
Intelligent Medical Decision Support for
Predicting Patients at Risk in Intensive

Care Units

Dissertation

for the award of the degree
“Doctor of Philosophy” Ph.D.

Faculty of Mathematics and Computer Science
of the Georg-August-Universität Göttingen

within the doctoral program Ph.D-program in Computer Science (PCS)
of the Georg-August University School of Science (GAUSS)

submitted by

Araek Sami Tashkandi
from Jeddah, Saudi Arabia

Göttingen
in October 2020

Thesis Committee

First supervisor Prof. Dr. Lena Wiese
Institute for Computer Science, Goethe-Universität Frankfurt

Second supervisor Prof. Dr. Ramin Yahyapour
Institute for Computer Science, Georg-August-Universität Göttingen

Members of the Examination Board

Reviewer Prof. Dr. Lena Wiese
Institute for Computer Science, Goethe-Universität Frankfurt

Second Reviewer Prof. Dr. Ramin Yahyapour
Institute for Computer Science, Georg-August-Universität Göttingen

Further members of the Examination Board

Prof. Dr. Dagmar Krefting
Institute for Medical Informatics, Georg-August-Universität Göttingen

Prof. Dr. Burkhard Morgenstern
Institute for Microbiology and Genetics, Department for Bioinformatics,
Georg-August-Universität Göttingen

Prof. Dr. Ulrich Sax
Institute for Medical Informatics, Georg-August-Universität Göttingen

Prof. Dr. Armin Schmitt
Breeding Informatics Group, Department of Animal Sciences,
Georg-August-Universität Göttingen

Date of the oral examination: 27.11.2020

Acknowledgement

I would like to express my sincere gratitude and appreciation to all the people
who support me to deliver this Ph.D. thesis. I thank God for the success he
delivers me to.

Firstly, a big thanks and appreciation to my wonderful advisor Prof. Lena
Wiese to whom I’m incredibly thankful. Without your precious support, valu-
able supervision, and endless motivations, it would not be possible to deliver
this notable thesis. I am lucky to have you as a supervisor. A special thanks
to my second supervisor Prof. Ramin Yahyapour. Thanks for your insightful
guidance and feedback throughout this Ph.D. research.

Heartfelt thanks to my lovely family, who have been by my side to get me
through the Ph.D. process successfully. I could not have done it without you,
your motivations, and standing by me with the most difficult and challenging
times. My first and forever love my lovely parents; I am profoundly grateful for
your prayers and constant encouragement that give me the strength to continue
working hard and success. My husband, the love of my life, and my forever
supporter, thank you from the depth of my heart. My two angels, my sons Elias
and Adam, hope I make you proud of your Mom; I love you.

I am sincerely grateful to the University of Jeddah and King Abdulaziz Uni-
versity, who made this Ph.D. journey possible by the financial support.

Abstract

Early detection of at-risk patients has great importance in Intensive Care
Units (ICUs) to improve patient healthcare and save patients’ life outcomes.
The severity of illness scores have been used for predicting the patients’ risk of
mortality. However, their poor accuracy is a weakness. Thus, Machine Learning
(ML) models are exploited for decision support for this goal. Some challenges
have to be overcome to achieve accurate predictions of the risk of mortality – for
instance, finding important medical measurements or features that influence the
prediction. Imbalanced class distribution is a major obstacle (i.e., the number
of patients with risk is much less than the patients without), which produces
the so-called accuracy paradox problem.

Researchers of the related work applied ML models and different methods
in order to handle those challenges. However, the important details and com-
parison between different methods are still missing. Hence, this thesis presents
an overview of implementing the main building block of this medical decision
support. It leverages the ensemble ML model, the Gradient Boosting Decision
Tree (GBDT). The GBDT shows its performance even with the imbalanced data.
Moreover, this thesis provides detailed steps for implementing the model and for
pre-processing the data. Comparisons between different ML models, methods
of feature selection, and handling imbalanced data are provided and tested on a
real-world ICU dataset. Furthermore, an efficient cluster-based under-sampling
method to handle imbalanced data is implemented.

Predicting the risk of mortality in the related work is generic (i.e., for patients
with different diseases). Some works are done on predicting mortality based
on patients similarity on a large number of features (which has a weakness of
High computational time and complexity). In this thesis, an approach to avoid
this computational complexity and for optimizing the prediction accuracy of
predicting the risk is represented and implemented. This approach is based on
mortality prediction for similar patients with the same disease classification.

This thesis work is compared to the related works and the commonly used
severity of illness score and verified on another ICU dataset. The result shows
the significant performance improvement over the severity scores and the related
works and the high accuracy on the other dataset. Moreover, the achieved result
– specifically, the high prediction performance of the critical cases of patients
at risk (i.e., the rare cases of the minority class) – is promising. Area under the
curve (AUC) of 0.956 is achieved.

Contents

1 Introduction 1
1.1 Problem and Motivation . 2
1.2 Research Questions . 4
1.3 Thesis Contributions . 4
1.4 Thesis Impact . 7
1.5 Thesis Structure . 8

2 Related Work 11
2.1 Health Prediction by Patient Similarity 12

2.1.1 Patient Similarity for Mortality Prediction 12
2.1.2 Patient Similarity for Different Predictive Approaches . . 13
2.1.3 Summary . 14

2.2 Health Prediction by Machine Learning Models 15
2.2.1 Summary . 19

2.3 Handling Imbalanced data by Clustering-based Under-sampling
and Ensemble Models . 21

3 Background 27
3.1 Scope of the Chapter . 28
3.2 Approaches for Health Prediction 28

3.2.1 Machine Learning Models for Health Prediction 28
3.2.2 Patient Similarity-based for Health Prediction 28
3.2.3 Approaches for Implementing The Predictive Model and

Patient Similarity Analysis 33
3.3 Dataset . 36

3.3.1 Selection of the Predictor Variables 37
3.3.2 Data Pre-processing Transformation and Normalization . 37

3.4 Evaluating the Predictive Performance 39
3.4.1 Accuracy Metrics . 39
3.4.2 Visualize the Performance by Curves 41

3.5 Performance Improvements . 41
3.5.1 Tuning the Model Parameters 41

3.5.2 Selecting a Subset of Features 42
3.5.3 Pre-processing the Data 44

4 The Predictive Model 47
4.1 Scope of the Chapter . 48
4.2 Comparing Models Performance 48
4.3 Logistic Regression . 49
4.4 Decision Tree . 52
4.5 Gradient Boosting Decision Tree 56
4.6 K-Nearest Neighbor for Patient Similarity-based Health Prediction 62
4.7 Choosing the Optimal ML Model 67

5 Performance Optimization 73
5.1 Scope of the Chapter . 74
5.2 Data Pre-processing Normalized vs. Un-normalized Data 74
5.3 Result of Feature Selection Methods 76

5.3.1 Filter Selection by Chi Squared 76
5.3.2 Forward Selection . 76
5.3.3 Backward Elimination . 79
5.3.4 Embedded Feature Selection Method of GBDT 80
5.3.5 Summary . 82

5.4 Data Sampling with Patient Filtering by Diagnoses Code 84
5.4.1 Filtering the Group of the Highest Occurrence Code . . . 84
5.4.2 Filtering the Group of the Highest Mortality Occurrences 87
5.4.3 Feature Selection after Filtering by the Diagnoses Code . 89
5.4.4 Summary . 90

6 Handle Imbalanced Classes 95
6.1 Scope of the Chapter . 96
6.2 Overview . 96
6.3 Data Under-sampling Approaches to Handle Imbalanced Classes 97

6.3.1 Random Under-sampling 97
6.3.2 K-Means Clustering-based Under-sampling 101

6.4 Data Over-sampling Approaches to Handle Imbalanced Classes . 106
6.4.1 SMOTE Over-sampling 106

6.5 Handle Imbalanced Classes after Patient Filtering by Diagnoses
Code . 116

6.6 Summary . 117

7 Verification 121
7.1 Our Approach Vs. Severity Scores 122
7.2 Test Our Approach with Another Dataset 122

7.2.1 Test The ML models . 123
7.2.2 Test The Data Under-sampling Method 123

7.2.3 Results Summary . 124

8 Conclusion 129
8.1 Discussion . 130
8.2 Summary . 133
8.3 Future Work . 137

Bibliography 141

List of Figures

1.1 Overview of Model Deployment Steps for IMDSS System for Pre-
dicting Risk of Death . 5

3.1 Distance Matrix . 33

4.1 Compare the AUC Performance of Different ML Models 49
4.2 Testing Different Lambda of the LR to Optimize Accuracy and

to Optimize AUC . 51
4.3 Testing Different Splitting Criterion of the DT to Optimize Ac-

curacy . 53
4.4 Testing Different Max Depth of the DT to Optimize Accuracy . . 54
4.5 Testing Different Minimum Size for Splitting of the DT to Opti-

mize Accuracy . 54
4.6 Testing Different Splitting Criterion of the DT to Optimize AUC 55
4.7 Testing Different Max Depth of the DT to Optimize AUC 55
4.8 Testing Different Minimum Size for Splitting of the DT to Opti-

mize AUC . 56
4.9 Testing Different Number of Learning Trees of the GBDT to Op-

timize Accuracy . 58
4.10 Testing Different Learning Rate of the GBDT to Optimize Accuracy 58
4.11 Testing Different Learning Rate with Different Number of Trees

of the GBDT to Optimize Accuracy 59
4.12 Testing Different Number of Learning Trees of the GBDT to Op-

timize AUC . 60
4.13 Testing Different Learning Rate of the GBDT to Optimize AUC 60
4.14 Testing Different Learning Rate with Different Number of Trees

of the GBDT to Optimize AUC 61
4.15 Testing Different Learning Rate with Different Maximum Depth

of Trees of the GBDT to Optimize AUC 61
4.16 Testing Different Minimum Rows with Sample Rates of the GBDT

to Optimize AUC . 62
4.17 KNN with Different Distance Metrics 65

4.18 KNN with Different k Values with Euclidean Distance to Opti-
mize Accuracy . 66

4.19 KNN with Different k Values with Euclidean Distance to Opti-
mize AUC . 66

4.20 Compare Models Accuracy . 68
4.21 Compare Models Prediction Performance 69
4.22 Compare Models AUC . 70

5.1 GBDT with Un-Normalized and Normalized Data 75
5.2 LR with Un-Normalized and Normalized Data 75
5.3 Forward Selection with Un-Normalized data 77
5.4 Forward Selection with Normalized data 78
5.5 Backward Elimination with Un-Normalized data 79
5.6 Backward Elimination with Normalized data 80
5.7 ICD Codes Distribution Through out the Dataset 85
5.8 Counting Mortality According to all the ICD Codes and Accord-

ing to ICD Codes of (390-459) . 86
5.9 Compare GBDT with and without Filtering Patients by Specific

ICD Group of (390-459) . 87
5.10 Compare GBDT with Filtering Patients by Large ICD Group of

(390-459) and by Smaller and Similar Group of (430-438) 88
5.11 Compare GBDT with and without Filtering Patients by Specific

ICD Group of (430-438) . 88
5.12 Compare GBDT with Filtering Patients by Specific ICD Group

of (001-139) and (030-041) . 89
5.13 Compare GBDT and Forward Selection with and without Filter-

ing Patients by Specific ICD Group of (390-459) 90

6.1 GBDT with Balanced Dataset and with The Imbalanced Dataset
on Normalized Data . 98

6.2 Forward Features Selection with Balanced Dataset and LR . . . 99
6.3 Forward Features Selection with Balanced Dataset and GBDT . 100
6.4 Backward Elimination Features Selection with Balanced Dataset

and LR and GBDT on Normalized Data 101
6.5 Davies Bouldin Index for Different Numbers of Clusters. 102
6.6 Comparison of K-means++ Under-sampling with Different Ap-

proaches for Selecting the Majority Class Representatives. 104
6.7 Compare GBDT with Random Under-sampled Balanced Dataset

and with The K-means Under-sampled Balanced Dataset on Nor-
malized Data . 105

6.8 The AUC and AUPRC of The GBDT with Random Under-sampled
Balanced Dataset and with The K-means Under-sampled Bal-
anced Dataset on Normalized Data 105

6.9 LR and GBDT with SMOTE Equalized Classes 108

6.10 GBDT with SMOTE Different Over-sampling Sizes 109
6.11 GBDT with SMOTE Different Over-sampling Sizes 109
6.12 Testing SMOTE with Different Number of Neighbours and Up-

sampling Sizes to Optimize AUC and Accuracy 110
6.13 Testing SMOTE with Different Up-sampling Sizes and Different

Nominal Change Rate to Optimize AUC 111
6.14 Testing SMOTE with Different Up-sampling Sizes and Different

Nominal Change Rate to Optimize AUC and Accuracy 111
6.15 GBDT with the Two Approaches of Applying SMOTE with Cross-

validation (Equalized Classes) . 112
6.16 GBDT with SMOTE Different Up-sampling Sizes 113
6.17 Testing SMOTE with Different Nominal Change Rate and Dif-

ferent Up-sampling Sizes to Optimize AUC 114
6.18 Testing SMOTE with Different Nominal Change Rate and Dif-

ferent Up-sampling Sizes to Optimize AUC and Accuracy 114
6.19 Testing SMOTE with Different Number of Neighbors and Differ-

ent Up-sampling sizes to Optimize AUC and Accuracy 115
6.20 GBDT with SMOTE and K-means Equalized Classes 116
6.21 Compare GBDT and Filtering Patients by Specific ICD Group of

(390-459) with and without K-means Clustering Under-sampling 117
6.22 Compare GBDT and Filtering Patients by Specific ICD Group of

(390-459) with and without SMOTE Over-sampling 118

7.1 GBDT with and without K-means Clustering Under-sampling . 124

List of Tables

2.1 Literature Comparison of Using Patient Similarity for Mortality
Prediction . 16

2.2 Literature Comparison of Using ML models for Mortality Prediction 21
2.3 Literature Comparison of Using Clustering-based Under-sampling

for Handling Imbalanced Dataset 23

3.1 Patient and Feature Matrix . 32
3.3 The Selected Predictor Variables and the Extracted Features . . 38

4.1 Compare Models Performance . 68

5.1 Top-20 Features Weight by Chi-Squared. 77
5.2 Top20 Features by GBDT. 81
5.3 Compare Feature Selection Time Cost and Prediction Performance. 83

6.1 Compare Time Cost of Different K-means Clustering Approaches 106

7.1 Comparison of this Thesis’s Trained Predictive Model with the
Severity of Illness Scores on MIMIC-III Dataset. 122

7.2 Compare the Performance of Different ML Models 123
7.3 Compare Time Cost of GBDT with and without Clustering Under-

sampling . 124

8.1 Comparison of this Thesis Approach to the Related Work on
Mortality Prediction . 133

Acronyms

PSM Patient Similarity Metric

EMR Electronic Medical Record

DBMS Database Management System

NoSQL Not only SQL

SQL Structured Query Language

ICU Intensive Care Unit

KNN K-nearest neighbor

LR Logistic Regression

DT Decision Tree

GBDT Gradient Boosting Decision Tree

SVM Support Vector Machine

ROC Receiver Operator Characteristic Curve

PRC Precision Recall Curve

AUC Area under the ROC Curve

AUPRC Area under the PRC

ML Machine Learning

ICD-9 International Classification of Diseases-9

ICD International Classification of Diseases

IMDSS Intelligent Medical Decision Support System

MIMIC Medical Information Mart for Intensive Care

MIMIC-III Medical Information Mart for Intensive Care-III

MIMIC-II Medical Information Mart for Intensive Care-II

SMOTE Synthetic Minority Over-sampling Technique

1
Introduction

This chapter presents the problem statement of the current issues in this the-
sis’s research field, which will be addressed. It provides a list of the research
questions that the thesis aims to answer. Then, it gives a summary of the thesis
contributions to handle the described problems. It shows the author’s publica-
tions of the thesis intermediate results. Finally, it represents the structure of
the thesis.

Contents

1.1 Problem and Motivation 2

1.2 Research Questions 4

1.3 Thesis Contributions 4

1.4 Thesis Impact . 7

1.5 Thesis Structure . 8

1

1.1 Problem and Motivation

With advanced health information technology for electronically collecting pa-
tients’ data through different sources, a vast amount of medical data has been
available. In Intensive Care Units (ICUs), massive medical data is generated on
an hourly basis and stored in electronic medical records (EMRs). These data
contain laboratory values, vital signs, demographics, and others. To protect pa-
tients’ life, doctors should keep monitoring these massive measurements. They
are overwhelmed with this vast amount of data, and they might overlook some
critical measures which lead to sudden death (which is a serious problem the
ICU’s patients suffer).

A crucial task that can maximize patient health care and can help to minimize
the number of sudden deaths in ICUs is the identification of patients with acute
health risks. The medical intervention should be in the right moment to save a
patient life. Thus, early assessment of a patient’s risk of death is essential.

The ICU patients with life-threatening illnesses whom continuous monitoring
generates a large overwhelmed amount of data need a computerized system
that helps in proactive care [73]. This task is accomplished by implementing
an Intelligent Medical Decision Support System (IMDSS) that predicts the risk
of death for the patients. This system harnesses the information wealth of this
vast amount of data of EMRs to support medical decision making. This system
analyzes patient data collected regularly during the patient’s ICU stay to give
a prediction or an alarm of patient death risk. As a result, proactive medical
interaction can be achieved to save patient life.

The accuracy of prediction is one of the most critical characteristics of this
intelligent system. The medical data’s technical issues as the curse of dimen-
sionality, missing values (sparsity), and class imbalance problems are significant
challenges when implementing the system. For more details, see (Lee and Yoon
2017; Johnson et al. 2016). These issues are accuracy factors to this IMDSS.
Moreover, there are other accuracy factors that affect the prediction performance
of this system, as described in the following:

• The ML model and its parameters: The intelligence of this system comes
from its main building block, which is a Machine Learning ML model.
The ML model is trained on the medical data to learn how to accurately
predict the patient’s case. The selection of the ML model and the values
of the parameters have a significant impact on system performance.

• Curse of dimensionality: is when high dimensional data causes many issues
such as it makes the classifier decision boundaries difficult. We have to find
which features (i.e., medical measurements data from EMR) contribute
most to the prediction to increase the model accuracy. Feature selection
is one approach to handle high dimensional data.

• Class Imbalance: As stated by (Li et al. 2010): “In medical data sets,

2

data are predominantly composed of “normal” samples with only a small
percentage of “abnormal” ones, leading to the so-called class imbalance
problems.”. An imbalanced real-world ICU dataset contains a majority
percentage of the patients that survived and a minority percentage of the
patients that died. The issue of imbalanced class distribution causes the
classifier to be extremely biased towards the majority class and discounting
the minority class. Nevertheless, the minority class is the class of interest.

Different Machine Learning ML models can be leveraged to implement this
intelligent system. The selection of the predictive model influences the system
accuracy. Researches have been using the advances of ML to develop such an
IMDSS for predicting the risk of mortality for ICU patients (Ghassemi et al.
2015; Luo et al. 2016).

Implementing this system requires considerable effort and many steps and
decisions.

Researches have been using the advances of ML to develop such an IMDSS
for predicting the risk of mortality for ICU patients (see related work Chapter
2). They consider some methods to overcome these problems; however, there
are still issues to solve, for example:

• The selection of the model parameters was ambiguous. The selection of
the model parameters in case of imbalanced data is based on optimizing
the accuracy (the so-called accuracy paradox problem occurs) or another
metric.

• Different methods were used for handling the accuracy factors and the
medical data issues that we previously mentioned. Less attention has
been giving to study and compare various accuracy factors and different
performance optimization methods.

• Some studies for predicting the risk of death were for specific diseases, and
others were in generic (homogeneous data). No effort has been made to
compare the two approaches to show, which gives higher accuracy.

In mortality prediction and health prediction in general besides ML models,
the patient similarity is another concept to mention. Identifying similar pa-
tient cases to the new patient helps in predicting different clinical outcomes for
medical decision support. Patient similarity analysis can be applied to different
applications. However, the central focus of the hospitals the ICUs need patient
similarity-based personalized-predictive modeling [73]. There are much research
works on leveraging patient similarity for implementing health or mortality pre-
diction. In this thesis, both concepts (i.e., ML models, and patient similarity)
are used. The ML models are used to implement the predictive model and simi-
larity between patients is used in the KNN model and clustering under-sampling
method. Moreover, to optimize the computational burden problem of patient

3

similarity on large dimensions, I implement an approach of similarity solely on
one feature (ICD code).

1.2 Research Questions

In this thesis, we want to answer the following questions:

I Accuracy of Prediction:

• What are the main factors that affect the accuracy of predicting pa-
tients at risk in general? And which factors affect prediction models?

• Does the ML model selection affect the accuracy of the prediction?
If yes, which ML model can give the highest performance for risk
prediction?

• How does the selection of the features or the predictor variables affect
the accuracy of prediction?

II Effect of Dataset on Prediction:

• How does the imbalanced dataset affect the accuracy of model pre-
diction? And to what extent?

• Does focusing on a specific disease (i.e., filtering patients by disease
code) improve the accuracy of the risk prediction? Or is a heteroge-
neous dataset (i.e., patient with different disease codes) enough?

III Performance Optimization:

• What are the different performance optimizations that can be done?

• Will ML models improve the prediction accuracy than the standard
severity scores for patient’s risk prediction?

• Considering the run time and the accuracy, what is the best combi-
nation of the ML model and the feature selection method?

1.3 Thesis Contributions

To handle the problems described in Section 1.1, and to provide support in the
existing gaps, this thesis makes the following contributions:

• Implementing this system requires considerable effort and many steps and
decisions. It gives a first level overview of model deployment steps for this
IMDSS system. Figure 1.1 represents this overview that also summarizes
the contributions of this thesis, which are discussed in the following.

4

EMR
Database

Extract Patient
Records

- Cleaning.
- Normalizing.

Extract Vectors &
Features

Data
Preprocessing

Implement
Predictive

Models

The Optimal Setting for
High Predictive Accuracy

Performance
Optimization by

Tuning the
Accuracy
Factors

-Tuning Model’s parameters.
-Features weight and selection.
-Further Data Pre-processing.
e.g., Data Sampling: Patient
Filtering by Diagnoses Codes.

Handle
Imbalanced

Problem

K-means clustering-
based data under-
sampling.

The optimal ML models

ML

PatientID Feature!	 Feature"
1 value!	 value"
. . . .
. . . .
. . . .
n value!		 value"

Has a risk of death or
not?

Find

Re- Train
and
Test.

Apply Predictive
Model to Predict Risk

of Death

Find

Patient
Similarity
Analysis

Minority
Class

Majority
Class

Balanced
Dataset

ICD(390-459) ICD(030-041)

ICD(430-438)

Figure 1.1: Overview of Model Deployment Steps for IMDSS System for Pre-
dicting Risk of Death

5

• It provides a comprehensive study of different accuracy factors that affect
the prediction performance of this system. This was done partially or
ambiguously in the previous literature. I aim to reach the optimal setting
for accurate prediction. I conduct a practical performance comparison for
different models and different performance optimization methods. The
results allow making statements in a broader context in contrast to the
un-detailed works provided in most other research works in this field.

– I develop different ML models and compare their performances. I
compare the prediction performance of seven ML models such as
Logistic Regression, Gradient Boosted Decision Tree, and K-Nearest
Neighbors.

– I discuss in detail the selection of the ML models’ parameters. I
compare the selections that optimize the accuracy and other metrics.

– I compare different feature selection methods for handling high di-
mensionality. Filter and wrapper approaches are tested.

– I test some data sampling methods for handling the imbalanced
data problem. Some under-sampling and over-sampling methods are
tested and compared.

• A big real-world medical dataset is used to test these approaches. The
patients’ data are extracted from the MIMIC-III database [40]. The mod-
els are applied on data of the first 24 hours in the ICU stay to predict
the in-hospital risk of death for ICU patients. As previously stated,
many studies use this publicly available dataset. Furthermore, the de-
veloped code is available in the code hosting platform GitHub (https:
//github.com/Araek/Mortality-Prediction). Thus, my work serves
as a benchmark.

• After extracting several features (predictor variables), feature selection
methods are applied to consider only the most efficient features. I use the
filter and wrapper approaches. Rather than relying on a large number
of features (that causes computational cost) to improve accuracy as what
Purushotham et al. [68] did, I use the features that contribute most to
the prediction to increase the accuracy.

• The imbalanced data affect the performance of the ML models. However,
our implemented model GBDT had a significantly higher performance
than other tested models, even on the imbalanced data without any opti-
mization (area under the curve (AUC)=0.859). Moreover, it outperforms
the prediction performance of some of the previous studies on similar ver-
sions of our used dataset [23, 59, 50, 55]. Furthermore, it significantly
outperforms the standard severity scores as SAPS and SOFA.

6

https://github.com/Araek/Mortality-Prediction
https://github.com/Araek/Mortality-Prediction

• I develop a clustering-based data under-sampling method to overcome the
critical imbalanced data problem. The best performance (AUC = 0.956)
is achieved by under-sampling the data by k-means (which took only a
few seconds).

• I implement the approach of mortality prediction for similar patients (with
the same disease classification). As discussed previously some works are
done on predicting mortality based on data of similar patients on a large
number of features. Rather than finding similarity between patients in
many features that have high computational time and complexity, I build
the ML model on top of similar patients based only on one feature, which
is the ICD. This avoids the complexity and the computational burden of
similarity calculation of a large number of features. In addition, it im-
proves the accuracy of the predictive model. Furthermore, it outperforms
the previous works done on implementing the ML model on top of patient
similarity of large features [50, 48]. Thus, we leverage the similarity and
ML model.

1.4 Thesis Impact

This Ph.D. research work achieved a good amount of publications in journals,
conferences, and workshops [78, 77, 88, 79, 80, 72]. During the accomplish-
ment of this thesis, intermediate results have been published in the following
peer-reviewed conference proceedings and journals. In addition, the author con-
tributed to some related work.

• Araek Tashkandi, Lena Wiese. A Hybrid Machine Learning Approach
for Improving Mortality Risk Prediction on Imbalanced Data, Proceedings
of the 21st International Conference on Information Integration and Web-
based Applications and Services (iiWAS), pages 83-92, ACM, 2019.

• Araek Tashkandi, Lena Wiese. Intelligent Medical Decision Support
System for Predicting Patients at Risk in Intensive Care Units, Proceed-
ings of the PRE-ICIS SIGDSA SYMPOSIUM, Association for Informa-
tion Systems Special Interest Group on Decision Support and Analytics
(SIGDSA), AIS eLibrary, 2019.

• Araek Tashkandi, Ingmar Wiese, Lena Wiese. Efficient in-database pa-
tient similarity analysis for personalized medical decision support systems,
Big Data Research Journal, volume 13, pages 52-64, Elsevier, 2018.

• Ingmar Wiese, Nicole Sarna, Lena Wiese, Araek Tashkandi, Ulrich Sax.
Concept acquisition and improved in-database similarity analysis for med-
ical data, Distributed and Parallel Databases Journal, volume 37, pages
297–321, Springer, 2018.

7

• Nicole Sarna, Araek Tashkandi, Lena Wiese. Patient Similarity Analysis
for Personalized Health Prediction Models (abstract), Proceedings of the
European Conference on Data Analysis (ECDA), 2018.

• Araek Tashkandi, Lena Wiese. Leveraging patient similarity analytics
in personalized medical decision support system (abstract). Proceedings of
the Learning, Knowledge, Data, Analytics (LWDA), 2017 FGDB Database
Workshop, page 125, CEUR-WS, 2017.

1.5 Thesis Structure

The thesis is structured as follows. Chapter 2 “Related Work” provides a sur-
vey of related approaches. The researches that have been done for mortality
prediction either by applying patient similarity or by ML models are surveyed
and compared. Chapter 3 “Background” presents the approaches for health pre-
diction (i.e., patient similarity and ML models) and for the implementation. It
includes a description of the used dataset and the extraction and pre-processing
steps. It defines the different metrics for evaluating the predictive performance
of the models in specific in case of imbalanced data problem. Moreover, it repre-
sents the factors for performance optimization of the predictive model, which are
discussed in the following chapters. Chapter 4 “The predictive Model” provide
a detailed definition of different ML models that can be used for mortality pre-
diction and implementing the ML models. Furthermore, it discusses the models’
weaknesses and strengths, crucial models’ parameters, and tuning those param-
eters to select the optimal values. It provides a comparative analysis of different
ML models for the task at hand and chooses the best-performing candidate.
Chapter 5 “Performance Optimization” shows the result of different data pre-
processing and feature selection methods for performance optimization. It de-
fines and implements a data sampling method by filtering patients by diagnoses
code for improving the model prediction accuracy. Chapter 6 “Handle Imbal-
anced Classes” provides an overview of this problem of imbalanced classes. It
describes different data sampling methods (under-sampling and over-sampling)
and provides the conducted experiment to compare them. Furthermore, it re-
veals our implemented clustering-based under-sampling approach that helps to
achieve high predictive performance. In the end, it applies clustering-based
under-sampling after filtering patients by diagnoses code for handling imbal-
anced classes. Chapter 7 “Verification” presents verification of our approach
against the severity of illness scores and against another large dataset. Chapter
8 “Conclusion” discusses the outcomes of this thesis in the context of the related
work to represent its contributions. Moreover, it summarizes the findings and
works that have been done to answer the thesis’s research questions. Finally, it
discusses some of the future works.

8

2
Related Work

The following chapter provides a survey of related works for the two approaches
for implementing patient health risk prediction. The review is started with an
overview of utilizing patient similarity for mortality prediction and other health
prediction purposes. Then an overview of using Machine Learning (ML) models
for mortality prediction is provided. For each approach, a summary is provided
with a literature comparison. In the end, a review of some research works on
handling imbalanced data by clustering-based under-sampling and by ensembl
ML models is provided.

Contents

2.1 Health Prediction by Patient Similarity 12

2.1.1 Patient Similarity for Mortality Prediction 12

2.1.2 Patient Similarity for Different Predictive Approaches 13

2.1.3 Summary . 14

2.2 Health Prediction by Machine Learning Models . . 15

2.2.1 Summary . 19

2.3 Handling Imbalanced data by Clustering-based Under-
sampling and Ensemble Models 21

11

2.1 Health Prediction by Patient Similarity

A considerable amount of research work has discussed the topic of patient sim-
ilarity analysis, which is an approach for health prediction. Different patient
similarity metrics and different predictive models are employed. Besides all of
this, the aims of deploying patient similarity analysis vary from disease diag-
noses to mortality prediction. We will present in this section some of the related
works for analyzing patient similarity first for mortality prediction and then for
other predictive approaches.

2.1.1 Patient Similarity for Mortality Prediction

Predictive models for mortality prediction by Lee et al. [49]

They implement three predictive models for mortality prediction: logistic regres-
sion (LR), support vector machine (SVM), and decision tree (DT). AdaBoost
is applied to improve the predictive performance of the DT. 10-fold cross-
validation was used to train and test the models. The predictive performance
was measured for each predictive model by AUC. 9269 is the data size of the
first ICU admissions of all adult patients from MIMIC-II.

They show that the worst predictive model is DT, while the improved DT by
AdaBoost resulted in the best performance. Moreover, LR and SVM resulted
in similar high performance to AdaBoost. They claim that their results are
comparable to SOI scores, whereas unlike these scores (using diagnoses and
procedures next to demographic and clinical data), their models only use clinical
and demographic data.

Personalized data-driven decision support system for mortality prediction
Lee et al. [50]

Similar to [49], they apply LR and DT models next to death counting. However,
this work aims to improve the predictive performance of [49] by implementing
personalized mortality prediction by deploying cosine-similarity-based metric.
By defining the most similar patients to each patient in the medical measure-
ments of the first 24 hours in the ICU, 30-day mortality prediction models were
the result.

They show that the best prediction performance was achieved by LR, whereas
the worst by DT. A good predictive performance can be achieved by death count-
ing (only among 60 to 100 similar patients). Their main hypotheses related to
higher prediction performance being achieved by analyzing only similar patients
were approved. Moreover, they claim that their approach of patient similarity
metric outperformed the well-known ICU severity of illness scores.

12

Patient Based Predictive Modeling framework for ICU mortality prediction
by Morid et al. [59]

The belief that local approximation of similarity-based method is best fit for
complex health prediction problems rather than general approximation models
is the basis of their framework. The K-Nearest Neighbor (KNN) of a Similarity-
based classification approach is utilized to find similar patients to a current one.
The time-series data that are extracted from the first 48 hours of the ICU stays
are used, unlike [50]. The required output is mortality prediction before hospital
discharge. They approve that feature weighting has a significant contribution to
improve prediction accuracy for the high dimensional mortality prediction (i.e.,
which might involve as minimal 40 predictors). In their framework, the wrapper
approach Gradient Descent is used to iteratively update the features.

Their method outperforms the non-similarity method for ICU mortality pre-
diction (i.e., the severity of illness scores).

Patient Similarity vs. Predictive Models by Hoogendoorn et al. [32]

Two different approaches are used and compared for mortality prediction, the
Patient similarity approach, and the predictive model approach. The K-Nearest
Neighbor (KNN) is selected for computing similarity between the patients. Eu-
clidean distance is computed next to Keogh lower bounds and a penalty for
the unmatched features. The logistic regression (LR) model with 50 features
is compared to this nearest neighbor approach with 132 features. They found
that the predictive accuracy and the run-time of KNN are worse than the ones
of LR. However, that might be linked to the number of features.

2.1.2 Patient Similarity for Different Predictive Approaches

Patient Similarity for Medical Prognosis by Wang et al. [85]

This work from the healthcare analytics research group of IBM develops Sim-
ProX system for providing prognosis to predict the patients’ future health. It
stands for SimProX (Similarity-based Prognosis with eXperts’ inputs). It is
based on patient similarity and expert/physician feedback. The key compo-
nent is similarity assessment, whereas physician feedback is only to check if the
retrieved cohort of similar patients is really similar to the queried patient.

The patient vectors are embedded into an intrinsic space by the Local Spline
Regression (LSR). After that, the Euclidean distance is used to measure the pair-
wise distance between patient vectors. The SimProX is evaluated by comparing
its precision, recall, accuracy and F-measure against Locally Linear Embedding
(LLE), Laplacian Embedding (LE), Principal Component Analysis (PCA), and
simple Euclidean Distance (ED). The result shows that SimProX’s performance
outperforms the others.

13

Patient Similarity for Medical Prognosis by Sun et al. [76]

The similarity between patients is defined for prognosis prediction of occurrence
of the acute hypotensive episode (AHE). They develop Locally Supervised Met-
ric Learning (LSML) that automatically adjusts the importance of the predictor
variables. It is based on Mahalanobis distance.

The evaluation of their developed system is by measuring the accuracy of
classification, retrieval, and prognosis performance. The authors approve the
result of [64] that the performance in terms of classification and retrieval of the
supervised similarity measure outperforms the unsupervised approaches.

Patient Similarity for Medication Plan by Panahlazar et al. [64]

The patient similarity is utilized for predicting treatment plan for Heart Failure
(HF) patients. Supervised and unsupervised clustering approaches cluster pa-
tients that have a good response to HF therapy. The k-means and hierarchical
clustering are used for unsupervised clustering, and then each cluster has a la-
bel of the most frequent medication plan. The class variable of the medication
plan is used for supervised clustering. Finally, the patient similarity is measured
between a queried patient and the clusters by Mahalanobis distance. Finding
the cluster a patient is most similar to, the response to the HF therapy can be
predicted, and then the medication recommendation can then be decided.

The performance of their approach is evaluated against specificity, sensitiv-
ity, F1, accuracy, and AUC. The supervised clustering approach has superior
performance followed by the hierarchical, then the k-means approach. Further
validation with a larger dataset is required for their result since their used data
set is relatively small, which had N=1386 patients.

Patient Similarity for Discharge Diagnoses by Gottlieb et al. [24]

Rather than using the diagnoses information of EHR in the patient similarity
method such as [85], this research work utilized the patient similarity method
with some information from patient records to infer the discharge diagnoses.
Ten patient similarity measurements are calculated. Two similarity measure-
ments are for ICD code, using the coding hierarchy and the co-occurrences with
computing Jaccard score. The rest is to measure similarity for other hospital-
ization information such as medical history, blood test, age, gender, and ECG.
Different methods are used as Euclidean distance for the blood test similarity
and Boolean values 0 and 1 for gender similarity. These similarity measures are
normalized to the range [0, 1] and combined.

2.1.3 Summary

The related work leverages different methods of patient similarity and different
types of information from EHR for various predictive approaches. There is a

14

general agreement by these works on the outperforming of patient similarity-
based methods over the general severity of illness scores on mortality prediction
for ICU patients. The reason behind that is accurate mortality prediction should
consider the behavior for the specific patient rather than a general approxima-
tion.

Table 2.1 compare the surveyed works on the purpose of using patient simi-
larity, the used patient similarity metric, and the evaluation metric along with
the implementation tools that are used. In this thesis, the focus will shed light
on applying patient similarity in KNN approach for mortality prediction and in
clustering under-sampling for handling the imbalanced class distribution prob-
lem. Different patient similarity metrics will be used and compared — various
evaluation metrics are used to evaluate the performance.

So far the focus is mainly to measure the performance of prediction accuracy.
A focus on improving computational performance still seems to be missing. The
previous works face the computational burden of calculating patient similarity
on high dimensional data. We leverage patient similarity solely on one feature
(ICD International Classification of Diseases code) to optimize the accuracy of
mortality prediction. Moreover, to avoid the computational burden of similarity
calculating between a large number of features.

2.2 Health Prediction by Machine Learning Models

Machine Learning (ML) Models is another approach for predicting patient health.
It has been used for achieving high prediction accuracy. In the following, we
will present a review of some of the works that use ML Models for predicting
the risk of death.

Personalized data-driven decision support system for mortality prediction
Lee et al. [50]

They use Logistic Regression (LR) and Decision Trees (DT) for predicting 30
days mortality. No particular feature selection method was used. For handling
the imbalanced class distribution problem, the 10-fold cross-validation incorpo-
rated stratified sampling. The highest AUC is equal to 0.830.

Patient Based Predictive Modeling framework for ICU mortality prediction
by Morid et al. [59]

They use k-Nearest Neighbor for mortality prediction using data collected during
the first 48 hours of ICU admission. They extracted 36 time-series features.
However, the average of the feature’s value per two hours is calculated to have
in total 24 values of each feature. Moreover, they have four statics features.
The wrapper approach of Gradient Descent was used for feature weight. They

15

Study Patient
Similarity
for

Patient Similarity
Metric

Evaluation Metrics Implement-
ation Tool

Sun et al.
[76]

Prognosis
prediction
of occur-
rence of
Acute Hy-
potensive
Episode
(AHE)

Locally Su-
pervised Met-
ric Learning
(LSML), Maha-
lanobis distance

Accuracy of: Classifi-
cation, Retrieval, and
Prognosis

Developed
system

Wang et al.
[85]

Disease
prognosis

Euclidean dis-
tance

Classification per-
formance: precision,
Recall, Accuracy, and
F-measure

Developed
SimProX
system

Morid et al.
[59]

Mortality
prediction

Classification
with K-Nearest
Neighbor algo-
rithm

Classification per-
formance: precision,
Recall, and F-measure

Developed
PPMF
Framework

Lee et al.
[50]

Mortality
prediction

Cosine Similarity
metric

Accuracy: Area under
ROC curve; area under
precision-recall curve

R

Hoogendoorn
et al. [32]

Mortality
prediction

K-Nearest Neigh-
bor, Euclidean
distance

AUC for: -Influence of
the number of patients
upon the predictions ac-
curacy and the compu-
tation time.
-Earliest Prediction
Time

Python

Panahiazar
et al. [64]

Medication
plan

Supervised and
unsupervised
clustering ap-
proaches with
Mahalanobis
distance

Sensitivity, specificity,
F-measure, and accu-
racy

Developed
framework

Gottlieb et
al. [24]

Predict the
eventual
discharge
diagnoses

Jaccard, Eu-
clidean distance
and others

AUC and F-measure MATLAB

Table 2.1: Literature Comparison of Using Patient Similarity for Mortality Pre-
diction

16

did not handle the imbalanced data problem. They provide the best F-measure
of 0.66.

A multivariate time-series modeling approach to severity of illness
assessment and forecasting in ICU with sparse, heterogeneous clinical data
by Ghassemi et al. [23]

They used Lasso logistic regression and L2 linear kernel Support Vector Ma-
chine. From MIMIC-II, they extracted a total of 313,461 notes from nursing,
physicians, labs, and radiology recorded before the patient’s first discharge from
ICU. They predict in-hospital mortality (i.e., before discharge) and 1-year post-
discharge mortality. They had a class imbalance problem where the in-hospital
mortality rate was 10.9%. To handle this issue in the training set, they had a
minimum 70%/30% ratio between the negative and the positive classes by ran-
domly sub-sampling the negative class. The best AUC of in-hospital mortality
is 0.812.

Predicting ICU mortality risk by grouping temporal trends from a
multivariate panel of physiologic measurements by Luo et al. [55]

They proposed an unsupervised feature learning algorithm for analyzing pat-
terns in clinical time-series data. The authors aim to improve the interpretability
and accuracy of the predictive model. They introduced Subgraph Augmented
Non-negative Matrix Factorization (SANMF) to convert the ICU time series
data into a graph representation. Then, from frequent subgraphs, they extract
the temporal trends of the physiologic variables. Non-negative matrix factoriza-
tion discovers a group of patients on those trends (by grouping those trends).
The resulted trend groups are the features to train the predictive model.

They use the Logistic Regression model for mortality risk prediction for pre-
dicting within 30-days mortality (including in-hospital mortality or after ICU
discharge mortality). The patient data were extracted from MIMIC-II of the
period between 12 and 24 hours after ICU admission. The dataset was skewed,
which has 788 to 7075 for the suffered patients to surviving patients, respec-
tively. However, they didn’t handle the imbalanced data problem. Their model
had an AUC =0.848.

Multitask learning and benchmarking with clinical time series data by
Harutyunyan et al. [28]

They developed four prediction tasks: in-hospital mortality, physiologic decom-
pensation, length of stay (LOS), and phenotype classification. They stated it is a
public benchmark suite derived from the publicly available MIMIC-III database.
They extracted 17 clinical variables from the first 48 hours of the ICU stay.

17

They compare the performance of these models: Logistic regression (LR),
Standard LSTM, channel-wise LSTM, deep supervision, multitask standard
LSTM, and multitask channel-wise LSTM. They extracted 17 predictor vari-
ables, but the number of the extracted features from them was not mentioned.
In-hospital mortality based on the first 48 hours of an ICU stay gives the best
AUC of 0.870 by multitask channel-wise LSTM. While in this thesis approach,
we use less data, which is only the first 24 hours data of the ICU stay. We get
higher AUC than them with handling imbalanced data.

Benchmarking deep learning models on large healthcare datasets by
Purushotham et al. [68]

They compare the performance of Super Learner models and Deep Learning
models. They extracted three sets of features based on features used in SAPS-II
score and low missing rate. No specific feature selection methods were used.
With 24 hours of ICU stay dataset, they achieved with the set ’A’ an AUC of
0.8673, with dataset ’B’ an AUC of 0.8730. With the dataset ’C,’ which is the
largest set (136 features), they have AUC of 0.9410. The best performance they
achieved is with the most significant number of features. This comes with the
computational cost of an hour.

Our model GBDT reaches with imbalanced dataset AUC of 0.859 and with
the balanced dataset (with K-means under-sampling) AUC =0.956. The best
performance they achieved is with the largest number of features (which took an
hour) while in our work, the best performance we achieved by under-sampling
the data by k-means (which took few seconds).

Mortality prediction in intensive care units (ICUs) using a deep rule-based
fuzzy classifier by Davoodi and Moradi [15]

They proposed Deep Rule-Based Fuzzy System (DRBFS) to predict in-hospital
mortality for the ICU patients. The stacked generalization principle inspires
their proposed model, which is the Deep Takagi-Sugeno-Kang Fuzzy Classifier
(D-TSK-FC) [92]. They leverage its strengths and overcome its weaknesses by
using fuzzy clustering. The supervised fuzzy clustering technique is employed
for fuzzy rule generation. They aim to build a model suitable for big data and
mixed attribute variables.

Medical features were extracted from the first 48 hours of the ICU stay. No
particular feature extraction method is used to overcome high dimensionality.
They only compute the significance of an attribute towards the clustering process
[2]. They evaluate their model against different ML models, including Decision
Trees (DT), Näıve Bayes (NB), and Deep Belief Network (DBN) on MIMIC-III
dataset. The random under-sampling is used to handle the imbalanced data.
Their model outperforms the other by AUC=0.739.

18

Real-time mortality prediction in the Intensive Care Unit by Johnson and
Mark [38]

They evaluate the ML models logistic regression (LR), logistic regression with
an L1 regularization penalty using the Least Absolute Shrinkage and Selection
Operator (LASSO), logistic regression with an L2 regularization penalty (L2),
and Gradient Boosting Decision Trees (GBDT). They extracted the patients’
data of ICU stays from MIMIC-III. A total of 148 features from physiologic and
laboratory measurements were extracted. No further feature selection methods
were used. They conducted two experiments that differ in the time window
used for data extraction. In the first experiment “benchmarking experiment”,
the time window was fixed to 24 hours after ICU admission. In the second ex-
periment “real-time experiment”, the time window set to a random time during
the patient’s ICU stay (was varied from 4 to 24 hours).

We will compare our work to their first experiment since we have a fixed time
window of 24 hours. They compare the ML models with a set of the severity
of illness scores for predicting in-hospital mortality from the first 24 hours of
a patient’s ICU stay. The GBDT model outperformed the other models and
the severity of illness scores by AUC of 0.927. However, no details are provided
about the selection of the hyperparameters of GBDT.

2.2.1 Summary

Researches have been working on this topic. In Table 2.2, we compare the pre-
viously discussed works based on the accuracy factors: the used ML models,
the size of the extracted features and the size of the time window, feature selec-
tion methods (to find the optimal feature set after extracting the initial feature
set), handling of the imbalanced data problem, and the best-achieved AUC for
mortality prediction using similar datasets to ours MIMIC-III.

Researchers have been using the advances of ML to develop an IMDSS for
predicting the risk of mortality for ICU patients. They use a different set of
ML models from the simple k-Nearest Neighbor to the complex deep learning
model. They extracted different variable and feature sizes, and most of them
extract a sequence of time-series features from the different periods (e.g., a value
from every 3 hours). In most of the related work, the number of the extracted
predictor variables was mentioned. However, not all of them specify the final
number of features. The time window was either the first 24 hours of the ICU
stay or the first 48 hours. In general, after the initial feature set extraction, there
was no further use of different feature selection methods to find the optimal
feature set. In some works, they use one method for further feature selection.
Handling the imbalanced data was either ignored or commonly treated by the
low efficient randomly under-sampling. Afterward, when they use a technique
for handling imbalanced data or for feature selection, they didn’t compare it to
other methods. Finally, we find that the works that achieved high AUC were

19

either because of using more features or a larger time window than ours (e.g.,
extracted data from the first 48 hours of the ICU stay rather than from the
first 24 hours). In this thesis, there is a dedicated chapter for each factor of
these accuracy factors (i.e., the ML model, feature selection, and handling the
imbalanced data). Chapter 4, Chapter 5, and Chapter 6.

Johnson et al. [39] state the difficulty of reproducing the studies that have
been done on mortality prediction using MIMIC dataset. Thus, considering this
difficulty in this thesis, I do not reproduce the exact datasets or settings of the
previous work to benchmark. However, I compare their work and best-achieved
performance to this thesis work and its best performance in order to find an
optimal setting for highly accurate prediction on this dataset.

Study Machine
Learning
Models

Feature size
and Time
Window

Feature Selec-
tion Method

Handle
Imbalanced
Data

Best
Perfor-
mance

Lee et al.
[50]

LR and
DT

76 features
from 24 hours

None cross-
validation
incor-
porated
stratified
sampling

AUC=
0.830

Morid et al.
[59]

kNN 868 features
from 48 hours

wrapper
approach
(Gradient
Descent)

None F-
measure=
0.66

Luo et al.
[55]

LR 54 variables
and 100 fea-
tures, from 24
hours

non-negative
matrix factor-
ization

None AUC=
0.848

Ghassemi
et al. [23]

LR and
SVM

313,461 notes,
time prior ICU
discharge

topic modeling
for dimension-
ality reduction

randomly
sub-
sampling
the nega-
tive class

AUC=
0.812

Davoodi
and Moradi
[15]

Deep
Rule-
Based
Fuzzy
Classi-
fier

29 variables
the feature size
not specified,
from 48 hours

significance of
an attribute
towards the
clustering
process [2]

random
under-
sampling

AUC=
0.739

20

Purushotham
et al. [68]

Super
Learner
models
and
Deep
Learning
models

136 features
from 24 hours

None None AUC=
0.941

Harutyunyan
et al. [28]

LR and
LSTM-
based
models

17 variables
the feature size
not specified,
from 48 hours

None None AUC=
0.870

Johnson
and Mark
[38]

LR,
LASSO,
L2, and
GBDT

148 features
from 24 hours

None None AUC=
0.927

Table 2.2: Literature Comparison of Using ML models for Mortality Prediction

2.3 Handling Imbalanced data by Clustering-based
Under-sampling and Ensemble Models

Applications of ML in medical use cases require high reliability of the models.
In particular, the models have to be able to handle the class imbalance problem.
The investigation of this issue is one of the major focuses of our work in this
thesis. To overcome the imbalanced class problem, we rely on the data sampling
method – specifically clustering-based under-sampling and ensemble ML.

As shown previously in Table 2.2 that the works on mortality prediction either
ignore handling imbalanced data or use the weak randomly under-sampling.
Thus, here we will review the works that have been done on applying clustering-
based under-sampling in general.

Many related approaches have applied the clustering-based under-sampling
technique to class-imbalanced data. We survey the most significant of them
here. Lin et al. [53] proposed a clustering-based under-sampling method based
on K-means. They set the number of the majority class clusters equal to the
minority class size. Then, the selection of the majority class representatives
follows two strategies: using the cluster centers or using the nearest neighbors
of the cluster centers. Ofek et al. [61] also used the clustering approach for
under-sampling. They aim to consider both computational cost and predictive
performance. They cluster the minority class instances and select for each cluster
a similar instance number from the majority class. From each cluster, all the
minority instances are included, but only some instances from the majority
class included. Thus, the number of instances of both classes are the same. The

21

included majority class instances have to be within a specific distance from the
cluster centroid. This distance is the cluster’s bound, which equals the distance
from the cluster centroid to the farthest minority instance in that cluster.

Tsai et al. [81] propose an integrated clustering-based under-sampling method
with instance selection algorithms. Affinity Propagation (AP) algorithm is used
to cluster the majority class instances just as guidance for K-means to select
the k value since it does not require the number of clusters. Then, three differ-
ent instance selection algorithms are used individually for comparison to select
instances from each cluster of the majority class. Finally, the resulted reduced
dataset is combined with the minority class instances. Kumar et al. [44] use
K-means clustering for under-sampling the majority class. First, they eliminate
the weak or noisy instances from the majority class. They find the most influenc-
ing attributes or features by Correlation-Based Feature Subset Selection method
(CFS) then remove ranges of the weak attributes relating to that feature. Sec-
ond, they combine the majority class’s resulted subset with the minority class to
be clustered by K-means to remove the most misclassified instances (from both
majority and minority sets). Finally, they use C4.5 as the learning algorithm.

Lin et al. [53] used a similar clustering under-sampling approach as us (i.e.,
K-means and the cluster centers are the representatives of the majority class).
However, they did not empower it by the ensemble ML model. Similarly, [74]
apply k-means in conjunction with KNN for text classification. A comparison
of these works is provided in Table 2.3.

Ensemble ML models are another approach to handle imbalanced datasets.
Haixiang et al. [26] and Galar et al. [19] give a survey of the ensemble meth-
ods that are used for imbalanced class problem. The ensemble-based models
are usually combined either with data re-sampling methods or a cost-sensitive
strategy to learn from imbalanced data. In particular, in the recent review done
by Haixiang et al. [26] there are 218 papers that proposed ensemble models
for imbalanced data out from the 527 reviewed articles. The only two papers
that used ensemble-based GBDT combined it with the cost-sensitive approach.
The high performance of our approach relies on the clustering-based under-
sampling in conjunction with an ensemble ML model (GBDT). To the best
of our knowledge, there is so far no other extensive research proposing and
analyzing GBDT with clustering-based under-sampling for imbalanced data.
Moreover, from Table 2.3, these previous research works mainly focus on the
clustering-based under-sampling for pre-processing the dataset; then, the learn-
ing process from the data is done by applying ordinary ML models or used
boosting which is not the gradient boosting but rather the Adaboost. Tsai et
al. [81] used the boosting ensemble approach but didn’t specify the boosting is
Adaboost or gradient boosting.

22

Study Clustering
Method

Number of Clus-
ters

Selection of the Class
Representatives

The used
ML model

Lin et al.
[53]

K-means number of the
majority class
clusters equal to
the minority class
size

using the cluster cen-
ters or using the nearest
neighbors of the cluster
centers

MLP, De-
cision Tree,
Random
Forest and
AdaBoost

Ofek et al.
[61]

K-means cluster the minor-
ity class instances

from each cluster sam-
ple the same number
of the minority class
instances the majority
class instances that
are within the cluster’s
bound

ML

Tsai et al.
[81]

Affinity
Propaga-
tion algo-
rithm and
K-means

Affinity Propaga-
tion algorithm de-
cides the number
of clusters

The genetic algorithm,
IB3 and DROP3 algo-
rithms

hamming
clustering
and bag-
ging and
boosting
ensembles
for (C4.5
decision
tree, KNN,
naive Bayes
and MLP)

Kumar et
al. [44]

K-means two clusters the representatives are
the remaining instances
after removal of weak
instances related to
the selected features
by (CFS) and of the
misclassified instances
from both majority and
minority sets

C4.5

Table 2.3: Literature Comparison of Using Clustering-based Under-sampling for
Handling Imbalanced Dataset

23

3
Background

This chapter presents the theoretical foundation and the background knowledge
of this thesis topic. First, it introduces the approaches for health prediction,
which are patient similarity analysis and ML models. Then, it represents the
various alternatives for implementing the predictive models. It describes the
used dataset and the selected predictor variables. This chapter also discusses
the pre-processing and transformation of the data. Furthermore, the different
performance metrics for evaluating the accuracy of the prediction are defined.
It concludes by providing performance improvement techniques.

Contents

3.1 Scope of the Chapter 28

3.2 Approaches for Health Prediction 28

3.2.1 Machine Learning Models for Health Prediction . . . 28

3.2.2 Patient Similarity-based for Health Prediction 28

3.2.3 Approaches for Implementing The Predictive Model
and Patient Similarity Analysis 33

3.3 Dataset . 36

3.3.1 Selection of the Predictor Variables 37

3.3.2 Data Pre-processing Transformation and Normalization 37

3.4 Evaluating the Predictive Performance 39

3.4.1 Accuracy Metrics 39

3.4.2 Visualize the Performance by Curves 41

3.5 Performance Improvements 41

3.5.1 Tuning the Model Parameters 41

3.5.2 Selecting a Subset of Features 42

3.5.3 Pre-processing the Data 44

27

3.1 Scope of the Chapter

In this Chapter, the first steps of model deployment for predicting the risk of
death are represented. First, we will introduce the medical database from where
the EMRs of the patient data are extracted. Then, we will define the medical
measurements (i.e., the predictor variables and features) that are selected from
the patient records. Patient data need to be prepared for similarity analysis
and for applying the ML predictive model. Thus, we describe the pre-processing
steps we made.

EMR
Database

Extract
Patient

Records
Data

Preprocessing

Implement
Predictive

Model

Performance
Optimization by

Tuning the
Accuracy
Factors

Handle
Imbalanced

Problem

Predict Risk
of Death

3.2 Approaches for Health Prediction

3.2.1 Machine Learning Models for Health Prediction

Predicting mortality or death risk can be seen as a classification task. It is a
binary classifier for two classes; either a patient has a death risk (the positive
class with label “1”), or a patient has no risk to death (the negative class with
label “0”). Different supervised learning algorithms are employed for this task.
In this thesis, I will use some ML models as Logistic Regression and Gradient
Boosting Decision Tree (GBDT). The Chapter 4 will describe them.

To make it clear many research papers in this topic call it “mortality predic-
tion,” in this paper, we prefer to call it “mortality risk prediction.” The reason,
because there has been no mortality prediction of 100% accuracy even by ML
model, and there are many factors that affect death even after the prediction
takes place. However, we use them exchangeably to refer to predicting the risk
of mortality.

3.2.2 Patient Similarity-based for Health Prediction

Leveraging patient similarity analysis for health prediction is a case-based rea-
soning. The health prediction as diagnosis or prognosis of patient x is based on
similar previously patient cases to x.

3.2.2.1 Basic Definitions

Before diving into the definition of similarity metrics, there are some basic def-
initions that have to be known for better understanding.

For a set X the following can be defined:

28

• Distance: A function d : X ×X → R that takes two elements in the set
X and produces a real number is called a distance or dissimilarity function
if it satisfies the following [51, 16] :

I Non-negativity: d(x, y) ≥ 0.

II Symmetry: d(x, y) = d(y, x).

III Reflexivity: d(x, x) = 0.

IV Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y).

Triangle inequality is the factor for efficiency. It assures that all the dis-
tance measures describe a distance of the shortest path between two points.

• Similarity: A function s : X ×X → R is called a similarity function if it
is [16]:

I Non-negative: s(x, y) ≥ 0.

II Symmetric: s(x, y) = s(y, x).

III For all x, y ∈ X : s(x, y) ≤ s(x, x), with equality if and only if
x = y.

Obtaining a distance (dissimilarity) d from a similarity s is by: d = 1− s.

3.2.2.2 Distance- and Similarity-based Patient Similarity Metrics PSMs

Selecting the PSM for patient similarity analysis is an important decision. Deza
et al. [16] state: “There are many similarities used in Data Analysis; the choice
depends on the nature of data and is not an exact science”. Hence, the selection
of the distance or similarity metric does not depend on the application area
(e.g., medicine), but relies on the data for which the metric is implemented.

The EMR data types are varied: structured, semi-structured or unstructured
[36]. These different data formats affect the selection of the implementation
approach (as will be discussed in the following chapter) and the selection of the
distance metric.

In this thesis, structured EMR data is used. Furthermore, the structured
data comes in different formats like numerical, binary, and categorical values.
Moreover, the size of the data and the dimensions might affect the selection of
the metric.

We made a comparison between some distance metrics on different factors
by the K-nearest neighbors model. We consider the computational efficiency
(i.e., the required time for computing a similarity or distance metric between
the patients of the full dataset). Not all the metrics respond similarly with high
dimensional data. Furthermore, the metric might have effects on the accuracy
of the prediction model. Thus, we also consider this in comparison. Here we
will define some distance and similarity metrics.

29

• Cosine Similarity:

The cosine similarity metric is defined as shown in the following Equa-
tion 3.1.

cos(x, y) =
x · y

‖ x ‖2 · ‖ y ‖2
. (3.1)

x and y are the vectors of two different patients x 6= y, · is the dot product
and ‖ ‖2 is the Euclidean vector magnitude. Translating the dot product
and the magnitude into calculations on the vector elements xi and yi
results in the following Equation 3.2.

cos(x, y) =

∑m
i=1 xiyi√∑m

i=1 x
2
i

√∑m
i=1 y

2
i

. (3.2)

The patient data of n patients with m features are represented in an m-
dimensional vector space: The patient vectors N = P1, P2,, Pn each
consist of features x1, x2,, xm. Thus, m is the size of the feature set,
while n is the size of the patient set. i ranges over all the features m.
Cosine similarity between two patient vectors in the vector space is the
cosine of the angle between them. It gives a result value between −1 and
1. Two patients are very similar if the result is 1 and are very different if
the result yields −1 [50].

Cosine distance is defined by 1 − cosθ. There are many implementations
of cosine similarity in patient similarity analysis for different health pre-
diction areas [50, 21, 52].

Lee et al. [50] select cosine-similarity for the patient similarity metric. The
continuous predictor values are normalized to the range between 0 and 1.
Then, cosine similarity is used for computing the similarity between the
continuous predictors in the patient vectors. However, cosine similarity is
not used for the categorical variables.

Garcelon et al. [21] compute the TF-IDF weight for each feature in the
patient vector. The weight was the product of TF and IDF. TF is the
number of feature occurrences for the patient divided by the total number
of features. IDF is the logarithm of n divided by the number of patients
who have this feature. Cosine similarity is used to measure the distance
between these vectors.

• Euclidean Distance:

Euclidean distance is one of the most common distance measures. In m-
dimensional space, two vectors x and y the Euclidean distance between
these two vectors [51] as shown in the following Equation 3.3.

30

d(x, y) =

√√√√ m∑
i=1

(xi − yi)2 . (3.3)

It is the squared distance of each dimension or feature (where i ranges
over all the features m) of these two vectors and takes the square root of
the sum of squared difference.

The Euclidean distance is used for patient similarity analysis, for instance,
[66, 85, 32, 24]. Wang et al. [85] embed the patient vectors into an intrinsic
space by the Local Spline Regression (LSR). After that, the Euclidean
distance is used to measure the pairwise distance between patient vectors.

Hoogendoorn et al. [32] select the K-Nearest Neighbor (k-NN) for patients
similarity. Euclidean distance is computed next to Keogh lower bounds
and a penalty for the unmatched features.

• Jaccard Distance:

Jaccard similarity is defined by Equation 3.4 from [16]:

s(x, y) =

∑m
i=1 xiyi∑m

i=1 x
2
i +

∑m
i=1 y

2
i −

∑m
i=1 xiyi

. (3.4)

It is determined by dividing the dot product of the two patient vectors by
the subtraction of the sums of summation of their squared vectors from
the dot product of the two patient vectors. Therefore, the corresponding
Jaccard distance is as follows Equation 3.5:

d(x, y) = 1−
∑m

i=1 xiyi∑m
i=1 x

2
i +

∑m
i=1 y

2
i −

∑m
i=1 xiyi

=
(
∑m

i=1 xi − yi)2∑m
i=1 x

2
i +

∑m
i=1 y

2
i −

∑m
i=1 xiyi

.

(3.5)

Jaccard distance is one of the different patient similarity metrics Gottlieb
et al. used [24]. For each feature of a patient vector, a similarity mea-
surement is calculated. Jaccard distance is used to measure the similarity
between patient ICD codes as follows: the co-occurrences of an ICD pair
among all the patients are computed. For each pair, the Jaccard score
is evaluated. The binary case of Jaccard is called Tanimoto similarity
defined by Equation 3.6 :

s(X,Y) =
| X ∩ Y |
| X ∪ Y |

. (3.6)

31

• Mahalanobis Distance:

Mahalanobis Distance is defined as follows [16] Equation 3.7 :

‖ x− y ‖A=

√
(detA)

1
n (x− y)A−1(x− y)T . (3.7)

Where x and y are the patient vectors, n is the size of the patient set. A
is the covariance matrix.

Sun et al. [76] develop Locally Supervised Metric Learning (LSML) that
automatically adjusts the importance of the predictor variables. It is based
on Mahalanobis distance.

Panahiazar et al. [64] analyzed patient similarity through implementing
supervised and unsupervised clustering approaches with Mahalanobis dis-
tance. Mahalanobis distance is used to measure the similarity between a
queried patient and the patient clusters.

3.2.2.3 Computing Patient Similarity

Here is a description of how similarity or distance between patient vectors is
computed. If we have n patients each with m features, they can be represented
by a matrix in Table 3.1:

V ectorID Feature1 Feature2 · · · Featurem
1 value1 value2 · valuem
2 value1 value2 · valuem
...

...
...

...
...

n value1 value2 · valuem

Table 3.1: Patient and Feature Matrix

The distance between Patient vectors can be measured by the previous PSMs
and can be visualized by the follows matrix of distances Figure 3.1:

32



1 2 3 · · · n− 1 n

1 0 d1,2 d1,3 d1,.. d1,n−1 d1,n
2 d2,1 0 d2,3 d2,.. d2,n−1 d2,n
3 d3,1 d3,2 0 d3,.. d3,n−1 d3,n
...

...
...

...
. . .

...
...

n− 1 dn−1,1 dn−1,2 dn−1,3 dn−1,.. 0 dn−1,n
n dn,1 dn,2 dn,3 dn,.. dn,n−1 0


Figure 3.1: Distance Matrix

As discussed previously in Section 3.2.2.1, the distance is symmetric (i.e. the
distance between P1 and P2 is equal to the distance between P2 and P1 where d1,2
= d2,1) see Figure 3.1. Therefore, the upper and lower triangular are symmetric.
Moreover, the diagonal line in the matrix represents the elements of the distance
between the patient vector with itself (i.e., reflexivity). In case of measuring the
distance, they will have zeros; otherwise they will have ones in case of similarity.

For computing, the similarity or distance between patients, the upper, or
the lower matrix part is enough. Thus, rather than n × n distances need to
be computed, only 1

2n(n − 1) distances or similarities need to be computed.
However, this amount of computation becomes significant with big patient data.

For finding the similar patients to patient x, we should measure the distance
between x and all the other patients. That is n − 1 similarity or distance cal-
culations. For classification by KNN model (in Section 4.6) and for clustering
by K-means (in Section 6.3.2), all the pairwise distances are computed. In
the KNN model, to find the nearest neighbors to patient x, the distance be-
tween patient x and all the other patients are calculated, then the top k nearest
neighbors are selected. In K-means clustering, to assign a patient data point to
its nearest cluster, all pairwise distances between the cluster centroids and the
patient data point need to be calculated.

3.2.3 Approaches for Implementing The Predictive Model and
Patient Similarity Analysis

The high adoption of electronic medical records (EMRs) increases the interest
and the value of analyzing medical data. EMR data are usually extracted from
different systems, then integrated and pre-processed in a dedicated tool, and
afterward, analysis is executed [69]. Since the EMR data come from different
sources with different formats, the extracted data could be structured, semi-
structured, or unstructured [36]. Various analytic tools can be used to analyze
EMR data and to build the predictive model. Wang et al. [86] state that
depending on the data type and the analysis purpose, the big data analysis
in health care can be divided into three components: Hadoop Map/Reduce,
stream computing, and in-database analytics. The high-performance stream

33

data processing is to predict the likelihood of illegal events such as healthcare
fraud detection. For analyzing the EMR data, we have Hadoop Map/Reduce
(or in general data analysis tools and platforms) and in-database analytics.

Data Analysis tools and Platforms:

Data analytics platforms and tools such as Hadoop, Mahout, or R are one ap-
proach to use for implementation. In the previous Chapter 2, we mentioned
some implementations by different tools. Current implementations for the pre-
dictive ML model and patient similarity analysis use different tools for data
pre-processing and analysis. Most of the time, in this approach, the database
system where the patient EMRs are stored is not used as a part of the analysis
workload. The EMR data is extracted from the Database Management Sys-
tem (DBMS), then the analysis is processed outside the data warehouse. Lee
et al. [50] use R language to develop patient similarity analysis and predictive
models. All calculations and analyses were done with R, while the EMR data
was obtained from an Oracle SQL Developer database using SQL. Gottlieb et
al. [24] use Matlab to implement the patient similarity analysis. Works on op-
timizing patient similarity analysis for medical data like [5] commonly use the
power of data analysis tools – but thereby paying the latency cost of accessing
and processing the EMR data outside the (DBMS). Using external data min-
ing tools for analysis and computation, data access, as well as pre-processing
and transformation, causes several data management issues [62]. Here we did
not consider the time we lose for exporting and transforming the data out the
DBMS and accessing the output in different tools.

This approach poses some challenges. The open-source big data analytic tools
(e.g., Hadoop) provide advances in analysis and scalability (when running in dis-
tributed systems) however pose challenges for healthcare [69]. They require high
programming skills and technical support, which is uncommon to obtain in the
healthcare end-users. Moreover, security and privacy are significant drawbacks.
The mathematical packages to develop the predictive model as R and Matlab
provides a variety of different ready to use algorithms. However, they do not
scale to a large data set.

In this thesis, we use the RapidMiner platform. RapidMiner is a data science
platform that supports data analysis and visualization tools [57, 58]. By Rapid-
Miner, the time and effort in pre-processing the data in a second tool are saved.
It provides the required data processing and ML algorithms for predictive model
deployment. Furthermore, it supports database connection where we can access
our data in our database without a need for exporting and no latency of out-
side access from the DBMS. Furthermore, for non-relational data RapidMiner
provides text analysis. Through its Radoop extension, it can scale for Big data
analysis. Hofmann et al. [31] give two examples of medical data mining by
RapidMiner carpal tunnel syndrome and diabetes. Examples of using Rapid-
Miner for analyzing medical data of ICU are Van et al. [83] and Parreco et al.

34

[67]. For this study, we use RapidMiner studio version 9.2 Educational edition
[57]. It used as a tool for model development, training, testing, and performance
evaluation. The computation takes place in Windows 10, Intel i5-7300U, CPU
2.70 GHz, RAM 32 GB, x64-based processor.

Database Management Systems:

Another approach for implementing EMRs analysis in specific patient similarity
analysis is to use a DBMS. Either relational DBMSs or NoSQL databases are
a valid choice. However, the type of extracted data decides the choice of the
database system. The SQL database is well-suited for structured and relational
data, whereas the NoSQL database is perfect for non-relational and unstructured
data.

NoSQL databases (see [89] for a comprehensive survey) are used for analyz-
ing unstructured data. For instance, Abdelrahman et al. [1] use the NoSQL
database Neo4j for analyzing health care data. Some current works are ap-
plying patient similarity analysis on the unstructured health record data such
as medical notes. Unstructured medical data usually have poor quality: “un-
structured data is highly variable and all too often incorrect” [69]. Moreover,
pre-processing the unstructured data for analyzing the similarity requires much
effort. Extracting medical terms from unstructured data requires much effort
and medical knowledge. Identifying and extracting the medical notes from ex-
amination reports is done manually by Chan et al. [9]. Wells et al. [87] mention
different problems of analyzing unstructured medical data. Difficulties include
grammatical errors, various interpretations of a specific phrase dependent on
the content, and the acronyms and abbreviations.

Relational Databases have well-defined standards that assure full integrity
and availability of data. In our case, the data of the EMRs are structured
(e.g., diagnoses, laboratory values, and medications). Hence, we find the SQL
database is the best fit. Furthermore, we argue that analyzing structured data
is more accurate and does not require as much effort for pre-processing as the
unstructured one. The column store DBMS is the fastest based on other authors’
opinion: “Data mining researchers have also shown that SQL on a parallel,
columnar database could be a candidate for Big Data analytics” [75].

In-database approaches have many advantages. They eliminate the cost of
pre-processing the data and analysis in different tools and avoid data man-
agement problems. Ordonez [63, 87] discuss many benefits of performing data
analysis inside a DBMS, but the main one is avoiding the data export bottle-
neck from the data warehouse. Wells et al. [87] discuss many pros and cons of
in-database health care data analysis. On the other hand, some weaknesses of
an in-database approach might be that the data format and query language are
limited to a specific range. Moreover, based on the best of our knowledge, there
is no current implementation of predictive health model on in-database.

35

Summary

Developing a solution for analyzing structured data might not be valid to be
applied to unstructured ones and vice versa. Nevertheless, Johnson et al. [37]
state that it is nontrivial integrating data from different medical devices into a
single data management system. The reason lies in the lack of standardization
among the medical devices and the various data formats. Furthermore, as al-
ready mentioned, the selection of different data analytics depends on the data
type and the analysis purpose [86].

Thus, in-database analysis cannot be applied to all of these heterogeneous
and various data types. Implanting predictive analysis in DBMS is for a specific
data type. SQL DBMS is for the structured data type, and NO-SQL DBMS
is for the un-structured one. The data analysis platform Hadoop is scalable
for big data and supports parallel analysis of both unstructured and structured
data. However, it can be challenging in healthcare data analysis because of a
lack of technical support and its required high programming skills, which is not
available in typical healthcare user [69].

RapidMiner supports analysis for the two data types structured and unstruc-
tured. Furthermore, RapidMiner is identified as leader in advanced analytics
platforms by Gartner Magic Quadrant for Data Science and Machine Learning
Platforms for the sixth year in a row because of its highest score for the Ability
to Execute. It doesn’t require high programming skills. Thus, it would be easy
for medical staff with basic programming skills to optimize patient care. Based
on a review on Gartner peer insights by a director of data research and analytics
in the healthcare industry: “Easy to use data science tool, Straight forward tool
with good functionality” [57]. Moreover, the performance bottleneck of export-
ing the dataset outside a DBMS and pre-processing and analysis in a different
tool is eliminated. All the workload can be carried out inside RapidMiner.

3.3 Dataset

For health prediction purposes, various medical data has to be extracted and
analyzed. The selection of the medical measurements is based on the intention
of the prediction. For instance, for diagnoses prediction, the feature selection
depends on the disease we are looking to diagnose. In this paper, we use the
real-world critical care database Medical Information Mart for Intensive Care
(MIMIC) [40]. The data is collected from patients admitted to critical care units
at the Beth Israel Deaconess Medical Center in Boston, Massachusetts in June
2001 to October 2012. It is a publicly available, widely used, and de-identified
dataset. We use the latest version of MIMIC, which is MIMIC-III. MIMIC-III
comprises over 61,000 hospital admissions to critical care units of 53,423 adult
admissions and 7870 neonate admissions with thousands of medical data.

MIMIC-III was collected from different sources: archives from critical care

36

information systems, hospital electronic health record databases, and Social Se-
curity Administration Death Master File. From the archives of two critical
care information systems (CareVue and MetaVision), the clinical data of the
critical care were collected. These data include the time-stamped hourly col-
lected physiological measurements as heart rate and other notes and medication
data. From the hospital and laboratory health record databases, these data
were collected: demographic data and in-hospital mortality, laboratory results,
discharge report, and billing information. Finally, from Social Security Adminis-
tration Death Master File, the dates of out-of-hospital mortality were obtained.

3.3.1 Selection of the Predictor Variables

In our study, we are interested in predicting the risk of mortality for the adult
patient (aged 15 years or above). Thus, only the data of the adult patient
admissions to the different critical care units are extracted. The data of the
neonate admissions are not included. Our medical measurements (i.e., the pre-
dictor variables) selection is inspired by Lee et al. [50]. Time series sequences
were obtained. Some of the predictor variables are sampled every 6 hours to
produce time-series features. In total, there are 74 features from the first 24
hours in the ICU stay (see Table 3.3). Furthermore, age, gender, and ICD code
were also extracted.

The value that we want the model to predict is if the patient has a risk of
in-hospital mortality. Thus, the value of the in-hospital mortality flag is also
extracted from MIMIC for test purposes. As a result, these extracted data can
help us build the model to predict the risk of in-hospital mortality after the first
24 hours of ICU stay.

3.3.2 Data Pre-processing Transformation and Normalization

Next, I discuss the data normalization process. Scaling of variables is one of
the aspects you come across when applying distance metrics since distance de-
pends on scale. Data with different units have to be scaled for implementing
the distance metrics. Moreover, variables with different ranges will have differ-
ent weights in the distance metric. The enormous range variable has the most
weight to the distance metric. Hence, scaling the variable range gives every vari-
able equal weight and make all the variable equally contributed to the distance
metric.

Normalization transforms the data into a scale of smaller range. Normaliza-
tion by scaling the values to a specific range is commonly applied [50, 32] to
ensure equal contribution of all predictor variables to the PSM calculation. In
our case, we treat all the predictor variables in the dataset to have an equal
impact on the prediction and the similarity (i.e., no such a predictor variable

37

Predictor variables Feature extracted Time window

Vital signs (heart rate,
mean blood pressure,
systolic blood pressure,
Spo2, body tempera-
ture, and spontaneous
respiratory rate)

Min and Max From each non-
overlapping 6-hour
period during the first
24 hours

Lab variables (blood
urea nitrogen, hemat-
ocrit, white blood cell
count, serum glucose,
serum HCO3, serum
potassium, serum
sodium, and serum
creatinine.)

Min and Max From the first 24 hours

Categorical variables
(use of mechanical
ventilation, receipt of
vasopressor therapy)

Binary From the first 24 hours

Glasgow Coma Scale Min From each non-
overlapping 6-hour
period during the first
24 hours

Urinary output Sum From each non-
overlapping 6-hour
period during the first
24 hours

Table 3.3: The Selected Predictor Variables and the Extracted Features

38

has more impact on the similarity or the prediction). However, they have dif-
ferent units and ranges. The continuous numerical predictors, such as the vital
signs and lab test results, were normalized into the range [0, 1]. The result value
of our used PSM is in the range -1 (denoting the minimum similarity) and 1
(denoting the maximum similarity).

We use the min-max normalization method [27] as shown in Equation (3.8).

v′′i =
vi −minx

maxx−minx
· (maxnew −minnew) + minnew (3.8)

In this equation, x is a numeric predictor variable with m observed feature
values v1, v2,, vm. maxx and minx are the minimum and maximum values of
the predictor variable x. Hence, the normalization method in Equation (3.8)
maps a value vi of x to v′′i within the new range; we want to scale to the
new range maxnew and minnew, which are 1 and 0 respectively. However, the
relation among the original data values of x are preserved. Replacing, maxnew

and minnew with their values 1 and 0 gives the following Equation (3.9).

v′′i =
vi −minx

maxx−minx
. (3.9)

Another alternative approach for normalizing the data for the distance metric
is the re-weighting of the variables. Some implementations of this approach in
medical prediction are [59, 21].

3.4 Evaluating the Predictive Performance

To evaluate the performance, we select different parameters with the models
besides the different selected features. Test dataset is used to test how gener-
alizable our model is. For an imbalanced dataset, we should use other metrics
besides accuracy as recall and precision.

3.4.1 Accuracy Metrics

The model performance can be measured by different accuracy metrics such
as accuracy, recall, precision, F-measure, AUC. We will explain some of these
metrics and what they mean in our study content. In our classifier, we have
two classes to predict: the positive class (the class of interest, i.e., the patients
with risk of mortality) and the negative class (the survived patients). First, we
need to know the output of our classifier that can be described by the Confusion
Matrix, which are True Positive (TP), False Positive (FP), True Negative (TN),
and False Negative (FN). A TP is a patient who is truly predicted to be in risk,
FP is a patient who is incorrectly predicted to be in risk, TN is a patient who is
correctly predicted as survived, and FN a patient that is incorrectly predicted
as survived.

39

• Accuracy: is the ratio of the total true predictions (for both the patients
with mortality risk (TP) and survived patients (TN)) to the all predictions
made by the model (see Equation 3.10):

Accuracy =
TP + TN

TP + TN + FP + FN
. (3.10)

• Recall: is also called the True Positive Rate (TPR) and the Sensitivity.
It is a fraction of the patients that are correctly predicted with risk over
all the patients who have the risk. It measures the efficiency of the model
of predicting the entire group of patients with a risk of mortality. This
formula in Equation 3.11 calculates it:

Recall =
TP

TP + FN
. (3.11)

• Precision: for our model, it is the fraction of the patients who are truly
predicted with mortality risk over all the patients that are predicted with
mortality risk. The higher the precision is, the lower the number of incor-
rectly predicted patients with risk. This formula in Equation 3.12 calcu-
lates it:

Precision =
TP

TP + FP
. (3.12)

• F-Measure: is the f1 score that combines the Precision and the Recall to
give an average of them. As a result, this metric measures the efficiency
of the predictive model for predicting both the patient with mortality risk
and without risk (see Equation 3.13):

F1 score = 2 · (Precision ·Recall)
(Precision+Recall)

. (3.13)

A trade-off occurs between accuracy metrics such as between Recall and Pre-
cision. Thus, we should consider which of the evaluation metric is the most
worth for our predictive model. We mostly care to correctly predict patients
with mortality risk (i.e., TP). Moreover, a low number of FNs is more crucial
than a low number of FPs. A high Recall has a high priority for our system.

40

3.4.2 Visualize the Performance by Curves

To measure the performance of a classifier, we can use the graphical plot Re-
ceiver Operator Characteristic Curve (ROC) [17]. The ROC graph is a two-
dimensional graph in which the X-axis is False Positive Rate (FPR), and the
Y-axis is the True Positive Rate (TPR). The FPR is the ratio of negatives
incorrectly classified as positives (FP) to the total negatives regardless of clas-
sification. The FPR is calculated by the ratio FPR= FP/FP+TN. The TPR is
the ratio of the positives correctly classified to the total positives. The TPR is
defined in the previous section 3.4.1 by the recall. First, the Receiver Operator
Characteristic Curve (ROC) graph shows the model performance at all classi-
fication thresholds by plotting the relation between TPR and FPR. Then, the
Area Under the ROC Curve (AUC) aggregates the performance among all the
classification thresholds. Precision Recall Curve (PRC) [14].

In PR space, one plot Recall on the x-axis and Precision on the y-axis. The
recall is the same as TPR, whereas Precision is the fraction of correct positive
predictions among all positively predicted examples. From this curve we can
calculate the Area Under the PRC (AUPRC).

The larger the value of AUC and AUPRC, the more accurate the model
performance is. For the imbalanced dataset, the good metrics are AUC and
F-measure. In evaluating models for mortality risk prediction, maximizing the
AUC is the goal that researchers are typically seeking to [39]. Thus, in this
thesis, AUC is the main accuracy metric that we will try to maximize.

3.5 Performance Improvements

In the Section 4.7, we find the poor performance our models has on predicting
the risk of death. Even though the accuracy was high, the models fail in pre-
dicting the risk (low Recall) — the reason laid on a data problem (imbalanced
class distribution). Therefore, we should improve the predictive performance of
the models for accurate mortality prediction. Brink et al. [8] mentioned three
techniques for achieving better model accuracy: tuning the model parameters,
selecting a subset of features, and pre-processing the data. In the following Sub-
sections, we will define them and discuss their different methods. To improve the
predictive performance, we test the approaches of performance improvements in
the next Chapters. In the end, we will combine the optimal parameter values
and the outperformed methods from these performance optimization factors.
This combination helps us to find the best setting for our models and data for
improving predictive performance.

3.5.1 Tuning the Model Parameters

Each of the used Machine Learning models is configured by specific parameters.
These tuning parameters control how the algorithm uses training data to build a

41

model. There are no standard best values of these model parameters. In general,
the optimal value of these parameters is entirely dependent on the type, and
the structure of the used dataset and on the problem needs to be solved. The
parameter values impact the predictive performance of the model. Thus, we
should do cautiously selecting.

We discussed the crucial parameters of each of the selected ML models in
Chapter 4. We find the effect of those parameters on the model performance.
Furthermore, we implement a Grid search to find the optimal values of the
parameters for our used case. In the following techniques of performance opti-
mization, we will use these values.

3.5.2 Selecting a Subset of Features

In the big data age, it is common that the used dataset for prediction is a high
dimensional data. A large number of features might include a noise that causes
difficult knowledge discovery and hard to find the important feature that helps
in prediction. The high dimensional dataset not only slows the training process
but also makes finding the optimal solution harder. This problem is referred to
curse of dimensionality. Thus, further feature selection after the first feature
extraction step plays an important role. It is not obvious to know the effect of
the features on the model. The feature that contributes most to the prediction
label is the one we need. Therefore, we should carefully search for the features
that build the most general and accurate model.

In Chapter 4, we process the model training on the original dataset with the
complete set of features (i.e., the initial extracted set). It takes a good time for
training, and the predictive accuracy was not good. Thus, we have made further
feature selection to find the optimal set to improve the predictive accuracy (for
the result, see Chapter 5). In the following Subsections, we will present three
approaches for feature selection to select a subset of features from the initial
set to build a good predictor. There are three main approaches for feature
selection; wrapper, filter, and embedded approaches. Each of these approaches
has different methods with pros and cons that will be discussed in the following.

3.5.2.1 Feature Selection by Wrapper Approach

The wrapper method wraps a ML model inside it as a black box to evaluate a
subset of the features. The ML model is trained on the feature subset, and it
scores them according to their predictor power [65, 42]. There are two meth-
ods of the wrapper approaches which are backward elimination and forward
selection.

The backward elimination is searching for the features by beginning with the
full set of features and removing one feature at a time. With each deletion of the
feature, the model performance is evaluated. The feature that gives the lowest

42

performance decrease will be deleted. This process continues until a decrease in
model performance occurs.

The forward selection begins with an empty set of features and then adds
one feature at a time. With each addition of a feature, the performance is
estimated by cross-validation. Only the feature that by its inclusion gives a high-
performance improvement is added to the selected list. It adds the feature that
gives the highest increase of the model performance. The iteration is stopped
when no increase in the model performance occurs.

There are advantages and disadvantages of these methods. Backward elimina-
tion is extremely expensive but can easily find the interacting features. On the
other hand, the forward selection is a computational advantage since building a
classifier model with few features in the data is much faster [42]. With a large
size of features, the backward elimination long run time makes it in-feasible for
practice.

3.5.2.2 Feature Selection by Filter Approach

Unlike the wrapper approach, the filter method selects the features indepen-
dently of the learning machine [25]. It selects the features based on a statistical
score about their correlation to the predicted value. The features are filtered
based on a metric we defined.

CHI-squared is one metric of the filter-based feature selection method. We
calculate the chi-square metric between each feature and the target (i.e., the
value we want to predict). If the relationship between the feature and the target
variable is independent, then the feature is not important; if it is dependent,
then the chi-square is high, and the feature is very important. Then, we only
select the features with the highest chi-squared values.

3.5.2.3 Feature Selection by Embedded Methods

There are some ML algorithms that have built-in feature selection methods.
Embedded methods use ML algorithms that have integrated feature selection
methods.

In this thesis, the used ML model, the GBDT has a built-in feature selection
method. Furthermore, a great advantage we have after the GBDT constructed
is the earning of a list of feature importance (i.e., feature importance estima-
tion). GBDT assign importance score for features. The feature importance
score indicates the usefulness (i.e., the more use) of the feature in making a
critical decision with the decision trees (this feature is essential for building the
boosted tree model).

The relative importance or weight of features is calculated by considering
the influence of features in splinting to improve the squared error. Relative
influences Ij of individual features xj in a tree T approximated by a surrogate
measure in Equation 3.14 from [18]

43

Î 2
j (T) =

J−1∑
t=1

ι̂2t 1(υt = j) (3.14)

Where t is non-terminal nodes of J terminal node in T tree. The υt is the
splitting variable associated with node t, while ι̂2t is the corresponding improve-
ment in squared error resulted from the split.

The relative influence of a feature for the set of the decision trees in GBDT
{Tm}M1 is the average over all the trees (see Equation 3.15) from [18]

Î 2
j =

1

M

M∑
m=1

Î 2
j (Tm) (3.15)

The feature weight scales from zero to infinity. The assigned weight of zero
indicates the no importance of this feature since it was not used for any split in
the trees. The larger the weight is, the more important the feature. However,
in Table 5.2 we also provide the top-20 of the scaled weight from 0 to 1.

We will use the GBDT model to select a feature subset that has the highest
importance score. The top-20 features are listed in Table 5.2.

3.5.3 Pre-processing the Data

Real-World datasets usually are not ready for directly applying Machine Learn-
ing models. They have to be pre-processed and cleaned. The problems that a
dataset contains affect the performance of the ML models, for instance, missing
values. In our dataset, we remove all the missing values. Furthermore, im-
balanced class distribution causes the model to be biased toward the majority
class, which results in low predictive accuracy. This is what we face when we
use the imbalanced MIMIC-III dataset for evaluating our classifier models(see
Section 4.7). An overview of imbalanced classes problem and handling it with
data sampling approaches are in Chapter 6.

Using normalized or un-normalized data is a decision to take when pre-
processing the data. Some ML models require data normalization, and others
are not requiring. In this thesis, we compare different ML models, where some
models require data normalization. We normalized our dataset to range from
0 and 1. Brink et al. [8] state: it is better to let the ML algorithm figure out
the relative weights of features rather than forcing particular feature weight.
Different feature value range will have different weight. Therefore, normaliz-
ing features to a specific range makes sure all features are considered equally.
However, we also test the un-normalized data to find the best for optimizing
the predictive performance. The comparison between the using normalized or
un-normalized dataset is in Chapter 5.

44

4
The Predictive Model

The following chapter lays the different Machine Learning (ML) models for
health prediction driven by EMR. First, it gives a comparison between 7 ML
models to select the initial group of models. Then, for the initial models’ group,
it provides the algorithm behind the models. The important parameters for
each model are represented. These parameters have a main effect on model
performance. Thus, the tuning of these parameters and their performance effects
are discussed. In tuning the parameters of the models, the optimal value of the
parameters is found using a grid search with cross-validation. Furthermore,
the models’ strengths and weaknesses are provided. In the end, a detailed
comparison of the models is represented to select the optimal ML model.

Contents

4.1 Scope of the Chapter 48

4.2 Comparing Models Performance 48

4.3 Logistic Regression 49

4.4 Decision Tree . 52

4.5 Gradient Boosting Decision Tree 56

4.6 K-Nearest Neighbor for Patient Similarity-based Health
Prediction . 62

4.7 Choosing the Optimal ML Model 67

47

4.1 Scope of the Chapter

In this chapter, we will address the step of implementing the predictive model
and selecting the optimal model for predicting death’s risk. All the essential
details of implementation are represented. Tuning the model’s parameters is
also discussed in particular, which is one of the integral accuracy factors of the
next step “performance optimization by tuning the accuracy factors”.

EMR
Database

Extract
Patient

Records
Data

Preprocessing

Implement
Predictive

Model

Performance
Optimization by

Tuning the
Accuracy
Factors

Handle
Imbalanced

Problem

Predict Risk
of Death

4.2 Comparing Models Performance

Several ML models can be used for predicting the risk of death. To select
the initial group of models for further tests, then to find the optimal one, we
compare the performance of 7 models. We compare the performance of the
ensemble ML model (the GBDT), and some of the commonly used models in
predicting the risk of mortality in our dataset. The models we compare are
Logistic Regression (LR), Decision Tree (DT), K-nearest neighbor (KNN), Näıve
Bayes (NB), Support Vector Machine (SVM), and Random Forests. We set the
models’ parameters to the default values in RapidMiner. We test the models by
10-fold cross-validation and compare their performance in predicting the risk of
mortality in our dataset (see Figure 4.1).

The value of AUC =0.5 indicates a random guesses predictor, while the higher
value of the AUC indicates better model discrimination. We select the models
that have an excellent performance in Figure 4.1 for further analysis. The
models that had the highest AUC values are GBDT, LR, Näıve Bayes, and
KNN. However, even though Näıve Bayes gives a good AUC of 0.729 (from
Figure 4.1), its accuracy was low 29.77%. Thus, we do not include it for further
tests. We include DT instead of Näıve Bayes, for further comparison to the
best model GBDT that based on DT. In the following sections, we will define
the selected models and tune their parameters to get the best performance out
of them. Because of the imbalanced data and accuracy paradox problems, we
should implement parameter optimization by grid search with optimizing the
AUC, and not rely on the accuracy. The main performance criteria in cross-
validation while testing the model is set to AUC. However, for all the models, we
compare optimal parameter selection by optimizing both criteria (i.e., accuracy
and AUC). In the last section (Section 4.7), we will compare the best-obtained
models’ performance in detail with different metrics. As a result, we will find
the best model for our intended prediction.

48

Logistic Regression Decision Tree k-NN Naive Bayes Gradient Boosted Trees SVM Random Forest

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Figure 4.1: Compare the AUC Performance of Different ML Models

4.3 Logistic Regression

Regression models are used for classification. Logistic Regression LR will be
described here as it is described by Aurélien [22]. It estimates the probability
of an instance that belongs to a particular class. The instance belongs to the
positive class when the probability is greater than 50%; otherwise, it belongs to
the negative one.

Logistic Regression is based on the Linear Regression model Equation 4.1.
It simply computes the weighted sum of the input plus the bias term θ0. The
probability value is p̂, n is the feature size, x1, x2, ..., xn are the features and
θ1, θ2, ..., θn are the feature weights.

p̂ = θ0 + θ1x1 + θ2x2 + ...+ θnxn . (4.1)

This can be represented by factorized form as the following Equation 4.2 which
represents LR model estimated probability. (hθ) is the hypothesis function that
uses the model parameter vector (θ) which includes the bias term (θ0) and the
feature weights (θ1, θ2, ..., θn). x is the feature vector that contains (x1, x2, ..., xn)
where (x0) always equal to 1. The transpose of (θ) is (θT). Unlike to Linear
Regression where is only the dot product of (θT .x), the LR gives the logistic of
this result (σ(θT .x)).

p̂ = hθ(x) = σ(θT .x) . (4.2)

49

Logistic (or logit) is noted by (σ(.)) which is a sigmoid function. The result
of the logistic function is a number between 0 and 1. It defines by Equation 4.3.

σ(t) =
1

1 + e(−t)
. (4.3)

After estimating the probability p̂, the prediction value ŷ is found as follows:

ŷ =

{
0 if p̂ < 0.5 ,
1 if p̂ ≥ 0.5 .

That (ŷ) is 0 when (p̂) is less than 0.5 and is 1 when (p̂) is greater than or
equal to 0.5. This because (σ(t) < 0.5) when (t < 0), and (σ(t) ≥ 0.5) when
(t ≥ 0). Therefore, an instance belongs to the positive class when the predicted
value (ŷ) is 1 and (θT .x) is positive, while it belongs to the negative class when
the predicted value (ŷ) is 0 and (θT .x) is negative.

Important Parameters

The weight or coefficients and intercept parameters are learned by the model.
The main parameter in the linear model is the regularization parameter. As-
signing a small value to the regularization parameter develops a simple model.
Logistic Regression can be prone to over-fitting with high dimensional features.
Regularization gives a more reasonable decision boundary that prevents over-
fitting. To use regularization with Logistic Regression, we need to add this term
in Equation 4.4:

λ

2m

n∑
j=1

θ2j . (4.4)

It penalizing the parameters (θ1, θ2, ..., θn) from being to large. Applying regu-
larization and keeping the parameters small when fitting high order polynomial
with a large number of parameters will prevent over-fitting by giving a more
reasonable decision boundary for separating the positive and negative samples.

Tuning LR Parameters

Using regularization increases the bias of a model. This can help in case the
model over-fitting the training data (i.e., high variance). However, high bias
will cause under-fitting, which produces a poor performance for the training
and test dataset. Regularization adds a new parameter to LR, which is lambda.
For making a decision on using regularization or not and for finding the optimal
lambda value, we evaluate the accuracy and AUC to find which provides a higher
prediction performance.

50

Figure 4.2: Testing Different Lambda of the LR to Optimize Accuracy and to
Optimize AUC

• main criterion Accuracy: We test LR with regularization and without
while setting the main performance measure to accuracy. Using regular-
ization gives an accuracy of 0.888, and not using regularization gives an
accuracy of 0.892. The results are close to each other hence a decision is
not obvious. Thus, we search for the best fit lambda value. lambda of 0
gives the highest accuracy 89.23 % +/− 0.28% and AUC 0.801 +/− 0.011.
Figure 4.2 shows the result. Lambda of 0 means no regularization is ap-
plied. Therefore, no regularization is the decision. However, the accuracy
measures of the other lambda values are almost the same at around 0.888.

• main criterion AUC: We test the LR’s regularization parameter with
AUC as the main performance criterion. Using regularization gives AUC
of 0.500 and not using regularization gives AUC of 0.801. Unlike the
accuracy results, the AUC values for both decisions were way different,
and the decision is easier to take. It is clear that not using regularization
is the right way to go. All the lambda values give AUC of 0.500 and only
lambda of 0 gives AUC of 0.801 (see Figure 4.2).

Strength and Weaknesses

In general, linear models are fast in training and in predicting. LR performs well
with sparse data, unlike KNN. Moreover, it is a best choice for large datasets
because of its scalability for very large datasets (i.e., large sample size or a
large number of features). “In particular, it performs well when the number of
features is large compared to the number of samples” [60]. However, it is not
the best choice for low dimensional space. It is easy to understand how the
prediction is made by the formula represented by Equation 4.3.

51

4.4 Decision Tree

Decision Tree DT is used for classification and regression tasks. The DT develops
a decision by learning a sequence of if/else questions [60].

Important Parameters

The parameters that affect the performance are splitting criterion, max depth
of the tree, and minimum samples needed to make a split [8].

• Splitting Criterion: This parameter is the criterion value which decides
the selection of the attributes for splitting. The split value has to optimize
the selected criterion. The splitting criterion can have one of these values
information gain, gain ratio, and Gini index [70].

– Information gain: Information gain relies on splitting the dataset
on an attribute that decreases the entropy (i.e., values similarity or
homogeneity). For splitting in a DT, we need to have the highest
information gain. Information gain of splitting a training set S on a
feature ai is calculated in Equation4.5:

InformationGain(ai, S) =

Entropy(y, S)−
∑

vi,j∈dom(ai)

| σai=vi,jS |
| S |

· Entropy(y, σai=vi,jS)

(4.5)

Where | σai=vi,jS | is subset of S with ai = vi,j . Summing up the
fractions of the result of partitioning S by values vi,j from the at-
tribute ai produces the weighted average. The Entropy of the target
feature y that is resulted from splitting by attribute ai is calculated
as follows Equation 4.6:

Entropy(y, S) = −
∑

cj∈dom(y)

| σy=cjS |
| S |

· log2
| σy=cjS |
| S |

(4.6)

Where
|σy=cjS|
|S| is the fraction of data examples from a class label cj

from the target feature y.

– Gain ratio: The gain ratio is the normalized value of the information
gain see Equation 4.7:

GainRatio(ai, S) =
InformationGain(ai, S)

Entropy(ai, S)
(4.7)

52

– Gini index: Gini index measures the differences between the proba-
bility distributions of the target attribute’s values (see Equation 4.8):

Gini(y, S) = 1−
∑

cj∈dom(y)

(| σy=cjS |
| S |

)2

(4.8)

• Max Depth of Tree: It indicates the maximum depth of the tree. The
deeper the tree is, the complex the model to be and subject to the over-
fitting.

• Minimum Samples Needed to Make a Split: It indicates the mini-
mum required number of samples to do a split in a node.

Tuning DT Parameters

We test tuning the parameters that affect the performance: splitting criterion,
max depth of tree, and minimum samples needed to make a split. We find the
optimal parameters to optimize accuracy and AUC. For this test, we use 10 fold
cross-validation on the dataset of 32.635 patients.

• main criterion Accuracy: First, we will search for the optimal parame-
ters to optimize accuracy. We test the three splitting criterion approaches:
gain ratio, information gain, and the gini index. The max depth of the
tree was the same 20. The result is represented by Figure 4.3. As a result,
we find that the gain ratio gives the highest accuracy among the other
splitting criterion, accuracy of 88.76%.

Figure 4.3: Testing Different Splitting Criterion of the DT to Optimize Accuracy

We test the max depth of tree from a range of 1 until 100 with 10 steps
linear scale. The splitting criterion was set to gain ratio. Max depth of

53

41 has the highest accuracy of the DT. Max depth of 41 gives accuracy of
88.80% as shown in Figure 4.4.

Figure 4.4: Testing Different Max Depth of the DT to Optimize Accuracy

Finally, the minimum samples needed to make a split is also tested. The
range of 1 to 100 with 10 steps in linear scale is used. The splitting criterion
was set to gain ratio. We set the max depth to 41, which is the optimal
depth we found in the previous test. The minimum size of 11 produce the
highest accuracy of 88.84% see Figure 4.5

Figure 4.5: Testing Different Minimum Size for Splitting of the DT to Optimize
Accuracy

• main criterion AUC: Second, we will search for the optimal parameters
to optimize AUC. We test the splitting criterion parameter, where we set
the max depth to 20 and the others to default. From the three splitting
criterion approaches, the information gain gives the highest AUC of 0.601

54

+/− 0.016 (see Figure 4.6). The interesting result is that gain ratio gives
the lowest AUC while it gives the highest accuracy. This is because of
the imbalanced dataset we use and the accuracy paradox problem that we
will discuss in Section 4.7. The high accuracy we got from the splitting
criterion “gain ratio” is a fake accuracy because of the imbalanced dataset,
which does not necessarily assure a high AUC.

information_gain gini_index gain_ratio

Decision Tree.criterion

0.500

0.505

0.510

0.515

0.520

0.525

0.530

0.535

0.540

0.545

0.550

0.555

0.560

0.565

0.570

0.575

0.580

0.585

0.590

0.595

0.600

0.605

A
U

C

Figure 4.6: Testing Different Splitting Criterion of the DT to Optimize AUC

We test the max depth of the tree from a range of 1 until 100 with ten
steps linear scale. The splitting criterion was set to information gain and
the other parameters to default values. Max depth of 11 gives the highest
AUC of 0.719 +/− 0.019 (see Figure 4.7). Moreover, it optimizes the
other metrics in comparison to optimizing accuracy. For instance, Recall
17.78% but in cost lowering precision 41.31%.

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 100

Decision Tree.maximal_depth

0.49

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.60

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.70

0.71

0.72

0.73

A
U

C

Figure 4.7: Testing Different Max Depth of the DT to Optimize AUC

At the end, the minimum samples needed to make a split is tested. The
range of 1 to 100 with 10 steps in a linear scale is used. We set the
splitting criterion and the max depth to the optimal values we find in the

55

previous tests and the others to the default values. From the result in
Figure 4.8, the minimum size for split 100 is the best AUC by 0.756 +/−
0.015. Recall 16.36% and precision 45.07%, accuracy 88.35%. Since the
best value is the highest value (i.e., 100) in the selected value range then
testing higher values might improve AUC even more.

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 100

Decision Tree.minimal_size_for_split

0.7250

0.7275

0.7300

0.7325

0.7350

0.7375

0.7400

0.7425

0.7450

0.7475

0.7500

0.7525

0.7550

0.7575

A
U

C

Figure 4.8: Testing Different Minimum Size for Splitting of the DT to Optimize
AUC

Strength and Weaknesses

Kotsiantis [43] gives a review of the DT algorithm. The advantages of DT are
that it needs simple data preparation and does not require feature scaling or
centering. Moreover, it is considered to be a white box model rather than a
black box model as random forest and neural network models [22]. Its decisions
are easy to interpret (i.e., easy to know which rules and calculations contributed
to such a prediction).

4.5 Gradient Boosting Decision Tree

First of all, boosting refers to hypothesis boosting that is “any ensemble method
that can combine several weak learners into a strong learner”[22]. The popular
boosting methods are AdaBoost (short term of Adaptive Boosting) and Gra-
dient Boosting. AdaBoost sequentially builds better predictor based on the
previous one by adjusting (i.e., increasing) the weight of the misclassified train-
ing instances. Similar to AdaBoost, Gradient Boosting in every iteration builds
a better predictor by correcting its predecessor. However, it is not based on
updating the weight of the instances. It is based on fitting to the residual errors
of the previous predictor.

Multiple Decision Trees are ensembled to produce a more powerful model.
Two ensemble models that are built out of multiple decision trees are Random
Forest and Gradient Boosting Decision Tree GBDT.

56

Important Parameters

The more complex the algorithm is, the more numerous the tuning parameters
are. In our case, the GBDT model is the one that has the largest number of
tuning parameters.

The important parameters of GBDT are the number of trees, max depth of
the tree, learning rate, splitting criterion, and minimum samples needed to make
a split [8].

Because the GBDT is built out of ensemble DT, the parameters are mainly
similar. Similarly to the DT, the GBDT has the parameters splitting criterion,
max depth of the tree, and minimum samples needed to do a split. However, it
has other parameters, which are the main parameters, the number of trees, and
the learning rate. The learning rate is the degree of mistakes correction that
each tree is allowed to do of the previous trees. These two main parameters have
an inverse relationship. The lower the learning rate, the larger the number of
learning trees needed to build a model. We should pay attention to the model
complexity and overfitting that may be caused by increasing the number of trees.

The maximum depth is usually set to very low to reduce the complexity of
each tree, often no deeper than five splits.

Tuning GBDT Parameters

We search for the optimal values of the parameters by grid research. We test
both the optimal values to optimize the accuracy metric and the AUC metric.

• main criterion Accuracy: First, we will find the optimal values to
optimize accuracy. We will test the main parameters: the number of trees
and the learning rate. We test the number of learning trees with the
range between 1 and 200 with ten steps. The other parameters are set to
be the same for all the 10 folds cross-validation iterations. The learning
rate was 0.1, and the maximum depth of the tree was 5. Figure 4.9 shows
the accuracy of different number of learning trees where 180 is the best
accuracy of 88.9 % +/− 0.41 %. It gives AUC of 0.863. However, we have
to consider the low learning rate we set in this test. The low learning rate
causes the need for more learning trees.

Then we test the learning rate, which ranges from 0.1 to 1.0 with 10 steps.
From the previous result Figure 4.9, we find that the accuracy values of
learning trees (100, 120, 140, and 160) were close to the one of 180. After
180, the accuracy was getting lower as by 200. Therefore, we select 100
as the number of learning trees. The lower the learning rate is, the more
computational time and the more iterations are required. We find that
learning rate of 0.19 gives the best accuracy 88.78 % +/− 0.38% and
AUC 0.858 +/− 0.006 as shown by Figure 4.10.

57

Figure 4.9: Testing Different Number of Learning Trees of the GBDT to Opti-
mize Accuracy

Figure 4.10: Testing Different Learning Rate of the GBDT to Optimize Accu-
racy

58

We test both the number of learning trees and the learning rate. All the
combinations between the learning rate from 0.1 to 1.0 and the number of
trees from 1 to 200 are tested. There are 11 variations for the learning rate
and 11 variations for the learning trees. Each combination is tested by 10-
fold cross-validation. The result is 11 × 11 = 121 models are trained and
evaluated in 10 folds. The optimal result was reached with the learning
rate of 0.1, and with the number of trees equals to 200. This gives accuracy
88.94 % +/− 0.50 % and AUC of 0.860 +/− 0.007. Figure 4.11 shows
the accuracy of the different number of trees with the selected range of
learning rate. However, the accuracy of 0.19 learning rate with 160 number
of trees is almost similar to the best one. In general, a low learning rate
causes fewer corrections for each tree added to the model. Therefore, the
smaller the learning rate is the more trees are required to be added to the
model. Moreover, the small max depth of the tree can affect this need for
more learning trees.

Figure 4.11: Testing Different Learning Rate with Different Number of Trees of
the GBDT to Optimize Accuracy

• main criterion AUC: Second, we will find the optimal values to optimize
the AUC metric. The number of learning trees is tested with the range
between 1 and 200 with 10 steps. The other parameters are set to be the
same for all the 10 folds cross-validation iterations. The learning rate was
0.1, and the maximum depth of the tree was 5. The result in Figure 4.12
shows that 180 trees give the highest AUC of 0.863 +/− 0.008.

Then we test the learning rate which ranges from 0.1 to 1.0 with 10 steps.
The amount of learning trees was set to 180 and maximum depth of tree
was set to 5. The result is shown in Figure 4.13. Learning rate of 0.1 gives
higher AUC = 0.861 +/− 0.008.

Finally, since we find that the optimal parameters by optimizing AUC give
higher predictive performance than by optimizing accuracy, we test this
heavy computation. We test all the combinations between the number

59

0 2 5 5 0 7 5 100 125 150 175 200

Gradient Boosted Trees.number_of_trees

0.735

0.740

0.745

0.750

0.755

0.760

0.765

0.770

0.775

0.780

0.785

0.790

0.795

0.800

0.805

0.810

0.815

0.820

0.825

0.830

0.835

0.840

0.845

0.850

0.855

0.860

0.865

A
U

C

Figure 4.12: Testing Different Number of Learning Trees of the GBDT to Opti-
mize AUC

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Gradient Boosted Trees.learning_rate

0.770

0.775

0.780

0.785

0.790

0.795

0.800

0.805

0.810

0.815

0.820

0.825

0.830

0.835

0.840

0.845

0.850

0.855

0.860

0.865

A
U

C

Figure 4.13: Testing Different Learning Rate of the GBDT to Optimize AUC

of learning trees, the learning rate, and the maximum depth of a tree to
optimize the AUC metric. We test those value ranges: the learning rate
from 0.1 to 1.0, the number of trees from 1 to 200, and the maximum
depth of tree from 1 to 20. There are 11 variations for the learning rate,
11 variations for the learning trees, and 11 variations for the maximum
depth. Each combination is tested by 10-fold cross-validation. The result
is 11 × 11 × 11 = 1331 models are trained and evaluated in 10-fold. The
optimal predictive performance of AUC was reached with a learning rate of
0.1, the number of trees equals 140, and a maximum depth of 5. This gives
the highest AUC of 0.862 +/− 0.009. The accuracy 88.72 % +/− 0.59 %,
precision 49.87%, and recall 43.59%. The relation between the learning
rate and the amount of trees is represented in Figure 4.14. It shows that
the AUC is low with a large learning rate and higher with a small learning
rate and a big number of trees. Moreover, it shows the maximum AUC
reached by the 10-fold cross-validations is by 140 trees and 0.1 learning

60

rate. The relation between the learning rate and the maximum depth is
represented by Figure 4.15.

Series:

maximum(AUC)

Color (Gradient Boosted Trees.learning_rate):

0.10

0.19

0.28

0.37

0.46

0.55

0.64

0.73

0.82

0.91

1.00

1 21 41 61 81 10
1

12
0

14
0

16
0

18
0

20
0

Gradient Boosted Trees.number_of_trees

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

0.86

m
ax

im
um

(A
U

C
)

Series:

maximum(AUC)

Color (Gradient Boosted Trees.learning_rate):

0.10

0.19

0.28

0.37

0.46

0.55

0.64

0.73

0.82

0.91

1.00

1 21 41 61 81 10
1

12
0

14
0

16
0

18
0

20
0

Gradient Boosted Trees.number_of_trees

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

0.86

m
ax

im
um

(A
U

C
)

Figure 4.14: Testing Different Learning Rate with Different Number of Trees of
the GBDT to Optimize AUC

Series:

maximum(AUC)

Color (Gradient Boosted Trees.learning_rate):

0.10

0.19

0.28

0.37

0.46

0.55

0.64

0.73

0.82

0.91

1.00

1.
0

3.
0

5.
0

7.
0

9.
0

11
.0

12
.0

14
.0

16
.0

18
.0

20
.0

Gradient Boosted Trees.maximal_depth

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

0.86

m
ax

im
um

(A
U

C
)

Series:

maximum(AUC)

Color (Gradient Boosted Trees.learning_rate):

0.10

0.19

0.28

0.37

0.46

0.55

0.64

0.73

0.82

0.91

1.00

1.
0

3.
0

5.
0

7.
0

9.
0

11
.0

12
.0

14
.0

16
.0

18
.0

20
.0

Gradient Boosted Trees.maximal_depth

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

0.86

m
ax

im
um

(A
U

C
)

Figure 4.15: Testing Different Learning Rate with Different Maximum Depth of
Trees of the GBDT to Optimize AUC

Thus, we fixed the three primary parameters to the optimal values: learn-
ing rate = 0.1, the number of trees = 140, and a maximum depth = 5.
Then, we optimize the other parameters, minimum rows from 10 to 200,
and the sample rate from 0.1 to 1.0, all in linear ten steps. The mini-
mum rows of 143 and the sample rate of 0.82 provide the highest AUC
0.865 +/− 0.007 (see Figure 4.16). The other metrics are also improved;
accuracy 88.25%, precision 47.78%, recall 49.06%, and f measure 48.36%.
Figure 4.16 shows that low sample rates give low AUC.

To summarize, tuning the parameters by optimizing the AUC provides better
performance than by optimizing the accuracy. Optimizing the primary and the

61

Series:

maximum(AUC)

Color (Gradient Boosted Trees.sample_rate):

0.10

0.19

0.28

0.37

0.46

0.55

0.64

0.73

0.82

0.91

1.00

50 100 150 200

Gradient Boosted Trees.min_rows

0.8375

0.8400

0.8425

0.8450

0.8475

0.8500

0.8525

0.8550

0.8575

0.8600

0.8625

0.8650

m
ax

im
um

(A
U

C
)

Series:

maximum(AUC)

Color (Gradient Boosted Trees.sample_rate):

0.10

0.19

0.28

0.37

0.46

0.55

0.64

0.73

0.82

0.91

1.00

50 100 150 200

Gradient Boosted Trees.min_rows

0.8375

0.8400

0.8425

0.8450

0.8475

0.8500

0.8525

0.8550

0.8575

0.8600

0.8625

0.8650

m
ax

im
um

(A
U

C
)

Figure 4.16: Testing Different Minimum Rows with Sample Rates of the GBDT
to Optimize AUC

other parameters improve the GBDT performance with the default parameter
values from AUC of 0.859 to 0.865.

Strength and Weaknesses

GBDT is one of the most powerful and widely used supervised learning models.
Its main weakness is that it requires careful tuning of the parameters. Moreover,
it may take a long time for training. Similarly to the DT, the GBDT does
not require scaling features. Furthermore, it works well, even with a mixture
of binary and continuous features, however, not with high-dimensional sparse
data.

4.6 K-Nearest Neighbor for Patient Similarity-based
Health Prediction

K-nearest neighbor KNN is one of the simplest machine learning methods. It
is one of the top 10 data mining algorithms listed by [90]. KNN is another
approach for analyzing patient similarity for health prediction. It is described
by [35]:

• Supervised learning algorithm: It refers to the predicted class label
of a test instance from the labeled training data. From the input patient
vectors with class labels, the KNN method can predict the class label for
an unseen example (i.e., a new patient).

• Non-parametric learning algorithm: KNN algorithm has no depen-
dency on parameter. The parameters are not fixed in advance. Thus, no
assumptions are made on the shape of the decision boundary. However,

62

this property causes a performance reduction with a dataset that has a
large feature number.

• Instance-based learning algorithm: The prediction for a new instance
x is from the training instances. That is why KNN is called a lazy learner.
It does not build a training model for generalization. However, to esti-
mate a class label for a new instance or test instance (i.e., patient x), the
KNN learner compares it to all the training instances and find the nearest
neighbors that help with prediction.

Prediction of the class label for a new instance x is from the training instances.
A user-defined a positive integer k, it identifies the k nearest neighbor to x
from which the predicted class of x is assigned. Hence, distances or similarities
between x and all the training instances are computed. Various distance metrics
can be used, for instance, the discussed ones in Section 3.2.2.2. To estimate the
predicted value to x a conditional probability for each class j in the k set is
calculated as follows Equation 4.9 [35]:

Pr(Y = j | X = x0) =
1

k

∑
i∈N0

I(yi = j) . (4.9)

This gives a fraction of points with class value j. Where Y is the class label
and x0 is the test instance that we want to predict its class label. N0 represents
the k nearest neighbors to x0. I() is an indicator function that returns 1 when
the argument is true and 0 otherwise. For each value of the class label occurs in
the nearest neighbor instances (N0), the predicted value pr is calculated. The
predicted class value of x is the class with the highest probability Pr among N0

(i.e., the class to which the majority of k instances belong).
Another formula of Equation 4.9 to predict the class label of a test instance

is given by [90] and called Majority Voting:

Pr(Y = j | X = x0) = argmaxyi
∑
i∈N0

I(yi = j) . (4.10)

Important Parameters

Some critical key choices and issues affect the performance of KNN [90]:

• The value of k nearest neighbour: “The choice of K has a drastic
effect on the KNN classifier obtained” [35]. The choice of k value affects
the performance of KNN. Small k gives low bias but very high variance
classifier. The opposite with large k the classifier gives high bias and
low variance. There is no a rule of thumb of the k value. For avoiding
tied votes of the binary labels among N0, it is helpful to choose k odd.
However, the decision of the exact value of k depends on the data.

63

• The approach to combine the class labels:

After estimating the probability of each class label occurring in the set of
k nearest neighbors instances by Equation 4.9, a decision has to be made
to select the predicted class label. The general approach is to take the
majority vote (i.e., select the predominant class label). A weakness of this
approach occurs when the nearest neighbors are widely in their distance,
and the closest neighbors have the reliable indicator to the class predicted
value. The class label that commonly occurs will affect the predicted value.
Therefore, to assure that the nearest neighbors affect more than the distant
ones assign a weight to the neighbors’ contribution or vote. Its distance
weights the vote of each neighbor. The weight factor is: wi = 1/d(x0, xi)

2

the weight of the xi vote is the reciprocal of the squared distance between
the test instance x0 and xi. This approach is by Equation 4.11:

Pr(Y = j | X = x0) =
1

k

∑
i∈N0

wi × I(yi = j) . (4.11)

This approach is less sensitive to the choice of k.

• The choice of distance metric:

Hu et al. [33] examine the effect of the used distance method on the classi-
fication performance of KNN. They test four distance methods Euclidean,
Cosine, Chi-square, and Minkowsky on medical datasets. The classifica-
tion accuracy is tested on three different feature data types: numerical,
categorical and mixed. They find that Chi-square distance function out-
performs the other distance functions over all the different data types. In
specific, with the mixed data type the other distance functions perform
worst. However, this is not a silver bullet to which is the best distance
metric. The selection of the best fit distance metric should be based on
the data.

Different values of these factors can be tested to find the best choice. Finding
the lowest test error rate sheds light on the right decision. However, using
test data for this test purpose cause overfitting. Hence, cross-validation is one
approach to use. In this approach, a subset of the training dataset is used for
testing.

To predict the class of a test instance x the KNN classifier identifies the nearest
observations to x by measuring the distance. Therefore, similar to any distance
metric the scale of the variables is essential in KNN. Large-scale variables have
more significant effects on the distance measure and then on the KNN classifier.

In the previous approach, Section 3.2.2.2 to predict an output class of patient
x, we need to compute the distance between x and all the other patients in
the dataset. Then the output data of similar patients are used with one of a

64

predictive model to predict such an output. However, in KNN after calculating
all the similarities or distances between x and all the other patients in the train-
ing dataset, a majority vote of the k nearest neighbor is deciding the predicted
value.

Tuning KNN Parameters

We use a dataset of 32.635 patients. For KNN model we test different param-
eters of distance metrics and the value of k. First, we test the distance metric
parameter with 10 fold cross-validation. Different distance metrics are used, but
all with the same k. In this example, we test k = 5. From Figure 4.17 you can
see the different performance KNN model has with different distance metrics.

Figure 4.17: KNN with Different Distance Metrics

• main criterion Accuracy: We test k parameter for a specific distance
metric Euclidean Distance to optimize accuracy. To find the best k we
test with 10 fold cross validation the value from 1 to 50 with linear scaled
1,6,11,16,21,26,30,35,40,45,50. Figure 4.18 shows the performance differ-
ence of different k values. As a result the optimal k is k = 21 that gives
87.02 % accuracy.

Then, we test the parameter of the approach to combine the class la-
bels—the distance metric set to the Euclidean distance and k value set
to k = 21. The only thing we change is the way to decide the predicted
class label. We compare the two different approaches: the majority vote
and the weighted vote. The approach of the weighted vote is selected by
Grid optimize parameters. However, the accuracy measures of using the
two approaches were almost the same which is 88.84%.

• main criterion AUC: We search for the optimal k value to optimize
AUC. We use the same range and linear steps for k as the previous test.

65

Figure 4.18: KNN with Different k Values with Euclidean Distance to Optimize
Accuracy

Figure 4.19 shows the performance difference of different k values. As a
result, the optimal k is k = 50 that gives AUC 0.777 +/− 0.009. The
other metrics accuracy 88.86 %, precision 79.05%, a very low recall 0.90%,
and f measure 1.78%. Imbalanced data affect the ML model’s parameter
values. For instance, KNN with imbalanced class distribution dataset with
increasing the K the predicting of the minority class is lowered (i.e., the
larger the k is the less probability of minority class accrues as neighbors
and more majority class instances as neighbors).

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0

k-NN.k

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

A
U

C

Figure 4.19: KNN with Different k Values with Euclidean Distance to Optimize
AUC

The last parameter we test the tuning effect is the approach to combine the
class labels. We select the same distance metric (the Euclidean distance)
and the same k value k = 50 with 10-folds cross-validation. The approach
of the weighted vote is selected by Grid optimize parameters. The accu-
racy of both approaches was almost the same. However, looking more in

66

detail of the performance result, we find that differences were in AUC and
the Precision and Recall of predicting the positive class (i.e., predicting
mortality). The majority vote gives AUC of 0.777% and 70.07 precision
and 0.85% recall. The weighted vote improves the performance where it
gives 0.778% AUC, 1.15% recall, and precision 77.78%. The reason lies
back to a problem we have in our dataset (imbalanced class distribution).
In the following chapter, we will discuss the problem in detail. We previ-
ously mentioned that the class label that commonly occurs would affect
the predicted value. In our dataset, the survival class is the common one.
Thus, using the majority vote with a larger k value is not a good choice
in our case.

Strength and Weaknesses

The KNN algorithm is easy to implement. However, a drawback of KNN is that
its performance is affected by the increases in the feature size. “This decrease
in performance as the dimension increases is a common problem for KNN”[35].
In the high dimensional space (i.e., large feature number), there are very few
neighbors near to any test instance. There is a small difference between the
nearest neighbors and the farthest neighbors. Therefore, KNN will be slow to
find the nearest neighbor. This deterioration in the performance of KNN is a
fact of the non-parametric approaches, which has poor performance with large
feature number. This problem is called the curse of dimensionality.

Another drawback is the need for a large memory where all the training data
need to be stored since the decision on prediction is based on all the training
data instances. Furthermore, the test phase is costly. It is a lazy instance-based
learner that no generalization model needs to be built – the classification is
estimated for each test instance. Thus, the classifying phase to predict the class
of an instance is computationally expensive. This requires pairwise distance
computations to all the training instances, which is costly with a large training
dataset. However, some methods exist to avoid pairwise distance computations
to all the training instances. The goal is to help reduce the computational cost
without affecting the classifying accuracy.

4.7 Choosing the Optimal ML Model

In the previous, we test the four models with tuning different parameters. In
this Section, we compare the accuracy of the four models. The highest accuracy
of the optimal parameters (that found with main criterion was accuracy) of each
model is represented in Figure 4.20.

Figure 4.20 shows that the models have high accuracy. Moreover, they have
almost the same predictive accuracy. This suspicious result makes us look closer
to the test result.

67

89.23%LR

88.35%DT

88.25%GBDT

88.86%KNN

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Accuracy %

Figure 4.20: Compare Models Accuracy

Performance Metric LR DT GBDT KNN

Accuracy 89.23% 88.35% 88.25% 88.86%
AUC 0.801 0.756 0.865 0.778

Precision 58.63% 45.07% 47.78% 77.78%
Recall 13.41% 16.36% 49.06% 1.15%

Table 4.1: Compare Models Performance

We retest the four models with the optimal parameters we found from the
previous sections (when AUC was the main criterion). Besides the accuracy
metric, we calculate different performance metrics. The result are given in
Table 4.1 and Figure 4.21

We find that the models were successful in predicting survival cases rather
than the death cases. The high predictive accuracy was a sign for overall pre-
diction of the majority class which is the survived case. This situation where the
higher accuracy metric is not an indicator of an excellent classifier performance
is called Accuracy paradox [82]. It is paradoxical when accuracy is not the good
metric for the predictive model.

The used dataset MIMIC-III from 32,635 include 28,974 alive patients and
only 3,661 dead patients. The ratio of the instances of Class-1 (survived patient)
to Class-2 (died patient) is 89:11. This problem of imbalanced class distribution
causes the classifier to be extremely biased toward the majority class. As a
result, the models’ high accuracy was obtained by predicting all instances as
a majority class. Thus, it is the model accuracy in predicting most of the
dominant class instances and discounting the accuracy in predicting the minor
class ones. Nevertheless, the minority class (i.e., the died patient) is the positive
class which is the class of interest (i.e., we focus on predicting this class).

We can conclude from this case that having a highly accurate model is not
enough indication of a useful model. Valverde-Albacete et al. [82] state that a
predictive classifier model with low accuracy may have higher predictive power
than a model with high accuracy. In particular, they stress that this is applied

68

LR DT GBDT KNN

0

20

40

60

80

100
89.23 88.35 88.25 88.86

58.63

45.07
47.78

77.78

13.41
16.36

49.06

1.15

Accuracy Precision Recall

Figure 4.21: Compare Models Prediction Performance

to the highly imbalanced or skewed training data where the classifier produces
a highly accurate result by assigning all the cases to the majority class. For
instance, even though DT and KNN have high accuracy, they have a very low
Recall (that measures how often a positive class instance is truly predicted as
a positive one). Therefore, we should use other metrics to evaluate our models
beside accuracy. Hoens et al. and Chawla [30, 10] state that the predictive ac-
curacy is inappropriate when data is imbalanced. They recommend alternative
metrics to evaluate the classifier performance on the imbalanced dataset. Hoens
et al. [30] recommend balanced accuracy, ROC curves, Precision and Recall,
and F-measure. Chawla [10] recommends ROC curves, Precision and Recall,
and Cost-sensitive Measures (cost curves and cost matrix). He et al. [29] state
that accuracy is sensitive to the class distribution, while Precision and Recall
are not. Therefore, from now on, we will use Recall, Precision, AUC, and F-
measure as classification performance metrics. Thus, also considering AUC in
selecting the features was a better metric than accuracy. The models’ AUC are
shown in Figure 4.22.

Looking to Figure 4.21 and the Table 4.1, we find that GBDT has the highest
and the best performance trade off through all the metrics (accuracy, AUC,
Precision and Recall). In specific, for the Recall which we consider a critical
metric the GBDT has the highest value. Moreover, comparing to DT and KNN
the LR has a higher AUC and Recall values. The DT give the random guessing
value in AUC and the lowest Recall value. The KNN also has a low Recall and
a low AUC values in comparison with GBDT and LR.

Keep in mind that GBDT and LR give this high performance without any

69

0.801LR

0.756DT

0.865GBDT

0.778KNN

0 1
AUC

Figure 4.22: Compare Models AUC

performance optimization regarding the data pre-processing (to solve the imbal-
anced data problem) and without further feature selection. Therefore, For the
next tests of performance optimization, we will consider GBDT and LR which
we expect they give high performance. In contrast, we hypothesized that DT
and KNN would not provide significant improvements.

70

5
Performance Optimization

This chapter presents different approaches for performance optimization. It
discusses the effect of normalized and un-normalized data on prediction per-
formance. It shows the practical implementation of different feature selection
methods to find the optimal subset of the features. Filter, wrapper, and embed-
ded methods are applied. In the end, it proposes an approach for performance
optimization by filtering the patients by the diagnoses code.

Contents

5.1 Scope of the Chapter 74

5.2 Data Pre-processing Normalized vs. Un-normalized
Data . 74

5.3 Result of Feature Selection Methods 76

5.3.1 Filter Selection by Chi Squared 76

5.3.2 Forward Selection 76

5.3.3 Backward Elimination 79

5.3.4 Embedded Feature Selection Method of GBDT . . . 80

5.3.5 Summary . 82

5.4 Data Sampling with Patient Filtering by Diagnoses
Code . 84

5.4.1 Filtering the Group of the Highest Occurrence Code 84

5.4.2 Filtering the Group of the Highest Mortality Occur-
rences . 87

5.4.3 Feature Selection after Filtering by the Diagnoses Code 89

5.4.4 Summary . 90

73

5.1 Scope of the Chapter

In this chapter, we will represent the step of performance optimization by tuning
the accuracy factors. Different approaches are described as further data pre-
processing, feature selection, and filtering patients by their diagnoses codes.
For every optimization, we will apply the predictive ML model to test the effect
of this performance optimization.

EMR
Database

Extract
Patient

Records
Data

Preprocessing

Implement
Predictive

Model

Performance
Optimization by

Tuning the
Accuracy
Factors

Handle
Imbalanced

Problem

Predict Risk
of Death

5.2 Data Pre-processing Normalized vs. Un-normalized
Data

We test if the normalization of the data affects the accuracy of prediction. We
test different data Pre-processing approaches. First, the normalized and un-
normalized data are tested with the models LR and GBDT. GBDT with un-
normalized data results AUC 0.860 +/− 0.011 while the normalized data results
AUC 0.860 +/− 0.005. The summarized metrics are shown by Figure 5.1.

LR with un-normalized data gives AUC 0.797 +/− 0.009 while the normalized
data results AUC 0.802 +/− 0.012. The other accuracy metrics are shown by
Figure 5.2.

The observed result from these tests of the models in both normalized and
un-normalized data is that the normalized data require a Little longer time than
the un-normalized. The difference between the accuracy metrics of the two data
types of the both models is not big. However, in general, the accuracy metrics
Recall, F-Measure and AUC are improved with the normalized data.

Besides the binary categorical attributes in our dataset, there are two categor-
ical attributes with more than two values: ICD codes and the ICU service type.
In the previous test, we exclude the text service type from the data and include
the numerical un-normalized ICD codes even in the normalized dataset. Here
we transform these categorical variables and add them to the normalized data
to test their effect on the models’ performance. First, we normalized the ICD
codes to the range [0,1] and add it to the normalized data and test GBDT:
accuracy: 88.56%, precision: 49.00%, recall: 43.91% , f measure: 46.21%. In
comparison to the previous test of the GBDT with normalized data with un-
normalized ICD, the metrics Precision improved Little but the Recall reduced
by 4.14808%. The AUC: 0.860 +/− 0.006. Second, we test the service type
attribute. It has four values (MICU, SICU, CCU, CSRU); we transform them
into numerical 1,2,3,4, then we do range transformation of [0,1]. We add this

74

GBDT+UNdata GBDT+Ndata

40

60

80

88.53 88.41

48.94 48.46

43.87
45.7746.17 46.99

Accuracy Precision Recall F-Measure

Figure 5.1: GBDT with Un-Normalized and Normalized Data

LR+UNdata LR+Ndata

0

20

40

60

80

100
89.21 89.22

58.53 58.52

13.25 13.34

21.59 21.7

Accuracy Precision Recall F-Measure

Figure 5.2: LR with Un-Normalized and Normalized Data

75

attribute to the normalized data with the un-normalized ICD and run GBDT:
accuracy: 88.25%, precision: 47.66%, recall: 45.88% , f measure: 46.67%. AUC:
0.860 +/- 0.005 only the Recall improved a little.

5.3 Result of Feature Selection Methods

We test the two feature selection methods Forward selection and backward elim-
ination for the both models LR and GBDT. The data pre-processing affects the
predictive performance; thus, we test on both the normalized data (except the
ICD code) and the un-normalized data. Hence we have done model parameters
optimization; we use the optimal parameters we found.

5.3.1 Filter Selection by Chi Squared

We implement the GBDT on the dataset that contains the TOP20 features from
the Chi Squared weight (see Table 5.1). The GBDT parameters are set to the
optimal parameters values that were found to optimize the AUC. The resulted
metrics are accuracy of 86.97%, AUC of 0.846 +/− 0.007, precision of 42.98%,
recall of 48.42%, and f measure of 45.47%. The resulted AUC is lower than the
AUC of implementing the GBDT with the complete set of features.

5.3.2 Forward Selection

Forward selection method (defined in Section 3.5.2.1) is used to select the op-
timal features in two approaches for optimizing the accuracy and AUC of the
performance metric.

• main criterion Accuracy:

We test Forward Selection approach for LR and GBDT on not normal-
ized data. The models’ parameters are set to the optimal values we
found to optimize the accuracy. For LR the selected attributes were
9 attributes in total: urine 12h, rr 12h min, sbp 12h min, sbp 24h min,
spo2 18h min, spo2 24h min, bicarbonate min, service type, and vent. It
gives AUC 0.748 +/− 0.014. It takes 24 minutes. For GBDT only 7
attributes were selected: urine 18h, hr 18h min, mbp 24h min, wbc min,
glucose min, bun min, and creatinine max. It gives AUC 0.750 +/− 0.016.
It needs 9 hours and 31 minutes, which is much longer than the required
time by LR. All the result are represented in Figure 5.3.

Then, we test Forward selection approach with the normalized data (ex-
cept the ICD code) for LR and GBDT. For GBDT, 8 attributes are se-
lected urine 18h, urine 24h, rr 18h max, hr 24h min, mbp 18h min, sbp 6h
min, bun min, and ccreatinine min. The result AUC equals to 0.752

+/− 0.015. The result are shown in Figure 5.4. LR selects 17 attributes:

76

Feature Weight

Blood urea nitrogen min 1206.72
Blood urea nitrogen max 1109.48

Serum HCO3 min 979.23
Serum HCO3 max 765.85

Spontaneous respiratory rate 18h min 650.84
Spontaneous respiratory rate 12h min 641.34

Sodium max 609.99
ICD code 582.77

Spontaneous respiratory rate 6h min 571.23
Spontaneous respiratory rate 24h min 561.54

Systolic blood pressure 24h min 547.43
Heart rate 24h max 506.01

Age 465.82
Heart rate 24h min 430.77

Spo2 24h min 418.36
Glasgow Coma Scale min 392.76

Systolic blood pressure 18h min 342.89
Heart rate 18h max 336.49

Systolic blood pressure 6h min 327.11
Use of mechanical ventilation 320.33

Table 5.1: Top-20 Features Weight by Chi-Squared.

LR GBDT

0

20

40

60

80

100
89.15

86.7

70.59

39.75

5.89

34.94

Accuracy Precision Recall

Figure 5.3: Forward Selection with Un-Normalized data

77

LR GBDT

0

20

40

60

80

100
89.28

86.73

64.12

39.71

10.24

35.28

Accuracy Precision Recall

Figure 5.4: Forward Selection with Normalized data

urine 18h, urine 24h, mbp 12h max, rr 24h max, mbp 12h min, mbp 24h min,
rr 12h min, sbp 24h min, spo2 12h min, spo2 24h min, temperature 6h min,
glucose max, bicarbonate min, bun min, age, vent, and gcs. It has AUC
of 0.778 +/− 0.013. LR takes much less time than GBDT. LR takes only
39 minutes, while GBDT takes 10 hours and 29 minutes.

• main criterion AUC :

In the previous tests of forward selection to optimize accuracy, we find
that using normalized data provides higher AUC than un-normalized data.
Thus, for this forward selection to optimize AUC, we will use only the
normalized data.

The GBDT’s parameters are set to the optimal values we found to op-
timize the AUC. The main criterion for the model performance evalua-
tion with different features is AUC. GBDT selects 16 features: urine 18h,
hr 24h max, rr 18h min, sbp 12h min, spo2 18h min, temperature 6h min,
wbc min, bicarbonate min, sodium max, bun min, creatinine max, age,
vent, gcs, vasopressor, and icd code. The result metrics are accuracy =
87.31%, AUC= 0.859 +/− 0.013, precision= 44.56%, recall= 52.10%, and
f measure = 47.95%. It takes 22 hours and 32 minutes.

Forward Selection with LR when main criterion is AUC selects 31 fea-
tures: urine 12h, urine 18h, hr 24h max, hr 6h max, rr 24h max, temper-
ature 12h max, hr 18h min, rr 12h min, rr 6h min, sbp 6h min, spo2 18h min,
spo2 6h min, temperature 24h min, temperature 6h min, hematocrit min,
hematocrit max, wbc max, glucose min, bicarbonate min, potassium min,

78

LR GBDT
0

20

40

60

80

100
89.31 88.81

60.13

50.23

14.02

44.33

Accuracy Precision Recall

Figure 5.5: Backward Elimination with Un-Normalized data

potassium max, sodium min, sodium max, bun min, bun max, ccreati-
nine min, age, vent, gcs, vasopressor, icd code. The performance metrics
are 89.13% accuracy, 0.802 +/− 0.014 AUC, 57.74% precision, 12.08%
recall, and 19.90% f measure. It needs much less time than GBDT, only
1 hour and 10 minutes.

5.3.3 Backward Elimination

Backward Elimination method (defined in Section 3.5.2.1) is used to select the
optimal features in two approaches for optimizing the accuracy and AUC as the
performance metric.

• main criterion Accuracy: We test Backward Elimination approach
with the not normalized data for LR and GBDT. In the case of Backward
Elimination with LR two attributes were eliminated: mbp 6h max and
icd code. It gives AUC 0.803 +/− 0.011. With GBDT only one attribute
was eliminated equal spo2 18h max. It gives AUC 0.860 +/− 0.009. LR
takes 45 minutes, while GBDT takes 5 hours and 38 minutes. The results
are shown in Figure 5.5.

Then, we test Backward elimination approach with the normalized data
(except the ICD code) for LR and GBDT. The LR eliminates 6 at-
tributes: urine 24h, hr 18h max, spo2 12h max, temperature 24h min,
sodium max, and icd code. It produces AUC of 0.798 +/− 0.010. GBDT
eliminates only one attribute: hr 6h max with AUC of 0.859 +/− 0.006.

79

LR GBDT

0

20

40

60

80

100
89.31 88.78

60.65

50.1

13.26

44.29

Accuracy Precision Recall

Figure 5.6: Backward Elimination with Normalized data

This test takes 5 hours and 33 minutes for GBDT and 1 hour and 37
minutes for LR. The result is represented in Figure 5.6.

• main criterion AUC:

GBDT with backward elimination to optimize AUC eliminates only one
feature wbc max. The GBDT’s parameters are set to the values that
optimize AUC. The main criterion to stop eliminating features is decreased
AUC. These tests resulted in an accuracy of 88.30%, AUC of 0.864 +/−
0.006, the precision of 48.06%, recall of 49.55%, and f measure of 48.70%.
The selection takes 6 hours and 20 minutes.

LR with backward elimination to optimize AUC eliminates those three
features hr 18h max, hr 18h min, and creatinine min. This elimination
gives accuracy of 89.23%, AUC of 0.803 +/− 0.005, precision of 58.80%,
recall of 13.48%, and f measure of 21.90%. It needs 59 minutes, which is
much less time than GBDT.

5.3.4 Embedded Feature Selection Method of GBDT

Embedded feature selection means no extra feature selection process has to be
implemented since the feature selection is made during GBDT model implemen-
tation (see Section 3.5.2.3). Thus, no extra time needed only the required time
to implement the GBDT, which is only a few minutes. Moreover, this shows
the interpretability of our used GBDT model.

Our constructed GBDT provides a list of feature importance. The top-20
features are listed in Table 5.2. It contains almost all the forward selected

80

Feature Relative Importance Scaled Importance

Urinary output 18h 581.73 1.00
ICD code 466.13 0.801

Blood urea nitrogen min 463.23 0.796
Bicarbonate (serum HCO3) min 334.72 0.575

Use of mechanical ventilation 316.58 0.544
Sodium max 259.37 0.446

Glasgow Coma Scale 248.11 0.426
Age 228.18 0.392

Urinary output 6h 202.69 0.348
Heart rate 24h max 202.10 0.347

Systolic blood pressure 24h min 165.77 0.285
Blood urea nitrogen max 146.17 0.251

White blood cell min 132.71 0.228
Serum creatinine max 126.97 0.218

Respiratory rate 6h min 121.67 0.209
Body temperature 6h min 116.16 0.200

Serum glucose min 111.06 0.191
Spo2 24h min 105.49 0.181

Respiratory rate 18h min 96.95 0.167
Respiratory rate 24h max 91.81 0.158

Table 5.2: Top20 Features by GBDT.

features when the main criterion is AUC. Except it includes vasopressor feature
and the minimum value of Systolic blood pressure not from the 12h but 24h,
and the minimum value of spo2 not from the 18h but 24h. We conclude from
this that feature selection to optimize AUC leads to the optimal features and
performance than optimizing accuracy - in specific, with the case of imbalanced
data. Moreover, it shows the efficiency of the forward selection in comparison
to backward elimination.

We implement the GBDT with only the top-20 features selected by the model.
We set the parameters to the optimal values to optimize the AUC: learning rate
= 0.1, the number of trees = 140, the maximum depth = 5, minimum rows
=143, and the sample rate=0.82. The result metrics are accuracy = 87.85%,
AUC= 0.862 +/− 0.008, precision= 46.35%, recall= 50.31% , and f measure=
48.16%. In comparison to implementing GBDT with the complete set of features
74, the AUC is decreased by only 0.3%, and the recall improved by 2.55%. In
general, we can say that the result of implementing the model with only the top-
20 features is highly competitive to the result of the complete set of features.
Training and testing the GBDT with the top-20 features achieves AUC of 0.862,
which is very close to the achieved AUC of 0.865 of training the model with the
complete set of features. Moreover, the time to train and test the model with

81

the top-20 features takes less time than with the completer set of features. With
the top-20, it takes 1 minute and 35 seconds, while the complete set of features
takes 5 minutes and 10 seconds.

We implement the LR with only the top20 features selected by the GBDT.
accuracy: 89.27% , AUC = 0.790 +/− 0.009, precision= 61.49%, recall= 11.72%,
and f measure= 19.68%. In comparison to implementing LR with the complete
set of features 74, the AUC is decreased by 1.4%, and the recall decreased by
12.6%. In general, we can say that LR works better with the complete set of
features.

5.3.5 Summary

To summarize, from the previous tests of feature selection methods on both data
transformations and both models, we find these results: in general, the Forward
Selection with normalized dataset gives higher Recall for the both models than
with the un-normalized data. The GBDT with not normalized data Forward
Selection is costly with respect to computation power and time, which takes
around 10 hours while Backward elimination needs less than 10 hours. The
GBDT has a higher Recall and Precision in Backward Elimination in compar-
ison to Forward Selection. However, Forward Selection uses only 7 attributes,
while Backward elimination uses the original large number of features minus 1
attribute. Similar to LR, it has higher Recall and Precision in Backward Elimi-
nation than Forward Selection. Therefore, the Backward Elimination gives high
Recall and Precision and in reasonable computation time but needs high dimen-
sional features while Forward Selection uses really few features but needs high
computation time and gives good Recall and Precision. Here we see a trade-off
between the number of features and the prediction accuracy. Furthermore, we
find that the models work differently with different features [12].

We compare all the implemented feature selection methods in terms of time
cost and the performance results in 5.3. Feature selection by optimizing AUC
costs much time than optimizing accuracy. However, it produces a better pre-
diction performance. Backward selection by optimizing AUC requires less time
than forward selection by optimizing AUC. Moreover, it provides higher AUC
than the forward selection. However, forward selection uses much fewer fea-
tures and produces highly competitive AUC. In general, the time required to
implement feature selection on un-normalized data is less than the one for nor-
malized data. The time to complete forward selection for GBDT is much higher
than to complete backward selection. However, it is the opposite situation for
LR. Overall, GBDT needs much longer time: more than the double of the time
required by LR.

It is not only the features or the data format or feature selection method that
affect the prediction performance but also the model itself. It is not only the
used features or the data format that affect the feature selection method and
prediction performance but also the used predictive model itself. The models

82

Feature Selection Approach Time Cost AUC

Filter Selection by Chi Squared+Normalized data 00:00:01
(Top-20)+LR 00:00:04 0.768

(Top-20)+GBDT 00:01:30 0.846

Forward Selection (optimizing Accuracy)
Un-normalized data+LR 00:24:00 0.748

Un-normalized data+GBDT 9:31:00 0.750

Forward Selection (optimizing Accuracy)
Normalized data+LR 00:39:00 0.778

Normalized data+GBDT 10:29:00 0.752

Forward Selection (optimizing AUC)
Normalized data+LR 1:10:00 0.802

Normalized data+GBDT 22:32:00 0.859

Backward Elimination (optimizing Accuracy)
Un-normalized data+LR 00:45:00 0.803

Un-normalized data+GBDT 5:38:00 0.860

Backward Elimination (optimizing Accuracy)
Normalized data+LR 1:37:00 0.798

Normalized data+GBDT 5:33:00 0.859

Backward Elimination (optimizing AUC)
Normalized data+LR 00:59:00 0.803

Normalized data+GBDT 6:20:00 0.864

Embedded Feature Selection Method of GBDT+Normalized data 00:05:10
(Top-20)+LR 00:00:05 0.790

(Top-20)+GBDT 00:01:35 0.862

Table 5.3: Compare Feature Selection Time Cost and Prediction Performance.

react differently with the features.
At the end of implementing feature selection by testing on both the normalized

data and un-normalized ones, we are still not able to achieve high predictive
performance. The highest Recall we got is 44.33 of GBDT with Backward
Elimination. In comparison to the original Recall GBDT has without feature
selection 41.82, it is only improved by 5.83%. Moreover, for LR the improvement
in Recall is only by 4.45%. This low-performance improvement in predicting the
critical cases is due to the imbalanced data we have. However, the performance
result of using the selected features from the embedded method of GBDT is
highly competitive to the result of the complete feature set.

83

5.4 Data Sampling with Patient Filtering by Diagnoses
Code

As we find in subsection 3.5.2.3 in Table 5.2 that ICD has a high importance in
making a decision of risk of death in GBDT. It is the second most important
feature for prediction. Thus, predicting mortality of patients with similar ICD
codes will help to increase predictive performance. Therefore, I implement the
approach of mortality prediction for similar patients (i.e., with the same disease
classification). We filter the patients by the ICD code.

Some works are done on predicting mortality based on data of similar patients
on a large number of features (which has a weakness of High computational time
and complexity). I implement the approach of mortality prediction by applying
the ML model (on top of similar patients based only on one feature, which
is the ICD) with the same disease classification. It avoids these problems of
similarity calculation of a large number of features. It improves the accuracy
of the predictive model. Furthermore, it outperforms the previous works done
on implementing the ML model on top of patient similarity of large features
[50, 48].

In MIMIC-III, the ICD codes are ICD-9 represented by six characters in
length. The decimal point is between the third and fourth digit. We are in-
terested in the first level of ICD, which is represented in the first three digits.
Therefore, we kept only the first left three digits and excluded the rest.

The top three codes across hospital admissions for patients aged 16 years and
above, as found by Johnson et al. [40], were 414.01 by 7.1%, 038.9 by 4.2%, and
410.71 by 3.6%.

We have a dataset of 32635 patients. We filter the patients by the classification
list of the ICD code, as shown in Figure 5.7.

5.4.1 Filtering the Group of the Highest Occurrence Code

We compare the performance of the GBDT with filtering the patient by a specific
group of ICD codes (390-459), which are the highest occurrence codes in the
dataset (11,272 patients). The result is compared with testing GBDT on the
same dataset size and same classes ratio 92:8 with randomly selected ICD codes
(stratified dataset and the ICD codes not filtered). We use this same size and
class ratio dataset for fair comparison because the original dataset is larger and
has a different class ratio. The GBDT with group (390-459) of ICD code gives
AUC 0.894 +/− 0.014 while GBDT random ICD codes gives AUC 0.844 +/−
0.021. The result in Figure 5.9. Selecting a specific classification group of ICD
codes makes the metrics highly improved in specific the Recall. However, it is
not yet good accuracy. The reason is that this limited size of the dataset still
has the main problem of the imbalanced dataset. Even though this ICD group
of (390-459) has the highest mortality occurrences as shown in Figure 5.8 from

84

11.272 (34.6%)390-459
5.516 (17%)800-999

3.577 (11%)520-579
3.141 (9.7%)460-519
3.041 (9.34%)001-139

2.547 (7.8%)140-239
680 (2.1%)240-279
674 (2.07%)580-629
567 (1.7%)320-389
471 (1.45%)710-739
300 (0.92%)780-799
229 (0.7%)290-319
201 (0.62%)740-759
142 (0.44%)280-289
99 (0.3%)630-679
91 (0.28%)680-709
0 (0%)760-779

0k 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k 11k 12k
count

Figure 5.7: ICD Codes Distribution Through out the Dataset

85

ICD_code

ICD_code

co
un
t(h
os
pi
ta
l_
m
or
ta
lit
y)

co
un
t(h
os
pi
ta
l_
m
or
ta
lit
y)

Figure 5.8: Counting Mortality According to all the ICD Codes and According
to ICD Codes of (390-459)

86

GBDT GBDT+ICD

40

60

80

100
90.97 91.97

44.67

52.58

32.71

41.3
37.56

46.18

Accuracy Precision Recall F-Measure

Figure 5.9: Compare GBDT with and without Filtering Patients by Specific ICD
Group of (390-459)

11,272 patients, there are only 942 suffered and 10,330 live (i.e., a ratio of 92:8).

5.4.2 Filtering the Group of the Highest Mortality Occurrences

The ICD group of (390-459) has the highest mortality occurrences, as shown
in Figure 5.8. From 11,272 patients, there are only 942 dead and 10,330 live.
However, this group includes different diseases. Therefore, we look further for
smaller groups of ICD codes of diseases that have a higher similarity. Look
closer to the ICD codes group of (390-459); the highest mortality rate is on
(428-434), which are 437 patients. The smaller and similar classification group
is Other forms of heart disease (420-429) and Cerebrovascular disease (430-438).
The group of (420-429) contains 2,945 patients, where 179 suffered, and 2766
survived. The (430-438) group contains 2,194 patients, 440 suffered, and 1754
survived: the ratio is 80:20. The (430-438) group with GBDT produces AUC of
0.857 +/− 0.028. The result in Figure 5.10 shows that the smaller ICD group
improves the metrics. We should consider that the (430-438) group has a better
ratio of 80:20 regarding suffered to survived patients than the larger group 92:08.
Thus, we create a dataset with the same size and ratio 80:20 with random ICD
codes and test the GBDT on it. This random ICD codes dataset produces AUC
of 0.810 +/− 0.034. The result is presented in Figure 5.11.

Among the whole dataset, the highest mortality rate is in the ICD group
of (035-041) that are 592 patients. This ICD group is included in the (001-
139) classification group of Infectious and Parasitic Diseases. The small and
similar group that (035-041) belong to is other bacterial diseases (030-041)—for

87

GBDT+ICD(390-459) GBDT+ICD(430-438)

40

60

80

100
91.97

81.86

52.58

55.9

41.3

52.73

46.18

53.73

Accuracy Precision Recall F-Measure

Figure 5.10: Compare GBDT with Filtering Patients by Large ICD Group of
(390-459) and by Smaller and Similar Group of (430-438)

GBDT GBDT+ICD

50

60

70

80
80.77

81.86

52.35

55.9

48.89

52.73

50.42

53.73

Accuracy Precision Recall F-Measure

Figure 5.11: Compare GBDT with and without Filtering Patients by Specific
ICD Group of (430-438)

88

GBDT+ICD(001-139) GBDT+ICD(030-041)

50

60

70

80 78.82
77.91

53.13 53.0153.34
54.83

53.16 53.69

Accuracy Precision Recall F-Measure

Figure 5.12: Compare GBDT with Filtering Patients by Specific ICD Group of
(001-139) and (030-041)

instance, Meningococcal infection and different types of septicemia. Then we
select only that group of (030-041) and apply GBDT. The group of (030-041)
ICD codes contain 2,517 patients: 593 are suffered and 1924 survived (ratio
76:24). We test GBDT on this dataset and on another dataset of the main
classification group (001-139) ICD codes (with the ratio 77:23). The dataset of
ICD group of (030-041) produces AUC of 0.798 +/− 0.030, the dataset of ICD
group of (001-139) gives AUC of 0.795 +/− 0.022. The result is presented in
Figure 5.12. The similar group of diseases (030-041) gives higher AUC, Recall
and F-Measure than the main larger ICD group (001-139).

So far, from the previous tests we find that the prediction performance of
GBDT is improved by filtering the patients by ICD groups.

5.4.3 Feature Selection after Filtering by the Diagnoses Code

The result can be improved by feature selection based on a specific disease. Thus,
finding the features’ importance is based on a particular disease. However, that
will limit the generalization of the model.

To have a disease dependent prediction of mortality, we execute a feature selec-
tion process on a group of patients with a specific disease. The resulted features
should improve the accuracy of mortality prediction for that specific disease.
Forward Selection and GBDT on normalized data with only the most occur-
rence ICD group of 390-459 that include 11,272 patients selects 16 attributes:
urine 6h, urine 18h, urine 24h, rr 24h max, spo2 6h max, temperature 6h max,
mbp 6h min, spo2 24h min, glucose min, glucose max, bun max, age, vent, gcs,

89

GBDT GBDT+ICD

40

60

80

100

86.73

92.1

39.71

53.62

35.28

43.09

37.36

47.66

Accuracy Precision Recall F-Measure

Figure 5.13: Compare GBDT and Forward Selection with and without Filtering
Patients by Specific ICD Group of (390-459)

vasopressor, icd code. Result AUC 0.889 +/− 0.016.
Recall that the previous GBDT with forward selection without focusing on

specific ICD group selected 8 attributes: urine 18h, urine 24h, rr 18h max,
hr 24h min, mbp 18h min, sbp 6h min, bun min, and ccreatinine min. AUC
equals to 0.752 +/− 0.015. Using specific ICD group with Feature selection
improves the all the accuracy metrics. The result is showed in Figure 5.13.
However, still the imbalanced problem kept the performance low.

5.4.4 Summary

In summary, we filter the patient by specific ICD code group, either the group
that has the highest occurrence in the dataset (390-459) or the group that has
the highest mortality percentage (030-041) and (430-438). Those datasets have
a different imbalanced ratio. For a fair comparison, we compare GBDT on
those datasets with datasets that have the same size and class ratio but with
random ICD. We find imbalanced class distribution still affects the prediction
performance. In general, implementing the GBDT model on top of those data
of patients with specific ICD group improves the prediction performance.

Implementing GBDT on the complete dataset without filtering the ICD gives
AUC of 0.865 while implementing GBDT on the dataset of patients with the
specific ICD codes (390-459) gives AUC of 0.894. Even though the class ratio
is highly imbalanced of the dataset with the specific ICD codes (92:8) than the
complete dataset (89:11), the prediction performance is optimized.

Focusing on a smaller group of ICD codes (i.e., for a specific disease) from

90

the main classification list of that ICD codes group gives a higher prediction of
patients with a risk of mortality (i.e., higher sensitivity or recall). For instance,
when we implement mortality prediction for patients with ICD codes (430-438),
which is a smaller group inside the main list of (390-459) codes, the accuracy
metrics improved. Thus, the smaller the classified group of ICD, the more
similar the patients are, which leads to a higher prediction of mortality risk.

The practical application of this approach can be achieved by providing the
ICD code of a patient. Then, this patient will be filtered to the other patients
with ICD codes that belong to the same group of this patient’s ICD. Finally,
the GBDT model will be applied to that group of patients with similar ICD
codes to predict the mortality risk of this patient.

91

6
Handle Imbalanced Classes

This chapter discusses the imbalanced data problem. It presents under-sampling
and oversampling approaches to handle this problem. It shows a detailed prac-
tical application of different methods of each approach. Moreover, the effective
clustering-based under-sampling method proposed in the thesis to solve the im-
balanced class distribution is described and applied. Furthermore, it applies
clustering-based under-sampling to handle the imbalanced data after filtering
the patients by the diagnosis codes.

Contents

6.1 Scope of the Chapter 96

6.2 Overview . 96

6.3 Data Under-sampling Approaches to Handle Imbal-
anced Classes . 97

6.3.1 Random Under-sampling 97

6.3.2 K-Means Clustering-based Under-sampling 101

6.4 Data Over-sampling Approaches to Handle Imbal-
anced Classes . 106

6.4.1 SMOTE Over-sampling 106

6.5 Handle Imbalanced Classes after Patient Filtering
by Diagnoses Code 116

6.6 Summary . 117

95

6.1 Scope of the Chapter

In this chapter, we will represent the crucial step of handling the imbalanced
problem. Different methods for handling this problem are defined and practi-
cally tested with the predictive ML model.

EMR
Database

Extract
Patient

Records
Data

Preprocessing

Implement
Predictive

Model

Performance
Optimization by

Tuning the
Accuracy
Factors

Handle
Imbalanced

Problem

Predict Risk
of Death

6.2 Overview

A dataset with one class much more frequent than the other is called imbal-
anced dataset or a dataset with imbalanced classes [60]. When χ is an imbal-
anced dataset, χmin and χmaj are the subsets of the minority and majority
classes, respectively; the balancing ratio (BR) of the dataset χ is calculated by
Equation 6.1 [46]:

BRχ =
| χmin |
| χmaj |

. (6.1)

The | χmin | and | χmaj | are the number of the minority and the majority class
instances, respectively. The smaller the balancing ratio is, the more imbalance
the data gets. The imbalance ratio (IR) of the dataset χ is the opposite of the
balanced ratio. It is calculated in the following Equation 6.2 [54, 3]:

IRχ =
| χmaj |
| χmin |

. (6.2)

As an example of imbalanced data, predicting spam on a dataset where the
amount of non-spam emails are larger than spam ones. This imbalanced problem
our dataset has and any ICU real dataset for mortality will have is where the
proportion of positive cases (mortality cases) is smaller than the negative cases
(survival cases). This unbalanced dataset problem plays an important role in
performance. It causes bias to the prediction model towards the more common
class (i.e., the majority class) and low performance in predicting the target class
(i.e., the minority class). However, in reality, it is a normal situation to occur
where the events in a dataset often have an un-similar or different frequency.
Our used dataset of MIMIC-III has this imbalanced class distribution problem
with the balancing ratio of the two classes instances BRMIMIC-III = 0.11, and
the imbalance ratio of IRMIMIC-III = 8.9. The total death cases in our data

96

are 3,661 out of 32,635. Thus, the dataset consists of 89% from the majority
class instances, while only 11% from the minority class instances.

The approaches to handle this problem are categorized into three categories
(according to Galar et al. [20]): algorithm level approaches, data level ap-
proaches, and cost-sensitive learning methods. The data level approach covers
the data sampling methods (to balance the dataset), which can further be di-
vided into over-sampling and under-sampling methods. The algorithm level
approach develops an algorithm that adapts to the characteristics of the imbal-
anced data. The cost-sensitive learning method is a hybrid of both data and
algorithm level approaches with different classification costs of the classes.

The data level approach to overcome the imbalanced data problem is the
commonly used one with low risk. This approach is sampling the data to cre-
ate a new training dataset by balancing the minority and majority classes to
overcome the problem of imbalanced class distribution. Resampling techniques
are over-sampling, under-sampling, or a hybrid approach of them. Hoens et al.
[30] discuss several techniques to overcome this problem of imbalanced data.
Moreover, Batista et al. [6] give a study of several methods to overcome the
imbalanced dataset problem, e.g., the SMOTE method is invented by Chawla
et al. [11]. Under-sampling removes samples from the majority class that might
discard useful information; this is why it has to be done carefully. Thus, we
implement a clustering-based method for under-sampling that carefully selects
the representatives of the majority class from the clusters.

The ratio of the classes has to be managed to balance the data by using the
sampling methods. Thus, we re-implement the ML models and the previous
tests of feature selection on both normalized and un-normalized data (from
Chapter 5) with sampling the dataset. We will test different sampling methods
(over-sampling and under-sampling).

6.3 Data Under-sampling Approaches to Handle
Imbalanced Classes

Under-sampling refers to the fact that only some instances of the majority class
are chosen for the training data set. We re-sampled the imbalanced data to
the ratio of 1:1 by using two different approaches. In the both approaches,
we select the complete instances of the minority class and use an approach
to under-sampling the majority class. The two approaches to under-sampling
the majority class are random under-sampling and K-means clustering based
under-sampling.

6.3.1 Random Under-sampling

The first approach for the 1:1 ratio of a balanced dataset, we select all the
instances of the minority class (positive class) and we randomly select from the

97

GBDT+ImbalancedData GBDT+BalancedData

40

60

80

88.78

77.37

50.08

76.79

41.82

78.64

45.51

77.67

Accuracy Precision Recall F-Measure

Figure 6.1: GBDT with Balanced Dataset and with The Imbalanced Dataset on
Normalized Data

majority class the same instance number of the minority class. This is considered
to be a random under-sampling of the majority class.

We test the random under-sampling of the majority class with the 1:1 ratio,
first of all, with the models without the feature selection. We want to compare
the effect of balancing the classes on the GBDT; thus, we compare with the
original data and with the balanced data. We select the fully normalized data
(i.e., also the normalized ICD codes) because this is the dataset that we used in
the previous test. The GBDT with balanced dataset results AUC is 0.854 +/−
0.016 while GBDT with the imbalanced dataset produces 0.859 +/− 0.009. The
result is represented in Figure 6.1.

We find that the balanced training dataset significantly improves Precision,
Recall, and F-Measure. The accuracy metric should be ignored because we know
that the accuracy of the imbalanced dataset is fake (because of the problem of
bias accuracy to the majority class, which has a higher occurrence).

Next, we test feature selection approaches with the two models on the bal-
anced dataset 1:1. Moreover, we test both the un-normalized dataset and the
normalized dataset.

The Forward Selection on the LR with balanced dataset of 1:1 ratio on
un-normalized data selects: urine 12h, urine 18h, temperature 6h min, potas-
sium min, bun max, creatinine max. The result AUC is 0.720 +/− 0.023. With
normalized data LR selects 17 attributes: urine 12h, urine 18h, hr 6h max,
hr 6h min, mbp 6h min, rr 12h min, rr 6h min, temperature 6h min, hemat-
ocrit min, bicarbonate min, bun min, bun max, age, vent, gcs, vasopressor,
icd code. The result AUC is 0.783 +/− 0.022. The results of these tests are

98

LR+UNdata LR+Ndata

68

70

72

67.85

72.33

67.58

72.53

68.67

71.97

68.1

72.23

Accuracy Precision Recall F-Measure

Figure 6.2: Forward Features Selection with Balanced Dataset and LR

summarized in Figure 6.2. Forward selection with LR on the normalized dataset
takes 7 minutes and 58 seconds while on the un-normalized dataset takes 5 min-
utes and 42 seconds. Even though with normalized data it takes longer to finish,
the performance is significantly improved. In comparison with un-normalized
data the normalized data makes the AUC improved by 8.38% and the Recall
improved by 4.69%.

The Forward Selection on the GBDT with balanced dataset of 1:1 ratio
on normalized data selects 10 attributes: urine 18h, hr 6h max, sbp 6h max,
rr 18h min, spo2 18h min, bun min, age, vent, gcs, icd code. It produces a
good AUC of 0.837 +/− 0.017. In comparison to the same previous test set-
ting with LR the GBDT improves the AUC by 6.67% and the Recall by 15%.
With un-normalized data GBDT selects 14 attributes: urine 12h, hr 18h max,
hr 6h max, mbp 6h max, rr 24h min, hematocrit max, potassium max, sodium
min, bun min, creatinine max, age, vent, gcs, icd code. It gives AUC of 0.835

+/− 0.014. The results of these tests are summarized in Figure 6.3. The nor-
malized data gives higher Recall by 2.96%.

Even though that GBDT has the highest Recall and higher metrics values
still, the LR has a better trade-off between the performance metrics (i.e., the
Recall, Precision, and F-Measure).

In the previous chapter 5 in feature selection Section 5.3, we find that feature
selection on an imbalanced normalized dataset gives higher prediction perfor-
mance than on imbalanced un-normalized dataset. Here we test forward se-
lection on a normalized and un-normalized balanced dataset. We observe the
same result the normalized dataset provides higher prediction performance than

99

GBDT+UNdata GBDT+Ndata

75

80

85

76.49 76.44

74.27

73.22

81.14

83.58

77.53
78.01

Accuracy Precision Recall F-Measure

Figure 6.3: Forward Features Selection with Balanced Dataset and GBDT

un-normalized data. Therefore, in the following tests, we will continue our per-
formance optimization tests only on the normalized dataset.

Now we want to test the Backward Elimination on the LR and GBDT with
balanced dataset of 1:1 ratio on normalized data. LR eliminates 4 attributes:
hr 18h max, sbp 12h min, sbp 24h min, spo2 24h min. It has AUC 0.794 +/−
0.017. It takes 15 minutes and 20 seconds. The GBDT eliminates 1 attribute:
sodium min with AUC is 0.852 +/− 0.012. It takes 2 hours and 15 minutes.
The both results are visualized in Figure 6.4. The GBDT still the winner.

In conclusion, balancing the dataset significantly improved the predictive per-
formance for the model itself and the features selection. For instance, in the case
of Forward Selection with GBDT with the normalized dataset, balancing im-
proved the Recall by 81.27% and the AUC by 10.6986%. The same with LR
with the normalized dataset, balancing is fully improved the AUC.

Moreover, using a balanced dataset affects the selected features in the model
itself and in comparison to the other model too. In the Forward Selection
with normalized data, balancing the dataset makes the selected features similar
between the models. The selected features by GBDT in Forward Selection or
Backward Elimination without the balanced dataset are more different than
with the balanced one.

Furthermore, we can summarize from all of the previous tests that the nor-
malized data even though it requires longer run time, it gives higher predictive
performance than the un-normalized one. The same with the GBDT, it requires
long run time but in general it provides higher predictive performance than LR.

100

LR GBDT

72

74

76

78

80

72.51

77.33

72.74

76.5

72.14

78.97

72.41

77.69

Accuracy Precision Recall F-Measure

Figure 6.4: Backward Elimination Features Selection with Balanced Dataset and
LR and GBDT on Normalized Data

6.3.2 K-Means Clustering-based Under-sampling

The second approach for under-sampling the dataset is K-means clustering
under-sampling. K-means clustering under-sampled the majority class (nega-
tive class) into k clusters. The initial cluster centers are determined by using
K-means++ algorithm [4]. To balance the distribution of the classes to a 1:1
ratio, we need to select from the majority class clusters the same instance num-
ber of the minority class. Different approaches are tested to select the instances
from the clusters.

The k value is either =3,661 (the size of the minority class) or the optimal
k value. To find the optimal k, we test different amounts of clusters k = 10,
100, 500, 900, and 1,830 (that is, half of the minority class). We evaluate
the clusters that are created from different amounts of k of clusters by the
Davies Bouldin (DB) index [13]. The DB index is a ratio of the sum of within-
cluster scatter to between-cluster separation. The scatter within a cluster is the
standard deviation of the distance between the cluster center (centroid) and all
the samples of this cluster. The separation between two clusters is the distance
between their centroids (see Equation 6.3 from [13]).

Rij =
Si + Sj
Mij

(6.3)

Cluster similarity measure or cluster separation measure Rij compute the
average similarity between cluster i and j. Si is the dispersion of cluster i and
Sj is the dispersion of cluster j. Mij is the distance between the vectors of

101

10
12

18

28

42

61

83

109
139

174

212

255

301
352

406

465

528
594

665
740

819
902

989

1080
1175

1274

1377
1484

1595

1711

1830

1,600

1,700

1,800

1,900

2,000

2,100

2,200

2,300

2,400

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

Da
vi

es
 B

ou
ld

in

Clustering.k

Figure 6.5: Davies Bouldin Index for Different Numbers of Clusters.

cluster i and j. Then, the average of the similarity measures R̄ between the
clusters is calculated as followed (see Equation 6.3) [13].

R̄ =
1

N

N∑
i=1

Ri (6.4)

When N is the number of the clusters, Ri is equivalent to the maximum of
Rij when i 6= j. The average of the similarity measures R̄ between the clusters
is the DB index. Minimizing this average of the similarity of the clusters (i.e.,
the lowest DB index) produces the most proper clustering. The result of the
DB index for different k values from 10 to 1,830 is shown in Figure 6.5. We find
that k=10 has the lowest (i.e., the best) DB index.

The selection of the majority class representatives is a critical point during
the under-sampling process. The approaches for selecting the majority class
representatives from the K-means++ clusters are:

• Cluster centroids: The number of the clusters (the k value) equals the size
of the minority class. Then, only the centroids of the clusters are used as
representatives for this class.

• Random sampling: The cluster number k=10; recall that 10 was approved
to be the optimal cluster number for our data. Equally sized subsets are
randomly selected from each cluster where the size of these subsets in

102

total equals the size of the minority class. In this approach, we use a
small number of clusters k=10 than the k=size of minority class to reduce
the run time of clustering. Moreover, an equal subset from each cluster
represents the clusters equally.

• Top1 centroids’ nearest neighbor: The number of the clusters k equals to
the size of the minority class. For each cluster, we calculate the distance
between the cluster’s centroid and the cluster’s points (by Euclidean dis-
tance). Afterward, from each cluster, we select the Top1 nearest neighbor
to the cluster centroid. In the first approach, we select cluster centroids
as representative of the majority class. The cluster centroids are artificial
records since they are defined by averaging the data points of that cluster.
In this approach, we select real patient records rather than the artificial
ones of the centroids.

• TopN centroids’ nearest neighbors: The number of clusters equal to the
optimal K=10. After that, the Euclidean distance is calculated between
the centroids and the cluster points. Then from each cluster, we select the
TopN nearest neighbors to the cluster centroid. Where TopN = size of
the minority class/number of clusters k. In this approach, we use a small
number of clusters k=10 than the k=size of minority class to reduce the run
time of clustering. Moreover, the clusters are equally and appropriately
represented by the centroids’ neighbors.

The resulting under-sampled data of the majority class from these different
approaches are combined with the minority class (positive class) before start-
ing the classification. We compare the K-means++ under-sampling method
with the different approaches for selecting the majority class representatives on
GBDT by 10-fold cross-validation (see Figure 6.6) .

From the results in Figure 6.6, we find that the approach of selecting the
TopN nearest neighbors to the centroid, in general, outperforms all the other
approaches. Only the recall of another method (selecting the cluster centroids)
is higher by 3.78%. Predicting the positive class of patients at risk of death is
crucial in our case – and hence we consider the approach with the highest recall
the most appropriate for us. Nonetheless, the approach of selecting the TopN
nearest neighbors to the centroid (with a small k) is a great competitor to the
method of selecting the cluster centroids. It has a good balance between the
accuracy metrics and a short computational time (a few seconds) in comparison
to the long time (more than 7 hours) of the approach with the highest recall.

Unexpectedly, the approach that combines K-means++ and random sampling
outperforms the method of choosing the Top1 nearest neighbors. The reason
might correspond to the optimal k value that the hybrid method of K-means++
and random sampling used.

We compare the random under-sampling method (Section 6.3.1) with the best
approach of K-means under-sampling. The result is presented in Figure 6.7

103

TopN Neighbors Centroids Random Sampling Top1 Neighbor

70

80

90 88.34

86.14

77.25

71.89

88.92

82.95

74.06

68.52

87.63

91.01

83.91

81.07

88.25
86.78

78.67

74.24

95.6

92.6

85.6

79.5

Accuracy Precision Recall F-Measure AUC

Figure 6.6: Comparison of K-means++ Under-sampling with Different Ap-
proaches for Selecting the Majority Class Representatives.

and Figure 6.8. In general, we find K-Means clustering based under-sampling
for the majority class totally outperforms the random under-sampling. The
K-means under-sampling improves all the accuracy metrics. The accuracy im-
proved by 14%, and the recall improves with K-means by 11.43%. The K-means
improves the AUC by 11.94% and the AUPRC by 10.44%. The reason for these
performance improvements could return to the main disadvantage of random
under-sampling, where we lose potentially relevant information from the omit-
ted samples. However, by the k-means cluster, we are able to keep more relevant
information (i.e., more variety) of the majority class.

One drawback of K-means is the long run time with large k (i.e., when k=
the size of the minority class). The k-means clustering of the whole majority
class of 28,974 takes 7 hours and 11 minutes. However, with small k (e.g., the
optimal k value =10) the clustering run time was only 2 seconds (see Table 6.1).

Moreover, another way to improve the run time of K-means is to apply K-
means only on the dataset of the features that are selected by forward feature
selection on GBDT on the normalized dataset. This dataset contains only eight
attributes. K-means with k=size of minority class on this dataset takes 1 hour
and 10 minutes and 13 seconds. Then we use this dataset (i.e., only the centroids
3661 samples). The result metrics are accuracy: 86.46%, precision: 84.69%,
recall: 89.02%, f measure: 86.79%, AUC: 0.944 +/- 0.009, and AUPRC: 0.939
+/- 0.008. In comparison to K-means on the whole majority class, this approach
is competitive. It saves more than 50% of the runtime by reducing from 7 hours
to only 1 hour (see Table 6.1). The accuracy is minor affected by 2.5%, and the
recall by 1.4% and AUC and AUPRC is almost not affected.

104

GBDT+RandomBalancedData GBDT+K-meansBalancedData

75

80

85

90

77.37

88.34

76.79

88.92

78.64

87.63

77.67

88.25

Accuracy Precision Recall F-Measure

Figure 6.7: Compare GBDT with Random Under-sampled Balanced Dataset
and with The K-means Under-sampled Balanced Dataset on Nor-
malized Data

GBDT+RandomBalancedData GBDT+K-meansBalancedData

0.85

0.9

0.95

0.85

0.96

0.84

0.93

AUC AUPRC

Figure 6.8: The AUC and AUPRC of The GBDT with Random Under-sampled
Balanced Dataset and with The K-means Under-sampled Balanced
Dataset on Normalized Data

105

K-means Clustering Approach Time Cost

k=size of minority class 7:11:00
k=the optimal value (10) 00:00:02

k=size of minority class and Subset of Features (by Forward selection) 1:10:13

Table 6.1: Compare Time Cost of Different K-means Clustering Approaches

In conclusion, the k-means clustering for under-sampling the majority class
improves the predictive accuracy more than the random under-sampling of the
majority class. The main drawback of K-means++ -its long run time- can be
improved. The approaches we use to improve the run time save much of the
time and improve the accuracy. K-means on dataset with the forward selection
features is competitive to the k-means on the complete set of features.

The cluster number k and the approach to select the majority class represen-
tatives (from the K-means++ clusters) are crucial influencers on the model ac-
curacy. Selecting the nearest neighbors to the centroids works best with a small
k (i.e., we choose TopN). Whereas, with a significantly larger k value selecting
the centroids is the better choice than choosing the Top1 nearest neighbor.

In general, all the approaches that used K-means++ clustering-based under-
sampling with different methods for selecting the majority class representatives
are significantly improving the prediction accuracy of the GBDT on imbalanced
data (in comparison to Figure 4.21).

6.4 Data Over-sampling Approaches to Handle
Imbalanced Classes

Another approach to solving the problem of imbalanced class distribution is
oversampling the minority class. Over-sampling is generating new samples from
the minority class. We re-sampled the imbalanced data to the ratio of 1:1 and
other ratios by using SMOTE up-sampling approach. In the different ratios, we
select the complete instances of the majority class and use different up-sample
sizes of SMOTE approach to over-sampling the minority class.

6.4.1 SMOTE Over-sampling

For over-sampling the majority class we use Synthetic Minority Over-sampling
Technique (SMOTE) [11]. In SMOTE the minority class is over-sampled by
generating synthetic examples from each sample in the minority class. The k
nearest neighbors of each sample in the minority class are defined. Based on the
required over-sampling size, a set of neighbors from the k nearest neighbors are
randomly chosen. Then the synthetic samples from a sample are generated by
first calculating the difference between the feature vector of the selected sample
and its nearest neighbor. Second, multiply this difference by a random number

106

(between 0 and 1). Then, add the resulted number to the sample’s feature
vector.

Applying oversampling with cross-validation has to be done carefully; oth-
erwise, it is suspected to overfitting. In under-sampling, the minority class
instances (the critical cases the patients with risk) are not changed; only the
majority class instances are reduced. However, with oversampling, the minority
class samples are duplicated by similar instances. This causes similar instances
occurring in the training and the testing of the cross-validation. Thus, the
oversampling has to be done only in the training dataset.

Blagus and Lusa [7] conducted a practical study of two ways to apply cross-
validation with different methods of oversampling and under-sampling. They
stated that there are two ways to use under-sampling and oversampling with
cross-validation either before cross-validation or during the training process of
cross-validation. They compare the results of the two approaches. They find
that the model prediction performance with oversampling is significantly differ-
ent between the two ways of applying the oversampling with cross-validation.
However, the performance was identical between the two ways of applying the
under-sampling with cross-validation.

Thus, here we will test the two different approaches of applying the over-
sampling method (SMOTE) with the cross-validation for both models (LR and
GBDT) on the normalized dataset. There are some parameters of the SMOTE
that have to be set: the number of neighbors, nominal change rate, round
integer, equalize classes, normalize, and up-sampling size. Furthermore, the fea-
ture optimization of SMOTE is applied for the two approaches of using it with
cross-validation. The result of the two ways of implementing oversampling with
cross-validation are presented in the following:

• Over-sampling the complete dataset then apply cross-validation:

The minority class in the entire dataset (training and test data) is over-
sampled then apply the cross-validation. Because of the small size of
the minority class, we select a small size of neighbors. The number of
neighbors set to k=5. The equalize classes parameter is set to true (i.e.,
the produced dataset is balanced with classes ratio 1:1). The minority
class is over-sampled to equalize the majority class 28,897, where the total
dataset is 57,794 patients. The LR with over-sampled data by SMOTE
takes 5 minutes and 24 seconds to complete. It results in AUC of 0.810
+/− 0.006. The GBDT takes 10 minutes to finish. It produces AUC
of 0.980 +/− 0.001. The result is represented in Figure 6.9. Equalized
classes with SMOTE produce a significant performance improvement for
GBDT in all the metrics more than balancing the classes by random under-
sampling of majority class and having 1:1 ratio. It is clear that so far
GBDT outperforms LR. Therefore, for the next tests, we will use GBDT.

We test the previous test of GBDT and SMOTE with different SMOTE

107

LR GBDT

70

80

90

100

73.81

93.45

73.55

95.98

74.37

90.7

73.95

93.26

Accuracy Precision Recall F-Measure

Figure 6.9: LR and GBDT with SMOTE Equalized Classes

parameters. First, we test without round integers (it rounds integer at-
tributes to the next integer) and observe that it gives the same result.

Second, after testing equalize classes in SMOTE, we test different up-
sampling size (i.e. different number of samples of minority class), which
are 2000, 5000, 10000, and 15000. The over-sample size of 5000, makes
the total dataset is 37,548 (dead 8651, live 28897) and gives AUC of 0.937
+/− 0.002. The over-sample size of 10000 produces a dataset size of 42,548
(dead 13,651, live 28897) and gives AUC of 0.960 +/− 0.003. The over-
sample size of 15000 produces a total dataset of 47,548 (dead 18651, live
28897) and gives AUC of 0.970 +/− 0.003. The comparison of the metrics
result is represented in Figure 6.10.

In the previous test, we used the number of neighbors k=5, so we test
parameters optimization of a different number of neighbors from 5 to 50
together with testing different up-sampling size 2000 to 30000—the round
integer set to false and the change rate to 0.0. K=5 and up-sampling
size of 30000 lead the highest accuracy. The resulted metrics are accu-
racy 93.96%, AUC 0.982 +/- 0.001, precision 96.89%, recall 91.71% and
f measure: 94.23%. The result is summarized in Figure 6.12. It shows
that regardless of the neighbors’ size, the larger the up-sampling size is,
the higher the accuracy is.

Then, we test different nominal change rate of 0.0 to 1.0 with different
up-sampling size 5000 to 30000 and k=5 (see Figure 6.13). The best AUC
0.983 +/- 0.002 is reached by a change rate of 0.7 and up-sample size
of 30000. The resulted metrics are accuracy: 93.99%, precision: 96.73%,

108

5000 10000 15000

70

80

90
89.95

91.37
92.24

82.26

90.5

93.69

71.96

81.68

86.02

76.74

85.86

89.68

Accuracy Precision Recall F-Measure

Figure 6.10: GBDT with SMOTE Different Over-sampling Sizes

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

·104

60

65

70

75

80

85

90

95

100

Samples Size

P
er

ce
n
t%

Accuracy
Precision

Recall
F-Measure

Figure 6.11: GBDT with SMOTE Different Over-sampling Sizes

109

5 10 14 19 23 28 32 37 41 46 50

Color (SMOTE Upsampling.number_of_neighbours):

Figure 6.12: Testing SMOTE with Different Number of Neighbours and Up-
sampling Sizes to Optimize AUC and Accuracy

recall: 91.92% and f measure: 94.26%. The larger the up-sampling size,
the higher the accuracy is, and the higher the AUC is (see Figure 6.14).

I test the equalize classes parameter—either true or false value. The equal-
ize classes give higher accuracy by only 0.56%. The equalize classes give
93.44% and not equalize classes has 92.92%. The round integer parameters
false is the best.

To summarize the finds, the larger the minority class up-sampling size,
the higher the accuracy metrics are (overfitting). The change rate of 0.7
is a good choice for our case. The best performance achievement is with
small neighbors’ size of k=5 and a large up-sample size of 30000. Equalize
classes is also a good decision with SMOTE. This approach of applying
cross-validation with SMOTE oversampling causes an overoptimistic error
or overfitting. This is what we experienced in the previous tests, where we
have optimistic results. Over-optimism occurs because of the similarity
between the test and the training sets. Oversampling applied in both
sets, which produces some similar patterns that occur in both the training
and test sets, causing overoptimism [71]. Moreover, during SMOTE’s
parameter optimization, we experienced over-fitting. The larger the up-
sample size, the more similar data examples added to the training set,
which cause over-fitting.

• Over-sampling the training set at each iteration of cross-validation:
The SMOTE oversampling is implemented at each iteration of the cross-

110

Series:

AUC

Color (SMOTE Upsampling.upsampling_size):

5000

7500

10000

12500

15000

17500

20000

22500

25000

27500

30000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SMOTE Upsampling.nominal_change_rate

0.935

0.940

0.945

0.950

0.955

0.960

0.965

0.970

0.975

0.980
A

U
C

Series:

AUC

Color (SMOTE Upsampling.upsampling_size):

5000

7500

10000

12500

15000

17500

20000

22500

25000

27500

30000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SMOTE Upsampling.nominal_change_rate

0.935

0.940

0.945

0.950

0.955

0.960

0.965

0.970

0.975

0.980
A

U
C

Figure 6.13: Testing SMOTE with Different Up-sampling Sizes and Different
Nominal Change Rate to Optimize AUC

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Color (SMOTE Upsampling.nominal_change_rate):

Figure 6.14: Testing SMOTE with Different Up-sampling Sizes and Different
Nominal Change Rate to Optimize AUC and Accuracy

111

GBDT+SMOTE-1 GBDT+SMOTE-2

20

40

60

80

100
93.45

88.69

95.98

49.79

90.7

29.39

93.26

36.68

Accuracy Precision Recall F-Measure

Figure 6.15: GBDT with the Two Approaches of Applying SMOTE with Cross-
validation (Equalized Classes)

validation only on the minority class in the training set. Oversampling of
the dataset during the cross-validation only on the training set makes a
proper evaluation [71]. This approach is computationally costly than the
first approach. However, it avoids overoptimism that occurs in the first
approach. We test GBDT by cross-validation with implementing SMOTE
during the cross-validation in the training process. SMOTE parameters
are number of neighbors k=5, change rate = 0.0 and equalize classes. It
takes 1 hour and 17 minutes and 25 seconds. The AUC is 0.835 +/− 0.009.
We compare the previous approach with this approach in Figure 6.15.
Where GBDT+SMOTE-1 is the first approach and GBDT+SMOTE-2 is
this approach.

We optimize the parameters of SMOTE with this approach to implement
it with cross-validation. For equalized classes (i.e., the same ratio of both
classes), we test parameters optimization of a different number of neigh-
bors from 5 to 50 with equalized classes. The round integer is set to false
and the change rate to 0.0. k=5 produces the best AUC. Then, we test
different nominal change rate with the original rate of 0.0 to 1.0 with
equalized classes (i.e., balanced dataset) where k=5. The selected change
rate by optimize parameters Grid that produces the highest AUC is 0.4
which gives accuracy: 88.58%, AUC: 0.836 +/- 0.012 , precision: 48.44%,
recall: 27.70%, f measure: 35.17%.

Then, we test GBDT with different SMOTE’s up-sampling size (i.e. dif-
ferent number of samples of minority class), which are 5000, 10000, and

112

5000 10000 15000
20

40

60

80

100

88.53 88.69 88.74

48.75 49.74 49.69

39.74

34.39
30.67

43.71
40.55

37.83

Accuracy Precision Recall F-Measure

Figure 6.16: GBDT with SMOTE Different Up-sampling Sizes

15000 where k=5 (see Figure 6.16) and the change rate =0.0 (since change
rate 0.4 approve the optimal for equalized classes). The resulted AUC are
with 5000 the AUC=0.851 +/- 0.010, with 10000 the AUC=0.846 +/-
0.009 and with 15000 the AUC=0.843 +/- 0.010.

Then we test different up-sampling sizes together with different change
rates. Since this test is costly, we run a smaller range of values. For
the up-sampling from the previous test, we find that 5000 produces the
highest AUC, then we test a range of values less than 5000 from 500 to
10000 (500, 2400, 4300, 6200, 8100, and 10000). The change rate ranges
from 0.0 to 1.0 and k=5 and round integer is set to false (see Figure 6.18).
The best achieved accuracy is with up-sample size 8100 and change rate
0.4. In general, we find that 500 up-sample size gives the highest AUC
with all the change rates, while 10000 gives the lowest AUC (see Figure
6.17). Moreover, the best AUC has reached with the up-sample size of 500
samples and a change rate of 0.5, which is 0.860. However, this doesn’t
make any improvement to the AUC resulted from applying GBDT alone
without SMOTE (which is 0.865).

Furthermore, unlike the previous implementation of SMOTE with cross-
validation (i.e., applying SMOTE on all the dataset before cross-validation)
were increasing the up samples, the AUC increases ((see Figure 6.14), here
increases the up samples not increase the AUC (see Figure 6.18).

We test different up-sampling size together with a different number of
neighbors. We test the same range of up-sampling values from the previous

113

Series:

AUC

Color (SMOTE Upsampling.upsampling_size):

500

2400

4300

6200

8100

10000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SMOTE Upsampling.nominal_change_rate

0.843

0.844

0.845

0.846

0.847

0.848

0.849

0.850

0.851

0.852

0.853

0.854

0.855

0.856

0.857

0.858

0.859

0.860

A
U

C

Series:

AUC

Color (SMOTE Upsampling.upsampling_size):

500

2400

4300

6200

8100

10000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SMOTE Upsampling.nominal_change_rate

0.843

0.844

0.845

0.846

0.847

0.848

0.849

0.850

0.851

0.852

0.853

0.854

0.855

0.856

0.857

0.858

0.859

0.860

A
U

C

Figure 6.17: Testing SMOTE with Different Nominal Change Rate and Different
Up-sampling Sizes to Optimize AUC

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Color (SMOTE Upsampling. nominal_change_rate):

Figure 6.18: Testing SMOTE with Different Nominal Change Rate and Different
Up-sampling Sizes to Optimize AUC and Accuracy

114

5 14 23 32 41 50

Color (SMOTE Upsampling. number_of_neighbours):

Figure 6.19: Testing SMOTE with Different Number of Neighbors and Different
Up-sampling sizes to Optimize AUC and Accuracy

test from 500 to 10000 (500, 2400, 4300, 6200, 8100, and 10000) for the up-
sampling. The change rate =0.5. The best AUC reached with upsample
size 500 and k=23 (see Figure 6.19) and the best Accuracy with k=41
and upsample size 10000 (see Figure 6.19). Moreover, as the previous
test with increasing the size of the up-sample, the accuracy increases (see
Figure 6.12), which is explained by the imbalanced ratio is increasing, and
the accuracy is not the correct metric to consider. However, increasing
the up-sample size does not increase the AUC as the previous approach
(see Figure 6.12 and Figure 6.19).

To summarize, applying SMOTE oversampling in each iteration of cross-
validation only on the training set does not cause overoptimism results.
For instance, optimizing the up-sample size with the change rate increases
the AUC with increasing the size of the up-sample in the first approach
where SMOTE oversampling applied on both the training and test sets
then apply cross-validation (see Figure 6.14). However, optimizing the
up-sample size with the change rate does not increase the AUC with in-
creasing the size of up-sample in this approach where SMOTE oversam-
pling applied only on the training set in each iteration of cross-validation
(see Figure 6.18). Thus, this approach does not cause over-fitting, but
it doesn’t optimize the prediction performance—the best achieved AUC
0.860 while the best AUC with standalone GBDT model is 0.865.

We compare our approach (in Section 6.3.2) to oversampling SMOTE method
by cross-validation. The result is shown in Figure 6.20. We find that our

115

GBDT+SMOTE GBDT+K-means

20

40

60

80

100

88.69
86.14

49.79

82.95

29.39

91.01

36.68

86.78

Accuracy Precision Recall F-Measure

Figure 6.20: GBDT with SMOTE and K-means Equalized Classes

approach of clustering-based under-sampling significantly outperforms SMOTE
oversampling.

The implementation of the cross-validation for the oversampling method should
be done correctly to avoid overoptimism.

6.5 Handle Imbalanced Classes after Patient Filtering by
Diagnoses Code

First of all, we test K-means clustering under-sampling with the approach of
mortality prediction of patients with similar disease code classification. Thus,
we handle the imbalanced classes after filtering the patient by diagnosis codes.
After filtering the patient with ICD (390-459) codes, we apply K-means cluster-
ing with the top-N nearest neighbors to the centroids where k=10. The GBDT
parameters are set to the parameters that optimize AUC. The accuracy met-
rics are significantly improved in comparison to the approach of filtering the
patient by ICD codes without clustering under-sampling (see the comparison
in Figure 6.21). Without under-sampling the AUC equals to 0.894 +/− 0.014,
while with under-sampling AUC is 0.963 +/− 0.011. Regardless the fake accu-
racy of imbalanced data, all the accuracy metrics are also improved: accuracy
= 89.54%, AUC = 0.963 +/− 0.011, precision= 89.07%, recall= 90.23%, and
f measure = 89.61%.

Next, we test the affect of data sampling method SMOTE on GBDT with
dataset of specific ICD patients group. ICD (390-459) with SMOTE equal
classes produces AUC of 0.883 +/− 0.014, accuracy: 91.00%, precision 45.56%,

116

GBDT+ICD GBDT+ICD+Kmeans

40

60

80

100
91.97

89.54

52.58

89.07

41.3

90.23

46.18

89.61

Accuracy Precision Recall F-Measure

Figure 6.21: Compare GBDT and Filtering Patients by Specific ICD Group of
(390-459) with and without K-means Clustering Under-sampling

recall 38.33%, and f measure 41.56%. We also optimize SMOTE parameters
with different up sampling size, number of neighbors and nominal change rate.
The optimal parameter values produce better performance than equalize classes
– which are upsample size of 500, nominal change rate of 0.2 and number of
neighbors 5 produces AUC of 0.894 +/- 0.011, accuracy of 91.29%, precision
of 48.04%, recall: 49.67%, and f measure of 48.60%. In comparison to GBDT
with specific ICD patients group (390-459) without SMOTE (see Figure 5.9)
AUC of 0.894 +/− 0.014, using SMOTE improves the Recall by 8.37 and the
F-Measure by 2.42. However, the precision metric does not improve. Result is
in Figure 6.22. As a result the under-sampling by k-means clustering provide
better performance with specific ICD codes than SMOTE oversampling.

6.6 Summary

Imbalanced class distribution is a major problem that affects the performance
of predicting the risk of death. To handle this problem, we test different
data sampling methods: random under-sampling, K-means clustering-based
under-sampling, and SMOTE over-sampling. The best method was K-means
clustering-based under-sampling.

A significant drawback of under-sampling is that it might remove some useful
information. Random under-sampling (that is, choosing training instances from
the majority class at random) is one approach for under-sampling the major-
ity class that has this problem. Therefore, the under-sampling has to be done

117

GBDT+ICD GBDT+ICD+SMOTE

40

60

80

100
91.97 91.29

52.58

48.04

41.3

49.67

46.18
48.6

Accuracy Precision Recall F-Measure

Figure 6.22: Compare GBDT and Filtering Patients by Specific ICD Group of
(390-459) with and without SMOTE Over-sampling

carefully. In our approach (i.e., k-means under-sampling), we analyze the de-
ployment of clustering algorithms prior to under-sampling; this approach avoids
the deletion of important samples that occurs with random under-sampling.
Moreover, we test different approaches to select the majority class representa-
tives from the clusters. The best approach for predictive accuracy is selecting the
TopN centroids’ nearest neighbors when k equals the optimal value we found for
our dataset. It significantly optimizes our model GBDT predictive performance
from AUC=0.865 to AUC=0.956.

118

7
Verification

In this Chapter, we will verify the performance and the generalization of the
approach of this thesis. First, we will compare the performance we achieve in
mortality risk prediction against the commonly used severity scores on our used
dataset. Then, we will use another big ICU dataset for testing our selected ML
model for predicting the risk of death. Furthermore, we will test our imple-
mented data under-sampling method to overcome the imbalanced classes and to
improve the prediction accuracy on this dataset.

Contents

7.1 Our Approach Vs. Severity Scores 122

7.2 Test Our Approach with Another Dataset 122

7.2.1 Test The ML models 123

7.2.2 Test The Data Under-sampling Method 123

7.2.3 Results Summary 124

121

7.1 Our Approach Vs. Severity Scores

The severity of illness scores are models for mortality risk prediction such as
Acute Physiology, Age, Chronic Health Evaluation (APACHE)III [41], Simpli-
fied Acute Physiology Score (SAPS) [45], (SAPS)II [47], and Sequential Organ
Failure Assessment (SOFA) score [84]. Those sets of severity scores are calcu-
lated on the MIMIC-III data for mortality prediction [38]. Table 7.1 gives a
comparison between a set of the severity of illness scores and the model of this
thesis.

AUC

SOFA 0.739
SAPS 0.758

SAPS II 0.809
APACHE III 0.784

This thesis model 0.956

Table 7.1: Comparison of this Thesis’s Trained Predictive Model with the Sever-
ity of Illness Scores on MIMIC-III Dataset.

SOFA had AUC of 0.739, SAPS had AUC of 0.758, SAPSII had AUC of
0.809 and APACHEIII had AUC of 0.784. The approach of this thesis for
mortality prediction outperforms the severity of illness scores. We had a high
AUC measure of 0.956. Even without handling the imbalanced class distribution
our basis ML model still gives a higher AUC (0.865) than the severity scores’
AUC.

7.2 Test Our Approach with Another Dataset

We want to verify the performance of our selected ML model and our imple-
mented data sampling method to overcome the imbalanced class problem. To
this end, we use a dataset from GOSSIS (Global Open Source Severity of Illness
Score) of MIT (Massachusetts Institute of Technology).

GOSSIS provides an extensive database of critical care data from many dif-
ferent intensive care units (ICUs) from Argentina, Australia, New Zealand, Sri
Lanka, Brazil, and more than 200 hospitals in the United States. The dataset
we have from GOSSIS is used in the challenge of mortality prediction in Women
in Data Science (WiDS) 2020 conference. It has 91,713 patient records data
from the first 24 hours stay in ICU. It has 186 variables containing identifiers,
demographics, vitals, and lab data. In specific, it has APACHE severity score
variables.

For using the dataset to test our approach, we had to clean and re-process it.
First of all, we remove the identifier variables: encounter id, hospital id, icu id,
and patient id. We remove the features that have a higher rate of missing

122

values than 50% and the highly correlated features with more than 0.9. The
correlation is measured by Pearson correlation coefficient. The final dataset has
108 variables.

In the following subsections, we will test this dataset with the selected ML
model and the data sampling method.

7.2.1 Test The ML models

We compare the performance of the seven models that were compared in Chapter
4. We compare the performance of the Logistic Regression (LR), Decision Tree
(DT), K-nearest neighbor (KNN), Näıve Bayes (NB), Support Vector Machine
(SVM), and Random Forests (RF) against GBDT. However, SVM is excluded
because it can not handle missing values. For fair comparison purpose, the
models’ hyperparameters are not optimized; the default values were used. The
result is to find if GBDT gives the highest accuracy for mortality prediction
on this dataset, as we had with our dataset extracted from MIMIC-III. The
models’ performance in predicting the risk of death is compared by 10-fold
cross-validation and represented in Table 7.2.

Models Accuracy Precision Recall F-measure AUC

LR 92.37% 64.15% 27.25% 37.52% 0.875
DT 91.95% 76.92% 9.85% 17.38% 0.777

GBDT 91.73% 52.29% 49.48% 50.80% 0.884
KNN 87.31% 11.81% 7.23% 8.63% 0.571
NB 83.89% 30.16% 65.79% 41.35% 0.850
RF 92.37% 85.66% 13.95% 23.98% 0.866

Table 7.2: Compare the Performance of Different ML Models

From Table 7.2, we find that we have the same problem of accuracy paradox
we had with our dataset extracted from MIMIC-III. The dataset has imbalanced
class distribution; out of 91,713 patients there are 83,798 survived patients, and
only 7915 suffered patients. Furthermore, we see that out of the box without
hyperparameters optimization, GBDT gives the best performance in specific,
regarding the main criteria metric, which is the AUC.

7.2.2 Test The Data Under-sampling Method

As can be seen in the previous Section, the dataset is imbalanced, which causes
low prediction metrics. Thus, we can handle this problem and improve the
prediction accuracy by the proposed K-means under-sampling clustering method
of this thesis. We use the best-performing approach we found in Section 6.3.2
to select the majority class representatives (i.e., the TopN centroids’ nearest
neighbors).

123

K-means cannot handle missing values; we had to replace the missing values
by average values. We didn’t run any search for the best number of clusters k,
since the default value already shows good performance. We use the default k,
which is 5. Then, we select the TopN nearest neighbors to this k. TopN, in this
case, is the size of the minority class/k. We combined the resulting data of the
majority class with the data of the minority class. This dataset is used to test
the GBDT with 10-fold cross-validation and it improves the AUC by 11.88%
(see Figure 7.1). Moreover, we compare the time cost to run GBDT on the
complete dataset with clustering-based under-sampling and without (see Table
7.3).

GBDT GBDT+K-means

40

60

80

100
91.73

95.39

52.29

96.27

49.48

94.45

50.8

95.35

88.4

98.9

Accuracy Precision Recall F-Measure AUC

Figure 7.1: GBDT with and without K-means Clustering Under-sampling

Approach Time Cost

GBDT without under-sampling 28:11:00
GBDT with clustering under-sampling 00:03:23

Table 7.3: Compare Time Cost of GBDT with and without Clustering Under-
sampling

7.2.3 Results Summary

We verify this thesis approach for using GBDT model to predict mortality risk
and k-means clustering under-sampling method to handle imbalanced data on
another larger ICU dataset. Our approach shows its high capability. We did
not do models’ hyperparameters optimization to test their usability and perfor-

124

mance without fitting them to that specific dataset. Even without parameters
optimization, the performance of the GBDT model and the K-means under-
sampling method was outstanding.

125

8
Conclusion

This final chapter summarizes the findings and contributions of this thesis. It
discusses this thesis approach in the context of related work to show its strengths
and contributions to this research field. It summarizes this thesis work and
findings to answer its research questions.

Contents

8.1 Discussion . 130

8.2 Summary . 133

8.3 Future Work . 137

129

8.1 Discussion

In Table 8.1, we compare the work of this thesis to the related work discussed
in Chapter 2 (those implementing mortality prediction by ML models using
similar datasets to ours). We compare the used ML models, the selected feature
size, and the time window from which the features are selected. Furthermore,
we compare the work on performance improvement factors mentioned in Section
3.5. For instance, the feature selection methods that are used to find the optimal
feature set after the initial feature set extraction, handling the imbalanced data
problem, and the best performance achieved by using similar datasets to ours
(based on MIMIC-III). In comparison to the related work, this thesis has the
following advantages:

• Researchers have been using a different set of ML models for predicting the
risk of mortality for ICU patients. They either use one model or compare
different models. We compare the performance of seven ML models. In
particular, we find the outstanding performance of the ensemble model,
the GBDT, which is not commonly used by them. In addition, we discuss
in detail tuning the hyperparameters of the selected models which has not
been done by other authors (see Chapter 4). Moreover, we optimize the
hyperparameters in two cases to optimize accuracy and AUC metrics. This
shows that optimizing the AUC gives a clear guide for optimal parameter
value selection.

• The predictor variables and extracted feature sizes differ between the
works, and they might get larger than 100. The works that use a small
variables size do not specify the final size of the extracted features [15, 28].
The time window is either a small one, 24 hours, or a larger one 48 hours.
In this thesis, we use less than 100 features and a small time window of
24 hours. Moreover, the extracted sequence of time-series features is from
each 6-hour period, while some of them use a smaller period (e.g., a value
from every 3 hours). Furthermore, we mention the information about the
extracted variables and features (see Section 3.3.1).

• After the initial feature set extraction, we implement and compare different
feature selection methods (see Section 5.3). Furthermore, we test two cases
for optimization metrics (i.e., optimizing accuracy and optimizing AUC)
and provide the details of the methods. In some of the related work, there
was no use of feature selection methods to find the optimal feature set. In
other work, only one method was used for feature selection.

• One of the significant contributions of this thesis is handling the imbal-
anced class distributions of the MIMIC dataset. Even though the effect
of imbalanced data on the ML model’s performance is recognized, some
of the researchers of the related work ignore it. Moreover, the works that

130

handle it use the low performance random under-sampling and do not try
other methods. In this thesis, a dedicated chapter of handling imbalanced
data is provided (see Chapter 6), where different data sampling methods
are compared. We implement an efficient clustering-based under-sampling
method to create a training dataset which is used to train and optimize the
prediction performance of the ML model. Furthermore, we find that this
clustering under-sampling method significantly outperformed the random
under-sampling method.

• Our best achieved AUC notably outperforms the AUC achieved in related
work. The best obtained AUC of the prediction accuracy ranges from
0.7 to 0.9. The two best-performing AUCs from the related work [68, 38]
have almost twice as many features as we use. The third best AUC of
0.870 [28] has a more extended time window (i.e., 48 hours) than us.
Therefore, we can say that our approach contributes to this research field
of mortality prediction on the MIMIC dataset by providing an optimal
setting for achieving a high prediction accuracy. Moreover, our approach
shows its capability on another ICU dataset (see Chapter 7).

• We mentioned in Section 3.4.2 that the related work on mortality pre-
diction usually tries to maximize the AUC in evaluating their models.
However, they didn’t mention which metric they use for the other evalu-
ation purposes. In this thesis, we evaluate the accuracy, recall, precision,
and f-measure beside the AUC in all the steps for model deployment and
performance optimization. We compare tuning the models’ parameters by
optimizing accuracy and AUC. Furthermore, the feature selection meth-
ods are tested for optimizing both accuracy and AUC. For evaluating the
models, we measure all of the five mentioned accuracy metrics. In general,
we find with imbalanced data accuracy is absolutely not the right metric
to use in evaluation. Following the AUC measure provides guidance in all
the steps for model deployment. After all, we had a high AUC measure of
0.956. Even without handling the imbalanced class distribution, our basis
ML model still give a high AUC 0.865.

• The MIMIC data providers reviewed and tried to reproduce the work that
has been done on mortality prediction on the MIMIC data (Johnson et al.
[39]). They find that the reproduction of the studies is challenging and
cannot be guaranteed. They state the demand for providing the details
of the used methods for building the dataset (e.g., data pre-processing,
variable selection)—moreover, the need to provide open code for public
benchmark purposes. Thus, in this thesis, we consider this reproducibility
problem; hence we provide the required methods’ and models’ details and
the open code. Therefore, this thesis is an available public benchmark.

131

Study Machine
Learning
Models

Feature size
and Time
Window

Feature Selec-
tion Method

Handle
Imbalanced
Data

Best
Perfor-
mance

This Thesis LR, DT,
KNN,
NB,
GBDT,
SVM,
and RF

74 features
from 24 hours

Filter ap-
proach (weight
by Chi-
Squared),
wrapper ap-
proaches (For-
ward Selection
and Backward
Elimination),
and Embed-
ded method by
GBDT

Clustering-
based
under-
sampling
and com-
pared
with other
methods

AUC=
0.956

Lee et al.
[50]

LR and
DT

76 features
from 24 hours

None cross-
validation
incor-
porated
stratified
sampling

AUC=
0.830

Morid et al.
[59]

kNN 868 features
from 48 hours

wrapper
approach
(Gradient
Descent)

None F-
measure=
0.66

Luo et al.
[55]

LR 54 variables
and 100 fea-
tures, from 24
hours

non-negative
matrix factor-
ization

None AUC=
0.848

Ghassemi
et al. [23]

LR and
SVM

313,461 notes,
time prior ICU
discharge

topic modeling
for dimension-
ality reduction

randomly
sub-
sampling
the nega-
tive class

AUC=
0.812

Davoodi
and Moradi
[15]

Deep
Rule-
Based
Fuzzy
Classi-
fier

29 variables
the feature size
not specified,
from 48 hours

significance of
an attribute
towards the
clustering
process [2]

random
under-
sampling

AUC=
0.739

132

Purushotham
et al. [68]

Super
Learner
models
and
Deep
Learning
models

136 features
from 24 hours

None None AUC=
0.941

Harutyunyan
et al. [28]

LR and
LSTM-
based
models

17 variables
the feature size
not specified,
from 48 hours

None None AUC=
0.870

Johnson
and Mark
[38]

LR,
LASSO,
L2, and
GBDT

148 features
from 24 hours

None None AUC=
0.927

Table 8.1: Comparison of this Thesis Approach to the Related Work on Mortal-
ity Prediction

8.2 Summary

The research questions of this thesis were specified in Chapter 1, which are
focused on three main points accuracy of prediction, the effect of the dataset
on prediction, and performance optimization. We summarize the work of this
thesis that has been done to answer these questions.

• Research Question Regarding Accuracy of Prediction: the main
factors that affect the accuracy are introduced in Section 1.1, which are
the ML model and its parameters, curse of dimensionality, and class im-
balance problem. These factors are explored and discussed in the following
chapters Chapter 4, Chapter 5, and Chapter 6. One major question in this
point is the effect of the ML model on the accuracy and which model gives
the highest performance for mortality risk prediction and it is answered by
Chapter 4. It provides the way for implementing the main building block
of the system, which is the ML models. We tested different ML mod-
els to find the optimal one; the models’ performance was different with
respect to their capability to deal with the imbalanced dataset. The mod-
els’ prediction performance is severely affected due to the imbalanced class
distributions. The imbalanced data has a major effect on the model accu-
racy since it causes the model to be biased about predicting the majority
class, which is not our target. We find the selection of the ML model is an
important decision to take in mortality prediction because of the imbal-
anced class problem. Furthermore, the model’s parameters selection and

133

the accuracy metric to optimize during the selection are absolute factors
on the model’s prediction accuracy. Out of the seven models, we find that
GBDT is the optimal one. In Chapter 5, we discuss and provide practical
test of the effect of the predictor variables and the feature selection on
the accuracy. In Chapter 6, we discuss the major effect of the imbalanced
data on prediction accuracy.

• Research Question Regarding Effect of Dataset on Prediction: it
is about the effect of a dataset on the accuracy of the model prediction. In
section 5.2, we test the effect of using the normalized and un-normalized
data on the prediction accuracy. We find that the accuracy metrics are
improved with the normalized data. In addition, we find in Chapter 4 the
significant effect of the dataset problem of the imbalanced class distribu-
tion on the model accuracy. Imbalanced data not only affects the model’s
performance but also affects the selection of the model parameters and
the selection of the predictor features. For this reason, we had to consider
different accuracy metrics during the selections; and re-implement them
on the balanced data. Moreover, for performance optimization we con-
sider handling imbalanced problem (see the following point ”Performance
Optimization”).

One question asked in this point “Does focusing on a specific disease (i.e.,
filtering patients by disease code) improve the accuracy of the risk pre-
diction? Or is a heterogeneous dataset (i.e., patient with different disease
codes) enough?” is answered by Section 5.4. We find that the diagnoses
code ICD is the second high importance feature in making a decision of
risk of death in GBDT (see Table 5.2). We hypothesise that predicting
mortality of patients with similar ICD codes will help to increase pre-
dictive performance. Thus, we filter the patients by the diagnoses code.
Then implement the ML model for predicting the risk of mortality on the
patients with similar diagnoses code. Even though the resulted sampled
datasets with similar ICD codes have a different imbalanced ratio, we find
the prediction performance improved. For instance, the complete dataset
without filtering the ICD codes has an imbalance ration IR=8.9, while the
dataset of patients with the specific ICD codes (390-459) has IR=10.96.
Implementing the GBDT on the dataset of patients with this specific ICD
codes gives AUC of 0.894, which improves the AUC of implementing the
GBDT on the dataset with unfiltered ICD codes (AUC = 0.865) even with
the higher imbalanced ratio.

• Research Question Regarding Performance Optimization: We
search for the different performance optimizations that can be done to
improve the prediction accuracy of the ML model. We work for perfor-
mance optimization by tuning the accuracy factors we defined. The per-
formance optimization techniques we follow are introduced by Section 3.5:

134

tuning the model parameters, selecting a subset of features, and further
pre-processing the data.

For tuning the model parameters, in Chapter 4, we defined the critical
parameters for each ML model. Then we use a grid search to find the
optimal values for those parameters. We find that when we were searching
for the optimal value by optimizing the accuracy metric, the accuracy
metrics were not improved better than the resulted accuracy metrics from
using the default values of the parameters. Thus, we grid search for the
optimal value while optimizing the AUC. It helps us to find the optimal
values to improve performance. As a result, tuning the parameters by
optimizing the AUC provides better performance than by optimizing the
accuracy.

For selecting a subset of features, in Chapter 5 in Section 5.3, we imple-
ment different feature selection methods to find the subset of the features
that optimizes the prediction performance. The filter, wrapper, and em-
bedded methods were implemented. The filter method was not as good as
the wrapper methods. Our optimal ML model, the GBDT, has higher per-
formance on the features selected by backward elimination in comparison
to the forward selection (of the wrapper approach). Furthermore, the time
needed to implement forward selection with GBDT is longer than to per-
form backward elimination. However, forward selection uses much fewer
features than Backward elimination. Filter and wrapper feature selection
methods were not able to achieve high prediction performance because of
the class imbalance problem. However, the performance result of using the
selected features from the embedded method of GBDT is highly competi-
tive to the result of the complete feature set. This result also answers our
question regarding the best combination of the ML model and the feature
selection method considering the run time and the accuracy.

For further pre-processing the data, we consider the major problem of our
dataset, which is the class imbalance. Therefore, in Chapter 6, we test
different data sampling methods to overcome this problem; over-sampling
and under-sampling methods. Over-sampling adds more similar instances
to the minority class. In this sense, the chance of overfitting the model to
the minority class is increasing. Under-sampling balances the dataset by
reducing the size of the majority class. Moreover, it keeps the instances
from the minority class intact since it doesn’t change them (i.e., our im-
portant target class). We find that the works that have been done on
mortality prediction either ignore the imbalanced problem or apply ran-
dom under-sampling, which has a major weakness by random elimination
of the majority class instances, and hence losing useful information in the
majority class. Thus, in this thesis, to avoid losing information on the
majority class and retain as many useful and informative samples as pos-

135

sible, we apply clustering-based under-sampling. The ML model trained
on the balanced data resulted from using clustering-based under-sampling.
The results prove that when the imbalanced class distributions problem is
treated by the proposed clustering-based under-sampling, models’ perfor-
mance to predict risk mortality significantly improved.

We asked if ML models will improve the prediction accuracy beyond the
standard severity scores for patient’s risk prediction. An evaluation of
another dataset and verification of the approach of this thesis is conducted
in Chapter 7. In section 7.1, we compare our implemented ML model, the
GBDT against the calculated severity scores on our used dataset. We find
that our ML model significantly outperforms the severity of illness scores
in predicting the risk of mortality. Moreover, it performs well on the other
dataset.

In the end, this thesis aims to provide an overview and implementation of
the predictive model for intelligent medical decision support for predicting the
risk of death. The main goal to achieve was to provide an optimal setting for
accurately predicting the risk of death. It provides the required steps for data
pre-processing, feature selection, and handling the imbalanced class problem for
implementation and performance optimization. It proposes an approach that
combined the ensemble ML model with clustering-based under-sampling for sig-
nificantly higher predictive accuracy in predicting the risk of mortality. Our
used dataset is highly imbalanced, with a very low balance ratio of 0.11. The
implemented ML the GBDT has an outstanding performance even before han-
dling the imbalance problem (AUC = 0.865). After handling imbalanced data
with the proposed cluster-based under-sampling GBDT has great performance
(AUC=0.956).

We provide a detailed comparison to the related work on mortality prediction;
this thesis contributes by providing many detailed works on different methods,
and our approach performance outperformed them. In comparison to the com-
monly used severity scores, our approach highly exceeded their performance.
Furthermore, applying our approach to another dataset shows its capability
and high performance. Therefore, the optimal setting for predicting mortality
risk to support medical decisions is achieved.

In addition, an existing problem in this research field is the demand of the de-
tailed methods and open code for public benchmarking [39]. In this thesis, we do
our best to present all the needed details for data pre-processing, feature selec-
tion, and model implementation and its parameter selection for reproducibility
purposes. Moreover, our code is open for public benchmarking.

136

8.3 Future Work

After accomplishing this thesis, one major step we look forward to is imple-
menting its approach for predicting the risk of mortality in a real medical clinic.
There are critical requirements that have to be considered.

For medical staff to trust our prediction, the model has to be understandable.
This means it should be easy to understand the reasons behind a decision of risk.
Our model, the GBDT, fulfills this requirement. Unlike the black box models as
the neural network or deep learning models, GBDT is an interpretable model.
GBDT provides ranked features with importance to predict the risk of mortality
(for instance, see Table 5.2). Moreover, the model to make a decision it builds
a decision tree with branches which medical staff can also follow to understand
the reason behind a decision.

Another requirement is usability. We consider using a framework that doesn’t
require advanced programming skills which simplified our mortality risk predic-
tion approach. RapidMiner has an easy to understand interface. Furthermore, a
review of RapidMiner by a healthcare data analytics director provided in Gart-
ner peer insights approves its simplicity (see Section 3.2.3). Moreover, Rapid-
Miner provides medical support (see [56]). Most importantly, RapidMiner offers
database connection, which is one option to usable clinical implementation of
our approach by RapidMiner. Thus, a clinical database can be connected to it,
and then our approach can be easily implemented (i.e., directly run the code we
provide).

Moreover, the short run time is an important requirement. We implement
in-hospital mortality risk prediction after the first 24 hours of ICU stays. Thus,
when all the medical measurements (i.e., features) of the 24 hours ICU stay
are collected the prediction should be ready. Our model GBDT takes for the
complete dataset with 10-fold cross-validation around 5 minutes. Moreover, the
clustering-based under-sampling took for clustering the complete dataset only
2 seconds.

However, other requirements should be considered in a real application for
that critical medical field. For instance, a crucial requirement is patient data
privacy and security. This requirement needs to be addressed and studied in
detail. Federated learning is an option to deal with this privacy issue. By feder-
ated learning, a ML model with a central server can be applied to decentralized
data scattered among isolated medical institutions, hospitals, or devices while
keeping all the sensitive data where they belong and considering the privacy
concerns (for more details see [91]). Xu et al. [91] summarizes some application
of healthcare tasks in the federated learning setting, such as predicting mortality
and ICU stay time by Huang et al. [34].

One major weakness of the commonly used severity of illness scores to pre-
dict the risk of mortality is the generic mortality prediction. They use a set
of medical measurements (i.e., features) to predict the mortality risk of all the

137

patients regardless of the diseases they have. The risk of mortality prediction
after filtering patients by specific ICD codes is presented in Section 5.4. We
find that disease-specific mortality prediction increases the prediction accuracy.
The patients that have a specific classification in ICD codes will have a similar
disease with similar symptoms, which helps for predicting the risk. Further-
more, to have a disease dependent prediction of mortality, we execute a feature
selection process on a group of patients with a specific disease to find the op-
timal features (see Section 5.4.3). We find that using the selected features for
predicting mortality on those patients with the particular ICD codes increase
the prediction accuracy. Thus, further research on that field would be beneficial.
Moreover, a practical application of automatic patient filtering by ICD codes
and automatic use of the optimal features is absolutely a great advancement.
Then, automatically only the features that are found to provide an optimal risk
prediction of that specific ICD codes will be used for predicting mortality risk
for that patient.

138

Bibliography

[1] Samir E Abdelrahman and Bruce E Bray. Frequency tree clustering for
icu mortality analytics using graph databases. In Bioinformatics and
Biomedicine (BIBM), 2016 IEEE International Conference on, pages 813–
817. IEEE, 2016.

[2] Amir Ahmad and Lipika Dey. A k-mean clustering algorithm for mixed
numeric and categorical data. Data & Knowledge Engineering, 63(2):503–
527, 2007.

[3] Adnan Amin, Sajid Anwar, Awais Adnan, Muhammad Nawaz, Newton
Howard, Junaid Qadir, Ahmad Hawalah, and Amir Hussain. Comparing
oversampling techniques to handle the class imbalance problem: A cus-
tomer churn prediction case study. IEEE Access, 4:7940–7957, 2016.

[4] David Arthur and Sergei Vassilvitskii. K-means++: The advantages of
careful seeding. In Proceedings of the eighteenth annual ACM-SIAM sym-
posium on Discrete algorithms, pages 1027–1035, Philadelphia,USA, 2007.
Society for Industrial and Applied Mathematics.

[5] Mohammadhossein Barkhordari and Mahdi Niamanesh. ScaDiPaSi: an ef-
fective scalable and distributable MapReduce-based method to find patient
similarity on huge healthcare networks. Big Data Research, 2(1):19–27,
2015.

[6] Gustavo EAPA Batista, Ronaldo C Prati, and Maria Carolina Monard. A
study of the behavior of several methods for balancing machine learning
training data. ACM SIGKDD explorations newsletter, 6(1):20–29, 2004.

[7] Rok Blagus and Lara Lusa. Joint use of over-and under-sampling techniques
and cross-validation for the development and assessment of prediction mod-
els. BMC bioinformatics, 16(1):363, 2015.

[8] Henrik Brink, Joseph W Richards, Mark Fetherolf, and Beau Cronin. Real-
world machine learning. Manning Shelter Island, NY, 2017.

141

[9] Lawrence WC Chan, Ying Liu, Tao Chan, Helen KW Law, SC Cesar Wong,
Andy PH Yeung, KF Lo, SW Yeung, KY Kwok, William YL Chan, et al.
Pubmed-supported clinical term weighting approach for improving inter-
patient similarity measure in diagnosis prediction. BMC medical informat-
ics and decision making, 15(1):43, 2015.

[10] Nitesh V Chawla. Data mining for imbalanced datasets: An overview. In
Data mining and knowledge discovery handbook, pages 875–886. Springer,
2009.

[11] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip
Kegelmeyer. Smote: synthetic minority over-sampling technique. Jour-
nal of artificial intelligence research, 16:321–357, 2002.

[12] Sanmay Das. Filters, wrappers and a boosting-based hybrid for feature
selection. In Icml, volume 1, pages 74–81, 2001.

[13] David L Davies and Donald W Bouldin. A cluster separation measure.
IEEE transactions on pattern analysis and machine intelligence, PAMI-
1(2):224–227, 1979.

[14] Jesse Davis and Mark Goadrich. The relationship between precision-recall
and roc curves. In Proceedings of the 23rd international conference on
Machine learning, pages 233–240. ACM, 2006.

[15] Raheleh Davoodi and Mohammad Hassan Moradi. Mortality prediction in
intensive care units (icus) using a deep rule-based fuzzy classifier. Journal
of biomedical informatics, 79:48–59, 2018.

[16] Michel Marie Deza and Elena Deza. Encyclopedia of distances. Springer,
2016.

[17] Tom Fawcett. Roc graphs: Notes and practical considerations for re-
searchers. Machine learning, 31(1):1–38, 2004.

[18] Jerome H Friedman. Greedy function approximation: a gradient boosting
machine. Annals of statistics, pages 1189–1232, 2001.

[19] Mikel Galar, Alberto Fernandez, Edurne Barrenechea, Humberto Bustince,
and Francisco Herrera. A review on ensembles for the class imbalance prob-
lem: bagging-, boosting-, and hybrid-based approaches. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
42(4):463–484, 2011.

[20] Mikel Galar, Alberto Fernandez, Edurne Barrenechea, Humberto Bustince,
and Francisco Herrera. A review on ensembles for the class imbalance prob-
lem: bagging-, boosting-, and hybrid-based approaches. IEEE Transactions

142

on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
42(4):463–484, 2012.

[21] Nicolas Garcelon, Antoine Neuraz, Vincent Benoit, Rémi Salomon, Sven
Kracker, Felipe Suarez, Nadia Bahi-Buisson, Smail Hadj-Rabia, Alain Fis-
cher, Arnold Munnich, et al. Finding patients using similarity measures
in a rare diseases-oriented clinical data warehouse: Dr. warehouse and the
needle in the needle stack. Journal of biomedical informatics, 73:51–61,
2017.

[22] Aurélien Géron. Hands-on machine learning with Scikit-Learn and Tensor-
Flow: concepts, tools, and techniques to build intelligent systems. ” O’Reilly
Media, Inc.”, 2017.

[23] Marzyeh Ghassemi, Marco AF Pimentel, Tristan Naumann, Thomas Bren-
nan, David A Clifton, Peter Szolovits, and Mengling Feng. A multivariate
timeseries modeling approach to severity of illness assessment and forecast-
ing in icu with sparse, heterogeneous clinical data. In Twenty-Ninth AAAI
Conference on Artificial Intelligence, pages 446–453, 2015.

[24] Assaf Gottlieb, Gideon Y Stein, Eytan Ruppin, Russ B Altman, and Roded
Sharan. A method for inferring medical diagnoses from patient similarities.
BMC medicine, 11(1):194, 2013.

[25] Isabelle Guyon and André Elisseeff. An introduction to variable and feature
selection. Journal of machine learning research, 3(Mar):1157–1182, 2003.

[26] Guo Haixiang, Li Yijing, Jennifer Shang, Gu Mingyun, Huang Yuanyue,
and Gong Bing. Learning from class-imbalanced data: Review of methods
and applications. Expert Systems with Applications, 73:220–239, 2017.

[27] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and
techniques. Elsevier, 2011.

[28] Hrayr Harutyunyan, Hrant Khachatrian, David C Kale, Greg Ver Steeg,
and Aram Galstyan. Multitask learning and benchmarking with clinical
time series data. Scientific data, 6(1):96, 2019.

[29] Haibo He and Edwardo A Garcia. Learning from imbalanced data. IEEE
Transactions on Knowledge & Data Engineering, 21(9):1263–1284, 2008.

[30] T Ryan Hoens and Nitesh V Chawla. Imbalanced datasets: from sampling
to classifiers. In Haibo He and Yunqian Ma, editors, Imbalanced learning:
foundations, algorithms, and applications, chapter 3, pages 43–59. John
Wiley & Sons, 2013.

[31] Markus Hofmann and Ralf Klinkenberg. RapidMiner: Data mining use
cases and business analytics applications. CRC Press, 2016.

143

[32] Mark Hoogendoorn, Ali el Hassouni, Kwongyen Mok, Marzyeh Ghassemi,
and Peter Szolovits. Prediction using patient comparison vs. modeling: A
case study for mortality prediction. In Engineering in Medicine and Biology
Society (EMBC), 2016 IEEE 38th Annual International Conference of the,
pages 2464–2467. IEEE, 2016.

[33] Li-Yu Hu, Min-Wei Huang, Shih-Wen Ke, and Chih-Fong Tsai. The
distance function effect on k-nearest neighbor classification for medical
datasets. SpringerPlus, 5(1):1304, 2016.

[34] Li Huang, Andrew L Shea, Huining Qian, Aditya Masurkar, Hao Deng,
and Dianbo Liu. Patient clustering improves efficiency of federated ma-
chine learning to predict mortality and hospital stay time using distributed
electronic medical records. Journal of biomedical informatics, 99:103–291,
2019.

[35] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An
introduction to statistical learning, volume 112. Springer, 2013.

[36] Peter B Jensen, Lars J Jensen, and Søren Brunak. Mining electronic health
records: towards better research applications and clinical care. Nature
Reviews Genetics, 13(6):395–405, 2012.

[37] Alistair EW Johnson, Mohammad M Ghassemi, Shamim Nemati, Kather-
ine E Niehaus, David A Clifton, and Gari D Clifford. Machine learning and
decision support in critical care. Proceedings of the IEEE, 104(2):444–466,
2016.

[38] Alistair EW Johnson and Roger G Mark. Real-time mortality prediction in
the intensive care unit. In AMIA Annual Symposium Proceedings, volume
2017, pages 994–1003, 2017.

[39] Alistair EW Johnson, Tom J Pollard, and Roger G Mark. Reproducibility
in critical care: a mortality prediction case study. In Machine Learning for
Healthcare Conference, pages 361–376, 2017.

[40] Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling
Feng, Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo An-
thony Celi, and Roger G Mark. MIMIC-III, a freely accessible critical care
database. Scientific data, 3, 2016.

[41] William A Knaus, Douglas P Wagner, Elizabeth A Draper, Jack E Zimmer-
man, Marilyn Bergner, Paulo G Bastos, Carl A Sirio, Donald J Murphy,
Ted Lotring, Anne Damiano, et al. The apache iii prognostic system: risk
prediction of hospital mortality for critically iii hospitalized adults. Chest,
100(6):1619–1636, 1991.

144

[42] Ron Kohavi and George H John. Wrappers for feature subset selection.
Artificial intelligence, 97(1-2):273–324, 1997.

[43] Sotiris B Kotsiantis, I Zaharakis, and P Pintelas. Supervised machine learn-
ing: A review of classification techniques. Emerging artificial intelligence
applications in computer engineering, 160:3–24, 2007.

[44] N Santhosh Kumar, K Nageswara Rao, A Govardhan, K Sudheer Reddy,
and Ali Mirza Mahmood. Undersampled k-means approach for handling
imbalanced distributed data. Progress in Artificial Intelligence, 3(1):29–38,
2014.

[45] JR Gall Le, P Loirat, F Nicolas, C Granthil, F Wattel, R Thomas, P Glaser,
P Mercier, J Latournerie, P Candau, et al. Use of a severity index in
8 multidisciplinary resuscitation centers. Presse medicale (Paris, France:
1983), 12(28):1757–1761, 1983.

[46] Tuong Le, Hoang Le Son, Minh Thanh Vo, Mi Young Lee, Sung Wook
Baik, et al. A cluster-based boosting algorithm for bankruptcy prediction
in a highly imbalanced dataset. Symmetry, 10(7):250, 2018.

[47] Jean-Roger Le Gall, Stanley Lemeshow, and Fabienne Saulnier. A new sim-
plified acute physiology score (saps ii) based on a european/north american
multicenter study. Jama, 270(24):2957–2963, 1993.

[48] Joon Lee. Patient-specific predictive modeling using random forests: an
observational study for the critically ill. JMIR medical informatics, 5(1):e3,
2017.

[49] Joon Lee, Joel A Dubin, and David M Maslove. Mortality prediction in the
ICU. In Secondary Analysis of Electronic Health Records, pages 315–324.
Springer, 2016.

[50] Joon Lee, David M Maslove, and Joel A Dubin. Personalized mortality
prediction driven by electronic medical data and a patient similarity metric.
PloS one, 10(5):e0127428, 2015.

[51] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of
massive datasets. Cambridge university press, 2014.

[52] Li Li, Wei-Yi Cheng, Benjamin S Glicksberg, Omri Gottesman, Ronald
Tamler, Rong Chen, Erwin P Bottinger, and Joel T Dudley. Identifica-
tion of type 2 diabetes subgroups through topological analysis of patient
similarity. Science translational medicine, 7(311):311ra174–311ra174, 2015.

[53] Wei-Chao Lin, Chih-Fong Tsai, Ya-Han Hu, and Jing-Shang Jhang.
Clustering-based undersampling in class-imbalanced data. Information Sci-
ences, 409:17–26, 2017.

145

[54] Victoria López, Alberto Fernández, Salvador Garćıa, Vasile Palade, and
Francisco Herrera. An insight into classification with imbalanced data:
Empirical results and current trends on using data intrinsic characteristics.
Information sciences, 250:113–141, 2013.

[55] Yuan Luo, Yu Xin, Rohit Joshi, Leo Celi, and Peter Szolovits. Predicting
icu mortality risk by grouping temporal trends from a multivariate panel
of physiologic measurements. In Thirtieth AAAI Conference on Artificial
Intelligence, pages 42–50, 2016.

[56] Ingo Mierswa and Ralf Klinkenberg. Rapidminer. URL: https://

rapidminer.com/industry/healthcare/ . Accessed on: June.04,2020.

[57] Ingo Mierswa and Ralf Klinkenberg. Rapidminer studio. Version 9.2. URL:
https://rapidminer.com . Accessed on: Jan.15,2019.

[58] Ingo Mierswa, Michael Wurst, Ralf Klinkenberg, Martin Scholz, and Timm
Euler. Yale: Rapid prototyping for complex data mining tasks. In Pro-
ceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 935–940, 2006.

[59] Mohammad Amin Morid, Olivia R Liu Sheng, and Samir Abdelrahman.
PPMF: A patient-based predictive modeling framework for early ICU mor-
tality prediction. arXiv preprint arXiv:1704.07499, 2017.

[60] Andreas C Müller, Sarah Guido, et al. Introduction to machine learning
with Python: a guide for data scientists. ” O’Reilly Media, Inc.”, 2016.

[61] Nir Ofek, Lior Rokach, Roni Stern, and Asaf Shabtai. Fast-cbus: A fast
clustering-based undersampling method for addressing the class imbalance
problem. Neurocomputing, 243:88–102, 2017.

[62] Carlos Ordonez. Data set preprocessing and transformation in a database
system. Intelligent Data Analysis, 15(4):613–631, 2011.

[63] Carlos Ordonez. Can we analyze big data inside a DBMS? In Proceedings
of the sixteenth international workshop on Data warehousing and OLAP,
pages 85–92. ACM, 2013.

[64] Maryam Panahiazar, Vahid Taslimitehrani, Naveen L Pereira, and Jyotish-
man Pathak. Using EHRs for heart failure therapy recommendation using
multidimensional patient similarity analytics. Studies in health technology
and informatics, 210:369–373, 2015.

[65] Rattanawadee Panthong and Anongnart Srivihok. Wrapper feature subset
selection for dimension reduction based on ensemble learning algorithm.
Procedia Computer Science, 72:162–169, 2015.

146

https://rapidminer.com/industry/healthcare/
https://rapidminer.com/industry/healthcare/
https://rapidminer.com

[66] Yoon-Joo Park, Byung-Chun Kim, and Se-Hak Chun. New knowledge ex-
traction technique using probability for case-based reasoning: application
to medical diagnosis. Expert Systems, 23(1):2–20, 2006.

[67] Joshua P Parreco, Antonio E Hidalgo, Alejandro D Badilla, Omar Ilyas,
and Rishi Rattan. Predicting central line-associated bloodstream infections
and mortality using supervised machine learning. Journal of critical care,
45:156–162, 2018.

[68] Sanjay Purushotham, Chuizheng Meng, Zhengping Che, and Yan Liu.
Benchmarking deep learning models on large healthcare datasets. Jour-
nal of biomedical informatics, 83:112–134, 2018.

[69] Wullianallur Raghupathi and Viju Raghupathi. Big data analytics in
healthcare: promise and potential. Health information science and sys-
tems, 2(1):3, 2014.

[70] Lior Rokach and Oded Maimon. Decision trees. In Data mining and knowl-
edge discovery handbook, pages 165–192. Springer, 2005.

[71] Miriam Seoane Santos, Jastin Pompeu Soares, Pedro Henrigues Abreu,
Helder Araujo, and Joao Santos. Cross-validation for imbalanced datasets:
Avoiding overoptimistic and overfitting approaches [research frontier].
IEEE Computational Intelligence Magazine, 13(4):59–76, 2018.

[72] Nicole Sarna, Araek Tashkandi, and Lena Wiese. Patient similarity analysis
for personalized health prediction models (abstract). In European Confer-
ence on Data Analysis (ECDA), 2018.

[73] Anis Sharafoddini, Joel A Dubin, and Joon Lee. Patient similarity in pre-
diction models based on health data: a scoping review. JMIR medical
informatics, 5(1):e7, 2017.

[74] Jia Song, Xianglin Huang, Sijun Qin, and Qing Song. A bi-directional sam-
pling based on k-means method for imbalance text classification. In 2016
IEEE/ACIS 15th International Conference on Computer and Information
Science (ICIS), pages 1–5. IEEE, 2016.

[75] KT Sridhar. Modern column stores for big data processing. In International
Conference on Big Data Analytics, pages 113–125. Springer, 2017.

[76] Jimeng Sun, Daby Sow, Jianying Hu, and Shahram Ebadollahi. A system
for mining temporal physiological data streams for advanced prognostic
decision support. In Data Mining (ICDM), 2010 IEEE 10th International
Conference on, pages 1061–1066. IEEE, 2010.

147

[77] Araek Tashkandi, Ingmar Wiese, and Lena Wiese. Efficient in-database pa-
tient similarity analysis for personalized medical decision support systems.
Big data research, 13:52–64, 2018.

[78] Araek Tashkandi and Lena Wiese. Leveraging patient similarity analyt-
ics in personalized medical decision support system. In Learning, Knowl-
edge, Data, Analytics (LWDA), 2017 FGDB Database Workshop, page 125.
CEUR-WS, 2017.

[79] Araek Tashkandi and Lena Wiese. A hybrid machine learning approach
for improving mortality risk prediction on imbalanced data. In The 21st
International Conference on Information Integration and Web-based Appli-
cations and Services (iiWAS), pages 83–92. ACM, 2019.

[80] Araek Tashkandi and Lena Wiese. Intelligent medical decision support
system for predicting patients at risk in intensive care units. In PRE-ICIS
SIGDSA Symposium, Association for Information Systems Special Interest
Group on Decision Support and Analytics (SIGDSA). AIS eLibrary, 2019.

[81] Chih-Fong Tsai, Wei-Chao Lin, Ya-Han Hu, and Guan-Ting Yao. Under-
sampling class imbalanced datasets by combining clustering analysis and
instance selection. Information Sciences, 477:47–54, 2019.

[82] Francisco J Valverde-Albacete and Carmen Peláez-Moreno. 100% classifi-
cation accuracy considered harmful: The normalized information transfer
factor explains the accuracy paradox. PloS one, 9(1):e84217, 2014.

[83] Sven Van Poucke, Zhongheng Zhang, Martin Schmitz, Milan Vukicevic,
Margot Vander Laenen, Leo Anthony Celi, and Cathy De Deyne. Scalable
predictive analysis in critically ill patients using a visual open data analysis
platform. PloS one, 11(1):e0145791, 2016.

[84] J-L Vincent, Rui Moreno, Jukka Takala, Sheila Willatts, Arnaldo De Men-
donça, Hajo Bruining, CK Reinhart, PeterM Suter, and Lambertius G
Thijs. The sofa (sepsis-related organ failure assessment) score to describe
organ dysfunction/failure, 1996.

[85] Fei Wang, Jianying Hu, and Jimeng Sun. Medical prognosis based on
patient similarity and expert feedback. In Pattern Recognition (ICPR),
2012 21st International Conference on, pages 1799–1802. IEEE, 2012.

[86] Yichuan Wang, LeeAnn Kung, and Terry Anthony Byrd. Big data ana-
lytics: Understanding its capabilities and potential benefits for healthcare
organizations. Technological Forecasting and Social Change, 126:3–13, 2018.

[87] Brian J Wells, Kevin M Chagin, Amy S Nowacki, and Michael W Kattan.
Strategies for handling missing data in electronic health record derived
data. eGEMs, 1(3):1035, 2013.

148

[88] Ingmar Wiese, Nicole Sarna, Lena Wiese, Araek Tashkandi, and Ulrich
Sax. Concept acquisition and improved in-database similarity analysis for
medical data. Distributed and Parallel Databases, 37(2):297–321, 2018.

[89] Lena Wiese. Advanced Data Management for SQL, NoSQL, Cloud and
Distributed Databases. DeGruyter, 2015.

[90] Xindong Wu, Vipin Kumar, J Ross Quinlan, Joydeep Ghosh, Qiang Yang,
Hiroshi Motoda, Geoffrey J McLachlan, Angus Ng, Bing Liu, S Yu Philip,
et al. Top 10 algorithms in data mining. Knowledge and information
systems, 14(1):1–37, 2008.

[91] Jie Xu and Fei Wang. Federated learning for healthcare informatics. arXiv
preprint arXiv:1911.06270, 2019.

[92] Ta Zhou, Fu-lai Chung, and Shitong Wang. Deep tsk fuzzy classifier with
stacked generalization and triplely concise interpretability guarantee for
large data. IEEE Transactions on Fuzzy Systems, 25(5):1207–1221, 2016.

149

	Introduction
	Problem and Motivation
	Research Questions
	Thesis Contributions
	Thesis Impact
	Thesis Structure

	Related Work
	Health Prediction by Patient Similarity
	Patient Similarity for Mortality Prediction
	Patient Similarity for Different Predictive Approaches
	Summary

	Health Prediction by Machine Learning Models
	Summary

	Handling Imbalanced data by Clustering-based Under-sampling and Ensemble Models

	Background
	Scope of the Chapter
	Approaches for Health Prediction
	Machine Learning Models for Health Prediction
	Patient Similarity-based for Health Prediction
	Approaches for Implementing The Predictive Model and Patient Similarity Analysis

	Dataset
	Selection of the Predictor Variables
	Data Pre-processing Transformation and Normalization

	Evaluating the Predictive Performance
	Accuracy Metrics
	Visualize the Performance by Curves

	Performance Improvements
	Tuning the Model Parameters
	Selecting a Subset of Features
	Pre-processing the Data

	The Predictive Model
	Scope of the Chapter
	Comparing Models Performance
	Logistic Regression
	Decision Tree
	Gradient Boosting Decision Tree
	K-Nearest Neighbor for Patient Similarity-based Health Prediction
	Choosing the Optimal ML Model

	Performance Optimization
	Scope of the Chapter
	Data Pre-processing Normalized vs. Un-normalized Data
	Result of Feature Selection Methods
	Filter Selection by Chi Squared
	Forward Selection
	Backward Elimination
	Embedded Feature Selection Method of GBDT
	Summary

	Data Sampling with Patient Filtering by Diagnoses Code
	Filtering the Group of the Highest Occurrence Code
	Filtering the Group of the Highest Mortality Occurrences
	Feature Selection after Filtering by the Diagnoses Code
	Summary

	Handle Imbalanced Classes
	Scope of the Chapter
	Overview
	Data Under-sampling Approaches to Handle Imbalanced Classes
	Random Under-sampling
	K-Means Clustering-based Under-sampling

	Data Over-sampling Approaches to Handle Imbalanced Classes
	SMOTE Over-sampling

	Handle Imbalanced Classes after Patient Filtering by Diagnoses Code
	Summary

	Verification
	Our Approach Vs. Severity Scores
	Test Our Approach with Another Dataset
	Test The ML models
	Test The Data Under-sampling Method
	Results Summary

	Conclusion
	Discussion
	Summary
	Future Work

	Bibliography

