b(m,j)

transferRatem
+ δ · b(m,j) (5.1)

Or to make it more compact:

accessT imei(b
(m,j)) = randomDelaym + b(m,j) · (1

transferRatem
+ δ) (5.2)

Where, δ is the network transfer rate between nodes i and j.

We can now use the same notation to denote the location of a certain index as well

as its containing storage unit. Thus, the index χ(m,n) is denoting an index of type

χ within the storage unit m, and located in the working node n. Then, we can find

the access time of an element within an index using Formula 4.1 by substituting for

the block size as the following:

b(m,j) = indexLookup(χ(m,n), key) ∗Bt

where Bt is a constant represents the number of triples per block. From the per-

spective of a working node A, the remote storage units at some working node B are

parts of the A’s storage hierarchy. However, their exact levels depend on the net-

work speed and the type of the storage unit on the remote node B. If the network

speed is within the general limits of a local high-speed network, the working node

A can generally access B’s main memory faster than accessing its own hard disk.

This situation has an important implication on the optimization decision, because

what a node has decided to put in its memory affects also the performance of the

remaining working nodes. As a results, this decision has to be taken collectively by

consolidating with the other nodes. At the same time, the values of network transfer

time and disk transfer time required to set this implication, are easy to be practically

measured by the system.

5.3 Initial Graph Partitioning

We presented in Section 2.7.2 two directions of data partitioning which are: graph

partitioning and hash partitioning. We compared their methods, outcomes, and

effects on the performance of distributed query processing. In our system, we chose

to perform graph partitioning aiming to reduce the communication costs while having

steady ground for the workload-based adaption. In this section, we describe how the

system performs this partitioning, and the approaches used to deal with its main

issues which are the: partitions balance, the running time, and the border region.

95

We have seen in Section 2.1.4 that any RDF data set can be seen as a single graph.

The RDF data partitioning is then directly reduced into a graph partitioning prob-

lem. Since that each partition is assigned to a single host, the number of partitions is

known and equal to |H|, which is the number of hosts in our system. The objective

of graph partitioning is related to how the system is going to employ and process

the result of the partitioning process. Each host should use his share to execute the

query it receives. The execution of a SPARQL query can be mapped into a subgraph

matching problem (Section 2.6). While we are looking for a certain sub-graph q in

a certain graph Gi, it may happen that we have reached the Gi border, and having

a sub-graph ĝi matches the sub-query graph q̂, where q̂ ⊆ q and ĝ ⊆ Gi. We would

then be in the problem of answering the following question:

Does a data graph Gj (hosted by one of the neighbour nodes) have a sub-graph ĝj
such that both ĝi and ĝj form a single sub-graph g = ĝi ∪ ĝj , and g matches the

query graph q?

The answer to the above question requires moving data across the network, which is

marked as a costly operation that we should avoid by the partitioning process. At

the initial step (i.e. at system start-up), we don’t have a certain assumption about

the workload or the expected shape of system queries. Thus, the initial step should

partition the input RDF graph while trying to achieve the minimum probability of

queries to require data from neighbours, and increase the probability of local execu-

tion within hosts available data. One of the best methods to achieve this is by using

a min-cut algorithm such that we have the partitions’ borders with the minimum

number of edges, thus with minimum probability of a query requiring sub-graphs

data from neighbours. However, the process requires also some assumption of bal-

ancing the size of the resulting partitions. For this purpose, we use METIS and

discuss its constraints and output in the next subsections.

5.3.1 METIS based Partitioning

METIS [45] is a set of tools developed by Karypis Lab 1 that serve the purpose of

graph partitioning based on the multilevel recursive-bisection, multilevel k-way, and

multi-constraint partitioning schemes. For the context of this thesis, we define the

partitioning process of METIS as in the following:

Definition 5.1 (METIS Partitioning) We refer to METIS as a functionmetis(v)

which for any v ∈ V returns the static partition number which v belongs to. We could

1http://glaros.dtc.umn.edu/

96

then define the partition ri = {v ∈ V | metis(v) = i}. V is the set of RDF vertices

as given by definition 2.1.

The general objective of such partitioning is to have a minimum number of edges

(or sum of edges’ weights) that straddle different partitions, while at the same time,

it tries to produce balanced partitions. This balance is defined by METIS as a set of

constraints. The set of constraints is mapped into a vector of weights for each vertex

in the graph. All the vectors of all the vertices within a certain METIS partition

can be summed into one total vector. The partitioning process will try to produce

partitions that have equal total vectors. The default vector contains one element for

each vertex having a value of 1. This vector instructs METIS to produce partitions

that are of equal size in terms of the number of vertices. However, setting strict

balancing constraints would reduce the accuracy of the general objective of having a

minimum number of edges between partitions besides increasing the complexity of the

optimization problem such that it costs more computation steps. For these reasons,

METIS allowed the user to specify the maximum degree of load imbalance allowance,

by using the option: options[METIS OPTION UFACTOR]. This option is defined

by METIS [43] as the maximum allowed load imbalance among the partitions for

each element of the constraints vector. We denote it as imbalance(j) for constraint

j in the constraints vector. The formula that defines imbalance(j) for partition i

according to [43] is:

max
i

(
w(j, i)

t(j, i)
) 6

imbalance(j)

1000
+ 1 (5.3)

Where, w(j, i) is the fraction of the overall weight of the jth constraint that is

assigned to partition i, and t(i, j) is the desired weight of the jth constraint for

partition i.

Since our current objective of initially partitioning an RDF graph has no assump-

tion about the workload, the interesting constraint is partitions sizes in terms of

their number of vertices. In this context, our constraints vector is the default vector.

However, we need to set a suitable value for the maximum acceptable imbalance to

be set in options[METIS OPTION UFACTOR].

Adaption of Partitions Size Balance

Setting a proper value to the METIS imbalance option (options[METIS OPTION

UFACTOR]) is not handled or formulated in all the known related works that used

METIS to partition the RDF graph despite its effect on the outcomes of the METIS.

97

Relaxing this value would speed up the partitioning process as well as increase the

accuracy of its main objective that is having minimum cut; although it could produce

variation in partitions’ sizes.

Since we want to avoid any fixed parameters in our adaptable system, we would like

to formalize a method that allows the system to find a proper value of imbalance.

Relaxing the imbalance value is a more favourable choice. This coming from the

idea that the host with smaller data size can fill its extra space by replications

from the neighbours. Thus, we focus on the first place on performing more optimal

partitioning, then solve the problem of extra storage space, by also choosing more

optimal parts to replicate.

We let our system adapt itself to the best possible partitions balancing situation

that is suitable to the available storage size which could be allocated by each working

node for hosting its main data share. The value of this storage space which we denote

Sm is dynamically allocated by our storage space optimizer (Section 6.2).

If the total data size is Sd in a system of |H| hosts, the balanced host share would

be:
Sd
|H|

At host i, the difference between the available storage Smi and the host share of the

data Sd
|H| is the amount of extra data that the host i can tolerate. Thus, we can

tolerate a maximum imbalance per partition Po as given by:

Po = min
i

(Smi −
Sd
|H|

)

However, to avoid creating an extreme case of partitions size variation, we limit

the maximum accepted imbalance per partition to half the initial proposed share. In

this context, Po is rewritten as:

Po = min[min
i

(Smi −
Sd
|H|

),
Sd

2 · |H|
] (5.4)

The above value of Po adapts dynamically with the available storage providing the

enough flexibility to METIS to produce well partitioned graph while still avoiding

the case of extreme size variation.

To map Po into the METIS imbalance factor and from Equation 5.3, we have:
Sd
|H| + Po

Sd
|H|

=
imbalance

1000
+ 1

When we solve for imbalance, we get:

imbalance = 1000 · Po · |H|
Sd

(5.5)

98

Our partitioning system uses Formula 5.5 to find the imbalance value which

is set to the imbalance input option of the METIS. It should be noted that this

value is related to the maximum allowed imbalance in the partitioning; however, the

METIS tries to produce more balanced partitioning as long as that doesn’t affect

the objective of the keeping min-cut across the resulted partitions as been reflected

by the inequality in 5.3. The more storage space available at the working nodes, the

more flexibility we give to the METIS to favour producing more connected rather

than more balanced partitions, although, this could leave some hosts with only small

size of data, which can be next utilized by replication as we have mentioned earlier

in this subsection.

5.4 Border Region

As described in Section 2.7.3, the graph partitioning process aims to decrease the

probability of a query to require data from multiple partitions. As that objective

was linked to minimize the number of edges that go between partitions, the border

region which contains the vertices where edges come and leave to other partitions,

requires special attention [38, 37]. We have given in Section 2.7.3 a description of

the methodologies used by related work to deal with this border region and its main

drawbacks. We described as well, the main points of our solution to deal with those

issues. We go here into more details starting by stating our definition to this border

region:

Definition 5.2 (Border Region) For a partition ri, we define its border region as

border(i) = {v ∈ ri | ∃(v, vm) ∈ E : vm /∈ ri}. The border region at partition ri, with

depth δ is defined as follows:

border(i, δ) = {v ∈ V | v 6∈ ri, outdepth(v, i) ≤ δ} , where the outdepth(v, i) is

the distance between any vertex v /∈ ri and the partition border border(i). V and E

are sets of the RDF graph vertices and edges as given by Definition 2.1, and ri is a

partition defined by Definition 5.1.

In the above definition, we stated border(i) as the sharp line of the partition where

the edges are leaving from or coming to the partition. However, the more general

border region is a function of the depth inside the neighbours’ partitions which we

denoted as outdepth. The sharp border region border(i) is also given by border(i, 0).

Our motivation to consider the depth from the border region was explained earlier,

and comes from that a SPARQL query has an effective length which we defined in

3.3, and if a query has touched the sharp partition border (border(i, 0)), part of that

99

query is already at distance ≥ 0 from this partition and might have a remainder in

the neighbour partitions which are also at distance ≥ 0 from those partitions’ border.

5.5 Border Replication

In order to decrease the communication cost between graph-based partitions, border

replication is used. The benefit value of this replication is given in Section 5.1 as a

gain in the access time to replicated data. This gain is related to the network access

time as was given in Formula 5.1. In this context, each time a border-replication

triple is used, it delivers the same benefit; however, how often this triple is going to

be used is shaping the effective benefit of replicating this triple (Formula 3.1). This

is related to its access rate that we detect and estimate using two types of rules:

general and specific. In the following, we state and define those rules, which enable

aggregating them into a single replication rule ready to contribute in the storage

universal adaption.

5.5.1 General Border Access Rule

Finding a border general access rule depends on deriving an access formula to the

border region, where the border replications are taken. Consider a query q that has

length l, the query answer qa according to Definition 3.2 is the set of all the sub-

graphs in the RDF graph G that match the query graph and substitute its variables.

This also means that each of those sub-graphs has the same length as q. Assume

that some a ∈ qa has at least one vertex v ∈ border(i), where border(i) is the border
region of a partition ri. The worst case for that partition happens when v is a source

or sink vertex in q 2, such that we have only v ∈ ri and could have all other vertices of

a in the other partitions. Assuming uniform access probability, the average location

of v would be on the middle of the length path of q. Thus, we could have half of a

on the other partition. The effective length of this part is l
2 . Given that the average

queries length is L, we can write the uniform probability of a vertex vm /∈ ri to

contribute in queries answers at partition i as the following:

prem(v, i) =
1

outdepth(v, i)
· pborder (5.6)

Where pborder is the probability of a query at partition i to access its border

region, which is set to 1 at system startup.
2A source vertex in DAG is a vertex with no incoming edge, while sink vertex has no outgoing

edge

100

Equation 5.6 represents the general rule of access to the vertices that are located

in a remote node hosting another partition and at some given distance. The value

of the pborder is initially set to 1, but is going to be further updated depending on

the workload by counting the rate of accessing the border region by all the executed

queries in the system so far. The same method is used to set the average query

length.

By having the border region access formula, we are ready to define the general

border replication rule in the following definition:

Definition 5.3 (General Border Replication Rule) For each working node i, a

general border replication access rule is defined for each outdepth δ as:

$br,ge(δ) = (sδbr, V̂
δ
br, a

δ
br), where s

δ
br is a function that when applied on partitions ri

at outdepth δ it returns V̂ δ
br :

sbr(δ, ri) = V̂ δ
br = border(i, δ)− border(i, δ − 1), and

aδbr = {(v, a)|v ∈ V̂ δ
br, a = prem(v, i)}.

5.5.2 Specific Access Rule

In the previous subsection, we derived a general access formula that is based on the

average behaviour of the collected queries. The formula states that for some partition

i, the access of some vertex v at some outdepth δ decreases rapidly with the increase

of δ. This means that the nearest vertices are more beneficial as border replication,

and all the vertices at the same distance have the same importance value. Moreover,

the total number of vertices at outdepth δ from partition i increases exponentially

with δ, given that on average, each vertex at depth δ is connected to more than one

vertex at depth δ + 1. This makes the storage cost of replicating border vertices

show the same exponential increase. The rapid-decreasing importance, as well as the

exponentially increasing cost will make the fixed replication from the border a weak

choice with respect to other choices of our universal adaption model that consider

the replication as one choice out of multiple choices. As a result, this could lead to a

high increase in communication costs. This problem highly motivates the existence

of more specific rules that limit the selection domain to a smaller number of vertices

with higher importance. For these specific rules, we look to the workload and detect

the border vertices that have more probabilities of access than the probabilities that

are only reflected by their outdepth value. For that purpose, we use the heat query

of Section 3.5, which provides the access probability on the level of a single vertex as

was given by Formula 3.5. The heat query access rule can be projected on any part

of the data set. We use this property to project it on the border region so that we

101

can define the specific rule of the border replication as in the following:

Definition 5.4 (Border Replication Specific Rule) By the projection property,

the border replication specific rule is the projection of heat-query specific rule $he on

the border region of partition ri:

$br,sp(χ) = proj$he(χ)(border(i, Lmax)), where Lmax is maximum query length recorded

in the workload.

This rule is similar to the index specific rule (Section 4.7.2), where the heat queries

rules are projected on the local data in a working node.

5.5.3 Aggregating Border Replication Rules

The access functions of general and specific rules are targeting the vertices in the

neighbour nodes. In this context, some of the vertices are targeted by both rules. To

deal with this issue, we aggregate both rules into one border replication access rule.

Definition 5.5 (Border-replication Aggregated Rule) The general and specific

access rules are aggregated according to the aggregation property (Section 3.4):

$br(χ) = aggregate($br,sp(χ), $br,ge)

The access rule is transferred into operation rule for each index in the system:

Rboop = {$op = ($br(χ), χ,∆)|∀χ ∈ X}

where ∆ is the difference in access time between local and remote storage divided by

the storage cost for each replicated vertex to the destination index χ.

The above set of operational rules represents border replication. We still have

another type of replication that we consider in the next section. Both types will be

then aggregated to create one set of rules representing the replications.

5.6 Load-balancing Replication

Besides overcoming the border region problem, replication is also used to enhance

the load balancing between the working node to increase the system throughput.

102

Heat

queries

access

rules

Average

access &

distance from

border

projection

Border rep.

specific

access-

rules

Border rep.

access-

rules

Border rep.

general

access-

rules

Border rep.

operational

rules

aggregation

Figure 5.2: The map of replications’ rules

5.6.1 Load-balancing Replication in The Cost Model

Recalling our general cost model Section 3.2, the cost of the replication for the sake

of load balancing is still the size of the replicated data. The benefit of having such

replication is to increase system throughput. For a block of replicated data with a

given size, its benefit to a working node is related to the count of queries that it has

contributed to in a period where that working node would be idle. More precisely,

that performance benefit can be written as:

size of replicated data
average of query processing size

· average query execution time

From Section 4.6.1, the size of replicated data per vertex v is given by:

storageCost(v, χ)

From Definition 3.2, the average query size is given by:

∑
(q,f)∈Q

qp∑
(q,f)∈Q

f

Then we can rewrite the load balancing replication benefit as:

ηLB(v, χ(m,n)) =

storageCost(v, χ) ·
∑

(q,f)∈Q
f∑

(q,f) inQ

qp
· qavge (5.7)

103

Where n is the working node where this benefit function is evaluated, v is located

at some remote node at the time of the calculation, and qavge is the average query

execution time.

That benefit is only applicable in the time when this working node would be idle

if it does not have this replication data. At such time, the queries queue of that

working node is either empty or contains only queries that require the replicated

data. That time is the accumulative time in which a working node is idle while other

nodes are working. The ratio of that time to the total running time (named as τ)

represents the factor of accessing the replicated data. Thus, if we replicate a vertex

from node n where it has there an access value of f , then it would have access in

this node equal to f multiplied by τ .

accessba(v, χ) = are(v, χ) · τ (5.8)

where are(v, χ) is the access of the vertex in a remote node as given by the $idx(χ) ∈
Ridxas the index aggregated rules set given by Definition 4.4.

5.6.2 Load-balancing Replication Rules

In the previous subsection, we formulated the benefit of such replication ηLB(v, χ)

in Formula 5.7, which is given for each vertex v and destination index χ. We also

described the access function as given by Formula 5.8. The access rate is factorized

by τ which down to zero at perfect load balancing.

Definition 5.6 (Load-balancing Replication Rules) We define in the following

access and operational rules for the load-balancing replication data:

• The load-balancing replication access rule:

Rbaas = {(aba, V̂ba, sba)|∀(aidx, V̂idx, sidx) ∈ Ridxas , aba = aidx·τ, sba = remote(sidx)}

where remote(sidx returns only the sources in the remote nodes.

• The load-balancing replication operational rule is defined as the following:

Rbaop = {r|∀$(χ) ∈ Rbaas, r = ($(χ), χ,∆),∆ =
ηLB(v, χ)

size(v, χ)
, v ∈ V̂ba}

where ηLB(v, χ) is given by Formula 5.7 and size(v, χ) is the storage cost of

replication v in the local index χ.

104

5.7 Replication Aggregated Rules

The rules of border replication and load-balancing replication are both targeting

vertices that are located in the neighbour working nodes. Since that their vertices

intersections are not an empty set, we need to aggregate both of them. However,

the aggregation is performed on the operational levels and not on the access level.

This is because the benefit function of the border replications differs from the benefit

function of the load-balancing rule.

Definition 5.7 (Replication Aggregated Rules) The operational rules of both

border replication and load-balancing replication are aggregated as the following:

Rrepop ={$op|$op = aggregateop($op1(χ), $op2(χ)),∀χ ∈ X,$op1(χ) ∈ Rboop,

$op2(χ) ∈ Rbaop}

The Rrepop represents a set of operational rules the represent the replications or the

vertices in the remote nodes from the perspective of a certain working node. That

set is comparable with the set of index operational rules and join-cache operational

rules that were given in the previous chapter.

5.8 Summary

We summarize the chapter in the following points:

• In a system of distributed working nodes, the RDF graph is partitioned and

assigned to the nodes.

• The border regions create a performance problem because the queries in that

region could require synchronization across the working nodes.

• That border region problem is overcome with border replication.

• Putting the border replication in the cost model answers the questions: what

data to replicate? and how much?

• The border replication has a general access function related to the vertices’

distance from the border and defines a general access rule. On the other hand,

its specific access function is derived from the heat queries by projection and

defines the specific access rule.

• Both of the rules are aggregated into one border access rule. A benefit function

is attached to that rule to create the set of border-replication operational rules.

105

• Another purpose for replication is to perform load balancing aiming to increase

the system throughput.

• The access rate to these replications is related to the nodes’ load-imbalance

factor, and to the access of the data in their source nodes. We derive that

access to define an access rule for each index in the system. The operational

rule is defined by adding the benefit function which is related to the system

throughout.

• The operational rules of the border replication and load-balancing replication

are aggregated into one set of operational rules. Those rules are comparable

with indexes and join cache operational rules.

106

Chapter 6

Universal Adaption

The previous two chapters presented separated approaches for adapting the indexes,

join cache, and replications with the workload and storage space. The adaption pro-

cess for each of the three concluded by a set of operational rules that are comparable

with each other. This chapter deals with performing the universal adaption of the

indexes, join cache, and replications using their derived operational rules.

Contents
6.1 System Architecture . 108

6.2 Storage Space Optimizer 109

6.3 Creating The Proposed and Assigned Rules 116

6.4 Summary . 117

107

108

Replications engine

Indexes engine

Join-cache engine

Workload

Analysis

Module

Operational

Rules

Access

Rules
Operational

Rules

Operational

Rules

Uni.

Adapt

Chapter 6

Figure 6.1: Chapter’s scope

6.1 System Architecture

We have presented in chapter 2 the design options of a distributed triple store while

reviewing the related works of RDF triple stores. We considered the federated shared-

nothing nodes, where each node hosts an adopted version of a central triple store.

This approach is also followed by [37, 26, 38, 83, 31]. This provides the system

with enough flexibility to adapt the indexes and replication layers with the adaption

parameters that were previously explained in Chapter 3. The main components and

architecture of our adaptable RDF triple store (UniAdapt) is shown in Figure 6.2.

Our distributed system H is a set of n hosts. A host hi can directly send any message

to any other host hj using the underlying network. We refer to the delay accounted

by sending a message in the network as:

delay = size(msg) ∗ Z ∗ ζ (6.1)

where Z is the network transfer rate, and ζ is a random function representing the

size of the current traffic in the network at the time of message sending. Since

we assume that the network is dedicated to the purpose of connecting the working

hosts, the traffic that is being transferred in the network is essentially the traffic

coming from system messages and the data synchronization between the hosts, i.e

109

moving the intermediate results of running queries across hosts. Each node h works

independently from other nodes, such that it receives its own share of the RDF graph.

The node has its storage optimizer that builds the node’s replication layer by looking

into the neighbours. The node runs queries on the available local data (main share

plus replications), and returns the result to a selected node that assembles the final

query result. Each node also makes its own decision about the type and quantity of

replications which are to be built from neighbours’ main shares and it has its own

optimizer for this purpose. The initial partitioning is made by a single node (node 1

in Figure 6.2), and the results are distributed to other nodes.

Within each working node, there is a main memory query engine, which is sup-

ported by a hard-disk query processing engine based on RDF-3X [56]. The storage

layer is composed of a dictionary and indexes. The dictionary is a dual hash tables

structure that maps each string in the raw data-set to a compressed integer code,

and performs a reverse mapping of any integer code back to its original textual rep-

resentation. By using this dictionary, each textual triple in the data set is converted

to an integer triple and stored in the appropriate indexes. The dictionary concept

has been used by many works, but [17] was the first to apply it to RDF systems.

The system has a collection of indexes where the RDF data actually reside as was ex-

plained earlier in Section 2.4. Each index may contain local or replicated data. The

system keeps a record that helps to distinguish the local data from the replication,

where this record costs a single bit per triple.

The storage optimizer is responsible of managing the storage layer by collecting

and analysing the workload in order to make decisions about what type of data to

assign to each index including the join cache. A decision also is made for the size and

type of the replications, allowing UniAdapt to show universal adaption behaviour.

The storage optimizer and the universal adaption is explained in more detail in the

next section.

6.2 Storage Space Optimizer

For a given storage space unit s at a certain working node, the optimizer aims to

employ it for lower queries execution time, by either building more indexes, join

cache or by building more replications. The choice of building more indexes needs

further decisions about the certain vertices to index and the type of such indexes. In

the same context, building more replications needs further decision about the certain

vertices to replicate and the type of index to maintain them. Chapter 4 considered

optimizing the indexes and join cache by formulating their benefits, costs, and access

110

Communication Framework

Node 1 Node 2 Node n

Hard Disk

Module: Query

Processing

Engine based

on RDF-3X

Memory Based

Query

Processing

Engine

Dictionary

Storage

Optimiser

Replication

Indexes

Indexes set

Memory

Container

Replication

Indexes

Indexes set

Hard Disk

Container

+Partitioner

Figure 6.2: Abstract system architecture

rates. Then transferred the formulas into sets of operational rules. The same is done

in Chapter 5 which concludes by providing a single set of replication operational

rules. The storage optimizer puts the three optimization modules together and unifies

the optimization process. The abstract storage optimizer components are shown in

Figure 5.1.

6.2.1 Universal Adaption

The universal adaption was already presented in Section 3.2 as the ability of the

system to make an optimized decision to employ any of its resources with the best-

expected option out of a set of multiple options. The basic of the adaption algorithm

is stated in Section A.2.1 and projected on the storage adaption in Figure 6.3 which

sketches the process architecture. The workload is collected and analysed into Heat

Query graph(s). The system has predefined rules which have formulas to calculate

the benefit of the vertices in the RDF graph based on the cost model. A raw data

unit in the RDF graph is colored with blue in Figure 6.3. In the storage system, we

have several indexes as well as the replication, and each structure is differentiated

with its own unique color in Figure 6.3. The cost model of the optimization process

111

Workload

Rules

+
Cost

Model +

RDF

Graph

Data Unit

ReplicationSPO SOPOPSOSP POS PSOPPX

…

Coloured

Data Unit

Storage Container

Heat

Query

Graphs

Figure 6.3: The process of storage space adaption

assigns to the blue raw data unit, the best-known structure, and labels it with the

selected structure colour to produce a coloured data unit (the dark green in Figure

6.3 is an example indicates that the data unit was assigned to the SPO index). The

coloured data unit is stored in the storage container and structured as its selected

structure. The storage container is the physical representation of the storage where

assigned data units are stored and the system pays its storage cost. This also means

that the RDF graph is not presented physically, but it conceptually represents the

storage container. This representation is modeled with the dashed line that connects

the storage container with the RDF graph. This relation also means that, at some

point, a coloured data unit in the storage container is going to be treated as raw data

unit, such that it can be evaluated again by the cost model and possibly assigned to

another place.

The Basic Storage Adaption Algorithm

We consider now transforming the basic adaption algorithm (given in Appendix A,

Section A.2.1) into a more applicable storage adaption algorithm.

The basic work of the initial algorithm is to calculate for each vertex in the data

graph the benefit of assigning it to any of the storage options (which are the memory

112

and hard disk indexes). The considered data graph is the local part of the data

within a working node and its neighbours. The above benefit is further factorized by

the access rate deduced from the workload. The next step is to sort the vertexes up

on their benefits and select the most beneficial triples to be assigned to the best-fit

index.

The methodology used to analyze the workload to find the vertices’ access rate is

given in the previous chapter, Section 3.4 where we derived Formula 3.7 for vertex

access rate.

The running time of the above algorithm is expensive since it needs to monitor each

vertex, besides the storage cost required to keep track of vertexes’ benefits. To over-

come these costs, we could reduce the accuracy of the benefits values and aggregate

them into limited number of levels(e.g.five levels). This would result typically in a

pyramid-shape of values. The lower big base contains the less important vertices,

while the top has a small amount of more important vertices at its higher levels. The

optimizer may now keep track of only the most important vertices by maintaining

a priority queue sorted by the vertices’ importance. Such a priority queue may be

updated at some point in time when the system has detected obvious changes in the

workload. A second priority queue is kept by the optimizer in order to keep track

of the vertices that have been already assigned in memory. However, the vertices in

this case are the less important vertices out of what exists in memory in terms of

their benefit. As a result, the optimizer checks the two priority queues and performs

a swap whenever a vertex at the top of the first queue is more important than the

vertex at the second priority queue’s top. This algorithm is already followed by a

previous version of our system [3]. However, the method still requires a considerable

amount of storage space besides the difficulty to maintain the queues of vertices.

In the next subsection, we explain a more optimal algorithm to handle the storage

113

space adaption that we have followed in for this version of UniAdapt.
Algorithm 1: Basic space adaption algorithm

input : RDF graph G = {V,E}, the partition number i, indexes set X, and the set of heat
queries H

1 Gh ← apply(H,G);
2 Gh = {Vh, Eh};
3 for each v ∈ Vh do
4 for each χ ∈ X do
5 if v is local then
6 access← access(v, χ);
7 baseBenefit← ηidx(v, χ);

8 else
9 access← access(v, χ) · prem(v, i);

10 baseBenefit← ∆;

11 end
12 benefit← baseBenefit · access;
13 U ← U ∪ {(v, χ, benefit)};
14 end

15 end
16 updateQueue(assignedV erticesQueue, U);
17 updateQueue(proposedV erticesQueue, U);
18 while size(proposedV erticesQueue) > 0 do
19 {(vp, indexp, benefitp)} ← pop(proposedV erticesQueue);
20 {(va, indexa, benefita)} ← pop(assignedV erticesQueue);
21 if benefitp > (benefita +BIAS) then
22 swapAssignment((va, indexa, benefita), (vp, indexp, benefitp));
23 else
24 break
25 end

26 end

The algorithm runs at each working node i with the RDF graph G, the set of

indexes χ, and the set of heat queries H as inputs. The first line applies the heat

query to the RDF graph G to get the sub-graph Gh which has the set of vertices Vh
with an access rate of more than zero.

The first loop iterates over all the vertices in Vh, then for each index χ, it retrieves the

access and benefit of each vertex v. However, these values are calculated differently

depending on whether v is a local or remote vertex. In the case of local, the access

value is set in Line 6 using the heat query access formula given by Formula 3.7.

The base benefit is the ηidx(v, χ) which is already given by Formula 4.3. In case

of that v is a remote vertex, the access returned by the heat query is multiplied

by the pprem which is the general access rate to the border replication looking from

working node i. We find pprem by recalling Formula 5.6. In Line 10, we set the base

benefit of the remote vertex to ∆ which is the difference in access time between a

local and remote vertex which basically depends on the network access time. The

benefit is then calculated according to Formula 3.1 by multiplying the access by the

114

base benefit. A triple element of vertex, index, and benefit is created and assigned

to U at the end of the loop vertices loop’s iteration (Line 13).

The next section of the algorithm deals with the assignment and swapping between

indexes in the storage element. First, the priority queues are updated with U . As was

earlier mentioned, we have two priority queues. The first is assignedV erticesQueue

which holds the vertices that have already been assigned in the previous runs of

the algorithm, ordered ascendingly by the vertices’ benefit. The second queue is

proposedV erticesQueue which contains the vertices that are proposed for assignment

and ordered descendingly by the benefit. Once the benefit values in each of the queues

are updated, the loop of Line 18 may begin to perform the swap operation between

the top of each queue. The loop halts when the top of the proposed queue is no

longer more beneficial than the top of the assigned queue, or when the proposed

queue is empty. The swap procedure also updates the queues accordingly to keep

them consistent in terms of storing the assigned and proposed elements.

6.2.2 Better Algorithm: Rules-based Space Adaption Algorithm

The main issue with Algorithm 1 is that it has to scale on the level of all the

vertices. To avoid this problem, we make use of the operational rules derived for

the indexes, join cache, and replications. Each operational rule includes an access

rule, a destination index, and a benefit function. The included access rule has a set

of sources and an access function. That are all the needed to calculate the benefits

of each vertex represented by the sources set. However, we don’t have to project the

benefits on the vertices. Instead, we project the benefit function on the sources, and

compare the sources instead of comparing the vertices. Since that the number of the

rules are limited and so that their sources, we can perform dramatical performance

optimization to the adaption algorithm given by Algorithm 1, and use Algorithm 2

instead.

The algorithm works whenever enough workload change has been detected. The new

workload Q besides the data set graph G, the index types set X and two sets of rules

are the inputs to the algorithm. The first set of rules is called the proposed rules Rp,

which are the rules that have their sources representing the data that are ready to

be assigned to the working nodes’ main memory. In the same context, the assigned

rules are representing the data that were already assigned to memory.

The first loop updates both of the two rules sets with the new workload Q using the

procedure updateRulesAccess(r,Q). This requires updating the inline heat queries,

statistics, and recalculating the benefit formulas. In Line 3, each proposed rule is

115

going to have its sources sorted descendingly by their benefits, such that we have the

most beneficial source element in the head of the rule sources. In the contrast, each

assigned rule will have its sources ascendingly sorted by their benefits in order to

bring the least beneficial source element to the head of the rule sources. The sources

sorting process is carried out using Property 4 of the rules’ properties given in Section

3.4. The second loop takes one rule rp from the proposed rules set, and another rule

ra from the assigned rules set. rp is the rule that has the best source, while ra has

the worst source in terms of the benefits. These assignments of rp and ra are taken

place in Line 6 and Line 7 respectively. This operation requires scanning the rules

set and comparing the rules by their benefits. Each rule $ has its set of sources s.

However, since $ is sorted, only the source head s̄ from each rule is considered in

the scan process.

The algorithm halts normally when the benefit of the worst assigned rule is greater or

equal than the benefit of the best proposed-rule. However, there are other practical

reasons to halt the process not mentioned here, for instance, in case of no more

proposed rule is available.

At Line 11, we evaluate the head source of rule rp to produce the vertices set V̂p.

The same is done in Line 12 to evaluate the head source of rule ra, and produce V̂a.

The final step is to swap V̂p with V̂a using the procedure swapAssignment(rp, ra).

The procedure needs access to the full rules in order to get the destination index.

Moreover, the procedure marks in rp the source that has been assigned, and in ra

the source that has been unassigned. This allows the algorithm to work again by

keeping track of what has been assigned and what is still proposed.

In order for the algorithm to work as expected, any two rules in Rp need to be

aggregated whenever there is an intersection between their set of vertices. This is

because the sources of the rules represent the vertices, and we need to have one benefit

value per vertex in order to correctly compare them. This is already performed during

the build of the operational rules in the previous chapter, and We further discuss

this point in Section 6.3.

Running Time

To analyse the running time of the algorithm, we look at its two loops. The first loop

has a size of O(|R|). In each iteration, we sort one rule by its sources set s. This costs

O(|s| log |s|) for each rule, which makes the total loop cost within O(|R| · |s| log |s|).
In the second loop, we also iterate over the rules sets, and preform constant work

on the head source of each rule. However, the costs of the evaluation parts are

116

dynamic and depend on the complexity of the source patterns and the availability

of the indexes. The cost of the swap procedure is linear with the number of vertices

to be swapped by the algorithm, which also depends on the detected changes in the

workload which are translated into changes in rules benefits.

Compared to Algorithm 1, we evaluate the vertices in Algorithm 2 at runtime, so

that we substantially reduce the high cost of maintaining the benefits on the vertices

levels by maintaining the benefits on the rules’ sources level. Moreover, the running

time of Algorithm 2 is delimited by |R| · |s| which is small number compared to the

data graph vertices.
Algorithm 2: Rules-based space adaption algorithm

input : RDF graph G = {V,E}, and two sets of the system operational rules: proposed rules Rp

and assigned rules Ra

1 for each r ∈ Rp ∪Ra do
2 r ← updateRulesAccess(r,Q);
3 r ← sortRuleBySource(r);

4 end
5 while true do
6 rp ← $op|$op = ($,χ,∆), $ = (s, V̂ , a) : ∀ri ∈ Rp, [a(s̄) ·∆(s̄)] ≥ [ai(s̄i) ·∆i(s̄i)];
7 ra ← $op|$op = ($,χ,∆), $ = (s, V̂ , a) : ∀ri ∈ Ra, [a(s̄) ·∆(s̄)] < [ai(s̄i) ·∆i(s̄i)];
8 if ba ≥ bp then
9 break

10 end
11 V̂p ← evaluate(s̄p);
12 V̂a ← evaluate(s̄a);
13 swapAssignment(rp, ra);

14 end

6.3 Creating The Proposed and Assigned Rules

Recalling the cost model of Section 3.2.1, the optimization process needs to find the

best option out of several options to employ some resource. In the case of a storage

optimization process, a working node is optimizing each unit of storage with the best

piece of data structured in the optimal index. We presented in Algorithm 2, a rule-

based optimization algorithm. However, in order for it to work, we need to provide

a set of operational rules that represent the access and benefit distributions of the

data set with respect to the workload. This requires that these rules to be sortable

by their sources so that we compare and differentiate between the rules without

having to store the stats on the level of vertices. For an access rule to be sortable

on its sources, the result of applying the access and benefits functions on the source

patterns must be equivalent to applying the functions on the individual vertices of

the rule given by V̂ . This requires that each vertex in V̂ is identified by only one

pattern in the source set of the rule. Assuring that each rule in Rp of Algorithm 2

117

is sortable will enable determining the maximum source per rule which is called the

head source ŝ. However, we need next to compare ŝ of each rule and find the rule

with the maximum benefit so that we can evaluate and assign its vertices. This again

requires that the same condition which was applied on the single rule’s sources, to

be applied on the heads of all rules. This means that each vertex in the RDF graph

must not be targeted by more than one rule within one working node. To achieve

this, the rules need to be netted and aggregated according to the rules’ properties

given by Section 3.4, such that the intersection of the vertices sets of all the rules in

Rp is equal to ∅. Fortunately, we have already performed these aggregations when

building the three sets of operational rules: Ridxop , Rcheop , and Rrepop . Those represent

respectively: indexes operational rules, join cache operational rules (Chapter 4), and

replications operational rules (Chapter 5). Those rules’ sets are ready to be added

to the proposed rules set Rp of Algorithm 2:

Rp ← Ridxop ∪Rcheop ∪Rrepop

Besides the set of proposed rules, Algorithm 2 has a set of assigned rulesRa. Those

are the rules that track what has been already assigned to the local storage. Thus,

the replication operational rules in Ra do not represent the data in the neighbour

nodes, but the data that have already been replicated locally. The benefits of those

rules are still the same as the proposed rules; however, the access functions differ.

Since we already have the data, the assigned rule now measures the real access value

instead of the potential access values that are used in deriving the access rules so far.

As a result, the assigned rules are copies of the proposed rules except for the access

calculation method.

6.4 Summary

This chapter detailed the method of performing a universal adaption of the storage

resources on the levels of the indexes, join cache, and replications. That is achieved

by comparing their operational rules that were derived in Chapter 4 and Chapter 5.

Each operational rule has a set of sources and a benefit function that assigns relative

benefits values to the vertices coming from each of the rule’s sources. Since these

benefits are globally comparable, the adaption algorithm sorts the sources of each

rule and always picks the source with the highest benefit for assignment. The storage

indexes will always be filled with the best known performing options allowing the

universal adaption with respect to the workload and the storage space.

118

Chapter 7

Universal Adaption Evaluation

In this chapter, we perform systematic practical experiments to evaluate the effects

of various adaptation sources on the performance of selected RDF-triples stores. We

start by describing the used benchmarks and queries, then we test the scalability

of the systems with respect to the data-sets sizes. The core practical evaluation is

performed in the Universal Adaption section. We conclude the chapter by presenting

our summary and conclusions in the final section.

Contents
7.1 Generation of Data-sets and Queries 120

7.2 Data-set size . 120

7.3 Universal Adaption . 121

7.4 Summary . 131

119

120

7.1 Generation of Data-sets and Queries

In order to test and evaluate any RDF triple store, we need to have both of a

data-set and a query-set. Different real-world RDF data sets are available like

YAGO [36], DBpedia [19], and BTC [35]. BTC contains a collection of data sets

like BIO2RDF[5, 21]. On the other hand, there exist also generated data sets like

WatDiv [6] and LUBM [62]. While a real data set has usually better acceptance in

term of results validation, a generated data set has the privilege of properties tuning

flexibility. This flexibility allows better sketching of system behavior with respect to

the data-set properties change.

Recalling the modeling of RDF data from Section 2.1.4, any RDF data set is eventu-

ally modeled as a graph that has exactly three elements: Vertex, Edge, and Edge’s

label. As a result, the properties of a data-set is reduced to the property of a graph.

The main analysis metric for such a graph is the distribution of the edges density

within the regions of the graph. This distribution typically follows a normal distri-

bution [88]. The two factors that draw the normal distribution shape are the mean

and standard deviation. We are going to consider those metrics when classifying and

analysing a data set.

As a contrast to the data-sets, real-world queries are not publicly available expect

for a limited number of queries. However, as we have already pointed out in Section

3.1, different works analysed some existing real-world queries logs and produced its

specifications in workbench studies [12, 30, 68]. These specifications can be practi-

cally used to produce a workload that is simulating a real-world stream of queries;

moreover, such workload generation method provides the flexibility of evaluating the

behavior of the query processing system versus tuned parameters of the workload. In

this context, to generate testing query set in our evaluation, we implemented our own

query streams generator following the properties mentioned in Section 3.3 besides

using the standard generator of the WatDiv data-set, and used both to show the

performance of UniAdapt as well as the related systems that used for comparison.

7.2 Data-set size

In this section, we focus on evaluating the scalability of the systems with respect to

increasing the size of the data-set in terms of the number of triples. The scalability

of the system is evaluated from two perspectives: the first is the ability of the system

to store and maintain an increasing number of triples, and the second is related to

the effect of the increasing size on the queries performance.

121

7.2.1 System Capacity

Evaluating the adaption of the system with the storage space is an essential objective

of this chapter. In this context, we would like to have a numerical measure of the

system storage availability. As we have seen above in this section, the performance

of a single index is related to the density of the RDF graph or the number of edges

per vertex. However, the ability of the system to maintain more indexes and more

replication is relative to both the data size and the storage capacity of the system.

In this context, we define the storage capacity for a certain storage unit m as:

cap(m) =
size(m)

size(χfull)
(7.1)

where size(χfull) is the size in byte of a full index that contains the whole triples in

the data set.

Formula 7.1 returns a value indicating how many indexes the system can fully main-

tain, and this metric is going to be the basic of measuring the system adaptation

with space as will be shown latter in Section 7.3.

7.3 Universal Adaption

In this Section, we perform the core evaluation of our adaption system with respect to

other systems which implement some level of workload adaption. We first give a real-

world starting point, then consider multiple workload scenarios. We then consider

the extreme cases of poor workload quality and measure the systems’ responses in

different levels of storage space.

7.3.1 Starting point

We consider here testing the system with a workload that has real-world parameters,

and evaluate the adaption of the systems after the first batch of queries. This first

batch that has the size of 1000 queries serves the purpose of training the adaptable

system. The evaluation of the system performance is carried out next with several

batches.

The first test is performed on the DBpedia data-set. According to [78] and [60], we

have the following given points:

• 90% of the queries target 160 frequent patterns.

• 80% of the queries have a length of less than or equal to 2.

122

• A high access rate is expected at most of the times.

• The number of working nodes is 2 simulating the same distributed environment

reported by [78].

Our tests are divided into runs such that each run has its specific parameters.

For each run, we execute two batches of queries with the given parameters and

evaluate the system adaption for the second batch, while the first batch serves the

purpose of training the adaption layer. The adaption is projected on the storage

layer and reflected on the query performance. The performance is measured as the

total running time of the query batch subtracting the system idle time, which is the

time when the system is totally idle. We change the parameters of the starting point

to create more workload scenarios. We switch the data set to WatDiv, increase the

length of the query up to 4, and increase the number of working nodes to 4.

7.3.2 Adaption Parameters

Form the starting point given above, we change the workload and space parameters

and evaluate the adaption of the system again in the dual batch method described

in the previous sub-section. However, given that we have a big number of workload

parameters besides the hardware parameters, and since considering changing all the

parameters would end with a non-feasible exponential number of experimenters, we

select a path of change that aims to reflect the adaptation behavior of the system with

an average number of experiments. In this context, we give an abstract introduction

of those parameters in the following:

• Storage capacity which has been introduced in Section 7.2.1, is the relative

ability of a storage unit to maintain RDF triples.

• The indexes used by the system is abbreviated according to the indexes nota-

tion Section 2.5.

• The replication is subdivided into two parts: border replication (Rep. B) and

load-balancing replication (Rep. L). More details are already given in Section

5.1.

• A query is either unbounded (has no constant in any of its subjects or objects)

or bounded on either of its subject or object. More details are given in Section

3.3.2.

• The quality of the workload is labeled α and given according to Section A.2.

123

Given the above points, we used three levels of storage capacity to measure the

behavior of the system in different storage levels. For the first capacity level which is

2.2 we have two groups of runs, the first is against the DBpedia data set where the

length of the query was averaged to 2, and the second is against the WatDiv data

set where we able to get longer queries averaged around 4.

Ru
n

Ca
pa
cit
y

Le
ng
th

α Bo
un
de
d

S-b
ou
nd
ed

Un
iA
da
pt

Ad
pa
rt

W
AR

P

0 2.2 2 0.1 0.9 0.8 946 1009 24862

1 2.2 2 0.1 0.9 0.8 471 893 21554

2 2.2 2 0.01 0.9 0.8 411 887 14796

3 2.2 2 0.1 0.9 0.3 480 995 19990

4 2.2 2 0.01 0.9 0.3 381 721 13903

Table 7.1: Parameters of runs 1-4 with systems’ running times

Run SPo PSo POs OPs SP-o OP-s Rep B Rep L

0 324 0 324 0 0 0 0 0

1 0 0 324 47.2 322.8 1.2 10.7 17.1

2 0 0 324 26.4 304 10.3 20.1 27.4

3 57 324 0 0 2 324 11.2 15.3

4 26.4 324 0 0 9 324 18 20.6

Table 7.2: storage distribution of runs 1-4 (in millions of triples)

Table 7.2 shows the storage distribution in terms of the sizes of the relevant in-

dexes (i.e. the indexes which have size more than zero at some point of time during

the runs). At Run zero the system is basically building its knowledge about the

workload, and starts with the indexes SPo and POs. This start allows the system to

answer any triple pattern that is unbounded or bounded on the subject. The type

of workload received by the three systems is seen in Table 7.1; the average of the

queries length is 2 and 90% of the queries are bounded, and 80% out of that 90% are

bounded on the subject, while the rest are bounded on object. The workload quality

(described in Section A.2) of the generated workload is set to 0.1. The system capac-

ity is limited to 2.2, which means that the storage unit can maintain 2 full indexes,

besides free size which can be employed to maintain a size of data equivalent to 0.2

124

of the full index.

In the second batch of the run numbered 1, the optimizer of UniAdapt detects that

most of the triple patterns are bounded on the subject and also have the predicate

as constant. This led to changing the size of the index SPo to zero and the size of

SP-o to 323.8 million triples. The hashed index is faster and covers all the requests

of the 80% queries that have subject-bounded patterns in the batch of queries. The

remaining object-bounded queries may use either the OPs or the POs for some extra

cost. However, the POs can cover also the request from unbounded patterns (have

constants only in predicates). Thus, the optimizer decided to set full-size POs, set

the size of PSo to zero, and assign 47.2 M triples to OPs. Those triples have been

selected by the optimizer as the most relevant triples to OPs. Any other triples that

need to be queried by OPs may use the POs index. The optimizer decided at these

storage and workload parameters to have 27.8 M triples divided as 10.7 to support

the border and 17.1 to support the load-balance between the working nodes. This

is also consistent with the relatively small average query length recorder at this run.

In Run 2, we have better workload given that α has a smaller value. The effect is

reflected in the storage layer by a decrease in the SP-o indexes, as the optimizer

has now a better ability to detect the S-bounded patterns making use of the excel-

lent workload. For the same reason OPs was decreased allowing more space to the

OP-s index, since the better workload has enabled the system to better detect the

O-bounded patterns.

Run 3 has the same parameters as Run 1 except that the ratio of subject-bounded

queries is now 30%. That also means that the object-bounded queries are now repre-

senting 70% of the total bounded queries which are still representing 90% of the total

queries. With respect to Run 1, the optimizer replaced POs with PSo which have

now full index size instead of zero in the previous run. The size of OP-s is turned to

full instead of SP-o giving that most of the queries are now object bounded and have

the predicate as constant. Run 4 goes with better workload quality with respect to

Run 3, and the optimizer was more capable of detecting the 30% subject-bounded

queries allowing a more replication space.

Increasing Queries Length

The three runs numbered from 5 to 7 are directed to see the effect of increasing the

average length of the query from 2 in the previous group of runs to 4. The storage

behavior of the system is shown in Table 7.3, and the workload parameters are given

125

in Table 7.4.

Despite that, the queries length is doubled in Run 5 with respect to Run 3, the

optimizer preferred to assign less space to replication because the increase in length

led to more local index processing, and more space is given to the SPo and SP-o

indexes. On the other hand, the system uses the good quality of the workload to

replicate smaller but more beneficial replication.

Run 6 has basically the same parameters as Run 5 except for a lower workload

quality. That made the optimizer assign more space to the border replication, and

less space to the SPo and SP-o indexes. Run 7 is also similar to Run 5 except for the

distribution of queries bounding type, such that Run 7 is mostly Subject-bounded.

The replication, in this case, recorded approximately the same values, while the SPo,

PSo and SP-o have changed roles with OPs, POs, and OP-s respectively.

Run SPo PSo POs OPs SP-o OP-s Rep B Rep L

5 69.5 324 0 0 24 311 5.49 0

6 57.1 324 0 0 4 324 17.9 0

7 0 0 324 70.1 324 2.7 4.9 7

Table 7.3: Storage distribution of runs 5-7

Ru
n

Ca
pa
cit
y

Le
ng
th

α Bo
un
de
d

S-b
ou
nd
ed

Un
iA
da
pt

Ad
pa
rt

W
AR

P

5 2.2 4 0.01 0.9 0.3 2741 6414 80047

6 2.2 4 0.1 0.9 0.3 3084 9694 149783

7 2.2 4 0.01 0.9 0.9 2820 9428 107540

Table 7.4: Parameters of runs 5-7 with systems’ running times

Increasing the Capacity

In all of the previous runs, the system was put under strict storage space availability.

Runs 8 to 11 are meant to measure the response of the system in case of more storage

space is available. In this context, the capacity in Table 7.5 is now 4.5 which means

that the storage has enough size to maintain more than 4 full indexes. Another

workload parameter that has been changed in this group of runs, is the presence of

more unbounded queries. An unbound query contains constants only at the levels

126

of the predicate, thus its processing involves a relatively big number of triples that

require multiple rounds of joining. In all of the four runs in Table 7.5, both of the

average queries length and the ratio of subject-bounded queries are fixed on 90%

and 4 respectively. This is seen by the optimizer as more needs to the SP-o index.

Despite that, the overall ratios of the bounded queries are varied between 40% to

70%, the given capacity ratio hints the optimizer to favor maintaining full indexes

for POs, OPs, and SP-o during all the runs from 8 to 11.

Run SPo PSo POs OPs SP-o OP-s PP-x Rep B Rep L

8 0 0 160 160 160 56 73 91 24

9 0 0 160 160 160 25 104 101 13

10 0 0 160 160 160 49 160 22 10

11 0 0 160 160 160 22 197 20 4

Table 7.5: Storage distribution of runs 8-11

Ru
n

Ca
pa
cit
y

Le
ng
th

α Bo
un
de
d

S-b
ou
nd
ed

Un
iA
da
pt

Ad
Pa
rt

W
AR

P

8 4.5 4 0.1 0.7 0.9 19112 143531 881370

9 4.5 4 0.01 0.4 0.9 9542 85133 352238

10 4.5 2 0.1 0.4 0.9 3359 4871 48119

11 4.5 2 0.01 0.7 0.9 1012 2436 13533

Table 7.6: Parameters of runs 8-11 with the systems’ running times

Performance Evaluation

The final objective of the adaption process is to have better queries execution time.

In order to have an overall image regarding the performance of the three approaches

in comparison (UniAdapt, AdPart, and WARP), we sketched the execution times of

the runs from 0 to 11 in Figure 7.1. The UniAdapt was superior to the other systems

in all of the runs. However, there is a general increase in execution times in all the

systems in the range Run 5 to Run 9 because of the increase in queries length. Run

8 to Run 11 showed additional higher execution time due to the increase in the ratio

of the unbounded queries.

The best relative performance of UniAdapt is seen in Run 8 and Run 9. This is

127

Runs

Ti
m

e
in

 m
ill

is
ec

on
ds

500

1000

5000

10000

50000

100000

500000

0 1 2 3 4 5 6 7 8 9 10 11

UniAdapt Adpart WARP

Figure 7.1: The systems’ performance comparison of the 12 runs

mainly due to the relative abundance of storage space and the bigger length of the

queries. In these circumstances, UniAdapt was able to employ the available storage

space to maintain the proper full indexes, relevant border replication beside caching

the most important parts in the PP-x index which save expensive joining time. That

cache effect was obvious in Run 9 where the workload was of better quality and led

to the shown decrease in the execution time. On the other hand, the longer queries

length required more expensive communication cost for AdPart, since it partitions

the data to the working node by hashing the subject of each triple.

The WARP which is based on RDF-3X [56] is not a native main memory system, thus

its execution time pays the cost of hard disk latency. However, WARP performed

relatively well in Run 10 and better in Run 11. This due to that these runs have

more storage space, which allows the operating system policy that handles the main

memory to become more effective. This is more obvious in Run 11 where the workload

quality is high, which means that small parts of the data are more frequently accessed.

7.3.3 Non-frequent Workload

In this part of the evaluation, we test the behavior of the system under extreme

workload circumstances in which the workload targets the WatDiv data set with

128

uniform distribution and with no chance of repeating. The heat queries set cannot

detect any specific behavior, and thus the specific-rules set has low effectiveness.

However, the general rules can still detect the general usage statistics of the indexes,

replication, and join cache. The objective of this part is to evaluate the effect of the

general rules under these circumstances.

Under the above assumptions, the specific rules of the replication are not active

anymore, and the general rule is mainly related to the average usage of the replicated

data and its distance from the border. All the data at a certain distance from the

border is treated equally. However, the indexes average usages are going to be variant

depending on the shape of the queries. The cache indexes are also badly affected

by the workload. However, there is still an effect of the storage availability on the

indexes cache.

We divide this test into sub-tests where each sub-test is composed of several runs.

Short Heterogeneous Queries

The first subtest has 100% unbounded short queries with length equal to 2, and with

full uniform access that has no repetition. Figure 7.2 is showing the behavior of the

system with 5 runs of the given workload properties. Each run is composed of 5

batches with 200 queries each. Each run is performed in a specific level of system

storage capacity. The first run has a strict capacity of 2. At this capacity level,

the system is not going to have enough space or workload knowledge to perform

join cache besides extra replication and indexes. However, the short length of the

queries decreases the need for the replication besides the heterogeneity of the queries

which mainly requires the PSo and OPs indexes. Thus, both UniAdapt and AdPart

performed closely in this run. The next two runs increased the storage space and thus

enabled the system of having more replication; however, this caused little change on

the running time. The system starts to show a considerable decrease in running time

starting from a capacity level of 8. That is where the cached join index starts to

have enough elements to affect the performance. Although the cache required a lot

of storage space, a capacity level of 8 is quite possible in the case of the system is

maintaining a small data set. The performance of the AdPart shows the expected

steady behavior with the system capacity. We changed the heterogeneity of the

queries from pure unbounded to mixed of bounded and unbounded and sketched the

results in Figure 7.3. Although this change increases the indexes’ needs in query

processing, UniAdapt adapts itself with the available storage space with respect

to AdPart. At the highest level of capacity, the system achieved all the required

129

Figure 7.2: Short heterogeneous queries vs capacity

replication and substantially decreases its response time.

Long Heterogeneous Queries

We use the same workload properties of the previous sub-test but with queries length

of 5. At this length, the role of the replication is very clear in on the query execution

time. The behaviors of the systems are sketched in Figure 7.4 with respect to the

system capacity. Both systems show similar performance at the lowest level of system

capacity. However, UniAdapt employs the increasing space for more replications

to overcome the bad impact of the workload and enhance the performance. At

the capacity level of 3.5 and 4, the impact of the cache and the sufficient level of

replications appears into a considerable decrease in the queries execution time.

7.3.4 Non-uniform Workload to Partitions Access

We see here another scenario of bad workload trend, when the workload tends to

access some parts of the data sets that happen to be in only one partition. By

this scenario, we generate 4 partitions using METIS then generate a workload that

targets only one of them. The initial effect of this extreme case on the system is a bad

load balance state such that 75% of the distributed system resources are not utilized.

130

Figure 7.3: Short non-heterogeneous queries vs capacity

Figure 7.4: Long heterogeneous queries vs capacity

131

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 4 5

C
ap

ac
it

y

R
u

n
n

in
g

Ti
m

e
m

s

Runs

uniAdapt Adpart capacity

Figure 7.5: Long non-heterogeneous queries vs capacity

The effect on AdPart is limited since it uses a hash-based partitioning strategy.

The reaction of UniAdapt to this scenario is to perform replication for the purpose of

load balancing. This can be very effective when the locality of the workload is high

such that the size of the targeted data is small and thus can be easily replicated.

This is seen in Figure 7.6 in runs 4 and 5. In Run 0 the system has not yet made

any adaption step towards the non-balanced workload access. The first step is taken

in Run 1 and reflected in a decrease in the performance despite the limited storage

space (see Table 7.7), because the replication for the purpose of load balancing had

been marked as the highest priority in the idle working nodes with respect to other

storage consumers, besides the short-queries workload. In Run 2 and Run 3, the

high storage space capacity solved the problem by enabling the replication of all the

highly accessed data. In Run 4, the small locality ratio is translated into a smaller

range of the highly accessed data, which enables the system to easily replicated them

even within a limited storage space capacity.

7.4 Summary

This chapter presented a practical evaluation of our universal adaption approach.

We provided different types and quality of workload and storage space availability

132

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6

C
ap

ac
it

y

R
u

n
n

in
g

Ti
m

e
m

s

Runs

UniAdapt Adpart capacity

Figure 7.6: The response of the systems towards non-uniform workload access with

respect to capacity

Run Locality Ratio Capacity Queries Length

0 0.1 2.2 2

1 0.1 2.2 2

2 0.1 3.5 2

3 0.1 4.5 2

4 0.01 2.2 2

5 0.01 3.5 2

Table 7.7: Workload Properties of The Non-uniform Workload

including real-world scenarios. The UniAdapt was able to utilize its storage resources

making use of the workload. This utilization achieved high performance in the cases

of high workload quality, high ratio of storage space availability, short queries, and

bounded long queries. During the different scenarios, UniAdapt tuned its structures

of indexes, replication, and join cache with the detected state of workload and stor-

age space.

To measure the system performance at its limits, we considered the extreme non-

frequent workload scenarios, in which the workload is not repeating any of its parts.

However, the adaption system detected this low level of workload quality and made

133

use of its general rules as well as the availability of storage space to boost the perfor-

mances in most of the cases. The system also responded to the extreme case in which

the stream of queries is targeting only one working node. It detected and replicated

the hot parts of the data to other nodes allowing them to contribute to the queries

execution and released the bottleneck caused by the extreme load-unbalance state.

134

Chapter 8

Threading

The previous chapters considered mainly the adaption of the storage layer with

the workload. The workload contains other types of trends that can be used to

reach better utilization of the system processing resources. This chapter presents

the methods used by UniAdapt to adapt the processing resources with the queries’

arrival rate.

Contents
8.1 Adaption to Queries Arrival Rate 136

8.2 Queries Queuing Model . 136

8.3 Adaption of The Processing Resources 139

8.4 Evaluation . 139

8.5 Distributed Working Nodes 142

8.6 Summary and Conclusion 146

135

136

8.1 Adaption to Queries Arrival Rate

Any modern computer system has a certain level of parallelization capabilities, which

is seen by the application as multiple threads. When a query processing system

receives a single query, the basic objective is to process this query as fast as possible.

Exploiting the threading capabilities of the system speeds up the execution. However,

this speedup is usually not linear with the number of the used threads due to threads

synchronization costs. If the system receives a stream of queries at a rate that is

bigger than its throughput rate, the queries start to build up in the queue. The

system would have to choose between assigning the threads to single queries (intra

queries parallelism), assign each query to a single thread (inter queries parallelism),

or have a combination of the two approaches. This is related to the queries arrival

rate and the queuing model of the system,

We have presented in Section 3.1 a real-world example of how rapidly may a queries

arrival rate changes over time. In order to show the technical effect of this change on

the RDF management system, we will first provide a model of the queries queuing

method followed by the system.

8.2 Queries Queuing Model

Our distributed system is composed of n working nodes connected by a network.

Each node has the control of its resources, its share of the RDF data, and it has

access to other nodes’ data. Each node has its own queries queue as well as to the

remote nodes’ queue; however, we assume that each node has access to any query

with the same access time. This makes the system model have one query queue.

The query’s turnaround time qtr is the time of the waiting in the queue qw plus its

execution time qe.

qtr = qw + qe (8.1)

Assume that at some point of time, there are k queries in the queue. The average

waiting time of the i′th query is given by:

i · qavge

ma ·me

where ma, me are respectively the intra and inter query parallelization factors pro-

vided by the distributed system. The average waiting time of the k queries is going

to be:

137

qavgw =

k∑
i=0

(qavge · i

ma ·me
)

k

=
qavge

ma ·me · k
·
k∑
i=0

i

= qavge · (k + 1)

2ma ·m2

Then from Equation 8.1, the average turnaround time of the query is given by

the summation of the qavge and the qavgw and thus can be stated as:

qavgtr =
qavge

ma
+ qavge · (k + 1)

2ma ·me

and in a more compact form:

qavgtr = qavge · (1

ma
+

k + 1

2ma ·me
) (8.2)

and by letting:

f(ma,me) = (
1

ma
+

k + 1

2ma ·me
)

then Equation 8.2 is given by:

qavgtr = qavge · f(ma,me)

The average turnaround time that a query would face is related to f(ma,me),

and reducing this factor would reduce the average query’s turnaround time. The

parallelization factors ma and me are related to the processing power of the system,

and thus they should sum up to a constant. However, there is the following issue:

having more intra-query parallelism is accompanied by paying more threading com-

munication costs. In this context, we can express the relation between ma and me

as the following:

me +ma + g1 ·ma + g2 = c me,ma, c > 1 (8.3)

where, c is a constant representing the parallel processing power of the system, g1

and g2 are constants representing the synchronizing loss. Assuming that g1 = g2 = y,

we may write Equation 8.3 as:

me +ma + y(ma − 1) = c me,ma, c > 1 (8.4)

Equation 8.4 means that we can choose to divide our c threads between me and

ma, but having more ma would cost some losses proportional to y, and this loss is

138

equal to zero when ma = 1. That is the case of the system using only 1 thread for

the intra-query parallelism.

In order to minimize qavgtr in Equation 8.1, we need to consider maximizingma and/or

me in f(ma,me). However, maximizing one variable leads to decreasing the other

since that both sum to a constant in Equation 8.4. Maximizingma gives more benefit

for big values, since it appears twice in f(ma,me); however, increasing me is more

effective on small values, because some portion of ma would be lost by y factor in

8.4.

In order to have a maximum value of ma we need to set me to 1 in Equation 8.4

then solve for mmax
a :

mmax
a =

c

y + 1
− 1

Similarly, we find mmax
e by setting ma = 1 in Equation 8.4:

mmax
e = c− 1

Then we are interested in seeing how f(ma,me) is looking by substitute for ma =

mmax
a and me = 1 :

f(mmax
a , 1) =

k + 1

2(
c

y + 1
− 1)

+
1

c

y + 1
− 1

=
k + 3

2(
c

y + 1
− 1)

(8.5)

In the same way we can get f(1,mmax
e) :

f(1,mmax
e) =

k + 1

2(c− 1)
+ 1

Having y = 0 in Equation 8.5 would make f(mmax
a , 1) < f(1,mmax

e) for any

value of k with any reasonable value of c. However, increasing the value of y would

decrease the difference, then at some value of y = ycr, we would have f(mmax
a , 1) =

f(1,mmax
e), and we would have f(mmax

a , 1) > f(1,mmax
e) for any y > ycr. In order

to find ycr we need to solve the following equation for y:

f(mmax
a , 1)− f(1,mmax

e) = 0

139

Doing the basic math and substituting we can have the following:

ycr =
c

c̀
· k̀ + 2

k̀ + 4 +
k̀

c̀

(8.6)

Where, k̀ = (k + 1) and c̀ = (c− 1).

Taking into consideration that
c

c̀
≈ 1, the most affecting factor in ycr is the ratio

k̀

c̀
, which is the ratio of the queue length to the system processing power. If this

ratio is high, then we would have smaller ycr and this means that a very small

threads synchronization cost y would be still greater than ycr and would cause

f(mmax
a , 1) > f(1,mmax

e) so that having f(1,mmax
e) (maximum enter-queries paral-

lelism and minimum intra-query parallelism) is more beneficial to the system.

8.3 Adaption of The Processing Resources

The processing resources in each working node may all contribute to the processing

of a single query. However, any extra thread to process a query requires extra costs

expended in the form of threads and data synchronization. If the threads working

on a single query are from different working nodes, the system has to pay extra

network communication cost. To avoid this type of latency the system tries to keep

the execution of each query within a single working node as long as the required data

are available locally. In the range of a single query, we still can use more than one

thread to execute a single query. The optimizer has the task of deciding the optimal

number of such threads. We have already gone through this problem in Section 8.1,

and showed that the number of the threads to process a single query is related to

the number of queries waiting into the queries’ queue. By using Formula 8.6, the

optimizer in any working node can easily estimate the number of threads to assign

to each query by looking to the number of waiting queries in the queue, as well as

the average query execution time, the average thread synchronization cost, and the

available number of hardware threads in the system. Generally, the optimizer favors

consuming one thread per query as long as the query arrival rate is greater than the

system throughput.

8.4 Evaluation

In this section, we provide a practical evaluation to the adaption of the threading

and processing resources.

140

8.4.1 Working Threads

We practically follow the performance behavior of a query with respect to its work-

ing threads. In a distributed environment, there are two types of working-threads

that might be involved in a single-query execution:local threads which are parallel

threads of the working node where the query is being executed, and remote threads

which are owned by remote nodes but still handling part of this query. We consider

in this section the effect of local threads on the query execution time.

Instead of using the query execution time as a measure of the number of working

threads, we use the ratio of execution speedup when using n threads with respect

to run the same query with one thread. Having more threads should speedup the

query execution by a factor that is ideally the number of the threads; however, this

speedup is smaller in the practical world due to the existing of threads scheduling

and synchronization costs.

As any typical parallel-processing problem, the important factor in achieving high

parallelization speedup is the ratio of the threads maintaining cost to the query pro-

cessing time. Since there is a correlation between the query type and its execution

time, we consider in this evaluation the threading behavior with respect to the query

types. Figure 8.1 shows the general behavior of bounded queries on three types:

star, tree, and chain. The star query has only one central vertex, and all the the

other vertices must have exactly one edge to it. The tree query has the shape of a

connected directed acyclic graph (DAG). Finally the chain query is also a DAG, but

has one source and one destination. The formal definitions of those types are given

in Appendix A, Section A.1.

The three types are compared with respect to the ideal speedup behavior which

is equal to the number of working threads. A clear deviation for the three types

are observable from the second thread and stop delivering any clear benefit to the

tree-query speedup starting from the third thread. Moreover, increasing the threads

was harmful starting from the third thread for the star-query, and the fourth thread

for the chain-type. The behavior of the queries types correlates with the number of

processed triples during their executions as given by Table 8.1.

The unbounded queries draw different behavior shown in Figure 8.2 where we have

also the three types of queries with respect to the ideal behavior. The deviation

from the ideal is very small at two threads for the three types and slightly starts in-

creasing from the third thread. The differentiation between the three types becomes

significant from the sixth thread, but the three types scaled till the seventh threads

with a speedup of 4 in the star query and up to 6 for the tree query. The behavior

141

Figure 8.1: Speedup of bounded-queries execution with respect to working threads

difference between the bounded and unbounded query can be explained by recalling

their difference in execution and processing in Section 3.3.2. In a general memory-

based execution of an unbounded query, the first index call returns a set of triples

of size n. The execution goes next by effectively executing n bounded sub-queries in

a totally independent way, and requires no synchronization between them except a

simple union operation on their results in order to form the final query result. This

clearly boosts the speedup of an unbounded query parallel execution and allows bet-

ter scaling with the used number of threads. On the other hand, a bounded query

is typically smaller in size and bounded to at least one vertex in the RDF graph.

Threads Star Chain Tree

1 1 1 1

2 1.41 1.5 1.55

3 1.6 1.92 1.92

4 1.7 1.94 2

5 1.6 1.8 1.97

Processed triples 120 259 412

Table 8.1: Bounded-queries speedup with respect to working threads

142

Figure 8.2: Speedup of unbounded-queries execution with respect to working threads

Threads Star Chain Tree

1 1 1 1

2 1.8 1.9 1.9

3 2.6 2.7 2.8

4 3.3 3.5 3.6

5 4.1 4.1 4.3

6 4.7 5 5.3

7 4.9 5.6 6

Triples processed 2124 6235 5412

Table 8.2: Unbounded-queries speedup with respect to working threads

8.5 Distributed Working Nodes

In the previous section, we tested the behavior of the queries performance with re-

spect to the number of local threads processing each query in parallel. In this section,

we are going to see the effect of having distributed working nodes that can assign

their local threads to process a single query. Having local parallel threads working

on a single query requires paying the cost of threads synchronization and the cost

of threads initialization. However, having distributed threads working on the same

query requires a further cost which is the communication cost, which is the cost

required to move the intermediate results across the network.

143

From the previous section, we find that scaling a typical bounded query with several

local threads is practically not an easy task due to the relatively small number of

processed triples. Thus, the distributed query processing is only applicable to the

unbounded query. This is also followed by AdPart [31] and TriAD [28]. Another

important factor to consider regarding the use of distributed threads is data avail-

ability. The data required to process a single query might not be available on a single

node but on n nodes instead, due to the used partitioning strategy. The system in

this case has no option but to use at least n multiple distributed threads to process

the query. On the other hand, if the data of one query is only available in a single

node due to the partitioning and the lack of enough replication, the system has no

option but to process it in that single node using its local threads resources.

Our objective now is to evaluate the effect of the distributed processing on the scale

of a single query as well as its relation to the number of triples that are required

to be shuffled across the network, the amount of replication, and the load balanc-

ing between the working nodes. The effect is measured with respect to the total

speedup that is resulted from using the local and distributed threads to process a

given query. In this context, we have selected an unbounded query that provides

ideal conditions for parallel and distributed processing. The query processes 12448

triples but produces only 2 sets of triples. For testing purpose, we aggressively biased

the partitioning of the RDF data to evenly assigns them to the 4 working nodes cre-

ating a 100% load balancing between working nodes when they process this query.

This 100% balanced rate is kept for runs 1 to 6 in Table 8.3 and Table 8.4. The

length of the query is 4 and the number of the working node is set to 4.

In Run 1, there are no border triples which requires no intermediate results to be

shuffled across the network. Instead, only 2 triples are shared and unified to produce

the final query result. This is not affected by the 0% replication that is set for this

run. The speedup scored the highest value rated 15 out of 16 threads. The perfect

balancing allows each node to process equal and big share of triples, and since the

resulted triples are very limited, they cost a very small time to finally transfer them

between the nodes. However, there is a small chance for these ideal circumstances to

be practically available all together in the real world. As a contrast from Run 1, the

query in Run 2 touches the border area and requires 1106 border triples, which need

to be shuffled across the network to finish the query execution. This dramatically

decreases the speedup to rate 7 out of 16. This is due to the delay of moving the

triples then join them with the local intermediate results. Run 3 requires 2017 border

triples which sinks the speedup to rate 4.1 out of 16.

144

Table 8.4 lists the values of runs 5 to 4, where we switched the 0% replication to 100%.

This also means that any node has access to all the data locally, and thus requires no

border triples to be shuffled from neighbouring nodes. Some nodes had to do more

work since they process the replicated data besides their own share of data. Never-

theless, the effect was negligible on the recorded speedup which rated to 15 out of 16.

Run Result Processed Border Shuffled Balance Replication Speedup

1 2 12448 0 2 100% 0% 15
16

2 2 12448 1106 1106 100% 0% 7
16

3 2 12448 2017 2017 100% 0% 4.1
16

Table 8.3: The speedup with respect to border triples

Run Result Processed Border Shuffled Balance Replication Speedup

4 2 12448 0 2 100% 100% 15
16

5 2 12448 1106 2 100% 100% 15
16

6 2 12448 2017 2 100% 100% 15
16

Table 8.4: The speedup with respect to border triples with full replication

8.5.1 Queries Stream

In the previous subsection, we tested the distributed query processing under special

circumstances and with an ideal circumstances. In this part, we consider more real-

world related cases, where the system is expected to receive many queries, and a

queuing model similar to what was presented in Section 8.2 is modeling the queries’

arrival trend. To test how the system responds to such a stream of queries, we

generated 16 random queries and ran them in four rounds of runs. In the first run,

the whole 16 queries are run in one single batch and sent to the system together. In

the second run, we have two batches such that each batch is composed of 8 queries,

and the bathes are executed on the system sequentially. In the same manner, the

third, fourth, and fifth runs include 4, 8, and 16 batches respectively.

In Figure 8.3, We sketched the performance comparison of UniAdapt which per-

forms graph-based partitioning using METIS [45], and AdPart [31] which has a parti-

tioning strategy that is based on a hash-based algorithm. The graph-based algorithm

145

Figure 8.3: The systems’ performance comparison of queries stream

Run Batches Q. per Batch

1 1 16

2 2 8

3 4 4

4 8 2

5 16 1

Table 8.5: The query streams runs specifications

aims to keep the execution of each query within a local partition for the sake of reduc-

ing the communication cost, while the hash partitioning aims to quickly distribute

the data to working nodes, which at the same time, supports better-distributed pro-

cessing for each query1.

As per Table 8.5, Run 5 has 16 batches with 16 queries each, and each batch is exe-

cuted separately. In this situation, each system should try to best serve each query.

However, the results of Run 5 (Figure 8.3) show that AdPart and UniAdapt are close

in their results which means that the communication cost paid by AdPart is similar

to the latency paid by the local execution of UniAdapt. However, as we move to

Run 4 where each batch is composed of 2 queries, UniAdapt is scaling better since it

can better utilize the local processing resources with the second query of each batch.

1More details about partitioning are given in Section 5.3

146

The semi-linear trend of improvement continues when moving down to Run 3,2 and

1. At Run 1, all of the 16 queries are executed in one batch allowing the system to

best utilize its local processing resources since it has now more queries to assign to

its working nodes. Moreover, if a node happens to be waiting for some border triples

to arrive from a remote node, having more queries in the queue allows the node to

utilize the waiting time by running the next queries. AdPart gradually makes use of

this privilege to decrease the effect of the communication cost as seen in Figure 8.3.

These practical evaluations clearly show that having a stream of queries with a high

arrival rate highly supports the direction of the local execution of the queries. By

reviewing a real world scenario [78], the high arrival rate of SPARQL queries is the

expected trend, and the system throughput is the point of performance bottleneck.

These evaluations’ runs focus on the initial lifetime of the systems where no adaption

steps are taken. However, AdPart adaptation steps are by performing workload-based

replication to support the local execution and avoid the communication cost.

8.6 Summary and Conclusion

To achieve a high distributed speedup on the level of a single query, we need to have

a high number of processed triples and a proportionally very small number of shuf-

fled triples. The number of shuffled triples is inversely proportional to the average

length of intermediate results, as was seen by Run 1 where the border triples were

0, implying that the length of the intermediate results was equal to the length of

the query itself. In such a case, the shuffled triples are not further joined but rather

collected to produce the query result. However, the high value of distributed speedup

requires also a load balancing between the working nodes, such that we have equal

shares of processed triples done by each node. This is artificially achieved in Run

1 by biasing the partitioning. Unfortunately, achieving the goal of load balancing

practically contradicts the goal of reducing the border triples, and the system should

choose one direction to follow; either aiming to process each query locally to reduce

shuffled triples, or to focus on having better load balancing between the working

nodes and deal with the resulted extra shuffled triples.

Chapter 9

Conclusion and Future Work

The final chapter of this thesis summarizes its outcomes and contributions, discusses

its points of strength as well as its weak points, and states future outlooks for its

development.

Contents
9.1 Points of Strength . 148

9.2 Limitations/Points of Weakness 149

9.3 Future Works . 151

9.4 Summary . 152

147

148

9.1 Points of Strength

We discuss in the following the points of strength in this thesis.

• Boosting the performance. The RDF triple store that implements the

proposed universal adaption approach expects the outcome of a performance

boost. That performance increase is the final output that is delivered to the

applications world. The triple store becomes adaptable to both the workload

and the storage space by utilizing both of them for pushing the performance

objective.

• Workload analysis. While the workload detection methods used by the Uni-

Adapt and the related works share the same basic methodology of global queries

graph, our heat queries are more advanced by requiring no fixed thresholds and

automatically tuning its effectiveness. That enables them of avoiding the im-

pact of low-quality workload. In such a case, the system makes use of general

average measures. Those general measures besides the specific measures (which

are based on the heat queries) are transformed into rules which are compared

on a single domain by the optimization process. This method makes the work-

load adaption process very immune to the drop and fluctuation in workload

quality as was shown by the practical evaluation Chapter 7.

• Storage adaption. The thesis formulates a unified cost model that calculates

the benefits of the indexes, replications, as well as the join cache. The benefits

as well as the access rates given by the workload analysis are used to define

operation rules for the indexes, replications, and the join cache. Since those

rules are comparable with each other, any working node can utilize its storage

resources with the best option to optimize the performance. That results in

adaption on two dimensions: the workload and space availability. That level

of adaption is a unique contribution of this thesis.

• Queries stream. UniAdapt extends its storage adaption operations to the

adaption of its processing resources. It adapts its local processing resources to

the rate at which the queries arrive to the system. In case of a high coming

rate, the system aims towards better throughput by avoiding synchronization

cost. Otherwise, the system aims towards better query execution time. The

objective in both cases is better performance.

149

9.2 Limitations/Points of Weakness

We discuss in the following points the main overheads or points of limitations in the

methods presented by this thesis.

9.2.1 Overheads

As a rule of thumb, a dynamic operation comes with extra cost and overheads with

respect to the corresponding static operation. In our universal adaption there are

the following overheads:

• Query runtime overhead. It is the time spent when evaluating the query

using dynamic structures with respect to the use of static structures. In Uni-

Adapt this the time spent to check if the required data exist in indexes or in

the cache. In a static system, it is well known in advance whether certain data

exists in a given index or not. This is because the index is either fully built or

not built at all. However, in UniAdapt the cost of such a check operation is

performed in the hashed part of the indexes. Moreover, the count of checks is

delimited by the query size which is a very limited value with respect to the

number of the processed triples for the query evaluation. The same is applied

for checking the cache and replications. This makes the total runtime over-

heads remove to in average to a constant time per query, assuming the query

size is constant.

• Storage overheads. That is the amount of storage space paid by the system

on storing the statistics and workload analysis structures. Using the rule-based

algorithm (Section 6.2.2), the system needs only to store the statistic on the

level of heat queries that represent the workload and not on the level of the

data set vertices. As a result, the storage overheads of the universal adaption

are minimal and much smaller than the space saved or utilized by the adaption

operation, when compared to the fixed allocations of structures. That is for

example the space wasted on having 6 indexes in RDF-3X while the workload

circumstances might need only three indexes.

• Adaption operation overhead. That is the time spent on running the

adaption algorithm (see Section 6.2.2) and moving the data between the local

and remote structures. The Algorithm is optimized to run on the scale of the

workload heat queries which is small in size with respect to the total data set.

Moreover, the algorithm considers the most relevant parts of the heat queries

150

and stop once an equilibrium status is reached. Nevertheless, the running time

of the adaption algorithm is not trivial with respect to the queries execution

time. However, we assume that the triple store would eventually have some free

time slots that can be accumulated and used to perform adaption operations

which will be beneficial to the query executions and system throughput. For

this reason, the query execution time is the metric we used to evaluate the

impact of the universal adaption operation.

9.2.2 Worst Cases Scenarios

The variations to the use of the universal adaption are either the use of fixed static

allocation of storage structures or the isolated partial adaption. In the related works,

the allocations in the first approach are based on the hard observations of certain

workload trends in some queries sample. Those observations are simulated by the

general rules of UniAdapt. The general rules have the advantage of being evaluated

dynamically and thus tuned according to the current state of the collected workload

till the moment of the adaption process. The cases where hard observations could

perform better are those cases where the specific workload trends are not detectable.

The case that affects the specific rules. UniAdapt detects these cases and shuts

down its specific rules while activating its general rules. As a result, the worst-

case of UniAdapt performs better than the average performance of the hard-setting

systems. That is also supported by the practical evaluation (Chapter 6) in the cases

where workload quality drops to low levels.

The second variation is to follow a partial adaption on the replication and adopt

hard-setting on the indexes and cache. This approach might perform better than

universal adaption in the case of that its workload analysis is better, and only the

replication matters for the queries’ performance. However, the workload analysis

method of universal adaption is an advanced version of the global queries graph

which is the basic method used by the related works. Moreover, in order for the

partial adaption of replication to work it needs the existence of detectable trends

within the workload. However, the universal adaption uses those trends to further

support the performance with cache and indexes. Thus, the worst-case scenarios of

the universal adaption are still better than the worst cases of the partial adaption

approaches, under the assumption of using the same data partitioning technique.

There are some limitations coming from using the graph partition approach that are

discussed in the next section.

151

9.2.3 Partitioning Limitations

The most observable limitation of UniAdapt comes from the limitation of the graph-

based partitioning. The system does not perform a dynamic change of the par-

titioning type from graph-based to hash-based. Instead, the system supports its

graph-based partitioning with replications that serve the purpose of load balancing

and decreasing the communication cost. That strategy performs very well in most

of the possible workload and storage space scenarios except for the case of limited

storage space and low workload quality that is composed of short unbounded queries

arriving with low arriving rate such that the queries queue is empty most of the

time, as well as a very fast network connecting the working nodes. In those circum-

stances, a hash-based partitioning system might be able to serve the queries in a

higher parallel speedup. Similar conditions are shown in Section 7.3.3 except for the

network speed part. However, having all of these parameters at the same time is

not common. In fact, the more common case is to have a detectable and repeated

trend in the workload. That enables the UniAdapt to overcome the partitioning par-

allelization issues. Moreover, the more concerning case about server performance is

the high queries arriving rate in which queries are building up in the queue. In that

case, the system’s throughput is the more important value to support rater than the

single queries distributed executions.

Another limitation of graph-based partitioning is that it takes a longer time to

finish with respect to hash-based partitioning. However, it is a one-time operation

that is performed at the system startup (and whenever new data is added). Thus it

has no impact on the operational phase of the system.

9.3 Future Works

9.3.1 Partitioning

When UniAdapt starts, it performs graph-based partitioning that is based on METIS.

The system collects and builds its workload in the next stage. The workload knowl-

edge is used to support the partitioning with workload-aware replication. However,

the partitioning itself is not changed. This can be extended by allowing the parti-

tioning to adapt itself with the new status of the workload. That can be achieved by

performing a full rerun of the METIS considering the current workload. Since that

can take considerable time, a method that works on the partitions border might be

more preferable. A baseline of this method is given by [71]. The system can enhance

its initial partitioning without paying any extra storage cost.

152

The METIS partitioning time which is identified as one limitation in the previous

section can be overcome by performing lazy partitioning in which the system starts

by assigning the data to the working nodes following the order of the raw data-set,

then lazily preforms graph partitioning at each node. An exchange phase comes

next to reach an acceptable status of global graph partitioning. Other METIS en-

hancement methods like distributed graph partitioners [49, 74] are orthogonal to our

work.

9.3.2 Workload Analysis

As a future work to our workload analysis method, we propose to consider next the

temporal effect of the workload. The workload trends have temporal effect [12] and

these effects can be in the short or long terms. The short-term trends are detected

in queries logs of DBpedia. These trends are explained by [12] as users’ behavior

in which they issue several consecutive queries. At each query, they change some

variables based on the results of the previous query. These short-term trends should

be separated by the workload analysis. The long term trends have the strongest

impact on queries performance. More analysis is needed to measure a proper time

window out of which a certain trend is considered old and should be pruned out.

This would make the workload structures keep the newest trends which are still in

effect, and forget the old trends that are no longer in effect.

9.3.3 Optimization’s Overheads

In Section 9.2.1, we identified the overheads that are associated with the optimization

operation. They were classified into three types: Query runtime overhead, storage

overhead, and the adaption operation overheads. Although those overheads are

generally small, we propose to include the query runtime and storage overheads in

the adaption process itself. That can be achieved by defining a general operational

rule such that the benefit of the adaption process is compared against its cost. The

costs of the process are the identified overheads. That rule would help the optimizer

to decrease the accuracy of the optimization process in the cases where the overheads

went too high.

9.4 Summary

Chapter 2 presented the background of RDF as data model. It reviewed the main

methods of storing and indexing the RDF triples in central and distributed triple

153

stores. The query processing was considered and the role of indexes was detailed

to motivate the dynamic indexes and its adaption in the next chapters. We moved

towards the distributed triple stores and the related data partitioning problem, with

the requirements to perform data replications. We then focused our review on the

related works that considered adaption with the workload at the levels of partitioning

and replications. We showed the open issues with those works and the lack of a

universal adaption approach.

Chapter 3 dealt with building the cost model, the workload analysis, and the

concepts of the access and operational rules. The cost model divided the storage

space into resources, consumers, and options. It defines the optimizer objective to

try finding the best-performing assignments. The effective benefit of each assignment

is related to its rate of usage by the query processor and its relative performance

gain. The rate of usage was derived from the workload on two levels: general and

specific. Both of them are mapped into access rules that are dynamically evaluated

over the workload, and produce dynamic access rates to data parts. The concept of

the heat query was presented where we showed that heat queries represent the heart

of each access rule to the indexes, replications, and join cache.

Chapter 4 derived the operational rules of the indexes and provided an evaluation

of the dynamic indexes approach. The query execution and the role of indexes were

revisited to formulate the benefits of triples indexing. For each index, we derived

a specific access rule by projecting the heat queries rule, and a general rule based

on the average usage for each index. The two access rules were aggregated into one

access rule per index. We then used the benefit formula to derive an operation rule

for each index. The same methodology was used to derive an operational rule for the

join cache. That operational rule is comparable with the operational rules that were

derived for each index. The chapter concluded by providing a practical evaluation

of the dynamic index adaption as a stand-alone adaption operation.

Chapter 5 provided distributed storage and data partitioning. The problem re-

sulting from partitioning is overcome with replications. In this context, the system

required two types: border replication and load balancing replication. We integrated

both types into the cost model by defining the access rule for each type, which is

transferred into operational rule by deriving the benefit functions. The two opera-

tional rules are aggregated to create a single set of replication operational rules. That

operational rules are also comparable with the previous operational rules about the

indexes and join cache.

Chapter 6 put together the operational rules of the indexes, join cache, and the

154

replications into one universal adaptation process. By which the storage is filled

with the best assignments in light of the workload. When the workload queries are

collected, the formulas embedded in the access rules are updated, and new benefits

in the operational rules are calculated, and the most beneficial options replace the

worst-performing options. Optimization techniques to the rules-based algorithm were

adopted to keep it scalable and avoid causing high storage overheads.

Chapter 7 provided the practical evaluation of the universal adaption given in

Chapter 6. We created different workload and space availability scenarios and mea-

sured the systems’ performances. We compared our system with two adaptable

systems: AdPart and WARP. In each run, a new collection of workload parame-

ters were created. Moreover, we used three levels of storage capacity to test the

systems’ abilities to adapt their storage structures. In different levels of space avail-

ability and different workload parameters, our system was the best in adapting its

resources and showed superior performance in most of the cases. To test the system

performance under extreme circumstances, we generated a workload that contains

no detectable frequent patterns. However, our system relied in theses cases on its

general rules that are based on the average measurements and avoided the lack of

specific frequent patterns. That allowed the system to keep its lead in almost all

cases.

Chapter 8 provided an approach to optimize the number of working threads per

query with respect to the queries arriving rate. When the rate is too high and the

queries start to build up in the queue, the number of threads per query is minimized

and the system focuses on the throughput. Otherwise, the system focuses on serving

the query as fast as possible. A practical evaluation is also provided to show the

effect of the processing adaption on the query execution.

Appendix A

Basic Theoretical Foundations

Some of the theoretical foundations that are related to the workload, queries shapes,

the basic of the adaption algorithm and finally the access specifications to indexes

in main memory and hard disk.

A.1 Queries Shape

As we have shown in Section 2.6, a query can be modeled as a graph that contains

variables and constants. The evaluation of the query is to find sub-graphs in the RDF

graph, such that they match the query graph and substitute its variables. However,

as we have also detailed in Section 2.6, the system may need different types of indexes

to run the query, and there is a strong relationship between the query-graph shape

and the types of indexes needed to efficiently evaluate it. In order to state clearly

this relation, we present first the general types of query graphs which are mainly

found in users queries log [12]:

A.1.1 Star Queries

The star queries have the simplest graph-shape in terms of its execution complexity.

The shape has one central vertex called vr, and multiple vertices that have one direct

edge to the central node in any direction. That can be formally defined of in the

following:

Definition A.1 (Star Query) A query q is considered star query, if and only if

its graph qG = {qV , qE} satisfies the following two properties1:

• ∃!vr ∈ qV : ∃(vr, v) ∈ qE ∨ ∃(v, vr) ∈ qE; and
1The conditions are written according to the set-theory symbols.

155

156

• ∀(v1, v2) ∈ qE , v1 = vr ∨ v2 = vr.

A.1.2 Chain Queries

The chain query chains its triple patterns in a single dimension. Each triple pattern

within the query graph, except the start and end pattern, is connected with exactly

one pattern from the left and another pattern from the right. The patterns that are

located at the graph’s start and end, are connected with only one other pattern. The

chain query can be formally defined as in the following:

Definition A.2 (Chain query) A query q is considered chain query, if and only

if its graph qG = {qV , qE} satisfies the following three properties:

• ∃!vstart ∈ qV | ∃!v ∈ qV : (vstart, v) ∈ qE;

• ∃!vend ∈ qV | ∃!v ∈ qV : (v, vend) ∈ qE;

• ∀v ∈ qv, v 6= vstart, v 6= vend,∃!v1 ∈ qV : (v, v1) ∈ qE ,∃!v2 ∈ qV : (v2, v) ∈ qE.

A.1.3 Tree Queries

Tree query combines both chain and star shape, by allowing each vertex in its graph

to have more than two edges, but the graph should have no cycle. We can state its

official definition as the following:

Definition A.3 (Tree query) A query q is considered tree query if and only if its

graph qG is a DAG (Directed Acyclic Graph).

DAG is well known and defined by the graph theory [18], and can be detected in

linear time by Depth First Search (DFS) algorithm.

A.1.4 Cyclic Queries

As a contrast to a tree query, a cyclic query contains at least one cycle and thus it

is not a DAG. In this context, any query that is not a tree query is a cyclic query,

given that the query is connected graph (Definition 3.2).

A.1.5 Queries Length, Size, and Evaluation Size

As per Definition 3.3, the query’s length is the maximum distance that can be found

between any two vertices in its graph. Depending on the query shape, a query

may have different lengths. The star query has the exact length of 1, while the

157

chain query may easily grow in length reflecting an increase in complexity. The

tree and cyclic queries may also have different lengths. The length measurement

has a very important effect on query execution. A long query can be evaluated

more efficiently if the RDF data are stored and structured as a graph; however, if

the data is partitioned also as a graph in a distributed environment, a long query

evaluation may require moving intermediate results across the distributed cluster, as

will be more explained in Section 5.1. A long query would cause more performance

degradation if the partitioning is done on the level of single vertices.

Although the number of vertices in a query graph is limited and expected to be

small, the analyzing process is expected to analyze a high number of queries. Thus,

an inefficient algorithm to find the query graph could cause a performance issue.

Fortunately, we can find the query length according to Definition 3.3 in linear time,

since it can be mapped to a Graph Diameter problem, and can be found by running

the Breadth-First Search (BFS) algorithm one time on the undirected graph version

q̂G of the query graph qG starting from any vertex and ending by marking the vertex

with maximum BFS value. We rerun the BFS again starting from the marked vertex.

The maximum distance recorded by the second BFS round is the query length ql.

This algorithm directly applies to any query of types: star, chain, tree, and cyclic.

The query size is the count of vertices in its query graph, while the query evalua-

tion size is the total number of vertices that have been processed during its evaluation;

and finally, the query result size is the count of vertices in the query’s answer set as

given by definition 3.2. We state these parameters as in the following:

Definition A.4 (The size of the query, its evaluation, and its result) The size

of a query q is given by the cardinality of its vertices set: |qV |. The size of its answer

qa is given by cardinality of its answer: |qa|. The size of its evaluation is total number

of vertices processed by its evaluation.

A.2 Workload Quality

The methods used by the system to analyse a workload are affected by the de-

tectability of the frequent patterns. Their impact is also related to the quality of

the workload itself. In this context, we present two numerical values that are used

to shape the quality of a given workload. The first is the workload locality ratio

which represents the extent to which a workload tends to target certain parts of the

data-set. The second is the quality ratio which represents the probability of a query

to be part of the previously collected workload. These values will be used to classify

158

the workload in the practical evaluation that takes place in Chapter 7.

Definition A.5 (Workload Quality Ratio) For a given RDF graph G and work-

load w that has access pw(v) to each v ∈ G follows a normal distribution, we refer

to the workload quality ratio as the standard deviation of the given access probability

function pw.

Definition A.6 (Workload Frequency Ratio) The ratio of queries that have fre-

quency more than 1 at the time of adding to the workload with respect to the total

number of queries.

A.2.1 The Basic of The Adaption Algorithm

In sections (3.2.1 and 3.2.2), we presented the corners of the cost model used to

optimize the system resources. We discuss here the naive method of generating all

the options with their benefits, then performing the optimization reduction.

If R is a set of all the resources required for optimization, and C is a set of all related

consumers, we can get based on Formula 3.1 the following set of candidate options:

candOpt = {(r, c, opi, bi)∀r ∈ R,∀c ∈ C,∀opi ∈ op(r, c), bi = benefit(opi)}

Given that the system has the method and the implementation to calculate the

benefit of each option by having the absolute benefit η(opi) and the access rate ρ(opi)

given in Formula 3.1.

The optimization process can reduce candOpt to the following reduced options set:

redOpt = {(r, c, opm)∀r ∈ R,∀c ∈ C, opm = bestOption(op(r, c))}

where bestOption(op(r, c)) is a function returns the option with maximum benefit

value in op(r, c). If there is more than one option with equal maximum benefit, the

function chooses the one with the lowest order in the set.

Unfortunately, the size of |candOpt| is considerably big and equal to the product of

|R| · |C| multiplied by the number of options available for each r ∈ R and c ∈ C.

This results in a non-feasible reduction process to generate redOpt.

The above problem can be overcome by assuming that all of the resources are of

equal importance. For instance, if we are optimizing the main memory, all the bytes

are of equal importance to the system. Thus, we don’t have to include the resources

159

in candOpt. Instead, we consider only the consumers and their options, and apply

the reduction in the same way on candOpt to produce redOpt, which can now be

written as:

redOpt = {(c, opm)∀c ∈ C, opm = max(op(r, c))}

In order to assign the consumers in redOpt to resources in R, we need first to sort

redOpt descendingly by benefit(opm) and assign them sequentially to the available

resources. However, the size of |candOpt| without the resources is still big since it

contains all the consumers whose size is proportional to the data size in the storage

model. Handling, sorting, and reducing of candOpt is still a costly operation, espe-

cially when we take into consideration the necessity to update the access rate and

accordingly the benefit of all the consumers when the workload changes. Fortunately,

we present a more optimal method to perform the optimization process in the next

chapter where we dramatically decrease the required processing steps.

A.3 Index on Hard Disk

Any index can exist in main memory, secondary storage, or in a remote node. The

time required to access an indexed element is greatly affected by the hierarchical

location of the index. The index access time, in its turn, affects the query execution

plans.

A.3.1 Access Time

Accessing a block of data on the hard disk has two delay factors: the average delay

time required to randomly access a single block, and the serial access time that is

the average time required to transfer the data serially starting from a certain block.

The first delay is the summation of several sub-delays, where the biggest comes from

what is called the seek time. That is the time required to move the disk’s actuator’s

arm to the target track on the disk where the block of data is residing. Thus the

access time of b serial blocks on a typical hard disk can be written as:

accessT ime(b) = randomDelayHD +
b

transferRateHD
(A.1)

After consuming randomDelay seconds, the hard disk requires 1/transferRate

seconds for transferring each block. Assuming that b̂ is the number of blocks that

can be transferred serially within the randomDelay seconds. We can rewrite the

disk access time as:

160

accessT ime(b) =
b̂+ b

transferRate

The above formula means that we would pay a cost of reading b̂ blocks whatever

is the amount of the required blocks b, and if b = b̂ then this cost is 50% of the total

delay cost. Since that typically, the random delay is relatively much bigger than the

serial transfer delay per block, b̂ is not a trivial number. In our system architecture

Section 6.1, each triple has a fixed size of bytes because of the use of a dictionary

that allocates 32 bits for each element. Thus, a triple has the size of 3× 32 bits, or

12 bytes. Based on one measurements, a hard disk has a delay of 14.2 ms to access

any random block on the disk, and 0.08 ms per block for the following serial blocks.

The initial delay, in this case, is equivalent to the time of transferring 714 KB or

178 blocks giving that the size of a block in the file system is 4 KB. Considering the

size of a triple that we fixed earlier, the initial delay required to access any triple on

disk is equivalent to the time required to access 59K triples afterwards. That clearly

states that the costs of accessing random elements in indexes stored on disk are

approximately constants and equal to the initial value of the randomDelay stated

in Formula A.1, and practically not related to the size of the returned data. Based

on this, we may fix the index access time α(χHD) for a hard disk index χHD as:

α(χHD) ≈ randomDelay

In the data structure level, a typical hard disk index in a classical database storage

system uses the B-tree or B+-tree, since they can simulate within their leafs the

blocking structure of a typical file system. Similarly, an RDF index uses the same

data structure to build its indexes. For example, RDF3X [56] uses B+-tree in all of

its six indexes.

A.4 Triples in Main Memory

In contrast to the hard disk, the main memory not only much faster but also provides

a random access possibility with no big penalty on performance. However, accessing

serial elements in memory (e.g. scanning an array) is still faster than accessing the

same elements randomly. This is due to the optimization provided by the hardware

prefetcher as well as the CPU cache which makes the CPU fetcher read memory on

the level of blocks. That draws similar conceptual behaviour to the hard disk which

is at a lower level in the storage hierarchy. The prefetcher is sometimes fast enough

such that it makes the access time effectively zero, when a thread is accessing a serial

161

big-enough array residing in memory. This is because the prefetcher could be able to

fetch faster than the CPU computations. However, the smaller the size of the serial

data to be read, the less effective the prefetcher is. In our hardware which is used in

the evaluation of Chapter 7, reading a serial block of 80 bytes decreases the reading

cost per byte to 50% with respect to pure random access. The reading cost per

element decreases rapidly with increasing the block size and becomes effectively zero

for any block size that is bigger than 1400 bytes. The 80 bytes can hold approximately

7 triples, while the 1400 bytes can be mapped to approximately 112 triples. This

should give an insight into the access to indexes in memory. The exact behavior of

the memory access time depends on the type and properties of the used hardware

as well as the level of the optimization facilities available in the compiler of the used

programming language.

Given the fact the main memory is the place where the processing is taking place,

and since it is generally smaller in size, it is considered a very precious resource, and

has special attention in our optimization process.

162

Appendix B

Mathematical Symbols

We append indexes of the main mathematical symbols that have been used through-

out the thesis.

B.1 Mathematical Symbols Used in Chapter 3

Symbol Description

r resource unit.

c consumer unit.

op(r, c) function that returns the options to utilize resource unit r

with consumer c.

η(op) performance benefit to the system of having option op.

ρ(op) probability of access of option op.

benefit(op) the result benefit of option op.

C set of consumers.

R set of resources.

G RDF data graph.

V set of vertices in the data set.

E set of edges in the data set.

P of all the edges’ labels in the RDF data.

pe the property associated with edge e ∈ E.

163

164

D the RDF data set.

t triple pattern.

match(t, d) function that returns 1 when triple d matches triple pattern

t, or returns 0 otherwise.

q a query.

qG a query’s graph of query q.

qV vertices set of query q.

qE edges set of query q.

qa answer of query q.

ql length of query q.

Qt workload collected up to time t.

Q(t1, t2) referrers to the workload collected in the time period [t1, t2).

$ an access rule.

s source pattern of rule $.

V̂ a set of vertices V̂ ⊆ V defined by pattern source s of rule

$.

a a function that assigns a relative access value to each v ∈ V̂
of rule $.

$op an operational rule.

∆ the performance gain function of operational rule $op.

qlm average queries length in workload Q.

hq a heat query.

H heat queries set.

Hj set of heat join maps.

Pj set of predicates of heat join maps’ set.

h̀ anonymized version of heat query h.

effect(h̀) effect of anonymized heat query h̀.

heat(h) a function that returns for the heat query h the summation

of all of its heat values.

access(v) the rate of access of v as expected by the anonymized heat

queries set.

165

Hq(v) a function that returns for any v ∈ V the heat query that v

is associated with, or null if v does not belong to any heat

query.

freq(h, v) is the frequency of v as given by the anonymized heat query

h.

access(v, χ) the access(v) for the index χ.

access(p1, p2) the access function of p1 and p2 in the set of heat join maps.

pw(v) the probability of access for vertex v by a workload w.

$he(χ) heat query access rule for index χ.

B.2 Mathematical Symbols Used in Chapter 4

Symbol Description

χ an index type.

indexLookup(χ, key) perform a lookup operation in index chi for the given key.

indexMatch(χ, key, d) returns 1 if the triple dmatches the triple pattern represented

by the key.

getOptimalIndex(key) returns the optimal index to the given key.

key(v) a function that maps a vertex v to a triple pattern that is

consistent with the index type value χ.

cost(v, χ) the storage overhead of indexing v in index χ given in number

of triples.

ηidx(v, χ) absolute benefit function of assigning v to χ .

$ge(χ) the general access rule for index χ.

Ridxsp the set of specific indexes rules.

Ridxas set of aggregated index access rules.

Ridxop set of index operational rules.

size(t1, t2) the storage cost of storing (t1, t2) in a cache index.

$che,op cache-index operational Rule.

Rcheop set of cache-index operational rule.

$che,sp the cache index specific access rule.

166

B.3 Mathematical Symbols Used in Chapter 5

Symbol Description

hi a working node

H set of working nodes

Z Network transfer rate

ζ a random function representing the size of the current traffic

in the network at the time of message sending.

metis(v) function returns the partition which vertex v belongs to.

ri certain data partition as sub-graph of the global data graph

imbalance(j) the maximum allowed load imbalance among the partitions

for element j of the METIS constraints vector.

Sm storage space allocated for the main partitioning share in a

given host.

Sd total storage in a given host.

τ load imbalance factor for the current working node.

Po maximum imbalance per partition.

border(i) function returns the vertices in in partition ri that have at

lest one edge to another partition.

outdepth(v, i) function returns the distance between any vertex v /∈ ri and
the partition border border(i) .

ql the length of query q in number of hops.

L average queries length in the system

pborder the probability of a query at certain partition to access its

border region.

prem(v, i) probability of a vertex vm /∈ ri to contribute in queries an-

swers at partition i.

δ certain outdepth.

$br,ge(δ) general border- replication rule at outdepth δ at certain par-

tition.

$br,sp specific border replication rule.

$pr
ba proposed load-balancing replication access rule.

$as
ba assigned load-balancing replication access rule.

$ge(χ) general access rule for index χ.

167

$idx,sp(χ) specific access rule for index χ.

$che,sp cache-index Specific Rule.

$che,op cache-index Operational Rule.

$br unified border-replication access rule.

$r,op(χ) border-replication operation rule of index χ.

Rhe set of all heat query specific rules.

Rba,prop set of proposed load-balancing replication operation rules.

Rba,asop set of assigned load-balancing replication operation rules.

Ridxsp set of index specific access rules.

Ridxsp,op set of index specific operational rules.

Rboop the set of border-replication operational rules.

Rrepop the set of replication operational rules.

Ridxop the index set of operational rules.

Ra set of assigned system operational rules.

Rp set of proposed operational rules.

168

Bibliography

[1] Jans Aasman and Parsa Mirhaji. Knowledge graph solutions in health-

care for improved clinical outcomes. In International Semantic Web Confer-

ence (P&D/Industry/BlueSky), volume 2180 of CEUR Workshop Proceedings.

CEUR-WS.org, 2018.

[2] Daniel J. Abadi, Adam Marcus, Samuel R. Madden, and Kate Hollenbach. Scal-

able semantic web data management using vertical partitioning. In Proceedings

of the 33rd International Conference on Very Large Data Bases, VLDB ’07,

pages 411–422. VLDB Endowment, 2007.

[3] Ahmed Al-Ghezi and Lena Wiese. UniAdapt: universal adaption of replication

and indexes in distributed RDF triples stores. In SBD@SIGMOD, pages 2:1–2:6.

ACM, 2019.

[4] Sofia Alexaki, Vassilis Christophides, Gregory Karvounarakis, Dimitris Plex-

ousakis, and Karsten Tolle. The ICS-FORTH RDFSuite: Managing voluminous

RDF description bases. In SemWeb, volume 40 of CEUR Workshop Proceedings.

CEUR-WS.org, 2001.

[5] Peter Ansell Alison Callahan, Jose Cruz-Toledo and Michel Dumontier.

BIO2RDF: Linked data for the life sciences. https://download.bio2rdf.org/

files/release/3/release.html.

[6] Günes Aluç, Olaf Hartig, M. Tamer Özsu, and Khuzaima Daudjee. Diversified

stress testing of RDF data management systems. In International Semantic

Web Conference (1), volume 8796 of Lecture Notes in Computer Science, pages

197–212. Springer, 2014.

[7] Amazon. Amazon simpleDB. http://aws.amazon.com/en/simpledb/, 2012.

[8] Ali Assi, Hamid Mcheick, and Wajdi Dhifli. Data linking over RDF knowledge

graphs: A survey. Concurr. Comput. Pract. Exp., 32(19), 2020.

169

https://download.bio2rdf.org/files/release/3/release.html
https://download.bio2rdf.org/files/release/3/release.html
http://aws.amazon.com/en/simpledb/

170

[9] David Beckett. The design and implementation of the redland RDF application

framework. Comput. Networks, 39(5):577–588, 2002.

[10] David Beckett and Ivan Herman. RDF primer - turtle version. https://www.

w3.org/2007/02/turtle/primer/#L1995, 2007.

[11] Tim Berners-Lee. Linked data. https://www.w3.org/DesignIssues/

LinkedData.html, 2006.

[12] Angela Bonifati, Wim Martens, and Thomas Timm. An analytical study of

large SPARQL query logs. Proc. VLDB Endow., 11(2):149–161, 2017.

[13] Dan Brickley and R.V. Guha. W3C recommendation 25 February 2014. http:

//www.w3.org/TR/rdf-schema/.

[14] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A generic

architecture for storing and querying RDF and RDF schema. In International

Semantic Web Conference, volume 2342 of Lecture Notes in Computer Science,

pages 54–68. Springer, 2002.

[15] Francesca Bugiotti, Jesús Camacho-Rodríguez, François Goasdoué, Zoi Kaoudi,

Ioana Manolescu, and Stamatis Zampetakis. SPARQL query processing in the

cloud. In Linked Data Management, pages 165–192. Chapman and Hall/CRC,

2014.

[16] Stefano Ceri, Mauro Negri, and Giuseppe Pelagatti. Horizontal data partitioning

in database design. In SIGMOD Conference, pages 128–136. ACM Press, 1982.

[17] Eugene Inseok Chong, Souripriya Das, George Eadon, and Jagannathan Srini-

vasan. An efficient SQL-based RDF querying scheme. In VLDB, pages 1216–

1227. ACM, 2005.

[18] Sanjoy Dasgupta, Christos H. Papadimitriou, and Umesh V. Vazirani. Algo-

rithms. McGraw-Hill, 2008.

[19] DBpedia. DBpedia version 2016-04. http://dbpedia.org/.

[20] Alex DeJong, Radmila Bord, Will Dowling, Rinke Hoekstra, Ryan Moquin,

Charlie O, Mevan Samarasinghe, Paul Snyder, Craig E. Stanley Jr., Anna Tor-

dai, Michael Trefry, and Paul Groth. Elsevier’s healthcare knowledge graph

and the case for enterprise level linked data standards. In International Seman-

tic Web Conference (P&D/Industry/BlueSky), volume 2180 of CEUR Workshop

Proceedings. CEUR-WS.org, 2018.

https://www.w3.org/2007/02/turtle/primer/#L1995
https://www.w3.org/2007/02/turtle/primer/#L1995
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://dbpedia.org/

171

[21] Michel Dumontier, Alison Callahan, Jose Cruz-Toledo, Peter Ansell, Vincent

Emonet, François Belleau, and Arnaud Droit. Bio2RDF release 3: A larger,

more connected network of linked data for the life sciences. In International

Semantic Web Conference, volume 1272 of CEUR Workshop Proceedings, pages

401–404. CEUR-WS.org, 2014.

[22] Fredo Erxleben, Michael Günther, Markus Krötzsch, Julian Mendez, and Denny

Vrandecic. Introducing wikidata to the linked data web. In International Se-

mantic Web Conference (1), volume 8796 of Lecture Notes in Computer Science,

pages 50–65. Springer, 2014.

[23] The Apache Software Foundation. Apache cassandra. https://cassandra.

apache.org/.

[24] The Apache Software Foundation. Apache hadoop. http://hadoop.apache.

org.

[25] The Apache Software Foundation. Apache HBase. https://hbase.apache.org.

[26] Luis Galárraga, Katja Hose, and Ralf Schenkel. Partout: A distributed engine

for efficient RDF processing. In Proceedings of the 23rd International Conference

on World Wide Web, WWW ’14 Companion, pages 267–268, New York, NY,

USA, 2014. ACM.

[27] Fabien Gandon and Guus Schreiber. RDF 1.1 XML syntax. https://www.w3.

org/TR/rdf-syntax-grammar/, 2014.

[28] Sairam Gurajada, Stephan Seufert, Iris Miliaraki, and Martin Theobald. TriAD:

A distributed shared-nothing RDF engine based on asynchronous message pass-

ing. In Proceedings of the 2014 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’14, pages 289–300, New York, NY, USA, 2014.

Association for Computing Machinery.

[29] Hae Chull Lim, Jaeho Lee, Byung Gon Kim, Youn Hee Kim, Hae Chull Lim,

Jaeho Lee, Byung Gon Kim, and Youn Hee Kim. The path index for query

processing on RDF and RDF schema. In The 7th International Conference

on Advanced Communication Technology, 2005, ICACT 2005., volume 2, pages

1237–1240, 2005.

[30] Xingwang Han, Zhiyong Feng, Xiaowang Zhang, Xin Wang, Guozheng Rao,

and Shuo Jiang. On the statistical analysis of practical SPARQL queries. In

https://cassandra.apache.org/
https://cassandra.apache.org/
http://hadoop.apache.org
http://hadoop.apache.org
https://hbase.apache.org
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/rdf-syntax-grammar/

172

Proceedings of the 19th International Workshop on Web and Databases, WebDB

’16, pages 2:1–2:6, New York, NY, USA, 2016. ACM.

[31] Razen Harbi, Ibrahim Abdelaziz, Panos Kalnis, Nikos Mamoulis, Yasser

Ebrahim, and Majed Sahli. Accelerating SPARQL queries by exploiting hash-

based locality and adaptive partitioning. The VLDB Journal, 25(3):355–380,

June 2016.

[32] Stephen Harris and Nicholas Gibbins. 3store: Efficient bulk RDF storage. In

PSSS, volume 89 of CEUR Workshop Proceedings. CEUR-WS.org, 2003.

[33] Steve Harris, Nick Lamb, and Nigel Shadbolt. 4store: The design and implemen-

tation of a clustered RDF store. In Scalable Semantic Web Systems Workshop -

SSWS2009, pages 94–109, 2009.

[34] Patrick Hayes. RDF semantics, W3C Recommendation 10 February. https:

//www.w3.org/TR/rdf-mt/, 2004.

[35] José-Miguel Herrera, Aidan Hogan, and Tobias Käfer. BTC-2019: the 2019

billion triple challenge dataset. In ISWC (2), volume 11779 of Lecture Notes in

Computer Science, pages 163–180. Springer, 2019.

[36] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum.

YAGO2: A spatially and temporally enhanced knowledge base from wikipedia.

Artif. Intell., 194:28–61, 2013.

[37] Katja Hose and Ralf Schenkel. WARP: workload-aware replication and par-

titioning for RDF. In ICDE Workshops, pages 1–6. IEEE Computer Society,

2013.

[38] Jiewen Huang, Daniel J. Abadi, and Kun Ren. Scalable SPARQL querying of

large RDF graphs. Proc. VLDB Endow., 4(11):1123–1134, 2011.

[39] Mohammad Farhan Husain, James P. McGlothlin, Mohammad M. Masud, Lati-

fur R. Khan, and Bhavani M. Thuraisingham. Heuristics-based query processing

for large RDF graphs using cloud computing. IEEE Trans. Knowl. Data Eng.,

23(9):1312–1327, 2011.

[40] Yannis E. Ioannidis and Stavros Christodoulakis. On the propagation of errors in

the size of join results. In Proceedings of the 1991 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’91, pages 268–277, New York,

NY, USA, 1991. Association for Computing Machinery.

https://www.w3.org/TR/rdf-mt/
https://www.w3.org/TR/rdf-mt/

173

[41] Daniel Janke, Steffen Staab, and Matthias Thimm. Impact analysis of data

placement strategies on query efforts in distributed RDF stores. J. Web Semant.,

50:21–48, 2018.

[42] Zoi Kaoudi and Ioana Manolescu. RDF in the clouds: a survey. VLDB J.,

24(1):67–91, 2015.

[43] George Karypis. METIS: A software package for partitioning unstructured

graphs, partitioning meshes, and computing fill-reducing orderings of sparse ma-

trices. https://www.lrz.de/services/software/mathematik/metis/metis_

5_0.pdf.

[44] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme

for partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998.

[45] Karypis Lab. METIS: family of graph and hypergraph partitioning software.

http://glaros.dtc.umn.edu/gkhome/views/metis, 2020.

[46] G. Ladwig and A. Harth. CumulusRDF: Linked data management on nested

key-value stores. In Proceedings of the 7th International Workshop on Scalable

Semantic Web Knowledge Base Systems (SSWS2011) at the 10th International

Semantic Web Conference (ISWC 2011), Bonn, Germany, October 24th, 2011,

pages 30–42, 2011.

[47] Kisung Lee and Ling Liu. Efficient data partitioning model for heterogeneous

graphs in the cloud. In Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis, SC ’13, pages 46:1–

46:12, New York, NY, USA, 2013. Association for Computing Machinery.

[48] Yannis Manolopoulos, Jaroslav Pokorný, and Timos K. Sellis, editors. Advances

in Databases and Information Systems, 10th East European Conference, ADBIS

2006, Thessaloniki, Greece, September 3-7, 2006, Proceedings, volume 4152 of

Lecture Notes in Computer Science. Springer, 2006.

[49] Daniel W. Margo and Margo I. Seltzer. A scalable distributed graph partitioner.

Proc. VLDB Endow., 8(12):1478–1489, 2015.

[50] Akiyoshi Matono, Toshiyuki Amagasa, Masatoshi Yoshikawa, and Shunsuke Ue-

mura. A path-based relational RDF database. In ADC, volume 39 of CRPIT,

pages 95–103. Australian Computer Society, 2005.

https://www.lrz.de/services/software/mathematik/metis/metis_5_0.pdf
https://www.lrz.de/services/software/mathematik/metis/metis_5_0.pdf
http://glaros.dtc.umn.edu/gkhome/views/metis

174

[51] Deborah L. McGuinness and Frank van Harmelen. OWL web ontology language

overview. https://www.w3.org/TR/owl-features/, 2004.

[52] mkomo.com. A history of storage cost. https://mkomo.com/

cost-per-gigabyte-update, 2014.

[53] Guido Moerkotte and Thomas Neumann. Analysis of two existing and one new

dynamic programming algorithm for the generation of optimal bushy join trees

without cross products. In Proceedings of the 32nd International Conference on

Very Large Data Bases, VLDB ’06, pages 930–941. VLDB Endowment, 2006.

[54] G. E. Moore. Cramming more components onto integrated circuits, reprinted

from electronics, volume 38, number 8, april 19, 1965, pp.114 ff. IEEE Solid-

State Circuits Society Newsletter, 11(3):33–35, 2006.

[55] Raghava Mutharaju, Sherif Sakr, Alessandra Sala, and Pascal Hitzler. D-

SPARQ: distributed, scalable and efficient RDF query engine. In International

Semantic Web Conference, volume 1035 of CEUR Workshop Proceedings, pages

261–264. CEUR-WS.org, 2013.

[56] Thomas Neumann and Gerhard Weikum. The RDF-3X engine for scalable

management of rdf data. The VLDB Journal-The International Journal on

Very Large Data Bases, 19(1):91–113, 2010.

[57] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database Sys-

tems, Third Edition. Springer, 2011.

[58] Nikolaos Papailiou, Ioannis Konstantinou, Dimitrios Tsoumakos, and Nectarios

Koziris. H2RDF: adaptive query processing on RDF data in the cloud. InWWW

(Companion Volume), pages 397–400. ACM, 2012.

[59] Nikolaos Papailiou, Dimitrios Tsoumakos, Panagiotis Karras, and Nectarios

Koziris. Graph-aware, workload-adaptive SPARQL query caching. In SIGMOD

Conference, pages 1777–1792. ACM, 2015.

[60] Peng Peng, Lei Zou, Lei Chen, and Dongyan Zhao. Query workload-based RDF

graph fragmentation and allocation. In EDBT, pages 377–388. OpenProceed-

ings.org, 2016.

[61] François Picalausa and Stijn Vansummeren. What are real SPARQL queries

like? In SWIM, page 7. ACM, 2011.

https://www.w3.org/TR/owl-features/
https://mkomo.com/cost-per-gigabyte-update
https://mkomo.com/cost-per-gigabyte-update

175

[62] SWAT Projects. The lehigh university benchmark (LUBM). http://swat.cse.

lehigh.edu/projects/lubm/.

[63] Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for RDF.

https://www.w3.org/TR/rdf-sparql-query, 2008.

[64] Roshan Punnoose, Adina Crainiceanu, and David Rapp. Rya: a scalable RDF

triple store for the clouds. In 1st International Workshop on Cloud Intelligence

(colocated with VLDB 2012), Cloud-I ’12, Istanbul, Turkey, August 31, 2012,

page 4. ACM, 2012.

[65] Padmashree Ravindra, HyeongSik Kim, and Kemafor Anyanwu. An interme-

diate algebra for optimizing RDF graph pattern matching on mapreduce. In

ESWC (2), volume 6644 of Lecture Notes in Computer Science, pages 46–61.

Springer, 2011.

[66] Laurens Rietveld, Rinke Hoekstra, Stefan Schlobach, and Christophe Guéret.

Structural properties as proxy for semantic relevance in RDF graph sampling.

In International Semantic Web Conference (2), volume 8797 of Lecture Notes

in Computer Science, pages 81–96. Springer, 2014.

[67] R.V.Guha. RDFDB: An RDF database. http://www.cs.cmu.edu/afs/cs/

usr/niu/rdf/, 2000.

[68] Muhammad Saleem, Muhammad Intizar Ali, Aidan Hogan, Qaiser Mehmood,

and Axel-Cyrille Ngonga Ngomo. LSQ: the linked SPARQL queries dataset. In

International Semantic Web Conference (2), volume 9367 of Lecture Notes in

Computer Science, pages 261–269. Springer, 2015.

[69] Alexander Schätzle, Martin Przyjaciel-Zablocki, Christopher Dorner, Thomas

Hornung, and Georg Lausen. Cascading map-side joins over HBase for scalable

join processing. In SSWS+HPCSW@ISWC, volume 943 of CEUR Workshop

Proceedings, pages 59–74. CEUR-WS.org, 2012.

[70] Amazon Web Services. DynamoDB. http://aws.amazon.com/dynamodb/.

[71] Zechao Shang and Jeffrey Xu Yu. Catch the wind: Graph workload balancing

on cloud. In ICDE, pages 553–564. IEEE Computer Society, 2013.

[72] Bin Shao, Haixun Wang, and Yatao Li. Trinity: a distributed graph engine on

a memory cloud. In SIGMOD Conference, pages 505–516. ACM, 2013.

http://swat.cse.lehigh.edu/projects/lubm/
http://swat.cse.lehigh.edu/projects/lubm/
https://www.w3.org/TR/rdf-sparql-query
http://www.cs.cmu.edu/afs/cs/usr/niu/rdf/
http://www.cs.cmu.edu/afs/cs/usr/niu/rdf/
http://aws.amazon.com/dynamodb/

176

[73] Longxiang Shi, Shijian Li, Xiaoran Yang, Jiaheng Qi, Gang Pan, and Binbin

Zhou. Semantic health knowledge graph: Semantic integration of heterogeneous

medical knowledge and services. BioMed Research International, 2017:1–12, 01

2017.

[74] Nasrin Mazaheri Soudani, Afsaneh Fatemi, and Mohammadali Nematbakhsh.

An investigation of big graph partitioning methods for distribution of graphs in

vertex-centric systems. Distributed Parallel Databases, 38(1):1–29, 2020.

[75] Raffael Stein and Valentin Zacharias. RDF on cloud number nine. In Workshop

on New Forms of Reasoning for the Semantic Web: Scalable and Dynamic, 2010.

[76] Markus Stocker, Andy Seaborne, Abraham Bernstein, Christoph Kiefer, and

Dave Reynolds. SPARQL basic graph pattern optimization using selectivity

estimation. In WWW, pages 595–604. ACM, 2008.

[77] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cher-

niack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth

O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. C-store: A column-

oriented DBMS. In Proceedings of the 31st International Conference on Very

Large Data Bases, VLDB ’05, pages 553–564. VLDB Endowment, 2005.

[78] Patrick van Kleef. DBpedia usage report. https://medium.com/

virtuoso-blog/dbpedia-usage-report-as-of-2018-01-01-8cae1b81ca71,

2018.

[79] W3C. Linked data. https://www.w3.org/standards/semanticweb/data,

2009.

[80] Lu Wang, Yanghua Xiao, Bin Shao, and Haixun Wang. How to partition a

billion-node graph. In ICDE, pages 568–579. IEEE Computer Society, 2014.

[81] Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. Hexastore: sex-

tuple indexing for semantic web data management. Proceedings of the VLDB

Endowment, 1(1):1008–1019, 2008.

[82] Kevin Wilkinson, Craig Sayers, Harumi Kuno, and Dave Reynolds. Efficient

RDF storage and retrieval in Jena2. In Proceedings of the First International

Conference on Semantic Web and Databases, SWDB’03, pages 120–139. CEUR-

WS.org, 2003.

https://medium.com/virtuoso-blog/dbpedia-usage-report-as-of-2018-01-01-8cae1b81ca71
https://medium.com/virtuoso-blog/dbpedia-usage-report-as-of-2018-01-01-8cae1b81ca71
https://www.w3.org/standards/semanticweb/data

177

[83] Buwen Wu, Hai Jin, and Pingpeng Yuan. Scalable SAPRQL querying processing

on large RDF data in cloud computing environment. In Pervasive Computing

and the Networked World, pages 631–646. Springer Berlin Heidelberg, 2013.

[84] Buwen Wu, Yongluan Zhou, Pingpeng Yuan, Ling Liu, and Hai Jin. Scalable

SPARQL querying using path partitioning. In Data Engineering (ICDE), 2015

IEEE 31st International Conference on, pages 795–806. IEEE, 2015.

[85] Kai Zeng, Jiacheng Yang, Haixun Wang, Bin Shao, and Zhongyuan Wang. A

distributed graph engine for web scale RDF data. In Proceedings of the 39th

international conference on Very Large Data Bases, PVLDB’13, pages 265–276.

VLDB Endowment, 2013.

[86] Xiaofei Zhang, Lei Chen, Yongxin Tong, and Min Wang. EAGRE: towards

scalable I/O efficient SPARQL query evaluation on the cloud. In ICDE, pages

565–576. IEEE Computer Society, 2013.

[87] Xiaofei Zhang, Lei Chen, and Min Wang. Towards efficient join processing over

large RDF graph using Mapreduce. In Proceedings of the 24th International Con-

ference on Scientific and Statistical Database Management, SSDBM’12, pages

250–259. Springer-Verlag, 2012.

[88] Matthäus Zloch, Maribel Acosta, Daniel Hienert, Stefan Dietze, and Stefan

Conrad. A software framework and datasets for the analysis of graph measures

on RDF graphs. In ESWC, volume 11503 of Lecture Notes in Computer Science,

pages 523–539. Springer, 2019.

	Introduction
	Problem and Motivations
	Our Solution
	Thesis Contributions
	Thesis Structure

	Background
	Resource Description Framework (RDF)
	Overview
	The Data Model Object Types
	Resources and Objects Naming
	RDF Graph
	RDF Vocabularies
	Serialization Format

	SPARQL
	Triples Stores
	Non-Native DBMS-based Approaches
	Native RDF Storage Approaches

	RDF Indexing
	Key-value indexes
	Graph-based indexes

	Index Notation
	SPARQL Queries Processing
	The Bounding of Queries
	Conceptual Execution
	Data Access Paths
	Join Evaluation

	Distributed Triples Store
	Distributed Storage and Indexing
	Data Partitioning
	Graph-based Partitioning
	Hash-based Partitioning
	Data Partitioning Summary and Conclusion
	Discussion

	Most-Related Work
	Summary

	Workload Analysis
	Why Adaption?
	Universal Adaption
	The Cost Model
	The Resources' Access Rate

	The Role of the Workload
	Real-world Workload Analysis
	Evaluation Locality

	Workload Rules
	Basic Measurements for The General Rules

	Heat Queries
	Heat Query Generation
	Implementation Notes
	Generalized Rules
	Heat Query Anonymization Part of this subsection appeared in our publication UniAdapt.
	Triples Access Rate By Heat Queries This derivation is also given in our publication UniAdapt.

	Heat Query Specific Rule
	Summary

	Local Storage
	Storage Scarceness
	System Storage Hierarchy
	Indexes
	Problem of fixed Indexes
	Dynamic Indexes
	Indexes in The Cost Model
	Index Cost
	Index Benefit
	Index Access Rate

	Index Rules
	Index General Rules
	Index Specific Rules

	Index Rules Aggregation
	Finalizing Index Rules

	Cache Index
	Cache-index Specific Rules

	Dynamic Indexes Evaluation
	Detectable workload and High storage space availability
	Scalability of Queries Processing

	Summary

	Distributed Storage and Replication
	Replication Motivations
	Distributed RDF Storage
	Initial Graph Partitioning
	METIS based Partitioning

	Border Region
	Border Replication
	General Border Access Rule
	Specific Access Rule
	Aggregating Border Replication Rules

	Load-balancing Replication
	Load-balancing Replication in The Cost Model
	Load-balancing Replication Rules

	Replication Aggregated Rules
	Summary

	Universal Adaption
	System Architecture
	Storage Space Optimizer
	Universal Adaption
	Better Algorithm: Rules-based Space Adaption Algorithm

	Creating The Proposed and Assigned Rules
	Summary

	Universal Adaption Evaluation
	Generation of Data-sets and Queries
	Data-set size
	System Capacity

	Universal Adaption
	Starting point
	Adaption Parameters
	Non-frequent Workload
	Non-uniform Workload to Partitions Access

	Summary

	Threading
	Adaption to Queries Arrival Rate
	Queries Queuing Model
	Adaption of The Processing Resources
	Evaluation
	Working Threads

	Distributed Working Nodes
	Queries Stream

	Summary and Conclusion

	Conclusion and Future Work
	Points of Strength
	Limitations/Points of Weakness
	Overheads
	Worst Cases Scenarios
	Partitioning Limitations

	Future Works
	Partitioning
	Workload Analysis
	Optimization's Overheads

	Summary

	Basic Theoretical Foundations
	Queries Shape
	Star Queries
	Chain Queries
	Tree Queries
	Cyclic Queries
	Queries Length, Size, and Evaluation Size

	Workload Quality
	The Basic of The Adaption Algorithm

	Index on Hard Disk
	Access Time

	Triples in Main Memory

	Mathematical Symbols
	Mathematical Symbols Used in Chapter 3
	Mathematical Symbols Used in Chapter 4
	Mathematical Symbols Used in Chapter 5

