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Summary 

Several studies suggested that forest fragmentation, which is an effect of deforestation, and edge 

effect have an impact on the biomas and carbon stock in tropical forest. For Amazon and Atlantic Forest 

biomes, most studies have shown using in situ measurements and remote sensing data that biomass 

and carbon stock reduce within the first 300 meter of a forest edge to its center. For the Cerrado biome, 

there is currently no consensus whether or not there is an edge effect on biomass and carbon stock. 

Therefore, this study aims to better analyze the forest fragmentation and edge effect on the vegetation, 

such as biomass-carbon stock and canopy greenness, in the Cerrado biome. The most common method 

used to assess the edge effects on vegetation in tropical forest is direct measurement, which is difficult 

to replicate, cost intensive and time consuming. Therefore, the use of satellite images may be an 

alternative to monitor vegetation cover within the context of edge effects. In order to monitor forest 

fragmentation and carbon storage in the Cerrado biome, different approaches were investigated with 

fragmented areas in the city of Nova Mutum- Mato Grosso: (1) mapping the different type of vegetation 

using optical and synthetic aperture radar (SAR) remote sensing images, (2) estimating the biomass and 

carbon stock from in situ measurements within the context of edge effect and (3) monitoring the edge 

effect over the long-term using time-series Landsat satellite images.  

First, the use of optical and SAR images to map the different types of vegetation in the transitional 

area between the Cerrado and Amazon biomes was investigated. Using this approach, the diverse 

vegetation types of the transition areas were studied. The findings indicated that by applying a 

supervised random forest classification, the highest overall accuracy and kappa coefficient were 

obtained by using only Sentinel 2A images for the classification process. However, out of the three 

classifications, two (Sentinel 2A with TanDEM-X and Sentinel 2A with Sentinel 1A) that used radar and 

optical images recorded the highest overall accuracy and kappa values. Bands 5, 11, and 12 from 

Sentinel 2A satellite image, texture images from Sentinel 1A cross-polarization, and coherence from 

TanDEM-X images were the most important variables that separated each vegetation class similar to 

the variable importance from the random forest algorithm. After obtaining a better understanding of 

the diverse vegetation types in the study area, we assessed the impact of fragmentation and edge effect 

on biomass and carbon stock using in situ measurements that were collected in July and August 2017. 

Using this approach, we investigated the woody components of tree layer and shrub layer by recording 

key variables such as the diameter at breast height (DBH), total tree-shrub height, wood density, basal 

area and tree species. Here, the DBH and the total tree-shrub height were the explanatory variables of 

the allometric model in the Cerradão. For the Cerrado denso on the other hand DBH and the wood 

density were the explanatory variables of the allometric model. In contrast to our working hypothesis, 

the results showed no significant differences in the quantity and the distribution of AGB and carbon 
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stocks between edge and center of the fragments of both vegetation types. Rather, the results showed 

a significant difference for the AGB and aboveground carbon stocks between the two investigated 

vegetation types. We thus suggest that the edge effect on biomass patterns found in the Amazon 

cannot be compared with those of the Cerrado biome. It is important to stress that our analyzes were 

performed with a single measurement, therefore, to have a better understanding of these impacts, a 

long-term approach is required. The last analysis of this thesis was to evaluate the edge effect in the 

long-term based on NDVI values of the transitional area between the Cerrado and Amazon biomes. The 

method described in this study corroborates studies that assessed edge effect on vegetation within the 

Cerrado and Amazon biomes. In this study, we applied a different approach to investigate possible edge 

effects using vegetation index from freely available satellite images. Our results showed a positive 

significant change (p-value < 0.00005) via the NDVI values in relation to distance from the nearest edge. 

The closer the vegetation was to the edge, the lower their respective NDVI value. Furthermore, our 

results showed that long-term edge effect patterns found in the Amazon biome cannot be extrapolated 

to Cerrado. This observation is mainly due to the stabilization of NDVI trends after two years of 

deforestation within the area. This suggest that more studies are needed to adequately understand the 

dynamics of edge effect in Arc of Deforestation, which directly affect biomass and carbon estimations. 

In this thesis, different methods were used to assess edge effects on the vegetation, such as 

biomass-carbon stock and greenness, in the Amazon-Cerrado ecotone. In the small scale, using 

fieldwork data, we could not find any evidence that fragmentation affects the carbon stock, due to the 

fact that the natural resources of the Cerrado biome have been widely exploited within the past 50 

years, and thus, has a general decreased in biomass and carbon stock in the edge and also the center 

of the fragment. However, we have significant results from remote sensing long-term data, in which 

the NDVI is affected by the forest fragmentation and edge effect on the vegetation (canopy greenness), 

the closer to the edge, the lower the NDVI value. This shows that the use of satellite images has allowed 

an analysis of a larger period compared to fieldwork. One explanation for these findings is that the 

natural resources of the Cerrado biome have been widely exploited within the past 50 years, and thus, 

has decreased an overall biomass and carbon stock in all areas, which was found in the fieldwork data 

due to the few samples that were measured. However, the use of satellite images has allowed an 

analysis of the fragmentation effect with a larger amount of samples compared to fieldwork. not only 

in the edges. These outcomes of this thesis provide a solid research direction for further studies on 

edge effect in the Amazon-Cerrado ecotone. Long-term analysis using both field data and remote 

sensing is required to fully understand the fragmentation and edge effects in the Cerrado. 
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1. General Introduction 

1.1 Tropical Savanna 

The term savanna is the result of a large number of different concepts based on environmental 

factors such as climate, soil, hydrology, geomorphology and biotic functions (Bourliere and Hadley 

1970). In general, there are two schools of thought for savanna definition, the European and American. 

The Europeans characterize savanna as ‘a tropical grass with herbs and a continuous or discontinuous 

coverage of trees. The American follows the same definition, but includes areas that are not tropical 

(Collinson 1988). This thesis focuses on the tropical savanna (Figure 1.1). The tropical savanna biome 

covers nearly 20% of the Earth’s surface (Cole 1963) and concentrates about 1/5th of the global 

population (Goudie and Cuff 2002). This biome is located in the transition between the tropical forests 

and xeric shrublands (deserts). The vegetation in the savanna is characterized by trees that are widely 

spaced with an open canopy that allows for the growth of an herbaceous ground layer. The climate in 

the biome corresponds to Köppen climate classifications “As” and “Aw”, with temperatures above 18°C 

in every month and a clear dry season of varying length (Cole 1963). The largest part of savanna is in 

the African continent, where it occupies around 50% of the land surface, followed by Asia and South 

America (Menaut 1983). The savanna offers important ecosystem services, such as carbon storage, 

pollination, water supply and flow regulation, erosion control, cultural values, and biological control of 

agricultural pests (Bengtsson et al. 2019). The flat topography, accessibility and the easy management 

of the soil for agricultural activities makes the savanna the most affected biome in terms of 

deforestation. Therefore, the major threat to tropical savanna is fire, which is usually used by settlers 

for the deforestation and preparation of soil before land cultivation. Fire destroys individual organisms, 

disturbs species, changes the vegetation structure, and alters the biophysical components of the plants 

(Walker 1987). However, wildfire can also play an important role in the savanna ecosystem. Natural 

fires are important for the regeneration of the vegetation (Zimmermann et al. 2008). 
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Figure 1.1 The distribution of tropical savanna (including tropical dry forests) in the world (after Olson et al. 2001). 

 

The savannas of Tropical America are mostly located in Brazil, Colombia and Venezuela, some parts 

of Cuba, Paraguay and Mexico (Figure 1.1). Sarmiento (1983) classified the tropical savannas in America 

into four types: savanna grassland (dwarf form of trees and shrubs), tree/shrub savanna (continued 

herby layer), wooded savanna (density of 1000 trees ha) and savanna parkland (grooves of trees and 

shrubs). Additionally, Venezuela and Colombia have a specific savanna type called Llanos, which is 

located in wetland environment along the shores of the rivers. Together they represent around 18% of 

the savanna coverage in South America. However, the majority of savanna coverage is located in Brazil.  

In Brazil, savanna ecosystems are called Cerrado.  

 

1.2 The Cerrado Biome and the ongoing threat of deforestation and land use 

The Cerrado biome is the second largest vegetation complex present in Brazil and occupies about 

200 million hectares in 11 Brazilian states and the Federal District, about 24% of Brazilian territory, and 

altitudes between 300 and 1600 meters. The biome is the most extensive woodland-savanna in South 

America and presents a great diversity, such as diferent vegetation types. In general, the vegetation of 

Cerrado in Brazil covers three main different vegetation types: grassland, savannas, and forest 

formations. The forest formations consist of arboreal species in a continuous canopy and include the 

Gallery, Dry, and Open Forest. The savanna formation is characterized by a discontinuous herbaceous-

shrub and tree canopy. The seven types of savanna formation are Dense Woodland, Woodland, Open 

Woodland, Park Woodland, Palm, Vereda, and Stone Woodland. The grassland formations include three 
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vegetation types: Stone Grassland, Shrub Savanna, and Grassland. Each of these types has a high 

diversity, which is a consequence of the high variability of the soil and microclimates as well as the 

floristic evolution with plants from different Brazilian biomes (Walter 2006). Due to this diversity, 

Cerrado was considered a biodiversity hotspot with around 12,000 plant species (1,500 endemic), 251 

species of mammals, 856 avifauna species, 800 fish species, 262 reptile species and 204 amphibian 

species (Myers et al. 2000; Sawyer 2016). 

 The large size of Cerrado biome is also reflected in the importance of hydrography for the other 

biomes in Brazil, such as Amazon. In Portuguese, the Cerrado is popularly known as the “cradle of 

water” or the “water tank of Brazil”, as it drains water to eight out of twelve watersheds in the country 

and contains six basins (the Amazon basin, the Tocantins basin, the North Atlantic/Northeast, from the 

São Francisco basin, from the Atlantic East and the Paraná/Paraguay River Basin). Especially noteworthy 

are the hydrological contributions to the flow of the Parana basin (50%), Tocantins basin (62%) and São 

Francisco basin (94%). Great potential of the Cerrado water resources is given by surface flows (rivers) 

and groundwater flows. However, these resources are being devastated since the occupants of this 

region exhaustively exploit water resources for irrigated agriculture (Scariot 2005).  

The occupation of Cerrado occurred in multiple different phases. The first phase occurred with the 

arrival of the Portuguese in Brazil to search for precious stones and metals in the sixteenth century. 

Between the eighteenth and nineteenth centuries, the mining and livestock were the most important 

economic activities encouraging the first formations of urban centers. Nevertheless, the intense 

migration in the region only occurred in the second phase of the occupation with the construction of 

Brasilia, as a capital city, and the large investments in the economic plans to develop the region. This 

second phase began in the 1960s when Juscelino Kubitschek's government created the plan for 

modernizing the country. First, the states, such as Rio Grande do Sul and Santa Catarina, located in the 

south of the country were occupied and later the lands of the Midwest. From the 1970s, the 

government invested in infrastructure construction, such as roads and railways, as part of Cerrado's 

agricultural development incentive projects, such as the Cerrado Development Program 

(POLOCENTRO), which had the objective to develop and extend the agriculture in Brazil to supply raw 

materials to national and international markets. This project supported many farmers with rural credit 

to have technical assistance and budgets to invest in their own farms. These investments supported 

research in management of the low fertility and high acidity soils, mainly done by the Brazilian 

Agricultural Research Corporation (EMBRAPA). These initiatives caused the grain acreage to double, in 

1970, 5 million hectares were cultivated with grains and today the area covers more than 10 million 

hectares. During this time, the population density grew even faster, first with the construction of 
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Brasilia (the capital) and second with investments from the Brazilian government to develop agricultural 

in the country (Ganem 2008). 

The development and investments in Cerrado over these periods increased the agricultural 

productivity, diversified local economy, improved road infrastructure, increased the income of the cities 

and improved the public services. However, until now, the focus in economy is on the export of raw 

material and is based on monoculture, such as soybean. The cost of this has been that Cerrado has had 

a large environmental degradation, mainly in the last 50 years, due to the expansion and production of 

agriculture and livestock. This agricultural use begins with the deforestation of the area. Wood with 

high commercial value is sold, and the rest of the area is usually burned. Then cattle are placed in this 

area to settle the soil and finally the soil is prepared, grains are planted and chemical and pesticide 

fertilizers are used. This process modifies the flora and fauna, increase the occurrence of soil erosion, 

siltation of rivers, and poisoning of ecosystems (Klink and Machado 2005). 

The flat topography, accessibility and the easy management of the soil for agricultural activities has 

led to the Cerrado becoming one of the most affected biomes in terms of deforestation. From 2008 to 

2018, the total deforested area per year in Cerrado (9,922 km²) was higher than in the Amazon (6,346 

km²), as can be seen in Figure 1.2.  

 

Figure 1.2 Total deforested area per year in Amazon and Cerrado biomes from 2008 to 2018. 

Source: (INPE 2011) 

 

Within that period, Brazilian institutes, such as the Instituto Brasileiro do Meio Ambiente e dos 

Recursos Naturais Renováveis (IBAMA) and National Institute for Space Research (INPE), started to 

monitor the rate of deforestation in the Cerrado biome. They found that the Cerrado lost around 0.8% 

of its total vegetation area per year (INPE 2011). The monitoring of the deforestation in the years before 
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2002 were not as systematic. Nevertheless Machado et al. (2004) analyzed the deforestation rates from 

1985 to 1993, and found that the Cerrado lost 1.5% of its total vegetation area annually, approximately 

3 million hectares per year. The data presented Machado et al. (2004) do not follow the same 

methodology of PRODES, which from 2002 was considered the official Brazilian government program 

to map the deforestation of the Cerrado. However, the results presented by Machado et al. (2004) are 

still important to have an understanding of the Cerrado deforestation scenario in the years before 2002. 

Mato Grosso was the state that was most deforested in the last 18 years (Figure 1.3) and remains the 

largest producer of soybean in Brazil. This region is situated in the transitional zone between Amazon 

and Cerrado biomes, known as "the arc of deforestation" (AOD).  

 

Figure 1.3 Deforestation increments in the states of all Cerrado biome from 2001 to 2020. 

Source: (F. G. Assis et al. 2019) 

 

The AOD is located in the frontier states of Mato Grosso, Pará, and Rondônia, and it accounts for 

75% of the areas that were deforested between 1996 to 2005 (Macedo et al. 2012; INPE 2011). In these 

transition areas, the laws that support the protection of forests are weaker and unmanaged. One 

example is the environmental legislation that defines the amount of natural vegetation that has to be 

preserved during new deforestation for farmland (80% in the Amazon, 20% in the Cerrado biome) 

(Soares-Filho et al. 2014). The AOD accounts for 75% of the deforestation in the Legal Brazilian Amazon 
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and the largest agricultural area in Brazil, mainly soybeans (INPE 2011). Recently, the Brazilian 

government has established policies to decrease the rates of deforestation in these areas, such as the 

“Soy Moratorium” (Rudorff et al. 2012), which was an agreement with the major soybean traders not 

to purchase soybean that was planted in deforested areas after July 2006 in the Brazilian Amazon 

biome. Policies such as Soy Moratorium decrease the deforestation in Amazon biome, as can be seen 

in Figure 1.2. Soterroni et al. (2019) estimated if the Soy Moratorium was introduced in the Cerrado, it 

would prevent the loss of 3.6 million hectares of native vegetation that would otherwise be cleared for 

soybean production by 2050. The deforestation and expansion of agricultural areas, mainly soybean 

changed the land use of the Amazon and Cerrado Biome, especially in the last 50 years. 

In 2013, MMA (2015) mapped the land use of Cerrado biome and showed that 54% of the Cerrado 

was covered by native vegetation (111 Mha) and 46% was occupied by anthropogenic uses (93 Mha), 

such as agriculture (12%) and livestock (30%) (Figure 1.4). The soybean accounts for the largest area of 

the agricultural use, around 90%. This means that approximately 52% of all soybeans in Brazil is grown 

in the Cerrado biome. Within the Cerrado, the state of Mato Grosso holds the largest area of soybean 

(35%). Due to the continual threat of the Cerrado biome, it remains important to monitor the land use 

change of this area. The field monitoring of Cerrado is a time-consuming challenge, given the large size 

of the biome. Hence, the use of remote sensing facilitates the monitoring of the status and changes in 

land cover and land use at large scales. 
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Figure 1.4 Land use map of Cerrado biome in 2013.  

Source: (MMA 2015). 

 

1.3 Remote Sensing 

Remote sensing is the acquisition of data from a target without direct contact (Colwell 1984). These 

data can be collected from optical or radar sensors. The optical sensor obtains the data through natural 

electromagnetic radiation reflected (solar) or emitted from the earth's surface. The radar sensor 

generates electromagnetic energy, penetrates through cloud cover and registers the backscattering 

spread back to the sensor (Jensen 2014). Optical sensors have four types of resolution: spatial, spectral, 
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radiometric and temporal. The spatial resolution is the image quality and its ability to obtain details on 

the image. The temporal resolution is the time it takes a satellite to image the same area two times. 

The spectral resolution is related to the number of bands that the sensor and the length of each 

spectrum. Radiometric resolution is the sensitivity of the sensor to differentiate radiance values or 

range of numerical values of the digital number associated to the pixels.  One of the main advantages 

of using optical sensors to map and monitor the Savanna biome is the numerous sources of free digital 

imagery, such as Landsat series (since 1972) and Moderate Resolution Imaging Spectroradiometer 

(MODIS) (since 1999). Additionally, optical images are more accessible for researchers who have no 

experience in processing and interpreting these data. However, optical sensors can easily saturate the 

signal when there is a large biomass, such as in dense forests, especially in the tropical regions. 

Moreover, optical sensors depend on optimal weather and light conditions to collect the date from the 

surface. To overcome these disadvantages, radar sensors may be an alternative. 

The important advantage that radar sensors have compared to optical sensors is the capability of 

the radiation to penetrate through cloud cover and a better analysis of the properties of vegetation 

structure without saturation. These are important when the study area is located in dense forest, such 

as Tropical Forest or Savanna (Amazon, Cerrado). The depiction of a forest is a sum of factors of 

different mechanisms of interaction and scattering between sensor, atmosphere and target. The 

backscattering represents the signal of a microwave scattered from the imaged area and it is a result 

of the dielectric and geometric propriety of target, the characteristic of the sensor and atmosphere 

condition. Henderson et al. (1998) mention five main scattering mechanisms in forest environments: i) 

crown backscattering; ii) direct backscattering trunk; iii) direct backscattering ground; iv) crown-ground 

backscattering and v) trunk-ground backscattering or double bounce. Le Toan and Kong (1992) 

described seven scattering mechanisms that further included multiple branch and branch-ground 

scattering. The influence degree of each scattering mechanism has a strong dependence on wavelength 

and polarization of the sensor. In the short or intermediate wavelengths such as X and C band, the 

backscattering represents the radiation interaction of canopy, leaves, branches, secondary branches 

and part of volumetric scattering (inside crown). Longer wavelengths such as L and P band have the 

capability of deep penetration and allow for the interaction with the biggest vegetation components 

such as trunks, crown, ground and branches (Le Toan and Kong 1992). The polarization controls the 

types of components that interact with the radiation. There are four polarizations system: Vertical 

transmit and receive (VV), Horizontal transmit and receive (HH), Vertical transmit and Horizontal 

receive (VH) and Horizontal transmit and Vertical receive (HV). The two first polarization are called co-

polarized which interact and reflect with only one orientation. The last two are called cross-polarized, 

which have a direct relation with volumetric scattering and sensitivity to biomass (Jensen 2014; Sun et 
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al. 2002). Another component that influences the backscattering is the dielectric constant, which 

represents the electric conductivity of different materials, such as, vegetation, soil, water and ice. 

Moreover, the moisture content has an impact on the dielectric constant, therefore, the water content 

in the leaf plays an important role in the backscattering. The higher the water content, the higher the 

dielectric constant, and the higher the energy that is reflected (Jensen 2014). Additionally, the radar 

sensor has important advantages compared with optical sensors in terms of the analysis and extraction 

of information from the vegetation structure, such as biomass, LAI, volume and basal area. The 

penetration of the radar sensor into the vegetation with different wavelengths can provide more 

information about the structure. In overall, the radar system provides many advantages to study 

tropical forest such as the Cerrado as it can penetrate through cloud cover making the analysis weather 

independence and it provides low probability of signal saturation in dense forests. 

 

1.4 Remote Sensing for mapping and monitoring Savanna and Cerrado 

The mapping and monitoring of the savanna biome are essential to understand the impact of LUCC 

on global environment, biodiversity, carbon storage, and climate change. Mapping and monitoring 

vegetation resources at local and global scales using traditional methods (field surveys), is expensive 

and slow. Remote sensing offers the means for systematic observation and analysis of the surface, 

which can support important initiatives focus on the impact of the human activity in the context of 

LUCC on climate change, such as the reduction of emissions from deforestation and forest degradation 

(REDD+). 

In savanna biomes, previous studies mostly focused on land use and forest mapping using optical 

sensors (Grecchi et al. 2014; Hernandez et al. 1998; Paneque-Galvez et al. 2013; Sabattini 2015; Sano 

et al. 2008). For example, Anupama et al. (2014) analyzed the land use in the Eastern Gats (India) for 

the last 200 years using satellite images with medium spatial resolution. They found no significant 

change in the forest cover in the last 30 years. In Africa, Basommi et al. (2015) and  Munyati et al. (2013) 

mapped the land cover in the East of Ghana and South Africa with Landsat satellite images TM and 

ETM+. In Australia, Fensham et al. (2011) mapped the forest type and deforestation in the East of the 

country using high spatial resolution. During the study period from 1952 to 2010, the researchers 

mapped the three types of forest: mulga, gidgee and miscellaneous and found that they lost 74%, 30% 

and 82% respectively, of their original area.  

The use of SAR has increased over the past decades due to the launching of many SAR sensors such 

as SIR, ERS, JERS-1, RADARSAT-1, ALOS-PALSAR 2, TerraSAR-X / TanDEM-X and Sentinel 1A. Currently, 

land use mapping is the most common topic addressed in studies using SAR sensors in savanna biomes. 
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In Brazil, Evans and Costa (2013) mapped six vegetation habitats using L and C band by the 

backscattering information from the surface. Additionally, Saatchi et al. (2010) mapped five land cover 

types in Brazil using the JERS-1 mosaic, using texture measurement. Furthermore, the use of SAR 

images to assess the biomass and carbon estimation has increased in the last decades. For example, Liu 

et al. (2015), who used the C band (AMSR-E dual polarization) to estimate the global aboveground 

biomass (AGB) in a period from 1998 to 2002, finding that 17% of the area belongs to the savanna 

biome. In the Africa savanna, the studies assessing biomass mostly used L band from ALOS PALSAR quad 

polarization to estimate the biomass and carbon (Mermoz et al. 2015; Mermoz et al. 2014; Michelakis 

et al. 2015; Mitchard et al. 2011). While the individual use of optical and SAR sensors to assess the 

vegetation in savanna remains the most common method, the combination of both sensors for 

monitoring forest resources has become more used over the last 15 years. 

To examine the savanna vegetation, which has one of the largest forest diversity, the combination 

of different satellite images (optical and SAR) and spatial resolution (low, medium and high) provides 

substantial improvement in the accuracy (Saatchi et al. 2010). Mapping land use remains the most 

studied topic using the combination of optical and SAR images. In Brazil, Cremon et al. (2014) used the 

Landsat TM and ALOS PALSAR images to map the land use and cover. They identified four vegetation 

classes with an accuracy of 94% using both sensors. In Africa, Haack and Bechdol (2000) evaluated the 

accuracy of the Landsat TM and SIR-C images in the East of Africa for mapping natural vegetation, 

scattered agricultural and settlements. Their results showed that both sensors have approximately the 

same accuracy. Moreover, four geospatial manipulations with the SAR images were tested and the 

texture applications showed the best classification accuracies. The importance of using different 

sensors to map the vegetation was shown by Mayaux et al. (2000). They processed data from three 

satellite systems (AVHRR, ATSR, ERS-1 SAR) to show that each one of them provide better results for 

different types of targets. AVHRR was most suited to distinguish forest and savanna, ATSR best 

distinguished secondary forests and ERS-1 was best for gallery-forests, plantations and swamp forests 

in Central Africa. Moreover, the use of both sensors were applied on biomass estimation, such as 

Mitchard et al. (2012) who estimated the forest high-biomass and carbon stock (an uncertainly of +/- 

25%) using LIDAR, ALOS PALSAR and 96 ground-based plots in Gabon, Africa. One of the main reasons 

for the uncertainty was the use of a generic allometric equation for an area, which includes a range of 

different vegetation types.  

To date, the mapping and monitoring of Cerrado using optical sensors have been mostly applied on 

land use change. Sano et al. (2001) used the Landsat series to map the land use change for the Cerrado 

biome in 1990, 2000 and 2010. In 30 years, Cerrado lost 265,595 km² of its natural vegetation. 

Moderate-resolution, multi-spectral satellite remote sensing data from 1986 to 2002 were used by 
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Sano et al. (2005) to assess the land use change in Cerrado. The vegetation areas were converted to 

agro-pastoral in 31% (3,646 km2) of the study region in western Bahia and 24% (3,011 km2) of the 

eastern Mato Grosso study region. The use of sar sensors in Cerrado are usually used for mapping land 

cover and estimate biomass and carbon. For example, Almeida and Shimabukuro (2000) used the L 

band from JERS-1 to detect cover changes in forest and non-forested in Cerrado biome. Moreover, 

Santos et al. (1998) used JERS-1 images to show the relation among backscatter and biophysical 

parameters (biomass values) of forest and savanna formations. The use of both sensors (optical and 

sar) to assess mapping and monitoring Cerrado can be showed in a limited number of studies. 

Bitencourt et al. (2007) combined the optical medium spatial resolution images and JERS-1 images to 

predict vegetation variation in the Cerrado biome. They related the LAI collected in the field campaign 

with the NDVI from an optical sensor image to obtain the green leaves biomass, which showed a strong 

relation to each other. For AGB estimation, they used the JERS-1 images, which resulted in a good 

correlation (R²=0.8714) and showed better results for Cerradão and cerrado sensu stricto compared to 

the NDVI of optical images. 

 

1.5 Forest Fragmentation and edge effects 

Forest fragmentation is the partitioning of continuous large patches of forest into isolated small 

patches, which expose the organism in the border of these fragments to a different environmental 

condition (Laurance et al. 2000, Murcia 1995). In this study we mapped the fragmented forests in the 

spatial resolution of 20 meters. The process of forest fragmentation exposes a formerly undisturbed 

forest to an environment with different conditions, which is responsible for the edge effect (Laurance 

et al. 2000, Murcia 1995).  

Edge effect is the result of an abrupt transition between two contrasting habitats, such asforested 

and non-forested areas. Edge effects can be abiotic (changes in the environmental conditions, such as 

structure complexity), direct biological (changes in the abundance and distribution of species) and 

indirect biological (changes in species interaction). Laurance et al. (1997) summarized the edge effects 

in relation to the distance up to 500 meters and showed the most common edge effects are higher 

wind intensity, increased edge temperature, low soil moisture, increased tree mortality, reduced 

biomass, plant germination process, original habitat size reduction, soil erosion, microclimate in the 

edges and carbon storage capacity (Casenave et al. 1995; Harper et al. 2005; Laurance et al. 1998a; 

Matlack 1993; Mendonça et al. 2015; Murcia 1995) (Figure 1.5). 
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Figure 1.5 Edge effects parameters in relation to the distance up to 500 meters from the border of the fragment 
(Laurance et al. 1997). 

 

In this study, we mapped the forest fragments in the spatial resolution of 20 meters, therefore an 

area is considered a forest fragment when there is a distance of 1 pixel (20 meters) between two parallel 

edges with forest area. We used the edge density (edge to a per unit area), total edge (absolute 

measure of total edge length) and number of patches (numbers of forest fragments) to support the 

analysis of this thesis (McGarigal et al. 2002). 

To date, there has been no study, which estimated the forest areas that are subject to 

fragmentation in the entire Cerrado biome. In contrast, the Amazon and Atlantic Forest biomes have 

been completely analyzed (Pütz et al. 2014). Pütz et al. (2014) found that in the Amazon, the number 

of fragments are smaller than in the Atlantic forest, 77,038 fragments versus 245,173 fragments, 

respectively. Additionally, the size of the fragments is greater than in the Atlantic Forest, 8,376 ha 

versus 64 ha, respectively. The fragmentation patterns caused by deforestation in Amazon can be 

comparable to the fragmentation of some regions in Cerrado, mainly in our study area, the AOD, where 
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the border between Cerrado and Amazon biomes lies. The few studies analyzing the fragmentation in 

parts of Cerrado, found different estimates for the fragment size. For example, Cunha (2007) estimated 

the size of fragments in Goiás State and found that 82.12% of these fragments were smaller than 1 ha. 

The authors attribute this to the influence of the forest formation and the high degree of socioeconomic 

development. In contrast to Cunhan’s findings, Jorge and Garcia (1997) found a high frequency of small 

fragments, around 10 ha, in the region of Sao Paulo. 

The studies in the tropical forests in Brazil, which examine edge effects, focus on the impact on 

biomass and carbon storage. Pütz et al. (2014) analyzed the edge effect in Amazon and Atlantic Forest 

biomes and found that the Atlantic Forest biome lost about 69 million tons of carbon over a period of 

10 years, as a consequence of forest fragmentation. In the Amazon biome, 599 million tons of carbon 

have been lost during the same period. Chaplin-Kramer et al. (2015) estimated the edge effect in the 

biomass and carbon in tropical forest across the world and found that a decrease of 25% of carbon 

within the first 500 meters of the forest edge. Moreover, Brinck et al. (2017) showed that 19% of the 

tropical forest in the world are within the first 100 meters of a forest fragment. Additionally, the edge 

effect of these areas caused an additional 19.3 Gt of carbon emissions, representing 31% of the annual 

carbon releases from the tropical forest. Furthermore, Nascimento and Laurance (2004) assessed the 

carbon loss in Amazonian forest fragments in a long-term data of 19 years. The results show an 

increasing of 4 to 5 Mg of carbon emission per hectare within the first 300 meters of forest edges. 

Laurance et al. (1998c) estimate the carbon emission related to edge effect in parts of Pará and 

Rondônia States, Brazil. The carbon emission estimations were 0.3 to 42% lower when the edge effect 

was not considered in the calculation. Moreover, Laurance et al. (1997) analyzed the biomass collapse 

in central Amazon using permanent plots. The study showed a loss of carbon within de first 100 meters 

up to 36% in the first 10 to 17 years after fragmentation.  The impact on biomass and carbon stock from 

the edge effect is a consequence of an intensification in land use and cover change (LUCC) in Cerrado 

during the past decades. Therefore, the biome requires adequate monitoring tools and mechanisms 

for future sustainable management of these fragile ecosystems.  

In Cerrado biome, there is no consensus about the edge effect to date. Regarding the biomass and 

carbon stock changes by the edge effect, Kulp et al. (2018) did not find any relation between edge effect 

and biomass in Cerrado located in Mato Grosso State. Additionally, Mendonça et al.; Queiroga (2015; 

2001a) did not find differences between the edge distances regarding the species distribution, 

vegetation structure and microclimate. In contrast, Lima-Ribeiro (2008) showed that microclimate 

parameters are different in the border and in the interior of the fragments. The soil and air temperature 

were higher in the border and the humidity was higher in the interior. Additionally, the vegetation 

structure (V. aurea aggregation index) showed a high edge effect and the height of trees and stem 



General Introduction 

14 
 

circumference were higher in the interior. These studies used direct measures within a short temporal 

analysis, which are limited by the replicability, cost of execution and time consuming. The use of satellite 

images provides an alternative for analyzing the edge effect in the Cerrado biome. Therefore, more 

studies are needed to overcome the lack of information on edge effect in Cerrado biome using remote 

sensing.  

 

1.6 Aim of Thesis 

The Cerrado biome plays a critical role in fighting climate change due to the amount of carbon 

stored. However, in recent decades this biome has been vastly deforested for livestock and agricultural 

production due to the weak laws of protection compared to Brazilian biomes (Amazon). The vast 

deforestation has led to fragmentation of the biome and consequently an edge effect, which has been 

linked to a reduced carbon stock and biodiversity (Laurance et al. 1997, 2006). While edge effects have 

been extensively studied in the Amazon and Atlantic Forest biomes, mainly effect on biomass, fires 

susceptibility, biodiversity, only few studies have examined the edge effect in the Cerrado. These 

studies were performed using only in situ data. However, as the Cerrado covers over 200 million 

hectares in Brazil, therefore, remote sensing is a useful alternative to map and monitor a large area in 

the Cerrado biome over a long-time frame. 

In this thesis, I examine the edge effect on biomass in a study area within the Cerrado biome using 

both in situ and remote sensing data. Due to the previously described effect in Amazon and Atlantic 

Forest biomes, the central hypothesis of this thesis is that we can assess fragmentation which leads to 

an edge effect on vegetation, such as biomass, using remote sensing data in the endangered 

Cerrado/Amazon Ecotone of Nova Mutum—Mato Grosso. In order to examine this hypothesis, the aims 

of this thesis are to: 

a) compare and evaluate different combination of optical and SAR satellite systems for the 

identification of forest fragments and mapping of vegetation types in the study area  

b) collect in situ data to assess the vegetation edge effect on biomass and carbon storage 

c) use a time-series approach to spatially monitor the fragmentation and edge effects using optical 

remote sensing data 

These aims will allow me to examine the edge effect on vegetation in the study area for a single 

year (2017) as well as over the time frame (1984-2017) and compare the data to the described effect 

in the Amazon and Atlantic Forest biomes.  
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1.7 Outline of the thesis 

To achieve the objectives, this thesis is structured in four chapters. In the first chapter, I introduced 

the concepts of tropical Savanna, Cerrado, remote sensing, fragmentation and edge effect. Moreover, 

I describe the study area and the general methods. In the second chapter, we identify the forest 

fragments and classify vegetation types using different types of sensors. This step is important because 

it helps to understand the edge effect in different types of vegetation, since the edge effect acts 

differently in each type of vegetation. In the third chapter, we estimate biomass and carbon stock using 

field data within the context of the edge effect in the different types of vegetation that were identified 

in the second chapter. In the fourth chapter, we used long-time satellite images series to spatially map 

and monitor of edge effects and fragmentation. In the fifth chapter, we discuss the general findings of 

the previous chapter. The thesis concludes with final remarks and recommendations.  

 

1.8 Study Area 

The study area is located in the transition area of Cerrado and Amazon biomes in part of Nova 

Mutum city (Figure 1.6). Nova Mutum is placed in the frontier states of Mato Grosso, Pará, and 

Rondônia, where the AOD lies. 
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Figure 1.6. Location of the study area in Brazil on top of a Google Earth image (A), in Nova Mutum city and on top 
of a false color composition of Sentinel 2A Band 3, 4, and 8 in 07 July 2017 (B), in the exact area of analysis from 
1985 (C), 1997 (D) and 2017 (E) on top of a NDVI image.  

 

Nova Mutum is an important city in the context of deforestation in the AOD region. Between 2002 

and 2010, Nova Mutum was among the 20 cities that most deforested natural vegetation (MMA 2014), 

which has increased the process of landscape fragmentation (Figure 1.7). Additionally, the city plays an 

important role in the Brazilian agricultural sector, the city is one of the 20 largest soybean producers in 

the Brazil. Therefore, Nova Mutum is a key city in relation to the forest fragmentation, which was 

caused by the strong deforestation process in the last 30 years and the growing importance in the 

soybean production in Brazil. 
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Figure 1.7. Deforestation in Nova Mutum (km2) from 2001 to 2019.  

Source: (F. G. Assis et al. 2019) 

 

Nova Mutum, which belongs to the Alto Teles Pires River Basin, has a well defined rainy (October 

to April) and dry (May to September) season. The climate is classified as Tropical savanna climate (Aw) 

following the Köppen Climate Classification and the annual temperature and precipitation average are 

24 °C and 2200 mm, respectively. This area is dominated by two soils types, Oxisols (80%) and Entisols 

(20%) and has a flat topography (maximum slope of 3%) (Goedert 1986; IBGE 2001).  

In general, the vegetation of the Cerrado consists of three different physiognomic units from dry 

grasslands to forest formations. The grasslands are characterized by herbaceous plants (principally 

grasses) with small and thin trees and shrubs. The savanna formations are characterized by a 

discontinuous herbaceous-shrub and tree canopy. The forest formations consist of arboreal species in 

a continuous canopy. In our study area, there are four vegetation types, Cerradão (Open Forest), 

Cerrado denso (Dense Woodland), gallery forest, and secondary forest. Overall, Cerradão has a crown 

cover between 50 and 90% and the height of the trees varies from 8 to 15 meters. Cerrado denso has 

a crown cover between 5 to 70% and tree height varies from 5 to 8 meters. The layers of shrubs and 

herbs are less dense compared to Cerradão. The gallery forest has a crown cover between 70 to 95% 

and the height of the trees varies from 20 to 30 meters. Secondary forests are formed after clear-

cutting and have different structures, depending on the age of the succession (Ferreira 1997). In our 

study area, the tree height of Cerradão ranges from 4.5 to 21.1 m with an arithmetic mean of 11.1 m 

and the crown cover ranges between 66.3 to 80.7 %. The wood density and basal area have in average 

0.69 g cm–3 and 22.1 m–2 ha–1, respectively. Cerrado denso has different characteristics compared to 

the Cerradão, as it is part of savanna formations.  The tree height of Cerrado denso ranges from 2.1 to 
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14.3 m and the crown cover from 61.6 to 72%. The wood density and basal area have in average 0.67 

g cm–3 and 10.5 m–2 ha–1, respectively. 

 

1.9 Materials and Methods  

1.9.1  Remote Sensing data 

We used a set of images from seven sensors, three SAR and four optical. The SAR sensors were the 

PALSAR-2 aboard ALOS-2 from the Japan Aerospace Exploration Agency (JAXA); TanDEM-X (TerraSAR-

X add-on for Digital Elevation Measurement) from the German Aerospace Center, DLR, and Astrium 

GmbH and Sentinel 1A from from the European Union’s Copernicus programme. The optical were the 

Sentinel 2A from the European Union’s Copernicus programme and Landsat 5, 7 and 8 from NASA and 

the U.S. Geological Survey (USGS) (Figure 1.8). 

 

Figure 1.8. Sensors used in this thesis and their respective interaction with the forest.  

 

In the first manuscript, we used seven coverages (using nine Bands altogether, from Band 2 to Band 

8A, Band 11, and Band 12) of the Multispectral Instrument (MSI) on-board Sentinel-2A, twenty-three 

coverages from Sentinel-1A IW Ground Range Detected (GRD) Level-1 product, four coverages of the 

dual polarization images and one coverage of the full polarization images from ALOS-PALSAR 2 and one 

coverage from TanDEM-X (Table 1.1). This set of images was used in order to identify the four dominant 

vegetation types that are prevalent in the Cerrado area (i.e., Cerrado denso, Cerradão, gallery forest, 

and secondary forest). Therefore, we extracted features from both sources of data such as intensity 

(Sentinel 1A, TanDEM-X and ALOS-PALSAR 2 dual/full polarimetric), grey level co-occurrence matrix 
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(Sentinel 1A), coherence (TanDEM-X), and polarimetric decompositions (ALOS-PALSAR 2 full 

polarimetric) during the dry and rainy season of 2017. 

Table 1.1 Characteristics of the selected satellite images. 

Sensor Band Polarization Orbit Features 

Sentinel 1A C Dual – VH and VV Descending Intensity, glcm 

TanDEM-X X Single – HH Ascending Intensity, 
coherence 

ALOS-PALSAR 2 
dual 

L Dual – HH and 
HV 

Descending Intensity 

ALOS-PALSAR 2 full L Full Ascending Intensity, 
polarimetric 

decompositions 

Sentinel 2A 2 to 8A, 11 and 12    

Landsat 5 3 and 4    

Landsat 7 3 and 4    

Landsat 8 4 and 5    

 

In the third manuscript, we used 498 images from Landsat 5 Thematic Mapper (TM), 552 images 

from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and 144 Landsat 8 Operational Land Imager 

(OLI) from two different Path/Row (227/069 and 227/070) between March 1984 and September 2018. 

The images were acquired from TIER 1 collection category, this includes Level-1 Precision, Terrain (L1TP) 

corrected data and radiometrically calibrated. The Tier 1 is considered the best set of data for time-

series analysis (USGS EROS, 2017).  The data was available from U.S. Geological Survey (USGS) EROS 

Science Processing Architecture (ESPA) ordering system. We chose these data to analyze the NDVI time-

series in order to create an annual mean value composites from May to September (dry season). The 

mean value composites processing was necessary to reduce the seasonal variation in the vegetation. 

By this approach, we obtained 35 annual composites from 1984 to 2018. 

 

1.9.2 Field Data 

The sampling was designed in two steps. First, we mapped the vegetation in the study area based 

on the satellite image of Landsat 8-OLI from (07 July 2017 and separated by types (Cerradão, Cerrado 

denso, gallery forest and secondary forest). Second, we selected the areas depending on its 

homogeneity, such as soil type and relief, as well as on a minimum distance of > 100 m of each fragment 

to rivers. Additionally, the fragments had to be within the first 2 km from a federal or state road due to 
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the low infrastructure of the region, which often does not allow us to access the forest fragmentation 

site. 

The sampling was executed on four plots along a transect from the edge of each fragment towards 

its center (Figure 1.9). Therefore, 32 plots were investigated in total. The location of the transect was 

predominantly defined in the middle of the fragment edge, closest to the next road and – as possible – 

without further border influences, e.g. by crossroads. The circular plot sampling started at 20 m from 

the edge of the forest fragment to preserve the characteristic of the vegetation type and still have a 

significant edge effect at this distance. Additionally, the other three plots were constructed after a 

horizontal distance of 80 m from center to center of each plot until reach the distance of 260 m towards 

the center of the fragment. The circular plot had a radius of 12.62 m and an area of approximately 500 

m² (Figure 1.9). The distances between the transects as well the size and shape of the plots was 

recommended by several publications that analyzed the edge effect in the Cerrado and other biomes 

(Sampaio and Scariot, 2011; Penariol and Madi-Ravazzi, 2013; Benítez-Malvido et al., 2018; Mendonca, 

2019). 

 

Figure 1.9 Sample design within each fragment (Sentinel 2A 17.07.2017) with the transect (red points) from the 
edge of the fragment to the center. The red circle represents the shape and size of the circular plot, the black 
circle represents the shape and size of the circular sub-plot. 

 

The living trees with a DBH1.30 ≥ 10 cm in total height, DBH1.30 and treetop coverage were 

measured. A Brazilian botanist – specialized in Cerrado/Amazon vegetation – identified each tree 

species. Each plot was located by recording the coordinates with a GPSMap 60CSx GARMIN hand tool 

in the plot center and geolocation of the smartphone. Moreover, a 360° photo was taken with a RICOH-

THETA S camera. A subplot with a radius of 4 m and a surface area of approximately 50 m² was 
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established as a part of the center of the plot to include the shrub layer to the field survey, which were 

measured in DBH0.30 and total height.  

 

1.9.3 Statistical Analysis  

In the first manuscript, we used the Random Forests (RF) algorithm implemented in R software for 

image classification. RF is a supervised classification algorithm that uses multiples decision trees to get 

an accurate classification and prediction. The N numbers of trees are built by the classifier, contributing 

each to the assignment of the most frequent class. This algorithm uses the bagging method to produce 

random samples of training sets for each random decision tree. Every tree uses a random subset from 

the original set. This original set was created from training samples, where two-thirds were used to 

train the classifier and one-third of them were used for validation. Two-thirds of the training sample 

were the out-of-bag (OOB) data and one-third of the training sample were the OOB error estimate 

(Breiman 2001). Random Forest can be used for classification and regression and is an efficient tool due 

to measuring the relative importance of each feature. This variable importance measures the decrease 

of accuracy when a variable is removed from the classification. The higher a variable is ranked, the more 

it is contributing to the accuracy. Additionally, it has a lower probability to overfit compared to other 

models if there are enough trees. This method has many improvements: it does not require any input 

preparation, it is more stable using big data since it works well with variable non-linearity, it provides a 

pre-feature selection building the trees, and reduces the time required for the process. For remote 

sensing analysis, RF showed to be a stable and accurate algorithm, especially when it is applied to 

different types of sensors and large time series. The achievement of this method can be seen in recent 

studies such as (Baron and Erasmi 2017; Breiman 2001; Bradter et al. 2011), which applied RF for 

vegetation mapping using different types of data. In this study, the RF models consisted of 1000 trees, 

and 70% of our samples were used for training the classifier and 30% for validation of the classification 

results.  

In order to analyze the performance of RF we used the confusion matrix. The confusion matrix 

assesses the accuracy of the classification, showing the relation between classification result and 

sample site. Column values correspond to the sample site results, rows to the classification results, and 

diagonal to the correctly classified pixels. The general measurement showed in confusion matrices of q 

classes is the overall accuracy, which is a result of dividing the total number of pixels and the pixels that 

were correctly classified. Additionally, the kappa coefficient was largely used to measure the accuracy 

of the classification. The values of the kappa coefficient range from 0 to 1, where 0 means no relation 



General Introduction 

22 
 

between the classification results and the sample site results, and 1 means that both are identical 

(Congalton 1991). 

Finally, for detailed analysis, we calculated both the user’s and producer’s accuracy. User’s accuracy 

(𝑈𝑖) is obtained considering the number of the correctly identified pixels of a given class (𝑝𝑖𝑖), divided 

by the total number of pixels of the class in the classified image (𝑝𝑖.). 

𝑈𝑖 =
𝑝𝑖𝑖

𝑝𝑖.
⁄ , (1) 

On the other hand, producer’s accuracy (𝑃𝑗) is the number of correctly identified pixels (𝑝𝑗𝑗) divided 

by the total number of pixels in the reference image (𝑝.𝑗). A detailed description of the classification 

assessment can be found in the literature (Congalton 1991; Olofsson et al. 2014). 

𝑃𝑗 =
𝑝𝑗𝑗

𝑝.𝑗
⁄ , (2) 

In the second manuscript, we statistically evaluate the fieldwork data. Thereby the individual plots 

of the transect within each fragment were regarded in detail mainly based on boxplots. Besides, the 

plots were investigated in groups depending on the distance to the fragment border and separated per 

vegetation type, i.e. all first plots of the Cerradão were analyzed in groups as well as all second plots of 

the Cerradão were analyzed together. The nonparametric Kruskal-Wallis test was used, if there were 

significant differences within the variable data as well as within the AGB and aboveground carbon stock 

data from the border of the fragment to the center as well as between the two vegetation types. It was 

investigated if there were significant differences of the AGB and aboveground carbon stocks between 

the fragments of one vegetation type to assess whether the fragment size has an impact on the amount 

of AGB and carbon stocks. 

In the third manuscript, in order to analyze the edge effect, we used NDVI mean values and the 

distance to the nearest edge from each random point created in the six fragments. We used a simple 

linear regression of the relationship between distance to the nearest edge and NDVI for the thirty-five 

years, to that we plot the distance to nearest edge in the X-axis and NDVI values in the Y-axis for every 

year and fragment. Secondly, we calculate a linear regression using the p-value to show how strong and 

significant theses relations are. 
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2.  Optical and SAR Remote Sensing Synergism for Mapping Vegetation Types 

in the Endangered Cerrado/Amazon Ecotone of Nova Mutum—Mato Grosso 

 

This manuscript is published as: de Souza Mendes, Flávia de; Baron, Daniel; Gerold, Gerhard; 

Liesenberg, Veraldo; Erasmi, Stefan. In Remote Sensing 11 (10), p. 1161. DOI: 10.3390/rs11101161.  

Abstract 
 

Mapping vegetation types through remote sensing images has proved to be effective, especially in large 
biomes, such as the Brazilian Cerrado, which plays an important role in the context of management and 
conservation at the agricultural frontier of the Amazon. We tested several combinations of optical and 
radar images to identify the four dominant vegetation types that are prevalent in the Cerrado area (i.e., 
Cerrado denso, Cerradão, gallery forest, and secondary forest). We extracted features from both 
sources of data such as intensity, grey level co-occurrence matrix, coherence, and polarimetric 
decompositions using Sentinel 2A, Sentinel 1A, ALOS-PALSAR 2 dual/full polarimetric, and TanDEM-X 
images during the dry and rainy season of 2017. In order to normalize the analysis of these features, 
we used principal component analysis and subsequently applied the Random Forest algorithm to 
evaluate the classification of vegetation types. During the dry season, the overall accuracy ranged from 
48 to 83%, and during the dry and rainy seasons it ranged from 41 up to 82%. The classification using 
Sentinel 2A images during the dry season resulted in the highest overall accuracy and kappa values, 
followed by the classification that used images from all sensors during the dry and rainy season. Optical 
images during the dry season were sufficient to map the different types of vegetation in our study area. 

Keywords: Cerrado; Amazon; vegetation type; optical; sar; synergism; mapping 
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2.1 Introduction 

The Cerrado biome is considered as being among the most extensive and diverse ecosystems in the 

Neotropics and is a hotspot in the context of biodiversity (Myers et al. 2000). It is also one of the most 

threatened ecosystems in South America, with over 40% of the biome converted to agriculture and the 

remainder highly fragmented (Klink and Machado 2005). Despite the threat to the Brazilian Cerrado, 

studies on this ecosystem are few and recent. 

The Cerrado biome is the second largest complex vegetation present in Brazil and occupies about 

200 million hectares, of which the largest territory is in the state of Mato Grosso (IBGE 2004). This large 

distribution of the Cerrado biome in Brazil covers three main vegetation types: grassland, savannas, 

and forest formations, which results in indeterminate boundary and a gradient of biomass, height, and 

tree cover. This large variance in different types of vegetation in the Cerrado is responsible for the high 

biodiversity in this biome. The three areas of biodiversity in Cerrado, the South–Southeast, Central 

Plateau, and Northeast areas are mainly separated by the altitude and latitude (Castro 1994). The 

heterogeneity of the vegetation types is also seen in the microclimate variability and in different types 

of soils, e.g., mostly latosol, red-yellow latosol, red latosol, quartz-neosols, and argisols (EMBRAPA 

1999; Sano et al. 2007a; Walter 2006). In addition, the amount of biomass and carbon storage is 

differently distributed in the biome, depending on the vegetation type and soil (Fearnside 2005; 

Fearnside et al. 2009; Felfili 2008). This large biodiversity and floristic heterogeneity in Cerrado was and 

is decreasing due to deforestation since the 1980s, which can lead to a loss or decrease in ecosystem 

services (Silva Junior et al. 2018).  

Cerrado is the most deforested biome in Brazil due to the high agricultural impact, particularly 

caused by the world market-oriented production of soy, cotton, and sugarcane. Deforestation is 

facilitated by its flat topography, easy management of the soil for agricultural activities, and high 

mechanization (Ramankutty et al. 2002). For pasture and agricultural activities, Cerrado has become a 

more viable alternative to the Amazon despite its poor soil quality. Despite a lack of consistent 

deforestation records, a few studies have looked at rates of deforestation in the Cerrado biome. 

Machado et al. (2004) analyzed the deforestation rates from two different sources. They found that 

from 1985 to 1993, Cerrado lost 1.5% of its total vegetation area annually. From 1993 to 2002, the rate 

of deforestation per year decreased to 0.67%. Starting from 2002, several Brazilians institutes, such as 

the Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA) and National 

Institute for Space Research (INPE), started to monitor the rate of deforestation in the Cerrado biome. 

From 2002 to 2017, Cerrado lost around 0.8% of its total vegetation area per year. The ease of 
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deforesting in the Cerrado biome created a hotspot region for deforestation at the boundary with 

Amazon biomes.  

Current regulation and restrictions in ecosystem preservation have driven deforestation and cover 

changes into the forest–savanna transition zone, as in West Africa (Janssen et al. 2018) and South 

America (Hirota et al. 2010). Janssen et al. (2018) projected an increase of tree cover losses from 20 to 

85% in Ghana. In South America, the transitional zone is known as “arc of the deforestation” (AOD). 

The AOD is located in the frontier states of Mato Grosso, Pará, and Rondônia, and it accounts for 85% 

of the areas that were deforested between 1996 to 2005 (Macedo et al. 2012; INPE 2011). In these 

transition areas, the laws that support the protection of forests are even weaker and unmanaged. One 

example is the environmental legislation that defines the amount of natural vegetation that has to be 

preserved (80% in the Amazon, 20% in the Cerrado biome) (Soares-Filho et al. 2014). Additionally, this 

forest–savanna boundary comprises a mixture of floristic characteristics from both adjacent regions, 

which increases the complexity in mapping the ecotone between the Amazon and Cerrado. Marques 

et al. (2019) showed that the official boundary between Cerrado and Amazon conducted by the 

Brazilian Institute of Geography and Statistics (IBGE) is not accurate, and in some areas, the length of 

the transition zone was miscalculated by 245.5%. This problem is likely to misinterpret the mapping of 

land use and consequently decrease the accuracy of vegetation classification. Moreover, the problem 

of low accuracy in the mapping of the boundary between Cerrado and Amazon affects the calculation 

of wood density, and therefore biomass estimation as well (Nogueira et al. 2007). To overcome these 

problems, Brazil needs to improve the monitoring system of deforestation and land use change (LUC), 

especially for the Cerrado biome. 

The field monitoring of Cerrado is a time-consuming challenge, given the large size of the biome. 

Hence, the use of remote sensing facilitates the monitoring of the status and changes in land cover and 

land use at large scales. Most studies with remote sensing to monitor the differentiation of the 

vegetation types in Cerrado use optical sensors, mainly in the savanna and grassland formations where 

there is low signal saturation. These studies mostly use the Normalized Difference Vegetation Index 

(NDVI) (Bitencourt et al. 2007; Liesenberg et al. 2007; Nascimento and Sano 2010), Spectral Linear 

Mixture Model   (SLMM) (Ferreira et al. 2007; Girolamo Neto et al. 2017), and phenological profiles 

(Schwieder et al. 2016). Additionally, Müller et al. (2015) demonstrated the challenges in mapping land 

use in Cerrado, essentially a result of its high diversity. The study showed a considerable uncertainty in 

the classification of cropland and pastures areas. The same problem was reported by Sano et al. (2010), 

whose study reports a spectral similarity between cropland, pasture, and natural savanna vegetation, 

which can increase the uncertainty when mapping. Moreover, Ministry of the Environment (MMA)   

(MMA 2015) mapped the land use in the whole Cerrado biome and the study showed that one of the 
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biggest challenges for this area was to map the different types of vegetation, due to the strong 

seasonality of natural vegetation. However, the optical sensors can extract the information from the 

canopy, but arboreal vegetation types have differences in vertical structure and tree cover, so that with 

optical sensors, uncertainties in the identification of forest savanna vegetation types increase. 

Additionally, optical images are affected by weather conditions (cloud cover).  

Radar sensors have an important advantage compared to optical sensors: the ability of radiation to 

penetrate through cloud cover and considerable parts of the canopy of trees/forest stands due to the 

higher wavelengths compared to optical sensors. Thus, the resulting radar signals 

(amplitude/backscatter and, if available, coherence) provide information that can be used to describe 

the vertical structure of vegetation stands. This information can be used to better estimate forest 

structure variables such as canopy cover, tree density, tree height or others, as well as to stratify 

vegetation (e.g., different types of forest). The longer the wavelength, the deeper radar Bands 

penetrate dense vegetation, which increases its sensibility to perceive the differences that improve 

discrimination of vegetation types. Almeida and Shimabukuro (2000) demonstrated that the L Band 

from the JERS-1 synthetic-aperture radar (SAR) can be used to detect cover changes in forested and 

non-forested areas in the Cerrado biome. Evans and Costa (2013) also mapped six vegetation habitats 

in Brazil using L and C Bands using the backscattering information from the surface. In the same country, 

Saatchi et al. (2010) mapped five land cover types using the JERS-1 mosaic, using texture measurement. 

Santos et al. (1998), Sano et al. (2001), and Mesquita JR et al. (2001) had satisfactory results using radar 

images to discriminate the vegetation types in the Cerrado biome, especially with the L Band. The 

sensitivity of the radar sensor to perceive the differences in vegetation structures makes it useful for 

mapping different types of forests. 

The savanna vegetation has one of the largest forest diversities. In this case, the combination of 

different satellite images (optical and radar) and spatial resolution (low, medium, and high) may help 

to improve the quality of satellite based monitoring concepts (Saatchi et al. 2010). However, there is 

little information about how the synergy of different data can contribute to map forest vegetation types 

in Cerrado. Yet, the free availability and the development of new optical and radar sensors, such as 

Sentinel 2A, Sentinel 1A (both free) or ALOS2 and TanDEM-X, are increasing the use of both sensors 

(radar and optical) for vegetation mapping. Recent studies have shown that the synergy of radar and 

optical images improved vegetation type discrimination, especially in the Cerrado biome, where the 

greenness seasonality had a huge influence during the year (Bitencourt et al. 2007; Carvalho et al. 2010; 

Sano et al. 2005). 

The aforementioned studies concentrate on parts of Cerrado where the vegetation cover is mostly 

homogeneous and that are not located in transitional areas such as the  Arc of Deforestation. However, 
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most of the deforestation and expansion of agricultural and pasture areas are concentrated in this 

region. Additionally, these regions have a mixture of vegetation type and species from Cerrado and 

Amazon, which makes the study in this area more complex. The few studies in this area are related to 

the land use and not the mapping of vegetation type, as in Zaiatz et al. (2018) who evaluated the spatial 

and temporal dynamics of land use and cover of the Upper Teles Pires River Basin from 1986 to 2014. 

In order to overcome the lack of studies using both sensors to discriminate vegetation types, the aim 

of this study is to evaluate the use of optical and radar remote sensing for mapping the different types 

of vegetation in the transitional area between the Cerrado and Amazon biomes. 

 

2.2 Materials and Methods 

2.2.1 Study Sites 

The study area was the result of an overlap between the satellite images selected for this study and 

it is located around the city of Nova Mutum, Mato Grosso, which includes the Cerrado and Amazon 

biomes. Nova Mutum is located in the north of Mato Grosso, Brazil, and it is part of the Alto Teles Pires 

River   Basin (Figure 2.1). Its climate is classified as Aw (after the Köppen climate classification), with a 

clear seasonality of rainy season (October to April) and dry season (May to September). The annual 

average temperature is 24 °C and annual precipitation is approximately 2200 mm (Goedert 1986). The 

topography is flat with maximum slopes of 3%. The soils in the  area are Oxisols (80%) and Entisols (20%) 

(IBGE 2001). 
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Figure 2.1. Location of the study area within the South America context. The scene footprint of different satellites 
are shown on top of a Google Earth image. 

 

Nova Mutum is located in the AOD; this area covers 256 municipalities with the most intensive 

deforestation activities in an area of approximately 1,700,000 km² and it plays an important role in the 

context of deforestation in the frontier of Amazon and Cerrado. The AOD accounts for 75% of the 

deforestation in the Brazilian Amazon and the largest agricultural area (INPE 2011). Legislation, soil, 

relief, climate conditions, and the subsidies offered by the government have encouraged agricultural 

activity since 1970. Recently, the Brazilian government has established policies to decrease the rates of 

deforestation in these areas, such as the “Soy Moratorium” (Rudorff et al. 2012), which was an 

agreement with the major soybean traders not to purchase soybean that was planted in deforested 

areas after July 2006 in the Brazilian Amazon biome. 
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In general, the vegetation of Cerrado in Brazil covers three main different vegetation types: 

grassland, savannas, and forest formations. The forest formations consist of arboreal species in a 

continuous canopy and include the Gallery, Dry, and Open Forest. The savanna formation is 

characterized by a discontinuous herbaceous-shrub and tree canopy. The seven types of savanna 

formation are Dense Woodland, Woodland, Open Woodland, Park Woodland, Palm, Vereda, and Stone 

Woodland. The grassland formations include three vegetation types: Stone Grassland, Shrub Savanna, 

and Grassland. The first two types of grasslands are characterized by the large presence of shrubs with 

different types of soils. Figure 2.2 summarizes the distribution of the three different vegetation 

formations in the Cerrado biome. Each of these types has a high diversity, which is a consequence of 

the high variability of the soil and microclimates as well as the floristic evolution with plants from 

different Brazilian biomes (Walter 2006). 

 

Figure 2.2 Cerrado biome phytophysiognomies. The graphic depicts two vegetation formations and their 
subdivisions in the study area, except the Dry Forest. Source: Adapted from Ribeiro and Walter (1998). 

 

In our study, we mapped the four dominating vegetation types in Nova Mutum, Cerradão (Open 

Forest), Cerrado denso (Dense Woodland), gallery forest, and secondary forest. Cerradão and Cerrado 

denso are located within the transition area of the Amazon and Cerrado biomes. As mentioned before, 

this area has a high deforestation rate, which can explain the presence of secondary forest. Cerradão 

has a crown cover between 50 and 90% and the height of the trees varies from 8 to 15 meters. In 

general, the soils of Cerradão are well drained, deep, and have medium–low fertility. Cerrado denso 

has a crown cover between 5 to 70% and tree height varies from 5 to 8 meters. The layers of shrubs 

and herbs are less dense compared to Cerradão. In general, the soils of Cerrado denso have medium 

to very clayey texture and are middle-well drained. The gallery forest has a crown cover between 70 to 

95% and the height of the trees varies from 20 to 30 meters. Secondary forests are formed after clear-

cutting and have different structures, depending on the age of the succession. At the beginning of its 

succession time, these secondary forests are poor in biodiversity and have a simple structure, whereas 
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in the next succession time, its structure depends on environmental factors such as soil, climate, and 

management (Ferreira 1997). 

 

2.2.2 Satellite Data 

In order to analyze the use of optical and radar sensors to map the vegetation type in Cerrado, we 

used a set of images from four sensors (3 SARs and 1 optical). The PALSAR-2 aboard ALOS-2 from the 

Japan Aerospace Exploration Agency (JAXA); TanDEM-X (TerraSAR-X add-on for Digital Elevation 

Measurement) from the German Aerospace Center, DLR, and Astrium GmbH; Sentinel 1A and the 

optical Sentinel 2A from the European Union's Copernicus programme. Figure 2.3 shows the temporal 

coverage of each satellite image used in our analysis. 

 

Figure 2.3 Historical (1961–2017) and Monthly (2016–2017) precipitation values and acquisition dates of Sentinel 
2A, ALOS PALSAR 2 full, ALOS PALSAR 2 dual, TanDEM-X and Sentinel 1A. Precipitation data were collected from 
the Diamatino fluviometric station located near to the study area. 

 

We selected the satellite image data following some criteria. First, we selected images from 2017 

since the field data were collected in 2017, except for the TanDEM-X image. Secondly, we selected the 

radar images on the dates of low precipitation, prior to the date of acquisition. Table 2.1 shows the 

date, polarization, orbit, and accumulated precipitation values three days before the acquisitions.  

Table 2.1. Characteristics of the selected satellite images and the accumulated precipitation values three days 
before Radar acquisition. 

Sensor Date Polarization Orbit 
Accumulated Precipitation Values 3 
Days Before Radar Acquisition (mm) 

Sentinel 1A 
08.01.2017 Dual—VH and 

VV 
Descending 

3.3 

01.02.2017 11.5 
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13.02.2017 58.3 

25.02.2017 30.2 

09.03.2017 27.2 

21.03.2017 24.0 

02.04.2017 16.8 

14.04.2017 0 

26.04.2017 33.3 

08.05.2017 0 

20.05.2017 0 

01.06.2017 0 

13.06.2017 0 

25.06.2017 0 

19.07.2017 0 

31.07.2017 0 

12.08.2017 0 

24.08.2017 0 

05.09.2017 0 

17.09.2017 0 

11.10.2017 0 

10.12.2017 88.7 

22.12.2017 0 

TanDEM-X 20.10.2016 Single – HH  8.1 

ALOS-PALSAR 
2 dual 

01.02.2017 

Dual – HH and 
HV 

Ascending 11.5 

26.03.2017 
Descending 

35.7 

04.06.2017 0 

13.09.2017 Ascending 0 

ALOS-PALSAR 
2 full 

13.04.2017 
Full Ascending 

0 

27.04.2017 0 

Sentinel 2A 

07.05.2017 

- - 

0 

16.06.2017 0 

06.07.2017 0 

26.07.2017 0 

15.08.2017 19.2 

04.09.2017 0 

24.09.2017 0 
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2.2.3 Data Processing 

Sentinel 2A 

Seven coverages (using nine Bands altogether, from Band 2 to Band 8A, Band 11, and Band 12) of 

the Multispectral Instrument (MSI) on-board Sentinel-2A were processed using the ESA’s Sentinel-2 

toolbox in the ESA Sentinel Application Platform (SNAP). First, we applied atmospheric correction using 

Sen2cor, which is a L2A-processor for Sentinel-2 data that creates Bottom-Of-Atmosphere (BOA) 

reflectance images using Top-Of-Atmosphere (TOA) data (Louis et al. 2016). Secondly, we resampled all 

the bands to a 10-m spatial resolution based on the geolocations obtained from Level-1C metadata. For 

the last step, we created a subset of our study area to speed up processing time, and lastly we 

mosaicked the images, as our study area was between two different orbits of the Sentinel 2A.  

During the final step, we reduced the number of features by applying principal component analysis 

(PCA) on the spectral dataset due to the fact that some classification algorithms, such as Random 

Forest, cannot work well with high correlation data. Principal component analysis is a mathematical 

procedure that reduces a large amount of variables into principal components. The primary function of 

the PCA is to determine the extent of the correlation between multispectral bands and to remove it 

through an appropriate mathematical transformation (Sabins 1999). We used the first principal 

component (PC1) of each one of the ten bands to aggregate only information that was essential to the 

classification process, as it explained most of the variance, e.g., PC1 of Band 2, PC1 of Band 3, and PC1 

of Band 4. Overall, this resulted in a set of ten variables as input for classification for the dry season, 

and the dry and rainy season, respectively. 

Sentinel 1A 

Twenty-three coverages from Sentinel-1A IW Ground Range Detected (GRD) Level-1 product were 

processed using the ESA Sentinel Application Platform toolbox. First, each image was radiometrically 

calibrated to radar brightness values (β0) (Rosich and Meadows 2004). Secondly, we applied the terrain 

flattening to correct any terrain variations in the images. Terrain flattering is an important step for the 

mapping of land use. Without the terrain flattening, an additional error into the coherency and 

covariance measurement could be created, due to the difference in the terrain and subsequently the 

brightness of the radar return (Small 2011). During the third step, we coregistrated the 23 images based 

on the cross-correlation technique to guarantee that every pixel was correctly located in the same 

target of all images (Yague-Martinez et al. 2017). Once we had the images from the co-registration 

process, we separated them into two sub-processes. During the first process, we applied the grey level 

co-occurrence matrix (GLCM) to extract second order statistical textures features. The GLCMs were 

extracted separately from every single date and polarization (VV and VH). These textures can be useful 
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to improve land use classification in that it extracts intensity variations from the image involving the 

information of the neighbor pixels to identify specific clusters or objects (Haralick et al. 1973). 

Additionally, we applied the Refined Lee speckle filter (window size 5 × 5), after GLCMs extraction. This 

process is necessary to reduce the noise caused by random constructive and destructive interference 

from the radar signal (Lee and Pottier 2009). For the second branch of processing, we only applied the 

Refined Lee speckle filter on the backscatter images. We applied the Range Doppler terrain correction 

in the last step. This process is necessary to geocode and correct the distortions in the image, which 

are caused by the topographical variations and the tilt of the sensor (Schreier 1993). The entire process 

is illustrated in Figure 2.4. 

 

Figure 2.4. Flowchart of the proposal methodology. 

 

We applied the PCA to reduce the number of features in the same way as explained above for 

Sentinel 2A. In the backscattering images, we applied the PCA for the two different seasons and two 

polarizations, which resulted in four PCs: a) images of VV polarization in the rain and dry season; b) 

images of VH polarization in the rain and dry season; c) images of VV polarization during the dry season; 

and d) images of VH polarization during the dry season. The same was applied for the texture images 

(ten textures: ASM, contrast, correlation, dissimilarity, energy, entropy, homogeneity, MAX, mean, 

variance. This resulted in a set of twenty two inputs in the dry season (one PC of VV, one PC of VH, ten 

PCs of VV textures, and ten PCs of VH textures) and a set of fourth four inputs in the rainy and dry 

season (one PC of VV in the dry season; one PC of VV in the rainy and dry season; one PC of VH in the 

dry season; one PC of VH in the rainy and dry season; ten PCs of VV textures in the dry season; ten PCs 

of VV in the rainy and dry season; ten PCs of VH textures in the dry season; ten PCs of VH in the rainy 

and dry season). 

ALOS-PALSAR 2 (Dual and Full Polarimetric) 

Four coverages of the dual polarization images were converted to covariance matrix C2 and one 

coverage of the full polarization images was converted to C3 matrix (Pottier et al. 2007). In this step, 
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multilook with 4 looks in azimuth and 1 in range was applied to convert the image from single look 

complex to ground range detected. We applied the speckle filter on all images to reduce speckle noise. 

For that we used the Refined Lee adaptive filter (5 × 5 window), which is more efficient and whose 

results have less destructive averaging, having been largely used in the radar studies (Lee and Pottier 

2009; Schreier 1993; Pottier et al. 2007; Pereira et al. 2018). Here, we separated the images into two 

subprocesses. For the first, we kept the backscattering images. For the second, we calculated 

polarimetric decompositions. Polarimetric SAR decomposition is a useful method to map and 

discriminate the different targets on the surface, especially due to the signal of the target, which is a 

combination of speckle noise and random vector scattering effects (Cloude and Pottier 1996). In our 

study, we chose the Freeman–Durden, Yamaguchi, and VanZyl polarimetric decompositions. In general, 

these three decompositions are based on the covariance matrix that is divided into three scattering 

mechanism: volume, double bounce and surface scatter (Cloude and Pottier 1996). Additionally, 

polarimetric compositions have been used before in mapping of vegetation showing the improvement 

in the vegetation classification in the Amazon and Cerrado (Furtado et al. 2016). We applied the Range 

Doppler terrain correction in all images. 

Following the same process of the other images, we applied the PCA to reduce the number of 

features and consequently facilitated the further classification process. This resulted in a set of ten PCs, 

resulting in four of the dual polarimetric, PC1 of backscattering in each polarization (HH and VH) and 

each orbit (ascending and descending) and six of the full polarimetric: PC1 of backscattering in each 

polarization (HH, VV and VH) and PC1 of each scattering mechanism (volume, double bounce and 

surface scatter).   

TanDEM-X 

The TanDEM-X mission operates two X-Band satellites flying in close formation in order to acquire 

single-pass interferometric SAR data. The primary mission goal of the TanDEM-X mission was the 

generation of a global digital elevation model (Krieger et al. 2007). All TanDEM-X acquisitions are 

available to the science community on request in Coregistered Single look Slant range Complex (CoSSC) 

format. For the study area, we acquired one TAnDEM-X scene in standard (bistatic) mode with 

horizontal polarization (HH). The processed data was separated into two different parts. In the first 

part, we estimated the magnitude of coherence. Coherence describes the degree of correlation 

between the two complex radar images (Bamler and Hartl 1998). It is a measure of quality of the phase 

measurement in interferometric SAR analysis and also used as a proxy for soil and vegetation structural 

parameters. 
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In the second part, we processed the intensity images. We performed multilook in both images 

(coherence and intensity) from the first and second part, with 4 looks in azimuth and 3 in range to 

reduce the noise. Additionally, we applied, as with the other images before, the speckle filter Refined 

Lee (window 5 × 5). For the last step, we applied the Range Doppler terrain correction. All images were 

processed to have a final product with spatial resolution of 10 meters. The PCA was not applied for 

TanDEM-X due to the use of only one single date. 

 

2.2.4 Classification 

The process of image classification was separated into two steps. First, a forest mask was generated 

as a result of a forest/non-forest classification. At the second step, we classified the forest type within 

this forest mask. The area under investigation is covered by all images used in this study.  

We used the RF algorithm implemented in R software for image classification. Random Forests is a 

supervised classification algorithm that uses multiples decision trees to get an accurate classification 

and prediction. The N numbers of trees are being built by the classifier, contributing each to the 

assignment of the most frequent class. This algorithm uses the bagging method to produce random 

samples of training sets for each random decision tree. Every tree uses a random subset from the 

original set. This original set was created from training samples, where two-thirds were used to train 

the classifier and one-third of them were used for validation. Two-thirds of the training sample were 

the out-of-bag (OOB) data and one-third of the training sample were the OOB error estimate (Breiman 

2001). Random Forest can be used for classification and regression and is an efficient tool due to 

measuring the relative importance of each feature. This variable importance measures the decrease of 

accuracy when a variable is removed from the classification. The higher a variable is ranked, the more 

it is contributing to the accuracy. Additionally, it has a lower probability to overfit compared to other 

models if there are enough trees. This method has many improvements: it does not require any input 

preparation, it is more stable using big data since it works well with variable non-linearity, it provides a 

pre-feature selection building the trees, and reduces the time required for the process. For remote 

sensing analysis, RF showed to be a stable and accurate algorithm, especially when it is applied to 

different types of sensors and large time series. The achievement of this method can be seen in recent 

studies such as Breiman; Bradter et al.; Baron and Erasmi (2001; 2011; 2017), which applied RF for 

vegetation mapping using different types of data. In this study, the RF models consisted of 1000 trees, 

and 70% of our samples were used for training the classifier and 30% for validation of the classification 

results.   

Forest and Non-Forest 
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In order to classify the several vegetation types, we first needed to create a map of forest and non-

forest areas. For accuracy assessment, we created 100 random points of 3.13 ha each and visually 

classified them using high-resolution imagery from Google Earth and the sensor Sentinel 2A (Figure 

2.5). During the classification process, we used 70% of these points for training the classifier and 30% 

for validation of the classification results.  

 

Figure 2.5. Distribution of Random Forest   and non-forest samples and forest type samples (4 classes) in the study 
area, on top of a false color composition of Sentinel 2A Band 3, 4, and 8 (07 July 2017). 

 

Forest Type 

Forest-type mapping was only conducted in the areas masked as forests in the previous step. We 

created 24 reference areas equally distributed into four different vegetation classes (Cerradão, Cerrado 

denso, gallery, and secondary forest). Each one had an area of 14.265 ha (Figure 5). The polygons were 

classified based on field data collection (July 2017) and high-resolution imagery from Google Earth and 
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Sentinel 2A (26 July 2017). During the classification process using RF, we used 70% of the pixels in the 

24 references areas for training and 30% for validation. 

To analyze the synergy of optical and radar data for mapping Cerrado vegetation types, all possible 

combinations between optical and radar sensors were tested in two different scenarios, dry season, 

dry and rainy seasons (Table 2.2). In addition, we used the sensors separately and analyzed the SAR 

classifications. In total, 23 datasets were processed. 

Table 2.2. Classification scheme (number in brackets shows the number of variables per input data). 

Dry Season (SAR and Optical) Rainy+dry seasons (SAR and Optical) Dry Season (SAR) Rainy+dry seasons (SAR) 

Sentinel 2A (10) Sentinel 1A (44) Sentinel 1A+TanDEM-X Sentinel 1A+TanDEM-X 

Sentinel 1A (22) ALOS2full (6) Sentinel 1A+ALOS2dual Sentinel 1A+ALOS2dual 

TanDEM-X (3) Sentinel 2A+Sentinel 1A Sentinel 1A+ALOS2 full Sentinel 1A+ALOS2 full 

ALOS2dual (4) Sentinel 2A+ALOS2full TanDEM-X+ALOS2 full TanDEM-X+ALOS2 full 

Sentinel 2A+Sentinel 1A All images ALOS2 dual+ALOS2 full ALOS2 dual+ALOS2 full 

Sentinel 2A+TanDEM-X 

   Sentinel 2A+ALOS2dual 

All images 

 

For the classifications, which combined two or more sensors, e.g., Sentinel 2A and ALOS-PALSAR 2, 

we did not use all the features of each sensor. In this case, we selected the first three features based 

on variable importance, which was calculated during RF classification for the single sensor dataset, 

respectively. Variable importance shows the interaction between the variables/features and inserts 

them into a hierarchy within a level of contribution and importance for the classification.  

For both classifications, forest/non-forest and vegetation type, we used the confusion matrix to 

analyze the performance of Random Forest classifications. The confusion matrix assesses the accuracy 

of the classification, showing the relation between classification result and sample site. Column values 

correspond to the sample site results, rows to the classification results, and diagonal to the correctly 

classified pixels. The general measurement showed in confusion matrices of q classes is the overall 

accuracy, which is a result of dividing the total number of pixels and the pixels that were correctly 

classified. Additionally, the kappa coefficient was largely used to measure the accuracy of the 

classification. The values of the kappa coefficient range from 0 to 1, where 0 means no relation between 

the classification results and the sample site results, and 1 means that both are identical (Congalton 

1991). 

Finally, for detailed analysis, we calculated both the user’s and producer’s accuracy. User’s accuracy 

(𝑈𝑖) is obtained considering the number of the correctly identified pixels of a given class (𝑝𝑖𝑖), divided 

by the total number of pixels of the class in the classified image (𝑝𝑖.). 
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𝑈𝑖 =
𝑝𝑖𝑖

𝑝𝑖.
⁄ , (1) 

On the other hand, producer’s accuracy (𝑃𝑗) is the number of correctly identified pixels (𝑝𝑗𝑗) divided 

by the total number of pixels in the reference image (𝑝.𝑗). A detailed description of the classification 

assessment can be found in the literature (Congalton 1991; Olofsson et al. 2014). 

𝑃𝑗 =
𝑝𝑗𝑗

𝑝.𝑗
⁄ , (2) 

  

2.3 Results 

2.3.1 Forest and Non-Forest 

The two different combinations used for classifications, Sentinel 2A with ALOS-PALSAR2 dual 

polarimetric and Sentinel 2A with ALOS-PALSAR2 full polarimetric, showed similar high overall accuracy 

of 0.99 and 1, respectively. The variable importance showed similar results. In both cases, the PC1 of 

Band 11 and Band 5 of the Sentinel 2A images had the highest contribution for the Random Forest 

classifier. 
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Figure 2.6. Forest mask extracted from the classification of Sentinel 2A with ALOS-PALSAR full polarimetric PC1 
images. 

 

Based on this result, we created a mask of forest and non-forest areas, where 34% was forest and 

66% was non-forest. (Figure 2.6). This mask was used in the next step for the forest type classification. 

 

2.3.2 Forest Type 

Dry Season 

The Table 2.3 shows the overall average accuracy (OAA), Kappa, confidence interval (CI) values, and 

variable importance of the classifications during the dry season. 

Table 2.3. Overall accuracy, kappa, confidence interval 95%, overall average accuracy (OAA), and the three most 
important variables for the classifications based on the Random Forest variable importance for Sentinel 2A (S2), 
ALOS PALSAR 2 full (A2f), ALOS PALSAR 2 dual (A2d), TanDEM X (TX), and Sentinel 1A (S1).  The parameters listed 
in the variable importance are the PC1 derived from the PCA, except for the images from TanDEM-X, as only one 
acquisition was available. Only data acquisitions during the dry season were considered. 

Dry Season (SAR and 
Optical) 

Overall 
Accuracy 

Kappa Conf. 95% OAA Variable 
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Sentinel 2A 82.60% 0.77 2.29 Bands 11, 12, 5 

Sentinel 1A 48.51% 0.31 2.76 Entropy VV, mean VV, variance VH 

TanDEM-X 58.22% 0.44 2.78 
Coherence, intensity master, intensity 

slave 

ALOS2dual 59.70% 0.46 2.73 
HH descending, HV descending, HH 

ascending 

Sentinel 2A+Sentinel 1A 79.90% 0.73 2.08 Bands 12, 11, 5 S2 

Sentinel 2A+TanDEM-X 81.91% 0.76 2.14 Band 11 S2, Band 12 S2, coherence HH TX 

Sentinel 2A+ALOS2dual 74.91% 0.67 2.53 
Band 11 S2, HV descending A2d, HH 

descending A2d 

All images 80.33% 0.74 2.05 
Band 11 S2, HV descending A2d, Band 12 

S2 

 

Classifications using only a single radar sensor (Sentinel 1A, TanDEM-X and ALOS2 dual) had lower 

overall accuracy and kappa values compared to the classification that used two or more sensors. 

Sentinel 2A (S2) had with 82.60 % the highest overall accuracy and kappa values with 0.77. The variable 

importance shows the PC1 of Bands 11 and 12 were more important during the RF classification, 

followed by the PC1 of Bands 5, 4 and 2. Figure 2.7 shows the results of the S2 classification. A gradient 

is visible, with the north mostly comprising of areas of Cerradão, which is closest to the Amazon biome, 

and whose south Cerrado denso areas are prevailing. Additionally, it illustrates a large area of secondary 

forest in the northwest of the study area. Based on this map, Cerrado denso covers 34.50% of the 

Cerrado area, Cerradão 28.70%, gallery forest 28.14% and secondary forest 8.66%. 
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Figure 2.7. Classification results of the spatial distribution of the four Cerrado forest types using Sentinel 2A (dry 
season) on top of a false color composition of Sentinel 2A, Bands 3, 4, and 8 (07 July 2017). 

 

The overall accuracy and kappa values of the Sentinel 1A (S1) classification had the lowest 

classification results using only single sensors with an overall accuracy of 48.51% and a kappa value of 

0.31. Additionally, the PC1 of entropy and mean images of VV polarization and PC1 of variance image 

of VH polarization were more important to the RF classifier. The TanDEM-X classification also presented 

low accuracy and kappa values, 58.22% and 0.44, respectively. The coherence was more important than 

the intensity. The images from ALOS-PALSAR 2 dual and full polarimetric showed different results in the 

classification. In our study, the dual polarization images had a higher overall accuracy and kappa values, 

59.70% and 0.46, respectively, compared to the full polarimetric images. However, we used four 

different dates of dual polarimetric images and one of full polarimetric image. This difference in the 

number of acquisitions from dual and full polarimetric images can cause a better accuracy for the dual 

polarization images.  



Chapter 2 

43 
 

The combinations of two or more sensors, in general, improved the extraction of the target’s 

information, and consequently, the classification. The classification that used S2 and TanDEM-X showed 

the highest overall kappa values, 81.91% and 0.76. Variable importance shows the PC1 of Bands 11 and 

12 of S2 and the coherence of TanDEM-X were more important to the RF classifier.  

The S1 and S2 classifications had an overall accuracy and kappa value of 79.90% and 0.73. PC1 of 

Bands 11 and 12 of S2 and the PC1 of contrast of VH polarization of S1 had a high ranking in the variable 

importance. The classification that used all images from the dry season had a similar overall accuracy 

and kappa values compared to the S2 and TanDEM-X classification. The PC1 of Band 11, PC1 of ALOS-

PALSAR 2 dual VH polarization descending orbit, and PC1 Band 12 images had the highest importance. 

The highest accuracy for each of the four forest classes was obtained by different classification 

inputs, the highest producer’s accuracy for Cerrado denso class was achieved with S2 and S1 

classification and the highest user’s accuracy with the classification that used S2 images. The highest 

producer’s accuracy for Cerradão class was reached with the classification that used all images, and the 

user’s accuracy was reached with the S2 and TanDEM-X classification. For the gallery forest, the highest 

producer’s accuracy was obtained with the classification that used S1 images, and the user’s accuracy 

was obtained using S2 images. The highest users’ accuracy for secondary forest class was again reached 

with S2 images. The ALOS-PALSAR 2 dual polarimetric images resulted here in the best producer’s 

accuracy (Figure 2.8). 
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Figure 2.8. Producer’s (A) and user’s (B) accuracy of classifications based on single-sensor and optical/SAR-
combinations for the four Cerrado types. Only data acquisitions during the dry season were considered. 

 

Dry and Rainy Season 

Table 2.4 summarizes the results for the classifications during the dry and rainy season. The 

classification of S1 images during the dry and rainy seasons had higher overall accuracy and kappa 

values compared to the S1 classification of the dry season, with 16% overall accuracy and a kappa of 

33%. This result shows that the use of images combining the dry and rainy seasons improved the 

classification of S1 images. Here, the PC1 of entropy and of mean images of VV polarization as well as 

of the VH polarization contrast image were the three most important variables. The ALOS-PALSAR 2 full 

polarimetric classification showed a lower overall accuracy and kappa values compared to the ALOS-

PALSAR 2 dual polarimetric classification during the dry season. Moreover, the volume polarimetric 

decomposition image was more important to the RF classifier.  

Table 2.4. Overall accuracy, kappa values, confidence interval 95% OAA, the three most important variables for 
the classifications according to Random Forest variable importance for Sentinel 2A (S2), ALOS PALSAR 2 full (A2f), 
ALOS PALSAR 2 dual (A2d), TanDEM X (TX), and Sentinel 1A (S1).  The parameters listed in the variable importance 
are the PC1 derived from the PCA, except for the images from TanDEM-X, as only one acquisition was available. 
All data acquisitions during the dry and rainy season were considered. 



Chapter 2 

45 
 

Rainy+dry season 
Overall 
Accuracy 

Kappa 
Conf. 95% 
OAA 

Variable Importance 

Sentinel 1A 56.21% 0.42 2.87 Entropy VV, mean VV, contrast VH 

ALOS2full 41.26% 0.22 2.77 Volumetric, C22, C11 

Sentinel 2A+Sentinel 
1A 

81.73% 0.76 2.05 
Bands 12 S2, 11 S2, contract VH S1 rainy 
season 

Sentinel 2A+ALOS2full 79.98% 0.73 2.28 Bands 11, 12, 5 S2 

All images 81.91% 0.76 1.97 
Band 11 S2, HV descending A2d, Band 12 
S2 

 

For the dry and rainy season, the classifications that combined radar and optical sensors were more 

accurate. From each classification, which used more than on sensor, we selected the first three images 

with highest variable importance, totaling 15 images and used these images as input for all image 

classifications. This classification had the highest overall accuracy and kappa values (81.91% and 0.76) 

(Figure 2.9). The PC1 of Band 11 of S2, PC1 of ALOS-PALSAR 2 dual VH polarization at descending orbit 

and PC1 of Band 12 of S2 were the most important images that contributed to the classification of all 

images. 
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Figure 2.9. Classification of Cerrado forest type using all images from the dry and rainy season on top of a false 
color composition from Sentinel 2A, Bands 3, 4, and 8 (07 July 2017). 

 

The S2 and S1 classifications showed a higher overall accuracy and kappa values, 81.73% 0.75, 

compared to the classification during the dry season. Variable importance showed that the PC1 of 

Bands 12 and 11 of S2 and the PC1 of contrast VH polarization were more important. 

The highest producer’s accuracy for the Cerrado denso class was achieved with S2 and ALOS-

PALSAR 2 full polarimetric classification, and the highest user’s accuracy was achieved with the 

classification that used all images. The highest producer’s and user’s accuracy for Cerradão class was 

reached with the classification that used S2 and S1. For the gallery and secondary forest, the highest 

user’s accuracy was obtained using S2 and S1 images. The highest producer’s accuracy for the gallery 

forest was achieved with S1 images and for the secondary forest class with all images (Figure 2.11). 
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Figure 2.11. Producer’s (A) and user’s (B) accuracy of classifications based on single-sensor and optical/SAR-
combinations for the four Cerrado types. All data acquisitions during the dry and rainy season were considered. 

 

Radar Classification 

We separately analyzed the radar classifications of Sentinel 1A, ALOS-PALSAR 2 dual/full 

polarimetric, and TanDEM-X (C Band, L Band, and X Band, respectively) for both seasons. Table 5 

presents the results of these classifications during the dry season. The TanDEM-X in combination with 

ALOS-PALSAR 2 dual polarimetric classification achieved the highest overall accuracy and kappa values, 

66.96% and 0.56. S1, and TanDEM-X had the lowest overall accuracy with 54.46% and 0.39. 

Furthermore, PC1 of ALOS-PALSAR 2 dual polarimetric VH descending orbit and HH descending orbit 

and coherence of TanDEM-X images were higher ranked in the variable importance list of Random 

Forests (Table 2.5). 
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Table 2.5. Overall accuracy, kappa values, confidence interval 95% OAA, and the three most important variables 
for the classifications based on the Random Forest variable importance for Sentinel 2A (S2), ALOS PALSAR 2 full 
(A2f), ALOS PALSAR 2 dual (A2d), TanDEM X (TX), and Sentinel 1A (S1). The parameters listed in the variable 
importance are the PC1 derived from the PCA except for the images from TanDEM-X, as only one acquisition was 
available. 

Dry Season 
Overall 
Accuracy 

Kappa 
Conf. 95% 
OAA 

Variable Importance 

Sentinel 1A +TanDEM-
X 

54.46% 0.39 2.66 Coherence HH TX, mean VV S1, entropy VV S1 

Sentinel1A+ALOS2dual 62.33% 0.50 2.61 
HV descending A2d, HH descending A2d, HV 
ascending A2d 

TanDEM-X+ALOS2dual 66.96% 0.56 2.61 
HV descending A2d, HH descending A2d, 
coherence HH TX 

Rainy+dry season  

Sentinel 1A+TanDEM-X 64.42% 0.53 0.67 
Coherence HH TX, mean VV S1 dry season, 
entropy VV S1 dry season 

Sentinel 1A+ALOS2dual 66.61% 0.55 2.69 
HV descending A2d, HH descending A2d, 
contrast VH S1 rainy season 

Sentinel 1A+ALOS2 full 61.10% 0.48 2.78 
Volumetric, entropy VV S1 dry seanson, mean 
VV S1 dry season 

TanDEM-X+ALOS2 full 61.01% 0.48 2.81 Coherence HH TX, volumetric A2f, C22 A2f 

ALOS2 dual+ALOS2 full 58.30% 0.44 2.81 
HV descending A2d, HH descening A2d, HH 
ascending A2d 

 

Combining the dry and rainy seasons, S1 and ALOS-PALSAR 2 dual polarimetric classification 

achieved the highest overall accuracy and kappa values, 66.61% and 0.55, respectively. Here, PC1 of 

ALOS-PALSAR 2 dual polarimetric VH descending orbit, HH descending orbit, and PC1 contrast of VH 

polarization images were more important. The ALOS-PALSAR 2 dual polarimetric and ALOS-PALSAR 2 

full polarimetric classification showed the lowest overall accuracy and kappa values, 58.30% and 0.44, 

respectively.  

Highest producer’s and user’s accuracy for Cerrado denso and the Cerradão class for the dry season 

were achieved with TanDEM-X and ALOS-PALSAR 2 dual polarimetric classification. This sensor 

combination also had the highest user’s accuracy and producer’s accuracy together with S1 and ALOS-

PALSAR 2 dual polarimetric in the secondary forest. For the gallery forest, highest producer’s and user’s 

accuracies were achieved with S1 and TanDEM-X classification (Table 2.6). The radar sensors 

combinations presented a higher overall accuracy and kappa values compared to the single use of these 

sensors. 

Table 2.6. Producer’s and user’s accuracy of classifications based only on combinations of SAR sensors for the four 
Cerrado types. Only data acquisitions during the dry season were considered. 
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Dry Season Cerrado Denso Cerradão Gallery Forest Secondary Forest 

          

Producer's accuracy          

Sentinel 1A +TanDEM-X 40.21% 28.52% 94.46% 54.04% 

Sentinel1A+ALOS2dual 38.11% 34.86% 76.12% 100.00% 

TanDEM-X+ALOS2dual 40.91% 59.86% 67.13% 100.00% 

User's accuracy         

Sentinel 1A +TanDEM-X 50.88% 24.92% 73.19% 70.00% 

Sentinel1A+ALOS2dual 53.96% 34.14% 70.97% 83.33% 

TanDEM-X+ALOS2dual 68.02% 47.22% 72.93% 82.37% 

 

The dry and rainy season had similar results. Producer’s and user’s accuracy were for the gallery 

forest the highest using S1 and TanDEM-X, too. For Cerrado denso, the best user’s accuracy was 

achieved with S1 and TanDEM-X classification. Highest producer’s accuracy was obtained by using S1 

and ALOS-PALSAR 2 dual polarimetric images as input for the classification. This combination was also 

the best for the secondary forest, paired with ALOS-PALSAR 2 dual polarimetric and ALOS-PALSAR 2 full 

polarimetric. Here, TanDEM-X and ALOS-PALSAR 2 full polarimetric images reached the highest user’s 

accuracies. The highest producer’s and user’s accuracy for Cerradão class were achieved with ALOS-

PALSAR 2 dual polarimetric and ALOS-PALSAR 2 full polarimetric classification (Table 2.7). 

Table 2.7. Producer’s and user’s accuracy of classifications based only on combinations of SAR sensors for the four 
Cerrado types. All data acquisitions during the dry and rainy seasons were considered. 

Rainy+Dry Seasons Cerrado Denso Cerradão Gallery Forest Secondary Forest 

Producer's accuracy         

Sentinel 1A+TanDEM-X 53.85% 40.85% 94.81% 67.72% 

Sentinel 1A+ALOS2dual 55.24% 44.72% 66.44% 100.00% 

Sentinel 1A+ALOS2 full 47.90% 36.97% 92.04% 67.02% 

TanDEM-X+ALOS2 full 43.36% 42.61% 78.89% 78.95% 

ALOS2 dual+ALOS2 full 41.96% 51.41% 40.14% 100.00% 

User's accuracy         

Sentinel 1A+TanDEM-X 71.96% 37.54% 76.75% 73.11% 

Sentinel 1A+ALOS2dual 65.29% 44.88% 76.19% 77.66% 

Sentinel 1A+ALOS2 full 59.57% 40.70% 68.56% 71.27% 

TanDEM-X+ALOS2 full 56.36% 39.41% 67.66% 80.36% 

ALOS2 dual+ALOS2 full 45.63% 46.79% 58.29% 77.03% 
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Furthermore, the polarization of radar sensors is shown to be an important factor for the Random 

Forest classification. The intensity of cross-polarized HV polarization PC1 images were one of the most 

important variables in 60% of the classification, which used radar sensors. 

Summary of the Classifications 

The three highest overall accuracies and kappa values belonged to S2, S2 with TanDEM-X, and to 

the combinations of all images for the dry and rainy seasons. Nevertheless, the range of confidence 

interval shows different results compared to the overall accuracy and kappa values. The three 

narrowest ranges, which indicate good precision, belong to all images of the dry and rainy season, all 

images of the dry season and S2 with S1 from the dry and rainy season classifications (Table 2.5).  

The variable importance for the classifications that combined optical and radar images showed that 

PC1 of Bands 11, 12, and 5 from S2, PC1 of ALOS-PALSAR 2 dual polarimetric VH descending orbit, PC1 

of ALOS-PALSAR 2 dual polarimetric HH descending orbit, coherence of TanDEM-X, and the PC1 of 

contrast VH from the rainy season of Sentinel 1A images were the most important variables during the 

Random Forest classification. 

 

2.4 Discussion 

The results showed the importance of integrating satellite images from different sensors to classify 

the forest and non-forest area. The Program for the Estimation of Amazon Deforestation (PRODES) is 

the most important project that has been conducting satellite monitoring of deforestation in the Legal 

Amazon, producing annual deforestation rates in the region, using Landsat images (30 meters spatial 

resolution). Comparing the data of forest areas from the PRODES project with the results of our work, 

it is possible to verify a high underestimation in the forest areas, mainly in the classes gallery forest and 

Cerrado denso. The PRODES estimated an area of 12,702 ha of forest, and our work estimated an area 

of 27,326 ha. This difference can be associated to the different spatial resolution used in PRODES (30 

meters) and in our study (10 meters). 

Optical images are largely used to map vegetation types in the Cerrado biome. In our results, S2 

classifications showed the highest overall accuracy and kappa values. The application of S2 images to 

map vegetation types in the Cerrado biome is new. In general, Landsat is the most common sensor used 

to discriminate vegetation types in the Cerrado. Nascimento and Sano (2010) had 85% overall accuracy 

for mapping vegetation types in this biome. The authors used Landsat 7 ETM+ images to discriminate 

the Rupestrian Cerrado (Savanna formation) in the Chapada dos Veadeiros National Park in Goias State, 

which can be difficult due to the spectral confusion with other types of Cerrado vegetation. The optical 
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bands located in the red and NIR wavelengths showed high importance and contribution to the 

discrimination of vegetation type, as was visible in our results (Tables 2.3 and 2.4). Nascimento and 

Sano (2010) agree on the importance of VIS and NIR regions for characterizing forest areas, as the 

vegetation has higher reflectance in this wavelength range and is thus more sensitive. Additionally, the 

number of optical images in ours and other studies helps the increase of discrimination power of 

different vegetation types, due to the unique spectral signatures of the plant during the year (Hermuche 

and Sano 2011; Barret et al. 2016). The optical data are certainly useful to map the vegetation type in 

Cerrado; however, these images are usually not available during the rainy season and the optical data 

cannot extract information from the structure of the forest (Asner 2001). Moreover, the availability of 

images in the rainy season would allow for a higher temporal resolution, which is crucial to better 

discriminate the vegetation types in the Cerrado biome due its high seasonality. Additionally, in dense 

areas of vegetation, the optical sensor is usually saturated due to the low optical depth penetration 

through these areas, affecting the mapping of the various vegetation types. There are important 

projects assessing the land use of the Cerrado biome, such as the TerraClass Cerrado project, which 

produced a map of the land use of the Cerrado biome. However, the project had great difficulties to 

discriminate the different types of vegetation, which is important for the preservation of biodiversity in 

this region. Nevertheless, TerraClass presents another step in the challenge of mapping the different 

types of vegetation in the Cerrado (MMA 2015).  

The use of radar images can be a solution to overcome the lack of image availability in the rainy 

season and the high saturation of optical images in areas of great biomass density. In our radar, 

classification results from the dry and rainy seasons, TanDEM-X (X Band) and ALOS-PALSAR 2 (L Band) 

dual polarimetric classification from the dry season showed the highest overall accuracy and kappa 

values. The influence of vegetation scattering mechanism dependencies is strongly dependent on the 

wavelength and polarization of the sensor. In the short/intermediate wavelengths, such as X and C 

Bands, backscattering represents the radiation interaction of canopy, leaves, branches, secondary 

branches, and part of volumetric scattering (inside crown). Longer wavelengths, such as the L and P 

Bands, have the capability for deeper penetration. Bigger vegetation components such as trunks, 

crown, ground, and branches interact with these lower wavelengths. According to the results for the 

dry season, L Band dual polarimetric images had the highest overall accuracy and kappa values were 

comparable to the classifications that used single sensor (X and C Bands). The study area is mostly 

forested. In these areas, radar signals are more likely to be saturated in the X and C Bands compared to 

the L Bands (Yu and Saatchi 2016). The polarization controls the types of components that interact with 

the radiation. In our study, the L Band cross-polarized HV polarization was the most important variable 

that contributed to the random classifier in the best classification. This agrees with the fact that cross-
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polarized images have direct relation with volumetric scattering, and are therefore sensitive to forest 

structure (Jensen 2014). There are few studies in the Cerrado biome using only radar images. Sano et 

al. (2001) used the L Band from JERS-1 SAR data to map the different types of vegetation by analyzing 

the backscattering coefficient values. The study could well separate the grassland, mixed 

grass/shrub/woodland, and woodland in the state of Distrito Federal.  

The results of the CI 95% OAA showed the importance of the fusion between optical and radar data 

to map vegetation type in the Cerrado biome, since the confidence interval with the narrowest range 

belonged to the classification that used all images from the dry and rainy seasons, where the narrower 

the interval, the more accurate the classification. The Cerrado vegetation has one of the largest forest 

diversities, consequently the combination of different sensors (optical and radar) and spatial resolution 

(low, medium, and high) results in a great improvement in the accuracy (Saatchi et al. 2010). Of the 

three classifications that obtained the highest values of accuracy and kappa, two used radar and optical 

images. This showed the importance of the integration of different sensors in improving the mapping 

of forest types in Cerrado. A similar result was reported by (Sano et al. 2005), who combined optical 

and radar images to improve the classification of different vegetation types in the Cerrado biome. The 

study had a high overall classification accuracy, which used both sensors in regions of savanna and 

grasslands formations. Sano et al. (2005) used data from the dry and rainy seasons and showed the 

importance of the time series in improving the classification of different types of vegetation. 

Additionally, Sano et al. (2005) showed better performance of radar data (JERS-1 SAR) compared to 

optical data (Landsat). In contrast, our results showed that optical data performed better for 

classification, compared to the radar data. However, this study used a higher number of radar images 

using L Band compared to our study, which increased the efficiency of mapping vegetation, due to the 

sensitivity to identify the various structures of the forest, consequently better distinguishing the type 

of forest, as reported by Lucas et al. (2000), Garestier et al. (2009) and Santoro et al. (2009). Carvalho 

et al. (2010) used images from ALOS-PALSAR and Landsat to map the different types of vegetation and 

the results agree on our findings. The highest overall accuracy and kappa values were from the S2 

classification; therefore, in our results, the use of radar images did not reach the highest accuracy and 

kappa values. Carvalho et al. (2010) showed that the use of radar data did not improve classification 

accuracy; however, the study used only one data from radar imaging. Concerning GLCM textures, the 

same study showed similar results. Grey Level Co-occurrence Matrix textures images had a high variable 

importance during the Random Forest classification, in particular for entropy, which showed the 

disorder of GLCM elements. This may be related to the differences in the backscattering of the 

vegetation type classes. 
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Regarding the user’s accuracy, the secondary forest was better classified using optical images, 

whereas the other three classes were better classified using optical and radar images. The optical bands 

were the most important variables for the RF classifier. The texture images were the second most 

important ones. Several authors presented similar results achieved in this study (Schlund et al. 2014; 

Inglada et al. 2016; Ribeiro and Walter 1998). All mentioned studies showed an improvement in the 

separability of land cover types employing texture images. The coherence image from TanDEM-X was 

the third most important variable. Schlund et al. (2014) and Baron and Erasmi (2017) showed an 

improvement in the discrimination of forest against other classes using coherence as well.  

Other studies about classification of vegetation type in the Cerrado biome, such as Mesquita JR et 

al. (2001) were in regions where the vegetation has a smaller gradient compared to regions within the 

Arc of Deforestation, such as Distrito Federal, Minas Gerais, and São Paulo. The IBGE and the MMA 

mapped vegetation types from the whole Cerrado biome. The studies used Landsat images from the 

year 2004 and scaling of 1:250,000, which is not enough to detect the gradients of the Cerrado biome. 

The mapping of vegetation types in transition zones is still a challenge, due to these not having a clear 

border  (Ribeiro and Walter 1998). However, these regions play an important role in the conservation 

of the Amazon and Cerrado biome, wherein 75% of the deforestation in Amazon occurs. 

 

2.5 Conclusion 

In this paper, we evaluated the use of optical and radar remote sensing for mapping different types 

of vegetation in the transitional area between the Cerrado and Amazon biomes. The method described 

in this study improved the mapping of vegetation type in the Arc of Deforestation in the Cerrado biome 

and can be applied to create accurate vegetation type maps. We evaluated the use of four different 

sensors, one optical sensor (Sentinel 2) and three radar sensors (Sentinel 1, ALOS, TanDEM-X), for 

better vegetation type identification and area discrimination, so that these can be used for better 

calculations of biomass loss and carbon storage in the high dynamic Arc of Deforestation in Brazil.  

When applying a supervised random forest classification, the highest overall accuracy and kappa 

coefficient were obtained using only the Sentinel 2A for classification. However, of the three 

classifications that obtained the highest overall accuracy and kappa values, two used radar and optical 

images. Bands 5, 11, and 12 of Sentinel 2A, texture images from Sentinel 1A cross-polarization, and 

coherence of TanDEM-X were the most important images in order to separate each class, as calculated 

by the random forest variable importance. The combination of optical and radar sensor data usually 

improves the vegetation classification. Nevertheless, in our study, the single use of optical sensors was 

sufficient to discriminate the four forest classes in the study area: Cerradão (Open Forest), Cerrado 
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denso (Dense Woodland), gallery forest, and secondary forest classes in a highly fragmented complex 

vegetation biome. Such information is relevant for the upcoming mapping of vegetation types in the 

endangered Cerrado/Amazon ecotone. 
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3. Aboveground Biomass and carbon stock in the Cerrado forests, Mato 

Grosso, Brazil 

 

This manuscript is published as: Kulp, Larissa; de Souza Mendes, Flávia and Gerold, Gerhard; GEOÖKO 
(XXXIX), p. 5-47. 

Abstract 
 

The Cerrado biome represents around 25 % of the land surface of Brazil comprising a high biodiversity 
and a great proportion of endemic species. The vegetation is characterized by a mosaic of grasslands, 
savannas and forests. Since the 1970s, the biome is strongly affected by deforestation and degradation 
along with fragmentation. Within the arc of deforestation four fragments in the Cerradão and two 
fragments in the Cerrado denso (sensu stricto) were selected to analyze the aboveground biomass 
(AGB) and carbon stocks in the municipality of Nova Mutum, Mato Grosso, Brazil. To apply appropriate 
allometric models for AGB estimation and to verify the hypothesis that there exists a gradient of AGB 
from the border to the center of the fragments, plot analysis along transects (border to center) were 
launched. For the estimation, the woody components of the tree layer and of the shrub layer were 
investigated by recording main variables like the diameter at breast height (DBH), the total tree/shrub 
height, wood density, basal area and the tree species. Finally, the DBH and the total tree/shrub height 
were the explanatory variables of the allometric model for the Cerradão whereas the DBH and the wood 
density were the explanatory variables of the allometric model for the Cerrado denso. The estimated 
tree and shrub AGB of the Cerradão amounted to 93.23 Mg ha-1 with carbon stocks of 46.61 Mg ha-1. 
The Cerrado denso revealed a total AGB of 56.13 Mg ha-1 and aboveground carbon stocks of 28.07 Mg 
ha-1. These values are higher compared to similar studies in the Cerrado biome. Moreover, the results 
showed no significant differences in the quantity and distribution of AGB and aboveground carbon 
stocks between border and center of the fragments in both vegetation types but a significant difference 
of the AGB and aboveground carbon stocks between the two investigated vegetation types. 
Extrapolations of the AGB and carbon stock results mention that for the Cerradão in Mato Grosso total 
AGB is 0.29 Gt and the AGB for the Cerrado denso is 0.41 Gt. in Mato Grosso. The preservation of the 
still existing forest areas is not only important for the C-cycle, but also for the regional water cycle and 
biodiversity. 
Keywords: Aboveground biomass and C-stocks, Cerrado Biome, fragmentation, allometric models, 
Mato Grosso, Brazil 
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3.1 Introduction  

3.1.1 Cerrado vegetation types and deforestation 

The savannas of South America that pertains to the neotropical realm, constitute 45 % of the whole 

land surface (Sankaran et al. 2005; Scholes and Archer 1997). In central Brazil, these neotropical 

savannas are specified as ‘Cerrado’. This unique biome covers above 2 million km2, representing 

approx. 25 % of the land surface of Brazil and marginal parts of Bolivia and Paraguay. Therefore, the 

Cerrado is the second largest Brazilian biome after Amazonia. The Cerrado biome, which exhibits a 

broad range of vegetation formations from grasslands to closed forests with approx. 44 % endemic 

species (Pfadenhauer and Klötzli 2014; Goodland 1971; Sano et al. 2010). On the southern and 

southeastern border of the Amazon biome, the Cerrado constitutes a transition zone (ZOT) and 

conforms with the “arc of deforestation” in Brazil (Figure 3.1), where deforestation is a main process 

since the 1980s in favour of great cropping fields (soy, cotton, corn) and pastures. Therefore, the 

transition zone is characterized by a complex mosaic of savanna and forest (Peixoto et al. 2017).  

The Cerrado biome is characterized by a semi-humid tropical climate with a rainy season from 

October-March and a dry season from April-September, with regional variances. Hence, periodic fires 

and seasonal droughts influence the Cerrado. The annual mean temperature varies regionally from 18 

°C to 28 °C and the annual mean precipitation fluctuates from 900 mm to 1,800 mm regionally, whereof 

the majority falls during the rainy season (Minami et al. 2017; Miranda et al. 2014; Oliveira Filho and 

Ratter 2013). In the dry season, the monthly precipitation is < 100 mm. The vegetation is developed on 

acidic, base-poor soils. Therefore, about half of the soils in the Cerrado are Latosols (as defined in the 

Brazilian system of soil classification), which is equivalent to Ferralsols (WRB) and to Oxisols (USDA-ST). 

With the dominance of kaolinite clay minerals and high Al-Fe-oxid contents they are nutrient-poor and 

susceptible to leaching. The predominantly flat relief of the area enables an easy access for 

deforestation (Miranda et al. 2014; Minami et al. 2017).  
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Figure 3.1. The Brazilian biomes, the arc of deforestation (red lines) (left; modified after (Silveira 2015) and the 
study area (right). 

 

Currently particularly the Amazon biome and the Cerrado biome are exposed to severe human 

impacts. During the last five decades, vast deforestation and degradation, mainly for agricultural use, 

caused already a disturbance of 80 % of the Cerrado biome and the irretrievable loss of the primary 

vegetation cover. During the agro-industrial expansion phase (late 1990s until 2004), large scale 

expansion of soy and other mechanized crops accompanied by an intensification of cattle production – 

driven by global market conditions and technological advances – took place in the southeastern part of 

Amazon (Nepstad et al. 2014). In the state of Mato Grosso, more than half of the forest clearing 

happened during this phase. The natural vegetation in Mato Grosso is dominated by Cerrado – a semi-

arid sclerophyllous shrub vegetation intersected with narrow strips of gallery forest buffers along 

streams. The state promotes high rates of Cerrado conversion in vast areas of its territory in order to 

maintain its leading position in soybean and cattle production (27 % of the national soybean production 

and 14 % of the “the nation’s total livestock” of 2010) (DeFries et al. 2013). Approximately 50 % of the 

original 2 million km2 of the Cerrado area is under agricultural use (Beuchle et al. 2015), compromising 

about 80 % of the primary Cerrado vegetation. The conversion of Cerrado vegetation is likely to 

continue as a dominant process of land use change in this region (Lapola et al. 2014). Most of the former 

Cerrado pasture areas were established after the 1970s (Lilienfein et al. 2003). 

The Cerrado contains a significant biodiversity with several species, varying from 300-400 ha-1, 

including about 3,000-7,000 vascular plant species. The distinctive flora consists of > 1,000 tree species, 
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> 2,500 herbs and > 250 grass species (Castro and Kauffmann 1998; Oliveira Filho and Ratter 2013). The 

vegetation period starts in mid-September to the end of October, with the onset of the rainy season 

and ceases with the onset of the dry season (Arantes et al. 2016). The trees are predominantly 

indeciduous and its foliage is sclerophyll, i.e. the leaves are thick and leathery. Thereby the foliage is 

drought-resistant. During the dry season, which is coincident with the flowering, indeciduous trees 

require sufficient moisture in the deeper soil layers to perpetuate its vitality. The trees of the Cerrado 

biome exhibit a dimorphic root system, consisting of profound taproots to obtain the water reserves 

stored in the deeper soil layers and shallow lateral roots, which are connected with the roots of the 

layer of grass. Consequently, the root system of the Cerrado trees is capable of harnessing either 

groundwater or surface water or even both coincident (Pfadenhauer and Klötzli 2014). Furthermore, 

the root system is characterized by the phenomenon of the ‘hydraulic lift’, i.e. the roots can redistribute 

the water both from the bottom up and from top to bottom. In general, the Cerrado is a heterogeneous, 

fire-resistant biome with different vegetation types ranging from the grassland formation over the 

savanna formation to the forest formation (Figure 3.2). Therefore, it exhibits significant variations in 

structure, fire frequency and biomass (Delitti et al. 2006). 

 

Figure 3.2. Vegetation physiognomy of the Cerrado biome (modified after Coutinho (2007). 

 

In the narrower sense (sensu stricto), the Cerrado types range from the Campo cerrado to the 

Cerradão (Figgure 3. 2). This narrow section has a deep water table and seasonal water deficits at the 

topsoil-level. Furthermore, soils of low fertility are common, i.e. latosols are dominating. The trees and 

shrubs are commonly 3-8 m tall with > 30 % of treetop coverage. Thus, there is a pronounced 

herbaceous layer, which is 1.0-1.5 m high (Oliveira Filho and Ratter 2013; Felfili 2005). The Cerrado 

sensu stricto (Figure 3.2) is a biodiverse open woodland with a predominance of trees and scattered 

shrubs from 8 m up to 10 m as well as a grass understorey (Oliveira Filho and Ratter 2013; Kauffman et 
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al. 1994). It is divided into the Cerrado aberto alias Cerrado ralo, the Cerrado típico and the Cerrado 

denso. Compared to the Cerrado típico and the Cerrado denso, the Cerrado aberto has a more open 

canopy. The Cerrado típico has a treetop coverage of 20-50 % and a tree height of 3-6 m (Ribeiro et al. 

2011; Castro and Kauffmann 1998; Oliveira Filho and Ratter 2013).  

With the land use change (LUC) from forest (Cerrado) to young pasture or crop-field (≤ 10 yr), soil 

carbon stocks decrease on Ferralsols by 15 Mg ha-1 and by 13 Mg ha-1 on Acrisols (Göpel et al. 2018). 

Nevertheless, the main loss is given by deforestation with aboveground biomass burning, which reaches 

200-230 Mg ha-1 loss of carbon stored by LUC into young pasture or crop field in Amazon rainforest 

(Boy et al. 2018). Thus, conservation of remaining natural Cerrado areas is an important issue for 

biodiversity and carbon storage. But studies on aboveground and belowground biomass (ABG and BGB) 

for the Cerrado vegetation types are rare, whereas Amazonia is one of the most studied biomes, 

especially related to carbon fluxes (Ribeiro et al. 2011). (Fearnside 2018) reports on biomass studies of 

Brazilian savanna woodlands (mostly Cerrado), including those in Amazonia, which have recently been 

reviewed by Miranda et al. (2014). These authors review 26 studies at 170 sites and emphasize the 

contrast between the amount of available data and what has been used in global carbon computations, 

pointing out that the estimate by Saatchi et al. (2011) used only one study at two savanna woodland 

sites in Brazil. For Brazil as a whole, the review by Miranda et al. (2014) calculates an average 

aboveground carbon stock of 37.4 Mg C ha-1 in savanna woodlands classified as ‘‘forestland’’ (34.4 % 

of the total savanna woodland area), and 11.5 Mg C ha-1 in those classified as ‘‘shrublands’’ (65.6 % of 

the area), giving a weighted average of 20.4 Mg C ha-1. For grasslands, aboveground biomass averaged 

7.2 Mg ha-1 [i.e., roughly 3.6 Mg C ha-1]. 

However, the Cerrado has only a legal protection status of < 10 % of its area, around 1.7 million ha 

of shrubland, 764,000 ha of forestland and 413,000 ha of grassland are protected. Amazonia, by 

contrast, has a legal protection status of > 25 % of its area (IBGE 2015; Sano et al. 2010). Based on land 

use in 2010 for whole Mato Grosso and emission factors, estimated in the frame of the carbiocial 

project (see www.carbiocial.de) CO2-emissions from old cropland amount to 108 Mt of N2O for 

cropland and for pasture to 0.03 Mt (Göpel et al. 2018). In 2006/2007 (one year), when the 

deforestation rate was much higher, Fearnside et al. (2009) calculated an amount of 30.9 106 Mg for 

forest and 0.6 106 Mg CO2-C-eq. emissions for Mato Grosso, which correspond to 40 % of total fossil-

fuel combustion in Brazil. With the deforestation in Amazonia Legal, Nogueira et al. (2018) had 

estimated an amount of 0.7 109 Mg carbon loss. The mainly anthropogenic disturbances in the Cerrado 

biome such as deforestation and intensive agriculture, which trigger fragmentation and land 

degradation, result in losses of AGB and aboveground carbon stocks, so that the area belongs to the 

“hot spot of climate change” worldwide (Steffen et al. 2018). 
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As the carbon sequestration capacity is little studied in the Cerrado, the quantification of the AGB 

and the aboveground carbon stocks is necessary. The aim is, to estimate the AGB as well as the 

aboveground carbon stocks of the fragmented woody vegetation of the Cerradão and the Cerrado 

denso in Nova Mutum, Mato Grosso. These estimates will be compared with existing studies about the 

Cerrado or similar ecosystems, to investigate the importance of these vegetation formations for the 

regional and global carbon cycle. 

The research objectives concerning the Cerradão and the Cerrado denso, in Nova Mutum, Mato 

Grosso are: 

(1) to investigate the impacts of fragmentation on the AGB and the aboveground carbon storage 

capacity 

(2) to identify differences of the AGB and the aboveground carbon stocks between the border and 

the center of each fragment 

 

3.2 Study Area 

The study area was defined using satellite images from Landsat 7 Annual TOA Percentile 

Composites, Landsat 5 TM 32Day TOA Reflectance Composites and Landsat 8 32Day TOA Reflectance 

Composites. Two classes were created with Forest and Non Forest using four types of classifiers: 

Random Forests, CART, Margin SVM and Voting. The mapping of deforested areas was carried out 

between 1985-2015. From 1985 on there was a large increase of Non Forest with deforestation, after 

2010 the Non Forest area grew only by 3.6 %. The potential of Sentinel 1A-C-band radar images to map 

the fragmented vegetation of the study area was also tested using the interferometry process. Two 

images with different date were used: July 30 and August 23, 2015. The digital image processing is 

described in detail in de Souza Mendes, F. de (2016). 
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Figure 3.3. Mosaic of natural vegetation and land use that represents mainly intensive agriculture (left, Sano et 
al. 2010) as well as shots of a Cerradão and of a cornfield in Nova Mutum (right). 

 

The defined area encompasses three main cities: Nova Mutum, São Lucas do Rio Verde and 

Diamantino. A large portion of this region is dominated by Cerrado denso, a subtype of vegetation of 

savanna formations, representing 73 % of the vegetation of Cerrado vegetation types present in the 

state of Mato Grosso (Sano et al. 2007b) Further, Nova Mutum is an important city in the context of 

deforestation and soybean production in Brazil. In 2014, Nova Mutum had the second largest soybean 

planted area in Mato Grosso (IBGE 2015) and was on the list of the top 20 cities of mostly deforested 

natural vegetation between 2002 and 2010 (MMA 2014). Furthermore, the municipality is partially 

located in the ZOT and is consequently characterized by a mosaic of forest and savanna, whereof the 

savanna vegetation accounts for approx. 92 % and the forest vegetation accounts for approx. 8 % 

(Minami et al. 2017). This mosaic is disturbed by grave deforestation mainly for a rapid development of 

intensive agriculture (Figure 3.3). Thus, the degradation and fragmentation in this region are high. The 

study area is constituted of six Cerradão fragments and of two Cerrado denso fragments that vary in 

size (Table 3.1) and isolation, located northerly, northeasterly and southeasterly of the downtown area 

within a distance of < 30 km (Figure 3.5). The annual mean temperature in Nova Mutum is 24.6 °C and 

the annual sum of precipitation is 1,934 mm at an altitude of 470 m a.s.l. (Figure 3.4; Minami et al. 

2017). The rainy season last from October until April (Figure 3.4). 
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Figure 3.4. Climate graph of Nova Mutum (Mato Grosso, Brazil) (own design; data originate from Climate data and 
Openstreemap org (2012). 

 

The fragments A-D and G-H are within the Cerradão area (Figure 5). This vegetation type consists 

of a mixture of forest and savanna tree species. Therefore, depending on the species composition, the 

Cerradão is considered as a dense to closed woodland or a forest savanna (Miguel et al. 2017a; Eiten 

1973; Torello-Raventos et al. 2013; Miguel et al. 2017b). In this study, the Cerradão is classified as part 

of the forest formation (Figure 3.2).  

The Cerradão study area completely presents dystrophic facies with indicator plants like Emmotum 

nitens or Hirtella glandulosa (Oliveira Filho and Ratter 2013). The trees and shrubs of this predominantly 

indeciduous broadleaf forest and woodland, respectively, reach heights of 7-15 m and the closed or 

slightly open canopies exhibit a cover that ranges from 50-90 % (Fearnside et al. 2009). In general, trees 

and shrubs prevail in the Cerradão, thus it exhibits a greater AGB production as well as higher 

aboveground carbon stocks as contrasted to other Cerrado vegetation types. Furthermore, the 

Cerradão has a higher tree density and higher diameters at breast height (DBH1.30) (Morais et al. 2013; 

Goodland 1971). Because of the high treetop coverage, the herbaceous layer is strongly shadowed and 

therefore reduced, i.e. the ground is often bare or covered with litter (Pfadenhauer and Klötzli 2014; 

Oliveira Filho and Ratter 2013). Compared to Amazonian woodland vegetation, the Cerradão has a 

lower tree density and a more open canopy and partially overlapping treetops (Hoffmann et al. 2009). 

It is the most closed vegetation type in the Cerrado biome, constituting a transition zone from the 

savanna (Cerrado sensu stricto) to dry forests (Delitti et al. 2006; Ratter et al. 1973). Moreover, the 

Cerradão connects the Amazon and the Cerrado biome. Its surface area in Mato Grosso is approx. 
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31,495.29 km2 (3,149,529.27 ha) and 101,879.85 km2 (10,187,984.73 ha) in the entire Cerrado, 

dependent upon the Cerradão definition (MMA 2006, 2002; Sano et al. 2007a). 

 

Figure 3.5. Localization of the investigated fragments in the Cerradão (A-D, G-H) and in the Cerrado denso (E-F). 

 

Table 3.1. The size of each fragment [ha]. 

 

 

The fragments E-F are within the Cerrado denso area (Figure 3.5). This vegetation type can be 

defined as a dense woodland savanna, featuring trees of 5-8 m height and a canopy cover of approx. 

50-70 % (Dodonov et al. 2013) and an understorey of shrubs and grasses (Giambelluca et al. 2009). 
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Compared to the Cerrado típico and the Cerrado aberto, the Cerrado denso has a higher tree density 

and a more closed canopy (Castro and Kauffmann 1998). Furthermore, it has higher biodiversity in 

common with the Cerradão (Maracahipes Santos et al. 2015). Since the Cerrado denso area is located 

in the ZOT just as the Cerradão study area, it is also affected by degradation and fragmentation. Its 

surface area is approx. 73,121.62 km2 (7,312,161.94 ha) in Mato Grosso and around 245,643.60 km2 

(24,564,359.97 ha) in the whole Cerrado (MMA 2006, 2002; Sano et al. 2007a). 

 

3.3 Material and Methods 

The field survey took place from mid-July to the beginning of August 2017, i.e. during the dry 

season. The accessibility to the selected fragments was proved in advance. In general, the selection of 

the study area was dependent on its homogeneity (e.g. soil type, relief) as well as on a minimum 

distance of > 100 m of each fragment to rivers. In the field, the access authorization by the landowners 

to the fragments was finally crucial and restricted the selection on eight fragments with different 

extents (Table 1; Figure 5). The overall aim of the field survey was the estimation of the AGB and the 

aboveground carbon stocks (AGC) of each fragment by indirect measurements, i.e. non-destructive and 

by applying appropriate allometric biomass models. Therefore, the total height and the DBH were 

determined for trees and shrubs in several defined plots and subplots, respectively. Additionally, the 

treetop coverage per tree was measured and each tree species was identified. For the survey, trees 

and shrubs were distinguished as follows: trees are defined as “woody plants higher than 5 m” (Di 

Gregorio 2005) and in contrast, woody plants lower than 5 m are classified as shrubs (clear tree 

physiognomy with an altitude higher than 2 m forms an exception). Measurements of trees with a 

DBH1.30 ≤ 10 cm as well as the herbaceous layer were neglected in this study, because they contribute 

just slightly to the aboveground carbon storage and would otherwise bias the results (Chave et al. 

2014). Based on the identified species, the measured values of the DBH1.30/DBH0.30, the tree/shrub 

height and the treetop coverage, the AGB can be determined with an appropriate allometric biomass 

model. 

 

3.3.1 Sample design  

After defining the preselection of the study area, the selection of the fragments in the field was 

mainly dependent on the access authorization by the landowners. In the end, the study area was 

constituted of four Cerradão fragments close to the midtown of Nova Mutum, two additional Cerradão 

fragments in the northeast and two Cerrado denso fragments in the southeast of Nova Mutum (Figure 

3.5). The fragment sizes ranged from surfaces > 59 ha to surfaces < 5314 ha (Table 3.1) with varying 
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degrees of fragmentation. The sampling was executed on four plots along a transect from the edge of 

each fragment towards its center (Figure 6). Therefore, 32 plots were investigated in total. The location 

of the transect was predominantly defined in the middle of the fragment edge, closest to the next road 

and – as possible – without further border influences, e.g. by crossroads. The plot sampling started at 

a distance of 20 m from the edge of the forest or savanna fragment. The other three plots were 

constructed after a horizontal distance of 80 m from center to center of each plot (Figure 3.6). Finally, 

the transect reached up to a horizontal distance of 260 m towards the center of the fragment. 

 

Figure 3.6. Sample design within each fragment (green background) with the transect (red line) from the edge of 
the fragment towards the center. The red dashes indicate the position of each plot/subplot (circles on the left 
side). 

 

Based on values of other comparable studies found in the literature (Paula et al. 2011; Laurance et 

al. 2000; Nascimento and Laurance 2004, 2006). According to these studies, edge effects and 

fragmentation impacts are greatest within the first hundred meters from edges. The tree mortality is 

distinctive up to approx. 100 m from the fragment edge, causing long-term carbon losses (Ferreira and 

Laurance 1997). Besides, the pronounced tree mortality close to the fragment edges induces 

physiognomic tree alterations and increasing pioneer species communities as well as carbon releases 

to the atmosphere through decomposition, particularly in fragments < 25 ha (Pütz et al. 2014; Chaplin-

Kramer et al. 2015). These incidents effect a biomass decline within the first 100 m of the fragment 

edge in relation to the fragment interior (Laurance et al. 1997). By contrast, Nascimento and Laurance 

(2004, 2006) observed biomass and density increments of trees < 10 cm DBH1.30 from tree growth and 



Chapter 3 

67 
 

recovery within the first 300 m. Nonetheless, these trees are susceptible to windthrow and 

physiological stress at the fragment edges (Paula et al. 2011).  

The shape of all plots was a circle with a radius of 12.62 m and a surface area of approx. 500 m2 

and 0.05 ha, respectively (Figure 6). The chosen size of the circle plot arose from empirical values. Thus, 

the tree layer should exhibit a representative size between 100-500 m2 (Steubing and Fangmeier 1992). 

The concept in each plot was to gather AGB information of all trees by measuring all living trees with a 

DBH1.30 ≥ 10 cm in total height, DBH1.30 and treetop coverage. To avoid double measurements and 

to do not forget the inclusion of sample trees, all relevant trees were counted and marked. A Brazilian 

botanist – specialized in Cerrado vegetation – determined each tree species. Each plot was located by 

recording the coordinates with a GPSMap 60CSx GARMIN hand tool in the plot center and geolocation 

of the smartphone. Additionally, a 360° photo was taken with a RICOH-THETA S camera. To include the 

shrub layer to the field survey, a subplot with a radius of 4 m and a surface area of approx. 50 m2 was 

established as a part of the center of the plot. Within this subplot, the number of shrubs was estimated 

and approx. 30 % of the estimated number of shrubs were measured in DBH0.30 and total height. 

 

3.3.2 Data Collection 

The data collection in the field was implemented by indirect, i.e. non-destructive methods, which 

are based on different wood variables and their mathematical evaluation as opposed to direct methods, 

where selected trees and shrubs are cut down and weighted. Regarding an allometric appraisal, the 

most important variables for the estimation of the AGB and the carbon stocks in the field survey are 

the DBH, the total height and the wood density of the woody components. These variables refer to the 

bole that accounts for the majority of aboveground woody biomass  (Ribeiro et al. 2011). Further crucial 

variables are the treetop coverage, the tree species and the total basal area. The tree species, the DBH 

and the total height of trees and shrubs as well as the treetop coverage were directly identified or 

measured in the field, whereas the wood density and the basal area were determined afterwards. 

Shrubs, i.e. woody plants lower than 5 m were investigated in the same way as trees but only in the 

subplot. The number of trees and stems in the study area differed because the trees are frequently 

multi-stemmed. According to Ribeiro et al. (2011) this feature is common in the Cerrado biome. 

Therefore, multi-stemmed trees were not only tagged with a number but also with a letter, e.g. a multi-

stemmed tree, numbered as 26 had two stems, which were tagged as 26A and 26B. The counting of 

the trees and stems in each plot enables a determination of the tree and stem density per hectare. For 

shrub layer measurements and estimates, the number of shrubs within the subplots was determined. 

The DBH measurements at 1.30 m aboveground were done with a diameter measuring tape (company 



Chapter 3 

68 
 

WEISS). Many trees exhibited two or partially even three stems. This irregularity modified the DBH 

appraisal by applying the following equation for multi-stemmed trees: 

𝐷𝑥 =  √𝐷12 + 𝐷22 + ⋯ + 𝐷𝑛2  (1) 

where Dx is the resulting pooled diameter in cm and D12 to Dn2 are the individual stem diameters 

of the tree. For their forest inventory in a Cerrado sensu stricto in the state of Minas Gerais, Ribeiro et 

al. (2011) applied this equation that pools the diameters of multi-stemmed trees. Through the equation 

(1) by Ribeiro et al. (2011), the biomass of single-stemmed and multi-stemmed trees becomes 

comparable. Other irregularities like slanting stems, steep slope angles ties or buttress roots did not 

occur in this field survey. The total height of the trees with a DBH1.30 ≥ 10 cm within the sample plots 

was measured with the Vertex IV by Haglöf Sweden, a digital altimeter based on ultrasound technique. 

Within the subplot, the total height of approx. 30 % of the shrubs was primarily measured with a 

yardstick due to the low heights of the shrubs. The investigation of the treetop coverage was done by 

using the HabitApp on the smartphone, because of its indirect influence on the development of the 

subjacent aboveground biomass. Leaf biomass was neglected because it contributes < 5 % to the AGB 

(Delitti et al. 2006). The basal area is a variable that correlates with biomass and carbon. The basal area 

is an essential indicator of growth capacity and the tillering density of the stand, including the number 

of trees within a stand and their DBH (Kershaw et al. 2016). For the multi-stemmed trees, the pooled 

DBH1.30 value of the stems was squared. The tree’s basal area (g) was calculated with: 

𝑔 [𝑚2] =
𝜋

40,000
 × 𝐷𝐵𝐻2[𝑐𝑚] (2) 

 

Climatic and edaphic factors affect the woody growth and consequently the wood density. 

Therefore, the wood density is an important variable to indicate diameter growth rates, the 

successional stage of the particular study area as well as to predict the AGB of the woody components, 

particularly trees, through an allometric model (Chave et al. 2005; Baker et al. 2004; Fehrmann 2007). 

In this study, the wood density value for each tree species was obtained by the database of Zanne et 

al. (2009). The determination of the wood density for each tree species took place after the field survey 

as the botanist had identified each tree. 

 

3.3.3 Allometric Biomass Models 

Allometric biomass models are a favored method to estimate the AGB and carbon stocks of a 

previously investigated study area (Henry et al. 2013). By multiplying the dry AGB results of each tree 

by the factor 0.50, carbon mass for dry biomass was estimated (Balderas Torres and Lovett 2013). 
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According to Chave et al. (2004), the selection of an allometric model is the most significant error source 

concerning the statistical evaluation of the data. Additional error sources often occur during the field 

survey regarding uncertainties in the tree and shrub measurement as well as methodological sampling 

uncertainties with the result that the measuring of the plot area is inaccurate, trees lack, measured 

twice or standing dead trees are counted as alive (Chave et al. 2004). Furthermore, either the total tree 

height or the DBH as a sole variable of an allometric model, often causes an overestimation of AGB 

(Nogueira et al. 2008; Kauffman et al. 2009). There are allometric models for the Cerrado vegetation, 

so for the Cerradão and the Cerrado denso but the existing models are not directly related to the region 

around Nova Mutum in Mato Grosso. It is indeterminate which factors mainly influence allometric 

relationships in the tropics and after Chave et al. (2014), the quality of allometric models to assess AGB 

is limited (Chave et al. 2014; Malhi et al. 2006). Allometric equations, composed of several variables, 

often exhibit large differences in AGB estimation (Kauffman et al. 2009). Table 3.2 shows several multi-

species allometric models that may fit the area of this study. 

Table 3.2. Potential allometric models to estimate the AGB in the study area of the Cerradão and the Cerrado 
denso. AGB = dry biomass per tree [kg]; DBH = diameter at breast height [cm]; ρ = wood density [g cm-3]; H = 
total tree height [m].  
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The allometric models of Brown; Chave et al.; Chave et al. (1997; 2005; 2014), which base on large 

and diverse datasets, were developed to estimate the AGB of tropical trees, mainly in old-growth 

forests. Thus, the allometric equations must encompass a wide span of different and unique trees in 

tropical South America, Africa and Asia, whose total tree heights and DBH vary greatly in size. Although 

there is high biodiversity of trees in the study area of the Cerradão and the Cerrado denso in Nova 

Mutum, the range of the total tree height and the DBH is considerably smaller compared to Amazonia. 

After conducting initial calculations with these models, the results clarified that the models are not 

consummate for this study, especially for the Cerradão, assuming an overestimation of AGB values 

(Table 3.3). The same applies to the allometric models m1 and m2 by Ribeiro et al. (2011), where first 

calculations show that the AGB values, especially of the Cerradão, are overestimated, presumably due 

to the application of too many variables (Table 3.2; Table 3.3). The allometric model by Rezende et al. 

(2006) is adapted to a Cerrado sensu stricto site in Brasília. In general, this model would fit the 

investigated area of this study but compared to the model m4 by Ribeiro et al. (2011), the latter applied 

more similar field methods compared to this study, what enhances the comparability. Rezende et al. 

(2006) measured the DBH of the trees at 0.30 m above the ground, for example, whereas Ribeiro et al. 

(2011) measured at the common height of 1.30 m above the ground, just as it was conducted during 

this field survey. The model of Miguel et al.; Miguel et al. (2017a; 2017b) is the best available published 

model to derive AGB and aboveground carbon stock estimates of the Cerradão study site in Nova 

Mutum. AGB and aboveground carbon stock estimates of the Cerrado denso are derived from the 

model m4 of Ribeiro et al. (2011) that is the most appropriate one for this vegetation type. The two 

models were applied in a Cerradão in Tocantins and a Cerrado sensu stricto in Minas Gerais, 

respectively, after conducting direct measurements. The investigated sites have similar soil types, 

annual mean temperatures, altitudes, gradients and precipitation ranges compared to those in Nova 

Mutum. Furthermore, the field methods of both studies are similar to this study. 

Table 3.3. AGB [Mg ha-1] of the investigated study area in Nova Mutum, calculated by different models to test 
their suitability. The applied models are bold. 
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3.3.4 Statistical Evaluation 

The statistical evaluation of the field data was performed with the graphical user interface RStudio 

that is meant for the statistical program language R (version 3.4.1) and with the spreadsheet software 

Microsoft Excel 2013. Thereby the individual plots of the transect within each fragment were regarded 

in detail mainly based on boxplots with the function boxplot() in RStudio. Besides, the plots were 

investigated in groups depending on the distance to the fragment border and separated per vegetation 

type, i.e. all first plots of the Cerradão were analyzed in groups as well as all second plots of the Cerradão 

were analyzed together. The non-parametric Kruskal-Wallis test – conducted with the kruskal.test() 

function in RStudio – was used, if there were significant differences within the variable data as well as 

within the AGB and aboveground carbon stock data from the border of the fragment to the center as 

well as between the two vegetation types. It was investigated if there were significant differences of 

the AGB and aboveground carbon stocks between the fragments of one vegetation type to assess 

whether the fragment size has an impact on the amount of AGB 

 

3.4 Results 

3.4.1 Cerradão and Cerrado Denso Characteristics 

Overall, 1,182 trees and 1,241 stems were measured within the 32 plots as well as > 3,624 shrubs 

were recorded within the 32 subplots. Furthermore, the density of these aboveground woody 

components resulted in 739 tree individuals ha-1, 776 stem individuals ha-1 and > 23,381 shrub 

individuals ha-1 for both vegetation types together. Figure 3.7 shows the arithmetic means of the 

number of trees within the Cerradão and the Cerrado denso aggregated by plots. Figure 8 shows the 

arithmetic means of the number of shrubs within the Cerradão and the Cerrado denso aggregated by 
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plots. In plot 2 and 3 a higher number of trees exist with more than 40 in the Cerradão and 30 in the 

Cerrado denso. The arithmetic means of the number of shrubs gently decreased from the border of the 

fragment to the center in both vegetation types, illustrated in Figure 3.8. It has to be noted that the 

values of the summarized plot 4 of the Cerradão were computed without the values of the fourth plot 

in fragment C, because this plot showed strong anomalies, i.e. there were many shrubs that were 

moreover atypical due to their massive heights. 

 

Figure 3.7. Mean number of trees within the study area in Nova Mutum, separated into Cerradão and Cerrado 
denso site and aggregated by plots. 

 

 

Figure 3.8. Mean number of shrubs within the study area in Nova Mutum, separated into Cerradão and Cerrado 
denso site and aggregated by subplots. 

 

Comparing the number of trees for the single plots in the fragments A-H (Cerradão), there is a high 

variance without any trend from the border to the center (see Figure 21 in Kulp (2018) with 27 trees 

(fragment G) right up to 38 trees (fragment A) at the border and 25 trees (fragment C) right up to 47 

trees (fragment H). For the Cerrado denso the tree number at the border (plot 1) is 28 (F) and 29 (E) 

and for plot 4 (center) 33 (E) and 19 (E).  
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Cerradão: The DBH as a component of the allometric model was tested for normal distribution 

(Figure 3.9). Most of the data lies in the smallest class from ≥ 10 - ≤ 15 cm. Boxplots of the DBH-

distribution for each fragment show no great differences between the plots of each fragment and the 

fragment themselves (Figure 3.11). With the Kruskal-Wallis test on a significance level of α = 0.05 no 

significant differences between the grouped plots (p = 0.06) nor between the fragments (p = 0.17) could 

be proofed. 

 

Figure 3.9. DBH classes of the Cerradão plots, represented by a probability density function, where the normal 
distribution curve is marked. 

 

The total tree height as a further component of the allometric model for estimating the AGB of the 

Cerradão seems to follow a normal distribution (Figure 3.12), but the total tree height data had a right-

skewed distribution. The higher total tree height values did not correspond to the normal distribution, 

therefore non-parametric statistical test were performed. The boxplots show that the tree height range 

is similar between the plots in fragment D, G and H (Figure 3.13). The greatest difference exists for 

fragment A within plot 1 with tree heights between 14.0 and 20.7 m (highest value for the Cerradão). 

In fragment C the highest trees are in the center (plot 4) with 7.5-20.0 m. The total tree height ranges 

from 4.5-21.1 m in the whole Cerradão. The significance tests (Kruskal-Wallis) showed no difference 

between the grouped plots with p = 0.8 (α = 0.05) (no border – center gradient), but across the 
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fragments exists a significant difference with p = 0.01. The post-hoc Dunn-Bonferroni test shows 

significant differences between fragment A and B (d = 1.42 after Cohen d-test) as well as for A and D (d 

= 1.80 after Cohen d-test). 

 

Figure 3.11. Boxplot graphs of the tree DBH1.30 [cm] distribution within the single plots of the investigated 
fragments (A-D and G-H) of the Cerradão. Outliers are described by white dots. The black dots represent the 
arithmetic mean of the respective plot. 

 

Cerrado denso: The DBH distribution in the Cerrado denso was similar to the DBH distribution in 

the Cerradão. In the Cerrado denso most of the data are within the smallest class from ≥ 10 – ≤ 15 cm, 

the highest DBH value within the Cerrado denso study area was 32 cm (Figure 3.14). The data were not 

normally distributed. Figure 3.14 does not show significant differences of the tree DBH distribution 

from the border (plot 1) to the center (plot 4) in every fragment. In both fragments, the DBH range was 
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highest in plot 1 ranging from 10.0-23.2 cm in fragment E and from 10.0-29.2 cm in fragment F. There 

were no significant differences of the DBH between the grouped plots. The results showed a p-value = 

0.24 (α > 0.05). Besides, the fragments showed no significant difference (p = 0.15, α > 0.05). A 

comparison of the arithmetic DBH means of both vegetation types based on the Kruskal-Wallis test with 

equal test conditions as above showed a significant difference with a p-value = 0.02 (α < 0.05). The 

Cohen d-value of 3.89 shows a large effect.  

The total tree height [m] neither points out significant differences between the plots and the two 

fragments (Figure 3.15). The trees of the Cerrado denso were predominantly smaller compared to the 

trees of the Cerradão. Thus, the smallest tree within the Cerrado denso was an Eschweilera nana with 

a total tree height of 2.1 m (in Cerradão 4.5 m) and the highest tree was a Xylopia sericea with a total 

tree height of 14.3 m. 

 

Figure 3.12 Tree height classes of the Cerradão plots, represented by a probability density function, where the 
normal distribution curve is marked. 
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Figure 3.13 Boxplot graphs of the total tree height [m] distribution within the single plots of the investigated 
fragments (A-D and G-H) of the Cerradão. Outliers are described by white dots. The black dots represent the 
arithmetic mean of the respective plot. 
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Figure 3.14 Boxplot graphs of the tree DBH1.30 [cm] distribution within the single plots of each investigated 
fragment (E-F) of the Cerrado denso. Outliers are described by white dots. The black dots represent the arithmetic 
mean of the respective plot. 

 

Figure 3.15 Boxplot graphs of the total tree height [m] distribution within the single plots of the investigated 
fragments (E-F) of the Cerrado denso. Outliers are described by white dots. The black dots represent the 
arithmetic mean of the respective plot. 

 

3.4.2 Aboveground Biomass and Carbon Stock 

 To estimate appropriate AGB values for the study site, different models were tested for their 

suitability (Table 3.2). After conducting initial calculations (Table 3.3), the model of Miguel et al.; Miguel 

et al. (2017a; 2017b) was selected for the Cerradão calculations, whereas the model m4 by (Ribeiro et 

al. 2011) was selected for the Cerrado denso calculations (see 3.3). Pooled by plots, the Cerradão 

showed higher tree AGB means than the Cerrado denso (Figure 3.16). The highest mean was within the 

first plot in both vegetation types. In the Cerradão the means decreased from plot 1 with 95.05 Mg ha-

1 (± 43.06) to plot 3 with 81.65 Mg ha-1 (± 14.11) and reached finally 87.76 Mg ha-1 (± 16.36) in plot 4. 

The Cerrado denso by contrast showed a decrease from plot 1 with 63.71 Mg ha-1 (± 5.11) to plot 2 

with 44.82 Mg ha-1 (± 1.22). The third plot displayed a slight rise of 51.09 Mg ha-1 (± 10.41) and plot 4 

had the lowest AGB mean with 35.99 MG ha-1 (± 16.77) (Figure 3.16). Due to lower DBHs and total 

heights of the shrubs compared to the trees, the arithmetic means of the shrub AGB per subplot were 

also much lower than the means of the tree AGB (Figure 3.17). In contrast to fragmentation studies 

(Nascimento and Laurance 2004) subplot 1 – with a distance of 20 m to the border of the fragment – 

had the lowest AGB within the Cerradão (0.16 Mg ha-1) and within the Cerrado denso with 0.61 Mg ha-

1. 
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Figure 3.16 Arithmetic mean of the AGB [Mg ha-1] of the totalized tree AGB per plot, separated into Cerradão 
and Cerrado denso site, grouped by plots. 

 

The distribution of the AGB per tree follows the DBH distribution (Figure 3.9), most of the data lies 

in the smallest class (0.0 to ≤ 0.1 Mg). The residuals of the tree AGB (Q-Q-plot in Kulp (2018) show that 

most of the data points are in straight line, but the smallest and highest quantiles differed strongly, so 

that a normal distribution is not given. As for the DBH boxplot diagrams, the AGB per plot and fragment 

illustrates the highest variance for fragment A and C, due to extreme outliers with some tree species 

(Humiria balsamifera 1.33 Mg in plot 1 and Buchenavia grandis with 1.48 Mg in plot 4, fragment A).  

 

Figure 3.17 Arithmetic mean of the shrub AGB [Mg ha-1] per subplot, separated into Cerradão and Cerrado denso 
site, grouped by subplots. 

 

The results of tree AGB and therefore of carbon stocks show no clear distribution pattern, 

concerning fragment differences and plot differences (border to center). The non-parametric Kruskal-

Wallis test with p = 0.54 (α = 0.05) proofs that no significant differences exist between the fragments. 

Even for the grouped plots with p = 0.11 (α = 0.05) no significant differences exist. The absolute values 
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per ha for the plots of all Cerradão fragments have a great variance with 51.52 Mg ha-1 to 177.72 Mg 

ha-1. Most of the plots exhibit values between 80 and 100 Mg ha-1 (Table 3. 4). 

Table 3.4 Sum of the tree AGB and carbon stocks in Mg ha-1 per plot within each fragment in the Cerradão. 

 

 

3.5 Discussion 

3.5.1 Plot Characteristics 

With the allometric models and estimated plot parameters DBH, H and ρ (see Table 3.2) the tree 

AGB for the two vegetation types in Nova Mutum was calculated (Table 3.3). Because of the direct 

measurements (tree yield method) and comparable environmental conditions in Tocantins (Cerradão, 

(Miguel et al. 2017a; Miguel et al. 2017b) and Minas Gerais (Cerrado denso, sensu stricto, (Ribeiro et 

al. 2011) their allometric models were used to discuss the AGB and carbon stocks. The results with 

different allometric models (Table 3.3) show the great variance within each vegetation type. In the 

study of Miguel et al.; Miguel et al. (2017a; 2017b) who investigated 54 plots (400 m2 each), the tree 

density was 1150 ha-1 compared to our study with 783 ha-1. Around 80 % of single trees lies in the 

DBH-class 10-20 cm whereas the study of Miguel et al.; Miguel et al. (2017a; 2017b) had around 90 % 

(5-20 cm DBH). The highest biomass portion is given by the DBH-classes 10-20 cm, similar to our study. 

The AGB (bole and crown) was calculated with 61.7 (± 5.4) Mg ha-1, for Nova Mutum the value is 86.7 

(± 24.4) Mg ha-1. The other allometric estimations (Table 3.3) with AGB > 100 Mg ha-1 are too high. 

The AGB-portion for the DBH-class 5-10 cm in the Cerradão of Tocantins was 10 %. For the dense 

woodland (forested savanna Sd) Fearnside et al. (2009) indicated 51.2 Mg ha-1, whereas the seasonal 

forest as a transition to the rainforest had 252 Mg ha-1. For the Cerrado denso in Minas Gerais with 

2086 trees ha-1 Ribeiro et al. (2011) calculated the AGB with 62.9 Mg ha-1, for Nova Mutum 48.9 Mg 
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ha-1 is given with a lower tree density (608 ha-1). The tree density differences may result from different 

human impacts and that trees > 5 cm DBH were measured (Nova Mutum ≥ 10 cm DBH). The absolute 

variance of DBH in Ribeiro et al. (2011) was 5-43.9 cm (mean 8.7 cm), in our study 10-29.5 cm (mean 

14.1 cm). For the Cerradão in Tocantins the variance of DBH was 5-65 cm (no mean written), for Nova 

Mutum 10-44.8 cm (one outlier in plot 1, fragment A with 55.3 cm). The basal area with 14.9 m2 ha-1 

was higher in Minas Gerais compared with Nova Mutum 10.5 m2 ha-1 (Table 3.5). The shrub biomass 

cannot be neglected in both vegetation types. For Cerradão shrub AGB is 7 % of total AGB (tree and 

shrub), for Cerrado denso it amounts to 13 % (Table 3.5). In Ribeiro et al. (2011) the portion is smaller 

(7.4 %). Because of the more open treetop coverage shrubs are more common in the Cerrado denso 

then in the Cerradão (Fearnside et al. 2009), but in the Nova Mutum fragments the difference is not so 

great (Table 3.5), which indicates the logging impact in the Cerradão. Unfortunately, shrub biomass and 

treetop coverage is not given in Miguel et al.; Miguel et al. (2017a; 2017b).  

Table 3.5 Summary of the study results within the Cerradão and the Cerrado denso. 

 

 

The Cerradão had a larger number of trees, stems and shrubs per hectare than the Cerrado denso. 

However, the latter had a greater proportion of multi-stemmed trees. The AGB and aboveground 

carbon stocks (C) per hectare were almost two times greater in the Cerradão. The AGB and C-stocks in 
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the shrubs of the Cerrado denso were higher, despite a higher shrub number in the Cerradão. Mean 

DBH and height was greater in the Cerrado denso (Table 3.5). The mean treetop coverage (TTC), wood 

density (WD) and basal area (BA) were always larger in the Cerradão, but the wood density values did 

not differ strongly. 

Compared with other studies in the Cerrado biome, the tree density of this study was significantly 

lower, exhibiting 739 individuals ha-1 pooled for both vegetation types. Especially the tree density of 

the Cerradão with approx. 783 individuals ha-1 was lower than the tree density of other Cerradão areas 

in Brazil that varied according to the studies of Miguel et al.; Miguel et al. (2017a; 2017b) and Souza et 

al. (2010) from 1,172-1,251 individuals ha-1. Rezende et al. (2006), found a density of 681 trees ha-1 in 

a Cerrado sensu stricto in Brasília, including trees with a DBH1.30 ≥ 5 cm, similar to our study. The high 

Cerradão tree densities of other studies were predominantly obtained by including trees with a 

DBH1.30 ≥ 5 cm (Miguel et al. 2017a). Depending on the definition of the woody components, which 

constitute the AGB, several shrubs in this study would possibly considered as trees in other studies.  

The applied allometric models did not include the basal area. The basal area results outlined the 

tillering density of the study area and stated an indirect insight into the amount of AGB. The mean total 

basal area of the Cerradão study area amounted to 22.1 m2 ha-1. Consequently, it lies within the range 

of 17.05-24.90 m2 ha-1 for Cerradão areas (Miguel et al. 2017a). Furthermore, this value is similar to 

the conclusions of Miranda et al.; Scolforo et al.; Miguel et al. (2014; 2008; 2017a) who had a total basal 

area of > 20 m2 ha-1 on Cerradão areas scattered across the whole Cerrado biome, 17.58 m2 ha-1 on 

a Cerradão study site in Minas Gerais and 17.34 m2 ha-1 on a Cerradão site in Tocantins, respectively. 

A gallery forest in Mato Grosso in contrast, exhibited a total basal area of 33 m2 ha-1 (Holzner 2013). 

The mean total basal area of the Cerrado denso study area amounted to 10.5 m2 ha-1. This outcome is 

slightly lower compared to the total basal area determined by Abdala et al. (1998) with 14.5 m2 ha-1 

in a Cerrado denso in the Federal District (DF) or compared to the basal area of 14.9 m2 ha-1 detected 

by Ribeiro et al. (2011) in a Cerrado sensu stricto in Minas Gerais. The calculated value for the Cerrado 

denso in this study is within the range of other studies. The treetop coverage results are in the given 

value range of 50-90 % for the Cerradão and of 50-70 % for the Cerrado denso in the whole Cerrado 

biome (see mean TTC in Table 3.5; Fearnside et al. 2009; Dodonov et al. 2013). The distance to the 

border of the fragment had no impacts on the treetop coverage. 

The mean wood density results of this study are quite high (Table 3.5). Miranda et al. (2014) also 

determined a high mean wood density value of 0.66 g cm-3 for the shrubs and trees in the whole 

Cerrado biome. This value was similar to a mean wood density of 0.67 g cm-3 determined in Central 

Amazonia (Miranda et al. 2014). The high wood density values of the Cerradão study area are caused 

by the high wood density values of the most common tree species. Thus, Sacoglottis mattogrossensis 



Chapter 3 

82 
 

with a wood density of 0.77 g cm-3 was the dominating tree species in the Cerradão. The Cerrado denso 

study area has a relatively high mean wood density due to several tree species with a wood density ≥ 

0.90 g cm-3.  

The diameter range for the Cerradão trees (10.0-56.3 cm) and for the Cerrado denso trees (10.0-

32.0 cm) in this study was similar to the diameter range of Miguel et al.; Miguel et al. (2017a; 2017b) 

that varied from 5.0 - > 60.0 cm and the pooled diameter range in the study of Ribeiro et al. (2011) that 

varied from 5.0-43.9 cm. Compared to other studies, the arithmetic mean of the DBH in this study is 

higher in both vegetation types (Table 3.5), because the DBH of 5 - ≤ 10 cm was not included. The trees 

of the Cerrado sensu stricto in the study by Ribeiro et al. (2011) revealed an arithmetic DBH mean of 

8.7 (± 3.8) cm and the trees of the Cerradão site in Tocantins in the study of Miguel et al. (2017a) 

showed a mean DBH value of 11.55 (± 6.9) cm. According to Holzner (2013), who investigated gallery 

forests in Mato Grosso, the arithmetic mean of the DBH amounted to 13.35 (± 9.16) cm. This substantial 

difference results by the non-consideration of DBH1.30 values < 10 cm, i.e. the mean of the DBH would 

be lower if smaller trees would have been included. Furthermore, the pooling of the diameters in the 

case of multi-stemmed trees, triggered partly higher diameter values for these trees. Methods of DBH-

estimation from multi-stemmed trees are often not documented. 

 

3.5.2 AGB and C Estimation 

Allometric models had been applied that focus mainly on large diameters – like the model by Chave 

et al. (2005) – so that the AGB for smaller trees and especially for shrubs would have been 

overestimated (van Breugel et al. 2011). Moreover, according to Delitti et al. (2006) and van Breugel et 

al. (2011) the inclusion of a second variable to an allometric model improves the AGB estimates 

significantly on the plot level. In this study, the wood density and the total tree height functioned as 

the second variable. Nevertheless, the outcomes differ as in Miguel et al.; Miguel et al. (2017a; 2017b) 

with an AGB value of 61.67 Mg ha-1 in a Cerradão in Tocantins. Despite including dead and alive trees 

with a DBH1.30 ≥ 5 cm, the AGB per hectare is slightly lower in the study of Miguel et al.; Miguel et al. 

(2017a; 2017b) compared to this survey (Table 3.5). However, the AGB of 73.97 Mg ha-1 of a Cerrado 

sensu stricto in Minas Gerais, which was determined by Ribeiro et al. (2011), who included all plants 

with a DBH1.30 ≥ 5 cm was distinctly higher by contrast with the AGB of the Cerrado denso in this study 

(Table 3.5). The inclusion of the lower diameter plants could be already crucial for the disparities in 

AGB. Ribeiro et al. (2011) stated that their findings were relatively large compared to reference values 

of other Cerrado sensu stricto, probably interrelated with the selection of sample trees. The AGB of 

shrubs was within the value range presented by other studies (e.g. 4.68 Mg ha-1 by (Ribeiro et al. 2011). 
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Due to the high quantity of shrubs in this study, the AGB of shrubs was higher both in the Cerradão and 

in the Cerrado denso (Table 3.5).  

The study area is partially located in the ZOT to Amazonia, so that the estimated AGB and its carbon 

stocks per hectare were higher compared to other Cerradão and Cerrado denso sites in the Cerrado 

biome. In consideration of the AGB and aboveground carbon stock reference values by different 

authors, illustrated in Table 3.6, this assumption can be partially confirmed. Thus, the AGB and its 

carbon stocks in Mg ha-1 of the Cerradão determined by Scolforo et al.; Santos et al.; Morais et al.; 

Miranda et al. (2008; 2010; 2013; 2014) are lower compared to this study. That also applies to the AGB 

and aboveground carbon stocks in Mg ha-1 of the Cerrado denso determined by Castro (1995) and 

Ottmar et al. (2001) (Table 3.6). Similar to this study, Marimon et al. (2014) investigated a protected 

Cerradão site in the ZOT, i.e. in Nova Xavantina, Mato Grosso. Their analysis, basing on the Cerrado 

model by Ribeiro et al. (2011) featured an AGB value of 120.2 (± 25.1) Mg ha-1, which is higher than in 

other investigated Cerradão sites.  

By comparing both vegetation types with each other, the DBH and therefore the AGB is significantly 

different (p = 0.02). This can be explained by differing vegetation physiognomies. The DBH1.30 variable 

and the total tree height variable were also tested for differences between the fragments (Kruskal-

Wallis test). There were no significant differences in the DBH values between the fragments, neither in 

the Cerradão (p = 0.17) nor in the Cerrado denso (p = 0.15), so it is proved that the fragment size and 

shape have no influence on the development of the trees DBH. Based on the statistical analysis of the 

total tree heights between the fragments (p < 0.05), it can be assumed that the fragment size as well 

as the fragment shape could have an influence on the development of the total tree height. (mainly 

due to plot 1 in fragment A).  

Table 3.6 AGB and carbon stock reference values of different study areas from the literature. 
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According to Nascimento and Laurance (2004) fragmentation in Amazonia that is primarily induced 

by deforestation, alters the AGB and carbon stocks essentially, i.e. the fragments are characterized by 

a general carbon stock decline, mainly because small successional trees and lianas prevail in contrast 

to old-growth trees. Pütz et al. (2014), who investigated fragmented neotropical forests determined 

lower carbon stocks in smaller fragments than in larger ones. In general, it was quantified that the global 

carbon loss rate in fragmented tropical forests ranges between 0.12-0.24 Gt C year-1 (Pütz et al. 2014). 

According to the second hypothesis, the fragmentation triggers negative edge effects, i.e. the AGB is 

lower at the border of a fragment compared to its center, a Kruskal-Wallis test showed that the AGB 

was equal from the fragment border to the center, both in the Cerradão (p = 0.11) and in the Cerrado 

denso (p = 0.22). Moreover, the components of the AGB, i.e. the DBH and the total tree height also 

demonstrated that the AGB was equal from the fragment border to its center. The outcomes of this 

study in the Cerrado demonstrate that fragmentation does neither substantially modify the quantity 

nor the distribution of AGB in the Cerrado study area in Nova Mutum. A main influencing factor is the 

age and intensity of human impacts by selective logging, which is not restricted to the fragment border. 

 

3.6 Conclusion 

With the surface area of the Cerradão and of the Cerrado denso in Mato Grosso as well as of the 

whole Cerrado, an estimation of the total AGB and aboveground carbon stocks is possible. The AGB of 

the Cerradão in Mato Grosso amounted to 0.27 Gt and the aboveground carbon stocks to 0.14 Gt 

whereas the AGB and the aboveground carbon stocks of the Cerrado denso in Mato Grosso amounted 

to greater values of 0.36 Gt and 0.18 Gt, respectively. This is due to the greater surface area of the 

Cerrado denso in Mato Grosso (Table 3.7). The AGB and the aboveground carbon stock results of the 

Cerrado denso in the whole Cerrado biome amounted to 1.38 Gt and 0.69 Gt, for the Cerradão to 0.95 

Gt (0.48 Gt C).  

Table 3.7 Extrapolation of the estimated AGB [Gt] and aboveground carbon stocks (C) [Gt] for Mato Grosso and 
the Cerrado biome. 
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The AGB estimations and therefore the C-stocks for the Cerrado Biome differ to a great amount. 

Marimon et al. (2014) determined a quite high AGB value of 120.2 Mg ha-1 for a protected Cerradão 

area, whereas Peixoto et al. (2017) determined considerably smaller AGB values ranging from 45.09-

54.48 Mg ha-1 for a preserved Cerradão. Nogueira et al. (2015) emphasized that Mato Grosso has the 

largest cleared area in the forest and nonforest types with 338,530.22 km2 in Brazil’s Legal Amazonia 

region (status for 2013). The total AGB declined from around 19.05 Gt in the 1970s to approx. 11.77 Gt 

in 2013, this corresponds to an AGB loss of around 38.2 %. The extrapolations of the AGB and carbon 

stock results in this study (Table 3.7) mention that the AGB of 0.29 Gt for the Cerradão in Mato Grosso 

and the AGB of 0.41 Gt for the Cerrado denso in Mato Grosso seem negligible by comparing them with 

the Brazilian Amazon AGB of 87.6 Gt. Nevertheless it is essential, because it regulates the water and 

carbon cycle and preserves biodiversity on a regional scale. The deforestation or even selective logging 

that leads to a decline of AGB, induces aboveground carbon releases and might change regional climatic 

processes, including the decrease of precipitation with the simultaneous increase of the water deficit 

in the arc of deforestation (Malhado et al. 2010). After Oliveira et al. (2014) the evapotranspiration (Eta) 

will decrease with deforestation to pasture or cropland for Cerradão (Eta 1272 ± 364 mm yr-1) and 

Cerrado sensu stricto denso (Eta 1268 ± 313 mm yr-1) will decrease by 500-550 mm yr-1. Finally, the 

AGB and the carbon storage capacity are crucial for the regional water and carbon cycle as well as for 

global energy and water fluxes. 
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4. Time series of optical remote sensing to assess the edge effect in 

fragments of Cerrado biome 

 

In preparation. 

Abstract 
 

Deforestation leads to fragmentation and corresponding edge effects, e.g. microclimate deterioration 
at the forest border, tree mortality and changes in the vegetation structure and productivity. 
Fragmentation decreases carbon and biomass in the forest. However, most studies about edge effects 
are focused on temperate and tropical biomes, such as the Amazon. A small number of studies assessed 
the Cerrado biome, which is considered a hotspot for biodiversity. Furthermore, this biome has a major 
influence on large river basins’ water resources of large basins, such as the Amazon. We evaluated the 
edge effect in the long-term based on NDVI values of the transitional area between the Cerrado and 
Amazon biomes. The method described in this study corroborates studies that assessed edge effect on 
vegetation within the Cerrado and Amazon biomes. In this study, we applied a different approach to 
investigate possible edge effects using vegetation index from freely available time series satellite 
images. Our results showed a positive and significant trend (p-value < 0.00005) via the NDVI values in 
relation to distance from the nearest edge, thus, the closer the vegetation was to the edge, the lower 
their respective NDVI value. Our results suggest that the NDVI can be used to identify edge effects in 
the vegetation. Nevertheless, more studies are needed to adequately understand the dynamics of edge 
effects. 
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4.1 Introduction 

Tropical forests play an important role in the context of the Earth's carbon cycle. Consequently, 

such areas must be preserved. Yet, deforestation within these areas is increasing.  Achard et al. (2014) 

reported a tropical forest cover loss for 1990s and 2000s of 6.05 million ha yr−1 and 5.93 million ha yr−1, 

respectively, which results in an annual rate of deforestation of 0.49 %. At this alarming deforestation 

rate, it is essential that measures against deforestation are reevaluated to ensure a sustainable 

contribution to the Earth’s carbon cycle. While deforestation leads to fragmentation, edge effects 

change forest structure and composition with increasing tree mortality, wildfire susceptibility and 

carbon emission (Laurance et al., 1997).  

Edge effects are a consequence of a forest fragmentation process, which creates edges in these 

habitats occur mostly in tropical forests, because most deforestation is located in these regions. These 

effects are in a transition between two ecosystems from the border to the interior of the fragment 

(Didham et al., 1998). Brinck et al. (2017) analyzed the fragmentation and edge effect within the tropical 

forests in America, Africa and Asia. Their study showed that 19% of the tropical forests are within a 

distance of 100 m to the forest edge, in which 84% were anthropogenically created. Similarly, Dantas 

de Paula et al. (2016) analyzed the dimensions of edge effects in changes of tree cover in large areas 

across the world’s tropical forest using Landsat Tree Cover (LTC) and reported a change in tree cover 

patterns after five years of fragmentation, thus, the closer a forest boundary is to the edge, the higher 

the decrease in tree coverage (i.e. between 50 and 100 m). In Brazil, the high deforestation rates lead 

to further fragmented forest patches in a fragmented tropical forest (Gross, 2017), nevertheless, the 

fragmentation different effects and trends within each biome. Pütz et al. (2014) assessed the 

fragmentation and edge effect (carbon loss) in the Amazon and Atlantic Forest biomes. In the Amazon 

biome, the number of fragments was smaller and sizes were larger than those in the Atlantic forest 

biome (77,038 fragments and 8,376 ha, 245,173 fragments and 64 ha). In that same study, it was also 

reported that the Atlantic Forest biome lost about 69 million tons of carbon over a period of 10 years 

due to forest fragmentation and the Amazon biome lost 599 million tons of carbon during the same 

period. Cunha (2007) estimated that 82.12% of the fragments in the Cerrado biome in Goiás State were 

smaller than 1 ha. Similarly, Jorge and Garcia (1997) found a high frequency of small fragments (10 ha) 

in the region of Sao Paulo. These studies show that two important biomes in Brazil (Amazon and Atlantic 

Forest) are highly affected by deforestation and fragmentation, which in turn decrease the capacity to 

store carbon. In addition, these studies can support analysis of other important Biomes that have been 

destroyed in recent years, such as the Cerrado. With deforestation, edge effects are common in tropical 

forests. But most studies analyzed single years and compared them after deforestation. Long time 
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series are rare, and they give new insights into how fragmentation effects change with time when the 

border is not newly affected by deforestation or fire. Likewise, only a few studies have analyzed the 

impact of edges and fragmentation on forest structure, composition and productivity in the Cerrado 

biome. 

In contrast to studies that have found edge effects in Amazon and Atlantic forest, some studies in 

the Cerrado Biome have found no significant edge effects., Queiroga (2001) studied the border effect 

in Cerrado biome in Maranhao State and did not find differences between the edge distances regarding 

species distribution, vegetation structure and microclimate. In corroboration, Mendonça et al. (2015) 

also did not find any abiotic (microclimate) and biotic changes caused by edge effects in the Cerrado 

biome (in Iaras city in Sao Paulo State). Additionally, Kulp et al. (2018) estimated the above-ground 

biomass AGB and carbon stocks with transects from the cerradão border to the interior and showed no 

marked differences between forest border plots (20 m distance) and interior plots (260 m distance). 

Unlike, Lima-Ribeiro (2008) rather reported a strong influence of edge effects on the vegetation 

structure and microclimate parameters (SE-Goiano). These findings were based on direct measurement 

of forest stand parameters at the plot level in the field.  

The most common method to assess the edge effects in tropical forest is by direct measururing, 

which is limited by the replicability, cost of execution and time consuming. Therefore, satellite images 

may be an alternative in monitoring vegetation cover within the context of the edge effect. Optical 

sensors are usually used for monitoring vegetation, mainly through the vegetation index (VI), because 

of its easier image processing compared to synthetic aperture radar (SAR) sensors, costs and long-term 

availability. To assess vegetation cover, the Normalized Difference Vegetation Index (NDVI) is widely 

used for detection of forest types (Ferreira and Huete, 2004; Ratana et al., 2005), deforestation 

(Trancoso et al., 2014; Acerbi Júnior et al., 2015) and deforestation and vegetation dynamics 

(Bitencourt et al., 2007; Ferreira et al., 2011). Nevertheless, the studies that use vegetation indices to 

analyze the edge effects in tropical forests are few. Lagos (2017) assessed the edge effect in Atlantic 

forest biome based on NDVI analysis. The author showed differences of NDVI values from the border 

to the center of the fragments between 25 and 50 meters ranging from 5 to 200 ha. The NDVI cannot 

directly estimate the biomass. However, it can be direct proximity to the amount of photosynthesis 

material (green biomass) and forest productivity. In the short term, the change of the NDVI can be 

related to the decrease of leaf production, species death and decrease of tree crown cover in the 

context of edge effect. In the long-term, the differences in forest productivity can be seen in differences 

in biomass. 

There is a consensus that in most regions of the tropical forest edge effects exist, however few 

studies related to the Cerrado biome show uncertain results. Therefore, this study aims to assess the 
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long-term edge effects on vegetation that can be correlated to NDVI in forest fragments of the tropical 

savanna forest (cerradão) in the endangered ecotone Amazon/Cerrado-region of Mato Grosso. The 

study builds on a time series of seasonal NDVI composites from Landsat-5, -7 and -8 to evaluate the 

spatial variability and temporal dynamics of vegetation productivity in relation to the forest border. 

4.2 Methodology 

4.2.1 Study Area 

The study area is located in the south central of Nova Mutum city, north of Mato Grosso, Brazil 

(Figure 1). This region covers two biomes, Amazon and Cerrado, known as the “Arc of Deforestation” 

(AOD). The climatic condition of the study area is classified as Aw (after Köppen climate classification) 

with two distinct seasons: dry season, from May to September and a rainy season from October to April. 

The area records an annual precipitation of about 2200 mm with an annual average temperature of 24 

°C (Goedert, 1986). Soil types of the area mainly consist of ~80% Oxisols and ~20% Entisols occurring 

on a flat topography (maximum slopes of 3%). Due to the characteristics of the soils of the study area, 

the landscapes encourage deforestation processes and agricultural activity (IBGE, 2001). Therefore, this 

region plays an important role in the deforestation process, because it holds the highest deforestation 

rates, around 75%, and the largest agricultural area (INPE, 2011). From 2002, several Brazilian institutes, 

such as the Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA) and 

National Institute for Space Research (INPE), started monitoring the rate of deforestation in the Cerrado 

biome. From 2002 to 2017, Cerrado lost around 0.8% of its vegetation per year (F. G. Assis et al. 2019b). 
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Figure 4.1 Location of the study area in Brazil on top of a Google Earth image (A), in Nova Mutum on top of a 
Google Earth image, in the exact area of analysis from 1985 (C), 1997 (D) and 2017 (E) on top of a NDVI image. 

 

In general, vegetation cover of the Cerrado consist of three main types, i.e., forest, savannas, and 

grassland formations (Walter, 2006). The forest formations consist of arboreal species in a continuous 

canopy and include the Gallery, Dry, and Open Forest while the savanna formation is characterized by 

a discontinuous herbaceous-shrub and tree canopy. Within the savanna formation are seven distinct 

types: Dense Woodland, Woodland, Open Woodland, Park Woodland, Palm, Vereda, and Stone 

Woodland. The grassland formations include three vegetation types: Stone Grassland, Shrub Savanna, 

and Grassland. The first two types of grasslands are characterized by the large presence of shrubs with 

different soil types. In our study, we focused on one of the dominant types of vegetation: cerradão 

(Open Forest). Cerradão is located within the transition area of the Amazon and Cerrado biomes. It is 
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important to stress that this area has a high deforestation rate, which can explain the presence of 

secondary forest. Cerradão has a crown cover ranging between 50 and 90% and the height of the trees 

varies from 8 to 15 m. In general, the soils of cerradão are well drained, deep, and have medium–low 

fertility (mainly Latosols).  Because Cerradao is the dominant vegetation type in the study area, we 

selected fragments of different size in this vegetation type. The fragments were selected according to 

the similarity of the areas, with same type of soil, precipitation and altitude. Additionally, the fragments 

are located at least 100 meters from the rivers to avoid contact with gallery forests. To map the 

fragmentation, we used the image from the Multispectral Instrument (MSI) on-board Sentinel-2A of 

26.07.2017. It is important to note that in this work, an area is considered a fragment when there is a 

distance of 1 pixel (20 meters) between two parallel edges with forest area, therefore, an area is 

considered a forest fragment when there is a distance of 1 pixel (20 meters) between two parallel edges 

with forest area. We used the edge density (edge to a per unit area), total edge (an absolute measure 

of total edge length) and the number of patches (numbers of forest fragments) to support the analysis 

of this thesis (McGarigal et al., 2002). 

The six fragments considered in this study covers a spatial extent of 4,142.49 ha with Fragment A 

being the smallest and Fragment G being the largest (Table 4.1).   

Table 4.1 Characteristics of the fragments. 

Fragments Size (ha) Vegetation Type Total Edges (m) Edge Density (m/ha) 

A 59.92 Cerradão 3,086 51.50 

B 169.37 Cerradão 5,165 30.50 

C 218.30 Cerradão 8,229 37.70 

D 554,25 Cerradão 16,817 30.34 

G 2741,82 Cerradão 62,768 22.89 

H 398.83 Cerradão 13,440 33.70 

 

Fragments A, B, C and D are closer to the city than the fragments, G and H. In this study, we 

considered the fragments of cerradão vegetation type, which has a length of 109.50 km of external 

edges. These fragments represent a large part of the study area, as can be seen in Figure 1. With the 

increase of deforestation, the number increase until 2004. Main deforestation in the study region was 

from 1984 until 1996 (Figure 4.2). 
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Figure 4.2 Relative area of deforestation (ha) and the number of fragments from 1984 to 2018 in our study area. 

 

4.2.2 Satellite Data 

We used 498 images from Landsat 5 Thematic Mapper (TM), 552 images from Landsat 7 Enhanced 

Thematic Mapper Plus (ETM+) and 104 images of Landsat 8 Operational Land Imager (OLI) from two 

different Path/Row (227/069 and 227/070) between March 1984 and September 2018. The data was 

available from U.S. Geological Survey (USGS) EROS Science Processing Architecture (ESPA) ordering 

system. The images were acquired from TIER 1 collection category, this includes Level-1 Precision, 

Terrain (L1TP) corrected and radiometrically calibrated data. The Tier 1 is considered the best set of 

data for time-series analysis (USGS, 2017). 

4.2.3 Data Processing 

Photosynthetically active (or 'healthy') vegetation has an intense radiation absorption in the red 

part of the visible light by photosynthetic pigments (chlorophyll), and reflection of near-infrared 

radiation due to canopy. This feature allows vegetation indices to determine parameters such as vigor, 

growth stage, photosynthetic activity, percentage of vegetation cover and other biophysical properties 

of vegetation. The NDVI highlights the differences between the minimum reflection in red, 

corresponding to the maximum absorption by plant pigments, and the maximum reflection in the near 

infrared, due to the leaf structure.  

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷)
 

NIR - reflection in the near-infrared spectrum 
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RED - reflection in the red range of the spectrum 

 

NDVI is highly correlated with the greenness of the vegetation, and it is the most index used in 

research related to the dynamics of vegetation cover. NDVI values range from -1 to 1. Vegetation is 

associated with positive values. Materials that reflect more intensely in the red portion with respect to 

near infrared (e.g., clouds, water) show negative NDVI (Rouse, J. W., Jr., 1974). Therefore, in the first 

step, we extracted the NDVI from each image. The NDVI must be used to estimate the biomass, 

however it can be considered an approximation to the amount of green biomass and forest 

productivity. In the long-term, the differences in forest productivity can be seen in differences in the 

biomass. 

We used a tool in the bfastSpatial package in R software (developed by Loïc Dutrieux, Ben DeVries 

and Jan Verbesselt, 2014, https://github.com/dutri001/bfastSpatial) to create annual mean value 

composites from May to September (dry season). This period to create the composites was chosen 

because our study area is in a transition of two Biomes that have, in part, characteristics of a tropical 

forest. Therefore, this is a region with large cloud cover in the rainy season (from October to April). In 

addition, in this transitional region there are species from both biomes, where some of these species 

lose their foliage in the dry season. Therefore, it is important to choose one season (dry or rainy) to 

create the composites, to avoid misinterpreting the values of NDVI, e.g., the decrease of NDVI could be 

misinterpreted with the foliage loss. The mean value composites processing was necessary to reduce 

the seasonal variation in the vegetation. By this approach, we obtained 35 annual composites from 

1984 to 2018 (Figure 4.3).  
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Figure 4.3 NDVI stack of Landsat 5/7/8 images on top of a Google Earth image. 

 

4.2.4 Sampling Design 

In order to reach the objective of this study, we created a stratified sampling design to subdivide 

the strata, such as forest types, rivers, eco-zones, roads, to generate a precise result. The first strata 

was to extract from the cerradão vegetation type map (Figure 3 A) from Souza Mendes et al. (2019). 

Additionally, we cut out the cerradão areas that were not within the fragments analyzed in this study 

(Figure 3 B). For the second strata, we mapped the river basin and created a 100 meters buffer around 

the rivers of the study region in order to avoid any target that was not forest (Figure 4.3 C). Moreover, 

we created 80 random points in each of the six fragments, totalling 480 random points (Figure 4.4). 

Besides, we manually mapped thirty-five forest masks for every year based on the NDVI images, in order 

to have a mask on the edges on the fragments for each year to see the start of the deforestation process 

in these areas.  
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Figure 4.4 Stratified sampling design. Vegetation type map from De Souza Mendes et al. 2019 (A), Cerradão 
vegetation areas extracted from the A map (first strata) on top of an annual composition from NDVI Landsat 8 in 
2017 (B). Buffer of 100 meters from the water (second strata) and 480 random points created in the six fragments 
on top of an annual composition from NDVI Landsat 8 in 2017 (C). 

 

4.2.5 Data Analysis 

To analyze the edge effect, we used the mean values of NDVI (from -1 to 1) and the distance to the 

nearest edge (meters) from each random point created in the six fragments. Firstly, we used a simple 

linear regression of the relationship between distance to the nearest edge and NDVI for the thirty-five 

years, to that we plot the distance to nearest edge in the X-axis and NDVI values in the Y-axis for every 

year and fragment. Secondly, we calculate a linear regression using the p-value to show how strong and 

significant theses relations are. Therefore, p-value shows the significance of the correlation between 

NDVI values and the distance from the edge to the center of the fragment. By these approaches, we 

created five classes to present the results: ‘***’ represents p-values smaller than 0.00005 with a 

positive slope; ‘**’ represents p-value between 0.005 and 0.00005 with positive slope; * for p-value 

smaller than 0.05 and higher 0.005 with positive slope; ns (not significant) for p-value bigger than 0.05; 

and # for p-value bigger than 0.05 and lower 0.005 with negative slope. 

4.3 Results 



Chapter 4 

98 
 

Table 4.2 shows the linear regression results regarding the relationship between NDVI values and 

distance to the nearest edge in every fragment and year. In addition, Table 2 indicates the beginning of 

the deforestation process in each fragment in red color. Across the six fragments, the significance shows 

a cluster concerning the size of fragments. The biggest fragments (D, G and H) showed a higher 

significance associated with edge distance compared to the smallest fragments (A, B and C). The 

fragments G and H were the most significant while in fragment G, twenty-two years out of the thirty-

five years recorded the highest significance. In fragment G, twelve years out of the thirty-five years 

showed the highest significance. Fragment C was the least significance. 

Table 4.2 Simple linear regression of the relation between distance to the nearest edge and NDVI values per year 
for each fragment. The values in red color represent the beginning of deforestation around the fragment. 

Year Fragments 

A B C D G H 

1984 *** * # *** * * 

1985 ** * ns *** *** *** 

1986 ** * ns *** * *** 

1987 *** * # ns ** *** 

1988 ns * ns *** ** *** 

1989 ns * ns *** ** *** 

1990 * *** ns * * * 

1991 * ** ns * ** *** 

1992 * * ns * * *** 

1993 ns * ns ** *** *** 

1994 # *** ns ns *** *** 

1995 ns * *** *** *** *** 

1996 # ns * * * *** 

1997 ns ns ns *** ** *** 

1998 *** ns ns ** *** *** 

1999 * ns # ns * *** 

2000 * ns # * ** *** 

2001 ** ** ns ns ns ns 

2002 * *** ns ** *** *** 

2003 ns * ns ns *** * 

2004 ns *** ns *** *** *** 

2005 * ns * ns *** *** 

2006 *** *** ns ** ns ** 
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2007 *** ** * ns ** *** 

2008 * ** ns ns ** * 

2009 ns ns ns *** * *** 

2010 # # ns *** ns ns 

2011 *** *** ns ns *** ** 

2012 ns ns * ns * *** 

2013 * ns ns ** * ** 

2014 * ns ns ** ** ns 

2015 ns ns *** * *** ** 

2016 ns ns ns * ** * 

2017 ns ns ## *** *** * 

2018 ns ns # ns ns *** 

>0.00005 and positive slope = ***, 0.005 >*>0.00005 and positive slope = **, 0.05>*>0.005 and positive slope = 

*, >0.05 = ns (not significant), 0.05>*>0.005 and negative slope = #. 

Figure 4.5 shows the relation between NDVI and distance to forest border in the fragment G from 

1991 to 1994, one year before and two years after the beginning of deforestation. There is a positive 

relationship between edge distance and NDVI. Two years after the deforestation, i.e. in 1994, Fragment 

G recorded increases in NDVI values. The largest edge distance before 1992 was around 2,300 m and 

after the deforestation, this distance decreased to 1,500 m. NDVI in 1993 was lower than in 1992. 

However, this pattern was also observed with all other fragments (See appendix A, B, C, D, E and F), 

probably due to the severe drought that occurred in 1992–1993 across the study region (Appendix G). 
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Figure 4.5 Simple linear regression of the relation between edge distance and mean values of NDVI annual 
compositions, between 1991 and 1994 in the fragment G. 

 

In Fragment H, recorded NDVI in 2002 were higher than the preceding year, i.e. 2003, which 

showed a positive relationship with edge distance (Figure 4.6). The deforestation process around the 

area of Fragment H started in 2003. Additionally, there is a decrease in the distance between the point 

and the nearest edge. Before the deforestation, the maximum distance was 1,000 m and afterwards 

600 m. Furthermore, the NDVI values increase two years after the deforestation process started. 
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Figure 4.6 Simple linear regression of the relation between edge distance and mean values of NDVI annual 
compositions, between 2002 and 2005 in the fragment H. 

 

4.4 Discussion 

Our findings show a significant and positive relationship between NDVI and edge, thus, the closer 

a fragment is to the edge, the lower the value of NDVI. Studies related to the edge effect have shown 

that several environmental variables are changed, such as, humidity is lower at the edge of the 

fragment, due to the higher radiation at the forest border. Inside the fragment, the humidity is higher 

because of crone coverage (Matlack, 1993). The increasing tree mortality in the edge is another 

common edge effect (Laurance et al., 1998b). Biomass and carbon storage can also be affected by the 

edge effect (Laurance et al., 1997; Brinck et al., 2017). Silva Junior et al. (2020) find a carbon loss 

associated with edge of 947 Tg C from 2001 to 2015. In this study, which covers the Amazon biome 

including the AOD, remote sensing was used to first map the forest edges based on the Global Forest 

Change map and to estimate the carbon loss over the forest edges using LIDAR data. Additionally, Putz 

et al. (2014) estimated a carbon loss of 599 million tons due to edge effect over ten years in the same 
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biome. In this study, remote sensing was used to map the fragmentation in the biome using MODIS 

data. Ordway and Asner (2020) identified a carbon loss around 22% along edges, reductions in canopy 

height and leaf mass per area in Malaysian Borneo tropical forest using LIDAR. In the same context, 

Dantas et al. (20116) used Landsat Tree Cover Map to assess the edge effect on the tree cover patterns, 

which was lower close to the edges.  

The largest fragments (D, G, H) showed more positive significance between NDVI and distance to 

the edge compared to the smallest fragments (A, B, C) (see Table 2). On the other hand, Lagos (2017) 

showed no difference in the NDVI values regarding the edge effects related to the fragment size in 

Atlantic Forest biome. In his study, the smallest fragments showed a homogeneous or no edge effect 

compared to the largest fragments, what are similar trends compared to our results. Our results 

indicate that edge effects are significant higher in larger fragments than in smaller one. Often fragment 

studies do not consider this. Additionally, the literature shows that the effects of fragment size on forest 

species, biomass, carbon storage and species distribution vary greatly in different biomes. Nascimento 

and Laurance (2006) did not find a significant difference in the density and biomass of primary species 

in different sizes of fragments (1, 10 and 100 ha) in Amazon biome. Our results show that the largest 

fragments present more visible edges effects than the smaller fragments. One possible explanation is 

that these small fragments have higher perturbation, which contributes to a major change in the 

structure and composition of the vegetation for the whole fragment and resulted in greater 

homogeneity of NDVI values. The effect of fragment size on vegetation structure and composition in 

the Cerrado biome has not been widely studied, the few studies in this area were related to the impact 

on fauna (Rocha et al., 2018). Mendonça et al. (2015) studied the edge effect in cerrado sensu stricto 

from Sao Paulo. Their results did not show any edge effect in the density, basal area and richness in the 

arboreal strata. However, small difference in the edge and interior temperature of the fragment was 

reported, suggesting the same pattern as in the study of Dodonov (2011).   

The above studies analyzed the edge effect in a short or medium period. However, the literature 

shows that the edge effect, depending on the biome, may occur for a short, medium or long period. 

Our results showed that after one year of deforestation, the NDVI value of all analyzed points decreased 

slightly and after two to three years, the values increase to the level before.  This edge effect differs 

from studies in tropical rainforests, where fragmentation and edge effect can be observed for several 

years after deforestation. Laurance et al. (1997) analyzed the edge effect caused by the fragmentation 

process over 17 years in Amazon biome. The above-ground dry biomass had a sharp decrease within 

the first 4 years and stabilized thereafter. In contrast, the number of successional trees in the edge 

increased up to 17 years after the beginning of fragmentation and there was no change in the plots 

located in the interior of the fragment (Laurance et al., 2006). Additionally, the number of large trees 
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were less in the years after the fragmentation within 300 m distance to the edge up to 20 years ( 

(Laurance et al., 2000). Our study showed that in the Cerrado biome, edge effect may be short-lived 

and NDVI re-establish quick after deforestation impact. Nevertheless, we cannot conclude if this 

vegetation recovery after the deforestation also mean a recovery of ABG and carbon storage in the 

fragments, because with deforestation trees are mainly cut and reduced. Results from Laurance et al. 

(1997) seems plausible that AGB and carbon storage decrease more at the edge.  

Further studies are needed to analyze the edge effect indicators such as tree density, tree height, 

DBH and biomass of trees, shrubs and herbaceous layer over a longer time span. One suggestion is the 

use of time series accompanied by satellite image analysis for NDVI and biomass. However, in essence, 

it is challenging to find in a highly progressive zone of deforestation (Arc of Deforestation in Brazil) such 

as areas that are relatively stable over 20 to 30 years. 

4.5 Conclusion 

In this paper, we evaluated the edge effect with NDVI values in the transitional area between the 

Cerrado and Amazon biomes. In contrast to other studies with short time periods after deforestation, 

our research applied an approach to investigate possible edge effects for long time using vegetation 

index from freely available satellite images (1984-2018). Our findings showed a positive significant 

change in NDVIs related to the distance from the nearest edge of the larger fragments. For the smaller 

fragments, most of the years had no or very small significant level between distance and NDVI. In all 

fragments, there was a quick recover of NDVI after deforestation impact, but this does not mean that 

AGB or carbon storage re-establishment was proportionate. Furthermore, our results showed that long-

term edge effect pattern found in Amazon biome cannot be extrapolated to Cerrado. More detailed 

studies are therefore needed to understand the long-term dynamics of edge effect in the different 

biomes. Consequently, evaluate the changes in biomass and carbon for the global important ecotone 

of Cerrado and Amazonas biome. 
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5. General Discussion 

In order to monitor forest fragmentation and carbon storage in Cerrado biome, we used different 

approaches, by mapping the different type of vegetation using optical and SAR remote sensing, 

estimating the biomass and carbon stock from field data collection in the context of edge effect and 

analyzing the edge effect in long-term by Landsat satellite series.  

In the first manuscript, we mapped the forest and non-forest areas and forest type using different 

combinations of SAR and optical images. First, our results showed the importance of integrating satellite 

images from different sensors to classify the forest and non-forest area. We compared our data to the 

data of the forest areas from the Program for the Estimation of Amazon Deforestation (PRODES) 

project, which is the most important project that has been conducting satellite monitoring of 

deforestation in the Legal Amazon. It was possible to verify a high underestimation in the forest areas, 

mainly in the classes gallery forest and Cerrado denso. The PRODES estimated an area of 12,702 ha of 

forest, and our work estimated an area of 27,326 ha. This difference can be associated to the different 

spatial resolution used in PRODES (30 meters) and in our study (10 meters). Second, in our results, S2 

classifications showed the highest overall accuracy and kappa values. The application of S2 images to 

map vegetation types in the Cerrado biome is new. In general, Landsat is the most common sensor used 

to discriminate vegetation types in the Cerrado. Nascimento and Sano (2010) had 85% overall accuracy 

for mapping vegetation types in this biome. The authors used Landsat 7 ETM+ images to discriminate 

the Rupestrian Cerrado (Savanna formation) in the Chapada dos Veadeiros National Park in Goias State, 

which can be difficult due to the spectral confusion with other types of Cerrado vegetation. The optical 

data are certainly useful to map the vegetation type in Cerrado; however, these images are usually not 

available during the rainy season and the optical data cannot extract information from the structure of 

the forest (Asner 2001). Moreover, the availability of images in the rainy season would allow for a higher 

temporal resolution, which is crucial to better discriminate the vegetation types in the Cerrado biome 

due its high seasonality. The use of radar images can be a solution to overcome the lack of image 

availability in the rainy season and the high saturation of optical images in areas of great biomass 

density. In our radar classification results from the dry and rainy seasons, TanDEM-X (X Band) and ALOS-

PALSAR 2 (L Band) dual polarimetric classification from the dry season showed the highest overall 

accuracy and kappa values. The results of the CI 95% OAA showed the importance of the fusion 

between optical and radar data to map vegetation type in the Cerrado biome, since the confidence 

interval with the narrowest range belonged to the classification that used all images from the dry and 

rainy seasons. The narrower the interval was, the more accurate the classification. The Cerrado 

vegetation has one of the largest forest diversities, consequently the combination of different sensors 

(optical and radar) and spatial resolution (low, medium, and high) results in a great improvement in the 



Chapter 5 

107 
 

accuracy (Saatchi et al. 2010). Of the three classifications that obtained the highest values of accuracy 

and kappa, two used radar and optical images. This showed the importance of the integration of 

different sensors in improving the mapping of forest types in Cerrado. A similar result was reported by 

Sano et al. (2005), who combined optical and radar images to improve the classification of different 

vegetation types in the Cerrado biome. The study had a high overall classification accuracy, which used 

both sensors in regions of savanna and grasslands formations. Sano et al. (2005) used data from the 

dry and rainy seasons and showed the importance of the time series in improving the classification of 

different types of vegetation. Additionally, Sano et al. (2005) showed better performance of radar data 

(JERS-1 SAR) compared to optical data (Landsat). In contrast, our results showed that optical data 

performed better for classification, compared to the radar data. However, Sano et al. (2005) used a 

higher number of radar images using L Band compared to our study, which increased the efficiency of 

mapping vegetation, due to the sensitivity to identify the various structures of the forest, consequently 

better distinguishing the type of forest, as reported by Lucas et al.; Garestier et al.; Santoro et al. (2000; 

2009; 2009). 

In the second manuscript, we analysed the edge effect on biomass and carbon stock based on field 

data collected in July and August 2017, we compared our results to other areas in Cerrado biome. In 

our results, the estimation of AGB for Cerradão was 93.23 Mg ha-1, comparing the results with the 

reference values of AGB in Cerradão (Table 3), except for the results of Marimon et al. (2014), all 

Cerradão references values are lower. Marimon et al. (2014) determined a high AGB value of 120.2 Mg 

ha-1 for a protected Cerradão area, nevertheless the data were collected in the Bacaba Municipal Park 

(ecological reserve), which probably are more protected than our study area. Additionally, the 

reference values for the AGB in Cerrado denso were lower than the value of our study, 56.13 Mg ha-1. 

The reference values of AGB are predominatly not located in AOD, however this region of forest-

savanna boundaries is a complex mosaic of dense and open different types of vegetation. Our main 

hypothesis is that fragmentation leads to a negative edge effect, the closer to the edge, the lower 

biomass and carbo stock. To test this hypothesis, we use the Kruskal-Wallis test, which showed no 

significant difference in AGB values in the edge and the center of the fragment for both vegetation 

types, Cerradão (p= 0.11) and Cerrado denso (p=0.22). The differences between interior and edges 

were less than those obtained in Amazon forest, e.g. by Laurance et al. (1997), who calculate a loss of 

36% of the carbon stock after 10-17 years of fragmentation process in Amazon forest. Since 1970, 

Cerrado biome lost more than 50% of its vegetation and have highly fragmented landscapes, therefore 

even interior plots may have been subjected to additive edge effects. Additionally, Stephenson et al. 

(2014) showed that big tree can stock a large amount of carbon compared to smaller tree and in some 

of our fragments, the bigger trees were removed by logging. Furthermore, the fieldwork data was 
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collected in a single dataset from 2017. Laurance et al. (2011) has previously shown the importance to 

assess the edge effect in the long-term.  

In the third manuscript, we monitored edge effects from remote sensing data. Regarding the 

fragment size, the results show a significant positive relation between NDVI and edge distance in the 

biggest fragments (D, G and H) compared to the smallest fragments (A, B, C) (Table 1). Om and Khongjee 

(2010) found a different result. This study showed a positive relation between species richness and 

fragment size in the subtropical forest of Meghalaya, the smaller the fragment size, the smaller the 

species richness, because the smallest fragments have a high disturbance which changes the floristic 

composition, carbon storage (Ma et al. 2017) and species composition (Echeverría et al. 2007). 

Nevertheless, Lagos  (2017) showed no difference in the NDVI values regarding the edge effects related 

to the fragment size in Atlantic Forest biome, which can be a result of predominant small fragments. 

Additionally, Nascimento and Laurance (2006) did not find a significant difference in the density and 

biomass of primary species in different sizes of fragments (1, 10 and 100 ha) in Amazon biome. The 

literature shows that the effects of fragment size on forest species, biomass, carbon storage and species 

distribution vary greatly in different biomes. In Amazon and Atlantic biomes, studies related to the edge 

effect have shown that several variables are changed, such as, humidity (Matlack 1993), plant density 

(Malcolm 1994), tree mortality (Laurance et al. 1998b), carbon and biomass (Laurance et al. 1997; 

Brinck et al. 2017). There is no consensus about the edge effect in Cerrado biome. Lima-Ribeiro (2008) 

analyzed the edge effect on the vegetation structure in Cerradão, Southwest of Goiás State. The results 

of this study showed a strong positive influence of edge effect on vegetation structure, species 

distribution and microclimate parameters. Conversely, Dodonov (2011) did not find any edge effect on 

the tree height and exotic grasses in Cerrado biome in Sao Paulo. Dodonov study showed a small 

difference in the temperature in the center and border of the fragment; the further from the edge, the 

lower the temperature. Moreover, Mendonça et al. (2015) studied the edge effect in cerrado sensu 

stricto from Sao Paulo. The results did not show any edge effect in the density, basal area and richness 

in the arboreal strata, however, the temperature showed a small difference in the edge and interior of 

the fragment, presenting the same pattern as the study of Dodonov (2011). Additionally, the subshrub 

stratum was the only parameter that showed a negative significance edge effect, it increased 

logarithmically from the edge to the center of the fragment. Likewise, Kulp et al. (2018) showed that 

the number of shrubs was higher at the edge than at the center of the fragment in Cerradão and 

Cerrado denso in Nova Mutum, Mato Grosso. Nevertheless, the study showed no significant differences 

in the AGB and carbon stocks between the edge and the center of the fragment in both vegetation 

types, Cerradão and Cerrado denso. The results show the need for further and longer-term studies to 

analyze the edge effect indicators such as tree density, tree height, DBH and biomass of trees, shrubs 
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and herbaceous layer. One suggestion is the use of time series of in situ data accompanied by satellite 

image analysis for NDVI and biomass. 
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6. Final remarks  

In this thesis, we first evaluated the use of optical and radar remote sensing for mapping different 

types of vegetation in the transitional area between the Cerrado and Amazon biomes. When applying 

a supervised random forest classification, the highest overall accuracy and kappa coefficient were 

obtained using only the Sentinel 2A for classification. However, of the three classifications that obtained 

the highest overall accuracy and kappa values, two used radar and optical images. Bands 5, 11, and 12 

of Sentinel 2A, texture images from Sentinel 1A cross-polarization, and coherence of TanDEM-X were 

the most important images in order to separate each class, as calculated by the random forest variable 

importance. 

Second, we assess the fragmentation and edge effect impact on biomass and carbon stock, the 

outcomes reveal that fragmentation has no significant impacts on the quantity or the distribution of 

AGB and aboveground carbon stocks in the study area in Nova Mutum. This is shown by the non-

significant differences of the AGB and its carbon stocks between the border of a fragment and its center 

in both vegetation types as well as by the non-significant differences of the AGB and its carbon stocks 

between the fragments themselves. Merely by comparing the AGB and its carbon stocks of the 

Cerradão with the Cerrado denso, the results show significant differences, which are referable to the 

differences in vegetation physiognomy. Finally, the edge effect on biomass patterns found in the 

Amazon cannot be compared with those of the Cerrado biome, as it has a long history of human 

disturbance. Additionally, this analyzes was performed with a single measurement, therefore, to better 

understand these impacts a long-term analysis is required. 

Third, we evaluated the edge effect in long-term based on NDVI values in the transitional area 

between the Cerrado and Amazon biomes. The method described in this study supported the studies 

assessing the edge effect on the vegetation. Additionally, our research applied a different approach to 

investigate possible edge effects using vegetation index from free satellite images. Moreover, our 

results showed a positive significant change in the NDVI values related to the distance from the nearest 

edge, the closer to the edge, the lower the NDVI value. Furthermore, our results showed that the long-

term edge effect pattern found in Amazon biome cannot be extrapolated to Cerrado due to the NDVI 

values stabilized two years after deforestation started around the area. More studies need to be done 

to understand the dynamics of the edge effect in AOD, which directly affect estimations such as biomass 

and carbon. 

Finally, we interpret the results of this thesis as a complex understanding of the possible edge effect 

due to the fragmentation. In the small scale, using fieldwork data, we could not find any evidence that 

fragmentation affect the carbon stock, however, we have significant results from remote sensing long-
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term data that the NDVI is affected by the edge effect, where the closer to the edge, the smaller the 

NDVI. The NDVI is a direct approximation of the amount of photosynthesis material and how green the 

vegetation is. This edge effect identified by the NDVI may be related to tree mortality and the decrease 

of green biomass and species. Therefore, this may be related to AGB. This research has an important 

impact to the policies of Carbon Credit in the Cerrado biome. The carbon credit is a tradable certificate 

that allows the emission of carbon dioxide in exchange for maintaining forest areas and consequently 

reduce the emission of carbon dioxide and other greenhouse gases. The carbon estimation 

methodologies in the endangered Amazon/Cerrado ecotone in Brazil are still not accurate since they 

do not take into account the effects of fragmentation in the carbon stock. To that end, it is 

recommended to analyze whether the edge effect found in the study area will also be found in other 

parts of the Cerrado biome. Therefore, monitoring of edge effect using remote sensing data is first 

recommended as a basis for deciding which areas should in situ data be collected. For a monitoring 

model of edge effect in the Cerrado, the in-situ data must be correlated with the remote sensing data, 

which can then be used for better estimation of carbon stocks in different Cerrado vegetation types. 
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Appendix A 
Figure A. Simple linear regression of the relation between edge distance and mean values of NDVI annual compositions of the fragment A. 
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Appendix B 
Figure B. Simple linear regression of the relation between edge distance and mean values of NDVI annual compositions of the fragment B. 
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Appendix C 
Figure C. Simple linear regression of the relation between edge distance and mean values of NDVI annual compositions of the fragment C. 
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Appendix D  
Figure D. Simple linear regression of the relation between edge distance and mean values of NDVI annual compositions of the fragment D. 
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Appendix E 
Figure E. Simple linear regression of the relation between edge distance and mean values of NDVI annual compositions of the fragment G. 
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Appendix F 
Figure F. Simple linear regression of the relation between edge distance and mean values of NDVI annual compositions of the fragment H. 
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Appendix G 
Figure G. Historical (1984–2017) precipitation data collected from the Diamatino fluviometric station located near to the study area. 
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