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Zusammenfassung

Die Sonnenhelligkeit variiert auf Zeitskalen von Minuten bis Jahrzehnten. Insbesondere
kann die beobachtete photometrische Variabilität direkt mit der Rotationsperiode zusam-
menhängen. Unser Verständnis dieses Zusammenhangs ermöglicht Extrapolationen von
der Sonne auf andere Sterne. Selbst nach erfolgreichen Sternuntersuchungen, die aus
Missionen von Kepler oder TESS stammen, fehlen in photometrischen Aufzeichnungen von
Rotationsperioden für sonnenähnliche Sterne immer noch Informationen. Nichtperiodische
Lichtkurvenprofile, eine niedrige Modulationsamplitude (die durch zufälliges Auftreten
magnetischer Merkmale und eine kurze Lebensdauer im Vergleich zur Rotationszeitskala
erzeugt wird) sind die Hauptgründe für die unzuverlässige Bestimmung der Rotationsperio-
dizität in der Sonne und ihrer nähere Analoga. Dies weist darauf hin, dass Sterne mit einem
ähnlichen Sonnenhelligkeitsprofil möglicherweise auch ein Problem mit der Erkennbarkeit
der Rotationsperiode haben. Dies impliziert, dass nur ein Bruchteil der solarähnlichen
Systeme ordnungsgemäβ analysiert wurde.

Ich schlage in dieser Arbeit vor, dass ein klares und verbessertes Signal aus der
Rotationsperiode zuverlässig aus dem Profil der Gradientenleistungsspektren (GPS, für
das Akronym in Englisch) von Helligkeitszeitreihen bestimmt werden kann. GPS ist ein
neuartiges Verfahren zur Bestimmung von Rotationsperioden für Sterne wie die Sonne (d.H.
Mit einem ähnlichen Helligkeits- variabilitätsprofil). Darüber hinaus gibt uns die neuartige
Methode Einschränkungen hinsichtlich des Verhältnisses von Faculae zu Spot-Treiber, die
uns folglich bei der Interpretation der Sternoberfläche helfen könnten.

Diese Arbeit basiert auf der Analyse hochwertiger photometrischer Zeitreihen, die mit
dem Kepler Teleskop erfasst wurden, hochstabilen und hochgenauen Messungen durch die
SOHO/VIRGO Mission und detaillierten Modellen von Variationen der Sonnenhelligkeit.
Die GPS Methode wird in dieser Arbeit vorgeschlagen, entwickelt und erfolgreich getestet.
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Abstract

Solar brightness varies on timescales from minutes to decades. In particular, the observed
photometric variability can directly relate to the rotation period. Our understanding of this
link allows extrapolations from the Sun to other stars. Even after successful stellar surveys
achieved by Kepler or TESS missions, there is still a lack of information in photometric
records of rotation periods for Sun-like stars. Non-periodic light-curve profiles, low
modulation amplitude (those generated by the random emergence of magnetic features and
short lifetime evolution, in comparison to the rotation time-scale) are the main reasons
of unreliable determination of rotation periodicity in the Sun and its closer analogs. This
indicates that stars with a similar solar brightness profile might also face a rotation period
detectability problem. Implying, that just a fraction of solar-like systems have been
properly analyzed.

I propose in this Thesis that a clear and enhanced signal from the rotation period can
be reliably determined from the profile of the gradient power spectra (GPS) of brightness
time-series. GPS, is a novel method aimed to determine rotation periods for stars as the Sun
(i.e., with similar brightness variability profile). Furthermore, the novel method gives us
constraints on the faculae to spot driver ratio, that, consequently could help us to interpret
the stellar surface. This work is based on the analysis of high-quality photometric time-
series acquired by the Kepler telescope, high-stability and high-accuracy measurements
by the SOHO/VIRGO mission and, detailed models of solar brightness variations. GPS
method, is proposed, developed and successfully tested in this Thesis.
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Abstract

La fuerza del Sol es la que nos mueve...

- Gravity
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1 Introduction

1.1 Stellar rotation period

Understanding the physics behind magnetic activity in stars is a challenging task, even
when such stars are analogs to the most studied star, our Sun. There are many variables
and degeneracies working simultaneously in the attempt to recover magnetic properties of
stars. But, there is a key parameter for characterising the physics behind magnetic activity,
this parameter is the rotational period. Accurate surveys of rotational periods are crucial
for the understanding of stellar dynamo theory. As well, important for a better tracing of
stellar evolution and age calibration (Ulrich 1986; Barnes 2003).

The importance of rotation period information goes beyond the understanding of
fundamental properties. That information bring us close to the understanding of phenomena
such as, stellar structure, mixing and interior processes, light elements evolution (Be, Li),
the star accretion/formation and disk/planets interaction, angular and mass loss rates, stellar
ages, history/future of activity, magnetic field generation, etc. All in all, precise rotation
periods are needed for recovering stellar information to properly characterise stars.

1.1.1 Rotation evolution – Age connection

Stars are born after the gravitational collapse of a molecular cloud leading to a hot ball of
plasma with an initial angular momentum. This is then when the stellar rotation evolution
begins. Multiple processes present in the stars are drastically affected by the stellar rotation
evolution, as activity and the dynamic magnetism (see Bouvier 2013; Gallet and Bouvier
2013; Gallet et al. 2019).

The rotation evolution strongly depends on the stellar initial conditions. During the
proto-stellar stage (0.1 - 5 Myr, depending on the initial mass) the amount of dust in the
proto-stellar cloud, the accretion rate and, the initial angular momentum play an important
role in the evolution path that the rotation of the star will follow.

During the pre-main sequence (PMS, about 5 - 40 Myr) stars gain mass accreting from
the remaining molecular cloud. Stars will spin up and increase their angular momentum.
After this process the accretion slows-down and a disk of dust is generated around the star.
Then, a strong interaction between the stellar magnetic field and the disk of material will
diminish the stellar angular momentum. The star will spin-down, and this will mark the the
beginning of the main-sequence stage (40 - 10.000 Myr, for Sun-like stars, see Fig.1.1).

The reconstruction of the rotation period evolution give us important keys and direct
information for the tracing of stellar ages.
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1 Introduction

Figure 1.1: Rotation/angular momentum evolution model for Sun-like stars. The figure
illustrates different angular velocities distributions of solar-like stars observed in open
clusters from 1 to 1000 Myr. The model shows the rotation of the radiative core and
convective envelope (dash and solid lines respectively). The Skumanish law is drawn with
a dashed black line. The Sun is represented with an open circle (see Gallet and Bouvier
2013).

1.1.2 Skumanich law and deviations

In 1972 Skumanich measured rotation periods, the amount of emission in Ca II H and K
lines and, the lithium abundances in a number of stars from the Pleiades, Hyades and, Ursa
major clusters. He found that the amount of emission in Ca II H and K lines drops with
the age. Furthermore, he found that lithium abundance follows the same trend as Ca II H
and K emission, see Fig.1.2. He concluded that the angular velocity of a star is inversely
proportional to the square root of stellar age, i.e., Ω ∝ t−1/2. Since then this is known as
the Skumanich law, which builds a foundation of gyrochronology, i.e. determination of
stellar age from rotation period (see, e.g. Soderblom and Mayor 1993; Krishnamurthi et al.
1997; Barnes 2007).

Even though Skumanich law works quite well for many stars, some other targets from
the analysed stellar clusters appear to rotate faster than expected from their age, see Fig.1.3.
The observed bi-modality of fast and slow rotators in the same cluster suggests that there
may be two possible mechanisms for the stars to spin down. In Sun-like stars the principal
mechanisms of angular momentum loss and spin down is the interaction between the stellar
magnetic field and the ionised material carried in the stellar wind. A second possible
mechanism is showed in Garraffo et al. (2018), where they proposed that surface magnetic
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1.1 Stellar rotation period

field morphology has a strong influence on wind-driven angular momentum loss and, the
bi-modal distribution of rotation periods observed in young open clusters (OCs) could
be explained by their models. Their predictive model show how a different magnetic
complexity configuration can account for a different stellar spin-down path. They attribute
the rotation period bifurcation to different stellar magnetic field configurations and its
relative interactions with the stellar wind.

Figure 1.2: Calcium emission, rotation period, and
lithium abundance versus stellar age (taken from
Skumanich 1972).

There are still many open
questions on the way to under-
stand the relation between stellar
age and rotation period. Some of
them might be caused by inabil-
ity to properly measure stellar ro-
tation periods. Therefore, accu-
rate surveys of rotation periods
can open new windows to clarify-
ing the current picture and solving
problems.

1.1.3 Stellar Activity &

Rotation Period
Across the Hertzsprung-Russell
diagram (henceforth HRD) stars
are known to manifest their ac-
tivity through different observable
phenomena over the entire elec-
tromagnetic spectrum. Evidence
of magnetic activity can be traced
from X-rays to radio waves. From
fast stellar winds in hot stars gen-
erating strong shock-heating R-
rays emissions to radio outburst
generated by flares and CME’s in the Sun (see Gopalswamy et al. 2005) and cool dwarfs
(F- to M-Type stars). Stellar behaviour has been studied and described in detail over the
entire HRD (see, e.g., right panel of Fig. 1.4 for stellar characterisation by radio luminosi-
ties). For the scope of the thesis we will concentrate on activity behaviour of stars in the
cool tail of the HRD, more specifically on F- to K- late type main sequence stars.

Concentrations of strong localised magnetic fields emerge in the stellar surface leading
to the formation of photospheric magnetic features, such as bright faculae and dark spots
(Solanki et al. 2006). The transits of these co-rotating inhomogeneities over the visible
disk as the star rotates imprints particular patterns into the observed light-curve. Those
characteristics are well associated to stellar activity and provide a way for tracing stellar
rotational period.

Rotation period information is essential for determining the action of stellar dynamo,
transport of the magnetic flux through the convective zone, and its emergence over the
stellar surface, (see for a general review of dynamo theory Charbonneau 2010). The

13



1 Introduction

Figure 1.3: Stellar rotation period versus the (B-V) magnitude observed in different open
clusters from 120 to 1000 Myr are shown in red. Modelled density distribution of predicted
rotation evolution by (see Garraffo et al. 2018) are shown in blue.
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1.1 Stellar rotation period

Figure 1.4: Left: Stellar rotation-activity relationship for partially and fully convective stars.
X-ray to bolometric luminosity ratio plotted against the Rossby number. Fully convective
stars (large red points), and stars in the sample of Wright et al. (2011) (medium, light red
points). Remaining partly convective stars from that sample (grey empty circles), find entire
description in Wright et al. (2018). Right: Radio luminosities in the Hertzsprung-Russell
diagram, taken from Maria Massi lectures.1

stellar activity in convective stars can be traced in X-rays, that accounts for the coronal
behaviour. In slow rotating stars, with a Rossby number about 0.5 and higher – also called
on unsaturated regime – the X-rays luminosities are correlated with the rotation period of
the star. On unsaturated regime the magnetic activity of the chromosphere (as indicated
by the Ca II K line-core emission) and the corona (as indicated by the X-ray emission)
monotonically increase with the stellar rotation rate (see Pizzolato et al. 2003; Wright et al.
2011; Reiners 2012; Reiners et al. 2014). Still, X-rays and high energy observations are
non-trivial and are very scarce on stars different than the Sun. Consequently, the rotation
period appears to be not just a good raconteur of stellar activity but easier to retrieve
tracer of magnetic activity, see the activity rotation diagram at left diagram in Fig. 1.4.
Surprisingly, the relationship of rotation period with coronal and chromospheric activity
works also for slowly-rotating fully convective stars, (see Wright and Drake 2016; Newton
et al. 2017; Wright et al. 2018).

While the modulation of the brightness amplitude is periodic in most of the stars with
high and moderate activity levels, patterns on light-curves from magnetic structures of slow
rotators as the Sun are quasi-periodic and irregular. Low variability amplitude, short life-
time magnetic features evolution (in comparison to the rotation time-scale), that generates
irregular modulation on the light-curves, are the main cause of unreliable determination of
rotational periodicity in the Sun and its closer analogs. The indinstinguibility of magnetic
features latitudinal location, clumping or nesting of features, differential rotation and stellar
inclination, are additional degeneracies to concern when we want to describe in a simple
model the physics under the non-periodic brightness variability (see Is, ık et al. 2018). The
work in this Thesis is focused on the analysis of stellar brightness variations for recovering
rotation periods.

1 https://www3.mpifr-bonn.mpg.de/staf/mmassi
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1 Introduction

Figure 1.5: TOP: Intensitigram of a spot transiting the solar disk (Left) and magnetogram
showing the a faculae transiting (right) by the Michelson Doppler Imager (MDI) instrument.
Bottom: Simultaneous to up-images VIRGO TSI variations. Taken from Fligge et al.
(2000a)

1.2 Solar and stellar brightness variability

The Sun is by far the star with the most recorded and analysed data. Direct images,
spectroscopy, polarimetry, photometry in different bands of the electromagnetic spectrum
are available to describe its behaviour. The understanding of physical processes on the
Sun is the benchmark and main guide in order to characterise similar phenomena in other
analog stars. Performing a one to one comparison between the Sun and other stars is,
however, challenging. The differences are mostly set by observational constrains; the Sun
observed from Earth is a resolved object, which is mostly not the case for other Sun-like
stars. Also the cadence of the solar and stellar measurements is pretty different. For a
long time solar data have been degraded to the cadence of stellar observations (see, e.g.
Lockwood et al. (1997)). On the contrary, now we are in a unique situation that stellar
photometric data have often better cadence than the solar ones.

Solar brightness variability has been associated with stellar surface processes on
different time-scales, from granulation to the formation of magnetic features. Those
processes, help us to determine the activity cycles, passing through rotational modulation.

The variability of solar brightness is one of the most intriguing manifestations of
its magnetic activity. Magnetic field emerges on the solar surface in the form of flux
concentrations and leads to the formation of bright facular and dark spot magnetic features.
In Chapman et al. (1997) determined that bright structures contributes to the irradiance
excess, associated for example with facular regions, by outweighs about 50% the irradiance
deficit associated with sunspots. These features imprint very different pattern into the solar
light curve (see, Fig. 1.5).

Imprints from spot and/or facular components on light-curves bring a handle tool to
describe stellar surface and to interpret rotation (see, Reinhold and Reiners 2013; Shapiro
et al. 2016, 2017). The latter is a key parameter to define the stellar dynamo mechanism,
the transport of magnetic flux through the convective zone, and its emergence on the stellar
surface, among other phenomena (see, Charbonneau 2010; Reiners et al. 2014; Fabbian
et al. 2017).

16



1.3 Initial solar and stellar photometric records.

1.3 Initial solar and stellar photometric records.

Figure 1.6: Drawings of sunspots by
Galileo Galilei reported by Giacomo
Mascardi in History and Demonstrations
Concerning Sunspots and their
Properties Mascardi (1613): “Istoria
e dimostrazioni intorno alle macchie solari
e loro accidenti comprese in tre lettere
scritte all’illustrissimo signor Marco
Velseri linceo ... dal signor Galileo Galilei
linceo ... Si aggiungono nel fine le lettere, e
disquisizioni del finto Apelle”: “I am at last
convinced that the spots are objects close to
the surface of the solar globe ... also that
they are carried the Sun by its rotation ...”

−Galileo.

The rotation period of the Sun could by traced by observing the transit of magnetic fea-
tures. Already in 1612 following of solar surface performed the first observations and draw-
ings of sunspots (published in Mascardi 1613, see Fig. 1.6). In 1863 Richard Christopher
Carrington published his book: Observations of the Spots on the Sun, (Carrington 1863),
where he defined the solar rotation rate by watching the low-latitude sunspots. He also
defined a solar reference system rotating with a period of 25.38 days. The first Carrington
Rotation was described in November 9Th of 1853, when Carrington began his Greenwich
photoheliographic series.

In stars the story is different given that the surfaces are not resolved. One of the
most frequently used method for determining rotation period is, thus, measurements of
stellar brightness variability. Interestingly, measurements of stellar brightness is one of the
oldest tools of stellar astronomy. For example, already about 2nd century BC Hipparchus
classified stars by their magnitude. As well the extensive compilation of glass plates
collected by Henry Draper and his wife Anna Palmer Draper that given birth to the HD
stellar identification catalog. As well, those photometric measurements gave a strong
input that help opening the sky for the ladies of Harvard Observatory and their remarkable
measurements of the stars during the late 1800’s.

1.4 Space born photometry

1.4.1 Total Solar Irradiance
The integrated over all wavelengths total radiative flux from the Sun measured at one
astronomical unit is called Total Solar Irradiance (TSI). Currently the established TSI value
is 1361 W m−2. Even though the TSI have been for a long time known as the solar constant

17



1 Introduction

Figure 1.7: 41-years-long TSI dataset compilation by different instruments. Image taken
from: https://spot.colorado.edu/ koppg/TSI/.

its value is not constant. The variations of the TSI have been reliable observed by precise
radiometers during more than the 11-years of the solar activity cycle, and is about 0.1% or
1.3 W m−2. Over a solar rotation time scale the variation caused but large sunspots can be
as high as 0.5% (see, Fröhlich 2013).

Driven by the interest from the climate community TSI has been measured almost
without interruption for 41-year period by various satellite-based radiometers (such as,
ACRIM, ERBS, VIRGO and TIM, see Fig. 1.7). Furthermore, it has been reconstructed
for longer periods of time by many different models, e.g. SATIRE and NRLTSI, (see for a
review, Ermolli et al. 2013; Solanki et al. 2013; Ball et al. 2014; Dasi-Espuig et al. 2016;
Yeo et al. 2014; Is, ık et al. 2018).

Among all available total solar irradiance records, the time series obtained by the
Variability of solar IRradiance and Gravity Oscillations (VIRGO) experiment on the
ESA/NASA SOlar and Heliospheric Observatory (SoHO) Mission and by the Total
Irradiance Monitor (TIM) on board the Solar Radiation and Climate Experiment (SORCE,
Dec. 2016 – 25 Feb. 2020) are the most accurate. They have also the longest time coverage,
with 24- and 17- year-long data acquisition respectively (see e.g, the review by Kopp 2014).
In this thesis I use these two TSI time series.

The first dataset used in this work was obtained by VIRGO/SoHO Mission, see Fröhlich
et al. (1997). VIRGO provides more than 24 years of continuous high-precision, high-
stability, and high-accuracy TSI measurements. Our analysis is based on the first 21
years of recorded data, and last update available at the beginning of this work, version
6.4: 6_005_1705, level 2.0 VIRGO/PMO6V observations from January 1996 until June

18
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1.4 Space born photometry

2017 with a cadence of 1 data-point per hour 2. The data are available at the ftp server 3.
The second data-set used in this work was acquired by TIM/SORCE instrument (see,

Kopp and Lawrence 2005; Kopp et al. 2005a,b). Regular TIM data used comes from
version 17, level 3.0, with daily or 6-hourly cadence data. For our work we used data
corresponding to: Feb 25th 2003 - Jan 25th 20184 5. While TIM data are available for
a shorter time interval than VIRGO, they have lower noise level (Kopp 2014) which is
particularly important for our analysis of TSI variations during the minimum of solar
activity. Here we use an average version of TSI with a cadence of 1 data-point per 1.6
hours based on the regular data 6.

1.4.2 Stellar photometric data

The arrival of photometric planet-hunting missions, such as CoRoT (Bordé et al. 2003a),
Kepler (Borucki et al. 2010), and TESS (Ricker et al. 2015), placed the studies of stellar
magnetic activity to a completely new level. Continuously observations with high ca-
dence are required to determine rotation period from stellar brightness variability. The
missions mentioned have provided photometric time series with unprecedented precision
and cadence. As a result, now it is possible to estimate rotation periods for thousands of
stars. Stellar light-curves observed by Kepler have been employed in numerous studies
aimed at determining rotation periods and stellar surface shear (for a complete description
of different rotation period analysis methods frequently used see comparative study by
Aigrain et al. 2015).

1.4.2.1 Kepler mission

The Kepler mission ran from 2009 to 2013. Kepler was designed with the scientific
objective to explore the transits of the multiple possible Sun-like planetary systems in
a region of the galaxy with a high density of solar-analogs expected, a region between
the Cygnus and Lyra constellations (see, Borucki et al. 2010, and Fig.1.8). Even though
the primary goal of Kepler was planet-hunting, that made possible to revolutionise our
understanding of stellar activity. The Kepler observations were in a band-pass covering
from 420 to 880 nm. The instrument obtained and offered different data-products including,
full-frame-images (FFIs), co-trending basis vectors, pixel response function, long and short
cadence target light curves and pixel files, among others.

The data-product utilised in this work employed long cadence light curves (LCs) with
a integrated 29.45 min cadence. The calibrated LCs and data-products are available at
the MAST archive 7. Those LCs were acquired on 17 segments called quarters ( Q1: (33
days), Q2–Q16: (90 days), and Q17:(35 days), see public data release 25 and handbooks,
Thompson et al. 2016; Van Cleve and Caldwell 2016; Bryson et al. 2017; Morris et al.

2 VIRGO data description: ftp://ftp.pmodwrc.ch/pub/Claus/ VIRGO-TSI/VIRGO_Char2Space.pdf
3 VIRGO data source: ftp://ftp.pmodwrc.ch/data/irradiance/virgo /TSI/ virgo_tsi_h_6_005_1705.dat
4 Release notes: http://lasp.colorado.edu/home/sorce/data/tsi-data/tim-tsi-release-notes/
5 SORCE data source: http://lasp.colorado.edu/home/sorce/data/

6 http://spot.colorado.edu/ koppg/TSI/
7 http://archive.stsci.edu/pub/kepler/lightcurves/tarfiles/
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Figure 1.8: Field Of View of Kepler satellite, Credits: NASA Ames.
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2017). The observed quarters are given in segments due to the Kepler telescope reoriented
itself every 90 days. Quarter Q1 is incomplete given the initial calibrations and Q17 due
to a wheel failure that after 4-years of operation ended the original idea of the mission of
continuous observation at the same FOV.

Kepler’s field of view, FOV, has a resolution of 4 arc-seconds per pixel and contains
approximately half-million stars. The satellite followed about 200,000 targets and around
150,000 stars were selected for continuous observation. More than 90,000 are G-type
stars on, or near, the main sequence (see, Batalha et al. 2010). About 25% of stars
from the primary Kepler FOV have reported rotation periods, (see, e.g., McQuillan et al.
2014, the largest rotation period survey presently available). Interestingly, it implies that
we do not know rotation periods of almost 75% of G-type stars. In particular, we lack
information about rotation periods in low-activity stars like the Sun. The biggest difficulties
for determining rotation periods of such stars from photometric records are associated to
non-periodic light-curve profiles and low amplitude of the variability.

1.4.3 Rotation period in planetary transits analysis
Although that the goal of this thesis is not connected with planetary transit analysis, the
knowledge of precise rotational periods are required for removing stellar activity signal
present in the light-curves. Stellar activity can mimic planets in radial velocity analysis
(RV) as well as affect characterisation of both RV and transiting planets (see, Fig. 1.9).
Knowing precisely and accurately the stellar rotation allow disentangling the signal from
star and planet in RV. It, in turn, can help to detect small-sized planets in RV, which
is crucial for ongoing and upcoming survey like ESPRESSO. For transiting planet it
will also help to get more accurate planet radius estimation. The characterisation of
exoplanets have been improved using simulations of spots to correct transit events, but
still the disambiguation from activity needs to be more explored (see, Dumusque et al.
2011; Oshagh 2018). Rotation period acquaintance is decisive to constrain models on
activity-transit entangle and star-planet interaction.

1.5 Photometric methods for rotation periods detection
Thanks to planetary hunting missions such as CoRoT, Kepler and TESS the possibilities of
acquiring accurate photometric time series with high resolution and high cadence are now
real. Building on those high quality observations, the scientific community has developed
different methods and techniques to analyse and interpret stellar periodicities embedded in
the data. Some of the current methods include autocorrelation functions analysis, Lomb-
Scargle periodogram, periods based on wavelet power spectrum, and recently techniques
based on Gaussian processes.

1.5.1 Generalized Lomb-Scargle periodogram – (GLS)
The Lomb-Scargle periodogram (hereafter, GLS) is a formalism used to analyse the
frequency domain of unequally space time-series. It is analogue to fitting a sinusoidal
function, y = a cosωt + b sinωt. The first formalism was given by Barning (1963) and
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Figure 1.9: Conjugation of rotation period modulation (top) and planetary transits (middle
and bottom) in CoRot-Exo-2b system, (taken from, Alonso et al. 2009).

afterwards Lomb (1976); Scargle (1982) analysed the statistical significance of a periodic
signal.

In the original formalism the measurement of the errors are not considered and, it is
assumed that the mean of the data and the mean of the fitted function are the same. For
an improved analysis in this work I consider the Generalised Lomb-Scargle periodogram
(GLS) version v1.03, applying the formalism given in Zechmeister and Kürster (2009).

The GLS method is widely used for time domain analysis and has the advantage for
treating data-sets with a non-regular sampling. For rotation period detection purposes, the
highest normalised power peak is usually assumed to correspond to the rotational period
(see GLS applied to stellar LCs in, Reinhold et al. 2013; Aigrain et al. 2015; Reinhold
et al. 2019, 2020b). An example of the computed GLS for a TESS light-curve of the target
TIC 441420236 is shown in the panel b of Fig. 1.10.

1.5.2 Auto-Correlation Functions – (ACF)

Autocorrelation functions (hereafter, ACF) is a method based on the estimation of a degree
of self-similarity in the light-curve over time. The time lags at which the degree of self-
similarity peaks are assumed to correspond to the stellar rotation period and its integer
multiplets.

The ACF method was introduced as a statistical model for exploratory data analysis
(EDA) initially implemented for climatology and hydrology time-series and has been
widely used in many fields since then (see, Yevjevich 1968; Merz et al. 1972). ACF
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Figure 1.10: Compilation of rotational period outputs for the object TIC 441420236
computed with GLS, ACF, PS, and GPS. Panels (a) show the TESS LC, (b) the GLS output,
(c) The ACF, (d) the wavelet power spectra using Paul wavelet order 6, and (d) the GPS
outcome.

have the main objective to detect the non-randomness in the data. It characterises the
self-similarity in the given measurements, Y1,Y2, ...,YN at the times X1, X2, ..., XN as a
function of the lag k:

rk =

∑N−k
i=1 (Yi − Y)(Yi+k − Y)∑N

i=1(Yi − Y)2
(1.1)

The time variable, X, is not used in the formula, but the assumption is that the observa-
tions are equally spaced. Usually the first maximum of the autocorrelation is taken as the
searched periodicity.

The ACF method applied for the analysis of stellar time series was introduced by
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LC Number A_CORRELATE AutoACF
1000 26.58 26.71
1001 21.07 21.24
1002 10.29 10.39
1003 27.07 27.04
1004 26.21 26.06

Table 1.1: Comparison of solar rotation periods output from the IDL A_CORRELATE
routine and the AutoACF for the 5 different solar light-curves proposed in Aigrain et al.
(2015)

McQuillan et al. (2013). The application of the ACF to stellar LCs is based on the
assumption that magnetic features which cause photometric variability are stable over the
stellar rotational period. The ACF has been used to create the largest available catalog of
rotational periods until now. Using ACF valuable statistical information for about 34000
stars observed by Kepler have been compiled and analysed in detail in McQuillan et al.
(2013); McQuillan et al. (2014).

In the present work I tested and implemented the autocorrelation function approach
given by the IDL A_CORRELATE 8 routine comparing with the results given by the
AutoACF method, introduced in McQuillan et al. (2013), and used by the Tel Aviv team in
the hare-and-hounds exercise in Aigrain et al. (2015). They, performed a blind exercise
to compare different methods to obtain rotation periods from 1000 simulated light-curves
injected to 770 Kepler and 5 solar SoHO/VIRGO light-curves. We calculate the autocor-
relation function from A_CORRELATE and compare with the outputs from AutoACF
for the 5 solar light-curves for different ranges of solar activity. We show the comparison
of both algorithms in table 1.5.2, and Figure 3.1. In the AutoACF implementation, the
light curves are median normalized before the ACF is computed, and they only search for
periods less than half the length of the data set. We verified that the outputs from the ACF
IDL A_CORRELATE routine and AutoACF have a similar behaviour. An example of the
computed ACF for a TESS light-curve of the target TIC 441420236 is show in the panel c
of Fig. 1.10.

1.5.3 Wavelet Power Spectra – (PS)
Wavelet power spectra analysis (hereafter, PS) is beneficial for time series that contain
non-stationary power at many different frequencies. PS was originally used to analyse
geophysics and climatology time-series. Recently, in combination with the ACF it has been
also employed for determining stellar rotational periods (see, García et al. 2009; Aigrain
et al. 2015; Santos et al. 2019). An important aspect of the PS method is the choice of the
wavelet function, Ψ(η). There are many different wavelet functions, Morlet, DOG, Paul,
etc (see, Fig.1.12 and Torrence and Compo 1998). To calculate the PS in this work I used
the WV_CWT 9 IDL function. It is based on Paul wavelet of order m = 6. Paul wavelet is
a complex non-orthogonal function, which means that the wavelet will return information

8 A_Correlate IDL function is available at: https://www.harrisgeospatial.com/docs/A_CORRELATE.html
9 WV_CWT IDL function (it is available at: https://www.harrisgeospatial.com/docs/WV_CWT.html)
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1.5 Photometric methods for rotation periods detection

Figure 1.11: Comparison between ACF from AutoACF and the IDL A_CORRELATE
routine.

about the amplitude and, if required, phase of the signal. An example of the computed PS
for a TESS light-curve of the target TIC 441420236 is show in the panel d of Fig. 1.10.

1.5.4 Gaussian Process – (GP)

Gaussian processes are certainly an area of extremely active investigation in astrophysics
at the moment. Statistical Gaussian processes (hereafter, GP) can be applied to detect a
non-sinusoidal and quasi-periodic behaviour of the signal in light-curves. Since recently,
the GP have being used for retrieving the periodic modulations from stellar activity (see
Roberts et al. 2012; Rajpaul et al. 2015; Angus et al. 2018). The GP will fit a good
inference for periodic patterns for a singular light curve, but will take several hours to
converge, (see, e.g. Angus et al. 2018). For optimizing the procedure Angus et al. (2018)
sub-sampled Kepler light-curves by a factor of 30 and split them into segments of 300
points. To improve considerably the computationally efficiency, Foreman-Mackey et al.
(2017b,a) developed a new algorithm which scales linearly with the number of data N
points instead of NLog(N)2.

Even with a linear scaling GP calculations demand significant computational resources.
Such methods can be extensively implemented and compared with other approaches for
determining rotation periods in a limited number of stars, as for example in the analysis
performed for HD 41284 in (Faria et al. 2020, see, Appendix 1.8). GP method is out of
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Figure 1.12: Comparison between three wavelet functions and its properties, (taken from
Torrence and Compo 1998).

the scope of this work.

1.5.5 Gradient of the Power Spectra: GPS

In this Thesis I has been developing a new method for the determination of stellar rotation
period. The method is based on the analysis of the gradient of the power spectra (GPS) of
stellar brightness variations. In contrast to the methods described before GPS method is
aimed at low-activity stars like the Sun, but also works in more active stars. In Chapter 2
of this thesis we develop a mathematical formulation of the method. In particular, we show
that the profile of the power spectrum around rotational period depends strongly on the
decay time of active regions. It is also possible that the rotation peak absent from the power
spectrum at all. For example, it will be flatted or absent for low activity stars, like the Sun,
which rotation period is longer than the decay time of magnetic features. Furthermore,
there could be rogue peaks which do not correspond to the rotation period but could be
easily misinterpreted with the rotation peak. Despite this we show that the profile of the
high-frequency tail of the power spectrum remains stable and only weekly depends on the
evolution of magnetic features. This allows us to propose using inflection point, i.e. the
point where the concavity of the power spectrum plotted in the log–log scale changes its
sign, as a sensitive diagnostic of the rotation period.

Chapter 3 contains the application of the GPS method to TSI observations. The method
is compared with regular methods used for detecting rotation periods on stars. GPS recover
more accurate values for the solar rotation period in the comparison with the other methods,
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independently of the activity regime of the star. We also show that GPS can be used to
distinguish periods of facular or spot dominance in the stellar brightness variation.

After successfully testing GPS against simulated and observed solar light-curves GPS
is applied in Chapter 4 to brightness time series of observed stars in the Kepler field. For
testing GPS on stars, were selected targets with know rotation periods reported by Reinhold
et al. (2013); McQuillan et al. (2014). The light curves of the samples presented a regular
modulation and higher variability than the solar TSI. That characteristics allowed to all the
methods applied to easy recover the rotation period on Kepler stars. GPS rotation period
values are well correlated with the previously reported values by other methods. In that
way GPS is tested and verified.

Furthermore, GPS can be used to estimate the faculae to spot area ratio (S fac/S spot). In
Chapter 4 the S fac/S spot is calculated for a stellar sample. We show that facular to spot
ratio decreases with the increase of stellar ration rate.

Additionally to Kepler light-curves, GPS was applied on TESS light-curves. An
example of the computed GPS for a TESS light-curve of the target TIC 441420236 is show
in the panel e of Fig. 1.10.

1.6 State of the Art

Rotation periods are not equally detectable for all stellar objects. Observational and
theoretical studies as in Aigrain et al. (2015); van Saders et al. (2019) show that rotation
periods in cool dwarfs around solar effective temperature and with a low magnetic activity
are more difficult to detect using current methods. The estimation of rotation period on
stars with a similar activity behaviour than our Sun is difficult, even with the advantage
given by high quality data from space born missions.

In He et al. (2015, 2018) they analysed the solar and stellar activity using GLS and
introducing two indicators, one by describing the degree of periodicity on the light-curve,
iAC, and the other by the effective fluctuation range, Re f f , that describes the deep of the
rotation modulation. They found that light-curves periodicities of the Kepler stars were
generally stronger in maximum season of activity than the one of the Sun, where the
highest periodicity was determined during low active seasons of activity. By applying
GLS and the indicators to the TSI they identify the solar rotation period only during solar
activity minimum regime. A similar result was found by Aigrain et al. (2015), where
they compare, in a blind exercise some of the methods mentioned as, ACF, GLS and PS
to retrieve rotation periods from simulated light-curves and real data from the Sun. In
addition, they reported that the rotation period values were not equally detected for all
methods, probably due the different levels of signal/noise in the simulated light-curves.

In van Saders et al. (2019) they presented a theoretical approach that assume a rela-
tionship between Rossby number with the amplitude of the variability. They estimate a
threshold in the Rossby number that can characterise the level of detectability of stellar
rotation by spot-modulation. Those threshold values could be representative of the level of
activity, assuming the relationship between Ro with the amplitude of the variability and that
they describe the level of detectability of rotation by modulation in cool dwarf stars. Their
models suggested that exist a limit in the spot modulation amplitude below which period
detection from current methods is inefficient. They reproduced Kepler-like observational
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Figure 1.13: Kepler magnitude vs. the range of light curve variability in different tempera-
ture ranges. The active Sun is shown with a red line (see, Basri et al. 2010).

bias on models and show that highest rotation detection fraction discrepancies are around
solar temperature, at Te f f ≈ 5700 K, (see figure 13 in, van Saders et al. 2019). They
confirmed that 80% of stellar rotation periods in the Kepler field of view with near-solar
effective temperature remain undetected.

For the solar case, where R0 = 2.01, Brandenburg and Giampapa (2018) proposed
that for Ro >∼ Ro� there are two possible scenarios: one where stars that reach solar Rossby
number start a process to reduces its magnetic braking and then become less active, or
two, that stars enter in a regime of anti-solar differential rotation, in other words where
poles rotate faster than the equator (see, Viviani et al. 2018, 2019). In (Basri et al. 2010,
2013) solar variability appears to be normal when compared to main-sequence Kepler
stars with near-solar effective temperatures, see Fig. 1.13. Even though the amount of
reported rotation periods of stars with near solar variability and parameters are lower than
expected in the Kepler field. The current knowledge of rotation periods is restricted to
stars with strong variability and regular modulation, to more active cool stars unlike the
Sun, at least in terms of its variability and magnetic activity. Due to the detectability
difficulties described before, the information of rotation periods of solar analogs available
in the literature is just the peak of the iceberg, it telling us that only a small fraction of
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Figure 1.14: Top: Rotation periods detected by autocorrelation function method versus
effective temperature. It shows bimodal rotation period distribution for different ranges
of temperature. Bottom: Left: Amplitude versus rotation period for M-dwarfs with Te f f

about 4000 K. Is observed a decrement of stars with rotation period near 19-21 days and
visible a bimodal distribution. Right: Amplitude versus effective temperature for M-dwarfs
stars in the Kepler field ( For more details see, McQuillan et al. 2013).

Figure 1.15: Bimodal rotation period distribution for Kepler stars from 0 to 350 pc ( For
more details see, Davenport and Covey 2018).
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solar-like systems have been analysed. Shapiro et al. (2016) demonstrated that the main
reason for the irregular temporal profile of solar variability is attributed to the short-time
evolution of sunspots. In other words just few magnetic features last longer enough to
reproduce the sinusoidal signal from the rotation. Furthermore, Shapiro et al. (2017) show
that facular and spot contributions to the solar brightens cancel each other signal on the
power spectrum over the rotation period time-scale.

In Metcalfe et al. (2016) and Metcalfe and van Saders (2017) proposed that the Sun
could be in a transition state to a different low-activity dynamo regime, and stars with a
clear periodicity are still in a high-activity regime. Now, Reinhold et al. (2020a) show that
the solar variability appears to be anomalously low when is compared with main-sequence
stars with near-solar effective temperature and with known near-solar rotation periods.
An additional picture to explanation such a paradox is the inability of standard methods
to reliably detect rotation periods of stars with variability similar to that of the Sun (see
also discussion in, Witzke et al. 2020). The outcome of GPS could bring us the tool to
analyse and understand such a paradox. In Reinhold et al. (2019) suggested that biases in
determining rotation periods might contribute to the explanation of a dearth of intermediate
rotation periods observed in Kepler stars (see McQuillan et al. 2013; Reinhold and Gizon
2015; McQuillan et al. 2014; Davenport 2017; Davenport and Covey 2018). In other words,
long period with low amplitude stars are hardest to detect as shown in Figs. 1.14 and 1.15.

In (Shapiro et al. 2020; Amazo-Gómez et al. 2020b) we showed that the rotation periods
of the Sun from observed total solar irradiance (TSI) and simulated lightcurves of closer
stellar analogs with similar solar fundamental parameters, can be reliably determined from
the profile of the gradient of the power spectrum, GPS. We retrieve rotational period values
base on the automated GPS method, a novel rotational analysis method that follows the
characteristics imprinted by spots and faculae on the gradient of the power spectrum.

Differences in the CLV contrast reflected in the light-curves for spots and facular
regions are the starting point of GPS. After analysing that the contribution from faculae
and spots have differences in the power spectra profile related with its relative V-like and
M-like light-curve shapes (see, Fig 1.5), we were able not just to determine rotation period
but facular or spot dominance in the solar surface. The manifestations of facular- and
spot-related signatures respectively on the third and second harmonic of the rotation period
value can be characterised by the inflection points at the GPS.

The summarized ideas previously introduced in the state of the art along to a detailed
explanation of the GPS method will be expanded throughout the following chapters in this
Thesis.
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GPS applied on collaboration papers:
The following sections of the Introduction includes the

abstract and the contribution to three different publications in
which I participated as co-author. I implemented the GPS
method and/or contributed with ideas and analysis in the

context of the present Thesis.
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1.7 The Sun is less active than other solar-like stars
This section is based on the article published at Science Journal, volume 368, pages

518-521, by Timo Reinhold, Alexander I. Shapiro, Sami K. Solanki, Benjamin T. Montet,
Natalie A. Krivova, Robert H.Cameron & Eliana M. Amazo-Gómez. I contributed in this

manuscript analysing differences between Solar and Stellar variability. The printed
version is reproduced here with permission from Science Journal, c© AAAS.

Abstract SM-A
Magnetic activity of the Sun and other stars causes their brightness to vary. We

investigate how typical the Sun’s variability is compared to other solar-like stars, i.e. those
with near-solar effective temperatures and rotation periods. By combining four years of
photometric observations from the Kepler space telescope with astrometric data from
the Gaia spacecraft, we measure photometric variabilities of solar-like stars. Most of the
solar-like stars with well-determined rotation periods show higher variability than the Sun
and are therefore considerably more active. These stars appear nearly identical to the Sun,
except for their higher variability. Their existence raises the question of whether the Sun
can also experience epochs of such high variability.

1.7.1 Rvar distribution
Figure 1.16 shows the distribution of Rvar for the Sun, the periodic stars, and a composite
sample of the periodic and non-periodic samples combined. To compare the Sun with the
stars observed by Kepler, we simulated how it would have appeared in the Kepler data by
adding noise to the TSI time series. The variability range was then computed for 10,000
randomly selected 4-year segments from ∼140 years of reconstructed TSI data.

Figure 1.16: Solar and
stellar variability dis-
tributions on a loga-
rithmic scale. The dis-
tributions of the variabil-
ity range Rvar are plotted
for the composite sample
(black), the periodic sam-
ple (blue), and the Sun
over the last 140 years
(green).
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1.8 Decoding the radial velocity variations of HD41248
with ESPRESSO

This section is based on the article published at Astronomy & Astrophysics, Volume 635,
article number A13, 16 pp, by J. P. Faria, V. Adibekyan, E. M. Amazo-Gomez,

S. C. C. Barros, J. D. Camacho, O. Demangeon, P. Figueira, A. Mortier, M. Oshagh,
F. Pepe, N. C. Santos, J. Gomes da Silva, A. R. Costa Silva , S. G. Sousa, S. Ulmer-Moll,

P. T. P. Viana. I contributed implementing the GPS method and analysing the obtained
rotation period from the TESS light-curve. The printed version is reproduced here with

permission from Astronomy & Astrophysics, c© ESO.

Abstract SM-B
Twenty-four years after the discoveries of the first exoplanets, the radial-velocity (RV)

method is still one of the most productive techniques to detect and confirm exoplanets.
But stellar magnetic activity can induce RV variations large enough to make it difficult to
disentangle planet signals from the stellar noise. In this context, HD41248 is an interesting
planet-host candidate, with RV observations plagued by activity-induced signals. We
report on ESPRESSO observations of HD41248 and analyse them together with previous
observations from HARPS with the goal of evaluating the presence of orbiting planets.
Using different noise models within a general Bayesian framework designed for planet
detection in RV data, we test the significance of the various signals present in the HD41248
dataset. We use Gaussian processes as well as a first-order moving average component to
try to correct for activity-induced signals. At the same time, we analyse photometry from
the TESS mission, searching for transits and rotational modulation in the light curve. The
number of significantly detected Keplerian signals depends on the noise model employed,
which can range from 0 with the Gaussian process model to 3 with a white noise model.
We find that the Gaussian process alone can explain the RV data while allowing for the
stellar rotation period and active region evolution timescale to be constrained. The rotation
period estimated from the RVs agrees with the value determined from the TESS light
curve. Based on the data that is currently available, we conclude that the RV variations of
HD41248 can be explained by stellar activity (using the Gaussian process model) in line
with the evidence from activity indicators and the TESS photometry.

Keywords: techniques: radial velocities - methods: data analysis - planetary
systems - stars: individual: HD41248.

1.8.1 TESS
The Transiting Exoplanet Survey Satellite (TESS; Ricker et al. 2014, 2015) observes
HD41248 (TIC 350844714, TESS magnitude = 8.187) in sectors one through 13 of its
nominal two-year mission. As of June 2018, data from the first ten sectors are available
(from 25 July 2018 to 22 April 2019). This leads to a baseline of around 270 days. TESS
observations are simultaneous with the ESPRESSO RVs between the end of sector four
and middle of sector nine.

We downloaded, combined, and analysed the TESS light curves for the first 10 sectors.
An in-depth analysis of the combined light curve is described in 1.8.2. In summary, we do
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not detect credible transit signals. We do find evidence for a stellar rotation period between
24 and 25 days. The data are consistent with a spot lifetime of about 25 days.

1.8.2 Analysis of the TESS light curve
The TESS mission is set to observe HD41248 during the full first year of its nominal two-
year mission. Using the Lightkurve package (Lightkurve Collaboration et al. 2018), we
downloaded and extracted the Pre-search Data Conditioning (PDCSAP_FLUX) light curves
(LC) produced by the Science Processing Operations Center from the Mikulski Archive for
Space Telescopes (MAST 10). As of June 2018, data from the first ten sectors are available,
with a baseline of 243 days. The individual LCs were then merged by adjusting the mean
of the flux in each sector, and outliers were removed with a 5-sigma-clipping procedure.
This results in the merged LC shown in Fig.1.17, which also includes an indication of the
period where TESS observations are simultaneous with ESPRESSO.
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Figure 1.17: Merged TESS light curve from the first ten sectors. The camera and CCD
number with which HD41248 was observed in each sector is indicated at the top, as well
as the period of ESPRESSO observations. The orange points show the binned LC over a
2-hour window.

The merged LC shows a weighted rms of 431 ppm. Using the relations between
active-region lifetime, spot size, and stellar effective temperature determined by Giles et al.
(2017, their Eq. 8). This leads to an estimate of 25.57 days for the decay lifetime of active
regions in the stellar surface. This relation was built for star spots, since these have a larger
effect in the brightness variations when compared with faculae. In the Sun, faculae tend to
live longer than spots (Solanki 2003; Shapiro et al. 2017).

1.8.3 Rotation period
We searched the TESS LC for a periodic signal that can be associated to stellar rotation
using four different methods: the GLS periodogram, the autocorrelation function (ACF, e.g.
McQuillan et al. 2014), the wavelet power spectra (PS, e.g. Torrence and Compo 1998),

10 mast.stsci.edu/portal/Mashup/Clients/Mast/Portal
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1.8 Decoding the radial velocity variations of HD41248 with ESPRESSO

Figure 1.18: Results from the rotation period analysis showing the GLS periodogram
(panel a), ACF (panel b), power spectrum (panel c), and GPS (panel d) of the TESS LC.
Each panel displays the most prominent periods detected with each method.

and the gradient of the power spectra (GPS11, Shapiro et al. 2020, Amazo-Gómez et al.
2020ba, and Amazo-Gómez et al. 2020ab)

The GPS method in particular attempts to determine the rotation period from the
enhanced profile of the high-frequency tail of the power spectrum by identifying the point
where the gradient of the power spectrum reaches its maximum value. Such a point
corresponds to the inflection point (IP), that is, a point where the concavity of the power
spectrum changes sign. Shapiro et al. (2020) show that the period corresponding to the
inflection point is connected to the stellar rotation period by a calibration factor equal to
αSun = 0.158, for Sun-like stars.

The results from the four methods are presented in Fig.1.18 and can be summarised
as follows: the GLS periodogram suggests a periodic signal of 10.2 days, but with a low
relative power; the ACF shows periodic signals at 24.25 days and 12.34 days. The PS, in
panel (c), shows two peaks at 16.96 days and 6.15 days. The GPS method shows three
enhanced inflection points with enough amplitude to determine three different periodicities.
The inflection points at 11.74, 3.97, and 1.63 days correspond to periodic signals at 74.28,
25.15, and 10.35 days after applying the calibration factor αS un.

From the values obtained using the four different methods, we can see that both the
GLS and GPS methods detect a periodicity close to 10 days. The strongest signal in the
ACF is around 24.25 days, in agreement with the second enhanced signal from GPS, of
25.15 days. The values obtained with the ACF and GPS are close to those obtained from
spectroscopy (v sin i) and with the periodicities seen in some activity indicators, suggesting
a stellar rotation period for HD41248 of about 25 days.

11 Not to be confused with Gaussian processes, GPs.
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1.9 The correlation between photometric variability and
radial velocity jitter

This section is based on the article published at Astronomy & Astrophysics, volume 639,
article number A35, by S. Hojjatpanah, M. Oshagh, P. Figueira, N.C. Santos, E. M.

Amazo-Gómez, S. G. Sousa, V. Adibekyan, B. Akinsanmi, O. Demangeon, J. Faria, J.
Gomes da Silva, N. Meunier. I contributed in this manuscript by implementing and
analysing the GPS on 171 TESS LCs. The printed version is reproduced here with

permission from Astronomy & Astrophysics, c© ESO.

Abstract SM-C
Characterizing the relation between stellar photometric variability and radial velocity

(RV) jitter can help us to better understand the physics behind these phenomena. The
current and upcoming high precision photometric surveys such as TESS, CHEOPS, and
PLATO will provide the community with thousands of new exoplanet candidates. As a
consequence, the presence of such a correlation is crucial in selecting the targets with the
lowest RV jitter for efficient RV follow-up of exoplanetary candidates. Studies of this type
are also crucial to design optimized observational strategies to mitigate RV jitter when
searching for Earth-mass exoplanets. Our goal is to assess the correlation between high-
precision photometric variability measurements and high-precision RV jitter over different
time scales. We analyze 171 G-, K-, and M-type stars with available TESS high precision
photometric time-series and HARPS precise RVs. We derived the stellar parameters for
the stars in our sample and measured the RV jitter and photometric variability. We also
estimated chromospheric Ca II H & K activity indicator log(R′HK), v sin i, and the stellar
rotational period. Finally, we evaluate how different stellar parameters and a RV sampling
subset can have an impact on the potential correlations. We find a varying correlation
between the photometric variability and RV jitter as function of time intervals between the
TESS photometric observation and HARPS RV. As the time intervals of the observations
considered for the analysis increases, the correlation value and significance becomes
smaller and weaker, to the point that it becomes negligible. We also find that for stars
with a photometric variability above 6.5 ppt the correlation is significantly stronger. We
show that such a result can be due to the transition between the spot-dominated and the
faculae-dominated regime. We quantified the correlations and updated the relationship
between chromospheric Ca II H & K activity indicator log(R′HK) and RV jitter.

Keywords: Planetary systems, Planets and satellites: detection, Techniques: ra-
dial velocities, spectroscopy, photometric, Stars: activity.

1.9.1 Light curve: TESS

We obtained the light-curves of all 171 stars from The Mikulski Archive for Space
Telescopes (MAST). MAST contains TESS simple aperture photometry (SAP_flux)
(Morris et al. 2017) as well as presearch data conditioning (PDCSAP_flux). Most of
the targets (96 %) were observed in only during one TESS sector. For stars with light-
curves in two or more consecutive sectors, we merged all available light-curves. We
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1.9 The correlation between photometric variability and radial velocity jitter

Figure 1.19: Light curve of GJ3440 during one TESS sector (blue points) and the red lines
presenting the peak-to-peak of light curve.

used quality-flag12 as suggested by the TESS Data Product review, also recently used and
tested in (Vida et al. 2019). We used SAP_flux which optimizes the aperture for the best
signal-to-noise for the each target (Bryson et al. 2017) and also the calibrated pixels in
order to perform a summation of the flux. The SAP light curves provided by the TESS
pipeline are also background corrected. We removed outlier flux points using a sigma-
clipping of three standard deviations and smoothed the fluxes using Savitzky-Golay filter
within 15 data point windows (∼ 30 minutes) to reduce the effect of the short-time scale
photometric variability. Since we are interested in variability at stellar rotation timescales,
this smoothing does not affect our results. We then normalized the flux by the median
flux values. We derived the ratio between the peak-to-peak of light curve variability of
SAP_flux and the peak-to-peak of light curve variability of PDCSAP_flux. If this ratio was
larger than 3.0, we checked the light curves visually to ensure if there was any evidence for
systematic errors in SAP_flux. For more than 90 % of the stars, we used SAP_flux, and
for the rest we assumed that the light-curves are dominated by systematic errors therefore
we used PDCSAP_FLUX. In Fig. 1.19, you can see a sample of reduced light curve in one
sector for one star.

1.9.2 Stellar rotation period
Photometric contrast differences associated to magnetic features (e.g., dark spots and bright
faculae) generate traceable signatures of stellar rotation periods on light curves.

We analyze the presence of a periodic modulation signal from stellar rotation on the
TESS photometric time-series using the gradient of the power spectra (GPS) (see Shapiro
et al. 2020; Amazo-Gómez et al. 2020b,a). We successfully recover the rotation period for
71 out of 171 stars of the sample. We report the estimated rotation period from the GPS

12 101010111111: https://outerspace.stsci.edu/display/TESS/2.0+-+Data+Product+
Overview
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1 Introduction

method in Hojjatpanah et al. (2020). The rotation period from GPS is determined from
the enhanced profile of the high-frequency tail of the power spectrum. In particular, we
identify the point where the gradient of the power spectrum GPS in log-log scale reaches
its maximum value. Such a point corresponds to the high frequency inflection point (HFIP),
that is, where the concavity of the power spectrum plotted in the log-log scale changes sign.
The position of inflection point is related to the rotation period of star by the calibration
factor αS un, for Sun-like stars.

For the calculations presented in this project we adopt a solar-like calibration factor
αSun ± 2σ = 0.158 ± 0.014, and 2 sigma uncertainty (for more details see, Shapiro et al.
2020; Amazo-Gómez et al. 2020b,a, b).

We also estimated the faculae to spot ratio for 29 of the 71 stars. Following the GPS
outcome, we applied the criteria indicating that the light curve is faculae dominated when
the ratio between HFIP and the independent rotation period ranges between [0.11-0.16],
and spot is dominated when the value falls between [0.16-1.24].

1.9.3 Correlation with stellar rotation period
In Top panel in Fig. 1.20, we present RV-RMS and the peak-to-peak light curve variation
for the subsample of 71 stars with measured rotation periods (coded with marker size).
The color bar represents the effective temperature. One can easily notice that stars with
large RV-RMS and a large peak-to-peak photometric variability are mostly fast rotating
stars (less than 13 days) and there is a hint of temperature dependency. Bottom panel in
Fig. 1.20 shows the same 71 stars but color bar indicates the rotation period value, and
circle size the v sin i obtained spectroscopically, which again confirms the previous result
we found.

In Fig. 1.21, we present a similar plot to Fig. 1.20 but this time for 29 stars where we
could identify facular or spot dominated patterns using the method described in Sec. 1.9.2.
We found 9 faculae dominated stars (which were also slow rotators as is expected for faculae
dominated stars), and 20 spot-dominated stars. We show faculae and spot dominated stars
in yellow and black, respectively. In this sample, 20 stars can be classified as fast rotators
(rotation period < 15 days), and large fraction of them (13 out 20) are spot dominated. This
result is in strong agreement with Montet et al. (2017), where they reported 15 days as
the threshold in rotation period for separating spot-faculae dominated regimes. Moreover,
faculae-dominated stars tend to have low photometric peak-to-peak variability, due to the
low contrast of facular region, and therefore are mostly below the 6.5 ppt limit. Thus, the
6.5 ppt limit can be also interpreted as the photometric variability transition between the
spot-dominated and the faculae-dominated regime. However, the sample of 29 stars is too
small to generalize.

We were able to estimate the rotation period of 71 stars, out of 171 stars in our sample,
using the TESS light curve. Then we investigated the effect of this parameter on the
correlation between RV-RMS and peak-to-peak of light curve variability. Our result
demonstrated that slow rotating stars (which are the ones also we found to be faculae
dominated) create lower RV jitter as well as lower peak-to-peak photometric variability,
and on the other hand fast rotating star, Prot ≤ 5 day (which are the ones also we found to
be spot dominated) generate much larger RV jitter and photometric variability.
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Figure 1.20: RV-RMS and peak-to-peak of light curve variation for the subsample of
71 stars. Top plot: Circle sizes represents the value of rotation period found by GPS
method. Color bar indicates the stellar effective temperature. Bottom plot: Similar than top
panel but, color bar indicates the rotation period value, and circle size the v sin i obtained
spectroscopically

39



1 Introduction

Figure 1.21: RV-RMS and the peak-to-peak of light curve variation for the subsample
of 20 stars with spot dominance and 9 stars with faculae dominance in their light curves.
Circle sizes represents the v sin i value determined spectroscopically. Black color indicates
spot dominated and yellow indicates faculae dominated. The Blue vertical line shows the
knee point peak-to-peak light curve variation at 6.5 ppt.
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Main publications for the GPS method Thesis:
The following chapters includes the three main manuscripts

describing, proposing and testing the GPS method. Being this
the core of my Thesis disputation.
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2 Inflection point in the power
spectrum of stellar brightness
variations: I. The model

This chapter is based on the article published at: Astronomy & Astrophysics, volume 633,
article number A32, by A.I. Shapiro, E.M. Amazo-Gómez, N.A. Krivova & S.K. Solanki.

My participation in this work compromised the co-developing of the method, as well the
testing of the preliminary models and wavelets in order to understand the signals obtained.

The printed version is reproduced here with permission from
Astronomy & Astrophysics, c© ESO.

Abstract chapter 2
Considerable efforts has been put into using light curves observed by space telescopes

such as CoRoT, Kepler and TESS for determining stellar rotation periods. While rotation
periods of active stars can be reliably determined, the light curves of many older and less
active stars (e.g., stars similar to the Sun) are quite irregular, which hampers determination
of their periods. We examine the factors causing the irregularities in stellar brightness
variations and develop a method for determining rotation periods of low activity stars
with irregular light curves. We extend the Spectral And Total Irradiance Reconstruction
(SATIRE) approach for modelling solar brightness variations to Sun-like stars. We calculate
the power spectra of stellar brightness variations for various combinations of parameters
defining the surface configuration and evolution of stellar magnetic features. The short
lifetime of spots in comparison to the stellar rotation period as well as the interplay between
spot and facular contributions to brightness variations of stars with near solar activity cause
irregularities in their light curves. The power spectra of such stars often lack a peak associ-
ated with the rotation period. Nevertheless, the rotation period can still be determined by
measuring the period where the concavity of the power spectrum plotted in the log-log scale
changes sign, i.e., by identifying the position of the inflection point. The inflection point of
the (log-log) power spectrum is found to be a new diagnostic for stellar rotation periods that
is shown to work even in cases where the power spectrum shows no peak at the rotation rate.

keywords: Stars - rotation periodicity - Sun - activity - photometry.
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2 Inflection point in the power spectrum of stellar brightness variations: I. The model

2.1 Introduction of chapter 2

The magnetic features on stellar surfaces lead to quasi-periodic variations in stellar bright-
ness as stars rotate. While such rotation variations were first detected with ground-based
instrumentation (see, e.g., Radick et al. 1998), most of the data have been accumulated with
planet-hunting spaceborne missions aimed at detecting planetary transits via photometric
monitoring. In particular, CoRoT (Bordé et al. 2003b; Baglin et al. 2006) and Kepler
(Borucki et al. 2010) telescopes provided photometric time series for several hundred
thousand stars. Even more data is expected from the recently launched TESS mission
(Ricker et al. 2014) and the future PLATO mission (Rauer et al. 2014).

The interest in studying stellar brightness variations is twofold. First, they provide
information on the stars themselves, e.g. their rotation periods or their magnetic cycles.
Second, a quantitative assessment of stellar variability is needed for better detection and
characterization of extra-solar planets.

Of particular interest are studies of stellar rotation periods. Stellar rotation is closely
linked to stellar magnetic activity and age (Skumanich 1972). Consequently, surveys of
stellar rotation periods are the basis for calibrating gyrochronology relationships between
rotation period, color, and age (cf. McQuillan et al. 2014), for understanding the Galactic
star formation history (cf. Davenport 2017; Davenport and Covey 2018), and for con-
straining properties of the magnetic braking (Metcalfe et al. 2016). The light curves of
many, especially young and active stars, look almost like a sine wave (see, e.g. Fig. 4
from Reinhold et al. 2013). The rotation period of such stars manifests itself as a clear
peak in the Lomb-Scargle periodogram (Zechmeister and Kürster 2009) or a series of
equidistant peaks in the autocorrelation function (McQuillan et al. 2013) of their light
curves. Consequently, in the numerous studies aimed at determining stellar rotation periods
employing Kepler and CoRoT data (Walkowicz and Basri 2013; Reinhold et al. 2013;
McQuillan et al. 2014; García et al. 2014; Buzasi et al. 2016a; Angus et al. 2018) most of
the obtained rotation periods are of such stars.

The largest available surveys of stellar rotation periods have been compiled by Reinhold
et al. (2013) using Lomb-Scargle periodograms and by McQuillan et al. (2014) using
autocorrelation analysis. They determined rotation periods in, respectively, 24124 and
34030 presumably main sequence Kepler stars. Another approach was taken by García
et al. (2014), who concentrated on Kepler stars with measured pulsations and, in addition,
to the autocorrelation analysis employed wavelet power spectra. They determined rotation
periods in 310 out of 540 considered targets.

As successful as they are, the aforementioned approaches are based on the assumption
that stellar light curves have a regular temporal profile. This is a valid assumption for
young and active stars but it fails for many old and less active stars. For such stars the
complex configuration of magnetic features and their relatively rapid evolution lead to
rather complex light curves and render the period determination very difficult.

The most prominent example of such a star with complex light curve is our Sun. Solar
short-term variability (i.e. variability on timescales of up to a few solar rotation periods)
has a highly irregular temporal profile (see, e.g. Fig. 1 from Shapiro et al. 2016). The
main reason for this is that only very few sunspots last longer than the solar rotation
period so that the short-term variability of solar brightness is strongly affected by sunspot
evolution. Furthermore, Shapiro et al. (2017) showed that the global wavelet power
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spectrum of solar brightness variations, calculated over the period 1996-2015, does not
have a clear rotation peak due to the compensation of facular and spot contributions to
solar brightness variability. They showed that since faculae have much longer lifetimes
than spots (e.g. facular features can easily last for a few solar rotations), their contribution
to solar brightness variability has a very pronounced peak at the solar rotation period.

The peak in the spot component of solar brightness variations is much less pronounced
but the spot component is stronger on timescales around the solar rotation period (i.e.
at about 10–50 days). As a result, two peaks almost fully cancel each other. This is in
agreement with other studies (see, e.g. Lanza and Shkolnik 2014; Aigrain et al. 2015) that
found that the true rotation period of the Sun would not be detectable at intermediate and
high levels of solar activity, when the spot contribution to solar brightness variations wipes
out the rotation peak in the facular component. At the same time, the solar rotation period
is easily detectable during activity minimum when the brightness variations are brought
about by long-lived faculae.

A good understanding of the physical phenomena determining solar variability might
be helpful for solving problems posed by stellar data. For example, Reinhold et al. (2019)
suggested that the dearth of the intermediate stellar rotation periods in the Kepler sample
(see, e.g. McQuillan et al. 2014; Davenport 2017; Davenport and Covey 2018) can be
partially caused by the compensation of facular and spot contributions to brightness
variability (similar to the solar case) and the consequent inability to detect rotation periods
of such stars. Therefore the dearth in the observed period distribution does not necessarily
implies an under-representation in the real period distribution.

We suggest that the irregularity of stellar light curves is an important factor in explaining
why rotation periods cannot be determined for the majority of stars in the Kepler field
(e.g. the success rate of McQuillan et al. (2014) is only 25.5% since they applied the
autocorrelation method to 133030 stars). Recently, van Saders et al. (2019) showed that the
success rate of period determinations strongly decreases with increasing stellar effective
temperature and such a decrease cannot be explained by the simultaneous decrease of the
amplitude of stellar brightness variations. This is in line with our suggestion, since spot
lifetimes are expected to decrease with stellar effective temperature (Giles et al. 2017) and,
consequently, the period determination gets more difficult.

In this paper we employ an approach similar to that taken by the SATIRE model (which
stands for Spectral And Total Irradiance Reconstruction, Fligge et al. 2000a; Krivova
et al. 2003), originally developed for modeling solar brightness variations, to synthesize
stellar light curves and their power spectra. We do this as a function of lifetimes of spots
and faculae, the ratio between facular and spot stellar surface-area coverage, and stellar
inclination (i.e. the angle between the direction to the observer and stellar rotation axis).
We specify the conditions under which the rotation peak in stellar power spectra disappears
and show that even in such cases the rotation period can still be determined from the
high-frequency tail of the power spectrum. In particular, we calculated the frequency
where the concavity of the power spectrum plotted on the log-log scale changes sign (in
other words the steepest point of the power spectrum). Such a frequency corresponds to
the inflection point in the power spectrum of stellar brightness variations. We demonstrate
that the position of the inflection point is proportional to the stellar rotation frequency and
can be used as a proxy for its determination. All in all, we show that the power spectrum
of stellar brightness variations is a sensitive tool for studying stellar rotation and magnetic
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activity.
The SATIRE approach has been extensively validated against various solar data (see

e.g. Ball et al. 2014; Yeo et al. 2014, and references therein). Recently SATIRE was used to
show that observed solar brightness variations can be explained with remarkable accuracy
by the joint action of only two sources, the surface magnetic field and granular convection
(Shapiro et al. 2017). This result puts us in a strong position for modeling brightness
variations of Sun-like stars.

This paper is restricted to modeling for validating the proposed approach, while its
application to available stellar data is the subject of forthcoming papers. The rest of the
paper is structured as follows: in Sect. 2.2 we describe the model used to synthesize the
light curves presented in this study. In Sect. 2.3 we consider an illustrative case of stars
whose variability is exclusively brought about by dark spots. A more realistic case of
stars with dark spots and bright faculae is detailed in Sect. 2.4. The impact of various
properties of stellar magnetic features on the position of the inflection point is outlined
in Sect. 2.5, while the dependence of the inflection point position on the level of stellar
magnetic activity is presented in Sect. 2.6. Finally, conclusions are drawn in Sect. 2.7.

2.2 Model description
Strong concentrations of magnetic field emerging on the stellar surface lead to the formation
of active regions, encompassing magnetic features such as dark spots and bright faculae
(see, e.g., review by Solanki et al. 2006). The transits of these regions over the visible
stellar disk as the star rotates as well as their evolution are dominant sources of brightness
variations in Sun-like stars on timescales from about a day.

In our model we construct active regions as a mixture of spot and facular areas. We
note that a model based on such an assumption would not be suitable for calculating
stellar brightness variations on the timescale of the magnetic activity cycle since it does
not account for the emergence of the ephemeral active regions (see, e.g. Dasi-Espuig
et al. 2016, and references therein). At the same time the variability on the timescale of
stellar rotation is brought about by the largest facular and spot features, which usually
emerge together. Therefore such a simple model of stellar active regions is expected to be
appropriate for modeling stellar rotation variability and is often employed in the literature
(see, e.g. Lanza et al. 2003, 2009; Gondoin 2008; Borgniet et al. 2015; Morris et al. 2018).

The size of active regions is assumed to be much smaller than the stellar radius, which
is a good assumption for the Sun and for stars with near-solar levels of magnetic activity.
Consequently, we did not consider the exact geometrical shape of active region and its spot
and facular components, prescribing the same value of the foreshortening factor for the
entire region when computing its visible solid angle.

At each moment of time t the stellar brightness at the wavelength λ is given by

F(λ, t) = FQ(λ) +
∑

i

Ωi(t) ·
(
φi,F(t) CF

(
λ, ~ri

)
+ φi,S (t) CS

(
λ, ~ri

))
, (2.1)

where FQ(λ) is the brightness of a quiet star, i.e. a star without any active regions. The
summation is performed over all active regions visible at time t and Ωi(t) is a solid angle
of the i-th active region seen from the vantage point of observer. By changing the number
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of regions on the stellar surface we could simulate stars with different magnetic activity.
Factors φi,F(t) and φi,S (t) are fractions of spot and facular parts of the area of i-th active
region, respectively (with φi,F(t) + φi,S (t) = 1). CF(λ, ~ri) and CS (λ, ~ri) are spectral contrasts
of faculae and spots relative to the quiet stellar regions along the direction to the i-th active
region ~ri.

For simplicity, we consider here only stars rotating as a solid body. We assume that the
emergence of stellar active regions follows the solar latitudinal distribution and happens in
the activity belts, i.e. in between the latitudes of 5◦ and 30◦ (see, e.g. Knaack et al. 2001).
This should be a good approximation for slowly rotating stars like the Sun (Schüssler and
Solanki 1992), which are the main focus of our study.

As will be shown below the growth phase of the active regions does not have a strong
effect on our results so that it is neglected in most of the experiments. In other words,
we start tracking the region and its effect on stellar brightness only after it reaches its
maximum area.

We have utilized spectra of the quiet Sun, faculae, spot umbra, and spot penumbra
calculated by Unruh et al. (1999) with the ATLAS9 radiative transfer code (Kurucz 1992;
Castelli and Kurucz 1994). Following Wenzler et al. (2006) and Ball et al. (2012) we
compute sunspot spectra as a mixture of 80% penumbral and 20% umbral spectra.

The Unruh et al. (1999) spectra have been proved to be reliable for modeling solar
brightness variations (see e.g. reviews by Ermolli et al. 2013; Solanki et al. 2013, and
references therein) and, consequently, we expect them to be applicable to modeling stars
with near-solar fundamental parameters. At the same time, the profile of the high-frequency
tail of the power spectrum and, consequently, the position of the inflection point depends
on the the centre-to-limb variations of brightness contrasts of stellar magnetic features.
They, in turn, depend on the fundamental stellar parameters. The apparatus for calculating
contrasts of magnetic features in stars with various fundamental parameters is becoming
available (see Norris et al. 2017; Witzke et al. 2018; Salhab et al. 2018) so that we plan to
generalize our study in one of the forthcoming publications. Presently available simulations
of facular contrasts at stars with different effective temperatures (see, e.g., Fig. 5.16 from
Norris et al. 2017) indicate that results presented in this study are applicable to at least
stars from late F to early K spectral types.

All the light curves presented in this study are calculated as they would be seen by the
Kepler telescope, i.e. by multiplying Eq. 2.1 with the Kepler total spectral efficiency and
integrating it over all relevant wavelengths. The simulations are performed with 6-hour
cadence. We have checked that the decrease of the time step in our simulations has virtually
no effect on the spectral power of variability at periods from about 2–3 days and larger so
that such a choice is appropriate for our goals.

As illustrated by Eq. 2.1 the variability of the flux F(λ, t) is brought about by the time-
dependence of the solid angles of active regions seen from the vantage point of observer,
Ωi, and by the time-dependence of facular and spot fractions αi,F(t) and αi,S (t). The former
is attributed to the evolution of magnetic features as well as to the rotation of the star
and consequent change of the foreshortening factor. The latter is given by the difference
between facular and spot lifetimes. For example, in the (rather unrealistic) case of the same
lifetime of spot and facular components of an active region, their relative coverage would
not depend on time and consequently the time dependence of the contribution of active
regions to stellar brightness will be solely determined by the variable solid angle Ωi(t).
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All in all, the power spectra of stellar brightness variations depend on properties of
stellar active regions and the viewing geometry. To better illustrate the important effects
and individual roles of each of the involved parameters we start with considering a greatly
simplified case of variability in Sect. 2.3 and add more realism into our simulations in the
subsequent sections (while still keeping the model relatively simple).

2.3 Stars with spots
In this section we examine stellar brightness variations due to spots, i.e. we put αS (t) to
1 and αF(t) to 0 in Eq. 2.1. We track a star during a time interval of 1600 days which
roughly corresponds to the duration of 17 Kepler quarters, i.e. approximately the total
duration of the Kepler mission. During this interval we let 300 spots emerge, each at a
random point of time and in a random place within the activity belts on the stellar surface
(see Sect. 2.2). Since we are interested in the impact of spot evolution on the profile of the
power spectrum of stellar brightness variations and, in particular, on the position of the
inflection point, for illustrative purposes we assume that all spots have the same growth and
lifetimes, independently of their size. We also start with a simple case of spots emerging
in three relative sizes scaling as 1:2:3 and consider 100 spots of each of the sizes. A more
realistic treatment will be employed in the subsequent sections. We note that the absolute
size of spots does not play a role in the calculations presented in this section since it affects
only the amplitude of the brightness variations and has no effect on the profile of their
power spectrum.

2.3.1 High-frequency tail of the power spectrum and inflection point
Figures 2.1 and 2.2 show two realizations of light curves calculated for a model star rotating
with a 30-day period. We assumed that spots instantaneously emerge on the stellar surface
(i.e. that the growth time is zero) and then their areas linearly decrease with time. In other
words, the spot area A(t) after the emergence can be written as

A(t) = A0

(
1 −

t − t0

Tspot

)
, t0 ≤ t ≤ t0 + Tspot, (2.2)

where A0 is the maximum area and t0 is the time of emergence. We put Tspot = 25 d
to produce light curves for Figs. 2.1 and 2.2. Since times and positions of individual
emergence are kept random, the two light curves shown in these figures are distinctly
different from each other.

One can clearly see the individual dips caused by the transits of spots as a star rotates
(Figs 2.1a and 2.2a). Nevertheless, the Lomb-Scargle periodograms of both light curves do
not have a clear 30-day peak (Figs 2.1b and 2.2b). Instead, the peaks appear to be rather
random and their locations depend on the specific realization of spot emergence. The
same situation is seen when global wavelet power spectra with 6th order Morlet and Paul
wavelets (see Figs 2.1c and 2.2c and Figs 2.1e and 2.2e, respectively) are computed: all
four power spectra do not have any noticeable signature of the rotation peak. In comparison
to the Morlet wavelet, Paul wavelet implies a poorer frequency localization but stronger
averaging in the frequency domain when power spectra are computed. Consequently,
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2.3 Stars with spots

wavelet power spectra calculated with the Paul wavelet have less details but they are more
resistant to statistical noise (Torrence and Compo 1998).

In Figs 2.1d, f and 2.2d, f we plot the ratios Rk between the power spectral density P(ν)
at two adjacent frequency grid points: Rk ≡ P(νk+1)/P(νk). It is easy to show that these
ratios can be written as

Rk = 1 +
d ln P(νk)

d ln ν
·

(∆ν)k

νk
, (2.3)

where ∆ν is spacing of the frequency grid. We calculate power spectra on a grid that is
equidistant on a logarithmic scale, i.e. ∆ν/ν is constant. Therefore, Rk values represent
gradient of the power spectrum plotted on a log-log scale (as in Figs 2.1c, e and 2.2c, e),
scaled with some factor (which depends on the chosen frequency grid) and offset by unity.

For simplicity from now on we will refer to the Rk values as the gradient of the power
spectrum. One can see that while the gradient of the Morlet power spectra has sophisticated
profiles with many local maxima (corresponding to inflection points in the Morlet power
spectrum), the gradient of the Paul power spectra looks much simpler. Furthermore, while
the power spectra of both light curves have no noticeable peak at the rotation period, both
6th order Paul power spectra have inflection points giving rise to very clear peaks in the
gradients of the power spectra. Importantly, the location of these points is the same for the
two realizations plotted in Figs. 2.1 and 2.2.

In Figs. 2.1 and 2.2 we show two light curves corresponding to the same lifetime of
spots, but to different realizations of spot emergence. In Fig. 2.3 we look at things the
other way around and consider power spectra of four light curves calculated with the same
realization of spot emergence but with different lifetimes of spots. The power spectrum
of the light curve with a spot lifetime Tspot = 90 days has a pronounced rotation peak. Its
amplitude decreases rapidly with decreasing spot lifetime and disappears completely when
the lifetime of spots becomes smaller than the stellar rotation period: neither Tspot = 20
days nor Tspot = 12 days cases display any signature of the peak in the power spectrum
around the rotation period. To better illustrate this point we also plot the power spectra on
a linear vertical scale (Fig. 2.3b).

Figure 2.3 illustrates that stellar rotation periods cannot be determined from the maxi-
mum of the power spectrum when lifetimes of spots are small in comparison to the rotation
period (at least for a star with no faculae). Interestingly, this is the case for the Sun since
sunspots very rarely last longer than the solar rotation period (Baumann and Solanki 2005).

The bottom panel of Fig. 2.3 points to an alternative method for determining rotation
periods when spot lifetimes are shorter than the stellar rotation period. One can see that the
high-frequency tail of the power spectra is much less sensitive to spot lifetime. In particular,
the position of the inflection point is almost the same in all four cases. The results obtained
so far strongly suggest that the high-frequency tail of the power spectrum may provide
a more robust way of determining stellar rotation periods. There are different ways of
parameterizing the tail, e.g. one can approximate it with the help of a multi-component
powerlaw fit similar to that employed by Aigrain et al. (2004) and establish the connection
between parameters of such a fit and the rotation period. However, in the present study we
limit ourselves to showing that the position of the inflection point is a sensitive proxy of
the stellar rotation period, leaving other methods for future investigations.

The profile of the power spectrum and, consequently, the calibration factor between
the position of the inflection point and rotation period depend on the wavelet utilized for
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Figure 2.1: Model light curve of a star with a 30-day rotation period covered by spots
and observed from its equatorial plane. The spots decay according to a linear law with
Tspot = 25 d. Two upper panels show a normalized light curve (panel a) and corresponding
Lomb-Scargle periodogram (panel b). Panels c–f show global wavelet power spectra (left
panels) and corresponding gradient of the power spectra (right panels) calculated with
the 6th order Morlet wavelet (panels c and d) and with the 6th order Paul wavelet (panels
e and f). The values of the gradients of these power spectra are a scaled and offset by
unity (see Eq. 2.3 and discussion in the text for the exact quantity plotted). Numbers in
panels d and f correspond to the positions of the inflection points (i.e. local maxima of
the gradient). Vertical dashed lines in panels b, c, and e indicate the rotation period of
the modeled star. Vertical solid lines in panels d and f indicate positions of the inflection
points. We note that since spots reduce stellar brightness, the normalized variability (i.e.
normalized F(λ, t) − FQ(λ) values, see Eq. 2.1) is plotted between -1 and 0.
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Figure 2.2: The same as Fig. 2.1 but for another realization of spot emergence.
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Figure 2.3: Power spectra of model light curves plotted on logarithmic (top panel) and
linear (middle panel) scales on the vertical axis. The gradients of the power spectra in the
top panel are plotted in the bottom panel. The modeled spots decay according to a linear
law with lifetimes, Tspot, equal to: 90 d (blue), 50 d (orange), 20 d (magenta), and 12 d (red).
All four light curves are calculated for the same realization of spot emergence. Vertical
dashed lines at 30 d and 7.2 d correspond to the rotation period of the simulated star and
the approximate position of the inflection point in all four power spectra, respectively.
Power spectra are calculated with the 6th order Paul wavelet.
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calculations. The wavelets with good frequency localization lead to power spectra with
multiple, often many inflection points whose positions depend on the specific realization
of emergence (compare Figs. 2.1d and 2.2d). At the same time wavelets with very low
frequency localization lead to a strong scatter in the relationship between inflection point
position and the rotation period. After considering several wavelets with different degrees
of frequency localization we found that the 6th order Paul wavelet introduces the best
smoothing of the power spectra for our purposes. An example of power spectra and
corresponding gradients calculated utilizing wavelets with different frequency localization
is given in Fig. 2.12.

We stress that the inflection point itself does not have a clear physical meaning and it is
just a convenient way of quantifying the profile of the high-frequency tail of the power
spectrum.

2.3.2 Effect of spot emergence and lifetime
In Fig. 2.4 we show the dependence of the inflection point position on the lifetime of spots.
In addition to the linear decay law, several other functional forms, such as parabolic and
exponential decays (Bumba 1963; Martínez Pillet et al. 1993; Petrovay and van Driel-
Gesztelyi 1997) have been proposed (see also Solanki 2003, for a review). To illustrate
the impact of the functional form of the decay law on the inflection point position we also
consider an exponential law under which the spot area can be written as

A(t) = A0 exp(−
t − t0

Tspot
), t ≥ t0. (2.4)

Figure 2.4 shows that the position of the inflection point remains stable and is not
affected by Tspot for values above about 15 d (i.e. one half of the rotation period) for the
linear decay law and 10 d (one third of the rotation period) for the exponential decay
law. Note, however, the slightly different meanings of Tspot for the two decay laws. Tspot

corresponds to spot lifetime for linear decay (i.e. the spot disappears when Tspot is reached),
while Tspot in the exponential decay law implies an e-folding time.

Since the exact profile of the power spectrum depends on the realization of spot
emergence, the positions of the inflection point show some scatter around the mean values
(solid lines in Fig. 2.4) for a fixed lifetime. This scatter represents an intrinsic uncertainty
of using the inflection point as a proxy for the rotation period. For some of the realizations
“rogue” inflection points at lower periods appear (seen below 0.1 in the upper panel).
Furthermore, inflection points are also found at large periods, even forming a high-period
branch for spot lifetimes larger than about 30 days. These points are linked to the rotation
peak in the power spectra (which is only present if spot lifetime is large, see blue curves in
Fig. 2.3).

Until now we considered spots that emerge instantaneously on the stellar surface and
then decay. Such an assumption is reasonable for our purposes since the emergence and
growth of spots takes significantly less time than the decay and rarely lasts longer than
a few days (see, e.g. van Driel-Gesztelyi and Green 2015). To estimate the effect of
the non-zero growth time we compare in Fig. 2.5 the positions of the inflection points
calculated for a spot emergence (and growth) time of 0 d (i.e. assuming instantaneous
emergence as in Fig. 2.4), 1 d, and 2 d. We assumed a linear growth of spot area during the
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Figure 2.4: Dependence of the inflection point position (in fractions of the rotation period,
Prot = 30 d) on spot lifetime, Tspot. Each value of the spot lifetime corresponds to
five realizations of spot emergence with linear (red asterisks) and five realizations with
exponential (blue asterisks) decay laws. Lower panel is a zoom in of the upper panel. Blue
and red lines in the lower panel show positions of the high-frequency inflection points
averaged over corresponding five realizations.
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Figure 2.5: The same as Fig. 2.4, but now comparing inflection points obtained for three
values of spot emergence time: 0 d (blue), 1 d (red), and 2 d (orange). An exponential
decay law is imposed.
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Figure 2.6: Power spectra of brightness variations of a star rotating with a 30-day period
plotted on a logarithmic (upper panels) and linear (middle panels) scales. Also plotted are
the gradients of the power spectra (lower panels). The calculations presented in left and
right hand panels have been performed with the same set of model parameters (see text
for details) but are associated with two different realizations of active regions emergence.
Black, red, and blue curves correspond to total brightness variations (calculated with
S fac/S spot = 5.5), as well as their facular and spot components, respectively. Numbers in
the middle panels indicate peaks in the power spectra, while numbers in the lower panels
point to positions of the inflection points.

emergence phase. One can see that including a non-zero emergence phase slightly shifts
the inflection point to lower periods, but the effect is relatively small (on average 8% for
2d emergence time).

2.4 Stars with spots and faculae

Sunspots are generally parts of bipolar magnetic regions, which also harbor smaller
magnetic elements. Ensembles of these magnetic elements form bright faculae (see, e.g.
Solanki et al. 2006; Solanki et al. 2013, for reviews). Faculae are present on late-type stars
and play an important role in stellar photometric variability (see, e.g. discussion in Shapiro
et al. 2016; Witzke et al. 2018; Reinhold et al. 2019). For example, faculae dominate the
variability over the course of magnetic activity cycles for old stars, like the Sun (Lockwood
et al. 2007; Radick et al. 2018). They also significantly affect solar brightness variations
on timescales of a few days (Shapiro et al. 2016, 2017) and thus one can expect that the
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position of the inflection point in power spectra of stars similar to the Sun is affected by
the facular contribution to stellar brightness variability. In this section we investigate the
effect of faculae on the position of the inflection point in the power spectrum of stellar
brightness variations.

2.4.1 Treatment of faculae
Here we extend the model outlined in Sect. 2.2 and describe the treatment of the facular
contribution to stellar brightness variability. Furthermore, we relax the assumption of
the equal lifetime for all magnetic features adopted in Sect. 2.3 for illustrative purposes.
Instead we consider a more comprehensive model of the decay of magnetic features.

For simplicity we limit ourselves to the case of the instantaneous emergence of active
regions. This should not affect any of the conclusions drawn here since the duration of
the emergence does not have a strong impact on the position of the inflection point (see
Sect. 2.3.2). We assume that immediately after the emergence all magnetic regions have
the same fractional coverage by spot and facular components. Consequently, we calculate
the power spectrum of photometric variations and position of the inflection point as a
function of the facular to spot area ratio at the time of maximum area, S fac/S spot. We note
that for the case of the instantaneous emergence the time of maximum area coincides with
the time of emergence. Since facular and spot lifetimes are generally different the ratio at
the time of maximum area, S fac/S spot, is not identical to the instantaneous (i.e. snapshot)
ratio obtained at any random instance.

We adopt a solar log-normal distribution of spot sizes, taken from Baumann and
Solanki (2005), but only considering spots larger than 60 MSH (micro solar hemisphere).
Consequently, the size of the spot component of each emerging magnetic region was
randomly chosen following the Baumann and Solanki (2005) distribution. The log-normal
distribution implies that while most of the spots have small sizes of about 100 MSH, every
now and then huge spots with sizes of more than 3000 MSH appear. Then instead of
considering a constant lifetime of all spots as we did in Sect. 2.3 we follow Martínez
Pillet et al. (1993) and consider a constant decay rate of spots. This results in a linear
decay law with large spots living longer than small spots. The choice of the decay rate is
not straightforward since it is rather poorly constrained even in the solar case. We will
consider values between 10 MSH/day given by Gnevyshev-Waldmeier relation between
sunspot sizes and lifetimes (Waldmeier 1955) and 41 MSH/day given by Martínez Pillet
et al. (1993). In any case, as will be shown below, the position of the inflection point is
basically independent of the decay rate.

The lifetimes of spots are computed from spot areas and decay rates. To calculate
the lifetime of faculae we assume a fixed ratio between lifetimes of facular and spot
components of the active region (which implies a fix decay rate also for faculae). Since
lifetimes of the facular component are usually significantly larger than those of spots (see,
e.g. reviews by Solanki et al. 2006; van Driel-Gesztelyi and Green 2015) the active regions
in our model emerge as a mixture of spot and facular regions, but then spend a significant
part of their lifetimes as purely facular regions.

In our simplified parametric consideration of active region evolution we do not directly
account for the faculae brought about by the decay of spots. Faculae from sunspot decay
imply a) underestimation of facular areas in our model; b) deviations of the facular decay
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law from linear. Point a) can be indirectly taken into account by the increase of the
S fac/S spot ratio (in other words facular area in this ratio represents not only the facular
features emerging together with spots but also the product of the spot decay). We also do
not expect that point b) can noticeably affect our calculations since the exact time evolution
of magnetic features does not have a strong impact on the position of the inflection
point. Recently Is, ık et al. (2018) performed more realistic calculations of magnetic flux
emergence and surface transport in stars with various rotation periods. As a next step we
plan to employ their results in our modelling.

2.4.2 Superposition of spot and facular contributions to stellar bright-
ness variability

In Fig. 2.6 we depict power spectra of brightness variations brought about by faculae, by
spots, and by their mixture (red, blue, and black lines, respectively). We have put spot
decay rate to 25 MSH/day, i.e. roughly in between the estimates given by Waldmeier (1955)
and Martínez Pillet et al. (1993). The facular components of active regions were set to live
twice as long as spot components. We have considered 1600-day light curves and let 2400
emergence randomly happen during this time. The absence of any clustering of emergence
in time implies that the mean activity level of a star during the entire time of simulations
stays the same, i.e. we do not consider activity cycles. 2400 emergence resulted in a mean
fractional disk spot coverage being about 0.3% (due to the adopted log-normal distribution
of spot sizes the exact value slightly depend on the specific realization of emergence),
which is a typical solar value around the activity maxima.

Left and right panels of Fig. 2.6 show power spectra of two light curves as well as
of their facular and spot components. Both light curves have been calculated with the
same set of model parameters specified above, but correspond to two different realizations
of magnetic region emergence. In the realization plotted in the left panels both spot and
facular components have a prominent peak at the stellar rotation period. However, since
facular and spot components are in anti-phase at periods around the rotation period (see
discussion in Shapiro et al. 2017) the superposition of them leads to a disappearance of
the rotation harmonic in the power spectrum of total brightness variations. Instead, a
pronounced maximum in the power spectrum appears at 13.9 d, i.e. it is shifted by about
54% from the rotation period. The bottom panels of Fig. 2.6 shows that the location of
the inflection point is different for the facular and spot components. This is not surprising
since high-frequency tail of the power spectrum depends on the centre-to-limb variations
of magnetic features contrasts and those are different for spots and faculae. In the given
example the position of the inflection point of total brightness variations is shifted by
26% relative to the position of the inflection point of the spot component alone. This
number corresponds to the error in determining the rotation period which will be made if,
in the absence of any information about the relative role of spot and facular components of
the variability, one connects rotation period and position of the inflection point assuming
purely spot-dominated variability. We note that in the case presented in the left panel of
Fig. 2.6 such an error is more than two times smaller than that made when assuming that
rotation period corresponds to the maximum of the power spectrum (26% vs. 54%).

In the realization plotted in the right panels of Fig. 2.6 the spot component does not
have a maximum at the rotation period, while the facular component still shows a clear

58



2.4 Stars with spots and faculae

Figure 2.7: Three examples of simulated stellar variability: spot-dominated variability
(S fac/S spot = 0.01, left panels), intermediate case (S fac/S spot = 3, middle panels), and
faculae-dominated variability (S fac/S spot = 100, right panels). Upper panels show original
(i.e. without any detrending) light curves. Intermediate panels show light curves split in 17
90-day quarters and linearly detrended in each of the quarters. The separation between
quarters is marked by the vertical black lines. The asterisks in the lower panels correspond
to the positions of inflection points in each of the quarters. Numbers in the upper right
corners of the lower panels are the outlier-resistant mean values of the inflection point
positions. These values are also indicated in the lower panels by horizontal black lines.
Red asterisks correspond to the inflection points utilized for calculating the outlier-resistant
mean value, blue asterisks are trimmed as outliers.

maximum (although slightly shifted to larger periods). In line with the discussion in
Sect. 2.3 the position of the inflection point of the spot component is not affected by
the disappearance of the peak corresponding to the rotation period (the shift of 0.6 d is
within the scatter between different realizations of emergence, see Figs. 2.4–2.5). The
superposition of the facular and spot components results in two peaks in the power spectra
of total brightness variations, one at 13.0 d (i.e. shifted from the rotation period by 57%)
and another at 55.5 d (i.e. shifted by 85%). Both numbers are larger than the shift of the
inflection point caused by the facular component which is equal to 37%.
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2.5 Main factors affecting position of the inflection point

In this section we investigate the dependence of the inflection point position on the facular
to spot area ratio at the time of maximum area, S fac/S spot, (Sect. 2.5.1) and test this
dependence against the solar case (Sect. 2.5.2). We also establish the dependence of the
inflection point position on stellar inclination (Sect. 2.5.3).

In Sect. 2.3–2.4 we synthesized 1600-day light curves and then employed them for
calculating power spectra and positions of the inflection points. While such a definition of
the inflection point was appropriate for the illustrative purposes of Sect. 2.3–2.4, here we
update the way the position of the inflection point is calculated to bring our calculations
more into line with available stellar photometric data (e.g. Kepler or TESS)

As in Sect. 2.3–2.4 we synthesize 1600-day light curves but instead of employing them
directly for calculating positions of the inflection points we first make “Kepler-like” light
curves out of them. In other words, we split the light curves in 17 90-day quarters (ignoring
the last 70 days) and linearly detrend each of the quarters. Then, instead of calculating the
positions of the inflection points using the entire light curve, we calculate the positions
of the inflection points in every quarter and consider the outlier-resistant mean, ignoring
points outside of two standard deviations from the mean value.

This procedure is illustrated in Fig. 2.7 for spot- and faculae-dominated variability as
well as for the intermediate case of the facular to spot area ratio at the time of maximum
area (see Sect. 2.4.1), S fac/S spot = 3 (compare top and middle panels to see the difference
between original and “Kepler-like” light curves). We have adopted a value of 25 MSH/day
for the sunspot decay rate and set the facular lifetime to be three times that of spots. The
positions of the inflection points in each of the quarters are plotted in the bottom panels of
Fig. 2.7. The inflection points cluster in branches and, in particular, one can clearly see
the branch corresponding to the high-frequency inflection point (i.e. at about 5–7 d). In
the case of faculae-dominated variability, there is also a stable branch of low-frequency
inflection points (in between 15 and 20 d, see right bottom panel of Fig. 2.7). This is due
to the lifetime of faculae being sufficiently large for preserving a low-frequency inflection
point (see discussion in Sect. 2.3.2). Since the high-frequency branch is more stable we
constrain ourselves to its analysis and refrain from studying the low-frequency branch.
The existence of the low-frequency branch might potentially lead to an ambiguity in the
period determination. If, for example, the high-frequency branch is not visible due to
the high noise level in the data then low-frequency branch might be erroneously taken
for the high-frequency branch. This would lead to a roughly four times overestimation
of the period. Such an ambiguity can be resolved by applying additional criteria. For
example, one would expect that rotational periods of fast rotators should be caught by the
autocorrelation or Lomb-Scargle periodograms techniques. Consequently, if there is, for
example, an ambiguity between rotation periods of 7 and 28 days and both Lomb-Scargle
periodograms and autocorrelation analysis fail, then the 28-day value should be chosen for
the rotation period.

Figure 2.7 also shows that the positions of the inflection points slightly fluctuate from
quarter to quarter and sporadically “rogue” inflection points appear. This is because the
exact profile of the power spectrum depends on the specific realization of emergence of
magnetic regions.
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Figure 2.8: Dependence of the inflection point position (given as a fraction of the rotation
period, Prot = 30 d) on the facular to spot area ratio at the time of maximum area,
S fac/S spot. Shown in red are calculations with lifetime of facular component of active
regions, Tfac, equal to the lifetime of spot component, Tspot. Black and blue correspond
to the Tfac/Tspot = 2 and Tfac/Tspot = 3 cases, respectively. For each pair of S fac/S spot and
Tfac/Tspot values five realizations of emergence of active regions are shown. In other words,
each of the S fac/S spot values correspond to five red, five black, and five blue asterisks. Red,
black, and blue lines mark the positions of the inflection points averaged over the five
corresponding realizations. The black horizontal line indicates the position of the solar
inflection point from Amazo-Gómez et al. (2020b), while the black vertical line marks the
solar S fac/S spot value established in Appendix 2.8.2.

2.5.1 Position of the inflection point as a function of the facular to
spot area ratio

In Fig. 2.8 we present the dependence of the inflection point position on the area ratio
between the facular and spot components of active regions at the time of maximum area,
S fac/S spot. We keep the mean fractional disk-area spot coverage constant and set it to about
0.3% (see Sect. 2.4.2). Hence, the S fac/S spot value affects only the facular coverage.

The decay rate of spots was chosen to be 10 MSH/day, i.e. according to the Gnevyshev-
Waldmeier relation. In agreement with the calculations presented in Figs. 2.6–2.7 we have
considered a fixed ratio between lifetimes of facular and spot components of active regions
(Tfac and Tspot, respectively). We note that in the solar case the faculae last significantly
longer than spots (see, e.g., review by Solanki et al. 2006). For example, Preminger
et al. (2011); Dudok de Wit et al. (2018) found that facular features can affect solar UV
irradiance (where it can be disentangled from noise more easily than in the white light) for
up to 3–4 solar rotations (see their Fig. 5). In this context, Fig. 2.8 shows calculations for
Tfac/Tspot = 1, Tfac/Tspot = 2, and Tfac/Tspot = 3 cases.

Figure 2.8 shows that for spot-dominated variability (i.e. for small S fac/S spot values)
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the inflection point is located at 22% of the rotation period (we only plot the high-frequency
inflection points). We note that a small shift with respect to the 25% value seen in Figs. 2.4–
2.5 is brought about by the different procedures for calculating the inflection point position,
i.e. taking the outlier-resistant mean of 17 90-day intervals instead of computing a single
inflection point. In the case of faculae-dominated variability (i.e. of large S fac/S spot values)
the inflection point is located at about 14% of the rotation period. The level of the statistical
noise (i.e. variations in inflection point position caused by the random pattern of active
regions emergence) is about 2–3%.

While the position of the inflection point strongly depends on the S fac/S spot value, the
difference between the three considered Tfac/Tspot values is barely visible (compare red,
blue, and black curves in Fig. 2.8). This has two important implications. First, auspiciously,
the ambiguities in facular lifetime do not have a strong effect on the calculations of the
inflection point position. Second, the position of the inflection point depends rather on
the facular to spot area ratio at the time of maximum area than on the instantaneous ratio
(which is proportional to the product of area ratio at the time of maximum area and ratio
of the facular and spot lifetimes). We note that this result is in line with the discussion in
Sect. 2.3, where we showed that the position of the inflection point only weakly depends
on the lifetime of magnetic features.

Since stellar S fac/S spot values are a priori unknown, their effect on the relation between
rotation period and inflection point position introduces additional uncertainty in the period
determined with the help of the inflection point (see Sect. 2.6 for a more detailed discussion).
At the same time the dependence of the inflection point position on the S fac/S spot value
makes it possible to determine the ratio for stars with known rotation periods. We note
that since the dependence presented in Fig. 2.8 is rather noisy, it is more suitable for
studying general trends (e.g. the dependence of facular to spot ratio on stellar activity)
than for deducing S fac/S spot values for individual stars. We plan to determine S fac/S spot

values for McQuillan et al. (2014) sample of 34,030 stars with known rotation periods
in a forthcoming publication. In this paper we limit ourselves to giving an example of
application of the GPS method to stars significantly more variable than the Sun with
presumably spot-dominated variability (see Appendix 2.8.3).

The calculations presented so far in this section have been performed for a fixed values
of the rotation period, mean fractional disk-area spot coverage, and spot decay rates. In
Appendix 2.8.1 we illustrate that the calibration factor between the inflection point position
and rotation period is only marginally influenced by the rotation period (Fig. 2.13), spot
coverage (Fig. 2.14), and spot decay rate (Fig. 2.15). Furthermore, we show that the
position of the inflection point only barely depends on the latitude of the emerging active
regions (Fig. 2.16).

2.5.2 Inflection point in the power spectrum of solar brightness vari-
ations

Let us now locate the Sun in Fig. 2.8. This requires knowledge of the inflection point
position in the power spectrum of solar brightness variations as well as of the solar
S fac/S spot value. Amazo-Gómez et al. (2020b) demonstrated that the inflection point in
the power spectrum of solar brightness variations is located at a period of about 4.17 days
which is roughly 15.9% of the solar synodic rotation period at the equator. There have been
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2.5 Main factors affecting position of the inflection point

also a number of studies aimed at determining the instantaneous ratio between facular and
spot solar disk-area coverage (see, e.g. Chapman et al. 1997). At the same time the solar
value of the facular to spot ratio at the time of maximum area, S fac/S spot is, on the whole,
rather poorly studied and until now has remained unknown. In Appendix 2.8.2 we present
a new method for determining the solar S fac/S spot value and show that mean solar value
over the 2010–2014 period is about 3. Fig. 2.8 demonstrates that this value, in combination
with the position of the solar inflection point from Amazo-Gómez et al. (2020b), agrees
well with our calculations. This is reassuring, since it indicates that our simple parametric
model allows accurate calculations of the inflection point position.

We remind that due to the lack of constraints on the dependence of S fac/S spot value on
size of magnetic regions we assumed the same S fac/S spot ratio for all emerging magnetic
regions. Solar data indicate that the instantaneous ratio between disk-area coverage by
faculae and spot decreases from minimum to maximum of solar activity (Chapman et al.
1997; Foukal 1998; Solanki and Unruh 2013; Shapiro et al. 2014a). One can speculate
that such a behavior is partly attributed to a stronger cancellation of small magnetic flux
concentrations (associated with faculae) at higher levels of solar activity when regions
with opposite polarities lie closer to each other (Cameron 2018, private communication).
Based on this one can suggest that the ratio at the time of maximum area should not show
as strong dependence on solar activity as the instantaneous ratio. This is in line with the
results of Amazo-Gómez et al. (2020b), who could not pinpoint any clear dependence of
the solar inflection point (which depends on the ratio at the time of maximum area, see
above) on the level of solar activity. A possible changes of this ratio within a stellar activity
cycle would contribute to the scatter in position of the inflection points.

2.5.3 Effect of inclination

The trajectories of active regions across the stellar disk as a star rotates depend on the
position of the observer relative to the stellar equator. Consequently, stellar brightness
variability is a function of the inclination (Schatten 1993; Knaack et al. 2001; Vieira et al.
2012; Shapiro et al. 2016), which is the angle between the stellar rotation axis and the
direction to the observer. Therefore, one can expect that the position of the inflection point
depends on the inclination.

Figure 2.9 is the same as Fig. 2.8, except the different colored symbols now represent
different stellar inclinations. In contrast to Fig. 2.8, all calculations shown in Fig. 2.9
are performed with Tfac/Tspot = 3, but with three different values of the inclination: 90◦

(blue), 57◦ (black), and 45◦ (red). An inclination of 90◦ corresponds to observations from
the equatorial plane (so that the blue asterisks are identical in Figs. 2.8 and 2.9). An
inclination of 57◦ is the mean value of the inclination for a random distribution of rotation
axes orientations. One can see that all three dependences are very close to each other.
Noticeable deviations in the inflection point position happen only for faculae-dominated
stars with inclination value of 45◦ (red asterisks in the right part of Fig. 2.9).
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Figure 2.9: Sensitivity of inflection point to inclination of stellar rotation axis. Plotted is
the dependence of the inflection point position (given as a fraction of the rotation period,
Prot = 30 d) on the ratio between facular and spot disk-area coverage at the time of
maximum area, S fac/S spot. Each S fac/S spot value corresponds to five realizations calculated
with inclination ϕ = 90◦ (equatorial view, blue), ϕ = 57◦ (black), and ϕ = 45◦ (red).
Red, black, and blue lines show positions of the inflection points averaged over the five
corresponding realizations.

2.6 Position of the inflection point as a function of stellar
magnetic activity

The main goal of this section is to connect the position of the inflection point with proxies
of stellar magnetic variability, namely with the S-index and photometric variability. When
the facular to spot area ratio at the time of maximum area, S fac/S spot, is fixed, the position
of the inflection point does not show any dependence on the total coverage of stellar surface
by active regions (see Fig. 2.14). At the same time the level of magnetic activity affects
the relative areas of facular and spot parts of active regions (Shapiro et al. 2014a) and,
consequently, the value of S fac/S spot. This leads to the dependence of the inflection point
position on the magnetic activity which we study in this section.

In this context, we have simulated light curves with a different number of active regions
emerging on each underlying star over the 1600-day period of simulations. We start
with 80 emergence for the “quietest” light curves and end with 81000 emergence for the
most “active” light curves. The sizes of spot components of active regions have been
randomly chosen according to the log-normal distribution from Baumann and Solanki
(2005) (see Sect. 2.4.1). For each of the simulations we have calculated the mean value of
the spot disk-area coverage and employed Eq. (1) from Shapiro et al. (2014a) to get the
corresponding value of the S-index. Next we employed Eq. (2) from Shapiro et al. (2014a)
to obtain the value of the facular disk-area coverage from the S-index. We have corrected
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2.6 Position of the inflection point as a function of stellar magnetic activity

this value by subtracting facular coverage corresponding to the absence of spots (0.5%
according to Eqs. (1–2) from Shapiro et al. 2014a). Then we have calculated S fac/S spot

value, i.e. the ratio at the peak area of the active region, which would result in such an
instantaneous facular disk-area coverage. We have considered the Tfac/Tspot = 3 case and
set the decay rate of spots to 10 MSH/day (see Sect. 2.5.1).

Resulting dependences of the inflection point position and S fac/S spot value on the
S-index are given in the upper panel of Fig. 2.10. One can see that the S fac/S spot value
decreases with the S-index. This is because Eqs. (1–2) in Shapiro et al. (2014a) are based
on the extrapolation from the solar case, where spot disk-area coverage depends on the
S-index quadratically, while the dependence of facular disk-area coverage is linear. A
decrease of the S fac/S spot value with the S-index causes a rather weak shift of the inflection
point to higher frequencies. For example, one can see that the position of the inflection
point slightly shifts from solar minimum to solar maximum. At the same time the shift
is smaller than the fluctuations of the inflection point caused by the statistical noise so
that it does not contradict the results of Amazo-Gómez et al. (2020b) (see Sect. 2.5.2).
Interestingly, the position of the inflection point remains similar to that of the Sun even for
significantly more active stars.

For each of the simulated light curves we calculate variability following the definition
of variability range by Basri et al. (2011). Namely, we split the light curves into 30-day
segments. We sorted the segments by brightness and calculated the range between the 5th
and 95th percentile of the brightness. Then we calculated the mean range among all 30-day
segments. The resulting variability values are plotted in the middle panel of Fig. 2.10 as a
function of the S-index. One can see that although the spot disk-area coverage increases
quadratically with the S-index, the increase of the photometric variability is almost linear.
This is because the variability range depends not on the absolute value of stellar disk-area
coverage by active regions but rather on its fluctuations with time. The rise in the amount
of active regions leads to a more uniform surface distribution which, in turn, decreases the
variability range.

Middle panel of Fig. 2.10 shows that solar variability range changes from almost zero
during the solar minimum to roughly 1.5 ppt (parts per thousand). This agrees with a more
accurate calculation in Shapiro et al. (2016) (see their Fig. 10a.). In the lower panel of
Fig. 2.10 we plot the dependence of the inflection point position on the variability range.
In most of the cases the position of the inflection point remains in between roughly 14%
and 21% of the rotation period, even for stars significantly more variable than the Sun.

Lower and upper panels of Fig. 2.10 hint at a seemingly simple way of eliminating the
uncertainty in calibration between the stellar rotation period and inflection point position
brought about by the unknown facular contribution to stellar variability (see Sect. 2.5.1).
One can either estimate the calibration factor from the value of the S-index (if known) or
from the amplitude of the photometric variability. However, all the dependences plotted in
Fig. 2.10 are produced for a fixed values of the spot decay rate and ratio between facular
and spot lifetimes (see above). Both these values are rather uncertain even for the solar
case. To take it into account we recalculated all the dependences for a broad range of spot
decay rates and ratios between facular and spot lifetimes and plotted them in Fig. 2.11.
One can see that the resulting dependences are noisier than those plotted in Fig. 2.10. This
is because a) the spot decay rate affects the connection between the number of emergence
and instantaneous spot disk-area coverage (which defines the value of the S-index) and
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Figure 2.10: Dependence of the inflection point position (given as a fraction of the rotation
period, Prot = 30 d) on the S-index and stellar photometric variability (shown in red in top
and bottom panels, respectively) as well as the dependence of the photometric variability
on the S-index (middle panel). Blue asterisks in upper panel indicate the dependence of
the facular to spot ratio at the time of maximum area, S fac/S spot, on the S-index. Black
vertical lines in upper and middle panels point to the range of solar S-index values, while
the horizontal black line in the top panel corresponds to the position of solar inflection
point from Amazo-Gómez et al. (2020b).
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b) the ratio between facular and spot lifetimes is in charge of the connection between
instantaneous disk area coverage and those at the time of maximum area.

All in all, Fig. 2.11 shows that, despite a significant level of noise, most of the inflection
points for stars with variability ranges below 3 ppt are located in between 13% (for faculae-
dominated stars) and 21% (for spot-dominated stars) of the rotation period. In this respect,
we suggest that the best algorithm for determining rotation periods of stars similar to the
Sun would be to take a solar value of about 16% (solar value, see Sect. 2.5.2), keeping in
mind that the intrinsic uncertainty of our method is about 25%.

We must, however, give some words of caution. We assumed that brightness variations
of stars with near solar values of effective temperatures can be calculated by a simple
extrapolation of the solar model. In other words, we disregarded the potential presence of
active longitudes in the emergence of active regions (we note, however, that the existence
of active longitudes have been also proposed for the Sun, see e.g. Berdyugina and Usoskin
2003), and we assumed a solar distribution of sizes of active regions, solar spot decay rates,
as well as solar ratios between facular, spot umbra, and spot penumbra areas.

The presence of active longitudes might significantly amplify the amplitude of bright-
ness variations and simultaneously make the rotation peak in the power spectra more
pronounced. Along the same line, while we do not expect that the size distribution of
active regions has a direct impact on the position of the inflection point, it can influence
the photometric variability and hence affect the dependence plotted in the lower panel of
Fig. 2.11. Finally, there is the critical assumption that the dependence of facular and spot
disk-coverage on stellar activity (expressed via the S-index) follow the solar relationships.
Any deviations from the assumed relationships might affect both the position of the inflec-
tion point and the amplitude of the photometric variability. We note, however, that solar
relationships proved to be very successful for modeling stellar brightness variations on
timescales of magnetic activity cycle (Shapiro et al. 2014a).

2.7 Conclusions

We have developed a physics-based model for calculating stellar brightness variations.
The model is loosely based on the highly successful SATIRE approach for modeling solar
brightness variations.

We have utilized our model to show that the rotation signal in the photometric records of
stars with near solar fundamental parameters and rotation periods is significantly weakened
by a) short lifetimes of spots; b) partial compensation of spot and facular contributions to
the rotation signal. Both these factors can also lead to the appearance of “rogue” global
maxima in the power spectra of stellar brightness variations. These maxima are not
associated with the rotation period and can mislead the standard methods for rotation
period determination. We construe this as the explanation for the low success rates in
detecting rotation periods of stars similar to the Sun (van Saders et al. 2019; Reinhold et al.
2019).

We have shown that even in the absence of the rotation peak in the power spectra of
stellar brightness variations the information about the rotation period is still contained in
the high-frequency tail of the power spectrum. In particular, the rotation period can be
determined by applying a pre-calculated calibration factor to the frequency corresponding
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Figure 2.11: The same dependences as in Fig. 2.10 but computed for nine pairs of spot
decay rates and ratios between facular and spot lifetimes. For each pair of these parameters,
calculations are performed for five realizations of active regions emergence. Shown are
calculations with Tfac/Tspot = 2 (black), Tfac/Tspot = 3 (blue), and Tfac/Tspot = 5 (red). For
each Tfac/Tspot ratio we perform calculations with three values of spot decay rates: 41
MSH/day, 25 MSH/day, and 10 MSH/day.
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2.7 Conclusions

to the inflection point, i.e. the point where the concavity of the power spectrum plotted
in the log-log scale changes sign. We have demonstrated that the calibration factor only
weakly depends on the parameters describing the evolution of stellar active regions (e.g.
their lifetime), stellar disk-area coverage by active regions, and stellar inclination. At the
same time the calibration factor depends on the relative areas covered by spots and faculae.
On the one hand, this introduces intrinsic uncertainty in the periods determined with our
method. On the other hand, the dependence of the calibration factor on the ratio between
facular and spot-area coverage allows measuring this ratio in stars with known rotation
periods. This might be interesting for constraining the properties of flux emergence in
Sun-like stars (see, e.g. Is, ık et al. 2018).

We have shown that the ratio between the inflection point position and rotation period
is about 0.2–0.23 for the purely spot-dominated stars, which are supposedly much more
active than the Sun (see, e.g. Shapiro et al. 2014a). The presence of faculae decreases the
ratio so that we expect it to be in between 0.13 and 0.21 for stars with near-solar level
of photometric variability. Despite a significant uncertainty the main advantage of our
method is that it can be used for determining rotational periods of stars with irregular light
curves where other available method fails. For such stars we recommend to use solar value
of the ratio, i.e. 0.16, which should return rotational period with roughly 25% uncertainty.

We intend to further develop the model presented in this study as well as to apply
it to available stellar photometric data. On the theoretical side we plan to a) extend the
present study to stars with various fundamental parameters by replacing the Unruh et al.
(1999) spectra of the quiet Sun and solar magnetic features with recent simulations of
stellar spectra (see, e.g. Beeck et al. 2015; Norris et al. 2017; Witzke et al. 2018); b) utilize
recent simulations of magnetic flux emergence and transport by Is, ık et al. (2018) to better
describe the evolution of active regions.

On the observational side we plan to a) test our method for the determination of the
rotation period against available solar photometric data (see, Amazo-Gómez et al. 2020b)
and stars with known rotation periods; b) apply our method to the sample of Kepler (and,
in future, TESS) stars with unknown rotation periods.
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2.8 Appendix chapter 2

2.8.1 Additional figures
The section includes Figs. 2.12–2.16.

2.8.2 Solar values of facular to spot area ratio at the time of maxi-
mum area

As discussed in Sect. 2.4.1 the directly observed instantaneous ratio between solar disk
coverage by faculae and spots is different from the ratio between facular and spot areas
in individual magnetic regions at the time of their maximum area, S fac/S spot. At the same
time in Sect. 2.5 we have shown that the position of the inflection point is defined by the
ratio at the time of maximum area, S fac/S spot and thus we need to know solar value of
S fac/S spot to check whether position of the inflection point in the power spectrum of solar
brightness variations is consistent with the model presented here. In this section we show
how to determine solar value of S fac/S spot from the observed instantaneous records of solar
disk coverage by spots and faculae (see Sect. 2.5.2).

First we employ the model setup described in Sect. 2.4.1 to calculate the power spectra
of modeled facular and spot disk area coverage as they would be seen along the stellar
rotation axis and from the stellar equatorial plane. We consider Prot = 30 d, S fac/S spot = 3.4,
Tfac/Tspot = 3 case, adopt log-normal distribution of spot sizes from Baumann and Solanki
(2005) and 25 MSH/day for the sunspot decay rate.

Left panels of Fig. 2.17 show the global wavelet (Morlet, 6th order) power spectra
(top) of instantaneous disk coverage by spots and faculae observed along rotation axis
of a modeled star (so that the rotational modulation does not affect the power spectra) as
well as their ratio (bottom). One can see that the ratio is roughly constant and is equal to
S 2

fac/S
2
spot up to the period of about 90 days (i.e. 3Prot). This is not surprising since the

decay of magnetic features only affects the power spectrum at timescales larger than the
decay time.

More strictly, when observing along the rotation axis, the disk area coverage by the
individual magnetic feature is proportional to the product of the unit step function (i.e.
function which returns 0 before the emergence of the magnetic feature and 1 after the
emergence) and a function describing linear decay. The power spectral density of such a
right-triangle function (hereafter function F1(t)) is proportional to:

D(ν) ∼
S 2

feature

x2 +
S 2

feature

x4

(
sin(x/2)2 + sin((x − π/2)/2)2

)
, (2.5)

where S feature is the disk area coverage of the feature at the time of maximum area, x ≡
2πTdecν, and Tdec is a decay time of magnetic feature (see Eq. 2.2).

At x >> 1 (which corresponds to P << 2πTdec, where P ≡ 1/ν) the second term
on the right-hand side of Eq. 2.5 becomes negligibly small in comparison to the first
term. Consequently, the corresponding power spectral densityD(ν) drops with frequency
as 1/ν2 independently of the decay time of magnetic feature. Hence, the ratio between
power spectra of facular and spot disk area coverage of an active region (consisting of
facular and spot features, see Sect. 2.4) is equal to S 2

fac/S
2
spot. We note that the power
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2.8 Appendix chapter 2

Figure 2.12: Global wavelet power spectra (left panels) of the light curve from Fig. 2.1
and corresponding gradients of the power spectra (right panels) calculated with different
wavelets. The frequency localization of the utilized wavelet is increasing from the top to
bottom panels. As in Fig. 2.1 vertical dashed lines in the left panels indicate the rotation
period of the modelled star. Vertical solid lines and numbers in the right panels (not shown
in the bottom panel) indicate positions of the inflection points.
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Figure 2.13: Dependence of the inflection point position on the ratio between facular and
spot disk-area coverage at the time of maximum area, S fac/S spot, plotted for three values of
the rotation period: 20 d (blue), 30 d (black), and 40 days (red). Shown are positions in
days (upper panel) and ratios with respect to the rotation period (lower panel). Calculations
are performed for a spot decay rate of 25 MSH/day, Tfac/Tspot = 3, and mean fractional
disk-area spot coverage of 0.3%. As in Figs. 2.8–2.9 for each pair of S fac/S spot and rotation
periods values, five realization of active regions emergence are shown. Red, black, and
blue lines indicate positions of the inflection points averaged over corresponding five
realizations. A small deviation of 20 d curve from 30 d and 40 d curves in the lower panel
at high S fac/S spot values can be explained by the insufficient cadence of light curves (4
points per day) for 20 d rotation period and aliasing effect.

72



2.8 Appendix chapter 2

0.01 0.10 1.00 10.00 100.00
Sfac/Sspot

0.0

0.1

0.2

0.3

0.4
In

fl
ec

ti
o

n
 p

o
in

t 
p

o
si

ti
o

n
 [

d
]

Figure 2.14: Same as Fig. 8, but for three values of mean fractional disk-area spot coverage:
0.075% (blue), 0.3% (black), and 0.75% (red). Calculations are performed for spot decay
rate of 25 MSH/day, Tfac/Tspot = 3 and rotation period of 30 d.
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Figure 2.15: Same as Fig. 8, but for three values of spot decay rate: 10 MSH/day (blue),
25 MSH/day (black), 41 MSH/day (red). Calculations are performed for mean fractional
disk-area spot coverage of 0.3%, Tfac/Tspot = 3 and rotation period of 30 d.
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Figure 2.16: Same as Fig. 8, but calculated assuming that all emergence of active regions
happen at the equator (blue), latitudes ±30◦ (black), and latitudes ±60◦ (red). Calculations
are performed for mean fractional disk-area spot coverage of 0.3%, Tfac/Tspot = 3 and
rotation period of 30 d.

spectra of the observed instantaneous facular and spot disk coverage are brought about by
the superposition of the contributions from many incoherently emerging active regions.
Therefore the ratio of high-frequency parts of the power spectra represents the mean
S fac/S spot value over all active regions. Since the contribution of magnetic features to the
disk coverage is proportional to their size this mean value is weighted towards larger active
regions.

Let us now consider the case of the observations from the stellar equatorial plane
(i.e. the solar case since the ≈ 7.25◦ angle between the solar equator and ecliptic can be
neglected in our analysis). Middle panels of Fig. 2.17 show the global wavelet power
spectra of facular and spot disk coverage resulting from the same realization of active
regions emergence as shown in the left panels, but now the active regions are observed
from the equatorial plane of the modeled star. One can see that the ratio between facular
and spot power spectra is strongly affected by rotation at periods below 45 d (i.e. 3/2 Prot)
but is basically not affected by the rotation at periods between 45 d and 90 d. Below we
give an explanation of such a behavior.

The disk area coverage by a single transiting magnetic feature for a star observed from
the equatorial plane is proportional to the product of three functions: a. the right-triangle
function F1(t) (with power spectral density given by Eq. 2.5); b. a function which returns
zero during half of the period when the feature is at the far-side of the star and 1 during
another half of the period when the feature is on the near-side of the star (i.e. shifted by
0.5 square wave function, hereafter function F2(t)); c. function describing foreshortening
effect (hereafter function F3(t)).

The Fourier transform of the square wave function contains only odd-integer harmonics
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of the form ±(2k − 1)νrot where νrot = 1/Prot. The shift by 0.5 brings about an additional
zero frequency component so that the Fourier transform of function F2(t) contains zero
frequency and odd-integer harmonics. The foreshortening function F3(t) is proportional to
the cosine of the angle between the direction from the centre of the star to the observer
and to the magnetic feature and contains only ±νrot components. Multiplication in the
time domain corresponds to the convolution in the frequency domain. Consequently, the
Fourier transform of the product of F2(t) and F3(t) functions contains all harmonics of the
rotational period ±kνrot and zero frequency component.

All in all, the disk area coverage observed from the stellar equatorial plane can be ob-
tained by multiplying disk area coverage observed along the stellar rotation axis (which are
proportional to F1(t)) with a function containing zero frequency component and harmonics
of the rotational frequency. As discussed above, the power spectra of facular and spot disk
coverage are proportional to each other with the exception of the [0, νrot/3] interval. After
the convolution the signal in this interval will be propagated to [| ±k νrot |, | νrot/3±νrot |] (i.e.
[0, νrot/3], [νrot, 4/3 νrot], [2 νrot, 7/3 νrot]..., and [2/3 νrot, νrot], [5/3 νrot, 2 νrot], ...) intervals.
Interestingly, the signal does not propagate to the [1/3 νrot, 2/3 νrot] (or [3/2 Prot, 3 Prot])
interval. This explains the curious behavior of the ratio between power spectral density of
facular and spot disk coverage in this interval shown in the middle lower panel of Fig. 2.17:
neither the decay of magnetic features nor the stellar rotation affects it.

The power spectra and their ratio shown in right panels of Fig. 2.17 are calculated
using solar disk area coverage obtained by Yeo et al. (2014) using solar magnetograms and
continuum images recorded by the Helioseismic and Magnetic Imager onboard the Solar
Dynamics Observatory (SDO/HMI) for the period from May 2010 till August 2014. In
agreement with the previous discussion the ratio between the two power spectra is roughly
constant in the time interval between 45 d and 90 d and corresponds to S fac/S spot value of 3.

2.8.3 Examples of testing GPS method on Kepler stars

An extensive test of our method for determining stellar rotation periods will be in focus of
the forthcoming publications. In particular, we will analyze dependence of the inflection
point position on the photometric variability and test the dependence established in Sect. 5.2.
Here we, as an example, apply our method to stars significantly more variable than the Sun
with presumably spot-dominated variability.

In the upper panels of Figs. 2.18–2.20 we show the Kepler light curves of KIC2141852
(Fig. 2.18), KIC2553816 (Fig. 2.19), and KIC2992964 (Fig. 2.20). The data for 15 Kepler
quarters (quarter 2 – quarter 16) have been downloaded from the MAST portal1 and reduced
with the PDC-MAP pipeline (Smith et al. 2012; Stumpe et al. 2014). The lower panels of
Figs. 2.18–2.20 show the position of the inflection points for each of the Kepler quarters.
The behavior of the inflection points is very similar to that shown for the synthesized
light curves in Fig. 2.7. Namely, inflection points fluctuate around the mean position,
and from time to time “rogue” inflection points, mainly corresponding to the high-period
branch, appear. We note that a large number of high-period inflection points imply that
the lifetime of magnetic features on considered stars is comparable or larger than their
rotational periods (see Sect. 2.3.2). This is consistent with highly regular light curves of

1 https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html
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Figure 2.17: Power spectra of facular (red) and spot (blue) disk area coverage for a modeled
star observed along its rotational axis (left upper panel), a modeled star observed from
its equatorial plane (middle upper panel), and for the Sun deduced from the SDO/HMI
observations (right upper panel). The corresponding ratios between the power spectra of
facular and spot disk area coverage are plotted in the lower panels. The vertical black lines
in the lower panel denote the interval between 45 and 90 days. The horizontal black line in
the left and middle lower panel denotes the S 2

fac/S
2
spot value used in the simulations (see

text for more details). The horizontal black line in the right lower panels denotes ratio
value of 9.

considered stars.
We have calculated the outlier-resistant mean of the low-period inflection point posi-

tions as well as the standard error of the mean. Since we expect that the variability of our
exemplary stars is spot-dominated, the ratio between the inflection point position and the
rotational period should lie between 0.2 and 0.23 (see Fig. 2.8). We applied these factors to
the mean position of the inflection point taking the standard error of the mean into account.
The resulting ranges for the rotation periods (PGPS) are indicated in Figs. 2.18–2.20 and
compared to the periods (PR2013) reported by Reinhold et al. (2013). One can see that
periods from Reinhold et al. (2013) are within the range given by our method for all three
considered stars.
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Figure 2.18: The light curve of KIC2141852 (upper panel) and positions of the inflection
points for each of the Kepler quarters (lower panel). The Kepler quarters 2–16 are numbered
in the upper panel and separated by the vertical black lines. The asterisks in the lower
panel correspond to the positions of inflection points. The value of the outlier-resistant
mean of the inflection point positions in the low-period branch (see text for more details)
is indicated with the horizontal black line. Red asterisks correspond to the inflection
points utilized for calculating the outlier-resistant mean value, blue asterisks are trimmed
as outliers. The rotation period range returned by our method (PGPS) and period from
Reinhold et al. (2013) (PR2013) are listed in the lower panel.
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Figure 2.19: The same as 2.18 but for KIC2553816.
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Figure 2.20: The same as 2.18 but for KIC2992964.
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3 Inflection point in the power
spectrum of stellar brightness
variations. II. The Sun

This chapter is based on the article published at Astronomy & Astrophysics, volume 636,
article number A69, by E.M. Amazo-Gómez, A.I. Shapiro, S.K. Solanki, N.A. Krivova,
G. Kopp, T. Reinhold, M. Oshagh & A. Reiners. As first author I wrote the core of the

manuscript, make the figures and tables and leaded the analysis of the observational data.
The printed version is reproduced here with permission from

Astronomy & Astrophysics, c© ESO.

Abstract chapter 3
Young and active stars generally have regular, almost sinusoidal, patterns of variability

attributed to their rotation, while the majority of older and less active stars, including the
Sun, have more complex and non-regular light-curves which do not have clear rotational-
modulation signals. Consequently, the rotation periods have been successfully determined
only for a small fraction of the Sun-like stars (mainly the active ones) observed by transit-
based planet-hunting missions, such as CoRoT, Kepler, and TESS. This suggests that
only a small fraction of such systems have been properly identified as solar-like analogs.
We apply a new method for determining rotation periods of low-activity stars, like the
Sun. The method is based on calculating the gradient of the power spectrum (GPS) of
stellar brightness variations and identifying a tell-tale inflection point in the spectrum. The
rotation frequency is then proportional to the frequency of that inflection point. In this
paper test this GPS method against available photometric records of the Sun. We apply
GPS, autocorrelation functions, Lomb-Scargle periodograms, and wavelet analyses to the
total solar irradiance (TSI) time series obtained from the Total Irradiance Monitor (TIM)
on the Solar Radiation and Climate Experiment (SORCE) and the Variability of solar
IRradiance and Gravity Oscillations (VIRGO) experiment on the SOlar and Heliospheric
Observatory (SoHO) missions. We analyse the performance of all methods at various
levels of solar activity. We show that the GPS method returns accurate values of solar
rotation independently of the level of solar activity. In particular, it performs well during
periods of high solar activity, when TSI variability displays an irregular pattern and other
methods fail. Furthermore, we show that after analysing the light-curve skewness, the GPS
method can give constraints on facular and spot contributions to brightness variability. Our
results suggest that the GPS method can successfully determine the rotational periods of
stars with both regular and non-regular light-curves.

Keywords: Solar rotation period; solar variability; total solar irradiance; faculae
& spot ratio – Techniques: radiometry; wavelet power-spectral, ACF, GLS, GPS.
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3.1 Introduction of chapter 3

The star’s rotation period defines the action of the stellar dynamo, transport of magnetic flux
through the convective zone, and its emergence on the stellar surface. (See Charbonneau
2010 for a general review of dynamo theory, and Reiners et al. 2014, Is, ık et al. 2018 for
the relation between rotation period and activity.) Furthermore, for the unsaturated regime
(i.e., when Rossby number is larger than 0.13, equivalent to rotation periods longer than 1-
10 days for solar-type stars) the magnetic activity of stellar chromospheres (as indicated
by the Ca II H & K emission core lines) and coronae (as indicated by the X-ray emission)
monotonically increases with the decrease of the rotation period (Pizzolato et al. 2003;
Wright et al. 2011; Reiners 2012; Reiners et al. 2014).

Recent studies indicate that the relationships between rotation period, coronal and
chromospheric activity work not only for stars with a tachocline (the transition region
between the radiative core and convective envelope, see Spiegel and Zahn 1992), but also
for slowly-rotating fully convective stars (see Reiners et al. 2012; Wright and Drake 2016;
Newton et al. 2017; Wright et al. 2018). The rotation period thus appears to be a good
proxy of the overall magnetic activity of a star.

Accurate measurements of rotation periods are important for understanding stellar
evolution and for better calibration of the gyrochronology relationship (Ulrich 1986; Barnes
2003). The knowledge of the stellar rotation period helps distinguish the radial velocity
jitter of a star from the planetary signal (see, e.g. Dumusque et al. 2011; Oshagh 2018).
This is crucial for detection, as well for confirming Earth-size planets in ongoing and
upcoming surveys, such as the ESPRESSO (see Pepe et al. 2010) and PLATO missions
(see Roxburgh et al. 2007; Rauer et al. 2016, 2014).

Rotation periods can be determined from photometric observations thanks to the
presence of magnetic features on stellar surfaces. Concentrations of strong localised
magnetic fields emerge on the stellar surface and lead to the formation of photospheric
magnetic features, such as bright faculae and dark spots (Solanki et al. 2006). The transits
of these magnetic features over the visible disk as the star rotates imprints particular
patterns onto the observed light-curve. These patterns provide a means of tracing stellar
rotation periods. We note that in the case of the Sun, such brightness variations are well
understood (Solanki et al. 2013; Ermolli et al. 2013) and modern models can explain more
than 96% of the variability of total solar irradiance (TSI, which is the spectrally-integrated
solar radiative flux at one Astronomical Unit from the Sun) (see Yeo et al. 2014).

Available methods for retrieving rotation periods from photometric time series, e.g.,
autocorrelation analysis or Lomb-Scargle periodograms, appeared to be very successful
for determining periods of active stars with periodic patterns of variability. The transiting
planet-hunting missions such as COROT, Kepler, and TESS, (Bordé et al. 2003a; Borucki
et al. 2010; Ricker et al. 2015) opened unprecedented possibilities for acquiring accurate
high-precision photometric time-series of stars different from the Sun. The new data from
these missions enabled studies of stellar magnetic activity on a completely new level. In
particular, it has become possible to measure rotation periods for tens of thousands of
stars (see, Walkowicz and Basri 2013; Reinhold et al. 2013; Nielsen et al. 2013; García et al.
2014; McQuillan et al. 2014; Buzasi et al. 2016a; Angus et al. 2018). At the same time,
the pattern of brightness variations in slow rotators such as the Sun is often quasi-periodic
and even irregular. The irregularities are mainly caused by the short (in comparison to
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stellar-rotation period) lifetimes of magnetic features, such as starspots/sunspots, and a
large degree of randomness in the time and position of their emergence on the stellar
surface. This renders the determination of rotation periods for low activity stars very
difficult. For example, van Saders et al. (2019) showed that rotation periods of about 80%
of stars in the Kepler field of view with near-solar effective temperature remain undetected.
Consequently, the stars with known rotation periods represent only the tip of the iceberg of
Sun-like stars. This can lead to biases in conclusions drawn based on the available surveys
of stellar rotation periods. The relatively low efficiency of standard methods in detecting
periods of stars with non-regular light curves might affect studies aimed at comparisons
of solar and stellar variability. For example, solar variability appears to be normal when
compared to main-sequence Kepler stars with near-solar effective temperatures (Basri et al.
2013; Reinhold et al. 2020a). At the same time, when comparisons are limited to main-
sequence stars with near-solar effective temperature and with known near-solar rotation
periods, the solar variability appears to be anomalously low (Reinhold et al. 2020a). One
possible explanation of such a paradox is the inability of standard methods to reliably detect
rotation periods of stars with light curves similar to that of the Sun (see also discussion in
Witzke et al. 2020). Along the same line, Reinhold et al. (2019) proposed that biases in
determining rotation periods might contribute to the explanation of a dearth of intermediate
rotation periods observed in Kepler stars (McQuillan et al. 2013; Reinhold et al. 2013;
McQuillan et al. 2014; Davenport 2017).

In Shapiro et al. (2020) (hereafter, Paper I), we proposed a new method for determining
stellar rotation periods from the records of their photometric variability. The method
is applicable to late-type stars but particularly beneficial for and aimed at stars with
low activity and quasi-periodic irregularities in their light-curves. The rotation period
is determined from the profile of the high-frequency tail (i.e., its part in between about
a day and 5–10 days) of the smoothed wavelet power spectrum. For this work we used
Paul wavelet of order six (see Torrence and Compo 1998). We identified the point where
the gradient of the power spectrum (GPS) plotted on a log-log scale (in other words,
d (ln P(ν))/d(ln ν), where P is power spectral density and ν is frequency) reaches its
maximum value. This point corresponds to the inflection point, i.e., the concavity of the
power spectrum plotted in the log-log scale changes sign there. In Paper I we have shown
that the period corresponding to the inflection point is connected to the rotation period of a
star by a calibration factor which is a function of stellar effective temperature, metallicity,
and activity.

The main goal of the present study is to test and validate the method proposed in
Paper I against the Sun, which presents a perfect example of a star with an irregular pattern
of variability but known rotation period. In particular, by validating the GPS method
against the Sun, we show that it has the potential to reduce biases caused by the relative
inefficiency of standard methods to determine rotation periods of low-activity stars. More
specifically, we utilise the calibration factor between the position of the inflection point and
rotation period corresponding to the solar case and apply the GPS method to the available
photometric records of the Sun. Furthermore, we test the performance of the GPS method
at various levels of solar activity.

In Sect. 3.2, we give a short overview of the available methods for determining rotation
periods as well briefly describe the GPS method. (A more detailed discussion of this
method is given in Paper I.) In Sect. 3.3, we compare the performance of our method with
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that of other available methods in the exemplary case of the Sun. In Sect. 3.4, we present
the relationship between solar activity and skewness of its photometric light-curve. Our
main results are summarised in Sect. 3.5.

3.2 Methods for determining stellar-rotation periods

High-precision, high-cadence photometric time-series allow the determination of accurate
stellar-rotation periods, and the scientific community has developed various methods for
retrieving periodicities embedded in these data. Current methods include autocorrelation
functions, Lomb-Scargle periodograms, wavelet power spectra, and very recent techniques
based on the Gaussian processes.

The autocorrelation function (ACF) method is based on the estimation of a degree
of self-similarity in the light-curve over time. The time lags at which the degree of
self-similarity peaks are assumed to correspond to the stellar-rotation period and its
integer multiplets. This assumption is valid if magnetic features which cause photometric
variability are stable over the stellar-rotation period.

The ACF method has been used by McQuillan et al. (2014) to create the largest
available catalog of rotation periods until now: the rotation periods were found for 34,030
(25.6%) of the 133,030 main-sequence Kepler target stars (observed in the Kepler star field
at the time of the publication). The ACF calculations presented in our study have been
performed with the A_CORRELATE IDL function.

The Lomb-Scargle periodogram gives the the power of a signal a certain frequency (see
Lomb 1976; Scargle 1982). Here we use the generalised Lomb-Scargle (GLS) ver-
sion v1.03, applying the formalism given by Zechmeister and Kürster (2009). The GLS
method is widely used for retrieving periodicities from time-series, and is applicable to
stellar light-curves with non-regular sampling. In studies aimed at the determination of
the rotation period, the highest peak in the GLS is assumed to correspond to the rotation
period (see Reinhold et al. 2013).

Wavelet power spectra (hereafter, PS) transform analysis is beneficial for time-series
that have a non-stationary signal at many different frequencies. It has been employed for
determining stellar-rotation periods by García et al. (2009). To perform PS, we use the
WV_CWT IDL function based on the 6th order Paul wavelet, (see Farge 1992; Torrence
and Compo 1998).

Another technique, which is currently being actively developed, is inferring rotation
periods with the help of Gaussian processes (GP, Roberts et al. 2012). GP can be applied to
detect a non-sinusoidal and quasi-periodic behaviour of the signal in light-curves. The GP
regression has been extensively tested for analysing various time-series, and, in particular,
for retrieving the periodic modulation from stellar radial-velocity (Rajpaul et al. 2015)
and photometric (Angus et al. 2018) signals. GP performance can be readily compared
with other approaches for determining rotation periods in small stellar samples (see, e.g.,
Faria et al. 2020, who applied various techniques to HD 41284). GP calculations, however,
demand significant computational resources, e.g., analysis of a typical Kepler light curve
takes from several hours to 12 hours and longer (Angus et al. 2018). The time efficiency
of the GP algorithms is expected to significantly improve with the development of new
methods (Foreman-Mackey et al. 2017a,b). Thus, it might be interesting in future studies
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to compare rotation periods determined by the GP and GPS algorithms. Such a comparison
is, however, out of the scope of the present study.

The methods described above have been very successful for determining rotation
periods of active stars with periodic patterns of photometric variability. However, their
performance deteriorates for slower-rotating and consequently less-active stars, and, in
particular, for stars with a near-solar level of magnetic activity. In such stars, the pattern of
variability is complex and non-regular due to the irregular emergence of magnetic features
that manifest as spots and faculae. In particular, the dark spots can lead to prominent dips
in brightness, and we expect that for stars with solar-activity levels, their decay time is
comparable to or even less than the stellar-rotation period, as it is for the Sun (see Solanki
et al. 2006; Shapiro et al. 2017). Furthermore, Shapiro et al. (2017) showed that in the
solar case, the superposition of bright facular and dark spot signatures might lead to a
disappearance of the rotation peak from the power spectrum of solar brightness variations.
This agrees with many studies (see Aigrain et al. 2015; He et al. 2015, 2018) which have
found that the rotation period of the Sun can be reliably determined only during the periods
of low solar activity. We note that during these periods, the solar variability is caused by
long-lived facular features, and the spot contribution is small.

Recently, He et al. (2015, 2018) analysed solar and stellar brightness using GLS and
introduced two indicators: one describing the degree of periodicity in the light-curve,
and the other describing the amplitude of the photometric variability. They found that
light-curve periodicities of the Kepler stars are generally stronger during high-activity
times. In contrast, solar light-curves are more periodic during phases of low activity. By
applying GLS to the TSI time-series, they could determine the solar-rotation period only
during periods of low solar activity.

In Paper I, we employed the SATIRE approach (where SATIRE stands for Spectral and
Total Irradiance Reconstruction, see Fligge et al. 2000b; Krivova et al. 2011) to simulate
light-curves of stars with solar effective temperature and metallicity for various cases
of magnetic-feature emergence and evolution. We found that the profile of the wavelet
power spectrum around the rotation period strongly depends on the decay time of magnetic
features and the ratio between coverage of the disk by faculae and spots. At the same
time, the high-frequency tail of the power spectrum, particularly the portion with periods
between about a day and a quarter of the rotation period, remains much more stable, and
mainly depends on the rotation period. To quantitatively characterise the high-frequency
tail of the power spectrum, we calculated the ratios Rk between the power spectral density,
P(ν), at two adjacent frequency grid points: Rk ≡ P(νk+1)/P(νk). For a frequency grid
equidistant in the logarithmic scale (i.e., with a constant value of ∆ν/ν), this ratio represents
the gradient of the power spectrum plotted on a log-log scale. Consequently, the maxima
of the Rk values correspond to the positions of the inflection points, where the concavity of
the power spectrum plotted on a log-log scale changes sign. Hereafter, following Paper I,
we will refer to the Rk values as the gradient of the power spectrum, GPS.

In Paper I, we found that the position of the high-frequency inflection point (i.e., the
inflection point (IP) with highest frequency, see discussion below) is related to the stellar-
rotation period by a certain calibration factor defined as: α = HFIP/Prot, where HFIP is a
period corresponding to the high-frequency inflection point and Prot is the rotation period.
This allowed us to propose a new method for determining the rotation period: calculate the
position of the inflection point and scale it with an appropriate value for the factor α to

85



3 Inflection point in the power spectrum of stellar brightness variations. II. The Sun

determine the rotation period.
The choice of the scaling factor α is one of the most delicate steps in the GPS method

and also one of the main sources of its uncertainty. In Paper I, we found that the value of α
is fairly insensitive to the parameters describing the evolution of magnetic features, and,
in particular, to the decay time of spots. It shows a stronger dependence on the area ratio
between the facular and spot components of active regions at the time of maximum area,
S f ac/S spot. We have estimated that over the 2010-2014 period, the solar S f ac/S spot value
was about 3 (see Appendix B of Paper I). For the calculations presented in this paper we
adopt αSun ± 2σ = 0.158 ± 0.014, corresponding to S f ac/S spot = 3 and the spot decay rate
of 25 MSH/day. Such a value of spot decay time is intermediate between the 10 MSH/day
estimate by Waldmeier (1955) and 41 MSH/day estimate by Martínez Pillet et al. (1993).

The uncertainty of the α value is computed in Paper I as the standard deviation between
positions of inflection points corresponding to different realisations of spot emergence
(but the same values of the S f ac/S spot ratio and spot decay rates). We stress that when
applied to other stars, the uncertainty of our method will be significantly larger since
neither S f ac/S spot value nor spot decay rates are known a priory. For example, in Paper I
we estimated that the internal uncertainty of our method is 25%. Its main advantage,
however, is that, in contrast to other methods, it is applicable to inactive stars with irregular
patterns of brightness variability.

In summary, we calculate the rotation period and its uncertainty as:

Prot ± 2σP =
HFIP

(αSun ± 2σα)
, (3.1)

where HFIP represents the value of the high-frequency inflection point in the power
spectrum of brightness variations.

3.3 Validation of GPS method for the solar case

In the present work, we evaluate the GPS method for determining solar rotation period
against available records of its brightness variation. We consider the performance of the
method at different levels of solar activity using two TSI data sets.

3.3.1 Records of total solar irradiance, TSI

Driven by the interest from the climate community, the solar irradiance has been measured
by various space radiometric instruments and reconstructed with many models, see, e.g.,
reviews by (Ermolli et al. 2013; Solanki et al. 2013).

Among all available solar-irradiance records, the TSI time-series are the most accurate
and possess the longest time coverage (see e.g., review by Kopp 2014). In this context, we
have opted for testing the performance of the GPS method against the TSI time-series and
focused on what are generally considered to be the two most reliable of the available data
sets: one obtained by the Variability of solar IRradiance and Gravity Oscillations (VIRGO)
experiment on the ESA/NASA SOlar and Heliospheric Observatory (SoHO) Mission (see
Fröhlich et al. 1997), and another obtained by the Total Irradiance Monitor (TIM) on the
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Solar Radiation and Climate Experiment (SORCE) (see Kopp and Lawrence 2005; Kopp
et al. 2005a,b).

VIRGO provides more than 21 years of continuous high-precision, high-stability, and
high-accuracy TSI measurements. Our analysis is based on the last update available at the
beginning of this work, version 6.4: 6_005_1705, level 2.0 VIRGO/PMO6V observations
from January 1996 until June 2017 with a cadence of 1 data point per hour 1. The data are
available via ftp 2.

The TIM data used are version 17, level 3.0, available from February 25, 2003,1 2.
While TIM data cover a shorter time interval than VIRGO, they have a lower noise level
(Kopp 2014), which is particularly important for our analysis of TSI variations during the
minimum of solar activity. Here we use an average version of TSI with a cadence of 1 data
point per 1.6 hours obtained by averaging over a full orbit of the spacecraft. 3.

3.3.2 Brightness signature of spot transits

In this section we analyse the performance of the GPS method during a 90-day time interval
when TSI variability was generated by three consecutive spot transits. Sunspot transits im-
print characteristic signals on the TSI, diminishing the observed solar brightness. Transits
of well-resolved sunspots have been recorded by TIM/SORCE from December 2006 to
February 2007 (see panel (a) of Figure 3.1). One can see a clear signal from spots transiting
the solar disk with a recognisable "V-like" shape brought about by the combination of
foreshortening effects, the Wilson depression (i.e., spot umbrae are slightly depressed
from the photospheric optical-depth unity level due to higher transparency of the spot
atmosphere compared to the quiet photosphere (see Wilson 1965)), and the center-to-limb
dependence of spot-intensity contrast.

Interestingly, the time separation between consecutive transits is very close to the solar-
rotation period (compare sine functions and TSI time-series in Figure 3.1a). A fluctuating
behaviour of transit amplitude (i.e., decrease of the amplitude from first to second transit
and increase of the amplitude from second to third transit) suggests that we are observing
transits of different spots, even though the emergence of all three spots occurred at the
same location on the solar surface. We confirm this by comparing simultaneous records of
the MDI intensity maps and TSI 4. Such a nesting of spot emergence (Brouwer and Zwaan
1990; Gaizauskas et al. 1994) affects the power spectrum of brightness variations exactly
as the increase of the lifetime of the magnetic features. In particular, it makes light-curves
more regular and helps to determine rotation period.

We perform a comparison between the GLS, ACF, PS, and GPS methods for the
considered epoch of spot transits. In Figure 3.1b, we plot the results of the GLS analysis.
A prominent peak is clearly observed at 27.2 days, which is very close to the synodic

1 https://www.pmodwrc.ch/forschung-entwicklung/sonnenphysik/tsi-composite/

2 ftp://ftp.pmodwrc.ch/pub/data/irradiance/virgo/virgo.html
1 http://lasp.colorado.edu/home/sorce/data/tsi-data/tim-tsi-release-notes/
2 http://lasp.colorado.edu/home/sorce/data/

3 Personal communication
4 see 2006_TSI_Movie.mp4 at:

ftp://laspftp.colorado.edu/3month/kopp/

87

https://www.pmodwrc.ch/forschung-entwicklung/sonnenphysik/tsi
ftp://ftp.pmodwrc.ch/pub/data/irradiance/virgo/virgo.html
http://lasp.colorado.edu/home/sorce/data/tsi-data/tim-tsi-release-notes/
http://lasp.colorado.edu/home/sorce/data/
ftp://laspftp.colorado.edu/3month/kopp/


3 Inflection point in the power spectrum of stellar brightness variations. II. The Sun

Figure 3.1: Example of the spot-dominated total solar irradiance (TSI) variability. panel (a)
shows SORCE/TIM measurements from 28-Nov-2006 to 28-Feb-2007. Purple and orange
curves indicate sine-wave functions with periods of 27.3 d (solar-rotation period deduced
with the generalised Lomb Scargle periodogram method, GLS) and 26.6 d (solar-rotation
period deduced with the gradient of power spectra method, GPS). Panels (b) and (c)
show the corresponding GLS periodogram and autocorrelation function, ACF, respectively.
Panel (d) shows the global wavelet power spectrum, PS, calculated with the 6th order Paul
wavelet. Panel (e) shows the gradient of the power spectrum plotted in panel (d). Blue
asterisk signs in panels (b) and (c) represent positions of the peaks in the GLS and ACF.
Green dotted lines in panel (e) indicate the high- and low-frequency inflection points.

Carrington rotation period of 27.27 days. This peak has a power of 0.37, where GLS is
normalised to unity. A second peak appears at 13.1 days with a normalised power of 0.23,
which is a harmonic of the solar-rotation period. A large value of the normalised power in
the rotation peak is not surprising: the corresponding light-curve has a clear periodicity,
which results in a clear peak in the power spectrum. The purple dashed line in Figure 3.1a
fits a sine wave with period determined from the GLS method.

Figure 3.1c shows the ACF analysis. Two clear peaks are visible at 26.0 and 52.0 days,
having amplitudes of about 0.5 and 0.3, respectively. PS analysis is shown in Figure 3.1d.
We use a Paul wavelet basis function with order m=6 to calculate the global wavelet power
spectrum. PS show a pronounced peak around 26.6 days. One can also see a shoulder-like
feature at about 13 days that is generated due to the ingress and egress of magnetic features
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over the visible solar disk. The contrast differences between faculae and spots transiting
the limbs and the center will imprint a characteristic pattern in the light-curve, detected by
the implementation of the GPS.

Figure 3.1e shows the GPS profile with two well-defined peaks that correspond to
the inflection points in the power spectrum. The low-frequency inflection point is at
19.2 days and is associated with the transition from the rotation peak to high-frequency
modulations forming a shoulder-like feature. The high-frequency inflection point is at
4.21 days and corresponds to the transition from the shoulder-like feature to the plateau at
higher frequencies. For the considered period of brightness variations due to spots, the
high-frequency point also corresponds to the maximum value of the GPS. In other words,
the gradient is larger at the high-frequency point than at the low-frequency point.

In Sect. 3.3.5, we show that, in agreement with Paper I, the high-frequency inflection
point is present in the PS even when the rotation peak is absent. Furthermore, the location
of the high-frequency inflection point is stable independently of the presence or absence of
the rotation peak.

Based on the location of the high-frequency inflection point at 4.21 days and using
Eq. (3.1) with the calibration factor αSun = 0.158 and its 2σ uncertainty of 0.014 we
compute the solar-rotation period: Prot = 26.6+2.2

−2.6 days. We use the 26.6-day value for
plotting the orange sine curve in Figure. 3.1a. This rotation period is in reasonably good
agreement with the Carrington period given the relatively short length of the time-series.

In summary, all methods applied above allow reasonably accurate determinations of
the rotation period for the considered period of pseudo-isolated transits of sunspots.

3.3.3 Brightness signature of facular feature transits

Here we perform a rotation period analysis of an interval of time between December 2007
and March 2008 (see Figure 3.2) when the TSI variability was dominated by three consec-
utive transits of a facular feature.

The simultaneous analysis of MDI intensitigram, magnetograms, and TSI records
56shows that variability is brought about by a single large facular feature, which size is
decreasing from transit to transit. We note the difference with the spot case described in
Sect. 3.3.2 where the three consecutive transits were caused by the nesting effect. Such
a behaviour is consistent with the fact that lifetimes of facular features are significantly
larger than that of the spots.

The transit of a facular feature has a characteristic double-peak "M-like" profile, see
Figure 3.2a. This "M-like" profile can be explained by the increase of facular contrast
towards the limb. Such an increase partly compensates the foreshortening effect and,
consequently, the maximum brightness occur when the facular feature is observed at an
intermediate disk position.

Figure 3.2b shows a GLS analysis of the considered time interval. A prominent peak is
seen at 26.4 days with a normalised power of 0.68. The purple dash line in Figure 3.2a fits
to the light-curve with a sine wave with a corresponding period. Figure 3.2c shows the

5 See 2007_TSI_Movie.mp4 at:
https://spot.colorado.edu/ koppg/TSI/

6 ftp://laspftp.colorado.edu/3month/kopp/
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Figure 3.2: The same as Figure 3.1 but for the time interval of faculae-dominated TSI
variability from 21-Dec-2007 to 22-Mar-2008. The purple dashed curve in panel (a)
represents a sine wave function with a period of 26.4 d corresponding to the solar rotation
period deduced with the GLS method. The orange curve in panel (a) is a sinusoidal
function with a period of 27.8 d corresponding to the solar rotation period deduced with
the GPS method.

corresponding ACF analysis. A clear series of peaks with time lag 26.8 days are observed.
The PS analysis shows a peak at 27.2 days (see Figure 3.2d). Similarly to the case of

spot transits one can see a shoulder-like feature, but it is shifted towards higher frequencies
in comparison to the spot case. Such a shift of the shoulder-like feature is explained by the
M-like profile of a facular transit in the light-curve. It leads to the enhanced variability
on timescales shorter than the half of the rotation period and consequently shifts the
shoulder-like feature.

Figure 3.2e shows the GPS profile with two clearly visible peaks that corresponds to
the inflection points of the PS. As in the case of the variability brought about by sunspots
there are two inflection points, one is closer to the rotation period peak and another to
the shoulder-like feature. We note that for the faculae-dominated case, in contrast to the
spot-dominated case, the maximum inflection point (i.e., the inflection point with highest
value of the GPS) corresponds to the low frequency inflection point.

The high-frequency inflection point is located at 4.40 days, which is very close to
the location of the inflection point during the spot-dominated regime of the variability
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(4.21 days, see Sect. 3.3.2). Applying the calibration factor αSun one can see that the value
given by the GPS method for the solar rotation period is Prot = 27.8+2.3

−2.7 days. The orange
line in Figure 3.2a fits a sinusoidal function with a period of 27.8 days as returned by the
GPS analysis. The amplitude of the orange curve is given by the maximum amplitude of
the wavelet.

The analysis performed in this Section and in Sect. 3.3.2 shows that when solar
brightness variability is attributed to the periodic transits of spots and faculae all four
methods (GLS, ACF, PS, and GPS) can accurately retrieve solar rotation period. However,
the recurrent transits of one spot group or nested spots (as plotted in Figure 3.1a) are rare.
Since faculae last significantly longer than spots, the recurrent transits of the same facular
features are much more common than that of spots. However, faculae dominate the solar
TSI light-curve on rotational timescales only at activity minimum (when no large spots are
present, although on the solar cycle timescale, faculae play a dominant role).

Most of the time solar brightness variations are brought about by the combination of
magnetic features coming with random phases. As we will show below this strongly affects
the performance of the GLS, ACF, and PS methods but has a much weaker effect on the
GPS method.

3.3.4 Analysis of the entire data-set
In Sect. 3.3.2 and 3.3.3 we considered relatively short intervals of time when solar variabil-
ity is dominated by either spot or facular components. In this section we study whether the
solar rotation period can be reliably retrieved in a more general case when contributions
from faculae and spots are entangled. For this, we consider 21 years of TSI data from
SoHO/VIRGO (see Figure 3.3) and 15 years of TSI SORCE/TIM data (see Figure 3.4)
and apply GLS, ACF, PS, and GPS methods to the entire time-series.

We plot GLS periodograms for VIRGO and TIM data in panels (b) of Figs. 3.3 and 3.4,
respectively. One can see that none of the two periodograms contain a sufficiently strong
peak to provide a clear indication of periodicity. Instead they contain a series of peaks
with similar and relatively small power: up to 0.003 for the VIRGO TSI and 0.007 for
the TIM TSI. This is about two orders of magnitude lower than the normalised power
obtained for pseudo-isolated spots and facular cases considered in Sects. 3.3.2 and 3.3.3.
Consequently, the GLS method does not allow a definitive detection of the rotation period
when the entire TIM and VIRGO time-series are considered. The ACF of the VIRGO and
TIM TSI time-series are shown in panels (c) of Figs. 3.3 & 3.4.

Although we can appreciate small peaks at the expected location of the rotation period
in both ACFs cases, the significance of the maxima with the corresponding time lag needed
for the identification of the rotation period yields only a marginal detection. Panels (d) in
Figures 3.3 and 3.4 display the PS analysis of the data. One can see that instead of the
peak at the rotation period, one can observe a plateau region for both data-sets.

All in all the, GLS, and PS methods cannot detect the solar rotation period, and ACF
give us a marginal detection when long sets of TSI data are considered. This is in line with
the result of Shapiro et al. (2017) who showed that the superposition of facular and spot
contributions to solar variability can significantly decrease the rotation signal.

The GPS profiles of VIRGO and TIM time-series are given in Panels (e) of Figures 3.3
and 3.4. One can see that both profiles display conspicuous high frequency inflection
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Figure 3.3: The same as Figure 3.1 but for 21 years [1996.01.28–2017.05.23] of TSI
data from SoHO/VIRGO. In total 7787 days are considered. This corresponds to about
186889 data-points at an hourly cadence. The GLS, ACF, and PS methods do not show a
clear signal of the rotation period. GPS shows a prominent peak at 4.15 days, resulting
in a solar rotation period value of about 26.3 days (see text for details). Orange vertical
lines and marks in panel (a) represent a splitting of the VIRGO data-set into Kepler-like
time-span Kn, each one representing the full lifetimes of the Kepler mission, around 4 years.
(see Sect. 3.3.5).

points. They are located at 4.15 and 4.12 days for VIRGO and TIM data, respectively.
Consequently, we retrieve a rotation period for the Sun: Prot = 26.3+2.1

−2.5 days, and Prot =

26.1+2.1
−2.5 days, for the VIRGO and TIM data, respectively. These Prot values agree within

the error bars with the solar synodic Carrington rotation period of 27.27 days, as well with
the solar equatorial synodic rotation period for a fixed feature of 26.24 days. Consequently,
the GPS method allows a proper determination of solar rotation period over timescales in
comparison with other traditional approaches.

3.3.5 The solar variability in 90-day quarters

Here we consider the exemplary case of the Sun as it would be observed over the same
time-span as the Kepler stellar data-set. The Kepler telescope reoriented itself every
90 days, thus introducing discontinuities into the light-curves. To mimic the observational

92



3.3 Validation of GPS method for the solar case

Figure 3.4: The same as Figure 3.1 but for 15 years [2003.01.24–2018.04.24] of TSI
data from SORCE/TIM. In total 5508 days are considered. This corresponds to about
82632 data-points at a cadence of 1.6 hours. Orange lines represent the same Kepler-like
time-span Kn than shown in Figure 3.3. The GLS, ACF, and PS methods do not show a
definitive detection signal of the rotation period. GPS method shows a prominent peak at
4.12 days corresponding to the solar rotation period value of 26.1 days.

routine of the Kepler telescope, we segment the entire VIRGO and TIM data-sets into
86 and 60 quarters of 90-day duration, with a cadence of 1.0 and 1.6 hours, respectively.
The cadence of solar observations are close to regular long cadence Kepler observations
of 29.4 min. In this section we analyse the stability of the rotation signal from quarter to
quarter, using the four methods described above.

The inflection points described by the GPS method in all quarters are shown in
Figure 3.5 for the VIRGO (top panel) and TIM (bottom panel) data. We note that quarters
10, 12, 13 and 52 in the VIRGO data-set are affected by the lack of data due to spacecraft
and instrument failures. TIM data quarters number 1, 43, 44, and 45 contain long gaps,
some of them larger than 5 days. For the three recent quarters this is because of the failing
SORCE battery.

We note that power spectra of some quarters have more than one inflection point with
considerable amplitude (like in the time intervals shown in Figs. 3.1 and 3.2). We analyse
the two highest inflection points in the GPS and describe these in terms of its frequency
location. The inflection point towards the highest frequency, HFIP, is represented by blue
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Figure 3.5: Top-Left panel: Positions of the inflection points for the 86 (90-day) quarters of
the VIRGO data. Red dots represent the low frequency inflection points (LFIP), blue dots
represent the high frequency inflection points (HFIP), black diamonds indicate inflection
points with maximum GPS value (see text). Top-Right panel: Distribution of the maximum
inflection point positions. Bottom panels: the same as top panels but for 60 quarters of
90-days using the TIM data. Orange lines in left panels indicate splitting of the VIRGO
and TIM data-sets into Kepler-like time-span Kn as in Figure 3.3.

dots, in Figure 3.5. The inflection point towards lower frequencies, LFIP, is represented by
red dots. In Figure 3.5 for each quarter open black diamonds surround the inflection point
corresponding to the maximum amplitude of the gradient of the power spectra, MIP. In
most of the cases these maximum peaks are simultaneously the high frequency inflection
points (as in the case of the variability brought about by spots, see Figure 3.1), marked with
open black diamonds over-plotted over the blue dots. Similarly, there are several quarters
when the maximum value of the gradient corresponds to the low frequency inflection point
(like in the case of the variability brought about by faculae, as we explain before, see
Figure 3.2). These quarters are associated with low solar activity and with TSI variability
being dominated by faculae. Interestingly, the high frequency inflection points are still
present in such quarters (even though they no longer correspond to the maximum amplitude
of the gradient). In Figure 3.5 we indicate when the maximum GPS amplitude corresponds
to the low frequency inflection points with open black diamonds over-plotted over red dots.

Figure 3.5 demonstrates that positions of the inflection points are stable and the mean
value of positions over all considered quarters are basically the same for the VIRGO and
TIM data. We construe this as the prove that the GPS method works for the Sun.

Having shown that the position of the inflection point is stable for the Sun, we could
then use the Sun to calibrate the GPS method and apply αSun value to other Sun-like stars,
independently of the simulations presented in Paper I. At the same time, it is reassuring
to see that the theoretical αSun value found in Paper I leads to a reasonable value of the
solar rotation period. Indeed, after applying the αSun calibration factor from Paper I to the
position of the inflection point at 4.17 ± 0.59 d for VIRGO data and 4.17 ± 0.59 d for TIM
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data (where 0.59 d and 0.57 d corresponds to 2σ of the observed distribution of values for
all quarters) we obtain 26.4 ± 3.7 d and 26.4 ± 3.6 d, respectively.

We note that the uncertainty of the rotation period is calculated here in a different way
than in Sects. 3.3.2–3.3.4, where it was defined via the uncertainty of the theoretical αSun

value (σα). This σα uncertainty is brought about by the dependence of the inflection point
position on the specific realisation of emergence of magnetic features. In contrast, in this
section we calculate the rotation period and its uncertainty as:

Prot ± δP =
(HFIP ± 2σHFIP)

αSun
, (3.2)

where the σHFIP value is the standard deviation of the observed distribution of inflection
point positions (blue points in Fig. 3.5). As well as σα, σHFIP accounts for the uncertainty
due to the randomness in emergence of magnetic features (so that it does not make sense
to account for σα in Eq. 3.2). In addition, σHFIP also accounts for the noise in the TSI data.
Hence, we utilise here Eq. (3.2) and σHFIP for estimating the uncertainty of the rotation
period with the GPS method.

Figure 3.6: Values of the rotation periods per 90-day quarters returned by the ACF, PS,
GLS, and GPS methods. The analysis is performed for the VIRGO (top panels) and TIM
(bottom panels) data. Pale orange shaded areas cover the period range of [23–34] days (see
Sect. 3.3.5 for details). Information about the ranges of rotation period values obtained by
each method for different instruments is shown near the top of each panel.

Figure 3.6 compares the performance of the ACF, GLS, PS, and GPS methods. It shows
one value of the rotation period per 90-day quarter determined with the four methods for
21 years of TSI by VIRGO (top panels) and 15 years of TSI by TIM (bottom panels). In
addition, the pale orange bar denotes a range between 23 and 34 days, which we take to
be the success range for determining the solar rotation period (which we expect would lie
in the range 27–30 d within 4 d error bars). One can see that the distribution of retrieved
periods is similar for data from both instruments.
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Met/D-Set TIMS pot TIMFac VIRGO21Y TIM15Y VIRGOQ TIMQ

ACF [d] 26.0 26.8 – – 2.2-57.0 4.8-59.8
S [%] – – – – 37.2 36.1
GLS [d] 27.2 26.4 – – 8.9-56.6 8.6-50.1
S [%] – – – – 55.0 47.0
PS [d] 26.5 27.1 – – 10.8-54.6. 9.8-50
S [%] – – – – 51.2 54.1
GPS [d] 26.6+2.2

−2.6 27.8+2.3
−2.7 26.3+2.1

−2.5 26.1+2.1
−2.5 7.8-41.4 16.6-34.6

S [%] – – – – 88.4 82.1
HFIP [d] 4.21 4.40 4.15 4.12 4.17±0.59 4.17±0.57
LFIP [d] 19.20 13.58 – – – –

Table 3.1: Compilation of the rotation period analysis for the four different methods
implemented (Met) (autocorrelation functions (ACF), generalised Lomb-Scargle peri-
odogram (GLS), wavelet power spectra (PS), and gradient of the power spectra (GPS))
and its success percentage for the different data-sets used in this work (TIM SPOT, for the
pseudo-isolated spot transit, TIM FAC, for the pseudo facular region transit, VIRGO [21 Y]
for the entire VIRGO data-set, TIM [15 Y] for the entire TIM data-set, VIRGO [Q] for the
VIRGO data-set analysis per quarter, TIM [Q], for the TIM data-set analysis per quarter).

The values obtained by ACF (Maroon dots) range between 2.18 days to 57.6 days for
VIRGO data (see left panels of Figure 3.6). There are quarters where ACF can accurately
detect solar rotation period, but there are many other quarters where the method fails.
Overall the rotation values retrieved by the ACF lie between 23 and 34 days for 32 out of
the 86 VIRGO quarters, i.e., the ACF method has a success rate of 37.2 % when applied to
the VIRGO data. For the TIM data-set the ACF obtained values are in between of 4.8 to
59 days. The success rate is 36.1 %, as shown in Table 3.1.

Second from the left panels in Figure 3.6 show the performance of the PS method.
The retrieved rotation periods are in between 10.7 and 54.7 days for the VIRGO data
and in between 9.8 days and 50.8 days for the TIM data. The success rates for period
determination are 51.2 % and 54.1 % for VIRGO and TIM, respectively.

Using GLS we are able to retrieve closer solar periodicities per quarter as it is shown
in the right panels in Figure 3.6. GLS successfully retrieves the solar rotation period for
55 % of the quarters using VIRGO data and 47 % for TIM data. We notice lower scatter
for the TIM data-set, with the returned rotation periods lying in a range between 8.6 and
50.0 days. For VIRGO data we obtain rotation period between a range of 8.9 to 56.7 days.

In the right panels of Figure 3.6 and Table 3.1 we show values retrieved with the GPS
method. One can see that the GPS method results in less scatter for the retrieved values
of the rotation period, finding rotation periods in the range [17.8-41.4] days for VIRGO
data and [16.6-34.6] days for the TIM data-set. The GPS method achieves success rates of
88.4 % and 82.1 % for the VIRGO and TIM data, respectively. The regularity of the signal
allow us to analyse the distribution of the high frequency inflection point and its behaviour
over time.
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Figure 3.7: The values of the solar rotation period per 90-day quarters of the VIRGO data
returned by the ACF, PS, GLS, and GPS methods (from left to right panels). Shown are
the K4 [2007:09:12 - 2011:07:27] and K5 [2011:07:28 - 2015:06:11] Kepler-like time-span,
corresponding to low and high levels of solar activity, respectively. Pale orange colour
areas indicate the period range of [23–34] days.

Figure 3.8: The same as Figure 3.7 but for all Kepler-like (K1 – K6) time-span of the
VIRGO data. Only GPS values are shown. Blue dots represent the estimation of the
rotation period per quarter obtained by GPS.

Regular stellar photometric observations are normally performed during unknown
stellar activity stages. To characterise the detectability of the rotation period for the
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different activity time-spans, we test the performance of the GPS method in comparison
with the ACF, GLS and PS methods for periods of relatively low and high solar activity.
For this we use just VIRGO data, since it covers both periods of very high and low solar
activity.

To mimic Kepler observations we split the entire period of VIRGO observations into
five segments K1 – K5 (the length of the segments roughly corresponds to the total duration
of the 4 years of Kepler observations) and the remaining 712-day segment K6 (see vertical
dashed orange lines in Figures 3.3, 3.4 and, 3.5). We then subdivided each Kn segment in
17 quarters of 90 days each, and analyse them separately.

The performance of all four methods is compared in Figure 3.7 for segment K4 (corre-
sponding to a period of low solar activity) and K5 (high solar activity). We observe that
for the low period of activity, K4, the values obtained per quarter for PS, GLS show less
scatter than for the values shown during high levels of solar activity in K5 segment. ACF
values show similar scattered rotation values for both, high and low levels of solar activity.
The GPS method recover rotation period values closer to the solar rotation period range
for both K4 and K5 segments.

Figure 3.8 shows the rotation period detected with the GPS method per quarter for K1

to K6 segments. While there is some scatter in the values of the rotation periods deduced
from the analysis of segments K1 to K6 (in particular, values obtained in segment K2 are
4 days lower than sidereal Carrington rotation period), Figure 3.8 indicates that the solar
rotation period can be successfully retrieved by GPS for all Kn analysed segments.

3.3.6 The impact of white noise in the inflection point position
In Subsection. 3.3.5 we have processed solar TSI data to represent the Sun as it would
be observed with the time-span of Kepler observations. We have considered two TSI
data-sets, one obtained by SoHO/VIRGO, another by TIM/SORCE. While the noise level
in these two data-sets is rather different (Kopp 2016), the positions of the inflection points
are basically independent off the data-set (see, Figs. 3.5 and 3.6). This implies that our
analysis is only weakly affected by the noise in TIM and VIRGO data. At the same time
the noise level in Kepler data normally is significantly higher than those in the solar data.

Solar and stellar light-curves are recorded in a different way so that the noise sources
are also substantially different. TSI is measured using radiometers while stellar photometric
measurements are performed using Charged Coupled Devices (CCD). Photon detection
by a CCD is a statistical process associated with several sources of noise, which can be
generally approximated by Gaussian white noise.

To assess the impact of noise on the position of the inflection point we artificially added
white noise to the VIRGO TSI data. The amplitude of the noise was chosen following the
expected dependence (see Van Cleve and Caldwell 2016) of the noise value per specific
Kepler magnitude Kp, that is the measured source intensity observed through the Kepler
bandpass.

Figure 3.9 shows the position of the high frequency inflection point as a function of the
white noise level. The colours of the dots represent the Kepler magnitude Kp. For each
Kp-value (and, corresponding, amplitude of the white noise) we calculate five realisations
of the noise, add it to the entire VIRGO data-set shown in Figure 3.3, and calculate the
position of the inflection point as in Sect. 3.3.4. One can see that the inflection point shifts
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Figure 3.9: Position of the high frequency inflection point calculated for the entire VIRGO
data-set (as in Figure 3.3) as a function of Kepler-like white noise added to the original
VIRGO data. The expected level of white noise is a function of the stellar Kepler magni-
tude, Kp (see main text for more information). The colour of the dots (see colour panel in
the top of the figure) indicates Kp magnitude corresponding to the expected level of the
white noise. Grey star symbols represent the position of the inflection point after the noise
correction (see text for details). There are five different realisations of noise per each value
of the Kp magnitude. When the level of noise in the LC is lower than 100 ppm, around
Kp=12, the values of IP values are overlapped and appear as a single point in the plot.

to lower frequencies when the noise level is increased.

We have tested a simple method for mitigating such a shift. Namely, we utilized the
fact that the power spectrum flattens at high frequencies. The power in the flattened part
represents the superposition of white noise and granulation (Shapiro et al. 2017). We have
calculated the mean power between periods of 1 hour and 1 day and subtracted this single
value from the entire power spectrum. Then, we recalculated the position of the inflection
point. These corrected positions of the inflection points are represented by grey filled star
symbols in Figure 3.9. One can see that our method is reasonably effective until the noise
level reaches about 300-400 ppm, which corresponds to about a Kp magnitude of 14 for
1-hour cadence light-curve.

Beyond a level of introduced noise of 500 ppm the error in the estimation of the real
high frequency inflection point location starts to become considerable, even though the
location of the high frequency inflection point still gets more accurate after the correcting
noise procedure, see grey star symbols in Fig. 3.9. For example, for a star with the level of
noise expected for a Kp magnitude of 15, the mean scatter in the high frequency inflection
point value corresponds to 0.83 days, which yields to a 5.25 days deviation in the rotation
period value.
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3.4 GPS and skewness relation

Figure 3.10: Top panel of left image: 21-years of TSI data gathered by VIRGO. Middle
panel of left image: Positions of the maximum inflection point (MIP) per quarter. Left-
Bottom: Skewness values per quarter. Right: Distribution of the TSI values shown in the
top-left panel. We list mean, maximum, and minimum TSI values, skewness for the entire
data-set (Sk over the whole time-series), the mean of individual skewness values calculated
per quarter (Sk quarters, see text for more details), kurtis (Ku), standard deviation (SDEV),
and mean deviation (MDEV).

Distinguishing between facular- and spot-dominated regimes of brightness variability
is important for understanding the structure of the stellar magnetic field and for identifying
biases in determination of stellar rotation periods.

While solar rotation variability is predominantly spot-dominated, there are also periods
of facular domination (see Sect. 3.3.3). In Sects. 3.3.2 and 3.3.3 we demonstrated that
the GPS spectrum has a different profile depending on whether variability is facular- or
spot-dominated. In this section we show that in the solar case these two regimes can also
be distinguished based on the skewness of the distribution of TSI values. This suggests
that skewness can be a good indicator of the variability regime for low-activity stars like
the Sun.

For a data-set of TSI values the skewness can give us valuable information about the
distribution of maximum and minimum values. In other words when we have a decrease
of the intensity due spots the distribution will be skewed preferentially towards the left
side (i.e., to the lower values) of the maximum peak of the distribution. When an increase
of intensity is registered in the light-curve due the presence of brighter facular regions
the skewness will shift to the right side (i.e., to the higher values) of the distribution. The
skewness of a distribution can tell us about its degree of symmetry.

In order to analyse the relation between skewness and the regime of solar variability
we calculate skewness of the TSI values in each of the 90-day quarters introduced in
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Figure 3.11: Skewness analysis for low-activity Kepler-like time-span K4. Upper left panel:
VIRGO TSI time-series during the K4 season, which consists of 1415 days emulating
17 Kepler quarters. Lower left panel: Skewness values per quarter. Right: the same as
right panel in Figure 3.10 but showing only TSI values in K4 season.

Figure 3.12: The same as Figure 3.11 but for high-activity Kepler-like time-span K5.

Subsection. 3.3.5. In the upper left panel of Figure 3.10 we show the 21-year span of
VIRGO TSI data. In the middle left panel we illustrate the location of the maximum
inflection point (see Sect. 3.3.4) per quarter. As discussed in Sects. 3.3.2 and 3.3.3, the
maximum inflection point (MIP) corresponds to the low frequency inflection point for
faculae-dominated regimes and high frequency inflection point for spot-dominated regimes.
The bottom left panel shows the skewness values for all 90-day quarters. One can see that
periods of low solar activity, when TSI variability is mainly brought about by faculae (see,
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e.g., discussion in Shapiro et al. 2016), simultaneously correspond to positive skewness
and maximum GPS value reached at the low frequency inflection point. The observed
scatter in skewness values is higher scatter than the scatter in the MIP by GPS. This implies
that the inflection points analysis provides a better indication of when the LC is mainly
drawn by spot or facular components.

In the right panel of Figure 3.10 we show the distribution of TSI values for the entire
VIRGO data. The skewness for the entire data-set, S kE = 0.23, is positive. This is because
the skewness value of the entire data-set is affected by the TSI variability on the timescale
of the 11-year cycle, which is faculae-dominated. To remove the contribution from the
11-year variability we can also calculate skewness by averaging all individual values per
90-day quarters. Since rotation TSI variability is mainly spot-dominated we then get a
negative value of S kQ = −0.69.

Figures 3.11 and 3.12 show the skewness analysis for minimum and maximum activity
segments, K4 and K5, respectively. The comparison between the light-curve segmented
in quarters and its respective skewness values are in agreement with conclusions drawn
analysing the entire VIRGO data-set. In particular, one can see that quarters with prominent
positive excursions of brightness caused by faculae correspond to positive skewness,
while quarters with negative excursions caused by spot correspond to negative values of
skewness. Clearly, also the skewness of brightness distribution in the entire K4 segment
(corresponding to the minimum of solar activity) is positive, while skewness values for
the K5 segment with higher value of activity is negative. We will extend the combined,
skewness and GPS, analysis to stars observed by Kepler and TESS in the forthcoming
publications.

3.5 Discussion & Summary

The determination of rotation periods of stars with activity levels similar to that of our Sun
is a challenging task, even when using high quality data from space-borne photometric
missions. In Shapiro et al. (2020) we have proposed the GPS method specifically aimed
at the determination of periods in old inactive stars, like our Sun. The main idea of the
method is to calculate the gradient of the power spectrum of stellar brightness variations
and identify the inflection point, i.e., the point where concavity of the power spectrum
changes its sign. The stellar rotation period can then be determined by applying a scaling
coefficient to the position of the inflection point.

We have applied the GPS method to the available measured records of solar brightness
(specifically the total solar irradiance) and compared its performance to that of other
methods routinely utilized for the determination of stellar rotation periods.

There are time intervals when solar light-curve has a regular pattern, the GPS and other
methods, return correct value of solar rotation period. These intervals correspond to low
values of solar activity when variability is either brought about by long-living faculae or
nested sunspots. However, most of the time, solar brightness variations are attributed to
superposition of simultaneous contributions from several bright and dark magnetic features
with random phases. We have shown that this leads to a failure of other methods to identify
a clear signal of the rotation period. At the same time, the GPS method still allows an
accurate determination of the rotation period of the Sun independently of its activity level
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and the number of features contributing to brightness variability and of the ratio of facular
to sunspot area.

In particular, we have shown that GPS method returns accurate values of solar rotation
period for most of the time-span of SoHO/VIRGO and SORCE/TIM measurements, with
exception of several intervals affected by the absence of data. We found that when the entire
21-year VIRGO and 15-year TIM data-sets are split in Kepler-like 90-day quarters and
inflection points are calculated for each of the quarters, the maximum of the distribution
of the inflection point positions peaks at 4.17 ± 0.59 days for VIRGO data-set and
4.17 ± 0.57 days for TIM data-set (see Figure 3.5). This results in a determination of
the solar rotation period of 26.4 ± 3.7 days and 26.4 ± 3.6 days for VIRGO and TIM
data-sets respectively. In a series of typical Kepler-like observations of the Sun, the GPS
method can correctly determine the rotation period in more than 80 % of the cases while
this value is about 50 % for GLS and below 40 % for ACF.

Typically solar variability on timescales up to a few months is spot-dominated. However,
there are also time intervals when it is faculae-dominated (see, e.g., Figure 3.2). We have
shown that these regimes can be distinguished from the GPS profile thanks to substantially
different centre-to-limb variations of facular and spot contrasts. Furthermore, the two
regimes can be separated by analysing the comparison between the inflection point location
from GPS and the skewness of light-curves: the bright faculae lead to positively skewed
light-curves and a stronger signal at the low frequency inflection point, while dark spots
lead to negatively skewed light-curves and a dominant signal at the low frequency inflection
point. However, the skewness values in Figure 3.10 show higher scatter than the IP by
GPS. This implies that the IP by GPS provide a better indication of when the LC is mainly
drawn by spot or facular components.

We construe the success of the GPS method in the solar case as an indication that it can
be applied to reliably determine rotation periods in low-activity stars like the Sun, where
other methods generally fail. Furthermore, our analysis demonstrates that photometric
records alone can be used to identify the regime of stellar variability, i.e., whether it is
dominated by the effects of spots or of faculae. In subsequent papers we will apply GPS
method to determine rotation periods and regimes of the variability of Kepler and long
term follow up of TESS stars.
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This chapter is based on the accepted in 2020, and currently In Press., article at
Astronomy & Astrophysics by E.M. Amazo-Gómez, A.I. Shapiro, S.K. Solanki, G. Kopp,

M. Oshagh, T. Reinhold, & A. Reiners. As first author I wrote the core of the manuscript,
make the figures and tables and leaded the analysis of the observational data.

Abstract chapter 4
Stellar rotation periods can be determined by observing brightness variations caused by

active magnetic regions transiting visible stellar disk as the star rotates. Successful stellar
photometric surveys stemming from the Kepler and TESS observations have led to the
determination of rotation periods in tens of thousands of young and active stars. However,
there is still a lack of information on the rotation periods of older and less active stars
like the Sun. The irregular temporal profiles of light curves caused by the decay times of
active regions, which are comparable to, or even shorter than, stellar rotation periods, in
combination with the random emergence of active regions make period determination for
such stars very difficult. We tested the performance of a new method for the determination
of stellar rotation periods against stars with previously determined rotation periods. The
method is based on calculating the gradient of the power spectrum (GPS) and identifying
the position of the inflection point (i.e. point with the highest gradient). The GPS method
is specifically aimed at determining rotation periods of low-activity stars like the Sun. We
applied the GPS method to 1047 Sun-like stars observed by the Kepler telescope. We
considered two stellar samples individually: one with near-solar rotation periods (24–27.4
d) and a broad range of effective temperatures (5000–6000 K) and the other with near-solar
effective temperatures (5700–5900 K) and a broad range of rotation periods (15–40 d). We
show that the GPS method returns precise values for stellar rotation periods. Furthermore,
it allows us to constrain the ratio between facular and spot areas of active regions at the
moment of their emergence. We also show that the relative facular area decreases with the
stellar rotation rate. Our results suggest that the GPS method can be successfully applied
to retrieve the periods of stars with both regular and non-regular light curves.

Keywords: Sun-like stars — rotation period — activity — Faculae/Spot ratio
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4.1 Introduction of chapter 4

Rotation periods in cool main-sequence stars can be traced by observing the brightness
modulation caused by the presence of active regions on stellar surfaces. Those active
regions are generated by the emergence of strong localised magnetic fields approximately
described by flux tubes (see e.g. Solanki 1993). Large flux tubes form dark spots, while
ensembles of smaller flux tubes form bright faculae (see, e.g. Solanki et al. 2006, for a
detailed review of the solar case). The active regions usually consist of a sunspot group
surrounded by faculae. The transits of such active regions over the visible disk as the star
rotates would cause brightness variability. Consequently, the stellar light curves (LCs)
contain information about both the rotation periods and the properties of active regions.
However, retrieving this information from the LCs often proves a daunting task (see e.g.
Basri 2018).

The Kepler mission (Borucki et al. 2010) has provided the community with records of
photometric observations with unprecedented precision and cadence. The Kepler LCs have
been widely used to determine stellar rotation periods (e.g. Walkowicz and Basri 2013;
Reinhold and Gizon 2015; Nielsen et al. 2013; García et al. 2014; McQuillan et al. 2014;
Buzasi et al. 2016b; Angus et al. 2018; Santos et al. 2019). Despite considerable success in
determining the rotation periods of many fast-rotating and active stars (see, e.g. McQuillan
et al. 2014, who published rotation periods of about 34030 stars identified as being located
on the main sequence) there is a lack information on periods of slowly rotating stars, that
is, stars with near-solar and longer rotation periods. For example, the rotational period of
the Sun may not be detectable during intermediate and high levels of solar activity (see
Lanza and Shkolnik 2014; Aigrain et al. 2015).

The difficulties in detecting periods of slowly rotating stars might be an important
contribution to the explanation of lower-than-expected numbers of G-type stars with
near-solar rotation periods (van Saders et al. 2019). The difficulty in obtaining a reliable
measurement of the rotation periods of stars with variability patterns similar to that of the
Sun can also affect solar-stellar comparison studies (see e.g. Witzke et al. 2020; Reinhold
et al. 2020b).

Within this context, we have developed a method aimed at determining rotation periods
of low-activity stars like the Sun. In Shapiro et al. (2020) (hereinafter, Paper I), we found
that the power spectra of brightness variations of such stars are strongly affected by the
evolution of active regions. In particular, the rotation peak can be significantly weakened
or it may even disappear from the power spectrum if the lifetimes of starspots are too short.
Furthermore, the delicate balance between spot and facular contributions to the variability
might lead to the appearance of spurious peaks, which do not correspond to the rotation
period but could be easily mistaken for one (see also Shapiro et al. 2017).

In Paper I, we showed that the high-frequency tail of the power spectrum is much
less affected by the evolution of magnetic features than frequencies near the rotation
period. Consequently, we proposed to use information in the high-frequency tail for the
determination of stellar rotation periods. In particular, we suggested that the period, PHFIP ,
corresponding to the maximum of the gradient of the power spectrum (GPS) (i.e. to the
inflection point) in the high-frequency tail could be used to identify the stellar rotation
period, Prot, via the simple scaling relation:
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Figure 4.1: Panel I: temperature-rotation diagram for a sample of 34030 stars (coloured
circles indicating the variability range) with rotation periods determined by McQuillan
et al. (2014) and 55501 stars where they found a period but deemed it to be not significant
(bisque dots, See panel-III for better visualisation). Panel II sample of 34030 stars with
rotation periods determined coloured in grey and 55501 stars with not significant rotation
period determination in bisque colour. For Panels II and III only stars from sample A
(panel II) and sample B (panel III) are shown in colour, see Table 4.1 for the properties of
samples A and B. Panels II illustrates the stellar sample A, selected by near solar rotation
period and temperatures from 5000 K to 6000 K. Panel III, illustrates stellar sample B, that
contains stars with near solar effective temperature and a broad range in rotation periods.
The Sun is represented by the solar symbol �.

Table 4.1: Stellar parameters for samples A and B.

Sample N T (1)
eff

[K] log g(1) [Fe/H](1) Var(2) range [ppm] P(2)
rot [d]

A 686 5000-6000 4.20-4.69 -1.46-0.56 211-39748 24.0-27.4
B 361 5700-5900 4.21-4.60 -1.08-0.44 211-17530 15.0-39.8
Sun 1 5778 4.44 0.0 300-1500 27.27 (Sy)

25.38 (Sid)

Note. Stellar parameters for stellar samples A and B. 1) Effective temperature (Teff), surface
gravity (log g), and metallicity ([Fe/H]) values are taken from Huber et al. (2014). 2) Variability
range (Var) and rotation periods (Prot) are taken from McQuillan et al. (2014). We take the solar
synodic (Sy) and sidereal (Sid) Carrington rotation period values as reference.

Prot = PHFIP/α. (4.1)

Here, α is a calibration factor which is independent of the evolution of active regions. It
shows only a very weak dependence on the stellar inclination. For example, the inclination
dependence can be neglected for inclinations of 45◦ and greater; see Fig. 9 from Paper I.
Statistically, this corresponds to roughly 70% of stars.

The model developed in Paper I indicated that the value of α shows a moderate de-
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pendence on the ratio between facular and spot areas of the individual active regions
at the moment of emergence, S fac/S spot. This ratio was assumed to be the same for all
active regions (see a detailed discussion in Paper I). The dependence of the inflection point
position on the facular-to-spot area ratio leads to a certain degree of uncertainty (up to
25%) when determining stellar rotation periods since the value of S fac/S spot for a given star
is a priori unknown. At the same time, it allows us to retrieve valuable information about
facular versus spot-dominated regimes with regard to the variability of stars where rotation
periods can be determined using other methods (see Amazo-Gómez et al. 2020b)hereafter,
Paper II).

A first test of the gradient of the power spectrum method (hereafter, GPS) was per-
formed in Paper II, where we applied it to solar brightness variations. We showed that in
contrast to other methods, GPS allows for an accurate determination of the solar rotation
period at all levels of solar activity. Additionally, we analysed time intervals where solar
variability was spot-dominated and when it was faculae-dominated. We showed that
these regimes can be distinguished in the GPS profile due to the substantially different
center-to-limb variations of faculae and spots.

In this study, we apply the GPS method to stars with determined rotation periods from
Kepler photometry. The goal here is twofold: firstly, we test the GPS method further before
applying it to stars with unknown rotation periods; secondly, we investigate whether the
α factor and, consequently, the facular or spot composition of stellar active regions, is
dependent on the rotation period. In Section 4.2, we describe the stellar sample we used. In
Section 4.3, we present the main results. Our conclusions are summarised in Section 4.4.

4.2 Stellar sample selection

In this study, we consider stars in the field of view (FOV) of the Kepler telescope for which
McQuillan et al. (2014) managed to determine rotation periods using the auto-correlation
function (ACF). To ensure that the main source of the variability for the selected stars is
magnetic activity, we only selected stars on the main-sequence, using Teff and log g values
from the Huber et al. (2014) catalogue to exclude giants (see Table 4.1). We note that
Huber et al. (2014) calibrated effective temperatures to the infrared flux temperature scale.
This resulted in an approximately 200 K offset from the original Kepler Input Catalogue
(KIC) (Pinsonneault et al. 2012). We also precluded stars flagged in the KIC as giant (GS),
eclipsing binary (EB), or host stars with planetary transits confirmed (PTC), with planet
candidates (PC), and false-positive planets (FP).

We selected two sets of stars with near-solar parameters. The selection criteria for both
samples (A and B) are illustrated in Fig. 4.1 and given in Table 4.1. Figure 4.1 and 4.2 show
the variability ranges of the set of selected stars. Kepler observatory provided four years of
photometric information, from 2009 to 2013, segmented in 18 quarters (Q0 − Q17) due to
the telescope re-orienting itself every 90 days. The Kepler observing quarters resulted in
Q0 of 10 days, and Q1 of 33 days for the commissioning phase and, segmented 90-day LCs
for Q2 to Q16 (see public data release 25, Thompson et al. 2016; Van Cleve and Caldwell
2016). The second month of Q17 was terminated after less than five days of observation,
following the failure of reaction wheel 4.

Sample A (see Figure 4.1 panel II) was selected to test the performance of the GPS
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method for stars with near-solar rotation periods. Hence, in this sample, we considered stars
with a narrow range of rotational periods between 24.0 and 27.4 days (i.e. encompassing the
sidereal Carrington rotation period of the Sun at 25.4 days) and a broad range of effective
temperatures Teff ∈ (5000–6000) K. These selection criteria yielded a sample consisting of
686 stars. Among this sample, 282 stars also have rotation periods obtained by Reinhold
and Gizon (2015) using the generalised Lomb-Scargle periodograms (hereafter, GLS).

Sample B (see Figure 4.1, panel III) was selected to study the dependence of the in-
flection point position on the rotation period. Therefore, in contrast to Sample A, we
considered stars with a broad range of rotation periods (between 15 to 40 days) but a
narrow range of effective temperatures (5700–5900 K, encompassing the solar value of
5778 K). These criteria led to the selection of 361 stars for Sample B after removing the
overlapping targets the with initial Sample A. Rotation periods of 172 stars in this sample
were also reported in Reinhold and Gizon (2015).

Between our two samples, we thus considered 1047 Kepler stars in all. The LCs
were acquired in the long-cadence mode (i.e. with a cadence of 29.42 min). Following
McQuillan et al. (2014) and Reinhold and Gizon (2015), we utilised LCs from Q1 − Q14

processed with the pre-search conditioning and Bayesian maximum a posteriori approach
(PDC-MAP, see Smith et al. 2012). For quarters Q15−Q17 , only processing with multiscale
MAP (PDC-msMAP Stumpe et al. 2014) is available.

In Figure 4.2, we plot the distribution of variability ranges in our samples A and B.
These variability values are defined by computing the difference between the 95th and
5th percentiles of the sorted flux values for each of the Kepler observing quarters (see
Basri et al. 2011) and then taking the median value among the quarters. This defined
variability range was chosen versus the approaches based on the standard deviation analysis
by Mathur et al. (2014); He et al. (2015) or the smoothed amplitude (10th to 90th) method
presented in Douglas et al. (2017), given the higher range of amplitude used in Basri
et al. (2011). The selection of the methods mentioned are not expected to compromise the
analysed outcome. Additionally, we show solar variability ranges computed using total
solar irradiance data (TSI, i.e. total radiative flux from the Sun at 1 A.U.) for 1996–2017
obtained by the Variability of solar IRradiance and Gravity Oscillations (VIRGO; Fröhlich
et al. 1997) experiment on the SOlar and Heliospheric Observatory SoHO mission. For
these VIRGO data, the entire 1996–2017 observation period was split into 6 Kepler-like
time ranges (five 1530-day periods and one 712-day period for a total of 7787-days starting
28 January 1996; see Fig. 3 from Paper II). The solar variability value for each of the time
ranges is represented in Fig. 4.2 as vertical green dashed lines. This gives a range of solar
variability of Var� ∈ (400–1300) ppm.

Figure 4.2 shows that most of the stars in our samples are much more variable than the
Sun. This agrees with García et al. (2014); Buzasi et al. (2016b); Reinhold et al. (2020b),
who showed that solar-type stars (i.e. stars with near-solar fundamental parameters and
rotation periods) are, on average, significantly more variable than the Sun. Furthermore,
our samples A and B also contain stars which are cooler and rotate faster than the Sun.
These stars are also expected to be more variable than the Sun (see e.g. McQuillan et al.
2014, for a discussion of the dependence of the variability on the rotation period and
temperature).

We note that an anomalous low variability of solar-type stars found by Reinhold et al.
(2020b) does not necessarily imply that the Sun is an outlier. An alternative explanation is
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Figure 4.2: Histograms for variability ranges from samples A (violet outline) and B (blue
rectangles). Vertical green dashed lines represent solar variability calculated for 6 activity
seasons using 21 years of VIRGO TSI data from Paper II (see text for more details).
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Figure 4.3: Only sample B is shown here. Position of the high-frequency inflection point
(PHFIP) is plotted against rotation period. Rotation periods are taken from Reinhold and
Gizon (2015) (left panel) and McQuillan et al. (2014) (right panel). Colours represent
the stellar effective temperature, Teff. The Sun is represented by the solar symbol �.
Dashed lines in both panels indicate a linear fit constrained to go through the origin of the
coordinate system. A logarithmic visualization is available in the appendix, see Fig. 4.6.

that by comparing solar variability to the sample of stars with known rotation periods, we
focus only on a small sub-sample of stars for which the ACF method could return rotation
periods (and the Sun most probably would not belong to such a sample). Along this line of
reasoning, Reinhold et al. (2020b) found that solar levels of photometric variability are
typical for stars having near-solar fundamental parameters but unknown rotation periods.

4.3 Results and discussion
In this section, we calculate the position of the inflection point for each star in the samples A
and B defined in Sect. 4.2. Following the methodology described in Papers I and II, we first
calculate the power spectra of the stellar brightness variations using a Paul wavelet on the
order of six (see Torrence and Compo 1998) for the Kepler observing quarters Q1 − Q17.
We determined the period corresponding to the high-frequency inflection point, PHFIP(Qn) ,
per quarter and calculate the mean value for PHFIP over all 17 quarters for each star. This
allows us to obtain a unique representative value of PHFIP per star. The uncertainty is
calculated using 2-σ of the distribution of the obtained PHFIP values. Finally, we used the
PHFIP to calculate the stellar rotation period, Prot (see Table 4.2 and on-line reference for a
compilation of GPS outputs and comparison with GLS and ACF reference values).
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In Figure 4.3, we plot the mean values of the PHFIP positions for each of the stars against
the rotation periods from Reinhold and Gizon (2015) (left panel, GLS) and McQuillan et al.
(2014) (right panel, ACF). The rotation periods and positions of the inflection points are
well-correlated. A linear fit constrained to go through the origin of the coordinate system
gives PHFIP = 0.19 × Prot with Pearson coefficients for periods of 0.81 from Reinhold and
Gizon (2015) and 0.80 from McQuillan et al. (2014).

The scatter around the linear fits has multiple sources. First, the calibration coefficient
between rotation period and inflection point, α = PHFIP/Prot, depends on the relative
roles that bright faculae and dark spots play in generating stellar brightness variations.
According to the model presented in Paper I, these roles are regulated by the ratio between
facular and spot areas of active regions at the time of emergence, S fac/S spot (i.e. zero ratio
would lead to a purely spot-dominated star, while very large ratios would correspond to a
faculae-dominated star). Secondly, there is an intrinsic statistical uncertainty of the GPS
method. For example, in Paper I, we found that even for a star with a fixed S fac/S spot ratio,
the factor α showed 5-10% variations from one realisation of active regions emergence
to another. Finally, there is also an uncertainly in the determination of rotation periods
by Reinhold and Gizon (2015) and McQuillan et al. (2014) (see e.g. Fig. 4.7, where we
compare the periods from these two sources for the 172 stars of sample B that are common
to both).
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Table 4.2: GPS outcome values.

[ ——————— (1) ——————— ] [ – (2) – ] [ — (3) — ] [ —— (4) —— ]

KIC PHFIP σ PHFIP α σα Prot GPS Prot GLS Prot ACF log g [Fe/H] Var Teff

[d] [d] [d] [d] [d] [ppm] [K]

10070928 3.78 0.108 0.173 0.0050 19.894 22.132 21.747 4.594 -0.46 4688 5706
10080186 3.67 0.131 0.207 0.0074 19.315 18.239 17.747 4.547 -0.10 7472 5749
10080239 2.96 0.084 0.184 0.0052 15.578 16.577 16.131 4.547 -0.14 7174 5792
10083970 3.08 0.097 0.188 0.0059 16.210 16.308 16.374 4.559 -0.20 11418 5745
10089777 3.65 0.066 0.188 0.0034 19.210 19.437 19.381 4.541 0.07 3752 5713
10091612 2.90 0.078 0.130 0.0035 15.263 – 22.214 4.550 -0.18 1760 5804
10125510 3.78 0.180 0.161 0.0076 19.894 – 23.427 4.372 -0.64 0608 5838
10129857 4.69 0.235 0.162 0.0081 24.684 – 28.859 4.536 -0.06 1488 5757
10136417 4.46 0.276 0.169 0.0105 23.473 27.541 26.288 4.303 0.16 2690 5849
10140949 4.12 0.127 0.182 0.0056 21.684 – 22.636 4.501 0.02 1999 5874
10146308 3.69 0.191 0.174 0.0090 19.421 – 21.193 4.591 -0.52 3340 5804
10064358 3.82 0.078 0.231 0.0047 20.105 16.526 16.533 4.486 -0.22 2526 5772

Notes. This table contains an example of the GPS outputs, the compared rotation period values from GLS & ACF, and stellar parameters
for 12 randomly selected objects from samples A & B. 1) GPS outcome: In column 2 PHFIP is given, in column 3 its 2-sigma uncertainty,
σ PHFIP, defined from individual inflection points for each Kepler observing quarter. In column 4 and 5 values of α-factor and its 2-sigma
uncertainty are reported respectively. Prot GPS values in column 6, as result of applying Eq. 4.1 using the factor α = 0.19. 2) Column 7
shows the Prot reported by Reinhold and Gizon (2015). 3) Prot and variability values (Var in [ppm]) reported by McQuillan et al. (2014) in
column 8 and 11. 4) Cols. 9, 10 and 12 show the log g, [Fe/H] and Teff respectively, taken from Huber et al. (2014). A complete table for
the 1047 objects is available in a machine-readable form in the online journal and at the Centre de Données astronomiques de Strasbourg
(CDS) - VizieR Online Data catalogue.
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In Fig. 4.4, we show calibration factors, α, for samples A (top panel) and B (bottom
panel). The rotation periods of stars in both samples are taken from McQuillan et al.
(2014). In Paper I, we demonstrated that the profile of the high-frequency tail of the power
spectrum and, consequently, the values of α depend on the center-to-limb variations (CLVs)
of the brightness contrasts of magnetic features. Since spots and faculae have different
CLVs, the value of α depends on their relative contributions to the stellar brightness
variations. For the extreme cases, we found that α is about 0.14 for simulated stellar light
curves with variability solely determined by faculae and about 0.21 for simulated stars
with variability dominated by spots. These values are designated, respectively, by the red
and green horizontal dashed lines in Fig. 4.4. It is reassuring to see that most of the α
values for samples A and B appear between these two extreme-cases. Stars with values of
α outside of this range (in particular, with α > 0.21) are likely due to: inclination angles
below 45◦, which can lead to a shift of the inflection point to lower frequencies (see Fig. 9
from Paper I); statistical noise of the GPS method; and possible uncertainties in rotation
periods from McQuillan et al. (2014).

For sample A, the ratios are shown as a function of stellar effective temperature from
Huber et al. (2014), while for sample B, they are plotted as a function of stellar rotation
period from McQuillan et al. (2014). The upper panel of Fig. 4.4 shows that for near-solar
rotation periods (the rotation periods in sample A were constrained between 24 and 27.4
days; see Table 4.1), the position of the inflection point shows no significant dependence
on the effective temperature (e.g. the fitting of a slope gives a value of 7.36 × 10−7, which
is well below the 1 σ uncertainty of 1.8 × 10−6). We also note that the mean value of
α = 0.19 is equal to the slope of the regression shown in Fig. 4.3. This implies that neither
the S fac/S spot value nor CLVs of facular and spot contrast change significantly within the
5000-6000 K domain of sample A. We note, however, that we cannot conclusively exclude
the improbable scenario that the effect from the change of the facular and spot contributions
to brightness variability on α is compensated by a change of facular and spot CLVs, such
that the net effect on the inflection point is very small.

The bottom panel of Fig. 4.4 shows that for stars with near-solar effective temperatures
there is a rather weak but statistically significant dependence of the α factor on the rotation
period. For example, fitting a linear dependence returns a slope value of 9.3 × 10−4 which
is 3.8 times larger than its 1σ uncertainty of 2.5 × 10−4. However, the value of the slope is
strongly affected by a couple of slowly rotating stars and, thus, might not represent a trend
in the full sample. To better characterise such a trend, we calculated the mean value of
the calibration factor in several bins of rotation period values. We compiled the mean α
values per several bins of rotation periods; see Table 4.3 for details. To further illustrate the
trend of α values with rotation period, the histogram to the right side of the panel shows
the distributions of α values for two rotation periods - one for stars with rotation periods
below 21 days and another with rotation periods above 21 days. We can see that the two
distributions are clearly shifted relative to each other and the α-values of faster rotating
stars are larger than those slow-rotating stars.

We note that the ’n’ number of stars and the amplitude of photometric variability in
our samples decreases with rotation period. Consequently, slow rotators might be more
affected by photometric noise. We investigated the possible effect of Kepler white noise on

1 A logarithmic visualization of the relation α factor versus Prot is available in the appendix, see Fig. 4.8.
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Figure 4.4: Top panel: α factor versus Teff for Sample A shows consistency across a broad
temperature range. The black line corresponds to the linear fit to values with an uncertainty
within 2-σ of the mean of the distribution as shown by coloured squares (grey squares lie
outside the 2-σ of the distribution). The histograms to the right side of the panel display
the distribution of α values for two effective temperature regimes, using Teff = 5500 K as a
threshold. Bottom panel: α factor versus Prot from McQuillan et al. (2014) for Sample B
shows a slight decrease in α with rotation period. The coloured segments indicate the
mean of α for the different Prot ranges as indicated in Table 4.3. The histograms to the
right of the panel indicate the distribution of α values for two rotation period regimens,
using 21 d as a threshold. For both panels the error bars represent 2-σ uncertainties of the
α values over all Kepler quarters available for each star. The gray squares lie outside of a
2-σ of the distribution. The dashed red and green horizontal lines represent the α factor
values in the extreme cases with all variability being due to spots (α = 0.21) and all due to
faculae (α = 0.14), respectively 1.

the deduced positions of inflection points for the stars in our samples. In Fig. 4.5, we plot
the dependence of the α factor values on the expected Kepler noise levels for each of the
stars, calculating the amplitude of the Kepler noise as a function of the Kepler magnitude
(following Lammer 2013). The derived precision (called the noise in the context of Kepler)
accounts for noise introduced by the instrument and gives it as a function of the Kepler
magnitude of the source and the variability of sources (see Fig 4.9).

As much as 99.9% of the stars in our sample present a Kepler magnitude of 16 mag
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Table 4.3: Mean α-values in sample B per bin.

Bin n PHFIP [d] ᾱ σ σ/
√

n Bin colour

1 158 [14–20] 0.190 0.001 9.0 × 10−5 Pink
2 148 [20–25] 0.184 0.001 9.8 × 10−5 Purple
3 36 [25–30] 0.181 0.003 5.0 × 10−4 Orange
4 12 [30–35] 0.173 0.006 1.9 × 10−3 Gold
5 6 [35–40] 0.156 0.004 0.17 × 10−3 Yellow

Notes. Compilation of mean α-values for n stars per range of rotation periods, see
Fig. 4.4.

or fainter. We find that values of the α factor are independent of the Kepler noise, with
fits of a linear dependence to samples A and B giving slope values well below their 1σ
uncertainties (7.4 × 10−7 and 4.9 × 10−8, respectively). Consequently, we do not expect the
Kepler noise to affect the positions of inflection points determined for stars in our samples.
Furthermore, we note that photometric noise would shift the position of the inflection point
to lower frequencies (see Paper II), meaning that it would lead to a trend that is opposite to
what we see in the bottom panel of Fig. 4.4.

A possible explanation of the observed tendency in Fig. 4.4 is a change in the relative
contribution of faculae and spots to stellar rotation variability (or S fac/S spot ratio in terms
of Paper I) with rotation period. The increase of the α factor with rotation rate implies
that the S fac/S spot ratio (and, consequently, the contribution of faculae to the rotational
variability) is lower in faster rotating and, therefore, more active stars. Such a trend is
consistent with an extrapolation to higher activities of observed solar behaviour. Indeed,
the mean size of spots on the Sun increases during periods of high solar activity (Hathaway
2015; Mandal et al. 2020). At the same time the S fac/S spot ratio decreases with the size
of active regions and their spot components. An extrapolation of these trends to activity
levels higher than seen in the Sun results in an increase of the α factor with activity, and,
consequently, with rotation rate, as indicated by the bottom panel of Fig. 4.4.

We note that the ratio S fac/S spot between facular and spot areas of the individual
magnetic features at the moment of their emergence discussed until now is different from
the ratio between ’instantaneous’ stellar disk coverage by faculae and spots. The former is
a property of a magnetic feature during its emergence onto the surface of the star, while
the latter is strongly affected by the evolution of the magnetic flux after emergence. For
example, in the hypothetical case of facular portions of active regions evolving exactly
as spot portions, these two ratio remain the same. In reality, the ’instantaneous’ ratio is
generally significantly larger than that ’at the time of emergence’ since faculae live longer
than spots.

Solar observations show that the ratio between such instantaneous solar-disk coverage
by faculae and spots decreases as solar activity increases (Chapman et al. 1997; Foukal
1998). The observed patterns of stellar-brightness variability indicate that this trend also
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extends to activity values that are significantly higher than those observed on the Sun
(Shapiro et al. 2014b). Our result indicates that not only the ratio between instantaneous
facular and spot disc coverage shows this trend. Also facular to spot area ratio correspond-
ing to individual active regions ’at the time of emergence’ continues to decrease with
increasing level of activity, also beyond the level of solar activity observed until now. We
note that this result is not a simple consequence of the drop in the instantaneous ratio.
Simulations with a surface flux transport model by Cameron et al. (2010) show that the
origin of the decrease in the instantaneous ratio with increasing activity is rather complex.
It is, to a great extent, caused by a stronger cancellation of small-scale magnetic field
associated with faculae. Consequently, it does not necessarily demand any changes in
the structure of the emerging magnetic flux which defines the ratio corresponding to the
individual active region at the time of emergence; see the discussion in paper I.

The bottom panel of Fig. 4.4 shows that the dependence of α on the rotation period is
quite noisy, that is, there is quite a large spread of values for a fixed rotation period. This
spread basically covers the entire range of values between faculae- and spot-dominated
variability. In particular, it is significantly larger than statistical noise in the inflection point
position that we found in Paper I. We speculate that such a large spread implies that the
S fac/S spot ratio is not uniquely defined by the stellar effective temperature and rotation
period.

Figure 4.5: α factor versus photometric precision for sample A (left panel) and sample B
(right panel) for Kepler observations. Those records for single long observation of isolated
stars observed in an uncrowded pixel, i.e light curves of resolved targets without contami-
nation of additional sources. Extreme-case limits for spot- and faculae-dominated stars
are shown as horizontal dashed lines in red and green, respectively. The individual data
points are coloured according to the detected variability range for that particular star. This
is consistent with previous figure 4.4. The error bars represent 2-σ uncertainties of the α
values distribution over all Kepler quarters available per star. Gray rhomboids represent
data points that lie more than 2-σ from the centre of the distribution.

In Papers I and II, we found that the solar value of the calibration factor (αSun = 0.158) is
closer to the faculae-dominated case (α = 0.14) than to the spot-dominated case (α = 0.21).
Interestingly, Fig. 4.4 shows that the solar (αSun) value appears to be rather low relative to
that of stars in both of our samples (see also Fig. 4.3, where the Sun is clearly below the
regression line). This is, however, not surprising since most of the stars in our samples are
significantly more variable than the Sun even though we selected the stellar sample by the
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reported detected rotation period and not by the variability (see Fig. 4.2, cf. Reinhold et al.
2020b). This implies that these stars are also more active than the Sun (see also Zhang et al.
2020, who showed that stars with known near-solar rotation periods have systematically
higher values of S-index than the Sun). Therefore, we can expect that their S fac/S spot ratios
are smaller and, consequently, their α factors are larger.

4.4 Summary

In this study, we developed the GPS method, which is a novel means for determining stellar
rotation periods from photometric time series. Instead of basing this determination on the
more traditional means of identifying the strongest peak in a Lomb-Scargle periodogram
or a maximum of the auto-correlation function, we identify the steepest point (i.e. the
inflection point) in the global wavelet power spectrum of stellar brightness variations.
In Paper II, we showed that while the solar brightness contributions from faculae and
spots can oppose each other to reduce any peak due to the rotation period from Lomb-
Scargle periodograms and auto-correlation functions, it has only a very minor effect on the
location of this high-frequency inflection point and the resulting ratio between the period
corresponding to the inflection point and the actual rotation period, α. In Paper I, the factor
of α, however, shows a moderate dependence on the relative contribution of faculae to
stellar brightness variations. Therefore, identifying the position of the inflection point
allowed determination of the rotation period in stars where other methods fail (with an
internal uncertainty of about 25%). At the same time, this GPS method allows us to assess
the relative role of faculae in stars with known rotation periods. In Paper II, we tested the
performance of the GPS method against solar photometric data. We demonstrated that in
contrast to other methods, the GPS method allows for an accurate determination of the
solar rotation period independently of the solar activity level.

In this study, we applied the GPS method to 1047 F-, G-, and K-type stars with rotation
periods as reported in McQuillan et al. (2014). We show that the position of the high-
frequency inflection point is well-correlated with the rotation periods of stars in the two
samples we analysed, providing further validation of the GPS method. We emphasise that
the stellar light curves analysed in this study and the solar light curves analysed in Paper II
are quite different: the amplitudes of brightness variability in the stellar samples in this
study are generally higher than that of the Sun, and the stellar brightness modulation are
much more regular over rotational timescales.

We find that the α factor increases with rotation rate, indicating that faculae become
less important on stars rotating faster than the Sun. We have also found that the facular
contribution to solar brightness variability is larger than its contribution to brightness
variability in a sample of stars having near-solar rotation periods and temperatures. We
attribute this to a selection effect since the rotation periods of stars with brightness-
variability patterns similar to that of the Sun are rather difficult to measure via the ACF
method for rotation-period determinations and, thus, there is a dearth of such stars in
our sample. Consequently, our results indicate that in addition to being more active than
the Sun (see also Reinhold et al. 2020b; Zhang et al. 2020), the stars with near-solar
effective temperatures and near-solar rotation periods determined by McQuillan et al.
(2014) have different compositions of active regions (with smaller facular contributions).
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The GPS method for determining rotation periods could thus prove to be an important
contributor to enhance the lower-than-expected number of G-type stars with near-solar
rotation periods reported by van Saders et al. (2019). This method can also improve the
solar-stellar comparison as in Reinhold et al. (2020b). The outcome of GPS might bring a
new perspective in understanding stellar activity.

While we focus in this study on applying GPS to stars with known rotation periods,
in a forthcoming study, we plan to apply the GPS method to Kepler stars with previously
unknown rotation periods as well as to TESS stars. This might help establish a new and
more complete sample of stars having near-solar rotation periods, based upon which we
can investigate whether solar variability still appears anomalously low in comparison to
stars in this broader sample.

This will be of importance to the exoplanet community, since the knowledge of rotation
periods will help identify radial velocity jitter from planetary signals (see Oshagh 2018;
Faria et al. 2020; Hojjatpanah et al. 2020). The anticipated GPS-determined expanded
database of stellar rotation periods could also bring crucial information for ongoing and
upcoming surveys such as NIRPS-HARPS and ESPRESSO (see Pepe et al. 2010; Bouchy
and Doyon 2018). Additionally, the precise determination of host-star rotation periods is
important for recovering accurate exoplanet radii, which will be crucial for future searches
of transiting Earths or super-Earths in the light curves of solar twins in the PLATO field
(see Rauer et al. 2014).
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4.5 Appendix chapter 4

Figure 4.6: Logarithmic visualization of Fig. 4.3.
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Figure 4.7: Comparison for the 172 stars in sample B with reported rotation periods by
the ACF, GLS and GPS methods. Left: ACF versus GLS. Right: HFIP-GPS versus GLS.
Scatter colour to visualise the temperature. The comparison is made in a similar range
scale for a better visualization.

Figure 4.8: Logarithmic visualization of bottom panel in Figure 4.4.
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Figure 4.9: Variability range in ppm versus Kepler magnitude (Kmag). The colour bar
indicates Kepler precision.
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The complexity of solar-like brightness variability has been an issue for attaining confident
rotation period values, one of the most important parameters for stellar analysis. The
low amplitude signal and the irregular modulation in the light-curves are particular from
stars as the Sun. Those characteristics make difficult to fit a sinusoidal function to the
signal and, are the main reason of why most of the common methods used to recover
rotational velocities fail. In this work the GPS method, a novel tool for recovering rotation
periods, was successfully proposed, developed, tested, and implemented. The GPS method
performed well on simulated and observed solar and stellar light-curves.

In Chapter 1.1 an introduction about the stellar rotation phenomena is contextualized
to the topics treated in this Thesis. A basic drawn of the stellar rotation evolution and
related topics such as the rotation-age connection, the Skumanich law, and its deviations
are mentioned. As well, is pictured the connection between rotational velocity and activity.
Basic information about the solar and stellar photometric time-series, the instruments,
and the methods utilized to perform this work are described. The the introduction is
complemented with a brief compilation of the state of the art.

Sections (1.7, 1.8 and, 1.9) contain the compilation of three additional publications
were I contributed as co-author and, the GPS method was successfully implemented.
The abstracts and main contributions in the three additional co-authored publications
were included in the Introduction as supplementary material. This, given their pertinent
correlation with the present Thesis. In the section 1.7, is performed a in-deep analysis
and comparison between solar and stellar variability. This analysis concluded that the
Sun show lower activity signatures on its light-curves in comparison with their stellar
analogous. The results of this paper is coherent with the analysis and discussion performed
in this Thesis. In the section 1.8 the GPS is successfully applied on a TESS light-curve
for the star HD 41248. In the section 1.9 GPS is applied for a sample of 171 TESS stars.
Rotation periods and facular to spot ratio are reported for 71 and 30 stars of the sample,
respectively.

The core of the work presented in this Thesis has been segmented in three main
chapters (2, 3 and, 4) based on 2 published and 1 accepted manuscripts at A&A journal.
Chapter 2 is shown an extensive analysis of the gradient of the power spectra of Solar-like
simulated brightness variations time-series. Different models of synthetic data are used
to describe the possible magnetic feature configurations that compose stellar light-curves.
The gradient of the power spectra is applied to those data, analysing the different peaks
obtained (inflection points). There are two main inflection points that are recurrent and
show a strong amplitude in most of the LCs realizations. Those inflection points present
a consistent proportionality with the input rotation velocity and the magnetic feature
configuration. GPS, the novel method for retrieving rotation periods on stars alike the Sun
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is based on the characterization of the proportionalities found.
After analyse the relation between the inflection points located with GPS and the

input values of rotation period on the synthetic LCs, a validation with Solar brightness
variations was performed in order to corroborate such proportionality on observational data,
see Chapter 3. The observations analyzed included two independent data-sets recorded
by VIRGO/SoHO and TIM/SORCE. The selection of two different sources allowed to
discard possible superposed instrumental systematics over the period of the inflection
points. Using the different TSI time-series with simultaneous MDI/SoHO images was
possible to pseudo-isolate and characterize the related effect of spots and faculae over the
light-curves. By using this information and comparison with the synthetic light-curves in
Chapter2, was possible to recognize particular signatures of the dominance of faculae or
spots presence using the GPS.

In a subsequently step, after having a positive outcome testing the GPS with solar data,
in Chapter 4 was performed a co-validation of the method proposed in this Thesis using
Kepler observations. There is a comparison of rotation period outputs by ACF, GLS, PS
and GPS for about 1000 stars. The rotation periods of those stars ware reported previously
on different catalogs, and then used in this work as benchmark for testing the GPS. Even
more than just validate the GPS against other methods, in Chapter 4 the relation between
spot or faculae dominance and the location of the main inflection point from the GPS is
confirmed for active stars in agreement with Chapter 2.

Applying the GPS over a extended sample of star in the Kepler, TESS & PLATO fields
is suggested as additional and complementary work.

The contributions of this Thesis to stellar Astrophysics encompasses the possibility of
analyse rotation period on star like the Sun and, for the first time, have an estimation of the
ratio between facular to spots components expressed in the time-series of the brightness
variations. The stellar characterization by GPS have the potential to expand our knowledge
about the closest solar analogues.
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