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Abstract 

Lipids are essential components of cellular membranes, which constitute not only the physical 

platforms that harbor the membrane proteins, but also the biochemical interfaces where the 

exchange of biomolecules, the communication between cells / organelles and the perception of 

exterior signals occur. Despite their structural importance, the functions and the mechanisms by 

which lipids orchestrate the compositional remodeling of cellular membranes in response to 

environmental stimuli are still poorly understood. 

The work presented here provides comprehensive and detailed information about distinct 

membrane composition as resolved by profound lipid analyses. For this, the acquisition of 

functional but minor membrane lipids, such as phosphoinositides, complex glycosphingolipids and 

phosphorylated sphingolipids, was incorporated into the pre-existing analytical lipidomics platform. 

The underlying liquid chromatographic separation coupled with mass spectrometric detection 

allows the selective and sensitive determination of individual lipid molecular species in complex 

biological samples.  

This enhanced method was then applied to investigate how the plasma membrane from 

Arabidopsis remodels its lipid composition under cold stress or in response to the loss of specific 

lipid species. The results indicated that the cold-induced lipid alterations within the plant plasma 

membrane resemble those of mutant plants with an impaired biosynthesis of α-hydroxylated 

sphingolipids. In addition, the lipidomics platform revealed a species-specific transversal 

distribution of certain lipids in purified and differently oriented plasma membrane vesicles. 

Individual lipid species, even from the same lipid class, are distributed differently within the two 

leaflets of the Arabidopsis plasma membrane, suggesting they may exert distinct functions within 

the particular membrane leaflet. In addition, the application of lipidomics together with proteomics 

and online database mining enabled the construction of the lipid metabolic pathways in the plant 

mitochondria. Possible lipid exchange and biosynthesis was unveiled with the assistance of 

membrane contact site-localizing proteins, indicating that several phospholipid classes as well as 

free sterols can be synthesized in plant mitochondria. Overall, these studies contribute to the 

understanding of the lipid organization of distinct subcellular membranes. 
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Chapter 1. Introduction 

Lipids are the basic components of biological membranes, which not only protect the organelles / 

cells from the outer stimuli (Casares et al. 2019, Zajchowski and Robbins 2002), but also display 

selective permeability towards diverse biomolecules, allowing the exchange and communications 

between the neighboring cells and between the subcellular organelles within one cell (Record et al. 

2014, Shinoda 2016). In addition, they are involved in several biological processes, serving as 

hormonal precursors, signaling molecules and energy sources (Hou et al. 2016, Wasternack and 

Kombrink 2010, Welte and Gould 2017). 

Although it seems to be basic knowledge nowadays that the elemental unit of living creatures, the 

cell, is enclosed by a membrane bilayer, this has only become evident since the second half of the 

20th century (Lombard 2014, Lombard et al. 2012, Singer 1971, Singer 1974, Singer 2004, Singer and 

Nicolson 1972). This membrane bilayer, namely the plasma membrane (PM), separates the cell 

from the exterior environment, thereby guarding the cell from potential harm. As the mobility of 

plants is restricted, the survival of plants under different biotic and abiotic stresses highly depends 

on the dynamic responses of the PM according to its environment (Mamode Cassim et al. 2019, 

Mamode Cassim and Mongrand 2019). The alteration of the PM lipid composition not only greatly 

influences its fluidity and permeability, but also modulates the interactions between membrane 

components and their downstream signaling pathways (Cai et al. 2018, Jiang 2019, Raghunathan 

and Kenworthy 2018).  

The responses and strategies that plants exert to survive exterior hassles are of agronomic and 

economic interests in terms of increasing food production on non-habitable lands (Bailey-Serres et 

al. 2019, Schroeder et al. 2013). Besides pathogenic attacks, freezing and cold stresses are among 

the most common obstacles that crop plants face (Eremina et al. 2016, van Hooren and Munnik 

2017, Zhu 2016). It has been demonstrated that low temperature induces drastic changes of the 

lipid composition in leaf tissues such as increasing the unsaturation degree of lipids and thus the 

membrane fluidity to avoid freezing injury (Takahashi et al. 2018, Tarazona et al. 2015, Uemura et 

al. 2006). Noteworthy, sphingolipids, which are critical components of the PM, have been 

demonstrated to be involved in several signaling pathways including vesicle trafficking, plant 

development, senescence and defense against biotic and abiotic stresses (Ali et al. 2018, Berkey et 

al. 2012, Huby et al. 2020, Liang et al. 2003, Michaelson et al. 2016). In addition, sphingolipids can 

interact with sterols to establish lipid rafts, which provide specialized lipid platforms within the PM 

for close interactions between protein receptors and signal transducers (Lefebvre et al. 2007, 
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Takahashi et al. 2013, Tapken and Murphy 2015). Nevertheless, the function of lipid rafts during 

stress adaption and the strategies that plants employ to overcome the loss of specific sphingolipids 

remained elusive. The role of sphingolipids with respect to the organization of the plant PM and its 

compositional modulation in response to cold stress are addressed by in-depth profiling of PMs 

isolated from sphingolipid biosynthesis mutant plants grown under cold acclimation (Chapter 4). 

Sphingolipid signaling is involved in regulating programmed cell death (PCD), which may be initiated 

by processes in the mitochondria, yet only limited information is available in terms of composition 

and functions of lipids within plant mitochondria (Berkey et al. 2012). It is known that the 

mitochondrion can synthesize some nucleic acids, proteins and lipids on its own; nevertheless, it 

still strongly relies on the supplies from exterior sources such as the nucleus and the endoplasmic 

reticulum (ER) (Rhoads and Vanlerberghe 2004, Soto-Heredero et al. 2017). Since mitochondria are 

disassociated from the vesicular transport that utilizes membrane vesicles deriving from the Golgi 

apparatus, they have developed different strategies to obtain lipids from other organelles such as 

membrane contact sites (Giordano 2018, Petrungaro and Kornmann 2019). The capacity of lipid 

biosynthesis of the plant mitochondria and the lipid exchange with other organelles are elucidated 

here by a combinatorial approach integrating lipidomics, proteomics and online database mining 

(Chapter 5). 

Several methodologies such as thin-layer chromatography (TLC), gas-liquid chromatography (GC) 

and mass spectrometry (MS)-based approaches have been developed to analyze the broad range 

of lipids present in biological samples (Carrasco-Pancorbo et al. 2009, Pati et al. 2016). Liquid 

chromatography – mass spectrometry (LC-MS) is the most sensitive and efficient approach hereto 

in identifying single molecular lipid species in biological extracts. A wide-ranging lipidomics platform 

that covers more than 300 molecular lipid species from Arabidopsis leaves has been developed 

previously (Tarazona et al. 2015). This lipidomics platform empowers greatly the research on lipid 

characterization. However, some lipid classes that exert regulatory functions are challenging to be 

incorporated into the standard workflow due to their low abundance and / or structural 

characteristics. For instance, phosphoinositides and phosphorylated sphingolipids, which play 

essential roles in regulating several signaling pathways and in determining cell fate, respectively, 

were not included in the pre-existing lipidomics platform. Our strategy to include the minor but 

functional lipid classes, enhance the detection and broaden the coverage of the pre-existing 

lipidomics platform is delineated in detail (Chapter 2 and 3). 
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1.1 Definition, classification and nomenclature of lipids 

In this study, lipids are defined according to the International Union of Pure and Applied Chemistry 

(IUPAC-IUB Commission on Biochemical Nomenclature) and the LIPID MAPS Consortium (Fahy et al. 

2011, Harkewicz and Dennis 2011). They are hydrophobic or amphipathic chemical compounds that 

originate entirely or partially from carbanion-based condensations of thioesters (such as 

glycerolipids and sphingolipids) and/or by carbocation-based condensations of isoprene units 

(sterols). The three major lipid categories, namely glycerolipids, sphingolipids and sterols, are within 

the focus of this work (Fig. 1). Within each lipid category, individual lipid classes are named purely 

after their structural backbones and functional groups. A three-number system (C : DB ; OH) 

connected by a colon and a semicolon is used here to denote the numbers of carbon (C), double 

bond (DB) and hydroxyl group (OH) of the hydrocarbon moieties (Liebisch et al. 2013). Only the first 

two digits are specified if no hydroxyl group is present. For instance, 18:0;0 and 18:0 fatty acids 

represent the same lipid structure with an 18-carbon acyl chain without any double bond or 

hydroxyl group.  

 

Figure 1. General structures of glycerolipids, sphingolipids and sterols. The lipid categories are 
named after the core structure (glycerol for glycerolipids, LCB for sphingolipids, tetracyclic ring for 
sterol lipids) depicted in black. The lipid classes within each lipid category vary according to the 
headgroups depicted in blue. Lipid species within each lipid class are specified according to their 
different fatty acyl moieties (glycerolipids and sphingolipids) or side-chain modifications on the core 
structure (sphingolipids and sterol lipids) are depicted in magenta. 
 

Glycerolipids are a group of structurally heterogeneous compounds that have glycerol as their 

backbone. The central glycerol, which contains three carbon atoms that are numbered 
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stereospecifically with sn-1, sn-2 and sn-3, can be linked with at least one fatty acyl moiety. The de 

novo biosynthesis of the glycerolipids is initiated in plants in the plastids where fatty acid moieties 

with 16 and 18 carbons in length are generated. These fatty acyl moieties can then be transported 

to the plastidial envelope or exported to the ER for further desaturation, elongation and 

incorporation into a varieties of lipid molecules. Substantial amounts of the lipids may be 

transferred back into plastids as additional precursors for the synthesis of plastidial lipids (Kelly and 

Dörmann 2004, Li-Beisson et al. 2013). According to the involved compartments of the biosynthesis 

pathways, the prokaryotic and the eukaryotic pathways are defined (Browse et al. 1986). Namely, 

the prokaryotic pathway takes place exclusively in plastids, and the resulting prokaryotic lipids 

characteristically contain in Arabidopsis fatty acyl moieties with 16 carbons in length (16:3 in 

particular) at the sn-2 position. Most of the glycerolipid biosynthesis in Arabidopsis follows the 

eukaryotic pathway. It involves both plastids and the ER and the resulting eukaryotic lipids contain 

primarily fatty acid moieties with 18 or more carbons in length. 

The simple examples of the glycerolipids with one, two and three acyl chains are the mono-, di- and 

triacylglycerols (MAG, DAG and TAG). In plants, DAG serves as an important signaling molecule 

during plant development and in response to environmental stresses (Dong et al. 2012); TAG is the 

predominant lipid component in seeds, providing energy as well as acting as carbon source for the 

young seedlings during early germination stages (Huang 1994, Lu et al. 2020). Glycerolipids can be 

further subdivided into glycerophospholipids and glyceroglycolipids, which contain a phosphate 

group or a carbohydrate attached to the sn-3 position of the glycerol core, respectively. 

Most of the glycerolipids are glycerophospholipids, which are amphiphilic and play central roles in 

forming lipid bilayers. The glycerophospholipid phosphatidic acid (PA) is the simplest phospholipid 

and is formed after serial acylation of the glycerol-3-phosphate (Athenstaedt and Daum 1999, 

Testerink and Munnik 2011). The phosphate group on the sn-3 position can be modified further 

with small molecules such as choline, ethanolamine, serine, inositol and glycerol to generate the 

following lipid classes: phosphatidylcholine (PC), phosphatidylethanolamine (PE), 

phosphatidylserine (PS), phosphatidylinositol (PI) and phosphatidylglycerol (PG), respectively. 

Although glycerophospholipids like PC and PE are widely recognized as the structural components 

of biological membranes, many of them play essential roles in several biological processes as well 

(Gibellini and Smith 2010, Hong et al. 2009, Karki et al. 2019). In plants, PS acts as an early indicator 

of apoptosis (Manoharan et al. 2000, O'Brien et al. 1997). PI is the precursor of phosphatidylinositol 

mono- and bisphosphates (PIP and PIP2), which form a sophisticated signaling network in regulating 

the location and the activities of specific proteins (Heilmann 2016, Thole and Nielsen 2008). 

Noteworthy, glycerophospholipids may be also involved in the determination of membrane 
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curvature and surface charge. For instance, a negative curvature can be induced by PA and PE, and 

a positive curvature by PI, PIP and PIP2 (Harayama and Riezman 2018). The surface charge of the 

membrane, which establishes its electrostatic signature, depends on the presenting anionic lipids 

including PA, PS, PIP and PIP2 (Platre et al. 2018). PG is mainly present in the thylakoid membranes 

to support the performance of photosynthesis (Hagio et al. 2002, Wada and Murata 2007). In 

mitochondria, PG can serve as the precursor of the mitochondria-specific phospholipid, cardiolipin 

(CL) (Pineau et al. 2013). Unlike other lipid classes, the majority of PG (85 %) is produced entirely in 

the plastid via the prokaryotic pathway (Browse et al. 1986). Three common glyceroglycolipids in 

plants are monogalactosyl, digalactosyl and sulfoquinovosyl diacylglycerol (MGDG, DGDG and 

SQDG, respectively). They are critical components of the thylakoid membranes in higher plants and 

are involved in the photosynthesis process (Kobayashi et al. 2007, Li and Yu 2018). In Arabidopsis, 

about 50 % of MGDG is of prokaryotic origin, whereas DGDG and SQDG are primarily of eukaryotic 

origin (Li-Beisson et al. 2013). Noteworthy, DGDG is transferred to extraplastidial membranes 

including the PM and mitochondrial membranes under phosphate-limiting condition (Jouhet et al. 

2004, Kelly and Dörmann 2004, Michaud et al. 2016). SQDG levels correlate strongly with plant 

growth under phosphate-limited stress as well (Benning et al. 2008, Shimojima 2011). Further lipid 

classes such as betaine lipids and complex glycolipids with tri- or tetragalactosyl headgroups are 

widely distributed in algae and lower plants (Eichenberger et al. 1993, Murakami et al. 2018, Vogel 

and Eichenberger 1992, Warakanont et al. 2015).  

Sphingolipids, originally discovered in brain tissues, are ubiquitous structural and functional 

components of eukaryotic membranes (Luttgeharm et al. 2016). They are comprised of a group of 

structurally diverse lipids that have a long-chain base (LCB) as the consensus core. These LCB 

molecules, which are synthesized in the ER, are long-chain amines that contain two or three 

hydroxyl groups (Chen et al. 2008). N-acylation of the LCB backbone with a fatty acyl moiety 

generates ceramide (Cer), and subsequent glucosylation generates glucosylceramide (GlcCer). Cer 

can be transported to the Golgi apparatus for synthesizing complex sphingolipids such as series of 

glycosyl inositol phosphoceramides (GIPCs). According to the nomenclature proposed previously 

(Fang et al. 2016), series 0 GIPC in plants, which usually contains an α-glucuronic acid linked to the 

inositol phosphoceramide, can be denoted as GlcA-IPC. Subsequent addition of one and two sugars 

on the α-glucuronic acid generates series A and B GIPCs, respectively. Sphingolipids play roles in 

numerous biological processes. For instance, the ratio between the non- and phosphorylated forms 

of LCB (LCB/LCB-P) and Cer (Cer/Cer-P) has been demonstrated to be a decisive factor of cell fate 

determination including senescence and PCD (Huby et al. 2020, Luttgeharm et al. 2016). On the 

other hand, GlcCer is involved in the processes of cell differentiation and organogenesis (Msanne 
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et al. 2015, Warnecke and Heinz 2003). It has been proposed to establish lipid rafts by interacting 

with sterols and specific proteins as well (Quinn 2014, Varela et al. 2016). GIPCs carry different 

glycan moieties on the head groups and are mainly located at the PM (Cacas et al. 2016, Gronnier 

et al. 2016). In Arabidopsis, GIPCs are required for salt-induced depolarization (Jiang et al. 2019) 

and pathogenic recognition (Lenarčič et al. 2017, Mortimer and Scheller 2020).  

Sterols are the third lipid category included in this study. Unlike animal and yeast, which have 

predominantly cholesterol and ergosterol, respectively, a mixture of free sterols (FSs) are present 

in plants. In the model plant Arabidopsis it is a mixture out of brassicasterol, campesterol, 

cholesterol, isofucosterol, sitosterol and stigmasterol (Clouse 2002, Schaller 2004). All the 

mentioned sterols share the same backbone, a tetracyclic ring system, but differ in the additional 

modifications on the side chain and the four ring systems. FSs can be further conjugated via a 

hydroxyl group at position 3 of the A ring with fatty acids via an ester bond to generate sterol esters 

(SEs), or with glucose via glycosidic linkage to generate steryl glycosides (SGs) and further acylated 

steryl glycosides (ASGs) (Hartmann 2004, Valitova et al. 2016). It is well-characterized that FSs are 

modulators of fluidity and permeability of biological membranes (Grunwald 1971). SE molecules 

are considered as storage forms of sterols and accumulate in lipid droplets (Bouvier-Nave et al. 

2010). On the other hand, SGs and ASGs, which present specifically in plants, are less characterized. 

It is proposed that SGs and ASGs, together with FSs are associated with GlcCers and GIPCs to form 

lipid rafts (Ferrer et al. 2017, Grosjean et al. 2015, Roche et al. 2008).  

1.2 Composition and organization of biological membranes 

Although glycerolipids, sphingolipids and sterols are structurally and functionally different, one 

common role that all three lipid categories exert is to establish biological membranes. Current 

knowledge shows that the biological membranes in eukaryotic systems are generated from the ER 

(Balla et al. 2020, Henneberry et al. 2002, Kent 1995, Yang et al. 2018). The majority of the 

membrane lipids are synthesized here and then transported by active mechanisms, such as the 

vesicular transport, to the targeted destinations. Lipids can undergo subsequent modification such 

as double bond insertion, chain length elongation and glycosylation after being synthesized in the 

ER, as well as during the transport through the Golgi apparatus and / or other endomembranes 

(Balla et al. 2020, Stefan et al. 2017). Together with lipids, the membrane proteins, which are 

synthesized in the ER, are transported via the vesicular transport as well. Based on the lipid – 

protein interactions, these proteins form specialized clusters with the surrounding lipids, and are 

incorporated together into the acceptor compartment (Brown 2012, Quinn 2012). Thereby, the 

interactions between lipid – lipid, protein – protein and lipid – protein on the biological membranes 
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collectively determine the biophysical properties of the membrane, building a dynamic but stable 

platform for numerous biological processes. 

Membrane lipids and the associated proteins are distributed asymmetrically not only across the 

two leaflets of the membrane, but also laterally in each leaflet in a non-random manner (Devaux 

and Morris 2004, Fujimoto and Parmryd 2017). It is proposed that the transmembrane asymmetry 

results from the nature of membrane lipid biosynthesis and transport (Balla et al. 2020); and the 

lateral membrane asymmetry is organized majorly by the lipid – lipid and lipid – protein interactions 

(Quinn 2012). One example that drastically affects the architecture of the membrane due to the 

ordered lipid – protein structure are the membrane junctions. In this case, proteins are the central 

scaffold of the membrane junctions that impose the type and distribution of the surrounding lipids 

(Okeke et al. 2016, Van Itallie and Anderson 2014). Concerning lipid – lipid interaction, the most 

notable example is the formation of lipid rafts. They have been characterized as ordered lipid 

structures that gather membrane signaling components and facilitate downstream signaling 

responses (Grennan 2007, Hanzal-Bayer and Hancock 2007).  

The definition and existence of lipid rafts have been long under debate (Brown 2006). Historically, 

liquid-ordered membranes isolated after treatment with mild detergent, namely the detergent-

resistant membranes (DRMs), were used to study the naturally organized membrane structures 

present on biological membranes (Borner et al. 2005, Magee and Parmryd 2003). DRMs contain 

higher abundance of sterols and sphingolipids in comparison to the PM crude extracts. Furthermore, 

many studies have demonstrated that a specific subset of proteins can be coisolated with DRMs, 

suggesting that these proteins may play functional roles in lipid rafts (Lefebvre et al. 2007, Magee 

and Parmryd 2003). Although many scientists raised the concern that the DRMs and the natural 

lipid rafts are biophysically different (Lichtenberg et al. 2005), several DRM-associated proteins and 

lipids have already been visualized by microscopic techniques to cluster towards specific receptors 

within the PMs (Gaus et al. 2005, Viola et al. 1999). However, the majority of the most typical DRM-

associated proteins, the glycosyl phosphatidylinositol-anchored proteins (GPI-AP), distribute 

uniformly or in nanoscale clusters across the cell surface (Glebov and Nichols 2004, Sharma et al. 

2004). A revised model has been therefore proposed. Namely, lipid molecules are present uniformly 

or in nanoscale unstable domains in the PM under the unstimulated condition; upon stimulus, lipids 

such as sterols and sphingolipids initiate the formation and increase the stability of larger lipid rafts 

(Carquin et al. 2016, Cebecauer et al. 2018). This concept has been demonstrated through an in 

vitro study with PM-like giant unilamellar vesicles (GUVs) (Hammond et al. 2005). The composition 

of these GUVs represents the PM condition, which is at the boundary of phase separation. The 

initial aggregation of lipid or protein molecules can generate a large impact on their membrane 
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organization to form lipid-ordered domains or lipid rafts. In the present work, lipid rafts are defined 

as following: they are lipid microdomains that contain ordered structures of lipid molecules 

including sterols and sphingolipids; they harbor a specific subset of proteins, usually receptors or 

signaling molecules; they may be involved in mediating or facilitating the signaling transduction, 

thereby transmitting the exterior stimuli into the cell.  

1.3 Targeted membranes in this study 

Two distinct membranes are in the scope of this work, the PM and the mitochondrial membranes 

in the model plant Arabidopsis. These two membrane systems represent the eukaryotic and 

prokaryotic membranes in plant cells, and both are pivotal for survival. The following sections focus 

on the function, structure, biosynthesis and the composition of PM and mitochondria.  

1.3.1 Plasma membrane 

The PM is the frontier of the cell that encloses and separates the cytoplasm from the exterior 

environment while ensuring the coordination between internal responses and the external stimuli. 

The basic PM structure is a phospholipid bilayer with additional lipids such as sterols for increasing 

stability, and sphingolipids for mediating numerous biological processes. There are also several PM-

associated proteins, such as integral, peripheral and lipid-anchored proteins (Chou and Elrod 1999). 

Furthermore, the PM surface possesses various forms of carbohydrates, predominantly from the 

glycoproteins and glycolipids. They play critical roles in mediating cell attachment, as the 

recognition sites between neighboring cells, as well as between host cells and pathogens (Chaliha 

et al. 2018, Kieliszewski et al. 2011).  

For the PM, which lacks the synthetic enzyme machineries for de novo biosynthesis, it obtains the 

lipids primarily via vesicular transport to maintain its membrane structure (Bishop and Bell 1988, 

Blom et al. 2011, van Meer et al. 2008). The vesicular transport involves the budding of vesicles 

from the donor membrane, transport of the vesicles and fusion with the acceptor membrane (Fig. 

2). GIPCs, for instance, are transported via this pathway to the PM. GIPCs are considered to be 

synthesized on the luminal side of the Golgi apparatus where glycosylation occurs, transported via 

Golgi-derived vesicles within the cell and delivered to the PM and then exposed to the apoplastic 

leaflet via an active transport (van Meer and Holthuis 2000, Zäuner et al. 2010). 

Because the PM possesses different function and structure as the ER and the Golgi apparatus, 

specific proteins and lipid molecules must be carefully selected to be transported to the PM 

(Gronnier et al. 2018, Li et al. 2020). To achieve precise sorting and transport of PM-localized 
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proteins, specific recognition sequences are used; however, there are no recognition sequences for 

lipids. Therefore, to achieve accurate sorting of PM-specific lipids, the vesicular transport must be 

coordinated with other mechanisms such as the protein-facilitated non-vesicular pathway and 

transport at the membrane contact sites when two membranes are at close appositions (Balla et al. 

2020, Prinz 2010).  

 

Figure 2. The orientation of lipid molecules at membrane vesicles during the vesicular 
transportation. Lipid molecules located at the inner membrane of the donor membrane (depicted 
in gray), such as the luminal side of the ER or the Golgi, are enclosed in the inner leaflet of the 
membrane vesicles during transportation. In case of membrane vesicles that travel to the PM 
(acceptor membrane), the targeted lipid molecules (magenta) are exposed at the outer leaflet after 
membrane fusion.  
 

It has been demonstrated that the PM lipid composition depends highly on the plant species, organs 

and its growth condition. Under optimal growth condition, the proportion of glycerolipids, 

sphingolipids and sterols in the PM isolated from leaf tissues of oat, rye, barley, spinach, potato and 

Arabidopsis varies greatly. In most of the mentioned plant species, glycerophospholipids are the 

most abundant lipid classes in the PM, accounting for 42 % in oat, 44 % in barley (Rochester et al. 

1987), 47 % in Arabidopsis (Uemura et al. 1995), 48 % in rye (Takahashi et al. 2016), 47-50 % in 

potatoes (Palta et al. 1993) and 64 % in spinach (Rochester et al. 1987). Interestingly, in spring and 

winter cultivars of oat and rye PM, significant lower abundance of glycerophospholipids and high 

levels of sterols are present. Namely, 30 % : 42 % (glycerophospholipids : sterols) in spring oat, 

29 % : 40 % in winter oats and 37 % : 47 % in winter rye (Uemura and Steponkus 1994). This 

demonstrates not only how evolution has shaped the PM lipid composition of each plant species 

but also to which extent the lipid composition of the plant PM can adapt to outer stimuli while 

maintaining its membrane stability. Sphingolipids, on the other hand, are minor components in the 
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plant PM. They account for only 7 % in the PM isolated from leaves of Arabidopsis (Uemura et al. 

1995) although they exert essential functional roles including lipid raft formation and the 

pathogenic recognition.  

1.3.1.1 Cold acclimation 

Cold and freezing stresses are among the major obstacles that affect the growth and development 

of plants. It has been demonstrated that changes in the lipid and protein compositions of the plant 

PM, and alterations of the overall transcriptome and proteome inside the cell arise when plants are 

exposed to cold stress (Chinnusamy et al. 2006, Nakashima and Yamaguchi-Shinozaki 2006, Uemura 

et al. 2006, Van Buskirk and Thomashow 2006). To maintain the homeostasis of the cell, plants have 

evolved a strategy, namely cold acclimation (CA), to prepare themselves already at low 

temperature for the upcoming freezing stress.  

The most typical strategy when plants encounter cold stress is to increase the cryostability and 

maintain the fluidity of the PM by modulating its lipid composition. At the early stage of CA, 

increasing proportions of phospholipids have been observed commonly (Uemura et al. 2006). The 

molecular species of PC and PE change as follows: the levels of the unsaturated species (containing 

unsaturated fatty acyl moieties) increase and saturated species (containing saturated fatty acyl 

moieties) decrease (Uemura et al. 1995). In addition, levels of sphingolipids decrease continuously 

throughout the CA process. More unsaturated GlcCers are present under CA condition in oat, rye, 

cereal and Arabidopsis (Huby et al. 2020, Imai et al. 1997, Minami et al. 2008, Takahashi et al. 2016). 

The increase of the unsaturated sphingolipids probably contributes to the structural stability of the 

plant PM as well. However, the alteration of the phosphorylated classes including LCB-Ps and Cer-

Ps initiates presumably signaling pathways adjusting the response or the degradation of the 

precursors LCB and Cer from the membranes (Chen et al. 2012, Dutilleul et al. 2012, Dutilleul et al. 

2015, Michaelson et al. 2016). In addition, plant sterols, including the free forms and the 

glycosylated conjugates, are important modulators of the membrane fluidity. For instance, ratio of 

FSs to SGs and ASGs increase in rye and Arabidopsis during CA (Grosjean et al. 2015, Lynch and 

Steponkus 1987, Minami et al. 2008). As SGs, ASGs and sphingolipids are considered as critical 

components of the lipid rafts, the change of their molecular species affects the involving biological 

processes such as signal transduction, protein trafficking and plant – bacterial interactions (Bhat 

and Panstruga 2005, Haney and Long 2010, Lefebvre et al. 2010, Men et al. 2008, Minami et al. 

2008, Tapken and Murphy 2015, Yang et al. 2013).  
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In addition to lipids, the composition of proteins and their interactions change during CA as well 

(Takahashi et al. 2013). Several PM proteins which are involved in membrane repairing, osmotic 

stress responses and protein degradation have been identified by proteomics approaches to take 

part in the CA (Kawamura and Uemura 2003). Moreover, it has been demonstrated that a 

lipoprotein-like protein, AtLCN, accumulates significantly during CA, and may be involved in 

increasing the cryostability of the PM by interacting with the neighboring lipid components 

(Kawamura and Uemura 2003, Uemura et al. 2006). Furthermore, many other lipid raft-localized or 

associated proteins accumulate in the PM during CA, such as tubulins, clathrins and aquaporins 

(Abdrakhamanova et al. 2003, Minami et al. 2008, Peng et al. 2008, Takahashi et al. 2013), 

suggesting that the protein – lipid interactions play important roles during CA as well.  

1.3.1.2 Sphingolipid synthesis defects 

Sphingolipids are not only structural but also functional components of the plant PM. In Arabidopsis, 

the LCB backbones of sphingolipids are usually 18 carbons in length, with maximum two double 

bonds and three hydroxyl groups. The amide-linked fatty acyl moieties on complex sphingolipids 

vary in chain length usually from 16 to 26 carbons, with possible modifications such as the 

hydroxylation at the C2 position (α-hydroxylation) and the desaturation at the ω-9 position 

(Alderson et al. 2005, Imai et al. 2000, Lynch and Dunn 2004, Michaelson et al. 2016).  

More than 90 % of the complex sphingolipids in higher plants are α-hydroxylated (Imai et al. 1995, 

Markham and Jaworski 2007, Pata et al. 2010). It has been demonstrated that α-hydroxylated 

sphingolipids are involved in several biological processes. For instance, hydroxylated complex 

sphingolipids, especially the ones containing very-long-chain fatty acids (VLCFAs), are associated 

with sterols in establishing and stabilizing lipid rafts (Borner et al. 2005, Cacas et al. 2016). In 

addition, plants which contain high levels of hydroxylated Cer display enhanced susceptibility upon 

hypoxia (Li et al. 2015, Xie et al. 2015a, Xie et al. 2015b) whereas reduced abundance of 

hydroxylated Cer has been detected under active ethylene signaling (Wu et al. 2015), suggesting its 

functions in oxidative stress and cell development.  

Two sphingolipid fatty acid α-hydroxylases (FAH), AtFAH1 and AtFAH2, have been identified in 

Arabidopsis to synthesize α-hydroxylated sphingolipids. Although AtFAH1 and AtFAH2 share very 

high sequence similarity, they possess different substrate specificities. AtFAH1 is capable of 

hydrolyzing a broad range of substrates, preferentially the VLCFAs, while AtFAH2 reacts specifically 

on the 16:0 fatty acid (König et al. 2012, Nagano et al. 2012). Hydroxylated VLCFAs have been 

demonstrated to be involved in enhancing the tolerance to oxidative stress and salicylic acid (SA)-
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triggered cell death. In addition, AtFAH1 and AtFAH2 have been identified to interact with and 

mediate the functions of several ER-localized proteins. For instance, both FAH proteins interact with 

the Bax inhibitor-1 (AtBI-1), which function as a cell death suppressor (Nagano et al. 2009). 

Noteworthy, AtBI-1 overexpressing plants contain higher amount of hydroxylated GlcCer in the lipid 

rafts with altered protein composition (Ishikawa et al. 2015), indicating again the correlation 

between lipid rafts and stress responses.  

The Arabidopsis fah1 fah2 double mutant displays reduced growth phenotype under optimal 

growth condition. Further analysis of overall lipid composition in leaves of fah1 fah2 indicated that 

they contain higher amounts of free trihydroxylated LCB, C16- and VLCFA-containing Cers; but 

lower amount of hydroxylated complex sphingolipids (König et al. 2012). Constitutively enhanced 

levels of SA and SA derivatives, together with other stress markers such as raphanusamic acid, 

indoles and dihydroxybenzoic acid derivatives, have been detected as well (Bartsch et al. 2010, 

Bednarek and Osbourn 2009, Hagemeier et al. 2001, Iven et al. 2012). Collectively, the fah1 fah2 

double mutant serves as a great model to investigate the influence of sphingolipids, especially 

hydroxylated complex sphingolipids, on the organization of the plant PM under environmental 

stresses.  

1.3.1.3 Membrane asymmetry 

It has been widely accepted that the PM of eukaryotic cells contains non-randomly distributed lipids 

across the two leaflets of the membrane, namely lipid asymmetry. The uneven distribution of lipid 

molecules contribute to the establishment of the curvature and the charge of the membrane (Bigay 

and Antonny 2012, Harayama and Riezman 2018). Most of the knowledge about PM lipid 

asymmetry is building on studies of human erythrocytes. That is, most of the PC and sphingomyelin 

(SM) are distributed in the outer leaflet while PS, PE and PI are in the inner leaflet (Bretscher 1972, 

Devaux and Morris 2004, Lorent et al. 2020, Verkleij et al. 1973). It was assumed that this PM 

prototype could be applied generically on other cell types and species. However, several studies 

indicate that the transversal lipid distribution varies among cell types and even among erythrocytes 

of different species. For instance, the proportion of PC in the outer leaflet of erythrocytes is about 

77 % in human (Verkleij et al. 1973), but only 50 % in mouse (Rawyler et al. 1985). PS, PE and PI are 

thought to locate majorly in the inner leaflet of human erythrocytes. However, considerable 

amounts of PS and PE have also been detected by lipid probes, although not quantitatively, in the 

outer leaflet of animal cells (Devaux 1991, Zachowski 1993).  
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In plants, the knowledge of the lipid transversal distribution is still in its infancy; very few studies 

have addressed it experimentally. It has been demonstrated that phospholipids are allocated 

symmetrically on the two leaflets of the PM isolated from hypocotyl cells of mung beans (Takeda 

and Kasamo 2001); 65 % of the overall phospholipids are located in the cytoplasmic leaflet in the 

PM isolated from oat roots, and the cytoplasmic leaflet-localized PC can be replaced by DGDG under 

phosphate starvation (Tjellström et al. 2010). With the assistance of protein-based lipid probes, the 

transversal distribution of anionic lipid classes was further revealed. PS is detectable preferentially, 

but not exclusively, in the cytoplasmic leaflet of tobacco protoplasts by the PS probe, Annexin-V 

(O'Brien et al. 1997); together with PS, PA and PIPs are detected with higher abundance in the 

cytoplasmic leaflet of Arabidopsis root meristem (Platre et al. 2018). 

Plants possess a wide range of sphingolipids and sterols in comparison to the animal system. 

Nevertheless, the knowledge obtained from the human erythrocyte serves as a foundation for 

further investigations. It has been widely accepted that glycosphingolipids are localized exclusively 

on the apoplastic leaflet of the PM according to their biosynthesis and transport pathway. Since the 

complex sugar moieties are attached to the molecules on the luminal side of the Golgi apparatus 

and this hydrophilic headgroup can hinder the transbilayer movement, the glycosphingolipids are 

therefore exclusively exposed on the apoplastic leaflet of the PM after membrane fusion. However, 

it has been demonstrated that monohexosyl sphingolipids undergo rapid transbilayer movement 

on the ER and the Golgi membranes of rat liver (Buton et al. 2002). This suggests the presence of 

specific flippases acting on membranes of the ER and the Golgi apparatus, and may contribute to 

the presence of glycosylated sphingolipids within the inner leaflet of the PM. In plants, although a 

wide variety of glycosphingolipids are present, only GlcCer have been investigated. The proportion 

of GlcCer located within the apoplastic leaflet of the PM isolated from summer squash and from 

roots of oat was reported to be 98 % (Lynch and Phinney 1995) and 70 % (Tjellström et al. 2010), 

respectively. 

Analyses of the sterol distribution have demonstrated that sterols are located, not randomly, to 

either monolayer of the PM. In mammalian systems, the proportion of cholesterol varies greatly 

among the cell types and the applied methodology (Fujimoto and Parmryd 2017): 60-70 % are 

localized to the inner leaflet of the PM from Chinese hamster ovary cells by fluorescent analysis 

(Mondal et al. 2009), but 50-74 % to the outer leaflet of the PM from human erythrocyte by freeze-

fracturing (Fisher 1976). In plants, a sterol probe, Filipin III (Kleinschmidt et al. 1972), has been 

applied on targeting FSs and sterol derivatives thus addressing the sterol distribution. In PM isolated 

from roots of oat, 70 % of the overall sterols are present in the apoplastic leaflet (Tjellström et al. 

2010).  
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In addition to the functional headgroups, the unsaturation degree of lipid molecular species affects 

its transmembrane distribution as well. It has been demonstrated that the inner leaflet of the PM 

isolated from animal cells possesses a higher unsaturation degree (Devaux 1991, Lorent et al. 2020), 

lower viscosity (Morrot et al. 1986) and higher mobility of lipid molecules (Julien et al. 1993) in 

comparison to the outer leaflet. Moreover, increasing evidence suggests that individual lipid 

species can exert important roles in distinct cellular processes such as signal transduction and cell 

development. However, the lipid asymmetry of the plant PM in the scope of molecular species 

remains to be determined.  

1.3.2 Mitochondria 

The mitochondrion is enclosed by two biological membranes, the inner and outer mitochondrial 

membranes (IM and OM), and it exists in all kinds of eukaryotic cells. Knowledge about the 

mitochondrion is majorly building on the research of mammalian cells and yeast. The OM contains 

several protein channels for importing nucleotides, peptides, metabolites and ions into the inter 

membrane space. The second membrane, the IM, forms compartments by folding the membranes 

into specialized structures, the cristae. The complex machinery of electron transport chain is 

embedded in the IM, and the cristae are required for its efficient energy generation. The two 

aqueous compartments in mitochondria, the intermembrane space (between OM and IM) and the 

matrix (enclosed by IM), play essential roles in the regulation of electron transport chain and the 

biosynthesis of mitochondrial proteins.  

Noteworthy, mitochondria in plants have specialized during the evolution according to the tissue 

and cell type. In plants, which lack mobility, mitochondria are obligated to cooperate with other 

organelles including plastids under different environmental stresses in order to support plant 

growth and development. One of the most important cellular events triggered by mitochondria is 

PCD (Hirsch et al. 1998). It has been demonstrated that PCD can be triggered by the release of 

cytochrome c from the mitochondria and be inhibited by BCL-2 protein in mammalian cells (Kluck 

et al. 1997, Yang et al. 1997) and in plants (Chen and Dickman 2004, Dion et al. 1997). Interestingly, 

immunoblotting analysis indicates that the plant BCL-2 protein is associated not only with 

mitochondria, but also with plastids and nuclei, suggesting that PCD may be regulated by multi-

organellar signals in plant cells. Interactions between mitochondria – nucleus, mitochondria – ER 

and mitochondria – plastids further indicate that mitochondria cooperate with other organelles and 

exert functions in a sophisticated network (Carrie et al. 2013, Mackenzie and McIntosh 1999). 
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Several researches have been devoted to the understanding of mitochondrial proteins, including 

the biosynthesis of proteins inside mitochondria as well as the import of mitochondrial proteins 

from the cytosol through OM and IM (Wiedemann and Pfanner 2017). However, knowledge of 

mitochondrial lipids is much less developed. Although the mitochondrion can produce some lipids, 

it is still necessary to import several lipids from other organelles, especially the ER, during 

membrane genesis (Michaud et al. 2017). Unlike the PM, which obtains lipids from vesicles 

composed of specific protein and lipid molecules, mitochondria are disassociated from this 

vesicular transport. Instead, mitochondria obtain lipids from exterior sources mainly via the non-

vesicular lipid transport mediated by lipid-transfer proteins or spontaneous lipid transport. The 

efficiency of the non-vesicular transport is enhanced at the membrane contact sites; that is, when 

two membranes come to close apposition or even form dynamic membrane bridges (Lev 2010, 

Prinz 2010). Several morphological and biochemical studies have characterized the membrane 

contact sites between the mitochondria and the ER, the mitochondrion-associated membranes 

(MAMs). It is a specialized region where the ER and the OM of the mitochondria are tightly 

connected. Many enzymes involved in the biosynthesis of phospholipids such as PC, PE and PS 

display high activities at the purified MAMs from yeast (Vance 1990). In yeast and mammalian 

systems, it has been demonstrated that several phospholipids are transferred through the MAMs 

from the ER to the mitochondrial membranes (Herrera-Cruz and Simmen 2017, Tatsuta et al. 2014). 

As MAMs have been identified ubiquitously among animal and plant cells (Achleitner et al. 1999, 

Michaud et al. 2016, Morré et al. 1971, Staehelin 1997), it is presumed that the plant mitochondria 

obtain lipids from the ER via the MAMs as well.  

The mitochondrial membrane contains primarily phospholipids with minor amounts of 

sphingolipids and sterols under optimal growth condition (Daum and Vance 1997). It is proposed 

that plant mitochondrion can produce PE, PA, PG and CL on its own (Flis and Daum 2013, Horvath 

and Daum 2013, Tatsuta et al. 2014) and obtains other lipids from other intracellular organelles 

such as the ER and the plastids (Fig. 3). Noteworthy, CLs are a group of mitochondrion-specific 

phospholipids that contain four acyl chains and two phosphate groups. They are essential in 

establishing the cristae and maintaining the organization of the electron transport chain (Pineau et 

al. 2013). CL is formed after the condensation of PG and CDP-DAG by CL synthase (CLS). In plants, 

the PG-synthesizing enzymes have been identified to associate with the ER, the plastids and the IM, 

whereas CLS is identified exclusively in the mitochondria (Katayama et al. 2004, Li-Beisson et al. 

2013, Nowicki et al. 2005, Xu et al. 2002).  

Mitochondria obtain several lipids from other organelles through the non-vesicular transport. For 

instance, they obtain PC, PE and PI from the ER or the MAMs, and are able to self-synthesize 
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considerable proportions of PS and PG (Michaud et al. 2017, van Meer et al. 2008). Noteworthy, it 

has been demonstrated that the plant mitochondria contain the typical plastidial lipids such as 

MGDG and DGDG as well (Jouhet et al. 2004, Kelly and Dörmann 2004). Under phosphate starvation, 

the mitochondria obtain significant amounts of the bilayer-forming DGDG via the specific 

mitochondrial transmembrane lipoprotein (MTL) complex (Jouhet et al. 2019, Jouhet et al. 2004, 

Michaud et al. 2016, Michaud and Jouhet 2019). The increase of DGDG is accompanied by the 

decrease of PC (also bilayer-forming) and PE in the mitochondrial membranes, which are supposed 

to be degraded to release the phosphate residues for other essential biological processes. The 

mitochondrial lipid marker, CL, has increased abundance under phosphate starvation as well 

(Jouhet et al. 2004). Noteworthy, this drastic lipid remodeling and alteration of membrane 

composition does not affect the general structure and function of mitochondria. However, further 

knowledge based on the detailed lipid composition including glycerolipids, sphingolipids and sterols 

of the mitochondria as well as their capacity of the lipid biosynthesis is required to understand its 

underlying mechanism.  

 

Figure 3. The lipid transportation between the ER, the plastids and the mitochondria. The 
mitochondrial lipids including PC, PE, PS, PI, PG, and DAG are synthesized in the ER, the MAM or 
the mitochondria (purple). CL is present exclusively in mitochondria (magenta). Glyceroglycolipids 
including MGDG and DGDG are transferred from the plastids to the mitochondria (green), with 
increasing abundance under phosphate starvation. Solid line: exchange of lipids at the membrane 
contact sites between the organelles; dashed line: the transportation mechanism is still elusive. CL: 
cardiolipin; DAG: diacylglycerol; DGDG: digalactosyldiacylglycerol; MGDG: 
monogalactosyldiacylglycerol; PC: phosphatidylcholine; PE: phosphatidylethanolamine; PG: 
phosphatidylglycerol; PI: phosphatidylinositol; PS: phosphatidylserine. 
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1.4 Lipid methodology 

Detailed knowledge of lipid composition is part of the fundamental information to understand the 

structure, function and regulation of a membrane. Much effort has been made to develop methods 

that extract the information of lipid class and lipid species from biological samples, ranging from 

basic chromatographic separation to the advanced mass spectrometry-based analyses. Three major 

approaches are broadly applied to identify qualitatively and / or determine quantitatively the 

biological lipids. That is, (1) the conventional chromatographic analysis, (2) the direct infusion – 

mass spectrometry and (3) the liquid chromatography – mass spectrometry. The following sections 

introduce the advantages, disadvantages and the applications of these methodologies.  

1.4.1 Conventional chromatographic analysis 

The conventional approaches of lipid analysis usually involve two essential stages: the separation 

of specific lipid classes from complex biological extracts and the detection to obtain further species 

information (Fig. 4).  

 

Figure 4. The conventional chromatographic analysis. Two stages in lipid analysis: the separation of 
lipid classes and the detection of lipid species. SPE: solid phase extraction; TLC: thin-layer 
chromatography; NP-HPLC: normal-phase high-performance liquid chromatography; GC: gas-liquid 
chromatography; RP-HPLC: reverse-phase high-performance liquid chromatography. 
 

Several classical strategies can be applied to reduce the sample complexity or separate lipid classes 

according to their affinity towards different solvents and stationary phases. In this context, methods 

include solvent partitioning (Bligh and Dyer 1959, Matyash et al. 2008), solid phase extraction (SPE) 

(Ruiz-Gutiérrez and Pérez-Camino 2000); thin-layer chromatography (TLC) (Mangold 1961), and 

normal-phase high-performance liquid chromatography (NP-HPLC) (Christie 1985, Homan and 

Pownall 1989) have been commonly used. The major disadvantage of the classical methods is that 

it usually requires large sample amount and laborious work which consumes considerable time and 

human resources. Nevertheless, the classical method or a combination of the methods described 
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above can achieve highly purified lipid fractions that are ideal for subsequent absolute 

quantification. 

After lipid separation, the detection approaches such as GC and reverse-phase (RP)-HPLC are 

proceeded with to obtain further species information. GC analysis is highly robust and suitable for 

absolute quantification. However, the preliminary criteria of the analytes are that they must be 

volatile and stable under strong heat. Many compounds therefore require additional derivatization 

prior to the detection. For instance, derivatization of FSs with N,O-

bis(trimethylsilyl)trifluoroacetamide (BSTFA) can be performed to convert them into their 

trimethylsilyl ether derivatives  before GC analysis (Diekman and Djerassi 1967). In addition, acidic 

methanolysis can be applied on lipids (Miquel and Browse 1992), to release their fatty acyl moieties 

to be analyzed via GC as methyl esters. However, with this approach, the molecular information of 

individual lipid species (i.e. the fatty acyl moieties) is therefore sacrificed. Nevertheless, GC is still 

broadly used to quantify purified lipid extracts and obtain first insight into the fatty acid 

composition of novel biological samples. On the other hand, RP-HPLC can separate lipid species 

based on the principle of hydrophobic interactions and thus reveal their structural information. It 

has been widely applied on the analyses of various analytes such as lipids (Moreau 1990), protein 

variants (Baudin and Wajcman 1987), phenolic compounds (Proestos et al. 2005, Proestos et al. 

2006) and pharmaceuticals (Jeschek et al. 2016). In addition, it can be used for specialized targeted 

lipid analyses such as the fluorescence detection of LCBs after derivatization with o-phthalaldehyde 

(OPA) or 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) reagents (Abbas et al. 1994, 

Lester and Dickson 2001). In this work, combinations of TLC and GC approaches with precolumn 

derivatizations according to the analytes have been applied on analyzing the fatty acid content of 

lipid extracts quantitatively.  

1.4.2 Mass spectrometric analysis 

The invention and development of mass spectrometers have greatly enhanced the sensitivity and 

selectivity of chemical analysis. The introduction of soft ionization techniques such as electrospray 

ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) enlarges its applicability 

towards biomolecules like proteins and lipids. After ionization, the analytes are separated according 

to the mass to charge ratio (m/z) by a mass analyzer of choice depending on the analytes and the 

purpose of the analysis. The commonly used mass analyzers include time-of-flight (TOF), linear 

quadrupole (Q), linear quadrupole ion trap (LIT), quadrupole ion trap (IT), ion cyclotron resonance 

(ICR) and orbitrap. In addition, these mass analyzers can be further configured in tandem systems 
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such as triple quadrupole (QqQ), Q-TOF, Q-Orbitrap and so on to perform high-resolution analysis 

(El-Aneed et al. 2009, Holcapek et al. 2018).  

1.4.2.1 Direct infusion – mass spectrometry 

The name DI-MS already suggests its operating principle, which infuses samples directly without 

prior separation into the MS system. As all the analytes are ionized simultaneously in the identical 

solvent mixture, DI-MS is suitable for absolute quantification. Therefore, DI-MS has initiated the 

omics study on lipids, so called shotgun lipidomics (Brügger et al. 1997, Han and Gross 1994). The 

most abundant lipids, mostly glycerophospholipids, in biological extracts have been identified and 

structurally characterized via shotgun lipidomics including plants (Welti and Wang 2004). However, 

equal ionization among all analytes in DI-MS analysis is difficult to achieve in a complex biological 

extract due to the strong matrix effect including the ion suppression and isobaric interference (by 

compounds which possess the same m/z values). This strongly influences the research on less 

abundant or minor lipid classes, although they may exert critical functions in the cell. Nevertheless, 

DI-MS with the capability of tandem MS (MS/MS) analysis plays an excellent role in structural 

characterization of purified compounds. It has been therefore applied on the methodological 

development of specific biomolecules in this work, in optimizing the parameters of compound 

ionization and mass analysis. 

1.4.2.2 Liquid chromatography – mass spectrometry and its challenges in absolute quantification 

To reduce the matrix effect derived from the complex biological extracts, several liquid 

chromatographic separation approaches have been introduced to the lipidomics setup hereto. The 

most commonly setup incorporates a reverse-phase (RP)-LC system to the MS, which elutes the 

compounds according to increasing hydrophobicity, from the column to the subsequent ionizer and 

the mass spectrometer. Hydrophilic interaction liquid chromatography (HILIC) which separates the 

analytes according to the hydrophilicity (according to the head groups in case of lipid molecules) 

has also been introduced to purify the samples and enhance the selectivity of the analysis (Song et 

al. 2018). To analyze very low abundant biomolecules in highly complex samples, an innovative 

approach that combines HILIC and RP-LC has been developed to perform 2-dimensional LC-MS/MS 

analysis (Holčapek et al. 2015, Li et al. 2013, Nie et al. 2010, Pham et al. 2019).  

The lipid analysis in this work majorly relies on an RP-LC-MS/MS system equipped with a QqQ, which 

provides the molecular information of individual lipid species with the multiple reaction monitoring 

(MRM) detection mode (Fig. 5). With the MRM mode, precursor molecules are selected in the first 
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mass analyzer (Q1) and fragmented in the second mass analyzer (Q2); specific fragments are then 

analyzed in the third mass analyzer (Q3). With this strategy, a highly selective analysis detecting 

specific pairs of precursor – fragment can be applied on complex biological extracts, which enables 

the development of the targeted lipidomics platform. Previous work by Dr. Pablo Tarazona has 

achieved to establish a wide-ranging lipidomics platform targeting more than 300 lipid species from 

Arabidopsis leaves (Tarazona et al. 2015). However, this platform lacks a few lipid classes that exert 

critical biological functions due to their low abundance. To broaden and enhance the pre-existing 

lipidomics workflow is thus necessary for a comprehensive understanding of the biological 

membranes. 

 

Figure 5. The targeted lipidomics workflow in this work. The lipid molecules are separated by UPLC 
and ionized by soft ionization before analyzing by MS/MS with MRM mode. UPLC: ultra-
performance liquid chromatography; ESI: electrospray ionization: MRM: multiple reaction 
monitoring. 
 

Even though liquid chromatography, which separates the analytes and elutes them at distinct time 

points has contributed to the great enhancement of the sensitivity and selectivity in LC-MS analysis, 

it creates a major obstacle in the absolute quantification. Although reliable relative amounts of the 

analytes can be revealed via LC-MS based analysis (Cajka and Fiehn 2014), many factors hinder the 

quantification of their absolute abundance. First, along the liquid chromatographic gradient, 

different analytes can have unequal solubility at different time points according to the distinct 

solvent mixture. That is, higher abundant analytes with low solubility in the solvent mixture may 

arrive in lower numbers at the detector compared to lower abundant analytes with higher solubility 

(Snyder et al. 2010). Second, the simultaneously eluted analytes can interact with homo- and 

hetero-molecules in the ionization source and compete for ionization efficiency. This results in 

reduced detector response and / or decreased signal-to-noise ratio, so called ion suppression 

(Annesley 2003, Taylor 2005). Moreover, the alterations of the solvent mixture along the 

chromatographic gradient leads to instable ionization and can result in different detector responses 

(Kostiainen and Kauppila 2009). Finally, the kinetics of the analyte-specific fragments depends on 

the size, structure and charge of the distinct fragments generated in the collision cell of the mass 
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spectrometer. Therefore, different fragments of a specific precursor analyte can contribute to 

uneven signal intensities from the detector as well (Demarque et al. 2016).  

Several studies have been pursued to overcome these restrictions. The best practice is to create a 

standard curve with the targeted analytes in correlation to the internal standard that is eluted at 

the same retention time along the chromatographic gradient. In addition, the sample matrix used 

for generating the standard curves, the surrogate matrix, should possess a comparable composition 

as the real samples (Krautbauer et al. 2016, Wakamatsu et al. 2018). However, it is difficult to 

achieve these criteria including finding the identical internal standards for the wide-ranging 

analytes and a matching matrix for a high-throughput omics analysis for biological samples. In case 

of lipidomics analysis, several endogenous lipid components (such as Cer-Ps and GIPCs) are 

commercially unavailable. Therefore, standard curves are normally prepared using a few selected 

lipid species of certain lipid classes and / or purchasable structural analogues, although it has been 

demonstrated that the signals obtained from the simulated compounds are statistically different to 

the endogenous analytes (Dahal et al. 2011). A recent study has applied a regression algorithm on 

predicting the responses of the analytes in non-targeted LC-MS screening (Liigand et al. 2020). 

Nevertheless, whether the model provides reliable accuracy for absolute quantification in 

lipidomics analysis requires cautious verification. In an attempt to obtain a comprehensive and 

quantitative lipid composition of the plant PM, a combinatorial approach that incorporates the 

qualitative lipid species-targeting LC-MS and the quantitative lipid class-targeting TLC-GC analyses 

was conducted in this study. Specific ratios between lipid species within each lipid class can be 

thereby revealed and thus contribute to depict the lipid landscape of the plant PM. 
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1.5 Aims of this study 

The maintenance of the structural and functional integrities of the biological membranes is critical 

for the survival of cells and their organelles. The overall composition of cellular lipids has been 

studied intensively in the past centuries. However, our knowledge concerning the functions of 

individual membrane lipids and the mechanisms of their compositional remodeling at the 

subcellular level is still in its infancy. The main objective of this study was to enhance and broaden 

the pre-existing lipidomics workflow by incorporating the functional but minor lipid classes 

including phosphoinositides, complex glycosphingolipids and phosphorylated sphingolipids 

(Chapter 2 and 3) and to apply this method to selected membrane preparations from designated 

Arabidopsis plants to ultimately reveal their (species specific) functions (Chapter 4 and 5). 

The plasma membrane (PM) is the exterior border of the cell. Understanding its compositional 

remodeling under stressed conditions is of high agronomic and economic interest. The 

establishment of the ordered lipid microdomains, the lipid rafts, within the PM is mediated amongst 

others by α-hydroxylated sphingolipids. In this respect, detailed lipidomics analyses were 

conducted to profile the cold-induced alterations between the compositions of the purified PMs 

from Arabidopsis wild type and the sphingolipid α-hydroxylase mutant fah1 fah2. Furthermore, the 

role of the α-hydroxylated sphingolipids on the PM organization under both normal and CA was 

investigated. Noteworthy, the transversal distribution of individual lipid species across the PM was 

also evaluated by this advanced lipidomics method in combination with the purification of 

differently orientated PM vesicles, to assess the functional roles they may exert within the distinct 

membrane leaflet (Chapter 4).  

The knowledge concerning the detailed composition and the functions of lipids within mitochondria 

is still scarce. In addition, although the mitochondrion can synthesize parts of its lipids on its own, 

it highly relies on the import of lipid moieties from other organelles, especially through membrane 

contact sites as it is disassociated from the vesicular transport. To elucidate its capacity of lipid 

biosynthesis and modification, a combinatorial approach integrating the in-depth lipidomics with 

proteomics and online database mining was conducted to profile the mitochondrial lipidome 

including glycerolipids, sphingolipids and sterols, to identify membrane contact site-localized 

proteins and to construct possible lipid biosynthesis pathways in plant mitochondria (Chapter 5).  
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Chapter 2.  

Targeted analysis of the plant lipidome by UPLC-nanoESI-MS/MS 
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Abstract 

The plant lipidome is highly complex and changes dynamically under the influence of various biotic 

and abiotic stresses. Targeted analyses based on mass spectrometry enable the detection and 

characterization of the plant lipidome. It can be analyzed in plant tissues of different developmental 

stages and from isolated cellular organelles and membranes. Here, we describe a sensitive method 

to establish the relative abundance of molecular lipid species belonging to three lipid categories: 

glycerolipids, sphingolipids, and sterol lipids. The method is based on a monophasic lipid extraction 

and includes the derivatization of a few rare and low-abundant lipid classes. The molecular lipid 

species are resolved by lipid class-specific reverse-phase liquid chromatography and detected by 

nanoelectrospray ionization coupled with tandem mass spectrometry. The triple quadrupole 

analyzer is used for detection with multiple reaction monitoring (MRM). Mass transition lists are 

constructed based on the knowledge of organism-specific lipid building blocks. They are initially 

determined by classical lipid analytical methods and then used for combinative assembly of all 

possible lipid structures. The targeted analysis enables detailed and comprehensive profiling of the 

entire lipid content and composition of plants. 

1 Introduction  

Lipids can function as  energy source, structural components of cellular membranes, and signaling 

molecules (Shulaev and Chapman 2017). Thousands of lipid molecular species exist in different 

organisms in a concentration range spanning at least six orders of magnitude, and these lipids can 

be categorized based on their molecular structure (Fahy et al. 2011, Liebisch et al. 2013). Lipidomics 

is an analytical discipline to study lipid metabolism on a broad scale with mass spectrometric 

techniques (Han and Gross 2003). Due to the development of mass spectrometry (MS) over the last 

twenty years, the lipidomic technology has greatly advanced with respect to its analytical range, 

detection sensitivity, and speed of analysis. Lipidomic studies aim to detect the complete set of 

lipids (the lipidome) of a given cell type or tissue for understanding their relation and function 

within the context of cellular metabolism (Yang and Han 2016).  

Two major analytical approaches exist, namely, global and targeted analyses. These can be 

distinguished by their analytical coverage and lipidomic applications, as well as by the presence or 

absence of liquid chromatography (LC) prior to the MS analysis. For global or “shotgun lipidomics”, 

a lipid extract is directly infused into the MS system and analyzed without prior chromatographic 

separation (Samarakoon et al. 2012, Simons et al. 2012). The entire lipidome is recorded at a 

constant sample concentration, and the identification and quantification of the molecular lipid 

species is performed without limitation on the acquisition time other than sample volume. The 
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complexity of the sample matrix, however, limits the selectivity for isomeric and isobaric lipid 

species, as well as the detection sensitivity for trace lipid species (e.g. those with signaling functions). 

This restriction can be overcome by the use of LC separation prior to tandem MS (MS/MS) analyses.  

The targeted methodology reported herein has been developed to perform a sensitive and highly 

resolved analysis, screening molecular species of a total of 36 lipid subclasses from a minimal 

amount of plant material. The workflow includes a monophasic propan-2-ol/hexane/water 

extraction. It was originally developed for the efficient extraction of amphiphilic sphingolipids 

(Markham et al. 2006) and is applied here to extract a broad range of plant lipids with highly diverse 

chemical properties. Prior to the MS-based lipidomics analysis, the overall lipid building blocks, 

namely acyl chains, polar head groups, and backbones, are determined by classical lipid analytical 

methods (e.g. GC, TLC). This information is then used to calculate an array including all possible 

combinations of putative plant molecular lipid species. Based on this array, the putative precursor 

ions and corresponding lipid subclass-specific fragment ions (Table 2) are derived and converted 

into mass transition lists for the MS/MS detection. The lipid extract is subjected to an ultra-

performance LC (UPLC) system coupled with a chip-based nanoelectrospray ionization (nanoESI) 

source and a triple quadrupole analyzer. The robust and efficient resolving power of the sequential 

UPLC separation and targeted MS/MS detection enables the analysis of the distinct acyl 

composition of the molecular species within most lipid subclasses. For triacylglycerols, however, 

only the averaged composition corresponding to the total number of carbon atoms and double 

bonds can be resolved due to the wide range of possibilities for its acyl combinations in a single 

targeted molecule. The specificity of the UPLC-nano ESI-MS/MS method is additionally increased 

by incorporating chemical derivatization approaches (methylation and acetylation) after lipid 

extraction. Thus, distinct functional lipid groups, such as trace phospholipid species, can be 

detected in plant tissues. 

2 Materials 

2.1 Samples and Buffers 

1. Flash-frozen (i.e. in liquid nitrogen) plant tissue (various developmental stages, e.g. seeds, 

seedlings, leaves), keep at- 80 °C until grinding and extraction. 

2. Cell cultures from plants, algae and yeast, keep at-80 °C until extraction. 

3. Microsomal fractions, keep at - 80 °C under argon until extraction. 

4. Microsome Extraction Buffer (MEB) 1: 0.1 M Tris-HCl, pH 7.5, 0.81 M sucrose, 5 % (v/v) glycerol, 

10 mM ethylenediaminetetraacetic acid (EDTA), pH 8.0, 10 mM ethyleneglycoltetraacetic acid 
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(EGTA), pH 8.0, 5 mM KCl, 1 mM 1,4-dithiothreitol (DTT), 1 mM phenylmethanesulfonyl fluoride 

(PMSF). 

5. Lipid Extraction Buffer (LEB): propan-2-ol/hexane/water (60:26:14, v/v/v) 

2.2 Chemicals and Standards 

Analytical standards were purchased from Merck KGaA (Darmstadt, Germany), Avanti Polar Lipids, 

Inc. (Alabama, AL, USA) and Matreya (State College, PA, USA).  

1. Trimethylsilyldiazomethane solution for methylation: 2 M in hexane (Merck KGaA, Darmstadt, 

Germany). 

2. Pyridine, acetic anhydride for acetylation. 

3. Tetrahydrofuran/methanol/water (4:4:1, v/v/v) for dissolving lipid samples. 

4. Methylamine for glycerolipid hydrolysis: 33 % (v/v) methylamine in ethanol. 

5. N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA), pure for silylation (Merck KGaA, Darmstadt, 

Germany). 

2.3 Solvents and Solutions for LC-MS 

All solvents used (methanol, propan-2-ol, tetrahydrofuran) are LC-MS grade quality unless indicated 

otherwise. Ultra-pure water is always freshly generated by an Arium pro VF TOC ultrapure water 

system (Sartorius, Goettingen, Germany). 

1. Solvent system for UPLC analyses with the ACQUITYHSS T3 column (Waters Corporation, 

Milford, MA, USA): solvent A (methanol/20 mM ammonium acetate, 3:7, v/v, containing 

0.1 %, v/v acetic acid), solvent B (tetrahydrofuran/methanol/20 mM ammonium acetate, 

6:3:1, v/v/v, containing 0.1 %, v/v acetic acid). 

2. Tuning mixture for QTRAP6500: Standards chemical kit with low/high concentration 

polypropylene glycols (PPGs) (AB Sciex, Framingham, MA, USA).  

2.4 LC-MS System 

1. For chromatographic separation: ACQUITY UPLC® system (Waters Corporation, Milford, 

MA, USA) equipped with an ACQUITY UPLC® HSS T3 column (100 mm x 1 mm, 1.8 µm; 

Waters Corporation, Milford, MA, USA). This is a silica-based, reversed-phase C18 column. 
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2. For nano ESI: chip ion source TriVersa Nanomate® (Advion, Incorporation, Ithaca, NY, USA) 

equipped with nanoESI chip with 5 µm internal diameter nozzles. 

3. For mass-spectrometric detection: AB Sciex QTRAP6500® tandem mass spectrometer 

(AB Sciex, Framingham, MA, USA). 

2.5 Software 

1. Data acquisition: Analyst 1.6.2 (AB Sciex, Framingham, MA, USA). 

2. nanoESI control: ChipSoft 8.3.1 (Advion, Incorporation, Ithaca, NY, USA). 

3. Data analysis: MultiQuant 3.0.2 (AB Sciex, Framingham, MA, USA). 

4. Data processing and statistics: Excel 2016 (Microsoft Corporation, Redmond, WA, USA) and 

RStudio (RStudio, Incorporation, Boston, MA, USA). 

2.6 Other Equipment 

1. Kimble extraction tubes (Kimax-51, 13 x 100 mm) with Teflon-lined screw caps 

(Gerresheimer Glass Inc., Vineland, NY, USA). 

2. Chemically resistant tips for organic solvents (Safe Seal Tips Premium, Biozym, Oldendorf, 

Germany). 

3. Test strips for semi-quantitative determination of hydrogen peroxide and peroxides in 

tetrahydrofuran (Quantofix® Peroxide 100, Macherey-Nagel, Dueren, Germany). 

4. Glass sample vials for sample storage (1.1 ml, inner cone in the solid glass bottom, ND9, 

VWR International GmbH, Darmstadt). 

5. Glass micro vials for analysis (12 mm, 250 µl, Macherey-Nagel GmbH, Dueren, Germany) 

fixed by a spring in HPLC glass vials (1.5 ml, N9, Macherey-Nagel GmbH, Düren, Germany). 

6. Nitrogen evaporator (Organomation Associates, Incorporation, Berlin, MA, USA). 

7. Mixer Ball Mill MM200 with stainless steel grinding jars or PTFE-jars (Retsch GmbH, Haan, 

Germany). 

8. Freeze dryer.  

9. Argon. 

3 Methods 

3.1 Harvesting and Homogenization of Plant Material 

1. Complete the harvesting of plant material as quickly as possible and always in the same 

time range to avoid unspecific lipid degradation by lipolytic activities. 

2. Shock freeze the harvested material immediately in liquid nitrogen (see Note 1). 
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3. Grind the plant material by using a porcelain mortar and pestle or homogenize using the 

Mixer Ball Mill MM200 (see Note 2).  

4. Use stainless steel grinding jars (for large sample amounts) or PTFE-jars for Eppendorf tubes 

(for small sample amounts) with the corresponding size of stainless steel balls for mill 

homogenization. 

5. Time and repetitions of the homogenization cycles depends on the amount and rigidity of 

the biological material (see Note 3).  

6. Ensure that the biological material always stays completely frozen under liquid nitrogen. 

7. For freeze drying, incubate the sample material in the freeze dryer overnight until the 

pressure stays constant, indicating that the water of the sample has been completely 

removed. 

3.2 Enrichment of Microsomal Membrane Fractions 

To concentrate minor lipids located in cellular membranes, microsomal-type membranes are 

enriched from small amounts of plant material. Microsomal membranes are isolated without the 

need for ultracentrifugation (modified from (Abas and Luschnig 2010)): 

1. Prior to use, the 2 ml Eppendorf tubes are kept on ice. All solvents are kept at room 

temperature. 

2. Weigh 50 mg of homogenized deep frozen material, or 5 mg of homogenized freeze-dried 

material, into a 2 ml Eppendorf tube (see Note 4). Immediately add 0.2 ml of the extraction 

buffer (MEB) 1. Ensure that the biological material is completely covered with the MEB 1. 

3. Vortex the sample strongly. 

4. Centrifuge the samples for 3 min at 600 g and 4 °C. 

5. Transfer the supernatant into a new 2 ml Eppendorf tube and put it aside on ice. Re-extract 

the sample with 0.1 ml MEB 2 (dilute MEB 1 to 0.35x in water: mix 35 ml of MEB 2 with 65 

ml of water). 

6. Vortex the sample strongly. 

7. Centrifuge the samples for 3 min at 600 g and 4 °C. 

8. Add the supernatant of this second extraction to the first supernatant. Re-extract the 

sample with 65 µl MEB 3 (dilute MEB 1 to 0.48x in water: mix 48 ml of MEB1 with 52 ml of 

water). 

9. Vortex the sample strongly. 

10. Centrifuge the samples for 30 s at 2,000 g and 4 °C. 

11. Transfer the supernatant to the combined supernatants. Add 0.25 ml water. 
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12. Vortex the pooled supernatant strongly. Transfer three 0.2 ml aliquots into 2 ml Eppendorf 

tubes. 

13. Centrifuge the samples for 2 h at 20,000 g and 4 °C to obtain the membrane pellets. 

14. Remove the supernatant carefully. Wash the membrane pellet with 0.15 ml water. 

15. Centrifuge the samples for 45 min at 20,000 g and 4 °C. 

16. Remove the supernatant carefully. 

17. Cover the membrane pellet with argon and use it either immediately for monophasic lipid 

extraction or store it at -20 °C until extraction. 

To avoid autoxidation of lipids, immediately cover the samples with argon after each extraction 

step, particularly at the end of membrane isolation procedure before storage. 

3.3 Extraction of Lipids from Plant Material and Cultured Cells  

The monophasic extraction method with propan-2-ol, hexane, and water as described by Markham 

et al. (Markham et al. 2006)was slightly modified as follows (Grillitsch et al. 2014): 

1. Prior to use, Kimble glass tubes and the lipid extraction buffer (LEB) (propan-2-

ol/hexane/water (60:26:14, v/v/v)) are warmed to 60 °C. 

2. Weigh 200 mg of homogenized and deep frozen material, or 20 mg of homogenized and 

freeze-dried material, into Kimble glass tubes (see Note 4). Immediately add 6 ml of the 

warmed LEB (see Note 5). Ensure that the biological material is completely covered with 

the extraction buffer. 

3. Vortex the sample strongly. 

4. Shake for 30 min at 60 °C. During this incubation process, vortex and sonicate the sample 

every 10 min. 

5. Centrifuge the samples for 20 min at 800 g and 20 °C.  

6. Collect the supernatant with a glass Pasteur pipette and transfer it into a new Kimble glass 

tube. 

7. Dry the supernatant under a nitrogen stream. 

8. Dissolve the samples in 0.8 ml of tetrahydrofuran/methanol/water (4:4:1, v/v/v). Ensure 

that no material is stuck to the wall of the glass tube. 

9. Centrifuge (5 min, 800 x g, 20 °C) and transfer the supernatant into a glass sample vial. 

10. Cover the sample with argon and store it at -20 °C until UPLC-nanoESI-MS/MS analysis (see 

Note 6). 

11. Transfer aliquots (30 - 100 µl) of the sample into glass micro vials directly before starting 

the analysis. 
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To avoid autoxidation, immediately cover the samples with argon after each extraction step, 

particularly at the end of the extraction procedure before storage. 

3.4 Extraction of Lipids from Microsomal Membrane Fractions 

The monophasic extraction method with propan-2-ol, hexane, and water as described by Markham 

et al. (Markham et al. 2006) was modified for the extraction of microsomal membrane fractions as 

follows: 

1. Prior to use, Kimble glass tubes and the LEB are warmed to 60 °C. Also warm propan-2-ol 

and hexane, which are added separately to the sample after resuspension of the pellets in 

water. 

2. Combine the three microsomal membrane pellets derived from a single sample in 0.14 ml 

water and transfer the sample into a Kimble glass tube (see Note 4). Immediately add the 

warmed 0.6 ml propan-2-ol and the 0.26 ml hexane (see Note 5), and 5 ml of warmed LEB. 

3. Vortex the sample strongly. 

4. Shake for 30 min at 60 °C. During this incubation vortex and sonicate the sample every 

10 min. 

5. Centrifuge the samples for 20 min at 800 g and 20 °C.  

6. Collect the supernatant with a glass Pasteur pipette and transfer it into a new Kimble glass 

tube. 

7. Dry the supernatant under a nitrogen stream. 

8. Dissolve the samples in 0.2 ml of tetrahydrofuran/methanol/water (4:4:1, v/v/v). Ensure 

that no material is stuck to the wall of the glass tube. 

9. Centrifuge (5 min, 800 g, 20 °C) and transfer the supernatant into a glass sample vial. 

10. Cover the sample with argon and store it at -20 °C until UPLC-nanoESI-MS/MS analysis (see 

Note 6) or before chemical derivatization. 

11. Transfer aliquots (30 - 100 µl) of the sample into glass micro vials directly before the 

analysis. 

To avoid autoxidation, immediately cover the samples with argon after each extraction step, 

particularly at the end of the extraction procedure before storage. 

3.5 Chemical Derivatization of Lipids 

Phosphate groups and hydroxyl groups of some lipid classes are chemically modified by methylation 

(lysophosphatidic acid, phosphatidic acid, phosphatidylinositol phosphate and phosphatidylinositol 
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bisphosphate) or acetylation (ceramide phosphate, free sterol and long-chain base phosphate) to 

improve their chromatographic separation and mass spectrometric detection. 

1. Transfer an aliquot (30 - 100 µl) of the lipid sample into a glass sample vial (see Note 4). 

2. Dry the aliquot under a nitrogen stream. 

3. For methylation (modified from (Lee et al. 2013)): dissolve the dry lipid in 0.4 ml methanol 

and add 6.5 µl of trimethylsilyldiazomethane solution (2 M in hexane). Vortex the sample 

strongly. Incubate for 30 min at room temperature and terminate the reaction by 

neutralizing with 2 µl of 1 N acetic acid. 

4. For acetylation (modified from (Berdyshev et al. 2005)): dissolve the dry lipid in 

100 µl pyridine and 50 µl of acetic anhydride. Vortex the sample strongly. Incubate for 

30 min at 50 °C. 

5. Dry the derivatized sample aliquot under a nitrogen stream.  

6. Dissolve the sample aliquot in an equal volume of tetrahydrofuran/methanol/water (4:4:1, 

v/v/v) as before the chemical derivatization. Ensure that no material is stuck to the wall of 

the glass tube. 

7. Centrifuge (5 min, 800 g, 20 °C) and transfer the sample into a glass micro vial. 

8. Cover the derivatized sample aliquot with argon and store it at -20 °C until UPLC-nanoESI-

MS/MS analysis (see Note 6). 

To avoid autoxidation, immediately cover the sample aliquot with argon after each derivatization 

step, particularly at the end of the derivatization procedure before storage. 

3.6 Methylamine Treatment for Enhanced Sphingolipid Analysis 

To improve the detection efficiency for sphingolipids, the lipid extract is treated with methylamine. 

This mild base hydrolyzes glycerophospholipids, but not sphingolipids, and therefore reduces 

interference specifically for sphingolipid analysis, for example during the ESI process (Markham and 

Jaworski 2007). 

1. Transfer 200 µl of the extracted lipid into a glass sample vial. 

2. Dry the aliquot under a nitrogen stream. 

3. Add 1.4 ml of 33 % (v/v) methylamine in ethanol and 0.6 ml of water (modified from 

(Markham 2013)). 

4. Vortex the sample strongly. Incubate for 1 h at 50 °C. 

5. Dry the methylamine-treated lipid under a nitrogen stream.  

6. Dissolve the methylamine-treated lipid in 50 µl of tetrahydrofuran/methanol/water (4:4:1, 

v/v/v). Ensure that no material is stuck to the wall of the glass tube. 
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7. Centrifuge (5 min, 800 x g, 20 °C) and transfer the supernatant into a glass micro vial. 

8. Cover the methylamine-treated lipid aliquot with argon and store it at - 20 °C until UPLC-

nanoESI-MS/MS analysis (see Note 6). 

3.7 Lipid Analysis by UPLC-NanoESI-Mass Spectrometry 

1. Set the temperature of the autosampler (sample manager) of the UPLC system to 18 °C and 

the column oven temperature to 40 °C.  

2. Set the flow rate to 0.1 ml/min or 0.13 ml/min (depending on the gradient; Table 1) and 

the injection volume to 2 µl. 

 
Table 1 Solvent gradients for UPLC separation (see Note 6) prior to detection by mass spectrometry. 

Gradient Time (min) Flow (ml/min) Solvent A (%) Solvent B (%) 

1 

0 0.13 10 90 
2 0.13 10 90 
4 0.13 0 100 
8 0.13 0 100 
8.5 0.13 10 90 
12 0.13 10 90 

2a 

0 0.1 20 80 
2 0.1 20 80 
10 0.1 0 100 
12 0.1 0 100 
12.5 0.1 20 80 
16 0.1 20 80 

2b 

0 0.1 35 65 
2 0.1 35 65 
10 0.1 0 100 
12 0.1 0 100 
12.5 0.1 35 65 
16 0.1 35 65 

2c 

0 0.1 60 40 
2 0.1 60 40 
10 0.1 0 100 
12 0.1 0 100 
12.5 0.1 60 40 
16 0.1 60 40 

 

3. Use methanol as strong and methanol/water (1:9, v/v) as weak wash solutions. 

4. Use the gradients of solvents shown in Table 1 as mobile phase for the chromatographic 

separation, depending on the lipid classes of interest (Table 2) (Grillitsch et al. 2014). The 

retention time windows for the elution of the corresponding lipid subclasses are shown in 
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Figure 1. Representative chromatograms illustrating the separation by the different 

gradients have been published in (Tarazona et al. 2015). 

5. The performance of the UPLC should be controlled regularly by inspecting the back 

pressure of the system and the retention time stability using lipid extracts with known 

composition or analytical standards. 

6. Set the ionization voltage of the NanoESI system to -1.5 kV in negative mode, or to 1.5 kV 

in positive mode, when the UPLC flow is started.  

7. The performance of the nanoESI device has to be controlled regularly by visually inspecting 

the surface of the chip and routinely calibrating the LC coupler using ChipSoft. During the 

analysis, the nanoelectrospray current should be monitored constantly. 

8. Operate the QTRAP6500® tandem mass spectrometer in MRM mode in either negative or 

positive mode depending on the lipid class of interest (Table 2). 

9. Import lipid subclass-specific mass transition lists of molecular species constructed on the 

basis of the identified lipid building blocks (see Section 3.11). The general calculation of the 

precursor m/z values, product m/z values, and the optimized MS parameters are shown in 

Table 1. 

10. Set the dwell time to 5 msec for all mass transitions. 

11. Adjust the resolution of the mass analyzers to 0.7 amu full width at half-height (FWHH). 

12. Set the ion source temperature to 40 °C and the curtain gas at 10 (given in arbitrary units). 

13. The performance of the QTRAP6500® tandem mass spectrometer has to be controlled 

regularly. Inspection of the mass sensitivity with lipid extracts with known composition or 

analytical standards should be performed before running samples. The mass spectrometer 

has to be cleaned annually following the instruction of the manufacturer. Moreover, the 

mass accuracy and resolution have to be tuned using the tuning mixture following cleaning. 

14. For identification of precursor ions and fragment ions, use the Q1 MS mode or the product 

ion mode and vary the declustering potential and collision energy depending on the 

requirements of the analyte ion. 
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Figure 1 Solvent gradient-depending retention time windows for the elution of the corresponding 
lipid subclasses by the UPLC-nanoESI-MS/MS analysis. 
The amount of solvent B, the flow rate, the ionization mode and the retention time window for the 
elution of lipids are shown for solvent gradient 1 (A), solvent gradient 2a (B), solvent gradient 2b (C) 
and solvent gradient 2c (D). All data derive from the UPLC-nanoESI-MS/MS analysis of lipid extracts 
from leaves of Arabidopsis thaliana except Cer-P, HexNAc-GlcA-IPC, Hex-Hex-Glc-IPC, LCB-P 
(microsomal membrane fractions (Zienkiewicz et al. 2020)), CL (isolated mitochondria), DGTA 
(Physcomitrella patens). Abbreviations are explained in Table 2. 
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Table 2 Mass transitions and optimized MS parameters for detection of molecular species from various lipid classes by mass spectrometry.  
Lipid Category 
   Class 

Subclass Solvent 
gradient 

Ionization 
mode Q1 Q3 

DP 
[V] 

EP 
[V] 

CE 
[V] 

CXP 
[V] Reference 

Glycerolipids           
   Betaine lipids DGTA/DGTS 2b Negative [M+OAc]- [RCOO]- -180 -10 -60 -13 f 

 DGCC 2b Negative Negative [RCOO]- -180 -10 -60 -13 f 

   Glycolipids 

Ara 
Ara-A, Ara-B 
Ara-C, Ara-D 
Ara-E, Ara-G 

2b Positive [M+NH4]+ 
[M-(monoGal-H)+NH4]+ c 
[M-(diGal-H)+NH4]+ d 
[M-(monoGalacylated-H)+NH4]+ e 

100 10 30 6 (Ibrahim et al. 2011) 

 DGDG 2b Negative [M+OAc]- [RCOOsn1]- / [RCOOsn2]- -100 -10 -40 -10 (Tarazona et al. 2015) 
 DGMG 2c Negative [M+OAc]- [RCOO]- -200 -10 -40 -11 (Tarazona et al. 2015) 
 MGDG 2b Negative [M+OAc]- [RCOOsn1]- / [RCOOsn2]- -100 -10 -45 -10 (Tarazona et al. 2015) 
 MGMG 2c Negative [M+OAc]- [RCOO]- -200 -10 -40 -11 (Tarazona et al. 2015) 
 SQDG 2b Negative [M-H]- [RCOOsn1]- / [RCOOsn2]- -100 -10 -40 -10 (Tarazona et al. 2015) 
 SQMG 2c Negative [M-H]- [RCOO]- -200 -10 -40 -11 (Tarazona et al. 2015) 
   Neutral lipids DAG 2a Positive [M+NH4]+ [M-RCOO]+ 100 10 38 10 (Tarazona et al. 2015) 
 TAG 1 Positive [M+NH4]+ [M-RCOO]+ 140 10 40 6 (Tarazona et al. 2015) 
   Phospholipids CL 2b Negative [M-2H]2- [RCOO]- -100 -10 -40 -10 (Zhou et al. 2016a) 
 LPA 2c Negativea [M+Me-H]- [RCOO]- -200 -10 -30 -11 (Lee et al. 2013) 
 LPC 2c Negative [M+OAc]- [RCOO]- -200 -10 -40 -11 (Tarazona et al. 2015) 
 LPE 2c Negative [M-H]- [RCOO]- -200 -10 -40 -11 (Tarazona et al. 2015) 
 LPG 2c Negative [M-H]- [RCOO]- -200 -10 -40 -11 (Tarazona et al. 2015) 
 LPI 2c Negative [M-H]- [RCOO]- -200 -10 -40 -11 (Tarazona et al. 2015) 
 LPS 2c Negative [M-H]- [RCOO]- -200 -10 -40 -11 (Tarazona et al. 2015) 
 PA 2b Negativea [M+Me-H]- [RCOOsn1]- / [RCOOsn2]- -200 -10 -38 -11 (Lee et al. 2013) 
 PC 2b Negative [M+OAc]- [RCOOsn1]- / [RCOOsn2]- -100 -10 -40 -10 (Tarazona et al. 2015) 
 PE 2b Negative [M-H]- [RCOOsn1]- / [RCOOsn2]- -100 -10 -40 -10 (Tarazona et al. 2015) 
 PG 2b Negative [M-H]- [RCOOsn1]- / [RCOOsn2]- -100 -10 -40 -10 (Tarazona et al. 2015) 
 PI 2b Negative [M-H]- [RCOOsn1]- / [RCOOsn2]- -100 -10 -40 -10 (Tarazona et al. 2015) 
 PIP 2b Negativea [M+Me-H]- [RCOOsn1]- / [RCOOsn2]- -200 -10 -60 -11 f 
 PIP2 2b Negativea [M+Me-H]- [RCOOsn1]- / [RCOOsn2]- -200 -10 -60 -11 f 
 PS 2b Negative [M-H]- [RCOOsn1]- / [RCOOsn2]- -100 -10 -40 -10 (Tarazona et al. 2015) 
Sphingolipids           
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 LCB 2c Positive [M+H]+ 

[M-H2O+H]+ /  
[M-2H2O+H]+ /  
[M-3H2O+H]+ 50 10 

20/
25/
30  10 (Tarazona et al. 2015) 

   Neutral lipids Cer 2b Positive [M+H]+ [LCB-2H2O+H]+ 100 10 50 10 (Tarazona et al. 2015) 
   Glycolipids HexCer 2b Positive [M+H]+ [LCB-2H2O+H]+ 120 10 55 10 (Tarazona et al. 2015) 
 Hex-GlcA-IPCg 

HexN-GlcA-IPC 
HexNAc-GlcA-IPC 
Hex-Hex-GlcA-IPC 
Hex-HexN-GlcA-IPC 
Hex-HexNAc-GlcA-IPC 

2b Positive [M+NH4]+ [Cer-2H2O+H]+ 160 10 76 10 
(Markham and 
Jaworski 2007) 

2b Negative [M-2H]2- [373]- / [RCO-C3H6NO-H]- -160 -10 -44 -10 (Buré et al. 2011) 
   Phospholipids Cer-P 2b Negativeb [M+2Ac-H]- [M+Ac-H]- / [M-H2O-H]- -100 -10 -50 -10 f 

 LCB-P 2c Negativeb 
[M+3Ac-H]-& 
[M+2Ac-H]- 

[M+2Ac-H]- / [M+Ac-H2O-H]-& 
[M+Ac-H]- / [M-H2O-H]- -100 -10 -31 -10 

(Zienkiewicz et al. 
2020) 

Sterol lipids           
   Glycolipids SG 2b Positive [M+NH4]+ [Sterol-OH]+ 100 10 22 10 (Tarazona et al. 2015) 
 ASG 2b Positive [M+NH4]+ [Sterol-OH]+ 100 10 28 10 (Tarazona et al. 2015) 
   Neutral lipids SE 1 Positive [M+NH4]+ [Sterol-OH]+ 140 10 22 6 (Tarazona et al. 2015) 
 FS 2b Positiveb [M+Ac+NH4]+ [Sterol-OH]+ 240 10 23 34 (Liebisch et al. 2006) 

Details of the solvent gradient are described in Table 1. The ionization mode depicts the polarity of the nanoESI source. Q1 and Q3 indicate the parent and product ions, 
respectively. CP, EP, CE and CXP indicate the declustering potential, entrance potential, collision energy and cell exit potential for the molecular species of the 
corresponding lipid classes, respectively. 
Abbreviations for lipid classes and subclasses: Ara, Arabidopside; ASG, acylated steryl glucoside; Cer, ceramide; Cer-P, ceramide phosphate; CL, cardiolipin; DAG, 
diacylglycerol; DGCC, diacyl-carboxyhydroxymethylcholine; DGDG, digalactosyldiacylglycerol; DGMG, digalactosylmonoacylglycerol; DGTA, diacylglyceryl-
hydroxymethyltrimethyl-β-alanine; DGTS, diacylglyceryl-O-(N,N,N-trimethyl)-homoserine; FS, free sterol; GlcA, -glucuronic acid; Hex, hexosyl; HexCer, hexosylceramide; 
HexN, hexosaminyl; HexNAc, N-acetylhexosaminyl; IPC, inositol phosphoceramide; LCB, long-chain base; LCB-P, long-chain base phosphate; LPA, lysophosphatidic acid; 
LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; LPG, lysophosphatidylglycerol; LPI, lysophosphatidylinositol; LPS, lysophosphatidylserine; PA, 
phosphatidic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PI, phosphatidylinositol; PIP, phosphatidylinositol phosphate; PIP2, 
phosphatidylinositol bisphosphate; PS, phosphatidylserine; MGDG, monogalactosyldiacylglycerol; MGMG, monogalactosylmonoacylglycerol; SQDG, 
sulfoquinovosyldiacylglycerol; SE, steryl ester; SG, steryl glucoside; SQMG, sulfoquinovosylmonoacylglycerol; TAG, triacylglycerol 
aMethylation or bacetylation before UPLC-nanoESI-MS/MS analysis 
cEquals to [M-C6H11O6+NH4]+ 
dEquals to [M-C12H21O11+NH4]+ 
eEquals to [M-C6H11O5-RCOOGal+NH4]+ 
fUnpublished data of the authors 
gNomenclature corresponding to (Fang et al. 2016) 
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3.8 Assembly of the Lipid Building Blocks for the Target Lipid List 

To construct the mass transition lists, the identities of the following three lipid building blocks are 

either taken from the literature or determined experimentally by performing lipid measurements 

by e.g. GC or TLC using the biological sample. 

Lipid building blocks: 

1. Acyl chains (non-hydroxylated, hydroxylated) 

2. Polar head groups (carboxyhydroxymethylcholine, dihexose, hexose, hexosyl glucosamine 

inositolphosphate (Hex-GlcA-Ins-P), hexosaminyl (HexN) GlcA-Ins-P, N-acetylhexosaminyl 

(HexNAc) GlcA-Ins-P, Hex-Hex-GlcA-Ins-P, Hex-HexN-GlcA-Ins-P, Hex-HexNAc-GlcA-Ins-P, 

hydroxymethyltrimethyl-β-alanine,(N,N,N-trimethyl)-homoserine, sulfoquinovose, 

phosphate, phosphocholine, phosphoethanolamine, phosphoglycerol, phosphoinositol, 

phosphoserine) 

3. Backbones (glycerol, long-chain bases, sterols) 

Classical lipid analytical methods are applied to analyze the building blocks as follows. Complex 

lipids are first partially disrupted by methanolysis under acidic or alkaline conditions (see Chapter 

xx the present book Molecular Biology Plant Lipids). Additional modifications of hydroxyl or amino 

groups via silylation (e.g., with BSTFA), and of methyl esters via transesterification into nitrogen-

containing derivatives (e.g. pyrrolidides or 4,4-dimethyloxazolines) can be performed prior to the 

separation and detection of the analytes. Separation approaches including thin layer 

chromatography (TLC), high-performance liquid chromatography (HPLC) or gas chromatography 

(GC) can be coupled with detection methods ranging from staining procedures, flame ionization 

(FID) to mass spectrometry after electrospray ionization as well as electron impact ionization (for 

example: (Christie and Han 2010, Schneiter 2006), https://www.lipidhome.co.uk/, other chapters 

of the present book Molecular Biology Plant Lipids). 

3.9 Data Analysis and Processing  

1. Before starting data analysis, peak identification is supported by co-elution (same retention 

time and identical MS/MS patterns including head group-specific fragments) with analytical 

standards, authentic lipids isolated from biological extracts, and/or lipid data from the 

literature. Chromatographic rules for elution orders of the lipid classes and molecular 

species in a reversed-phase mode (structure of the head groups, length of the side chains, 

number of double bonds and hydroxyl groups) need to be considered (Figure 1) (Tarazona 

et al. 2015). The identities of molecular species can be confirmed by performing TLC 
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followed by lipid isolation from the plate and accurate mass measurements with a high-

resolution mass spectrometer (time-of-flight analyzer, Orbitrap® analyzer etc.). 

2. For peak integration with MultiQuant Software, set Gaussian smooth width to 2 points and 

minimal peak height to 300 points. Copy the entire output table from MultiQuant to Excel. 

3. For data processing and lipid profiling, correct the raw peak area with the naturally 

occurring proportion of the 13C isotopes. This contribution is calculated in correlation to the 

total number of carbon atoms from the respective molecular lipid species by multiplying 

the raw peak area by the correction factor αCN (Iven et al. 2013).  

αCN = 1 + 0.011 n + 0.0112 n (n-1)/2 (n = total number of carbon atoms of the lipid species).  

The 13C isotope-corrected peak areas are then used to construct category-specific, class-

specific, or subclass-specific lipid profiles. 

3.10 Absolute Quantification of Lipid Subclasses by TLC Coupled with GC-FID 

UPLC-nanoESI-MS/MS-based lipid analysis is a highly efficient method to separate molecular lipid 

species due to the robust reduction of sample matrix effects. One drawback of this 

chromatographic separation is the unequal solubility of the analytes along the elution gradient. 

Therefore, the ionization efficiency and fragmentation kinetics vary according to the target 

molecule. Different sample types, such as whole tissue extracts or membrane fractions, could limit 

the applicability of internal standards as well. Therefore, for absolute quantification of individual 

lipid subclasses, an analytical approach coupling TLC with GC/FID is used (Wang and Benning 2011).  

1. The lipid extract is first separated by lipid class-specific TLC (for example: (Christie and Han 

2010, Schneiter 2006), https://www.lipidhome.co.uk/, other chapters of the present book 

Molecular Biology Plant Lipids). 

2. Lipid subclasses are stained reversibly with 0.05 % [w/v] primuline (Merck KGaA, Darmstadt, 

Germany) in 80 % [v/v] acetone(Kelly et al. 2013). 

3. The lipids are isolated from the TLC plate. 

4. Lipids are converted to fatty acid methyl esters (FAMEs) in methanol containing 5 % (v/v) 

sulfuric acid overnight at 110 °C (Cacas et al. 2016). For sterol quantification, the isolated 

lipids are silylated with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA). 

5. Pentadecanoic acid (15:0) is used as internal standard for glycerolipid quantification (Wang 

and Benning 2011), heptadecanoic acid (17:0) and 2-hydroxy-pentadecanoic acid for 
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sphingolipid quantification (Cacas et al. 2016),and cholestanol for sterol quantification 

(Wewer et al. 2011).  

6. The resulting lipid subclass-specific FAMEs are analyzed by GC-FID and total amounts of the 

individual lipid subclasses are calculated based on normalization to internal standards (see 

chapter xx of the present book Molecular Biology Plant Lipids). 

4 Notes 

1. Wear glasses and cold-protective gloves when handling liquid nitrogen. 

2. Cool down all equipment (mortar, pestle, mill jars, cups, tubes, spatula) with liquid nitrogen 

to avoid thawing and clogging of the sample on the equipment. 

3. Arabidopsis thaliana rosettes are usually completely homogenized to fine powder using the 

Mixer Ball Mill MM200 for 1 min at 30 vibrations s-1. 

4. Wear gloves for sample extraction and sample handling before analysis. 

5. Use pipette tips that are chemically resistant to organic solvents, and use glass tubes 

instead of plastic tubes for lipid extraction. 

6. Lipids in organic solution and lipid extracts can be stored at -20 °C covered with argon for 

at least one year. 
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Chapter 3. Find the needle in the haystack – Analysis and 
identification of the rare and low-abundant ceramide phosphates 
in plants 

The lipidomics platform described in chapter 2 includes the analysis of phosphorylated 

sphingolipids such as ceramide phosphates (Cer-Ps). The analysis of this trace lipid class based on a 

comprehensive method developmental process is explained within this chapter.  

In plants, the overall sphingolipid biosynthesis takes place in the endomembranes (ER and Golgi 

apparatus); and the generation of Cer-P occurs presumably in both ER and Golgi apparatus where 

its synthesizing enzyme, ceramide kinase (CERK), locates (Bi et al. 2014) (Fig. 1). Cer-Ps are signaling 

molecules in several biological processes including the programmed cell death (PCD) and responses 

against abiotic and abiotic stresses (Bi et al. 2014, Brodersen et al. 2002, Donahue et al. 2010, 

Greenberg et al. 2000, Liang et al. 2003, Michaelson et al. 2016, Simanshu et al. 2014). The 

Arabidopsis acd5 mutant displays an impaired activity of CERK, and exhibits an accelerated cell 

death (acd) phenotype (Dutilleul et al. 2015), hypersensitive responses when germinating at low 

temperature (Barrero-Sicilia et al. 2017, Dutilleul et al. 2015) and is more susceptible upon infection 

of Pseudomonas syringae with enhanced levels of reactive oxygen species (ROS) (Bi et al. 2014, 

Greenberg et al. 2000, Liang et al. 2003). In addition, acd11, which is mutated in the ACD11 

(accelerated cell death 11) gene encoding a lipid transfer protein for Cer-Ps (Brodersen et al. 2002), 

displays spontaneous PCD responses driven by an altered sphingolipid homeostasis (Simanshu et 

al. 2014). To investigate the underlying regulatory mechanism and the biological functions of Cer-

Ps, the analytical detection of the molecular Cer-P species is mandatory. 

It has been demonstrated that Cer-P constitutes about 0.15 % of the total sphingolipids in human 

serum and plasma (Hammad et al. 2010); however, it accounts for very low abundance (presumably 

at the range of pmol/mg fresh weight) in plants (Simanshu et al. 2014). Based on the lipid profiles 

of other complex sphingolipids in plants, both Cer-Ps with non-hydroxylated and hydroxylated fatty 

acyl moieties (cCer-Ps and hCer-Ps) are considered to be present endogenously. Approaches with 

radiolabeled sphingolipids coupled with TLC separations and HPLC detections have been initiated 

to identify the molecular structures of endogenous Cer-Ps (Cantrel et al. 2011, Dutilleul et al. 2015). 

With this approach, chemical modifications including strong acidic hydrolysis to release the fatty 

acyl moieties and the derivatization of the amine group with o-phthaldialdehyde are required for 

detection by HPLCs. Although the radiolabeling approach enables the detection of trace analytes, 

the molecular species information of Cer-Ps, especially the fatty acyl moieties, is sacrificed. On the 
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other hand, it is challenging to incorporate analysis of Cer-Ps in the LC-MS-based approaches due 

to the limited availability of authentic standards (only cCer-Ps can be obtained), the poor 

chromatographic separation and the trace abundance of endogenous Cer-Ps in the complex 

biological extracts. A couple of studies have pursued to analyze Cer-Ps via MS-based approaches 

(Bielawski et al. 2009, Markham and Jaworski 2007, Simanshu et al. 2014). They are based on a 

sphingolipid-specific extraction method and an intensive data processing based on calibration 

curves of non-phosphorylated ceramide standards in an artificial matrix. However, integration of 

the Cer-P analysis into the comprehensive lipidomics workflow would enable the interpretation of 

the Cer-P profiles in correlation to the entire lipidome of an organism. 

 

Figure 1. Sphingolipid biosynthesis. The de novo biosynthesis of long-chain bases (LCBs), long-chain 
base phosphates (LCB-Ps), ceramides (Cers), ceramide phosphates (Cer-Ps) and glucosylceramides 
(GlcCers) in the ER. Molecules of Cers are transported to the Golgi apparatus and undergo 
subsequent reactions in synthesizing complex sphingolipids including glycosyl inositol 
phosphoceramides (GIPCs) and distinct Cer-Ps. 
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In an attempt to accommodate Cer-Ps in the previously described LC-MS-based lipidomics workflow 

(Chapter 2), several steps in developing a compatible analytical method were made, including the 

establishment and optimization of the chromatographic separation, the MS detection by 

commercially available analytical Cer-P standards, and the extraction and purification of the 

endogenous Cer-Ps from Arabidopsis leaves.  

It is challenging to separate the phosphorylated organic analytes via liquid chromatography. They 

adsorb to the capillaries of the electrospray under acidic condition, which is commonly applied to 

enhance the separation and resolution of biomolecules on C18 columns in reverse phase (RP)-LC 

systems. Moreover, stainless steel, which constitutes parts of the essential components on the path 

of the sample flow, can cause peak tailing of the phosphorylated analytes as well. Approaches such 

as optimizing the material of the capillaries (Fehrenbach and Wiese 2017), using monolithic 

columns (Tholey et al. 2005) or conducting the immobilized metal affinity chromatography (Krabbe 

et al. 2003, Mitulović and Mechtler 2006) have been applied on analyzing low-abundance 

phosphorylated analytes such as phosphopeptides. However, it is not feasible to employ these 

approaches in the presented established lipidomics workflow that contains a UPLC system with a 

C18 column and acidified (0.1 % acetic acid) mobile phases optimized for resolving the molecular 

species of most glycerolipids, sphingolipids and sterols.  

Here, chemical modifications which can alter the phosphate groups of the analytes and thereby 

shield them from adsorbing to the analytical device were conducted to improve the 

chromatographic separation as well as the ionization efficiency of Cer-Ps. Modifications like 

methylation and acetylation have already been successfully incorporated to the lipidomics 

workflow when analyzing other phosphorylated lipids (phosphoinositides, phosphatidic acids and 

long-chain base phosphates (LCB-Ps)) (Chapter 2). The chemical modified analytical cCer-P 

standards were firstly monitored by direct infusion (DI)-MS to evaluate their ionization efficiencies 

(Fig. 2). Analyses of enhanced mass spectrum (EMS) scans in both positive and negative ion modes 

were conducted; however, ion signals were only detected in the negative ion mode. For the 

analytical standard cCer-P (18:1;2/16:0), the ion signal of [M-H]- (m/z = 616.5 Da) was detected for 

the non-derivatized compound, [M+1Me-H]- and [M+2Me-H]- (m/z = 630.5 and 644.5 Da, 

respectively) for the methylated derivatives, and [M-H2O-H]-, [M+1Ac-H]- and [M+2Ac-H]- (m/z = 

598.4, 658.4 and 700.6 Da, respectively) for the acetylated derivatives. The mass spectra of the 

methylated compounds contained additionally an ion signal of an unknown structure (i.e. m/z = 

649.2 Da). The ions derived from the acetylated derivatives, especially the bisacetylated ions 

[M+2Ac-H]-, provided the highest signals and greater signal-to-noise ratio in comparison to the 

others. The acetylated derivatives were therefore favored for conducting the following experiments.  
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Figure 2. Mass spectrum of the analytical standard cCer-P (18:1;2/16:0) in the negative ion mode. 
Non-derivatized, methylated and acetylated analytical Cer-P standards were analyzed by enhanced 
mass spectrum (EMS) scans. Declustering potential = -100 V, collision energy = -10 V. The structure 
of the ion with m/z = 649.2 of the methylated derivatives is unknown.  
 

To optimize the MS detection, the ion fragmentation of the bisacetylated Cer-P derivatives were 

investigated by DI-MS analyses in the negative ion mode (Fig. 3). The precursor ion [M+2Ac-H]- of 

cCer-P (18:1;2/16:0) with m/z = 700.6 Da fragments into four product ions; (1) [M+1Ac-H]- with m/z 

= 658.4 Da results from a loss of an acetyl group, (2) [M-H]- with m/z = 616.3 results from the loss 

of two acetyl groups, (3) [M-H2O-H]- with m/z = 598.4 Da results from a loss of two acetyl groups 

and an additional water loss and (4) [LCB+PO4]- with m/z = 360.2 Da corresponds to the 

phosphorylated long-chain base (LCB) backbone. Since the ion fragment [LCB+PO4]- represents the 

exclusive structure-specific product ion, the collision energy (CE) was optimized to -60 V with 

respect to the maximal signal intensity of this ion mass. 
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Figure 3. Fragmentation pattern and the product ion scan of the bisacetylated cCer-P (18:1;2/16:0) 
in the negative ion mode with collision energy = -60 V. The precursor ion (*) is [M+2Ac-H]- (m/z = 
700.6 Da). 
 

In the next step, the Cer-P analysis was implemented into the LC-MS-based workflow using the 

multiple reaction monitoring (MRM) detection mode. Therefore, mass pairs of the respective 

precursor ion and the fragment ion - so called mass transitions - were generated to ensure and 

evaluate the chromatographic resolution of the analytical Cer-P standards (Fig.4). Equal 

concentrations (500 µM) of the analytical standard cCer-P (18:1;2/16:0) were measured directly 

and after both chemical derivatization procedures (methylation and acetylation) in the negative ion 

mode. As precursor ions, the deprotonated masses as well as the dehydrated masses of the non-

derivatized, methylated (single, two times and three times) and acetylated ions (single, two times 

and three times), respectively, were analyzed. For all transitions, the backbone-specific fragment 

ion [LCB+PO4]- was used. Among all, only chromatographic signals of the mass transitions resulting 

from the deprotonated precursor ions of non-derivatized, monomethylated, monoacetylated and 

bisacetylated molecules were detectable. Although both derivatization methods enhanced the 

resolution of the LC-MS analysis, the acetylated standards provided the highest ion signals for the 

MS detection in comparison to the other compounds. Therefore, the acetylation procedure was 

selected for the further establishment of the LC-MS-based Cer-P detection method. 
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Figure 4. Derivatization of Cer-P standards improves the chromatographic resolution and the 
ionization efficiency. Non-derivatized, methylated and acetylated cCer-P (18:1;2/16:0) with equal 
concentration (500 µM) were measured in the negative ion mode. Ac: acetyl group; Me: methyl 
group. Fragments of [LCB+PO4]- (m/z = 360.2) derived from deprotonated and dehydrated 
precursors of the non-derivatized, methylated and acetylated molecules, respectively, were 
analyzed. Deprotonated and dehydrated precursors of non-derivatized (m/z = 616.5 and 598.5), 
monomethylated (m/z = 630.5 and 612.5), bismethylated (m/z = 644.5 and 626.5), trimethylated 
(m/z = 658.5 and 640.5), monoacetylated (m/z = 658.5 and 640.5), bisacetylated (m/z = 700.5 and 
682.5) and triacetylated (m/z = 742.5 and 724.5) ions, respectively, were included into the MRM-
based analysis. 
 

Based on the fragmentation behavior of the analytical Cer-P standards, a MRM-based method was 

constructed to enable the analysis of the endogenous Cer-Ps in Arabidopsis. Therefore, all possible 

molecular Cer-P species were calculated based on the usage of 18:0;2, 18:1;2, 18:2;2, 18:0;3 or 

18:1;3 as LCB backbones (C:DB;OH for numbers of carbon, double bond and hydroxyl group, 

respectively). These LCB backbones were paired with non- and monohydroxylated fatty acyl 

moieties of 16-28 carbons in length with zero or one double bond. This resulted in the prediction 

of 140 possible Cer-P species (Appendix. 1). For the analysis of their endogenous occurrence, all 
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corresponding precursor ions representing the bisacetylated ions [M+2Act-H]- were 

combined with three different fragment ions ([LCB+PO4]-, [M+1Act-H]- and [M-H2O-H]-, 

respectively). The conducted MS parameters for all 420 transitions were as followed: -100 V 

declustering potential (DP), -10 V entrance potential (EP), -50 V CE and -10 V collision cell exit 

potential (CXP). For the chromatographic elution, the solvent gradient 2b was used as described in 

table 1 of Chapter 2. With this elution gradient, the bisacetylated cCer-P (18:1;2/16:0) and cCer-

P (18:1;2/24:0) standards eluted at 6.3 and 9 min, respectively (Fig. 5). The intensity patterns of the 

compound-specific transitions correspond to the result of the DI-MS analysis. This was indicated by 

the highest signal intensities for the fragment ions [M-H2O-H]- followed by [M+1Ac-H]- and the 

much lower intensity for [LCB+PO4]- even though the MS parameters were optimized of the 

detection of the backbone-specific fragments.  

 

Figure 5. LC-MS analysis of the analytical standards cCer-P (18:1;2/16:0) and cCer-P (18:1;2/24:0) 
in the negative ion mode. The applied elution gradient starts from 65 % solvent B (tetrahydrofuran : 
methanol : 20 mM ammonium acetate (6:3:1, v.v.v) with 0.1 % acetic acid, v.v) and 35 % solvent A 
(methanol : 20 mM ammonium acetate (3:7, v.v) with 0.1 % acetic acid, v.v) corresponding to 
gradient 2b from Chapter 2. Chromatographic signals are labeled with the product ion structures of 
the respective MRM transitions. The precursor ions are the bisacetylated ions [M+2Act-H]- of the 
respective molecules. 
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To evaluate the analytical quality of the established LC-MS method for the Cer-P analysis, the limits 

of detection and analysis were inspected by analyzing serial dilutions of the analytical Cer-P 

standards in the matrixes of pure organic solvent and Arabidopsis leaf extract, respectively (Fig. 6). 

Both limits of detection and analysis of cCer-P (18:1;2/16:0) and cCer-P (18:1;2/24:0) achieved 

femtomole (10-15 mol) as the lowest quantity, of which the signals can be distinguished confidently 

from the background noises. The limits of detection and analysis are lower than the presumed 

concentration of the endogenous Cer-Ps (< 1 pmol/mg fresh weight). The results correlate with the 

limits of detection and analysis for LCB-Ps (data not shown).  

 

Figure 6. Limits of detection and analysis concerning Cer-Ps of the LC-MS method. Cer-P standards, 
cCer-P (18:1;2/16:0) and cCer-P (18:1;2/24:0), were analyzed after dilution in pure solvents to 
determine the limit of detection (a) and in the presence of leaf extracts (lipids resulting from 
250 mg fresh weight ml-1) to determine the limit of analysis (b), respectively. The analyses were 
conducted with three independently prepared standard solutions and each were analyzed three 
times under the respective conditions. 
 

Since Cer-Ps represent only trace amounts in plants, the identification and structural verification of 

the endogenous Cer-Ps within complex lipid extracts is challenging. Therefore, in addition to the 

establishment of a sensitive LC-MS method, the endogenous Cer-Ps from Arabidopsis leaves had to 

be massively enriched. The extraction procedure of the established lipidomics workflow (Chapter 

2) had already been optimized to efficiently extract a broad range of lipid classes, especially 

sphingolipids (Tarazona et al. 2015). Additionally, a TLC separation approach was established to 

enrich and purify the endogenous Cer-Ps from the total lipid extract. Several TLC methods targeting 

the separation of complex sphingolipids have been published hereto (Cacas et al. 2016, Dutilleul et 

al. 2015, Horibata et al. 2004, Lenarčič et al. 2017, Nakagawa et al. 1999, Park et al. 2014, Tanaka 

et al. 2013, Tidhar et al. 2015). The primary components of these TLC developing solutions comprise 

various amounts of chloroform and methanol. To adjust the solvent polarity for better separation 

of the analytes, calcium chloride or ammonia are commonly supplied. In this work, the addition of 

calcium chloride was avoided as its crystals may cause clogging or increasing the pressure in the 

following LC-MS procedure. Therefore, two TLC solvent mixtures were selected to evaluate their 
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efficiency in separating the Cer-Ps from the other complex sphingolipids. Solvent mixture A – 

chloroform : methanol : 28% ammonia, 65:35:6 (v.v.v) (Tanaka et al. 2013) and solvent mixture B – 

chloroform : methanol : water, 60:35:8 (v.v.v) (Horibata et al. 2004) were conducted to separate a 

standard mixture composed of cCer (18:1;2/12:0), cCer-P (18:1;2/12:0), cGlcCer (18:1;2/12:0) and 

the most similar purchasable analogue of plant GIPCs, monosialotetrahexosyl ganglioside (GM1) 

(Fig. 7). The TLC separation was additionally inspected with respect to its efficiency to separate Cer-

Ps from the glycerophospholipid phosphatidylcholine (PC) by using the analytical PC standard, 

PC (17:0/17:0). The main abundant lipid class PC can interfere with the sphingolipid detection 

during the later LC-MS analysis (Markham et al. 2006). Although both TLC solvent mixtures were 

capable of separating cCer-P (18:1;2/12:0) from the other selected standards. (Fig. 7, both lanes 1), 

the separation efficiency of solvent mixture B with respect to Cer-P and GM1 was more reliable. 

 

Figure 7. Separation of complex sphingolipid standards with chloroform : methanol : 28 % ammonia, 
65:35:6 (v.v.v) (a) and chloroform : methanol : water, 60:35:8 (v.v.v) (b). (1) Standard mixture of 
1 µg cCer (18:1;2/12:0), 1 µg cCer-P (18:1;2/12:0), 1 µg cGlcCer (18:1;2/12:0), 5 µg GM1 and 5 µg 
PC (17:0/17:0) were separated with the two different developing solvent systems. (2) The recovery 
of the complex sphingolipids was monitored by an additional TLC separation after re-extraction of 
the lipid spots with the respective TLC developing solutions. The lipid spots were visualized at 170 °C 
after incubating with copper sulfate solution.  
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To enable the structure analysis by LC-MS after the TLC separation, the Cer-P-corresponding lipid 

spot had to be re-extracted from the TLC silica gel. In order to investigate the recovery efficiency of 

the two TLC solvent mixtures, the lipid-containing silica was scraped off from the TLC plates, re-

extracted with the same solvents as the developing solutions and redeveloped accordingly with 

either solvent mixture A or B on additional TLC plates (Fig. 7, lanes 2). The re-extraction procedure 

was optimized by incubating the silica-solvent mixtures at higher temperature (50 °C) for 30 min 

and with constant sonication for another 30 min to achieve higher recovery rates (data not shown). 

Although, the three analytical standards cCer (18:1;2/12:0), cGlcCer (18:1;2/12:0) and 

PC (17:0/17:0) were efficiently recovered with solvent mixture A, the analytical standards cCer-

P (18:1;2/12:0) and GM1 were not detectable after the re-extraction by the subsequent TLC 

separation. In contrast to that, the usage of solvent mixture B resulted into high recovery of all five 

analytical standards, including Cer-P and GM1. In addition, the composition of solvent mixture B 

based on pure organic solvents (chloroform, methanol and water) without any salty or non-neutral 

consumables is more compatible with the following usage of a LC-MS device. Therefore, solvent 

mixture B was selected for Cer-P identification based on the sequential order of (1) lipid extraction, 

(2) TLC separation, (3) re-extraction of putative Cer-Ps from the silica gel of the TLC plate, (4) 

acetylation of the resulting lipids and (5) LC-MS analysis of molecular Cer-P species. 

Like other sphingolipids, the endogenous Cer-Ps are presumed to be localized at the 

endomembranes (Michaelson et al. 2016). Therefore, instead of lipid extracts from the entire plant 

tissue, lipid extracts from the microsomes (MCs, crude total membrane fraction) as described in 

Chapter 2 were selected to identify the endogenous Cer-P species from Arabidopsis leaves. At first, 

lipid extracts from MCs were separated by TLC to investigate the resolution efficiency of the 

selected TLC system with respect to complex plant lipid extracts (Fig. 8, lane 2). For this, the lipid 

extract of the MCs was additionally spiked with the analytical standard mixture to inspect the 

resolution efficiency with respect to the low abundant endogenous Cer-Ps (Fig. 8, lane 1). The TLC 

separation resulted into a complete separation of all minor sphingolipid classes from the main 

abundant glycerophospholipids. However, the amount of endogenous Cer-Ps was under the 

detection limit of the copper sulfate staining (Fig. 8, lane 2). To improve the LC-MS-based analysis 

limit of the minor sphingolipids by avoiding analytical interference with the main abundant 

glycerophospholipids, the lipid extracts of the MCs were treated with methylamine that hydrolyzes 

the glycerolipids (Cacas et al. 2016, Markham et al. 2006). The resulting methylamine-treated MCs 

were additionally separated by TLC (Fig. 8, lane 3). The indicated area of the silica gel, which 

corresponds to the position of the putative endogenous Cer-Ps, was scraped off from the TLC plate 
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after visualizing with primuline solution. The lipids were re-extracted with solvent mixture B from 

the silica gel, acetylated and finally analyzed by LC-MS.  

 

Figure 8. TLC separation of lipid extracts of the microsomal fraction (MC) of Arabidopsis leaves. (1) 
MC extract spiked with the standard mixture composed of 1 µg cCer (18:1;2/12:0), 1 µg cCer-
P (18:1;2/12:0), 1 µg cGlcCer (18:1;2/12:0), 5 µg GM1 and 5 µg PC (17:0/17:0). (2) MC extract. (3) 
Methylamine-treated MC extract. The reference lane (Ref) includes 5 µg PE (17:0/17:0) and 5 µg 
PG (17:0/17:0) additionally to the standard mixture mentioned for (1). The developing solution B is 
composed of chloroform : methanol : water, 60:35:8 (v.v.v). The lipid spots were visualized at 170 °C 
after incubating with copper sulfate solution. For following LC-MS analysis, TLC plates were 
visualized with 0.5 mg ml-1 primuline in acetone : water (8:2, v.v) under 528 nm UV light and the 
targeted lipid spots (as labeled in lane 3) were scraped off from the TLC plate for subsequent re-
extraction. 
 

The TLC-purified and acetylated Cer-P fractions from the Arabidopsis MCs resulted in two 

chromatographic signals with the identical retention time of 6.2 min during the LC-MS analysis (Fig. 

9). Both corresponding mass transitions result from the precursor ion with m/z = 816.4 Da paired 

with two different fragment ions ([M+1Act-H]- with m/z = 774.4 Da and [M-H2O-H]- with m/z = 

714.4 Da). Based on these masses of the precursor and fragment ions, both chromatographic 

signals may result from a monounsaturated Cer-P species composed of a trihydroxylated 18-cabon 

LCB backbone conjugated with a monohydroxylated 22-carbon fatty acyl moiety. Therefore, it was 

tentatively designated as hCer-P (18:0;3/22:1) or hCer (18:1;3/22:0), since the chromatographic 
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signal of the corresponding mass transition based on the backbone-specific fragment ion was not 

detectable. Another chromatographic signal at 8.4 min probably results from the TLC silica gel since 

it can be detected in all samples including the blank extracts. 

 

Figure 9. LC-MS analysis of the TLC-purified and acetylated Cer-P fraction from Arabidopsis MCs 
. The merged chromatogram of all analyzed MRM transitions resulting from the TLC re-extracted 
sample (a) and the chromatogram of the extracted transitions including the fragments with the loss 
of one acetyl group [M+1Act-H]- (m/z = 774.4 Da) and the loss of two acetyl groups plus one water 
molecule [M-H2O-H]- (m/z = 714.4 Da) from the bisacetylated precursor (m/z = 816.4 Da), which 
corresponds to the indicated structure of the putative Cer-P (b). The solvent gradient corresponds 
to the conditions as described in Fig. 5 and the parameter for the MS detection are shown in 
Appendix 1.  
 

Since the backbone-specific fragment ion of the endogenous Cer-P species was not detectable, the 

structure of this compound cannot be entirely resolved. According to the de novo sphingolipid 

biosynthesis pathway (Fig. 1), Cer-Ps are converted from Cers by CERK. Hence, the Cer profile of the 

Arabidopsis MCs was utilized as a reference to evaluate the structure of the putative Cer-P species. 
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Based on the Cer species profile, the putative species were predicted as hCer-P (18:1;3/22:0) due 

to the significantly higher levels of the hCer (18:1;3/22:0) in comparison to hCer (18:0;3/22:1) in 

the MCs (Fig. 10). 

 

 Figure 10. Ceramides, series A and B GIPCs from Arabidopsis MCs were analyzed by LC-MS. Data 
represent the mean value in mol % of an individual lipid species in either overall ceramides or GIPCs 
from three independent experiments ± SD. Non-hydroxylated and hydroxylated varieties (c- and h-) 
of ceramides (Cer) as well as series A GIPCs (H-GIPC and HN-GIPC) and series B GIPCs (H-H-GIPC) 
are illustrated. GIPC, glycosyl inositol phosphoceramides; H, hexosyl; HN, N-acetylhexosaminyl. 
 

In plants, Cer-Ps can be synthesized alternatively via hydrolyzing GIPCs by GIPC-specific 

phospholipase D (GIPC-PLD). In cabbage (Brassica oleracea), the resulting Cer-Ps contain a 18:1;3 

LCB backbone with various α-hydroxylated fatty acyl moieties (Hasi et al. 2019a, Hasi et al. 2019b, 

Tanaka et al. 2013). Mild activity of GIPC-PLD has also been identified in fractions of Arabidopsis 

crude protein extract; however, the endogenous products of the Arabidopsis GIPC-PLD were not 

profiled hereto. Nevertheless, according to the GIPC profile of the Arabidopsis MCs, the relative 

amount of hH-GIPC (18:1;3/22:0) is higher than that of hH-GIPC (18:0;3/22:1) (Fig. 10). Therefore, 

hCer-P (18:1;3/22:0) is suggested to be the molecular structure according to both profiles of Cers 

and GIPCs.  
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In this study, several developments have been conducted to identify the endogenous Cer-Ps in 

Arabidopsis. In order to obtain their backbone-specific information and to incorporate the analysis 

of Cer-Ps in the LC-MS-based lipidomics platform, (1) the fragmentation parameters in the MS 

system were specifically optimized to identify the backbone-specific signals of Cer-Ps, (2) the matrix 

effects from the abundant glycerophospholipids in leaf extracts were eliminated via methylamine 

treatment and TLC purification, and (3) the concentration of the analytes was enhanced as well by 

minimizing the sample volume before LC-MS analyses. Nevertheless, further investigations of the 

endogenous Cer-Ps are required to verify their structure and understand their functions in plants. 

For instance, beside the presented approach, which links the TLC purification of plant Cer-Ps with 

LC-MS profiling, an additional separation by collecting the MS signal-specific eluents from the LC 

system can be conducted. The resulting fractions that contain the endogenous Cer-Ps can be 

subjected to DI-MS analysis, which allows dynamic tuning of the MS parameters for determining 

the optimized parameters of individual Cer-P species. Lipid extractions of stress-challenged 

Arabidopsis (i.e. cold stress), lipid biosynthesis mutants (i.e. CERK overexpression line) or from other 

plant species (i.e. cabbage) and organisms (i.e. human plasma) may obtain higher amount of 

endogenous Cer-Ps for developing further analytical methods. Implementing the presented 

approaches creates a great potential in establishing a global lipidomics analyzing system which 

includes species information of endogenous Cer-Ps in the LC-MS-based lipidomics workflow. 

Materials and methods 

Thin layer chromatographic separation of complex sphingolipids 

Lipids extracted from microsomes (MCs) were spotted onto TLC 60 plates (20 x 20 cm2, Merck KGaA, 

Darmstadt, Germany) in parallel with complex sphingolipid standards (Sigma-Aldrich, Taufkirchen, 

Germany). Solvent mixtures of chloroform : methanol : 28 % ammonia (65:35:6, v.v.v) (Tanaka et 

al. 2013) and chloroform : methanol : water (60:35:8, v.v.v) (Horibata et al. 2004) were used as 

developing solution for method A and B, respectively. To continue with lipid re-extraction, lipid 

spots on TLC plates were visualized after spraying with 0.5 mg ml-1 primuline in the mixture of 

acetone : water (8:2, v.v) (White et al. 1998) under UV light at 528 nm wavelength. Alternatively, 

the lipids on the TLC plate can be stained irreversibly by immersing in copper sulphate solution (0.4 

M CuSO4 in 6.8 % (v.v) H3PO4), followed by drying at 100 °C and visualizing at 170 °C. 

Lipid re-extraction from the TLC plate 

The lipid-containing silica powder scraped off from the corresponding TLC area were incubated with 

the same solvent mixture as the respective developing solution at 50 °C for 30 min followed by 
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continuous sonication for another 30 min. After centrifugation at 800 g for 20 min, the clear 

supernatant was transferred to clean tubes and evaporated under streams of nitrogen gas until 

dryness. Lipids were reconstituted by different solvents according to the following experimental 

procedure. 

Direct infusion-mass spectrometry 

Acetylated standards were reconstituted to 1 µM in tetrahydrofuran : methanol : water (4:4:1, v.v). 

An aliquot of 5 µl sample was automatically loaded and delivered to the chip-based nano-

electrospray of TriVersa Nanomate (Advion BioScience, Ithaca, NY, USA). The MS analysis was 

carried out on a 6500 QTRAP tandem mass spectrometer (AB Sciex, Framingham, MA, USA). The 

ionization source parameters were set as curtain gas at 20, ion spray voltage at -1.45 kV and 

declustering potential at -100 V. The data acquisition was monitored by Analyst software (AB Sciex). 

The optimized collision energy for the bisacetylated Cer-P standards with fatty acyl chain with 16 

to 24 carbons in length were in the range between -45 and -60 V. 
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Appendix 1. Targeted LC-MS-based analysis of putative Arabidopsis Cer-Ps. MRM list includes all 
possible endogenous species comprised of 18:0;2, 18:1;2, 18:2;2, 18:0;3 and 18:1;3 LCB backbones 
and fatty acyl moieties with 16-24 carbons in length, maximum one double bond and one hydroxyl 
group. All precursors are bisacetylated [M+2Act-H]-; the fragment ions of the phosphorylated 
backbone [LCB+PO4]-, from the loss of one acetyl group [M+1Act-H]- and from the loss of both acetyl 
group plus one water molecule [M-H2O-H]- were analyzed in the acquisition method. 
Precursor ion (m/z)  Fragment ions (m/z) MS parameter (V) 
Name [M+2Act-H]- [LCB+PO4]- [M+1Act-H]- [M-H2O-H]- DP EP CE CXP 
(18:0;2/16:0;0)P+2Ac 702,3 362,2 660,3 600,3 -100 -10 -50 -10 
(18:0;2/16:0;1)P+2Ac 718,3 362,2 676,3 616,3 -100 -10 -50 -10 
(18:0;2/16:1;0)P+2Ac 700,3 362,2 658,3 598,3 -100 -10 -50 -10 
(18:0;2/16:1;1)P+2Ac 716,3 362,2 674,3 614,3 -100 -10 -50 -10 
(18:0;2/18:0;0)P+2Ac 730,4 362,2 688,4 628,4 -100 -10 -50 -10 
(18:0;2/18:0;1)P+2Ac 746,4 362,2 704,4 644,4 -100 -10 -50 -10 
(18:0;2/18:1;0)P+2Ac 728,4 362,2 686,4 626,4 -100 -10 -50 -10 
(18:0;2/18:1;1)P+2Ac 744,3 362,2 702,3 642,3 -100 -10 -50 -10 
(18:0;2/20:0;0)P+2Ac 758,4 362,2 716,4 656,4 -100 -10 -50 -10 
(18:0;2/20:0;1)P+2Ac 774,4 362,2 732,4 672,4 -100 -10 -50 -10 
(18:0;2/20:1;0)P+2Ac 756,4 362,2 714,4 654,4 -100 -10 -50 -10 
(18:0;2/20:1;1)P+2Ac 772,4 362,2 730,4 670,4 -100 -10 -50 -10 
(18:0;2/22:0;0)P+2Ac 786,4 362,2 744,4 684,4 -100 -10 -50 -10 
(18:0;2/22:0;1)P+2Ac 802,4 362,2 760,4 700,4 -100 -10 -50 -10 
(18:0;2/22:1;0)P+2Ac 784,4 362,2 742,4 682,4 -100 -10 -50 -10 
(18:0;2/22:1;1)P+2Ac 800,4 362,2 758,4 698,4 -100 -10 -50 -10 
(18:0;2/24:0;0)P+2Ac 814,4 362,2 772,4 712,4 -100 -10 -50 -10 
(18:0;2/24:0;1)P+2Ac 830,4 362,2 788,4 728,4 -100 -10 -50 -10 
(18:0;2/24:1;0)P+2Ac 812,4 362,2 770,4 710,4 -100 -10 -50 -10 
(18:0;2/24:1;1)P+2Ac 828,4 362,2 786,4 726,4 -100 -10 -50 -10 
(18:0;2/26:0;0)P+2Ac 842,5 362,2 800,5 740,5 -100 -10 -50 -10 
(18:0;2/26:0;1)P+2Ac 858,5 362,2 816,5 756,5 -100 -10 -50 -10 
(18:0;2/26:1;0)P+2Ac 840,5 362,2 798,5 738,5 -100 -10 -50 -10 
(18:0;2/26:1;1)P+2Ac 856,4 362,2 814,4 754,4 -100 -10 -50 -10 
(18:0;2/28:0;0)P+2Ac 870,5 362,2 828,5 768,5 -100 -10 -50 -10 
(18:0;2/28:0;1)P+2Ac 886,5 362,2 844,5 784,5 -100 -10 -50 -10 
(18:0;2/28:1;0)P+2Ac 868,5 362,2 826,5 766,5 -100 -10 -50 -10 
(18:0;2/28:1;1)P+2Ac 884,5 362,2 842,5 782,5 -100 -10 -50 -10 
(18:1;2/16:0;0)P+2Ac 700,3 360,2 658,3 598,3 -100 -10 -50 -10 
(18:1;2/16:0;1)P+2Ac 716,3 360,2 674,3 614,3 -100 -10 -50 -10 
(18:1;2/16:1;0)P+2Ac 698,3 360,2 656,3 596,3 -100 -10 -50 -10 
(18:1;2/16:1;1)P+2Ac 714,5 360,2 672,5 612,4 -100 -10 -50 -10 
(18:1;2/18:0;0)P+2Ac 728,4 360,2 686,4 626,4 -100 -10 -50 -10 
(18:1;2/18:0;1)P+2Ac 744,3 360,2 702,3 642,3 -100 -10 -50 -10 
(18:1;2/18:1;0)P+2Ac 726,3 360,2 684,3 624,3 -100 -10 -50 -10 
(18:1;2/18:1;1)P+2Ac 742,3 360,2 700,3 640,3 -100 -10 -50 -10 
(18:1;2/20:0;0)P+2Ac 756,4 360,2 714,4 654,4 -100 -10 -50 -10 
(18:1;2/20:0;1)P+2Ac 772,4 360,2 730,4 670,4 -100 -10 -50 -10 
(18:1;2/20:1;0)P+2Ac 754,4 360,2 712,4 652,4 -100 -10 -50 -10 
(18:1;2/20:1;1)P+2Ac 770,4 360,2 728,4 668,4 -100 -10 -50 -10 
(18:1;2/22:0;0)P+2Ac 784,4 360,2 742,4 682,4 -100 -10 -50 -10 
(18:1;2/22:0;1)P+2Ac 800,4 360,2 758,4 698,4 -100 -10 -50 -10 
(18:1;2/22:1;0)P+2Ac 782,4 360,2 740,4 680,4 -100 -10 -50 -10 
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(18:1;2/22:1;1)P+2Ac 798,4 360,2 756,4 696,4 -100 -10 -50 -10 
(18:1;2/24:0;0)P+2Ac 812,4 360,2 770,4 710,4 -100 -10 -50 -10 
(18:1;2/24:0;1)P+2Ac 828,4 360,2 786,4 726,4 -100 -10 -50 -10 
(18:1;2/24:1;0)P+2Ac 810,4 360,2 768,4 708,4 -100 -10 -50 -10 
(18:1;2/24:1;1)P+2Ac 826,6 360,2 784,6 724,5 -100 -10 -50 -10 
(18:1;2/26:0;0)P+2Ac 840,5 360,2 798,5 738,5 -100 -10 -50 -10 
(18:1;2/26:0;1)P+2Ac 856,4 360,2 814,4 754,4 -100 -10 -50 -10 
(18:1;2/26:1;0)P+2Ac 838,4 360,2 796,4 736,4 -100 -10 -50 -10 
(18:1;2/26:1;1)P+2Ac 854,4 360,2 812,4 752,4 -100 -10 -50 -10 
(18:1;2/28:0;0)P+2Ac 868,5 360,2 826,5 766,5 -100 -10 -50 -10 
(18:1;2/28:0;1)P+2Ac 884,5 360,2 842,5 782,5 -100 -10 -50 -10 
(18:1;2/28:1;0)P+2Ac 866,5 360,2 824,5 764,5 -100 -10 -50 -10 
(18:1;2/28:1;1)P+2Ac 882,5 360,2 840,5 780,5 -100 -10 -50 -10 
(18:2;2/16:0;0)P+2Ac 698,3 358,2 656,3 596,3 -100 -10 -50 -10 
(18:2;2/16:0;1)P+2Ac 714,5 358,2 672,5 612,4 -100 -10 -50 -10 
(18:2;2/16:1;0)P+2Ac 696,3 358,2 654,3 594,3 -100 -10 -50 -10 
(18:2;2/16:1;1)P+2Ac 712,5 358,2 670,5 610,4 -100 -10 -50 -10 
(18:2;2/18:0;0)P+2Ac 726,3 358,2 684,3 624,3 -100 -10 -50 -10 
(18:2;2/18:0;1)P+2Ac 742,3 358,2 700,3 640,3 -100 -10 -50 -10 
(18:2;2/18:1;0)P+2Ac 724,3 358,2 682,3 622,3 -100 -10 -50 -10 
(18:2;2/18:1;1)P+2Ac 740,5 358,2 698,5 638,4 -100 -10 -50 -10 
(18:2;2/20:0;0)P+2Ac 754,4 358,2 712,4 652,4 -100 -10 -50 -10 
(18:2;2/20:0;1)P+2Ac 770,4 358,2 728,4 668,4 -100 -10 -50 -10 
(18:2;2/20:1;0)P+2Ac 752,4 358,2 710,4 650,4 -100 -10 -50 -10 
(18:2;2/20:1;1)P+2Ac 768,3 358,2 726,3 666,3 -100 -10 -50 -10 
(18:2;2/22:0;0)P+2Ac 782,4 358,2 740,4 680,4 -100 -10 -50 -10 
(18:2;2/22:0;1)P+2Ac 798,4 358,2 756,4 696,4 -100 -10 -50 -10 
(18:2;2/22:1;0)P+2Ac 780,4 358,2 738,4 678,4 -100 -10 -50 -10 
(18:2;2/22:1;1)P+2Ac 796,4 358,2 754,4 694,4 -100 -10 -50 -10 
(18:2;2/24:0;0)P+2Ac 810,4 358,2 768,4 708,4 -100 -10 -50 -10 
(18:2;2/24:0;1)P+2Ac 826,6 358,2 784,6 724,5 -100 -10 -50 -10 
(18:2;2/24:1;0)P+2Ac 808,4 358,2 766,4 706,4 -100 -10 -50 -10 
(18:2;2/24:1;1)P+2Ac 824,4 358,2 782,4 722,4 -100 -10 -50 -10 
(18:2;2/26:0;0)P+2Ac 838,4 358,2 796,4 736,4 -100 -10 -50 -10 
(18:2;2/26:0;1)P+2Ac 854,4 358,2 812,4 752,4 -100 -10 -50 -10 
(18:2;2/26:1;0)P+2Ac 836,4 358,2 794,4 734,4 -100 -10 -50 -10 
(18:2;2/26:1;1)P+2Ac 852,4 358,2 810,4 750,4 -100 -10 -50 -10 
(18:2;2/28:0;0)P+2Ac 866,5 358,2 824,5 764,5 -100 -10 -50 -10 
(18:2;2/28:0;1)P+2Ac 882,5 358,2 840,5 780,5 -100 -10 -50 -10 
(18:2;2/28:1;0)P+2Ac 864,5 358,2 822,5 762,5 -100 -10 -50 -10 
(18:2;2/28:1;1)P+2Ac 880,4 358,2 838,4 778,4 -100 -10 -50 -10 
(18:0;3/16:0;0)P+2Ac 718,3 378,2 676,3 616,3 -100 -10 -50 -10 
(18:0;3/16:0;1)P+2Ac 734,3 378,2 692,3 632,3 -100 -10 -50 -10 
(18:0;3/16:1;0)P+2Ac 716,3 378,2 674,3 614,3 -100 -10 -50 -10 
(18:0;3/16:1;1)P+2Ac 732,3 378,2 690,3 630,3 -100 -10 -50 -10 
(18:0;3/18:0;0)P+2Ac 746,4 378,2 704,4 644,4 -100 -10 -50 -10 
(18:0;3/18:0;1)P+2Ac 762,4 378,2 720,4 660,4 -100 -10 -50 -10 
(18:0;3/18:1;0)P+2Ac 744,3 378,2 702,3 642,3 -100 -10 -50 -10 
(18:0;3/18:1;1)P+2Ac 760,3 378,2 718,3 658,3 -100 -10 -50 -10 
(18:0;3/20:0;0)P+2Ac 774,4 378,2 732,4 672,4 -100 -10 -50 -10 
(18:0;3/20:0;1)P+2Ac 790,4 378,2 748,4 688,4 -100 -10 -50 -10 
(18:0;3/20:1;0)P+2Ac 772,4 378,2 730,4 670,4 -100 -10 -50 -10 
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(18:0;3/20:1;1)P+2Ac 788,4 378,2 746,4 686,4 -100 -10 -50 -10 
(18:0;3/22:0;0)P+2Ac 802,4 378,2 760,4 700,4 -100 -10 -50 -10 
(18:0;3/22:0;1)P+2Ac 818,4 378,2 776,4 716,4 -100 -10 -50 -10 
(18:0;3/22:1;0)P+2Ac 800,4 378,2 758,4 698,4 -100 -10 -50 -10 
(18:0;3/22:1;1)P+2Ac 816,4 378,2 774,4 714,4 -100 -10 -50 -10 
(18:0;3/24:0;0)P+2Ac 830,4 378,2 788,4 728,4 -100 -10 -50 -10 
(18:0;3/24:0;1)P+2Ac 846,4 378,2 804,4 744,4 -100 -10 -50 -10 
(18:0;3/24:1;0)P+2Ac 828,4 378,2 786,4 726,4 -100 -10 -50 -10 
(18:0;3/24:1;1)P+2Ac 844,4 378,2 802,4 742,4 -100 -10 -50 -10 
(18:0;3/26:0;0)P+2Ac 858,5 378,2 816,5 756,5 -100 -10 -50 -10 
(18:0;3/26:0;1)P+2Ac 874,5 378,2 832,5 772,5 -100 -10 -50 -10 
(18:0;3/26:1;0)P+2Ac 856,4 378,2 814,4 754,4 -100 -10 -50 -10 
(18:0;3/26:1;1)P+2Ac 872,4 378,2 830,4 770,4 -100 -10 -50 -10 
(18:0;3/28:0;0)P+2Ac 886,5 378,2 844,5 784,5 -100 -10 -50 -10 
(18:0;3/28:0;1)P+2Ac 902,5 378,2 860,5 800,5 -100 -10 -50 -10 
(18:0;3/28:1;0)P+2Ac 884,5 378,2 842,5 782,5 -100 -10 -50 -10 
(18:0;3/28:1;1)P+2Ac 900,5 378,2 858,5 798,5 -100 -10 -50 -10 
(18:1;3/16:0;0)P+2Ac 716,3 376,2 674,3 614,3 -100 -10 -50 -10 
(18:1;3/16:0;1)P+2Ac 732,3 376,2 690,3 630,3 -100 -10 -50 -10 
(18:1;3/16:1;0)P+2Ac 714,3 376,2 672,3 612,3 -100 -10 -50 -10 
(18:1;3/16:1;1)P+2Ac 730,5 376,2 688,5 628,5 -100 -10 -50 -10 
(18:1;3/18:0;0)P+2Ac 744,3 376,2 702,3 642,3 -100 -10 -50 -10 
(18:1;3/18:0;1)P+2Ac 760,3 376,2 718,3 658,3 -100 -10 -50 -10 
(18:1;3/18:1;0)P+2Ac 742,3 376,2 700,3 640,3 -100 -10 -50 -10 
(18:1;3/18:1;1)P+2Ac 758,3 376,2 716,3 656,3 -100 -10 -50 -10 
(18:1;3/20:0;0)P+2Ac 772,4 376,2 730,4 670,4 -100 -10 -50 -10 
(18:1;3/20:0;1)P+2Ac 788,4 376,2 746,4 686,4 -100 -10 -50 -10 
(18:1;3/20:1;0)P+2Ac 770,4 376,2 728,4 668,4 -100 -10 -50 -10 
(18:1;3/20:1;1)P+2Ac 786,4 376,2 744,4 684,4 -100 -10 -50 -10 
(18:1;3/22:0;0)P+2Ac 800,4 376,2 758,4 698,4 -100 -10 -50 -10 
(18:1;3/22:0;1)P+2Ac 816,4 376,2 774,4 714,4 -100 -10 -50 -10 
(18:1;3/22:1;0)P+2Ac 798,4 376,2 756,4 696,4 -100 -10 -50 -10 
(18:1;3/22:1;1)P+2Ac 814,4 376,2 772,4 712,4 -100 -10 -50 -10 
(18:1;3/24:0;0)P+2Ac 828,4 376,2 786,4 726,4 -100 -10 -50 -10 
(18:1;3/24:0;1)P+2Ac 844,4 376,2 802,4 742,4 -100 -10 -50 -10 
(18:1;3/24:1;0)P+2Ac 826,4 376,2 784,4 724,4 -100 -10 -50 -10 
(18:1;3/24:1;1)P+2Ac 842,6 376,2 800,6 740,6 -100 -10 -50 -10 
(18:1;3/26:0;0)P+2Ac 856,4 376,2 814,4 754,4 -100 -10 -50 -10 
(18:1;3/26:0;1)P+2Ac 872,4 376,2 830,4 770,4 -100 -10 -50 -10 
(18:1;3/26:1;0)P+2Ac 854,4 376,2 812,4 752,4 -100 -10 -50 -10 
(18:1;3/26:1;1)P+2Ac 870,4 376,2 828,4 768,4 -100 -10 -50 -10 
(18:1;3/28:0;0)P+2Ac 884,5 376,2 842,5 782,5 -100 -10 -50 -10 
(18:1;3/28:0;1)P+2Ac 900,5 376,2 858,5 798,5 -100 -10 -50 -10 
(18:1;3/28:1;0)P+2Ac 882,5 376,2 840,5 780,5 -100 -10 -50 -10 
(18:1;3/28:1;1)P+2Ac 898,5 376,2 856,5 796,5 -100 -10 -50 -10 
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Chapter 4.  

Loss of sphingolipid fatty acid α-hydroxylases triggers similar 

effects on the lipid composition of the plasma membrane as cold 

acclimation 

 

 

 

The article is prepared for submission. The supplemental materials are attached at the end of the 

chapter. 
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Abstract 

Plants are continuously challenged by various environmental stresses. It is critical for their survival 

to maintain the structure and function of the plasma membrane (PM). PM lipids play a critical role 

in forming the membrane structure and maintaining its biophysical properties. Sphingolipids as one 

class of PM lipids and here especially the α-hydroxylated sphingolipid species are essential in the 

formation of lipid rafts. To investigate the function of these α-hydroxylated sphingolipids in the 

plant PM upon cold stress, PMs were purified from leaves of Arabidopsis thaliana wild type and the 

sphingolipid fatty acid α-hydroxylase mutant, fah1 fah2, grown under both non- and cold-

acclimated conditions. In-depth lipidomics analyses were performed to profile the composition of 

the purified PM with respect to lipid classes and lipid species. Here we compared equivalent lipid 

class profiles between the PMs isolated from non-acclimated fah1 fah2 plants and from cold-

acclimated wild-type plants, suggesting that the loss of α-hydroxylated sphingolipids and cold 

acclimation induce similar responses in Arabidopsis leaves. Nevertheless, PMs isolated from cold-

acclimated fah1 fah2 plants displayed also cold-induced accumulation of polyunsaturated lipid 

species as wild-type PMs. The transversal distribution of PM-localized lipid species further revealed 

that individual lipid species, even from the same lipid class, are distributed across the membrane in 

a species-dependent manner. This asymmetrical lipid distribution suggests that specific 

mechanisms may exert in modulating the lipid compositions of each membrane monolayer under 

environmental stresses. 

Significance statement 

Maintaining the integrity of the plasma membrane (PM) under various environmental stresses is 

essential for the survival of plants. Detailed lipid profiling of PMs isolated from Arabidopsis wild 

type and a sphingolipid fatty acid α-hydroxylase mutant was performed to investigate the function 

of α-hydroxylated sphingolipids on the PM organization. Together with the analysis of transversal 

lipid distribution, the lipid landscape of the plant PM is outlined concerning the composition of lipid 

class and lipid species on the two membrane leaflets. 
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Introduction 

Plants, being immobile organisms, are constantly challenged by various biotic and abiotic stresses. 

Therefore, the plasma membrane (PM), which represents the barrier between the cell and the 

outer environment, plays a critical role for their survival. PMs ought to adapt dynamically to the 

environmental changes such as the alterations of temperature and salinity, or the encounter of 

pathogens depending on the cell type and the developmental stage (Mamode Cassim et al. 2019, 

Niu and Xiang 2018). Many researches have focused on characterizing PM-localized or PM-

associated proteins that take part in signal recognition and transduction, linking the external stimuli 

and intracellular signaling pathways (Jaillais and Ott 2020, Luschnig and Vert 2014). Large numbers 

of proteins involved in cellular metabolism, cell structure and traffic, protein maturation and 

turnover have been identified in the Arabidopsis PM proteome (Alexandersson et al. 2004, 

Marmagne et al. 2007, Marmagne et al. 2004). Although PM lipids play essential roles in 

establishing cell polarity, determining membrane fluidity as well as regulating enzyme activity and 

signal transduction (Grosjean et al. 2018, Guo et al. 2019, Hou et al. 2016, Zauber et al. 2014), our 

understanding concerning the lipid composition of the plant PM and its transversal distribution is 

rather limited. 

Arabidopsis wild-type (WT) leaves contain mostly phospholipids and sterols in their PMs (47 % and 

46 %, respectively) (Uemura et al. 1995). Although sphingolipids represent only a small portion 

(7 %), they are essential functional components and play decisive roles in modulating the 

membrane biophysical properties and mediating the plant defense responses (Berkey et al. 2012, 

Huby et al. 2020, Michaelson et al. 2016). The core structure of sphingolipids is a long-chain base 

(LCB) which can be further converted to ceramide (Cer) by N-acylation. Subsequent addition of 

glucose or hexosyl inositol phosphates to Cer generates so-called complex sphingolipids, namely 

the glucosylceramides (GlcCers) and the glycosyl inositol phosphoceramides (GIPCs). Overall 

analysis of the sphingolipid constituents in Arabidopsis PM has demonstrated that the majority 

contains trihydroxylated LCBs and fatty acyl chains with 24 carbons in length (Liu et al. 2020). In 

addition, the complex sphingolipids – GIPCs, which can function as pathogenic toxin receptors 

(Lenarčič et al. 2017), contain primarily very-long-chain fatty acyl moieties (VLCFA) with 24 and 26 

carbons in length (Grison et al. 2015, Liu et al. 2020). Lipid analysis of the Arabidopsis PM further 

revealed that free sterols constitute the most abundant sterol class with sitosterol as the main core 

structure; phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are the major phospholipid 

classes with monounsaturated lipids (carrying a single unsaturated fatty acyl moiety per lipid 

species) as the predominant molecular species (Grison et al. 2015, Uemura et al. 1995).  
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Freezing is one of the most frequent environmental stresses that plants encounter. Therefore, 

plants have evolved a strategy, named cold acclimation (CA), to increase their freezing tolerance 

already at low temperatures before actual freezing occurs. It has been demonstrated that the 

proportions of both sphingolipids and sterols decrease under CA condition, whereas phospholipids 

rise (Uemura et al. 1995). In addition, analysis of the lipid species profile has indicated that lipid 

species with higher unsaturation degree increase proportionally under CA condition, which 

enhances the fluidity of the PM and thus the freezing tolerance of the cell (Palta et al. 1993, 

Takahashi et al. 2016, Uemura et al. 1995, Uemura and Steponkus 1994). In our previous work, we 

developed a wide-ranging LC-MS-based lipidomics platform to profile the lipids of Arabidopsis wild-

type leaves, and used this to investigate changes in the molecular species of 23 different lipid 

classes in response to cold and drought stresses (Tarazona et al. 2015). The results demonstrated 

the importance of elucidating lipid classes as well as individual molecular species instead of lipid 

apparent species only. Here, we employed an in-depth profiling of individual lipid species within all 

lipid classes present in Arabidopsis PM, including additionally the functional lipid classes such as 

series of GIPCs and phosphoinositides, to understand the molecular modulation of plant PM under 

environmental stresses. 

The physical interactions between complex sphingolipids and sterols are critical for establishing 

lipid rafts. They may be mediated by the hydroxyl group at the C2 position (α-hydroxylation) on the 

fatty acid moiety or the hydroxyl group at the C3 or C4 position of the LCB moiety of the Cer 

backbone via strong hydrogen bonding with free hydroxyl groups at the A ring of sterols (Brown 

and London 1998, Mamode Cassim et al. 2019, Simons and Ikonen 1997). Two fatty acid 

hydroxylases, AtFAH1 and AtFAH2, are capable of introducing an α-hydroxyl group on the fatty acid 

moiety of complex sphingolipids (Nagano et al. 2009), and analysis of their substrate specificity 

revealed that they selectively hydroxylate either VLCFAs or palmitic acid, respectively (Nagano et 

al. 2012). The double mutant fah1 fah2 (with T-DNA insertions in the promoter region and the 5th 

exon, respectively) displays a reduction of α-hydroxylated complex sphingolipids, in combination 

with a disordered PM structure, elevated salicylic acid (SA) levels and increased disease resistance 

against biotrophic pathogens (König et al. 2012, Lenarčič et al. 2017). This further emphasizes the 

importance of complex sphingolipids in plant cells, despite being minor components in biological 

membranes.  

According to studies on the mammalian systems, lipids are distributed asymmetrically across the 

lipid bilayer of the PM, with PC and sphingomyelin present mostly within the exoplasmic leaflet 

whereas PS, PE and PI are within the cytoplasmic leaflet (Yamaji-Hasegawa and Tsujimoto 2006). 

The plant PM was presumed to possess a similar lipid distribution as in mammalian cells. However, 
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it has been demonstrated that phospholipids are dispersed symmetrically within the PM bilayer of 

mung beans (Takeda and Kasamo 2001), whereas glucosylceramides (GlcCers) are located within 

the apoplastic leaflet of PM isolated from summer quash (Lynch and Phinney 1995) and oat roots 

(Tjellström et al. 2010), but to a different extent (98 % and 70 %, respectively). A recent study of 

the human erythrocytes demonstrated that the asymmetrical distribution occurs at the lipid species 

level, which impacts on fluidity and membrane organization of each PM monolayer (Lorent et al. 

2020). However, the transversal lipid distribution of the plant PM is still poorly understood, due to 

the lack of knowledge on its overall lipid composition, molecular species profile and the precise 

topology and distribution of individual lipid species across the membrane bilayer.  

Building on our previous work (Tarazona et al. 2015), we expanded the detection coverage of the 

lipidomics workflow and implemented it in combination with a subcellular organelle fractionation, 

to comparatively analyze the lipidomes of PM fractions isolated from Arabidopsis WT and the 

fah1 fah2 double mutant. Here, we observed that the loss of α-hydoxylases in Arabidopsis plants 

led to similar responses as observed under cold stress at the lipid class level. Nevertheless, elevated 

levels of sphingolipids, sterols and polyunsaturated glycerolipids in response to CA conditions were 

observed in both WT and fah1 fah2 PM preparations, suggesting that the cold-induced responses 

in fah1 fah2 are comparable with WT at the molecular lipid species level. The investigation of the 

transversal lipid distribution revealed that PS resides predominantly within the cytoplasmic leaflet, 

while PE, PC and PI are mostly equally distributed within both monolayers; higher proportions of 

GlcCer are found on the apoplastic side; and steryl glycosides (SGs) and acylated steryl glycosides 

(ASGs) are allocated to the two leaflets in a species-dependent manner.  

Results 

To understand the function of α-hydroxylated sphingolipids on the organization of the plant PM, 

we applied a comprehensive lipidomics analysis on PMs purified from rosettes of Arabidopsis WT 

and the sphingolipid fatty acid α-hydroxylase mutant, fah1 fah2, grown under non-acclimated and 

cold-acclimated conditions. Furthermore, the transversal distribution of the most abundant PM-

localized phospholipids and glycolipids was determined at the lipid species level.  

Enrichment assessment of the plasma membrane fraction by proteomics 

PMs were purified from other subcellular membranes via two-phase partitioning (Larsson et al. 

1994). Furthermore, microsomes (MC) and intracellular membranes (IM), which present the crude 

membrane fraction and the PM-excluding fraction were generated along this procedure. To ensure 

and evaluate the purity of the PM isolated from Arabidopsis rosettes in correlation with the other 
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fractions including MC, IM and leaf total extract (TE), a wide-coverage shotgun proteomics analysis 

was performed instead of the conventional immunoblotting, which detects only a selected pool of 

organelle-specific markers. The identified proteins were filtered based on two criteria: At least two 

peptide-spectrum matches as well as a threshold of high-confident identification were required for 

each hit. The resulting list contained 106 proteins identified in the PM, 210 in IM, 534 in MC and 

530 in TE. They were subjected to subsequent label-free quantification (LFQ), which compares the 

protein intensities between samples of different matrixes (Tab. S1). Based on their abundance 

estimated by the LFQ algorithm, the enrichment of PM-localized proteins in the PM fractions was 

evaluated. The hierarchical analysis of the subjected proteins displayed that the PM contains a 

distinct protein profile that is significantly different to those of TE, MC and IM fractions (Fig. 1a). 

Proteins enriched in the PM fractions with positive LFQ values (Fig. 1b) include typical PM markers 

such as aquaporins, proton pump ATPases, remorins and syntaxins (Bhat and Panstruga 2005, 

Marmagne et al. 2007, Nühse et al. 2003, Uemura et al. 2004). The protein profile of our PM 

correlates well with the PM proteome from Arabidopsis cell cultures and leaves (Alexandersson et 

al. 2004, Marmagne et al. 2007, Marmagne et al. 2004). Furthermore, subcellular localization of the 

identified membrane-associated or embedded proteins demonstrated that the purity of our PMs 

reaches 89 % (Fig. 1c), suggesting the here isolated PM fraction is of high purity. The membrane 

proteins associated with endomembranes (ER, Golgi apparatus and vacuole) and plastids account 

for 6 % and 4 %, respectively. Noteworthy, typical protein markers, that are commonly used in the 

immunoblotting approach, targeting plastids, mitochondria and nucleus such as photosystem light 

harvesting complexes, mitochondrial ATP synthases and ribosomal proteins, respectively, were not 

identified or strongly reduced in our PM fractions (Tab. S1). This result confirmed the quality of the 

PM-enriched fractions, demonstrating that major contaminants from other subcellular 

compartments were eliminated. 

Distinct lipids are enriched in the plasma membrane fraction of Arabidopsis leaves 

To depict the lipid landscape of the PM from Arabidopsis WT leaves, we applied a combinatorial 

approach that incorporates quantitative data for each lipid class of all fractions as determined by 

TLC-GC, as well as the detailed information on the molecular species profiles obtained via LC-

MS/MS profiling from TE versus PM preparations. The TLC-GC analysis of the glycerolipid 

composition demonstrated that phosphatidylethanolamine (PE; 38.2 ± 12.0 %) is the most 

abundant glycerolipid in the PM and highly enriched in comparison to the TE, MC and IM fractions 

(Fig. 2). Collectively, the mixture of phosphatidylserine (PS), phosphatidylinositol (PI) and 

sulfoquinovosyldiacylglycerol (SQDG) accounts for the most abundant glycerolipids in MC 

(47.9 ± 4.6 %); nevertheless, it constitutes a considerable amount in the PM (26.5 ± 7.1 %) as well. 
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It should be noted that due to the limitations of the chromatographic separation, these three lipid 

classes were closely resolved on the TLC plate, that it was not feasible to quantify them individually. 

Phosphatidylcholine (PC; 6.5 ± 6.4 %) and phosphatidylglycerol (PG; 13.8 ± 4.0 %) are only minor 

phospholipids of the PM. Low amounts of the glyceroglycolipids monogalactosyldiacylglycerol 

(MGDG; 5.4 ± 1.0 %) and digalactosyldiacylglycerol (DGDG; 9.6 ± 4.9 %) were detected in the PM, 

whereas they represent the most abundant lipid classes in the TE (60.3 ± 5.0 %) and the IM (55.1 %± 

10.9 %). Further determinations of the absolute abundance of sphingolipids and sterols are in 

progress. 
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Figure 1. Label-free quantification of the identified proteins by shotgun proteomics.  
Proteins extracted from different membrane fractions were analyzed via shotgun proteomics and 
quantified by label-free quantification (LFQ). (a) Hierarchical analysis illustrates the abundance of 
pooled identified proteins from all membrane fractions. (b) Proteins with positive LFQ intensities in 
the PM fractions were extracted and listed with their accession numbers and descriptions. High to 
low intensities are indicated in the red to green gradient. Data represent mean LFQ values from 
three independent experiments. (c) Intensities of the membrane-associated and embedded 
proteins assigned to subcellular membranes were summed-up and visualized by the pie cart. Blue: 
plasma membranes; orange: endomembranes (ER, Golgi apparatus and vacuole); gray: plastids; 
yellow: others; numbers in %. IM, intracellular membranes; MC, microsomes; NaN, not a number; 
PM, plasma membrane; TE, total extract. 
 

 
Figure 2. Glycerolipid class profiles of all membrane fractions isolated from Arabidopsis leaves.  
Glycerolipids of total extract (TE), microsomes (MC), intracellular membranes (IM) and plasma 
membrane (PM) and were analyzed quantitatively by TLC-GC approach. Data represent mean 
values in µg from three independent experiments ± SD. To normalize the loading lipid amounts 
between different membrane fractions, aliquots of lipid extracts that contain 100 µg fatty acid 
methyl esters (FAMEs) were loaded onto the TLC plates. DGDG, digalactosyldiacylglycerol; MGDG, 
monogalactosyldiacylglycerol; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, 
phosphatidylglycerol; PI, phosphatidylinositol; PS, phosphatidylserine; SQDG, 
sulfoquinovosyldiacylglycerol.  
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Lipidomics analysis reveal the molecular lipid species composition of the plasma membrane 

fraction 

PMs isolated from WT plants grown under optimal non-acclimated (NA) condition were 

investigated by LC-MS-based lipidomics analysis to assess the prevailing molecular species profiles 

of glycerolipids, sphingolipids, and sterols. 

Sphingolipids are mostly found in extraplastidial membranes. Profiling the molecular composition 

of sphingolipids revealed that hydroxysphinganine (18:1;3) is the predominant constituent of both 

LCBs (57.2 ± 10.3 % of total LCBs) and phosphorylated LCBs (LCB-P; 70.2 ± 1.8 %) (Fig. 3, Tab. S2). 

On the other hand, complex sphingolipids comprise a more diverse selection regarding their LCB 

backbones including 18:1;3, sphingenine (18:1;2) and sphingadiene (18:2;2) (Fig. 4). Higher signals 

were obtained from the hydroxylated complex sphingolipids, which are acylated with α-hydroxy 

fatty acyl moieties. In WT PM, hydroxylated ceramide (hCer) with 18:1;3/24:0 (17.6 ± 4.3 % of total 

Cers including both non- and hydroxylated variants) and 18:1;3/24:1 (19.7 ± 3.3 %) are the most 

prominent Cer species. Hydroxylated glucosylceramide (hGlcCer) with 18:1;3/16:0 (23.0 ± 4.1 % of 

total GlcCers including both non- and hydroxylated variants), 18:1;3/22:0 (10.3 ± 0.6 %) and 

18:1;3/24:1 (44.8 ± 3.9 %) are the major GlcCer species. The sequential extension of the 

phosphoinositol head group of the Cers, with one, two and three hexoses and/or hexose derivatives 

generates series 0, A and B GIPCs, respectively. Noteworthy, series A and B GIPCs are enriched in 

WT PM with higher proportion contributed by series A GIPCs. The major GIPC species in WT PM are 

the hydroxylated hexose-carrying GIPC (hH-GIPC) containing 18:1;3/24:0 (37.2 ± 11.2 % of total 

GIPCs including bot non- and hydroxylated variants) and 18:1;3/24:1 (20.7 ± 5.9 %) (Fig. 5). 

Sterols are additional critical components in determining membrane fluidity and organization. Most 

of the sterol species found in both PM and TE are sitosterol and campesterol as well as their 

esterified derivatives (Fig. 6). Similar species profiles of sterols were detected in all extracts, except 

the free sitosterols and free isofucosterols are enriched whereas the free campesterols and the free 

cholesterols are reduced in TE when compared to PM. In WT PM, species with sitosterol and 

campesterol backbones collectively account for 76.8 % of free sterols (FSs), 90.5 % of steryl 

glycosides (SGs), 88.2 % of steryl esters (SEs) and 90.7 % of acylated steryl glycosides (ASGs). In 

addition, sitosteryl esters containing 18:2 and 18:3 acyl moieties are the predominant SE species 

(43.3 ± 27.8 % and 32.3 ± 20.4 %, respectively) and acylated sitosteryl glycoside containing 16:0 is 

the most prominent ASG species (35.5 ± 14.9 %). 
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Figure 3. LCB and LCB-P compositions of PM and TE isolated from Arabidopsis WT and fah1 fah2 
plants under non- and cold-acclimated conditions.  
LCBs and LCB-Ps of isolated plasma membrane (PM) and total extract (TE) fractions from wild-type 
and fah1 fah2 Arabidopsis grown under normal (WT and fxf) and cold-acclimated (CA) conditions 
(c-WT and c-fxf) were analyzed by LC-MS/MS. Data represent mean values of mol % of an individual 
lipid species in the according lipid class from three independent experiments ± SD. Black and blue 
asterisks indicate significant differences between growth conditions in WT and fah1 fah2 
background, respectively (*P < 0.05; Student’s t-test).  LCB, long-chain base; LCB-P, phosphorylated 
long-chain base. 
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Figure 4. Cer and GlcCer compositions of PM and TE isolated from Arabidopsis WT and fah1 fah2 
plants under non- and cold-acclimated conditions.  
Cers and GlcCers of isolated plasma membrane (PM) and total extract (TE) fractions from wild-type 
and fah1 fah2 Arabidopsis grown under normal (WT and fxf) and cold-acclimated (CA) conditions 
(c-WT and c-fxf) were analyzed by LC-MS/MS. Data represent mean values of mol % of an individual 
lipid species in the total Cers and GlcCers, respectively, from three independent experiments ± SD. 
Non-hydroxylated and hydroxylated species from ceramides (cCer and hCer) and glucosylceramides 
(cGlcCer and hGlcCer) are illustrated separately. Black and blue asterisks indicate significant 
differences between growth conditions in WT and fah1 fah2 background, respectively (*P < 0.05, 
** P < 0.01; Student’s t-test). Cer, ceramide; GlcCer, glucosylceramide. 
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Figure 5. GIPC compositions of PM isolated from Arabidopsis WT and fah1 fah2 plants under non- 
and cold-acclimated conditions.  
Series A and B GIPCs of isolated PM fractions from wild-type and fah1 fah2 Arabidopsis grown under 
normal (WT and fxf) and cold-acclimated (CA) conditions (c-WT and c-fxf) were analyzed by LC-
MS/MS. Data represent mean values of mol % of an individual lipid species in total GIPCs from three 
independent experiments ± SD. Non-hydroxylated and hydroxylated species (cGIPC and hGIPC) of 
series A GIPCs (H-GIPC and HN-GIPC) and series B GIPCs (H-H-GIPC) are illustrated separately. Black 
and blue asterisks indicate significant differences between growth conditions in WT and fah1 fah2 
background, respectively (*P < 0.05, ** P < 0.01; Student’s t-test). GIPC, glycosyl inositol 
phosphoceramide; H, hexosyl; HN, N-acetylhexosaminyl, H-H, dihexosyl. 
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Figure 6. Sterol compositions of PM and TE isolated from Arabidopsis WT and fah1 fah2 plants 
under non- and cold-acclimated conditions.  
Sterols of isolated plasma membrane (PM) and total extract (TE) fractions from wild-type and 
fah1 fah2 Arabidopsis grown under normal (WT and fxf) and cold-acclimated (CA) conditions (c-WT 
and c-fxf) were analyzed by LC-MS/MS. Data represent mean values of mol % of an individual lipid 
species in the according lipid class from three independent experiments ± SD. Black and blue 
asterisks indicate significant differences between growth conditions in WT and fah1 fah2 
background, respectively (*P < 0.05, ** P < 0.01; Student’s t-test). ASG, acyl steryl glycoside; FS, 
free sterol; SE, sterol ester; SG, steryl glycoside. 
 

The molecular species profiles of glycerophospholipids revealed that the monounsaturated lipid 

species containing a single unsaturated fatty acyl moiety per lipid species, are the predominant 

types in WT PM (Fig. 7). Noteworthy, the 16:0-containing monounsaturated lipids including 

16:0/18:2 and 16:0/18:3 constitute major proportions of PCs (51.4 ± 8.9 % of total PCs), PEs 
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(67.8 ± 4.2 %), PSs (40.6 ± 5.5 %), PIs (72.9 ± 16.6 %), phosphatidylinositol monophosphates (PIPs; 

100 ± 46.1 %) and phosphatidylinositol bisphosphates (PIP2s; 72.9 ± 12.0 %). Diunsaturated lipid 

species, containing two unsaturated fatty acyl moieties per molecule, account for much lower 

percentages in the mentioned lipid classes in PMs, although they feature comparable levels as the 

monounsaturated species in PCs and PEs in TEs of WT (Fig. 7). Furthermore, unique PE and PS 

varieties, which carry VLCFA moieties (22, 24 and 26 carbons), accumulate in the PM. For instance, 

PS (18:2/26:0) and PS (18:3/26:0) are more than 5-fold enriched in the PM in comparison to the TE 

from WT. It should be noted that the occurrence of PIPs and PIP2s, of which the major molecular 

species can be detected with the standardized extraction procedure by our high-throughput LC-MS 

system, were specific to the PM extracts. In contrast to the other glycerophospholipid classes, high 

levels of diunsaturated species (18:2/18:2, 18:2/18:3 and 18:3/18:3; 38.5 ± 2.4 %) were maintained 

for phosphatidic acids (PAs) in the PMs, although respective 16:0-containing monounsaturated lipid 

species still represent the predominant PA fraction (16:0/18:2 and 16:0/18:3; 50.2 ± 3.6 %). 

Noteworthy, considerable differences between the PG profiles of PM and TE were revealed; for 

instance, PG (16:1/18:3), which is a characteristic PG species of plastidial origin, is a minor 

component of the PM (1.8 ± 0.7 %), but abundant in the TE (29.6 ± 2.1 %). In contrast, disaturated 

PG species, containing two saturated fatty acyl moieties per lipid species, such as PG (16:0/16:0; 

27.3 ± 9.7 %), are extremely enriched in the PM preparation as opposed to the TE ones. Otherwise, 

disaturated lipids form only a very small part of the glycerophospholipid classes in the PM. As 

already observed by TLC, a small portion of glyceroglycolipids can be also detected in the PM. While 

MGDG (16:3/18:3) and DGDG (18:3/18:3) are the most abundant species in both PM and TE, a 

considerable enrichment of 16:0-containing monounsaturated glyceroglycolipids was detected in 

the PM, indicative of the transport of eukaryotic glyceroglycolipid moieties from the chloroplast to 

the PM (Fig. 8). Taken together, the distinct PG, MGDG and DGDG profiles of the PM and the TE 

indicate that the PM fractions have minimum lipid contaminants from plastidial membranes. 

Corresponding to glycerophospholipids, the 16:0-containing monounsaturated lipids including 

16:0/18:2 and 16:0/18:3 also constitute major proportions of diacylglycerols (DAGs; 67.4 ± 5.2 %). 

The predominant species of the triacylglycerols (TAGs) in the PMs including 52:4, 52:5 and 52:6 

(36.4 ± 11.8 %), presumably comprise 16:0, 18:2 and 18:3 acyl moieties (Fig. 9). The sulfur-

containing lipids, sulfoquinovosyldiacylglycerols (SQDGs) are only present in the WT TE in which 

SQDG (34:3) is the most abundant species (Fig. S1). In summary, the in-depth lipidomics analyses 

revealed that sphingolipids with α-hydroxylated fatty acid moieties, sterols with sitosterols and 

campesterols as the core structures and glycerophospholipids with an unsaturated fatty acyl moiety 

per lipid species are the predominant ones in WT PM. Only specific PG, MGDG and DGDG species 

are enriched in the PMs, again indicating that our PMs are of high purity. 
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Figure 7. Phospholipid composition of PM and TE isolated from Arabidopsis WT and fah1 fah2 
plants under non- and cold-acclimated conditions.  
Glycerophospholipids of isolated plasma membrane (PM) and total extract (TE) fractions from wild-
type and fah1 fah2 Arabidopsis grown under normal (WT and fxf) and cold-acclimated (CA) 
conditions (c-WT and c-fxf) were analyzed by LC-MS/MS. Data represent mean values of mol % of 
an individual lipid species in the according lipid class from three independent experiments ± SD. 
Black and blue asterisks indicate significant differences between growth conditions in WT and 
fah1 fah2 background, respectively (*P < 0.05, ** P < 0.01; Student’s t-test). PA, phosphatidic acid; 
PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; PIP and PIP2, 
phosphatidylinositol mono- and bisphosphates; PS, phosphatidylserine; PG, phosphatidylglycerol. 
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Figure 8. Glyceroglycolipid composition of PM and TE isolated from Arabidopsis WT and fah1 fah2 
plants under non- and cold-acclimated conditions.  
Glyceroglycolipids of isolated plasma membrane (PM) and total extract (TE) fractions from wild-
type and fah1 fah2 Arabidopsis grown under normal (WT and fxf) and cold-acclimated (CA) 
conditions (c-WT and c-fxf) were analyzed by LC-MS/MS. Data represent mean values of mol % of 
an individual lipid species in the according lipid class from three independent experiments ± SD. 
Black and blue asterisks indicate significant differences between growth conditions in WT and 
fah1 fah2 background, respectively (*P < 0.05, ** P < 0.01; Student’s t-test). DGDG, 
digalactosyldiacylglycerol; MGDG, monogalactosyldiacylglycerol. 
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Figure 9. Neutral glycerolipid composition of PM and TE isolated from Arabidopsis WT and 
fah1 fah2 plants under non- and cold-acclimated conditions.  
Neutral glycerolipids of isolated plasma membrane (PM) and total extract (TE) fractions from wild-
type and fah1 fah2 Arabidopsis grown under normal (WT and fxf) and cold-acclimated (CA) 
conditions (c-WT and c-fxf) were analyzed by LC-MS/MS. Data represent mean values of mol % of 
an individual lipid species in the according lipid class from three independent experiments ± SD. 
Black and blue asterisks indicate significant differences between growth conditions in WT and 
fah1 fah2 background, respectively (*P < 0.05, ** P < 0.01; Student’s t-test). DAG, diacylglycerol; 
TAG, triacylglycerol. 
 

Loss of sphingolipid α-hydroxylase activity leads to reduced levels of complex sphingolipids and 

sterols 

In order to understand the effects of α-hydroxylated sphingolipids on the PM organization, 

individual molecular species from both TE and PM preparations of fah1 fah2 mutant plants were 

equally profiled in comparison to WT (Figs 3-9). All detected species per lipid class were added, the 

relative percentage of each lipid class of both PM and TE preparations determined, and finally the 

fold changes between fah1 fah2 and WT plants calculated (Fig. 10, Tab. S3). In general, the observed 

fold changes between the WT and the mutant plants differ significantly between the TE and the PM 

preparations, supporting PM-specific changes within the lipid composition of fah1 fah2 mutant 
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plants. The lipid profile of the fah1 fah2 TE is characterized by a strong loss of GlcCer and H-GIPC 

and mild reductions of PC, PE and PS when compared to WT (Fig. 10). On the other hand, high 

amounts of Cer and moderate amounts of LCB, LCB-P, SE, SG, ASG, DAG and TAG accumulate in 

fah1 fah2 TE. This is corroborated by previous studies, indicating an elevated amount of LCB and 

reduced amounts of GlcCer and H-GIPC in TEs of fah1 fah2 (König et al. 2012, Lenarčič et al. 2017). 

Whereas GlcCer, H-GIPC, N-acetylhexosaminyl (HN)-GIPC, SG, ASG, PC, PE, PS, DAG and TAG are 

strongly reduced in fah1 fah2 PMs; LCB-P, dihexose-carrying series B GIPC (H-H-GIPC), SE and PA 

are highly increased in comparison to PMs isolated from WT. The elevated amounts of these lipid 

classes in the fah1 fah2 PM possibly suggest a role in rescuing the disturbed membrane composition 

caused by the loss of α-hydroxyl groups in the fatty acyl moieties. Noteworthy, some lipid classes 

such as DAG, TAG, Cer, HN-GIPC, SG and ASG show great reduction in fah1 fah2 PM, but a mild 

enrichment in fah1 fah2 TE when compared to the respective WT profiles. Again, this differential 

enrichment and distribution of the lipid classes indicate that the PM possesses a specific lipid profile 

in comparison to other intracellular membranes.  

The effects of α-hydroxylase mutations on the individual molecular species level within the PM 

were further investigated. Similar species profiles of LCBs were detected in all extracts, whereas 

higher levels of LCB-P (18:1;3) were observed in both fah1 fah2 PM and fah1 fah2 TE extracts (1.3 

and 1.2-fold increase, respectively) (Fig. 3). It should be noted that complex sphingolipids carrying 

α-hydroxylated fatty acyl moieties were still detected, which derive from either residual FAH1 

activity or other yet unknown FAH proteins (König et al. 2012). Nevertheless, a strong reduction of 

the hydroxylated complex sphingolipids is characteristic for fah1 fah2 plants and especially 

prominent in the profile of GlcCer molecular species (Fig. 4). Significant decrease of the proportion 

of hCer (18:1;3/24:0) and hCer (18:1;3/24:1), as well as hGlcCer (18:1;3/16:0), hGlcCer (18:1;3/22:0) 

and hGlcCer (18:1;3/24:1) were observed in fah1 fah2 PM when compared to WT PM. On the other 

hand, non-hydroxylated ceramides and glucosylceramides (cCers and cGlcCers, respectively) such 

as cCer (18:1;3/16:0) and cCer (18:1;3/24:1), as well as cGlcCer (18:1;3/16:0), cGlcCer (18:1;3/22:0) 

and cGlcCer (18:1;3/24:1) are significantly increased. The changes of the Cer and GlcCer profiles 

between fah1 fah2 and WT TEs followed a similar tendency with some exceptions. For instance, 

cCer (18:1;3/24:1) levels increase strongly in the fah1 fah2 PM to 7.51-fold of the respective species 

in the WT PM, but were only mildly enriched in the respective TE extracts. Noteworthy, while most 

of the hCer species display diminished relative amounts in fah1 fah2 plants, the proportions of hCer 

species with 18:2;2 backbones are elevated. Series A and B GIPCs were detectable in the PM 

fractions where complex sphingolipids are enriched, but not in the corresponding TE samples. 

Series A GIPC including H-GIPC and HN-GIPC are depleted in fah1 fah2 PM as opposed to the WT 
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sample (Fig. 10). This depletion resulted majorly from the reduced relative amount of hH-GIPCs, 

especially from the most abundant species, 18:1;3/24:0 and 18:1;3/24:1 (Fig. 5). On the other hand, 

non-hydroxylated H-GIPCs (cH-GIPCs) are highly increased while non-hydroxylated HN-GIPCs (cHN-

GIPCs) are decreased in the fah1 fah2 PM as compared to the WT. Noteworthy, all series B GIPCs, 

including both the non-hydroxylated and hydroxylated species of H-H-GIPCs (hH-H-GIPCs and cH-

H-GIPCs, respectively), strongly accumulate in the fah1 fah2 PMs. 

 

 
Figure 10. Fold changes between lipid classes of PM and TE from Arabidopsis WT and fah1 fah2 
under non-acclimated condition.  
Glycerolipids, sphingolipids and sterols of plasma membrane (PM) and total extract (TE) from 
Arabidopsis leaves were analyzed by LC-MS/MS approach. Based on sums of peak areas from all 
detected species in each lipid class, the relative proportion of each lipid class of PM and TE, and the 
fold changes between fah1 fah2 (fxf) and wild-type (WT) plants were calculated. Data represent 
fold changes between fxf and WT plants from three independent experiments ± SD. ASG, acyl steryl 
glycoside; Cer, ceramide; DAG, diacylglycerol; DGDG, digalactosyldiacylglycerol; FS, free sterol; 
GlcCer, glucosylceramide; H-, HN- and H-H-GIPC, hexosyl-,N-acetylhexosaminyl- and dihexosyl-
glycosyl inositol phosphoceramide; LCB and LCB-P, long-chain base and its phosphorylated form; 
MGDG, monogalactosyldiacylglycerol; PA, phosphatidic acid; PC, phosphatidylcholine; PE, 
phosphatidylethanolamine; PG, phosphatidylglycerol; PI, phosphatidylinositol; PIP and PIP2, 
phosphatidylinositol mono- and bisphosphate; PS, phosphatidylserine; SE, steryl ester; SG, steryl 
glycoside; SQDG, sulfoquinovosyldiacylglycerol; TAG, triacylglycerol.  
 

Together with sphingolipids, sterols and sterol derivatives serve as fundamental components in PM 

microdomains or lipid rafts (Laloi et al. 2007, Lefebvre et al. 2007, Schrick et al. 2012). Their 

molecular species in fah1 fah2 mutant plants were likewise analyzed in TE and PM preparations. In 

comparison to the WT, SE levels increase while SG and ASG decrease in the fah1 fah2 PMs, as 

already observed for the complex sphingolipids (Fig. 10). In addition, although the overall content 
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of FS stays consistent, lower proportions of campesterols, but higher proportions of isofucosterols 

and sitosterols are present in the fah1 fah2 PM (Fig. 6). The relative amount of 18:3-stigmasteryl 

ester and stigmasteryl glycosides are increased, whereas sitosteryl glycosides are reduced in the 

fah1 fah2 PM. Interestingly, while the overall content is depleted in the fah1 fah2 PM, no significant 

changes were detected with regards to the ASG molecular profile. In general, the overall sterol 

contents of the fah1 fah2 TE as well as its molecular species profiles remain steady comparing to 

the WT TE. 

The lipid compositions of the glycerophospholipids in the fah1 fah2 plants were very similar to 

those observed in WT, with 16:0-containing monounsaturated varieties still presenting the 

predominant glycerophospholipid species in fah1 fah2 plants (Fig. 7). Nevertheless, relative 

amounts of several glycerophospholipid species increase in the mutant PM; for instance, 

PE (18:1/18:3), PE (18:2/18:3), PE (18:3/18:3) and PS (18:1/18:2) display a 2.4 to 4.7-fold 

enrichment as compared to the WT PM. On the other hand, PE (18:2/24:0), PS (18:3/24:1), 

PS (18:3/24:0), PS (18:2/24:0) and PG (16:0/16:1) display a significant reduction (0.2 to 0.5-fold) in 

the fah1 fah2 PM. Only slight increases of 18:1/18:3-containing PCs, PEs and PAs, as well as mild 

reductions of PC (16:0/18:2) and PC (18:0/18:2) were detected in the fah1 fah2 TE. Concerning the 

glyceroglycolipids, the accumulation of 16:0-containing species (1.9-3.5 fold) and concomitant 

reduction of 18:3-containing species (0.45-0.7 fold) were observed in the MGDG profile, however 

not in the DGDG profile of the fah1 fah2 PMs (Fig. 8). In addition, only TAG (50:0) exhibits a 0.39-

fold reduction, while the DAG profile of the fah1 fah2 PMs remains very similar to the one observed 

in WT (Fig. 9). Altogether, the fah1 fah2 PMs contain strongly reduced levels of hydroxylated 

complex sphingolipids (especially GlcCer) and sterols (SG and ASG), but accumulated levels of series 

B GIPC. On the other hand, the overall species profiles of glycerolipids of the fah1 fah2 PMs are 

equivalent to the WT PMs with monounsaturated varieties accounting for the most predominant 

glycerophospholipid species. 

Unsaturation degrees of glycerolipids, sphingolipids and sterols increase under cold acclimation 

in the wild-type plasma membrane 

To address the remodeling response of the PM lipidome upon cold stress, fractionation 

preparations were also performed on additional Arabidopsis WT and fah1 fah2 mutant plants, 

grown under CA-conditions. As opposed to the control plants (referred to as NA (non-acclimated) 

plants and propagated for 31 days under standard growth conditions), 3 weeks old plants were 

moved to growth chambers at 4 °C for an additional ten days to induce cold acclimation. All 

detected sphingolipid classes, including LCB, LCB-P, Cer, GlcCer, series A and B GIPCs, display 
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reduced relative amounts under CA conditions as compared to NA conditions (Fig. 11). Nevertheless, 

the most abundant lipid species of the respective lipid class remain the same in the WT PM 

preparations (Fig. 3-5). Regarding the complex sphingolipids, the hydroxylated unsaturated species 

increase while the non-hydroxylated saturated species decrease under CA. For instance, 

hCer (18:1;3/24:1) and hGlcCer (18:1;3/24:1) highly accumulated while cCer (18:1;3/22:0) and 

cGlcCer (18:1;3/22:0) are strongly reduced in both PM and TE samples of the WT (Fig. 4). In addition, 

larger proportions of hH-GIPC (18:1;3/24:1) and hH-GIPC (18:1;3/26:1) were detected in the WT PM 

(Fig. 5). Interestingly, Cer species with LCB (18:2;2) backbones increase under CA in both WT PM 

and TE extracts, regardless of the saturation degrees of the acyl moieties (Fig. 4). 

 

 
Figure 11. Fold changes between lipid classes of PM from Arabidopsis WT and fah1 fah2 under 
cold-acclimated condition. 
Glycerolipids, sphingolipids and sterols of plasma membrane (PM) from Arabidopsis wild type (WT) 
and fah1 fah2 leaves grown under cold-acclimated (CA) conditions were analyzed by LC-MS/MS 
approach. Based on sums of peak areas from all detected species in each lipid class, the relative 
proportion of each lipid class of fah1 fah2 (fxf) and wild-type (WT) extracts, and the fold changes 
between cold- and non-acclimated conditions were calculated. Data represent fold change 
between cold- and non-acclimated plants from three independent experiments ± SD. ASG, acyl 
steryl glycoside; Cer, ceramide; DAG, diacylglycerol; DGDG, digalactosyldiacylglycerol; FS, free 
sterol; GlcCer, glucosylceramide; H-, HN- and H-H-GIPC, hexosyl-,N-acetylhexosaminyl- and 
dihexosyl-glycosyl inositol phosphoceramide; LCB and LCB-P, long-chain base and its 
phosphorylated form; MGDG, monogalactosyldiacylglycerol; PA, phosphatidic acid; PC, 
phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PI, 
phosphatidylinositol; PIP and PIP2, phosphatidylinositol mono- and bisphosphate; PS, 
phosphatidylserine; SE, steryl ester; SG, steryl glycoside; TAG, triacylglycerol. 
 

Prominent alterations of the sterol amounts were observed in PMs from WT plants under CA 

conditions except for the FS, which remained steady. Namely, increased proportion of SE and 

decreased proportions of SG and ASG were detected in the WT PM under CA conditions in 
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comparison to NA conditions (Fig. 11). No significant changes were detected in the species profile 

of FSs in both PM and TE preparations from WT (Fig. 6); only cholesterol was observed to 

accumulate in higher proportion in TE under CA conditions. Noteworthy, regardless of the sterol 

core structures of the SE and ASG species, a slight increase of 18:3-containing species and a mild 

decrease of 18:2-containing species were observed under CA conditions. No significant alterations 

in the molecular species profile of SGs were detected under CA conditions, although their overall 

abundance decreased significantly (Fig. 11).  

The relative amounts of glycerolipids change in a class-specific manner under CA conditions. 

Phosphoinositides (PI, PIP and PIP2), PG, PA, DGDG and TAG are elevated; whereas, PC, PE, PS, 

MGDG and DAG are reduced proportionally in the PM fractions isolated from WT plants (Fig. 11). 

Although the monounsaturated lipids still denote the most abundant lipid species within all 

glycerophospholipid classes, they are partially replaced by diunsaturated lipids (Fig. 7). This 

remodeling happened in both WT PM and TE, especially within the PC, PE, PS and PA classes. In 

contrast to the other glycerophospholipids, the molecular species profile of PG displays unique 

alterations, as 16:0/18:3 moieties are included but 16:0/16:1 and 16:0/18:1 species downregulated. 

Moreover, PG (16:1/18:3) decreases under CA condition in the TE but not in the PM of WT. This 

particular PG moiety constitutes the predominant PG variant within plastidial membranes, which 

implies that the observed changes in the TE may result from remodeling of lipid species within the 

chloroplasts. Noteworthy, although CA greatly induces the accumulation of phosphoinositides in 

the PM (Fig. 11), their relative proportion remains stable, with only PI (18:3/18:3) displaying a slight 

increase under CA (Fig. 7). Although the overall amount of DAG and MGDG was reduced, no drastic 

alterations were observed in its species profile (Fig. 8-9). Significant increases of diunsaturated 

species including DGDG (16:3/18:3) and DGDG (18:3/18:3) contribute to the elevated DGDG levels 

observed in PM of WT plants grown under CA conditions. Increased unsaturation degrees can also 

be observed in TAGs. The species which contain more than six double bonds accumulated while 

others reduced under CA conditions in both WT PM and TE (Fig. 9). To sum up, the unsaturation 

degrees of all lipid categories (sphingolipids, sterols and glycerolipids) of WT PMs increased under 

cold acclimation.  

Malfunction of sphingolipid α-hydroxylases does not impair the lipid modulation occurred under 

cold acclimation in plasma membranes at the species level 

The effects of diminished hydroxylated sphingolipids on the PM lipid composition under CA 

conditions was evaluated based on the detailed lipid profiles of the fah1 fah2 PM. Here, CA 

conditions led to the enrichment of LCB and GlcCer, which was not observed in the PM of WT (Fig. 
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11). On the other hand, other sphingolipids such as LCB-P, Cer, series A and B GIPCs were similarly 

reduced as in WT, although to a different extent. The overall LCB and LCB-P lipid classes show a 

strong reduction in PMs from CA fah1 fah2, but only mild decreases of LCB (18:0;2) and LCB-

P (18:0;3) were detected (Fig. 3). Concerning complex sphingolipids, the characteristic lipid profiles 

of fah1 fah2 plants can still be observed under CA conditions; namely, the non-hydroxylated lipids 

being the predominant species. It should be noted that although the molecular structures of the 

complex sphingolipids in fah1 fah2 plants are highly affected by the loss of α-hydroxylases, their 

responses towards CA conditions remain the same as observed in WT plants: lipid species with 

unsaturated acyl chains such as cCer (18:1;3/24:1) accumulate while those with saturated acyl 

chains such as cGlcCer (18:1;3/22:0) are reduced in both PM and TE from CA fah1 fah2 mutants (Fig. 

4). Similar to WT extracts, higher levels of hCers with LCB (18:2;2) backbones including 

hCer (18:2;2/24:0) and hCer (18:2;2/26:0) were detected. Series A GIPC displayed smaller decreases 

while series B GIPC displayed greater reduction in fah1 fah2 PMs in comparison to the respective 

PMs from WT plants grown under CA conditions (Fig. 11). However, the composition of the detected 

GIPC species remained steady, with only a slight decrease of cH-H-GIPC (18:1;2/20:0) (Fig. 5). As 

seen for the other complex sphingolipids, the proportion of GIPCs with LCB (18:2;2) backbones 

increase in fah1 fah2 PM under CA conditions.  

In contrast to WT, detailed lipid profiling displayed that the overall abundance of FS and SE 

increased in PMs from fah1 fah2 propagated under CA conditions; however, SG and ASG remain 

unchanged (Fig. 11). In general, the occurrence and the predominant species of the detected sterol 

classes remain the same as under NA conditions. Also, no significant changes were observed 

regarding the FS species (Fig. 6) and only a slight increase of campesteryl glycosides and decrease 

of sitosteryl glycosides. Moreover, 18:3-containing SEs and ASGs accumulate while the 18:2-

containing species are reduced during CA conditions, which is similar to WT. Noteworthy, fewer 

alterations in the lipid composition of sphingolipids and sterols were observed in fah1 fah2 PM 

under CA condition (Fig. 11), which correlates well with the observations that fah1 fah2 plants 

contain a less organized PM (Lenarčič et al. 2017). 

More prominent alterations were observed in the glycerolipid composition under CA conditions 

when compared to the NA conditions. In the mutant, CA conditions lead to the loss of PC and PS, 

whereas PG, phosphoinositides, DGDG, DAG and TAG amounts were elevated (Fig. 11). However, 

the proportions of the diunsaturated phospholipids still accumulate, and the monounsaturated 

phospholipids remain reduced but nevertheless represent the major species within all detected 

glycerophospholipid classes (Fig. 7). Noteworthy, phosphoinositides accumulate greatly in the PMs 

of both WT and mutant plants under CA conditions (Fig. 11). In addition, slight increases of 
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PI (18:3/18:3) and PIP2 (18:3/18:3) were detected especially in the fah1 fah2 PM under CA 

conditions (Fig. 7). Significant increases of DGDG (16:3/18:3), DGDG (18:3/18:3) as well as 

polyunsaturated TAGs were observed for both (Fig. 8-9). Overall, although the molecular structures 

of the complex sphingolipids in fah1 fah2 plants are highly affected by the loss of α-hydroxylases, 

the responses of sphingolipids as well as sterols and glycerolipids towards CA conditions correlate 

well as observed in the WT plants: CA conditions induced the accumulation of lipid species with 

higher unsaturation degrees.  

Individual lipid species are asymmetrically distributed across the plasma membrane 

To address the transversal lipid distribution in Arabidopsis PM, we generated two populations of 

WT PMs exhibiting the “apoplastic-side-out” and “cytoplasmic-side-out” orientations with the 

assistance of a vesicle-inverting detergent, Brij58. The lipid composition of their exterior leaflets 

was subsequently monitored after chemical and enzymatical treatments. The distribution of the 

glycolipids including GlcCers, SGs and ASGs was assessed chemically with periodate; phospholipids 

including PCs, PEs, PSs and PIs were hydrolyzed enzymatically by phospholipase A2. We also 

attempted to reveal the distribution of GIPCs with periodate; however, the experimental 

parameters need to be optimized further to enhance the recovery rate. 

The distribution of GlcCers in the PM varies according to the molecular species. The most abundant 

GlcCer species, hGlcCer (18:1;3/24:1), is allocated mainly to the apoplastic leaflet (60 %) (Fig. 12a). 

In average, 67 % of overall GlcCer species (both cGlcCers and hGlcCers) are found within the 

apoplastic leaflet (Tab. S4). It should be noted that although GlcCer is proportionally more abundant 

than other sphingolipid classes, the distribution of other sphingolipids such as Cers and GIPCs may 

vary and have an impact on the membrane organization as well.  

The orientations of the glycosylated sterols, SGs and ASGs, were assessed by periodate treatment. 

The most abundant SG species are sitosteryl, campesteryl and stigmasteryl glycosides, from which 

100 %, 70 % and 18 %, respectively, are allocated to the cytoplasmic side of the Arabidopsis PM (Fig. 

12b). The distribution of ASGs varies greatly, as the most abundant species, 16:0-sitosteryl glycoside, 

is located primarily within the apoplastic leaflet (76 %) while sitosteryl glycosides containing either 

18:2 or 18:3 fatty acyl moieties are located exclusively within the cytoplasmic leaflet. In average, 

74 % and 61 % of the detected SG and ASG species, respectively, are located within the cytoplasmic 

side of the PM vesicle.  
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Figure 12. Transversal distribution of glycolipids within the plasma membrane.  
Distribution of (a) cGlcCer and hGlcCer, (b) SG and ASG in apoplastic-side-out and chemically 
inverted cytoplasmic-side-out PM vesicles from wild-type Arabidopsis leaves were analyzed by LC-
MS/MS after periodate treatment. Data represent the distribution (in peak area) of individual lipid 
species in the according lipid class from one experiment. ASG, acylated steryl glycoside; cGlcCer and 
hGlcCer, non- and hydroxylated glucosylceramide; SG, steryl glycoside. 
 

Analysis of the phospholipase A2-treated PM vesicles revealed that PE (16:0/18:2) and 

PE (16:0/18:3), the most abundant phospholipid species in Arabidopsis PM, are distributed almost 

symmetrically to both leaflets with 54 % and 63 % locating within the apoplastic side, respectively 

(Fig. 13). Other PE species display a roughly symmetrical distribution as well, despite 74 % of 

PE (18:3/20:0) locating within the apoplastic side of the PM vesicles. A higher proportion of 

PC (16:0/18:2; 78 %) is present within the apoplastic side while the other PC species are allocated 

almost equally to both leaflets. Most of the identified PS species are located primarily within the 
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cytoplasmic side, which corresponds to previous observations (O'Brien et al. 1997). The 

predominant species, PS (16:0/18:3; 77 %) and PS (16:0/18:2; 65 %), were detected mostly within 

the cytoplasmic leaflet. In average, 58 % and 68 % of the PE and PE species are distributed within 

the apoplastic leaflet but 69 % and 53 % of the PS and PI species within the cytoplasmic leaflet, 

respectively (Tab. S4). Building on the first insight into the PM asymmetry of Arabidopsis leaves, 

additional biological repetitions and further parameter optimizations for the GIPC analysis will 

provide advanced knowledge concerning the lipid species-specific distribution, the resulting 

influence on the membrane organization and the lipid-involving signaling pathways within the plant 

PM.  

 

 
Figure 13. Transversal distribution of glycerophospholipids within the plasma membrane.  
Distribution of PE, PC, PS and PI in apoplastic-side-out and chemically inverted cytoplasmic-side-
out PM vesicles from wild-type Arabidopsis leaves were analyzed by LC-MS/MS after phospholipase 
A2 treatment. Data represent the distribution (in peak area) of individual lipid species in the 
according lipid class from one experiment. PC, phosphatidylcholine; PE, phosphatidylethanolamine; 
PI, phosphatidylinositol; PS, phosphatidylserine.  



90 
 

Discussion 

In this study, we present in-depth lipidomics datasets of the PMs from Arabidopsis WT and 

fah1 fah2 grown under NA and CA conditions with an emphasis on the lipid classes and lipid species 

of sphingolipids, sterols and glycerolipids. The alterations between the lipid profiles revealed the 

impacts on the remodeling of the PM lipids caused by the loss of sphingolipid fatty acid α-

hydroxylase and by CA. Furthermore, we identified the transversal distribution of the most 

abundant glycolipids and phospholipids within the WT PMs at the molecular species level. Previous 

studies have demonstrated that α-hydroxylated sphingolipids are essential in establishing the lipid 

rafts on the PM, and that the fah1 fah2 PM is less orderly packed in comparison to the WT PM 

(Lenarčič et al. 2017). However, information on the detailed lipid molecular species of the fah1 fah2 

PM concerning acyl chain length and unsaturation degree of the lipids, which are critical parameters 

to determine the membranes physical properties, was lacking. In addition, the transversal 

distribution of individual lipid species across the PM, which influences the surface potential and 

signal transduction, has not been profiled in the plant system. 

Purified plasma membrane was obtained from Arabidopsis leaves 

In the present study, PMs were purified by two-phase partitioning system, which separates the PM 

vesicles from other intracellular membranes (Larsson et al. 1994). Much effort was made to 

evaluate the purity of the resulting PM fraction: (i) LFQ shot-gun proteomic analysis in combination 

with subcellular localization assessed by SUBAcon database, and (ii) in-depth lipidomics analyses, 

wherein the presence of plastidial lipid molecular species were inspected. The SUBAcon database 

defines consensus subcellular localizations of Arabidopsis proteins based on its unified data 

collection of multiple sources of experimental data (microscopy, MS, protein-protein interaction 

and co-expression) and 22 bioinformatic prediction algorithms. Based on this analysis, purity of the 

PM fractions can be estimated to be 89 % (Fig. 1c). PM-specific proteins were highly enriched in our 

PM preparations. Traces of membrane proteins from endomembranes (ER, Golgi apparatus and 

vacuole), plastids and peroxisomes were present; nevertheless, all these proteins were strongly 

reduced (negative LFQ values) in the PMs, when compared to other membrane fractions (Tab. S1). 

Quantitative analysis of the glycerolipids in the PMs revealed that the most enriched lipid class is 

PE, which corresponds to previous studies (Uemura et al. 1995). Minor amounts of MGDG, DGDG 

and PG were also present in our PMs. Although they are the main components of plastidial lipids, 

they have also been identified in the PMs as demonstrated previously (Tjellström et al. 2010). 

Distinct species profiles of these lipid classes were identified in our PMs: MGDG, DGDG and PG 

species with 16:0 fatty acyl moieties were enriched in the PMs, whereas the plastidial-specific 
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species including MGDG (16:3/18:3), DGDG (18:3/18:3) and PG (16:1/18:3) were strongly reduced 

(Fig. 7-8). This suggests that the contaminants of intact plastids or bulk plastidial membranes are 

insignificant. The presence of endomembrane-associated proteins was expected as lipids intended 

for the PMs are being transported through the vesicular transportation pathway, wherein ER and 

Golgi apparatus are highly involved. Nevertheless, they account for only 6 % in the identified 

proteins in our PMs. Therefore, we conclude that the overall PM preparations contain only trace 

subcellular membrane pieces, which may originate from the homogenization process, membrane 

contact sites between the PMs and other organelles (i.e. plastids) and PM-targeted vesicles derived 

from the vesicular transportation pathway (i.e. endomembranes). It should be noted that PI-specific 

phospholipase C (PI-PLC), phospholipase D α1 (PLDα1) and phospholipase D δ (PLDδ), although not 

enriched, were also identified in our PM proteome. They are involved in the generation of PA and 

DAG molecules specifically from PI by PI-PLC, preferentially from PC and PE by PLDs (Qin et al. 2002, 

Takáč et al. 2019) and may have a slight influence on the composition of the PM lipidome. This 

influence cannot be omitted from the membrane preparation procedure, since several long 

ultracentrifugation steps are included to ensure the purity of the isolated PM.  

The landscape of the plasma membrane is enriched with raft-forming lipids 

It has been demonstrated that the proportion of sphingolipids, sterols and phospholipids in the 

PMs varies greatly according to the plant species and tissues. For instance, in the PM isolated from 

leaf tissues, the content of sphingolipids range from 6 % in wild potato to 31 % in winter oat; sterols 

from 22 % in spinach to 47 % in winter rye; and phospholipids from 29 % in winter oat to 64 % in 

spinach (Palta et al. 1993, Rochester et al. 1987, Takahashi et al. 2016, Uemura et al. 1995, Uemura 

and Steponkus 1994). A relatively low content of sphingolipids (7 %), but high contents of 

phospholipids (47 %) and sterols (46 %) were identified in the PM isolated from Arabidopsis leaves 

(Uemura et al. 1995). In addition, the sphingolipids containing 24:0 as acyl moiety and the 

polyunsaturated phospholipids are characteristic for the PM of Arabidopsis suspension cells (Grison 

et al. 2015). Here, although the comparison between the absolute lipid abundance in our PMs 

remains to be determined since the quantitative analyses of sphingolipids and sterols are still in 

progress, we demonstrated via LC-MS-based lipidomics that a greater lipid variety in both lipid class 

and molecular species levels is present in the PM as compared to the TE. Significantly larger 

proportions of the raft-forming lipids including hCers, hGlcCers and series A hGIPCs as well as free 

campesterol and stigmasterol were detected in the WT PM (Fig. 4-6). However, the molecular 

species profiles of the other sterol derivatives including SEs, SGs and ASGs are similar between the 

PM and TE of the WT plants, suggesting that they occur in a certain ratio throughout distinct 

subcellular membranes (Fig. 6). The predominant phospholipids in the WT PM are the 
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monounsaturated species; the diunsaturated species occur in a smaller amount; and the 

disaturated species account for the least proportion (Fig. 7). This high unsaturation degree of the 

PM-localized phospholipids has been observed previously as well (Grison et al. 2015). Noteworthy, 

significantly higher proportions of VLCFA-containing species like PS (18:2/26:0) and PS (18:3/26:0) 

are located to the WT PM in comparison to the WT TE. We speculate that these lipid species may 

align closely to the lipid rafts, which are thicker membrane patches enriching in the VLCFA-

containing sphingolipids, thereby contribute to their formation. 

The lower level of ordered plasma membrane domains caused by the decline of α-hydroxy groups 

in fatty acids of sphingolipids may be rescued by multi-glycosylated sphingolipids in fah1 fah2 

plasma membrane 

As observed in the previous researches, strong reductions of complex sphingolipids are 

characteristic in the fah1 fah2 TE (König et al. 2012, Lenarčič et al. 2017). In this study, reduced 

levels of complex sphingolipids including Cer, GlcCer and series A GIPC were detected in the 

fah1 fah2 PM (Fig. 10). The predominant species in the fah1 fah2 PM contain fatty acyl chains with 

either 16, 22 or 24 carbons in length, which is the same as observed in the WT PM, albeit without 

α-hydroxylation due to the loss of the fatty acid α-hydroxylases (Fig. 4 and 5). The α-hydroxyl groups 

on complex sphingolipids have been demonstrated to be involved in bridging sphingolipids and 

sterols to establish lipid rafts (Löfgren and Pascher 1977, Pascher and Sundell 1977). In addition, 

the malfunction of the α-hydroxylases in fah1 fah2 mutants leads to reduced levels of ordered 

plasma membrane and strong reduction of GlcCer and GIPC levels in leaf total extracts of 

Arabidopsis (König et al. 2012, Lenarčič et al. 2017). Here, we confirmed that all raft-forming lipid 

classes, including GlcCer, series A GIPC, SG and ASG, display a strong reduction in both PM and TE 

of fah1 fah2, with even more profound results in the fah1 fah2 PM (Fig. 10). Interestingly, 

considerably higher proportions of series B GIPC (both non- and hydroxylated species) are present 

in the fah1 fah2 PM. It has been demonstrated that in mammalian cells and marine sponges, 

glycolipids are able to interact with other multi-glycosylated molecules such as glycoproteins and 

surface glycan to form glycoconjugates on the PM (Bucior and Burger 2004, Handa and Hakomori 

2017, Popescu et al. 2003). These glycoconjugates stabilize the PM organization and additionally 

mediate the binding of pathogenic bacteria to the mammalian host cells (Day et al. 2015). 

Furthermore, the series B GIPCs in the fah1 fah2 PM carry shorter fatty acyl moieties (20 carbon) 

(Fig. 5), which are suitable for the less-ordered and raft-depleted fah1 fah2 PM. These results lead 

us to hypothesize that the increase of multi-glycosylated molecules, but not the elongation of fatty 

acyl chain length, may rescue the decline membrane ordered domains caused by the absence of α-

hydroxy groups in fatty acids of sphingolipids. It has been demonstrated that SEs are a highly 
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assessable reservoir for maintaining the homeostasis of the FSs on the plant PM (Bouvier-Nave et 

al. 2010, Lara et al. 2018). As a result, a proportionally higher SE level was detected in the fah1 fah2 

PM while the FS amount remains constant (Fig. 10), suggesting that the sterol biosynthesis could 

be redirected to generate SEs instead of SGs and ASGs to maintain membrane organization. A 

strong accumulation of LCB-Ps, especially LCB-P (18:1;3), was also detected in both PM and TE of 

fah1 fah2 (Fig. 3). It is appealing to propose that LCB-Ps serves as a sink for an overproduction of 

sphingolipid precursors and can constitute an alternative product for the excess LCBs, which cannot 

be converted further to complex sphingolipids. However, a high LCB-P to LCB ratio can increase the 

sensitivity towards abscisic acid and modulate the LCB-induced program cell death (PCD) in 

Arabidopsis (Alden et al. 2011, Berkey et al. 2012, Guo et al. 2011, Saucedo-García et al. 2011, Shi 

et al. 2007, Tsegaye et al. 2007, Worrall et al. 2008). Activated PCD responses as well as the elevated 

SA levels have already been detected in fah1 fah2 plants leading to inhibited growth (König et al. 

2012), and further investigations are required to assess the correlation between the sphingolipid 

biosynthesis pathway, the LCB-induced PCD and the SA responses. 

The loss of sphingolipid α-hydroxylases and cold stress may trigger similar responses in 

Arabidopsis leaves  

Typical cold-induced responses including the depletion of raft-forming sphingolipids and sterols as 

well as the accumulation of PA (Minami et al. 2008, Ruelland et al. 2002) have been observed in 

both WT PMs under CA conditions and fah1 fah2 PMs under NA conditions. This suggests that the 

loss of α-hydroxyl groups in fatty acids of sphingolipids and CA may trigger similar responses in 

Arabidopsis leaves. Cold-induced responses include numerous other physiological and biochemical 

modifications such as Ca2+ signaling, post-transcriptional and post-translational modifications, 

chloroplast status and phytohormone alterations (Miura and Furumoto 2013, Pál et al. 2013). 

Noteworthy, it has been demonstrated that higher levels of endogenous SA and its derivatives, 

especially the glycosylated form, accumulate during CA condition and enhance the cold tolerance 

in several plant species (Kosová et al. 2012, Scott et al. 2004). Indeed, constitutively elevated levels 

of SA and its derivatives were also detected in fah1 fah2 plants under NA conditions (König et al. 

2012). Furthermore, an enhanced resistance towards biotrophic pathogens was observed in 

fah1 fah2 plants (König et al. 2012), which corresponds not only to the high accumulation of SA, 

but also to the strong reduction of their complex sphingolipids known to be involved in the 

pathogenic recognition (Lenarčič et al. 2017). Notably, in contrast to the changes in the WT PM 

under CA conditions, a notable accumulation of DAG was detected in the fah1 fah2 PM under CA 

conditions (Fig. 11). Since DAG is a by-product of inositol phosphoceramide synthase during 
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sphingolipid biosynthesis (Lee and Assmann 1991), the accumulation of DAG may result from the 

impaired sphingolipid biosynthesis metabolism in fah1 fah2 plants.  

Here, CA leads to an increase in phospholipids commonly observed in many herbaceous and woody 

plant species (Palta et al. 1993, Rochester et al. 1987, Takahashi et al. 2016, Uemura et al. 1995, 

Uemura and Steponkus 1994). Accumulation of PG and phosphoinositides and concomitant 

reduction of PC and PS were observed in both WT PM and fah1 fah2 PM under CA conditions (Fig. 

11). Under cold and osmotic stresses, phosphoinositides play roles in modulating the electrostatic 

signature and reorganizing the cytoskeleton, thus affecting the membrane structure (DeWald et al. 

2001, Pical et al. 1999, Smoleńska-Sym and Kacperska 1994, Williams et al. 2005). In addition, 

phosphoinositides work cooperatively with PS, as well as other anionic phospholipids such as PA, 

to establish the membrane electrostatics of plant PM (Platre et al. 2018). Therefore, the drastic 

increase of these anionic phospholipids may contribute to the reduction of PS under CA conditions 

in order to balance the surface charge. Under CA conditions, higher levels of diunsaturated species 

and lower levels of monounsaturated species occur in all the detected phospholipid classes to 

increase the membrane fluidity in both WT PM and fah1 fah2 PM (Fig. 7). It should be noted that 

increasing diunsaturated PC is hypothesized to play a role in the development of freezing tolerance 

as well (Inatsugi et al. 2002, Uemura et al. 1995, Uemura and Steponkus 1994). In addition, 

glyceroglycolipids, neutral glycerolipids, complex sphingolipids and sterol derivatives that contain 

fatty acyl moieties with higher unsaturation degrees accumulated under CA conditions in both WT 

PM and fah1 fah2 PM (Fig. 4-6, 8), which may collectively contribute to the modulation of PM 

fluidity. Previous researches have indicated that DGDG increases under low temperature (Gu et al. 

2017, Welti et al. 2002), and can be relocated to extraplastidial membranes including the PMs under 

phosphate-limiting conditions (Andersson et al. 2005, Andersson et al. 2003, Jouhet et al. 2004, 

Tjellström et al. 2010). The accumulation of specific DGDG species in the PMs may contribute to 

the cold-induced responses in correlation to the remodeling of phospholipids.  

GlcCer, PE and PC are distributed preferentially to the apoplastic leaflet while SG, ASG, PS and 

PI to the cytoplasmic leaflet 

It has been presumed that the plant PM establishes a similar transversal lipid asymmetry as 

observed in animal cells and in yeasts (Devaux et al. 2006, Hill et al. 1999, Krylov et al. 2001). In 

addition, a recent study indicated that more unsaturated phospholipids are distributed to the 

cytoplasmic leaflet in comparison to the exoplasmic leaflet of the mammalian PM (Lorent et al. 

2020). In contrast to yeasts and animal systems, the plant PM contains a wide variety of 

sphingolipids, FSs and sterol derivatives. However, only a few studies have focused on the PM lipid 
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asymmetry in plants. It has been demonstrated that 70 % of GlcCer, 70 % of total sterols and 35 % 

of phospholipids are distributed to the apoplastic leaflet in the PM of oat roots (Tjellström et al. 

2010); 98 % of GlcCer are distributed to the apoplastic leaflet in the PM of squash leaves (Lynch and 

Phinney 1995); and phospholipids are distributed symmetrically between the PM leaflets in 

hypocotyl cells of mung beans (Takeda and Kasamo 2001). Here, we demonstrate that individual 

lipid molecules are not exclusively allocated to one leaflet, instead, they reach a homeostasis 

between the two leaflets of the PM. About 60 % of the predominant GlcCer species, 

hGlcCer (18:1;3/24:1), is distributed to the apoplastic leaflet (Fig. 12a) and the most abundant SG 

species, sitosteryl glycoside, is located exclusively within the cytoplasmic leaflet of the WT PM (Fig. 

12b). Although SG has been indicated to act as the primer for the exterior-orientated cellulose 

synthesis (Peng et al. 2002), individual SG species may exert distinct functions on the different 

leaflets of the PM. The distribution of individual SG and ASG species varies greatly, suggesting that 

their different roles in membrane organization may be determined by both the sterol cores and the 

acyl chains (Lefebvre et al. 2007). It has been proposed that SG and ASG can modulate the activity 

of ATPases on the PM, and thus regulate the enzyme-associated lipid rafts (Bhat and Panstruga 

2005, Lefebvre et al. 2007, Mongrand et al. 2004). However, the influence of individual lipid species 

on the organization of the plant PM and their association with lipid rafts is still elusive.  

To access the transversal distribution of phospholipids, phospholipase A2 that hydrolyzes the β-

ester bond of PE, PC, PI and PS was applied to demonstrate their distribution within the plant PM. 

PE is the most abundant phospholipid class in the WT PM (Fig. 2). In average, PE and PC are 

distributed preferentially to the apoplastic leaflet (58 % and 68 %, respectively); whereas, anionic 

phospholipids including PS and PI are distributed to the cytoplasmic leaflet (69 % and 53 %, 

respectively) (Fig. 13). Noteworthy, although PS is distributed almost exclusively to the cytoplasmic 

leaflet of the mammalian PM, it can still be detected on the apoplastic leaflet of the Arabidopsis 

PM. This observation is supported by a previous study, which also detects PS on the apoplastic side 

of tobacco protoplasts via PS-binding protein, annexin V (O'Brien et al. 1997). In average, 

phospholipids display a roughly symmetric distribution on the PM bilayer as observed previously 

(Takeda and Kasamo 2001), resulting from the preferential distribution of PC and PE within the 

apoplastic leaflet and PI and PS within the cytoplasmic leaflet.  

In summary, we expanded the knowledge regarding the membrane organization of the plant PM 

by determining the absolute abundance of glycerolipid classes and providing in-depth molecular 

species profiles of sphingolipids, sterols and glycerolipids in leaves of the model plant Arabidopsis. 

The quantitative analysis demonstrated that PE is the most abundant glycerolipid class in plant PM. 

In addition, molecular species of sphingolipids with α-hydroxylated fatty acid moieties, sterols with 
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sitosterols and campesterols as the core structures and glycerophospholipids with a single 

unsaturated fatty acyl moiety per lipid species are enriched in WT PM. The α-hydroxylase mutations 

on the fah1 fah2 PMs lead to strong reductions of hydroxylated complex sphingolipids and sterols, 

but an accumulation of series B GIPCs. Noteworthy, we demonstrated that the impact of the α-

hydroxylase mutations on the fah1 fah2 PM resembles the cold-induced responses in the WT PM, 

including the reduction of complex sphingolipids and sterols and the accumulation of PAs. 

Nevertheless, mutant plants are still capable of modulating the membrane biophysical properties 

as the WT plants under CA condition by accumulating lipid species with higher unsaturation degrees 

to increase the membrane fluidity under cold stress. Although hydroxylated complex sphingolipids 

are diminished in the fah1 fah2 mutant plants, the non-hydroxylated complex sphingolipids display 

a similar tendency with species with higher unsaturation degrees accumulating under CA conditions. 

Furthermore, our study provides first preliminary data on the species-specific transversal 

distribution of the most abundant GlcCer, SG, ASG and phospholipids in the Arabidopsis PM. 

Molecular species of GlcCers, PEs and PCs are distributed preferentially to the apoplastic leaflet 

(67 %, 58 % and 68 %, respectively) while SGs, ASGs, PSs and PIs to the cytoplasmic leaflet (74 %, 

61 %, 69 % and 53 % respectively). Noteworthy, we observed that individual lipid species, even from 

the same lipid class, are distributed differently on the two leaflets of the Arabidopsis PM, suggesting 

that individual lipid species may exert specific functions involved in the lipid signaling and 

membrane organization. 

Materials and methods 

Plant material and growth condition 

Wild type (WT) and fah1 fah2 mutant line were all in the Arabidopsis thaliana (L.) Heynh Columbia-

0 background. Homozygous plants of fah1 fah2 line were described before (König et al. 2012). After 

sowing the seeds in pots with 3-d cold stratification at 4 °C, seedlings were grown under NA 

conditions with 16-h light at 23 °C for one week. Young seedlings were transferred to large trays 

and grown with equal spacing for another two weeks. CA was achieved by reducing the 

temperature to 6 °C for additional 10 days with 12 h light. 

Plasma membrane isolation 

For every membrane preparation, 100 g of Arabidopsis rosettes were collected and homogenized 

in a kitchen blender in 200 ml of ice-cold homogenization buffer (50 mM MOPS, pH 7.0; 2 mM EGTA; 

2 mM EDTA; 0.1 mM PMSF). The homogenate was filtered through two layers of miracloth with 

supporting gauze and centrifuged at 10,000 g at 4 °C for 15 min. The supernatant, which includes 
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the microsomal membranes, was collected and centrifuged at 50,000 g at 4 °C for 60 min to 

generate microsomal pellets. The microsomal fraction (MC) was obtained after resuspending the 

microsomal pellets with 5 mM potassium phosphate buffer, pH 7.6 and homogenizing them with a 

27 G needle. For PM enrichment, aliquots of 6 mL of 4-8 mg ml-1MC were transferred to 18 g two-

phase solutions (5.8 % Dextran 500, w/w; 5.8 % PEG 3350, w/w; 5 mM potassium phosphate buffer, 

pH 7.6; 2 mM KCl). The PM was collected after two-phase partitioning as described previously 

(Larsson et al. 1994). In brief, thoroughly mixed two-phase solutions were centrifuged at 648 g at 

4 °C for 10 min: upper and lower phases harbor PM and other IM, respectively. To enhance the 

purity of the final PM fractions, the phase partitioning was repeated twice. IM- and PM-containing 

phase solutions were transferred to clean tubes and diluted with five-time volume of water or 

dilution buffer (10 mM HEPES/KOH, pH 7.5; 0.25 M sucrose; 10 mM KCl). IM and PM were pelleted 

after centrifugation with 100,000 g at 4 °C for 60 min, and resuspended with 0.8 ml dilution buffer 

before storing at -20 °C.  

Protein determination 

Estimation of protein concentration was conducted as previously described (Esen 1978). In brief, 

filter papers (FN6) harboring 5 µl membrane samples or 2 mg ml-1 BSA solution were incubated with 

staining solution (25 % propan-2-ol, v.v;10 % acetic acid, v.v; 0.05 % Coomassie blue G250, w/v) for 

20 min. Excess dye from the filter papers was eliminated by two subsequent washing steps with 

alternating room-temperature and boiling water. The protein – dye conjugation was released in 

3 ml 0.5 % (w/v) SDS by 50 °C incubation for 20 min. The absorbance at 578 nm of the resulting dye-

containing solutions was measured and utilized for calculating the sample concentration in 

comparison to the BSA standard. 

Lipid extraction 

Total lipid extract from leaf was obtained as described (Tarazona et al. 2015). Briefly, mixture of 

150 mg frozen leaf powder and 6 ml extraction buffer (propan-2-ol : hexane : water, 60:26:14, v.v.v) 

was incubated at 60 °C with shaking for 30 min. After centrifugation at 800 g for 20 min, the clear 

supernatant was evaporated under a stream of nitrogen gas until dryness. Samples were 

reconstituted with 0.8 ml of tetrahydrofuran : methanol : water (TMW, 4:4:1, v.v.v) for the 

subsequent LC-MS/MS measurements. The procedure for extracting the membrane lipids was 

adjusted by substituting the water fraction of the extraction buffer by equal volume of membrane 

samples. Aliquots of 750 µL PM, 780 µL IM and 190 µL MC fractions were used in this study. Further 

process was continued as above.  
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Lipid derivatization 

Phosphate-containing lipids –PA, PIP and PIP2 and LCB-P – were derivatized to enhance their 

chromatographic separation and mass spectrometric detection. Methylation of PA, PIP and PIP2 

was performed as described with slight modifications (Lee et al. 2013). Aliquots of 100 µl lipid 

extracts were first dried under a stream of nitrogen gas and reconstituted with 200 µl methanol. 

Methylation reaction took place after adding of 3.3 µl trimethylsilyldiazomethane (2 M in hexane, 

Merck KgaA, Darmstadt, Germany). After 30 min incubation at room temperature, the reaction was 

terminated by neutralizing the solution with 1 µl of 1.7 M acetic acid. Samples were dried under 

nitrogen gas and redissolved in 100 µl TMW. Acetylation of LCB-P was performed as described with 

slight modifications (Berdyshev et al. 2005). Aliquots of 100 µl lipid extracts were dried and 

reconstituted with 100 µl pyridine and 50 µl acetic anhydride. After 30 min incubation at 50 °C, 

samples were dried under a stream of nitrogen gas at 50 °C. To redissolve lipids, 100 µl TMW was 

used as the final solvent to proceed with the lipid analysis.  

Semi-quantitative lipidomics analysis with LC-MS 

Analysis conditions and system setup were similar to our previous work (Tarazona et al. 2015). 

Samples were separated by an ACQUITY UPLC system (Waters Crop., Milford, MA, USA) with a HSS 

T3 column (100 mm x 1 mm, 1.8 µl; Waters Crop.), ionized by a chip-based nano-electrospray using 

TriVersa Nanomate (Advion BioScience, Ithaca, NY, USA) and analyzed by a 6500 QTRAP tandem 

mass spectrometer (AB Sciex, Framingham, MA, USA). Aliquots of 2 µl were injected and separated 

with a flow rate of 0.1 ml min-1. The solvent system was composed of methanol : 20 mM ammonium 

acetate (3:7, v.v) with 0.1 % acetic acid, v.v (solvent A) and tetrahydrofuran : methanol : 20 mM 

ammonium acetate (6:3:1,v.v.v) with 0.1 % acetic acid, v.v (solvent B). According to the lipid classes, 

different linear gradients were applied: start from 40 %, 65 %, 80 % or 90 % B for 2 min; increase to 

100 % B in 8 min; hold for 2 min and re-equilibrate to the initial conditions in 4 min. Starting 

condition of 40 % solvent B were utilized for LCB and LCB-P; 80 % for DAG; 90 % for TAG and SE; 

65 % for the remaining lipid classes. Subsequent retention time alignment and peak integration 

were performed with MultiQuant (AB Sciex). Further data processing and statistics were done in 

Excel. The lipid class profiles were generated based on the relative proportion of lipid class-specific 

sums of peak area. 

Proteomic sample preparation 

Aliquots containing 10 to 50 µg proteins were used to prepare the samples for proteomic analysis. 

Proteins were delipidated and precipitated in ten-time volume of 96 % ethanol at – 20 °C. The 
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protein pellets were redissolved in 50 µl SDS protein sample buffer (40 mM Tris, pH 6.8; 1 %SDS, 

w/v; 5 % glycerol, v.v; 0.003 ‰ bromophenol blue, w/v; 50 mM DTT). An aliquot of 10 µg protein 

was loaded on to an SDS-PAGE gel. The electrophoresis was stopped when the proteins entered the 

separating gel for 1 cm. The sample-containing gel piece was cut out and sliced into 0.5 cm × 1 cm 

pieces to proceed with tryptic digestion and derivatization as described (Shevchenko et al. 2006). 

Peptides were desalted via EmporeOctadecyl C18 47-mm extraction disks 2215 (Merck KgaA, 

Darmstadt, Germany) (Rappsilber et al. 2007), and dissolved in 20 µl 0.1 % formic acid, v.v, before 

LC-MS/MS analysis.  

Proteomic analysis with LC-MS/MS 

Analysis condition and system setup for the proteomic analysis were as described (Schmitt et al. 

2017). Samples were injected into a RSLCnano Ultimate 3000 system (Thermo Fisher Scientific, 

Waltham, MA, USA) liquid chromatographic system with an Acclaim PepMap 100 precolumn 

(100 µm × 2 cm, C18, 3 µm, 100 Å; Thermo Fisher Scientific) at a flow rate of 20 µl min-1 for 3 to 

6 min; then separated by an Acclaim PepMap RSLC column (75 µm × 50 cm, C18, 3 µm, 100 Å; 

Thermo Fisher Scientific) at a flow rate of 300 nl min-1.The solvent system was composed of 

0.1 %formic acid, v.v (solvent A) and 80 % acetonitrile with 0.1 % formic acid, v.v (solvent B). A linear 

gradient from 2 % solvent B to 32 % B was applied for 94 min, and continues to 65 % B for additional 

26 min. The samples were ionized online by Nanospray Flex Ion Source (Thermo Fisher Scientific) 

and analyzed with an OrbitrapVelosPro hybrid mass spectrometer (Thermo Fisher Scientific). Full 

scans were executed by its Orbitrap-FT analyzer at a resolution of 30,000 with the mass range from 

300 to 1850 m/z; and the data-dependent acquisition of top 15 features (dynamic exclusion 

enabled) was performed with its Velos Pro analyzer.  

MS/MS data processing including peptide analysis, protein identification and label-free 

quantification was performed by MaxQuant 1.6.1.0 (Cox and Mann 2008). Label-free quantification 

(LFQ) algorithm was implemented in MaxQuant software (Schaab et al. 2012) and applied to 

determine the protein abundance in different membrane fractions. The false discovery rate of 

peptide – spectrum matches and proteins were set to 0.02, matches between runs and dependent 

peptides were enabled, default settings were used for other parameters. The output data were 

visualized with Perseus 1.6.1.1 (Tyanova et al. 2016). 

Thin layer chromatographic separation of glycerolipids 

Lipid extracts of membrane fractions were spotted onto TLC 60 plates (20 × 20 cm, Merck KgaA) in 

parallel with corresponding standards. The TLC method was performed as described (Wang and 
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Benning 2011) with minor modifications. In brief, the TLC plate was pretreated with 0.15 M 

ammonium sulfate for 30 sec and dried for 2 days at room temperature. Prior to loading the 

samples, the plate was activated by 120 °C for 2.5 h. Lipid classes were separated in a solvent 

mixture of acetone : toluene : water (91:30:8, v.v.v). All lipid spots on TLC plates were visualized 

with 0.5 mg ml-1primuline in the mixture of acetone : water (8:2, v.v) (White et al. 1998) under 

528 nm UV light, scraped off and converted to fatty acid methyl esters (FAME) by transesterification 

before GC analysis. 

Transesterification 

Glycerolipids were converted to FAME by acidic methanolysis (Miquel and Browse 1992). The lipid-

bound silica powder from corresponding spots on TLC plate were scraped off and added to 1 ml 

FAME solution (methanol : toluene : sulfuric acid : dimethoxypropane, 33:17:1.4:1, v.v.v.v) with 

5 µg triacylglycerol, TAG (15:0/15:0/15:0), as the internal standard. After 1 h incubation at 80 °C, 

1.5 ml saturated NaCl solution and 1.2 ml hexane were added, followed by vigorous mixing. The 

hexane phase containing the resulting FAME s was, dried, and FAMEs reconstituted in 10 µl 

acetonitrile.  

GC-FID analysis 

After converting them to FAMEs, lipid-bound fatty acids were analyzed by a 6890N Network GC-FID 

system with a medium polar cyanopropyl DB-23 column (30 m × 250 µm × 25 nm; Agilent 

Technologies, Waldbronn, Germany) using helium as the carrier gas at 1 ml min-1. Samples were 

injected at 220 °C with an Agilent 7683 Series injector in split mode. After 1 min at 150 °C, the oven 

temperature raised to 200 °C at the rate of 8 °C min-1, increased to 250 °C in 2 min, and held at 

250 °C for 6 min. 

FS were analyzed by a similar system setup after silylation by N,O-

bis(trimethylsilyl)trifluoroacetamide (BSTFA; Merck KgaA), but with a nonpolar HP-5 column (30 m 

× 250 µm × 25 nm; Agilent Technologies) at a flow rate of 1 ml min-1. Samples were injected at 

250 °C in split mode. After 1 min at 220 °C, the oven temperature was raised to 325 °C at the rate 

of 20 °C min-1 and held for 7.5 min. 

Fatty acids and sterols were identified according to the corresponding standards or by additional 

mass spectrometric identification. Peak integration was performed using the GC ChemStation 

(Agilent Technologies). 
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Membrane asymmetry determination 

The inversion of PM vesicle was performed as described (Johansson et al. 1995) with modifications. 

In short, cytoplasmic-side-out vesicles were generated by incubating the PM fraction with 0.33 %, 

v.v, Brij58-containing dilution buffer (10 mM HEPES/KOH, pH 7.5; 0.25 M sucrose; 10 mM KCl) on 

ice for 30 min. After pelleting the cytoplasmic-side-out vesicles at 10,000 g for 1 h, PM vesicles with 

both orientations (with and without inversion by Brij58) were treated with PLA2 to enzymatically 

digest phospholipids or with sodium periodate to chemically derivatize glycolipids. An aliquot of 

PLA2 (1.0 U per 200 µg membrane protein) from porcine pancreas was applied to the PM vesicles 

at 30 °C for 0 min and 30 min to hydrolyze the sn-2 esters of phospholipids, especially PC, PE, PS 

and PI. The enzymatic reaction was terminated by adding a solvent mixture of methanol : 

chloroform : formic acid (20:10:1, v.v.v) for the subsequent lipid extraction. To address the 

transversal distribution of glycolipids including GlcCer, SG and ASG, sodium periodate was applied 

to the PM vesicles to the final concentration of 10 mM. The chemical treatment was terminated 

after 0 h and 1 h incubation at 30 °C in the dark by adding the solvent mixture for lipid extraction 

as mentioned. Subsequent lipid extraction was performed as described previously (Wang and 

Benning 2011) with an additional repeat of the phase partitioning procedure. Lipid extracts from 0-

min samples serve as non-treated controls in the lipid analyses. 

The membrane asymmetry was calculated based on the knowledge that the apoplastic-side-out 

and the cytoplasmic-side-out PM vesicle populations are 85 % and 100 % of the assigned 

orientation in average, respectively (Johansson et al. 1995, Larsson et al. 1994). That is, 85 % of the 

reduced signals in the treated apoplastic-side-out vesicles in comparison to the non-treated 

extracts result from the modified apoplastic-localized lipids. On the other hand, 100 % of the 

reduced signals in the treated cytoplasmic -side-out vesicles in comparison to the non-treated 

extracts result from the modified cytoplasmic-localized lipids. 
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Supporting information 

Table S1. Overall identified proteins of all membrane fractions via proteomic analysis with label-
free quantification. 

Table S2. Overall identified lipid species of plasma membrane fractions and total extracts of 
Arabidopsis WT and fah1 fah2 leaves. 

Table S3. Fold changes of lipid classes of (A) plasma membrane fractions (PM) and total extracts 
(TE) between Arabidopsis wild type (WT) and fah1 fah2 (fxf) under non-acclimated condition (B) 
PM isolated from WT and fxf plants between cold-acclimated (CA) and non-acclimated (NA) 
conditions. 

Table S4. Transversal lipid species distribution of glycolipids and phospholipids. 

 

 
Figure S1. Sulfoquinovosyldiacylglycerol composition of Arabidopsis WT and fah1 fah2 plants 
grown under non- and cold-acclimated conditions.  
Sulfoquinovosyldiacylglycerols of total extracts (TEs) from wild-type and fah1 fah2 Arabidopsis 
grown under normal (WT and fxf) and cold-acclimated (CA) conditions (c-WT and c-fxf) were 
analyzed by LC-MS/MS. Data represent mean values of mol % of an individual lipid species in the 
according lipid class from three independent experiments ± SD. Sulfoquinovosyldiacylglycerol, 
SQDG. 
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Chapter 5.  

Defining the lipidome of Arabidopsis leaf mitochondria: Specific 
lipid complement and lipid biosynthesis capacity 
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Summary 

Mitochondria are considered as power stations of the cell, playing critical roles in various biological 

processes such as energy conversion, stress responses and programmed cell death. To maintain the 

structural and functional integrities of mitochondria, it is crucial to achieve a defined membrane 

lipid composition between different lipid classes wherein specific proportions of individual lipid 

species are present. Although mitochondria are capable of self-synthesizing a few lipid classes, 

many phospholipids are synthesized in the endoplasmic reticulum and transferred to mitochondria 

via membrane contact sites, as mitochondria are excluded from the vesicular transportation 

pathway. However, knowledge on the capability of lipid biosynthesis in mitochondria and the 

precise mechanism of maintaining the homeostasis of mitochondrial lipids is still scarce. Here we 

describe the lipidome of mitochondria isolated from Arabidopsis leaves, including the molecular 

species of glycerolipids, sphingolipids and sterols to depict the lipid landscape of mitochondrial 

membranes. In addition, we define proteins involved in lipid metabolism by proteomic analysis and 

apply them to reconstruct the lipid biosynthesis pathways in this organelle. Proteins putatively 

localized to the membrane contact sites are proposed based on the proteomic results and online 

databases. Collectively, our results suggest that leaf mitochondria are capable, with the assistant 

of membrane contact site-localized proteins, in generating several lipid classes including 

phosphatidylethanolamines, phosphatidic acids, phosphatidylinositols, phosphoinositides, 

phosphatidylglycerols, cardiolipins, diacylgalactosylglycerols and free sterols. We anticipate our 

work to be a foundation to further investigate the functional roles of lipids and their involvement 

in biochemical reactions in plant mitochondria. 

Significance statement 

Achieving and maintaining the specific membrane lipid composition is essential for plant 

mitochondria to stabilize their ultrastructure, and to keep their functional states. A combinatorial 

approach of lipidomics, proteomics and online database mining was applied to profile the 

mitochondrial lipidome in detail, depict the lipid landscape of plant mitochondria and assess their 

capability for lipid biosynthesis and modification. 

  



106 
 

Introduction 

Mitochondria are considered as semiautonomous organelles. According to a widely accepted 

hypothesis, they descend from proteobacteria that have been engulfed by a eukaryotic cell. The 

two involved cells established an endosymbiosis (Gray et al. 1999). Mitochondria play crucial roles 

in various cellular processes, including ATP generation, stress responses and initiation of 

programmed cell death (Jacoby et al. 2012). The mitochondria of plant cells even have extended 

functions, many of which are related to photosynthesis (Braun 2020). Mitochondria are enclosed 

by two membranes, the outer (OM) and the inner (IM) mitochondrial membranes, that both require 

defined protein and lipid compositions to maintain their functional integrity (van Meer et al. 2008). 

The majority of the mitochondrial proteins is encoded by the nuclear genome, synthesized in the 

cytoplasm and post-translationally imported into the organelle. At the same time, a few proteins 

are encoded by the mitochondrial genome and synthesized within the organelle. Recent studies 

have largely broadened the knowledge of protein import in mitochondria, to the OM, the 

intermembrane space, the IM and the matrix (Wiedemann and Pfanner 2017). However, current 

understanding of the biosynthesis and transport of lipids, although fundamentally important 

constituents of the mitochondria, is still very limited. There are two major routes of lipid transport 

in the cell, vesicular and non-vesicular lipid transport. Vesicular lipid transport may be the 

predominant mechanism to deliver lipids from the site of synthesis to the final destination. 

Endoplasmic reticulum (ER), Golgi apparatus, plasma membrane and vacuoles use this pathway to 

exchange macromolecules between the compartments (Paul et al. 2014). However, mitochondria 

are disconnected from this vesicular transport and use primarily the non-vesicular pathway 

(Mesmin 2016). Non-vesicular transport is either mediated by lipid transfer proteins or direct lipid 

transport between two membranes. While the non-vesicular transport plays a key role in sorting 

certain lipids and assisting interorganellar communication, knowledge about its mechanism is still 

in its infancy (Lev 2010, Levine 2004). 

Wide varieties of lipid species compose biological membranes. According to the backbones of the 

lipid molecules, they are classified into three main lipid categories – glycerolipids, sphingolipids and 

sterols. To delineate the molecular species in this study, we later use the taxonomy containing two 

colon-separated units for the numbers of carbons and double bonds in the fatty acyl moiety, and 

an additional unit after a semicolon for the number of hydroxyl groups (when present). 

Mitochondrial membranes contain high amounts of glycerophospholipids, such as 

phosphatidylcholine (PC) and phosphatidylethanolamine (PE), but are low in sphingolipids and 

sterols (Daum and Vance 1997). Most of these lipids are produced in the ER and are sorted to 

mitochondria and other organelles afterwards. Nevertheless, mitochondria have also their own 
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capacity to generate some specific lipid classes. For instance, cardiolipin (CL) is synthesized in the 

IM and is present exclusively in mitochondria. It plays essential roles in establishing the cristae in 

the IM and in maintaining the mitochondrial ultrastructure. CL is formed through the condensation 

of phosphatidylglycerol (PG) and diacylglycerol (DAG) and finally consists of four acyl chains. The ER 

is the major site for generating PG molecules (Li-Beisson et al. 2013). However, enzymes involved 

in PG biosynthesis are identified in mitochondria as well, suggesting that mitochondria are capable 

of self-synthesizing PG and thus CL. In plants, the PG synthesizing enzymes, 

phosphatidylglycerolphosphate (PGP) synthase and PGP phosphatase (PGPP), are associated with 

mitochondria, ER and plastids; whereas CL synthase (CLS) localizes exclusively in the IM (Katayama 

et al. 2004, Nowicki et al. 2005, Xu et al. 2002). Notably, although mitochondrial lipid biosynthesis 

is not the major lipid source in plant cells, it is critical for certain organisms. In yeast, mitochondria 

are the major supplier of PE. They generate PE from phosphatidylserine (PS) by phosphatidylserine 

decarboxylase (PSD). In Arabidopsis, three PSD enzymes have been identified and PSD1 localizes in 

mitochondria, providing PE molecules in situ (Nerlich et al. 2007). Reversely, some PS molecules are 

converted from PE through the base-exchange pathway that substitutes the head groups of PE with 

serine molecules by PS synthase1, PSS1 (Yamaoka et al. 2011). While knowing mitochondria are 

capable of synthesizing PG, CL, PS and PE, its competence toward other lipid classes is still poorly 

understood (Li-Beisson et al. 2013).  

Lipid trafficking between ER, mitochondria and plastids is essential for mitochondrial membrane 

biogenesis. Based on studies in yeast and mammals, glycerophospholipid biosynthesis takes place 

at a distinct membrane stretch of the ER, the mitochondria-associated membrane (MAM), wherein 

both ER and mitochondrial proteins have been identified (Vance 1990). Elevated activities of PE, PC 

and PS synthesizing enzymes have been detected in purified yeast MAM. Moreover, this distinct 

membrane domain seems to occur ubiquitously among plants and animal cells, suggesting its 

critical role during evolution and in mediating lipid transfer between ER and mitochondria 

(Achleitner et al. 1999, Morré et al. 1971, Staehelin 1997). Although mitochondria and plastids work 

closely together in numerous pathways in plants, the lipid transport mechanism between these two 

organelles is largely unknown. Nevertheless, a few studies have suggested the relevance of lipid 

trafficking between these two organelles for survival, especially under environmental stresses. 

During phosphate starvation, higher numbers of mitochondria – plastid junctions are established 

(Jouhet et al. 2004). At the same time, drastic lipid remodeling of mitochondria, plastids and plasma 

membrane arises. PC and PE are degraded to release the phosphate residues for essential biological 

processes and the remaining molecules are recycled to generate the typical plastidial 

glyceroglycolipid, digalactosyldiacylglycerol (DGDG). This coincides with increased levels of CL in 
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mitochondria isolated from Arabidopsis suspension cells and calli. In Arabidopsis, the protein 

complex involved in lipid trafficking and tethering of the two mitochondrial membranes, the 

mitochondrial transmembrane lipoprotein (MTL) complex, has been identified recently (Michaud 

et al. 2016). MTL is composed of more than 200 subunits and it has been demonstrated that MTL 

promotes the translocation of PE from IM to OM and the import of DGDG from plastids to 

mitochondria during phosphate starvation. Furthermore, mutation of a newly identified MTL 

subunit, digalactosyldiacylglycerol synthase suppressor 1 (DGS1), leads to alteration of plastidial 

and mitochondrial lipid composition and deficiency in mitochondrial biogenesis (Li et al. 2019). The 

characterization of the MTL complex provides an initial insight in understanding the mechanism of 

lipid trafficking between mitochondria and plastids.  

In this study, we aimed to characterize the lipid metabolism of Arabidopsis leaf mitochondria and 

conducted an in-depth lipidomic analysis, providing the molecular species information of all lipid 

categories including glycerolipids, sphingolipids and sterols to illustrate the lipid landscape of 

mitochondria in Arabidopsis leaves. In combination with a proteomic approach, we intended to 

specify the capacity of lipid biosynthesis and modification in plant mitochondria, defining lipid 

species and classes that may be generated by mitochondria. We additionally propose putative 

membrane contact site-localizing proteins and their roles in interorganellar communication. Our 

results suggest that leaf mitochondria possess a defined lipid composition wherein specific lipid 

molecular species appear. In addition, lipid trafficking between mitochondria, ER and plastids via 

membrane contact sites provides assistance in maintaining the homeostasis of the lipid 

composition in mitochondria. 

Results 

Purity of mitochondrial fractions 

A combinatorial approach by lipidomics, proteomics and mining of online databases was applied to 

investigate the lipid composition as well as the capacity of lipid metabolism of Arabidopsis leaf 

mitochondria. Mitochondria were isolated by differential centrifugation combined with Percoll 

density gradient centrifugation. To ensure and evaluate the purity of the mitochondrial fractions, 

all samples were investigated by two-dimensional (2D) blue native (BN)/SDS polyacrylamide gel 

electrophoresis (PAGE) and by shotgun proteome analyses. Our mitochondrial fractions proved to 

be of good quality. The two photosystems were not detectable on our 2D gels. Only trace amounts 

of the large subunit from Rubisco, the most abundant protein in leaves, were visible in the leaf 

mitochondrial fractions (L-mito) on BN/SDS gels, and the small subunit of Rubisco was barely visible 

(Fig. 1A, Fig. S1). Mitochondria isolated from dark-grown Arabidopsis cell culture (C-mito) were 
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investigated by the same procedure and used as a negative control for contamination from 

chloroplasts. The L-mito and C-mito fractions were highly similar (Fig. 1, Fig. S1). In addition, the 

purity of the mitochondrial fractions was investigated by label-free quantitative shotgun 

proteomics. Building on the proteome data (Sup. Tab. 1), the proportion of mitochondria-localized 

proteins was calculated to be in the range of 87 to 94 % (Fig. 1B, Fig. S2). These results indicate that 

the mitochondrial fractions are of high purity. The following sections compare the lipidome and 

proteome of L-mito with total leaf extracts (L-TE); the C-mito samples were used as a quality control.  

PC, PE and CL are strongly enriched glycerolipids in plant leaf mitochondria 

Glycerolipids are the most abundant lipids not only in mitochondria but also generally in plant 

tissues, accounting for more than 90 % of the overall lipids in leaves (Li-Beisson et al. 2013). 

Glycerophospholipids are fundamental to all biological membranes, while glyceroglycolipids are 

critical for photosynthetic membranes and localize mainly in plastids of vegetative tissues (Hölzl 

and Dörmann 2019). Therefore, a quantitative approach based on TLC-GC was applied on 

determining the proportion of the major glycerolipid classes in L-TE and L-mito (Fig. 2). In L-TE, 

glyceroglycolipids including monogalactosyldiacylglycerols (MGDG; 38.9 ± 1.1 %) and DGDG (22.3 

± 3.8 %) contribute to the majority of the overall lipids; while glycerophospholipids, PC (35.7 ± 6.0 %) 

and PE (37.2 ± 0.3 %), are the most abundant lipids in L-mito. CL is an essential component for 

establishing the mitochondrial cristae in IM. It accounts for 4.0 ± 0.9 % in the lipidome of L-mito; 

however, it was not detectable in L-TE because of its low abundance in total cellular lipids. PG, as 

the precursor of CL, consists 5.6 ± 2.1 % of the overall lipids in L-mito.  

Specific molecular glycerolipid species are enriched in plant leaf mitochondria 

Glycerophospholipids are the most abundant lipids in mitochondria (Fig. 2) (Jouhet et al. 2004, 

Michaud et al. 2016). The most abundant PC and PE molecular species in mitochondria with the 

acyl chains 18:2/18:3, 18:2/18:2 and 18:3/18:3 account for more than 60 % in both lipid classes 

(Fig. 3a; Tab. S2). The species 16:0/18:2, 16:0/18:3 of both lipid classes however were depleted by 

about 50 % in this organelle in comparison to L-TE. PS (18:0/18:2) composes up to 38.3 % in L-mito 

with an increase of 24.3 fold comparing to L-TE. The accumulation of this lipid species was the most 

remarkable one that was even visible when the fatty acid profiles of the different lipid classes were 

calculated from the molecular species data, showing an enrichment of 18:0 in mitochondria on the 

expense of 16:0 (Fig. S3). Together the main molecular species of these three lipid classes have an 

acyl chain composition (C18/C18) in common, which suggests a common origin. 
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Figure 1. Purity of mitochondrial fractions. 
The purity of mitochondrial fractions was determined by 2D blue native / SDS PAGE (A) and by 
summed-up peptide intensities of subcellular compartments based on protein assignments as given 
by the Subcellular localization database for Arabidopsis proteins (SUBAcon; www.suba.live) (B). A: 
Mitochondria were isolated from Arabidopsis leaves (L-mito) and cell cultures (C-mito). Proteins 
were separated by 2D Blue native PAGE and Coomassie-stained. Numbers on top and to the left of 
the 2D gels refer to the masses of standard protein complexes / proteins (in kDa), the roman 
numbers above the gels to the identity of OXPHOS complexes. I+III2: supercomplex consisting of 
complex I and dimeric complex III; I: complex I; V: complex V; III2: dimeric complex III; IV: complex 
IV. The small (S; 14.5 kDa) and the large (L; 53.5 kDa) subunit of Rubisco are indicated by green 
arrows. Biological replicates of the 2D gels and reference gels for mitochondrial and chloroplast 
fractions from Arabidopsis are shown in Fig. S1. B: Mitochondrial fractions from Arabidopsis leaves 
and cell cultures were analyzed by label-free quantitative shotgun proteomics. Peptide intensities 
assigned to subcellular compartments were summed-up and averaged results for L-mitos and C-
mitos were visualized by pie charts (for detailed results see Fig. S2). Blue: mitochondria; green: 
plastids; gray: others; numbers in %. 
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Figure 2. Lipid class profiles of purified mitochondria and total leaf extracts.  
Glycerolipids of leaf total extract (L-TE) and mitochondria isolated from leaves (L-mito) were 
analyzed quantitatively by TLC-GC approach. Data of L-TE represent mean values in mol % from 
three independent experiments ± SD; data of L-mito represent mean values in mol % from two 
independent experiments ± SEM. PC, phosphatidylcholine; PE, phosphatidylethanolamine; CL, 
cardiolipin; PG, phosphatidylglycerol; MGDG, monogalactosyldiacylglycerol; DGDG, 
digalactosyldiacylglycerol.  
 

An important intermediate in glycerolipid metabolism is phosphatidic acid (PA), serving as 

precursor or product for numerous glycerolipids including PC, PE, PG, phosphatidylinositol (PI) and 

DAG. PA (16:0/18:2), PA (16:0/18:3) and PA (18:2/18:3) are the most abundant PA species in both 

fractions, L-mito and L-TE. DAG as the other important lipid intermediate displays a higher 

complexity in its species profile. DAG (16:0/18:2), DAG (16:0/18:3), DAG (18:2/18:3) and 

DAG (18:3/18:3) build a substantial amount (>65 mol %) of the DAG profile in L-mito (Fig. 3c).  

PG is formed from PA and serves as precursor for the mitochondrial lipid CL. Hydrolysis and 

condensation of PG lead to the formation of DAG and CL correspondingly. PG (16:0/18:2) and 

PG (16:0/18:3) are the major species in L-mito, but only the former species is enriched in 

mitochondria (21.1 fold). In addition, unsaturated PG species are significantly enriched in L-mito, 

which contribute to the structures of the down-stream CL molecules. CL (72:10) and CL (72:11), 

composed of 18:2 and 18:3 acyl chains, are the most abundant CL (Fig. 3a).  

Glycerophospholipids serve not only as membrane building blocks but are also important 

precursors for signaling molecules in the cell. PI, phosphatidylinositol monophosphate (PIP) and 

phosphatidylinositol bisphosphate (PIP2) exert regulatory functions in cell development and 

polarity determination (Heilmann 2016). In L-mito, molecular species with 16:0/18:2 and 16:0/18:3 

acyl chains compose up to 80 % of PI and PIP2; yet PIP was not detectable in L-mito. PI (16:0/16:1) 
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and PI (18:0/18:1) were only detectable in the mitochondrial extracts, and PI (18:0/18:2) is 

significantly enriched in L-mito for 21.2 fold in comparison to L-TE (Fig. 3a). On the other hand, we 

obtained higher signals of PIP2 (18:1/18:2) in L-mito. 
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Figure 3. Profiles of molecular glycerolipid species and the according fold changes between L-mito 
and L-TE.  
Heat maps of (a) glycerophospholipids, (b) glyceroglycolipids and (c) diacylglycerols illustrate the 
difference of species distribution based on LC-MS/MS analyses. Each block represents one lipid 
class wherein the detected species are presented and summarized to 100 %. Data represent mean 
values in mol % from three independent experiments. Binary logarithm was applied when the mean 
values are higher than 0.5 to inspect the fold changes (FC) between L-mito and L-TE. One and two 
asterisks (*, **) indicate p values < 0.05 and < 0.01, respectively, by Student’s t-test. PC, 
phosphatidylcholine; PE, phosphatidylethanolamine; PS: phosphatidylserine; PI: 
phosphatidylinositol; PA phosphatidic acid; DAG: Diacylglycerol; CL, cardiolipin; PG, 
phosphatidylglycerol; MGDG, monogalactosyldiacylglycerol; DGDG, digalactosyldiacylglycerol.  
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Glyceroglycolipids carry carbohydrate residues as their head groups; for instance, the galactose-

containing lipids, MGDG and DGDG contain one and two galactoses, respectively (Hölzl and 

Dörmann 2019). MGDG (16:3/18:3) and DGDG (18:3/18:3) are the major components of the overall 

glyceroglycolipids in both L-TE and L-mito (Fig. 3b). The amount of MGDG (16:0/18:3) and 

MGDG (18:2/18:2) are specifically elevated in L-mito for 21.5 and 21.4 folds, respectively, compared 

to L-TE. In contrast, the species MGDG (16:1/18:1) and MGDG (16:3/18:2) are significantly 

decreased in L-mito. In summary, the major mitochondrial lipids PC, PE, PS and CL consist of similar 

species, while PI, PIP2 and PG consist primarily of different species and the lipid precursors DAG 

and PA resemble a mixture of both origins. 

Combining lipidomic and proteomic analyses provides insights into the leaf mitochondrial 

glycerolipid metabolism capacity 

To analyze the lipid metabolism capacity of the mitochondria, their protein composition and 

abundance was investigated via label-free quantitative shotgun proteomics. Subsequently, their 

biological function and the subcellular localization were retrieved from The Arabidopsis Information 

Resource (TAIR) and the Subcellular localization database for Arabidopsis proteins (SUBAcon) 

databases (Fig. S4) (Hooper et al. 2017, Lamesch et al. 2011). About 40 proteins involved in the 

biosynthesis and modification of fatty acids and more complex lipids were identified in the 

mitochondrial extracts (Tab. S3). With the assistance of the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) (Tanabe and Kanehisa 2012), this list was used to annotate mitochondrial lipid 

biosynthesis pathways including glycerolipid, sphingolipid and sterol metabolism, which were then 

compared with the identified mitochondrial molecular lipid species in the following sections. 

More than 60 mol % of both PC and PE species carry two C18 fatty acids on their glycerol backbone. 

This strongly suggests that they may be specifically imported from the ER through ER – 

mitochondrial contact sites (Michaud et al. 2016). Both lipid classes can be interconverted into each 

other via PA and the detected PLDα1 enzyme activity (Fig. 4a). In addition, molecular PE species 

may be products of two mitochondrial pathways: (i) via PSD1 which was identified in all 

mitochondrial samples with higher abundance in C-mito and (ii) via the cytidine diphosphate (CDP)-

ethanolamine pathway (Nerlich et al. 2007). It comprises a series of reactions catalyzed by 

ethanolamine kinase, ethanolamine phosphate cytidylyltransferase (PECT) and aminoalcohol 

phosphotransferase (AAPT). PECT is localized at mitochondrial periphery in Arabidopsis (Mizoi et al. 

2006), and AAPT at ER and Golgi apparatus in wheat (Sutoh et al. 2010). Indeed the former finding 

was confirmed in our study by similar abundances of PECT1 in the L-mito and C-mito samples. PS 

can be synthesized from PE via base-exchange reactions conducted by PS synthase 1 (PSS1) in 
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mitochondria (Yamaoka et al. 2011). However, we were not able to detect this protein in any of our 

samples. 

DAG serves as a central hinge in glycerolipid metabolism. It can be converted from or to numerous 

glycerophospholipid classes, such as PC, PE and PA (Fig. 4a). PG is synthesized from PA via CDP-DAG 

by PGP1. Next, CL is synthesized after the condensation of PG and CDP-DAG by CL synthase (CLS) or 

after the transacylation of monolyso-CL by acyltransferases such as LCLAT (Tafazzin) (Xu et al. 2006). 

CLS and LCLAT were identified in the shotgun proteomic analysis in this study with a higher 

abundance in C-mito compared to L-mito. 

PIP and PIP2 are products of PI kinases, for instance FAB1B, and can be degraded by phospholipase 

C (PLC), inositol polyphosphate phosphatase (SAL1) and/or CDP-DAG synthases (Fig. 4c). In 

Arabidopsis, PI is synthesized by PI synthase that utilizes CDP-DAG and myo-inositol as substrates. 

In mammalian cells, PI biosynthesis takes place mainly in ER. However, it has been challenged 

recently by a novel hypothesis that PI synthase is located at a highly mobile membrane, which 

synthesizes and delivers phosphoinositides to other intracellular compartments (Kim et al. 2011). 

Although many enzymes involved in phosphoinositide metabolism have been annotated to localize 

in mitochondria, only SAL1 was identified in our approach. 

The biosynthesis of glyceroglycolipids takes place in plastids by MGDG and DGDG synthases (MGDs 

and DGDs), respectively (Hölzl and Dörmann 2019). MGDG is generated by adding a galactose head 

group to DAG; subsequent addition of another galactose by DGD1 generates DGDG. The detected 

specific species profiles of mitochondrial glyceroglycolipids may suggest at least for a specific 

transport from plastids to mitochondria (Fig. 4b). The sulfolipid SQDG is synthesized in two steps. 

Uridine diphosphate (UDP)-glucose is first combined with a sulfite by UDP-sulfoquinovose synthase 

1 (SQD1), followed by transferring the sulfoquinovose head group to DAG and thus forms SQDG. 

Although SQD1 was identified in the mitochondrial extracts in this study, we did not detect SQDG 

lipids in any of the mitochondrial samples. Together we could exclusively localize three biosynthetic 

steps to mitochondria: (i) CLS catalyzing the formation of CL, (ii) PSD1 transforming PS into PE and 

(iii) SAL1 which degrades IP2. 
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Figure 4. Mitochondrial localized proteins and enriched lipids related to general glycerolipid 
biosynthesis.  
Pathways of (a) glycerophospholipid, (b) glyceroglycolipid and (c) phosphoinositide metabolism 
constitute the general glycerolipid biosynthesis in Arabidopsis. Proteins identified and/or localized 
in mitochondria were labeled (i) blue: proteins identified in the proteomic analysis of this study and 
also predicted to localize in mitochondria, (ii) green: proteins identified in the proteomic analysis 
of this study in mitochondria but predicted to localize in other organelles, (iii) magenta: proteins 
absent in the proteomic analysis of this study but predicted to localize or found in mitochondria, 
(iv) bold font: exclusively localized in mitochondria and (v) italic font: only identified in one of the 
mitochondrial populations. Heat maps visualize the protein abundance of three independent 
experiments of mitochondria purified from leaves and cell cultures. Boxed lipids: lipid classes 
analyzed by the LC-MS/MS approach with molecular lipid species enriched in L-mito in comparison 
to L-TE. Further full names and functions are itemized in Table S1. In the heat maps, proteins with 
high and low abundance are depicted in yellow and black, respectively. Predicted protein 
localization was based on The Arabidopsis Information Resource (TAIR; www.arabidopsis.org) and 
the Subcellular localization database for Arabidopsis proteins (SUBAcon; www.suba.live). 
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Specific molecular sphingolipid and sterol species suggest a function in mitochondria 

Sphingolipids and sterols are important modulators of membrane microdomains and play critical 

roles in regulating the balance between cell survival and apoptosis. We profiled the mitochondrial 

sphingolipid compositions of both simple and complex sphingolipid groups, including long-chain 

bases (LCB), phosphorylated LCB (LCB-P), ceramides (Cer), glucosylceramides (GlcCer) and glycosyl 

inositol phosphoceramides (GIPC) (Fig. 5). All sphingolipids have LCBs, 18-carbon amino-alcohols, 

as their backbones. Phytosphingosine (18:0;3), hosting three hydroxyl groups, is the most abundant 

free LCB in both L-mito and L-TE (Fig. 5a). However, dihydrosphingosine (18:0;2) is highly enriched 

in L-mito as well as phosphorylated dihydrosphingosine (18:0;2-P), which is the major component 

in the LCB-P pool of L-mito (64.7 %). LCBs can be further N-acylated to generate Cer, the basic 

structure of complex sphingolipid classes. Addition of glucoses to Cer generates GlcCer, following 

sequential extension of phosphoinositol, hexose and/or hexose derivatives generate series of GIPCs. 

Series 0, A and B GIPCs carry one, two and three additional hexoses on the head groups of inositol 

phosphoceramides, respectively (Cacas et al. 2012). Similar to LCB and LCB-P, only specific species 

were enriched in L-mito (Fig. 5b): Cer (18:0;3/24:0;1), GlcCer (18:1;2/24:1;1) and series A hexose-

carrying GIPC (H-GIPC) (18:1;3/24:1;1). Remarkably, GIPCs were only detectable in mitochondrial 

samples (both L-mito and C-mito) in our approach. However, proteins related to sphingolipid 

metabolism were neither identified in plant mitochondria via proteomic analyses, nor retrieved 

from online databases. 
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Figure 5. Profiles of molecular sphingolipid species, the according fold changes between L-mito 
and L-TE and general sphingolipid biosynthesis pathway in combination with mitochondrial 
enriched lipids.  
Heat maps of (a) long chain bases, long chain base-phosphates and (b) complex sphingolipids 
illustrate the difference of species distribution based on LC-MS/MS analyses. Each block represents 
one lipid class wherein the detected species are presented and summarized to 100 %. Data 
represent mean values in mol % from three independent experiments. Binary logarithm was applied 
when the mean values are higher than 0.5 to inspect the fold changes (FC) between L-mito and L-
TE. One and two asterisks (*, **) indicate p values < 0.05 and < 0.01, respectively, by Student’s t-
test. (c) General sphingolipid metabolism in Arabidopsis. Box frame: lipid classes analyzed by the 
LC-MS/MS approach with molecular lipid species enriched in L-mito in comparison to L-TE. 
 

The common structure of sterols is a four-ring system, cyclopentanoperhydrophenanthrene, with 

possible conjugation of hydroxyl groups and acyl chains. In plants, a complex mixture of sterols can 

be found, including brassicasterol, campesterol, cholesterol, sitosterol and stigmasterol (Cacas et 

al. 2012). Campesterol was identified as major free sterol with 61.7 % in L-mito (Fig. 6). From the 

group of steryl glycosides cholesteryl and isofucosteryl glycoside accumulated preferentially in L-
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mito. Considering SE, 16:0 and 18:0 containing cholesteryl esters were enriched 23.4 and 25.3 folds, 

respectively, in L-mito. For ASG however the situation was blurred. DWF1 was the only protein 

related to sterol metabolism that we identified in plant mitochondria via proteomic analyses, but 

this protein was localized to ER membranes before that may be in close contact to mitochondria 

(Klahre et al. 1998). In summary, we observed an accumulation of GIPCs and free campesterol in 

leaf mitochondria. 

Mitochondria harbor various additional metabolic pathways for the synthesis of lipophilic 

molecules. More than 20 fatty acid biosynthesis-related proteins were identified in our 

mitochondrial proteome (Fig. S5). They contribute to the synthesis of lipoic acid, ubiquinone and 

other terpenoid-quinones. Abundance, function and predicted localization of these proteins are 

specified in Tab. S1.  
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Figure 6. Profiles of molecular sterol species, the according fold changes between L-mito and L-
TE and general sterol biosynthesis pathway in combination of mitochondrial localized proteins 
and enriched lipids.  
Heat maps of (a) free sterols (b) steryl glycosides (SG) and (c) acylated steryl glycosides (ASG) and 
steryl esters (SE) illustrate the difference of species distribution based on LC-MS/MS analyses. Each 
block represents one lipid class wherein the detected species are presented and summarized to 100 
%. Data represent mean values in mol % from three independent experiments. Binary logarithm 
was applied when the mean values are higher than 0.5 to inspect the fold changes (FC) between L-
mito and L-TE. One and two asterisks (*, **) indicate p values < 0.05 and < 0.01, respectively, by 
Student’s t-test. (d) General sterol biosynthesis pathways in Arabidopsis. Heat maps visualize the 
protein abundance based on shotgun proteomic analyses of three independent experiments of 
purified mitochondria from leaves and cell culture. Boxed lipids: lipid classes analyzed by the LC-
MS/MS approach with molecular lipid species enriched in L-mito in comparison to L-TE; green: 
proteins identified in the proteomic analysis of this study but predicted to localize in other 
organelles; magenta: proteins absent in the proteomic analysis of this study but predicted to 
localize in mitochondria. Full names and functions are itemized in Table S1. In the heat maps, 
proteins with high and low abundance are depicted in yellow and black, respectively. Predicted 
protein localization was based on The Arabidopsis Information Resource (TAIR; 
www.arabidopsis.org) and the Subcellular localization database for Arabidopsis proteins (SUBAcon; 
www.suba.live). 
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Lipid molecules can be imported by mitochondria 

Transport of DGDG from plastids to mitochondria and reallocation of PE from IM to OM via the MTL 

complex have been demonstrated under phosphate-depleting conditions (Michaud et al. 2016). 

The MTL complex has more than 200 subunits and 11 have been verified to associate physically 

with the core subunits, Mic60 and Tom40, as previously shown by immunoblotting (Li et al. 2019, 

Michaud et al. 2016). In our mitochondrial proteome, 186 of the subunits (87 %) were identified 

including all the 11 verified ones (Fig. 7). The newly identified MTL subunit, DGS1, which links 

mitochondrial protein to lipid transport, is present in all mitochondrial extracts. 

 

 
Figure 7. MTL complex-associated proteins in mitochondria.  
Our proteomic analyses covered 186 of the 214 hypothetical subunits in the MTL complex; 11 have 
been investigated by immunoblotting approaches in previous studies. Heat maps visualize the 
protein abundance of three independent experiments of mitochondria purified from leaves and cell 
cultures. Proteins with high and low abundance are depicted in yellow and black, respectively.  
 

In addition, at least 15 outer envelope (OE)-localized proteins from plastids were co-purified with 

mitochondria, with higher abundance in C-mito (Fig. 8). They account for 3.4 % (16/471) of the 

identified plastidial proteins, which are enriched by more than two folds in comparison to the 

proportion of OE proteins in plastids (46/3002, 1.5 %) (Inoue 2007, Inoue 2011, Kim et al. 2019, 

Simm et al. 2013). The enrichment of OE proteins in mitochondrial extracts suggests for a physical 

interaction between mitochondria and plastidial OE membrane. For instance, the membrane 

contact sites, which were not disrupted during the isolation procedure, and therefore are present 

in the mitochondrial samples as membrane patches. 
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Figure 8. Identified plastid outer envelope proteins in mitochondrial extracts.  
Our proteomic analyses identified 12 outer envelope-localized proteins. Heat maps visualize the 
protein abundance of three independent experiments of mitochondria purified from leaves and cell 
cultures. Proteins with high and low abundance are depicted in yellow and black, respectively.  
 

Discussion 

In this study, we present an in-depth dataset of lipid molecular species from glycerolipids, 

sphingolipids and sterols of Arabidopsis leaf mitochondria. With the assistance of online resources, 

we assigned the lipid biosynthesis pathways within these mitochondria. Furthermore, we 

confirmed the existence of a protein complex for lipid trafficking between mitochondria and other 

organelles. In the past, the most abundant plant mitochondrial glycerolipid classes, such as PC, PE, 

PI, PA, CL, MGDG and DGDG, from Arabidopsis cell cultures and calli under phosphate-depleted 

conditions have been quantified with TLC-GC (Michaud et al. 2017). However, a TLC-GC-based 

approach lacks the molecular species information concerning acyl chain length and unsaturation 

degree of the lipids, which are critical parameters to determine the membranes physical properties. 

In addition, neither sphingolipids nor sterols of mitochondria were profiled to our very best 

knowledge formerly in Arabidopsis. 

In our study, mitochondria were purified by differential and Percoll density gradient centrifugations. 

Much effort was made to document purity of the resulting organelle fraction: (i) visual inspection 

of the protein complex composition by 2D BN / SDS PAGE and (ii) label-free quantitative shot-gun 

proteins in combination with SUBAcon evaluation. The SUBAcon database integrates worldwide 

knowledge on subcellular localization information of Arabidopsis proteins based on in vitro or in 

vivo protein targeting experiments, mass spectrometry-based analyses of organellar fractions, 

protein-protein interaction data and bioinformatics tools for subcellular localization prediction. 

Based on the latter approach, purity of our mitochondrial fractions can be estimated to be in the 

range of 90% (87 to 94%, Fig. S2). Traces of chloroplasts were present in our fractions. However, 

even Rubisco, which is considered to be the most abundant chloroplast protein, was detectable 
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only as a very faint spot on the 2D BN/SDS gel of the L-mito fraction (Fig. 1). Finally, quantitative 

lipidomics revealed the purity of our mitochondrial fraction. MGDG, DGDG, PG and SQDG are the 

main components of plastidial membranes (Hölzl and Dörmann 2019). In Arabidopsis chloroplasts, 

the ratio of MGDG : DGDG : PG : SQDG is about 1:0.5:0.1:0.3 (Awai et al. 2006). In contrast, a distinct 

ratio of 1:0.3:0.4:0 was detected in L-mito in this study (Fig. 2). Moreover, only a few specific MGDG 

and DGDG molecular species are enriched in L-mito compared to L-TE (Fig. 3B), suggesting that the 

cross-contamination from intact plastids or bulk plastidial membranes are insignificant. On the 

other hand, more than 85 % of the subunits of the MTL complex (Fig. 7) and many OE proteins 

(Fig. 8) were identified in the mitochondrial samples via our proteomics approach, strongly 

suggesting that a close contact between mitochondria and chloroplasts exists in our preparations. 

We conclude that the identified chloroplast lipids and proteins rather originate from small pieces 

of plastidial membranes and, importantly, the mitochondria-plastid contact sites, which are present 

in our mitochondrial fraction and contribute to the measured lipid composition. While the protein 

complexes connecting ER and mitochondria have been well described in yeast, their roles in 

mediating and/or facilitating lipid translocation are less defined in plants. In contrast to yeast, to 

our knowledge only one tethering protein has been described in plants up to now. The LEA-related 

LysM domain protein 1 (MELL1) is located at the junctions between mitochondria and ER in moss 

(Mueller and Reski 2015). The abundance of MELL1 correlated with the numbers of the 

mitochondria-ER contact sites, potentially involved in mitochondrial fusion and fission processes. 

With the proteomic and lipidomic datasets as well as the online resources in hand, we assigned lipid 

biosynthesis pathways and ways of exchange of molecules between mitochondria, ER and plastids 

in plants in Fig. 9. Previous studies in yeast and mammalian cells have shown that mitochondria are 

capable of synthesizing PE, PA, PG and CL (Flis and Daum 2013, Horvath and Daum 2013, Tatsuta et 

al. 2014). Here, we expand the knowledge that glycerolipids including PE, PA, PG, and CL can be 

generated and/or modified in Arabidopsis leaf mitochondria. Considering PE biosynthesis, the rate-

limiting enzymes in CDP-ethanolamine and PS decarboxylation pathways, PECT1 and PSD1, 

respectively, were identified in our mitochondrial samples with higher abundance in C-mito (Fig. 4a). 

This suggests that the generation of mitochondrial PE in the cell culture may be more active in 

comparison to the leaves. PE is one of the most abundant glycerophospholipids in biological 

membranes. Therefore, a high demand is expected to supply mitochondria for their biogenesis in 

actively dividing cell cultures. The other major component of biological membranes is PC. The last 

step of the PC biosynthesis pathway shares the same enzyme, AAPT, with PE synthesis. AAPT is an 

ER-localized enzyme and PC is thus considered to be synthesized in the ER and then transferred 

through MAM to mitochondria. The structural information of the enriched lipid species provides 
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evidences for the biosynthesis in the ER as well. Beside those species carrying two C18 fatty acids 

on their glycerol backbone, many PE and PC species in mitochondrial samples have longer acyl 

moieties with 22 to 26 carbons, which can only be synthesized in the ER. Conventionally, the 

majority of PS biosynthesis was assumed to take place in the ER and before being transferred to 

mitochondria as well. PS and PE, although they are able to interconvert, have distinct lipid profiles 

from each other, suggesting that only selected lipid species are the substrates of PSD and PSS. A 

similar phenomenon applies to PI and phosphoinositides. That is, the most enriched PI species are 

not corresponding with the downstream PIP2 species. Inositol polyphosphate phosphatase (SAL1), 

which generates inositol phosphates, was identified in our mitochondrial samples with higher 

abundance in C-mito comparing to L-mito. Inositol phosphates play crucial roles in many biological 

processes including gene expression and regulation of cell death through sphingolipids (Alcázar-

Román and Wente 2008, Donahue et al. 2010). Removal of head groups from glycerophospholipids, 

mostly PC and PE, by phospholipase Dα1 (PLDα1) results in PA, serving as important precursor in 

other glycerophospholipid biosynthesis pathways. Comparing to L-TE, the most enriched PA species 

in L-mito carry 16:0 and 18:0 fatty acyl moieties. This corresponds to the enriched PI, PG and DAG 

species in L-mito, suggesting that PA may serve as an interconverting hinge between these 

glycerolipids in plant mitochondria.  

Enzymes capable in synthesizing steps from PA to PG, including CDP-DAG synthases (CDS), PGP1, 

PGPP1, were found in our proteomic analysis and / or predicted to localize in mitochondria (Fig. 4a). 

Both PGP1 and PGPP1 have been identified in purified mitochondria and plastids, and we suggest 

that these two enzymes are present at the membrane junctions between these two organelles and 

are putative contact-site localized proteins. CL can be synthesized through condensation of PG and 

DAG by CLS, or addition of acyl chains to monolyso-CL by monolysocardiolipin acyltransferase 

(LCLAT). All identified enzymes involving in PG and CL biosynthesis, PGP1, CLS and LCLAT, are more 

abundant in C-mito compared to L-mito. This suggests an intensive interaction between 

mitochondria and plastids in cell cultures because (1) high amounts of proteins localized in contact 

sites imply a closer connection between the two organelles; (2) more CLS is required to convert the 

plastid-derived PG which is transferred to mitochondria presumably via membrane contact sites; 

(3) active energy generation is vital for actively dividing cells and thus a high amount of CL is 

required to assemble the respiratory chain complexes in mitochondria. Although PG is the 

precursor for CL synthesis, the abundance in L-mito is significantly less than in L-TE, probably 

because a substantial amount in L-TE originates from chloroplasts (Fig. 2).   
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Figure 9. Model of lipid biosynthesis and trafficking within and between mitochondria, ER and plastids in Arabidopsis.  
Lipid synthesis and transfer between membranes are indicated by black and blue arrows, respectively. Proteins identified in L-mito or C-mito with additional 
ER or plastidial localization based on The Arabidopsis Information Resource (TAIR; www.arabidopsis.org) and the Subcellular localization database for 
Arabidopsis proteins (SUBAcon; www.suba.live) are considered as putative contact-site localized proteins (dashed frame). Lipid biosynthesis-related 
proteins indicated in other studies are depicted in grey. Full names and functions of involved proteins are itemized in Table S1. OM, mitochondrial outer 
membrane; IM, mitochondrial inner membrane; OE, plastid outer envelope; IE, plastid inner envelope; MTL, mitochondrial transmembrane lipoprotein 
complex. DHAP, dihydroxyacetone phosphate; G3P, glyceraldehyde 3-phosphate; MAG, monoacylglycerol; DAG, diacylglycerol; Etn, ethanolamine; TAG, 
triacylglycerol; IP, inositol phosphate; PGP, phosphatidylglycerol phosphate; SQDG, sulfoquinovosyl diacylglycerol. 
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Typically, glyceroglycolipids such as MGDG, DGDG and SQDG are considered to be synthesized in 

plastids and are transferred to other organelles upon stress. For instance, DGDG is transferred from 

plastidial membranes to other compartments including mitochondrial membranes and the plasma 

membrane during phosphate starvation to compensate the loss of PC and PE (Jouhet et al. 2004). 

In addition to vesicular transportation and lipid trafficking via contact sites, emerging evidences 

support the hypothesis of lipid synthesis in trans in yeast and plants (Mehrshahi et al. 2013, 

Michaud et al. 2017, Tavassoli et al. 2013). That is, enzyme located at one membrane might be 

capable to catalyze the reaction on another membrane when they are in close apposition. In this 

way, neither tethering proteins nor massive lipid remolding under stress conditions is required, if 

the mitochondria can acquire lipids without setting up the junctions to other organelles. Therefore, 

we suspect that the DGDG biosynthesis enzymes, DGD1/2, catalyze the reactions in trans or at the 

mitochondria-plastid contact sites, providing DGDG molecules to compensate the loss of 

glycerophospholipids in real time (Fig. 4b). In addition, several subunits of the MTL complex were 

identified in our proteomic approach including Tom40, Mic60, DGS1 etc. (Fig. 7). It establishes a 

lipid trafficking system removing DGDG from plastids and allocating PE between the IM and OM. 

Rapid remodeling of the mitochondrial membranes is supported by in trans lipid biosynthesis and 

the MTL complex, likely in close cooperation with other complexes. However, the underlying 

mechanism of this lipid transportation machinery is still largely unknown. SQDG synthase (SQD1) 

was identified exclusively in C-mito, but no SQDG molecules were detected (Fig. 4b), suggesting 

that SQD1 is associated to the periphery of mitochondria as a result of the close apposition between 

mitochondria and chloroplasts in cell cultures. 

Sphingolipid biosynthesis takes place at the ER membrane and subsequently in the Golgi apparatus 

for the addition of carbohydrate residues. Interestingly, in the last decade, several sphingolipid-

metabolizing enzymes have been identified in mitochondria purified from yeast and mammalian 

systems, including Cer synthase and ceramidase (Bionda et al. 2004, Kitagaki et al. 2007, 

Novgorodov et al. 2011). In animal models, mitochondria-synthesized Cer plays a crucial role in 

cerebral ischemia-induced mitochondrial dysfunction. The connection between sphingolipids and 

mitochondria-promoted apoptosis has been proposed in plants as well. Recent studies in 

Arabidopsis have demonstrated that the ratio between LCB-P and Cer is involved in maintaining the 

balance of cell survival and apoptosis (Bi et al. 2014, Watanabe et al. 2013). However, no 

sphingolipid biosynthesis enzyme has been identified in plant mitochondria hereto (Fig. 5c). GIPCs 

are the most abundant sphingolipids in mitochondria, although still minor comparing to 

glycerophospholipids. It is known that PM-localized GIPCs are important in signal transduction and 

intercellular recognition (Ali et al. 2018, Lenarčič et al. 2017). GIPCs may as well establish the 
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communication between mitochondria and other organelles, although further analysis is required 

to understand the functions of sphingolipids in plant mitochondria.  

Sterols, although taking part in both biotic and abiotic stress responses, are at low abundance in 

mitochondrial samples. Sterol biosynthesis primarily takes place in the ER (Schaller 2003). Among 

them, sterol C-24 reductase (DWF1) was identified both in L-mito and C-mito, with higher 

abundance in C-mito. DWF1 has been proposed to mediate the biosynthesis of all phytosterols with 

higher specificity towards campesterol in Arabidopsis (Klahre et al. 1998, Youn et al. 2018). We 

suggest DWF1 as a putative contact-site localized protein according to the detailed species profile 

(Fig. 6). High amount of campesterol was detected in L-mito, suggesting the existence of an onsite 

biosynthesis and/or sterol transporter to facilitate the import of campesterol from the ER. However, 

unlike mammalian cells wherein cholesterol transport proteins such as steroidogenic acute 

regulatory protein, StAR (Clark et al. 1995), and MLN64 (Charman et al. 2010) have been identified, 

little is known about sterol transporters in plants. 

In summary, we expanded the knowledge regarding lipid biosynthesis and modification in plant 

mitochondria by performing a global lipidome analysis of Arabidopsis leaf mitochondria to provide 

their in-depth lipid molecular species profile including glycerolipids, sphingolipids and sterols, 

suggesting that PE, PA, PS, PG, CL and free sterols can be synthesized in these organelles partially 

by the assistance of putative contact-site localized proteins and / or in trans lipid biosynthesis. 

Based on the proteomic results, we propose and confirm the existence of membrane contact site-

localized proteins and their aspects in lipid biosynthesis pathways. This study serves as a foundation 

for additional researches in unveiling the functional roles of mitochondrial lipids and the 

mechanisms of mitochondria-dependent signaling pathways. 

Materials and methods  

Plant materials and growth conditions 

Rosette leaves of wild-type Arabidopsis thaliana (L.) Heynh Columbia-0 were used for both 

extracting total lipid extract and purifying mitochondria. After sowing the seeds in pots with three-

day cold stratification at 4 °C, seedlings were grown under 16 h-day length at 24 °C with 60 % 

relative humidity and 150 µmol photons m-2 sec-1 for one week. Young seedlings were transferred 

to large trays and grown with equal spacing for another three weeks before further experimental 

procedures.  

Suspension culture of Arabidopsis thaliana 
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Suspension cultures were established starting from sterilized seeds of Arabidopsis thaliana wild-

type Columbia-0, grown on MS medium plates containing 0.8 % agar. Plant pieces were transferred 

to B5 medium agar plates and cultivated for several weeks in the dark for callus induction. Callus 

was finally transferred into liquid B5 medium including 3 % (w/v) sucrose, 0.01 % (w/v) 2,4-

dichlorophenoxyacetic acid and 0.001 % (w/v) kinetin. Cultures were incubated on a shaker at 24 °C 

in the dark. Callus was transferred weekly into new liquid medium (3 g / 100 ml).  

Mitochondria isolation 

From Arabidopsis rosettes  

The mitochondria isolation procedure was described previously (Schikowsky et al. 2018). About 

200 g of four-week-old Arabidopsis rosettes were collected and homogenized at 4 °C with a waring 

blender in 1 liter disruption buffer (0.3 M sucrose, 60 mM TES, 25 mM tetrasodium pyrophosphate, 

10 mM potassium dihydrogen phosphate, 2 mM EDTA, 1 mM glycine, 1 % PVP40, 1 % BSA, 50 mM 

sodium ascorbate, 20 mM cysteine; pH 8.0) by three times for 10 sec with 30 sec intervals. The 

following procedures were performed on ice or at 4 °C. Two layers of miracloth with supporting 

gauze were used to filter the homogenate into a beaker. The remaining plant debris was first 

grinded with additional sea sand for 10 min by mortar and pestle, and then filtered again through 

miracloth. The filtrates were combined and centrifuged at 2,500 g for 5 min to eliminate the cell 

debris. Centrifugation with higher speed at 15,250 g for 15 min was applied on the supernatant to 

pellet mitochondria and other organelles. The resulting pellets were resuspended with a paintbrush 

in wash buffer (0.3 M sucrose, 10 mM TES, 10 mM potassium dihydrogen phosphate; pH 7.5). The 

samples were adjusted to the final volume of 12 ml with wash buffer and transferred to a Dounce 

homogenizer. Two strokes of pestle were performed to disrupt large organelles like chloroplasts. 

Aliquots of 1 ml samples were transferred carefully to Percoll gradients which had been established 

beforehand by 69,400 g centrifugation for 40 min in one-to-one ratio of Percoll and Percoll medium 

(0.6 M sucrose, 20 mM TES, 2 mM EDTA, 20 mM potassium dihydrogen phosphate, 2 mM glycine; 

pH 7.5). Mitochondria were separated from other components by centrifuging in the gradients at 

17,400 g for 20 min. The resulting mitochondrial fractions formed white clouds at the bottom half 

of the gradients and were collected by Pasteur pipettes to clean centrifuge tubes. The clean-up 

procedures were performed three to five times by filling up wash buffer in the centrifuge tubes and 

pelleting the mitochondria with 17,200 g for 20 min, until the resulting pellet was firm. After each 

washing steps, two to three pellets were combined in one tube until all mitochondria from one 

biological replicate were pooled together. The mitochondrial pellets were weighed, resuspended 

with wash buffer and aliquoted at the concentration of 0.1 g/ml. 
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From cell cultures 

Mitochondria isolation from Arabidopsis thaliana suspension cell culture was carried out as 

described before (Farhat et al. 2019). About 200 g fresh cells were harvested and homogenized 

using disruption buffer (450 mM sucrose, 15 mM MOPS, 1.5 mM EGTA, 0.6 % (w/v) PVP40, 2 % (w/v) 

BSA, 10 mM sodium ascorbate, 10 mM cysteine; pH 7.4) and a waring blender. During several 

washing steps, cell fragments were removed (centrifugation twice for 5 minutes at 2,700 g and once 

for 5 minutes at 8,300 g). Crude mitochondria were pelleted at 17,000 g for 10 minutes, 

resuspended in washing buffer (0.3 M sucrose, 10 mM MOPS, 1 mM EGTA; pH 7.2), homogenized 

using a Dounce homogenisator and loaded onto discontinuous Percoll gradients (phases of 18 %, 

23 % and 40 % Percoll in gradient buffer (0.3 M sucrose, 10 mM MOPS, 0.2 mM EGTA; pH 7.2)). 

After ultracentrifugation (90 minutes, 70,000 g), purified mitochondria were collected from the 

23 %-40 % interphase. For Percoll removal, several washing steps (10 minutes, 14,500 g) were 

performed using resuspension buffer (0.4 M mannitol, 1 mM EGTA, 10 mM tricine; pH 7.2) to gain 

a firm pellet of purified mitochondria.  

Each of the three independently purified mitochondria populations from 4-week old rosette leaves 

(L-mito) and 200 g cell cultures (C-mito), respectively were used for all experiments. 

BN/SDS-PAGE 

Gel electrophoresis procedures (blue-native (BN) and SDS PAGE) were performed as described 

previously (Senkler et al. 2018), based on the published protocol given in (Wittig et al. 2006). 

Label-free quantitative shotgun proteomics 

Protein sample preparation 

Sample preparation for shotgun proteome analysis was performed as described before (Thal et al. 

2018). The protein content of the mitochondrial fractions was determined using a Bradford assay 

kit (Thermo Scientific, Rockford, USA). 50 µg protein of each sample were loaded onto a SDS gel for 

sample purification (Thal et al. 2018). Electrophoresis was stopped when the proteins reached the 

border between the stacking and the separating gel. Gels were subsequently incubated in fixation 

solution (15% (v.v) ethanol; 10% (v.v) acetic acid) for 30 min, stained for 1 h with Coomassie Brilliant 

Blue G250, and finally the protein band at the border of the two gel phases was cut out into cubes 

with edge lengths of approximately 1 mm. Trypsination of the proteins was carried out as described 

previously (Fromm et al. 2016).  

Shotgun proteomic LC-MS analysis 
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Label-free quantitative mass spectrometric analyses of whole mitochondrial protein samples from 

cell culture and long day Arabidopsis thaliana leaves were performed as outlined before (Thal et al. 

2018) using an Ultimate 3000 UPLC coupled to a Q Exactive Orbitrap mass spectrometer (Thermo 

Scientific, Dreieich, Germany).  

Data processing 

In a first step, the resulting MS data were processed using the Proteome Discoverer Software 

(Thermo Fisher Scientific, Dreieich, Germany) and searched with the Mascot search engine 

(www.matrixscience.com) against the tair10 protein database (downloaded from 

www.arabidopsis.org). For quantitative analyses, MS data were further processed as outlined 

before (Rugen et al. 2019) using the MaxQuant software package (version 1.6.4.0), the Andromeda 

search engine (Cox and Mann 2008) and the tair10 protein database. For determination of sample 

purity, peptide intensities were used, combined with the subcellular locations of assigned proteins 

as given by SUBAcon from the SUBA platform (www.suba.live) (Hooper et al. 2017). A proteomic 

heatmap was generated using the NOVA software (www.bioinformatik.uni-

frankfurt.de/tools/nova/index.php)(Giese et al. 2015). Identified proteins of all six datasets (three 

biological replicates of leave total mitochondrial protein (L-mito 1,2,3) and cell culture total 

mitochondrial protein (C-mito 1,2,3)) were hierarchically clustered in a heatmap based on iBAQ 

(intensity based absolute quantification) values (for primary results see table S1).  

Lipid extraction 

Total lipid extract from leaf (L-TE) was obtained as described (Tarazona et al. 2015). Briefly, mixture 

of 150 mg frozen leaf powder or 100 mg mitochondria and 6 ml extraction buffer (propan-2-ol : 

hexane : water, 60:26:14 (v.v.v)) was incubated at 60 °C with shaking for 30 min. After 

centrifugation at 800 g for 20 min, the clear supernatant was transferred to clean tubes and 

evaporated under stream of nitrogen gas until dryness. Samples were reconstituted in 800 µl of 

TMW (tetrahydrofuran (THF) : methanol : water, 4:4:1 (v.v.v)). Procedure for extracting the 

mitochondrial lipids was adjusted by substituting the water fraction of the extraction buffer by 

equal volume of the mitochondrial aliquot. Further process was continued as described above. 

TLC-GC quantification 

TLC separation of lipid classes 

Lipid extracts from 500 mg mitochondria and 50 mg leaves were spotted onto TLC 60 plates (20 × 

20 cm2, Merck KGaA, Darmstadt, Germany) in parallel with corresponding standards (Merck KGaA). 
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Extracts were developed by a solvent mixture of chloroform : methanol : acetic acid (65:25:8 (v.v.v)). 

After visualizing the lipid spots under 528 nm UV light, the bands were scrapped out and converted 

to fatty acid methyl esters (FAME) before GC analysis. 

Acidic transesterification 

Glycerolipids were transesterified by acidic methanolysis (Miquel and Browse 1992) and converted 

to fatty acid methyl esters (FAME). The lipid-bound silica powder from corresponding spots on TLC 

plate were scrapped out and added to 1 ml FAME solution (methanol : toluene : sulfuric acid : 

dimethoxypropane, 33:17:1.4:1 (v.v.v.v)) with 5 µg tripentadecanoin as an internal standard. After 

1 h incubation at 80 °C, 1.5 ml saturated NaCl solution and 1.2 ml hexane were added subsequently. 

The resulting FAME was collected from the hexane phase, dried, and reconstituted in 10 µl 

acetonitrile.  

GC/FID analysis 

Lipid-bound fatty acids were analyzed after converting to FAMEs by a 6890N Network GC/FID 

System with a medium polar cyanopropyl DB-23 column (30 m × 250 µm × 25 nm; Agilent 

Technologies, Waldbronn, Germany) using helium as the carrier gas at 1 ml min-1. Samples were 

injected at 220 °C with an Agilent 7683 Series injector in split mode. After 1 min at 150 °C, the oven 

temperature raised to 200 °C at the rate of 8 °C min-1, increased to 250 °C in 2 min, and held at 

250 °C for 6 min. Peak integration was performed using the GC ChemStation (Agilent Technologies). 

Lipid derivatization 

Phosphate-containing lipids - phosphatidic acids (PA), phosphoinositides (PIPs) and long-chain base 

phosphates (LCB-P) - were derivatized to enhance their chromatographic separation and mass 

spectrometric detection. Methylation procedure was applied on PA and PIPs as followed. Aliquots 

of 100 µl lipid extracts were first brought to dryness under stream of nitrogen gas and reconstituted 

with 200 µl methanol. Methylation reaction took place after the supply of 3.3 µl 

trimethylsilyldiazomethane. After 30 min incubation at room temperature, the reaction was 

terminated by neutralizing with 1 µl of 1.7 M acetic acid. Samples were dried under nitrogen gas 

and redissolved in 100 µl TMW. Acetylation procedure was applied on LCB-P. Aliquots of 100 µl lipid 

extracts were brought to dryness and reconstituted with 100 µl pyridine and 50 µl acetic anhydride. 

After 30 min incubation at 50 °C, samples were dried under stream of nitrogen gas with 50 °C water 

bath. To redissolve the samples, 100 µl TMW was used as the final solvent to proceed with lipid 

analysis.  
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Global lipidomic analysis with LC-MS 

Analysis conditions and system setup were as described (Tarazona et al. 2015). Samples were 

separated by an ACQUITY UPLC system (Waters Crop., Milford, MA, USA) with a HSS T3 column 

(100 mm x 1 mm, 1.8 µl; Waters Crop.), ionized by a chip-based nanoelectrospray using TriVersa 

Nanomate (Advion BioScience, Ithaca, NY, USA) and analyzed by a 6500 QTRAP tandem mass 

spectrometer (AB Sciex, Framingham, MA, USA). Aliquots of 2 µl were injected and separated with 

a flow rate of 0.1 ml min-1. The solvent system composed of methanol : 20 mM ammonium acetate 

(3:7 (v.v)) with 0.1 % (v.v) acetic acid (solvent A) and THF : methanol : 20 mM ammonium acetate 

(6:3:1 (v.v.v)) with 0.1 % (v.v) acetic acid (solvent B). According to the lipid classes, different linear 

gradients were applied: start from 40 %, 65 %, 80 % or 90 % B for 2 min; increase to 100 % B in 

8 min; hold for 2 min and re-equilibrate to the initial conditions in 4 min. Starting condition of 40 % 

solvent B were utilized for long-chain bases (LCB) and phosphorylated long-chain bases (LCB-P); 

80 % for diacylglycerol (DAG); 90 % for steryl esters (SE); 65 % for the remaining lipid classes. 

Retention time alignment and peak integration were performed with MultiQuant (AB Sciex). 

Quantitative results were calculated according to the amount of internal standards. 

Biosynthesis pathways construction 

The Arabidopsis Information Resource (TAIR; www.arabidopsis.org), the Subcellular localization 

database for Arabidopsis proteins (SUBAcon; www.suba.live), Kyoto Encyclopedia of Genes and 

Genomes (KEGG; www.genome.jp/kegg) and the shotgun proteomic analyses of L-mito and C-mito 

were combined to construct the lipid biosynthesis pathways in plant mitochondria. Additionally, 

lipidomics data are depicted in the pathways to illustrate the biosynthetic fluxes.  
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Figure S1. Purity inspection of mitochondrial protein complexes and supercomplexes by two-
dimensional blue-native/SDS PAGE. Mitochondrial fractions isolated from Arabidopsis leaves (L-
mito 1 and L-mito 3) and from Arabidopsis cell cultures (C-mito1 and C-mito 3) were separated by 
2D PAGE and Coomassie-stained (corresponding gels of fractions L-mito 2 and C-mito 2 see Fig. 1). 
Numbers on top and to the left of the 2D gels refer to the masses of standard protein complexes / 
proteins (in kDa), the roman numbers above the gels to the identity of OXPHOS complexes (see Fig. 
1 for detailed information). The arrows indicate the large (L; 53,5 kDa) and the small (S; 14.5 kDa) 
subunit of Rubisco. 2D blue-native/SDS reference gels for mitochondrial and chloroplast fractions 
(Mito-ref, Cp-ref) from Arabidopsis thaliana are given to the bottom of the figure (gels were taken 
from (Klodmann et al. 2011) and (Behrens et al. 2013)). Identity of the protein complexes visible on 
the chloroplast reference gel: PSI – photosystem I; PSII – photosystem II; Rub – Rubisco; LHCII – 
light harvesting complex II.  
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Figure S2. Purity of mitochondrial fractions as determined by label-free quantitative shot gun 
proteomics. Three mitochondrial fractions isolated from Arabidopsis leaves (L-mitos) and cell 
cultures (C-mitos) were analyzed. Summed-up peptide intensities were calculated for subcellular 
compartments based on protein assignments as given by the Subcellular localization database for 
Arabidopsis proteins (SUBAcon; www.suba.live). Blue: mitochondria; green: plastids; gray: others; 
numbers in %. 
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Figure S3. Fatty acid profiles of the glycerolipids from L-mito, L-TE, C-mito and C-TE. Heat maps 
illustrate the difference of the fatty acid distribution based on LC-MS/MS analyses. Each column 
represents one lipid class wherein the acyl moieties of all species are listed and summarized to 100 
%. Data represent mean values in mol % from three independent experiments. 
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Figure S4. Workflow for the construction of the biosynthesis pathways. Multiple databases were 
combined to build the lipid biosynthesis pathways in mitochondria, The Arabidopsis Information 
Resource (TAIR; www.arabidopsis.org), the Subcellular localization database for Arabidopsis 
proteins (SUBAcon; www.suba.live), Kyoto Encyclopedia of Genes and Genomes (KEGG; 
www.genome.jp/kegg) and the proteomic datasets of isolated mitochondria in this study. 
Information of protein localizations and backbones of the biosynthesis pathways were obtained 
from TAIR, SUBAcon and KEGG, respectively.  
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Figure S5. Additional lipid biosynthesis pathways which do not contain analyzed lipid classes in this study. Pathways of (a) fatty acid biosynthesis, (b) 
unsaturated fatty acid biosynthesis, (c) lipoic acid metabolism and (d) ubiquinone and other terpenoid-quinone biosynthesis illustrate the general lipid 
biosynthesis in Arabidopsis. Heat maps visualize the protein abundance based on shotgun proteomic analyses of three independent experiments of purified 
mitochondria from leaves and cell culture. Blue: proteins identified in the proteomic analysis of this study and also predicted to localize in mitochondria; 
green: proteins identified in the proteomic analysis of this study but predicted to localize in other organelles; magenta: proteins absent in the proteomic 
analysis of this study but predicted to localize in mitochondria; bold font: exclusively localized in mitochondria; italic font: only identified in one of the 
mitochondrial populations. Further full names and functions are itemized in Table S1. In the heat maps, proteins with high and low abundance are depicted 
in yellow and black, respectively. Predicted protein localization was based on The Arabidopsis Information Resource (TAIR; www.arabidopsis.org) and the 
Subcellular localization database for Arabidopsis proteins (SUBAcon; www.suba.live).
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Chapter 6. Discussions 

The lipid composition of plant membranes is under tight control to ensure and maintain the cellular 

homeostasis and integrity, and it is challenged even further when plants are exposed to adverse 

growth conditions. Changes in temperature, nutrient availability or a disrupted lipid biosynthesis 

lead to highly specific variations of the lipid composition in the distinct membranes. The aim of this 

work was to gain conclusive insights into the special role of sphingolipids in membrane lipid 

remodeling at a subcellular level. First, the existing LC-MS-based lipidomics platform (Tarazona et 

al. 2015), which covers more than 300 molecular lipid species from over 20 different lipid classes, 

was enhanced further by expanding its coverage to include the minor but highly functional lipid 

classes such as complex glycosphingolipids, phosphorylated sphingolipids and phosphoinositides. 

In-depth analyses including lipidomics, proteomics and / or transversal lipid distribution studies 

were then applied on the Arabidopsis plasma membranes (PM) from non- and cold-acclimated wild 

type (WT) and sphingolipid mutants. In addition, a comprehensive study that combined lipidomics, 

proteomics and online databases mining of Arabidopsis mitochondria was performed. Altogether, 

this work contributed to reveal deeper insights into the functional roles of lipids in the organization 

and compositional dynamics of biological membranes.  

6.1 Plant plasma membrane 

6.1.1 The composition and organization of plant plasma membrane 

The PM isolated from the leaves of Arabidopsis was profiled in detail with respect to the lipid 

species and lipid classes. The quantitative and qualitative analyses of glycerolipids present in PMs 

of WT demonstrated that lipid classes including PE, PS and PI are highly enriched in the PM in 

comparison to the TE. The contamination of plastidial lipids, SQDGs, are eliminated from the 

isolated PMs since they are only detectable in the TE, but not in the PM, via the highly sensitive LC-

MS-based lipidomics platform (Fig. 2 and S1, Chapter 4). The molecular species profiles of all 

glycerolipid classes were revealed by the in-depth LC-MS lipidomics analysis. The most abundant 

species in PC, PE, PS, PI, phosphoinositides (PIP and PIP2) and PA contain 16:0/18:2 and 16:0/18:3 

moieties (Fig. 7, Chapter 4). Fatty acyl chains of these glycerophospholipids are conjugated to the 

sn-1 and sn-2 positions of the glycerol backbones by glycerol-3-phosphate acyltransferase (GPAT) 

and lysophosphatidic acid acyltransferase (LPAAT), respectively. Due to the distinct substrate 

specificities of the GPAT and LPAAT located in the plastids and the ER, which involved in the initial 
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steps of prokaryotic and eukaryotic lipid biosynthesis pathways, respectively, characteristic 

signatures of the fatty acyl moieties can be identified in the resulting lipids. Namely, most of the 

lipids generated from the prokaryotic pathway (prokaryotic lipids) contain 18-carbon fatty acyl 

moieties and 16-carbon fatty acyl moieties at the sn-1 and sn-2 positions, respectively, whereas 

high amounts of lipids generated from the eukaryotic pathway (eukaryotic lipids) contain 16:0 at 

the sn-1 position and unsaturated 18-carbon fatty acyl moieties at the sn-2 position (Li-Beisson et 

al. 2013). Therefore, the predominant glycerophospholipids in the PM, which contain 16:0/18:2 

and 16:0/18:3, are considered to be synthesized by the eukaryotic pathway. In addition, the 

eukaryotic lipids which contain very long-chain fatty acids (VLCFAs), especially PE and PS, are highly 

enriched in the PM. The biosynthesis of these eukaryotic lipids involves a series of reactions starting 

from the de novo biosynthesis of fatty acids in the plastids, followed by further desaturation, 

elongation and incorporation into lipids in the ER. Subsequently, these PM-enriched lipid species 

are specifically selected, however by an unknown mechanism, and sorted to the PM via the 

vesicular transport (Balla et al. 2020, Stefan et al. 2017). Besides the vesicular transport, extensive 

lipid trafficking between the PM and the plastids was identified by the detailed profiling of the 

typical plastidial lipid classes. The predominant MGDG and DGDG species in the PM contain 

16:3/18:3 and 18:3/18:3 moieties, respectively, which corresponds to the observation in the TE (Fig. 

8, Chapter 4). However, specific species such as MGDG (16:0/16:3) and DGDG (16:0/18:3) of 

eukaryotic origin were selectively enriched in the PM, indicating that the lipid trafficking between 

the PM and the plastids may be assisted by substrate-specific lipid transport proteins which can 

recognize the fatty acyl moieties. Noteworthy, it has been demonstrated that DGDG (16:0/18:3) 

accumulates under phosphate-limiting condition in the PMs (Andersson et al. 2003), which may 

result from the fact that the plants in this study were grown on soil that probably has lower 

phosphate availability comparing to the culture media. Only traces of the characteristic PG species 

of plastidial origin, PG (16:1/18:3), were detected in the PM whereas the eukaryotic PG (16:0/16:0) 

is highly enriched (Fig. 7, Chapter 4). This observation further emphasized that the lipid trafficking 

between the PM and the plastids is highly selective towards the transferred lipids, however via a 

sophisticated yet unknown mechanism.  

The predominant sphingolipids in the PM of Arabidopsis leaves contain 18:1;3 as the LCB moieties 

and 24:0 or 24:1 as their fatty acyl chains (Fig. 3-5, Chapter 4). Noteworthy, comparing to ceramides 

Cers, which contain wide varieties of fatty acyl chains including 16:0, 22:0, 24:0, 24:1, 26:0 and 26:1, 

glucosylceramides GlcCers are conjugated preferentially with only 16:0, 22:0 and 24:1. This 

indicated that the GlcCer synthase in Arabidopsis may have higher substrate specificity towards 

these fatty acyl moieties. In addition, the molecular lipid species profiles of the GIPCs indicated that 
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the glycosyl transferases, which produce GIPCs, possess distinct substrate affinities towards both 

the LCB backbones and the fatty acyl moieties. Namely, the hexosyl transferase, which generates 

hexosyl GIPCs (H-GIPCs), utilizes preferentially the substrates that contain an 18:1;3 LCB backbone 

with either a 24:0 or a 24:1 hydroxy fatty acyl moiety. In contrast, the N-acetylhexosaminyl 

transferase, which generates N-acetylhexosaminyl GIPCs (HN-GIPCs), utilizes preferentially 

substrates carrying an 18:0;3 LCB backbone and a 22:1 hydroxy fatty acyl moiety. However, the 

enzymes involved in the biosynthesis of GlcCers and GIPCs as well as their substrate specificities 

remain to be identified and experimentally characterized. 

In Arabidopsis leaves, the sterols contain mostly campesterols or sitosterols as the core structures 

in both PM and TE (Fig. 6, Chapter 4). Campesterols and sitosterols both contain a hydroxyl group 

at the C3 position but differ in the side-chain modifications at the C24 position. Namely, 

campesterols contain a methyl residue and sitosterols contain an ethyl residue at their C24 position, 

so called 24-methylsterols and 24-ethylsterols, respectively. Noteworthy, it has been demonstrated 

that the ratio of 24-methyl- and 24-ethylsterols is specific for each plant species, and their balance 

plays significant roles in modulating the organization and permeability of biological membranes as 

well as the activity of the membrane protein including ion channels and signal transduction 

components (Clouse 2002, Valitova et al. 2016). In both PM and TE, sitosterol derivatives are the 

predominant ones in all sterol classes including sterol esters (SEs), steryl glycosides (SGs) and 

acylated steryl glycosides (ASGs), although campesterol derivatives consist of a substantial amount 

as well. This suggested that the ratio between 24-methyl- and 24-ethylsterols are maintained not 

only throughout the subcellular membranes but also in all the sterol classes of the Arabidopsis PM. 

6.1.2 Membrane contact sites between plasma membrane and other organelles 

Despite that the PM is involved extensively in the vesicular transport, by which it obtains the 

majority of its lipids, it communicates and exchanges lipids with other organelles also through the 

membrane contact sites. They are specialized microdomains built when two membranes come to 

close apposition. Several studies indicate that the PM can attach physically and establish membrane 

contact sites with the ER and the ER-PM contacts are involved in the endocytosis and autophagy 

pathways (Wang and Hussey 2019, Ye et al. 2020). It has been proposed that the formation and 

fusion of endosomes and autophagosomes occurs at the ER-PM contact sites before their vacuole 

internalization (Wang and Hussey 2019, Zhuang et al. 2016), however, the underlying mechanism 

is still elusive.  

In Arabidopsis, a few ER-PM contact site localizing proteins have been described, including the 

synaptotagmins (SYTs) (Bayer et al. 2017, Pérez-Sancho et al. 2015), the vesicle-associated 
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membrane protein–associated protein 27s (VAP27s), the VAP27-associated NETWORKED 3C 

(NET3C) (Rodriguez-Villalon et al. 2015, Wang et al. 2017) and the multiple C2 and transmembrane 

domain-containing protein (MCTP) (Grison et al. 2019). It has been demonstrated that these 

proteins and their mammalian orthologs not only tether the ER and the PM, but also interact 

directly with anionic lipids such as phosphoinositides and PS. The protein-lipid recognition and 

interaction may be essential in establishing and / or maintaining the structure of the ER-PM contact 

sites (Noack and Jaillais 2020). Noteworthy, in addition to the ER-PM interactions, the ER contacts 

diverse compartments in the cell including plastids, mitochondria, peroxisomes, lipid droplets and 

so on. Therefore, it has been hypothesized that the ER plays the central role in sorting the 

transferring lipids and coordinating the communications between all organelles (Andersson et al. 

2007). Nevertheless, whether there are direct membrane contact sites between the PM and the 

other subcellular organelles without the involvement of the ER, as well as the modulation of the 

membrane composition by the ER require further investigations.  

In this study, only specific lipids such as PG (16:0/16:0), MGDG (16:0/16:3) and DGDG (16:0/18:3) 

of plastid origin were selectively enriched in the PM, whereas other abundant plastidial lipids are 

depleted (Chapter 4). The results suggested that unknown substrate-specific lipid transport 

proteins may be involved in the lipid trafficking between PM and plastids. Alternatively, these lipids 

can be transferred first to the ER through the plastid-associated ER membranes (PLAMs) and be 

delivered subsequently to the PM through the ER-PM contact sites, by which an additional layer of 

modulation can be conducted. However, the current knowledge concerning the molecular 

mechanism of lipid trafficking and the lipid sorting signals (i.e. anionic lipids and / or lipid binding 

proteins) is still scarce.  

6.1.3 The roles of sphingolipids in the organization of plant plasma membrane and their impacts 

on lipid modulation under cold stress  

For plants, cold stress and pathogenic attack are two common environmental stresses that they 

encounter continually. To surpass the encountered stresses, it is critical for plants to adjust their 

PM lipid composition accordingly. For instance, increasing the unsaturation degrees of the 

abundant glycerophospholipids such as PC and PE are frequently used in many plant species to 

increase the membrane fluidity under cold stress (Tarazona et al. 2015, Uemura et al. 1995). In 

addition to glycerophospholipids, emerging evidences demonstrated that sphingolipids also play 

important roles in the adaptation of the PM lipid composition (Berkey et al. 2012, Huby et al. 2020, 

Michaelson et al. 2016). They are involved in numerous biological processes including pathogenic 

recognition and the establishment of the functional membrane microdomains, so called lipid rafts 
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(Laloi et al. 2007, Lenarčič et al. 2017). The roles of sphingolipids in the organization of the plant 

PM and their impacts on lipid modulation under cold stress are discussed here. 

Under CA conditions, all complex sphingolipids including Cer, GlcCer, series A and B GIPCs are 

reduced in the WT PM (Fig. 11, Chapter 4). Diminished levels of glycosphingolipids (specifically 

GlcCer in most publications) have been commonly observed under CA conditions in many plant 

species, although the overall profile of their PM lipids vary greatly according to the cell type and 

developmental stages (Tab. 1). Decreased levels of glycosphingolipids were detected in leaves of 

oat, rye and potato when plants were grown under CA conditions for one to four weeks (Minami et 

al. 2008, Palta et al. 1993, Takahashi et al. 2016, Uemura et al. 1995, Uemura and Steponkus 1994). 

Noteworthy, it has been suggested that the cryotolerance of the PM can be enhanced by reducing 

the proportion of glycosphingolipids, which increases the hydration degree in the PM and therefore 

prevents the freeze-induced dehydration (Huby et al. 2020, Lynch and Dunn 2004, Webb et al. 

1997).  

 

Table 1. Levels of glycosphingolipids from plasma membranes isolated from leaves of NA and CA 
plants. 

Plant species NA (mol %) CA (mol %) Reference 
A. thaliana    

A. thaliana Col-0b 2.9 ± 0.9 1.5 ± 0.6 This studye, g 
A. thaliana Col-0c 7.3 ± 1.0 4.3 ± 1.4 Uemura et al. 1995f, h 
A. thaliana Col-0a 4.4 ± 1.2 2.6 ± 1.1 Minami et al. 2008f, h 

Oat    
A. sativa cv. N. almightyd 15.5 ± 0.7 12.6 ± 0.9 Takahashi et al. 2016f, i 
A. sativa cv Ogled 27.2 ± 1.0 24.2 ± 0.5 Uemura and Steponkus 1994f, h 
A. sativa cv Kanotad 30.4 22.5 Uemura and Steponkus 1994f, h 

Rye    
S. cereale cv. Maskateerd 13.4 ± 1.5 7.8 ± 1.8 Takahashi et al. 2016f, i 
S. cereale cv Pumad 16.4 ± 1.0 10.5 ± 0.5 Uemura and Steponkus 1994f, h 

Potato    
S. commersoniib 6.1 ± 0.5 4.9 ± 0.8 Palta et al. 1993f, i 
S. tuberosumb 6.5 ± 1.0 5.0 ± 0.6 Palta et al. 1993f, i 

Plants were acclimated in cold for a7 days, b10 days, c2 weeks or d4 weeks. 
The data represent the levels of eall glycosphingolipids or fGlcCer specifically. 
Lipid quantification was performed via gLC-MS, hTLC-GC or ispectrophotometric analyses. 

 

The in-depth lipidomics analysis of sphingolipids revealed that hydroxylated Cer, GlcCer and H-GIPC 

(hCer, hGlcCer and hH-GIPC, respectively), which contain 18:1;3 LCB backbone with 24:1 fatty acyl 
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moiety, increase significantly under CA conditions in Arabidopsis leaves (Fig. 3-4, Chapter 4). This 

observation correlates well with previous studies, which demonstrated that higher levels of GlcCer 

with 18:1;3 LCB backbone (Imai et al. 1997, Imai et al. 2000, Kawaguchi et al. 2000) and 

monounsaturated hydroxylated fatty acyl chains (predominantly 24:1) (Imai et al. 1995) are present 

in chilling-resistant plants. Interestingly, analysis of the Arabidopsis sphingolipid Δ8 LCB desaturase 

mutant (sld1sld2), which is impaired in introducing double bonds at the Δ8 position of the LCBs, 

displayed a reduced level of LCB (18:1;3) and a higher sensitivity towards cold stress in comparison 

to the WT (Chen et al. 2012, Zhou et al. 2016b). Therefore, it has been suggested that it is the Δ8 

unsaturated LCBs (i.e. LCB (18:1;3)) rather than the Δ8 unsaturated LCB-conjugated GlcCer that 

increases the cryotolerance (Chen et al. 2012). Nevertheless, the alterations in both the LCB 

backbone and the fatty acyl moiety of the sphingolipids with respect to hydroxylation and 

desaturation have been demonstrated to be involved in the lateral lipid – lipid interactions in the 

PM, which influence the hydration degree and modulate the membrane cryobehaviors (Steponkus 

et al. 1990, Webb et al. 1997).  

In an attempt to address the functions of specifically the hydroxylated sphingolipids and the effect 

of their absence on the modulation of the PM lipid composition upon cold stress, the Arabidopsis 

sphingolipid biosynthesis mutant with impaired sphingolipid fatty acid α-hydroxylases (fah1 fah2) 

was subjected to CA condition in this work. Reduced levels of α-hydroxylated sphingolipids, which 

is characteristic in fah1 fah2 plants can be observed in the lipid species profiles of both TE and PM 

(Fig. 4, Chapter 4). This phenomenon is especially prominent in the GlcCer species, which results in 

the reduced level of total GlcCer in the fah1 fah2 plants (Fig. 10, Chapter 4). Similar to GlcCer, strong 

reductions of series A GIPCs (H-GIPC and HN-GIPC) were observed in both TE and PM of fah1 fah2, 

which was even more prominent in the PM. Therefore, it is proposed that the biosynthesis of both 

GlcCer and series A GIPCs as well as their transport in fah1 fah2 plants are impaired due to the loss 

of the α-hydroxyl groups on the complex sphingolipids. Interestingly, although the overall Cer levels 

are reduced proportionally in the fah1 fah2 PM as well, they are increased in the fah1 fah2 TE in 

comparison to the WT TE. This indicates that the increased proportion of Cer in fah1 fah2 plants 

resides primarily at the intracellular membranes, presumably at the ER, rather than being 

transported to the PM. They may structurally compensate the loss of other hydroxylated 

sphingolipids in the intracellular membranes, or the hydroxylation process may serve as the 

checkpoint for the transport of the Cers to the PM. 

The lipid profile of the fah1 fah2 PM isolated from plants grown under NA condition was highly 

reminiscent to that of the WT PM from plants grown under CA condition (Fig. 10-11, Chapter 4). 
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The significant reductions of complex glycosphingolipids including GlcCer and series A GIPCs in the 

WT PM under CA condition, which have been described to increase the hydration and cryostability 

of the PM (Huby et al. 2020, Lynch and Dunn 2004, Webb et al. 1997), were also detected in the 

lipid profile of the fah1 fah2 PM under NA condition. This suggests that the loss of α-hydroxylated 

sphingolipids and cold stress may trigger similar responses in remodeling the lipid composition of 

the Arabidopsis PM. Moreover, not only the reduction of complex sphingolipids, but also the 

variations in selected glycerolipids and sterols display similar patterns. Namely, lower levels of PC, 

PS, DAG, SG and ASG, higher levels of PA and SE. One of the few exceptions concerns the relative 

amount of LCB-P. Previous studies have demonstrated that cold stress triggers the accumulation of 

LCB-Ps and stimulates the expression of cold responsive genes in Arabidopsis cell cultures and 

seedlings (Ali et al. 2018, Cantrel et al. 2011, Dutilleul et al. 2012, Guillas et al. 2013). However, a 

reduced level of LCB-Ps was observed in the WT PM under CA condition (Fig. 11, Chapter 4). This 

suggests that the accumulation of LCB-Ps stimulated by cold stress may be restricted to intracellular 

membranes, presumably the ER and the Golgi apparatus where the respective LCB kinase is located 

(Crowther and Lynch 1997, Zäuner et al. 2010). On the other hand, higher LCB-P levels were 

observed in the lipid profile of the fah1 fah2 PM under NA condition (Fig. 10, Chapter 4). Especially 

the increase of LCB-P (18:1;3) may structurally compensate the loss of α-hydroxylated and 

glycosylated complex sphingolipids by their trihydroxylated and phosphorylated residues, 

respectively. Thereby, the elevated level of LCB-P (18:1;3) may contribute to maintain the physical 

property and the membrane stability of the fah1 fah2 PM. Moreover, the loss of complex 

glycosphingolipids including GlcCer and series A GIPCs in the fah1 fah2 PM under NA condition may 

be rescued by the elevated levels of series B GIPC as well. The glycan residues of series B GIPCs may 

interact with other multi-glycosylated molecules such as glycoproteins and surface glycan to form 

glycoconjugates and thereby increase the membrane stability of the fah1 fah2 PM (Bucior and 

Burger 2004, Handa and Hakomori 2017, Popescu et al. 2003).  

Another explanation that the fah1 fah2 PM under NA condition resembles the WT PM under CA 

condition can be accessed from the formation and the structural components of the lipid rafts. 

Complex sphingolipids and sterols have been identified to be critical structural components of plant 

lipid rafts (Borner et al. 2005, Cacas et al. 2016, Laloi et al. 2007, Mongrand et al. 2004, Simons and 

Ikonen 1997, Takahashi et al. 2016). Reduced levels of the lipid raft-forming lipids including Cer, 

GlcCer, H-GIPC and HN-GIPC as well as SG and ASG were observed from both lipid profiles of the 

fah1 fah2 PM under NA condition and the WT PM under CA condition (Fig. 10-11, Chapter 4). The 

lack of the structural components of lipid rafts suggests a limited capacity in lipid raft formation 

within the fah1 fah2 PM. Noteworthy, it has been demonstrated that the PMs of fah1 fah2 
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protoplasts are less orderly packed in comparison to the WT (Lenarčič et al. 2017). In addition, the 

ordered and lipid raft-like microdomains on the PM, the DRMs, are involved extensively in the cold-

induced responses. A few specific proteins in the DRMs such as P-type H+-ATPases, synaptotagmin 

homolog SYT1 and endocytosis-related proteins have been identified to increase significantly under 

CA conditions, (Minami et al. 2009, Takahashi et al. 2013, Yamazaki et al. 2008). They play important 

regulatory roles in different biological processes under CA condition. Namely, the PM H+-ATPase, 

(Ishikawa and Yoshida 1985, Martz et al. 2006), has been demonstrated to be involved in 

sphingolipid desaturation (Borner et al. 2005, Chen et al. 2012). SYT1 is related to calcium-

dependent PM resealing of the freezing tolerance mechanism (Takahashi et al. 2013, Yamazaki et 

al. 2008). Finally, the inhibition of endocytosis as well as the disassembly of microtubules have been 

associated with the CA process in plants (Abdrakhamanova et al. 2003, Bolte et al. 2004). 

Collectively, the characterization of DRM-localizing proteins demonstrates that the structure and 

the functions of DRMs, and probably also of lipid rafts, are involved in the cold-induced responses 

in plants. This further supports the observation that the loss of lipid raft-forming lipids triggers 

similar mechanism as cold acclimation in modulating the organization of the Arabidopsis PM. 

The interrelation of sphingolipids and cold stress may be linked further to other biological processes 

such as the phytohormone alterations and pathogenic responses (Huby et al. 2020). It has been 

demonstrated that the AtFAH (especially AtFAH1)-interacting protein, the ER-localized cell death 

suppressor Bax inhibitor-1 (AtBI-1), is involved in the plants’ reactions to various biotic and abiotic 

stresses, including pathogenic responses, SA-triggered cell death, ER stress and oxidative stress 

(Ishikawa et al. 2009, Kawai-Yamada et al. 2009, Kawai-Yamada et al. 2004, Watanabe and Lam 

2008). In addition, AtBI-1 regulates sphingolipid biosynthesis by interacting with other sphingolipid 

modification enzymes including sphingolipid base hydroxylase 2 (AtSBH2), acyl lipid desaturase 2 

(AtADS2) and sphingolipid Δ8 LCB desaturase 1 (AtSLD1) via cytochrome b5 (Nagano et al. 2014, 

Nagano et al. 2012). In rice (Oryza sativa), overexpression of BI-1 leads to an enrichment of α-

hydroxylated GlcCer in isolated DRMs as well as to the loss of DRM-localized proteins that are 

involved in the SA- and oxidative stress-triggered cell death such as Flotillin Homolog (FLOT) and 

Hypersensitive-Induced Reaction Protein 3 (HIR3) (Ishikawa et al. 2015, Nagano et al. 2016). 

Noteworthy, constitutively elevate levels of SA have been detected in the fah1 fah2 Arabidopsis 

plants with increased resistance against the obligate biotrophic fungus, Golovinomyces 

cichoracearum (König et al. 2012); however, corresponding fah1 fah2 plants from rice contain 

similar SA level as WT plants and are more susceptible to the hemibiotrophic fungus, Magnaporthe 

oryzae (Nagano et al. 2016). Nevertheless, these studies indicate that sphingolipid biosynthesis 

proteins regulate the lipid and protein composition of lipid rafts, which harbor proteins involved in 
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SA signaling pathways. In addition, SA-triggered responses have been demonstrated to associate 

with cold stress as well, since enhanced levels of SA, particularity of glycosylated derivatives, have 

been detected in several plant species under CA conditions (Kosová et al. 2012, Scott et al. 2004, 

Wan et al. 2009). Therefore, SA signaling may indeed associate with the modulation of lipid 

composition and thus contribute to the similar lipid profiles as observed in the fah1 fah2 PM at NA 

condition and the WT PM at CA condition. The relative profiles of lipid class and lipid species 

generated by the LC-MS-based lipidomics workflow in this work provide invaluable information 

concerning the modulation of membrane organization in the plant PM under cold stress. Building 

on this work, investigation via absolute quantitative approaches may allow further insights into the 

underlying mechanisms of membrane remodeling and the regulatory functions of specific lipid 

species.  

6.1.4 Asymmetric distribution of plasma membrane lipids  

The components of the PM are distributed asymmetrically across the membrane bilayer, as well as 

within each monolayer. As introduced in Chapter 1, our knowledge concerning the transversal 

distribution of the PM lipids arises from the studies of mammalian erythrocytes that most of the 

glycosphingolipids and PC are localized in the outer leaflet while PE, PS, PI, PIP and PIP2 are localized 

in the inner leaflet (Bretscher 1972, Devaux 1991, Devaux and Morris 2004, Di Paolo and De Camilli 

2006, Harayama and Riezman 2018, Lorent et al. 2020, Verkleij et al. 1973). Compared to the animal 

system, only very few studies have focused on the transversal distribution of the PM lipids in plants. 

This animal membrane-based prototype has been proposed to globally represent the PM lipid 

distribution including the plant PM (Gronnier et al. 2018, Jaillais and Ott 2020); however, only to 

certain extent. 

In this work, highly selective lipid analyses were combined with the in-depth lipidomics approach 

to elucidate the transversal distribution of the most abundant glycolipids and glycerophospholipids 

within the PM isolated from WT Arabidopsis leaves. The major GlcCer species are distributed in a 

species-depend manner to the different monolayers of the PM (Fig. 12a, Chapter4). About 60 % of 

the most abundant GlcCer molecular species, hGlcCer (18:1;3/24:1), were detected in the 

apoplastic leaflet. The preferential distribution towards the apoplastic leaflet can be detected for 

other GlcCer species as well. We have used periodate to experimentally address the distribution of 

GIPCs by the same approach as utilized for GlcCer. That is, the exterior leaflets of each of the two 

PM vesicle populations, bearing either the apoplastic-side-out or the cytoplasmic-side-out 

orientations, were treated chemically by periodate to derivatize the sugar headgroups of the 
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glycolipids. However, the recovery rate of periodate-treated GIPCs was too low and no convincing 

signal was detected in the LC-MS-based analysis. To optimize the recovery rate, the parameters of 

the centrifuging steps including the composition of the buffer system and the centrifugation speed 

need to be fine-tuned further. It should be noted that the feasibility of enzymatically digesting the 

GIPCs by sphingolipid ceramide N-deacylase (SCDase) has been evaluated as well. However, the 

GIPC analogue, ganglioside GM1 that serves as the standard for GIPC in this work, cannot be 

hydrolyzed in the tested conditions. A negative result from a similar enzymatic experiment with 

SCDase was recorded in a previous publication as well (Cacas et al. 2016). Nevertheless, 

endogenous GIPC is presumed to be distributed within the apoplastic leaflet of the PM according 

to (1) its biosynthesis which generates lipid molecules in the inner leaflet of Golgi apparatus, 

followed by subsequent transport via Golgi-derived vesicles and exposure to the cell surface, (2) its 

bulk hydrophilic headgroups that presumably hinders a transmembrane movement and (3) its 

biological function that is associated with pathogenic recognition on the cell surface (Cacas et al. 

2016, Lenarčič et al. 2017).  

Plants contain a wide variety of sterols and sterol derivatives, of which the transversal distribution 

cannot be assessed in the animal system. In-depth lipid profiling revealed that the distribution of 

the most abundant SG and ASG species differs significantly (Fig. 12b, Chapter 4). For instance, 

sitosteryl glycoside is found exclusively within the cytoplasmic leaflet, whereas the transversal 

distribution of the acylated sitosteryl glycosides varies greatly among individual molecular species. 

As SG and ASG are structural components of lipid rafts together with the GlcCer and GIPC (Ferrer 

et al. 2017, Grosjean et al. 2015, Roche et al. 2008), specific sterol species (such as 16:0-sitosteryl 

glycosides) may have higher affinity towards these complex sphingolipids and are thus allocated 

preferentially to the apoplastic leaflet. On the other hand, the ASG species with unsaturated fatty 

acyl moieties (18:2 and 18:3) reside predominantly in the cytoplasmic leaflet, which may contribute 

to a previous finding that the cytoplasmic leaflet of the eukaryotic PM displays a lower viscosity, 

due to the high unsaturation degrees of the localized glycerophospholipids (Lorent et al. 2020). 

Interestingly, it has been observed in oat that under phosphate starvation, ASG and DGDG are used 

to replace phospholipids (especially PC) at the apoplastic and the cytoplasmic side of the PM, 

respectively, to provide phosphate for other necessary biological processes (Tjellström et al. 2010). 

This suggests that the distribution of ASGs across the PM and the apoplastic leaflet may be part of 

the responses triggered by certain abiotic stresses.  

In comparison to sphingolipids and sterols, the distribution of glycerophospholipids has been 

investigated more thoroughly in the literature. Here, the transversal distribution of PE, PC, PS and 
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PI was addressed at the level of molecular lipid species (Fig. 13, Chapter 4). PC, PE and PI species 

are distributed nearly symmetrically across the membrane bilayer of the Arabidopsis PM with minor 

variations. This corresponds to a previous observation that glycerophospholipids are distributed 

equivalently on both leaflets of the PM isolated from hypocotyl cells of mung beans (Takeda and 

Kasamo 2001). Noteworthy, we observed that the majority of PS is found in the cytoplasmic leaflet. 

Together with other anionic lipids such as PA and phosphoinositides, it has been proposed to 

establish the electrostatic signature of the PM to recruit proteins targeted to lipid rafts (Colin and 

Jaillais 2020, Furlan et al. 2020, Jaillais and Ott 2020, Noack and Jaillais 2017, Platre et al. 2018, 

Simon et al. 2016). For instance, studies have indicated that the GTPase Rho of Plants 6 (ROP6) is 

stabilized by PS in the lipid rafts and can modulate auxin signaling locally during root development 

(Kay and Fairn 2019, Platre et al. 2019). Albeit PS has been suggested to be actively kept in the 

cytoplasmic leaflet by flippases (Cacas et al. 2016, Devaux and Morris 2004), we also detected some 

in the apoplastic leaflet as reported in a previous publication (O'Brien et al. 1997). These results 

correlate well to the former knowledge at the level of lipid class, with additional insights into the 

distribution of lipid molecular species. Clearly, further investigations are required to understand 

the function of individual lipid species on each monolayer of the plant PM and the modulation of 

the lipid distribution under different environmental stresses. 

The approach to address the membrane asymmetry in this study was constructed based on the lipid 

class-specific treatments on the selected leaflet and the subsequent lipid analysis. Namely, the 

apoplastic- and cytoplasmic-side-out PM vesicles were treated with either periodate or 

phospholipase A2, which specifically derivatizes the glycolipids or digests the glycerophospholipids, 

respectively, that are present on the outer leaflet. Consequently, the lipidome of each PM 

monolayer was calculated based on the reduced signals in the treated outer leaflet of the two PM 

vesicle populations with opposite membrane orientation. Both reagents were selected based on 

their specificities towards a wide range of substrates as well as their commercial availability. 

Although a few studies have performed a similar workflow, however, no molecular information of 

plant lipids was provided due to their subsequent lipid class or lipid category-dedicated analyses 

(Lynch and Phinney 1995, Takeda and Kasamo 2001, Tjellström et al. 2010). Alternative approaches 

utilizing lipid-specific protein probes have demonstrated the distribution of minor anionic lipid 

classes such as PS and PIPs via flow cytometry or fluorescence microscopy (O'Brien et al. 1997, 

Platre et al. 2018). Moreover, sterols and sterol derivatives can also be sensed by protein probes 

such as Filipin III, which binds to the 3-OH residue on the core structure of the sterols and can be 

analyzed via immunoblotting (Tjellström et al. 2010). Although the distribution of lipid class or lipid 

categories can be visualized by the photometric-based techniques or immunoassays, it is 
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challenging to obtain quantitative results as well as the information of the lipid molecular species. 

On the other hand, LC-MS analysis enables the investigation of the molecular species information 

of not only the abundant lipid species but also the minor and functional ones. However, further 

development in the LC-MS analysis is required to achieve absolute quantification of individual lipid 

species present on the PM.  

6.2 Mitochondria 

6.2.1 Mitochondrial contact site-localizing proteins in plants and their roles in lipid metabolism 

Mitochondria isolated from leaves and cell cultures of Arabidopsis were comprehensively 

investigated in Chapter 5, in an attempt to determine their capacity to synthesize lipids and to 

reconstruct the lipid metabolism pathways in plant mitochondria. The results led to the conclusion 

that many phospholipid classes including PE, PA, PS, PG and cardiolipins (CL) as well as FS can be 

synthesized or at least be further modified in mitochondria, partially by the assistance of lipid 

biosynthesis proteins localized at the membrane contact sites between the mitochondria and other 

intracellular organelles as has been described recently (Michaud et al. 2017). It has been 

demonstrated that the mitochondrion obtains lipids through the non-vesicular transportation 

pathway. That is, unlike the PM, which obtains its lipids predominantly via vesicular transport, the 

mitochondrion obtains a substantial amount of its lipids through membrane contact sites (Galmes 

et al. 2016, Michaud et al. 2016). Increasing evidences have revealed that membrane contact sites 

play important roles in not only lipid transport, but also carry several other biological functions 

including coordinating metabolic activities, facilitating signaling pathways, mediating organelles 

fission and organizing compartments within multimembrane organelles like mitochondria and 

plastids (Friedman et al. 2011, Hoyer et al. 2018, Prinz et al. 2020, Wong et al. 2019).  

Several membrane contact site-localizing proteins were proposed based on the proteomics and 

lipidomics analyses presented in Chapter 5. Namely, the phosphatidylglycerophosphate synthase 1 

(PGP1), the phosphatidylglycerophosphate phosphatase 1 (PGPP1), the DGDG synthases (DGD1) 

and the sterol C-24 reductase (DWF1). PGP and PGPP are essential enzymes in the biosynthesis of 

PG, which in turn is the precursor of mitochondria-specific lipids, CL (Fig. 4a, Chapter 5). In addition, 

both enzymes have been identified to localize in the inner mitochondrial membrane (IM) of yeast 

and mammalian systems (Džugasová et al. 1998, Horvath and Daum 2013, Kawasaki et al. 2001, 

Osman et al. 2010, Vance 2015, Zhang et al. 2011), in plastids (Hölzl and Dörmann 2019) and in 

mitochondria of Arabidopsis (Tanoue et al. 2014, Wada and Murata 2009). PG is present in high 
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amounts in both plastids and mitochondria in Arabidopsis and its synthesizing enzyme PGP1 has 

been identified to carry the targeting presequence of both organelles as well (Babiychuk et al. 2003). 

The plant PGP and PGPP were therefore proposed to localize in or closely to mitochondria, 

providing PG molecules for CL biosynthesis in proximity. Nevertheless, mitochondria may obtain PG 

also from the ER, probably through the mitochondria-associated ER membranes (MAMs). It should 

be noted that CLs can also be generated by lysocardiolipin acyltransferase (LCLAT or Tafazzin), 

which is involved extensively in the remodeling of CLs under oxidative stress in mammalian systems 

(Cao et al. 2004). However, further characterization of LCLAT is required to understand its function 

in planta and its contribution in the remodeling of plant mitochondrial membranes. Noteworthy, it 

has been suggested that lipid molecules can be involved in the tethering between intracellular 

membrane systems as well. In yeast, a tethering protein between mitochondria and the PM, Num1, 

has been characterized to interact directly with phosphoinositides on the PM by its pleckstrin 

homology (PH) domain and with CL on mitochondria by its N-terminal coiled-coil domain (Ping et 

al. 2016). Nevertheless, whether it is conserved in plants that lipid molecules are involved in 

initiating, establishing and stabilizing the membrane contacts site requires further investigations.  

The DGDG biosynthesis enzyme, DGD1, has been identified both in mitochondrial and plastidial 

membranes, although DGDG presents predominantly in plastids under optimal growth conditions 

(Fig. 4b, Chapter 5). Nevertheless, upon phosphate starvation, a high amount of DGDG is 

transferred rapidly from the plastids to the mitochondria (Michaud et al. 2016), suggesting that 

DGD1/2 may closely associate to or physically interact with the mitochondrial transmembrane 

lipoprotein (MTL) complex, which imports DGDG into the mitochondria from the plastids.  

The sterol biosynthesis enzyme, DWF1, is proposed to localize at the membrane contact sites 

between the mitochondria and the ER. Although AtDWF1 has been visualized to locate at the ER 

(Klahre et al. 1998), it is identified in the mitochondrial proteome based on LC-MS analysis. In 

addition, significantly higher amounts of its products, campesterols, were detected in the 

mitochondria compared to total lipid extract via lipidomics analysis (Fig. 6, Chapter 5), suggesting 

an onsite biosynthesis at the plant mitochondria and/or the presence of campesterol-specific 

transporters to facilitate the import of campesterols from the ER. However, unlike the mammalian 

systems wherein sterol transporters like the steroidogenic acute regulatory protein, StAR (Clark et 

al. 1995), and MLN64 (Charman et al. 2010) have already been characterized, the sterol 

transporters in plants remain to be identified.  
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In plants, several evidences have indicated that mitochondria can establish membrane contact sites 

with the ER, plastids, peroxisomes, vacuoles and the PM. However, only two protein systems 

localized at the membrane contact sites between mitochondria – plastids and mitochondria – ER, 

respectively, have been described and characterized hereto. In Arabidopsis, a large lipid-enriched 

complex, the MTL complex, has been identified to have the capability of exporting PE from 

mitochondria and importing DGDG from plastids to mitochondria (Michaud et al. 2016) under 

phosphate starvation (Härtel et al. 2000, Jouhet et al. 2004, Moellering and Benning 2011). In 

addition, characterization of MTL has revealed that it contains over 200 subunits, and many of them 

are components of the translocase of the outer membrane (TOM) such as Tom40, and the 

mitochondrial contact site and cristae organizing system (MICOS) such as Mic60 (Li et al. 2019, 

Michaud et al. 2016). Therefore, it has been postulated that Mic60, the central component of MTL 

complex, can regulate the tethering between the IM and outer mitochondrial membrane (OM) and 

initiate the lipid transport (Michaud et al. 2016, Michaud and Jouhet 2019). Another characterized 

membrane contact site-localizing protein is the mitochondria-ER-localized LEA-related LysM 

domain protein 1 (MELL1) in moss (Physcomitrella patens). It has been identified to tether 

mitochondria and the ER and to be involved in several processes including mitochondrial 

constriction and fission (Mueller and Reski 2015). However, whether MELL1 is conserved in higher 

plants and involved in the lipid transfer between the ER and mitochondria are still elusive.  

Plant mitochondria can establish membrane contact sites with multiorganelles simultaneously as 

well. For instance, three-way junctions between mitochondria, peroxisomes and chloroplasts have 

been identified under radical-inducing conditions such as high light intensity and photorespiration 

(Hanson and Hines 2018, Jaipargas et al. 2016, Mathur et al. 2012, Oikawa et al. 2015, Pérez-Sancho 

et al. 2016, Shai et al. 2016, Sinclair et al. 2009). Similar three-way junction established by 

mitochondria-early endosome-ER has been observed as well (Hsu et al. 2018). However, the 

physiological functions of these junctions between multiorganelles are still largely unknown. 

Although several researches based on yeast and mammalian cells have suggested that membrane 

contact sites are involved not only in lipid transport, but also in regulating the lipid-based signaling 

pathways, organizing the membrane structure and membrane genesis (Liu and Li 2019, Prinz et al. 

2020), the operating mechanisms and the biological functions of membrane contact sites in plants 

remain to be investigated.  

Noteworthy, emerging evidences contribute to the novel hypothesis that lipids can be synthesized 

in trans in yeast and plants (Mehrshahi et al. 2013, Michaud et al. 2017, Tavassoli et al. 2013). That 

is, the enzymes localized in one membrane can catalyze the biosynthesis reaction on another 
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membrane when two membranes are in proximity. By means of in trans lipid biosynthesis, neither 

tethering proteins nor massive lipid remolding under stress conditions, such as the rapid influx of 

DGDG into mitochondrial membranes under phosphate starvation condition, is required. 

Nevertheless, cautious inspections should be conducted to elucidate its underlying mechanism and 

the coordination of in trans lipid biosynthesis with other lipid transport pathways. 

In this study, two omics analyses, namely lipidomics and proteomics, have been integrated and 

cross-compared intensively in order to extract conclusive information, combined with the online 

databases and used to construct the lipid biosynthesis pathways in Arabidopsis leaf mitochondria. 

The obtaining results expanded the previous knowledge which was proposed based on the 

mitochondrial lipid compositions of the Arabidopsis pale tissues (i.e. cell cultures and calli) and the 

protein subcellular localization from published resources (Michaud et al. 2017). Although some 

steps in the glycerolipid biosynthesis pathway in plant mitochondria have been denoted accordingly, 

a few additional involving proteins, especially the ones in the metabolism of phosphoinositides, 

were identified via the conducted combinatorial approach (Chapter 5). Unlike the widespread 

strategies that combine omics datasets from genomics, transcriptomics, proteomics and / or 

metabolomics, which have several established online tools and commercially available software 

(Eicher et al. 2020), the integration of lipidomics into a multi-omics approach is much less 

developed. Therefore, large numbers of comparisons and statistical analyses were required to 

integrate the lipidomics and proteomics analyses in this study. However, requirement for routine 

implementation of lipidomics with other omics data will likely occur and accelerate the 

development of an efficient platform in the near future. Here, several putative membrane contact 

site-localizing proteins between mitochondria and other organelles were proposed as well through 

the multi-omics analysis, although further validations by biochemical characterization are required, 

the flow and combination of information between omics studies of lipids and proteins has been 

demonstrated. 

6.2.2 The functional role of sphingolipids in mitochondria 

None of the sphingolipid biosynthesis enzymes have been identified to localize in mitochondria in 

plants, and sphingolipids are presumably transferred through membrane contact sites to 

mitochondria after being synthesized in the ER and the Golgi apparatus (Fugio et al. 2020). 

Sphingolipids are considered to be important membrane components of mitochondrial membranes 

as well and can be identified in the lipid profiles of the mitochondria isolated from Arabidopsis 

leaves (Chapter 5). When compared to the lipid profile from the overall leaf extract of Arabidopsis, 
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mitochondria contain significant lower proportions of sphingolipids with 18:1;3 LCB backbone (Fig. 

5, Chapter 5), which is the predominant sphingolipid species in the TE. This suggests that a separate 

pool of sphingolipids is present in the mitochondria and may exert specific functions locally as 

demonstrated in animal cells (Birbes et al. 2001, Colombini 2010).  

One of the essential biological processes governed by mitochondria is PCD). It is associated with the 

cell development, defense reactions against pathogens and responses towards environmental 

stresses (Hirsch et al. 1998, Jacoby et al. 2012). It has been demonstrated that mitochondria initiate 

PCD by producing and releasing bioactive molecules as cell-death signals. For instance, cytochrome 

c, which locates in the intermembrane space between the IM and OM of mitochondrial membranes, 

is released to the cytoplasm from mitochondria as a PCD signal (Basova et al. 2007, Rodrigues et al. 

2007). In addition, reactive oxygen species (ROS), which are produced by the mitochondria, can 

alter the permeability of mitochondrial membranes, and excess amount can initiate the PCD (Hirsch 

et al. 1998). Noteworthy, sphingolipids have been indicated to regulate PCD as well in yeast, animal 

cells and plants (Berkey et al. 2012). Several studies have indicated the functions of sphingolipids 

on the mitochondria-induced PCD in mammalian cells; however, whether sphingolipids coordinate 

with mitochondria in plants and the underlying mechanism that regulates the PCD require further 

investigations.  

Among sphingolipid classes, Cer is the most investigated sphingolipid class in connection with 

mitochondrial functions in both plants and mammalian systems. It has been indicated that Cer 

accumulates in the Arabidopsis orm mutant, which has an impaired function of orosomucoid 

protein resulting in enhanced activity of the serine palmitoyltransferase (SPT) and stimulated de 

novo sphingolipid biosynthesis (Li et al. 2016). In addition, the mutant plants display an early-

senescence phenotype with ROS production in mitochondria and at the cell wall. A similar result 

was obtained from the Arabidopsis acd5 mutant, which lacks the ceramide kinase (CERK) activity. 

The acd5 mutant contains elevated levels of Cer and accumulates ROS in mitochondria, and shows 

spontaneous PCD and activated autophagy (Bi et al. 2014). Moreover, the ACD5 protein has been 

identified in several subcellular organelles, including the ER, the PM, the Golgi apparatus and the 

mitochondria. As a result, it has been proposed that CERK localizing at different compartments can 

exert different functions; that is, CERK at the PM may be involved in the defense responses at the 

cell surface while CERK in mitochondria may suppress the mitochondria-mediated cell death 

signaling. Since the function of CERK is to generate phosphorylated Cer (Cer-P), detailed analysis of 

Cer-P in biological extracts can contribute to the knowledge regarding the functional roles of Cer-P 

at different subcellular localizations and in the regulation of mitochondria-mediated PCD. The 
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endogenous amount of Cer-Ps in mitochondria was not sufficient to be analyzed via the lipidomics 

workflow alone. Nevertheless, in combination with the approach presented in Chapter 3, which 

incorporates the profiling of endogenous Cer-P in the LC-MS-based lipidomics workflow after TLC 

purification, creates a great potential in obtaining further insights. Interestingly, treatment with 

exogenous Cer can also stimulate PCD in mitochondria. For instance, it has been demonstrated that 

direct treatment of Arabidopsis protoplasts with Cer carrying 2- or 6-carbon fatty acyl moieties (C2- 

and C6-Cer), which are permeable through the cellular membrane, can induce the release of 

cytochrome c and initiate PCD (Yao et al. 2004). This strongly corroborates the correlation of 

sphingolipids with the mitochondria-mediated stress responses. However, a recent study has 

revealed that the release of cytochrome c does not occur in rice (Oryza sativa) protoplasts after 

exogenous Cer treatment (Zhang et al. 2020), indicating that sphingolipids may exert specific 

regulatory functions in different plant species.  

In animal systems, the mechanisms of Cer-mediated mitochondria dysfunction have been 

investigated in more detail (Fugio et al. 2020). Interesting results have been obtained by 

investigating the functions of Cers containing 16- and 18-carbon fatty acyl moieties (C16-Cer and 

C18-Cer, respectively) in connection to cell death responses. For instance, C16-Cer has been 

described to inhibit the activity of mitochondrial complex IV and stimulate the production of ROS, 

thereby provoking oxidative stress (Zigdon et al. 2013). On the other hand, instead of increasing 

ROS production, C18-Cer has been demonstrated to mediate the autophagic cell death and 

mitophagy by direct interaction with mitochondria-targeting proteins (Oleinik et al. 2019, Sentelle 

et al. 2012). This suggests that the acyl chain length of the Cer molecules is critical in determining 

its functions in mitochondria such as the initiation of mitophagy. Furthermore, it has been 

demonstrated that only Cer molecules generated by mitochondria-localized sphingomyelinase, 

which degrade sphingomyelin to generate Cer and phosphocholine, are involved in the activation 

of apoptosis (Birbes et al. 2001). In addition, Cer molecules that accumulate at the mitochondria, 

due to the mutation in a Cer transport protein (CERT) (Rao et al. 2014), create channel-like 

structures at the OM of mitochondria and thus lead to mitochondria dysfunction (Chang et al. 2015, 

Nielson and Rutter 2018, Ueda 2015). Altogether, these results indicate that, in addition to the acyl 

chain length of the Cer molecular species, the site of biosynthesis and the subcellular localization 

of Cer can regulate the functions of mitochondria as well. Nevertheless, whether these phenomena 

are conserved in plants and whether they are involved in the stress responses towards biotic and / 

or abiotic stresses require further investigations.  
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6.3 Membrane fractionation is required to broaden the detection range and achieve global 

lipidomics analysis 

As presented in Chapter 4 and 5, the enhanced lipidomics platform provided comprehensive 

insights into the lipid composition of the PM and the mitochondria. This enhanced lipidomics 

platform includes the minor lipid classes such as complex glycosphingolipids, phosphorylated 

sphingolipids and phosphoinositides, which are critical in numerous biological processes. The 

methodological development targeting these minor lipid classes was building on the establishment 

of subcellular membrane fractionation, including the PM, the mitochondria and the MC which are 

the crude endomembrane fractions. Since lipids are fundamental components of biological 

membranes and different subcellular membranes are composed of distinct lipid compositions, the 

isolation of specific subcellular membranes can be considered as a purification procedure for the 

minor lipid classes. In this work, the purification of the PM, the mitochondria and the MC has 

contributed to optimize the LC-MS parameters for the pre-existing detection methods of SQDG and 

H-GIPC; and to establish the methods and identify PIP, PIP2, CL, LCB-P, Cer-P, HN-GIPC and dihexosyl 

GIPC (H-H-GIPC). Chemical derivatization has also enhanced the mass spectrometric detection of 

several lipid classes, and was incorporated as part of the standard workflow; namely, methylation 

was applied on PIP and PIP2 and acetylation on LCB-P and Cer-P before the LC-MS analyses.  

Additional lipid classes such as complex glycolipids with tri- or tetragalactosyl headgroups, which 

are widely distributed in algae and lower plants, are not yet included in this enhanced plant lipids-

orientated lipidomics platform. Nevertheless, a wide coverage of the lipid classes, also the minor 

ones, belonging to glycerolipids, sphingolipids and sterols were successfully integrated into the 

enhanced lipidomics platform. Compared to the conventional approaches for lipid analysis, which 

are mostly lipid class-specific, the information of lipid molecular species can be addressed by the 

presented lipidomics platform. This enables future detailed characterization of plant membrane 

lipids, including the minor lipid classes, and contributes to the understanding of the functional role 

exerted by individual lipid species.  
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6.4 Concluding remarks 

This work has greatly expanded the knowledge about the lipid landscape of two distinct biological 

membranes in plant cells; namely, the plasma membrane (Chapter 4) and the mitochondria 

(Chapter 5). With the asset of the enhanced wide-ranging LC-MS-based lipidomics workflow 

(Chapter 2) and further advancement focusing on the bioactive minor lipids, Cer-P (Chapter 3), the 

membrane organization and the functions of specific lipids have been addressed.  

The compositional remodeling of the PM lipid molecular species under CA condition and the 

impacts of the loss of the α-hydroxylated sphingolipids in Arabidopsis were addressed in detail 

(Chapter 4). The result presented in this chapter led to the conclusion that the loss of sphingolipid 

α-hydroxylases triggers similar responses as CA in the PM, with respect to the modulation of the 

PM composition at the level of lipid class, which affects the membrane organization and the lipid-

mediated signaling pathways. In addition, the loss of sphingolipid α-hydroxylases does not diminish 

the fact that lipid molecular species with higher desaturation degrees accumulate under cold 

acclimation, indicating that the fine-tuning of the membrane property occurs at the level of lipid 

species. Furthermore, species-specific transversal distribution of the most abundant phospholipids 

and glycolipids reveals an additional sophistication in modulating the membrane organization. The 

profiling of lipid species further assists the frontier research on distinct functions that individual 

lipid species may exert.  

The combinational approach with lipidomics, proteomics and online databases mining further 

defines the lipid biosynthesis pathways and possible lipid biosynthesis capacity in plant 

mitochondria (Chapter 5). Lipid classes including PE, PA, PS, PG, CL and FS can be synthesized or 

modified in plant mitochondria with partial assistance of putative contact site-localized proteins 

and / or trans lipid biosynthesis. The presented comprehensive dataset facilitates further 

investigations on identifying and characterizing the membrane contact site-localizing proteins 

between mitochondria and other organelles. Moreover, the enhanced capacity of the lipidomics 

workflow (Chapter 2 and 3) creates a great potential in obtaining further insights into the functions 

of specific lipid class and lipid species in biological membranes, such as sphingolipid-mediated cell 

death in mitochondria. 
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