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II Zusammenfassung 

Saccharide, auch bekannt als Kohlenhydrate, sind in der Natur allgegenwärtig und werden schon seit 

Jahrtausenden von den Menschen genutzt. Dabei sorgt die enorme Variabilität der Saccharide für ein 

weitreichendes Spektrum der Anwendungsgebiete. Im Allgemeinen können die Saccharide in drei 

Untergruppen geteilt werden. Zum einen die Gruppe der Mono- bzw. Disaccharide, bei welchen es 

sich um die sogenannten einfachen Zuckern, meistens Hexosen oder Pentosen, wie z.B. Glucose, oder 

eine Kombination aus zwei Zuckerbausteinen, wie es bei Lactose der Fall ist, handelt. Sie bilden die 

Grundsteine für die Biosynthese von Naturstoffen, sowie für die beiden anderen Gruppen, die Oligo-, 

drei bis zehn Zuckerbausteine, und die Polysaccharide, mit mehr als zehn Bausteinen. 

Entsprechend der hohen Variations- und Kombinationsmöglichkeiten von Sacchariden, präsentieren 

sich auch die Anwendungsmöglichkeiten dieser. Sie reichen von dem einfachen Nutzen als 

Nahrungsmittel, Energielieferanten, zur Herstellung von Kleidung und Papier bis hin zu den 
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moderneren komplexeren Nutzen als Ausgangsstoffe für Hydrogele, zur Herstellung transparenter 

biologisch abbaubarer Verpackungsmaterialien für Lebensmittel, zur Herstellung von flexiblen 

elektronischen Filmen oder auch für die Herstellung neuer Impfstoffe bzw. neuer Medikamente gegen 

neurodegenerative Krankheiten wie Alzheimer oder Parkinson. 

Des Weiteren dienen die natürlich vorkommenden Saccharide als Inspiration für neuartige 

Modifizierungen von Sacchariden bzw. mimetische Oligo- und Polysaccharide. Dabei gilt das 

Augenmerk nicht nur der Herstellung glycosidisch verbundener Monosaccharide, zur synthetischen 

Herstellung von Oligo- und Polysacchariden, sondern auch dem Aufbau neuer zuckerbasierender 

Oligomere bzw. Polymere mit nicht glycosidischen Verbindungen, beispielsweise durch eine Click-

Verknüpfung über eine Kupfer katalysierte Azid-Alkin-Kupplung, eine Thiol-En-Kupplung oder auch 

über eine UGI-Reaktion. 

In der hier präsentierten Arbeit wurde Cellulose, ein exemplarisches erneuerbares natürliches 

Polysaccharid, als Ausgangsstoff für eine zweistufige heterogene Veresterung mit einem langkettigen 

Alkyl-Säurechlorid (Laurinsäurechlorid bzw. Stearinsäurechlorid) in der ersten Stufe und mit 

Zimtsäurechlorid in der zweiten Stufe, genutzt. Durch diese zweistufige Synthese-Sequenz konnte 

erfolgreich zwei neuartige Cellulose-Misch-Ester SCC (stearoylated cinnamoylated cellulose ester) 

und LCC (lauroylated cinnamoylated cellulose ester) dargestellt und vollständig chemisch via FTIR, 

NMR spektroskopisch und über DSC charakterisiert werden. Eine anschließende Prüfung auf 

besondere materielle Eigenschaften offenbarte die Eigenschaft transparente und flexible Filme zu 

erzeugen, die unter anderem auf Lösungsmittel und Temperatur ansprechende Eigenschaften zeigen. 

Des Weiteren weisen die hergestellten Filme selbstheilende Eigenschaften auf. 

Neben der Nutzung von Cellulose als Biopolymer, wurde Galactose als natürliches und biologisch 

interessantes Monosaccharid als Grundmaterial für weitergehende Modifikationen. Galactose konnte 

in zwei jeweils sechs Stufen umfassenden Synthesen, zum einen mit einer endständigen Alken-

Gruppe, sowie einer Marcaptan-Gruppe und zum anderen mit einem endständigen Alkin und ebenfalls 

einer Mercaptan-Gruppe versehen werden. Da die ungeschützte Mercaptan-Gruppe an Luftsauerstoff 

zur Dimerisierung neigt, wurden die jeweiligen Vorläufer-Verbindungen einer chemischen Analyse 

über FTIR und NMR-spektroskopisch charakterisiert. In Anschluss daran wurde eine grundlegende 

Untersuchung der notwendigen Reaktionsbedingungen für eine erfolgreiche Thiol-En- bzw. Thiol-In-

Kupplung, die zu einer Ausbildung Click-verknüpfter linearer bzw. verzweigter Oligosaccharid-

Ketten führen soll, durchgeführt. 
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Neben der bereits beschriebenen Modifikation, wurde Galactose ebenfalls als Ausgangsstoff für eine 

weitere sechs stufigen Sequenz genutzt, die als angestrebtes Ziel ein Galactose-basierendes Molekül 

mit einem endständigen Alken- und einer Azid-Funktion hat. 

Das angestrebte Ziel konnte mit einer Ausbeute von 32 % über alle sechs Einzelschritte erreicht 

werden und des Weiteren vollständig FTIR- und NMR-spektroskopisch untersucht werden. 

Nachfolgend konnte das erhaltene Produkt in einer symmetrischen Kupfer-katalysierten 

Azid-Alkin-Kupplung mit 1,7-Octadiin in ein zuckerbasiertes symmetrisches Di-Triazol überführt 

werden. Das symmetrische Triazol wurde in einem Test mit den Pilzstämmen Coniophora puteana 

und Trametes versicolor auf potentielle fungizide Eigenschaften überprüft. Außerdem wurden weitere 

potentielle Modifikationsmöglichkeiten hin zur Ausbildung eines Oligo- bzw. Polysaccharides 

aufgezeigt. 

Bei der hier vorliegenden Arbeit handelt es sich um eine Monographie, die eine bereits veröffentlichte 

Publikation umfasst. Nach einer allgemeinen Einleitung, gefolgt von der Zielsetzung, werden für jeden 

Abschnitt, der drei behandelten Themenblöcke, ein Literatur-Überblick des jeweiligen 

Themenbereichs, sowie eine ausführliche Präsentation der Ergebnisse mit der dazugehöriger 

Diskussion und einer Zusammenfassung, dargestellt, bevor es zu einer abschließenden allgemeinen 

Zusammenfassung übergeht. Die Haupt-Themenblöcke sind in den Kapiteln 3 bis 5 zu finden. 
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III Abstract 

Saccharides, also known as carbohydrates, are ubiquitous and have been used by men for millennia. 

The high variability of the saccharides ensures a wide field of applications. In general, saccharides 

could be subdivided into three groups. Firstly, the group of mono- or disaccharides, which are the so-

called simple sugars, mostly hexoses or pentoses, such as glucose, or a combination of two components 

as it is the case with lactose. They form the basic building blocks for the biosynthesis of natural 

compounds. Furthermore, they are the basic building block for the oligosaccharides, which contain 

three to ten sugar units and the polysaccharides which have more than ten sugar units. 

The high variation and combination possibilities of saccharides leads to a broad field of applications. 

The field contains simple uses as for nourishment, as energy supplier, source for clothes and paper. 

Besides this, the field also contains more complex uses such as resources for hydrogels, for the 

production of transparent biologic degradable packaging for food, for the generating of flexible 

electronical films or for the production of novel vaccines or new drugs for the treatment of 

neurodegenerative illnesses like Alzheimer disease or the Parkinson disease. 

Furthermore, the naturally occurring saccharides serve as inspiration for novel modifications of 

saccharides or mimetic oligo- and polysaccharides. The focus of the research lies on different aspects. 

One of those is the production of glycosidic linked monosaccharides for the synthetic production of 

oligo- and polysaccharides. Another one is the construction of new sugar-based oligomers or polymers 

with non-glycosidic linkages, for example by click linking like the copper-catalysed azide alkyne 

coupling, a thiol-ene coupling or via a UGI reaction. 

In this presented paper, cellulose, as an example for a natural renewable polysaccharide, was used as 

resource for a two-step containing heterogeneous esterification with a long chain alky acid chloride 

(stearoylchloride or lauroylchlroride) in the first step and cinnamoylchloride in the second step. Over 

this two step-synthesis two novel cellulose mix esters SCC (stearoylated cinnamoylated cellulose 

ester) and LCC (lauroylated cinnamoylated cellulose ester) were successfully generated and have been 

completely chemically characterised via FTIR, NMR spectroscopy and DSC. Afterwards, the products 

were tested on outstanding material properties. It turned out, that both products were able to form 

transparent flexible films, which showed solvent and temperature driven properties. Moreover, the 

films revealed the ability of self-healing. 

Alongside the use of cellulose as a biopolymer, galactose as a natural and biological interesting 

monosaccharide was used for further modifications as a basic material. Galactose was provided in a 

six-step synthesis on the one hand with an end standing alkene and a thiol group and on the other hand 
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with an end standing alkyne and a thiol group. Due to the high reactivity of the unprotected thiol 

groups, the precursor molecules were completely chemically analysed via FTIR and NMR 

spectroscopy. Afterwards, a basic investigation of the necessary reaction conditions for a successful 

thiol-yne respectively thiol-ene coupling, that lead to click linked linear respectively branched 

oligosaccharide chains, was examined. 

Besides the modifications described, galactose was further used as resource in another six-step reaction 

with the goal of introducing an alkene and an azide functionalisation. The molecule was synthesised 

with an overall yield of 32 % and the product was completely examined via FTIR and NMR 

spectroscopy. 

Afterwards, the obtained product was converted via a symmetrical copper catalysed azide alkyne 

coupling with 1,7-octadiyne to a symmetrical di triazole. The triazole was tested on antifungal 

properties with the two different fungi stains Coniophora puteana and Trametes versicolor. 

Furthermore, alternative modification possibilities were shown, like a reaction leading to novel oligo- 

or polysaccharides. 

The presented study is a monography, containing one publication. After a general introduction, 

followed by the objectives, the three main topic blocks, each containing a literature overview of the 

respective topic area, as well as a detailed presentation of the results with the corresponding discussion 

and a summary, are presented before moving on to a final general summary. 

The main topic blocks can be found in the chapters 3 through 5.
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1 Introduction 

Saccharides are ubiquitous in nature and were used as sources for food, fuel, textiles and also had great 

impact in the development of cultures for many centuries.[1–5] The name derives from the ancient word 

‘saccharon’, which can be translated to sugar.[1,2] Saccharides are also known as carbohydrates, 

because the empirical formula for the first investigated sugars was Cn(H2O)n.
[1,2] Later investigations 

lead to the insight, on the one hand, that the idea of carbon connected to water was too simple and, on 

the other hand, that saccharides could also contain other kinds of atoms like nitrogen or sulphur.[1] 

The simplest saccharide is glucose, a monosaccharide, which is also the key building block for natural 

product biosynthesis.[2,6,7] Saccharides can be divided into three subgroups. The elemental building 

components are monosaccharides as glucose or galactose.[1] They form the first group of saccharides 

together with the disaccharides, which contain two elemental sugar units connected over a glycosidic 

bond.[1,2] One well known representative is lactose.[8] The next group are saccharides containing three 

to ten sugar monomers, the so called oligosaccharides.[9–11] The last group are the polysaccharides, 

which contain more than ten sugar units, as for example cellulose or starch.[1,2,12,13] 

Since saccharides are renewable and sustainable resources, the general interest in saccharide-based 

materials and components is growing fast.[5] Due to the great variability of saccharide-based natural 

materials, they offer a broad field of applications.[1,2,6,7,14] Examples for those applications are 

aggregation induced emission luminogens[15], nanocarriers for medical applications[16,17], 

polysaccharide-based food packaging[18] and for the reversible binding of CO2.
[19] 

Polysaccharides are ideal for the development of novel functional materials. MITURA et al. reported 

about different biopolymers used for the synthesis of hydrogels, that can be used in cosmetics.[20] 

Furthermore, polysaccharides could operate as filler materials for pharmaceutics to generate a better 

handling of the dosage forms of pharmaceutics.[21] 

Cellulose is a representative polysaccharide[1,2,12,13] and it is one of the most abundant and divers 

biopolymers in modern times.[3,4,12,13,22–24,25] The application possibilities of cellulose range from its 

use as composite or reinforcing agent in nanocomposites[3,4,24], in the biomedical field[3,4,23,24] and 

printing[1–4,12,13,24] to electronics respectively biosensors.[22,24] This broad variability makes cellulose 

to a unique resource for the development of novel functional materials. 

Alongside the polysaccharides, the monosaccharides and disaccharides as the key elements of oligo- 

and polysaccharides, also offer a broad field of application.[26–28] In general, mono- and disaccharides 

show mostly biological, therapeutic and pharmacological properties.[27,29–32] Monosaccharides such as 
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for example glucose, galactose and disaccharides as e.g. lactose have a significant impact on the 

mammalian metabolism.[8,27,28,32,33] As mentioned previously, monosaccharides are the elemental 

building blocks of oligo- and polysaccharides. Therefore many biologically active compounds are 

based on saccharides.[27,28,34] Important examples are provided by the galacto-oligosaccharides GOS, 

which are closely connected to the human milk oligosaccharides HMO.[34,35,36,37] The GOSs as well as 

the HMOs can be found in the human breast milk and are vital for the intestinal development of 

infants.[36,38]  

Together with the discovery of new saccharide based functional materials and biologically active 

saccharides, the chemical synthesis evolved to simplify and design novel strategies for creating 

glycomimetics.[17,39]  

In order to conserve the resources as far as possible, suitable high yielding synthetic strategies for 

novel glycomimetics are preferred, as for example the click reactions.[40–42] Established reactions reach 

from photoinitiated thiol-ene couplings TEC[43], over multicomponent reactions such as the UGI 

reaction[44] to the well-known copper-catalysed azide-alkyne cycloaddition CuAAC reaction.[45] 

Here, in the thesis presented, cellulose was used, as a representative polysaccharide, and galactose, 

representatively for a monosaccharide, as natural renewable resources for the creation of novel 

functional materials respectively biologic active compounds. 

In the first part of this work, cellulose was modified via a heterogeneous esterification in two steps 

with one long chain acid chloride for the first reaction and cinnamic acid chloride in the second step, 

in order to prepare two novel materials with outstanding functionalities. This part of this thesis was 

already published.[46] 

The second part deals with the modification of galactose to obtain two potential monomers, containing 

a double or triple bond and a thiol group, for a TEC and a comparable thiol-yne coupling. 

In the last part of this work, the synthesis of a galactose-based monomer with a double bond and an 

azide group and the following symmetrical CuAAC with 1,7-Octadiyne is discussed. Furthermore, the 

resulting symmetrical sugar-based di triazole was tested on antifungal properties. 
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2 Objectives 

The main topic of the present work are saccharides, which are a big representative sustainable 

substance class in nature. Saccharides could be divided into three subgroups. Every chapter of the 

presented work deal with a different kind of group (Figure 2.1).  

 

Figure 2.1 Graphical abstract of this work. The main part of this work is subdivided into three chapters. Chapter 3, marked 

with the blue box on the top, deals with the modification of cellulose in order to prepare bifunctionalised cellulose mixesters 

with outstanding mechanical properties. Chapter 4, marked with the orange box on the left, is treating the idea to synthesise 

branched and linear oligosaccharides over thiol-ene respectively thiol-yne coupling starting from two galactose-based 

monomers. In chapter 5, marked in yellow on the right, a galactose-based symmetrical di triazole is synthesised and tested 

on potential antifungal properties. 
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Saccharides containing more than ten sugar units are classified as polysaccharides. Cellulose, as one 

well known representative of the polysaccharides, is used in chapter 3 as resource for two sequentially 

heterogeneous esterifications. For this esterifications stearoyl chloride respectively lauroyl chloride is 

used for the first sequence followed by the second reaction with cinnamoyl chloride. This should lead 

to bifunctionalised cellulose mixesters (SCC and LCC), which can be used for the formation of 

multifunctional transparent cellulose films. This part of the thesis has already been published.[46] 

The second group of saccharides, are the oligosaccharides containing three to ten sugar units. In 

chapter 4 it was aimed to prepare oligomers starting from galactose-based monomers. For this, two 

different monomers with a thiol group each and a triple bond 6a respectively a double bond 6b should 

be synthesized over two six-step synthesis. To get the aimed branched and linear oligomers, the 

reaction conditions for the thiol-yne respectively thio-ene coupling is basically examined. 

The last group are the mono and disaccharides. Within chapter 5, a five-step synthesis of the double 

bond and azide containing monosaccharide 7 was intended. In a symmetrical CuAAC reaction with 

1,7-octadiyne the di triazole 8 was obtained. Starting from the prepared disaccharide, promising 

antifungal properties have been tested. 
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3 „Synthesis of novel cellulose mixesters for transparent responsive films with 

switchable mechanical properties“ 

 

This part of the thesis was already published.[46] 

Soft actuators have attracted much attention during the last decades due to their potentially broad 

applications ranging from sensors to artificial muscles. Until now, most of such soft actuators are still 

based on synthetic polymers. Herein, a novel group of materials derived from sustainable cellulose as 

potential starting materials for the preparation of soft actuators was described. To be precise, cellulose 

mixesters with acyl esters of distinct chain lengths and cinnamic ester were synthesised through a two-

step synthesis and used for the preparation of responsive thin film actuators. These cellulose mixesters 

have degree of substitution ascribed to stearoyl (DSSt) of 1.51 or lauroyl groups (DSLa) of 1.48 and 

degree of substitution ascribed to cinnamoyl groups (DSCi) of 1.34 to 1.35. Furthermore, the influence 

of the chain lengths of the two different aliphatic esters as well as the switchable crosslinking of 

cinnamoyl moieties on the materials properties was further shown. Using these cellulose mixesters, 

transparent thin films with thickness a of 4-15 µm were prepared via facile solvent casting. These films 

had light-responsive mechanical properties from rigid to elastic after illumination with UV light of 

distinct wavelengths (254 nm and 310-400 nm). Moreover, the thin films showed shape memory effect 

and the ability of self-healing. 
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3.1 Literature overview 

Actuators are devices and materials that are able to change their shape or some special properties in 

response to changes in their environment.[47,48] Those changes differ from relaxation[48] over changes 

in the crystalline order[49] to changes in the volume[50] and changes in the shape.[51] Since the last 

century, hard actuators, e.g. metals, metal oxides or bimetal strings, are well known and used in many 

mechanical systems.[47,52] In recent years, the demand for soft polymeric actuators raised the 

development of polymer-based actuators.[53] The great advantage of the polymeric actuators is the high 

variety and huge diversity for tunable material and mechanical properties.[47,54,55] Together with the 

rapid development of the preparation of actuators using diverse materials, many new applications have 

been found, such as for soft robotics[55,56], drug delivery systems[50,51,57], micro sensors[58] and artificial 

muscles.[59,60] 

Further great improvement on actuators is the effort to prepare actuators by incorporating 

renewable[61,62] and sustainable components.[59,63,64] To achieve this goal, various organic and inorganic 

sustainable materials were integrated into either two-layer or single-layer systems to prepare 

actuators.[59,65] As typical examples for the use of renewable materials in bilayer systems are 

graphene/gold bilayer complexes[61], graphite-carbon nanotube hybrid films[62] and actuators made of 

poly-(vinyl alcohol-co-ethylene) nanofibers and cellulose nanocrystals.[66]  

Especially, cellulose as a renewable biobased material shows great potential as a resource for 

sustainable actuators.[67,68] Cellulose-based actuators have already been known for several years and 

typical examples are the electroactive papers that can be used as sensors or for energy storage.[69] In 

order to endow cellulose with desired functionalities, chemical modifications are often applied and 

quite a few pathways for the modification of cellulose have also been developed in the past 

decades.[64,68,70] Among them, a common and facile method to modify cellulose is the 

esterification.[71,72] 

In this work, a novel group of cellulose mixesters containing two groups as the starting material for 

film actuators was prepared. Cellulose was modified via two subsequent esterification steps, leading 

to novel bifunctionalised cellulose mixesters containing diverse functional groups. One type of these 

diverse functional groups is long alkanoyl groups, such as stearoyl or lauroyl moieties, which are 

known for their flexibility and their engagement in VAN DER WAALS as well as hydrophobic 

interactions.[73] The other type of these diverse functional groups is cinnamoyl groups that are known 

to be able to photodimerize.[74–77] These bifunctionalised cellulose mixesters were characterized with 

various analytical methods including elemental analysis, FOURIER-transform infrared (FTIR) 

spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. They were further transformed 
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into transparent films, which demonstrated multistimuli responsive shape-transition and mechanical 

properties. 
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3.2 Results and discussion 

3.2.1. Synthesis and characterisation of cellulose mixesters 

 

Figure 3.2.1.1. Schematic illustration for the preparation of the bifunctionalised cellulose mixesters, which starts with the 

first reaction on cellulose using a long chain acid chloride and ends with the second reaction with cinnamoyl chloride. 

In this work, monofunctionalized cellulose using stearoyl and lauroyl chloride leading to stearoylated 

cellulose SC and lauroylated cellulose LC were synthesized (Figure 3.2.1.1). Then, SC and LC were 

further modified with cinnamic acid chloride under heterogeneous reaction conditions for the second 

functionalisation. Following along this route, stearoylated cinnamic cellulose mixesters SCC and 

lauroylated cinnamic cellulose mixesters LCC were synthesised, which have different aliphatic chain 

lengths. The chemical structures of these mixesters were further systematically characterised via DSC, 

FTIR and NMR-spectroscopy (Figure 3.2.1.2).  
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Figure 3.2.1.2. a) FTIR spectra of cellulose and cellulose derivatives. b) Representative DSC curves of the bifunctionalised 

cellulose derivatives SCC and LCC. 1H-NMR spectrum of c) LCC and d) SCC measured in CDCl3. 13C-NMR spectrum of 

e) LCC and f) SCC measured in CDCl3.  

FTIR spectrum of cellulose shows a significant wide signal at 3350 cm-1 attributed to hydroxyl groups 

and an exceedingly small signal at 2900 cm-1 for the sp3-CH (Figure 3.2.1.2a). In comparison, the 

signal ascribed to hydroxyl groups in the FTIR spectrum of SC or LC is barely visible and the signal 

of sp3-CH increased significantly. Moreover, a new signal emerged at 1700 cm-1, which is derived 
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from carbonyl groups of the corresponding alkanoyl moieties. Within the FTIR spectrums of the 

mixesters SCC and LCC, the signal attributed to hydroxyl groups disappeared. In addition, the CH-

signal changed slightly compared to the signal in the FTIR spectrums of the SC and LC. A further new 

carbonyl peak due to the introduction of cinnamoyl moieties appeared next to the first carbonyl signal 

derived from the long chain alkanoyl moieties.  

Figure 3.2.1.2b shows the DSC measurement of SCC and LCC. Both cellulose mixesters showed a 

wide glass transition state in the temperature range of 5 °C-150 °C. This wide glass transition 

temperature leads to the expectation of glassy behaviours of materials represented as sufficient 

flexibility. Furthermore, the DSC measurement shows that SCC could partially crystallize with a 

crystallisation point at 48.7 °C during the heating process, while it is approximately 15 °C lower during 

the cooling process. In contrary, LCC did not show any significant crystallisation signal according to 

the DSC measurement. This is primarily due to the presence of shorter lauroyl chains of LCC in 

comparison to SCC, which could not crystallize under applied environment compared to the longer 

stearoyl groups. 

Within the 1H-NMR spectrum of LCC (Figure 3.2.1.2c), the terminal methyl group 19 has its signal at 

0.80 ppm, while the CH2 signal 8 to18 lies around 1.20 ppm. The signals of the carbon atoms 1 to 6 of 

cellulose backbone are in the range of 2.08-5.27 ppm. The signals ascribed to double bonds 22 are 

between 6.09 and 6.29 ppm. The second signal of the double bond 21 is in the same range as the 

aromatic signals of the cinnamic ester 24 to 26 between 7.11-7.46 ppm. Within the 1H-NMR spectrum 

of SCC (Figure 3.2.1.2d), the signal 25 ascribed to terminal methyl can be found at 0.8 ppm, whereas 

signal 8 to 24 of the alkyl groups is around 1.26 ppm. The signals for the carbon atoms 1 to 6 of 

cellulose backbone are between 1.62 and 5.5 ppm. The aromatic signals of the cinnamic ester carbon 

atoms 30 to 32 are between 7.11 and 7.59 ppm. The signals of the double bonds are at 7.80 ppm for 

carbon atom 27 and 6.18 ppm for 28. 

Within the 13C-NMR spectrum of LCC, the terminal methyl shows a signal of 19 at 14.2 ppm (Figure 

3.2.1.2e). The signals of the remaining alkyl chain 8 to18 can be found between 22.8 to 32.1 ppm. The 

signals of carbons atoms 1 to 6 of cellulose backbone are between 62.1 and 100.8 ppm. The double 

bonds result in two signals at 145.6 ppm for 21 and 116.9 ppm for 22. The aromatic signals are between 

128.4 and 134.2 ppm. As well, two groups of separate signals ascribed to two types of esters containing 

three peaks for each ester moiety at the cellulose backbone can be observed. Due to the two different 

groups of ester moieties, two groups containing three signals each are visible. These signals can be 

found at 165.2, 165.6 and 165.9 ppm for the cinnamoyl moieties and at 171.9, 172.4 and 172.9 ppm 

for the alkanoyl moieties.[71,73]  
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Within the 13C-NMR spectrum of SCC, the signal of the terminal CH3-group 23 can be found at 

14.3 ppm (Figure 3.2.1.2f). The signals of the alkyl chain carbon atoms 8 to 24 lie between 22.8 and 

34.1 ppm. The carbon signals of the cellulose backbone are visible in the range of 61.9-101.1 ppm, 

which is typical for carbons 1-6 of cellulose. The signals attributed to double bonds 27 and 28 are in 

the range of 116.9-45.6 ppm. The aromatic signals 29 to 32 lie between 128.4 and 130.8 ppm. 

Moreover, the ester groups for the cinnamoyl moieties at 165.2, 165.6 and 165.8 ppm and for the 

alkanoyl moieties at 171.9, 172.4 and 172.9 ppm can be found. 

The 1H-NMR spectra of SCC and LCC were further used to determine the DS of the corresponding 

alkanoyl (DSLa/DSSt) and cinnamoyl groups (DSCi). The ratios between the integrals of the signals 

ascribed to the terminal methyl group and one hydrogen of the double bonds of cinnamoyl groups and 

the integrals of the signals attributed to the cellulose backbone were used for the calculation (Figure 

3.2.1.2c and 3.2.1.2d). Obtained DS were summarized in Table 3.2.1.1. 
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Table 3.2.1.1. Calculated DS of the corresponding groups in LCC an SCC based on integral ratios of the terminal methyl 

groups of 19 (LCC) / 25 (SCC) as well as one hydrogen signal of the cinnamoyl double bond of 22 (LCC) / 28 (SCC) to 

the cellulose backbone signals. 

 Integral -

CH3 

DSSt DSLa Integral Ph-

CH=CH- 

DSCi 

LC -- -- 1.48a --  

LCC 4.44 -- 1.48 1.34 1.34 

SC -- 1.66a -- --  

SCC 4.53 1.51 -- 1.35 1.35 

a These DS were calculated based on the elemental analysis.  

Thus, the chemical structures of synthesized cellulose mixesters were clearly characterised by FTIR- 

and NMR-spectroscopic measurements. Moreover, both cellulose mixesters SCC and LCC had distinct 

thermal properties according to the DSC measurements. 

 

3.2.2. Preparation and characterization of films using the bifunctionalised mixesters 

Both bifunctionalised SCC and LCC were further used for the preparation of transparent responsive 

film actuators. Films of defined dimensions were fabricated via solvent casting in teflon moulds. 

100 mg of the corresponding mixester was dissolved in 10 ml THF and the solution was transferred in 

a teflon mold with a diameter of 5 cm. The THF was allowed to evaporate at room temperature 

overnight to produce thin films with a thickness of 4-15 µm. After complete drying, highly transparent 

films were obtained using both SCC and LCC (Figure 3.2.2.1a). The flexible films produced from 

LCC and SCC turned out to be slightly yellow.  
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Figure 3.2.2.1. a) Schematic illustration for the photodimerisation and reverse reaction of films fabricated using SCC and 

LCC as well as the photos of the films. b) Representative tensile test curves. c) Average mechanical parameters of films 

fabricated using SCC and LCC after diverse treatments with UV light of 310-400 nm for 4.5 h and UV light of 254 nm for 

2 h. 

As reported previously in several studies, cinnamoyl moieties can undergo a reversible 

photodimerisation via the exposure to UV light of different wavelengths.[74–77] Using the UV light of 

310-400 nm, a [2+2]-cycloaddition of the double bonds within neighboured cinnamoyl moieties occurs 

after 4.5 h, which can be reversed after the irradiation with UV light of 254 nm for 2 h. After the UV-

illumination, the films maintained the high transparency (Figure 3.2.2.1a). In comparison, their 

mechanical properties were strongly modified (Figure 3.2.2.1b and 3.2.2.1c). The mechanical 

properties and the effects of the illumination by corresponding UV lights on YOUNG’s modulus, 

maximal strength and elongation of films were determined at a constant temperature of 20 °C and a 

relative humidity of 60 % (Figure 3.2.2.1b and 3.2.2.1c). The green curves in Figure 3.2.2.1b show the 

results of the SCC films and the blue curves the results of the LCC films, while the specific results are 

summarised in Figure 3.2.2.1c. 
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Using SCC with longer stearoyl side chains, the dimerisation of cinnamoyl moieties led to increased 

elasticity (45 % elongation) at the beginning of the tensile test. This could be because of the presence 

of self-assembled semicrystalline structures by the long stearoyl moieties.[73] The dimerisation also 

elevated maximum strength (~60 MPa stress), whereas the non-crosslinked films were rather rigid 

(20 % elongation) and fragile (25 MPa stress). In comparison, LCC films containing shorter aliphatic 

esters showed different mechanical behaviours. After the irradiation with UV light of 310 to 400 nm, 

the LCC films became stiff with 15 % elongation and the maximum strength dramatically decreased 

to 25 MPa. In comparison, the decrease of the YOUNG’s modulus was marginal, compared to SCC 

films after equal treatments. After the exposure to the UV irradiation of 254 nm for two hours, the 

films turned from brittle to tough with a maximal stress of ~90 MPa, but the films were still quite stiff 

(with only 20 % elongation).  

These results clearly showed that the chain length of the introduced alkyl groups as well as the 

photo-dimeriseable cinnamoyl groups have a great impact on the mechanical properties of obtained 

films. Moreover, longer stearoyl chains form semicrystalline structures in the obtained films and have 

a higher steric hindrance than the shorter lauroyl chains.[73] This should lead to fewer dimers of 

cinnamoyl moieties during the irradiation with UV light of 310-400 nm. In addition, alkyl moieties 

with these diverse chain lengths could have VAN DER WAALS interactions of distinct extents and thus 

distinct influence on the mechanical properties. By including these diverse aliphatic moieties, distinct 

overall elasticity, maximum extensibility and load-bearing capacity of the films are adjustable. 

Nevertheless, the UV dimerisation of cinnamoyl groups is reversible, so that the mechanical properties 

of SCC/LCC films can be switched between two states simply by using UV illumination of different 

wave lengths (Figure 3.2.2.1a). 
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Figure 3.2.2.2. Responsive shape-memory behaviours of a) LCC and b) SCC. i) The films around a glass rod were placed 

above DCM or THF at room temperature to give a spiral shape. ii) The prefixed films were cooled to -4 °C for 15 minutes 

to get the stable spiral shape. iii) Exposing the spiral films to DCM or THF atmosphere or heat led to original film shape. 

c) Self-healing properties of SCC and LCC. When an LCC or SCC sample with a notch was held into a DCM atmosphere 

for 30 seconds, the film was healed.  
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Both SCC and LCC films showed the ability of one-way shape memory and self-healing properties 

(Figure 3.2.2.2). To present the shape memory effect of the films, a sample of each was firstly fixed in 

a spiral shape via exposure to a THF or DCM atmosphere for a few seconds and further cooling at 

4 °C for 15 min (Figure 3.2.2.2a and 3.2.2.2b). Upon exposure to a DCM or THF atmosphere or heat, 

the films turned back from the spiral shape to their original shape. Apart from the shape memory 

property, the films exhibited the self-healing character (Figure 3.2.2.2c). To show this property, SCC 

and LCC films with a size of 1 cm×1 cm (length and width) and a thickness of 4.4-15 µm were cut 

with a sharp scalpel. After exposing the samples to a DCM atmosphere for 30 seconds, the notches in 

the films got sealed.  
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3.3 Conclusion 

In total, a novel strategy for the synthesis of bifunctionalised cellulose mixesters and further 

preparation of responsive film actuators was reported. Bifunctionalised cellulose mixesters were 

obtained via a two-step heterogeneous reaction. It proceeded with the esterification of cellulose with a 

long chain aliphatic acid chloride in the first step and cinnamoyl chloride in the second step, leading 

to SCC and LCC. SCC had a melting point of 48.7 °C, while LCC showed a broad glass transition 

without a significant melding point. Furthermore, both compounds formed transparent films with 

tuneable mechanical properties based on the reversible photodimerisation of cinnamoyl moieties. 

These films showed tuneable elastic deformation ability and plastic deformation properties, which 

depended on the length of the aliphatic chains and the crosslinking of cinnamoyl moieties. In addition, 

SCC and LCC films exhibited responsive shape-memory behaviours and self-healing property. 
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4 “Synthesis of linear and branched sugar polymers via thiol-ene / thiol-yne 

reaction” 

Oligosaccharides are abundant in nature. They show a wide spectrum of biological functionalities. 

Therefore, the synthesis and research on oligosaccharides was increased in the recent years. Together 

with the synthesis of defined structures, new oligosaccharide mimics were developed. An easy way 

for preparing those oligosaccharide mimics is provided by the well-known click reactions CuACC and 

the thiol-ene coupling. Herein, the synthesis of two different monomers as starting material for the 

green thiol-ene coupling respectively thiol-yne coupling were described. Because of the high reactivity 

of the prepared monomers, the protected precursor molecules were analysed completely via NMR and 

IR spectroscopy. Using those precursor molecules, highly reactive monomers were obtained, that were 

able to perform an oligomerisation. In order to optimise the reaction, the properties of the deprotection 

followed by the oligomerisation were further investigated. To evaluate the success of the reaction mass 

spectroscopy was used. It turned out, that oxygen had great impact on the reaction. For further research 

on this reaction, also the use HPLC to get more information about the composition of the resulting 

reaction mixture was suggested. 
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4.1 Literature overview 

In nature many different substance classes can be found. One important substance class are the 

saccharides, which can be divided into three subgroups. The first group are the monosaccharides and 

disaccharides, mainly hexoses, pentoses and combinations of them, like glucose, xylose or respectively 

saccharose and lactose. The second group are the oligosaccharides. They consist of three to ten 

carbohydrate monomers and are mostly connected over glycosidic bonds.[9,11,78] The last group are the 

polysaccharides, such as cellulose and starch, that are build-up of more than ten carbohydrate 

monomers.  

Especially the oligosaccharides display a broad spectrum of different functionalities in biological 

processes.[10] Examples for these functionalities in biological processes are galacto-oliogosaccharides, 

human milk oligosaccharides and cyclodextrins.[9] The galacto-olidosaccharides have a prebiotic 

functionality.[9,11] Human milk oligosaccharides are found in the human breast milk and are vitally 

important for the growth and development of infants.[79,80] The afore mentioned cyclodextrines have a 

plethora of different functionalities, like to stabilise emulsions or volatile compounds and they can be 

used for drug delivery systems[9,81] 

Besides the afore mentioned health benefits, oligosaccharides were also found out to have antiviral 

and antibacterial effects[38,79], they could have positive effects on diabetics[79] and are promising targets 

for the creation of new vaccines.[82] 

Due to this wide spectrum of functionalities, oligosaccharides are desired structures for synthesis. 

Along with physical methods, like hydrolysis, and chemical methods, as isomerisations and 

extractions, enzymatic methods could be used for producing oligosaccharides.[9] All kinds of methods 

for synthesising natural oligosaccharides undergo a steady improvement and are focused in research. 

In 2010, the group around EBRAHIM et al. developed a new reactor system for the enzymatic production 

of galacto-oligosaccharides from lactose.[37] Since lactose can be found in milk and is a by-product of 

cheese production, it is a suitable substance for further reactions. XIAO et al. gave an overview about 

further derivation of lactose.[8] Apart from the biological methods, chemical processes such as the 

synthesis of human milk oligosaccharides can also be mentioned.[83] 

Not just natural oligosaccharides are of great interest, also the development of new oligosaccharide 

mimics is focused by researchers.[84] Although, structures seem to be more simple to reach the 

synthesis on carbohydrates show some challenges compared to the synthesis of other natural structures, 

like peptides or nucleotides.[42,85] Due to these challenges click reactions provide an easy way to 

synthesise novel oligosaccharide or polysaccharide mimics with non-glycosidic linkings.[42,86–90] One 
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of the most famous methods is the CuAAC reaction.[40,41] Because of its simplicity it found its way 

into the saccharide chemistry.[90] One example for the usage of this reaction was given by UHRIG et 

al..[91] This working group used CuAAC to click different oligosaccharide analoges on a given 

carbohydrate based matrix to prepare novel interesting carbohydrate based oligo and polysaccharides. 

Another example is the work of HOTHA et al. who used the CuAAC to obtain pseudo 

oligosaccharides.[88,89] Many more examples for the usage of the well-known CuAAC were published 

to date.  

Apart from this well studied and commonly used reaction, there are more useful click reactions playing 

important roles in synthetic chemistry. 

Another commonly used click reaction is the thiol-ene coupling reaction.[92–94] Compared to the 

CuACC reaction, it is an environmental friendly reaction. After the CuAAC reaction was mainly used 

in the synthesis of novel biologically reactive molecules, it was found out, that the copper catalyst in 

the reaction has a certain cytotoxity.[95] Because of this, using UV light as a catalysator for the reaction 

turned out to be more suitable for creating materials in high yield without any disturbing residues from 

the reaction.[92,93,96] Now, many working groups are using the thiol-ene coupling as click reaction in 

carbohydrate related chemistry.[42,97] 

It was reported as a tool for the synthesis of thiodisaccharides[98] and imino disaccharides.[99] The 

working group of BORBÁS et al. for example was investigating the synthesis of thiol linked 

glycoconjugates by the thiol-ene coupling starting from enoses.[43,100] Another example was given by 

the working group around KRAMER et al. who first used a thiol-ene coupling to prepare glycosylated 

L-cysteine-N-carboxyanhydride monomers. Afterwards they used the monomers in a living 

polymerisation to get glycopolypetides.[101] 

Furthermore the thiol-ene coupling also proved its suitability for connecting saccharides to 

cyclodextrine rings in a simultaneous reaction.[102] Besides the given examples for the usage of the 

thiol-ene coupling, it was further reported as a suitable reaction for linking carbohydrates to 

proteins.[103] 

In this work two novel galactose-based monosaccharides containing a thiol group were prepared. One 

of these synthesised monomers contained a double bond, whereas the other monomer had the 

respective triple bond. The six-step containing synthesis of the monomers was reported. Since the 

monomers of this kind showed a rather low stability when exposed to air,[94,104,105] the more stable 

precursor molecules were characterised completely. Up till now, just few examples of click linked 

oligo- respectively polysaccharide mimics were reported.[90] In order to pave the way for further 
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research, the conditions for an oligomerisation via thiol-ene respectively thiol-yne coupling of the 

designed monomers were examined. 
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4.2 Results and discussion 

Synthesis and Characterisation 

In this work, the two different monomers on base of the galactose monosaccharide were build up firstly 

(Fig. 4.2.1).  

 

Figure 4.2.1 Planned synthesis of the monomers 6a and 6b for the polymerisation via thiol-yne /thiol-ene coupling starting 

from galactose. 

Both of those monomers contained a thiol group and a triple bond 6a or a double bond 6b and were 

synthesised in a six-step sequence as shown in Figure 4.2.2. In the first step of the synthesis the 

hydroxyl groups at the C-1 to C-4 were protected by building up two acetals with acetone. For this 

reaction a yield of 83 % was achieved. After this step the hydroxyl group at the C-6 of the protected 

galactose was free for further reactions. 

 

Figure 4.2.2 Multistep synthesis of the desired monomers 6a and 6b with an overall yield of 47 % (over six steps) in both 

cases. i) I2, Acetone, rt, 20 h; ii) NaH, a) propargyl bromide b) allyl bromide, abs. DMF, 0 °C to rt, 3.5 h; iii) Dowex®, 

H2O, 80 °C, overnight; iv) pyridine, Ac2O, rt, 20 h; v) thio acetic acid, BF3·Et2O, DCM, 0 °C to rt, 24 h; vi) NaOMe, abs. 

methanol, rt, 2 h.  

The next step was the etherification of the free hydroxyl group with propargyl bromide which leads to 

2a with a yield of 92 % or respectively allyl bromide to get 2b with a yield of 71 %. The next two steps 

were the deprotection of the etherified molecules 2a and 2b with Dowex® and the following protection 

with acetic anhydride in pyridine. The deprotection of 2a and 2b lead to a mixture of the α and the β 

anomer of the corresponding carbohydrate 3a and 3b. This appearance of the anomers was observed 
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in all further reaction steps. The new protection gave a yield of 85 % over two steps for 4a and a yield 

of 84 % over two steps for 4b.  

After this the acetyl ester at the C-1 of 4a and 4b was replaced by a thio acetic ester leading to 5a with 

a yield of 72 % and 5b with a yield of 95 %. 

The obtained carbohydrates 5a and 5b were used as precursor molecules for the preparation of the 

desired thiol-yne complex 6a and the desired thiol-ene complex 6b by saponification of the acetyl 

groups. This last step was meant to be quantitative due to being a deprotection reaction. 

The overall yield from galactose to the desired monomers 6a and 6b was in both cases 47 %. 

After the successful synthesis, it was planned to further characterise 6a and 6b. 

Unfortunately, it turned out, that the thiols 6a and 6b were highly reactive, so the monomers dimerised 

within a short time, when getting in contact with the oxygen from the air (Figure 4.2.3).[94,104,105] This 

reaction is well known and can be avoided by working under inert gas atmosphere. For the further 

coupling, it was important to improve the reaction set up. The changes that were taken so far are 

discussed later, after the characterisation of the exact structure. 

 

Figure 4.2.3 Mass spectrometric analysis of 6a. It shows the dimerization of the synthesised monomer. 

Because of the instability of the monomers 6a and 6b, the precursor molecules 5a and 5b were 

completely chemically characterised for further discussions and for proving the designed structure. 

Figure 4.2.4 shows the FTIR, one dimensional and two-dimensional NMR measurements of 5a. 
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Figure 4.2.4 Chemical analysis of the precursor molecule 5a. a) FTIR spectrum; b) Molecular structure; c) 1H-NMR in 

CDCl3; d) 13C-NMR in CDCl3; e) 1H-COSY in CDCl3; f) APT in CDCl3; g) HSQC in CDCl3;  

h) HMBC in CDCl3. 
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Figure 4.2.4a shows the FTIR spectrum of the precursor molecule 5a. In this spectrum different 

structural properties are visible. There are two different C=O bands visible at 1730 cm-1 and 1750 cm-

1, which are related to the acetyl esters and to the thio acetic ester, that were formed during the reaction 

sequence. Furthermore, a weak broad band from 2800 cm-1 to 3000 cm-1 could be found, that can be 

ascribed to the aliphatic CH, CH2 and CH3 groups of the molecule. Moreover, there is a weak sharp 

signal at 3250 cm-1 indicating some residual water in the sample. 

The mass analysis clearly confirms the precursor molecule 5a. The calculated mass of  

M [C17H22O9NaS]+: 425.0877 fits to the found mass of 425.0882. 

The 1H- and the 13C-NMR (Figure 4.2.4c and d) point out the mentioned formation of anomers for all 

derivatives from step iii) on, during the multistep synthesis. In all showed spectra a second pair of 

signals is observable. The anomers of compound 5a have a ratio of approximately 1:5. 

Within the 1H-NMR of the precursor molecule 5a (Figure 4.2.4c) the CH3 groups 11, 13 and 15 of the 

according acetat esters have their signals at 1.89 ppm, 1.94 ppm and 2.07 ppm. The thio acetic ester 

17 is shifted downfield to 2.30 ppm. The peaks of the introduced propargyl ether can be found at 

2.39 ppm for the terminal proton 9 and between 3.96 ppm and 4.11 ppm as a multiplett for the CH2 

group 7. The signals of the galactose skeleton 1 to 6 are appearing as usual between 3.40 ppm and 

5.50 ppm except the signal of the H-1. The signal of the main anomer is shifted high field to 5.04 ppm, 

whereas the other anomer has its H-1 signal at the more common value of 6.16 ppm. 

Within the 13C-NMR spectrum of the precursor molecule 5a (Figure 4.2.4d) the signals of the methyl 

groups of the actetic esters 11, 13 and 15 are at 20.5 ppm and at 20.6 ppm. As seen in the 1H-NMR the 

methyl group of the thio acetic ester 17 is shifted downfield to 30.8 ppm. The signals of the propargyl 

ether are at 58.3 ppm for the CH2 7, 75.1 ppm for the CH 9 and at 79.0 ppm for the quaternary C atom 

8. Furthermore, the peaks of the galactose structure 1-6 are like usual between 66.9 ppm and 80.4 ppm. 

The peaks of the quaternary ester atoms 10, 12 and 14 are set at 169.4 ppm, 169.7 ppm and 170.0 ppm. 

As well the quaternary signal of the thio actetic ester 16 is significantly shifted downfield to 192.0 ppm. 

Figure 4.2.4f shows the APT of molecule 5a. The negative signals at 58.3 ppm and at 66.9 ppm can 

clearly be assigned to the CH2 groups 7 and 6. Furthermore, the quaternary C atom 8 of the propargyl 

ether leads to a negative signal at 79.0 ppm. The negative signals at 169.4 ppm, 169.7 ppm, 170.0 ppm 

and the significantly downfield shifted signal at 192.1 ppm can be allocated to the oxo esters 10, 12, 

14, respectively the thio ester 16 of compound 5a. 
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Figure 4.2.4g shows a cut-out of the HSQC in the range of 3.30 ppm to 4.20 ppm for the 1H-NMR 

spectrum and 55.0 ppm to 70.0 ppm for the corresponding 13C-NMR spectrum. The accorded 1H-NMR 

spectrum is showed on the top and the accorded 13C-NMR is shown on the left side of the 2D area. It 

clearly shows two cross peaks. One cross peak is at 66.9 ppm and 3.44 ppm to 3.59 ppm which can be 

assigned to the CH2 group 6, marked in yellow, of the galactose skeleton. The other cross peak can be 

found at 58.3 ppm and 3.96 ppm to 4.11 ppm and can be assigned to the CH2 group 7, marked in green, 

of the introduced propargyl side chain. 

Figure 4.2.4e shows the 1H-COSY of compound 5a in the range of 3.30 ppm to 4.20 ppm. The 

associated 1H-NMR spectrum is showed on the top and on the left side of the 2D spectrum. In the 

range chosen are the two signals of the both CH2 groups 6 and 7 and the signal of H-5 of compound 

5a. The spectrum reveals cross peaks between both CH2 groups at 3.44 ppm to 3.59 ppm and 3.96 ppm 

to 4.11ppm and a cross peak between the H-5 and the CH2 group 6 at 3.44 ppm to 3.59 ppm and 

3.96 ppm. This is a great evidence that the etherification at C-6 worked out as predicted.  

Figure 4.2.4h shows the HMBC of compound 5a in the range of 2.10 ppm to 2.50 ppm for the 1H-NMR 

spectrum and 77.0 ppm to 85.0 ppm for the 13C-NMR spectrum. The accorded  

1H-NMR spectrum is shown on the top and the accorded 13C-NMR spectrum is shown on the left side 

of the 2D spectrum. Within this cut-out of the spectrum only one cross peak is visible at 2.30 ppm and 

80.4 ppm. The signal at 2.30 ppm is the downshifted methyl group of the thioester, whereas the signal 

at 80.4 ppm is addressed to the carbon 1, marked in red, of the galactose skeleton. These cross-peak 

proofs the connection between the sugar skeleton and the successfully introduced thioester. Another 

evidences of the replacement of the oxo ester at carbon 1 by the thio ester, are the shifted signals of 

the methylene signal 17, marked in blue, in the 1H-NMR to 2.30 ppm (figure 4.2.4c) and the shifted 

signals of the methylene carbon 17 to 30.8 ppm and the quaternary atom 16 to 192.0 ppm in the 13C-

NMR (figure 4.2.4d). 

Figure 4.2.5 shows the FTIR, one dimensional and two dimensional NMR measurements of 5b. 
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Figure 4.2.5 Chemical analysis of the precursor molecule 5b. a) FTIR spectrum; b) Molecular structure; c) 1H NMR in 

CDCl3; d) 13C NMR in CDCl3; e) 1H-COSY in CDCl3; f) APT in CDCl3; g) HSQC in CDCl3; h) HMBC in CDCl3.  
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Figure 4.2.5a shows the FTIR spectrum of the precursor molecule 5b in which some different structural 

properties are visible. First of all, there are two different carbonyl signals at 1730 cm-1 and 1745 cm-1. 

Those are related to the acetic ester and thio acetic esters, which were introduced into the molecule 

during the synthesis. Also, the wide small signal between 2800 cm-1 and 3000 cm-1, which could be 

referred to the different CH, CH2 and CH3 groups in the precursor molecule 5b. 

The mass analysis clearly confirms the precursor molecule 5b. The calculated mass of  

M [C17H24O9NaS]+: 427.1141 fits to the found mass of 427.1033. 

The 1H- and the 13C-NMR (Figure 4.2.5c and d) of compound 5b also show the mentioned formation 

of anomers with a ratio of 1:6. 

Within the 1H-NMR of the precursor molecule 5b (Figure 4.2.5c) the CH3 groups of the acetic esters 

11, 13, 15 and the thio acetic ester 17 have their signals at 1.95 ppm, 1.99 ppm, 2.11 ppm and 

2.35 ppm. The peaks of the introduced allyl ether are at 3.85 ppm to 3.95 ppm for the sp3-CH2 7, from 

5.12 ppm to 5.31 ppm for the terminal sp2-CH2 group 9 and at 5.78 ppm for the CH group 8. Besides 

that, the signals of the galactose backbone could be found at 3.38 ppm and 3.50 ppm for the H-6s, at 

3.95 ppm for the H-5, at 5.09 ppm for H-4, from 5.12 ppm to 5.31 ppm for H-2 and the H-1 and at 

5.48 ppm for H-3. 

Within the 13C-NMR of compound 5b (Figure 4.2.5d) the signals of the CH3 groups 11, 13, 15 and 17 

of the acetic esters and the thio acetic ester are at 20.7 ppm, 2×20.8 ppm and at 30.9 ppm. The signals 

of the corresponding allyl ether could be found at 72.4 ppm for the sp3-CH2 7, at 117.7 ppm for the 

sp2-CH2 9 and at 134.2 ppm for the CH group 8. The signals of the galactose structure can be found at 

66.7 ppm for the C-2, 67.3 ppm for the C-6, at 67.8 ppm for the C-3, at 72.2 ppm for the C-4, at 

76.4 ppm for the C-5 and at 80.6 ppm for the C-1. The peaks of the quaternary ester atoms 10, 12, 14 

and 16 could be found at 169.7 ppm, 169.9 ppm, 170.1 ppm and 192.3 ppm. 

Figure 4.2.5f shows the APT of compound 5b. Here, seven negative signals can be found. Both signals 

at 67.3 ppm and 72.4 ppm can clearly be assigned to the CH2 groups 6 and 7. The next negative signal 

at 117.7 ppm can be clearly assigned to the terminal sp2-CH2 9. The last four negative signals at 

169.7 ppm, 169.9 ppm, 170.1 ppm and the shifted signal at 192.3 ppm can be allocated to the 

quaternary carbons of the oxo esters 10, 12, 14 respectively to the thio ester 16 of compound 5b. 

Figure 4.2.5g shows a part of the HSQC in the range of 3.00 ppm to 4.20 ppm for the 1H-NMR 

spectrum and 65.0 ppm to 75.0 ppm for the 13C-NMR. The accorded 1H-NMR spectrum is showed at 

the top and the accorded 13C-NMR is shown at the left side of the 2D NMR spectrum. The spectrum 
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shows two cross peaks. One is at 67.3 ppm and 3.38 ppm to 3.50 ppm, which can be assigned to the 

galactose skeleton CH2 6, marked in yellow. The other cross peak is at 72.4 ppm and 3.85 ppm to 

3.95 ppm and can clearly be assigned to the CH2 group of the introduced CH2 group 7, marked in 

green, of the allyl rest. 

In figure 4.2.5e a cut-out of the 1H-COSY is presented. It ranges from 3.00 ppm to 4.20 ppm. The 

accorded 1H-NMR spectrum is shown at the top and at the left side of the correlation spectrum. The 

spectrum has two cross peaks. Both cross peaks are between 3.38 ppm to 3.50 ppm and 3.85 ppm to 

3.95 ppm. It shows the coupling between the both CH2 groups 6 and 7 and proofs the success of the 

planned etherification. 

The last spectrum (figure 4.2.5h) is a cut-out of the HMBC. The cut-out ranges from 2.10 ppm to 

2.60 ppm for the 1H-NMR spectrum and from 77.0 ppm to 84.0 ppm for the 13C-NMR spectrum. The 

accorded 1H-NMR spectrum is shown at the top and the 13C-NMR spectrum is shown on the left side 

of the 2D spectrum. The spectrum shows only one cross peak at 2.35 ppm and 80.6 ppm. The 1H signal 

at 2.35 ppm can clearly be assigned to the methyl group of the thio ester 17, marked in blue. The signal 

at 80.6 ppm is accorded to the galactose carbon 1, marked in red. This cross peak shows the correlation 

between the galactose skeleton and the thio ester. It proofs the successful exchange of the formally 

oxo ester to the thioester.  

Other evidence is given by the significant downfield shifting of the signals belonging to the thioester. 

The methyl group 17 is shifted to 1.35 ppm in the 1H-NMR spectrum and to 30.9 ppm in the 13C-NMR 

spectrum. Furthermore, the quaternary carbon of the thioester is also shifted to 192.3 ppm in the 13C-

NMR. 

Thus, the chemical structures of both precursor molecules 5a and 5b were clearly characterised by 

FTIR and NMR spectroscopic measurements. 
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Oligomerisation of the prepared monomers 

After the successful synthesis of the precursor molecules 5a and 5b, it was planned to remove the 

acetylic protection to get the monomers 6a and 6b. Those monomers should be oligomerized in the 

further proceeding to synthesise a branched fractal like polymer through a thiol-yne coupling or 

respectively a linear polymer through a thiol-ene coupling (Figure 4.2.5). 

 

Figure 4.2.5 Planned polymerisation of 6a and 6b. i) The polymerisation was carried out via thiol-yne coupling creating a 

branched fractal like polymer. ii) In the second case the polymerisation was carried out by a thiol-ene coupling leading to 

a linear polymer. 

As mentioned above, the monomer 6a showed an instability according to the exposure to oxygen, 

which leads directly to a disulphide formation (Figure 4.2.3). To avoid this dimerisation the reaction 

needed some improvements. Simultaneous to these changes, the oligomerisation was enhanced. The 

precursor molecule 5a was taken as representative example for the whole optimisation process. Table 

4.2.1 shows all changes made. 
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Table 4.2.1 Stepwise improvement of the deprotection of 5a followed by the strived oligomerisation of the monomer 6a. The resulting solution was analysed via mass 

spectrometry.  

 

Reaction i) Deprotection Treatment of 6a ii) Oligomerisation Mass analysis of the resulting product 

 Solvent 
Reaction 

conditions 
 Reaction conditions Time Percentual distributione 

Highest observable 

oligomer 

      Monomer Dimer Trimer  

1 abs. MeOH NaOMe, rt, 2 h 
Dowex®, MeOH, 

concentrated at air 
-- -- 69.4 

9.9a 

20.7b 
-- -- 

1a   
TLCc after 2 weeks; 

Fraction 1 
-- -- 76.8 

8.6a 

8.6b 

2.6a 

3.2b 
6 

1b   
TLCd after 2 weeks; 

Fraction 2 
-- -- 44.8 

6.3a 

40.8b 

1.9a 

6.1b 
6 

2 abs. MeOH 
NaOMe, rt, 2 h, 

Dowex®f 

abs. MeOH, argon 

atmosphere 

UV, argon 

atmosphere, rt 
24h 

not 

detected 

34.7a 

8.8b 

27.9a 

28.6b 
5 

3 abs. MeOHf 
NaOMe, rt, 2 h, 

Dowex®f 

abs. MeOHf, argon 

atmosphere 

UV, argon 

atmosphere, rt 
24h 51.2 

24.4a 

20.6b 

2.7a 

1.1b 
3 

4 abs. MeOHf 
NaOMe, rt, 2 h, 

Dowex®f 

abs. MeOHf, argon 

atmosphere 

DMPA, UV, argon 

atmosphere, rt 
24h no clear results measurable 

a Thiol-yne connected oligomers. 

b Disulphide connected oligomers. 

c Column chromatography on silica gel (DCM/MeOH: 9/1; Rf = 0.11). 

d Column chromatography on silica gel (DCM/MeOH: 9/1; Rf = 0.04). 

e For the percentual distribution, the amount of the monomer of the two different dimer masses and the two different trimer masses were taken as 100 % to get a defined 

correlation between them. 

f Oxygen free. Solvents were degassed via lowered pressure and ultra-sonification for 5×3 min. Solids were evacuated for at least 2 h and kept under argon before usage. 
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In the beginning the precursor molecule 5a was deprotected with NaOMe in methanol for 2 h at room 

temperature under air. After this the reaction was stopped by adding methanol washed Dowex®. 

Subsequently, the Dowex® was filtered off and the methanol removed under reduced pressure. The 

received product 6a was analysed through mass spectrometry. This analysis showed clearly the 

ongoing dimerisation between the deprotected thiol groups. Besides this, also the aimed link between 

the thiol and the alkyne group was build up. Both dimers could be found in the mass analysis with a 

ratio of 69.4:9.9:20.7. (monomer:thiol-yne linked:disulphide). The thiol-yne linked dimer shows a m/z 

of 491.1 whereas the disulphide dimer has a m/z of 489.1. The oxidation of the both thiol groups leads 

to the loss of two hydrogen atoms in the molecule, which explains the difference in the mass analysis. 

The product was stored concentrated at room temperature, while being exposed to air. After two weeks 

the product showed two different spots on TLC. After the careful separation of those two spots via 

column chromatography on silica gel (DCM/MeOH: 9/1; Rf,1 = 0.11, Rf,2 = 0.04), both fractions were 

also analysed via mass spectrometry. Fraction 1 showed nearly no difference between the amount of 

the desired thiol-yne linking and the disulphide. In contrast the second fraction showed higher thiol-

thiol linked dimers and trimers.  

These observations lead to the assumption, that the product 6a should not be exposed to air. Therefore, 

in reaction 2 all solids used during the synthesis were degassed for at least 2 h to avoid oxygen in the 

reaction mixture and the product was kept in abs. methanol under argon atmosphere, before getting 

oligomerised via irradiation with 310 nm to 400 nm UV light. The analysis of the results of the mass 

spectrometry showed a significant increase of the formation of the desired thiol-yne linked products. 

Also, the monomer 6a was not detected. This indicates, that the oxygen free reaction leads to the 

desired thiol-yne linked oligomer and prevents the thiol-thiol linking. For the reaction abs. methanol 

was added to the evacuated highly viscous precursor molecule 5a. Because of its viscosity, oxygen 

could probably have remained in the resin like starting material 5a.  

Therefore, in reaction 3 the precursor molecule 5a was solved in abs. methanol and the mixture was 

degassed via sonification under reduced pressure. This resulted in a deterioration of the relative 

distribution of the thiol-yne linking and the disulphide linking. Also, the highest observable oligomer 

was a trimer. In comparison the new reaction setting didn’t show the expected success. This means 

evacuating the precursor molecule 5a before solving it in already degassed abs. methanol is more 

effective, than vice versa. 

In order to get a higher degree of polymerisation, in reaction 4 DMPA was added. Unfortunately, the 

mass spectrometry didn’t show any of the expected signals. Neither the signal of the deprotected 
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monomer 6a nor any signals of the possible oligomerisations have been visible. This leads to two 

suppositions. The first one is, that the reaction didn’t work as planned. This needs further testing with 

different amounts of DMPA and different irradiation times. The other possibility is, that a higher 

oligomer (n>5) was built during the reaction, which is either not soluble or too big for the previous 

HPLC filtration and can’t be measured via mass spectroscopy.  

For further progression of the oligomerisation, more testing is necessary as well as the repetition of 

reaction settings leading to unexpected results. The basic examination of the deprotection followed by 

the oligomerisation provided the following information. The first one is, that the reaction needs to be 

free from oxygen. Also, the optimisation showed the need to evacuate all solids for at least 2 h first, 

as well as to degas the abs. methanol, before solving the precursor molecule 5a in abs. methanol, in 

order to reduce possible oxygen in the reaction. For this reason, longer evacuation periods should be 

tested. In order to avoid any possible source of oxygen potential error sources should be identified and 

corrected. One potential error source could be the usage of gas bags for the irradiation in the UV 

chamber. It was observed, that the gas bag used slowly deflated over time, which indicates a leaking 

and therefore a potential exposure to air. One possible solution to this problem is the use of a gas bag 

of a higher quality. Also, instead of using the UV chamber, a UV probe could be a practicable solution. 

By using a UV probe the reaction setup needs to be considered due to safety reasons. Another 

possibility to reduce possible oxygen in the reaction is the usage of a glove box, instead of the 

SCHLENK-technic. Another part of the optimisation is the influence of the irradiation time with UV 

light.  

Another great challenge, in the attempt to oligomerise the monomer 6a, is the analysis of the formed 

products. As mentioned above, the mass spectrometry was mainly used to evaluate the success of the 

corresponding reaction. But this analysis just shows two types of information. First of all, it gives the 

relative amounts of the prepared dimers and trimers. The second information provided by the mass 

analysis, is, if there is any disulphide formation in the molecule. In this study presented, these 

disulphide formations only occurred once in a molecule. Once two molecules linked between the thiol 

groups, only terminal alkyne groups are left for further polymerisation. This leads to many different 

possibilities of oligomers obtained during the reaction. 
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Figure 4.2.7 Selection of calculated and found peaks of the measured mass analysis. a) monomer 6a; b) disulphide dimer; 

c) thiol-alkyne linked dimers; d) thiol-thiol linked trimer; e) thiol-alkyne linked trimers. 

Figure 4.2.7 shows a selection of possible dimers and trimers formed during the reaction. For the 

disulphide dimers and trimers is just one possibility. Thinking about possible tetramers it changes to 

three options, since there are three possible positions for a new molecule to react (see Figure 4.2.7d). 

The thiol-alkyne linked molecules could be sorted into three categories. The first one are the linear 
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polymers. The second are the cyclic compounds. And the last one are branched ones mixed with one 

of the first categories. The compounds of the last category should not occur often, since UV controlled 

polymerisation between thiols and alkynes mostly lead to linear products.[106] 

This clearly demonstrates the disadvantage of the mass analysis. Although, it shows the amounts of 

dimers and trimers and gives information about the links between the monomers, it can’t give any 

information of what overall structure the resulted oligomers have.  

So, it is very important to find a good way, to separate the resulting oligomers and analyse them. One 

possible solution to this problem could be the use of an HPLC. With this it should be feasible to 

separate the mixture of oligomers into defined fractions, which can be further evaluated. Compared to 

the mass analysis, which only gives quantitative results, the HPLC in combination with further analysis 

could potentially lead to a deeper understanding of the formed products. 

Apart from changing the analysis of the resulting oligomers, the reaction itself needs some rethinking.  

The goal was to synthesise a thiol alkyne linked oligomer. To achieve this target other initial conditions 

should be considered. One potential starting point could be to initial put of a suitable starting material 

in order to slowly add the monomer to keep the concentration as low as possible to avoid the disulphide 

formation and to attain a steady and controlled oligomerisation. One starting material could be one of 

the previously synthesised galactose ethers 2a, 3a or 4a. The disulphide itself could be another suitable 

starting material, since there are just two end standing alkyne functionalisations to react with. Taking 

the disulphide as a starting material would also mean ether to change the previously aimed oligomer 

or to add another reaction after the oligomerisation to cleave the disulphide bond.[107] 

Lastly, other possible reactions for a oligomerisation trough thiol-yne coupling respectively TEC 

should be tested as reported in literature.[43,106] 

  



“Synthesis of linear and branched sugar polymers via thiol-ene / thiol-yne reaction” 

39 

 

4.3 Conclusion 

In total, two novel literature unknown precursor molecules 5a and 5b were synthesised via a five-step 

containing sequence. Both molecules were able to be deprotected quantitatively to give two important 

monomers 6a and 6b with a yield of 47 % over all six reaction steps. Those molecules contained a 

thiol group and an alkyne group for the molecule 6a and a thiol group and an alkene group for the 

molecule 6b. Because of this both molecules could be used for the respective thiol-yne coupling or 

thiol-ene coupling. 

Since the obtained monomers 6a and 6b showed low stability when exposed to air, the precursor 

molecules 5a and 5b were completely chemically characterised representatively for the deprotected 

monomers 6a and 6b. 

The planned deprotection of the precursor molecules, followed by the oligomerisation of those, was 

basically examined. It was found, that oxygen has a great effect in the reaction and suggested to keep 

the whole process under inert gas in further projects. Furthermore, it is necessary to further improve 

the degree of polymerisation by using different reported catalysts or different reaction conditions.  

For the analysis of the prepared oligomers mass spectrometry was mainly used. It turned out, that this 

just gives quantitative information about the success of an oligomerisation. To get some more 

information about the exact composition of formed oligomers during the reaction the usage of HPLC 

based measurements is highly suggested for future work on this project. 
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5 “Symmetrical sugar-based triazole with fungicidal effect” 

For many decades people have been using the healing components of nature, like different herbs, roots 

or fruits. Researcher all over the world set themselves the goal to examine the responsible compounds 

inside the plants giving them the pharmacological and bioactive properties. Those revealed substances 

served as inspiration for new synthetical bioactive mimics in various modern areas of application, like 

medicine or agriculture. In this work sugar based natural compounds and natural triazoles as model for 

a novel synthetic structure with possible antifungal properties were used. A symmetrical galactose 

based di triazole was successfully synthesised over a six-step route. After the complete characterisation 

via NMR-spectroscopy and FTIR-spectroscopy, the obtained structure was tested on antifungal 

properties. Since the triazole didn’t show the desired properties against Coniophora puteana and 

Trametes versicolor, further possible applications were described and more testing on other fungi or 

even herbs was suggested. 
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5.1 Literature overview 

Herbs and other plants are known for the treatment of medical issues for many centuries.[108] Due to 

this, researcher all over the world tried to examine the key compounds in nature, that have these 

positive effects on human health.[6,7,109,110] In 1935 the first penicillins and sulfonamides were used for 

the treatment of bacterial infections.[109,110] Since then, many different substance classes with 

pharmacological properties were found, which inspired researcher for new several promising 

structures in medical chemistry.[109,110,111] 

One well known source for natural products with pharmacological traits is ginseng.[112] It was shown 

that the ginsenoide Rg1 in ginseng has many positive effects like anticancerogenic, antiallergenic, 

antidiabetic properties.[112,113] Even more examples from nature are cinnamic acid and garlic. The 

working group around DINIZ et al. reported about the antidepressant potential of cinnamic acid, 

whereas CHOO et al. showed the antimicrobial properties of allicin, which could be found in garlic.[114] 

Also, marine plants have a broad spectrum of pharmacologically interesting compounds, as the review 

from HUANG et al. demonstrates.[115] Here, several natural compounds for PARKINSON’S disease 

treatment with many different chemical structures are reported. The far-reaching application 

possibilities for natural substances also include other neurodegenerative diseases like the ALZHEIMER 

disease, the HUNTINGTON disease, multiple sclerosis and amyotrophic lateral sclerosis.[116] 

Besides the pharmacological properties, some natural products, like for example eugenol, have 

antifungal traits.[117] HEDENSTRÖM et al. found three different compounds in spruce inhibiting the 

growth of certain fungi.[118] In addition citrus extracts and volatiles were observed to have antifungal 

effects and are discussed as potential natural fungicides.[119] On top of that, star anise also contains 

compounds with antifungal activity.[120] 

On closer inspection such natural products, some defined chemical structural classes are revealed. One 

of these distinct classes is the group of carbohydrates. In 2018 KIM et al. found novel compounds with 

antifungal activity.[30] Some of these novel compounds were glycosides. Also, ESPOSITO et al. found 

glycosides in the waste of chestnuts showing potential antifungal properties.[121] Next to the glycosides, 

certain saponins were isolated and positively tested as fungicides.[29] 

Apart from the analysis of potentially effective natural substances, some representatives form the basis 

for further modifications.[122] One possibility is the use of the already discussed CuAAC reaction in 

order to synthesise 1,2,3-triazoles.[123] 
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The structural motive of the 1,2,3-triazole is another interesting key structure, which is often connected 

to bioactive properties.[124] 1,2,3-triazoles show among others potential antifungal[125], antidiabetic[126] 

and antituberculosis traits.[124,127] 

Saccharides are commonly known as renewable and for their biodegradability. Because of the recent 

investigations of their antifungal potential, they are ideal for the use as natural fungicides. Combined 

with the structural motive of the 1,2,3-triazoles, which also displayed great bioactive properties, and 

are easy to synthesise. They lead to novel biological compounds with fungicidal activity as reported 

by the working group around HU et al..[128]  

This work also aimed at the combination of a sugar skeleton with the structural motive of the 

1,2,3-triazole to prepare a novel structure with potentially antifungal properties. Here, galactose was 

used as basic structural motive. In a six-step containing synthesis a galactose based symmetrical 1,2,3-

triazole was obtained. The resulting triazole was chemically analysed via NMR-spectroscopy and 

FTIR-spectroscopy and tested on antifungal properties against the fungi stains Coniophora puteana 

and Trametes versicolor. 
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5.2 Results and discussion 

Synthesis and Characterisation 

In this work, the symmetric sugar based di triazole 8 was synthesised, starting from galactose over the 

allyl ether galactose 4a (Fig. 5.2.1). 

 

Figure 5.2.1 Planned synthesis of the symmetrical sugar based triazole 8. 

Figure 5.2.2 Shows the two-step synthesis of the symmetrical triazole 8 starting from compound 4b. 

The starting molecule 4b was synthesised over a four-step route, which is shown in chapter 4.2. The 

next step was converting the ester at C-1 to an azide group followed by a CuAAC reaction with a 

symmetrical diyne as it is shown in figure 5.2.2. 

 

Figure 5.2.2 Stepwise synthesis of the symmetrical sugar based triazole 8 starting from the protected allyl ether 4b with a 

yield of 65 % over two steps. i) TMSN3, SnCl4, DCM, 0 °C to rt, 3 h; ii) 1,7-octadiyne, CuSO4, Na ascorbate, 

tBuOH : H2O = 1:1, rt, 12 h. 

The first reaction step was carried out by using azido(trimethyl)silane together with tin(IV) chloride 

as a catalyst. The yield of this step was 82 %. In the final step the biofunctionalised molecule 7 was 
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clicked via a CuAAC reaction with 1,7-octadiyne. A yield of 79 % was achieved in this reaction, which 

leads to a yield of 65 % over the last two steps. The yield over all six-step was 32 %. After completing 

the synthesis, the produced symmetrical triazole 8 was completely characterised. The measured FTIR 

and NMR spectra are summarised in Figure 5.2.3. 

 

Figure 5.2.3 Chemical analysis of the desired symmetrical sugar based triazole. a) FTIR spectrum; b) chemical structure; 

c) 1H-NMR spectrum; d) 13C-NMR; e) HMBC; f) APT of the triazole 8 measured in CDCl3. 
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Figure 5.2.3a shows the FTIR of the symmetrical triazole 8. In the spectrum are weak bands in the 

range of the aromatic C-H oscillation visible at 3145 and 3092 cm-1. Also, aliphatic C-H vibration 

band can be found at 2991, 2949 and 2870 cm-1. At 1748 cm-1 is the band from the C=O groups.  

The chemical structure of the synthesised symmetrical di triazole is shown in figure 5.2.3b. Here, all 

the atoms have been numbered to assign them to the individual signals in the NMRs. Since the 

molecule is symmetrical, there is just one half needed to be numbered. 

Within the 1H-NMR spectrum of the symmetrical triazole 8 (Figure 5.2.3c) the signals of the methyl 

groups are at 1.80-1.83 ppm, 1.95 ppm and 2.16 ppm. The both CH2-Signals 18 and 19 coming from 

the octa di yne could be found at 1.67-1.72 and 2.67-2.74 ppm. The signals of the galactose backbone 

can be found at 3.42-3.46 and 3.50-3.54 ppm for the H-6, at 4.10 ppm for the H-5, at 5.10-5.22 ppm 

for the H-3, at 5.46-5.52 ppm for the H-2 at 5.54 ppm for the H-4 and at 5.71-5.80 ppm for the H-1. 

The signals for the allyl ether are at 3.82-3.96 ppm for the sp3-CH2 7, at 5.10-5.22 ppm for the sp2-

CH2 9 and at 5.71-5.80 for the CH 8. Finally, the aromatic signal of the triazole 16 can be found at 

7.54 ppm. 

Within the 13C-NMR spectrum of the symmetrical triazole 8 (Figure 5.2.3d) the signals of the methyl 

groups 11, 13 and 15 can be found at 20.3, 20.6 and 20.7 ppm. The signals of the CH2 groups of the 

former octa di yne 18 and 19 can be found at 25.3 and 28.6 ppm. The signals of the galactose backbone 

are found at 67.2 ppm for the C-6, at 67.4 ppm for the C-4, at 68.1 ppm for the C-2, at 71.1 ppm for 

the C-3, at 75.2 ppm for the C-5 and at 86.2 ppm for the C-1. The signals of the allylic part could be 

found at 72.4 ppm for the sp3-CH2 7, at 117.9 ppm for the sp2-CH2 9 and at 133.9 ppm for the CH 

signal of 8. The signals of the reacted triple bond are now an aromatic CH 16 at 119.1 ppm and a 

quaternary aromatic signal at 148.5 ppm. The signals of the quaternary C=O 10, 12 and 14 are at 169.1, 

169.8 and 170.0 ppm. 

Figure 5.2.3 shows the APT of the triazole 8. In this APT are in total eight negative signals. The first 

two are at 25.3 ppm and 28.6 ppm and can be assigned to the symmetrical CH2 groups 18 and 19 of 

the alkyl chain of the formally 1,7-octadiyne. The next both negative signals are at 67.2 ppm and 

72.4 ppm which can be assigned to the both of the CH2 groups 6 and 7. The sp2-CH2 group 9 has its 

negative signal at 117.9 ppm. The quaternary aromatic signal 17 formed during the click reaction 

reveals in a negative signal at 148.5 ppm. The final negative signals that can be found are at 169.1 ppm, 

169.8 ppm and 170.0 ppm. They clearly can be assigned to the quaternary carbons of the protection 

groups 10, 12 and 14. 
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In figure 5.2.3e parts of the HMBC of compound 8 is shown. The cut-out ranges from 3.35 ppm to 

4.00 ppm followed by a small interruption of axes starting at 5.60 ppm again till 5.90 ppm for the 1H-

NMR spectrum. The accorded spectrum is shown with the same axis interruption is shown on the top 

of the 2D area. The correlating 13C-NMR spectrum is having also an interruption and ranges from 

66.0 ppm to 74.0 ppm, in the first part and from 115 ppm to 120.5 ppm in the second part. This part 

shown of the HMBC, has several different cross peaks. Within the 1H-NMR spectrum at the top are 

three signals. The signal of the CH2 group of the galactose skeleton 6 at 3.42 ppm to 3.54 ppm, marked 

in yellow, shows a cross peak with the carbon 7 at 72.4 ppm, marked in green. Furthermore, a cross 

peak between the carbon of the CH2 group of the galactose 6 and the hydrogens of the CH2 group 7 is 

visible. This is proof for the successful etherification and the existing connection between galactose 

and the allyl rest. The last part of the 1H-NMR spectrum shows the hydrogen signal of H-1, marked in 

red. Since the H-1 and the signal of the sp2-H 8 are overlapping a cross peak with the carbon 7 is 

visible. More important is the cross peak between the H-1 to the aromatic carbon signal of 16, marked 

in blue. This is proof for the success of the planned click reaction. 

In summary, the complete characterisation of the symmetrical sugar based di triazole 8 through the 

FTIR, mass spectrometry, one dimensional as well as two-dimensional NMR spectroscopy on the one 

hand proofs the success of the aspired six step synthesis and on the other hand confirms the aimed 

structure of the galactose based ditriazole 8. 
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Fungi test  

The synthesised symmetrical sugar based di triazole 8 was further examined. Since triazoles are 

commonly known to have promising pharmacological properties, the symmetrical triazole 8 should be 

tested on antifungal properties.[124–127] 

The test was inspired by the work of MILITZ et al.[129] Thin slices of beechwood with a diameter of 

10 mm and a thickness of 2.5 mm were used. These slices were dried carefully and weighted. After 

that the slices were put into prepared solutions of the triazole 8 in methanol at different concentrations. 

In total six different concentrations, two high concentrations of 10 % and 3 %, two medium 

concentrations of 1 % and 0.5 % and two low concentrations of 0.1 % and 0.01 % were prepared. 

Additionally, five slices have been taken as a reference, which were impregnated in pure methanol and 

another five slices, which were not impregnated at all. For impregnation five wood slices for each 

concentration and each fungus were used and put into small beakers together with the prepared 

solutions. The seven beakers were positioned into a desiccator. With the help of an adjustable vacuum 

pump, the pressure inside the desiccator was set to 400 mbar for 30 min. After this procedure the 

impregnated beechwood slices were taken out of the solutions and dried again carefully. Table 5.2.1 

shows the development of the mass of the beechwood slices during the treatment. 

Table 5.2.1 Development of the mass from the beech samples after the first drying to the second drying. The samples were 

put into a solution of set concentrations and put into the desiccator for 30 min at 400 mbar. After this the samples were 

taken out of the solution and dried carefully before being weight again. 

Concentration of the solution [%] Mass development after treatment [%] 

10 6.45 

3 1.44 

1 0.14 

0.5 -0.43 

0.1 -0.64 

0.01 -0.37 

0 -0.35 

-- 0.08 

The impregnation of the wood samples shows, that methanol had an influence on the composition of 

the wood. By treating the wood with methanol some small components of the wood got removed, 

which explains the loss of mass. The table also indicates that adding small amounts of the symmetrical 
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triazole 8 leads to an increased loss of small wood components. For higher concentrations mass was 

gained, which leads to the assumption, that the impregnation with compound 8 worked out. 

After the treatment, the wood slices were left two weeks in a standard climatised room (20 °C, 65 % 

r.h.) before sterilisation in the autoclave. Afterwards, a malt agar was prepared for the petri dishes with 

a diameter of 9 cm and filled into them. The dishes were allowed to cool down overnight. 

Subsequently, the dishes were arranged for the fungi test. For this one wood slice was put on the right 

side of the petri dish, whereas a fungi sample with 1 cm diameter was put on the opposite site of the 

dish. In total two different fungi were used. The first one was the fungus Coniophora puteana (CP) 

and the second one was the fungus Trametes versicolor (TV). 

Now the fungi and the impregnated wood slices were positioned, the test should have the procedure as 

shown in Figure 5.2.4. 

After the placement of the fungi and the wood slices the petri dishes were closed carefully with para 

film and kept in a standard climatised room (22 °C, 65 % r.h.). 

 

Figure 5.2.4 Structure and functionality of the prepared fungi test. The fungi with a diameter of approximately 1 cm, here 

marked in dark green, was put on the left side of a petri dish filled with malt agar. On the right side, the impregnated wood 

sample with a diameter of 1 cm and 2.5 mm thickness was placed. After some time (usually after 2-3 days) the fungus 

started to grow in every direction, as shown in the middle dish. Now, there are four possible scenarios, that could have 

happened: i) The fungus stops to grow or is just on the left side growing, in order to escape the impregnated wood sample; 

ii) the fungus keeps on growing, but a cycle around the wood sample is formed; iii) The fungus covers the complete malt 

agar, besides the wood sample; iv) the fungus is not effected at all form the impregnated wood sample and grows over it. 
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The fungus started to grow as expected in a symmetrical cycle around the initial fungus sample. After 

that initial growing, there would be four possible ways of the further progress of this test. The first is 

the best-case scenario (Figure 5.2.4i). In this case the fungus stops growing at all. The second case 

(Figure 5.2.4ii) is, that the fungus keeps on growing till a certain point. It stops growing in a defined 

cycle around the impregnated sample. This scenario indicates, that the triazole 8 would go out of the 

wood slice into the malt agar and build up an antifungal area around the sample. 

The third case (Figure 5.2.4iii) is the most probable. Here, the fungus would grow till the wood slice 

and then stop growing, so the sample would not be affected at all from the fungus. 

The last case (Figure 5.2.4iv) is also the worst one. Herein, the impregnated wood doesn’t have an 

antifungal effect and the fungus grows all over the beechwood. 

The Results of the fungi test are visualised in Figure 5.2.5.
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Figure 5.2.5 Results of the 

fungi tests. a) Average 

growing rate of the fungi 

Coniophora puteana,, b) 

Growing rate of the fungi 

Trametes versicolor, c) 

Pictures of the fungi growth 

of Coniophora puteana over 

time for the different treated 

beech slices; d) Pictures of 

the fungi growth of 

Trametes versicolor over 

time for the different treated 

beechwood slices.
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Figure 5.2.5a shows the average growing rate of the fungi Coniophora puteana at the different 

concentrations. The graph shows clearly the fungi was growing steadily 9 to 10 mm per day. The 

different concentrations used during the treatment did not have any effect on the average growing rate 

of the fungi. Also, the use of methanol in the impregnation process did not have any negative effect 

on the growth of the fungi. 

The Figures 5.2.5c shows some pictures of the fungi growth of Coniophora puteana over the time for 

the reference, one high concentration, one medium concentration and a low concentration. It is shown 

from the beginning after the first day till the end of the test after nine days. The pictures clearly show 

the steady growth of the fungi over the time. The pictures also prove, that the used concentration during 

the treatment didn’t have any effect. After the ninth day the wood slices are completely covered by 

Coniophora puteana. 

The average growing rate of the fungi Trametes versicolor (Figure 5.2.5b) was approximately 5 to 

6 mm per day. As well, the used concentrations during the impregnation process did not have any 

effect on the average growing rate. Furthermore, the applied methanol did not influence the test in a 

negative way. 

Figure 5.2.5d shows some pictures from the fungi test with Trametes versicolor over the time. Herein, 

the same concentrations were taken as for the other fungi to have a better comparability. Since the 

fungi Trametes versicolor is growing more slowly than Coniophora puteana the time interval during 

the pictures is bigger. The pictures shown, point out, that the different concentration didn’t have any 

effect on the growth of the fungi. Furthermore, the wood slices were overgrown after 12 days. 

The synthesised galactose based di triazole 8 didn’t show any antifungal properties for both fungi 

tested. One reason for this could have been the impregnation process. Although Table 5.2.1 displays 

an increase of the weight for the concentrations of more than 1 %, but it also shows a great weight loss 

for the concentrations of less than 1 %. Also, concentrations of less than 1 % have had a greater weight 

loss than the reference, which was impregnated with abs. methanol. All in all, the impregnation process 

needs to be optimised and changed accordingly to make sure compound 8 is able to permeate itself 

into the porous structure of the beechwood. Since the fungi test on those small beechwood slices is 

pretty uncommon, it should be considered to change to bigger wood samples or to more common 

comparable tests with defined settings. Another opportunity could be to repeat the test with 

impregnated thin papers or to add compound 8 into the prepared malt agar. 
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Besides the fungi test setup, it should be considered that the synthesised di triazole 8 does not have 

any effect on the fungi tested. Because of this, compound 8 should be tested on other potential fungus 

strains. 

In summary, the designed sugar based symmetrical di triazole 8 didn’t show any antifungal effect for 

both fungi tested. To make sure the symmetrical di triazole 8 doesn’t have any effect on both fungi, 

further testing is necessary. One additional test could be to perform the test with pieces of paper, that 

got impregnated with the di triazole 8, instead of the used beechwood. Another possibility would be 

to introduce the molecule 8 into the malt agar and observe, if the fungi are able to grow in such an 

environment. Also, other fungi could be used for further testing. 

Furthermore, other commonly used tests for investigating on antifungal properties should be 

considered to be used. 

 

Figure 5.2.6 Possible further reaction with a symmetrical dithiol compound to generate a long chain polymer. 

Besides the focused examination of the potential antifungal properties, additional modifications 

respectively reactions could be made on the symmetrical triazole 8. As the molecule has double bonds 

at each end, it offers the opportunity for a second symmetrical reaction. On the one hand the ends could 

be treated separately or a symmetrical molecule could be used to generate cyclic compounds or to 

generate long chain polymeric structures. A suitable reaction would be the in chapter 4 discussed thiol-

ene coupling with a symmetrical thiol as shown in Figure 5.2.6. 
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5.3 Conclusion 

In total a symmetrical sugar based di triazole 8 was synthesised successfully over a two-step 

modification of structure 4b with a yield of 65 %. The overall yield of the six-step synthesis starting 

from galactose is 32 %. Furthermore, the structure of the synthesised molecule 8 was chemically 

characterised over NMR- and FTIR-spectroscopy. 

After the complete analysis the generated symmetrical di triazole 8 was tested on possible antifungal 

properties. For this test beechwood slices (diameter: 1 cm, thickness: ~2.5 mm) were impregnated with 

different concentrated solutions of molecule 8 in methanol. For the examination Coniophora puteana 

and Trametes versicolor were used. Unfortunately, the symmetrical triazole 8 didn’t show any 

antifungal properties. 

Besides the potential on antifungal properties, the synthesised symmetrical sugar-based molecule has 

a high potential for further modification. One opportunity is offered by the thiol-ene reaction with a 

symmetrical dithiol to construct a symmetrical long chain polymer.
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6 Conclusion and outlook 

The work was subdivided into three parts (Figure 6.1). In the following section all obtained results of 

the three chapter 3 to 5 are summarised. 

 

Figure 6.1 Schematic illustration for the preparation of the bifunctional cellulose mixesters, which starts with the first 

reaction on cellulose using long chain acid chlorides, as stearoylchloride and lauroylchloride, and ends with the second 

reaction with cinnamoyl chloride and the demonstration of the shape memory behaviour. 

In Section 3 of the work presented here, Cellulose was used as a renewable natural resource for two 

heterogenic consecutive esterifications with a long chain chloride acid in the first step and cinnamoyl 

chloride in the second step (Figure 6.2). In total, two novel bifunctional cellulose mixesters were 

synthesised. SCC and LCC. Both compounds were completely chemically characterised via NMR and 

FTIR spectroscopy. DSC measurements revealed the melting point of SCC at 48.7 °C. LCC didn’t 

show a melting point, but a wide glass transition. In addition, both compounds were able to form 

transparent films with switchable mechanical properties due to the integrated cinnamoyl moieties. 

Those films showed tuneable elastic deformation properties and plastic deformation abilities, which 

are conditionally on the introduced aliphatic chains and the crosslinked cinnamoyl groups. 

Furthermore, the prepared films displayed responsive shape memory behaviours and self-healing 

property. 
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Figure 6.2 Schematic illustration for the preparation of the desired branched and linear oligosaccharides starting from 

prepared galactose monomers in a thiol-yne respectively tiol-ene coupling. 

In chapter 4, it was aimed to synthesise two novel galactose-based molecules containing a thiol group 

and a triple bond respectively a double bond. Due to their high reactivity, the corresponding precursor 

molecules were successfully synthesised in two five-step sequence with an overall yield of 47 % each. 

The precursor molecules 5a and 5b were completely chemically analysed with NMR and FTIR 

spectroscopy. Afterwards, the reaction conditions for the deprotection followed by the UV controlled 

polymerisation was basically investigated. For the evaluation of the success of the performed reaction, 

mass analysis was used. Unfortunately, mass analysis is not suitable at detecting different formations 

of oligomers with similar mass. For this purpose, it was suggested to take HPLC measurements for 

further analysis of the reaction mixture, which gives more information about the detailed composition 

of products after the reaction. 
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Figure 6.3 Schematic illustration for the preparation of the aimed symmetrical galactose based di triazole, the conducted 

fungi test and possible further reaction plans. 

Section 6 was concerned with the synthesis of an adequate monosaccharide containing a double bond 

and an azide group 4b. This monosaccharide was used for a symmetrical CuAAC reaction with 1,7-

octadiyne to synthesise the symmetrical galactose based di triazole 8 with an overall yield of 32 % 

over a five-step sequence. Furthermore, the obtained di triazole was tested on anti-fungal properties 

against Coniophora puteana and Trametes versicolor, but it didn’t show any effect. For further 

modification, the designed di triazole 8 has two terminal double bond functionalities, that are able to 

perform different reactions. One possible modification is a symmetrical thiol-ene coupling with a 

symmetrical long chain di thiol to synthesise a novel sugar-based oligomer or even a polymer. 

In total, novel functional stimuli responsive materials with outstanding mechanical properties were 

synthesised. Furthermore, different sugar-based monosaccharides were designed, examined different 

reaction conditions to set the foundation for further polymerisation and tested on potential biological 

characteristics. 
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7 Experimental section 

7.1 General procedures 

7.1.1 Abbreviations 

abs.  Absolute 

arom.  Aromatic 

Ac2O  Acetic anhydrate 

AGU  Anhydro glucose unit 

APT  Attached proton test 

ATR  Attenuated total reflection 

CDCl3  Deuterated Chloroform 

COSY  Correlation spectroscopy 

CuAAC Copper catalyzed azide-alkyne cycloaddition 

CP  Coniophora puteana 

d  Doublet 

DCM  Dichloromethane 

deform. Deformation 

DMF  Dimethylformamide 

DMPA  2,2-Dimethoxy-2-phenylacetophenone 

DS  Degree of substitution 

DSC  Differential scanning calorimetry 

DSCi  Degree of substitution ascribed to cinnamoyl groups 

DSLa  Degree of substitution ascribed to lauroyl groups 

DSSt  Degree of substitution ascribed to stearoyl groups 

ESI  Electrospray ionisation 



Experimental section 

62 

 

EtOAc  Ethylacetat 

FTIR  Fourier-transform infrared spectroscopy 

GOS  Galactose oligosaccharide 

1H-COSY 1H correlation spectroscopy 

HMBC Heteronuclear multiple bond correlation 

HMO  Human milk oligosaccharide 

HPLC  High performance liquid chromatography 

HRMS  High resolution mass spectroscopy 

HSQC  Heteronuclear single quantum coherence spectroscopy 

J  J-coupling or indirect dipole- dipole coupling 

LC  Lauroylated cellulose 

LCC   Lauroylated and cinnamoylated cellulose esters 

M  Molecular weight 

m  Multiplet 

MCC  Microcrystalline cellulose 

MeOH  Methanol 

MS  Mass spectroscopy 

NMR  Nuclear magnetic resonance 

PE  Petroleum ether (40/60) 

ppm  Parts per million 

Ph  Phenyl 

q  Quintet 

Rf  Retardation factor 

r.h.  Relative humidity 
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rpm  Rounds per minute 

rt  Room temperature 

s  Singlet 

SC  Stearoylated cellulose 

SCC  Stearoylated and cinnamoylated cellulose esters 

t  Triplet 

TEC  Thiol-ene coupling 

THF  Tetrahydrofurane 

TLC  Thin layer chromatography 

TOF  Time of flight 

TV  Trametes versicolor 

UV  Ultra violet 
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7.1.2 Materials 

Chemicals 

Microcrystalline cellulose (MCC) with a granule size of 50 µm, stearoyl chloride (90 %), lauroyl 

chloride, allyl bromide (99 %), thio acetic acid (96 %), boron trifluoride diethyl etherate, sodium 

methoxide, iodine, azido tri methyl silane (95 %), sodium hydride (60 wt.% dispersion in mineral oil) 

and tri ethyl amine (99.5 %) were bought from Sigma-Aldrich (Steinheim, Germany). Cinnamoyl 

chloride (98 %) was bought from Merck (Darmstadt, Germany). Pyridine (99 %), ethanol (technical 

grade), dichloromethane (99.9 %), tetrahydrofuran (technical grade), dimethylformamide (technical 

grade), sodium hydrogen carbonate (97 %), sodium sulphate (99 %), Dowex® (50 WX2 200-400 

mesh), ethyl acetate (99.5 %), galactose (99 %), acetone (technical grade), n-hexane, tin (IV) chloride, 

sodium chloride (99 %), tert- butyl alcohol, 1,7 octa diyne (98.5 %), sodium ascorbate and methanol 

(99.8 %) were bought from Th. Geyer Ingredients GmbH (Renningen, Germany). Petroleum ether 

40/60 was bought from VWR (Darmstadt, Germany). Propargyl bromide was bought from Alfa aesar. 

Other chemicals are all of analytical grade. All chemicals were used as received. 

Wood samples (diameter 1.0 cm, thickness ~2.5 mm) were obtained from untreated European beech 

(Fagus sylvatica L.) rods of 1.0 cm diameter. 

For the fungi test two different fungus strains were tested. Coniophora puteana DSM 3085 and 

Trametes versicolor DSM 3086 were obtained from Deutsche Sammlung von Mikroorganismen und 

Zellkulturen GmbH from the Leibniz-Institut. 

 

Inert gas 

The inert gas argon (5.0) bought from Air liquid (Düsseldorf, Germany) was used for synthesis carried 

out in a protective atmosphere. Experiments under argon were carried out in previously triple-heated 

apparatus. 
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Solvents 

Dried solvents were used for the individual experiments, which were carried out in an inert gas 

atmosphere. Those solvents are titled with the index abs.. The solvents used were dried by various 

methods: 

- Methanol was refluxed over magnesia for three hours, fractionally distilled and then stored over 

molecular sieve 3 Å under an Ar atmosphere. 

- Dimethylformamide was mixed with toluene and water, fractionally distilled and then stored in the 

cold over molecular sieve 3 Å under an Ar atmosphere and exclusion of light. 

The water used is deionized water (DI), which is provided decentral by the university.  
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7.1.3 Characterisation 

Elemental analysis 

The contents of carbon and hydrogen were determined with an Elemental Analyzer 4.1 vario EL III 

(Elementar, Germany). The DSs of SC and LC were calculated according to the reference.[130] 

 

FTIR spectroscopy 

FTIR spectra were recorded at room temperature using a Bruker Alpha spectrometer equipped with a 

versatile high throughput ZnSe ATR crystal. All samples were measured in the range of 400 to 

4000 cm-1 with accumulated 24 scans. 

 

Mass spectrometry 

ESI mass spectrometry was performed on a maXis from Bruker Daltonik with a TOF analyser and on 

a micrOTOF from Bruker Daltonik with a TOF mass spectrometer. 

MALDI mass spectrometry was performed on an Autoflex Speed from Bruker Daltonik with a TOF 

detector in reflection mode. 

NMR spectroscopy 

1H- and 13C-NMR spectroscopy were recorded with a Bruker Avance III 500 spectrometer in CDCl3 

solution. Chemical shifts were referenced to the CDCl3 signals at 7.26 (1H-NMR) and 77.16 ppm (13C-

NMR).[131] Signal assignments were supported by two-dimensional NMR correlation spectroscopic 

measurements (COSY). 

 

Thermal analysis 

The thermal properties were determined via differential scanning calorimetry (DSC) on a DCS200 F3 

Maia (Netzsch Germany). The measurements were carried out with a heat flow of 10 K/min between 

-20 and 150 °C. 

Tensile tests 
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The tensile tests were performed on a Z3 microtensile test machine from Grip-Engineering Thümler 

GmbH at a constant temperature of 20 °C and relative humidity of 60 %. The measurements were 

implemented with an extension rate of 3 mm/min with a 15 mm gauge length. Before the measurement, 

the films were cut in a rectangle form (with a dimension of 45 mm in length and 10 mm in width). 

 

Thin layer chromatography 

The thin layer chromatograms are prepared on DC- aluminum foil with fluorescence indicator (silica 

gel 60 UV254) from VWR. The Rf-values, as well as the solvents used are given for each compound. 

The respective compound was stained via an iodine chamber. 

 

Column chromatography 

For the column chromatographical separation silica gel (60-200 µm) from VWR was used. The used 

solvents and mixing ratios are given in each experiment. 
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7.2 General preparations 

7.2.1 Synthesis of novel cellulose mixesters for transparent responsive films 

 

General procedure A  

The synthesis of monofunctionalised cellulose esters are carried out as reported before [72]. Dried MCC 

(6.0 mmol, 1.0 equivalent) is suspended in pyridine (30 ml). Stearoyl or lauroyl chloride (15 mmol, 

2.5 equivalents per anhydro glucose unit, AGU) is added drop by drop at 100 °C. After stirring at 

100 °C for 1 h, the solution is poured into 200 ml ethanol. The precipitate is separated by centrifugation 

(20 min at 12 000 rpm at 4 °C). Subsequently, the product is dispersed in dichloromethane (75 ml) and 

precipitated in ethanol (300 ml). After collecting the precipitate from the liquid by using centrifugation 

(20 min at 12 000 rpm at 4 °C), the solid is washed with ethanol for several times. After that, the solid 

is dispersed in THF (150 ml) under stirring and the suspension is centrifuged (20 min at 12 000 rpm 

at 4 °C) to separate the products from the solution. The solid residue is washed for three times and 

finally dried for further use. 

General procedure B  

Obtained SC or LC (1.0 equivalent) is suspended in pyridine (30 ml). Then, the mixture is heated to 

100 °C and cinnamoyl chloride (5.0 equivalent) is added drop by drop. After stirring at 100 °C for 5 h, 

the dark mixture is poured in 150 ml ethanol. The precipitate is separated by filtration. After that, the 

solid product is dissolved in THF and precipitated again in ethanol. The purified product is dissolved 

in THF and centrifuged (30 min at 14 000 rpm at 4 °C) to remove impurities before precipitation in 

ethanol. After the precipitation in ethanol, collected precipitate is washed with ethanol for multiple 

times. Finally, the solvent is removed on the rotary evaporator under reduced pressure. 

 

Fabrication of films 

Each mixester is dissolved in THF at a concentration of 10 mg/ml. 10 ml of the solution is then 

transferred into a round Teflon petri dish with a diameter of 5 cm. Then, THF is allowed to evaporate 

overnight at ambient surroundings.  
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7.2.2 Synthesis of different sugar monomers for polymerisation via thiol-ene / thiol-yne coupling 

 

General procedure C 

The synthesis of the protected ethers are carried out as reported.[132] 

1,2:3,4-Di-O-isopropylidene-α-D-galactopyranose (1) (1.0 equivalent) is dissolved in anhydrous DMF 

(5 ml per mmol) and cooled to 0 °C. Sodium hydride (1.8 equivalents) is added carefully and the 

mixture is stirred for 30 min. Afterwards propargyl bromide (a, 1.8 equivalents) or allyl bromide (b, 

1.2 equivalents) is added and the mixture is allowed to warm up to room temperature. After stirring 

for 3 more hours the reaction is carefully quenched with methanol. The reaction mixture is extracted 

with DCM (3×5 ml per mmol). The combined organic layers are washed with an aqueous sodium 

hydrogen carbonate solution (2×5 ml per mmol) and DI water (2×5 ml per mmol) and dried with 

anhydrous NaSO4. The solvent is removed at the rotary evaporator under reduced pressure and the 

crude residue was purified by column chromatography on silica gel to gain the products 1,2:3,4-di-O-

isopropylidene-6-O-(2.propynyl)-α-D-galatopyranose (2a) or 1,2:3,4-di-O-isopropylidene-6-O-

(2.alloynyl)-α-D-galatopyranose (2b). 

 

General procedure D 

The synthesis of the deprotected galactose ethers were carried out as reported.[133] 

1,2:3,4-Di-O-isopropylidene-6-O-(2.propynyl)-α-D-galatopyranose (2a) or 1,2:3,4-di-O-

isopropylidene-6-O-(2.alloynyl)-α-D-galatopyranose (2b) (1.0 equivalent) is emulsified in water 

(11 ml per mmol). Dowex® is added (350 to 360 mg per mmol) and the mixture is heated up to 80 °C. 

The reaction is stirred overnight at this temperature. After cooling down the reaction is filtrated to 

remove the Dowex®. The water is removed under reduced pressure. The gained product 6-O-prop-2-

yn-1-yl-D-galactopyranose (3a) or 6-O-allo-2-yn-1-yl-D-galactopyranose (3b) is used without any 

further purification.  
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General procedure E 

The acetylation of the galactose ethers are carried out as reported.[87] 

The colourless oil 6-O-prop-2-yn-1-yl-D-galactopyranose (3a) or 6-O-allo-2-yn-1-yl-D-

galactopyranose (3b) is dissolved in pyridine (a, 31 equivalents b, 37 equivalents) and ethyl acetate (a, 

31 equivalents b, 37 equivalents) is added carefully. The reaction mixture is stirred over 24 hours at 

room temperature. Afterwards the reaction is quenched with water (10 ml per mmol). The mixture is 

extracted with DCM (3×5 ml per mmol). The combined organic layers are dried over anhydrous 

NaSO4. The solvent is removed under reduced pressure and the crude residue is purified by column 

chromatography on silica gel to gain the products (2S,3R,4S,5S,6R)-6-((prop-2-yn-1-

yloxy)methyl)tetrahydro-2H-pyran-2,3,4,5-tetrayl tetraacetate (4a) or (2S,3R,4S,5S,6R)-6-

((allyloxy)methyl)tetrahydro-2H-pyran-2,3,4,5-tetrayl tetraacetate (4b). 

 

General procedure F 

The reaction is carried out as reported.[134] 

To the colourless oil (2S,3R,4S,5S,6R)-6-((prop-2-yn-1-yloxy)methyl)tetrahydro-2H-pyran-2,3,4,5-

tetrayl tetraacetate (4a) or (2S,3R,4S,5S,6R)-6-((allyloxy)methyl)tetrahydro-2H-pyran-2,3,4,5-tetrayl 

tetraacetate (4b) is dissolved in abs. DCM (5.5 ml per mmol) and cooled to 0 °C. Thioacetic acid (4.75 

equivalents) and boron trifluoride diethyl etherate (7 equivalents) are added carefully. The mixture is 

allowed to warm up to room temperature again and is stirred for 24 hours. Afterwards the reaction is 

quenched with cold water (5 to 10 ml per mmol). The mixture is extracted with DCM (3×5 ml per 

mmol) and the combined organic layers are washed with an aqueous sodium hydrogen carbonate 

solution (2×5 ml per mmol) and brine (2×5 ml per mmol). 

The organic layer is dried over anhydrous NaSO4. The solvent is removed under reduced pressure and 

the crude residue is purified by column chromatography on silica gel to gain the desired products 

(2S,3R,4S,5S,6R)-2-(acetylthio)-6-((prop-2-yn-1-yloxy)methyl)tetrahydro-2H-pyran-3,4,5-triyl 

triacetate (5a) or (2S,3R,4S,5S,6R)-2-(acetylthio)-6-((allyloxy)methyl)-tetrahydro-2H-pyran-3,4,5-

triyl triacetate (5b). 
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General procedure G 

The reaction was carried out as reported.[134] 

The colourless oil (2S,3R,4S,5S,6R)-2-(acetylthio)-6-((prop-2-yn-1-yloxy)methyl)tetrahydro-2H-

pyran-3,4,5-triyl triacetate (5a) or (2S,3R,4S,5S,6R)-2-(acetylthio)-6-((allyloxy)methyl)tetrahydro-

2H-pyran-3,4,5-triyl triacetate (5b) is dissolved in anhydrous methanol (7.5 ml per mmol). The 

mixture is degassed under reduced pressure in an ultrasonic bath (5×3min). Afterwards degassed 

sodium methoxide (3 equivalents) is added and the reactions is stirred for 2 hours at room temperature. 

Degassed Dowex® (1 g per mmol) is added to the mixture to stop the reaction. The solid part is removed 

via filtration and the liquid phase was kept under argon gas to prevent further reactions. The liquid 

phase contained the desired monomer (2S,3R,4S,5R,6R)-2-mercapto-6-((prop-2-yn-1-

yloxy)methyl)tetrahydro-2H-pyran-3,4,5-triol (6a) or (2R,3R,4S,5R,6S)-2-((allyloxy)methyl)-6-

mercaptotetrahydro-2H-pyran-3,4,5-triol (6b) which were used without further purification. 

Impregnation of the beechwood slices 

Thin slices of beechwood with a diameter of 10 mm and a thickness of 2.5 mm were used. These slices 

were dried carefully. Afterwards, the slices were put into prepared solutions of the di triazole 8 in 

methanol at six different concentrations, two high concentrations of 10 % and 3 %, two medium 

concentrations of 1 % and 0.5 % and two low concentrations of 0.1 % and 0.01 %. For every 

concentration five slices of beechwood were taken. Additionally, five slices have been taken as a 

reference, which were impregnated in pure methanol and another five slices, which were not 

impregnated at all. For the impregnation process five slices for every concentration and each fungus 

were used and put into small beakers together with the prepared solutions. All seven beakers were 

positioned into a desiccator. With the help of an adjustable vacuum pump, the pressure inside the 

desiccator was set to 400 mbar for 30 min. After this procedure, the impregnated beechwood slices 

were taken out of the solutions and dried again carefully. Afterwards, the wood slices were kept in a 

standard climatised room (20 °C, 65 % r.h.) for two weeks.  
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Fungi test 

For the preparation of the growth medium 32 g Malt and 20 g Agar were mixed with 770 ml ultrapure 

water. The mixture was sterilised in an autoclave for 20 min at 121 °C (withdrawal temperature: 

90 °C). The sterilised mixture was poured into petri dishes of 9 cm diameter and cooled overnight. 

After this, the dishes were arranged for the fungi test. For this, one wood slice was put on the right side 

of the petri dish with a distance of 1 cm from the edge and the fungi sample was put on the opposite 

side of the dish, also with a distance of 1 cm from the edge. In total two different fungus strains were 

tested. The first one was Coniphora puteana (CP) and the other one was Trametes versicolor (TV). 

After the placement of the fungi and the wood slices the petri dishes were closed carefully with para 

film and kept in a standard climatised room (22 °C, 65 % r.h.). The growth of the fungi was controlled 

daily. 
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7.3 Preparation of the targeted molecules 

7.3.1 Synthesis of novel cellulose mixesters for transparent responsive films 

Monofunctionalisation for the synthesis of stearoylated cellulose SC 

Following the general procedure A, MCC (1.0 g, 6 mmol) and stearoyl chloride (5.1 ml, 15 mmol) 

were used for SC. The desired product was obtained as brown solid. Yield: 1.334 g. DSSt = 1.66 

according to elemental analysis.— 

FTIR (ATR) in cm-1: 𝑣̃ = 3479, 3352 (O-H), 2954, 2914, 2854 (C-H), 1748 (C=O), 1460, 1415, 1377 

(CH2-deform.), 1060 (C-O).— 
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Monofunctionalisation for the synthesis of lauroylated cellulose LC 

Following the general procedure A, cellulose (1.0 g, 6 mmol) and lauroyl chloride (3.5 ml, 15 mmol) 

were used for LC. The desired product was prepared as brown solid. Yield: 367 mg. DSLa = 1.48 

according to elemental analysis.— 

FTIR (ATR) in cm-1: 𝑣̃ = 3477, 3341 (O-H), 2956, 2923, 2851 (C-H), 1744 (C=O), 1462, 1418, 1375 

(CH2-deform.), 1060 (C-O).— 
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Bifunctionalisation as stearoylated and cinnamoylated cellulose esters SCC 

Following the general procedure B, SC (1.1 g, 1.8 mmol, DS: 1.66) and cinnamoyl chloride (1.7 ml, 

12.1 mmol) were used for SCC. The desired product was synthesised as light brown solid. Yield: 

1.245 g, DSSt = 1.51 and DSCi = 1.35.— 

FTIR (ATR) in cm-1: 𝑣̃ = 2925, 2851 (C-H), 1735, 1634 (C=O), 1581 (C=C), 1498, 1467, 1453, 1375 

(C-H).— 

1H-NMR (500.2 MHz, CDCl3) in ppm: 0.88 [t, 4.44 H, 3J = 6.8 Hz, CH3], 1.19-1.32 [m, 

29.6 H, -(CH2)16-] 1.93-2.37 [m, 2 H, CH-CH2-OOC], 3.22-5.34 [5 H of AGUs], 6.01-6.39 [m, 1 H, 

CH=CH], 7.06-7.66 [m, 7 H, CHarom., CH=CH].— 

13C-NMR (125.8 MHz, CDCl3) in ppm: 14.2 [CH3], 24.9, 29.4, 29.5, 29.8, 29.9, 32.0 [-(CH2)16-], 34.0 

[CH2-OOC], 62.0, 68.1, 71.4, 72.6, 73.0 [C of AGUs], 100.8 [CH=CH-Ph], 116.9 [CH=CH-Ph], 128.3, 

128.4, 128.7, 128.8, 129.0, 130.3, 134.1, 145.6 [Cq, arom., CHarom.], 165.1, 165.6, 165.9 [C=O], 172.0, 

172.4, 172.9 [C=O].—  
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Bifunctionalisation as lauroylated and cinnamoylated cellulose esters LCC 

Following the general procedure B, LC (733 mg, 1.7 mmol, DS: 1.48) and cinnamoyl chloride (1.8 ml, 

12.9 mmol) were used for LCC. The desired product was obtained as light brown solid. Yield: 970 mg, 

DSLa = 1.48 and DSCi = 1.34.— 

FTIR (ATR) in cm-1: 𝑣̃ = 3066, 3035 (=C-H), 2925, 2854 (C-H), 1721, 1634 (C=O), 1578 (C=C), 

1496, 1451, 1415, 1377 (C-H), 1067, 1045 (C-O).— 

1H-NMR (500.2 MHz, CDCl3) in ppm: 0.84-0.90 [m, 3 H, CH3], 0.99-1.35 [m, 15 H, -(CH2)10-], 1.87-

2.46 [m, 2 H, CH2-OOC], 3.27-5.33 [m, 5 H of AGUs], 6.06-6.35 [m, 1 H, CH=CH], 7.06-7.54 [m, 

7 H, CHarom., CH=CH].— 

13C-NMR (125.8 MHz, CDCl3) in ppm: 14.2, 22.8, 24.7, 24.9, 29.3, 29.5, 29.6, 29.7, 29.8, 32.1,  

[-(CH2)10-], 62.1, 71.5, 72.2, 72.6, 73.1, 100.8 [AGU], 116.9 [CH=CH-Ph], 116.9, 128.4, 128.5, 128.7, 

129.0, 130.2, 130.3, 134.0, 134.2 [Cq, arom., CHarom.], 145.6, 146.3 [CH=CH-Ph], 165.2, 165.6, 165.9 

[C=O], 171.9, 172.4, 172.9 [C=O].—  
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7.3.2 Synthesis of different sugar monomers for polymerisation via thiol-ene / thiol-yne reaction 

1,2:3,4-di-O-isopropylidene-α-D-galactopyranose (1) 

 

The synthesis of the sugar is carried out as reported.[87] 

Galactose (27.8 mmol, 1.0 eq) was suspended in acetone (250 ml) and iodine (5.9 mmol, 0.2 eq) was 

added. The mixture was stirred for 20 hours at room temperature. The reaction was quenched with a 

sat. aqueous solution of Na2S2O3. Acetone was removed under reduced pressure (rotary evaporator) 

and the residue was extracted with DCM. The combined organic layers were washed with DI water, 

dried over anhydrous NaSO4, filtered and the solvent was removed (rotary evaporator). The crude 

mixture was purified by column chromatography on silica gel (n-hexane/EtOAc, 3:1; Rf = 0.24). The 

Product 1 was obtained as a slightly yellow oil (6.0 g, 83 %).— 

FTIR (ATR) in cm-1: 𝑣̃ = 3450 (O-H), 2980, 2930 (C-H), 1466 (C-H), 1390 (O-H), 1066 (C-O).— 

1H-NMR (500.2 MHz, CDCl3) in ppm: 1.32, 1.44, 1.52 [3×s, 12 H, 4×CH3], 3.67–3.76 [m, 1 H, H-5], 

3.80–3.87 [m, 2 H, H-6, H-6’], 4.26 [dd, J = 7.9 Hz, 1.5 Hz, 1 H, H-4], 4.32 [dd, J = 5.0 Hz, 2.4 Hz, 

1 H, H-2], 4.60 [dd, J = 7.9 Hz, 2.4 Hz, 1 H, H-3], 5.55 [d, J = 5.0 Hz, 1 H, H-1].— 

NMR data were in accord with the literature.[87] 

13C-NMR (125.8 MHz, CDCl3) in ppm: 24.8, 26.2, 26.3 [4×CH3], 62.6 [C-6], 68.3 [C-5], 70.9 [C-2], 

71.0 [C-3], 71.8 [C-4], 96.6 [C-1], 108.9, 109.6 [Cq].— 
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1,2:3,4-di-O-isopropylidene-6-O-(2.propynyl)-α-D-galatopyranose (2a) 

 

Following the general procedure C, 1,2:3,4-di-O-isopropylidene-α-D-galactopyranose (1) (5.13 g, 

19.7 mmol), sodium hydride (847 mg, 35.8 mmol) and propargyl bromide (2.7 ml, 35.8 mmol) were 

used for 1,2:3,4-di-O-isopropylidene-6-O-(2.propynyl)-α-D-galatopyranose (2a). The crude residue 

was purified by column chromatography on silica gel (n-hexane/EtOAc; 4/1; Rf = 0.4). The desired 

product was obtained as colourless solid (5.40 g, 92%).— 

M = 298.14 g/mol, C15H22O6 

FTIR (ATR) in cm-1: 𝑣̃ = 3266 (C≡C-H), 2995, 2940, 2900 (C-H), 2115 (C≡C), 1450, 1390 (C-H), 

1066 (C-O).— 

1H-NMR (500.2 MHz, CDCl3) in ppm: 1.33, 1.34, 1.45, 1.54 [4×s, 12 H, 4×CH3], 2.43 [t, J = 2.4 Hz, 

1 H, Cq≡CH], 3.67 [dd, J = 10.1 Hz, 7.1 Hz, 1 H, H-6], 3.77 [dd, J = 10.1 Hz, 5.3 Hz, 1 H, H-6’], 4.00 

[ddd, J = 7.1 Hz, 5.2 Hz, 1.9 Hz, 1 H, H-5], 4.17-4.27 [m, 3 H, H-4, CH2C≡CH], 4.32 [dd, J = 5.1 Hz, 

2.4 Hz, 1 H, H-2], 4.61 [dd, J = 7.9 Hz, 2.4 Hz, 1 H, H-3], 5.54 [d, J = 5.0 Hz, 1 H, H-1].— 

NMR data were in accord with the literature.[87] 

13C-NMR (125.8 MHz, CDCl3) in ppm: 24.6, 25.1, 26.1, 26.2 [4×CH3], 58.7 [CH2C≡CH], 66.9 [C-5], 

68.9 [C-6], 70.6 [C-2], 70.8 [C-3], 71.3 [C-4], 74.7 [Cq≡CH], 79.8 [Cq≡CH], 96.5 [C-1], 108.8, 109.5 

[2×Cq(CH3)2].— 
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1,2:3,4-di-O-isopropylidene-6-O-(2.alloynyl)-α-D-galatopyranose (2b) 

 

Following the general procedure C, 1,2:3,4-di-O-isopropylidene-α-D-galactopyranose (1) (5.95 g, 

22.8 mmol), sodium hydride (1.03 g, 39.0 mmol) and allyl bromide (2.4 ml, 26.0 mmol) were used for 

1,2:3,4-di-O-isopropylidene-6-O-(2.alloynyl)-α-D-galatopyranose (2b). The crude residue was 

purified by column chromatography on silica gel (PE (40/60)/EtOAc; 8/1; Rf = 0.27). The desired 

product was obtained as colourless oil (4.86 g, 71%).— 

M = 300.16 g/mol, C15H24O6 

FTIR (ATR) in cm-1: 𝑣̃ = 2990, 2936(C-H), 1648 (C=C), 1456, 1390 (C-H), 1207, 1080 (C-O), 999 

(C=C).— 

1H-NMR (500.2 MHz, CDCl3) in ppm: 1.30, 1.32, 1.42, 1.52 [4×s, 12 H, 4×CH3], 3.56 [dd, 

J = 10.1 Hz, 6.7 Hz, 1 H, H-6], 3.63 [dd, J = 10.1 Hz, 5.8 Hz, 1 H, H-6’], 3.95 [tdd, J = 5.8 Hz, 1.9 Hz, 

0.5 Hz, 1 H, H-4], 3.98-4.06 [m, 2 H, CH2CH=CH2], 4.24 [dd, J = 7.9 Hz, 1.9 Hz, 1 H, H-5], 4.28 [dd, 

J = 5.0 Hz, 2.4 Hz, 1 H, H-2], 4.58 [dd, J = 7.9 Hz, 2.4 Hz, 1 H, H-3], 5.13-5.16, 5.23-5.28 [m, 2H, 

CH2CH=CH2], 5.51 [d, J = 5.1 Hz, 1 H, H-1], 5.89 [ddt, J = 17.2 Hz, 10.4 Hz, 5.6 Hz, 1 H, 

CH2CH=CH2].— 

NMR data were in accord with the literature.[135] 

13C-NMR (125.8 MHz, CDCl3) in ppm: 24.5, 25.0, 26.1 26.2 [4×CH3], 66.9 [C-4], 68.9 [C-6], 70.6 

[C-2], 70.7 [C-3], 71.3 [C-5], 72.4 [CH2CH=CH2], 96.4 [C-1], 108.3, 109.3 [2×Cq], 117.1 

[CH2CH=CH2], 134.9 [CH2CH=CH2].— 
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6-O-prop-2-yn-1-yl-D-galactopyranose (3a) 

 
Following the general procedure D, 1,2:3,4-di-O-isopropylidene-6-O-(2.propynyl)-α-D-

galatopyranose (2a) (5.60 g, 18.8 mmol) and Dowex® (6.77 g) and water (206.8 ml) were used for 6-

O-Prop-2-yn-1-yl-D-galactopyranose (3a).The crude product was obtained as slightly yellowish oil.— 

M = 218.08 g/mol, C9H14O6 
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6-O-allo-2-yn-1-yl-D-galactopyranose (3b) 

 
Following the general procedure D, 1,2:3,4-Di-O-isopropylidene-6-O-(2.alloynyl)-α-D-

galatopyranose (2b) (4.61 g, 18.8 mmol) and Dowex® (5.35 g), water (158.4 ml) were used for 6-O-

allo-2-yn-1-yl-D-galactopyranose (3b).The crude product was obtained as slightly yellowish oil.— 

M = 220.09 g/mol, C9H16O6 
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(2S,3R,4S,5S,6R)-6-((prop-2-yn-1-yloxy)methyl)tetrahydro-2H-pyran-2,3,4,5-tetrayl tetraacetate 

(4a) 

 

Following the general procedure E, 6-O-prop-2-yn-1-yl-D-galactopyranose (3a) (4.10 g, 18.8 mmol), 

pyridine (47.0 ml, 582 mmol) and ethyl acetate (55.0 ml, 582 mmol) was used for (2S,3R,4S,5S,6R)-

6-((prop-2-yn-1-yloxy)methyl)tetrahydro-2H-pyran-2,3,4,5-tetrayl tetraacetate (4a). The crude 

residue was purified by column chromatography on silica gel (n-hexane/EtOAc; 3/1; Rf = 0.19). The 

desired product was obtained as colourless oil (6.17 g, 85% over two steps).— 

M = 386.12 g/mol, C17H22O10 

FTIR (ATR) in cm-1: 𝑣̃ = 3273 (C≡C-H), 2950.2935 (C-H), 2113 (C≡C), 1740 (C=O), 1438 (C-H), 

1205, 1063 (C-O).— 

The pure product is a mixture of two anomers in a ratio of 3:2. Due to this it is not possible to assign 

a main isomer. 

1H-NMR (500.2 MHz, CDCl3) in ppm: 1.99, 2.00, 2.01, 2.04, 2.11, 2.15, 2×2.16 [8×CH3], 2.43 [dt, 

J = 4.7 Hz, 2.4 Hz, 1 H, H-5], 3.57 [d, J = 6.2 Hz, 2 H, 2×H-7], 3.59-3.64 [m, 2 H, 2×H-7‘], 4.00 [ddd, 

J = 6.7 Hz, 6.0 Hz, 1.2 Hz, 1 H, H-9], 4.11 [t, J = 2.2 Hz, 2 H, 2×H-6], 4.14 [dd, J = 4.0 Hz, 2.4 Hz, 

2 H, 2×H-6‘], 4.30 [tdd, J = 6.2 Hz, 1.4 Hz, 0.6 Hz, 1 H, H-9], 5.08 [dd, J = 10.4 Hz, 3.4 Hz, 2 H, 

2×H-3], 5.29-5.35 [m, 3 H, 2×H-2, H-5], 5.47 [dd, J = 3.4 Hz, 1.1 Hz, 1 H, H-4], 5.51-5.57 [m, 1H, 

H-4], 5.70 [d, J = 8.3 Hz, 1 H, H-1], 6.38 [dd, J = 1.3 Hz, 0.7 Hz, 1 H, H-1].— 

NMR data were in accord with the literature.[87] 

13C-NMR (125.8 MHz, CDCl3) in ppm: 2×20.7, 4×20.8, 21.0, 21,1 [×CH3], 58.7, 58.8 [2×C-6], 66.7 

[C-5], 67.0 [C-7], 67.4 [C-2], 67.5 [C-7], 67.6 [C-2], 68.1,68.2 [2×C-4], 70.2 [C-9], 71.1 [C-3], 72.9 

[C-9], 2×75.3 [C-3, C-5], 2×79.1 [2×C-8], 90.0, 92.4 [2×C-1], 169.1, 169.2, 169.6, 2×170.1, 3×170.2 

[8×-COOCH3].— 

MS (ESI+,TOF): m/z (%) = 409.1 [MNa]+ (100).— 

HRMS (ESI+,TOF): calculated for [C17H22O10Na]+: 409.1105, found: 409.1108.— 

(2S,3R,4S,5S,6R)-6-((allyloxy)methyl)tetrahydro-2H-pyran-2,3,4,5-tetrayl tetraacetate (4b) 
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Following the general procedure E, 6-O-allo-2-yn-1-yl-D-galactopyranose (3b) (3.17 g, 18.8 mmol), 

pyridine (43.0 ml, 532 mmol) and ethyl acetate (50.0 ml, 532 mmol) was used for (2S,3R,4S,5S,6R)-

6-((allyloxy)methyl)tetrahydro-2H-pyran-2,3,4,5-tetrayl tetraacetate (4b). The crude residue was 

purified by column chromatography on silica gel (PE (40/60)/EtOAc; 2/1; Rf = 0.14). The desired 

product was obtained as colourless oil (4.69 g, 84%).— 

M = 388.14 g/mol, C17H24O6 

FTIR (ATR) in cm-1: 𝑣̃ = 2990, 2940, 2870 (C-H), 1750 (C=O), 1650 (C=C), 1439 (C-H), 1205, 1058 

(C-O), 940 (C=C).— 

The pure product is a mixture of two anomers in a ratio of 3:2.  

Major anomer: 

1H-NMR (500.2 MHz, CDCl3) in ppm: 1.93, 1.98, 2.05, 2.10 [4×s, 12 H, 4×CH3], 3.35-3.45 [m, 1 H, 

H-6], 3.49 [dd, J = 9.8 Hz, 5.9 Hz, 1 H, H-6’], 3.84 [dddt, J = 12.8 Hz, 5.8 Hz, 3.6 Hz, 1.4 Hz, 1 H, 

CH2CH=CH2], 3.93 [dddd, J = 11.5 Hz, 5.6 Hz, 2.8 Hz, 1.4 Hz, 2 H, CH2CH=CH2, H-4], 5.04 [dd, 

J = 10.4 Hz, 3.4 Hz, 1 H, H-5], 5.12 [dddt, J = 10.4 Hz, 4.0 Hz, 1.7 Hz, 1.2 Hz, 1 H, CH2CH=CH2], 

5.14-5.20 [m, 1 H, CH2CH=CH2], 5.26-5.28 [m, 1 H, H-2], 5.43 [dd, J = 3.4 Hz, 1.1 Hz, 1 H, H-3], 

5.65 [d, J = 8.3 Hz, 1 H, H-1], 5.76 [dddd, J = 17.2 Hz, 10.4 Hz, 2×5.7 Hz, 1 H, CH2CH=CH2].— 

13C-NMR (125.8 MHz, CDCl3) in ppm: 20.5, 2×20.6, 20.8 [4×CH3], 67.1 [C-6], 67.3 [C-3], 68.0 [C-

2], 71.0 [C-5], 72.3 [CH2CH=CH2], 72.9 [C-4], 92.2 [C-1], 117.7 [CH2CH=CH2], 134.0 

[CH2CH=CH2], 168.9, 169.4, 169.9, 170.0 [COOCH3].— 
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Minor anomer: 

1H-NMR (500.2 MHz, CDCl3) in ppm: 1.94, 1.95, 2×2.09 [4×s, 12 H, 4×CH3], 3.35-3.45 [m, 2 H, H-

6], 3.80-3.88 [m, 3 H, H-5, CH2CH=CH2], 4.23 [ddt, J = 6.6 Hz, 6.1 Hz, 1.1 Hz, 1 H, H-4], 5.12 [dddt, 

J = 10.4 Hz, 4.0 Hz, 1.7 Hz, 1.2 Hz, 1 H, CH2CH=CH2], 5.14-5.20 [m, 1 H, CH2CH=CH2], 5.26-5.28 

[m, 1 H, H-2], 5.49 [dd, J = 2.5 Hz, 1.4 Hz, 1 H, H-3], 5.76 [dddt, J = 17.2 Hz, 10.4 Hz, 2×5.7 Hz, 

1 H, CH2CH=CH2], 6.31 [d, J = 2.5, 1 H, H-1].— 

13C-NMR (125.8 MHz, CDCl3) in ppm: 20.5, 2×20.6, 20.9 [4×CH3], 66.6 [C-2], 67.5 [C-3], 67.6 [C-

6], 68.1 [C-5], 70.1 [C-4], 72.4 [CH2CH=CH2], 89.8 [C-1], 117.7 [CH2CH=CH2], 134.0 

[CH2CH=CH2], 169.0, 169.9, 2×170.0 [COOCH3].— 
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(2S,3R,4S,5S,6R)-2-(acetylthio)-6-((prop-2-yn-1-yloxy)methyl)tetrahydro-2H-pyran-3,4,5-triyl 

triacetate (5a) 

 

Following the general procedure F, (2S,3R,4S,5S,6R)-6-((prop-2-yn-1-yloxy)methyl)tetrahydro-2H-

pyran-2,3,4,5-tetrayl tetraacetate (4a) (2.21 g, 5.7 mmol), thioacetic acid (1.9 ml, 27.2 mmol) and 

boron trifluoride diethyl etherate (4.9 ml, 39.9 mmol) was used for (2S,3R,4S,5S,6R)-2-(acetylthio)-

6-((prop-2-yn-1-yloxy)methyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (5a). The crude residue was 

purified by column chromatography on silica gel (n-hexane/EtOAc; 2/1; Rf = 0.15). The desired 

product was obtained as colourless oil (1.65 g, 72%).— 

M = 402.10 g/mol, C17H22O9S 

FTIR (ATR) in cm-1: 𝑣̃ = 3282(C≡C-H), 2978, 2943, 2882 (C-H), 2112 (C≡C), 1747, 1701(C=O), 

1440 (C-H), 1253, 1207, 1063 (C-O).— 

The pure product is a mixture of two anomers in a ratio of 1:5. The signals of the minor anomer can’t 

be assigned to the respective positions of the molecule. 

Major anomer: 

1H-NMR (500.2 MHz, CDCl3) in ppm: 1.89, 1.94, 2.07, 2.30 [4×s, 12 H, 4×CH3], 2.39 [t, J = 2.4 Hz, 

1 H, CH2C≡CH], 3.44-3.59 [m, 2 H, C-6], 3.96 [td, J = 6.3 Hz, 1.2 Hz, 1 H, H-5], 3.96-4.11 [m, 2 H, 

CH2C≡CH], 5.04 [dd, J = 9.2 Hz, 3.4 Hz, 1 H, H-3], 5.16-5.25 [m, 2 H, H-1, H-2], 5.41 [dd, 

J = 3.4 Hz, 1.1 Hz, 1 H, H-4].— 

13C-NMR (125.8 MHz, CDCl3) in ppm: 20.5, 2×20.6, 30.8 [4×CH3], 58.3 [CH2C≡CH], 66.5 [C-2], 

66.9 [C-6], 67.6 [C-4], 71.9 [C-3], 75.1 [CH2C≡CH], 76.0 [C-5], 79.0 [CH2C≡CH], 80.4 [C-1], 169.4, 

169.7, 170.0 [3×COOCH3], 192.1 [COSCH3].— 

MS (ESI+,TOF): m/z (%) = 425.1 [MNa]+ (100).— 

HRMS (ESI+,TOF): calculated for [C17H22O9NaS]+: 425.0877, found: 425.0882.— 
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(2S,3R,4S,5S,6R)-2-(acetylthio)-6-((allyloxy)methyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (5b) 

 
Following the general procedure F, (2S,3R,4S,5S,6R)-6-((allyloxy)methyl)tetrahydro-2H-pyran-

2,3,4,5-tetrayl tetraacetate (4b) (5.00 g, 12.4 mmol), thioacetic acid (4.3 ml, 58.8 mmol) and boron 

trifluoride diethyl etherate (11.2 ml, 86.8 mmol) were used for (2S,3R,4S,5S,6R)-2-(acetylthio)-6-

((allyloxy)methyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (5b). The crude residue was purified by 

column chromatography on silica gel (PE (40/60)/EtOAc; 3/1; Rf = 0.12). The desired product was 

obtained as colourless oil (4.76 g, 95%).— 

M = 402.10 g/mol, C17H24O9S 

FTIR (ATR) in cm-1: 𝑣̃ = 2968, 2943, 2872 (C-H), 1750, 1703 (C=O), 1433 (C-H), 1242, 1210, 1057 

(C-O).— 

The pure product is a mixture of two anomers in a ratio of 1:6. The signals of the minor anomer can’t 

be assigned to the respective positions of the molecule. 

Major anomer: 

1H-NMR (500.2 MHz, CDCl3) in ppm: 1.95, 1.99, 2.11, 2.35 [4×s, 12 H, 4×CH3], 3.38 [dd, J = 9.9 Hz, 

7.0 Hz, 1 H, H-6], 3.50 [dd, J = 9.8 Hz, 5.8 Hz, 1 H, H-6’], 3.85 [ddt, J = 12.8 Hz, 5.9 Hz, 1.4 Hz, 1 H, 

CH2CH=CH2], 3.91-3.99 [m, 2 H, H-5, CH2CH=CH2], 5.09 [dd, J = 9.6 Hz, 3.4 Hz, 1 H, H-4], 5.12-

5.31 [m, 4 H, H-1, H-2, CH2CH=CH2], 5.48 [dd, J = 3.4 Hz, 1.2 Hz, 1 H, H-3], 5.78 [ddt, J = 17.3 Hz, 

10.4 Hz, 5.7 Hz, 1 H, CH2CH=CH2].— 

13C-NMR (125.8 MHz, CDCl3) in ppm: 20.7, 20.8, 20.8, 30.9 [4×CH3], 66.7 [C-2], 67.3 [C-6], 67.8 

[C-3], 72.4 [C-4], 72.4 [CH2CH=CH2], 76.4 [C-5], 80.6 [C-1], 117.7 [CH2CH=CH2], 134.2 

[CH2CH=CH2], 169.7, 169.9, 170.1 [3×COOCH3], 192.3 [COSCH3].— 

MS (ESI+,TOF): m/z (%) = 427.1 [MNa]+ (100).— 

HRMS (ESI+,TOF): calculated for [C17H24O9NaS]+: 427.1033, found: 427.1036.— 
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(2S,3R,4S,5R,6R)-2-mercapto-6-((prop-2-yn-1-yloxy)methyl)tetrahydro-2H-pyran-3,4,5-triol (6a) 

 
Following the general procedure G, (2S,3R,4S,5S,6R)-2-(acetylthio)-6-((prop-2-yn-1-

yloxy)methyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (5a) 804 mg, 2.00 mmol), sodium methoxide 

(165 mg, 6.00 mmol) methanol (15 ml) and Dowex® (2.00 g) were used for (2S,3R,4S,5R,6R)-2-

mercapto-6-((prop-2-yn-1-yloxy)methyl)tetrahydro-2H-pyran-3,4,5-triol (6a).— 

M = 234.06 g/mol, C9H14O5S 

MS (ESI+,TOF): m/z (%) = 257.0 [MNa]+ (100).— 

HRMS (ESI+,TOF): calculated for [C17H14O9NaS]+: 257.0454, found: 257.0452.— 
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(2R,3R,4S,5R,6S)-2-((allyloxy)methyl)-6-mercaptotetrahydro-2H-pyran-3,4,5-triol (6b) 

 

Following the general procedure G, (2S,3R,4S,5S,6R)-2-(acetylthio)-6-((allyloxy)methyl)tetrahydro-

2H-pyran-3,4,5-triyl triacetate (5b) 808 mg, 2.00 mmol), sodium methoxide (165 mg, 6.00 mmol) 

methanol (15 ml) and Dowex® (2.00 g) were used for (2R,3R,4S,5R,6S)-2-((allyloxy)methyl)-6-

mercaptotetrahydro-2H-pyran-3,4,5-triol (6b).— 

M = 236.07 g/mol, C9H16O5S 

MS (ESI+,TOF): m/z (%) = 495.1 [M2Na]+ (43).— 

HRMS (ESI+,TOF): calculated for [C18H32O10NaS2]
+: 495.1329, found: 495.1273.— 
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7.3.3 Synthesis of symmetrical sugar based triazoles 

 

(2R,3S,4S,5R,6R)-2-((allyloxy)methyl)-6-azidotetrahydro-2H-pyran-3,4,5-triyl triacetate (7) 

 
The synthesis of the sugar was carried out as reported.[136] 

(2S,3R,4S,5S,6R)-6-((Allyloxy)methyl)tetrahydro-2H-pyran-2,3,4,5-tetrayl tetraacetate (4b) (2.50 g, 

6.5 mmol) was dissolved in anhydrous DCM (35 ml) and cooled to 0 °C. Afterwards azido trimethyl 

silane (1.02 ml, 7.7 mmol) and tin (IV) chloride (0.38 ml, 3.25 mmol) were added carefully. The 

mixture was allowed to warm up to room temperature and was stirred for 3 hours. By adding triethyl 

amine (2 ml) the reaction was quenched. Then the mixture was extracted with DCM (3×50 ml). The 

combined organic layers were washed with saturated sodium hydrogen carbonate solution (3×50 ml) 

and brine (1×50 ml). The organic part was dried over NaSO4 and the solvent was removed under 

reduced pressure at the rotary evaporator. The crude residue was purified by column chromatography 

on silica gel (n-hexane/EtOAc; 2/1; Rf = 0.21). The desired product (2R,3S,4S,5R,6R)-2-

((allyloxy)methyl)-6-azidotetrahydro-2H-pyran-3,4,5-triyl triacetate (7) was obtained as colourless oil 

(1.98 g, 82%).— 

M = 371.35 g/mol, C15H21N3O8 

FTIR (ATR) in cm-1: 𝑣̃ = 2940, 2890 (C-H), 2117 (N3), 1748 (C=O), 1433 (C-H), 1208, 1055 (C-O), 

926, 750 (C=C).— 

1H-NMR (500.2 MHz, CDCl3) in ppm: 1.98, 2.08, 2.15 [3×s, 9 H, 3×CH3], 3.48 [dd, J = 10.0 Hz, 

6.1 Hz, 1 H, H-6], 3.57 [dd, J = 10.0 Hz, 6.3 Hz, 1 H, H-6’], 3.90-3.95 [m, 2 H, H-3, 

CH2CH=CH2]4.01 [dddd, J = 12.8 Hz, 5.6 Hz, 1.6 Hz, 1.2 Hz, 1 H, CH2CH=CH2], 4.60 [d, J = 8.7 Hz, 

1 H, H-1], 5.03 [dd, J = 10.3 Hz, 3.4 Hz, 1 H, H-4], 5.15 [ddd, J = 10.3 Hz, 8.7 Hz, 0.4 Hz, 1 H, H-2], 

5.17-5.27 [m, 2 H, CH2CH=CH2], 5.46 [ddd, J = 3.4 Hz, 1.2 Hz, 0.4 Hz, 1 H, H-5], 5.83 [ddt, 

J = 17.2 Hz, 10.4 Hz, 5.7 Hz, 1 H, CH2CH=CH2].— 

13C-NMR (125.8 MHz, CDCl3) in ppm: 20.7, 2×20.8 [3×CH3], 2×67.6 [C-5, C-6], 68.4 [C-2], 71.0 [C-

4], 72.6 [CH2CH=CH2], 74.6 [C-3], 88.5 [C-1], 118.0 [CH2CH=CH2], 134.1 [CH2CH=CH2], 169.6, 

170.1, 170.2 [3×COOCH3].— 
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(2S,3R,4R,5S)-2-((allyloxy)methyl)-6-(4-(4-(1-((2R,3R,4S,5S,6R)-3,4,5-triacetoxy-6-

((allyloxy)methyl)tetrahydro-2H-pyran-2-yl)-1H-1,2,3-triazol-4-yl)butyl)-1H-1,2,3-triazol-1-

yl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (8) 

 
The synthesis of the sugar is carried out as reported.[136] 

(2R,3S,4S,5R,6R)-2-((Allyloxy)methyl)-6-azidotetrahydro-2H-pyran-3,4,5-triyl triacetate (7) 

(742 mg, 2.0 mmol) was dissolved in a mixture of water and tert butyl alcohol (1:1; 15 ml in total). 1,7 

octadiyne (0.13 ml, 1 mmol), copper sulfate (1.59 mg, 0.01 mmol) and sodium ascorbate (19 mg, 

0.1 mmol) were added. The mixture was stirred for 12 h at room temperature and the progress was 

controlled via TLC. When the reaction turned green new sodium ascorbate was added. The mixture 

was extracted with DCM (3×50 ml). The combined organic layers were washed with water (3×50 ml) 

and brine (1×50 ml). The organic part is dried over NaSO4 and the solvent was removed under reduced 

pressure at the rotary evaporator. The crude residue was purified by column chromatography on silica 

gel (EtOAc; Rf = 0.81). The desired product (2S,3R,4R,5S)-2-((allyloxy)methyl)-6-(4-(4-(1-

((2R,3R,4S,5S,6R)-3,4,5-triacetoxy-6-((allyloxy)methyl)tetrahydro-2H-pyran-2-yl)-1H-1,2,3-triazol-

4-yl)butyl)-1H-1,2,3-triazol-1-yl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (8) was obtained as 

colourless oil (670 mg, 79%).— 

M = 848.34 g/mol, C38H52N6O16 

FTIR (ATR) in cm-1: 𝑣̃ = 3145, 3092 (Carom-H), 2991, 2949, 2870 (C-H), 1748 (C=O), 1648 (C=N), 

1568 (C=Ccyclic), 1442 (C-H), 1370 (C-N), 1206,1076 (C-O), 915 (C=C).— 

1H-NMR (500.2 MHz, CDCl3) in ppm: 1.67-1.72 [m, 4 H, 2×Cq,arom-CH2-CH2],1.80-1.83 [m, 6 H, 

2×CH3], 1.95, 2.16 [2×s, 12 H, 4×CH3], 2.67-2.74 [m, 4 H, 2×Cq,arom-CH2-CH2], 3.42-3.46 [m, 2 H, 

2×H-6], 3.50-3.54 [m, 2 H, 2×H-6’], 3.82-3.96 [m, 4 H, CH2CH=CH2], 4.10 [td, J = 6.3 Hz, 1.2 Hz, 

2 H, 2×H-5], 5.10-5.22 [m, 6 H, 2×H-3, CH2CH=CH2], 5.46-5.52 [m, 2 H, 2×H-2], 5.54 [dd, 

J = 3.4 Hz, 1.2 Hz, 2 H, 2×H-4], 5.71-5.80 [m, 4 H, 2×H-1, 2×CH2CH=CH2], 7.54 [s, 2 H, CaromH].— 

13C-NMR (125.8 MHz, CDCl3) in ppm: 20.3, 20.6, 20.7 [6×CH3], 25.3 [2×Cq,arom-CH2-CH2], 28.6 

[2×Cq,arom-CH2-CH2], 67.2 [2×C-6], 67.4 [2×C-4], 68.1 [2×C-2], 71.1 [2×C-3], 72.4 [2×CH2CH=CH2], 
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75.2 [2×C-5], 86.2 [2×C-1], 117.9 [2×CH2CH=CH2], 119.1 [2×CaromH], 133.9 [2×CH2CH=CH2], 

148.5 [2×Cq,arom], 169.1, 169.8, 170.0 [6×COOCH3].— 

MS (ESI+,TOF): m/z (%) = 871.3 [MNa]+ (100).— 

HRMS (ESI+,TOF): calculated for [C38H52N6O16Na]+: 871.3332, found: 871.3334.— 
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8 Attachment 

 

Figure 8.1 1H-NMR spectrum (500.2 MHz) of SCC measured in CDCl3. 

 

Figure 8.2 13C-NMR spectrum (125.8 MHz) of SCC measured in CDCl3. 
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Figure 8.3 1H-NMR spectrum (500.2 MHz) of LCC measured in CDCl3. 

 

Figure 8.4 13C-NMR spectrum (125.8 MHz) of LCC measured in CDCl3. 
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Figure 8.5 1H-NMR spectrum (500.2 MHz) of 1 measured in CDCl3. 

 

Figure 8.6 1H-NMR spectrum (500.2 MHz) of 2a measured in CDCl3. 
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Figure 8.7 1H-NMR spectrum (500.2 MHz) of 2b measured in CDCl3. 

 

Figure 8.8 1H-NMR spectrum (500.2 MHz) of 4a measured in CDCl3. 
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Figure 8.9 1H-NMR spectrum (500.2 MHz) of 4b measured in CDCl3. 

 

Figure 8.10 13C-NMR spectrum (125.8 MHz) of 4b measured in CDCl3. 
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Figure 8.11 1H-NMR spectrum (500.2 MHz) of 5a measured in CDCl3. 

 

Figure 8.12 13C-NMR spectrum (125.8 MHz) of 5a measured in CDCl3. 
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Figure 8.13 1H-NMR spectrum (500.2 MHz) of 5b measured in CDCl3. 

 

Figure 8.14 13C-NMR spectrum (125.8 MHz) of 5b measured in CDCl3. 



Attachment 

102 

 

 

Figure 8.15 1H-NMR spectrum (500.2 MHz) of 7 measured in CDCl3. 

 

Figure 8.16 13C-NMR spectrum (125.8 MHz) of 7 measured in CDCl3. 
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Figure 8.17 1H-NMR spectrum (500.2 MHz) of 8 measured in CDCl3. 

 

Figure 8.18 13C-NMR spectrum (125.8 MHz) of 8 measured in CDCl3. 
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